
Overview

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Common-cpp

Table	of	data	types

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Common-cpp

	Photon	C++
Client	API		4.1.12.2

Table	of	data	types

Photon	defines	a	common	set	of	serializable	data	types	across	all
supported	platforms,	as	listed	in	the	table	below.

Client	(C++) Server	(C#)
nByte Byte	/	byte
short Int16	/	short
int Int32	/	int
int64 Int64	/	long
bool Boolean	/	bool
float Single	/	float
double Double	/	double
JString String	/	string
Hashtable Hashtable
Dictionary Dictionary

We	also	support	arrays	for	all	the	above	types:

Client	(C++) Server	(C#)
type* type[]

Multidimensional	arrays	are	supported	(however	on	the	server	side	they
will	be	interpreted	as	jagged	array	with	all	subarrays	in	the	same
dimension	having	the	same	size).	Jagged	arrays	are	not	supported.

Example:	int*	-	one	dimension	int**	-	two	dimensions

Moreover	we	support	object-arrays,	which	means	arrays	of	elements	of

©		Exit	Games	®,	all	rights	reserved.

different	types,	as	long	as	the	element-types	themselves	are	supported.
For	example	the	first	element	of	the	array	can	be	an	int,	the	second	one	a
string.

Client	(C++) Server	(C#)
Object* Object[]

Object	is	not	supported	for	non-array	data.	

Finally	we	support	custom	types.

This	means,	if	your	need	to	send	some	custom	data,	which	can	not	be
represented	easily	by	the	Photon-builtin	data-types,	like	for	example	a
game	specific	container	class,	then	you	can	simply	implement	Photon's
custom	type	interface	for	it	and	this	way	supply	Photon	with	the	needed
abilities	to	handle	your	type	and	then	you	can	just	send	and	receive	your
custom	type	with	Photon.

All	custom	types	are	automatically	supported	as	(multi-dimensional)
arrays,	too.

Please	refer	to	the	API	doc	for	class	CustomType	for	details.

All	of	the	above	types	are	supported	as	values	in	Hashtable	and
Dictionary	instances.

As	keys	both	these	containers	accept	the	following	types:
nByte
short
int
int64
float
double
JString

https://www.photonengine.com/

Photon	Documentation	|	Contact	|	Terms

http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Photon-cpp

How	to	set	up	your	application	Workflow	
Operations	
Events	
Properties	
Sending	and	receiving	data	
The	Photon	Server	
Basics	
Fragmentation	and	Channels	
Using	TCP	
Troubleshooting

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

How	to	set	up	your	application

The	following	chapter	deals	with	all	the	settings	that	need	to	be	done	to
include	the	Photon	Client	Library	files	in	your	project.

Windows	iOS	
Marmalade	
OS	X	
Android	NDK	
Blackberry	NDK	
Linux

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Windows

For	Windows	Photon	supports	Visual	Studio	as	IDE.

1.	In	C/C++	->	General	->	Additional	Include	Directories,	add	the	parent-
folder(s)	of	the	following	paths:
(...)/Photon-cpp/inc
(...)/Common-cpp/inc

2.	At	Linker	->	Input	->	Additional	Dependencies	add	either	Common-
cpp_release_windows.lib	and	Photon-cpp_release_windows.lib	or
Common-cpp_debug_windows.lib	and	Photon-
cpp_debug_windows.lib

3.	Add	the	folders	Photon-cpp/lib	and	Common-cpp/lib	to	Linker	->
General	->	Additional	Library	Directories

4.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

iOS

For	iPhone	Photon	supports	Xcode	on	Mac	OS	X	as	IDE.

1.	Add	the	parent-folder(s)	of	the	folders	Photon-cpp/inc	and	Common-
cpp/inc	to	"Header	Search	Paths"	in	category	"Search	Paths"	in	your
applications	Project	Settings

2.	In	your	Project	Settings	at	category	"Linking"	add	to	"Other	Linker
Flags"	the	following	both	entries:
-lCommon-cpp_$(CONFIGURATION)_$(PLATFORM_NAME)
-lPhoton-cpp_$(CONFIGURATION)_$(PLATFORM_NAME)

3.	Add	the	folders	Photon-cpp/lib	and	Common-cpp/lib	to	"Library
Search	Paths"	in	category	"Search	Paths"	in	your	applications	Project
Settings

4.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Marmalade

For	Marmelade	Photon	supports	Visual	Studio	and	Xcode	as	IDEs	and
Windows	and	OS	X	as	development	platforms.

1.	Add	the	entries	Photon-cpp	and	Common-cpp	to	category
subprojects	in	your	project's	.mkb-file

2.	Add	the	entries	"../../Common-cpp,Common-cpp"	and	"../../Photon-
cpp,Photon-cpp"	(including	the	"")to	category	librarys	in	your	projects'
.mkb-file

3.	Add	the	entries	../../Common-cpp	and	../../Photon-cpp	to	category
librarypaths	in	your	projects'	.mkb-file

4.	Add	the	entry	module_path="../../"	to	category	options	in	you
project's	.mkb-file

5.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

OS	X

For	OS	X	Photon	supports	Xcode	as	IDE.

1.	Add	the	parent-folder(s)	of	the	folders	Photon-cpp/inc	and	Common-
cpp/inc	to	"Header	Search	Paths"	in	category	"Search	Paths"	in	your
applications	Project	Settings

2.	In	your	Project	Settings	at	category	"Linking"	add	to	"Other	Linker
Flags"	the	following	both	entries:
-lCommon-cpp_$(CONFIGURATION)_$(PLATFORM_NAME)
-lPhoton-cpp_$(CONFIGURATION)_$(PLATFORM_NAME)

3.	Add	the	folders	Photon-ccp/lib	and	Common-cpp/lib	to	"Library
Search	Paths"	in	category	"Search	Paths"	in	your	applications	Project
Settings

4.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Android	NDK

For	Android	NDK	Photon	supports	Visual	Studio	with	WinGDB	plugin	on
Windows	as	IDE,	but	you	can	also	use	makefiles,	which	will	work	on
Windows	and	OS	X.	Linux	is	currently	not	supported.

1.	Add	common-cpp-static-prebuilt	and	photon-cpp-static-prebuilt	to
"APP_CPPFLAGS"	in	your	applications	Android.mk	file.

2.	In	your	Projects	Android.mk	file	add	the	following	lines:
$(call	import-add-path-optional,	$(shell	pwd)/../../../../Photon-
cpp/src/android)
$(call	import-add-path-optional,	$(shell	pwd)/../../../../Photon-cpp)
$(call	import-module,photon-cpp-prebuilt)

3.	Add	-frtti	to	"LOCAL_STATIC_LIBRARIES"	in	your	applications
Application.mk	file.

4.	Set	"APP_STL"	in	your	applications	Application.mk	file	to
stlport_static,	stlport_shared,	gnustl_static	or	gnustl_shared.

5.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

	Photon	C++
Client	API		4.1.12.2

Blackberry	NDK

Photon	supports	Blackberry	NDK	version	10	and	newer.	Photons	IDE	of
choice	for	Blackberry	currently	is	QNX	Momentics.

1.	Right-click	on	your	project,	go	to	"Configure"	->	"Add	Library",	choose
"Standard	BlackBerry	Platform	Library"	and	add	the	following	libraries	to
your	project:
a)	Common	Services	->	Math	-	libm
b)	Localization	->	Iconv	-	libiconv
c)	Networking	->	Socket	-	libsocket

2.	Right-click	on	your	project,	go	to	"Configure"	->	"Add	Library",	choose
"External	Library"	and	add	the	Common	C++	library	to	your	project:
Device	Library:	../../Common-cpp/libcommon-cpp-debug_blackberry.a
or	../../Common-cpp/libcommon-cpp-release_blackberry.a
Simulator	Library:	../../Common-cpp/libcommon-cpp-
debug_blackberry_simulator.a	or	../../Common-cpp/libcommon-cpp-
release_blackberry_simulator.a
Include	folders:	../..

3.	Right-click	on	your	project,	go	to	"Configure"	->	"Add	Library",	choose
"External	Library"	and	add	the	Photon	C++	library	to	your	project:
Device	Library:	../../Photon-cpp/libphoton-cpp-debug_blackberry.a	or
../../Photon-cpp/libphoton-cpp-release_blackberry.a
Simulator	Library:	../../Photon-cpp/libphoton-cpp-
debug_blackberry_simulator.a	or	../../Photon-cpp/libphoton-cpp-
release_blackberry_simulator.a
Include	folders:	../..

4.	Right-click	on	your	project,	go	to	"Properties"	->	"C/C++	General"	->
"Paths	and	Symbols"	->	"Libraries"	and	make	sure,	that	the	Photon	lib	is
listed	above	the	Common	lib	and	the	Common	lib	above	all	standard

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

blackberry	platform	libs

5.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp How	to	set	up	your	application

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Linux

Use	IDE	of	your	choice	or	makefiles.

1.	In	Code::Blocks	IDE	right-click	on	your	project,	go	to	"Build	Options"
and	go	to	"Search	directories".

2.	In	the	"Compiler"	tab	add	paths	to	the	parent-folder(s)	of	the
Common-cpp/inc	and	Photon-cpp/inc	directories.

3.	In	the	"Linker"	tab	add	paths	to	Common-cpp	and	Photon-cpp
directories.

4.	For	each	target	of	your	project	go	to	its	"Linker	settings"	tab	left	to
"Search	directories".	Add	PhotonDebug64	and	CommonDebug64
libraries	for	the	debug	or	PhotonRelease64	and	CommonRelease64	for
the	release	configuration	for	64	bit	builds,	or	replace	the	"64"	by	"32"	for
32bit	builds.	The	order	of	the	libraries	is	important	for	a	successful	build.
The	prefix	'lib'	and	the	extension	'a'	are	added	automatically.

5.	In	the	projects	"Linker	settings"	tab	add	-pthread	to	"Other	linker
options".

6.	Add	the	following	#include	directive	to	your	source-code:
#include	"Photon-cpp/inc/PhotonPeer.h"

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Workflow

To	get	an	impression	of	how	to	work	on	the	client,	we	will	use	the	server's
Lite	logic.	This	application	defines	rooms	which	are	created	when	users
try	to	join	them.	Each	user	in	a	room	becomes	an	actor	with	its	own
number.

A	simplified	workflow	looks	like	this:

create	a	LitePeer	instance
from	now	on:	regularly	call	service()	to	get	events	and	operation
responses	and	to	send	operations	(e.g.	ten	times	a	second)
call	connect()	to	connect	to	the	server
wait	until	the	library	calls	onStatusChanged()
the	return	code	should	equal	StatusCode::CONNECT
call	opJoin()	to	get	into	a	room
wait	until	the	library	calls	onOperationResponse()	with	operation
code	OPC_RT_JOIN
send	data	in	the	game	by	calling	opRaiseEvent()
receive	events	in	onEvent()
when	you	are	done:	call	opLeave()	to	quit/leave	the	game	room
wait	for	a	response	to	"leave"	in	onOperationResponse()	with
operation	code:	OPC_RT_LEAVE
disconnect	with	disconnect()
wait	for	status	code	StatusCode::DISCONNECT	in
onStatusChanged()

Combined	with	the	server's	Lite	application,	this	simple	workflow	would
allow	you	to	use	rooms	and	send	your	game's	events.	The	functions	used
could	be	broken	down	into	three	layers:

Low	Level:	service(),	connect(),	disconnect()	and
onStatusChanged()	are	directly	referring	to	the	connection	to	the

server.	This	level	works	with	UDP/TCP	packets	which	transport
commands	(which	in	turn	carry	your	operations).	It	keeps	your
connection	alive	and	organizes	your	RPC	calls	and	events	into
packages.
Logic	Level:	operations,	results	and	events	make	up	the	logical	level
in	Photon.	Any	operation	is	defined	on	the	server	(think	RPC	call)
and	can	have	a	result.	Events	are	incoming	from	the	server	and
update	the	client	with	some	data.
Application	Level:	Made	up	by	a	specific	application	and	its	features.
In	this	case	we	use	the	operations	and	logic	of	the	Lite	application.	In
this	specific	case,	we	have	rooms	and	actors	and	more.	The
LitePeer	is	matching	the	server	side	implementation	and	wraps	it	up
for	you.

You	don't	have	to	manage	the	low	level	communication	in	most	cases.
However,	it	makes	sense	to	know	that	everything	that	goes	from	client	to
server	(and	the	other	way	round)	is	put	into	"commands".	Internally,
commands	are	also	used	to	establish	and	keep	the	connection	between
client	and	server	alive	(without	carrying	additional	data).

All	functions	that	are	operations	(RPC	calls)	are	prefixed	with	"Op"	to	tell
them	apart	from	anything	else.	Other	server-side	applications	(like	for
example	MMO	or	your	own)	will	define	different	operations.	These	will
have	different	parameters	and	return	values.	These	operations	are	not
part	of	the	client	library	but	can	be	implemented	by	calling	opCustom().

Aside	from	operations,	there	is	a	separate	communication	layer	to	make
UDP	reliable.	Everything	that	goes	from	client	to	server	(and	the	other
way	round)	is	put	into	"commands"	and	some	commands	establish	and
keep	the	connection	between	client	and	server	(without	carrying
additional	data).

Callbacks
PhotonPeer	uses	the	virtual	functions	of	the	class
ExitGames::Photon::PhotonListener	to	do	callbacks.	Each	function	is
called	in	separate	cases:

onStatusChanged()	is	for	peer	state	changes	(connect,	disconnect,
errors)
onOperationResponse()	is	for	operation	responses	(join,	leave,
raiseEvent	and	custom	operations,	etc.)
onEvent()	gets	called	for	events	coming	in
debugReturn()	is	called	to	pass	debug	output	to	you	(not	used	by
release	builds)

The	calls	to	onStatusChanged()	are	of	special	interest,	as	they	denote
connection	status	changes	and	errors.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Getters/Setters
The	following	getter-	and	setter-functions	in	PhotonPeer	are	of	special
interest:

setTimePingInterval()	sets	the	time	between	ping	operations
getRoundTripTime()	returns	the	ping	between	the	Photon	client	and
the	server
getRoundTripTimeVariance()	shows	the	jitter	(variability	of	the
roundtrip	time)
getServerTime()	is	the	continuously	approximated	server's	time	in
milliseconds

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Operations

Operation	is	our	term	for	remote	procedure	calls	(RPC)	on	Photon.	This
in	turn	can	be	described	as	functions	that	are	implemented	on	the	server-
side	and	called	by	clients.	As	any	function,	they	have	parameters	and
return	values.	The	Photon	development	framework	takes	care	of	getting
your	RPC	calls	from	clients	to	server	(and	results	back).

Server-side,	operations	are	part	of	an	application	running	on	top	of
Photon.	The	default	application	provided	by	Exit	Games	is	called	"Lite
Application"	or	simply	Lite.	The	LitePeer	class	extends	the	PhotonPeer
by	functions	for	each	of	the	Lite	Operations.

Examples	for	Lite	Operations	are	"join"	and	"raise	event".	On	the	client-
side,	they	can	be	found	in	the	LitePeer	class	as	functions:	opJoin()	and
opRaiseEvent().	They	can	be	used	right	away	with	the	default
implementation	of	Photon	and	the	Lite	Application.

Custom	Operations
Photon	is	about	being	extendable	with	features	that	are	specific	to	your
game.	You	could	persist	states	in	a	database	or	double	check	information
from	the	clients	on	the	server	by	implementing	functions.	If	your	new
functions	can	be	called	from	the	client-side,	we	call	them	Custom
Operation.	Creating	those	is	primarily	a	server-side	task,	of	course,	but
the	clients	have	to	use	new	functions	/	operations	of	the	server.

So	Operations	are	functions	that	can	be	called	from	the	client-side.	They
can	have	any	number	of	parameters	and	any	name.	As	you	will	be	calling
operations	a	lot,	we	avoid	using	strings	and	instead	assign	byte-codes	for
every	operation	and	each	parameter.

This	is	done	server	side.	Each	Operation	has	its	own,	unique	number	to
identify	it,	known	as	the	operation	code	(opCode).	An	operation	class
defines	the	expected	parameters	and	assigns	a	parameter	code	for	each.
With	this	definition,	the	client-side	only	has	to	fill	in	the	values	and	let	the
server	know	the	opCode	of	the	Operation.

Photon	uses	instances	of	OperationRequest	and	OperationResponse
to	aggregate	the	opCode	and	all	parameters.	Use	opCustom()	to	send
your	Hashtable	and	call	any	operation.

Client-side,	operation	codes	and	parameter	codes	are	of	type	byte	(to
minimize	overhead).	They	need	to	match	the	definition	of	the	server-side
to	successfully	call	your	operation.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Operation	Codes:	byte	versus	short
Currently,	the	server-side	uses	the	short-type	to	define	opCodes	and
parameter	keys	while	the	client-side	uses	bytes	only.	This	is	a	remainder
of	Neutron,	essentially,	where	we	implemented	more	values	of	opCodes.
But	using	short	for	each	opCode	and	parameter	is	a	lot	of	overhead	in	a
realtime	environment,	so	we	decided	to	revert	this	in	the	protocol	and	just
send	bytes.	This	simply	saves	lots	of	bandwidth.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Events

Unlike	operations,	events	are	"messages"	that	are	rarely	triggered	by	the
client	that	receives	them.	Events	usually	come	from	outside:	the	server	or
other	clients.

They	are	created	as	a	side	effect	of	operations	(e.g.	when	you	join	a
room)	or	raised	as	main	purpose	of	the	operation	(like	done	by
opRaiseEvent()).	Most	events	carry	some	form	of	data,	but	in	rare	cases
the	type	of	the	event	itself	is	the	only	message.

Events	are	instances	of	EventData	with	arbitrary	content.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Properties

Properties	can	be	set	by	these	functions:

opSetPropertiesOfActor()	sets	a	player's	properties
opSetPropertiesOfGame()	sets	a	room's	properties
opJoin()	also	allows	you	to	set	properties	on	room	creation

They	can	be	fetched	with	these	functions:

opGetProperties()
opGetPropertiesOfActor()
opGetPropertiesOfGame()

Broadcast	Events
Any	change	that	uses	the	broadcast	option	will	trigger	a	property	update
event	EV_RT_SETPROPERTIES.	This	event	carries	the	properties	as
value	of	key	EV_RT_KEY_PROPERTIES.

Additionally,	there	is	information	about	who	changed	the	properties	in	key
EV_RT_KEY_ACTORNR.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Notes
You	can	delete	properties	by	sending	them	with	NULL	as	value.	This	also
means,	that	you	can't	use	NULL	as	a	normal	value	for	them.	Lite
currently	does	not	support	wildcard	characters	in	string	keys	to	fetch
properties.

Other	types	of	keys	could	be	used,	but	to	keep	things	simple,	we	decided
against	adding	those.	If	needed,	we	would	help	you	with	the
implementation.

The	property	handling	is	likely	to	be	updated	and	extended	in	the	future.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Sending	and	receiving	data

How	to	send	data	to	other	players
In	Photon	you	exchange	data	with	other	players	by	sending	and	receiving
"Operations"	and	"Events".	Please	refer	to	Operations	for	more
information	about	this	concept.

The	cross-platform	communication	ability	of	Photon	implies	the	need	for
common	data	structures	across	all	the	different	client	versions.	Please
refer	to	Datatypes	for	a	table	of	supported	types	and	their	equivalents	on
the	server	side.

When	your	Hashtable	is	complete,	use	opRaiseEvent()	(or	opCustom(),
if	you	implemented	custom	types	of	operations	on	the	server)	to	initiate
the	transmission.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Receiving	Data
Photon	will	interact	with	your	application	by	calling	the	callback	functions
you	implemented,	thereby	passing	data	structures	as	arguments.	All
these	data	structures	belong	to	Photon,	which	means	that	Photon	is
responsible	for	deleting	them.	This	will	happen	as	soon	as	the	callback
function	has	returned.

So	your	application	is	responsible	A)	for	extracting	and	copying	any
data	needed	from	the	arguments	within	the	callback	function,	and	of
course

B)	for	later	freeing	up	the	memory	needed	for	those	copies,	as	usual.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

The	Photon	Server

The	Photon	Server	is	the	central	hub	for	communication	for	all	your
clients.	It	is	a	service	that	can	be	run	on	any	Windows	machine,	handling
UDP	and	TCP	(TCP	can	be	used	by	clients	on	platforms,	that	are	not	fully
supporting	UDP,	and	as	for	server-setups,	that	do	not	support	UDP	(like
some	cloud	services)	and	in	case	of	some	paranoid	firewall	settings	-	use
UDP	(which	can	be	sent	reliable	with	Photon!)	whenever	you	can	and
only	use	TCP	as	a	fallback,	as	we	can't	guarentee	feature	completeness
for	TCP.

The	Photon	Server	SDK	includes	a	pre-built	version	that	can	be	run	out
of	the	box.	It	also	allows	you	to	extend	the	server-side	easily.

Get	the	Photon	Server	SDK	at:
https://www.photonengine.com/en/OnPremise/Download

https://www.photonengine.com/en/OnPremise/Download

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

The	Lite	Application
The	Lite	Application	is	the	default	implementation	for	room-based	games
on	Photon	and	(hopefully)	a	flexible	base	for	your	own,	more	game-
specific,	extensions.	It	offers	rooms,	joining	and	leaving	them,	sending
events	to	the	other	players	in	a	room	and	handles	properties.

It	basically	does	everything	you	came	to	expect	of	Photon.

So	why	is	this	done	in	a	separate	project?	Because	this	way	we	can
could	sperate	the	low	level	C++	server	core	and	the	high	level	C#	server
API,	which	comes	in	multiple	so	called	Applications,	that	can	be	used	for
different	needs.

On	the	client-side	LitePeer	is	the	counterpart	for	the	server-side	Lite
Application.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Basics

Creating	a	PhotonPeer	instance	and
connecting
When	a	PhotonPeer	instance	is	created,	the	PhotonPeer	is	ready	to
connect	to	a	Photon	Server.	To	do	that,	call	the	function	connect()

After	initializing	the	connection,	the	application	should	wait	for	the
onStatusChanged()	callback	function.	If	its	returnCode	is
StatusCode::CONNECT,	the	connection	has	been	established.

Joining	a	game
As	soon	as	the	client	application	is	connected	to	Photon,	use	the	function
opJoin()	to	join	or	create	a	game.	If	there	is	no	game	with	the	given
identifier,	a	new	game	will	be	created.	If	the	call	succeeds,	the
onOperationResponse()	callback	will	be	called	with	operation	code
OPC_RT_JOIN,	and	also	an	event	will	be	raised,	resulting	in	a	call	to
onEvent()	callback	with	event	code	EV_RT_JOIN	.

Raising	custom	events	in	game
In	addition	to	the	events	raised	by	Photon	you	can	also	define	and	raise
events	needed	for	your	game.	E.g.	you	could	define	a	event	named
"EV_SHOOT"	to	broadcast	the	information	that	the	local	actor	has	just
fired	a	weapon	at	the	position	stored	in	the	variables	pMe->fireX,	pMe-
>fireY.	First	pick	and	define	an	operation	code	for	your	"shoot"	event.
Make	sure	it	won't	collide	with	the	Event	codes	#defined	in
PhotonConstants.h

To	keep	your	code	more	readable	and	maintainable,	you	should	also
define	key	codes	for	your	corresponding	Hashtable	entries,	as	shown
below:

const	nByte	EV_SHOOT	=	101;

const	nByte	KEY_FIRE_X	=	1;

const	nByte	KEY_FIRE_Y	=	2;

In	the	game	we	can	now	create	an	Hashtable	for	the	shoot	event	and
include	the	fire-coordinates	as	Key/Value	pairs.

HashTable	event;

event.put(KEY_FIE_X,	pMe->fireX);

event.put(KEY_FIE_Y,	pMe->fireY);

mPeer.opRaiseEvent(TRUE,	event,	EV_SHOOT);

As	soon	as	Photon	has	delivered	this	operation,	the	onEvent()	callback
will	be	called	at	all	the	other	players	inside	the	same	room,	with	event
code	beeing	EV_SHOOT.	Use	a	switch	case	on	the	event	code	to	handle
the	different	events	accordingly.

Leaving	a	room
Use	the	opLeave()	function	to	leave	the	currently	joined	room.

It	sends	an	operation	to	the	server	and	other	players	will	receive	the
event	EV_RT_LEAVE.	When	the	operation	is	completed	successfully,	the
ExitGames::Photon::PhotonListener::onOperationResponse()
callback	will	be	called	at	the	local	peer	with	the	opCode
OPC_RT_LEAVE.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Disconnecting	from	the	server
Disconnecting	should	be	done	using	disconnect().

When	disconnecting	is	finished,	the	onStatusChanged()	callback	will	be
called	and	the	status	code	should	be	StatusCode::DISCONNECT.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Fragmentation	and	Channels

Fragmentation
Bigger	chunks	of	data	(more	than	about	1kB)	are	not	fitting	into	a	single
packet,	so	they	are	fragmented	and	reassembled	automatically.
Depending	on	the	data	size,	this	takes	up	multiple	packages.

Be	aware	that	this	might	stall	other	commands.	Call	service()	or
sendOutgoingCommands()	more	often	than	absolutely	necessary.	You
can	also	check	the	debug	output	for	"WARNING!	There	are	x	outgoing
messages	waiting	in	the	local	sendQueue	!",	which	is	triggered,	if	a
sendqueue	contains	an	unusual	big	amount	of	elements	and	means,	that
you	probably	do	not	call	service()	or	sendOutgoingCommands()	often
enough	to	let	Photon	send	all	the	packets	out,	which	you	are	creating	by
triggering	operations.

Sequencing
The	sequencing	of	the	protocol	makes	sure	that	any	receiving	client	will
dispatch	your	actions	in	the	order,	in	which	you	have	sent	them.
Unreliable	data	is	considered	replaceable	and	can	be	lost.	Reliable
events	and	operations	will	be	repeated	several	times	if	needed,	but	they
will	all	be	dispatched	in	order	without	gaps.	Unreliable	actions	are	also
related	to	the	last	reliable	action	in	the	same	channel	and	do	not	get
dispatched	before	that	reliable	data	has	been	dispatched	first.	This	can
be	useful,	if	the	actions	are	related	to	each	other.

Example:	Your	FPS	sends	out	unreliable	movement	updates	and	reliable
chat	messages.	A	lost	package	with	movement	updates	would	be	left	out
as	the	next	movement	update	is	coming	fast.	On	the	receiving	end,	this
would	maybe	show	as	a	small	jump.	If	a	package	with	a	chat	message	is
lost,	it	would	be	resent	and	would	introduce	lag,	even	to	all	movement
updates,	created	after	that	chat-message.	In	this	case,	the	data	is
unrelated	and	should	be	put	into	different	channels,	to	avoid	that	a
needed	resent	of	a	chat	message	introduces	lag	into	the	movement
updates.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Channels
Photon	is	supporting	"channels".	This	allows	you	to	separate	information
into	multiple	channels,	each	being	sequenced	independently.	This
means,	that	operations	and	events	of	one	channel	will	not	be	stalled
because	events	of	another	channel	are	not	available	yet.

By	default	a	PhotonPeer	has	an	amount	of
getChannelCountUserChannels()	user	channels	and	channel	zero	is
the	default	channel,	which	will	be	used,	when	not	explicitly	specifying	a
channel.	Operations	join	and	leave	are	always	sent	in	channel	zero.
There	is	a	"system"	channel	255	used	internally	for	connect	and
disconnect	messages.	This	channel	is	ignored	for	the	user	channel
count.

Channels	are	prioritized:	Data,	to	be	send	on	the	lowest	channel	number
is	put	into	an	UDP	package	first.	Data,	which	will	be	sent	through	a
channel	with	a	higher	number	might	be	sent	later	when	an	UDP	package
is	already	full.

Example:	The	chat	messages	could	be	sent	in	channel	one,	while
movement	is	sent	in	channel	zero.	They	are	not	related	to	the	movement
and	if	a	chat	message	is	delayed,	it	will	no	longer	affect	movement	in
channel	zero.	Also,	channel	zero	has	higher	priority	and	is	more	likely	to
be	sent	immediately	(in	case	packages	get	filled	up).

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Using	TCP

A	PhotonPeer	could	be	instanced	with	TCP	as	underlying	protocol	if
necessary.	This	is	not	best	practice	but	some	client	platforms	and	some
clouds	don't	support	UDP	sockets	and	some	end	users'	firewall	or	router
settings	may	not	allow	it.	However	UDP	is	the	preferable	protocol	for
Photon,	whenever	you	have	the	choice.

The	Photon	Client	API	is	the	same	for	both	protocols	but	there	are	some
differences	in	what	goes	on	under	the	hood.

Everything	sent	over	TCP	is	always	reliable,	even	if	you	call	your
operations	as	unreliable!

If	you	use	only	TCP	clients	Simply	send	any	operation	unreliable.	It
saves	some	work	(and	bandwidth)	in	the	underlying	protocols.

If	you	have	TCP	and	UDP	clients
Anything	you	send	between	the	TCP	clients	will	always	be	transferred
reliable.	But	as	you	communicate	with	some	clients	that	use	UDP	these
will	get	your	events	reliable	or	unreliable	according	to	your	specifications.

Example:	A	client,	which	has	been	initialized	to	use	TCP,	might	send
unreliable	movement	updates	in	channel	1.	These	will	be	sent	via	TCP,
which	makes	it	reliable.	Photon	however	also	has	connections	with	UDP
clients.	It	will	use	your	reliable	/	unreliable	settings	to	forward	your
movement	updates	accordingly.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Troubleshooting

This	section	contains	suggestions	for	common	problems	developers
using	Photon	might	come	across.	As	always:	if	the	solution	at	hand	is	not
fitting	your	needs,	please	contact	us:	developer@photonengine.com.

I	get	a	message	"WARNING!	There	are	x	outgoing	messages	waiting
in	the	local	sendQueue	!"	What	is	the	problem	?

This	message	means	that	you	are	generating	more	Photon
operations/events	than	you	are	sending.	Photon	can	only	send	reliable
operations	one	after	another,	and	will	wait	for	the	response	from	the
Photon	server	before	the	next	operation	will	be	sent.	Of	course,	Photon
only	can	send	operations	at	all,	if	you	call	service().	If	you	do	not	call	it
often	enough,	it	will	not	be	able	to	send	all	the	operations,	which	you	are
generating.

Solutions:
1.	Make	sure	to	call	service()	in	a	sufficiently	high	frequency	(like	ten
times	a	second).

2.	If	you	call	call	service()	frequently	enough,	the	problem	lies	in	the
underlying	Network	not	being	able	to	transmit	the	information	quickly
enough.	Especially	mobile	networks	are	not	able	to	transfer	something
like	50	or	even	more	operations	per	second.	The	only	solution	for	this	is
to	create	fewer	operations	over	the	same	period	of	time.	Try	to	sum	up
your	ingame	data	and	send	it	in	bigger	time	intervals.

Note:	There	is	no	certain	limit	for	the	size	of	a	queue.	Photon	will	fail	as
soon	as	there	is	no	more	memory	available	for	new	messages.

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Troubleshooting	Windows
Including	multiple	versions	of	WinSock	It	is	common	for	developers
using	multiple	libraries	to	have	a	conflict	around	multiple	versions	of
WinSock.	For	instance,	a	developer	may	use	a	game	engine	that	uses
WinSock	and	Photon	which	uses	WinSock2.	By	adding	_WINSOCK_	to
the	preprocessor	definitions	the	conflict	is	resolved,	but	the	system	will
throw	a	warning	which	can	be	ignored.

You	can	also	try	re-arranging	the	order	in	which	you're	including	the
header	files.	You	can	see	a	good	example	of	this	in	someone's
application	using	a	library	called	Allegro.	Including	the	files	in	this	order
solved	their	compilation	problems:

\#include	<allegro.h>

#define	_WINSOCKAPI_

\#include	<winalleg.h>

\#include	<winsock2.h>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-cpp

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Overview

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Chat-cpp

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
Namespace	List

Here	is	a	list	of	all	documented	namespaces	with	brief	descriptions:
[detail	level	 1 2 3]

	▼ N ExitGames
	 ▼ N Chat
	 N ClientState
	 N CustomAuthenticationType
	 N DisconnectCause
	 N ErrorCode
	 N UserStatus
	 ▼ N Common
	 N DebugLevel
	 N MemoryManagement
	 N TypeCode
	 ▼ N Lite
	 N EventCache
	 N EventCode
	 N EventKey
	 N OperationCode
	 N ParameterCode
	 N ReceiverGroup
	 ▼ N LoadBalancing
	 N CustomAuthenticationType
	 N DirectMode
	 N DisconnectCause

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	 N ErrorCode
	 N LobbyType
	 N MatchmakingMode
	 N PeerStates
	 ▼ N Photon
	 N ConnectionProtocol
	 N ErrorCode
	 N NetworkPort
	 N PeerState
	 N Punchthrough
	 N StatusCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Namespaces

	Photon	C++
Client	API		4.1.12.2
ExitGames	Namespace
Reference

Namespaces
	 Chat
	
	 Common
	
	 Lite
	
	 LoadBalancing
	
	 Photon
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

ExitGames

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat

Namespaces	|	Classes	|	Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat
Namespace	Reference

Namespaces
	 ClientState
	
	 CustomAuthenticationType
	
	 DisconnectCause
	
	 ErrorCode
	
	 UserStatus
	

Classes
class		 AuthenticationValues
	
class		 Channel
	
class		 Client
	
class		 Listener
	
class		 Peer
	

Variables
const	EG_CHAR	*const	 REGION
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Chat

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat ClientState

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat::ClientState	Namespace
Reference

Variables
static	const	int	 Uninitialized
	 Peer	is	created	but	not	used	yet.	
	
static	const	int	 ConnectingToNameServer
	 Connecting	to	Name	Server	(includes	connect

authenticate	and	joining	the	lobby)	
	
static	const	int	 ConnectedToNameServer
	 Connected	to	Name	Server.	
	
static	const	int	 Authenticating
	 Authenticating.	
	
static	const	int	 Authenticated
	 Authenticated.	
	
static	const	int	 DisconnectingFromNameServer
	 Transition	from	Name	to	Chat	Server.	
	
static	const	int	 ConnectingToFrontEnd
	 Transition	to	Chat	Server.	
	
static	const	int	 ConnectedToFrontEnd
	 Connected	to	Chat	Server.	Subscribe	to	channels	and

chat	here.	
	
static	const	int	 Disconnecting
	 The	client	disconnects	(from	any	server).	
	
static	const	int	 Disconnected
	 The	client	is	no	longer	connected	(to	any	server).

Connect	to	Name	Server	to	go	on.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Possible	states	for	a	Client.

ClientState

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat CustomAuthenticationType

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat::CustomAuthenticationType
Namespace	Reference

Variables
static	const	nByte	 CUSTOM
	 Use	a	custom	authentication	service.	
	
static	const	nByte	 STEAM
	 Authenticates	users	by	their	Steam	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 FACEBOOK
	 Authenticates	users	by	their	Facebook	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 OCULUS
	 Authenticates	users	by	their	Oculus	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 PLAYSTATION
	 Authenticates	users	by	their	PSN	Account.	Set	auth

values	accordingly!	
	
static	const	nByte	 XBOX
	 Authenticates	users	by	their	XBox	Network	Account.

Set	auth	values	accordingly!	
	
static	const	nByte	 NONE
	 Disables	custom	authentication.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Options	for	optional	"Custom	Authentication"	services	used	with	Photon.
Used	when	the	client	sends	an	authentication	request	to	the	server.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat DisconnectCause

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat::DisconnectCause
Namespace	Reference

Variables
static	const	int	 NONE
	 No	error	was	tracked.	
	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 OnStatusChanged:	The	CCUs	count	of	your	Photon

Server	License	is	exausted	(temporarily).	
	
static	const	int	 EXCEPTION_ON_CONNECT

	
OnStatusChanged:	The	server	is	not	available	or	the
address	is	wrong.	Make	sure	the	port	is	provided	and
the	server	is	up.	

	
static	const	int	 DISCONNECT_BY_SERVER

	
OnStatusChanged:	The	server	disconnected	this	client.
Most	likely	the	server's	send	buffer	is	full	(receiving	too
much	from	other	clients).	

	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 OnStatusChanged:	The	server	disconnected	this	client

due	to	server's	logic	(received	a	disconnect	command).
	
static	const	int	 TIMEOUT_DISCONNECT

	
OnStatusChanged:	This	client	detected	that	the
server's	responses	are	not	received	in	due	time.	Maybe
you	send	/	receive	too	much?	

	
static	const	int	 EXCEPTION
	 OnStatusChanged:	Some	internal	exception	caused

the	socket	code	to	fail.	Contact	Exit	Games.	
	
static	const	int	 INVALID_AUTHENTICATION

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	AppId.	Update	your	subscription	or
contact	Exit	Games.	

	
static	const	int	 MAX_CCU_REACHED

	
OnOperationResponse:	Authenticate	(temporarily)
failed	when	using	a	Photon	Cloud	subscription	without
CCU	Burst.	Update	your	subscription.	

	
static	const	int	 INVALID_REGION

	

OnOperationResponse:	Authenticate	when	the	app's
Photon	Cloud	subscription	is	locked	to	some	(other)
region(s).	Update	your	subscription	or	master	server
address.	

	
static	const	int	 OPERATION_NOT_ALLOWED_IN_CURRENT_STATE

	
OnOperationResponse:	Operation	that's	(currently)	not
available	for	this	client	(not	authorized	usually).	Only
tracked	for	op	Authenticate.	

	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	client	values	or	custom
authentication	setup	in	Cloud	Dashboard.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Enumeration	of	causes	for	Disconnects	(used	in
Chat.DisconnectedCause).	Read	the	individual	descriptions	to	find	out
what	to	do	about	this	type	of	disconnect.

DisconnectCause

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat ErrorCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat::ErrorCode	Namespace
Reference

Variables
static	const	int	 OPERATION_DENIED
	
static	const	int	 OPERATION_INVALID
	
static	const	int	 INTERNAL_SERVER_ERROR
	
static	const	int	 OK
	
static	const	int	 INVALID_AUTHENTICATION
	
static	const	int	 GAME_ID_ALREADY_EXISTS
	
static	const	int	 GAME_FULL
	
static	const	int	 GAME_CLOSED
	
static	const	int	 ALREADY_MATCHED
	
static	const	int	 SERVER_FULL
	
static	const	int	 USER_BLOCKED
	
static	const	int	 NO_MATCH_FOUND
	
static	const	int	 GAME_DOES_NOT_EXIST
	
static	const	int	 MAX_CCU_REACHED
	
static	const	int	 INVALID_REGION
	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

CustomAuthenticationType

ErrorCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat UserStatus

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Chat::UserStatus	Namespace
Reference

Variables
static	const	int	 OFFLINE
	 Offline.	
	
static	const	int	 INVISIBLE
	 Be	invisible	to	everyone.	Sends	no	message.	
	
static	const	int	 ONLINE
	 Online	and	available.	
	
static	const	int	 AWAY
	 Online	but	not	available.	
	
static	const	int	 DND
	 Do	not	disturb.	
	
static	const	int	 LFG
	 Looking	For	Game/Group.	Could	be	used	when	you

want	to	be	invited	or	do	matchmaking.	
	
static	const	int	 PLAYING
	 Could	be	used	when	in	a	room,	playing.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Contains	commonly	used	status	values	for	SetOnlineStatus.	You	can
define	your	own.	While	"online"	(value	2	and	up),	the	status	message	will
be	sent	to	anyone	who	has	you	on	his	friend	list.

Define	custom	online	status	values	as	you	like	with	these	rules:	0:	Means
"offline".	It	will	be	used	when	you	are	not	connected.	In	this	status,	there
is	no	status	message.	1:	Means	"invisible"	and	is	sent	to	friends	as
"offline".	They	see	status	0,	no	message	but	you	can	chat.	2:	And	any
higher	value	will	be	treated	as	"online".	Status	can	be	set.

UserStatus

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common

Namespaces	|	Classes	|	Functions

	Photon	C++
Client	API		4.1.12.2

ExitGames::Common
Namespace	Reference

Namespaces
	 DebugLevel
	
	 MemoryManagement
	
	 TypeCode
	

Classes
class		 ANSIString
	
class		 Base
	
class		 BaseCharString
	
class		 BaseListener
	
class		 CustomType
	
class		 CustomTypeBase
	
class		 CustomTypeFactory
	
class		 DeSerializer
	
class		 Dictionary
	
class		 DictionaryBase
	
class		 EGTime
	
class		 Hashtable
	
class		 JString
	
class		 JVector
	
class		 KeyObject
	
class		 LogFormatOptions
	
class		 Logger
	

class		 Object
	
class		 Serializer
	
class		 ToString
	
class		 UTF8String
	
class		 ValueObject
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Common

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common DebugLevel

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Common::DebugLevel	Namespace
Reference

Variables
static	const	int	 OFF
	 No	debug	out.	
	
static	const	int	 ERRORS
	 Only	error	descriptions.	
	
static	const	int	 WARNINGS
	 Warnings	and	errors.	
	
static	const	int	 INFO
	 Information	about	internal	workflows,	warnings	and

errors.	
	
static	const	int	 ALL
	 Most	complete	workflow	description	(but	lots	of	debug

output),	info,	warnings	and	errors.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Amount	of	DebugReturn	callbacks.	Each	debug	level	includes	output	for
lower	ones:	OFF,	ERRORS,	WARNINGS,	INFO,	ALL.

DebugLevel

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common MemoryManagement

Classes	|	Functions

	Photon	C++
Client	API		4.1.12.2

ExitGames::Common::MemoryManagement
Namespace	Reference

Classes
class		 AllocatorInterface
	

Functions
	 __attribute__	((weak))	AllocatorInterface	*AllocatorInterface
	

HighLevelMemoryManagement

The	template	functions	in	this	section	are	an	alternative	for	the	C++	dynamic
memory	management	operators	new,	new[],	delete	and	delete[].

They	are	implemented	in	terms	of	enhancing	the	Low	Level	Memory
Management	macros	and	for	this	reason	offer	similar	advantages	over	new
and	co	like	those	macros	offer	over	malloc	and	co.

However	same	as	new	and	co	they	also	construct	and	destruct	the	objects
that	they	allocate	and	deallocate.

void	 setMaxAllocSize	(size_t	maxAllocSize)
	

void	 setMaxSizeForAllocatorUsage	(size_t	maxSizeForAllocatorUsage)
	

void	 setAllocator
(ExitGames::Common::MemoryManagement::AllocatorInterface
&allocator)

	
void	 setAllocatorToDefault	(void)

	
template<typename	Ftype	>

Ftype	*	 allocate	(void)
	
template<typename	Ftype	>

Ftype	*	 allocateArray	(size_t	count)
	
template<typename	Ftype	>

Ftype	*	 reallocateArray	(Ftype	*p,	size_t	count)
	
template<typename	Ftype	>

void	 deallocate	(const	Ftype	*p)
	
template<typename	Ftype	>

void	 deallocateArray	(const	Ftype	*p)
	

Detailed	Description

MemoryManagement

Function	Documentation

§	setMaxAllocSize()
void
ExitGames::Common::MemoryManagement::setMaxAllocSize (size_t	 maxAllocSize

Sets	the	max	size	of	memory	that	might	get	allocated	ahead	of	time	as	a	result	of	a
single	memory	request.

Requesting	memory	from	the	OS	is	an	expensive	operation.	This	is	why	a	good
memory	manager	might	choose	to	request	bigger	amounts	of	memory	at	once	and
give	out	smaller	chunks	of	them	to	the	application	code.	This	way	it	can	reduce	the
amount	of	necessary	memory	requests	to	the	OS.	Depending	on	the	memory
requests	that	come	in	from	the	application	code,	a	memory	manager	might	decide	to
scale	up	its	own	requests	to	the	OS.

You	can	set	an	upper	limit	for	how	much	the	currently	active	memory	manager	is
allowed	to	scale	up	through	this	function.

Example:	Consider	a	pool-based	memory	manager	that	uses	multiple	memory	pools,
where	each	serves	requests	for	memory	of	different	sizes.	There	could	be	a	pool	for
tiny	memory	requests,	one	for	small	requests,	one	for	medium	requests,	and	so	on.

Now	let's	imagine	that	there	is	a	pool	that	serves	requests	between	65	and	128	bytes
in	size	each	and	for	this	purpose	keeps	a	bunch	of	128	byte	blocks	around	to	give
out	to	requesters.	In	the	beginning	it	might	just	keep	very	few	such	blocks	around,	as
the	memory	manager	does	not	know,	how	many	blocks	of	this	size	an	app	might
need	to	use	in	parallel.	When	an	app	requests	lots	of	those	blocks,	the	pool	would
scale	accordingly	and	to	not	need	to	do	a	request	to	the	OS	too	often,	it	might
increase	the	size	of	it's	own	requests.	i.e.	at	first	it	could	have	just	4	blocks	around,
then	when	it	resizes,	it	would	allocate	memory	for	another	4	blocks,	then	for	8	more,
then	for	another,	16,	then	32,	64,	128,	256,	512,	1024	blocks	more,	and	so	on.

Now	if	you	set	an	upper	limit	of	8192	bytes,	then	the	pool	would	not	increase	the	size
of	its	requests	to	the	OS	beyond	that	limit.	For	that	128	byte	blocks	pool	that	would
mean	that	it	would	request	at	max	8192/128==64	blocks	at	once.	So	the	resize
pattern	from	above	would	change	to	4,	8,	16,	32,	64,	64,	64,	64,	and	so	on.

Accordingly	with	the	same	8192	bytes	limit	in	place	a	pool	that	holds	1024	byte

blocks	would	not	allocate	memory	for	more	than	8	such	blocks	at	once.

Note
This	does	not	set	a	limit	to	the	overall	memory	that	might	get	allocated,	but	only
to	the	memory	that	gets	allocated	as	a	direct	result	of	a	single	memory	request.
The	very	next	request	might	already	lead	to	another	allocation	if	the	memory
manager	decides	so	(for	example	a	pool	based	memory	manager	might	serve
differently	sized	requests	from	different	pools	that	resize	independently	from
each	other).

Remarks
This	function	forwards	the	passed	in	value	to	the	currently	set	allocator	(see
setAllocator())	and	does	not	store	it	itself.	For	this	reason	a	call	to	this	function
only	affects	the	settings	of	the	currently	set	allocator	and	not	those	of	any	future
allocator,	that	might	be	set	by	setAllocator()	at	any	point	in	time	after	this
function	got	called.
It	is	the	responsibility	of	the	allocator	to	honor	the	the	setting	that	the	user	has
applied	through	this	function.

Parameters
maxAllocSize the	max	size	for	a	single	memory	request	to	the	OS

See	also
setAllocator(),	AllocatorInterface

§	setMaxSizeForAllocatorUsage()
void
ExitGames::Common::MemoryManagement::setMaxSizeForAllocatorUsage

Sets	a	limit	up	to	which	memory	requests	get	forwarded	to	the	set	allocator.	Requests	with	a	size	above	the	limit
get	redirected	to	the	OS	instead.

Requesting	memory	from	the	OS	is	an	expensive	operation.

For	frequent	requests	of	small	amounts	of	memory	it	is	usually	more	efficient	to	request	that	memory	from	a
memory	manager	instead,	which	requests	bigger	amounts	of	memory	from	the	OS	at	once,	splits	them	up	into
smaller	blocks	and	returns	those	smaller	blocks	to	the	requester.

However	this	is	effectively	a	trade	of	reduced	execution	time	bought	with	increased	memory	usage,	which	is
usually	a	good	deal	for	frequent	small	requests,	but	a	bad	deal	for	infrequent	requests	of	bigger	amounts	of
memory.

For	this	reason	from	a	certain	request	size	on	requests	get	forwarded	directly	to	the	OS	instead	of	to	the	set
allocator.

This	function	lets	you	set	the	upper	limit	up	to	which	the	set	allocator	is	used.

Requests	above	the	limit	will	be	forwarded	directly	to	the	OS.

Remarks
The	value	that	is	set	through	this	function	affects	all	allocators,	not	just	the	currently	set	one.

Parameters
maxSizeForAllocatorUsage the	max	size	for	a	memory	request	up	to	which	the	set	allocator	gets	used

See	also
setAllocator(),	AllocatorInterface

§	setAllocator()
void
ExitGames::Common::MemoryManagement::setAllocator (ExitGames::Common::MemoryManagement::AllocatorInterface

Sets	the	allocator	that	will	be	used	by	future	memory	requests	to	the	provided	value.

All	dynamic	memory	allocation	requests	by	the	Photon	Client	libraries	go	either	through	one	of	functions	in	
through	one	of	the	Low	Level	Memory	Management	macros.	The	application	code	can	also	use	these	functions	and	macros	for	its	own
memory	requests	if	its	developer	chooses	so.

Each	request	for	an	amount	of	memory	that	does	not	exceed	the	limit	set	by	
allocator.	Photon	provides	a	default	general-purpose	allocator	that	uses	pool	based	memory	management	and	that	works	well	for	most
applications.

However	you	can	set	your	own	allocator	through	this	function	and	Photon	will	use	that	allocator	for	any	memory	requests	that	happen
afterwards.

Regarding	potential	reasons	for	writing	your	own	custom	allocator	please	see
https://en.wikipedia.org/wiki/Allocator_(C%2B%2B)#Custom_allocators.

Remarks
Photons	memory	management	stores	the	address	of	the	allocator	that	served	a	specific	memory	request	and	forwards	a	request	to
free	memory	to	the	same	allocator	that	allocated	that	memory.
This	means	a)	that	you	can	set	a	different	allocator	as	often	as	you	like	at	any	point	in	time	you	like	and	b)	that	you	need	to	keep	any
once	set	allocator	available	even	when	it	is	no	longer	set	as	the	currently	used	allocator,	at	least	until	you	can	guarantee	that	all
memory	that	once	got	requested	from	it,	got	returned	to	it	and	non	of	it	is	still	in	use.
If	you	want	to	already	set	an	initial	custom	allocator	before	any	global	or	file-level	static	instances	of	Photon	classes	get	constructed,
then	you	need	to	replace	AllocatorInterface::get().

Parameters
allocator an	instance	of	a	subclass	of	AllocatorInterface

See	also
setMaxSizeForAllocatorUsage(),	AllocatorInterface,	AllocatorInterface::get()

https://en.wikipedia.org/wiki/Allocator_(C%2B%2B)#Custom_allocators

§	setAllocatorToDefault()
void
ExitGames::Common::MemoryManagement::setAllocatorToDefault (void	

Calls	setAllocator()	with	Photons	default	allocator	as	parameter.

See	also
setAllocator()

§	allocate()
Ftype*	ExitGames::Common::MemoryManagement::allocate (void)

This	function	allocates	a	new	instance	of	the	type,	that	has	been
specified	as	first	template	parameter,	on	dynamic	memory	and
properly	initializes	it.	For	an	instance	of	a	class	type	this	includes
calling	a	constructor	on	the	instance.

Instances,	that	have	been	allocated	with	allocate(),	have	to	be
deallocated	with	deallocate(),	when	they	are	no	longer	needed.

Up	to	10	optional	arguments	can	be	passed	to	allocate()	and
allocate()	will	call	a	constructor	with	the	matching	number	of
parameters	and	matching	parameter	types.	If	the	class	of	the	object
that	is	to	be	constructed,	doesn't	provide	a	constructor	with	a	matching
signature,	if	that	constructor	isn't	publicly	accessible	or	if	it	is
ambiguous,	which	constructor	to	choose,	then	the	call	to	allocate()	will
trigger	an	error	from	the	compiler..

The	allocation	is	implemented	via	a	call	to	EG_MALLOC().

§	allocateArray()
Ftype*
ExitGames::Common::MemoryManagement::allocateArray (size_t	 count

This	function	allocates	an	array	of	new	instances	of	the	type,	that	has
been	specified	as	first	template	parameter,	on	dynamic	memory	and
properly	initializes	all	of	them.	For	arrays	of	class	types	this	includes
constructing	each	element	via	a	constructor	with	matching	parameter	list.

Instances,	that	have	been	allocated	with	allocateArray(),	have	to	be
deallocated	with	deallocateArray(),	when	they	are	no	longer	needed.

The	passed	element	count	is	allowed	to	be	0.	In	that	case	this	function
still	allocates	storage	to	store	the	element	count	of	0	in,	so	the	returned
address	still	has	to	be	deallocated	later.

Up	to	10	optional	arguments	can	be	passed	to	allocateArray()	and
allocateArray()	will	call	a	constructor	with	the	matching	number	of
parameters	and	matching	parameter	types.	If	the	class	of	the	elements
that	are	to	be	constructed,	doesn't	provide	a	constructor	with	a	matching
signature,	if	that	constructor	isn't	publicly	accessible	or	if	it	is	ambiguous,
which	constructor	to	choose,	then	the	call	to	allocateArray()	will	trigger
an	error	from	the	compiler.

The	allocation	is	implemented	via	a	call	to	EG_MALLOC().

Parameters
count the	amount	of	elements	that	the	new	array	should	have

§	reallocateArray()
Ftype*
ExitGames::Common::MemoryManagement::reallocateArray (Ftype	*	 p,

size_t	 count
)

This	function	resizes	an	array,	that	has	previously	been	allocated	with
allocateArray().

The	function	allocates	a	new	array	of	the	same	type	as	the	provided	one,
but	with	the	requested	element	count.	Afterwards	it	copies	all	elements	of
the	old	array	that	fit	into	the	new	array	into	the	new	array	by	calling	the	copy
constructor	of	the	class	of	the	elements.

If	the	new	element	count	is	lower	than	the	old	one,	then	the	corresponding
elements	at	the	end	of	the	old	array	don't	get	copied	over	to	the	new	one,
but	are	just	destructed.

If	the	new	requested	element	count	is	higher	than	the	old	one,	then	the
remaining	uninitialized	elements	in	the	new	array	get	constructed	by
choosing	the	constructor	that	matches	the	provided	optional	arguments	to
reallocateArray()	best	(no	optional	arguments	means	the	default
constructor	gets	called).

Finally	the	old	array	gets	deallocated	via	deallocateArray()	and	the	new
array	gets	returned.

The	returned	address	will	most	likely	not	match	the	passed	one.

The	passed	address	is	allowed	to	be	NULL.	In	that	case	this	function
behaves	likes	allocateArray().

The	passed	element	count	is	allowed	to	be	0.	In	that	case	this	function	still
allocates	storage	to	store	the	element	count	of	0	in,	so	the	returned	address
still	has	to	be	deallocated	later.

If	the	passed	address	has	not	previously	been	returned	by	a	call	to

allocateArray()	or	reallocateArray()	and	also	isn't	NULL	or	if	it	has	already
been	passed	to	deallocateArray(),	then	the	behavior	is	undefined.

Up	to	10	optional	arguments	can	be	passed	to	reallocateArray()	and
reallocateArray()	will	call	a	constructor	with	the	matching	number	of
parameters	and	matching	parameter	types	on	each	element	of	the	new
array,	which	hasn't	already	been	copy-constructed	from	the	corresponding
element	in	the	old	array.	If	the	class	of	the	elements	that	are	to	be
constructed,	doesn't	provide	a	constructor	with	a	matching	signature	or	if	it
doesn't	provide	a	copy	constructor,	if	that	constructor	or	copy	constructor
isn't	publicly	accessible	or	if	it	is	ambiguous,	which	constructor	to	choose,
then	the	call	to	reallocateArray()	will	trigger	an	error	from	the	compiler.

Parameters
p the	address	of	the	array,	that	is	to	be	resized
count the	new	amount	of	elements	that	the	array	should	have

§	deallocate()
void
ExitGames::Common::MemoryManagement::deallocate (const	Ftype	*	 p

Call	this	function	to	destruct	and	deallocate	an	instance,	that	has
previously	been	allocated	and	constructed	by	a	call	to	allocate().

The	passed	address	is	allowed	to	be	NULL.	In	that	case	the	call	doesn't
have	any	effect.

If	the	passed	adress	has	not	previously	been	returned	by	a	call	to
allocate()	and	also	isn't	NULL,	then	the	behavior	is	undefined.

Parameters
p the	address	of	the	instance,	that	should	be	deallocated

§	deallocateArray()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

void
ExitGames::Common::MemoryManagement::deallocateArray (const	Ftype	*	

Call	this	function	to	destruct	and	deallocate	an	array,	that	has	previously	been
allocated	and	constructed	by	a	call	to	allocateArray().

This	function	will	call	their	destructor	on	all	elements	of	the	array	and	then
deallocate	the	memory	of	the	array.

The	passed	address	is	allowed	to	be	NULL.	In	that	case	the	call	doesn't	have
any	effect.

If	the	passed	adress	has	not	previously	been	returned	by	a	call	to
allocateArray()	or	reallocateArray()	and	also	isn't	NULL,	then	the	behavior	is
undefined.

Parameters
p the	address	of	the	array,	that	should	be	deallocated.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common TypeCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Common::TypeCode	Namespace
Reference

Variables
static	const	nByte	 BYTE
	 nByte	
	
static	const	nByte	 SHORT
	 short	
	
static	const	nByte	 INTEGER
	 int	
	
static	const	nByte	 LONG
	 int64	
	
static	const	nByte	 FLOAT
	 float	
	
static	const	nByte	 DOUBLE
	 double	
	
static	const	nByte	 BOOLEAN
	 bool	
	
static	const	nByte	 STRING
	 JString.	
	
static	const	nByte	 HASHTABLE
	 Hashtable.	
	
static	const	nByte	 DICTIONARY
	 Dictionary.	
	
static	const	nByte	 OBJECT
	 Object,	only	allowed	for	arrays!	
	

static	const	nByte	 ARRAY
	 internal	only	
	
static	const	nByte	 BYTEARRAY
	 internal	only	
	
static	const	nByte	 PHOTON_COMMAND
	 internal	only	
	
static	const	nByte	 EG_NULL
	 internal	only	
	
static	const	nByte	 CUSTOM
	 internal	only	
	
static	const	nByte	 UNKNOWN
	 internal	only	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

TypeCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite

Namespaces	|	Classes

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite
Namespace	Reference

Namespaces
	 EventCache
	
	 EventCode
	
	 EventKey
	
	 OperationCode
	
	 ParameterCode
	
	 ReceiverGroup
	

Classes
class		 LitePeer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Lite

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite EventCache

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::EventCache	Namespace
Reference

Variables
static	const	nByte	 DO_NOT_CACHE
	
static	const	nByte	 MERGE_CACHE
	
static	const	nByte	 REPLACE_CACHE
	
static	const	nByte	 REMOVE_CACHE
	
static	const	nByte	 ADD_TO_ROOM_CACHE
	
static	const	nByte	 ADD_TO_ROOM_CACHE_GLOBAL
	
static	const	nByte	 REMOVE_FROM_ROOM_CACHE
	
static	const	nByte	 REMOVE_FROM_ROOM_CACHE_FOR_ACTORS_LEFT
	
static	const	nByte	 SLICE_INC_INDEX
	
static	const	nByte	 SLICE_SET_INDEX
	
static	const	nByte	 SLICE_PURGE_INDEX
	
static	const	nByte	 SLICE_PURGE_UP_TO_INDEX
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

EventCache

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite EventCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::EventCode	Namespace
Reference

Variables
static	const	nByte	 JOIN
	
static	const	nByte	 LEAVE
	
static	const	nByte	 PROPERTIES_CHANGED
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

EventCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite EventKey

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::EventKey	Namespace
Reference

Variables
static	const	nByte	 ACTORNR
	
static	const	nByte	 TARGET_ACTORNR
	
static	const	nByte	 ACTORLIST
	
static	const	nByte	 PROPERTIES
	
static	const	nByte	 ACTORPROPERTIES
	
static	const	nByte	 GAMEPROPERTIES
	
static	const	nByte	 DATA
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

EventKey

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite OperationCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::OperationCode	Namespace
Reference

Variables
static	const	nByte	 JOIN
	
static	const	nByte	 LEAVE
	
static	const	nByte	 RAISE_EV
	
static	const	nByte	 SETPROPERTIES
	
static	const	nByte	 GETPROPERTIES
	
static	const	nByte	 CHANGE_GROUPS
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

OperationCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite ParameterCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::ParameterCode	Namespace
Reference

Variables
static	const	nByte	 GAMEID
	
static	const	nByte	 ACTORNR
	
static	const	nByte	 TARGET_ACTORNR
	
static	const	nByte	 ACTOR_LIST
	
static	const	nByte	 PROPERTIES
	
static	const	nByte	 BROADCAST
	
static	const	nByte	 ACTOR_PROPERTIES
	
static	const	nByte	 GAME_PROPERTIES
	
static	const	nByte	 CACHE
	
static	const	nByte	 RECEIVER_GROUP
	
static	const	nByte	 DATA
	
static	const	nByte	 CODE
	
static	const	nByte	 GROUP
	
static	const	nByte	 REMOVE
	
static	const	nByte	 ADD
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

ParameterCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite ReceiverGroup

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Lite::ReceiverGroup	Namespace
Reference

Variables
static	const	nByte	 OTHERS
	
static	const	nByte	 ALL
	
static	const	nByte	 MASTER_CLIENT
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

ReceiverGroup

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing

Namespaces	|	Classes

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing	Namespace
Reference

Namespaces
	 CustomAuthenticationType
	
	 DirectMode
	
	 DisconnectCause
	
	 ErrorCode
	
	 LobbyType
	
	 MatchmakingMode
	
	 PeerStates
	

Classes
class		 AuthenticationValues
	
class		 Client
	
class		 FriendInfo
	
class		 Listener
	
class		 LobbyStatsRequest
	
class		 LobbyStatsResponse
	
class		 MutablePlayer
	
class		 MutableRoom
	
class		 Peer
	
class		 Player
	
class		 RaiseEventOptions
	
class		 Room
	
class		 RoomOptions
	
class		 WebFlags
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

LoadBalancing

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing CustomAuthenticationType

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::CustomAuthenticationType
Namespace	Reference

Variables
static	const	nByte	 CUSTOM
	 Use	a	custom	authentication	service.	
	
static	const	nByte	 STEAM
	 Authenticates	users	by	their	Steam	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 FACEBOOK
	 Authenticates	users	by	their	Facebook	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 OCULUS
	 Authenticates	users	by	their	Oculus	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 PLAYSTATION
	 Authenticates	users	by	their	PSN	Account.	Set	auth

values	accordingly!	
	
static	const	nByte	 XBOX
	 Authenticates	users	by	their	XBox	Network	Account.

Set	auth	values	accordingly!	
	
static	const	nByte	 NONE
	 Disables	custom	authentication.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Options	for	optional	"Custom	Authentication"	services	used	with	Photon.
Used	when	the	client	sends	an	authentication	request	to	the	server.

CustomAuthenticationType

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing DirectMode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::DirectMode
Namespace	Reference

Variables
static	const	nByte	 NONE
	 Do	not	create	any	2p2	connections	between	the

clients.	This	is	the	default.	
	
static	const	nByte	 ALL_TO_ALL
	 Each	client	establishes	a	direct	connection	with

every	other	client	inside	the	room.	
	
static	const	nByte	 MASTER_TO_ALL

	

The	master	client	establishes	a	direct	connection
with	every	other	client	inside	the	room.	All	other
clients	only	establish	a	direct	connection	with	the
master	client	but	not	with	each	other.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Options	for	optional	client	to	client	direct	connections	-	set	in
RoomOptions	during	room	creation.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing DisconnectCause

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::DisconnectCause
Namespace	Reference

Variables
static	const	int	 NONE
	 No	error	was	tracked.	
	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 OnStatusChanged:	The	CCUs	count	of	your	Photon

Server	License	is	exausted	(temporarily).	
	
static	const	int	 EXCEPTION_ON_CONNECT

	
OnStatusChanged:	The	server	is	not	available	or	the
address	is	wrong.	Make	sure	the	port	is	provided	and
the	server	is	up.	

	
static	const	int	 DISCONNECT_BY_SERVER

	
OnStatusChanged:	The	server	disconnected	this	client.
Most	likely	the	server's	send	buffer	is	full	(receiving	too
much	from	other	clients).	

	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 OnStatusChanged:	The	server	disconnected	this	client

due	to	server's	logic	(received	a	disconnect	command).
	
static	const	int	 TIMEOUT_DISCONNECT

	
OnStatusChanged:	This	client	detected	that	the
server's	responses	are	not	received	in	due	time.	Maybe
you	send	/	receive	too	much?	

	
static	const	int	 EXCEPTION
	 OnStatusChanged:	Some	internal	exception	caused

the	socket	code	to	fail.	Contact	Exit	Games.	
	
static	const	int	 INVALID_AUTHENTICATION

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	AppId.	Update	your	subscription	or
contact	Exit	Games.	

	
static	const	int	 MAX_CCU_REACHED

	
OnOperationResponse:	Authenticate	(temporarily)
failed	when	using	a	Photon	Cloud	subscription	without
CCU	Burst.	Update	your	subscription.	

	
static	const	int	 INVALID_REGION

	

OnOperationResponse:	Authenticate	when	the	app's
Photon	Cloud	subscription	is	locked	to	some	(other)
region(s).	Update	your	subscription	or	master	server
address.	

	
static	const	int	 OPERATION_NOT_ALLOWED_IN_CURRENT_STATE

	
OnOperationResponse:	Operation	that's	(currently)	not
available	for	this	client	(not	authorized	usually).	Only
tracked	for	op	Authenticate.	

	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	client	values	or	custom
authentication	setup	in	Cloud	Dashboard.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Enumaration	of	causes	for	Disconnects	(used	in
LoadBalancingClient.DisconnectedCause).	Read	the	individual
descriptions	to	find	out	what	to	do	about	this	type	of	disconnect.

DisconnectCause

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing ErrorCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::ErrorCode
Namespace	Reference

Variables
static	const	int	 OPERATION_DENIED
	
static	const	int	 OPERATION_INVALID
	
static	const	int	 INTERNAL_SERVER_ERROR
	
static	const	int	 OK
	
static	const	int	 INVALID_AUTHENTICATION
	
static	const	int	 GAME_ID_ALREADY_EXISTS
	
static	const	int	 GAME_FULL
	
static	const	int	 GAME_CLOSED
	
static	const	int	 ALREADY_MATCHED
	
static	const	int	 SERVER_FULL
	
static	const	int	 USER_BLOCKED
	
static	const	int	 NO_MATCH_FOUND
	
static	const	int	 GAME_DOES_NOT_EXIST
	
static	const	int	 MAX_CCU_REACHED
	
static	const	int	 INVALID_REGION
	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED
	
static	const	int	 AUTHENTICATION_TOKEN_EXPIRED
	

static	const	int	 PLUGIN_REPORTED_ERROR
	
static	const	int	 PLUGIN_MISMATCH
	
static	const	int	 JOIN_FAILED_PEER_ALREADY_JOINED
	
static	const	int	 JOIN_FAILED_FOUND_INACTIVE_JOINER
	
static	const	int	 JOIN_FAILED_WITH_REJOINER_NOT_FOUND
	
static	const	int	 JOIN_FAILED_FOUND_EXCLUDED_USER_ID
	
static	const	int	 JOIN_FAILED_FOUND_ACTIVE_JOINER
	
static	const	int	 HTTP_LIMIT_REACHED
	
static	const	int	 EXTERNAL_HTTP_CALL_FAILED
	
static	const	int	 SLOT_ERROR
	
static	const	int	 INVALID_ENCRYPTION_PARAMETERS
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

ErrorCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing LobbyType

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::LobbyType
Namespace	Reference

Variables
static	const	nByte	 DEFAULT

	

This	lobby	type	is	used	unless	another	lobby	type	is
specified.	Room	lists	will	be	sent	and
Client::opJoinRandomRoom()	can	filter	by
matching	properties.	

	
static	const	nByte	 SQL_LOBBY

	

This	lobby	type	lists	rooms	like	type	DEFAULT	but
SQL-like	"where"	clauses	for	filtering	can	be	used
with	Client::opJoinRandomRoom().	This	allows
'bigger',	'less',	'or'	and	'and'	combinations.	

	
static	const	nByte	 ASYNC_RANDOM_LOBBY

	

This	lobby	does	not	send	room	lists.	It	is	only	used
for	Client::opJoinRandomRoom().	It	keeps	rooms
available	for	matchmaking	for	a	while	even	when
there	are	only	inactive	users	left.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Options	of	lobby	types	available.	Lobby	types	might	be	implemented	in
certain	Photon	versions	and	won't	be	available	on	older	servers.

LobbyType

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing MatchmakingMode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::MatchmakingMode
Namespace	Reference

Variables
static	const	nByte	 FILL_ROOM

	

Fills	up	rooms	(oldest	first)	to	get	players	together
as	fast	as	possible.	Default.	Makes	most	sense	with
MaxPlayers	>	0	and	games	that	can	only	start	with
more	players.	

	
static	const	nByte	 SERIAL_MATCHING

	
Distributes	players	across	available	rooms
sequentially	but	takes	filters	into	account.	Without
filters,	rooms	get	players	evenly	distributed.	

	
static	const	nByte	 RANDOM_MATCHING

	
Joins	a	(fully)	random	room.	Expected	properties
must	match,	but	aside	from	this,	any	available	room
might	be	selected.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Options	for	matchmaking	rules	for	OpJoinRandomRoom.

MatchmakingMode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing PeerStates

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::LoadBalancing::PeerStates
Namespace	Reference

Variables
static	const	int	 Uninitialized
	
static	const	int	 PeerCreated
	
static	const	int	 ConnectingToNameserver
	
static	const	int	 ConnectedToNameserver
	
static	const	int	 DisconnectingFromNameserver
	
static	const	int	 Connecting
	
static	const	int	 Connected
	
static	const	int	 WaitingForCustomAuthenticationNextStepCall
	
static	const	int	 Authenticated
	
static	const	int	 JoinedLobby
	
static	const	int	 DisconnectingFromMasterserver
	
static	const	int	 ConnectingToGameserver
	
static	const	int	 ConnectedToGameserver
	
static	const	int	 AuthenticatedOnGameServer
	
static	const	int	 Joining
	
static	const	int	 Joined
	
static	const	int	 Leaving
	

static	const	int	 Left
	
static	const	int	 DisconnectingFromGameserver
	
static	const	int	 ConnectingToMasterserver
	
static	const	int	 ConnectedComingFromGameserver
	
static	const	int	 AuthenticatedComingFromGameserver
	
static	const	int	 Disconnecting
	
static	const	int	 Disconnected
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

PeerStates

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon

Namespaces	|	Classes	|	Typedefs

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon
Namespace	Reference

Namespaces
	 ConnectionProtocol
	
	 ErrorCode
	
	 NetworkPort
	
	 PeerState
	
	 Punchthrough
	
	 StatusCode
	

Classes
class		 EventData
	
class		 OperationRequest
	
class		 OperationResponse
	
class		 PhotonListener
	
class		 PhotonPeer
	
class		 TrafficStats
	
class		 TrafficStatsGameLevel
	

Typedefs
typedef	Common::Dictionary<	nByte,	Common::Object	>	 OperationRequestParameters
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Photon

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon ConnectionProtocol

Functions	|	Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::ConnectionProtocol
Namespace	Reference

Functions
bool	 getIsUDP	(nByte	connectionProtocol)
	
bool	 getIsTCP	(nByte	connectionProtocol)
	
bool	 getIsWebSocket	(nByte	connectionProtocol)
	
bool	 getIsSecure	(nByte	connectionProtocol)
	

Variables
static	const	nByte	 UDP
	 Use	UDP	to	connect	to	Photon,	which	allows	you	to

send	operations	reliable	or	unreliable	on	demand.	
	
static	const	nByte	 TCP
	 Use	TCP	to	connect	to	Photon.	
	
static	const	nByte	 WS
	 Use	websockets	to	connect	to	Photon.	
	
static	const	nByte	 WSS
	 Use	secure	websockets	to	connect	to	Photon.	
	
static	const	nByte	 DEFAULT
	

Detailed	Description

These	are	the	options	that	can	be	used	as	underlying	transport	protocol.

ConnectionProtocol

Function	Documentation

§	getIsUDP()
bool	getIsUDP (nByte	 connectionProtocol)

Parameters
connectionProtocol one	of	the	constants	in

ConnectionProtocol

Returns
true	if	the	passed	in	value	matches	ConnectionProtocol::UDP,
false	otherwise.

§	getIsTCP()
bool	getIsTCP (nByte	 connectionProtocol)

Parameters
connectionProtocol one	of	the	constants	in

ConnectionProtocol

Returns
true	if	the	passed	in	value	matches	ConnectionProtocol::TCP,
false	otherwise.

§	getIsWebSocket()
bool	getIsWebSocket (nByte	 connectionProtocol)

Parameters
connectionProtocol one	of	the	constants	in

ConnectionProtocol

Returns
true	if	the	passed	in	value	matches	either
ConnectionProtocol::WS	or	ConnectionProtocol::WSS,	false
otherwise.

§	getIsSecure()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

bool	getIsSecure (nByte	 connectionProtocol)

Parameters
connectionProtocol one	of	the	constants	in

ConnectionProtocol

Returns
true	if	the	passed	in	value	matches	a	connection	protocol	that
uses	secure	sockets	(like	HTTPS	or	WSS),	false	otherwise.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon ErrorCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::ErrorCode	Namespace
Reference

Variables
static	const	int	 SUCCESS
	 No	error.	
	
static	const	int	 EFAILED
	 General	failure.	
	
static	const	int	 ENOMEMORY
	 Out	of	memory.	
	
static	const	int	 EBADCLASS
	 NULL	class	object.	
	
static	const	int	 EBADPARM
	 Invalid	parameter.	
	
static	const	int	 EITEMBUSY
	 Context	(system,	interface,	etc.)	is	busy.	
	
static	const	int	 NET_SUCCESS
	 No	network	error,	successful	operation.	
	
static	const	int	 NET_ERROR
	 Unsuccessful	operation.	
	
static	const	int	 NET_ENETNONET
	 Network	subsystem	unavailable.	
	
static	const	int	 NET_MSGSIZE

	

Message	too	long.	A	message	sent	on	a	datagram
socket	was	larger	than	the	internal	message	buffer	or
some	other	network	limit,	or	the	buffer	used	to	receive	a
datagram	was	smaller	than	the	datagram	itself.	

	

static	const	int	 NET_ENOTCONN
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Photon	library	error	codes	-	can	be	returned	as	operationcode	in
callbacks,	if	the	returncode	indicates	an	error

ErrorCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort

Classes

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::NetworkPort	Namespace
Reference

Classes
struct		 Protocol
	
struct		 TCP
	
struct		 UDP
	
struct		 UDPAlternative
	
struct		 WS
	
struct		 WSS
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

NetworkPort

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon PeerState

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::PeerState	Namespace
Reference

Variables
static	const	int	 DISCONNECTED
	 The	peer	is	disconnected	and	can't	call	Operations.

Call	PhotonPeer_connect().	
	
static	const	int	 CONNECTING
	 The	peer	is	establishing	the	connection:	opening	a

socket,	exchanging	packages	with	Photon.	
	
static	const	int	 INITIALIZING_APPLICATION

	
The	connection	is	established	and	now	sends	the
application	name	to	Photon.	You	set	the	"application
name"	by	calling	PhotonPeer_connect().	

	
static	const	int	 CONNECTED
	 The	peer	is	connected	and	initialized	(selected	an

application).	You	can	now	use	operations.	
	
static	const	int	 DISCONNECTING
	 The	peer	is	disconnecting.	It	sent	a	disconnect	to	the

server,	which	will	acknowledge	closing	the	connection.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

PeerState

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough

Classes

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::Punchthrough
Namespace	Reference

Classes
class		 Puncher
	
class		 PunchListener
	
class		 RelayClient
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

Punchthrough

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon StatusCode

Variables

	Photon	C++
Client	API		4.1.12.2

ExitGames::Photon::StatusCode	Namespace
Reference

Variables
static	const	int	 EXCEPTION_ON_CONNECT

	
the	PhotonPeer	encountered	an	exception	while
opening	the	incoming	connection	to	the	server.	The
server	could	be	down	/	not	running.	

	
static	const	int	 CONNECT
	 the	PhotonPeer	is	connected.	
	
static	const	int	 DISCONNECT
	 the	PhotonPeer	just	disconnected.	
	
static	const	int	 EXCEPTION
	 the	PhotonPeer	encountered	an	exception	and	will

disconnect,	too.	
	
static	const	int	 QUEUE_OUTGOING_RELIABLE_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	send	more

often.	
	
static	const	int	 QUEUE_OUTGOING_UNRELIABLE_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	send	more

often.	
	
static	const	int	 SEND_ERROR

	
Sending	command	failed.	Either	not	connected,	or	the
requested	channel	is	bigger	than	the	number	of
initialized	channels.	

	
static	const	int	 QUEUE_OUTGOING_ACKS_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	Send	more

often.	
	
static	const	int	 QUEUE_INCOMING_RELIABLE_WARNING

PhotonPeer	incoming	reliable	queue	is	filling	up.

	 Dispatch	more	often.	

	
static	const	int	 QUEUE_INCOMING_UNRELIABLE_WARNING
	 PhotonPeer	incoming	unreliable	queue	is	filling	up.

Dispatch	more	often.	
	
static	const	int	 QUEUE_SENT_WARNING

	
PhotonPeer	sent	queue	is	filling	up.	Check,	why	the
server	does	not	acknowledge	your	sent	reliable
commands.	

	
static	const	int	 INTERNAL_RECEIVE_EXCEPTION

	
Exception,	if	a	server	cannot	be	connected.	Most	likely,
the	server	is	not	responding.	Ask	the	user	to	try	again
later.	

	
static	const	int	 TIMEOUT_DISCONNECT
	 Disconnection	due	to	a	timeout	(client	did	no	longer

receive	ACKs	from	server).	
	
static	const	int	 DISCONNECT_BY_SERVER

	
Disconnect	by	server	due	to	timeout	(received	a
disconnect	command,	cause	server	misses	ACKs	of
client).	

	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 Disconnect	by	server	due	to	concurrent	user	limit

reached	(received	a	disconnect	command).	
	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 Disconnect	by	server	due	to	server's	logic	(received	a

disconnect	command).	
	
static	const	int	 ENCRYPTION_ESTABLISHED
	 The	encryption-setup	for	secure	communication

finished	successfully.	

	
static	const	int	 ENCRYPTION_FAILED_TO_ESTABLISH

	
The	encryption-setup	failed	for	some	reason.	Check
debug	logs.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Detailed	Description

StatusCode

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	namespace	members	with	links	to	the
namespaces	they	belong	to:

-	a	-

ALL	:	ExitGames::Common::DebugLevel
ALL_TO_ALL	:	ExitGames::LoadBalancing::DirectMode
allocate()	:	ExitGames::Common::MemoryManagement
allocateArray()	:	ExitGames::Common::MemoryManagement
ARRAY	:	ExitGames::Common::TypeCode
ASYNC_RANDOM_LOBBY	:
ExitGames::LoadBalancing::LobbyType
Authenticated	:	ExitGames::Chat::ClientState
Authenticating	:	ExitGames::Chat::ClientState
AWAY	:	ExitGames::Chat::UserStatus

-	b	-

BOOLEAN	:	ExitGames::Common::TypeCode
BYTE	:	ExitGames::Common::TypeCode
BYTEARRAY	:	ExitGames::Common::TypeCode

-	c	-

CONNECT	:	ExitGames::Photon::StatusCode
CONNECTED	:	ExitGames::Photon::PeerState
ConnectedToFrontEnd	:	ExitGames::Chat::ClientState
ConnectedToNameServer	:	ExitGames::Chat::ClientState
CONNECTING	:	ExitGames::Photon::PeerState
ConnectingToFrontEnd	:	ExitGames::Chat::ClientState
ConnectingToNameServer	:	ExitGames::Chat::ClientState
CUSTOM	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::Common::TypeCode	,
ExitGames::LoadBalancing::CustomAuthenticationType
CUSTOM_AUTHENTICATION_FAILED	:

ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause

-	d	-

deallocate()	:	ExitGames::Common::MemoryManagement
deallocateArray()	:	ExitGames::Common::MemoryManagement
DEFAULT	:	ExitGames::LoadBalancing::LobbyType
DICTIONARY	:	ExitGames::Common::TypeCode
DISCONNECT	:	ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER_LOGIC	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER_USER_LIMIT	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
Disconnected	:	ExitGames::Chat::ClientState
DISCONNECTED	:	ExitGames::Photon::PeerState
Disconnecting	:	ExitGames::Chat::ClientState
DISCONNECTING	:	ExitGames::Photon::PeerState
DisconnectingFromNameServer	:	ExitGames::Chat::ClientState
DND	:	ExitGames::Chat::UserStatus
DOUBLE	:	ExitGames::Common::TypeCode

-	e	-

EBADCLASS	:	ExitGames::Photon::ErrorCode
EBADPARM	:	ExitGames::Photon::ErrorCode
EFAILED	:	ExitGames::Photon::ErrorCode
EG_NULL	:	ExitGames::Common::TypeCode
EITEMBUSY	:	ExitGames::Photon::ErrorCode
ENCRYPTION_ESTABLISHED	:	ExitGames::Photon::StatusCode
ENCRYPTION_FAILED_TO_ESTABLISH	:
ExitGames::Photon::StatusCode

ENOMEMORY	:	ExitGames::Photon::ErrorCode
ERRORS	:	ExitGames::Common::DebugLevel
EXCEPTION	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
EXCEPTION_ON_CONNECT	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode

-	f	-

FACEBOOK	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType
FILL_ROOM	:	ExitGames::LoadBalancing::MatchmakingMode
FLOAT	:	ExitGames::Common::TypeCode

-	g	-

getIsSecure()	:	ExitGames::Photon::ConnectionProtocol
getIsTCP()	:	ExitGames::Photon::ConnectionProtocol
getIsUDP()	:	ExitGames::Photon::ConnectionProtocol
getIsWebSocket()	:	ExitGames::Photon::ConnectionProtocol

-	h	-

HASHTABLE	:	ExitGames::Common::TypeCode

-	i	-

INFO	:	ExitGames::Common::DebugLevel
INITIALIZING_APPLICATION	:	ExitGames::Photon::PeerState
INTEGER	:	ExitGames::Common::TypeCode
INTERNAL_RECEIVE_EXCEPTION	:
ExitGames::Photon::StatusCode
INVALID_AUTHENTICATION	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause
INVALID_REGION	:	ExitGames::Chat::DisconnectCause	,

ExitGames::LoadBalancing::DisconnectCause
INVISIBLE	:	ExitGames::Chat::UserStatus

-	l	-

LFG	:	ExitGames::Chat::UserStatus
LONG	:	ExitGames::Common::TypeCode

-	m	-

MASTER_TO_ALL	:	ExitGames::LoadBalancing::DirectMode
MAX_CCU_REACHED	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause

-	n	-

NET_ENETNONET	:	ExitGames::Photon::ErrorCode
NET_ERROR	:	ExitGames::Photon::ErrorCode
NET_MSGSIZE	:	ExitGames::Photon::ErrorCode
NET_SUCCESS	:	ExitGames::Photon::ErrorCode
NONE	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::CustomAuthenticationType	,
ExitGames::LoadBalancing::DirectMode	,
ExitGames::LoadBalancing::DisconnectCause

-	o	-

OBJECT	:	ExitGames::Common::TypeCode
OCULUS	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType
OFF	:	ExitGames::Common::DebugLevel
OFFLINE	:	ExitGames::Chat::UserStatus
ONLINE	:	ExitGames::Chat::UserStatus
OPERATION_NOT_ALLOWED_IN_CURRENT_STATE	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause

-	p	-

PHOTON_COMMAND	:	ExitGames::Common::TypeCode
PLAYING	:	ExitGames::Chat::UserStatus
PLAYSTATION	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType

-	q	-

QUEUE_INCOMING_RELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_INCOMING_UNRELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_OUTGOING_ACKS_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_OUTGOING_RELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_OUTGOING_UNRELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_SENT_WARNING	:	ExitGames::Photon::StatusCode

-	r	-

RANDOM_MATCHING	:
ExitGames::LoadBalancing::MatchmakingMode
reallocateArray()	:	ExitGames::Common::MemoryManagement

-	s	-

SEND_ERROR	:	ExitGames::Photon::StatusCode
SERIAL_MATCHING	:
ExitGames::LoadBalancing::MatchmakingMode
setAllocator()	:	ExitGames::Common::MemoryManagement
setAllocatorToDefault()	:
ExitGames::Common::MemoryManagement
setMaxAllocSize()	:	ExitGames::Common::MemoryManagement
setMaxSizeForAllocatorUsage()	:
ExitGames::Common::MemoryManagement
SHORT	:	ExitGames::Common::TypeCode
SQL_LOBBY	:	ExitGames::LoadBalancing::LobbyType
STEAM	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

STRING	:	ExitGames::Common::TypeCode
SUCCESS	:	ExitGames::Photon::ErrorCode

-	t	-

TCP	:	ExitGames::Photon::ConnectionProtocol
TIMEOUT_DISCONNECT	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode

-	u	-

UDP	:	ExitGames::Photon::ConnectionProtocol
Uninitialized	:	ExitGames::Chat::ClientState
UNKNOWN	:	ExitGames::Common::TypeCode

-	w	-

WARNINGS	:	ExitGames::Common::DebugLevel
WS	:	ExitGames::Photon::ConnectionProtocol
WSS	:	ExitGames::Photon::ConnectionProtocol

-	x	-

XBOX	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

allocate()	:	ExitGames::Common::MemoryManagement
allocateArray()	:	ExitGames::Common::MemoryManagement
deallocate()	:	ExitGames::Common::MemoryManagement
deallocateArray()	:	ExitGames::Common::MemoryManagement
getIsSecure()	:	ExitGames::Photon::ConnectionProtocol
getIsTCP()	:	ExitGames::Photon::ConnectionProtocol
getIsUDP()	:	ExitGames::Photon::ConnectionProtocol
getIsWebSocket()	:	ExitGames::Photon::ConnectionProtocol
reallocateArray()	:	ExitGames::Common::MemoryManagement
setAllocator()	:	ExitGames::Common::MemoryManagement
setAllocatorToDefault()	:
ExitGames::Common::MemoryManagement
setMaxAllocSize()	:	ExitGames::Common::MemoryManagement
setMaxSizeForAllocatorUsage()	:
ExitGames::Common::MemoryManagement

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

	

-	a	-

ALL	:	ExitGames::Common::DebugLevel
ALL_TO_ALL	:	ExitGames::LoadBalancing::DirectMode
ARRAY	:	ExitGames::Common::TypeCode
ASYNC_RANDOM_LOBBY	:
ExitGames::LoadBalancing::LobbyType
Authenticated	:	ExitGames::Chat::ClientState
Authenticating	:	ExitGames::Chat::ClientState
AWAY	:	ExitGames::Chat::UserStatus

-	b	-

BOOLEAN	:	ExitGames::Common::TypeCode
BYTE	:	ExitGames::Common::TypeCode
BYTEARRAY	:	ExitGames::Common::TypeCode

-	c	-

CONNECT	:	ExitGames::Photon::StatusCode
CONNECTED	:	ExitGames::Photon::PeerState
ConnectedToFrontEnd	:	ExitGames::Chat::ClientState
ConnectedToNameServer	:	ExitGames::Chat::ClientState
CONNECTING	:	ExitGames::Photon::PeerState
ConnectingToFrontEnd	:	ExitGames::Chat::ClientState
ConnectingToNameServer	:	ExitGames::Chat::ClientState
CUSTOM	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::Common::TypeCode	,
ExitGames::LoadBalancing::CustomAuthenticationType
CUSTOM_AUTHENTICATION_FAILED	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause

-	d	-

DEFAULT	:	ExitGames::LoadBalancing::LobbyType
DICTIONARY	:	ExitGames::Common::TypeCode
DISCONNECT	:	ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER_LOGIC	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
DISCONNECT_BY_SERVER_USER_LIMIT	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode
Disconnected	:	ExitGames::Chat::ClientState
DISCONNECTED	:	ExitGames::Photon::PeerState
Disconnecting	:	ExitGames::Chat::ClientState
DISCONNECTING	:	ExitGames::Photon::PeerState
DisconnectingFromNameServer	:	ExitGames::Chat::ClientState
DND	:	ExitGames::Chat::UserStatus
DOUBLE	:	ExitGames::Common::TypeCode

-	e	-

EBADCLASS	:	ExitGames::Photon::ErrorCode
EBADPARM	:	ExitGames::Photon::ErrorCode
EFAILED	:	ExitGames::Photon::ErrorCode
EG_NULL	:	ExitGames::Common::TypeCode
EITEMBUSY	:	ExitGames::Photon::ErrorCode
ENCRYPTION_ESTABLISHED	:	ExitGames::Photon::StatusCode
ENCRYPTION_FAILED_TO_ESTABLISH	:
ExitGames::Photon::StatusCode
ENOMEMORY	:	ExitGames::Photon::ErrorCode
ERRORS	:	ExitGames::Common::DebugLevel
EXCEPTION	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode

EXCEPTION_ON_CONNECT	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode

-	f	-

FACEBOOK	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType
FILL_ROOM	:	ExitGames::LoadBalancing::MatchmakingMode
FLOAT	:	ExitGames::Common::TypeCode

-	h	-

HASHTABLE	:	ExitGames::Common::TypeCode

-	i	-

INFO	:	ExitGames::Common::DebugLevel
INITIALIZING_APPLICATION	:	ExitGames::Photon::PeerState
INTEGER	:	ExitGames::Common::TypeCode
INTERNAL_RECEIVE_EXCEPTION	:
ExitGames::Photon::StatusCode
INVALID_AUTHENTICATION	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause
INVALID_REGION	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause
INVISIBLE	:	ExitGames::Chat::UserStatus

-	l	-

LFG	:	ExitGames::Chat::UserStatus
LONG	:	ExitGames::Common::TypeCode

-	m	-

MASTER_TO_ALL	:	ExitGames::LoadBalancing::DirectMode
MAX_CCU_REACHED	:	ExitGames::Chat::DisconnectCause	,

ExitGames::LoadBalancing::DisconnectCause

-	n	-

NET_ENETNONET	:	ExitGames::Photon::ErrorCode
NET_ERROR	:	ExitGames::Photon::ErrorCode
NET_MSGSIZE	:	ExitGames::Photon::ErrorCode
NET_SUCCESS	:	ExitGames::Photon::ErrorCode
NONE	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::CustomAuthenticationType	,
ExitGames::LoadBalancing::DirectMode	,
ExitGames::LoadBalancing::DisconnectCause

-	o	-

OBJECT	:	ExitGames::Common::TypeCode
OCULUS	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType
OFF	:	ExitGames::Common::DebugLevel
OFFLINE	:	ExitGames::Chat::UserStatus
ONLINE	:	ExitGames::Chat::UserStatus
OPERATION_NOT_ALLOWED_IN_CURRENT_STATE	:
ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause

-	p	-

PHOTON_COMMAND	:	ExitGames::Common::TypeCode
PLAYING	:	ExitGames::Chat::UserStatus
PLAYSTATION	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType

-	q	-

QUEUE_INCOMING_RELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_INCOMING_UNRELIABLE_WARNING	:
ExitGames::Photon::StatusCode

QUEUE_OUTGOING_ACKS_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_OUTGOING_RELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_OUTGOING_UNRELIABLE_WARNING	:
ExitGames::Photon::StatusCode
QUEUE_SENT_WARNING	:	ExitGames::Photon::StatusCode

-	r	-

RANDOM_MATCHING	:
ExitGames::LoadBalancing::MatchmakingMode

-	s	-

SEND_ERROR	:	ExitGames::Photon::StatusCode
SERIAL_MATCHING	:
ExitGames::LoadBalancing::MatchmakingMode
SHORT	:	ExitGames::Common::TypeCode
SQL_LOBBY	:	ExitGames::LoadBalancing::LobbyType
STEAM	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType
STRING	:	ExitGames::Common::TypeCode
SUCCESS	:	ExitGames::Photon::ErrorCode

-	t	-

TCP	:	ExitGames::Photon::ConnectionProtocol
TIMEOUT_DISCONNECT	:	ExitGames::Chat::DisconnectCause	,
ExitGames::LoadBalancing::DisconnectCause	,
ExitGames::Photon::StatusCode

-	u	-

UDP	:	ExitGames::Photon::ConnectionProtocol
Uninitialized	:	ExitGames::Chat::ClientState
UNKNOWN	:	ExitGames::Common::TypeCode

-	w	-

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

WARNINGS	:	ExitGames::Common::DebugLevel
WS	:	ExitGames::Photon::ConnectionProtocol
WSS	:	ExitGames::Photon::ConnectionProtocol

-	x	-

XBOX	:	ExitGames::Chat::CustomAuthenticationType	,
ExitGames::LoadBalancing::CustomAuthenticationType

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
Class	List

Here	are	the	classes,	structs,	unions	and	interfaces	with	brief
descriptions:

[detail	level	 1 2 3 4]

	▼ N ExitGames
	 ▼ N Chat
	 C AuthenticationValues
	 C Channel
	 C Client
	 C Listener
	 C Peer
	 ▼ N Common
	 ▼ N MemoryManagement
	 C AllocatorInterface
	 C ANSIString
	 C Base
	 C BaseCharString
	 C BaseListener
	 C CustomType
	 C CustomTypeBase
	 C CustomTypeFactory
	 C DeSerializer
	 C Dictionary
	 C DictionaryBase
	 C EGTime

	 C Hashtable
	 C JString
	 C JVector
	 C KeyObject
	 C LogFormatOptions
	 C Logger
	 C Object
	 C Serializer
	 C ToString
	 C UTF8String
	 C ValueObject
	 ▼ N Lite
	 C LitePeer
	 ▼ N LoadBalancing
	 C AuthenticationValues
	 C Client
	 C FriendInfo
	 C Listener
	 C LobbyStatsRequest
	 C LobbyStatsResponse
	 C MutablePlayer
	 C MutableRoom
	 C Peer
	 C Player
	 C RaiseEventOptions
	 C Room
	 C RoomOptions
	 C WebFlags
	 ▼ N Photon
	 ▼ N NetworkPort

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	 C Protocol

	 C TCP
	 C UDP
	 C UDPAlternative
	 C WS
	 C WSS
	 ▼ N Punchthrough
	 C Puncher
	 C PunchListener
	 C RelayClient
	 C EventData
	 C OperationRequest
	 C OperationResponse
	 C PhotonListener
	 C PhotonPeer
	 C TrafficStats
	 C TrafficStatsGameLevel

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat AuthenticationValues

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

AuthenticationValues
Class	Reference

Inheritance	diagram	for	AuthenticationValues:

[legend]

Collaboration	diagram	for	AuthenticationValues:

[legend]

Public	Member	Functions
	 AuthenticationValues	(void)

	
nByte	 getType	(void)	const

	
AuthenticationValues	&	 setType	(nByte	type)

	
const	Common::JString	&	 getParameters	(void)	const

	
AuthenticationValues	&	 setParameters	(const	Common::JString

¶meters)
	

AuthenticationValues	&	 setParametersWithUsernameAndToken
(const	Common::JString	&username,
const	Common::JString	&token)

	
const	Common::JVector<	nByte	>	&	 getData	(void)	const
	

AuthenticationValues	&	 setData	(const	Common::JVector
nByte	>	&data)

	
const	Common::JString	&	 getSecret	(void)	const

	
const	Common::JString	&	 getUserID	(void)	const

	
AuthenticationValues	&	 setUserID	(const	Common::JString

&userID)
	

virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool
withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Container	for	user	authentication	in	Photon.

Remarks
On	Photon,	user	authentication	is	optional	but	can	be	useful	in	many
cases.	If	you	want	to	use	Client::opFindFriends(),	a	unique	ID	per
user	is	very	practical.

There	are	basically	three	options	for	user	authentication:	None	at	all,	the
client	sets	some	UserId	or	you	can	use	some	account	web-service	to
authenticate	a	user	(and	set	the	UserId	server-side).

Custom	Authentication	lets	you	verify	end-users	by	some	kind	of	login	or
token.	It	sends	those	values	to	Photon	which	will	verify	them	before
granting	access	or	disconnecting	the	client.

If	you	don't	set	a	user	ID	through	setUserID()	for	the
AuthenticationValues	instance	that	you	pass	to	Client::connect(),	then
Photon	generates	a	unique	user	ID	(which	fulfills	the	requirements	of	a
GUID)	for	you,	which	can	be	retrieved	through	Client::getUserID(),	once
the	Client	instance	has	notified	Listener::connectReturn()	about	having
successfully	finished	the	connection	procedure.	Once	you	have	set	a
user	ID,	the	Client	instance	caches	it	until	you	either	override	it	or	until
the	end	of	the	lifetime	of	the	Client	instance.

To	be	able	to	rejoin	a	room	and	to	be	recognized	there	as	the	previous
user	it	is	critical	to	continue	to	use	the	same	user	ID.

Therefor	you	should	store	the	user	ID	in	permanent	storage	and	set	it	to
that	same	stored	value	whenever	you	want	to	connect	as	that	user,	even
if	you	let	Photon	initially	generate	that	ID.	Otherwise	Photon	would
generate	a	new	user	ID	for	you	whenever	you	construct	a	new	Client
instance	(i.e.	when	the	user	restarts	your	app).

Constructor	&	Destructor	Documentation

§	AuthenticationValues()
AuthenticationValues (void)

Constructor.

Member	Function	Documentation

§	getType()
nByte	getType (void) const

Returns
the	type	of	the	"Custom	Authentication"service	that	will	be	used.

See	also
setType()

§	setType()
AuthenticationValues	&	setType (nByte	 type)

Sets	the	type	of	the	"Custom	Authentication"	service	that	will	be	used.
The	initial	value	before	the	first	call	to	this	function	is
CustomAuthenticationType::NONE.

Note
Any	custom	authentication	type	aside	from
CustomAuthenticationType::NONE	requires	you	to	set	up	an
authentication	service	of	matching	type	for	your	appID	at
https://www.photonengine.com/dashboard

Parameters
type needs	to	match	one	of	the	values	in

CustomAuthenticationType

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getType(),	CustomAuthenticationType

https://www.photonengine.com/dashboard

§	getParameters()
const	JString	&	getParameters (void) const

Returns
the	HTTP	GET	parameters	that	will	be	forwarded	to	the
authentication	service.

See	also
setParameters(),	setParametersWithUsernameAndToken(),
getData(),	setData()

§	setParameters()
AuthenticationValues	&
setParameters (const	Common::JString	&	 parameters)

Sets	the	HTTP	GET	parameters	that	will	be	forwarded	to	the
authentication	service	to	the	provided	parameters.

The	provided	parameter	string	must	contain	any	(HTTP	GET)
parameters	that	are	expected	by	the	used	authentication	service.

Remarks
Standard	HTTP	GET	parameters	are	used	here	and	passed	on	to
the	authentication	service	that's	defined	for	the	provided
authentication	type	in	the	Photon	Cloud	Dashboard.

Parameters
parameters needs	to	be	a	valid	HTTP	GET	string	(i.e.

param1=value1¶m2=value2¶m3=value3)

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getParameters(),	setParametersWithUsernameAndToken(),
getData(),	setData()

§	setParametersWithUsernameAndToken()
AuthenticationValues	&
setParametersWithUsernameAndToken (const	Common::JString	&	 username

const	Common::JString	&	 token
)

Sets	the	HTTP	GET	parameters	that	will	be	forwarded	to	the	authentication
service	to	the	provided	username	and	token.

Calling	this	function	is	equivalent	to
setParameters(Common::JString(L"username=")	+	username	+	"&token="	+
token).

Parameters
username the	username	of	the	user	that	should	be	authenticated
token the	authentication	token	needed	by	the	authentication	service

to	verify	the	user

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for	chaining
multiple	setter	calls

See	also
getParameters(),	setParameters(),	getData(),	setData()

§	getData()
const	JVector<	nByte	>	&	getData (void) const

Returns
the	HTTP	POST	data	that	will	be	forwarded	to	the	authentication
service.

See	also
getParameters(),	setParameters(),
setParametersWithUsernameAndToken(),	setData()

§	setData()
AuthenticationValues	&
setData (const	Common::JVector<	nByte	>	&	 data)

Sets	the	HTTP	POST	data,	that	will	be	forwarded	to	the	authentication
service,	to	the	provided	data.

The	provided	data	needs	to	match	what	is	expected	by	the	used
authentication	service.

Remarks
The	provided	data	is	passed	on	to	the	authentication	service	that's
defined	for	the	provided	authentication	type	in	the	Photon	Cloud
Dashboard.

Parameters
data the	data	to	be	used	in	the	body	of	the	POST	request.

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getParameters(),	setParameters(),
setParametersWithUsernameAndToken(),	getData()

§	getSecret()
const	JString	&	getSecret (void) const

After	initial	authentication,	Photon	provides	a	secret	for	this	client	/
user,	which	is	subsequently	used	as	(cached)	validation	internally.

Remarks
This	is	publicly	read-accessible	only	for	debugging	purposes.	For
normal	operations	it	is	entirely	unnecessary	for	the	app	code	to
ever	access	this	value.

Returns
the	cached	secret

§	getUserID()
const	JString	&	getUserID (void) const

Returns
the	unique	user	ID

See	also
setUserID()

§	setUserID()
AuthenticationValues	&
setUserID (const	Common::JString	&	 userID)

Sets	the	unique	user	ID.

Parameters
userID a	string	that	needs	to	be	unique	per	user	among	all	users

of	your	app

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getUserID()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Channel

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Channel	Class
Reference

Inheritance	diagram	for	Channel:

[legend]

Collaboration	diagram	for	Channel:

[legend]

Public	Member	Functions
void	 clearMessages

(void)
	

const	Common::JString	&	 getName	(void)
const

	
unsigned	int	 getMessageCount

(void)	const
	
const	Common::JVector<	Common::JString	>	&	 getSenders	(void)

const
	
const	Common::JVector<	Common::Object	>	&	 getMessages

(void)	const
	

bool	 getIsPrivate	(void)
const

	
virtual	Common::JString	&	 toString

(Common::JString
&retStr,	bool
withTypes=false)
const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)
const

	
JString	 toString	(bool

withTypes=false)
const

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Represents	channel	or	private	chat	(channel	with	2	users)

Member	Function	Documentation

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Client

Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Client	Class	Reference

Inheritance	diagram	for	Client:

[legend]

Collaboration	diagram	for	Client:

[legend]

Public	Member	Functions
	 Client	(Listener	&listener,	const	
&applicationID,	const	Common::JString
nByte
connectionProtocol=Photon::ConnectionProtocol::DEFAULT)

	
virtual	 ~Client	(void)

	
virtual	bool	 connect	(const	AuthenticationValues

&authenticationValues=AuthenticationValues
Common::JString
&nameServerAddress=M_NAMESERVER)

	
virtual	void	 disconnect	(void)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 sendOutgoingCommands	(void)

	
virtual	bool	 sendAcksOnly	(void)

	
virtual	bool	 dispatchIncomingCommands

	
virtual	void	 fetchServerTimestamp	(void)

	
virtual	void	 resetTrafficStats	(void)

	
virtual	void	 resetTrafficStatsMaximumCounters

	
virtual	Common::JString	 vitalStatsToString	(bool	all)	const

	
virtual	bool	 opSubscribe	(const	Common::JVector

Common::JString	>	&channels,	int
messagesFromHistory=0)

	
virtual	bool	 opUnsubscribe	(const	Common::JVector

Common::JString	>	&channels)
	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	&message)

	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	pMessageArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)

	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	pMessageArray,	const	short
*pArrSizes)

	
template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	&message,	bool	encrypt=false)

	
template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	pMessageArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
bool	encrypt=false)

	
template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	pMessageArray,	const	short
*pArrSizes,	bool	encrypt=false)

	
virtual	bool	 opSetOnlineStatus	(int	status)

	
template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	&message)
	

template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	pMessageArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize)

	
template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	pMessageArray,
const	short	*pArrSizes)

	
virtual	bool	 opAddFriends	(const	Common::JVector

Common::JString	>	&userIDs)
	

virtual	bool	 opRemoveFriends	(const	Common::JVector
Common::JString	>	&userIDs)

	
int	 getServerTimeOffset	(void)	const

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation

	
int	 getSentCountAllowance	(void)	const

	
void	 setSentCountAllowance	(int	sentCountAllowance)

	
int	 getTimePingInterval	(void)	const

	
void	 setTimePingInterval	(int	timePingInterval)

	
int	 getRoundTripTime	(void)	const

	
int	 getRoundTripTimeVariance

	
int	 getTimestampOfLastSocketReceive

	
int	 getDebugOutputLevel	(void)	const

	
bool	 setDebugOutputLevel	(int	debugLevel)

	
const	Common::LogFormatOptions	&	 getLogFormatOptions	(void)	const

	
void	 setLogFormatOptions	(const

Common::LogFormatOptions
	

int	 getIncomingReliableCommandsCount
	

short	 getPeerID	(void)	const
	

int	 getDisconnectTimeout	(void)	const
	

void	 setDisconnectTimeout	(int	disconnectTimeout)
	

int	 getQueuedIncomingCommands
	

int	 getQueuedOutgoingCommands
	

bool	 getIsPayloadEncryptionAvailable
	

int	 getResentReliableCommands
	

int	 getLimitOfUnreliableCommands
	

void	 setLimitOfUnreliableCommands
	

bool	 getCRCEnabled	(void)	const
	

void	 setCRCEnabled	(bool	crcEnabled)
	

int	 getPacketLossByCRC	(void)	const

	
bool	 getTrafficStatsEnabled	(void)	const

	
void	 setTrafficStatsEnabled	(bool	trafficStatsEnabled)

	
int	 getTrafficStatsElapsedMs	(void)	const

	
const	Photon::TrafficStats	&	 getTrafficStatsIncoming	(void)	const

	
const	Photon::TrafficStats	&	 getTrafficStatsOutgoing	(void)	const

	
const	Photon::TrafficStatsGameLevel	&	 getTrafficStatsGameLevel	(void)	const
	

nByte	 getQuickResendAttempts	(void)	const
	

void	 setQuickResendAttempts	(nByte	quickResendAttempts)
	

nByte	 getChannelCountUserChannels
	

const	Common::JString	&	 getUserID	(void)	const
	

int	 getState	(void)	const
	

int	 getDisconnectedCause	(void)	const
	

const	Common::JString	&	 getRegion	(void)	const
	

void	 setRegion	(const	Common::JString
	
const	Common::JVector<	Channel	*	>	&	 getPublicChannels	(void)	const
	
const	Common::JVector<	Channel	*	>	&	 getPrivateChannels	(void)	const
	

const	Channel	*	 getPublicChannel	(const	Common::JString
&channelName)	const

	
const	Channel	*	 getPrivateChannel	(const	Common::JString

const
	

Static	Public	Member	Functions
static	short	 getPeerCount	(void)
	

Detailed	Description

Central	class	of	the	Photon	Chat	API	to	connect,	handle	channels	and
messages.

This	class	must	be	instantiated	with	a	Chat::Listener	instance	to	get	the
callbacks	and	with	application	id	that	is	setup	as	Photon	Chat	application.
Integrate	it	into	your	game	loop	by	calling	service()	regularly.	Call
connect()	with	an	Name	Server	address.	Note:	Connect	covers	multiple
messages	between	this	client	and	the	servers.	A	short	workflow	will
connect	you	to	a	Chat	server.	Each	Chat::Client	resembles	a	user	in
chat.	Before	you	send	messages	in	any	public	channel,	that	channel
must	be	subscribed.	Private	channels	represent	private	chats	and
created	automatically	on	private	message	sent	or	received.
getPublicChannels()	returns	list	of	subscribed	channels,	containing
messages	and	senders.	getPrivateChannels()	contains	all	incoming	and
sent	private	messages.

Constructor	&	Destructor	Documentation

§	Client()
Client (Listener	&	 listener,

const	Common::JString	&	 applicationID,
const	Common::JString	&	 appVersion,
nByte	 connectionProtocol	=	Photon::ConnectionProtocol::DEFAULT
)

Constructor.

Parameters
listener pointer	to	the	application's	implementation	of	the	

callback	interface.
applicationID Photon	Chat	application	id
appVersion Photon	Chat	application	version
connectionProtocol connection	protocol

§	~Client()
~Client (void) virtual

Destructor.

Member	Function	Documentation

§	connect()
bool
connect (const	AuthenticationValues	&	 authenticationValues	=	AuthenticationValues

const	Common::JString	&	 nameServerAddress	=	M_NAMESERVER
)

Initiates	a	connection	to	the	Photon	name	server.	After	a	successful	connection	the	client
automatically	connects	to	a	chat	front	end	server	and	goes	to	ConnectedToFrontEnd	state.
After	that	the	client	can	subscribe	to	channels	and	send	and	receive	messages.

Parameters
authenticationValues a	user's	authentication	values	used	during	connect	for	Custom

Authentication	with	Photon.
nameServerAddress used	to	specify	a	name	server	address	different	from	the	public

Photon	Cloud	name	server

§	disconnect()
void	disconnect (void) virtual

Disconnects	from	servers.

§	service()
void	service (bool	 dispatchIncomingCommands	=	true) virtual

This	function	executes	the	PhotonPeer	internal	processes.	Call	this
regularly!

This	function	is	meant	to	be	called	frequently,	like	once	per	game	loop.
It	handles	the	internal	calls	for	keeping	the	PhotonPeer	communication
alive,	and	will	take	care	of	sending	all	local	outgoing
acknowledgements	and	messages,	as	well	as	dispatching	incoming
messages	to	the	application	and	firing	the	corresponding	callbacks.
Internally	service()	calls	the	following	functions:

1.	 serviceBasic()
2.	 dispatchIncomingCommands()	(called	withing	a	loop	until	all

incoming	commands	have	been	dispatched.)
3.	 sendOutgoingCommands()	(called	withing	a	loop	until

everything	queued	for	sending	has	been	sent.)

service()	is	provided	for	convenience.	If	you	need	to	tweak	the
performance,	you	can	ignore	service()	and	call	its	three	subfunctions
directly	with	individual	time	intervals,	to	gain	more	control	over	the
internal	communication	process.	For	instance,	calling
sendOutgoingCommands()	more	rarely	will	result	in	less	packets	to
be	generated,	as	more	commands	will	be	accumulated	into	a	single
packet.	See	sendOutgoingCommands()	for	more	information	on
efficiency.

For	situations	where	you	want	to	keep	the	connection	alive,	but	can't
process	incoming	messages	(e.g.	when	loading	a	level),	you	can
temporarily	pass	false	for	dispatchIncomingCommands	to	skip	the
calls	to	dispatchIncomingCommands().	Incoming	commands	will	be
stored	in	the	incoming	queue	until	they	are	dispatched	again.

Parameters
dispatchIncomingCommands true	=

dispatchIncomingCommands()

will	be	called;	false	=
dispatchIncomingCommands()
won't	be	called,	default	is	true

§	serviceBasic()
void	serviceBasic (void) virtual

This	function	takes	care	of	exchanging	data	with	the	system's	network
layer.

You	only	need	to	call	this	function	in	case	you	choose	not	to	use
service(),	but	call	the	subfunctions	of	service()	directly.	Please	see
the	documentation	of	service()	for	more	information.

serviceBasic()	is	called	from	within	service().	If	you	decide	not	to	use
service(),	then	serviceBasic()	needs	to	be	called	frequently,	like	once
per	game	loop.

See	also
service()

§	sendOutgoingCommands()
bool	sendOutgoingCommands (void) virtual

This	function	initiates	the	transmission	of	outgoing	commands.

Any	Photon	function	that	generates	messages	will	store	these
messages	as	a	"command"	in	an	outgoing	queue	for	later
transmission.	Commands	can	either	be	explicitly	created	operations
generated	for	example	by	opCustom()	or	internally	generated
messages	like	acknowledgements	for	reliable	messages	from	other
players.	sendOutgoingCommands()	will	initiate	the	data	transmission
by	passing	the	outgoing	commands	to	the	system's	sockets	for
immediate	transmission.

In	case	of	UDP	sendOutgoingCommands()	will	also	split	the
commands	into	multiple	packets	if	needed	and/of	aggregate	multiple
commands	together	into	one	packet,	if	possible.	Because	of	the	latter
calling	sendOutgoingcommands()	more	rarely	will	result	in	less
overhead,	as	there	will	be	fewer	packets	for	the	clients	to	be	sent	and
processed.	The	underlying	platform	can	also	limit	the	frequency	in
which	outgoing	packets	can	be	sent	and	received.	The	downside	of
lower	sending	frequencies	is	a	higher	latency,	until	messages	are
exchanged	and	acknowledged,	which	may	lead	to	a	jerky	gameplay.

To	help	you	keeping	track	of	the	incoming	and	outgoing	queues	at
development	time	and	adjust	your	sending	frequency,	there	will	be	a
warning	message	sent	to	your	debugReturn	callback	if	a	queue	has
exceeded	the	warning	threshold.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Usually	you	don't	have	to	call	sendOutgoingCommands()	this
explicitly,	as	this	is	done	within	service().

See	also
service()

§	sendAcksOnly()
bool	sendAcksOnly (void) virtual

Sends	only	ACKs	(UDP)	or	Ping	(TCP)	instead	of	queued	outgoing
commands.	Useful	to	pause	sending	actual	data.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendAcksOnly()	and	dispatchIncomingCommands()	instead.

§	dispatchIncomingCommands()
bool	dispatchIncomingCommands (void) virtual

Checks	for	incoming	commands	waiting	in	the	queue,	and	dispatches
a	single	command	to	the	application.

Dispatching	means,	that	if	the	command	is	an	operation	response	or
an	event,	the	appropriate	callback	function	will	be	called).
dispatchIncomingCommands()	will	also	take	care	of	generating	and
queuing	acknowledgments	for	incoming	reliable	commands.	Please
note	that	this	function	will	only	dispatch	one	command	per	all.	If	you
want	to	dispatch	every	single	command	which	is	waiting	in	the	queue,
call	dipatchIncomingCommands()	within	a	while	loop,	until	its	return
code	is	false.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Returns
true	if	it	has	successfully	dispatched	a	command,	false	otherwise
(for	example,	when	there	has	not	been	any	command	left	in	the
queue,	waiting	for	dispatching).

See	also
service()

§	fetchServerTimestamp()
void	fetchServerTimestamp (void) virtual

This	will	fetch	the	server's	timestamp	and	update	the	approximation	for
getServerTime()	and	getServerTimeOffset().

The	server	time	approximation	will	NOT	become	more	accurate	by
repeated	calls.	Accuracy	currently	depends	on	a	single	roundtrip	which
is	done	as	fast	as	possible.

The	command	used	for	this	is	immediately	acknowledged	by	the
server.	This	makes	sure	the	roundtriptime	is	low	and	the	timestamp	+
roundtriptime	/	2	is	close	to	the	original	value.

§	resetTrafficStats()
void	resetTrafficStats (void) virtual

Creates	new	instances	of	TrafficStats	and	starts	a	new	timer	for	those.

§	resetTrafficStatsMaximumCounters()
void	resetTrafficStatsMaximumCounters (void) virtual

Resets	traffic	stats	values	that	can	be	maxed	out.

§	vitalStatsToString()
Common::JString	vitalStatsToString (bool	 all) const virtual

Returns	a	string	of	the	most	interesting	connection	statistics.	When
you	have	issues	on	the	client	side,	these	might	contain	hints	about	the
issue's	cause.

Parameters
all If	true,	Incoming	and	Outgoing	low-level	stats	are	included	in

the	string.

Returns
stats	as	a	string.

§	opSubscribe()
bool
opSubscribe (const	Common::JVector<	Common::JString	>	&	 channels

int	 messagesFromHistory
)

Sends	a	request	to	subscribe	the	client	to	the	specified	channels,	optionally	fetching	messages
newer	than	a	specific	ID.

Parameters
channels list	of	channels	to	subscribe	to.
messagesFromHistory 0:	no	history.	1	and	higher:	number	of	messages	in	history.	-1:	all

history.

Returns
true	if	request	sent

§	opUnsubscribe()
bool
opUnsubscribe (const	Common::JVector<	Common::JString	>	&	 channels

Unsubscribes	the	client	from	a	list	of	channels.

The	client	will	remove	these	channels	from	the	PublicChannels	dictionary
immediately,	if	it	could	send	the	operation.

Parameters
channels list	of	channels	to	unsubscribe	from.

Returns
true	if	request	sent	and	channels	removed

§	opPublishMessage()	[1/3]
template<	typename	Ftype
>	bool	opPublishMessage (const	Common::JString	&	 channelName,

const	Ftype	&	 message	
)

Sends	a	message	to	the	specified	public	channel.

Parameters
channelName channel	name
message message	to	send

Returns
false	in	case	of	an	error,	true	otherwise

§	opPublishMessage()	[2/3]
template<
typename	Ftype	>
bool
opPublishMessage (const	Common::JString	&	

const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function
only	in	what	argument(s)	it	accepts.

Parameters
channelName channel	name
pMessageArraymessage	to	send
arrSize the	number	of	elements	in	pParameterArray

§	opPublishMessage()	[3/3]
template<	typename
Ftype	>	bool
opPublishMessage (const	Common::JString	&	 channelName,

const	Ftype	 pMessageArray,
const	short	*	 pArrSizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
channelName channel	name
pMessageArraymessage	to	send
pArrSizes an	array	holding	the	number	of	elements	for

each	dimension	of	pParameterArray

§	opSendPrivateMessage()	[1/2]
template<	typename
Ftype	>	bool
opSendPrivateMessage (const	Common::JString	&	

const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
bool	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function	only
in	what	argument(s)	it	accepts.

Parameters
userName user	name
pMessageArraymessage	to	send
arrSize the	number	of	elements	in	pParameterArray
encrypt true	to	send	the	message	encrypted,	false	(default)	to	send	it	unencrypted

§	opSendPrivateMessage()	[2/2]
template<	typename
Ftype	>	bool
opSendPrivateMessage (const	Common::JString	&	 userName,

const	Ftype	 pMessageArray,
const	short	*	 pArrSizes,
bool	 encrypt	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
userName user	name
pMessageArraymessage	to	send
pArrSizes an	array	holding	the	number	of	elements	for

each	dimension	of	pParameterArray
encrypt true	to	send	the	message	encrypted,	false

(default)	to	send	it	unencrypted

§	opSetOnlineStatus()	[1/3]
bool	opSetOnlineStatus (int	 status) virtual

Sets	the	user's	status	(pre-defined	or	custom)	and	a	status	message.

The	predefined	status	values	can	be	found	in	namespace	UserStatus.
States	UserStatus::INVISIBLE	and	UserStatus::OFFLINE	will	make
you	offline	for	everyone	and	send	no	message.

Parameters
status predefined	states	are	in	namespace	UserStatus.	Other

values	can	be	used	at	will

Returns
false	in	case	of	an	error,	true	otherwise

§	opSetOnlineStatus()	[2/3]
template<
typename	Ftype	>
bool
opSetOnlineStatus (int	

const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function
only	in	what	argument(s)	it	accepts.

Parameters
status predefined	states	are	in	namespace	UserStatus.	Other	values	can	be	used

at	will
pMessageArray optional	status	message
arrSize the	number	of	elements	in	pParameterArray

§	opSetOnlineStatus()	[3/3]
template<	typename	Ftype	>	bool
opSetOnlineStatus (int	 status,

const	Ftype	 pMessageArray,
const	short	*	 pArrSizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
status predefined	states	are	in	namespace

UserStatus.	Other	values	can	be	used	at	will
pMessageArray optional	status	message
pArrSizes an	array	holding	the	number	of	elements	for

each	dimension	of	pParameterArray

§	opAddFriends()
bool
opAddFriends (const	Common::JVector<	Common::JString	>	&	 userIDs

Adds	users	to	the	list	on	the	Chat	Server	which	will	send	you	status	updates	for
those.

Parameters
userIDs list	of	friend	user	names

Returns
true	if	the	command	has	been	sent

§	opRemoveFriends()
bool
opRemoveFriends (const	Common::JVector<	Common::JString	>	&	 userIDs

Removes	users	from	the	list	on	the	Chat	Server	which	will	send	you	status	updates	for
those.

Parameters
userIDs list	of	friend	user	names

Returns
true	if	the	command	has	been	sent

§	getServerTimeOffset()
int	getServerTimeOffset (void) const

Returns
the	difference	between	the	local	uptime	and	the	Photon	Server's
system	time	in	ms.

In	real-time	games	it's	often	useful	to	relate	game	events	to	a	global
common	timeline,	that's	valid	for	all	players	and	independent	from
derivations	throughout	the	clients'	system	times.	The	Photon	Server's
System	Time	can	serve	as	this	reference	time.	The	serverTimeOffset
represents	the	difference	between	the	client's	local	system	time	and
the	Photon	server's	system	time.

ServerTime	=	serverTimeOffset	+	GETTIMEMS()

The	serverTimeOffset	is	fetched	shortly	after	connect	by	Photon.	Use
GETTIMEMS()	to	get	your	local	time	in	ms.	You	can	let	Photon	refetch
the	offset	by	calling	fetchServerTimestamp().	The	ServerTimeOffset
will	be	0	until	shortly	after	initial	connect.

§	getServerTime()
int	getServerTime (void) const

Returns
the	Photon	Server's	system	time	ins	ms.

see	getServerTimeOffset()

§	getBytesOut()
int	getBytesOut (void) const

Returns
the	total	number	of	outgoing	bytes	transmitted	by	this	PhotonPeer
object.

See	also
getBytesIn()

§	getBytesIn()
int	getBytesIn (void) const

Returns
the	total	number	of	incoming	bytes	received	by	this	PhotonPeer
object.

See	also
getBytesOut()

§	getByteCountCurrentDispatch()
int	getByteCountCurrentDispatch (void) const

Returns
the	size	of	the	dispatched	event	or	operation-result	in	bytes.	This
value	is	set	before	onEvent()	or	onOperationResponse()	is	called
(within	dispatchIncomingCommands()).	Get	this	value	directly	in
onEvent()	or	onOperationResponse().

§	getByteCountLastOperation()
int	getByteCountLastOperation (void) const

Returns
the	size	of	the	last	serialized	operation	call	in	bytes.	The	value
includes	all	headers	for	this	single	operation	but	excludes	those	of
UDP,	Enet	Package	Headers	and	TCP.	Get	this	value	immediately
after	calling	an	operation.

§	getSentCountAllowance()
int	getSentCountAllowance (void) const

Returns
the	number	of	resend	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	always	return	0	for	other	protocols.

See	also
setSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	setSentCountAllowance()
void	setSentCountAllowance (int	 sentCountAllowance)

Sets	the	number	of	re-send	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	do	nothing	at	all	for	other	protocols.

Parameters
sentCountAllowance the	new	number	of	re/-send	retries	before

a	peer	is	considered	lost/disconnected.

See	also
getSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	getTimePingInterval()
int	getTimePingInterval (void) const

Returns
the	time	threshold	in	milliseconds	since	the	last	reliable	command,
before	a	ping	will	be	sent.

See	also
setTimePingInterval()

§	setTimePingInterval()
void	setTimePingInterval (int	 timePingInterval)

Sets	the	time	threshold	in	milliseconds	since	the	last	reliable
command,	before	a	ping	will	be	sent.

Parameters
timePingInterval time	threshold	in	milliseconds	since	the	last

reliable	command,	before	a	ping	will	be	sent.

See	also
getTimePingInterval()

§	getRoundTripTime()
int	getRoundTripTime (void) const

Returns
the	time	in	milliseconds	until	a	reliable	command	is	acknowledged
by	the	server.

This	is,	what	is	commonly	called	a	ping	time	or	just	a	ping.

See	also
getRoundTripTimeVariance()

§	getRoundTripTimeVariance()
int	getRoundTripTimeVariance (void) const

Returns
the	variance	of	the	roundtrip	time	in	milliseconds.	Gives	a	hint
about	how	much	the	net	latency	is	varying.

See	also
getRoundTripTime()

§	getTimestampOfLastSocketReceive()
int	getTimestampOfLastSocketReceive (void) const

Returns
timestamp	of	the	last	time	anything	(!)	was	received	from	the
server	(including	low	level	Ping	and	ACKs	but	also	events	and
operation-returns).	This	is	not	the	time	when	something	was
dispatched.

§	getDebugOutputLevel()
int	getDebugOutputLevel (void) const

Returns	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Returns
one	of	the	values	in	DebugLevel

See	also
setDebugOutputLevel()

§	setDebugOutputLevel()
bool	setDebugOutputLevel (int	 debugLevel)

Sets	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Parameters
debugLevel one	of	the	values	in	DebugLevel

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	getLogFormatOptions()
const	LogFormatOptions	&	getLogFormatOptions (void) const

Returns
the	LogFormatOptions	that	are	used	by	this	instance.

See	also
setFormatOptions()

§	setLogFormatOptions()
void
setLogFormatOptions (const	Common::LogFormatOptions	&	 formatOptions

Sets	the	log	format	options	to	the	supplied	value.

Parameters
formatOptions the	new	value	to	which	the	log	format	options	will	be	set

See	also
getFormatOptions()

§	getIncomingReliableCommandsCount()
int	getIncomingReliableCommandsCount (void) const

Returns
the	total	number	of	reliable	commands	currently	waiting	in	the
incoming	queues	of	all	channels	or	-1	if	not	connected.

§	getPeerID()
short	getPeerID (void) const

Returns
this	peer's	ID	as	assigned	by	the	server.	Will	be	-1,	if	not
connected.

§	getDisconnectTimeout()
int	getDisconnectTimeout (void) const

Returns
the	maximum	time	interval	in	milliseconds	for	doing	resend	retries
before	a	peer	is	considered	lost/disconnected.

See	also
setDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	setDisconnectTimeout()
void	setDisconnectTimeout (int	 disconnectTimeout)

Sets	the	maximum	time	ins	milliseconds	for	making	re-send	retries
before	a	peer	is	considered	lost/disconnected.

Parameters
disconnectTimeout resend	max	time	in	ms	before	a	peer	is

considered	lost/disconnected

See	also
getDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	getQueuedIncomingCommands()
int	getQueuedIncomingCommands (void) const

Returns
the	number	of	queued	incoming	commands	in	all	channels	or	-1	if
not	connected

§	getQueuedOutgoingCommands()
int	getQueuedOutgoingCommands (void) const

Returns
the	number	of	queued	outgoing	commands	in	all	channels	or	-1	if
not	connected

§	getIsPayloadEncryptionAvailable()
bool	getIsPayloadEncryptionAvailable (void) const

Returns
this	peer's	encryption	availability	status.	True	if	either	payload
encryption	is	available	or	if	the	connection	protocol	is	UDP	and
UDP	encryption	is	available	or	if	the	connection	protocol	is	already
secure	on	its	own,	false	otherwise.

See	also
getIsPayloadEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption(),	initUDPEncryption()

§	getResentReliableCommands()
int	getResentReliableCommands (void) const

Returns
the	count	of	commands	that	got	repeated	(due	to	local	repeat-
timing	before	an	ACK	was	received).

§	getLimitOfUnreliableCommands()
int	getLimitOfUnreliableCommands (void) const

Returns
the	limit	for	the	queue	of	received	unreliable	commands.

See	also
setLimitOfUnreliableCommands()

§	setLimitOfUnreliableCommands()
void	setLimitOfUnreliableCommands (int	 value)

Sets	the	limit	for	the	queue	of	received	unreliable	commands.	This
works	only	in	UDP.	This	limit	is	applied	when	you	call
dispatchIncomingCommands.	If	this	client	(already)	received	more
than	this	limit,	it	will	throw	away	the	older	ones	instead	of	dispatching
them.	This	can	produce	bigger	gaps	for	unreliable	commands	but	your
client	catches	up	faster.	This	can	be	useful	when	the	client	couldn't
dispatch	anything	for	some	time	(cause	it	was	in	a	room	but	loading	a
level).	If	set	to	20,	the	incoming	unreliable	queues	are	truncated	to	20.
If	0,	all	received	unreliable	commands	will	be	dispatched.	This	is	a	"per
channel"	value,	so	each	channel	can	hold	commands	up	to	specified
limit.	This	value	interacts	with	dispatchIncomingCommands():	If	that
is	called	less	often,	more	commands	get	skipped.

See	also
getLimitOfUnreliableCommands()

§	getCRCEnabled()
bool	getCRCEnabled (void) const

Returns
true	if	CRC	enabled

See	also
setCRCEnabled

§	setCRCEnabled()
void	setCRCEnabled (bool	 crcEnabled)

Enables	or	disables	CRC.	While	not	connected,	this	controls	if	the	next
connection(s)	should	use	a	per-package	CRC	checksum.	If	the	client	is
in	another	state	than	'connected',	then	this	function	has	no	effect
except	for	logging	an	error.

While	turned	on,	the	client	and	server	will	add	a	CRC	checksum	to
every	sent	package.	The	checksum	enables	both	sides	to	detect	and
ignore	packages	that	were	corrupted	during	transfer.	Corrupted
packages	have	the	same	impact	as	lost	packages:	They	require	a	re-
send,	adding	a	delay	and	could	lead	to	timeouts.	Building	the
checksum	has	a	low	processing	overhead	but	increases	integrity	of
sent	and	received	data.	Packages	discarded	due	to	failed	CRC	checks
are	counted	in	PhotonPeer.PacketLossByCRC.

Note
This	only	has	effect	for	UDP	connections.
This	does	not	have	any	effect	for	connections	that	use	UDP
datagram	encryption	(which	always	use	a	built-in	checksum).

See	also
getCRCEnabled

§	getPacketLossByCRC()
int	getPacketLossByCRC (void) const

Returns
the	count	of	packages	dropped	due	to	failed	CRC	checks	for	this
connection.

See	also
setCRCEnabled

§	getTrafficStatsEnabled()
bool	getTrafficStatsEnabled (void) const

Returns
true	if	traffic	statistics	of	a	peer	are	enabled.	Default
trafficStatsEnabled:	false	(disabled).

§	setTrafficStatsEnabled()
void	setTrafficStatsEnabled (bool	 trafficStatsEnabled)

Enables	or	disables	the	traffic	statistics	of	a	peer.	Default
trafficStatsEnabled:	false	(disabled).

§	getTrafficStatsElapsedMs()
int	getTrafficStatsElapsedMs (void) const

Returns
the	count	of	milliseconds	the	stats	are	enabled	for	tracking.

§	getTrafficStatsIncoming()
const	Photon::TrafficStats	&	getTrafficStatsIncoming (void) const

Returns
the	byte-count	of	incoming	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsOutgoing()
const	Photon::TrafficStats	&	getTrafficStatsOutgoing (void) const

Returns
the	byte-count	of	outgoing	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsGameLevel()
const	Photon::TrafficStatsGameLevel	&
getTrafficStatsGameLevel (void) const

Returns
a	statistic	of	incoming	and	outgoing	traffic,	split	by	operation,
operation-result	and	event.	Operations	are	outgoing	traffic,	results
and	events	are	incoming.	Includes	the	per-command	header	sizes
(UDP:	Enet	Command	Header	or	TCP:	Message	Header).

§	getQuickResendAttempts()
nByte	getQuickResendAttempts (void) const

Returns
the	number	of	resend	attempts	for	a	reliable	command	that	are
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

§	setQuickResendAttempts()
void	setQuickResendAttempts (nByte	 quickResendAttempts)

Returns
the	number	of	resend	attempts	for	a	reliable	command	that	are
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

§	getChannelCountUserChannels()
nByte	getChannelCountUserChannels (void) const

The	IDs	from	0	to	getChannelCountUserChannels()-1	can	be	passed
as	channelID	to	operations	that	offer	this	parameter.

Returns
the	number	of	different	channels	that	are	available	for	sending
operations	on.

§	getPeerCount()
short	getPeerCount (void) static

Returns
the	count	of	peers,	which	have	been	initialized	since	the	start	of
the	application.	Interesting	mainly	for	debugging	purposes.

§	getUserID()
const	JString	&	getUserID (void) const

Returns	the	unique	user	id.

Returns
the	user	id

§	getState()
int	getState (void) const

Returns	client	state

§	getDisconnectedCause()
int	getDisconnectedCause (void) const

Returns	cause	of	last	disconnect	event.

Returns
disconnect	cause	constant	from	Chat::DisconnectCause.

See	also
Chat::DisconnectCause

§	getRegion()
const	JString	&	getRegion (void) const

Returns	chat	(Name	Server)	region.

§	setRegion()
void	setRegion (const	Common::JString	&	 region)

Sets	chat	(Name	Server)	region.	Set	it	before	connect()	call.

Parameters
region region

§	getPublicChannels()
const	JVector<	Channel	*	>	&	getPublicChannels (void) const

Returns	list	of	subscribed	public	channels.

Returns
list	of	subscribed	channels

§	getPrivateChannels()
const	JVector<	Channel	*	>	&	getPrivateChannels (void) const

Returns	list	of	private	chats	that	client	currently	has.

Returns
list	of	private	chats

§	getPublicChannel()
const	Channel	*
getPublicChannel (const	Common::JString	&	 channelName) const

Search	subscribed	public	channels	by	channel	name.

Parameters
channelName channel	name	to	search

Returns
found	channel	or	NULL	otherwise

§	getPrivateChannel()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

const	Channel	*
getPrivateChannel (const	Common::JString	&	 userName) const

Search	private	chat	by	user	name.

Parameters
userName user	name	to	search

Returns
found	chat	or	NULL	otherwise

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Listener

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Listener	Class
Reference abstract

Inheritance	diagram	for	Listener:

[legend]

Collaboration	diagram	for	Listener:

[legend]

Public	Member	Functions
virtual	void	 debugReturn	(int	debugLevel,	const	Common::JString

&string)=0
	
virtual	void	 onStateChange	(int	state)=0
	
virtual	void	 connectionErrorReturn	(int	errorCode)=0
	
virtual	void	 clientErrorReturn	(int	errorCode)=0
	
virtual	void	 warningReturn	(int	warningCode)=0
	
virtual	void	 serverErrorReturn	(int	errorCode)=0
	
virtual	void	 connectReturn	(int	errorCode,	const	Common::JString

&errorString)=0
	
virtual	void	 disconnectReturn	(void)=0
	
virtual	void	 subscribeReturn	(const	Common::JVector<

Common::JString	>	&channels,	const
Common::JVector<	bool	>	&results)=0

	
virtual	void	 unsubscribeReturn	(const	Common::JVector<

Common::JString	>	&channels)=0
	
virtual	void	 onStatusUpdate	(const	Common::JString	&user,	int

status,	bool	gotMessage,	const	Common::Object
&message)=0

	
virtual	void	 onGetMessages	(const	Common::JString

&channelName,	const	Common::JVector<
Common::JString	>	&senders,	const	Common::JVector<
Common::Object	>	&messages)=0

	
virtual	void	 onPrivateMessage	(const	Common::JString	&sender,

const	Common::Object	&message,	const
Common::JString	&channelName)=0

	

Detailed	Description

Callback	interface	for	Chat	client	side.	Contains	callback	methods	to
notify	your	app	about	updates.	Must	be	provided	to	new	Chat::Client	in
constructor

Member	Function	Documentation

§	debugReturn()
virtual	void
debugReturn (int	 debugLevel,

const	Common::JString	&	 string	
) pure	virtual

This	is	the	callback	function	for	debug-messages.

Parameters
debugLevel one	of	the	values	in	DebugLevel
string the	formatted	debug	string

See	also
BaseListener

Implements	BaseListener.

§	onStateChange()
virtual	void	onStateChange (int	 state) pure	virtual

Notifies	app	that	client	state	changed.

Parameters
state new	client	state

See	also
ClientState::ClientState

§	connectReturn()
virtual	void
connectReturn (int	 errorCode,

const	Common::JString	&	 errorString	
) pure	virtual

Client	is	connected	now.

§	disconnectReturn()
virtual	void	disconnectReturn (void) pure	virtual

Disconnection	happened.

§	subscribeReturn()
virtual	void
subscribeReturn (const	Common::JVector<	Common::JString	>	&	 channels

const	Common::JVector<	bool	>	&	 results
)

The	result	of	the	subscribe	operation.	Returns	per	channel	name	if	the	channel	is	now
subscribed.

Parameters
channels channel	names
results per	channel	result:	true	if	subscribed

§	unsubscribeReturn()
virtual	void
unsubscribeReturn (const	Common::JVector<	Common::JString	>	&	 channels

Result	of	unsubscribe	operation.	Returns	per	channel	name	if	the	channel	is	now	subscribed.

Parameters
channels channel	names	that	are	no	longer	subscribed

§	onStatusUpdate()
virtual	void
onStatusUpdate (const	Common::JString	&	 user,

int	 status,
bool	 gotMessage,
const	Common::Object	&	 message	
) pure	virtual

The	new	status	of	another	user	(you	get	updates	for	users	that	are	in
your	friends	list).

Parameters
user name	of	the	user
status new	status	of	that	user
gotMessage true	if	the	status	contains	a	message	you	should

cache	locally.	False:	This	status	update	does	not
include	a	message	(keep	any	you	have).

message message	that	user	set

§	onGetMessages()
virtual	void
onGetMessages (const	Common::JString	&	 channelName

const	Common::JVector<	Common::JString	>	&	 senders
const	Common::JVector<	Common::Object	>	&	 messages
)

Notifies	the	app	that	the	client	got	new	messages	from	the	server	Number	of	senders	is	equal
to	number	of	messages	in	'messages'.	Sender	with	number	'0'	corresponds	to	message	with
number	'0',	sender	with	number	'1'	corresponds	to	message	with	number	'1'	and	so	on

Parameters
channelName channel	from	where	messages	came
senders list	of	users	who	sent	messages
messages list	of	messages	it	self

§	onPrivateMessage()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

virtual	void
onPrivateMessage (const	Common::JString	&	 sender,

const	Common::Object	&	 message,
const	Common::JString	&	 channelName	
) pure	virtual

Notifies	the	app	about	a	private	message

Parameters
sender user	who	sent	this	message
message the	message	itself
channelName the	channel	name	for	private	messages	(messages

that	you	sent	yourself	get	added	to	a	channel	per
target	username)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Peer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Peer	Class	Reference

Inheritance	diagram	for	Peer:

[legend]

Collaboration	diagram	for	Peer:

[legend]

Public	Member	Functions
	 Peer	(Photon::PhotonListener
connectionProtocol=Photon::ConnectionProtocol::DEFAULT)

	
virtual	bool	 opAuthenticateOnNameServer

&appID,	const	Common::JString
Common::JString	®ion,	const	
&authenticationValues=AuthenticationValues

	
virtual	bool	 opAuthenticateOnFrontEnd	(const	

&secret)
	

virtual	bool	 opSubscribe	(const	Common::JVector
Common::JString	>	&channels,	int	messagesFromHistory)

	
virtual	bool	 opUnsubscribe	(const	Common::JVector

Common::JString	>	&channels)
	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	&message)

	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	pMessageArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)

	
template<typename	Ftype	>

bool	 opPublishMessage	(const	Common::JString
&channelName,	const	Ftype	pMessageArray,	const	short
*pArrSizes)

	
template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	&message,	bool	encrypt=false)

	

template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	pMessageArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
bool	encrypt=false)

	
template<typename	Ftype	>

bool	 opSendPrivateMessage	(const	
&userName,	const	Ftype	pMessageArray,	const	short
*pArrSizes,	bool	encrypt=false)

	
virtual	bool	 opSetOnlineStatus	(int	status)

	
template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	&message)
	
template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	pMessageArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize)

	
template<typename	Ftype	>

bool	 opSetOnlineStatus	(int	status,	const	Ftype	pMessageArray,
const	short	*pArrSizes)

	
virtual	bool	 opAddFriends	(const	Common::JVector

Common::JString	>	&userIDs)
	

virtual	bool	 opRemoveFriends	(const	Common::JVector
Common::JString	>	&userIDs)

	
	Public	Member	Functions	inherited	from	PhotonPeer

	 PhotonPeer	(PhotonListener	&listener,	nByte
connectionProtocol=ConnectionProtocol::DEFAULT)

	
virtual	 ~PhotonPeer	(void)

	

virtual	bool	 connect	(const	Common::JString
Common::JString	&appID=Common::JString

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	&customData)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
const	short	*pArrSizes)

	
virtual	void	 disconnect	(void)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 opCustom	(const	OperationRequest

bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
	

virtual	bool	 sendOutgoingCommands	(void)
	

virtual	bool	 sendAcksOnly	(void)
	

virtual	bool	 dispatchIncomingCommands
	

virtual	bool	 establishEncryption	(void)
	

virtual	void	 fetchServerTimestamp	(void)
	

virtual	void	 resetTrafficStats	(void)

	
virtual	void	 resetTrafficStatsMaximumCounters

	
virtual	Common::JString	 vitalStatsToString	(bool	all)	const

	
virtual	void	 pingServer	(const	Common::JString

int	pingAttempts)
	

virtual	void	 initUserDataEncryption	(const	
>	&secret)

	
virtual	void	 initUDPEncryption	(const	Common::JVector

&encryptSecret,	const	Common::JVector
&HMACSecret)

	
PhotonListener	*	 getListener	(void)

	
int	 getServerTimeOffset	(void)	const

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation	(void)	const

	
int	 getPeerState	(void)	const

	
int	 getSentCountAllowance	(void)	const

	
void	 setSentCountAllowance	(int	sentCountAllowance)

	
int	 getTimePingInterval	(void)	const

	

void	 setTimePingInterval	(int	timePingInterval)
	

int	 getRoundTripTime	(void)	const
	

int	 getRoundTripTimeVariance	(void)	const
	

int	 getTimestampOfLastSocketReceive
	

int	 getDebugOutputLevel	(void)	const
	

bool	 setDebugOutputLevel	(int	debugLevel)
	
const	Common::LogFormatOptions	&	 getLogFormatOptions	(void)	const
	

void	 setLogFormatOptions	(const
Common::LogFormatOptions

	
int	 getIncomingReliableCommandsCount

	
short	 getPeerID	(void)	const

	
int	 getDisconnectTimeout	(void)	const

	
void	 setDisconnectTimeout	(int	disconnectTimeout)

	
int	 getQueuedIncomingCommands

	
int	 getQueuedOutgoingCommands

	
Common::JString	 getServerAddress	(void)	const

	
bool	 getIsPayloadEncryptionAvailable

	
bool	 getIsEncryptionAvailable	(void)	const

	

int	 getResentReliableCommands
	

int	 getLimitOfUnreliableCommands
	

void	 setLimitOfUnreliableCommands
	

bool	 getCRCEnabled	(void)	const
	

void	 setCRCEnabled	(bool	crcEnabled)
	

int	 getPacketLossByCRC	(void)	const
	

bool	 getTrafficStatsEnabled	(void)	const
	

void	 setTrafficStatsEnabled	(bool	trafficStasEnabled)
	

int	 getTrafficStatsElapsedMs	(void)	const
	

const	TrafficStats	&	 getTrafficStatsIncoming	(void)	const
	

const	TrafficStats	&	 getTrafficStatsOutgoing	(void)	const
	

const	TrafficStatsGameLevel	&	 getTrafficStatsGameLevel	(void)	const
	

nByte	 getQuickResendAttempts	(void)	const
	

void	 setQuickResendAttempts	(nByte	quickResendAttempts)
	

nByte	 getConnectionProtocol	(void)	const
	

void	 setConnectionProtocol	(nByte	connectionProtocol)
	

nByte	 getChannelCountUserChannels
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	PhotonPeer

static	short	 getPeerCount	(void)
	
static	unsigned	int	 getMaxAppIDLength	(void)
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common MemoryManagement AllocatorInterface

Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

AllocatorInterface
Class	Reference abstract

Inheritance	diagram	for	AllocatorInterface:

[legend]

Public	Member	Functions
virtual	 ~AllocatorInterface	(void)

	
virtual	void	 setMaxAllocSize	(size_t	maxAllocSize)=0

	
virtual	void	*	 alloc	(size_t	size)=0
	
virtual	void	 dealloc	(void	*p)=0

	
virtual	void	*	 resize	(void	*p,	size_t	size)=0
	

Static	Public	Member	Functions
static	AllocatorInterface	*	 get	(void)
	

Detailed	Description

Custom	Allocators	to	be	used	with	Photons	Memory	Management	need
to	inherit	and	implement	this	interface.	The	allocator	that	is	used	by
Photon	can	be	set	through	setAllocator().

Constructor	&	Destructor	Documentation

§	~AllocatorInterface()
virtual	~AllocatorInterface (void) virtual

Destructor.

Member	Function	Documentation

§	setMaxAllocSize()
virtual	void	setMaxAllocSize (size_t	 maxAllocSize) pure	virtual

This	function	gets	called	by
MemoryManagement::setMaxAllocSize()	and	an	implementation	is
required	to	behave	as	explained	in	the	documentation	of	that	function.

§	alloc()
virtual	void*	alloc (size_t	 size) pure	virtual

This	function	gets	called	by	EG_MALLOC	and	an	implementation	is
required	to	behave	as	explained	in	the	documentation	of	that	macro.

§	dealloc()
virtual	void	dealloc (void	*	 p) pure	virtual

This	function	gets	called	by	EG_FREE	and	an	implementation	is
required	to	behave	as	explained	in	the	documentation	of	that	macro.

§	resize()
virtual	void*	resize (void	*	 p,

size_t	 size	
) pure	virtual

This	function	gets	called	by	EG_REALLOC	and	an	implementation	is
required	to	behave	as	explained	in	the	documentation	of	that	macro.

§	get()
static	AllocatorInterface*	get (void)

This	function	gets	called	by	Photon	exactly	once	in	the	lifetime	of	the	application,
right	before	the	very	first	allocation	by	Photon	is	made.	The	Allocator	that	is
returned	by	this	function	will	be	used	for	all	allocations	by	Photon	until	your	code
sets	a	different	allocator	through	setAllocator().

Calling	setAllocator()	right	in	the	first	line	of	main()	is	already	too	late	to
guarantee	that	every	single	allocation	by	Photon	will	use	your	custom	allocator,
because	global	and	file-level	static	variables	and	constants	(referred	to	here
simply	as	'globals')	will	be	created	before	the	program	execution	enters	main().	If
those	globals	are	not	POD-types,	then	they	might	allocate	memory	upon	creation
and	in	case	of	classes	that	are	provided	by	one	of	the	Photon	libs,	such
allocations	will	happen	through	Photons	memory	management.	Hence	such
allocations	need	to	already	use	an	allocator	before	the	program	enters	main().

The	way	to	set	an	allocator	that	is	used	for	allocations	by	such	globals,	is	to
replace	the	default	implementation	of	this	function	by	your	own	implementation.
This	works	in	the	same	way	like	replacing	the	platforms	default	implementations
of	the	global	new	and	delete	operators	with	your	own	implementations:	Photon
provides	a	default	implementation	of	this	function	that	gets	used	when	you	don't
provide	your	own	implementation,	but	when	you	do	provide	your	own
implementation,	then	the	linker	silently	drops	Photons	weak-linked	default
implementation	and	replaces	Photons	call	to	it	by	a	call	to	your	implementation.

Usage	example:

class	Allocator	:	public	

ExitGames::Common::MemoryManagement::AllocatorInterface

{

public:

				Allocator(void)

								:	mCountAllocs(0)

								,	mCountFrees(0)

				{

				}

	virtual	~Allocator(void)

				{

				}

	virtual	void	setMaxAllocSize(size_t	maxAllocSize)

				{

				}

	virtual	void*	alloc(size_t	size)

				{

	return	malloc(size);

				}

	virtual	void	dealloc(void*	p)

				{

								free(p);

				}

	virtual	void*	resize(void*	p,	size_t	size)

				{

	return	realloc(p,	size);

				}

private:

	static	void*	operator	new(size_t);

	static	void*	operator	new[](size_t);

};

namespace	ExitGames

{

	namespace	Common

				{

	namespace	MemoryManagement

								{

												AllocatorInterface*	

AllocatorInterface::get(void)

												{

	//	attention:

	//	The	returned	pointer	must	already	point	to	a	valid

instance	at	the	point	at	which	it	is	returned,	which

due	to	the	static	initialization	order	fiasco	is	not

necessarily	the	case	for	a	global	variable.

	//	A	dynamically	allocated	variable	however	will	leak,	as

there	is	no	way	to	deallocate	it,	because	it	needs	to

stay	valid	until	after	the	last	global	or	file	level

static	object	that	uses	it	has	been	destructed	and	due

to	the	static	initialization	order	fiasco	there	is	no

way	to	ensure	that	that	deallocation	happens	after	all

those	destructions.

	//	The	solution	is	to	return	the	address	of	a	function-

level	static	variable.	

	static	Allocator	allocator;

	return	&allocator;

												}

								}

				}

}

As	you	can	can	see,	that	example	implementation	of	a	primitive	custom	allocator
makes	operator	new	private.	The	reason	for	this	is	that	once	it	had	been	set
through	setAllocator()	an	allocator	MUST	stay	valid	until	you	can	guarantee	that
all	memory	that	was	given	out	by	it,	has	been	returned	to	it.	Deleting	an	once
used	allocator	prematurely,	even	after	a	different	allocator	has	been	set	as	the
current	allocator,	is	undefined	behavior	and	will	most	likely	lead	to	an	access
violation	crash.	A	static	local	variable	of	AllocatorInterface::get()	is	guaranteed
by	the	C++	standard	to	be	constructed	before	that	function	returns	and	hence	it	is
also	guaranteed	by	the	standard	to	get	destructed	after	everything	that	uses	that
allocator.

If	however	you	want	to	manage	the	lifetime	of	an	allocator	instance	dynamically
through	new	and	delete,	then	you	need	to	keep	track	if	some	of	its	memory	might
still	be	in	use,	before	you	can	safely	delete	such	an	allocator.	A	simple	approach
to	do	this	is	reference	counting:

class	ReferenceCountedAllocator	:	public	

ExitGames::Common::MemoryManagement::AllocatorInterface

{

public:

				ReferenceCountedAllocator(void)

								:	mRefCount(0)

				{

								retain();

				}

				ReferenceCountedAllocator*	

ReferenceCountedAllocator::retain(void)

				{

								std::lock_guard<std::mutex>	lock(mMutex);

								++mRefCount;

	return	this;

				}

	void	ReferenceCountedAllocator::release(void)

				{

								std::unique_lock<std::mutex>	lock(mMutex);

	if(!--mRefCount)

								{

												lock.unlock();

	delete	this;

								}

				}

	virtual	void	setMaxAllocSize(size_t	maxAllocSize)

				{

				}

	virtual	void*	alloc(size_t	size)

				{

	if(!size)

	return	NULL;

								retain();

	return	malloc(size);

				}

	virtual	void	dealloc(void*	p)

				{

	if(!p)

	return;

								free(p);

								release();

				}

	virtual	void*	resize(void*	p,	size_t	size)

				{

	return	realloc(p,	size);

				}

private:

	virtual	~ReferenceCountedAllocator(void)

				{

				}

	long	long	mRefCount;

				std::mutex	mMutex;

};

void	foo(void)

{

				ReferenceCountedAllocator*	pAllocator	=	new	

ReferenceCountedAllocator;

	ExitGames::Common::MemoryManagement::setAllocator(*pAlloca

tor);

	ExitGames::Common::JString	string	=	L"samplestring";

	ExitGames::Common::MemoryManagement::setAllocatorToDefault

();

				pAllocator->release();

	//	some	more	code

}	//	only	at	this	point,	when	the	local	JString	variable

'string'	gets	out	of	scope	and	hence	destructed,	it

hands	its	memory	back	to	the	allocator	and	pAllocators

reference	count	reaches	0	so	that	it	gets	deleted

Note	that	ReferenceCountedAllocator	makes	its	destructor	private	to	ensure	that
it	only	ever	gets	called	by	release().	A	side-effect	of	this	is	that	one	can't	return	it
in	AllocatorInterface::get()	(at	least	without	leaking	it).	So	there	are	usage
scenarios	for	the	approaches	of	both	example	custom	allocators:	use	the
approach	of	class	Allocator	for	a	custom	allocator	that	should	be	returned	by
AllocatorInterface::get(),	and	use	the	approach	of	ReferenceCountedAllocator
for	a	custom	allocator	that	should	be	able	to	have	a	limited	lifetime.

Furthermore	note	that	your	custom	allocator	must	be	thread-safe	(which	would
not	be	the	case	for	ReferenceCountedAllocator,	if	it	would	not	protect	mRefCount
with	a	lock),	as	Photon	might	access	it	from	multiple	threads	at	once.

Finally	if	for	some	reason	you	don't	want	any	allocations	on	the	heap	to	happen
while	global	and	file	level	static	variables	are	getting	constructed,	remember	that	it
is	completely	up	to	you	where	the	memory	that	your	provide	to	Photon	is	coming
from	and	how	it's	managed	and	that	you	can	provide	different	allocators	at
different	times.	Hence	the	allocator	that	you	return	by	AllocatorInterface::get()
could	look	like	this:	class	Allocator	:	public
ExitGames::Common::MemoryManagement::AllocatorInterface	{	public:
Allocator(void)	:	mCountBytes(0)	{	}

virtual	~Allocator(void)	{	}

virtual	void	setMaxAllocSize(size_t	maxAllocSize)	{	}

virtual	void*	alloc(size_t	size)	{	static	const	size_t	MEM_SIZE	=	16*1024;	static
byte	memory[MEM_SIZE];	mCountBytes	+=	size;	if(mCountBytes	>	MEM_SIZE)
assert(false);	return	memory+mCountBytes-size;	}

virtual	void	dealloc(void*	p)	{	}

virtual	void*	resize(void*	p,	size_t	size)	{	assert(false);	return	NULL;	}	private:
static	void*	operator	new(size_t);	static	void*	operator	new[](size_t);

unsigned	long	long	mCountBytes;	};	This	variant	simply	allocates	the	memory	on
a	static	byte-array	and	does	not	reuse	any	memory	that	is	returned	to	it	(which	is
perfectly	fine	for	memory	that	gets	allocated	in	the	constructor	and	deallocated	in
the	destructor	of	a	variable	which	has	the	same	lifetime	as	the	executable).

Note	that	you	need	to	make	sure	that	the	array	on	which	the	memory	is	allocated
is	big	enough	to	cover	all	requests	that	occur	until	you	set	a	different	allocator.	As

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

the	required	amount	might	change	when	changes	in	your	code	happen	or	when
you	update	to	a	new	Photon	version,	the	assert()	in	alloc	is	important	to	avoid
hard	to	track	down	crashes	in	unrelated	code.

Be	aware	that	this	primitive	variant	that	does	not	reuse	any	memory	only	makes
sense	when	you	set	a	different	allocator	through	setAllocator()	as	early	as
possible	because	the	longer	you	wait	the	bigger	the	static	array	will	need	to	be	to
serve	all	requests	without	running	out	of	memory.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ANSIString

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

ANSIString	Class
Reference

Inheritance	diagram	for	ANSIString:

[legend]

Collaboration	diagram	for	ANSIString:

[legend]

Public	Member	Functions
	 ANSIString	(void)

	
	 ANSIString	(const	ANSIString	&str)

	
	 ANSIString	(const	JString	&str)

	
	 ANSIString	(const	char	*str)

	
	 ANSIString	(const	EG_CHAR	*str)

	
	 ~ANSIString	(void)

	
ANSIString	&	 operator=	(const	ANSIString	&Rhs)

	
ANSIString	&	 operator=	(const	JString	&Rhs)

	
ANSIString	&	 operator=	(const	char	*Rhs)

	
ANSIString	&	 operator=	(const	EG_CHAR	*Rhs)

	
	 operator	const	char	*	(void)	const

	
	 operator	JString	(void)	const

	
JString	 JStringRepresentation	(void)	const

	
unsigned	int	 size	(void)	const

	
	Public	Member	Functions	inherited	from	BaseCharString

	 BaseCharString	()
	

virtual	 ~BaseCharString	(void)
	

const	char	*	 cstr	(void)	const

	
unsigned	int	 length	(void)	const

	
JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	
virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	ANSIString	class	is	a	container	class	for	char*	strings,	encoded	with
the	current	locale.

This	is	the	current	locale	implementation	of	BaseCharString.	Please
look	at	the	doc	of	the	abstract	base	class	for	more	information.

Constructor	&	Destructor	Documentation

§	ANSIString()	[1/5]
ANSIString (void)

Constructor:	Creates	an	empty	ANSIString.

§	ANSIString()	[2/5]
ANSIString (const	ANSIString	&	 str)

Copy-Constructor:	Creates	a	new	ANSIString	from	a	deep	copy	of	the
argument	string.

Parameters
str The	ANSIString	string	to	copy.

§	ANSIString()	[3/5]
ANSIString (const	JString	&	 wstr)

Copy-Constructor:	Creates	a	new	ANSIString	from	a	deep	copy	of	the
argument	string.

Parameters
wstr The	JString	string	to	copy.

§	ANSIString()	[4/5]
ANSIString (const	char	*	 str)

Copy-Constructor:	Creates	a	new	ANSIString	from	a	deep	copy	of	the
argument	string.

Parameters
str The	ANSI	string	to	copy.

§	ANSIString()	[5/5]
ANSIString (const	EG_CHAR	*	 wstr)

Copy-Constructor:	Creates	a	new	ANSIString	from	a	deep	copy	of	the
argument	string.

Parameters
wstr The	Unicode	String	string	to	copy.

§	~ANSIString()
~ANSIString (void)

Destructor.

Member	Function	Documentation

§	operator=()	[1/4]
ANSIString	&	operator= (const	ANSIString	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/4]
ANSIString	&	operator= (const	JString	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[3/4]
ANSIString	&	operator= (const	char	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[4/4]
ANSIString	&	operator= (const	EG_CHAR	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator	const	char	*()
operator	const	char	* (void) const virtual

operator	const	char*.

Copies	a	pointer	to	the	content	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Implements	BaseCharString.

§	operator	JString()
operator	JString (void) const virtual

operator	JString.

Copies	a	JString	representation	of	its	right	operand	into	its	left
operand.

This	overwrites	old	data	in	the	left	operand.

Implements	BaseCharString.

§	JStringRepresentation()
JString	JStringRepresentation (void) const virtual

Returns
a	JString	representation	of	the	string.

Implements	BaseCharString.

§	size()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

unsigned	int	size (void) const virtual

The	default	implementation	of	this	function	will	just	return	length(),	but
for	multibyte	strings	like	UTF8String	the	return	values	of	length()	and
size()	can	differ.

Returns
the	size	of	the	string	in	bytes

Implements	BaseCharString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Base

Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Base	Class	Reference

Inheritance	diagram	for	Base:

[legend]

Collaboration	diagram	for	Base:

[legend]

Public	Member	Functions
virtual	 ~Base	(void)

	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	
virtual	JString	&	 toString	(JString	&retStr,	bool	withTypes=false)

const	=0
	

JString	 toString	(bool	withTypes=false)	const
	

Static	Public	Member	Functions
static	void	 setListener	(const	BaseListener

*baseListener)
	

static	int	 getDebugOutputLevel	(void)
	

static	bool	 setDebugOutputLevel	(int
debugLevel)

	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	is	the	base-class	of	all	Utility-classes	except	of	JString.

This	class	provides	a	common	callback	interface	for	transmitting	debug
messages	from	all	utility	classes	to	your	application.	Please	refer	to
setListener()	for	more	information.

See	also
BaseListener	,	setListener()

Constructor	&	Destructor	Documentation

§	~Base()
~Base (void) virtual

Destructor.

Member	Function	Documentation

§	setListener()
void	setListener (const	BaseListener	*	 baseListener) static

Registers	a	listener	for	receiving	debug	information	from	the
Exitgames	Utility	classes.

Please	refer	to	BaseListener	for	more	information	and	a	code
example.

Parameters
baseListener The	listener,	in	which	you	want	to	receive	the	the

events.	Has	to	be	a	pointer	to	a	class	derived	from
BaseListener.

See	also
BaseListener

§	getDebugOutputLevel()
int	getDebugOutputLevel (void) static

Returns	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Returns
one	of	the	values	in	DebugLevel

See	also
setDebugOutputLevel()

§	setDebugOutputLevel()
bool	setDebugOutputLevel (int	 debugLevel) static

Sets	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Parameters
debugLevel one	of	the	values	in	DebugLevel

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	getLogFormatOptions()
const	LogFormatOptions	&	getLogFormatOptions (void) static

Returns
the	LogFormatOptions	that	are	used	by	this	instance.

See	also
setFormatOptions()

§	setLogFormatOptions()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

void
setLogFormatOptions (const	LogFormatOptions	&	 formatOptions) static

Sets	the	log	format	options	to	the	supplied	value.

Parameters
formatOptions the	new	value	to	which	the	log	format	options	will	be

set

See	also
getFormatOptions()

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common BaseCharString

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

BaseCharString	Class
Reference abstract

Inheritance	diagram	for	BaseCharString:

[legend]

Collaboration	diagram	for	BaseCharString:

[legend]

Public	Member	Functions
	 BaseCharString	()

	
virtual	 ~BaseCharString	(void)

	
virtual	 operator	const	char	*	(void)	const	=0

	
virtual	 operator	JString	(void)	const	=0

	
const	char	*	 cstr	(void)	const

	
virtual	JString	 JStringRepresentation	(void)	const	=0

	
unsigned	int	 length	(void)	const

	
virtual	unsigned	int	 size	(void)	const	=0
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)
const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	BaseCharString	class	is	the	abstract	base	class	for	container
classes,	holding	char*	strings.

You	are	encouraged	to	add	additional	subclasses	for	encodings,	for
which	there	are	no	subclasses	provided	out	of	the	box.
Subclasses	of	this	class	act	as	convenience	classes	for	conversions
between	instances	of	class	JString	and	char*'s.
The	encoding	of	the	char*'s	is	defined	by	the	subclass.	There	should	be
one	subclass	for	every	supported	encoding.
Subclasses	of	this	class	should	only	be	used	to	hold	or	pass	strings	and
for	conversions	between	string	encodings.	Please	use	class	JString	for
common	string	operations	and	modifications.

Constructor	&	Destructor	Documentation

§	BaseCharString()
BaseCharString ()

Constructor.

§	~BaseCharString()
~BaseCharString (void) virtual

Destructor.

Member	Function	Documentation

§	operator	const	char	*()
operator	const	char	* (void) const pure	virtual

operator	const	char*.

Copies	a	pointer	to	the	content	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Implemented	in	ANSIString,	and	UTF8String.

§	operator	JString()
operator	JString (void) const pure	virtual

operator	JString.

Copies	a	JString	representation	of	its	right	operand	into	its	left
operand.

This	overwrites	old	data	in	the	left	operand.

Implemented	in	ANSIString,	and	UTF8String.

§	cstr()
const	char	*	cstr (void) const

Remarks
The	data,	to	which	the	pointer	points	to,	is	only	valid	as	long	as
the	instance	is	valid.

Returns
a	pointer	to	a	char	array	representation	of	the	string.

§	JStringRepresentation()
JStringRepresentation (void) const pure	virtual

Returns
a	JString	representation	of	the	string.

Implemented	in	ANSIString,	and	UTF8String.

§	length()
unsigned	int	length (void) const

Returns
the	length	of	the	string	in	characters

§	size()
unsigned	int	size (void) const pure	virtual

The	default	implementation	of	this	function	will	just	return	length(),	but
for	multibyte	strings	like	UTF8String	the	return	values	of	length()	and
size()	can	differ.

Returns
the	size	of	the	string	in	bytes

Implemented	in	ANSIString,	and	UTF8String.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common BaseListener

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

BaseListener	Class
Reference abstract

Inheritance	diagram	for	BaseListener:

[legend]

Public	Member	Functions
virtual	void	 debugReturn	(int	debugLevel,	const	JString	&string)=0
	

Detailed	Description

This	class	defines	the	listener	interface	for	the	debug	callback
mechanism.

See	also
Base,	Base::setListener()

Member	Function	Documentation

§	debugReturn()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

debugReturn (int	 debugLevel,
const	JString	&	 string	
) pure	virtual

This	is	the	callback	function	for	debug-messages.

Parameters
debugLevel one	of	the	values	in	DebugLevel
string the	formatted	debug	string

See	also
BaseListener

Implemented	in	Listener,	and	Listener.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomType

Static	Public	Member	Functions	|
Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

CustomType<
typeCode	>	Class	Template	Reference

Inheritance	diagram	for	CustomType<	typeCode	>:

[legend]

Collaboration	diagram	for	CustomType<	typeCode	>:

[legend]

Static	Public	Member	Functions
static	void	 constructClass	(const

CustomTypeFactory<	typeCode	>
&factory)

	
static	void	 deconstructClass	(void)

	
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Static	Public	Attributes
static	const	nByte	 TypeCode
	

Additional	Inherited	Members
	Public	Member	Functions	inherited	from	CustomTypeBase

virtual	void	 cleanup	(void)=0
	

virtual	bool	 compare	(const	CustomTypeBase	&other)	const	=0
	

virtual	void	 duplicate	(CustomTypeBase	*pRetVal)	const	=0
	

virtual	void	 deserialize	(const	nByte	*pData,	short	length)=0
	

virtual	short	 serialize	(nByte	*pRetVal)	const	=0
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	
virtual	JString	&	 toString	(JString	&retStr,	bool	withTypes=false)

const	=0
	

JString	 toString	(bool	withTypes=false)	const
	

Detailed	Description

template<nByte	typeCode>
class	ExitGames::Common::CustomType<	typeCode	>

The	CustomType	class	provides	you	with	an	interface,	to	add	support	for
additional	data-types.

We	only	support	a	certain	subset	of	Datatypes	out	of	the	box.	If	you
need	support	for	further	datatypes,	then	you	can	easily	add	this	support
yourself	by	subclassing	this	class	template	and	providing	suitable
implementations	for	the	pure	virtual	functions,	which	are	inherited	from
CustomTypeBase,	in	your	subclass.	You	should	only	subclass	every
typecode	once.	typeCode	0	should	be	considered	as	reserved.	So	your
first	custom	type	would	inherit	from	CustomType<1>,	the	second	one
from	CustomType<2>	and	so	on.	Subclassing	the	same	typecode
multiple	times	will	lead	into	undefined	behavior	as	the	typecode	will
determine	the	class	as	instance	of	which	serialized	data	should	be
interpreted.

Remarks
When	you	are	subclassing	a	specialization	of	CustomType,	then
you	will	also	have	to	subclass	the	according	specialization	of
CustomTypeFactory	(the	one	for	the	same	typecode).

See	also
CustomTypeBase,	CustomTypeFactory

Member	Function	Documentation

§	constructClass()
void
constructClass (const	CustomTypeFactory<	typeCode	>	&	 factory) static

This	static	function	initializes	the	class	and	has	to	be	called	once	before
any	instance	of	a	concrete	subclass	gets	created.	It	registers	the	typecode
and	sets	the	factory-class	to	a	copy	of	the	passed	parameter.

See	also
deconstructClass()

Parameters
factory an	instance	of	the	factory	class,	which	will	be	used	to	create

instances	of	this	class

§	deconstructClass()
void	deconstructClass (void) static

This	static	function	cleans	up	the	class	and	has	to	be	called	once	after
the	last	instance	of	a	concrete	subclass	has	been	deallocated.	It	will
then	deallocate	the	shared	instance	of	the	according
CustomTypeFactory	subclass.

See	also
constructClass()

Member	Data	Documentation

§	TypeCode

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

TypeCode static

Check	this	public	constant	to	find	out	the	typecode	of	a	custom	type	at
runtime.	This	should	normally	not	be	of	any	interest.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomTypeBase

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

CustomTypeBase
Class	Reference abstract

Inheritance	diagram	for	CustomTypeBase:

[legend]

Collaboration	diagram	for	CustomTypeBase:

[legend]

Public	Member	Functions
virtual	void	 cleanup	(void)=0

	
virtual	bool	 compare	(const	CustomTypeBase	&other)	const	=0

	
virtual	void	 duplicate	(CustomTypeBase	*pRetVal)	const	=0

	
virtual	void	 deserialize	(const	nByte	*pData,	short	length)=0

	
virtual	short	 serialize	(nByte	*pRetVal)	const	=0

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	
virtual	JString	&	 toString	(JString	&retStr,	bool	withTypes=false)

const	=0
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	is	the	abstract	base	class	for	the	CustomType	template	and
declares	the	interface,	which	you	will	have	to	implement,	when
subclassing	CustomType.

For	example	implementations	of	these	functions	please	refer	to	class
SampleCustomType	in	demo_typeSupport.

See	also
CustomType,	CustomTypeFactory

Member	Function	Documentation

§	cleanup()
cleanup (void) pure	virtual

This	function	gets	called,	when	the	instance	gets	destroyed.	This	is	the
right	place	to	do	all	the	stuff,	that	you	would	normally	do	in	the
destructor.	In	the	destructor	you	should	instead	just	call	this	function,
as	instances	of	this	class	will	be	created	and	destroyed	not	only	by
constructors	and	destructors,	but	also	by	factory	functions	in	situations,
in	which	the	class	and	therefor	the	constructor	and	destructor	of	the
object	instance	to	create/destroy	are	unknown.

§	compare()
compare (const	CustomTypeBase	&	 other) const pure	virtual

This	function	should	be	implemented	to	behave	like	an	operator==
would	behave	for	the	class,	for	which	this	function	gets	implemented.

For	example	for	a	wrapperclass	around	an	integer	it	could	just	be
implemented	like	this:

bool	Foo::compare(const	CustomTypeBase&	other)	

const

{

	return	typeid(*this)	==	typeid(other)	&&	mInt	==	

((Foo&)other).mInt;

}

Parameters
other the	object	to	compare	the	instance	with

Returns
true,	if	both	objects	are	equal,	false	otherwise

§	duplicate()
duplicate (CustomTypeBase	*	 pRetVal) const pure	virtual

This	function	shall	save	a	copy	of	the	instance,	on	which	it	has	been
called	on,	in	its	return	value.

Parameters
pRetVal the	object,	to	store	a	copy	of	the	instance	in	-	has	to	be

of	the	instance	type	or	a	subclass	of	it,	otherwise	the
behavior	will	be	undefined

§	deserialize()
deserialize (const	nByte	*	 pData,

short	 length	
) pure	virtual

This	function	initializes	the	instance,	on	which	it	has	been	called	on,	by
deserializing	the	passed	nByte-array,	which	has	to	be	created	by	a	call
to	serialize()	on	an	instance	of	the	same	class	before.

Previous	data,	stored	in	the	instance,	gets	overwritten.

Parameters
pData a	nByte-array,	holding	the	deserialized	payload	of	an

object,	which	class	has	to	be	the	same	like	the	one	of	the
instance,	on	which	the	function	gets	called

length the	length	of	pData	in	elements

§	serialize()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

serialize (nByte	*	 pRetVal) const pure	virtual

This	function	serializes	the	payload	of	the	instance	on	which	it	has
been	called,	into	the	passed	nByte-array	and	returns	the	length	of	that
array.	It	is	legal	to	pass	a	NULL-pointer	and	in	that	case	this	function
still	calculates	the	length	of	the	data,	which	would	have	been	stored	in
a	non-NULL-pointer,	but	does	not	store	any	data.	The	behavior	for
providing	a	too	small	array	is	undefined.

Parameters
pRetVal the	nByte-array	to	store	the	serialized	payload	of	the

instance	in.	Has	to	be	of	at	least	the	needed	length

Returns
the	length	of	the	data,	that	has	actually	been	stored	in	the	passed
array

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomTypeFactory

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

CustomTypeFactory<
typeCode	>	Class	Template	Reference abstract

Inheritance	diagram	for	CustomTypeFactory<	typeCode	>:

[legend]

Collaboration	diagram	for	CustomTypeFactory<	typeCode	>:

[legend]

Public	Member	Functions
virtual	 ~CustomTypeFactory

(void)
	
virtual	CustomTypeFactory<	typeCode	>	*	 copyFactory	(void)	const

=0
	

virtual	void	 destroyFactory	(void)=0
	

virtual	CustomType<	typeCode	>	*	 create	(short	amount)
const	=0

	
virtual	CustomType<	typeCode	>	*	 copy	(const	CustomType<

typeCode	>	*pToCopy,
short	amount)	const	=0

	
virtual	void	 destroy	(const

CustomType<	typeCode	>
*pToDestroy)	const	=0

	
virtual	unsigned	int	 sizeOf	(void)	const	=0

	
virtual	JString	&	 toString	(JString	&retStr,

bool	withTypes=false)
const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool
withTypes=false)	const

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

template<nByte	typeCode>
class	ExitGames::Common::CustomTypeFactory<
typeCode	>

This	is	the	factory	interface	class	template	for	the	CustomType	interface
class	template	and	offers	an	interface	to	create,	copy	and	delete
instances	of	CustomType	subclasses,	without	the	caller	needing	to	know
the	names	of	the	subclasses.

For	every	specialization	of	the	CustomType	template,	that	you	subclass,
you	have	to	subclass	the	according	specialization	(meaning	the	one	for
the	same	typecode)	of	this	class.	Please	refer	to	class
SampleCustomTypeFactory	in	demo_typeSupport	for	an	example
implementation.

Remarks
You	normally	won't	have	to	call	functions	from	this	class	yourself,	but
the	library	does	this	for	you.

See	also
CustomType,	CustomTypeBase

Constructor	&	Destructor	Documentation

§	~CustomTypeFactory()
~CustomTypeFactory (void) virtual

Destructor.

Member	Function	Documentation

§	copyFactory()
copyFactory (void) const pure	virtual

This	function	shall	return	a	pointer	to	a	freshly	allocated	copy	of	the
instance,	on	which	it	has	been	called.

Returns
a	pointer	to	a	copy	of	the	instance

§	destroyFactory()
destroyFactory (void) pure	virtual

This	function	shall	deallocate	the	instance,	on	which	it	has	been	called
on.

§	create()
create (short	 amount) const pure	virtual

This	function	shall	allocate	an	array	of	the	class,	for	which	the	template
parameter	specialization	has	been	registered.

Parameters
amount the	amount	of	elements	to	allocate

Returns
a	pointer	to	the	created	array	of	CustomTypes

§	copy()
copy (const	CustomType<	typeCode	>	*	 pToCopy,

short	 amount	
) const pure	virtual

This	function	shall	return	a	pointer	to	a	freshly	allocated	copy	of	the
passed	array.

Parameters
pToCopy a	pointer	to	the	original	array,	which	should	be	copied
amount the	amount	of	elements	of	the	array,	pointed	to	by

pToCopy

Returns
the	created	copy	of	the	array

§	destroy()
destroy (const	CustomType<	typeCode	>	*	 pToDestroy) const pure	virtual

This	function	shall	deallocate	the	array,	to	which	the	passed	pointer
points.

Parameters
pToDestroy a	pointer	to	an	array,	which	has	previously	been

allocated	with	create()	or	copy()

§	sizeOf()
sizeOf (void) const pure	virtual

Returns
the	size	of	a	single	�nstance	as	determined	by	calling	the
sizeof()-operator,	for	the	class,	which	is	fabricated	by	this
specialization	of	the	factory

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common DeSerializer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

DeSerializer	Class
Reference

Inheritance	diagram	for	DeSerializer:

[legend]

Collaboration	diagram	for	DeSerializer:

[legend]

Public	Member	Functions
	 DeSerializer	(const	nByte	*data,	int	size)

	
bool	 pop	(Object	&object)

	
JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	
virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

With	a	DeSerializer	instance	you	can	retrieve	the	original	data	that	has
been	serialized	into	a	byte-array	by	a	Serializer	instance,	by	the	Photon
Server	or	by	other	Photon	Client	platforms.

Constructor	&	Destructor	Documentation

§	DeSerializer()
DeSerializer (const	nByte	*	 data,

int	 size	
)

Constructor:	Creates	a	new	instance	that	contains	the	passed	data	as
payload.

Parameters
data a	byte	array,	that	has	been	retrieved	by	a	call	to

Serializer::getData(),	an	unchanged	copy	of	such	a	byte
array	or	a	byte	array	that	is	otherwise	guaranteed	to	100%
conform	to	the	format	that's	used	by	Serializer	(for	example
data,	that	has	been	serialized	by	a	compatible	version	of	the
Photon	Server	or	of	other	Photon	Client	platforms),
otherwise	the	behavior	of	this	class	is	undefined.

size the	size	in	bytes	of	data

Member	Function	Documentation

§	pop()
bool	pop (Object	&	 object)

This	function	will	deserialize	all	data	in	the	DeSerializer-instance,	that
has	been	serialized	via	a	single	call	to	Serializer::push().	If	the
DeSerializer	instance	has	been	created	by	passing	a	byte	array	that
has	been	created	by	a	Serializer	instance	on	which	multiple	push()
calls	have	taken	place,	then	an	equivalent	amount	of	calls	to	this
function	will	be	valid.

Remarks
Any	potentially	existing	old	payload	of	parameter	object	will	get
overridden	in	a	successful	call.	In	case	that	there	is	nothing	more
to	deserialize	parameter	object	will	remain	unchanged.	In	case
that	a	call	to	this	function	fails	due	to	corrupt	data	(read:	the	byte
array	passed	to	the	DeSerializer	instance	on	construction	has
neither	been	retrieved	by	a	call	to	Serializer::getData()	nor	been
an	unchanged	copy	of	such	data)	the	content	of	parameter	object
is	undefined.

Parameters
object an	Object-instance,	in	which	the	deserialized	data	will	be

stored

Returns
true	on	success,	false	when	all	data	has	already	been	deserialized
in	previous	calls	or	when	the	data	is	corrupt	and	can't	be
deserialized

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Dictionary

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Dictionary<	EKeyType,
EValueType	>	Class	Template	Reference

Inheritance	diagram	for	Dictionary<	EKeyType,	EValueType	>:

[legend]

Collaboration	diagram	for	Dictionary<	EKeyType,	EValueType	>:

[legend]

Public	Member	Functions
	 Dictionary	(void)

	
	 ~Dictionary	(void)

	
	 Dictionary	(const	Dictionary<	EKeyType,
EValueType	>	&toCopy)

	
Dictionary	&	 operator=	(const	Dictionary<	EKeyType,

EValueType	>	&toCopy)
	

bool	 operator==	(const	Dictionary<	EKeyType,
EValueType	>	&toCompare)	const

	
bool	 operator!=	(const	Dictionary<	EKeyType,

EValueType	>	&toCompare)	const
	

const	EValueType	&	 operator[]	(unsigned	int	index)	const
	

EValueType	&	 operator[]	(unsigned	int	index)
	

const	nByte	*	 getKeyTypes	(void)	const
	

const	nByte	*	 getValueTypes	(void)	const
	

const	unsigned	int	*	 getValueDimensions	(void)	const
	

void	 put	(const	Dictionary<	EKeyType,	EValueType
>	&src)

	
void	 put	(const	EKeyType	&key,	const	EValueType

&val)
	

void	 put	(const	EKeyType	&key)
	

void	 put	(const	EKeyType	&key,	const	EValueType
pVal,	typename
Common::Helpers::ArrayLengthType<
EValueType	>::type	size)

	
void	 put	(const	EKeyType	&key,	const	EValueType

pVal,	const	short	*sizes)
	

const	EValueType	*	 getValue	(const	EKeyType	&key)	const
	
JVector<	EKeyType	>	 getKeys	(void)	const
	

void	 remove	(const	EKeyType	&key)
	

bool	 contains	(const	EKeyType	&key)	const
	

JString	 typeToString	(void)	const
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)
const

	
	Public	Member	Functions	inherited	from	DictionaryBase

virtual	 ~DictionaryBase	(void)
	

	 DictionaryBase	(const	DictionaryBase
&toCopy)

	
DictionaryBase	&	 operator=	(const	DictionaryBase	&toCopy)

	
bool	 operator==	(const	DictionaryBase

&toCompare)	const
	

bool	 operator!=	(const	DictionaryBase
&toCompare)	const

	
template<typename	FKeyType	>

void	 remove	(const	FKeyType	&key)
	

template<typename	FKeyType	>

bool	 contains	(const	FKeyType	&key)	const
	

void	 removeAllElements	(void)
	

JString	 typeToString	(void)	const
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)
const

	
const	Hashtable	&	 getHashtable	(void)	const

	
unsigned	int	 getSize	(void)	const

	
template<typename	FKeyType	>

const	short	*	 getValueSizes	(const	FKeyType	&key)	const
	
template<typename	FKeyType	,	typename	FValueType	>

const	FValueType	*	 getValue	(const	FKeyType	&key,	const
FValueType	*)	const

	
template<typename	FKeyType	>

const	Object	*	 getValue	(const	FKeyType	&key,	const	Object
*)	const

	
template<typename	FKeyType	>

JVector<	FKeyType	>	 getKeys	(const	FKeyType	*)	const
	

JVector<	Object	>	 getKeys	(const	Object	*)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

template<typename	EKeyType,	typename	EValueType>
class	ExitGames::Common::Dictionary<	EKeyType,
EValueType	>

The	Dictionary	class	template	together	with	the	Hashtable	class	is	one
of	the	two	main	container	classes	for	objects	to	be	transmitted	over
Photon	when	using	the	C++	Client.

This	class	implements	the	well-known	concept	of	a	container	structure
storing	an	arbitrary	number	of	key/value-pairs.

In	contrast	to	a	Hashtable,	the	types	of	both	the	keys	and	also	the	values
in	a	Dictionary	have	to	be	the	same	for	all	entries.	This	takes	flexibility,
but	it	also	improves	type	safety	and	means,	that	the	type	infos	only	have
to	be	stored	twice	for	the	whole	Dictionary	(once	for	the	key	and	once
for	the	value),	while	in	a	Hashtable	they	have	to	be	stored	twice	per
entry.	Therefor	with	Dictionaries	transferring	the	same	amount	of	key-
value	pairs	will	cause	less	traffic	than	with	Hashtables.

Please	have	a	look	at	the	Table	of	Datatypes	for	a	list	of	types,	that	are
supported	as	keys	and	as	values.

Please	refer	to	the	documentation	for	put()	and	getValue()	to	see	how	to
store	and	access	data	in	a	Dictionary.

See	also
put(),	getValue(),	KeyObject,	ValueObject,	Hashtable,
DictionaryBase

Constructor	&	Destructor	Documentation

§	Dictionary()	[1/2]
Dictionary (void)

Constructor:	Creates	an	empty	instance.

§	~Dictionary()
~Dictionary (void)

Destructor.

§	Dictionary()	[2/2]
Dictionary (const	Dictionary<	EKeyType,	EValueType	>	&	 toCopy)

Copy-Constructor:	Creates	a	deep	copy	of	the	argument.

Parameters
toCopy The	object	to	copy.

Member	Function	Documentation

§	operator=()
Dictionary<
EKeyType,
EValueType
>	&
operator= (const	Dictionary<	EKeyType,	EValueType	>	&	 toCopy)

operator=.	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

§	operator==()
bool
operator== (const	Dictionary<	EKeyType,	EValueType	>	&	 toCompare)

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	instances	are	considered	equal	if	they	each	hold	the	same	number	of
entries	and,	for	a	given	key,	the	corresponding	values	equal	each	other.

Two	values	are	considered	equal	to	each	other,	if	instances	of	class	Object
that	are	holding	them	as	payloads,	equal	each	other.

See	also
Object::operator==()

§	operator!=()
bool
operator!= (const	Dictionary<	EKeyType,	EValueType	>	&	 toCompare)

operator!=.

Returns
false,	if	operator==()	would	return	true,	true	otherwise.

§	operator[]()	[1/2]
const	EValueType	&	operator[] (unsigned	int	 index) const

operator[].

Accesses	the	value	at	the	given	index	like	in	an	array.	This	does	not
check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes

§	operator[]()	[2/2]
EValueType	&	operator[] (unsigned	int	 index)

operator[].

Accesses	the	value	at	the	given	index	like	in	an	array.	This	does	not
check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes

§	getKeyTypes()
const	nByte	*	getKeyTypes (void) const virtual

Returns
an	array,	holding	the	type	code	for	the	key	type	of	the	Dictionary
and	type	codes	for	the	key	types	of	potential	nested	Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	in	the	array	returned	by	getValueTypes()	at	the	previous
index	in	the	following	way:	Only	when	getValueTypes()[i]	==
TypeCode::DICTIONARY,	then	getKeyTypes()[i+1]	will	be	valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	values
TypeCode::INTEGER	at	index	0	and	TypeCode::SHORT	at	index	1.

The	codes	returned	by	this	function	match	the	ones,	that	are	stored	in
member	variable	"typename"	of	class	template
Helpers::ConfirmAllowedKey's	specializations.	Only	the	types,	for
which	specializations	of	that	template	exist,	are	valid	Dictionary	keys.

Reimplemented	from	DictionaryBase.

§	getValueTypes()
const	nByte	*	getValueTypes (void) const virtual

Returns
an	array,	holding	the	type	code	for	the	value	type	of	the
Dictionary	and	type	codes	for	the	value	types	of	potential	nested
Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	at	the	previous	index	in	the	following	way:	Only	when
getValueTypes()[i]	==	TypeCode::DICTIONARY,	then
getValueTypes()[i+1]	will	be	valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	values
TypeCode::DICTIONARY	at	index	0	and	TypeCode::FLOAT	at	index
1.

The	codes	returned	by	this	function	match	the	ones,	that	are	stored	in
member	variable	"typename"	of	class	template
Helpers::ConfirmAllowed's	specializations.	Only	the	types,	for	which
specializations	of	that	template	exist,	are	valid	Dictionary	values.

Reimplemented	from	DictionaryBase.

§	getValueDimensions()
const	unsigned	int	*	getValueDimensions (void) const virtual

Returns
an	array,	holding	the	amount	of	array	dimensions	for	the	value
type	of	the	Dictionary	and	for	the	value	types	of	potential	nested
Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	in	the	array	returned	by	getValueTypes()	at	the	previous
index	in	the	following	way:	Only	when	getValueTypes()[i]	==
TypeCode::DICTIONARY,	then	getValueDimensions()[i+1]	will	be
valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	value	1
(for	1D	array)	at	index	0	and	2	(for	2D)	at	index	1.	If	a	value	type	is	no
array,	then	this	functions	return	value	will	contain	0	at	the
corresponding	index.

Reimplemented	from	DictionaryBase.

§	put()	[1/5]
void	put (const	Dictionary<	EKeyType,	EValueType	>	&	 src)

Adds	all	pairs	of	a	key	and	a	corresponding	value	from	the	passed
instance	to	the	instance,	on	which	it	is	called	on.	If	a	key	is	already
existing,	then	its	old	value	will	be	replaced	with	the	new	one.

Parameters
src instance,	from	which	to	add	the	content

Returns
nothing.

§	put()	[2/5]
void	put (const	EKeyType	&	 key,

const	EValueType	&	 val	
)

Adds	a	pair	of	a	key	and	a	corresponding	value	to	the	instance.

If	the	key	is	already	existing,	then	it's	old	value	will	be	replaced	with	the
new	one.	Please	have	a	look	at	the	table	of	datatypes	for	a	list	of
supported	types	for	keys	and	values

Parameters
key the	key	to	add
val the	value	to	add

Returns
nothing.

§	put()	[3/5]
void	put (const	EKeyType	&	 key)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	adds	an	empty	object	as	value	for	the	provided	key.

§	put()	[4/5]
void
put (const	EKeyType	&	

const	EValueType	
typename	Common::Helpers::ArrayLengthType<	EValueType	>::type	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from
the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	singledimensional	arrays	and	NULL-pointers	passed	for
parameter	pVal.	NULL	pointers	are	only	legal	input,	if	size	is	0

Parameters
key the	key	to	add
pVal the	value	array	to	add
size the	size	of	the	value	array

§	put()	[5/5]
void	put (const	EKeyType	&	 key,

const	EValueType	 pVal,
const	short	*	 sizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	multidimensional	arrays	and	NULL-pointers
passed	for	parameter	pVal.	The	array	that	is	passed	for	parameter
pVal	has	to	be	a	pointer	of	the	correct	abstraction	level,	meaning	a
normal	pointer	for	a	singledimensional	array,	a	doublepointer	for	a
twodimensional	array,	a	triplepointer	for	a	threedimensional	array	and
so	on.	For	pVal	NULL	pointers	are	only	legal	input,	if	sizes[0]	is	0.	For
sizes	NULL	is	no	valid	input.

Parameters
key the	key	to	add
pVal the	value	array	to	add
sizes the	sizes	for	every	dimension	of	the	value	array	-	the	length

of	this	array	has	to	match	the	dimensions	of	pVal

§	getValue()
const	EValueType	*	getValue (const	EKeyType	&	 key) const

Returns	the	corresponding	value	for	a	specified	key.

Parameters
key Reference	to	the	key	to	return	the	corresponding	value	for.

Returns
a	pointer	to	the	corresponding	value	if	the	Hashtable	contains	the
specified	key,	NULL	otherwise.

See	also
put()

§	getKeys()
JVector<	EKeyType	>	getKeys (void) const

Returns
a	JVector	holding	all	keys	contained	in	the	Hashtable.

§	remove()
void	remove (const	EKeyType	&	 key)

Deletes	the	specified	key	and	the	corresponding	value,	if	found	in	the
Hashtable.

Parameters
key Pointer	to	the	key	of	the	key/value-pair	to	remove.

Returns
nothing.

See	also
removeAllElements()

§	contains()
bool	contains (const	EKeyType	&	 key) const

Checks,	whether	the	Hashtable	contains	a	certain	key.

Parameters
key Pointer	to	the	key	to	look	up.

Returns
true	if	the	specified	key	was	found,	false	otherwise.

§	typeToString()
JString	typeToString (void) const virtual

Remarks
This	function	is	intended	for	debugging	purposes.	For	runtime	type
checking	you	should	use	RTTI's	typeid()	instead.	Demangling	and
cutting	off	of	namespaces	will	only	happen	on	platforms,	which
offer	a	system	functionality	for	demangling.

Returns
a	string	representation	of	the	class	name	of	the	polymorphically
correct	runtime	class	of	the	instance,	on	which	it	is	called	on,	after
this	class	name	has	been	demangled	and	eventual	namespaces
have	been	removed.

Reimplemented	from	ToString.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common DictionaryBase

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

DictionaryBase	Class
Reference

Inheritance	diagram	for	DictionaryBase:

[legend]

Collaboration	diagram	for	DictionaryBase:

[legend]

Public	Member	Functions
virtual	 ~DictionaryBase	(void)

	
	 DictionaryBase	(const	DictionaryBase
&toCopy)

	
DictionaryBase	&	 operator=	(const	DictionaryBase	&toCopy)

	
bool	 operator==	(const	DictionaryBase

&toCompare)	const
	

bool	 operator!=	(const	DictionaryBase
&toCompare)	const

	
template<typename	FKeyType	>

void	 remove	(const	FKeyType	&key)
	
template<typename	FKeyType	>

bool	 contains	(const	FKeyType	&key)	const
	

void	 removeAllElements	(void)
	

JString	 typeToString	(void)	const
	

JString	&	 toString	(JString	&retStr,	bool
withTypes=false)	const

	
const	Hashtable	&	 getHashtable	(void)	const

	
unsigned	int	 getSize	(void)	const

	
virtual	const	nByte	*	 getKeyTypes	(void)	const

	
virtual	const	nByte	*	 getValueTypes	(void)	const

	

template<typename	FKeyType	>

const	short	*	 getValueSizes	(const	FKeyType	&key)
const

	
virtual	const	unsigned	int	*	 getValueDimensions	(void)	const
	
template<typename	FKeyType	,	typename	FValueType	>

const	FValueType	*	 getValue	(const	FKeyType	&key,	const
FValueType	*)	const

	
template<typename	FKeyType	>

const	Object	*	 getValue	(const	FKeyType	&key,	const
Object	*)	const

	
template<typename	FKeyType	>

JVector<	FKeyType	>	 getKeys	(const	FKeyType	*)	const
	

JVector<	Object	>	 getKeys	(const	Object	*)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	DictionaryBase	class	is	the	base	class	for	the	Dictionary	class
template	and	intended	to	be	used	instead	of	Dictionary	in	cases,	when
the	key	type	and/or	value	type	of	a	Dictionary	instance	can't	be	known	at
compile	time,	but	only	at	runtime.

Whenever	possible	you	should	use	the	class	template	Dictionary	instead
of	DictionaryBase	to	enable	compile	time	type	safety	and	optimizations
that	need	compile	time	type	identification.	However,	when	for	example
receiving	unknown	data	over	the	network	at	runtime,	the	type	of	that	data
can't	be	non	at	compile	time.	In	those	cases	DictionaryBase	instances
are	used.

DictionaryBase	instances	only	offer	read	only	API:	They	can't	be
modified	with	the	exception	of	replacing	the	complete	instance	with	the
content	of	another	one.	No	single	entries	can	be	added,	removed,	or
changed.	Use	the	Dictionary	sub	class	template	for	modifiable
Dictionary	instances.

Please	have	a	look	at	the	Table	of	Datatypes	for	a	list	of	types,	that	are
supported	as	keys	and	as	values.

Please	refer	to	the	documentation	for	put()	and	getValue()	to	see	how	to
store	and	access	data	in	a	Dictionary.

See	also
getValue(),	Dictionary

Constructor	&	Destructor	Documentation

§	~DictionaryBase()
~DictionaryBase (void) virtual

Destructor.

§	DictionaryBase()
DictionaryBase (const	DictionaryBase	&	 toCopy)

Copy-Constructor:	Creates	a	deep	copy	of	the	argument.

Parameters
toCopy The	object	to	copy.

Member	Function	Documentation

§	operator=()
DictionaryBase	&	operator= (const	DictionaryBase	&	 toCopy)

operator=.	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

§	operator==()
bool	operator== (const	DictionaryBase	&	 toCompare) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	instances	are	considered	equal	if	they	each	hold	the	same
number	of	entries	and,	for	a	given	key,	the	corresponding	values	equal
each	other.

Two	values	are	considered	equal	to	each	other,	if	instances	of	class
Object,	that	are	holding	them	as	payloads,	equal	each	other.

See	also
Object::operator==()

§	operator!=()
bool	operator!= (const	DictionaryBase	&	 toCompare) const

operator!=.

Returns
false,	if	operator==()	would	return	true,	true	otherwise.

§	remove()
void	remove (const	FKeyType	&	 key)

Deletes	the	specified	key	and	the	corresponding	value,	if	found	in	the
Hashtable.

Parameters
key Pointer	to	the	key	of	the	key/value-pair	to	remove.

Returns
nothing.

See	also
removeAllElements()

§	contains()
bool	contains (const	FKeyType	&	 key) const

Checks,	whether	the	Hashtable	contains	a	certain	key.

Parameters
key Pointer	to	the	key	to	look	up.

Returns
true	if	the	specified	key	was	found,	false	otherwise.

§	removeAllElements()
void	removeAllElements (void)

Clears	the	Hashtable,	which	means	deleting	all	its	content.

Returns
nothing.

See	also
remove()

§	typeToString()
JString	typeToString (void) const virtual

Remarks
This	function	is	intended	for	debugging	purposes.	For	runtime	type
checking	you	should	use	RTTI's	typeid()	instead.	Demangling	and
cutting	off	of	namespaces	will	only	happen	on	platforms,	which
offer	a	system	functionality	for	demangling.

Returns
a	string	representation	of	the	class	name	of	the	polymorphically
correct	runtime	class	of	the	instance,	on	which	it	is	called	on,	after
this	class	name	has	been	demangled	and	eventual	namespaces
have	been	removed.

Reimplemented	from	ToString.

Reimplemented	in	Dictionary<	nByte,
Common::ExitGames::Common::Object	>,	and	Dictionary<	nByte,
Common::Object	>.

§	toString()
JString	&	toString (JString	&	 retStr,

bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

Reimplemented	in	Dictionary<	nByte,
Common::ExitGames::Common::Object	>,	and	Dictionary<	nByte,
Common::Object	>.

§	getHashtable()
const	Hashtable	&	getHashtable (void) const

Returns
a	readonly	reference	to	a	Hashtable	representation	of	the
Dictionary	instance.	The	returned	reference	refers	to	the	original
payload	data	of	the	Dictionary,	so	its	payload	will	change,	if	the
payload	of	the	according	Dictionary	instance	changes.

§	getSize()
unsigned	int	getSize (void) const

Returns
the	number	of	key/value	pairs	stored	in	the	Hashtable.

§	getKeyTypes()
const	nByte	*	getKeyTypes (void) const virtual

Returns
an	array,	holding	the	type	code	for	the	key	type	of	the	Dictionary
and	type	codes	for	the	key	types	of	potential	nested	Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	in	the	array	returned	by	getValueTypes()	at	the	previous
index	in	the	following	way:	Only	when	getValueTypes()[i]	==
TypeCode::DICTIONARY,	then	getKeyTypes()[i+1]	will	be	valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	values
TypeCode::INTEGER	at	index	0	and	TypeCode::SHORT	at	index	1.

The	codes	returned	by	this	function	match	the	ones,	that	are	stored	in
member	variable	"typename"	of	class	template
Helpers::ConfirmAllowedKey's	specializations.	Only	the	types,	for
which	specializations	of	that	template	exist,	are	valid	Dictionary	keys.

Reimplemented	in	Dictionary<	EKeyType,	EValueType	>,
Dictionary<	nByte,	Common::ExitGames::Common::Object	>,	and
Dictionary<	nByte,	Common::Object	>.

§	getValueTypes()
const	nByte	*	getValueTypes (void) const virtual

Returns
an	array,	holding	the	type	code	for	the	value	type	of	the
Dictionary	and	type	codes	for	the	value	types	of	potential	nested
Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	at	the	previous	index	in	the	following	way:	Only	when
getValueTypes()[i]	==	TypeCode::DICTIONARY,	then
getValueTypes()[i+1]	will	be	valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	values
TypeCode::DICTIONARY	at	index	0	and	TypeCode::FLOAT	at	index
1.

The	codes	returned	by	this	function	match	the	ones,	that	are	stored	in
member	variable	"typename"	of	class	template
Helpers::ConfirmAllowed's	specializations.	Only	the	types,	for	which
specializations	of	that	template	exist,	are	valid	Dictionary	values.

Reimplemented	in	Dictionary<	EKeyType,	EValueType	>,
Dictionary<	nByte,	Common::ExitGames::Common::Object	>,	and
Dictionary<	nByte,	Common::Object	>.

§	getValueSizes()
const	short	*	getValueSizes (const	FKeyType	&	 key) const

Returns
Object::getSizes()	of	the	value,	that	corresponds	to	the	passed
key.

Parameters
key Reference	to	the	key	to	return	the	corresponding	value	sizes

for

§	getValueDimensions()
const	unsigned	int	*	getValueDimensions (void) const virtual

Returns
an	array,	holding	the	amount	of	array	dimensions	for	the	value
type	of	the	Dictionary	and	for	the	value	types	of	potential	nested
Dictionaries.

Only	index	0	of	the	returned	array	is	guaranteed	to	be	valid.	The
existence	of	elements	at	other	indices	depends	on	the	value	of	the
element	in	the	array	returned	by	getValueTypes()	at	the	previous
index	in	the	following	way:	Only	when	getValueTypes()[i]	==
TypeCode::DICTIONARY,	then	getValueDimensions()[i+1]	will	be
valid.

Type	information	for	nested	Dictionaries	will	be	stored	like	in	the
following	example:	Dictionary<int,	Dictionary<short,	float**>*>	This	is
a	Dictionary,	with	the	key	type	being	int	and	the	value	type	being	a	1D
array	of	type	Dictionary<short,	float**>,	so	that	all	values	are
Dictionaries,	which	keys	are	shorts	and	which	values	are	2D	arrays	of
float.	This	function's	return	value	in	this	example	will	hold	the	value	1
(for	1D	array)	at	index	0	and	2	(for	2D)	at	index	1.	If	a	value	type	is	no
array,	then	this	functions	return	value	will	contain	0	at	the
corresponding	index.

Reimplemented	in	Dictionary<	EKeyType,	EValueType	>,
Dictionary<	nByte,	Common::ExitGames::Common::Object	>,	and
Dictionary<	nByte,	Common::Object	>.

§	getValue()	[1/2]
const	FValueType	*	getValue (const	FKeyType	&	 key,

const	FValueType	*	 	
) const

Returns	the	corresponding	value	for	a	specified	key.

Parameters
key Reference	to	the	key	to	return	the	corresponding	value	for.

Returns
a	pointer	to	the	corresponding	value	if	the	Hashtable	contains	the
specified	key,	NULL	otherwise.

See	also
put()

§	getValue()	[2/2]
const	Object	*	getValue (const	FKeyType	&	 key,

const	Object	*	 	
) const

Returns	the	corresponding	value	for	a	specified	key.

Parameters
key Reference	to	the	key	to	return	the	corresponding	value	for.

Returns
a	pointer	to	the	corresponding	value	if	the	Hashtable	contains	the
specified	key,	NULL	otherwise.

See	also
put()

§	getKeys()	[1/2]
JVector<	FKeyType	>	getKeys (const	FKeyType	*) const

Returns
a	JVector	holding	all	keys	contained	in	the	Hashtable.

§	getKeys()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JVector<	Object	>	getKeys (const	Object	*) const

Returns
a	JVector	holding	all	keys	contained	in	the	Hashtable.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common EGTime

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

EGTime	Class
Reference

Inheritance	diagram	for	EGTime:

[legend]

Collaboration	diagram	for	EGTime:

[legend]

Public	Member	Functions
	 EGTime	(int	time)

	
	 ~EGTime	(void)

	
	 EGTime	(const	EGTime	&toCopy)

	
EGTime	&	 operator=	(const	EGTime	&toCopy)

	
EGTime	&	 operator=	(const	int	&time)

	
const	EGTime	&	 operator+=	(const	EGTime	&time)
	
const	EGTime	&	 operator-=	(const	EGTime	&time)
	

EGTime	 operator+	(const	EGTime	&time)
	

EGTime	 operator-	(const	EGTime	&time)
	

bool	 operator<	(const	EGTime	&time)	const
	

bool	 operator>	(const	EGTime	&time)	const
	

bool	 operator<=	(const	EGTime	&time)	const
	

bool	 operator>=	(const	EGTime	&time)	const
	

bool	 operator==	(const	EGTime	&time)	const
	

bool	 operator!=	(const	EGTime	&time)	const
	

bool	 overflowed	(const	EGTime	&time)	const
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)
const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	EGTime	class	is	a	container	class	for	millisecond	timestamps,	which
accounts	for	overflows	when	comparing	two	instances	against	each
other.

The	intended	usage	of	this	class	is	to	compare	32	bit	integer	millisecond
timestamps,	which	only	differ	in	relatively	small	amounts	of	ms	(a	few
seconds	up	to	at	max	a	few	hours)	from	each	other.	32bit	timestamps
have	the	advantage	over	64	bit	ones,	that	they	need	less	bytes	to	store
their	information,	which	is	of	critical	value	in	some	situations.	However	32
bit	milliseconds	timestamps	overflow	every	about	49	days.	Arithmetical
calculations	don't	react	well	to	those	overflows	for	unsigned	integers,	but
they	continue	to	work	fine	for	signed	integers.	However	when	comparing
two	timestamps,	one	from	shortly	before	an	overflow,	one	from	shortly
after,	even	signed	integers	won't	work:	the	timestamp	INT_MIN	is	one
millisecond	LATER	than	INT_MAX,	but	when	comparing	these	two	as
integers,	INT_MIN	is	smaller	than	INT_MAX.	EGTime	approaches	this
issue	by	introducing	an	overflow	threshold	of	24	hours.	If	time	a	is	bigger
than	time,	but	not	bigger	than	time	b	+	24	hours,	than	and	only	than,
EGTime	will	also	consider	it	as	bigger.	This	way	code	like	if(timestamp1
<	timestamp2)	will	also	work,	when	between	these	two	timestamps	an
overflow	has	happened.	The	downside	is,	that	this	class	won't	work	when
comparing	2	timestamps,	that	differ	by	more	than	24	hours.

Constructor	&	Destructor	Documentation

§	EGTime()	[1/2]
EGTime (int	 time)

Constructor:	Creates	an	EGTime	instance.

Parameters
time the	time	in	milliseconds	to	initialize	the	instance	with

§	~EGTime()
~EGTime (void)

Destructor.

§	EGTime()	[2/2]
EGTime (const	EGTime	&	 toCopy)

Copy-Constructor:	Creates	a	new	EGTime	instance	from	a	deep	copy
of	the	argument	instance.

Parameters
toCopy the	EGTime	instance	to	make	a	copy	from

Member	Function	Documentation

§	operator=()	[1/2]
EGTime	&	operator= (const	EGTime	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/2]
EGTime	&	operator= (const	int	&	 time)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator+=()
const	EGTime	&	operator+= (const	EGTime	&	 time)

operator+=.

Adds	the	right	time	to	the	left	time.

§	operator-=()
const	EGTime	&	operator-= (const	EGTime	&	 time)

operator-=.

Subtracts	the	right	time	from	the	left	time.

§	operator+()
EGTime	operator+ (const	EGTime	&	 time)

operator+.

Adds	the	right	time	to	the	left	time	and	returns	the	result	as	a	new
EGTime	instance.

§	operator-()
EGTime	operator- (const	EGTime	&	 time)

operator-=.

Subtracts	the	right	time	from	the	left	time	and	returns	the	result	as	a
new	EGTime	instance.

§	operator<()
bool	operator< (const	EGTime	&	 time) const

operator<.

Remarks
An	EGTime	instance	is	considered	smaller	than	another	one,	if	its
payload	is	either	smaller	or	more	than	24	hours	bigger	than	the
other	ones	payload.

Returns
true,	if	the	left	operand	is	smaller	than	the	right	operand,	false
otherwise.

§	operator>()
bool	operator> (const	EGTime	&	 time) const

operator>.

Remarks
An	EGTime	instance	is	considered	bigger	than	another	one,	if	its
payload	is	either	bigger	or	more	than	24	hours	smaller	than	the
other	ones	payload.

Returns
true,	if	the	left	operand	is	bigger	than	the	right	operand,	false
otherwise.

§	operator<=()
bool	operator<= (const	EGTime	&	 time) const

operator<=.

Remarks
An	EGTime	instance	is	considered	smaller	than	another	one,	if	its
payload	is	either	smaller	or	more	than	24	hours	bigger	than	the
other	ones	payload.

Returns
true,	if	the	left	operand	is	smaller	than	or	equal	to	the	right
operand,	false	otherwise.

§	operator>=()
bool	operator>= (const	EGTime	&	 time) const

operator>=.

Remarks
An	EGTime	instance	is	considered	bigger	than	another	one,	if	its
payload	is	either	bigger	or	more	than	24	hours	smaller	than	the
other	ones	payload.

Returns
true,	if	the	left	operand	is	bigger	than	or	equal	to	the	right	operand,
false	otherwise.

§	operator==()
bool	operator== (const	EGTime	&	 time) const

operator==.

Returns
true,	if	both	instances	have	equal	values,	false	otherwise.

§	operator!=()
bool	operator!= (const	EGTime	&	 time) const

operator==.

Returns
false,	if	both	instances	have	equal	values,	true	otherwise.

§	overflowed()
bool	overflowed (const	EGTime	&	 time) const

Returns
true,	if	the	values	of	both	instances	differ	by	more	than	24	hours,
false	otherwise.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Hashtable

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Hashtable	Class
Reference

Inheritance	diagram	for	Hashtable:

[legend]

Collaboration	diagram	for	Hashtable:

[legend]

Public	Member	Functions
	 Hashtable	(void)

	
	 ~Hashtable	(void)

	
	 Hashtable	(const	Hashtable	&toCopy)

	
Hashtable	&	 operator=	(const	Hashtable	&toCopy)

	
bool	 operator==	(const	Hashtable

&toCompare)	const
	

bool	 operator!=	(const	Hashtable	&toCompare)
const

	
const	Object	&	 operator[]	(unsigned	int	index)	const

	
Object	&	 operator[]	(unsigned	int	index)

	
void	 put	(const	Hashtable	&src)

	
template<typename	FKeyType	,	typename	FValueType	>

void	 put	(const	FKeyType	&key,	const
FValueType	&val)

	
template<typename	FKeyType	>

void	 put	(const	FKeyType	&key)
	
template<typename	FKeyType	,	typename	FValueType	>

void	 put	(const	FKeyType	&key,	const
FValueType	pVal,	typename
Common::Helpers::ArrayLengthType<
FValueType	>::type	size)

	
template<typename	FKeyType	,	typename	FValueType	>

void	 put	(const	FKeyType	&key,	const

FValueType	pVal,	const	short	*sizes)
	
template<typename	FKeyType	>

const	Object	*	 getValue	(const	FKeyType	&key)	const
	

unsigned	int	 getSize	(void)	const
	
const	JVector<	Object	>	&	 getKeys	(void)	const
	
template<typename	FKeyType	>

void	 remove	(const	FKeyType	&key)
	
template<typename	FKeyType	>

bool	 contains	(const	FKeyType	&key)	const
	

void	 removeAllElements	(void)
	

JString	&	 toString	(JString	&retStr,	bool
withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	Hashtable	class	together	with	the	Dictionary	class	template	is	one
of	the	two	main	container	classes	for	objects	to	be	transmitted	over
Photon	when	using	the	C++	Client.

This	class	implements	the	well-known	concept	of	a	container	structure
storing	an	arbitrary	number	of	key/value-pairs.

In	contrast	to	a	Dictionary,	the	types	of	both	the	keys	and	also	the
values	in	a	Hashtable	can	differ	for	every	entry.	This	adds	flexibility,	but	it
also	reduces	type	safety	and	means,	that	the	type	infos	have	to	be	stored
twice	(once	for	the	key	and	once	for	the	value)	per	entry	in	a	Hashtable,
while	in	a	Dictionary	it	only	has	to	be	stored	twice	for	the	whole
Dictionary,	no	matter	how	many	entries	are	in	there.	Therefor	with
Dictionaries	transferring	the	same	amount	of	key-value	pairs	will	cause
less	traffic	than	with	Hashtables.

Please	have	a	look	at	the	Table	of	Datatypes	for	a	list	of	types,	that	are
supported	as	keys	and	as	values.

Please	refer	to	the	documentation	for	put()	and	getValue()	to	see	how	to
store	and	access	data	in	a	Hashtable.

See	also
put(),	getValue(),	KeyObject,	ValueObject,	Dictionary

Constructor	&	Destructor	Documentation

§	Hashtable()	[1/2]
Hashtable (void)

Constructor:	Creates	an	empty	instance.

§	~Hashtable()
~Hashtable (void)

Destructor.

§	Hashtable()	[2/2]
Hashtable (const	Hashtable	&	 toCopy)

Copy-Constructor:	Creates	a	deep	copy	of	the	argument.

Parameters
toCopy The	object	to	copy.

Member	Function	Documentation

§	operator=()
Hashtable	&	operator= (const	Hashtable	&	 toCopy)

operator=.	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

§	operator==()
bool	operator== (const	Hashtable	&	 toCompare) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	instances	are	considered	equal	if	they	each	hold	the	same
number	of	entries	and,	for	a	given	key,	the	corresponding	values	equal
each	other.

Two	values	are	considered	equal	to	each	other,	if	instances	of	class
Object,	that	are	holding	them	as	payloads,	equal	each	other.

See	also
Object::operator==()

§	operator!=()
bool	operator!= (const	Hashtable	&	 toCompare) const

operator!=.

Returns
false,	if	operator==()	would	return	true,	true	otherwise.

§	operator[]()	[1/2]
const	Object	&	operator[] (unsigned	int	 index) const

operator[].

Accesses	the	value	at	the	given	index	like	in	an	array.	This	does	not
check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes

§	operator[]()	[2/2]
Object	&	operator[] (unsigned	int	 index)

operator[].

Accesses	the	value	at	the	given	index	like	in	an	array.	This	does	not
check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes

§	put()	[1/5]
void	put (const	Hashtable	&	 src)

Adds	all	pairs	of	a	key	and	a	corresponding	value	from	the	passed
instance	to	the	instance,	on	which	it	is	called	on.	If	a	key	is	already
existing,	then	its	old	value	will	be	replaced	with	the	new	one.

Parameters
src instance,	from	which	to	add	the	content

Returns
nothing.

§	put()	[2/5]
void	put (const	FKeyType	&	 key,

const	FValueType	&	 val	
)

Adds	a	pair	of	a	key	and	a	corresponding	value	to	the	instance.

If	the	key	is	already	existing,	then	it's	old	value	will	be	replaced	with	the
new	one.	Please	have	a	look	at	the	table	of	datatypes	for	a	list	of
supported	types	for	keys	and	values

Parameters
key the	key	to	add
val the	value	to	add

Returns
nothing.

§	put()	[3/5]
void	put (const	FKeyType	&	 key)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	adds	an	empty	object	as	value	for	the	provided	key.

§	put()	[4/5]
void
put (const	FKeyType	&	

const	FValueType	
typename	Common::Helpers::ArrayLengthType<	FValueType	>::type	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs
from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	singledimensional	arrays	and	NULL-pointers	passed	for
parameter	pVal.	NULL	pointers	are	only	legal	input,	if	size	is	0

Parameters
key the	key	to	add
pVal the	value	array	to	add
size the	size	of	the	value	array

§	put()	[5/5]
void	put (const	FKeyType	&	 key,

const	FValueType	 pVal,
const	short	*	 sizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	multidimensional	arrays	and	NULL-pointers
passed	for	parameter	pVal.	The	array	that	is	passed	for	parameter
pVal	has	to	be	a	pointer	of	the	correct	abstraction	level,	meaning	a
normal	pointer	for	a	singledimensional	array,	a	doublepointer	for	a
twodimensional	array,	a	triplepointer	for	a	threedimensional	array	and
so	on.	For	pVal	NULL	pointers	are	only	legal	input,	if	sizes[0]	is	0.	For
sizes	NULL	is	no	valid	input.

Parameters
key the	key	to	add
pVal the	value	array	to	add
sizes the	sizes	for	every	dimension	of	the	value	array	-	the	length

of	this	array	has	to	match	the	dimensions	of	pVal

§	getValue()
const	Object	*	getValue (const	FKeyType	&	 key) const

Returns	the	corresponding	value	for	a	specified	key.

Parameters
key Reference	to	the	key	to	return	the	corresponding	value	for.

Returns
a	pointer	to	the	corresponding	value	if	the	Hashtable	contains	the
specified	key,	NULL	otherwise.

See	also
put()

§	getSize()
unsigned	int	getSize (void) const

Returns
the	number	of	key/value	pairs	stored	in	the	Hashtable.

§	getKeys()
const	JVector<	Object	>	&	getKeys (void) const

Returns
a	JVector	holding	all	keys	contained	in	the	Hashtable.

§	remove()
void	remove (const	FKeyType	&	 key)

Deletes	the	specified	key	and	the	corresponding	value,	if	found	in	the
Hashtable.

Parameters
key Pointer	to	the	key	of	the	key/value-pair	to	remove.

Returns
nothing.

See	also
removeAllElements()

§	contains()
bool	contains (const	FKeyType	&	 key) const

Checks,	whether	the	Hashtable	contains	a	certain	key.

Parameters
key Pointer	to	the	key	to	look	up.

Returns
true	if	the	specified	key	was	found,	false	otherwise.

§	removeAllElements()
void	removeAllElements (void)

Clears	the	Hashtable,	which	means	deleting	all	its	content.

Returns
nothing.

See	also
remove()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common JString

Public	Member	Functions	|	Related	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

JString	Class
Reference

Inheritance	diagram	for	JString:

[legend]

Collaboration	diagram	for	JString:

[legend]

Public	Member	Functions
	 JString	(unsigned	int	bufferlen=0)

	
	 JString	(const	char	*Value)

	
	 JString	(const	EG_CHAR	*Value)

	
	 JString	(const	JString	&Value)

	
	 JString	(const	UTF8String	&Value)

	
	 JString	(const	ANSIString	&Value)

	
	 ~JString	(void)

	
JString	&	 operator=	(const	JString	&Rhs)

	
JString	&	 operator=	(const	char	*Rhs)

	
JString	&	 operator=	(const	EG_CHAR	*Rhs)

	
JString	&	 operator=	(const	UTF8String	&Rhs)

	
JString	&	 operator=	(const	ANSIString	&Rhs)

	
JString	&	 operator=	(char	Rhs)

	
JString	&	 operator=	(signed	char	Rhs)

	
JString	&	 operator=	(unsigned	char	Rhs)

	
JString	&	 operator=	(EG_CHAR	Rhs)

	
JString	&	 operator=	(short	aNum)

	

JString	&	 operator=	(unsigned	short	aNum)
	

JString	&	 operator=	(int	aNum)
	

JString	&	 operator=	(unsigned	int	aNum)
	

JString	&	 operator=	(long	aNum)
	

JString	&	 operator=	(unsigned	long	aNum)
	

JString	&	 operator=	(long	long	aNum)
	

JString	&	 operator=	(unsigned	long	long	aNum)
	

JString	&	 operator=	(float	aNum)
	

JString	&	 operator=	(double	aNum)
	

JString	&	 operator=	(long	double	aNum)
	

JString	&	 operator=	(bool	aBool)
	

	 operator	const	EG_CHAR	*	(void)	const
	

JString	&	 operator+=	(const	JString	&Rhs)
	
template<typename	Etype	>

JString	&	 operator+=	(const	Etype	&Rhs)
	

bool	 operator==	(const	JString	&Rhs)	const
	

bool	 operator!=	(const	JString	&Rhs)	const
	

bool	 operator<	(const	JString	&Rhs)	const
	

bool	 operator>	(const	JString	&Rhs)	const
	

bool	 operator<=	(const	JString	&Rhs)	const
	

bool	 operator>=	(const	JString	&Rhs)	const
	

EG_CHAR	 operator[]	(unsigned	int	Index)	const
	

EG_CHAR	&	 operator[]	(unsigned	int	Index)
	

unsigned	int	 capacity	(void)	const
	

EG_CHAR	 charAt	(unsigned	int	index)	const
	

int	 compareTo	(const	JString	&anotherString)	const
	

const	JString	&	 concat	(const	JString	&str)
	
const	EG_CHAR	*	 cstr	(void)	const
	

JString	 deleteChars	(unsigned	int	start,	unsigned	int
length)	const

	
bool	 endsWith	(const	JString	&suffix)	const

	
void	 ensureCapacity	(unsigned	int	minCapacity)

	
bool	 equals	(const	JString	&anotherString)	const

	
bool	 equalsIgnoreCase	(const	JString	&anotherString)

const
	

int	 indexOf	(char	ch)	const
	

int	 indexOf	(char	ch,	unsigned	int	fromIndex)	const
	

int	 indexOf	(EG_CHAR	ch)	const
	

int	 indexOf	(EG_CHAR	ch,	unsigned	int	fromIndex)

const
	

int	 indexOf	(const	JString	&str)	const
	

int	 indexOf	(const	JString	&str,	unsigned	int
fromIndex)	const

	
int	 lastIndexOf	(char	ch)	const

	
int	 lastIndexOf	(char	ch,	unsigned	int	fromIndex)	const

	
int	 lastIndexOf	(EG_CHAR	ch)	const

	
int	 lastIndexOf	(EG_CHAR	ch,	unsigned	int	fromIndex)

const
	

int	 lastIndexOf	(const	JString	&str)	const
	

int	 lastIndexOf	(const	JString	&str,	unsigned	int
fromIndex)	const

	
unsigned	int	 length	(void)	const

	
JString	 replace	(char	oldChar,	char	newChar)	const

	
JString	 replace	(EG_CHAR	oldChar,	EG_CHAR	newChar)

const
	

JString	 replace	(const	JString	&match,	const	JString
&replacement)	const

	
bool	 startsWith	(const	JString	&prefix)	const

	
bool	 startsWith	(const	JString	&prefix,	unsigned	int

offset)	const
	

JString	 substring	(unsigned	int	beginIndex)	const

	
JString	 substring	(unsigned	int	beginIndex,	unsigned	int

endIndex)	const

	
JString	 toLowerCase	(void)	const

	
JString	 toUpperCase	(void)	const

	
int	 toInt	(void)	const

	
JString	 trim	(void)

	
UTF8String	 UTF8Representation	(void)	const

	
ANSIString	 ANSIRepresentation	(void)	const

	
JString	&	 toString	(JString	&retStr,	bool	withTypes=false)

const
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Related	Functions

(Note	that	these	are	not	member	functions.)

template<typename	_Elem	,	typename	_Traits	>

std::basic_ostream<	_Elem,	_Traits	>	&	 operator<<
(::std::basic_ostream<	_Elem,
_Traits	>	&stream,	const
JString	&string)

	
template<typename	Etype	>

JString	 operator+	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

JString	 operator+	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator==	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

bool	 operator==	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator!=	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

bool	 operator!=	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator<	(const	JString

&Lsh,	const	Etype	&Rsh)
	
template<typename	Etype	>

bool	 operator<	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator>	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

bool	 operator>	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator<=	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

bool	 operator<=	(const	Etype	&Lsh,
const	JString	&Rsh)

	
template<typename	Etype	>

bool	 operator>=	(const	JString
&Lsh,	const	Etype	&Rsh)

	
template<typename	Etype	>

bool	 operator>=	(const	Etype	&Lsh,
const	JString	&Rsh)

	
JString	 operator+	(const	JString

&Lsh,	const	JString	&Rsh)
	

Detailed	Description

The	JString	class	is	a	representation	of	Text	strings,	based	on	the	String
class	from	Sun	Java.

This	class	is	used	to	avoid	dealing	with	char	pointers/arrays	directly,
while	staying	independent	from	the	String	class	in	the	Standard	Template
Library	of	C++,	as	some	compilers	do	not	implement	the	STL.

Constructor	&	Destructor	Documentation

§	JString()	[1/6]
JString (unsigned	int	 bufferlen	=	0) explicit

Constructor:	Creates	an	empty	JString.

Remarks
By	default	no	memory	is	allocated	for	the	internal	buffer.	You	can
however	pass	the	number	of	characters	to	allocate	memory	for.	If
that	number	is	too	big,	then	you	will	waste	memory,	but	with	a
reasonable	bufferlen	you	can	avoid	expensive	later	reallocations,
when	appending	to	the	string.

Parameters
bufferlen optional,	let	the	string	allocate	memory	for	x	characters

§	JString()	[2/6]
JString (const	char	*	 Value)

Copy-Constructor:	Creates	a	new	JString	from	a	deep	copy	of	the
argument	string.

Parameters
Value The	UTF8	string	to	copy.

§	JString()	[3/6]
JString (const	EG_CHAR	*	 Value)

Copy-Constructor:	Creates	a	new	JString	from	a	deep	copy	of	the
argument	string.

Parameters
Value The	UTF16	string	to	copy.

§	JString()	[4/6]
JString (const	JString	&	 Value)

Copy-Constructor:	Creates	a	new	JString	from	a	deep	copy	of	the
argument	string.

Parameters
Value The	JString	to	copy.

§	JString()	[5/6]
JString (const	UTF8String	&	 Value)

Copy-Constructor:	Creates	a	new	JString	from	a	deep	copy	of	the
argument	string.

Parameters
Value The	UTF8String	to	copy.

§	JString()	[6/6]
JString (const	ANSIString	&	 Value)

Copy-Constructor:	Creates	a	new	JString	from	a	deep	copy	of	the
argument	string.

Parameters
Value :The	ANSIString	to	copy.

§	~JString()
~JString (void)

Destructor.

Member	Function	Documentation

§	operator=()	[1/21]
JString	&	operator= (const	JString	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/21]
JString	&	operator= (const	char	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	(which	is	assumed	to	be
encoded	as	UTF8)	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[3/21]
JString	&	operator= (const	EG_CHAR	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[4/21]
JString	&	operator= (const	UTF8String	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[5/21]
JString	&	operator= (const	ANSIString	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[6/21]
JString	&	operator= (char	 aChar)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[7/21]
JString	&	operator= (signed	char	 aChar)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[8/21]
JString	&	operator= (unsigned	char	 aChar)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[9/21]
JString	&	operator= (EG_CHAR	 aWideChar)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[10/21]
JString	&	operator= (short	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[11/21]
JString	&	operator= (unsigned	short	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[12/21]
JString	&	operator= (int	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[13/21]
JString	&	operator= (unsigned	int	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[14/21]
JString	&	operator= (long	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[15/21]
JString	&	operator= (unsigned	long	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[16/21]
JString	&	operator= (long	long	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[17/21]
JString	&	operator= (unsigned	long	long	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[18/21]
JString	&	operator= (float	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[19/21]
JString	&	operator= (double	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[20/21]
JString	&	operator= (long	double	 aNum)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[21/21]
JString	&	operator= (bool	 aBool)

operator=.

saves	a	string	representation	of	its	right	operand	in	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator	const	EG_CHAR	*()
operator	const	EG_CHAR	* (void) const

operator	const	EG_CHAR*.

Copies	a	pointer	to	the	content	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator+=()	[1/2]
JString	&	operator+= (const	JString	&	 Rhs)

operator+=.

Attaches	its	right	operand	to	its	left	operand.

§	operator+=()	[2/2]
JString	&	operator+= (const	Etype	&	 Rhs)

operator+=.

Attaches	its	right	operand	to	its	left	operand.

§	operator==()
bool	operator== (const	JString	&	 Rhs) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

§	operator!=()
bool	operator!= (const	JString	&	 Rhs) const

operator!=.

Returns
false,	if	both	operands	are	equal,	true	otherwise.

§	operator<()
bool	operator< (const	JString	&	 Rhs) const

operator<.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	less	than	right	operand,	false	otherwise.

§	operator>()
bool	operator> (const	JString	&	 Rhs) const

operator>.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	greater	than	right	operand,	false	otherwise.

§	operator<=()
bool	operator<= (const	JString	&	 Rhs) const

operator<=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	less	than	or	equal	to	the	right	operand,
false	otherwise.

§	operator>=()
bool	operator>= (const	JString	&	 Rhs) const

operator>=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	greater	than	or	equal	to	the	right
operand,	false	otherwise.

§	operator[]()	[1/2]
EG_CHAR	operator[] (unsigned	int	 index) const

operator[].	Accesses	the	character	of	the	string	at	the	given	index	like
in	an	array.	This	does	not	check	for	valid	indexes	and	shows	undefined
behavior	for	invalid	indexes

§	operator[]()	[2/2]
EG_CHAR	&	operator[] (unsigned	int	 index)

operator[].	Accesses	the	character	of	the	string	at	the	given	index	like
in	an	array.	This	does	not	check	for	valid	indexes	and	shows	undefined
behavior	for	invalid	indexes

§	capacity()
unsigned	int	capacity (void) const

Returns	the	current	capacity	of	the	JString.

Returns
the	current	capacity	in	characters.

§	charAt()
EG_CHAR	charAt (unsigned	int	 index) const

Returns	the	character	of	the	JString	at	the	passed	index.	This	does
not	check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes!

Parameters
index the	index	of	the	element,	that	should	be	returned.	Must	not

be	bigger	than	the	current	size	of	the	string!

Returns
the	character	at	the	passed	index.

§	compareTo()
int	compareTo (const	JString	&	 anotherString) const

Checks	for	lexicographical	differences	between	the	JString,	the
function	is	called	for,	and	the	passed	JString.

Parameters
anotherString the	string	to	compare	to

Returns
0,	if	both	strings	are	equal,	<	0,	if	the	string,	this	function	is	called
for,	is	smaller	than	the	passed	string,	>	0	otherwise.

§	concat()
const	JString	&	concat (const	JString	&	 str)

Attaches	the	passed	string	to	the	string,	the	function	is	called	for.

Parameters
str the	string	to	attach

Returns
the	string,	the	function	was	called	for,	after	the	parameter	string
was	attached	to	it.

§	cstr()
const	EG_CHAR	*	cstr (void) const

Returns	a	pointer	to	an	EG_CHAR	array	representation	of	the	JString.
The	data,	the	pointer	points	to,	is	valid,	as	long	as	the	JString	instance
is	valid.

Returns
a	pointer	to	an	EG_CHAR	array	representation	of	the	string.

§	deleteChars()
JString	deleteChars (unsigned	int	 start,

unsigned	int	 length	
) const

Deletes	a	substring	inside	a	returned	copy	of	the	string.	This	does	not
affect	the	original	string.

Parameters
start start	of	the	substring
length length	of	the	substring

Returns
a	copy	of	the	string,	after	deleting	the	specified	substring	from	the
copy,	or	an	empty	string	for	invalid	parameters

§	endsWith()
bool	endsWith (const	JString	&	 suffix) const

Checks,	if	the	JString,	this	function	is	called	for,	ends	with	the	passed
string.

Parameters
suffix the	string	to	check	for,	if	the	other	one	ends	with	it

Returns
true,	if	the	string,	the	function	is	called	for,	ends	with	the	passed
string,	false	otherwise.

§	ensureCapacity()
void	ensureCapacity (unsigned	int	 minCapacity)

Resizes	the	JString	to	the	passed	capacity,	if	its	old	capacity	has	been
smaller.	Most	likely	the	whole	JString	has	to	be	copied	into	new
memory,	so	this	is	an	expensive	operation	for	huge	JStrings.	Call	this
function	first,	before	you	use	concat()-function	and/or	+=operators	a
lot	of	times	on	this	JString-instance,	to	avoid	multiple	expensive
resizes	through	appending.

Parameters
minCapacity the	new	capacity	for	the	JString	in	number	of

characters.

Returns
nothing.

§	equals()
bool	equals (const	JString	&	 anotherString) const

Checks,	if	the	JString,	this	function	is	called	for,	is	equal	to	the	passed
string.	This	function	is	case-sensitive.

Parameters
anotherString the	string	to	check	for,	if	it	is	equal	to	other	one

Returns
true,	if	both	strings	are	equal	to	each	other,	false	otherwise.

§	equalsIgnoreCase()
bool	equalsIgnoreCase (const	JString	&	 anotherString) const

Checks,	if	the	JString,	this	function	is	called	for,	is,	equal	to	the
passed	string.	This	function	is	not	case-sensitive.

Parameters
anotherString the	string	to	check	for,	if	it	is	equal	to	other	one

Returns
true,	if	both	strings	are	equal	to	each	other,	false	otherwise.

§	indexOf()	[1/6]
int	indexOf (char	 ch) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	first	character	of	the
string	and	goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
ch the	character	to	search	for

Returns
the	index	of	the	first	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	indexOf()	[2/6]
int	indexOf (char	 ch,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	passed	index	and
goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
ch the	character	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	first	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	indexOf()	[3/6]
int	indexOf (EG_CHAR	 ch) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	first	character	of	the
string	and	goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
ch the	character	to	search	for

Returns
the	index	of	the	first	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	indexOf()	[4/6]
int	indexOf (EG_CHAR	 ch,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	passed	index	and
goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
ch the	character	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	first	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	indexOf()	[5/6]
int	indexOf (const	JString	&	 str) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	first	character	of	the
string	and	goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
str the	string	to	search	for

Returns
the	index	of	the	first	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	indexOf()	[6/6]
int	indexOf (const	JString	&	 str,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	first	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	passed	index	and
goes	forward,	until	the	end	of	the	string	is	reached.

Parameters
str the	string	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	first	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	lastIndexOf()	[1/6]
int	lastIndexOf (char	 ch) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	on.	Searching	begins	at	the	last	character	of	the
string	and	goes	forward,	until	the	start	of	the	string	is	reached.

Parameters
ch the	character	to	search	for

Returns
the	index	of	the	last	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	lastIndexOf()	[2/6]
int	lastIndexOf (char	 ch,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	on.	Searching	begins	at	the	passed	index	and
goes	backward,	until	the	start	of	the	string	is	reached.

Parameters
ch the	character	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	last	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	lastIndexOf()	[3/6]
int	lastIndexOf (EG_CHAR	 ch) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	on.	Searching	begins	at	the	last	character	of	the
string	and	goes	forward,	until	the	start	of	the	string	is	reached.

Parameters
ch the	character	to	search	for

Returns
the	index	of	the	last	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	lastIndexOf()	[4/6]
int	lastIndexOf (EG_CHAR	 ch,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	on.	Searching	begins	at	the	passed	index	and
goes	backward,	until	the	start	of	the	string	is	reached.

Parameters
ch the	character	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	last	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	lastIndexOf()	[5/6]
int	lastIndexOf (const	JString	&	 str) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	last	character	of	the
string	and	goes	forward,	until	the	start	of	the	string	is	reached.

Parameters
str the	string	to	search	for

Returns
the	index	of	the	last	occurrence	of	the	parameter	or	-1	if	it	could
not	be	found	at	all

§	lastIndexOf()	[6/6]
int	lastIndexOf (const	JString	&	 str,

unsigned	int	 fromIndex	
) const

Returns	the	index	of	the	last	occurrence	of	the	parameter	in	the	string,
the	function	is	called	for.	Searching	begins	at	the	passed	index	and
goes	backward,	until	the	start	of	the	string	is	reached.

Parameters
str the	string	to	search	for
fromIndex the	index,	to	begin	the	search	from

Returns
the	index	of	the	last	occurrence	of	the	first	parameter	or	-1	if	it
could	not	be	found	at	all

§	length()
unsigned	int	length (void) const

Returns
the	length	of	the	string	in	characters

§	replace()	[1/3]
JString	replace (char	 oldChar,

char	 newChar	
) const

Searches	the	string	for	all	occurrences	of	parameter	1	and	replaces
them	with	parameter	2.	The	result	of	the	replacements	is	returned	as	a
new	instance,	while	the	original	string	stays	unchanged.

Parameters
oldChar the	character	to	search	for
newChar the	character	to	replace	the	other	one	with

Returns
a	copy	of	the	string,	the	function	was	called	for,	in	which	all
occurrences	of	parameter	1	have	been	replaced	with	parameter	2.

§	replace()	[2/3]
JString	replace (EG_CHAR	 oldChar,

EG_CHAR	 newChar	
) const

Searches	the	string	for	all	occurrences	of	parameter	1	and	replaces
them	with	parameter	2.	The	result	of	the	replacements	is	returned	as	a
new	instance,	while	the	original	string	stays	unchanged.

Parameters
oldChar the	character	to	search	for
newChar the	character	to	replace	oldChar	with

Returns
a	copy	of	the	string,	the	function	was	called	for,	in	which	all
occurrences	of	parameter	1	have	been	replaced	with	parameter	2.

§	replace()	[3/3]
JString	replace (const	JString	&	 match,

const	JString	&	 replacement	
) const

Searches	the	string	for	all	occurrences	of	parameter	1	and	replaces
them	with	parameter	2.	The	result	of	the	replacements	is	returned	as	a
new	instance,	while	the	original	string	stays	unchanged.

Parameters
match the	substring	to	search	for
replacement the	string	to	replace	match	with

Returns
a	copy	of	the	string,	the	function	was	called	for,	in	which	all
occurrences	of	parameter	1	have	been	replaced	with	parameter	2.

§	startsWith()	[1/2]
bool	startsWith (const	JString	&	 prefix) const

Checks,	if	the	string,	begins	with	the	passed	prefix

Parameters
prefix the	prefix	to	search	for

Returns
true,	if	the	string	begins	with	the	prefix,	false	otherwise

§	startsWith()	[2/2]
bool	startsWith (const	JString	&	 prefix,

unsigned	int	 offset	
) const

Checks,	if	the	substring	of	the	string,	starting	at	the	passed	index,
begins	with	the	passed	prefix

Parameters
prefix the	prefix	to	search	for
offset start	of	the	substring	to	check	for

Returns
true,	if	the	substring	begins	with	the	prefix,	false	otherwise

§	substring()	[1/2]
JString	substring (unsigned	int	 beginIndex) const

Returns	a	substring	of	the	string,	beginning	at	the	passed	index

Parameters
beginIndex start	of	the	substring	to	return

Returns
a	substring,	beginning	at	the	passed	index

§	substring()	[2/2]
JString	substring (unsigned	int	 beginIndex,

unsigned	int	 endIndex	
) const

Returns	a	substring	of	the	string,	beginning	at	the	first	passed	index
and	ending	at	the	second	one

Parameters
beginIndex index	of	the	first	character	of	the	substring	to	return
endIndex index	of	the	last	character	of	the	substring	to	return	+

1

Remarks
This	function	will	treat	the	second	index	as	first	one	and	vice
versa,	if	the	first	is	bigger	than	the	second	one.

Returns
a	substring,	beginning	at	the	first	passed	index	and	ending	at	the
second	one

§	toLowerCase()
JString	toLowerCase (void) const

Copies	the	string	and	changes	all	upper	case	characters	in	the	copy	to
lower	case.	This	does	not	affect	the	original	string.

Returns
a	lowercase	copy	of	the	string

§	toUpperCase()
JString	toUpperCase (void) const

Copies	the	string	and	changes	all	lower	case	characters	in	the	copy	to
upper	case.	This	does	not	affect	the	original	string.

Returns
an	uppercase	copy	of	the	string

§	toInt()
int	toInt (void) const

Converts	the	string	into	an	integer.	Conversion	ends	at	the	first
character,	that	can	not	be	interpreted	as	a	number.

Returns
the	integer	value	produced	by	interpreting	the	string	as	a	number
or	0	if	it	could	not	be	interpreted

§	trim()
JString	trim (void)

Removes	all	whitespaces	at	the	start	and	end	of	the	string.	e.g.:	L"
Hello	World!	"	->	"Hello	World!"

Returns
the	string	without	any	whitespaces	at	its	start	or	end.

§	UTF8Representation()
UTF8String	UTF8Representation (void) const

Converts	the	string	to	UTF8	and	returns	the	converted	string.	Use	this,
if	you	need	to	pass	the	JString	to	an	API,	which	does	not	support	wide
strings.	This	is	a	non-lossy	conversion.

§	ANSIRepresentation()
ANSIString	ANSIRepresentation (void) const

Converts	the	string	to	ANSI,	using	the	current	locale,	and	returns	the
converted	string.	Use	this,	if	you	need	to	pass	the	JString	to	an	API,
which	does	not	support	Unicode.	Attention:	This	is	a	lossy	conversion,
if	any	characters	in	the	string	are	not	supported	by	the	current	locale
(which	is	most	likely	for	characters	not	common	in	western	languages)!

§	toString()
JString	&	toString (JString	&	 retStr,

bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

Friends	And	Related	Function	Documentation

§	operator<<()
std::basic_ostream<
_Elem,	_Traits	>	&
operator<< (::std::basic_ostream<	_Elem,	_Traits	>	&	 stream,

const	JString	&	 string	
)

operator<<.

Used	to	print	the	JString	to	a	std::wostream.

§	operator+()	[1/3]
JString	operator+ (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator+.

Adds	its	right	operand	to	its	left	operand	and	returns	the	result	as	a
new	JString.

§	operator+()	[2/3]
JString	operator+ (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator+.

Adds	its	right	operand	to	its	left	operand	and	returns	the	result	as	a
new	JString.

§	operator==()	[1/2]
bool	operator== (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

§	operator==()	[2/2]
bool	operator== (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

§	operator!=()	[1/2]
bool	operator!= (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator!=.

Returns
false,	if	both	operands	are	equal,	true	otherwise.

§	operator!=()	[2/2]
bool	operator!= (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator!=.

Returns
false,	if	both	operands	are	equal,	true	otherwise.

§	operator<()	[1/2]
bool	operator< (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator<.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	less	than	right	operand,	false	otherwise.

§	operator<()	[2/2]
bool	operator< (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator<.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	less	than	right	operand,	false	otherwise.

§	operator>()	[1/2]
bool	operator> (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator>.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	greater	than	right	operand,	false	otherwise.

§	operator>()	[2/2]
bool	operator> (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator>.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	left	operand	is	greater	than	right	operand,	false	otherwise.

§	operator<=()	[1/2]
bool	operator<= (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator<=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	less	than	or	equal	to	the	right	operand,
false	otherwise.

§	operator<=()	[2/2]
bool	operator<= (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator<=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	less	than	or	equal	to	the	right	operand,
false	otherwise.

§	operator>=()	[1/2]
bool	operator>= (const	JString	&	 Lsh,

const	Etype	&	 Rsh	
) related

operator>=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	greater	than	or	equal	to	the	right
operand,	false	otherwise.

§	operator>=()	[2/2]
bool	operator>= (const	Etype	&	 Lsh,

const	JString	&	 Rsh	
) related

operator>=.	The	return	value	indicates	the	lexicographic	relation
between	the	operands.

Returns
true,	if	the	left	operand	is	greater	than	or	equal	to	the	right
operand,	false	otherwise.

§	operator+()	[3/3]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	operator+ (const	JString	&	 Lsh,
const	JString	&	 Rsh	
) related

operator+.

Adds	its	right	operand	to	its	left	operand	and	returns	the	result	as	a
new	JString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common JVector

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

JVector<	Etype	>	Class
Template	Reference

Inheritance	diagram	for	JVector<	Etype	>:

[legend]

Collaboration	diagram	for	JVector<	Etype	>:

[legend]

Public	Member	Functions
	 JVector	(unsigned	int	initialCapacity=0,	unsigned	int
capacityIncrement=1)

	
	 JVector	(const	Etype	*carray,	unsigned	int
elementCount,	unsigned	int	initialCapacity=0,	unsigned
int	capacityIncrement=1)

	
virtual	 ~JVector	(void)

	
	 JVector	(const	JVector<	Etype	>	&rhv)

	
JVector	&	 operator=	(const	JVector<	Etype	>	&rhv)

	
bool	 operator==	(const	JVector<	Etype	>	&toCompare)

const
	

bool	 operator!=	(const	JVector<	Etype	>	&toCompare)
const

	
const	Etype	&	 operator[]	(unsigned	int	index)	const

	
Etype	&	 operator[]	(unsigned	int	index)

	
unsigned	int	 getCapacity	(void)	const

	
bool	 contains	(const	Etype	&elem)	const

	
const	Etype	&	 getFirstElement	(void)	const

	
int	 getIndexOf	(const	Etype	&elem)	const

	
bool	 getIsEmpty	(void)	const

	
const	Etype	&	 getLastElement	(void)	const

	
int	 getLastIndexOf	(const	Etype	&elem)	const

	
unsigned	int	 getSize	(void)	const

	
const	Etype	*	 getCArray	(void)	const

	
void	 copyInto	(Etype	*array)	const

	
void	 addElement	(const	Etype	&obj)

	
void	 addElements	(const	JVector<	Etype	>	&vector)

	
void	 addElements	(const	Etype	*carray,	unsigned	int

elementCount)
	

void	 ensureCapacity	(unsigned	int	minCapacity)
	

void	 removeAllElements	(void)
	

bool	 removeElement	(const	Etype	&obj)
	

void	 trimToSize	(void)
	
const	Etype	&	 getElementAt	(unsigned	int	index)	const

	
void	 insertElementAt	(const	Etype	&obj,	unsigned	int	index)

	
void	 removeElementAt	(unsigned	int	index)

	
void	 setElementAt	(const	Etype	&obj,	unsigned	int	index)

	
JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	

	Public	Member	Functions	inherited	from	ToString
virtual	 ~ToString	(void)

	
virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

template<typename	Etype>
class	ExitGames::Common::JVector<	Etype	>

This	is	a	C++	implementation	of	the	Vector	Container	class	from	Sun
Java.

This	class	is	based	on	the	Java	Vector	class	and	as	such	contains	all	the
public	member	functions	of	its	Java	equivalent.	Unlike	Java,	typecasts
are	not	necessary	since	C++	allows	template	instantiation	of	types	at
compile	time.	In	addition	to	the	Java	public	member	functions,	some
operators	were	also	added	in	order	to	take	advantage	of	the	operator
overloading	feature	available	in	C++.

Constructor	&	Destructor	Documentation

§	JVector()	[1/3]
JVector (unsigned	int	 initialCapacity	=	0,

unsigned	int	 capacityIncrement	=	1	
)

Constructor.

Creates	an	empty	JVector	of	elements	of	the	type	of	the	template
parameter.

Parameters
initialCapacity the	amount	of	elements,	the	JVector	can

take	without	need	for	resize.	If	you	choose
this	too	small,	the	JVector	needs	expensive
resizes	later	(it's	most	likely,	that	the
complete	memory	has	to	be	copied	to	a	new
location	on	resize),	if	you	choose	it	too	big,
you	will	waste	much	memory.	The	default	is
40.

capacityIncrement Every	time,	when	one	adds	an	element	to	the
Vector	and	it	has	no	capacity	left	anymore,
it's	capacity	will	grow	with	this	amount	of
elements	on	automatic	resize.	If	you	pass	a
too	small	value	here,	expensive	resize	will	be
needed	more	often,	if	you	choose	a	too	big
one,	possibly	memory	is	wasted.	The	default
is	10.

§	JVector()	[2/3]
JVector (const	Etype	*	 carray,

unsigned	int	 elementCount,
unsigned	int	 initialCapacity	=	0,
unsigned	int	 capacityIncrement	=	1	
)

Constructor.

Creates	a	JVector,	initialized	with	the	passed	carray	the	template
parameter.

Parameters
carray all	elements	of	this	array	up	to	elementCount

will	get	copied	into	the	constructed	instance
elementCount shall	not	be	greater	than	the	actual	element

count	of	carray	or	undefined	behavior	will
occur

initialCapacity the	amount	of	elements,	the	JVector	can
take	without	need	for	resize.	Defaults	to	the
value	that	gets	passed	for	elementCount.	If
you	choose	this	too	small,	the	JVector	needs
expensive	resizes	later	(it's	most	likely,	that
the	complete	memory	has	to	be	copied	to	a
new	location	on	resize),	if	you	choose	it	too
big,	you	will	waste	much	memory.

capacityIncrement Every	time,	when	one	adds	an	element	to	the
Vector	and	it	has	no	capacity	left	anymore,
it's	capacity	will	grow	with	this	amount	of
elements	on	automatic	resize.	If	you	pass	a
too	small	value	here,	expensive	resize	will	be
needed	more	often,	if	you	choose	a	too	big
one,	possibly	memory	is	wasted.	The	default
is	10.

§	~JVector()
~JVector (void) virtual

Destructor.

§	JVector()	[3/3]
JVector (const	JVector<	Etype	>	&	 toCopy)

Copy-Constructor.

Creates	an	object	out	of	a	deep	copy	of	its	parameter.

The	parameter	has	to	be	of	the	same	template	overload	as	the	object,
you	want	to	create.

Parameters
toCopy The	object	to	copy.

Member	Function	Documentation

§	operator=()
JVector<	Etype	>	&	operator= (const	JVector<	Etype	>	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.	Both
operands	have	to	be	of	the	same	template	overload.

This	overwrites	old	data	in	the	left	operand.

§	operator==()
bool	operator== (const	JVector<	Etype	>	&	 toCompare) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.	Two	instances
are	treated	as	equal,	if	they	both	contain	the	the	same	amount	of
elements	and	every	element	of	one	instance	equals	the	other
instance's	element	at	the	same	index.	If	the	element	type	is	a
pointer	type,	then	the	pointers	are	checked	for	equality,	not	the
values,	to	which	they	point	to.

§	operator!=()
bool	operator!= (const	JVector<	Etype	>	&	 toCompare) const

operator!=.

Returns
false,	if	operator==()	would	return	true,	true	otherwise.

§	operator[]()	[1/2]
const	Etype	&	operator[] (unsigned	int	 index) const

operator[].	Wraps	the	function	getElementAt(),	so	you	have	the	same
syntax	like	for	arrays.

§	operator[]()	[2/2]
Etype	&	operator[] (unsigned	int	 index)

operator[].	Wraps	the	function	getElementAt(),	so	you	have	the	same
syntax	like	for	arrays.

§	getCapacity()
unsigned	int	getCapacity (void) const

Returns	the	current	capacity	of	the	JVector.

Returns
the	current	capacity.

§	contains()
bool	contains (const	Etype	&	 elem) const

Checks,	if	the	JVector	contains	the	passed	data	as	an	element.

Parameters
elem a	reference	to	the	data,	you	want	to	check.	Needs	to	be

either	a	primitive	type	or	an	object	of	a	class	with	an
overloaded	==	operator.

Returns
true,	if	the	element	was	found,	false	otherwise.

§	getFirstElement()
const	Etype	&	getFirstElement (void) const

Returns	the	first	element	of	the	JVector.	Shows	undefined	behavior	for
empty	vectors.

Returns
the	first	element.

§	getIndexOf()
int	getIndexOf (const	Etype	&	 elem) const

Searches	the	JVector	from	the	first	element	in	forward	direction	for	the
passed	element	and	returns	the	first	index,	where	it	was	found.

Parameters
elem the	element,	to	search	for.

Returns
the	index	of	the	first	found	of	the	passed	element	or	-1,	if	the
element	could	not	be	found	at	all.

§	getIsEmpty()
bool	getIsEmpty (void) const

Checks,	if	the	JVector	is	empty.

Returns
true,	if	the	JVector	is	empty,	or	false,	if	it	contains	at	least	one
element.

§	getLastElement()
const	Etype	&	getLastElement (void) const

Returns	the	last	element	of	the	JVector.	Shows	undefined	behavior	for
empty	vectors.

Returns
the	last	element.

§	getLastIndexOf()
int	getLastIndexOf (const	Etype	&	 elem) const

Searches	the	JVector	from	the	last	element	in	backward	direction	for
the	passed	element	and	returns	the	first	index,	where	it	was	found.

Parameters
elem the	element,	to	search	for.

Returns
the	index	of	the	first	found	of	the	passed	element	or	-1,	if	the
element	could	not	be	found	at	all.

§	getSize()
unsigned	int	getSize (void) const

Returns	the	size	of	the	JVector.

Returns
the	size.

§	getCArray()
const	Etype	*	getCArray (void) const

Remarks
For	a	deep-copy	copyInto()	should	be	used.	Use	getSize()	to	find
out	the	element	count	of	the	returned	array.

Returns
a	read-only	pointer	copy	of	the	Etype*,	that	is	internally	used	to
store	the	elements.

§	copyInto()
void	copyInto (Etype	*	 array) const

Copies	all	elements	of	the	JVector	into	the	passed	array.	The	caller
has	to	make	sure,	that	the	array	is	big	enough	to	take	all	elements	of
the	vector,	otherwise	calling	this	function	produces	a	buffer	overflow.

Parameters
array an	array	of	variables	of	the	type	of	the	template	overload.

Returns
nothing.

§	addElement()
void	addElement (const	Etype	&	 elem)

Adds	an	element	to	the	JVector.	This	automatically	resizes	the
JVectors	capacity	to	it's	old	size	+	the	capacityIncrement,	that	you
passed,	when	creating	the	vector	(if	you	passed	no	value	for
capacityIncrement,	then	it	was	set	to	it's	default	value	(see	constructor
doc)),	if	the	size	of	the	JVector	has	already	reached	it's	capacity.
When	resizing	occurs,	then	most	likely	the	whole	vector	has	to	be
copied	to	new	memory.	So	this	can	be	an	expensive	operation	for
huge	vectors.

Note
When	this	function	needs	to	increase	the	capacity,	then	all
references/pointers	to	elements,	that	have	been	acquired	before
this	function	has	been	called,	become	invalid!

Parameters
elem the	element	to	add.

Returns
nothing.

§	addElements()	[1/2]
void	addElements (const	JVector<	Etype	>	&	 vector)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.
Calls	the	above	function	with	vector.getCArray()	and	vector.getSize()
as	parameters

Parameters
vector the	vector	from	which	to	copy	the	elements

§	addElements()	[2/2]
void	addElements (const	Etype	*	 carray,

unsigned	int	 elementCount	
)

Adds	the	first	'elementCount'	elements	of	the	provided	array	to	the
JVector.	This	automatically	resizes	the	JVectors	capacity	to	it's	old
size	+	'elementCount',	if	the	new	size	of	the	JVector	is	bigger	than	it's
old	capacity.	When	resizing	occurs,	then	most	likely	the	whole	vector
has	to	be	copied	to	new	memory.	So	this	can	be	an	expensive
operation	for	huge	vectors.

Note
When	this	function	needs	to	increase	the	capacity,	then	all
references/pointers	to	elements,	that	have	been	acquired	before
this	function	has	been	called,	become	invalid!

Parameters
carray the	elements	to	add.
elementCount the	number	of	elements	to	add	-	must	not	be

greater	than	the	size	of	carray.

Returns
nothing.

§	ensureCapacity()
void	ensureCapacity (unsigned	int	 minCapacity)

Resizes	the	JVector	to	the	passed	capacity,	if	it's	old	capacity	has
been	smaller.	If	resizing	is	needed,	then	the	whole	JVector	has	to	be
copied	into	new	memory,	so	in	that	case	this	is	an	expensive	operation
for	huge	JVectors.	Call	this	function,	before	you	add	a	lot	of	elements
to	the	vector,	to	avoid	multiple	expensive	resizes	through	adding.

Note
When	this	function	needs	to	increase	the	capacity,	then	all
references/pointers	to	elements,	that	have	been	acquired	before
this	function	has	been	called,	will	get	invalid!

Parameters
minCapacity the	new	capacity	for	the	JVector.

Returns
nothing.

§	removeAllElements()
void	removeAllElements (void)

Clears	the	JVector.

Returns
nothing.

§	removeElement()
bool	removeElement (const	Etype	&	 obj)

Removes	the	passed	element	from	the	JVector.

Parameters
obj the	element,	to	remove.

Returns
true,	if	the	element	has	been	removed,	false,	if	it	could	not	be
found.

§	trimToSize()
void	trimToSize (void)

Trims	the	capacity	of	the	JVector	to	the	size,	it	currently	uses.	Call	this
function	for	a	JVector	with	huge	unused	capacity,	if	you	do	not	want	to
add	further	elements	to	it	and	if	you	are	short	on	memory.	This	function
copies	the	whole	vector	to	new	memory,	so	it	is	expensive	for	huge
vectors.	If	you	only	add	one	element	to	the	JVector	later,	it's	copied
again.

Note
Trimming	a	JVector	instance	(that	isn't	already	optimally	trimmed)
will	make	all	references/pointers	to	elements,	that	have	been
acquired	before	this	function	has	been	called,	invalid!

§	getElementAt()
const	Etype	&	getElementAt (unsigned	int	 index) const

Returns	the	element	of	the	JVector	at	the	passed	index.	This	does	not
check	for	valid	indexes	and	shows	undefined	behavior	for	invalid
indexes!

Parameters
index the	index	of	the	element,	that	should	be	returned.	Must	not

be	bigger	than	the	current	size	of	the	vector!

Returns
the	element	at	the	passed	index.

§	insertElementAt()
void	insertElementAt (const	Etype	&	 obj,

unsigned	int	 index	
)

Inserts	parameter	one	into	the	JVector	at	the	index,	passed	as
parameter	two.	Because	all	elements	above	or	at	the	passed	index
have	to	be	moved	one	position	up,	it	is	expensive,	to	insert	an	element
at	an	low	index	into	a	huge	JVector.

Parameters
obj the	element,	to	insert.
index the	position	in	the	JVector,	the	element	is	inserted	at.

Returns
nothing.

§	removeElementAt()
void	removeElementAt (unsigned	int	 index)

Removes	the	element	at	the	passed	index	from	the	JVector.	Shows
undefined	behavior	for	invalid	indexes.

Parameters
index the	index	of	the	element	to	remove.

Returns
nothing.

§	setElementAt()
void	setElementAt (const	Etype	&	 obj,

unsigned	int	 index	
)

Sets	the	element	at	the	passed	index	of	the	JVector	to	the	passed
new	value.	Shows	undefined	behavior	for	invalid	indexes.

Parameters
obj the	new	value.
index the	index	of	the	element,	which	is	set	to	the	new	value.

Returns
nothing.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common KeyObject

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

KeyObject<	Etype	>
Class	Template	Reference

Inheritance	diagram	for	KeyObject<	Etype	>:

[legend]

Collaboration	diagram	for	KeyObject<	Etype	>:

[legend]

Public	Member	Functions
	 KeyObject	(const	KeyObject<	Etype	>
&toCopy)

	
	 KeyObject	(const	Object	&obj)

	
	 KeyObject	(const	Object	*obj)

	
	 KeyObject	(const	typename
Helpers::ConfirmAllowedKey<	Etype
>::type	&data)

	
virtual	 ~KeyObject	(void)

	
virtual	KeyObject<	Etype	>	&	 operator=	(const	KeyObject<	Etype	>

&toCopy)
	
virtual	KeyObject<	Etype	>	&	 operator=	(const	Object	&toCopy)
	

Etype	 getDataCopy	(void)	const
	

Etype	*	 getDataAddress	(void)	const
	
	Public	Member	Functions	inherited	from	Object

	 Object	(void)
	

virtual	 ~Object	(void)
	

	 Object	(const	Object	&toCopy)
	

bool	 operator==	(const	Object	&toCompare)
const

	
bool	 operator!=	(const	Object	&toCompare)

const

	
nByte	 getType	(void)	const

	
nByte	 getCustomType	(void)	const

	
const	short	*	 getSizes	(void)	const

	
unsigned	int	 getDimensions	(void)	const

	
JString	&	 toString	(JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

template<typename	Etype>
class	ExitGames::Common::KeyObject<	Etype	>

Container	class	template	for	objects	to	be	stored	as	keys	in	a	Hashtable
or	Dictionary.

Remarks
In	most	cases	the	library	will	do	the	work	of	storing	a	key	in	a
KeyObject	for	you,	so	for	example	you	don't	have	to	explicitly	create
an	instance	of	this	class,	when	storing	a	key-value	pair	in	a
Dictionary	or	Hashtable	instance.	However	there	are	some
situations,	where	you	will	receive	instances	of	class	Object	or	want
to	create	them	(for	example	Hashtable::getKeys()	will	return	a
JVector<Object>)	and	in	that	case	casting	those	instances	into
KeyObject-instances	can	be	a	convenient	way	of	assuring	a	type-
safe	access	to	their	payloads.

Constructor	&	Destructor	Documentation

§	KeyObject()	[1/4]
KeyObject (const	KeyObject<	Etype	>	&	 toCopy)

Copy-Constructor.

Creates	an	object	out	of	a	deep	copy	of	its	parameter.

The	parameter	has	to	be	of	the	same	template	overload	as	the	object,
you	want	to	create.

Parameters
toCopy The	object	to	copy.

§	KeyObject()	[2/4]
KeyObject (const	Object	&	 obj)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	Object&.

If	the	type	of	the	content	of	the	passed	object	does	not	match	the
template	overload	of	the	object	to	create,	an	empty	object	is	created
instead	of	a	copy	of	the	passed	object,	which	leads	to	getDataCopy()
and	getDataAddress()	return	0.

Parameters
obj The	Object&	to	copy.

§	KeyObject()	[3/4]
KeyObject (const	Object	*	 obj)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	Object*.

If	the	type	of	the	content	of	the	passed	object	does	not	match	the
template	overload	of	the	object	to	create,	an	empty	object	is	created
instead	of	a	copy	of	the	passed	object,	which	leads	to	getDataCopy()
and	getDataAddress()	return	0.

Parameters
obj The	Object*	to	copy.

§	KeyObject()	[4/4]
KeyObject (const	typename	Helpers::ConfirmAllowedKey<	Etype	>::type	&	

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	Etype.

Parameters
data The	value	to	copy.	Has	to	be	of	a	supported	type.

§	~KeyObject()
~KeyObject (void) virtual

Destructor.

Member	Function	Documentation

§	operator=()	[1/2]
KeyObject<	Etype	>	&
operator= (const	KeyObject<	Etype	>	&	 toCopy) virtual

operator=	:	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/2]
KeyObject<	Etype	>	&	operator= (const	Object	&	 toCopy) virtual

operator=	:	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

If	the	type	of	the	content	of	the	right	operand	does	not	match	the
template	overload	of	the	left	operand,	then	the	left	operand	stays
unchanged.

Reimplemented	from	Object.

§	getDataCopy()
Etype	getDataCopy (void) const

Returns	a	deep	copy	of	the	content	of	the	object.	If	you	only	need
access	to	the	content,	while	the	object	still	exists,	you	can	use
getDataAddress()	instead	to	avoid	the	deep	copy.	That	is	especially
interesting	for	large	content,	of	course.

If	successful,	the	template	overloads	for	array	types	of	this	function
allocate	the	data	for	the	copy,	so	you	have	to	free	(for	arrays	of
primitive	types)	or	delete	(for	arrays	of	class	objects)	it,	as	soon,	as
you	do	not	need	the	array	anymore.	All	non-array	copies	free	there
memory	automatically,	as	soon	as	they	leave	their	scope,	same	as	the
single	indices	of	the	array,	as	soon,	as	the	array	is	freed.

In	case	of	an	error	this	function	returns	0	for	primitive	return	types	and
empty	objects	for	classes.

Returns
a	deep	copy	of	the	content	of	the	object	if	successful,	0	or	an
empty	object	otherwise.

§	getDataAddress()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Etype	*	getDataAddress (void) const

Returns	the	address	of	the	original	content	of	the	object.	If	you	need
access	to	the	data	above	lifetime	of	the	object,	call	getDataCopy().

The	return	type	is	a	pointer	to	the	data,	so	it	is	a	double-pointer,	of
course,	for	template	overloads,	which	data	already	is	a	pointer.

In	case	of	an	error,	this	function	returns	0.

Returns
the	address	of	the	original	content	of	the	object,	if	successful,	0
otherwise.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common LogFormatOptions

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

LogFormatOptions
Class	Reference

Inheritance	diagram	for	LogFormatOptions:

[legend]

Collaboration	diagram	for	LogFormatOptions:

[legend]

Public	Member	Functions
bool	 getAddDateTime	(void)	const

	
LogFormatOptions	&	 setAddDateTime	(bool	addTime)

	
bool	 getAddLevel	(void)	const

	
LogFormatOptions	&	 setAddLevel	(bool	addLevel)

	
bool	 getAddFile	(void)	const

	
LogFormatOptions	&	 setAddFile	(bool	addFile)

	
bool	 getAddFunction	(void)	const

	
LogFormatOptions	&	 setAddFunction	(bool	addFunction)

	
unsigned	int	 getMaxNumberOfNamespaces	(void)

const
	

LogFormatOptions	&	 setMaxNumberOfNamespaces	(unsigned
int	maxNumberOfNamespaces)

	
bool	 getAddLine	(void)	const

	
LogFormatOptions	&	 setAddLine	(bool	addLine)

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Detailed	Description

Used	to	customize	the	formatting	of	the	logging	output	that	is	generated
by	the	Logger	class.	Each	Logger	instance	holds	its	own
LogFormatOptions	instance	that	can	be	set	through
Logger::setLogFormatOptions().

See	also
Logger::getFormatOptions(),	Logger::setFormatOptions()

Member	Function	Documentation

§	getAddDateTime()
bool	getAddDateTime (void) const

Returns
'true',	if	log	lines	are	prefixed	with	the	date	and	time	of	the
EGLOG()	call,	'false'	otherwise.

See	also
setAddDateTime()

§	setAddDateTime()
LogFormatOptions	&	setAddDateTime (bool	 addTime)

Sets	the	value	of	the	AddDateTime	flag.	The	default	value	of	this	flag	is
'true'.

Parameters
addTime 'true'	instructs	the	Logger	instance	to	prefix	log	lines

with	the	date	and	time	of	the	EGLOG()	call,	'false'
prevents	it	from	doing	so.

See	also
getAddDateTime()

§	getAddLevel()
bool	getAddLevel (void) const

Returns
'true',	if	log	lines	are	prefixed	with	the	DebugLevel	of	the
EGLOG()	call,	'false'	otherwise.

See	also
setAddLevel()

§	setAddLevel()
LogFormatOptions	&	setAddLevel (bool	 addLevel)

Sets	the	value	of	the	AddLevel	flag.	The	default	value	of	this	flag	is
'true'.

Parameters
addLevel 'true'	instructs	the	Logger	instance	to	prefix	log	lines

with	the	DebugLevel	of	the	EGLOG()	call,	'false'
prevents	it	from	doing	so.

See	also
getAddLevel()

§	getAddFile()
bool	getAddFile (void) const

Returns
'true',	if	log	lines	are	prefixed	with	the	source	file	of	the	EGLOG()
call,	'false'	otherwise.

See	also
setAddFile()

§	setAddFile()
LogFormatOptions	&	setAddFile (bool	 addFile)

Sets	the	value	of	the	AddFile	flag.	The	default	value	of	this	flag	is	'true'.

Parameters
addFile 'true'	instructs	the	Logger	instance	to	prefix	log	lines	with

the	source	file	of	the	EGLOG()	call,	'false'	prevents	it
from	doing	so.

See	also
getAddFile()

§	getAddFunction()
bool	getAddFunction (void) const

Returns
'true',	if	log	lines	are	prefixed	with	the	name	of	the	function	that	did
the	EGLOG()	call,	'false'	otherwise.

See	also
setAddFunction()

§	setAddFunction()
LogFormatOptions	&	setAddFunction (bool	 addFunction)

Sets	the	value	of	the	AddFunction	flag.	The	default	value	of	this	flag	is
'true'.

Parameters
addFunction 'true'	instructs	the	Logger	instance	to	prefix	log

lines	with	the	name	of	the	function	that	did	the
EGLOG()	call,	'false'	prevents	it	from	doing	so.

See	also
getAddFunction()

§	getMaxNumberOfNamespaces()
unsigned	int	getMaxNumberOfNamespaces (void) const

Returns
the	maximum	number	of	namespaces	that	are	included	in	the
name	of	the	function	that	did	the	EGLOG()	call.

See	also
setMaxNumberOfNamespaces()

§	setMaxNumberOfNamespaces()
LogFormatOptions	&
setMaxNumberOfNamespaces (unsigned	int	 maxNumberOfNamespaces

Sets	the	maximum	number	of	namespaces	that	are	included	in	the	name	of	the
function	that	did	the	EGLOG()	call.	The	default	value	of	this	option	is
UINT_MAX,	which	means	that	all	namespaces	should	be	printed.

Note
The	name	of	the	class	counts	as	a	namespace	in	this	context	and	inner
namespaces	take	precedence	about	outer	namespaces.

Example:

The	fully	qualified	name	of	the	class	member	function	includes	3	namespaces
and	the	class	name	and	is
CompanyName::ProductName::ProjectName::ClassName::functionName().

If	the	maxNumberOfNamespaces	is	0,	then	the	printed	function	name	will
be	functionName().
If	the	maxNumberOfNamespaces	is	1,	then	the	printed	function	name	will
be	ClassName::functionName().
If	the	maxNumberOfNamespaces	is	2,	then	the	printed	function	name	will
be	ProjectName::ClassName::functionName().
If	the	maxNumberOfNamespaces	is	3,	then	the	printed	function	name	will
be	ProductName::ProjectName::ClassName::functionName().
If	the	maxNumberOfNamespaces	is	4,	then	the	printed	function	name	will
be
CompanyName::ProductName::ProjectName::ClassName::functionName().
If	the	maxNumberOfNamespaces	is	5,	then	the	printed	function	name	will
still	be
CompanyName::ProductName::ProjectName::ClassName::functionName().

Usually	the	values	that	make	the	most	sense	are:

UINT_MAX	(the	fully	qualified	function	name	including	all	namespaces)
0	(just	the	function	name	itself)

1	(for	class	member	functions	this	means	the	function	name	and	the	class
name,	but	no	namespaces,	while	for	free	functions	it	means	the	function
name	and	the	name	of	the	most	inner	namespace,	but	not	the	names	of
any	other	namespaces)

Remarks
This	option	is	only	relevant	when	the	values	returend	by	getAddFunction()
is	set	to	'true'	(which	is	the	default).

Parameters
maxNumberOfNamespaces the	maximum	number	of	namespaces

See	also
getAddFunction(),	setAddFunction(),	getMaxNumberOfNamespaces()

§	getAddLine()
bool	getAddLine (void) const

Returns
'true',	if	log	lines	are	prefixed	with	the	line	of	the	EGLOG()	call,
'false'	otherwise.

See	also
setAddLine()

§	setAddLine()
LogFormatOptions	&	setAddLine (bool	 addLine)

Sets	the	value	of	the	AddLine	flag.	The	default	value	of	this	flag	is
'true'.

Parameters
addLine 'true'	instructs	the	Logger	instance	to	prefix	log	lines

with	the	line	of	the	EGLOG()	call,	'false'	prevents	it	from
doing	so.

See	also
getAddLine()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Logger

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Logger	Class
Reference

Inheritance	diagram	for	Logger:

[legend]

Collaboration	diagram	for	Logger:

[legend]

Public	Member	Functions
	 Logger	(int
debugLevel=DebugLevel::WARNINGS)

	
void	 log	(int	debugLevel,	const	EG_CHAR

*file,	const	EG_CHAR	*function,	bool
printBrackets,	unsigned	int	line,	const
EG_CHAR	*dbgMsg,...)	const

	
void	 vlog	(int	debugLevel,	const	EG_CHAR

*file,	const	EG_CHAR	*function,	bool
printBrackets,	unsigned	int	line,	const
EG_CHAR	*dbgMsg,	va_list	args)	const

	
int	 getDebugOutputLevel	(void)	const

	
bool	 setDebugOutputLevel	(int	debugLevel)

	
void	 setListener	(const	BaseListener

&listener)
	
const	LogFormatOptions	&	 getFormatOptions	(void)	const
	

void	 setFormatOptions	(const
LogFormatOptions	&formatOptions)

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Detailed	Description

A	Logger	instance	works	as	debugging	API	to	send	formatted	strings	to
its	current	listener	instance	via	the	EGLOG()-macro.

Constructor	&	Destructor	Documentation

§	Logger()
Logger (int	 debugLevel	=	DebugLevel::WARNINGS)

Constructor:	Creates	a	new	Logger	instance	and	sets	the	initial	debug
level.

Parameters
debugLevel the	minimum	debug	level	that	a	message	must	have

to	actually	get	logged	by	this	Logger	instance	(the
default	is	DebugLevel::WARNINGS)

Member	Function	Documentation

§	log()
void	log (int	 debugLevel,

const	EG_CHAR	*	 file,
const	EG_CHAR	*	 function,
bool	 printBrackets,
unsigned	int	 line,
const	EG_CHAR	*	 dbgMsg,
	 ...	
) const

Not	intended	for	direct	use	-	you	should	use	the	EGLOG()	macro
instead!

§	vlog()
void	vlog (int	 debugLevel,

const	EG_CHAR	*	 file,
const	EG_CHAR	*	 function,
bool	 printBrackets,
unsigned	int	 line,
const	EG_CHAR	*	 dbgMsg,
va_list	 args	
) const

Not	intended	for	direct	use	-	you	should	use	the	EGLOG()	macro
instead!

§	getDebugOutputLevel()
int	getDebugOutputLevel (void) const

Returns	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Returns
one	of	the	values	in	DebugLevel

See	also
setDebugOutputLevel()

§	setDebugOutputLevel()
bool	setDebugOutputLevel (int	 debugLevel)

Sets	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Parameters
debugLevel one	of	the	values	in	DebugLevel

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	setListener()
void	setListener (const	BaseListener	&	 listener)

Sets	parameter	"listener"	as	receiver	for	all	debug	output	information,
which	gets	logged	by	the	Logger	instance,	on	which	this	function	has
been	called.

Parameters
listener a	reference	to	an	instance	of	a	subclass	of

BaseListener

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	getFormatOptions()
const	LogFormatOptions	&	getFormatOptions (void) const

Returns
the	LogFormatOptions	that	are	used	by	this	instance.

See	also
setFormatOptions()

§	setFormatOptions()
void	setFormatOptions (const	LogFormatOptions	&	 formatOptions)

Sets	the	log	format	options	to	the	supplied	value.

Parameters
formatOptions the	new	value	to	which	the	log	format	options	will

be	set

See	also
getFormatOptions()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Object

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Object	Class
Reference

Inheritance	diagram	for	Object:

[legend]

Collaboration	diagram	for	Object:

[legend]

Public	Member	Functions
	 Object	(void)

	
virtual	 ~Object	(void)

	
	 Object	(const	Object	&toCopy)

	
virtual	Object	&	 operator=	(const	Object	&toCopy)
	

bool	 operator==	(const	Object	&toCompare)	const
	

bool	 operator!=	(const	Object	&toCompare)	const
	

nByte	 getType	(void)	const
	

nByte	 getCustomType	(void)	const
	

const	short	*	 getSizes	(void)	const
	

unsigned	int	 getDimensions	(void)	const
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	
virtual	JString	 typeToString	(void)	const

	
JString	 toString	(bool	withTypes=false)	const

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Container	class	designed	to	hold	all	types	of	objects	that	are	supported
by	the	library.

Object	is	the	common	base	for	the	template	classes	KeyObject	and
ValueObject,	that	provide	a	more	convenient	interface	for	handling
Objects.

Remarks
We	do	recommend	to	use	KeyObject	and	ValueObject	instead
whenever	possible,	as	they	provide	a	more	type-safe	and	more
convenient	interface	for	dealing	with	Objects.	However	in	situations
where	an	array	or	a	container	class	holding	multiple	Objects	of
different	types	is	absolutely	needed,	using	the	Object	interface	can
be	the	only	option.

See	also
KeyObject,	ValueObject

Constructor	&	Destructor	Documentation

§	Object()	[1/2]
Object (void)

Constructor:	Creates	an	empty	Object.	You	have	to	set	the	content
with	operator=	before	you	can	use	the	object.

§	~Object()
~Object (void) virtual

Destructor.

§	Object()	[2/2]
Object (const	Object	&	 toCopy)

Copy-Constructor:	Creates	an	Object	containing	a	deep	copy	of	the
argument	passed.

Parameters
toCopy The	object	to	copy.

Member	Function	Documentation

§	operator=()
Object	&	operator= (const	Object	&	 toCopy) virtual

operator=	:	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

Reimplemented	in	ValueObject<	Etype	>,	and	KeyObject<	Etype	>.

§	operator==()
bool	operator== (const	Object	&	 toCompare) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	instances	are	considered	equal,	if	all	of	the	following	is	true:

their	types	as	returned	by	getType()	match
their	payloads'	dimension-counts	as	returned	by	getDimensions()
match
their	custom	types	as	returned	by	getCustomType()	match
their	payload	sizes	as	returned	by	getSizes()	match	on	every
dimension
every	element	in	every	dimension	of	an	instance's	payload	equals
the	according	element	in	the	other	instance's	payload	(non-array
payloads	are	handled	as	the	first	element	in	a	1D	arrays	with	an
element	count	of	1)

§	operator!=()
bool	operator!= (const	Object	&	 toCompare) const

operator!=.

Returns
false,	if	operator==()	would	return	true,	true	otherwise.

§	getType()
nByte	getType (void) const

Returns	the	type	of	the	object.

The	return	value	should	be	one	of	the	constants	representing	the
serialize-able	data	types	supported	by	Neutron/Photon.	Please	refer	to
EG_Object	for	a	complete	list.

Returns
the	type	of	the	object.

§	getCustomType()
nByte	getCustomType (void) const

Returns	the	type	of	the	object.

This	will	return	the	custom	type,	if	getType()	returns	EG_CUSTOM.	If
getType()	returns	something	else	than	EG_CUSTOM,	then	the	custom
type	is	not	in	use	for	that	object	instance	and	this	will	return	0.

Returns
the	custom	type	of	a	object.

§	getSizes()
const	short	*	getSizes (void) const

Returns	an	array	holding	the	amounts	of	elements	of	the	instance's
payload	for	each	dimension	of	the	payload.	The	amount	of	elements	in
the	returned	array	of	sizes	will	equal	the	return	value	of
getDimensions(),	but	it	will	always	be	at	least	1,	even	when
getDimensions()	returns	0.	So,	if	the	payload	of	the	instance	is	not	an
array,	then	this	function	will	return	an	array	with	1	element,	if	the
payload	is	a	1D	array,	then	it	will	return	an	array	with	1	element,	for	a
2D	array	payload	it	will	return	an	array	with	2	elements,	for	a	3D	array
payload	an	array	with	3	elements	and	so	on.

Returns
the	sizes	of	all	dimensions	of	the	array	contained	in	the	Object.

§	getDimensions()
unsigned	int	getDimensions (void) const

Returns	the	amount	of	dimensions	for	objects	holding	multi-
dimensional	array	data,	1	for	single-dimensional	arrays	and	0	for	non-
array	data.

Returns
the	amount	of	dimensions	for	the	data.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Serializer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Serializer	Class
Reference

Inheritance	diagram	for	Serializer:

[legend]

Collaboration	diagram	for	Serializer:

[legend]

Public	Member	Functions
const	nByte	*	 getData	(void)	const

	
int	 getSize	(void)	const

	
template<typename	T	>

bool	 push	(const	T	&data)
	
template<typename	T	>

bool	 push	(const	T	pData,	typename
Helpers::ArrayLengthType<	T	>::type	arraySize)

	
template<typename	T	>

bool	 push	(const	T	pData,	const	short	*arraySizes)
	

JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	
virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	Serializer	class	serializes	everything,	that	gets	added	to	it,	into	a
byte-array.

You	can	add	data	of	suported	types	to	a	Serializer	instance	by	calling
push()	on	it,	passing	that	data.	A	call	to	push()	will	automatically	serialize
the	data	before	adding	it	to	the	instance.	The	content	of	a	Serializer
instance	can	be	retrieved	in	form	form	of	a	byte	array	by	calling
getData().

If	you	do	multiple	calls	to	push()	on	the	same	instance,	then	the	array
retrieved	by	getData()	will	contain	serialized	representations	of	the
passed	data	for	all	of	them.	The	order	in	which	these	representations	are
stored	will	match	the	order	of	the	calls.

The	serialized	data	can	be	used	to	construct	a	DeSerializer	instance
from	it,	which	provides	the	interface	for	retrieving	the	original	datatypes
from	the	byte	array.

Remarks
The	byte	array	that	is	returned	by	getData()	has	been	serialized	into
a	format,	that	can	be	deserialized	by	the	Photon	Server	and	other
Photon	Client	platforms.

Member	Function	Documentation

§	getData()
const	nByte	*	getData (void) const

Remarks
The	size	of	the	array,	that's	returned	by	this	function,	can	be
retrieved	by	calling	getSize()	on	the	the	same	instance	without
adding	new	data	to	the	instance	between	the	calls	to	this	function
and	to	getSize().

Returns
the	payload	in	form	of	a	byte	array

§	getSize()
int	getSize (void) const

Returns
the	size	in	bytes	of	the	payload

§	push()	[1/3]
bool	push (const	T	&	 data)

Adds	a	serialized	representation	of	parameter	data	to	the	Serializer-
instance	on	which	it	is	called.

Template	Parameters

T type	of	parameter	data	-	has	to	be	of	one	of	the	supporteddatatypes

Parameters
data data	to	serialize

Returns
true	if	successful,	false	in	case	of	an	error

§	push()	[2/3]
bool	push (const	T	 pData,

typename	Helpers::ArrayLengthType<	T	>::type	 arraySize	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	singledimensional	arrays	and	NULL-pointers
passed	for	parameter	pData.

Parameters
pData array	of	data	to	serialize
arraySize the	size	of	the	value	array

§	push()	[3/3]
bool	push (const	T	 pData,

const	short	*	 arraySizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	multidimensional	arrays	and	NULL-pointers
passed	for	parameter	val.	The	array,	passed	for	parameter	pData	has
to	be	a	pointer	of	the	correct	abstraction	level,	meaning	a	normal
pointer	for	a	singledimensional	array,	a	doublepointer	for	a
twodimensional	array,	a	triplepointer	for	a	threedimensional	array	and
so	on.

Parameters
pData array	of	data	to	serialize
arraySizes the	sizes	for	every	dimension	of	the	array

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ToString

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

ToString	Class
Reference abstract

Inheritance	diagram	for	ToString:

[legend]

Public	Member	Functions
virtual	 ~ToString	(void)

	
virtual	JString	 typeToString	(void)	const

	
virtual	JString	&	 toString	(JString	&retStr,	bool	withTypes=false)

const	=0
	

JString	 toString	(bool	withTypes=false)	const
	

Detailed	Description

This	class	provides	an	interface	for	printing	the	payload	of	an	instance	of
any	subclass	to	a	string.

Every	subclass	of	this	class	will	provide	an	implementation	for	toString()
in	its	public	interface	and	will	therefor	be	printable.	The	implementations
for	container	classes	will	include	the	output-strings	of	their	elements	into
their	own	output	string.

Constructor	&	Destructor	Documentation

§	~ToString()
~ToString (void) virtual

Destructor.

Member	Function	Documentation

§	typeToString()
JString	typeToString (void) const virtual

Remarks
This	function	is	intended	for	debugging	purposes.	For	runtime	type
checking	you	should	use	RTTI's	typeid()	instead.	Demangling	and
cutting	off	of	namespaces	will	only	happen	on	platforms,	which
offer	a	system	functionality	for	demangling.

Returns
a	string	representation	of	the	class	name	of	the	polymorphically
correct	runtime	class	of	the	instance,	on	which	it	is	called	on,	after
this	class	name	has	been	demangled	and	eventual	namespaces
have	been	removed.

Reimplemented	in	Dictionary<	EKeyType,	EValueType	>,
Dictionary<	nByte,	Common::ExitGames::Common::Object	>,
Dictionary<	nByte,	Common::Object	>,	and	DictionaryBase.

§	toString()	[1/2]
toString (JString	&	 retStr,

bool	 withTypes	=	false	
) const pure	virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implemented	in	JString,	JVector<	Etype	>,	JVector<
Common::ExitGames::Common::JString	>,	JVector<	nByte	>,
JVector<	ExitGames::LoadBalancing::LobbyStatsRequest	>,
JVector<	int	>,	JVector<
Common::ExitGames::Common::JVector<	unsigned	int	>	>,
JVector<	ExitGames::LoadBalancing::Room	*>,	JVector<
ExitGames::LoadBalancing::Player	*>,	JVector<
Common::ExitGames::Common::Object	>,	JVector<
ExitGames::LoadBalancing::FriendInfo	>,	JVector<
ExitGames::Chat::Channel	*>,	JVector<
ExitGames::Common::Object	>,	RoomOptions,	Dictionary<

EKeyType,	EValueType	>,	Dictionary<	nByte,
Common::ExitGames::Common::Object	>,	Dictionary<	nByte,
Common::Object	>,	Hashtable,	TrafficStatsGameLevel,
RaiseEventOptions,	Object,	EGTime,	TrafficStats,
AuthenticationValues,	AuthenticationValues,	Player,
LogFormatOptions,	Room,	Channel,	Logger,	WebFlags,
DictionaryBase,	BaseCharString,	CustomTypeFactory<	typeCode
>,	Serializer,	FriendInfo,	LobbyStatsRequest,
LobbyStatsResponse,	and	DeSerializer.

§	toString()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	toString (bool	 withTypes	=	false) const

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
withTypes set	to	true,	to	include	type	information	in	the

generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

See	also
JString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common UTF8String

Classes	|	Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

UTF8String	Class
Reference

Inheritance	diagram	for	UTF8String:

[legend]

Collaboration	diagram	for	UTF8String:

[legend]

Public	Member	Functions
	 UTF8String	(void)

	
	 UTF8String	(const	UTF8String	&str)

	
	 UTF8String	(const	JString	&str)

	
	 UTF8String	(const	char	*str)

	
	 UTF8String	(const	EG_CHAR	*str)

	
	 ~UTF8String	(void)

	
UTF8String	&	 operator=	(const	UTF8String	&Rhs)
	
UTF8String	&	 operator=	(const	JString	&Rhs)
	
UTF8String	&	 operator=	(const	char	*Rhs)
	
UTF8String	&	 operator=	(const	EG_CHAR	*Rhs)
	

	 operator	const	char	*	(void)	const
	

	 operator	JString	(void)	const
	

JString	 JStringRepresentation	(void)	const
	

unsigned	int	 size	(void)	const
	
	Public	Member	Functions	inherited	from	BaseCharString

	 BaseCharString	()
	

virtual	 ~BaseCharString	(void)
	

const	char	*	 cstr	(void)	const

	
unsigned	int	 length	(void)	const

	
JString	&	 toString	(JString	&retStr,	bool	withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	
virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Static	Public	Member	Functions
static	unsigned	int	 size	(const	JString	&str)

	
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

The	UTF8String	class	is	a	container	class	for	char*	strings,	encoded	with
UTF8.

This	is	the	UTF8	implementation	of	BaseCharString.	Please	look	at	the
doc	of	the	abstract	base	class	for	more	information.

Constructor	&	Destructor	Documentation

§	UTF8String()	[1/5]
UTF8String (void)

Constructor:	Creates	an	empty	UTF8String.

§	UTF8String()	[2/5]
UTF8String (const	UTF8String	&	 wstr)

Copy-Constructor:	Creates	a	new	UTF8String	from	a	deep	copy	of	the
argument	string.

Parameters
wstr The	UTF8String	to	copy.

§	UTF8String()	[3/5]
UTF8String (const	JString	&	 wstr)

Copy-Constructor:	Creates	a	new	UTF8String	from	a	deep	copy	of	the
argument	string.

Parameters
wstr The	JString	to	copy.

§	UTF8String()	[4/5]
UTF8String (const	char	*	 str)

Copy-Constructor:	Creates	a	new	UTF8String	from	a	deep	copy	of	the
argument	string.

Parameters
str The	UTF8	string	to	copy.

§	UTF8String()	[5/5]
UTF8String (const	EG_CHAR	*	 wstr)

Copy-Constructor:	Creates	a	new	UTF8String	from	a	deep	copy	of	the
argument	string.

Parameters
wstr The	Unicode	string	to	copy.

§	~UTF8String()
~UTF8String (void)

Destructor.

Member	Function	Documentation

§	operator=()	[1/4]
UTF8String	&	operator= (const	UTF8String	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/4]
UTF8String	&	operator= (const	JString	&	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[3/4]
UTF8String	&	operator= (const	char	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator=()	[4/4]
UTF8String	&	operator= (const	EG_CHAR	*	 Rhs)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator	const	char	*()
operator	const	char	* (void) const virtual

operator	const	char*.

Copies	a	pointer	to	the	content	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Implements	BaseCharString.

§	operator	JString()
operator	JString (void) const virtual

operator	JString.

Copies	a	JString	representation	of	its	right	operand	into	its	left
operand.

This	overwrites	old	data	in	the	left	operand.

Implements	BaseCharString.

§	JStringRepresentation()
JString	JStringRepresentation (void) const virtual

Returns
a	JString	representation	of	the	string.

Implements	BaseCharString.

§	size()	[1/2]
unsigned	int	size (void) const virtual

The	default	implementation	of	this	function	will	just	return	length(),	but
for	multibyte	strings	like	UTF8String	the	return	values	of	length()	and
size()	can	differ.

Returns
the	size	of	the	string	in	bytes

Implements	BaseCharString.

§	size()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

unsigned	int	size (const	JString	&	 str) static

Parameters
str a	JString	instance

Returns
the	size	in	bytes	that	an	UTF8	representation	of	the	provided
JString	instance	would	have

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ValueObject

Classes	|	Public	Member	Functions	|
List	of	all	members

	Photon	C++
Client	API		4.1.12.2

ValueObject<	Etype	>
Class	Template	Reference

Inheritance	diagram	for	ValueObject<	Etype	>:

[legend]

Collaboration	diagram	for	ValueObject<	Etype	>:

[legend]

Public	Member	Functions
	 ValueObject	(const
ValueObject<	Etype	>
&toCopy)

	
	 ValueObject	(const	Object
&obj)

	
	 ValueObject	(const	Object
*obj)

	
	 ValueObject	(const
typename
Helpers::ConfirmAllowed<
Etype	>::type	&data)

	
	 ValueObject	(const
typename
Helpers::ConfirmAllowed<
Etype	>::type	pData,
typename
Helpers::ArrayLengthType<
Etype	>::type	size)

	
	 ValueObject	(const
typename
Helpers::ConfirmAllowed<
Etype	>::type	pData,	const
short	*sizes)

	
virtual	 ~ValueObject	(void)

	
virtual	ValueObject<	Etype	>	&	 operator=	(const

ValueObject<	Etype	>
&toCopy)

	
virtual	ValueObject<	Etype	>	&	 operator=	(const	Object

&toCopy)
	
const	Helpers::ArrayLengthType<	Etype	>::type	*	 getSizes	(void)	const
	

Etype	 getDataCopy	(void)	const
	

Etype	*	 getDataAddress	(void)
const

	
	Public	Member	Functions	inherited	from	Object

	 Object	(void)
	

virtual	 ~Object	(void)
	

	 Object	(const	Object
&toCopy)

	
bool	 operator==	(const	Object

&toCompare)	const
	

bool	 operator!=	(const	Object
&toCompare)	const

	
nByte	 getType	(void)	const

	
nByte	 getCustomType	(void)

const
	

const	short	*	 getSizes	(void)	const
	

unsigned	int	 getDimensions	(void)
const

	
JString	&	 toString	(JString	&retStr,

bool	withTypes=false)
const

	

	Public	Member	Functions	inherited	from	Base
virtual	 ~Base	(void)

	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool
withTypes=false)	const

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

template<typename	Etype>
class	ExitGames::Common::ValueObject<	Etype	>

Container	class	template	for	objects	to	be	stored	as	values	in	a
Hashtable	or	Dictionary.

Remarks
In	most	cases	the	library	will	do	the	work	of	storing	a	value	in	a
ValueObject	for	you,	so	for	example	you	don't	have	to	explicitly
create	an	instance	of	this	class,	when	storing	a	key-value	pair	in	a
Dictionary	or	Hashtable	instance.	However	there	are	some
situations,	where	you	will	receive	instances	of	class	Object	or	want
to	create	them	(for	example	Hashtable::getValue()	will	return	an
Object)	and	in	that	case	casting	those	instances	into	ValueObject-
instances	can	be	a	convenient	way	of	assuring	a	type-safe	access	to
their	payloads.

Constructor	&	Destructor	Documentation

§	ValueObject()	[1/6]
ValueObject (const	ValueObject<	Etype	>	&	 toCopy)

Copy-Constructor.

Creates	an	object	out	of	a	deep	copy	of	its	parameter.

The	parameter	has	to	be	of	the	same	template	overload	as	the	object,
you	want	to	create.

Parameters
toCopy The	object	to	copy.

§	ValueObject()	[2/6]
ValueObject (const	Object	&	 obj)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	Object&.

If	the	type	of	the	content	of	the	passed	object	does	not	match	the
template	overload	of	the	object	to	create,	an	empty	object	is	created
instead	of	a	copy	of	the	passed	object,	which	leads	to	getDataCopy()
and	getDataAddress()	returning	0.

Parameters
obj The	Object&	to	copy.

§	ValueObject()	[3/6]
ValueObject (const	Object	*	 obj)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	Object*.

If	the	type	of	the	content	of	the	passed	object	does	not	match	the
template	overload	of	the	object	to	create,	an	empty	object	is	created
instead	of	a	copy	of	the	passed	object,	which	leads	to	getDataCopy()
and	getDataAddress()	return	0.

Parameters
obj The	Object*	to	copy.

§	ValueObject()	[4/6]
ValueObject (const	typename	Helpers::ConfirmAllowed<	Etype	>::type	&	

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	single-value	Etype.

Parameters
data The	value	to	copy.	Has	to	be	of	a	supported	type.

§	ValueObject()	[5/6]
ValueObject (const	typename	Helpers::ConfirmAllowed<	Etype	>::type	 pData

typename	Helpers::ArrayLengthType<	Etype	>::type	 size
)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	single-dimensional	Etype-
array.

Parameters
pData The	array	to	copy.
size The	element	count	of	data.

§	ValueObject()	[6/6]
ValueObject (const	typename	Helpers::ConfirmAllowed<	Etype	>::type	 pData

const	short	*	 sizes
)

Constructor.

Creates	an	object	out	of	a	deep	copy	of	the	passed	multi-dimensional	Etype-
array.

Parameters
pData The	array	to	copy.
sizes The	array	of	element	counts	for	the	different	dimensions	of	data.

§	~ValueObject()
~ValueObject (void) virtual

Destructor.

Member	Function	Documentation

§	operator=()	[1/2]
ValueObject<	Etype	>
&	operator= (const	ValueObject<	Etype	>	&	 toCopy) virtual

operator=	:	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

§	operator=()	[2/2]
ValueObject<	Etype	>	&	operator= (const	Object	&	 toCopy) virtual

operator=	:	Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.
This	overwrites	old	data	in	the	left	operand.

If	the	type	of	the	content	of	the	right	operand	does	not	match	the
template	overload	of	the	left	operand,	then	the	left	operand	stays
unchanged.

Reimplemented	from	Object.

§	getDataCopy()
Etype	getDataCopy (void) const

Returns	a	deep	copy	of	the	content	of	the	object.	If	you	only	need
access	to	the	content,	while	the	object	still	exists,	you	can	use
getDataAddress()	instead	to	avoid	the	deep	copy.	That	is	especially
interesting	for	large	content,	of	course.

If	successful,	the	template	overloads	for	array	types	of	this	function
allocate	the	data	for	the	copy	by	calling	allocateArray<Etype>(),	so
you	have	to	call	deallocateArray()	on	it,	as	soon,	as	you	do	not	need
the	array	anymore.	All	non-array	copies	free	their	memory
automatically,	as	soon	as	they	leave	their	scope,	same	as	the	single
indices	of	the	array,	as	soon,	as	the	array	is	freed.

In	case	of	an	error	this	function	returns	0	for	primitive	return	types	and
for	arrays	and	an	empty	object	for	classes.

Returns
a	deep	copy	of	the	content	of	the	object	if	successful,	0	or	an
empty	object	otherwise.

§	getDataAddress()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Etype	*	getDataAddress (void) const

Returns	the	address	of	the	original	content	of	the	object.	If	you	need
access	to	the	data	beyond	the	lifetime	of	the	object,	call
getDataCopy()	instead	of	this	function.

The	return	type	is	a	pointer	to	the	data,	so	it	is	a	double-pointer	for
template	overloads,	for	which	the	data	itself	already	is	a	pointer.

In	case	of	an	error,	this	function	returns	NULL.

Returns
the	address	of	the	original	content	of	the	object,	if	successful,
NULL	otherwise.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite LitePeer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

LitePeer	Class
Reference

Inheritance	diagram	for	LitePeer:

[legend]

Collaboration	diagram	for	LitePeer:

[legend]

Public	Member	Functions
	 LitePeer	(Photon::PhotonListener
connectionProtocol=Photon::ConnectionProtocol::DEFAULT)

	
virtual	 ~LitePeer	(void)

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	Ftype	parameters,	nByte
eventCode,	nByte	channelID=0,	nByte
eventCaching=EventCache::DO_NOT_CACHE,	const	int
*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte
receiverGroup=ReceiverGroup::OTHERS,	nByte
interestGroup=0)

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	Ftype	pParameterArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize,	nByte	eventCode,	nByte	channelID=0,	nByte
eventCaching=EventCache::DO_NOT_CACHE,	const	int
*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte
receiverGroup=ReceiverGroup::OTHERS,	nByte
interestGroup=0)

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	Ftype	pParameterArray,	const
short	*pArrSizes,	nByte	eventCode,	nByte	channelID=0,
nByte	eventCaching=EventCache::DO_NOT_CACHE,	const
int	*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte
receiverGroup=ReceiverGroup::OTHERS,	nByte
interestGroup=0)

	
virtual	bool	 opJoin	(const	Common::JString

Common::Hashtable
&gameProperties=Common::Hashtable
Common::Hashtable
&actorProperties=Common::Hashtable
broadcastActorProperties=false)

	

virtual	bool	 opLeave	(void)
	

virtual	bool	 opChangeGroups	(const	Common::JVector
*pGroupsToRemove,	const	Common::JVector
*pGroupsToAdd)

	
virtual	bool	 opSetPropertiesOfActor	(int	actorNr,	const

Common::Hashtable	&properties,	bool	broadcast,	nByte
channelID=0)

	
virtual	bool	 opSetPropertiesOfGame	(const	

&properties,	bool	broadcast,	nByte	channelID=0)
	

virtual	bool	 opGetProperties	(nByte	channelID=0)
	

virtual	bool	 opGetPropertiesOfActor	(const	
*properties,	short	numProperties,	const	int
*actorNrList=NULL,	short	numActors=0,	nByte	channelID=0)

	
virtual	bool	 opGetPropertiesOfActor	(const	nByte	*properties,	short

numProperties,	const	int	*actorNrList=NULL,	short
numActors=0,	nByte	channelID=0)

	
virtual	bool	 opGetPropertiesOfGame	(const	

*properties,	short	numProperties,	nByte	channelID=0)
	

virtual	bool	 opGetPropertiesOfGame	(const	nByte	*properties,	short
numProperties,	nByte	channelID=0)

	
	Public	Member	Functions	inherited	from	PhotonPeer

	 PhotonPeer	(PhotonListener	&listener,	nByte
connectionProtocol=ConnectionProtocol::DEFAULT)

	
virtual	 ~PhotonPeer	(void)

	
virtual	bool	 connect	(const	Common::JString

Common::JString	&appID=Common::JString
	

template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	&customData)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
const	short	*pArrSizes)

	
virtual	void	 disconnect	(void)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 opCustom	(const	OperationRequest

bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
	

virtual	bool	 sendOutgoingCommands	(void)
	

virtual	bool	 sendAcksOnly	(void)
	

virtual	bool	 dispatchIncomingCommands
	

virtual	bool	 establishEncryption	(void)
	

virtual	void	 fetchServerTimestamp	(void)
	

virtual	void	 resetTrafficStats	(void)

	
virtual	void	 resetTrafficStatsMaximumCounters

	

virtual	Common::JString	 vitalStatsToString	(bool	all)	const
	

virtual	void	 pingServer	(const	Common::JString
int	pingAttempts)

	
virtual	void	 initUserDataEncryption	(const	

>	&secret)
	

virtual	void	 initUDPEncryption	(const	Common::JVector
&encryptSecret,	const	Common::JVector
&HMACSecret)

	
PhotonListener	*	 getListener	(void)

	
int	 getServerTimeOffset	(void)	const

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation	(void)	const

	
int	 getPeerState	(void)	const

	
int	 getSentCountAllowance	(void)	const

	
void	 setSentCountAllowance	(int	sentCountAllowance)

	
int	 getTimePingInterval	(void)	const

	

void	 setTimePingInterval	(int	timePingInterval)
	

int	 getRoundTripTime	(void)	const

	
int	 getRoundTripTimeVariance	(void)	const

	
int	 getTimestampOfLastSocketReceive

	
int	 getDebugOutputLevel	(void)	const

	
bool	 setDebugOutputLevel	(int	debugLevel)

	
const	Common::LogFormatOptions	&	 getLogFormatOptions	(void)	const
	

void	 setLogFormatOptions	(const
Common::LogFormatOptions

	
int	 getIncomingReliableCommandsCount

	
short	 getPeerID	(void)	const

	
int	 getDisconnectTimeout	(void)	const

	
void	 setDisconnectTimeout	(int	disconnectTimeout)

	
int	 getQueuedIncomingCommands

	
int	 getQueuedOutgoingCommands

	
Common::JString	 getServerAddress	(void)	const

	
bool	 getIsPayloadEncryptionAvailable

	
bool	 getIsEncryptionAvailable	(void)	const

	
int	 getResentReliableCommands

	
int	 getLimitOfUnreliableCommands

	
void	 setLimitOfUnreliableCommands

	
bool	 getCRCEnabled	(void)	const

	
void	 setCRCEnabled	(bool	crcEnabled)

	
int	 getPacketLossByCRC	(void)	const

	
bool	 getTrafficStatsEnabled	(void)	const

	
void	 setTrafficStatsEnabled	(bool	trafficStasEnabled)

	
int	 getTrafficStatsElapsedMs	(void)	const

	
const	TrafficStats	&	 getTrafficStatsIncoming	(void)	const

	
const	TrafficStats	&	 getTrafficStatsOutgoing	(void)	const

	
const	TrafficStatsGameLevel	&	 getTrafficStatsGameLevel	(void)	const

	
nByte	 getQuickResendAttempts	(void)	const

	
void	 setQuickResendAttempts	(nByte	quickResendAttempts)

	
nByte	 getConnectionProtocol	(void)	const

	
void	 setConnectionProtocol	(nByte	connectionProtocol)

	
nByte	 getChannelCountUserChannels

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	PhotonPeer

static	short	 getPeerCount	(void)
	
static	unsigned	int	 getMaxAppIDLength	(void)
	

Detailed	Description

A	LitePeer	is	an	extended	PhotonPeer	and	implements	the	operations
offered	by	the	Lite	Application	of	the	Photon	Server	SDK.

This	class	is	used	by	many	of	our	demos	and	allows	rapid	development
of	simple	games.	You	can	use	rooms	and	properties	and	send	events.
For	many	games,	this	is	a	good	start.

Operations	are	prefixed	as	"op"	and	are	always	asynchronous.

Constructor	&	Destructor	Documentation

§	LitePeer()
LitePeer (Photon::PhotonListener	&	 listener,

nByte	 connectionProtocol	=	Photon::ConnectionProtocol::DEFAULT
)

Constructor

Parameters
listener Pointer	to	the	application's	implementation	of	the	Listener	callback

interface.	Has	to	be	valid	for	at	least	the	lifetime	of	the	
instance,	which	is	created	by	this	constructor.

connectionProtocol Protocol	to	use	to	connect	to	Photon.	One	of	the	constants	specified	in
Photon::ConnectionProtocol.

See	also
PhotonListener
Photon::ConnectionProtocol

§	~LitePeer()
~LitePeer (void) virtual

Destructor.

Member	Function	Documentation

§	opRaiseEvent()	[1/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	 reliable,

Ftype	 parameters,
nByte	 eventCode,
nByte	 channelID	=	0,
nByte	 eventCaching	=	EventCache::DO_NOT_CACHE,
const	int	*	 targetPlayers	=	NULL,
short	 numTargetPlayers	=	0,
nByte	 receiverGroup	=	ReceiverGroup::OTHERS,
nByte	 interestGroup	=	0	
)

Sends	in-game	data	to	all	other	players	in	the	game,	who	will	receive	it
in	their	PhotonListener::onEvent()	callback.

The	eventCode	should	be	used	to	define	the	event's	type	and	content
respectively.	The	payload	has	to	be	one	of	the	datatypes	that	are	listed
as	supported	for	values	at	serializable	datatypes.	Receiving	clients
can	access	it	with	key	EventKey::DATA.

This	function	provides	the	option	to	raise	events	reliable	or	unreliable.
While	both	result	in	ordered	events,	the	latter	ones	might	be	lost,
causing	gaps	in	the	resulting	event	sequence.	On	the	other	hand,	they
cause	less	overhead	and	are	optimal	for	data	that	is	replaced	soon.

Sending	is	not	done	immediately,	but	in	intervals	of
PhotonPeer::service()	calls.

It	is	recommended	to	keep	the	payload	as	simple	as	possible,	as	the
data	is	typically	sent	multiple	times	per	second.	This	easily	adds	up	to
a	huge	amount	of	data	otherwise.

As	soon	as	the	Photon	Server	acknowledged	the	reception	of	the
opRaiseEvent()	operation,	the	local	application	will	be	notified	by	a
call	to	the	PhotonListener::onOperationResponse()	callback	with
the	parameter	opCode	being	set	to	OperationCode::RAISE_EV.

Hashtable	ev;

ev.put(POS_X,	player.getPositionX());

mPeer->opRaiseEvent(true,	ev,	eventCode);

Returns
true,	if	successful,	false	otherwise

See	also
PhotonListener::onEvent(),
PhotonListener::onOperationResponse(),	Table	of	Datatypes

Parameters
reliable true	=	operation	will	be	sent	reliably;	false	=

no	resend	in	case	of	packet	loss	-	will	be
ignored,	when	not	using	UDP	as	protocol

parameters the	payload	of	the	event	to	raise	-	has	to	be
provided	in	the	form	of	one	of	the	supported
data	types,	specified	at	Table	of	Datatypes

eventCode number	for	arbitrary	classification	of	the	type
of	event	(like	'1'	for	position	updates,	'2'	for
chat	messages,	and	so	on).

channelID the	logical	channel,	default	is	0.	See
Fragmentation	and	Channels	for	more
information.

eventCaching has	to	be	one	of	the	constants	specified	in
EventCache,	default	is
EventCache::DO_NOT_CACHE

targetPlayers the	actorNrs	of	the	clients,	which	should
receive	the	event,	set	to	NULL,	to	send	the
event	to	all	actors	in	the	room

numTargetPlayers the	number	of	actorNrs	passed	(array	size)
receiverGroup has	to	be	one	of	the	constants	specified	in

ReceiverGroup,	default	is
ReceiverGroup::OTHERS

interestGroup defines	to	which	interest	group	the	event	is
sent.	Players	can	subscribe	or	unsubscribe	to
groups.	Group	0	is	always	sent	to	all,	default
is	0.

§	opRaiseEvent()	[2/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	

Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
nByte	
nByte	
nByte	
const	int	*	
short	
nByte	
nByte	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function	only	in	what
argument(s)	it	accepts.

Parameters
reliable true	=	operation	will	be	sent	reliably;	false	=	no	resend	in	case	of	packet	loss	-	will	be	ignored,

when	not	using	UDP	as	protocol
pParameterArray the	payload	array	of	the	event	to	raise	-	has	to	be	provided	in	the	form	of	a	1D	array	of	one	of

the	supported	data	types,	specified	at	Table	of	Datatypes
arrSize the	number	of	elements	in	pParameterArray
eventCode number	for	arbitrary	classification	of	the	type	of	event	(like	'1'	for	position	updates,	'2'	for	chat

messages,	and	so	on).
channelID the	logical	channel,	default	is	0.	See	Fragmentation	and	Channels
eventCaching has	to	be	one	of	the	constants	specified	in	EventCache

EventCache::DO_NOT_CACHE
targetPlayers the	actorNrs	of	the	clients,	which	should	receive	the	event,	set	to	NULL,	to	send	the	event	to	all

actors	in	the	room
numTargetPlayers the	number	of	actorNrs	passed	(array	size)

receiverGroup has	to	be	one	of	the	constants	specified	in	ReceiverGroup
interestGroup defines	to	which	interest	group	the	event	is	sent.	Players	can	subscribe	or	unsubscribe	to

groups.	Group	0	is	always	sent	to	all,	default	is	0.

§	opRaiseEvent()	[3/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	 reliable,

Ftype	 pParameterArray,
const	short	*	 pArrSizes,
nByte	 eventCode,
nByte	 channelID	=	0,
nByte	 eventCaching	=	EventCache::DO_NOT_CACHE,
const	int	*	 targetPlayers	=	NULL,
short	 numTargetPlayers	=	0,
nByte	 receiverGroup	=	ReceiverGroup::OTHERS,
nByte	 interestGroup	=	0	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
reliable true	=	operation	will	be	sent	reliably;	false	=

no	resend	in	case	of	packet	loss	-	will	be
ignored,	when	not	using	UDP	as	protocol

pParameterArray the	payload	array	of	the	event	to	raise	-	has	to
be	provided	in	the	form	of	an	array	of	one	of
the	supported	data	types,	specified	at	Table
of	Datatypes

pArrSizes an	array	holding	the	number	of	elements	for
each	dimension	of	pParameterArray

eventCode number	for	arbitrary	classification	of	the	type
of	event	(like	'1'	for	position	updates,	'2'	for
chat	messages,	and	so	on).

channelID the	logical	channel,	default	is	0.	See
Fragmentation	and	Channels	for	more

information.
eventCaching has	to	be	one	of	the	constants	specified	in

EventCache,	default	is
EventCache::DO_NOT_CACHE

targetPlayers the	actorNrs	of	the	clients,	which	should
receive	the	event,	set	to	NULL,	to	send	the
event	to	all	actors	in	the	room

numTargetPlayers the	number	of	actorNrs	passed	(array	size)
receiverGroup has	to	be	one	of	the	constants	specified	in

ReceiverGroup,	default	is
ReceiverGroup::OTHERS

interestGroup defines	to	which	interest	group	the	event	is
sent.	Players	can	subscribe	or	unsubscribe	to
groups.	Group	0	is	always	sent	to	all,	default
is	0.

§	opJoin()
bool
opJoin (const	Common::JString	&	 gameId,

const	Common::Hashtable	&	 gameProperties	=	Common::Hashtable
const	Common::Hashtable	&	 actorProperties	=	Common::Hashtable
bool	 broadcastActorProperties	=	false
)

This	function	joins	the	room	with	the	given	name	on	the	Photon	Server.

This	operation	will	join	an	existing	room	by	name	or	create	one	if	the	name	is	not	in
use	yet.

Rooms	(or	games)	are	simply	identified	by	name.	Lite	assumes	that	users	always
want	to	get	into	a	room	-	no	matter	if	it	existed	before	or	not,	so	it	might	be	a	new
one.	If	you	want	to	make	sure	a	room	is	created	(new,	empty),	the	client	side	might
come	up	with	a	unique	name	for	it	(make	sure	the	name	was	not	taken	yet).

The	application	"Lite	Lobby"	lists	room	names	and	effectively	allows	the	user	to	select
a	distinct	one.

Each	actor	(a.k.a.	player)	in	a	room	will	get	events	that	are	raised	for	the	room	by	any
player	(if	he	is	conained	in	the	receiver	list).

To	distinguish	the	actors,	each	gets	a	consecutive	actornumber.	This	is	used	in
events	to	mark	who	triggered	the	event.	A	client	finds	out	it's	own	actornumber	in	the
return	callback	for	operation	Join.	Number	1	is	the	lowest	actornumber	in	each	room
and	the	client	with	that	actornumber	created	the	room.

Each	client	could	easily	send	custom	data	around.	If	the	data	should	be	available	to
newcomers,	it	makes	sense	to	use	Properties.

Joining	a	room	will	result	in	a	call	to	PhotonListener::onOperationResponse()
the	opCode	being	set	to	OPC_RT_JOIN.	Joining	a	room	will	also	trigger	an	event
EV_RT_JOIN	for	all	players	in	the	room,	to	inform	them	about	the	new	player.

Parameters
gameId any	ID	string	to	identify	the	game
gameProperties optional,	set	of	game	properties,	by	convention:

only	used	if	game	is	new/created
actorProperties optional,	set	of	actor	properties
broadcastActorProperties true	to	broadcast	actor	proprties	in	join/-event,	false

to	not	broadcast	them,	default	is	false

Returns
true,	if	successful,	false	otherwise

See	also
PhotonListener::onEvent(),	PhotonListener::onOperationResponse()
opLeave()

§	opLeave()
bool	opLeave (void) virtual

Leaves	a	room,	which	has	been	previously	joined	with	opJoin().

Leaving	a	room	will	result	in	a	call	to
PhotonListener::onOperationResponse()	with	the	opCode	being	set
to	OPC_RT_LEAVE.	This	operation	also	triggers	an	event
EV_RT_LEAVE	for	the	remaining	players	in	the	room.	This	event
includes	the	number	of	the	player	who	left	in	key
EV_RT_KEY_ACTORNR.

Returns
true,	if	successful,	false	otherwise

See	also
PhotonListener::onEvent(),
PhotonListener::onOperationResponse(),	opJoin()

§	opChangeGroups()
bool
opChangeGroups (const	Common::JVector<	nByte	>	*	 pGroupsToRemove

const	Common::JVector<	nByte	>	*	 pGroupsToAdd	
)

Operation	to	handle	this	client's	interest	groups	(for	events	inside	rooms).

Note	the	difference	between	passing	NULL	and	&JVector<nByte>():	NULL	won't
add/remove	any	groups.	&JVector<nByte>()	will	add/remove	all	(existing)	groups.
First,	removing	groups	is	executed.	This	way,	you	could	leave	all	groups	and	join
only	the	ones	provided.

Parameters
pGroupsToRemoveGroups	to	remove	from	interest.	NULL	will	not	leave	any.

A	&JVector<nByte>()	will	remove	all.
pGroupsToAdd Groups	to	add	to	interest.	NULL	will	not	add	any.	A

&JVector<nByte>()	will	add	all	current.

Returns
true,	if	successful,	false	otherwise

§	opSetPropertiesOfActor()
bool
opSetPropertiesOfActor (int	 actorNr,

const	Common::Hashtable	&	 properties,
bool	 broadcast,
nByte	 channelID	=	0	
)

Adds	or	updates	properties	for	the	player,	to	whom	the	passed	actorNr.
belongs	to

Parameters
actorNr the	actorNr	of	the	player	for	whom	properties	are	being

provided
properties the	properties	to	add	or	update	for	this	player.	See	Photon

Properties	for	more	information
broadcast passing	true	will	send	the	event	EV_SETPROPERTIES	to

all	other	players	in	the	game
channelID the	channelIndex,	see	Fragmentation	and	Channels.

Default	is	0

Returns
true,	if	successful,	false	otherwise

See	also
Photon	Properties,	opGetPropertiesOfActor()

§	opSetPropertiesOfGame()
bool
opSetPropertiesOfGame (const	Common::Hashtable	&	 properties,

bool	 broadcast,
nByte	 channelID	=	0	
)

Adds	or	updates	properties	for	the	currently	joined	room.

Parameters
properties the	properties	to	add	or	update	for	this	room.	See	Photon

Properties	for	more	information
broadcast passing	true	will	send	the	event	EV_SETPROPERTIES	to	all

other	players	in	the	game
channelID the	channelIndex,	see	Fragmentation	and	Channels.

Default	is	0

Returns
true,	if	successful,	false	otherwise

See	also
Photon	Properties,	opGetPropertiesOfGame()

§	opGetProperties()
bool	opGetProperties (nByte	 channelID	=	0) virtual

Creates	a	request	to	get	all	properties	of	the	currently	joined	room	and
all	players,	which	are	inside	it	at	the	moment,	when	the	server
processes	this	operation.	See	Photon	Properties

Parameters
channelID the	channel	index.	See	Fragmentation	and

Channels

Returns
true,	if	successful,	false	otherwise

See	also
Photon	Properties

§	opGetPropertiesOfActor()	[1/2]
bool
opGetPropertiesOfActor (const	Common::JString	*	 properties,

short	 numProperties,
const	int	*	 actorNrList	=	NULL,
short	 numActors	=	0,
nByte	 channelID	=	0	
)

Creates	a	request	to	get	the	selected	properties	of	the	players	with	the
specified	actor	numbers.

See	Photon	Properties

Parameters
properties an	array	of	the	key	strings	to	the	requested	properties,

pass	NULL	to	get	all	properties	for	the	requested	actors
numProperties the	number	of	the	key	strings	passed	(array	size)
actorNrList the	list	of	actorNrs	of	the	players	for	whom	to	request

properties,	pass	NULL	to	get	the	requested	properties
for	all	actors

numActors the	number	of	actorNrs	passed	(array	size)
channelID the	channel	index.	See	Fragmentation	and	Channels

Returns
true,	if	successful,	false	otherwise

See	also
Photon	Properties,	opSetPropertiesOfActor()

§	opGetPropertiesOfActor()	[2/2]
bool	opGetPropertiesOfActor (const	nByte	*	 properties,

short	 numProperties,
const	int	*	 actorNrList	=	NULL,
short	 numActors	=	0,
nByte	 channelID	=	0	
) virtual

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
properties an	array	of	the	byte	keys	to	the	requested

properties,	pass	NULL	to	get	all	properties	for	the
requested	actors

numProperties the	number	of	the	key	strings	passed	(array	size)
actorNrList the	list	of	actorNrs	of	the	players	for	whom	to

request	properties,	pass	NULL	to	get	the
requested	properties	for	all	actors

numActors the	number	of	actorNrs	passed	(array	size)
channelID the	channel	index.	See	Fragmentation	and

Channels

§	opGetPropertiesOfGame()	[1/2]
bool
opGetPropertiesOfGame (const	Common::JString	*	 properties,

short	 numProperties,
nByte	 channelID	=	0	
) virtual

Creates	a	request	to	get	the	selected	properties	of	the	currently	joined
room.

See	Photon	Properties

Parameters
properties an	array	of	the	key	strings	of	the	properties	to

request,	pass	NULL	to	get	all	properties
numProperties the	number	of	the	key	strings	passed	(array	size)
channelID the	channel	index.	See	Fragmentation	and

Channels

Returns
true,	if	successful,	false	otherwise

See	also
Photon	Properties,	opSetPropertiesOfGame()

§	opGetPropertiesOfGame()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

bool	opGetPropertiesOfGame (const	nByte	*	 properties,
short	 numProperties,
nByte	 channelID	=	0	
) virtual

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
properties an	array	of	the	byte	keys	to	the	requested

properties,	pass	NULL	to	get	all	properties
numProperties the	number	of	the	key	bytes	passed	(array	size)
channelID the	channel	index.	See	Fragmentation	and

Channels

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing AuthenticationValues

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

AuthenticationValues
Class	Reference

Inheritance	diagram	for	AuthenticationValues:

[legend]

Collaboration	diagram	for	AuthenticationValues:

[legend]

Public	Member	Functions
	 AuthenticationValues	(void)

	
nByte	 getType	(void)	const

	
AuthenticationValues	&	 setType	(nByte	type)

	
const	Common::JString	&	 getParameters	(void)	const

	
AuthenticationValues	&	 setParameters	(const	Common::JString

¶meters)
	

AuthenticationValues	&	 setParametersWithUsernameAndToken
(const	Common::JString	&username,
const	Common::JString	&token)

	
const	Common::JVector<	nByte	>	&	 getData	(void)	const
	

AuthenticationValues	&	 setData	(const	Common::JVector
nByte	>	&data)

	
const	Common::JString	&	 getSecret	(void)	const

	
const	Common::JString	&	 getUserID	(void)	const

	
AuthenticationValues	&	 setUserID	(const	Common::JString

&userID)
	

virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool
withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Container	for	user	authentication	in	Photon.

Remarks
On	Photon,	user	authentication	is	optional	but	can	be	useful	in	many
cases.	If	you	want	to	use	Client::opFindFriends(),	a	unique	ID	per
user	is	very	practical.

There	are	basically	three	options	for	user	authentication:	None	at	all,	the
client	sets	some	UserId	or	you	can	use	some	account	web-service	to
authenticate	a	user	(and	set	the	UserId	server-side).

Custom	Authentication	lets	you	verify	end-users	by	some	kind	of	login	or
token.	It	sends	those	values	to	Photon	which	will	verify	them	before
granting	access	or	disconnecting	the	client.

If	you	don't	set	a	user	ID	through	setUserID()	for	the
AuthenticationValues	instance	that	you	pass	to	Client::connect(),	then
Photon	generates	a	unique	user	ID	(which	fulfills	the	requirements	of	a
GUID)	for	you,	which	can	be	retrieved	through	Client::getUserID(),	once
the	Client	instance	has	notified	Listener::connectReturn()	about	having
successfully	finished	the	connection	procedure.	Once	you	have	set	a
user	ID,	the	Client	instance	caches	it	until	you	either	override	it	or	until
the	end	of	the	lifetime	of	the	Client	instance.

To	be	able	to	rejoin	a	room	and	to	be	recognized	there	as	the	previous
user	it	is	critical	to	continue	to	use	the	same	user	ID.

Therefor	you	should	store	the	user	ID	in	permanent	storage	and	set	it	to
that	same	stored	value	whenever	you	want	to	connect	as	that	user,	even
if	you	let	Photon	initially	generate	that	ID.	Otherwise	Photon	would
generate	a	new	user	ID	for	you	whenever	you	construct	a	new	Client
instance	(i.e.	when	the	user	restarts	your	app).

Constructor	&	Destructor	Documentation

§	AuthenticationValues()
AuthenticationValues (void)

Constructor.

Member	Function	Documentation

§	getType()
nByte	getType (void) const

Returns
the	type	of	the	"Custom	Authentication"service	that	will	be	used.

See	also
setType()

§	setType()
AuthenticationValues	&	setType (nByte	 type)

Sets	the	type	of	the	"Custom	Authentication"	service	that	will	be	used.
The	initial	value	before	the	first	call	to	this	function	is
CustomAuthenticationType::NONE.

Note
Any	custom	authentication	type	aside	from
CustomAuthenticationType::NONE	requires	you	to	set	up	an
authentication	service	of	matching	type	for	your	appID	at
https://www.photonengine.com/dashboard

Parameters
type needs	to	match	one	of	the	values	in

CustomAuthenticationType

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getType(),	CustomAuthenticationType

https://www.photonengine.com/dashboard

§	getParameters()
const	JString	&	getParameters (void) const

Returns
the	HTTP	GET	parameters	that	will	be	forwarded	to	the
authentication	service.

See	also
setParameters(),	setParametersWithUsernameAndToken(),
getData(),	setData()

§	setParameters()
AuthenticationValues	&
setParameters (const	Common::JString	&	 parameters)

Sets	the	HTTP	GET	parameters	that	will	be	forwarded	to	the
authentication	service	to	the	provided	parameters.

The	provided	parameter	string	must	contain	any	(HTTP	GET)
parameters	that	are	expected	by	the	used	authentication	service.

Remarks
Standard	HTTP	GET	parameters	are	used	here	and	passed	on	to
the	authentication	service	that's	defined	for	the	provided
authentication	type	in	the	Photon	Cloud	Dashboard.

Parameters
parameters needs	to	be	a	valid	HTTP	GET	string	(i.e.

param1=value1¶m2=value2¶m3=value3)

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getParameters(),	setParametersWithUsernameAndToken(),
getData(),	setData()

§	setParametersWithUsernameAndToken()
AuthenticationValues	&
setParametersWithUsernameAndToken (const	Common::JString	&	 username

const	Common::JString	&	 token
)

Sets	the	HTTP	GET	parameters	that	will	be	forwarded	to	the	authentication
service	to	the	provided	username	and	token.

Calling	this	function	is	equivalent	to
setParameters(Common::JString(L"username=")	+	username	+	"&token="	+
token).

Parameters
username the	username	of	the	user	that	should	be	authenticated
token the	authentication	token	needed	by	the	authentication	service

to	verify	the	user

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for	chaining
multiple	setter	calls

See	also
getParameters(),	setParameters(),	getData(),	setData()

§	getData()
const	JVector<	nByte	>	&	getData (void) const

Returns
the	HTTP	POST	data	that	will	be	forwarded	to	the	authentication
service.

See	also
getParameters(),	setParameters(),
setParametersWithUsernameAndToken(),	setData()

§	setData()
AuthenticationValues	&
setData (const	Common::JVector<	nByte	>	&	 data)

Sets	the	HTTP	POST	data,	that	will	be	forwarded	to	the	authentication
service,	to	the	provided	data.

The	provided	data	needs	to	match	what	is	expected	by	the	used
authentication	service.

Remarks
The	provided	data	is	passed	on	to	the	authentication	service	that's
defined	for	the	provided	authentication	type	in	the	Photon	Cloud
Dashboard.

Parameters
data the	data	to	be	used	in	the	body	of	the	POST	request.

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getParameters(),	setParameters(),
setParametersWithUsernameAndToken(),	getData()

§	getSecret()
const	JString	&	getSecret (void) const

After	initial	authentication,	Photon	provides	a	secret	for	this	client	/
user,	which	is	subsequently	used	as	(cached)	validation	internally.

Remarks
This	is	publicly	read-accessible	only	for	debugging	purposes.	For
normal	operations	it	is	entirely	unnecessary	for	the	app	code	to
ever	access	this	value.

Returns
the	cached	secret

§	getUserID()
const	JString	&	getUserID (void) const

Returns
the	unique	user	ID

See	also
setUserID()

§	setUserID()
AuthenticationValues	&
setUserID (const	Common::JString	&	 userID)

Sets	the	unique	user	ID.

Parameters
userID a	string	that	needs	to	be	unique	per	user	among	all	users

of	your	app

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getUserID()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Client

Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Client	Class	Reference

Inheritance	diagram	for	Client:

[legend]

Collaboration	diagram	for	Client:

[legend]

Public	Member	Functions
	 Client	(LoadBalancing::Listener
Common::JString	&applicationID,	const
Common::JString	&appVersion,	nByte
connectionProtocol=Photon::ConnectionProtocol::DEFAULT,
bool	autoLobbyStats=false,	nByte
regionSelectionMode=RegionSelectionMode::DEFAULT,
bool	useAlternativePorts=false)

	
virtual	 ~Client	(void)

	
virtual	bool	 connect	(const	AuthenticationValues

&authenticationValues=
Common::JString	&username=L"",	const
Common::JString	&serverAddress=M_NAMESERVER,
nByte	serverType=ServerType::NAME_SERVER)

	
virtual	void	 disconnect	(void)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 opCustom	(const	Photon::OperationRequest

&operationRequest,	bool	sendReliable,	nByte	channelID=0,
bool	encrypt=false)

	
virtual	bool	 sendOutgoingCommands

	
virtual	bool	 sendAcksOnly	(void)

	
virtual	bool	 dispatchIncomingCommands

	
virtual	void	 fetchServerTimestamp

	
virtual	void	 resetTrafficStats	(void)

	
virtual	void	 resetTrafficStatsMaximumCounters

	
virtual	Common::JString	 vitalStatsToString	(bool	all)	const

	
virtual	bool	 opJoinLobby	(const	

&lobbyName=Common::JString
lobbyType=LobbyType::DEFAULT

	
virtual	bool	 opLeaveLobby	(void)

	
virtual	bool	 opCreateRoom	(const	

RoomOptions	&options=
Common::JVector<	
&expectedUsers=Common::JVector
())

	
virtual	bool	 opJoinOrCreateRoom

&gameID,	const	RoomOptions
int	cacheSliceIndex=0,	const	
Common::JString	>	&expectedUsers=
Common::JString	>())

	
virtual	bool	 opJoinRoom	(const	

rejoin=false,	int	cacheSliceIndex=0,	const
Common::JVector<	
&expectedUsers=Common::JVector
())

	
virtual	bool	 opJoinRandomRoom

&customRoomProperties=
maxPlayers=0,	nByte
matchmakingMode=
const	Common::JString
&lobbyName=Common::JString
lobbyType=LobbyType::DEFAULT
Common::JString	&sqlLobbyFilter=
const	Common::JVector
&expectedUsers=Common::JVector

())
	

virtual	bool	 opLeaveRoom	(bool	willComeBack=false,	bool
sendAuthCookie=false)

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	¶meters,
nByte	eventCode,	const	
&options=RaiseEventOptions

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	pParameterArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize,	nByte	eventCode,	const
RaiseEventOptions

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	pParameterArray,
const	short	*pArrSizes,	nByte	eventCode,	const
RaiseEventOptions

	
virtual	bool	 opFindFriends	(const	

short	numFriendsToFind)
	

virtual	bool	 opLobbyStats	(const	
LoadBalancing::LobbyStatsRequest
&lobbiesToQuery=Common::JVector
LoadBalancing::LobbyStatsRequest

	
virtual	bool	 opChangeGroups	(const	

*pGroupsToRemove,	const	
*pGroupsToAdd)

	
virtual	bool	 opCustomAuthenticationSendNextStepData

AuthenticationValues
	

virtual	bool	 opWebRpc	(const	Common::JString
	

template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
Ftype	¶meters,	bool	sendAuthCookie=false)

	
template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
Ftype	pParameterArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
bool	sendAuthCookie=false)

	
template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
Ftype	pParameterArray,	const	short	*pArrSizes,	bool
sendAuthCookie=false)

	
virtual	bool	 selectRegion	(const	

	
virtual	bool	 reconnectAndRejoin

	
template<typename	Ftype	>

bool	 sendDirect	(const	Ftype	¶meters,	int	targetPlayer,	bool
fallbackRelay=false)

	
template<typename	Ftype	>

bool	 sendDirect	(const	Ftype	pParameterArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
int	targetPlayer,	bool	fallbackRelay=false)

	
template<typename	Ftype	>

bool	 sendDirect	(const	Ftype	pParameterArray,	const	short
*pArrSizes,	int	targetPlayer,	bool	fallbackRelay=false)

	
template<typename	Ftype	>

int	 sendDirect	(const	Ftype	¶meters,	const
Common::JVector<	int	>
&targetPlayers=Common::JVector
fallbackRelay=false)

	

template<typename	Ftype	>

int	 sendDirect	(const	Ftype	pParameterArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
const	Common::JVector
&targetPlayers=Common::JVector
fallbackRelay=false)

	
template<typename	Ftype	>

int	 sendDirect	(const	Ftype	pParameterArray,	const	short
*pArrSizes,	const	Common::JVector
&targetPlayers=Common::JVector
fallbackRelay=false)

	
int	 getServerTimeOffset

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation

	
int	 getSentCountAllowance

	
void	 setSentCountAllowance

	
int	 getTimePingInterval

	
void	 setTimePingInterval

	
int	 getRoundTripTime	(void)	const

	
int	 getRoundTripTimeVariance

	
int	 getTimestampOfLastSocketReceive

	
int	 getDebugOutputLevel

	
bool	 setDebugOutputLevel

	
const	Common::LogFormatOptions	&	 getLogFormatOptions

	
void	 setLogFormatOptions

Common::LogFormatOptions
	

int	 getIncomingReliableCommandsCount
	

short	 getPeerID	(void)	const
	

int	 getDisconnectTimeout
	

void	 setDisconnectTimeout
	

int	 getQueuedIncomingCommands
	

int	 getQueuedOutgoingCommands
	

bool	 getIsPayloadEncryptionAvailable
	

bool	 getIsEncryptionAvailable
	

int	 getResentReliableCommands
	

int	 getLimitOfUnreliableCommands
	

void	 setLimitOfUnreliableCommands
	

bool	 getCRCEnabled	(void)	const
	

void	 setCRCEnabled	(bool	crcEnabled)
	

int	 getPacketLossByCRC

	
bool	 getTrafficStatsEnabled

	
void	 setTrafficStatsEnabled

	
int	 getTrafficStatsElapsedMs

	
const	Photon::TrafficStats	&	 getTrafficStatsIncoming

	
const	Photon::TrafficStats	&	 getTrafficStatsOutgoing

	
const	Photon::TrafficStatsGameLevel	&	 getTrafficStatsGameLevel

	
nByte	 getQuickResendAttempts

	
void	 setQuickResendAttempts

	
nByte	 getChannelCountUserChannels

	
int	 getState	(void)	const

	
const	Common::JString	&	 getMasterserverAddress

	
int	 getCountPlayersIngame

	
int	 getCountGamesRunning

	
int	 getCountPlayersOnline

	
MutableRoom	&	 getCurrentlyJoinedRoom

	
const	Common::JVector<	Room	*	>	&	 getRoomList	(void)	const

	
const	Common::JVector<	Common::JString	>	&	 getRoomNameList	(void)	const
	

bool	 getIsInRoom	(void)	const
	

bool	 getIsInGameRoom	(void)	const
	

bool	 getIsInLobby	(void)	const
	

bool	 getAutoJoinLobby	(void)	const
	

void	 setAutoJoinLobby	(bool	autoJoinLobby)
	

MutablePlayer	&	 getLocalPlayer	(void)
	

const	Common::JVector<	FriendInfo	>	&	 getFriendList	(void)	const
	

int	 getFriendListAge	(void)	const
	

int	 getDisconnectedCause
	

const	Common::JString	&	 getUserID	(void)	const
	

const	Common::JString	&	 getRegionWithBestPing
	

Static	Public	Member	Functions
static	short	 getPeerCount	(void)
	

Detailed	Description

This	class	implements	the	Photon	LoadBalancing	work	flow	by	using	a
Peer.	It	keeps	a	state	and	automatically	executes	transitions	between	the
Master	and	Game	Servers.

This	class	(and	the	Player,	MutablePlayer,	Room	and	MutableRoom
classes)	might	be	extended	to	implement	your	own	logic.

However	this	is	not	necessary.	You	can	also	just	put	your	game	specific
network	logic	into	a	class	that	uses	this	class	as	is,	which	is	the
recommended	approach.

Override	MutableRoom:createPlayer()	when	subclassing	Player,
getMutablePlayerFactory()	+	MutablePlayerFactory::create()	+
MutablePlayerFactory::destroy()	when	subclassing	MutablePlayer,
createRoom()	when	subclassing	Room	and	getMutableRoomFactory()	+
MutableRoomFactory::create()	+	MutableRoomFactory::destroy()	when
subclassing	MutableRoom.

Remarks
Extension	notes:	An	extension	of	this	class	should	override	the
functions	that	are	inherited	from	Photon::PhotonListener,	as	they
are	called	when	the	state	changes.	Call	the	base	implementation
first,	then	pick	the	operation	response,	event	or	state	that	you	want
to	react	to	and	put	it	in	a	switch-case.

We	try	to	provide	demos	to	each	platform	where	this	API	can	be	used,	so
lookout	for	those.

Constructor	&	Destructor	Documentation

§	Client()
Client (LoadBalancing::Listener	&	 listener,

const	Common::JString	&	 applicationID,
const	Common::JString	&	 appVersion,
nByte	 connectionProtocol	=	Photon::ConnectionProtocol::DEFAULT
bool	 autoLobbyStats	=	false,
nByte	 regionSelectionMode	=	RegionSelectionMode::DEFAULT
bool	 useAlternativePorts	=	false	
)

Constructor.

Parameters
listener Reference	to	the	application's	implementation	of	the	

callback	interface.	Has	to	be	valid	for	at	least	the	lifetime	of	the
Client	instance,	which	is	created	by	this	constructor.

applicationID A	unique	ID	of	your	application.	Must	match	one	of	the	appIDs	in
your	dashboard	for	Photon	Cloud.	This	parameter	gets	ignored	by
Photon	Server.

appVersion Only	clients	that	use	the	exact	same	appVersion	can	see	each	other.
You	can	use	different	values	to	separate	clients	with	the	same	appID
from	each	other	that	should	not	be	able	to	be	matched	with	each
other	or	to	even	see	each	other,	i.e.	incompatible	versions	of	your
game	or	public,	closed-beta,	QA,	staging	and	dev	clients.	This
parameter	gets	ignored	by	Photon	Server.

connectionProtocol The	protocol	to	use	to	connect	to	the	Photon	servers.	Must	match
one	of	the	constants	specified	in	ConnectionProtocol.

autoLobbyStats Pass	true,	if	you	want	to	automatically	receive	updates	for	the	lobby
stats,	false	otherwise.	Call	opLobbyStats()	to	explicitly	request	a
lobby	stats	update.

regionSelectionMode Determines	how	the	Photon	Cloud	Region	to	which	the	
connects	should	be	selected.	Must	match	one	of	the	constants
specified	in	RegionSelectionMode.	This	parameter	gets	ignored
when	connecting	to	Photon	Server.

useAlternativePorts Determines	if	the	the	standard	or	the	alternative	port	range	should
be	used.	This	parameter	currently	is	only	relevant	when
ConnectionProtocol::UDP	is	passed	for	parameter
connectionProtocol	and	gets	ignored	otherwise.	A	router	or	firewall
might	block	connections	that	use	one	port-range	but	don't	block
connections	that	use	the	other,	so	when	connecting	with	one	range
fails,	then	you	may	want	to	try	with	the	other	one.

See	also
Listener,	ConnectionProtocol,	RegionSelectionMode,	NetworkPort

§	~Client()
~Client (void) virtual

Destructor.

Member	Function	Documentation

§	connect()
bool
connect (const	AuthenticationValues	&	 authenticationValues	=	AuthenticationValues

const	Common::JString	&	 username	=	L"",
const	Common::JString	&	 serverAddress	=	M_NAMESERVER,
nByte	 serverType	=	ServerType::NAME_SERVER
)

This	function	starts	establishing	a	connection	to	a	Photon	server.	The	servers	response	will
arrive	in	Listener::connectReturn().

The	connection	is	successfully	established	when	the	Photon	client	received	a	valid	response
from	the	server.	The	connect-attempt	fails	when	a	network	error	occurs	or	when	server	is	not
responding.	A	call	to	this	function	starts	an	asynchronous	operation.	The	result	of	this	operation
gets	returned	through	the	Listener::connectReturn()	callback	function.	If	this	function	returns
false,	then	the	connect-attempt	has	already	failed	locally.	If	it	returns	true,	then	either
Listener::connectionErrorReturn()	or	Listener::connectReturn()	will	get	called.	The	operation
was	successful,	when	Listener::connectReturn()	got	called	with	errorCode==0.

Parameters
authenticationValues An	instance	of	class	AuthenticationValues
username The	users	display	name	as	shown	to	other	users	-	not	to	be

confused	with	the	users	unique	ID	for	identification	and
authentication	purposes,	which	is	part	of	the
AuthenticationValues

serverAddress A	null	terminated	string	containing	the	IP	address	or	domain	name
and	optionally	the	port	number	to	connect	to.	IP	addresses	can	be
in	IPv4	or	IPv6	format,	examples:	"192.168.0.1",
"192.168.0.1:5055",	"udp.gameserver.com",
"udp.gameserver.com:5055",	"[2002:C0A8:1::]",	"
[2002:C0A8:1::]:5055".	Note	that	IPv6	addresses	must	include
square	brackets	to	indicate	where	the	address	itself	ends	and	the
port	begins.	If	no	port	is	given,	then	the	default	port	for	the	chosen
protocol	and	server	type	will	be	used.

serverType One	of	the	values	in	ServerType.	Must	match	the	type	of	the

Photon	server	that	is	reachable	at	the	given	address	and	port.
Should	be	ServerType::NAME_SERVER	for	Photon	Cloud	and
ServerType::MASTER_SERVER	for	self-hosted	Photon	Server
instances.	You	should	NOT	directly	pass	the	address	of	a	regions
master	server	with	Photon	Cloud,	but	always	connect	to	the	name
server.

Returns
true,	if	it	could	successfully	start	establishing	a	connection	(the	result	will	be	passed	in	a
callback	function	in	this	case)	or	false,	if	an	error	occurred	and	the	connection	could	not	be
established	(no	callback	function	will	be	called	then).

See	also
disconnect(),	NetworkPort

§	disconnect()
void	disconnect (void) virtual

This	function	generates	a	disconnection	request	that	will	be	sent	to	the
Photon	server.	The	servers	response	will	arrive	in
Listener::disconnectReturn().

If	the	disconnection	is	completed	successfully,	then	the
Listener::disconnectReturn()	callback	will	be	called.

Remarks
If	a	game	room	is	joined,	when	this	function	gets	called,	then	the
local	player	leaves	that	room	as	if	opLeaveRoom()	has	been
called	with	parameter	'willComeBack'	set	to	'true'.	Please	see
there	for	further	information	about	leaving	rooms.	However	no	call
to	Listener::leaveRoomReturn()	will	happen	when	leaving	a	game
room	is	triggered	through	a	call	to	disconnect().

See	also
connect(),	opLeaveRoom()

§	service()
void	service (bool	 dispatchIncomingCommands	=	true) virtual

This	function	executes	the	PhotonPeer	internal	processes.	Call	this
regularly!

This	function	is	meant	to	be	called	frequently,	like	once	per	game	loop.
It	handles	the	internal	calls	for	keeping	the	PhotonPeer	communication
alive,	and	will	take	care	of	sending	all	local	outgoing
acknowledgements	and	messages,	as	well	as	dispatching	incoming
messages	to	the	application	and	firing	the	corresponding	callbacks.
Internally	service()	calls	the	following	functions:

1.	 serviceBasic()
2.	 dispatchIncomingCommands()	(called	withing	a	loop	until	all

incoming	commands	have	been	dispatched.)
3.	 sendOutgoingCommands()	(called	withing	a	loop	until

everything	queued	for	sending	has	been	sent.)

service()	is	provided	for	convenience.	If	you	need	to	tweak	the
performance,	you	can	ignore	service()	and	call	its	three	subfunctions
directly	with	individual	time	intervals,	to	gain	more	control	over	the
internal	communication	process.	For	instance,	calling
sendOutgoingCommands()	more	rarely	will	result	in	less	packets	to
be	generated,	as	more	commands	will	be	accumulated	into	a	single
packet.	See	sendOutgoingCommands()	for	more	information	on
efficiency.

For	situations	where	you	want	to	keep	the	connection	alive,	but	can't
process	incoming	messages	(e.g.	when	loading	a	level),	you	can
temporarily	pass	false	for	dispatchIncomingCommands	to	skip	the
calls	to	dispatchIncomingCommands().	Incoming	commands	will	be
stored	in	the	incoming	queue	until	they	are	dispatched	again.

Parameters
dispatchIncomingCommands true	=

dispatchIncomingCommands()

will	be	called;	false	=
dispatchIncomingCommands()
won't	be	called,	default	is	true

§	serviceBasic()
void	serviceBasic (void) virtual

This	function	takes	care	of	exchanging	data	with	the	system's	network
layer.

You	only	need	to	call	this	function	in	case	you	choose	not	to	use
service(),	but	call	the	subfunctions	of	service()	directly.	Please	see
the	documentation	of	service()	for	more	information.

serviceBasic()	is	called	from	within	service().	If	you	decide	not	to	use
service(),	then	serviceBasic()	needs	to	be	called	frequently,	like	once
per	game	loop.

See	also
service()

§	opCustom()
bool
opCustom (const	Photon::OperationRequest	&	 operationRequest,

bool	 sendReliable,
nByte	 channelID	=	0,
bool	 encrypt	=	false	
) virtual

Sends	a	custom	operation	to	a	custom	Server,	using	reliable	or	unreliable
Photon	transmission.

Allows	the	client	to	send	a	custom	operation	to	the	Photon	server	(which
has	to	be	modified	accordingly).	The	Server	can	be	extended	and	modified
for	special	purposes	like	server	side	collision	detection	or	a	consistent
world.

You	need	to	be	connected	(see	connect())	prior	to	calling	opCustom().

Parameters
operationRequest holds	the	payload	of	the	operation
sendReliable =	operation	will	be	sent	reliably;	false	=	no	resend

in	case	of	packet	loss	-	will	be	ignored,	when	not
using	udp	as	protocol

channelID the	logical	channel,	default	is	0.	See
Fragmentation	and	Channels	for	more
information.

encrypt true	=	encrypt	message;	false	=	no	encryption

Returns
true,	if	successful,	false	otherwise

§	sendOutgoingCommands()
bool	sendOutgoingCommands (void) virtual

This	function	initiates	the	transmission	of	outgoing	commands.

Any	Photon	function	that	generates	messages	will	store	these
messages	as	a	"command"	in	an	outgoing	queue	for	later
transmission.	Commands	can	either	be	explicitly	created	operations
generated	for	example	by	opCustom()	or	internally	generated
messages	like	acknowledgements	for	reliable	messages	from	other
players.	sendOutgoingCommands()	will	initiate	the	data	transmission
by	passing	the	outgoing	commands	to	the	system's	sockets	for
immediate	transmission.

In	case	of	UDP	sendOutgoingCommands()	will	also	split	the
commands	into	multiple	packets	if	needed	and/of	aggregate	multiple
commands	together	into	one	packet,	if	possible.	Because	of	the	latter
calling	sendOutgoingcommands()	more	rarely	will	result	in	less
overhead,	as	there	will	be	fewer	packets	for	the	clients	to	be	sent	and
processed.	The	underlying	platform	can	also	limit	the	frequency	in
which	outgoing	packets	can	be	sent	and	received.	The	downside	of
lower	sending	frequencies	is	a	higher	latency,	until	messages	are
exchanged	and	acknowledged,	which	may	lead	to	a	jerky	gameplay.

To	help	you	keeping	track	of	the	incoming	and	outgoing	queues	at
development	time	and	adjust	your	sending	frequency,	there	will	be	a
warning	message	sent	to	your	debugReturn	callback	if	a	queue	has
exceeded	the	warning	threshold.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Usually	you	don't	have	to	call	sendOutgoingCommands()	this
explicitly,	as	this	is	done	within	service().

See	also
service()

§	sendAcksOnly()
bool	sendAcksOnly (void) virtual

Sends	only	ACKs	(UDP)	or	Ping	(TCP)	instead	of	queued	outgoing
commands.	Useful	to	pause	sending	actual	data.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendAcksOnly()	and	dispatchIncomingCommands()	instead.

§	dispatchIncomingCommands()
bool	dispatchIncomingCommands (void) virtual

Checks	for	incoming	commands	waiting	in	the	queue,	and	dispatches
a	single	command	to	the	application.

Dispatching	means,	that	if	the	command	is	an	operation	response	or
an	event,	the	appropriate	callback	function	will	be	called).
dispatchIncomingCommands()	will	also	take	care	of	generating	and
queuing	acknowledgments	for	incoming	reliable	commands.	Please
note	that	this	function	will	only	dispatch	one	command	per	all.	If	you
want	to	dispatch	every	single	command	which	is	waiting	in	the	queue,
call	dipatchIncomingCommands()	within	a	while	loop,	until	its	return
code	is	false.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Returns
true	if	it	has	successfully	dispatched	a	command,	false	otherwise
(for	example,	when	there	has	not	been	any	command	left	in	the
queue,	waiting	for	dispatching).

See	also
service()

§	fetchServerTimestamp()
void	fetchServerTimestamp (void) virtual

This	will	fetch	the	server's	timestamp	and	update	the	approximation	for
getServerTime()	and	getServerTimeOffset().

The	server	time	approximation	will	NOT	become	more	accurate	by
repeated	calls.	Accuracy	currently	depends	on	a	single	roundtrip	which
is	done	as	fast	as	possible.

The	command	used	for	this	is	immediately	acknowledged	by	the
server.	This	makes	sure	the	roundtriptime	is	low	and	the	timestamp	+
roundtriptime	/	2	is	close	to	the	original	value.

§	resetTrafficStats()
void	resetTrafficStats (void) virtual

Creates	new	instances	of	TrafficStats	and	starts	a	new	timer	for	those.

§	resetTrafficStatsMaximumCounters()
void	resetTrafficStatsMaximumCounters (void) virtual

Resets	traffic	stats	values	that	can	be	maxed	out.

§	vitalStatsToString()
Common::JString	vitalStatsToString (bool	 all) const virtual

Returns	a	string	of	the	most	interesting	connection	statistics.	When
you	have	issues	on	the	client	side,	these	might	contain	hints	about	the
issue's	cause.

Parameters
all If	true,	Incoming	and	Outgoing	low-level	stats	are	included	in

the	string.

Returns
stats	as	a	string.

§	opJoinLobby()
bool
opJoinLobby (const	Common::JString	&	 lobbyName	=	Common::JString

nByte	 lobbyType	=	LobbyType::DEFAULT
)

Joins	the	specified	lobby.

This	function	sends	a	request	to	the	server	to	join	the	specified	lobby.	If	it	returns
true,	then	Listener::joinLobbyReturn()	gets	called	when	the	operation	has
successfully	been	finished.	Please	see	Matchmaking	Guide	regarding	the
differences	between	the	various	lobby	types.

Remarks
A	Client	instance	can	only	be	inside	one	room	at	a	time.	Therefor	this
operation	will	fail	and	return	false,	if	the	client	is	already	inside	another	lobby
or	inside	a	game	room.	Leave	the	other	room	first,	before	calling	this
operation.
For	the	same	reason	entering	a	game	room	implicitly	causes	the	client	to
leave	the	lobby,	so	if	you	want	to	return	to	the	previously	joined	lobby	after
leaving	that	game	room,	you	must	explicitly	join	it	again.

Note
If	the	auto-join	lobby	feature	is	enabled	(which	is	the	default!	-	it	can	be
turned	off	by	a	call	to	setAutoJoinLobby()),	then	the	client	automatically
joins	the	default	lobby	when	successfully	connecting	to	Photon	and	when
leaving	a	game	room.	Call	setAutoJoinLobby(false)	before	calling	connect()
for	opJoinLobby()	to	work	properly.

Parameters
lobbyName the	unique	name	of	the	lobby	to	join
lobbyType one	of	the	values	in	LobbyType

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,
false	otherwise.

https://doc.photonengine.com/en/realtime/current/reference/matchmaking-and-lobby

See	also
opLeaveLobby(),	setAutoJoinLobby(),	getAutoJoinLobby(),
Listener::joinLobbyReturn()

§	opLeaveLobby()
bool	opLeaveLobby (void) virtual

Leaves	the	currently	joined	lobby.

This	function	sends	a	request	to	the	server	to	leave	the	currently	joined
lobby.	If	it	returns	true,	then	Listener::leaveLobbyReturn()	gets	called
when	the	operation	has	successfully	been	finished.

Remarks
This	operation	will	fail	and	return	false	if	the	client	does	not
currently	reside	inside	any	lobby.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
opJoinLobby(),	Listener::leaveLobbyReturn()

§	opCreateRoom()
bool
opCreateRoom (const	Common::JString	&	 gameID

const	RoomOptions	&	 options
const	Common::JVector<	Common::JString	>	&	 expectedUsers
)

Creates	and	enters	a	new	game	room.

This	function	sends	a	request	to	the	server	to	create	the	specified	game	room.	If	it	returns	true,	then
Listener::createRoomReturn()	gets	called	when	the	operation	has	been	finished.

If	you	don't	want	to	create	a	unique	room	name,	pass	L""	as	name	and	the	server	will	assign	a	roomName	(a	GUID	as	string).
Room	names	are	unique.

A	room	will	be	attached	to	the	lobby	that	you	have	specified	in	the	passed	in	options.	Leave	the	lobby	name	empty	to	attach	the
room	to	the	lobby	you	are	now	in.	If	you	are	in	no	lobby,	then	the	default	lobby	is	used.

Multiple	lobbies	can	help	to	separate	players	by	map	or	skill	or	game	type.	Each	room	can	only	be	found	in	one	lobby	(no	matter	if
defined	by	name	and	type	or	as	default).

Remarks
A	Client	instance	can	only	be	inside	one	room	at	a	time.	Therefor	this	operation	will	fail	and	return	false,	if	the	client	is	already
inside	another	game	room.	Any	lobby	the	client	currently	resides	in	will	implicitly	be	left	when	entering	a	game	room.
If	a	room	with	the	specified	name	does	already	exist,	then	the	operation	will	fail	and	Listener::createRoomReturn()	will	get
called	with	an	error	code.

Parameters
gameID The	name	to	create	a	room	with.	Must	be	unique	and	not	in	use	or	the	room	can't	be	created.	If	this	is	an

empty	string,	then	the	server	will	assign	a	GUID	as	name.
options An	instance	of	RoomOptions,	that	can	be	used	to	specify	various	options	for	room	creation.
expectedUsers Sets	a	list	of	user	IDs	for	which	the	server	should	reserve	slots.	Those	slots	can't	be	taken	by	other	players.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
opJoinOrCreateRoom(),	opJoinRoom(),	opJoinRandomRoom(),	
Listener::createRoomReturn()

§	opJoinOrCreateRoom()
bool
opJoinOrCreateRoom (const	Common::JString	&	

const	RoomOptions	&	
int	
const	Common::JVector<	Common::JString	>	&	
)

Joins	the	specified	game	room	or	creates	and	enters	a	new	game	room	with	the	specified	ID	if	such	a	room	does	not	exist	yet.

This	function	sends	a	request	to	the	server	to	join	the	specified	game	room	if	exists	and	to	create	it	otherwise.	If	it	returns	true,	then
Listener::joinOrCreateRoomReturn()	gets	called	when	the	operation	has	been	finished.

Unlike	opJoinRoom(),	this	operation	does	not	fail	if	the	room	does	not	exist.	This	can	be	useful	when	you	send	invitations	to	a	room
before	actually	creating	it:	Any	invited	player	(whoever	is	first)	can	call	this	and	on	demand,	the	room	gets	created	implicitly.

This	operation	does	not	allow	you	to	re-join	a	game.	To	return	to	a	room,	use	
previously.

Remarks
A	Client	instance	can	only	be	inside	one	room	at	a	time.	Therefor	this	operation	will	fail	and	return	false,	if	the	client	is	already	inside
another	game	room.	Any	lobby	the	client	currently	resides	in	will	implicitly	be	left	when	entering	a	game	room.
If	the	room	is	full	or	closed,	then	this	operation	will	fail	and	Listener::joinOrCreateRoomReturn()	will	get	called	with	an	error	code.

Parameters
gameID A	unique	identifier	for	the	game	room	to	join	or	create.	If	this	is	an	empty	string,	then	the	server	will	create	a	room

and	assign	a	GUID	as	name.
options An	instance	of	RoomOptions,	that	can	be	used	to	specify	various	options	for	room	creation.	These	options	will

be	ignored	when	the	room	already	exists.
cacheSliceIndex Allows	to	request	a	specific	cache	slice	-	all	events	in	that	cache	slice	and	upward	slices	will	be	published	to	the

client	after	joining	the	room	-	see	Lite::EventCache
expectedUsers Sets	a	list	of	user	IDs	for	which	the	server	should	reserve	slots.	Those	slots	can't	be	taken	by	other	players.	If	the

room	already	exists,	then	this	list	will	be	merged	with	any	previously	set	list	of	expected	users	for	this	room.

Returns

true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
opCreateRoom(),	opJoinRoom(),	opJoinRandomRoom(),	opLeaveRoom()
Listener::joinOrCreateRoomReturn()

§	opJoinRoom()
bool
opJoinRoom (const	Common::JString	&	 gameID

bool	 rejoin	=	
int	 cacheSliceIndex
const	Common::JVector<	Common::JString	>	&	 expectedUsers
)

Joins	the	specified	game	room.

This	function	sends	a	request	to	the	server	to	join	the	specified	game	room.	If	it	returns	true,	then	Listener::joinRoomReturn()
gets	called	when	the	operation	has	been	finished.

This	function	is	useful	when	you	are	using	a	lobby	to	list	rooms	and	know	their	names.	A	room's	name	has	to	be	unique	(per
region	and	app	version),	so	it	does	not	matter	which	lobby	the	room	is	in.

It's	usually	better	to	use	opJoinOrCreateRoom()	for	invitations.	Then	it	does	not	matter	if	the	room	is	already	setup.

Remarks
A	Client	instance	can	only	be	inside	one	room	at	a	time.	Therefor	this	operation	will	fail	and	return	false,	if	the	client	is
already	inside	another	game	room.	Any	lobby	the	client	currently	resides	in	will	implicitly	be	left	when	entering	a	game
room.
If	a	room	with	the	specified	name	does	not	exist	or	if	the	room	is	full	or	closed,	then	this	operation	will	fail	and
Listener::joinRoomReturn()	will	get	called	with	an	error	code.

Parameters
gameID A	unique	identifier	for	the	game	room	to	join.
rejoin Needs	to	be	false	if	this	is	the	initial	join	of	this	room	for	this	client	and	true	if	this	is	a	rejoin.
cacheSliceIndex Allows	to	request	a	specific	cache	slice	-	all	events	in	that	cache	slice	and	upward	slices	will	be

published	to	the	client	after	joining	the	room	-	see	
cached	events.

expectedUsers Sets	a	list	of	user	IDs	for	which	the	server	should	reserve	slots.	Those	slots	can't	be	taken	by	other
players.	This	list	will	be	merged	with	any	previously	set	list	of	expected	users	for	this	room.

Returns

true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
opCreateRoom(),	opJoinOrCreateRoom(),	opJoinRandomRoom()
Listener::joinRoomReturn()

§	opJoinRandomRoom()
bool
opJoinRandomRoom (const	Common::Hashtable	&	

nByte	
nByte	
const	Common::JString	&	
nByte	
const	Common::JString	&	
const	Common::JVector<	Common::JString	>	&	
)

Joins	a	random	game	room.

This	function	sends	a	request	to	the	server	to	join	a	random	game	room.	If	it	returns	true,	then	Listener::joinRandomRoomReturn()	gets
called	when	the	operation	has	been	finished.

Remarks
A	Client	instance	can	only	be	inside	one	room	at	a	time.	Therefor	this	operation	will	fail	and	return	false,	if	the	client	is	already
inside	another	game	room.	Any	lobby	the	client	currently	resides	in	will	implicitly	be	left	when	entering	a	game	room.
If	no	rooms	are	fitting	or	available	(all	full,	closed	or	not	visible),	then	this	operation	will	fail	and	Listener::joinRandomRoomReturn()
will	get	get	called	with	an	error	code.

Parameters
customRoomProperties Used	as	a	filter	for	matchmaking.	The	server	only	considers	rooms	for	which	all	custom	properties	match

the	specified	filters.	Note	that	only	those	custom	room	properties	that	have	been	specified	for	listing	in
the	lobby	will	be	used	for	matchmaking,	so	a	rooms	custom	property	can	only	match	a	specified	filter	if	it
got	specified	in	the	list	of	properties	to	show	in	the	lobby.	All	values	must	be	exact	matches.

maxPlayers Must	match	the	value	of	a	rooms	maxPlayers	property	for	that	room	to	be	considered	for	matchmaking.
matchmakingMode Needs	to	be	one	of	the	values	in	MatchMakingMode
lobbyName The	name	of	the	lobby	in	which	matchmaking	should	take	place.	Only	rooms	that	are	listed	in	that	lobby

will	be	considered	for	matchmaking.
lobbyType The	type	of	the	lobby	in	which	matchmaking	should	take	place.	Needs	to	be	one	of	the	values	in

LobbyType.	Note	that	a	lobby	with	the	same	name,	but	a	different	type	can	not	be	considered	for
matchmaking,	as	a	lobby	name	only	needs	to	be	unique	among	lobbies	of	the	same	type.

sqlLobbyFilter Only	used	for	LobbyType::SQL_LOBBY.	This	allows	'bigger',	'less',	'or'	and	'and'	combinations	for
filtering	against	certain	room	properties.

expectedUsers Sets	a	list	of	user	IDs	for	which	the	server	should	reserve	slots.	Those	slots	can't	be	taken	by	other
players.	This	list	will	be	merged	with	any	previously	set	list	of	expected	users	for	this	room.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
opCreateRoom(),	opJoinOrCreateRoom(),	opJoinRandomRoom()
Listener::joinRoomReturn(),	Matchmaking	and	Lobby

https://doc.photonengine.com/en-us/realtime/current/reference/matchmaking-and-lobby

§	opLeaveRoom()
bool	opLeaveRoom (bool	 willComeBack	=	false,

bool	 sendAuthCookie	=	false	
) virtual

Leaves	the	currently	joined	game	room.

This	function	sends	a	request	to	the	server	to	leave	the	currently	joined
game	room.	If	it	returns	true,	then	Listener::leaveRoomReturn()	gets
called	when	the	operation	has	successfully	been	finished.

Remarks
This	operation	will	fail	and	return	false	if	the	client	does	not
currently	reside	inside	any	game	room.

Parameters
willComeBack If	this	is	set	to	'true',	then	the	player	becomes

inactive	and	the	client	could	later	rejoin	the
room	as	the	very	same	player.	'false'	means
the	player	leaves	the	room	for	good.	Note	that
the	player	only	stays	inactive	for	at	maximum
as	many	milliseconds	as	you	have	set	the
playerTtl	to	during	room	creation	(see
RoomOptions::setPlayerTtl()).	The	default	is
'false'.

sendAuthCookie Pass	'true'	to	set	the	sendAuthCookie	web	flag
(please	see	Webhooks	v1.2	for	further
information).	The	default	is	'false'.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
opCreateRoom(),	opJoinOrCreateRoom(),	opJoinRoom(),
opJoinRandomRoom(),	MutableRoom,	RoomOptions,

https://doc.photonengine.com/en-us/realtime/current/reference/webhooks-v1-2

Listener::leaveRoomReturn()

§	opRaiseEvent()	[1/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	 reliable,

const	Ftype	&	 parameters,
nByte	 eventCode,
const	RaiseEventOptions	&	 options	=	RaiseEventOptions
)

Sends	in-game	data	to	other	players	in	the	game,	who	will	receive	it	in	their
Listener::customEventAction()	callback.

The	eventCode	should	be	used	to	define	the	event's	type	and	content
respectively.	The	payload	has	to	be	one	of	the	datatypes	that	are	listed	as
supported	for	values	at	serializable	datatypes.

This	function	provides	the	option	to	raise	events	reliably	or	unreliably.	While
both	result	in	ordered	events,	the	ones	that	got	sent	with	the	latter	option
might	get	lost,	causing	gaps	in	the	resulting	event	sequence.	On	the	other
hand,	they	cause	less	overhead	and	are	optimal	for	data	that	is	replaced
soon.

Note:	the	value	of	the	reliability	option	only	takes	effect	when	the
ConnectionProtocol	passed	to	Client()	equals	ConnectionProtocol::UDP
(which	is	the	default	for	most	platforms)	and	the	message	is	small	enough
to	not	get	fragmented	into	several	UDP	packets	(rule	of	thumb:	you	can
safely	assume	that	the	message	fits	into	a	single	UDP	packet,	when	its
payload	size	is	below	1kb),	otherwise	the	message	gets	sent	reliably,	even
when	the	reliability	option	asks	for	sending	it	unreliably.

Sending	is	not	done	immediately,	but	in	intervals	of	service()	calls.

It	is	recommended	to	keep	the	payload	as	simple	as	possible,	especially	for
events	that	get	raised	multiple	times	per	second.	This	easily	adds	up	to	a
huge	amount	of	data	otherwise.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
Listener::customEventAction(),	Table	of	Datatypes

Parameters
reliable true	=	the	operation	will	be	sent	reliably;	false	=	no	resend

in	case	of	packet	loss	-	will	be	ignored,	when	not	using
ConnectionProtocol::UDP

parameters the	payload	of	the	event	to	raise	-	has	to	be	provided	in
the	form	of	one	of	the	supported	data	types,	specified	at
Table	of	Datatypes

eventCode number	for	arbitrary	classification	of	the	type	of	the	event
(like	'1'	for	position	updates,	'2'	for	chat	messages,	and	so
on).

options see	RaiseEventOptions

§	opRaiseEvent()	[2/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	

const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
nByte	
const	RaiseEventOptions	&	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function	only	in
what	argument(s)	it	accepts.

Parameters
reliable true	=	operation	will	be	sent	reliably;	false	=	no	resend	in	case	of	packet	loss	-	will	be

ignored,	when	not	using	UDP	as	protocol
pParameterArray the	payload	array	of	the	event	to	raise	-	has	to	be	provided	in	the	form	of	a	1D	array

of	one	of	the	supported	data	types,	specified	at	Table	of	Datatypes
arrSize the	number	of	elements	in	pParameterArray
eventCode number	for	arbitrary	classification	of	the	type	of	event	(like	'1'	for	position	updates,	'2'

for	chat	messages,	and	so	on).
options see	RaiseEventOptions

§	opRaiseEvent()	[3/3]
template<
typename
Ftype	>	bool
opRaiseEvent (bool	 reliable,

const	Ftype	 pParameterArray,
const	short	*	 pArrSizes,
nByte	 eventCode,
const	RaiseEventOptions	&	 options	=	RaiseEventOptions
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs
from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
reliable true	=	operation	will	be	sent	reliably;	false	=	no

resend	in	case	of	packet	loss	-	will	be	ignored,
when	not	using	UDP	as	protocol

pParameterArray the	payload	array	of	the	event	to	raise	-	has	to	be
provided	in	the	form	of	an	array	of	one	of	the
supported	data	types,	specified	at	Table	of
Datatypes

pArrSizes an	array	holding	the	number	of	elements	for	each
dimension	of	pParameterArray

eventCode number	for	arbitrary	classification	of	the	type	of
event	(like	'1'	for	position	updates,	'2'	for	chat
messages,	and	so	on).

options see	RaiseEventOptions

§	opFindFriends()
bool
opFindFriends (const	Common::JString	*	 friendsToFind,

short	 numFriendsToFind	
) virtual

Requests	the	rooms	and	online	states	for	the	specified	list	of	friends.
All	clients	should	set	a	unique	UserID	before	connecting.	The	result
can	be	accessed	through	getFriendList()	after	the	corresponding	call
to	Listener::onFindFriendsResponse()	has	been	received.

This	function	can	be	called	when	the	caller	does	not	currently	reside	in
a	game	room	to	find	the	rooms	played	by	a	selected	list	of	users.	The
result	can	be	accessed	by	a	call	to	getFriendList()	and	is	empty
before	the	first	response	has	arrived	in
Listener::onFindFriendsResponse().	getFriendListAge()	can	be	used
to	retrieve	the	amount	of	milliseconds	that	have	passed	since	the	value
that	is	returned	by	getFriendList()	has	been	updated	for	the	last	time.

Users	identify	themselves	by	passing	their	UserIDs	to
AuthenticationValues::setUserID().

The	list	of	userIDs	must	be	fetched	from	some	other	source	(not
provided	by	Photon).

Remarks
This	operation	will	fail	and	return	false	if	the	client	does	currently
reside	inside	a	game	room	or	if	the	result	for	a	previous	call	to	this
function	has	not	arrived	yet.

Parameters
friendsToFind An	array	of	unique	userIDs.
numFriendsToFind The	element	count	of	friendsToFind.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the

server,	false	otherwise.

See	also
getFriendList(),	getFriendListAge(),
Listener::onFindFriendsResponse()

§	opLobbyStats()
bool
opLobbyStats (const	Common::JVector<	LoadBalancing::LobbyStatsRequest

Sends	the	specified	list	of	LobbyStatsRequest	objects	to	the	server.	The	corresponding	list	of	
Listener::onLobbyStatsResponse().

This	function	can	be	called	when	the	caller	does	not	currently	reside	in	a	game	room	to	retrieve	statistics	for	various	lobbies.

Remarks
This	operation	will	fail	and	return	false	if	the	client	does	currently	reside	inside	a	game	room.

Note
Pass	'true'	for	the	'autoLobbyStats'	parameter	of	Client()	to	automatically	receive	regular	stats	updates	for	all	lobbies	in	Listener::onLobbyStatsUpdate().	When
doing	so,	it	makes	little	sense	to	also	additionally	call	this	function.	opLobbyStats()
'autoLobbyStats'	parameter	of	Client()	to	achieve	fine-grain	control	of	when	/	how	often	and	for	which	lobbies	you	want	to	retrieve	a	stats	update.	This	can	be	useful
to	reduce	traffic	when	you	have	lots	of	lobbies,	but	only	rarely	need	stats	updates	for	most	of	them.

Parameters
lobbiesToQuery A	Common::JVector	containing	a	LobbyStatsRequest

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
Client(),	Listener::onLobbyStatsResponse(),	Listener::onLobbyStatsUpdate(),	

§	opChangeGroups()
bool
opChangeGroups (const	Common::JVector<	nByte	>	*	 pGroupsToRemove

const	Common::JVector<	nByte	>	*	 pGroupsToAdd	
)

Updates	the	clients	interest	groups	(for	events	inside	of	game	rooms).

This	function	can	be	called	from	inside	of	a	game	room	to	change	the	list	of	interest
groups	inside	that	room	to	which	the	local	client	is	subscribed	to.	For	each
opRaiseEvent()	call	one	can	specify	the	interest	groups	to	which	that	event	should
be	sent	in	the	RaiseEventOptions.	When	doing	so,	only	clients	that	are
subscribed	to	those	interest	groups	will	receive	that	event.

Note	the	difference	between	passing	NULL	and	the	address	of	an	empty	JVector
instance:

NULL	won't	add/remove	any	groups.
a	JVector	without	any	elements	will	add/remove	all	(existing)	groups.

First,	removing	groups	is	executed.	This	way,	you	could	leave	all	groups	and	join
only	the	ones	provided.

Changes	become	active	not	immediately	but	when	the	server	executes	this
operation	(approximately	getRoundTripTime()/2	milliseconds	after	the	Client
sent	it).

Remarks
This	operation	will	fail	and	return	false	if	the	client	does	not	currently	reside
inside	a	game	room.

Parameters
pGroupsToRemoveGroups	to	remove	from	interest.	NULL	will	not	remove

any.	An	empty	instance	will	remove	all.
pGroupsToAdd Groups	to	add	to	interest.	NULL	will	not	add	any.	An

empty	instance	will	add	all	existing	groups.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,
false	otherwise.

See	also
opRaiseEvent(),	RaiseEventOptions::setInterestGroups(),	Interestgroups

https://doc.photonengine.com/en-us/realtime/current/reference/interestgroups

§	opCustomAuthenticationSendNextStepData()
bool
opCustomAuthenticationSendNextStepData (const	AuthenticationValues

Used	in	conjunction	with	Listener::onCustomAuthenticationIntermediateStep()	to	implement	multi-leg
custom	authentication.

While	normally	custom	authentication	is	single-legged,	occasionally	a	certain	service	may	require	multi-leg
authentication.	This	means	that	the	client	sends	some	authentication	data	to	the	server	that	you	pass
when	calling	connect()	and	the	server	does	not	respond	with	a	final	result	(successful	connect	or	failed
connect	attempt	due	to	an	authentication	error),	but	with	some	intermediate	result	data	that	gets	passed	to
your	Listener::onCustomAuthenticationIntermediateStep()	implementation	and	that	is	needed	by	your
application	to	acquire	the	authentication	data	for	the	next	step	of	the	authentication	process.	You	can	then
pass	that	next	step	data	to	this	function	to	continue	the	authentication	process	that	you	have	started	with
the	connect()	call.

Remarks
This	operation	will	fail	and	return	false	if	the	client	is	not	currently	expecting	it	to	be	called.	A	call	by
you	is	only	expected	after	you	have	received	a	call	to
Listener::onCustomAuthenticationIntermediateStep()	beforehand	and	only	one	call	to	this	function	is
expected	after	each	received	call	to	Listener::onCustomAuthenticationIntermediateStep().	If	a	call	is
expected,	then	the	connection	flow	pauses	until	this	call	has	been	made.	No	call	to	this	function	is
ever	expected	if	the	custom	authentication	that	you	have	set	up	is	single-legged	(which	is	by	far	more
common)	or	if	you	have	not	set	up	any	custom	authentication	at	all,	which	means	that	this	function	will
always	fail	in	these	scenarios.

Parameters
authenticationValues An	instance	of	class	AuthenticationValues

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the	server,	false	otherwise.

See	also
connect(),	Listener::onCustomAuthenticationIntermediateStep(),	AuthenticationValues

§	opWebRpc()	[1/4]
bool	opWebRpc (const	Common::JString	&	 uriPath) virtual

Makes	Photon	call	your	custom	web-service	by	path/name	with	the
given	parameters	(converted	into	JSON).

A	WebRPC	calls	a	custom,	http-based	function	on	a	server	that	you
provide.	The	uriPath	is	relative	to	a	"base	path"	which	is	configured	on
the	server	side.	The	sent	parameters	get	converted	to	Json.	Vice
versa,	the	response	of	the	web-service	will	be	converted	back,	when	it
gets	sent	back	to	the	Client,	where	it	arrives	in
Listener::webRpcReturn().

To	use	this	feature,	you	have	to	setup	your	server:

For	a	Photon	Cloud	application	visit	the	Dashboard	and	setup
"WebHooks".	The	BaseUrl	is	used	for	WebRPCs	as	well.

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
Listener::webRpcReturn(),	Table	of	Datatypes,	Webhooks

Parameters
uriPath the	URL	path	to	call,	relative	to	the	baseUrl	configured	on

Photon's	server-side

https://doc.photonengine.com/en-us/realtime/current/reference/webhooks

§	opWebRpc()	[2/4]
template<
typename	Ftype
>	bool
opWebRpc (const	Common::JString	&	 uriPath,

const	Ftype	&	 parameters,
bool	 sendAuthCookie	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
uriPath the	URL	path	to	call,	relative	to	the	baseUrl

configured	on	Photon's	server-side
parameters the	parameters	to	send	to	the	web-service

method	-	has	to	be	provided	in	the	form	of	one
of	the	supported	data	types,	specified	at	Table
of	Datatypes

sendAuthCookie defines	if	the	authentication	cookie	gets	sent	to
a	WebHook	(if	setup)

§	opWebRpc()	[3/4]
template<
typename
Ftype	>
bool
opWebRpc (const	Common::JString	&	

const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
bool	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function
only	in	what	argument(s)	it	accepts.

Parameters
uriPath the	URL	path	to	call,	relative	to	the	baseUrl	configured	on	

side
pParameterArray the	parameter	array	to	send	to	the	web-service	method	-	has	to	be	provided

in	the	form	of	a	1D	array	of	one	of	the	supported	data	types,	specified	at
Table	of	Datatypes

arrSize the	number	of	elements	in	pParameterArray
sendAuthCookie defines	if	the	authentication	cookie	gets	sent	to	a	WebHook	(if	setup)

§	opWebRpc()	[4/4]
template<
typename	Ftype
>	bool
opWebRpc (const	Common::JString	&	 uriPath,

const	Ftype	 pParameterArray,
const	short	*	 pArrSizes,
bool	 sendAuthCookie	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
uriPath the	URL	path	to	call,	relative	to	the	baseUrl

configured	on	Photon's	server-side
pParameterArray the	parameter	array	to	send	to	the	web-service

method	-	has	to	be	provided	in	the	form	of	an
array	of	one	of	the	supported	data	types,
specified	at	Table	of	Datatypes

pArrSizes an	array	holding	the	number	of	elements	for
each	dimension	of	pParameterArray

sendAuthCookie defines	if	the	authentication	cookie	gets	sent
to	a	WebHook	(if	setup)

§	selectRegion()
bool
selectRegion (const	Common::JString	&	 selectedRegion) virtual

Used	in	conjunction	with	Listener::onAvailableRegions()	and
RegionSelectionMode::SELECT	to	select	a	certain	server	region	to
connect	to.

If	you	pass	RegionSelectionMode::SELECT	for	parameter
'regionSelectionMode'	to	Client(),	then	the	Client	does	not
automatically	choose	a	server	region	to	connect	to	on	its	own	during
the	connection	flow,	but	upon	retrieving	the	list	of	available	regions	and
the	list	of	server	addresses	that	can	be	used	to	ping	those	regions	it
passes	those	lists	to	your	implementation	of
Listener::onAvailableRegions()	and	pauses	the	connection	flow.	You
then	need	to	choose	one	of	the	available	regions	and	select	it	by
passing	its	name	to	this	function	to	continue	the	connection	flow.

The	list	of	available	regions	for	Photon	Public	Cloud	is	available	at
Regions.	However	more	regions	might	be	added	over	time	after	you
have	released	your	application	and	the	list	of	available	regions	might
differ	when	your	appID	is	associated	with	a	dedicated	Cloud	or	when
you	connect	to	a	non-default	name	server	address.	Also	a	certain
region	might	be	temporarily	unavailable	for	maintenance.	Furthermore
some	regions	might	consist	out	of	multiple	different	clusters,	while
others	don't.	Therefor	you	should	always	assure	that	the	region	name
that	you	pass	to	this	function	actually	matches	one	of	the	entries	in	the
list	of	available	regions.	Also	be	prepared	to	select	a	fall	back	option	in
case	that	your	preferred	region	is	not	available.

A	typical	list	of	available	regions	might	look	like	this	(more	or	less
regions	might	be	available	and	the	order	of	the	entries	is	undefined
and	might	change	without	notice):	"eu",	"us",	"usw",	"cae",	"asia",	"jp",
"au",	"sa",	"in",	"kr"

When	multiple	clusters	per	region	are	set	up	for	your	appID	for	some
regions,	then	the	list	might	look	like	this:	"eu/Default",	"eu/Cluster2",

https://doc.photonengine.com/en-us/realtime/current/reference/regions

"us/Default",	"us/Cluster2",	"usw",	"cae",	"asia",	"jp",	"au",	"sa",	"in",
"kr"

Examples	for	valid	strings	to	pass	for	the	'eu'	region	for	parameter
'selectedRegion'	with	the	above	example	lists	(adapt	accordingly	for
other	regions):

"eu"	-	Valid	when	at	least	one	cluster	is	available	in	region	'eu',
selects	the	default	cluster	for	that	region.
"eu/Default"	-	Only	valid	when	a	cluster	with	the	exact	name
"Default"	is	available	in	region	'eu'.
"eu/Cluster2"	-	Only	valid	when	a	cluster	with	the	exact	name
"Cluster2"	is	available	in	region	'eu'.
"eu/*"	-	Only	valid	when	at	least	2	clusters	are	setup	in	region	'eu'
of	which	at	least	one	is	available.	The	server	randomly	selects	one
of	the	available	clusters	in	the	specified	region.	This	string	is	not
contained	in	the	list	of	available	regions	and	must	be	constructed
by	your	code	when	it	is	valid	and	when	you	intend	to	select	a
random	cluster.

In	case	of	the	server	randomly	selecting	a	cluster,	parameter	'cluster'
of	Listener::connectReturn()	contains	the	name	of	the	cluster	to	which
the	client	has	connected.	Otherwise	that	parameter	is	an	empty	string.

Remarks
This	operation	will	fail	and	return	false	if	'regionSelectionMode'
has	not	been	set	to	RegionSelectionMode::SELECT	upon
construction	of	this	class	instance.

Parameters
selectedRegionMust	be	a	valid	region	name	that	matches	one

of	the	entries	in	the	list	of	available	regions	that
got	passed	to	Listener::onAvailableRegions()

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
Client(),	connect(),	Listener::onAvailableRegions()

§	reconnectAndRejoin()
bool	reconnectAndRejoin (void) virtual

Reconnects	the	the	server	and	rejoins	the	last	previously	joined	room.

This	function	reconnects	directly	to	the	game	server	to	which	it	has
previously	been	connected	to	and	sends	a	request	to	the	server	to	join
the	last	previously	joined	game	room.	If	it	returns	true,	then
Listener::joinRoomReturn()	gets	called	when	the	operation	has	been
finished.

The	usual	requirements	for	a	rejoin	apply,	meaning	the	room	must	still
exist,	the	local	player	must	have	entered	it	before,	but	it	must	not	have
left	it	for	good,	but	only	have	become	inactive	and	the	playerTTL	for
the	local	player	in	that	room	must	not	have	run	out	yet,	otherwise	this
operation	will	fail	and	Listener::joinRoomReturn()	will	get	called	with	an
error	code.

Remarks
This	function	will	fail	and	return	false	if	no	game	room	has	been
entered	since	the	creation	of	the	class	instance	or	if	the	client	is
still/already	in	a	connected	state.
reconnectAndRejoin()	is	quicker	than	the	combination	of
connect()	and	opJoinRoom().

Returns
true,	if	the	request	could	successfully	be	queued	for	sending	to	the
server,	false	otherwise.

See	also
connect(),	opJoinRoom(),	Listener::joinRoomReturn()

§	sendDirect()	[1/6]
template<	typename	Ftype	>
bool	sendDirect (const	Ftype	&	 parameters,

int	 targetPlayer,
bool	 fallbackRelay	=	false	
)

Sends	in-game	data	to	other	players	in	the	game,	who	will	receive	it	in
their	Listener::onDirectMessage()	callback.	Data	that	gets	sent	with
this	function,	gets	sent	over	a	direct	peer	to	peer	connection,	when
possible.

For	the	Photon	clients	to	attempt	to	establish	direct	peer	to	peer
connections	to	each	other	when	entering	a	room	you	need	set	the	the
DirectMode	Option	either	to	DirectMode::MASTER_TO_ALL	or	to
DirectMode::ALL_TO_ALL	on	the	RoomOptions	instance	that	you
provide	on	room	creation.	Only	when	a	direct	connection	to	a	certain
client	exists,	data	can	be	exchanged	with	it	directly.	Otherwise	this
function	either	falls	back	to	sending	it	through	the	Photon	game	server
with	opRaiseEvent(),	or	doesn't	send	it	at	all,	depending	on	the	value
of	the	'fallbackRelay'	parameter.	Data	transfer	on	a	direct	p2p
connection	always	happens	unreliably	over	UDP	even	when	a	different
connection	protocol	has	been	chosen	for	connections	to	the	Photon
servers	in	the	constructor	of	this	class.	However	data	transfer	over	the
fall-back	relay	uses	the	protocol	that	has	been	selected	for
connections	to	the	Photon	server	when	calling	the	constructor.

It	is	recommended	to	keep	the	payload	as	simple	as	possible,	as	the
data	is	typically	sent	multiple	times	per	second.	This	easily	adds	up	to
a	huge	amount	of	data	otherwise.

Note
A	direct	connection	to	a	certain	client	is	not	guaranteed	to	exist,
even	when	RoomOptions::setDirectMode()	specifies	that	the
Clients	should	attempt	to	establish	it,	as	NAT	punch-through	does
not	have	a	100%	success	rate.	In	the	case	that	a	direct	message

is	preferable,	but	a	relayed	one	would	be	acceptable	when	no
direct	connection	exists,	the	'fallbackRelay'	option	comes	into	play.
Furthermore	if	a	client	looses	its	connection	to	Photon	while	other
clients	can	still	reach	the	server,	then	that	client	most	likely	lost	its
internet	connection	and	direct	messages	won't	reach	it	anymore
either.

Remarks
This	function	provides	a	rather	low-level	raw	UDP	socket	like	way
to	send	data.	If	you	need	any	higher	level	functionality	like	reliable
data	delivery,	support	for	bigger	messages,	message	caching,
interest	groups	or	webforwarding,	then	please	use
opRaiseEvent()	instead.

See	also
Listener::onDirectMessage(),	opRaiseEvent(),	DirectMode,
RoomOptions::getDirectMode(),
RoomOptions::setDirectMode()

Parameters
parameters the	data	to	send	-	has	to	be	provided	in	the	form	of

one	of	the	supported	data	types,	specified	at	Table
of	Datatypes	-	must	be	less	than	1200	bytes

targetPlayer the	player	number	of	the	intended	receiver	of	the
message	-	must	be	the	number	of	another	active
player	inside	the	same	room	as	the	sender

fallbackRelay true	if	the	Photon	game	server	that	hosts	the	room
should	be	used	as	a	fallback	relay	(by	an
automatic	call	to	opRaiseEvent())	when	no	direct
connection	to	the	other	client	exists,	false
otherwise

Returns
true,	if	the	request	could	successfully	be	sent	(this	does	not
guarantee	that	it	will	be	received),	false	otherwise.

§	sendDirect()	[2/6]
template<
typename
Ftype	>
bool
sendDirect (const	Ftype	

typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
int	
bool	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above
function	only	in	what	argument(s)	it	accepts.

Parameters
pParameterArray the	data	to	send	-	has	to	be	provided	in	the	form	of	a	1D	array	of	one	of

the	supported	data	types,	specified	at	Table	of	Datatypes
than	1200	bytes

arrSize the	number	of	elements	in	pParameterArray
targetPlayer the	player	number	of	the	intended	receiver	of	the	message	-	must	be	the

number	of	another	active	player	inside	the	same	room	as	the	sender
fallbackRelay true	if	the	Photon	game	server	that	hosts	the	room	should	be	used	as	a

fallback	relay	(by	an	automatic	call	to	opRaiseEvent()
receivers	to	which	no	direct	connection	exists,	false	otherwise

Returns
true,	if	the	request	could	successfully	be	sent	(this	does	not	guarantee	that	it	will	be
received),	false	otherwise.

§	sendDirect()	[3/6]
template<	typename	Ftype	>	bool
sendDirect (const	Ftype	 pParameterArray,

const	short	*	 pArrSizes,
int	 targetPlayer,
bool	 fallbackRelay	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
pParameterArray the	the	data	to	send	-	has	to	be	provided	in	the

form	of	an	array	of	one	of	the	supported	data
types,	specified	at	Table	of	Datatypes	-	must
be	less	than	1200	bytes

pArrSizes an	array	holding	the	number	of	elements	for
each	dimension	of	pParameterArray

targetPlayer the	player	number	of	the	intended	receiver	of
the	message	-	must	be	the	number	of	another
active	player	inside	the	same	room	as	the
sender

fallbackRelay true	if	the	Photon	game	server	that	hosts	the
room	should	be	used	as	a	fallback	relay	(by	an
automatic	call	to	opRaiseEvent())	for	all
specified	receivers	to	which	no	direct
connection	exists,	false	otherwise

Returns
true,	if	the	request	could	successfully	be	sent	(this	does	not
guarantee	that	it	will	be	received),	false	otherwise.

§	sendDirect()	[4/6]
template<
typename
Ftype	>
bool
sendDirect (const	Ftype	&	 parameters,

const	Common::JVector<	int	>	&	 targetPlayers	=	Common::JVector
bool	 fallbackRelay	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the
above	function	only	in	what	argument(s)	it	accepts.

Parameters
parameters the	data	to	send	-	has	to	be	provided	in	the	form	of	one	of	the

supported	data	types,	specified	at	Table	of	Datatypes
less	than	1200	bytes

targetPlayers the	player	numbers	of	the	intended	receivers	of	the	message	-
must	be	the	numbers	of	other	active	players	inside	the	same	room
as	the	sender

fallbackRelay true	if	the	Photon	game	server	that	hosts	the	room	should	be	used
as	a	fallback	relay	(by	an	automatic	call	to	opRaiseEvent()
specified	receivers	to	which	no	direct	connection	exists,	false
otherwise

Returns
the	number	of	target	players,	for	which	the	request	could	successfully	be	sent	(this
does	not	guarantee	that	it	will	be	received).

§	sendDirect()	[5/6]
template<
typename
Ftype	>
bool
sendDirect (const	Ftype	

typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
const	Common::JVector<	int	>	&	
bool	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above	function	only	in	what
argument(s)	it	accepts.

Parameters
pParameterArray the	data	to	send	-	has	to	be	provided	in	the	form	of	a	1D	array	of	one	of	the	supported	data

types,	specified	at	Table	of	Datatypes	-	must	be	less	than	1200	bytes
arrSize the	number	of	elements	in	pParameterArray
targetPlayers the	player	numbers	of	the	intended	receivers	of	the	message	-	must	be	the	numbers	of

other	active	players	inside	the	same	room	as	the	sender
fallbackRelay true	if	the	Photon	game	server	that	hosts	the	room	should	be	used	as	a	fallback	relay	(by

an	automatic	call	to	opRaiseEvent())	for	all	specified	receivers	to	which	no	direct
connection	exists,	false	otherwise

Returns
the	number	of	target	players,	for	which	the	request	could	successfully	be	sent	(this	does	not	guarantee	that	it
will	be	received).

§	sendDirect()	[6/6]
template<
typename
Ftype	>
bool
sendDirect (const	Ftype	 pParameterArray,

const	short	*	 pArrSizes,
const	Common::JVector<	int	>	&	 targetPlayers	=	Common::JVector
bool	 fallbackRelay	=	false	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the
above	function	only	in	what	argument(s)	it	accepts.

Parameters
pParameterArray the	data	to	send	-	has	to	be	provided	in	the	form	of	an	array	of

one	of	the	supported	data	types,	specified	at	Table	of
Datatypes	-	must	be	less	than	1200	bytes

pArrSizes an	array	holding	the	number	of	elements	for	each	dimension	of
pParameterArray

targetPlayers the	player	numbers	of	the	intended	receivers	of	the	message	-
must	be	the	numbers	of	other	active	players	inside	the	same
room	as	the	sender

fallbackRelay true	if	the	Photon	game	server	that	hosts	the	room	should	be
used	as	a	fallback	relay	(by	an	automatic	call	to
opRaiseEvent())	for	all	specified	receivers	to	which	no	direct
connection	exists,	false	otherwise

Returns
the	number	of	target	players,	for	which	the	request	could	successfully	be	sent	(this
does	not	guarantee	that	it	will	be	received).

§	getServerTimeOffset()
int	getServerTimeOffset (void) const

Returns
the	difference	between	the	local	uptime	and	the	Photon	Server's
system	time	in	ms.

In	real-time	games	it's	often	useful	to	relate	game	events	to	a	global
common	timeline,	that's	valid	for	all	players	and	independent	from
derivations	throughout	the	clients'	system	times.	The	Photon	Server's
System	Time	can	serve	as	this	reference	time.	The	serverTimeOffset
represents	the	difference	between	the	client's	local	system	time	and
the	Photon	server's	system	time.

ServerTime	=	serverTimeOffset	+	GETTIMEMS()

The	serverTimeOffset	is	fetched	shortly	after	connect	by	Photon.	Use
GETTIMEMS()	to	get	your	local	time	in	ms.	You	can	let	Photon	refetch
the	offset	by	calling	fetchServerTimestamp().	The	ServerTimeOffset
will	be	0	until	shortly	after	initial	connect.

§	getServerTime()
int	getServerTime (void) const

Returns
the	Photon	Server's	system	time	ins	ms.

see	getServerTimeOffset()

§	getBytesOut()
int	getBytesOut (void) const

Returns
the	total	number	of	outgoing	bytes	transmitted	by	this	PhotonPeer
object.

See	also
getBytesIn()

§	getBytesIn()
int	getBytesIn (void) const

Returns
the	total	number	of	incoming	bytes	received	by	this	PhotonPeer
object.

See	also
getBytesOut()

§	getByteCountCurrentDispatch()
int	getByteCountCurrentDispatch (void) const

Returns
the	size	of	the	dispatched	event	or	operation-result	in	bytes.	This
value	is	set	before	onEvent()	or	onOperationResponse()	is	called
(within	dispatchIncomingCommands()).	Get	this	value	directly	in
onEvent()	or	onOperationResponse().

§	getByteCountLastOperation()
int	getByteCountLastOperation (void) const

Returns
the	size	of	the	last	serialized	operation	call	in	bytes.	The	value
includes	all	headers	for	this	single	operation	but	excludes	those	of
UDP,	Enet	Package	Headers	and	TCP.	Get	this	value	immediately
after	calling	an	operation.

§	getSentCountAllowance()
int	getSentCountAllowance (void) const

Returns
the	number	of	resend	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	always	return	0	for	other	protocols.

See	also
setSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	setSentCountAllowance()
void	setSentCountAllowance (int	 sentCountAllowance)

Sets	the	number	of	re-send	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	do	nothing	at	all	for	other	protocols.

Parameters
sentCountAllowance the	new	number	of	re/-send	retries	before

a	peer	is	considered	lost/disconnected.

See	also
getSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	getTimePingInterval()
int	getTimePingInterval (void) const

Returns
the	time	threshold	in	milliseconds	since	the	last	reliable	command,
before	a	ping	will	be	sent.

See	also
setTimePingInterval()

§	setTimePingInterval()
void	setTimePingInterval (int	 timePingInterval)

Sets	the	time	threshold	in	milliseconds	since	the	last	reliable
command,	before	a	ping	will	be	sent.

Parameters
timePingInterval time	threshold	in	milliseconds	since	the	last

reliable	command,	before	a	ping	will	be	sent.

See	also
getTimePingInterval()

§	getRoundTripTime()
int	getRoundTripTime (void) const

Returns
the	time	in	milliseconds	until	a	reliable	command	is	acknowledged
by	the	server.

This	is,	what	is	commonly	called	a	ping	time	or	just	a	ping.

See	also
getRoundTripTimeVariance()

§	getRoundTripTimeVariance()
int	getRoundTripTimeVariance (void) const

Returns
the	variance	of	the	roundtrip	time	in	milliseconds.	Gives	a	hint
about	how	much	the	net	latency	is	varying.

See	also
getRoundTripTime()

§	getTimestampOfLastSocketReceive()
int	getTimestampOfLastSocketReceive (void) const

Returns
timestamp	of	the	last	time	anything	(!)	was	received	from	the
server	(including	low	level	Ping	and	ACKs	but	also	events	and
operation-returns).	This	is	not	the	time	when	something	was
dispatched.

§	getDebugOutputLevel()
int	getDebugOutputLevel (void) const

Returns	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Returns
one	of	the	values	in	DebugLevel

See	also
setDebugOutputLevel()

§	setDebugOutputLevel()
bool	setDebugOutputLevel (int	 debugLevel)

Sets	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Parameters
debugLevel one	of	the	values	in	DebugLevel

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	getLogFormatOptions()
const	LogFormatOptions	&	getLogFormatOptions (void) const

Returns
the	LogFormatOptions	that	are	used	by	this	instance.

See	also
setFormatOptions()

§	setLogFormatOptions()
void
setLogFormatOptions (const	Common::LogFormatOptions	&	 formatOptions

Sets	the	log	format	options	to	the	supplied	value.

Parameters
formatOptions the	new	value	to	which	the	log	format	options	will	be	set

See	also
getFormatOptions()

§	getIncomingReliableCommandsCount()
int	getIncomingReliableCommandsCount (void) const

Returns
the	total	number	of	reliable	commands	currently	waiting	in	the
incoming	queues	of	all	channels	or	-1	if	not	connected.

§	getPeerID()
short	getPeerID (void) const

Returns
this	peer's	ID	as	assigned	by	the	server.	Will	be	-1,	if	not
connected.

§	getDisconnectTimeout()
int	getDisconnectTimeout (void) const

Returns
the	maximum	time	interval	in	milliseconds	for	doing	resend	retries
before	a	peer	is	considered	lost/disconnected.

See	also
setDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	setDisconnectTimeout()
void	setDisconnectTimeout (int	 disconnectTimeout)

Sets	the	maximum	time	ins	milliseconds	for	making	re-send	retries
before	a	peer	is	considered	lost/disconnected.

Parameters
disconnectTimeout resend	max	time	in	ms	before	a	peer	is

considered	lost/disconnected

See	also
getDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	getQueuedIncomingCommands()
int	getQueuedIncomingCommands (void) const

Returns
the	number	of	queued	incoming	commands	in	all	channels	or	-1	if
not	connected

§	getQueuedOutgoingCommands()
int	getQueuedOutgoingCommands (void) const

Returns
the	number	of	queued	outgoing	commands	in	all	channels	or	-1	if
not	connected

§	getIsPayloadEncryptionAvailable()
bool	getIsPayloadEncryptionAvailable (void) const

Returns
this	peer's	payload	encryption	availability	status.	True	if	payload
encryption	is	available,	false	otherwise.

See	also
getIsEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption()

§	getIsEncryptionAvailable()
bool	getIsEncryptionAvailable (void) const

Returns
this	peer's	encryption	availability	status.	True	if	either	payload
encryption	is	available	or	if	the	connection	protocol	is	UDP	and
UDP	encryption	is	available	or	if	the	connection	protocol	is	already
secure	on	its	own,	false	otherwise.

See	also
getIsPayloadEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption(),	initUDPEncryption()

§	getResentReliableCommands()
int	getResentReliableCommands (void) const

Returns
the	count	of	commands	that	got	repeated	(due	to	local	repeat-
timing	before	an	ACK	was	received).

§	getLimitOfUnreliableCommands()
int	getLimitOfUnreliableCommands (void) const

Returns
the	limit	for	the	queue	of	received	unreliable	commands.

See	also
setLimitOfUnreliableCommands()

§	setLimitOfUnreliableCommands()
void	setLimitOfUnreliableCommands (int	 value)

Sets	the	limit	for	the	queue	of	received	unreliable	commands.	This
works	only	in	UDP.	This	limit	is	applied	when	you	call
dispatchIncomingCommands.	If	this	client	(already)	received	more
than	this	limit,	it	will	throw	away	the	older	ones	instead	of	dispatching
them.	This	can	produce	bigger	gaps	for	unreliable	commands	but	your
client	catches	up	faster.	This	can	be	useful	when	the	client	couldn't
dispatch	anything	for	some	time	(cause	it	was	in	a	room	but	loading	a
level).	If	set	to	20,	the	incoming	unreliable	queues	are	truncated	to	20.
If	0,	all	received	unreliable	commands	will	be	dispatched.	This	is	a	"per
channel"	value,	so	each	channel	can	hold	commands	up	to	specified
limit.	This	value	interacts	with	dispatchIncomingCommands():	If	that
is	called	less	often,	more	commands	get	skipped.

See	also
getLimitOfUnreliableCommands()

§	getCRCEnabled()
bool	getCRCEnabled (void) const

Returns
true	if	CRC	enabled

See	also
setCRCEnabled

§	setCRCEnabled()
void	setCRCEnabled (bool	 crcEnabled)

Enables	or	disables	CRC.	While	not	connected,	this	controls	if	the	next
connection(s)	should	use	a	per-package	CRC	checksum.	If	the	client	is
in	another	state	than	'connected',	then	this	function	has	no	effect
except	for	logging	an	error.

While	turned	on,	the	client	and	server	will	add	a	CRC	checksum	to
every	sent	package.	The	checksum	enables	both	sides	to	detect	and
ignore	packages	that	were	corrupted	during	transfer.	Corrupted
packages	have	the	same	impact	as	lost	packages:	They	require	a	re-
send,	adding	a	delay	and	could	lead	to	timeouts.	Building	the
checksum	has	a	low	processing	overhead	but	increases	integrity	of
sent	and	received	data.	Packages	discarded	due	to	failed	CRC	checks
are	counted	in	PhotonPeer.PacketLossByCRC.

Note
This	only	has	effect	for	UDP	connections.
This	does	not	have	any	effect	for	connections	that	use	UDP
datagram	encryption	(which	always	use	a	built-in	checksum).

See	also
getCRCEnabled

§	getPacketLossByCRC()
int	getPacketLossByCRC (void) const

Returns
the	count	of	packages	dropped	due	to	failed	CRC	checks	for	this
connection.

See	also
setCRCEnabled

§	getTrafficStatsEnabled()
bool	getTrafficStatsEnabled (void) const

Returns
true	if	traffic	statistics	of	a	peer	are	enabled.	Default
trafficStatsEnabled:	false	(disabled).

§	setTrafficStatsEnabled()
void	setTrafficStatsEnabled (bool	 trafficStatsEnabled)

Enables	or	disables	the	traffic	statistics	of	a	peer.	Default
trafficStatsEnabled:	false	(disabled).

§	getTrafficStatsElapsedMs()
int	getTrafficStatsElapsedMs (void) const

Returns
the	count	of	milliseconds	the	stats	are	enabled	for	tracking.

§	getTrafficStatsIncoming()
const	Photon::TrafficStats	&	getTrafficStatsIncoming (void) const

Returns
the	byte-count	of	incoming	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsOutgoing()
const	Photon::TrafficStats	&	getTrafficStatsOutgoing (void) const

Returns
the	byte-count	of	outgoing	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsGameLevel()
const	Photon::TrafficStatsGameLevel	&
getTrafficStatsGameLevel (void) const

Returns
a	statistic	of	incoming	and	outgoing	traffic,	split	by	operation,
operation-result	and	event.	Operations	are	outgoing	traffic,	results
and	events	are	incoming.	Includes	the	per-command	header	sizes
(UDP:	Enet	Command	Header	or	TCP:	Message	Header).

§	getQuickResendAttempts()
nByte	getQuickResendAttempts (void) const

Returns
the	number	of	resend	attempts	for	a	reliable	command	that	are
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

§	setQuickResendAttempts()
void	setQuickResendAttempts (nByte	 quickResendAttempts)

Sets	the	number	of	resend	attempts	for	a	reliable	command	can	be
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

Remarks
The	default	value	is	0.	Any	later	resend	attempt	will	then	double
the	time	before	the	next	resend	takes	place.	The	max	value	is	4.
Make	sure	to	set	SentCountAllowance	to	a	slightly	higher	value,
as	more	repeats	will	get	done.

§	getChannelCountUserChannels()
nByte	getChannelCountUserChannels (void) const

The	IDs	from	0	to	getChannelCountUserChannels()-1	can	be	passed
as	channelID	to	operations	that	offer	this	parameter.

Returns
the	number	of	different	channels	that	are	available	for	sending
operations	on.

§	getPeerCount()
short	getPeerCount (void) static

Returns
the	count	of	peers,	which	have	been	initialized	since	the	start	of
the	application.	Interesting	mainly	for	debugging	purposes.

§	getState()
int	getState (void) const

The	Current	state	this	Client	instance	is	in.	Be	Careful:	several	states
are	"transitions"	that	lead	to	other	states.

Note
This	is	publicly	available	purely	for	informational	purposes	(i.e.
when	debugging)	and	your	logic	should	not	rely	on	certain	state
changes,	but	should	instead	wait	for	the	dedicated	callbacks.

Returns
one	of	the	values	defined	in	PeerStates

§	getMasterserverAddress()
const	JString	&	getMasterserverAddress (void) const

Returns
the	address	of	the	master	server	to	which	the	client	is	connected
when	it	is	not	inside	a	game	room.

§	getCountPlayersIngame()
int	getCountPlayersIngame (void) const

Returns
the	count	of	players	that	are	currently	participating	in	games	on
game	servers	that	are	in	the	same	cluster	(game	servers	assigned
to	the	same	master	server)	as	the	local	client.	Each	Photon	Cloud
region	consists	of	at	least	one,	but	potentially	multiple	separate
clusters.

Remarks
This	value	is	only	getting	updated	when	the	client	is	on	the	master
server.

§	getCountGamesRunning()
int	getCountGamesRunning (void) const

Returns
the	count	of	rooms	that	are	currently	existing	on	game	servers	in
the	same	cluster	(game	servers	assigned	to	the	same	master
server)	as	the	one	the	local	client	is	connected	to.	Each	Photon
Cloud	region	consists	of	at	least	one,	but	potentially	multiple
separate	clusters.

Remarks
This	value	is	only	getting	updated	when	the	client	is	on	the	master
server.

§	getCountPlayersOnline()
int	getCountPlayersOnline (void) const

Returns
the	total	count	of	players	that	are	currently	connected	to	the	same
cluster	(clients	that	are	connected	to	the	same	master	server	or	to
a	game	server	that	is	assigned	to	the	same	master	server)	as	the
local	client.	Each	Photon	Cloud	region	consists	of	at	least	one,
but	potentially	multiple	separate	clusters.

Remarks
This	value	is	only	getting	updated	when	the	client	is	on	the	master
server.

§	getCurrentlyJoinedRoom()
MutableRoom	&	getCurrentlyJoinedRoom (void)

Returns
a	non-const	reference	to	a	MutableRoom	instance	that
represents	the	currently	joined	room.

Remarks
The	behavior	when	accessing	the	referenced	instance	after
leaving	the	room	in	which	that	reference	has	been	obtained	and
the	behavior	when	calling	this	function	without	being	inside	a	room
is	undefined.

Note
Attention:	Do	not	assign	the	return	value	of	this	function	to	a
MutableRoom	variable,	but	only	assign	it	to	a	MutableRoom
reference	or	simply	directly	operate	on	the	function	return	value,
as	assigning	it	to	a	variable	means	that	accessing	that	variable
lets	you	operate	on	a	local	copy	and	operations	that	change	that
copy	don't	affect	the	actual	room.

§	getRoomList()
const	JVector<	Room	*	>	&	getRoomList (void) const

Returns
the	list	of	all	visible	rooms.

Remarks
The	value	that	is	returned	by	this	function	is	only	updated	inside	a
lobby	of	LobbyType::DEFAULT.	Clients	that	are	inside	a	lobby	of
a	different	LobbyType,	or	in	no	lobby	at	all,	do	not	receive	room
list	updates.	The	same	Client	instance	can't	be	inside	of	multiple
rooms	at	once.	The	term	'room'	includes	game	rooms	and	lobbies.
Therefor	a	Client	instance	is	not	able	to	receive	room	list	updates
while	it	resides	inside	of	a	game	room.
To	show	up	in	the	lobby	the	IsVisible	flag	of	a	room	needs	to	be
set	to	true	(which	is	the	default	value).	The	MaxPlayers	setting
and	the	current	amount	of	players	inside	a	room	do	not	influence
the	rooms	visibility,	nor	does	the	IsOpen	flag:	If	the	maximum
amount	of	players	is	already	inside	of	the	room	or	if	the	room	is
closed,	then	the	room	is	still	included	in	the	room	list,	but	attempts
to	join	it	will	fail.

See	also
getRoomNameList()

§	getRoomNameList()
const	JVector<	JString	>	&	getRoomNameList (void) const

Returns
the	list	of	the	names	of	all	visible	rooms.

The	entries	in	the	returned	JVector	instance	are	guarenteed	to	be	in
the	same	order	like	the	entries	in	the	JVector	instance	that	is	returned
by	getRoomList().	The	same	remarks	apply	to	this	function	as	are
mentioned	for	getRoomList().

See	also
getRoomList()

§	getIsInRoom()
bool	getIsInRoom (void) const

Returns
true	if	this	client	instance	currently	resides	within	a	room,	false
otherwise.

Remarks
The	term	'room'	includes	game	rooms	and	lobbies.

See	also
getIsInGameRoom(),	getIsInLobby()

§	getIsInGameRoom()
bool	getIsInGameRoom (void) const

Returns
true	if	this	client	instance	currently	resides	within	a	game	room,
false	otherwise.

See	also
getIsInRoom(),	getIsInLobby()

§	getIsInLobby()
bool	getIsInLobby (void) const

Returns
true	if	this	client	instance	currently	resides	within	a	lobby,	false
otherwise.

See	also
getIsInRoom(),	getIsInGameRoom()

§	getAutoJoinLobby()
bool	getAutoJoinLobby (void) const

Returns
the	current	value	of	the	autJoinLobby	flag.

Remarks
The	value	of	the	autoJoinLobby	flag	determines	if	the	client	will
automatically	join	the	default	lobby	whenever	it	has	successfully
connected	and	whenever	it	leaves	a	game	room.

See	also
setAutoJoinLobby()

§	setAutoJoinLobby()
void	setAutoJoinLobby (bool	 autoJoinLobby)

Sets	the	value	of	the	autJoinLobby	flag.

Parameters
autoJoinLobby the	new	value	to	which	the	flag	will	be	set

Remarks
The	value	of	the	autoJoinLobby	flag	determines	if	the	client	will
automatically	join	the	default	lobby	whenever	it	has	successfully
connected	and	whenever	it	leaves	a	game	room.

See	also
getAutoJoinLobby()

§	getLocalPlayer()
MutablePlayer	&	getLocalPlayer (void)

Returns
a	non-const	reference	to	the	MutablePlayer	instance	that	is
representing	the	local	player.

§	getFriendList()
const	JVector<	FriendInfo	>	&	getFriendList (void) const

Returns
the	latest	locally	cached	state	of	the	friend	list.

Remarks
You	can	request	the	latest	state	of	the	local	clients	friend	list	from
the	server	by	a	call	to	opFindFriends().
Listener::onFindFriendsResponse()	informs	you	when	the	servers
response	has	arrived.	The	list	that	is	returned	by	this	function
reflects	the	state	that	the	server	has	sent	in	its	latest	response	to
an	update	request	or	in	other	words	the	most	up	to	date	state	that
is	available	locally	at	the	time	of	the	call.

See	also
opFindFriends(),	Listener::onFindFriendsResponse(),
FriendInfo,	getFriendListAge()

§	getFriendListAge()
int	getFriendListAge (void) const

Returns
the	time	in	ms	that	has	passed	since	the	last	update	has	been
applied	to	the	list	that	is	returned	by	getFriendList()	or	0	if	either
no	friendlist	is	available	yet	or	if	a	request	for	an	update	is	in
progress	at	the	time	of	the	call.

§	getDisconnectedCause()
int	getDisconnectedCause (void) const

Summarizes	(aggregates)	the	different	causes	for	disconnects	of	a
client.	A	disconnect	can	be	caused	by:	errors	in	the	network	connection
or	some	vital	operation	failing	(which	is	considered	"high	level").	While
operations	always	trigger	a	call	to	OnOperationResponse,	connection
related	changes	are	treated	in	OnStatusChanged.	The
DisconnectCause	is	set	in	either	case	and	summarizes	the	causes	for
any	disconnect	in	a	single	state	value	which	can	be	used	to	display	(or
debug)	the	cause	for	disconnection.

Returns
the	disconnect	cause.

§	getUserID()
const	JString	&	getUserID (void) const

Returns
the	unique	user	ID

See	also
setUserID()

§	getRegionWithBestPing()
const	JString	&	getRegionWithBestPing (void) const

Returns
the	region	code	of	the	Photon	Cloud	region	to	which	the	client
has	the	best	ping.

Remarks
When	you	specify	RegionSelectionMode::BEST	on	constructing
the	Client	instance,	then	on	first	connect	the	Client	will	aquire	a
list	of	available	regions	and	of	their	adresses	and	ping	each	of
them	multiple	times.	Afterwards	it	will	connect	to	the	region	with
the	lowest	average	ping.	After	you	got	a	call	to
Listener::connectReturn(),	the	region	code	of	the	region	that	the
Client	has	chosen	based	on	the	ping	results	can	get	accessed	by
a	call	to	this	function.	Later	calls	to	connect()	will	use	that	cached
region	code	to	avoid	re-doing	the	time-consuming	ping-procedure
and	therefor	to	keep	the	time	short	that	is	needed	for	establishing
a	connection.	For	the	same	reason	it	is	recommend	that	you
acquire	the	result	of	the	ping-procedure	through	this	function	and
store	it	in	local	persistant	storage,	so	that	you	can	use	it	with
RegionSelectionMode::SELECT.	This	way	you	can	avoid	the	time-
consuming	pinging	procedure	even	for	the	first	connect	after
constructing	the	class,	if	you	already	have	the	region	code	for	the
region	with	the	best	ping	stored	locally	from	a	connection	on
another	Client	instance	(for	example	after	your	app	has	been	shut
down	and	restarted).	However	in	this	case	you	may	want	to
provide	an	option	to	your	users	through	which	they	can	delete
your	locally	stored	region	code	and	this	way	trigger	a	re-pinging
on	the	next	construction	of	a	Client	instance.

Note
This	function	will	return	an	empty	string,	if	no	ping	result	is
available	(yet),	which	is	the	case	when	another
RegionSelectionMode	than	BEST	has	been	chosen	or	when	you
have	not	received	the	call	to	Listener::connectReturn()	yet	that
corresponds	to	your	first	successfully	established	connection

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

since	the	construction	of	this	class.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing FriendInfo

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

FriendInfo	Class
Reference

Inheritance	diagram	for	FriendInfo:

[legend]

Collaboration	diagram	for	FriendInfo:

[legend]

Public	Member	Functions
Common::JString	 getUserID	(void)	const

	
bool	 getIsOnline	(void)	const

	
Common::JString	 getRoom	(void)	const

	
bool	 getIsInRoom	(void)	const

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Used	to	store	the	information	about	a	friend's	online	status	and	in	which
room	he/she	is	active.

See	also
Client::getFriendList(),	Client::getFriendListAge(),
Client::opFindFriends(),	Listener::onFindFriendsResponse()

Member	Function	Documentation

§	getUserID()
JString	getUserID (void) const

Returns
the	user	ID	of	the	friend

§	getIsOnline()
bool	getIsOnline (void) const

Returns
true	if	the	friend	is	online,	false	otherwise

§	getRoom()
JString	getRoom (void) const

Returns
the	name	of	the	room	in	which	the	friend	currently	is	active	in,	or
an	empty	string,	if	it	is	not	active	inside	any	room	at	all.

§	getIsInRoom()
bool	getIsInRoom (void) const

Returns
true	if	the	friend	is	active	inside	a	room,	false	otherwise.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Listener

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Listener	Class
Reference abstract

Inheritance	diagram	for	Listener:

[legend]

Collaboration	diagram	for	Listener:

[legend]

Public	Member	Functions
virtual	void	 debugReturn	(int	debugLevel,	const	Common::JString

&string)=0
	
virtual	void	 connectionErrorReturn	(int	errorCode)=0
	
virtual	void	 clientErrorReturn	(int	errorCode)=0
	
virtual	void	 warningReturn	(int	warningCode)=0
	
virtual	void	 serverErrorReturn	(int	errorCode)=0
	
virtual	void	 joinRoomEventAction	(int	playerNr,	const

Common::JVector<	int	>	&playernrs,	const	Player
&player)=0

	
virtual	void	 leaveRoomEventAction	(int	playerNr,	bool	isInactive)=0
	
virtual	void	 customEventAction	(int	playerNr,	nByte	eventCode,	const

Common::Object	&eventContent)=0
	
virtual	void	 connectReturn	(int	errorCode,	const	Common::JString

&errorString,	const	Common::JString	®ion,	const
Common::JString	&cluster)=0

	
virtual	void	 disconnectReturn	(void)=0
	
virtual	void	 createRoomReturn	(int	localPlayerNr,	const

Common::Hashtable	&roomProperties,	const
Common::Hashtable	&playerProperties,	int	errorCode,
const	Common::JString	&errorString)=0

	
virtual	void	 joinOrCreateRoomReturn	(int	localPlayerNr,	const

Common::Hashtable	&roomProperties,	const
Common::Hashtable	&playerProperties,	int	errorCode,
const	Common::JString	&errorString)=0

	
virtual	void	 joinRoomReturn	(int	localPlayerNr,	const

Common::Hashtable	&roomProperties,	const
Common::Hashtable	&playerProperties,	int	errorCode,
const	Common::JString	&errorString)=0

	
virtual	void	 joinRandomRoomReturn	(int	localPlayerNr,	const

Common::Hashtable	&roomProperties,	const
Common::Hashtable	&playerProperties,	int	errorCode,
const	Common::JString	&errorString)=0

	
virtual	void	 leaveRoomReturn	(int	errorCode,	const

Common::JString	&errorString)=0
	
virtual	void	 joinLobbyReturn	(void)=0
	
virtual	void	 leaveLobbyReturn	(void)=0
	
virtual	void	 onFindFriendsResponse	(void)
	
virtual	void	 onLobbyStatsResponse	(const	Common::JVector<

LobbyStatsResponse	>	&)
	
virtual	void	 webRpcReturn	(int,	const	Common::JString	&,	const

Common::JString	&,	int,	const	Common::Dictionary<
Common::Object,	Common::Object	>	&)

	
virtual	void	 onRoomListUpdate	(void)
	
virtual	void	 onRoomPropertiesChange	(const	Common::Hashtable

&)
	
virtual	void	 onPlayerPropertiesChange	(int,	const

Common::Hashtable	&)
	
virtual	void	 onAppStatsUpdate	(void)
	
virtual	void	 onLobbyStatsUpdate	(const	Common::JVector<

LobbyStatsResponse	>	&)
	
virtual	void	 onCacheSliceChanged	(int)
	
virtual	void	 onMasterClientChanged	(int,	int)
	
virtual	void	 onCustomAuthenticationIntermediateStep	(const

Common::Dictionary<	Common::JString,
Common::Object	>	&)

	
virtual	void	 onAvailableRegions	(const	Common::JVector<

Common::JString	>	&,	const	Common::JVector<
Common::JString	>	&)

	
virtual	void	 onSecretReceival	(const	Common::JString	&)
	
virtual	void	 onDirectMessage	(const	Common::Object	&,	int,	bool)
	
virtual	void	 onCustomOperationResponse	(const

Photon::OperationResponse	&operationResponse)
	

Member	Function	Documentation

§	debugReturn()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

virtual	void
debugReturn (int	 debugLevel,

const	Common::JString	&	 string	
) pure	virtual

This	is	the	callback	function	for	debug-messages.

Parameters
debugLevel one	of	the	values	in	DebugLevel
string the	formatted	debug	string

See	also
BaseListener

Implements	BaseListener.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing LobbyStatsRequest

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

LobbyStatsRequest
Class	Reference

Inheritance	diagram	for	LobbyStatsRequest:

[legend]

Collaboration	diagram	for	LobbyStatsRequest:

[legend]

Public	Member	Functions
	 LobbyStatsRequest	(const
Common::JString
&name=Common::JString(),	nByte
type=LobbyType::DEFAULT)

	
const	Common::JString	&	 getName	(void)	const

	
nByte	 getType	(void)	const

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Passed	to	Client::opLobbyStats().	Each	instance	of	this	class	holds	the
name	and	the	type	of	a	lobby	for	which	the	caller	of
Client::opLobbyStats()	wants	to	request	statistics.

See	also
Client::opLobbyStats(),	Listener::onLobbyStatsResponse(),
Listener::onLobbyStatsUpdate(),	LobbyStatsResponse

Constructor	&	Destructor	Documentation

§	LobbyStatsRequest()
LobbyStatsRequest (const	Common::JString	&	 name	=	Common::JString

nByte	 type	=	LobbyType::DEFAULT
)

Constructor:	Creates	a	new	instance	with	the	specified	parameters.

Note
Lobby	names	are	only	unique	per	lobby	type	and	multiple	lobbies	with
the	same	name,	but	different	type,	can	exist	in	parallel.	Hence	a	lobby
with	the	same	name	but	with	a	different	type	is	treated	as	a	different
lobby.

Parameters
name see	setLobbyName()	-	optional,	defaults	to	an	empty	JString

instance.
type see	setLobbyType()	-	optional,	defaults	to

LobbyType::DEFAULT.	Must	be	one	of	the	values	in	LobbyType

Member	Function	Documentation

§	getName()
const	JString	&	getName (void) const

Returns
the	lobby	name

See	also
LobbyStatsRequest()

§	getType()
nByte	getType (void) const

Returns
the	lobby	type

See	also
LobbyStatsRequest()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing LobbyStatsResponse

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

LobbyStatsResponse
Class	Reference

Inheritance	diagram	for	LobbyStatsResponse:

[legend]

Collaboration	diagram	for	LobbyStatsResponse:

[legend]

Public	Member	Functions
const	Common::JString	&	 getName	(void)	const

	
nByte	 getType	(void)	const

	
int	 getPeerCount	(void)	const

	
int	 getRoomCount	(void)	const

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Passed	to	Listener::onLobbyStatsResponse(),
Listener::onLobbyStatsUpdate().	Each	instance	of	this	class	holds	the
name,	the	type	and	the	statistics	(peer	count	and	room	count)	of	one
specific	lobby.	Each	lobby	can	be	uniquely	identified	by	the	combination
of	its	name	and	type.

See	also
Client::opLobbyStats(),	Listener::onLobbyStatsResponse(),
Listener::onLobbyStatsUpdate(),	LobbyStatsRequest

Member	Function	Documentation

§	getName()
const	JString	&	getName (void) const

Returns
the	lobby	name.	Each	lobby	can	be	uniquely	identified	by	the
combination	of	its	name	and	type.

§	getType()
nByte	getType (void) const

Returns
the	lobby	type.	Each	lobby	can	be	uniquely	identified	by	the
combination	of	its	name	and	type.

§	getPeerCount()
int	getPeerCount (void) const

Returns
the	number	of	clients	that	currently	reside	in	this	specific	lobby

§	getRoomCount()
int	getRoomCount (void) const

Returns
the	number	of	clients	that	currently	exist	and	that	belong	to	this
specific	lobby.

On	room	creation	the	creator	of	the	room	can	specify	the	name	and
type	of	the	lobby	to	which	that	room	gets	assigned	in	the
RoomOptions.

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing MutablePlayer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

MutablePlayer	Class
Reference

Inheritance	diagram	for	MutablePlayer:

[legend]

Collaboration	diagram	for	MutablePlayer:

[legend]

Public	Member	Functions
	 MutablePlayer	(const	MutablePlayer
&toCopy)

	
virtual	MutablePlayer	&	 operator=	(const	Player	&toCopy)

	
virtual	MutablePlayer	&	 operator=	(const	MutablePlayer

&toCopy)
	

void	 setName	(const	Common::JString
&name,	const	WebFlags
&webflags=WebFlags())

	
void	 mergeCustomProperties	(const

Common::Hashtable
&customProperties,	const	WebFlags
&webflags=WebFlags())

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty	(const	ktype	&key,
const	vtype	&value,	const	WebFlags
&webflags=WebFlags())

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty	(const	ktype	&key,
const	vtype	pValueArray,	typename
Common::Helpers::ArrayLengthType<
vtype	>::type	arrSize,	const	WebFlags
&webflags=WebFlags())

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty	(const	ktype	&key,
const	vtype	pValueArray,	const	short
*pArrSizes,	const	WebFlags
&webflags=WebFlags())

	

void	 addCustomProperties	(const
Common::Hashtable
&customProperties,	const	WebFlags
&webflags=WebFlags())

	
template<typename	ktype	>

void	 removeCustomProperty	(const	ktype
&key,	const	WebFlags
&webflags=WebFlags())

	
template<typename	ktype	>

void	 removeCustomProperties	(const	ktype
*keys,	unsigned	int	count,	const
WebFlags	&webflags=WebFlags())

	
	Public	Member	Functions	inherited	from	Player

virtual	 ~Player	(void)
	

	 Player	(const	Player	&toCopy)
	

int	 getNumber	(void)	const
	

const	Common::JString	&	 getName	()	const
	

const	Common::JString	&	 getUserID	()	const
	
const	Common::Hashtable	&	 getCustomProperties	()	const
	

bool	 getIsInactive	(void)	const
	

bool	 getIsMasterClient	(void)	const
	

bool	 operator==	(const	Player	&player)
const

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,

bool	withTypes=false)	const
	

virtual	Common::JString	 toString	(bool	withTypes,	bool
withCustomProperties)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Member	Function	Documentation

§	operator=()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

MutablePlayer	&	operator= (const	Player	&	 toCopy) virtual

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Reimplemented	from	Player.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing MutableRoom

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

MutableRoom	Class
Reference

Inheritance	diagram	for	MutableRoom:

[legend]

Collaboration	diagram	for	MutableRoom:

[legend]

Public	Member	Functions
	 MutableRoom	(const	

	
virtual	MutableRoom	&	 operator=	(const	Room

	
virtual	MutableRoom	&	 operator=	(const	MutableRoom

	
nByte	 getPlayerCount	(void)	const

	
void	 setMaxPlayers	(nByte	maxPlayers,	const	

&webflags=WebFlags
	

void	 setIsOpen	(bool	isOpen,	const	
&webflags=WebFlags

	
bool	 getIsVisible	(void)	const

	
void	 setIsVisible	(bool	isVisible,	const	

&webflags=WebFlags
	

const	Common::JVector<	Player	*	>	&	 getPlayers	(void)	const
	

const	Player	*	 getPlayerForNumber
	

int	 getMasterClientID	(void)	const
	
const	Common::JVector<	Common::JString	>	&	 getPropsListedInLobby
	

void	 setPropsListedInLobby
Common::JString	>	&propsListedInLobby,	const
Common::JVector<	
&expectedList=Common::JVector
Common::JString	>(),	const	
&webflags=WebFlags

	
int	 getPlayerTtl	(void)	const

	
int	 getEmptyRoomTtl	(void)	const

	
bool	 getSuppressRoomEvents

	
const	Common::JVector<	Common::JString	>	*	 getPlugins	(void)	const

	
bool	 getPublishUserID	(void)	const

	
const	Common::JVector<	Common::JString	>	&	 getExpectedUsers	(void)	const
	

void	 setExpectedUsers	(const	
Common::JString	>	&expectedUsers,	const
WebFlags	&webflags=

	
void	 mergeCustomProperties

Common::Hashtable
Common::Hashtable
&expectedCustomProperties=
const	WebFlags	&webflags=

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty
&value,	const	Common::Hashtable
&expectedCustomProperties=
const	WebFlags	&webflags=

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty
pValueArray,	typename
Common::Helpers::ArrayLengthType<	vtype	>::type
arrSize,	const	Common::Hashtable
&expectedCustomProperties=
const	WebFlags	&webflags=

	
template<typename	ktype	,	typename	vtype	>

void	 addCustomProperty
pValueArray,	const	short	*pArrSizes,	const

Common::Hashtable
&expectedCustomProperties=
const	WebFlags	&webflags=

	
void	 addCustomProperties

&customProperties,	const	
&expectedCustomProperties=
const	WebFlags	&webflags=

	
template<typename	ktype	>

void	 removeCustomProperty
Common::Hashtable
&expectedCustomProperties=
const	WebFlags	&webflags=

	
template<typename	ktype	>

void	 removeCustomProperties
unsigned	int	count,	const	
&expectedCustomProperties=
const	WebFlags	&webflags=

	
virtual	Common::JString	 toString	(bool	withTypes=false,	bool

withCustomProperties=false,	bool	withPlayers=false)
const

	
	Public	Member	Functions	inherited	from	Room

virtual	 ~Room	(void)
	

	 Room	(const	Room	&toCopy)
	

const	Common::JString	&	 getName	(void)	const
	

nByte	 getMaxPlayers	(void)	const
	

bool	 getIsOpen	(void)	const
	

nByte	 getDirectMode	(void)	const
	

const	Common::Hashtable	&	 getCustomProperties
	

bool	 operator==	(const	Room
	

virtual	Common::JString	&	 toString	(Common::JString
withTypes=false)	const

	
virtual	Common::JString	 toString	(bool	withTypes,	bool	withCustomProperties)

const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Member	Function	Documentation

§	operator=()
MutableRoom	&	operator= (const	Room	&	 toCopy) virtual

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Reimplemented	from	Room.

§	getPlayerCount()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

nByte	getPlayerCount (void) const virtual

Returns
the	count	of	players	that	are	currently	inside	this	room

Reimplemented	from	Room.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Peer

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Peer	Class	Reference

Inheritance	diagram	for	Peer:

[legend]

Collaboration	diagram	for	Peer:

[legend]

Public	Member	Functions
	 Peer	(Photon::PhotonListener
connectionProtocol=Photon::ConnectionProtocol::DEFAULT)

	
virtual	void	 disconnect	(void)

	
virtual	bool	 opJoinLobby	(const	Common::JString

&lobbyName=Common::JString
lobbyType=LobbyType::DEFAULT

	
virtual	bool	 opLeaveLobby	(void)

	
virtual	bool	 opCreateRoom	(const	Common::JString

RoomOptions	&options=RoomOptions
Common::Hashtable
&customLocalPlayerProperties=
const	Common::JVector<	Common::JString
&expectedUsers=Common::JVector
())

	
virtual	bool	 opJoinRoom	(const	Common::JString

RoomOptions	&options=RoomOptions
Common::Hashtable
&customLocalPlayerProperties=
bool	createIfNotExists=false,	bool	rejoin=false,	int
cacheSliceIndex=0,	const	Common::JVector
Common::JString	>	&expectedUsers=
Common::JString	>())

	
virtual	bool	 opJoinRandomRoom	(const	Common::Hashtable

&customRoomProperties=Common::Hashtable
maxPlayers=0,	nByte
matchmakingMode=MatchmakingMode::FILL_ROOM
const	Common::JString
&lobbyName=Common::JString
lobbyType=LobbyType::DEFAULT
Common::JString	&sqlLobbyFilter=

const	Common::JVector<	Common::JString
&expectedUsers=Common::JVector
())

	
virtual	bool	 opLeaveRoom	(bool	willComeBack=false,	bool

sendAuthCookie=false)
	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	¶meters,
nByte	eventCode,	const	RaiseEventOptions
&options=RaiseEventOptions())

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	pParameterArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize,	nByte	eventCode,	const
RaiseEventOptions	&options=

	
template<typename	Ftype	>

bool	 opRaiseEvent	(bool	reliable,	const	Ftype	pParameterArray,
const	short	*pArrSizes,	nByte	eventCode,	const
RaiseEventOptions	&options=

	
virtual	bool	 opAuthenticate	(const	Common::JString

Common::JString	&appVersion,	bool	encrypted,	const
AuthenticationValues
&authenticationValues=AuthenticationValues
lobbyStats=false,	const	Common::JString
®ionCode=Common::JString

	
virtual	bool	 opAuthenticateOnce	(const	Common::JString

const	Common::JString	&appVersion,	nByte
connectionProtocol,	nByte	encryptionMode,	const
AuthenticationValues
&authenticationValues=AuthenticationValues
lobbyStats=false,	const	Common::JString
®ionCode=Common::JString

	
virtual	bool	 opFindFriends	(const	Common::JString

short	numFriendsToFind)
	

virtual	bool	 opLobbyStats	(const	Common::JVector
LoadBalancing::LobbyStatsRequest
&lobbiesToQuery=Common::JVector
LoadBalancing::LobbyStatsRequest

	
virtual	bool	 opChangeGroups	(const	Common::JVector

*pGroupsToRemove,	const	Common::JVector
*pGroupsToAdd)

	
virtual	bool	 opWebRpc	(const	Common::JString

	
template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
¶meters,	bool	sendAuthCookie=false)

	
template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
pParameterArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,
bool	sendAuthCookie=false)

	
template<typename	Ftype	>

bool	 opWebRpc	(const	Common::JString
pParameterArray,	const	short	*pArrSizes,	bool
sendAuthCookie=false)

	
virtual	bool	 opGetRegions	(bool	encrypted,	const	

&appID)
	

virtual	bool	 opSetPropertiesOfPlayer	(int	playerNr,	const
Common::Hashtable	&properties,	const
Common::Hashtable
&expectedProperties=Common::Hashtable
webFlags=WebFlags())

	
virtual	bool	 opSetPropertiesOfRoom	(const	

&properties,	const	Common::Hashtable

&expectedProperties=Common::Hashtable
webFlags=WebFlags())

	
	Public	Member	Functions	inherited	from	PhotonPeer

	 PhotonPeer	(PhotonListener	&listener,	nByte
connectionProtocol=ConnectionProtocol::DEFAULT)

	
virtual	 ~PhotonPeer	(void)

	
virtual	bool	 connect	(const	Common::JString

Common::JString	&appID=Common::JString
	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	&customData)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
typename	Common::Helpers::ArrayLengthType<	Ftype
>::type	arrSize)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype	pCustomDataArray,
const	short	*pArrSizes)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 opCustom	(const	OperationRequest

bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
	

virtual	bool	 sendOutgoingCommands	(void)
	

virtual	bool	 sendAcksOnly	(void)
	

virtual	bool	 dispatchIncomingCommands
	

virtual	bool	 establishEncryption	(void)
	

virtual	void	 fetchServerTimestamp	(void)
	

virtual	void	 resetTrafficStats	(void)
	

virtual	void	 resetTrafficStatsMaximumCounters
	

virtual	Common::JString	 vitalStatsToString	(bool	all)	const
	

virtual	void	 pingServer	(const	Common::JString
int	pingAttempts)

	
virtual	void	 initUserDataEncryption	(const	

>	&secret)
	

virtual	void	 initUDPEncryption	(const	Common::JVector
&encryptSecret,	const	Common::JVector
&HMACSecret)

	
PhotonListener	*	 getListener	(void)

	
int	 getServerTimeOffset	(void)	const

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation	(void)	const

	
int	 getPeerState	(void)	const

	

int	 getSentCountAllowance	(void)	const
	

void	 setSentCountAllowance	(int	sentCountAllowance)
	

int	 getTimePingInterval	(void)	const
	

void	 setTimePingInterval	(int	timePingInterval)
	

int	 getRoundTripTime	(void)	const
	

int	 getRoundTripTimeVariance	(void)	const
	

int	 getTimestampOfLastSocketReceive
	

int	 getDebugOutputLevel	(void)	const
	

bool	 setDebugOutputLevel	(int	debugLevel)
	
const	Common::LogFormatOptions	&	 getLogFormatOptions	(void)	const
	

void	 setLogFormatOptions	(const
Common::LogFormatOptions

	
int	 getIncomingReliableCommandsCount

	
short	 getPeerID	(void)	const

	
int	 getDisconnectTimeout	(void)	const

	
void	 setDisconnectTimeout	(int	disconnectTimeout)

	
int	 getQueuedIncomingCommands

	
int	 getQueuedOutgoingCommands

	

Common::JString	 getServerAddress	(void)	const
	

bool	 getIsPayloadEncryptionAvailable
	

bool	 getIsEncryptionAvailable	(void)	const
	

int	 getResentReliableCommands
	

int	 getLimitOfUnreliableCommands
	

void	 setLimitOfUnreliableCommands
	

bool	 getCRCEnabled	(void)	const
	

void	 setCRCEnabled	(bool	crcEnabled)
	

int	 getPacketLossByCRC	(void)	const
	

bool	 getTrafficStatsEnabled	(void)	const
	

void	 setTrafficStatsEnabled	(bool	trafficStasEnabled)
	

int	 getTrafficStatsElapsedMs	(void)	const
	

const	TrafficStats	&	 getTrafficStatsIncoming	(void)	const
	

const	TrafficStats	&	 getTrafficStatsOutgoing	(void)	const
	

const	TrafficStatsGameLevel	&	 getTrafficStatsGameLevel	(void)	const
	

nByte	 getQuickResendAttempts	(void)	const
	

void	 setQuickResendAttempts	(nByte	quickResendAttempts)
	

nByte	 getConnectionProtocol	(void)	const
	

void	 setConnectionProtocol	(nByte	connectionProtocol)
	

nByte	 getChannelCountUserChannels
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	PhotonPeer

static	short	 getPeerCount	(void)
	
static	unsigned	int	 getMaxAppIDLength	(void)
	

Member	Function	Documentation

§	disconnect()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

void	disconnect (void) virtual

Initiates	the	disconnection	from	the	Photon	server.	The	servers
response	will	arrive	in	PhotonListener::onStatusChanged().

This	function	generates	a	disconnection	request	that	will	be	sent	to	the
Photon	server.	If	the	disconnection	is	completed	successfully,	then	the
PhotonListener::onStatusChanged()	callback	will	be	called,	with	a
statusCode	of	StatusCode::DISCONNECT.

Remarks
If	a	game	room	is	joined,	when	this	function	gets	called,	then	the
local	player	leaves	that	room	as	if	opLeaveRoom()	has	been
called	with	parameter	'willComeBack'	set	to	'true'.	Please	see
there	for	further	information	about	leaving	rooms.	However	no	call
to	Listener::leaveRoomReturn()	will	happen	when	leaving	a	game
room	is	triggered	through	a	call	to	disconnect().

See	also
connect()

Reimplemented	from	PhotonPeer.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Player

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Player	Class
Reference

Inheritance	diagram	for	Player:

[legend]

Collaboration	diagram	for	Player:

[legend]

Public	Member	Functions
virtual	 ~Player	(void)

	
	 Player	(const	Player	&toCopy)

	
virtual	Player	&	 operator=	(const	Player	&toCopy)

	
int	 getNumber	(void)	const

	
const	Common::JString	&	 getName	()	const

	
const	Common::JString	&	 getUserID	()	const

	
const	Common::Hashtable	&	 getCustomProperties	()	const
	

bool	 getIsInactive	(void)	const
	

bool	 getIsMasterClient	(void)	const
	

bool	 operator==	(const	Player	&player)
const

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,

bool	withTypes=false)	const
	

virtual	Common::JString	 toString	(bool	withTypes,	bool
withCustomProperties)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const

	
JString	 toString	(bool	withTypes=false)	const

	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Each	client	inside	a	MutableRoom	is	represented	by	an	instance	of	this
class.

Player	instances	are	only	valid	in	the	context	of	the	MutableRoom()
instance	from	which	they	have	been	retrieved.

See	also
MutablePlayer,	MutableRoom,	MutableRoom::getPlayers(),
MutableRoom::getPlayerForNumber()

Constructor	&	Destructor	Documentation

§	~Player()
~Player (void) virtual

Destructor.

§	Player()
Player (const	Player	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
Player	&	operator= (const	Player	&	 toCopy) virtual

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Reimplemented	in	MutablePlayer.

§	getNumber()
int	getNumber (void) const

Returns
the	player	number

The	player	number	serves	as	a	the	unique	identifier	of	a	player	inside
the	current	room.

It	is	assigned	per	room	and	only	valid	in	the	context	of	that	room.	A
player	number	is	never	re-used	for	another	player	inside	the	same
room.

If	a	player	leaves	a	room	entirely	(either	explicitly	through	a	call	to
Client::opLeaveRoom()	without	passing	'true'	for	parameter
'willComeBack'	or	implicitly	because	his	playerTtl	runs	out	(see
RoomOptions::setPlayerTtl()))	and	joins	it	again	afterwards,	then	he
is	treated	as	an	entirely	new	player	and	gets	assigned	a	new	player
number.

If	a	player	becomes	inactive	(either	explicitly	through	a	call	to
Client::opLeaveRoom()	with	passing	'true'	for	parameter
'willComeBack'	or	implicitly	by	by	getting	disconnected)	and	then
rejoins	the	same	room	before	his	playerTtl	runs	out,	then	he	is	treated
as	the	same	player	an	keeps	his	previously	assigned	player	number.

§	getName()
const	JString	&	getName (void) const

Returns
the	non-unique	nickname	of	this	player

A	player	might	change	his	own	name.

Such	a	change	is	synced	automatically	with	the	server	and	other
clients	in	the	same	room.

§	getUserID()
const	JString	&	getUserID (void) const

Returns
the	unique	user	ID	of	this	player

This	value	is	only	available	when	the	room	got	created	with
RoomOptions::setPublishUserId(true).	Otherwise	it	will	be	an	empty
string.

Useful	for	Client::opFindFriends()	and	and	for	blocking	slots	in	a
room	for	expected	users	(see	MutableRoom::getExpectedUsers()).

See	also
AuthenticationValues

§	getCustomProperties()
const	Hashtable	&	getCustomProperties (void) const

Returns
the	custom	properties	of	this	player

Read-only	cache	for	the	custom	properties	of	a	player.	A	client	can
change	the	custom	properties	of	his	local	player	instance	through	class
MutablePlayer.	The	Custom	Properties	of	remote	players	are
automatically	updated	when	they	change.

§	getIsInactive()
bool	getIsInactive (void) const

Returns
'true'	if	a	player	is	inactive,	'false'	otherwise.

Inactive	players	keep	their	spot	in	a	room	but	otherwise	behave	as	if
offline	(no	matter	what	their	actual	connection	status	is).

The	room	needs	a	PlayerTtl	!=	0	(see	RoomOptions::setPlayerTtl())
for	players	to	be	able	to	become	inactive.	If	a	player	is	inactive	for
longer	than	the	PlayerTtl,	then	the	server	will	remove	this	player	from
the	room.

§	getIsMasterClient()
bool	getIsMasterClient (void) const

Returns
'true'	if	this	player	is	the	Master	Client	of	the	current	room,	'false'
otherwise.

There	is	always	exactly	one	master	client.	The	creator	of	a	room	gets
assigned	the	role	of	master	client	on	room	creation.

When	the	current	master	client	leaves	the	room	or	becomes	inactive
and	there	is	at	least	one	active	player	inside	the	room,	then	the	role	of
master	client	gets	reassigned	by	the	server	to	an	active	client.	As	soon
as	one	client	becomes	active	again	in	a	room	with	only	inactive	clients,
the	role	of	master	client	will	be	assigned	to	this	active	client.

Whenever	the	role	of	master	client	gets	assigned	to	a	different	client,
all	active	clients	inside	the	same	room	get	informed	about	it	by	a	call	to
Listener::onMasterClientChanged().

You	can	use	the	master	client	when	you	want	one	client	to	be	an
authoritative	instance.

See	also
MutableRoom::getMasterClientID(),
Listener::onMasterClientChanged(),
DirectMode::MASTER_TO_ALL

§	operator==()
bool	operator== (const	Player	&	 player) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	Player	instances	are	considered	equal,	if	getNumber()	returns
equal	values	for	both	of	them.

§	toString()	[1/2]
JString	&	toString (Common::JString	&	 retStr,

bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

§	toString()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	toString (bool	 withTypes,
bool	 withCustomProperties	
) const virtual

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
withTypes set	to	true,	to	include	type	information	in

the	generated	string
withCustomProperties set	to	true,	to	include	the	custom

properties	in	the	generated	string

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing RaiseEventOptions

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

RaiseEventOptions
Class	Reference

Inheritance	diagram	for	RaiseEventOptions:

[legend]

Collaboration	diagram	for	RaiseEventOptions:

[legend]

Public	Member	Functions
	 RaiseEventOptions	(nByte	channelID=0,	nByte
eventCaching=Lite::EventCache::DO_NOT_CACHE,
const	int	*targetPlayers=NULL,	short
numTargetPlayers=0,	nByte
receiverGroup=Lite::ReceiverGroup::OTHERS,
nByte	interestGroup=0,	const	WebFlags
&webFlags=WebFlags(),	int	cacheSliceIndex=0)

	
	 ~RaiseEventOptions	(void)

	
	 RaiseEventOptions	(const	RaiseEventOptions
&toCopy)

	
RaiseEventOptions	&	 operator=	(const	RaiseEventOptions	&toCopy)

	
nByte	 getChannelID	(void)	const

	
RaiseEventOptions	&	 setChannelID	(nByte	channelID)

	
nByte	 getEventCaching	(void)	const

	
RaiseEventOptions	&	 setEventCaching	(nByte	eventCaching)

	
const	int	*	 getTargetPlayers	(void)	const

	
short	 getNumTargetPlayers	(void)	const

	
RaiseEventOptions	&	 setTargetPlayers	(const	int	*targetPlayers,	short

numTargetPlayers)
	

nByte	 getReceiverGroup	(void)	const
	

RaiseEventOptions	&	 setReceiverGroup	(nByte	receiverGroup)
	

nByte	 getInterestGroup	(void)	const

	
RaiseEventOptions	&	 setInterestGroup	(nByte	interestGroup)

	
const	WebFlags	&	 getWebFlags	(void)	const

	
RaiseEventOptions	&	 setWebFlags	(const	WebFlags	&webFlags)

	
int	 getCacheSliceIndex	(void)	const

	
RaiseEventOptions	&	 setCacheSliceIndex	(int	cacheSliceIndex)

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	class	aggregates	the	various	optional	parameters	that	can	be
passed	to	Client::opRaiseEvent().

See	also
Client::opRaiseEvent()

Constructor	&	Destructor	Documentation

§	RaiseEventOptions()	[1/2]
RaiseEventOptions (nByte	 channelID	=	0,

nByte	 eventCaching	=	Lite::EventCache::DO_NOT_CACHE
const	int	*	 targetPlayers	=	NULL,
short	 numTargetPlayers	=	0,
nByte	 receiverGroup	=	Lite::ReceiverGroup::OTHERS
nByte	 interestGroup	=	0,
const	WebFlags	&	 webFlags	=	WebFlags(),
int	 cacheSliceIndex	=	0	
)

Constructor:	Creates	a	new	instance	with	the	specified	parameters.

Parameters
channelID see	setChannelID()	-	optional,	defaults	to	0.
eventCaching see	setEventCaching()	-	optional,	defaults	to

Lite::EventCache::DO_NOT_CACHE.
targetPlayers see	setTargetPlayers()	-	optional,	defaults	to	NULL.
numTargetPlayers see	setTargetPlayers()	-	optional,	defaults	to	0.
receiverGroup see	setReceiverGroup()	-	optional,	defaults	to

Lite::ReceiverGroup::OTHERS.
interestGroup see	setInterestGroup()	-	optional,	defaults	to	0.
webFlags see	setWebFlags()	-	optional,	defaults	to	a	default-constructed

WebFlags	instance.
cacheSliceIndex see	setCacheSliceIndex()	-	optional,	defaults	to	0.

§	~RaiseEventOptions()
~RaiseEventOptions (void)

Destructor.

§	RaiseEventOptions()	[2/2]
RaiseEventOptions (const	RaiseEventOptions	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
RaiseEventOptions	&
operator= (const	RaiseEventOptions	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	getChannelID()
nByte	getChannelID (void) const

Returns
the	currently	set	channel	ID

See	also
setChannelID()

§	setChannelID()
RaiseEventOptions	&	setChannelID (nByte	 channelID)

Sets	the	channel	ID.

Please	see	Fragmentation	and	Channels	for	further	information.

Parameters
channelID the	ID	of	the	channel	on	which	to	send	the	message.

Needs	to	be	in	the	range	from	0	to
Client::getChannelCountUserChannels()

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getChannelID()

§	getEventCaching()
nByte	getEventCaching (void) const

Returns
the	currently	set	event	caching	option

See	also
setEventCaching()

§	setEventCaching()
RaiseEventOptions	&	setEventCaching (nByte	 eventCaching)

Sets	the	event	caching	option.

This	option	defines	if	the	server	should	simply	send	the	event,	put	it	in
the	cache,	remove	events	that	are	like	this	one	or	if	the	Cache	Slice
should	be	modified.	Leave	this	to	the	default	value	of
DO_NOT_CACHE	to	not	use	the	EventCache	at	all.

For	a	more	in-depth	description	about	event	caching	please	see
Cached	Events

Remarks
When	using	one	of	the	options	SLICE_SET_INDEX,
SLICE_PURGE_INDEX	or	SLICE_PURGE_UP_TO_INDEX,	you
also	need	to	provide	a	value	for	the	CacheSliceIndex	by	a	call	to
setCacheSliceIndex().	All	other	options	except	setChannelID()
and	also	all	other	parameters	of	Client::opRaiseEvent()	get
ignored	in	this	case.

Note
The	value	that	you	set	for	this	option	gets	ignored	if	any	of	the
following	statements	is	true:
getReceiverGroup()	==	ReceiverGroup::MASTER_CLIENT
getTargetPlayers()	!=	NULL
getInterestGroup()	!=	0

Parameters
eventCaching needs	to	be	one	of	the	values	from

Lite::EventCache

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

https://doc.photonengine.com/en-us/realtime/current/reference/cached-events

See	also
getEventCaching(),	Cached	Events

https://doc.photonengine.com/en-us/realtime/current/reference/cached-events

§	getTargetPlayers()
const	int	*	getTargetPlayers (void) const

Returns
the	currently	set	array	of	target	players

See	also
getNumTargetPlayers(),	setTargetPlayers()

§	getNumTargetPlayers()
short	getNumTargetPlayers (void) const

Returns
the	number	of	elements	in	the	array	that	is	returned	by
getTargetPlayers()

See	also
getTargetPlayers(),	setTargetPlayers()

§	setTargetPlayers()
RaiseEventOptions	&
setTargetPlayers (const	int	*	 targetPlayers,

short	 numTargetPlayers	
)

Sets	the	target	players.

Set	this	to	the	Player	numbers	of	the	clients,	which	should	receive	the
event.	The	default	value	when	not	setting	anything	is	NULL	and
equivalent	to	an	array	that	consists	of	the	player	numbers	of	all	clients
inside	the	room	except	for	the	sending	client	itself.	Player	Numbers
that	do	not	correspond	to	any	active	player	inside	the	room	will	get
ignored	by	the	server.

Note
If	you	set	this	option	to	anything	else	than	NULL,	then	any	value
that	might	have	been	passed	for	setEventCaching()	will	be
ignored.
The	options	setTargetPlayers(),	setInterestGroup()	and
setReceiverGroup()	provide	alternative	ways	of	specifying	the
receivers	of	an	event	and	can	not	be	combined	with	each	other.
If	getTargetPlayers()	evaluates	to	!NULL,	then	the	value	for	the
target	players	gets	used	and	the	values	for	the	other	2	options	get
ignored.
Otherwise,	if	getInterestGroup()	evaluates	to	!0,	then	the	value
for	the	interest	group	gets	used	and	the	value	for	the	receiver
group	gets	ignored.
Else	the	value	for	the	receiver	group	gets	used.

Parameters
targetPlayers either	NULL	(to	reset	the	value	of	the	option

to	the	default)	or	an	array	of	integer	values
that	correspond	to	the	player	numbers	of	the
intended	receivers

numTargetPlayers the	element	count	of	the	array	that	is	passed
for	targetPlayers

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getTargetPlayers(),	getNumTargetPlayers()

§	getReceiverGroup()
nByte	getReceiverGroup (void) const

Returns
the	currently	set	receiver	group

See	also
setReceiverGroup()

§	setReceiverGroup()
RaiseEventOptions	&	setReceiverGroup (nByte	 receiverGroup)

Sets	the	receiver	group.

Set	this	to	one	of	the	values	from	Lite::ReceiverGroup.	The	default
value	when	not	setting	anything	is	Lite::ReceiverGroup::OTHERS.

Note
If	you	set	this	option	to	Lite::ReceiverGroup::MASTER_CLIENT,
then	any	value	that	might	have	been	passed	for
setEventCaching()	will	be	ignored.
The	options	setTargetPlayers(),	setInterestGroup()	and
setReceiverGroup()	provide	alternative	ways	of	specifying	the
receivers	of	an	event	and	can	not	be	combined	with	each	other.
If	getTargetPlayers()	evaluates	to	!NULL,	then	the	value	for	the
target	players	gets	used	and	the	values	for	the	other	2	options	get
ignored.
Otherwise,	if	getInterestGroup()	evaluates	to	!0,	then	the	value
for	the	interest	group	gets	used	and	the	value	for	the	receiver
group	gets	ignored.
Else	the	value	for	the	receiver	group	gets	used.

Parameters
receiverGroup needs	to	be	one	of	the	values	from

Lite::ReceiverGroup

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getReceiverGroup()

§	getInterestGroup()
nByte	getInterestGroup (void) const

Returns
the	currently	set	interest	group

See	also
setInterestGroup()

§	setInterestGroup()
RaiseEventOptions	&	setInterestGroup (nByte	 interestGroup)

Sets	the	interest	group.

Set	this	to	a	value	between	0	and	255.	The	default	value	when	not
setting	anything	is	0.	More	information	about	interest	groups	can	be
found	at	Interest	Groups.

Note
If	you	set	this	option	to	anything	else	than	0,	then	any	value	that
might	have	been	passed	for	setEventCaching()	will	be	ignored.
The	options	setTargetPlayers(),	setInterestGroup()	and
setReceiverGroup()	provide	alternative	ways	of	specifying	the
receivers	of	an	event	and	can	not	be	combined	with	each	other.
If	getTargetPlayers()	evaluates	to	!NULL,	then	the	value	for	the
target	players	gets	used	and	the	values	for	the	other	2	options	get
ignored.
Otherwise,	if	getInterestGroup()	evaluates	to	!0,	then	the	value
for	the	interest	group	gets	used	and	the	value	for	the	receiver
group	gets	ignored.
Else	the	value	for	the	receiver	group	gets	used.

Parameters
interestGroup the	number	of	the	interest	group	to	which	the

event	should	be	sent

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getInterestGroup(),	Interest	Groups

https://doc.photonengine.com/en-us/realtime/current/reference/interestgroups
https://doc.photonengine.com/en-us/realtime/current/reference/interestgroups

§	getWebFlags()
const	WebFlags	&	getWebFlags (void) const

Returns
the	currently	set	web	flags	options

See	also
setWebFlags()

§	setWebFlags()
RaiseEventOptions	&	setWebFlags (const	WebFlags	&	 webFlags)

Sets	the	web	flags	options.

For	more	information	see	class	WebFlags.

Parameters
webFlags an	instance	of	class	WebFlags

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getWebFlags(),	WebFlags

§	getCacheSliceIndex()
int	getCacheSliceIndex (void) const

Returns
the	currently	set	cache	slice	index

See	also
setCacheSliceIndex()

§	setCacheSliceIndex()
RaiseEventOptions	&	setCacheSliceIndex (int	 cacheSliceIndex)

Sets	the	index	of	the	cache	slice	that	should	be	used	in	conjunction
with	the	value	that	you	have	passed	to	setEventCaching().

When	you	pass	one	of	the	options	SLICE_SET_INDEX,
SLICE_PURGE_INDEX	or	SLICE_PURGE_UP_TO_INDEX	to
setEventCaching(),	then	you	also	need	to	provide	the	cache	slice
index	for	that	option	to	setCacheSliceIndex().

Parameters
cacheSliceIndex the	index	of	the	cache	slice	to	which	the	event

should	be	added

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getCacheSliceIndex(),	setEventCaching(),	Cached	Events

https://doc.photonengine.com/en-us/realtime/current/reference/cached-events

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Room

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Room	Class	Reference

Inheritance	diagram	for	Room:

[legend]

Collaboration	diagram	for	Room:

[legend]

Public	Member	Functions
virtual	 ~Room	(void)

	
	 Room	(const	Room	&toCopy)

	
virtual	Room	&	 operator=	(const	Room	&toCopy)

	
const	Common::JString	&	 getName	(void)	const

	
virtual	nByte	 getPlayerCount	(void)	const

	
nByte	 getMaxPlayers	(void)	const

	
bool	 getIsOpen	(void)	const

	
nByte	 getDirectMode	(void)	const

	
const	Common::Hashtable	&	 getCustomProperties	(void)	const
	

bool	 operator==	(const	Room	&room)	const
	

virtual	Common::JString	&	 toString	(Common::JString	&retStr,
bool	withTypes=false)	const

	
virtual	Common::JString	 toString	(bool	withTypes,	bool

withCustomProperties)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Each	visible	room	inside	the	list	of	rooms	in	a	lobby	of	type
LobbyType::DEFAULT	is	represented	by	an	instance	of	this	class.

The	information	that	is	available	through	the	various	getters	is	regularly
updated	by	the	server	as	long	as	the	client	is	inside	the	lobby.	It	is	not
updated	and	information	will	become	outdated	while	the	client	is	inside	of
a	room.

See	also
MutableRoom,	Client::getRoomList()

Constructor	&	Destructor	Documentation

§	~Room()
~Room (void) virtual

Destructor.

§	Room()
Room (const	Room	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
Room	&	operator= (const	Room	&	 toCopy) virtual

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

Reimplemented	in	MutableRoom.

§	getName()
const	JString	&	getName (void) const

Returns
the	name	of	the	room

A	rooms	name	is	a	unique	identifier	(per	region	and	virtual	appid)	for	a
room/match.

It	can	be	set	set	by	the	client	on	room	creation	as	parameter	of
Client::opCreateRoom()	or	Client::opJoinOrCreateRoom().

The	name	can't	be	changed	once	the	room	is	created.

§	getPlayerCount()
nByte	getPlayerCount (void) const virtual

Returns
the	count	of	players	that	are	currently	inside	this	room

Reimplemented	in	MutableRoom.

§	getMaxPlayers()
nByte	getMaxPlayers (void) const

Returns
the	limit	of	players	for	this	room.	If	a	room	is	full
(getPlayerCount()	==	getMaxPlayers()),	joining	this	room	will
fail.

§	getIsOpen()
bool	getIsOpen (void) const

Returns
'true'	if	the	room	can	be	joined,	'false'	otherwise.

This	does	not	affect	listing	in	a	lobby	but	joining	a	room	will	fail	if	it	is
not	open.

If	it	is	not	open,	then	a	room	is	excluded	from	random	matchmaking.

Due	to	racing	conditions,	found	matches	might	become	closed	even
while	you	join	them.	Simply	find	another	room	in	this	scenario.

§	getDirectMode()
nByte	getDirectMode (void) const

Returns
one	of	the	values	in	DirectMode

This	returns	DirectMode::NONE,	unless	the	client	that	created	the
room	has	set	something	else	through
RoomOptions::setDirectMode()

§	getCustomProperties()
const	Hashtable	&	getCustomProperties (void) const

Returns
the	custom	properties	of	this	room

Read-only	cache	for	those	custom	properties	of	a	room,	which	have
been	included	in	the	list	of	properties	to	show	in	lobby	(see
RoomOptions::setPropsListedInLobby()	and
MutableRoom::setPropsListedInLobby()).

A	client	can	change	the	custom	properties	of	the	currently	joined	room
through	class	MutableRoom.	The	initial	custom	properties	of	a	room
can	be	set	through	class	RoomOptions.

§	operator==()
bool	operator== (const	Room	&	 room) const

operator==.

Returns
true,	if	both	operands	are	equal,	false	otherwise.

Two	Room	instances	are	considered	equal,	if	getName()	returns	equal
values	for	both	of	them.

§	toString()	[1/2]
JString	&	toString (Common::JString	&	 retStr,

bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

§	toString()	[2/2]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	toString (bool	 withTypes,
bool	 withCustomProperties	
) const virtual

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
withTypes set	to	true,	to	include	type	information	in

the	generated	string
withCustomProperties set	to	true,	to	include	the	custom

properties	in	the	generated	string

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing RoomOptions

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

RoomOptions	Class
Reference

Inheritance	diagram	for	RoomOptions:

[legend]

Collaboration	diagram	for	RoomOptions:

[legend]

Public	Member	Functions
	 RoomOptions	(bool	isVisible=true,	bool
isOpen=true,	nByte	maxPlayers=0,	const
Common::Hashtable
&customRoomProperties=
const	Common::JVector
&propsListedInLobby=
Common::JString	>(),	const	
&lobbyName=Common::JString
lobbyType=LobbyType::DEFAULT
playerTtl=0,	int	emptyRoomTtl=0,	bool
suppressRoomEvents=false,	const
Common::JVector<	
*pPlugins=NULL,	bool	publishUserID=false,	nByte
directMode=DirectMode::NONE

	
	 ~RoomOptions	(void)

	
	 RoomOptions	(const	

	
RoomOptions	&	 operator=	(const	RoomOptions

	
bool	 getIsVisible	(void)	const

	
RoomOptions	&	 setIsVisible	(bool	isVisible)

	
bool	 getIsOpen	(void)	const

	
RoomOptions	&	 setIsOpen	(bool	isOpen)

	
nByte	 getMaxPlayers	(void)	const

	
RoomOptions	&	 setMaxPlayers	(nByte	maxPlayers)

	
const	Common::Hashtable	&	 getCustomRoomProperties

	

RoomOptions	&	 setCustomRoomProperties
Common::Hashtable

	
const	Common::JVector<	Common::JString	>	&	 getPropsListedInLobby
	

RoomOptions	&	 setPropsListedInLobby
Common::JVector<	
&propsListedInLobby)

	
const	Common::JString	&	 getLobbyName	(void)	const

	
RoomOptions	&	 setLobbyName	(const	

&lobbyName)
	

nByte	 getLobbyType	(void)	const
	

RoomOptions	&	 setLobbyType	(nByte	lobbyType)
	

int	 getPlayerTtl	(void)	const
	

RoomOptions	&	 setPlayerTtl	(int	playerTtl)
	

int	 getEmptyRoomTtl	(void)	const
	

RoomOptions	&	 setEmptyRoomTtl	(int	emptyRoomTtl)
	

bool	 getSuppressRoomEvents
	

RoomOptions	&	 setSuppressRoomEvents
suppressRoomEvents)

	
const	Common::JVector<	Common::JString	>	*	 getPlugins	(void)	const

	
RoomOptions	&	 setPlugins	(const	Common::JVector

Common::JString	>	*pPlugins)
	

bool	 getPublishUserID	(void)	const
	

RoomOptions	&	 setPublishUserID	(bool	publishUserID)
	

nByte	 getDirectMode	(void)	const
	

RoomOptions	&	 setDirectMode	(nByte	directMode)
	

virtual	Common::JString	&	 toString	(Common::JString
withTypes=false)	const

	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	class	aggregates	the	various	optional	parameters	that	can	be
specified	on	room	creation.

See	also
Client::opCreateRoom(),	Client::opJoinOrCreateRoom()

Constructor	&	Destructor	Documentation

§	RoomOptions()	[1/2]
RoomOptions (bool	 isVisible

bool	 isOpen
nByte	 maxPlayers
const	Common::Hashtable	&	 customRoomProperties
const	Common::JVector<	Common::JString	>	&	 propsListedInLobby
const	Common::JString	&	 lobbyName
nByte	 lobbyType
int	 playerTtl
int	 emptyRoomTtl
bool	 suppressRoomEvents
const	Common::JVector<	Common::JString	>	*	 pPlugins
bool	 publishUserID
nByte	 directMode
)

Constructor:	Creates	a	new	instance	with	the	specified	parameters.

Parameters
isVisible see	setIsVisible()	-	optional,	defaults	to	true.
isOpen see	setIsOpen()	-	optional,	defaults	to	true.
maxPlayers see	setMaxPlayers()	-	optional,	defaults	to	0.
customRoomProperties see	setCustomRoomProperties()	-	optional,	defaults	to	an	empty	Hashtable	instance.
propsListedInLobby see	setPropsListedInLobby()	-	optional,	defaults	to	an	empty	JVector	instance.
lobbyName see	setLobbyName()	-	optional,	defaults	to	an	empty	JString	instance.
lobbyType see	setLobbyType()	-	optional,	defaults	to	
playerTtl see	setPlayerTtl()	-	optional,	defaults	to	0.
emptyRoomTtl see	setEmptyRoomTtl()	-	optional,	defaults	to	0.
suppressRoomEvents see	setSuppressRoomEvents()	-	optional,	defaults	to	false.
pPlugins see	setPlugins()	-	optional,	defaults	to	NULL.
publishUserID see	setPublishUserID()	-	optional,	defaults	to	false.

directMode see	setDirectMode()	-	optional,	defaults	to	

§	~RoomOptions()
~RoomOptions (void)

Destructor.

§	RoomOptions()	[2/2]
RoomOptions (const	RoomOptions	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
RoomOptions	&	operator= (const	RoomOptions	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	getIsVisible()
bool	getIsVisible (void) const

Returns
the	currently	set	value	for	the	isVisible	flag

See	also
setIsVisible()

§	setIsVisible()
RoomOptions	&	setIsVisible (bool	 isVisible)

Sets	the	initial	state	of	the	rooms	visibility	flag.

A	room	that	is	not	visible	is	excluded	from	the	room	lists	that	are	sent
to	the	clients	in	lobbies.	An	invisible	room	can	be	joined	by	name	but	is
excluded	from	random	matchmaking.

Use	this	to	"hide"	a	room	and	simulate	"private	rooms".	Players	can
exchange	a	room	name	and	create	the	room	as	invisible	to	avoid
anyone	else	joining	it.

Remarks
This	function	sets	the	initial	value	that	is	used	for	room	creation.
To	change	the	value	of	the	flag	for	an	already	existing	room,	see
MutableRoom::setIsVisible().

Parameters
isVisible the	new	value	to	which	the	flag	will	be	set

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getIsVisible()

§	getIsOpen()
bool	getIsOpen (void) const

Returns
the	currently	set	value	for	the	isOpen	flag

See	also
setIsOpen()

§	setIsOpen()
RoomOptions	&	setIsOpen (bool	 isOpen)

Sets	the	initial	state	of	the	rooms	isOpen	flag.

If	a	room	is	closed,	then	no	further	player	can	join	it	until	the	room	gets
reopened	again.	A	closed	room	can	still	be	listed	in	the	lobby	(use
setIsVisible()	to	control	lobby-visibility).

Remarks
This	function	sets	the	initial	value	that	is	used	for	room	creation.
To	change	the	value	of	the	flag	for	an	already	existing	room,	see
MutableRoom::setIsOpen().

Parameters
isOpen the	new	value	to	which	the	flag	will	be	set

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getIsOpen()

§	getMaxPlayers()
nByte	getMaxPlayers (void) const

Returns
the	currently	set	max	players

See	also
setmaxPlayers()

§	setMaxPlayers()
RoomOptions	&	setMaxPlayers (nByte	 maxPlayers)

Sets	the	initial	value	for	the	max	players	setting	of	the	room.

This	function	sets	the	maximum	number	of	players	that	can	be	inside
the	room	at	the	same	time,	including	inactive	players.	0	means	"no
limit".

Remarks
This	function	sets	the	initial	value	that	is	used	for	room	creation.
To	change	the	max	players	setting	of	an	already	existing	room,
see	MutableRoom::setMaxPlayers().

Parameters
maxPlayers the	new	maximum	amount	of	players	that	can	be

inside	the	room	at	the	same	time

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getMaxPlayers()

§	getCustomRoomProperties()
const	Hashtable	&	getCustomRoomProperties (void) const

Returns
the	currently	set	custom	room	properties

See	also
setCustomRoomProperties()

§	setCustomRoomProperties()
RoomOptions	&
setCustomRoomProperties (const	Common::Hashtable	&	 customRoomProperties

Sets	the	initial	custom	properties	of	a	room.

Custom	room	properties	are	any	key-value	pairs	that	you	need	to	define	the	game's
setup.	The	shorter	your	key	strings	are,	the	better.	Example:	Map,	Mode	(could	be
L"m"	when	used	with	L"Map"),	TileSet	(could	be	L"t").

Note
JString	is	the	only	supported	type	for	custom	property	keys.	For	custom
property	values	you	can	use	any	type	that	is	listed	in	the	Table	of	Datatypes

Remarks
This	function	sets	the	initial	custom	properties	that	are	used	for	room	creation.
To	change	the	custom	properties	of	an	already	existing	room,	see
MutableRoom::mergeCustomProperties(),	MutableRoom::addCustomProperty(),
MutableRoom::addCustomProperties(),
MutableRoom::removeCustomProperty()	and
MutableRoom::removeCustomProperties().

Parameters
customRoomProperties a	Hashtable	of	custom	property	key-value	pairs

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for	chaining	multiple
setter	calls

See	also
getCustomRoomProperties(),	setPropsListedInLobby()

§	getPropsListedInLobby()
const	JVector<	JString	>	&	getPropsListedInLobby (void) const

Returns
the	currently	set	list	of	properties	to	show	in	the	lobby

See	also
setPropsListedInLobby()

§	setPropsListedInLobby()
RoomOptions	&
setPropsListedInLobby (const	Common::JVector<	Common::JString	>	&	

Sets	the	initial	list	of	custom	properties	of	the	room	that	should	be	shown	in	the	lobby.

List	the	keys	of	all	the	custom	room	properties	that	should	be	available	to	clients	that	are	in	a
lobby.	Use	with	care.	Unless	a	custom	property	is	essential	for	matchmaking	or	user	info,	it
should	not	be	sent	to	the	lobby,	which	causes	traffic	and	delays	for	clients	in	the	lobby.	Default:
No	custom	properties	are	sent	to	the	lobby.

Note
Properties	that	are	intended	to	be	shown	in	the	lobby	should	be	as	compact	as	possible.
Literally	every	single	byte	counts	here	as	this	info	needs	to	be	sent	to	every	client	in	the
lobby	for	every	single	visible	room,	so	that	with	lots	of	users	online	and	games	running	this
quickly	adds	up	to	a	lot	of	data.

Remarks
This	function	sets	the	initial	list	of	property	keys.	To	change	which	properties	are	shown	to
the	lobby	for	an	already	existing	room	see	MutableRoom::setPropsListedInLobby().

Parameters
propsListedInLobby the	keys	of	the	custom	room	properties	that	should	be	shown	in	the

lobby

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for	chaining	multiple	setter	calls

See	also
getPropsListedInLobby(),	setCustomRoomProperties()

§	getLobbyName()
const	JString	&	getLobbyName (void) const

Returns
the	currently	set	lobby	name

See	also
setLobbyName()

§	setLobbyName()
RoomOptions	&
setLobbyName (const	Common::JString	&	 lobbyName)

Sets	the	name	of	the	lobby	to	which	the	room	gets	added	to.

Rooms	can	be	assigned	to	different	lobbies	on	room	creation.
Client::opJoinRandomRoom()	only	uses	those	room	for
matchmaking	that	are	assigned	to	the	lobby	in	which	it	is	told	to	be
looking	for	rooms.	A	lobby	can	be	joined	by	a	call	to
Client::opJoinLobby()	and	inside	lobbies	of	certain	types	clients	can
receive	room	lists	that	contain	all	visible	rooms	that	are	assigned	to
that	lobby.

Remarks
If	you	don't	set	a	lobby	name	or	if	you	set	it	to	an	empty	string,
then	any	value	that	is	passed	for	setLobbyType()	gets	ignored
and	the	room	gets	added	to	the	default	lobby.
Lobbies	are	unique	per	lobbyName	plus	lobbyType,	so	multiple
different	lobbies	may	have	the	same	name,	as	long	as	they	are	of
a	different	type.

Parameters
lobbyName identifies	for	the	lobby	and	needs	to	be	unique	within

the	scope	of	the	lobbyType

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getLobbyName(),	setLobbyType(),	Matchmaking	Guide

https://doc.photonengine.com/en/realtime/current/reference/matchmaking-and-lobby

§	getLobbyType()
nByte	getLobbyType (void) const

Returns
the	currently	set	lobby	type

See	also
setLobbyType()

§	setLobbyType()
RoomOptions	&	setLobbyType (nByte	 lobbyType)

Sets	the	type	of	the	lobby	to	which	the	room	gets	added	to.	Must	be
one	of	the	values	in	LobbyType

Please	see	Matchmaking	Guide	regarding	the	differences	between	the
various	lobby	types.

Note
This	option	gets	ignored	and	the	room	gets	added	to	the	default
lobby,	if	you	don't	also	set	the	lobby	name	to	a	non-empty	string
via	a	call	to	setLobbyName().

Parameters
lobbyType one	of	the	values	in	LobbyType

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getLobbyType(),	setLobbyName(),	LobbyType,	Matchmaking
Guide

https://doc.photonengine.com/en/realtime/current/reference/matchmaking-and-lobby
https://doc.photonengine.com/en/realtime/current/reference/matchmaking-and-lobby

§	getPlayerTtl()
int	getPlayerTtl (void) const

Returns
the	currently	set	player	time	to	live	in	milliseconds

See	also
setPlayerTtl()

§	setPlayerTtl()
RoomOptions	&	setPlayerTtl (int	 playerTtl)

Sets	the	player	time	to	live	in	milliseconds.

If	a	client	disconnects	or	if	it	leaves	a	room	with	the	'willComeBack'	flag
set	to	true,	its	player	becomes	inactive	first	and	only	gets	removed
from	the	room	after	this	timeout.

-1	and	INT_MAX	set	the	inactivity	time	to	'infinite'.
0	(default)	deactivates	player	inactivity.
All	other	positive	values	set	the	inactivity	time	to	their	value	in
milliseconds.
All	other	negative	values	get	ignored	and	the	behavior	for	them	is
as	if	the	default	value	was	used.

Note
A	player	is	only	able	to	rejoin	a	room	in	its	existing	player	slot
while	it	is	still	inactive.	Once	it	has	left	for	good	it	will	be	treated	as
a	completely	new	player.

Parameters
playerTtl a	value	between	-1	and	INT_MAX

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getPlayerTtl(),	Client::opLeaveRoom(),	Client::disconnect()

§	getEmptyRoomTtl()
int	getEmptyRoomTtl (void) const

Returns
the	currently	set	empty	room	time	to	live	in	milliseconds

See	also
setEmptyRoomTtl()

§	setEmptyRoomTtl()
RoomOptions	&	setEmptyRoomTtl (int	 emptyRoomTtl)

Sets	the	room	time	to	live	in	milliseconds.

The	amount	of	time	in	milliseconds	that	Photon	servers	should	wait
before	disposing	an	empty	room.	A	room	is	considered	empty	when
there	is	no	active	player	joined	to	it.	So	the	room	disposal	timer	starts
when	the	last	active	player	leaves.	When	a	player	joins	or	rejoins	the
room,	then	the	countdown	is	reset.

By	default,	the	maximum	value	allowed	is:

300000ms	(5	minutes)	on	Photon	Cloud
60000ms	(1minute)	on	Photon	Server

0	(default)	means	that	an	empty	room	gets	instantly	disposed.
All	positive	values	set	the	keep-alive	time	to	their	value	in
milliseconds.
All	negative	values	get	ignored	and	the	behavior	for	them	is	as	if
the	default	value	was	used.

Note
The	disposal	of	a	room	means	that	the	room	gets	removed	from
memory	on	the	server	side.	Without	accordingly	configured
Webhooks	this	also	means	that	the	room	will	be	destroyed	and	all
data	related	to	it	(like	room	and	player	properties,	event	caches,
inactive	players,	etc.)	gets	deleted.	When	Webhooks	for	the	used
appID	have	been	been	setup	for	room	persistence,	then	disposed
rooms	get	stored	for	later	retrieval.	Stored	rooms	get
reconstructed	in	memory	when	a	player	joins	or	rejoins	them

Parameters
emptyRoomTtl a	value	between	0	and	INT_MAX

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for

https://doc.photonengine.com/en-us/realtime/current/reference/webhooks-faq
https://doc.photonengine.com/en-us/realtime/current/tutorials/persistence-guide

chaining	multiple	setter	calls

See	also
getEmptyRoomTtl(),	Persistence	Guide,	Webhooks	FAQ

https://doc.photonengine.com/en-us/realtime/current/tutorials/persistence-guide
https://doc.photonengine.com/en-us/realtime/current/reference/webhooks-faq

§	getSuppressRoomEvents()
bool	getSuppressRoomEvents (void) const

Returns
the	currently	set	value	for	the	suppressRoomEvents	flag

See	also
setSuppressRoomEvents()

§	setSuppressRoomEvents()
RoomOptions	&
setSuppressRoomEvents (bool	 suppressRoomEvents)

Sets	the	value	of	the	suppressRoomEvents	flag	which	determines	if
the	server	should	skip	room	events	for	joining	and	leaving	players.

Setting	this	flag	to	true	makes	the	client	unaware	of	the	other	players
in	a	room.	That	can	save	some	traffic	if	you	have	some	server	logic
that	updates	players,	but	it	can	also	limit	the	client's	usability.

Parameters
suppressRoomEvents the	new	value	to	which	the	flag	will	be	set

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getSuppressRoomEvents()

§	getPlugins()
const	JVector<	JString	>	*	getPlugins (void) const

Returns
the	currently	set	list	of	plugins

See	also
setPlugins()

§	setPlugins()
RoomOptions
&	setPlugins (const	Common::JVector<	Common::JString	>	*	 pPlugins

Informs	the	server	of	the	expected	plugin	setup.

The	operation	will	fail	in	case	of	a	plugin	mismatch	returning
ErrorCode::PLUGIN_MISMATCH.	Setting	an	empty	JVector	means	that	the
client	expects	no	plugin	to	be	setup.	Note:	for	backwards	compatibility	setting
NULL	(the	default	value)	omits	any	check.

Parameters
pPlugins the	expected	plugins

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for	chaining
multiple	setter	calls

See	also
getPlugins()

§	getPublishUserID()
bool	getPublishUserID (void) const

Returns
the	currently	set	value	for	the	publishUserID	flag

See	also
setPublishUserID()

§	setPublishUserID()
RoomOptions	&	setPublishUserID (bool	 publishUserID)

Defines	if	the	UserIds	of	players	get	"published"	in	the	room.	Useful	for
Client::opFindFriends(),	if	players	want	to	play	another	game
together.

When	you	set	this	to	true,	Photon	will	publish	the	UserIds	of	the
players	in	that	room.	In	that	case,	you	can	use	Player::getUserID(),	to
access	any	player's	userID.	This	is	useful	for	FindFriends	and	to	set
"expected	users"	to	reserve	slots	in	a	room	(see
Client::opCreateRoom(),	Client::opJoinOrCreateRoom()	and
Client::opJoinRoom()).

Parameters
publishUserID true,	if	userIDs	should	be	published,	false

otherwise

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getPublishUserID()

§	getDirectMode()
nByte	getDirectMode (void) const

Returns
the	currently	set	value	for	the	DirectMode	flag

See	also
setDirectMode()

§	setDirectMode()
RoomOptions	&	setDirectMode (nByte	 directMode)

Sets	the	DirectMode	that	should	be	used	for	this	room.

The	value	of	this	option	determines	if	clients	establish	direct	peer	to
peer	connections	with	other	clients	that	can	then	be	used	to	send	them
direct	peer	to	peer	messages	with	Client::sendDirect().

Parameters
directMode one	of	the	values	in	DirectMode

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getDirectMode()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing WebFlags

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

WebFlags	Class
Reference

Inheritance	diagram	for	WebFlags:

[legend]

Collaboration	diagram	for	WebFlags:

[legend]

Public	Member	Functions
	 WebFlags	(nByte	webFlags=0)

	
nByte	 getFlags	(void)	const

	
WebFlags	&	 setFlags	(nByte	webFlags)

	
bool	 getHttpForward	(void)	const

	
WebFlags	&	 setHttpForward	(bool	httpWebForward)

	
bool	 getSendAuthCookie	(void)	const

	
WebFlags	&	 setSendAuthCookie	(bool

sendAuthCookie)
	

bool	 getSendSync	(void)	const
	

WebFlags	&	 setSendSync	(bool	sendSync)
	

bool	 getSendState	(void)	const
	

WebFlags	&	 setSendState	(bool	sendState)
	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

Optional	flags	to	be	used	with	RaiseEventOptions::setWebFlags()	and
with	various	property	setters	of	the	MutablePlayer	and	the
MutableRoom	class	to	control	the	behavior	of	forwarded	HTTP	requests.

Please	see	Webhooks	v1.2	for	further	information.

See	also
Webhooks	v1.2,	RaiseEventOptions::setWebFlags(),
MutablePlayer,	MutableRoom

https://doc.photonengine.com/en-us/realtime/current/reference/webhooks-v1-2
https://doc.photonengine.com/en-us/realtime/current/reference/webhooks-v1-2

Constructor	&	Destructor	Documentation

§	WebFlags()
WebFlags (nByte	 webFlags	=	0)

Constructor:	Creates	a	new	instance	with	the	specified	parameters.

Parameters
webFlags see	setFlags()	-	optional,	defaults	to	0.

Member	Function	Documentation

§	getFlags()
nByte	getFlags (void) const

Returns
the	currently	set	flags

See	also
setFlags()

§	setFlags()
WebFlags	&	setFlags (nByte	 webFlags)

Sets	the	values	of	all	flags	at	once.

Internally	all	boolean	flags	are	encoded	as	bits	into	a	single	byte
variable.	This	byte	can	be	retrieved	with	getFlags()	and	set	with
setFlags().

Parameters
webFlags

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getFlags()

§	getHttpForward()
bool	getHttpForward (void) const

Returns
the	currently	set	value	of	the	httpWebForward	flag

See	also
setHttpForward()

§	setHttpForward()
WebFlags	&	setHttpForward (bool	 httpWebForward)

Sets	the	value	of	the	httpWebForward	flag.

Parameters
httpWebForward true	or	false

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getHttpForward()

§	getSendAuthCookie()
bool	getSendAuthCookie (void) const

Returns
the	currently	set	value	of	the	sendAuthCookie	flag

See	also
setSendAuthCookie()

§	setSendAuthCookie()
WebFlags	&	setSendAuthCookie (bool	 sendAuthCookie)

Sets	the	value	of	the	sendAuthCookie	flag.

Parameters
sendAuthCookie true	or	false

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getSendAuthCookie()

§	getSendSync()
bool	getSendSync (void) const

Returns
the	currently	set	value	of	the	sendSync	flag

See	also
setSendSync()

§	setSendSync()
WebFlags	&	setSendSync (bool	 sendSync)

Sets	the	value	of	the	sendSync	flag.

Parameters
sendSync true	or	false

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getSendSync()

§	getSendState()
bool	getSendState (void) const

Returns
the	currently	set	value	of	the	sendState	flag

See	also
setSendState()

§	setSendState()
WebFlags	&	setSendState (bool	 sendState)

Sets	the	value	of	the	sendState	flag.

Parameters
sendState true	or	false

Returns
a	reference	to	the	instance	on	which	it	was	called	to	allow	for
chaining	multiple	setter	calls

See	also
getSendState()

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort Protocol

Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Protocol	Struct
Reference

Inheritance	diagram	for	Protocol:

[legend]

Collaboration	diagram	for	Protocol:

[legend]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Public	Attributes
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort TCP

Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

TCP	Struct	Reference

Inheritance	diagram	for	TCP:

[legend]

Collaboration	diagram	for	TCP:

[legend]

Static	Public	Attributes
static	const	unsigned	short	 MASTER
	
static	const	unsigned	short	 GAME
	
static	const	unsigned	short	 NAME
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Public	Attributes	inherited	from	Protocol
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort UDP

Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

UDP	Struct	Reference

Inheritance	diagram	for	UDP:

[legend]

Collaboration	diagram	for	UDP:

[legend]

Static	Public	Attributes
static	const	unsigned	short	 MASTER
	
static	const	unsigned	short	 GAME
	
static	const	unsigned	short	 NAME
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Public	Attributes	inherited	from	Protocol
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort UDPAlternative

Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

UDPAlternative	Struct
Reference

Inheritance	diagram	for	UDPAlternative:

[legend]

Collaboration	diagram	for	UDPAlternative:

[legend]

Static	Public	Attributes
static	const	unsigned	short	 NAME
	
static	const	unsigned	short	 MASTER
	
static	const	unsigned	short	 GAME
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Public	Attributes	inherited	from	Protocol
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort WS

Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

WS	Struct	Reference

Inheritance	diagram	for	WS:

[legend]

Collaboration	diagram	for	WS:

[legend]

Static	Public	Attributes
static	const	unsigned	short	 MASTER
	
static	const	unsigned	short	 GAME
	
static	const	unsigned	short	 NAME
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Public	Attributes	inherited	from	Protocol
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort WSS

Static	Public	Attributes	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

WSS	Struct	Reference

Inheritance	diagram	for	WSS:

[legend]

Collaboration	diagram	for	WSS:

[legend]

Static	Public	Attributes
static	const	unsigned	short	 MASTER
	
static	const	unsigned	short	 GAME
	
static	const	unsigned	short	 NAME
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Additional	Inherited	Members
	Public	Attributes	inherited	from	Protocol
const	unsigned	short	 MASTER
	
const	unsigned	short	 GAME
	
const	unsigned	short	 NAME
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough Puncher

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

Puncher	Class
Reference

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Public	Member	Functions
	 Puncher	(RelayClient	*pRelayClient,	const	Common::Logger
&logger)

	
bool	 init	(PunchListener	*pPunchListener)
	
void	 clear	(void)
	
bool	 startPunch	(int	remoteID)
	
bool	 sendDirect	(const	Common::JVector<	nByte	>	&buffer,	int

targetID,	bool	fallbackRelay)
	

int	 sendDirect	(const	Common::JVector<	nByte	>	&buffer,	const
Common::JVector<	int	>	&targetIDs,	bool	fallbackRelay)

	
bool	 processPackage	(const	Common::JVector<	nByte	>	&packet,

bool	relay,	int	relayRemoteID)
	
void	 service	(void)
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough PunchListener

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

PunchListener	Class
Reference abstract

Inheritance	diagram	for	PunchListener:

[legend]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Public	Member	Functions
virtual	void	 onReceiveDirect	(const	Common::JVector<	nByte	>

&inBuf,	int	remoteID,	bool	relay)=0
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough RelayClient

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

RelayClient	Class
Reference abstract

Inheritance	diagram	for	RelayClient:

[legend]

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Public	Member	Functions
virtual	int	 getLocalID	(void)=0

	
virtual	bool	 sendRelay	(const	Common::JVector<	nByte	>	&buffer,

const	Common::JVector<	int	>	&targetIDs)=0
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon EventData

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

EventData	Class
Reference

Public	Member	Functions
	 ~EventData

	
	 EventData	(const
EventData	&toCopy)

	
EventData	&	 operator=	(const

EventData	&toCopy)
	

const	Common::Object	&	 operator[]	(unsigned	int
index)	const

	
Common::JString	 toString	(bool

withParameters=false,	bool
withParameterTypes=false)
const

	
Common::Object	 getParameterForCode

(nByte	parameterCode)
const

	
nByte	 getCode	(void)	const

	
const	Common::Dictionary<	nByte,	Common::Object	>	&	 getParameters

const
	

Detailed	Description

Contains	all	components	of	a	Photon	Event.

Constructor	&	Destructor	Documentation

§	~EventData()
~EventData (void)

Destructor.

§	EventData()
EventData (const	EventData	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
EventData	&	operator= (const	EventData	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator[]()
const	Object	&	operator[] (unsigned	int	 index) const

operator[].	Accesses	the	value	at	the	given	index	like	in	an	array.	This
does	not	check	for	valid	indexes	and	shows	undefined	behavior	for
invalid	indexes.

§	toString()
JString	toString (bool	 withParameters	=	false,

bool	 withParameterTypes	=	false	
) const

Parameters
withParameters determines	if	the	payload	of	the	event

should	be	included	in	the	returned	string
withParameterTypes determines	if	the	type	information	should

be	included	for	the	payload

Returns
a	JString	representation	of	the	instance	for	debugging	purposes.

§	getParameterForCode()
Object	getParameterForCode (nByte	 parameterCode) const

Alternative	access	to	the	Parameters.

Parameters
parameterCode The	key	code	of	an	event	value

Returns
The	parameters	value,	or	an	empty	Object	instance	if	the	key
does	not	exist	in	the	parameters.

§	getCode()
nByte	getCode (void) const

Returns
the	event	code	that	identifies	the	type	of	the	event.

§	getParameters()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

const	Dictionary<	nByte,	Object	>	&	getParameters (void) const

Returns
all	parameters	of	the	event.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon OperationRequest

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

OperationRequest
Class	Reference

Public	Member	Functions
	 OperationRequest	(nByte	operationCode,
const	OperationRequestParameters
¶meters=OperationRequestParameters

	
	 ~OperationRequest	(void)

	
	 OperationRequest	(const	OperationRequest
&toCopy)

	
OperationRequest	&	 operator=	(const	OperationRequest

	
const	Common::Object	&	 operator[]	(unsigned	int	index)	const

	
Common::JString	 toString	(bool	withParameters=false,	bool

withParameterTypes=false)	const
	

Common::Object	 getParameterForCode	(nByte	parameterCode)
const

	
nByte	 getOperationCode	(void)	const

	
const	OperationRequestParameters	&	 getParameters	(void)	const
	

OperationRequestParameters	&	 getParameters	(void)
	

void	 setParameters	(const
OperationRequestParameters

	

Detailed	Description

This	is	a	container	for	an	Operation	request,	which	consists	of	a	code
and	parameters.

Constructor	&	Destructor	Documentation

§	OperationRequest()	[1/2]
OperationRequest (nByte	 operationCode

const	OperationRequestParameters	&	 parameters
)

Constructor:	Creates	a	new	instance	with	the	specified	parameters.

Parameters
operationCode identifies	the	type	of	the	operation.
parameters the	payload	of	the	operation.

§	~OperationRequest()
~OperationRequest (void)

Destructor.

§	OperationRequest()	[2/2]
OperationRequest (const	OperationRequest	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
OperationRequest	&	operator= (const	OperationRequest	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator[]()
const	Object	&	operator[] (unsigned	int	 index) const

operator[].	Accesses	the	value	at	the	given	index	like	in	an	array.	This
does	not	check	for	valid	indexes	and	shows	undefined	behavior	for
invalid	indexes.

§	toString()
JString	toString (bool	 withParameters	=	false,

bool	 withParameterTypes	=	false	
) const

Parameters
withParameters determines	if	the	payload	of	the	event

should	be	included	in	the	returned	string
withParameterTypes determines	if	the	type	information	should

be	included	for	the	payload

Returns
a	JString	representation	of	the	instance	for	debugging	purposes.

§	getParameterForCode()
Object	getParameterForCode (nByte	 parameterCode) const

Alternative	access	to	the	Parameters.

Parameters
parameterCode The	key	code	of	an	event	value

Returns
The	parameters	value,	or	an	empty	Object	instance	if	the	key
does	not	exist	in	the	parameters.

§	getOperationCode()
nByte	getOperationCode (void) const

Returns
the	operation	code	that	identifies	the	type	of	the	operation	request.

§	getParameters()	[1/2]
const	OperationRequestParameters	&	getParameters (void) const

Returns
a	read	only	reference	to	all	parameters	of	the	operation	request.

§	getParameters()	[2/2]
OperationRequestParameters	&	getParameters (void)

Returns
a	mutable	reference	to	all	parameters	of	the	operation	request.

§	setParameters()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

void
setParameters (const	OperationRequestParameters	&	 parameters)

Parameters
parameters Sets	the	payload	of	the	operation.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon OperationResponse

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

OperationResponse
Class	Reference

Public	Member	Functions
	 ~OperationResponse
(void)

	
	 OperationResponse
(const
OperationResponse
&toCopy)

	
OperationResponse	&	 operator=	(const

OperationResponse
&toCopy)

	
const	Common::Object	&	 operator[]	(unsigned	int

index)	const
	

Common::JString	 toString	(bool
withDebugMessage=false,
bool	withParameters=false,
bool
withParameterTypes=false)
const

	
Common::Object	 getParameterForCode

(nByte	parameterCode)
const

	
nByte	 getOperationCode

const
	

short	 getReturnCode
const

	
const	Common::JString	&	 getDebugMessage

const
	

const	Common::Dictionary<	nByte,	Common::Object	>	&	 getParameters
const

	

Detailed	Description

Contains	the	servers	response	for	an	OperationRequest	sent	by	this
client.

Constructor	&	Destructor	Documentation

§	~OperationResponse()
~OperationResponse (void)

Destructor.

§	OperationResponse()
OperationResponse (const	OperationResponse	&	 toCopy)

Copy-Constructor:	Creates	a	new	instance	that	is	a	deep	copy	of	the
argument	instance.

Parameters
toCopy The	instance	to	copy.

Member	Function	Documentation

§	operator=()
OperationResponse	&
operator= (const	OperationResponse	&	 toCopy)

operator=.

Makes	a	deep	copy	of	its	right	operand	into	its	left	operand.

This	overwrites	old	data	in	the	left	operand.

§	operator[]()
const	Object	&	operator[] (unsigned	int	 index) const

operator[].	Accesses	the	value	at	the	given	index	like	in	an	array.	This
does	not	check	for	valid	indexes	and	shows	undefined	behavior	for
invalid	indexes.

§	toString()
JString	toString (bool	 withDebugMessage	=	false,

bool	 withParameters	=	false,
bool	 withParameterTypes	=	false	
) const

Parameters
withDebugMessage determines	if	the	debug	message	that	the

server	may	send	in	case	of	an	error	should
be	included	in	the	returned	string

withParameters determines	if	the	payload	of	the	event
should	be	included	in	the	returned	string

withParameterTypes determines	if	the	type	information	should
be	included	for	the	payload

Returns
a	JString	representation	of	the	instance	for	debugging	purposes.

§	getParameterForCode()
Object	getParameterForCode (nByte	 parameterCode) const

Alternative	access	to	the	Parameters.

Parameters
parameterCode The	key	code	of	an	response	value

Returns
The	parameters	value,	or	an	empty	Object	instance	if	the	key
does	not	exist	in	the	parameters.

§	getOperationCode()
nByte	getOperationCode (void) const

Returns
the	operation	code	that	identifies	the	type	of	the	operation.

§	getReturnCode()
short	getReturnCode (void) const

Returns
the	result	code	of	the	operation,	0	in	case	of	success,	an
operation	specific	error	code	otherwise.

§	getDebugMessage()
const	JString	&	getDebugMessage (void) const

Returns
extended	debugging	information	in	case	that	getReturnCode()
returns	!0,	an	empty	string	otherwise.

§	getParameters()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

const	Dictionary<	nByte,	Object	>	&	getParameters (void) const

Returns
all	parameters	of	the	operation	response.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon PhotonListener

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

PhotonListener	Class
Reference abstract

Inheritance	diagram	for	PhotonListener:

[legend]

Collaboration	diagram	for	PhotonListener:

[legend]

Public	Member	Functions
virtual	 ~PhotonListener	(void)

	
virtual	void	 onOperationResponse	(const	OperationResponse

&operationResponse)=0
	
virtual	void	 onStatusChanged	(int	statusCode)=0
	
virtual	void	 onEvent	(const	EventData	&eventData)=0
	
virtual	void	 onPingResponse	(const	Common::JString	&address,

unsigned	int	pingResult)
	
	Public	Member	Functions	inherited	from	BaseListener
virtual	void	 debugReturn	(int	debugLevel,	const	JString	&string)=0
	

Constructor	&	Destructor	Documentation

§	~PhotonListener()
virtual	~PhotonListener (void) virtual

Destructor.

Member	Function	Documentation

§	onOperationResponse()
virtual	void
onOperationResponse (const	OperationResponse	&	 operationResponse

This	function	gets	called	by	the	library	as	callback	to	operations	in	response	to
operations	sent	to	the	Photon	Server	providing	the	response	values	from	the	server.

This	callback	is	used	as	general	callback	for	all	operations.	The	type	of	an	operation	is
identified	by	an	operation	code.

An	operation's	response	is	summarized	by	the	return	code:	an	int	typed	code,	0	for
OK	or	some	error	code	defined	by	the	application,	which	is	defining	the	operation
itself.	The	opCode	defines	the	type	of	operation	called	on	Photon	and	in	turn	also	the
return	values.	They	are	provided	as	a	Hashtable	which	contains	the	complete	reponse
of	Photon,	including	keys	for	operation	code	and	return	code.	Each	operation	returns
its	opCode	and	returnCode	but	anything	else	can	be	defined	serverside.

Parameters
operationResponse the	OperationResponse

§	onStatusChanged()
virtual	void	onStatusChanged (int	 statusCode) pure	virtual

onStatusChanged	is	used	to	denote	errors	or	simply	state-changes	of
the	respective	PhotonPeer.

State	change	callback

When	this	function	is	used	to	signalize	a	state-change,	the	statusCode
will	be	one	of	these:	StatusCode::CONNECT	the	connection	to	the
Photon	Server	was	established	StatusCode::DISCONNECT	the
connection	was	closed	(due	to	an	API-call	or	a	timeout)

Furthermore	this	function	will	be	called	by	Photon	to	inform	about
connection	errors	and	warnings.	Check	StatusCode.h	for	a	list.

Parameters
statusCode see	description

§	onEvent()
virtual	void	onEvent (const	EventData	&	 eventData) pure	virtual

This	is	the	event	handler	function	for	all	Events	transmitted	by
PhotonPeer.

Whenever	a	Photon	event	is	sent	and	received,	the	receiving	peer	will
be	notified	via	this	function.	Please	refer	to	Sending	and	receiving
data	for	more	information.

This	way,	an	application	can	react	on	any	event,	based	on	its	event
code.

The	following	events	are	reported	by	default:	EV_RT_JOIN
EV_RT_LEAVE

These	events	are	predefined	and	will	be	triggered	as	soon	as	a	player
has	joined	or	has	left	the	room	in	which	the	local	player	is	currently
active	in.	To	transmit	in-room	data,	define	your	own	events	as	needed
for	your	application,	and	transmit	them	using	LitePeer::opRaiseEvent().

All	events	which	are	raised	in	reaction	to	some	player's	actions	(like
sending	data)	contain	the	actor	number	of	the	sending	player	in	the
"parameters"	Hashtable.

If	the	received	event	has	been	raised	by	another	player	by	calling
LitePeer::opRaiseEvent(),	the	transmitted	payload	hashtable	will	be
stored	in	the	"parameters"	hashtable	of	at	key	EV_RT_KEY_DATA.
Please	refer	to	the	demos	for	sample	code.

Parameters
eventData the	EventData

See	also
Sending	and	receiving	data,	LitePeer::opRaiseEvent()

§	onPingResponse()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

virtual	void
onPingResponse (const	Common::JString	&	 address,

unsigned	int	 pingResult	
) virtual

This	is	the	callback	for	PhotonPeer::pingServer().

Each	ping	signal	that	has	been	sent	through
PhotonPeer::pingServer()	results	in	a	call	to	this	function,	providing
the	address	to	which	the	ping	has	been	sent	and	the	time	in
milliseconds	that	has	passed	between	sending	the	ping	and	receiving
the	servers	response.

Note
:	This	function	is	not	available	on	platforms	that	do	not	support
those	parts	of	the	stdlib	that	have	been	introduced	with	C++	11.
:	Also	this	function	is	not	available	on	platforms	that	do	not	support
multithreading.

Parameters
address the	address,	which	has	been	pinged
pingResult the	time	in	ms

See	also
PhotonPeer::pingServer()

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon PhotonPeer

Public	Member	Functions	|
Static	Public	Member	Functions	|

List	of	all	members

	Photon	C++
Client	API		4.1.12.2

PhotonPeer	Class
Reference

Inheritance	diagram	for	PhotonPeer:

[legend]

Public	Member	Functions
	 PhotonPeer	(PhotonListener	&listener,	nByte
connectionProtocol=ConnectionProtocol::DEFAULT)

	
virtual	 ~PhotonPeer	(void)

	
virtual	bool	 connect	(const	Common::JString

Common::JString	&appID=Common::JString
	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype
&customData)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype
pCustomDataArray,	typename
Common::Helpers::ArrayLengthType<	Ftype	>::type
arrSize)

	
template<typename	Ftype	>

bool	 connect	(const	Common::JString
Common::JString	&appID,	const	Ftype
pCustomDataArray,	const	short	*pArrSizes)

	
virtual	void	 disconnect	(void)

	
virtual	void	 service	(bool	dispatchIncomingCommands

	
virtual	void	 serviceBasic	(void)

	
virtual	bool	 opCustom	(const	OperationRequest

&operationRequest,	bool	sendReliable,	nByte
channelID=0,	bool	encrypt=false)

	

virtual	bool	 sendOutgoingCommands	(void)
	

virtual	bool	 sendAcksOnly	(void)
	

virtual	bool	 dispatchIncomingCommands
	

virtual	bool	 establishEncryption	(void)
	

virtual	void	 fetchServerTimestamp	(void)
	

virtual	void	 resetTrafficStats	(void)
	

virtual	void	 resetTrafficStatsMaximumCounters
	

virtual	Common::JString	 vitalStatsToString	(bool	all)	const
	

virtual	void	 pingServer	(const	Common::JString
unsigned	int	pingAttempts)

	
virtual	void	 initUserDataEncryption	(const

Common::JVector<	nByte	>	&secret)
	

virtual	void	 initUDPEncryption	(const	Common::JVector
nByte	>	&encryptSecret,	const	Common::JVector
nByte	>	&HMACSecret)

	
PhotonListener	*	 getListener	(void)

	
int	 getServerTimeOffset	(void)	const

	
int	 getServerTime	(void)	const

	
int	 getBytesOut	(void)	const

	
int	 getBytesIn	(void)	const

	
int	 getByteCountCurrentDispatch

	
int	 getByteCountLastOperation	(void)	const

	
int	 getPeerState	(void)	const

	
int	 getSentCountAllowance	(void)	const

	
void	 setSentCountAllowance	(int	sentCountAllowance)

	
int	 getTimePingInterval	(void)	const

	
void	 setTimePingInterval	(int	timePingInterval)

	
int	 getRoundTripTime	(void)	const

	
int	 getRoundTripTimeVariance	(void)	const

	
int	 getTimestampOfLastSocketReceive

	
int	 getDebugOutputLevel	(void)	const

	
bool	 setDebugOutputLevel	(int	debugLevel)

	
const	Common::LogFormatOptions	&	 getLogFormatOptions	(void)	const
	

void	 setLogFormatOptions	(const
Common::LogFormatOptions

	
int	 getIncomingReliableCommandsCount

const
	

short	 getPeerID	(void)	const
	

int	 getDisconnectTimeout	(void)	const
	

void	 setDisconnectTimeout	(int	disconnectTimeout)
	

int	 getQueuedIncomingCommands
	

int	 getQueuedOutgoingCommands
	

Common::JString	 getServerAddress	(void)	const
	

bool	 getIsPayloadEncryptionAvailable
	

bool	 getIsEncryptionAvailable	(void)	const
	

int	 getResentReliableCommands
	

int	 getLimitOfUnreliableCommands
	

void	 setLimitOfUnreliableCommands
	

bool	 getCRCEnabled	(void)	const
	

void	 setCRCEnabled	(bool	crcEnabled)
	

int	 getPacketLossByCRC	(void)	const
	

bool	 getTrafficStatsEnabled	(void)	const
	

void	 setTrafficStatsEnabled	(bool	trafficStasEnabled)
	

int	 getTrafficStatsElapsedMs	(void)	const
	

const	TrafficStats	&	 getTrafficStatsIncoming	(void)	const
	

const	TrafficStats	&	 getTrafficStatsOutgoing	(void)	const
	

const	TrafficStatsGameLevel	&	 getTrafficStatsGameLevel	(void)	const
	

nByte	 getQuickResendAttempts	(void)	const
	

void	 setQuickResendAttempts	(nByte

quickResendAttempts)
	

nByte	 getConnectionProtocol	(void)	const
	

void	 setConnectionProtocol	(nByte
connectionProtocol)

	
nByte	 getChannelCountUserChannels

	

Static	Public	Member	Functions
static	short	 getPeerCount	(void)

	
static	unsigned	int	 getMaxAppIDLength	(void)
	

Detailed	Description

The	PhotonPeer	class	provides	an	API	for	reliable	and	unreliable
realtime	communication.

PhotonPeer	uses	the	callback	interface	PhotonListener	that	needs	to
be	implemented	by	your	application,	to	receive	results	and	events	from
the	Photon	Server.

Constructor	&	Destructor	Documentation

§	PhotonPeer()
PhotonPeer (PhotonListener	&	 listener,

nByte	 connectionProtocol	=	ConnectionProtocol::DEFAULT
)

Constructor.

Parameters
listener Reference	to	the	application's	implementation	of	the

Listener	callback	interface.	Has	to	be	valid	for	at	least	the
lifetime	of	the	PhotonPeer	instance,	which	is	created	by
this	constructor.

connectionProtocol The	protocol	to	use	to	connect	to	Photon.	Must	match	one
of	the	constants	specified	in	ConnectionProtocol

See	also
PhotonListener,	ConnectionProtocol

§	~PhotonPeer()
~PhotonPeer (void) virtual

Destructor.

Member	Function	Documentation

§	connect()	[1/4]
bool
connect (const	Common::JString	&	 ipAddr,

const	Common::JString	&	 appID	=	Common::JString()	
) virtual

This	function	starts	establishing	a	connection	to	a	Photon	server.	The
servers	response	will	arrive	in	PhotonListener::onStatusChanged().

The	connection	is	successfully	established	when	the	Photon	client
received	a	valid	response	from	the	server.	The	connect-attempt	fails
when	a	network	error	occurs	or	when	server	is	not	responding.	A	call	to
this	function	starts	an	asynchronous	operation.	The	result	of	this
operation	gets	returned	through	the
PhotonListener::onStatusChanged()	callback	function.

Parameters
ipAddr A	null	terminated	string	containing	the	IP	address	or

domain	name	and	optionally	the	port	number	to	connect
to.	IP	addresses	can	be	in	IPv4	or	IPv6	format,	examples:
"192.168.0.1",	"192.168.0.1:5055",	"udp.gameserver.com",
"udp.gameserver.com:5055",	"[2002:C0A8:1::]",	"
[2002:C0A8:1::]:5055".	Note	that	IPv6	addresses	must
include	square	brackets	to	indicate	where	the	address
itself	end	and	the	port	begins.	If	no	port	is	given,	then	the
default	port	for	the	chosen	protocol	and	server	type	will	be
used.

appID the	appID	(default:	an	empty	string)

Returns
true,	if	it	could	successfully	start	establishing	a	connection	(the
result	will	be	passed	in	the	callback	function	in	this	case)	or	false,	if
an	error	occurred	and	the	connection	could	not	be	established	(the
callback	function	will	not	be	called	then).

See	also

disconnect(),	NetworkPort

§	connect()	[2/4]
bool	connect (const	Common::JString	&	 ipAddr,

const	Common::JString	&	 appID,
const	Ftype	&	 customData	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

Parameters
ipAddr Null	terminated	string	containing	IP	address	or

domain	name	and	optionally	a	port	of	server	to
connect.	Should	be	in	usual	format\:
"address[\:port]",	for	example\:	"192.168.0.1\:5055"
or	"udp.gameserver.com".	If	no	port	is	given,	port
5055	will	be	used	by	default.

appID the	appID	(default\:	an	empty	string)
customData custom	data	to	send	to	the	server	when	initializing

the	connection	-	has	to	be	provided	in	the	form	of
one	of	the	supported	data	types,	specified	at	Table
of	Datatypes

§	connect()	[3/4]
bool
connect (const	Common::JString	&	

const	Common::JString	&	
const	Ftype	
typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	differs	from	the	above
function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	singledimensional	arrays	and	NULL-pointers	passed	for	parameter
pCustomDataArray.	NULL	pointers	are	only	legal	input,	if	arrSize	is	0

Parameters
ipAddr Null	terminated	string	containing	IP	address	or	domain	name	and

optionally	a	port	of	server	to	connect.	Should	be	in	usual	format\:
"address[\:port]",	for	example\:	"192.168.0.1\:5055"	or
"udp.gameserver.com".	If	no	port	is	given,	port	5055	will	be	used
by	default.

appID the	appID	(default\:	an	empty	string)
pCustomDataArray custom	data	to	send	to	the	server	when	initializing	the	connection

-	has	to	be	provided	in	the	form	of	a	1D	array	of	one	of	the
supported	data	types,	specified	at	Table	of	Datatypes

arrSize the	element	count	of	the	customData	array

§	connect()	[4/4]
bool	connect (const	Common::JString	&	 ipAddr,

const	Common::JString	&	 appID,
const	Ftype	 pCustomDataArray,
const	short	*	 pArrSizes	
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It
differs	from	the	above	function	only	in	what	argument(s)	it	accepts.

This	overload	accepts	multidimensional	arrays	and	NULL-pointers
passed	for	parameter	pCustomDataArray.	The	array	that	is	passed	for
parameter	pCustomDataArray	has	to	be	a	pointer	of	the	correct
abstraction	level,	meaning	a	normal	pointer	for	a	singledimensional
array,	a	doublepointer	for	a	twodimensional	array,	a	triplepointer	for	a
threedimensional	array	and	so	on.	For	pCustomDataArray	NULL
pointers	are	only	legal	input,	if	pArrSizes[0]	is	0.	For	pArrSizes	NULL	is
no	valid	input.

Parameters
ipAddr Null	terminated	string	containing	IP	address

or	domain	name	and	optionally	a	port	of
server	to	connect.	Should	be	in	usual
format\:	"address[\:port]",	for	example\:
"192.168.0.1\:5055"	or
"udp.gameserver.com".	If	no	port	is	given,
port	5055	will	be	used	by	default.

appID the	appID	(default\:	an	empty	string)
pCustomDataArray custom	data	to	send	to	the	server	when

initializing	the	connection	-	has	to	be
provided	in	the	form	of	an	array	of	one	of	the
supported	data	types,	specified	at	Table	of
Datatypes

pArrSizes the	element	counts	for	every	dimension	of
the	custom	data	array	-	the	element	count	of

this	array	has	to	match	the	dimensions	of
the	custom	data	array

§	disconnect()
void	disconnect (void) virtual

Initiates	the	disconnection	from	the	Photon	server.	The	servers
response	will	arrive	in	PhotonListener::onStatusChanged().

This	function	generates	a	disconnection	request	that	will	be	sent	to	the
Photon	server.	If	the	disconnection	is	completed	successfully,	then	the
PhotonListener::onStatusChanged()	callback	will	be	called,	with	a
statusCode	of	StatusCode::DISCONNECT.

See	also
connect()

Reimplemented	in	Peer.

§	service()
void	service (bool	 dispatchIncomingCommands	=	true) virtual

This	function	executes	the	PhotonPeer	internal	processes.	Call	this
regularly!

This	function	is	meant	to	be	called	frequently,	like	once	per	game	loop.
It	handles	the	internal	calls	for	keeping	the	PhotonPeer
communication	alive,	and	will	take	care	of	sending	all	local	outgoing
acknowledgements	and	messages,	as	well	as	dispatching	incoming
messages	to	the	application	and	firing	the	corresponding	callbacks.
Internally	service()	calls	the	following	functions:

1.	 serviceBasic()
2.	 dispatchIncomingCommands()	(called	withing	a	loop	until	all

incoming	commands	have	been	dispatched.)
3.	 sendOutgoingCommands()	(called	withing	a	loop	until

everything	queued	for	sending	has	been	sent.)

service()	is	provided	for	convenience.	If	you	need	to	tweak	the
performance,	you	can	ignore	service()	and	call	its	three	subfunctions
directly	with	individual	time	intervals,	to	gain	more	control	over	the
internal	communication	process.	For	instance,	calling
sendOutgoingCommands()	more	rarely	will	result	in	less	packets	to
be	generated,	as	more	commands	will	be	accumulated	into	a	single
packet.	See	sendOutgoingCommands()	for	more	information	on
efficiency.

For	situations	where	you	want	to	keep	the	connection	alive,	but	can't
process	incoming	messages	(e.g.	when	loading	a	level),	you	can
temporarily	pass	false	for	dispatchIncomingCommands	to	skip	the
calls	to	dispatchIncomingCommands().	Incoming	commands	will	be
stored	in	the	incoming	queue	until	they	are	dispatched	again.

Parameters
dispatchIncomingCommands true	=

dispatchIncomingCommands()

will	be	called;	false	=
dispatchIncomingCommands()
won't	be	called,	default	is	true

§	serviceBasic()
void	serviceBasic (void) virtual

This	function	takes	care	of	exchanging	data	with	the	system's	network
layer.

You	only	need	to	call	this	function	in	case	you	choose	not	to	use
service(),	but	call	the	subfunctions	of	service()	directly.	Please	see
the	documentation	of	service()	for	more	information.

serviceBasic()	is	called	from	within	service().	If	you	decide	not	to	use
service(),	then	serviceBasic()	needs	to	be	called	frequently,	like	once
per	game	loop.

See	also
service()

§	opCustom()
bool	opCustom (const	OperationRequest	&	 operationRequest,

bool	 sendReliable,
nByte	 channelID	=	0,
bool	 encrypt	=	false	
) virtual

Sends	a	custom	operation	to	a	custom	Server,	using	reliable	or
unreliable	Photon	transmission.

Allows	the	client	to	send	a	custom	operation	to	the	Photon	server
(which	has	to	be	modified	accordingly).	The	Server	can	be	extended
and	modified	for	special	purposes	like	server	side	collision	detection	or
a	consistent	world.

You	need	to	be	connected	(see	connect())	prior	to	calling
opCustom().

Parameters
operationRequest holds	the	payload	of	the	operation
sendReliable =	operation	will	be	sent	reliably;	false	=	no

resend	in	case	of	packet	loss	-	will	be
ignored,	when	not	using	udp	as	protocol

channelID the	logical	channel,	default	is	0.	See
Fragmentation	and	Channels	for	more
information.

encrypt true	=	encrypt	message;	false	=	no	encryption

Returns
true,	if	successful,	false	otherwise

§	sendOutgoingCommands()
bool	sendOutgoingCommands (void) virtual

This	function	initiates	the	transmission	of	outgoing	commands.

Any	Photon	function	that	generates	messages	will	store	these
messages	as	a	"command"	in	an	outgoing	queue	for	later
transmission.	Commands	can	either	be	explicitly	created	operations
generated	for	example	by	opCustom()	or	internally	generated
messages	like	acknowledgements	for	reliable	messages	from	other
players.	sendOutgoingCommands()	will	initiate	the	data	transmission
by	passing	the	outgoing	commands	to	the	system's	sockets	for
immediate	transmission.

In	case	of	UDP	sendOutgoingCommands()	will	also	split	the
commands	into	multiple	packets	if	needed	and/of	aggregate	multiple
commands	together	into	one	packet,	if	possible.	Because	of	the	latter
calling	sendOutgoingcommands()	more	rarely	will	result	in	less
overhead,	as	there	will	be	fewer	packets	for	the	clients	to	be	sent	and
processed.	The	underlying	platform	can	also	limit	the	frequency	in
which	outgoing	packets	can	be	sent	and	received.	The	downside	of
lower	sending	frequencies	is	a	higher	latency,	until	messages	are
exchanged	and	acknowledged,	which	may	lead	to	a	jerky	gameplay.

To	help	you	keeping	track	of	the	incoming	and	outgoing	queues	at
development	time	and	adjust	your	sending	frequency,	there	will	be	a
warning	message	sent	to	your	debugReturn	callback	if	a	queue	has
exceeded	the	warning	threshold.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Usually	you	don't	have	to	call	sendOutgoingCommands()	this
explicitly,	as	this	is	done	within	service().

See	also
service()

§	sendAcksOnly()
bool	sendAcksOnly (void) virtual

Sends	only	ACKs	(UDP)	or	Ping	(TCP)	instead	of	queued	outgoing
commands.	Useful	to	pause	sending	actual	data.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly	,	when	you	use
sendAcksOnly()	and	dispatchIncomingCommands()	instead.

§	dispatchIncomingCommands()
bool	dispatchIncomingCommands (void) virtual

Checks	for	incoming	commands	waiting	in	the	queue,	and	dispatches
a	single	command	to	the	application.

Dispatching	means,	that	if	the	command	is	an	operation	response	or
an	event,	the	appropriate	callback	function	will	be	called).
dispatchIncomingCommands()	will	also	take	care	of	generating	and
queuing	acknowledgments	for	incoming	reliable	commands.	Please
note	that	this	function	will	only	dispatch	one	command	per	all.	If	you
want	to	dispatch	every	single	command	which	is	waiting	in	the	queue,
call	dipatchIncomingCommands()	within	a	while	loop,	until	its	return
code	is	false.

Note
While	service()	is	calling	serviceBasic()	implicitly,	you	will	have
to	regularly	call	it	yourself	explictly,	when	you	use
sendOutgoingCommands()	and
dispatchIncomingCommands()	directly	instead.

Returns
true	if	it	has	successfully	dispatched	a	command,	false	otherwise
(for	example,	when	there	has	not	been	any	command	left	in	the
queue,	waiting	for	dispatching).

See	also
service()

§	establishEncryption()
bool	establishEncryption (void) virtual

This	function	creates	a	public	key	for	this	client	and	exchanges	it	with
the	server.

If	establishEncryption()	returns	true,	then	Photon	will	inform	you
about	the	successfull	establishment	or	a	failure	by	calling
PhotonListener::onStatusChanged()	with	the	statusCode	beeing
either	StatusCode::ENCRYPTION_ESTABLISHED	or
StatusCode::ENCRYPTION_FAILED_TO_ESTABLISH

Returns
true	if	encryption	has	been	successfully	initiated,	false	otherwise.

See	also
getIsEncryptionAvailable(),
getIsPayloadEncryptionAvailable(),	initUDPEncryption(),
initUserDataEncryption()

§	fetchServerTimestamp()
void	fetchServerTimestamp (void) virtual

This	will	fetch	the	server's	timestamp	and	update	the	approximation	for
getServerTime()	and	getServerTimeOffset().

The	server	time	approximation	will	NOT	become	more	accurate	by
repeated	calls.	Accuracy	currently	depends	on	a	single	roundtrip	which
is	done	as	fast	as	possible.

The	command	used	for	this	is	immediately	acknowledged	by	the
server.	This	makes	sure	the	roundtriptime	is	low	and	the	timestamp	+
roundtriptime	/	2	is	close	to	the	original	value.

§	resetTrafficStats()
void	resetTrafficStats (void) virtual

Creates	new	instances	of	TrafficStats	and	starts	a	new	timer	for
those.

§	resetTrafficStatsMaximumCounters()
void	resetTrafficStatsMaximumCounters (void) virtual

Resets	traffic	stats	values	that	can	be	maxed	out.

§	vitalStatsToString()
JString	vitalStatsToString (bool	 all) const virtual

Returns	a	string	of	the	most	interesting	connection	statistics.	When
you	have	issues	on	the	client	side,	these	might	contain	hints	about	the
issue's	cause.

Parameters
all If	true,	Incoming	and	Outgoing	low-level	stats	are	included	in

the	string.

Returns
stats	as	a	string.

§	pingServer()
void	pingServer (const	Common::JString	&	 address,

unsigned	int	 pingAttempts	
) virtual

Sends	a	ping	signal	to	the	specified	address.

Each	call	to	this	function	results	in	a	number	of	calls	to
PhotonListener::onPingResponse()	that	equals	the	value	which	has
been	passed	for	parameter	pingAttempts.

This	function	can	be	used	to	ping	multiple	Photon	servers	and
determine	the	one	with	the	lowest	latency.

As	the	latency	of	the	same	server	may	vary	it	can	make	sense	to	send
multiple	ping	attempts.	In	that	case	the	next	attempt	gets	sent	when
either	the	servers	response	for	the	previous	attempt	has	been	received
or	when	that	previous	attempt	has	timed	out.

Multiple	calls	to	this	function	do	not	get	queued,	but	run	in	parallel.

A	valid	Photon	server	must	run	at	the	specified	address.

Note
This	function	is	not	available	on	platforms	that	do	not	support
those	parts	of	the	stdlib	that	have	been	introduced	with	C++	11.
This	function	is	not	available	on	platforms	that	do	not	support
multi-threading.

Parameters
address the	address,	which	should	be	pinged
pingAttempts the	amount	of	ping	signals	to	send

See	also
PhotonListener::onPingResponse()

§	initUserDataEncryption()
void
initUserDataEncryption (const	Common::JVector<	nByte	>	&	 secret)

Initializes	userData	encryption	with	the	provided	key.

Note
You	must	also	provide	the	same	key	to	the	server	to	which	you	want	to
connect.	It	needs	to	be	an	aes256	key	and	must	not	have	been	received
through	an	unsecured	connection.

Remarks
If	you	don't	already	have	generated	a	key	that	you	can	access	securely
on	both,	the	client	and	the	server,	you	may	want	to	consider	to	use
establishEncryption()	instead,	which	also	initializes	userData
encryption,	but	does	generate	suitable	keys	on	client	and	server	side
itself.

Parameters
secret an	aes256	key

See	also
getIsEncryptionAvailable(),	getIsPayloadEncryptionAvailable(),
establishEncryption(),	initUDPEncryption()

§	initUDPEncryption()
void
initUDPEncryption (const	Common::JVector<	nByte	>	&	 encryptSecret,

const	Common::JVector<	nByte	>	&	 HMACSecret	
)

Initializes	UDP	packet	Data	encryption	with	the	provided	keys.

This	function	has	no	effect	for	non-UDP	connections,	but	you	may	still	call	it
while	having	an	active	connection	that	uses	a	different	protocol.	In	that	case
they	keys	will	be	stored	in	case	that	you	switch	the	protocol	at	the	time	of	a
later	re-connect.	For	XB1	UDP	connections	UDP	packet	encryption	is	a
mandatory	requirement	by	Microsoft.	On	other	platforms	you	may	also
consider	to	use	establishEncryption()	or	initUserDataEncryption(),	which
provide	alternative	encryption	implementations	that	do	also	work	with	other
connection	protocols.

Note
You	must	also	provide	the	same	keys	to	the	server	to	which	you	want	to
connect.	They	need	to	be	aes256	keys	and	must	not	have	been	received
through	an	unsecured	connection.
This	function	is	only	available	on	Windows	Desktop,	Windows	Store	and
XBox	1.

Parameters
encryptSecret an	aes256	key	used	for	packet	encryption
HMACSecret an	aes256	key	used	for	packet	authentication

See	also
getIsEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption()

§	getListener()
PhotonListener	*	getListener (void)

Returns
a	pointer	to	the	application's	implementation	of	the	Listener
callback	interface,	as	passed	to	the	constructor	of	PhotonPeer.

§	getServerTimeOffset()
int	getServerTimeOffset (void) const

Returns
the	difference	between	the	local	uptime	and	the	Photon	Server's
system	time	in	ms.

In	real-time	games	it's	often	useful	to	relate	game	events	to	a	global
common	timeline,	that's	valid	for	all	players	and	independent	from
derivations	throughout	the	clients'	system	times.	The	Photon	Server's
System	Time	can	serve	as	this	reference	time.	The	serverTimeOffset
represents	the	difference	between	the	client's	local	system	time	and
the	Photon	server's	system	time.

ServerTime	=	serverTimeOffset	+	GETTIMEMS()

The	serverTimeOffset	is	fetched	shortly	after	connect	by	Photon.	Use
GETTIMEMS()	to	get	your	local	time	in	ms.	You	can	let	Photon	refetch
the	offset	by	calling	fetchServerTimestamp().	The	ServerTimeOffset
will	be	0	until	shortly	after	initial	connect.

§	getServerTime()
int	getServerTime (void) const

Returns
the	Photon	Server's	system	time	ins	ms.

see	getServerTimeOffset()

§	getBytesOut()
int	getBytesOut (void) const

Returns
the	total	number	of	outgoing	bytes	transmitted	by	this	PhotonPeer
object.

See	also
getBytesIn()

§	getBytesIn()
int	getBytesIn (void) const

Returns
the	total	number	of	incoming	bytes	received	by	this	PhotonPeer
object.

See	also
getBytesOut()

§	getByteCountCurrentDispatch()
int	getByteCountCurrentDispatch (void) const

Returns
the	size	of	the	dispatched	event	or	operation-result	in	bytes.	This
value	is	set	before	onEvent()	or	onOperationResponse()	is	called
(within	dispatchIncomingCommands()).	Get	this	value	directly	in
onEvent()	or	onOperationResponse().

§	getByteCountLastOperation()
int	getByteCountLastOperation (void) const

Returns
the	size	of	the	last	serialized	operation	call	in	bytes.	The	value
includes	all	headers	for	this	single	operation	but	excludes	those	of
UDP,	Enet	Package	Headers	and	TCP.	Get	this	value	immediately
after	calling	an	operation.

§	getPeerState()
int	getPeerState (void) const

Returns
the	current	state	of	the	PhotonPeer	object

The	state	of	the	PhotonPeer	object	is	changed	internally	upon
connection	and	disconnection,	and	will	be	one	of	the	values	of	the
PeerState	enum.

See	also
connect(),	disconnect()

§	getSentCountAllowance()
int	getSentCountAllowance (void) const

Returns
the	number	of	resend	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	always	return	0	for	other	protocols.

See	also
setSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	setSentCountAllowance()
void	setSentCountAllowance (int	 sentCountAllowance)

Sets	the	number	of	re-send	retries	before	a	peer	is	considered
lost/disconnected.

This	is	udp	specific	and	will	do	nothing	at	all	for	other	protocols.

Parameters
sentCountAllowance the	new	number	of	re/-send	retries	before

a	peer	is	considered	lost/disconnected.

See	also
getSentCountAllowance()	getDisconnectTimeout()
setDisconnectTimeout()

§	getTimePingInterval()
int	getTimePingInterval (void) const

Returns
the	time	threshold	in	milliseconds	since	the	last	reliable	command,
before	a	ping	will	be	sent.

See	also
setTimePingInterval()

§	setTimePingInterval()
void	setTimePingInterval (int	 timePingInterval)

Sets	the	time	threshold	in	milliseconds	since	the	last	reliable
command,	before	a	ping	will	be	sent.

Parameters
timePingInterval time	threshold	in	milliseconds	since	the	last

reliable	command,	before	a	ping	will	be	sent.

See	also
getTimePingInterval()

§	getRoundTripTime()
int	getRoundTripTime (void) const

Returns
the	time	in	milliseconds	until	a	reliable	command	is	acknowledged
by	the	server.

This	is,	what	is	commonly	called	a	ping	time	or	just	a	ping.

See	also
getRoundTripTimeVariance()

§	getRoundTripTimeVariance()
int	getRoundTripTimeVariance (void) const

Returns
the	variance	of	the	roundtrip	time	in	milliseconds.	Gives	a	hint
about	how	much	the	net	latency	is	varying.

See	also
getRoundTripTime()

§	getTimestampOfLastSocketReceive()
int	getTimestampOfLastSocketReceive (void) const

Returns
timestamp	of	the	last	time	anything	(!)	was	received	from	the
server	(including	low	level	Ping	and	ACKs	but	also	events	and
operation-returns).	This	is	not	the	time	when	something	was
dispatched.

§	getDebugOutputLevel()
int	getDebugOutputLevel (void) const

Returns	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Returns
one	of	the	values	in	DebugLevel

See	also
setDebugOutputLevel()

§	setDebugOutputLevel()
bool	setDebugOutputLevel (int	 debugLevel)

Sets	the	current	level	of	debug	information	that's	passed	on	to
BaseListener::debugReturn().

Parameters
debugLevel one	of	the	values	in	DebugLevel

Returns
true	if	the	new	debug	level	has	been	set	correctly,	false	otherwise.

See	also
getDebugOutputLevel()

§	getLogFormatOptions()
const	LogFormatOptions	&	getLogFormatOptions (void) const

Returns
the	LogFormatOptions	that	are	used	by	this	instance.

See	also
setFormatOptions()

§	setLogFormatOptions()
void
setLogFormatOptions (const	Common::LogFormatOptions	&	 formatOptions

Sets	the	log	format	options	to	the	supplied	value.

Parameters
formatOptions the	new	value	to	which	the	log	format	options	will	be	set

See	also
getFormatOptions()

§	getIncomingReliableCommandsCount()
int	getIncomingReliableCommandsCount (void) const

Returns
the	total	number	of	reliable	commands	currently	waiting	in	the
incoming	queues	of	all	channels	or	-1	if	not	connected.

§	getPeerID()
short	getPeerID (void) const

Returns
this	peer's	ID	as	assigned	by	the	server.	Will	be	-1,	if	not
connected.

§	getDisconnectTimeout()
int	getDisconnectTimeout (void) const

Returns
the	maximum	time	interval	in	milliseconds	for	doing	resend	retries
before	a	peer	is	considered	lost/disconnected.

See	also
setDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	setDisconnectTimeout()
void	setDisconnectTimeout (int	 disconnectTimeout)

Sets	the	maximum	time	ins	milliseconds	for	making	re-send	retries
before	a	peer	is	considered	lost/disconnected.

Parameters
disconnectTimeout resend	max	time	in	ms	before	a	peer	is

considered	lost/disconnected

See	also
getDisconnectTimeout()	getSentCountAllowance()
setSentCountAllowance()

§	getQueuedIncomingCommands()
int	getQueuedIncomingCommands (void) const

Returns
the	number	of	queued	incoming	commands	in	all	channels	or	-1	if
not	connected

§	getQueuedOutgoingCommands()
int	getQueuedOutgoingCommands (void) const

Returns
the	number	of	queued	outgoing	commands	in	all	channels	or	-1	if
not	connected

§	getServerAddress()
JString	getServerAddress (void) const

Returns
the	IP	or	url	of	the	server,	to	which	the	peer	is	connected	to

§	getIsPayloadEncryptionAvailable()
bool	getIsPayloadEncryptionAvailable (void) const

Returns
this	peer's	payload	encryption	availability	status.	True	if	payload
encryption	is	available,	false	otherwise.

See	also
getIsEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption()

§	getIsEncryptionAvailable()
bool	getIsEncryptionAvailable (void) const

Returns
this	peer's	encryption	availability	status.	True	if	either	payload
encryption	is	available	or	if	the	connection	protocol	is	UDP	and
UDP	encryption	is	available	or	if	the	connection	protocol	is	already
secure	on	its	own,	false	otherwise.

See	also
getIsPayloadEncryptionAvailable(),	establishEncryption(),
initUserDataEncryption(),	initUDPEncryption()

§	getResentReliableCommands()
int	getResentReliableCommands (void) const

Returns
the	count	of	commands	that	got	repeated	(due	to	local	repeat-
timing	before	an	ACK	was	received).

§	getLimitOfUnreliableCommands()
int	getLimitOfUnreliableCommands (void) const

Returns
the	limit	for	the	queue	of	received	unreliable	commands.

See	also
setLimitOfUnreliableCommands()

§	setLimitOfUnreliableCommands()
void	setLimitOfUnreliableCommands (int	 value)

Sets	the	limit	for	the	queue	of	received	unreliable	commands.	This
works	only	in	UDP.	This	limit	is	applied	when	you	call
dispatchIncomingCommands.	If	this	client	(already)	received	more
than	this	limit,	it	will	throw	away	the	older	ones	instead	of	dispatching
them.	This	can	produce	bigger	gaps	for	unreliable	commands	but	your
client	catches	up	faster.	This	can	be	useful	when	the	client	couldn't
dispatch	anything	for	some	time	(cause	it	was	in	a	room	but	loading	a
level).	If	set	to	20,	the	incoming	unreliable	queues	are	truncated	to	20.
If	0,	all	received	unreliable	commands	will	be	dispatched.	This	is	a	"per
channel"	value,	so	each	channel	can	hold	commands	up	to	specified
limit.	This	value	interacts	with	dispatchIncomingCommands():	If	that
is	called	less	often,	more	commands	get	skipped.

See	also
getLimitOfUnreliableCommands()

§	getCRCEnabled()
bool	getCRCEnabled (void) const

Returns
true	if	CRC	enabled

See	also
setCRCEnabled

§	setCRCEnabled()
void	setCRCEnabled (bool	 crcEnabled)

Enables	or	disables	CRC.	While	not	connected,	this	controls	if	the	next
connection(s)	should	use	a	per-package	CRC	checksum.	If	the	client	is
in	another	state	than	'connected',	then	this	function	has	no	effect
except	for	logging	an	error.

While	turned	on,	the	client	and	server	will	add	a	CRC	checksum	to
every	sent	package.	The	checksum	enables	both	sides	to	detect	and
ignore	packages	that	were	corrupted	during	transfer.	Corrupted
packages	have	the	same	impact	as	lost	packages:	They	require	a	re-
send,	adding	a	delay	and	could	lead	to	timeouts.	Building	the
checksum	has	a	low	processing	overhead	but	increases	integrity	of
sent	and	received	data.	Packages	discarded	due	to	failed	CRC	checks
are	counted	in	PhotonPeer.PacketLossByCRC.

Note
This	only	has	effect	for	UDP	connections.
This	does	not	have	any	effect	for	connections	that	use	UDP
datagram	encryption	(which	always	use	a	built-in	checksum).

See	also
getCRCEnabled

§	getPacketLossByCRC()
int	getPacketLossByCRC (void) const

Returns
the	count	of	packages	dropped	due	to	failed	CRC	checks	for	this
connection.

See	also
setCRCEnabled

§	getTrafficStatsEnabled()
bool	getTrafficStatsEnabled (void) const

Returns
true	if	traffic	statistics	of	a	peer	are	enabled.	Default
trafficStatsEnabled:	false	(disabled).

§	setTrafficStatsEnabled()
void	setTrafficStatsEnabled (bool	 trafficStatsEnabled)

Enables	or	disables	the	traffic	statistics	of	a	peer.	Default
trafficStatsEnabled:	false	(disabled).

§	getTrafficStatsElapsedMs()
int	getTrafficStatsElapsedMs (void) const

Returns
the	count	of	milliseconds	the	stats	are	enabled	for	tracking.

§	getTrafficStatsIncoming()
const	TrafficStats	&	getTrafficStatsIncoming (void) const

Returns
the	byte-count	of	incoming	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsOutgoing()
const	TrafficStats	&	getTrafficStatsOutgoing (void) const

Returns
the	byte-count	of	outgoing	"low	level"	messages,	which	are	either
Enet	Commands	or	TCP	Messages.	These	include	all	headers,
except	those	of	the	underlying	internet	protocol	UDP	or	TCP.

§	getTrafficStatsGameLevel()
const	TrafficStatsGameLevel	&
getTrafficStatsGameLevel (void) const

Returns
a	statistic	of	incoming	and	outgoing	traffic,	split	by	operation,
operation-result	and	event.	Operations	are	outgoing	traffic,	results
and	events	are	incoming.	Includes	the	per-command	header	sizes
(UDP:	Enet	Command	Header	or	TCP:	Message	Header).

§	getQuickResendAttempts()
nByte	getQuickResendAttempts (void) const

Returns
the	number	of	resend	attempts	for	a	reliable	command	that	are
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

§	setQuickResendAttempts()
void	setQuickResendAttempts (nByte	 quickResendAttempts)

Sets	the	number	of	resend	attempts	for	a	reliable	command	can	be
done	in	quick	succession	(after
RoundTripTime+4*RoundTripTimeVariance).

Remarks
The	default	value	is	0.	Any	later	resend	attempt	will	then	double
the	time	before	the	next	resend	takes	place.	The	max	value	is	4.
Make	sure	to	set	SentCountAllowance	to	a	slightly	higher	value,
as	more	repeats	will	get	done.

§	getConnectionProtocol()
nByte	getConnectionProtocol (void) const

Returns
the	currently	set	connection	protocol.

Note
The	value	returned	is	not	guaranteed	to	be	the	value	used	for	the
currently	active	connection,	but	only	the	value	that	has	last	been
passed	to	setConnectionProtocol().	The	reason	therefor	is	that
whatever	you	pass	to	setConnectionProtocol()	won't	take	effect
until	you	re-connect.

§	setConnectionProtocol()
void	setConnectionProtocol (nByte	 connectionProtocol)

Sets	the	connection	protocol	to	be	used	with	the	next	connect()	call.

Note
This	does	not	have	any	effect	on	the	protocol	that	is	used	for	an
already	active	connection.	So	you	need	to	re-connect	after	setting
a	different	connection	protocol	for	the	changes	to	actually	take
effect.

§	getChannelCountUserChannels()
nByte	getChannelCountUserChannels (void) const

The	IDs	from	0	to	getChannelCountUserChannels()-1	can	be	passed
as	channelID	to	operations	that	offer	this	parameter.

Returns
the	number	of	different	channels	that	are	available	for	sending
operations	on.

§	getPeerCount()
short	getPeerCount (void) static

Returns
the	count	of	peers,	which	have	been	initialized	since	the	start	of
the	application.	Interesting	mainly	for	debugging	purposes.

§	getMaxAppIDLength()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

unsigned	int	getMaxAppIDLength (void) static

Returns
the	maximum	allowed	length	for	the	appID	that	gets	passed	to
connect()	in	characters

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon TrafficStats

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

TrafficStats	Class
Reference

Inheritance	diagram	for	TrafficStats:

[legend]

Collaboration	diagram	for	TrafficStats:

[legend]

Public	Member	Functions
virtual	 ~TrafficStats	(void)

	
int	 getPackageHeaderSize	(void)	const

	
int	 getReliableCommandCount	(void)	const

	
int	 getUnreliableCommandCount	(void)

const
	

int	 getFragmentCommandCount	(void)
const

	
int	 getControlCommandCount	(void)	const

	
int	 getTotalPacketCount	(void)	const

	
int	 getTotalCommandsInPackets	(void)

const
	

int	 getReliableCommandBytes	(void)	const
	

int	 getUnreliableCommandBytes	(void)
const

	
int	 getFragmentCommandBytes	(void)

const
	

int	 getControlCommandBytes	(void)	const
	

int	 getTotalCommandCount	(void)	const
	

int	 getTotalCommandBytes	(void)	const
	

int	 getTotalPacketBytes	(void)	const

	
int	 getTimestampOfLastAck	(void)	const

	
int	 getTimestampOfLastReliableCommand

(void)	const
	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	class	provides	network	traffic	statistics.

See	also
PhotonPeer::getTrafficStatsEnabled(),
PhotonPeer::setTrafficStatsEnabled(),
PhotonPeer::getTrafficStatsElapsedMs(),
PhotonPeer::getTrafficStatsIncoming(),
PhotonPeer::getTrafficStatsOutgoing()

Constructor	&	Destructor	Documentation

§	~TrafficStats()
~TrafficStats (void) virtual

Destructor.

Member	Function	Documentation

§	getPackageHeaderSize()
int	getPackageHeaderSize (void) const

Returns
the	byte-size	of	per-package	headers.

§	getReliableCommandCount()
int	getReliableCommandCount (void) const

Returns
the	reliable	commands	that	are	created/received	by	this	client,
ignoring	repeats	(the	out	command	count	can	be	higher	that	this
due	to	repeats).

§	getUnreliableCommandCount()
int	getUnreliableCommandCount (void) const

Returns
the	unreliable	commands	that	are	created/received	by	this	client.

§	getFragmentCommandCount()
int	getFragmentCommandCount (void) const

Remarks
Commands	get	fragmented,	when	UDP	is	used	and	they	are	to
big	to	fit	into	a	single	UDP	packet.

Returns
the	fragments	for	fragmented	commands	that	are	created/received
by	this	client.

§	getControlCommandCount()
int	getControlCommandCount (void) const

Remarks
The	returned	value	includes	connect,	disconnect,	verify	connect,
pings	and	acknowledgments	for	reliable	commands.

Returns
the	control	commands	that	are	created/received	by	this	client
under	the	hood	to	administer	the	connection.

§	getTotalPacketCount()
int	getTotalPacketCount (void) const

Returns
the	overall	packets	that	are	in	created/received	by	this	client.

§	getTotalCommandsInPackets()
int	getTotalCommandsInPackets (void) const

Returns
the	overall	commands	that	are	created/received	by	this	client.	For
fragmented	commands	each	fragment	counts	separately.

§	getReliableCommandBytes()
int	getReliableCommandBytes (void) const

Returns
the	bytes	of	the	reliable	commands	that	are	created/received	by
this	client,	ignoring	repeats	(the	count	of	actually	outgoing	bytes
can	be	higher	than	this	due	to	repeats).

§	getUnreliableCommandBytes()
int	getUnreliableCommandBytes (void) const

Returns
the	bytes	of	the	unreliable	commands	that	are	created/received	by
this	client.

§	getFragmentCommandBytes()
int	getFragmentCommandBytes (void) const

Remarks
Commands	get	fragmented,	when	UDP	is	used	and	they	are	to
big	to	fit	into	a	single	UDP	packet.

Returns
the	bytes	of	the	fragments	for	fragmented	commands	that	are
created/received	by	this	client.

§	getControlCommandBytes()
int	getControlCommandBytes (void) const

Remarks
Control	commands	include	connect,	disconnect,	verify	connect,
pings	and	acknowledgments	for	reliable	commands.

Returns
the	bytes	of	the	control	commands	that	are	created/received	by
this	client	under	the	hood	to	administer	the	connection.

§	getTotalCommandCount()
int	getTotalCommandCount (void) const

Returns
the	sum	of	the	return	values	of	getReliableCommandCount(),
getUnreliableCommandCount(),
getFragmentCommandCount()	and
getControlCommandCount()

§	getTotalCommandBytes()
int	getTotalCommandBytes (void) const

Returns
the	sum	of	the	return	values	of	getReliableCommandBytes(),
getUnreliableCommandBytes(),
getFragmentCommandBytes()	and
getControlCommandBytes()

§	getTotalPacketBytes()
int	getTotalPacketBytes (void) const

Returns
the	count	of	bytes	as	traffic,	excluding	UDP/TCP	headers	(42
bytes	/	x	bytes).

§	getTimestampOfLastAck()
int	getTimestampOfLastAck (void) const

Returns
the	timestamp	of	the	last	incoming	ACK	that	has	been	read	(every
PhotonPeer::getTimePingInterval()	milliseconds	this	client
sends	a	PING	which	must	be	ACKd	by	the	server).

§	getTimestampOfLastReliableCommand()
int	getTimestampOfLastReliableCommand (void) const

Returns
the	timestamp	of	the	last	incoming	reliable	command	(every
second	we	expect	a	PING).

§	toString()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	&	toString (Common::JString	&	 retStr,
bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon TrafficStatsGameLevel

Public	Member	Functions	|	List	of	all	members

	Photon	C++
Client	API		4.1.12.2

TrafficStatsGameLevel
Class	Reference

Inheritance	diagram	for	TrafficStatsGameLevel:

[legend]

Collaboration	diagram	for	TrafficStatsGameLevel:

[legend]

Public	Member	Functions
virtual	 ~TrafficStatsGameLevel	(void)

	
int	 getOperationByteCount	(void)	const

	
int	 getOperationCount	(void)	const

	
int	 getResultByteCount	(void)	const

	
int	 getResultCount	(void)	const

	
int	 getEventByteCount	(void)	const

	
int	 getEventCount	(void)	const

	
int	 getLongestOpResponseCallback	(void)

const
	

nByte	 getLongestOpResponseCallbackOpCode
(void)	const

	
int	 getLongestEventCallback	(void)	const

	
nByte	 getLongestEventCallbackCode	(void)

const
	

int	 getLongestDeltaBetweenDispatching
(void)	const

	
int	 getLongestDeltaBetweenSending	(void)

const
	

int	 getDispatchIncomingCommandsCalls
(void)	const

	

int	 getSendOutgoingCommandsCalls	(void)
const

	
int	 getTotalByteCount	(void)	const

	
int	 getTotalMessageCount	(void)	const

	
int	 getTotalIncomingByteCount	(void)	const

	
int	 getTotalIncomingMessageCount	(void)

const
	

int	 getTotalOutgoingByteCount	(void)	const
	

int	 getTotalOutgoingMessageCount	(void)
const

	
void	 resetMaximumCounters	(void)

	
virtual	Common::JString	&	 toString	(Common::JString	&retStr,	bool

withTypes=false)	const
	

virtual	Common::JString	 toStringVitalStats	(void)	const
	
	Public	Member	Functions	inherited	from	Base

virtual	 ~Base	(void)
	
	Public	Member	Functions	inherited	from	ToString

virtual	 ~ToString	(void)
	

virtual	JString	 typeToString	(void)	const
	

JString	 toString	(bool	withTypes=false)	const
	

Additional	Inherited	Members
	Static	Public	Member	Functions	inherited	from	Base

static	void	 setListener	(const	BaseListener
*baseListener)

	
static	int	 getDebugOutputLevel	(void)

	
static	bool	 setDebugOutputLevel	(int

debugLevel)
	
static	const	LogFormatOptions	&	 getLogFormatOptions	(void)
	

static	void	 setLogFormatOptions	(const
LogFormatOptions	&options)

	

Detailed	Description

This	class	provides	game	level	traffic	statistics.

See	also
PhotonPeer::getTrafficStatsEnabled(),
PhotonPeer::setTrafficStatsEnabled(),
PhotonPeer::getTrafficStatsElapsedMs(),
PhotonPeer::getTrafficStatsGameLevel()

Constructor	&	Destructor	Documentation

§	~TrafficStatsGameLevel()
~TrafficStatsGameLevel (void) virtual

Destructor.

Member	Function	Documentation

§	getOperationByteCount()
int	getOperationByteCount (void) const

Returns
the	sum	of	outgoing	operations	in	bytes

§	getOperationCount()
int	getOperationCount (void) const

Returns
the	count	of	outgoing	operations.

§	getResultByteCount()
int	getResultByteCount (void) const

Returns
the	sum	of	byte-cost	of	incoming	operation-results.

§	getResultCount()
int	getResultCount (void) const

Returns
the	count	of	incoming	operation-results.

§	getEventByteCount()
int	getEventByteCount (void) const

Returns
the	sum	of	byte-cost	of	incoming	events.

§	getEventCount()
int	getEventCount (void) const

Returns
the	count	of	incoming	events.

§	getLongestOpResponseCallback()
int	getLongestOpResponseCallback (void) const

Note
If	such	a	callback	takes	long,	it	will	lower	the	network	performance
and	might	lead	to	timeouts.

Returns
the	longest	time	it	took	to	complete	a	call	to
OnOperationResponse	(in	your	code).

§	getLongestOpResponseCallbackOpCode()
nByte	getLongestOpResponseCallbackOpCode (void) const

Returns
the	OperationCode	that	causes	the	LongestOpResponseCallback.
See	that	description.

§	getLongestEventCallback()
int	getLongestEventCallback (void) const

Note
If	such	a	callback	takes	long,	it	will	lower	the	network	performance
and	might	lead	to	timeouts.

Returns
the	longest	time	a	call	to	OnEvent	(in	your	code)	took.

§	getLongestEventCallbackCode()
nByte	getLongestEventCallbackCode (void) const

Returns
the	EventCode	that	caused	the	LongestEventCallback.	See	that
description.

§	getLongestDeltaBetweenDispatching()
int	getLongestDeltaBetweenDispatching (void) const

Note
This	is	not	a	crucial	timing	for	networking.	Long	gaps	just	add
"local	lag"	to	events	that	are	available	already.

Returns
the	longest	time	between	subsequent	calls	to
PhotonPeer::dispatchIncomingCommands()	in	milliseconds.

§	getLongestDeltaBetweenSending()
int	getLongestDeltaBetweenSending (void) const

Note
This	is	a	crucial	value	for	network	stability.	Without	calling
PhotonPeer::sendOutgoingCommands(),	nothing	will	be	sent	to
the	server,	which	might	time	out	this	client.

Returns
the	longest	time	between	subsequent	calls	to
PhotonPeer::sendOutgoingCommands()	in	milliseconds.

§	getDispatchIncomingCommandsCalls()
int	getDispatchIncomingCommandsCalls (void) const

Returns
the	number	of	calls	of
PhotonPeer::dispatchIncomingCommands().

§	getSendOutgoingCommandsCalls()
int	getSendOutgoingCommandsCalls (void) const

Returns
the	number	of	calls	of	PhotonPeer::sendOutgoingCommands().

§	getTotalByteCount()
int	getTotalByteCount (void) const

Returns
the	sum	of	byte-cost	of	all	"logic	level"	messages.

§	getTotalMessageCount()
int	getTotalMessageCount (void) const

Returns
the	sum	of	counted	"logic	level"	messages.

§	getTotalIncomingByteCount()
int	getTotalIncomingByteCount (void) const

Returns
the	sum	of	byte-cost	of	all	incoming	"logic	level"	messages.

§	getTotalIncomingMessageCount()
int	getTotalIncomingMessageCount (void) const

Returns
the	sum	of	counted	incoming	"logic	level"	messages.

§	getTotalOutgoingByteCount()
int	getTotalOutgoingByteCount (void) const

Returns
the	sum	of	byte-cost	of	all	outgoing	"logic	level"	messages	(=
OperationByteCount).

§	getTotalOutgoingMessageCount()
int	getTotalOutgoingMessageCount (void) const

Returns
the	sum	of	counted	outgoing	"logic	level"	messages	(=
OperationCount).

§	resetMaximumCounters()
void	resetMaximumCounters (void)

Resets	the	values	that	can	be	maxed	out,	like
LongestDeltaBetweenDispatching.	See	remarks.

Set	to	0:	LongestDeltaBetweenDispatching,
LongestDeltaBetweenSending,	LongestEventCallback,
LongestEventCallbackCode,	LongestOpResponseCallback,
LongestOpResponseCallbackOpCode.	Also	resets	internal	values:
mTimeOfLastDispatchCall	and	mTimeOfLastSendCall	(so	intervals	are
tracked	correctly).

§	toString()
JString	&	toString (Common::JString	&	 retStr,

bool	 withTypes	=	false	
) const virtual

Remarks
The	cost	of	this	function	depends	a	lot	on	implementation	details
of	the	implementing	subclasses,	but	for	container	classes	this
function	can	become	quite	expensive,	if	the	instance	contains
huge	amounts	of	data,	as	its	cost	for	many	container	class
implementations	increases	disproportionately	high	to	the	size	of
the	payload.

Parameters
retStr reference	to	a	string,	to	store	the	return-value	in;	the

information,	which	is	generated	by	this	function,	will
be	attached	at	the	end	of	any	eventually	existing
previous	content	of	the	string

withTypes set	to	true,	to	include	type	information	in	the
generated	string

Returns
a	JString	representation	of	the	instance	and	its	contents	for
debugging	purposes.

Implements	ToString.

§	toStringVitalStats()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

JString	toStringVitalStats (void) const virtual

Returns
a	JString	representation	of	the	vital	stats	for	debugging	purposes.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2
Class	Index

a	|	b	|	c	|	d	|	e	|	f	|	h	|	j	|	k	|	l	|	m	|	o	|	p	|	r	|	s	|	t	|	u	|	v	|	w

		a		 Dictionary
DictionaryBase

AllocatorInterface	(ExitGames::Common::MemoryManagement)			
ANSIString	(ExitGames::Common)			
AuthenticationValues	(ExitGames::LoadBalancing)			 EGTime
AuthenticationValues	(ExitGames::Chat)			 EventData

		b		

Base	(ExitGames::Common)			 FriendInfo
BaseCharString	(ExitGames::Common)			
BaseListener	(ExitGames::Common)			

		c		 Hashtable

Channel	(ExitGames::Chat)			
Client	(ExitGames::LoadBalancing)			 JString
Client	(ExitGames::Chat)			 JVector
CustomType	(ExitGames::Common)			
CustomTypeBase	(ExitGames::Common)			
CustomTypeFactory	(ExitGames::Common)			 KeyObject

		d		

DeSerializer	(ExitGames::Common)			 Listener

a	|	b	|	c	|	d	|	e	|	f	|	h	|	j	|	k	|	l	|	m	|	o	|	p	|	r	|	s	|	t	|	u	|	v	|	w

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
Class	Hierarchy

Go	to	the	graphical	class	hierarchy

This	inheritance	list	is	sorted	roughly,	but	not	completely,	alphabetically:
[detail	level	 1 2 3 4]

	 C AllocatorInterface
	▼ C BaseListener
	 C Listener
	 C Listener
	 ▼ C PhotonListener
	 C Client
	 C Client
	 C EventData
	 C OperationRequest
	 C OperationResponse
	▼ C PhotonPeer
	 C Peer
	 C LitePeer
	 C Peer
	▼ C Protocol
	 C TCP
	 C UDP
	 C UDPAlternative
	 C WS
	 C WSS

	 C Puncher
	 C PunchListener
	 C RelayClient
	▼ C ToString
	 ▼ C Base
	 C AuthenticationValues
	 C Channel
	 ▼ C BaseCharString
	 C ANSIString
	 C UTF8String
	 ▼ C CustomTypeBase
	 C CustomType<	typeCode	>
	 C CustomTypeFactory<	typeCode	>
	 C DeSerializer
	 ▼ C DictionaryBase
	 C Dictionary<	nByte,	Common::ExitGames::Common::Object	>
	 C Dictionary<	nByte,	Common::Object	>
	 C Dictionary<	EKeyType,	EValueType	>
	 C EGTime
	 C Hashtable
	 C JVector<	Etype	>
	 ▼ C Object
	 C KeyObject<	Etype	>
	 C ValueObject<	Etype	>
	 C Serializer
	 C AuthenticationValues
	 C FriendInfo
	 C LobbyStatsRequest
	 C LobbyStatsResponse
	 ▼ C Player

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	 C MutablePlayer
	 C RaiseEventOptions
	 ▼ C Room
	 C MutableRoom
	 C RoomOptions
	 C WebFlags
	 C TrafficStats
	 C TrafficStatsGameLevel
	 C JVector<	Common::ExitGames::Common::JString	>
	 C JVector<	Common::ExitGames::Common::JVector<	unsigned	int	>	>
	 C JVector<	Common::ExitGames::Common::Object	>
	 C JVector<	ExitGames::Chat::Channel	*>
	 C JVector<	ExitGames::Common::Object	>
	 C JVector<	ExitGames::LoadBalancing::FriendInfo	>
	 C JVector<	ExitGames::LoadBalancing::LobbyStatsRequest	>
	 C JVector<	ExitGames::LoadBalancing::Player	*>
	 C JVector<	ExitGames::LoadBalancing::Room	*>
	 C JVector<	int	>
	 C JVector<	nByte	>
	 C JString
	 C LogFormatOptions
	 C Logger

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	a	-

addElement()	:	JVector<	Etype	>
addElements()	:	JVector<	Etype	>
alloc()	:	AllocatorInterface
ANSIRepresentation()	:	JString
ANSIString()	:	ANSIString
AuthenticationValues()	:	AuthenticationValues

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	b	-

BaseCharString()	:	BaseCharString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	c	-

capacity()	:	JString
charAt()	:	JString
cleanup()	:	CustomTypeBase
Client()	:	Client
compare()	:	CustomTypeBase
compareTo()	:	JString
concat()	:	JString
connect()	:	Client	,	PhotonPeer
connectReturn()	:	Listener
constructClass()	:	CustomType<	typeCode	>
contains()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable	,	JVector<	Etype	>
copy()	:	CustomTypeFactory<	typeCode	>
copyFactory()	:	CustomTypeFactory<	typeCode	>
copyInto()	:	JVector<	Etype	>
create()	:	CustomTypeFactory<	typeCode	>
cstr()	:	BaseCharString	,	JString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	d	-

dealloc()	:	AllocatorInterface
debugReturn()	:	Listener	,	BaseListener	,	Listener
deconstructClass()	:	CustomType<	typeCode	>
deleteChars()	:	JString
deserialize()	:	CustomTypeBase
DeSerializer()	:	DeSerializer
destroy()	:	CustomTypeFactory<	typeCode	>
destroyFactory()	:	CustomTypeFactory<	typeCode	>
Dictionary()	:	Dictionary<	EKeyType,	EValueType	>
DictionaryBase()	:	DictionaryBase
disconnect()	:	Client	,	Peer	,	PhotonPeer
disconnectReturn()	:	Listener
dispatchIncomingCommands()	:	Client	,	PhotonPeer
duplicate()	:	CustomTypeBase

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	e	-

EGTime()	:	EGTime
endsWith()	:	JString
ensureCapacity()	:	JString	,	JVector<	Etype	>
equals()	:	JString
equalsIgnoreCase()	:	JString
establishEncryption()	:	PhotonPeer
EventData()	:	EventData

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	f	-

fetchServerTimestamp()	:	Client	,	PhotonPeer

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	g	-

get()	:	AllocatorInterface
getAddDateTime()	:	LogFormatOptions
getAddFile()	:	LogFormatOptions
getAddFunction()	:	LogFormatOptions
getAddLevel()	:	LogFormatOptions
getAddLine()	:	LogFormatOptions
getAutoJoinLobby()	:	Client
getByteCountCurrentDispatch()	:	Client	,	PhotonPeer
getByteCountLastOperation()	:	Client	,	PhotonPeer
getBytesIn()	:	Client	,	PhotonPeer
getBytesOut()	:	Client	,	PhotonPeer
getCacheSliceIndex()	:	RaiseEventOptions
getCapacity()	:	JVector<	Etype	>
getCArray()	:	JVector<	Etype	>
getChannelCountUserChannels()	:	Client	,	PhotonPeer
getChannelID()	:	RaiseEventOptions
getCode()	:	EventData
getConnectionProtocol()	:	PhotonPeer
getControlCommandBytes()	:	TrafficStats
getControlCommandCount()	:	TrafficStats
getCountGamesRunning()	:	Client
getCountPlayersIngame()	:	Client
getCountPlayersOnline()	:	Client
getCRCEnabled()	:	Client	,	PhotonPeer
getCurrentlyJoinedRoom()	:	Client
getCustomProperties()	:	Player	,	Room
getCustomRoomProperties()	:	RoomOptions
getCustomType()	:	Object
getData()	:	AuthenticationValues	,	Serializer	,
AuthenticationValues

getDataAddress()	:	KeyObject<	Etype	>	,	ValueObject<	Etype	>
getDataCopy()	:	KeyObject<	Etype	>	,	ValueObject<	Etype	>
getDebugMessage()	:	OperationResponse
getDebugOutputLevel()	:	Client	,	Base	,	Logger	,	Client	,
PhotonPeer
getDimensions()	:	Object
getDirectMode()	:	Room	,	RoomOptions
getDisconnectedCause()	:	Client
getDisconnectTimeout()	:	Client	,	PhotonPeer
getDispatchIncomingCommandsCalls()	:	TrafficStatsGameLevel
getElementAt()	:	JVector<	Etype	>
getEmptyRoomTtl()	:	RoomOptions
getEventByteCount()	:	TrafficStatsGameLevel
getEventCaching()	:	RaiseEventOptions
getEventCount()	:	TrafficStatsGameLevel
getFirstElement()	:	JVector<	Etype	>
getFlags()	:	WebFlags
getFormatOptions()	:	Logger
getFragmentCommandBytes()	:	TrafficStats
getFragmentCommandCount()	:	TrafficStats
getFriendList()	:	Client
getFriendListAge()	:	Client
getHashtable()	:	DictionaryBase
getHttpForward()	:	WebFlags
getIncomingReliableCommandsCount()	:	Client	,	PhotonPeer
getIndexOf()	:	JVector<	Etype	>
getInterestGroup()	:	RaiseEventOptions
getIsEmpty()	:	JVector<	Etype	>
getIsEncryptionAvailable()	:	Client	,	PhotonPeer
getIsInactive()	:	Player
getIsInGameRoom()	:	Client
getIsInLobby()	:	Client
getIsInRoom()	:	Client	,	FriendInfo
getIsMasterClient()	:	Player
getIsOnline()	:	FriendInfo
getIsOpen()	:	Room	,	RoomOptions
getIsPayloadEncryptionAvailable()	:	Client	,	PhotonPeer
getIsVisible()	:	RoomOptions
getKeys()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable

getKeyTypes()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase
getLastElement()	:	JVector<	Etype	>
getLastIndexOf()	:	JVector<	Etype	>
getLimitOfUnreliableCommands()	:	Client	,	PhotonPeer
getListener()	:	PhotonPeer
getLobbyName()	:	RoomOptions
getLobbyType()	:	RoomOptions
getLocalPlayer()	:	Client
getLogFormatOptions()	:	Client	,	Base	,	Client	,	PhotonPeer
getLongestDeltaBetweenDispatching()	:	TrafficStatsGameLevel
getLongestDeltaBetweenSending()	:	TrafficStatsGameLevel
getLongestEventCallback()	:	TrafficStatsGameLevel
getLongestEventCallbackCode()	:	TrafficStatsGameLevel
getLongestOpResponseCallback()	:	TrafficStatsGameLevel
getLongestOpResponseCallbackOpCode()	:
TrafficStatsGameLevel
getMasterserverAddress()	:	Client
getMaxAppIDLength()	:	PhotonPeer
getMaxNumberOfNamespaces()	:	LogFormatOptions
getMaxPlayers()	:	Room	,	RoomOptions
getName()	:	LobbyStatsRequest	,	LobbyStatsResponse	,	Player	,
Room
getNumber()	:	Player
getNumTargetPlayers()	:	RaiseEventOptions
getOperationByteCount()	:	TrafficStatsGameLevel
getOperationCode()	:	OperationRequest	,	OperationResponse
getOperationCount()	:	TrafficStatsGameLevel
getPackageHeaderSize()	:	TrafficStats
getPacketLossByCRC()	:	Client	,	PhotonPeer
getParameterForCode()	:	EventData	,	OperationRequest	,
OperationResponse
getParameters()	:	AuthenticationValues	,	EventData	,
OperationRequest	,	OperationResponse
getPeerCount()	:	Client	,	LobbyStatsResponse	,	PhotonPeer
getPeerID()	:	Client	,	PhotonPeer
getPeerState()	:	PhotonPeer
getPlayerCount()	:	MutableRoom	,	Room
getPlayerTtl()	:	RoomOptions
getPlugins()	:	RoomOptions

getPrivateChannel()	:	Client
getPrivateChannels()	:	Client
getPropsListedInLobby()	:	RoomOptions
getPublicChannel()	:	Client
getPublicChannels()	:	Client
getPublishUserID()	:	RoomOptions
getQueuedIncomingCommands()	:	Client	,	PhotonPeer
getQueuedOutgoingCommands()	:	Client	,	PhotonPeer
getQuickResendAttempts()	:	Client	,	PhotonPeer
getReceiverGroup()	:	RaiseEventOptions
getRegion()	:	Client
getRegionWithBestPing()	:	Client
getReliableCommandBytes()	:	TrafficStats
getReliableCommandCount()	:	TrafficStats
getResentReliableCommands()	:	Client	,	PhotonPeer
getResultByteCount()	:	TrafficStatsGameLevel
getResultCount()	:	TrafficStatsGameLevel
getReturnCode()	:	OperationResponse
getRoom()	:	FriendInfo
getRoomCount()	:	LobbyStatsResponse
getRoomList()	:	Client
getRoomNameList()	:	Client
getRoundTripTime()	:	Client	,	PhotonPeer
getRoundTripTimeVariance()	:	Client	,	PhotonPeer
getSecret()	:	AuthenticationValues
getSendAuthCookie()	:	WebFlags
getSendOutgoingCommandsCalls()	:	TrafficStatsGameLevel
getSendState()	:	WebFlags
getSendSync()	:	WebFlags
getSentCountAllowance()	:	Client	,	PhotonPeer
getServerAddress()	:	PhotonPeer
getServerTime()	:	Client	,	PhotonPeer
getServerTimeOffset()	:	Client	,	PhotonPeer
getSize()	:	DictionaryBase	,	Hashtable	,	JVector<	Etype	>	,
Serializer
getSizes()	:	Object
getState()	:	Client
getSuppressRoomEvents()	:	RoomOptions
getTargetPlayers()	:	RaiseEventOptions
getTimePingInterval()	:	Client	,	PhotonPeer

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

getTimestampOfLastAck()	:	TrafficStats
getTimestampOfLastReliableCommand()	:	TrafficStats
getTimestampOfLastSocketReceive()	:	Client	,	PhotonPeer
getTotalByteCount()	:	TrafficStatsGameLevel
getTotalCommandBytes()	:	TrafficStats
getTotalCommandCount()	:	TrafficStats
getTotalCommandsInPackets()	:	TrafficStats
getTotalIncomingByteCount()	:	TrafficStatsGameLevel
getTotalIncomingMessageCount()	:	TrafficStatsGameLevel
getTotalMessageCount()	:	TrafficStatsGameLevel
getTotalOutgoingByteCount()	:	TrafficStatsGameLevel
getTotalOutgoingMessageCount()	:	TrafficStatsGameLevel
getTotalPacketBytes()	:	TrafficStats
getTotalPacketCount()	:	TrafficStats
getTrafficStatsElapsedMs()	:	Client	,	PhotonPeer
getTrafficStatsEnabled()	:	Client	,	PhotonPeer
getTrafficStatsGameLevel()	:	Client	,	PhotonPeer
getTrafficStatsIncoming()	:	Client	,	PhotonPeer
getTrafficStatsOutgoing()	:	Client	,	PhotonPeer
getType()	:	AuthenticationValues	,	Object	,	AuthenticationValues
,	LobbyStatsRequest	,	LobbyStatsResponse
getUnreliableCommandBytes()	:	TrafficStats
getUnreliableCommandCount()	:	TrafficStats
getUserID()	:	AuthenticationValues	,	Client	,
AuthenticationValues	,	Client	,	FriendInfo	,	Player
getValue()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable
getValueDimensions()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase
getValueSizes()	:	DictionaryBase
getValueTypes()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase
getWebFlags()	:	RaiseEventOptions

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	h	-

Hashtable()	:	Hashtable

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	i	-

indexOf()	:	JString
initUDPEncryption()	:	PhotonPeer
initUserDataEncryption()	:	PhotonPeer
insertElementAt()	:	JVector<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	j	-

JString()	:	JString
JStringRepresentation()	:	ANSIString	,	BaseCharString	,
UTF8String
JVector()	:	JVector<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	k	-

KeyObject()	:	KeyObject<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	l	-

lastIndexOf()	:	JString
length()	:	BaseCharString	,	JString
LitePeer()	:	LitePeer
LobbyStatsRequest()	:	LobbyStatsRequest
log()	:	Logger
Logger()	:	Logger

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	o	-

Object()	:	Object
onEvent()	:	PhotonListener
onGetMessages()	:	Listener
onOperationResponse()	:	PhotonListener
onPingResponse()	:	PhotonListener
onPrivateMessage()	:	Listener
onStateChange()	:	Listener
onStatusChanged()	:	PhotonListener
onStatusUpdate()	:	Listener
opAddFriends()	:	Client
opChangeGroups()	:	LitePeer	,	Client
opCreateRoom()	:	Client
opCustom()	:	Client	,	PhotonPeer
opCustomAuthenticationSendNextStepData()	:	Client
OperationRequest()	:	OperationRequest
OperationResponse()	:	OperationResponse
operator	const	char	*()	:	ANSIString	,	BaseCharString	,
UTF8String
operator	const	EG_CHAR	*()	:	JString
operator	JString()	:	ANSIString	,	BaseCharString	,	UTF8String
operator!=()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	Object
operator+()	:	EGTime	,	JString
operator+=()	:	EGTime	,	JString
operator-()	:	EGTime
operator-=()	:	EGTime
operator<()	:	EGTime	,	JString
operator<<()	:	JString
operator<=()	:	EGTime	,	JString

operator=()	:	ANSIString	,	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	KeyObject<	Etype	>	,	Object	,	UTF8String	,	ValueObject<
Etype	>	,	MutablePlayer	,	MutableRoom	,	Player	,
RaiseEventOptions	,	Room	,	RoomOptions	,	EventData	,
OperationRequest	,	OperationResponse
operator==()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	Object	,	Player	,	Room
operator>()	:	EGTime	,	JString
operator>=()	:	EGTime	,	JString
operator[]()	:	Dictionary<	EKeyType,	EValueType	>	,	Hashtable	,
JString	,	JVector<	Etype	>	,	EventData	,	OperationRequest	,
OperationResponse
opFindFriends()	:	Client
opGetProperties()	:	LitePeer
opGetPropertiesOfActor()	:	LitePeer
opGetPropertiesOfGame()	:	LitePeer
opJoin()	:	LitePeer
opJoinLobby()	:	Client
opJoinOrCreateRoom()	:	Client
opJoinRandomRoom()	:	Client
opJoinRoom()	:	Client
opLeave()	:	LitePeer
opLeaveLobby()	:	Client
opLeaveRoom()	:	Client
opLobbyStats()	:	Client
opPublishMessage()	:	Client
opRaiseEvent()	:	LitePeer	,	Client
opRemoveFriends()	:	Client
opSendPrivateMessage()	:	Client
opSetOnlineStatus()	:	Client
opSetPropertiesOfActor()	:	LitePeer
opSetPropertiesOfGame()	:	LitePeer
opSubscribe()	:	Client
opUnsubscribe()	:	Client
opWebRpc()	:	Client
overflowed()	:	EGTime

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	p	-

PhotonPeer()	:	PhotonPeer
pingServer()	:	PhotonPeer
Player()	:	Player
pop()	:	DeSerializer
push()	:	Serializer
put()	:	Dictionary<	EKeyType,	EValueType	>	,	Hashtable

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	r	-

RaiseEventOptions()	:	RaiseEventOptions
reconnectAndRejoin()	:	Client
remove()	:	Dictionary<	EKeyType,	EValueType	>	,	DictionaryBase
,	Hashtable
removeAllElements()	:	DictionaryBase	,	Hashtable	,	JVector<
Etype	>
removeElement()	:	JVector<	Etype	>
removeElementAt()	:	JVector<	Etype	>
replace()	:	JString
resetMaximumCounters()	:	TrafficStatsGameLevel
resetTrafficStats()	:	Client	,	PhotonPeer
resetTrafficStatsMaximumCounters()	:	Client	,	PhotonPeer
resize()	:	AllocatorInterface
Room()	:	Room
RoomOptions()	:	RoomOptions

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	s	-

selectRegion()	:	Client
sendAcksOnly()	:	Client	,	PhotonPeer
sendDirect()	:	Client
sendOutgoingCommands()	:	Client	,	PhotonPeer
serialize()	:	CustomTypeBase
service()	:	Client	,	PhotonPeer
serviceBasic()	:	Client	,	PhotonPeer
setAddDateTime()	:	LogFormatOptions
setAddFile()	:	LogFormatOptions
setAddFunction()	:	LogFormatOptions
setAddLevel()	:	LogFormatOptions
setAddLine()	:	LogFormatOptions
setAutoJoinLobby()	:	Client
setCacheSliceIndex()	:	RaiseEventOptions
setChannelID()	:	RaiseEventOptions
setConnectionProtocol()	:	PhotonPeer
setCRCEnabled()	:	Client	,	PhotonPeer
setCustomRoomProperties()	:	RoomOptions
setData()	:	AuthenticationValues
setDebugOutputLevel()	:	Client	,	Base	,	Logger	,	Client	,
PhotonPeer
setDirectMode()	:	RoomOptions
setDisconnectTimeout()	:	Client	,	PhotonPeer
setElementAt()	:	JVector<	Etype	>
setEmptyRoomTtl()	:	RoomOptions
setEventCaching()	:	RaiseEventOptions
setFlags()	:	WebFlags
setFormatOptions()	:	Logger
setHttpForward()	:	WebFlags
setInterestGroup()	:	RaiseEventOptions

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setIsOpen()	:	RoomOptions
setIsVisible()	:	RoomOptions
setLimitOfUnreliableCommands()	:	Client	,	PhotonPeer
setListener()	:	Base	,	Logger
setLobbyName()	:	RoomOptions
setLobbyType()	:	RoomOptions
setLogFormatOptions()	:	Client	,	Base	,	Client	,	PhotonPeer
setMaxAllocSize()	:	AllocatorInterface
setMaxNumberOfNamespaces()	:	LogFormatOptions
setMaxPlayers()	:	RoomOptions
setParameters()	:	AuthenticationValues	,	OperationRequest
setParametersWithUsernameAndToken()	:	AuthenticationValues
setPlayerTtl()	:	RoomOptions
setPlugins()	:	RoomOptions
setPropsListedInLobby()	:	RoomOptions
setPublishUserID()	:	RoomOptions
setQuickResendAttempts()	:	Client	,	PhotonPeer
setReceiverGroup()	:	RaiseEventOptions
setRegion()	:	Client
setSendAuthCookie()	:	WebFlags
setSendState()	:	WebFlags
setSendSync()	:	WebFlags
setSentCountAllowance()	:	Client	,	PhotonPeer
setSuppressRoomEvents()	:	RoomOptions
setTargetPlayers()	:	RaiseEventOptions
setTimePingInterval()	:	Client	,	PhotonPeer
setTrafficStatsEnabled()	:	Client	,	PhotonPeer
setType()	:	AuthenticationValues
setUserID()	:	AuthenticationValues
setWebFlags()	:	RaiseEventOptions
size()	:	ANSIString	,	BaseCharString	,	UTF8String
sizeOf()	:	CustomTypeFactory<	typeCode	>
startsWith()	:	JString
subscribeReturn()	:	Listener
substring()	:	JString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	t	-

toInt()	:	JString
toLowerCase()	:	JString
toString()	:	AuthenticationValues	,	Channel	,	BaseCharString	,
CustomTypeFactory<	typeCode	>	,	DeSerializer	,	Dictionary<
EKeyType,	EValueType	>	,	DictionaryBase	,	EGTime	,	Hashtable
,	JString	,	JVector<	Etype	>	,	LogFormatOptions	,	Logger	,
Object	,	Serializer	,	ToString	,	AuthenticationValues	,	FriendInfo
,	LobbyStatsRequest	,	LobbyStatsResponse	,	Player	,
RaiseEventOptions	,	Room	,	RoomOptions	,	WebFlags	,
EventData	,	OperationRequest	,	OperationResponse	,
TrafficStats	,	TrafficStatsGameLevel
toStringVitalStats()	:	TrafficStatsGameLevel
toUpperCase()	:	JString
trim()	:	JString
trimToSize()	:	JVector<	Etype	>
TypeCode	:	CustomType<	typeCode	>
typeToString()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	u	-

unsubscribeReturn()	:	Listener
UTF8Representation()	:	JString
UTF8String()	:	UTF8String

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	v	-

ValueObject()	:	ValueObject<	Etype	>
vitalStatsToString()	:	Client	,	PhotonPeer
vlog()	:	Logger

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	w	-

WebFlags()	:	WebFlags

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	~	-

~AllocatorInterface()	:	AllocatorInterface
~ANSIString()	:	ANSIString
~Base()	:	Base
~BaseCharString()	:	BaseCharString
~Client()	:	Client
~CustomTypeFactory()	:	CustomTypeFactory<	typeCode	>
~Dictionary()	:	Dictionary<	EKeyType,	EValueType	>
~DictionaryBase()	:	DictionaryBase
~EGTime()	:	EGTime
~EventData()	:	EventData
~Hashtable()	:	Hashtable
~JString()	:	JString
~JVector()	:	JVector<	Etype	>
~KeyObject()	:	KeyObject<	Etype	>
~LitePeer()	:	LitePeer
~Object()	:	Object
~OperationRequest()	:	OperationRequest
~OperationResponse()	:	OperationResponse
~PhotonListener()	:	PhotonListener
~PhotonPeer()	:	PhotonPeer
~Player()	:	Player
~RaiseEventOptions()	:	RaiseEventOptions
~Room()	:	Room
~RoomOptions()	:	RoomOptions
~ToString()	:	ToString
~TrafficStats()	:	TrafficStats
~TrafficStatsGameLevel()	:	TrafficStatsGameLevel
~UTF8String()	:	UTF8String
~ValueObject()	:	ValueObject<	Etype	>

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	a	-

addElement()	:	JVector<	Etype	>
addElements()	:	JVector<	Etype	>
alloc()	:	AllocatorInterface
ANSIRepresentation()	:	JString
ANSIString()	:	ANSIString
AuthenticationValues()	:	AuthenticationValues

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	b	-

BaseCharString()	:	BaseCharString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	c	-

capacity()	:	JString
charAt()	:	JString
cleanup()	:	CustomTypeBase
Client()	:	Client
compare()	:	CustomTypeBase
compareTo()	:	JString
concat()	:	JString
connect()	:	Client	,	PhotonPeer
connectReturn()	:	Listener
constructClass()	:	CustomType<	typeCode	>
contains()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable	,	JVector<	Etype	>
copy()	:	CustomTypeFactory<	typeCode	>
copyFactory()	:	CustomTypeFactory<	typeCode	>
copyInto()	:	JVector<	Etype	>
create()	:	CustomTypeFactory<	typeCode	>
cstr()	:	BaseCharString	,	JString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	d	-

dealloc()	:	AllocatorInterface
debugReturn()	:	Listener	,	BaseListener	,	Listener
deconstructClass()	:	CustomType<	typeCode	>
deleteChars()	:	JString
deserialize()	:	CustomTypeBase
DeSerializer()	:	DeSerializer
destroy()	:	CustomTypeFactory<	typeCode	>
destroyFactory()	:	CustomTypeFactory<	typeCode	>
Dictionary()	:	Dictionary<	EKeyType,	EValueType	>
DictionaryBase()	:	DictionaryBase
disconnect()	:	Client	,	Peer	,	PhotonPeer
disconnectReturn()	:	Listener
dispatchIncomingCommands()	:	Client	,	PhotonPeer
duplicate()	:	CustomTypeBase

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	e	-

EGTime()	:	EGTime
endsWith()	:	JString
ensureCapacity()	:	JString	,	JVector<	Etype	>
equals()	:	JString
equalsIgnoreCase()	:	JString
establishEncryption()	:	PhotonPeer
EventData()	:	EventData

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	f	-

fetchServerTimestamp()	:	Client	,	PhotonPeer

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

	

-	g	-

get()	:	AllocatorInterface
getAddDateTime()	:	LogFormatOptions
getAddFile()	:	LogFormatOptions
getAddFunction()	:	LogFormatOptions
getAddLevel()	:	LogFormatOptions
getAddLine()	:	LogFormatOptions
getAutoJoinLobby()	:	Client
getByteCountCurrentDispatch()	:	Client	,	PhotonPeer
getByteCountLastOperation()	:	Client	,	PhotonPeer
getBytesIn()	:	Client	,	PhotonPeer
getBytesOut()	:	Client	,	PhotonPeer
getCacheSliceIndex()	:	RaiseEventOptions
getCapacity()	:	JVector<	Etype	>
getCArray()	:	JVector<	Etype	>
getChannelCountUserChannels()	:	Client	,	PhotonPeer
getChannelID()	:	RaiseEventOptions
getCode()	:	EventData
getConnectionProtocol()	:	PhotonPeer
getControlCommandBytes()	:	TrafficStats
getControlCommandCount()	:	TrafficStats
getCountGamesRunning()	:	Client
getCountPlayersIngame()	:	Client
getCountPlayersOnline()	:	Client
getCRCEnabled()	:	Client	,	PhotonPeer
getCurrentlyJoinedRoom()	:	Client
getCustomProperties()	:	Player	,	Room
getCustomRoomProperties()	:	RoomOptions
getCustomType()	:	Object
getData()	:	AuthenticationValues	,	Serializer	,
AuthenticationValues
getDataAddress()	:	KeyObject<	Etype	>	,	ValueObject<	Etype	>

getDataCopy()	:	KeyObject<	Etype	>	,	ValueObject<	Etype	>
getDebugMessage()	:	OperationResponse
getDebugOutputLevel()	:	Client	,	Base	,	Logger	,	Client	,
PhotonPeer
getDimensions()	:	Object
getDirectMode()	:	Room	,	RoomOptions
getDisconnectedCause()	:	Client
getDisconnectTimeout()	:	Client	,	PhotonPeer
getDispatchIncomingCommandsCalls()	:	TrafficStatsGameLevel
getElementAt()	:	JVector<	Etype	>
getEmptyRoomTtl()	:	RoomOptions
getEventByteCount()	:	TrafficStatsGameLevel
getEventCaching()	:	RaiseEventOptions
getEventCount()	:	TrafficStatsGameLevel
getFirstElement()	:	JVector<	Etype	>
getFlags()	:	WebFlags
getFormatOptions()	:	Logger
getFragmentCommandBytes()	:	TrafficStats
getFragmentCommandCount()	:	TrafficStats
getFriendList()	:	Client
getFriendListAge()	:	Client
getHashtable()	:	DictionaryBase
getHttpForward()	:	WebFlags
getIncomingReliableCommandsCount()	:	Client	,	PhotonPeer
getIndexOf()	:	JVector<	Etype	>
getInterestGroup()	:	RaiseEventOptions
getIsEmpty()	:	JVector<	Etype	>
getIsEncryptionAvailable()	:	Client	,	PhotonPeer
getIsInactive()	:	Player
getIsInGameRoom()	:	Client
getIsInLobby()	:	Client
getIsInRoom()	:	Client	,	FriendInfo
getIsMasterClient()	:	Player
getIsOnline()	:	FriendInfo
getIsOpen()	:	Room	,	RoomOptions
getIsPayloadEncryptionAvailable()	:	Client	,	PhotonPeer
getIsVisible()	:	RoomOptions
getKeys()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable
getKeyTypes()	:	Dictionary<	EKeyType,	EValueType	>	,

DictionaryBase
getLastElement()	:	JVector<	Etype	>
getLastIndexOf()	:	JVector<	Etype	>
getLimitOfUnreliableCommands()	:	Client	,	PhotonPeer
getListener()	:	PhotonPeer
getLobbyName()	:	RoomOptions
getLobbyType()	:	RoomOptions
getLocalPlayer()	:	Client
getLogFormatOptions()	:	Client	,	Base	,	Client	,	PhotonPeer
getLongestDeltaBetweenDispatching()	:	TrafficStatsGameLevel
getLongestDeltaBetweenSending()	:	TrafficStatsGameLevel
getLongestEventCallback()	:	TrafficStatsGameLevel
getLongestEventCallbackCode()	:	TrafficStatsGameLevel
getLongestOpResponseCallback()	:	TrafficStatsGameLevel
getLongestOpResponseCallbackOpCode()	:
TrafficStatsGameLevel
getMasterserverAddress()	:	Client
getMaxAppIDLength()	:	PhotonPeer
getMaxNumberOfNamespaces()	:	LogFormatOptions
getMaxPlayers()	:	Room	,	RoomOptions
getName()	:	LobbyStatsRequest	,	LobbyStatsResponse	,	Player	,
Room
getNumber()	:	Player
getNumTargetPlayers()	:	RaiseEventOptions
getOperationByteCount()	:	TrafficStatsGameLevel
getOperationCode()	:	OperationRequest	,	OperationResponse
getOperationCount()	:	TrafficStatsGameLevel
getPackageHeaderSize()	:	TrafficStats
getPacketLossByCRC()	:	Client	,	PhotonPeer
getParameterForCode()	:	EventData	,	OperationRequest	,
OperationResponse
getParameters()	:	AuthenticationValues	,	EventData	,
OperationRequest	,	OperationResponse
getPeerCount()	:	Client	,	LobbyStatsResponse	,	PhotonPeer
getPeerID()	:	Client	,	PhotonPeer
getPeerState()	:	PhotonPeer
getPlayerCount()	:	MutableRoom	,	Room
getPlayerTtl()	:	RoomOptions
getPlugins()	:	RoomOptions
getPrivateChannel()	:	Client

getPrivateChannels()	:	Client
getPropsListedInLobby()	:	RoomOptions
getPublicChannel()	:	Client
getPublicChannels()	:	Client
getPublishUserID()	:	RoomOptions
getQueuedIncomingCommands()	:	Client	,	PhotonPeer
getQueuedOutgoingCommands()	:	Client	,	PhotonPeer
getQuickResendAttempts()	:	Client	,	PhotonPeer
getReceiverGroup()	:	RaiseEventOptions
getRegion()	:	Client
getRegionWithBestPing()	:	Client
getReliableCommandBytes()	:	TrafficStats
getReliableCommandCount()	:	TrafficStats
getResentReliableCommands()	:	Client	,	PhotonPeer
getResultByteCount()	:	TrafficStatsGameLevel
getResultCount()	:	TrafficStatsGameLevel
getReturnCode()	:	OperationResponse
getRoom()	:	FriendInfo
getRoomCount()	:	LobbyStatsResponse
getRoomList()	:	Client
getRoomNameList()	:	Client
getRoundTripTime()	:	Client	,	PhotonPeer
getRoundTripTimeVariance()	:	Client	,	PhotonPeer
getSecret()	:	AuthenticationValues
getSendAuthCookie()	:	WebFlags
getSendOutgoingCommandsCalls()	:	TrafficStatsGameLevel
getSendState()	:	WebFlags
getSendSync()	:	WebFlags
getSentCountAllowance()	:	Client	,	PhotonPeer
getServerAddress()	:	PhotonPeer
getServerTime()	:	Client	,	PhotonPeer
getServerTimeOffset()	:	Client	,	PhotonPeer
getSize()	:	DictionaryBase	,	Hashtable	,	JVector<	Etype	>	,
Serializer
getSizes()	:	Object
getState()	:	Client
getSuppressRoomEvents()	:	RoomOptions
getTargetPlayers()	:	RaiseEventOptions
getTimePingInterval()	:	Client	,	PhotonPeer
getTimestampOfLastAck()	:	TrafficStats

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

getTimestampOfLastReliableCommand()	:	TrafficStats
getTimestampOfLastSocketReceive()	:	Client	,	PhotonPeer
getTotalByteCount()	:	TrafficStatsGameLevel
getTotalCommandBytes()	:	TrafficStats
getTotalCommandCount()	:	TrafficStats
getTotalCommandsInPackets()	:	TrafficStats
getTotalIncomingByteCount()	:	TrafficStatsGameLevel
getTotalIncomingMessageCount()	:	TrafficStatsGameLevel
getTotalMessageCount()	:	TrafficStatsGameLevel
getTotalOutgoingByteCount()	:	TrafficStatsGameLevel
getTotalOutgoingMessageCount()	:	TrafficStatsGameLevel
getTotalPacketBytes()	:	TrafficStats
getTotalPacketCount()	:	TrafficStats
getTrafficStatsElapsedMs()	:	Client	,	PhotonPeer
getTrafficStatsEnabled()	:	Client	,	PhotonPeer
getTrafficStatsGameLevel()	:	Client	,	PhotonPeer
getTrafficStatsIncoming()	:	Client	,	PhotonPeer
getTrafficStatsOutgoing()	:	Client	,	PhotonPeer
getType()	:	AuthenticationValues	,	Object	,	AuthenticationValues
,	LobbyStatsRequest	,	LobbyStatsResponse
getUnreliableCommandBytes()	:	TrafficStats
getUnreliableCommandCount()	:	TrafficStats
getUserID()	:	AuthenticationValues	,	Client	,
AuthenticationValues	,	Client	,	FriendInfo	,	Player
getValue()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	Hashtable
getValueDimensions()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase
getValueSizes()	:	DictionaryBase
getValueTypes()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase
getWebFlags()	:	RaiseEventOptions

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	h	-

Hashtable()	:	Hashtable

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	i	-

indexOf()	:	JString
initUDPEncryption()	:	PhotonPeer
initUserDataEncryption()	:	PhotonPeer
insertElementAt()	:	JVector<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	j	-

JString()	:	JString
JStringRepresentation()	:	ANSIString	,	BaseCharString	,
UTF8String
JVector()	:	JVector<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	k	-

KeyObject()	:	KeyObject<	Etype	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	l	-

lastIndexOf()	:	JString
length()	:	BaseCharString	,	JString
LitePeer()	:	LitePeer
LobbyStatsRequest()	:	LobbyStatsRequest
log()	:	Logger
Logger()	:	Logger

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

	

-	o	-

Object()	:	Object
onEvent()	:	PhotonListener
onGetMessages()	:	Listener
onOperationResponse()	:	PhotonListener
onPingResponse()	:	PhotonListener
onPrivateMessage()	:	Listener
onStateChange()	:	Listener
onStatusChanged()	:	PhotonListener
onStatusUpdate()	:	Listener
opAddFriends()	:	Client
opChangeGroups()	:	LitePeer	,	Client
opCreateRoom()	:	Client
opCustom()	:	Client	,	PhotonPeer
opCustomAuthenticationSendNextStepData()	:	Client
OperationRequest()	:	OperationRequest
OperationResponse()	:	OperationResponse
operator	const	char	*()	:	ANSIString	,	BaseCharString	,
UTF8String
operator	const	EG_CHAR	*()	:	JString
operator	JString()	:	ANSIString	,	BaseCharString	,	UTF8String
operator!=()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	Object
operator+()	:	EGTime	,	JString
operator+=()	:	EGTime	,	JString
operator-()	:	EGTime
operator-=()	:	EGTime
operator<()	:	EGTime	,	JString
operator<<()	:	JString
operator<=()	:	EGTime	,	JString
operator=()	:	ANSIString	,	Dictionary<	EKeyType,	EValueType	>	,

©		Exit	Games	®,	all	rights	reserved.

DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	KeyObject<	Etype	>	,	Object	,	UTF8String	,	ValueObject<
Etype	>	,	MutablePlayer	,	MutableRoom	,	Player	,
RaiseEventOptions	,	Room	,	RoomOptions	,	EventData	,
OperationRequest	,	OperationResponse
operator==()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	EGTime	,	Hashtable	,	JString	,	JVector<	Etype
>	,	Object	,	Player	,	Room
operator>()	:	EGTime	,	JString
operator>=()	:	EGTime	,	JString
operator[]()	:	Dictionary<	EKeyType,	EValueType	>	,	Hashtable	,
JString	,	JVector<	Etype	>	,	EventData	,	OperationRequest	,
OperationResponse
opFindFriends()	:	Client
opGetProperties()	:	LitePeer
opGetPropertiesOfActor()	:	LitePeer
opGetPropertiesOfGame()	:	LitePeer
opJoin()	:	LitePeer
opJoinLobby()	:	Client
opJoinOrCreateRoom()	:	Client
opJoinRandomRoom()	:	Client
opJoinRoom()	:	Client
opLeave()	:	LitePeer
opLeaveLobby()	:	Client
opLeaveRoom()	:	Client
opLobbyStats()	:	Client
opPublishMessage()	:	Client
opRaiseEvent()	:	LitePeer	,	Client
opRemoveFriends()	:	Client
opSendPrivateMessage()	:	Client
opSetOnlineStatus()	:	Client
opSetPropertiesOfActor()	:	LitePeer
opSetPropertiesOfGame()	:	LitePeer
opSubscribe()	:	Client
opUnsubscribe()	:	Client
opWebRpc()	:	Client
overflowed()	:	EGTime

https://www.photonengine.com/

Photon	Documentation	|	Contact	|	Terms

http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	p	-

PhotonPeer()	:	PhotonPeer
pingServer()	:	PhotonPeer
Player()	:	Player
pop()	:	DeSerializer
push()	:	Serializer
put()	:	Dictionary<	EKeyType,	EValueType	>	,	Hashtable

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	r	-

RaiseEventOptions()	:	RaiseEventOptions
reconnectAndRejoin()	:	Client
remove()	:	Dictionary<	EKeyType,	EValueType	>	,	DictionaryBase
,	Hashtable
removeAllElements()	:	DictionaryBase	,	Hashtable	,	JVector<
Etype	>
removeElement()	:	JVector<	Etype	>
removeElementAt()	:	JVector<	Etype	>
replace()	:	JString
resetMaximumCounters()	:	TrafficStatsGameLevel
resetTrafficStats()	:	Client	,	PhotonPeer
resetTrafficStatsMaximumCounters()	:	Client	,	PhotonPeer
resize()	:	AllocatorInterface
Room()	:	Room
RoomOptions()	:	RoomOptions

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

	

-	s	-

selectRegion()	:	Client
sendAcksOnly()	:	Client	,	PhotonPeer
sendDirect()	:	Client
sendOutgoingCommands()	:	Client	,	PhotonPeer
serialize()	:	CustomTypeBase
service()	:	Client	,	PhotonPeer
serviceBasic()	:	Client	,	PhotonPeer
setAddDateTime()	:	LogFormatOptions
setAddFile()	:	LogFormatOptions
setAddFunction()	:	LogFormatOptions
setAddLevel()	:	LogFormatOptions
setAddLine()	:	LogFormatOptions
setAutoJoinLobby()	:	Client
setCacheSliceIndex()	:	RaiseEventOptions
setChannelID()	:	RaiseEventOptions
setConnectionProtocol()	:	PhotonPeer
setCRCEnabled()	:	Client	,	PhotonPeer
setCustomRoomProperties()	:	RoomOptions
setData()	:	AuthenticationValues
setDebugOutputLevel()	:	Client	,	Base	,	Logger	,	Client	,
PhotonPeer
setDirectMode()	:	RoomOptions
setDisconnectTimeout()	:	Client	,	PhotonPeer
setElementAt()	:	JVector<	Etype	>
setEmptyRoomTtl()	:	RoomOptions
setEventCaching()	:	RaiseEventOptions
setFlags()	:	WebFlags
setFormatOptions()	:	Logger
setHttpForward()	:	WebFlags
setInterestGroup()	:	RaiseEventOptions
setIsOpen()	:	RoomOptions

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setIsVisible()	:	RoomOptions
setLimitOfUnreliableCommands()	:	Client	,	PhotonPeer
setListener()	:	Base	,	Logger
setLobbyName()	:	RoomOptions
setLobbyType()	:	RoomOptions
setLogFormatOptions()	:	Client	,	Base	,	Client	,	PhotonPeer
setMaxAllocSize()	:	AllocatorInterface
setMaxNumberOfNamespaces()	:	LogFormatOptions
setMaxPlayers()	:	RoomOptions
setParameters()	:	AuthenticationValues	,	OperationRequest
setParametersWithUsernameAndToken()	:	AuthenticationValues
setPlayerTtl()	:	RoomOptions
setPlugins()	:	RoomOptions
setPropsListedInLobby()	:	RoomOptions
setPublishUserID()	:	RoomOptions
setQuickResendAttempts()	:	Client	,	PhotonPeer
setReceiverGroup()	:	RaiseEventOptions
setRegion()	:	Client
setSendAuthCookie()	:	WebFlags
setSendState()	:	WebFlags
setSendSync()	:	WebFlags
setSentCountAllowance()	:	Client	,	PhotonPeer
setSuppressRoomEvents()	:	RoomOptions
setTargetPlayers()	:	RaiseEventOptions
setTimePingInterval()	:	Client	,	PhotonPeer
setTrafficStatsEnabled()	:	Client	,	PhotonPeer
setType()	:	AuthenticationValues
setUserID()	:	AuthenticationValues
setWebFlags()	:	RaiseEventOptions
size()	:	ANSIString	,	BaseCharString	,	UTF8String
sizeOf()	:	CustomTypeFactory<	typeCode	>
startsWith()	:	JString
subscribeReturn()	:	Listener
substring()	:	JString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	t	-

toInt()	:	JString
toLowerCase()	:	JString
toString()	:	AuthenticationValues	,	Channel	,	BaseCharString	,
CustomTypeFactory<	typeCode	>	,	DeSerializer	,	Dictionary<
EKeyType,	EValueType	>	,	DictionaryBase	,	EGTime	,	Hashtable
,	JString	,	JVector<	Etype	>	,	LogFormatOptions	,	Logger	,
Object	,	Serializer	,	ToString	,	AuthenticationValues	,	FriendInfo
,	LobbyStatsRequest	,	LobbyStatsResponse	,	Player	,
RaiseEventOptions	,	Room	,	RoomOptions	,	WebFlags	,
EventData	,	OperationRequest	,	OperationResponse	,
TrafficStats	,	TrafficStatsGameLevel
toStringVitalStats()	:	TrafficStatsGameLevel
toUpperCase()	:	JString
trim()	:	JString
trimToSize()	:	JVector<	Etype	>
typeToString()	:	Dictionary<	EKeyType,	EValueType	>	,
DictionaryBase	,	ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	u	-

unsubscribeReturn()	:	Listener
UTF8Representation()	:	JString
UTF8String()	:	UTF8String

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	v	-

ValueObject()	:	ValueObject<	Etype	>
vitalStatsToString()	:	Client	,	PhotonPeer
vlog()	:	Logger

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

-	w	-

WebFlags()	:	WebFlags

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2

	

-	~	-

~AllocatorInterface()	:	AllocatorInterface
~ANSIString()	:	ANSIString
~Base()	:	Base
~BaseCharString()	:	BaseCharString
~Client()	:	Client
~CustomTypeFactory()	:	CustomTypeFactory<	typeCode	>
~Dictionary()	:	Dictionary<	EKeyType,	EValueType	>
~DictionaryBase()	:	DictionaryBase
~EGTime()	:	EGTime
~EventData()	:	EventData
~Hashtable()	:	Hashtable
~JString()	:	JString
~JVector()	:	JVector<	Etype	>
~KeyObject()	:	KeyObject<	Etype	>
~LitePeer()	:	LitePeer
~Object()	:	Object
~OperationRequest()	:	OperationRequest
~OperationResponse()	:	OperationResponse
~PhotonListener()	:	PhotonListener
~PhotonPeer()	:	PhotonPeer
~Player()	:	Player
~RaiseEventOptions()	:	RaiseEventOptions
~Room()	:	Room
~RoomOptions()	:	RoomOptions
~ToString()	:	ToString
~TrafficStats()	:	TrafficStats
~TrafficStatsGameLevel()	:	TrafficStatsGameLevel
~UTF8String()	:	UTF8String
~ValueObject()	:	ValueObject<	Etype	>

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

TypeCode	:	CustomType<	typeCode	>

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
File	List

Here	is	a	list	of	all	documented	files	with	brief	descriptions:

	 Allocate.h
	 AllocatorInterface.h
	 ANSIString.h
	 LoadBalancing-cpp/inc/AuthenticationValues.h
	 Chat-cpp/inc/AuthenticationValues.h
	 Base.h
	 BaseCharString.h
	 BaseListener.h
	 Channel.h
	 LoadBalancing-cpp/inc/Client.h
	 Chat-cpp/inc/Client.h
	 ClientState.h
	 Common.h
	 ConnectionProtocol.h
	 LoadBalancing-cpp/inc/Enums/CustomAuthenticationType.h
	 Chat-cpp/inc/Enums/CustomAuthenticationType.h
	 CustomType.h
	 CustomTypeBase.h
	 CustomTypeFactory.h
	 DebugLevel.h
	 DeSerializer.h
	 Dictionary.h
	 DictionaryBase.h
	 DirectMode.h
	 LoadBalancing-cpp/inc/Enums/DisconnectCause.h

	 Chat-cpp/inc/Enums/DisconnectCause.h
	 EGTime.h
	 Photon-cpp/inc/Enums/ErrorCode.h
	 LoadBalancing-cpp/inc/Enums/ErrorCode.h
	 Chat-cpp/inc/Enums/ErrorCode.h
	 EventCache.h
	 Photon-cpp/inc/Enums/EventCode.h
	 EventData.h
	 EventKey.h
	 FriendInfo.h
	 Hashtable.h
	 IsPrimitiveType.h
	 JString.h
	 JVector.h
	 KeyObject.h
	 LoadBalancing-cpp/inc/Listener.h
	 Chat-cpp/inc/Listener.h
	 LitePeer.h
	 LobbyStatsRequest.h
	 LobbyStatsResponse.h
	 LobbyType.h
	 Logger.h
	 MatchmakingMode.h
	 MutablePlayer.h
	 MutableRoom.h
	 NetworkPort.h
	 Object.h
	 Photon-cpp/inc/Enums/OperationCode.h
	 OperationRequest.h
	 OperationResponse.h
	 Photon-cpp/inc/Enums/ParameterCode.h
	 LoadBalancing-cpp/inc/Peer.h
	 Chat-cpp/inc/Peer.h

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	 PeerState.h
	 PeerStates.h
	 PhotonListener.h
	 PhotonPeer.h
	 Player.h
	 RaiseEventOptions.h
	 ReceiverGroup.h
	 RegionSelectionMode.h
	 Room.h
	 RoomOptions.h
	 Serializer.h
	 ServerType.h
	 StatusCode.h
	 ToString.h
	 TrafficStats.h
	 TrafficStatsGameLevel.h
	 TypeCode.h
	 UserStatus.h
	 UTF8String.h
	 ValueObject.h
	 WebFlags.h

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc MemoryManagement

Namespaces	|	Macros

	Photon	C++
Client	API		4.1.12.2

Allocate.h	File
Reference

Include	dependency	graph	for	Allocate.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Common
	
	 ExitGames::Common::MemoryManagement
	

Macros
#define	 EG_SIZE_T
	

LowLevelMemoryManagement

The	macros	in	this	section	are	an	alternative	for	the	C	dynamic	memory
management	functions	malloc(),	free(),	realloc()	and	calloc().	They	only
work	in	C++,	not	in	C,	but	same	as	the	standard	c	library	functions	they
don't	call	constructors/destructors,	but	only	(de-)allocate	the	raw	memory.
This	might	be	desired	for	high	performance	container	implementations:	it
makes	it	possible	to	allocate	storage	for	many	elements	at	once,	while
still	giving	the	option	to	wait	with	the	construction	until	an	element	is
used.

However	in	most	scenarios	it	makes	more	sense	to	use	the	High	Level
memory	management	functions

The	Memory	Management	API	is	optimized	for	frequent	small-sized
general	purpose	dynamic	allocations	(all	dynamic	memory	allocations
that	are	smaller	than	several	megabytes	per	allocation	and	that	can
happen	inside	the	main	loop).	The	concrete	implementation	may	vary
between	platforms	and	configurations,	but	will	usually	be	a	lot	faster	for
this	purpose	than	the	standard	C	functions	malloc(),	free(),	realloc()	and
calloc()	and	the	standard	C++	operators	new,	new[],	delete	and	delete[].

#define	 EG_MALLOC
	

#define	 EG_FREE
	

#define	 EG_REALLOC
	

#define	 EG_CALLOC
	

HighLevelMemoryManagement

The	template	functions	in	this	section	are	an	alternative	for	the	C++	dynamic
memory	management	operators	new,	new[],	delete	and	delete[].

They	are	implemented	in	terms	of	enhancing	the	Low	Level	Memory
Management	macros	and	for	this	reason	offer	similar	advantages	over	new
and	co	like	those	macros	offer	over	malloc	and	co.

However	same	as	new	and	co	they	also	construct	and	destruct	the	objects
that	they	allocate	and	deallocate.

#define	 ALLOCATE(type,	p,	...)
	
#define	 ALLOCATE_ARRAY(type,	p,	count,	...)
	
#define	 REALLOCATE_ARRAY(type,	p,	count,	...)
	
#define	 DEALLOCATE(type,	p)
	
#define	 DEALLOCATE_ARRAY(type,	p)
	

void	 setMaxAllocSize	(size_t	maxAllocSize)
	

void	 setMaxSizeForAllocatorUsage	(size_t	maxSizeForAllocatorUsage)
	

void	 setAllocator
(ExitGames::Common::MemoryManagement::AllocatorInterface
&allocator)

	
void	 setAllocatorToDefault	(void)

	
template<typename	Ftype	>

Ftype	*	 allocate	(void)
	
template<typename	Ftype	>

Ftype	*	 allocateArray	(size_t	count)
	
template<typename	Ftype	>

Ftype	*	 reallocateArray	(Ftype	*p,	size_t	count)
	
template<typename	Ftype	>

void	 deallocate	(const	Ftype	*p)
	
template<typename	Ftype	>

void	 deallocateArray	(const	Ftype	*p)
	

Macro	Definition	Documentation

§	EG_MALLOC
#define	EG_MALLOC

This	macro	allocates	the	requested	amount	of	bytes	as	a	single
continuous	block	from	dynamic	memory	and	returns	the	address	of	the
first	byte	of	that	block.

Blocks	of	memory	that	have	been	allocated	with	EG_MALLOC(),	have
to	be	deallocated	with	EG_FREE(),	when	they	are	no	longer	needed.

If	the	requested	amount	of	bytes	is	0,	then	this	macro	will	do	nothing
and	return	a	NULL	pointer.

§	EG_FREE
#define	EG_FREE

Pass	the	address	of	memory,	that	has	previously	been	returned	by
EG_MALLOC(),	EG_REALLOC()	or	EG_CALLOC()	to	this	function,	to
deallocate	it.

If	the	passed	address	is	NULL,	then	this	macro	will	do	nothing.

If	a	passed	non-NULL	address	was	not	previously	returned	by
EG_MALLOC(),	EG_REALLOC()	or	EG_CALLOC(),	then	the
behavior	is	undefined.

§	EG_REALLOC
#define	EG_REALLOC

This	macro	resizes	the	block	of	memory	at	the	passed	address	to	the
passed	size	and	returns	the	new	address	of	this	block	of	memory.

The	returned	address	isn't	guaranteed	to	match	the	passed	one.
Depending	on	the	old	and	new	size	of	the	memory	block,	resizing	the
block	may	include	moving	it	to	a	new	location.	When	a	block	gets
moved,	is	an	implementation	detail,	that	could	be	different	between
implementations	on	different	platforms	and	can	change	without	notice.
Notably	block-movements	might	happen	in	the	case	of	an	increase	as
well	as	of	a	decrease	of	the	block	size.

If	a	block	of	memory	gets	moved	to	a	new	location,	then	the	content	of
all	bytes	that	fit	in	both,	the	old	and	the	new	block	size,	is	copied	from
the	old	to	the	new	location	by	a	call	to	memcpy().	For	this	reason	calls
to	EG_REALLOC()	can	be	expensive	for	huge	blocks	of	memory.

If	the	new	block	size	is	smaller	than	the	old	one,	then	all	content	at	the
surplus	bytes	will	get	lost.

If	the	passed	address	is	NULL,	then	this	macro	will	behave	just	like
EG_MALLOC().

If	a	passed	non-NULL	address	was	not	previously	returned	by
EG_MALLOC(),	EG_REALLOC()	or	EG_CALLOC(),	then	the
behavior	is	undefined.

§	EG_CALLOC
#define	EG_CALLOC

This	macro	allocates	memory	for	the	requested	amount	of	array
elements	of	the	specified	element	size	as	a	single	continuous	block
from	dynamic	memory,	initializes	all	its	bytes	to	0	and	returns	the
address	of	the	first	byte	of	that	block.

Blocks	of	memory	that	have	been	allocated	with	EG_CALLOC(),	have
to	be	deallocated	with	EG_FREE(),	when	they	are	no	longer	needed.

If	the	requested	amount	of	bytes	is	0,	then	this	macro	will	do	nothing
and	return	a	NULL	pointer.

§	ALLOCATE
#define	ALLOCATE (type,

	 p,
	 ...	
)

This	is	the	macro	version	of	the	allocate()	template	function.

Normally	the	template	version	should	be	preferred,	but	using	the
macro	instead	can	be	needed,	if	you	want	to	pass	more	than	10
parameters	to	the	constructor	or	if	you	want	to	call	a	private	or
protected	constructor	to	which	your	class	has	(friend-/subclass-
)access.

Parameters
type the	data	type	of	the	instance	to	create
p a	pointer,	in	which	the	macro	will	store	the	address	of	the

freshly	created	instance
... optional	arguments	to	pass	to	the	constructor

§	ALLOCATE_ARRAY
#define	ALLOCATE_ARRAY (type,

	 p,
	 count,
	 ...	
)

This	is	the	macro	version	of	the	allocateArray()	template	function.

Normally	the	template	version	should	be	preferred,	but	using	the
macro	instead	can	be	needed,	if	you	want	to	pass	more	than	10
parameters	to	the	constructor	or	if	you	want	to	call	a	private	or
protected	constructor	to	which	your	class	has	(friend-/subclass-
)access.

Parameters
type the	data	type	of	the	instance	to	create
p a	pointer,	in	which	the	macro	will	store	the	address	of	the

freshly	created	instance
count the	number	of	the	elements	to	create
... optional	arguments	to	pass	to	the	constructor

§	REALLOCATE_ARRAY
#define	REALLOCATE_ARRAY (type,

	 p,
	 count,
	 ...	
)

This	is	the	macro	version	of	the	reallocateArray()	template	function.

Normally	the	template	version	should	be	preferred,	but	using	the
macro	instead	can	be	needed,	if	you	want	to	pass	more	than	10
parameters	to	the	constructor	or	if	you	want	to	call	a	private	or
protected	constructor	to	which	your	class	has	(friend-/subclass-
)access.

Parameters
type the	data	type	of	the	instance	to	create
p a	pointer,	in	which	the	macro	will	store	the	address	of	the

freshly	created	instance
count the	number	of	the	elements	to	create
... optional	arguments	to	pass	to	the	constructor

§	DEALLOCATE
#define	DEALLOCATE (type,

	 p	
)

This	is	the	macro	version	of	the	deallocate()	template	function.

Normally	the	template	version	should	be	preferred,	but	using	the
macro	instead	can	make	sense	for	consistency	reasons	when	the
macro	version	has	been	used	for	allocation.

Parameters
type the	data	type	of	the	instance,	to	which	p	points
p a	pointer	to	the	instance	to	destroy

§	DEALLOCATE_ARRAY

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

#define	DEALLOCATE_ARRAY (type,
	 p	
)

This	is	the	macro	version	of	the	deallocateArray()	template	function.

Normally	the	template	version	should	be	preferred,	but	using	the
macro	instead	can	make	sense	for	consistency	reasons	when	the
macro	version	has	been	used	for	allocation.

Parameters
type the	data	type	of	the	instance,	to	which	p	points
p a	pointer	to	the	instance	to	destroy

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc MemoryManagement

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

AllocatorInterface.h
File	Reference

Include	dependency	graph	for	AllocatorInterface.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 AllocatorInterface
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	
	 ExitGames::Common::MemoryManagement
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

ANSIString.h	File
Reference

Include	dependency	graph	for	ANSIString.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 ANSIString
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/AuthenticationValues.h	File	Reference

Include	dependency	graph	for	LoadBalancing-
cpp/inc/AuthenticationValues.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 AuthenticationValues
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Chat-
cpp/inc/AuthenticationValues.h	File	Reference

Include	dependency	graph	for	Chat-cpp/inc/AuthenticationValues.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 AuthenticationValues
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Base.h	File	Reference

Include	dependency	graph	for	Base.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Base
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

BaseCharString.h	File
Reference

Include	dependency	graph	for	BaseCharString.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 BaseCharString
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

BaseListener.h	File
Reference

Include	dependency	graph	for	BaseListener.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 BaseListener
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Channel.h	File
Reference

Include	dependency	graph	for	Channel.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Channel
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Client.h	File	Reference

Include	dependency	graph	for	LoadBalancing-cpp/inc/Client.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Client
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Chat-cpp/inc/Client.h
File	Reference

Include	dependency	graph	for	Chat-cpp/inc/Client.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Client
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

ClientState.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	
	 ExitGames::Chat::ClientState
	

Variables
static	const	int	 Uninitialized
	 Peer	is	created	but	not	used	yet.	
	
static	const	int	 ConnectingToNameServer
	 Connecting	to	Name	Server	(includes	connect

authenticate	and	joining	the	lobby)	
	
static	const	int	 ConnectedToNameServer
	 Connected	to	Name	Server.	
	
static	const	int	 Authenticating
	 Authenticating.	
	
static	const	int	 Authenticated
	 Authenticated.	
	
static	const	int	 DisconnectingFromNameServer
	 Transition	from	Name	to	Chat	Server.	
	
static	const	int	 ConnectingToFrontEnd
	 Transition	to	Chat	Server.	
	
static	const	int	 ConnectedToFrontEnd
	 Connected	to	Chat	Server.	Subscribe	to	channels	and

chat	here.	
	
static	const	int	 Disconnecting
	 The	client	disconnects	(from	any	server).	
	
static	const	int	 Disconnected
	 The	client	is	no	longer	connected	(to	any	server).

Connect	to	Name	Server	to	go	on.	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

	Photon	C++
Client	API		4.1.12.2

Common.h	File	Reference

Include	dependency	graph	for	Common.h:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Functions	|	Variables

	Photon	C++
Client	API		4.1.12.2

ConnectionProtocol.h
File	Reference

Include	dependency	graph	for	ConnectionProtocol.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	
	 ExitGames::Photon::ConnectionProtocol
	

Functions
bool	 getIsUDP	(nByte	connectionProtocol)
	
bool	 getIsTCP	(nByte	connectionProtocol)
	
bool	 getIsWebSocket	(nByte	connectionProtocol)
	
bool	 getIsSecure	(nByte	connectionProtocol)
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 UDP
	 Use	UDP	to	connect	to	Photon,	which	allows	you	to

send	operations	reliable	or	unreliable	on	demand.	
	
static	const	nByte	 TCP
	 Use	TCP	to	connect	to	Photon.	
	
static	const	nByte	 WS
	 Use	websockets	to	connect	to	Photon.	
	
static	const	nByte	 WSS
	 Use	secure	websockets	to	connect	to	Photon.	
	
static	const	nByte	 DEFAULT
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Enums/CustomAuthenticationType.h
File	Reference

Include	dependency	graph	for	LoadBalancing-
cpp/inc/Enums/CustomAuthenticationType.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::CustomAuthenticationType
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 CUSTOM
	 Use	a	custom	authentication	service.	
	
static	const	nByte	 STEAM
	 Authenticates	users	by	their	Steam	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 FACEBOOK
	 Authenticates	users	by	their	Facebook	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 OCULUS
	 Authenticates	users	by	their	Oculus	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 PLAYSTATION
	 Authenticates	users	by	their	PSN	Account.	Set	auth

values	accordingly!	
	
static	const	nByte	 XBOX
	 Authenticates	users	by	their	XBox	Network	Account.

Set	auth	values	accordingly!	
	
static	const	nByte	 NONE
	 Disables	custom	authentication.	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Chat-
cpp/inc/Enums/CustomAuthenticationType.h
File	Reference

Include	dependency	graph	for	Chat-
cpp/inc/Enums/CustomAuthenticationType.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	
	 ExitGames::Chat::CustomAuthenticationType
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 CUSTOM
	 Use	a	custom	authentication	service.	
	
static	const	nByte	 STEAM
	 Authenticates	users	by	their	Steam	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 FACEBOOK
	 Authenticates	users	by	their	Facebook	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 OCULUS
	 Authenticates	users	by	their	Oculus	Account.	Set

auth	values	accordingly!	
	
static	const	nByte	 PLAYSTATION
	 Authenticates	users	by	their	PSN	Account.	Set	auth

values	accordingly!	
	
static	const	nByte	 XBOX
	 Authenticates	users	by	their	XBox	Network	Account.

Set	auth	values	accordingly!	
	
static	const	nByte	 NONE
	 Disables	custom	authentication.	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

CustomType.h	File
Reference

Include	dependency	graph	for	CustomType.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 CustomType<	typeCode	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

CustomTypeBase.h
File	Reference

Include	dependency	graph	for	CustomTypeBase.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 CustomTypeBase
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

CustomTypeFactory.h
File	Reference

Include	dependency	graph	for	CustomTypeFactory.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 CustomType<	typeCode	>
	
class		 CustomTypeFactory<	typeCode	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

DebugLevel.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Common
	
	 ExitGames::Common::DebugLevel
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	int	 OFF
	 No	debug	out.	
	
static	const	int	 ERRORS
	 Only	error	descriptions.	
	
static	const	int	 WARNINGS
	 Warnings	and	errors.	
	
static	const	int	 INFO
	 Information	about	internal	workflows,	warnings	and

errors.	
	
static	const	int	 ALL
	 Most	complete	workflow	description	(but	lots	of	debug

output),	info,	warnings	and	errors.	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

DeSerializer.h	File
Reference

Include	dependency	graph	for	DeSerializer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 DeSerializer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Dictionary.h	File
Reference

Include	dependency	graph	for	Dictionary.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Dictionary<	EKeyType,	EValueType	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

DictionaryBase.h	File
Reference

Include	dependency	graph	for	DictionaryBase.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 DictionaryBase
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

DirectMode.h	File
Reference

Include	dependency	graph	for	DirectMode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::DirectMode
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 NONE
	 Do	not	create	any	2p2	connections	between	the

clients.	This	is	the	default.	
	
static	const	nByte	 ALL_TO_ALL
	 Each	client	establishes	a	direct	connection	with

every	other	client	inside	the	room.	
	
static	const	nByte	 MASTER_TO_ALL

	

The	master	client	establishes	a	direct	connection
with	every	other	client	inside	the	room.	All	other
clients	only	establish	a	direct	connection	with	the
master	client	but	not	with	each	other.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Enums/DisconnectCause.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::DisconnectCause
	

Variables
static	const	int	 NONE
	 No	error	was	tracked.	
	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 OnStatusChanged:	The	CCUs	count	of	your	Photon

Server	License	is	exausted	(temporarily).	
	
static	const	int	 EXCEPTION_ON_CONNECT

	
OnStatusChanged:	The	server	is	not	available	or	the
address	is	wrong.	Make	sure	the	port	is	provided	and
the	server	is	up.	

	
static	const	int	 DISCONNECT_BY_SERVER

	
OnStatusChanged:	The	server	disconnected	this	client.
Most	likely	the	server's	send	buffer	is	full	(receiving	too
much	from	other	clients).	

	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 OnStatusChanged:	The	server	disconnected	this	client

due	to	server's	logic	(received	a	disconnect	command).
	
static	const	int	 TIMEOUT_DISCONNECT

	
OnStatusChanged:	This	client	detected	that	the
server's	responses	are	not	received	in	due	time.	Maybe
you	send	/	receive	too	much?	

	
static	const	int	 EXCEPTION
	 OnStatusChanged:	Some	internal	exception	caused

the	socket	code	to	fail.	Contact	Exit	Games.	
	
static	const	int	 INVALID_AUTHENTICATION

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	AppId.	Update	your	subscription	or
contact	Exit	Games.	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	
static	const	int	 MAX_CCU_REACHED

	
OnOperationResponse:	Authenticate	(temporarily)
failed	when	using	a	Photon	Cloud	subscription	without
CCU	Burst.	Update	your	subscription.	

	
static	const	int	 INVALID_REGION

	

OnOperationResponse:	Authenticate	when	the	app's
Photon	Cloud	subscription	is	locked	to	some	(other)
region(s).	Update	your	subscription	or	master	server
address.	

	
static	const	int	 OPERATION_NOT_ALLOWED_IN_CURRENT_STATE

	
OnOperationResponse:	Operation	that's	(currently)	not
available	for	this	client	(not	authorized	usually).	Only
tracked	for	op	Authenticate.	

	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	client	values	or	custom
authentication	setup	in	Cloud	Dashboard.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Chat-
cpp/inc/Enums/DisconnectCause.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	
	 ExitGames::Chat::DisconnectCause
	

Variables
static	const	int	 NONE
	 No	error	was	tracked.	
	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 OnStatusChanged:	The	CCUs	count	of	your	Photon

Server	License	is	exausted	(temporarily).	
	
static	const	int	 EXCEPTION_ON_CONNECT

	
OnStatusChanged:	The	server	is	not	available	or	the
address	is	wrong.	Make	sure	the	port	is	provided	and
the	server	is	up.	

	
static	const	int	 DISCONNECT_BY_SERVER

	
OnStatusChanged:	The	server	disconnected	this	client.
Most	likely	the	server's	send	buffer	is	full	(receiving	too
much	from	other	clients).	

	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 OnStatusChanged:	The	server	disconnected	this	client

due	to	server's	logic	(received	a	disconnect	command).
	
static	const	int	 TIMEOUT_DISCONNECT

	
OnStatusChanged:	This	client	detected	that	the
server's	responses	are	not	received	in	due	time.	Maybe
you	send	/	receive	too	much?	

	
static	const	int	 EXCEPTION
	 OnStatusChanged:	Some	internal	exception	caused

the	socket	code	to	fail.	Contact	Exit	Games.	
	
static	const	int	 INVALID_AUTHENTICATION

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	AppId.	Update	your	subscription	or
contact	Exit	Games.	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	
static	const	int	 MAX_CCU_REACHED

	
OnOperationResponse:	Authenticate	(temporarily)
failed	when	using	a	Photon	Cloud	subscription	without
CCU	Burst.	Update	your	subscription.	

	
static	const	int	 INVALID_REGION

	

OnOperationResponse:	Authenticate	when	the	app's
Photon	Cloud	subscription	is	locked	to	some	(other)
region(s).	Update	your	subscription	or	master	server
address.	

	
static	const	int	 OPERATION_NOT_ALLOWED_IN_CURRENT_STATE

	
OnOperationResponse:	Operation	that's	(currently)	not
available	for	this	client	(not	authorized	usually).	Only
tracked	for	op	Authenticate.	

	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED

	
OnOperationResponse:	Authenticate	in	the	Photon
Cloud	with	invalid	client	values	or	custom
authentication	setup	in	Cloud	Dashboard.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

EGTime.h	File
Reference

Include	dependency	graph	for	EGTime.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 EGTime
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Photon-
cpp/inc/Enums/ErrorCode.h	File	Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	
	 ExitGames::Photon::ErrorCode
	

Variables
static	const	int	 SUCCESS
	 No	error.	
	
static	const	int	 EFAILED
	 General	failure.	
	
static	const	int	 ENOMEMORY
	 Out	of	memory.	
	
static	const	int	 EBADCLASS
	 NULL	class	object.	
	
static	const	int	 EBADPARM
	 Invalid	parameter.	
	
static	const	int	 EITEMBUSY
	 Context	(system,	interface,	etc.)	is	busy.	
	
static	const	int	 NET_SUCCESS
	 No	network	error,	successful	operation.	
	
static	const	int	 NET_ERROR
	 Unsuccessful	operation.	
	
static	const	int	 NET_ENETNONET
	 Network	subsystem	unavailable.	
	
static	const	int	 NET_MSGSIZE

	

Message	too	long.	A	message	sent	on	a	datagram
socket	was	larger	than	the	internal	message	buffer	or
some	other	network	limit,	or	the	buffer	used	to	receive	a
datagram	was	smaller	than	the	datagram	itself.	

	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

static	const	int	 NET_ENOTCONN
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Enums/ErrorCode.h	File	Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::ErrorCode
	

Variables
static	const	int	 OPERATION_DENIED
	
static	const	int	 OPERATION_INVALID
	
static	const	int	 INTERNAL_SERVER_ERROR
	
static	const	int	 OK
	
static	const	int	 INVALID_AUTHENTICATION
	
static	const	int	 GAME_ID_ALREADY_EXISTS
	
static	const	int	 GAME_FULL
	
static	const	int	 GAME_CLOSED
	
static	const	int	 ALREADY_MATCHED
	
static	const	int	 SERVER_FULL
	
static	const	int	 USER_BLOCKED
	
static	const	int	 NO_MATCH_FOUND
	
static	const	int	 GAME_DOES_NOT_EXIST
	
static	const	int	 MAX_CCU_REACHED
	
static	const	int	 INVALID_REGION
	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED
	
static	const	int	 AUTHENTICATION_TOKEN_EXPIRED
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

static	const	int	 PLUGIN_REPORTED_ERROR
	
static	const	int	 PLUGIN_MISMATCH
	
static	const	int	 JOIN_FAILED_PEER_ALREADY_JOINED
	
static	const	int	 JOIN_FAILED_FOUND_INACTIVE_JOINER
	
static	const	int	 JOIN_FAILED_WITH_REJOINER_NOT_FOUND
	
static	const	int	 JOIN_FAILED_FOUND_EXCLUDED_USER_ID
	
static	const	int	 JOIN_FAILED_FOUND_ACTIVE_JOINER
	
static	const	int	 HTTP_LIMIT_REACHED
	
static	const	int	 EXTERNAL_HTTP_CALL_FAILED
	
static	const	int	 SLOT_ERROR
	
static	const	int	 INVALID_ENCRYPTION_PARAMETERS
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Chat-
cpp/inc/Enums/ErrorCode.h	File	Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	
	 ExitGames::Chat::ErrorCode
	

Variables
static	const	int	 OPERATION_DENIED
	
static	const	int	 OPERATION_INVALID
	
static	const	int	 INTERNAL_SERVER_ERROR
	
static	const	int	 OK
	
static	const	int	 INVALID_AUTHENTICATION
	
static	const	int	 GAME_ID_ALREADY_EXISTS
	
static	const	int	 GAME_FULL
	
static	const	int	 GAME_CLOSED
	
static	const	int	 ALREADY_MATCHED
	
static	const	int	 SERVER_FULL
	
static	const	int	 USER_BLOCKED
	
static	const	int	 NO_MATCH_FOUND
	
static	const	int	 GAME_DOES_NOT_EXIST
	
static	const	int	 MAX_CCU_REACHED
	
static	const	int	 INVALID_REGION
	
static	const	int	 CUSTOM_AUTHENTICATION_FAILED
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

EventCache.h	File
Reference

Include	dependency	graph	for	EventCache.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::EventCache
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 DO_NOT_CACHE
	
static	const	nByte	 MERGE_CACHE
	
static	const	nByte	 REPLACE_CACHE
	
static	const	nByte	 REMOVE_CACHE
	
static	const	nByte	 ADD_TO_ROOM_CACHE
	
static	const	nByte	 ADD_TO_ROOM_CACHE_GLOBAL
	
static	const	nByte	 REMOVE_FROM_ROOM_CACHE
	
static	const	nByte	 REMOVE_FROM_ROOM_CACHE_FOR_ACTORS_LEFT
	
static	const	nByte	 SLICE_INC_INDEX
	
static	const	nByte	 SLICE_SET_INDEX
	
static	const	nByte	 SLICE_PURGE_INDEX
	
static	const	nByte	 SLICE_PURGE_UP_TO_INDEX
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Photon-
cpp/inc/Enums/EventCode.h	File	Reference

Include	dependency	graph	for	Photon-cpp/inc/Enums/EventCode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::EventCode
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 JOIN
	
static	const	nByte	 LEAVE
	
static	const	nByte	 PROPERTIES_CHANGED
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

EventData.h	File
Reference

Include	dependency	graph	for	EventData.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 EventData
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

EventKey.h	File
Reference

Include	dependency	graph	for	EventKey.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::EventKey
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 ACTORNR
	
static	const	nByte	 TARGET_ACTORNR
	
static	const	nByte	 ACTORLIST
	
static	const	nByte	 PROPERTIES
	
static	const	nByte	 ACTORPROPERTIES
	
static	const	nByte	 GAMEPROPERTIES
	
static	const	nByte	 DATA
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

FriendInfo.h	File
Reference

Include	dependency	graph	for	FriendInfo.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 FriendInfo
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Hashtable.h	File
Reference

Include	dependency	graph	for	Hashtable.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Hashtable
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc Helpers

Namespaces

	Photon	C++
Client	API		4.1.12.2

IsPrimitiveType.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces	|	Functions

	Photon	C++
Client	API		4.1.12.2

JString.h	File
Reference

Include	dependency	graph	for	JString.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 JString
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

JVector.h	File
Reference

Include	dependency	graph	for	JVector.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 JVector<	Etype	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

KeyObject.h	File
Reference

Include	dependency	graph	for	KeyObject.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 KeyObject<	Etype	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Listener.h	File	Reference

Include	dependency	graph	for	LoadBalancing-cpp/inc/Listener.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Listener
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Chat-
cpp/inc/Listener.h	File	Reference

Include	dependency	graph	for	Chat-cpp/inc/Listener.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Listener
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LitePeer.h	File
Reference

Include	dependency	graph	for	LitePeer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 LitePeer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LobbyStatsRequest.h
File	Reference

Include	dependency	graph	for	LobbyStatsRequest.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 LobbyStatsRequest
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LobbyStatsResponse.h	File	Reference

Include	dependency	graph	for	LobbyStatsResponse.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 LobbyStatsResponse
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

LobbyType.h	File
Reference

Include	dependency	graph	for	LobbyType.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::LobbyType
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 DEFAULT

	

This	lobby	type	is	used	unless	another	lobby	type	is
specified.	Room	lists	will	be	sent	and
Client::opJoinRandomRoom()	can	filter	by
matching	properties.	

	
static	const	nByte	 SQL_LOBBY

	

This	lobby	type	lists	rooms	like	type	DEFAULT	but
SQL-like	"where"	clauses	for	filtering	can	be	used
with	Client::opJoinRandomRoom().	This	allows
'bigger',	'less',	'or'	and	'and'	combinations.	

	
static	const	nByte	 ASYNC_RANDOM_LOBBY

	

This	lobby	does	not	send	room	lists.	It	is	only	used
for	Client::opJoinRandomRoom().	It	keeps	rooms
available	for	matchmaking	for	a	while	even	when
there	are	only	inactive	users	left.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces	|	Macros

	Photon	C++
Client	API		4.1.12.2

Logger.h	File
Reference

Include	dependency	graph	for	Logger.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Logger
	

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

Macros
#define	 EGLOG(debugLevel,	...)
	

Macro	Definition	Documentation

§	EGLOG
#define	EGLOG (debugLevel,

	 ...	
)

With	debug	builds	of	the	Photon	client	this	macro	will	call
debugReturn(),	if	the	passed	debug	level	is	of	the	same	or	a	higher
priority	than	the	one	returned	by	getDebugOutputLevel().	In	case	of	a
call	to	debugReturn()	it	will	pass	a	nicely	formatted	string	consisting	of
the	debug	message,	a	timestamp	of	the	calling	time	and	the	filename,
function	name	and	line	number	of	the	code,	from	which	it	has	been
called.	With	release	builds	this	macro	won't	add	any	code	to	the
resulting	binary	and	therefor	not	do	anything	at	all.

Remarks
EGLOG()	always	operates	on	a	variable	of	type	Logger,	named
mLogger.	If	no	such	variable	is	available	in	the	scope	of	the	call,
then	calling	this	macro	won't	succeed.	Until	a	listener	is	specified
for	a	logger	instance,	EGLOG()	calls,	that	operate	on	that
instance,	won't	log	anything.	What	actually	gets	printed	and	to
which	output	device	(for	example	stdout/stderr	or	a	certain	file	or
stream)	is	up	to	the	implementation	of	the	specified	listener.

Parameters
debugLevel the	debug	output	level	of	the	message,	which	in

combination	with	the	level,	which	is	passed	to
setDebugOutputLevel()	will	determine,	if	the
message	will	be	passed	to	debugReturn()	or	not

... the	debug	format	string	+	optional	arguments	(format
specifiers	for	optional	arguments	work	the	same	way
like	in	the	printf	family	of	functions)

See	also
getDebugOutputLevel(),	setDebugOutputLevel()

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

MatchmakingMode.h
File	Reference

Include	dependency	graph	for	MatchmakingMode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::MatchmakingMode
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 FILL_ROOM

	

Fills	up	rooms	(oldest	first)	to	get	players	together
as	fast	as	possible.	Default.	Makes	most	sense	with
MaxPlayers	>	0	and	games	that	can	only	start	with
more	players.	

	
static	const	nByte	 SERIAL_MATCHING

	
Distributes	players	across	available	rooms
sequentially	but	takes	filters	into	account.	Without
filters,	rooms	get	players	evenly	distributed.	

	
static	const	nByte	 RANDOM_MATCHING

	
Joins	a	(fully)	random	room.	Expected	properties
must	match,	but	aside	from	this,	any	available	room
might	be	selected.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

MutablePlayer.h	File
Reference

Include	dependency	graph	for	MutablePlayer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 MutablePlayer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

MutableRoom.h	File
Reference

Include	dependency	graph	for	MutableRoom.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 MutableRoom
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

NetworkPort.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
struct		 Protocol
	
struct		 UDP
	
struct		 UDPAlternative
	
struct		 TCP
	
struct		 WS
	
struct		 WSS
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	
	 ExitGames::Photon::NetworkPort
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Object.h	File
Reference

Include	dependency	graph	for	Object.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Object
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Photon-
cpp/inc/Enums/OperationCode.h	File
Reference

Include	dependency	graph	for	Photon-cpp/inc/Enums/OperationCode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::OperationCode
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 JOIN
	
static	const	nByte	 LEAVE
	
static	const	nByte	 RAISE_EV
	
static	const	nByte	 SETPROPERTIES
	
static	const	nByte	 GETPROPERTIES
	
static	const	nByte	 CHANGE_GROUPS
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces	|	Typedefs

	Photon	C++
Client	API		4.1.12.2

OperationRequest.h
File	Reference

Include	dependency	graph	for	OperationRequest.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 OperationRequest
	

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Typedefs
typedef	Common::Dictionary<	nByte,	Common::Object	>	 OperationRequestParameters
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

OperationResponse.h
File	Reference

Include	dependency	graph	for	OperationResponse.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 OperationResponse
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

Photon-
cpp/inc/Enums/ParameterCode.h	File
Reference

Include	dependency	graph	for	Photon-cpp/inc/Enums/ParameterCode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::ParameterCode
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 GAMEID
	
static	const	nByte	 ACTORNR
	
static	const	nByte	 TARGET_ACTORNR
	
static	const	nByte	 ACTOR_LIST
	
static	const	nByte	 PROPERTIES
	
static	const	nByte	 BROADCAST
	
static	const	nByte	 ACTOR_PROPERTIES
	
static	const	nByte	 GAME_PROPERTIES
	
static	const	nByte	 CACHE
	
static	const	nByte	 RECEIVER_GROUP
	
static	const	nByte	 DATA
	
static	const	nByte	 CODE
	
static	const	nByte	 GROUP
	
static	const	nByte	 REMOVE
	
static	const	nByte	 ADD
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-
cpp/inc/Peer.h	File	Reference

Include	dependency	graph	for	LoadBalancing-cpp/inc/Peer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Peer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Chat-cpp/inc/Peer.h
File	Reference

Include	dependency	graph	for	Chat-cpp/inc/Peer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Peer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

PeerState.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	
	 ExitGames::Photon::PeerState
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	int	 DISCONNECTED
	 The	peer	is	disconnected	and	can't	call	Operations.

Call	PhotonPeer_connect().	
	
static	const	int	 CONNECTING
	 The	peer	is	establishing	the	connection:	opening	a

socket,	exchanging	packages	with	Photon.	
	
static	const	int	 INITIALIZING_APPLICATION

	
The	connection	is	established	and	now	sends	the
application	name	to	Photon.	You	set	the	"application
name"	by	calling	PhotonPeer_connect().	

	
static	const	int	 CONNECTED
	 The	peer	is	connected	and	initialized	(selected	an

application).	You	can	now	use	operations.	
	
static	const	int	 DISCONNECTING
	 The	peer	is	disconnecting.	It	sent	a	disconnect	to	the

server,	which	will	acknowledge	closing	the	connection.	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

PeerStates.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	
	 ExitGames::LoadBalancing::PeerStates
	

Variables
static	const	int	 Uninitialized
	
static	const	int	 PeerCreated
	
static	const	int	 ConnectingToNameserver
	
static	const	int	 ConnectedToNameserver
	
static	const	int	 DisconnectingFromNameserver
	
static	const	int	 Connecting
	
static	const	int	 Connected
	
static	const	int	 WaitingForCustomAuthenticationNextStepCall
	
static	const	int	 Authenticated
	
static	const	int	 JoinedLobby
	
static	const	int	 DisconnectingFromMasterserver
	
static	const	int	 ConnectingToGameserver
	
static	const	int	 ConnectedToGameserver
	
static	const	int	 AuthenticatedOnGameServer
	
static	const	int	 Joining
	
static	const	int	 Joined
	
static	const	int	 Leaving
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

static	const	int	 Left
	
static	const	int	 DisconnectingFromGameserver
	
static	const	int	 ConnectingToMasterserver
	
static	const	int	 ConnectedComingFromGameserver
	
static	const	int	 AuthenticatedComingFromGameserver
	
static	const	int	 Disconnecting
	
static	const	int	 Disconnected
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

PhotonListener.h	File
Reference

Include	dependency	graph	for	PhotonListener.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 PhotonListener
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces	|	Macros

	Photon	C++
Client	API		4.1.12.2

PhotonPeer.h	File
Reference

Include	dependency	graph	for	PhotonPeer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 PhotonPeer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Player.h	File	Reference

Include	dependency	graph	for	Player.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Player
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

RaiseEventOptions.h
File	Reference

Include	dependency	graph	for	RaiseEventOptions.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 RaiseEventOptions
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

ReceiverGroup.h	File
Reference

Include	dependency	graph	for	ReceiverGroup.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Lite
	
	 ExitGames::Lite::ReceiverGroup
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 OTHERS
	
static	const	nByte	 ALL
	
static	const	nByte	 MASTER_CLIENT
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

RegionSelectionMode.h	File	Reference

Include	dependency	graph	for	RegionSelectionMode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 DEFAULT
	
static	const	nByte	 SELECT
	
static	const	nByte	 BEST
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Room.h	File	Reference

Include	dependency	graph	for	Room.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Room
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

RoomOptions.h	File
Reference

Include	dependency	graph	for	RoomOptions.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 RoomOptions
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

Serializer.h	File
Reference

Include	dependency	graph	for	Serializer.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 Serializer
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

ServerType.h	File
Reference

Include	dependency	graph	for	ServerType.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	nByte	 NAME_SERVER
	
static	const	nByte	 MASTER_SERVER
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

StatusCode.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	
	 ExitGames::Photon::StatusCode
	

Variables
static	const	int	 EXCEPTION_ON_CONNECT

	
the	PhotonPeer	encountered	an	exception	while
opening	the	incoming	connection	to	the	server.	The
server	could	be	down	/	not	running.	

	
static	const	int	 CONNECT
	 the	PhotonPeer	is	connected.	
	
static	const	int	 DISCONNECT
	 the	PhotonPeer	just	disconnected.	
	
static	const	int	 EXCEPTION
	 the	PhotonPeer	encountered	an	exception	and	will

disconnect,	too.	
	
static	const	int	 QUEUE_OUTGOING_RELIABLE_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	send	more

often.	
	
static	const	int	 QUEUE_OUTGOING_UNRELIABLE_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	send	more

often.	
	
static	const	int	 SEND_ERROR

	
Sending	command	failed.	Either	not	connected,	or	the
requested	channel	is	bigger	than	the	number	of
initialized	channels.	

	
static	const	int	 QUEUE_OUTGOING_ACKS_WARNING
	 PhotonPeer	outgoing	queue	is	filling	up.	Send	more

often.	
	
static	const	int	 QUEUE_INCOMING_RELIABLE_WARNING

PhotonPeer	incoming	reliable	queue	is	filling	up.

	 Dispatch	more	often.	

	
static	const	int	 QUEUE_INCOMING_UNRELIABLE_WARNING
	 PhotonPeer	incoming	unreliable	queue	is	filling	up.

Dispatch	more	often.	
	
static	const	int	 QUEUE_SENT_WARNING

	
PhotonPeer	sent	queue	is	filling	up.	Check,	why	the
server	does	not	acknowledge	your	sent	reliable
commands.	

	
static	const	int	 INTERNAL_RECEIVE_EXCEPTION

	
Exception,	if	a	server	cannot	be	connected.	Most	likely,
the	server	is	not	responding.	Ask	the	user	to	try	again
later.	

	
static	const	int	 TIMEOUT_DISCONNECT
	 Disconnection	due	to	a	timeout	(client	did	no	longer

receive	ACKs	from	server).	
	
static	const	int	 DISCONNECT_BY_SERVER

	
Disconnect	by	server	due	to	timeout	(received	a
disconnect	command,	cause	server	misses	ACKs	of
client).	

	
static	const	int	 DISCONNECT_BY_SERVER_USER_LIMIT
	 Disconnect	by	server	due	to	concurrent	user	limit

reached	(received	a	disconnect	command).	
	
static	const	int	 DISCONNECT_BY_SERVER_LOGIC
	 Disconnect	by	server	due	to	server's	logic	(received	a

disconnect	command).	
	
static	const	int	 ENCRYPTION_ESTABLISHED
	 The	encryption-setup	for	secure	communication

finished	successfully.	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	
static	const	int	 ENCRYPTION_FAILED_TO_ESTABLISH

	
The	encryption-setup	failed	for	some	reason.	Check
debug	logs.	

	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

ToString.h	File
Reference

Include	dependency	graph	for	ToString.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 ToString
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

TrafficStats.h	File
Reference

Include	dependency	graph	for	TrafficStats.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 TrafficStats
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

TrafficStatsGameLevel.h	File	Reference

Include	dependency	graph	for	TrafficStatsGameLevel.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 TrafficStatsGameLevel
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Photon
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

TypeCode.h	File
Reference

Include	dependency	graph	for	TypeCode.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Common
	
	 ExitGames::Common::TypeCode
	

Variables
static	const	nByte	 BYTE
	 nByte	
	
static	const	nByte	 SHORT
	 short	
	
static	const	nByte	 INTEGER
	 int	
	
static	const	nByte	 LONG
	 int64	
	
static	const	nByte	 FLOAT
	 float	
	
static	const	nByte	 DOUBLE
	 double	
	
static	const	nByte	 BOOLEAN
	 bool	
	
static	const	nByte	 STRING
	 JString.	
	
static	const	nByte	 HASHTABLE
	 Hashtable.	
	
static	const	nByte	 DICTIONARY
	 Dictionary.	
	
static	const	nByte	 OBJECT
	 Object,	only	allowed	for	arrays!	
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

static	const	nByte	 ARRAY
	 internal	only	
	
static	const	nByte	 BYTEARRAY
	 internal	only	
	
static	const	nByte	 PHOTON_COMMAND
	 internal	only	
	
static	const	nByte	 EG_NULL
	 internal	only	
	
static	const	nByte	 CUSTOM
	 internal	only	
	
static	const	nByte	 UNKNOWN
	 internal	only	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

Namespaces	|	Variables

	Photon	C++
Client	API		4.1.12.2

UserStatus.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Namespaces
	 ExitGames
	
	 ExitGames::Chat
	
	 ExitGames::Chat::UserStatus
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Variables
static	const	int	 OFFLINE
	 Offline.	
	
static	const	int	 INVISIBLE
	 Be	invisible	to	everyone.	Sends	no	message.	
	
static	const	int	 ONLINE
	 Online	and	available.	
	
static	const	int	 AWAY
	 Online	but	not	available.	
	
static	const	int	 DND
	 Do	not	disturb.	
	
static	const	int	 LFG
	 Looking	For	Game/Group.	Could	be	used	when	you

want	to	be	invited	or	do	matchmaking.	
	
static	const	int	 PLAYING
	 Could	be	used	when	in	a	room,	playing.	
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

UTF8String.h	File
Reference

Include	dependency	graph	for	UTF8String.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 UTF8String
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

ValueObject.h	File
Reference

Include	dependency	graph	for	ValueObject.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 ValueObject<	Etype	>
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::Common
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

Classes	|	Namespaces

	Photon	C++
Client	API		4.1.12.2

WebFlags.h	File
Reference

Include	dependency	graph	for	WebFlags.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Classes
class		 WebFlags
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Namespaces
	 ExitGames
	
	 ExitGames::LoadBalancing
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Here	is	a	list	of	all	documented	file	members	with	links	to	the
documentation:

ALLOCATE	:	Allocate.h
ALLOCATE_ARRAY	:	Allocate.h
DEALLOCATE	:	Allocate.h
DEALLOCATE_ARRAY	:	Allocate.h
EG_CALLOC	:	Allocate.h
EG_FREE	:	Allocate.h
EG_MALLOC	:	Allocate.h
EG_REALLOC	:	Allocate.h
EGLOG	:	Logger.h
REALLOCATE_ARRAY	:	Allocate.h

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

	

ALLOCATE	:	Allocate.h
ALLOCATE_ARRAY	:	Allocate.h
DEALLOCATE	:	Allocate.h
DEALLOCATE_ARRAY	:	Allocate.h
EG_CALLOC	:	Allocate.h
EG_FREE	:	Allocate.h
EG_MALLOC	:	Allocate.h
EG_REALLOC	:	Allocate.h
EGLOG	:	Logger.h
REALLOCATE_ARRAY	:	Allocate.h

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat AuthenticationValues

	Photon	C++
Client	API		4.1.12.2

AuthenticationValues	Member	List

This	is	the	complete	list	of	members	for	AuthenticationValues,	including
all	inherited	members.

AuthenticationValues(void)
getData(void)	const
getDebugOutputLevel(void)
getLogFormatOptions(void)
getParameters(void)	const
getSecret(void)	const
getType(void)	const
getUserID(void)	const
setData(const	Common::JVector<	nByte	>	&data)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
setParameters(const	Common::JString	¶meters)
setParametersWithUsernameAndToken(const	Common::JString	&username,	const	Common::JString	&token)
setType(nByte	type)
setUserID(const	Common::JString	&userID)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~ToString(void)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
Graph	Legend

This	page	explains	how	to	interpret	the	graphs	that	are	generated	by
doxygen.

Consider	the	following	example:

/*!	Invisible	class	because	of	truncation	*/

class	Invisible	{	};

/*!	Truncated	class,	inheritance	relation	is	hidden	

*/

class	Truncated	:	public	Invisible	{	};

/*	Class	not	documented	with	doxygen	comments	*/

class	Undocumented	{	};

/*!	Class	that	is	inherited	using	public	inheritance	

*/

class	PublicBase	:	public	Truncated	{	};

/*!	A	template	class	*/

template<class	T>	class	Templ	{	};

/*!	Class	that	is	inherited	using	protected	

inheritance	*/

class	ProtectedBase	{	};

/*!	Class	that	is	inherited	using	private	inheritance	

*/

class	PrivateBase	{	};

/*!	Class	that	is	used	by	the	Inherited	class	*/

class	Used	{	};

/*!	Super	class	that	inherits	a	number	of	other	

classes	*/

class	Inherited	:	public	PublicBase,

																		protected	ProtectedBase,

																		private	PrivateBase,

																		public	Undocumented,

																		public	Templ<int>

{

		private:

				Used	*m_usedClass;

};

This	will	result	in	the	following	graph:

The	boxes	in	the	above	graph	have	the	following	meaning:

A	filled	gray	box	represents	the	struct	or	class	for	which	the	graph	is
generated.
A	box	with	a	black	border	denotes	a	documented	struct	or	class.
A	box	with	a	gray	border	denotes	an	undocumented	struct	or	class.
A	box	with	a	red	border	denotes	a	documented	struct	or	class
forwhich	not	all	inheritance/containment	relations	are	shown.	A	graph
is	truncated	if	it	does	not	fit	within	the	specified	boundaries.

The	arrows	have	the	following	meaning:

A	dark	blue	arrow	is	used	to	visualize	a	public	inheritance	relation

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

between	two	classes.
A	dark	green	arrow	is	used	for	protected	inheritance.
A	dark	red	arrow	is	used	for	private	inheritance.
A	purple	dashed	arrow	is	used	if	a	class	is	contained	or	used	by
another	class.	The	arrow	is	labelled	with	the	variable(s)	through
which	the	pointed	class	or	struct	is	accessible.
A	yellow	dashed	arrow	denotes	a	relation	between	a	template
instance	and	the	template	class	it	was	instantiated	from.	The	arrow
is	labelled	with	the	template	parameters	of	the	instance.

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Channel

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Channel	Member	List

This	is	the	complete	list	of	members	for	Channel,	including	all	inherited
members.

clearMessages(void)	(defined	in	Channel) Channel
getDebugOutputLevel(void) Base
getIsPrivate(void)	const	(defined	in	Channel) Channel
getLogFormatOptions(void) Base
getMessageCount(void)	const	(defined	in	Channel) Channel
getMessages(void)	const	(defined	in	Channel) Channel
getName(void)	const	(defined	in	Channel) Channel
getSenders(void)	const	(defined	in	Channel) Channel
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const Channel
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Client

	Photon	C++
Client	API		4.1.12.2

Client	Member	List

This	is	the	complete	list	of	members	for	Client,	including	all	inherited
members.

Client(Listener	&listener,	const	Common::JString	&applicationID,	const	Common::JString	&appVersion,	nByte	connectionProtocol=Photon::ConnectionProtocol::DEFAULT)
connect(const	AuthenticationValues	&authenticationValues=AuthenticationValues(),	const	Common::JString	&nameServerAddress=M_NAMESERVER)
disconnect(void)
dispatchIncomingCommands(void)
fetchServerTimestamp(void)
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getCRCEnabled(void)	const
getDebugOutputLevel(void)	const
getDisconnectedCause(void)	const
getDisconnectTimeout(void)	const
getIncomingReliableCommandsCount(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const
getLogFormatOptions(void)	const
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const

getPrivateChannel(const	Common::JString	&userName)	const
getPrivateChannels(void)	const
getPublicChannel(const	Common::JString	&channelName)	const
getPublicChannels(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getRegion(void)	const
getResentReliableCommands(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getState(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const
getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
getUserID(void)	const
onPingResponse(const	Common::JString	&address,	unsigned	int	pingResult)
opAddFriends(const	Common::JVector<	Common::JString	>	&userIDs)
opPublishMessage(const	Common::JString	&channelName,	const	Ftype	&message)
opPublishMessage(const	Common::JString	&channelName,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
opPublishMessage(const	Common::JString	&channelName,	const	Ftype	pMessageArray,	const	short	*pArrSizes)
opRemoveFriends(const	Common::JVector<	Common::JString	>	&userIDs)
opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	&message,	bool	encrypt=false)	(defined	in	
opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	bool	encrypt=false)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	pMessageArray,	const	short	*pArrSizes,	bool	encrypt=false)
opSetOnlineStatus(int	status)
opSetOnlineStatus(int	status,	const	Ftype	&message)	(defined	in	Client)
opSetOnlineStatus(int	status,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
opSetOnlineStatus(int	status,	const	Ftype	pMessageArray,	const	short	*pArrSizes)
opSubscribe(const	Common::JVector<	Common::JString	>	&channels,	int	messagesFromHistory=0)
opUnsubscribe(const	Common::JVector<	Common::JString	>	&channels)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)
sendAcksOnly(void)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)
setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setRegion(const	Common::JString	®ion)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStatsEnabled)
vitalStatsToString(bool	all)	const
~BaseListener()	(defined	in	BaseListener)
~Client(void)
~PhotonListener(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Listener

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Listener	Member	List

This	is	the	complete	list	of	members	for	Listener,	including	all	inherited
members.

clientErrorReturn(int	errorCode)=0	(defined	in	Listener)
connectionErrorReturn(int	errorCode)=0	(defined	in	Listener)
connectReturn(int	errorCode,	const	Common::JString	&errorString)=0
debugReturn(int	debugLevel,	const	Common::JString	&string)=0
disconnectReturn(void)=0
onGetMessages(const	Common::JString	&channelName,	const	Common::JVector<	Common::JString	>	&senders,	const	Common::JVector<	Common::Object	>	&messages)=0
onPrivateMessage(const	Common::JString	&sender,	const	Common::Object	&message,	const	Common::JString	&channelName)=0
onStateChange(int	state)=0
onStatusUpdate(const	Common::JString	&user,	int	status,	bool	gotMessage,	const	Common::Object	&message)=0
serverErrorReturn(int	errorCode)=0	(defined	in	Listener)
subscribeReturn(const	Common::JVector<	Common::JString	>	&channels,	const	Common::JVector<	bool	>	&results)=0
unsubscribeReturn(const	Common::JVector<	Common::JString	>	&channels)=0
warningReturn(int	warningCode)=0	(defined	in	Listener)
~BaseListener()	(defined	in	BaseListener)
~Listener(void)	(defined	in	Listener)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Chat Peer

	Photon	C++
Client	API		4.1.12.2

Peer	Member	List

This	is	the	complete	list	of	members	for	Peer,	including	all	inherited
members.

connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID=Common::JString())
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	&customData)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	const	short	*pArrSizes)
disconnect(void)
dispatchIncomingCommands(void)
establishEncryption(void)
fetchServerTimestamp(void)
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getConnectionProtocol(void)	const
getCRCEnabled(void)	const
getDebugOutputLevel(void)	const
getDisconnectTimeout(void)	const
getIncomingReliableCommandsCount(void)	const
getIsEncryptionAvailable(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const

getListener(void)
getLogFormatOptions(void)	const
getMaxAppIDLength(void)
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const
getPeerState(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getResentReliableCommands(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerAddress(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const
getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
initUDPEncryption(const	Common::JVector<	nByte	>	&encryptSecret,	const	Common::JVector<	nByte	>	&HMACSecret)
initUserDataEncryption(const	Common::JVector<	nByte	>	&secret)
opAddFriends(const	Common::JVector<	Common::JString	>	&userIDs)	(defined	in	
opAuthenticateOnFrontEnd(const	Common::JString	&secret)	(defined	in	
opAuthenticateOnNameServer(const	Common::JString	&appID,	const	Common::JString	&appVersion,	const	Common::JString	®ion,	const	AuthenticationValues	&authenticationValues=AuthenticationValues())	(defined	in	
opCustom(const	OperationRequest	&operationRequest,	bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
opPublishMessage(const	Common::JString	&channelName,	const	Ftype	&message)	(defined	in	

opPublishMessage(const	Common::JString	&channelName,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)	(defined	in	
opPublishMessage(const	Common::JString	&channelName,	const	Ftype	pMessageArray,	const	short	*pArrSizes)	(defined	in	
opRemoveFriends(const	Common::JVector<	Common::JString	>	&userIDs)	(defined	in	
opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	&message,	bool	encrypt=false)	(defined	in	
opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	bool	encrypt=false)	(defined	in	
opSendPrivateMessage(const	Common::JString	&userName,	const	Ftype	pMessageArray,	const	short	*pArrSizes,	bool	encrypt=false)	(defined	in	
opSetOnlineStatus(int	status)	(defined	in	Peer)
opSetOnlineStatus(int	status,	const	Ftype	&message)	(defined	in	Peer)
opSetOnlineStatus(int	status,	const	Ftype	pMessageArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)	(defined	in	
opSetOnlineStatus(int	status,	const	Ftype	pMessageArray,	const	short	*pArrSizes)	(defined	in	
opSubscribe(const	Common::JVector<	Common::JString	>	&channels,	int	messagesFromHistory)	(defined	in	
opUnsubscribe(const	Common::JVector<	Common::JString	>	&channels)	(defined	in	
Peer(Photon::PhotonListener	&listener,	nByte	connectionProtocol=Photon::ConnectionProtocol::DEFAULT)	(defined	in	
PhotonPeer(PhotonListener	&listener,	nByte	connectionProtocol=ConnectionProtocol::DEFAULT)
pingServer(const	Common::JString	&address,	unsigned	int	pingAttempts)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)
sendAcksOnly(void)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setConnectionProtocol(nByte	connectionProtocol)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)
setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStasEnabled)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

vitalStatsToString(bool	all)	const
~Peer(void)	(defined	in	Peer)
~PhotonPeer(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common MemoryManagement AllocatorInterface

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

AllocatorInterface	Member	List

This	is	the	complete	list	of	members	for	AllocatorInterface,	including	all
inherited	members.

alloc(size_t	size)=0 AllocatorInterface pure	virtual

dealloc(void	*p)=0 AllocatorInterface pure	virtual

get(void) AllocatorInterface static

resize(void	*p,	size_t	size)=0 AllocatorInterface pure	virtual

setMaxAllocSize(size_t	maxAllocSize)=0 AllocatorInterface pure	virtual

~AllocatorInterface(void) AllocatorInterface virtual

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ANSIString

	Photon	C++
Client	API		4.1.12.2

ANSIString	Member	List

This	is	the	complete	list	of	members	for	ANSIString,	including	all
inherited	members.

ANSIString(void) ANSIString
ANSIString(const	ANSIString	&str) ANSIString
ANSIString(const	JString	&str) ANSIString
ANSIString(const	char	*str) ANSIString
ANSIString(const	EG_CHAR	*str) ANSIString
BaseCharString() BaseCharString
cstr(void)	const BaseCharString
getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
JStringRepresentation(void)	const ANSIString
length(void)	const BaseCharString
operator	const	char	*(void)	const ANSIString
operator	JString(void)	const ANSIString
operator=(const	ANSIString	&Rhs) ANSIString
operator=(const	JString	&Rhs) ANSIString
operator=(const	char	*Rhs) ANSIString
operator=(const	EG_CHAR	*Rhs) ANSIString
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
size(void)	const ANSIString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

toString(JString	&retStr,	bool	withTypes=false)	const BaseCharString
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~ANSIString(void) ANSIString
~Base(void) Base
~BaseCharString(void) BaseCharString
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Base

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Base	Member	List

This	is	the	complete	list	of	members	for	Base,	including	all	inherited
members.

getDebugOutputLevel(void) Base static

getLogFormatOptions(void) Base static

setDebugOutputLevel(int	debugLevel) Base static

setListener(const	BaseListener	*baseListener) Base static

setLogFormatOptions(const	LogFormatOptions	&options) Base static

toString(JString	&retStr,	bool	withTypes=false)	const	=0 ToString pure	virtual

toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString virtual

~Base(void) Base virtual

~ToString(void) ToString virtual

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common BaseCharString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

BaseCharString	Member	List

This	is	the	complete	list	of	members	for	BaseCharString,	including	all
inherited	members.

BaseCharString() BaseCharString
cstr(void)	const BaseCharString
getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
JStringRepresentation(void)	const	=0 BaseCharString
length(void)	const BaseCharString
operator	const	char	*(void)	const	=0 BaseCharString
operator	JString(void)	const	=0 BaseCharString
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
size(void)	const	=0 BaseCharString
toString(JString	&retStr,	bool	withTypes=false)	const BaseCharString
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~BaseCharString(void) BaseCharString
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common BaseListener

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

BaseListener	Member	List

This	is	the	complete	list	of	members	for	BaseListener,	including	all
inherited	members.

debugReturn(int	debugLevel,	const	JString	&string)=0 BaseListener pure	virtual

~BaseListener()	(defined	in	BaseListener) BaseListener virtual

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomType

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

CustomType<	typeCode	>	Member	List

This	is	the	complete	list	of	members	for	CustomType<	typeCode	>,
including	all	inherited	members.

cleanup(void)=0
compare(const	CustomTypeBase	&other)	const	=0
constructClass(const	CustomTypeFactory<	typeCode	>	&factory)
deconstructClass(void)
deserialize(const	nByte	*pData,	short	length)=0
duplicate(CustomTypeBase	*pRetVal)	const	=0
getDebugOutputLevel(void)
getLogFormatOptions(void)
serialize(nByte	*pRetVal)	const	=0
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
ExitGames::Common::Base::toString(JString	&retStr,	bool	withTypes=false)	const	=0
ExitGames::Common::Base::toString(bool	withTypes=false)	const
TypeCode
typeToString(void)	const
~Base(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomTypeBase

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

CustomTypeBase	Member	List

This	is	the	complete	list	of	members	for	CustomTypeBase,	including	all
inherited	members.

cleanup(void)=0
compare(const	CustomTypeBase	&other)	const	=0
deserialize(const	nByte	*pData,	short	length)=0
duplicate(CustomTypeBase	*pRetVal)	const	=0
getDebugOutputLevel(void)
getLogFormatOptions(void)
serialize(nByte	*pRetVal)	const	=0
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
ExitGames::Common::Base::toString(JString	&retStr,	bool	withTypes=false)	const	=0
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common CustomTypeFactory

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

CustomTypeFactory<	typeCode	>	Member	List

This	is	the	complete	list	of	members	for	CustomTypeFactory<
typeCode	>,	including	all	inherited	members.

copy(const	CustomType<	typeCode	>	*pToCopy,	short	amount)	const	=0
copyFactory(void)	const	=0
create(short	amount)	const	=0
destroy(const	CustomType<	typeCode	>	*pToDestroy)	const	=0
destroyFactory(void)=0
getDebugOutputLevel(void)
getLogFormatOptions(void)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
sizeOf(void)	const	=0
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~CustomTypeFactory(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common DeSerializer

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

DeSerializer	Member	List

This	is	the	complete	list	of	members	for	DeSerializer,	including	all
inherited	members.

DeSerializer(const	nByte	*data,	int	size) DeSerializer
getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
pop(Object	&object) DeSerializer
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(JString	&retStr,	bool	withTypes=false)	const DeSerializer
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Dictionary

	Photon	C++
Client	API		4.1.12.2

Dictionary<	EKeyType,	EValueType	>	Member
List

This	is	the	complete	list	of	members	for	Dictionary<	EKeyType,
EValueType	>,	including	all	inherited	members.

contains(const	EKeyType	&key)	const
ExitGames::Common::DictionaryBase::contains(const	FKeyType	&key)	const
Dictionary(void)
Dictionary(const	Dictionary<	EKeyType,	EValueType	>	&toCopy)
DictionaryBase(const	DictionaryBase	&toCopy)
getDebugOutputLevel(void)
getHashtable(void)	const
getKeys(void)	const
ExitGames::Common::DictionaryBase::getKeys(const	FKeyType	*)	const
ExitGames::Common::DictionaryBase::getKeys(const	Object	*)	const
getKeyTypes(void)	const
getLogFormatOptions(void)
getSize(void)	const
getValue(const	EKeyType	&key)	const
ExitGames::Common::DictionaryBase::getValue(const	FKeyType	&key,	const	FValueType	*)	const
ExitGames::Common::DictionaryBase::getValue(const	FKeyType	&key,	const	Object	*)	const
getValueDimensions(void)	const
getValueSizes(const	FKeyType	&key)	const
getValueTypes(void)	const
operator!=(const	Dictionary<	EKeyType,	EValueType	>	&toCompare)	const

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

ExitGames::Common::DictionaryBase::operator!=(const	DictionaryBase	&toCompare)	const
operator=(const	Dictionary<	EKeyType,	EValueType	>	&toCopy)
ExitGames::Common::DictionaryBase::operator=(const	DictionaryBase	&toCopy)
operator==(const	Dictionary<	EKeyType,	EValueType	>	&toCompare)	const
ExitGames::Common::DictionaryBase::operator==(const	DictionaryBase	&toCompare)	const
operator[](unsigned	int	index)	const
operator[](unsigned	int	index)
put(const	Dictionary<	EKeyType,	EValueType	>	&src)
put(const	EKeyType	&key,	const	EValueType	&val)
put(const	EKeyType	&key)
put(const	EKeyType	&key,	const	EValueType	pVal,	typename	Common::Helpers::ArrayLengthType<	EValueType	>::type	size)
put(const	EKeyType	&key,	const	EValueType	pVal,	const	short	*sizes)
remove(const	EKeyType	&key)
ExitGames::Common::DictionaryBase::remove(const	FKeyType	&key)
removeAllElements(void)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~Dictionary(void)
~DictionaryBase(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common DictionaryBase

	Photon	C++
Client	API		4.1.12.2

DictionaryBase	Member	List

This	is	the	complete	list	of	members	for	DictionaryBase,	including	all
inherited	members.

contains(const	FKeyType	&key)	const DictionaryBase
DictionaryBase(const	DictionaryBase	&toCopy) DictionaryBase
getDebugOutputLevel(void) Base
getHashtable(void)	const DictionaryBase
getKeys(const	FKeyType	*)	const DictionaryBase
getKeys(const	Object	*)	const DictionaryBase
getKeyTypes(void)	const DictionaryBase
getLogFormatOptions(void) Base
getSize(void)	const DictionaryBase
getValue(const	FKeyType	&key,	const	FValueType	*)	const DictionaryBase
getValue(const	FKeyType	&key,	const	Object	*)	const DictionaryBase
getValueDimensions(void)	const DictionaryBase
getValueSizes(const	FKeyType	&key)	const DictionaryBase
getValueTypes(void)	const DictionaryBase
operator!=(const	DictionaryBase	&toCompare)	const DictionaryBase
operator=(const	DictionaryBase	&toCopy) DictionaryBase
operator==(const	DictionaryBase	&toCompare)	const DictionaryBase
remove(const	FKeyType	&key) DictionaryBase
removeAllElements(void) DictionaryBase
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(JString	&retStr,	bool	withTypes=false)	const DictionaryBase
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const DictionaryBase
~Base(void) Base
~DictionaryBase(void) DictionaryBase
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common EGTime

	Photon	C++
Client	API		4.1.12.2

EGTime	Member	List

This	is	the	complete	list	of	members	for	EGTime,	including	all	inherited
members.

EGTime(int	time) EGTime
EGTime(const	EGTime	&toCopy) EGTime
getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
operator!=(const	EGTime	&time)	const EGTime
operator+(const	EGTime	&time) EGTime
operator+=(const	EGTime	&time) EGTime
operator-(const	EGTime	&time) EGTime
operator-=(const	EGTime	&time) EGTime
operator<(const	EGTime	&time)	const EGTime
operator<=(const	EGTime	&time)	const EGTime
operator=(const	EGTime	&toCopy) EGTime
operator=(const	int	&time) EGTime
operator==(const	EGTime	&time)	const EGTime
operator>(const	EGTime	&time)	const EGTime
operator>=(const	EGTime	&time)	const EGTime
overflowed(const	EGTime	&time)	const EGTime
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(JString	&retStr,	bool	withTypes=false)	const EGTime

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~EGTime(void) EGTime
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Hashtable

	Photon	C++
Client	API		4.1.12.2

Hashtable	Member	List

This	is	the	complete	list	of	members	for	Hashtable,	including	all	inherited
members.

contains(const	FKeyType	&key)	const
getDebugOutputLevel(void)
getKeys(void)	const
getLogFormatOptions(void)
getSize(void)	const
getValue(const	FKeyType	&key)	const
Hashtable(void)
Hashtable(const	Hashtable	&toCopy)
operator!=(const	Hashtable	&toCompare)	const
operator=(const	Hashtable	&toCopy)
operator==(const	Hashtable	&toCompare)	const
operator[](unsigned	int	index)	const
operator[](unsigned	int	index)
put(const	Hashtable	&src)
put(const	FKeyType	&key,	const	FValueType	&val)
put(const	FKeyType	&key)
put(const	FKeyType	&key,	const	FValueType	pVal,	typename	Common::Helpers::ArrayLengthType<	FValueType	>::type	size)
put(const	FKeyType	&key,	const	FValueType	pVal,	const	short	*sizes)
remove(const	FKeyType	&key)
removeAllElements(void)
setDebugOutputLevel(int	debugLevel)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~Hashtable(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common JString

	Photon	C++
Client	API		4.1.12.2

JString	Member	List

This	is	the	complete	list	of	members	for	JString,	including	all	inherited
members.

ANSIRepresentation(void)	const
capacity(void)	const
charAt(unsigned	int	index)	const
compareTo(const	JString	&anotherString)	const
concat(const	JString	&str)
cstr(void)	const
deleteChars(unsigned	int	start,	unsigned	int	length)	const
endsWith(const	JString	&suffix)	const
ensureCapacity(unsigned	int	minCapacity)
equals(const	JString	&anotherString)	const
equalsIgnoreCase(const	JString	&anotherString)	const
indexOf(char	ch)	const
indexOf(char	ch,	unsigned	int	fromIndex)	const
indexOf(EG_CHAR	ch)	const
indexOf(EG_CHAR	ch,	unsigned	int	fromIndex)	const
indexOf(const	JString	&str)	const
indexOf(const	JString	&str,	unsigned	int	fromIndex)	const
JString(unsigned	int	bufferlen=0)
JString(const	char	*Value)
JString(const	EG_CHAR	*Value)
JString(const	JString	&Value)

JString(const	UTF8String	&Value)
JString(const	ANSIString	&Value)
lastIndexOf(char	ch)	const
lastIndexOf(char	ch,	unsigned	int	fromIndex)	const
lastIndexOf(EG_CHAR	ch)	const
lastIndexOf(EG_CHAR	ch,	unsigned	int	fromIndex)	const
lastIndexOf(const	JString	&str)	const
lastIndexOf(const	JString	&str,	unsigned	int	fromIndex)	const
length(void)	const
operator	const	EG_CHAR	*(void)	const
operator!=(const	JString	&Rhs)	const
operator!=(const	JString	&Lsh,	const	Etype	&Rsh)
operator!=(const	Etype	&Lsh,	const	JString	&Rsh)
operator+(const	JString	&Lsh,	const	Etype	&Rsh)
operator+(const	Etype	&Lsh,	const	JString	&Rsh)
operator+(const	JString	&Lsh,	const	JString	&Rsh)
operator+=(const	JString	&Rhs)
operator+=(const	Etype	&Rhs)
operator<(const	JString	&Rhs)	const
operator<(const	JString	&Lsh,	const	Etype	&Rsh)
operator<(const	Etype	&Lsh,	const	JString	&Rsh)
operator<<(::std::basic_ostream<	_Elem,	_Traits	>	&stream,	const	JString	&string)
operator<=(const	JString	&Rhs)	const
operator<=(const	JString	&Lsh,	const	Etype	&Rsh)
operator<=(const	Etype	&Lsh,	const	JString	&Rsh)
operator=(const	JString	&Rhs)
operator=(const	char	*Rhs)
operator=(const	EG_CHAR	*Rhs)
operator=(const	UTF8String	&Rhs)
operator=(const	ANSIString	&Rhs)
operator=(char	Rhs)

operator=(signed	char	Rhs)
operator=(unsigned	char	Rhs)
operator=(EG_CHAR	Rhs)
operator=(short	aNum)
operator=(unsigned	short	aNum)
operator=(int	aNum)
operator=(unsigned	int	aNum)
operator=(long	aNum)
operator=(unsigned	long	aNum)
operator=(long	long	aNum)
operator=(unsigned	long	long	aNum)
operator=(float	aNum)
operator=(double	aNum)
operator=(long	double	aNum)
operator=(bool	aBool)
operator==(const	JString	&Rhs)	const
operator==(const	JString	&Lsh,	const	Etype	&Rsh)
operator==(const	Etype	&Lsh,	const	JString	&Rsh)
operator>(const	JString	&Rhs)	const
operator>(const	JString	&Lsh,	const	Etype	&Rsh)
operator>(const	Etype	&Lsh,	const	JString	&Rsh)
operator>=(const	JString	&Rhs)	const
operator>=(const	JString	&Lsh,	const	Etype	&Rsh)
operator>=(const	Etype	&Lsh,	const	JString	&Rsh)
operator[](unsigned	int	Index)	const
operator[](unsigned	int	Index)
replace(char	oldChar,	char	newChar)	const
replace(EG_CHAR	oldChar,	EG_CHAR	newChar)	const
replace(const	JString	&match,	const	JString	&replacement)	const
startsWith(const	JString	&prefix)	const
startsWith(const	JString	&prefix,	unsigned	int	offset)	const

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

substring(unsigned	int	beginIndex)	const
substring(unsigned	int	beginIndex,	unsigned	int	endIndex)	const
toInt(void)	const
toLowerCase(void)	const
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::ToString::toString(bool	withTypes=false)	const
toUpperCase(void)	const
trim(void)
typeToString(void)	const
UTF8Representation(void)	const
~JString(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common JVector

	Photon	C++
Client	API		4.1.12.2

JVector<	Etype	>	Member	List

This	is	the	complete	list	of	members	for	JVector<	Etype	>,	including	all
inherited	members.

addElement(const	Etype	&obj)
addElements(const	JVector<	Etype	>	&vector)
addElements(const	Etype	*carray,	unsigned	int	elementCount)
contains(const	Etype	&elem)	const
copyInto(Etype	*array)	const
ensureCapacity(unsigned	int	minCapacity)
getCapacity(void)	const
getCArray(void)	const
getDebugOutputLevel(void)
getElementAt(unsigned	int	index)	const
getFirstElement(void)	const
getIndexOf(const	Etype	&elem)	const
getIsEmpty(void)	const
getLastElement(void)	const
getLastIndexOf(const	Etype	&elem)	const
getLogFormatOptions(void)
getSize(void)	const
insertElementAt(const	Etype	&obj,	unsigned	int	index)
JVector(unsigned	int	initialCapacity=0,	unsigned	int	capacityIncrement=1)
JVector(const	Etype	*carray,	unsigned	int	elementCount,	unsigned	int	initialCapacity=0,	unsigned	int	capacityIncrement=1)
JVector(const	JVector<	Etype	>	&rhv)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

operator!=(const	JVector<	Etype	>	&toCompare)	const
operator=(const	JVector<	Etype	>	&rhv)
operator==(const	JVector<	Etype	>	&toCompare)	const
operator[](unsigned	int	index)	const
operator[](unsigned	int	index)
removeAllElements(void)
removeElement(const	Etype	&obj)
removeElementAt(unsigned	int	index)
setDebugOutputLevel(int	debugLevel)
setElementAt(const	Etype	&obj,	unsigned	int	index)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
trimToSize(void)
typeToString(void)	const
~Base(void)
~JVector(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common KeyObject

	Photon	C++
Client	API		4.1.12.2

KeyObject<	Etype	>	Member	List

This	is	the	complete	list	of	members	for	KeyObject<	Etype	>,	including
all	inherited	members.

getCustomType(void)	const
getDataAddress(void)	const
getDataCopy(void)	const
getDebugOutputLevel(void)
getDimensions(void)	const
getLogFormatOptions(void)
getSizes(void)	const
getType(void)	const
KeyObject(const	KeyObject<	Etype	>	&toCopy)
KeyObject(const	Object	&obj)
KeyObject(const	Object	*obj)
KeyObject(const	typename	Helpers::ConfirmAllowedKey<	Etype	>::type	&data)
Object(void)
Object(const	Object	&toCopy)
operator!=(const	Object	&toCompare)	const
operator=(const	KeyObject<	Etype	>	&toCopy)
operator=(const	Object	&toCopy)
operator==(const	Object	&toCompare)	const
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~KeyObject(void)
~Object(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common LogFormatOptions

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

LogFormatOptions	Member	List

This	is	the	complete	list	of	members	for	LogFormatOptions,	including	all
inherited	members.

getAddDateTime(void)	const
getAddFile(void)	const
getAddFunction(void)	const
getAddLevel(void)	const
getAddLine(void)	const
getMaxNumberOfNamespaces(void)	const
LogFormatOptions(void)	(defined	in	LogFormatOptions)
setAddDateTime(bool	addTime)
setAddFile(bool	addFile)
setAddFunction(bool	addFunction)
setAddLevel(bool	addLevel)
setAddLine(bool	addLine)
setMaxNumberOfNamespaces(unsigned	int	maxNumberOfNamespaces)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::ToString::toString(bool	withTypes=false)	const
typeToString(void)	const
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Logger

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Logger	Member	List

This	is	the	complete	list	of	members	for	Logger,	including	all	inherited
members.

getDebugOutputLevel(void)	const
getFormatOptions(void)	const
log(int	debugLevel,	const	EG_CHAR	*file,	const	EG_CHAR	*function,	bool	printBrackets,	unsigned	int	line,	const	EG_CHAR	*dbgMsg,...)	const
Logger(int	debugLevel=DebugLevel::WARNINGS)
setDebugOutputLevel(int	debugLevel)
setFormatOptions(const	LogFormatOptions	&formatOptions)
setListener(const	BaseListener	&listener)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::ToString::toString(bool	withTypes=false)	const
typeToString(void)	const
vlog(int	debugLevel,	const	EG_CHAR	*file,	const	EG_CHAR	*function,	bool	printBrackets,	unsigned	int	line,	const	EG_CHAR	*dbgMsg,	va_list	args)	const
~Logger(void)	(defined	in	Logger)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Object

	Photon	C++
Client	API		4.1.12.2

Object	Member	List

This	is	the	complete	list	of	members	for	Object,	including	all	inherited
members.

getCustomType(void)	const Object
getDebugOutputLevel(void) Base
getDimensions(void)	const Object
getLogFormatOptions(void) Base
getSizes(void)	const Object
getType(void)	const Object
Object(void) Object
Object(const	Object	&toCopy) Object
operator!=(const	Object	&toCompare)	const Object
operator=(const	Object	&toCopy) Object
operator==(const	Object	&toCompare)	const Object
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(JString	&retStr,	bool	withTypes=false)	const Object
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~Object(void) Object
~ToString(void) ToString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common Serializer

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Serializer	Member	List

This	is	the	complete	list	of	members	for	Serializer,	including	all	inherited
members.

getData(void)	const
getDebugOutputLevel(void)
getLogFormatOptions(void)
getSize(void)	const
push(const	T	&data)
push(const	T	pData,	typename	Helpers::ArrayLengthType<	T	>::type	arraySize)
push(const	T	pData,	const	short	*arraySizes)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ToString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

ToString	Member	List

This	is	the	complete	list	of	members	for	ToString,	including	all	inherited
members.

toString(JString	&retStr,	bool	withTypes=false)	const	=0 ToString pure	virtual

toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString virtual

~ToString(void) ToString virtual

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common UTF8String

	Photon	C++
Client	API		4.1.12.2

UTF8String	Member	List

This	is	the	complete	list	of	members	for	UTF8String,	including	all
inherited	members.

BaseCharString() BaseCharString
cstr(void)	const BaseCharString
getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
JStringRepresentation(void)	const UTF8String
length(void)	const BaseCharString
operator	const	char	*(void)	const UTF8String
operator	JString(void)	const UTF8String
operator=(const	UTF8String	&Rhs) UTF8String
operator=(const	JString	&Rhs) UTF8String
operator=(const	char	*Rhs) UTF8String
operator=(const	EG_CHAR	*Rhs) UTF8String
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
size(void)	const UTF8String
size(const	JString	&str) UTF8String
toString(JString	&retStr,	bool	withTypes=false)	const BaseCharString
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
UTF8String(void) UTF8String

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

UTF8String(const	UTF8String	&str) UTF8String
UTF8String(const	JString	&str) UTF8String
UTF8String(const	char	*str) UTF8String
UTF8String(const	EG_CHAR	*str) UTF8String
~Base(void) Base
~BaseCharString(void) BaseCharString
~ToString(void) ToString
~UTF8String(void) UTF8String

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Common ValueObject

	Photon	C++
Client	API		4.1.12.2

ValueObject<	Etype	>	Member	List

This	is	the	complete	list	of	members	for	ValueObject<	Etype	>,	including
all	inherited	members.

getCustomType(void)	const
getDataAddress(void)	const
getDataCopy(void)	const
getDebugOutputLevel(void)
getDimensions(void)	const
getLogFormatOptions(void)
getSizes(void)	const	(defined	in	ValueObject<	Etype	>)
getType(void)	const
Object(void)
Object(const	Object	&toCopy)
operator!=(const	Object	&toCompare)	const
operator=(const	ValueObject<	Etype	>	&toCopy)
operator=(const	Object	&toCopy)
operator==(const	Object	&toCompare)	const
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
ValueObject(const	ValueObject<	Etype	>	&toCopy)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

ValueObject(const	Object	&obj)
ValueObject(const	Object	*obj)
ValueObject(const	typename	Helpers::ConfirmAllowed<	Etype	>::type	&data)
ValueObject(const	typename	Helpers::ConfirmAllowed<	Etype	>::type	pData,	typename	Helpers::ArrayLengthType<	Etype	>::type	size)
ValueObject(const	typename	Helpers::ConfirmAllowed<	Etype	>::type	pData,	const	short	*sizes)
~Base(void)
~Object(void)
~ToString(void)
~ValueObject(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Lite LitePeer

	Photon	C++
Client	API		4.1.12.2

LitePeer	Member	List

This	is	the	complete	list	of	members	for	LitePeer,	including	all	inherited
members.

connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID=Common::JString())
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	&customData)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	const	short	*pArrSizes)
disconnect(void)
dispatchIncomingCommands(void)
establishEncryption(void)
fetchServerTimestamp(void)
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getConnectionProtocol(void)	const
getCRCEnabled(void)	const
getDebugOutputLevel(void)	const
getDisconnectTimeout(void)	const
getIncomingReliableCommandsCount(void)	const
getIsEncryptionAvailable(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const

getListener(void)
getLogFormatOptions(void)	const
getMaxAppIDLength(void)
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const
getPeerState(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getResentReliableCommands(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerAddress(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const
getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
initUDPEncryption(const	Common::JVector<	nByte	>	&encryptSecret,	const	Common::JVector<	nByte	>	&HMACSecret)
initUserDataEncryption(const	Common::JVector<	nByte	>	&secret)
LitePeer(Photon::PhotonListener	&listener,	nByte	connectionProtocol=Photon::ConnectionProtocol::DEFAULT)
opChangeGroups(const	Common::JVector<	nByte	>	*pGroupsToRemove,	const	Common::JVector<	nByte	>	*pGroupsToAdd)
opCustom(const	OperationRequest	&operationRequest,	bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
opGetProperties(nByte	channelID=0)
opGetPropertiesOfActor(const	Common::JString	*properties,	short	numProperties,	const	int	*actorNrList=NULL,	short	numActors=0,	nByte	channelID=0)

opGetPropertiesOfActor(const	nByte	*properties,	short	numProperties,	const	int	*actorNrList=NULL,	short	numActors=0,	nByte	channelID=0)
opGetPropertiesOfGame(const	Common::JString	*properties,	short	numProperties,	nByte	channelID=0)
opGetPropertiesOfGame(const	nByte	*properties,	short	numProperties,	nByte	channelID=0)
opJoin(const	Common::JString	&gameId,	const	Common::Hashtable	&gameProperties=Common::Hashtable(),	const	Common::Hashtable	&actorProperties=Common::Hashtable(),	bool	broadcastActorProperties=false)
opLeave(void)
opRaiseEvent(bool	reliable,	Ftype	parameters,	nByte	eventCode,	nByte	channelID=0,	nByte	eventCaching=EventCache::DO_NOT_CACHE,	const	int	*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte	receiverGroup=ReceiverGroup::OTHERS,	nByte	interestGroup=0)
opRaiseEvent(bool	reliable,	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	nByte	eventCode,	nByte	channelID=0,	nByte	eventCaching=EventCache::DO_NOT_CACHE,	const	int	*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte	receiverGroup=ReceiverGroup::OTHERS,	nByte	interestGroup=0)
opRaiseEvent(bool	reliable,	Ftype	pParameterArray,	const	short	*pArrSizes,	nByte	eventCode,	nByte	channelID=0,	nByte	eventCaching=EventCache::DO_NOT_CACHE,	const	int	*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte	receiverGroup=ReceiverGroup::OTHERS,	nByte	interestGroup=0)
opSetPropertiesOfActor(int	actorNr,	const	Common::Hashtable	&properties,	bool	broadcast,	nByte	channelID=0)
opSetPropertiesOfGame(const	Common::Hashtable	&properties,	bool	broadcast,	nByte	channelID=0)
PhotonPeer(PhotonListener	&listener,	nByte	connectionProtocol=ConnectionProtocol::DEFAULT)
pingServer(const	Common::JString	&address,	unsigned	int	pingAttempts)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)
sendAcksOnly(void)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setConnectionProtocol(nByte	connectionProtocol)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)
setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStasEnabled)
vitalStatsToString(bool	all)	const
~LitePeer(void)
~PhotonPeer(void)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing AuthenticationValues

	Photon	C++
Client	API		4.1.12.2

AuthenticationValues	Member	List

This	is	the	complete	list	of	members	for	AuthenticationValues,	including
all	inherited	members.

AuthenticationValues(void)
getData(void)	const
getDebugOutputLevel(void)
getLogFormatOptions(void)
getParameters(void)	const
getSecret(void)	const
getType(void)	const
getUserID(void)	const
setData(const	Common::JVector<	nByte	>	&data)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
setParameters(const	Common::JString	¶meters)
setParametersWithUsernameAndToken(const	Common::JString	&username,	const	Common::JString	&token)
setType(nByte	type)
setUserID(const	Common::JString	&userID)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~ToString(void)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Client

	Photon	C++
Client	API		4.1.12.2

Client	Member	List

This	is	the	complete	list	of	members	for	Client,	including	all	inherited
members.

Client(LoadBalancing::Listener	&listener,	const	Common::JString	&applicationID,	const	Common::JString	&appVersion,	nByte	connectionProtocol=Photon::ConnectionProtocol::DEFAULT,	bool	autoLobbyStats=false,	nByte	regionSelectionMode=RegionSelectionMode::DEFAULT,	bool	useAlternativePorts=false)
connect(const	AuthenticationValues	&authenticationValues=AuthenticationValues(),	const	Common::JString	&username=L"",	const	Common::JString	&serverAddress=M_NAMESERVER,	nByte	serverType=ServerType::NAME_SERVER)
disconnect(void)
dispatchIncomingCommands(void)
fetchServerTimestamp(void)
getAutoJoinLobby(void)	const
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getCountGamesRunning(void)	const
getCountPlayersIngame(void)	const
getCountPlayersOnline(void)	const
getCRCEnabled(void)	const
getCurrentlyJoinedRoom(void)
getDebugOutputLevel(void)	const
getDisconnectedCause(void)	const
getDisconnectTimeout(void)	const
getFriendList(void)	const
getFriendListAge(void)	const

getIncomingReliableCommandsCount(void)	const
getIsEncryptionAvailable(void)	const
getIsInGameRoom(void)	const
getIsInLobby(void)	const
getIsInRoom(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const
getLocalPlayer(void)
getLogFormatOptions(void)	const
getMasterserverAddress(void)	const
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getRegionWithBestPing(void)	const
getResentReliableCommands(void)	const
getRoomList(void)	const
getRoomNameList(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getState(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const

getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
getUserID(void)	const
opChangeGroups(const	Common::JVector<	nByte	>	*pGroupsToRemove,	const	Common::JVector<	nByte	>	*pGroupsToAdd)
opCreateRoom(const	Common::JString	&gameID,	const	RoomOptions	&options=RoomOptions(),	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())
opCustom(const	Photon::OperationRequest	&operationRequest,	bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
opCustomAuthenticationSendNextStepData(const	AuthenticationValues	&authenticationValues)
opFindFriends(const	Common::JString	*friendsToFind,	short	numFriendsToFind)
opJoinLobby(const	Common::JString	&lobbyName=Common::JString(),	nByte	lobbyType=LobbyType::DEFAULT)
opJoinOrCreateRoom(const	Common::JString	&gameID,	const	RoomOptions	&options=RoomOptions(),	int	cacheSliceIndex=0,	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())
opJoinRandomRoom(const	Common::Hashtable	&customRoomProperties=Common::Hashtable(),	nByte	maxPlayers=0,	nByte	matchmakingMode=MatchmakingMode::FILL_ROOM,	const	Common::JString	&lobbyName=Common::JString(),	nByte	lobbyType=LobbyType::DEFAULT,	const	Common::JString	&sqlLobbyFilter=Common::JString(),	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())
opJoinRoom(const	Common::JString	&gameID,	bool	rejoin=false,	int	cacheSliceIndex=0,	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())
opLeaveLobby(void)
opLeaveRoom(bool	willComeBack=false,	bool	sendAuthCookie=false)
opLobbyStats(const	Common::JVector<	LoadBalancing::LobbyStatsRequest	>	&lobbiesToQuery=Common::JVector<	LoadBalancing::LobbyStatsRequest	>())
opRaiseEvent(bool	reliable,	const	Ftype	¶meters,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())
opRaiseEvent(bool	reliable,	const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())
opRaiseEvent(bool	reliable,	const	Ftype	pParameterArray,	const	short	*pArrSizes,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())
opWebRpc(const	Common::JString	&uriPath)
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	¶meters,	bool	sendAuthCookie=false)
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	bool	sendAuthCookie=false)
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	pParameterArray,	const	short	*pArrSizes,	bool	sendAuthCookie=false)
reconnectAndRejoin(void)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)
selectRegion(const	Common::JString	&selectedRegion)
sendAcksOnly(void)
sendDirect(const	Ftype	¶meters,	int	targetPlayer,	bool	fallbackRelay=false)
sendDirect(const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	int	targetPlayer,	bool	fallbackRelay=false)
sendDirect(const	Ftype	pParameterArray,	const	short	*pArrSizes,	int	targetPlayer,	bool	fallbackRelay=false)
sendDirect(const	Ftype	¶meters,	const	Common::JVector<	int	>	&targetPlayers=Common::JVector<	int	>(),	bool	fallbackRelay=false)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

sendDirect(const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	const	Common::JVector<	int	>	&targetPlayers=Common::JVector<	int	>(),	bool	fallbackRelay=false)
sendDirect(const	Ftype	pParameterArray,	const	short	*pArrSizes,	const	Common::JVector<	int	>	&targetPlayers=Common::JVector<	int	>(),	bool	fallbackRelay=false)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setAutoJoinLobby(bool	autoJoinLobby)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)
setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStatsEnabled)
vitalStatsToString(bool	all)	const
~BaseListener()	(defined	in	BaseListener)
~Client(void)
~PhotonListener(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing FriendInfo

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

FriendInfo	Member	List

This	is	the	complete	list	of	members	for	FriendInfo,	including	all	inherited
members.

getDebugOutputLevel(void) Base
getIsInRoom(void)	const FriendInfo
getIsOnline(void)	const FriendInfo
getLogFormatOptions(void) Base
getRoom(void)	const FriendInfo
getUserID(void)	const FriendInfo
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const FriendInfo
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Listener

	Photon	C++
Client	API		4.1.12.2

Listener	Member	List

This	is	the	complete	list	of	members	for	Listener,	including	all	inherited
members.

clientErrorReturn(int	errorCode)=0	(defined	in	Listener)
connectionErrorReturn(int	errorCode)=0	(defined	in	Listener)
connectReturn(int	errorCode,	const	Common::JString	&errorString,	const	Common::JString	®ion,	const	Common::JString	&cluster)=0	(defined	in	
createRoomReturn(int	localPlayerNr,	const	Common::Hashtable	&roomProperties,	const	Common::Hashtable	&playerProperties,	int	errorCode,	const	Common::JString	&errorString)=0	(defined	in	
customEventAction(int	playerNr,	nByte	eventCode,	const	Common::Object	&eventContent)=0	(defined	in	
debugReturn(int	debugLevel,	const	Common::JString	&string)=0
disconnectReturn(void)=0	(defined	in	Listener)
joinLobbyReturn(void)=0	(defined	in	Listener)
joinOrCreateRoomReturn(int	localPlayerNr,	const	Common::Hashtable	&roomProperties,	const	Common::Hashtable	&playerProperties,	int	errorCode,	const	Common::JString	&errorString)=0	(defined	in	
joinRandomRoomReturn(int	localPlayerNr,	const	Common::Hashtable	&roomProperties,	const	Common::Hashtable	&playerProperties,	int	errorCode,	const	Common::JString	&errorString)=0	(defined	in	
joinRoomEventAction(int	playerNr,	const	Common::JVector<	int	>	&playernrs,	const	Player	&player)=0	(defined	in	
joinRoomReturn(int	localPlayerNr,	const	Common::Hashtable	&roomProperties,	const	Common::Hashtable	&playerProperties,	int	errorCode,	const	Common::JString	&errorString)=0	(defined	in	
leaveLobbyReturn(void)=0	(defined	in	Listener)
leaveRoomEventAction(int	playerNr,	bool	isInactive)=0	(defined	in	Listener
leaveRoomReturn(int	errorCode,	const	Common::JString	&errorString)=0	(defined	in	
onAppStatsUpdate(void)	(defined	in	Listener)
onAvailableRegions(const	Common::JVector<	Common::JString	>	&,	const	Common::JVector<	Common::JString	>	&)	(defined	in	
onCacheSliceChanged(int)	(defined	in	Listener)
onCustomAuthenticationIntermediateStep(const	Common::Dictionary<	Common::JString,	Common::Object	>	&)	(defined	in	
onCustomOperationResponse(const	Photon::OperationResponse	&operationResponse)	(defined	in	
onDirectMessage(const	Common::Object	&,	int,	bool)	(defined	in	Listener

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

onFindFriendsResponse(void)	(defined	in	Listener)
onLobbyStatsResponse(const	Common::JVector<	LobbyStatsResponse	>	&)	(defined	in	
onLobbyStatsUpdate(const	Common::JVector<	LobbyStatsResponse	>	&)	(defined	in	
onMasterClientChanged(int,	int)	(defined	in	Listener)
onPlayerPropertiesChange(int,	const	Common::Hashtable	&)	(defined	in	
onRoomListUpdate(void)	(defined	in	Listener)
onRoomPropertiesChange(const	Common::Hashtable	&)	(defined	in	Listener
onSecretReceival(const	Common::JString	&)	(defined	in	Listener)
serverErrorReturn(int	errorCode)=0	(defined	in	Listener)
warningReturn(int	warningCode)=0	(defined	in	Listener)
webRpcReturn(int,	const	Common::JString	&,	const	Common::JString	&,	int,	const	Common::Dictionary<	Common::Object,	Common::Object	>	&)	(defined	in	
~BaseListener()	(defined	in	BaseListener)
~Listener(void)	(defined	in	Listener)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing LobbyStatsRequest

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

LobbyStatsRequest	Member	List

This	is	the	complete	list	of	members	for	LobbyStatsRequest,	including
all	inherited	members.

getDebugOutputLevel(void)
getLogFormatOptions(void)
getName(void)	const
getType(void)	const
LobbyStatsRequest(const	Common::JString	&name=Common::JString(),	nByte	type=LobbyType::DEFAULT)
setDebugOutputLevel(int	debugLevel)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing LobbyStatsResponse

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

LobbyStatsResponse	Member	List

This	is	the	complete	list	of	members	for	LobbyStatsResponse,	including
all	inherited	members.

getDebugOutputLevel(void) Base
getLogFormatOptions(void) Base
getName(void)	const LobbyStatsResponse
getPeerCount(void)	const LobbyStatsResponse
getRoomCount(void)	const LobbyStatsResponse
getType(void)	const LobbyStatsResponse
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const LobbyStatsResponse
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing MutablePlayer

	Photon	C++
Client	API		4.1.12.2

MutablePlayer	Member	List

This	is	the	complete	list	of	members	for	MutablePlayer,	including	all
inherited	members.

addCustomProperties(const	Common::Hashtable	&customProperties,	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	&value,	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	pValueArray,	typename	Common::Helpers::ArrayLengthType<	vtype	>::type	arrSize,	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	pValueArray,	const	short	*pArrSizes,	const	WebFlags	&webflags=WebFlags())	(defined	in	
getCustomProperties()	const
getDebugOutputLevel(void)
getIsInactive(void)	const
getIsMasterClient(void)	const
getLogFormatOptions(void)
getName()	const
getNumber(void)	const
getUserID()	const
mergeCustomProperties(const	Common::Hashtable	&customProperties,	const	WebFlags	&webflags=WebFlags())	(defined	in	
MutablePlayer(const	MutablePlayer	&toCopy)	(defined	in	MutablePlayer
operator=(const	Player	&toCopy)
operator=(const	MutablePlayer	&toCopy)	(defined	in	MutablePlayer)
operator==(const	Player	&player)	const
Player(const	Player	&toCopy)
removeCustomProperties(const	ktype	*keys,	unsigned	int	count,	const	WebFlags	&webflags=WebFlags())	(defined	in	
removeCustomProperty(const	ktype	&key,	const	WebFlags	&webflags=WebFlags())	(defined	in	
setDebugOutputLevel(int	debugLevel)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
setName(const	Common::JString	&name,	const	WebFlags	&webflags=WebFlags())	(defined	in	
toString(Common::JString	&retStr,	bool	withTypes=false)	const
toString(bool	withTypes,	bool	withCustomProperties)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~MutablePlayer(void)	(defined	in	MutablePlayer)
~Player(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing MutableRoom

	Photon	C++
Client	API		4.1.12.2

MutableRoom	Member	List

This	is	the	complete	list	of	members	for	MutableRoom,	including	all
inherited	members.

addCustomProperties(const	Common::Hashtable	&customProperties,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	&value,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	pValueArray,	typename	Common::Helpers::ArrayLengthType<	vtype	>::type	arrSize,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
addCustomProperty(const	ktype	&key,	const	vtype	pValueArray,	const	short	*pArrSizes,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
getCustomProperties(void)	const
getDebugOutputLevel(void)
getDirectMode(void)	const
getEmptyRoomTtl(void)	const	(defined	in	MutableRoom)
getExpectedUsers(void)	const	(defined	in	MutableRoom)
getIsOpen(void)	const
getIsVisible(void)	const	(defined	in	MutableRoom)
getLogFormatOptions(void)
getMasterClientID(void)	const	(defined	in	MutableRoom)
getMaxPlayers(void)	const
getName(void)	const
getPlayerCount(void)	const
getPlayerForNumber(int	playerNumber)	const	(defined	in	MutableRoom
getPlayers(void)	const	(defined	in	MutableRoom)
getPlayerTtl(void)	const	(defined	in	MutableRoom)
getPlugins(void)	const	(defined	in	MutableRoom)
getPropsListedInLobby(void)	const	(defined	in	MutableRoom)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

getPublishUserID(void)	const	(defined	in	MutableRoom)
getSuppressRoomEvents(void)	const	(defined	in	MutableRoom)
mergeCustomProperties(const	Common::Hashtable	&customProperties,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
MutableRoom(const	MutableRoom	&toCopy)	(defined	in	MutableRoom)
operator=(const	Room	&toCopy)
operator=(const	MutableRoom	&toCopy)	(defined	in	MutableRoom)
operator==(const	Room	&room)	const
removeCustomProperties(const	ktype	*keys,	unsigned	int	count,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
removeCustomProperty(const	ktype	&key,	const	Common::Hashtable	&expectedCustomProperties=Common::Hashtable(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
Room(const	Room	&toCopy)
setDebugOutputLevel(int	debugLevel)
setExpectedUsers(const	Common::JVector<	Common::JString	>	&expectedUsers,	const	WebFlags	&webflags=WebFlags())	(defined	in	
setIsOpen(bool	isOpen,	const	WebFlags	&webflags=WebFlags())	(defined	in	
setIsVisible(bool	isVisible,	const	WebFlags	&webflags=WebFlags())	(defined	in	
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
setMaxPlayers(nByte	maxPlayers,	const	WebFlags	&webflags=WebFlags())	(defined	in	
setPropsListedInLobby(const	Common::JVector<	Common::JString	>	&propsListedInLobby,	const	Common::JVector<	Common::JString	>	&expectedList=Common::JVector<	Common::JString	>(),	const	WebFlags	&webflags=WebFlags())	(defined	in	
toString(bool	withTypes=false,	bool	withCustomProperties=false,	bool	withPlayers=false)	const	(defined	in	
ExitGames::LoadBalancing::Room::toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::LoadBalancing::Room::toString(bool	withTypes,	bool	withCustomProperties)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~MutableRoom(void)	(defined	in	MutableRoom)
~Room(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Peer

	Photon	C++
Client	API		4.1.12.2

Peer	Member	List

This	is	the	complete	list	of	members	for	Peer,	including	all	inherited
members.

connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID=Common::JString())
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	&customData)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	const	short	*pArrSizes)
disconnect(void)
dispatchIncomingCommands(void)
establishEncryption(void)
fetchServerTimestamp(void)
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getConnectionProtocol(void)	const
getCRCEnabled(void)	const
getDebugOutputLevel(void)	const
getDisconnectTimeout(void)	const
getIncomingReliableCommandsCount(void)	const
getIsEncryptionAvailable(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const

getListener(void)
getLogFormatOptions(void)	const
getMaxAppIDLength(void)
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const
getPeerState(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getResentReliableCommands(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerAddress(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const
getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
initUDPEncryption(const	Common::JVector<	nByte	>	&encryptSecret,	const	Common::JVector<	nByte	>	&HMACSecret)
initUserDataEncryption(const	Common::JVector<	nByte	>	&secret)
opAuthenticate(const	Common::JString	&appID,	const	Common::JString	&appVersion,	bool	encrypted,	const	AuthenticationValues	&authenticationValues=AuthenticationValues(),	bool	lobbyStats=false,	const	Common::JString	®ionCode=Common::JString())	(defined	in	
opAuthenticateOnce(const	Common::JString	&appID,	const	Common::JString	&appVersion,	nByte	connectionProtocol,	nByte	encryptionMode,	const	AuthenticationValues	&authenticationValues=AuthenticationValues(),	bool	lobbyStats=false,	const	Common::JString	®ionCode=Common::JString())	(defined	in	
opChangeGroups(const	Common::JVector<	nByte	>	*pGroupsToRemove,	const	Common::JVector<	nByte	>	*pGroupsToAdd)	(defined	in	
opCreateRoom(const	Common::JString	&gameID,	const	RoomOptions	&options=RoomOptions(),	const	Common::Hashtable	&customLocalPlayerProperties=Common::Hashtable(),	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())	(defined	in	
opCustom(const	OperationRequest	&operationRequest,	bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)

opFindFriends(const	Common::JString	*friendsToFind,	short	numFriendsToFind)	(defined	in	
opGetRegions(bool	encrypted,	const	Common::JString	&appID)	(defined	in	
opJoinLobby(const	Common::JString	&lobbyName=Common::JString(),	nByte	lobbyType=LobbyType::DEFAULT)	(defined	in	
opJoinRandomRoom(const	Common::Hashtable	&customRoomProperties=Common::Hashtable(),	nByte	maxPlayers=0,	nByte	matchmakingMode=MatchmakingMode::FILL_ROOM,	const	Common::JString	&lobbyName=Common::JString(),	nByte	lobbyType=LobbyType::DEFAULT,	const	Common::JString	&sqlLobbyFilter=Common::JString(),	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())	(defined	in	
opJoinRoom(const	Common::JString	&gameID,	const	RoomOptions	&options=RoomOptions(),	const	Common::Hashtable	&customLocalPlayerProperties=Common::Hashtable(),	bool	createIfNotExists=false,	bool	rejoin=false,	int	cacheSliceIndex=0,	const	Common::JVector<	Common::JString	>	&expectedUsers=Common::JVector<	Common::JString	>())	(defined	in	
opLeaveLobby(void)	(defined	in	Peer)
opLeaveRoom(bool	willComeBack=false,	bool	sendAuthCookie=false)	(defined	in	
opLobbyStats(const	Common::JVector<	LoadBalancing::LobbyStatsRequest	>	&lobbiesToQuery=Common::JVector<	LoadBalancing::LobbyStatsRequest	>())	(defined	in	
opRaiseEvent(bool	reliable,	const	Ftype	¶meters,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())	(defined	in	
opRaiseEvent(bool	reliable,	const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())	(defined	in	
opRaiseEvent(bool	reliable,	const	Ftype	pParameterArray,	const	short	*pArrSizes,	nByte	eventCode,	const	RaiseEventOptions	&options=RaiseEventOptions())	(defined	in	
opSetPropertiesOfPlayer(int	playerNr,	const	Common::Hashtable	&properties,	const	Common::Hashtable	&expectedProperties=Common::Hashtable(),	WebFlags	webFlags=WebFlags())	(defined	in	
opSetPropertiesOfRoom(const	Common::Hashtable	&properties,	const	Common::Hashtable	&expectedProperties=Common::Hashtable(),	WebFlags	webFlags=WebFlags())	(defined	in	
opWebRpc(const	Common::JString	&uriPath)	(defined	in	Peer)
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	¶meters,	bool	sendAuthCookie=false)	(defined	in	
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	pParameterArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize,	bool	sendAuthCookie=false)	(defined	in	
opWebRpc(const	Common::JString	&uriPath,	const	Ftype	pParameterArray,	const	short	*pArrSizes,	bool	sendAuthCookie=false)	(defined	in	
Peer(Photon::PhotonListener	&listener,	nByte	connectionProtocol=Photon::ConnectionProtocol::DEFAULT)	(defined	in	
PhotonPeer(PhotonListener	&listener,	nByte	connectionProtocol=ConnectionProtocol::DEFAULT)
pingServer(const	Common::JString	&address,	unsigned	int	pingAttempts)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)
sendAcksOnly(void)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setConnectionProtocol(nByte	connectionProtocol)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStasEnabled)
vitalStatsToString(bool	all)	const
~Peer(void)	(defined	in	Peer)
~PhotonPeer(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Player

	Photon	C++
Client	API		4.1.12.2

Player	Member	List

This	is	the	complete	list	of	members	for	Player,	including	all	inherited
members.

getCustomProperties()	const Player
getDebugOutputLevel(void) Base
getIsInactive(void)	const Player
getIsMasterClient(void)	const Player
getLogFormatOptions(void) Base
getName()	const Player
getNumber(void)	const Player
getUserID()	const Player
operator=(const	Player	&toCopy) Player
operator==(const	Player	&player)	const Player
Player(const	Player	&toCopy) Player
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const Player
toString(bool	withTypes,	bool	withCustomProperties)	const Player
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~Player(void) Player
~ToString(void) ToString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing RaiseEventOptions

	Photon	C++
Client	API		4.1.12.2

RaiseEventOptions	Member	List

This	is	the	complete	list	of	members	for	RaiseEventOptions,	including
all	inherited	members.

getCacheSliceIndex(void)	const
getChannelID(void)	const
getDebugOutputLevel(void)
getEventCaching(void)	const
getInterestGroup(void)	const
getLogFormatOptions(void)
getNumTargetPlayers(void)	const
getReceiverGroup(void)	const
getTargetPlayers(void)	const
getWebFlags(void)	const
operator=(const	RaiseEventOptions	&toCopy)
RaiseEventOptions(nByte	channelID=0,	nByte	eventCaching=Lite::EventCache::DO_NOT_CACHE,	const	int	*targetPlayers=NULL,	short	numTargetPlayers=0,	nByte	receiverGroup=Lite::ReceiverGroup::OTHERS,	nByte	interestGroup=0,	const	WebFlags	&webFlags=WebFlags(),	int	cacheSliceIndex=0)
RaiseEventOptions(const	RaiseEventOptions	&toCopy)
setCacheSliceIndex(int	cacheSliceIndex)
setChannelID(nByte	channelID)
setDebugOutputLevel(int	debugLevel)
setEventCaching(nByte	eventCaching)
setInterestGroup(nByte	interestGroup)
setListener(const	BaseListener	*baseListener)
setLogFormatOptions(const	LogFormatOptions	&options)
setReceiverGroup(nByte	receiverGroup)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setTargetPlayers(const	int	*targetPlayers,	short	numTargetPlayers)
setWebFlags(const	WebFlags	&webFlags)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~RaiseEventOptions(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing Room

	Photon	C++
Client	API		4.1.12.2

Room	Member	List

This	is	the	complete	list	of	members	for	Room,	including	all	inherited
members.

getCustomProperties(void)	const Room
getDebugOutputLevel(void) Base
getDirectMode(void)	const Room
getIsOpen(void)	const Room
getLogFormatOptions(void) Base
getMaxPlayers(void)	const Room
getName(void)	const Room
getPlayerCount(void)	const Room
operator=(const	Room	&toCopy) Room
operator==(const	Room	&room)	const Room
Room(const	Room	&toCopy) Room
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const Room
toString(bool	withTypes,	bool	withCustomProperties)	const Room
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~Room(void) Room
~ToString(void) ToString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing RoomOptions

	Photon	C++
Client	API		4.1.12.2

RoomOptions	Member	List

This	is	the	complete	list	of	members	for	RoomOptions,	including	all
inherited	members.

getCustomRoomProperties(void)	const
getDebugOutputLevel(void)
getDirectMode(void)	const
getEmptyRoomTtl(void)	const
getIsOpen(void)	const
getIsVisible(void)	const
getLobbyName(void)	const
getLobbyType(void)	const
getLogFormatOptions(void)
getMaxPlayers(void)	const
getPlayerTtl(void)	const
getPlugins(void)	const
getPropsListedInLobby(void)	const
getPublishUserID(void)	const
getSuppressRoomEvents(void)	const
operator=(const	RoomOptions	&toCopy)
RoomOptions(bool	isVisible=true,	bool	isOpen=true,	nByte	maxPlayers=0,	const	Common::Hashtable	&customRoomProperties=Common::Hashtable(),	const	Common::JVector<	Common::JString	>	&propsListedInLobby=Common::JVector<	Common::JString	>(),	const	Common::JString	&lobbyName=Common::JString(),	nByte	lobbyType=LobbyType::DEFAULT,	int	playerTtl=0,	int	emptyRoomTtl=0,	bool	suppressRoomEvents=false,	const	Common::JVector<	Common::JString	>	*pPlugins=NULL,	bool	publishUserID=false,	nByte	directMode=DirectMode::NONE)
RoomOptions(const	RoomOptions	&toCopy)
setCustomRoomProperties(const	Common::Hashtable	&customRoomProperties)
setDebugOutputLevel(int	debugLevel)
setDirectMode(nByte	directMode)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

setEmptyRoomTtl(int	emptyRoomTtl)
setIsOpen(bool	isOpen)
setIsVisible(bool	isVisible)
setListener(const	BaseListener	*baseListener)
setLobbyName(const	Common::JString	&lobbyName)
setLobbyType(nByte	lobbyType)
setLogFormatOptions(const	LogFormatOptions	&options)
setMaxPlayers(nByte	maxPlayers)
setPlayerTtl(int	playerTtl)
setPlugins(const	Common::JVector<	Common::JString	>	*pPlugins)
setPropsListedInLobby(const	Common::JVector<	Common::JString	>	&propsListedInLobby)
setPublishUserID(bool	publishUserID)
setSuppressRoomEvents(bool	suppressRoomEvents)
toString(Common::JString	&retStr,	bool	withTypes=false)	const
ExitGames::Common::Base::toString(bool	withTypes=false)	const
typeToString(void)	const
~Base(void)
~RoomOptions(void)
~ToString(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames LoadBalancing WebFlags

	Photon	C++
Client	API		4.1.12.2

WebFlags	Member	List

This	is	the	complete	list	of	members	for	WebFlags,	including	all	inherited
members.

getDebugOutputLevel(void) Base
getFlags(void)	const WebFlags
getHttpForward(void)	const WebFlags
getLogFormatOptions(void) Base
getSendAuthCookie(void)	const WebFlags
getSendState(void)	const WebFlags
getSendSync(void)	const WebFlags
setDebugOutputLevel(int	debugLevel) Base
setFlags(nByte	webFlags) WebFlags
setHttpForward(bool	httpWebForward) WebFlags
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
setSendAuthCookie(bool	sendAuthCookie) WebFlags
setSendState(bool	sendState) WebFlags
setSendSync(bool	sendSync) WebFlags
toString(Common::JString	&retStr,	bool	withTypes=false)	const WebFlags
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
WebFlags(nByte	webFlags=0) WebFlags
~Base(void) Base
~ToString(void) ToString

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort Protocol

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Protocol	Member	List

This	is	the	complete	list	of	members	for	Protocol,	including	all	inherited
members.

GAME	(defined	in	Protocol) Protocol
MASTER	(defined	in	Protocol) Protocol
NAME	(defined	in	Protocol) Protocol

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort TCP

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

TCP	Member	List

This	is	the	complete	list	of	members	for	TCP,	including	all	inherited
members.

GAME	(defined	in	TCP) TCP static

MASTER	(defined	in	TCP) TCP static

NAME	(defined	in	TCP) TCP static

TCP(void)	(defined	in	TCP) TCP

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort UDP

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

UDP	Member	List

This	is	the	complete	list	of	members	for	UDP,	including	all	inherited
members.

GAME	(defined	in	UDP) UDP static

MASTER	(defined	in	UDP) UDP static

NAME	(defined	in	UDP) UDP static

UDP(void)	(defined	in	UDP) UDP

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort UDPAlternative

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

UDPAlternative	Member	List

This	is	the	complete	list	of	members	for	UDPAlternative,	including	all
inherited	members.

GAME	(defined	in	UDPAlternative) UDPAlternative static

MASTER	(defined	in	UDPAlternative) UDPAlternative static

NAME	(defined	in	UDPAlternative) UDPAlternative static

UDPAlternative(void)	(defined	in	UDPAlternative) UDPAlternative

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort WS

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

WS	Member	List

This	is	the	complete	list	of	members	for	WS,	including	all	inherited
members.

GAME	(defined	in	WS) WS static

MASTER	(defined	in	WS) WS static

NAME	(defined	in	WS) WS static

WS(void)	(defined	in	WS) WS

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon NetworkPort WSS

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

WSS	Member	List

This	is	the	complete	list	of	members	for	WSS,	including	all	inherited
members.

GAME	(defined	in	WSS) WSS static

MASTER	(defined	in	WSS) WSS static

NAME	(defined	in	WSS) WSS static

WSS(void)	(defined	in	WSS) WSS

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough Puncher

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

Puncher	Member	List

This	is	the	complete	list	of	members	for	Puncher,	including	all	inherited
members.

clear(void)	(defined	in	Puncher)
init(PunchListener	*pPunchListener)	(defined	in	Puncher)
processPackage(const	Common::JVector<	nByte	>	&packet,	bool	relay,	int	relayRemoteID)	(defined	in	
Puncher(RelayClient	*pRelayClient,	const	Common::Logger	&logger)	(defined	in	
sendDirect(const	Common::JVector<	nByte	>	&buffer,	int	targetID,	bool	fallbackRelay)	(defined	in	
sendDirect(const	Common::JVector<	nByte	>	&buffer,	const	Common::JVector<	int	>	&targetIDs,	bool	fallbackRelay)	(defined	in	
service(void)	(defined	in	Puncher)
startPunch(int	remoteID)	(defined	in	Puncher)
~Puncher(void)	(defined	in	Puncher)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough PunchListener

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

PunchListener	Member	List

This	is	the	complete	list	of	members	for	PunchListener,	including	all
inherited	members.

onReceiveDirect(const	Common::JVector<	nByte	>	&inBuf,	int	remoteID,	bool	relay)=0	(defined	in	
~PunchListener(void)	(defined	in	PunchListener)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon Punchthrough RelayClient

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

RelayClient	Member	List

This	is	the	complete	list	of	members	for	RelayClient,	including	all
inherited	members.

getLocalID(void)=0	(defined	in	RelayClient)
sendRelay(const	Common::JVector<	nByte	>	&buffer,	const	Common::JVector<	int	>	&targetIDs)=0	(defined	in	
~RelayClient(void)	(defined	in	RelayClient)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon EventData

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

EventData	Member	List

This	is	the	complete	list	of	members	for	EventData,	including	all	inherited
members.

EventData(const	EventData	&toCopy)
getCode(void)	const
getParameterForCode(nByte	parameterCode)	const
getParameters(void)	const
operator=(const	EventData	&toCopy)
operator[](unsigned	int	index)	const
toString(bool	withParameters=false,	bool	withParameterTypes=false)	const
~EventData(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon OperationRequest

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

OperationRequest	Member	List

This	is	the	complete	list	of	members	for	OperationRequest,	including	all
inherited	members.

getOperationCode(void)	const
getParameterForCode(nByte	parameterCode)	const
getParameters(void)	const
getParameters(void)
OperationRequest(nByte	operationCode,	const	OperationRequestParameters	¶meters=OperationRequestParameters())
OperationRequest(const	OperationRequest	&toCopy)
operator=(const	OperationRequest	&toCopy)
operator[](unsigned	int	index)	const
setParameters(const	OperationRequestParameters	¶meters)
toString(bool	withParameters=false,	bool	withParameterTypes=false)	const
~OperationRequest(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon OperationResponse

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

OperationResponse	Member	List

This	is	the	complete	list	of	members	for	OperationResponse,	including
all	inherited	members.

getDebugMessage(void)	const
getOperationCode(void)	const
getParameterForCode(nByte	parameterCode)	const
getParameters(void)	const
getReturnCode(void)	const
OperationResponse(const	OperationResponse	&toCopy)
operator=(const	OperationResponse	&toCopy)
operator[](unsigned	int	index)	const
toString(bool	withDebugMessage=false,	bool	withParameters=false,	bool	withParameterTypes=false)	const
~OperationResponse(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon PhotonListener

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

	Photon	C++
Client	API		4.1.12.2

PhotonListener	Member	List

This	is	the	complete	list	of	members	for	PhotonListener,	including	all
inherited	members.

debugReturn(int	debugLevel,	const	JString	&string)=0
onEvent(const	EventData	&eventData)=0
onOperationResponse(const	OperationResponse	&operationResponse)=0
onPingResponse(const	Common::JString	&address,	unsigned	int	pingResult)
onStatusChanged(int	statusCode)=0
~BaseListener()	(defined	in	BaseListener)
~PhotonListener(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon PhotonPeer

	Photon	C++
Client	API		4.1.12.2

PhotonPeer	Member	List

This	is	the	complete	list	of	members	for	PhotonPeer,	including	all
inherited	members.

connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID=Common::JString())
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	&customData)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	typename	Common::Helpers::ArrayLengthType<	Ftype	>::type	arrSize)
connect(const	Common::JString	&ipAddr,	const	Common::JString	&appID,	const	Ftype	pCustomDataArray,	const	short	*pArrSizes)
disconnect(void)
dispatchIncomingCommands(void)
establishEncryption(void)
fetchServerTimestamp(void)
getByteCountCurrentDispatch(void)	const
getByteCountLastOperation(void)	const
getBytesIn(void)	const
getBytesOut(void)	const
getChannelCountUserChannels(void)	const
getConnectionProtocol(void)	const
getCRCEnabled(void)	const
getDebugOutputLevel(void)	const
getDisconnectTimeout(void)	const
getIncomingReliableCommandsCount(void)	const
getIsEncryptionAvailable(void)	const
getIsPayloadEncryptionAvailable(void)	const
getLimitOfUnreliableCommands(void)	const

getListener(void)
getLogFormatOptions(void)	const
getMaxAppIDLength(void)
getPacketLossByCRC(void)	const
getPeerCount(void)
getPeerID(void)	const
getPeerState(void)	const
getQueuedIncomingCommands(void)	const
getQueuedOutgoingCommands(void)	const
getQuickResendAttempts(void)	const
getResentReliableCommands(void)	const
getRoundTripTime(void)	const
getRoundTripTimeVariance(void)	const
getSentCountAllowance(void)	const
getServerAddress(void)	const
getServerTime(void)	const
getServerTimeOffset(void)	const
getTimePingInterval(void)	const
getTimestampOfLastSocketReceive(void)	const
getTrafficStatsElapsedMs(void)	const
getTrafficStatsEnabled(void)	const
getTrafficStatsGameLevel(void)	const
getTrafficStatsIncoming(void)	const
getTrafficStatsOutgoing(void)	const
initUDPEncryption(const	Common::JVector<	nByte	>	&encryptSecret,	const	Common::JVector<	nByte	>	&HMACSecret)
initUserDataEncryption(const	Common::JVector<	nByte	>	&secret)
opCustom(const	OperationRequest	&operationRequest,	bool	sendReliable,	nByte	channelID=0,	bool	encrypt=false)
PhotonPeer(PhotonListener	&listener,	nByte	connectionProtocol=ConnectionProtocol::DEFAULT)
pingServer(const	Common::JString	&address,	unsigned	int	pingAttempts)
resetTrafficStats(void)
resetTrafficStatsMaximumCounters(void)

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

sendAcksOnly(void)
sendOutgoingCommands(void)
service(bool	dispatchIncomingCommands=true)
serviceBasic(void)
setConnectionProtocol(nByte	connectionProtocol)
setCRCEnabled(bool	crcEnabled)
setDebugOutputLevel(int	debugLevel)
setDisconnectTimeout(int	disconnectTimeout)
setLimitOfUnreliableCommands(int	value)
setLogFormatOptions(const	Common::LogFormatOptions	&formatOptions)
setQuickResendAttempts(nByte	quickResendAttempts)
setSentCountAllowance(int	sentCountAllowance)
setTimePingInterval(int	timePingInterval)
setTrafficStatsEnabled(bool	trafficStasEnabled)
vitalStatsToString(bool	all)	const
~PhotonPeer(void)

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon TrafficStats

	Photon	C++
Client	API		4.1.12.2

TrafficStats	Member	List

This	is	the	complete	list	of	members	for	TrafficStats,	including	all
inherited	members.

getControlCommandBytes(void)	const TrafficStats
getControlCommandCount(void)	const TrafficStats
getDebugOutputLevel(void) Base
getFragmentCommandBytes(void)	const TrafficStats
getFragmentCommandCount(void)	const TrafficStats
getLogFormatOptions(void) Base
getPackageHeaderSize(void)	const TrafficStats
getReliableCommandBytes(void)	const TrafficStats
getReliableCommandCount(void)	const TrafficStats
getTimestampOfLastAck(void)	const TrafficStats
getTimestampOfLastReliableCommand(void)	const TrafficStats
getTotalCommandBytes(void)	const TrafficStats
getTotalCommandCount(void)	const TrafficStats
getTotalCommandsInPackets(void)	const TrafficStats
getTotalPacketBytes(void)	const TrafficStats
getTotalPacketCount(void)	const TrafficStats
getUnreliableCommandBytes(void)	const TrafficStats
getUnreliableCommandCount(void)	const TrafficStats
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

toString(Common::JString	&retStr,	bool	withTypes=false)	const TrafficStats
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString
~TrafficStats(void) TrafficStats

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

ExitGames Photon TrafficStatsGameLevel

	Photon	C++
Client	API		4.1.12.2

TrafficStatsGameLevel	Member	List

This	is	the	complete	list	of	members	for	TrafficStatsGameLevel,
including	all	inherited	members.

getDebugOutputLevel(void) Base
getDispatchIncomingCommandsCalls(void)	const TrafficStatsGameLevel
getEventByteCount(void)	const TrafficStatsGameLevel
getEventCount(void)	const TrafficStatsGameLevel
getLogFormatOptions(void) Base
getLongestDeltaBetweenDispatching(void)	const TrafficStatsGameLevel
getLongestDeltaBetweenSending(void)	const TrafficStatsGameLevel
getLongestEventCallback(void)	const TrafficStatsGameLevel
getLongestEventCallbackCode(void)	const TrafficStatsGameLevel
getLongestOpResponseCallback(void)	const TrafficStatsGameLevel
getLongestOpResponseCallbackOpCode(void)	const TrafficStatsGameLevel
getOperationByteCount(void)	const TrafficStatsGameLevel
getOperationCount(void)	const TrafficStatsGameLevel
getResultByteCount(void)	const TrafficStatsGameLevel
getResultCount(void)	const TrafficStatsGameLevel
getSendOutgoingCommandsCalls(void)	const TrafficStatsGameLevel
getTotalByteCount(void)	const TrafficStatsGameLevel
getTotalIncomingByteCount(void)	const TrafficStatsGameLevel
getTotalIncomingMessageCount(void)	const TrafficStatsGameLevel
getTotalMessageCount(void)	const TrafficStatsGameLevel
getTotalOutgoingByteCount(void)	const TrafficStatsGameLevel

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

getTotalOutgoingMessageCount(void)	const TrafficStatsGameLevel
resetMaximumCounters(void) TrafficStatsGameLevel
setDebugOutputLevel(int	debugLevel) Base
setListener(const	BaseListener	*baseListener) Base
setLogFormatOptions(const	LogFormatOptions	&options) Base
toString(Common::JString	&retStr,	bool	withTypes=false)	const TrafficStatsGameLevel
ExitGames::Common::Base::toString(bool	withTypes=false)	const ToString
toStringVitalStats(void)	const TrafficStatsGameLevel
typeToString(void)	const ToString
~Base(void) Base
~ToString(void) ToString
~TrafficStatsGameLevel(void) TrafficStatsGameLevel

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Photon	C++
Client	API		4.1.12.2
Class	Hierarchy

Go	to	the	textual	class	hierarchy

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp

	Photon	C++
Client	API		4.1.12.2

Common-cpp	Directory	Reference

Directory	dependency	graph	for	Common-cpp:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Directories

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc

	Photon	C++
Client	API		4.1.12.2

inc	Directory	Reference

Directory	dependency	graph	for	inc:

Directories
directory		 platform_definitions
	

Files
file		 ANSIString.h
	
file		 Base.h
	
file		 BaseCharString.h
	
file		 BaseListener.h
	
file		 Common.h
	
file		 CustomType.h
	
file		 CustomTypeBase.h
	
file		 CustomTypeFactory.h
	
file		 DeSerializer.h
	
file		 Dictionary.h
	
file		 DictionaryBase.h
	
file		 EGTime.h
	
file		 Hashtable.h
	
file		 JString.h
	
file		 JVector.h
	
file		 KeyObject.h
	
file		 Logger.h
	

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

file		 Object.h
	
file		 Serializer.h
	
file		 ToString.h
	
file		 UTF8String.h
	
file		 ValueObject.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc MemoryManagement

	Photon	C++
Client	API		4.1.12.2

MemoryManagement	Directory	Reference

Directory	dependency	graph	for	MemoryManagement:

Directories

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 Allocate.h
	
file		 AllocatorInterface.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp

	Photon	C++
Client	API		4.1.12.2

LoadBalancing-cpp	Directory	Reference

Directory	dependency	graph	for	LoadBalancing-cpp:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Directories

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc

	Photon	C++
Client	API		4.1.12.2

inc	Directory	Reference

Directory	dependency	graph	for	inc:

Directories

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 LoadBalancing-cpp/inc/AuthenticationValues.h
	
file		 LoadBalancing-cpp/inc/Client.h
	
file		 FriendInfo.h
	
file		 LoadBalancing-cpp/inc/Listener.h
	
file		 LobbyStatsRequest.h
	
file		 LobbyStatsResponse.h
	
file		 MutablePlayer.h
	
file		 MutableRoom.h
	
file		 LoadBalancing-cpp/inc/Peer.h
	
file		 Player.h
	
file		 RaiseEventOptions.h
	
file		 Room.h
	
file		 RoomOptions.h
	
file		 WebFlags.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp

	Photon	C++
Client	API		4.1.12.2

Chat-cpp	Directory	Reference

Directory	dependency	graph	for	Chat-cpp:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Directories

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc

	Photon	C++
Client	API		4.1.12.2

inc	Directory	Reference

Directory	dependency	graph	for	inc:

Directories

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 Chat-cpp/inc/AuthenticationValues.h
	
file		 Channel.h
	
file		 Chat-cpp/inc/Client.h
	
file		 Chat-cpp/inc/Listener.h
	
file		 Chat-cpp/inc/Peer.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Chat-cpp inc Enums

	Photon	C++
Client	API		4.1.12.2

Enums	Directory	Reference

Directory	dependency	graph	for	Enums:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 ClientState.h
	
file		 Chat-cpp/inc/Enums/CustomAuthenticationType.h
	
file		 Chat-cpp/inc/Enums/DisconnectCause.h
	
file		 Chat-cpp/inc/Enums/ErrorCode.h
	
file		 UserStatus.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp

	Photon	C++
Client	API		4.1.12.2

Photon-cpp	Directory	Reference

Directory	dependency	graph	for	Photon-cpp:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Directories

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc

	Photon	C++
Client	API		4.1.12.2

inc	Directory	Reference

Directory	dependency	graph	for	inc:

Directories

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 EventData.h
	
file		 LitePeer.h
	
file		 OperationRequest.h
	
file		 OperationResponse.h
	
file		 PhotonListener.h
	
file		 PhotonPeer.h
	
file		 TrafficStats.h
	
file		 TrafficStatsGameLevel.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Photon-cpp inc Enums

	Photon	C++
Client	API		4.1.12.2

Enums	Directory	Reference

Directory	dependency	graph	for	Enums:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 ConnectionProtocol.h
	
file		 Photon-cpp/inc/Enums/ErrorCode.h
	
file		 EventCache.h
	
file		 Photon-cpp/inc/Enums/EventCode.h
	
file		 EventKey.h
	
file		 NetworkPort.h
	
file		 Photon-cpp/inc/Enums/OperationCode.h
	
file		 Photon-cpp/inc/Enums/ParameterCode.h
	
file		 PeerState.h
	
file		 ReceiverGroup.h
	
file		 StatusCode.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

LoadBalancing-cpp inc Enums

	Photon	C++
Client	API		4.1.12.2

Enums	Directory	Reference

Directory	dependency	graph	for	Enums:

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 LoadBalancing-cpp/inc/Enums/CustomAuthenticationType.h
	
file		 DirectMode.h
	
file		 LoadBalancing-cpp/inc/Enums/DisconnectCause.h
	
file		 LoadBalancing-cpp/inc/Enums/ErrorCode.h
	
file		 LobbyType.h
	
file		 MatchmakingMode.h
	
file		 PeerStates.h
	
file		 RegionSelectionMode.h
	
file		 ServerType.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc Enums

	Photon	C++
Client	API		4.1.12.2

Enums	Directory	Reference

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 DebugLevel.h
	
file		 TypeCode.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc Helpers

	Photon	C++
Client	API		4.1.12.2

Helpers	Directory	Reference

Directory	dependency	graph	for	Helpers:

Directories

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Files
file		 IsPrimitiveType.h
	

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

Common-cpp inc platform_definitions

	Photon	C++
Client	API		4.1.12.2

platform_definitions	Directory	Reference

©		Exit	Games	®,	all	rights	reserved.
Photon	Documentation	|	Contact	|	Terms

Directories

https://www.photonengine.com/
http://doc.photonengine.com/
http://www.photonengine.com/en/contact
https://www.photonengine.com/en/account/terms

	Classes
	Class List
	ExitGames
	Chat
	AuthenticationValues
	Channel
	Client
	Listener
	Peer

	Common
	MemoryManagement
	AllocatorInterface

	ANSIString
	Base
	BaseCharString
	BaseListener
	CustomType
	CustomTypeBase
	CustomTypeFactory
	DeSerializer
	Dictionary
	DictionaryBase
	EGTime
	Hashtable
	JString
	JVector
	KeyObject
	LogFormatOptions
	Logger
	Object
	Serializer
	ToString
	UTF8String
	ValueObject

	Lite
	LitePeer

	LoadBalancing
	AuthenticationValues
	Client
	FriendInfo
	Listener
	LobbyStatsRequest
	LobbyStatsResponse
	MutablePlayer
	MutableRoom
	Peer
	Player
	RaiseEventOptions
	Room
	RoomOptions
	WebFlags

	Photon
	NetworkPort
	Protocol
	TCP
	UDP
	UDPAlternative
	WS
	WSS

	Punchthrough
	Puncher
	PunchListener
	RelayClient

	EventData
	OperationRequest
	OperationResponse
	PhotonListener
	PhotonPeer
	TrafficStats
	TrafficStatsGameLevel

	Class Index
	Class Hierarchy
	AllocatorInterface
	BaseListener
	Listener
	Listener
	PhotonListener
	Client
	Client

	EventData
	OperationRequest
	OperationResponse
	PhotonPeer
	Peer
	LitePeer
	Peer

	Protocol
	TCP
	UDP
	UDPAlternative
	WS
	WSS

	Puncher
	PunchListener
	RelayClient
	ToString
	Base
	AuthenticationValues
	Channel
	BaseCharString
	ANSIString
	UTF8String

	CustomTypeBase
	CustomType< typeCode >

	CustomTypeFactory< typeCode >
	DeSerializer
	DictionaryBase
	Dictionary< nByte, Common::ExitGames::Common::Object >
	Dictionary< nByte, Common::Object >
	Dictionary< EKeyType, EValueType >

	EGTime
	Hashtable
	JVector< Etype >
	Object
	KeyObject< Etype >
	ValueObject< Etype >

	Serializer
	AuthenticationValues
	FriendInfo
	LobbyStatsRequest
	LobbyStatsResponse
	Player
	MutablePlayer

	RaiseEventOptions
	Room
	MutableRoom

	RoomOptions
	WebFlags
	TrafficStats
	TrafficStatsGameLevel
	JVector< Common::ExitGames::Common::JString >
	JVector< Common::ExitGames::Common::JVector< unsigned int > >
	JVector< Common::ExitGames::Common::Object >
	JVector< ExitGames::Chat::Channel *>
	JVector< ExitGames::Common::Object >
	JVector< ExitGames::LoadBalancing::FriendInfo >
	JVector< ExitGames::LoadBalancing::LobbyStatsRequest >
	JVector< ExitGames::LoadBalancing::Player *>
	JVector< ExitGames::LoadBalancing::Room *>
	JVector< int >
	JVector< nByte >

	JString
	LogFormatOptions
	Logger

	Class Members
	All
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	o
	p
	r
	s
	t
	u
	v
	w
	~

	Functions
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	o
	p
	r
	s
	t
	u
	v
	w
	~

	Variables

