Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

General Documentation

Brief overview of Photon,
subscriptions, hosting options and how
to start. * Photon
+Master Server And
Lobby
+Remote Procedure
Calls

+Instantiating
Networked Objects

Table of Contents

Photon

Unlike Unity's built-in networking or Bolt, PUN always connects to a
dedicated server which provides rooms, matchmaking and in-room
communication for players. Behind the scenes Photon Unity
Networking uses more than one server: Several "Game Servers" run
the actual rooms (matches) while a "Master Server" keeps track of
rooms and match players.

You have two options for the server side.

Exit Games Cloud

The Exit Games Cloud is a service which provides hosted and load
balanced Photon Servers for you, fully managed by Exit Games. Free
trials are available and subscription costs for commercial use are
competitively low.

The service runs a fixed logic, so you can’t implement your own server-
side game logic. Instead, the clients need to be authoritative.

Clients are separated by “application id”, which relates to your game
title and a “game version”. With that, your players won't clash with
those of another developer or older game iterations.

Subscriptions bought in Asset Store

Follow these steps, if you bought a package with Photon Cloud
Subscription in the Asset Store:

e Register a Photon Cloud Account:
exitgames.com/en/Account/SignUp
e Create an App and get your AppID from the Dashboard
e Send a Mail to: developer@exitgames.com
o With:
o Your Name and Company (if applicable)
o Invoice/Purchase ID from the Asset Store
o Photon Cloud AppID

https://www.exitgames.com/en/Realtime/Pricing
https://www.exitgames.com/en/Account/SignUp
https://www.exitgames.com/en/Realtime/Dashboard

Photon Server SDK

As alternative to the Photon Cloud service, you can run your own
server and develop server side logic on top of our “Load Balancing” C#
solution. This gives you full control of the server logic.

The Photon Server SDK can be downloaded on:
www.exitgames.com/en/OnPremise/Download

Starting the Server: doc.exitgames.com/en/onpremise/current/getting-
started/photon-server-in-5min

https://www.exitgames.com/en/OnPremise/Download
http://doc.exitgames.com/en/onpremise/current/getting-started/photon-server-in-5min

Photon Unity Networking - First
steps

When you import PUN, the "Wizard" window will popup. Either enter
your email address to register for the cloud, skip this step to enter the
Appld of an existing account or switch to "self hosted" Photon to enter
your server's address.

This creates a configuration for either the cloud service or your own
Photon server in the project: PhotonServerSettings.

PUN consists of quite a few files, however there’s only one that truly
matters: PhotonNetwork. This class contains all functions and
variables needed. If you ever have custom requirements, you can
always modify the source files - this plugin is just an implementation of
Photon after all.

To use PUN from UnityScript, move both folders "PhotonNetwork™" and
"UtilityScripts” to the Assets\ folder.

To show you how this APl works, here are a few examples right away.

Master Server And Lobby

PUN always uses a master server and one or more game servers. The
master server manages currently running games on the various game
servers and will provide a game server address when you join or
create a room. PUN (the client) automatically switches to that game
server.

Individual matches are known as Rooms. They are independent of
each other and identified by name. Rooms are grouped into one or
multiple lobbies. Lobbies are an optional part in matchmaking. If you
don't use custom lobbies explicitly, PUN will use a single lobby for all
rooms.

By default, PUN will join the default lobby after connecting. This lobby
sends a list of existing rooms to the client, so the player can pick a
room (by name or some properties listed). Access the current list by
using PhotonNetwork.GetRoomList(). The lists is updated in intervals
to keep traffic low.

Clients don't have to join a lobby to join or create rooms. If you don't
want to show a list of rooms in your client, set
PhotonNetwork.autoJoinLobby = false before you connect and your
clients will skip the lobby.

You can use more than one lobby to organize room-lists as needed for
your game. PhotonNetwork.JoinLobby is the method to join a
specific lobby. You can make them up on the client side - the server will
keep track of them. As long as hame and type are the same, the
TypedLobby will be the same for all clients, too.

A client is always just in one lobby and while being in a lobby, creating
a room will relate to this lobby, too. Multiple lobbies mean the clients
get shorter rooms lists, which is good. There is no limit to the rooms
lists.

A parameter in JoinRoom, JoinRandomRoom and CreateRoom
enables you to select a lobby without joining it.

Players won't notice each other in the Lobby and can't send data (to
prevent issues when it's getting crowded).

The servers are all run on dedicated machines - there is no such thing
as player-hosted ‘servers’. You don’'t have to bother remembering
about the server organization though, as the API all hides this for you.

PhotonNetwork.ConnectUsingSettings(“v1.0");

The code above is required to make use of any PhotonNetwork
features. It sets your client's game version and uses the setup-wizard’s
config (stored in: PhotonServerSettings). The wizard can also be used
when you host Photon yourself. Alternatively, use Connect() and you
can ignore the PhotonServerSettings file.

Versioning

The Photon Cloud uses your applID to separate your players from
everyone else’s.

Within one Appld, you can deliberately separate clients/players by the
"Game Version" string, which is set in the "connect” methods (as
parameter).

Note: As we can’t guarantee that different Photon Unity Networking
versions are compatible with each other, we add the PUN version to
your game’s version. This literally adds "_" +

PhotonNetwork.versionPUN t0 your Game Version string.

Creating and Joining Games

Next, you'll want to join or create a room. The following code
showcases some required functions:

//Join a room
PhotonNetwork.JoinRoom(roomName);

//Create this room.

PhotonNetwork.CreateRoom(roomName) ;

// Falls if 1t already exists and calls:
OnPhotonCreateGameFailed

//Tries to joln any random game:

PhotonNetwork.JoinRandomRoom() ;

//Falils 1if there are no matching games:
OnPhotonRandomJoinFailed

A list of currently running games is provided by the master server’s
lobby. It can be joined like other rooms but only provides and updates
the list of rooms. The PhotonNetwork plugin will automatically join the
lobby after connecting. When you're joining a room, the list will no

longer update.
To display the list of rooms (in a lobby):

(RoomInfo game
PhotonNetwork.GetRoomList())

GUILayout.Label(game.name + " " +
game.playerCount + "/" + game.maxPlayers);

Alternatively, the game can use random matchmaking: It will try to join

any room and fail if none has room for another player. In that case:
Create a room without name and wait until other players join it
randomly.

Advanced Matchmaking & Room Properties

Fully random matchmaking is not always something players enjoy.
Sometimes you just want to play a certain map or just two versus two.

In Photon Cloud and Loadbalancing, you can set arbitrary room
properties and filter for those in JoinRandom.

Room Properties and the Lobby

Room properties are synced to all players in the room and can be
useful to keep track of the current map, round, starttime, etc. They are
handled as Hashtable with string keys. Preferably short keys.

You can forward selected properties to the lobby, too. This makes them
available for listing them and for random matchmaking, too. Not all
room properties are interesting in the lobby, so you define the set of
properties for the lobby on room creation.

Hashtable roomProps = new Hashtable() { { "map",

13} 3}

string[] roomPropsInLobby = { "map", "ai" };

RoomOptions roomOptions = new RoomOptions() {
customRoomProperties = roomProps,
customRoomPropertiesForLobby =
roomPropsInLobby }

CreateRoom(roomName, roomOptions,
TypedLobby.Default)

Note that "ai" is not a key in the room-properties yet. It won't show up
in the lobby until it's set in the game via
Room.SetCustomProperties(). When you change the values for
"map" or "ai", they will be updated in the lobby with a short delay, too.

Keep the list short to make sure performance doesn't suffer from
loading the list.

Filtering Room Properties in Join Random

In JoinRandom, you could pass a Hashtable with expected room
properties and max player value. These work as filters when the server
selects a "fitting" room for you.

Hashtable expectedCustomRoomProperties = new
Hashtable() { { "map", 1 } };
JoinRandomRoom(expectedCustomRoomProperties, 4);

If you pass more filter properties, chances are lower that a room
matches them. Better limit the options.

Make sure you never filter for properties that are not known to the
lobby (see above).

MonoBehaviour Callbacks

PUN uses several callbacks to let your game know about state
changes like “connected” or “joined a game”. All you have to do is
implement the fitting method in any MonoBehaviour and it gets called
when the event happens.

To get a good overview of available callbacks, take a look at the class
Photon.PunBehaviour. If you make your script a PunBehaviour
(instead of a MonoBehaviour), you can override individual callbacks
easily. If you begin to type "override", your coding IDE should provide
you a list of callbacks, so they are easy to find while coding, too.

This covers the basics of setting up game rooms. Next up is actual
communication in games.

Sending messages in rooms

Inside a room you are able to send network messages to other
connected players. Furthermore you are able to send buffered
messages that will also be sent to players that connect in the future (for
spawning your player for instance).

Sending messages can be done using two methods. Either RPCs or by
using the PhotonView property OnSerializePhotonView. There is more
network interaction though. You can listen for callbacks for certain
network events (e.g. OnPhotoninstantiate, OnPhotonPlayerConnected)
and you can trigger some of these events
(PhotonNetwork.Instantiate). Don’t worry if you're confused by the
last paragraph, next up we’ll explain for each of these subjects.

Using Groups in PUN

Groups are not synchronized when they are changed on any
PhotonView. It's up to the developer to keep photonviews in the same
groups on all clients, if that's needed. Using different group numbers
for the same photonview on several clients will cause some
inconsistent behaviour.

Some network messages are checked for their receiver group at the
receiver side only, namely:

e RPCS that are targeted to a single player (or MasterClient)
e RPCS that are buffered (AllIBuffered/OthersBuffered).
¢ This includes PhotonNetwork.Instantiate (as it is buffered).

Technical reason for this: the photon server only supports
interestgroups for messages that are not cached and are not targetted
at sepcific actor(s). This might change in the future.

PhotonView

PhotonView is a script component that is used to send messages
(RPCs and OnSerializePhotonView). You need to attach the
PhotonView to your games gameobjects. Note that the PhotonView is
very similar to Unity’s NetworkView.

At all times, you need at least one PhotonView in your game in order
to send messages and optionally instantiate/allocate other
PhotonViews.

To add a PhotonView to a gameobject, simply select a gameobject
and use: “Components/Miscellaneous/Photon View”.

B ¥ Third Person Network (Script)

Photon View

Observe Transform

If you attach a Transform to a PhotonView’s Observe property, you can
choose to sync Position, Rotation and Scale or a combination of those
across the players. This can be a great help for prototyping or smaller
games. Note: A change to any observed value will send out all
observed values - not just the single value that’s changed. Also,
updates are not smoothed or interpolated.

Observe MonoBehaviour

A PhotonView can be set to observe a MonoBehaviour. In this case,
the script’s OnPhotonSerializeView method will be called. This method
is called for writing an object’s state and for reading it, depending on

whether the script is controlled by the local player.
The simple code below shows how to add character state
synchronization with just a few lines of code more:

void OnPhotonSerializeView(PhotonStream streanm,
PhotonMessageInfo info)

{

if (stream.isWriting)

{

//We own this player: send the others our data

stream.SendNext((int)controllerScript._char

acterState);
stream.SendNext(transform.position);
stream.SendNext(transform.rotation);

}

else

{

//Network player, recelve data
controllerScript._characterState =
(CharacterState) (int)stream.ReceiveNext();
correctPlayerPos =
(Vector3)stream.ReceiveNext();
correctPlayerRot =
(Quaternion)stream.ReceiveNext();

}

If you send something “ReliableDeltaCompressed”, make sure to
always write data to the stream in the same order. If you write no data
to the PhotonStream, the update is not sent. This can be useful in
pauses. Now on, to yet another way to communicate: RPCs.

Remote Procedure Calls

Remote Procedure Calls (RPCs) are exactly what the name implies:
methods that can be called on remote clients in the same room. To
enable remote calls for a method of a MonoBehaviour, you must apply
the attribute: [PunRPC]. A PhotonView instance is needed on the
same GameObject, to call the marked functions.

[PUNRPC]
void ChatMessage(string a, string b)
{
Debug.Log("ChatMessage " + a + " " + b);
}

To call the method from any script, you need access to a PhotonView
object. If your script derives from Photon.MonoBehaviour, it has a
photonView field. Any regular MonoBehaviour or GameObject can use:
PhotonView.Get(this) to get access to its PhotonView component and
then call RPCs onit.

PhotonView photonView = PhotonView.Get(this);
photonView.RPC('"ChatMessage", PhotonTargets.All,
Iljupll’ lland Juplll);

So, instead of directly calling the target method, you call RPC() on a
PhotonView. Provide the name of the method to call, which players
should call the method and then provide a list of parameters.

Careful: The parameters list used in RPC() has to match the number of
expected parameters! If the receiving client can’t find a matching
method, it will log an error. There is one exception to this rule: The last
parameter of a RPC method can be of type PhotonMessagelnfo,
which will provide some context for each call.

[PUNRPC]

void ChatMessage(string a, string b,
PhotonMessageInfo info)

{

Debug.Log(String.Format("Info: {0} {1} {2}",
info.sender, info.photonView,
info.timestamp));

Timing for RPCs and Loading Levels

RPCs are called on specific PhotonViews and always target the
matching one on the remote client. If the remote client does not know
the fitting PhotonView, the RPC is lost.

A typical cause for lost RPCs is when clients load and set up levels.
One client is faster or in the room for a longer time and sends
important RPCs for objects that are not yet loaded on the other clients.
The same happens when RPCs are buffered.

The solution is to pause the message queue, during scene loading.
This code shows how how you can do it:

private IEnumerator MoveToGameScene()
{

// Temporary disable processing of futher
network messages
PhotonNetwork.isMessageQueueRunning = false;
Application.LoadLevel(levelName);

Alternatively you can use PhotonNetwork.LoadLevel. It temporarily
disables the message queue as well.

Disabling the message queue will delay incoming and outgoing
messages until the queue is unlocked. Obviously, it's very important to
unlock the queue when you're ready to go on.

RPCs that belonged to the previously loaded scene but still arrived will
now be discarded. But you should be able to define a break between
both scenes by RPC.

Various topics

Instantiating Networked Objects

In about every game you need to instantiate one or more player
objects for every player. There are various options to do so which are
listed below.

PhotonNetwork.Instantiate

PUN can automatically take care of spawning an object by passing a
starting position, rotation and a prefab name to the
PhotonNetwork.Instantiate method. Requirement: The prefab should
be available directly under a Resources/ folder so that the prefab can
be loaded at run time. Watch out with webplayers: Everything in the
resources folder will be streamed at the very first scene per default.
Under the webplayer settings you can specify the first level that uses
assets from the Resources folder by using the “First streamed level”. If
you set this to your first game scene, your preloader and mainmenu
will not be slowed down if they don’t use the Resources folder assets.

void SpawnMyPlayerEverywhere()
{
PhotonNetwork.Instantiate(“MyPrefabName”,
new Vector3(0,0,0), Quaternion.identity,
0);
//The last argument is an optional group
number, feel free to ignore it for now.

Gain more control: Manually instantiate

If don’t want to rely on the Resources folders to instantiate objects over
the network you’ll have to manually Instantiate objects as shown in the
example at the end of this section.

The main reason for wanting to instantiate manually is gaining control
over what is downloaded when for streaming webplayers. The details
about streaming and the Resources folder in Unity can be found here.

If you spawn manually, you will have to assign a PhotonViewID
yourself, these viewlID’s are the key to routing network messages to
the correct gameobject/scripts. The player who wants to own and
spawn a new object should allocate a new viewID using
PhotonNetwork.AllocateViewlD();. This PhotonViewID should then
be send to all other players using a PhotonView that has already been
set up (for example an existing scene PhotonView). You will have to
keep in mind that this RPC needs to be buffered so that any clients that
connect later will also receive the spawn instructions. Then the RPC
message that is used to spawn the object will need a reference to your
desired prefab and instantiate this using Unity’s
GameObject.Instantiate. Finally you will need to set setup the
PhotonViews attached to this prefab by assigning all PhotonViews a
PhotonViewlD.

void SpawnMyPlayerEverywhere()
{
//Manually allocate PhotonViewID
PhotonViewID idl1 =
PhotonNetwork.AllocateViewID();

photonView.RPC("SpawnOnNetwork",
PhotonTargets.AllBuffered,
transform.position,
transform.rotation, idi,
PhotonNetwork.player);

}

public Transform playerPrefab; //set this in the
inspector

[PUNRPC]

void SpawnOnNetwork(Vector3 pos, Quaternion rot,
PhotonViewID idl1, PhotonPlayer np)

{

Transform newPlayer =
Instantiate(playerPrefab, pos, rot) as

Transform;

//Set the PhotonView

PhotonView[] nViews =
go.GetComponentsInChildren<PhotonView>();

nViews[0].viewID = 1id1;

If you want to use asset bundles to load your network objects from, all
you have to do is add your own assetbundle loading code and replace
the “playerPrefab” from the example with the prefab from your asset

bundle.

Offline mode

Offline mode is a feature to be able to re-use your multiplayer code in
singleplayer game modes as well.

Mike Hergaarden: At M2H we had to rebuild our games several times
as game portals usually require you to remove multiplayer functionality
completely. Furthermore, being able to use the same code for single
and multiplayer saves a lot of work on itself.

The most common features that you’ll want to be able to use in
singleplayer are sending RPCs and using
PhotonNetwork.Instantiate. The main goal of offline mode is to
disable nullreferences and other errors when using PhotonNetwork
functionality while not connected. You would still need to keep track of
the fact that you're running a singleplayer game, to set up the game
etc. However, while running the game, all code should be reusable.

You need to manually enable offline mode, as PhotonNetwork needs
to be able to distinguish erroneous from intended behaviour. Enabling
this feature is very easy:

PhotonNetwork.offlineMode = true;

You can now reuse certain multiplayer methods without generating any
connections and errors. Furthermore there is no noticeable overhead.
Below follows a list of PhotonNetwork functions and variables and
their results during offline mode:

PhotonNetwork.player The player ID is always -1
PhotonNetwork.playerName Works as expected.
PhotonNetwork.playerList Contains only the local player
PhotonNetwork.otherPlayers Always empty PhotonNetwork.time
returns Environment. TickCount or a more precise timer if enabled;
PhotonNetwork.isMasterClient Always true
PhotonNetwork.AllocateViewlD() Works as expected.

PhotonNetwork.Instantiate Works as expected
PhotonNetwork.Destroy Works as expected.
PhotonNetwork.RemoveRPCs/RemoveRPCsInGroup/SetReceivingEn:
While these make no sense in Singleplayer, they will not hurt either.
PhotonView.RPC Works as expected.

Note that using other methods than the ones above can yield
unexpected results and some will simply do nothing. E.g.
PhotonNetwork.room will, obviously, return null. If you intend on
starting a game in singleplayer, but move it to multiplayer at a later
stage, you might want to consider hosting a 1 player game instead; this
will preserve buffered RPCs and Instantiation calls, whereas offline
mode Instantiations will not automatically carry over after Connecting.

Either set PhotonNetwork.offlineMode = false; or Simply call
Connect() to stop offline mode.

Limitations

Views and players

For performance reasons, the PhotonNetwork API supports up to
1000 PhotonViews per player and a maximum of 2,147,483 players
(note that this is WAY higher than your hardware can support!). You
can easily allow for more PhotonViews per player, at the cost of
maximum players. This works as follows: PhotonViews send out a
viewlID for every network message. This viewID is an integer and it is
composed of the player ID and the player’s view ID. The maximum
size of anintis 2,147,483,647, divided by our MAX_VIEW_IDS(1000)
that allows for over 2 million players, each having 1000 view IDs. As
you can see, you can easily increase the player count by reducing the
MAX_VIEW _IDS. The other way around, you can give all players more
VIEW_IDS at the cost of less maximum players. It is important to note
that most games will never need more than a few view ID’s per player
(one or two for the character..and that’s usually it). If you need much
more then you might be doing something wrong! It is extremely
inefficient to assign a PhotonView and ID for every bullet that your
weapon fires, instead keep track of your fire bullets via the player or
weapon’s PhotonView.

There is room for improving your bandwidth performance by reducing
the int to a short (value range: —32,768 to 32,768). By setting
MAX_VIEW_IDS to 32 you can then still support 1023 players Search
for “/[LIMITS NETWORKVIEWS&PLAYERS” for all occurrences of the
int viewID. Furthermore, currently the API is not using uint/ushort but
only the positive range of the numbers. This is done for simplicity and
the usage of viewIDs is not a crucial performance issue for most
situations.

Groups and Scoping

The PhotonNetwork plugin does not support network groups fully. See
above: "Using Groups in PUN".

Unity’s “scope” feature is not implemented.

Feedback

We are interested in your feedback, as this solution is an ongoing
project for us. Let us know if something was too hidden, missing or not
working. To let us know, post in our Forum: forum.exitgames.com

F.A.Q.

Can | use multiple PhotonViews per GameObject? Why?

Yes this is perfectly fine. You will need multiple PhotonViews if you
need to observe 2 or more targets; You can only observe one per
PhotonView. For your RPC’s you'll only ever need one PhotonView
and this can be the same PhotonView that is already observing
something. RPC’s never clash with an observed target.

Can | use UnityScript /| Javascript?

To use PUN from UnityScript, move both folders "PhotonNetwork™" and
"UtilityScripts" to the Assets\ folder. Now PUN compiles before
UnityScript and that makes it available from regular UnityScript code.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Network Simulation GUI

Simple GUI element to control the built-in network condition simulation.

The Photon client library can simulate network conditions for lag
(message delay) and loss, which can be a good tool for developer
when testing with a local server or on near perfect network conditions.

To use it, add the component PhotonNetSimSettingsGui to an enabled
GameObject in your scene. At runtime, the top left of the screen shows
the current roundtrip time (RTT) and the controls for network
simulation:

e RTT: The roundtrip time is the average of milliseconds until a
message was acknowledged by the server. The variance value
(behind the +/-) shows how stable the rtt is (a lower value being
better).

e "Sim" toggle: Enables and disables the simulation. A sudden, big
change of network conditions might result in disconnects.

e "Lag" slider: Adds a fixed delay to all outgoing and incoming
messages. In milliseconds.

e "Jit" slider: Adds a random delay of "up to X milliseconds" per
message.

e "Loss" slider: Drops the set percentage of messages. You can
expect less than 2% drop in the internet today.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Network Statistics GUI

The PhotonStatsGui is a simple GUI component to track and show
network-metrics at runtime.

Usage

Just add the PhotonStatsGui component to any active GameObject in
the hierarchy. A window appears (at runtime) and shows the message
count.

A few toggles let you configure the window:

e buttons: Show buttons for "stats on", "reset stats" and "to log"
e traffic: Show lower level network traffic (bytes per direction)
¢ health: Show timing of sending, dispatches and their longest gaps

Message Statistics

The top most values showns are counter for "messages”. Any
operation, response and event are counted. Shown are the total count
of outgoing, incoming and the sum of those messages as total and as
average for the timespan that is tracked.

Traffic Statistics

These are the byte and packet counters. Anything that leaves or
arrives via network is counted here. Even if there are few messages,
they could be huge by accident and still cause less powerful clients to
drop connection. You also see that there are packages sent when you
don't send messages. They keeps the connection alive.

Health Statistics

The block beginning with "longest delta between" is about the
performance of your client. We measure how much time passed
between consecutive calls of send and dispatch. Usually they should
be called ten times per second. If these values go beyond one second,
you should check why Update() calls are delayed.

Button "Reset"

This resets the stats but keeps tracking them. This is useful to track
message counts for different situations.

Button "To Log"

Pressing this simply logs the current stat values. This can be useful to
have a overview how things evolved or just as reference.

Button "Stats On" (Enabling Traffic Stats)

The Photon library can track various network statistics but usually this
feature is turned off. The PhotonStatsGui will enable the tracking and
show those values.

The "stats on" toggle in the Gui controls if traffic stats are collected at
all. The "Traffic Stats On" checkbox in the Inspector is the same value.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Public API Module

The Public API module rounds up the most commonly used classes of
PUN.

These classes are grouped into a "module” to make it easier to find the
important stuff in PUN. Classes like PhotonNetwork and
Photon.PunBehaviour are good entry points to learn how to code with
PUN.

Opposed to that, there are several classes that are for internal use by
the PUN framework. Even some of the internally used classes are
public. This is for ease of use and in parts a result of how Unity works.

Open the Public APl module

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Modules

Here is a list of all modules:

Public API Groups the most important classes that
you need to understand early on

Optional Gui Elements Useful GUI elements for PUN

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Classes | Enumerations | Functions

Public API

Groups the most important classes that you need to understand early
on. More...

Classes

interface

interface

class

struct

class

class

class

class

IPunObservable
Defines the OnPhotonSerializeView method to make it
easy to implement correctly for observable scripts. More...

IPunCallbacks

This interface is used as definition of all callback methods
of PUN, except OnPhotonSerializeView. Preferably,
implement them individually. More...

Photon.PunBehaviour

This class provides a .photonView and all
callbacks/events that PUN can call. Override the
events/methods you want to use. More...

PhotonMessagelnfo
Container class for info about a particular message, RPC
or update. More...

PhotonStream

This container is used in OnPhotonSerializeView() to
either provide incoming data of a PhotonView or for you
to provide it. More...

PhotonNetwork
The main class to use the PhotonNetwork plugin. This
class is static. More...

PhotonPlayer
Summarizes a "player" within a room, identified (in that
room) by actorID. More...

PhotonView
PUN's NetworkView replacement class for networking.
Use it like a NetworkView. Maore...

class Room
This class resembles a room that PUN joins (or joined).
The properties are settable as opposed to those of a
Roominfo and you can close or hide "your" room. More...

class Roominfo
A simplified room with just the info required to list and join,
used for the room listing in the lobby. The properties are
not settable (open, MaxPlayers, etc). More...

Enumerations

enum

enum

PhotonNetworkingMessage {
PhotonNetworkingMessage.OnConnectedToPhoton,
PhotonNetworkingMessage.OnLeftRoom,
PhotonNetworkingMessage.OnMasterClientSwitched,
PhotonNetworkingMessage.OnPhotonCreateRoomFailed,
PhotonNetworkingMessage.OnPhotonJoinRoomFailed,
PhotonNetworkingMessage.OnCreatedRoom,
PhotonNetworkingMessage.OnJoinedLobby,
PhotonNetworkingMessage.OnLeftLobby,
PhotonNetworkingMessage.OnDisconnectedFromPhoton,
PhotonNetworkingMessage.OnConnectionFxail,
PhotonNetworkingMessage.OnFailedToConnectToPhoton,
PhotonNetworkingMessage.OnReceivedRoomListUpdate,
PhotonNetworkingMessage.OnJoinedRoom,
PhotonNetworkingMessage.OnPhotonPlayerConnected,
PhotonNetworkingMessage.OnPhotonPlayerDisconnected,
PhotonNetworkingMessage.OnPhotonRandomJoinFailed,
PhotonNetworkingMessage.OnConnectedToMaster,
PhotonNetworkingMessage.OnPhotonSerializeView,
PhotonNetworkingMessage.OnPhotoninstantiate,
PhotonNetworkingMessage.OnPhotonMaxCccuReached,
PhotonNetworkingMessage.OnPhotonCustomRoomPrope
PhotonNetworkingMessage.OnPhotonPlayerPropertiesCha
PhotonNetworkingMessage.OnUpdatedFriendList,
PhotonNetworkingMessage.OnCustomAuthenticationFailec
PhotonNetworkingMessage.OnCustomAuthenticationRes;
PhotonNetworkingMessage.OnWebRpcResponse,
PhotonNetworkingMessage.OnOwnershipRequest,
PhotonNetworkingMessage.OnLobbyStatisticsUpdate,
PhotonNetworkingMessage.OnPhotonPlayerActivityChan
PhotonNetworkingMessage.OnOwnershipTransfered
}
This enum defines the set of MonoMessages Photon Unity Net
using as callbacks. Implemented by PunBehaviour. More...

PhotonLogLevel { PhotonLogLevel.ErrorsOnly,
PhotonLogLevel.Informational, PhotonLogLevel.Full }

enum

enum

enum

Used to define the level of logging output created by the PUN cl
log errors, info (some more) or full. More...

PhotonTargets {

PhotonTargets.All, PhotonTargets.Others, PhotonTargets.|
PhotonTargets.AllBuffered,

PhotonTargets.OthersBuffered, PhotonTargets.AllViaServ
PhotonTargets.AllBufferedViaServer
}
Enum of "target" options for RPCs. These define which remote «
your RPC call. More...

ClientState {

ClientState.Uninitialized, ClientState.PeerCreated, ClientSi
ClientState.Authenticated,

ClientState.JoinedLobby, ClientState.DisconnectingFroml
ClientState.ConnectingToGameserver,
ClientState.ConnectedToGameserver,

ClientState.Joining, ClientState.Joined, ClientState.Leavin
ClientState.DisconnectingFromGameserver,

ClientState.ConnectingToMasterserver,
ClientState.QueuedComingFromGameserver, ClientState.D
ClientState.Disconnected,

ClientState.ConnectedToMaster, ClientState.ConnectingTc
ClientState.ConnectedToNameServer,
ClientState.DisconnectingFromNameServer,

ClientState.Authenticating

}
Detailed connection / networking peer state. PUN implements a
loadbalancing and authentication workflow "behind the scenes",
states will automatically advance to some follow up state. Those
commented with "(will-change)". Maore...

DisconnectCause {
DisconnectCause.DisconnectByServerUserLimit =
StatusCode.DisconnectByServerUserLimit,
DisconnectCause.ExceptionOnConnect =
StatusCode.ExceptionOnConnect,
DisconnectCause.DisconnectByServerTimeout =

StatusCode.DisconnectByServer,
DisconnectCause.DisconnectByServerLogic =
StatusCode.DisconnectByServerLogic,
DisconnectCause.Exception = StatusCode.Exception,
DisconnectCause.InvalidAuthentication = ErrorCode.Invalid/
DisconnectCause.MaxCcuReached = ErrorCode.MaxCcuRee
DisconnectCause.lnvalidRegion = ErrorCode.InvalidRegion,
DisconnectCause.SecurityExceptionOnConnect =
StatusCode.SecurityExceptionOnConnect,
DisconnectCause.DisconnectByClientTimeout =
StatusCode.TimeoutDisconnect,
DisconnectCause.InternalReceiveException =
StatusCode.ExceptionOnReceive,
DisconnectCause.AuthenticationTicketExpired = 32753
}
Summarizes the cause for a disconnect. Used in: OnConnectiol
OnFailedToConnectToPhoton. More...

Functions

void IPunObservable.OnPhotonSerializeView (PhotonStream
stream, PhotonMessageinfo info)
Called by PUN several times per second, so that your script
can write and read synchronization data for the PhotonView.
More...

Detailed Description

Groups the most important classes that you need to understand early
on.

Enumeration Type Documentation

enum ClientState

Detailed connection / networking peer state. PUN implements a
loadbalancing and authentication workflow "behind the scenes”, so
some states will automatically advance to some follow up state.
Those states are commented with "(will-change)".

Enumerator

Uninitialized
PeerCreated

Queued
Authenticated

JoinedLobby

DisconnectingFromMasterserver

ConnectingToGameserver

Not running. Only set before
initialization and first use.

Created and available to
connect.

Not used at the moment.

The application is
authenticated. PUN usually
joins the lobby now.

(will-change) Unless
AutoJoinLobby is false.

Client is in the lobby of the
Master Server and gets room
listings.

Use Join, Create or
JoinRandom to get into a room
to play.

Disconnecting.

(will-change)

Connecting to game server (to
join/create a room and play).

(will-change)

ConnectedToGameserver Similar to Connected state but
on game server. Still in
process to join/create room.

(will-change)

Joining In process to join/create room
(on game server).

(will-change)

Joined Final state of a room
join/create sequence. This
client can now exchange
events / call RPCs with other
clients.

Leaving Leaving a room.

(will-change)

DisconnectingFromGameserver | Workflow is leaving the game
server and will re-connect to
the master server.

(will-change)

ConnectingToMasterserver Workflow is connected to
master server and will
establish encryption and
authenticate your app.

(will-change)

QueuedComingFromGameserver | Same Queued but coming
from game server.

(will-change)

Disconnecting PUN is disconnecting. This
leads to Disconnected.

(will-change)
Disconnected No connection is setup, ready

to connect. Similar to
PeerCreated.

ConnectedToMaster Final state for connecting to
master without joining the
lobby (AutoJoinLobby is false).

ConnectingToNameServer Client connects to the
NameServer. This process
includes low level connecting
and setting up encryption.
When done, state becomes
ConnectedToNameServer.

ConnectedToNameServer Client is connected to the
NameServer and established
enctryption already. You
should call OpGetRegions or
ConnectToRegionMaster.

DisconnectingFromNameServer | When disconnecting from a
Photon NameServer.

(will-change)

Authenticating When connecting to a Photon
Server, this state is
intermediate before you can
call any operations.

(will-change)

enum DisconnectCause

Summarizes the cause for a disconnect. Used in: OnConnectionFail an
OnFailedToConnectToPhoton.

Extracted from the status codes from
ExitGames.Client.Photon.StatusCode.

See also
PhotonNetworkingMessage

Enumerator

DisconnectByServerUserLimit

ExceptionOnConnect

DisconnectByServerTimeout

DisconnectByServerlLogic

Exception

InvalidAuthentication

MaxCcuReached

InvalidRegion

SecurityExceptionOnConnect

Server actively disconnected this clier
Possible cause: The server's user limi
was hit and client was forced to
disconnect (on connect).

Connection could not be established.
Possible cause: Local server not
running.

Timeout disconnect by server (which
decided an ACK was missing for too

long).

Server actively disconnected this clier
Possible cause: Server's send buffer
full (too much data for client).

Some exception caused the connectic
to close.

(32767) The Photon Cloud rejected
the sent Appld. Check your Dashboar
and make sure the Appld you use is
complete and correct.

(32757) Authorization on the Photon
Cloud failed because the concurrent
users (CCU) limit of the app's
subscription is reached.

(32756) Authorization on the Photon
Cloud failed because the app's
subscription does not allow to use a
particular region's server.

The security settings for client or servi
don't allow a connection (see remarks

A common cause for this is that
browser clients read a "crossdomain
file from the server. If that file is
unavailable or not configured to let the
client connect, this exception is throwi
Photon usually provides this

DisconnectByClientTimeout

InternalReceiveException

AuthenticationTicketExpired

enum PhotonLogLevel

crossdomain file for Unity. If it fails,
read: https://doc.photonengine.com/el
us/onpremise/current/operations/polic
files

Timeout disconnect by client (which
decided an ACK was missing for too

long).

Exception in the receive-loop. Possibl
cause: Socket failure.

(32753) The Authentication ticket
expired. Handle this by connecting
again (which includes an authenticate
to get a fresh ticket).

Used to define the level of logging output created by the PUN
classes. Either log errors, info (some more) or full.

Enumerator

ErrorsOnly Show only errors. Minimal output. Note: Some
might be "runtime errors" which you have to

expect.
Informational | Logs some of the workflow, calls and results.
Full Every available log call gets into the console/log.
Only use for debugging.

enum PhotonNetworkingMessage

This enum defines the set of MonoMessages Photon Unity Networking

Much like "Update()" in Unity, PUN will call methods in specific situatior
operations complete (example: when joining a room).

All those methods are defined and described in this enum and impleme

https://doc.photonengine.com/en-us/onpremise/current/operations/policy-files

implement them as override).

Each entry is the name of such a method and the description tells you \

Make sure to read the remarks per entry as some methods have option

Enumerator

OnConnectedToPhoton

OnLeftRoom

OnMasterClientSwitched

OnPhotonCreateRoomFailed

Called when the initial cc
server. OnJoinedLobby
ready.

This callback is only use
(technically). Most often,
OnFailedToConnectTol

OnJoinedLobby() or Oi

When this is called, the |
your Appld, the user, etc
from the masterserver tc

Example: void OnConne¢
Called when the local us

When leaving a room, P
can use lobbies and join
OnConnectedToMastel

Example: void OnLeftR«
Called after switching to

This is not called when t
in the player list when th

Example: void OnMaste!

Called when a CreateR«¢
ErrorCode and messag

Most likely because the
faster than you). PUN lo

OnPhotonJoinRoomFailed

OnCreatedRoom

OnJoinedLobby

PhotonLogLevel.Informe
Example: void OnPhoto

Example: void OnPhotor
codeAndMsg|0] is short

Called when a JoinRoo!
and message.

Most likely error is that tl
client was faster than yo
Is >= PhotonLogLevel.In

Example: void OnPhoto

Example: void OnPhotor
codeAndMsg|[0] is short

Called when this client ¢
called as well.

This callback is only call
PhotonNetwork.Create

As any client might close
the creator of a room do

If you need specific roon
OnMasterClientSwitch
room's state.

Example: void OnCreat:

Called on entering a lobl
will call OnReceivedRo«

Note: When PhotonNet
OnConnectedToMastel
available.

While in the lobby, the rc
you can't modify). The rc

OnLeftLobby

OnDisconnectedFromPhoton

OnConnectionFall

OnFailedToConnectToPhoton

OnReceivedRoomListUpdate

OnReceivedRoomListl

Example: void OnJoine:
Called after leaving a lot

When you leave a lobby.
refer to the default lobby

Example: void OnLeftLc
Called after disconnectir

In some cases, other cal
is called. Examples: Ont
OnFailedToConnectTol

Example: void OnDisco

Called when something
followed by a call to OnL

If the server could not be
OnFailedToConnectToPI
provided as StatusCode

Example: void OnConne

Called if a connect call t
established, followed by

OnConnectionFail only ¢
established in the first pl

Example: void OnFailed

Called for any update of
(PhotonNetwork.inside
received for PhotonNet

PUN provides the list of
Each item is a RoomInf:
defined those as lobby-li

Not all types of lobbies [

OnJoinedRoom

OnPhotonPlayerConnected

OnPhotonPlayerDisconnected

OnPhotonRandomJoinFailed

and specialized for serve

Example: void OnRecel

Called when entering a 1
(including the Master Cli

This method is common|
to be started "actively", \
button-press or a timer.

When this is called, you
room via PhotonNetwo!
already available as Roc
find out if enough player

Example: void OnJoine:

Called when a remote pl
added to the playerlist a

If your game starts with .
to check the Room.play

Example: void OnPhotor

Called when a remote pl
removed from the player

When your client calls P
the remaining clients. W
this callback gets execult

Example: void OnPhotor

Called after a JoinRandc
and message.

Most likely all rooms are
lobbies (via JoinLobby o
rooms. PUN logs some i
PhotonLogLevel.Informe

Example: void OnPhoto

OnConnectedToMaster

OnPhotonSerializeView

Example: void OnPhotor
codeAndMsg|0] is short

Called after the connecti
only when PhotonNetw

If you set PhotonNetwo
called instead of this.

You can join rooms and
lobby is used in that cas
unless you join a lobby \

Example: void OnConne¢

Implement to customize
every 'network-update' v

This method will be calle
of a PhotonView. Photc
method is called. Photo!
sent by this client.

Implementing this methc
regularly synchronizes."
your data is used by reci

Unlike other callbacks, C
assigned to a PhotonVi

To make use of this metl
"writing" mode" on the cl
(PhotonStream.isWriting
that just receive that the

If you skip writing any ve
carefully, this can consel
room/second).

Note that OnPhotonSeri:
sender does not send ar
Update()".

OnPhotonlInstantiate

OnPhotonMaxCccuReached

OnPhotonCustomRoomPropertiesChanged

OnPhotonPlayerPropertiesChanged

Example: void OnPhotor
PhotonMessagelnfo info

Called on all scripts on €
using PhotonNetwork.li

PhotonMessagelnfo pe
when (based off Photonl

Example: void OnPhotor

Because the concurrent
rejected by the server ar

When this happens, the
in OnPhotonMaxCcuRe:
raise the CCU limits witr
subscription (when using
when the CCU limit was
(webpage).

Example: void OnPhoto

Called when a room's cL
contains all that was set

Since v1.25 this method
Changing properties mu
causes this callback loce

Example: void OnPhotor
propertiesThatChanged)

Called when custom pla
properties are passed a

Since v1.25 this method
which contains two entri
[0] is the affected Photo
[1] is the Hashtable of pr

We are using a object][]
(which has only one opti

OnUpdatedFriendList

OnCustomAuthenticationFailed

OnCustomAuthenticationResponse

Changing properties mu
which causes this callba

Example:

void OnPhotonPlaye:
PhotonPlayer p.
Hashtable prop:
/7.

}

Called when the server ¢
PhotonNetwork.Friend

The friends list is availak
state and the room a usc¢

Example: void OnUpdat
Called when the custom

Custom Authentication ¢
authentication is succes:
OnJoinedLobby() or O1

During development of ¢
the server side. In those

Unless you setup a cust
Dashboard), this won't b

Example: void OnCustor
Called when your Custo!

Custom Authentication <
response. When presen
Dictionary. While the key
either string or a numbel
type is the one you expe

Example: void OnCustor

https://www.photonengine.com/dashboard

OnWebRpcResponse

OnOwnershipRequest

OnLobbyStatisticsUpdate

OnPhotonPlayerActivityChanged

data){... }

https://doc.photonengine
authentication/custom-al

Called by PUN when the
PhotonNetwork.WebRP!

Important: The response
web-service. The conter
can create a WebRespo
webResponse = new W

Please note: Class Opet
"used": using ExitGame
other classes)

The OperationResponse
Service not configured” |
now have RPC path/nan

Example: void OnWebR
Called when another pla
current owner).

The parameter viewAnd!
PhotonView view = viev

PhotonPlayer requestin

void OnOwnershipRequi

Called when the Master
PhotonNetwork.Lobby

This callback has two pr
before this client connec
Server, which is providin

Called when a remote P
is PlayerTtl is greater the

Use 0. If true, the playe
current activity state

Example: void OnPhotor

This callback has precor

OnOwnershipTransfered Called when a PhotonV

enum PhotonTargets

The parameter viewAnd!
PhotonView view = viev
PhotonPlayer newOwn:
PhotonPlayer oldOwne

void OnOwnershipTrans

Enum of "target" options for RPCs. These define which remote
clients get your RPC call.

Enumerator

All

Others

MasterClient

AllBuffered

Sends the RPC to everyone else and
executes it immediately on this client.
Player who join later will not execute this
RPC.

Sends the RPC to everyone else. This
client does not execute the RPC. Player
who join later will not execute this RPC.

Sends the RPC to MasterClient only.
Careful: The MasterClient might disconnect
before it executes the RPC and that might
cause dropped RPCs.

Sends the RPC to everyone else and
executes it immediately on this client. New
players get the RPC when they join as it's

OthersBuffered

AllViaServer

AllBufferedViaServer

buffered (until this client leaves).

Sends the RPC to everyone. This client
does not execute the RPC. New players
get the RPC when they join as it's buffered
(until this client leaves).

Sends the RPC to everyone (including this
client) through the server.

This client executes the RPC like any other
when it received it from the server. Benefit:
The server's order of sending the RPCs is
the same on all clients.

Sends the RPC to everyone (including this
client) through the server and buffers it for
players joining later.

This client executes the RPC like any other
when it received it from the server. Benefit:
The server's order of sending the RPCs is
the same on all clients.

Function Documentation

void
IPunObservable.OnPhotonSerializeView (PhotonStream stre
PhotonMessagelnfo infc

)

Called by PUN several times per second, so that your script can write a
read synchronization data for the PhotonView.

This method will be called in scripts that are assigned as Observed
component of a PhotonView.

PhotonNetwork.sendRateOnSerialize affects how often this method i
called.

PhotonNetwork.sendRate affects how often packages are sent by this
client.

Implementing this method, you can customize which data a PhotonVie
regularly synchronizes. Your code defines what is being sent (content)
how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it
assigned to a PhotonView as PhotonView.observed script.

To make use of this method, the PhotonStream is essential. It will be it
"writing" mode" on the client that controls a PhotonView
(PhotonStream.isWriting == true) and in "reading mode" on the remote
clients that just receive that the controlling client sends.

If you skip writing any value into the stream, PUN will skip the update.
Used carefully, this can conserve bandwidth and messages (which havi
limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when 1
sender does not send any update. This can't be used as "x-times per
second Update()".

Implemented in PhotonAnimatorView, PhotonTransformView,
PhotonRigidbody2DView, and PhotonRigidbodyView.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | List of all members
IPunObservable
Interface Reference
Public API

Defines the OnPhotonSerializeView method to make it easy to
implement correctly for observable scripts. More...

Inherited by PhotonAnimatorView, PhotonRigidbody2DView,
PhotonRigidbodyView, and PhotonTransformView.

Public Member Functions

void OnPhotonSerializeView (PhotonStream stream,
PhotonMessagelnfo info)
Called by PUN several times per second, so that your script

can write and read synchronization data for the PhotonView.
More...

Detailed Description

Defines the OnPhotonSerializeView method to make it easy to
implement correctly for observable scripts.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | List of all members
IPunCallbacks
Interface Reference
Public API

This interface is used as definition of all callback methods of PUN,
except OnPhotonSerializeView. Preferably, implement them
individually. More...

Inherited by Photon.PunBehaviour.

Public Member Functions

void

void

void

void

void

void

void

void

void

OnConnectedToPhoton ()

Called when the initial connection got established but before
you can use the server. OnJoinedLobby() or
OnConnectedToMaster() are called when PUN is ready.
More...

OnLeftRoom ()
Called when the local user/client left a room. More...

OnMasterClientSwitched (PhotonPlayer newMasterClient)
Called after switching to a new MasterClient when the current
one leaves. More...

OnPhotonCreateRoomFailed (object[] codeAndMsg)
Called when a CreateRoom() call failed. The parameter
provides ErrorCode and message (as array). More...

OnPhotonJoinRoomFailed (object[]] codeAndMsg)
Called when a JoinRoom() call failed. The parameter provides
ErrorCode and message (as array). More...

OnCreatedRoom ()
Called when this client created a room and entered fit.
OnJoinedRoom() will be called as well. More...

OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual
room-list updates will call OnReceivedRoomListUpdate().
More...

OnLeftLobby ()
Called after leaving a lobby. More...

OnFailedToConnectToPhoton (DisconnectCause cause)

void

void

void

void

void

void

void

void

Called if a connect call to the Photon server failed before the
connection was established, followed by a call to
OnDisconnectedFromPhoton(). More...

OnConnectionFail (DisconnectCause cause)

Called when something causes the connection to fail (after it
was established), followed by a call to
OnDisconnectedFromPhoton(). More...

OnDisconnectedFromPhoton ()
Called after disconnecting from the Photon server. More...

OnPhotoninstantiate (PhotonMessagelnfo info)
Called on all scripts on a GameObject (and children) that have
been Instantiated using PhotonNetwork.Instantiate. More...

OnReceivedRoomListUpdate ()

Called for any update of the room-listing while in a lobby
(PhotonNetwork.insideLobby) on the Master Server or when
a response is received for
PhotonNetwork.GetCustomRoomL.ist(). More...

OnJoinedRoom ()
Called when entering a room (by creating or joining it). Called
on all clients (including the Master Client). More...

OnPhotonPlayerConnected (PhotonPlayer newPlayer)
Called when a remote player entered the room. This
PhotonPlayer is already added to the playerlist at this time.
More...

OnPhotonPlayerDisconnected (PhotonPlayer otherPlayer)
Called when a remote player left the room. This PhotonPlayer
Is already removed from the playerlist at this time. More...

OnPhotonRandomJoinFailed (object[] codeAndMsg)
Called when a JoinRandom() call failed. The parameter

provides ErrorCode and message. More...

void OnConnectedToMaster ()
Called after the connection to the master is established and
authenticated but only when PhotonNetwork.autoJoinLobby
Is false. More...

void OnPhotonMaxCccuReached ()
Because the concurrent user limit was (temporarily) reached,
this client is rejected by the server and disconnecting. Mare...

void OnPhotonCustomRoomPropertiesChanged (Hashtable
propertiesThatChanged)
Called when a room's custom properties changed. The
propertiesThatChanged contains all that was set via
Room.SetCustomProperties. More...

void OnPhotonPlayerPropertiesChanged (object]]
playerAndUpdatedProps)
Called when custom player-properties are changed. Player and
the changed properties are passed as object[]. More...

void OnUpdatedFriendList ()
Called when the server sent the response to a FindFriends
request and updated PhotonNetwork.Friends. More...

void OnCustomAuthenticationFailed (string debugMessage)
Called when the custom authentication failed. Followed by
disconnect! More...

void OnCustomAuthenticationResponse (Dictionary< string, object
> data)
Called when your Custom Authentication service responds with
additional data. More...

void OnWebRpcResponse (OperationResponse response)
Called by PUN when the response to a WebRPC is available.

void

void

void

void

See PhotonNetwork.WebRPC. More...

OnOwnershipRequest (object[] viewAndPlayer)
Called when another player requests ownership of a
PhotonView from you (the current owner). More...

OnLobbyStatisticsUpdate ()
Called when the Master Server sent an update for the Lobby
Statistics, updating PhotonNetwork.LobbyStatistics. More...

OnPhotonPlayerActivityChanged (PhotonPlayer otherPlayer)
Called when a remote Photon Player activity changed. This will
be called ONLY if PlayerTtl is greater than 0. More...

OnOwnershipTransfered (object[] viewAndPlayers)
Called when ownership of a PhotonView is transfered to
another player. More...

Detailed Description

This interface is used as definition of all callback methods of PUN,
except OnPhotonSerializeView. Preferably, implement them
individually.

This interface is available for completeness, more than for actually
implementing it in a game. You can implement each method
individually in any MonoMehaviour, without implementing
IPunCallbacks.

PUN calls all callbacks by name. Don't use implement callbacks with
fully qualified name. Example:
IPunCallbacks.OnConnectedToPhoton won't get called by Unity's
SendMessage().

PUN will call these methods on any script that implements them,
analog to Unity's events and callbacks. The situation that triggers the
call is described per method.

OnPhotonSerializeView is NOT called like these callbacks! It's usage
frequency is much higher and it is implemented in: IPunObservable.

Member Function Documentation

void IPunCallbacks.OnConnectedToMaster ()

Called after the connection to the master is established and
authenticated but only when PhotonNetwork.autoJoinLobby is
false.

If you set PhotonNetwork.autoJoinLobby to true,
OnJoinedLobby() will be called instead of this.

You can join rooms and create them even without being in a lobby.
The default lobby is used in that case. The list of available rooms
won't become available unless you join a lobby via
PhotonNetwork.joinLobby.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnConnectedToPhoton ()

Called when the initial connection got established but before you can
use the server. OnJoinedLobby() or OnConnectedToMaster() are
called when PUN is ready.

This callback is only useful to detect if the server can be reached at
all (technically). Most often, it's enough to implement
OnFailedToConnectToPhoton() and
OnDisconnectedFromPhoton().

OnJoinedLobby() or OnConnectedToMaster() are called when
PUN is ready.

When this is called, the low level connection is established and PUN
will send your Appld, the user, etc in the background. This is not
called for transitions from the masterserver to game servers.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnConnectionFail (DisconnectCause cause)

Called when something causes the connection to fail (after it was
established), followed by a call to OnDisconnectedFromPhoton().

If the server could not be reached in the first place,
OnFailedToConnectToPhoton is called instead. The reason for the
error is provided as DisconnectCause.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnCreatedRoom ()

Called when this client created a room and entered it.
OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see
PhotonNetwork.CreateRoom).

As any client might close (or drop connection) anytime, there is a
chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal”, it is safer to
implement OnMasterClientSwitched() and to make the new
MasterClient check the room's state.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnCustomAuthenticationFailed (string debugMess

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If
authentication is successful, this method is not called. Implement
OnJoinedLobby() or OnConnectedToMaster() (as usual).

During development of a game, it might also fail due to wrong configure
on the server side. In those cases, logging the debugMessage is very
important.

Unless you setup a custom authentication service for your app (in the
Dashboard), this won't be called!

Parameters

debugMessage Contains a debug message why authentication fa
This has to be fixed during development time.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnCustomAuthenticationResponse (Dictionary< st

Called when your Custom Authentication service responds with additiot

Custom Authentication services can include some custom data in their

present, that data is made available in this callback as Dictionary. While
data have to be strings, the values can be either string or a number (in

make extra sure, that the value type is the one you expect. Numbers be
int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, ot

https://doc.photonengine.com/en-us/pun/current/connection-and-authel
authentication

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnDisconnectedFromPhoton ()

Called after disconnecting from the Photon server.

https://www.photonengine.com/dashboard

In some cases, other callbacks are called before
OnDisconnectedFromPhoton is called. Examples:
OnConnectionFail() and OnFailedToConnectToPhoton().

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnFailedToConnectToPhoton (DisconnectCause ¢

Called if a connect call to the Photon server failed before the connectic
was established, followed by a call to OnDisconnectedFromPhoton().

This is called when no connection could be established at all. It differs f
OnConnectionFail, which is called when an existing connection fails.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-
list updates will call OnReceivedRoomListUpdate().

Note: When PhotonNetwork.autoJoinLobby is false,
OnConnectedToMaster() will be called and the room list won't
become available.

While in the lobby, the roomlist is automatically updated in fixed
intervals (which you can't modify). The room list gets available when
OnReceivedRoomListUpdate() gets called after
OnJoinedLobby().

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnJoinedRoom ()

Called when entering a room (by creating or joining it). Called on all

clients (including the Master Client).

This method is commonly used to instantiate player characters. If a
match has to be started "actively"”, you can call an PunRPC
triggered by a user's button-press or a timer.

When this is called, you can usually already access the existing
players in the room via PhotonNetwork.playerList. Also, all custom
properties should be already available as Room.customProperties.
Check Room.playerCount to find out if enough players are in the
room to start playing.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnLeftLobby ()

Called after leaving a lobby.

When you leave a lobby, CreateRoom and JoinRandomRoom
automatically refer to the default lobby.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnLeftRoom ()

Called when the local user/client left a room.

When leaving a room, PUN brings you back to the Master Server.
Before you can use lobbies and join or create rooms,
OnJoinedLobby() or OnConnectedToMaster() will get called
again.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnLobbyStatisticsUpdate ()

Called when the Master Server sent an update for the Lobby
Statistics, updating PhotonNetwork.LobbyStatistics.

This callback has two preconditions: EnableLobbyStatistics must be
set to true, before this client connects. And the client has to be
connected to the Master Server, which is providing the info about
lobbies.

Implemented in Photon.PunBehaviour.

void

IPunCallbacks.OnMasterClientSwitched (PhotonPlayer newMaste

Called after switching to a new MasterClient when the current one leav:

This is not called when this client enters a room. The former MasterClie
still in the player list when this method get called.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnOwnershipRequest (object[] viewAndPlayer)

Called when another player requests ownership of a PhotonView
from you (the current owner).

The parameter viewAndPlayer contains:
PhotonView view = viewAndPlayer[0] as PhotonView;

PhotonPlayer requestingPlayer = viewAndPlayer[1] as
PhotonPlayer;

Parameters

viewAndPlayer The PhotonView is viewAndPlayer[0] and the
requesting player is viewAndPlayer[1].

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnOwnershipTransfered (object[] viewAndPlayers

Called when ownership of a PhotonView is transfered to another
player.

The parameter viewAndPlayers contains:

PhotonView view = viewAndPlayers[0] as PhotonView;
PhotonPlayer newOwner = viewAndPlayers[1] as PhotonPlayer;
PhotonPlayer oldOwner = viewAndPlayers[2] as PhotonPlayer;
void OnOwnershipTransfered(object[] viewAndPlayers) {} //
Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonCreateRoomFailed (object[] codeAndMs

Called when a CreateRoom() call failed. The parameter provides
ErrorCode and message (as array).

Most likely because the room name is already in use (some other client
was faster than you). PUN logs some info if the
PhotonNetwork.logLevel is >= PhotonLogLevel.Informational.

Parameters

codeAndMsg codeAndMsg[0] is short ErrorCode and
codeAndMsg[1] is a string debug msg.

Implemented in Photon.PunBehaviour.

void

IPunCallbacks.OnPhotonCustomRoomPropertiesChanged (Hasht:

Called when a room's custom properties changed. The propertiesThatC
set via Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThat(
Changing properties must be done by Room.SetCustomProperties, w
locally, too.

Parameters
propertiesThatChanged

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotoninstantiate (PhotonMessagelnfo info)

Called on all scripts on a GameObiject (and children) that have been
Instantiated using PhotonNetwork.Instantiate.

PhotonMessagelnfo parameter provides info about who created
the object and when (based off PhotonNetworking.time).

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonJoinRoomFailed (object[]] codeAndMsg)

Called when a JoinRoom() call failed. The parameter provides
ErrorCode and message (as array).

Most likely error is that the room does not exist or the room is full
(some other client was faster than you). PUN logs some info if the
PhotonNetwork.logLevel is >= PhotonLogLevel.Informational.

Parameters
codeAndMsg codeAndMsg[0] is short ErrorCode and

codeAndMsg[1] is string debug msg.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnPhotonMaxCccuReached ()

Because the concurrent user limit was (temporarily) reached, this
client is rejected by the server and disconnecting.

When this happens, the user might try again later. You can't create
or join rooms in OnPhotonMaxCcuReached(), cause the client will
be disconnecting. You can raise the CCU limits with a new license
(when you host yourself) or extended subscription (when using the
Photon Cloud). The Photon Cloud will mail you when the CCU limit
was reached. This is also visible in the Dashboard (webpage).

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonPlayerActivityChanged (PhotonPlayer ot

Called when a remote Photon Player activity changed. This will be call
PlayerTtl is greater than 0.

Use 0. If true, the player is not gett...">PhotonPlayer.IsIhactive to cl
player's current activity state.

Example: void OnPhotonPlayerActivityChanged(PhotonPlayer othe
{...}

This callback has precondition: PlayerTtl must be greater than 0.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonPlayerConnected (PhotonPlayer newPla’

Called when a remote player entered the room. This PhotonPlayer is
already added to the playerlist at this time.

If your game starts with a certain number of players, this callback can b
useful to check the Room.playerCount and find out if you can start.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonPlayerDisconnected (PhotonPlayer othe|

Called when a remote player left the room. This PhotonPlayer is alrear
removed from the playerlist at this time.

When your client calls PhotonNetwork.leaveRoom, PUN will call this m
on the remaining clients. When a remote client drops connection or get:
closed, this callback gets executed. after a timeout of several seconds.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonPlayerPropertiesChanged (object[] playe

Called when custom player-properties are changed. Player and the cha
passed as object[].

Since v1.25 this method has one parameter: object[] playerAndUpdatec
contains two entries.

[0] is the affected PhotonPlayer.

[1] is the Hashtable of properties that changed.

We are using a object[] due to limitations of Unity's GameObject.SendM
only one optional parameter).

Changing properties must be done by PhotonPlayer.SetCustomProp:«
this callback locally, too.

Example:

void OnPhotonPlayerPropertiesChanged(object[] playerAndUpdatedProj
PhotonPlayer player = playerAndUpdatedProps[0] as PhotonPlayel
Hashtable props = playerAndUpdatedProps[1l] as Hashtable;
/7.

}

Parameters

playerAndUpdatedProps Contains PhotonPlayer and the propel
See remarks.

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnPhotonRandomJoinFailed (object[]] codeAndMs

Called when a JoinRandom() call failed. The parameter provides
ErrorCode and message.

Most likely all rooms are full or no rooms are available.

When using multiple lobbies (via JoinLobby or TypedLobby), another
lobby might have more/fitting rooms.

PUN logs some info if the PhotonNetwork.logLevel is >=
PhotonLogLevel.Informational.

Parameters

codeAndMsg codeAndMsg[0] is short ErrorCode. codeAndMsg|1
Is string debug msg.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnReceivedRoomListUpdate ()

Called for any update of the room-listing while in a lobby
(PhotonNetwork.insideLobby) on the Master Server or when a
response is received for PhotonNetwork.GetCustomRoomList().

PUN provides the list of rooms by PhotonNetwork.GetRoomL.ist().
Each item is a RoomInfo which might include custom properties
(provided you defined those as lobby-listed when creating a room).

Not all types of lobbies provide a listing of rooms to the client. Some
are silent and specialized for server-side matchmaking.

Implemented in Photon.PunBehaviour.

void IPunCallbacks.OnUpdatedFriendList ()

Called when the server sent the response to a FindFriends request
and updated PhotonNetwork.Friends.

The friends list is available as PhotonNetwork.Friends, listing
name, online state and the room a user is in (if any).

Implemented in Photon.PunBehaviour.

void
IPunCallbacks.OnWebRpcResponse (OperationResponse respor

Called by PUN when the response to a WebRPC is available. See
PhotonNetwork.WebRPC.

Important: The response.ReturnCode is O if Photon was able to reach
your web-service.

The content of the response is what your web-service sent. You can cre
a WebRpcResponse from it.

Example: WebRpcResponse webResponse = new
WebRpcResponse(operationResponse);

Please note: Class OperationResponse is in a namespace which need:
be "used":

using ExitGames.Client.Photon; // includes OperationResponse (and
other classes)

The OperationResponse.ReturnCode by Photon is:

©@ for "OK"
-3 for "Web-Service not configured" (see Dashboard / WebHooks)
-5 for "Web-Service does now have RPC path/name" (at least for Azl

Implemented in Photon.PunBehaviour.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Photon PunBehaviour

Public Member Functions | List of all members

Photon.PunBehaviour
Class Reference

Public API

This class provides a .photonView and all callbacks/events that PUN
can call. Override the events/methods you want to use. More...

Inherits Photon.MonoBehaviour, and IPunCallbacks.

Public Member Functions

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

OnConnectedToPhoton ()

Called when the initial connection got established but
before you can use the server. OnJoinedLobby() or
OnConnectedToMaster() are called when PUN is
ready. More...

OnLeftRoom ()
Called when the local user/client left a room. More...

OnMasterClientSwitched (PhotonPlayer
newMasterClient)

Called after switching to a new MasterClient when the
current one leaves. More...

OnPhotonCreateRoomFailed (object[] codeAndMsg)
Called when a CreateRoom() call failed. The parameter
provides ErrorCode and message (as array). More...

OnPhotonJoinRoomFailed (object[]] codeAndMsg)
Called when a JoinRoom() call failed. The parameter
provides ErrorCode and message (as array). More...

OnCreatedRoom ()
Called when this client created a room and entered it.
OnJoinedRoom() will be called as well. More...

OnJoinedLobby ()

Called on entering a lobby on the Master Server. The
actual room-list updates will call
OnReceivedRoomListUpdate(). More...

OnLeftLobby ()
Called after leaving a lobby. More...

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

OnFailedToConnectToPhoton (DisconnectCause
cause)

Called if a connect call to the Photon server failed
before the connection was established, followed by a call
to OnDisconnectedFromPhoton(). More...

OnDisconnectedFromPhoton ()
Called after disconnecting from the Photon server.
More...

OnConnectionFail (DisconnectCause cause)
Called when something causes the connection to fail
(after it was established), followed by a call to
OnDisconnectedFromPhoton(). More...

OnPhotonlnstantiate (PhotonMessagelnfo info)
Called on all scripts on a GameObject (and children) that
have been Instantiated using
PhotonNetwork.Instantiate. More...

OnReceivedRoomListUpdate ()

Called for any update of the room-listing while in a lobby
(PhotonNetwork.insideLobby) on the Master Server or
when a response is received for
PhotonNetwork.GetCustomRoomList(). More...

OnJoinedRoom ()
Called when entering a room (by creating or joining it).
Called on all clients (including the Master Client). More...

OnPhotonPlayerConnected (PhotonPlayer newPlayer)
Called when a remote player entered the room. This
PhotonPlayer is already added to the playerlist at this
time. More...

OnPhotonPlayerDisconnected (PhotonPlayer
otherPlayer)

Called when a remote player left the room. This
PhotonPlayer is already removed from the playerlist at
this time. More...

virtual void OnPhotonRandomJoinFailed (object[] codeAndMsg)
Called when a JoinRandom() call failed. The parameter
provides ErrorCode and message. More...

virtual void OnConnectedToMaster ()
Called after the connection to the master is established
and authenticated but only when
PhotonNetwork.autoJoinLobby is false. More...

virtual void OnPhotonMaxCccuReached ()
Because the concurrent user limit was (temporarily)
reached, this client is rejected by the server and
disconnecting. More...

virtual void OnPhotonCustomRoomPropertiesChanged
(Hashtable propertiesThatChanged)
Called when a room's custom properties changed. The
propertiesThatChanged contains all that was set via
Room.SetCustomProperties. More...

virtual void OnPhotonPlayerPropertiesChanged (object|]
playerAndUpdatedProps)
Called when custom player-properties are changed.
Player and the changed properties are passed as
object[]. More...

virtual void OnUpdatedFriendList ()
Called when the server sent the response to a
FindFriends request and updated
PhotonNetwork.Friends. More...

virtual void OnCustomAuthenticationFailed (string debugMessage)
Called when the custom authentication failed. Followed
by disconnect! More...

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

OnCustomAuthenticationResponse (Dictionary< string,
object > data)

Called when your Custom Authentication service
responds with additional data. More...

OnWebRpcResponse (OperationResponse response)
Called by PUN when the response to a WebRPC is
available. See PhotonNetwork.WebRPC. More...

OnOwnershipRequest (object[] viewAndPlayer)
Called when another player requests ownership of a
PhotonView from you (the current owner). More...

OnLobbyStatisticsUpdate ()

Called when the Master Server sent an update for the
Lobby Statistics, updating
PhotonNetwork.LobbyStatistics. More...

OnPhotonPlayerActivityChanged (PhotonPlayer
otherPlayer)

Called when a remote Photon Player activity changed.
This will be called ONLY if PlayerTtl is greater than O.
More...

OnOwnershipTransfered (object[] viewAndPlayers)
Called when ownership of a PhotonView is transfered to
another player. More...

Additional Inherited Members

» Properties inherited from Photon.MonoBehaviour
PhotonView photonView [get]

A cached reference to a PhotonView on this
GameObiject. More...

new PhotonView networkView [get]

This property is only here to notify developers
when they use the outdated value. More...

Detailed Description

This class provides a .photonView and all callbacks/events that PUN
can call. Override the events/methods you want to use.

By extending this class, you can implement individual methods as
override.

Visual Studio and MonoDevelop should provide the list of methods
when you begin typing "override". Your implementation does not
have to call "base.method()".

This class implements IPunCallbacks, which is used as definition of all
PUN callbacks. Don't implement IPunCallbacks in your classes.
Instead, implent PunBehaviour or individual methods.

Member Function Documentation

virtual void
Photon.PunBehaviour.OnConnectedToMaster ()

Called after the connection to the master is established and
authenticated but only when PhotonNetwork.autoJoinLobby is
false.

If you set PhotonNetwork.autoJoinLobby to true,
OnJoinedLobby() will be called instead of this.

You can join rooms and create them even without being in a lobby.
The default lobby is used in that case. The list of available rooms
won't become available unless you join a lobby via
PhotonNetwork.joinLobby.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnConnectedToPhoton ()

Called when the initial connection got established but before you can
use the server. OnJoinedLobby() or OnConnectedToMaster() are
called when PUN is ready.

This callback is only useful to detect if the server can be reached at
all (technically). Most often, it's enough to implement
OnFailedToConnectToPhoton() and
OnDisconnectedFromPhoton().

OnJoinedLobby() or OnConnectedToMaster() are called when
PUN is ready.

When this is called, the low level connection is established and PUN

will send your Appld, the user, etc in the background. This is not
called for transitions from the masterserver to game servers.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnConnectionFail (DisconnectCause caus

Called when something causes the connection to fail (after it was estab
followed by a call to OnDisconnectedFromPhoton().

If the server could not be reached in the first place,
OnFailedToConnectToPhoton is called instead. The reason for the errol
provided as DisconnectCause.

Implements IPunCallbacks.

virtual void Photon.PunBehaviour.OnCreatedRoom ()

Called when this client created a room and entered it.
OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see
PhotonNetwork.CreateRoom).

As any client might close (or drop connection) anytime, there is a
chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal”, it is safer to
implement OnMasterClientSwitched() and to make the new
MasterClient check the room's state.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnCustomAuthenticationFailed (string deb

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If
successful, this method is not called. Implement OnJoinedLobby() or
OnConnectedToMaster() (as usual).

During development of a game, it might also fail due to wrong configure
side. In those cases, logging the debugMessage is very important.

Unless you setup a custom authentication service for your app (in the C
won't be called!

Parameters

debugMessage Contains a debug message why authentication fa
fixed during development time.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnCustomAuthenticationResponse (Dictior

Called when your Custom Authentication service responds with additiot

Custom Authentication services can include some custom data in their
is made available in this callback as Dictionary. While the keys of your ¢
can be either string or a number (in Json). You need to make extra sure
expect. Numbers become (currently) int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, ot
https://doc.photonengine.com/en-us/pun/current/connection-and-authel

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnDisconnectedFromPhoton ()

https://www.photonengine.com/dashboard

Called after disconnecting from the Photon server.

In some cases, other callbacks are called before
OnDisconnectedFromPhoton is called. Examples:
OnConnectionFail() and OnFailedToConnectToPhoton().

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnFailedToConnectToPhoton (DisconnectC

Called if a connect call to the Photon server failed before the connectic
followed by a call to OnDisconnectedFromPhoton().

This is called when no connection could be established at all. It differs f
OnConnectionFail, which is called when an existing connection fails.

Implements IPunCallbacks.

virtual void Photon.PunBehaviour.OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-
list updates will call OnReceivedRoomListUpdate().

Note: When PhotonNetwork.autoJoinLobby is false,
OnConnectedToMaster() will be called and the room list won't
become available.

While in the lobby, the roomlist is automatically updated in fixed
intervals (which you can't modify). The room list gets available when
OnReceivedRoomListUpdate() gets called after
OnJoinedLobby().

Implements IPunCallbacks.

virtual void Photon.PunBehaviour.OnJoinedRoom ()

Called when entering a room (by creating or joining it). Called on all
clients (including the Master Client).

This method is commonly used to instantiate player characters. If a
match has to be started "actively"”, you can call an PunRPC
triggered by a user's button-press or a timer.

When this is called, you can usually already access the existing
players in the room via PhotonNetwork.playerList. Also, all custom
properties should be already available as Room.customProperties.
Check Room.playerCount to find out if enough players are in the
room to start playing.

Implements IPunCallbacks.

virtual void Photon.PunBehaviour.OnLeftLobby ()

Called after leaving a lobby.

When you leave a lobby, CreateRoom and JoinRandomRoom
automatically refer to the default lobby.

Implements IPunCallbacks.

virtual void Photon.PunBehaviour.OnLeftRoom ()

Called when the local user/client left a room.

When leaving a room, PUN brings you back to the Master Server.
Before you can use lobbies and join or create rooms,
OnJoinedLobby() or OnConnectedToMaster() will get called
again.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnLobbyStatisticsUpdate ()

Called when the Master Server sent an update for the Lobby
Statistics, updating PhotonNetwork.LobbyStatistics.

This callback has two preconditions: EnableLobbyStatistics must be
set to true, before this client connects. And the client has to be
connected to the Master Server, which is providing the info about
lobbies.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnMasterClientSwitched (PhotonPlayer ne

Called after switching to a new MasterClient when the current one leav:

This is not called when this client enters a room. The former MasterClie
list when this method get called.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnOwnershipRequest (object[] viewAndPlI:

Called when another player requests ownership of a PhotonView from
current owner).

The parameter viewAndPlayer contains:
PhotonView view = viewAndPlayer[0] as PhotonView;
PhotonPlayer requestingPlayer = viewAndPlayer[1] as PhotonPlayer;

Parameters
viewAndPlayer The PhotonView is viewAndPlayer[0] and the rec

player is viewAndPlayer[1].

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnOwnershipTransfered (object[] viewAnd

Called when ownership of a PhotonView is transfered to another playe
The parameter viewAndPlayers contains:

PhotonView view = viewAndPlayers[0] as PhotonView;
PhotonPlayer newOwner = viewAndPlayers[1] as PhotonPlayer;
PhotonPlayer oldOwner = viewAndPlayers[2] as PhotonPlayer;

void OnOwnershipTransfered(object[] viewAndPlayers) {} //

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonCreateRoomFailed (object[] code

Called when a CreateRoom() call failed. The parameter provides Erroi
message (as array).

Most likely because the room name is already in use (some other client
you). PUN logs some info if the PhotonNetwork.logLevel is >=
PhotonLogLevel.Informational.

Parameters

codeAndMsg codeAndMsg[0] is a short ErrorCode and codeAnd
string debug msg.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonCustomRoomPropertiesChanged

Called when a room's custom properties changed. The propertiesThatC
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThat(
Changing properties must be done by Room.SetCustomProperties, w

Parameters
propertiesThatChanged

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotoninstantiate (PhotonMessagelnfo |

Called on all scripts on a GameObject (and children) that have been In
using PhotonNetwork.Instantiate.

PhotonMessagelnfo parameter provides info about who created the ol
when (based off PhotonNetworking.time).

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonJoinRoomFailed (object[] codeAl

Called when a JoinRoom() call failed. The parameter provides ErrorCi
message (as array).

Most likely error is that the room does not exist or the room is full (some
was faster than you). PUN logs some info if the PhotonNetwork.logLe
PhotonLogLevel.Informational.

Parameters
codeAndMsg codeAndMsg[0] is short ErrorCode. codeAndMsg|1

debug msg.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonMaxCccuReached ()

Because the concurrent user limit was (temporarily) reached, this
client is rejected by the server and disconnecting.

When this happens, the user might try again later. You can't create
or join rooms in OnPhotonMaxCcuReached(), cause the client will
be disconnecting. You can raise the CCU limits with a new license
(when you host yourself) or extended subscription (when using the
Photon Cloud). The Photon Cloud will mail you when the CCU limit
was reached. This is also visible in the Dashboard (webpage).

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonPlayerActivityChanged (PhotonP|

Called when a remote Photon Player activity changed. This will be call
greater than 0.

Use 0. If true, the player is not gett...">PhotonPlayer.IsIhactive to cl
activity state.

Example: void OnPhotonPlayerActivityChanged(PhotonPlayer othe
This callback has precondition: PlayerTtl must be greater than 0.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonPlayerConnected (PhotonPlayer

Called when a remote player entered the room. This PhotonPlayer is ¢
the playerlist at this time.

If your game starts with a certain number of players, this callback can b
the Room.playerCount and find out if you can start.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonPlayerDisconnected (PhotonPlay

Called when a remote player left the room. This PhotonPlayer is alrear
playerlist at this time.

When your client calls PhotonNetwork.leaveRoom, PUN will call this m
clients. When a remote client drops connection or gets closed, this callk
after a timeout of several seconds.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonPlayerPropertiesChanged (object

Called when custom player-properties are changed. Player and the cha
object]].

Since v1.25 this method has one parameter: object[] playerAndUpdatec
[0] is the affected PhotonPlayer.
[1] is the Hashtable of properties that changed.

We are using a object[] due to limitations of Unity's GameObject.SendM
optional parameter).

Changing properties must be done by PhotonPlayer.SetCustomProp:«
locally, too.

Example:

void OnPhotonPlayerPropertiesChanged(object[] playerAndUpdatedProj
PhotonPlayer player = playerAndUpdatedProps[0] as PhotonPlayel
Hashtable props = playerAndUpdatedProps[1l] as Hashtable;
/7.

}

Parameters
playerAndUpdatedProps Contains PhotonPlayer and the propel

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnPhotonRandomJoinFailed (object[] code

Called when a JoinRandom() call failed. The parameter provides Error!
message.

Most likely all rooms are full or no rooms are available.

When using multiple lobbies (via JoinLobby or TypedLobby), another I
more/fitting rooms.

PUN logs some info if the PhotonNetwork.logLevel is >=
PhotonLogLevel.Informational.

Parameters

codeAndMsg codeAndMsg[0] is short ErrorCode. codeAndMsg|1
msg.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnReceivedRoomListUpdate ()

Called for any update of the room-listing while in a lobby
(PhotonNetwork.insideLobby) on the Master Server or when a
response is received for PhotonNetwork.GetCustomRoomList().

PUN provides the list of rooms by PhotonNetwork.GetRoomL.ist().

Each item is a RoomlInfo which might include custom properties
(provided you defined those as lobby-listed when creating a room).

Not all types of lobbies provide a listing of rooms to the client. Some
are silent and specialized for server-side matchmaking.

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnUpdatedFriendList ()

Called when the server sent the response to a FindFriends request
and updated PhotonNetwork.Friends.

The friends list is available as PhotonNetwork.Friends, listing
name, online state and the room a user is in (if any).

Implements IPunCallbacks.

virtual void
Photon.PunBehaviour.OnWebRpcResponse (OperationResponse

Called by PUN when the response to a WebRPC is available. See
PhotonNetwork.WebRPC.

Important: The response.ReturnCode is O if Photon was able to reach
The content of the response is what your web-service sent. You can cre
WebResponse instance from it. Example: WebRpcResponse webRes;
WebRpcResponse(operationResponse);

Please note: Class OperationResponse is in a namespace which need:
using ExitGames.Client.Photon; // includes OperationResponse (and

The OperationResponse.ReturnCode by Photon is:

©@ for "OK"
-3 for "Web-Service not configured" (see Dashboard / WebHooks)
-5 for "Web-Service does now have RPC path/name" (at least for Azl

Implements IPunCallbacks.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | Public Attributes |
PhOtonMessagen‘]fO Properties | List of all members
Struct Reference
Public API

Container class for info about a particular message, RPC or update.
More...

Public Member Functions

PhotonMessagelnfo (PhotonPlayer player, int
timestamp, PhotonView view)

override string ToString ()

Public Attributes

readonly PhotonPlayer sender

The sender of a message / event. May be
null. More...

readonly PhotonView photonView

Properties

double timestamp [get]

Detailed Description

Container class for info about a particular message, RPC or update.

Constructor & Destructor Documentation

PhotonMessagelnfo.PhotonMessagelnfo (PhotonPlayer player,
int timestam
PhotonView view

)

Member Function Documentation

override string PhotonMessagelnfo.ToString ()

Member Data Documentation

readonly PhotonView PhotonMessagelnfo.photonView

readonly PhotonPlayer PhotonMessagelnfo.sender

The sender of a message / event. May be null.

Property Documentation

double PhotonMessagelnfo.timestamp

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | Properties |
PhotonStream Class List of all members
Reference
Public API

This container is used in OnPhotonSerializeView() to either provide
incoming data of a PhotonView or for you to provide it. More...

Public Member Functions

void

object

object

void

object][]

void

void

void

void

PhotonStream (bool write, object[] incomingData)
Creates a stream and initializes it. Used by PUN internally.
More...

SetReadStream (object[] incomingData, byte pos=0)

ReceiveNext ()
Read next piece of data from the stream when isReading is
true. More...

PeekNext ()
Read next piece of data from the stream without advancing
the "current” item. More...

SendNext (object obj)
Add another piece of data to send it when isWriting is true.
More...

ToArray ()
Turns the stream into a new object[]. Mare...

Serialize (ref bool myBool)
Will read or write the value, depending on the stream's
ISWriting value. Maore...

Serialize (ref int myint)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref string value)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref char value)

void

void

void

void

void

void

Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref short value)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref float obj)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref PhotonPlayer obj)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref Vector3 obj)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref Vector2 obj)
Will read or write the value, depending on the stream's
ISWriting value. More...

Serialize (ref Quaternion obj)
Will read or write the value, depending on the stream's
ISWriting value. More...

Properties

bool isWriting [get]
If true, this client should add data to the stream to send it.
More...

bool isReading [get]
If true, this client should read data send by another client.
More...

int Count [get]
Count of items in the stream. More...

Detailed Description

This container is used in OnPhotonSerializeView() to either provide
incoming data of a PhotonView or for you to provide it.

The isWriting property will be true if this client is the "owner" of the
PhotonView (and thus the GameObject). Add data to the stream and
it's sent via the server to the other players in a room. On the receiving
side, isWriting is false and the data should be read.

Send as few data as possible to keep connection quality up. An empty
PhotonStream will not be sent.

Use either Serialize() for reading and writing or SendNext() and
ReceiveNext(). The latter two are just explicit read and write methods
but do about the same work as Serialize(). It's a matter of preference
which methods you use.

See also
PhotonNetworkingMessage

Constructor & Destructor Documentation

PhotonStream.PhotonStream (bool write,
object[] incomingData

)

Creates a stream and initializes it. Used by PUN internally.

Member Function Documentation

object PhotonStream.PeekNext ()

Read next piece of data from the stream without advancing the
"current” item.

object PhotonStream.ReceiveNext ()

Read next piece of data from the stream when isReading is true.

void PhotonStream.SendNext (object obj)

Add another piece of data to send it when isWriting is true.

void PhotonStream.Serialize (ref bool myBool)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref int myint)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref string value)

Will read or write the value, depending on the stream's isWriting

value.

void PhotonStream.Serialize (ref char value)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref short value)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref float obj)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref PhotonPlayer obj)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref Vector3 obj)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref Vector2 obj)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.Serialize (ref Quaternion obj)

Will read or write the value, depending on the stream's isWriting
value.

void PhotonStream.SetReadStream (object[] incomingData,
byte pos = o
)
object [] PhotonStream.ToArray ()

Turns the stream into a new object]].

Property Documentation

int PhotonStream.Count get

Count of items in the stream.

bool PhotonStream.isReading get

If true, this client should read data send by another client.

bool PhotonStream.isWriting get

If true, this client should add data to the stream to send it.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions |
PhOtonNetWOI"k ClaSS Static Public Member Functions |
Public Attributes | Static Public Attributes |
Reference Properties | Events | List of all members
Public API

The main class to use the PhotonNetwork plugin. This class is static.
More...

Public Member Functions

delegate void EventCallback (byte eventCode, object content, int
senderld)
Defines the delegate usable in OnEventCall. More...

Static Public Member Functions

static void

static bool

static bool

static bool

static bool

static bool

static bool

SwitchToProtocol (ConnectionProtoc:
cp)

While offline, the network protocol can
switched (which affects the ports you ¢
use to connect). More...

ConnectUsingSettings (string
gameVersion)

Connect to Photon as configured in th
editor (saved in PhotonServerSettings
file). Mare...

ConnectToMaster (string
masterServerAddress, int port, string
applID, string gameVersion)

Connect to a Photon Master Server by
address, port, appID and game(client)
version. Maore...

Reconnect ()
Can be used to reconnect to the maste
server after a disconnect. More...

ReconnectAndRejoin ()

When the client lost connection during
gameplay, this method attempts to
reconnect and rejoin the room. More...

ConnectToBestCloudServer (string
gameVersion)

Connect to the Photon Cloud region w
the lowest ping (on platforms that supp
Unity's Ping). Maore...

ConnectToRegion (CloudRegionCoc

static void

static void

static void

static string

static void

static void

static bool

region, string gameVersion)
Connects to the Photon Cloud region
choice. More...

OverrideBestCloudServer
(CloudRegionCode region)
Overwrites the region that is used for
ConnectToBestCloudServer(string
gameVersion). More...

RefreshCloudServerRating ()
Pings all cloud servers again to find the
one with best ping (currently). More...

NetworkStatisticsReset ()
Resets the traffic stats and re-enables
them. More...

NetworkStatisticsToString ()

Only available when
NetworkStatisticsEnabled was used to
gather some stats. More...

InitializeSecurity ()

Used for compatibility with Unity
networking only. Encryption is
automatically initialized while connectir
More...

Disconnect ()

Makes this client disconnect from the
photon server, a process that leaves al
room and calls
OnDisconnectedFromPhoton on
completion. More...

FindFriends (string[] friendsToFind)
Requests the rooms and online status

static bool

static bool

static bool

static bool

static bool

static bool

a list of friends and saves the result in
PhotonNetwork.Friends. More...

CreateRoom (string roomName)
Creates a room with given name but fa
if this room(name) is existing already.
Creates random name for roomName
null. More...

CreateRoom (string roomName,
RoomOptions roomOptions,
TypedLobby typedLobby)

Creates a room but fails if this room is
existing already. Can only be called on
Master Server. More...

CreateRoom (string roomName,
RoomOptions roomOptions,
TypedLobby typedLobby, string]]
expectedUsers)

Creates a room but fails if this room is
existing already. Can only be called on
Master Server. More...

JoinRoom (string roomName)

Join room by roomname and on succe
calls OnJoinedRoom(). This is not
affected by lobbies. More...

JoinRoom (string roomName, string|]
expectedUsers)

Join room by roomname and on succe
calls OnJoinedRoom(). This is not
affected by lobbies. Maore...

JoinOrCreateRoom (string roomNam
RoomOptions roomOptions,
TypedLobby typedLobby)

static bool

static bool

static bool

static bool

static bool

Lets you either join a named room or
create it on the fly - you don't have to
know if someone created the room
already. More...

JoinOrCreateRoom (string roomNam
RoomOptions roomOptions,
TypedLobby typedLobby, string[]
expectedUsers)

Lets you either join a named room or
create it on the fly - you don't have to
know if someone created the room
already. More...

JoinRandomRoom ()

Joins any available room of the current
used lobby and fails if none is available
More...

JoinRandomRoom (Hashtable
expectedCustomRoomProperties, byte
expectedMaxPlayers)

Attempts to join an open room with fittii
custom properties but fails if none is
currently available. More...

JoinRandomRoom (Hashtable
expectedCustomRoomProperties, byte
expectedMaxPlayers, MatchmakingM
matchingType, TypedLobby typedLob
string sqlLobbyFilter, string(]
expectedUsers=null)

Attempts to join an open room with fittii
custom properties but fails if none is
currently available. More...

ReJoinRoom (string roomName)
Can be used to return to a room after ¢
disconnect and reconnect. More...

static bool

static bool

static bool

static bool

static bool

static RoomInfo[]

static void

JoinLobby ()

On MasterServer this joins the default
lobby which list rooms currently in use.
More...

JoinLobby (TypedLobby typedLobby
On a Master Server you can join a lobt
to get lists of available rooms. More...

LeaveLobby ()
Leave a lobby to stop getting updates
about available rooms. More...

LeaveRoom (bool becomelnactive=tru
Leave the current room and return to tt
Master Server where you can join or
create rooms (see remarks). More...

GetCustomRoomList (TypedLobby
typedLobby, string sqlLobbyFilter)
Fetches a custom list of games from th
server, matching a SQL-like "where"
clause, then triggers
OnReceivedRoomListUpdate callback.
More...

GetRoomlList ()

Gets currently cached rooms of the las
rooms list sent by the server as
Roominfo array. This list is either
available and updated automatically ar
periodically while in a lobby (check
insideLobby) or received as a responst
PhotonNetwork.GetCustomRoomL.is
More...

SetPlayerCustomProperties (Hashta

static void

static bool

static int

static int

static void

static GameObject

customProperties)

Sets this (local) player's properties and
synchronizes them to the other players
(don't modify them directly). Mare...

RemovePlayerCustomProperties
(string[] customPropertiesToDelete)
Locally removes Custom Properties of
"this" player. Important: This does not
synchronize the change! Useful when
switch rooms. More...

RaiseEvent (byte eventCode, object
eventContent, bool sendReliable,
RaiseEventOptions options)

Sends fully customizable events in a
room. Events consist of at least an
EventCode (0..199) and can have
content. More...

AllocateViewlD ()
Allocates a viewID that's valid for the
current/local player. More...

AllocateSceneViewlID ()

Enables the Master Client to allocate a
viewID that is valid for scene objects.
More...

UnAllocateViewID (int viewID)
Unregister a viewlID (of manually
Instantiated and destroyed networked
objects). More...

Instantiate (string prefabName, Vectol
position, Quaternion rotation, byte grot
Instantiate a prefab over the network.

This prefab needs to be located in the

static GameObject

static GameObject

static int

static void

static void

static bool

static bool

root of a "Resources" folder. More...

Instantiate (string prefabName, Vectol
position, Quaternion rotation, byte grot
object[] data)

Instantiate a prefab over the network.
This prefab needs to be located in the
root of a "Resources" folder. More...

InstantiateSceneObject (string
prefabName, Vector3 position, Quaterr
rotation, byte group, object[] data)
Instantiate a scene-owned prefab over
the network. The PhotonViews will be
controllable by the MasterClient. This
prefab needs to be located in the root «
"Resources" folder. More...

GetPing ()
The current roundtrip time to the photo
server. More...

FetchServerTimestamp ()
Refreshes the server timestamp (asynt
operation, takes a roundtrip). Mare...

SendOutgoingCommands ()

Can be used to immediately send the
RPCs and Instantiates just called, so tt
are on their way to the other players.
More...

CloseConnection (PhotonPlayer
kickPlayer)

Request a client to disconnect (KICK).
Only the master client can do this More

SetMasterClient (PhotonPlayer

static void

static void

static void

static void

static void

masterClientPlayer)

Asks the server to assign another play:
as Master Client of your current room.
More...

Destroy (PhotonView targetView)
Network-Destroy the GameObject
associated with the PhotonView, unle:
the PhotonView is static or not under 1
client's control. More...

Destroy (GameObject targetGo)
Network-Destroy the GameObject, unle
it IS static or not under this client's cont
More...

DestroyPlayerObjects (PhotonPlaye
targetPlayer)

Network-Destroy all GameObjects,
PhotonViews and their RPCs of
targetPlayer. Can only be called on loc
player (for "self") or Master Client (for
anyone). More...

DestroyPlayerObjects (int targetPlaye
Network-Destroy all GameObjects,
PhotonViews and their RPCs of this
player (by ID). Can only be called on Ic
player (for "self") or Master Client (for
anyone). More...

DestroyAll ()

Network-Destroy all GameObjects,
PhotonViews and their RPCs in the roc
Removes anything buffered from the
server. Can only be called by Master
Client (for anyone). More...

static void

static void

static void

static void

static HashSet< GameObject >

static void

static void

RemoveRPCs (PhotonPlayer
targetPlayer)

Remove all buffered RPCs from server
that were sent by targetPlayer. Can on
be called on local player (for "self") or
Master Client (for anyone). More...

RemoveRPCs (PhotonView
targetPhotonView)

Remove all buffered RPCs from server
that were sent via targetPhotonView. T
Master Client and the owner of the
targetPhotonView may call this. More..

RemoveRPCsInGroup (int targetGrou
Remove all buffered RPCs from server
that were sent in the targetGroup, if thi
the Master Client or if this controls the
individual PhotonView. More...

CacheSendMonoMessageTargets (T
type)

Populates SendMonoMessageTargets
with currently existing GameObjects th
have a Component of type. More...

FindGameObjectsWithComponent
(Type type)

Finds the GameObjects with Compone
of a specific type (using
FindObjectsOfType). More...

SetReceivingEnabled (int group, bool
enabled)

SetinterestGroups (byte group, bool
enabled)
Enable/disable receiving events from a

static void

static void

static void

static void

static void

static void

static void

static void

static AsyncOperation

given Interest Group. More...

SetReceivingEnabled (int[]
enableGroups, int[] disableGroups)

SetinterestGroups (byte[] disableGrot
byte[] enableGroups)

Enable/disable receiving on given Inter
Groups (applied to PhotonViews). Mar:

SetSendingEnabled (int group, bool
enabled)

SetSendingEnabled (byte group, bool
enabled)

Enable/disable sending on given groug
(applied to PhotonViews) Mare...

SetSendingEnabled (int[] enableGrou
int[] disableGroups)

SetSendingEnabled (byte([]
disableGroups, byte[] enableGroups)
Enable/disable sending on given groug
(applied to PhotonViews) Mare...

SetLevelPrefix (short prefix)

Sets level prefix for PhotonViews
Instantiated later on. Don't set it if you
need only one! Maore...

LoadLevel (int leveINumber)

Wraps loading a level to pause the
network message-queue. Optionally
syncs the loaded level in a room. More

LoadLevelAsync (int levelNumber)
Wraps single asynchronous loading of

static void

static AsyncOperation

static bool

static bool

level to pause the network message-
gueue. Optionally syncs the loaded lev
in a room. More...

LoadLevel (string levelName)

Wraps loading a level to pause the
network message-queue. Optionally
syncs the loaded level in a room. More

LoadLevelAsync (string levelName)
Wraps single asynchronous loading of
level to pause the network message-
gueue. Optionally syncs the loaded lev
in a room. More...

WebRpc (string name, object paramet
This operation makes Photon call youi
custom web-service by name (path) wi
the given parameters. More...

CallEvent (byte eventCode, object
content, int senderld)

Public Attributes

const string versionPUN = "1.91"
Version number of PUN. Also used in GameVersion to
separate client version from each other. More...

Static Public Attributes

static readonly int

static ServerSettings

static bool

static PhotonLogLevel

static float

static float

static float

static bool

MAX_VIEW_IDS = 1000

The maximum number of assigned Ph
See the General Documentation topit
limitation. More...

PhotonServerSettings =
(ServerSettings)Resources.Load(Pho
typeof(ServerSettings))

Serialized server settings, written by th
ConnectUsingSettings. More...

InstantiateinRoomOnly = true
If true, Instantiate methods will check ii
are not. More...

logLevel = PhotonLogLevel.ErrorsO
Network log level. Controls how verbos

precisionForVectorSynchronization
The minimum difference that a Vector2
rotation) needs to change before we se
OnSerialize/ObservingComponent. Mo

precisionForQuaternionSynchronize
The minimum angle that a rotation nee
a PhotonView's OnSerialize/Observini

precisionForFloatSynchronization =
The minimum difference between float:
PhotonView's OnSerialize/Observing(

UseRpcMonoBehaviourCache
While enabled, the MonoBehaviours ol
avoiding costly GetComponents<Monc

static bool

static Dictionary< string,
GameObject >

static HashSet< GameObject >

static Type

static bool

static int

static float

UsePrefabCache = true

While enabled (true), Instantiate uses |
keep game objects in memory (improvi
prefab). More...

PrefabCache = new Dictionary<string,
Keeps references to GameObjects for
memory instead of loading the Resourt

SendMonoMessageTargets
If not null, this is the (exclusive) list of (
PUN SendMonoMessage(). More...

SendMonoMessageTargetType = typ
Defines which classes can contain PUI
More...

StartRpcsAsCoroutine = true
Can be used to skip starting RPCs as |
performance issue. More...

maxConnections
Only used in Unity Networking. In PUN
PhotonNetwork.CreateRoom. More..

BackgroundTimeout = 60.0f
Defines how many seconds PUN keep
OnApplicationPause(true) call. Default:

Properties

static string

static string

static CloudRegionCode

static bool

static bool

static bool

gameVersion [get, set]

Version string for your this build. Can
be used to separate incompatible
clients. Sent during connect. More...

ServerAddress [get]

Currently used server address (no
matter if master or game server).
More...

CloudRegion [get]

Currently used Cloud Region (if
any). As long as the client is not on a
Master Server or Game Server, the
region is not yet defined. More...

connected [get]

False until you connected to Photon
initially. True in offline mode, while
connected to any server and even
while switching servers. More...

connecting [get]

True when you called
ConnectUsingSettings (or similar)
until the low level connection to
Photon gets established. More...

connectedAndReady [get]

A refined version of connected which
Is true only if your connection to the
server is ready to accept operations
like join, leave, etc. More...

static ConnectionState

static ClientState

static ServerConnection

static AuthenticationValues

static Room

static PhotonPlayer

static PhotonPlayer

static string

connectionState [get]
Simplified connection state More...

connectionStateDetailed [get]

Detailed connection state (ignorant
of PUN, so it can be "disconnected"
while switching servers). More...

Server [get]

The server (type) this client is
currently connected or connecting to.
More...

AuthValues [get, set]

A user's authentication values used
during connect. More...

room [get]

Get the room we're currently in. Null
if we aren't in any room. Maore...

player [get]

The local PhotonPlayer. Always
available and represents this player.
CustomProperties can be set before
entering a room and will be synced
as well. More...

masterClient [get]

The Master Client of the current
room or null (outside of rooms).
More...

playerName [get, set]
Set to synchronize the player's

static PhotonPlayer(]

static PhotonPlayer(]

static List< Friendinfo >

static int

static IPunPrefabPool

static bool

nickname with everyone in the
room(s) you enter. This sets
PhotonNetwork.player.NickName.
More...

playerList [get]

The list of players in the current
room, including the local player.
More...

otherPlayers [get]

The list of players in the current
room, excluding the local player.
More...

Friends [get, set]

Read-only list of friends, their online
status and the room they are in. Null
until initialized by a FindFriends call.
More...

FriendsListAge [get]

Age of friend list info (in
milliseconds). It's O until a friend list
Is fetched. More...

PrefabPool [get, set]

An Object Pool can be used to keep
and reuse instantiated object
Instances. It replaced Unity's default
Instantiate and Destroy methods.
More...

offineMode [get, set]

Offline mode can be set to re-use
your multiplayer code in singleplayer
game modes. When this is on

static bool

static bool

static bool

static bool

static List< TypedLobbyinfo >

PhotonNetwork will not create any
connections and there is near to no
overhead. Mostly usefull for reusing
RPC's and
PhotonNetwork.Instantiate More...

automaticallySyncScene [get,
set]

Defines if all clients in a room should
load the same level as the Master
Client (if that used
PhotonNetwork.LoadLevel).
More...

autoCleanUpPlayerObjects [get,
set]

This setting defines per room, if
network-instantiated GameObijects
(with PhotonView) get cleaned up
when the creator of it leaves. More...

autoJoinLobby [get, set]

Set in PhotonServerSettings asset.
Defines if the PhotonNetwork
should join the "lobby" when
connected to the Master server.
More...

EnableLobbyStatistics [get, set]
Set in PhotonServerSettings asset.

Enable to get a list of active lobbies
from the Master Server. More...

LobbyStatistics [get, set]

If turned on, the Master Server will
provide information about active
lobbies for this application. More...

static bool

static TypedLobby

static int

static int

static bool

static int

insideLobby [get]

True while this client is in a lobby.
More...

lobby [get, set]

The lobby that will be used when
PUN joins a lobby or creates a
game. More...

sendRate [get, set]

Defines how many times per second
PhotonNetwork should send a
package. If you change this, do not
forget to also change
‘'sendRateOnSerialize'. More...

sendRateOnSerialize [get, set]

Defines how many times per second
OnPhotonSerialize should be called
on PhotonViews. More...

isMessageQueueRunning [get,
set]

Can be used to pause dispatching of
iIncoming evtents (RPCs, Instantiates
and anything else incoming). More...

unreliableCommandsLimit [get,
set]

Used once per dispatch to limit
unreliable commands per channel
(so after a pause, many channels
can still cause a lot of unreliable
commands) Maore...

static double

static int

static bool

static bool

static bool

static int

static int

static int

time [get]
Photon network time, synched with
the server. More...

ServerTimestamp [get]

The current server's millisecond
timestamp. More...

isMasterClient [get]
Are we the master client? More...

inRoom [get]

Is true while being in a room
(connectionStateDetailed ==
ClientState.Joined). More...

isNonMasterClientinRoom [get]

True if we are in a room (client) and
NOT the room's masterclient More...

countOfPlayersOnMaster [get]

The count of players currently
looking for a room (available on
MasterServer in 5sec intervals).
More...

countOfPlayersinRooms [get]

Count of users currently playing your
app in some room (sent every 5sec
by Master Server). Use
PhotonNetwork.playerList.Length or
PhotonNetwork.room.PlayerCount to
get the count of players in the room
you're in! More...

countOfPlayers [get]
The count of players currently using

static int

static bool

static int

static bool

static int

static int

this application (available on
MasterServer in 5sec intervals).
More...

countOfRooms [get]

The count of rooms currently in use
(available on MasterServer in 5sec
intervals). More...

NetworkStatisticsEnabled [get,
set]

Enables or disables the collection of
statistics about this client's traffic.
More...

ResentReliableCommands [get]
Count of commands that got
repeated (due to local repeat-timing
before an ACK was received).
More...

CrcCheckEnabled [get, set]
Crc checks can be useful to detect
and avoid issues with broken
datagrams. Can be enabled while
not connected. More...

PacketLossByCrcCheck [get]

If CrcCheckEnabled, this counts the
Incoming packages that don't have a
valid CRC checksum and got
rejected. More...

MaxResendsBeforeDisconnect
[get, set]

Defines the number of times a

reliable message can be resent
before not getting an ACK for it will
trigger a disconnect. Default: 5.
More...

static int QuickResends [get, set]
In case of network loss, reliable
messages can be repeated quickly
up to 3 times. More...

static bool UseAlternativeUdpPorts [get, set]
Switch to alternative ports for a UDP
connection to the Public Cloud.
More...

Events

static EventCallback OnEventCall
Register your RaiseEvent handling methods
here by using "+=". More...

Detailed Description

The main class to use the PhotonNetwork plugin. This class is static.

Member Function Documentation

static int PhotonNetwork.AllocateSceneViewlD ()

Enables the Master Client to allocate a viewID that is valid for scene
objects.

Returns
A viewID that can be used for a new PhotonView or -1 in case
of an error.

static int PhotonNetwork.AllocateViewlID ()

Allocates a viewlD that's valid for the current/local player.

Returns
A viewlID that can be used for a new PhotonView.

static void
PhotonNetwork.CacheSendMonoMessageTargets (Type type)

Populates SendMonoMessageTargets with currently existing
GameObjects that have a Component of type.

Parameters

type If null, this will use SendMonoMessageTargets as component
type (MonoBehaviour by default).

static bool PhotonNetwork.CallEvent (byte eventCode,
object content,
int senderld

)

static bool
PhotonNetwork.CloseConnection (PhotonPlayer kickPlayer)

Request a client to disconnect (KICK). Only the master client can do
this

Only the target player gets this event. That player will disconnect
automatically, which is what the others will notice, too.

Parameters
kickPlayer The PhotonPlayer to kick.

static bool
PhotonNetwork.ConnectToBestCloudServer (string gameVersion

Connect to the Photon Cloud region with the lowest ping (on platforms
support Unity's Ping).

Will save the result of pinging all cloud servers in PlayerPrefs. Calling tt
first time can take +-2 seconds. The ping result can be overridden via
PhotonNetwork.OverrideBestCloudServer(..) This call can take up tc
seconds if it is the first time you are using this, all cloud servers will be |
to check for the best region.

The PUN Setup Wizard stores your appID in a settings file and applies
server address/port. To connect to the Photon Cloud, a valid Appld mu
in the settings file (shown in the Photon Cloud Dashboard).
https://www.photonengine.com/dashboard

Connecting to the Photon Cloud might fail due to:

¢ Invalid Appld (calls: OnFailedToConnectToPhoton(). check exact
value)

e Network issues (calls: OnFailedToConnectToPhoton())

¢ |nvalid region (calls: OnConnectionFail() with
DisconnectCause.InvalidRegion)

https://www.photonengine.com/dashboard

e Subscription CCU limit reached (calls: OnConnectionFail() with
DisconnectCause.MaxCcuReached. also calls:
OnPhotonMaxCccuReached())

Parameters
gameVersion This client's version number. Users are separated fr
each other by gameversion (which allows you to me
breaking changes).

Returns
If this client is going to connect to cloud server based on ping. Evel
true, this does not guarantee a connection but the attempt is being

made.
static bool
PhotonNetwork.ConnectToMaster (string masterServerAddress,
int port,
string applD,
string gameVersion
)

Connect to a Photon Master Server by address, port, appID and
game(client) version.

To connect to the Photon Cloud, a valid Appld must be in the settings f
(shown in the Photon Cloud Dashboard).
https://www.photonengine.com/dashboard

Connecting to the Photon Cloud might fail due to:

o Invalid Appld (calls: OnFailedToConnectToPhoton(). check exact
Appld value)

e Network issues (calls: OnFailedToConnectToPhoton())

¢ |nvalid region (calls: OnConnectionFail() with
DisconnectCause.InvalidRegion)

e Subscription CCU limit reached (calls: OnConnectionFail() with
DisconnectCause.MaxCcuReached. also calls:
OnPhotonMaxCccuReached())

https://www.photonengine.com/dashboard

Parameters

masterServerAddress The server's address (either your own or
Photon Cloud address).

port The server's port to connect to.

appID Your application ID (Photon Cloud provide
you with a GUID for your game).

gameVersion This client's version number. Users are

separated by gameversion (which allows y
to make breaking changes).

static bool
PhotonNetwork.ConnectToRegion (CloudRegionCode region,

string gameVersic

)

Connects to the Photon Cloud region of choice.

static bool
PhotonNetwork.ConnectUsingSettings (string gameVersion)

Connect to Photon as configured in the editor (saved in
PhotonServerSettings file).

This method will disable offineMode (which won't destroy any
instantiated GOs) and it will set isMessageQueueRunning to true.

Your server configuration is created by the PUN Wizard and contains
the Appld and region for Photon Cloud games and the server address
if you host Photon yourself. These settings usually don't change often.

To ignore the config file and connect anywhere call:
PhotonNetwork.ConnectToMaster.

To connect to the Photon Cloud, a valid Appld must be in the settings
file (shown in the Photon Cloud Dashboard).
https://www.photonengine.com/dashboard

https://www.photonengine.com/dashboard

Connecting to the Photon Cloud might fail due to:

¢ Invalid Appld (calls: OnFailedToConnectToPhoton(). check exact
Appld value)

e Network issues (calls: OnFailedToConnectToPhoton())

¢ Invalid region (calls: OnConnectionFail() with
DisconnectCause.InvalidRegion)

e Subscription CCU limit reached (calls: OnConnectionFail() with
DisconnectCause.MaxCcuReached. also calls:
OnPhotonMaxCccuReached())

Parameters

gameVersion This client's version number. Users are separated
from each other by gameversion (which allows you
to make breaking changes).

static bool
PhotonNetwork.CreateRoom (string roomName)

Creates a room with given name but fails if this room(name) is
existing already. Creates random name for roomName null.

If you don't want to create a unique room-name, pass null or ™ as
name and the server will assign a roomName (a GUID as string).

The created room is automatically placed in the currently used lobby
(if any) or the default-lobby if you didn't explicitly join one.

Call this only on the master server. Internally, the master will
respond with a server-address (and roomName, if needed). Both are
used internally to switch to the assigned game server and
roomName.

PhotonNetwork.autoCleanUpPlayerObjects will become this
room's AutoCleanUp property and that's used by all clients that join
this room.

Parameters
roomName Unique name of the room to create.

Returns
If the operation got queued and will be sent.

static bool
PhotonNetwork.CreateRoom (string roomName,

RoomOptions roomOptions,
TypedLobby typedLobby

)

Creates a room but fails if this room is existing already. Can only be
called on Master Server.

When successful, this calls the callbacks OnCreatedRoom and
OnJoinedRoom (the latter, cause you join as first player). If the room
can't be created (because it exists already),
OnPhotonCreateRoomFailed gets called.

If you don't want to create a unique room-name, pass null or ™ as
name and the server will assign a roomName (a GUID as string).

Rooms can be created in any number of lobbies. Those don't have
to exist before you create a room in them (they get auto-created on
demand). Lobbies can be useful to split room lists on the server-side
already. That can help keep the room lists short and manageable. If
you set a typedLobby parameter, the room will be created in that
lobby (no matter if you are active in any). If you don't set a
typedLobby, the room is automatically placed in the currently active
lobby (if any) or the default-lobby.

Call this only on the master server. Internally, the master will
respond with a server-address (and roomName, if needed). Both are
used internally to switch to the assigned game server and
roomName.

PhotonNetwork.autoCleanUpPlayerObjects will become this
room's autoCleanUp property and that's used by all clients that join
this room.

Parameters

roomName Unique name of the room to create. Pass null or
" to make the server generate a name.

roomOptions Common options for the room like MaxPlayers,
initial custom room properties and similar. See
RoomOptions type..

typedLobby If null, the room is automatically created in the
currently used lobby (which is "default" when
you didn't join one explicitly).

Returns
If the operation got queued and will be sent.

static bool
PhotonNetwork.CreateRoom (string roomName,

RoomOptions roomOptions,
TypedLobby typedLobby,
string([] expectedUsers

)

Creates a room but fails if this room is existing already. Can only be
called on Master Server.

When successful, this calls the callbacks OnCreatedRoom and
OnJoinedRoom (the latter, cause you join as first player). If the room
can't be created (because it exists already),
OnPhotonCreateRoomFailed gets called.

If you don't want to create a unique room-name, pass null or ™ as
name and the server will assign a roomName (a GUID as string).

Rooms can be created in any number of lobbies. Those don't have to
exist before you create a room in them (they get auto-created on
demand). Lobbies can be useful to split room lists on the server-side
already. That can help keep the room lists short and manageable. If
you set a typedLobby parameter, the room will be created in that lobby
(no matter if you are active in any). If you don't set a typedLobby, the
room is automatically placed in the currently active lobby (if any) or the
default-lobby.

Call this only on the master server. Internally, the master will respond
with a server-address (and roomName, if needed). Both are used
internally to switch to the assigned game server and roomName.

PhotonNetwork.autoCleanUpPlayerObjects will become this room's
autoCleanUp property and that's used by all clients that join this room.

You can define an array of expectedUsers, to block player slots in the
room for these users. The corresponding feature in Photon is called
"Slot Reservation" and can be found in the doc pages.

Parameters

roomName Unique name of the room to create. Pass null or
" to make the server generate a name.

roomOptions Common options for the room like MaxPlayers,
initial custom room properties and similar. See
RoomOptions type..

typedLobby If null, the room is automatically created in the
currently used lobby (which is "default" when
you didn't join one explicitly).

expectedUsers Optional list of users (by Userld) who are
expected to join this game and who you want to
block a slot for.

Returns
If the operation got queued and will be sent.

static void
PhotonNetwork.Destroy (PhotonView targetView)

Network-Destroy the GameObject associated with the PhotonView,
unless the PhotonView is static or not under this client's control.

Destroying a networked GameObject while in a Room includes:

e Removal of the Instantiate call from the server's room buffer.
e Removing RPCs buffered for PhotonViews that got created
indirectly with the PhotonNetwork.Instantiate call.

e Sending a message to other clients to remove the GameObject
also (affected by network lag).

Usually, when you leave a room, the GOs get destroyed
automatically. If you have to destroy a GO while not in a room, the
Destroy is only done locally.

Destroying networked objects works only if they got created with
PhotonNetwork.Instantiate(). Objects loaded with a scene are
ignored, no matter if they have PhotonView components.

The GameObject must be under this client's control:

¢ |nstantiated and owned by this client.

¢ Instantiated objects of players who left the room are controlled
by the Master Client.

e Scene-owned game objects are controlled by the Master Client.

e GameObiject can be destroyed while client is not in a room.

Returns
Nothing. Check error debug log for any issues.

static void
PhotonNetwork.Destroy (GameObject targetGo)

Network-Destroy the GameObiject, unless it is static or not under this
client's control.

Destroying a networked GameObiject includes:

¢ Removal of the Instantiate call from the server's room buffer.

* Removing RPCs buffered for PhotonViews that got created
indirectly with the PhotonNetwork.Instantiate call.

e Sending a message to other clients to remove the GameObject
also (affected by network lag).

Usually, when you leave a room, the GOs get destroyed
automatically. If you have to destroy a GO while not in a room, the
Destroy is only done locally.

Destroying networked objects works only if they got created with
PhotonNetwork.Instantiate(). Objects loaded with a scene are
ignored, no matter if they have PhotonView components.

The GameObject must be under this client's control:

¢ Instantiated and owned by this client.

¢ Instantiated objects of players who left the room are controlled
by the Master Client.

e Scene-owned game objects are controlled by the Master Client.

e GameObject can be destroyed while client is not in a room.

Returns
Nothing. Check error debug log for any issues.

static void PhotonNetwork.DestroyAll ()

Network-Destroy all GameObjects, PhotonViews and their RPCs in
the room. Removes anything buffered from the server. Can only be
called by Master Client (for anyone).

Can only be called by Master Client (for anyone). Unlike the Destroy
methods, this will remove anything from the server's room buffer. If
your game buffers anything beyond Instantiate and RPC calls, that
will be cleaned as well from server.

Destroying all includes:

e Remove anything from the server's room buffer (Instantiate,
RPCs, anything buffered).

¢ Sending a message to other clients to destroy everything
locally, too (affected by network lag).

Destroying networked objects works only if they got created with
PhotonNetwork.Instantiate(). Objects loaded with a scene are
ignored, no matter if they have PhotonView components.

Returns
Nothing. Check error debug log for any issues.

static void
PhotonNetwork.DestroyPlayerObjects (PhotonPlayer targetPlayer

Network-Destroy all GameObjects, PhotonViews and their RPCs of
targetPlayer. Can only be called on local player (for "self") or Master Cli
anyone).

Destroying a networked GameObiject includes:

¢ Removal of the Instantiate call from the server's room buffer.

* Removing RPCs buffered for PhotonViews that got created indirec
the PhotonNetwork.Instantiate call.

e Sending a message to other clients to remove the GameObject als
(affected by network lag).

Destroying networked objects works only if they got created with
PhotonNetwork.Instantiate(). Objects loaded with a scene are ignorec
matter if they have PhotonView components.

Returns
Nothing. Check error debug log for any issues.

static void
PhotonNetwork.DestroyPlayerObjects (int targetPlayerid)

Network-Destroy all GameObjects, PhotonViews and their RPCs of
this player (by ID). Can only be called on local player (for "self") or
Master Client (for anyone).

Destroying a networked GameObiject includes:

e Removal of the Instantiate call from the server's room buffer.

e Removing RPCs buffered for PhotonViews that got created
indirectly with the PhotonNetwork.Instantiate call.

e Sending a message to other clients to remove the GameObject
also (affected by network lag).

Destroying networked objects works only if they got created with

PhotonNetwork.Instantiate(). Objects loaded with a scene are
ignored, no matter if they have PhotonView components.

Returns
Nothing. Check error debug log for any issues.

static void PhotonNetwork.Disconnect ()

Makes this client disconnect from the photon server, a process that
leaves any room and calls OnDisconnectedFromPhoton on
completion.

When you disconnect, the client will send a "disconnecting”
message to the server. This speeds up leave/disconnect messages
for players in the same room as you (otherwise the server would
timeout this client's connection). When used in offlineMode, the
state-change and event-call OnDisconnectedFromPhoton are
immediate. Offline mode is set to false as well. Once disconnected,
the client can connect again. Use ConnectUsingSettings.

delegate void PhotonNetwork.EventCallback (byte eventCode,
object content,
int senderld

)

Defines the delegate usable in OnEventCall.
Any eventCode < 200 will be forwarded to your delegate(s).

Parameters
eventCode The code assigend to the incoming event.
content The content the sender put into the event.

senderld The ID of the player who sent the event. It might be
0, if the "room" sent the event.

static void PhotonNetwork.FetchServerTimestamp ()

Refreshes the server timestamp (async operation, takes a
roundtrip).

Can be useful if a bad connection made the timestamp unusable or
imprecise.

static bool
PhotonNetwork.FindFriends (string[] friendsToFind)

Requests the rooms and online status for a list of friends and saves
the result in PhotonNetwork.Friends.

Works only on Master Server to find the rooms played by a selected
list of users.

The result will be stored in PhotonNetwork.Friends when available.
That list is initialized on first use of OpFindFriends (before that, it is
null). To refresh the list, call FindFriends again (in 5 seconds or 10 or
20).

Users identify themselves by setting a unique userld in the
PhotonNetwork.AuthValues. See remarks of
AuthenticationValues for info about how this is set and used.

The list of friends must be fetched from some other source (not
provided by Photon).

Internal: The server response includes 2 arrays of info (each index
matching a friend from the request):
ParameterCode.FindFriendsResponseOnlineList = bool[] of
online states ParameterCode.FindFriendsResponseRoomldList =
string[] of room names (empty string if not in a room)

Parameters

friendsToFind Array of friend (make sure to use unique
playerName or AuthValues).

Returns
If the operation could be sent (requires connection, only one
request is allowed at any time). Always false in offline mode.

static HashSet<GameObject>
PhotonNetwork.FindGameObjectsWithComponent (Type type)

Finds the GameObjects with Components of a specific type (using
FindObjectsOfType).

Parameters
type Type must be a Component

Returns
HashSet with GameObjects that have a specific type of Componer

static bool
PhotonNetwork.GetCustomRoomL.ist (TypedLobby typedLobby,

string sqlLobbyfFilte
)

Fetches a custom list of games from the server, matching a SQL-like "w
clause, then triggers OnReceivedRoomListUpdate callback.

Operation is only available for lobbies of type SqlLobby. Note: You don*
to join that lobby. This is an async request.

When done, OnReceivedRoomListUpdate gets called. Use GetRoomL
access it.

https://doc.photonengine.com/en-us/pun/current/lobby-and-
matchmaking/matchmaking-and-lobby::sqgl_lobby type

Parameters
typedLobby The lobby to query. Has to be of type SqlLobby.
sqlLobbyFilter The sql query statement.

Returns
If the operation could be sent (has to be connected).

static int PhotonNetwork.GetPing ()

The current roundtrip time to the photon server.

Returns
Roundtrip time (to server and back).

static Roominfo [] PhotonNetwork.GetRoomList ()

Gets currently cached rooms of the last rooms list sent by the server
as Roominfo array. This list is either available and updated
automatically and periodically while in a lobby (check insideLobby)
or received as a response to
PhotonNetwork.GetCustomRoomL.ist().

This list is a cached copy of the internal rooms list so it can be
accessed each frame if needed. Per Roomlinfo you can check if the
room is full by comparing playerCount and MaxPlayers before you
allow a join.

The name of a room must be used to join it (via JoinRoom).

Closed rooms are also listed by lobbies but they can't be joined.
While in a room, any player can set Room.visible and Room.open
to hide rooms from matchmaking and close them.

Returns
Cached Roomlinfo[] of last room list sent by the server.

static void PhotonNetwork.InitializeSecurity ()

Used for compatibility with Unity networking only. Encryption is
automatically initialized while connecting.

static GameObject

PhotonNetwork.Instantiate (string prefabName,
Vector3 position,
Quaternion rotation,
byte group

)

Instantiate a prefab over the network. This prefab needs to be
located in the root of a "Resources" folder.

Instead of using prefabs in the Resources folder, you can manually
Instantiate and assign PhotonViews. See doc.

Parameters
prefabName Name of the prefab to instantiate.
position Position Vector3 to apply on instantiation.

rotation Rotation Quaternion to apply on instantiation.
group The group for this PhotonView.
Returns

The new instance of a GameObject with initialized PhotonView.

static GameObject

PhotonNetwork.Instantiate (string prefabName,
Vector3 position,
Quaternion rotation,
byte group,

object[] data

)

Instantiate a prefab over the network. This prefab needs to be
located in the root of a "Resources" folder.

Instead of using prefabs in the Resources folder, you can manually
Instantiate and assign PhotonViews. See doc.

Parameters
prefabName Name of the prefab to instantiate.

position Position Vector3 to apply on instantiation.
rotation Rotation Quaternion to apply on instantiation.
group The group for this PhotonView.

data Optional instantiation data. This will be saved to

it's PhotonView.instantiationData.

Returns
The new instance of a GameObject with initialized PhotonView.

static GameObject

PhotonNetwork.InstantiateSceneObject (string prefabName,
Vector3 position,
Quaternion rotation,
byte group,
object[] data
)

Instantiate a scene-owned prefab over the network. The PhotonViews v
be controllable by the MasterClient. This prefab needs to be located in 1
root of a "Resources" folder.

Only the master client can Instantiate scene objects. Instead of using
prefabs in the Resources folder, you can manually Instantiate and assic
PhotonViews. See doc.

Parameters
prefabName Name of the prefab to instantiate.
position Position Vector3 to apply on instantiation.

rotation Rotation Quaternion to apply on instantiation.
group The group for this PhotonView.
data Optional instantiation data. This will be saved to it's

PhotonView.instantiationData.

Returns

The new instance of a GameObject with initialized PhotonView.

static bool PhotonNetwork.JoinLobby ()

On MasterServer this joins the default lobby which list rooms
currently in use.

The room list is sent and refreshed by the server. You can access
this cached list by PhotonNetwork.GetRoomL.ist().

Per room you should check if it's full or not before joining. Photon
also lists rooms that are full, unless you close and hide them
(room.open = false and room.visible = false).

In best case, you make your clients join random games, as
described here: https://doc.photonengine.com/en-
us/pun/current/lobby-and-matchmaking/matchmaking-and-lobby

You can show your current players and room count without joining a
lobby (but you must be on the master server). Use: countOfPlayers,
countOfPlayersOnMaster, countOfPlayersinRooms and
countOfRooms.

You can use more than one lobby to keep the room lists shorter. See
JoinLobby(TypedLobby lobby). When creating new rooms, they
will be "attached" to the currently used lobby or the default lobby.

You can use JoinRandomRoom without being in a lobby! Set
autoJoinLobby = false before you connect, to not join a lobby. In that
case, the connect-workflow will call OnConnectedToMaster (if you
implement it) when it's done.

static bool
PhotonNetwork.JoinLobby (TypedLobby typedLobby)

On a Master Server you can join a lobby to get lists of available
rooms.

https://doc.photonengine.com/en-us/pun/current/lobby-and-matchmaking/matchmaking-and-lobby

The room list is sent and refreshed by the server. You can access
this cached list by PhotonNetwork.GetRoomL.ist().

Any client can "make up" any lobby on the fly. Splitting rooms into
multiple lobbies will keep each list shorter. However, having too
many lists might ruin the matchmaking experience.

In best case, you create a limited number of lobbies. For example,
create a lobby per game-mode: "koth" for king of the hill and "ffa" for
free for all, etc.

There is no listing of lobbies at the moment.

Sql-typed lobbies offer a different filtering model for random
matchmaking. This might be more suited for skillbased-games.
However, you will also need to follow the conventions for naming
filterable properties in sql-lobbies! Both is explained in the
matchmaking doc linked below.

In best case, you make your clients join random games, as
described here:
http://confluence.exitgames.com/display/PTN/Op+JoinRandomGame

Per room you should check if it's full or not before joining. Photon
does list rooms that are full, unless you close and hide them
(room.open = false and room.visible = false).

You can show your games current players and room count without
joining a lobby (but you must be on the master server). Use:
countOfPlayers, countOfPlayersOnMaster, countOfPlayersinRooms
and countOfRooms.

When creating new rooms, they will be "attached" to the currently
used lobby or the default lobby.

You can use JoinRandomRoom without being in a lobby! Set
autoJoinLobby = false before you connect, to not join a lobby. In that
case, the connect-workflow will call OnConnectedToMaster (if you
implement it) when it's done.

Parameters

http://confluence.exitgames.com/display/PTN/Op+JoinRandomGame

typedLobby A typed lobby to join (must have name and type).

static bool
PhotonNetwork.JoinOrCreateRoom (string roomName,

RoomOptions roomOptions,
TypedLobby typedLobby

)

Lets you either join a named room or create it on the fly - you don't havi
know if someone created the room already.

This makes it easier for groups of players to get into the same room. Oi
the group exchanged a roomName, any player can call JoinOrCreateR:
and it doesn't matter who actually joins or creates the room.

The parameters roomOptions and typedLobby are only used when the
actually gets created by this client. You know if this client created a root
you get a callback OnCreatedRoom (before OnJoinedRoom gets callec
well).

Parameters
roomName Name of the room to join. Must be non null.

roomOptions Options for the room, in case it does not exist yet. E
these values are ignored.

typedLobby Lobby you want a new room to be listed in. Ignored
the room was existing and got joined.

Returns
If the operation got queued and will be sent.

static bool
PhotonNetwork.JoinOrCreateRoom (string roomName,

RoomOptions roomOptions,
TypedLobby typedLobby,
string([] expectedUser:

)

Lets you either join a named room or create it on the fly - you don't havi
know if someone created the room already.

This makes it easier for groups of players to get into the same room. Oi
the group exchanged a roomName, any player can call JoinOrCreateR:
and it doesn't matter who actually joins or creates the room.

The parameters roomOptions and typedLobby are only used when the
actually gets created by this client. You know if this client created a root
you get a callback OnCreatedRoom (before OnJoinedRoom gets callec
well).

You can define an array of expectedUsers, to block player slots in the r
for these users. The corresponding feature in Photon is called "Slot
Reservation" and can be found in the doc pages.

Parameters
roomName Name of the room to join. Must be non null.
roomOptions Options for the room, in case it does not exist yet.
these values are ignored.
typedLobby Lobby you want a new room to be listed in. Ignore
the room was existing and got joined.

expectedUsers Optional list of users (by Userld) who are expecte
join this game and who you want to block a slot fc

Returns
If the operation got queued and will be sent.

static bool PhotonNetwork.JoinRandomRoom ()

Joins any available room of the currently used lobby and fails if none
Is available.

Rooms can be created in arbitrary lobbies which get created on
demand. You can join rooms from any lobby without actually joining
the lobby. Use the JoinRandomRoom overload with TypedLobby
parameter.

This method will only match rooms attached to one lobby! If you use
many lobbies, you might have to repeat JoinRandomRoom, to find
some fitting room. This method looks up a room in the currently
active lobby or (if no lobby is joined) in the default lobby.

If this fails, you can still create a room (and make this available for
the next who uses JoinRandomRoom). Alternatively, try again in a
moment.

static bool
PhotonNetwork.JoinRandomRoom (Hashtable expectedCustomR

byte expectedMaxPlaye
)

Attempts to join an open room with fitting, custom properties but fails if
available.

Rooms can be created in arbitrary lobbies which get created on deman
from any lobby without actually joining the lobby. Use the JoinRandomF
TypedLobby parameter.

This method will only match rooms attached to one lobby! If you use m:
might have to repeat JoinRandomRoom, to find some fitting room. This
room in the currently active lobby or (if no lobby is joined) in the default

If this fails, you can still create a room (and make this available for the r
JoinRandomRoom). Alternatively, try again in a moment.

Parameters

expectedCustomRoomProperties Filters for rooms that match th
properties (string keys and va
null.

expectedMaxPlayers Filters for a particular maxplay
accept any maxPlayer value.

Returns
If the operation got queued and will be sent.

static bool

PhotonNetwork.JoinRandomRoom (Hashtable expected(
byte expectedI
MatchmakingMode matching’
TypedLobby typedLob|
string sqlLobbyl
string[] expectedl
)

Attempts to join an open room with fitting, custom properties but fails if

Rooms can be created in arbitrary lobbies which get created on deman
lobby without actually joining the lobby with this overload.

This method will only match rooms attached to one lobby! If you use m:
repeat JoinRandomRoom, to find some fitting room. This method looks
lobby or the currently active lobby (if none specified) or in the default lol

If this fails, you can still create a room (and make this available for the r
JoinRandomRoom). Alternatively, try again in a moment.

In offineMode, a room will be created but no properties will be set and
JoinRandomRoom call are ignored. The event/callback OnJoinedRoom
PhotonNetworkingMessage).

You can define an array of expectedUsers, to block player slots in the r
corresponding feature in Photon is called "Slot Reservation" and can b

Parameters

expectedCustomRoomProperties Filters for rooms that match th
keys and values). To ignore, [

expectedMaxPlayers Filters for a particular maxplay
maxPlayer value.

matchingType Selects one of the available rr
MatchmakingMode enum for ¢

typedLobby The lobby in which you want t

use the default lobby. This dot
neither sets the lobby property

sqlLobbyFilter A filter-string for SQL-typed lo

expectedUsers Optional list of users (by User
this game and who you want t

Returns
If the operation got queued and will be sent.

static bool PhotonNetwork.JoinRoom (string roomName)

Join room by roomname and on success calls OnJoinedRoom().
This is not affected by lobbies.

On success, the method OnJoinedRoom() is called on any script.
You can implement it to react to joining a room.

JoinRoom fails if the room is either full or no longer available (it
might become empty while you attempt to join). Implement
OnPhotonJoinRoomFailed() to get a callback in error case.

To join a room from the lobby's listing, use RoomInfo.Name as
roomName here. Despite using multiple lobbies, a roomName is
always "global” for your application and so you don't have to specify
which lobby it's in. The Master Server will find the room. In the
Photon Cloud, an application is defined by Appld, Game- and PUN-
version.

PhotonNetworkingMessage.OnPhotonJoinRoomFailed
PhotonNetworkingMessage.OnJoinedRoom

Parameters
roomName Unique name of the room to join.

Returns
If the operation got queued and will be sent.

static bool
PhotonNetwork.JoinRoom (string roomName,

string[] expectedUsers

)

Join room by roomname and on success calls OnJoinedRoom().
This is not affected by lobbies.

On success, the method OnJoinedRoom() is called on any script.
You can implement it to react to joining a room.

JoinRoom fails if the room is either full or no longer available (it
might become empty while you attempt to join). Implement
OnPhotonJoinRoomFailed() to get a callback in error case.

To join a room from the lobby's listing, use RoomInfo.Name as
roomName here. Despite using multiple lobbies, a roomName is
always "global” for your application and so you don't have to specify
which lobby it's in. The Master Server will find the room. In the
Photon Cloud, an application is defined by Appld, Game- and PUN-
version.

You can define an array of expectedUsers, to block player slots in
the room for these users. The corresponding feature in Photon is
called "Slot Reservation" and can be found in the doc pages.

PhotonNetworkingMessage.OnPhotonJoinRoomFailed
PhotonNetworkingMessage.OnJoinedRoom

Parameters
roomName Unique name of the room to join.

expectedUsers Optional list of users (by Userld) who are
expected to join this game and who you want
to block a slot for.

Returns
If the operation got queued and will be sent.

static bool PhotonNetwork.LeaveLobby ()

Leave a lobby to stop getting updates about available rooms.

This does not reset PhotonNetwork.lobby! This allows you to join
this particular lobby later easily.

The values countOfPlayers, countOfPlayersOnMaster,
countOfPlayersinRooms and countOfRooms are received even
without being in a lobby.

You can use JoinRandomRoom without being in a lobby. Use
autoJoinLobby to not join a lobby when you connect.

static bool
PhotonNetwork.LeaveRoom (bool becomelnactive = true)

Leave the current room and return to the Master Server where you
can join or create rooms (see remarks).

This will clean up all (network) GameObjects with a PhotonView,
unless you changed autoCleanUp to false. Returns to the Master
Server.

In OfflineMode, the local "fake" room gets cleaned up and
OnLeftRoom gets called immediately.

In a room with playerTTL < 0, LeaveRoom just turns a client inactive.
The player stays in the room's player list and can return later on.
Setting becomelnactive to false deliberately, means to "abandon” the
room, despite the playerTTL allowing you to come back.

In a room with playerTTL == 0, become inactive has no effect
(clients are removed from the room right away).

Parameters

becomelnactive If this client becomes inactive in a room with
playerTTL < 0. Defaults to true.

static void PhotonNetwork.LoadLevel (int levelNumber)

Wraps loading a level to pause the network message-queue.

Optionally syncs the loaded level in a room.

To sync the loaded level in a room, set
PhotonNetwork.automaticallySyncScene to true. The Master
Client of a room will then sync the loaded level with every other
player in the room.

While loading levels, it makes sense to not dispatch messages
received by other players. This method takes care of that by setting
PhotonNetwork.isMessageQueueRunning = false and enabling
the queue when the level was loaded.

You should make sure you don't fire RPCs before you load another
scene (which doesn't contain the same GameObjects and
PhotonViews). You can call this in OnJoinedRoom.

This uses Application.LoadLevel in Unity version not yet featuring
the SceneManager API.

Parameters

levelNumber Number of the level to load. When using level
numbers, make sure they are identical on all
clients.

static void PhotonNetwork.LoadLevel (string levelName)

Wraps loading a level to pause the network message-queue.
Optionally syncs the loaded level in a room.

While loading levels, it makes sense to not dispatch messages
received by other players. This method takes care of that by setting
PhotonNetwork.isMessageQueueRunning = false and enabling
the queue when the level was loaded.

To sync the loaded level in a room, set
PhotonNetwork.automaticallySyncScene to true. The Master
Client of a room will then sync the loaded level with every other
player in the room.

You should make sure you don't fire RPCs before you load another
scene (which doesn't contain the same GameObjects and
PhotonViews). You can call this in OnJoinedRoom.

This uses Application.LoadLevel in Unity version not yet featuring
the SceneManager API.

Parameters

levelName Name of the level to load. Make sure it's available
to all clients in the same room.

static AsyncOperation
PhotonNetwork.LoadLevelAsync (int levelNumber)

Wraps single asynchronous loading of a level to pause the network
message-queue. Optionally syncs the loaded level in a room.

To sync the loaded level in a room, set
PhotonNetwork.automaticallySyncScene to true. The Master
Client of a room will then sync the loaded level with every other
player in the room.

While loading levels, it makes sense to not dispatch messages
received by other players. This method takes care of that by setting
PhotonNetwork.isMessageQueueRunning = false and enabling
the queue when the level was loaded.

You should make sure you don't fire RPCs before you load another
scene (which doesn't contain the same GameObjects and
PhotonViews). You can call this in OnJoinedRoom.

This uses Application.LoadLevel in Unity version not yet featuring
the SceneManager API.

Returns
The async operation.

Parameters
levelNumber Number of the level to load. When using level

numbers, make sure they are identical on all
clients.

static AsyncOperation
PhotonNetwork.LoadLevelAsync (string levelName)

Wraps single asynchronous loading of a level to pause the network
message-queue. Optionally syncs the loaded level in a room.

While loading levels, it makes sense to not dispatch messages
received by other players. This method takes care of that by setting
PhotonNetwork.isMessageQueueRunning = false and enabling
the queue when the level was loaded.

To sync the loaded level in a room, set
PhotonNetwork.automaticallySyncScene to true. The Master
Client of a room will then sync the loaded level with every other
player in the room.

You should make sure you don't fire RPCs before you load another
scene (which doesn't contain the same GameObjects and
PhotonViews). You can call this in OnJoinedRoom.

This uses Application.LoadLevel in Unity version not yet featuring
the SceneManager API.

Returns
The async operation.

Parameters

levelName Name of the level to load. Make sure it's available
to all clients in the same room.

mode LoadSceneMode either single or additive

static void PhotonNetwork.NetworkStatisticsReset ()

Resets the traffic stats and re-enables them.

static string PhotonNetwork.NetworkStatisticsToString ()

Only available when NetworkStatisticsEnabled was used to gather
some stats.

Returns
A string with vital networking statistics.

static void
PhotonNetwork.OverrideBestCloudServer (CloudRegionCode reg

Overwrites the region that is used for ConnectToBestCloudServer(str
gameVersion).

This will overwrite the result of pinging all cloud servers.

Use this to allow your users to save a manually selected region in the p
preferences.

Note: You can also use PhotonNetwork.ConnectToRegion to (tempoil
connect to a specific region.

static bool
PhotonNetwork.RaiseEvent (byte eventCode,
object eventContent,
bool sendReliable,
RaiseEventOptions options
)

Sends fully customizable events in a room. Events consist of at least ar
EventCode (0..199) and can have content.

To receive the events someone sends, register your handling method ir
PhotonNetwork.OnEventCall.

Example: private void OnEventHandler(byte eventCode, object content
int senderld) { Debug.Log("OnEventHandler"); }

PhotonNetwork.OnEventCall += this.OnEventHandler;

With the senderld, you can look up the PhotonPlayer who sent the
event. It is best practice to assign a eventCode for each different type ¢
content and action. You have to cast the content.

The eventContent is optional. To be able to send something, it must be
"serializable type", something that the client can turn into a byte[]
basically. Most basic types and arrays of them are supported, including
Unity's Vector2, Vector3, Quaternion. Transforms or classes some proje
defines are NOT supported! You can make your own class a "serializab
type" by following the example in CustomTypes.cs.

The RaiseEventOptions have some (less intuitive) combination rules:
you set targetActors (an array of PhotonPlayer.ID values), the receivel
parameter gets ignored. When using event caching, the targetActors,
receivers and interestGroup can't be used. Buffered events go to all.
When using cachingOption removeFromRoomCache, the eventCode a
content are actually not sent but used as filter.

Parameters

eventCode A byte identifying the type of event. You might want
to use a code per action or to signal which content
can be expected. Allowed: 0..199.

eventContent Some serializable object like string, byte, integer,
float (etc) and arrays of those. Hashtables with byte
keys are good to send variable content.

sendReliable Makes sure this event reaches all players. It gets
acknowledged, which requires bandwidth and it car
be skipped (might add lag in case of loss).

options Allows more complex usage of events. If null,
RaiseEventOptions.Default will be used (which is
fine).
Returns

False if event could not be sent

static bool PhotonNetwork.Reconnect ()

Can be used to reconnect to the master server after a disconnect.

After losing connection, you can use this to connect a client to the
region Master Server again. Cache the room name you're in and use
ReJoin(roomname) to return to a game. Common use case: Press
the Lock Button on a iOS device and you get disconnected
immediately.

static bool PhotonNetwork.ReconnectAndRejoin ()

When the client lost connection during gameplay, this method
attempts to reconnect and rejoin the room.

This method re-connects directly to the game server which was
hosting the room PUN was in before. If the room was shut down in
the meantime, PUN will call OnPhotonJoinRoomFailed and return
this client to the Master Server.

Check the return value, if this client will attempt a reconnect and
rejoin (if the conditions are met). If ReconnectAndRejoin returns
false, you can still attempt a Reconnect and ReJoin.

Similar to PhotonNetwork.ReJoin, this requires you to use unique
IDs per player (the UserID).

Returns
False, if there is no known room or game server to return to.
Then, this client does not attempt the ReconnectAndRejoin.

static void PhotonNetwork.RefreshCloudServerRating ()

Pings all cloud servers again to find the one with best ping
(currently).

static bool

PhotonNetwork.ReJoinRoom (string roomName)

Can be used to return to a room after a disconnect and reconnect.

After losing connection, you might be able to return to a room and
continue playing, if the client is reconnecting fast enough. Use
Reconnect() and this method. Cache the room name you're in and
use ReJoin(roomname) to return to a game.

Note: To be able to ReJoin any room, you need to use UserIDs! You
also need to set RoomOptions.PlayerTtl.

Important: Instantiate() and use of RPCs is not yet supported.
The ownership rules of PhotonViews prevent a seamless return to a
game. Use Custom Properties and RaiseEvent with event caching
instead.

Common use case: Press the Lock Button on a iOS device and you
get disconnected immediately.

static void
PhotonNetwork.RemovePlayerCustomProperties (string[] custom

Locally removes Custom Properties of "this" player. Important: This doe
change! Useful when you switch rooms.

Use this method with care. It can create inconsistencies of state betwee
changes the player.customProperties locally. This can be useful to clea
between games (let's say they store which turn you made, Kills, etc).

SetPlayerCustomProperties() syncs and can be used to set values to
can be considered "removed" while in a room.

If customPropertiesToDelete is null or has 0 entries, all Custom Propert
with a new Hashtable). If you specify keys to remove, those will be rem
but other keys are unaffected.

Parameters
customPropertiesToDelete List of Custom Property keys to remo

static void
PhotonNetwork.RemoveRPCs (PhotonPlayer targetPlayer)

Remove all buffered RPCs from server that were sent by
targetPlayer. Can only be called on local player (for "self") or Master
Client (for anyone).

This method requires either:

e This is the targetPlayer's client.
e This client is the Master Client (can remove any PhotonPlayer's
RPCs).

If the targetPlayer calls RPCs at the same time that this is called,
network lag will determine if those get buffered or cleared like the
rest.

Parameters

targetPlayer This player's buffered RPCs get removed from
server buffer.

static void
PhotonNetwork.RemoveRPCs (PhotonView targetPhotonView)

Remove all buffered RPCs from server that were sent via
targetPhotonView. The Master Client and the owner of the
targetPhotonView may call this.

This method requires either:

e The targetPhotonView is owned by this client (Instantiated by it).
e This client is the Master Client (can remove any PhotonView's
RPCs).

Parameters

targetPhotonView RPCs buffered for this PhotonView get remov
from server buffer.

static void
PhotonNetwork.RemoveRPCsInGroup (int targetGroup)

Remove all buffered RPCs from server that were sent in the
targetGroup, if this is the Master Client or if this controls the
individual PhotonView.

This method requires either:

e This client is the Master Client (can remove any RPCs per

group).
e Any other client: each PhotonView is checked if it is under this
client's control. Only those RPCs are removed.

Parameters
targetGroup Interest group that gets all RPCs removed.

static void PhotonNetwork.SendOutgoingCommands ()

Can be used to immediately send the RPCs and Instantiates just
called, so they are on their way to the other players.

This could be useful if you do a RPC to load a level and then load it
yourself. While loading, no RPCs are sent to others, so this would
delay the "load" RPC. You can send the RPC to "others", use this
method, disable the message queue (by isMessageQueueRunning)
and then load.

static void
PhotonNetwork.SetinterestGroups (byte group,

bool enabled

)

Enable/disable receiving events from a given Interest Group.

A client can tell the server which Interest Groups it's interested in.
The server will only forward events for those Interest Groups to that
client (saving bandwidth and performance).

See: https://doc.photonengine.com/en-
us/pun/current/gameplay/interestgroups

See: https://doc.photonengine.com/en-us/pun/current/demos-and-
tutorials/package-demos/culling-demo

Parameters
group The interest group to affect.
enabled Sets if receiving from group to enabled (or not).

static void
PhotonNetwork.SetinterestGroups (byte[] disableGroups,

byte[] enableGroups

)

Enable/disable receiving on given Interest Groups (applied to
PhotonViews).

A client can tell the server which Interest Groups it's interested in.
The server will only forward events for those Interest Groups to that
client (saving bandwidth and performance).

See: https://doc.photonengine.com/en-
us/pun/current/gameplay/interestgroups

See: https://doc.photonengine.com/en-us/pun/current/demos-and-
tutorials/package-demos/culling-demo

Parameters
disableGroups The interest groups to disable (or null).
enableGroups The interest groups to enable (or null).

static void PhotonNetwork.SetLevelPrefix (short prefix)

https://doc.photonengine.com/en-us/pun/current/gameplay/interestgroups
https://doc.photonengine.com/en-us/pun/current/demos-and-tutorials/package-demos/culling-demo
https://doc.photonengine.com/en-us/pun/current/gameplay/interestgroups
https://doc.photonengine.com/en-us/pun/current/demos-and-tutorials/package-demos/culling-demo

Sets level prefix for PhotonViews instantiated later on. Don't set it if
you need only one!

Important: If you don't use multiple level prefixes, simply don't set
this value. The default value is optimized out of the traffic.

This won't affect existing PhotonViews (they can't be changed yet for
existing PhotonViews).

Messages sent with a different level prefix will be received but not
executed. This affects RPCs, Instantiates and synchronization.

Be aware that PUN never resets this value, you'll have to do so
yourself.

Parameters
prefix Max value is short.MaxValue = 32767

static bool
PhotonNetwork.SetMasterClient (PhotonPlayer masterClientPlaye

Asks the server to assign another player as Master Client of your currel

RPCs and RaiseEvent have the option to send messages only to the M
Client of a room. SetMasterClient affects which client gets those messa

This method calls an operation on the server to set a new Master Clien
takes a roundtrip. In case of success, this client and the others get the |
Master Client from the server.

SetMasterClient tells the server which current Master Client should be t
with the new one. It will fail, if anything switches the Master Client mom
earlier. There is no callback for this error. All clients should get the new
Client assigned by the server anyways.

See also: PhotonNetwork.masterClient

On v3 servers: The ReceiverGroup.MasterClient (usable in RPCs) is nc

affected by this (still points to lowest player.ID in room). Avoid using this
value (and send to a specific player instead).

If the current Master Client leaves, PUN will detect a new one by "lowe:
ID". Implement OnMasterClientSwitched to get a callback in this case. ~
PUN-selected Master Client might assign a new one.

Make sure you don't create an endless loop of Master-assigning! When
selecting a custom Master Client, all clients should point to the same pl
matter who actually assigns this player.

Locally the Master Client is immediately switched, while remote clients
event. This means the game is tempoarily without Master Client like wh
current Master Client leaves.

When switching the Master Client manually, keep in mind that this user
leave and not do it's work, just like any Master Client.

Parameters
masterClientPlayer The player to become the next Master Client.

Returns
False when this operation couldn't be done. Must be in a room (nof
offineMode).

static void
PhotonNetwork.SetPlayerCustomProperties (Hashtable customPi

Sets this (local) player's properties and synchronizes them to the other
modify them directly).

While in a room, your properties are synced with the other players. Cre
JoinRoom and JoinRandomRoom will all apply your player's custom prt
you enter the room. The whole Hashtable will get sent. Minimize the tra
only updated key/values.

If the Hashtable is null, the custom properties will be cleared. Custom p
never cleared automatically, so they carry over to the next room, if you
them.

Don't set properties by modifying PhotonNetwork.player.customPropert

Parameters

customProperties Only string-typed keys will be used from this h:
custom properties are all deleted.

static void
PhotonNetwork.SetReceivingEnabled (int group,
bool enabled
)
static void

PhotonNetwork.SetReceivingEnabled (int[] enableGroups,
int[] disableGroups

)

static void
PhotonNetwork.SetSendingEnabled (int group,
bool enabled
)
static void
PhotonNetwork.SetSendingEnabled (byte group,

bool enabled

)

Enable/disable sending on given group (applied to PhotonViews)

This does not interact with the Photon server-side. It's just a client-
side setting to suppress updates, should they be sent to one of the
blocked groups.

This setting is not particularly useful, as it means that updates
literally never reach the server or anyone else. Use with care.

Parameters
group The interest group to affect.
enabled Sets if sending to group is enabled (or not).

static void
PhotonNetwork.SetSendingEnabled (int[] enableGroups,

int[] disableGroups

)

static void
PhotonNetwork.SetSendingEnabled (byte[] disableGroups,

byte[] enableGroups

)

Enable/disable sending on given groups (applied to PhotonViews)

This does not interact with the Photon server-side. It's just a client-
side setting to suppress updates, should they be sent to one of the
blocked groups.

This setting is not particularly useful, as it means that updates literally
never reach the server or anyone else. Use with care.

Parameters

enableGroups The interest groups to enable sending on (or
null).

disableGroups The interest groups to disable sending on (or
null).

static void
PhotonNetwork.SwitchToProtocol (ConnectionProtocol cp)

While offline, the network protocol can be switched (which affects the
ports you can use to connect).

When you switch the protocol, make sure to also switch the port for
the master server. Default ports are: TCP: 4530 UDP: 5055

This could look like this:
Connect(serverAddress, <udpport|tcpport>, applD, gameVersion)

Or when you use ConnectUsingSettings(), the PORT in the settings
can be switched like so:
PhotonNetwork.PhotonServerSettings.ServerPort = 4530;

The current protocol can be read this way:
PhotonNetwork.networkingPeer.UsedProtocol

This does not work with the native socket plugin of PUN+ on mobile!

Parameters

cp Network protocol to use as low level connection. UDP is
default. TCP is not available on all platforms (see remarks).

static void PhotonNetwork.UnAllocateViewlD (int viewlD)

Unregister a viewID (of manually instantiated and destroyed
networked objects).

Parameters
viewlD A viewlD manually allocated by this player.

static bool PhotonNetwork.WebRpc (string name,
object parameters

)

This operation makes Photon call your custom web-service by name
(path) with the given parameters.

This is a server-side feature which must be setup in the Photon Cloud
Dashboard prior to use. https://doc.photonengine.com/en-
us/pun/current/gameplay/web-extensions/webrpc The Parameters will

be converted into JSon format, so make sure your parameters are
compatible.

See PhotonNetworkingMessage.OnWebRpcResponse on how to get a
response.

It's important to understand that the OperationResponse only tells if the
WebRPC could be called. The content of the response contains any
values your web-service sent and the error/success code. In case the
web-service failed, an error code and a debug message are usually
inside the OperationResponse.

The class WebRpcResponse is a helper-class that extracts the most
valuable content from the WebRPC response.

Example callback implementation:

public void OnWebRpcResponse(OperationResponse response)

{

WebRpcResponse webResponse = new WebRpcResponse(operationResp«
if (webResponse.ReturnCode !=0) { //...

}

switch (webResponse.Name) { //...

}

// and so on

Member Data Documentation

float PhotonNetwork.BackgroundTimeout = 60.0f

Defines how many seconds PUN keeps the connection, after Unity's
OnApplicationPause(true) call. Default: 60 seconds.

It's best practice to disconnect inactive apps/connections after a
while but to also allow users to take calls, etc.. We think a
reasonable backgroung timeout is 60 seconds.

To handle the timeout, implement: OnDisconnectedFromPhoton(),
as usual. Your application will "notice" the background disconnect
when it becomes active again (running the Update() loop).

If you need to separate this case from others, you need to track if
the app was in the background (there is no special callback by
PUN).

A value below 0.1 seconds will disable this timeout (careful:
connections can be kept indefinitely).

Info: PUN is running a "fallback thread" to send ACKs to the server,
even when Unity is not calling Update() regularly. This helps keeping
the connection while loading scenes and assets and when the app is
in the background.

Note: Some platforms (e.g. iOS) don't allow to keep a connection
while the app is in background. In those cases, this value does not
change anything, the app immediately loses connection in
background.

Unity's OnApplicationPause() callback is broken in some exports
(Android) of some Unity versions. Make sure OnApplicationPause()
gets the callbacks you'd expect on the platform you target! Check
PhotonHandler.OnApplicationPause(bool pause), to see the
implementation.

bool PhotonNetwork.InstantiateinRoomOnly = true

If true, Instantiate methods will check if you are in a room and fail if
you are not.

Instantiating anything outside of a specific room is very likely to
break things. Turn this off only if you know what you do.

PhotonLogLevel PhotonNetwork.logLevel =
PhotonLogLevel.ErrorsOnly

Network log level. Controls how verbose PUN is.

readonly int PhotonNetwork.MAX_VIEW_IDS = 1000

The maximum number of assigned PhotonViews per player (or
scene). See the General Documentation topic "Limitations" on how
to raise this limitation.

int PhotonNetwork.maxConnections

Only used in Unity Networking. In PUN, set the number of players in
PhotonNetwork.CreateRoom.

ServerSettings PhotonNetwork.PhotonServerSettings =
(ServerSettings)Resources.Load(PhotonNetwork.serverSettingsA:
typeof(ServerSettings))

Serialized server settings, written by the Setup Wizard for use in
ConnectUsingSettings.

float PhotonNetwork.precisionForFloatSynchronization =

0.01f

The minimum difference between floats before we send it via a
PhotonView's OnSerialize/ObservingComponent.

float
PhotonNetwork.precisionForQuaternionSynchronization =
1.0f

The minimum angle that a rotation needs to change before we send
it via a PhotonView's OnSerialize/ObservingComponent.

float PhotonNetwork.precisionForVectorSynchronization =
0.000099f

The minimum difference that a Vector2 or Vector3(e.g. a transforms
rotation) needs to change before we send it via a PhotonView's
OnSerialize/ObservingComponent.

Note that this is the sqgrMagnitude. E.g. to send only after a 0.01
change on the Y-axix, we use 0.01f*0.01f=0.0001f. As a remedy
against float inaccuracy we use 0.000099f instead of 0.0001f.

Dictionary<string, GameObject>
PhotonNetwork.PrefabCache = new Dictionary<string,
GameObject>()

Keeps references to GameObijects for frequent instantiation (out of
memory instead of loading the Resources).

You should be able to modify the cache anytime you like, except
while Instantiate is used. Best do it only in the main-Thread.

HashSet<GameObject>
PhotonNetwork.SendMonoMessageTargets

If not null, this is the (exclusive) list of GameObjects that get called
by PUN SendMonoMessage().

For all callbacks defined in PhotonNetworkingMessage, PUN wiill
use SendMonoMessage and call FindObjectsOfType() to find all
scripts and GameObjects that might want a callback by PUN.

PUN callbacks are not very frequent (in-game, property updates are
most frequent) but FindObjectsOfType is time consuming and with a
large number of GameObjects, performance might suffer.

Optionally, SendMonoMessageTargets can be used to supply a list
of target GameObijects. This skips the FindObjectsOfType() but any
GameObiject that needs callbacks will have to Add itself to this list.

If null, the default behaviour is to do a SendMessage on each
GameObject with a MonoBehaviour.

Type PhotonNetwork.SendMonoMessageTargetType =
typeof(MonoBehaviour)

Defines which classes can contain PUN Callback implementations.

This provides the option to optimize your runtime for speed.
The more specific this Type is, the fewer classes will be checked
with reflection for callback methods.

bool PhotonNetwork.StartRpcsAsCoroutine = true

Can be used to skip starting RPCs as Coroutine, which can be a
performance issue.

bool PhotonNetwork.UsePrefabCache = true

While enabled (true), Instantiate uses
PhotonNetwork.PrefabCache to keep game objects in memory
(improving instantiation of the same prefab).

Setting UsePrefabCache to false during runtime will not clear
PrefabCache but will ignore it right away. You could clean and
modify the cache yourself. Read its comments.

bool PhotonNetwork.UseRpcMonoBehaviourCache

While enabled, the MonoBehaviours on which we call RPCs are
cached, avoiding costly GetComponents<MonoBehaviour>() calls.

RPCs are called on the MonoBehaviours of a target PhotonView.
Those have to be found via GetComponents.

When set this to true, the list of MonoBehaviours gets cached in
each PhotonView. You can use
photonView.RefreshRpcMonoBehaviourCache() to manually refresh
a PhotonView's list of MonoBehaviours on demand (when a new
MonoBehaviour gets added to a networked GameObiject, e.g.).

const string PhotonNetwork.versionPUN = "1.91"

Version number of PUN. Also used in GameVersion to separate
client version from each other.

Property Documentation

AuthenticationValues PhotonNetwork.AuthValues

A user's authentication values used during connect.

Set these before calling Connect if you want custom authentication.
These values set the userld, if and how that userld gets verified
(server-side), etc..

If authentication fails for any values, PUN will call your
implementation of OnCustomAuthenticationFailed(string debugMsg).
See: PhotonNetworkingMessage.OnCustomAuthenticationFailed

bool PhotonNetwork.autoCleanUpPlayerObjects

This setting defines per room, if network-instantiated GameObjects
(with PhotonView) get cleaned up when the creator of it leaves.

This setting is done per room. It can't be changed in the room and it
will override the settings of individual clients.

If room.AutoCleanUp is enabled in a room, the PUN clients will
destroy a player's GameObijects on leave. This includes
GameObjects manually instantiated (via RPCs, e.g.). When enabled,
the server will clean RPCs, instantiated GameObjects and
PhotonViews of the leaving player, too. and Players who join after
someone left, won't get the events of that player anymore.

Under the hood, this setting is stored as a Custom Room Property.
Enabled by default.

bool PhotonNetwork.autoJoinLobby

Set in PhotonServerSettings asset. Defines if the PhotonNetwork
should join the "lobby" when connected to the Master server.

If this is false, OnConnectedToMaster() will be called when
connection to the Master is available. OnJoinedLobby() will NOT
be called if this is false.

Enabled by default.

The room listing will not become available. Rooms can be created
and joined (randomly) without joining the lobby (and getting sent the
room list).

bool PhotonNetwork.automaticallySyncScene

Defines if all clients in a room should load the same level as the
Master Client (if that used PhotonNetwork.LoadLevel).

To synchronize the loaded level, the Master Client should use
PhotonNetwork.LoadLevel. All clients will load the new scene
when they get the update or when they join.

Internally, a Custom Room Property is set for the loaded scene.
When a client reads that and is not in the same scene yet, it will
immediately pause the Message Queue
(PhotonNetwork.isMessageQueueRunning = false) and load.
When the scene finished loading, PUN will automatically re-enable
the Message Queue.

CloudRegionCode PhotonNetwork.CloudRegion

Currently used Cloud Region (if any). As long as the client is not on
a Master Server or Game Server, the region is not yet defined.

bool PhotonNetwork.connected

False until you connected to Photon initially. True in offline mode,
while connected to any server and even while switching servers.

bool PhotonNetwork.connectedAndReady

A refined version of connected which is true only if your connection
to the server is ready to accept operations like join, leave, etc.

bool PhotonNetwork.connecting

True when you called ConnectUsingSettings (or similar) until the low
level connection to Photon gets established.

ConnectionState PhotonNetwork.connectionState

Simplified connection state

ClientState PhotonNetwork.connectionStateDetailed

Detailed connection state (ignorant of PUN, so it can be
"disconnected" while switching servers).

In OfflineMode, this is ClientState.Joined (after create/join) or it is
ConnectedToMaster in all other cases.

int PhotonNetwork.countOfPlayers

The count of players currently using this application (available on
MasterServer in 5sec intervals).

int PhotonNetwork.countOfPlayersinRooms

Count of users currently playing your app in some room (sent every
5sec by Master Server). Use PhotonNetwork.playerList.Length or
PhotonNetwork.room.PlayerCount to get the count of players in the
room you're in!

int PhotonNetwork.countOfPlayersOnMaster

The count of players currently looking for a room (available on
MasterServer in 5sec intervals).

int PhotonNetwork.countOfRooms

The count of rooms currently in use (available on MasterServer in
5sec intervals).

While inside the lobby you can also check the count of listed rooms
as: PhotonNetwork.GetRoomList().Length. Since PUN v1.25 this

is only based on the statistic event Photon sends (counting all
rooms).

bool PhotonNetwork.CrcCheckEnabled

Crc checks can be useful to detect and avoid issues with broken
datagrams. Can be enabled while not connected.

bool PhotonNetwork.EnableLobbyStatistics

Set in PhotonServerSettings asset. Enable to get a list of active
lobbies from the Master Server.

Lobby Statistics can be useful if a game uses multiple lobbies and
you want to show activity of each to players.

This value is stored in PhotonServerSettings.

PhotonNetwork.LobbyStatistics is updated when you connect to
the Master Server. There is also a callback PunBehaviour.

List<Friendinfo> PhotonNetwork.Friends

Read-only list of friends, their online status and the room they are in.
Null until initialized by a FindFriends call.

Do not modify this list! It is internally handled by FindFriends and
only available to read the values. The value of FriendListAge tells
you how old the data is in milliseconds.

Don't get this list more often than useful (> 10 seconds). In best
case, keep the list you fetch really short. You could (e.g.) get the full
list only once, then request a few updates only for friends who are
online. After a while (e.g. 1 minute), you can get the full list again (to
update online states).

int PhotonNetwork.FriendsListAge

Age of friend list info (in milliseconds). It's 0 until a friend list is
fetched.

string PhotonNetwork.gameVersion

Version string for your this build. Can be used to separate
incompatible clients. Sent during connect.

This is only sent when you connect so that is also the place you set
it usually (e.g. in ConnectUsingSettings).

bool PhotonNetwork.inRoom

Is true while being in a room (connectionStateDetailed ==
ClientState.Joined).

Many actions can only be executed in a room, like Instantiate or
Leave, etc. You can join a room in offline mode, too.

bool PhotonNetwork.insideLobby

True while this client is in a lobby.

Implement IPunCallbacks.OnReceivedRoomListUpdate() for a
notification when the list of rooms becomes available or updated.

You are automatically leaving any lobby when you join a room!
Lobbies only exist on the Master Server (whereas rooms are
handled by Game Servers).

bool PhotonNetwork.isMasterClient

Are we the master client?

bool PhotonNetwork.isMessageQueueRunning

Can be used to pause dispatching of incoming evtents (RPCs,
Instantiates and anything else incoming).

While IsMessageQueueRunning == false, the
OnPhotonSerializeView calls are not done and nothing is sent by a
client. Also, incoming messages will be queued until you re-activate
the message queue.

This can be useful if you first want to load a level, then go on
receiving data of PhotonViews and RPCs. The client will go on
receiving and sending acknowledgements for incoming packages
and your RPCs/Events. This adds "lag" and can cause issues when

the pause is longer, as all incoming messages are just queued.

bool PhotonNetwork.isNonMasterClientinRoom

True if we are in a room (client) and NOT the room's masterclient

TypedLobby PhotonNetwork.lobby

The lobby that will be used when PUN joins a lobby or creates a
game.

The default lobby uses an empty string as name. PUN will enter a
lobby on the Master Server if autoJoinLobby is set to true. So when
you connect or leave a room, PUN automatically gets you into a
lobby again.

Check PhotonNetwork.insideLobby if the client is in a lobby.
(Master Server And Lobby)

List<TypedLobbylnfo>
PhotonNetwork.LobbyStatistics

If turned on, the Master Server will provide information about active
lobbies for this application.

Lobby Statistics can be useful if a game uses multiple lobbies and
you want to show activity of each to players. Per lobby, you get:
name, type, room- and player-count.

PhotonNetwork.LobbyStatistics is updated when you connect to
the Master Server. There is also a callback
PunBehaviour.OnLobbyStatisticsUpdate, which you should
implement to update your Ul (e.g.).

Lobby Statistics are not turned on by default. Enable them in the
PhotonServerSettings file of the project.

PhotonPlayer PhotonNetwork.masterClient

The Master Client of the current room or null (outside of rooms).

Can be used as "authoritative” client/player to make descisions, run
Al or other.

If the current Master Client leaves the room (leave/disconnect), the
server will quickly assign someone else. If the current Master Client
times out (closed app, lost connection, etc), messages sent to this
client are effectively lost for the others! A timeout can take 10
seconds in which no Master Client is active.

Implement the method IPunCallbacks.OnMasterClientSwitched to
be called when the Master Client switched.

Use PhotonNetwork.SetMasterClient, to switch manually to some
other player / client.

With offlineMode == true, this always returns the
PhotonNetwork.player.

int PhotonNetwork.MaxResendsBeforeDisconnect

Defines the number of times a reliable message can be resent
before not getting an ACK for it will trigger a disconnect. Default: 5.

Less resends mean quicker disconnects, while more can lead to
much more lag without helping. Min: 3. Max: 10.

bool PhotonNetwork.NetworkStatisticsEnabled

Enables or disables the collection of statistics about this client's
traffic.

If you encounter issues with clients, the traffic stats are a good

starting point to find solutions. Only with enabled stats, you can use
GetVitalStats

bool PhotonNetwork.offlineMode

Offline mode can be set to re-use your multiplayer code in
singleplayer game modes. When this is on PhotonNetwork will not
create any connections and there is near to no overhead. Mostly
usefull for reusing RPC's and PhotonNetwork.Instantiate

PhotonPlayer [] PhotonNetwork.otherPlayers

The list of players in the current room, excluding the local player.

This list is only valid, while the client is in a room. It automatically
gets updated when someone joins or leaves.

This can be used to list all other players in a room. Each player's
PhotonPlayer.customProperties are accessible (set and
synchronized via PhotonPlayer.SetCustomProperties).

You can use a PhotonPlayer.TagObject to store an arbitrary object
for reference. That is not synchronized via the network.

int PhotonNetwork.PacketLossByCrcCheck

If CrcCheckEnabled, this counts the incoming packages that don't
have a valid CRC checksum and got rejected.

PhotonPlayer PhotonNetwork.player

The local PhotonPlayer. Always available and represents this
player. CustomProperties can be set before entering a room and will
be synced as well.

PhotonPlayer [] PhotonNetwork.playerList

The list of players in the current room, including the local player.

This list is only valid, while the client is in a room. It automatically
gets updated when someone joins or leaves.

This can be used to list all players in a room. Each player's
PhotonPlayer.customProperties are accessible (set and
synchronized via PhotonPlayer.SetCustomProperties).

You can use a PhotonPlayer.TagObject to store an arbitrary object
for reference. That is not synchronized via the network.

string PhotonNetwork.playerName

Set to synchronize the player's nickname with everyone in the
room(s) you enter. This sets PhotonNetwork.player.NickName.

The playerName is just a nickname and does not have to be unique
or backed up with some account.

Set the value any time (e.g. before you connect) and it will be
available to everyone you play with.

Access the names of players by: PhotonPlayer.NickName.
PhotonNetwork.otherPlayers is a list of other players - each
contains the playerName the remote player set.

IPunPrefabPool PhotonNetwork.PrefabPool

An Object Pool can be used to keep and reuse instantiated object
instances. It replaced Unity's default Instantiate and Destroy
methods.

To use a GameObject pool, implement IPunPrefabPool and assign
it here. Prefabs are identified by name.

int PhotonNetwork.QuickResends

In case of network loss, reliable messages can be repeated quickly
up to 3 times.

When reliable messages get lost more than once, subsequent
repeats are delayed a bit to allow the network to recover.

With this option, the repeats 2 and 3 can be sped up. This can help
avoid timeouts but also it increases the speed in which gaps are
closed.

When you set this, increase
PhotonNetwork.MaxResendsBeforeDisconnect to 6 or 7.

int PhotonNetwork.ResentReliableCommands

Count of commands that got repeated (due to local repeat-timing
before an ACK was received).

If this value increases a lot, there is a good chance that a timeout
disconnect will happen due to bad conditions.

Room PhotonNetwork.room

Get the room we're currently in. Null if we aren't in any room.

int PhotonNetwork.sendRate

Defines how many times per second PhotonNetwork should send a
package. If you change this, do not forget to also change
'sendRateOnSerialize'.

Less packages are less overhead but more delay. Setting the
sendRate to 50 will create up to 50 packages per second (which is a
lot!). Keep your target platform in mind: mobile networks are slower
and less reliable.

int PhotonNetwork.sendRateOnSerialize

Defines how many times per second OnPhotonSerialize should be
called on PhotonViews.

Choose this value in relation to PhotonNetwork.sendRate.

OnPhotonSerialize will create updates and messages to be sent.
A lower rate takes up less performance but will cause more lag.

ServerConnection PhotonNetwork.Server

The server (type) this client is currently connected or connecting to.

Photon uses 3 different roles of servers: Name Server, Master
Server and Game Server.

string PhotonNetwork.ServerAddress

Currently used server address (no matter if master or game server).

int PhotonNetwork.ServerTimestamp

The current server's millisecond timestamp.

This can be useful to sync actions and events on all clients in one
room. The timestamp is based on the server's
Environment.TickCount.

It will overflow from a positive to a negative value every so often, so
be careful to use only time-differences to check the time delta when
things happen.

This is the basis for PhotonNetwork.time.

double PhotonNetwork.time

Photon network time, synched with the server.

v1.55

This time value depends on the server's Environment.TickCount. It is
different per server but inside a Room, all clients should have the
same value (Rooms are on one server only).

This is not a DateTime!

Use this value with care:
It can start with any positive value.
It will "wrap around" from 4294967.295 to O!

int PhotonNetwork.unreliableCommandsLimit

Used once per dispatch to limit unreliable commands per channel
(so after a pause, many channels can still cause a lot of unreliable
commands)

bool PhotonNetwork.UseAlternativeUdpPorts

Switch to alternative ports for a UDP connection to the Public Cloud.
This should be used when a customer has issues with connection
stability. Some players reported better connectivity for Steam
games. The effect might vary, which is why the alternative ports are
not the new default.

The alternative (server) ports are 27000 up to 27003.

The values are appplied by replacing any incoming server-address
string accordingly. You only need to set this to true though.

This value does not affect TCP or WebSocket connections.

Event Documentation

EventCallback PhotonNetwork.OnEventCall

Register your RaiseEvent handling methods here by using "+=".
Any eventCode < 200 will be forwarded to your delegate(s).

RaiseEvent

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions |
PhOtonPIayer CIaSS Static Public Member Functions |
Public Attributes | Properties |
Reference List of all members
Public API

Summarizes a "player" within a room, identified (in that room) by
actorlD. More...

Inherits IComparable< PhotonPlayer >, IComparable< int >,
IEquatable< PhotonPlayer >, and IEquatable< int >.

Public Member Functions

override bool

override int

void

PhotonPlayer
PhotonPlayer
PhotonPlayer
PhotonPlayer
int

int

bool

bool

override string

PhotonPlayer (bool isLocal, int actorID, string
name)
Creates a PhotonPlayer instance. More...

Equals (object p)
Makes PhotonPlayer comparable More...

GetHashCode ()

SetCustomProperties (Hashtable propertiesToSet,
Hashtable expectedValues=null, bool
webForward=false)

Updates the this player's Custom Properties with
new/updated key-values. More...

Get (int id)

GetNext ()

GetNextFor (PhotonPlayer currentPlayer)
GetNextFor (int currentPlayerld)
CompareTo (PhotonPlayer other)
CompareTo (int other)

Equals (PhotonPlayer other)

Equals (int other)

ToString ()
Brief summary string of the PhotonPlayer. Includes
name or player.ID and if it's the Master Client.

More...

string ToStringFull ()
String summary of the PhotonPlayer: player.1D,
name and all custom properties of this user. More...

Static Public Member Functions

static PhotonPlayer Find (int ID)
Try to get a specific player by id. More...

Public Attributes

readonly bool IsLocal = false
Only one player is controlled by each client. Others

are not local. More...

object TagObject
Can be used to store a reference that's useful to know

"by player". More...

Properties

int

string

string

bool

bool

Hashtable

Hashtable

string

string

bool

ID [get]
This player's actorID More...

NickName [get, set]
Nickname of this player. More...

Userld [get, set]

Userld of the player, available when the room got
created with RoomOptions.PublishUserld = true.
More...

IsMasterClient [get]

True if this player is the Master Client of the current
room. More...

Islnactive [get, set]

Players might be inactive in a room when PlayerTTL for
aroom is > 0. If true, the player is not getting events
from this room (now) but can return later. More...

CustomProperties [get, set]

Read-only cache for custom properties of player. Set via
PhotonPlayer.SetCustomProperties. More...

AllProperties [get]

Creates a Hashtable with all properties (custom and
"well known" ones). More...

name [get, set]
userld [get, set]

isLocal [get]

bool isMasterClient [get]
bool islnactive [get, set]
Hashtable customProperties [get, set]

Hashtable allProperties [get]

Detailed Description

Summarizes a "player" within a room, identified (in that room) by
actoriD.

Each player has an actorld (or ID), valid for that room. It's -1 until it's
assigned by server. Each client can set it's player's custom properties
with SetCustomProperties, even before being in a room. They are
synced when joining a room.

Constructor & Destructor Documentation

PhotonPlayer.PhotonPlayer (bool isLocal,
int actoriD,
string name

)

Creates a PhotonPlayer instance.

Parameters
isLocal If this is the local peer's player (or a remote one).

actorID ID or ActorNumber of this player in the current room (a
shortcut to identify each player in room)

name Name of the player (a "well known property").

Member Function Documentation

int PhotonPlayer.CompareTo (PhotonPlayer other)
int PhotonPlayer.CompareTo (int other)

override bool PhotonPlayer.Equals (object p)

Makes PhotonPlayer comparable

bool PhotonPlayer.Equals (PhotonPlayer other)
bool PhotonPlayer.Equals (int other)

static PhotonPlayer PhotonPlayer.Find (int ID)

Try to get a specific player by id.

Parameters
ID ActorID

Returns
The player with matching actorlID or null, if the actorID is not in
use.

PhotonPlayer PhotonPlayer.Get (int id)

override int PhotonPlayer.GetHashCode ()

PhotonPlayer PhotonPlayer.GetNext ()

PhotonPlayer
PhotonPlayer.GetNextFor (PhotonPlayer currentPlayer)

PhotonPlayer PhotonPlayer.GetNextFor (int currentPlayerid)

void
PhotonPlayer.SetCustomProperties (Hashtable propertiesToSet,
Hashtable expectedValues =

bool webForward = fal

)

Updates the this player's Custom Properties with new/updated key-valL

Custom Properties are a key-value set (Hashtable) which is available tc
players in a room. They can relate to the room or individual players and
useful when only the current value of something is of interest. For exan
The map of a room. All keys must be strings.

The Room and the PhotonPlayer class both have SetCustomPropertie
methods. Also, both classes offer access to current key-values by:
customProperties.

Always use SetCustomProperties to change values. To reduce network
traffic, set only values that actually changed. New properties are added
existing values are updated. Other values will not be changed, so only
provide values that changed or are new.

To delete a named (custom) property of this room, use null as value.

Locally, SetCustomProperties will update it's cache without delay. Othel
clients are updated through Photon (the server) with a fitting operation.

Check and Swap

SetCustomProperties have the option to do a server-side Check-And-S
(CAS): Values only get updated if the expected values are correct. The

expectedValues can be different key/values than the propertiesToSet. £
you can check some key and set another key's value (if the check
succeeds).

If the client's knowledge of properties is wrong or outdated, it can't set
values with CAS. This can be useful to keep players from concurrently
setting values. For example: If all players try to pickup some card or itel
only one should get it. With CAS, only the first SetProperties gets exect
server-side and any other (sent at the same time) fails.

The server will broadcast successfully changed values and the local
"cache" of customProperties only gets updated after a roundtrip (if anyt
changed).

You can do a "webForward": Photon will send the changed properties t
WebHook defined for your application.

OfflineMode

While PhotonNetwork.offlineMode is true, the expectedValues and
webForward parameters are ignored. In OfflineMode, the local
customProperties values are immediately updated (without the roundtri

Parameters
propertiesToSet The new properties to be set.

expectedValues At least one property key/value set to check serv
side. Key and value must be correct. Ignored in
OfflineMode.

webForward Set to true, to forward the set properties to a
WebHook, defined for this app (in Dashboard).
Ignored in OfflineMode.

override string PhotonPlayer.ToString ()

Brief summary string of the PhotonPlayer. Includes name or
player.ID and if it's the Master Client.

string PhotonPlayer.ToStringFull ()

String summary of the PhotonPlayer: player.ID, name and all
custom properties of this user.

Use with care and not every frame! Converts the customProperties
to a String on every single call.

Member Data Documentation

readonly bool PhotonPlayer.IsLocal = false

Only one player is controlled by each client. Others are not local.

object PhotonPlayer.TagObject

Can be used to store a reference that's useful to know "by player".

Example: Set a player's character as Tag by assigning the
GameObject on Instantiate.

Property Documentation

Hashtable PhotonPlayer.AllProperties get

Creates a Hashtable with all properties (custom and "well known"
ones).

If used more often, this should be cached.

Hashtable PhotonPlayer.allProperties get
Hashtable PhotonPlayer.CustomProperties

Read-only cache for custom properties of player. Set via
PhotonPlayer.SetCustomProperties.

Don't modify the content of this Hashtable. Use
SetCustomProperties and the properties of this class to modify
values. When you use those, the client will sync values with the
server.

SetCustomProperties

Hashtable PhotonPlayer.customProperties
int PhotonPlayer.ID get

This player's actorID

bool PhotonPlayer.IsInactive

Players might be inactive in a room when PlayerTTL for a room is >
0. If true, the player is not getting events from this room (now) but

can return later.

bool PhotonPlayer.isInactive

bool PhotonPlayer.isLocal

bool PhotonPlayer.IsMasterClient

True if this player is the Master Client of the current room.

See also: PhotonNetwork.masterClient.

bool PhotonPlayer.isMasterClient

string PhotonPlayer.name

string PhotonPlayer.NickName

Nickname of this player.

Set the PhotonNetwork.playerName to make the name
synchronized in a room.

string PhotonPlayer.Userld

Userld of the player, available when the room got created with

RoomOptions.PublishUserld = true.

get

get

Useful for PhotonNetwork.FindFriends and blocking slots in a
room for expected players (e.g. in PhotonNetwork.CreateRoom).

string PhotonPlayer.userld

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Member Functions |

PhOtonVieW CIaSS Static Public Member Functions |
Reference Public Attributes | Properties |

List of all members
Public API

PUN's NetworkView replacement class for networking. Use it like a
NetworkView. More...

Inherits Photon.MonoBehaviour.

Public Member Functions

void

void

void

void

void

void

void

void

RequestOwnership ()

Depending on the PhotonView's ownershipTransfer
setting, any client can request to become owner of
the PhotonView. More...

TransferOwnership (PhotonPlayer newOwner)
Transfers the ownership of this PhotonView (and
GameObiject) to another player. More...

TransferOwnership (int newOwnerld)
Transfers the ownership of this PhotonView (and
GameObject) to another player. Mare...

OnMasterClientSwitched (PhotonPlayer
newMasterClient)

Check ownerld assignment for sceneObjects to keep
being owned by the MasterClient. More...

SerializeView (PhotonStream stream,
PhotonMessagelnfo info)

DeserializeView (PhotonStream stream,
PhotonMessagelnfo info)

RefreshRpcMonoBehaviourCache ()

Can be used to refesh the list of MonoBehaviours on
this GameObject while
PhotonNetwork.UseRpcMonoBehaviourCache is
true. More...

RPC (string methodName, PhotonTargets target,

params object[] parameters)

Call a RPC method of this GameObject on remote

clients of this room (or on all, inclunding this client).
More...

void

void

void

override string

RpcSecure (string methodName, PhotonTargets
target, bool encrypt, params object[] parameters)
Call a RPC method of this GameObject on remote
clients of this room (or on all, inclunding this client).
More...

RPC (string methodName, PhotonPlayer
targetPlayer, params object[] parameters)

Call a RPC method of this GameObject on remote
clients of this room (or on all, inclunding this client).
More...

RpcSecure (string methodName, PhotonPlayer
targetPlayer, bool encrypt, params object[]
parameters)

Call a RPC method of this GameObject on remote
clients of this room (or on all, inclunding this client).
More...

ToString ()

Static Public Member Functions

static PhotonView Get (Component component)
static PhotonView Get (GameObject gameOb))

static PhotonView Find (int viewlD)

Public Attributes

int
byte

bool

int
ViewSynchronization
OnSerializeTransform

OnSerializeRigidBody

OwnershipOption

List< Component >
int

int

ownerld
group =0

OwnerShipWasTransfered

Flag to check if ownership of this photonView
was set during the lifecycle. Used for
checking when joining late if event with
mismatched owner and sender needs
addressing. More...

prefixBackup = -1
synchronization

onSerializeTransformOption =
OnSerializeTransform.PositionAndRotatior

onSerializeRigidBodyOption =
OnSerializeRigidBody.All

ownershipTransfer =
OwnershipOption.Fixed

Defines if ownership of this PhotonView is
fixed, can be requested or simply taken.
More...

ObservedComponents
instantiationid

currentMasteriD = -1

The current master ID so that we can
compare when we receive
OnMasterClientSwitched() callback It's

public so that we can check it during ownerld
assignments in networkPeer script TODO:
Maybe we can have the networkPeer always
aware of the previous MasterClient? More...

Properties

int

object][]

int

bool

PhotonPlayer

int
bool
int

bool

prefix [get, set]

instantiationData [get, set]

This is the instantiationData that was passed
when calling PhotonNetwork.Instantiate* (if that
was used to spawn this prefab) Maore...

viewlD [get, set]

The ID of the PhotonView. Identifies it in a
networked game (per room). Mare...

isSceneView [get]

True if the PhotonView was loaded with the
scene (game object) or instantiated with
InstantiateSceneObject. Maore...

owner [get]

The owner of a PhotonView is the player who
created the GameObject with that view. Objects in
the scene don't have an owner. More...

OwnerActorNr [get]
isOwnerActive [get]
CreatorActorNr [get]

isMine [get]
True if the PhotonView is "mine" and can be
controlled by this client. More...

» Properties inherited from Photon.MonoBehaviour

PhotonView

photonView [get]

A cached reference to a PhotonView on this
GameObject. More...

new PhotonView networkView [get]

This property is only here to notify developers
when they use the outdated value. More...

Detailed Description

PUN's NetworkView replacement class for networking. Use it like a
NetworkView.

Member Function Documentation

void PhotonView.DeserializeView (PhotonStream stream,
PhotonMessagelnfo info
)
static PhotonView PhotonView.Find (int viewID)

static PhotonView
PhotonView.Get (Component component)

static PhotonView
PhotonView.Get (GameObject gameObj)

void
PhotonView.OnMasterClientSwitched (PhotonPlayer newMasterC

Check ownerld assignment for sceneObjects to keep being owned by tl
MasterClient.

Parameters
newMasterClient New master client.

void PhotonView.RefreshRpcMonoBehaviourCache ()

Can be used to refesh the list of MonoBehaviours on this
GameObject while PhotonNetwork.UseRpcMonoBehaviourCache
IS true.

Set PhotonNetwork.UseRpcMonoBehaviourCache to true to
enable the caching. Uses this.GetComponents<MonoBehaviour>()

to get a list of MonoBehaviours to call RPCs on (potentially).

While PhotonNetwork.UseRpcMonoBehaviourCache is false, this
method has no effect, because the list is refreshed when a RPC gets
called.

void PhotonView.RequestOwnership ()

Depending on the PhotonView's ownershipTransfer setting, any
client can request to become owner of the PhotonView.

Requesting ownership can give you control over a PhotonView, if
the ownershipTransfer setting allows that. The current owner might
have to implement IPunCallbacks.OnOwnershipRequest to react
to the ownership request.

The owner/controller of a PhotonView is also the client which sends
position updates of the GameObject.

void PhotonView.RPC (string methodName,
PhotonTargets target,
params object[] parameters

)

Call a RPC method of this GameObject on remote clients of this
room (or on all, inclunding this client).

Remote Procedure Calls are an essential tool in making
multiplayer games with PUN. It enables you to make every client in a
room call a specific method.

RPC calls can target "All" or the "Others". Usually, the target "All"
gets executed locally immediately after sending the RPC. The
"*ViaServer" options send the RPC to the server and execute it on
this client when it's sent back. Of course, calls are affected by this
client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and
GameObject) that was used on the originating client.

See: Remote Procedure Calls.

Parameters

methodName The name of a fitting method that was has the
RPC attribute.

target The group of targets and the way the RPC gets
sent.
parameters The parameters that the RPC method has (must
fit this call!).
void PhotonView.RPC (string methodName,

PhotonPlayer targetPlayer,
params object[] parameters

)

Call a RPC method of this GameObject on remote clients of this
room (or on all, inclunding this client).

Remote Procedure Calls are an essential tool in making
multiplayer games with PUN. It enables you to make every client in a
room call a specific method.

This method allows you to make an RPC calls on a specific player's
client. Of course, calls are affected by this client's lag and that of
remote clients.

Each call automatically is routed to the same PhotonView (and
GameObject) that was used on the originating client.

See: Remote Procedure Calls.

Parameters

methodName The name of a fitting method that was has the
RPC attribute.

targetPlayer The group of targets and the way the RPC gets

sent.

parameters The parameters that the RPC method has (must
fit this call!).

void PhotonView.RpcSecure (string methodName,
PhotonTargets target,
bool encrypt,
params object[] parameters

)

Call a RPC method of this GameObject on remote clients of this
room (or on all, inclunding this client).

Remote Procedure Calls are an essential tool in making
multiplayer games with PUN. It enables you to make every client in a
room call a specific method.

RPC calls can target "All" or the "Others". Usually, the target "All"
gets executed locally immediately after sending the RPC. The
"*ViaServer" options send the RPC to the server and execute it on
this client when it's sent back. Of course, calls are affected by this
client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and
GameObject) that was used on the originating client.

See: Remote Procedure Calls.

param name="methodName">The name of a fitting method that was
has the RPC attribute.

param name="target">The group of targets and the way the RPC
gets sent.

param name="encrypt">

param name="parameters">The parameters that the RPC method
has (must fit this call!).

void PhotonView.RpcSecure (string methodName,
PhotonPlayer targetPlayer,
bool encrypt,
params object[] parameters

)

Call a RPC method of this GameObject on remote clients of this
room (or on all, inclunding this client).

Remote Procedure Calls are an essential tool in making
multiplayer games with PUN. It enables you to make every client in a
room call a specific method.

This method allows you to make an RPC calls on a specific player's
client. Of course, calls are affected by this client's lag and that of
remote clients.

Each call automatically is routed to the same PhotonView (and
GameObject) that was used on the originating client.

See: Remote Procedure Calls.

param name="methodName">The name of a fitting method that was
has the RPC attribute.

param name="targetPlayer">The group of targets and the way the
RPC gets sent.

param name="encrypt">

param name="parameters">The parameters that the RPC method
has (must fit this call!).

void PhotonView.SerializeView (PhotonStream stream,
PhotonMessagelnfo info

)

override string PhotonView.ToString ()

void
PhotonView.TransferOwnership (PhotonPlayer newOwner)

Transfers the ownership of this PhotonView (and GameObiject) to
another player.

The owner/controller of a PhotonView is also the client which sends
position updates of the GameObject.

void PhotonView.TransferOwnership (int newOwnerld)

Transfers the ownership of this PhotonView (and GameObiject) to
another player.

The owner/controller of a PhotonView is also the client which sends
position updates of the GameObject.

Member Data Documentation

int PhotonView.currentMasterID = -1

The current master ID so that we can compare when we receive
OnMasterClientSwitched() callback It's public so that we can check
it during ownerld assignments in networkPeer script TODO: Maybe
we can have the networkPeer always aware of the previous
MasterClient?

byte PhotonView.group = 0

int PhotonView.instantiationld

List<Component> PhotonView.ObservedComponents

OnSerializeRigidBody PhotonView.onSerializeRigidBodyOption
= OnSerializeRigidBody.All

OnSerializeTransform PhotonView.onSerializeTransformOption =
OnSerializeTransform.PositionAndRotation

int PhotonView.ownerld

OwnershipOption PhotonView.ownershipTransfer =
OwnershipOption.Fixed

Defines if ownership of this PhotonView is fixed, can be requested
or simply taken.

Note that you can't edit this value at runtime. The options are
described in enum OwnershipOption. The current owner has to
implement IPunCallbacks.OnOwnershipRequest to react to the
ownership request.

bool PhotonView.OwnerShipWasTransfered

Flag to check if ownership of this photonView was set during the
lifecycle. Used for checking when joining late if event with
mismatched owner and sender needs addressing.

true if owner ship was transfered; otherwise, false.

int PhotonView.prefixBackup = -1

ViewSynchronization PhotonView.synchronization

Property Documentation

int PhotonView.CreatorActorNr get
object [] PhotonView.instantiationData

This is the instantiationData that was passed when calling
PhotonNetwork.Instantiate* (if that was used to spawn this prefab)

bool PhotonView.isMine get

True if the PhotonView is "mine" and can be controlled by this
client.

PUN has an ownership concept that defines who can control and
destroy each PhotonView. True in case the owner matches the
local PhotonPlayer. True if this is a scene photonview on the
Master client.

bool PhotonView.isOwnerActive get

bool PhotonView.isSceneView get

True if the PhotonView was loaded with the scene (game object) or
instantiated with InstantiateSceneObiject.

Scene objects are not owned by a particular player but belong to the
scene. Thus they don't get destroyed when their creator leaves the
game and the current Master Client can control them (whoever that
Is). The ownerld is O (player IDs are 1 and up).

PhotonPlayer PhotonView.owner get

The owner of a PhotonView is the player who created the
GameObject with that view. Objects in the scene don't have an
owner.

The owner/controller of a PhotonView is also the client which sends
position updates of the GameObject.

Ownership can be transferred to another player with
PhotonView.TransferOwnership or any player can request
ownership by calling the PhotonView's RequestOwnership method.
The current owner has to implement
IPunCallbacks.OnOwnershipRequest to react to the ownership
request.

int PhotonView.OwnerActorNr get
int PhotonView.prefix
int PhotonView.viewlID

The ID of the PhotonView. Identifies it in a networked game (per
room).

See: Network Instantiation

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | Properties |
Room Class Reference List of all members
Public API

This class resembles a room that PUN joins (or joined). The properties
are settable as opposed to those of a RoomInfo and you can close or
hide "your" room. More...

Inherits Roominfo.

Public Member Functions

void

void

void

void

override string

new string

SetCustomProperties (Hashtable propertiesToSet,
Hashtable expectedValues=null, bool
webForward=false)

Updates the current room's Custom Properties with
new/updated key-values. More...

SetPropertiesListedinLobby (string[]
propsListedinLobby)

Enables you to define the properties available in the
lobby if not all properties are needed to pick a room.
More...

ClearExpectedUsers ()
Attempts to remove all current expected users from
the server's Slot Reservation list. Mare...

SetExpectedUsers (string[] expectedUsers)
Attempts to set the current expected users list.
More...

ToString ()
Returns a summary of this Room instance as string.
More...

ToStringFull ()
Returns a summary of this Room instance as longer
string, including Custom Properties. More...

» Public Member Functions inherited from Roominfo

override bool

Equals (object other)
Makes RoomInfo comparable (by name). More...

override int GetHashCode ()

Accompanies Equals, using the name's HashCode

as return. More...

override string ToString ()
Simple printingin method. Maore...

string ToStringFull ()
Simple printingin method. Maore...

Properties

new string

new bool

new bool

string(]

bool

new int

new int

Name [get, set]

The name of a room. Unique identifier (per
Loadbalancing group) for a room/match. More...

IsOpen [get, set]

Defines if the room can be joined. This does not affect
listing in a lobby but joining the room will fail if not open.
If not open, the room is excluded from random
matchmaking. Due to racing conditions, found matches
might become closed before they are joined. Simply re-
connect to master and find another. Use property
"visible" to not list the room. More...

IsVisible [get, set]

Defines if the room is listed in its lobby. Rooms can be
created invisible, or changed to invisible. To change if a
room can be joined, use property: open. More...

PropertiesListedinLobby [get, set]

A list of custom properties that should be forwarded to
the lobby and listed there. More...

AutoCleanUp [get]

Gets if this room uses autoCleanUp to remove all
(buffered) RPCs and instantiated GameObjects when a
player leaves. More...

MaxPlayers [get, set]

Sets a limit of players to this room. This property is
shown in lobby, too. If the room is full (players count ==
maxplayers), joining this room will fail. More...

PlayerCount [get]
Count of players in this room. More...

string(]

int

int

new string
new bool
new bool
string(]
bool

new int
new int

string(]

ExpectedUsers [get]

List of users who are expected to join this room. In
matchmaking, Photon blocks a slot for each of these
UserlDs out of the MaxPlayers. More...

PlayerTtl [get, set]
Player Time To Live. How long any player can be

Inactive (due to disconnect or leave) before the user gets

removed from the playerlist (freeing a slot). More...

EmptyRoomTtl [get, set]

Room Time To Live. How long a room stays available
(and in server-memory), after the last player becomes
Inactive. After this time, the room gets persisted or
destroyed. More...

name [get, set]

open [get, set]

visible [get, set]
propertiesListedinLobby [get, set]
autoCleanUp [get]

maxPlayers [get, set]
playerCount [get]

expectedUsers [get]

» Properties inherited from Roominfo

bool

removedFromList [get, set]
Used internally in lobby, to mark rooms that are no

Hashtable

string

int

bool

byte

bool

bool

longer listed. More...

CustomProperties [get]

Read-only "cache" of custom properties of a room. Set
via Room.SetCustomProperties (not available for
Roominfo class!). More...

Name [get]

The name of a room. Unique identifier (per
Loadbalancing group) for a room/match. More...

PlayerCount [get, set]

Only used internally in lobby, to display number of
players in room (while you're not in). More...

IsLocalClientinside [get, set]

State if the local client is already in the game or still
going to join it on gameserver (in lobby always false).
More...

MaxPlayers [get]

Sets a limit of players to this room. This property is
shown in lobby, too. If the room is full (players count ==
maxplayers), joining this room will fail. More...

IsOpen [get]

Defines if the room can be joined. This does not affect
listing in a lobby but joining the room will fail if not open.
If not open, the room is excluded from random
matchmaking. Due to racing conditions, found matches
might become closed before they are joined. Simply re-
connect to master and find another. Use property
"IsVisible" to not list the room. More...

IsVisible [get]
Defines if the room is listed in its lobby. Rooms can be

created invisible, or changed to invisible. To change if a
room can be joined, use property: open. More...

Hashtable customProperties [get]
string nhame [get]
int playerCount [get, set]
bool isLocalClientinside [get, set]
byte maxPlayers [get]
bool open [get]

bool visible [get]

Additional Inherited Members

» Protected Attributes inherited from Roominfo

byte maxPlayersField =0
Backing field for property. More...

int emptyRoomTtIField =0
Backing field for property. More...

int playerTtiField =0
Backing field for property. More...

string[]] expectedUsersField
Backing field for property. More...

bool openField = true
Backing field for property. More...

bool visibleField = true
Backing field for property. More...

bool autoCleanUpField =
PhotonNetwork.autoCleanUpPlayerObjects
Backing field for property. False unless the GameProperty is
set to true (else it's not sent). More...

string nameField
Backing field for property. More...

Detailed Description

This class resembles a room that PUN joins (or joined). The properties
are settable as opposed to those of a RoomInfo and you can close or

hide "your" room.

Member Function Documentation

void Room.ClearExpectedUsers ()

Attempts to remove all current expected users from the server's Slot
Reservation list.

Note that this operation can conflict with new/other users joining.
They might be adding users to the list of expected users before or
after this client called ClearExpectedUsers.

This room's expectedUsers value will update, when the server sends
a successful update.

Internals: This methods wraps up setting the ExpectedUsers
property of a room.

void

Room.SetCustomProperties (Hashtable propertiesToSet,
Hashtable expectedValues = null,
bool webForward = false

)

Updates the current room's Custom Properties with new/updated
key-values.

Custom Properties are a key-value set (Hashtable) which is
available to all players in a room. They can relate to the room or
individual players and are useful when only the current value of
something is of interest. For example: The map of a room. All keys
must be strings.

The Room and the PhotonPlayer class both have
SetCustomProperties methods. Also, both classes offer access to

current key-values by: customProperties.

Always use SetCustomProperties to change values. To reduce
network traffic, set only values that actually changed. New properties
are added, existing values are updated. Other values will not be
changed, so only provide values that changed or are new.

To delete a named (custom) property of this room, use null as value.

Locally, SetCustomProperties will update it's cache without delay.
Other clients are updated through Photon (the server) with a fitting
operation.

Check and Swap

SetCustomProperties have the option to do a server-side Check-
And-Swap (CAS): Values only get updated if the expected values
are correct. The expectedValues can be different key/values than the
propertiesToSet. So you can check some key and set another key's
value (if the check succeeds).

If the client's knowledge of properties is wrong or outdated, it can't
set values with CAS. This can be useful to keep players from
concurrently setting values. For example: If all players try to pickup
some card or item, only one should get it. With CAS, only the first
SetProperties gets executed server-side and any other (sent at the
same time) fails.

The server will broadcast successfully changed values and the local
"cache" of customProperties only gets updated after a roundtrip (if
anything changed).

You can do a "webForward": Photon will send the changed
properties to a WebHook defined for your application.

OfflineMode

While PhotonNetwork.offlineMode is true, the expectedValues and
webForward parameters are ignored. In OfflineMode, the local
customProperties values are immediately updated (without the
roundtrip).

Parameters
propertiesToSet The new properties to be set.

expectedValues At least one property key/value set to check
server-side. Key and value must be correct.
Ignored in OfflineMode.

webForward Set to true, to forward the set properties to a
WebHook, defined for this app (in
Dashboard). Ignored in OfflineMode.

void Room.SetExpectedUsers (string[] expectedUsers)

Attempts to set the current expected users list.

Note that this operation can conflict with new/other users joining.
They might be adding users to the list of expected users before or
after this client called SetExpectedUsers. If the list changes before
this operation arrives, the server will not modify the list and
SetExpectedUsers() fails.

This room's expectedUsers value will be sent by the server.

Internals: This methods wraps up setting the ExpectedUsers
property of a room.

void
Room.SetPropertiesListedinLobby (string[] propsListedinLobby)

Enables you to define the properties available in the lobby if not all
properties are needed to pick a room.

It makes sense to limit the amount of properties sent to users in the
lobby as this improves speed and stability.

Parameters

propsListedinLobby An array of custom room property names
to forward to the lobby.

override string Room.ToString ()

Returns a summary of this Room instance as string.

Returns
Summary of this Room instance.

new string Room.ToStringFull ()

Returns a summary of this Room instance as longer string, including
Custom Properties.

Returns
Summary of this Room instance.

Property Documentation

bool Room.AutoCleanUp get

Gets if this room uses autoCleanUp to remove all (buffered) RPCs
and instantiated GameObjects when a player leaves.

bool Room.autoCleanUp get
int Room.EmptyRoomTtl

Room Time To Live. How long a room stays available (and in server-
memory), after the last player becomes inactive. After this time, the
room gets persisted or destroyed.

string [] Room.ExpectedUsers get

List of users who are expected to join this room. In matchmaking,
Photon blocks a slot for each of these UserIDs out of the
MaxPlayers.

The corresponding feature in Photon is called "Slot Reservation”
and can be found in the doc pages. Define expected players in the
PhotonNetwork methods: CreateRoom, JoinRoom and
JoinOrCreateRoom.

string [] Room.expectedUsers get

new bool Room.IsOpen

Defines if the room can be joined. This does not affect listing in a
lobby but joining the room will fail if not open. If not open, the room is
excluded from random matchmaking. Due to racing conditions,
found matches might become closed before they are joined. Simply
re-connect to master and find another. Use property "visible" to not
list the room.

new bool Room.IsVisible

Defines if the room is listed in its lobby. Rooms can be created
invisible, or changed to invisible. To change if a room can be joined,
use property: open.

new int Room.MaxPlayers

Sets a limit of players to this room. This property is shown in lobby,
too. If the room is full (players count == maxplayers), joining this
room will fail.

new int Room.maxPlayers
new string Room.Name

The name of a room. Unique identifier (per Loadbalancing group) for
a room/match.

new string Room.name
new bool Room.open

new int Room.PlayerCount get

Count of players in this room.

new int Room.playerCount get
int Room.PlayerTtl

Player Time To Live. How long any player can be inactive (due to
disconnect or leave) before the user gets removed from the
playerlist (freeing a slot).

string [] Room.PropertiesListedinLobby

A list of custom properties that should be forwarded to the lobby and
listed there.

string [] Room.propertiesListedinLobby
new bool Room.visible

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | Protected Attributes
Roomlnfo CIaSS | Properties | List of all members
Reference
Public API

A simplified room with just the info required to list and join, used for the
room listing in the lobby. The properties are not settable (open,
MaxPlayers, etc). More...

Inherited by Room.

Public Member Functions

override bool Equals (object other)
Makes RoomInfo comparable (by name). More...

override int GetHashCode ()
Accompanies Equals, using the name's HashCode
as return. More...

override string ToString ()
Simple printingin method. Maore...

string ToStringFull ()
Simple printingin method. Maore...

Protected Attributes

byte maxPlayersField =0
Backing field for property. More...

int emptyRoomTtIField =0
Backing field for property. More...

int playerTtiField =0
Backing field for property. More...

string[]] expectedUsersField
Backing field for property. More...

bool openField = true
Backing field for property. More...

bool visibleField = true
Backing field for property. More...

bool autoCleanUpField =
PhotonNetwork.autoCleanUpPlayerObjects
Backing field for property. False unless the GameProperty is
set to true (else it's not sent). More...

string nameField
Backing field for property. More...

Properties

bool

Hashtable

string

int

bool

byte

bool

removedFromList [get, set]

Used internally in lobby, to mark rooms that are no
longer listed. More...

CustomProperties [get]

Read-only "cache" of custom properties of a room. Set
via Room.SetCustomProperties (not available for
Roominfo class!). More...

Name [get]

The name of a room. Unique identifier (per
Loadbalancing group) for a room/match. More...

PlayerCount [get, set]

Only used internally in lobby, to display number of
players in room (while you're not in). More...

IsLocalClientinside [get, set]

State if the local client is already in the game or still
going to join it on gameserver (in lobby always false).
More...

MaxPlayers [get]

Sets a limit of players to this room. This property is
shown in lobby, too. If the room is full (players count ==
maxplayers), joining this room will fail. More...

IsOpen [get]

Defines if the room can be joined. This does not affect
listing in a lobby but joining the room will fail if not open.
If not open, the room is excluded from random
matchmaking. Due to racing conditions, found matches
might become closed before they are joined. Simply re-
connect to master and find another. Use property

bool

Hashtable
string

int

bool

byte

bool

bool

"IsVisible" to not list the room. More...

IsVisible [get]

Defines if the room is listed in its lobby. Rooms can be
created invisible, or changed to invisible. To change if a
room can be joined, use property: open. More...

customProperties [get]
name [get]

playerCount [get, set]
isLocalClientinside [get, set]
maxPlayers [get]

open [get]

visible [get]

Detailed Description

A simplified room with just the info required to list and join, used for the
room listing in the lobby. The properties are not settable (open,
MaxPlayers, etc).

This class resembles info about available rooms, as sent by the Master
server's lobby. Consider all values as readonly. None are synced (only
updated by events by server).

Member Function Documentation

override bool Roominfo.Equals (object other)

Makes RoomInfo comparable (by name).

override int Roominfo.GetHashCode ()

Accompanies Equals, using the name's HashCode as return.

Returns

override string Roominfo.ToString ()

Simple printingin method.

Returns
Summary of this Roominfo instance.

string RoomInfo.ToStringFull ()

Simple printingin method.

Returns
Summary of this Roominfo instance.

Member Data Documentation

bool RoomInfo.autoCleanUpField =
PhotonNetwork.autoCleanUpPlayerObjects

Backing field for property. False unless the GameProperty is set to
true (else it's not sent).

int Roominfo.emptyRoomTtlIField = 0 protected

Backing field for property.

string [] RoomInfo.expectedUsersField protected

Backing field for property.

byte Roominfo.maxPlayersField = 0 protected

Backing field for property.

string RoomInfo.nameField protected

Backing field for property.

bool RoomInfo.openField = true protected

Backing field for property.

int Roominfo.playerTtIField = 0

Backing field for property.

bool Roominfo.visibleField = true

Backing field for property.

Property Documentation

Hashtable Roominfo.CustomProperties get

Read-only "cache" of custom properties of a room. Set via
Room.SetCustomProperties (not available for Roominfo class!).

All keys are string-typed and the values depend on the
game/application.

Room.SetCustomProperties

Hashtable Roominfo.customProperties get
bool Roominfo.IsLocalClientinside

State if the local client is already in the game or still going to join it
on gameserver (in lobby always false).

bool Roominfo.isLocalClientinside
bool RoomInfo.lsOpen get

Defines if the room can be joined. This does not affect listing in a
lobby but joining the room will fail if not open. If not open, the room is
excluded from random matchmaking. Due to racing conditions,
found matches might become closed before they are joined. Simply
re-connect to master and find another. Use property "IsVisible" to not
list the room.

As part of Roominfo this can't be set. As part of a Room (which the
player joined), the setter will update the server and all clients.

bool Roomlinfo.IsVisible get

Defines if the room is listed in its lobby. Rooms can be created
invisible, or changed to invisible. To change if a room can be joined,
use property: open.

As part of Roominfo this can't be set. As part of a Room (which the
player joined), the setter will update the server and all clients.

byte Roominfo.MaxPlayers get

Sets a limit of players to this room. This property is shown in lobby,
too. If the room is full (players count == maxplayers), joining this
room will fail.

As part of Roominfo this can't be set. As part of a Room (which the
player joined), the setter will update the server and all clients.

byte Roominfo.maxPlayers get

string Roominfo.Name get

The name of a room. Unique identifier (per Loadbalancing group) for
a room/match.

string RoomInfo.name get
bool RoomInfo.open get

int Roominfo.PlayerCount

Only used internally in lobby, to display number of players in room
(while you're not in).

int Roominfo.playerCount
bool RoomiInfo.removedFromList

Used internally in lobby, to mark rooms that are no longer listed.

bool Roomlinfo.visible get

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Classes

Optional Gui Elements

Useful GUI elements for PUN. More...

Classes

class

class

PhotonLagSimulationGui

This MonoBehaviour is a basic GUI for the Photon client's
network-simulation feature. It can modify lag (fixed delay),
jitter (random lag) and packet loss. More...

PhotonStatsGui
Basic GUI to show traffic and health statistics of the
connection to Photon, toggled by shift+tab. More...

Detailed Description

Useful GUI elements for PUN.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Member Functions | Public Attributes |
Properties | List of all members

PhotonLagSimulationGui Class Reference

Optional Gui Elements

This MonoBehaviour is a basic GUI for the Photon client's network-
simulation feature. It can modify lag (fixed delay), jitter (random lag)
and packet loss. More...

Inherits MonoBehaviour.

Public Member Functions

void Start ()

void OnGUI ()

Public Attributes

Rect WindowRect = new Rect(0, 100, 120, 100)
Positioning rect for window. More...

int Windowld = 101

Unity GUI Window ID (must be unique or will cause issues).
More...

bool Visible = true
Shows or hides GUI (does not affect settings). More...

Properties

PhotonPeer Peer [get, set]

The peer currently in use (to set the network
simulation). Maore...

Detailed Description

This MonoBehaviour is a basic GUI for the Photon client's network-
simulation feature. It can modify lag (fixed delay), jitter (random lag)
and packet loss.

Member Function Documentation

void PhotonLagSimulationGui.OnGUI ()

void PhotonLagSimulationGui.Start ()

Member Data Documentation

bool PhotonLagSimulationGui.Visible = true

Shows or hides GUI (does not affect settings).

int PhotonLagSimulationGui.Windowld = 101

Unity GUI Window ID (must be unique or will cause issues).

Rect PhotonLagSimulationGui.WindowRect = new Rect(0, 100,
120, 100)

Positioning rect for window.

Property Documentation

PhotonPeer PhotonLagSimulationGui.Peer

The peer currently in use (to set the network simulation).

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members
Public Member Functions | Public Attributes |
PhotonStatsGui Class List of all members
Reference

Optional Gui Elements

Basic GUI to show traffic and health statistics of the connection to
Photon, toggled by shift+tab. More...

Inherits MonoBehaviour.

Public Member Functions

void Start ()

void Update ()
Checks for shift+tab input combination (to toggle statsOn).
More...

void OnGUI ()

void TrafficStatsWindow (int windowlID)

Public Attributes

bool

bool

bool

bool

bool

Rect

int

statsWindowOn = true
Shows or hides GUI (does not affect if stats are collected).
More...

statsOn = true
Option to turn collecting stats on or off (used in Update()).
More...

healthStatsVisible
Shows additional "health" values of connection. More...

trafficStatsOn
Shows additional "lower level" traffic stats. More...

buttonsOn
Show buttons to control stats and reset them. More...

statsRect = new Rect(0, 100, 200, 50)
Positioning rect for window. More...

Windowld = 100
Unity GUI Window ID (must be unique or will cause issues).
More...

Detailed Description

Basic GUI to show traffic and health statistics of the connection to
Photon, toggled by shift+tab.

The shown health values can help identify problems with connection
losses or performance. Example: If the time delta between two
consecutive SendOutgoingCommands calls is a second or more,
chances rise for a disconnect being caused by this (because
acknowledgements to the server need to be sent in due time).

Member Function Documentation

void PhotonStatsGui.OnGUI ()

void PhotonStatsGui.Start ()

void PhotonStatsGui.TrafficStatsWindow (int windowID)

void PhotonStatsGui.Update ()

Checks for shift+tab input combination (to toggle statsOn).

Member Data Documentation

bool PhotonStatsGui.buttonsOn

Show buttons to control stats and reset them.

bool PhotonStatsGui.healthStatsVisible

Shows additional "health" values of connection.

bool PhotonStatsGui.statsOn = true

Option to turn collecting stats on or off (used in Update()).

Rect PhotonStatsGui.statsRect = new Rect(0, 100, 200, 50)

Positioning rect for window.

bool PhotonStatsGui.statsWindowOn = true

Shows or hides GUI (does not affect if stats are collected).

bool PhotonStatsGui.trafficStatsOn

Shows additional "lower level" traffic stats.

int PhotonStatsGui.Windowld = 100

Unity GUI Window ID (must be unique or will cause issues).

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

All Typedefs Enumerations Enumerator

a ¢c d e f g h i I m n o p q s t u w x

Here is a list of all namespace members with links to the namespace
documentation for each member:

-a -

¢ Additive : UnityEngine::SceneManagement
o Authenticated : ExitGames::Client::Photon::Chat
e Authenticating : ExitGames::Client::Photon::Chat

1
(g)
1

ChatDisconnectCause : ExitGames::Client::Photon::Chat
ChatState : ExitGames::Client::Photon::Chat
ConnectedToFrontEnd : ExitGames::Client::Photon::Chat
ConnectedToNameServer : ExitGames::Client::Photon::Chat
ConnectingToFrontEnd : ExitGames::Client::Photon::Chat
ConnectingToNameServer : ExitGames::Client::Photon::Chat
Cube : ExitGames::Client::GUI

Custom : ExitGames::Client::Photon::Chat
CustomAuthenticationFailed : ExitGames::Client::Photon::Chat
CustomAuthenticationType : ExitGames::Client::Photon::Chat

-d -

e DisconnectByServer : ExitGames::Client::Photon::Chat

e DisconnectByServerUserLimit :
ExitGames::Client::Photon::Chat

e Disconnected : ExitGames::Client::Photon::Chat

e Disconnecting : ExitGames::Client::Photon::Chat

¢ DisconnectingFromFrontEnd : ExitGames::Client::Photon::Chat

e DisconnectingFromNameServer :
ExitGames::Client::Photon::Chat

-Q -

o Exception : ExitGames::Client::Photon::Chat
e ExceptionOnConnect : ExitGames::Client::Photon::Chat

-f-
e Facebook : ExitGames::Client::Photon::Chat
- g -
e GizmoType : ExitGames::Client::GUI
-h-
e Hashtable : Photon
-j-

¢ |nvalidAuthentication : ExitGames::Client::Photon::Chat
e InvalidRegion : ExitGames::Client::Photon::Chat

e LoadSceneMode : UnityEngine::SceneManagement

-m -

¢ MaxCcuReached : ExitGames::Client::Photon::Chat

=N -

e None : ExitGames::Client::Photon::Chat

-0 -

¢ Oculus : ExitGames::Client::Photon::Chat
e OperationNotAllowedInCurrentState :
ExitGames::Client::Photon::Chat

- p -
e PlayStation : ExitGames::Client::Photon::Chat
- q -

e QueuedComingFromFrontEnd :
ExitGames::Client::Photon::Chat

-S -

e Single : UnityEngine::SceneManagement
e Sphere : ExitGames::Client::GUI
e Steam : ExitGames::Client::Photon::Chat

-t-

e TimeoutDisconnect : ExitGames::Client::Photon::Chat

- U -

e Uninitialized : ExitGames::Client::Photon::Chat

- W -

e WireCube : ExitGames::Client::GUI
o WireSphere : ExitGames::Client::GUI

- X -

e Xbox : ExitGames::Client::Photon::Chat

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

All Typedefs Enumerations Enumerator

e Hashtable : Photon

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

All Typedefs Enumerations Enumerator

ChatDisconnectCause : ExitGames::Client::Photon::Chat
ChatState : ExitGames::Client::Photon::Chat
CustomAuthenticationType : ExitGames::Client::Photon::Chat
GizmoType : ExitGames::Client::GUI

LoadSceneMode : UnityEngine::SceneManagement

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

All Typedefs Enumerations Enumerator

¢ Additive : UnityEngine::SceneManagement
o Authenticated : ExitGames::Client::Photon::Chat
¢ Authenticating : ExitGames::Client::Photon::Chat

-C -

ConnectedToFrontEnd : ExitGames::Client::Photon::Chat
ConnectedToNameServer : ExitGames::Client::Photon::Chat
ConnectingToFrontEnd : ExitGames::Client::Photon::Chat
ConnectingToNameServer : ExitGames::Client::Photon::Chat
Cube : ExitGames::Client::GUI

Custom : ExitGames::Client::Photon::Chat
CustomAuthenticationFailed : ExitGames::Client::Photon::Chat

e DisconnectByServer : ExitGames::Client::Photon::Chat

e DisconnectByServerUserLimit :
ExitGames::Client::Photon::Chat

Disconnected : ExitGames::Client::Photon::Chat

Disconnecting : ExitGames::Client::Photon::Chat
DisconnectingFromFrontEnd : ExitGames::Client::Photon::Chat
DisconnectingFromNameServer :
ExitGames::Client::Photon::Chat

-Q -

e Exception : ExitGames::Client::Photon::Chat
e ExceptionOnConnect : ExitGames::Client::Photon::Chat

-f-
e Facebook : ExitGames::Client::Photon::Chat
- -

¢ |nvalidAuthentication : ExitGames::Client::Photon::Chat
¢ InvalidRegion : ExitGames::Client::Photon::Chat

-m -

¢ MaxCcuReached : ExitGames::Client::Photon::Chat

=N -

e None : ExitGames::Client::Photon::Chat

-0 -

e Oculus : ExitGames::Client::Photon::Chat
e OperationNotAllowedInCurrentState :
ExitGames::Client::Photon::Chat

- p -
o PlayStation : ExitGames::Client::Photon::Chat
- q -

¢ QueuedComingFromFrontEnd :

ExitGames::Client::Photon::Chat

- S -
¢ Single : UnityEngine::SceneManagement

e Sphere : ExitGames::Client::GUI
e Steam : ExitGames::Client::Photon::Chat

-t-
¢ TimeoutDisconnect : ExitGames::Client::Photon::Chat
- u -
e Uninitialized : ExitGames::Client::Photon::Chat
- W -

e WireCube : ExitGames::Client::GUI
o WireSphere : ExitGames::Client::GUI

- X -

e Xbox : ExitGames::Client::Photon::Chat

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Class List

Here are the classes, structs, unions and interfaces with brief
descriptions:

[detail level 12 3 4 5]
™ ExitGames

™ Client
™ GUI
@ GizmoTypeDrawer
™ Photon
™ Chat

@ AuthenticationValues

Container for user auther
Photon. Set AuthValues
connect - all else is hand

@ ChatChannel A channel of communicai
Chat, updated by ChatC|
provided as READ ONLY

@ ChatClient Central class of the Phot

@ ChatEventCode

@ ChatOperationCode

@ ChatParameterCode

connect, handle channels

Wraps up internally used
Photon Chat events. Yol
use them directly usually.

Wraps up codes for operi
internally in Photon Chat
to use them directly usua
Wraps up codes for paral
operations and events) u
Photon Chat. You don't |

@ ChatPeer

@ ChatUserStatus

@ ErrorCode

@ IChatClientListener

@ ParameterCode
v 8 Photon
@ MonoBehaviour

@ PunBehaviour

v 9 UnityEngine
v 8 SceneManagement
@ SceneManager

@ ActorProperties

@ AuthenticationValues

@ EncryptionDataParameters

directly usually.

Provides basic operation:
Chat server. This interna
public ChatClient.

Contains commonly usec
for SetOnlineStatus. You
own.

ErrorCode defines the d
associated with Photon ¢
communication.

Callback interface for Ch
Contains callback metho
app about updates. Must
new ChatClient in constt

This class adds the prope
while logging a warning v
still uses the networkViev
This class provides a .ph
callbacks/events that PUI
Override the events/metf
use.

Minimal implementation ¢
SceneManager for older
vb.2.

Class for constants. Thes
define "well known" propt
Actor / Player.

Container for user auther
Photon. Set AuthValues
connect - all else is hand

@ ErrorCode

@ EventCode

@ Extensions

@ FriendInfo

@ GameObjectExtensions

@ GamePropertyKey

@ HelpURL

@ IPunCallbacks

@ IPunObservable

@ IPunPrefabPool

@ OperationCode

@ ParameterCode

ErrorCode defines the d
associated with Photon ¢
communication.

Class for constants. Thes
events defined by Photol

This static class defines ¢
extension methods for se
classes (e.g. Vector3, flo:

Used to store info about «
state and in which room |

Small number of extensic
make it easier for PUN tao
Unity-versions.

Class for constants. Thes
are for "well known" roon
properties used in Photo
Loadbalancing.

Empty implementation of
HelpURL of Unity 5.1. Tt
compatibility of attributes

This interface is used as

callback methods of PUN
OnPhotonSerializeView.

implement them individue
Defines the OnPhotonSe
method to make it easy t«
correctly for observable s
Defines all the methods t
Pool must implement, so
use it.

Class for constants. Con
codes. Pun uses these ct
internally.

Class for constants. Codkt
parameters of Operations

This class helps you to s

@® PhotonAnimatorView

@ SynchronizedLayer
@ SynchronizedParameter
@ PhotonLagSimulationGui

@ PhotonMessagelnfo

@ PhotonNetwork

@ PhotonPingManager
@ PhotonPlayer

@ PhotonRigidbody2DView

Mecanim animations Sim
component to your Game
make sure that the Photc
is added to the list of obs
components

This MonoBehaviour is a
the Photon client's netwc
feature. It can modify lag
jitter (random lag) and pa
Container class for info a
message, RPC or update

The main class to use the
PhotonNetwork plugin.
static.

Summarizes a "player" w
identified (in that room) b

This class helps you to s
velocities of a 2d physics
that only the velocities ar
and because Unitys phys
deterministic (ie. the resu
the same on all computel
positions of the objects v
sync. If you want to have
this object the same on a
should also add a

PhotonTransformView t
the position. Simply add 1
your GameObject and m:
PhotonRigidbody2DVie
the list of observed comp

This class helps you to s

@ PhotonRigidbodyView

@ PhotonStatsGui

@ PhotonStream

@ PhotonStreamQueue

@ PhotonTransformView

velocities of a physics Rif
that only the velocities ar
and because Unitys phys
deterministic (ie. the resu
the same on all computel
positions of the objects v
sync. If you want to have
this object the same on a
should also add a

PhotonTransformView t
the position. Simply add 1
your GameObject and m:
PhotonRigidbodyView i
list of observed compone

Basic GUI to show traffic
statistics of the connectic
toggled by shift+tab.
This container is used in
OnPhotonSerializeView
provide incoming data of
or for you to provide it.

The PhotonStreamQuet
object states at higher fre
what PhotonNetwork.se
and then sends all those
when Serialize() is callec
receiving end you can ca
and then the stream will 1
received object states in-
and timeStep they were r

This class helps you to s
position, rotation and sca
GameObject. It also give:
different options to make
synchronized values app
even when the data is on

@ PhotonTransformViewPositionControl
@ PhotonTransformViewPositionModel
@ PhotonTransformViewRotationControl
@ PhotonTransformViewRotationModel
@ PhotonTransformViewScaleControl

@ PhotonTransformViewScaleModel

@ PhotonView

@ PingMonoEditor

® PunRPC

@ RaiseEventOptions

@ Region

@® Room

@® Roomlinfo

@ RoomOptions

of times per second. Sim
component to your Game
make sure that the

PhotonTransformView i
list of observed compone

PUN's NetworkView repl:
for networking. Use it like

Uses C# Socket class fro
System.Net.Sockets (as !
does).

Replacement for RPC att
different name. Used to fl
remote-callable.

Aggregates several less-
options for operation Rait
field descriptions for usac

This class resembles a rc
joins (or joined). The proy
settable as opposed to th
Roominfo and you can ¢
"your" room.

A simplified room with jus
required to list and join, u
listing in the lobby. The p
settable (open, MaxPlaye

Wraps up common room
needed when you create

@ SceneManagerHelper
@ ServerSettings

@ TypedLobby

@ TypedLobbylinfo
@ WebRpcResponse

individual entries for mort

Collection of connection-|
used internally by
PhotonNetwork.Connec

Refers to a specific lobby
the server.

Reads an operation respt
WebRpc and provides co
to most common values.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

. Namespaces
Package ExitGames

Namespaces
package Client

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

ExitGames Client

Namespaces

Package
ExitGames.Client

Namespaces
package GUI

package Photon

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

ExitGames Client GUI

Classes | Enumerations

Package
ExitGames.Client.GUI

Classes

class GizmoTypeDrawer

Enumerations

enum GizmoType { GizmoType.WireSphere, GizmoType.Sphere,
GizmoType.WireCube, GizmoType.Cube }

Enumeration Type Documentation

enum ExitGames.Client.GUL.GizmoType

Enumerator

WireSphere
Sphere
WireCube
Cube

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames ; Client ; GUI ; GizmoTypeDrawer ;

Static Public Member Functions |
List of all members

ExitGames.Client.GUL.GizmoTypeDrawer Class
Reference

Static Public Member Functions

static void Draw (Vector3 center, GizmoType type, Color color, float
size)

Member Function Documentation

static void
ExitGames.Client.GUIL.GizmoTypeDrawer.Draw (Vector3 center

GizmoType type,
Color color,
float size

)

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

ExitGames Client Photon

Namespaces

Package
ExitGames.Client.Photon

Namespaces
package Chat

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

ExitGames Client Photon Chat

Classes | Enumerations

Package
ExitGames.Client.Photon.Chat

Classes

class

class

class

class

class

class

class

class

AuthenticationValues

Container for user authentication in Photon. Set
AuthValues before you connect - all else is handled.
More...

ChatChannel
A channel of communication in Photon Chat, updated by
ChatClient and provided as READ ONLY. More...

ChatClient
Central class of the Photon Chat API to connect, handle
channels and messages. More...

ChatEventCode

Wraps up internally used constants in Photon Chat
events. You don't have to use them directly usually.
More...

ChatOperationCode
Wraps up codes for operations used internally in Photon
Chat. You don't have to use them directly usually. More...

ChatParameterCode

Wraps up codes for parameters (in operations and events)
used internally in Photon Chat. You don't have to use
them directly usually. Maore...

ChatPeer
Provides basic operations of the Photon Chat server. This
internal class is used by public ChatClient. More...

ChatUserStatus
Contains commonly used status values for
SetOnlineStatus. You can define your own. More...

class ErrorCode
ErrorCode defines the default codes associated with
Photon client/server communication. More...

interface IChatClientListener
Callback interface for Chat client side. Contains callback
methods to notify your app about updates. Must be
provided to new ChatClient in constructor More...

class ParameterCode

Enumerations

enum

enum

enum

ChatDisconnectCause {

ChatDisconnectCause.None,
ChatDisconnectCause.DisconnectByServerUserLimit,
ChatDisconnectCause.ExceptionOnConnect,
ChatDisconnectCause.DisconnectByServer,

ChatDisconnectCause.TimeoutDisconnect,
ChatDisconnectCause.Exception,
ChatDisconnectCause.InvalidAuthentication,
ChatDisconnectCause.MaxCcuReached,

ChatDisconnectCause.lnvalidRegion,
ChatDisconnectCause.OperationNotAllowedInCurrentState
ChatDisconnectCause.CustomAuthenticationFailed
}

Enumaration of causes for Disconnects (used in
LoadBalancingClient.DisconnectedCause). More...

CustomAuthenticationType : byte {
CustomAuthenticationType.Custom = 0,
CustomAuthenticationType.Steam = 1,
CustomAuthenticationType.Facebook = 2,
CustomAuthenticationType.Oculus = 3,
CustomAuthenticationType.PlayStation = 4,
CustomAuthenticationType.Xbox = 5,
CustomAuthenticationType.None = byte.MaxValue
}
Options for optional "Custom Authentication" services used
with Photon. Used by OpAuthenticate after connecting to
Photon. More...

ChatState {

ChatState.Uninitialized,
ChatState.ConnectingToNameServer,
ChatState.ConnectedToNameServer,
ChatState.Authenticating,

ChatState.Authenticated,
ChatState.DisconnectingFromNameServer,

ChatState.ConnectingToFrontEnd,
ChatState.ConnectedToFrontEnd,
ChatState.DisconnectingFromFrontEnd,
ChatState.QueuedComingFromFrontEnd,
ChatState.Disconnecting, ChatState.Disconnected

}

Possible states for a LoadBalancingClient. More...

Enumeration Type Documentation

enum ExitGames.Client.Photon.Chat.ChatDisconnectCause

Enumaration of causes for Disconnects (used in
LoadBalancingClient.DisconnectedCause).

Read the individual descriptions to find out what to do about this

type of disconnect.

Enumerator

None
DisconnectByServerUserLimit

ExceptionOnConnect

DisconnectByServer

TimeoutDisconnect

Exception

No error was tracked.

OnStatusChanged: The
CCuUs count of your Photon
Server License is exausted
(temporarily).

OnStatusChanged: The
server is not available or the
address is wrong. Make
sure the port is provided
and the server is up.

OnStatusChanged: The
server disconnected this
client. Most likely the
server's send buffer is full
(receiving too much from
other clients).

OnStatusChanged: This
client detected that the
server's responses are not
received in due time. Maybe
you send / receive too
much?

OnStatusChanged: Some

InvalidAuthentication

MaxCcuReached

InvalidRegion

OperationNotAllowedInCurrentState

CustomAuthenticationFailed

internal exception caused
the socket code to fall.
Contact Exit Games.

OnOperationResponse:
Authenticate in the Photon
Cloud with invalid Appld.
Update your subscription or
contact Exit Games.

OnOperationResponse:
Authenticate (temporarily)
failed when using a Photon
Cloud subscription without
CCU Burst. Update your
subscription.

OnOperationResponse:
Authenticate when the app's
Photon Cloud subscription
is locked to some (other)
region(s). Update your
subscription or master
server address.

OnOperationResponse:
Operation that's (currently)
not available for this client
(not authorized usually).
Only tracked for op
Authenticate.

OnOperationResponse:
Authenticate in the Photon
Cloud with invalid client
values or custom
authentication setup in
Cloud Dashboard.

enum ExitGames.Client.Photon.Chat.ChatState

Possible states for a LoadBalancingClient.

Enumerator

Uninitialized

ConnectingToNameServer

ConnectedToNameServer
Authenticating

Authenticated

DisconnectingFromNameServer

ConnectingToFrontEnd

ConnectedToFrontEnd
DisconnectingFromFrontEnd
QueuedComingFromFrontEnd
Disconnecting

Disconnected

Peer is created but not used
yet.

Connecting to master (includes
connect, authenticate and
joining the lobby)

Connected to master server.

Usually when Authenticated, the
client will join a game or the
lobby (if AutoJoinLobby is true).

Usually when Authenticated, the
client will join a game or the
lobby (if AutoJoinLobby is true).

Transition from master to game
server.

Transition to gameserver (client
will authenticate and join/create
game).

Connected to gameserver
(going to auth and join game).

Transition from gameserver to
master (after leaving a
room/game).

Currently not used.

The client disconnects (from
any server).

The client is no longer
connected (to any server).
Connect to master to go on.

enum ExitGames.Client.Photon.Chat.CustomAuthenticationType

: byte

Options for optional "Custom Authentication" services used with

Photon. Used by OpAuthenticate after connecting to Photon.

Enumerator

Custom Use a custom authentification service. Currently the
only implemented option.

Steam Authenticates users by their Steam Account. Set

auth values accordingly!

Facebook | Authenticates users by their Facebook Account. Set
auth values accordingly!

Oculus Authenticates users by their Oculus Account and
token.

PlayStation | Authenticates users by their PSN Account and token.

Xbox Authenticates users by their Xbox Account and
XSTS token.

None Disables custom authentification. Same as not

providing any AuthenticationValues for connect
(more precisely for: OpAuthenticate).

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat AuthenticationValues
Public Member Functions | Properties |
List of all members

ExitGames.Client.Photon.Chat.AuthenticationVa
Class Reference

Container for user authentication in Photon. Set AuthValues before
you connect - all else is handled. More...

Public Member Functions

virtual void

virtual void

virtual void

override string

AuthenticationValues ()
Creates empty auth values without any info. More...

AuthenticationValues (string userld)

Creates minimal info about the user. If this is
authenticated or not, depends on the set AuthType.
More...

SetAuthPostData (string stringData)
Sets the data to be passed-on to the auth service via
POST. More...

SetAuthPostData (byte[] byteData)
Sets the data to be passed-on to the auth service via
POST. More...

AddAuthParameter (string key, string value)
Adds a key-value pair to the get-parameters used for
Custom Auth. More...

ToString ()

Properties

CustomAuthenticationType AuthType [get, set]

The type of custom authentication
provider that should be used.
Currently only "Custom" or "None"
(turns this off). More...

string AuthGetParameters [get, set]

This string must contain any (http get)
parameters expected by the used
authentication service. By default,
username and token. More...

object AuthPostData [get, set]

Data to be passed-on to the auth
service via POST. Default: null (not
sent). Either string or byte[] (see
setters). More...

string Token [get, set]
After initial authentication, Photon
provides a token for this client / user,
which is subsequently used as
(cached) validation. More...

string Userld [get, set]
The Userld should be a unique
identifier per user. This is for finding
friends, etc.. More...

Detailed Description

Container for user authentication in Photon. Set AuthValues before
you connect - all else is handled.

On Photon, user authentication is optional but can be useful in many
cases. If you want to FindFriends, a unique ID per user is very
practical.

There are basically three options for user authentification: None at all,
the client sets some Userld or you can use some account web-service
to authenticate a user (and set the Userld server-side).

Custom Authentication lets you verify end-users by some kind of login
or token. It sends those values to Photon which will verify them before
granting access or disconnecting the client.

The Photon Cloud Dashboard will let you enable this feature and set
important server values for it.
https://www.photonengine.com/dashboard

https://www.photonengine.com/dashboard

Constructor & Destructor Documentation

ExitGames.Client.Photon.Chat.AuthenticationValues.Authenticatio

Creates empty auth values without any info.

ExitGames.Client.Photon.Chat.AuthenticationValues.Authenticatio

Creates minimal info about the user. If this is authenticated or not, depe

Parameters
userld Some Userld to set in Photon.

Member Function Documentation

virtual void
ExitGames.Client.Photon.Chat.AuthenticationValues.AddAuthPara

Adds a key-value pair to the get-parameters used for Custom Auth.
This method does uri-encoding for you.

Parameters
key Key for the value to set.
value Some value relevant for Custom Authentication.

virtual void
ExitGames.Client.Photon.Chat.AuthenticationValues.SetAuthPostl

Sets the data to be passed-on to the auth service via POST.

Parameters

stringData String data to be used in the body of the POST reques
AuthPostData to null.

virtual void
ExitGames.Client.Photon.Chat.AuthenticationValues.SetAuthPostl

Sets the data to be passed-on to the auth service via POST.

Parameters
byteData Binary token / auth-data to pass on.

override string
ExitGames.Client.Photon.Chat.AuthenticationValues.ToString ()

Property Documentation

string
ExitGames.Client.Photon.Chat.AuthenticationValues.AuthGetParai

This string must contain any (http get) parameters expected by the use
authentication service. By default, username and token.

Standard http get parameters are used here and passed on to the servi
defined in the server (Photon Cloud Dashboard).

object
ExitGames.Client.Photon.Chat.AuthenticationValues.AuthPostDat:

Data to be passed-on to the auth service via POST. Default: null (not se
Either string or byte[] (see setters).

CustomAuthenticationType
ExitGames.Client.Photon.Chat.AuthenticationValues.AuthType

The type of custom authentication provider that should be used. Curren
only "Custom" or "None" (turns this off).

string
ExitGames.Client.Photon.Chat.AuthenticationValues.Token

After initial authentication, Photon provides a token for this client /
user, which is subsequently used as (cached) validation.

string

ExitGames.Client.Photon.Chat.AuthenticationValues.Userld

The Userld should be a unique identifier per user. This is for finding
friends, etc..

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames ; Client ; Photon ; Chat ; ChatChannel
Public Member Functions | Public Attributes |
Properties | List of all members

ExitGames.Client.Photon.Chat.ChatChannel
Class Reference

A channel of communication in Photon Chat, updated by ChatClient
and provided as READ ONLY. More...

Public Member Functions

void

void

void

void

string

ChatChannel (string name)
Used internally to create new channels. This does NOT create
a channel on the server! Use ChatClient.Subscribe. More...

Add (string sender, object message)
Used internally to add messages to this channel. More...

Add (string[] senders, object[] messages)
Used internally to add messages to this channel. More...

TruncateMessages ()
Reduces the number of locally cached messages in this
channel to the MessageLimit (if set). Mare...

ClearMessages ()
Clear the local cache of messages currently stored. This frees
memory but doesn't affect the server. More...

ToStringMessages ()
Provides a string-representation of all messages in this
channel. More...

Public Attributes

readonly string Name
Name of the channel (used to subscribe and
unsubscribe). More...

readonly List< string > Senders = new List<string>()
Senders of messages in chronoligical order.
Senders and Messages refer to each other
by index. Senders][x] is the sender of
Messages|[x]. More...

readonly List< object > Messages = new List<object>()
Messages in chronoligical order. Senders
and Messages refer to each other by index.
Senders[X] is the sender of Messages|x].
More...

int MessageLimit
If greater than 0, this channel will limit the
number of messages, that it caches locally.
More...

Properties

bool IsPrivate [get, set]
Is this a private 1:1 channel? More...

int MessageCount [get]

Count of messages this client still buffers/knows for this
channel. More...

Detailed Description

A channel of communication in Photon Chat, updated by ChatClient
and provided as READ ONLY.

Contains messages and senders to use (read!) and display by your
GUI. Access these by: ChatClient.PublicChannels
ChatClient.PrivateChannels

Constructor & Destructor Documentation

ExitGames.Client.Photon.Chat.ChatChannel.ChatChannel (string

Used internally to create new channels. This does NOT create a chann
the server! Use ChatClient.Subscribe.

Member Function Documentation

void
ExitGames.Client.Photon.Chat.ChatChannel.Add (string sender,
object message

)

Used internally to add messages to this channel.

void
ExitGames.Client.Photon.Chat.ChatChannel.Add (string[] sender:
object[] messac

)

Used internally to add messages to this channel.

void
ExitGames.Client.Photon.Chat.ChatChannel.ClearMessages ()

Clear the local cache of messages currently stored. This frees
memory but doesn't affect the server.

string
ExitGames.Client.Photon.Chat.ChatChannel.ToStringMessages ()

Provides a string-representation of all messages in this channel.

Returns
All known messages in format "Sender: Message", line by line.

void
ExitGames.CIient.Photon.Chat.ChatChanneI.TruncateMessages()

Reduces the number of locally cached messages in this channel to
the MessageLimit (if set).

Member Data Documentation

int ExitGames.Client.Photon.Chat.ChatChannel.MessageLimit

If greater than 0, this channel will limit the number of messages, that
it caches locally.

readonly List<object>
ExitGames.Client.Photon.Chat.ChatChannel.Messages = new
List<object>()

Messages in chronoligical order. Senders and Messages refer to
each other by index. Senders[x] is the sender of Messages|[x].

readonly string
ExitGames.Client.Photon.Chat.ChatChannel.Name

Name of the channel (used to subscribe and unsubscribe).

readonly List<string>
ExitGames.Client.Photon.Chat.ChatChannel.Senders = new
List<string>()

Senders of messages in chronoligical order. Senders and Messages
refer to each other by index. Senders[x] is the sender of
Messages|X].

Property Documentation

bool
ExitGames.Client.Photon.Chat.ChatChannel.IsPrivate

Is this a private 1:1 channel?

int
ExitGames.Client.Photon.Chat.ChatChannel.MessageCount

Count of messages this client still buffers/knows for this channel.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames ; Client ; Photon ; Chat ; ChatClient ;
Public Member Functions | Public Attributes |
Properties | List of all members

ExitGames.Client.Photon.Chat.ChatClient
Class Reference

Central class of the Photon Chat API to connect, handle channels and
messages. More...

Inherits IPhotonPeerListener.

Public Member Functions

bool CanChatinChannel (string channelName)

ChatClient (IChatClientListener listener, ConnectionProtocol
protocol=ConnectionProtocol.Udp)

bool Connect (string appld, string appVersion,
AuthenticationValues authValues)
Connects this client to the Photon Chat Cloud service, which
will also authenticate the user (and set a Userld). More...

void Service ()
Must be called regularly to keep connection between client
and server alive and to process incoming messages. Maore...

void SendAcksOnly ()

void Disconnect ()
Disconnects from the Chat Server by sending a "disconnect
command", which prevents a timeout server-side. More...

void StopThread ()
Locally shuts down the connection to the Chat Server. This
resets states locally but the server will have to timeout this
peer. More...

bool Subscribe (string[] channels)
Sends operation to subscribe to a list of channels by name.
More...

bool Subscribe (string[] channels, int messagesFromHistory)
Sends operation to subscribe client to channels, optionally
fetching a number of messages from the cache. More...

bool Unsubscribe (string[] channels)

Unsubscribes from a list of channels, which stops getting
messages from those. More...

bool PublishMessage (string channelName, object message, bool
forwardAsWebhook=false)
Sends a message to a public channel which this client
subscribed to. More...

bool SendPrivateMessage (string target, object message, bool
forwardAsWebhook=false)
Sends a private message to a single target user. Calls
OnPrivateMessage on the receiving client. Mare...

bool SendPrivateMessage (string target, object message, bool
encrypt, bool forwardAsWebhook)
Sends a private message to a single target user. Calls
OnPrivateMessage on the receiving client. Mare...

bool SetOnlineStatus (int status)
Sets the user's status without changing your status-message.
More...

bool SetOnlineStatus (int status, object message)
Sets the user's status without changing your status-message.
More...

bool AddFriends (string[] friends)
Adds friends to a list on the Chat Server which will send you
status updates for those. More...

bool RemoveFriends (string[] friends)
Removes the provided entries from the list on the Chat Server
and stops their status updates. More...

string GetPrivateChannelNameByUser (string userName)
Get you the (locally used) channel name for the chat between
this client and another user. More...

bool TryGetChannel (string channelName, bool isPrivate, out
ChatChannel channel)
Simplified access to either private or public channels by
name. More...

bool TryGetChannel (string channelName, out ChatChannel
channel)
Simplified access to all channels by name. Checks public
channels first, then private ones. More...

Public Attributes

int

readonly Dictionary< string,
ChatChannel >

readonly Dictionary< string,
ChatChannel >

ChatPeer

MessageLimit

If greater than 0, new channels will limit
the number of messages they cache
locally. More...

PublicChannels

PrivateChannels

chatPeer = null

Properties

string

string

string

ChatState

ChatDisconnectCause
bool

string

string

NameServerAddress [get, set]

The address of last connected
Name Server. More...

FrontendAddress [get, set]

The address of the actual chat
server assigned from NameServer.
Public for read only. More...

ChatRegion [get, set]

Settable only before you connect!
Defaults to "EU". More...

State [get, set]

Current state of the ChatClient.
Also use CanChat. More...

DisconnectedCause [get, set]
CanChat [get]

AppVersion [get, set]

The version of your client. A new
version also creates a new "virtual
app" to separate players from older
client versions. More...

Appld [get, set]

The AppID as assigned from the
Photon Cloud. If you host yourself,
this is the "regular" Photon Server
Application Name (most likely:
"LoadBalancing"). More...

AuthenticationValues

string

bool

ConnectionProtocol

Dictionary< ConnectionProtocol,
Type >

DebuglLevel

AuthValues [get, set]

Settable only before you connect!
More...

Userld [get, set]

The unique ID of a user/person,
stored in AuthValues.Userld. Set it
before you connect. More...

UseBackgroundWorkerForSending
[get, set]

Defines if a background thread will
call SendOutgoingCommands, while
your code calls Service to dispatch
received messages. More...

TransportProtocol [get, set]

Exposes the TransportProtocol of
the used PhotonPeer. Settable while
not connected. More...

SocketimplementationConfig
[get]

Defines which IPhotonSocket class
to use per ConnectionProtocol.
More...

DebugOut [get, set]

Sets the level (and amount) of
debug output provided by the library.
More...

Detailed Description

Central class of the Photon Chat API to connect, handle channels and
messages.

This class must be instantiated with a IChatClientListener instance to
get the callbacks. Integrate it into your game loop by calling Service
regularly. If the target platform supports Threads/Tasks, set
UseBackgroundWorkerForSending = true, to let the ChatClient keep
the connection by sending from an independent thread.

Call Connect with an Appld that is setup as Photon Chat application.
Note: Connect covers multiple messages between this client and the
servers. A short workflow will connect you to a chat server.

Each ChatClient resembles a user in chat (set in Connect). Each user
automatically subscribes a channel for incoming private messages and
can message any other user privately. Before you publish messages in
any non-private channel, that channel must be subscribed.

PublicChannels is a list of subscribed channels, containing messages
and senders. PrivateChannels contains all incoming and sent private
messages.

Constructor & Destructor Documentation

ExitGames.Client.Photon.Chat.ChatClient.ChatClient (IChatClientlL
Connectionl|

)

Member Function Documentation

bool
ExitGames.Client.Photon.Chat.ChatClient.AddFriends (string[] fri

Adds friends to a list on the Chat Server which will send you status upd
for those.

AddFriends and RemoveFriends enable clients to handle their friend lis
the Photon Chat server. Having users on your friends list gives you act
to their current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbit
(serializable) object. The object can be null, Hashtable, object[] or anytt
else Photon can serialize.

The status is published automatically to friends (anyone who set your u
ID with AddFriends).

Photon flushes friends-list when a chat client disconnects, so it has to |
each time. If your community API gives you access to online status alre
you could filter and set online friends in AddFriends.

Actual friend relations are not persistent and have to be stored outside
Photon.

Parameters
friends Array of friend userlds.

Returns
If the operation could be sent.

bool
ExitGames.Client.Photon.Chat.ChatClient.CanChatinChannel (stri

bool)
ExitGames.Client.Photon.Chat.ChatClient.Connect (String

string
Authenticatior

)

Connects this client to the Photon Chat Cloud service, which will also ¢
(and set a Userld).

Parameters
appld Get your Photon Chat Appld from the Dashboard.

appVersion Any version string you make up. Used to separate ust
your clients, which might be incompatible.

authValues Values for authentication. You can leave this null, if yc
before. If you set authValues, they will override any U:

Returns

void ExitGames.Client.Photon.Chat.ChatClient.Disconnect ()

Disconnects from the Chat Server by sending a "disconnect
command", which prevents a timeout server-side.

string
ExitGames.Client.Photon.Chat.ChatClient.GetPrivateChannelName
Get you the (locally used) channel name for the chat between this clien

Parameters
userName Remote user's name or Userld.

Returns
The (locally used) channel name for a private channel.

https://www.photonengine.com/en/Chat/Dashboard

bool (string
ExitGames.Client.Photon.Chat.ChatClient.PublishMessage

object
bool

)

Sends a message to a public channel which this client subscribed to.

Before you publish to a channel, you have to subscribe it. Everyone in t
message.

Parameters
channelName Name of the channel to publish to.
message Your message (string or any serializable dat:

forwardAsWebhook Optionally, public messages can be forwarde
webhooks for your Chat app to use this.

Returns
False if the client is not yet ready to send messages.

bool
ExitGames.Client.Photon.Chat.ChatClient.RemoveFriends (string[

Removes the provided entries from the list on the Chat Server and stoy
status updates.

Photon flushes friends-list when a chat client disconnects. Unless you
remove individual entries, you don't have to RemoveFriends.

AddFriends and RemoveFriends enable clients to handle their friend lis
Photon Chat server. Having users on your friends list gives you access
current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbit
(serializable) object. The object can be null, Hashtable, object[] or anytt
Photon can serialize.

The status is published automatically to friends (anyone who set your u

with AddFriends).

Photon flushes friends-list when a chat client disconnects, so it has to |
each time. If your community API gives you access to online status alre
could filter and set online friends in AddFriends.

Actual friend relations are not persistent and have to be stored outside
Photon.

AddFriends and RemoveFriends enable clients to handle their friend lis
Photon Chat server. Having users on your friends list gives you access
current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbit
(serializable) object. The object can be null, Hashtable, object[] or anytt
Photon can serialize.

The status is published automatically to friends (anyone who set your u
with AddFriends).

Actual friend relations are not persistent and have to be stored outside
Photon.

Parameters
friends Array of friend userlds.

Returns
If the operation could be sent.

void
ExitGames.Client.Photon.Chat.ChatClient.SendAcksOnly ()

bool

ExitGames.Client.Photon.Chat.ChatClient.SendPrivateMessage (S’
o
b

)

Sends a private message to a single target user. Calls OnPrivateMesse

Parameters
target Username to send this message to.
message The message you want to send. Can be a si

serializable.

forwardAsWebhook Optionally, private messages can be forward
webhooks for your Chat app to use this.

Returns
True if this clients can send the message to the server.

bool

ExitGames.Client.Photon.Chat.ChatClient.SendPrivateMessage (S’
o
b
b

)

Sends a private message to a single target user. Calls OnPrivateMesse

Parameters
target Username to send this message to.
message The message you want to send. Can be a si
serializable.
encrypt Optionally, private messages can be encrypt

to-end as the server decrypts the message.

forwardAsWebhook Optionally, private messages can be forward
Configure webhooks for your Chat app to us

Returns
True if this clients can send the message to the server.

void ExitGames.Client.Photon.Chat.ChatClient.Service ()

Must be called regularly to keep connection between client and
server alive and to process incoming messages.

This method limits the effort it does automatically using the private
variable msDeltaForServiceCalls. That value is lower for connect
and multiplied by 4 when chat-server connection is ready.

bool
ExitGames.Client.Photon.Chat.ChatClient.SetOnlineStatus (int ste

Sets the user's status without changing your status-message.

The predefined status values can be found in class ChatUserStatus. S
ChatUserStatus.Invisible will make you offline for everyone and send
message.

You can set custom values in the status integer. Aside from the pre-
configured ones, all states will be considered visible and online. Else, n
one would see the custom state.

This overload does not change the set message.

Parameters

status Predefined states are in class ChatUserStatus. Other valu
can be used at will.

Returns
True if the operation gets called on the server.

bool
ExitGames.Client.Photon.Chat.ChatClient.SetOnlineStatus (int

object

)

Sets the user's status without changing your status-message.

The predefined status values can be found in class ChatUserStatus. S
ChatUserStatus.Invisible will make you offline for everyone and send
message.

You can set custom values in the status integer. Aside from the pre-con
ones, all states will be considered visible and online. Else, no one woul
custom state.

The message object can be anything that Photon can serialize, includii
limited to) Hashtable, object[] and string. This value is defined by your ¢
conventions.

Parameters

status Predefined states are in class ChatUserStatus. Other v
be used at will.

message Also sets a status-message which your friends can get.
Returns

True if the operation gets called on the server.

void ExitGames.Client.Photon.Chat.ChatClient.StopThread ()

Locally shuts down the connection to the Chat Server. This resets
states locally but the server will have to timeout this peer.

bool
ExitGames.Client.Photon.Chat.ChatClient.Subscribe (string[] chal

Sends operation to subscribe to a list of channels by name.

Parameters
channels List of channels to subscribe to. Avoid null or empty valt

Returns
If the operation could be sent at all (Example: Fails if not connecte:
Chat Server).

bool
ExitGames.Client.Photon.Chat.ChatClient.Subscribe (string[] chal

int mes

)

Sends operation to subscribe client to channels, optionally fetching a nt
from the cache.

Subscribes channels will forward new messages to this user. Use Publi
so. The messages cache is limited but can be useful to get into ongoing
that's needed.

Parameters
channels List of channels to subscribe to. Avoid nu

messagesFromHistory 0: no history. 1 and higher: number of me
-1: all available history.

Returns
If the operation could be sent at all (Example: Fails if not connecte:

bool

ExitGames.Client.Photon.Chat.ChatClient.TryGetChannel (string
bool
out Cha

)

Simplified access to either private or public channels by name.

Parameters

channelName Name of the channel to get. For private channels, t
composed of both user's names.

isPrivate Define if you expect a private or public channel.
channel Out parameter gives you the found channel, if any.
Returns

True if the channel was found.

bool
ExitGames.Client.Photon.Chat.ChatClient.TryGetChannel (string

out Chs
)

Simplified access to all channels by name. Checks public channels first

Parameters

channelName Name of the channel to get.

channel Out parameter gives you the found channel, if any.
Returns

True if the channel was found.

bool
ExitGames.Client.Photon.Chat.ChatClient.Unsubscribe (string[] cl

Unsubscribes from a list of channels, which stops getting messages fro

The client will remove these channels from the PublicChannels dictiona
the server sent a response to this request.

The request will be sent to the server and
IChatClientListener.OnUnsubscribed gets called when the server aci
removed the channel subscriptions.

Unsubscribe will fail if you include null or empty channel names.

Parameters
channels Names of channels to unsubscribe.

Returns
False, if not connected to a chat server.

Member Data Documentation

ChatPeer ExitGames.Client.Photon.Chat.ChatClient.chatPeer =
null

int ExitGames.Client.Photon.Chat.ChatClient.MessageLimit

If greater than 0, new channels will limit the number of messages
they cache locally.

This can be useful to limit the amount of memory used by chats. You
can set a MessageLimit per channel but this value gets applied to
new ones.

Note: Changing this value, does not affect ChatChannels that are
already in use!

readonly Dictionary<string, ChatChannel>
ExitGames.Client.Photon.Chat.ChatClient.PrivateChannels

readonly Dictionary<string, ChatChannel>
ExitGames.Client.Photon.Chat.ChatClient.PublicChannels

Property Documentation

string ExitGames.Client.Photon.Chat.ChatClient.Appld

The ApplID as assigned from the Photon Cloud. If you host yourself,
this is the "regular" Photon Server Application Name (most likely:
"LoadBalancing").

string
ExitGames.Client.Photon.Chat.ChatClient.AppVersion

The version of your client. A new version also creates a new "virtual
app" to separate players from older client versions.

AuthenticationValues
ExitGames.Client.Photon.Chat.ChatClient.AuthValues

Settable only before you connect!

bool ExitGames.Client.Photon.Chat.ChatClient.CanChat get

string
ExitGames.Client.Photon.Chat.ChatClient.ChatRegion

Settable only before you connect! Defaults to "EU".

DebugLevel
ExitGames.Client.Photon.Chat.ChatClient.DebugOut

Sets the level (and amount) of debug output provided by the library.

This affects the callbacks to IChatClientListener.DebugReturn.
Default Level: Error.

ChatDisconnectCause
ExitGames.Client.Photon.Chat.ChatClient.DisconnectedCause

string
ExitGames.Client.Photon.Chat.ChatClient.FrontendAddress

The address of the actual chat server assigned from NameServer.
Public for read only.

string
ExitGames.Client.Photon.Chat.ChatClient.NameServerAddress

The address of last connected Name Server.

Dictionary<ConnectionProtocol, Type>
ExitGames.Client.Photon.Chat.ChatClient.SocketimplementationC

Defines which IPhotonSocket class to use per ConnectionProtocol.

Several platforms have special Socket implementations and slightly diff
APIs. To accomodate this, switching the socket implementation for a ne

protocol was made available. By default, UDP and TCP have socket
implementations assigned.

You only need to set the SocketimplementationConfig once, after creati

PhotonPeer and before connecting. If you switch the TransportProtocol
correct implementation is being used.

ChatState
ExitGames.Client.Photon.Chat.ChatClient.State

Current state of the ChatClient. Also use CanChat.

ConnectionProtocol
ExitGames.Client.Photon.Chat.ChatClient.TransportProtocol

Exposes the TransportProtocol of the used PhotonPeer. Settable while
not connected.

bool
ExitGames.Client.Photon.Chat.ChatClient.UseBackgroundWorkerF

Defines if a background thread will call SendOutgoingCommands, while
Service to dispatch received messages.

The benefit of using a background thread to call SendOutgoingCommal
Even if your game logic is being paused, the background thread will ke
to the server up. On a lower level, acknowledgements and pings will pri
timeout while (e.g.) Unity loads assets.

Your game logic still has to call Service regularly, or else incoming mes:

dispatched. As this typicalls triggers Ul updates, it's easier to call Servic
thread.

string ExitGames.Client.Photon.Chat.ChatClient.Userld

The unique ID of a user/person, stored in AuthValues.Userld. Set it
before you connect.

This value wraps AuthValues.Userld. It's not a nickname and we
assume users with the same userlD are the same person.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat ChatEventCode

Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ChatEventCode
Class Reference

Wraps up internally used constants in Photon Chat events. You don't
have to use them directly usually. More...

Public Attributes

const byte ChatMessages =0
const byte Users =1

const byte PrivateMessage = 2
const byte FriendsList =3
const byte StatusUpdate =4
const byte Subscribe =5

const byte Unsubscribe =6

Detailed Description

Wraps up internally used constants in Photon Chat events. You don't
have to use them directly usually.

Member Data Documentation

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.ChatMessages =
0

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.FriendsList = 3

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.PrivateMessage
=2

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.StatusUpdate = 4

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.Subscribe = 5

const byte
ExitGames.Client.Photon.Chat.ChatEventCode.Unsubscribe = 6

const byte ExitGames.Client.Photon.Chat.ChatEventCode.Users
=1

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames ; Client ; Photon ; Chat ; ChatOperationCode ;

Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ChatOperationCc
Class Reference

Wraps up codes for operations used internally in Photon Chat. You
don't have to use them directly usually. More...

Public Attributes

const byte

const byte

const byte

const byte

const byte

const byte

const byte

const byte

const byte

Authenticate = 230
(230) Operation Authenticate. More...

Subscribe = 0
(0) Operation to subscribe to chat channels. More...

Unsubscribe = 1
(1) Operation to unsubscribe from chat channels. More...

Publish = 2
(2) Operation to publish a message in a chat channel.
More...

SendPrivate = 3
(3) Operation to send a private message to some other
user. More...

ChannelHistory = 4
(4) Not used yet. More...

UpdateStatus =5
(5) Set your (client's) status. More...

AddFriends = 6
(6) Add friends the list of friends that should update you
of their status. More...

RemoveFriends = 7
(7) Remove friends from list of friends that should update
you of their status. More...

Detailed Description

Wraps up codes for operations used internally in Photon Chat. You
don't have to use them directly usually.

Member Data Documentation

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.AddFriends
=6

(6) Add friends the list of friends that should update you of their
status.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.Authenticate
=230

(230) Operation Authenticate.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.ChannelHistor:
=4

(4) Not used yet.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.Publish = 2

(2) Operation to publish a message in a chat channel.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.RemoveFriend
=7

(7) Remove friends from list of friends that should update you of their
status.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.SendPrivate
=3

(3) Operation to send a private message to some other user.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.Subscribe =
0

(0) Operation to subscribe to chat channels.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.Unsubscribe
=1

(1) Operation to unsubscribe from chat channels.

const byte
ExitGames.Client.Photon.Chat.ChatOperationCode.UpdateStatus
=5

(5) Set your (client's) status.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat ChatParameterCode

Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ChatParameterC¢
Class Reference

Wraps up codes for parameters (in operations and events) used
internally in Photon Chat. You don't have to use them directly usually.
More...

Public Attributes

const byte Channels =0
(0) Array of chat channels. More...

const byte Channel =1
(1) Name of a single chat channel. More...

const byte Messages = 2
(2) Array of chat messages. More...

const byte Message = 3
(3) A single chat message. More...

const byte Senders =4
(4) Array of names of the users who sent the array of
chat mesages. More...

const byte Sender =5
(5) Name of a the user who sent a chat message. More...

const byte ChannelUserCount = 6
(6) Not used. More...

const byte Userld = 225
(225) Name of user to send a (private) message to.
More...

const byte Msgid =8
(8) Id of a message. More...

const byte Msglds =9
(9) Not used. More...

const byte Secret = 221

const byte

const byte

const byte

const byte

const byte

const byte

(221) Secret token to identify an authorized user. More...

SubscribeResults = 15
(15) Subscribe operation result parameter. A bool[] with
result per channel. More...

Status = 10
(10) Status More...

Friends = 11
(11) Friends More...

SkipMessage = 12
(12) SkipMessage is used in SetOnlineStatus and if true,
the message is not being broadcast. More...

HistoryLength = 14

(14) Number of message to fetch from history. 0: no
history. 1 and higher: number of messages in history. -1:
all history. Maore...

WebFlags = 21
(21) WebFlags object for changing behaviour of
webhooks from client. More...

Detailed Description

Wraps up codes for parameters (in operations and events) used
internally in Photon Chat. You don't have to use them directly usually.

Member Data Documentation

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Channel = 1

(1) Name of a single chat channel.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Channels = 0

(0) Array of chat channels.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.ChannelUserC
=6

(6) Not used.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Friends = 11

(11) Friends

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.HistoryLength
=14

(14) Number of message to fetch from history. 0: no history. 1 and
higher: number of messages in history. -1: all history.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Message = 3

(3) A single chat message.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Messages =
2

(2) Array of chat messages.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Msgld = 8

(8) Id of a message.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Msglds = 9

(9) Not used.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Secret = 221

(221) Secret token to identify an authorized user.

The code is used in LoadBalancing and copied over here.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Sender = 5

(5) Name of a the user who sent a chat message.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Senders = 4

(4) Array of names of the users who sent the array of chat mesages.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.SkipMessage
=12

(12) SkipMessage is used in SetOnlineStatus and if true, the
message is not being broadcast.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Status = 10

(10) Status

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.SubscribeResi
=15

(15) Subscribe operation result parameter. A bool[] with result per
channel.

const byte
ExitGames.Client.Photon.Chat.ChatParameterCode.Userld = 225

(225) Name of user to send a (private) message to.

The code is used in LoadBalancing and copied over here.

const byte

ExitGames.Client.Photon.Chat.ChatParameterCode.WebFlags =
21

(21) WebFlags object for changing behaviour of webhooks from
client.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames | Client ; Photon ; Chat ; ChatPeer
Public Member Functions | Public Attributes |
Properties | List of all members

ExitGames.Client.Photon.Chat.ChatPeer Class
Reference

Provides basic operations of the Photon Chat server. This internal
class is used by public ChatClient. More...

Inherits PhotonPeer.

Public Member Functions

ChatPeer (IPhotonPeerListener listener, ConnectionProtocol
protocol)

bool Connect ()

bool AuthenticateOnNameServer (string appld, string appVersion,
string region, AuthenticationValues authValues)

Public Attributes

const string NameServerHost = "ns.exitgames.com"”
Name Server Host Name for Photon Cloud. Without
port and without any prefix. More...

const string NameServerHttp =
"http://ns.exitgamescloud.com:80/photon/n"
Name Server for HTTP connections to the Photon
Cloud. Includes prefix and port. More...

Properties

string NameServerAddress [get]
Name Server Address for Photon Cloud (based on current
protocol). You can use the default values and usually won't
have to set this value. More...

Detailed Description

Provides basic operations of the Photon Chat server. This internal
class is used by public ChatClient.

Constructor & Destructor Documentation

ExitGames.Client.Photon.Chat.ChatPeer.ChatPeer (IPhotonPeerLi:
ConnectionPrc

)

Member Function Documentation

bool
ExitGames.Client.Photon.Chat.ChatPeer.AuthenticateOnNameSen

bool ExitGames.Client.Photon.Chat.ChatPeer.Connect ()

Member Data Documentation

const string
ExitGames.Client.Photon.Chat.ChatPeer.NameServerHost =
"ns.exitgames.com”

Name Server Host Name for Photon Cloud. Without port and
without any prefix.

const string
ExitGames.Client.Photon.Chat.ChatPeer.NameServerHttp =
"http:/Ins.exitgamescloud.com:80/photon/n"

Name Server for HTTP connections to the Photon Cloud. Includes
prefix and port.

Property Documentation

string
ExitGames.Client.Photon.Chat.ChatPeer.NameServerAddress

Name Server Address for Photon Cloud (based on current protocol).
You can use the default values and usually won't have to set this
value.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat ChatUserStatus

Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ChatUserStatus
Class Reference

Contains commonly used status values for SetOnlineStatus. You can
define your own. More...

Public Attributes

const int Offline =0
(0) Offline. More...

const int Invisible = 1
(1) Be invisible to everyone. Sends no message. More...

constint Online =2
(2) Online and available. More...

constint Away = 3
(3) Online but not available. More...

constint DND =4
(4) Do not disturb. More...

constint LFG =5
(5) Looking For Game/Group. Could be used when you
want to be invited or do matchmaking. Maore...

const int Playing =6
(6) Could be used when in a room, playing. More...

Detailed Description

Contains commonly used status values for SetOnlineStatus. You can
define your own.

While "online" (value 2 and up), the status message will be sent to
anyone who has you on his friend list.

Define custom online status values as you like with these rules: O:
Means "offline". It will be used when you are not connected. In this
status, there is no status message. 1. Means "invisible" and is sent to
friends as "offline". They see status 0, no message but you can chat. 2:
And any higher value will be treated as "online". Status can be set.

Member Data Documentation

const int ExitGames.Client.Photon.Chat.ChatUserStatus.Away =
3

(3) Online but not available.

const int ExitGames.Client.Photon.Chat.ChatUserStatus.DND =4

(4) Do not disturb.

const int
ExitGames.Client.Photon.Chat.ChatUserStatus.Invisible = 1

(1) Be invisible to everyone. Sends no message.

const int ExitGames.Client.Photon.Chat.ChatUserStatus.LFG =5

(5) Looking For Game/Group. Could be used when you want to be
invited or do matchmaking.

const int ExitGames.Client.Photon.Chat.ChatUserStatus.Offline
=0

(0) Offline.

const int ExitGames.Client.Photon.Chat.ChatUserStatus.Online
=2

(2) Online and available.

const int ExitGames.Client.Photon.Chat.ChatUserStatus.Playing
=6

(6) Could be used when in a room, playing.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat ErrorCode
Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ErrorCode
Class Reference

ErrorCode defines the default codes associated with Photon
client/server communication. More...

Public Attributes

const int

const int

const int

const int

const int

const int

const int

const int

Ok=0
(0) is always "OK", anything else an error or specific
situation. More...

OperationNotAllowedInCurrentState = -3

(-3) Operation can't be executed yet (e.g. OpJoin can't be
called before being authenticated, RaiseEvent cant be
used before getting into a room). More...

InvalidOperationCode = -2

(-2) The operation you called is not implemented on the
server (application) you connect to. Make sure you run the
fitting applications. More...

InternalServerError = -1
(-1) Something went wrong in the server. Try to reproduce
and contact Exit Games. More...

InvalidAuthentication = Ox7FFF
(32767) Authentication failed. Possible cause: Appld is
unknown to Photon (in cloud service). More...

GameldAlreadyExists = OX7FFF - 1
(32766) Gameld (name) already in use (can't create
another). Change name. More...

GameFull = Ox7FFF - 2
(32765) Game is full. This rarely happens when some
player joined the room before your join completed. More...

GameClosed = Ox7FFF - 3
(32764) Game is closed and can't be joined. Join another
game. More...

const int

const int

const int

const int

const int

const int

const int

ServerFull = Ox7FFF - 5
(32762) Not in use currently. More...

UserBlocked = Ox7FFF - 6
(32761) Not in use currently. More...

NoRandomMatchFound = Ox7FFF - 7

(32760) Random matchmaking only succeeds if a room
exists thats neither closed nor full. Repeat in a few seconds
or create a new room. More...

GameDoesNotExist = OX7FFF - 9

(32758) Join can falil if the room (name) is not existing
(anymore). This can happen when players leave while you
join. More...

MaxCcuReached = Ox7FFF - 10

(32757) Authorization on the Photon Cloud failed becaus
the concurrent users (CCU) limit of the app's subscription is
reached. More...

InvalidRegion = OxX7FFF - 11

(32756) Authorization on the Photon Cloud failed because
the app's subscription does not allow to use a particular
region's server. More...

CustomAuthenticationFailed = Ox7FFF - 12

(32755) Custom Authentication of the user failed due to
setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for
details. More...

Detailed Description

ErrorCode defines the default codes associated with Photon
client/server communication.

Member Data Documentation

const int
ExitGames.Client.Photon.Chat.ErrorCode.CustomAuthenticationF:
= OX7FFF - 12

(32755) Custom Authentication of the user failed due to setup reasons
(see Cloud Dashboard) or the provided user data (like username or tok
Check error message for details.

const int ExitGames.Client.Photon.Chat.ErrorCode.GameClosed
= OX7FFF - 3

(32764) Game is closed and can't be joined. Join another game.

const int
ExitGames.Client.Photon.Chat.ErrorCode.GameDoesNotEXxist =
0X7FFF - 9

(32758) Join can fall if the room (name) is not existing (anymore).
This can happen when players leave while you join.

const int ExitGames.Client.Photon.Chat.ErrorCode.GameFull =
OX7FFF - 2

(32765) Game is full. This rarely happens when some player joined
the room before your join completed.

const int
ExitGames.Client.Photon.Chat.ErrorCode.GameldAlreadyEXxists

= OX7FFF - 1

(32766) Gameld (name) already in use (can't create another).
Change name.

const int
ExitGames.Client.Photon.Chat.ErrorCode.InternalServerError =
-1

(-1) Something went wrong in the server. Try to reproduce and
contact Exit Games.

const int
ExitGames.Client.Photon.Chat.ErrorCode.InvalidAuthentication
= OxX7FFF

(32767) Authentication failed. Possible cause: Appld is unknown to
Photon (in cloud service).

const int
ExitGames.Client.Photon.Chat.ErrorCode.InvalidOperationCode
=-2

(-2) The operation you called is not implemented on the server
(application) you connect to. Make sure you run the fitting
applications.

const int
ExitGames.Client.Photon.Chat.ErrorCode.InvalidRegion =
OX7FFF - 11

(32756) Authorization on the Photon Cloud failed because the app's
subscription does not allow to use a particular region's server.

Some subscription plans for the Photon Cloud are region-bound.
Servers of other regions can't be used then. Check your master
server address and compare it with your Photon Cloud Dashboard's
info. https://cloud.photonengine.com/dashboard

OpAuthorize is part of connection workflow but only on the Photon
Cloud, this error can happen. Self-hosted Photon servers with a
CCU limited license won't let a client connect at all.

const int
ExitGames.Client.Photon.Chat.ErrorCode.MaxCcuReached =
Ox7FFF - 10

(32757) Authorization on the Photon Cloud failed becaus the
concurrent users (CCU) limit of the app's subscription is reached.

Unless you have a plan with "CCU Burst", clients might fail the
authentication step during connect. Affected client are unable to call
operations. Please note that players who end a game and return to
the master server will disconnect and re-connect, which means that
they just played and are rejected in the next minute / re-connect.
This is a temporary measure. Once the CCU is below the limit,
players will be able to connect an play again.

OpAuthorize is part of connection workflow but only on the Photon
Cloud, this error can happen. Self-hosted Photon servers with a
CCU limited license won't let a client connect at all.

const int
ExitGames.Client.Photon.Chat.ErrorCode.NoRandomMatchFound
= OX7FFF - 7

(32760) Random matchmaking only succeeds if a room exists thats
neither closed nor full. Repeat in a few seconds or create a new
room.

https://cloud.photonengine.com/dashboard

const int ExitGames.Client.Photon.Chat.ErrorCode.Ok = 0

(0) is always "OK", anything else an error or specific situation.

const int
ExitGames.Client.Photon.Chat.ErrorCode.OperationNotAllowedIn(
=-3

(-3) Operation can't be executed yet (e.g. OpJoin can't be called before
authenticated, RaiseEvent cant be used before getting into a room).
Before you call any operations on the Cloud servers, the automated clie

must complete its authorization. In PUN, wait until State is: JoinedLobb
AutoJoinLobby = true) or ConnectedToMaster (AutoJoinLobby = false)

const int ExitGames.Client.Photon.Chat.ErrorCode.ServerFull =
OX7FFF -5

(32762) Not in use currently.

const int ExitGames.Client.Photon.Chat.ErrorCode.UserBlocked
= OX7FFF - 6

(32761) Not in use currently.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat IChatClientListener

Public Member Functions | List of all members

ExitGames.Client.Photon.Chat.IChatClientListen
Interface Reference

Callback interface for Chat client side. Contains callback methods to

notify your app about updates. Must be provided to new ChatClient in
constructor More...

Public Member Functions

void

void

void

void

void

void

void

void

DebugReturn (DebuglLevel level, string message)
All debug output of the library will be reported through this
method. Print it or put it in a buffer to use it on-screen. Mare...

OnDisconnected ()
Disconnection happened. More...

OnConnected ()
Client is connected now. More...

OnChatStateChange (ChatState state)
The ChatClient's state changed. Usually, OnConnected and
OnDisconnected are the callbacks to react to. More...

OnGetMessages (string channelName, string[] senders, object[]
messages)

Notifies app that client got new messages from server Number
of senders is equal to number of messages in 'messages'.
Sender with number '0' corresponds to message with number
'0', sender with number '1' corresponds to message with
number '1' and so on More...

OnPrivateMessage (string sender, object message, string
channelName)
Notifies client about private message More...

OnSubscribed (string[] channels, bool[] results)
Result of Subscribe operation. Returns subscription result for
every requested channel name. More...

OnUnsubscribed (string[] channels)
Result of Unsubscribe operation. Returns for channel name if
the channel is now unsubscribed. More...

void OnStatusUpdate (string user, int status, bool gotMessage,
object message)
New status of another user (you get updates for users set in
your friends list). More...

Detailed Description

Callback interface for Chat client side. Contains callback methods to
notify your app about updates. Must be provided to new ChatClient in

constructor

Member Function Documentation

void
ExitGames.Client.Photon.Chat.IChatClientListener.DebugReturn (|

(]
-

)

All debug output of the library will be reported through this method. Prin
to use it on-screen.

Parameters
level DebugLevel (severity) of the message.
message Debug text. Print to System.Console or screen.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnChatStateCh

The ChatClient's state changed. Usually, OnConnected and OnDiscon
to react to.

Parameters
state The new state.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnConnected (

Client is connected now.

Clients have to be connected before they can send their state,
subscribe to channels and send any messages.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnDisconnecte

Disconnection happened.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnGetMessage

Notifies app that client got new messages from server Number of sende
messages in ‘messages’. Sender with number '0' corresponds to mess:
sender with number '1' corresponds to message with number '1' and so

Parameters
channelName channel from where messages came
senders list of users who sent messages
messages list of messages it self

void

ExitGames.Client.Photon.Chat.IChatClientListener.OnPrivateMess:

Notifies client about private message

Parameters
sender user who sent this message
message message it self

channelName channelName for private messages (messages yol
a channel per target username)

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnStatusUpdat

New status of another user (you get updates for users set in your friend

Parameters
user Name of the user.
status New status of that user.

gotMessage True if the status contains a message you should cac
status update does not include a message (keep any

message Message that user set.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnSubscribed (

)

Result of Subscribe operation. Returns subscription result for every req
name.

If multiple channels sent in Subscribe operation, OnSubscribed may be
times, each call with part of sent array or with single channel in "channe
Calls order and order of channels in "channels" parameter may differ fr
channels in "channels" parameter of Subscribe operation.

Parameters
channels Array of channel names.
results Per channel result if subscribed.

void
ExitGames.Client.Photon.Chat.IChatClientListener.OnUnsubscribe

Result of Unsubscribe operation. Returns for channel name if the chant
unsubscribed.

If multiple channels sent in Unsubscribe operation, OnUnsubscribed m:
times, each call with part of sent array or with single channel in "channe
order and order of channels in "channels" parameter may differ from or
"channels" parameter of Unsubscribe operation.

Parameters
channels Array of channel names that are no longer subscribed.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

ExitGames Client Photon Chat ParameterCode

Public Attributes | List of all members

ExitGames.Client.Photon.Chat.ParameterCode
Class Reference

Public Attributes

const byte Applicationld = 224

const byte Secret = 221
(221) Internally used to establish encryption More...

const byte AppVersion = 220

const byte ClientAuthenticationType =217
(217) This key's (byte) value defines the target custom
authentication type/service the client connects with. Used
in OpAuthenticate More...

const byte ClientAuthenticationParams = 216
(216) This key's (string) value provides parameters sent
to the custom authentication type/service the client
connects with. Used in OpAuthenticate More...

const byte ClientAuthenticationData = 214
(214) This key's (string or byte[]) value provides
parameters sent to the custom authentication service
setup in Photon Dashboard. Used in OpAuthenticate
More...

const byte Region = 210
(210) Used for region values in OpAuth and
OpGetRegions. More...

const byte Address =230
(230) Address of a (game) server to use. More...

const byte Userld = 225
(225) User's ID More...

Member Data Documentation

const byte
ExitGames.Client.Photon.Chat.ParameterCode.Address = 230

(230) Address of a (game) server to use.

const byte
ExitGames.Client.Photon.Chat.ParameterCode.Applicationid =
224

const byte
ExitGames.Client.Photon.Chat.ParameterCode.AppVersion = 220

const byte
ExitGames.Client.Photon.Chat.ParameterCode.ClientAuthenticatic
=214

(214) This key's (string or byte[]) value provides parameters sent to the
custom authentication service setup in Photon Dashboard. Used in
OpAuthenticate

const byte
ExitGames.Client.Photon.Chat.ParameterCode.ClientAuthenticatic
=216

(216) This key's (string) value provides parameters sent to the custom
authentication type/service the client connects with. Used in OpAuthent

const byte

ExitGames.Client.Photon.Chat.ParameterCode.ClientAuthenticatio
=217

(217) This key's (byte) value defines the target custom authentication
type/service the client connects with. Used in OpAuthenticate

const byte
ExitGames.Client.Photon.Chat.ParameterCode.Region = 210

(210) Used for region values in OpAuth and OpGetRegions.

const byte ExitGames.Client.Photon.Chat.ParameterCode.Secret
=221

(221) Internally used to establish encryption

const byte ExitGames.Client.Photon.Chat.ParameterCode.Userld
=225

(225) User's ID

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

Classes | Typedefs

Package Photon

Classes

class MonoBehaviour
This class adds the property photonView, while logging a
warning when your game still uses the networkView. More...

class PunBehaviour
This class provides a .photonView and all callbacks/events
that PUN can call. Override the events/methods you want to

use. More...

Typedefs

using Hashtable = ExitGames.Client.Photon.Hashtable

Typedef Documentation

using Photon.Hashtable = typedef
ExitGames.Client.Photon.Hashtable

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Photon MonoBehaviour

Properties | List of all members

Photon.MonoBehaviour Class Reference

This class adds the property photonView, while logging a warning
when your game still uses the networkView. More...

Inherits MonoBehaviour.

Inherited by Photon.PunBehaviour, and PhotonView.

Properties

PhotonView photonView [get]
A cached reference to a PhotonView on this
GameObiject. More...

new PhotonView networkView [get]
This property is only here to notify developers
when they use the outdated value. Mare...

Detailed Description

This class adds the property photonView, while logging a warning
when your game still uses the networkView.

Property Documentation

new PhotonView Photon.MonoBehaviour.networkView get

This property is only here to notify developers when they use the
outdated value.

If Unity 5.x logs a compiler warning "Use the new keyword if hiding
was intended" or "The new keyword is not required"”, you may suffer
from an Editor issue. Try to modify networkView with a if-def
condition:

#if UNITY_EDITOR new #endif public PhotonView networkView

PhotonView Photon.MonoBehaviour.photonView get

A cached reference to a PhotonView on this GameObject.

If you intend to work with a PhotonView in a script, it's usually
easier to write this.photonView.

If you intend to remove the PhotonView component from the
GameObject but keep this Photon.MonoBehaviour, avoid this
reference or modify this code to use PhotonView.Get(obj) instead.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

Namespaces

Package UnityEngine

Namespaces

package SceneManagement

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Package Functions

UnityEngine ; SceneManagement |

Classes | Enumerations

Package
UnityEngine.SceneManagement

Classes

class SceneManager
Minimal implementation of the SceneManager for older Unity,
up to v5.2. More...

Enumerations

enum LoadSceneMode { LoadSceneMode.Single,
LoadSceneMode.Additive }

Enumeration Type Documentation

enum UnityEngine.SceneManagement.LoadSceneMode

Enumerator

Single
Additive

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

UnityEngine ; SceneManagement ; SceneManager
Static Public Member Functions |
List of all members

UnityEngine.SceneManagement.SceneManager
Class Reference

Minimal implementation of the SceneManager for older Unity, up to
v5.2. More...

Static Public Member Functions

static void LoadScene (string name)
static void LoadScene (int buildindex)

static AsyncOperation LoadSceneAsync (string name,
LoadSceneMode
mode=LoadSceneMode.Single)

static AsyncOperation LoadSceneAsync (int buildindex,
LoadSceneMode
mode=LoadSceneMode.Single)

Detailed Description

Minimal implementation of the SceneManager for older Unity, up to
v5.2.

Member Function Documentation

static void
UnityEngine.SceneManagement.SceneManager.LoadScene (string

static void
UnityEngine.SceneManagement.SceneManager.LoadScene (int bt

static AsyncOperation
UnityEngine.SceneManagement.SceneManager.LoadSceneAsync |

\
i

static AsyncOperation
UnityEngine.SceneManagement.SceneManager.LoadSceneAsync |

\
i

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Attributes | List of all members

ActorProperties Class
Reference

Class for constants. These (byte) values define "well known" properties
for an Actor / Player. More...

Public Attributes

const byte PlayerName = 255
(255) Name of a player/actor. More...

const byte Islnactive = 254
(254) Tells you if the player is currently in this game
(getting events live). More...

const byte Userld = 253
(253) Userld of the player. Sent when room gets created
with RoomOptions.PublishUserld = true. More...

Detailed Description

Class for constants. These (byte) values define "well known" properties
for an Actor / Player.

Pun uses these constants internally. "Custom properties” have to use a
string-type as key. They can be assigned at will.

Member Data Documentation

const byte ActorProperties.Islnactive = 254

(254) Tells you if the player is currently in this game (getting events
live).

A server-set value for async games, where players can leave the
game and return later.

const byte ActorProperties.PlayerName = 255

(255) Name of a player/actor.

const byte ActorProperties.Userld = 253

(253) Userld of the player. Sent when room gets created with
RoomOptions.PublishUserld = true.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Member Functions | Properties |

AuthenticationValues List of all members
Class Reference

Container for user authentication in Photon. Set AuthValues before
you connect - all else is handled. More...

Public Member Functions

virtual void

virtual void

virtual void

virtual void

override string

AuthenticationValues ()
Creates empty auth values without any info. More...

AuthenticationValues (string userld)

Creates minimal info about the user. If this is
authenticated or not, depends on the set AuthType.
More...

SetAuthPostData (string stringData)
Sets the data to be passed-on to the auth service via
POST. More...

SetAuthPostData (byte[] byteData)
Sets the data to be passed-on to the auth service via
POST. More...

SetAuthPostData (Dictionary< string, object >
dictData)

Sets data to be passed-on to the auth service as
Json (Content-Type: "application/json") via Post.
More...

AddAuthParameter (string key, string value)
Adds a key-value pair to the get-parameters used for
Custom Auth. More...

ToString ()

Properties

CustomAuthenticationType AuthType [get, set]

The type of custom authentication
provider that should be used.
Currently only "Custom" or "None"
(turns this off). More...

string AuthGetParameters [get, set]

This string must contain any (http get)
parameters expected by the used
authentication service. By default,
username and token. More...

object AuthPostData [get, set]

Data to be passed-on to the auth
service via POST. Default: null (not
sent). Either string or byte[] (see
setters). More...

string Token [get, set]
After initial authentication, Photon
provides a token for this client / user,
which is subsequently used as
(cached) validation. More...

string Userld [get, set]
The Userld should be a unique
identifier per user. This is for finding
friends, etc.. More...

Detailed Description

Container for user authentication in Photon. Set AuthValues before
you connect - all else is handled.

On Photon, user authentication is optional but can be useful in many
cases. If you want to FindFriends, a unique ID per user is very
practical.

There are basically three options for user authentification: None at all,
the client sets some Userld or you can use some account web-service
to authenticate a user (and set the Userld server-side).

Custom Authentication lets you verify end-users by some kind of login
or token. It sends those values to Photon which will verify them before
granting access or disconnecting the client.

The AuthValues are sent in OpAuthenticate when you connect, so they
must be set before you connect. Should you not set any AuthValues,
PUN will create them and set the playerName as userld in them. If the
AuthValues.userld is null or empty when it's sent to the server, then the
Photon Server assigns a userld!

The Photon Cloud Dashboard will let you enable this feature and set
important server values for it.
https://www.photonengine.com/dashboard

https://www.photonengine.com/dashboard

Constructor & Destructor Documentation

AuthenticationValues.AuthenticationValues ()

Creates empty auth values without any info.

AuthenticationValues.AuthenticationValues (string userid)

Creates minimal info about the user. If this is authenticated or not,
depends on the set AuthType.

Parameters
userld Some Userld to set in Photon.

Member Function Documentation

virtual void
AuthenticationValues.AddAuthParameter (string key,

string value

)

Adds a key-value pair to the get-parameters used for Custom Auth.
This method does uri-encoding for you.

Parameters
key Key for the value to set.
value Some value relevant for Custom Authentication.

virtual void
AuthenticationValues.SetAuthPostData (string stringData)

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any
previous value. It can be either a string, a byte[] or a dictionary. Each
SetAuthPostData replaces any previous value.

Parameters

stringData String data to be used in the body of the POST
request. Null or empty string will set AuthPostData to
null.

virtual void
AuthenticationValues.SetAuthPostData (byte[] byteData)

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any
previous value. It can be either a string, a byte[] or a dictionary. Each
SetAuthPostData replaces any previous value.

Parameters
byteData Binary token / auth-data to pass on.

virtual void
AuthenticationValues.SetAuthPostData (Dictionary< string, object

Sets data to be passed-on to the auth service as Json (Content-Type: "
via Post.

AuthPostData is just one value. Each SetAuthPostData replaces any pi
be either a string, a byte[] or a dictionary. Each SetAuthPostData replac
value.

Parameters

dictData A authentication-data dictionary will be converted to Json
Auth webservice via HTTP Post.

override string AuthenticationValues.ToString ()

Property Documentation

string AuthenticationValues.AuthGetParameters

This string must contain any (http get) parameters expected by the
used authentication service. By default, username and token.

Standard http get parameters are used here and passed on to the
service that's defined in the server (Photon Cloud Dashboard).

object AuthenticationValues.AuthPostData

Data to be passed-on to the auth service via POST. Default: null (not
sent). Either string or byte[] (see setters).

CustomAuthenticationType
AuthenticationValues.AuthType

The type of custom authentication provider that should be used.
Currently only "Custom” or "None" (turns this off).

string AuthenticationValues.Token

After initial authentication, Photon provides a token for this client /
user, which is subsequently used as (cached) validation.

string AuthenticationValues.Userld

The Userld should be a unique identifier per user. This is for finding
friends, etc..

See remarks of AuthValues for info about how this is set and used.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Attributes | List of all members

EncryptionDataParameters Class Reference

Public Attributes

const byte Mode =0
Key for encryption mode More...

const byte Secretl =1
Key for first secret More...

const byte Secret2 =2
Key for second secret More...

Member Data Documentation

const byte EncryptionDataParameters.Mode = 0

Key for encryption mode

const byte EncryptionDataParameters.Secretl = 1

Key for first secret

const byte EncryptionDataParameters.Secret2 = 2

Key for second secret

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Attributes | List of all members

ErrorCode Class
Reference

ErrorCode defines the default codes associated with Photon
client/server communication. More...

Public Attributes

const int

const int

const int

const int

const int

const int

const int

const int

Ok=0
(0) is always "OK", anything else an error or specific
situation. More...

OperationNotAllowedInCurrentState = -3

(-3) Operation can't be executed yet (e.g. OpJoin can't be
called before being authenticated, RaiseEvent cant be
used before getting into a room). More...

InvalidOperationCode = -2

(-2) The operation you called is not implemented on the
server (application) you connect to. Make sure you run the
fitting applications. More...

InvalidOperation = -2
(-2) The operation you called could not be executed on the
server. More...

InternalServerError = -1
(-1) Something went wrong in the server. Try to reproduce
and contact Exit Games. More...

InvalidAuthentication = Ox7FFF
(32767) Authentication failed. Possible cause: Appld is
unknown to Photon (in cloud service). More...

GameldAlreadyExists = OX7FFF - 1
(32766) Gameld (name) already in use (can't create
another). Change name. More...

GameFull = Ox7FFF - 2
(32765) Game is full. This rarely happens when some
player joined the room before your join completed. More...

const int

const int

const int

const int

const int

const int

const int

const int

const int

GameClosed = Ox7FFF - 3
(32764) Game is closed and can't be joined. Join another
game. More...

AlreadyMatched = OX7FFF - 4

ServerFull = Ox7FFF - 5
(32762) Not in use currently. More...

UserBlocked = Ox7FFF - 6
(32761) Not in use currently. More...

NoRandomMatchFound = Ox7FFF - 7

(32760) Random matchmaking only succeeds if a room
exists thats neither closed nor full. Repeat in a few seconds
or create a new room. More...

GameDoesNotExist = OX7FFF - 9

(32758) Join can falil if the room (name) is not existing
(anymore). This can happen when players leave while you
join. More...

MaxCcuReached = Ox7FFF - 10

(32757) Authorization on the Photon Cloud failed becaus
the concurrent users (CCU) limit of the app's subscription is
reached. More...

InvalidRegion = OxX7FFF - 11

(32756) Authorization on the Photon Cloud failed because
the app's subscription does not allow to use a particular
region's server. More...

CustomAuthenticationFailed = Ox7FFF - 12

(32755) Custom Authentication of the user failed due to
setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for
details. More...

const int

const int

const int

const int

const int

const int

const int

const int

AuthenticationTicketExpired = Ox7FF1

(32753) The Authentication ticket expired. Usually, this is
refreshed behind the scenes. Connect (and authorize)
again. More...

PluginReportedError = OX7FFF - 15

(32752) A server-side plugin (or webhook) failed to execute
and reported an error. Check the
OperationResponse.DebugMessage. More...

PluginMismatch = OX7FFF - 16

(32751) CreateRoom/JoinRoom/Join operation fails if
expected plugin does not correspond to loaded one.
More...

JoinFailedPeerAlreadyJoined = 32750
(32750) for join requests. Indicates the current peer already
called join and is joined to the room. More...

JoinFailedFoundinactiveJoiner = 32749

(32749) for join requests. Indicates the list of InactiveActors
already contains an actor with the requested ActorNr or
Userld. More...

JoinFailedWithRejoinerNotFound = 32748

(32748) for join requests. Indicates the list of Actors (active
and inactive) did not contain an actor with the requested
ActorNr or Userld. More...

JoinFailedFoundExcludedUserld = 32747

(32747) for join requests. Note: for future use - Indicates
the requested Userld was found in the ExcludedList.
More...

JoinFailedFoundActiveJoiner = 32746
(32746) for join requests. Indicates the list of ActiveActors

already contains an actor with the requested ActorNr or
Userld. More...

const int HttpLimitReached = 32745
(32745) for SetProerties and Raisevent (if flag HttpForward
Is true) requests. Indicates the maximum allowd http
requests per minute was reached. More...

const int ExternalHttpCallFailed = 32744
(32744) for WebRpc requests. Indicates the the call to the
external service failed. More...

const int SlotError = 32742
(32742) Server error during matchmaking with slot
reservation. E.g. the reserved slots can not exceed
MaxPlayers. More...

const int InvalidEncryptionParameters = 32741
(32741) Server will react with this error if invalid encryption
parameters provided by token More...

Detailed Description

ErrorCode defines the default codes associated with Photon
client/server communication.

Member Data Documentation

const int ErrorCode.AlreadyMatched = 0x7FFF - 4

const int ErrorCode.AuthenticationTicketExpired = 0x7FF1

(32753) The Authentication ticket expired. Usually, this is refreshed
behind the scenes. Connect (and authorize) again.

const int ErrorCode.CustomAuthenticationFailed = O0x7FFF - 12

(32755) Custom Authentication of the user failed due to setup
reasons (see Cloud Dashboard) or the provided user data (like
username or token). Check error message for details.

const int ErrorCode.ExternalHttpCallFailed = 32744

(32744) for WebRpc requests. Indicates the the call to the external
service failed.

const int ErrorCode.GameClosed = 0x7FFF - 3

(32764) Game is closed and can't be joined. Join another game.

const int ErrorCode.GameDoesNotExist = 0x7FFF - 9

(32758) Join can fall if the room (name) is not existing (anymore).
This can happen when players leave while you join.

const int ErrorCode.GameFull = 0x7FFF - 2

(32765) Game is full. This rarely happens when some player joined
the room before your join completed.

const int ErrorCode.GameldAlreadyExists = Ox7FFF - 1

(32766) Gameld (name) already in use (can't create another).
Change name.

const int ErrorCode.HttpLimitReached = 32745

(32745) for SetProerties and Raisevent (if flag HttpForward is true)
requests. Indicates the maximum allowd http requests per minute
was reached.

const int ErrorCode.InternalServerError = -1

(-1) Something went wrong in the server. Try to reproduce and
contact Exit Games.

const int ErrorCode.InvalidAuthentication = Ox7FFF

(32767) Authentication failed. Possible cause: Appld is unknown to
Photon (in cloud service).

const int ErrorCode.InvalidEncryptionParameters = 32741

(32741) Server will react with this error if invalid encryption
parameters provided by token

const int ErrorCode.InvalidOperation = -2

(-2) The operation you called could not be executed on the server.
Make sure you are connected to the server you expect.

This code is used in several cases: The arguments/parameters of
the operation might be out of range, missing entirely or conflicting.
The operation you called is not implemented on the server
(application). Server-side plugins affect the available operations.

const int ErrorCode.InvalidOperationCode = -2

(-2) The operation you called is not implemented on the server
(application) you connect to. Make sure you run the fitting
applications.

const int ErrorCode.InvalidRegion = Ox7FFF - 11

(32756) Authorization on the Photon Cloud failed because the app's
subscription does not allow to use a particular region's server.

Some subscription plans for the Photon Cloud are region-bound.
Servers of other regions can't be used then. Check your master
server address and compare it with your Photon Cloud Dashboard's
info. https://www.photonengine.com/dashboard

OpAuthorize is part of connection workflow but only on the Photon
Cloud, this error can happen. Self-hosted Photon servers with a
CCU limited license won't let a client connect at all.

const int ErrorCode.JoinFailedFoundActiveJoiner = 32746

(32746) for join requests. Indicates the list of ActiveActors already
contains an actor with the requested ActorNr or Userld.

https://www.photonengine.com/dashboard

const int ErrorCode.JoinFailedFoundExcludedUserld = 32747

(32747) for join requests. Note: for future use - Indicates the
requested Userld was found in the ExcludedList.

const int ErrorCode.JoinFailedFoundInactiveJoiner = 32749

(32749) for join requests. Indicates the list of InactiveActors already
contains an actor with the requested ActorNr or Userld.

const int ErrorCode.JoinFailedPeerAlreadyJoined = 32750

(32750) for join requests. Indicates the current peer already called
join and is joined to the room.

const int ErrorCode.JoinFailedWithRejoinerNotFound = 32748

(32748) for join requests. Indicates the list of Actors (active and
inactive) did not contain an actor with the requested ActorNr or
Userld.

const int ErrorCode.MaxCcuReached = 0x7FFF - 10

(32757) Authorization on the Photon Cloud failed becaus the
concurrent users (CCU) limit of the app's subscription is reached.

Unless you have a plan with "CCU Burst", clients might fail the
authentication step during connect. Affected client are unable to call
operations. Please note that players who end a game and return to
the master server will disconnect and re-connect, which means that
they just played and are rejected in the next minute / re-connect.
This is a temporary measure. Once the CCU is below the limit,
players will be able to connect an play again.

OpAuthorize is part of connection workflow but only on the Photon
Cloud, this error can happen. Self-hosted Photon servers with a
CCU limited license won't let a client connect at all.

const int ErrorCode.NoRandomMatchFound = Ox7FFF - 7

(32760) Random matchmaking only succeeds if a room exists thats
neither closed nor full. Repeat in a few seconds or create a new
room.

const int ErrorCode.Ok =0

(0) is always "OK", anything else an error or specific situation.

const int ErrorCode.OperationNotAllowedInCurrentState = -3

(-3) Operation can't be executed yet (e.g. OpJoin can't be called
before being authenticated, RaiseEvent cant be used before getting
into a room).

Before you call any operations on the Cloud servers, the automated
client workflow must complete its authorization. In PUN, wait until
State is: JoinedLobby (with AutoJoinLobby = true) or
ConnectedToMaster (AutoJoinLobby = false)

const int ErrorCode.PluginMismatch = O0x7FFF - 16

(32751) CreateRoom/JoinRoom/Join operation fails if expected
plugin does not correspond to loaded one.

const int ErrorCode.PluginReportedError = 0x7FFF - 15

(32752) A server-side plugin (or webhook) failed to execute and

reported an error. Check the OperationResponse.DebugMessage.

const int ErrorCode.ServerFull = 0x7FFF - 5

(32762) Not in use currently.

const int ErrorCode.SlotError = 32742

(32742) Server error during matchmaking with slot reservation. E.g.
the reserved slots can not exceed MaxPlayers.

const int ErrorCode.UserBlocked = 0x7FFF - 6

(32761) Not in use currently.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Attributes | List of all members

EventCode Class
Reference

Class for constants. These values are for events defined by Photon
Loadbalancing. More...

Public Attributes

const byte

const byte

const byte

const byte

const byte

const byte

const byte

const byte

const byte

GamelList = 230
(230) Initial list of Roominfos (in lobby on Master) Maore...

GamelListUpdate = 229
(229) Update of Roominfos to be merged into "initial" list
(in lobby on Master) More...

QueueState = 228
(228) Currently not used. State of queueing in case of
server-full Maore...

Match = 227
(227) Currently not used. Event for matchmaking More...

AppStats = 226
(226) Event with stats about this application (players,
rooms, etc) More...

LobbyStats = 224
(224) This event provides a list of lobbies with their player
and game counts. More...

AzureNodelnfo = 210
(210) Internally used in case of hosting by Azure More...

Join = (byte)255

(255) Event Join: someone joined the game. The new
actorNumber is provided as well as the properties of that
actor (if set in OpJoin). More...

Leave = (byte)254
(254) Event Leave: The player who left the game can be
iIdentified by the actorNumber. More...

const byte

const byte

const byte

const byte

const byte

PropertiesChanged = (byte)253

(253) When you call OpSetProperties with the broadcast
option "on", this event is fired. It contains the properties
being set. More...

SetProperties = (byte)253

(253) When you call OpSetProperties with the broadcast
option "on", this event is fired. It contains the properties
being set. More...

Errorinfo = 251

(252) When player left game unexpected and the room
has a playerTtl != 0, this event is fired to let everyone
know about the timeout. More...

CacheSliceChanged = 250
(250) Sent by Photon whent he event cache slice was
changed. Done by OpRaiseEvent. More...

AuthEvent = 223
(223) Sent by Photon to update a token before it times
out. More...

Detailed Description

Class for constants. These values are for events defined by Photon
Loadbalancing.

They start at 255 and go DOWN. Your own in-game events can start at
0. Pun uses these constants internally.

Member Data Documentation

const byte EventCode.AppStats = 226

(226) Event with stats about this application (players, rooms, etc)

const byte EventCode.AuthEvent = 223

(223) Sent by Photon to update a token before it times out.

const byte EventCode.AzureNodelnfo = 210

(210) Internally used in case of hosting by Azure

const byte EventCode.CacheSliceChanged = 250

(250) Sent by Photon whent he event cache slice was changed.
Done by OpRaiseEvent.

const byte EventCode.Errorinfo = 251

(252) When player left game unexpected and the room has a
playerTtl I= 0, this event is fired to let everyone know about the
timeout.

Obsolete. Replaced by Leave. public const byte Disconnect =
LiteEventCode.Disconnect;

(251) Sent by Photon Cloud when a plugin-call or webhook-call
failed. Usually, the execution on the server continues, despite the

iIssue. Contains: ParameterCode.Info.

See also
https://doc.photonengine.com/en-us/pun/current/gameplay/web-
extensions/webhooks::options

const byte EventCode.GamelList = 230

(230) Initial list of Roominfos (in lobby on Master)

const byte EventCode.GameListUpdate = 229

(229) Update of RoomIinfos to be merged into "initial” list (in lobby on
Master)

const byte EventCode.Join = (byte)255

(255) Event Join: someone joined the game. The new actorNumber
is provided as well as the properties of that actor (if set in OpJoin).

const byte EventCode.Leave = (byte)254

(254) Event Leave: The player who left the game can be identified
by the actorNumber.

const byte EventCode.LobbyStats = 224

(224) This event provides a list of lobbies with their player and game
counts.

const byte EventCode.Match = 227

(227) Currently not used. Event for matchmaking

const byte EventCode.PropertiesChanged = (byte)253

(253) When you call OpSetProperties with the broadcast option "on",
this event is fired. It contains the properties being set.

const byte EventCode.QueueState = 228

(228) Currently not used. State of queueing in case of server-full

const byte EventCode.SetProperties = (byte)253

(253) When you call OpSetProperties with the broadcast option "on",
this event is fired. It contains the properties being set.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Static Public Member Functions |

Extensions Class Static Public Attributes | List of all members
Reference

This static class defines some useful extension methods for several
existing classes (e.g. Vector3, float and others). More...

Static Public Member Functions

static Parameterinfo[]

static PhotonView(]

static PhotonView

static bool

static bool

static bool

static bool

static void

static void

GetCachedParemeters (this MethodInfo mo)

GetPhotonViewsInChildren (this
UnityEngine.GameObject go)

GetPhotonView (this
UnityEngine.GameODbject go)

AlmostEquals (this Vector3 target, Vector3
second, float sqrMagnitudePrecision)
compares the squared magnitude of target -
second to given float value More...

AlmostEquals (this Vector2 target, Vector2
second, float sqrMagnitudePrecision)
compares the squared magnitude of target -
second to given float value More...

AlmostEquals (this Quaternion target,
Quaternion second, float maxAngle)
compares the angle between target and
second to given float value More...

AlmostEquals (this float target, float second,
float floatDiff)

compares two floats and returns true of their
difference is less than floatDiff More...

Merge (this IDictionary target, IDictionary
addHash)

Merges all keys from addHash into the target.
Adds new keys and updates the values of
existing keys in target. More...

MergeStringKeys (this IDictionary target,

static string

static string

static Hashtable

static void

static bool

IDictionary addHash)
Merges keys of type string to target
Hashtable. More...

ToStringFull (this IDictionary origin)

Helper method for debugging of IDictionary
content, inlcuding type-information. Using this
Is not performant. More...

ToStringFull (this object[] data)
Helper method for debugging of object[]
content. Using this is not performant. More...

StripToStringKeys (this IDictionary original)
This method copies all string-typed keys of
the original into a new Hashtable. More...

StripKeysWithNullValues (this IDictionary
original)

This removes all key-value pairs that have a
null-reference as value. Photon properties
are removed by setting their value to null.
Changes the original passed IDictionary!
More...

Contains (this int[] target, int nr)
Checks if a particular integer value is in an int-
array. More...

Static Public Attributes

static Dictionary< MethodInfo, ParametersOfMethods = new
Parameterinfo[]> Dictionary<Methodinfo,
Parameterinfo[]>()

Detailed Description

This static class defines some useful extension methods for several
existing classes (e.g. Vector3, float and others).

Member Function Documentation

static bool
Extensions.AlmostEquals (this Vector3 target,
Vector3 second,
float sqrMagnitudePrecision
)

compares the squared magnitude of target - second to given float value

static bool
Extensions.AlmostEquals (this Vector2 target,
Vector2 second,
float sqrMagnitudePrecision
)

compares the squared magnitude of target - second to given float value

static bool

Extensions.AlmostEquals (this Quaternion target,
Quaternion second,
float maxAngle

)

compares the angle between target and second to given float value

static bool Extensions.AlmostEquals (this float target,
float second,
float floatDiff

)

compares two floats and returns true of their difference is less than
floatDiff

static bool Extensions.Contains (this int[] target,
int nr

)

Checks if a particular integer value is in an int-array.

This might be useful to look up if a particular actorNumber is in the
list of players of a room.

Parameters
target The array of ints to check.
nr The number to lookup in target.

Returns
True if nr was found in target.

static Parameterinfo []
Extensions.GetCachedParemeters (this Methodinfo mo)

static PhotonView
Extensions.GetPhotonView (this UnityEngine.GameObject go)

static PhotonView []
Extensions.GetPhotonViewsInChildren (this UnityEngine.GameOL

static void Extensions.Merge (this IDictionary target,
IDictionary addHash

)

Merges all keys from addHash into the target. Adds new keys and

updates the values of existing keys in target.

Parameters
target The IDictionary to update.
addHash The IDictionary containing data to merge into target.

static void
Extensions.MergeStringKeys (this IDictionary target,

IDictionary addHash

)

Merges keys of type string to target Hashtable.

Does not remove keys from target (so non-string keys CAN be in
target if they were before).

Parameters
target The target IDicitionary passed in plus all string-typed
keys from the addHash.

addHash A IDictionary that should be merged partly into target
to update it.

static void
Extensions.StripKeysWithNullValues (this IDictionary original)

This removes all key-value pairs that have a null-reference as value.
Photon properties are removed by setting their value to null. Changes
original passed IDictionary!

Parameters
original The IDictionary to strip of keys with null-values.

static Hashtable
Extensions.StripToStringKeys (this IDictionary original)

This method copies all string-typed keys of the original into a new
Hashtable.

Does not recurse (!) into hashes that might be values in the root-
hash. This does not modify the original.

Parameters
original The original IDictonary to get string-typed keys from.

Returns
New Hashtable containing only string-typed keys of the original.

static string
Extensions.ToStringFull (this IDictionary origin)

Helper method for debugging of IDictionary content, inlcuding type-
information. Using this is not performant.

Should only be used for debugging as necessary.

Parameters
origin Some Dictionary or Hashtable.

Returns
String of the content of the IDictionary.

static string Extensions.ToStringFull (this object[] data)

Helper method for debugging of object[] content. Using this is not
performant.

Should only be used for debugging as necessary.

Parameters
data Any object[].

Returns _
A comma-separated string containing each value's ToString().

Member Data Documentation

Dictionary<MethodInfo, Parameterinfo[]>
Extensions.ParametersOfMethods = new
Dictionary<MethodInfo, Parameterinfo[]>()

Online Documentation - Dashboard - Support Forum

Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Member Functions | Properties |
Friendinfo Class List of all members
Reference

Used to store info about a friend's online state and in which room
he/she is. More...

Public Member Functions

override string ToString ()

Properties

string
string

bool
string

bool

Name [get]
Userld [get, set]
IsOnline [get, set]
Room [get, set]

IsinRoom [get]

Detailed Description

Used to store info about a friend's online state and in which room
he/she is.

Member Function Documentation

override string FriendInfo.ToString ()

Property Documentation

bool Friendinfo.lsinRoom
bool FriendInfo.lsOnline
string FriendInfo.Name
string Friendinfo.Room
string FriendInfo.Userld

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Static Public Member Functions |
List of all members

GameObjectExtensions Class Reference

Small number of extension methods that make it easier for PUN to
work cross-Unity-versions. More...

Static Public Member Functions

static bool GetActive (this GameObject target)
Unity-version-independent replacement for active GO
property. More...

Detailed Description

Small number of extension methods that make it easier for PUN to
work cross-Unity-versions.

Member Function Documentation

static bool
GameObjectExtensions.GetActive (this GameObject target)

Unity-version-independent replacement for active GO property.

Returns
Unity 3.5: active. Any newer Unity: activelnHierarchy.

Online Documentation - Dashboard - Support Forum Exit Games GmbH

http://doc.exitgames.com
https://cloud.exitgames.com/dashboard
http://forum.exitgames.com

Photon Unity Networking vi.91

Main Page Related Pages Modules Classes Files

Class List Class Index Class Hierarchy Class Members

Public Attributes | List of all members

GamePropertyKey
Class Reference

Class for constants. These (byte) values are for "well known"
room/game properties used in Photon Loadbalancing. More...

Public Attributes

const byte

const byte

const byte

const byte

const byte

const byte

const byte

const byte

MaxPlayers = 255
(255) Max number of players that "fit" into this room. O is
for "unlimited". More...

IsVisible = 254
(254) Makes this room listed or not in the lobby on
master. More...

IsOpen = 253
(253) Allows more players to join a room (or not). More...

PlayerCount = 252
(252) Current count of players in the room. Used only in
the lobby on master. More...

Removed = 251
(251) True if the room is to be removed from room listing
(used in update to room list in lobby on master) More...

PropsListedinLobby = 250

(250) A list of the room properties to pass to the
Roominfo list in a lobby. This is used in CreateRoom,
which defines this list once per room. More...

CleanupCacheOnLeave = 249
(249) Equivalent of Operation Join parameter
CleanupCacheOnLeave. More...

MasterClientld = (byte)248

(248) Code for MasterClientld, which is synced by server.
When sent as op-parameter this is (byte)203. As room
property this is (byte)248. More...

const byte

const byte

const byte

ExpectedUsers = (byte)247

(247) Code for ExpectedUsers in a room. Matchmaking
keeps a slot open for the players with these userIDs.
More...

PlayerTtl = (byte)246

(246) Player Time To Live. How long any player can be
inactive (due to disconnect or leave) before the user gets
removed from the playerlist (freeing a slot). More...

EmptyRoomTtl = (byte)245

(245) Room Time To Live. How long a room stays
available (and in server-memory), after the last player
becomes inactive. After this time, the room gets persisted
or destroyed. More...

Detailed Description

Class for co