
Perl-compatible	Regular	Expressions	(PCRE)
Syntax,	API	&	Tools	Documentation	Website:	www.pcre.org	Author:	Philip
Hazel,	University	Computing	Service,	Cambridge
Date:	February	2009
Indexed	html	help	created	by	Thomas	Wolf

The	HTML	documentation	for	PCRE	comprises	the	following
pages:

pcre 		Introductory	page
pcre-config 		Information	about	the	installation	configuration
pcreapi 		PCRE's	native	API
pcrebuild 		Options	for	building	PCRE
pcrecallout 		The	callout	facility
pcrecompat 		Compability	with	Perl
pcrecpp 		The	C++	wrapper	for	the	PCRE	library
pcregrep 		The	pcregrep	command
pcrematching 		Discussion	of	the	two	matching	algorithms
pcrepartial 		Using	PCRE	for	partial	matching
pcrepattern 		Specification	of	the	regular	expressions	supported	by	PCRE
pcreperform 		Some	comments	on	performance
pcreposix 		The	POSIX	API	to	the	PCRE	library
pcreprecompile 		How	to	save	and	re-use	compiled	patterns
pcresample 		Description	of	the	sample	program
pcrestack 		Discussion	of	PCRE's	stack	usage
pcresyntax 		Syntax	quick-reference	summary
pcretest 		The	pcretest	command	for	testing	PCRE

There	are	also	individual	pages	that	summarize	the	interface	for
each	function	in	the	library:

http://www.pcre.org
mailto:two at chello dot at?subject=pcre-7.8.chm

pcre_compile 		Compile	a	regular	expression
pcre_compile2 		Compile	a	regular	expression	(alternate	interface)
pcre_config 		Show	build-time	configuration	options
pcre_copy_named_substring 		Extract	named	substring	into	given	buffer
pcre_copy_substring 		Extract	numbered	substring	into	given	buffer

pcre_dfa_exec 		Match	a	compiled	pattern	to	a	subject	string
(DFA	algorithm;	not	Perl	compatible)

pcre_exec 		Match	a	compiled	pattern	to	a	subject	string	(Perl
compatible)

pcre_free_substring 		Free	extracted	substring
pcre_free_substring_list 		Free	list	of	extracted	substrings
pcre_fullinfo 		Extract	information	about	a	pattern
pcre_get_named_substring 		Extract	named	substring	into	new	memory
pcre_get_stringnumber 		Convert	captured	string	name	to	number
pcre_get_substring 		Extract	numbered	substring	into	new	memory
pcre_get_substring_list 		Extract	all	substrings	into	new	memory
pcre_info 		Obsolete	information	extraction	function
pcre_maketables 		Build	character	tables	in	current	locale
pcre_refcount 		Maintain	reference	count	in	compiled	pattern
pcre_study 		Study	a	compiled	pattern
pcre_version 		Return	PCRE	version	and	release	date

pcre	man	page
Return	to	the	PCRE	index	page.

introduction
user	documentation
limitations
utf-8	and	unicode	property	support
author
revision

introduction

The	PCRE	library	is	a	set	of	functions	that	implement	regular
expression	pattern	matching	using	the	same	syntax	and	semantics	as
Perl,	with	just	a	few	differences.	Certain	features	that	appeared	in
Python	and	PCRE	before	they	appeared	in	Perl	are	also	available
using	the	Python	syntax.	There	is	also	some	support	for	certain	.NET
and	Oniguruma	syntax	items,	and	there	is	an	option	for	requesting
some	minor	changes	that	give	better	JavaScript	compatibility.

The	current	implementation	of	PCRE	(release	7.x)	corresponds
approximately	with	Perl	5.10,	including	support	for	UTF-8	encoded
strings	and	Unicode	general	category	properties.	However,	UTF-8	and
Unicode	support	has	to	be	explicitly	enabled;	it	is	not	the	default.	The
Unicode	tables	correspond	to	Unicode	release	5.0.0.

In	addition	to	the	Perl-compatible	matching	function,	PCRE	contains
an	alternative	matching	function	that	matches	the	same	compiled
patterns	in	a	different	way.	In	certain	circumstances,	the	alternative
function	has	some	advantages.	For	a	discussion	of	the	two	matching
algorithms,	see	the	pcrematching	page.

PCRE	is	written	in	C	and	released	as	a	C	library.	A	number	of	people
have	written	wrappers	and	interfaces	of	various	kinds.	In	particular,
Google	Inc.	have	provided	a	comprehensive	C++	wrapper.	This	is
now	included	as	part	of	the	PCRE	distribution.	The	pcrecpp	page	has
details	of	this	interface.	Other	people's	contributions	can	be	found	in
the	Contrib	directory	at	the	primary	FTP	site,	which	is:
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

Details	of	exactly	which	Perl	regular	expression	features	are	and	are
not	supported	by	PCRE	are	given	in	separate	documents.	See	the
pcrepattern	and	pcrecompat	pages.	There	is	a	syntax	summary	in
the	pcresyntax	page.

Some	features	of	PCRE	can	be	included,	excluded,	or	changed	when
the	library	is	built.	The	pcre_config()	function	makes	it	possible	for	a
client	to	discover	which	features	are	available.	The	features
themselves	are	described	in	the	pcrebuild	page.	Documentation	about
building	PCRE	for	various	operating	systems	can	be	found	in	the
README	file	in	the	source	distribution.

The	library	contains	a	number	of	undocumented	internal	functions	and
data	tables	that	are	used	by	more	than	one	of	the	exported	external
functions,	but	which	are	not	intended	for	use	by	external	callers.	Their
names	all	begin	with	"_pcre_",	which	hopefully	will	not	provoke	any
name	clashes.	In	some	environments,	it	is	possible	to	control	which
external	symbols	are	exported	when	a	shared	library	is	built,	and	in
these	cases	the	undocumented	symbols	are	not	exported.

user	documentation

The	user	documentation	for	PCRE	comprises	a	number	of	different
sections.	In	the	"man"	format,	each	of	these	is	a	separate	"man	page".
In	the	HTML	format,	each	is	a	separate	page,	linked	from	the	index

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

page.	In	the	plain	text	format,	all	the	sections	are	concatenated,	for
ease	of	searching.	The	sections	are	as	follows:

		pcre														this	document
		pcre-config							show	PCRE	installation	configuration	information
		pcreapi											details	of	PCRE's	native	C	API
		pcrebuild									options	for	building	PCRE
		pcrecallout							details	of	the	callout	feature
		pcrecompat								discussion	of	Perl	compatibility
		pcrecpp											details	of	the	C++	wrapper
		pcregrep										description	of	the	pcregrep	command
		pcrematching						discussion	of	the	two	matching	algorithms
		pcrepartial							details	of	the	partial	matching	facility
		pcrepattern							syntax	and	semantics	of	supported	regular	expressions
		pcresyntax								quick	syntax	reference
		pcreperform							discussion	of	performance	issues
		pcreposix									the	POSIX-compatible	C	API
		pcreprecompile				details	of	saving	and	re-using	precompiled	patterns
		pcresample								discussion	of	the	sample	program
		pcrestack									discussion	of	stack	usage
		pcretest										description	of	the	pcretest	testing	command

In	addition,	in	the	"man"	and	HTML	formats,	there	is	a	short	page	for
each	C	library	function,	listing	its	arguments	and	results.

limitations

There	are	some	size	limitations	in	PCRE	but	it	is	hoped	that	they	will
never	in	practice	be	relevant.

The	maximum	length	of	a	compiled	pattern	is	65539	(sic)	bytes	if
PCRE	is	compiled	with	the	default	internal	linkage	size	of	2.	If	you
want	to	process	regular	expressions	that	are	truly	enormous,	you	can
compile	PCRE	with	an	internal	linkage	size	of	3	or	4	(see	the
README	file	in	the	source	distribution	and	the	pcrebuild

documentation	for	details).	In	these	cases	the	limit	is	substantially
larger.	However,	the	speed	of	execution	is	slower.

All	values	in	repeating	quantifiers	must	be	less	than	65536.

There	is	no	limit	to	the	number	of	parenthesized	subpatterns,	but	there
can	be	no	more	than	65535	capturing	subpatterns.

The	maximum	length	of	name	for	a	named	subpattern	is	32	characters,
and	the	maximum	number	of	named	subpatterns	is	10000.

The	maximum	length	of	a	subject	string	is	the	largest	positive	number
that	an	integer	variable	can	hold.	However,	when	using	the	traditional
matching	function,	PCRE	uses	recursion	to	handle	subpatterns	and
indefinite	repetition.	This	means	that	the	available	stack	space	may
limit	the	size	of	a	subject	string	that	can	be	processed	by	certain
patterns.	For	a	discussion	of	stack	issues,	see	the	pcrestack
documentation.

utf-8	and	unicode	property	support

From	release	3.3,	PCRE	has	had	some	support	for	character	strings
encoded	in	the	UTF-8	format.	For	release	4.0	this	was	greatly
extended	to	cover	most	common	requirements,	and	in	release	5.0
additional	support	for	Unicode	general	category	properties	was	added.

In	order	process	UTF-8	strings,	you	must	build	PCRE	to	include
UTF-8	support	in	the	code,	and,	in	addition,	you	must	call
pcre_compile()	with	the	PCRE_UTF8	option	flag.	When	you	do	this,
both	the	pattern	and	any	subject	strings	that	are	matched	against	it	are
treated	as	UTF-8	strings	instead	of	just	strings	of	bytes.

If	you	compile	PCRE	with	UTF-8	support,	but	do	not	use	it	at	run

time,	the	library	will	be	a	bit	bigger,	but	the	additional	run	time
overhead	is	limited	to	testing	the	PCRE_UTF8	flag	occasionally,	so
should	not	be	very	big.

If	PCRE	is	built	with	Unicode	character	property	support	(which
implies	UTF-8	support),	the	escape	sequences	\p{..},	\P{..},	and	\X
are	supported.	The	available	properties	that	can	be	tested	are	limited
to	the	general	category	properties	such	as	Lu	for	an	upper	case	letter
or	Nd	for	a	decimal	number,	the	Unicode	script	names	such	as	Arabic
or	Han,	and	the	derived	properties	Any	and	L&.	A	full	list	is	given	in
the	pcrepattern	documentation.	Only	the	short	names	for	properties
are	supported.	For	example,	\p{L}	matches	a	letter.	Its	Perl	synonym,
\p{Letter},	is	not	supported.	Furthermore,	in	Perl,	many	properties
may	optionally	be	prefixed	by	"Is",	for	compatibility	with	Perl	5.6.
PCRE	does	not	support	this.

Validity	of	UTF-8	strings	

When	you	set	the	PCRE_UTF8	flag,	the	strings	passed	as	patterns	and
subjects	are	(by	default)	checked	for	validity	on	entry	to	the	relevant
functions.	From	release	7.3	of	PCRE,	the	check	is	according	the	rules
of	RFC	3629,	which	are	themselves	derived	from	the	Unicode
specification.	Earlier	releases	of	PCRE	followed	the	rules	of	RFC
2279,	which	allows	the	full	range	of	31-bit	values	(0	to	0x7FFFFFFF).
The	current	check	allows	only	values	in	the	range	U+0	to	U+10FFFF,
excluding	U+D800	to	U+DFFF.

The	excluded	code	points	are	the	"Low	Surrogate	Area"	of	Unicode,
of	which	the	Unicode	Standard	says	this:	"The	Low	Surrogate	Area
does	not	contain	any	character	assignments,	consequently	no	character
code	charts	or	namelists	are	provided	for	this	area.	Surrogates	are
reserved	for	use	with	UTF-16	and	then	must	be	used	in	pairs."	The
code	points	that	are	encoded	by	UTF-16	pairs	are	available	as

independent	code	points	in	the	UTF-8	encoding.	(In	other	words,	the
whole	surrogate	thing	is	a	fudge	for	UTF-16	which	unfortunately
messes	up	UTF-8.)

If	an	invalid	UTF-8	string	is	passed	to	PCRE,	an	error	return
(PCRE_ERROR_BADUTF8)	is	given.	In	some	situations,	you	may
already	know	that	your	strings	are	valid,	and	therefore	want	to	skip
these	checks	in	order	to	improve	performance.	If	you	set	the
PCRE_NO_UTF8_CHECK	flag	at	compile	time	or	at	run	time,	PCRE
assumes	that	the	pattern	or	subject	it	is	given	(respectively)	contains
only	valid	UTF-8	codes.	In	this	case,	it	does	not	diagnose	an	invalid
UTF-8	string.

If	you	pass	an	invalid	UTF-8	string	when	PCRE_NO_UTF8_CHECK
is	set,	what	happens	depends	on	why	the	string	is	invalid.	If	the	string
conforms	to	the	"old"	definition	of	UTF-8	(RFC	2279),	it	is	processed
as	a	string	of	characters	in	the	range	0	to	0x7FFFFFFF.	In	other
words,	apart	from	the	initial	validity	test,	PCRE	(when	in	UTF-8
mode)	handles	strings	according	to	the	more	liberal	rules	of	RFC
2279.	However,	if	the	string	does	not	even	conform	to	RFC	2279,	the
result	is	undefined.	Your	program	may	crash.

If	you	want	to	process	strings	of	values	in	the	full	range	0	to
0x7FFFFFFF,	encoded	in	a	UTF-8-like	manner	as	per	the	old	RFC,
you	can	set	PCRE_NO_UTF8_CHECK	to	bypass	the	more	restrictive
test.	However,	in	this	situation,	you	will	have	to	apply	your	own
validity	check.

General	comments	about	UTF-8	mode	

1.	An	unbraced	hexadecimal	escape	sequence	(such	as	\xb3)	matches
a	two-byte	UTF-8	character	if	the	value	is	greater	than	127.

2.	Octal	numbers	up	to	\777	are	recognized,	and	match	two-byte	UTF-
8	characters	for	values	greater	than	\177.

3.	Repeat	quantifiers	apply	to	complete	UTF-8	characters,	not	to
individual	bytes,	for	example:	\x{100}{3}.

4.	The	dot	metacharacter	matches	one	UTF-8	character	instead	of	a
single	byte.

5.	The	escape	sequence	\C	can	be	used	to	match	a	single	byte	in	UTF-
8	mode,	but	its	use	can	lead	to	some	strange	effects.	This	facility	is
not	available	in	the	alternative	matching	function,	pcre_dfa_exec().

6.	The	character	escapes	\b,	\B,	\d,	\D,	\s,	\S,	\w,	and	\W	correctly	test
characters	of	any	code	value,	but	the	characters	that	PCRE	recognizes
as	digits,	spaces,	or	word	characters	remain	the	same	set	as	before,	all
with	values	less	than	256.	This	remains	true	even	when	PCRE
includes	Unicode	property	support,	because	to	do	otherwise	would
slow	down	PCRE	in	many	common	cases.	If	you	really	want	to	test
for	a	wider	sense	of,	say,	"digit",	you	must	use	Unicode	property	tests
such	as	\p{Nd}.

7.	Similarly,	characters	that	match	the	POSIX	named	character	classes
are	all	low-valued	characters.

8.	However,	the	Perl	5.10	horizontal	and	vertical	whitespace	matching
escapes	(\h,	\H,	\v,	and	\V)	do	match	all	the	appropriate	Unicode
characters.

9.	Case-insensitive	matching	applies	only	to	characters	whose	values
are	less	than	128,	unless	PCRE	is	built	with	Unicode	property	support.
Even	when	Unicode	property	support	is	available,	PCRE	still	uses	its
own	character	tables	when	checking	the	case	of	low-valued
characters,	so	as	not	to	degrade	performance.	The	Unicode	property

information	is	used	only	for	characters	with	higher	values.	Even	when
Unicode	property	support	is	available,	PCRE	supports	case-insensitive
matching	only	when	there	is	a	one-to-one	mapping	between	a	letter's
cases.	There	are	a	small	number	of	many-to-one	mappings	in
Unicode;	these	are	not	supported	by	PCRE.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

Putting	an	actual	email	address	here	seems	to	have	been	a	spam
magnet,	so	I've	taken	it	away.	If	you	want	to	email	me,	use	my	two
initials,	followed	by	the	two	digits	10,	at	the	domain	cam.ac.uk.

revision

Last	updated:	12	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcresyntax	man	page
Return	to	the	PCRE	index	page.

pcre	regular	expression	syntax	summary
quoting
characters
character	types
general	category	property	codes	for	\p	and	\p
script	names	for	\p	and	\p
character	classes
quantifiers
anchors	and	simple	assertions
match	point	reset
alternation
capturing
atomic	groups
comment
option	setting
lookahead	and	lookbehind	assertions
backreferences
subroutine	references	(possibly	recursive)
conditional	patterns
backtracking	control
newline	conventions
what	\r	matches
callouts
see	also
author
revision

pcre	regular	expression	syntax	summary

The	full	syntax	and	semantics	of	the	regular	expressions	that	are
supported	by	PCRE	are	described	in	the	pcrepattern	documentation.
This	document	contains	just	a	quick-reference	summary	of	the	syntax.

quoting

		\x									where	x	is	non-alphanumeric	is	a	literal	x
		\Q...\E				treat	enclosed	characters	as	literal

characters

		\a									alarm,	that	is,	the	BEL	character	(hex	07)
		\cx								"control-x",	where	x	is	any	character
		\e									escape	(hex	1B)
		\f									formfeed	(hex	0C)
		\n									newline	(hex	0A)
		\r									carriage	return	(hex	0D)
		\t									tab	(hex	09)
		\ddd							character	with	octal	code	ddd,	or	backreference
		\xhh							character	with	hex	code	hh
		\x{hhh..}		character	with	hex	code	hhh..

character	types

		.										any	character	except	newline;
															in	dotall	mode,	any	character	whatsoever
		\C									one	byte,	even	in	UTF-8	mode	(best	avoided)
		\d									a	decimal	digit
		\D									a	character	that	is	not	a	decimal	digit
		\h									a	horizontal	whitespace	character
		\H									a	character	that	is	not	a	horizontal	whitespace	character
		\p{xx}					a	character	with	the	xx	property
		\P{xx}					a	character	without	the	xx	property

		\R									a	newline	sequence
		\s									a	whitespace	character
		\S									a	character	that	is	not	a	whitespace	character
		\v									a	vertical	whitespace	character
		\V									a	character	that	is	not	a	vertical	whitespace	character
		\w									a	"word"	character
		\W									a	"non-word"	character
		\X									an	extended	Unicode	sequence

In	PCRE,	\d,	\D,	\s,	\S,	\w,	and	\W	recognize	only	ASCII	characters.

general	category	property	codes	for	\p	and	\p

		C										Other
		Cc									Control
		Cf									Format
		Cn									Unassigned
		Co									Private	use
		Cs									Surrogate

		L										Letter
		Ll									Lower	case	letter
		Lm									Modifier	letter
		Lo									Other	letter
		Lt									Title	case	letter
		Lu									Upper	case	letter
		L&									Ll,	Lu,	or	Lt

		M										Mark
		Mc									Spacing	mark
		Me									Enclosing	mark
		Mn									Non-spacing	mark

		N										Number
		Nd									Decimal	number
		Nl									Letter	number

		No									Other	number

		P										Punctuation
		Pc									Connector	punctuation
		Pd									Dash	punctuation
		Pe									Close	punctuation
		Pf									Final	punctuation
		Pi									Initial	punctuation
		Po									Other	punctuation
		Ps									Open	punctuation

		S										Symbol
		Sc									Currency	symbol
		Sk									Modifier	symbol
		Sm									Mathematical	symbol
		So									Other	symbol

		Z										Separator
		Zl									Line	separator
		Zp									Paragraph	separator
		Zs									Space	separator

script	names	for	\p	and	\p

Arabic,	Armenian,	Balinese,	Bengali,	Bopomofo,	Braille,	Buginese,
Buhid,	Canadian_Aboriginal,	Cherokee,	Common,	Coptic,
Cuneiform,	Cypriot,	Cyrillic,	Deseret,	Devanagari,	Ethiopic,
Georgian,	Glagolitic,	Gothic,	Greek,	Gujarati,	Gurmukhi,	Han,
Hangul,	Hanunoo,	Hebrew,	Hiragana,	Inherited,	Kannada,	Katakana,
Kharoshthi,	Khmer,	Lao,	Latin,	Limbu,	Linear_B,	Malayalam,
Mongolian,	Myanmar,	New_Tai_Lue,	Nko,	Ogham,	Old_Italic,
Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,	Runic,	Shavian,
Sinhala,	Syloti_Nagri,	Syriac,	Tagalog,	Tagbanwa,	Tai_Le,	Tamil,
Telugu,	Thaana,	Thai,	Tibetan,	Tifinagh,	Ugaritic,	Yi.

character	classes

		[...]							positive	character	class
		[^...]						negative	character	class
		[x-y]							range	(can	be	used	for	hex	characters)
		[[:xxx:]]			positive	POSIX	named	set
		[[:^xxx:]]		negative	POSIX	named	set

		alnum							alphanumeric
		alpha							alphabetic
		ascii							0-127
		blank							space	or	tab
		cntrl							control	character
		digit							decimal	digit
		graph							printing,	excluding	space
		lower							lower	case	letter
		print							printing,	including	space
		punct							printing,	excluding	alphanumeric
		space							whitespace
		upper							upper	case	letter
		word								same	as	\w
		xdigit						hexadecimal	digit

In	PCRE,	POSIX	character	set	names	recognize	only	ASCII
characters.	You	can	use	\Q...\E	inside	a	character	class.

quantifiers

		?											0	or	1,	greedy
		?+										0	or	1,	possessive
		??										0	or	1,	lazy
		*											0	or	more,	greedy
		*+										0	or	more,	possessive
		*?										0	or	more,	lazy
		+											1	or	more,	greedy

		++										1	or	more,	possessive
		+?										1	or	more,	lazy
		{n}									exactly	n
		{n,m}							at	least	n,	no	more	than	m,	greedy
		{n,m}+						at	least	n,	no	more	than	m,	possessive
		{n,m}?						at	least	n,	no	more	than	m,	lazy
		{n,}								n	or	more,	greedy
		{n,}+							n	or	more,	possessive
		{n,}?							n	or	more,	lazy

anchors	and	simple	assertions

		\b										word	boundary
		\B										not	a	word	boundary
		^											start	of	subject
															also	after	internal	newline	in	multiline	mode
		\A										start	of	subject
		$											end	of	subject
															also	before	newline	at	end	of	subject
															also	before	internal	newline	in	multiline	mode
		\Z										end	of	subject
															also	before	newline	at	end	of	subject
		\z										end	of	subject
		\G										first	matching	position	in	subject

match	point	reset

		\K										reset	start	of	match

alternation

		expr|expr|expr...

capturing

		(...)										capturing	group
		(?<name>...)			named	capturing	group	(Perl)
		(?'name'...)			named	capturing	group	(Perl)
		(?P<name>...)		named	capturing	group	(Python)
		(?:...)								non-capturing	group
		(?|...)								non-capturing	group;	reset	group	numbers	for
																		capturing	groups	in	each	alternative

atomic	groups

		(?>...)								atomic,	non-capturing	group

comment

		(?#....)							comment	(not	nestable)

option	setting

		(?i)											caseless
		(?J)											allow	duplicate	names
		(?m)											multiline
		(?s)											single	line	(dotall)
		(?U)											default	ungreedy	(lazy)
		(?x)											extended	(ignore	white	space)
		(?-...)								unset	option(s)

lookahead	and	lookbehind	assertions

		(?=...)								positive	look	ahead
		(?!...)								negative	look	ahead

		(?<=...)							positive	look	behind
		(?<!...)							negative	look	behind

Each	top-level	branch	of	a	look	behind	must	be	of	a	fixed	length.

backreferences

		\n													reference	by	number	(can	be	ambiguous)
		\gn												reference	by	number
		\g{n}										reference	by	number
		\g{-n}									relative	reference	by	number
		\k<name>							reference	by	name	(Perl)
		\k'name'							reference	by	name	(Perl)
		\g{name}							reference	by	name	(Perl)
		\k{name}							reference	by	name	(.NET)
		(?P=name)						reference	by	name	(Python)

subroutine	references	(possibly	recursive)

		(?R)											recurse	whole	pattern
		(?n)											call	subpattern	by	absolute	number
		(?+n)										call	subpattern	by	relative	number
		(?-n)										call	subpattern	by	relative	number
		(?&name;)							call	subpattern	by	name	(Perl)
		(?P>name)						call	subpattern	by	name	(Python)
		\g<name>							call	subpattern	by	name	(Oniguruma)
		\g'name'							call	subpattern	by	name	(Oniguruma)
		\g<n>										call	subpattern	by	absolute	number	(Oniguruma)
		\g'n'										call	subpattern	by	absolute	number	(Oniguruma)
		\g<+n>									call	subpattern	by	relative	number	(PCRE	extension)
		\g'+n'									call	subpattern	by	relative	number	(PCRE	extension)
		\g<-n>									call	subpattern	by	relative	number	(PCRE	extension)
		\g'-n'									call	subpattern	by	relative	number	(PCRE	extension)

conditional	patterns

		(?(condition)yes-pattern)
		(?(condition)yes-pattern|no-pattern)

		(?(n)...							absolute	reference	condition
		(?(+n)...						relative	reference	condition
		(?(-n)...						relative	reference	condition
		(?(<name>)...		named	reference	condition	(Perl)
		(?('name')...		named	reference	condition	(Perl)
		(?(name)...				named	reference	condition	(PCRE)
		(?(R)...							overall	recursion	condition
		(?(Rn)...						specific	group	recursion	condition
		(?(R&name;)...		specific	recursion	condition
		(?(DEFINE)...		define	subpattern	for	reference
		(?(assert)...		assertion	condition

backtracking	control

The	following	act	immediately	they	are	reached:

		(*ACCEPT)						force	successful	match
		(*FAIL)								force	backtrack;	synonym	(*F)

The	following	act	only	when	a	subsequent	match	failure	causes	a
backtrack	to	reach	them.	They	all	force	a	match	failure,	but	they	differ
in	what	happens	afterwards.	Those	that	advance	the	start-of-match
point	do	so	only	if	the	pattern	is	not	anchored.

		(*COMMIT)						overall	failure,	no	advance	of	starting	point
		(*PRUNE)							advance	to	next	starting	character
		(*SKIP)								advance	start	to	current	matching	position
		(*THEN)								local	failure,	backtrack	to	next	alternation

newline	conventions

These	are	recognized	only	at	the	very	start	of	the	pattern	or	after	a
(*BSR_...)	option.

		(*CR)
		(*LF)
		(*CRLF)
		(*ANYCRLF)
		(*ANY)

what	\r	matches

These	are	recognized	only	at	the	very	start	of	the	pattern	or	after	a
(*...)	option	that	sets	the	newline	convention.

		(*BSR_ANYCRLF)
		(*BSR_UNICODE)

callouts

		(?C)						callout
		(?Cn)					callout	with	data	n

see	also

pcrepattern(3),	pcreapi(3),	pcrecallout(3),	pcrematching(3),
pcre(3).

author

Philip	Hazel	

University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	09	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrepattern	man	page
Return	to	the	PCRE	index	page.

pcre	regular	expression	details
newline	conventions
characters	and	metacharacters
backslash
circumflex	and	dollar
full	stop	(period,	dot)
matching	a	single	byte
square	brackets	and	character	classes
posix	character	classes
vertical	bar
internal	option	setting
subpatterns
duplicate	subpattern	numbers
named	subpatterns
repetition
atomic	grouping	and	possessive	quantifiers
back	references
assertions
conditional	subpatterns
comments
recursive	patterns
subpatterns	as	subroutines
oniguruma	subroutine	syntax
callouts
backtracking	control
see	also
author
revision

pcre	regular	expression	details

The	syntax	and	semantics	of	the	regular	expressions	that	are	supported
by	PCRE	are	described	in	detail	below.	There	is	a	quick-reference
syntax	summary	in	the	pcresyntax	page.	PCRE	tries	to	match	Perl
syntax	and	semantics	as	closely	as	it	can.	PCRE	also	supports	some
alternative	regular	expression	syntax	(which	does	not	conflict	with	the
Perl	syntax)	in	order	to	provide	some	compatibility	with	regular
expressions	in	Python,	.NET,	and	Oniguruma.

Perl's	regular	expressions	are	described	in	its	own	documentation,	and
regular	expressions	in	general	are	covered	in	a	number	of	books,	some
of	which	have	copious	examples.	Jeffrey	Friedl's	"Mastering	Regular
Expressions",	published	by	O'Reilly,	covers	regular	expressions	in
great	detail.	This	description	of	PCRE's	regular	expressions	is
intended	as	reference	material.

The	original	operation	of	PCRE	was	on	strings	of	one-byte	characters.
However,	there	is	now	also	support	for	UTF-8	character	strings.	To
use	this,	you	must	build	PCRE	to	include	UTF-8	support,	and	then
call	pcre_compile()	with	the	PCRE_UTF8	option.	How	this	affects
pattern	matching	is	mentioned	in	several	places	below.	There	is	also	a
summary	of	UTF-8	features	in	the	section	on	UTF-8	support	in	the
main	pcre	page.

The	remainder	of	this	document	discusses	the	patterns	that	are
supported	by	PCRE	when	its	main	matching	function,	pcre_exec(),	is
used.	From	release	6.0,	PCRE	offers	a	second	matching	function,
pcre_dfa_exec(),	which	matches	using	a	different	algorithm	that	is
not	Perl-compatible.	Some	of	the	features	discussed	below	are	not
available	when	pcre_dfa_exec()	is	used.	The	advantages	and
disadvantages	of	the	alternative	function,	and	how	it	differs	from	the
normal	function,	are	discussed	in	the	pcrematching	page.

newline	conventions

PCRE	supports	five	different	conventions	for	indicating	line	breaks	in
strings:	a	single	CR	(carriage	return)	character,	a	single	LF	(linefeed)
character,	the	two-character	sequence	CRLF,	any	of	the	three
preceding,	or	any	Unicode	newline	sequence.	The	pcreapi	page	has
further	discussion	about	newlines,	and	shows	how	to	set	the	newline
convention	in	the	options	arguments	for	the	compiling	and	matching
functions.

It	is	also	possible	to	specify	a	newline	convention	by	starting	a	pattern
string	with	one	of	the	following	five	sequences:

		(*CR)								carriage	return
		(*LF)								linefeed
		(*CRLF)						carriage	return,	followed	by	linefeed
		(*ANYCRLF)			any	of	the	three	above
		(*ANY)							all	Unicode	newline	sequences

These	override	the	default	and	the	options	given	to	pcre_compile().
For	example,	on	a	Unix	system	where	LF	is	the	default	newline
sequence,	the	pattern

		(*CR)a.b

changes	the	convention	to	CR.	That	pattern	matches	"a\nb"	because
LF	is	no	longer	a	newline.	Note	that	these	special	settings,	which	are
not	Perl-compatible,	are	recognized	only	at	the	very	start	of	a	pattern,
and	that	they	must	be	in	upper	case.	If	more	than	one	of	them	is
present,	the	last	one	is	used.

The	newline	convention	does	not	affect	what	the	\R	escape	sequence
matches.	By	default,	this	is	any	Unicode	newline	sequence,	for	Perl
compatibility.	However,	this	can	be	changed;	see	the	description	of	\R

in	the	section	entitled	"Newline	sequences"	below.	A	change	of	\R
setting	can	be	combined	with	a	change	of	newline	convention.

characters	and	metacharacters

A	regular	expression	is	a	pattern	that	is	matched	against	a	subject
string	from	left	to	right.	Most	characters	stand	for	themselves	in	a
pattern,	and	match	the	corresponding	characters	in	the	subject.	As	a
trivial	example,	the	pattern

		The	quick	brown	fox

matches	a	portion	of	a	subject	string	that	is	identical	to	itself.	When
caseless	matching	is	specified	(the	PCRE_CASELESS	option),	letters
are	matched	independently	of	case.	In	UTF-8	mode,	PCRE	always
understands	the	concept	of	case	for	characters	whose	values	are	less
than	128,	so	caseless	matching	is	always	possible.	For	characters	with
higher	values,	the	concept	of	case	is	supported	if	PCRE	is	compiled
with	Unicode	property	support,	but	not	otherwise.	If	you	want	to	use
caseless	matching	for	characters	128	and	above,	you	must	ensure	that
PCRE	is	compiled	with	Unicode	property	support	as	well	as	with
UTF-8	support.

The	power	of	regular	expressions	comes	from	the	ability	to	include
alternatives	and	repetitions	in	the	pattern.	These	are	encoded	in	the
pattern	by	the	use	of	metacharacters,	which	do	not	stand	for
themselves	but	instead	are	interpreted	in	some	special	way.

There	are	two	different	sets	of	metacharacters:	those	that	are
recognized	anywhere	in	the	pattern	except	within	square	brackets,	and
those	that	are	recognized	within	square	brackets.	Outside	square
brackets,	the	metacharacters	are	as	follows:

		\						general	escape	character	with	several	uses
		^						assert	start	of	string	(or	line,	in	multiline	mode)
		$						assert	end	of	string	(or	line,	in	multiline	mode)
		.						match	any	character	except	newline	(by	default)
		[start	character	class	definition
		|						start	of	alternative	branch
		(start	subpattern
)						end	subpattern
		?						extends	the	meaning	of	(
									also	0	or	1	quantifier
									also	quantifier	minimizer
		*						0	or	more	quantifier
		+						1	or	more	quantifier
									also	"possessive	quantifier"
		{						start	min/max	quantifier

Part	of	a	pattern	that	is	in	square	brackets	is	called	a	"character	class".
In	a	character	class	the	only	metacharacters	are:

		\						general	escape	character
		^						negate	the	class,	but	only	if	the	first	character
		-						indicates	character	range
		[POSIX	character	class	(only	if	followed	by	POSIX	syntax)
]						terminates	the	character	class

The	following	sections	describe	the	use	of	each	of	the	metacharacters.

backslash

The	backslash	character	has	several	uses.	Firstly,	if	it	is	followed	by	a
non-alphanumeric	character,	it	takes	away	any	special	meaning	that
character	may	have.	This	use	of	backslash	as	an	escape	character
applies	both	inside	and	outside	character	classes.

For	example,	if	you	want	to	match	a	*	character,	you	write	*	in	the

pattern.	This	escaping	action	applies	whether	or	not	the	following
character	would	otherwise	be	interpreted	as	a	metacharacter,	so	it	is
always	safe	to	precede	a	non-alphanumeric	with	backslash	to	specify
that	it	stands	for	itself.	In	particular,	if	you	want	to	match	a	backslash,
you	write	\\.

If	a	pattern	is	compiled	with	the	PCRE_EXTENDED	option,
whitespace	in	the	pattern	(other	than	in	a	character	class)	and
characters	between	a	#	outside	a	character	class	and	the	next	newline
are	ignored.	An	escaping	backslash	can	be	used	to	include	a
whitespace	or	#	character	as	part	of	the	pattern.

If	you	want	to	remove	the	special	meaning	from	a	sequence	of
characters,	you	can	do	so	by	putting	them	between	\Q	and	\E.	This	is
different	from	Perl	in	that	$	and	@	are	handled	as	literals	in	\Q...\E
sequences	in	PCRE,	whereas	in	Perl,	$	and	@	cause	variable
interpolation.	Note	the	following	examples:

		Pattern												PCRE	matches			Perl	matches

		\Qabc$xyz\E								abc$xyz								abc	followed	by	the	contents	of	$xyz
		\Qabc\$xyz\E							abc\$xyz							abc\$xyz
		\Qabc\E\$\Qxyz\E			abc$xyz								abc$xyz

The	\Q...\E	sequence	is	recognized	both	inside	and	outside	character
classes.

Non-printing	characters	

A	second	use	of	backslash	provides	a	way	of	encoding	non-printing
characters	in	patterns	in	a	visible	manner.	There	is	no	restriction	on
the	appearance	of	non-printing	characters,	apart	from	the	binary	zero
that	terminates	a	pattern,	but	when	a	pattern	is	being	prepared	by	text

editing,	it	is	usually	easier	to	use	one	of	the	following	escape
sequences	than	the	binary	character	it	represents:

		\a								alarm,	that	is,	the	BEL	character	(hex	07)
		\cx							"control-x",	where	x	is	any	character
		\e								escape	(hex	1B)
		\f								formfeed	(hex	0C)
		\n								linefeed	(hex	0A)
		\r								carriage	return	(hex	0D)
		\t								tab	(hex	09)
		\ddd						character	with	octal	code	ddd,	or	backreference
		\xhh						character	with	hex	code	hh
		\x{hhh..}	character	with	hex	code	hhh..

The	precise	effect	of	\cx	is	as	follows:	if	x	is	a	lower	case	letter,	it	is
converted	to	upper	case.	Then	bit	6	of	the	character	(hex	40)	is
inverted.	Thus	\cz	becomes	hex	1A,	but	\c{	becomes	hex	3B,	while	\c;
becomes	hex	7B.

After	\x,	from	zero	to	two	hexadecimal	digits	are	read	(letters	can	be
in	upper	or	lower	case).	Any	number	of	hexadecimal	digits	may
appear	between	\x{	and	},	but	the	value	of	the	character	code	must	be
less	than	256	in	non-UTF-8	mode,	and	less	than	2**31	in	UTF-8
mode.	That	is,	the	maximum	value	in	hexadecimal	is	7FFFFFFF.	Note
that	this	is	bigger	than	the	largest	Unicode	code	point,	which	is
10FFFF.

If	characters	other	than	hexadecimal	digits	appear	between	\x{	and	},
or	if	there	is	no	terminating	},	this	form	of	escape	is	not	recognized.
Instead,	the	initial	\x	will	be	interpreted	as	a	basic	hexadecimal
escape,	with	no	following	digits,	giving	a	character	whose	value	is
zero.

Characters	whose	value	is	less	than	256	can	be	defined	by	either	of
the	two	syntaxes	for	\x.	There	is	no	difference	in	the	way	they	are

handled.	For	example,	\xdc	is	exactly	the	same	as	\x{dc}.

After	\0	up	to	two	further	octal	digits	are	read.	If	there	are	fewer	than
two	digits,	just	those	that	are	present	are	used.	Thus	the	sequence
\0\x\07	specifies	two	binary	zeros	followed	by	a	BEL	character	(code
value	7).	Make	sure	you	supply	two	digits	after	the	initial	zero	if	the
pattern	character	that	follows	is	itself	an	octal	digit.

The	handling	of	a	backslash	followed	by	a	digit	other	than	0	is
complicated.	Outside	a	character	class,	PCRE	reads	it	and	any
following	digits	as	a	decimal	number.	If	the	number	is	less	than	10,	or
if	there	have	been	at	least	that	many	previous	capturing	left
parentheses	in	the	expression,	the	entire	sequence	is	taken	as	a	back
reference.	A	description	of	how	this	works	is	given	later,	following	the
discussion	of	parenthesized	subpatterns.

Inside	a	character	class,	or	if	the	decimal	number	is	greater	than	9	and
there	have	not	been	that	many	capturing	subpatterns,	PCRE	re-reads
up	to	three	octal	digits	following	the	backslash,	and	uses	them	to
generate	a	data	character.	Any	subsequent	digits	stand	for	themselves.
In	non-UTF-8	mode,	the	value	of	a	character	specified	in	octal	must
be	less	than	\400.	In	UTF-8	mode,	values	up	to	\777	are	permitted.	For
example:

		\040			is	another	way	of	writing	a	space
		\40				is	the	same,	provided	there	are	fewer	than	40	previous	capturing	subpatterns
		\7					is	always	a	back	reference
		\11				might	be	a	back	reference,	or	another	way	of	writing	a	tab
		\011			is	always	a	tab
		\0113		is	a	tab	followed	by	the	character	"3"
		\113			might	be	a	back	reference,	otherwise	the	character	with	octal	code	113
		\377			might	be	a	back	reference,	otherwise	the	byte	consisting	entirely	of	1	bits
		\81				is	either	a	back	reference,	or	a	binary	zero	followed	by	the	two	characters	"8"	and	"1"

Note	that	octal	values	of	100	or	greater	must	not	be	introduced	by	a

leading	zero,	because	no	more	than	three	octal	digits	are	ever	read.

All	the	sequences	that	define	a	single	character	value	can	be	used	both
inside	and	outside	character	classes.	In	addition,	inside	a	character
class,	the	sequence	\b	is	interpreted	as	the	backspace	character	(hex
08),	and	the	sequences	\R	and	\X	are	interpreted	as	the	characters	"R"
and	"X",	respectively.	Outside	a	character	class,	these	sequences	have
different	meanings	(see	below).

Absolute	and	relative	back	references	

The	sequence	\g	followed	by	an	unsigned	or	a	negative	number,
optionally	enclosed	in	braces,	is	an	absolute	or	relative	back	reference.
A	named	back	reference	can	be	coded	as	\g{name}.	Back	references
are	discussed	later,	following	the	discussion	of	parenthesized
subpatterns.

Absolute	and	relative	subroutine	calls	

For	compatibility	with	Oniguruma,	the	non-Perl	syntax	\g	followed	by
a	name	or	a	number	enclosed	either	in	angle	brackets	or	single	quotes,
is	an	alternative	syntax	for	referencing	a	subpattern	as	a	"subroutine".
Details	are	discussed	later.	Note	that	\g{...}	(Perl	syntax)	and	\g<...>
(Oniguruma	syntax)	are	not	synonymous.	The	former	is	a	back
reference;	the	latter	is	a	subroutine	call.

Generic	character	types	

Another	use	of	backslash	is	for	specifying	generic	character	types.
The	following	are	always	recognized:

		\d					any	decimal	digit
		\D					any	character	that	is	not	a	decimal	digit
		\h					any	horizontal	whitespace	character
		\H					any	character	that	is	not	a	horizontal	whitespace	character
		\s					any	whitespace	character
		\S					any	character	that	is	not	a	whitespace	character
		\v					any	vertical	whitespace	character
		\V					any	character	that	is	not	a	vertical	whitespace	character
		\w					any	"word"	character
		\W					any	"non-word"	character

Each	pair	of	escape	sequences	partitions	the	complete	set	of	characters
into	two	disjoint	sets.	Any	given	character	matches	one,	and	only	one,
of	each	pair.

These	character	type	sequences	can	appear	both	inside	and	outside
character	classes.	They	each	match	one	character	of	the	appropriate
type.	If	the	current	matching	point	is	at	the	end	of	the	subject	string,
all	of	them	fail,	since	there	is	no	character	to	match.

For	compatibility	with	Perl,	\s	does	not	match	the	VT	character	(code
11).	This	makes	it	different	from	the	the	POSIX	"space"	class.	The	\s
characters	are	HT	(9),	LF	(10),	FF	(12),	CR	(13),	and	space	(32).	If
"use	locale;"	is	included	in	a	Perl	script,	\s	may	match	the	VT
character.	In	PCRE,	it	never	does.

In	UTF-8	mode,	characters	with	values	greater	than	128	never	match
\d,	\s,	or	\w,	and	always	match	\D,	\S,	and	\W.	This	is	true	even	when
Unicode	character	property	support	is	available.	These	sequences
retain	their	original	meanings	from	before	UTF-8	support	was
available,	mainly	for	efficiency	reasons.

The	sequences	\h,	\H,	\v,	and	\V	are	Perl	5.10	features.	In	contrast	to
the	other	sequences,	these	do	match	certain	high-valued	codepoints	in
UTF-8	mode.	The	horizontal	space	characters	are:

		U+0009					Horizontal	tab
		U+0020					Space
		U+00A0					Non-break	space
		U+1680					Ogham	space	mark
		U+180E					Mongolian	vowel	separator
		U+2000					En	quad
		U+2001					Em	quad
		U+2002					En	space
		U+2003					Em	space
		U+2004					Three-per-em	space
		U+2005					Four-per-em	space
		U+2006					Six-per-em	space
		U+2007					Figure	space
		U+2008					Punctuation	space
		U+2009					Thin	space
		U+200A					Hair	space
		U+202F					Narrow	no-break	space
		U+205F					Medium	mathematical	space
		U+3000					Ideographic	space

The	vertical	space	characters	are:

		U+000A					Linefeed
		U+000B					Vertical	tab
		U+000C					Formfeed
		U+000D					Carriage	return
		U+0085					Next	line
		U+2028					Line	separator
		U+2029					Paragraph	separator

A	"word"	character	is	an	underscore	or	any	character	less	than	256
that	is	a	letter	or	digit.	The	definition	of	letters	and	digits	is	controlled
by	PCRE's	low-valued	character	tables,	and	may	vary	if	locale-
specific	matching	is	taking	place	(see	"Locale	support"	in	the	pcreapi
page).	For	example,	in	a	French	locale	such	as	"fr_FR"	in	Unix-like
systems,	or	"french"	in	Windows,	some	character	codes	greater	than

128	are	used	for	accented	letters,	and	these	are	matched	by	\w.	The
use	of	locales	with	Unicode	is	discouraged.

Newline	sequences	

Outside	a	character	class,	by	default,	the	escape	sequence	\R	matches
any	Unicode	newline	sequence.	This	is	a	Perl	5.10	feature.	In	non-
UTF-8	mode	\R	is	equivalent	to	the	following:

		(?>\r\n|\n|\x0b|\f|\r|\x85)

This	is	an	example	of	an	"atomic	group",	details	of	which	are	given
below.	This	particular	group	matches	either	the	two-character
sequence	CR	followed	by	LF,	or	one	of	the	single	characters	LF
(linefeed,	U+000A),	VT	(vertical	tab,	U+000B),	FF	(formfeed,
U+000C),	CR	(carriage	return,	U+000D),	or	NEL	(next	line,
U+0085).	The	two-character	sequence	is	treated	as	a	single	unit	that
cannot	be	split.

In	UTF-8	mode,	two	additional	characters	whose	codepoints	are
greater	than	255	are	added:	LS	(line	separator,	U+2028)	and	PS
(paragraph	separator,	U+2029).	Unicode	character	property	support	is
not	needed	for	these	characters	to	be	recognized.

It	is	possible	to	restrict	\R	to	match	only	CR,	LF,	or	CRLF	(instead	of
the	complete	set	of	Unicode	line	endings)	by	setting	the	option
PCRE_BSR_ANYCRLF	either	at	compile	time	or	when	the	pattern	is
matched.	(BSR	is	an	abbrevation	for	"backslash	R".)	This	can	be
made	the	default	when	PCRE	is	built;	if	this	is	the	case,	the	other
behaviour	can	be	requested	via	the	PCRE_BSR_UNICODE	option.	It
is	also	possible	to	specify	these	settings	by	starting	a	pattern	string
with	one	of	the	following	sequences:

		(*BSR_ANYCRLF)			CR,	LF,	or	CRLF	only
		(*BSR_UNICODE)			any	Unicode	newline	sequence

These	override	the	default	and	the	options	given	to	pcre_compile(),
but	they	can	be	overridden	by	options	given	to	pcre_exec().	Note	that
these	special	settings,	which	are	not	Perl-compatible,	are	recognized
only	at	the	very	start	of	a	pattern,	and	that	they	must	be	in	upper	case.
If	more	than	one	of	them	is	present,	the	last	one	is	used.	They	can	be
combined	with	a	change	of	newline	convention,	for	example,	a	pattern
can	start	with:

		(*ANY)(*BSR_ANYCRLF)

Inside	a	character	class,	\R	matches	the	letter	"R".

Unicode	character	properties	

When	PCRE	is	built	with	Unicode	character	property	support,	three
additional	escape	sequences	that	match	characters	with	specific
properties	are	available.	When	not	in	UTF-8	mode,	these	sequences
are	of	course	limited	to	testing	characters	whose	codepoints	are	less
than	256,	but	they	do	work	in	this	mode.	The	extra	escape	sequences
are:

		\p{xx}			a	character	with	the	xx	property
		\P{xx}			a	character	without	the	xx	property
		\X							an	extended	Unicode	sequence

The	property	names	represented	by	xx	above	are	limited	to	the
Unicode	script	names,	the	general	category	properties,	and	"Any",
which	matches	any	character	(including	newline).	Other	properties
such	as	"InMusicalSymbols"	are	not	currently	supported	by	PCRE.
Note	that	\P{Any}	does	not	match	any	characters,	so	always	causes	a
match	failure.

Sets	of	Unicode	characters	are	defined	as	belonging	to	certain	scripts.
A	character	from	one	of	these	sets	can	be	matched	using	a	script
name.	For	example:

		\p{Greek}
		\P{Han}

Those	that	are	not	part	of	an	identified	script	are	lumped	together	as
"Common".	The	current	list	of	scripts	is:

Arabic,	Armenian,	Balinese,	Bengali,	Bopomofo,	Braille,	Buginese,
Buhid,	Canadian_Aboriginal,	Cherokee,	Common,	Coptic,
Cuneiform,	Cypriot,	Cyrillic,	Deseret,	Devanagari,	Ethiopic,
Georgian,	Glagolitic,	Gothic,	Greek,	Gujarati,	Gurmukhi,	Han,
Hangul,	Hanunoo,	Hebrew,	Hiragana,	Inherited,	Kannada,	Katakana,
Kharoshthi,	Khmer,	Lao,	Latin,	Limbu,	Linear_B,	Malayalam,
Mongolian,	Myanmar,	New_Tai_Lue,	Nko,	Ogham,	Old_Italic,
Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,	Runic,	Shavian,
Sinhala,	Syloti_Nagri,	Syriac,	Tagalog,	Tagbanwa,	Tai_Le,	Tamil,
Telugu,	Thaana,	Thai,	Tibetan,	Tifinagh,	Ugaritic,	Yi.

Each	character	has	exactly	one	general	category	property,	specified	by
a	two-letter	abbreviation.	For	compatibility	with	Perl,	negation	can	be
specified	by	including	a	circumflex	between	the	opening	brace	and	the
property	name.	For	example,	\p{^Lu}	is	the	same	as	\P{Lu}.

If	only	one	letter	is	specified	with	\p	or	\P,	it	includes	all	the	general
category	properties	that	start	with	that	letter.	In	this	case,	in	the
absence	of	negation,	the	curly	brackets	in	the	escape	sequence	are
optional;	these	two	examples	have	the	same	effect:

		\p{L}
		\pL

The	following	general	category	property	codes	are	supported:

		C					Other
		Cc				Control
		Cf				Format
		Cn				Unassigned
		Co				Private	use
		Cs				Surrogate

		L					Letter
		Ll				Lower	case	letter
		Lm				Modifier	letter
		Lo				Other	letter
		Lt				Title	case	letter
		Lu				Upper	case	letter

		M					Mark
		Mc				Spacing	mark
		Me				Enclosing	mark
		Mn				Non-spacing	mark

		N					Number
		Nd				Decimal	number
		Nl				Letter	number
		No				Other	number

		P					Punctuation
		Pc				Connector	punctuation
		Pd				Dash	punctuation
		Pe				Close	punctuation
		Pf				Final	punctuation
		Pi				Initial	punctuation
		Po				Other	punctuation
		Ps				Open	punctuation

		S					Symbol
		Sc				Currency	symbol
		Sk				Modifier	symbol
		Sm				Mathematical	symbol

		So				Other	symbol

		Z					Separator
		Zl				Line	separator
		Zp				Paragraph	separator
		Zs				Space	separator

The	special	property	L&	is	also	supported:	it	matches	a	character	that
has	the	Lu,	Ll,	or	Lt	property,	in	other	words,	a	letter	that	is	not
classified	as	a	modifier	or	"other".

The	Cs	(Surrogate)	property	applies	only	to	characters	in	the	range
U+D800	to	U+DFFF.	Such	characters	are	not	valid	in	UTF-8	strings
(see	RFC	3629)	and	so	cannot	be	tested	by	PCRE,	unless	UTF-8
validity	checking	has	been	turned	off	(see	the	discussion	of
PCRE_NO_UTF8_CHECK	in	the	pcreapi	page).

The	long	synonyms	for	these	properties	that	Perl	supports	(such	as
\p{Letter})	are	not	supported	by	PCRE,	nor	is	it	permitted	to	prefix
any	of	these	properties	with	"Is".

No	character	that	is	in	the	Unicode	table	has	the	Cn	(unassigned)
property.	Instead,	this	property	is	assumed	for	any	code	point	that	is
not	in	the	Unicode	table.

Specifying	caseless	matching	does	not	affect	these	escape	sequences.
For	example,	\p{Lu}	always	matches	only	upper	case	letters.

The	\X	escape	matches	any	number	of	Unicode	characters	that	form
an	extended	Unicode	sequence.	\X	is	equivalent	to

		(?>\PM\pM*)

That	is,	it	matches	a	character	without	the	"mark"	property,	followed
by	zero	or	more	characters	with	the	"mark"	property,	and	treats	the

sequence	as	an	atomic	group	(see	below).	Characters	with	the	"mark"
property	are	typically	accents	that	affect	the	preceding	character.	None
of	them	have	codepoints	less	than	256,	so	in	non-UTF-8	mode	\X
matches	any	one	character.

Matching	characters	by	Unicode	property	is	not	fast,	because	PCRE
has	to	search	a	structure	that	contains	data	for	over	fifteen	thousand
characters.	That	is	why	the	traditional	escape	sequences	such	as	\d	and
\w	do	not	use	Unicode	properties	in	PCRE.

Resetting	the	match	start	

The	escape	sequence	\K,	which	is	a	Perl	5.10	feature,	causes	any
previously	matched	characters	not	to	be	included	in	the	final	matched
sequence.	For	example,	the	pattern:

		foo\Kbar

matches	"foobar",	but	reports	that	it	has	matched	"bar".	This	feature	is
similar	to	a	lookbehind	assertion	(described	below).	However,	in	this
case,	the	part	of	the	subject	before	the	real	match	does	not	have	to	be
of	fixed	length,	as	lookbehind	assertions	do.	The	use	of	\K	does	not
interfere	with	the	setting	of	captured	substrings.	For	example,	when
the	pattern

		(foo)\Kbar

matches	"foobar",	the	first	substring	is	still	set	to	"foo".

Simple	assertions	

The	final	use	of	backslash	is	for	certain	simple	assertions.	An
assertion	specifies	a	condition	that	has	to	be	met	at	a	particular	point

in	a	match,	without	consuming	any	characters	from	the	subject	string.
The	use	of	subpatterns	for	more	complicated	assertions	is	described
below.	The	backslashed	assertions	are:

		\b					matches	at	a	word	boundary
		\B					matches	when	not	at	a	word	boundary
		\A					matches	at	the	start	of	the	subject
		\Z					matches	at	the	end	of	the	subject
										also	matches	before	a	newline	at	the	end	of	the	subject
		\z					matches	only	at	the	end	of	the	subject
		\G					matches	at	the	first	matching	position	in	the	subject

These	assertions	may	not	appear	in	character	classes	(but	note	that	\b
has	a	different	meaning,	namely	the	backspace	character,	inside	a
character	class).

A	word	boundary	is	a	position	in	the	subject	string	where	the	current
character	and	the	previous	character	do	not	both	match	\w	or	\W	(i.e.
one	matches	\w	and	the	other	matches	\W),	or	the	start	or	end	of	the
string	if	the	first	or	last	character	matches	\w,	respectively.

The	\A,	\Z,	and	\z	assertions	differ	from	the	traditional	circumflex	and
dollar	(described	in	the	next	section)	in	that	they	only	ever	match	at
the	very	start	and	end	of	the	subject	string,	whatever	options	are	set.
Thus,	they	are	independent	of	multiline	mode.	These	three	assertions
are	not	affected	by	the	PCRE_NOTBOL	or	PCRE_NOTEOL	options,
which	affect	only	the	behaviour	of	the	circumflex	and	dollar
metacharacters.	However,	if	the	startoffset	argument	of	pcre_exec()	is
non-zero,	indicating	that	matching	is	to	start	at	a	point	other	than	the
beginning	of	the	subject,	\A	can	never	match.	The	difference	between
\Z	and	\z	is	that	\Z	matches	before	a	newline	at	the	end	of	the	string	as
well	as	at	the	very	end,	whereas	\z	matches	only	at	the	end.

The	\G	assertion	is	true	only	when	the	current	matching	position	is	at
the	start	point	of	the	match,	as	specified	by	the	startoffset	argument	of

pcre_exec().	It	differs	from	\A	when	the	value	of	startoffset	is	non-
zero.	By	calling	pcre_exec()	multiple	times	with	appropriate
arguments,	you	can	mimic	Perl's	/g	option,	and	it	is	in	this	kind	of
implementation	where	\G	can	be	useful.

Note,	however,	that	PCRE's	interpretation	of	\G,	as	the	start	of	the
current	match,	is	subtly	different	from	Perl's,	which	defines	it	as	the
end	of	the	previous	match.	In	Perl,	these	can	be	different	when	the
previously	matched	string	was	empty.	Because	PCRE	does	just	one
match	at	a	time,	it	cannot	reproduce	this	behaviour.

If	all	the	alternatives	of	a	pattern	begin	with	\G,	the	expression	is
anchored	to	the	starting	match	position,	and	the	"anchored"	flag	is	set
in	the	compiled	regular	expression.

circumflex	and	dollar

Outside	a	character	class,	in	the	default	matching	mode,	the
circumflex	character	is	an	assertion	that	is	true	only	if	the	current
matching	point	is	at	the	start	of	the	subject	string.	If	the	startoffset
argument	of	pcre_exec()	is	non-zero,	circumflex	can	never	match	if
the	PCRE_MULTILINE	option	is	unset.	Inside	a	character	class,
circumflex	has	an	entirely	different	meaning	(see	below).

Circumflex	need	not	be	the	first	character	of	the	pattern	if	a	number	of
alternatives	are	involved,	but	it	should	be	the	first	thing	in	each
alternative	in	which	it	appears	if	the	pattern	is	ever	to	match	that
branch.	If	all	possible	alternatives	start	with	a	circumflex,	that	is,	if
the	pattern	is	constrained	to	match	only	at	the	start	of	the	subject,	it	is
said	to	be	an	"anchored"	pattern.	(There	are	also	other	constructs	that
can	cause	a	pattern	to	be	anchored.)

A	dollar	character	is	an	assertion	that	is	true	only	if	the	current

matching	point	is	at	the	end	of	the	subject	string,	or	immediately
before	a	newline	at	the	end	of	the	string	(by	default).	Dollar	need	not
be	the	last	character	of	the	pattern	if	a	number	of	alternatives	are
involved,	but	it	should	be	the	last	item	in	any	branch	in	which	it
appears.	Dollar	has	no	special	meaning	in	a	character	class.

The	meaning	of	dollar	can	be	changed	so	that	it	matches	only	at	the
very	end	of	the	string,	by	setting	the	PCRE_DOLLAR_ENDONLY
option	at	compile	time.	This	does	not	affect	the	\Z	assertion.

The	meanings	of	the	circumflex	and	dollar	characters	are	changed	if
the	PCRE_MULTILINE	option	is	set.	When	this	is	the	case,	a
circumflex	matches	immediately	after	internal	newlines	as	well	as	at
the	start	of	the	subject	string.	It	does	not	match	after	a	newline	that
ends	the	string.	A	dollar	matches	before	any	newlines	in	the	string,	as
well	as	at	the	very	end,	when	PCRE_MULTILINE	is	set.	When
newline	is	specified	as	the	two-character	sequence	CRLF,	isolated	CR
and	LF	characters	do	not	indicate	newlines.

For	example,	the	pattern	/^abc$/	matches	the	subject	string	"def\nabc"
(where	\n	represents	a	newline)	in	multiline	mode,	but	not	otherwise.
Consequently,	patterns	that	are	anchored	in	single	line	mode	because
all	branches	start	with	^	are	not	anchored	in	multiline	mode,	and	a
match	for	circumflex	is	possible	when	the	startoffset	argument	of
pcre_exec()	is	non-zero.	The	PCRE_DOLLAR_ENDONLY	option	is
ignored	if	PCRE_MULTILINE	is	set.

Note	that	the	sequences	\A,	\Z,	and	\z	can	be	used	to	match	the	start
and	end	of	the	subject	in	both	modes,	and	if	all	branches	of	a	pattern
start	with	\A	it	is	always	anchored,	whether	or	not
PCRE_MULTILINE	is	set.

full	stop	(period,	dot)

Outside	a	character	class,	a	dot	in	the	pattern	matches	any	one
character	in	the	subject	string	except	(by	default)	a	character	that
signifies	the	end	of	a	line.	In	UTF-8	mode,	the	matched	character	may
be	more	than	one	byte	long.

When	a	line	ending	is	defined	as	a	single	character,	dot	never	matches
that	character;	when	the	two-character	sequence	CRLF	is	used,	dot
does	not	match	CR	if	it	is	immediately	followed	by	LF,	but	otherwise
it	matches	all	characters	(including	isolated	CRs	and	LFs).	When	any
Unicode	line	endings	are	being	recognized,	dot	does	not	match	CR	or
LF	or	any	of	the	other	line	ending	characters.

The	behaviour	of	dot	with	regard	to	newlines	can	be	changed.	If	the
PCRE_DOTALL	option	is	set,	a	dot	matches	any	one	character,
without	exception.	If	the	two-character	sequence	CRLF	is	present	in
the	subject	string,	it	takes	two	dots	to	match	it.

The	handling	of	dot	is	entirely	independent	of	the	handling	of
circumflex	and	dollar,	the	only	relationship	being	that	they	both
involve	newlines.	Dot	has	no	special	meaning	in	a	character	class.

matching	a	single	byte

Outside	a	character	class,	the	escape	sequence	\C	matches	any	one
byte,	both	in	and	out	of	UTF-8	mode.	Unlike	a	dot,	it	always	matches
any	line-ending	characters.	The	feature	is	provided	in	Perl	in	order	to
match	individual	bytes	in	UTF-8	mode.	Because	it	breaks	up	UTF-8
characters	into	individual	bytes,	what	remains	in	the	string	may	be	a
malformed	UTF-8	string.	For	this	reason,	the	\C	escape	sequence	is
best	avoided.

PCRE	does	not	allow	\C	to	appear	in	lookbehind	assertions	(described
below),	because	in	UTF-8	mode	this	would	make	it	impossible	to

calculate	the	length	of	the	lookbehind.

square	brackets	and	character	classes

An	opening	square	bracket	introduces	a	character	class,	terminated	by
a	closing	square	bracket.	A	closing	square	bracket	on	its	own	is	not
special.	If	a	closing	square	bracket	is	required	as	a	member	of	the
class,	it	should	be	the	first	data	character	in	the	class	(after	an	initial
circumflex,	if	present)	or	escaped	with	a	backslash.

A	character	class	matches	a	single	character	in	the	subject.	In	UTF-8
mode,	the	character	may	occupy	more	than	one	byte.	A	matched
character	must	be	in	the	set	of	characters	defined	by	the	class,	unless
the	first	character	in	the	class	definition	is	a	circumflex,	in	which	case
the	subject	character	must	not	be	in	the	set	defined	by	the	class.	If	a
circumflex	is	actually	required	as	a	member	of	the	class,	ensure	it	is
not	the	first	character,	or	escape	it	with	a	backslash.

For	example,	the	character	class	[aeiou]	matches	any	lower	case
vowel,	while	[^aeiou]	matches	any	character	that	is	not	a	lower	case
vowel.	Note	that	a	circumflex	is	just	a	convenient	notation	for
specifying	the	characters	that	are	in	the	class	by	enumerating	those
that	are	not.	A	class	that	starts	with	a	circumflex	is	not	an	assertion:	it
still	consumes	a	character	from	the	subject	string,	and	therefore	it	fails
if	the	current	pointer	is	at	the	end	of	the	string.

In	UTF-8	mode,	characters	with	values	greater	than	255	can	be
included	in	a	class	as	a	literal	string	of	bytes,	or	by	using	the	\x{
escaping	mechanism.

When	caseless	matching	is	set,	any	letters	in	a	class	represent	both
their	upper	case	and	lower	case	versions,	so	for	example,	a	caseless
[aeiou]	matches	"A"	as	well	as	"a",	and	a	caseless	[^aeiou]	does	not

match	"A",	whereas	a	caseful	version	would.	In	UTF-8	mode,	PCRE
always	understands	the	concept	of	case	for	characters	whose	values
are	less	than	128,	so	caseless	matching	is	always	possible.	For
characters	with	higher	values,	the	concept	of	case	is	supported	if
PCRE	is	compiled	with	Unicode	property	support,	but	not	otherwise.
If	you	want	to	use	caseless	matching	for	characters	128	and	above,
you	must	ensure	that	PCRE	is	compiled	with	Unicode	property
support	as	well	as	with	UTF-8	support.

Characters	that	might	indicate	line	breaks	are	never	treated	in	any
special	way	when	matching	character	classes,	whatever	line-ending
sequence	is	in	use,	and	whatever	setting	of	the	PCRE_DOTALL	and
PCRE_MULTILINE	options	is	used.	A	class	such	as	[^a]	always
matches	one	of	these	characters.

The	minus	(hyphen)	character	can	be	used	to	specify	a	range	of
characters	in	a	character	class.	For	example,	[d-m]	matches	any	letter
between	d	and	m,	inclusive.	If	a	minus	character	is	required	in	a	class,
it	must	be	escaped	with	a	backslash	or	appear	in	a	position	where	it
cannot	be	interpreted	as	indicating	a	range,	typically	as	the	first	or	last
character	in	the	class.

It	is	not	possible	to	have	the	literal	character	"]"	as	the	end	character
of	a	range.	A	pattern	such	as	[W-]46]	is	interpreted	as	a	class	of	two
characters	("W"	and	"-")	followed	by	a	literal	string	"46]",	so	it	would
match	"W46]"	or	"-46]".	However,	if	the	"]"	is	escaped	with	a
backslash	it	is	interpreted	as	the	end	of	range,	so	[W-\]46]	is
interpreted	as	a	class	containing	a	range	followed	by	two	other
characters.	The	octal	or	hexadecimal	representation	of	"]"	can	also	be
used	to	end	a	range.

Ranges	operate	in	the	collating	sequence	of	character	values.	They
can	also	be	used	for	characters	specified	numerically,	for	example
[\000-\037].	In	UTF-8	mode,	ranges	can	include	characters	whose

values	are	greater	than	255,	for	example	[\x{100}-\x{2ff}].

If	a	range	that	includes	letters	is	used	when	caseless	matching	is	set,	it
matches	the	letters	in	either	case.	For	example,	[W-c]	is	equivalent	to
[][\\^_`wxyzabc],	matched	caselessly,	and	in	non-UTF-8	mode,	if
character	tables	for	a	French	locale	are	in	use,	[\xc8-\xcb]	matches
accented	E	characters	in	both	cases.	In	UTF-8	mode,	PCRE	supports
the	concept	of	case	for	characters	with	values	greater	than	128	only
when	it	is	compiled	with	Unicode	property	support.

The	character	types	\d,	\D,	\p,	\P,	\s,	\S,	\w,	and	\W	may	also	appear	in
a	character	class,	and	add	the	characters	that	they	match	to	the	class.
For	example,	[\dABCDEF]	matches	any	hexadecimal	digit.	A
circumflex	can	conveniently	be	used	with	the	upper	case	character
types	to	specify	a	more	restricted	set	of	characters	than	the	matching
lower	case	type.	For	example,	the	class	[^\W_]	matches	any	letter	or
digit,	but	not	underscore.

The	only	metacharacters	that	are	recognized	in	character	classes	are
backslash,	hyphen	(only	where	it	can	be	interpreted	as	specifying	a
range),	circumflex	(only	at	the	start),	opening	square	bracket	(only
when	it	can	be	interpreted	as	introducing	a	POSIX	class	name	-	see
the	next	section),	and	the	terminating	closing	square	bracket.
However,	escaping	other	non-alphanumeric	characters	does	no	harm.

posix	character	classes

Perl	supports	the	POSIX	notation	for	character	classes.	This	uses
names	enclosed	by	[:	and	:]	within	the	enclosing	square	brackets.
PCRE	also	supports	this	notation.	For	example,

		[01[:alpha:]%]

matches	"0",	"1",	any	alphabetic	character,	or	"%".	The	supported
class	names	are

		alnum				letters	and	digits
		alpha				letters
		ascii				character	codes	0	-	127
		blank				space	or	tab	only
		cntrl				control	characters
		digit				decimal	digits	(same	as	\d)
		graph				printing	characters,	excluding	space
		lower				lower	case	letters
		print				printing	characters,	including	space
		punct				printing	characters,	excluding	letters	and	digits
		space				white	space	(not	quite	the	same	as	\s)
		upper				upper	case	letters
		word					"word"	characters	(same	as	\w)
		xdigit			hexadecimal	digits

The	"space"	characters	are	HT	(9),	LF	(10),	VT	(11),	FF	(12),	CR
(13),	and	space	(32).	Notice	that	this	list	includes	the	VT	character
(code	11).	This	makes	"space"	different	to	\s,	which	does	not	include
VT	(for	Perl	compatibility).

The	name	"word"	is	a	Perl	extension,	and	"blank"	is	a	GNU	extension
from	Perl	5.8.	Another	Perl	extension	is	negation,	which	is	indicated
by	a	^	character	after	the	colon.	For	example,

		[12[:^digit:]]

matches	"1",	"2",	or	any	non-digit.	PCRE	(and	Perl)	also	recognize
the	POSIX	syntax	[.ch.]	and	[=ch=]	where	"ch"	is	a	"collating
element",	but	these	are	not	supported,	and	an	error	is	given	if	they	are
encountered.

In	UTF-8	mode,	characters	with	values	greater	than	128	do	not	match
any	of	the	POSIX	character	classes.

vertical	bar

Vertical	bar	characters	are	used	to	separate	alternative	patterns.	For
example,	the	pattern

		gilbert|sullivan

matches	either	"gilbert"	or	"sullivan".	Any	number	of	alternatives	may
appear,	and	an	empty	alternative	is	permitted	(matching	the	empty
string).	The	matching	process	tries	each	alternative	in	turn,	from	left
to	right,	and	the	first	one	that	succeeds	is	used.	If	the	alternatives	are
within	a	subpattern	(defined	below),	"succeeds"	means	matching	the
rest	of	the	main	pattern	as	well	as	the	alternative	in	the	subpattern.

internal	option	setting

The	settings	of	the	PCRE_CASELESS,	PCRE_MULTILINE,
PCRE_DOTALL,	and	PCRE_EXTENDED	options	(which	are	Perl-
compatible)	can	be	changed	from	within	the	pattern	by	a	sequence	of
Perl	option	letters	enclosed	between	"(?"	and	")".	The	option	letters
are

		i		for	PCRE_CASELESS
		m		for	PCRE_MULTILINE
		s		for	PCRE_DOTALL
		x		for	PCRE_EXTENDED

For	example,	(?im)	sets	caseless,	multiline	matching.	It	is	also
possible	to	unset	these	options	by	preceding	the	letter	with	a	hyphen,
and	a	combined	setting	and	unsetting	such	as	(?im-sx),	which	sets
PCRE_CASELESS	and	PCRE_MULTILINE	while	unsetting
PCRE_DOTALL	and	PCRE_EXTENDED,	is	also	permitted.	If	a
letter	appears	both	before	and	after	the	hyphen,	the	option	is	unset.

The	PCRE-specific	options	PCRE_DUPNAMES,
PCRE_UNGREEDY,	and	PCRE_EXTRA	can	be	changed	in	the	same
way	as	the	Perl-compatible	options	by	using	the	characters	J,	U	and	X
respectively.

When	an	option	change	occurs	at	top	level	(that	is,	not	inside
subpattern	parentheses),	the	change	applies	to	the	remainder	of	the
pattern	that	follows.	If	the	change	is	placed	right	at	the	start	of	a
pattern,	PCRE	extracts	it	into	the	global	options	(and	it	will	therefore
show	up	in	data	extracted	by	the	pcre_fullinfo()	function).

An	option	change	within	a	subpattern	(see	below	for	a	description	of
subpatterns)	affects	only	that	part	of	the	current	pattern	that	follows	it,
so

		(a(?i)b)c

matches	abc	and	aBc	and	no	other	strings	(assuming
PCRE_CASELESS	is	not	used).	By	this	means,	options	can	be	made
to	have	different	settings	in	different	parts	of	the	pattern.	Any	changes
made	in	one	alternative	do	carry	on	into	subsequent	branches	within
the	same	subpattern.	For	example,

		(a(?i)b|c)

matches	"ab",	"aB",	"c",	and	"C",	even	though	when	matching	"C"	the
first	branch	is	abandoned	before	the	option	setting.	This	is	because	the
effects	of	option	settings	happen	at	compile	time.	There	would	be
some	very	weird	behaviour	otherwise.

Note:	There	are	other	PCRE-specific	options	that	can	be	set	by	the
application	when	the	compile	or	match	functions	are	called.	In	some
cases	the	pattern	can	contain	special	leading	sequences	to	override
what	the	application	has	set	or	what	has	been	defaulted.	Details	are
given	in	the	section	entitled	"Newline	sequences"	above.

subpatterns

Subpatterns	are	delimited	by	parentheses	(round	brackets),	which	can
be	nested.	Turning	part	of	a	pattern	into	a	subpattern	does	two	things:	

1.	It	localizes	a	set	of	alternatives.	For	example,	the	pattern

		cat(aract|erpillar|)

matches	one	of	the	words	"cat",	"cataract",	or	"caterpillar".	Without
the	parentheses,	it	would	match	"cataract",	"erpillar"	or	an	empty
string.	

2.	It	sets	up	the	subpattern	as	a	capturing	subpattern.	This	means	that,
when	the	whole	pattern	matches,	that	portion	of	the	subject	string	that
matched	the	subpattern	is	passed	back	to	the	caller	via	the	ovector
argument	of	pcre_exec().	Opening	parentheses	are	counted	from	left
to	right	(starting	from	1)	to	obtain	numbers	for	the	capturing
subpatterns.

For	example,	if	the	string	"the	red	king"	is	matched	against	the	pattern

		the	((red|white)	(king|queen))

the	captured	substrings	are	"red	king",	"red",	and	"king",	and	are
numbered	1,	2,	and	3,	respectively.

The	fact	that	plain	parentheses	fulfil	two	functions	is	not	always
helpful.	There	are	often	times	when	a	grouping	subpattern	is	required
without	a	capturing	requirement.	If	an	opening	parenthesis	is	followed
by	a	question	mark	and	a	colon,	the	subpattern	does	not	do	any
capturing,	and	is	not	counted	when	computing	the	number	of	any
subsequent	capturing	subpatterns.	For	example,	if	the	string	"the	white

queen"	is	matched	against	the	pattern

		the	((?:red|white)	(king|queen))

the	captured	substrings	are	"white	queen"	and	"queen",	and	are
numbered	1	and	2.	The	maximum	number	of	capturing	subpatterns	is
65535.

As	a	convenient	shorthand,	if	any	option	settings	are	required	at	the
start	of	a	non-capturing	subpattern,	the	option	letters	may	appear
between	the	"?"	and	the	":".	Thus	the	two	patterns

		(?i:saturday|sunday)
		(?:(?i)saturday|sunday)

match	exactly	the	same	set	of	strings.	Because	alternative	branches
are	tried	from	left	to	right,	and	options	are	not	reset	until	the	end	of
the	subpattern	is	reached,	an	option	setting	in	one	branch	does	affect
subsequent	branches,	so	the	above	patterns	match	"SUNDAY"	as	well
as	"Saturday".

duplicate	subpattern	numbers

Perl	5.10	introduced	a	feature	whereby	each	alternative	in	a	subpattern
uses	the	same	numbers	for	its	capturing	parentheses.	Such	a
subpattern	starts	with	(?|	and	is	itself	a	non-capturing	subpattern.	For
example,	consider	this	pattern:

		(?|(Sat)ur|(Sun))day

Because	the	two	alternatives	are	inside	a	(?|	group,	both	sets	of
capturing	parentheses	are	numbered	one.	Thus,	when	the	pattern
matches,	you	can	look	at	captured	substring	number	one,	whichever
alternative	matched.	This	construct	is	useful	when	you	want	to	capture

part,	but	not	all,	of	one	of	a	number	of	alternatives.	Inside	a	(?|	group,
parentheses	are	numbered	as	usual,	but	the	number	is	reset	at	the	start
of	each	branch.	The	numbers	of	any	capturing	buffers	that	follow	the
subpattern	start	after	the	highest	number	used	in	any	branch.	The
following	example	is	taken	from	the	Perl	documentation.	The
numbers	underneath	show	in	which	buffer	the	captured	content	will	be
stored.

		#	before		---------------branch-reset-----------	after
		/	(a)		(?|	x	(y)	z	|	(p	(q)	r)	|	(t)	u	(v))	(z)	/x
		#	1												2									2		3								2					3					4

A	backreference	or	a	recursive	call	to	a	numbered	subpattern	always
refers	to	the	first	one	in	the	pattern	with	the	given	number.

An	alternative	approach	to	using	this	"branch	reset"	feature	is	to	use
duplicate	named	subpatterns,	as	described	in	the	next	section.

named	subpatterns

Identifying	capturing	parentheses	by	number	is	simple,	but	it	can	be
very	hard	to	keep	track	of	the	numbers	in	complicated	regular
expressions.	Furthermore,	if	an	expression	is	modified,	the	numbers
may	change.	To	help	with	this	difficulty,	PCRE	supports	the	naming
of	subpatterns.	This	feature	was	not	added	to	Perl	until	release	5.10.
Python	had	the	feature	earlier,	and	PCRE	introduced	it	at	release	4.0,
using	the	Python	syntax.	PCRE	now	supports	both	the	Perl	and	the
Python	syntax.

In	PCRE,	a	subpattern	can	be	named	in	one	of	three	ways:	(?
<name>...)	or	(?'name'...)	as	in	Perl,	or	(?P<name>...)	as	in	Python.
References	to	capturing	parentheses	from	other	parts	of	the	pattern,
such	as	backreferences,	recursion,	and	conditions,	can	be	made	by

name	as	well	as	by	number.

Names	consist	of	up	to	32	alphanumeric	characters	and	underscores.
Named	capturing	parentheses	are	still	allocated	numbers	as	well	as
names,	exactly	as	if	the	names	were	not	present.	The	PCRE	API
provides	function	calls	for	extracting	the	name-to-number	translation
table	from	a	compiled	pattern.	There	is	also	a	convenience	function
for	extracting	a	captured	substring	by	name.

By	default,	a	name	must	be	unique	within	a	pattern,	but	it	is	possible
to	relax	this	constraint	by	setting	the	PCRE_DUPNAMES	option	at
compile	time.	This	can	be	useful	for	patterns	where	only	one	instance
of	the	named	parentheses	can	match.	Suppose	you	want	to	match	the
name	of	a	weekday,	either	as	a	3-letter	abbreviation	or	as	the	full
name,	and	in	both	cases	you	want	to	extract	the	abbreviation.	This
pattern	(ignoring	the	line	breaks)	does	the	job:

		(?<DN>Mon|Fri|Sun)(?:day)?|
		(?<DN>Tue)(?:sday)?|
		(?<DN>Wed)(?:nesday)?|
		(?<DN>Thu)(?:rsday)?|
		(?<DN>Sat)(?:urday)?

There	are	five	capturing	substrings,	but	only	one	is	ever	set	after	a
match.	(An	alternative	way	of	solving	this	problem	is	to	use	a	"branch
reset"	subpattern,	as	described	in	the	previous	section.)

The	convenience	function	for	extracting	the	data	by	name	returns	the
substring	for	the	first	(and	in	this	example,	the	only)	subpattern	of	that
name	that	matched.	This	saves	searching	to	find	which	numbered
subpattern	it	was.	If	you	make	a	reference	to	a	non-unique	named
subpattern	from	elsewhere	in	the	pattern,	the	one	that	corresponds	to
the	lowest	number	is	used.	For	further	details	of	the	interfaces	for
handling	named	subpatterns,	see	the	pcreapi	documentation.

repetition

Repetition	is	specified	by	quantifiers,	which	can	follow	any	of	the
following	items:

		a	literal	data	character
		the	dot	metacharacter
		the	\C	escape	sequence
		the	\X	escape	sequence	(in	UTF-8	mode	with	Unicode	properties)
		the	\R	escape	sequence
		an	escape	such	as	\d	that	matches	a	single	character
		a	character	class
		a	back	reference	(see	next	section)
		a	parenthesized	subpattern	(unless	it	is	an	assertion)

The	general	repetition	quantifier	specifies	a	minimum	and	maximum
number	of	permitted	matches,	by	giving	the	two	numbers	in	curly
brackets	(braces),	separated	by	a	comma.	The	numbers	must	be	less
than	65536,	and	the	first	must	be	less	than	or	equal	to	the	second.	For
example:

		z{2,4}

matches	"zz",	"zzz",	or	"zzzz".	A	closing	brace	on	its	own	is	not	a
special	character.	If	the	second	number	is	omitted,	but	the	comma	is
present,	there	is	no	upper	limit;	if	the	second	number	and	the	comma
are	both	omitted,	the	quantifier	specifies	an	exact	number	of	required
matches.	Thus

		[aeiou]{3,}

matches	at	least	3	successive	vowels,	but	may	match	many	more,
while

		\d{8}

matches	exactly	8	digits.	An	opening	curly	bracket	that	appears	in	a
position	where	a	quantifier	is	not	allowed,	or	one	that	does	not	match
the	syntax	of	a	quantifier,	is	taken	as	a	literal	character.	For	example,
{,6}	is	not	a	quantifier,	but	a	literal	string	of	four	characters.

In	UTF-8	mode,	quantifiers	apply	to	UTF-8	characters	rather	than	to
individual	bytes.	Thus,	for	example,	\x{100}{2}	matches	two	UTF-8
characters,	each	of	which	is	represented	by	a	two-byte	sequence.
Similarly,	when	Unicode	property	support	is	available,	\X{3}	matches
three	Unicode	extended	sequences,	each	of	which	may	be	several
bytes	long	(and	they	may	be	of	different	lengths).

The	quantifier	{0}	is	permitted,	causing	the	expression	to	behave	as	if
the	previous	item	and	the	quantifier	were	not	present.	This	may	be
useful	for	subpatterns	that	are	referenced	as	subroutines	from
elsewhere	in	the	pattern.	Items	other	than	subpatterns	that	have	a	{0}
quantifier	are	omitted	from	the	compiled	pattern.

For	convenience,	the	three	most	common	quantifiers	have	single-
character	abbreviations:

		*				is	equivalent	to	{0,}
		+				is	equivalent	to	{1,}
		?				is	equivalent	to	{0,1}

It	is	possible	to	construct	infinite	loops	by	following	a	subpattern	that
can	match	no	characters	with	a	quantifier	that	has	no	upper	limit,	for
example:

		(a?)*

Earlier	versions	of	Perl	and	PCRE	used	to	give	an	error	at	compile
time	for	such	patterns.	However,	because	there	are	cases	where	this
can	be	useful,	such	patterns	are	now	accepted,	but	if	any	repetition	of
the	subpattern	does	in	fact	match	no	characters,	the	loop	is	forcibly

broken.

By	default,	the	quantifiers	are	"greedy",	that	is,	they	match	as	much	as
possible	(up	to	the	maximum	number	of	permitted	times),	without
causing	the	rest	of	the	pattern	to	fail.	The	classic	example	of	where
this	gives	problems	is	in	trying	to	match	comments	in	C	programs.
These	appear	between	/*	and	*/	and	within	the	comment,	individual	*
and	/	characters	may	appear.	An	attempt	to	match	C	comments	by
applying	the	pattern

		/*.**/

to	the	string

		/*	first	comment	*/		not	comment		/*	second	comment	*/

fails,	because	it	matches	the	entire	string	owing	to	the	greediness	of
the	.*	item.

However,	if	a	quantifier	is	followed	by	a	question	mark,	it	ceases	to	be
greedy,	and	instead	matches	the	minimum	number	of	times	possible,
so	the	pattern

		/*.*?*/

does	the	right	thing	with	the	C	comments.	The	meaning	of	the	various
quantifiers	is	not	otherwise	changed,	just	the	preferred	number	of
matches.	Do	not	confuse	this	use	of	question	mark	with	its	use	as	a
quantifier	in	its	own	right.	Because	it	has	two	uses,	it	can	sometimes
appear	doubled,	as	in

		\d??\d

which	matches	one	digit	by	preference,	but	can	match	two	if	that	is
the	only	way	the	rest	of	the	pattern	matches.

If	the	PCRE_UNGREEDY	option	is	set	(an	option	that	is	not
available	in	Perl),	the	quantifiers	are	not	greedy	by	default,	but
individual	ones	can	be	made	greedy	by	following	them	with	a
question	mark.	In	other	words,	it	inverts	the	default	behaviour.

When	a	parenthesized	subpattern	is	quantified	with	a	minimum	repeat
count	that	is	greater	than	1	or	with	a	limited	maximum,	more	memory
is	required	for	the	compiled	pattern,	in	proportion	to	the	size	of	the
minimum	or	maximum.

If	a	pattern	starts	with	.*	or	.{0,}	and	the	PCRE_DOTALL	option
(equivalent	to	Perl's	/s)	is	set,	thus	allowing	the	dot	to	match	newlines,
the	pattern	is	implicitly	anchored,	because	whatever	follows	will	be
tried	against	every	character	position	in	the	subject	string,	so	there	is
no	point	in	retrying	the	overall	match	at	any	position	after	the	first.
PCRE	normally	treats	such	a	pattern	as	though	it	were	preceded	by
\A.

In	cases	where	it	is	known	that	the	subject	string	contains	no
newlines,	it	is	worth	setting	PCRE_DOTALL	in	order	to	obtain	this
optimization,	or	alternatively	using	^	to	indicate	anchoring	explicitly.

However,	there	is	one	situation	where	the	optimization	cannot	be
used.	When	.*	is	inside	capturing	parentheses	that	are	the	subject	of	a
backreference	elsewhere	in	the	pattern,	a	match	at	the	start	may	fail
where	a	later	one	succeeds.	Consider,	for	example:

		(.*)abc\1

If	the	subject	is	"xyz123abc123"	the	match	point	is	the	fourth
character.	For	this	reason,	such	a	pattern	is	not	implicitly	anchored.

When	a	capturing	subpattern	is	repeated,	the	value	captured	is	the
substring	that	matched	the	final	iteration.	For	example,	after

		(tweedle[dume]{3}\s*)+

has	matched	"tweedledum	tweedledee"	the	value	of	the	captured
substring	is	"tweedledee".	However,	if	there	are	nested	capturing
subpatterns,	the	corresponding	captured	values	may	have	been	set	in
previous	iterations.	For	example,	after

		/(a|(b))+/

matches	"aba"	the	value	of	the	second	captured	substring	is	"b".

atomic	grouping	and	possessive	quantifiers

With	both	maximizing	("greedy")	and	minimizing	("ungreedy"	or
"lazy")	repetition,	failure	of	what	follows	normally	causes	the
repeated	item	to	be	re-evaluated	to	see	if	a	different	number	of	repeats
allows	the	rest	of	the	pattern	to	match.	Sometimes	it	is	useful	to
prevent	this,	either	to	change	the	nature	of	the	match,	or	to	cause	it	fail
earlier	than	it	otherwise	might,	when	the	author	of	the	pattern	knows
there	is	no	point	in	carrying	on.

Consider,	for	example,	the	pattern	\d+foo	when	applied	to	the	subject
line

		123456bar

After	matching	all	6	digits	and	then	failing	to	match	"foo",	the	normal
action	of	the	matcher	is	to	try	again	with	only	5	digits	matching	the
\d+	item,	and	then	with	4,	and	so	on,	before	ultimately	failing.
"Atomic	grouping"	(a	term	taken	from	Jeffrey	Friedl's	book)	provides
the	means	for	specifying	that	once	a	subpattern	has	matched,	it	is	not
to	be	re-evaluated	in	this	way.

If	we	use	atomic	grouping	for	the	previous	example,	the	matcher	gives

up	immediately	on	failing	to	match	"foo"	the	first	time.	The	notation
is	a	kind	of	special	parenthesis,	starting	with	(?>	as	in	this	example:

		(?>\d+)foo

This	kind	of	parenthesis	"locks	up"	the	part	of	the	pattern	it	contains
once	it	has	matched,	and	a	failure	further	into	the	pattern	is	prevented
from	backtracking	into	it.	Backtracking	past	it	to	previous	items,
however,	works	as	normal.

An	alternative	description	is	that	a	subpattern	of	this	type	matches	the
string	of	characters	that	an	identical	standalone	pattern	would	match,
if	anchored	at	the	current	point	in	the	subject	string.

Atomic	grouping	subpatterns	are	not	capturing	subpatterns.	Simple
cases	such	as	the	above	example	can	be	thought	of	as	a	maximizing
repeat	that	must	swallow	everything	it	can.	So,	while	both	\d+	and
\d+?	are	prepared	to	adjust	the	number	of	digits	they	match	in	order	to
make	the	rest	of	the	pattern	match,	(?>\d+)	can	only	match	an	entire
sequence	of	digits.

Atomic	groups	in	general	can	of	course	contain	arbitrarily
complicated	subpatterns,	and	can	be	nested.	However,	when	the
subpattern	for	an	atomic	group	is	just	a	single	repeated	item,	as	in	the
example	above,	a	simpler	notation,	called	a	"possessive	quantifier"
can	be	used.	This	consists	of	an	additional	+	character	following	a
quantifier.	Using	this	notation,	the	previous	example	can	be	rewritten
as

		\d++foo

Note	that	a	possessive	quantifier	can	be	used	with	an	entire	group,	for
example:

		(abc|xyz){2,3}+

Possessive	quantifiers	are	always	greedy;	the	setting	of	the
PCRE_UNGREEDY	option	is	ignored.	They	are	a	convenient
notation	for	the	simpler	forms	of	atomic	group.	However,	there	is	no
difference	in	the	meaning	of	a	possessive	quantifier	and	the	equivalent
atomic	group,	though	there	may	be	a	performance	difference;
possessive	quantifiers	should	be	slightly	faster.

The	possessive	quantifier	syntax	is	an	extension	to	the	Perl	5.8	syntax.
Jeffrey	Friedl	originated	the	idea	(and	the	name)	in	the	first	edition	of
his	book.	Mike	McCloskey	liked	it,	so	implemented	it	when	he	built
Sun's	Java	package,	and	PCRE	copied	it	from	there.	It	ultimately
found	its	way	into	Perl	at	release	5.10.

PCRE	has	an	optimization	that	automatically	"possessifies"	certain
simple	pattern	constructs.	For	example,	the	sequence	A+B	is	treated
as	A++B	because	there	is	no	point	in	backtracking	into	a	sequence	of
A's	when	B	must	follow.

When	a	pattern	contains	an	unlimited	repeat	inside	a	subpattern	that
can	itself	be	repeated	an	unlimited	number	of	times,	the	use	of	an
atomic	group	is	the	only	way	to	avoid	some	failing	matches	taking	a
very	long	time	indeed.	The	pattern

		(\D+|<\d+>)*[!?]

matches	an	unlimited	number	of	substrings	that	either	consist	of	non-
digits,	or	digits	enclosed	in	<>,	followed	by	either	!	or	?.	When	it
matches,	it	runs	quickly.	However,	if	it	is	applied	to

		aa

it	takes	a	long	time	before	reporting	failure.	This	is	because	the	string
can	be	divided	between	the	internal	\D+	repeat	and	the	external	*
repeat	in	a	large	number	of	ways,	and	all	have	to	be	tried.	(The
example	uses	[!?]	rather	than	a	single	character	at	the	end,	because

both	PCRE	and	Perl	have	an	optimization	that	allows	for	fast	failure
when	a	single	character	is	used.	They	remember	the	last	single
character	that	is	required	for	a	match,	and	fail	early	if	it	is	not	present
in	the	string.)	If	the	pattern	is	changed	so	that	it	uses	an	atomic	group,
like	this:

		((?>\D+)|<\d+>)*[!?]

sequences	of	non-digits	cannot	be	broken,	and	failure	happens
quickly.

back	references

Outside	a	character	class,	a	backslash	followed	by	a	digit	greater	than
0	(and	possibly	further	digits)	is	a	back	reference	to	a	capturing
subpattern	earlier	(that	is,	to	its	left)	in	the	pattern,	provided	there
have	been	that	many	previous	capturing	left	parentheses.

However,	if	the	decimal	number	following	the	backslash	is	less	than
10,	it	is	always	taken	as	a	back	reference,	and	causes	an	error	only	if
there	are	not	that	many	capturing	left	parentheses	in	the	entire	pattern.
In	other	words,	the	parentheses	that	are	referenced	need	not	be	to	the
left	of	the	reference	for	numbers	less	than	10.	A	"forward	back
reference"	of	this	type	can	make	sense	when	a	repetition	is	involved
and	the	subpattern	to	the	right	has	participated	in	an	earlier	iteration.

It	is	not	possible	to	have	a	numerical	"forward	back	reference"	to	a
subpattern	whose	number	is	10	or	more	using	this	syntax	because	a
sequence	such	as	\50	is	interpreted	as	a	character	defined	in	octal.	See
the	subsection	entitled	"Non-printing	characters"	above	for	further
details	of	the	handling	of	digits	following	a	backslash.	There	is	no
such	problem	when	named	parentheses	are	used.	A	back	reference	to
any	subpattern	is	possible	using	named	parentheses	(see	below).

Another	way	of	avoiding	the	ambiguity	inherent	in	the	use	of	digits
following	a	backslash	is	to	use	the	\g	escape	sequence,	which	is	a
feature	introduced	in	Perl	5.10.	This	escape	must	be	followed	by	an
unsigned	number	or	a	negative	number,	optionally	enclosed	in	braces.
These	examples	are	all	identical:

		(ring),	\1
		(ring),	\g1
		(ring),	\g{1}

An	unsigned	number	specifies	an	absolute	reference	without	the
ambiguity	that	is	present	in	the	older	syntax.	It	is	also	useful	when
literal	digits	follow	the	reference.	A	negative	number	is	a	relative
reference.	Consider	this	example:

		(abc(def)ghi)\g{-1}

The	sequence	\g{-1}	is	a	reference	to	the	most	recently	started
capturing	subpattern	before	\g,	that	is,	is	it	equivalent	to	\2.	Similarly,
\g{-2}	would	be	equivalent	to	\1.	The	use	of	relative	references	can	be
helpful	in	long	patterns,	and	also	in	patterns	that	are	created	by	joining
together	fragments	that	contain	references	within	themselves.

A	back	reference	matches	whatever	actually	matched	the	capturing
subpattern	in	the	current	subject	string,	rather	than	anything	matching
the	subpattern	itself	(see	"Subpatterns	as	subroutines"	below	for	a	way
of	doing	that).	So	the	pattern

		(sens|respons)e	and	\1ibility

matches	"sense	and	sensibility"	and	"response	and	responsibility",	but
not	"sense	and	responsibility".	If	caseful	matching	is	in	force	at	the
time	of	the	back	reference,	the	case	of	letters	is	relevant.	For	example,

		((?i)rah)\s+\1

matches	"rah	rah"	and	"RAH	RAH",	but	not	"RAH	rah",	even	though
the	original	capturing	subpattern	is	matched	caselessly.

There	are	several	different	ways	of	writing	back	references	to	named
subpatterns.	The	.NET	syntax	\k{name}	and	the	Perl	syntax	\k<name>
or	\k'name'	are	supported,	as	is	the	Python	syntax	(?P=name).	Perl
5.10's	unified	back	reference	syntax,	in	which	\g	can	be	used	for	both
numeric	and	named	references,	is	also	supported.	We	could	rewrite
the	above	example	in	any	of	the	following	ways:

		(?<p1>(?i)rah)\s+\k<p1>
		(?'p1'(?i)rah)\s+\k{p1}
		(?P<p1>(?i)rah)\s+(?P=p1)
		(?<p1>(?i)rah)\s+\g{p1}

A	subpattern	that	is	referenced	by	name	may	appear	in	the	pattern
before	or	after	the	reference.

There	may	be	more	than	one	back	reference	to	the	same	subpattern.	If
a	subpattern	has	not	actually	been	used	in	a	particular	match,	any	back
references	to	it	always	fail.	For	example,	the	pattern

		(a|(bc))\2

always	fails	if	it	starts	to	match	"a"	rather	than	"bc".	Because	there
may	be	many	capturing	parentheses	in	a	pattern,	all	digits	following
the	backslash	are	taken	as	part	of	a	potential	back	reference	number.	If
the	pattern	continues	with	a	digit	character,	some	delimiter	must	be
used	to	terminate	the	back	reference.	If	the	PCRE_EXTENDED
option	is	set,	this	can	be	whitespace.	Otherwise	an	empty	comment
(see	"Comments"	below)	can	be	used.

A	back	reference	that	occurs	inside	the	parentheses	to	which	it	refers
fails	when	the	subpattern	is	first	used,	so,	for	example,	(a\1)	never
matches.	However,	such	references	can	be	useful	inside	repeated

subpatterns.	For	example,	the	pattern

		(a|b\1)+

matches	any	number	of	"a"s	and	also	"aba",	"ababbaa"	etc.	At	each
iteration	of	the	subpattern,	the	back	reference	matches	the	character
string	corresponding	to	the	previous	iteration.	In	order	for	this	to
work,	the	pattern	must	be	such	that	the	first	iteration	does	not	need	to
match	the	back	reference.	This	can	be	done	using	alternation,	as	in	the
example	above,	or	by	a	quantifier	with	a	minimum	of	zero.

assertions

An	assertion	is	a	test	on	the	characters	following	or	preceding	the
current	matching	point	that	does	not	actually	consume	any	characters.
The	simple	assertions	coded	as	\b,	\B,	\A,	\G,	\Z,	\z,	^	and	$	are
described	above.

More	complicated	assertions	are	coded	as	subpatterns.	There	are	two
kinds:	those	that	look	ahead	of	the	current	position	in	the	subject
string,	and	those	that	look	behind	it.	An	assertion	subpattern	is
matched	in	the	normal	way,	except	that	it	does	not	cause	the	current
matching	position	to	be	changed.

Assertion	subpatterns	are	not	capturing	subpatterns,	and	may	not	be
repeated,	because	it	makes	no	sense	to	assert	the	same	thing	several
times.	If	any	kind	of	assertion	contains	capturing	subpatterns	within	it,
these	are	counted	for	the	purposes	of	numbering	the	capturing
subpatterns	in	the	whole	pattern.	However,	substring	capturing	is
carried	out	only	for	positive	assertions,	because	it	does	not	make	sense
for	negative	assertions.

Lookahead	assertions	

Lookahead	assertions	start	with	(?=	for	positive	assertions	and	(?!	for
negative	assertions.	For	example,

		\w+(?=;)

matches	a	word	followed	by	a	semicolon,	but	does	not	include	the
semicolon	in	the	match,	and

		foo(?!bar)

matches	any	occurrence	of	"foo"	that	is	not	followed	by	"bar".	Note
that	the	apparently	similar	pattern

		(?!foo)bar

does	not	find	an	occurrence	of	"bar"	that	is	preceded	by	something
other	than	"foo";	it	finds	any	occurrence	of	"bar"	whatsoever,	because
the	assertion	(?!foo)	is	always	true	when	the	next	three	characters	are
"bar".	A	lookbehind	assertion	is	needed	to	achieve	the	other	effect.

If	you	want	to	force	a	matching	failure	at	some	point	in	a	pattern,	the
most	convenient	way	to	do	it	is	with	(?!)	because	an	empty	string
always	matches,	so	an	assertion	that	requires	there	not	to	be	an	empty
string	must	always	fail.

Lookbehind	assertions	

Lookbehind	assertions	start	with	(?<=	for	positive	assertions	and	(?<!
for	negative	assertions.	For	example,

		(?<!foo)bar

does	find	an	occurrence	of	"bar"	that	is	not	preceded	by	"foo".	The

contents	of	a	lookbehind	assertion	are	restricted	such	that	all	the
strings	it	matches	must	have	a	fixed	length.	However,	if	there	are
several	top-level	alternatives,	they	do	not	all	have	to	have	the	same
fixed	length.	Thus

		(?<=bullock|donkey)

is	permitted,	but

		(?<!dogs?|cats?)

causes	an	error	at	compile	time.	Branches	that	match	different	length
strings	are	permitted	only	at	the	top	level	of	a	lookbehind	assertion.
This	is	an	extension	compared	with	Perl	(at	least	for	5.8),	which
requires	all	branches	to	match	the	same	length	of	string.	An	assertion
such	as

		(?<=ab(c|de))

is	not	permitted,	because	its	single	top-level	branch	can	match	two
different	lengths,	but	it	is	acceptable	if	rewritten	to	use	two	top-level
branches:

		(?<=abc|abde)

In	some	cases,	the	Perl	5.10	escape	sequence	\K	(see	above)	can	be
used	instead	of	a	lookbehind	assertion;	this	is	not	restricted	to	a	fixed-
length.

The	implementation	of	lookbehind	assertions	is,	for	each	alternative,
to	temporarily	move	the	current	position	back	by	the	fixed	length	and
then	try	to	match.	If	there	are	insufficient	characters	before	the	current
position,	the	assertion	fails.

PCRE	does	not	allow	the	\C	escape	(which	matches	a	single	byte	in
UTF-8	mode)	to	appear	in	lookbehind	assertions,	because	it	makes	it

impossible	to	calculate	the	length	of	the	lookbehind.	The	\X	and	\R
escapes,	which	can	match	different	numbers	of	bytes,	are	also	not
permitted.

Possessive	quantifiers	can	be	used	in	conjunction	with	lookbehind
assertions	to	specify	efficient	matching	at	the	end	of	the	subject	string.
Consider	a	simple	pattern	such	as

		abcd$

when	applied	to	a	long	string	that	does	not	match.	Because	matching
proceeds	from	left	to	right,	PCRE	will	look	for	each	"a"	in	the	subject
and	then	see	if	what	follows	matches	the	rest	of	the	pattern.	If	the
pattern	is	specified	as

		^.*abcd$

the	initial	.*	matches	the	entire	string	at	first,	but	when	this	fails
(because	there	is	no	following	"a"),	it	backtracks	to	match	all	but	the
last	character,	then	all	but	the	last	two	characters,	and	so	on.	Once
again	the	search	for	"a"	covers	the	entire	string,	from	right	to	left,	so
we	are	no	better	off.	However,	if	the	pattern	is	written	as

		^.*+(?<=abcd)

there	can	be	no	backtracking	for	the	.*+	item;	it	can	match	only	the
entire	string.	The	subsequent	lookbehind	assertion	does	a	single	test
on	the	last	four	characters.	If	it	fails,	the	match	fails	immediately.	For
long	strings,	this	approach	makes	a	significant	difference	to	the
processing	time.

Using	multiple	assertions	

Several	assertions	(of	any	sort)	may	occur	in	succession.	For	example,

		(?<=\d{3})(?<!999)foo

matches	"foo"	preceded	by	three	digits	that	are	not	"999".	Notice	that
each	of	the	assertions	is	applied	independently	at	the	same	point	in	the
subject	string.	First	there	is	a	check	that	the	previous	three	characters
are	all	digits,	and	then	there	is	a	check	that	the	same	three	characters
are	not	"999".	This	pattern	does	not	match	"foo"	preceded	by	six
characters,	the	first	of	which	are	digits	and	the	last	three	of	which	are
not	"999".	For	example,	it	doesn't	match	"123abcfoo".	A	pattern	to	do
that	is

		(?<=\d{3}...)(?<!999)foo

This	time	the	first	assertion	looks	at	the	preceding	six	characters,
checking	that	the	first	three	are	digits,	and	then	the	second	assertion
checks	that	the	preceding	three	characters	are	not	"999".

Assertions	can	be	nested	in	any	combination.	For	example,

		(?<=(?<!foo)bar)baz

matches	an	occurrence	of	"baz"	that	is	preceded	by	"bar"	which	in
turn	is	not	preceded	by	"foo",	while

		(?<=\d{3}(?!999)...)foo

is	another	pattern	that	matches	"foo"	preceded	by	three	digits	and	any
three	characters	that	are	not	"999".

conditional	subpatterns

It	is	possible	to	cause	the	matching	process	to	obey	a	subpattern
conditionally	or	to	choose	between	two	alternative	subpatterns,
depending	on	the	result	of	an	assertion,	or	whether	a	previous
capturing	subpattern	matched	or	not.	The	two	possible	forms	of

conditional	subpattern	are

		(?(condition)yes-pattern)
		(?(condition)yes-pattern|no-pattern)

If	the	condition	is	satisfied,	the	yes-pattern	is	used;	otherwise	the	no-
pattern	(if	present)	is	used.	If	there	are	more	than	two	alternatives	in
the	subpattern,	a	compile-time	error	occurs.

There	are	four	kinds	of	condition:	references	to	subpatterns,
references	to	recursion,	a	pseudo-condition	called	DEFINE,	and
assertions.

Checking	for	a	used	subpattern	by	number	

If	the	text	between	the	parentheses	consists	of	a	sequence	of	digits,	the
condition	is	true	if	the	capturing	subpattern	of	that	number	has
previously	matched.	An	alternative	notation	is	to	precede	the	digits
with	a	plus	or	minus	sign.	In	this	case,	the	subpattern	number	is
relative	rather	than	absolute.	The	most	recently	opened	parentheses
can	be	referenced	by	(?(-1),	the	next	most	recent	by	(?(-2),	and	so	on.
In	looping	constructs	it	can	also	make	sense	to	refer	to	subsequent
groups	with	constructs	such	as	(?(+2).

Consider	the	following	pattern,	which	contains	non-significant	white
space	to	make	it	more	readable	(assume	the	PCRE_EXTENDED
option)	and	to	divide	it	into	three	parts	for	ease	of	discussion:

		(\()?				[^()]+				(?(1)	\))

The	first	part	matches	an	optional	opening	parenthesis,	and	if	that
character	is	present,	sets	it	as	the	first	captured	substring.	The	second
part	matches	one	or	more	characters	that	are	not	parentheses.	The
third	part	is	a	conditional	subpattern	that	tests	whether	the	first	set	of

parentheses	matched	or	not.	If	they	did,	that	is,	if	subject	started	with
an	opening	parenthesis,	the	condition	is	true,	and	so	the	yes-pattern	is
executed	and	a	closing	parenthesis	is	required.	Otherwise,	since	no-
pattern	is	not	present,	the	subpattern	matches	nothing.	In	other	words,
this	pattern	matches	a	sequence	of	non-parentheses,	optionally
enclosed	in	parentheses.

If	you	were	embedding	this	pattern	in	a	larger	one,	you	could	use	a
relative	reference:

		...other	stuff...	(\()?				[^()]+				(?(-1)	\))	...

This	makes	the	fragment	independent	of	the	parentheses	in	the	larger
pattern.

Checking	for	a	used	subpattern	by	name	

Perl	uses	the	syntax	(?(<name>)...)	or	(?('name')...)	to	test	for	a	used
subpattern	by	name.	For	compatibility	with	earlier	versions	of	PCRE,
which	had	this	facility	before	Perl,	the	syntax	(?(name)...)	is	also
recognized.	However,	there	is	a	possible	ambiguity	with	this	syntax,
because	subpattern	names	may	consist	entirely	of	digits.	PCRE	looks
first	for	a	named	subpattern;	if	it	cannot	find	one	and	the	name
consists	entirely	of	digits,	PCRE	looks	for	a	subpattern	of	that
number,	which	must	be	greater	than	zero.	Using	subpattern	names	that
consist	entirely	of	digits	is	not	recommended.

Rewriting	the	above	example	to	use	a	named	subpattern	gives	this:

		(?<OPEN>	\()?				[^()]+				(?(<OPEN>)	\))

Checking	for	pattern	recursion	

If	the	condition	is	the	string	(R),	and	there	is	no	subpattern	with	the
name	R,	the	condition	is	true	if	a	recursive	call	to	the	whole	pattern	or
any	subpattern	has	been	made.	If	digits	or	a	name	preceded	by
ampersand	follow	the	letter	R,	for	example:

		(?(R3)...)	or	(?(R&name;)...)

the	condition	is	true	if	the	most	recent	recursion	is	into	the	subpattern
whose	number	or	name	is	given.	This	condition	does	not	check	the
entire	recursion	stack.

At	"top	level",	all	these	recursion	test	conditions	are	false.	Recursive
patterns	are	described	below.

Defining	subpatterns	for	use	by	reference	only	

If	the	condition	is	the	string	(DEFINE),	and	there	is	no	subpattern
with	the	name	DEFINE,	the	condition	is	always	false.	In	this	case,
there	may	be	only	one	alternative	in	the	subpattern.	It	is	always
skipped	if	control	reaches	this	point	in	the	pattern;	the	idea	of
DEFINE	is	that	it	can	be	used	to	define	"subroutines"	that	can	be
referenced	from	elsewhere.	(The	use	of	"subroutines"	is	described
below.)	For	example,	a	pattern	to	match	an	IPv4	address	could	be
written	like	this	(ignore	whitespace	and	line	breaks):

		(?(DEFINE)	(?<byte>	2[0-4]\d	|	25[0-5]	|	1\d\d	|	[1-9]?\d))
		\b	(?&byte;)	(\.(?&byte;)){3}	\b

The	first	part	of	the	pattern	is	a	DEFINE	group	inside	which	a	another
group	named	"byte"	is	defined.	This	matches	an	individual	component
of	an	IPv4	address	(a	number	less	than	256).	When	matching	takes
place,	this	part	of	the	pattern	is	skipped	because	DEFINE	acts	like	a
false	condition.

The	rest	of	the	pattern	uses	references	to	the	named	group	to	match
the	four	dot-separated	components	of	an	IPv4	address,	insisting	on	a
word	boundary	at	each	end.

Assertion	conditions	

If	the	condition	is	not	in	any	of	the	above	formats,	it	must	be	an
assertion.	This	may	be	a	positive	or	negative	lookahead	or	lookbehind
assertion.	Consider	this	pattern,	again	containing	non-significant
white	space,	and	with	the	two	alternatives	on	the	second	line:

		(?(?=[^a-z]*[a-z])
		\d{2}-[a-z]{3}-\d{2}		|		\d{2}-\d{2}-\d{2})

The	condition	is	a	positive	lookahead	assertion	that	matches	an
optional	sequence	of	non-letters	followed	by	a	letter.	In	other	words,	it
tests	for	the	presence	of	at	least	one	letter	in	the	subject.	If	a	letter	is
found,	the	subject	is	matched	against	the	first	alternative;	otherwise	it
is	matched	against	the	second.	This	pattern	matches	strings	in	one	of
the	two	forms	dd-aaa-dd	or	dd-dd-dd,	where	aaa	are	letters	and	dd	are
digits.

comments

The	sequence	(?#	marks	the	start	of	a	comment	that	continues	up	to
the	next	closing	parenthesis.	Nested	parentheses	are	not	permitted.
The	characters	that	make	up	a	comment	play	no	part	in	the	pattern
matching	at	all.

If	the	PCRE_EXTENDED	option	is	set,	an	unescaped	#	character
outside	a	character	class	introduces	a	comment	that	continues	to
immediately	after	the	next	newline	in	the	pattern.

recursive	patterns

Consider	the	problem	of	matching	a	string	in	parentheses,	allowing
for	unlimited	nested	parentheses.	Without	the	use	of	recursion,	the
best	that	can	be	done	is	to	use	a	pattern	that	matches	up	to	some	fixed
depth	of	nesting.	It	is	not	possible	to	handle	an	arbitrary	nesting	depth.

For	some	time,	Perl	has	provided	a	facility	that	allows	regular
expressions	to	recurse	(amongst	other	things).	It	does	this	by
interpolating	Perl	code	in	the	expression	at	run	time,	and	the	code	can
refer	to	the	expression	itself.	A	Perl	pattern	using	code	interpolation	to
solve	the	parentheses	problem	can	be	created	like	this:

		$re	=	qr{\((?:	(?>[^()]+)	|	(?p{$re}))*	\)}x;

The	(?p{...})	item	interpolates	Perl	code	at	run	time,	and	in	this	case
refers	recursively	to	the	pattern	in	which	it	appears.

Obviously,	PCRE	cannot	support	the	interpolation	of	Perl	code.
Instead,	it	supports	special	syntax	for	recursion	of	the	entire	pattern,
and	also	for	individual	subpattern	recursion.	After	its	introduction	in
PCRE	and	Python,	this	kind	of	recursion	was	introduced	into	Perl	at
release	5.10.

A	special	item	that	consists	of	(?	followed	by	a	number	greater	than
zero	and	a	closing	parenthesis	is	a	recursive	call	of	the	subpattern	of
the	given	number,	provided	that	it	occurs	inside	that	subpattern.	(If
not,	it	is	a	"subroutine"	call,	which	is	described	in	the	next	section.)
The	special	item	(?R)	or	(?0)	is	a	recursive	call	of	the	entire	regular
expression.

In	PCRE	(like	Python,	but	unlike	Perl),	a	recursive	subpattern	call	is
always	treated	as	an	atomic	group.	That	is,	once	it	has	matched	some

of	the	subject	string,	it	is	never	re-entered,	even	if	it	contains	untried
alternatives	and	there	is	a	subsequent	matching	failure.

This	PCRE	pattern	solves	the	nested	parentheses	problem	(assume	the
PCRE_EXTENDED	option	is	set	so	that	white	space	is	ignored):

		\(((?>[^()]+)	|	(?R))*	\)

First	it	matches	an	opening	parenthesis.	Then	it	matches	any	number
of	substrings	which	can	either	be	a	sequence	of	non-parentheses,	or	a
recursive	match	of	the	pattern	itself	(that	is,	a	correctly	parenthesized
substring).	Finally	there	is	a	closing	parenthesis.

If	this	were	part	of	a	larger	pattern,	you	would	not	want	to	recurse	the
entire	pattern,	so	instead	you	could	use	this:

		(\(((?>[^()]+)	|	(?1))*	\))

We	have	put	the	pattern	into	parentheses,	and	caused	the	recursion	to
refer	to	them	instead	of	the	whole	pattern.

In	a	larger	pattern,	keeping	track	of	parenthesis	numbers	can	be	tricky.
This	is	made	easier	by	the	use	of	relative	references.	(A	Perl	5.10
feature.)	Instead	of	(?1)	in	the	pattern	above	you	can	write	(?-2)	to
refer	to	the	second	most	recently	opened	parentheses	preceding	the
recursion.	In	other	words,	a	negative	number	counts	capturing
parentheses	leftwards	from	the	point	at	which	it	is	encountered.

It	is	also	possible	to	refer	to	subsequently	opened	parentheses,	by
writing	references	such	as	(?+2).	However,	these	cannot	be	recursive
because	the	reference	is	not	inside	the	parentheses	that	are	referenced.
They	are	always	"subroutine"	calls,	as	described	in	the	next	section.

An	alternative	approach	is	to	use	named	parentheses	instead.	The	Perl
syntax	for	this	is	(?&name;);	PCRE's	earlier	syntax	(?P>name)	is	also

supported.	We	could	rewrite	the	above	example	as	follows:

		(?<pn>	\(((?>[^()]+)	|	(?&pn;))*	\))

If	there	is	more	than	one	subpattern	with	the	same	name,	the	earliest
one	is	used.

This	particular	example	pattern	that	we	have	been	looking	at	contains
nested	unlimited	repeats,	and	so	the	use	of	atomic	grouping	for
matching	strings	of	non-parentheses	is	important	when	applying	the
pattern	to	strings	that	do	not	match.	For	example,	when	this	pattern	is
applied	to

		(aaa()

it	yields	"no	match"	quickly.	However,	if	atomic	grouping	is	not	used,
the	match	runs	for	a	very	long	time	indeed	because	there	are	so	many
different	ways	the	+	and	*	repeats	can	carve	up	the	subject,	and	all
have	to	be	tested	before	failure	can	be	reported.

At	the	end	of	a	match,	the	values	set	for	any	capturing	subpatterns	are
those	from	the	outermost	level	of	the	recursion	at	which	the
subpattern	value	is	set.	If	you	want	to	obtain	intermediate	values,	a
callout	function	can	be	used	(see	below	and	the	pcrecallout
documentation).	If	the	pattern	above	is	matched	against

		(ab(cd)ef)

the	value	for	the	capturing	parentheses	is	"ef",	which	is	the	last	value
taken	on	at	the	top	level.	If	additional	parentheses	are	added,	giving

		\((((?>[^()]+)	|	(?R))*)	\)
					^																								^
					^																								^

the	string	they	capture	is	"ab(cd)ef",	the	contents	of	the	top	level

parentheses.	If	there	are	more	than	15	capturing	parentheses	in	a
pattern,	PCRE	has	to	obtain	extra	memory	to	store	data	during	a
recursion,	which	it	does	by	using	pcre_malloc,	freeing	it	via
pcre_free	afterwards.	If	no	memory	can	be	obtained,	the	match	fails
with	the	PCRE_ERROR_NOMEMORY	error.

Do	not	confuse	the	(?R)	item	with	the	condition	(R),	which	tests	for
recursion.	Consider	this	pattern,	which	matches	text	in	angle	brackets,
allowing	for	arbitrary	nesting.	Only	digits	are	allowed	in	nested
brackets	(that	is,	when	recursing),	whereas	any	characters	are
permitted	at	the	outer	level.

		<	(?:	(?(R)	\d++		|	[^<>]*+)	|	(?R))	*	>

In	this	pattern,	(?(R)	is	the	start	of	a	conditional	subpattern,	with	two
different	alternatives	for	the	recursive	and	non-recursive	cases.	The	(?
R)	item	is	the	actual	recursive	call.

subpatterns	as	subroutines

If	the	syntax	for	a	recursive	subpattern	reference	(either	by	number	or
by	name)	is	used	outside	the	parentheses	to	which	it	refers,	it	operates
like	a	subroutine	in	a	programming	language.	The	"called"	subpattern
may	be	defined	before	or	after	the	reference.	A	numbered	reference
can	be	absolute	or	relative,	as	in	these	examples:

		(...(absolute)...)...(?2)...
		(...(relative)...)...(?-1)...
		(...(?+1)...(relative)...

An	earlier	example	pointed	out	that	the	pattern

		(sens|respons)e	and	\1ibility

matches	"sense	and	sensibility"	and	"response	and	responsibility",	but
not	"sense	and	responsibility".	If	instead	the	pattern

		(sens|respons)e	and	(?1)ibility

is	used,	it	does	match	"sense	and	responsibility"	as	well	as	the	other
two	strings.	Another	example	is	given	in	the	discussion	of	DEFINE
above.

Like	recursive	subpatterns,	a	"subroutine"	call	is	always	treated	as	an
atomic	group.	That	is,	once	it	has	matched	some	of	the	subject	string,
it	is	never	re-entered,	even	if	it	contains	untried	alternatives	and	there
is	a	subsequent	matching	failure.

When	a	subpattern	is	used	as	a	subroutine,	processing	options	such	as
case-independence	are	fixed	when	the	subpattern	is	defined.	They
cannot	be	changed	for	different	calls.	For	example,	consider	this
pattern:

		(abc)(?i:(?-1))

It	matches	"abcabc".	It	does	not	match	"abcABC"	because	the	change
of	processing	option	does	not	affect	the	called	subpattern.

oniguruma	subroutine	syntax

For	compatibility	with	Oniguruma,	the	non-Perl	syntax	\g	followed	by
a	name	or	a	number	enclosed	either	in	angle	brackets	or	single	quotes,
is	an	alternative	syntax	for	referencing	a	subpattern	as	a	subroutine,
possibly	recursively.	Here	are	two	of	the	examples	used	above,
rewritten	using	this	syntax:

		(?<pn>	\(((?>[^()]+)	|	\g<pn>)*	\))
		(sens|respons)e	and	\g'1'ibility

PCRE	supports	an	extension	to	Oniguruma:	if	a	number	is	preceded
by	a	plus	or	a	minus	sign	it	is	taken	as	a	relative	reference.	For
example:

		(abc)(?i:\g<-1>)

Note	that	\g{...}	(Perl	syntax)	and	\g<...>	(Oniguruma	syntax)	are	not
synonymous.	The	former	is	a	back	reference;	the	latter	is	a	subroutine
call.

callouts

Perl	has	a	feature	whereby	using	the	sequence	(?{...})	causes	arbitrary
Perl	code	to	be	obeyed	in	the	middle	of	matching	a	regular	expression.
This	makes	it	possible,	amongst	other	things,	to	extract	different
substrings	that	match	the	same	pair	of	parentheses	when	there	is	a
repetition.

PCRE	provides	a	similar	feature,	but	of	course	it	cannot	obey	arbitrary
Perl	code.	The	feature	is	called	"callout".	The	caller	of	PCRE	provides
an	external	function	by	putting	its	entry	point	in	the	global	variable
pcre_callout.	By	default,	this	variable	contains	NULL,	which	disables
all	calling	out.

Within	a	regular	expression,	(?C)	indicates	the	points	at	which	the
external	function	is	to	be	called.	If	you	want	to	identify	different
callout	points,	you	can	put	a	number	less	than	256	after	the	letter	C.
The	default	value	is	zero.	For	example,	this	pattern	has	two	callout
points:

		(?C1)abc(?C2)def

If	the	PCRE_AUTO_CALLOUT	flag	is	passed	to	pcre_compile(),
callouts	are	automatically	installed	before	each	item	in	the	pattern.

They	are	all	numbered	255.

During	matching,	when	PCRE	reaches	a	callout	point	(and
pcre_callout	is	set),	the	external	function	is	called.	It	is	provided	with
the	number	of	the	callout,	the	position	in	the	pattern,	and,	optionally,
one	item	of	data	originally	supplied	by	the	caller	of	pcre_exec().	The
callout	function	may	cause	matching	to	proceed,	to	backtrack,	or	to
fail	altogether.	A	complete	description	of	the	interface	to	the	callout
function	is	given	in	the	pcrecallout	documentation.

backtracking	control

Perl	5.10	introduced	a	number	of	"Special	Backtracking	Control
Verbs",	which	are	described	in	the	Perl	documentation	as
"experimental	and	subject	to	change	or	removal	in	a	future	version	of
Perl".	It	goes	on	to	say:	"Their	usage	in	production	code	should	be
noted	to	avoid	problems	during	upgrades."	The	same	remarks	apply	to
the	PCRE	features	described	in	this	section.

Since	these	verbs	are	specifically	related	to	backtracking,	most	of
them	can	be	used	only	when	the	pattern	is	to	be	matched	using
pcre_exec(),	which	uses	a	backtracking	algorithm.	With	the	exception
of	(*FAIL),	which	behaves	like	a	failing	negative	assertion,	they	cause
an	error	if	encountered	by	pcre_dfa_exec().

The	new	verbs	make	use	of	what	was	previously	invalid	syntax:	an
opening	parenthesis	followed	by	an	asterisk.	In	Perl,	they	are
generally	of	the	form	(*VERB:ARG)	but	PCRE	does	not	support	the
use	of	arguments,	so	its	general	form	is	just	(*VERB).	Any	number	of
these	verbs	may	occur	in	a	pattern.	There	are	two	kinds:

Verbs	that	act	immediately	

The	following	verbs	act	as	soon	as	they	are	encountered:

			(*ACCEPT)

This	verb	causes	the	match	to	end	successfully,	skipping	the
remainder	of	the	pattern.	When	inside	a	recursion,	only	the	innermost
pattern	is	ended	immediately.	PCRE	differs	from	Perl	in	what	happens
if	the	(*ACCEPT)	is	inside	capturing	parentheses.	In	Perl,	the	data	so
far	is	captured:	in	PCRE	no	data	is	captured.	For	example:

		A(A|B(*ACCEPT)|C)D

This	matches	"AB",	"AAD",	or	"ACD",	but	when	it	matches	"AB",	no
data	is	captured.

		(*FAIL)	or	(*F)

This	verb	causes	the	match	to	fail,	forcing	backtracking	to	occur.	It	is
equivalent	to	(?!)	but	easier	to	read.	The	Perl	documentation	notes	that
it	is	probably	useful	only	when	combined	with	(?{})	or	(??{}).	Those
are,	of	course,	Perl	features	that	are	not	present	in	PCRE.	The	nearest
equivalent	is	the	callout	feature,	as	for	example	in	this	pattern:

		a+(?C)(*FAIL)

A	match	with	the	string	"aaaa"	always	fails,	but	the	callout	is	taken
before	each	backtrack	happens	(in	this	example,	10	times).

Verbs	that	act	after	backtracking	

The	following	verbs	do	nothing	when	they	are	encountered.	Matching
continues	with	what	follows,	but	if	there	is	no	subsequent	match,	a
failure	is	forced.	The	verbs	differ	in	exactly	what	kind	of	failure
occurs.

		(*COMMIT)

This	verb	causes	the	whole	match	to	fail	outright	if	the	rest	of	the
pattern	does	not	match.	Even	if	the	pattern	is	unanchored,	no	further
attempts	to	find	a	match	by	advancing	the	start	point	take	place.	Once
(*COMMIT)	has	been	passed,	pcre_exec()	is	committed	to	finding	a
match	at	the	current	starting	point,	or	not	at	all.	For	example:

		a+(*COMMIT)b

This	matches	"xxaab"	but	not	"aacaab".	It	can	be	thought	of	as	a	kind
of	dynamic	anchor,	or	"I've	started,	so	I	must	finish."

		(*PRUNE)

This	verb	causes	the	match	to	fail	at	the	current	position	if	the	rest	of
the	pattern	does	not	match.	If	the	pattern	is	unanchored,	the	normal
"bumpalong"	advance	to	the	next	starting	character	then	happens.
Backtracking	can	occur	as	usual	to	the	left	of	(*PRUNE),	or	when
matching	to	the	right	of	(*PRUNE),	but	if	there	is	no	match	to	the
right,	backtracking	cannot	cross	(*PRUNE).	In	simple	cases,	the	use
of	(*PRUNE)	is	just	an	alternative	to	an	atomic	group	or	possessive
quantifier,	but	there	are	some	uses	of	(*PRUNE)	that	cannot	be
expressed	in	any	other	way.

		(*SKIP)

This	verb	is	like	(*PRUNE),	except	that	if	the	pattern	is	unanchored,
the	"bumpalong"	advance	is	not	to	the	next	character,	but	to	the
position	in	the	subject	where	(*SKIP)	was	encountered.	(*SKIP)
signifies	that	whatever	text	was	matched	leading	up	to	it	cannot	be
part	of	a	successful	match.	Consider:

		a+(*SKIP)b

If	the	subject	is	"aaaac...",	after	the	first	match	attempt	fails	(starting

at	the	first	character	in	the	string),	the	starting	point	skips	on	to	start
the	next	attempt	at	"c".	Note	that	a	possessive	quantifer	does	not	have
the	same	effect	in	this	example;	although	it	would	suppress
backtracking	during	the	first	match	attempt,	the	second	attempt	would
start	at	the	second	character	instead	of	skipping	on	to	"c".

		(*THEN)

This	verb	causes	a	skip	to	the	next	alternation	if	the	rest	of	the	pattern
does	not	match.	That	is,	it	cancels	pending	backtracking,	but	only
within	the	current	alternation.	Its	name	comes	from	the	observation
that	it	can	be	used	for	a	pattern-based	if-then-else	block:

		(COND1	(*THEN)	FOO	|	COND2	(*THEN)	BAR	|	COND3	(*THEN)	BAZ)	...

If	the	COND1	pattern	matches,	FOO	is	tried	(and	possibly	further
items	after	the	end	of	the	group	if	FOO	succeeds);	on	failure	the
matcher	skips	to	the	second	alternative	and	tries	COND2,	without
backtracking	into	COND1.	If	(*THEN)	is	used	outside	of	any
alternation,	it	acts	exactly	like	(*PRUNE).

see	also

pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcre(3).

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	19	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcreperform	man	page
Return	to	the	PCRE	index	page.

PCRE	PERFORMANCE

Two	aspects	of	performance	are	discussed	below:	memory	usage	and
processing	time.	The	way	you	express	your	pattern	as	a	regular
expression	can	affect	both	of	them.

MEMORY	USAGE	

Patterns	are	compiled	by	PCRE	into	a	reasonably	efficient	byte	code,
so	that	most	simple	patterns	do	not	use	much	memory.	However,	there
is	one	case	where	memory	usage	can	be	unexpectedly	large.	When	a
parenthesized	subpattern	has	a	quantifier	with	a	minimum	greater	than
1	and/or	a	limited	maximum,	the	whole	subpattern	is	repeated	in	the
compiled	code.	For	example,	the	pattern

		(abc|def){2,4}

is	compiled	as	if	it	were

		(abc|def)(abc|def)((abc|def)(abc|def)?)?

(Technical	aside:	It	is	done	this	way	so	that	backtrack	points	within
each	of	the	repetitions	can	be	independently	maintained.)

For	regular	expressions	whose	quantifiers	use	only	small	numbers,
this	is	not	usually	a	problem.	However,	if	the	numbers	are	large,	and
particularly	if	such	repetitions	are	nested,	the	memory	usage	can
become	an	embarrassment.	For	example,	the	very	simple	pattern

		((ab){1,1000}c){1,3}

uses	51K	bytes	when	compiled.	When	PCRE	is	compiled	with	its
default	internal	pointer	size	of	two	bytes,	the	size	limit	on	a	compiled
pattern	is	64K,	and	this	is	reached	with	the	above	pattern	if	the	outer
repetition	is	increased	from	3	to	4.	PCRE	can	be	compiled	to	use
larger	internal	pointers	and	thus	handle	larger	compiled	patterns,	but	it
is	better	to	try	to	rewrite	your	pattern	to	use	less	memory	if	you	can.

One	way	of	reducing	the	memory	usage	for	such	patterns	is	to	make
use	of	PCRE's	"subroutine"	facility.	Re-writing	the	above	pattern	as

		((ab)(?2){0,999}c)(?1){0,2}

reduces	the	memory	requirements	to	18K,	and	indeed	it	remains	under
20K	even	with	the	outer	repetition	increased	to	100.	However,	this
pattern	is	not	exactly	equivalent,	because	the	"subroutine"	calls	are
treated	as	atomic	groups	into	which	there	can	be	no	backtracking	if
there	is	a	subsequent	matching	failure.	Therefore,	PCRE	cannot	do
this	kind	of	rewriting	automatically.	Furthermore,	there	is	a	noticeable
loss	of	speed	when	executing	the	modified	pattern.	Nevertheless,	if
the	atomic	grouping	is	not	a	problem	and	the	loss	of	speed	is
acceptable,	this	kind	of	rewriting	will	allow	you	to	process	patterns
that	PCRE	cannot	otherwise	handle.

PROCESSING	TIME	

Certain	items	in	regular	expression	patterns	are	processed	more
efficiently	than	others.	It	is	more	efficient	to	use	a	character	class	like
[aeiou]	than	a	set	of	single-character	alternatives	such	as	(a|e|i|o|u).	In
general,	the	simplest	construction	that	provides	the	required	behaviour
is	usually	the	most	efficient.	Jeffrey	Friedl's	book	contains	a	lot	of
useful	general	discussion	about	optimizing	regular	expressions	for

efficient	performance.	This	document	contains	a	few	observations
about	PCRE.

Using	Unicode	character	properties	(the	\p,	\P,	and	\X	escapes)	is
slow,	because	PCRE	has	to	scan	a	structure	that	contains	data	for	over
fifteen	thousand	characters	whenever	it	needs	a	character's	property.	If
you	can	find	an	alternative	pattern	that	does	not	use	character
properties,	it	will	probably	be	faster.

When	a	pattern	begins	with	.*	not	in	parentheses,	or	in	parentheses
that	are	not	the	subject	of	a	backreference,	and	the	PCRE_DOTALL
option	is	set,	the	pattern	is	implicitly	anchored	by	PCRE,	since	it	can
match	only	at	the	start	of	a	subject	string.	However,	if
PCRE_DOTALL	is	not	set,	PCRE	cannot	make	this	optimization,
because	the	.	metacharacter	does	not	then	match	a	newline,	and	if	the
subject	string	contains	newlines,	the	pattern	may	match	from	the
character	immediately	following	one	of	them	instead	of	from	the	very
start.	For	example,	the	pattern

		.*second

matches	the	subject	"first\nand	second"	(where	\n	stands	for	a	newline
character),	with	the	match	starting	at	the	seventh	character.	In	order	to
do	this,	PCRE	has	to	retry	the	match	starting	after	every	newline	in
the	subject.

If	you	are	using	such	a	pattern	with	subject	strings	that	do	not	contain
newlines,	the	best	performance	is	obtained	by	setting
PCRE_DOTALL,	or	starting	the	pattern	with	^.*	or	^.*?	to	indicate
explicit	anchoring.	That	saves	PCRE	from	having	to	scan	along	the
subject	looking	for	a	newline	to	restart	at.

Beware	of	patterns	that	contain	nested	indefinite	repeats.	These	can
take	a	long	time	to	run	when	applied	to	a	string	that	does	not	match.

Consider	the	pattern	fragment

		^(a+)*

This	can	match	"aaaa"	in	16	different	ways,	and	this	number	increases
very	rapidly	as	the	string	gets	longer.	(The	*	repeat	can	match	0,	1,	2,
3,	or	4	times,	and	for	each	of	those	cases	other	than	0	or	4,	the	+
repeats	can	match	different	numbers	of	times.)	When	the	remainder	of
the	pattern	is	such	that	the	entire	match	is	going	to	fail,	PCRE	has	in
principle	to	try	every	possible	variation,	and	this	can	take	an
extremely	long	time,	even	for	relatively	short	strings.

An	optimization	catches	some	of	the	more	simple	cases	such	as

		(a+)*b

where	a	literal	character	follows.	Before	embarking	on	the	standard
matching	procedure,	PCRE	checks	that	there	is	a	"b"	later	in	the
subject	string,	and	if	there	is	not,	it	fails	the	match	immediately.
However,	when	there	is	no	following	literal	this	optimization	cannot
be	used.	You	can	see	the	difference	by	comparing	the	behaviour	of

		(a+)*\d

with	the	pattern	above.	The	former	gives	a	failure	almost	instantly
when	applied	to	a	whole	line	of	"a"	characters,	whereas	the	latter	takes
an	appreciable	time	with	strings	longer	than	about	20	characters.

In	many	cases,	the	solution	to	this	kind	of	performance	issue	is	to	use
an	atomic	group	or	a	possessive	quantifier.

AUTHOR	

Philip	Hazel	

University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	06	March	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcreprecompile	man	page
Return	to	the	PCRE	index	page.

saving	and	re-using	precompiled	pcre	patterns
saving	a	compiled	pattern
re-using	a	precompiled	pattern
compatibility	with	different	pcre	releases
author
revision

saving	and	re-using	precompiled	pcre	patterns

If	you	are	running	an	application	that	uses	a	large	number	of	regular
expression	patterns,	it	may	be	useful	to	store	them	in	a	precompiled
form	instead	of	having	to	compile	them	every	time	the	application	is
run.	If	you	are	not	using	any	private	character	tables	(see	the
pcre_maketables()	documentation),	this	is	relatively	straightforward.
If	you	are	using	private	tables,	it	is	a	little	bit	more	complicated.

If	you	save	compiled	patterns	to	a	file,	you	can	copy	them	to	a
different	host	and	run	them	there.	This	works	even	if	the	new	host	has
the	opposite	endianness	to	the	one	on	which	the	patterns	were
compiled.	There	may	be	a	small	performance	penalty,	but	it	should	be
insignificant.	However,	compiling	regular	expressions	with	one
version	of	PCRE	for	use	with	a	different	version	is	not	guaranteed	to
work	and	may	cause	crashes.

saving	a	compiled	pattern

The	value	returned	by	pcre_compile()	points	to	a	single	block	of
memory	that	holds	the	compiled	pattern	and	associated	data.	You	can

find	the	length	of	this	block	in	bytes	by	calling	pcre_fullinfo()	with
an	argument	of	PCRE_INFO_SIZE.	You	can	then	save	the	data	in	any
appropriate	manner.	Here	is	sample	code	that	compiles	a	pattern	and
writes	it	to	a	file.	It	assumes	that	the	variable	fd	refers	to	a	file	that	is
open	for	output:

		int	erroroffset,	rc,	size;
		char	*error;
		pcre	*re;

		re	=	pcre_compile("my	pattern",	0,	&error;,	&erroroffset;,	NULL);
		if	(re	==	NULL)	{	...	handle	errors	...	}
		rc	=	pcre_fullinfo(re,	NULL,	PCRE_INFO_SIZE,	&size;);
		if	(rc	<	0)	{	...	handle	errors	...	}
		rc	=	fwrite(re,	1,	size,	fd);
		if	(rc	!=	size)	{	...	handle	errors	...	}

In	this	example,	the	bytes	that	comprise	the	compiled	pattern	are
copied	exactly.	Note	that	this	is	binary	data	that	may	contain	any	of
the	256	possible	byte	values.	On	systems	that	make	a	distinction
between	binary	and	non-binary	data,	be	sure	that	the	file	is	opened	for
binary	output.

If	you	want	to	write	more	than	one	pattern	to	a	file,	you	will	have	to
devise	a	way	of	separating	them.	For	binary	data,	preceding	each
pattern	with	its	length	is	probably	the	most	straightforward	approach.
Another	possibility	is	to	write	out	the	data	in	hexadecimal	instead	of
binary,	one	pattern	to	a	line.

Saving	compiled	patterns	in	a	file	is	only	one	possible	way	of	storing
them	for	later	use.	They	could	equally	well	be	saved	in	a	database,	or
in	the	memory	of	some	daemon	process	that	passes	them	via	sockets
to	the	processes	that	want	them.

If	the	pattern	has	been	studied,	it	is	also	possible	to	save	the	study	data

in	a	similar	way	to	the	compiled	pattern	itself.	When	studying
generates	additional	information,	pcre_study()	returns	a	pointer	to	a
pcre_extra	data	block.	Its	format	is	defined	in	the	section	on
matching	a	pattern	in	the	pcreapi	documentation.	The	study_data
field	points	to	the	binary	study	data,	and	this	is	what	you	must	save
(not	the	pcre_extra	block	itself).	The	length	of	the	study	data	can	be
obtained	by	calling	pcre_fullinfo()	with	an	argument	of
PCRE_INFO_STUDYSIZE.	Remember	to	check	that	pcre_study()
did	return	a	non-NULL	value	before	trying	to	save	the	study	data.

re-using	a	precompiled	pattern

Re-using	a	precompiled	pattern	is	straightforward.	Having	reloaded	it
into	main	memory,	you	pass	its	pointer	to	pcre_exec()	or
pcre_dfa_exec()	in	the	usual	way.	This	should	work	even	on	another
host,	and	even	if	that	host	has	the	opposite	endianness	to	the	one
where	the	pattern	was	compiled.

However,	if	you	passed	a	pointer	to	custom	character	tables	when	the
pattern	was	compiled	(the	tableptr	argument	of	pcre_compile()),	you
must	now	pass	a	similar	pointer	to	pcre_exec()	or	pcre_dfa_exec(),
because	the	value	saved	with	the	compiled	pattern	will	obviously	be
nonsense.	A	field	in	a	pcre_extra()	block	is	used	to	pass	this	data,	as
described	in	the	section	on	matching	a	pattern	in	the	pcreapi
documentation.

If	you	did	not	provide	custom	character	tables	when	the	pattern	was
compiled,	the	pointer	in	the	compiled	pattern	is	NULL,	which	causes
pcre_exec()	to	use	PCRE's	internal	tables.	Thus,	you	do	not	need	to
take	any	special	action	at	run	time	in	this	case.

If	you	saved	study	data	with	the	compiled	pattern,	you	need	to	create
your	own	pcre_extra	data	block	and	set	the	study_data	field	to	point

to	the	reloaded	study	data.	You	must	also	set	the
PCRE_EXTRA_STUDY_DATA	bit	in	the	flags	field	to	indicate	that
study	data	is	present.	Then	pass	the	pcre_extra	block	to	pcre_exec()
or	pcre_dfa_exec()	in	the	usual	way.

compatibility	with	different	pcre	releases

In	general,	it	is	safest	to	recompile	all	saved	patterns	when	you	update
to	a	new	PCRE	release,	though	not	all	updates	actually	require	this.
Recompiling	is	definitely	needed	for	release	7.2.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	13	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

This	file	contains	a	concatenation	of	the	PCRE	man	pages,	converted	to	plain
text	format	for	ease	of	searching	with	a	text	editor,	or	for	use	on	systems
that	do	not	have	a	man	page	processor.	The	small	individual	files	that	give
synopses	of	each	function	in	the	library	have	not	been	included.	There	are
separate	text	files	for	the	pcregrep	and	pcretest	commands.

PCRE(3)																																																																PCRE(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

INTRODUCTION

							The		PCRE		library	is	a	set	of	functions	that	implement	regular	expres-
							sion	pattern	matching	using	the	same	syntax	and	semantics	as	Perl,	with
							just		a		few		differences.	Certain	features	that	appeared	in	Python	and
							PCRE	before	they	appeared	in	Perl	are	also	available	using		the		Python
							syntax.		There	is	also	some	support	for	certain	.NET	and	Oniguruma	syn-
							tax	items,	and	there	is	an	option	for		requesting		some		minor		changes
							that	give	better	JavaScript	compatibility.

							The		current		implementation	of	PCRE	(release	7.x)	corresponds	approxi-
							mately	with	Perl	5.10,	including	support	for	UTF-8	encoded	strings		and
							Unicode	general	category	properties.	However,	UTF-8	and	Unicode	support
							has	to	be	explicitly	enabled;	it	is	not	the	default.	The	Unicode	tables
							correspond	to	Unicode	release	5.0.0.

							In		addition	to	the	Perl-compatible	matching	function,	PCRE	contains	an
							alternative	matching	function	that	matches	the	same		compiled		patterns
							in		a	different	way.	In	certain	circumstances,	the	alternative	function
							has	some	advantages.	For	a	discussion	of	the	two		matching		algorithms,

							see	the	pcrematching	page.

							PCRE		is		written		in	C	and	released	as	a	C	library.	A	number	of	people
							have	written	wrappers	and	interfaces	of	various	kinds.		In		particular,
							Google		Inc.			have		provided		a	comprehensive	C++	wrapper.	This	is	now
							included	as	part	of	the	PCRE	distribution.	The	pcrecpp	page	has	details
							of		this		interface.		Other		people's	contributions	can	be	found	in	the
							Contrib	directory	at	the	primary	FTP	site,	which	is:

							ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

							Details	of	exactly	which	Perl	regular	expression	features	are		and		are
							not	supported	by	PCRE	are	given	in	separate	documents.	See	the	pcrepat-
							tern	and	pcrecompat	pages.	There	is	a	syntax	summary	in	the		pcresyntax
							page.

							Some		features		of		PCRE	can	be	included,	excluded,	or	changed	when	the
							library	is	built.	The	pcre_config()	function	makes	it		possible		for		a
							client		to		discover		which		features	are	available.	The	features	them-
							selves	are	described	in	the	pcrebuild	page.	Documentation	about		build-
							ing		PCRE	for	various	operating	systems	can	be	found	in	the	README	file
							in	the	source	distribution.

							The	library	contains	a	number	of	undocumented		internal		functions		and
							data		tables		that		are		used	by	more	than	one	of	the	exported	external
							functions,	but	which	are	not	intended		for		use		by		external		callers.
							Their		names		all	begin	with	"_pcre_",	which	hopefully	will	not	provoke
							any	name	clashes.	In	some	environments,	it	is	possible	to	control	which
							external		symbols		are		exported	when	a	shared	library	is	built,	and	in
							these	cases	the	undocumented	symbols	are	not	exported.

USER	DOCUMENTATION

							The	user	documentation	for	PCRE	comprises	a	number		of		different		sec-
							tions.		In	the	"man"	format,	each	of	these	is	a	separate	"man	page".	In
							the	HTML	format,	each	is	a	separate	page,	linked	from	the		index		page.

							In		the		plain	text	format,	all	the	sections	are	concatenated,	for	ease
							of	searching.	The	sections	are	as	follows:

									pcre														this	document
									pcre-config							show	PCRE	installation	configuration	information
									pcreapi											details	of	PCRE's	native	C	API
									pcrebuild									options	for	building	PCRE
									pcrecallout							details	of	the	callout	feature
									pcrecompat								discussion	of	Perl	compatibility
									pcrecpp											details	of	the	C++	wrapper
									pcregrep										description	of	the	pcregrep	command
									pcrematching						discussion	of	the	two	matching	algorithms
									pcrepartial							details	of	the	partial	matching	facility
									pcrepattern							syntax	and	semantics	of	supported
																													regular	expressions
									pcresyntax								quick	syntax	reference
									pcreperform							discussion	of	performance	issues
									pcreposix									the	POSIX-compatible	C	API
									pcreprecompile				details	of	saving	and	re-using	precompiled	patterns
									pcresample								discussion	of	the	sample	program
									pcrestack									discussion	of	stack	usage
									pcretest										description	of	the	pcretest	testing	command

							In		addition,		in	the	"man"	and	HTML	formats,	there	is	a	short	page	for
							each	C	library	function,	listing	its	arguments	and	results.

LIMITATIONS

							There	are	some	size	limitations	in	PCRE	but	it	is	hoped	that	they		will
							never	in	practice	be	relevant.

							The		maximum		length	of	a	compiled	pattern	is	65539	(sic)	bytes	if	PCRE
							is	compiled	with	the	default	internal	linkage	size	of	2.	If	you	want	to
							process		regular		expressions		that	are	truly	enormous,	you	can	compile
							PCRE	with	an	internal	linkage	size	of	3	or	4	(see	the		README		file		in
							the		source		distribution	and	the	pcrebuild	documentation	for	details).

							In	these	cases	the	limit	is	substantially	larger.		However,		the		speed
							of	execution	is	slower.

							All	values	in	repeating	quantifiers	must	be	less	than	65536.

							There	is	no	limit	to	the	number	of	parenthesized	subpatterns,	but	there
							can	be	no	more	than	65535	capturing	subpatterns.

							The	maximum	length	of	name	for	a	named	subpattern	is	32	characters,	and
							the	maximum	number	of	named	subpatterns	is	10000.

							The		maximum		length	of	a	subject	string	is	the	largest	positive	number
							that	an	integer	variable	can	hold.	However,	when	using	the		traditional
							matching	function,	PCRE	uses	recursion	to	handle	subpatterns	and	indef-
							inite	repetition.		This	means	that	the	available	stack	space	may		limit
							the	size	of	a	subject	string	that	can	be	processed	by	certain	patterns.
							For	a	discussion	of	stack	issues,	see	the	pcrestack	documentation.

UTF-8	AND	UNICODE	PROPERTY	SUPPORT

							From	release	3.3,	PCRE	has		had		some		support		for		character		strings
							encoded		in	the	UTF-8	format.	For	release	4.0	this	was	greatly	extended
							to	cover	most	common	requirements,	and	in	release	5.0		additional		sup-
							port	for	Unicode	general	category	properties	was	added.

							In		order		process		UTF-8	strings,	you	must	build	PCRE	to	include	UTF-8
							support	in	the	code,	and,	in	addition,		you		must		call		pcre_compile()
							with		the	PCRE_UTF8	option	flag.	When	you	do	this,	both	the	pattern	and
							any	subject	strings	that	are	matched	against	it	are		treated		as		UTF-8
							strings	instead	of	just	strings	of	bytes.

							If		you	compile	PCRE	with	UTF-8	support,	but	do	not	use	it	at	run	time,
							the	library	will	be	a	bit	bigger,	but	the	additional	run	time		overhead
							is	limited	to	testing	the	PCRE_UTF8	flag	occasionally,	so	should	not	be
							very	big.

							If	PCRE	is	built	with	Unicode	character	property	support	(which	implies
							UTF-8		support),		the		escape	sequences	\p{..},	\P{..},	and	\X	are	sup-
							ported.		The	available	properties	that	can	be	tested	are	limited	to	the
							general		category		properties	such	as	Lu	for	an	upper	case	letter	or	Nd
							for	a	decimal	number,	the	Unicode	script	names	such	as	Arabic		or		Han,
							and		the		derived		properties		Any		and	L&.	A	full	list	is	given	in	the
							pcrepattern	documentation.	Only	the	short	names	for	properties	are	sup-
							ported.		For	example,	\p{L}	matches	a	letter.	Its	Perl	synonym,	\p{Let-
							ter},	is	not	supported.		Furthermore,		in		Perl,		many		properties		may
							optionally		be		prefixed	by	"Is",	for	compatibility	with	Perl	5.6.	PCRE
							does	not	support	this.

			Validity	of	UTF-8	strings

							When	you	set	the	PCRE_UTF8	flag,	the	strings		passed		as		patterns		and
							subjects	are	(by	default)	checked	for	validity	on	entry	to	the	relevant
							functions.	From	release	7.3	of	PCRE,	the	check	is	according		the		rules
							of		RFC		3629,	which	are	themselves	derived	from	the	Unicode	specifica-
							tion.	Earlier	releases	of	PCRE	followed	the	rules	of		RFC		2279,		which
							allows		the		full	range	of	31-bit	values	(0	to	0x7FFFFFFF).	The	current
							check	allows	only	values	in	the	range	U+0	to	U+10FFFF,	excluding	U+D800
							to	U+DFFF.

							The		excluded		code		points	are	the	"Low	Surrogate	Area"	of	Unicode,	of
							which	the	Unicode	Standard	says	this:	"The	Low	Surrogate	Area	does		not
							contain		any		character		assignments,		consequently		no		character	code
							charts	or	namelists	are	provided	for	this	area.	Surrogates	are	reserved
							for		use		with		UTF-16	and	then	must	be	used	in	pairs."	The	code	points
							that	are	encoded	by	UTF-16	pairs		are		available		as		independent		code
							points		in		the		UTF-8		encoding.		(In	other	words,	the	whole	surrogate
							thing	is	a	fudge	for	UTF-16	which	unfortunately	messes	up	UTF-8.)

							If	an		invalid		UTF-8		string		is		passed		to		PCRE,		an		error		return
							(PCRE_ERROR_BADUTF8)	is	given.	In	some	situations,	you	may	already	know
							that	your	strings	are	valid,	and	therefore	want	to	skip	these	checks	in
							order	to	improve	performance.	If	you	set	the	PCRE_NO_UTF8_CHECK	flag	at
							compile	time	or	at	run	time,	PCRE	assumes	that	the	pattern		or		subject

							it		is		given		(respectively)		contains	only	valid	UTF-8	codes.	In	this
							case,	it	does	not	diagnose	an	invalid	UTF-8	string.

							If	you	pass	an	invalid	UTF-8	string		when		PCRE_NO_UTF8_CHECK		is		set,
							what		happens		depends	on	why	the	string	is	invalid.	If	the	string	con-
							forms	to	the	"old"	definition	of	UTF-8	(RFC	2279),	it	is	processed	as	a
							string		of		characters		in		the		range	0	to	0x7FFFFFFF.	In	other	words,
							apart	from	the	initial	validity	test,	PCRE	(when	in	UTF-8	mode)	handles
							strings		according		to		the	more	liberal	rules	of	RFC	2279.	However,	if
							the	string	does	not	even	conform	to	RFC	2279,	the	result	is		undefined.
							Your	program	may	crash.

							If		you		want		to		process		strings		of		values		in	the	full	range	0	to
							0x7FFFFFFF,	encoded	in	a	UTF-8-like	manner	as	per	the	old	RFC,	you		can
							set	PCRE_NO_UTF8_CHECK	to	bypass	the	more	restrictive	test.	However,	in
							this	situation,	you	will	have	to	apply	your	own	validity	check.

			General	comments	about	UTF-8	mode

							1.	An	unbraced	hexadecimal	escape	sequence	(such		as		\xb3)		matches		a
							two-byte	UTF-8	character	if	the	value	is	greater	than	127.

							2.		Octal		numbers		up	to	\777	are	recognized,	and	match	two-byte	UTF-8
							characters	for	values	greater	than	\177.

							3.	Repeat	quantifiers	apply	to	complete	UTF-8	characters,	not	to		indi-
							vidual	bytes,	for	example:	\x{100}{3}.

							4.		The	dot	metacharacter	matches	one	UTF-8	character	instead	of	a	sin-
							gle	byte.

							5.	The	escape	sequence	\C	can	be	used	to	match	a	single	byte		in		UTF-8
							mode,		but		its		use	can	lead	to	some	strange	effects.	This	facility	is
							not	available	in	the	alternative	matching	function,	pcre_dfa_exec().

							6.	The	character	escapes	\b,	\B,	\d,	\D,	\s,	\S,	\w,	and		\W		correctly
							test		characters	of	any	code	value,	but	the	characters	that	PCRE	recog-

							nizes	as	digits,	spaces,	or	word	characters		remain		the		same		set		as
							before,	all	with	values	less	than	256.	This	remains	true	even	when	PCRE
							includes	Unicode	property	support,	because	to	do	otherwise		would		slow
							down		PCRE	in	many	common	cases.	If	you	really	want	to	test	for	a	wider
							sense	of,	say,	"digit",	you	must	use	Unicode		property		tests		such		as
							\p{Nd}.

							7.		Similarly,		characters	that	match	the	POSIX	named	character	classes
							are	all	low-valued	characters.

							8.	However,	the	Perl	5.10	horizontal	and	vertical		whitespace		matching
							escapes	(\h,	\H,	\v,	and	\V)	do	match	all	the	appropriate	Unicode	char-
							acters.

							9.	Case-insensitive	matching	applies	only	to		characters		whose		values
							are		less	than	128,	unless	PCRE	is	built	with	Unicode	property	support.
							Even	when	Unicode	property	support	is	available,	PCRE		still		uses		its
							own		character		tables	when	checking	the	case	of	low-valued	characters,
							so	as	not	to	degrade	performance.		The	Unicode	property	information		is
							used	only	for	characters	with	higher	values.	Even	when	Unicode	property
							support	is	available,	PCRE	supports	case-insensitive	matching	only	when
							there		is		a		one-to-one		mapping	between	a	letter's	cases.	There	are	a
							small	number	of	many-to-one	mappings	in	Unicode;		these		are		not		sup-
							ported	by	PCRE.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

							Putting		an	actual	email	address	here	seems	to	have	been	a	spam	magnet,
							so	I've	taken	it	away.	If	you	want	to	email	me,	use		my		two		initials,
							followed	by	the	two	digits	10,	at	the	domain	cam.ac.uk.

REVISION

							Last	updated:	12	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCREBUILD(3)																																																						PCREBUILD(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	BUILD-TIME	OPTIONS

							This		document		describes		the		optional		features		of	PCRE	that	can	be
							selected	when	the	library	is	compiled.	It	assumes	use	of	the		configure
							script,		where	the	optional	features	are	selected	or	deselected	by	pro-
							viding	options	to	configure	before	running	the	make		command.		However,
							the		same		options		can	be	selected	in	both	Unix-like	and	non-Unix-like
							environments	using	the	GUI	facility	of		CMakeSetup		if		you		are		using
							CMake	instead	of	configure	to	build	PCRE.

							The	complete	list	of	options	for	configure	(which	includes	the	standard
							ones	such	as	the		selection		of		the		installation		directory)		can		be
							obtained	by	running

									./configure	--help

							The		following		sections		include		descriptions		of	options	whose	names
							begin	with	--enable	or	--disable.	These	settings	specify	changes	to	the
							defaults		for		the	configure	command.	Because	of	the	way	that	configure
							works,	--enable	and	--disable	always	come	in	pairs,	so		the		complemen-
							tary		option	always	exists	as	well,	but	as	it	specifies	the	default,	it
							is	not	described.

C++	SUPPORT

							By	default,	the	configure	script	will	search	for	a	C++	compiler	and	C++
							header	files.	If	it	finds	them,	it	automatically	builds	the	C++	wrapper
							library	for	PCRE.	You	can	disable	this	by	adding

									--disable-cpp

							to	the	configure	command.

UTF-8	SUPPORT

							To	build	PCRE	with	support	for	UTF-8	character	strings,	add

									--enable-utf8

							to	the	configure	command.	Of	itself,	this		does		not		make		PCRE		treat
							strings		as	UTF-8.	As	well	as	compiling	PCRE	with	this	option,	you	also
							have	have	to	set	the	PCRE_UTF8	option	when	you	call	the		pcre_compile()
							function.

UNICODE	CHARACTER	PROPERTY	SUPPORT

							UTF-8		support	allows	PCRE	to	process	character	values	greater	than	255
							in	the	strings	that	it	handles.	On	its	own,	however,	it	does		not		pro-
							vide	any	facilities	for	accessing	the	properties	of	such	characters.	If
							you	want	to	be	able	to	use	the	pattern	escapes	\P,	\p,		and		\X,		which
							refer	to	Unicode	character	properties,	you	must	add

									--enable-unicode-properties

							to		the	configure	command.	This	implies	UTF-8	support,	even	if	you	have
							not	explicitly	requested	it.

							Including	Unicode	property	support	adds	around	30K		of		tables		to		the
							PCRE		library.		Only		the	general	category	properties	such	as	Lu	and	Nd
							are	supported.	Details	are	given	in	the	pcrepattern	documentation.

CODE	VALUE	OF	NEWLINE

							By	default,	PCRE	interprets	character	10	(linefeed,	LF)		as		indicating
							the		end		of		a	line.	This	is	the	normal	newline	character	on	Unix-like
							systems.	You	can	compile	PCRE	to	use	character	13	(carriage	return,	CR)
							instead,	by	adding

									--enable-newline-is-cr

							to		the		configure		command.		There		is		also		a	--enable-newline-is-lf
							option,	which	explicitly	specifies	linefeed	as	the	newline	character.

							Alternatively,	you	can	specify	that	line	endings	are	to	be	indicated	by
							the	two	character	sequence	CRLF.	If	you	want	this,	add

									--enable-newline-is-crlf

							to	the	configure	command.	There	is	a	fourth	option,	specified	by

									--enable-newline-is-anycrlf

							which		causes		PCRE		to	recognize	any	of	the	three	sequences	CR,	LF,	or
							CRLF	as	indicating	a	line	ending.	Finally,	a	fifth	option,	specified	by

									--enable-newline-is-any

							causes	PCRE	to	recognize	any	Unicode	newline	sequence.

							Whatever		line		ending	convention	is	selected	when	PCRE	is	built	can	be
							overridden	when	the	library	functions	are	called.	At	build	time		it		is
							conventional	to	use	the	standard	for	your	operating	system.

WHAT	\R	MATCHES

							By		default,		the		sequence	\R	in	a	pattern	matches	any	Unicode	newline
							sequence,	whatever	has	been	selected	as	the	line		ending		sequence.		If
							you	specify

									--enable-bsr-anycrlf

							the		default		is	changed	so	that	\R	matches	only	CR,	LF,	or	CRLF.	What-
							ever	is	selected	when	PCRE	is	built	can	be	overridden	when	the		library
							functions	are	called.

BUILDING	SHARED	AND	STATIC	LIBRARIES

							The		PCRE	building	process	uses	libtool	to	build	both	shared	and	static
							Unix	libraries	by	default.	You	can	suppress	one	of	these	by	adding		one
							of

									--disable-shared
									--disable-static

							to	the	configure	command,	as	required.

POSIX	MALLOC	USAGE

							When	PCRE	is	called	through	the	POSIX	interface	(see	the	pcreposix	doc-
							umentation),	additional	working	storage	is		required		for		holding		the
							pointers		to	capturing	substrings,	because	PCRE	requires	three	integers
							per	substring,	whereas	the	POSIX	interface	provides	only		two.		If		the
							number	of	expected	substrings	is	small,	the	wrapper	function	uses	space
							on	the	stack,	because	this	is	faster	than	using	malloc()	for	each	call.
							The	default	threshold	above	which	the	stack	is	no	longer	used	is	10;	it
							can	be	changed	by	adding	a	setting	such	as

									--with-posix-malloc-threshold=20

							to	the	configure	command.

HANDLING	VERY	LARGE	PATTERNS

							Within	a	compiled	pattern,	offset	values	are	used		to		point		from		one
							part		to	another	(for	example,	from	an	opening	parenthesis	to	an	alter-
							nation	metacharacter).	By	default,	two-byte	values	are	used		for		these
							offsets,		leading		to		a		maximum	size	for	a	compiled	pattern	of	around
							64K.	This	is	sufficient	to	handle	all	but	the	most		gigantic		patterns.
							Nevertheless,		some		people	do	want	to	process	enormous	patterns,	so	it
							is	possible	to	compile	PCRE	to	use	three-byte	or	four-byte		offsets		by
							adding	a	setting	such	as

									--with-link-size=3

							to		the		configure		command.		The	value	given	must	be	2,	3,	or	4.	Using
							longer	offsets	slows	down	the	operation	of	PCRE	because	it	has	to		load
							additional	bytes	when	handling	them.

AVOIDING	EXCESSIVE	STACK	USAGE

							When	matching	with	the	pcre_exec()	function,	PCRE	implements	backtrack-
							ing	by	making	recursive	calls	to	an	internal	function		called		match().
							In		environments		where		the	size	of	the	stack	is	limited,	this	can	se-
							verely	limit	PCRE's	operation.	(The	Unix	environment	does		not		usually
							suffer	from	this	problem,	but	it	may	sometimes	be	necessary	to	increase
							the	maximum	stack	size.		There	is	a	discussion	in	the		pcrestack		docu-
							mentation.)		An	alternative	approach	to	recursion	that	uses	memory	from
							the	heap	to	remember	data,	instead	of	using	recursive		function		calls,
							has		been		implemented	to	work	round	the	problem	of	limited	stack	size.
							If	you	want	to	build	a	version	of	PCRE	that	works	this	way,	add

									--disable-stack-for-recursion

							to	the	configure	command.	With	this	configuration,	PCRE		will		use		the
							pcre_stack_malloc		and	pcre_stack_free	variables	to	call	memory	manage-
							ment	functions.	By	default	these	point	to	malloc()	and	free(),	but		you
							can	replace	the	pointers	so	that	your	own	functions	are	used.

							Separate		functions		are		provided		rather		than		using	pcre_malloc	and
							pcre_free	because	the		usage		is		very		predictable:		the		block		sizes
							requested		are		always		the		same,		and		the	blocks	are	always	freed	in
							reverse	order.	A	calling	program	might	be	able	to		implement		optimized
							functions		that		perform		better		than		malloc()		and	free().	PCRE	runs
							noticeably	more	slowly	when	built	in	this	way.	This	option	affects	only
							the			pcre_exec()			function;			it			is			not			relevant		for		the		the
							pcre_dfa_exec()	function.

LIMITING	PCRE	RESOURCE	USAGE

							Internally,	PCRE	has	a	function	called	match(),	which	it	calls		repeat-
							edly			(sometimes			recursively)		when		matching		a		pattern		with		the
							pcre_exec()	function.	By	controlling	the	maximum	number	of		times		this
							function		may	be	called	during	a	single	matching	operation,	a	limit	can
							be	placed	on	the	resources	used	by	a	single	call		to		pcre_exec().		The
							limit		can	be	changed	at	run	time,	as	described	in	the	pcreapi	documen-
							tation.	The	default	is	10	million,	but	this	can	be	changed	by	adding		a
							setting	such	as

									--with-match-limit=500000

							to			the			configure		command.		This		setting		has		no		effect		on		the
							pcre_dfa_exec()	matching	function.

							In	some	environments	it	is	desirable	to	limit	the		depth		of		recursive
							calls	of	match()	more	strictly	than	the	total	number	of	calls,	in	order
							to	restrict	the	maximum	amount	of	stack	(or	heap,		if		--disable-stack-
							for-recursion	is	specified)	that	is	used.	A	second	limit	controls	this;
							it	defaults	to	the	value	that		is		set		for		--with-match-limit,		which

							imposes		no		additional	constraints.	However,	you	can	set	a	lower	limit
							by	adding,	for	example,

									--with-match-limit-recursion=10000

							to	the	configure	command.	This	value	can		also		be		overridden		at		run
							time.

CREATING	CHARACTER	TABLES	AT	BUILD	TIME

							PCRE		uses	fixed	tables	for	processing	characters	whose	code	values	are
							less	than	256.	By	default,	PCRE	is	built	with	a	set	of	tables	that		are
							distributed		in		the		file	pcre_chartables.c.dist.	These	tables	are	for
							ASCII	codes	only.	If	you	add

									--enable-rebuild-chartables

							to	the	configure	command,	the	distributed	tables	are		no		longer		used.
							Instead,		a		program		called	dftables	is	compiled	and	run.	This	outputs
							the	source	for	new	set	of	tables,	created	in	the	default	locale	of	your
							C	runtime	system.	(This	method	of	replacing	the	tables	does	not	work	if
							you	are	cross	compiling,	because	dftables	is	run	on	the	local	host.		If
							you		need		to		create	alternative	tables	when	cross	compiling,	you	will
							have	to	do	so	"by	hand".)

USING	EBCDIC	CODE

							PCRE	assumes	by	default	that	it	will	run	in	an		environment		where		the
							character		code		is		ASCII		(or	Unicode,	which	is	a	superset	of	ASCII).
							This	is	the	case	for	most	computer	operating	systems.		PCRE		can,		how-
							ever,	be	compiled	to	run	in	an	EBCDIC	environment	by	adding

									--enable-ebcdic

							to	the	configure	command.	This	setting	implies	--enable-rebuild-charta-

							bles.	You	should	only	use	it	if	you	know	that		you		are		in		an		EBCDIC
							environment	(for	example,	an	IBM	mainframe	operating	system).

PCREGREP	OPTIONS	FOR	COMPRESSED	FILE	SUPPORT

							By	default,	pcregrep	reads	all	files	as	plain	text.	You	can	build	it	so
							that	it	recognizes	files	whose	names	end	in	.gz	or	.bz2,	and	reads	them
							with	libz	or	libbz2,	respectively,	by	adding	one	or	both	of

									--enable-pcregrep-libz
									--enable-pcregrep-libbz2

							to	the	configure	command.	These	options	naturally	require	that	the	rel-
							evant	libraries	are	installed	on	your	system.	Configuration		will		fail
							if	they	are	not.

PCRETEST	OPTION	FOR	LIBREADLINE	SUPPORT

							If	you	add

									--enable-pcretest-libreadline

							to		the		configure		command,		pcretest		is		linked	with	the	libreadline
							library,	and	when	its	input	is	from	a	terminal,	it	reads	it		using		the
							readline()	function.	This	provides	line-editing	and	history	facilities.
							Note	that	libreadline	is	GPL-licenced,	so	if	you	distribute	a	binary	of
							pcretest	linked	in	this	way,	there	may	be	licensing	issues.

							Setting		this		option		causes		the	-lreadline	option	to	be	added	to	the
							pcretest	build.	In	many	operating	environments	with		a		sytem-installed
							libreadline	this	is	sufficient.	However,	in	some	environments	(e.g.		if
							an	unmodified	distribution	version	of	readline	is	in	use),		some		extra
							configuration		may		be	necessary.	The	INSTALL	file	for	libreadline	says
							this:

									"Readline	uses	the	termcap	functions,	but	does	not	link	with	the
									termcap	or	curses	library	itself,	allowing	applications	which	link
									with	readline	the	to	choose	an	appropriate	library."

							If	your	environment	has	not	been	set	up	so	that	an	appropriate		library
							is	automatically	included,	you	may	need	to	add	something	like

									LIBS="-ncurses"

							immediately	before	the	configure	command.

SEE	ALSO

							pcreapi(3),	pcre_config(3).

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	13	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCREMATCHING(3)																																																PCREMATCHING(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	MATCHING	ALGORITHMS

							This	document	describes	the	two	different	algorithms	that	are	available
							in	PCRE	for	matching	a	compiled	regular	expression	against	a	given	sub-
							ject		string.		The		"standard"		algorithm		is		the		one	provided	by	the
							pcre_exec()	function.		This	works	in	the	same	was		as		Perl's		matching
							function,	and	provides	a	Perl-compatible	matching	operation.

							An		alternative		algorithm	is	provided	by	the	pcre_dfa_exec()	function;
							this	operates	in	a	different	way,	and	is	not		Perl-compatible.		It		has
							advantages		and	disadvantages	compared	with	the	standard	algorithm,	and
							these	are	described	below.

							When	there	is	only	one	possible	way	in	which	a	given	subject	string	can
							match		a	pattern,	the	two	algorithms	give	the	same	answer.	A	difference
							arises,	however,	when	there	are	multiple	possibilities.	For	example,	if
							the	pattern

									^<.*>

							is	matched	against	the	string

									<something>	<something	else>	<something	further>

							there	are	three	possible	answers.	The	standard	algorithm	finds	only	one
							of	them,	whereas	the	alternative	algorithm	finds	all	three.

REGULAR	EXPRESSIONS	AS	TREES

							The	set	of	strings	that	are	matched	by	a	regular	expression	can	be	rep-
							resented		as		a		tree	structure.	An	unlimited	repetition	in	the	pattern
							makes	the	tree	of	infinite	size,	but	it	is	still	a	tree.		Matching		the
							pattern		to	a	given	subject	string	(from	a	given	starting	point)	can	be
							thought	of	as	a	search	of	the	tree.		There	are	two		ways		to		search		a
							tree:		depth-first		and		breadth-first,	and	these	correspond	to	the	two

							matching	algorithms	provided	by	PCRE.

THE	STANDARD	MATCHING	ALGORITHM

							In	the	terminology	of	Jeffrey	Friedl's	book	"Mastering	Regular		Expres-
							sions",		the		standard		algorithm		is	an	"NFA	algorithm".	It	conducts	a
							depth-first	search	of	the	pattern	tree.	That	is,	it		proceeds		along		a
							single	path	through	the	tree,	checking	that	the	subject	matches	what	is
							required.	When	there	is	a	mismatch,	the	algorithm		tries		any		alterna-
							tives		at		the		current	point,	and	if	they	all	fail,	it	backs	up	to	the
							previous	branch	point	in	the		tree,		and		tries		the		next		alternative
							branch		at		that		level.		This	often	involves	backing	up	(moving	to	the
							left)	in	the	subject	string	as	well.		The		order		in		which		repetition
							branches		are		tried		is	controlled	by	the	greedy	or	ungreedy	nature	of
							the	quantifier.

							If	a	leaf	node	is	reached,	a	matching	string	has		been		found,		and		at
							that		point	the	algorithm	stops.	Thus,	if	there	is	more	than	one	possi-
							ble	match,	this	algorithm	returns	the	first	one	that	it	finds.		Whether
							this		is	the	shortest,	the	longest,	or	some	intermediate	length	depends
							on	the	way	the	greedy	and	ungreedy	repetition	quantifiers	are	specified
							in	the	pattern.

							Because		it		ends		up		with	a	single	path	through	the	tree,	it	is	rela-
							tively	straightforward	for	this	algorithm	to	keep		track		of		the		sub-
							strings		that		are		matched		by	portions	of	the	pattern	in	parentheses.
							This	provides	support	for	capturing	parentheses	and	back	references.

THE	ALTERNATIVE	MATCHING	ALGORITHM

							This	algorithm	conducts	a	breadth-first	search	of		the		tree.		Starting
							from		the		first		matching		point		in	the	subject,	it	scans	the	subject
							string	from	left	to	right,	once,	character	by	character,	and	as	it	does
							this,		it	remembers	all	the	paths	through	the	tree	that	represent	valid
							matches.	In	Friedl's	terminology,	this	is	a	kind		of		"DFA		algorithm",

							though		it	is	not	implemented	as	a	traditional	finite	state	machine	(it
							keeps	multiple	states	active	simultaneously).

							The	scan	continues	until	either	the	end	of	the	subject	is		reached,		or
							there		are		no	more	unterminated	paths.	At	this	point,	terminated	paths
							represent	the	different	matching	possibilities	(if	there	are	none,		the
							match		has		failed).			Thus,		if	there	is	more	than	one	possible	match,
							this	algorithm	finds	all	of	them,	and	in	particular,	it	finds	the	long-
							est.		In	PCRE,	there	is	an	option	to	stop	the	algorithm	after	the	first
							match	(which	is	necessarily	the	shortest)	has	been	found.

							Note	that	all	the	matches	that	are	found	start	at	the	same	point	in	the
							subject.	If	the	pattern

									cat(er(pillar)?)

							is		matched		against	the	string	"the	caterpillar	catchment",	the	result
							will	be	the	three	strings	"cat",	"cater",	and	"caterpillar"	that		start
							at	the	fourth	character	of	the	subject.	The	algorithm	does	not	automat-
							ically	move	on	to	find	matches	that	start	at	later	positions.

							There	are	a	number	of	features	of	PCRE	regular	expressions	that	are	not
							supported	by	the	alternative	matching	algorithm.	They	are	as	follows:

							1.		Because		the		algorithm		finds		all	possible	matches,	the	greedy	or
							ungreedy	nature	of	repetition	quantifiers	is	not	relevant.		Greedy		and
							ungreedy	quantifiers	are	treated	in	exactly	the	same	way.	However,	pos-
							sessive	quantifiers	can	make	a	difference	when	what	follows	could		also
							match	what	is	quantified,	for	example	in	a	pattern	like	this:

									^a++\w!

							This		pattern	matches	"aaab!"	but	not	"aaa!",	which	would	be	matched	by
							a	non-possessive	quantifier.	Similarly,	if	an	atomic	group	is		present,
							it		is	matched	as	if	it	were	a	standalone	pattern	at	the	current	point,
							and	the	longest	match	is	then	"locked	in"	for	the	rest	of		the		overall
							pattern.

							2.	When	dealing	with	multiple	paths	through	the	tree	simultaneously,	it
							is	not	straightforward	to	keep	track	of		captured		substrings		for		the
							different		matching		possibilities,		and		PCRE's	implementation	of	this
							algorithm	does	not	attempt	to	do	this.	This	means	that	no	captured	sub-
							strings	are	available.

							3.		Because	no	substrings	are	captured,	back	references	within	the	pat-
							tern	are	not	supported,	and	cause	errors	if	encountered.

							4.	For	the	same	reason,	conditional	expressions	that	use		a		backrefer-
							ence		as		the		condition	or	test	for	a	specific	group	recursion	are	not
							supported.

							5.	Because	many	paths	through	the	tree	may	be		active,		the		\K		escape
							sequence,	which	resets	the	start	of	the	match	when	encountered	(but	may
							be	on	some	paths	and	not	on	others),	is	not		supported.		It		causes		an
							error	if	encountered.

							6.		Callouts		are		supported,	but	the	value	of	the	capture_top	field	is
							always	1,	and	the	value	of	the	capture_last	field	is	always	-1.

							7.	The	\C	escape	sequence,	which	(in	the	standard	algorithm)	matches		a
							single		byte,	even	in	UTF-8	mode,	is	not	supported	because	the	alterna-
							tive	algorithm	moves	through	the	subject		string		one		character		at		a
							time,	for	all	active	paths	through	the	tree.

							8.		Except	for	(*FAIL),	the	backtracking	control	verbs	such	as	(*PRUNE)
							are	not	supported.	(*FAIL)	is	supported,	and		behaves		like		a		failing
							negative	assertion.

ADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM

							Using		the	alternative	matching	algorithm	provides	the	following	advan-
							tages:

							1.	All	possible	matches	(at	a	single	point	in	the	subject)	are	automat-
							ically		found,		and		in	particular,	the	longest	match	is	found.	To	find
							more	than	one	match	using	the	standard	algorithm,	you	have	to	do	kludgy
							things	with	callouts.

							2.		There	is	much	better	support	for	partial	matching.	The	restrictions
							on	the	content	of	the	pattern	that	apply	when	using	the	standard		algo-
							rithm		for		partial	matching	do	not	apply	to	the	alternative	algorithm.
							For	non-anchored	patterns,	the	starting	position	of	a	partial	match		is
							available.

							3.		Because		the		alternative		algorithm		scans	the	subject	string	just
							once,	and	never	needs	to	backtrack,	it	is	possible	to		pass		very		long
							subject		strings		to		the	matching	function	in	several	pieces,	checking
							for	partial	matching	each	time.

DISADVANTAGES	OF	THE	ALTERNATIVE	ALGORITHM

							The	alternative	algorithm	suffers	from	a	number	of	disadvantages:

							1.	It	is	substantially	slower	than		the		standard		algorithm.		This		is
							partly		because		it	has	to	search	for	all	possible	matches,	but	is	also
							because	it	is	less	susceptible	to	optimization.

							2.	Capturing	parentheses	and	back	references	are	not	supported.

							3.	Although	atomic	groups	are	supported,	their	use	does	not	provide	the
							performance	advantage	that	it	does	for	the	standard	algorithm.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	19	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCREAPI(3)																																																										PCREAPI(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	NATIVE	API

							#include	<pcre.h>

							pcre	*pcre_compile(const	char	*pattern,	int	options,
												const	char	**errptr,	int	*erroffset,
												const	unsigned	char	*tableptr);

							pcre	*pcre_compile2(const	char	*pattern,	int	options,
												int	*errorcodeptr,
												const	char	**errptr,	int	*erroffset,
												const	unsigned	char	*tableptr);

							pcre_extra	*pcre_study(const	pcre	*code,	int	options,
												const	char	**errptr);

							int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,
												const	char	*subject,	int	length,	int	startoffset,
												int	options,	int	*ovector,	int	ovecsize);

							int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,
												const	char	*subject,	int	length,	int	startoffset,

												int	options,	int	*ovector,	int	ovecsize,
												int	*workspace,	int	wscount);

							int	pcre_copy_named_substring(const	pcre	*code,
												const	char	*subject,	int	*ovector,
												int	stringcount,	const	char	*stringname,
												char	*buffer,	int	buffersize);

							int	pcre_copy_substring(const	char	*subject,	int	*ovector,
												int	stringcount,	int	stringnumber,	char	*buffer,
												int	buffersize);

							int	pcre_get_named_substring(const	pcre	*code,
												const	char	*subject,	int	*ovector,
												int	stringcount,	const	char	*stringname,
												const	char	**stringptr);

							int	pcre_get_stringnumber(const	pcre	*code,
												const	char	*name);

							int	pcre_get_stringtable_entries(const	pcre	*code,
												const	char	*name,	char	**first,	char	**last);

							int	pcre_get_substring(const	char	*subject,	int	*ovector,
												int	stringcount,	int	stringnumber,
												const	char	**stringptr);

							int	pcre_get_substring_list(const	char	*subject,
												int	*ovector,	int	stringcount,	const	char	***listptr);

							void	pcre_free_substring(const	char	*stringptr);

							void	pcre_free_substring_list(const	char	**stringptr);

							const	unsigned	char	*pcre_maketables(void);

							int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,

												int	what,	void	*where);

							int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

							int	pcre_refcount(pcre	*code,	int	adjust);

							int	pcre_config(int	what,	void	*where);

							char	*pcre_version(void);

							void	*(*pcre_malloc)(size_t);

							void	(*pcre_free)(void	*);

							void	*(*pcre_stack_malloc)(size_t);

							void	(*pcre_stack_free)(void	*);

							int	(*pcre_callout)(pcre_callout_block	*);

PCRE	API	OVERVIEW

							PCRE	has	its	own	native	API,	which	is	described	in	this	document.	There
							are	also	some	wrapper	functions	that	correspond	to		the		POSIX		regular
							expression		API.		These		are		described	in	the	pcreposix	documentation.
							Both	of	these	APIs	define	a	set	of	C	function	calls.	A	C++		wrapper		is
							distributed	with	PCRE.	It	is	documented	in	the	pcrecpp	page.

							The		native		API		C		function	prototypes	are	defined	in	the	header	file
							pcre.h,	and	on	Unix	systems	the	library	itself	is	called		libpcre.			It
							can	normally	be	accessed	by	adding	-lpcre	to	the	command	for	linking	an
							application		that		uses		PCRE.		The		header		file		defines		the		macros
							PCRE_MAJOR		and		PCRE_MINOR	to	contain	the	major	and	minor	release	num-
							bers	for	the	library.		Applications	can	use	these		to		include		support
							for	different	releases	of	PCRE.

							The			functions			pcre_compile(),		pcre_compile2(),		pcre_study(),		and
							pcre_exec()	are	used	for	compiling	and	matching	regular	expressions		in
							a		Perl-compatible		manner.	A	sample	program	that	demonstrates	the	sim-
							plest	way	of	using	them	is	provided	in	the	file		called		pcredemo.c		in
							the		source	distribution.	The	pcresample	documentation	describes	how	to
							compile	and	run	it.

							A	second	matching	function,	pcre_dfa_exec(),	which	is	not	Perl-compati-
							ble,		is		also	provided.	This	uses	a	different	algorithm	for	the	match-
							ing.	The	alternative	algorithm	finds	all	possible	matches	(at		a		given
							point		in		the	subject),	and	scans	the	subject	just	once.	However,	this
							algorithm	does	not	return	captured	substrings.	A	description	of	the	two
							matching		algorithms	and	their	advantages	and	disadvantages	is	given	in
							the	pcrematching	documentation.

							In	addition	to	the	main	compiling	and		matching		functions,		there		are
							convenience	functions	for	extracting	captured	substrings	from	a	subject
							string	that	is	matched	by	pcre_exec().	They	are:

									pcre_copy_substring()
									pcre_copy_named_substring()
									pcre_get_substring()
									pcre_get_named_substring()
									pcre_get_substring_list()
									pcre_get_stringnumber()
									pcre_get_stringtable_entries()

							pcre_free_substring()	and	pcre_free_substring_list()	are	also	provided,
							to	free	the	memory	used	for	extracted	strings.

							The		function		pcre_maketables()		is		used		to	build	a	set	of	character
							tables		in		the		current		locale			for			passing			to			pcre_compile(),
							pcre_exec(),		or		pcre_dfa_exec().	This	is	an	optional	facility	that	is
							provided	for	specialist	use.		Most		commonly,		no		special		tables		are
							passed,		in		which	case	internal	tables	that	are	generated	when	PCRE	is
							built	are	used.

							The	function	pcre_fullinfo()	is	used	to	find	out		information		about		a
							compiled		pattern;	pcre_info()	is	an	obsolete	version	that	returns	only
							some	of	the	available	information,	but	is	retained	for		backwards		com-
							patibility.			The	function	pcre_version()	returns	a	pointer	to	a	string
							containing	the	version	of	PCRE	and	its	date	of	release.

							The	function	pcre_refcount()	maintains	a		reference		count		in		a		data
							block		containing		a	compiled	pattern.	This	is	provided	for	the	benefit
							of	object-oriented	applications.

							The	global	variables	pcre_malloc	and	pcre_free		initially		contain		the
							entry		points		of		the		standard	malloc()	and	free()	functions,	respec-
							tively.	PCRE	calls	the	memory	management	functions	via	these	variables,
							so		a		calling		program		can	replace	them	if	it	wishes	to	intercept	the
							calls.	This	should	be	done	before	calling	any	PCRE	functions.

							The	global	variables	pcre_stack_malloc		and		pcre_stack_free		are		also
							indirections		to		memory		management	functions.	These	special	functions
							are	used	only	when	PCRE	is	compiled	to	use		the		heap		for		remembering
							data,	instead	of	recursive	function	calls,	when	running	the	pcre_exec()
							function.	See	the	pcrebuild	documentation	for		details		of		how		to		do
							this.		It		is		a	non-standard	way	of	building	PCRE,	for	use	in	environ-
							ments	that	have	limited	stacks.	Because	of	the	greater		use		of		memory
							management,		it		runs		more		slowly.	Separate	functions	are	provided	so
							that	special-purpose	external	code	can	be		used		for		this		case.		When
							used,		these		functions		are	always	called	in	a	stack-like	manner	(last
							obtained,	first	freed),	and	always	for	memory	blocks	of	the	same		size.
							There		is		a	discussion	about	PCRE's	stack	usage	in	the	pcrestack	docu-
							mentation.

							The	global	variable	pcre_callout	initially	contains	NULL.	It	can	be	set
							by		the		caller		to		a	"callout"	function,	which	PCRE	will	then	call	at
							specified	points	during	a	matching	operation.	Details	are	given	in		the
							pcrecallout	documentation.

NEWLINES

							PCRE		supports	five	different	conventions	for	indicating	line	breaks	in
							strings:	a	single	CR	(carriage	return)	character,	a		single		LF		(line-
							feed)	character,	the	two-character	sequence	CRLF,	any	of	the	three	pre-
							ceding,	or	any	Unicode	newline	sequence.	The	Unicode	newline		sequences
							are		the		three	just	mentioned,	plus	the	single	characters	VT	(vertical
							tab,	U+000B),	FF	(formfeed,	U+000C),	NEL	(next	line,	U+0085),	LS		(line
							separator,	U+2028),	and	PS	(paragraph	separator,	U+2029).

							Each		of		the	first	three	conventions	is	used	by	at	least	one	operating
							system	as	its	standard	newline	sequence.	When	PCRE	is	built,	a		default
							can		be		specified.		The	default	default	is	LF,	which	is	the	Unix	stan-
							dard.	When	PCRE	is	run,	the	default	can	be	overridden,		either		when		a
							pattern	is	compiled,	or	when	it	is	matched.

							At	compile	time,	the	newline	convention	can	be	specified	by	the	options
							argument	of	pcre_compile(),	or	it	can	be	specified	by	special		text		at
							the	start	of	the	pattern	itself;	this	overrides	any	other	settings.	See
							the	pcrepattern	page	for	details	of	the	special	character	sequences.

							In	the	PCRE	documentation	the	word	"newline"	is	used	to	mean	"the	char-
							acter		or	pair	of	characters	that	indicate	a	line	break".	The	choice	of
							newline	convention	affects	the	handling	of		the		dot,		circumflex,		and
							dollar	metacharacters,	the	handling	of	#-comments	in	/x	mode,	and,	when
							CRLF	is	a	recognized	line	ending	sequence,	the	match	position		advance-
							ment	for	a	non-anchored	pattern.	There	is	more	detail	about	this	in	the
							section	on	pcre_exec()	options	below.

							The	choice	of	newline	convention	does	not	affect	the	interpretation		of
							the		\n		or		\r		escape		sequences,	nor	does	it	affect	what	\R	matches,
							which	is	controlled	in	a	similar	way,	but	by	separate	options.

MULTITHREADING

							The	PCRE	functions	can	be	used	in		multi-threading		applications,		with
							the		proviso		that		the		memory		management		functions		pointed		to		by

							pcre_malloc,	pcre_free,	pcre_stack_malloc,	and	pcre_stack_free,	and	the
							callout	function	pointed	to	by	pcre_callout,	are	shared	by	all	threads.

							The	compiled	form	of	a	regular	expression	is	not	altered	during		match-
							ing,	so	the	same	compiled	pattern	can	safely	be	used	by	several	threads
							at	once.

SAVING	PRECOMPILED	PATTERNS	FOR	LATER	USE

							The	compiled	form	of	a	regular	expression	can	be	saved	and	re-used	at	a
							later		time,		possibly	by	a	different	program,	and	even	on	a	host	other
							than	the	one	on	which		it		was		compiled.		Details		are		given		in		the
							pcreprecompile		documentation.		However,	compiling	a	regular	expression
							with	one	version	of	PCRE	for	use	with	a	different	version	is	not		guar-
							anteed	to	work	and	may	cause	crashes.

CHECKING	BUILD-TIME	OPTIONS

							int	pcre_config(int	what,	void	*where);

							The		function	pcre_config()	makes	it	possible	for	a	PCRE	client	to	dis-
							cover	which	optional	features	have	been	compiled	into	the	PCRE	library.
							The		pcrebuild	documentation	has	more	details	about	these	optional	fea-
							tures.

							The	first	argument	for	pcre_config()	is	an		integer,		specifying		which
							information	is	required;	the	second	argument	is	a	pointer	to	a	variable
							into	which	the	information	is		placed.		The		following		information		is
							available:

									PCRE_CONFIG_UTF8

							The		output	is	an	integer	that	is	set	to	one	if	UTF-8	support	is	avail-
							able;	otherwise	it	is	set	to	zero.

									PCRE_CONFIG_UNICODE_PROPERTIES

							The	output	is	an	integer	that	is	set	to		one		if		support		for		Unicode
							character	properties	is	available;	otherwise	it	is	set	to	zero.

									PCRE_CONFIG_NEWLINE

							The		output		is		an	integer	whose	value	specifies	the	default	character
							sequence	that	is	recognized	as	meaning	"newline".	The	four	values		that
							are	supported	are:	10	for	LF,	13	for	CR,	3338	for	CRLF,	-2	for	ANYCRLF,
							and	-1	for	ANY.	The	default	should	normally	be		the		standard		sequence
							for	your	operating	system.

									PCRE_CONFIG_BSR

							The	output	is	an	integer	whose	value	indicates	what	character	sequences
							the	\R	escape	sequence	matches	by	default.	A	value	of	0	means		that		\R
							matches		any		Unicode		line	ending	sequence;	a	value	of	1	means	that	\R
							matches	only	CR,	LF,	or	CRLF.	The	default	can	be	overridden	when	a	pat-
							tern	is	compiled	or	matched.

									PCRE_CONFIG_LINK_SIZE

							The		output		is		an		integer	that	contains	the	number	of	bytes	used	for
							internal	linkage	in	compiled	regular	expressions.	The	value	is	2,	3,	or
							4.		Larger		values		allow	larger	regular	expressions	to	be	compiled,	at
							the	expense	of	slower	matching.	The	default	value	of		2		is		sufficient
							for		all		but		the		most	massive	patterns,	since	it	allows	the	compiled
							pattern	to	be	up	to	64K	in	size.

									PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

							The	output	is	an	integer	that	contains	the	threshold		above		which		the
							POSIX		interface		uses	malloc()	for	output	vectors.	Further	details	are
							given	in	the	pcreposix	documentation.

									PCRE_CONFIG_MATCH_LIMIT

							The	output	is	an	integer	that	gives	the	default	limit	for	the	number	of
							internal		matching		function		calls	in	a	pcre_exec()	execution.	Further
							details	are	given	with	pcre_exec()	below.

									PCRE_CONFIG_MATCH_LIMIT_RECURSION

							The	output	is	an	integer	that	gives	the	default	limit	for	the	depth		of
							recursion		when	calling	the	internal	matching	function	in	a	pcre_exec()
							execution.	Further	details	are	given	with	pcre_exec()	below.

									PCRE_CONFIG_STACKRECURSE

							The	output	is	an	integer	that	is	set	to	one	if	internal	recursion		when
							running	pcre_exec()	is	implemented	by	recursive	function	calls	that	use
							the	stack	to	remember	their	state.	This	is	the	usual	way	that		PCRE		is
							compiled.	The	output	is	zero	if	PCRE	was	compiled	to	use	blocks	of	data
							on	the		heap		instead		of		recursive		function		calls.		In		this		case,
							pcre_stack_malloc		and		pcre_stack_free		are		called		to		manage	memory
							blocks	on	the	heap,	thus	avoiding	the	use	of	the	stack.

COMPILING	A	PATTERN

							pcre	*pcre_compile(const	char	*pattern,	int	options,
												const	char	**errptr,	int	*erroffset,
												const	unsigned	char	*tableptr);

							pcre	*pcre_compile2(const	char	*pattern,	int	options,
												int	*errorcodeptr,
												const	char	**errptr,	int	*erroffset,
												const	unsigned	char	*tableptr);

							Either	of	the	functions	pcre_compile()	or	pcre_compile2()	can	be	called
							to	compile	a	pattern	into	an	internal	form.	The	only	difference	between
							the	two	interfaces	is	that	pcre_compile2()	has	an	additional		argument,
							errorcodeptr,	via	which	a	numerical	error	code	can	be	returned.

							The	pattern	is	a	C	string	terminated	by	a	binary	zero,	and	is	passed	in
							the	pattern	argument.	A	pointer	to	a	single	block		of		memory		that		is
							obtained		via		pcre_malloc	is	returned.	This	contains	the	compiled	code
							and	related	data.	The	pcre	type	is	defined	for	the	returned	block;	this
							is	a	typedef	for	a	structure	whose	contents	are	not	externally	defined.
							It	is	up	to	the	caller	to	free	the	memory	(via	pcre_free)	when	it	is	no
							longer	required.

							Although		the	compiled	code	of	a	PCRE	regex	is	relocatable,	that	is,	it
							does	not	depend	on	memory	location,	the	complete	pcre	data	block	is	not
							fully		relocatable,	because	it	may	contain	a	copy	of	the	tableptr	argu-
							ment,	which	is	an	address	(see	below).

							The	options	argument	contains	various	bit	settings	that	affect	the	com-
							pilation.		It		should	be	zero	if	no	options	are	required.	The	available
							options	are	described	below.	Some	of	them,	in		particular,		those		that
							are		compatible		with		Perl,		can	also	be	set	and	unset	from	within	the
							pattern	(see	the	detailed	description		in		the		pcrepattern		documenta-
							tion).		For		these	options,	the	contents	of	the	options	argument	speci-
							fies	their	initial	settings	at	the	start	of	compilation	and		execution.
							The		PCRE_ANCHORED		and	PCRE_NEWLINE_xxx	options	can	be	set	at	the	time
							of	matching	as	well	as	at	compile	time.

							If	errptr	is	NULL,	pcre_compile()	returns	NULL	immediately.		Otherwise,
							if		compilation		of		a		pattern	fails,	pcre_compile()	returns	NULL,	and
							sets	the	variable	pointed	to	by	errptr	to	point	to	a	textual	error	mes-
							sage.	This	is	a	static	string	that	is	part	of	the	library.	You	must	not
							try	to	free	it.	The	offset	from	the	start	of	the	pattern	to	the	charac-
							ter	where	the	error	was	discovered	is	placed	in	the	variable	pointed	to
							by	erroffset,	which	must	not	be	NULL.	If	it	is,	an	immediate		error		is
							given.

							If		pcre_compile2()		is		used	instead	of	pcre_compile(),	and	the	error-
							codeptr	argument	is	not	NULL,	a	non-zero	error	code	number	is		returned
							via		this	argument	in	the	event	of	an	error.	This	is	in	addition	to	the
							textual	error	message.	Error	codes	and	messages	are	listed	below.

							If	the	final	argument,	tableptr,	is	NULL,	PCRE	uses	a		default		set		of
							character		tables		that		are		built		when		PCRE		is	compiled,	using	the
							default	C	locale.	Otherwise,	tableptr	must	be	an	address		that		is		the
							result		of		a		call	to	pcre_maketables().	This	value	is	stored	with	the
							compiled	pattern,	and	used	again	by	pcre_exec(),	unless		another		table
							pointer	is	passed	to	it.	For	more	discussion,	see	the	section	on	locale
							support	below.

							This	code	fragment	shows	a	typical	straightforward		call		to		pcre_com-
							pile():

									pcre	*re;
									const	char	*error;
									int	erroffset;
									re	=	pcre_compile(
											"^A.*Z",										/*	the	pattern	*/
											0,																/*	default	options	*/
											&error;,											/*	for	error	message	*/
											&erroffset;,							/*	for	error	offset	*/
											NULL);												/*	use	default	character	tables	*/

							The		following		names		for	option	bits	are	defined	in	the	pcre.h	header
							file:

									PCRE_ANCHORED

							If	this	bit	is	set,	the	pattern	is	forced	to	be	"anchored",	that	is,	it
							is		constrained	to	match	only	at	the	first	matching	point	in	the	string
							that	is	being	searched	(the	"subject	string").	This	effect	can	also		be
							achieved		by	appropriate	constructs	in	the	pattern	itself,	which	is	the
							only	way	to	do	it	in	Perl.

									PCRE_AUTO_CALLOUT

							If	this	bit	is	set,	pcre_compile()	automatically	inserts	callout	items,
							all		with		number		255,	before	each	pattern	item.	For	discussion	of	the

							callout	facility,	see	the	pcrecallout	documentation.

									PCRE_BSR_ANYCRLF
									PCRE_BSR_UNICODE

							These	options	(which	are	mutually	exclusive)	control	what	the	\R	escape
							sequence		matches.		The	choice	is	either	to	match	only	CR,	LF,	or	CRLF,
							or	to	match	any	Unicode	newline	sequence.	The	default	is	specified	when
							PCRE	is	built.	It	can	be	overridden	from	within	the	pattern,	or	by	set-
							ting	an	option	when	a	compiled	pattern	is	matched.

									PCRE_CASELESS

							If	this	bit	is	set,	letters	in	the	pattern	match	both	upper		and		lower
							case		letters.		It		is		equivalent		to		Perl's	/i	option,	and	it	can	be
							changed	within	a	pattern	by	a	(?i)	option	setting.	In	UTF-8	mode,		PCRE
							always		understands	the	concept	of	case	for	characters	whose	values	are
							less	than	128,	so	caseless	matching	is	always	possible.	For		characters
							with		higher		values,		the	concept	of	case	is	supported	if	PCRE	is	com-
							piled	with	Unicode	property	support,	but	not	otherwise.	If	you	want		to
							use		caseless		matching		for		characters	128	and	above,	you	must	ensure
							that	PCRE	is	compiled	with	Unicode	property	support		as		well		as		with
							UTF-8	support.

									PCRE_DOLLAR_ENDONLY

							If		this	bit	is	set,	a	dollar	metacharacter	in	the	pattern	matches	only
							at	the	end	of	the	subject	string.	Without	this	option,		a		dollar		also
							matches		immediately	before	a	newline	at	the	end	of	the	string	(but	not
							before	any	other	newlines).	The	PCRE_DOLLAR_ENDONLY	option		is		ignored
							if		PCRE_MULTILINE		is		set.			There	is	no	equivalent	to	this	option	in
							Perl,	and	no	way	to	set	it	within	a	pattern.

									PCRE_DOTALL

							If	this	bit	is	set,	a	dot	metacharater	in	the	pattern	matches	all	char-
							acters,		including		those	that	indicate	newline.	Without	it,	a	dot	does

							not	match	when	the	current	position	is	at	a		newline.		This		option		is
							equivalent		to	Perl's	/s	option,	and	it	can	be	changed	within	a	pattern
							by	a	(?s)	option	setting.	A	negative	class	such	as	[^a]	always		matches
							newline	characters,	independent	of	the	setting	of	this	option.

									PCRE_DUPNAMES

							If		this		bit	is	set,	names	used	to	identify	capturing	subpatterns	need
							not	be	unique.	This	can	be	helpful	for	certain	types	of	pattern	when	it
							is		known		that		only		one	instance	of	the	named	subpattern	can	ever	be
							matched.	There	are	more	details	of	named	subpatterns		below;		see		also
							the	pcrepattern	documentation.

									PCRE_EXTENDED

							If		this		bit		is		set,		whitespace		data	characters	in	the	pattern	are
							totally	ignored	except	when	escaped	or	inside	a	character	class.	White-
							space	does	not	include	the	VT	character	(code	11).	In	addition,	charac-
							ters	between	an	unescaped	#	outside	a	character	class	and	the	next	new-
							line,		inclusive,		are		also		ignored.		This	is	equivalent	to	Perl's	/x
							option,	and	it	can	be	changed	within	a	pattern	by	a		(?x)		option		set-
							ting.

							This		option		makes		it	possible	to	include	comments	inside	complicated
							patterns.		Note,	however,	that	this	applies	only		to		data		characters.
							Whitespace			characters		may		never		appear		within		special		character
							sequences	in	a	pattern,	for		example		within		the		sequence		(?(which
							introduces	a	conditional	subpattern.

									PCRE_EXTRA

							This		option		was	invented	in	order	to	turn	on	additional	functionality
							of	PCRE	that	is	incompatible	with	Perl,	but	it		is		currently		of		very
							little		use.	When	set,	any	backslash	in	a	pattern	that	is	followed	by	a
							letter	that	has	no	special	meaning		causes		an		error,		thus		reserving
							these		combinations		for		future		expansion.		By	default,	as	in	Perl,	a
							backslash	followed	by	a	letter	with	no	special	meaning	is	treated	as		a

							literal.		(Perl	can,	however,	be	persuaded	to	give	a	warning	for	this.)
							There	are	at	present	no	other	features	controlled	by		this		option.		It
							can	also	be	set	by	a	(?X)	option	setting	within	a	pattern.

									PCRE_FIRSTLINE

							If		this		option		is		set,		an		unanchored	pattern	is	required	to	match
							before	or	at	the	first		newline		in		the		subject		string,		though		the
							matched	text	may	continue	over	the	newline.

									PCRE_JAVASCRIPT_COMPAT

							If	this	option	is	set,	PCRE's	behaviour	is	changed	in	some	ways	so	that
							it	is	compatible	with	JavaScript	rather	than	Perl.	The	changes		are		as
							follows:

							(1)		A		lone		closing	square	bracket	in	a	pattern	causes	a	compile-time
							error,	because	this	is	illegal	in	JavaScript	(by	default	it	is		treated
							as	a	data	character).	Thus,	the	pattern	AB]CD	becomes	illegal	when	this
							option	is	set.

							(2)	At	run	time,	a	back	reference	to	an	unset	subpattern	group		matches
							an		empty		string	(by	default	this	causes	the	current	matching	alterna-
							tive	to	fail).	A	pattern	such	as	(\1)(a)	succeeds	when	this		option		is
							set		(assuming		it	can	find	an	"a"	in	the	subject),	whereas	it	fails	by
							default,	for	Perl	compatibility.

									PCRE_MULTILINE

							By	default,	PCRE	treats	the	subject	string	as	consisting		of		a		single
							line		of	characters	(even	if	it	actually	contains	newlines).	The	"start
							of	line"	metacharacter	(^)	matches	only	at	the		start		of		the		string,
							while		the		"end		of	line"	metacharacter	($)	matches	only	at	the	end	of
							the	string,	or	before	a	terminating	newline	(unless	PCRE_DOLLAR_ENDONLY
							is	set).	This	is	the	same	as	Perl.

							When		PCRE_MULTILINE		it		is	set,	the	"start	of	line"	and	"end	of	line"

							constructs	match	immediately	following	or	immediately		before		internal
							newlines		in		the		subject	string,	respectively,	as	well	as	at	the	very
							start	and	end.	This	is	equivalent	to	Perl's	/m	option,	and		it		can		be
							changed	within	a	pattern	by	a	(?m)	option	setting.	If	there	are	no	new-
							lines	in	a	subject	string,	or	no	occurrences	of	^	or	$		in		a		pattern,
							setting	PCRE_MULTILINE	has	no	effect.

									PCRE_NEWLINE_CR
									PCRE_NEWLINE_LF
									PCRE_NEWLINE_CRLF
									PCRE_NEWLINE_ANYCRLF
									PCRE_NEWLINE_ANY

							These		options		override	the	default	newline	definition	that	was	chosen
							when	PCRE	was	built.	Setting	the	first	or	the	second	specifies		that		a
							newline		is		indicated		by	a	single	character	(CR	or	LF,	respectively).
							Setting	PCRE_NEWLINE_CRLF	specifies	that	a	newline	is	indicated	by		the
							two-character		CRLF		sequence.		Setting		PCRE_NEWLINE_ANYCRLF	specifies
							that	any	of	the	three	preceding	sequences	should	be	recognized.	Setting
							PCRE_NEWLINE_ANY		specifies	that	any	Unicode	newline	sequence	should	be
							recognized.	The	Unicode	newline	sequences	are	the	three	just	mentioned,
							plus		the		single		characters		VT	(vertical	tab,	U+000B),	FF	(formfeed,
							U+000C),	NEL	(next	line,	U+0085),	LS	(line	separator,	U+2028),		and		PS
							(paragraph		separator,		U+2029).		The		last		two	are	recognized	only	in
							UTF-8	mode.

							The	newline	setting	in	the		options		word		uses		three		bits		that		are
							treated	as	a	number,	giving	eight	possibilities.	Currently	only	six	are
							used	(default	plus	the	five	values	above).	This	means	that	if		you		set
							more		than	one	newline	option,	the	combination	may	or	may	not	be	sensi-
							ble.	For	example,	PCRE_NEWLINE_CR	with	PCRE_NEWLINE_LF	is	equivalent	to
							PCRE_NEWLINE_CRLF,		but	other	combinations	may	yield	unused	numbers	and
							cause	an	error.

							The	only	time	that	a	line	break	is	specially	recognized	when		compiling
							a		pattern		is		if		PCRE_EXTENDED		is	set,	and	an	unescaped	#	outside	a
							character	class	is	encountered.	This	indicates		a		comment		that		lasts

							until		after	the	next	line	break	sequence.	In	other	circumstances,	line
							break		sequences		are		treated		as		literal		data,			except			that			in
							PCRE_EXTENDED	mode,	both	CR	and	LF	are	treated	as	whitespace	characters
							and	are	therefore	ignored.

							The	newline	option	that	is	set	at	compile	time	becomes	the	default	that
							is		used	for	pcre_exec()	and	pcre_dfa_exec(),	but	it	can	be	overridden.

									PCRE_NO_AUTO_CAPTURE

							If	this	option	is	set,	it	disables	the	use	of	numbered	capturing	paren-
							theses		in	the	pattern.	Any	opening	parenthesis	that	is	not	followed	by
							?	behaves	as	if	it	were	followed	by	?:	but	named	parentheses	can		still
							be		used		for		capturing		(and		they	acquire	numbers	in	the	usual	way).
							There	is	no	equivalent	of	this	option	in	Perl.

									PCRE_UNGREEDY

							This	option	inverts	the	"greediness"	of	the	quantifiers		so		that		they
							are		not	greedy	by	default,	but	become	greedy	if	followed	by	"?".	It	is
							not	compatible	with	Perl.	It	can	also	be	set	by	a	(?U)		option		setting
							within	the	pattern.

									PCRE_UTF8

							This		option		causes	PCRE	to	regard	both	the	pattern	and	the	subject	as
							strings	of	UTF-8	characters	instead	of	single-byte		character		strings.
							However,		it	is	available	only	when	PCRE	is	built	to	include	UTF-8	sup-
							port.	If	not,	the	use	of	this	option	provokes	an	error.	Details	of		how
							this		option		changes	the	behaviour	of	PCRE	are	given	in	the	section	on
							UTF-8	support	in	the	main	pcre	page.

									PCRE_NO_UTF8_CHECK

							When	PCRE_UTF8	is	set,	the	validity	of	the	pattern	as	a	UTF-8	string	is
							automatically		checked.		There		is		a		discussion	about	the	validity	of
							UTF-8	strings	in	the	main	pcre	page.	If	an	invalid		UTF-8		sequence		of

							bytes		is		found,		pcre_compile()	returns	an	error.	If	you	already	know
							that	your	pattern	is	valid,	and	you	want	to	skip	this	check	for	perfor-
							mance		reasons,		you		can	set	the	PCRE_NO_UTF8_CHECK	option.	When	it	is
							set,	the	effect	of	passing	an	invalid	UTF-8		string		as		a		pattern		is
							undefined.		It		may		cause	your	program	to	crash.	Note	that	this	option
							can	also	be	passed	to	pcre_exec()	and	pcre_dfa_exec(),	to	suppress		the
							UTF-8	validity	checking	of	subject	strings.

COMPILATION	ERROR	CODES

							The		following		table		lists		the		error		codes	than	may	be	returned	by
							pcre_compile2(),	along	with	the	error	messages	that	may	be	returned		by
							both		compiling	functions.	As	PCRE	has	developed,	some	error	codes	have
							fallen	out	of	use.	To	avoid	confusion,	they	have	not	been	re-used.

										0		no	error
										1		\	at	end	of	pattern
										2		\c	at	end	of	pattern
										3		unrecognized	character	follows	\
										4		numbers	out	of	order	in	{}	quantifier
										5		number	too	big	in	{}	quantifier
										6		missing	terminating]	for	character	class
										7		invalid	escape	sequence	in	character	class
										8		range	out	of	order	in	character	class
										9		nothing	to	repeat
									10		[this	code	is	not	in	use]
									11		internal	error:	unexpected	repeat
									12		unrecognized	character	after	(?	or	(?-
									13		POSIX	named	classes	are	supported	only	within	a	class
									14		missing)
									15		reference	to	non-existent	subpattern
									16		erroffset	passed	as	NULL
									17		unknown	option	bit(s)	set
									18		missing)	after	comment
									19		[this	code	is	not	in	use]
									20		regular	expression	is	too	large

									21		failed	to	get	memory
									22		unmatched	parentheses
									23		internal	error:	code	overflow
									24		unrecognized	character	after	(?<
									25		lookbehind	assertion	is	not	fixed	length
									26		malformed	number	or	name	after	(?(
									27		conditional	group	contains	more	than	two	branches
									28		assertion	expected	after	(?(
									29		(?R	or	(?[+-]digits	must	be	followed	by)
									30		unknown	POSIX	class	name
									31		POSIX	collating	elements	are	not	supported
									32		this	version	of	PCRE	is	not	compiled	with	PCRE_UTF8	support
									33		[this	code	is	not	in	use]
									34		character	value	in	\x{...}	sequence	is	too	large
									35		invalid	condition	(?(0)
									36		\C	not	allowed	in	lookbehind	assertion
									37		PCRE	does	not	support	\L,	\l,	\N,	\U,	or	\u
									38		number	after	(?C	is	>	255
									39		closing)	for	(?C	expected
									40		recursive	call	could	loop	indefinitely
									41		unrecognized	character	after	(?P
									42		syntax	error	in	subpattern	name	(missing	terminator)
									43		two	named	subpatterns	have	the	same	name
									44		invalid	UTF-8	string
									45		support	for	\P,	\p,	and	\X	has	not	been	compiled
									46		malformed	\P	or	\p	sequence
									47		unknown	property	name	after	\P	or	\p
									48		subpattern	name	is	too	long	(maximum	32	characters)
									49		too	many	named	subpatterns	(maximum	10000)
									50		[this	code	is	not	in	use]
									51		octal	value	is	greater	than	\377	(not	in	UTF-8	mode)
									52		internal	error:	overran	compiling	workspace
									53		internal		error:		previously-checked		referenced		subpattern		not
							found
									54		DEFINE	group	contains	more	than	one	branch
									55		repeating	a	DEFINE	group	is	not	allowed
									56		inconsistent	NEWLINE	options

									57		\g	is	not	followed	by	a	braced,	angle-bracketed,	or	quoted
															name/number	or	by	a	plain	number
									58		a	numbered	reference	must	not	be	zero
									59		(*VERB)	with	an	argument	is	not	supported
									60		(*VERB)	not	recognized
									61		number	is	too	big
									62		subpattern	name	expected
									63		digit	expected	after	(?+
									64]	is	an	invalid	data	character	in	JavaScript	compatibility	mode

							The		numbers		32		and	10000	in	errors	48	and	49	are	defaults;	different
							values	may	be	used	if	the	limits	were	changed	when	PCRE	was	built.

STUDYING	A	PATTERN

							pcre_extra	*pcre_study(const	pcre	*code,	int	options
												const	char	**errptr);

							If	a	compiled	pattern	is	going	to	be	used	several	times,		it		is		worth
							spending	more	time	analyzing	it	in	order	to	speed	up	the	time	taken	for
							matching.	The	function	pcre_study()	takes	a	pointer	to	a	compiled		pat-
							tern	as	its	first	argument.	If	studying	the	pattern	produces	additional
							information	that	will	help	speed	up	matching,		pcre_study()		returns		a
							pointer		to	a	pcre_extra	block,	in	which	the	study_data	field	points	to
							the	results	of	the	study.

							The		returned		value		from		pcre_study()		can		be		passed		directly		to
							pcre_exec().		However,		a		pcre_extra		block	also	contains	other	fields
							that	can	be	set	by	the	caller	before	the	block		is		passed;		these		are
							described	below	in	the	section	on	matching	a	pattern.

							If		studying		the		pattern		does	not	produce	any	additional	information
							pcre_study()	returns	NULL.	In	that	circumstance,	if	the	calling	program
							wants		to		pass		any	of	the	other	fields	to	pcre_exec(),	it	must	set	up
							its	own	pcre_extra	block.

							The	second	argument	of	pcre_study()	contains	option	bits.		At		present,
							no	options	are	defined,	and	this	argument	should	always	be	zero.

							The		third	argument	for	pcre_study()	is	a	pointer	for	an	error	message.
							If	studying	succeeds	(even	if	no	data	is		returned),		the		variable		it
							points		to		is		set		to	NULL.	Otherwise	it	is	set	to	point	to	a	textual
							error	message.	This	is	a	static	string	that	is	part	of	the	library.	You
							must		not		try		to		free	it.	You	should	test	the	error	pointer	for	NULL
							after	calling	pcre_study(),	to	be	sure	that	it	has	run	successfully.

							This	is	a	typical	call	to	pcre_study():

									pcre_extra	*pe;
									pe	=	pcre_study(
											re,													/*	result	of	pcre_compile()	*/
											0,														/*	no	options	exist	*/
											&error;);								/*	set	to	NULL	or	points	to	a	message	*/

							At	present,	studying	a	pattern	is	useful	only	for	non-anchored	patterns
							that		do	not	have	a	single	fixed	starting	character.	A	bitmap	of	possi-
							ble	starting	bytes	is	created.

LOCALE	SUPPORT

							PCRE	handles	caseless	matching,	and	determines	whether		characters		are
							letters,		digits,	or	whatever,	by	reference	to	a	set	of	tables,	indexed
							by	character	value.	When	running	in	UTF-8	mode,	this		applies		only		to
							characters		with		codes		less	than	128.	Higher-valued	codes	never	match
							escapes	such	as	\w	or	\d,	but	can	be	tested	with	\p	if		PCRE		is		built
							with		Unicode		character	property	support.	The	use	of	locales	with	Uni-
							code	is	discouraged.	If	you	are	handling	characters	with	codes		greater
							than		128,	you	should	either	use	UTF-8	and	Unicode,	or	use	locales,	but
							not	try	to	mix	the	two.

							PCRE	contains	an	internal	set	of	tables	that	are	used		when		the		final
							argument		of		pcre_compile()		is		NULL.		These		are	sufficient	for	many

							applications.		Normally,	the	internal	tables	recognize	only	ASCII	char-
							acters.	However,	when	PCRE	is	built,	it	is	possible	to	cause	the	inter-
							nal	tables	to	be	rebuilt	in	the	default	"C"	locale	of	the	local	system,
							which	may	cause	them	to	be	different.

							The		internal	tables	can	always	be	overridden	by	tables	supplied	by	the
							application	that	calls	PCRE.	These	may	be	created	in	a	different	locale
							from		the		default.		As	more	and	more	applications	change	to	using	Uni-
							code,	the	need	for	this	locale	support	is	expected	to	die	away.

							External	tables	are	built	by	calling		the		pcre_maketables()		function,
							which		has	no	arguments,	in	the	relevant	locale.	The	result	can	then	be
							passed	to	pcre_compile()	or	pcre_exec()		as		often		as		necessary.		For
							example,		to		build		and	use	tables	that	are	appropriate	for	the	French
							locale	(where	accented	characters	with		values		greater		than		128		are
							treated	as	letters),	the	following	code	could	be	used:

									setlocale(LC_CTYPE,	"fr_FR");
									tables	=	pcre_maketables();
									re	=	pcre_compile(...,	tables);

							The		locale		name	"fr_FR"	is	used	on	Linux	and	other	Unix-like	systems;
							if	you	are	using	Windows,	the	name	for	the	French	locale	is	"french".

							When	pcre_maketables()	runs,	the	tables	are	built		in		memory		that		is
							obtained		via		pcre_malloc.	It	is	the	caller's	responsibility	to	ensure
							that	the	memory	containing	the	tables	remains	available	for	as	long		as
							it	is	needed.

							The	pointer	that	is	passed	to	pcre_compile()	is	saved	with	the	compiled
							pattern,	and	the	same	tables	are	used	via	this	pointer	by		pcre_study()
							and	normally	also	by	pcre_exec().	Thus,	by	default,	for	any	single	pat-
							tern,	compilation,	studying	and	matching	all	happen	in	the	same	locale,
							but	different	patterns	can	be	compiled	in	different	locales.

							It		is		possible	to	pass	a	table	pointer	or	NULL	(indicating	the	use	of
							the	internal	tables)	to	pcre_exec().	Although		not		intended		for		this

							purpose,		this	facility	could	be	used	to	match	a	pattern	in	a	different
							locale	from	the	one	in	which	it	was	compiled.	Passing	table	pointers	at
							run	time	is	discussed	below	in	the	section	on	matching	a	pattern.

INFORMATION	ABOUT	A	PATTERN

							int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,
												int	what,	void	*where);

							The		pcre_fullinfo()	function	returns	information	about	a	compiled	pat-
							tern.	It	replaces	the	obsolete	pcre_info()	function,	which	is	neverthe-
							less	retained	for	backwards	compability	(and	is	documented	below).

							The		first		argument		for		pcre_fullinfo()	is	a	pointer	to	the	compiled
							pattern.	The	second	argument	is	the	result	of	pcre_study(),	or	NULL		if
							the		pattern		was	not	studied.	The	third	argument	specifies	which	piece
							of	information	is	required,	and	the	fourth	argument	is	a	pointer		to		a
							variable		to		receive		the		data.	The	yield	of	the	function	is	zero	for
							success,	or	one	of	the	following	negative	numbers:

									PCRE_ERROR_NULL							the	argument	code	was	NULL
																															the	argument	where	was	NULL
									PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found
									PCRE_ERROR_BADOPTION		the	value	of	what	was	invalid

							The	"magic	number"	is	placed	at	the	start	of	each	compiled		pattern		as
							an		simple	check	against	passing	an	arbitrary	memory	pointer.	Here	is	a
							typical	call	of	pcre_fullinfo(),	to	obtain	the	length	of		the		compiled
							pattern:

									int	rc;
									size_t	length;
									rc	=	pcre_fullinfo(
											re,															/*	result	of	pcre_compile()	*/
											pe,															/*	result	of	pcre_study(),	or	NULL	*/
											PCRE_INFO_SIZE,			/*	what	is	required	*/

											&length;);									/*	where	to	put	the	data	*/

							The		possible		values	for	the	third	argument	are	defined	in	pcre.h,	and
							are	as	follows:

									PCRE_INFO_BACKREFMAX

							Return	the	number	of	the	highest	back	reference		in		the		pattern.		The
							fourth		argument		should		point	to	an	int	variable.	Zero	is	returned	if
							there	are	no	back	references.

									PCRE_INFO_CAPTURECOUNT

							Return	the	number	of	capturing	subpatterns	in	the	pattern.		The		fourth
							argument	should	point	to	an	int	variable.

									PCRE_INFO_DEFAULT_TABLES

							Return		a	pointer	to	the	internal	default	character	tables	within	PCRE.
							The	fourth	argument	should	point	to	an	unsigned	char	*		variable.		This
							information	call	is	provided	for	internal	use	by	the	pcre_study()	func-
							tion.	External	callers	can	cause	PCRE	to	use		its		internal		tables		by
							passing	a	NULL	table	pointer.

									PCRE_INFO_FIRSTBYTE

							Return		information		about		the	first	byte	of	any	matched	string,	for	a
							non-anchored	pattern.	The	fourth	argument	should	point	to	an	int		vari-
							able.		(This	option	used	to	be	called	PCRE_INFO_FIRSTCHAR;	the	old	name
							is	still	recognized	for	backwards	compatibility.)

							If	there	is	a	fixed	first	byte,	for	example,	from		a		pattern		such		as
							(cat|cow|coyote),	its	value	is	returned.	Otherwise,	if	either

							(a)		the	pattern	was	compiled	with	the	PCRE_MULTILINE	option,	and	every
							branch	starts	with	"^",	or

							(b)	every	branch	of	the	pattern	starts	with	".*"	and	PCRE_DOTALL	is	not
							set	(if	it	were	set,	the	pattern	would	be	anchored),

							-1		is		returned,	indicating	that	the	pattern	matches	only	at	the	start
							of	a	subject	string	or	after	any	newline	within	the		string.		Otherwise
							-2	is	returned.	For	anchored	patterns,	-2	is	returned.

									PCRE_INFO_FIRSTTABLE

							If		the	pattern	was	studied,	and	this	resulted	in	the	construction	of	a
							256-bit	table	indicating	a	fixed	set	of	bytes	for	the	first	byte	in	any
							matching		string,	a	pointer	to	the	table	is	returned.	Otherwise	NULL	is
							returned.	The	fourth	argument	should	point	to	an	unsigned	char	*		vari-
							able.

									PCRE_INFO_HASCRORLF

							Return		1		if		the		pattern		contains	any	explicit	matches	for	CR	or	LF
							characters,	otherwise	0.	The	fourth	argument	should		point		to		an		int
							variable.		An	explicit	match	is	either	a	literal	CR	or	LF	character,	or
							\r	or	\n.

									PCRE_INFO_JCHANGED

							Return	1	if	the	(?J)	or	(?-J)	option	setting	is	used		in		the		pattern,
							otherwise		0.	The	fourth	argument	should	point	to	an	int	variable.	(?J)
							and	(?-J)	set	and	unset	the	local	PCRE_DUPNAMES	option,	respectively.

									PCRE_INFO_LASTLITERAL

							Return	the	value	of	the	rightmost	literal	byte	that	must	exist		in		any
							matched		string,		other		than		at		its		start,		if	such	a	byte	has	been
							recorded.	The	fourth	argument	should	point	to	an	int	variable.	If	there
							is		no	such	byte,	-1	is	returned.	For	anchored	patterns,	a	last	literal
							byte	is	recorded	only	if	it	follows	something	of	variable		length.		For
							example,	for	the	pattern	/^a\d+z\d+/	the	returned	value	is	"z",	but	for
							/^a\dz\d/	the	returned	value	is	-1.

									PCRE_INFO_NAMECOUNT
									PCRE_INFO_NAMEENTRYSIZE
									PCRE_INFO_NAMETABLE

							PCRE	supports	the	use	of	named	as	well	as	numbered	capturing		parenthe-
							ses.		The	names	are	just	an	additional	way	of	identifying	the	parenthe-
							ses,	which	still	acquire	numbers.	Several	convenience	functions	such	as
							pcre_get_named_substring()		are		provided		for	extracting	captured	sub-
							strings	by	name.	It	is	also	possible	to	extract	the	data		directly,		by
							first		converting		the		name	to	a	number	in	order	to	access	the	correct
							pointers	in	the	output	vector	(described	with	pcre_exec()	below).	To	do
							the		conversion,		you		need		to		use		the		name-to-number	map,	which	is
							described	by	these	three	values.

							The	map	consists	of	a	number	of	fixed-size	entries.	PCRE_INFO_NAMECOUNT
							gives	the	number	of	entries,	and	PCRE_INFO_NAMEENTRYSIZE	gives	the	size
							of	each	entry;	both	of	these		return		an		int		value.		The		entry		size
							depends		on	the	length	of	the	longest	name.	PCRE_INFO_NAMETABLE	returns
							a	pointer	to	the	first	entry	of	the	table		(a		pointer		to		char).		The
							first	two	bytes	of	each	entry	are	the	number	of	the	capturing	parenthe-
							sis,	most	significant	byte	first.	The	rest	of	the	entry	is		the		corre-
							sponding		name,		zero		terminated.	The	names	are	in	alphabetical	order.
							When	PCRE_DUPNAMES	is	set,	duplicate	names	are	in	order	of	their	paren-
							theses		numbers.		For		example,		consider	the	following	pattern	(assume
							PCRE_EXTENDED	is		set,		so		white		space		-		including		newlines		-		is
							ignored):

									(?<date>	(?<year>(\d\d)?\d\d)	-
									(?<month>\d\d)	-	(?<day>\d\d))

							There		are		four		named	subpatterns,	so	the	table	has	four	entries,	and
							each	entry	in	the	table	is	eight	bytes	long.	The	table	is		as		follows,
							with	non-printing	bytes	shows	in	hexadecimal,	and	undefined	bytes	shown
							as	??:

									00	01	d		a		t		e		00	??

									00	05	d		a		y		00	??	??
									00	04	m		o		n		t		h		00
									00	02	y		e		a		r		00	??

							When	writing	code	to	extract	data		from		named		subpatterns		using		the
							name-to-number		map,		remember	that	the	length	of	the	entries	is	likely
							to	be	different	for	each	compiled	pattern.

									PCRE_INFO_OKPARTIAL

							Return	1	if	the	pattern	can	be	used	for	partial	matching,	otherwise		0.
							The		fourth		argument		should	point	to	an	int	variable.	The	pcrepartial
							documentation	lists	the	restrictions	that	apply	to	patterns		when		par-
							tial	matching	is	used.

									PCRE_INFO_OPTIONS

							Return		a		copy	of	the	options	with	which	the	pattern	was	compiled.	The
							fourth	argument	should	point	to	an	unsigned	long		int		variable.		These
							option	bits	are	those	specified	in	the	call	to	pcre_compile(),	modified
							by	any	top-level	option	settings	at	the	start	of	the	pattern	itself.	In
							other		words,		they	are	the	options	that	will	be	in	force	when	matching
							starts.	For	example,	if	the	pattern	/(?im)abc(?-i)d/	is		compiled		with
							the		PCRE_EXTENDED	option,	the	result	is	PCRE_CASELESS,	PCRE_MULTILINE,
							and	PCRE_EXTENDED.

							A	pattern	is	automatically	anchored	by	PCRE	if		all		of		its		top-level
							alternatives	begin	with	one	of	the	following:

									^					unless	PCRE_MULTILINE	is	set
									\A				always
									\G				always
									.*				if	PCRE_DOTALL	is	set	and	there	are	no	back
																	references	to	the	subpattern	in	which	.*	appears

							For	such	patterns,	the	PCRE_ANCHORED	bit	is	set	in	the	options	returned
							by	pcre_fullinfo().

									PCRE_INFO_SIZE

							Return	the	size	of	the	compiled	pattern,	that	is,	the		value		that		was
							passed	as	the	argument	to	pcre_malloc()	when	PCRE	was	getting	memory	in
							which	to	place	the	compiled	data.	The	fourth	argument	should	point	to	a
							size_t	variable.

									PCRE_INFO_STUDYSIZE

							Return	the	size	of	the	data	block	pointed	to	by	the	study_data	field	in
							a	pcre_extra	block.	That	is,		it		is		the		value		that		was		passed		to
							pcre_malloc()	when	PCRE	was	getting	memory	into	which	to	place	the	data
							created	by	pcre_study().	The	fourth	argument	should	point	to		a		size_t
							variable.

OBSOLETE	INFO	FUNCTION

							int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

							The		pcre_info()		function	is	now	obsolete	because	its	interface	is	too
							restrictive	to	return	all	the	available	data	about	a	compiled		pattern.
							New			programs			should		use		pcre_fullinfo()		instead.		The		yield		of
							pcre_info()	is	the	number	of	capturing	subpatterns,	or	one	of	the		fol-
							lowing	negative	numbers:

									PCRE_ERROR_NULL							the	argument	code	was	NULL
									PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found

							If		the		optptr		argument	is	not	NULL,	a	copy	of	the	options	with	which
							the	pattern	was	compiled	is	placed	in	the	integer		it		points		to		(see
							PCRE_INFO_OPTIONS	above).

							If		the		pattern		is		not	anchored	and	the	firstcharptr	argument	is	not
							NULL,	it	is	used	to	pass	back	information	about	the	first	character		of
							any	matched	string	(see	PCRE_INFO_FIRSTBYTE	above).

REFERENCE	COUNTS

							int	pcre_refcount(pcre	*code,	int	adjust);

							The		pcre_refcount()		function	is	used	to	maintain	a	reference	count	in
							the	data	block	that	contains	a	compiled	pattern.	It	is	provided	for	the
							benefit		of		applications		that		operate		in	an	object-oriented	manner,
							where	different	parts	of	the	application	may	be	using	the	same	compiled
							pattern,	but	you	want	to	free	the	block	when	they	are	all	done.

							When	a	pattern	is	compiled,	the	reference	count	field	is	initialized	to
							zero.		It	is	changed	only	by	calling	this	function,	whose	action	is		to
							add		the		adjust		value		(which	may	be	positive	or	negative)	to	it.	The
							yield	of	the	function	is	the	new	value.	However,	the	value	of	the	count
							is		constrained	to	lie	between	0	and	65535,	inclusive.	If	the	new	value
							is	outside	these	limits,	it	is	forced	to	the	appropriate	limit	value.

							Except	when	it	is	zero,	the	reference	count	is	not	correctly		preserved
							if		a		pattern		is		compiled	on	one	host	and	then	transferred	to	a	host
							whose	byte-order	is	different.	(This	seems	a	highly	unlikely	scenario.)

MATCHING	A	PATTERN:	THE	TRADITIONAL	FUNCTION

							int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,
												const	char	*subject,	int	length,	int	startoffset,
												int	options,	int	*ovector,	int	ovecsize);

							The		function	pcre_exec()	is	called	to	match	a	subject	string	against	a
							compiled	pattern,	which	is	passed	in	the	code	argument.	If	the		pattern
							has	been	studied,	the	result	of	the	study	should	be	passed	in	the	extra
							argument.	This	function	is	the	main	matching	facility	of		the		library,
							and	it	operates	in	a	Perl-like	manner.	For	specialist	use	there	is	also
							an	alternative	matching	function,	which	is	described	below	in	the		sec-
							tion	about	the	pcre_dfa_exec()	function.

							In		most	applications,	the	pattern	will	have	been	compiled	(and	option-
							ally	studied)	in	the	same	process	that	calls	pcre_exec().		However,		it
							is	possible	to	save	compiled	patterns	and	study	data,	and	then	use	them
							later	in	different	processes,	possibly	even	on	different	hosts.		For		a
							discussion	about	this,	see	the	pcreprecompile	documentation.

							Here	is	an	example	of	a	simple	call	to	pcre_exec():

									int	rc;
									int	ovector[30];
									rc	=	pcre_exec(
											re,													/*	result	of	pcre_compile()	*/
											NULL,											/*	we	didn't	study	the	pattern	*/
											"some	string",		/*	the	subject	string	*/
											11,													/*	the	length	of	the	subject	string	*/
											0,														/*	start	at	offset	0	in	the	subject	*/
											0,														/*	default	options	*/
											ovector,								/*	vector	of	integers	for	substring	information	*/
											30);												/*	number	of	elements	(NOT	size	in	bytes)	*/

			Extra	data	for	pcre_exec()

							If		the		extra	argument	is	not	NULL,	it	must	point	to	a	pcre_extra	data
							block.	The	pcre_study()	function	returns	such	a	block	(when	it		doesn't
							return		NULL),	but	you	can	also	create	one	for	yourself,	and	pass	addi-
							tional	information	in	it.	The	pcre_extra	block	contains		the		following
							fields	(not	necessarily	in	this	order):

									unsigned	long	int	flags;
									void	*study_data;
									unsigned	long	int	match_limit;
									unsigned	long	int	match_limit_recursion;
									void	*callout_data;
									const	unsigned	char	*tables;

							The		flags		field		is	a	bitmap	that	specifies	which	of	the	other	fields

							are	set.	The	flag	bits	are:

									PCRE_EXTRA_STUDY_DATA
									PCRE_EXTRA_MATCH_LIMIT
									PCRE_EXTRA_MATCH_LIMIT_RECURSION
									PCRE_EXTRA_CALLOUT_DATA
									PCRE_EXTRA_TABLES

							Other	flag	bits	should	be	set	to	zero.	The	study_data	field	is		set		in
							the		pcre_extra		block		that	is	returned	by	pcre_study(),	together	with
							the	appropriate	flag	bit.	You	should	not	set	this	yourself,	but	you	may
							add		to		the		block	by	setting	the	other	fields	and	their	corresponding
							flag	bits.

							The	match_limit	field	provides	a	means	of	preventing	PCRE	from	using	up
							a		vast	amount	of	resources	when	running	patterns	that	are	not	going	to
							match,	but	which	have	a	very	large	number		of		possibilities		in		their
							search		trees.		The		classic		example		is		the		use	of	nested	unlimited
							repeats.

							Internally,	PCRE	uses	a	function	called	match()	which	it	calls		repeat-
							edly		(sometimes		recursively).	The	limit	set	by	match_limit	is	imposed
							on	the	number	of	times	this	function	is	called	during		a		match,		which
							has		the		effect		of		limiting	the	amount	of	backtracking	that	can	take
							place.	For	patterns	that	are	not	anchored,	the	count	restarts	from	zero
							for	each	position	in	the	subject	string.

							The		default		value		for		the		limit	can	be	set	when	PCRE	is	built;	the
							default	default	is	10	million,	which	handles	all	but	the		most		extreme
							cases.		You		can		override		the		default	by	suppling	pcre_exec()	with	a
							pcre_extra				block				in				which				match_limit				is				set,					and
							PCRE_EXTRA_MATCH_LIMIT		is		set		in		the		flags		field.	If	the	limit	is
							exceeded,	pcre_exec()	returns	PCRE_ERROR_MATCHLIMIT.

							The	match_limit_recursion	field	is	similar	to	match_limit,	but		instead
							of	limiting	the	total	number	of	times	that	match()	is	called,	it	limits
							the	depth	of	recursion.	The	recursion	depth	is	a		smaller		number		than

							the		total	number	of	calls,	because	not	all	calls	to	match()	are	recur-
							sive.		This	limit	is	of	use	only	if	it	is	set	smaller	than	match_limit.

							Limiting		the		recursion		depth		limits	the	amount	of	stack	that	can	be
							used,	or,	when	PCRE	has	been	compiled	to	use	memory	on	the	heap	instead
							of	the	stack,	the	amount	of	heap	memory	that	can	be	used.

							The		default		value		for		match_limit_recursion	can	be	set	when	PCRE	is
							built;	the	default	default		is		the		same		value		as		the		default		for
							match_limit.		You	can	override	the	default	by	suppling	pcre_exec()	with
							a		pcre_extra		block		in		which		match_limit_recursion		is			set,			and
							PCRE_EXTRA_MATCH_LIMIT_RECURSION		is		set		in		the		flags	field.	If	the
							limit	is	exceeded,	pcre_exec()	returns	PCRE_ERROR_RECURSIONLIMIT.

							The	pcre_callout	field	is	used	in	conjunction	with	the		"callout"		fea-
							ture,	which	is	described	in	the	pcrecallout	documentation.

							The		tables		field		is		used		to		pass		a		character		tables	pointer	to
							pcre_exec();	this	overrides	the	value	that	is	stored	with	the		compiled
							pattern.		A		non-NULL	value	is	stored	with	the	compiled	pattern	only	if
							custom	tables	were	supplied	to	pcre_compile()	via		its		tableptr		argu-
							ment.		If	NULL	is	passed	to	pcre_exec()	using	this	mechanism,	it	forces
							PCRE's	internal	tables	to	be	used.	This	facility	is		helpful		when		re-
							using		patterns		that		have	been	saved	after	compiling	with	an	external
							set	of	tables,	because	the	external	tables		might		be		at		a		different
							address		when		pcre_exec()	is	called.	See	the	pcreprecompile	documenta-
							tion	for	a	discussion	of	saving	compiled	patterns	for	later	use.

			Option	bits	for	pcre_exec()

							The	unused	bits	of	the	options	argument	for	pcre_exec()	must		be		zero.
							The		only		bits		that		may		be	set	are	PCRE_ANCHORED,	PCRE_NEWLINE_xxx,
							PCRE_NOTBOL,			PCRE_NOTEOL,			PCRE_NOTEMPTY,			PCRE_NO_UTF8_CHECK			and
							PCRE_PARTIAL.

									PCRE_ANCHORED

							The		PCRE_ANCHORED		option		limits	pcre_exec()	to	matching	at	the	first
							matching	position.	If	a	pattern	was		compiled		with		PCRE_ANCHORED,		or
							turned		out	to	be	anchored	by	virtue	of	its	contents,	it	cannot	be	made
							unachored	at	matching	time.

									PCRE_BSR_ANYCRLF
									PCRE_BSR_UNICODE

							These	options	(which	are	mutually	exclusive)	control	what	the	\R	escape
							sequence		matches.		The	choice	is	either	to	match	only	CR,	LF,	or	CRLF,
							or	to	match	any	Unicode	newline	sequence.	These		options		override		the
							choice	that	was	made	or	defaulted	when	the	pattern	was	compiled.

									PCRE_NEWLINE_CR
									PCRE_NEWLINE_LF
									PCRE_NEWLINE_CRLF
									PCRE_NEWLINE_ANYCRLF
									PCRE_NEWLINE_ANY

							These		options		override		the		newline		definition		that		was	chosen	or
							defaulted	when	the	pattern	was	compiled.	For	details,	see	the		descrip-
							tion		of		pcre_compile()		above.		During		matching,		the	newline	choice
							affects	the	behaviour	of	the	dot,	circumflex,		and		dollar		metacharac-
							ters.		It	may	also	alter	the	way	the	match	position	is	advanced	after	a
							match	failure	for	an	unanchored	pattern.

							When	PCRE_NEWLINE_CRLF,	PCRE_NEWLINE_ANYCRLF,		or		PCRE_NEWLINE_ANY		is
							set,		and	a	match	attempt	for	an	unanchored	pattern	fails	when	the	cur-
							rent	position	is	at	a		CRLF		sequence,		and		the		pattern		contains		no
							explicit		matches		for		CR		or		LF		characters,		the		match	position	is
							advanced	by	two	characters	instead	of	one,	in	other	words,	to	after	the
							CRLF.

							The	above	rule	is	a	compromise	that	makes	the	most	common	cases	work	as
							expected.	For	example,	if	the		pattern		is		.+A		(and		the		PCRE_DOTALL
							option	is	not	set),	it	does	not	match	the	string	"\r\nA"	because,	after
							failing	at	the	start,	it	skips	both	the	CR	and	the	LF	before		retrying.

							However,		the		pattern		[\r\n]A	does	match	that	string,	because	it	con-
							tains	an	explicit	CR	or	LF	reference,	and	so	advances	only	by	one	char-
							acter	after	the	first	failure.

							An	explicit	match	for	CR	of	LF	is	either	a	literal	appearance	of	one	of
							those	characters,	or	one	of	the	\r	or		\n		escape		sequences.		Implicit
							matches		such		as	[^X]	do	not	count,	nor	does	\s	(which	includes	CR	and
							LF	in	the	characters	that	it	matches).

							Notwithstanding	the	above,	anomalous	effects	may	still	occur	when		CRLF
							is	a	valid	newline	sequence	and	explicit	\r	or	\n	escapes	appear	in	the
							pattern.

									PCRE_NOTBOL

							This	option	specifies	that	first	character	of	the	subject	string	is	not
							the		beginning		of		a		line,	so	the	circumflex	metacharacter	should	not
							match	before	it.	Setting	this	without	PCRE_MULTILINE	(at	compile		time)
							causes		circumflex		never	to	match.	This	option	affects	only	the	behav-
							iour	of	the	circumflex	metacharacter.	It	does	not	affect	\A.

									PCRE_NOTEOL

							This	option	specifies	that	the	end	of	the	subject	string	is	not	the	end
							of		a	line,	so	the	dollar	metacharacter	should	not	match	it	nor	(except
							in	multiline	mode)	a	newline	immediately	before	it.	Setting	this		with-
							out	PCRE_MULTILINE	(at	compile	time)	causes	dollar	never	to	match.	This
							option	affects	only	the	behaviour	of	the	dollar	metacharacter.	It		does
							not	affect	\Z	or	\z.

									PCRE_NOTEMPTY

							An	empty	string	is	not	considered	to	be	a	valid	match	if	this	option	is
							set.	If	there	are	alternatives	in	the	pattern,	they	are	tried.		If		all
							the		alternatives		match		the	empty	string,	the	entire	match	fails.	For
							example,	if	the	pattern

									a?b?

							is	applied	to	a	string	not	beginning	with	"a"	or	"b",		it		matches		the
							empty		string	at	the	start	of	the	subject.	With	PCRE_NOTEMPTY	set,	this
							match	is	not	valid,	so	PCRE	searches	further	into	the	string	for	occur-
							rences	of	"a"	or	"b".

							Perl	has	no	direct	equivalent	of	PCRE_NOTEMPTY,	but	it	does	make	a	spe-
							cial	case	of	a	pattern	match	of	the	empty		string		within		its		split()
							function,		and		when		using		the	/g	modifier.	It	is	possible	to	emulate
							Perl's	behaviour	after	matching	a	null	string	by	first	trying	the	match
							again	at	the	same	offset	with	PCRE_NOTEMPTY	and	PCRE_ANCHORED,	and	then
							if	that	fails	by	advancing	the	starting	offset	(see	below)		and		trying
							an	ordinary	match	again.	There	is	some	code	that	demonstrates	how	to	do
							this	in	the	pcredemo.c	sample	program.

									PCRE_NO_UTF8_CHECK

							When	PCRE_UTF8	is	set	at	compile	time,	the	validity	of	the	subject	as	a
							UTF-8		string	is	automatically	checked	when	pcre_exec()	is	subsequently
							called.		The	value	of	startoffset	is	also	checked		to		ensure		that		it
							points		to		the	start	of	a	UTF-8	character.	There	is	a	discussion	about
							the	validity	of	UTF-8	strings	in	the	section	on	UTF-8		support		in		the
							main		pcre		page.		If		an		invalid		UTF-8		sequence		of	bytes	is	found,
							pcre_exec()	returns	the	error	PCRE_ERROR_BADUTF8.	If		startoffset		con-
							tains	an	invalid	value,	PCRE_ERROR_BADUTF8_OFFSET	is	returned.

							If		you		already		know	that	your	subject	is	valid,	and	you	want	to	skip
							these			checks			for			performance			reasons,			you			can				set				the
							PCRE_NO_UTF8_CHECK		option		when	calling	pcre_exec().	You	might	want	to
							do	this	for	the	second	and	subsequent	calls	to	pcre_exec()	if		you		are
							making		repeated		calls		to		find		all		the	matches	in	a	single	subject
							string.	However,	you	should	be		sure		that		the		value		of		startoffset
							points		to		the		start	of	a	UTF-8	character.	When	PCRE_NO_UTF8_CHECK	is
							set,	the	effect	of	passing	an	invalid	UTF-8	string	as	a	subject,		or		a
							value		of	startoffset	that	does	not	point	to	the	start	of	a	UTF-8	char-
							acter,	is	undefined.	Your	program	may	crash.

									PCRE_PARTIAL

							This	option	turns	on	the		partial		matching		feature.		If		the		subject
							string		fails	to	match	the	pattern,	but	at	some	point	during	the	match-
							ing	process	the	end	of	the	subject	was	reached	(that		is,		the		subject
							partially		matches		the		pattern	and	the	failure	to	match	occurred	only
							because	there	were	not	enough	subject	characters),	pcre_exec()		returns
							PCRE_ERROR_PARTIAL		instead	of	PCRE_ERROR_NOMATCH.	When	PCRE_PARTIAL	is
							used,	there	are	restrictions	on	what	may	appear	in	the		pattern.		These
							are	discussed	in	the	pcrepartial	documentation.

			The	string	to	be	matched	by	pcre_exec()

							The		subject	string	is	passed	to	pcre_exec()	as	a	pointer	in	subject,	a
							length	(in	bytes)	in	length,	and	a	starting	byte	offset	in	startoffset.
							In	UTF-8	mode,	the	byte	offset	must	point	to	the	start	of	a	UTF-8	char-
							acter.	Unlike	the	pattern	string,	the	subject	may	contain		binary		zero
							bytes.		When	the	starting	offset	is	zero,	the	search	for	a	match	starts
							at	the	beginning	of	the	subject,	and	this	is	by		far		the		most		common
							case.

							A		non-zero		starting	offset	is	useful	when	searching	for	another	match
							in	the	same	subject	by	calling	pcre_exec()	again	after	a	previous		suc-
							cess.			Setting		startoffset	differs	from	just	passing	over	a	shortened
							string	and	setting	PCRE_NOTBOL	in	the	case	of		a		pattern		that		begins
							with	any	kind	of	lookbehind.	For	example,	consider	the	pattern

									\Biss\B

							which		finds		occurrences		of	"iss"	in	the	middle	of	words.	(\B	matches
							only	if	the	current	position	in	the	subject	is	not		a		word		boundary.)
							When		applied		to	the	string	"Mississipi"	the	first	call	to	pcre_exec()
							finds	the	first	occurrence.	If	pcre_exec()	is	called		again		with		just
							the		remainder		of		the		subject,		namely		"issipi",	it	does	not	match,
							because	\B	is	always	false	at	the	start	of	the	subject,	which	is	deemed
							to		be		a		word		boundary.	However,	if	pcre_exec()	is	passed	the	entire

							string	again,	but	with	startoffset	set	to	4,	it	finds	the	second	occur-
							rence		of	"iss"	because	it	is	able	to	look	behind	the	starting	point	to
							discover	that	it	is	preceded	by	a	letter.

							If	a	non-zero	starting	offset	is	passed	when	the	pattern		is		anchored,
							one	attempt	to	match	at	the	given	offset	is	made.	This	can	only	succeed
							if	the	pattern	does	not	require	the	match	to	be	at		the		start		of		the
							subject.

			How	pcre_exec()	returns	captured	substrings

							In		general,	a	pattern	matches	a	certain	portion	of	the	subject,	and	in
							addition,	further	substrings	from	the	subject		may		be		picked		out		by
							parts		of		the		pattern.		Following	the	usage	in	Jeffrey	Friedl's	book,
							this	is	called	"capturing"	in	what	follows,	and	the		phrase		"capturing
							subpattern"		is		used	for	a	fragment	of	a	pattern	that	picks	out	a	sub-
							string.	PCRE	supports	several	other	kinds	of		parenthesized		subpattern
							that	do	not	cause	substrings	to	be	captured.

							Captured	substrings	are	returned	to	the	caller	via	a	vector	of	integers
							whose	address	is	passed	in	ovector.	The	number	of	elements	in	the		vec-
							tor		is		passed	in	ovecsize,	which	must	be	a	non-negative	number.	Note:
							this	argument	is	NOT	the	size	of	ovector	in	bytes.

							The	first	two-thirds	of	the	vector	is	used	to	pass	back		captured		sub-
							strings,		each		substring	using	a	pair	of	integers.	The	remaining	third
							of	the	vector	is	used	as	workspace	by	pcre_exec()	while		matching		cap-
							turing		subpatterns,	and	is	not	available	for	passing	back	information.
							The	number	passed	in	ovecsize	should	always	be	a	multiple	of	three.		If
							it	is	not,	it	is	rounded	down.

							When		a		match		is	successful,	information	about	captured	substrings	is
							returned	in	pairs	of	integers,	starting	at	the		beginning		of		ovector,
							and		continuing		up		to	two-thirds	of	its	length	at	the	most.	The	first
							element	of	each	pair	is	set	to	the	byte	offset	of	the		first		character
							in		a		substring,	and	the	second	is	set	to	the	byte	offset	of	the	first
							character	after	the	end	of	a	substring.	Note:	these	values		are		always

							byte	offsets,	even	in	UTF-8	mode.	They	are	not	character	counts.

							The		first		pair		of		integers,	ovector[0]	and	ovector[1],	identify	the
							portion	of	the	subject	string	matched	by	the	entire	pattern.		The		next
							pair		is		used	for	the	first	capturing	subpattern,	and	so	on.	The	value
							returned	by	pcre_exec()	is	one	more	than	the	highest	numbered	pair	that
							has		been		set.		For	example,	if	two	substrings	have	been	captured,	the
							returned	value	is	3.	If	there	are	no	capturing	subpatterns,	the		return
							value	from	a	successful	match	is	1,	indicating	that	just	the	first	pair
							of	offsets	has	been	set.

							If	a	capturing	subpattern	is	matched	repeatedly,	it	is	the	last	portion
							of	the	string	that	it	matched	that	is	returned.

							If		the	vector	is	too	small	to	hold	all	the	captured	substring	offsets,
							it	is	used	as	far	as	possible	(up	to	two-thirds	of	its	length),	and	the
							function		returns		a	value	of	zero.	If	the	substring	offsets	are	not	of
							interest,	pcre_exec()	may	be	called	with	ovector		passed		as		NULL		and
							ovecsize		as	zero.	However,	if	the	pattern	contains	back	references	and
							the	ovector	is	not	big	enough	to	remember	the	related	substrings,		PCRE
							has		to		get	additional	memory	for	use	during	matching.	Thus	it	is	usu-
							ally	advisable	to	supply	an	ovector.

							The	pcre_info()	function	can	be	used	to	find		out		how		many		capturing
							subpatterns		there		are		in		a		compiled	pattern.	The	smallest	size	for
							ovector	that	will	allow	for	n	captured	substrings,	in	addition		to		the
							offsets	of	the	substring	matched	by	the	whole	pattern,	is	(n+1)*3.

							It		is		possible	for	capturing	subpattern	number	n+1	to	match	some	part
							of	the	subject	when	subpattern	n	has	not	been	used	at	all.	For	example,
							if		the		string		"abc"		is		matched	against	the	pattern	(a|(z))(bc)	the
							return	from	the	function	is	4,	and	subpatterns	1	and	3	are	matched,	but
							2		is		not.		When		this	happens,	both	values	in	the	offset	pairs	corre-
							sponding	to	unused	subpatterns	are	set	to	-1.

							Offset	values	that	correspond	to	unused	subpatterns	at	the	end		of		the
							expression		are		also		set		to		-1.	For	example,	if	the	string	"abc"	is

							matched	against	the	pattern	(abc)(x(yz)?)?	subpatterns	2	and	3	are		not
							matched.		The		return		from	the	function	is	2,	because	the	highest	used
							capturing	subpattern	number	is	1.	However,	you	can	refer	to	the	offsets
							for		the		second		and	third	capturing	subpatterns	if	you	wish	(assuming
							the	vector	is	large	enough,	of	course).

							Some	convenience	functions	are	provided		for		extracting		the		captured
							substrings	as	separate	strings.	These	are	described	below.

			Error	return	values	from	pcre_exec()

							If		pcre_exec()		fails,	it	returns	a	negative	number.	The	following	are
							defined	in	the	header	file:

									PCRE_ERROR_NOMATCH								(-1)

							The	subject	string	did	not	match	the	pattern.

									PCRE_ERROR_NULL											(-2)

							Either	code	or	subject	was	passed	as	NULL,		or		ovector		was		NULL		and
							ovecsize	was	not	zero.

									PCRE_ERROR_BADOPTION						(-3)

							An	unrecognized	bit	was	set	in	the	options	argument.

									PCRE_ERROR_BADMAGIC							(-4)

							PCRE		stores	a	4-byte	"magic	number"	at	the	start	of	the	compiled	code,
							to	catch	the	case	when	it	is	passed	a	junk	pointer	and	to	detect	when	a
							pattern	that	was	compiled	in	an	environment	of	one	endianness	is	run	in
							an	environment	with	the	other	endianness.	This	is	the	error		that		PCRE
							gives	when	the	magic	number	is	not	present.

									PCRE_ERROR_UNKNOWN_OPCODE	(-5)

							While	running	the	pattern	match,	an	unknown	item	was	encountered	in	the
							compiled	pattern.	This	error	could	be	caused	by	a	bug		in		PCRE		or		by
							overwriting	of	the	compiled	pattern.

									PCRE_ERROR_NOMEMORY							(-6)

							If		a		pattern	contains	back	references,	but	the	ovector	that	is	passed
							to	pcre_exec()	is	not	big	enough	to	remember	the	referenced	substrings,
							PCRE		gets		a		block	of	memory	at	the	start	of	matching	to	use	for	this
							purpose.	If	the	call	via	pcre_malloc()	fails,	this	error	is	given.		The
							memory	is	automatically	freed	at	the	end	of	matching.

									PCRE_ERROR_NOSUBSTRING				(-7)

							This		error	is	used	by	the	pcre_copy_substring(),	pcre_get_substring(),
							and		pcre_get_substring_list()		functions		(see		below).		It		is		never
							returned	by	pcre_exec().

									PCRE_ERROR_MATCHLIMIT					(-8)

							The		backtracking		limit,		as		specified		by	the	match_limit	field	in	a
							pcre_extra	structure	(or	defaulted)	was	reached.		See		the		description
							above.

									PCRE_ERROR_CALLOUT								(-9)

							This	error	is	never	generated	by	pcre_exec()	itself.	It	is	provided	for
							use	by	callout	functions	that	want	to	yield	a	distinctive		error		code.
							See	the	pcrecallout	documentation	for	details.

									PCRE_ERROR_BADUTF8								(-10)

							A		string		that	contains	an	invalid	UTF-8	byte	sequence	was	passed	as	a
							subject.

									PCRE_ERROR_BADUTF8_OFFSET	(-11)

							The	UTF-8	byte	sequence	that	was	passed	as	a	subject	was	valid,	but	the
							value		of	startoffset	did	not	point	to	the	beginning	of	a	UTF-8	charac-
							ter.

									PCRE_ERROR_PARTIAL								(-12)

							The	subject	string	did	not	match,	but	it	did	match	partially.		See		the
							pcrepartial	documentation	for	details	of	partial	matching.

									PCRE_ERROR_BADPARTIAL					(-13)

							The		PCRE_PARTIAL		option		was		used	with	a	compiled	pattern	containing
							items	that	are	not	supported	for	partial	matching.	See	the		pcrepartial
							documentation	for	details	of	partial	matching.

									PCRE_ERROR_INTERNAL							(-14)

							An		unexpected		internal	error	has	occurred.	This	error	could	be	caused
							by	a	bug	in	PCRE	or	by	overwriting	of	the	compiled	pattern.

									PCRE_ERROR_BADCOUNT							(-15)

							This	error	is	given	if	the	value	of	the	ovecsize	argument	is		negative.

									PCRE_ERROR_RECURSIONLIMIT	(-21)

							The	internal	recursion	limit,	as	specified	by	the	match_limit_recursion
							field	in	a	pcre_extra	structure	(or	defaulted)		was		reached.		See		the
							description	above.

									PCRE_ERROR_BADNEWLINE					(-23)

							An	invalid	combination	of	PCRE_NEWLINE_xxx	options	was	given.

							Error	numbers	-16	to	-20	and	-22	are	not	used	by	pcre_exec().

EXTRACTING	CAPTURED	SUBSTRINGS	BY	NUMBER

							int	pcre_copy_substring(const	char	*subject,	int	*ovector,
												int	stringcount,	int	stringnumber,	char	*buffer,
												int	buffersize);

							int	pcre_get_substring(const	char	*subject,	int	*ovector,
												int	stringcount,	int	stringnumber,
												const	char	**stringptr);

							int	pcre_get_substring_list(const	char	*subject,
												int	*ovector,	int	stringcount,	const	char	***listptr);

							Captured		substrings		can		be		accessed		directly		by	using	the	offsets
							returned	by	pcre_exec()	in		ovector.		For		convenience,		the		functions
							pcre_copy_substring(),				pcre_get_substring(),				and				pcre_get_sub-
							string_list()	are	provided	for	extracting	captured	substrings		as		new,
							separate,		zero-terminated	strings.	These	functions	identify	substrings
							by	number.	The	next	section	describes	functions		for		extracting		named
							substrings.

							A		substring	that	contains	a	binary	zero	is	correctly	extracted	and	has
							a	further	zero	added	on	the	end,	but	the	result	is	not,	of	course,	a		C
							string.			However,		you		can		process	such	a	string	by	referring	to	the
							length	that	is		returned		by		pcre_copy_substring()		and		pcre_get_sub-
							string().		Unfortunately,	the	interface	to	pcre_get_substring_list()	is
							not	adequate	for	handling	strings	containing	binary	zeros,	because		the
							end	of	the	final	string	is	not	independently	indicated.

							The		first		three		arguments		are	the	same	for	all	three	of	these	func-
							tions:	subject	is	the	subject	string	that	has		just		been		successfully
							matched,	ovector	is	a	pointer	to	the	vector	of	integer	offsets	that	was
							passed	to	pcre_exec(),	and	stringcount	is	the	number	of	substrings	that
							were		captured		by		the	match,	including	the	substring	that	matched	the
							entire	regular	expression.	This	is	the	value	returned	by	pcre_exec()	if
							it		is	greater	than	zero.	If	pcre_exec()	returned	zero,	indicating	that
							it	ran	out	of	space	in	ovector,	the	value	passed	as	stringcount		should

							be	the	number	of	elements	in	the	vector	divided	by	three.

							The		functions	pcre_copy_substring()	and	pcre_get_substring()	extract	a
							single	substring,	whose	number	is	given	as		stringnumber.		A		value		of
							zero		extracts		the		substring	that	matched	the	entire	pattern,	whereas
							higher	values		extract		the		captured		substrings.		For		pcre_copy_sub-
							string(),		the		string		is		placed		in	buffer,	whose	length	is	given	by
							buffersize,	while	for	pcre_get_substring()	a	new		block		of		memory		is
							obtained		via		pcre_malloc,		and	its	address	is	returned	via	stringptr.
							The	yield	of	the	function	is	the	length	of	the		string,		not		including
							the	terminating	zero,	or	one	of	these	error	codes:

									PCRE_ERROR_NOMEMORY							(-6)

							The		buffer		was	too	small	for	pcre_copy_substring(),	or	the	attempt	to
							get	memory	failed	for	pcre_get_substring().

									PCRE_ERROR_NOSUBSTRING				(-7)

							There	is	no	substring	whose	number	is	stringnumber.

							The	pcre_get_substring_list()		function		extracts		all		available		sub-
							strings		and		builds		a	list	of	pointers	to	them.	All	this	is	done	in	a
							single	block	of	memory	that	is	obtained	via	pcre_malloc.	The	address	of
							the		memory		block		is	returned	via	listptr,	which	is	also	the	start	of
							the	list	of	string	pointers.	The	end	of	the	list	is	marked		by		a		NULL
							pointer.		The		yield		of		the	function	is	zero	if	all	went	well,	or	the
							error	code

									PCRE_ERROR_NOMEMORY							(-6)

							if	the	attempt	to	get	the	memory	block	failed.

							When	any	of	these	functions	encounter	a	substring	that	is	unset,		which
							can		happen		when		capturing	subpattern	number	n+1	matches	some	part	of
							the	subject,	but	subpattern	n	has	not	been	used	at	all,	they	return		an
							empty	string.	This	can	be	distinguished	from	a	genuine	zero-length	sub-

							string	by	inspecting	the	appropriate	offset	in	ovector,	which	is		nega-
							tive	for	unset	substrings.

							The		two	convenience	functions	pcre_free_substring()	and	pcre_free_sub-
							string_list()	can	be	used	to	free	the	memory		returned		by		a		previous
							call		of		pcre_get_substring()		or		pcre_get_substring_list(),		respec-
							tively.	They	do	nothing	more	than		call		the		function		pointed		to		by
							pcre_free,		which		of	course	could	be	called	directly	from	a	C	program.
							However,	PCRE	is	used	in	some	situations	where	it	is	linked	via	a		spe-
							cial			interface		to		another		programming		language		that		cannot		use
							pcre_free	directly;	it	is	for	these	cases	that	the	functions		are		pro-
							vided.

EXTRACTING	CAPTURED	SUBSTRINGS	BY	NAME

							int	pcre_get_stringnumber(const	pcre	*code,
												const	char	*name);

							int	pcre_copy_named_substring(const	pcre	*code,
												const	char	*subject,	int	*ovector,
												int	stringcount,	const	char	*stringname,
												char	*buffer,	int	buffersize);

							int	pcre_get_named_substring(const	pcre	*code,
												const	char	*subject,	int	*ovector,
												int	stringcount,	const	char	*stringname,
												const	char	**stringptr);

							To		extract	a	substring	by	name,	you	first	have	to	find	associated	num-
							ber.		For	example,	for	this	pattern

									(a+)b(?<xxx>\d+)...

							the	number	of	the	subpattern	called	"xxx"	is	2.	If	the	name	is	known	to
							be	unique	(PCRE_DUPNAMES	was	not	set),	you	can	find	the	number	from	the
							name	by	calling	pcre_get_stringnumber().	The	first	argument	is	the	com-

							piled	pattern,	and	the	second	is	the	name.	The	yield	of	the	function	is
							the	subpattern	number,	or	PCRE_ERROR_NOSUBSTRING	(-7)	if		there		is		no
							subpattern	of	that	name.

							Given	the	number,	you	can	extract	the	substring	directly,	or	use	one	of
							the	functions	described	in	the	previous	section.	For	convenience,	there
							are	also	two	functions	that	do	the	whole	job.

							Most				of				the				arguments			of			pcre_copy_named_substring()			and
							pcre_get_named_substring()	are	the	same		as		those		for		the		similarly
							named		functions		that	extract	by	number.	As	these	are	described	in	the
							previous	section,	they	are	not	re-described	here.	There		are		just		two
							differences:

							First,		instead		of	a	substring	number,	a	substring	name	is	given.	Sec-
							ond,	there	is	an	extra	argument,	given	at	the	start,	which	is	a	pointer
							to		the	compiled	pattern.	This	is	needed	in	order	to	gain	access	to	the
							name-to-number	translation	table.

							These	functions	call	pcre_get_stringnumber(),	and	if	it	succeeds,		they
							then		call		pcre_copy_substring()	or	pcre_get_substring(),	as	appropri-
							ate.	NOTE:	If	PCRE_DUPNAMES	is	set	and	there	are	duplicate		names,		the
							behaviour	may	not	be	what	you	want	(see	the	next	section).

DUPLICATE	SUBPATTERN	NAMES

							int	pcre_get_stringtable_entries(const	pcre	*code,
												const	char	*name,	char	**first,	char	**last);

							When		a		pattern		is		compiled	with	the	PCRE_DUPNAMES	option,	names	for
							subpatterns	are	not	required	to		be		unique.		Normally,		patterns		with
							duplicate		names		are	such	that	in	any	one	match,	only	one	of	the	named
							subpatterns	participates.	An	example	is	shown	in	the	pcrepattern		docu-
							mentation.

							When				duplicates			are			present,			pcre_copy_named_substring()			and

							pcre_get_named_substring()	return	the	first	substring	corresponding		to
							the		given		name		that		is	set.	If	none	are	set,	PCRE_ERROR_NOSUBSTRING
							(-7)	is	returned;	no		data		is		returned.		The		pcre_get_stringnumber()
							function		returns	one	of	the	numbers	that	are	associated	with	the	name,
							but	it	is	not	defined	which	it	is.

							If	you	want	to	get	full	details	of	all	captured	substrings	for	a		given
							name,		you		must		use		the	pcre_get_stringtable_entries()	function.	The
							first	argument	is	the	compiled	pattern,	and	the	second	is	the	name.	The
							third		and		fourth		are		pointers	to	variables	which	are	updated	by	the
							function.	After	it	has	run,	they	point	to	the	first	and	last	entries	in
							the		name-to-number		table		for		the		given		name.		The	function	itself
							returns	the	length	of	each	entry,		or		PCRE_ERROR_NOSUBSTRING		(-7)		if
							there		are	none.	The	format	of	the	table	is	described	above	in	the	sec-
							tion	entitled	Information	about	a		pattern.			Given		all		the		relevant
							entries		for	the	name,	you	can	extract	each	of	their	numbers,	and	hence
							the	captured	data,	if	any.

FINDING	ALL	POSSIBLE	MATCHES

							The	traditional	matching	function	uses	a		similar		algorithm		to		Perl,
							which	stops	when	it	finds	the	first	match,	starting	at	a	given	point	in
							the	subject.	If	you	want	to	find	all	possible	matches,	or		the		longest
							possible		match,		consider	using	the	alternative	matching	function	(see
							below)	instead.	If	you	cannot	use	the	alternative	function,		but		still
							need		to		find	all	possible	matches,	you	can	kludge	it	up	by	making	use
							of	the	callout	facility,	which	is	described	in	the	pcrecallout	documen-
							tation.

							What	you	have	to	do	is	to	insert	a	callout	right	at	the	end	of	the	pat-
							tern.		When	your	callout	function	is	called,	extract	and	save	the		cur-
							rent		matched		substring.		Then		return		1,	which	forces	pcre_exec()	to
							backtrack	and	try	other	alternatives.	Ultimately,	when	it	runs		out		of
							matches,	pcre_exec()	will	yield	PCRE_ERROR_NOMATCH.

MATCHING	A	PATTERN:	THE	ALTERNATIVE	FUNCTION

							int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,
												const	char	*subject,	int	length,	int	startoffset,
												int	options,	int	*ovector,	int	ovecsize,
												int	*workspace,	int	wscount);

							The		function		pcre_dfa_exec()		is		called		to		match		a	subject	string
							against	a	compiled	pattern,	using	a	matching	algorithm	that		scans		the
							subject		string		just		once,	and	does	not	backtrack.	This	has	different
							characteristics	to	the	normal	algorithm,	and		is		not		compatible		with
							Perl.		Some		of	the	features	of	PCRE	patterns	are	not	supported.	Never-
							theless,	there	are	times	when	this	kind	of	matching	can	be	useful.		For
							a	discussion	of	the	two	matching	algorithms,	see	the	pcrematching	docu-
							mentation.

							The	arguments	for	the	pcre_dfa_exec()	function		are		the		same		as		for
							pcre_exec(),	plus	two	extras.	The	ovector	argument	is	used	in	a	differ-
							ent	way,	and	this	is	described	below.	The	other		common		arguments		are
							used		in		the		same	way	as	for	pcre_exec(),	so	their	description	is	not
							repeated	here.

							The	two	additional	arguments	provide	workspace	for		the		function.		The
							workspace		vector		should		contain	at	least	20	elements.	It	is	used	for
							keeping		track		of		multiple		paths		through		the		pattern		tree.		More
							workspace		will		be		needed	for	patterns	and	subjects	where	there	are	a
							lot	of	potential	matches.

							Here	is	an	example	of	a	simple	call	to	pcre_dfa_exec():

									int	rc;
									int	ovector[10];
									int	wspace[20];
									rc	=	pcre_dfa_exec(
											re,													/*	result	of	pcre_compile()	*/
											NULL,											/*	we	didn't	study	the	pattern	*/
											"some	string",		/*	the	subject	string	*/

											11,													/*	the	length	of	the	subject	string	*/
											0,														/*	start	at	offset	0	in	the	subject	*/
											0,														/*	default	options	*/
											ovector,								/*	vector	of	integers	for	substring	information	*/
											10,													/*	number	of	elements	(NOT	size	in	bytes)	*/
											wspace,									/*	working	space	vector	*/
											20);												/*	number	of	elements	(NOT	size	in	bytes)	*/

			Option	bits	for	pcre_dfa_exec()

							The	unused	bits	of	the	options	argument		for		pcre_dfa_exec()		must		be
							zero.		The		only		bits		that		may		be		set	are	PCRE_ANCHORED,	PCRE_NEW-
							LINE_xxx,	PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,		PCRE_NO_UTF8_CHECK,
							PCRE_PARTIAL,	PCRE_DFA_SHORTEST,	and	PCRE_DFA_RESTART.	All	but	the	last
							three	of	these	are	the	same	as	for	pcre_exec(),	so	their	description	is
							not	repeated	here.

									PCRE_PARTIAL

							This		has		the		same	general	effect	as	it	does	for	pcre_exec(),	but	the
							details		are		slightly		different.		When		PCRE_PARTIAL			is			set			for
							pcre_dfa_exec(),		the		return	code	PCRE_ERROR_NOMATCH	is	converted	into
							PCRE_ERROR_PARTIAL	if	the	end	of	the	subject		is		reached,		there		have
							been	no	complete	matches,	but	there	is	still	at	least	one	matching	pos-
							sibility.	The	portion	of	the	string	that	provided	the	partial	match		is
							set	as	the	first	matching	string.

									PCRE_DFA_SHORTEST

							Setting		the		PCRE_DFA_SHORTEST	option	causes	the	matching	algorithm	to
							stop	as	soon	as	it	has	found	one	match.	Because	of	the	way	the	alterna-
							tive		algorithm		works,	this	is	necessarily	the	shortest	possible	match
							at	the	first	possible	matching	point	in	the	subject	string.

									PCRE_DFA_RESTART

							When	pcre_dfa_exec()		is		called		with		the		PCRE_PARTIAL		option,		and

							returns		a		partial		match,	it	is	possible	to	call	it	again,	with	addi-
							tional	subject	characters,	and	have	it	continue	with		the		same		match.
							The		PCRE_DFA_RESTART		option	requests	this	action;	when	it	is	set,	the
							workspace	and	wscount	options	must	reference	the	same	vector	as		before
							because		data		about		the		match	so	far	is	left	in	them	after	a	partial
							match.	There	is	more	discussion	of	this		facility		in		the		pcrepartial
							documentation.

			Successful	returns	from	pcre_dfa_exec()

							When		pcre_dfa_exec()		succeeds,	it	may	have	matched	more	than	one	sub-
							string	in	the	subject.	Note,	however,	that	all	the	matches	from	one	run
							of		the		function		start		at	the	same	point	in	the	subject.	The	shorter
							matches	are	all	initial	substrings	of	the	longer	matches.	For		example,
							if	the	pattern

									<.*>

							is	matched	against	the	string

									This	is	<something>	<something	else>	<something	further>	no	more

							the	three	matched	strings	are

									<something>
									<something>	<something	else>
									<something>	<something	else>	<something	further>

							On		success,		the		yield	of	the	function	is	a	number	greater	than	zero,
							which	is	the	number	of	matched	substrings.		The		substrings		themselves
							are		returned		in		ovector.	Each	string	uses	two	elements;	the	first	is
							the	offset	to	the	start,	and	the	second	is	the	offset	to		the		end.		In
							fact,		all		the		strings		have	the	same	start	offset.	(Space	could	have
							been	saved	by	giving	this	only	once,	but	it	was	decided	to	retain		some
							compatibility		with		the		way	pcre_exec()	returns	data,	even	though	the
							meaning	of	the	strings	is	different.)

							The	strings	are	returned	in	reverse	order	of	length;	that	is,	the	long-
							est		matching		string	is	given	first.	If	there	were	too	many	matches	to
							fit	into	ovector,	the	yield	of	the	function	is	zero,	and	the	vector		is
							filled	with	the	longest	matches.

			Error	returns	from	pcre_dfa_exec()

							The		pcre_dfa_exec()		function	returns	a	negative	number	when	it	fails.
							Many	of	the	errors	are	the	same		as		for		pcre_exec(),		and		these		are
							described		above.			There	are	in	addition	the	following	errors	that	are
							specific	to	pcre_dfa_exec():

									PCRE_ERROR_DFA_UITEM						(-16)

							This	return	is	given	if	pcre_dfa_exec()	encounters	an	item	in	the		pat-
							tern		that		it		does	not	support,	for	instance,	the	use	of	\C	or	a	back
							reference.

									PCRE_ERROR_DFA_UCOND						(-17)

							This	return	is	given	if	pcre_dfa_exec()		encounters		a		condition		item
							that		uses		a	back	reference	for	the	condition,	or	a	test	for	recursion
							in	a	specific	group.	These	are	not	supported.

									PCRE_ERROR_DFA_UMLIMIT				(-18)

							This	return	is	given	if	pcre_dfa_exec()	is	called	with	an		extra		block
							that	contains	a	setting	of	the	match_limit	field.	This	is	not	supported
							(it	is	meaningless).

									PCRE_ERROR_DFA_WSSIZE					(-19)

							This	return	is	given	if		pcre_dfa_exec()		runs		out		of		space		in		the
							workspace	vector.

									PCRE_ERROR_DFA_RECURSE				(-20)

							When		a		recursive	subpattern	is	processed,	the	matching	function	calls
							itself	recursively,	using	private	vectors	for		ovector		and		workspace.
							This		error		is		given		if		the	output	vector	is	not	large	enough.	This
							should	be	extremely	rare,	as	a	vector	of	size	1000	is	used.

SEE	ALSO

							pcrebuild(3),	pcrecallout(3),	pcrecpp(3)(3),	pcrematching(3),		pcrepar-
							tial(3),		pcreposix(3),	pcreprecompile(3),	pcresample(3),	pcrestack(3).

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	24	August	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCRECALLOUT(3)																																																		PCRECALLOUT(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	CALLOUTS

							int	(*pcre_callout)(pcre_callout_block	*);

							PCRE	provides	a	feature	called	"callout",	which	is	a	means	of	temporar-
							ily	passing	control	to	the	caller	of	PCRE		in		the		middle		of		pattern
							matching.		The		caller	of	PCRE	provides	an	external	function	by	putting
							its	entry	point	in	the	global	variable	pcre_callout.	By		default,		this
							variable	contains	NULL,	which	disables	all	calling	out.

							Within		a		regular		expression,		(?C)	indicates	the	points	at	which	the
							external	function	is	to	be	called.		Different		callout		points		can		be
							identified		by		putting		a	number	less	than	256	after	the	letter	C.	The
							default	value	is	zero.		For		example,		this		pattern		has		two		callout
							points:

									(?C1)abc(?C2)def

							If		the		PCRE_AUTO_CALLOUT		option		bit		is		set	when	pcre_compile()	is
							called,	PCRE	automatically		inserts		callouts,		all		with		number		255,
							before		each		item	in	the	pattern.	For	example,	if	PCRE_AUTO_CALLOUT	is
							used	with	the	pattern

									A(\d{2}|--)

							it	is	processed	as	if	it	were

							(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)

							Notice	that	there	is	a	callout	before	and	after		each		parenthesis		and
							alternation		bar.		Automatic		callouts		can		be		used		for	tracking	the
							progress	of	pattern	matching.	The	pcretest	command	has	an		option		that
							sets		automatic	callouts;	when	it	is	used,	the	output	indicates	how	the
							pattern	is	matched.	This	is	useful	information	when	you	are		trying		to
							optimize	the	performance	of	a	particular	pattern.

MISSING	CALLOUTS

							You		should		be		aware		that,		because	of	optimizations	in	the	way	PCRE
							matches	patterns,	callouts	sometimes	do	not	happen.	For	example,	if	the

							pattern	is

									ab(?C4)cd

							PCRE	knows	that	any	matching	string	must	contain	the	letter	"d".	If	the
							subject	string	is	"abyz",	the	lack	of	"d"	means	that		matching		doesn't
							ever		start,		and		the		callout	is	never	reached.	However,	with	"abyd",
							though	the	result	is	still	no	match,	the	callout	is	obeyed.

THE	CALLOUT	INTERFACE

							During	matching,	when	PCRE	reaches	a	callout	point,	the	external		func-
							tion		defined	by	pcre_callout	is	called	(if	it	is	set).	This	applies	to
							both	the	pcre_exec()	and	the	pcre_dfa_exec()		matching		functions.		The
							only		argument		to		the	callout	function	is	a	pointer	to	a	pcre_callout
							block.	This	structure	contains	the	following	fields:

									int										version;
									int										callout_number;
									int									*offset_vector;
									const	char		*subject;
									int										subject_length;
									int										start_match;
									int										current_position;
									int										capture_top;
									int										capture_last;
									void								*callout_data;
									int										pattern_position;
									int										next_item_length;

							The	version	field	is	an	integer	containing	the	version		number		of		the
							block		format.	The	initial	version	was	0;	the	current	version	is	1.	The
							version	number	will	change	again	in	future		if		additional		fields		are
							added,	but	the	intention	is	never	to	remove	any	of	the	existing	fields.

							The	callout_number	field	contains	the	number	of	the		callout,		as		com-

							piled		into		the	pattern	(that	is,	the	number	after	?C	for	manual	call-
							outs,	and	255	for	automatically	generated	callouts).

							The	offset_vector	field	is	a	pointer	to	the	vector	of	offsets	that		was
							passed			by			the			caller		to		pcre_exec()		or		pcre_dfa_exec().		When
							pcre_exec()	is	used,	the	contents	can	be	inspected	in	order	to		extract
							substrings		that		have		been		matched		so		far,		in	the	same	way	as	for
							extracting	substrings	after	a	match	has	completed.	For		pcre_dfa_exec()
							this	field	is	not	useful.

							The	subject	and	subject_length	fields	contain	copies	of	the	values	that
							were	passed	to	pcre_exec().

							The	start_match	field	normally	contains	the	offset	within		the		subject
							at		which		the		current		match		attempt	started.	However,	if	the	escape
							sequence	\K	has	been	encountered,	this	value	is	changed	to	reflect		the
							modified		starting		point.		If	the	pattern	is	not	anchored,	the	callout
							function	may	be	called	several	times	from	the	same	point	in	the	pattern
							for	different	starting	points	in	the	subject.

							The		current_position		field		contains	the	offset	within	the	subject	of
							the	current	match	pointer.

							When	the	pcre_exec()	function	is	used,	the	capture_top		field		contains
							one		more	than	the	number	of	the	highest	numbered	captured	substring	so
							far.	If	no	substrings	have	been	captured,	the	value	of		capture_top		is
							one.		This		is	always	the	case	when	pcre_dfa_exec()	is	used,	because	it
							does	not	support	captured	substrings.

							The	capture_last	field	contains	the	number	of	the		most		recently		cap-
							tured		substring.	If	no	substrings	have	been	captured,	its	value	is	-1.
							This	is	always	the	case	when	pcre_dfa_exec()	is	used.

							The	callout_data	field	contains	a	value	that	is	passed		to		pcre_exec()
							or		pcre_dfa_exec()	specifically	so	that	it	can	be	passed	back	in	call-
							outs.	It	is	passed	in	the	pcre_callout	field		of		the		pcre_extra		data
							structure.		If		no	such	data	was	passed,	the	value	of	callout_data	in	a

							pcre_callout	block	is	NULL.	There	is	a	description		of		the		pcre_extra
							structure	in	the	pcreapi	documentation.

							The		pattern_position	field	is	present	from	version	1	of	the	pcre_call-
							out	structure.	It	contains	the	offset	to	the	next	item	to	be	matched	in
							the	pattern	string.

							The		next_item_length	field	is	present	from	version	1	of	the	pcre_call-
							out	structure.	It	contains	the	length	of	the	next	item	to	be	matched	in
							the		pattern		string.	When	the	callout	immediately	precedes	an	alterna-
							tion	bar,	a	closing	parenthesis,	or	the	end	of	the	pattern,	the		length
							is		zero.		When	the	callout	precedes	an	opening	parenthesis,	the	length
							is	that	of	the	entire	subpattern.

							The	pattern_position	and	next_item_length	fields	are	intended		to		help
							in		distinguishing	between	different	automatic	callouts,	which	all	have
							the	same	callout	number.	However,	they	are	set	for	all	callouts.

RETURN	VALUES

							The	external	callout	function	returns	an	integer	to	PCRE.	If	the		value
							is		zero,		matching		proceeds		as		normal.	If	the	value	is	greater	than
							zero,	matching	fails	at	the	current	point,	but		the		testing		of		other
							matching	possibilities	goes	ahead,	just	as	if	a	lookahead	assertion	had
							failed.	If	the	value	is	less	than	zero,	the		match		is		abandoned,		and
							pcre_exec()	(or	pcre_dfa_exec())	returns	the	negative	value.

							Negative			values			should			normally			be			chosen		from		the		set		of
							PCRE_ERROR_xxx	values.	In	particular,	PCRE_ERROR_NOMATCH	forces	a	stan-
							dard		"no		match"		failure.			The		error		number		PCRE_ERROR_CALLOUT	is
							reserved	for	use	by	callout	functions;	it	will	never	be		used		by		PCRE
							itself.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	29	May	2007
							Copyright	(c)	1997-2007	University	of	Cambridge.
--

PCRECOMPAT(3)																																																				PCRECOMPAT(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

DIFFERENCES	BETWEEN	PCRE	AND	PERL

							This		document	describes	the	differences	in	the	ways	that	PCRE	and	Perl
							handle	regular	expressions.	The	differences	described	here		are		mainly
							with		respect		to		Perl	5.8,	though	PCRE	versions	7.0	and	later	contain
							some	features	that	are	expected	to	be	in	the	forthcoming	Perl	5.10.

							1.	PCRE	has	only	a	subset	of	Perl's	UTF-8	and	Unicode	support.		Details
							of		what		it	does	have	are	given	in	the	section	on	UTF-8	support	in	the
							main	pcre	page.

							2.	PCRE	does	not	allow	repeat	quantifiers	on	lookahead	assertions.	Perl
							permits		them,		but	they	do	not	mean	what	you	might	think.	For	example,
							(?!a){3}	does	not	assert	that	the	next	three	characters	are	not	"a".	It
							just	asserts	that	the	next	character	is	not	"a"	three	times.

							3.		Capturing		subpatterns		that	occur	inside	negative	lookahead	asser-
							tions	are	counted,	but	their	entries	in	the	offsets		vector		are		never

							set.		Perl	sets	its	numerical	variables	from	any	such	patterns	that	are
							matched	before	the	assertion	fails	to	match	something	(thereby	succeed-
							ing),		but		only		if	the	negative	lookahead	assertion	contains	just	one
							branch.

							4.	Though	binary	zero	characters	are	supported	in	the		subject		string,
							they	are	not	allowed	in	a	pattern	string	because	it	is	passed	as	a	nor-
							mal	C	string,	terminated	by	zero.	The	escape	sequence	\0	can	be	used	in
							the	pattern	to	represent	a	binary	zero.

							5.		The		following	Perl	escape	sequences	are	not	supported:	\l,	\u,	\L,
							\U,	and	\N.	In	fact	these	are	implemented	by	Perl's	general	string-han-
							dling		and	are	not	part	of	its	pattern	matching	engine.	If	any	of	these
							are	encountered	by	PCRE,	an	error	is	generated.

							6.	The	Perl	escape	sequences	\p,	\P,	and	\X	are	supported	only	if		PCRE
							is		built		with	Unicode	character	property	support.	The	properties	that
							can	be	tested	with	\p	and	\P	are	limited	to	the	general	category		prop-
							erties		such		as		Lu	and	Nd,	script	names	such	as	Greek	or	Han,	and	the
							derived	properties	Any	and	L&.

							7.	PCRE	does	support	the	\Q...\E	escape	for	quoting	substrings.	Charac-
							ters		in		between		are		treated	as	literals.	This	is	slightly	different
							from	Perl	in	that	$	and	@	are		also		handled		as		literals		inside		the
							quotes.		In	Perl,	they	cause	variable	interpolation	(but	of	course	PCRE
							does	not	have	variables).	Note	the	following	examples:

											Pattern												PCRE	matches						Perl	matches

											\Qabc$xyz\E								abc$xyz											abc	followed	by	the
																																																		contents	of	$xyz
											\Qabc\$xyz\E							abc\$xyz										abc\$xyz
											\Qabc\E\$\Qxyz\E			abc$xyz											abc$xyz

							The	\Q...\E	sequence	is	recognized	both	inside		and		outside		character
							classes.

							8.	Fairly	obviously,	PCRE	does	not	support	the	(?{code})	and	(??{code})
							constructions.	However,	there	is	support	for	recursive		patterns.		This
							is		not	available	in	Perl	5.8,	but	will	be	in	Perl	5.10.	Also,	the	PCRE
							"callout"	feature	allows	an	external	function	to	be	called	during		pat-
							tern	matching.	See	the	pcrecallout	documentation	for	details.

							9.		Subpatterns		that		are		called		recursively	or	as	"subroutines"	are
							always	treated	as	atomic	groups	in		PCRE.		This		is		like		Python,		but
							unlike	Perl.

							10.		There	are	some	differences	that	are	concerned	with	the	settings	of
							captured	strings	when	part	of		a		pattern		is		repeated.		For		example,
							matching		"aba"		against		the		pattern		/^(a(b)?)+$/		in	Perl	leaves	$2
							unset,	but	in	PCRE	it	is	set	to	"b".

							11.		PCRE		does		support		Perl		5.10's		backtracking		verbs		(*ACCEPT),
							(*FAIL),		(*F),		(*COMMIT),	(*PRUNE),	(*SKIP),	and	(*THEN),	but	only	in
							the	forms	without	an		argument.		PCRE		does		not		support		(*MARK).		If
							(*ACCEPT)		is	within	capturing	parentheses,	PCRE	does	not	set	that	cap-
							ture	group;	this	is	different	to	Perl.

							12.	PCRE	provides	some	extensions	to	the	Perl	regular	expression	facil-
							ities.			Perl		5.10		will		include	new	features	that	are	not	in	earlier
							versions,	some	of	which	(such	as	named	parentheses)	have	been		in		PCRE
							for	some	time.	This	list	is	with	respect	to	Perl	5.10:

							(a)		Although		lookbehind		assertions		must	match	fixed	length	strings,
							each	alternative	branch	of	a	lookbehind	assertion	can	match	a	different
							length	of	string.	Perl	requires	them	all	to	have	the	same	length.

							(b)		If	PCRE_DOLLAR_ENDONLY	is	set	and	PCRE_MULTILINE	is	not	set,	the	$
							meta-character	matches	only	at	the	very	end	of	the	string.

							(c)	If	PCRE_EXTRA	is	set,	a	backslash	followed	by	a	letter	with	no	spe-
							cial	meaning	is	faulted.	Otherwise,	like	Perl,	the	backslash	is	quietly
							ignored.		(Perl	can	be	made	to	issue	a	warning.)

							(d)	If	PCRE_UNGREEDY	is	set,	the	greediness	of	the		repetition		quanti-
							fiers	is	inverted,	that	is,	by	default	they	are	not	greedy,	but	if	fol-
							lowed	by	a	question	mark	they	are.

							(e)	PCRE_ANCHORED	can	be	used	at	matching	time	to	force	a	pattern	to	be
							tried	only	at	the	first	matching	position	in	the	subject	string.

							(f)		The	PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,	and	PCRE_NO_AUTO_CAP-
							TURE	options	for	pcre_exec()	have	no	Perl	equivalents.

							(g)	The	\R	escape	sequence	can	be	restricted	to	match	only	CR,		LF,		or
							CRLF	by	the	PCRE_BSR_ANYCRLF	option.

							(h)	The	callout	facility	is	PCRE-specific.

							(i)	The	partial	matching	facility	is	PCRE-specific.

							(j)	Patterns	compiled	by	PCRE	can	be	saved	and	re-used	at	a	later	time,
							even	on	different	hosts	that	have	the	other	endianness.

							(k)	The	alternative	matching	function	(pcre_dfa_exec())		matches		in		a
							different	way	and	is	not	Perl-compatible.

							(l)		PCRE		recognizes	some	special	sequences	such	as	(*CR)	at	the	start
							of	a	pattern	that	set	overall	options	that	cannot	be	changed	within	the
							pattern.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	11	September	2007
							Copyright	(c)	1997-2007	University	of	Cambridge.
--

PCREPATTERN(3)																																																		PCREPATTERN(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	REGULAR	EXPRESSION	DETAILS

							The		syntax	and	semantics	of	the	regular	expressions	that	are	supported
							by	PCRE	are	described	in	detail	below.	There	is	a	quick-reference		syn-
							tax	summary	in	the	pcresyntax	page.	PCRE	tries	to	match	Perl	syntax	and
							semantics	as	closely	as	it	can.	PCRE		also		supports		some		alternative
							regular		expression		syntax	(which	does	not	conflict	with	the	Perl	syn-
							tax)	in	order	to	provide	some	compatibility	with	regular	expressions	in
							Python,	.NET,	and	Oniguruma.

							Perl's		regular	expressions	are	described	in	its	own	documentation,	and
							regular	expressions	in	general	are	covered	in	a	number	of		books,		some
							of		which		have		copious		examples.	Jeffrey	Friedl's	"Mastering	Regular
							Expressions",	published	by		O'Reilly,		covers		regular		expressions		in
							great		detail.		This		description		of		PCRE's		regular		expressions		is
							intended	as	reference	material.

							The	original	operation	of	PCRE	was	on	strings	of		one-byte		characters.
							However,		there	is	now	also	support	for	UTF-8	character	strings.	To	use
							this,	you	must	build	PCRE	to		include		UTF-8		support,		and		then		call
							pcre_compile()		with		the		PCRE_UTF8		option.		How	this	affects	pattern
							matching	is	mentioned	in	several	places	below.	There	is	also	a		summary
							of		UTF-8		features		in		the		section	on	UTF-8	support	in	the	main	pcre
							page.

							The	remainder	of	this	document	discusses	the		patterns		that		are		sup-
							ported		by		PCRE	when	its	main	matching	function,	pcre_exec(),	is	used.
							From		release		6.0,			PCRE			offers			a			second			matching			function,
							pcre_dfa_exec(),		which	matches	using	a	different	algorithm	that	is	not
							Perl-compatible.	Some	of	the	features	discussed	below	are	not	available
							when		pcre_dfa_exec()		is	used.	The	advantages	and	disadvantages	of	the
							alternative	function,	and	how	it	differs	from	the	normal	function,		are
							discussed	in	the	pcrematching	page.

NEWLINE	CONVENTIONS

							PCRE		supports	five	different	conventions	for	indicating	line	breaks	in
							strings:	a	single	CR	(carriage	return)	character,	a		single		LF		(line-
							feed)	character,	the	two-character	sequence	CRLF,	any	of	the	three	pre-
							ceding,	or	any	Unicode	newline	sequence.	The	pcreapi	page		has		further
							discussion		about	newlines,	and	shows	how	to	set	the	newline	convention
							in	the	options	arguments	for	the	compiling	and	matching	functions.

							It	is	also	possible	to	specify	a	newline	convention	by	starting	a		pat-
							tern	string	with	one	of	the	following	five	sequences:

									(*CR)								carriage	return
									(*LF)								linefeed
									(*CRLF)						carriage	return,	followed	by	linefeed
									(*ANYCRLF)			any	of	the	three	above
									(*ANY)							all	Unicode	newline	sequences

							These	override	the	default	and	the	options	given	to	pcre_compile().	For
							example,	on	a	Unix	system	where	LF	is	the	default	newline	sequence,	the
							pattern

									(*CR)a.b

							changes	the	convention	to	CR.	That	pattern	matches	"a\nb"	because	LF	is
							no	longer	a	newline.	Note	that	these	special	settings,		which		are		not
							Perl-compatible,		are		recognized		only	at	the	very	start	of	a	pattern,

							and	that	they	must	be	in	upper	case.		If		more		than		one		of		them		is
							present,	the	last	one	is	used.

							The		newline		convention		does		not		affect	what	the	\R	escape	sequence
							matches.	By	default,	this	is	any	Unicode		newline		sequence,		for		Perl
							compatibility.		However,	this	can	be	changed;	see	the	description	of	\R
							in	the	section	entitled	"Newline	sequences"	below.	A	change	of	\R		set-
							ting	can	be	combined	with	a	change	of	newline	convention.

CHARACTERS	AND	METACHARACTERS

							A		regular		expression		is		a	pattern	that	is	matched	against	a	subject
							string	from	left	to	right.	Most	characters	stand	for		themselves		in		a
							pattern,		and		match		the	corresponding	characters	in	the	subject.	As	a
							trivial	example,	the	pattern

									The	quick	brown	fox

							matches	a	portion	of	a	subject	string	that	is	identical	to	itself.	When
							caseless		matching	is	specified	(the	PCRE_CASELESS	option),	letters	are
							matched	independently	of	case.	In	UTF-8	mode,	PCRE		always		understands
							the		concept		of	case	for	characters	whose	values	are	less	than	128,	so
							caseless	matching	is	always	possible.	For	characters	with		higher		val-
							ues,		the	concept	of	case	is	supported	if	PCRE	is	compiled	with	Unicode
							property	support,	but	not	otherwise.			If		you		want		to		use		caseless
							matching		for		characters		128		and	above,	you	must	ensure	that	PCRE	is
							compiled	with	Unicode	property	support	as	well	as	with	UTF-8	support.

							The	power	of	regular	expressions	comes		from		the		ability		to		include
							alternatives		and		repetitions	in	the	pattern.	These	are	encoded	in	the
							pattern	by	the	use	of	metacharacters,	which	do	not	stand	for	themselves
							but	instead	are	interpreted	in	some	special	way.

							There		are		two	different	sets	of	metacharacters:	those	that	are	recog-
							nized	anywhere	in	the	pattern	except	within	square	brackets,	and		those
							that		are		recognized		within	square	brackets.	Outside	square	brackets,

							the	metacharacters	are	as	follows:

									\						general	escape	character	with	several	uses
									^						assert	start	of	string	(or	line,	in	multiline	mode)
									$						assert	end	of	string	(or	line,	in	multiline	mode)
									.						match	any	character	except	newline	(by	default)
									[start	character	class	definition
									|						start	of	alternative	branch
									(start	subpattern
)						end	subpattern
									?						extends	the	meaning	of	(
																also	0	or	1	quantifier
																also	quantifier	minimizer
									*						0	or	more	quantifier
									+						1	or	more	quantifier
																also	"possessive	quantifier"
									{						start	min/max	quantifier

							Part	of	a	pattern	that	is	in	square	brackets		is		called		a		"character
							class".	In	a	character	class	the	only	metacharacters	are:

									\						general	escape	character
									^						negate	the	class,	but	only	if	the	first	character
									-						indicates	character	range
									[POSIX	character	class	(only	if	followed	by	POSIX
																		syntax)
]						terminates	the	character	class

							The		following	sections	describe	the	use	of	each	of	the	metacharacters.

BACKSLASH

							The	backslash	character	has	several	uses.	Firstly,	if	it	is	followed	by
							a		non-alphanumeric		character,		it	takes	away	any	special	meaning	that
							character	may	have.	This		use		of		backslash		as		an		escape		character
							applies	both	inside	and	outside	character	classes.

							For		example,		if		you	want	to	match	a	*	character,	you	write	*	in	the
							pattern.		This	escaping	action	applies	whether		or		not		the		following
							character		would		otherwise	be	interpreted	as	a	metacharacter,	so	it	is
							always	safe	to	precede	a	non-alphanumeric		with		backslash		to		specify
							that		it	stands	for	itself.	In	particular,	if	you	want	to	match	a	back-
							slash,	you	write	\\.

							If	a	pattern	is	compiled	with	the	PCRE_EXTENDED	option,		whitespace		in
							the		pattern	(other	than	in	a	character	class)	and	characters	between	a
							#	outside	a	character	class	and	the	next	newline	are	ignored.	An	escap-
							ing		backslash		can		be		used	to	include	a	whitespace	or	#	character	as
							part	of	the	pattern.

							If	you	want	to	remove	the	special	meaning	from	a		sequence		of		charac-
							ters,		you	can	do	so	by	putting	them	between	\Q	and	\E.	This	is	differ-
							ent	from	Perl	in	that	$	and		@		are		handled		as		literals		in		\Q...\E
							sequences		in		PCRE,	whereas	in	Perl,	$	and	@	cause	variable	interpola-
							tion.	Note	the	following	examples:

									Pattern												PCRE	matches			Perl	matches

									\Qabc$xyz\E								abc$xyz								abc	followed	by	the
																																													contents	of	$xyz
									\Qabc\$xyz\E							abc\$xyz							abc\$xyz
									\Qabc\E\$\Qxyz\E			abc$xyz								abc$xyz

							The	\Q...\E	sequence	is	recognized	both	inside		and		outside		character
							classes.

			Non-printing	characters

							A	second	use	of	backslash	provides	a	way	of	encoding	non-printing	char-
							acters	in	patterns	in	a	visible	manner.	There	is	no	restriction	on		the
							appearance		of	non-printing	characters,	apart	from	the	binary	zero	that
							terminates	a	pattern,	but	when	a	pattern		is		being		prepared		by		text
							editing,		it		is		usually		easier		to		use		one	of	the	following	escape

							sequences	than	the	binary	character	it	represents:

									\a								alarm,	that	is,	the	BEL	character	(hex	07)
									\cx							"control-x",	where	x	is	any	character
									\e								escape	(hex	1B)
									\f								formfeed	(hex	0C)
									\n								linefeed	(hex	0A)
									\r								carriage	return	(hex	0D)
									\t								tab	(hex	09)
									\ddd						character	with	octal	code	ddd,	or	backreference
									\xhh						character	with	hex	code	hh
									\x{hhh..}	character	with	hex	code	hhh..

							The	precise	effect	of	\cx	is	as	follows:	if	x	is	a	lower		case		letter,
							it		is	converted	to	upper	case.	Then	bit	6	of	the	character	(hex	40)	is
							inverted.		Thus	\cz	becomes	hex	1A,	but	\c{	becomes	hex	3B,		while		\c;
							becomes	hex	7B.

							After		\x,	from	zero	to	two	hexadecimal	digits	are	read	(letters	can	be
							in	upper	or	lower	case).	Any	number	of	hexadecimal		digits		may		appear
							between		\x{		and		},		but	the	value	of	the	character	code	must	be	less
							than	256	in	non-UTF-8	mode,	and	less	than	2**31	in	UTF-8	mode.	That	is,
							the		maximum	value	in	hexadecimal	is	7FFFFFFF.	Note	that	this	is	bigger
							than	the	largest	Unicode	code	point,	which	is	10FFFF.

							If	characters	other	than	hexadecimal	digits	appear	between	\x{		and		},
							or	if	there	is	no	terminating	},	this	form	of	escape	is	not	recognized.
							Instead,	the	initial	\x	will	be		interpreted		as		a		basic		hexadecimal
							escape,		with		no		following		digits,	giving	a	character	whose	value	is
							zero.

							Characters	whose	value	is	less	than	256	can	be	defined	by	either	of	the
							two		syntaxes		for		\x.	There	is	no	difference	in	the	way	they	are	han-
							dled.	For	example,	\xdc	is	exactly	the	same	as	\x{dc}.

							After	\0	up	to	two	further	octal	digits	are	read.	If		there		are		fewer
							than		two		digits,		just		those		that		are		present		are	used.	Thus	the

							sequence	\0\x\07	specifies	two	binary	zeros	followed	by	a	BEL	character
							(code		value	7).	Make	sure	you	supply	two	digits	after	the	initial	zero
							if	the	pattern	character	that	follows	is	itself	an	octal	digit.

							The	handling	of	a	backslash	followed	by	a	digit	other	than	0	is	compli-
							cated.		Outside	a	character	class,	PCRE	reads	it	and	any	following	dig-
							its	as	a	decimal	number.	If	the	number	is	less	than		10,		or		if		there
							have	been	at	least	that	many	previous	capturing	left	parentheses	in	the
							expression,	the	entire		sequence		is		taken		as		a		back		reference.		A
							description		of	how	this	works	is	given	later,	following	the	discussion
							of	parenthesized	subpatterns.

							Inside	a	character	class,	or	if	the	decimal	number	is		greater		than		9
							and		there	have	not	been	that	many	capturing	subpatterns,	PCRE	re-reads
							up	to	three	octal	digits	following	the	backslash,	and	uses	them	to	gen-
							erate		a	data	character.	Any	subsequent	digits	stand	for	themselves.	In
							non-UTF-8	mode,	the	value	of	a	character	specified		in		octal		must		be
							less		than		\400.		In		UTF-8	mode,	values	up	to	\777	are	permitted.	For
							example:

									\040			is	another	way	of	writing	a	space
									\40				is	the	same,	provided	there	are	fewer	than	40
																			previous	capturing	subpatterns
									\7					is	always	a	back	reference
									\11				might	be	a	back	reference,	or	another	way	of
																			writing	a	tab
									\011			is	always	a	tab
									\0113		is	a	tab	followed	by	the	character	"3"
									\113			might	be	a	back	reference,	otherwise	the
																			character	with	octal	code	113
									\377			might	be	a	back	reference,	otherwise
																			the	byte	consisting	entirely	of	1	bits
									\81				is	either	a	back	reference,	or	a	binary	zero
																			followed	by	the	two	characters	"8"	and	"1"

							Note	that	octal	values	of	100	or	greater	must	not	be		introduced		by		a
							leading	zero,	because	no	more	than	three	octal	digits	are	ever	read.

							All	the	sequences	that	define	a	single	character	value	can	be	used	both
							inside	and	outside	character	classes.	In	addition,	inside		a		character
							class,		the		sequence	\b	is	interpreted	as	the	backspace	character	(hex
							08),	and	the	sequences	\R	and	\X	are	interpreted	as	the	characters		"R"
							and		"X",	respectively.	Outside	a	character	class,	these	sequences	have
							different	meanings	(see	below).

			Absolute	and	relative	back	references

							The	sequence	\g	followed	by	an	unsigned	or	a	negative		number,		option-
							ally		enclosed		in	braces,	is	an	absolute	or	relative	back	reference.	A
							named	back	reference	can	be	coded	as	\g{name}.	Back	references	are	dis-
							cussed	later,	following	the	discussion	of	parenthesized	subpatterns.

			Absolute	and	relative	subroutine	calls

							For		compatibility	with	Oniguruma,	the	non-Perl	syntax	\g	followed	by	a
							name	or	a	number	enclosed	either	in	angle	brackets	or	single	quotes,	is
							an		alternative		syntax	for	referencing	a	subpattern	as	a	"subroutine".
							Details	are	discussed	later.			Note		that		\g{...}		(Perl		syntax)		and
							\g<...>		(Oniguruma		syntax)		are		not	synonymous.	The	former	is	a	back
							reference;	the	latter	is	a	subroutine	call.

			Generic	character	types

							Another	use	of	backslash	is	for	specifying	generic	character	types.	The
							following	are	always	recognized:

									\d					any	decimal	digit
									\D					any	character	that	is	not	a	decimal	digit
									\h					any	horizontal	whitespace	character
									\H					any	character	that	is	not	a	horizontal	whitespace	character
									\s					any	whitespace	character
									\S					any	character	that	is	not	a	whitespace	character
									\v					any	vertical	whitespace	character
									\V					any	character	that	is	not	a	vertical	whitespace	character

									\w					any	"word"	character
									\W					any	"non-word"	character

							Each	pair	of	escape	sequences	partitions	the	complete	set	of	characters
							into	two	disjoint	sets.	Any	given	character	matches	one,	and	only		one,
							of	each	pair.

							These	character	type	sequences	can	appear	both	inside	and	outside	char-
							acter	classes.	They	each	match	one	character	of	the		appropriate		type.
							If		the	current	matching	point	is	at	the	end	of	the	subject	string,	all
							of	them	fail,	since	there	is	no	character	to	match.

							For	compatibility	with	Perl,	\s	does	not	match	the	VT		character		(code
							11).			This	makes	it	different	from	the	the	POSIX	"space"	class.	The	\s
							characters	are	HT	(9),	LF	(10),	FF	(12),	CR	(13),	and		space		(32).		If
							"use	locale;"	is	included	in	a	Perl	script,	\s	may	match	the	VT	charac-
							ter.	In	PCRE,	it	never	does.

							In	UTF-8	mode,	characters	with	values	greater	than	128	never	match		\d,
							\s,	or	\w,	and	always	match	\D,	\S,	and	\W.	This	is	true	even	when	Uni-
							code	character	property	support	is	available.		These		sequences		retain
							their	original	meanings	from	before	UTF-8	support	was	available,	mainly
							for	efficiency	reasons.

							The	sequences	\h,	\H,	\v,	and	\V	are	Perl	5.10	features.	In	contrast	to
							the		other		sequences,	these	do	match	certain	high-valued	codepoints	in
							UTF-8	mode.		The	horizontal	space	characters	are:

									U+0009					Horizontal	tab
									U+0020					Space
									U+00A0					Non-break	space
									U+1680					Ogham	space	mark
									U+180E					Mongolian	vowel	separator
									U+2000					En	quad
									U+2001					Em	quad
									U+2002					En	space
									U+2003					Em	space

									U+2004					Three-per-em	space
									U+2005					Four-per-em	space
									U+2006					Six-per-em	space
									U+2007					Figure	space
									U+2008					Punctuation	space
									U+2009					Thin	space
									U+200A					Hair	space
									U+202F					Narrow	no-break	space
									U+205F					Medium	mathematical	space
									U+3000					Ideographic	space

							The	vertical	space	characters	are:

									U+000A					Linefeed
									U+000B					Vertical	tab
									U+000C					Formfeed
									U+000D					Carriage	return
									U+0085					Next	line
									U+2028					Line	separator
									U+2029					Paragraph	separator

							A	"word"	character	is	an	underscore	or	any	character	less	than	256	that
							is		a		letter		or		digit.		The	definition	of	letters	and	digits	is	con-
							trolled	by	PCRE's	low-valued	character	tables,	and	may	vary	if		locale-
							specific		matching	is	taking	place	(see	"Locale	support"	in	the	pcreapi
							page).	For	example,	in	a	French	locale	such		as		"fr_FR"		in		Unix-like
							systems,		or	"french"	in	Windows,	some	character	codes	greater	than	128
							are	used	for	accented	letters,	and	these	are	matched	by	\w.	The	use		of
							locales	with	Unicode	is	discouraged.

			Newline	sequences

							Outside		a		character	class,	by	default,	the	escape	sequence	\R	matches
							any	Unicode	newline	sequence.	This	is	a	Perl	5.10	feature.	In	non-UTF-8
							mode	\R	is	equivalent	to	the	following:

									(?>\r\n|\n|\x0b|\f|\r|\x85)

							This		is		an		example		of	an	"atomic	group",	details	of	which	are	given
							below.		This	particular	group	matches	either	the	two-character	sequence
							CR		followed		by		LF,		or		one		of		the	single	characters	LF	(linefeed,
							U+000A),	VT	(vertical	tab,	U+000B),	FF	(formfeed,	U+000C),	CR	(carriage
							return,	U+000D),	or	NEL	(next	line,	U+0085).	The	two-character	sequence
							is	treated	as	a	single	unit	that	cannot	be	split.

							In	UTF-8	mode,	two	additional	characters	whose	codepoints		are		greater
							than	255	are	added:	LS	(line	separator,	U+2028)	and	PS	(paragraph	sepa-
							rator,	U+2029).		Unicode	character	property	support	is	not		needed		for
							these	characters	to	be	recognized.

							It	is	possible	to	restrict	\R	to	match	only	CR,	LF,	or	CRLF	(instead	of
							the	complete	set		of		Unicode		line		endings)		by		setting		the		option
							PCRE_BSR_ANYCRLF	either	at	compile	time	or	when	the	pattern	is	matched.
							(BSR	is	an	abbrevation	for	"backslash	R".)	This	can	be	made	the	default
							when		PCRE		is		built;		if	this	is	the	case,	the	other	behaviour	can	be
							requested	via	the	PCRE_BSR_UNICODE	option.			It		is		also		possible		to
							specify		these		settings		by		starting	a	pattern	string	with	one	of	the
							following	sequences:

									(*BSR_ANYCRLF)			CR,	LF,	or	CRLF	only
									(*BSR_UNICODE)			any	Unicode	newline	sequence

							These	override	the	default	and	the	options	given	to	pcre_compile(),	but
							they	can	be	overridden	by	options	given	to	pcre_exec().	Note	that	these
							special	settings,	which	are	not	Perl-compatible,	are	recognized	only	at
							the		very		start		of	a	pattern,	and	that	they	must	be	in	upper	case.	If
							more	than	one	of	them	is	present,	the	last	one	is		used.		They		can		be
							combined		with		a		change	of	newline	convention,	for	example,	a	pattern
							can	start	with:

									(*ANY)(*BSR_ANYCRLF)

							Inside	a	character	class,	\R	matches	the	letter	"R".

			Unicode	character	properties

							When	PCRE	is	built	with	Unicode	character	property	support,	three	addi-
							tional		escape	sequences	that	match	characters	with	specific	properties
							are	available.		When	not	in	UTF-8	mode,	these	sequences	are		of		course
							limited		to		testing	characters	whose	codepoints	are	less	than	256,	but
							they	do	work	in	this	mode.		The	extra	escape	sequences	are:

									\p{xx}			a	character	with	the	xx	property
									\P{xx}			a	character	without	the	xx	property
									\X							an	extended	Unicode	sequence

							The	property	names	represented	by	xx	above	are	limited	to		the		Unicode
							script	names,	the	general	category	properties,	and	"Any",	which	matches
							any	character	(including	newline).	Other	properties	such	as	"InMusical-
							Symbols"		are		not		currently	supported	by	PCRE.	Note	that	\P{Any}	does
							not	match	any	characters,	so	always	causes	a	match	failure.

							Sets	of	Unicode	characters	are	defined	as	belonging	to	certain	scripts.
							A		character	from	one	of	these	sets	can	be	matched	using	a	script	name.
							For	example:

									\p{Greek}
									\P{Han}

							Those	that	are	not	part	of	an	identified	script	are	lumped	together		as
							"Common".	The	current	list	of	scripts	is:

							Arabic,		Armenian,		Balinese,		Bengali,		Bopomofo,		Braille,		Buginese,
							Buhid,		Canadian_Aboriginal,		Cherokee,		Common,			Coptic,			Cuneiform,
							Cypriot,	Cyrillic,	Deseret,	Devanagari,	Ethiopic,	Georgian,	Glagolitic,
							Gothic,	Greek,	Gujarati,	Gurmukhi,	Han,	Hangul,	Hanunoo,	Hebrew,		Hira-
							gana,		Inherited,		Kannada,		Katakana,		Kharoshthi,		Khmer,	Lao,	Latin,
							Limbu,		Linear_B,		Malayalam,		Mongolian,		Myanmar,		New_Tai_Lue,		Nko,
							Ogham,		Old_Italic,		Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,
							Runic,		Shavian,		Sinhala,		Syloti_Nagri,		Syriac,		Tagalog,		Tagbanwa,
							Tai_Le,	Tamil,	Telugu,	Thaana,	Thai,	Tibetan,	Tifinagh,	Ugaritic,	Yi.

							Each		character	has	exactly	one	general	category	property,	specified	by
							a	two-letter	abbreviation.	For	compatibility	with	Perl,	negation	can	be
							specified		by		including	a	circumflex	between	the	opening	brace	and	the
							property	name.	For	example,	\p{^Lu}	is	the	same	as	\P{Lu}.

							If	only	one	letter	is	specified	with	\p	or	\P,	it	includes	all	the	gen-
							eral		category	properties	that	start	with	that	letter.	In	this	case,	in
							the	absence	of	negation,	the	curly	brackets	in	the	escape	sequence		are
							optional;	these	two	examples	have	the	same	effect:

									\p{L}
									\pL

							The	following	general	category	property	codes	are	supported:

									C					Other
									Cc				Control
									Cf				Format
									Cn				Unassigned
									Co				Private	use
									Cs				Surrogate

									L					Letter
									Ll				Lower	case	letter
									Lm				Modifier	letter
									Lo				Other	letter
									Lt				Title	case	letter
									Lu				Upper	case	letter

									M					Mark
									Mc				Spacing	mark
									Me				Enclosing	mark
									Mn				Non-spacing	mark

									N					Number
									Nd				Decimal	number

									Nl				Letter	number
									No				Other	number

									P					Punctuation
									Pc				Connector	punctuation
									Pd				Dash	punctuation
									Pe				Close	punctuation
									Pf				Final	punctuation
									Pi				Initial	punctuation
									Po				Other	punctuation
									Ps				Open	punctuation

									S					Symbol
									Sc				Currency	symbol
									Sk				Modifier	symbol
									Sm				Mathematical	symbol
									So				Other	symbol

									Z					Separator
									Zl				Line	separator
									Zp				Paragraph	separator
									Zs				Space	separator

							The		special	property	L&	is	also	supported:	it	matches	a	character	that
							has	the	Lu,	Ll,	or	Lt	property,	in	other	words,	a	letter		that		is		not
							classified	as	a	modifier	or	"other".

							The		Cs		(Surrogate)		property		applies	only	to	characters	in	the	range
							U+D800	to	U+DFFF.	Such	characters	are	not	valid	in	UTF-8		strings		(see
							RFC	3629)	and	so	cannot	be	tested	by	PCRE,	unless	UTF-8	validity	check-
							ing	has	been	turned	off	(see	the	discussion		of		PCRE_NO_UTF8_CHECK		in
							the	pcreapi	page).

							The		long		synonyms		for		these		properties	that	Perl	supports	(such	as
							\p{Letter})	are	not	supported	by	PCRE,	nor	is	it		permitted		to		prefix
							any	of	these	properties	with	"Is".

							No	character	that	is	in	the	Unicode	table	has	the	Cn	(unassigned)	prop-
							erty.		Instead,	this	property	is	assumed	for	any	code	point	that	is	not
							in	the	Unicode	table.

							Specifying		caseless		matching		does	not	affect	these	escape	sequences.
							For	example,	\p{Lu}	always	matches	only	upper	case	letters.

							The	\X	escape	matches	any	number	of	Unicode		characters		that		form		an
							extended	Unicode	sequence.	\X	is	equivalent	to

									(?>\PM\pM*)

							That		is,		it	matches	a	character	without	the	"mark"	property,	followed
							by	zero	or	more	characters	with	the	"mark"		property,		and		treats		the
							sequence		as		an		atomic	group	(see	below).		Characters	with	the	"mark"
							property	are	typically	accents	that		affect		the		preceding		character.
							None		of		them		have		codepoints	less	than	256,	so	in	non-UTF-8	mode	\X
							matches	any	one	character.

							Matching	characters	by	Unicode	property	is	not	fast,	because		PCRE		has
							to		search		a		structure		that		contains	data	for	over	fifteen	thousand
							characters.	That	is	why	the	traditional	escape	sequences	such	as	\d	and
							\w	do	not	use	Unicode	properties	in	PCRE.

			Resetting	the	match	start

							The	escape	sequence	\K,	which	is	a	Perl	5.10	feature,	causes	any	previ-
							ously	matched	characters	not		to		be		included		in		the		final		matched
							sequence.	For	example,	the	pattern:

									foo\Kbar

							matches		"foobar",		but	reports	that	it	has	matched	"bar".	This	feature
							is	similar	to	a	lookbehind	assertion	(described		below).			However,		in
							this		case,	the	part	of	the	subject	before	the	real	match	does	not	have
							to	be	of	fixed	length,	as	lookbehind	assertions	do.	The	use	of	\K		does
							not		interfere		with		the	setting	of	captured	substrings.		For	example,

							when	the	pattern

									(foo)\Kbar

							matches	"foobar",	the	first	substring	is	still	set	to	"foo".

			Simple	assertions

							The	final	use	of	backslash	is	for	certain	simple	assertions.	An		asser-
							tion		specifies	a	condition	that	has	to	be	met	at	a	particular	point	in
							a	match,	without	consuming	any	characters	from	the	subject	string.		The
							use		of	subpatterns	for	more	complicated	assertions	is	described	below.
							The	backslashed	assertions	are:

									\b					matches	at	a	word	boundary
									\B					matches	when	not	at	a	word	boundary
									\A					matches	at	the	start	of	the	subject
									\Z					matches	at	the	end	of	the	subject
																	also	matches	before	a	newline	at	the	end	of	the	subject
									\z					matches	only	at	the	end	of	the	subject
									\G					matches	at	the	first	matching	position	in	the	subject

							These	assertions	may	not	appear	in	character	classes	(but	note	that		\b
							has	a	different	meaning,	namely	the	backspace	character,	inside	a	char-
							acter	class).

							A	word	boundary	is	a	position	in	the	subject	string	where		the		current
							character		and		the	previous	character	do	not	both	match	\w	or	\W	(i.e.
							one	matches	\w	and	the	other	matches	\W),	or	the	start	or		end		of		the
							string	if	the	first	or	last	character	matches	\w,	respectively.

							The		\A,		\Z,		and	\z	assertions	differ	from	the	traditional	circumflex
							and	dollar	(described	in	the	next	section)	in	that	they	only	ever	match
							at		the		very	start	and	end	of	the	subject	string,	whatever	options	are
							set.	Thus,	they	are	independent	of	multiline	mode.	These		three		asser-
							tions	are	not	affected	by	the	PCRE_NOTBOL	or	PCRE_NOTEOL	options,	which
							affect	only	the	behaviour	of	the	circumflex	and	dollar		metacharacters.

							However,		if	the	startoffset	argument	of	pcre_exec()	is	non-zero,	indi-
							cating	that	matching	is	to	start	at	a	point	other	than	the	beginning	of
							the		subject,		\A		can	never	match.	The	difference	between	\Z	and	\z	is
							that	\Z	matches	before	a	newline	at	the	end	of	the	string	as	well	as	at
							the	very	end,	whereas	\z	matches	only	at	the	end.

							The		\G	assertion	is	true	only	when	the	current	matching	position	is	at
							the	start	point	of	the	match,	as	specified	by	the	startoffset		argument
							of		pcre_exec().		It		differs		from	\A	when	the	value	of	startoffset	is
							non-zero.	By	calling	pcre_exec()	multiple	times	with	appropriate		argu-
							ments,	you	can	mimic	Perl's	/g	option,	and	it	is	in	this	kind	of	imple-
							mentation	where	\G	can	be	useful.

							Note,	however,	that	PCRE's	interpretation	of	\G,	as	the		start		of		the
							current	match,	is	subtly	different	from	Perl's,	which	defines	it	as	the
							end	of	the	previous	match.	In	Perl,	these	can		be		different		when		the
							previously		matched		string	was	empty.	Because	PCRE	does	just	one	match
							at	a	time,	it	cannot	reproduce	this	behaviour.

							If	all	the	alternatives	of	a	pattern	begin	with	\G,	the		expression		is
							anchored	to	the	starting	match	position,	and	the	"anchored"	flag	is	set
							in	the	compiled	regular	expression.

CIRCUMFLEX	AND	DOLLAR

							Outside	a	character	class,	in	the	default	matching	mode,	the	circumflex
							character		is		an		assertion		that	is	true	only	if	the	current	matching
							point	is	at	the	start	of	the	subject	string.	If	the		startoffset		argu-
							ment		of		pcre_exec()		is		non-zero,		circumflex	can	never	match	if	the
							PCRE_MULTILINE	option	is	unset.	Inside	a		character		class,		circumflex
							has	an	entirely	different	meaning	(see	below).

							Circumflex		need		not	be	the	first	character	of	the	pattern	if	a	number
							of	alternatives	are	involved,	but	it	should	be	the	first	thing	in		each
							alternative		in		which		it	appears	if	the	pattern	is	ever	to	match	that
							branch.	If	all	possible	alternatives	start	with	a	circumflex,	that		is,

							if		the		pattern		is	constrained	to	match	only	at	the	start	of	the	sub-
							ject,	it	is	said	to	be	an	"anchored"	pattern.		(There		are		also		other
							constructs	that	can	cause	a	pattern	to	be	anchored.)

							A		dollar		character		is		an	assertion	that	is	true	only	if	the	current
							matching	point	is	at	the	end	of		the		subject		string,		or		immediately
							before	a	newline	at	the	end	of	the	string	(by	default).	Dollar	need	not
							be	the	last	character	of	the	pattern	if	a	number		of		alternatives		are
							involved,		but		it		should		be		the	last	item	in	any	branch	in	which	it
							appears.	Dollar	has	no	special	meaning	in	a	character	class.

							The	meaning	of	dollar	can	be	changed	so	that	it		matches		only		at		the
							very		end		of		the	string,	by	setting	the	PCRE_DOLLAR_ENDONLY	option	at
							compile	time.	This	does	not	affect	the	\Z	assertion.

							The	meanings	of	the	circumflex	and	dollar	characters	are	changed	if	the
							PCRE_MULTILINE		option		is		set.		When		this		is	the	case,	a	circumflex
							matches	immediately	after	internal	newlines	as	well	as	at	the	start		of
							the		subject		string.		It		does	not	match	after	a	newline	that	ends	the
							string.	A	dollar	matches	before	any	newlines	in	the	string,	as	well		as
							at		the	very	end,	when	PCRE_MULTILINE	is	set.	When	newline	is	specified
							as	the	two-character	sequence	CRLF,	isolated	CR	and		LF		characters		do
							not	indicate	newlines.

							For		example,	the	pattern	/^abc$/	matches	the	subject	string	"def\nabc"
							(where	\n	represents	a	newline)	in	multiline	mode,	but		not		otherwise.
							Consequently,		patterns		that		are	anchored	in	single	line	mode	because
							all	branches	start	with	^	are	not	anchored	in		multiline		mode,		and		a
							match		for		circumflex		is		possible		when		the	startoffset	argument	of
							pcre_exec()	is	non-zero.	The	PCRE_DOLLAR_ENDONLY	option	is		ignored		if
							PCRE_MULTILINE	is	set.

							Note		that		the	sequences	\A,	\Z,	and	\z	can	be	used	to	match	the	start
							and	end	of	the	subject	in	both	modes,	and	if	all	branches	of	a		pattern
							start		with		\A	it	is	always	anchored,	whether	or	not	PCRE_MULTILINE	is
							set.

FULL	STOP	(PERIOD,	DOT)

							Outside	a	character	class,	a	dot	in	the	pattern	matches	any	one	charac-
							ter		in		the	subject	string	except	(by	default)	a	character	that	signi-
							fies	the	end	of	a	line.	In	UTF-8	mode,	the		matched		character		may		be
							more	than	one	byte	long.

							When		a	line	ending	is	defined	as	a	single	character,	dot	never	matches
							that	character;	when	the	two-character	sequence	CRLF	is	used,	dot		does
							not		match		CR		if		it		is	immediately	followed	by	LF,	but	otherwise	it
							matches	all	characters	(including	isolated	CRs	and	LFs).	When	any		Uni-
							code		line	endings	are	being	recognized,	dot	does	not	match	CR	or	LF	or
							any	of	the	other	line	ending	characters.

							The	behaviour	of	dot	with	regard	to	newlines	can		be		changed.		If		the
							PCRE_DOTALL		option		is		set,		a	dot	matches	any	one	character,	without
							exception.	If	the	two-character	sequence	CRLF	is	present	in	the	subject
							string,	it	takes	two	dots	to	match	it.

							The		handling	of	dot	is	entirely	independent	of	the	handling	of	circum-
							flex	and	dollar,	the	only	relationship	being		that		they		both		involve
							newlines.	Dot	has	no	special	meaning	in	a	character	class.

MATCHING	A	SINGLE	BYTE

							Outside	a	character	class,	the	escape	sequence	\C	matches	any	one	byte,
							both	in	and	out	of	UTF-8	mode.	Unlike	a		dot,		it		always		matches		any
							line-ending		characters.		The		feature		is	provided	in	Perl	in	order	to
							match	individual	bytes	in	UTF-8	mode.	Because	it	breaks	up	UTF-8		char-
							acters		into	individual	bytes,	what	remains	in	the	string	may	be	a	mal-
							formed	UTF-8	string.	For	this	reason,	the	\C	escape		sequence		is		best
							avoided.

							PCRE		does		not		allow	\C	to	appear	in	lookbehind	assertions	(described
							below),	because	in	UTF-8	mode	this	would	make	it	impossible		to		calcu-

							late	the	length	of	the	lookbehind.

SQUARE	BRACKETS	AND	CHARACTER	CLASSES

							An	opening	square	bracket	introduces	a	character	class,	terminated	by	a
							closing	square	bracket.	A	closing	square	bracket	on	its	own	is	not	spe-
							cial.	If	a	closing	square	bracket	is	required	as	a	member	of	the	class,
							it	should	be	the	first	data	character	in	the	class		(after		an		initial
							circumflex,	if	present)	or	escaped	with	a	backslash.

							A		character		class	matches	a	single	character	in	the	subject.	In	UTF-8
							mode,	the	character	may	occupy	more	than	one	byte.	A	matched		character
							must	be	in	the	set	of	characters	defined	by	the	class,	unless	the	first
							character	in	the	class	definition	is	a	circumflex,	in		which		case		the
							subject		character		must		not		be	in	the	set	defined	by	the	class.	If	a
							circumflex	is	actually	required	as	a	member	of	the	class,	ensure	it		is
							not	the	first	character,	or	escape	it	with	a	backslash.

							For		example,	the	character	class	[aeiou]	matches	any	lower	case	vowel,
							while	[^aeiou]	matches	any	character	that	is	not	a		lower		case		vowel.
							Note	that	a	circumflex	is	just	a	convenient	notation	for	specifying	the
							characters	that	are	in	the	class	by	enumerating	those	that	are		not.		A
							class		that	starts	with	a	circumflex	is	not	an	assertion:	it	still	con-
							sumes	a	character	from	the	subject	string,	and	therefore		it		fails		if
							the	current	pointer	is	at	the	end	of	the	string.

							In		UTF-8	mode,	characters	with	values	greater	than	255	can	be	included
							in	a	class	as	a	literal	string	of	bytes,	or	by	using	the		\x{		escaping
							mechanism.

							When		caseless		matching		is	set,	any	letters	in	a	class	represent	both
							their	upper	case	and	lower	case	versions,	so	for		example,		a		caseless
							[aeiou]		matches		"A"		as	well	as	"a",	and	a	caseless	[^aeiou]	does	not
							match	"A",	whereas	a	caseful	version	would.	In	UTF-8	mode,	PCRE		always
							understands		the		concept		of	case	for	characters	whose	values	are	less
							than	128,	so	caseless	matching	is	always	possible.	For	characters		with

							higher		values,		the		concept		of	case	is	supported	if	PCRE	is	compiled
							with	Unicode	property	support,	but	not	otherwise.		If	you	want		to		use
							caseless		matching		for		characters	128	and	above,	you	must	ensure	that
							PCRE	is	compiled	with	Unicode	property	support	as	well		as		with		UTF-8
							support.

							Characters		that		might		indicate		line	breaks	are	never	treated	in	any
							special	way		when		matching		character		classes,		whatever		line-ending
							sequence		is		in		use,		and		whatever		setting		of		the	PCRE_DOTALL	and
							PCRE_MULTILINE	options	is	used.	A	class	such	as	[^a]	always	matches	one
							of	these	characters.

							The		minus	(hyphen)	character	can	be	used	to	specify	a	range	of	charac-
							ters	in	a	character		class.		For		example,		[d-m]		matches		any		letter
							between		d		and		m,		inclusive.		If		a	minus	character	is	required	in	a
							class,	it	must	be	escaped	with	a	backslash		or		appear		in		a		position
							where		it	cannot	be	interpreted	as	indicating	a	range,	typically	as	the
							first	or	last	character	in	the	class.

							It	is	not	possible	to	have	the	literal	character	"]"	as	the	end	charac-
							ter		of	a	range.	A	pattern	such	as	[W-]46]	is	interpreted	as	a	class	of
							two	characters	("W"	and	"-")	followed	by	a	literal	string	"46]",	so		it
							would		match		"W46]"		or		"-46]".	However,	if	the	"]"	is	escaped	with	a
							backslash	it	is	interpreted	as	the	end	of	range,	so	[W-\]46]	is		inter-
							preted		as	a	class	containing	a	range	followed	by	two	other	characters.
							The	octal	or	hexadecimal	representation	of	"]"	can	also	be	used	to		end
							a	range.

							Ranges		operate	in	the	collating	sequence	of	character	values.	They	can
							also		be		used		for		characters		specified		numerically,		for			example
							[\000-\037].		In	UTF-8	mode,	ranges	can	include	characters	whose	values
							are	greater	than	255,	for	example	[\x{100}-\x{2ff}].

							If	a	range	that	includes	letters	is	used	when	caseless	matching	is	set,
							it	matches	the	letters	in	either	case.	For	example,	[W-c]	is	equivalent
							to	[][\\^_`wxyzabc],	matched	caselessly,		and		in		non-UTF-8		mode,		if
							character		tables		for		a	French	locale	are	in	use,	[\xc8-\xcb]	matches

							accented	E	characters	in	both	cases.	In	UTF-8	mode,	PCRE		supports		the
							concept		of		case	for	characters	with	values	greater	than	128	only	when
							it	is	compiled	with	Unicode	property	support.

							The	character	types	\d,	\D,	\p,	\P,	\s,	\S,	\w,	and	\W	may	also		appear
							in		a		character		class,		and	add	the	characters	that	they	match	to	the
							class.	For	example,	[\dABCDEF]	matches	any	hexadecimal	digit.	A	circum-
							flex		can		conveniently		be	used	with	the	upper	case	character	types	to
							specify	a	more	restricted	set	of	characters		than		the		matching		lower
							case		type.		For	example,	the	class	[^\W_]	matches	any	letter	or	digit,
							but	not	underscore.

							The	only	metacharacters	that	are	recognized	in		character		classes		are
							backslash,		hyphen		(only		where		it	can	be	interpreted	as	specifying	a
							range),	circumflex	(only	at	the	start),	opening		square		bracket		(only
							when		it	can	be	interpreted	as	introducing	a	POSIX	class	name	-	see	the
							next	section),	and	the	terminating		closing		square		bracket.		However,
							escaping	other	non-alphanumeric	characters	does	no	harm.

POSIX	CHARACTER	CLASSES

							Perl	supports	the	POSIX	notation	for	character	classes.	This	uses	names
							enclosed	by	[:	and	:]	within	the	enclosing	square	brackets.		PCRE		also
							supports	this	notation.	For	example,

									[01[:alpha:]%]

							matches	"0",	"1",	any	alphabetic	character,	or	"%".	The	supported	class
							names	are

									alnum				letters	and	digits
									alpha				letters
									ascii				character	codes	0	-	127
									blank				space	or	tab	only
									cntrl				control	characters
									digit				decimal	digits	(same	as	\d)

									graph				printing	characters,	excluding	space
									lower				lower	case	letters
									print				printing	characters,	including	space
									punct				printing	characters,	excluding	letters	and	digits
									space				white	space	(not	quite	the	same	as	\s)
									upper				upper	case	letters
									word					"word"	characters	(same	as	\w)
									xdigit			hexadecimal	digits

							The	"space"	characters	are	HT	(9),	LF	(10),	VT	(11),	FF	(12),	CR		(13),
							and		space		(32).	Notice	that	this	list	includes	the	VT	character	(code
							11).	This	makes	"space"	different	to	\s,	which	does	not	include	VT	(for
							Perl	compatibility).

							The		name		"word"		is		a	Perl	extension,	and	"blank"	is	a	GNU	extension
							from	Perl	5.8.	Another	Perl	extension	is	negation,	which		is		indicated
							by	a	^	character	after	the	colon.	For	example,

									[12[:^digit:]]

							matches		"1",	"2",	or	any	non-digit.	PCRE	(and	Perl)	also	recognize	the
							POSIX	syntax	[.ch.]	and	[=ch=]	where	"ch"	is	a	"collating	element",	but
							these	are	not	supported,	and	an	error	is	given	if	they	are	encountered.

							In	UTF-8	mode,	characters	with	values	greater	than	128	do	not	match	any
							of	the	POSIX	character	classes.

VERTICAL	BAR

							Vertical		bar	characters	are	used	to	separate	alternative	patterns.	For
							example,	the	pattern

									gilbert|sullivan

							matches	either	"gilbert"	or	"sullivan".	Any	number	of	alternatives		may
							appear,		and		an		empty		alternative		is		permitted	(matching	the	empty

							string).	The	matching	process	tries	each	alternative	in	turn,	from	left
							to		right,	and	the	first	one	that	succeeds	is	used.	If	the	alternatives
							are	within	a	subpattern	(defined	below),	"succeeds"	means	matching		the
							rest		of	the	main	pattern	as	well	as	the	alternative	in	the	subpattern.

INTERNAL	OPTION	SETTING

							The	settings	of	the		PCRE_CASELESS,		PCRE_MULTILINE,		PCRE_DOTALL,		and
							PCRE_EXTENDED		options		(which	are	Perl-compatible)	can	be	changed	from
							within	the	pattern	by		a		sequence		of		Perl		option		letters		enclosed
							between	"(?"	and	")".		The	option	letters	are

									i		for	PCRE_CASELESS
									m		for	PCRE_MULTILINE
									s		for	PCRE_DOTALL
									x		for	PCRE_EXTENDED

							For	example,	(?im)	sets	caseless,	multiline	matching.	It	is	also	possi-
							ble	to	unset	these	options	by	preceding	the	letter	with	a	hyphen,	and	a
							combined		setting	and	unsetting	such	as	(?im-sx),	which	sets	PCRE_CASE-
							LESS	and	PCRE_MULTILINE	while	unsetting	PCRE_DOTALL	and		PCRE_EXTENDED,
							is		also		permitted.		If		a		letter		appears		both	before	and	after	the
							hyphen,	the	option	is	unset.

							The	PCRE-specific	options	PCRE_DUPNAMES,	PCRE_UNGREEDY,	and		PCRE_EXTRA
							can		be	changed	in	the	same	way	as	the	Perl-compatible	options	by	using
							the	characters	J,	U	and	X	respectively.

							When	an	option	change	occurs	at	top	level	(that	is,	not	inside		subpat-
							tern		parentheses),		the	change	applies	to	the	remainder	of	the	pattern
							that	follows.		If	the	change	is	placed	right	at	the	start	of	a	pattern,
							PCRE	extracts	it	into	the	global	options	(and	it	will	therefore	show	up
							in	data	extracted	by	the	pcre_fullinfo()	function).

							An	option	change	within	a	subpattern	(see	below	for		a		description		of
							subpatterns)	affects	only	that	part	of	the	current	pattern	that	follows

							it,	so

									(a(?i)b)c

							matches	abc	and	aBc	and	no	other	strings	(assuming	PCRE_CASELESS	is	not
							used).			By		this	means,	options	can	be	made	to	have	different	settings
							in	different	parts	of	the	pattern.	Any	changes	made	in	one		alternative
							do		carry		on		into	subsequent	branches	within	the	same	subpattern.	For
							example,

									(a(?i)b|c)

							matches	"ab",	"aB",	"c",	and	"C",	even	though		when		matching		"C"		the
							first		branch		is		abandoned	before	the	option	setting.	This	is	because
							the	effects	of	option	settings	happen	at	compile	time.	There		would		be
							some	very	weird	behaviour	otherwise.

							Note:		There		are		other		PCRE-specific		options	that	can	be	set	by	the
							application	when	the	compile	or	match	functions		are		called.		In		some
							cases		the		pattern		can		contain	special	leading	sequences	to	override
							what	the	application	has	set	or	what	has	been		defaulted.		Details		are
							given	in	the	section	entitled	"Newline	sequences"	above.

SUBPATTERNS

							Subpatterns	are	delimited	by	parentheses	(round	brackets),	which	can	be
							nested.		Turning	part	of	a	pattern	into	a	subpattern	does	two	things:

							1.	It	localizes	a	set	of	alternatives.	For	example,	the	pattern

									cat(aract|erpillar|)

							matches	one	of	the	words	"cat",	"cataract",	or		"caterpillar".		Without
							the		parentheses,		it		would		match		"cataract",	"erpillar"	or	an	empty
							string.

							2.	It	sets	up	the	subpattern	as		a		capturing		subpattern.		This		means
							that,		when		the		whole		pattern		matches,		that	portion	of	the	subject
							string	that	matched	the	subpattern	is	passed	back	to	the	caller	via	the
							ovector		argument		of	pcre_exec().	Opening	parentheses	are	counted	from
							left	to	right	(starting	from	1)	to	obtain		numbers		for		the		capturing
							subpatterns.

							For		example,		if	the	string	"the	red	king"	is	matched	against	the	pat-
							tern

									the	((red|white)	(king|queen))

							the	captured	substrings	are	"red	king",	"red",	and	"king",	and	are	num-
							bered	1,	2,	and	3,	respectively.

							The		fact		that		plain		parentheses		fulfil	two	functions	is	not	always
							helpful.		There	are	often	times	when	a	grouping	subpattern	is		required
							without		a	capturing	requirement.	If	an	opening	parenthesis	is	followed
							by	a	question	mark	and	a	colon,	the	subpattern	does	not	do	any		captur-
							ing,		and		is		not		counted	when	computing	the	number	of	any	subsequent
							capturing	subpatterns.	For	example,	if	the	string	"the	white	queen"		is
							matched	against	the	pattern

									the	((?:red|white)	(king|queen))

							the	captured	substrings	are	"white	queen"	and	"queen",	and	are	numbered
							1	and	2.	The	maximum	number	of	capturing	subpatterns	is	65535.

							As	a	convenient	shorthand,	if	any	option	settings	are	required		at		the
							start		of		a		non-capturing		subpattern,		the	option	letters	may	appear
							between	the	"?"	and	the	":".	Thus	the	two	patterns

									(?i:saturday|sunday)
									(?:(?i)saturday|sunday)

							match	exactly	the	same	set	of	strings.	Because	alternative	branches	are
							tried		from		left		to	right,	and	options	are	not	reset	until	the	end	of

							the	subpattern	is	reached,	an	option	setting	in	one	branch	does		affect
							subsequent		branches,		so		the	above	patterns	match	"SUNDAY"	as	well	as
							"Saturday".

DUPLICATE	SUBPATTERN	NUMBERS

							Perl	5.10	introduced	a	feature	whereby	each	alternative	in	a	subpattern
							uses		the	same	numbers	for	its	capturing	parentheses.	Such	a	subpattern
							starts	with	(?|	and	is	itself	a	non-capturing	subpattern.	For		example,
							consider	this	pattern:

									(?|(Sat)ur|(Sun))day

							Because		the	two	alternatives	are	inside	a	(?|	group,	both	sets	of	cap-
							turing	parentheses	are	numbered	one.	Thus,	when		the		pattern		matches,
							you		can		look		at	captured	substring	number	one,	whichever	alternative
							matched.	This	construct	is	useful	when	you	want	to		capture		part,		but
							not	all,	of	one	of	a	number	of	alternatives.	Inside	a	(?|	group,	paren-
							theses	are	numbered	as	usual,	but	the	number	is	reset	at	the		start		of
							each		branch.	The	numbers	of	any	capturing	buffers	that	follow	the	sub-
							pattern	start	after	the	highest	number	used	in	any	branch.	The		follow-
							ing		example		is	taken	from	the	Perl	documentation.		The	numbers	under-
							neath	show	in	which	buffer	the	captured	content	will	be	stored.

									#	before		---------------branch-reset-----------	after
									/	(a)		(?|	x	(y)	z	|	(p	(q)	r)	|	(t)	u	(v))	(z)	/x
									#	1												2									2		3								2					3					4

							A	backreference	or	a	recursive	call	to		a		numbered		subpattern		always
							refers	to	the	first	one	in	the	pattern	with	the	given	number.

							An		alternative	approach	to	using	this	"branch	reset"	feature	is	to	use
							duplicate	named	subpatterns,	as	described	in	the	next	section.

NAMED	SUBPATTERNS

							Identifying	capturing	parentheses	by	number	is	simple,	but		it		can		be
							very		hard		to	keep	track	of	the	numbers	in	complicated	regular	expres-
							sions.	Furthermore,	if	an		expression		is		modified,		the		numbers		may
							change.		To	help	with	this	difficulty,	PCRE	supports	the	naming	of	sub-
							patterns.	This	feature	was	not	added	to	Perl	until	release	5.10.	Python
							had		the		feature	earlier,	and	PCRE	introduced	it	at	release	4.0,	using
							the	Python	syntax.	PCRE	now	supports	both	the	Perl	and	the	Python		syn-
							tax.

							In		PCRE,		a	subpattern	can	be	named	in	one	of	three	ways:	(?<name>...)
							or	(?'name'...)	as	in	Perl,	or	(?P<name>...)	as	in		Python.		References
							to	capturing	parentheses	from	other	parts	of	the	pattern,	such	as	back-
							references,	recursion,	and	conditions,	can	be	made	by	name	as		well		as
							by	number.

							Names		consist		of		up		to		32	alphanumeric	characters	and	underscores.
							Named	capturing	parentheses	are	still		allocated		numbers		as		well		as
							names,		exactly	as	if	the	names	were	not	present.	The	PCRE	API	provides
							function	calls	for	extracting	the	name-to-number	translation	table	from
							a	compiled	pattern.	There	is	also	a	convenience	function	for	extracting
							a	captured	substring	by	name.

							By	default,	a	name	must	be	unique	within	a	pattern,	but	it	is		possible
							to	relax	this	constraint	by	setting	the	PCRE_DUPNAMES	option	at	compile
							time.	This	can	be	useful	for	patterns	where	only	one		instance		of		the
							named		parentheses		can		match.	Suppose	you	want	to	match	the	name	of	a
							weekday,	either	as	a	3-letter	abbreviation	or	as	the	full	name,	and		in
							both	cases	you	want	to	extract	the	abbreviation.	This	pattern	(ignoring
							the	line	breaks)	does	the	job:

									(?<DN>Mon|Fri|Sun)(?:day)?|
									(?<DN>Tue)(?:sday)?|
									(?<DN>Wed)(?:nesday)?|
									(?<DN>Thu)(?:rsday)?|
									(?<DN>Sat)(?:urday)?

							There	are	five	capturing	substrings,	but	only	one	is	ever	set		after		a
							match.		(An	alternative	way	of	solving	this	problem	is	to	use	a	"branch
							reset"	subpattern,	as	described	in	the	previous	section.)

							The	convenience	function	for	extracting	the	data	by		name		returns		the
							substring		for		the	first	(and	in	this	example,	the	only)	subpattern	of
							that	name	that	matched.	This	saves	searching		to		find		which		numbered
							subpattern		it		was.	If	you	make	a	reference	to	a	non-unique	named	sub-
							pattern	from	elsewhere	in	the	pattern,	the	one	that	corresponds	to		the
							lowest		number		is	used.	For	further	details	of	the	interfaces	for	han-
							dling	named	subpatterns,	see	the	pcreapi	documentation.

REPETITION

							Repetition	is	specified	by	quantifiers,	which	can		follow		any		of		the
							following	items:

									a	literal	data	character
									the	dot	metacharacter
									the	\C	escape	sequence
									the	\X	escape	sequence	(in	UTF-8	mode	with	Unicode	properties)
									the	\R	escape	sequence
									an	escape	such	as	\d	that	matches	a	single	character
									a	character	class
									a	back	reference	(see	next	section)
									a	parenthesized	subpattern	(unless	it	is	an	assertion)

							The		general	repetition	quantifier	specifies	a	minimum	and	maximum	num-
							ber	of	permitted	matches,	by	giving	the	two	numbers	in		curly		brackets
							(braces),		separated		by		a	comma.	The	numbers	must	be	less	than	65536,
							and	the	first	must	be	less	than	or	equal	to	the	second.	For	example:

									z{2,4}

							matches	"zz",	"zzz",	or	"zzzz".	A	closing	brace	on	its		own		is		not		a
							special		character.		If		the	second	number	is	omitted,	but	the	comma	is

							present,	there	is	no	upper	limit;	if	the	second	number		and		the		comma
							are		both	omitted,	the	quantifier	specifies	an	exact	number	of	required
							matches.	Thus

									[aeiou]{3,}

							matches	at	least	3	successive	vowels,	but	may	match	many	more,	while

									\d{8}

							matches	exactly	8	digits.	An	opening	curly	bracket	that		appears		in		a
							position		where	a	quantifier	is	not	allowed,	or	one	that	does	not	match
							the	syntax	of	a	quantifier,	is	taken	as	a	literal	character.	For		exam-
							ple,	{,6}	is	not	a	quantifier,	but	a	literal	string	of	four	characters.

							In	UTF-8	mode,	quantifiers	apply	to	UTF-8		characters		rather		than		to
							individual	bytes.	Thus,	for	example,	\x{100}{2}	matches	two	UTF-8	char-
							acters,	each	of	which	is	represented	by	a	two-byte	sequence.	Similarly,
							when	Unicode	property	support	is	available,	\X{3}	matches	three	Unicode
							extended	sequences,	each	of	which	may	be	several	bytes	long		(and		they
							may	be	of	different	lengths).

							The	quantifier	{0}	is	permitted,	causing	the	expression	to	behave	as	if
							the	previous	item	and	the	quantifier	were	not	present.	This	may	be	use-
							ful		for		subpatterns	that	are	referenced	as	subroutines	from	elsewhere
							in	the	pattern.	Items	other	than	subpatterns	that	have	a	{0}	quantifier
							are	omitted	from	the	compiled	pattern.

							For		convenience,	the	three	most	common	quantifiers	have	single-charac-
							ter	abbreviations:

									*				is	equivalent	to	{0,}
									+				is	equivalent	to	{1,}
									?				is	equivalent	to	{0,1}

							It	is	possible	to	construct	infinite	loops	by		following		a		subpattern
							that	can	match	no	characters	with	a	quantifier	that	has	no	upper	limit,

							for	example:

									(a?)*

							Earlier	versions	of	Perl	and	PCRE	used	to	give	an	error	at	compile	time
							for		such		patterns.	However,	because	there	are	cases	where	this	can	be
							useful,	such	patterns	are	now	accepted,	but	if	any		repetition		of		the
							subpattern		does	in	fact	match	no	characters,	the	loop	is	forcibly	bro-
							ken.

							By	default,	the	quantifiers	are	"greedy",	that	is,	they	match		as		much
							as		possible		(up		to		the		maximum	number	of	permitted	times),	without
							causing	the	rest	of	the	pattern	to	fail.	The	classic	example		of		where
							this	gives	problems	is	in	trying	to	match	comments	in	C	programs.	These
							appear	between	/*	and	*/	and	within	the	comment,		individual		*		and		/
							characters		may		appear.	An	attempt	to	match	C	comments	by	applying	the
							pattern

									/*.**/

							to	the	string

									/*	first	comment	*/		not	comment		/*	second	comment	*/

							fails,	because	it	matches	the	entire	string	owing	to	the	greediness		of
							the	.*		item.

							However,		if		a	quantifier	is	followed	by	a	question	mark,	it	ceases	to
							be	greedy,	and	instead	matches	the	minimum	number	of	times	possible,	so
							the	pattern

									/*.*?*/

							does		the		right		thing	with	the	C	comments.	The	meaning	of	the	various
							quantifiers	is	not	otherwise	changed,		just		the		preferred		number		of
							matches.			Do		not		confuse	this	use	of	question	mark	with	its	use	as	a
							quantifier	in	its	own	right.	Because	it	has	two	uses,	it	can		sometimes

							appear	doubled,	as	in

									\d??\d

							which	matches	one	digit	by	preference,	but	can	match	two	if	that	is	the
							only	way	the	rest	of	the	pattern	matches.

							If	the	PCRE_UNGREEDY	option	is	set	(an	option	that	is	not	available		in
							Perl),		the		quantifiers	are	not	greedy	by	default,	but	individual	ones
							can	be	made	greedy	by	following	them	with	a		question		mark.		In		other
							words,	it	inverts	the	default	behaviour.

							When		a		parenthesized		subpattern		is	quantified	with	a	minimum	repeat
							count	that	is	greater	than	1	or	with	a	limited	maximum,	more	memory		is
							required		for		the		compiled		pattern,	in	proportion	to	the	size	of	the
							minimum	or	maximum.

							If	a	pattern	starts	with	.*	or	.{0,}	and	the	PCRE_DOTALL	option	(equiv-
							alent		to		Perl's		/s)	is	set,	thus	allowing	the	dot	to	match	newlines,
							the	pattern	is	implicitly	anchored,	because	whatever		follows		will		be
							tried		against	every	character	position	in	the	subject	string,	so	there
							is	no	point	in	retrying	the	overall	match	at		any		position		after		the
							first.		PCRE		normally	treats	such	a	pattern	as	though	it	were	preceded
							by	\A.

							In	cases	where	it	is	known	that	the	subject		string		contains		no		new-
							lines,		it		is		worth	setting	PCRE_DOTALL	in	order	to	obtain	this	opti-
							mization,	or	alternatively	using	^	to	indicate	anchoring	explicitly.

							However,	there	is	one	situation	where	the	optimization	cannot	be		used.
							When		.*			is		inside		capturing		parentheses	that	are	the	subject	of	a
							backreference	elsewhere	in	the	pattern,	a	match	at	the	start		may		fail
							where	a	later	one	succeeds.	Consider,	for	example:

									(.*)abc\1

							If		the	subject	is	"xyz123abc123"	the	match	point	is	the	fourth	charac-

							ter.	For	this	reason,	such	a	pattern	is	not	implicitly	anchored.

							When	a	capturing	subpattern	is	repeated,	the	value	captured	is	the	sub-
							string	that	matched	the	final	iteration.	For	example,	after

									(tweedle[dume]{3}\s*)+

							has	matched	"tweedledum	tweedledee"	the	value	of	the	captured	substring
							is	"tweedledee".	However,	if	there	are		nested		capturing		subpatterns,
							the		corresponding	captured	values	may	have	been	set	in	previous	itera-
							tions.	For	example,	after

									/(a|(b))+/

							matches	"aba"	the	value	of	the	second	captured	substring	is	"b".

ATOMIC	GROUPING	AND	POSSESSIVE	QUANTIFIERS

							With	both	maximizing	("greedy")	and	minimizing	("ungreedy"		or		"lazy")
							repetition,		failure		of	what	follows	normally	causes	the	repeated	item
							to	be	re-evaluated	to	see	if	a	different	number	of	repeats		allows		the
							rest		of		the	pattern	to	match.	Sometimes	it	is	useful	to	prevent	this,
							either	to	change	the	nature	of	the	match,	or	to	cause	it		fail		earlier
							than		it	otherwise	might,	when	the	author	of	the	pattern	knows	there	is
							no	point	in	carrying	on.

							Consider,	for	example,	the	pattern	\d+foo	when	applied	to		the		subject
							line

									123456bar

							After	matching	all	6	digits	and	then	failing	to	match	"foo",	the	normal
							action	of	the	matcher	is	to	try	again	with	only	5	digits		matching		the
							\d+		item,		and		then		with		4,		and		so	on,	before	ultimately	failing.
							"Atomic	grouping"	(a	term	taken	from	Jeffrey		Friedl's		book)		provides
							the		means	for	specifying	that	once	a	subpattern	has	matched,	it	is	not

							to	be	re-evaluated	in	this	way.

							If	we	use	atomic	grouping	for	the	previous	example,	the		matcher		gives
							up		immediately		on	failing	to	match	"foo"	the	first	time.	The	notation
							is	a	kind	of	special	parenthesis,	starting	with	(?>	as	in	this	example:

									(?>\d+)foo

							This		kind		of		parenthesis	"locks	up"	the		part	of	the	pattern	it	con-
							tains	once	it	has	matched,	and	a	failure	further	into		the		pattern		is
							prevented		from		backtracking	into	it.	Backtracking	past	it	to	previous
							items,	however,	works	as	normal.

							An	alternative	description	is	that	a	subpattern	of		this		type		matches
							the		string		of		characters		that	an	identical	standalone	pattern	would
							match,	if	anchored	at	the	current	point	in	the	subject	string.

							Atomic	grouping	subpatterns	are	not	capturing	subpatterns.	Simple	cases
							such	as	the	above	example	can	be	thought	of	as	a	maximizing	repeat	that
							must	swallow	everything	it	can.	So,	while	both	\d+	and		\d+?		are		pre-
							pared		to		adjust		the	number	of	digits	they	match	in	order	to	make	the
							rest	of	the	pattern	match,	(?>\d+)	can	only	match	an	entire	sequence	of
							digits.

							Atomic		groups	in	general	can	of	course	contain	arbitrarily	complicated
							subpatterns,	and	can	be	nested.	However,	when		the		subpattern		for		an
							atomic	group	is	just	a	single	repeated	item,	as	in	the	example	above,	a
							simpler	notation,	called	a	"possessive	quantifier"	can		be		used.		This
							consists		of		an		additional		+	character	following	a	quantifier.	Using
							this	notation,	the	previous	example	can	be	rewritten	as

									\d++foo

							Note	that	a	possessive	quantifier	can	be	used	with	an	entire	group,	for
							example:

									(abc|xyz){2,3}+

							Possessive			quantifiers			are			always		greedy;		the		setting		of		the
							PCRE_UNGREEDY	option	is	ignored.	They	are	a	convenient	notation	for	the
							simpler		forms		of	atomic	group.	However,	there	is	no	difference	in	the
							meaning	of	a	possessive	quantifier	and		the		equivalent		atomic		group,
							though		there		may		be	a	performance	difference;	possessive	quantifiers
							should	be	slightly	faster.

							The	possessive	quantifier	syntax	is	an	extension	to	the	Perl		5.8		syn-
							tax.			Jeffrey		Friedl		originated	the	idea	(and	the	name)	in	the	first
							edition	of	his	book.	Mike	McCloskey	liked	it,	so	implemented	it	when	he
							built		Sun's	Java	package,	and	PCRE	copied	it	from	there.	It	ultimately
							found	its	way	into	Perl	at	release	5.10.

							PCRE	has	an	optimization	that	automatically	"possessifies"	certain	sim-
							ple		pattern		constructs.		For		example,	the	sequence	A+B	is	treated	as
							A++B	because	there	is	no	point	in	backtracking	into	a	sequence		of		A's
							when	B	must	follow.

							When		a		pattern		contains	an	unlimited	repeat	inside	a	subpattern	that
							can	itself	be	repeated	an	unlimited	number	of		times,		the		use		of		an
							atomic		group		is		the		only	way	to	avoid	some	failing	matches	taking	a
							very	long	time	indeed.	The	pattern

									(\D+|<\d+>)*[!?]

							matches	an	unlimited	number	of	substrings	that	either	consist		of		non-
							digits,		or		digits		enclosed	in	<>,	followed	by	either	!	or	?.	When	it
							matches,	it	runs	quickly.	However,	if	it	is	applied	to

									aa

							it	takes	a	long	time	before	reporting		failure.		This		is		because		the
							string		can	be	divided	between	the	internal	\D+	repeat	and	the	external
							*	repeat	in	a	large	number	of	ways,	and	all		have		to		be		tried.		(The
							example		uses		[!?]		rather	than	a	single	character	at	the	end,	because
							both	PCRE	and	Perl	have	an	optimization	that	allows		for		fast		failure

							when		a	single	character	is	used.	They	remember	the	last	single	charac-
							ter	that	is	required	for	a	match,	and	fail	early	if	it	is		not		present
							in		the		string.)		If		the	pattern	is	changed	so	that	it	uses	an	atomic
							group,	like	this:

									((?>\D+)|<\d+>)*[!?]

							sequences	of	non-digits	cannot	be	broken,	and	failure	happens		quickly.

BACK	REFERENCES

							Outside	a	character	class,	a	backslash	followed	by	a	digit	greater	than
							0	(and	possibly	further	digits)	is	a	back	reference	to	a	capturing	sub-
							pattern		earlier		(that	is,	to	its	left)	in	the	pattern,	provided	there
							have	been	that	many	previous	capturing	left	parentheses.

							However,	if	the	decimal	number	following	the	backslash	is	less	than	10,
							it		is		always		taken		as	a	back	reference,	and	causes	an	error	only	if
							there	are	not	that	many	capturing	left	parentheses	in	the		entire		pat-
							tern.		In		other	words,	the	parentheses	that	are	referenced	need	not	be
							to	the	left	of	the	reference	for	numbers	less	than	10.	A	"forward		back
							reference"		of		this		type	can	make	sense	when	a	repetition	is	involved
							and	the	subpattern	to	the	right	has	participated	in	an		earlier		itera-
							tion.

							It		is		not		possible	to	have	a	numerical	"forward	back	reference"	to	a
							subpattern	whose	number	is	10	or		more		using		this		syntax		because		a
							sequence		such		as		\50	is	interpreted	as	a	character	defined	in	octal.
							See	the	subsection	entitled	"Non-printing	characters"	above	for	further
							details		of		the		handling	of	digits	following	a	backslash.	There	is	no
							such	problem	when	named	parentheses	are	used.	A	back	reference		to		any
							subpattern	is	possible	using	named	parentheses	(see	below).

							Another		way		of		avoiding		the	ambiguity	inherent	in	the	use	of	digits
							following	a	backslash	is	to	use	the	\g	escape	sequence,	which	is	a	fea-
							ture		introduced		in		Perl		5.10.		This		escape		must	be	followed	by	an

							unsigned	number	or	a	negative	number,	optionally		enclosed		in		braces.
							These	examples	are	all	identical:

									(ring),	\1
									(ring),	\g1
									(ring),	\g{1}

							An		unsigned	number	specifies	an	absolute	reference	without	the	ambigu-
							ity	that	is	present	in	the	older	syntax.	It	is	also	useful	when	literal
							digits	follow	the	reference.	A	negative	number	is	a	relative	reference.
							Consider	this	example:

									(abc(def)ghi)\g{-1}

							The	sequence	\g{-1}	is	a	reference	to	the	most	recently	started	captur-
							ing		subpattern		before	\g,	that	is,	is	it	equivalent	to	\2.	Similarly,
							\g{-2}	would	be	equivalent	to	\1.	The	use	of	relative	references	can	be
							helpful		in		long		patterns,		and		also	in	patterns	that	are	created	by
							joining	together	fragments	that	contain	references	within	themselves.

							A	back	reference	matches	whatever	actually	matched	the		capturing		sub-
							pattern		in		the		current	subject	string,	rather	than	anything	matching
							the	subpattern	itself	(see	"Subpatterns	as	subroutines"	below	for	a	way
							of	doing	that).	So	the	pattern

									(sens|respons)e	and	\1ibility

							matches		"sense	and	sensibility"	and	"response	and	responsibility",	but
							not	"sense	and	responsibility".	If	caseful	matching	is	in	force	at		the
							time		of	the	back	reference,	the	case	of	letters	is	relevant.	For	exam-
							ple,

									((?i)rah)\s+\1

							matches	"rah	rah"	and	"RAH	RAH",	but	not	"RAH		rah",		even		though		the
							original	capturing	subpattern	is	matched	caselessly.

							There		are		several		different	ways	of	writing	back	references	to	named
							subpatterns.	The	.NET	syntax	\k{name}	and	the	Perl	syntax		\k<name>		or
							\k'name'		are	supported,	as	is	the	Python	syntax	(?P=name).	Perl	5.10's
							unified	back	reference	syntax,	in	which	\g	can	be	used	for	both	numeric
							and		named		references,		is		also	supported.	We	could	rewrite	the	above
							example	in	any	of	the	following	ways:

									(?<p1>(?i)rah)\s+\k<p1>
									(?'p1'(?i)rah)\s+\k{p1}
									(?P<p1>(?i)rah)\s+(?P=p1)
									(?<p1>(?i)rah)\s+\g{p1}

							A	subpattern	that	is	referenced	by		name		may		appear		in		the		pattern
							before	or	after	the	reference.

							There		may	be	more	than	one	back	reference	to	the	same	subpattern.	If	a
							subpattern	has	not	actually	been	used	in	a	particular	match,		any		back
							references	to	it	always	fail.	For	example,	the	pattern

									(a|(bc))\2

							always		fails	if	it	starts	to	match	"a"	rather	than	"bc".	Because	there
							may	be	many	capturing	parentheses	in	a	pattern,		all		digits		following
							the		backslash		are	taken	as	part	of	a	potential	back	reference	number.
							If	the	pattern	continues	with	a	digit	character,	some	delimiter	must	be
							used		to		terminate		the	back	reference.	If	the	PCRE_EXTENDED	option	is
							set,	this	can	be	whitespace.		Otherwise	an		empty		comment		(see		"Com-
							ments"	below)	can	be	used.

							A		back	reference	that	occurs	inside	the	parentheses	to	which	it	refers
							fails	when	the	subpattern	is	first	used,	so,	for	example,		(a\1)		never
							matches.			However,		such	references	can	be	useful	inside	repeated	sub-
							patterns.	For	example,	the	pattern

									(a|b\1)+

							matches	any	number	of	"a"s	and	also	"aba",	"ababbaa"	etc.	At	each	iter-

							ation		of		the		subpattern,		the		back		reference	matches	the	character
							string	corresponding	to	the	previous	iteration.	In	order		for		this		to
							work,		the		pattern	must	be	such	that	the	first	iteration	does	not	need
							to	match	the	back	reference.	This	can	be	done	using	alternation,	as		in
							the	example	above,	or	by	a	quantifier	with	a	minimum	of	zero.

ASSERTIONS

							An		assertion		is		a		test	on	the	characters	following	or	preceding	the
							current	matching	point	that	does	not	actually	consume		any		characters.
							The		simple		assertions		coded		as		\b,	\B,	\A,	\G,	\Z,	\z,	^	and	$	are
							described	above.

							More	complicated	assertions	are	coded	as		subpatterns.		There		are		two
							kinds:		those		that		look		ahead	of	the	current	position	in	the	subject
							string,	and	those	that	look		behind		it.		An		assertion		subpattern		is
							matched		in		the		normal	way,	except	that	it	does	not	cause	the	current
							matching	position	to	be	changed.

							Assertion	subpatterns	are	not	capturing	subpatterns,		and		may		not		be
							repeated,		because		it		makes	no	sense	to	assert	the	same	thing	several
							times.	If	any	kind	of	assertion	contains	capturing		subpatterns		within
							it,		these	are	counted	for	the	purposes	of	numbering	the	capturing	sub-
							patterns	in	the	whole	pattern.		However,	substring	capturing	is	carried
							out		only		for		positive	assertions,	because	it	does	not	make	sense	for
							negative	assertions.

			Lookahead	assertions

							Lookahead	assertions	start	with	(?=	for	positive	assertions	and	(?!	for
							negative	assertions.	For	example,

									\w+(?=;)

							matches		a	word	followed	by	a	semicolon,	but	does	not	include	the	semi-
							colon	in	the	match,	and

									foo(?!bar)

							matches	any	occurrence	of	"foo"	that	is	not		followed		by		"bar".		Note
							that	the	apparently	similar	pattern

									(?!foo)bar

							does		not		find		an		occurrence		of	"bar"	that	is	preceded	by	something
							other	than	"foo";	it	finds	any	occurrence	of	"bar"	whatsoever,		because
							the	assertion	(?!foo)	is	always	true	when	the	next	three	characters	are
							"bar".	A	lookbehind	assertion	is	needed	to	achieve	the	other	effect.

							If	you	want	to	force	a	matching	failure	at	some	point	in	a	pattern,	the
							most		convenient		way		to		do		it		is	with	(?!)	because	an	empty	string
							always	matches,	so	an	assertion	that	requires	there	not	to	be	an		empty
							string	must	always	fail.

			Lookbehind	assertions

							Lookbehind		assertions	start	with	(?<=	for	positive	assertions	and	(?<!
							for	negative	assertions.	For	example,

									(?<!foo)bar

							does	find	an	occurrence	of	"bar"	that	is	not		preceded		by		"foo".		The
							contents		of		a		lookbehind		assertion	are	restricted	such	that	all	the
							strings	it	matches	must	have	a	fixed	length.	However,	if	there	are	sev-
							eral		top-level		alternatives,		they		do		not	all	have	to	have	the	same
							fixed	length.	Thus

									(?<=bullock|donkey)

							is	permitted,	but

									(?<!dogs?|cats?)

							causes	an	error	at	compile	time.	Branches	that	match		different		length
							strings		are	permitted	only	at	the	top	level	of	a	lookbehind	assertion.
							This	is	an	extension	compared	with		Perl		(at		least		for		5.8),		which
							requires		all	branches	to	match	the	same	length	of	string.	An	assertion
							such	as

									(?<=ab(c|de))

							is	not	permitted,	because	its	single	top-level		branch		can		match		two
							different		lengths,		but		it	is	acceptable	if	rewritten	to	use	two	top-
							level	branches:

									(?<=abc|abde)

							In	some	cases,	the	Perl	5.10	escape	sequence	\K	(see	above)	can	be	used
							instead		of		a	lookbehind	assertion;	this	is	not	restricted	to	a	fixed-
							length.

							The	implementation	of	lookbehind	assertions	is,	for		each		alternative,
							to		temporarily		move	the	current	position	back	by	the	fixed	length	and
							then	try	to	match.	If	there	are	insufficient	characters	before	the	cur-
							rent	position,	the	assertion	fails.

							PCRE	does	not	allow	the	\C	escape	(which	matches	a	single	byte	in	UTF-8
							mode)	to	appear	in	lookbehind	assertions,	because	it	makes	it		impossi-
							ble		to		calculate	the	length	of	the	lookbehind.	The	\X	and	\R	escapes,
							which	can	match	different	numbers	of	bytes,	are	also	not	permitted.

							Possessive	quantifiers	can		be		used		in		conjunction		with		lookbehind
							assertions		to		specify		efficient		matching		at	the	end	of	the	subject
							string.	Consider	a	simple	pattern	such	as

									abcd$

							when	applied	to	a	long	string	that	does		not		match.		Because		matching
							proceeds	from	left	to	right,	PCRE	will	look	for	each	"a"	in	the	subject
							and	then	see	if	what	follows	matches	the	rest	of	the		pattern.		If		the

							pattern	is	specified	as

									^.*abcd$

							the		initial	.*	matches	the	entire	string	at	first,	but	when	this	fails
							(because	there	is	no	following	"a"),	it	backtracks	to	match	all	but	the
							last		character,		then	all	but	the	last	two	characters,	and	so	on.	Once
							again	the	search	for	"a"	covers	the	entire	string,	from	right	to		left,
							so	we	are	no	better	off.	However,	if	the	pattern	is	written	as

									^.*+(?<=abcd)

							there		can		be		no	backtracking	for	the	.*+	item;	it	can	match	only	the
							entire	string.	The	subsequent	lookbehind	assertion	does	a		single		test
							on		the	last	four	characters.	If	it	fails,	the	match	fails	immediately.
							For	long	strings,	this	approach	makes	a	significant	difference		to		the
							processing	time.

			Using	multiple	assertions

							Several	assertions	(of	any	sort)	may	occur	in	succession.	For	example,

									(?<=\d{3})(?<!999)foo

							matches		"foo"	preceded	by	three	digits	that	are	not	"999".	Notice	that
							each	of	the	assertions	is	applied	independently	at	the		same		point		in
							the		subject		string.		First		there		is	a	check	that	the	previous	three
							characters	are	all	digits,	and	then	there	is		a		check		that		the		same
							three	characters	are	not	"999".		This	pattern	does	not	match	"foo"	pre-
							ceded	by	six	characters,	the	first	of	which	are		digits		and		the		last
							three		of		which		are	not	"999".	For	example,	it	doesn't	match	"123abc-
							foo".	A	pattern	to	do	that	is

									(?<=\d{3}...)(?<!999)foo

							This	time	the	first	assertion	looks	at	the		preceding		six		characters,
							checking	that	the	first	three	are	digits,	and	then	the	second	assertion

							checks	that	the	preceding	three	characters	are	not	"999".

							Assertions	can	be	nested	in	any	combination.	For	example,

									(?<=(?<!foo)bar)baz

							matches	an	occurrence	of	"baz"	that	is	preceded	by	"bar"	which	in		turn
							is	not	preceded	by	"foo",	while

									(?<=\d{3}(?!999)...)foo

							is		another	pattern	that	matches	"foo"	preceded	by	three	digits	and	any
							three	characters	that	are	not	"999".

CONDITIONAL	SUBPATTERNS

							It	is	possible	to	cause	the	matching	process	to	obey	a	subpattern		con-
							ditionally		or	to	choose	between	two	alternative	subpatterns,	depending
							on	the	result	of	an	assertion,	or	whether	a	previous	capturing		subpat-
							tern		matched		or	not.	The	two	possible	forms	of	conditional	subpattern
							are

									(?(condition)yes-pattern)
									(?(condition)yes-pattern|no-pattern)

							If	the	condition	is	satisfied,	the	yes-pattern	is	used;		otherwise		the
							no-pattern		(if		present)		is	used.	If	there	are	more	than	two	alterna-
							tives	in	the	subpattern,	a	compile-time	error	occurs.

							There	are	four	kinds	of	condition:	references		to		subpatterns,		refer-
							ences	to	recursion,	a	pseudo-condition	called	DEFINE,	and	assertions.

			Checking	for	a	used	subpattern	by	number

							If		the		text	between	the	parentheses	consists	of	a	sequence	of	digits,
							the	condition	is	true	if	the	capturing	subpattern	of		that		number		has

							previously		matched.		An		alternative	notation	is	to	precede	the	digits
							with	a	plus	or	minus	sign.	In	this	case,	the	subpattern	number	is	rela-
							tive	rather	than	absolute.		The	most	recently	opened	parentheses	can	be
							referenced	by	(?(-1),	the	next	most	recent	by	(?(-2),		and		so		on.		In
							looping	constructs	it	can	also	make	sense	to	refer	to	subsequent	groups
							with	constructs	such	as	(?(+2).

							Consider	the	following	pattern,	which		contains		non-significant		white
							space	to	make	it	more	readable	(assume	the	PCRE_EXTENDED	option)	and	to
							divide	it	into	three	parts	for	ease	of	discussion:

									(\()?				[^()]+				(?(1)	\))

							The	first	part	matches	an	optional	opening		parenthesis,		and		if		that
							character	is	present,	sets	it	as	the	first	captured	substring.	The	sec-
							ond	part	matches	one	or	more	characters	that	are	not		parentheses.		The
							third	part	is	a	conditional	subpattern	that	tests	whether	the	first	set
							of	parentheses	matched	or	not.	If	they	did,	that	is,	if	subject	started
							with	an	opening	parenthesis,	the	condition	is	true,	and	so	the	yes-pat-
							tern	is	executed	and	a		closing		parenthesis		is		required.		Otherwise,
							since		no-pattern		is		not		present,	the	subpattern	matches	nothing.	In
							other	words,		this		pattern		matches		a		sequence		of		non-parentheses,
							optionally	enclosed	in	parentheses.

							If		you		were		embedding		this	pattern	in	a	larger	one,	you	could	use	a
							relative	reference:

									...other	stuff...	(\()?				[^()]+				(?(-1)	\))	...

							This	makes	the	fragment	independent	of	the	parentheses		in		the		larger
							pattern.

			Checking	for	a	used	subpattern	by	name

							Perl		uses		the		syntax		(?(<name>)...)	or	(?('name')...)	to	test	for	a
							used	subpattern	by	name.	For	compatibility		with		earlier		versions		of
							PCRE,		which		had	this	facility	before	Perl,	the	syntax	(?(name)...)	is

							also	recognized.	However,	there	is	a	possible	ambiguity	with	this		syn-
							tax,		because		subpattern		names		may		consist	entirely	of	digits.	PCRE
							looks	first	for	a	named	subpattern;	if	it	cannot	find	one	and	the		name
							consists		entirely		of	digits,	PCRE	looks	for	a	subpattern	of	that	num-
							ber,	which	must	be	greater	than	zero.	Using	subpattern	names	that		con-
							sist	entirely	of	digits	is	not	recommended.

							Rewriting	the	above	example	to	use	a	named	subpattern	gives	this:

									(?<OPEN>	\()?				[^()]+				(?(<OPEN>)	\))

			Checking	for	pattern	recursion

							If	the	condition	is	the	string	(R),	and	there	is	no	subpattern	with	the
							name	R,	the	condition	is	true	if	a	recursive	call	to	the	whole		pattern
							or	any	subpattern	has	been	made.	If	digits	or	a	name	preceded	by	amper-
							sand	follow	the	letter	R,	for	example:

									(?(R3)...)	or	(?(R&name;)...)

							the	condition	is	true	if	the	most	recent	recursion	is	into	the		subpat-
							tern		whose		number	or	name	is	given.	This	condition	does	not	check	the
							entire	recursion	stack.

							At	"top	level",	all	these	recursion	test	conditions	are		false.		Recur-
							sive	patterns	are	described	below.

			Defining	subpatterns	for	use	by	reference	only

							If		the		condition		is		the	string	(DEFINE),	and	there	is	no	subpattern
							with	the	name	DEFINE,	the	condition	is		always		false.		In		this		case,
							there		may		be		only		one		alternative		in	the	subpattern.	It	is	always
							skipped	if	control	reaches	this	point		in		the		pattern;		the		idea		of
							DEFINE		is	that	it	can	be	used	to	define	"subroutines"	that	can	be	ref-
							erenced	from	elsewhere.	(The	use	of	"subroutines"	is	described		below.)
							For		example,		a	pattern	to	match	an	IPv4	address	could	be	written	like

							this	(ignore	whitespace	and	line	breaks):

									(?(DEFINE)	(?<byte>	2[0-4]\d	|	25[0-5]	|	1\d\d	|	[1-9]?\d))
									\b	(?&byte;)	(\.(?&byte;)){3}	\b

							The	first	part	of	the	pattern	is	a	DEFINE	group	inside	which	a		another
							group		named	"byte"	is	defined.	This	matches	an	individual	component	of
							an	IPv4	address	(a	number	less	than	256).	When		matching		takes		place,
							this		part		of		the	pattern	is	skipped	because	DEFINE	acts	like	a	false
							condition.

							The	rest	of	the	pattern	uses	references	to	the	named	group	to	match	the
							four		dot-separated		components	of	an	IPv4	address,	insisting	on	a	word
							boundary	at	each	end.

			Assertion	conditions

							If	the	condition	is	not	in	any	of	the	above		formats,		it		must		be		an
							assertion.			This	may	be	a	positive	or	negative	lookahead	or	lookbehind
							assertion.	Consider		this		pattern,		again		containing		non-significant
							white	space,	and	with	the	two	alternatives	on	the	second	line:

									(?(?=[^a-z]*[a-z])
									\d{2}-[a-z]{3}-\d{2}		|		\d{2}-\d{2}-\d{2})

							The		condition		is		a		positive		lookahead		assertion		that		matches	an
							optional	sequence	of	non-letters	followed	by	a	letter.	In	other		words,
							it		tests		for	the	presence	of	at	least	one	letter	in	the	subject.	If	a
							letter	is	found,	the	subject	is	matched	against	the	first		alternative;
							otherwise		it		is		matched		against		the		second.		This	pattern	matches
							strings	in	one	of	the	two	forms	dd-aaa-dd	or	dd-dd-dd,		where		aaa		are
							letters	and	dd	are	digits.

COMMENTS

							The		sequence	(?#	marks	the	start	of	a	comment	that	continues	up	to	the

							next	closing	parenthesis.	Nested	parentheses		are		not		permitted.		The
							characters		that	make	up	a	comment	play	no	part	in	the	pattern	matching
							at	all.

							If	the	PCRE_EXTENDED	option	is	set,	an	unescaped	#	character	outside		a
							character		class		introduces		a		comment		that	continues	to	immediately
							after	the	next	newline	in	the	pattern.

RECURSIVE	PATTERNS

							Consider	the	problem	of	matching	a	string	in	parentheses,	allowing		for
							unlimited		nested		parentheses.		Without	the	use	of	recursion,	the	best
							that	can	be	done	is	to	use	a	pattern	that		matches		up		to		some		fixed
							depth		of		nesting.		It		is	not	possible	to	handle	an	arbitrary	nesting
							depth.

							For	some	time,	Perl	has	provided	a	facility	that	allows	regular	expres-
							sions		to	recurse	(amongst	other	things).	It	does	this	by	interpolating
							Perl	code	in	the	expression	at	run	time,	and	the	code	can	refer	to		the
							expression	itself.	A	Perl	pattern	using	code	interpolation	to	solve	the
							parentheses	problem	can	be	created	like	this:

									$re	=	qr{\((?:	(?>[^()]+)	|	(?p{$re}))*	\)}x;

							The	(?p{...})	item	interpolates	Perl	code	at	run	time,	and	in	this	case
							refers	recursively	to	the	pattern	in	which	it	appears.

							Obviously,	PCRE	cannot	support	the	interpolation	of	Perl	code.	Instead,
							it	supports	special	syntax	for	recursion	of		the		entire		pattern,		and
							also		for		individual		subpattern		recursion.	After	its	introduction	in
							PCRE	and	Python,	this	kind	of	recursion	was		introduced		into		Perl		at
							release	5.10.

							A		special		item		that	consists	of	(?	followed	by	a	number	greater	than
							zero	and	a	closing	parenthesis	is	a	recursive	call	of	the	subpattern	of
							the		given		number,	provided	that	it	occurs	inside	that	subpattern.	(If

							not,	it	is	a	"subroutine"	call,	which	is	described		in		the		next		sec-
							tion.)		The	special	item	(?R)	or	(?0)	is	a	recursive	call	of	the	entire
							regular	expression.

							In	PCRE	(like	Python,	but	unlike	Perl),	a	recursive	subpattern	call		is
							always	treated	as	an	atomic	group.	That	is,	once	it	has	matched	some	of
							the	subject	string,	it	is	never	re-entered,	even	if	it	contains	untried
							alternatives	and	there	is	a	subsequent	matching	failure.

							This		PCRE		pattern		solves		the	nested	parentheses	problem	(assume	the
							PCRE_EXTENDED	option	is	set	so	that	white	space	is	ignored):

									\(((?>[^()]+)	|	(?R))*	\)

							First	it	matches	an	opening	parenthesis.	Then	it	matches	any	number		of
							substrings		which		can		either		be		a	sequence	of	non-parentheses,	or	a
							recursive	match	of	the	pattern	itself	(that	is,	a		correctly		parenthe-
							sized	substring).		Finally	there	is	a	closing	parenthesis.

							If		this		were		part	of	a	larger	pattern,	you	would	not	want	to	recurse
							the	entire	pattern,	so	instead	you	could	use	this:

									(\(((?>[^()]+)	|	(?1))*	\))

							We	have	put	the	pattern	into	parentheses,	and	caused	the		recursion		to
							refer	to	them	instead	of	the	whole	pattern.

							In		a		larger		pattern,		keeping		track		of		parenthesis	numbers	can	be
							tricky.	This	is	made	easier	by	the	use	of	relative	references.	(A		Perl
							5.10		feature.)			Instead		of		(?1)		in	the	pattern	above	you	can	write
							(?-2)	to	refer	to	the	second	most	recently	opened	parentheses	preceding
							the		recursion.		In		other		words,		a		negative	number	counts	capturing
							parentheses	leftwards	from	the	point	at	which	it	is	encountered.

							It	is	also	possible	to	refer	to		subsequently		opened		parentheses,		by
							writing		references		such		as	(?+2).	However,	these	cannot	be	recursive
							because	the	reference	is	not	inside	the		parentheses		that		are		refer-

							enced.		They		are		always		"subroutine"	calls,	as	described	in	the	next
							section.

							An	alternative	approach	is	to	use	named	parentheses	instead.		The		Perl
							syntax		for		this		is	(?&name;);	PCRE's	earlier	syntax	(?P>name)	is	also
							supported.	We	could	rewrite	the	above	example	as	follows:

									(?<pn>	\(((?>[^()]+)	|	(?&pn;))*	\))

							If	there	is	more	than	one	subpattern	with	the	same	name,		the		earliest
							one	is	used.

							This		particular		example	pattern	that	we	have	been	looking	at	contains
							nested	unlimited	repeats,	and	so	the	use	of	atomic	grouping	for		match-
							ing		strings		of	non-parentheses	is	important	when	applying	the	pattern
							to	strings	that	do	not	match.	For	example,	when	this	pattern	is	applied
							to

									(aaa()

							it		yields	"no	match"	quickly.	However,	if	atomic	grouping	is	not	used,
							the	match	runs	for	a	very	long	time	indeed	because	there		are		so		many
							different		ways		the		+	and	*	repeats	can	carve	up	the	subject,	and	all
							have	to	be	tested	before	failure	can	be	reported.

							At	the	end	of	a	match,	the	values	set	for	any	capturing	subpatterns	are
							those	from	the	outermost	level	of	the	recursion	at	which	the	subpattern
							value	is	set.		If	you	want	to	obtain		intermediate		values,		a		callout
							function		can	be	used	(see	below	and	the	pcrecallout	documentation).	If
							the	pattern	above	is	matched	against

									(ab(cd)ef)

							the	value	for	the	capturing	parentheses	is		"ef",		which		is		the		last
							value		taken		on	at	the	top	level.	If	additional	parentheses	are	added,
							giving

									\((((?>[^()]+)	|	(?R))*)	\)
												^																								^
												^																								^

							the	string	they	capture	is	"ab(cd)ef",	the	contents	of		the		top		level
							parentheses.		If	there	are	more	than	15	capturing	parentheses	in	a	pat-
							tern,	PCRE	has	to	obtain	extra	memory	to	store	data	during	a	recursion,
							which		it		does		by		using	pcre_malloc,	freeing	it	via	pcre_free	after-
							wards.	If		no		memory		can		be		obtained,		the		match		fails		with		the
							PCRE_ERROR_NOMEMORY	error.

							Do		not		confuse		the	(?R)	item	with	the	condition	(R),	which	tests	for
							recursion.		Consider	this	pattern,	which	matches	text	in		angle		brack-
							ets,		allowing	for	arbitrary	nesting.	Only	digits	are	allowed	in	nested
							brackets	(that	is,	when	recursing),	whereas	any	characters	are		permit-
							ted	at	the	outer	level.

									<	(?:	(?(R)	\d++		|	[^<>]*+)	|	(?R))	*	>

							In		this		pattern,	(?(R)	is	the	start	of	a	conditional	subpattern,	with
							two	different	alternatives	for	the	recursive	and		non-recursive		cases.
							The	(?R)	item	is	the	actual	recursive	call.

SUBPATTERNS	AS	SUBROUTINES

							If	the	syntax	for	a	recursive	subpattern	reference	(either	by	number	or
							by	name)	is	used	outside	the	parentheses	to	which	it	refers,		it		oper-
							ates		like	a	subroutine	in	a	programming	language.	The	"called"	subpat-
							tern	may	be	defined	before	or	after	the	reference.	A	numbered	reference
							can	be	absolute	or	relative,	as	in	these	examples:

									(...(absolute)...)...(?2)...
									(...(relative)...)...(?-1)...
									(...(?+1)...(relative)...

							An	earlier	example	pointed	out	that	the	pattern

									(sens|respons)e	and	\1ibility

							matches		"sense	and	sensibility"	and	"response	and	responsibility",	but
							not	"sense	and	responsibility".	If	instead	the	pattern

									(sens|respons)e	and	(?1)ibility

							is	used,	it	does	match	"sense	and	responsibility"	as	well	as	the		other
							two		strings.		Another		example		is		given		in	the	discussion	of	DEFINE
							above.

							Like	recursive	subpatterns,	a	"subroutine"	call	is	always	treated	as	an
							atomic		group.	That	is,	once	it	has	matched	some	of	the	subject	string,
							it	is	never	re-entered,	even	if	it	contains		untried		alternatives		and
							there	is	a	subsequent	matching	failure.

							When		a		subpattern	is	used	as	a	subroutine,	processing	options	such	as
							case-independence	are	fixed	when	the	subpattern	is	defined.	They	cannot
							be	changed	for	different	calls.	For	example,	consider	this	pattern:

									(abc)(?i:(?-1))

							It		matches		"abcabc".	It	does	not	match	"abcABC"	because	the	change	of
							processing	option	does	not	affect	the	called	subpattern.

ONIGURUMA	SUBROUTINE	SYNTAX

							For	compatibility	with	Oniguruma,	the	non-Perl	syntax	\g	followed	by		a
							name	or	a	number	enclosed	either	in	angle	brackets	or	single	quotes,	is
							an	alternative	syntax	for	referencing	a		subpattern		as		a		subroutine,
							possibly		recursively.	Here	are	two	of	the	examples	used	above,	rewrit-
							ten	using	this	syntax:

									(?<pn>	\(((?>[^()]+)	|	\g<pn>)*	\))
									(sens|respons)e	and	\g'1'ibility

							PCRE	supports	an	extension	to	Oniguruma:	if	a	number	is	preceded		by		a
							plus	or	a	minus	sign	it	is	taken	as	a	relative	reference.	For	example:

									(abc)(?i:\g<-1>)

							Note		that	\g{...}	(Perl	syntax)	and	\g<...>	(Oniguruma	syntax)	are	not
							synonymous.	The	former	is	a	back	reference;	the	latter	is	a		subroutine
							call.

CALLOUTS

							Perl	has	a	feature	whereby	using	the	sequence	(?{...})	causes	arbitrary
							Perl	code	to	be	obeyed	in	the	middle	of	matching	a	regular		expression.
							This	makes	it	possible,	amongst	other	things,	to	extract	different	sub-
							strings	that	match	the	same	pair	of	parentheses	when	there	is	a	repeti-
							tion.

							PCRE	provides	a	similar	feature,	but	of	course	it	cannot	obey	arbitrary
							Perl	code.	The	feature	is	called	"callout".	The	caller	of	PCRE	provides
							an		external	function	by	putting	its	entry	point	in	the	global	variable
							pcre_callout.		By	default,	this	variable	contains	NULL,	which		disables
							all	calling	out.

							Within		a		regular		expression,		(?C)	indicates	the	points	at	which	the
							external	function	is	to	be	called.	If	you	want		to		identify		different
							callout		points,	you	can	put	a	number	less	than	256	after	the	letter	C.
							The	default	value	is	zero.		For	example,	this	pattern	has		two		callout
							points:

									(?C1)abc(?C2)def

							If	the	PCRE_AUTO_CALLOUT	flag	is	passed	to	pcre_compile(),	callouts	are
							automatically	installed	before	each	item	in	the	pattern.	They		are		all
							numbered	255.

							During	matching,	when	PCRE	reaches	a	callout	point	(and	pcre_callout	is
							set),	the	external	function	is	called.	It	is	provided	with		the		number
							of		the	callout,	the	position	in	the	pattern,	and,	optionally,	one	item
							of	data	originally	supplied	by	the	caller	of	pcre_exec().		The		callout
							function		may	cause	matching	to	proceed,	to	backtrack,	or	to	fail	alto-
							gether.	A	complete	description	of	the	interface	to	the	callout	function
							is	given	in	the	pcrecallout	documentation.

BACKTRACKING	CONTROL

							Perl		5.10	introduced	a	number	of	"Special	Backtracking	Control	Verbs",
							which	are	described	in	the	Perl	documentation	as	"experimental	and	sub-
							ject		to		change	or	removal	in	a	future	version	of	Perl".	It	goes	on	to
							say:	"Their	usage	in	production	code	should	be	noted	to	avoid		problems
							during	upgrades."	The	same	remarks	apply	to	the	PCRE	features	described
							in	this	section.

							Since	these	verbs	are	specifically	related		to		backtracking,		most		of
							them		can		be		used		only		when		the		pattern		is		to		be	matched	using
							pcre_exec(),	which	uses	a	backtracking	algorithm.	With	the	exception	of
							(*FAIL),	which	behaves	like	a	failing	negative	assertion,	they	cause	an
							error	if	encountered	by	pcre_dfa_exec().

							The	new	verbs	make	use	of	what	was	previously	invalid	syntax:	an		open-
							ing	parenthesis	followed	by	an	asterisk.	In	Perl,	they	are	generally	of
							the	form	(*VERB:ARG)	but	PCRE	does	not	support	the	use	of	arguments,	so
							its		general		form	is	just	(*VERB).	Any	number	of	these	verbs	may	occur
							in	a	pattern.	There	are	two	kinds:

			Verbs	that	act	immediately

							The	following	verbs	act	as	soon	as	they	are	encountered:

										(*ACCEPT)

							This	verb	causes	the	match	to	end	successfully,	skipping	the		remainder

							of		the	pattern.	When	inside	a	recursion,	only	the	innermost	pattern	is
							ended	immediately.	PCRE	differs		from		Perl		in		what		happens		if		the
							(*ACCEPT)		is	inside	capturing	parentheses.	In	Perl,	the	data	so	far	is
							captured:	in	PCRE	no	data	is	captured.	For	example:

									A(A|B(*ACCEPT)|C)D

							This	matches	"AB",	"AAD",	or	"ACD",	but	when	it	matches	"AB",		no		data
							is	captured.

									(*FAIL)	or	(*F)

							This		verb		causes	the	match	to	fail,	forcing	backtracking	to	occur.	It
							is	equivalent	to	(?!)	but	easier	to	read.	The	Perl	documentation		notes
							that		it		is		probably		useful	only	when	combined	with	(?{})	or	(??{}).
							Those	are,	of	course,	Perl	features	that	are	not	present	in		PCRE.		The
							nearest		equivalent	is	the	callout	feature,	as	for	example	in	this	pat-
							tern:

									a+(?C)(*FAIL)

							A	match	with	the	string	"aaaa"	always	fails,	but	the	callout		is		taken
							before	each	backtrack	happens	(in	this	example,	10	times).

			Verbs	that	act	after	backtracking

							The	following	verbs	do	nothing	when	they	are	encountered.	Matching	con-
							tinues	with	what	follows,	but	if	there	is	no	subsequent	match,	a		fail-
							ure		is		forced.			The		verbs		differ		in		exactly	what	kind	of	failure
							occurs.

									(*COMMIT)

							This	verb	causes	the	whole	match	to	fail	outright	if	the		rest		of		the
							pattern		does		not	match.	Even	if	the	pattern	is	unanchored,	no	further
							attempts	to	find	a	match	by	advancing	the	start	point	take	place.		Once
							(*COMMIT)		has	been	passed,	pcre_exec()	is	committed	to	finding	a	match

							at	the	current	starting	point,	or	not	at	all.	For	example:

									a+(*COMMIT)b

							This	matches	"xxaab"	but	not	"aacaab".	It	can	be	thought	of	as		a		kind
							of	dynamic	anchor,	or	"I've	started,	so	I	must	finish."

									(*PRUNE)

							This		verb	causes	the	match	to	fail	at	the	current	position	if	the	rest
							of	the	pattern	does	not	match.	If	the	pattern	is	unanchored,	the	normal
							"bumpalong"		advance	to	the	next	starting	character	then	happens.	Back-
							tracking	can	occur	as	usual	to	the	left	of	(*PRUNE),	or		when		matching
							to		the	right	of	(*PRUNE),	but	if	there	is	no	match	to	the	right,	back-
							tracking	cannot	cross	(*PRUNE).		In	simple	cases,	the	use		of		(*PRUNE)
							is	just	an	alternative	to	an	atomic	group	or	possessive	quantifier,	but
							there	are	some	uses	of	(*PRUNE)	that	cannot	be	expressed	in		any		other
							way.

									(*SKIP)

							This		verb		is	like	(*PRUNE),	except	that	if	the	pattern	is	unanchored,
							the	"bumpalong"	advance	is	not	to	the	next	character,	but	to	the		posi-
							tion		in		the		subject	where	(*SKIP)	was	encountered.	(*SKIP)	signifies
							that	whatever	text	was	matched	leading	up	to	it	cannot		be		part		of		a
							successful	match.	Consider:

									a+(*SKIP)b

							If		the		subject		is		"aaaac...",		after		the	first	match	attempt	fails
							(starting	at	the	first	character	in	the		string),		the		starting		point
							skips	on	to	start	the	next	attempt	at	"c".	Note	that	a	possessive	quan-
							tifer	does	not	have	the	same	effect	in	this	example;	although	it		would
							suppress		backtracking		during		the		first		match		attempt,		the	second
							attempt	would	start	at	the	second	character	instead	of	skipping		on		to
							"c".

									(*THEN)

							This	verb	causes	a	skip	to	the	next	alternation	if	the	rest	of	the	pat-
							tern	does	not	match.	That	is,	it	cancels	pending	backtracking,	but	only
							within		the		current		alternation.		Its	name	comes	from	the	observation
							that	it	can	be	used	for	a	pattern-based	if-then-else	block:

									(COND1	(*THEN)	FOO	|	COND2	(*THEN)	BAR	|	COND3	(*THEN)	BAZ)	...

							If	the	COND1	pattern	matches,	FOO	is	tried	(and	possibly	further		items
							after		the		end		of		the	group	if	FOO	succeeds);	on	failure	the	matcher
							skips	to	the	second	alternative	and	tries	COND2,		without		backtracking
							into		COND1.		If		(*THEN)		is		used	outside	of	any	alternation,	it	acts
							exactly	like	(*PRUNE).

SEE	ALSO

							pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcre(3).

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	19	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCRESYNTAX(3)																																																				PCRESYNTAX(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	REGULAR	EXPRESSION	SYNTAX	SUMMARY

							The		full	syntax	and	semantics	of	the	regular	expressions	that	are	sup-
							ported	by	PCRE	are	described	in		the		pcrepattern		documentation.		This
							document	contains	just	a	quick-reference	summary	of	the	syntax.

QUOTING

									\x									where	x	is	non-alphanumeric	is	a	literal	x
									\Q...\E				treat	enclosed	characters	as	literal

CHARACTERS

									\a									alarm,	that	is,	the	BEL	character	(hex	07)
									\cx								"control-x",	where	x	is	any	character
									\e									escape	(hex	1B)
									\f									formfeed	(hex	0C)
									\n									newline	(hex	0A)
									\r									carriage	return	(hex	0D)
									\t									tab	(hex	09)
									\ddd							character	with	octal	code	ddd,	or	backreference
									\xhh							character	with	hex	code	hh
									\x{hhh..}		character	with	hex	code	hhh..

CHARACTER	TYPES

									.										any	character	except	newline;
																						in	dotall	mode,	any	character	whatsoever
									\C									one	byte,	even	in	UTF-8	mode	(best	avoided)

									\d									a	decimal	digit
									\D									a	character	that	is	not	a	decimal	digit
									\h									a	horizontal	whitespace	character
									\H									a	character	that	is	not	a	horizontal	whitespace	character
									\p{xx}					a	character	with	the	xx	property
									\P{xx}					a	character	without	the	xx	property
									\R									a	newline	sequence
									\s									a	whitespace	character
									\S									a	character	that	is	not	a	whitespace	character
									\v									a	vertical	whitespace	character
									\V									a	character	that	is	not	a	vertical	whitespace	character
									\w									a	"word"	character
									\W									a	"non-word"	character
									\X									an	extended	Unicode	sequence

							In	PCRE,	\d,	\D,	\s,	\S,	\w,	and	\W	recognize	only	ASCII	characters.

GENERAL	CATEGORY	PROPERTY	CODES	FOR	\p	and	\P

									C										Other
									Cc									Control
									Cf									Format
									Cn									Unassigned
									Co									Private	use
									Cs									Surrogate

									L										Letter
									Ll									Lower	case	letter
									Lm									Modifier	letter
									Lo									Other	letter
									Lt									Title	case	letter
									Lu									Upper	case	letter
									L&									Ll,	Lu,	or	Lt

									M										Mark
									Mc									Spacing	mark

									Me									Enclosing	mark
									Mn									Non-spacing	mark

									N										Number
									Nd									Decimal	number
									Nl									Letter	number
									No									Other	number

									P										Punctuation
									Pc									Connector	punctuation
									Pd									Dash	punctuation
									Pe									Close	punctuation
									Pf									Final	punctuation
									Pi									Initial	punctuation
									Po									Other	punctuation
									Ps									Open	punctuation

									S										Symbol
									Sc									Currency	symbol
									Sk									Modifier	symbol
									Sm									Mathematical	symbol
									So									Other	symbol

									Z										Separator
									Zl									Line	separator
									Zp									Paragraph	separator
									Zs									Space	separator

SCRIPT	NAMES	FOR	\p	AND	\P

							Arabic,		Armenian,		Balinese,		Bengali,		Bopomofo,		Braille,		Buginese,
							Buhid,		Canadian_Aboriginal,		Cherokee,		Common,			Coptic,			Cuneiform,
							Cypriot,	Cyrillic,	Deseret,	Devanagari,	Ethiopic,	Georgian,	Glagolitic,
							Gothic,	Greek,	Gujarati,	Gurmukhi,	Han,	Hangul,	Hanunoo,	Hebrew,		Hira-
							gana,		Inherited,		Kannada,		Katakana,		Kharoshthi,		Khmer,	Lao,	Latin,
							Limbu,		Linear_B,		Malayalam,		Mongolian,		Myanmar,		New_Tai_Lue,		Nko,

							Ogham,		Old_Italic,		Old_Persian,	Oriya,	Osmanya,	Phags_Pa,	Phoenician,
							Runic,		Shavian,		Sinhala,		Syloti_Nagri,		Syriac,		Tagalog,		Tagbanwa,
							Tai_Le,	Tamil,	Telugu,	Thaana,	Thai,	Tibetan,	Tifinagh,	Ugaritic,	Yi.

CHARACTER	CLASSES

									[...]							positive	character	class
									[^...]						negative	character	class
									[x-y]							range	(can	be	used	for	hex	characters)
									[[:xxx:]]			positive	POSIX	named	set
									[[:^xxx:]]		negative	POSIX	named	set

									alnum							alphanumeric
									alpha							alphabetic
									ascii							0-127
									blank							space	or	tab
									cntrl							control	character
									digit							decimal	digit
									graph							printing,	excluding	space
									lower							lower	case	letter
									print							printing,	including	space
									punct							printing,	excluding	alphanumeric
									space							whitespace
									upper							upper	case	letter
									word								same	as	\w
									xdigit						hexadecimal	digit

							In	PCRE,	POSIX	character	set	names	recognize	only	ASCII	characters.	You
							can	use	\Q...\E	inside	a	character	class.

QUANTIFIERS

									?											0	or	1,	greedy
									?+										0	or	1,	possessive
									??										0	or	1,	lazy

									*											0	or	more,	greedy
									*+										0	or	more,	possessive
									*?										0	or	more,	lazy
									+											1	or	more,	greedy
									++										1	or	more,	possessive
									+?										1	or	more,	lazy
									{n}									exactly	n
									{n,m}							at	least	n,	no	more	than	m,	greedy
									{n,m}+						at	least	n,	no	more	than	m,	possessive
									{n,m}?						at	least	n,	no	more	than	m,	lazy
									{n,}								n	or	more,	greedy
									{n,}+							n	or	more,	possessive
									{n,}?							n	or	more,	lazy

ANCHORS	AND	SIMPLE	ASSERTIONS

									\b										word	boundary
									\B										not	a	word	boundary
									^											start	of	subject
																						also	after	internal	newline	in	multiline	mode
									\A										start	of	subject
									$											end	of	subject
																						also	before	newline	at	end	of	subject
																						also	before	internal	newline	in	multiline	mode
									\Z										end	of	subject
																						also	before	newline	at	end	of	subject
									\z										end	of	subject
									\G										first	matching	position	in	subject

MATCH	POINT	RESET

									\K										reset	start	of	match

ALTERNATION

									expr|expr|expr...

CAPTURING

									(...)										capturing	group
									(?<name>...)			named	capturing	group	(Perl)
									(?'name'...)			named	capturing	group	(Perl)
									(?P<name>...)		named	capturing	group	(Python)
									(?:...)								non-capturing	group
									(?|...)								non-capturing	group;	reset	group	numbers	for
																									capturing	groups	in	each	alternative

ATOMIC	GROUPS

									(?>...)								atomic,	non-capturing	group

COMMENT

									(?#....)							comment	(not	nestable)

OPTION	SETTING

									(?i)											caseless
									(?J)											allow	duplicate	names
									(?m)											multiline
									(?s)											single	line	(dotall)
									(?U)											default	ungreedy	(lazy)
									(?x)											extended	(ignore	white	space)
									(?-...)								unset	option(s)

LOOKAHEAD	AND	LOOKBEHIND	ASSERTIONS

									(?=...)								positive	look	ahead
									(?!...)								negative	look	ahead
									(?<=...)							positive	look	behind
									(?<!...)							negative	look	behind

							Each	top-level	branch	of	a	look	behind	must	be	of	a	fixed	length.

BACKREFERENCES

									\n													reference	by	number	(can	be	ambiguous)
									\gn												reference	by	number
									\g{n}										reference	by	number
									\g{-n}									relative	reference	by	number
									\k<name>							reference	by	name	(Perl)
									\k'name'							reference	by	name	(Perl)
									\g{name}							reference	by	name	(Perl)
									\k{name}							reference	by	name	(.NET)
									(?P=name)						reference	by	name	(Python)

SUBROUTINE	REFERENCES	(POSSIBLY	RECURSIVE)

									(?R)											recurse	whole	pattern
									(?n)											call	subpattern	by	absolute	number
									(?+n)										call	subpattern	by	relative	number
									(?-n)										call	subpattern	by	relative	number
									(?&name;)							call	subpattern	by	name	(Perl)
									(?P>name)						call	subpattern	by	name	(Python)
									\g<name>							call	subpattern	by	name	(Oniguruma)
									\g'name'							call	subpattern	by	name	(Oniguruma)
									\g<n>										call	subpattern	by	absolute	number	(Oniguruma)
									\g'n'										call	subpattern	by	absolute	number	(Oniguruma)
									\g<+n>									call	subpattern	by	relative	number	(PCRE	extension)
									\g'+n'									call	subpattern	by	relative	number	(PCRE	extension)
									\g<-n>									call	subpattern	by	relative	number	(PCRE	extension)

									\g'-n'									call	subpattern	by	relative	number	(PCRE	extension)

CONDITIONAL	PATTERNS

									(?(condition)yes-pattern)
									(?(condition)yes-pattern|no-pattern)

									(?(n)...							absolute	reference	condition
									(?(+n)...						relative	reference	condition
									(?(-n)...						relative	reference	condition
									(?(<name>)...		named	reference	condition	(Perl)
									(?('name')...		named	reference	condition	(Perl)
									(?(name)...				named	reference	condition	(PCRE)
									(?(R)...							overall	recursion	condition
									(?(Rn)...						specific	group	recursion	condition
									(?(R&name;)...		specific	recursion	condition
									(?(DEFINE)...		define	subpattern	for	reference
									(?(assert)...		assertion	condition

BACKTRACKING	CONTROL

							The	following	act	immediately	they	are	reached:

									(*ACCEPT)						force	successful	match
									(*FAIL)								force	backtrack;	synonym	(*F)

							The	following	act	only	when	a	subsequent	match	failure	causes		a		back-
							track	to	reach	them.	They	all	force	a	match	failure,	but	they	differ	in
							what	happens	afterwards.	Those	that	advance	the	start-of-match	point	do
							so	only	if	the	pattern	is	not	anchored.

									(*COMMIT)						overall	failure,	no	advance	of	starting	point
									(*PRUNE)							advance	to	next	starting	character
									(*SKIP)								advance	start	to	current	matching	position
									(*THEN)								local	failure,	backtrack	to	next	alternation

NEWLINE	CONVENTIONS

							These		are		recognized	only	at	the	very	start	of	the	pattern	or	after	a
							(*BSR_...)	option.

									(*CR)
									(*LF)
									(*CRLF)
									(*ANYCRLF)
									(*ANY)

WHAT	\R	MATCHES

							These	are	recognized	only	at	the	very	start	of	the	pattern	or		after		a
							(*...)	option	that	sets	the	newline	convention.

									(*BSR_ANYCRLF)
									(*BSR_UNICODE)

CALLOUTS

									(?C)						callout
									(?Cn)					callout	with	data	n

SEE	ALSO

							pcrepattern(3),	pcreapi(3),	pcrecallout(3),	pcrematching(3),	pcre(3).

AUTHOR

							Philip	Hazel

							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	09	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCREPARTIAL(3)																																																		PCREPARTIAL(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PARTIAL	MATCHING	IN	PCRE

							In		normal		use		of		PCRE,		if		the		subject		string		that	is	passed	to
							pcre_exec()	or	pcre_dfa_exec()	matches	as	far	as	it	goes,		but		is		too
							short		to		match		the		entire		pattern,	PCRE_ERROR_NOMATCH	is	returned.
							There	are	circumstances	where	it	might	be	helpful	to		distinguish		this
							case	from	other	cases	in	which	there	is	no	match.

							Consider,	for	example,	an	application	where	a	human	is	required	to	type
							in	data	for	a	field	with	specific	formatting	requirements.		An		example
							might	be	a	date	in	the	form	ddmmmyy,	defined	by	this	pattern:

									^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$

							If	the	application	sees	the	user's	keystrokes	one	by	one,	and	can	check
							that	what	has	been	typed	so	far	is	potentially	valid,		it		is		able		to
							raise		an		error	as	soon	as	a	mistake	is	made,	possibly	beeping	and	not
							reflecting	the	character	that	has	been	typed.	This		immediate		feedback
							is		likely		to		be	a	better	user	interface	than	a	check	that	is	delayed

							until	the	entire	string	has	been	entered.

							PCRE	supports	the	concept	of	partial	matching	by	means	of	the	PCRE_PAR-
							TIAL			option,			which			can			be			set		when		calling		pcre_exec()		or
							pcre_dfa_exec().	When	this	flag	is	set	for	pcre_exec(),	the	return	code
							PCRE_ERROR_NOMATCH		is	converted	into	PCRE_ERROR_PARTIAL	if	at	any	time
							during	the	matching	process	the	last	part	of	the	subject	string	matched
							part		of		the		pattern.	Unfortunately,	for	non-anchored	matching,	it	is
							not	possible	to	obtain	the	position	of	the	start	of	the	partial		match.
							No	captured	data	is	set	when	PCRE_ERROR_PARTIAL	is	returned.

							When			PCRE_PARTIAL			is		set		for		pcre_dfa_exec(),		the		return		code
							PCRE_ERROR_NOMATCH	is	converted	into	PCRE_ERROR_PARTIAL	if	the		end		of
							the		subject	is	reached,	there	have	been	no	complete	matches,	but	there
							is	still	at	least	one	matching	possibility.	The	portion	of		the		string
							that	provided	the	partial	match	is	set	as	the	first	matching	string.

							Using	PCRE_PARTIAL	disables	one	of	PCRE's	optimizations.	PCRE	remembers
							the	last	literal	byte	in	a	pattern,	and	abandons		matching		immediately
							if		such	a	byte	is	not	present	in	the	subject	string.	This	optimization
							cannot	be	used	for	a	subject	string	that	might	match	only	partially.

RESTRICTED	PATTERNS	FOR	PCRE_PARTIAL

							Because	of	the	way	certain	internal	optimizations		are		implemented		in
							the		pcre_exec()		function,	the	PCRE_PARTIAL	option	cannot	be	used	with
							all	patterns.	These	restrictions	do	not	apply	when		pcre_dfa_exec()		is
							used.		For	pcre_exec(),	repeated	single	characters	such	as

									a{2,4}

							and	repeated	single	metasequences	such	as

									\d+

							are		not	permitted	if	the	maximum	number	of	occurrences	is	greater	than

							one.		Optional	items	such	as	\d?	(where	the	maximum	is	one)	are	permit-
							ted.			Quantifiers		with	any	values	are	permitted	after	parentheses,	so
							the	invalid	examples	above	can	be	coded	thus:

									(a){2,4}
									(\d)+

							These	constructions	run	more	slowly,	but	for	the	kinds		of		application
							that		are		envisaged		for	this	facility,	this	is	not	felt	to	be	a	major
							restriction.

							If	PCRE_PARTIAL	is	set	for	a	pattern		that		does		not		conform		to		the
							restrictions,		pcre_exec()	returns	the	error	code	PCRE_ERROR_BADPARTIAL
							(-13).		You	can	use	the	PCRE_INFO_OKPARTIAL	call	to	pcre_fullinfo()		to
							find	out	if	a	compiled	pattern	can	be	used	for	partial	matching.

EXAMPLE	OF	PARTIAL	MATCHING	USING	PCRETEST

							If		the		escape		sequence		\P		is		present	in	a	pcretest	data	line,	the
							PCRE_PARTIAL	flag	is	used	for	the	match.	Here	is	a	run	of	pcretest	that
							uses	the	date	example	quoted	above:

											re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
									data>	25jun04\P
										0:	25jun04
										1:	jun
									data>	25dec3\P
									Partial	match
									data>	3ju\P
									Partial	match
									data>	3juj\P
									No	match
									data>	j\P
									No	match

							The		first		data		string		is		matched	completely,	so	pcretest	shows	the

							matched	substrings.	The	remaining	four	strings	do	not		match		the		com-
							plete		pattern,		but		the	first	two	are	partial	matches.	The	same	test,
							using	pcre_dfa_exec()	matching	(by	means	of	the		\D		escape		sequence),
							produces	the	following	output:

											re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
									data>	25jun04\P\D
										0:	25jun04
									data>	23dec3\P\D
									Partial	match:	23dec3
									data>	3ju\P\D
									Partial	match:	3ju
									data>	3juj\P\D
									No	match
									data>	j\P\D
									No	match

							Notice		that	in	this	case	the	portion	of	the	string	that	was	matched	is
							made	available.

MULTI-SEGMENT	MATCHING	WITH	pcre_dfa_exec()

							When	a	partial	match	has	been	found	using	pcre_dfa_exec(),	it	is	possi-
							ble		to		continue		the		match		by	providing	additional	subject	data	and
							calling	pcre_dfa_exec()	again	with	the	same		compiled		regular		expres-
							sion,	this	time	setting	the	PCRE_DFA_RESTART	option.	You	must	also	pass
							the	same	working	space	as	before,	because	this	is	where	details	of		the
							previous		partial		match	are	stored.	Here	is	an	example	using	pcretest,
							using	the	\R	escape	sequence	to	set	the	PCRE_DFA_RESTART	option	(\P	and
							\D	are	as	above):

											re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
									data>	23ja\P\D
									Partial	match:	23ja
									data>	n05\R\D
										0:	n05

							The		first		call	has	"23ja"	as	the	subject,	and	requests	partial	match-
							ing;	the	second	call		has		"n05"		as		the		subject		for		the		continued
							(restarted)		match.			Notice		that	when	the	match	is	complete,	only	the
							last	part	is	shown;	PCRE	does		not		retain		the		previously		partially-
							matched		string.	It	is	up	to	the	calling	program	to	do	that	if	it	needs
							to.

							You	can	set	PCRE_PARTIAL		with		PCRE_DFA_RESTART		to		continue		partial
							matching	over	multiple	segments.	This	facility	can	be	used	to	pass	very
							long	subject	strings	to	pcre_dfa_exec().	However,	some	care		is		needed
							for	certain	types	of	pattern.

							1.		If		the		pattern	contains	tests	for	the	beginning	or	end	of	a	line,
							you	need	to	pass	the	PCRE_NOTBOL	or	PCRE_NOTEOL	options,		as		appropri-
							ate,		when		the	subject	string	for	any	call	does	not	contain	the	begin-
							ning	or	end	of	a	line.

							2.	If	the	pattern	contains	backward	assertions	(including		\b		or		\B),
							you		need		to		arrange	for	some	overlap	in	the	subject	strings	to	allow
							for	this.	For	example,	you	could	pass	the	subject	in		chunks		that		are
							500		bytes	long,	but	in	a	buffer	of	700	bytes,	with	the	starting	offset
							set	to	200	and	the	previous	200	bytes	at	the	start	of	the	buffer.

							3.	Matching	a	subject	string	that	is	split	into	multiple	segments		does
							not		always	produce	exactly	the	same	result	as	matching	over	one	single
							long	string.		The	difference	arises	when	there		are		multiple		matching
							possibilities,		because	a	partial	match	result	is	given	only	when	there
							are	no	completed	matches	in	a	call	to	pcre_dfa_exec().	This	means		that
							as		soon		as		the		shortest	match	has	been	found,	continuation	to	a	new
							subject	segment	is	no	longer	possible.		Consider	this	pcretest	example:

											re>	/dog(sbody)?/
									data>	do\P\D
									Partial	match:	do
									data>	gsb\R\P\D
										0:	g

									data>	dogsbody\D
										0:	dogsbody
										1:	dog

							The		pattern	matches	the	words	"dog"	or	"dogsbody".	When	the	subject	is
							presented	in	several	parts	("do"	and	"gsb"	being		the		first		two)		the
							match		stops		when	"dog"	has	been	found,	and	it	is	not	possible	to	con-
							tinue.	On	the	other	hand,		if		"dogsbody"		is		presented		as		a		single
							string,	both	matches	are	found.

							Because		of		this		phenomenon,		it	does	not	usually	make	sense	to	end	a
							pattern	that	is	going	to	be	matched	in	this	way	with	a	variable	repeat.

							4.	Patterns	that	contain	alternatives	at	the	top	level	which	do	not	all
							start	with	the	same	pattern	item	may	not	work	as	expected.	For	example,
							consider	this	pattern:

									1234|3789

							If		the		first		part	of	the	subject	is	"ABC123",	a	partial	match	of	the
							first	alternative	is	found	at	offset	3.	There	is	no	partial		match		for
							the	second	alternative,	because	such	a	match	does	not	start	at	the	same
							point	in	the	subject	string.	Attempting	to		continue		with		the		string
							"789"	does	not	yield	a	match	because	only	those	alternatives	that	match
							at	one	point	in	the	subject	are	remembered.	The	problem	arises		because
							the		start		of	the	second	alternative	matches	within	the	first	alterna-
							tive.	There	is	no	problem	with	anchored	patterns	or	patterns	such	as:

									1234|ABCD

							where	no	string	can	be	a	partial	match	for	both	alternatives.

AUTHOR

							Philip	Hazel
							University	Computing	Service

							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	04	June	2007
							Copyright	(c)	1997-2007	University	of	Cambridge.
--

PCREPRECOMPILE(3)																																												PCREPRECOMPILE(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

SAVING	AND	RE-USING	PRECOMPILED	PCRE	PATTERNS

							If		you		are	running	an	application	that	uses	a	large	number	of	regular
							expression	patterns,	it	may	be	useful	to	store	them		in		a		precompiled
							form		instead		of		having	to	compile	them	every	time	the	application	is
							run.		If	you	are	not		using		any		private		character		tables		(see		the
							pcre_maketables()		documentation),		this	is	relatively	straightforward.
							If	you	are	using	private	tables,	it	is	a	little	bit	more	complicated.

							If	you	save	compiled	patterns	to	a	file,	you	can	copy	them	to	a	differ-
							ent		host		and		run	them	there.	This	works	even	if	the	new	host	has	the
							opposite	endianness	to	the	one	on	which		the		patterns		were		compiled.
							There		may		be	a	small	performance	penalty,	but	it	should	be	insignifi-
							cant.	However,	compiling	regular	expressions	with	one	version		of		PCRE
							for		use		with		a		different		version	is	not	guaranteed	to	work	and	may
							cause	crashes.

SAVING	A	COMPILED	PATTERN
							The	value	returned	by	pcre_compile()	points	to	a	single	block	of	memory

							that		holds		the	compiled	pattern	and	associated	data.	You	can	find	the
							length	of	this	block	in	bytes	by	calling	pcre_fullinfo()	with	an		argu-
							ment		of		PCRE_INFO_SIZE.	You	can	then	save	the	data	in	any	appropriate
							manner.	Here	is	sample	code	that	compiles	a	pattern	and	writes	it	to		a
							file.	It	assumes	that	the	variable	fd	refers	to	a	file	that	is	open	for
							output:

									int	erroroffset,	rc,	size;
									char	*error;
									pcre	*re;

									re	=	pcre_compile("my	pattern",	0,	&error;,	&erroroffset;,	NULL);
									if	(re	==	NULL)	{	...	handle	errors	...	}
									rc	=	pcre_fullinfo(re,	NULL,	PCRE_INFO_SIZE,	&size;);
									if	(rc	<	0)	{	...	handle	errors	...	}
									rc	=	fwrite(re,	1,	size,	fd);
									if	(rc	!=	size)	{	...	handle	errors	...	}

							In	this	example,	the	bytes		that		comprise		the		compiled		pattern		are
							copied		exactly.		Note	that	this	is	binary	data	that	may	contain	any	of
							the	256	possible	byte		values.		On		systems		that		make		a		distinction
							between	binary	and	non-binary	data,	be	sure	that	the	file	is	opened	for
							binary	output.

							If	you	want	to	write	more	than	one	pattern	to	a	file,	you	will	have		to
							devise		a		way	of	separating	them.	For	binary	data,	preceding	each	pat-
							tern	with	its	length	is	probably		the		most		straightforward		approach.
							Another		possibility	is	to	write	out	the	data	in	hexadecimal	instead	of
							binary,	one	pattern	to	a	line.

							Saving	compiled	patterns	in	a	file	is	only	one	possible	way	of		storing
							them		for	later	use.	They	could	equally	well	be	saved	in	a	database,	or
							in	the	memory	of	some	daemon	process	that	passes	them		via		sockets		to
							the	processes	that	want	them.

							If		the	pattern	has	been	studied,	it	is	also	possible	to	save	the	study
							data	in	a	similar	way	to	the	compiled		pattern		itself.		When		studying

							generates		additional		information,	pcre_study()	returns	a	pointer	to	a
							pcre_extra	data	block.	Its	format	is	defined	in	the	section	on	matching
							a		pattern	in	the	pcreapi	documentation.	The	study_data	field	points	to
							the	binary	study	data,		and		this		is		what		you		must		save		(not		the
							pcre_extra		block	itself).	The	length	of	the	study	data	can	be	obtained
							by	calling	pcre_fullinfo()	with		an		argument		of		PCRE_INFO_STUDYSIZE.
							Remember		to	check	that	pcre_study()	did	return	a	non-NULL	value	before
							trying	to	save	the	study	data.

RE-USING	A	PRECOMPILED	PATTERN

							Re-using	a	precompiled	pattern	is	straightforward.	Having		reloaded		it
							into			main			memory,			you			pass			its			pointer		to		pcre_exec()		or
							pcre_dfa_exec()	in	the	usual	way.	This		should		work		even		on		another
							host,		and		even		if		that		host	has	the	opposite	endianness	to	the	one
							where	the	pattern	was	compiled.

							However,	if	you	passed	a	pointer	to	custom	character		tables		when		the
							pattern		was		compiled		(the		tableptr	argument	of	pcre_compile()),	you
							must	now	pass	a	similar		pointer		to		pcre_exec()		or		pcre_dfa_exec(),
							because		the		value		saved		with	the	compiled	pattern	will	obviously	be
							nonsense.	A	field	in	a	pcre_extra()	block	is	used	to	pass	this	data,	as
							described		in	the	section	on	matching	a	pattern	in	the	pcreapi	documen-
							tation.

							If	you	did	not	provide	custom	character	tables		when		the		pattern		was
							compiled,		the		pointer		in		the	compiled	pattern	is	NULL,	which	causes
							pcre_exec()	to	use	PCRE's	internal	tables.	Thus,	you		do		not		need		to
							take	any	special	action	at	run	time	in	this	case.

							If		you		saved	study	data	with	the	compiled	pattern,	you	need	to	create
							your	own	pcre_extra	data	block	and	set	the	study_data	field	to	point	to
							the		reloaded		study		data.	You	must	also	set	the	PCRE_EXTRA_STUDY_DATA
							bit	in	the	flags	field	to	indicate	that	study		data		is		present.		Then
							pass		the		pcre_extra		block		to		pcre_exec()	or	pcre_dfa_exec()	in	the
							usual	way.

COMPATIBILITY	WITH	DIFFERENT	PCRE	RELEASES

							In	general,	it	is	safest	to		recompile		all		saved		patterns		when		you
							update		to		a	new	PCRE	release,	though	not	all	updates	actually	require
							this.	Recompiling	is	definitely	needed	for	release	7.2.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	13	June	2007
							Copyright	(c)	1997-2007	University	of	Cambridge.
--

PCREPERFORM(3)																																																		PCREPERFORM(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	PERFORMANCE

							Two		aspects		of	performance	are	discussed	below:	memory	usage	and	pro-
							cessing	time.	The	way	you	express	your	pattern	as	a	regular		expression
							can	affect	both	of	them.

MEMORY	USAGE

							Patterns	are	compiled	by	PCRE	into	a	reasonably	efficient	byte	code,	so
							that	most	simple	patterns	do	not	use	much	memory.	However,	there	is	one
							case	where	memory	usage	can	be	unexpectedly	large.	When	a	parenthesized
							subpattern	has	a	quantifier	with	a	minimum	greater	than	1	and/or	a	lim-
							ited		maximum,		the		whole	subpattern	is	repeated	in	the	compiled	code.
							For	example,	the	pattern

									(abc|def){2,4}

							is	compiled	as	if	it	were

									(abc|def)(abc|def)((abc|def)(abc|def)?)?

							(Technical	aside:	It	is	done	this	way	so	that	backtrack		points		within
							each	of	the	repetitions	can	be	independently	maintained.)

							For		regular	expressions	whose	quantifiers	use	only	small	numbers,	this
							is	not	usually	a	problem.	However,	if	the	numbers	are	large,		and		par-
							ticularly		if		such	repetitions	are	nested,	the	memory	usage	can	become
							an	embarrassment.	For	example,	the	very	simple	pattern

									((ab){1,1000}c){1,3}

							uses	51K	bytes	when	compiled.	When	PCRE	is	compiled		with		its		default
							internal		pointer		size	of	two	bytes,	the	size	limit	on	a	compiled	pat-
							tern	is	64K,	and	this	is	reached	with	the	above	pattern		if		the		outer
							repetition	is	increased	from	3	to	4.	PCRE	can	be	compiled	to	use	larger
							internal	pointers	and	thus	handle	larger	compiled	patterns,	but		it		is
							better	to	try	to	rewrite	your	pattern	to	use	less	memory	if	you	can.

							One		way		of	reducing	the	memory	usage	for	such	patterns	is	to	make	use
							of	PCRE's	"subroutine"	facility.	Re-writing	the	above	pattern	as

									((ab)(?2){0,999}c)(?1){0,2}

							reduces	the	memory	requirements	to	18K,	and	indeed	it	remains	under	20K
							even		with	the	outer	repetition	increased	to	100.	However,	this	pattern
							is	not	exactly	equivalent,	because	the	"subroutine"	calls		are		treated
							as		atomic	groups	into	which	there	can	be	no	backtracking	if	there	is	a
							subsequent	matching	failure.	Therefore,	PCRE	cannot		do		this		kind		of
							rewriting		automatically.			Furthermore,		there	is	a	noticeable	loss	of
							speed	when	executing	the	modified	pattern.	Nevertheless,	if	the		atomic
							grouping		is		not		a		problem	and	the	loss	of	speed	is	acceptable,	this
							kind	of	rewriting	will	allow	you	to	process	patterns	that		PCRE		cannot
							otherwise	handle.

PROCESSING	TIME

							Certain		items		in	regular	expression	patterns	are	processed	more	effi-
							ciently	than	others.	It	is	more	efficient	to	use	a	character	class	like
							[aeiou]			than			a			set			of		single-character		alternatives		such		as
							(a|e|i|o|u).	In	general,	the	simplest	construction		that		provides		the
							required	behaviour	is	usually	the	most	efficient.	Jeffrey	Friedl's	book
							contains	a	lot	of	useful	general	discussion		about		optimizing		regular
							expressions		for		efficient		performance.		This	document	contains	a	few
							observations	about	PCRE.

							Using	Unicode	character	properties	(the	\p,		\P,		and		\X		escapes)		is
							slow,		because	PCRE	has	to	scan	a	structure	that	contains	data	for	over
							fifteen	thousand	characters	whenever	it	needs	a		character's		property.
							If		you		can		find		an		alternative	pattern	that	does	not	use	character
							properties,	it	will	probably	be	faster.

							When	a	pattern	begins	with	.*	not	in		parentheses,		or		in		parentheses
							that	are	not	the	subject	of	a	backreference,	and	the	PCRE_DOTALL	option
							is	set,	the	pattern	is	implicitly	anchored	by	PCRE,	since	it	can		match
							only		at		the	start	of	a	subject	string.	However,	if	PCRE_DOTALL	is	not
							set,	PCRE	cannot	make	this	optimization,	because		the		.		metacharacter
							does		not	then	match	a	newline,	and	if	the	subject	string	contains	new-
							lines,	the	pattern	may	match	from	the	character		immediately		following
							one	of	them	instead	of	from	the	very	start.	For	example,	the	pattern

									.*second

							matches		the	subject	"first\nand	second"	(where	\n	stands	for	a	newline
							character),	with	the	match	starting	at	the	seventh	character.	In		order
							to	do	this,	PCRE	has	to	retry	the	match	starting	after	every	newline	in
							the	subject.

							If	you	are	using	such	a	pattern	with	subject	strings	that	do		not		con-
							tain	newlines,	the	best	performance	is	obtained	by	setting	PCRE_DOTALL,
							or	starting	the	pattern	with	^.*	or	^.*?	to	indicate		explicit		anchor-
							ing.		That	saves	PCRE	from	having	to	scan	along	the	subject	looking	for
							a	newline	to	restart	at.

							Beware	of	patterns	that	contain	nested	indefinite		repeats.		These		can
							take		a		long	time	to	run	when	applied	to	a	string	that	does	not	match.
							Consider	the	pattern	fragment

									^(a+)*

							This	can	match	"aaaa"	in	16	different	ways,	and	this		number		increases
							very		rapidly		as	the	string	gets	longer.	(The	*	repeat	can	match	0,	1,
							2,	3,	or	4	times,	and	for	each	of	those	cases	other	than	0	or	4,	the		+
							repeats		can		match		different	numbers	of	times.)	When	the	remainder	of
							the	pattern	is	such	that	the	entire	match	is	going	to	fail,	PCRE	has	in
							principle		to		try		every		possible		variation,		and		this		can	take	an
							extremely	long	time,	even	for	relatively	short	strings.

							An	optimization	catches	some	of	the	more	simple	cases	such	as

									(a+)*b

							where	a	literal	character	follows.	Before		embarking		on		the		standard
							matching		procedure,		PCRE	checks	that	there	is	a	"b"	later	in	the	sub-
							ject	string,	and	if	there	is	not,	it	fails	the	match	immediately.		How-
							ever,		when		there		is	no	following	literal	this	optimization	cannot	be
							used.	You	can	see	the	difference	by	comparing	the	behaviour	of

									(a+)*\d

							with	the	pattern	above.	The	former	gives		a		failure		almost		instantly
							when		applied		to		a		whole		line	of	"a"	characters,	whereas	the	latter
							takes	an	appreciable	time	with	strings	longer	than	about	20	characters.

							In	many	cases,	the	solution	to	this	kind	of	performance	issue	is	to	use
							an	atomic	group	or	a	possessive	quantifier.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	06	March	2007
							Copyright	(c)	1997-2007	University	of	Cambridge.
--

PCREPOSIX(3)																																																						PCREPOSIX(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions.

SYNOPSIS	OF	POSIX	API

							#include	<pcreposix.h>

							int	regcomp(regex_t	*preg,	const	char	*pattern,

												int	cflags);

							int	regexec(regex_t	*preg,	const	char	*string,
												size_t	nmatch,	regmatch_t	pmatch[],	int	eflags);

							size_t	regerror(int	errcode,	const	regex_t	*preg,
												char	*errbuf,	size_t	errbuf_size);

							void	regfree(regex_t	*preg);

DESCRIPTION

							This		set		of		functions	provides	a	POSIX-style	API	to	the	PCRE	regular
							expression	package.	See	the	pcreapi	documentation	for	a	description		of
							PCRE's	native	API,	which	contains	much	additional	functionality.

							The	functions	described	here	are	just	wrapper	functions	that	ultimately
							call		the		PCRE		native		API.		Their		prototypes		are		defined		in		the
							pcreposix.h		header		file,		and		on		Unix	systems	the	library	itself	is
							called	pcreposix.a,	so	can	be	accessed	by		adding		-lpcreposix		to		the
							command		for		linking		an	application	that	uses	them.	Because	the	POSIX
							functions	call	the	native	ones,	it	is	also	necessary	to	add	-lpcre.

							I	have	implemented	only	those	option	bits	that	can	be	reasonably	mapped
							to	PCRE	native	options.	In	addition,	the	option	REG_EXTENDED	is	defined
							with	the	value	zero.	This	has	no	effect,	but	since		programs		that		are
							written		to		the		POSIX	interface	often	use	it,	this	makes	it	easier	to
							slot	in	PCRE	as	a	replacement	library.	Other	POSIX	options	are	not	even
							defined.

							When		PCRE		is		called		via	these	functions,	it	is	only	the	API	that	is
							POSIX-like	in	style.	The	syntax	and	semantics	of		the		regular		expres-
							sions		themselves		are		still		those	of	Perl,	subject	to	the	setting	of
							various	PCRE	options,	as	described	below.	"POSIX-like	in		style"		means
							that		the		API		approximates		to		the	POSIX	definition;	it	is	not	fully
							POSIX-compatible,	and	in	multi-byte	encoding		domains		it		is		probably

							even	less	compatible.

							The		header	for	these	functions	is	supplied	as	pcreposix.h	to	avoid	any
							potential	clash	with	other	POSIX		libraries.		It		can,		of		course,		be
							renamed	or	aliased	as	regex.h,	which	is	the	"correct"	name.	It	provides
							two	structure	types,	regex_t	for		compiled		internal		forms,		and		reg-
							match_t		for		returning		captured	substrings.	It	also	defines	some	con-
							stants	whose	names	start		with		"REG_";		these		are		used		for		setting
							options	and	identifying	error	codes.

COMPILING	A	PATTERN

							The		function	regcomp()	is	called	to	compile	a	pattern	into	an	internal
							form.	The	pattern	is	a	C	string	terminated	by	a		binary		zero,		and		is
							passed		in		the		argument		pattern.	The	preg	argument	is	a	pointer	to	a
							regex_t	structure	that	is	used	as	a	base	for	storing	information		about
							the	compiled	regular	expression.

							The	argument	cflags	is	either	zero,	or	contains	one	or	more	of	the	bits
							defined	by	the	following	macros:

									REG_DOTALL

							The	PCRE_DOTALL	option	is	set	when	the	regular	expression	is	passed	for
							compilation	to	the	native	function.	Note	that	REG_DOTALL	is	not	part	of
							the	POSIX	standard.

									REG_ICASE

							The	PCRE_CASELESS	option	is	set	when	the	regular	expression		is		passed
							for	compilation	to	the	native	function.

									REG_NEWLINE

							The		PCRE_MULTILINE	option	is	set	when	the	regular	expression	is	passed
							for	compilation	to	the	native	function.	Note	that	this	does		not		mimic

							the		defined		POSIX		behaviour		for	REG_NEWLINE	(see	the	following	sec-
							tion).

									REG_NOSUB

							The	PCRE_NO_AUTO_CAPTURE	option	is	set	when	the	regular		expression		is
							passed	for	compilation	to	the	native	function.	In	addition,	when	a	pat-
							tern	that	is	compiled	with	this	flag	is	passed	to	regexec()	for		match-
							ing,		the		nmatch		and		pmatch		arguments		are	ignored,	and	no	captured
							strings	are	returned.

									REG_UTF8

							The	PCRE_UTF8	option	is	set	when	the	regular	expression	is		passed		for
							compilation		to	the	native	function.	This	causes	the	pattern	itself	and
							all	data	strings	used	for	matching	it	to	be	treated	as		UTF-8		strings.
							Note	that	REG_UTF8	is	not	part	of	the	POSIX	standard.

							In		the		absence		of		these		flags,	no	options	are	passed	to	the	native
							function.		This	means	the	the		regex		is		compiled		with		PCRE		default
							semantics.		In	particular,	the	way	it	handles	newline	characters	in	the
							subject	string	is	the	Perl	way,	not	the	POSIX	way.		Note		that		setting
							PCRE_MULTILINE		has	only	some	of	the	effects	specified	for	REG_NEWLINE.
							It	does	not	affect	the	way	newlines	are	matched	by	.	(they		aren't)		or
							by	a	negative	class	such	as	[^a]	(they	are).

							The		yield	of	regcomp()	is	zero	on	success,	and	non-zero	otherwise.	The
							preg	structure	is	filled	in	on	success,	and	one	member	of	the	structure
							is		public:	re_nsub	contains	the	number	of	capturing	subpatterns	in	the
							regular	expression.	Various	error	codes	are	defined	in	the	header	file.

MATCHING	NEWLINE	CHARACTERS

							This	area	is	not	simple,	because	POSIX	and	Perl	take	different	views	of
							things.		It	is	not	possible	to	get	PCRE	to	obey		POSIX		semantics,		but
							then		PCRE	was	never	intended	to	be	a	POSIX	engine.	The	following	table

							lists	the	different	possibilities	for	matching		newline		characters		in
							PCRE:

																																	Default			Change	with

									.	matches	newline										no					PCRE_DOTALL
									newline	matches	[^a]							yes				not	changeable
									$	matches	\n	at	end								yes				PCRE_DOLLARENDONLY
									$	matches	\n	in	middle					no					PCRE_MULTILINE
									^	matches	\n	in	middle					no					PCRE_MULTILINE

							This	is	the	equivalent	table	for	POSIX:

																																	Default			Change	with

									.	matches	newline										yes				REG_NEWLINE
									newline	matches	[^a]							yes				REG_NEWLINE
									$	matches	\n	at	end								no					REG_NEWLINE
									$	matches	\n	in	middle					no					REG_NEWLINE
									^	matches	\n	in	middle					no					REG_NEWLINE

							PCRE's	behaviour	is	the	same	as	Perl's,	except	that	there	is	no	equiva-
							lent	for	PCRE_DOLLAR_ENDONLY	in	Perl.	In	both	PCRE	and	Perl,		there		is
							no	way	to	stop	newline	from	matching	[^a].

							The			default		POSIX		newline		handling		can		be		obtained		by		setting
							PCRE_DOTALL	and	PCRE_DOLLAR_ENDONLY,	but	there	is	no	way	to		make		PCRE
							behave	exactly	as	for	the	REG_NEWLINE	action.

MATCHING	A	PATTERN

							The		function		regexec()		is		called		to		match	a	compiled	pattern	preg
							against	a	given	string,	which	is	by	default	terminated	by	a		zero		byte
							(but		see		REG_STARTEND	below),	subject	to	the	options	in	eflags.	These
							can	be:

									REG_NOTBOL

							The	PCRE_NOTBOL	option	is	set	when	calling	the	underlying	PCRE	matching
							function.

									REG_NOTEOL

							The	PCRE_NOTEOL	option	is	set	when	calling	the	underlying	PCRE	matching
							function.

									REG_STARTEND

							The	string	is	considered	to	start	at	string	+		pmatch[0].rm_so		and		to
							have		a	terminating	NUL	located	at	string	+	pmatch[0].rm_eo	(there	need
							not	actually	be	a	NUL	at	that	location),	regardless		of		the		value		of
							nmatch.		This		is	a	BSD	extension,	compatible	with	but	not	specified	by
							IEEE	Standard	1003.2	(POSIX.2),	and	should		be		used		with		caution		in
							software	intended	to	be	portable	to	other	systems.	Note	that	a	non-zero
							rm_so	does	not	imply	REG_NOTBOL;	REG_STARTEND	affects	only	the	location
							of	the	string,	not	how	it	is	matched.

							If		the	pattern	was	compiled	with	the	REG_NOSUB	flag,	no	data	about	any
							matched	strings		is		returned.		The		nmatch		and		pmatch		arguments		of
							regexec()	are	ignored.

							Otherwise,the	portion	of	the	string	that	was	matched,	and	also	any	cap-
							tured	substrings,	are	returned	via	the	pmatch	argument,	which	points	to
							an		array		of	nmatch	structures	of	type	regmatch_t,	containing	the	mem-
							bers	rm_so	and	rm_eo.	These	contain	the	offset	to	the		first		character
							of		each		substring	and	the	offset	to	the	first	character	after	the	end
							of	each	substring,	respectively.	The	0th	element	of	the	vector		relates
							to		the		entire	portion	of	string	that	was	matched;	subsequent	elements
							relate	to	the	capturing	subpatterns	of	the	regular		expression.		Unused
							entries	in	the	array	have	both	structure	members	set	to	-1.

							A		successful		match		yields		a		zero		return;		various	error	codes	are
							defined	in	the	header	file,	of		which		REG_NOMATCH		is		the		"expected"

							failure	code.

ERROR	MESSAGES

							The	regerror()	function	maps	a	non-zero	errorcode	from	either	regcomp()
							or	regexec()	to	a	printable	message.	If	preg	is		not		NULL,		the		error
							should	have	arisen	from	the	use	of	that	structure.	A	message	terminated
							by	a	binary	zero	is	placed		in		errbuf.		The		length		of		the		message,
							including		the		zero,	is	limited	to	errbuf_size.	The	yield	of	the	func-
							tion	is	the	size	of	buffer	needed	to	hold	the	whole	message.

MEMORY	USAGE

							Compiling	a	regular	expression	causes	memory	to	be	allocated	and		asso-
							ciated		with		the	preg	structure.	The	function	regfree()	frees	all	such
							memory,	after	which	preg	may	no	longer	be	used	as		a		compiled		expres-
							sion.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	05	April	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

PCRECPP(3)																																																										PCRECPP(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions.

SYNOPSIS	OF	C++	WRAPPER

							#include	<pcrecpp.h>

DESCRIPTION

							The		C++		wrapper		for	PCRE	was	provided	by	Google	Inc.	Some	additional
							functionality	was	added	by	Giuseppe	Maxia.	This	brief	man	page	was	con-
							structed		from		the		notes		in	the	pcrecpp.h	file,	which	should	be	con-
							sulted	for	further	details.

MATCHING	INTERFACE

							The	"FullMatch"	operation	checks	that	supplied	text	matches	a		supplied
							pattern		exactly.		If	pointer	arguments	are	supplied,	it	copies	matched
							sub-strings	that	match	sub-patterns	into	them.

									Example:	successful	match
												pcrecpp::RE	re("h.*o");
												re.FullMatch("hello");

									Example:	unsuccessful	match	(requires	full	match):
												pcrecpp::RE	re("e");
												!re.FullMatch("hello");

									Example:	creating	a	temporary	RE	object:
												pcrecpp::RE("h.*o").FullMatch("hello");

							You	can	pass	in	a	"const	char*"	or	a	"string"	for	"text".	The		examples
							below		tend	to	use	a	const	char*.	You	can,	as	in	the	different	examples

							above,	store	the	RE	object	explicitly	in	a	variable	or	use	a		temporary
							RE		object.		The		examples	below	use	one	mode	or	the	other	arbitrarily.
							Either	could	correctly	be	used	for	any	of	these	examples.

							You	must	supply	extra	pointer	arguments	to	extract	matched	subpieces.

									Example:	extracts	"ruby"	into	"s"	and	1234	into	"i"
												int	i;
												string	s;
												pcrecpp::RE	re("(\\w+):(\\d+)");
												re.FullMatch("ruby:1234",	&s;,	&i;);

									Example:	does	not	try	to	extract	any	extra	sub-patterns
												re.FullMatch("ruby:1234",	&s;);

									Example:	does	not	try	to	extract	into	NULL
												re.FullMatch("ruby:1234",	NULL,	&i;);

									Example:	integer	overflow	causes	failure
												!re.FullMatch("ruby:1234567891234",	NULL,	&i;);

									Example:	fails	because	there	aren't	enough	sub-patterns:
												!pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234",	&s;);

									Example:	fails	because	string	cannot	be	stored	in	integer
												!pcrecpp::RE("(.*)").FullMatch("ruby",	&i;);

							The	provided	pointer	arguments	can	be	pointers	to		any		scalar		numeric
							type,	or	one	of:

										string								(matched	piece	is	copied	to	string)
										StringPiece			(StringPiece	is	mutated	to	point	to	matched	piece)
										T													(where	"bool	T::ParseFrom(const	char*,	int)"	exists)
										NULL										(the	corresponding	matched	sub-pattern	is	not	copied)

							The		function	returns	true	iff	all	of	the	following	conditions	are	sat-
							isfied:

									a.	"text"	matches	"pattern"	exactly;

									b.	The	number	of	matched	sub-patterns	is	>=	number	of	supplied
												pointers;

									c.	The	"i"th	argument	has	a	suitable	type	for	holding	the
												string	captured	as	the	"i"th	sub-pattern.	If	you	pass	in
												void	*	NULL	for	the	"i"th	argument,	or	a	non-void	*	NULL
												of	the	correct	type,	or	pass	fewer	arguments	than	the
												number	of	sub-patterns,	"i"th	captured	sub-pattern	is
												ignored.

							CAVEAT:	An	optional	sub-pattern	that	does		not		exist		in		the		matched
							string		is		assigned		the		empty		string.	Therefore,	the	following	will
							return	false	(because	the	empty	string	is	not	a	valid	number):

										int	number;
										pcrecpp::RE::FullMatch("abc",	"[a-z]+(\\d+)?",	&number;);

							The	matching	interface	supports	at	most	16	arguments	per	call.		If		you
							need				more,				consider				using				the				more			general			interface
							pcrecpp::RE::DoMatch.	See	pcrecpp.h	for	the	signature	for	DoMatch.

QUOTING	METACHARACTERS

							You	can	use	the	"QuoteMeta"	operation	to	insert	backslashes	before		all
							potentially		meaningful		characters		in		a	string.	The	returned	string,
							used	as	a	regular	expression,	will	exactly	match	the	original	string.

									Example:
												string	quoted	=	RE::QuoteMeta(unquoted);

							Note	that	it's	legal	to	escape	a	character	even	if	it		has		no		special
							meaning		in		a		regular	expression	--	so	this	function	does	that.	(This
							also	makes	it	identical	to	the	perl	function		of		the		same		name;		see

							"perldoc				-f				quotemeta".)				For			example,			"1.5-2.0?"			becomes
							"1\.5\-2\.0\?".

PARTIAL	MATCHES

							You	can	use	the	"PartialMatch"	operation	when	you	want	the		pattern		to
							match	any	substring	of	the	text.

									Example:	simple	search	for	a	string:
												pcrecpp::RE("ell").PartialMatch("hello");

									Example:	find	first	number	in	a	string:
												int	number;
												pcrecpp::RE	re("(\\d+)");
												re.PartialMatch("x*100	+	20",	&number;);
												assert(number	==	100);

UTF-8	AND	THE	MATCHING	INTERFACE

							By		default,		pattern		and	text	are	plain	text,	one	byte	per	character.
							The	UTF8	flag,	passed	to		the		constructor,		causes		both		pattern		and
							string	to	be	treated	as	UTF-8	text,	still	a	byte	stream	but	potentially
							multiple	bytes	per	character.	In	practice,	the	text	is	likelier		to		be
							UTF-8		than		the	pattern,	but	the	match	returned	may	depend	on	the	UTF8
							flag,	so	always	use	it	when	matching	UTF8	text.	For	example,		"."		will
							match		one		byte	normally	but	with	UTF8	set	may	match	up	to	three	bytes
							of	a	multi-byte	character.

									Example:
												pcrecpp::RE_Options	options;
												options.set_utf8();
												pcrecpp::RE	re(utf8_pattern,	options);
												re.FullMatch(utf8_string);

									Example:	using	the	convenience	function	UTF8():

												pcrecpp::RE	re(utf8_pattern,	pcrecpp::UTF8());
												re.FullMatch(utf8_string);

							NOTE:	The	UTF8	flag	is	ignored	if	pcre	was	not	configured	with	the
													--enable-utf8	flag.

PASSING	MODIFIERS	TO	THE	REGULAR	EXPRESSION	ENGINE

							PCRE	defines	some	modifiers	to		change		the		behavior		of		the		regular
							expression			engine.		The		C++		wrapper		defines		an		auxiliary		class,
							RE_Options,	as	a	vehicle	to	pass	such	modifiers	to		a		RE		class.		Cur-
							rently,	the	following	modifiers	are	supported:

										modifier														description															Perl	corresponding

										PCRE_CASELESS									case	insensitive	match						/i
										PCRE_MULTILINE								multiple	lines	match								/m
										PCRE_DOTALL											dot	matches	newlines								/s
										PCRE_DOLLAR_ENDONLY			$	matches	only	at	end							N/A
										PCRE_EXTRA												strict	escape	parsing							N/A
										PCRE_EXTENDED									ignore	whitespaces										/x
										PCRE_UTF8													handles	UTF8	chars										built-in
										PCRE_UNGREEDY									reverses	*	and	*?											N/A
										PCRE_NO_AUTO_CAPTURE		disables	capturing	parens			N/A	(*)

							(*)		Both	Perl	and	PCRE	allow	non	capturing	parentheses	by	means	of	the
							"?:"	modifier	within	the	pattern	itself.	e.g.	(?:ab|cd)	does		not		cap-
							ture,	while	(ab|cd)	does.

							For		a		full		account	on	how	each	modifier	works,	please	check	the	PCRE
							API	reference	page.

							For	each	modifier,	there	are	two	member	functions	whose		name		is		made
							out		of		the		modifier		in		lowercase,		without	the	"PCRE_"	prefix.	For
							instance,	PCRE_CASELESS	is	handled	by

									bool	caseless()

							which	returns	true	if	the	modifier	is	set,	and

									RE_Options	&	set_caseless(bool)

							which	sets	or	unsets	the	modifier.	Moreover,	PCRE_EXTRA_MATCH_LIMIT	can
							be		accessed		through		the		set_match_limit()		and	match_limit()	member
							functions.	Setting	match_limit	to	a	non-zero	value	will	limit	the		exe-
							cution		of	pcre	to	keep	it	from	doing	bad	things	like	blowing	the	stack
							or	taking	an	eternity	to	return	a	result.		A		value		of		5000		is		good
							enough		to	stop	stack	blowup	in	a	2MB	thread	stack.	Setting	match_limit
							to		zero		disables		match		limiting.		Alternatively,			you			can			call
							match_limit_recursion()		which	uses	PCRE_EXTRA_MATCH_LIMIT_RECURSION	to
							limit	how	much		PCRE		recurses.		match_limit()		limits		the		number		of
							matches	PCRE	does;	match_limit_recursion()	limits	the	depth	of	internal
							recursion,	and	therefore	the	amount	of	stack	that	is	used.

							Normally,	to	pass	one	or	more	modifiers	to	a	RE	class,		you		declare		a
							RE_Options	object,	set	the	appropriate	options,	and	pass	this	object	to
							a	RE	constructor.	Example:

										RE_options	opt;
										opt.set_caseless(true);
										if	(RE("HELLO",	opt).PartialMatch("hello	world"))	...

							RE_options	has	two	constructors.	The	default	constructor	takes	no	argu-
							ments		and	creates	a	set	of	flags	that	are	off	by	default.	The	optional
							parameter	option_flags	is	to	facilitate	transfer	of	legacy	code	from		C
							programs.		This	lets	you	do

										RE(pattern,
												RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);

							However,	new	code	is	better	off	doing

										RE(pattern,

												RE_Options().set_caseless(true).set_multiline(true))
														.PartialMatch(str);

							If	you	are	going	to	pass	one	of	the	most	used	modifiers,	there	are	some
							convenience	functions	that	return	a	RE_Options	class	with	the	appropri-
							ate		modifier		already		set:	CASELESS(),	UTF8(),	MULTILINE(),	DOTALL(),
							and	EXTENDED().

							If	you	need	to	set	several	options	at	once,	and	you	don't		want		to		go
							through		the	pains	of	declaring	a	RE_Options	object	and	setting	several
							options,	there	is	a	parallel	method	that	give	you	such	ability		on		the
							fly.		You		can		concatenate	several	set_xxxxx()	member	functions,	since
							each	of	them	returns	a	reference	to	its	class	object.	For		example,		to
							pass		PCRE_CASELESS,	PCRE_EXTENDED,	and	PCRE_MULTILINE	to	a	RE	with	one
							statement,	you	may	write:

										RE("	^	xyz	\\s+	.*	blah$",
												RE_Options()
														.set_caseless(true)
														.set_extended(true)
														.set_multiline(true)).PartialMatch(sometext);

SCANNING	TEXT	INCREMENTALLY

							The	"Consume"	operation	may	be	useful	if	you	want	to		repeatedly		match
							regular	expressions	at	the	front	of	a	string	and	skip	over	them	as	they
							match.	This	requires	use	of	the	"StringPiece"	type,	which	represents		a
							sub-range		of		a		real		string.		Like	RE,	StringPiece	is	defined	in	the
							pcrecpp	namespace.

									Example:	read	lines	of	the	form	"var	=	value"	from	a	string.
												string	contents	=	...;																	//	Fill	string	somehow
												pcrecpp::StringPiece	input(contents);		//	Wrap	in	a	StringPiece

												string	var;
												int	value;

												pcrecpp::RE	re("(\\w+)	=	(\\d+)\n");
												while	(re.Consume(&input;,	&var;,	&value;))	{
														...;
												}

							Each	successful	call		to		"Consume"		will		set		"var/value",		and		also
							advance	"input"	so	it	points	past	the	matched	text.

							The		"FindAndConsume"		operation		is		similar	to	"Consume"	but	does	not
							anchor	your	match	at	the	beginning	of		the		string.		For		example,		you
							could	extract	all	words	from	a	string	by	repeatedly	calling

									pcrecpp::RE("(\\w+)").FindAndConsume(&input;,	&word;)

PARSING	HEX/OCTAL/C-RADIX	NUMBERS

							By	default,	if	you	pass	a	pointer	to	a	numeric	value,	the	corresponding
							text	is	interpreted	as	a	base-10		number.		You		can		instead		wrap		the
							pointer	with	a	call	to	one	of	the	operators	Hex(),	Octal(),	or	CRadix()
							to	interpret	the	text	in	another	base.	The	CRadix		operator		interprets
							C-style		"0"		(base-8)		and		"0x"		(base-16)		prefixes,	but	defaults	to
							base-10.

									Example:
											int	a,	b,	c,	d;
											pcrecpp::RE	re("(.*)	(.*)	(.*)	(.*)");
											re.FullMatch("100	40	0100	0x40",
																								pcrecpp::Octal(&a;),	pcrecpp::Hex(&b;),
																								pcrecpp::CRadix(&c;),	pcrecpp::CRadix(&d;));

							will	leave	64	in	a,	b,	c,	and	d.

REPLACING	PARTS	OF	STRINGS

							You	can	replace	the	first	match	of	"pattern"	in	"str"		with		"rewrite".

							Within		"rewrite",		backslash-escaped		digits	(\1	to	\9)	can	be	used	to
							insert	text	matching	corresponding	parenthesized	group		from		the		pat-
							tern.	\0	in	"rewrite"	refers	to	the	entire	matching	text.	For	example:

									string	s	=	"yabba	dabba	doo";
									pcrecpp::RE("b+").Replace("d",	&s;);

							will		leave		"s"	containing	"yada	dabba	doo".	The	result	is	true	if	the
							pattern	matches	and	a	replacement	occurs,	false	otherwise.

							GlobalReplace	is	like	Replace	except	that	it	replaces		all		occurrences
							of		the		pattern		in		the	string	with	the	rewrite.	Replacements	are	not
							subject	to	re-matching.	For	example:

									string	s	=	"yabba	dabba	doo";
									pcrecpp::RE("b+").GlobalReplace("d",	&s;);

							will	leave	"s"	containing	"yada	dada	doo".	It		returns		the		number		of
							replacements	made.

							Extract		is	like	Replace,	except	that	if	the	pattern	matches,	"rewrite"
							is	copied	into	"out"	(an	additional	argument)	with	substitutions.			The
							non-matching		portions		of	"text"	are	ignored.	Returns	true	iff	a	match
							occurred	and	the	extraction	happened	successfully;		if	no	match	occurs,
							the	string	is	left	unaffected.

AUTHOR

							The	C++	wrapper	was	contributed	by	Google	Inc.
							Copyright	(c)	2007	Google	Inc.

REVISION

							Last	updated:	12	November	2007
--

PCRESAMPLE(3)																																																				PCRESAMPLE(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	SAMPLE	PROGRAM

							A	simple,	complete	demonstration	program,	to	get	you	started	with	using
							PCRE,	is	supplied	in	the	file	pcredemo.c	in	the	PCRE	distribution.

							The	program	compiles	the	regular	expression	that	is	its	first	argument,
							and		matches		it		against	the	subject	string	in	its	second	argument.	No
							PCRE	options	are	set,	and	default	character	tables	are	used.	If		match-
							ing		succeeds,		the		program		outputs		the		portion	of	the	subject	that
							matched,	together	with	the	contents	of	any	captured	substrings.

							If	the	-g	option	is	given	on	the	command	line,	the	program	then	goes	on
							to	check	for	further	matches	of	the	same	regular	expression	in	the	same
							subject	string.	The	logic	is	a	little	bit	tricky	because	of	the		possi-
							bility		of		matching	an	empty	string.	Comments	in	the	code	explain	what
							is	going	on.

							If	PCRE	is	installed	in	the	standard	include		and		library		directories
							for		your		system,	you	should	be	able	to	compile	the	demonstration	pro-
							gram	using	this	command:

									gcc	-o	pcredemo	pcredemo.c	-lpcre

							If	PCRE	is	installed	elsewhere,	you	may	need	to	add	additional		options
							to		the		command	line.	For	example,	on	a	Unix-like	system	that	has	PCRE
							installed	in	/usr/local,	you		can		compile		the		demonstration		program
							using	a	command	like	this:

									gcc	-o	pcredemo	-I/usr/local/include	pcredemo.c	\
													-L/usr/local/lib	-lpcre

							Once		you		have		compiled	the	demonstration	program,	you	can	run	simple
							tests	like	this:

									./pcredemo	'cat|dog'	'the	cat	sat	on	the	mat'
									./pcredemo	-g	'cat|dog'	'the	dog	sat	on	the	cat'

							Note	that	there	is	a		much		more		comprehensive		test		program,		called
							pcretest,		which		supports		many		more		facilities		for	testing	regular
							expressions	and	the	PCRE	library.	The	pcredemo	program	is	provided	as	a
							simple	coding	example.

							On	some	operating	systems	(e.g.	Solaris),	when	PCRE	is	not	installed	in
							the	standard	library	directory,	you	may	get	an	error	like	this	when	you
							try	to	run	pcredemo:

									ld.so.1:		a.out:		fatal:		libpcre.so.0:		open	failed:	No	such	file	or
							directory

							This	is	caused	by	the	way	shared	library	support	works		on		those		sys-
							tems.	You	need	to	add

									-R/usr/local/lib

							(for	example)	to	the	compile	command	to	get	round	this	problem.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	23	January	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--
PCRESTACK(3)																																																						PCRESTACK(3)

NAME
							PCRE	-	Perl-compatible	regular	expressions

PCRE	DISCUSSION	OF	STACK	USAGE

							When		you	call	pcre_exec(),	it	makes	use	of	an	internal	function	called
							match().	This	calls	itself	recursively	at	branch	points	in	the	pattern,
							in		order	to	remember	the	state	of	the	match	so	that	it	can	back	up	and
							try	a	different	alternative	if	the	first	one	fails.		As		matching		pro-
							ceeds		deeper		and	deeper	into	the	tree	of	possibilities,	the	recursion
							depth	increases.

							Not	all	calls	of	match()	increase	the	recursion	depth;	for	an	item	such
							as		a*	it	may	be	called	several	times	at	the	same	level,	after	matching
							different	numbers	of	a's.	Furthermore,	in	a	number	of	cases		where		the
							result		of		the		recursive	call	would	immediately	be	passed	back	as	the
							result	of	the	current	call	(a	"tail	recursion"),	the	function		is		just
							restarted	instead.

							The	pcre_dfa_exec()	function	operates	in	an	entirely	different	way,	and
							hardly	uses	recursion	at	all.	The	limit	on	its	complexity	is	the	amount
							of		workspace		it		is		given.		The	comments	that	follow	do	NOT	apply	to
							pcre_dfa_exec();	they	are	relevant	only	for	pcre_exec().

							You	can	set	limits	on	the	number	of	times	that	match()	is	called,		both
							in		total		and		recursively.	If	the	limit	is	exceeded,	an	error	occurs.
							For	details,	see	the	section	on		extra		data		for		pcre_exec()		in		the
							pcreapi	documentation.

							Each		time		that	match()	is	actually	called	recursively,	it	uses	memory
							from	the	process	stack.	For	certain	kinds	of		pattern		and		data,		very
							large		amounts	of	stack	may	be	needed,	despite	the	recognition	of	"tail
							recursion".		You	can	often	reduce	the	amount	of	recursion,		and		there-
							fore		the		amount	of	stack	used,	by	modifying	the	pattern	that	is	being
							matched.	Consider,	for	example,	this	pattern:

									([^<]|<(?!inet))+

							It	matches	from	wherever	it	starts	until	it	encounters	"<inet"		or		the
							end		of		the		data,		and	is	the	kind	of	pattern	that	might	be	used	when
							processing	an	XML	file.	Each	iteration	of	the	outer	parentheses	matches
							either		one		character	that	is	not	"<"	or	a	"<"	that	is	not	followed	by
							"inet".	However,	each	time	a		parenthesis		is		processed,		a		recursion
							occurs,	so	this	formulation	uses	a	stack	frame	for	each	matched	charac-
							ter.	For	a	long	string,	a	lot	of	stack	is	required.	Consider		now		this
							rewritten	pattern,	which	matches	exactly	the	same	strings:

									([^<]++|<(?!inet))+

							This		uses	very	much	less	stack,	because	runs	of	characters	that	do	not
							contain	"<"	are	"swallowed"	in	one	item	inside	the	parentheses.		Recur-
							sion		happens		only	when	a	"<"	character	that	is	not	followed	by	"inet"
							is	encountered	(and	we	assume	this	is	relatively		rare).		A		possessive
							quantifier		is		used		to	stop	any	backtracking	into	the	runs	of	non-"<"
							characters,	but	that	is	not	related	to	stack	usage.

							This	example	shows	that	one	way	of	avoiding	stack	problems	when		match-
							ing	long	subject	strings	is	to	write	repeated	parenthesized	subpatterns
							to	match	more	than	one	character	whenever	possible.

			Compiling	PCRE	to	use	heap	instead	of	stack

							In	environments	where	stack	memory	is	constrained,	you		might		want		to
							compile		PCRE	to	use	heap	memory	instead	of	stack	for	remembering	back-
							up	points.	This	makes	it	run	a	lot	more	slowly,	however.	Details	of	how
							to	do	this	are	given	in	the	pcrebuild	documentation.	When	built	in	this

							way,	instead	of	using	the	stack,	PCRE	obtains	and	frees	memory	by	call-
							ing		the		functions		that		are		pointed	to	by	the	pcre_stack_malloc	and
							pcre_stack_free	variables.	By	default,		these		point		to		malloc()		and
							free(),		but	you	can	replace	the	pointers	to	cause	PCRE	to	use	your	own
							functions.	Since	the	block	sizes	are	always	the	same,		and		are		always
							freed	in	reverse	order,	it	may	be	possible	to	implement	customized	mem-
							ory	handlers	that	are	more	efficient	than	the	standard	functions.

			Limiting	PCRE's	stack	usage

							PCRE	has	an	internal	counter	that	can	be	used	to		limit		the		depth		of
							recursion,		and		thus	cause	pcre_exec()	to	give	an	error	code	before	it
							runs	out	of	stack.	By	default,	the	limit	is	very		large,		and		unlikely
							ever		to	operate.	It	can	be	changed	when	PCRE	is	built,	and	it	can	also
							be	set	when	pcre_exec()	is	called.	For	details	of	these	interfaces,	see
							the	pcrebuild	and	pcreapi	documentation.

							As	a	very	rough	rule	of	thumb,	you	should	reckon	on	about	500	bytes	per
							recursion.	Thus,	if	you	want	to	limit	your		stack		usage		to		8Mb,		you
							should		set		the		limit	at	16000	recursions.	A	64Mb	stack,	on	the	other
							hand,	can	support	around	128000	recursions.	The	pcretest		test		program
							has	a	command	line	option	(-S)	that	can	be	used	to	increase	the	size	of
							its	stack.

			Changing	stack	size	in	Unix-like	systems

							In	Unix-like	environments,	there	is	not	often	a	problem	with	the		stack
							unless		very		long		strings		are		involved,	though	the	default	limit	on
							stack	size	varies	from	system	to	system.	Values	from	8Mb		to		64Mb		are
							common.	You	can	find	your	default	limit	by	running	the	command:

									ulimit	-s

							Unfortunately,		the		effect		of		running	out	of	stack	is	often	SIGSEGV,
							though	sometimes	a	more	explicit	error	message	is	given.	You		can		nor-
							mally	increase	the	limit	on	stack	size	by	code	such	as	this:

									struct	rlimit	rlim;
									getrlimit(RLIMIT_STACK,	&rlim;);
									rlim.rlim_cur	=	100*1024*1024;
									setrlimit(RLIMIT_STACK,	&rlim;);

							This		reads		the	current	limits	(soft	and	hard)	using	getrlimit(),	then
							attempts	to	increase	the	soft	limit	to		100Mb		using		setrlimit().		You
							must	do	this	before	calling	pcre_exec().

			Changing	stack	size	in	Mac	OS	X

							Using	setrlimit(),	as	described	above,	should	also	work	on	Mac	OS	X.	It
							is	also	possible	to	set	a	stack	size	when	linking	a	program.	There	is	a
							discussion			about			stack		sizes		in		Mac		OS		X		at		this		web		site:
							http://developer.apple.com/qa/qa2005/qa1419.html.

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	09	July	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.
--

pcreapi	man	page
Return	to	the	PCRE	index	page.

pcre	native	api
pcre	api	overview
newlines
multithreading
saving	precompiled	patterns	for	later	use
checking	build-time	options
compiling	a	pattern
compilation	error	codes
studying	a	pattern
locale	support
information	about	a	pattern
obsolete	info	function
reference	counts
matching	a	pattern:	the	traditional	function
extracting	captured	substrings	by	number
extracting	captured	substrings	by	name
duplicate	subpattern	names
finding	all	possible	matches
matching	a	pattern:	the	alternative	function
see	also
author
revision

pcre	native	api

#include	<pcre.h>

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char

**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);

pcre	*pcre_compile2(const	char	*pattern,	int	options,	int
*errorcodeptr,	const	char	**errptr,	int	*erroffset,	const	unsigned
char	*tableptr);

pcre_extra	*pcre_study(const	pcre	*code,	int	options,	const	char
**errptr);

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize);

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const
char	*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize,	int	*workspace,	int	wscount);

int	pcre_copy_named_substring(const	pcre	*code,	const	char	*subject,
int	*ovector,	int	stringcount,	const	char	*stringname,	char	*buffer,
int	buffersize);

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	char	*buffer,	int	buffersize);

int	pcre_get_named_substring(const	pcre	*code,	const	char	*subject,
int	*ovector,	int	stringcount,	const	char	*stringname,	const	char
**stringptr);

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

int	pcre_get_stringtable_entries(const	pcre	*code,	const	char	*name,
char	**first,	char	**last);

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	const	char	**stringptr);

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int
stringcount,	const	char	***listptr);

void	pcre_free_substring(const	char	*stringptr);

void	pcre_free_substring_list(const	char	**stringptr);

const	unsigned	char	*pcre_maketables(void);

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int	what,
void	*where);

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

int	pcre_refcount(pcre	*code,	int	adjust);

int	pcre_config(int	what,	void	*where);

char	*pcre_version(void);

void	(*pcre_malloc)(size_t);

void	(*pcre_free)(void	*);

void	*(*pcre_stack_malloc)(size_t);

void	(*pcre_stack_free)(void	*);

int	(*pcre_callout)(pcre_callout_block	*);

pcre	api	overview

PCRE	has	its	own	native	API,	which	is	described	in	this	document.
There	are	also	some	wrapper	functions	that	correspond	to	the	POSIX

regular	expression	API.	These	are	described	in	the	pcreposix
documentation.	Both	of	these	APIs	define	a	set	of	C	function	calls.	A
C++	wrapper	is	distributed	with	PCRE.	It	is	documented	in	the
pcrecpp	page.

The	native	API	C	function	prototypes	are	defined	in	the	header	file
pcre.h,	and	on	Unix	systems	the	library	itself	is	called	libpcre.	It	can
normally	be	accessed	by	adding	-lpcre	to	the	command	for	linking	an
application	that	uses	PCRE.	The	header	file	defines	the	macros
PCRE_MAJOR	and	PCRE_MINOR	to	contain	the	major	and	minor
release	numbers	for	the	library.	Applications	can	use	these	to	include
support	for	different	releases	of	PCRE.

The	functions	pcre_compile(),	pcre_compile2(),	pcre_study(),	and
pcre_exec()	are	used	for	compiling	and	matching	regular	expressions
in	a	Perl-compatible	manner.	A	sample	program	that	demonstrates	the
simplest	way	of	using	them	is	provided	in	the	file	called	pcredemo.c
in	the	source	distribution.	The	pcresample	documentation	describes
how	to	compile	and	run	it.

A	second	matching	function,	pcre_dfa_exec(),	which	is	not	Perl-
compatible,	is	also	provided.	This	uses	a	different	algorithm	for	the
matching.	The	alternative	algorithm	finds	all	possible	matches	(at	a
given	point	in	the	subject),	and	scans	the	subject	just	once.	However,
this	algorithm	does	not	return	captured	substrings.	A	description	of	the
two	matching	algorithms	and	their	advantages	and	disadvantages	is
given	in	the	pcrematching	documentation.

In	addition	to	the	main	compiling	and	matching	functions,	there	are
convenience	functions	for	extracting	captured	substrings	from	a
subject	string	that	is	matched	by	pcre_exec().	They	are:

		pcre_copy_substring()
		pcre_copy_named_substring()

		pcre_get_substring()
		pcre_get_named_substring()
		pcre_get_substring_list()
		pcre_get_stringnumber()
		pcre_get_stringtable_entries()

pcre_free_substring()	and	pcre_free_substring_list()	are	also
provided,	to	free	the	memory	used	for	extracted	strings.

The	function	pcre_maketables()	is	used	to	build	a	set	of	character
tables	in	the	current	locale	for	passing	to	pcre_compile(),
pcre_exec(),	or	pcre_dfa_exec().	This	is	an	optional	facility	that	is
provided	for	specialist	use.	Most	commonly,	no	special	tables	are
passed,	in	which	case	internal	tables	that	are	generated	when	PCRE	is
built	are	used.

The	function	pcre_fullinfo()	is	used	to	find	out	information	about	a
compiled	pattern;	pcre_info()	is	an	obsolete	version	that	returns	only
some	of	the	available	information,	but	is	retained	for	backwards
compatibility.	The	function	pcre_version()	returns	a	pointer	to	a
string	containing	the	version	of	PCRE	and	its	date	of	release.

The	function	pcre_refcount()	maintains	a	reference	count	in	a	data
block	containing	a	compiled	pattern.	This	is	provided	for	the	benefit
of	object-oriented	applications.

The	global	variables	pcre_malloc	and	pcre_free	initially	contain	the
entry	points	of	the	standard	malloc()	and	free()	functions,
respectively.	PCRE	calls	the	memory	management	functions	via	these
variables,	so	a	calling	program	can	replace	them	if	it	wishes	to
intercept	the	calls.	This	should	be	done	before	calling	any	PCRE
functions.

The	global	variables	pcre_stack_malloc	and	pcre_stack_free	are

also	indirections	to	memory	management	functions.	These	special
functions	are	used	only	when	PCRE	is	compiled	to	use	the	heap	for
remembering	data,	instead	of	recursive	function	calls,	when	running
the	pcre_exec()	function.	See	the	pcrebuild	documentation	for	details
of	how	to	do	this.	It	is	a	non-standard	way	of	building	PCRE,	for	use
in	environments	that	have	limited	stacks.	Because	of	the	greater	use	of
memory	management,	it	runs	more	slowly.	Separate	functions	are
provided	so	that	special-purpose	external	code	can	be	used	for	this
case.	When	used,	these	functions	are	always	called	in	a	stack-like
manner	(last	obtained,	first	freed),	and	always	for	memory	blocks	of
the	same	size.	There	is	a	discussion	about	PCRE's	stack	usage	in	the
pcrestack	documentation.

The	global	variable	pcre_callout	initially	contains	NULL.	It	can	be
set	by	the	caller	to	a	"callout"	function,	which	PCRE	will	then	call	at
specified	points	during	a	matching	operation.	Details	are	given	in	the
pcrecallout	documentation.

newlines

PCRE	supports	five	different	conventions	for	indicating	line	breaks	in
strings:	a	single	CR	(carriage	return)	character,	a	single	LF	(linefeed)
character,	the	two-character	sequence	CRLF,	any	of	the	three
preceding,	or	any	Unicode	newline	sequence.	The	Unicode	newline
sequences	are	the	three	just	mentioned,	plus	the	single	characters	VT
(vertical	tab,	U+000B),	FF	(formfeed,	U+000C),	NEL	(next	line,
U+0085),	LS	(line	separator,	U+2028),	and	PS	(paragraph	separator,
U+2029).

Each	of	the	first	three	conventions	is	used	by	at	least	one	operating
system	as	its	standard	newline	sequence.	When	PCRE	is	built,	a
default	can	be	specified.	The	default	default	is	LF,	which	is	the	Unix
standard.	When	PCRE	is	run,	the	default	can	be	overridden,	either

when	a	pattern	is	compiled,	or	when	it	is	matched.

At	compile	time,	the	newline	convention	can	be	specified	by	the
options	argument	of	pcre_compile(),	or	it	can	be	specified	by	special
text	at	the	start	of	the	pattern	itself;	this	overrides	any	other	settings.
See	the	pcrepattern	page	for	details	of	the	special	character
sequences.

In	the	PCRE	documentation	the	word	"newline"	is	used	to	mean	"the
character	or	pair	of	characters	that	indicate	a	line	break".	The	choice
of	newline	convention	affects	the	handling	of	the	dot,	circumflex,	and
dollar	metacharacters,	the	handling	of	#-comments	in	/x	mode,	and,
when	CRLF	is	a	recognized	line	ending	sequence,	the	match	position
advancement	for	a	non-anchored	pattern.	There	is	more	detail	about
this	in	the	section	on	pcre_exec()	options	below.

The	choice	of	newline	convention	does	not	affect	the	interpretation	of
the	\n	or	\r	escape	sequences,	nor	does	it	affect	what	\R	matches,
which	is	controlled	in	a	similar	way,	but	by	separate	options.

multithreading

The	PCRE	functions	can	be	used	in	multi-threading	applications,	with
the	proviso	that	the	memory	management	functions	pointed	to	by
pcre_malloc,	pcre_free,	pcre_stack_malloc,	and	pcre_stack_free,
and	the	callout	function	pointed	to	by	pcre_callout,	are	shared	by	all
threads.

The	compiled	form	of	a	regular	expression	is	not	altered	during
matching,	so	the	same	compiled	pattern	can	safely	be	used	by	several
threads	at	once.

saving	precompiled	patterns	for	later	use

The	compiled	form	of	a	regular	expression	can	be	saved	and	re-used
at	a	later	time,	possibly	by	a	different	program,	and	even	on	a	host
other	than	the	one	on	which	it	was	compiled.	Details	are	given	in	the
pcreprecompile	documentation.	However,	compiling	a	regular
expression	with	one	version	of	PCRE	for	use	with	a	different	version
is	not	guaranteed	to	work	and	may	cause	crashes.

checking	build-time	options

int	pcre_config(int	what,	void	*where);

The	function	pcre_config()	makes	it	possible	for	a	PCRE	client	to
discover	which	optional	features	have	been	compiled	into	the	PCRE
library.	The	pcrebuild	documentation	has	more	details	about	these
optional	features.

The	first	argument	for	pcre_config()	is	an	integer,	specifying	which
information	is	required;	the	second	argument	is	a	pointer	to	a	variable
into	which	the	information	is	placed.	The	following	information	is
available:

		PCRE_CONFIG_UTF8

The	output	is	an	integer	that	is	set	to	one	if	UTF-8	support	is
available;	otherwise	it	is	set	to	zero.

		PCRE_CONFIG_UNICODE_PROPERTIES

The	output	is	an	integer	that	is	set	to	one	if	support	for	Unicode
character	properties	is	available;	otherwise	it	is	set	to	zero.

		PCRE_CONFIG_NEWLINE

The	output	is	an	integer	whose	value	specifies	the	default	character
sequence	that	is	recognized	as	meaning	"newline".	The	four	values
that	are	supported	are:	10	for	LF,	13	for	CR,	3338	for	CRLF,	-2	for
ANYCRLF,	and	-1	for	ANY.	The	default	should	normally	be	the
standard	sequence	for	your	operating	system.

		PCRE_CONFIG_BSR

The	output	is	an	integer	whose	value	indicates	what	character
sequences	the	\R	escape	sequence	matches	by	default.	A	value	of	0
means	that	\R	matches	any	Unicode	line	ending	sequence;	a	value	of	1
means	that	\R	matches	only	CR,	LF,	or	CRLF.	The	default	can	be
overridden	when	a	pattern	is	compiled	or	matched.

		PCRE_CONFIG_LINK_SIZE

The	output	is	an	integer	that	contains	the	number	of	bytes	used	for
internal	linkage	in	compiled	regular	expressions.	The	value	is	2,	3,	or
4.	Larger	values	allow	larger	regular	expressions	to	be	compiled,	at
the	expense	of	slower	matching.	The	default	value	of	2	is	sufficient
for	all	but	the	most	massive	patterns,	since	it	allows	the	compiled
pattern	to	be	up	to	64K	in	size.

		PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

The	output	is	an	integer	that	contains	the	threshold	above	which	the
POSIX	interface	uses	malloc()	for	output	vectors.	Further	details	are
given	in	the	pcreposix	documentation.

		PCRE_CONFIG_MATCH_LIMIT

The	output	is	an	integer	that	gives	the	default	limit	for	the	number	of
internal	matching	function	calls	in	a	pcre_exec()	execution.	Further
details	are	given	with	pcre_exec()	below.

		PCRE_CONFIG_MATCH_LIMIT_RECURSION

The	output	is	an	integer	that	gives	the	default	limit	for	the	depth	of
recursion	when	calling	the	internal	matching	function	in	a	pcre_exec()
execution.	Further	details	are	given	with	pcre_exec()	below.

		PCRE_CONFIG_STACKRECURSE

The	output	is	an	integer	that	is	set	to	one	if	internal	recursion	when
running	pcre_exec()	is	implemented	by	recursive	function	calls	that
use	the	stack	to	remember	their	state.	This	is	the	usual	way	that	PCRE
is	compiled.	The	output	is	zero	if	PCRE	was	compiled	to	use	blocks
of	data	on	the	heap	instead	of	recursive	function	calls.	In	this	case,
pcre_stack_malloc	and	pcre_stack_free	are	called	to	manage
memory	blocks	on	the	heap,	thus	avoiding	the	use	of	the	stack.

compiling	a	pattern

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char
**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);	pcre
*pcre_compile2(const	char	*pattern,	int	options,	int	*errorcodeptr,
const	char	**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);

Either	of	the	functions	pcre_compile()	or	pcre_compile2()	can	be
called	to	compile	a	pattern	into	an	internal	form.	The	only	difference
between	the	two	interfaces	is	that	pcre_compile2()	has	an	additional
argument,	errorcodeptr,	via	which	a	numerical	error	code	can	be
returned.

The	pattern	is	a	C	string	terminated	by	a	binary	zero,	and	is	passed	in
the	pattern	argument.	A	pointer	to	a	single	block	of	memory	that	is
obtained	via	pcre_malloc	is	returned.	This	contains	the	compiled
code	and	related	data.	The	pcre	type	is	defined	for	the	returned	block;
this	is	a	typedef	for	a	structure	whose	contents	are	not	externally
defined.	It	is	up	to	the	caller	to	free	the	memory	(via	pcre_free)	when

it	is	no	longer	required.

Although	the	compiled	code	of	a	PCRE	regex	is	relocatable,	that	is,	it
does	not	depend	on	memory	location,	the	complete	pcre	data	block	is
not	fully	relocatable,	because	it	may	contain	a	copy	of	the	tableptr
argument,	which	is	an	address	(see	below).

The	options	argument	contains	various	bit	settings	that	affect	the
compilation.	It	should	be	zero	if	no	options	are	required.	The	available
options	are	described	below.	Some	of	them,	in	particular,	those	that
are	compatible	with	Perl,	can	also	be	set	and	unset	from	within	the
pattern	(see	the	detailed	description	in	the	pcrepattern
documentation).	For	these	options,	the	contents	of	the	options
argument	specifies	their	initial	settings	at	the	start	of	compilation	and
execution.	The	PCRE_ANCHORED	and	PCRE_NEWLINE_xxx
options	can	be	set	at	the	time	of	matching	as	well	as	at	compile	time.

If	errptr	is	NULL,	pcre_compile()	returns	NULL	immediately.
Otherwise,	if	compilation	of	a	pattern	fails,	pcre_compile()	returns
NULL,	and	sets	the	variable	pointed	to	by	errptr	to	point	to	a	textual
error	message.	This	is	a	static	string	that	is	part	of	the	library.	You
must	not	try	to	free	it.	The	offset	from	the	start	of	the	pattern	to	the
character	where	the	error	was	discovered	is	placed	in	the	variable
pointed	to	by	erroffset,	which	must	not	be	NULL.	If	it	is,	an
immediate	error	is	given.

If	pcre_compile2()	is	used	instead	of	pcre_compile(),	and	the
errorcodeptr	argument	is	not	NULL,	a	non-zero	error	code	number	is
returned	via	this	argument	in	the	event	of	an	error.	This	is	in	addition
to	the	textual	error	message.	Error	codes	and	messages	are	listed
below.

If	the	final	argument,	tableptr,	is	NULL,	PCRE	uses	a	default	set	of
character	tables	that	are	built	when	PCRE	is	compiled,	using	the

default	C	locale.	Otherwise,	tableptr	must	be	an	address	that	is	the
result	of	a	call	to	pcre_maketables().	This	value	is	stored	with	the
compiled	pattern,	and	used	again	by	pcre_exec(),	unless	another	table
pointer	is	passed	to	it.	For	more	discussion,	see	the	section	on	locale
support	below.

This	code	fragment	shows	a	typical	straightforward	call	to
pcre_compile():

		pcre	*re;
		const	char	*error;
		int	erroffset;
		re	=	pcre_compile(
				"^A.*Z",										/*	the	pattern	*/
				0,																/*	default	options	*/
				&error;,											/*	for	error	message	*/
				&erroffset;,							/*	for	error	offset	*/
				NULL);												/*	use	default	character	tables	*/

The	following	names	for	option	bits	are	defined	in	the	pcre.h	header
file:

		PCRE_ANCHORED

If	this	bit	is	set,	the	pattern	is	forced	to	be	"anchored",	that	is,	it	is
constrained	to	match	only	at	the	first	matching	point	in	the	string	that
is	being	searched	(the	"subject	string").	This	effect	can	also	be
achieved	by	appropriate	constructs	in	the	pattern	itself,	which	is	the
only	way	to	do	it	in	Perl.

		PCRE_AUTO_CALLOUT

If	this	bit	is	set,	pcre_compile()	automatically	inserts	callout	items,	all
with	number	255,	before	each	pattern	item.	For	discussion	of	the
callout	facility,	see	the	pcrecallout	documentation.

		PCRE_BSR_ANYCRLF
		PCRE_BSR_UNICODE

These	options	(which	are	mutually	exclusive)	control	what	the	\R
escape	sequence	matches.	The	choice	is	either	to	match	only	CR,	LF,
or	CRLF,	or	to	match	any	Unicode	newline	sequence.	The	default	is
specified	when	PCRE	is	built.	It	can	be	overridden	from	within	the
pattern,	or	by	setting	an	option	when	a	compiled	pattern	is	matched.

		PCRE_CASELESS

If	this	bit	is	set,	letters	in	the	pattern	match	both	upper	and	lower	case
letters.	It	is	equivalent	to	Perl's	/i	option,	and	it	can	be	changed	within
a	pattern	by	a	(?i)	option	setting.	In	UTF-8	mode,	PCRE	always
understands	the	concept	of	case	for	characters	whose	values	are	less
than	128,	so	caseless	matching	is	always	possible.	For	characters	with
higher	values,	the	concept	of	case	is	supported	if	PCRE	is	compiled
with	Unicode	property	support,	but	not	otherwise.	If	you	want	to	use
caseless	matching	for	characters	128	and	above,	you	must	ensure	that
PCRE	is	compiled	with	Unicode	property	support	as	well	as	with
UTF-8	support.

		PCRE_DOLLAR_ENDONLY

If	this	bit	is	set,	a	dollar	metacharacter	in	the	pattern	matches	only	at
the	end	of	the	subject	string.	Without	this	option,	a	dollar	also	matches
immediately	before	a	newline	at	the	end	of	the	string	(but	not	before
any	other	newlines).	The	PCRE_DOLLAR_ENDONLY	option	is
ignored	if	PCRE_MULTILINE	is	set.	There	is	no	equivalent	to	this
option	in	Perl,	and	no	way	to	set	it	within	a	pattern.

		PCRE_DOTALL

If	this	bit	is	set,	a	dot	metacharater	in	the	pattern	matches	all
characters,	including	those	that	indicate	newline.	Without	it,	a	dot

does	not	match	when	the	current	position	is	at	a	newline.	This	option
is	equivalent	to	Perl's	/s	option,	and	it	can	be	changed	within	a	pattern
by	a	(?s)	option	setting.	A	negative	class	such	as	[^a]	always	matches
newline	characters,	independent	of	the	setting	of	this	option.

		PCRE_DUPNAMES

If	this	bit	is	set,	names	used	to	identify	capturing	subpatterns	need	not
be	unique.	This	can	be	helpful	for	certain	types	of	pattern	when	it	is
known	that	only	one	instance	of	the	named	subpattern	can	ever	be
matched.	There	are	more	details	of	named	subpatterns	below;	see	also
the	pcrepattern	documentation.

		PCRE_EXTENDED

If	this	bit	is	set,	whitespace	data	characters	in	the	pattern	are	totally
ignored	except	when	escaped	or	inside	a	character	class.	Whitespace
does	not	include	the	VT	character	(code	11).	In	addition,	characters
between	an	unescaped	#	outside	a	character	class	and	the	next
newline,	inclusive,	are	also	ignored.	This	is	equivalent	to	Perl's	/x
option,	and	it	can	be	changed	within	a	pattern	by	a	(?x)	option	setting.

This	option	makes	it	possible	to	include	comments	inside	complicated
patterns.	Note,	however,	that	this	applies	only	to	data	characters.
Whitespace	characters	may	never	appear	within	special	character
sequences	in	a	pattern,	for	example	within	the	sequence	(?(which
introduces	a	conditional	subpattern.

		PCRE_EXTRA

This	option	was	invented	in	order	to	turn	on	additional	functionality
of	PCRE	that	is	incompatible	with	Perl,	but	it	is	currently	of	very	little
use.	When	set,	any	backslash	in	a	pattern	that	is	followed	by	a	letter
that	has	no	special	meaning	causes	an	error,	thus	reserving	these
combinations	for	future	expansion.	By	default,	as	in	Perl,	a	backslash

followed	by	a	letter	with	no	special	meaning	is	treated	as	a	literal.
(Perl	can,	however,	be	persuaded	to	give	a	warning	for	this.)	There	are
at	present	no	other	features	controlled	by	this	option.	It	can	also	be	set
by	a	(?X)	option	setting	within	a	pattern.

		PCRE_FIRSTLINE

If	this	option	is	set,	an	unanchored	pattern	is	required	to	match	before
or	at	the	first	newline	in	the	subject	string,	though	the	matched	text
may	continue	over	the	newline.

		PCRE_JAVASCRIPT_COMPAT

If	this	option	is	set,	PCRE's	behaviour	is	changed	in	some	ways	so
that	it	is	compatible	with	JavaScript	rather	than	Perl.	The	changes	are
as	follows:

(1)	A	lone	closing	square	bracket	in	a	pattern	causes	a	compile-time
error,	because	this	is	illegal	in	JavaScript	(by	default	it	is	treated	as	a
data	character).	Thus,	the	pattern	AB]CD	becomes	illegal	when	this
option	is	set.

(2)	At	run	time,	a	back	reference	to	an	unset	subpattern	group	matches
an	empty	string	(by	default	this	causes	the	current	matching
alternative	to	fail).	A	pattern	such	as	(\1)(a)	succeeds	when	this	option
is	set	(assuming	it	can	find	an	"a"	in	the	subject),	whereas	it	fails	by
default,	for	Perl	compatibility.

		PCRE_MULTILINE

By	default,	PCRE	treats	the	subject	string	as	consisting	of	a	single	line
of	characters	(even	if	it	actually	contains	newlines).	The	"start	of	line"
metacharacter	(^)	matches	only	at	the	start	of	the	string,	while	the
"end	of	line"	metacharacter	($)	matches	only	at	the	end	of	the	string,
or	before	a	terminating	newline	(unless	PCRE_DOLLAR_ENDONLY

is	set).	This	is	the	same	as	Perl.

When	PCRE_MULTILINE	it	is	set,	the	"start	of	line"	and	"end	of
line"	constructs	match	immediately	following	or	immediately	before
internal	newlines	in	the	subject	string,	respectively,	as	well	as	at	the
very	start	and	end.	This	is	equivalent	to	Perl's	/m	option,	and	it	can	be
changed	within	a	pattern	by	a	(?m)	option	setting.	If	there	are	no
newlines	in	a	subject	string,	or	no	occurrences	of	^	or	$	in	a	pattern,
setting	PCRE_MULTILINE	has	no	effect.

		PCRE_NEWLINE_CR
		PCRE_NEWLINE_LF
		PCRE_NEWLINE_CRLF
		PCRE_NEWLINE_ANYCRLF
		PCRE_NEWLINE_ANY

These	options	override	the	default	newline	definition	that	was	chosen
when	PCRE	was	built.	Setting	the	first	or	the	second	specifies	that	a
newline	is	indicated	by	a	single	character	(CR	or	LF,	respectively).
Setting	PCRE_NEWLINE_CRLF	specifies	that	a	newline	is	indicated
by	the	two-character	CRLF	sequence.	Setting
PCRE_NEWLINE_ANYCRLF	specifies	that	any	of	the	three
preceding	sequences	should	be	recognized.	Setting
PCRE_NEWLINE_ANY	specifies	that	any	Unicode	newline
sequence	should	be	recognized.	The	Unicode	newline	sequences	are
the	three	just	mentioned,	plus	the	single	characters	VT	(vertical	tab,
U+000B),	FF	(formfeed,	U+000C),	NEL	(next	line,	U+0085),	LS	(line
separator,	U+2028),	and	PS	(paragraph	separator,	U+2029).	The	last
two	are	recognized	only	in	UTF-8	mode.

The	newline	setting	in	the	options	word	uses	three	bits	that	are	treated
as	a	number,	giving	eight	possibilities.	Currently	only	six	are	used
(default	plus	the	five	values	above).	This	means	that	if	you	set	more
than	one	newline	option,	the	combination	may	or	may	not	be	sensible.

For	example,	PCRE_NEWLINE_CR	with	PCRE_NEWLINE_LF	is
equivalent	to	PCRE_NEWLINE_CRLF,	but	other	combinations	may
yield	unused	numbers	and	cause	an	error.

The	only	time	that	a	line	break	is	specially	recognized	when
compiling	a	pattern	is	if	PCRE_EXTENDED	is	set,	and	an	unescaped
#	outside	a	character	class	is	encountered.	This	indicates	a	comment
that	lasts	until	after	the	next	line	break	sequence.	In	other
circumstances,	line	break	sequences	are	treated	as	literal	data,	except
that	in	PCRE_EXTENDED	mode,	both	CR	and	LF	are	treated	as
whitespace	characters	and	are	therefore	ignored.

The	newline	option	that	is	set	at	compile	time	becomes	the	default	that
is	used	for	pcre_exec()	and	pcre_dfa_exec(),	but	it	can	be	overridden.

		PCRE_NO_AUTO_CAPTURE

If	this	option	is	set,	it	disables	the	use	of	numbered	capturing
parentheses	in	the	pattern.	Any	opening	parenthesis	that	is	not
followed	by	?	behaves	as	if	it	were	followed	by	?:	but	named
parentheses	can	still	be	used	for	capturing	(and	they	acquire	numbers
in	the	usual	way).	There	is	no	equivalent	of	this	option	in	Perl.

		PCRE_UNGREEDY

This	option	inverts	the	"greediness"	of	the	quantifiers	so	that	they	are
not	greedy	by	default,	but	become	greedy	if	followed	by	"?".	It	is	not
compatible	with	Perl.	It	can	also	be	set	by	a	(?U)	option	setting	within
the	pattern.

		PCRE_UTF8

This	option	causes	PCRE	to	regard	both	the	pattern	and	the	subject	as
strings	of	UTF-8	characters	instead	of	single-byte	character	strings.
However,	it	is	available	only	when	PCRE	is	built	to	include	UTF-8

support.	If	not,	the	use	of	this	option	provokes	an	error.	Details	of	how
this	option	changes	the	behaviour	of	PCRE	are	given	in	the	section	on
UTF-8	support	in	the	main	pcre	page.

		PCRE_NO_UTF8_CHECK

When	PCRE_UTF8	is	set,	the	validity	of	the	pattern	as	a	UTF-8	string
is	automatically	checked.	There	is	a	discussion	about	the	validity	of
UTF-8	strings	in	the	main	pcre	page.	If	an	invalid	UTF-8	sequence	of
bytes	is	found,	pcre_compile()	returns	an	error.	If	you	already	know
that	your	pattern	is	valid,	and	you	want	to	skip	this	check	for
performance	reasons,	you	can	set	the	PCRE_NO_UTF8_CHECK
option.	When	it	is	set,	the	effect	of	passing	an	invalid	UTF-8	string	as
a	pattern	is	undefined.	It	may	cause	your	program	to	crash.	Note	that
this	option	can	also	be	passed	to	pcre_exec()	and	pcre_dfa_exec(),	to
suppress	the	UTF-8	validity	checking	of	subject	strings.

compilation	error	codes

The	following	table	lists	the	error	codes	than	may	be	returned	by
pcre_compile2(),	along	with	the	error	messages	that	may	be	returned
by	both	compiling	functions.	As	PCRE	has	developed,	some	error
codes	have	fallen	out	of	use.	To	avoid	confusion,	they	have	not	been
re-used.

			0		no	error
			1		\	at	end	of	pattern
			2		\c	at	end	of	pattern
			3		unrecognized	character	follows	\
			4		numbers	out	of	order	in	{}	quantifier
			5		number	too	big	in	{}	quantifier
			6		missing	terminating]	for	character	class
			7		invalid	escape	sequence	in	character	class
			8		range	out	of	order	in	character	class

			9		nothing	to	repeat
		10		[this	code	is	not	in	use]
		11		internal	error:	unexpected	repeat
		12		unrecognized	character	after	(?	or	(?-
		13		POSIX	named	classes	are	supported	only	within	a	class
		14		missing)
		15		reference	to	non-existent	subpattern
		16		erroffset	passed	as	NULL
		17		unknown	option	bit(s)	set
		18		missing)	after	comment
		19		[this	code	is	not	in	use]
		20		regular	expression	is	too	large
		21		failed	to	get	memory
		22		unmatched	parentheses
		23		internal	error:	code	overflow
		24		unrecognized	character	after	(?<
		25		lookbehind	assertion	is	not	fixed	length
		26		malformed	number	or	name	after	(?(
		27		conditional	group	contains	more	than	two	branches
		28		assertion	expected	after	(?(
		29		(?R	or	(?[+-]digits	must	be	followed	by)
		30		unknown	POSIX	class	name
		31		POSIX	collating	elements	are	not	supported
		32		this	version	of	PCRE	is	not	compiled	with	PCRE_UTF8	support
		33		[this	code	is	not	in	use]
		34		character	value	in	\x{...}	sequence	is	too	large
		35		invalid	condition	(?(0)
		36		\C	not	allowed	in	lookbehind	assertion
		37		PCRE	does	not	support	\L,	\l,	\N,	\U,	or	\u
		38		number	after	(?C	is	>	255
		39		closing)	for	(?C	expected
		40		recursive	call	could	loop	indefinitely
		41		unrecognized	character	after	(?P
		42		syntax	error	in	subpattern	name	(missing	terminator)
		43		two	named	subpatterns	have	the	same	name
		44		invalid	UTF-8	string
		45		support	for	\P,	\p,	and	\X	has	not	been	compiled

		46		malformed	\P	or	\p	sequence
		47		unknown	property	name	after	\P	or	\p
		48		subpattern	name	is	too	long	(maximum	32	characters)
		49		too	many	named	subpatterns	(maximum	10000)
		50		[this	code	is	not	in	use]
		51		octal	value	is	greater	than	\377	(not	in	UTF-8	mode)
		52		internal	error:	overran	compiling	workspace
		53		internal	error:	previously-checked	referenced	subpattern	not	found
		54		DEFINE	group	contains	more	than	one	branch
		55		repeating	a	DEFINE	group	is	not	allowed
		56		inconsistent	NEWLINE	options
		57		\g	is	not	followed	by	a	braced,	angle-bracketed,	or	quoted
								name/number	or	by	a	plain	number
		58		a	numbered	reference	must	not	be	zero
		59		(*VERB)	with	an	argument	is	not	supported
		60		(*VERB)	not	recognized
		61		number	is	too	big
		62		subpattern	name	expected
		63		digit	expected	after	(?+
		64]	is	an	invalid	data	character	in	JavaScript	compatibility	mode

The	numbers	32	and	10000	in	errors	48	and	49	are	defaults;	different
values	may	be	used	if	the	limits	were	changed	when	PCRE	was	built.

studying	a	pattern

pcre_extra	*pcre_study(const	pcre	*code,	int	options	const	char
**errptr);

If	a	compiled	pattern	is	going	to	be	used	several	times,	it	is	worth
spending	more	time	analyzing	it	in	order	to	speed	up	the	time	taken
for	matching.	The	function	pcre_study()	takes	a	pointer	to	a	compiled
pattern	as	its	first	argument.	If	studying	the	pattern	produces
additional	information	that	will	help	speed	up	matching,	pcre_study()
returns	a	pointer	to	a	pcre_extra	block,	in	which	the	study_data	field

points	to	the	results	of	the	study.

The	returned	value	from	pcre_study()	can	be	passed	directly	to
pcre_exec().	However,	a	pcre_extra	block	also	contains	other	fields
that	can	be	set	by	the	caller	before	the	block	is	passed;	these	are
described	below	in	the	section	on	matching	a	pattern.

If	studying	the	pattern	does	not	produce	any	additional	information
pcre_study()	returns	NULL.	In	that	circumstance,	if	the	calling
program	wants	to	pass	any	of	the	other	fields	to	pcre_exec(),	it	must
set	up	its	own	pcre_extra	block.

The	second	argument	of	pcre_study()	contains	option	bits.	At	present,
no	options	are	defined,	and	this	argument	should	always	be	zero.

The	third	argument	for	pcre_study()	is	a	pointer	for	an	error	message.
If	studying	succeeds	(even	if	no	data	is	returned),	the	variable	it	points
to	is	set	to	NULL.	Otherwise	it	is	set	to	point	to	a	textual	error
message.	This	is	a	static	string	that	is	part	of	the	library.	You	must	not
try	to	free	it.	You	should	test	the	error	pointer	for	NULL	after	calling
pcre_study(),	to	be	sure	that	it	has	run	successfully.

This	is	a	typical	call	to	pcre_study():

		pcre_extra	*pe;
		pe	=	pcre_study(
				re,													/*	result	of	pcre_compile()	*/
				0,														/*	no	options	exist	*/
				&error;);								/*	set	to	NULL	or	points	to	a	message	*/

At	present,	studying	a	pattern	is	useful	only	for	non-anchored	patterns
that	do	not	have	a	single	fixed	starting	character.	A	bitmap	of	possible
starting	bytes	is	created.

locale	support

PCRE	handles	caseless	matching,	and	determines	whether	characters
are	letters,	digits,	or	whatever,	by	reference	to	a	set	of	tables,	indexed
by	character	value.	When	running	in	UTF-8	mode,	this	applies	only	to
characters	with	codes	less	than	128.	Higher-valued	codes	never	match
escapes	such	as	\w	or	\d,	but	can	be	tested	with	\p	if	PCRE	is	built
with	Unicode	character	property	support.	The	use	of	locales	with
Unicode	is	discouraged.	If	you	are	handling	characters	with	codes
greater	than	128,	you	should	either	use	UTF-8	and	Unicode,	or	use
locales,	but	not	try	to	mix	the	two.

PCRE	contains	an	internal	set	of	tables	that	are	used	when	the	final
argument	of	pcre_compile()	is	NULL.	These	are	sufficient	for	many
applications.	Normally,	the	internal	tables	recognize	only	ASCII
characters.	However,	when	PCRE	is	built,	it	is	possible	to	cause	the
internal	tables	to	be	rebuilt	in	the	default	"C"	locale	of	the	local
system,	which	may	cause	them	to	be	different.

The	internal	tables	can	always	be	overridden	by	tables	supplied	by	the
application	that	calls	PCRE.	These	may	be	created	in	a	different	locale
from	the	default.	As	more	and	more	applications	change	to	using
Unicode,	the	need	for	this	locale	support	is	expected	to	die	away.

External	tables	are	built	by	calling	the	pcre_maketables()	function,
which	has	no	arguments,	in	the	relevant	locale.	The	result	can	then	be
passed	to	pcre_compile()	or	pcre_exec()	as	often	as	necessary.	For
example,	to	build	and	use	tables	that	are	appropriate	for	the	French
locale	(where	accented	characters	with	values	greater	than	128	are
treated	as	letters),	the	following	code	could	be	used:

		setlocale(LC_CTYPE,	"fr_FR");
		tables	=	pcre_maketables();
		re	=	pcre_compile(...,	tables);

The	locale	name	"fr_FR"	is	used	on	Linux	and	other	Unix-like
systems;	if	you	are	using	Windows,	the	name	for	the	French	locale	is
"french".

When	pcre_maketables()	runs,	the	tables	are	built	in	memory	that	is
obtained	via	pcre_malloc.	It	is	the	caller's	responsibility	to	ensure	that
the	memory	containing	the	tables	remains	available	for	as	long	as	it	is
needed.

The	pointer	that	is	passed	to	pcre_compile()	is	saved	with	the
compiled	pattern,	and	the	same	tables	are	used	via	this	pointer	by
pcre_study()	and	normally	also	by	pcre_exec().	Thus,	by	default,	for
any	single	pattern,	compilation,	studying	and	matching	all	happen	in
the	same	locale,	but	different	patterns	can	be	compiled	in	different
locales.

It	is	possible	to	pass	a	table	pointer	or	NULL	(indicating	the	use	of	the
internal	tables)	to	pcre_exec().	Although	not	intended	for	this
purpose,	this	facility	could	be	used	to	match	a	pattern	in	a	different
locale	from	the	one	in	which	it	was	compiled.	Passing	table	pointers	at
run	time	is	discussed	below	in	the	section	on	matching	a	pattern.

information	about	a	pattern

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int
what,	void	*where);

The	pcre_fullinfo()	function	returns	information	about	a	compiled
pattern.	It	replaces	the	obsolete	pcre_info()	function,	which	is
nevertheless	retained	for	backwards	compability	(and	is	documented
below).

The	first	argument	for	pcre_fullinfo()	is	a	pointer	to	the	compiled

pattern.	The	second	argument	is	the	result	of	pcre_study(),	or	NULL
if	the	pattern	was	not	studied.	The	third	argument	specifies	which
piece	of	information	is	required,	and	the	fourth	argument	is	a	pointer
to	a	variable	to	receive	the	data.	The	yield	of	the	function	is	zero	for
success,	or	one	of	the	following	negative	numbers:

		PCRE_ERROR_NULL							the	argument	code	was	NULL
																								the	argument	where	was	NULL
		PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found
		PCRE_ERROR_BADOPTION		the	value	of	what	was	invalid

The	"magic	number"	is	placed	at	the	start	of	each	compiled	pattern	as
an	simple	check	against	passing	an	arbitrary	memory	pointer.	Here	is
a	typical	call	of	pcre_fullinfo(),	to	obtain	the	length	of	the	compiled
pattern:

		int	rc;
		size_t	length;
		rc	=	pcre_fullinfo(
				re,															/*	result	of	pcre_compile()	*/
				pe,															/*	result	of	pcre_study(),	or	NULL	*/
				PCRE_INFO_SIZE,			/*	what	is	required	*/
				&length;);									/*	where	to	put	the	data	*/

The	possible	values	for	the	third	argument	are	defined	in	pcre.h,	and
are	as	follows:

		PCRE_INFO_BACKREFMAX

Return	the	number	of	the	highest	back	reference	in	the	pattern.	The
fourth	argument	should	point	to	an	int	variable.	Zero	is	returned	if
there	are	no	back	references.

		PCRE_INFO_CAPTURECOUNT

Return	the	number	of	capturing	subpatterns	in	the	pattern.	The	fourth

argument	should	point	to	an	int	variable.

		PCRE_INFO_DEFAULT_TABLES

Return	a	pointer	to	the	internal	default	character	tables	within	PCRE.
The	fourth	argument	should	point	to	an	unsigned	char	*	variable.
This	information	call	is	provided	for	internal	use	by	the	pcre_study()
function.	External	callers	can	cause	PCRE	to	use	its	internal	tables	by
passing	a	NULL	table	pointer.

		PCRE_INFO_FIRSTBYTE

Return	information	about	the	first	byte	of	any	matched	string,	for	a
non-anchored	pattern.	The	fourth	argument	should	point	to	an	int
variable.	(This	option	used	to	be	called	PCRE_INFO_FIRSTCHAR;
the	old	name	is	still	recognized	for	backwards	compatibility.)

If	there	is	a	fixed	first	byte,	for	example,	from	a	pattern	such	as
(cat|cow|coyote),	its	value	is	returned.	Otherwise,	if	either	

(a)	the	pattern	was	compiled	with	the	PCRE_MULTILINE	option,	and
every	branch	starts	with	"^",	or	

(b)	every	branch	of	the	pattern	starts	with	".*"	and	PCRE_DOTALL	is
not	set	(if	it	were	set,	the	pattern	would	be	anchored),	

-1	is	returned,	indicating	that	the	pattern	matches	only	at	the	start	of	a
subject	string	or	after	any	newline	within	the	string.	Otherwise	-2	is
returned.	For	anchored	patterns,	-2	is	returned.

		PCRE_INFO_FIRSTTABLE

If	the	pattern	was	studied,	and	this	resulted	in	the	construction	of	a
256-bit	table	indicating	a	fixed	set	of	bytes	for	the	first	byte	in	any
matching	string,	a	pointer	to	the	table	is	returned.	Otherwise	NULL	is

returned.	The	fourth	argument	should	point	to	an	unsigned	char	*
variable.

		PCRE_INFO_HASCRORLF

Return	1	if	the	pattern	contains	any	explicit	matches	for	CR	or	LF
characters,	otherwise	0.	The	fourth	argument	should	point	to	an	int
variable.	An	explicit	match	is	either	a	literal	CR	or	LF	character,	or	\r
or	\n.

		PCRE_INFO_JCHANGED

Return	1	if	the	(?J)	or	(?-J)	option	setting	is	used	in	the	pattern,
otherwise	0.	The	fourth	argument	should	point	to	an	int	variable.	(?J)
and	(?-J)	set	and	unset	the	local	PCRE_DUPNAMES	option,
respectively.

		PCRE_INFO_LASTLITERAL

Return	the	value	of	the	rightmost	literal	byte	that	must	exist	in	any
matched	string,	other	than	at	its	start,	if	such	a	byte	has	been	recorded.
The	fourth	argument	should	point	to	an	int	variable.	If	there	is	no	such
byte,	-1	is	returned.	For	anchored	patterns,	a	last	literal	byte	is
recorded	only	if	it	follows	something	of	variable	length.	For	example,
for	the	pattern	/^a\d+z\d+/	the	returned	value	is	"z",	but	for	/^a\dz\d/
the	returned	value	is	-1.

		PCRE_INFO_NAMECOUNT
		PCRE_INFO_NAMEENTRYSIZE
		PCRE_INFO_NAMETABLE

PCRE	supports	the	use	of	named	as	well	as	numbered	capturing
parentheses.	The	names	are	just	an	additional	way	of	identifying	the
parentheses,	which	still	acquire	numbers.	Several	convenience
functions	such	as	pcre_get_named_substring()	are	provided	for
extracting	captured	substrings	by	name.	It	is	also	possible	to	extract

the	data	directly,	by	first	converting	the	name	to	a	number	in	order	to
access	the	correct	pointers	in	the	output	vector	(described	with
pcre_exec()	below).	To	do	the	conversion,	you	need	to	use	the	name-
to-number	map,	which	is	described	by	these	three	values.

The	map	consists	of	a	number	of	fixed-size	entries.
PCRE_INFO_NAMECOUNT	gives	the	number	of	entries,	and
PCRE_INFO_NAMEENTRYSIZE	gives	the	size	of	each	entry;	both
of	these	return	an	int	value.	The	entry	size	depends	on	the	length	of
the	longest	name.	PCRE_INFO_NAMETABLE	returns	a	pointer	to
the	first	entry	of	the	table	(a	pointer	to	char).	The	first	two	bytes	of
each	entry	are	the	number	of	the	capturing	parenthesis,	most
significant	byte	first.	The	rest	of	the	entry	is	the	corresponding	name,
zero	terminated.	The	names	are	in	alphabetical	order.	When
PCRE_DUPNAMES	is	set,	duplicate	names	are	in	order	of	their
parentheses	numbers.	For	example,	consider	the	following	pattern
(assume	PCRE_EXTENDED	is	set,	so	white	space	-	including
newlines	-	is	ignored):

		(?<date>	(?<year>(\d\d)?\d\d)	-	(?<month>\d\d)	-	(?<day>\d\d))

There	are	four	named	subpatterns,	so	the	table	has	four	entries,	and
each	entry	in	the	table	is	eight	bytes	long.	The	table	is	as	follows,	with
non-printing	bytes	shows	in	hexadecimal,	and	undefined	bytes	shown
as	??:

		00	01	d		a		t		e		00	??
		00	05	d		a		y		00	??	??
		00	04	m		o		n		t		h		00
		00	02	y		e		a		r		00	??

When	writing	code	to	extract	data	from	named	subpatterns	using	the
name-to-number	map,	remember	that	the	length	of	the	entries	is	likely
to	be	different	for	each	compiled	pattern.

		PCRE_INFO_OKPARTIAL

Return	1	if	the	pattern	can	be	used	for	partial	matching,	otherwise	0.
The	fourth	argument	should	point	to	an	int	variable.	The	pcrepartial
documentation	lists	the	restrictions	that	apply	to	patterns	when	partial
matching	is	used.

		PCRE_INFO_OPTIONS

Return	a	copy	of	the	options	with	which	the	pattern	was	compiled.
The	fourth	argument	should	point	to	an	unsigned	long	int	variable.
These	option	bits	are	those	specified	in	the	call	to	pcre_compile(),
modified	by	any	top-level	option	settings	at	the	start	of	the	pattern
itself.	In	other	words,	they	are	the	options	that	will	be	in	force	when
matching	starts.	For	example,	if	the	pattern	/(?im)abc(?-i)d/	is
compiled	with	the	PCRE_EXTENDED	option,	the	result	is
PCRE_CASELESS,	PCRE_MULTILINE,	and	PCRE_EXTENDED.

A	pattern	is	automatically	anchored	by	PCRE	if	all	of	its	top-level
alternatives	begin	with	one	of	the	following:

		^					unless	PCRE_MULTILINE	is	set
		\A				always
		\G				always
		.*				if	PCRE_DOTALL	is	set	and	there	are	no	back	references	to	the	subpattern	in	which	.*	appears

For	such	patterns,	the	PCRE_ANCHORED	bit	is	set	in	the	options
returned	by	pcre_fullinfo().

		PCRE_INFO_SIZE

Return	the	size	of	the	compiled	pattern,	that	is,	the	value	that	was
passed	as	the	argument	to	pcre_malloc()	when	PCRE	was	getting
memory	in	which	to	place	the	compiled	data.	The	fourth	argument
should	point	to	a	size_t	variable.

		PCRE_INFO_STUDYSIZE

Return	the	size	of	the	data	block	pointed	to	by	the	study_data	field	in
a	pcre_extra	block.	That	is,	it	is	the	value	that	was	passed	to
pcre_malloc()	when	PCRE	was	getting	memory	into	which	to	place
the	data	created	by	pcre_study().	The	fourth	argument	should	point	to
a	size_t	variable.

obsolete	info	function

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

The	pcre_info()	function	is	now	obsolete	because	its	interface	is	too
restrictive	to	return	all	the	available	data	about	a	compiled	pattern.
New	programs	should	use	pcre_fullinfo()	instead.	The	yield	of
pcre_info()	is	the	number	of	capturing	subpatterns,	or	one	of	the
following	negative	numbers:

		PCRE_ERROR_NULL							the	argument	code	was	NULL
		PCRE_ERROR_BADMAGIC			the	"magic	number"	was	not	found

If	the	optptr	argument	is	not	NULL,	a	copy	of	the	options	with	which
the	pattern	was	compiled	is	placed	in	the	integer	it	points	to	(see
PCRE_INFO_OPTIONS	above).

If	the	pattern	is	not	anchored	and	the	firstcharptr	argument	is	not
NULL,	it	is	used	to	pass	back	information	about	the	first	character	of
any	matched	string	(see	PCRE_INFO_FIRSTBYTE	above).

reference	counts

int	pcre_refcount(pcre	*code,	int	adjust);

The	pcre_refcount()	function	is	used	to	maintain	a	reference	count	in
the	data	block	that	contains	a	compiled	pattern.	It	is	provided	for	the
benefit	of	applications	that	operate	in	an	object-oriented	manner,
where	different	parts	of	the	application	may	be	using	the	same
compiled	pattern,	but	you	want	to	free	the	block	when	they	are	all
done.

When	a	pattern	is	compiled,	the	reference	count	field	is	initialized	to
zero.	It	is	changed	only	by	calling	this	function,	whose	action	is	to	add
the	adjust	value	(which	may	be	positive	or	negative)	to	it.	The	yield	of
the	function	is	the	new	value.	However,	the	value	of	the	count	is
constrained	to	lie	between	0	and	65535,	inclusive.	If	the	new	value	is
outside	these	limits,	it	is	forced	to	the	appropriate	limit	value.

Except	when	it	is	zero,	the	reference	count	is	not	correctly	preserved
if	a	pattern	is	compiled	on	one	host	and	then	transferred	to	a	host
whose	byte-order	is	different.	(This	seems	a	highly	unlikely	scenario.)

matching	a	pattern:	the	traditional	function

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize);

The	function	pcre_exec()	is	called	to	match	a	subject	string	against	a
compiled	pattern,	which	is	passed	in	the	code	argument.	If	the	pattern
has	been	studied,	the	result	of	the	study	should	be	passed	in	the	extra
argument.	This	function	is	the	main	matching	facility	of	the	library,
and	it	operates	in	a	Perl-like	manner.	For	specialist	use	there	is	also	an
alternative	matching	function,	which	is	described	below	in	the	section
about	the	pcre_dfa_exec()	function.

In	most	applications,	the	pattern	will	have	been	compiled	(and

optionally	studied)	in	the	same	process	that	calls	pcre_exec().
However,	it	is	possible	to	save	compiled	patterns	and	study	data,	and
then	use	them	later	in	different	processes,	possibly	even	on	different
hosts.	For	a	discussion	about	this,	see	the	pcreprecompile
documentation.

Here	is	an	example	of	a	simple	call	to	pcre_exec():

		int	rc;
		int	ovector[30];
		rc	=	pcre_exec(
				re,													/*	result	of	pcre_compile()	*/
				NULL,											/*	we	didn't	study	the	pattern	*/
				"some	string",		/*	the	subject	string	*/
				11,													/*	the	length	of	the	subject	string	*/
				0,														/*	start	at	offset	0	in	the	subject	*/
				0,														/*	default	options	*/
				ovector,								/*	vector	of	integers	for	substring	information	*/
				30);												/*	number	of	elements	(NOT	size	in	bytes)	*/

Extra	data	for	pcre_exec()	

If	the	extra	argument	is	not	NULL,	it	must	point	to	a	pcre_extra	data
block.	The	pcre_study()	function	returns	such	a	block	(when	it
doesn't	return	NULL),	but	you	can	also	create	one	for	yourself,	and
pass	additional	information	in	it.	The	pcre_extra	block	contains	the
following	fields	(not	necessarily	in	this	order):

		unsigned	long	int	flags;
		void	*study_data;
		unsigned	long	int	match_limit;
		unsigned	long	int	match_limit_recursion;
		void	*callout_data;
		const	unsigned	char	*tables;

The	flags	field	is	a	bitmap	that	specifies	which	of	the	other	fields	are
set.	The	flag	bits	are:

		PCRE_EXTRA_STUDY_DATA
		PCRE_EXTRA_MATCH_LIMIT
		PCRE_EXTRA_MATCH_LIMIT_RECURSION
		PCRE_EXTRA_CALLOUT_DATA
		PCRE_EXTRA_TABLES

Other	flag	bits	should	be	set	to	zero.	The	study_data	field	is	set	in	the
pcre_extra	block	that	is	returned	by	pcre_study(),	together	with	the
appropriate	flag	bit.	You	should	not	set	this	yourself,	but	you	may	add
to	the	block	by	setting	the	other	fields	and	their	corresponding	flag
bits.

The	match_limit	field	provides	a	means	of	preventing	PCRE	from
using	up	a	vast	amount	of	resources	when	running	patterns	that	are	not
going	to	match,	but	which	have	a	very	large	number	of	possibilities	in
their	search	trees.	The	classic	example	is	the	use	of	nested	unlimited
repeats.

Internally,	PCRE	uses	a	function	called	match()	which	it	calls
repeatedly	(sometimes	recursively).	The	limit	set	by	match_limit	is
imposed	on	the	number	of	times	this	function	is	called	during	a	match,
which	has	the	effect	of	limiting	the	amount	of	backtracking	that	can
take	place.	For	patterns	that	are	not	anchored,	the	count	restarts	from
zero	for	each	position	in	the	subject	string.

The	default	value	for	the	limit	can	be	set	when	PCRE	is	built;	the
default	default	is	10	million,	which	handles	all	but	the	most	extreme
cases.	You	can	override	the	default	by	suppling	pcre_exec()	with	a
pcre_extra	block	in	which	match_limit	is	set,	and
PCRE_EXTRA_MATCH_LIMIT	is	set	in	the	flags	field.	If	the	limit
is	exceeded,	pcre_exec()	returns	PCRE_ERROR_MATCHLIMIT.

The	match_limit_recursion	field	is	similar	to	match_limit,	but	instead
of	limiting	the	total	number	of	times	that	match()	is	called,	it	limits
the	depth	of	recursion.	The	recursion	depth	is	a	smaller	number	than
the	total	number	of	calls,	because	not	all	calls	to	match()	are
recursive.	This	limit	is	of	use	only	if	it	is	set	smaller	than	match_limit.

Limiting	the	recursion	depth	limits	the	amount	of	stack	that	can	be
used,	or,	when	PCRE	has	been	compiled	to	use	memory	on	the	heap
instead	of	the	stack,	the	amount	of	heap	memory	that	can	be	used.

The	default	value	for	match_limit_recursion	can	be	set	when	PCRE	is
built;	the	default	default	is	the	same	value	as	the	default	for
match_limit.	You	can	override	the	default	by	suppling	pcre_exec()
with	a	pcre_extra	block	in	which	match_limit_recursion	is	set,	and
PCRE_EXTRA_MATCH_LIMIT_RECURSION	is	set	in	the	flags
field.	If	the	limit	is	exceeded,	pcre_exec()	returns
PCRE_ERROR_RECURSIONLIMIT.

The	pcre_callout	field	is	used	in	conjunction	with	the	"callout"
feature,	which	is	described	in	the	pcrecallout	documentation.

The	tables	field	is	used	to	pass	a	character	tables	pointer	to
pcre_exec();	this	overrides	the	value	that	is	stored	with	the	compiled
pattern.	A	non-NULL	value	is	stored	with	the	compiled	pattern	only	if
custom	tables	were	supplied	to	pcre_compile()	via	its	tableptr
argument.	If	NULL	is	passed	to	pcre_exec()	using	this	mechanism,	it
forces	PCRE's	internal	tables	to	be	used.	This	facility	is	helpful	when
re-using	patterns	that	have	been	saved	after	compiling	with	an
external	set	of	tables,	because	the	external	tables	might	be	at	a
different	address	when	pcre_exec()	is	called.	See	the	pcreprecompile
documentation	for	a	discussion	of	saving	compiled	patterns	for	later
use.

Option	bits	for	pcre_exec()	

The	unused	bits	of	the	options	argument	for	pcre_exec()	must	be	zero.
The	only	bits	that	may	be	set	are	PCRE_ANCHORED,
PCRE_NEWLINE_xxx,	PCRE_NOTBOL,	PCRE_NOTEOL,
PCRE_NOTEMPTY,	PCRE_NO_UTF8_CHECK	and
PCRE_PARTIAL.

		PCRE_ANCHORED

The	PCRE_ANCHORED	option	limits	pcre_exec()	to	matching	at	the
first	matching	position.	If	a	pattern	was	compiled	with
PCRE_ANCHORED,	or	turned	out	to	be	anchored	by	virtue	of	its
contents,	it	cannot	be	made	unachored	at	matching	time.

		PCRE_BSR_ANYCRLF
		PCRE_BSR_UNICODE

These	options	(which	are	mutually	exclusive)	control	what	the	\R
escape	sequence	matches.	The	choice	is	either	to	match	only	CR,	LF,
or	CRLF,	or	to	match	any	Unicode	newline	sequence.	These	options
override	the	choice	that	was	made	or	defaulted	when	the	pattern	was
compiled.

		PCRE_NEWLINE_CR
		PCRE_NEWLINE_LF
		PCRE_NEWLINE_CRLF
		PCRE_NEWLINE_ANYCRLF
		PCRE_NEWLINE_ANY

These	options	override	the	newline	definition	that	was	chosen	or
defaulted	when	the	pattern	was	compiled.	For	details,	see	the
description	of	pcre_compile()	above.	During	matching,	the	newline
choice	affects	the	behaviour	of	the	dot,	circumflex,	and	dollar
metacharacters.	It	may	also	alter	the	way	the	match	position	is

advanced	after	a	match	failure	for	an	unanchored	pattern.

When	PCRE_NEWLINE_CRLF,	PCRE_NEWLINE_ANYCRLF,	or
PCRE_NEWLINE_ANY	is	set,	and	a	match	attempt	for	an
unanchored	pattern	fails	when	the	current	position	is	at	a	CRLF
sequence,	and	the	pattern	contains	no	explicit	matches	for	CR	or	LF
characters,	the	match	position	is	advanced	by	two	characters	instead
of	one,	in	other	words,	to	after	the	CRLF.

The	above	rule	is	a	compromise	that	makes	the	most	common	cases
work	as	expected.	For	example,	if	the	pattern	is	.+A	(and	the
PCRE_DOTALL	option	is	not	set),	it	does	not	match	the	string
"\r\nA"	because,	after	failing	at	the	start,	it	skips	both	the	CR	and	the
LF	before	retrying.	However,	the	pattern	[\r\n]A	does	match	that
string,	because	it	contains	an	explicit	CR	or	LF	reference,	and	so
advances	only	by	one	character	after	the	first	failure.

An	explicit	match	for	CR	of	LF	is	either	a	literal	appearance	of	one	of
those	characters,	or	one	of	the	\r	or	\n	escape	sequences.	Implicit
matches	such	as	[^X]	do	not	count,	nor	does	\s	(which	includes	CR
and	LF	in	the	characters	that	it	matches).

Notwithstanding	the	above,	anomalous	effects	may	still	occur	when
CRLF	is	a	valid	newline	sequence	and	explicit	\r	or	\n	escapes	appear
in	the	pattern.

		PCRE_NOTBOL

This	option	specifies	that	first	character	of	the	subject	string	is	not	the
beginning	of	a	line,	so	the	circumflex	metacharacter	should	not	match
before	it.	Setting	this	without	PCRE_MULTILINE	(at	compile	time)
causes	circumflex	never	to	match.	This	option	affects	only	the
behaviour	of	the	circumflex	metacharacter.	It	does	not	affect	\A.

		PCRE_NOTEOL

This	option	specifies	that	the	end	of	the	subject	string	is	not	the	end	of
a	line,	so	the	dollar	metacharacter	should	not	match	it	nor	(except	in
multiline	mode)	a	newline	immediately	before	it.	Setting	this	without
PCRE_MULTILINE	(at	compile	time)	causes	dollar	never	to	match.
This	option	affects	only	the	behaviour	of	the	dollar	metacharacter.	It
does	not	affect	\Z	or	\z.

		PCRE_NOTEMPTY

An	empty	string	is	not	considered	to	be	a	valid	match	if	this	option	is
set.	If	there	are	alternatives	in	the	pattern,	they	are	tried.	If	all	the
alternatives	match	the	empty	string,	the	entire	match	fails.	For
example,	if	the	pattern

		a?b?

is	applied	to	a	string	not	beginning	with	"a"	or	"b",	it	matches	the
empty	string	at	the	start	of	the	subject.	With	PCRE_NOTEMPTY	set,
this	match	is	not	valid,	so	PCRE	searches	further	into	the	string	for
occurrences	of	"a"	or	"b".

Perl	has	no	direct	equivalent	of	PCRE_NOTEMPTY,	but	it	does	make
a	special	case	of	a	pattern	match	of	the	empty	string	within	its	split()
function,	and	when	using	the	/g	modifier.	It	is	possible	to	emulate
Perl's	behaviour	after	matching	a	null	string	by	first	trying	the	match
again	at	the	same	offset	with	PCRE_NOTEMPTY	and
PCRE_ANCHORED,	and	then	if	that	fails	by	advancing	the	starting
offset	(see	below)	and	trying	an	ordinary	match	again.	There	is	some
code	that	demonstrates	how	to	do	this	in	the	pcredemo.c	sample
program.

		PCRE_NO_UTF8_CHECK

When	PCRE_UTF8	is	set	at	compile	time,	the	validity	of	the	subject
as	a	UTF-8	string	is	automatically	checked	when	pcre_exec()	is
subsequently	called.	The	value	of	startoffset	is	also	checked	to	ensure
that	it	points	to	the	start	of	a	UTF-8	character.	There	is	a	discussion
about	the	validity	of	UTF-8	strings	in	the	section	on	UTF-8	support	in
the	main	pcre	page.	If	an	invalid	UTF-8	sequence	of	bytes	is	found,
pcre_exec()	returns	the	error	PCRE_ERROR_BADUTF8.	If
startoffset	contains	an	invalid	value,
PCRE_ERROR_BADUTF8_OFFSET	is	returned.

If	you	already	know	that	your	subject	is	valid,	and	you	want	to	skip
these	checks	for	performance	reasons,	you	can	set	the
PCRE_NO_UTF8_CHECK	option	when	calling	pcre_exec().	You
might	want	to	do	this	for	the	second	and	subsequent	calls	to
pcre_exec()	if	you	are	making	repeated	calls	to	find	all	the	matches	in
a	single	subject	string.	However,	you	should	be	sure	that	the	value	of
startoffset	points	to	the	start	of	a	UTF-8	character.	When
PCRE_NO_UTF8_CHECK	is	set,	the	effect	of	passing	an	invalid
UTF-8	string	as	a	subject,	or	a	value	of	startoffset	that	does	not	point
to	the	start	of	a	UTF-8	character,	is	undefined.	Your	program	may
crash.

		PCRE_PARTIAL

This	option	turns	on	the	partial	matching	feature.	If	the	subject	string
fails	to	match	the	pattern,	but	at	some	point	during	the	matching
process	the	end	of	the	subject	was	reached	(that	is,	the	subject
partially	matches	the	pattern	and	the	failure	to	match	occurred	only
because	there	were	not	enough	subject	characters),	pcre_exec()
returns	PCRE_ERROR_PARTIAL	instead	of
PCRE_ERROR_NOMATCH.	When	PCRE_PARTIAL	is	used,	there
are	restrictions	on	what	may	appear	in	the	pattern.	These	are	discussed
in	the	pcrepartial	documentation.

The	string	to	be	matched	by	pcre_exec()	

The	subject	string	is	passed	to	pcre_exec()	as	a	pointer	in	subject,	a
length	(in	bytes)	in	length,	and	a	starting	byte	offset	in	startoffset.	In
UTF-8	mode,	the	byte	offset	must	point	to	the	start	of	a	UTF-8
character.	Unlike	the	pattern	string,	the	subject	may	contain	binary
zero	bytes.	When	the	starting	offset	is	zero,	the	search	for	a	match
starts	at	the	beginning	of	the	subject,	and	this	is	by	far	the	most
common	case.

A	non-zero	starting	offset	is	useful	when	searching	for	another	match
in	the	same	subject	by	calling	pcre_exec()	again	after	a	previous
success.	Setting	startoffset	differs	from	just	passing	over	a	shortened
string	and	setting	PCRE_NOTBOL	in	the	case	of	a	pattern	that	begins
with	any	kind	of	lookbehind.	For	example,	consider	the	pattern

		\Biss\B

which	finds	occurrences	of	"iss"	in	the	middle	of	words.	(\B	matches
only	if	the	current	position	in	the	subject	is	not	a	word	boundary.)
When	applied	to	the	string	"Mississipi"	the	first	call	to	pcre_exec()
finds	the	first	occurrence.	If	pcre_exec()	is	called	again	with	just	the
remainder	of	the	subject,	namely	"issipi",	it	does	not	match,	because
\B	is	always	false	at	the	start	of	the	subject,	which	is	deemed	to	be	a
word	boundary.	However,	if	pcre_exec()	is	passed	the	entire	string
again,	but	with	startoffset	set	to	4,	it	finds	the	second	occurrence	of
"iss"	because	it	is	able	to	look	behind	the	starting	point	to	discover
that	it	is	preceded	by	a	letter.

If	a	non-zero	starting	offset	is	passed	when	the	pattern	is	anchored,
one	attempt	to	match	at	the	given	offset	is	made.	This	can	only
succeed	if	the	pattern	does	not	require	the	match	to	be	at	the	start	of
the	subject.

How	pcre_exec()	returns	captured	substrings	

In	general,	a	pattern	matches	a	certain	portion	of	the	subject,	and	in
addition,	further	substrings	from	the	subject	may	be	picked	out	by
parts	of	the	pattern.	Following	the	usage	in	Jeffrey	Friedl's	book,	this
is	called	"capturing"	in	what	follows,	and	the	phrase	"capturing
subpattern"	is	used	for	a	fragment	of	a	pattern	that	picks	out	a
substring.	PCRE	supports	several	other	kinds	of	parenthesized
subpattern	that	do	not	cause	substrings	to	be	captured.

Captured	substrings	are	returned	to	the	caller	via	a	vector	of	integers
whose	address	is	passed	in	ovector.	The	number	of	elements	in	the
vector	is	passed	in	ovecsize,	which	must	be	a	non-negative	number.
Note:	this	argument	is	NOT	the	size	of	ovector	in	bytes.

The	first	two-thirds	of	the	vector	is	used	to	pass	back	captured
substrings,	each	substring	using	a	pair	of	integers.	The	remaining	third
of	the	vector	is	used	as	workspace	by	pcre_exec()	while	matching
capturing	subpatterns,	and	is	not	available	for	passing	back
information.	The	number	passed	in	ovecsize	should	always	be	a
multiple	of	three.	If	it	is	not,	it	is	rounded	down.

When	a	match	is	successful,	information	about	captured	substrings	is
returned	in	pairs	of	integers,	starting	at	the	beginning	of	ovector,	and
continuing	up	to	two-thirds	of	its	length	at	the	most.	The	first	element
of	each	pair	is	set	to	the	byte	offset	of	the	first	character	in	a	substring,
and	the	second	is	set	to	the	byte	offset	of	the	first	character	after	the
end	of	a	substring.	Note:	these	values	are	always	byte	offsets,	even	in
UTF-8	mode.	They	are	not	character	counts.

The	first	pair	of	integers,	ovector[0]	and	ovector[1],	identify	the
portion	of	the	subject	string	matched	by	the	entire	pattern.	The	next
pair	is	used	for	the	first	capturing	subpattern,	and	so	on.	The	value

returned	by	pcre_exec()	is	one	more	than	the	highest	numbered	pair
that	has	been	set.	For	example,	if	two	substrings	have	been	captured,
the	returned	value	is	3.	If	there	are	no	capturing	subpatterns,	the	return
value	from	a	successful	match	is	1,	indicating	that	just	the	first	pair	of
offsets	has	been	set.

If	a	capturing	subpattern	is	matched	repeatedly,	it	is	the	last	portion	of
the	string	that	it	matched	that	is	returned.

If	the	vector	is	too	small	to	hold	all	the	captured	substring	offsets,	it	is
used	as	far	as	possible	(up	to	two-thirds	of	its	length),	and	the	function
returns	a	value	of	zero.	If	the	substring	offsets	are	not	of	interest,
pcre_exec()	may	be	called	with	ovector	passed	as	NULL	and	ovecsize
as	zero.	However,	if	the	pattern	contains	back	references	and	the
ovector	is	not	big	enough	to	remember	the	related	substrings,	PCRE
has	to	get	additional	memory	for	use	during	matching.	Thus	it	is
usually	advisable	to	supply	an	ovector.

The	pcre_info()	function	can	be	used	to	find	out	how	many	capturing
subpatterns	there	are	in	a	compiled	pattern.	The	smallest	size	for
ovector	that	will	allow	for	n	captured	substrings,	in	addition	to	the
offsets	of	the	substring	matched	by	the	whole	pattern,	is	(n+1)*3.

It	is	possible	for	capturing	subpattern	number	n+1	to	match	some	part
of	the	subject	when	subpattern	n	has	not	been	used	at	all.	For
example,	if	the	string	"abc"	is	matched	against	the	pattern	(a|(z))(bc)
the	return	from	the	function	is	4,	and	subpatterns	1	and	3	are	matched,
but	2	is	not.	When	this	happens,	both	values	in	the	offset	pairs
corresponding	to	unused	subpatterns	are	set	to	-1.

Offset	values	that	correspond	to	unused	subpatterns	at	the	end	of	the
expression	are	also	set	to	-1.	For	example,	if	the	string	"abc"	is
matched	against	the	pattern	(abc)(x(yz)?)?	subpatterns	2	and	3	are	not
matched.	The	return	from	the	function	is	2,	because	the	highest	used

capturing	subpattern	number	is	1.	However,	you	can	refer	to	the
offsets	for	the	second	and	third	capturing	subpatterns	if	you	wish
(assuming	the	vector	is	large	enough,	of	course).

Some	convenience	functions	are	provided	for	extracting	the	captured
substrings	as	separate	strings.	These	are	described	below.

Error	return	values	from	pcre_exec()	

If	pcre_exec()	fails,	it	returns	a	negative	number.	The	following	are
defined	in	the	header	file:

		PCRE_ERROR_NOMATCH								(-1)

The	subject	string	did	not	match	the	pattern.

		PCRE_ERROR_NULL											(-2)

Either	code	or	subject	was	passed	as	NULL,	or	ovector	was	NULL
and	ovecsize	was	not	zero.

		PCRE_ERROR_BADOPTION						(-3)

An	unrecognized	bit	was	set	in	the	options	argument.

		PCRE_ERROR_BADMAGIC							(-4)

PCRE	stores	a	4-byte	"magic	number"	at	the	start	of	the	compiled
code,	to	catch	the	case	when	it	is	passed	a	junk	pointer	and	to	detect
when	a	pattern	that	was	compiled	in	an	environment	of	one
endianness	is	run	in	an	environment	with	the	other	endianness.	This	is
the	error	that	PCRE	gives	when	the	magic	number	is	not	present.

		PCRE_ERROR_UNKNOWN_OPCODE	(-5)

While	running	the	pattern	match,	an	unknown	item	was	encountered
in	the	compiled	pattern.	This	error	could	be	caused	by	a	bug	in	PCRE
or	by	overwriting	of	the	compiled	pattern.

		PCRE_ERROR_NOMEMORY							(-6)

If	a	pattern	contains	back	references,	but	the	ovector	that	is	passed	to
pcre_exec()	is	not	big	enough	to	remember	the	referenced	substrings,
PCRE	gets	a	block	of	memory	at	the	start	of	matching	to	use	for	this
purpose.	If	the	call	via	pcre_malloc()	fails,	this	error	is	given.	The
memory	is	automatically	freed	at	the	end	of	matching.

		PCRE_ERROR_NOSUBSTRING				(-7)

This	error	is	used	by	the	pcre_copy_substring(),
pcre_get_substring(),	and	pcre_get_substring_list()	functions	(see
below).	It	is	never	returned	by	pcre_exec().

		PCRE_ERROR_MATCHLIMIT					(-8)

The	backtracking	limit,	as	specified	by	the	match_limit	field	in	a
pcre_extra	structure	(or	defaulted)	was	reached.	See	the	description
above.

		PCRE_ERROR_CALLOUT								(-9)

This	error	is	never	generated	by	pcre_exec()	itself.	It	is	provided	for
use	by	callout	functions	that	want	to	yield	a	distinctive	error	code.	See
the	pcrecallout	documentation	for	details.

		PCRE_ERROR_BADUTF8								(-10)

A	string	that	contains	an	invalid	UTF-8	byte	sequence	was	passed	as	a
subject.

		PCRE_ERROR_BADUTF8_OFFSET	(-11)

The	UTF-8	byte	sequence	that	was	passed	as	a	subject	was	valid,	but
the	value	of	startoffset	did	not	point	to	the	beginning	of	a	UTF-8
character.

		PCRE_ERROR_PARTIAL								(-12)

The	subject	string	did	not	match,	but	it	did	match	partially.	See	the
pcrepartial	documentation	for	details	of	partial	matching.

		PCRE_ERROR_BADPARTIAL					(-13)

The	PCRE_PARTIAL	option	was	used	with	a	compiled	pattern
containing	items	that	are	not	supported	for	partial	matching.	See	the
pcrepartial	documentation	for	details	of	partial	matching.

		PCRE_ERROR_INTERNAL							(-14)

An	unexpected	internal	error	has	occurred.	This	error	could	be	caused
by	a	bug	in	PCRE	or	by	overwriting	of	the	compiled	pattern.

		PCRE_ERROR_BADCOUNT							(-15)

This	error	is	given	if	the	value	of	the	ovecsize	argument	is	negative.

		PCRE_ERROR_RECURSIONLIMIT	(-21)

The	internal	recursion	limit,	as	specified	by	the	match_limit_recursion
field	in	a	pcre_extra	structure	(or	defaulted)	was	reached.	See	the
description	above.

		PCRE_ERROR_BADNEWLINE					(-23)

An	invalid	combination	of	PCRE_NEWLINE_xxx	options	was	given.

Error	numbers	-16	to	-20	and	-22	are	not	used	by	pcre_exec().

extracting	captured	substrings	by	number

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	char	*buffer,	int	buffersize);

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	const	char	**stringptr);

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int
stringcount,	const	char	***listptr);

Captured	substrings	can	be	accessed	directly	by	using	the	offsets
returned	by	pcre_exec()	in	ovector.	For	convenience,	the	functions
pcre_copy_substring(),	pcre_get_substring(),	and
pcre_get_substring_list()	are	provided	for	extracting	captured
substrings	as	new,	separate,	zero-terminated	strings.	These	functions
identify	substrings	by	number.	The	next	section	describes	functions
for	extracting	named	substrings.

A	substring	that	contains	a	binary	zero	is	correctly	extracted	and	has	a
further	zero	added	on	the	end,	but	the	result	is	not,	of	course,	a	C
string.	However,	you	can	process	such	a	string	by	referring	to	the
length	that	is	returned	by	pcre_copy_substring()	and
pcre_get_substring().	Unfortunately,	the	interface	to
pcre_get_substring_list()	is	not	adequate	for	handling	strings
containing	binary	zeros,	because	the	end	of	the	final	string	is	not
independently	indicated.

The	first	three	arguments	are	the	same	for	all	three	of	these	functions:
subject	is	the	subject	string	that	has	just	been	successfully	matched,
ovector	is	a	pointer	to	the	vector	of	integer	offsets	that	was	passed	to
pcre_exec(),	and	stringcount	is	the	number	of	substrings	that	were
captured	by	the	match,	including	the	substring	that	matched	the	entire
regular	expression.	This	is	the	value	returned	by	pcre_exec()	if	it	is

greater	than	zero.	If	pcre_exec()	returned	zero,	indicating	that	it	ran
out	of	space	in	ovector,	the	value	passed	as	stringcount	should	be	the
number	of	elements	in	the	vector	divided	by	three.

The	functions	pcre_copy_substring()	and	pcre_get_substring()
extract	a	single	substring,	whose	number	is	given	as	stringnumber.	A
value	of	zero	extracts	the	substring	that	matched	the	entire	pattern,
whereas	higher	values	extract	the	captured	substrings.	For
pcre_copy_substring(),	the	string	is	placed	in	buffer,	whose	length	is
given	by	buffersize,	while	for	pcre_get_substring()	a	new	block	of
memory	is	obtained	via	pcre_malloc,	and	its	address	is	returned	via
stringptr.	The	yield	of	the	function	is	the	length	of	the	string,	not
including	the	terminating	zero,	or	one	of	these	error	codes:

		PCRE_ERROR_NOMEMORY							(-6)

The	buffer	was	too	small	for	pcre_copy_substring(),	or	the	attempt	to
get	memory	failed	for	pcre_get_substring().

		PCRE_ERROR_NOSUBSTRING				(-7)

There	is	no	substring	whose	number	is	stringnumber.

The	pcre_get_substring_list()	function	extracts	all	available
substrings	and	builds	a	list	of	pointers	to	them.	All	this	is	done	in	a
single	block	of	memory	that	is	obtained	via	pcre_malloc.	The	address
of	the	memory	block	is	returned	via	listptr,	which	is	also	the	start	of
the	list	of	string	pointers.	The	end	of	the	list	is	marked	by	a	NULL
pointer.	The	yield	of	the	function	is	zero	if	all	went	well,	or	the	error
code

		PCRE_ERROR_NOMEMORY							(-6)

if	the	attempt	to	get	the	memory	block	failed.

When	any	of	these	functions	encounter	a	substring	that	is	unset,	which
can	happen	when	capturing	subpattern	number	n+1	matches	some
part	of	the	subject,	but	subpattern	n	has	not	been	used	at	all,	they
return	an	empty	string.	This	can	be	distinguished	from	a	genuine	zero-
length	substring	by	inspecting	the	appropriate	offset	in	ovector,	which
is	negative	for	unset	substrings.

The	two	convenience	functions	pcre_free_substring()	and
pcre_free_substring_list()	can	be	used	to	free	the	memory	returned
by	a	previous	call	of	pcre_get_substring()	or
pcre_get_substring_list(),	respectively.	They	do	nothing	more	than
call	the	function	pointed	to	by	pcre_free,	which	of	course	could	be
called	directly	from	a	C	program.	However,	PCRE	is	used	in	some
situations	where	it	is	linked	via	a	special	interface	to	another
programming	language	that	cannot	use	pcre_free	directly;	it	is	for
these	cases	that	the	functions	are	provided.

extracting	captured	substrings	by	name

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

int	pcre_copy_named_substring(const	pcre	*code,	const	char
*subject,	int	*ovector,	int	stringcount,	const	char	*stringname,	char
*buffer,	int	buffersize);

int	pcre_get_named_substring(const	pcre	*code,	const	char
*subject,	int	*ovector,	int	stringcount,	const	char	*stringname,
const	char	**stringptr);

To	extract	a	substring	by	name,	you	first	have	to	find	associated
number.	For	example,	for	this	pattern

		(a+)b(?<xxx>\d+)...

the	number	of	the	subpattern	called	"xxx"	is	2.	If	the	name	is	known
to	be	unique	(PCRE_DUPNAMES	was	not	set),	you	can	find	the
number	from	the	name	by	calling	pcre_get_stringnumber().	The	first
argument	is	the	compiled	pattern,	and	the	second	is	the	name.	The
yield	of	the	function	is	the	subpattern	number,	or
PCRE_ERROR_NOSUBSTRING	(-7)	if	there	is	no	subpattern	of	that
name.

Given	the	number,	you	can	extract	the	substring	directly,	or	use	one	of
the	functions	described	in	the	previous	section.	For	convenience,	there
are	also	two	functions	that	do	the	whole	job.

Most	of	the	arguments	of	pcre_copy_named_substring()	and
pcre_get_named_substring()	are	the	same	as	those	for	the	similarly
named	functions	that	extract	by	number.	As	these	are	described	in	the
previous	section,	they	are	not	re-described	here.	There	are	just	two
differences:

First,	instead	of	a	substring	number,	a	substring	name	is	given.
Second,	there	is	an	extra	argument,	given	at	the	start,	which	is	a
pointer	to	the	compiled	pattern.	This	is	needed	in	order	to	gain	access
to	the	name-to-number	translation	table.

These	functions	call	pcre_get_stringnumber(),	and	if	it	succeeds,
they	then	call	pcre_copy_substring()	or	pcre_get_substring(),	as
appropriate.	NOTE:	If	PCRE_DUPNAMES	is	set	and	there	are
duplicate	names,	the	behaviour	may	not	be	what	you	want	(see	the
next	section).

duplicate	subpattern	names

int	pcre_get_stringtable_entries(const	pcre	*code,	const	char
*name,	char	**first,	char	**last);

When	a	pattern	is	compiled	with	the	PCRE_DUPNAMES	option,
names	for	subpatterns	are	not	required	to	be	unique.	Normally,
patterns	with	duplicate	names	are	such	that	in	any	one	match,	only
one	of	the	named	subpatterns	participates.	An	example	is	shown	in	the
pcrepattern	documentation.

When	duplicates	are	present,	pcre_copy_named_substring()	and
pcre_get_named_substring()	return	the	first	substring	corresponding
to	the	given	name	that	is	set.	If	none	are	set,
PCRE_ERROR_NOSUBSTRING	(-7)	is	returned;	no	data	is
returned.	The	pcre_get_stringnumber()	function	returns	one	of	the
numbers	that	are	associated	with	the	name,	but	it	is	not	defined	which
it	is.

If	you	want	to	get	full	details	of	all	captured	substrings	for	a	given
name,	you	must	use	the	pcre_get_stringtable_entries()	function.	The
first	argument	is	the	compiled	pattern,	and	the	second	is	the	name.
The	third	and	fourth	are	pointers	to	variables	which	are	updated	by	the
function.	After	it	has	run,	they	point	to	the	first	and	last	entries	in	the
name-to-number	table	for	the	given	name.	The	function	itself	returns
the	length	of	each	entry,	or	PCRE_ERROR_NOSUBSTRING	(-7)	if
there	are	none.	The	format	of	the	table	is	described	above	in	the
section	entitled	Information	about	a	pattern.	Given	all	the	relevant
entries	for	the	name,	you	can	extract	each	of	their	numbers,	and	hence
the	captured	data,	if	any.

finding	all	possible	matches

The	traditional	matching	function	uses	a	similar	algorithm	to	Perl,
which	stops	when	it	finds	the	first	match,	starting	at	a	given	point	in
the	subject.	If	you	want	to	find	all	possible	matches,	or	the	longest
possible	match,	consider	using	the	alternative	matching	function	(see
below)	instead.	If	you	cannot	use	the	alternative	function,	but	still

need	to	find	all	possible	matches,	you	can	kludge	it	up	by	making	use
of	the	callout	facility,	which	is	described	in	the	pcrecallout
documentation.

What	you	have	to	do	is	to	insert	a	callout	right	at	the	end	of	the
pattern.	When	your	callout	function	is	called,	extract	and	save	the
current	matched	substring.	Then	return	1,	which	forces	pcre_exec()	to
backtrack	and	try	other	alternatives.	Ultimately,	when	it	runs	out	of
matches,	pcre_exec()	will	yield	PCRE_ERROR_NOMATCH.

matching	a	pattern:	the	alternative	function

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const
char	*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize,	int	*workspace,	int	wscount);

The	function	pcre_dfa_exec()	is	called	to	match	a	subject	string
against	a	compiled	pattern,	using	a	matching	algorithm	that	scans	the
subject	string	just	once,	and	does	not	backtrack.	This	has	different
characteristics	to	the	normal	algorithm,	and	is	not	compatible	with
Perl.	Some	of	the	features	of	PCRE	patterns	are	not	supported.
Nevertheless,	there	are	times	when	this	kind	of	matching	can	be
useful.	For	a	discussion	of	the	two	matching	algorithms,	see	the
pcrematching	documentation.

The	arguments	for	the	pcre_dfa_exec()	function	are	the	same	as	for
pcre_exec(),	plus	two	extras.	The	ovector	argument	is	used	in	a
different	way,	and	this	is	described	below.	The	other	common
arguments	are	used	in	the	same	way	as	for	pcre_exec(),	so	their
description	is	not	repeated	here.

The	two	additional	arguments	provide	workspace	for	the	function.
The	workspace	vector	should	contain	at	least	20	elements.	It	is	used

for	keeping	track	of	multiple	paths	through	the	pattern	tree.	More
workspace	will	be	needed	for	patterns	and	subjects	where	there	are	a
lot	of	potential	matches.

Here	is	an	example	of	a	simple	call	to	pcre_dfa_exec():

		int	rc;
		int	ovector[10];
		int	wspace[20];
		rc	=	pcre_dfa_exec(
				re,													/*	result	of	pcre_compile()	*/
				NULL,											/*	we	didn't	study	the	pattern	*/
				"some	string",		/*	the	subject	string	*/
				11,													/*	the	length	of	the	subject	string	*/
				0,														/*	start	at	offset	0	in	the	subject	*/
				0,														/*	default	options	*/
				ovector,								/*	vector	of	integers	for	substring	information	*/
				10,													/*	number	of	elements	(NOT	size	in	bytes)	*/
				wspace,									/*	working	space	vector	*/
				20);												/*	number	of	elements	(NOT	size	in	bytes)	*/

Option	bits	for	pcre_dfa_exec()	

The	unused	bits	of	the	options	argument	for	pcre_dfa_exec()	must	be
zero.	The	only	bits	that	may	be	set	are	PCRE_ANCHORED,
PCRE_NEWLINE_xxx,	PCRE_NOTBOL,	PCRE_NOTEOL,
PCRE_NOTEMPTY,	PCRE_NO_UTF8_CHECK,	PCRE_PARTIAL,
PCRE_DFA_SHORTEST,	and	PCRE_DFA_RESTART.	All	but	the
last	three	of	these	are	the	same	as	for	pcre_exec(),	so	their	description
is	not	repeated	here.

		PCRE_PARTIAL

This	has	the	same	general	effect	as	it	does	for	pcre_exec(),	but	the
details	are	slightly	different.	When	PCRE_PARTIAL	is	set	for

pcre_dfa_exec(),	the	return	code	PCRE_ERROR_NOMATCH	is
converted	into	PCRE_ERROR_PARTIAL	if	the	end	of	the	subject	is
reached,	there	have	been	no	complete	matches,	but	there	is	still	at
least	one	matching	possibility.	The	portion	of	the	string	that	provided
the	partial	match	is	set	as	the	first	matching	string.

		PCRE_DFA_SHORTEST

Setting	the	PCRE_DFA_SHORTEST	option	causes	the	matching
algorithm	to	stop	as	soon	as	it	has	found	one	match.	Because	of	the
way	the	alternative	algorithm	works,	this	is	necessarily	the	shortest
possible	match	at	the	first	possible	matching	point	in	the	subject
string.

		PCRE_DFA_RESTART

When	pcre_dfa_exec()	is	called	with	the	PCRE_PARTIAL	option,
and	returns	a	partial	match,	it	is	possible	to	call	it	again,	with
additional	subject	characters,	and	have	it	continue	with	the	same
match.	The	PCRE_DFA_RESTART	option	requests	this	action;	when
it	is	set,	the	workspace	and	wscount	options	must	reference	the	same
vector	as	before	because	data	about	the	match	so	far	is	left	in	them
after	a	partial	match.	There	is	more	discussion	of	this	facility	in	the
pcrepartial	documentation.

Successful	returns	from	pcre_dfa_exec()	

When	pcre_dfa_exec()	succeeds,	it	may	have	matched	more	than	one
substring	in	the	subject.	Note,	however,	that	all	the	matches	from	one
run	of	the	function	start	at	the	same	point	in	the	subject.	The	shorter
matches	are	all	initial	substrings	of	the	longer	matches.	For	example,
if	the	pattern

		<.*>

is	matched	against	the	string

		This	is	<something>	<something	else>	<something	further>	no	more

the	three	matched	strings	are

		<something>
		<something>	<something	else>
		<something>	<something	else>	<something	further>

On	success,	the	yield	of	the	function	is	a	number	greater	than	zero,
which	is	the	number	of	matched	substrings.	The	substrings	themselves
are	returned	in	ovector.	Each	string	uses	two	elements;	the	first	is	the
offset	to	the	start,	and	the	second	is	the	offset	to	the	end.	In	fact,	all
the	strings	have	the	same	start	offset.	(Space	could	have	been	saved
by	giving	this	only	once,	but	it	was	decided	to	retain	some
compatibility	with	the	way	pcre_exec()	returns	data,	even	though	the
meaning	of	the	strings	is	different.)

The	strings	are	returned	in	reverse	order	of	length;	that	is,	the	longest
matching	string	is	given	first.	If	there	were	too	many	matches	to	fit
into	ovector,	the	yield	of	the	function	is	zero,	and	the	vector	is	filled
with	the	longest	matches.

Error	returns	from	pcre_dfa_exec()	

The	pcre_dfa_exec()	function	returns	a	negative	number	when	it	fails.
Many	of	the	errors	are	the	same	as	for	pcre_exec(),	and	these	are
described	above.	There	are	in	addition	the	following	errors	that	are
specific	to	pcre_dfa_exec():

		PCRE_ERROR_DFA_UITEM						(-16)

This	return	is	given	if	pcre_dfa_exec()	encounters	an	item	in	the

pattern	that	it	does	not	support,	for	instance,	the	use	of	\C	or	a	back
reference.

		PCRE_ERROR_DFA_UCOND						(-17)

This	return	is	given	if	pcre_dfa_exec()	encounters	a	condition	item
that	uses	a	back	reference	for	the	condition,	or	a	test	for	recursion	in	a
specific	group.	These	are	not	supported.

		PCRE_ERROR_DFA_UMLIMIT				(-18)

This	return	is	given	if	pcre_dfa_exec()	is	called	with	an	extra	block
that	contains	a	setting	of	the	match_limit	field.	This	is	not	supported
(it	is	meaningless).

		PCRE_ERROR_DFA_WSSIZE					(-19)

This	return	is	given	if	pcre_dfa_exec()	runs	out	of	space	in	the
workspace	vector.

		PCRE_ERROR_DFA_RECURSE				(-20)

When	a	recursive	subpattern	is	processed,	the	matching	function	calls
itself	recursively,	using	private	vectors	for	ovector	and	workspace.
This	error	is	given	if	the	output	vector	is	not	large	enough.	This
should	be	extremely	rare,	as	a	vector	of	size	1000	is	used.

see	also

pcrebuild(3),	pcrecallout(3),	pcrecpp(3)(3),	pcrematching(3),
pcrepartial(3),	pcreposix(3),	pcreprecompile(3),	pcresample(3),
pcrestack(3).

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	24	August	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrebuild	man	page
Return	to	the	PCRE	index	page.

PCRE	BUILD-TIME	OPTIONS
C++	SUPPORT
UTF-8	SUPPORT
UNICODE	CHARACTER	PROPERTY	SUPPORT
CODE	VALUE	OF	NEWLINE
WHAT	\R	MATCHES
BUILDING	SHARED	AND	STATIC	LIBRARIES
POSIX	MALLOC	USAGE
HANDLING	VERY	LARGE	PATTERNS
AVOIDING	EXCESSIVE	STACK	USAGE
LIMITING	PCRE	RESOURCE	USAGE
CREATING	CHARACTER	TABLES	AT	BUILD	TIME
USING	EBCDIC	CODE
PCREGREP	OPTIONS	FOR	COMPRESSED	FILE	SUPPORT
PCRETEST	OPTION	FOR	LIBREADLINE	SUPPORT
SEE	ALSO
AUTHOR
REVISION

pcre	build-time	options

This	document	describes	the	optional	features	of	PCRE	that	can	be
selected	when	the	library	is	compiled.	It	assumes	use	of	the	configure
script,	where	the	optional	features	are	selected	or	deselected	by
providing	options	to	configure	before	running	the	make	command.
However,	the	same	options	can	be	selected	in	both	Unix-like	and	non-
Unix-like	environments	using	the	GUI	facility	of	CMakeSetup	if	you
are	using	CMake	instead	of	configure	to	build	PCRE.

The	complete	list	of	options	for	configure	(which	includes	the
standard	ones	such	as	the	selection	of	the	installation	directory)	can	be
obtained	by	running

		./configure	--help

The	following	sections	include	descriptions	of	options	whose	names
begin	with	--enable	or	--disable.	These	settings	specify	changes	to	the
defaults	for	the	configure	command.	Because	of	the	way	that
configure	works,	--enable	and	--disable	always	come	in	pairs,	so	the
complementary	option	always	exists	as	well,	but	as	it	specifies	the
default,	it	is	not	described.

c++	support

By	default,	the	configure	script	will	search	for	a	C++	compiler	and
C++	header	files.	If	it	finds	them,	it	automatically	builds	the	C++
wrapper	library	for	PCRE.	You	can	disable	this	by	adding

		--disable-cpp

to	the	configure	command.

utf-8	support

To	build	PCRE	with	support	for	UTF-8	character	strings,	add

		--enable-utf8

to	the	configure	command.	Of	itself,	this	does	not	make	PCRE	treat
strings	as	UTF-8.	As	well	as	compiling	PCRE	with	this	option,	you
also	have	have	to	set	the	PCRE_UTF8	option	when	you	call	the
pcre_compile()	function.

unicode	character	property	support

UTF-8	support	allows	PCRE	to	process	character	values	greater	than
255	in	the	strings	that	it	handles.	On	its	own,	however,	it	does	not
provide	any	facilities	for	accessing	the	properties	of	such	characters.
If	you	want	to	be	able	to	use	the	pattern	escapes	\P,	\p,	and	\X,	which
refer	to	Unicode	character	properties,	you	must	add

		--enable-unicode-properties

to	the	configure	command.	This	implies	UTF-8	support,	even	if	you
have	not	explicitly	requested	it.

Including	Unicode	property	support	adds	around	30K	of	tables	to	the
PCRE	library.	Only	the	general	category	properties	such	as	Lu	and	Nd
are	supported.	Details	are	given	in	the	pcrepattern	documentation.

code	value	of	newline

By	default,	PCRE	interprets	character	10	(linefeed,	LF)	as	indicating
the	end	of	a	line.	This	is	the	normal	newline	character	on	Unix-like
systems.	You	can	compile	PCRE	to	use	character	13	(carriage	return,
CR)	instead,	by	adding

		--enable-newline-is-cr

to	the	configure	command.	There	is	also	a	--enable-newline-is-lf
option,	which	explicitly	specifies	linefeed	as	the	newline	character.	

Alternatively,	you	can	specify	that	line	endings	are	to	be	indicated	by
the	two	character	sequence	CRLF.	If	you	want	this,	add

		--enable-newline-is-crlf

to	the	configure	command.	There	is	a	fourth	option,	specified	by

		--enable-newline-is-anycrlf

which	causes	PCRE	to	recognize	any	of	the	three	sequences	CR,	LF,
or	CRLF	as	indicating	a	line	ending.	Finally,	a	fifth	option,	specified
by

		--enable-newline-is-any

causes	PCRE	to	recognize	any	Unicode	newline	sequence.

Whatever	line	ending	convention	is	selected	when	PCRE	is	built	can
be	overridden	when	the	library	functions	are	called.	At	build	time	it	is
conventional	to	use	the	standard	for	your	operating	system.

what	\r	matches

By	default,	the	sequence	\R	in	a	pattern	matches	any	Unicode	newline
sequence,	whatever	has	been	selected	as	the	line	ending	sequence.	If
you	specify

		--enable-bsr-anycrlf

the	default	is	changed	so	that	\R	matches	only	CR,	LF,	or	CRLF.
Whatever	is	selected	when	PCRE	is	built	can	be	overridden	when	the
library	functions	are	called.

building	shared	and	static	libraries

The	PCRE	building	process	uses	libtool	to	build	both	shared	and
static	Unix	libraries	by	default.	You	can	suppress	one	of	these	by
adding	one	of

		--disable-shared
		--disable-static

to	the	configure	command,	as	required.

posix	malloc	usage

When	PCRE	is	called	through	the	POSIX	interface	(see	the	pcreposix
documentation),	additional	working	storage	is	required	for	holding	the
pointers	to	capturing	substrings,	because	PCRE	requires	three	integers
per	substring,	whereas	the	POSIX	interface	provides	only	two.	If	the
number	of	expected	substrings	is	small,	the	wrapper	function	uses
space	on	the	stack,	because	this	is	faster	than	using	malloc()	for	each
call.	The	default	threshold	above	which	the	stack	is	no	longer	used	is
10;	it	can	be	changed	by	adding	a	setting	such	as

		--with-posix-malloc-threshold=20

to	the	configure	command.

handling	very	large	patterns

Within	a	compiled	pattern,	offset	values	are	used	to	point	from	one
part	to	another	(for	example,	from	an	opening	parenthesis	to	an
alternation	metacharacter).	By	default,	two-byte	values	are	used	for
these	offsets,	leading	to	a	maximum	size	for	a	compiled	pattern	of
around	64K.	This	is	sufficient	to	handle	all	but	the	most	gigantic
patterns.	Nevertheless,	some	people	do	want	to	process	enormous
patterns,	so	it	is	possible	to	compile	PCRE	to	use	three-byte	or	four-
byte	offsets	by	adding	a	setting	such	as

		--with-link-size=3

to	the	configure	command.	The	value	given	must	be	2,	3,	or	4.	Using
longer	offsets	slows	down	the	operation	of	PCRE	because	it	has	to
load	additional	bytes	when	handling	them.

avoiding	excessive	stack	usage

When	matching	with	the	pcre_exec()	function,	PCRE	implements
backtracking	by	making	recursive	calls	to	an	internal	function	called
match().	In	environments	where	the	size	of	the	stack	is	limited,	this
can	severely	limit	PCRE's	operation.	(The	Unix	environment	does	not
usually	suffer	from	this	problem,	but	it	may	sometimes	be	necessary
to	increase	the	maximum	stack	size.	There	is	a	discussion	in	the
pcrestack	documentation.)	An	alternative	approach	to	recursion	that
uses	memory	from	the	heap	to	remember	data,	instead	of	using
recursive	function	calls,	has	been	implemented	to	work	round	the
problem	of	limited	stack	size.	If	you	want	to	build	a	version	of	PCRE
that	works	this	way,	add

		--disable-stack-for-recursion

to	the	configure	command.	With	this	configuration,	PCRE	will	use
the	pcre_stack_malloc	and	pcre_stack_free	variables	to	call	memory
management	functions.	By	default	these	point	to	malloc()	and	free(),
but	you	can	replace	the	pointers	so	that	your	own	functions	are	used.

Separate	functions	are	provided	rather	than	using	pcre_malloc	and
pcre_free	because	the	usage	is	very	predictable:	the	block	sizes
requested	are	always	the	same,	and	the	blocks	are	always	freed	in
reverse	order.	A	calling	program	might	be	able	to	implement
optimized	functions	that	perform	better	than	malloc()	and	free().
PCRE	runs	noticeably	more	slowly	when	built	in	this	way.	This	option
affects	only	the	pcre_exec()	function;	it	is	not	relevant	for	the	the
pcre_dfa_exec()	function.

limiting	pcre	resource	usage

Internally,	PCRE	has	a	function	called	match(),	which	it	calls
repeatedly	(sometimes	recursively)	when	matching	a	pattern	with	the
pcre_exec()	function.	By	controlling	the	maximum	number	of	times
this	function	may	be	called	during	a	single	matching	operation,	a	limit
can	be	placed	on	the	resources	used	by	a	single	call	to	pcre_exec().
The	limit	can	be	changed	at	run	time,	as	described	in	the	pcreapi
documentation.	The	default	is	10	million,	but	this	can	be	changed	by
adding	a	setting	such	as

		--with-match-limit=500000

to	the	configure	command.	This	setting	has	no	effect	on	the
pcre_dfa_exec()	matching	function.

In	some	environments	it	is	desirable	to	limit	the	depth	of	recursive
calls	of	match()	more	strictly	than	the	total	number	of	calls,	in	order
to	restrict	the	maximum	amount	of	stack	(or	heap,	if	--disable-stack-
for-recursion	is	specified)	that	is	used.	A	second	limit	controls	this;	it
defaults	to	the	value	that	is	set	for	--with-match-limit,	which	imposes
no	additional	constraints.	However,	you	can	set	a	lower	limit	by
adding,	for	example,

		--with-match-limit-recursion=10000

to	the	configure	command.	This	value	can	also	be	overridden	at	run
time.

creating	character	tables	at	build	time

PCRE	uses	fixed	tables	for	processing	characters	whose	code	values
are	less	than	256.	By	default,	PCRE	is	built	with	a	set	of	tables	that

are	distributed	in	the	file	pcre_chartables.c.dist.	These	tables	are	for
ASCII	codes	only.	If	you	add

		--enable-rebuild-chartables

to	the	configure	command,	the	distributed	tables	are	no	longer	used.
Instead,	a	program	called	dftables	is	compiled	and	run.	This	outputs
the	source	for	new	set	of	tables,	created	in	the	default	locale	of	your	C
runtime	system.	(This	method	of	replacing	the	tables	does	not	work	if
you	are	cross	compiling,	because	dftables	is	run	on	the	local	host.	If
you	need	to	create	alternative	tables	when	cross	compiling,	you	will
have	to	do	so	"by	hand".)

using	ebcdic	code

PCRE	assumes	by	default	that	it	will	run	in	an	environment	where	the
character	code	is	ASCII	(or	Unicode,	which	is	a	superset	of	ASCII).
This	is	the	case	for	most	computer	operating	systems.	PCRE	can,
however,	be	compiled	to	run	in	an	EBCDIC	environment	by	adding

		--enable-ebcdic

to	the	configure	command.	This	setting	implies	--enable-rebuild-
chartables.	You	should	only	use	it	if	you	know	that	you	are	in	an
EBCDIC	environment	(for	example,	an	IBM	mainframe	operating
system).

pcregrep	options	for	compressed	file	support

By	default,	pcregrep	reads	all	files	as	plain	text.	You	can	build	it	so
that	it	recognizes	files	whose	names	end	in	.gz	or	.bz2,	and	reads	them
with	libz	or	libbz2,	respectively,	by	adding	one	or	both	of

		--enable-pcregrep-libz
		--enable-pcregrep-libbz2

to	the	configure	command.	These	options	naturally	require	that	the
relevant	libraries	are	installed	on	your	system.	Configuration	will	fail
if	they	are	not.

pcretest	option	for	libreadline	support

If	you	add

		--enable-pcretest-libreadline

to	the	configure	command,	pcretest	is	linked	with	the	libreadline
library,	and	when	its	input	is	from	a	terminal,	it	reads	it	using	the
readline()	function.	This	provides	line-editing	and	history	facilities.
Note	that	libreadline	is	GPL-licenced,	so	if	you	distribute	a	binary	of
pcretest	linked	in	this	way,	there	may	be	licensing	issues.

Setting	this	option	causes	the	-lreadline	option	to	be	added	to	the
pcretest	build.	In	many	operating	environments	with	a	sytem-
installed	libreadline	this	is	sufficient.	However,	in	some
environments	(e.g.	if	an	unmodified	distribution	version	of	readline	is
in	use),	some	extra	configuration	may	be	necessary.	The	INSTALL
file	for	libreadline	says	this:

		"Readline	uses	the	termcap	functions,	but	does	not	link	with	the
		termcap	or	curses	library	itself,	allowing	applications	which	link
		with	readline	the	to	choose	an	appropriate	library."

If	your	environment	has	not	been	set	up	so	that	an	appropriate	library
is	automatically	included,	you	may	need	to	add	something	like

		LIBS="-ncurses"

immediately	before	the	configure	command.

see	also

pcreapi(3),	pcre_config(3).

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	13	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrecompat	man	page
Return	to	the	PCRE	index	page.

DIFFERENCES	BETWEEN	PCRE	AND	PERL

This	document	describes	the	differences	in	the	ways	that	PCRE	and
Perl	handle	regular	expressions.	The	differences	described	here	are
mainly	with	respect	to	Perl	5.8,	though	PCRE	versions	7.0	and	later
contain	some	features	that	are	expected	to	be	in	the	forthcoming	Perl
5.10.

1.	PCRE	has	only	a	subset	of	Perl's	UTF-8	and	Unicode	support.
Details	of	what	it	does	have	are	given	in	the	section	on	UTF-8	support
in	the	main	pcre	page.

2.	PCRE	does	not	allow	repeat	quantifiers	on	lookahead	assertions.
Perl	permits	them,	but	they	do	not	mean	what	you	might	think.	For
example,	(?!a){3}	does	not	assert	that	the	next	three	characters	are	not
"a".	It	just	asserts	that	the	next	character	is	not	"a"	three	times.

3.	Capturing	subpatterns	that	occur	inside	negative	lookahead
assertions	are	counted,	but	their	entries	in	the	offsets	vector	are	never
set.	Perl	sets	its	numerical	variables	from	any	such	patterns	that	are
matched	before	the	assertion	fails	to	match	something	(thereby
succeeding),	but	only	if	the	negative	lookahead	assertion	contains	just
one	branch.

4.	Though	binary	zero	characters	are	supported	in	the	subject	string,
they	are	not	allowed	in	a	pattern	string	because	it	is	passed	as	a
normal	C	string,	terminated	by	zero.	The	escape	sequence	\0	can	be
used	in	the	pattern	to	represent	a	binary	zero.

5.	The	following	Perl	escape	sequences	are	not	supported:	\l,	\u,	\L,
\U,	and	\N.	In	fact	these	are	implemented	by	Perl's	general	string-
handling	and	are	not	part	of	its	pattern	matching	engine.	If	any	of
these	are	encountered	by	PCRE,	an	error	is	generated.

6.	The	Perl	escape	sequences	\p,	\P,	and	\X	are	supported	only	if
PCRE	is	built	with	Unicode	character	property	support.	The	properties
that	can	be	tested	with	\p	and	\P	are	limited	to	the	general	category
properties	such	as	Lu	and	Nd,	script	names	such	as	Greek	or	Han,	and
the	derived	properties	Any	and	L&.

7.	PCRE	does	support	the	\Q...\E	escape	for	quoting	substrings.
Characters	in	between	are	treated	as	literals.	This	is	slightly	different
from	Perl	in	that	$	and	@	are	also	handled	as	literals	inside	the	quotes.
In	Perl,	they	cause	variable	interpolation	(but	of	course	PCRE	does
not	have	variables).	Note	the	following	examples:

				Pattern												PCRE	matches						Perl	matches

				\Qabc$xyz\E								abc$xyz											abc	followed	by	the	contents	of	$xyz
				\Qabc\$xyz\E							abc\$xyz										abc\$xyz
				\Qabc\E\$\Qxyz\E			abc$xyz											abc$xyz

The	\Q...\E	sequence	is	recognized	both	inside	and	outside	character
classes.

8.	Fairly	obviously,	PCRE	does	not	support	the	(?{code})	and	(??
{code})	constructions.	However,	there	is	support	for	recursive
patterns.	This	is	not	available	in	Perl	5.8,	but	will	be	in	Perl	5.10.
Also,	the	PCRE	"callout"	feature	allows	an	external	function	to	be
called	during	pattern	matching.	See	the	pcrecallout	documentation
for	details.

9.	Subpatterns	that	are	called	recursively	or	as	"subroutines"	are

always	treated	as	atomic	groups	in	PCRE.	This	is	like	Python,	but
unlike	Perl.

10.	There	are	some	differences	that	are	concerned	with	the	settings	of
captured	strings	when	part	of	a	pattern	is	repeated.	For	example,
matching	"aba"	against	the	pattern	/^(a(b)?)+$/	in	Perl	leaves	$2
unset,	but	in	PCRE	it	is	set	to	"b".

11.	PCRE	does	support	Perl	5.10's	backtracking	verbs	(*ACCEPT),
(*FAIL),	(*F),	(*COMMIT),	(*PRUNE),	(*SKIP),	and	(*THEN),	but
only	in	the	forms	without	an	argument.	PCRE	does	not	support
(*MARK).	If	(*ACCEPT)	is	within	capturing	parentheses,	PCRE
does	not	set	that	capture	group;	this	is	different	to	Perl.

12.	PCRE	provides	some	extensions	to	the	Perl	regular	expression
facilities.	Perl	5.10	will	include	new	features	that	are	not	in	earlier
versions,	some	of	which	(such	as	named	parentheses)	have	been	in
PCRE	for	some	time.	This	list	is	with	respect	to	Perl	5.10:	

(a)	Although	lookbehind	assertions	must	match	fixed	length	strings,
each	alternative	branch	of	a	lookbehind	assertion	can	match	a
different	length	of	string.	Perl	requires	them	all	to	have	the	same
length.	

(b)	If	PCRE_DOLLAR_ENDONLY	is	set	and	PCRE_MULTILINE	is
not	set,	the	$	meta-character	matches	only	at	the	very	end	of	the
string.	

(c)	If	PCRE_EXTRA	is	set,	a	backslash	followed	by	a	letter	with	no
special	meaning	is	faulted.	Otherwise,	like	Perl,	the	backslash	is
quietly	ignored.	(Perl	can	be	made	to	issue	a	warning.)	

(d)	If	PCRE_UNGREEDY	is	set,	the	greediness	of	the	repetition

quantifiers	is	inverted,	that	is,	by	default	they	are	not	greedy,	but	if
followed	by	a	question	mark	they	are.	

(e)	PCRE_ANCHORED	can	be	used	at	matching	time	to	force	a
pattern	to	be	tried	only	at	the	first	matching	position	in	the	subject
string.	

(f)	The	PCRE_NOTBOL,	PCRE_NOTEOL,	PCRE_NOTEMPTY,
and	PCRE_NO_AUTO_CAPTURE	options	for	pcre_exec()	have	no
Perl	equivalents.	

(g)	The	\R	escape	sequence	can	be	restricted	to	match	only	CR,	LF,	or
CRLF	by	the	PCRE_BSR_ANYCRLF	option.	

(h)	The	callout	facility	is	PCRE-specific.	

(i)	The	partial	matching	facility	is	PCRE-specific.	

(j)	Patterns	compiled	by	PCRE	can	be	saved	and	re-used	at	a	later
time,	even	on	different	hosts	that	have	the	other	endianness.	

(k)	The	alternative	matching	function	(pcre_dfa_exec())	matches	in	a
different	way	and	is	not	Perl-compatible.	

(l)	PCRE	recognizes	some	special	sequences	such	as	(*CR)	at	the	start
of	a	pattern	that	set	overall	options	that	cannot	be	changed	within	the
pattern.

AUTHOR	

Philip	Hazel	
University	Computing	Service	

Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	11	September	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrematching	man	page
Return	to	the	PCRE	index	page.

pcre	matching	algorithms
regular	expressions	as	trees
the	standard	matching	algorithm
the	alternative	matching	algorithm
advantages	of	the	alternative	algorithm
disadvantages	of	the	alternative	algorithm
author
revision

pcre	matching	algorithms

This	document	describes	the	two	different	algorithms	that	are
available	in	PCRE	for	matching	a	compiled	regular	expression	against
a	given	subject	string.	The	"standard"	algorithm	is	the	one	provided
by	the	pcre_exec()	function.	This	works	in	the	same	was	as	Perl's
matching	function,	and	provides	a	Perl-compatible	matching
operation.

An	alternative	algorithm	is	provided	by	the	pcre_dfa_exec()	function;
this	operates	in	a	different	way,	and	is	not	Perl-compatible.	It	has
advantages	and	disadvantages	compared	with	the	standard	algorithm,
and	these	are	described	below.

When	there	is	only	one	possible	way	in	which	a	given	subject	string
can	match	a	pattern,	the	two	algorithms	give	the	same	answer.	A
difference	arises,	however,	when	there	are	multiple	possibilities.	For
example,	if	the	pattern

		^<.*>

is	matched	against	the	string

		<something>	<something	else>	<something	further>

there	are	three	possible	answers.	The	standard	algorithm	finds	only
one	of	them,	whereas	the	alternative	algorithm	finds	all	three.

regular	expressions	as	trees

The	set	of	strings	that	are	matched	by	a	regular	expression	can	be
represented	as	a	tree	structure.	An	unlimited	repetition	in	the	pattern
makes	the	tree	of	infinite	size,	but	it	is	still	a	tree.	Matching	the
pattern	to	a	given	subject	string	(from	a	given	starting	point)	can	be
thought	of	as	a	search	of	the	tree.	There	are	two	ways	to	search	a	tree:
depth-first	and	breadth-first,	and	these	correspond	to	the	two	matching
algorithms	provided	by	PCRE.

the	standard	matching	algorithm

In	the	terminology	of	Jeffrey	Friedl's	book	"Mastering	Regular
Expressions",	the	standard	algorithm	is	an	"NFA	algorithm".	It
conducts	a	depth-first	search	of	the	pattern	tree.	That	is,	it	proceeds
along	a	single	path	through	the	tree,	checking	that	the	subject	matches
what	is	required.	When	there	is	a	mismatch,	the	algorithm	tries	any
alternatives	at	the	current	point,	and	if	they	all	fail,	it	backs	up	to	the
previous	branch	point	in	the	tree,	and	tries	the	next	alternative	branch
at	that	level.	This	often	involves	backing	up	(moving	to	the	left)	in	the
subject	string	as	well.	The	order	in	which	repetition	branches	are	tried
is	controlled	by	the	greedy	or	ungreedy	nature	of	the	quantifier.

If	a	leaf	node	is	reached,	a	matching	string	has	been	found,	and	at	that
point	the	algorithm	stops.	Thus,	if	there	is	more	than	one	possible

match,	this	algorithm	returns	the	first	one	that	it	finds.	Whether	this	is
the	shortest,	the	longest,	or	some	intermediate	length	depends	on	the
way	the	greedy	and	ungreedy	repetition	quantifiers	are	specified	in	the
pattern.

Because	it	ends	up	with	a	single	path	through	the	tree,	it	is	relatively
straightforward	for	this	algorithm	to	keep	track	of	the	substrings	that
are	matched	by	portions	of	the	pattern	in	parentheses.	This	provides
support	for	capturing	parentheses	and	back	references.

the	alternative	matching	algorithm

This	algorithm	conducts	a	breadth-first	search	of	the	tree.	Starting
from	the	first	matching	point	in	the	subject,	it	scans	the	subject	string
from	left	to	right,	once,	character	by	character,	and	as	it	does	this,	it
remembers	all	the	paths	through	the	tree	that	represent	valid	matches.
In	Friedl's	terminology,	this	is	a	kind	of	"DFA	algorithm",	though	it	is
not	implemented	as	a	traditional	finite	state	machine	(it	keeps	multiple
states	active	simultaneously).

The	scan	continues	until	either	the	end	of	the	subject	is	reached,	or
there	are	no	more	unterminated	paths.	At	this	point,	terminated	paths
represent	the	different	matching	possibilities	(if	there	are	none,	the
match	has	failed).	Thus,	if	there	is	more	than	one	possible	match,	this
algorithm	finds	all	of	them,	and	in	particular,	it	finds	the	longest.	In
PCRE,	there	is	an	option	to	stop	the	algorithm	after	the	first	match
(which	is	necessarily	the	shortest)	has	been	found.

Note	that	all	the	matches	that	are	found	start	at	the	same	point	in	the
subject.	If	the	pattern

		cat(er(pillar)?)

is	matched	against	the	string	"the	caterpillar	catchment",	the	result
will	be	the	three	strings	"cat",	"cater",	and	"caterpillar"	that	start	at	the
fourth	character	of	the	subject.	The	algorithm	does	not	automatically
move	on	to	find	matches	that	start	at	later	positions.

There	are	a	number	of	features	of	PCRE	regular	expressions	that	are
not	supported	by	the	alternative	matching	algorithm.	They	are	as
follows:

1.	Because	the	algorithm	finds	all	possible	matches,	the	greedy	or
ungreedy	nature	of	repetition	quantifiers	is	not	relevant.	Greedy	and
ungreedy	quantifiers	are	treated	in	exactly	the	same	way.	However,
possessive	quantifiers	can	make	a	difference	when	what	follows	could
also	match	what	is	quantified,	for	example	in	a	pattern	like	this:

		^a++\w!

This	pattern	matches	"aaab!"	but	not	"aaa!",	which	would	be	matched
by	a	non-possessive	quantifier.	Similarly,	if	an	atomic	group	is
present,	it	is	matched	as	if	it	were	a	standalone	pattern	at	the	current
point,	and	the	longest	match	is	then	"locked	in"	for	the	rest	of	the
overall	pattern.

2.	When	dealing	with	multiple	paths	through	the	tree	simultaneously,
it	is	not	straightforward	to	keep	track	of	captured	substrings	for	the
different	matching	possibilities,	and	PCRE's	implementation	of	this
algorithm	does	not	attempt	to	do	this.	This	means	that	no	captured
substrings	are	available.

3.	Because	no	substrings	are	captured,	back	references	within	the
pattern	are	not	supported,	and	cause	errors	if	encountered.

4.	For	the	same	reason,	conditional	expressions	that	use	a
backreference	as	the	condition	or	test	for	a	specific	group	recursion

are	not	supported.

5.	Because	many	paths	through	the	tree	may	be	active,	the	\K	escape
sequence,	which	resets	the	start	of	the	match	when	encountered	(but
may	be	on	some	paths	and	not	on	others),	is	not	supported.	It	causes
an	error	if	encountered.

6.	Callouts	are	supported,	but	the	value	of	the	capture_top	field	is
always	1,	and	the	value	of	the	capture_last	field	is	always	-1.

7.	The	\C	escape	sequence,	which	(in	the	standard	algorithm)	matches
a	single	byte,	even	in	UTF-8	mode,	is	not	supported	because	the
alternative	algorithm	moves	through	the	subject	string	one	character	at
a	time,	for	all	active	paths	through	the	tree.

8.	Except	for	(*FAIL),	the	backtracking	control	verbs	such	as
(*PRUNE)	are	not	supported.	(*FAIL)	is	supported,	and	behaves	like
a	failing	negative	assertion.

advantages	of	the	alternative	algorithm

Using	the	alternative	matching	algorithm	provides	the	following
advantages:

1.	All	possible	matches	(at	a	single	point	in	the	subject)	are
automatically	found,	and	in	particular,	the	longest	match	is	found.	To
find	more	than	one	match	using	the	standard	algorithm,	you	have	to
do	kludgy	things	with	callouts.

2.	There	is	much	better	support	for	partial	matching.	The	restrictions
on	the	content	of	the	pattern	that	apply	when	using	the	standard
algorithm	for	partial	matching	do	not	apply	to	the	alternative
algorithm.	For	non-anchored	patterns,	the	starting	position	of	a	partial

match	is	available.

3.	Because	the	alternative	algorithm	scans	the	subject	string	just	once,
and	never	needs	to	backtrack,	it	is	possible	to	pass	very	long	subject
strings	to	the	matching	function	in	several	pieces,	checking	for	partial
matching	each	time.

disadvantages	of	the	alternative	algorithm

The	alternative	algorithm	suffers	from	a	number	of	disadvantages:

1.	It	is	substantially	slower	than	the	standard	algorithm.	This	is	partly
because	it	has	to	search	for	all	possible	matches,	but	is	also	because	it
is	less	susceptible	to	optimization.

2.	Capturing	parentheses	and	back	references	are	not	supported.

3.	Although	atomic	groups	are	supported,	their	use	does	not	provide
the	performance	advantage	that	it	does	for	the	standard	algorithm.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	19	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrepartial	man	page
Return	to	the	PCRE	index	page.

partial	matching	in	pcre
restricted	patterns	for	pcre_partial
example	of	partial	matching	using	pcretest
multi-segment	matching	with	pcre_dfa_exec()
author
revision

partial	matching	in	pcre

In	normal	use	of	PCRE,	if	the	subject	string	that	is	passed	to
pcre_exec()	or	pcre_dfa_exec()	matches	as	far	as	it	goes,	but	is	too
short	to	match	the	entire	pattern,	PCRE_ERROR_NOMATCH	is
returned.	There	are	circumstances	where	it	might	be	helpful	to
distinguish	this	case	from	other	cases	in	which	there	is	no	match.

Consider,	for	example,	an	application	where	a	human	is	required	to
type	in	data	for	a	field	with	specific	formatting	requirements.	An
example	might	be	a	date	in	the	form	ddmmmyy,	defined	by	this
pattern:

		^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$

If	the	application	sees	the	user's	keystrokes	one	by	one,	and	can	check
that	what	has	been	typed	so	far	is	potentially	valid,	it	is	able	to	raise
an	error	as	soon	as	a	mistake	is	made,	possibly	beeping	and	not
reflecting	the	character	that	has	been	typed.	This	immediate	feedback
is	likely	to	be	a	better	user	interface	than	a	check	that	is	delayed	until
the	entire	string	has	been	entered.

PCRE	supports	the	concept	of	partial	matching	by	means	of	the
PCRE_PARTIAL	option,	which	can	be	set	when	calling	pcre_exec()
or	pcre_dfa_exec().	When	this	flag	is	set	for	pcre_exec(),	the	return
code	PCRE_ERROR_NOMATCH	is	converted	into
PCRE_ERROR_PARTIAL	if	at	any	time	during	the	matching	process
the	last	part	of	the	subject	string	matched	part	of	the	pattern.
Unfortunately,	for	non-anchored	matching,	it	is	not	possible	to	obtain
the	position	of	the	start	of	the	partial	match.	No	captured	data	is	set
when	PCRE_ERROR_PARTIAL	is	returned.

When	PCRE_PARTIAL	is	set	for	pcre_dfa_exec(),	the	return	code
PCRE_ERROR_NOMATCH	is	converted	into
PCRE_ERROR_PARTIAL	if	the	end	of	the	subject	is	reached,	there
have	been	no	complete	matches,	but	there	is	still	at	least	one	matching
possibility.	The	portion	of	the	string	that	provided	the	partial	match	is
set	as	the	first	matching	string.

Using	PCRE_PARTIAL	disables	one	of	PCRE's	optimizations.	PCRE
remembers	the	last	literal	byte	in	a	pattern,	and	abandons	matching
immediately	if	such	a	byte	is	not	present	in	the	subject	string.	This
optimization	cannot	be	used	for	a	subject	string	that	might	match	only
partially.

restricted	patterns	for	pcre_partial

Because	of	the	way	certain	internal	optimizations	are	implemented	in
the	pcre_exec()	function,	the	PCRE_PARTIAL	option	cannot	be	used
with	all	patterns.	These	restrictions	do	not	apply	when
pcre_dfa_exec()	is	used.	For	pcre_exec(),	repeated	single	characters
such	as

		a{2,4}

and	repeated	single	metasequences	such	as

		\d+

are	not	permitted	if	the	maximum	number	of	occurrences	is	greater
than	one.	Optional	items	such	as	\d?	(where	the	maximum	is	one)	are
permitted.	Quantifiers	with	any	values	are	permitted	after	parentheses,
so	the	invalid	examples	above	can	be	coded	thus:

		(a){2,4}
		(\d)+

These	constructions	run	more	slowly,	but	for	the	kinds	of	application
that	are	envisaged	for	this	facility,	this	is	not	felt	to	be	a	major
restriction.

If	PCRE_PARTIAL	is	set	for	a	pattern	that	does	not	conform	to	the
restrictions,	pcre_exec()	returns	the	error	code
PCRE_ERROR_BADPARTIAL	(-13).	You	can	use	the
PCRE_INFO_OKPARTIAL	call	to	pcre_fullinfo()	to	find	out	if	a
compiled	pattern	can	be	used	for	partial	matching.

example	of	partial	matching	using	pcretest

If	the	escape	sequence	\P	is	present	in	a	pcretest	data	line,	the
PCRE_PARTIAL	flag	is	used	for	the	match.	Here	is	a	run	of	pcretest
that	uses	the	date	example	quoted	above:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
		data>	25jun04\P
			0:	25jun04
			1:	jun
		data>	25dec3\P
		Partial	match
		data>	3ju\P

		Partial	match
		data>	3juj\P
		No	match
		data>	j\P
		No	match

The	first	data	string	is	matched	completely,	so	pcretest	shows	the
matched	substrings.	The	remaining	four	strings	do	not	match	the
complete	pattern,	but	the	first	two	are	partial	matches.	The	same	test,
using	pcre_dfa_exec()	matching	(by	means	of	the	\D	escape
sequence),	produces	the	following	output:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
		data>	25jun04\P\D
			0:	25jun04
		data>	23dec3\P\D
		Partial	match:	23dec3
		data>	3ju\P\D
		Partial	match:	3ju
		data>	3juj\P\D
		No	match
		data>	j\P\D
		No	match

Notice	that	in	this	case	the	portion	of	the	string	that	was	matched	is
made	available.

multi-segment	matching	with	pcre_dfa_exec()

When	a	partial	match	has	been	found	using	pcre_dfa_exec(),	it	is
possible	to	continue	the	match	by	providing	additional	subject	data
and	calling	pcre_dfa_exec()	again	with	the	same	compiled	regular
expression,	this	time	setting	the	PCRE_DFA_RESTART	option.	You
must	also	pass	the	same	working	space	as	before,	because	this	is
where	details	of	the	previous	partial	match	are	stored.	Here	is	an

example	using	pcretest,	using	the	\R	escape	sequence	to	set	the
PCRE_DFA_RESTART	option	(\P	and	\D	are	as	above):

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
		data>	23ja\P\D
		Partial	match:	23ja
		data>	n05\R\D
			0:	n05

The	first	call	has	"23ja"	as	the	subject,	and	requests	partial	matching;
the	second	call	has	"n05"	as	the	subject	for	the	continued	(restarted)
match.	Notice	that	when	the	match	is	complete,	only	the	last	part	is
shown;	PCRE	does	not	retain	the	previously	partially-matched	string.
It	is	up	to	the	calling	program	to	do	that	if	it	needs	to.

You	can	set	PCRE_PARTIAL	with	PCRE_DFA_RESTART	to
continue	partial	matching	over	multiple	segments.	This	facility	can	be
used	to	pass	very	long	subject	strings	to	pcre_dfa_exec().	However,
some	care	is	needed	for	certain	types	of	pattern.

1.	If	the	pattern	contains	tests	for	the	beginning	or	end	of	a	line,	you
need	to	pass	the	PCRE_NOTBOL	or	PCRE_NOTEOL	options,	as
appropriate,	when	the	subject	string	for	any	call	does	not	contain	the
beginning	or	end	of	a	line.

2.	If	the	pattern	contains	backward	assertions	(including	\b	or	\B),	you
need	to	arrange	for	some	overlap	in	the	subject	strings	to	allow	for
this.	For	example,	you	could	pass	the	subject	in	chunks	that	are	500
bytes	long,	but	in	a	buffer	of	700	bytes,	with	the	starting	offset	set	to
200	and	the	previous	200	bytes	at	the	start	of	the	buffer.

3.	Matching	a	subject	string	that	is	split	into	multiple	segments	does
not	always	produce	exactly	the	same	result	as	matching	over	one
single	long	string.	The	difference	arises	when	there	are	multiple

matching	possibilities,	because	a	partial	match	result	is	given	only
when	there	are	no	completed	matches	in	a	call	to	pcre_dfa_exec().
This	means	that	as	soon	as	the	shortest	match	has	been	found,
continuation	to	a	new	subject	segment	is	no	longer	possible.	Consider
this	pcretest	example:

				re>	/dog(sbody)?/
		data>	do\P\D
		Partial	match:	do
		data>	gsb\R\P\D
			0:	g
		data>	dogsbody\D
			0:	dogsbody
			1:	dog

The	pattern	matches	the	words	"dog"	or	"dogsbody".	When	the
subject	is	presented	in	several	parts	("do"	and	"gsb"	being	the	first
two)	the	match	stops	when	"dog"	has	been	found,	and	it	is	not
possible	to	continue.	On	the	other	hand,	if	"dogsbody"	is	presented	as
a	single	string,	both	matches	are	found.

Because	of	this	phenomenon,	it	does	not	usually	make	sense	to	end	a
pattern	that	is	going	to	be	matched	in	this	way	with	a	variable	repeat.

4.	Patterns	that	contain	alternatives	at	the	top	level	which	do	not	all
start	with	the	same	pattern	item	may	not	work	as	expected.	For
example,	consider	this	pattern:

		1234|3789

If	the	first	part	of	the	subject	is	"ABC123",	a	partial	match	of	the	first
alternative	is	found	at	offset	3.	There	is	no	partial	match	for	the
second	alternative,	because	such	a	match	does	not	start	at	the	same
point	in	the	subject	string.	Attempting	to	continue	with	the	string
"789"	does	not	yield	a	match	because	only	those	alternatives	that

match	at	one	point	in	the	subject	are	remembered.	The	problem	arises
because	the	start	of	the	second	alternative	matches	within	the	first
alternative.	There	is	no	problem	with	anchored	patterns	or	patterns
such	as:

		1234|ABCD

where	no	string	can	be	a	partial	match	for	both	alternatives.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	04	June	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcrestack	man	page
Return	to	the	PCRE	index	page.

PCRE	DISCUSSION	OF	STACK	USAGE

When	you	call	pcre_exec(),	it	makes	use	of	an	internal	function	called
match().	This	calls	itself	recursively	at	branch	points	in	the	pattern,	in
order	to	remember	the	state	of	the	match	so	that	it	can	back	up	and	try
a	different	alternative	if	the	first	one	fails.	As	matching	proceeds
deeper	and	deeper	into	the	tree	of	possibilities,	the	recursion	depth
increases.

Not	all	calls	of	match()	increase	the	recursion	depth;	for	an	item	such
as	a*	it	may	be	called	several	times	at	the	same	level,	after	matching
different	numbers	of	a's.	Furthermore,	in	a	number	of	cases	where	the
result	of	the	recursive	call	would	immediately	be	passed	back	as	the
result	of	the	current	call	(a	"tail	recursion"),	the	function	is	just
restarted	instead.

The	pcre_dfa_exec()	function	operates	in	an	entirely	different	way,
and	hardly	uses	recursion	at	all.	The	limit	on	its	complexity	is	the
amount	of	workspace	it	is	given.	The	comments	that	follow	do	NOT
apply	to	pcre_dfa_exec();	they	are	relevant	only	for	pcre_exec().

You	can	set	limits	on	the	number	of	times	that	match()	is	called,	both
in	total	and	recursively.	If	the	limit	is	exceeded,	an	error	occurs.	For
details,	see	the	section	on	extra	data	for	pcre_exec()	in	the	pcreapi
documentation.

Each	time	that	match()	is	actually	called	recursively,	it	uses	memory
from	the	process	stack.	For	certain	kinds	of	pattern	and	data,	very
large	amounts	of	stack	may	be	needed,	despite	the	recognition	of	"tail

recursion".	You	can	often	reduce	the	amount	of	recursion,	and
therefore	the	amount	of	stack	used,	by	modifying	the	pattern	that	is
being	matched.	Consider,	for	example,	this	pattern:

		([^<]|<(?!inet))+

It	matches	from	wherever	it	starts	until	it	encounters	"<inet"	or	the
end	of	the	data,	and	is	the	kind	of	pattern	that	might	be	used	when
processing	an	XML	file.	Each	iteration	of	the	outer	parentheses
matches	either	one	character	that	is	not	"<"	or	a	"<"	that	is	not
followed	by	"inet".	However,	each	time	a	parenthesis	is	processed,	a
recursion	occurs,	so	this	formulation	uses	a	stack	frame	for	each
matched	character.	For	a	long	string,	a	lot	of	stack	is	required.
Consider	now	this	rewritten	pattern,	which	matches	exactly	the	same
strings:

		([^<]++|<(?!inet))+

This	uses	very	much	less	stack,	because	runs	of	characters	that	do	not
contain	"<"	are	"swallowed"	in	one	item	inside	the	parentheses.
Recursion	happens	only	when	a	"<"	character	that	is	not	followed	by
"inet"	is	encountered	(and	we	assume	this	is	relatively	rare).	A
possessive	quantifier	is	used	to	stop	any	backtracking	into	the	runs	of
non-"<"	characters,	but	that	is	not	related	to	stack	usage.

This	example	shows	that	one	way	of	avoiding	stack	problems	when
matching	long	subject	strings	is	to	write	repeated	parenthesized
subpatterns	to	match	more	than	one	character	whenever	possible.

Compiling	PCRE	to	use	heap	instead	of	stack	

In	environments	where	stack	memory	is	constrained,	you	might	want
to	compile	PCRE	to	use	heap	memory	instead	of	stack	for
remembering	back-up	points.	This	makes	it	run	a	lot	more	slowly,

however.	Details	of	how	to	do	this	are	given	in	the	pcrebuild
documentation.	When	built	in	this	way,	instead	of	using	the	stack,
PCRE	obtains	and	frees	memory	by	calling	the	functions	that	are
pointed	to	by	the	pcre_stack_malloc	and	pcre_stack_free	variables.
By	default,	these	point	to	malloc()	and	free(),	but	you	can	replace	the
pointers	to	cause	PCRE	to	use	your	own	functions.	Since	the	block
sizes	are	always	the	same,	and	are	always	freed	in	reverse	order,	it
may	be	possible	to	implement	customized	memory	handlers	that	are
more	efficient	than	the	standard	functions.

Limiting	PCRE's	stack	usage	

PCRE	has	an	internal	counter	that	can	be	used	to	limit	the	depth	of
recursion,	and	thus	cause	pcre_exec()	to	give	an	error	code	before	it
runs	out	of	stack.	By	default,	the	limit	is	very	large,	and	unlikely	ever
to	operate.	It	can	be	changed	when	PCRE	is	built,	and	it	can	also	be
set	when	pcre_exec()	is	called.	For	details	of	these	interfaces,	see	the
pcrebuild	and	pcreapi	documentation.

As	a	very	rough	rule	of	thumb,	you	should	reckon	on	about	500	bytes
per	recursion.	Thus,	if	you	want	to	limit	your	stack	usage	to	8Mb,	you
should	set	the	limit	at	16000	recursions.	A	64Mb	stack,	on	the	other
hand,	can	support	around	128000	recursions.	The	pcretest	test
program	has	a	command	line	option	(-S)	that	can	be	used	to	increase
the	size	of	its	stack.

Changing	stack	size	in	Unix-like	systems	

In	Unix-like	environments,	there	is	not	often	a	problem	with	the	stack
unless	very	long	strings	are	involved,	though	the	default	limit	on	stack
size	varies	from	system	to	system.	Values	from	8Mb	to	64Mb	are
common.	You	can	find	your	default	limit	by	running	the	command:

		ulimit	-s

Unfortunately,	the	effect	of	running	out	of	stack	is	often	SIGSEGV,
though	sometimes	a	more	explicit	error	message	is	given.	You	can
normally	increase	the	limit	on	stack	size	by	code	such	as	this:

		struct	rlimit	rlim;
		getrlimit(RLIMIT_STACK,	&rlim;);
		rlim.rlim_cur	=	100*1024*1024;
		setrlimit(RLIMIT_STACK,	&rlim;);

This	reads	the	current	limits	(soft	and	hard)	using	getrlimit(),	then
attempts	to	increase	the	soft	limit	to	100Mb	using	setrlimit().	You
must	do	this	before	calling	pcre_exec().

Changing	stack	size	in	Mac	OS	X	

Using	setrlimit(),	as	described	above,	should	also	work	on	Mac	OS
X.	It	is	also	possible	to	set	a	stack	size	when	linking	a	program.	There
is	a	discussion	about	stack	sizes	in	Mac	OS	X	at	this	web	site:
http://developer.apple.com/qa/qa2005/qa1419.html.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	09	July	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

http://developer.apple.com/qa/qa2005/qa1419.html

Return	to	the	PCRE	index	page.

pcrecpp	man	page
Return	to	the	PCRE	index	page.

synopsis	of	c++	wrapper
description
matching	interface
quoting	metacharacters
partial	matches
utf-8	and	the	matching	interface
passing	modifiers	to	the	regular	expression	engine
scanning	text	incrementally
parsing	hex/octal/c-radix	numbers
replacing	parts	of	strings
author
revision

synopsis	of	c++	wrapper

#include	<pcrecpp.h>

description

The	C++	wrapper	for	PCRE	was	provided	by	Google	Inc.	Some
additional	functionality	was	added	by	Giuseppe	Maxia.	This	brief	man
page	was	constructed	from	the	notes	in	the	pcrecpp.h	file,	which
should	be	consulted	for	further	details.

matching	interface

The	"FullMatch"	operation	checks	that	supplied	text	matches	a

supplied	pattern	exactly.	If	pointer	arguments	are	supplied,	it	copies
matched	sub-strings	that	match	sub-patterns	into	them.

		Example:	successful	match
					pcrecpp::RE	re("h.*o");
					re.FullMatch("hello");

		Example:	unsuccessful	match	(requires	full	match):
					pcrecpp::RE	re("e");
					!re.FullMatch("hello");

		Example:	creating	a	temporary	RE	object:
					pcrecpp::RE("h.*o").FullMatch("hello");

You	can	pass	in	a	"const	char*"	or	a	"string"	for	"text".	The	examples
below	tend	to	use	a	const	char*.	You	can,	as	in	the	different	examples
above,	store	the	RE	object	explicitly	in	a	variable	or	use	a	temporary
RE	object.	The	examples	below	use	one	mode	or	the	other	arbitrarily.
Either	could	correctly	be	used	for	any	of	these	examples.

You	must	supply	extra	pointer	arguments	to	extract	matched
subpieces.

		Example:	extracts	"ruby"	into	"s"	and	1234	into	"i"
					int	i;
					string	s;
					pcrecpp::RE	re("(\\w+):(\\d+)");
					re.FullMatch("ruby:1234",	&s;,	&i;);

		Example:	does	not	try	to	extract	any	extra	sub-patterns
					re.FullMatch("ruby:1234",	&s;);

		Example:	does	not	try	to	extract	into	NULL
					re.FullMatch("ruby:1234",	NULL,	&i;);

		Example:	integer	overflow	causes	failure

					!re.FullMatch("ruby:1234567891234",	NULL,	&i;);

		Example:	fails	because	there	aren't	enough	sub-patterns:
					!pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234",	&s;);

		Example:	fails	because	string	cannot	be	stored	in	integer
					!pcrecpp::RE("(.*)").FullMatch("ruby",	&i;);

The	provided	pointer	arguments	can	be	pointers	to	any	scalar	numeric
type,	or	one	of:

			string								(matched	piece	is	copied	to	string)
			StringPiece			(StringPiece	is	mutated	to	point	to	matched	piece)
			T													(where	"bool	T::ParseFrom(const	char*,	int)"	exists)
			NULL										(the	corresponding	matched	sub-pattern	is	not	copied)

The	function	returns	true	iff	all	of	the	following	conditions	are
satisfied:

		a.	"text"	matches	"pattern"	exactly;

		b.	The	number	of	matched	sub-patterns	is	>=	number	of	supplied
					pointers;

		c.	The	"i"th	argument	has	a	suitable	type	for	holding	the
					string	captured	as	the	"i"th	sub-pattern.	If	you	pass	in
					void	*	NULL	for	the	"i"th	argument,	or	a	non-void	*	NULL
					of	the	correct	type,	or	pass	fewer	arguments	than	the
					number	of	sub-patterns,	"i"th	captured	sub-pattern	is
					ignored.

CAVEAT:	An	optional	sub-pattern	that	does	not	exist	in	the	matched
string	is	assigned	the	empty	string.	Therefore,	the	following	will
return	false	(because	the	empty	string	is	not	a	valid	number):

			int	number;
			pcrecpp::RE::FullMatch("abc",	"[a-z]+(\\d+)?",	&number;);

The	matching	interface	supports	at	most	16	arguments	per	call.	If	you
need	more,	consider	using	the	more	general	interface
pcrecpp::RE::DoMatch.	See	pcrecpp.h	for	the	signature	for
DoMatch.

quoting	metacharacters

You	can	use	the	"QuoteMeta"	operation	to	insert	backslashes	before
all	potentially	meaningful	characters	in	a	string.	The	returned	string,
used	as	a	regular	expression,	will	exactly	match	the	original	string.

		Example:
					string	quoted	=	RE::QuoteMeta(unquoted);

Note	that	it's	legal	to	escape	a	character	even	if	it	has	no	special
meaning	in	a	regular	expression	--	so	this	function	does	that.	(This
also	makes	it	identical	to	the	perl	function	of	the	same	name;	see
"perldoc	-f	quotemeta".)	For	example,	"1.5-2.0?"	becomes
"1\.5\-2\.0\?".

partial	matches

You	can	use	the	"PartialMatch"	operation	when	you	want	the	pattern
to	match	any	substring	of	the	text.

		Example:	simple	search	for	a	string:
					pcrecpp::RE("ell").PartialMatch("hello");

		Example:	find	first	number	in	a	string:
					int	number;
					pcrecpp::RE	re("(\\d+)");
					re.PartialMatch("x*100	+	20",	&number;);
					assert(number	==	100);

utf-8	and	the	matching	interface

By	default,	pattern	and	text	are	plain	text,	one	byte	per	character.	The
UTF8	flag,	passed	to	the	constructor,	causes	both	pattern	and	string	to
be	treated	as	UTF-8	text,	still	a	byte	stream	but	potentially	multiple
bytes	per	character.	In	practice,	the	text	is	likelier	to	be	UTF-8	than
the	pattern,	but	the	match	returned	may	depend	on	the	UTF8	flag,	so
always	use	it	when	matching	UTF8	text.	For	example,	"."	will	match
one	byte	normally	but	with	UTF8	set	may	match	up	to	three	bytes	of	a
multi-byte	character.

		Example:
					pcrecpp::RE_Options	options;
					options.set_utf8();
					pcrecpp::RE	re(utf8_pattern,	options);
					re.FullMatch(utf8_string);

		Example:	using	the	convenience	function	UTF8():
					pcrecpp::RE	re(utf8_pattern,	pcrecpp::UTF8());
					re.FullMatch(utf8_string);

NOTE:	The	UTF8	flag	is	ignored	if	pcre	was	not	configured	with	the

						--enable-utf8	flag.

passing	modifiers	to	the	regular	expression	engine

PCRE	defines	some	modifiers	to	change	the	behavior	of	the	regular
expression	engine.	The	C++	wrapper	defines	an	auxiliary	class,
RE_Options,	as	a	vehicle	to	pass	such	modifiers	to	a	RE	class.
Currently,	the	following	modifiers	are	supported:

			modifier														description															Perl	corresponding

			PCRE_CASELESS									case	insensitive	match						/i
			PCRE_MULTILINE								multiple	lines	match								/m
			PCRE_DOTALL											dot	matches	newlines								/s
			PCRE_DOLLAR_ENDONLY			$	matches	only	at	end							N/A
			PCRE_EXTRA												strict	escape	parsing							N/A
			PCRE_EXTENDED									ignore	whitespaces										/x
			PCRE_UTF8													handles	UTF8	chars										built-in
			PCRE_UNGREEDY									reverses	*	and	*?											N/A
			PCRE_NO_AUTO_CAPTURE		disables	capturing	parens			N/A	(*)

(*)	Both	Perl	and	PCRE	allow	non	capturing	parentheses	by	means	of
the	"?:"	modifier	within	the	pattern	itself.	e.g.	(?:ab|cd)	does	not
capture,	while	(ab|cd)	does.

For	a	full	account	on	how	each	modifier	works,	please	check	the
PCRE	API	reference	page.

For	each	modifier,	there	are	two	member	functions	whose	name	is
made	out	of	the	modifier	in	lowercase,	without	the	"PCRE_"	prefix.
For	instance,	PCRE_CASELESS	is	handled	by

		bool	caseless()

which	returns	true	if	the	modifier	is	set,	and

		RE_Options	&	set_caseless(bool)

which	sets	or	unsets	the	modifier.	Moreover,
PCRE_EXTRA_MATCH_LIMIT	can	be	accessed	through	the
set_match_limit()	and	match_limit()	member	functions.	Setting
match_limit	to	a	non-zero	value	will	limit	the	execution	of	pcre	to
keep	it	from	doing	bad	things	like	blowing	the	stack	or	taking	an
eternity	to	return	a	result.	A	value	of	5000	is	good	enough	to	stop
stack	blowup	in	a	2MB	thread	stack.	Setting	match_limit	to	zero
disables	match	limiting.	Alternatively,	you	can	call
match_limit_recursion()	which	uses

PCRE_EXTRA_MATCH_LIMIT_RECURSION	to	limit	how	much
PCRE	recurses.	match_limit()	limits	the	number	of	matches	PCRE
does;	match_limit_recursion()	limits	the	depth	of	internal	recursion,
and	therefore	the	amount	of	stack	that	is	used.

Normally,	to	pass	one	or	more	modifiers	to	a	RE	class,	you	declare	a
RE_Options	object,	set	the	appropriate	options,	and	pass	this	object	to
a	RE	constructor.	Example:

			RE_options	opt;
			opt.set_caseless(true);
			if	(RE("HELLO",	opt).PartialMatch("hello	world"))	...

RE_options	has	two	constructors.	The	default	constructor	takes	no
arguments	and	creates	a	set	of	flags	that	are	off	by	default.	The
optional	parameter	option_flags	is	to	facilitate	transfer	of	legacy	code
from	C	programs.	This	lets	you	do

			RE(pattern,
					RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);

However,	new	code	is	better	off	doing

			RE(pattern,
					RE_Options().set_caseless(true).set_multiline(true))
							.PartialMatch(str);

If	you	are	going	to	pass	one	of	the	most	used	modifiers,	there	are
some	convenience	functions	that	return	a	RE_Options	class	with	the
appropriate	modifier	already	set:	CASELESS(),	UTF8(),
MULTILINE(),	DOTALL(),	and	EXTENDED().

If	you	need	to	set	several	options	at	once,	and	you	don't	want	to	go
through	the	pains	of	declaring	a	RE_Options	object	and	setting	several
options,	there	is	a	parallel	method	that	give	you	such	ability	on	the	fly.
You	can	concatenate	several	set_xxxxx()	member	functions,	since

each	of	them	returns	a	reference	to	its	class	object.	For	example,	to
pass	PCRE_CASELESS,	PCRE_EXTENDED,	and
PCRE_MULTILINE	to	a	RE	with	one	statement,	you	may	write:

			RE("	^	xyz	\\s+	.*	blah$",
					RE_Options()
							.set_caseless(true)
							.set_extended(true)
							.set_multiline(true)).PartialMatch(sometext);

scanning	text	incrementally

The	"Consume"	operation	may	be	useful	if	you	want	to	repeatedly
match	regular	expressions	at	the	front	of	a	string	and	skip	over	them
as	they	match.	This	requires	use	of	the	"StringPiece"	type,	which
represents	a	sub-range	of	a	real	string.	Like	RE,	StringPiece	is	defined
in	the	pcrecpp	namespace.

		Example:	read	lines	of	the	form	"var	=	value"	from	a	string.
					string	contents	=	...;																	//	Fill	string	somehow
					pcrecpp::StringPiece	input(contents);		//	Wrap	in	a	StringPiece

					string	var;
					int	value;
					pcrecpp::RE	re("(\\w+)	=	(\\d+)\n");
					while	(re.Consume(&input;,	&var;,	&value;))	{
							...;
					}

Each	successful	call	to	"Consume"	will	set	"var/value",	and	also
advance	"input"	so	it	points	past	the	matched	text.

The	"FindAndConsume"	operation	is	similar	to	"Consume"	but	does
not	anchor	your	match	at	the	beginning	of	the	string.	For	example,

you	could	extract	all	words	from	a	string	by	repeatedly	calling

		pcrecpp::RE("(\\w+)").FindAndConsume(&input;,	&word;)

parsing	hex/octal/c-radix	numbers

By	default,	if	you	pass	a	pointer	to	a	numeric	value,	the	corresponding
text	is	interpreted	as	a	base-10	number.	You	can	instead	wrap	the
pointer	with	a	call	to	one	of	the	operators	Hex(),	Octal(),	or	CRadix()
to	interpret	the	text	in	another	base.	The	CRadix	operator	interprets	C-
style	"0"	(base-8)	and	"0x"	(base-16)	prefixes,	but	defaults	to	base-10.

		Example:
				int	a,	b,	c,	d;
				pcrecpp::RE	re("(.*)	(.*)	(.*)	(.*)");
				re.FullMatch("100	40	0100	0x40",
																	pcrecpp::Octal(&a;),	pcrecpp::Hex(&b;),
																	pcrecpp::CRadix(&c;),	pcrecpp::CRadix(&d;));

will	leave	64	in	a,	b,	c,	and	d.

replacing	parts	of	strings

You	can	replace	the	first	match	of	"pattern"	in	"str"	with	"rewrite".
Within	"rewrite",	backslash-escaped	digits	(\1	to	\9)	can	be	used	to
insert	text	matching	corresponding	parenthesized	group	from	the
pattern.	\0	in	"rewrite"	refers	to	the	entire	matching	text.	For	example:

		string	s	=	"yabba	dabba	doo";
		pcrecpp::RE("b+").Replace("d",	&s;);

will	leave	"s"	containing	"yada	dabba	doo".	The	result	is	true	if	the
pattern	matches	and	a	replacement	occurs,	false	otherwise.

GlobalReplace	is	like	Replace	except	that	it	replaces	all	occurrences
of	the	pattern	in	the	string	with	the	rewrite.	Replacements	are	not
subject	to	re-matching.	For	example:

		string	s	=	"yabba	dabba	doo";
		pcrecpp::RE("b+").GlobalReplace("d",	&s;);

will	leave	"s"	containing	"yada	dada	doo".	It	returns	the	number	of
replacements	made.

Extract	is	like	Replace,	except	that	if	the	pattern	matches,	"rewrite"
is	copied	into	"out"	(an	additional	argument)	with	substitutions.	The
non-matching	portions	of	"text"	are	ignored.	Returns	true	iff	a	match
occurred	and	the	extraction	happened	successfully;	if	no	match
occurs,	the	string	is	left	unaffected.

author

The	C++	wrapper	was	contributed	by	Google	Inc.	
Copyright	©	2007	Google	Inc.	

revision

Last	updated:	12	November	2007	

Return	to	the	PCRE	index	page.

pcreposix	man	page
Return	to	the	PCRE	index	page.

synopsis	of	posix	api
description
compiling	a	pattern
matching	newline	characters
matching	a	pattern
error	messages
memory	usage
author
revision

synopsis	of	posix	api

#include	<pcreposix.h>

int	regcomp(regex_t	*preg,	const	char	*pattern,	int	cflags);

int	regexec(regex_t	*preg,	const	char	*string,	size_t	nmatch,
regmatch_t	pmatch[],	int	eflags);

size_t	regerror(int	errcode,	const	regex_t	*preg,	char	*errbuf,
size_t	errbuf_size);

void	regfree(regex_t	*preg);

description

This	set	of	functions	provides	a	POSIX-style	API	to	the	PCRE	regular
expression	package.	See	the	pcreapi	documentation	for	a	description

of	PCRE's	native	API,	which	contains	much	additional	functionality.

The	functions	described	here	are	just	wrapper	functions	that
ultimately	call	the	PCRE	native	API.	Their	prototypes	are	defined	in
the	pcreposix.h	header	file,	and	on	Unix	systems	the	library	itself	is
called	pcreposix.a,	so	can	be	accessed	by	adding	-lpcreposix	to	the
command	for	linking	an	application	that	uses	them.	Because	the
POSIX	functions	call	the	native	ones,	it	is	also	necessary	to	add	-
lpcre.

I	have	implemented	only	those	option	bits	that	can	be	reasonably
mapped	to	PCRE	native	options.	In	addition,	the	option
REG_EXTENDED	is	defined	with	the	value	zero.	This	has	no	effect,
but	since	programs	that	are	written	to	the	POSIX	interface	often	use	it,
this	makes	it	easier	to	slot	in	PCRE	as	a	replacement	library.	Other
POSIX	options	are	not	even	defined.

When	PCRE	is	called	via	these	functions,	it	is	only	the	API	that	is
POSIX-like	in	style.	The	syntax	and	semantics	of	the	regular
expressions	themselves	are	still	those	of	Perl,	subject	to	the	setting	of
various	PCRE	options,	as	described	below.	"POSIX-like	in	style"
means	that	the	API	approximates	to	the	POSIX	definition;	it	is	not
fully	POSIX-compatible,	and	in	multi-byte	encoding	domains	it	is
probably	even	less	compatible.

The	header	for	these	functions	is	supplied	as	pcreposix.h	to	avoid	any
potential	clash	with	other	POSIX	libraries.	It	can,	of	course,	be
renamed	or	aliased	as	regex.h,	which	is	the	"correct"	name.	It
provides	two	structure	types,	regex_t	for	compiled	internal	forms,	and
regmatch_t	for	returning	captured	substrings.	It	also	defines	some
constants	whose	names	start	with	"REG_";	these	are	used	for	setting
options	and	identifying	error	codes.

compiling	a	pattern

The	function	regcomp()	is	called	to	compile	a	pattern	into	an	internal
form.	The	pattern	is	a	C	string	terminated	by	a	binary	zero,	and	is
passed	in	the	argument	pattern.	The	preg	argument	is	a	pointer	to	a
regex_t	structure	that	is	used	as	a	base	for	storing	information	about
the	compiled	regular	expression.

The	argument	cflags	is	either	zero,	or	contains	one	or	more	of	the	bits
defined	by	the	following	macros:

		REG_DOTALL

The	PCRE_DOTALL	option	is	set	when	the	regular	expression	is
passed	for	compilation	to	the	native	function.	Note	that
REG_DOTALL	is	not	part	of	the	POSIX	standard.

		REG_ICASE

The	PCRE_CASELESS	option	is	set	when	the	regular	expression	is
passed	for	compilation	to	the	native	function.

		REG_NEWLINE

The	PCRE_MULTILINE	option	is	set	when	the	regular	expression	is
passed	for	compilation	to	the	native	function.	Note	that	this	does	not
mimic	the	defined	POSIX	behaviour	for	REG_NEWLINE	(see	the
following	section).

		REG_NOSUB

The	PCRE_NO_AUTO_CAPTURE	option	is	set	when	the	regular
expression	is	passed	for	compilation	to	the	native	function.	In
addition,	when	a	pattern	that	is	compiled	with	this	flag	is	passed	to
regexec()	for	matching,	the	nmatch	and	pmatch	arguments	are
ignored,	and	no	captured	strings	are	returned.

		REG_UTF8

The	PCRE_UTF8	option	is	set	when	the	regular	expression	is	passed
for	compilation	to	the	native	function.	This	causes	the	pattern	itself
and	all	data	strings	used	for	matching	it	to	be	treated	as	UTF-8	strings.
Note	that	REG_UTF8	is	not	part	of	the	POSIX	standard.

In	the	absence	of	these	flags,	no	options	are	passed	to	the	native
function.	This	means	the	the	regex	is	compiled	with	PCRE	default
semantics.	In	particular,	the	way	it	handles	newline	characters	in	the
subject	string	is	the	Perl	way,	not	the	POSIX	way.	Note	that	setting
PCRE_MULTILINE	has	only	some	of	the	effects	specified	for
REG_NEWLINE.	It	does	not	affect	the	way	newlines	are	matched	by
.	(they	aren't)	or	by	a	negative	class	such	as	[^a]	(they	are).

The	yield	of	regcomp()	is	zero	on	success,	and	non-zero	otherwise.
The	preg	structure	is	filled	in	on	success,	and	one	member	of	the
structure	is	public:	re_nsub	contains	the	number	of	capturing
subpatterns	in	the	regular	expression.	Various	error	codes	are	defined
in	the	header	file.

matching	newline	characters

This	area	is	not	simple,	because	POSIX	and	Perl	take	different	views
of	things.	It	is	not	possible	to	get	PCRE	to	obey	POSIX	semantics,	but
then	PCRE	was	never	intended	to	be	a	POSIX	engine.	The	following
table	lists	the	different	possibilities	for	matching	newline	characters	in
PCRE:

																										Default			Change	with

		.	matches	newline										no					PCRE_DOTALL
		newline	matches	[^a]							yes				not	changeable
		$	matches	\n	at	end								yes				PCRE_DOLLARENDONLY

		$	matches	\n	in	middle					no					PCRE_MULTILINE
		^	matches	\n	in	middle					no					PCRE_MULTILINE

This	is	the	equivalent	table	for	POSIX:

																										Default			Change	with

		.	matches	newline										yes				REG_NEWLINE
		newline	matches	[^a]							yes				REG_NEWLINE
		$	matches	\n	at	end								no					REG_NEWLINE
		$	matches	\n	in	middle					no					REG_NEWLINE
		^	matches	\n	in	middle					no					REG_NEWLINE

PCRE's	behaviour	is	the	same	as	Perl's,	except	that	there	is	no
equivalent	for	PCRE_DOLLAR_ENDONLY	in	Perl.	In	both	PCRE
and	Perl,	there	is	no	way	to	stop	newline	from	matching	[^a].

The	default	POSIX	newline	handling	can	be	obtained	by	setting
PCRE_DOTALL	and	PCRE_DOLLAR_ENDONLY,	but	there	is	no
way	to	make	PCRE	behave	exactly	as	for	the	REG_NEWLINE
action.

matching	a	pattern

The	function	regexec()	is	called	to	match	a	compiled	pattern	preg
against	a	given	string,	which	is	by	default	terminated	by	a	zero	byte
(but	see	REG_STARTEND	below),	subject	to	the	options	in	eflags.
These	can	be:

		REG_NOTBOL

The	PCRE_NOTBOL	option	is	set	when	calling	the	underlying	PCRE
matching	function.

		REG_NOTEOL

The	PCRE_NOTEOL	option	is	set	when	calling	the	underlying	PCRE
matching	function.

		REG_STARTEND

The	string	is	considered	to	start	at	string	+	pmatch[0].rm_so	and	to
have	a	terminating	NUL	located	at	string	+	pmatch[0].rm_eo	(there
need	not	actually	be	a	NUL	at	that	location),	regardless	of	the	value	of
nmatch.	This	is	a	BSD	extension,	compatible	with	but	not	specified	by
IEEE	Standard	1003.2	(POSIX.2),	and	should	be	used	with	caution	in
software	intended	to	be	portable	to	other	systems.	Note	that	a	non-
zero	rm_so	does	not	imply	REG_NOTBOL;	REG_STARTEND
affects	only	the	location	of	the	string,	not	how	it	is	matched.

If	the	pattern	was	compiled	with	the	REG_NOSUB	flag,	no	data	about
any	matched	strings	is	returned.	The	nmatch	and	pmatch	arguments	of
regexec()	are	ignored.

Otherwise,the	portion	of	the	string	that	was	matched,	and	also	any
captured	substrings,	are	returned	via	the	pmatch	argument,	which
points	to	an	array	of	nmatch	structures	of	type	regmatch_t,	containing
the	members	rm_so	and	rm_eo.	These	contain	the	offset	to	the	first
character	of	each	substring	and	the	offset	to	the	first	character	after	the
end	of	each	substring,	respectively.	The	0th	element	of	the	vector
relates	to	the	entire	portion	of	string	that	was	matched;	subsequent
elements	relate	to	the	capturing	subpatterns	of	the	regular	expression.
Unused	entries	in	the	array	have	both	structure	members	set	to	-1.

A	successful	match	yields	a	zero	return;	various	error	codes	are
defined	in	the	header	file,	of	which	REG_NOMATCH	is	the
"expected"	failure	code.

error	messages

The	regerror()	function	maps	a	non-zero	errorcode	from	either
regcomp()	or	regexec()	to	a	printable	message.	If	preg	is	not	NULL,
the	error	should	have	arisen	from	the	use	of	that	structure.	A	message
terminated	by	a	binary	zero	is	placed	in	errbuf.	The	length	of	the
message,	including	the	zero,	is	limited	to	errbuf_size.	The	yield	of	the
function	is	the	size	of	buffer	needed	to	hold	the	whole	message.

memory	usage

Compiling	a	regular	expression	causes	memory	to	be	allocated	and
associated	with	the	preg	structure.	The	function	regfree()	frees	all
such	memory,	after	which	preg	may	no	longer	be	used	as	a	compiled
expression.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	05	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcresample	man	page
Return	to	the	PCRE	index	page.

PCRE	SAMPLE	PROGRAM

A	simple,	complete	demonstration	program,	to	get	you	started	with
using	PCRE,	is	supplied	in	the	file	pcredemo.c	in	the	PCRE
distribution.

The	program	compiles	the	regular	expression	that	is	its	first	argument,
and	matches	it	against	the	subject	string	in	its	second	argument.	No
PCRE	options	are	set,	and	default	character	tables	are	used.	If
matching	succeeds,	the	program	outputs	the	portion	of	the	subject	that
matched,	together	with	the	contents	of	any	captured	substrings.

If	the	-g	option	is	given	on	the	command	line,	the	program	then	goes
on	to	check	for	further	matches	of	the	same	regular	expression	in	the
same	subject	string.	The	logic	is	a	little	bit	tricky	because	of	the
possibility	of	matching	an	empty	string.	Comments	in	the	code
explain	what	is	going	on.

If	PCRE	is	installed	in	the	standard	include	and	library	directories	for
your	system,	you	should	be	able	to	compile	the	demonstration
program	using	this	command:

		gcc	-o	pcredemo	pcredemo.c	-lpcre

If	PCRE	is	installed	elsewhere,	you	may	need	to	add	additional
options	to	the	command	line.	For	example,	on	a	Unix-like	system	that
has	PCRE	installed	in	/usr/local,	you	can	compile	the	demonstration
program	using	a	command	like	this:

		gcc	-o	pcredemo	-I/usr/local/include	pcredemo.c	-L/usr/local/lib	-lpcre

Once	you	have	compiled	the	demonstration	program,	you	can	run
simple	tests	like	this:

		./pcredemo	'cat|dog'	'the	cat	sat	on	the	mat'
		./pcredemo	-g	'cat|dog'	'the	dog	sat	on	the	cat'

Note	that	there	is	a	much	more	comprehensive	test	program,	called
pcretest,	which	supports	many	more	facilities	for	testing	regular
expressions	and	the	PCRE	library.	The	pcredemo	program	is
provided	as	a	simple	coding	example.

On	some	operating	systems	(e.g.	Solaris),	when	PCRE	is	not	installed
in	the	standard	library	directory,	you	may	get	an	error	like	this	when
you	try	to	run	pcredemo:

		ld.so.1:	a.out:	fatal:	libpcre.so.0:	open	failed:	No	such	file	or	directory

This	is	caused	by	the	way	shared	library	support	works	on	those
systems.	You	need	to	add

		-R/usr/local/lib

(for	example)	to	the	compile	command	to	get	round	this	problem.

AUTHOR	

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

REVISION	

Last	updated:	23	January	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcre_compile	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

pcre	*pcre_compile(const	char	*pattern,	int	options,	const	char
**errptr,	int	*erroffset,	const	unsigned	char	*tableptr);

DESCRIPTION	

This	function	compiles	a	regular	expression	into	an	internal	form.	It	is
the	same	as	pcre_compile2(),	except	for	the	absence	of	the
errorcodeptr	argument.	Its	arguments	are:

		pattern							A	zero-terminated	string	containing	the
																		regular	expression	to	be	compiled
		options							Zero	or	more	option	bits
		errptr								Where	to	put	an	error	message
		erroffset					Offset	in	pattern	where	error	was	found
		tableptr						Pointer	to	character	tables,	or	NULL	to
																		use	the	built-in	default

The	option	bits	are:

		PCRE_ANCHORED											Force	pattern	anchoring
		PCRE_AUTO_CALLOUT							Compile	automatic	callouts
		PCRE_BSR_ANYCRLF								\R	matches	only	CR,	LF,	or	CRLF
		PCRE_BSR_UNICODE								\R	matches	all	Unicode	line	endings
		PCRE_CASELESS											Do	caseless	matching
		PCRE_DOLLAR_ENDONLY					$	not	to	match	newline	at	end
		PCRE_DOTALL													.	matches	anything	including	NL

		PCRE_DUPNAMES											Allow	duplicate	names	for	subpatterns
		PCRE_EXTENDED											Ignore	whitespace	and	#	comments
		PCRE_EXTRA														PCRE	extra	features
																												(not	much	use	currently)
		PCRE_FIRSTLINE										Force	matching	to	be	before	newline
		PCRE_JAVASCRIPT_COMPAT		JavaScript	compatibility
		PCRE_MULTILINE										^	and	$	match	newlines	within	data
		PCRE_NEWLINE_ANY								Recognize	any	Unicode	newline	sequence
		PCRE_NEWLINE_ANYCRLF				Recognize	CR,	LF,	and	CRLF	as	newline
																												sequences
		PCRE_NEWLINE_CR									Set	CR	as	the	newline	sequence
		PCRE_NEWLINE_CRLF							Set	CRLF	as	the	newline	sequence
		PCRE_NEWLINE_LF									Set	LF	as	the	newline	sequence
		PCRE_NO_AUTO_CAPTURE				Disable	numbered	capturing	paren-
																												theses	(named	ones	available)
		PCRE_UNGREEDY											Invert	greediness	of	quantifiers
		PCRE_UTF8															Run	in	UTF-8	mode
		PCRE_NO_UTF8_CHECK						Do	not	check	the	pattern	for	UTF-8
																												validity	(only	relevant	if
																												PCRE_UTF8	is	set)

PCRE	must	be	built	with	UTF-8	support	in	order	to	use	PCRE_UTF8
and	PCRE_NO_UTF8_CHECK.

The	yield	of	the	function	is	a	pointer	to	a	private	data	structure	that
contains	the	compiled	pattern,	or	NULL	if	an	error	was	detected.	Note
that	compiling	regular	expressions	with	one	version	of	PCRE	for	use
with	a	different	version	is	not	guaranteed	to	work	and	may	cause
crashes.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_compile2	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

pcre	*pcre_compile2(const	char	*pattern,	int	options,	int
*errorcodeptr,	const	char	**errptr,	int	*erroffset,	const	unsigned
char	*tableptr);

DESCRIPTION	

This	function	compiles	a	regular	expression	into	an	internal	form.	It	is
the	same	as	pcre_compile(),	except	for	the	addition	of	the
errorcodeptr	argument.	The	arguments	are:

		pattern							A	zero-terminated	string	containing	the
																		regular	expression	to	be	compiled
		options							Zero	or	more	option	bits
		errorcodeptr		Where	to	put	an	error	code
		errptr								Where	to	put	an	error	message
		erroffset					Offset	in	pattern	where	error	was	found
		tableptr						Pointer	to	character	tables,	or	NULL	to
																		use	the	built-in	default

The	option	bits	are:

		PCRE_ANCHORED									Force	pattern	anchoring
		PCRE_AUTO_CALLOUT					Compile	automatic	callouts
		PCRE_CASELESS									Do	caseless	matching
		PCRE_DOLLAR_ENDONLY			$	not	to	match	newline	at	end
		PCRE_DOTALL											.	matches	anything	including	NL

		PCRE_DUPNAMES									Allow	duplicate	names	for	subpatterns
		PCRE_EXTENDED									Ignore	whitespace	and	#	comments
		PCRE_EXTRA												PCRE	extra	features
																										(not	much	use	currently)
		PCRE_FIRSTLINE								Force	matching	to	be	before	newline
		PCRE_MULTILINE								^	and	$	match	newlines	within	data
		PCRE_NEWLINE_ANY						Recognize	any	Unicode	newline	sequence
		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences
		PCRE_NEWLINE_CR							Set	CR	as	the	newline	sequence
		PCRE_NEWLINE_CRLF					Set	CRLF	as	the	newline	sequence
		PCRE_NEWLINE_LF							Set	LF	as	the	newline	sequence
		PCRE_NO_AUTO_CAPTURE		Disable	numbered	capturing	paren-
																										theses	(named	ones	available)
		PCRE_UNGREEDY									Invert	greediness	of	quantifiers
		PCRE_UTF8													Run	in	UTF-8	mode
		PCRE_NO_UTF8_CHECK				Do	not	check	the	pattern	for	UTF-8
																										validity	(only	relevant	if
																										PCRE_UTF8	is	set)

PCRE	must	be	built	with	UTF-8	support	in	order	to	use	PCRE_UTF8
and	PCRE_NO_UTF8_CHECK.

The	yield	of	the	function	is	a	pointer	to	a	private	data	structure	that
contains	the	compiled	pattern,	or	NULL	if	an	error	was	detected.	Note
that	compiling	regular	expressions	with	one	version	of	PCRE	for	use
with	a	different	version	is	not	guaranteed	to	work	and	may	cause
crashes.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_config	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_config(int	what,	void	*where);

DESCRIPTION	

This	function	makes	it	possible	for	a	client	program	to	find	out	which
optional	features	are	available	in	the	version	of	the	PCRE	library	it	is
using.	Its	arguments	are	as	follows:

		what					A	code	specifying	what	information	is	required
		where				Points	to	where	to	put	the	data

The	available	codes	are:

		PCRE_CONFIG_LINK_SIZE					Internal	link	size:	2,	3,	or	4
		PCRE_CONFIG_MATCH_LIMIT			Internal	resource	limit
		PCRE_CONFIG_MATCH_LIMIT_RECURSION
																												Internal	recursion	depth	limit
		PCRE_CONFIG_NEWLINE							Value	of	the	default	newline	sequence:
																																13	(0x000d)				for	CR
																																10	(0x000a)				for	LF
																														3338	(0x0d0a)				for	CRLF
																																-2													for	ANYCRLF
																																-1													for	ANY
		PCRE_CONFIG_BSR											Indicates	what	\R	matches	by	default:
																																	0													all	Unicode	line	endings
																																	1													CR,	LF,	or	CRLF	only

		PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
																												Threshold	of	return	slots,	above
																														which	malloc()	is	used	by
																														the	POSIX	API
		PCRE_CONFIG_STACKRECURSE		Recursion	implementation	(1=stack	0=heap)
		PCRE_CONFIG_UTF8										Availability	of	UTF-8	support	(1=yes	0=no)
		PCRE_CONFIG_UNICODE_PROPERTIES
																												Availability	of	Unicode	property	support
																														(1=yes	0=no)

The	function	yields	0	on	success	or	PCRE_ERROR_BADOPTION
otherwise.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_copy_named_substring	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_copy_named_substring(const	pcre	*code,	const	char
*subject,	int	*ovector,	int	stringcount,	const	char	*stringname,	char
*buffer,	int	buffersize);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring,
identified	by	name,	into	a	given	buffer.	The	arguments	are:

		code										Pattern	that	was	successfully	matched
		subject							Subject	that	has	been	successfully	matched
		ovector							Offset	vector	that	pcre_exec()	used
		stringcount			Value	returned	by	pcre_exec()
		stringname				Name	of	the	required	substring
		buffer								Buffer	to	receive	the	string
		buffersize				Size	of	buffer

The	yield	is	the	length	of	the	substring,
PCRE_ERROR_NOMEMORY	if	the	buffer	was	too	small,	or
PCRE_ERROR_NOSUBSTRING	if	the	string	name	is	invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_copy_substring	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_copy_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	char	*buffer,	int	buffersize);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring	into
a	given	buffer.	The	arguments	are:

		subject							Subject	that	has	been	successfully	matched
		ovector							Offset	vector	that	pcre_exec()	used
		stringcount			Value	returned	by	pcre_exec()
		stringnumber		Number	of	the	required	substring
		buffer								Buffer	to	receive	the	string
		buffersize				Size	of	buffer

The	yield	is	the	length	of	the	string,	PCRE_ERROR_NOMEMORY	if
the	buffer	was	too	small,	or	PCRE_ERROR_NOSUBSTRING	if	the
string	number	is	invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_dfa_exec	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_dfa_exec(const	pcre	*code,	const	pcre_extra	*extra,	const
char	*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize,	int	*workspace,	int	wscount);

DESCRIPTION	

This	function	matches	a	compiled	regular	expression	against	a	given
subject	string,	using	an	alternative	matching	algorithm	that	scans	the
subject	string	just	once	(not	Perl-compatible).	Note	that	the	main,
Perl-compatible,	matching	function	is	pcre_exec().	The	arguments	for
this	function	are:

		code									Points	to	the	compiled	pattern
		extra								Points	to	an	associated	pcre_extra	structure,
																	or	is	NULL
		subject						Points	to	the	subject	string
		length							Length	of	the	subject	string,	in	bytes
		startoffset		Offset	in	bytes	in	the	subject	at	which	to
																	start	matching
		options						Option	bits
		ovector						Points	to	a	vector	of	ints	for	result	offsets
		ovecsize					Number	of	elements	in	the	vector
		workspace				Points	to	a	vector	of	ints	used	as	working	space
		wscount						Number	of	elements	in	the	vector

The	options	are:

		PCRE_ANCHORED						Match	only	at	the	first	position
		PCRE_BSR_ANYCRLF			\R	matches	only	CR,	LF,	or	CRLF
		PCRE_BSR_UNICODE			\R	matches	all	Unicode	line	endings
		PCRE_NEWLINE_ANY			Recognize	any	Unicode	newline	sequence
		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences
		PCRE_NEWLINE_CR				Set	CR	as	the	newline	sequence
		PCRE_NEWLINE_CRLF		Set	CRLF	as	the	newline	sequence
		PCRE_NEWLINE_LF				Set	LF	as	the	newline	sequence
		PCRE_NOTBOL								Subject	is	not	the	beginning	of	a	line
		PCRE_NOTEOL								Subject	is	not	the	end	of	a	line
		PCRE_NOTEMPTY						An	empty	string	is	not	a	valid	match
		PCRE_NO_UTF8_CHECK	Do	not	check	the	subject	for	UTF-8
																							validity	(only	relevant	if	PCRE_UTF8
																							was	set	at	compile	time)
		PCRE_PARTIAL							Return	PCRE_ERROR_PARTIAL	for	a	partial	match
		PCRE_DFA_SHORTEST		Return	only	the	shortest	match
		PCRE_DFA_RESTART			This	is	a	restart	after	a	partial	match

There	are	restrictions	on	what	may	appear	in	a	pattern	when	using	this
matching	function.	Details	are	given	in	the	pcrematching
documentation.

A	pcre_extra	structure	contains	the	following	fields:

		flags								Bits	indicating	which	fields	are	set
		study_data			Opaque	data	from	pcre_study()
		match_limit		Limit	on	internal	resource	use
		match_limit_recursion		Limit	on	internal	recursion	depth
		callout_data	Opaque	data	passed	back	to	callouts
		tables							Points	to	character	tables	or	is	NULL

The	flag	bits	are	PCRE_EXTRA_STUDY_DATA,
PCRE_EXTRA_MATCH_LIMIT,
PCRE_EXTRA_MATCH_LIMIT_RECURSION,
PCRE_EXTRA_CALLOUT_DATA,	and	PCRE_EXTRA_TABLES.

For	this	matching	function,	the	match_limit	and
match_limit_recursion	fields	are	not	used,	and	must	not	be	set.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_exec	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_exec(const	pcre	*code,	const	pcre_extra	*extra,	const	char
*subject,	int	length,	int	startoffset,	int	options,	int	*ovector,	int
ovecsize);

DESCRIPTION	

This	function	matches	a	compiled	regular	expression	against	a	given
subject	string,	using	a	matching	algorithm	that	is	similar	to	Perl's.	It
returns	offsets	to	captured	substrings.	Its	arguments	are:

		code									Points	to	the	compiled	pattern
		extra								Points	to	an	associated	pcre_extra	structure,
																	or	is	NULL
		subject						Points	to	the	subject	string
		length							Length	of	the	subject	string,	in	bytes
		startoffset		Offset	in	bytes	in	the	subject	at	which	to
																	start	matching
		options						Option	bits
		ovector						Points	to	a	vector	of	ints	for	result	offsets
		ovecsize					Number	of	elements	in	the	vector	(a	multiple	of	3)

The	options	are:

		PCRE_ANCHORED						Match	only	at	the	first	position
		PCRE_BSR_ANYCRLF			\R	matches	only	CR,	LF,	or	CRLF
		PCRE_BSR_UNICODE			\R	matches	all	Unicode	line	endings

		PCRE_NEWLINE_ANY			Recognize	any	Unicode	newline	sequence
		PCRE_NEWLINE_ANYCRLF		Recognize	CR,	LF,	and	CRLF	as	newline	sequences
		PCRE_NEWLINE_CR				Set	CR	as	the	newline	sequence
		PCRE_NEWLINE_CRLF		Set	CRLF	as	the	newline	sequence
		PCRE_NEWLINE_LF				Set	LF	as	the	newline	sequence
		PCRE_NOTBOL								Subject	is	not	the	beginning	of	a	line
		PCRE_NOTEOL								Subject	is	not	the	end	of	a	line
		PCRE_NOTEMPTY						An	empty	string	is	not	a	valid	match
		PCRE_NO_UTF8_CHECK	Do	not	check	the	subject	for	UTF-8
																							validity	(only	relevant	if	PCRE_UTF8
																							was	set	at	compile	time)
		PCRE_PARTIAL							Return	PCRE_ERROR_PARTIAL	for	a	partial	match

There	are	restrictions	on	what	may	appear	in	a	pattern	when	partial
matching	is	requested.	For	details,	see	the	pcrepartial	page.

A	pcre_extra	structure	contains	the	following	fields:

		flags								Bits	indicating	which	fields	are	set
		study_data			Opaque	data	from	pcre_study()
		match_limit		Limit	on	internal	resource	use
		match_limit_recursion		Limit	on	internal	recursion	depth
		callout_data	Opaque	data	passed	back	to	callouts
		tables							Points	to	character	tables	or	is	NULL

The	flag	bits	are	PCRE_EXTRA_STUDY_DATA,
PCRE_EXTRA_MATCH_LIMIT,
PCRE_EXTRA_MATCH_LIMIT_RECURSION,
PCRE_EXTRA_CALLOUT_DATA,	and	PCRE_EXTRA_TABLES.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_free_substring	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

void	pcre_free_substring(const	char	*stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	freeing	the	store	obtained	by	a
previous	call	to	pcre_get_substring()	or
pcre_get_named_substring().	Its	only	argument	is	a	pointer	to	the
string.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_free_substring_list	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

void	pcre_free_substring_list(const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	freeing	the	store	obtained	by	a
previous	call	to	pcre_get_substring_list().	Its	only	argument	is	a
pointer	to	the	list	of	string	pointers.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_fullinfo	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_fullinfo(const	pcre	*code,	const	pcre_extra	*extra,	int
what,	void	*where);

DESCRIPTION	

This	function	returns	information	about	a	compiled	pattern.	Its
arguments	are:

		code																						Compiled	regular	expression
		extra																					Result	of	pcre_study()	or	NULL
		what																						What	information	is	required
		where																					Where	to	put	the	information

The	following	information	is	available:

		PCRE_INFO_BACKREFMAX						Number	of	highest	back	reference
		PCRE_INFO_CAPTURECOUNT				Number	of	capturing	subpatterns
		PCRE_INFO_DEFAULT_TABLES		Pointer	to	default	tables
		PCRE_INFO_FIRSTBYTE							Fixed	first	byte	for	a	match,	or
																														-1	for	start	of	string
																																	or	after	newline,	or
																														-2	otherwise
		PCRE_INFO_FIRSTTABLE						Table	of	first	bytes	(after	studying)
		PCRE_INFO_JCHANGED								Return	1	if	(?J)	or	(?-J)	was	used
		PCRE_INFO_LASTLITERAL					Literal	last	byte	required
		PCRE_INFO_NAMECOUNT							Number	of	named	subpatterns

		PCRE_INFO_NAMEENTRYSIZE			Size	of	name	table	entry
		PCRE_INFO_NAMETABLE							Pointer	to	name	table
		PCRE_INFO_OKPARTIAL							Return	1	if	partial	matching	can	be	tried
		PCRE_INFO_OPTIONS									Option	bits	used	for	compilation
		PCRE_INFO_SIZE												Size	of	compiled	pattern
		PCRE_INFO_STUDYSIZE							Size	of	study	data

The	yield	of	the	function	is	zero	on	success	or:

		PCRE_ERROR_NULL											the	argument	code	was	NULL
																												the	argument	where	was	NULL
		PCRE_ERROR_BADMAGIC							the	"magic	number"	was	not	found
		PCRE_ERROR_BADOPTION						the	value	of	what	was	invalid

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_get_named_substring	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_get_named_substring(const	pcre	*code,	const	char
*subject,	int	*ovector,	int	stringcount,	const	char	*stringname,
const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring	by
name.	The	arguments	are:

		code										Compiled	pattern
		subject							Subject	that	has	been	successfully	matched
		ovector							Offset	vector	that	pcre_exec()	used
		stringcount			Value	returned	by	pcre_exec()
		stringname				Name	of	the	required	substring
		stringptr					Where	to	put	the	string	pointer

The	memory	in	which	the	substring	is	placed	is	obtained	by	calling
pcre_malloc().	The	convenience	function	pcre_free_substring()	can
be	used	to	free	it	when	it	is	no	longer	needed.	The	yield	of	the
function	is	the	length	of	the	extracted	substring,
PCRE_ERROR_NOMEMORY	if	sufficient	memory	could	not	be
obtained,	or	PCRE_ERROR_NOSUBSTRING	if	the	string	name	is
invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the

pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_get_stringnumber	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_get_stringnumber(const	pcre	*code,	const	char	*name);

DESCRIPTION	

This	convenience	function	finds	the	number	of	a	named	substring
capturing	parenthesis	in	a	compiled	pattern.	Its	arguments	are:

		code				Compiled	regular	expression
		name				Name	whose	number	is	required

The	yield	of	the	function	is	the	number	of	the	parenthesis	if	the	name
is	found,	or	PCRE_ERROR_NOSUBSTRING	otherwise.	When
duplicate	names	are	allowed	(PCRE_DUPNAMES	is	set),	it	is	not
defined	which	of	the	numbers	is	returned	by
pcre_get_stringnumber().	You	can	obtain	the	complete	list	by
calling	pcre_get_stringtable_entries().

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_get_stringtable_entries	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_get_stringtable_entries(const	pcre	*code,	const	char
*name,	char	**first,	char	**last);

DESCRIPTION	

This	convenience	function	finds,	for	a	compiled	pattern,	the	first	and
last	entries	for	a	given	name	in	the	table	that	translates	capturing
parenthesis	names	into	numbers.	When	names	are	required	to	be
unique	(PCRE_DUPNAMES	is	not	set),	it	is	usually	easier	to	use
pcre_get_stringnumber()	instead.

		code				Compiled	regular	expression
		name				Name	whose	entries	required
		first			Where	to	return	a	pointer	to	the	first	entry
		last				Where	to	return	a	pointer	to	the	last	entry

The	yield	of	the	function	is	the	length	of	each	entry,	or
PCRE_ERROR_NOSUBSTRING	if	none	are	found.

There	is	a	complete	description	of	the	PCRE	native	API,	including	the
format	of	the	table	entries,	in	the	pcreapi	page,	and	a	description	of
the	POSIX	API	in	the	pcreposix	page.

Return	to	the	PCRE	index	page.

pcre_get_substring	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_get_substring(const	char	*subject,	int	*ovector,	int
stringcount,	int	stringnumber,	const	char	**stringptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	captured	substring.	The
arguments	are:

		subject							Subject	that	has	been	successfully	matched
		ovector							Offset	vector	that	pcre_exec()	used
		stringcount			Value	returned	by	pcre_exec()
		stringnumber		Number	of	the	required	substring
		stringptr					Where	to	put	the	string	pointer

The	memory	in	which	the	substring	is	placed	is	obtained	by	calling
pcre_malloc().	The	convenience	function	pcre_free_substring()	can
be	used	to	free	it	when	it	is	no	longer	needed.	The	yield	of	the
function	is	the	length	of	the	substring,	PCRE_ERROR_NOMEMORY
if	sufficient	memory	could	not	be	obtained,	or
PCRE_ERROR_NOSUBSTRING	if	the	string	number	is	invalid.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_get_substring_list	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_get_substring_list(const	char	*subject,	int	*ovector,	int
stringcount,	const	char	***listptr);

DESCRIPTION	

This	is	a	convenience	function	for	extracting	a	list	of	all	the	captured
substrings.	The	arguments	are:

		subject							Subject	that	has	been	successfully	matched
		ovector							Offset	vector	that	pcre_exec	used
		stringcount			Value	returned	by	pcre_exec
		listptr							Where	to	put	a	pointer	to	the	list

The	memory	in	which	the	substrings	and	the	list	are	placed	is	obtained
by	calling	pcre_malloc().	The	convenience	function
pcre_free_substring_list()	can	be	used	to	free	it	when	it	is	no	longer
needed.	A	pointer	to	a	list	of	pointers	is	put	in	the	variable	whose
address	is	in	listptr.	The	list	is	terminated	by	a	NULL	pointer.	The
yield	of	the	function	is	zero	on	success	or
PCRE_ERROR_NOMEMORY	if	sufficient	memory	could	not	be
obtained.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_info	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_info(const	pcre	*code,	int	*optptr,	int	*firstcharptr);

DESCRIPTION	

This	function	is	obsolete.	You	should	be	using	pcre_fullinfo()	instead.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_maketables	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

const	unsigned	char	*pcre_maketables(void);

DESCRIPTION	

This	function	builds	a	set	of	character	tables	for	character	values	less
than	256.	These	can	be	passed	to	pcre_compile()	to	override	PCRE's
internal,	built-in	tables	(which	were	made	by	pcre_maketables()
when	PCRE	was	compiled).	You	might	want	to	do	this	if	you	are
using	a	non-standard	locale.	The	function	yields	a	pointer	to	the
tables.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_refcount	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

int	pcre_refcount(pcre	*code,	int	adjust);

DESCRIPTION	

This	function	is	used	to	maintain	a	reference	count	inside	a	data	block
that	contains	a	compiled	pattern.	Its	arguments	are:

		code																						Compiled	regular	expression
		adjust																				Adjustment	to	reference	value

The	yield	of	the	function	is	the	adjusted	reference	value,	which	is
constrained	to	lie	between	0	and	65535.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcre_study	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

pcre_extra	*pcre_study(const	pcre	*code,	int	options,	const	char
**errptr);

DESCRIPTION	

This	function	studies	a	compiled	pattern,	to	see	if	additional
information	can	be	extracted	that	might	speed	up	matching.	Its
arguments	are:

		code							A	compiled	regular	expression
		options				Options	for	pcre_study()
		errptr					Where	to	put	an	error	message

If	the	function	succeeds,	it	returns	a	value	that	can	be	passed	to
pcre_exec()	via	its	extra	argument.

If	the	function	returns	NULL,	either	it	could	not	find	any	additional
information,	or	there	was	an	error.	You	can	tell	the	difference	by
looking	at	the	error	value.	It	is	NULL	in	first	case.

There	are	currently	no	options	defined;	the	value	of	the	second
argument	should	always	be	zero.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix

page.

Return	to	the	PCRE	index	page.

pcre_version	man	page
Return	to	the	PCRE	index	page.

SYNOPSIS

#include	<pcre.h>

char	*pcre_version(void);

DESCRIPTION	

This	function	returns	a	character	string	that	gives	the	version	number
of	the	PCRE	library	and	the	date	of	its	release.

There	is	a	complete	description	of	the	PCRE	native	API	in	the
pcreapi	page	and	a	description	of	the	POSIX	API	in	the	pcreposix
page.

Return	to	the	PCRE	index	page.

pcrecallout	man	page
Return	to	the	PCRE	index	page.

pcre	callouts
missing	callouts
the	callout	interface
return	values
author
revision

pcre	callouts

int	(*pcre_callout)(pcre_callout_block	*);

PCRE	provides	a	feature	called	"callout",	which	is	a	means	of
temporarily	passing	control	to	the	caller	of	PCRE	in	the	middle	of
pattern	matching.	The	caller	of	PCRE	provides	an	external	function
by	putting	its	entry	point	in	the	global	variable	pcre_callout.	By
default,	this	variable	contains	NULL,	which	disables	all	calling	out.

Within	a	regular	expression,	(?C)	indicates	the	points	at	which	the
external	function	is	to	be	called.	Different	callout	points	can	be
identified	by	putting	a	number	less	than	256	after	the	letter	C.	The
default	value	is	zero.	For	example,	this	pattern	has	two	callout	points:

		(?C1)abc(?C2)def

If	the	PCRE_AUTO_CALLOUT	option	bit	is	set	when
pcre_compile()	is	called,	PCRE	automatically	inserts	callouts,	all
with	number	255,	before	each	item	in	the	pattern.	For	example,	if
PCRE_AUTO_CALLOUT	is	used	with	the	pattern

		A(\d{2}|--)

it	is	processed	as	if	it	were	

(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?
C255)	

Notice	that	there	is	a	callout	before	and	after	each	parenthesis	and
alternation	bar.	Automatic	callouts	can	be	used	for	tracking	the
progress	of	pattern	matching.	The	pcretest	command	has	an	option
that	sets	automatic	callouts;	when	it	is	used,	the	output	indicates	how
the	pattern	is	matched.	This	is	useful	information	when	you	are	trying
to	optimize	the	performance	of	a	particular	pattern.

missing	callouts

You	should	be	aware	that,	because	of	optimizations	in	the	way	PCRE
matches	patterns,	callouts	sometimes	do	not	happen.	For	example,	if
the	pattern	is

		ab(?C4)cd

PCRE	knows	that	any	matching	string	must	contain	the	letter	"d".	If
the	subject	string	is	"abyz",	the	lack	of	"d"	means	that	matching
doesn't	ever	start,	and	the	callout	is	never	reached.	However,	with
"abyd",	though	the	result	is	still	no	match,	the	callout	is	obeyed.

the	callout	interface

During	matching,	when	PCRE	reaches	a	callout	point,	the	external
function	defined	by	pcre_callout	is	called	(if	it	is	set).	This	applies	to
both	the	pcre_exec()	and	the	pcre_dfa_exec()	matching	functions.

The	only	argument	to	the	callout	function	is	a	pointer	to	a
pcre_callout	block.	This	structure	contains	the	following	fields:

		int										version;
		int										callout_number;
		int									*offset_vector;
		const	char		*subject;
		int										subject_length;
		int										start_match;
		int										current_position;
		int										capture_top;
		int										capture_last;
		void								*callout_data;
		int										pattern_position;
		int										next_item_length;

The	version	field	is	an	integer	containing	the	version	number	of	the
block	format.	The	initial	version	was	0;	the	current	version	is	1.	The
version	number	will	change	again	in	future	if	additional	fields	are
added,	but	the	intention	is	never	to	remove	any	of	the	existing	fields.

The	callout_number	field	contains	the	number	of	the	callout,	as
compiled	into	the	pattern	(that	is,	the	number	after	?C	for	manual
callouts,	and	255	for	automatically	generated	callouts).

The	offset_vector	field	is	a	pointer	to	the	vector	of	offsets	that	was
passed	by	the	caller	to	pcre_exec()	or	pcre_dfa_exec().	When
pcre_exec()	is	used,	the	contents	can	be	inspected	in	order	to	extract
substrings	that	have	been	matched	so	far,	in	the	same	way	as	for
extracting	substrings	after	a	match	has	completed.	For
pcre_dfa_exec()	this	field	is	not	useful.

The	subject	and	subject_length	fields	contain	copies	of	the	values	that
were	passed	to	pcre_exec().

The	start_match	field	normally	contains	the	offset	within	the	subject
at	which	the	current	match	attempt	started.	However,	if	the	escape
sequence	\K	has	been	encountered,	this	value	is	changed	to	reflect	the
modified	starting	point.	If	the	pattern	is	not	anchored,	the	callout
function	may	be	called	several	times	from	the	same	point	in	the
pattern	for	different	starting	points	in	the	subject.

The	current_position	field	contains	the	offset	within	the	subject	of	the
current	match	pointer.

When	the	pcre_exec()	function	is	used,	the	capture_top	field	contains
one	more	than	the	number	of	the	highest	numbered	captured	substring
so	far.	If	no	substrings	have	been	captured,	the	value	of	capture_top	is
one.	This	is	always	the	case	when	pcre_dfa_exec()	is	used,	because	it
does	not	support	captured	substrings.

The	capture_last	field	contains	the	number	of	the	most	recently
captured	substring.	If	no	substrings	have	been	captured,	its	value	is	-1.
This	is	always	the	case	when	pcre_dfa_exec()	is	used.

The	callout_data	field	contains	a	value	that	is	passed	to	pcre_exec()
or	pcre_dfa_exec()	specifically	so	that	it	can	be	passed	back	in
callouts.	It	is	passed	in	the	pcre_callout	field	of	the	pcre_extra	data
structure.	If	no	such	data	was	passed,	the	value	of	callout_data	in	a
pcre_callout	block	is	NULL.	There	is	a	description	of	the	pcre_extra
structure	in	the	pcreapi	documentation.

The	pattern_position	field	is	present	from	version	1	of	the
pcre_callout	structure.	It	contains	the	offset	to	the	next	item	to	be
matched	in	the	pattern	string.

The	next_item_length	field	is	present	from	version	1	of	the
pcre_callout	structure.	It	contains	the	length	of	the	next	item	to	be
matched	in	the	pattern	string.	When	the	callout	immediately	precedes

an	alternation	bar,	a	closing	parenthesis,	or	the	end	of	the	pattern,	the
length	is	zero.	When	the	callout	precedes	an	opening	parenthesis,	the
length	is	that	of	the	entire	subpattern.

The	pattern_position	and	next_item_length	fields	are	intended	to	help
in	distinguishing	between	different	automatic	callouts,	which	all	have
the	same	callout	number.	However,	they	are	set	for	all	callouts.

return	values

The	external	callout	function	returns	an	integer	to	PCRE.	If	the	value
is	zero,	matching	proceeds	as	normal.	If	the	value	is	greater	than	zero,
matching	fails	at	the	current	point,	but	the	testing	of	other	matching
possibilities	goes	ahead,	just	as	if	a	lookahead	assertion	had	failed.	If
the	value	is	less	than	zero,	the	match	is	abandoned,	and	pcre_exec()
(or	pcre_dfa_exec())	returns	the	negative	value.

Negative	values	should	normally	be	chosen	from	the	set	of
PCRE_ERROR_xxx	values.	In	particular,
PCRE_ERROR_NOMATCH	forces	a	standard	"no	match"	failure.
The	error	number	PCRE_ERROR_CALLOUT	is	reserved	for	use	by
callout	functions;	it	will	never	be	used	by	PCRE	itself.

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	29	May	2007	
Copyright	©	1997-2007	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

pcre-config	man	page
Return	to	the	PCRE	index	page.

synopsis
description
options
see	also
author
revision

synopsis

pcre-config	[--prefix]	[--exec-prefix]	[--version]	[--libs]	[--libs-
posix]	[--cflags]	[--cflags-posix]

description

pcre-config	returns	the	configuration	of	the	installed	PCRE	libraries
and	the	options	required	to	compile	a	program	to	use	them.

options

--prefix	Writes	the	directory	prefix	used	in	the	PCRE	installation	for
architecture	independent	files	(/usr	on	many	systems,	/usr/local	on
some	systems)	to	the	standard	output.

--exec-prefix	Writes	the	directory	prefix	used	in	the	PCRE	installation
for	architecture	dependent	files	(normally	the	same	as	--prefix)	to	the
standard	output.

--version	Writes	the	version	number	of	the	installed	PCRE	libraries	to
the	standard	output.

--libs	Writes	to	the	standard	output	the	command	line	options	required
to	link	with	PCRE	(-lpcre	on	many	systems).

--libs-posix	Writes	to	the	standard	output	the	command	line	options
required	to	link	with	the	PCRE	posix	emulation	library	(-lpcreposix	-
lpcre	on	many	systems).

--cflags	Writes	to	the	standard	output	the	command	line	options
required	to	compile	files	that	use	PCRE	(this	may	include	some	-I
options,	but	is	blank	on	many	systems).

--cflags-posix	Writes	to	the	standard	output	the	command	line	options
required	to	compile	files	that	use	the	PCRE	posix	emulation	library
(this	may	include	some	-I	options,	but	is	blank	on	many	systems).

see	also

pcre(3)

author

This	manual	page	was	originally	written	by	Mark	Baker	for	the
Debian	GNU/Linux	system.	It	has	been	slightly	revised	as	a	generic
PCRE	man	page.

revision

Last	updated:	18	April	2007	

Return	to	the	PCRE	index	page.

PCRE-CONFIG(1)																																																		PCRE-CONFIG(1)

NAME
							pcre-config	-	program	to	return	PCRE	configuration

SYNOPSIS

							pcre-config	[--prefix]	[--exec-prefix]	[--version]	[--libs]
												[--libs-posix]	[--cflags]	[--cflags-posix]

DESCRIPTION

							pcre-config		returns		the	configuration	of	the	installed	PCRE	libraries
							and	the	options	required	to	compile	a	program	to	use	them.

OPTIONS

							--prefix		Writes	the	directory	prefix	used	in	the	PCRE	installation	for
																	architecture			independent			files		(/usr		on		many		systems,
																	/usr/local	on	some	systems)	to	the	standard	output.

							--exec-prefix
																	Writes	the	directory	prefix	used	in	the	PCRE	installation	for
																	architecture		dependent	files	(normally	the	same	as	--prefix)
																	to	the	standard	output.

							--version	Writes	the	version	number	of	the	installed	PCRE	libraries		to
																	the	standard	output.

							--libs				Writes		to		the		standard		output		the		command		line	options
																	required	to	link	with	PCRE	(-lpcre	on	many	systems).

							--libs-posix
																	Writes	to		the		standard		output		the		command		line		options
																	required		to		link		with		the		PCRE		posix		emulation	library
																	(-lpcreposix	-lpcre	on	many	systems).

							--cflags		Writes	to		the		standard		output		the		command		line		options
																	required		to		compile		files		that	use	PCRE	(this	may	include
																	some	-I	options,	but	is	blank	on	many	systems).

							--cflags-posix
																	Writes	to		the		standard		output		the		command		line		options
																	required		to		compile	files	that	use	the	PCRE	posix	emulation
																	library	(this	may	include	some	-I	options,	but		is		blank		on
																	many	systems).

SEE	ALSO

							pcre(3)

AUTHOR

							This		manual		page		was	originally	written	by	Mark	Baker	for	the	Debian
							GNU/Linux	system.	It	has	been	slightly	revised	as	a		generic		PCRE		man
							page.

REVISION

							Last	updated:	18	April	2007

pcretest	man	page
Return	to	the	PCRE	index	page.

synopsis
options
description
pattern	modifiers
data	lines
the	alternative	matching	function
default	output	from	pcretest
output	from	the	alternative	matching	function
restarting	after	a	partial	match
callouts
non-printing	characters
saving	and	reloading	compiled	patterns
see	also
author
revision

synopsis

pcretest	[options]	[source]	[destination]	

pcretest	was	written	as	a	test	program	for	the	PCRE	regular
expression	library	itself,	but	it	can	also	be	used	for	experimenting	with
regular	expressions.	This	document	describes	the	features	of	the	test
program;	for	details	of	the	regular	expressions	themselves,	see	the
pcrepattern	documentation.	For	details	of	the	PCRE	library	function
calls	and	their	options,	see	the	pcreapi	documentation.

options

-b	Behave	as	if	each	regex	has	the	/B	(show	bytecode)	modifier;	the
internal	form	is	output	after	compilation.

-C	Output	the	version	number	of	the	PCRE	library,	and	all	available
information	about	the	optional	features	that	are	included,	and	then
exit.

-d	Behave	as	if	each	regex	has	the	/D	(debug)	modifier;	the	internal
form	and	information	about	the	compiled	pattern	is	output	after
compilation;	-d	is	equivalent	to	-b	-i.

-dfa	Behave	as	if	each	data	line	contains	the	\D	escape	sequence;	this
causes	the	alternative	matching	function,	pcre_dfa_exec(),	to	be	used
instead	of	the	standard	pcre_exec()	function	(more	detail	is	given
below).

-help	Output	a	brief	summary	these	options	and	then	exit.

-i	Behave	as	if	each	regex	has	the	/I	modifier;	information	about	the
compiled	pattern	is	given	after	compilation.

-m	Output	the	size	of	each	compiled	pattern	after	it	has	been
compiled.	This	is	equivalent	to	adding	/M	to	each	regular	expression.
For	compatibility	with	earlier	versions	of	pcretest,	-s	is	a	synonym	for
-m.

-o	osize	Set	the	number	of	elements	in	the	output	vector	that	is	used
when	calling	pcre_exec()	or	pcre_dfa_exec()	to	be	osize.	The	default
value	is	45,	which	is	enough	for	14	capturing	subexpressions	for
pcre_exec()	or	22	different	matches	for	pcre_dfa_exec().	The	vector
size	can	be	changed	for	individual	matching	calls	by	including	\O	in
the	data	line	(see	below).

-p	Behave	as	if	each	regex	has	the	/P	modifier;	the	POSIX	wrapper
API	is	used	to	call	PCRE.	None	of	the	other	options	has	any	effect
when	-p	is	set.

-q	Do	not	output	the	version	number	of	pcretest	at	the	start	of
execution.

-S	size	On	Unix-like	systems,	set	the	size	of	the	runtime	stack	to	size
megabytes.

-t	Run	each	compile,	study,	and	match	many	times	with	a	timer,	and
output	resulting	time	per	compile	or	match	(in	milliseconds).	Do	not
set	-m	with	-t,	because	you	will	then	get	the	size	output	a	zillion
times,	and	the	timing	will	be	distorted.	You	can	control	the	number	of
iterations	that	are	used	for	timing	by	following	-t	with	a	number	(as	a
separate	item	on	the	command	line).	For	example,	"-t	1000"	would
iterate	1000	times.	The	default	is	to	iterate	500000	times.

-tm	This	is	like	-t	except	that	it	times	only	the	matching	phase,	not	the
compile	or	study	phases.

description

If	pcretest	is	given	two	filename	arguments,	it	reads	from	the	first	and
writes	to	the	second.	If	it	is	given	only	one	filename	argument,	it	reads
from	that	file	and	writes	to	stdout.	Otherwise,	it	reads	from	stdin	and
writes	to	stdout,	and	prompts	for	each	line	of	input,	using	"re>"	to
prompt	for	regular	expressions,	and	"data>"	to	prompt	for	data	lines.

When	pcretest	is	built,	a	configuration	option	can	specify	that	it
should	be	linked	with	the	libreadline	library.	When	this	is	done,	if	the
input	is	from	a	terminal,	it	is	read	using	the	readline()	function.	This
provides	line-editing	and	history	facilities.	The	output	from	the	-help

option	states	whether	or	not	readline()	will	be	used.

The	program	handles	any	number	of	sets	of	input	on	a	single	input
file.	Each	set	starts	with	a	regular	expression,	and	continues	with	any
number	of	data	lines	to	be	matched	against	the	pattern.

Each	data	line	is	matched	separately	and	independently.	If	you	want	to
do	multi-line	matches,	you	have	to	use	the	\n	escape	sequence	(or	\r	or
\r\n,	etc.,	depending	on	the	newline	setting)	in	a	single	line	of	input	to
encode	the	newline	sequences.	There	is	no	limit	on	the	length	of	data
lines;	the	input	buffer	is	automatically	extended	if	it	is	too	small.

An	empty	line	signals	the	end	of	the	data	lines,	at	which	point	a	new
regular	expression	is	read.	The	regular	expressions	are	given	enclosed
in	any	non-alphanumeric	delimiters	other	than	backslash,	for	example:

		/(a|bc)x+yz/

White	space	before	the	initial	delimiter	is	ignored.	A	regular
expression	may	be	continued	over	several	input	lines,	in	which	case
the	newline	characters	are	included	within	it.	It	is	possible	to	include
the	delimiter	within	the	pattern	by	escaping	it,	for	example

		/abc\/def/

If	you	do	so,	the	escape	and	the	delimiter	form	part	of	the	pattern,	but
since	delimiters	are	always	non-alphanumeric,	this	does	not	affect	its
interpretation.	If	the	terminating	delimiter	is	immediately	followed	by
a	backslash,	for	example,

		/abc/\

then	a	backslash	is	added	to	the	end	of	the	pattern.	This	is	done	to
provide	a	way	of	testing	the	error	condition	that	arises	if	a	pattern
finishes	with	a	backslash,	because

		/abc\/

is	interpreted	as	the	first	line	of	a	pattern	that	starts	with	"abc/",
causing	pcretest	to	read	the	next	line	as	a	continuation	of	the	regular
expression.

pattern	modifiers

A	pattern	may	be	followed	by	any	number	of	modifiers,	which	are
mostly	single	characters.	Following	Perl	usage,	these	are	referred	to
below	as,	for	example,	"the	/i	modifier",	even	though	the	delimiter	of
the	pattern	need	not	always	be	a	slash,	and	no	slash	is	used	when
writing	modifiers.	Whitespace	may	appear	between	the	final	pattern
delimiter	and	the	first	modifier,	and	between	the	modifiers
themselves.

The	/i,	/m,	/s,	and	/x	modifiers	set	the	PCRE_CASELESS,
PCRE_MULTILINE,	PCRE_DOTALL,	or	PCRE_EXTENDED
options,	respectively,	when	pcre_compile()	is	called.	These	four
modifier	letters	have	the	same	effect	as	they	do	in	Perl.	For	example:

		/caseless/i

The	following	table	shows	additional	modifiers	for	setting	PCRE
options	that	do	not	correspond	to	anything	in	Perl:

		/A														PCRE_ANCHORED
		/C														PCRE_AUTO_CALLOUT
		/E														PCRE_DOLLAR_ENDONLY
		/f														PCRE_FIRSTLINE
		/J														PCRE_DUPNAMES
		/N														PCRE_NO_AUTO_CAPTURE
		/U														PCRE_UNGREEDY
		/X														PCRE_EXTRA
		/<JS>											PCRE_JAVASCRIPT_COMPAT

		/<cr>											PCRE_NEWLINE_CR
		/<lf>											PCRE_NEWLINE_LF
		/<crlf>									PCRE_NEWLINE_CRLF
		/<anycrlf>						PCRE_NEWLINE_ANYCRLF
		/<any>										PCRE_NEWLINE_ANY
		/<bsr_anycrlf>		PCRE_BSR_ANYCRLF
		/<bsr_unicode>		PCRE_BSR_UNICODE

Those	specifying	line	ending	sequences	are	literal	strings	as	shown,
but	the	letters	can	be	in	either	case.	This	example	sets	multiline
matching	with	CRLF	as	the	line	ending	sequence:

		/^abc/m<crlf>

Details	of	the	meanings	of	these	PCRE	options	are	given	in	the
pcreapi	documentation.

Finding	all	matches	in	a	string	

Searching	for	all	possible	matches	within	each	subject	string	can	be
requested	by	the	/g	or	/G	modifier.	After	finding	a	match,	PCRE	is
called	again	to	search	the	remainder	of	the	subject	string.	The
difference	between	/g	and	/G	is	that	the	former	uses	the	startoffset
argument	to	pcre_exec()	to	start	searching	at	a	new	point	within	the
entire	string	(which	is	in	effect	what	Perl	does),	whereas	the	latter
passes	over	a	shortened	substring.	This	makes	a	difference	to	the
matching	process	if	the	pattern	begins	with	a	lookbehind	assertion
(including	\b	or	\B).

If	any	call	to	pcre_exec()	in	a	/g	or	/G	sequence	matches	an	empty
string,	the	next	call	is	done	with	the	PCRE_NOTEMPTY	and
PCRE_ANCHORED	flags	set	in	order	to	search	for	another,	non-
empty,	match	at	the	same	point.	If	this	second	match	fails,	the	start
offset	is	advanced	by	one,	and	the	normal	match	is	retried.	This

imitates	the	way	Perl	handles	such	cases	when	using	the	/g	modifier	or
the	split()	function.

Other	modifiers	

There	are	yet	more	modifiers	for	controlling	the	way	pcretest
operates.

The	/+	modifier	requests	that	as	well	as	outputting	the	substring	that
matched	the	entire	pattern,	pcretest	should	in	addition	output	the
remainder	of	the	subject	string.	This	is	useful	for	tests	where	the
subject	contains	multiple	copies	of	the	same	substring.

The	/B	modifier	is	a	debugging	feature.	It	requests	that	pcretest
output	a	representation	of	the	compiled	byte	code	after	compilation.
Normally	this	information	contains	length	and	offset	values;	however,
if	/Z	is	also	present,	this	data	is	replaced	by	spaces.	This	is	a	special
feature	for	use	in	the	automatic	test	scripts;	it	ensures	that	the	same
output	is	generated	for	different	internal	link	sizes.

The	/L	modifier	must	be	followed	directly	by	the	name	of	a	locale,	for
example,

		/pattern/Lfr_FR

For	this	reason,	it	must	be	the	last	modifier.	The	given	locale	is	set,
pcre_maketables()	is	called	to	build	a	set	of	character	tables	for	the
locale,	and	this	is	then	passed	to	pcre_compile()	when	compiling	the
regular	expression.	Without	an	/L	modifier,	NULL	is	passed	as	the
tables	pointer;	that	is,	/L	applies	only	to	the	expression	on	which	it
appears.

The	/I	modifier	requests	that	pcretest	output	information	about	the

compiled	pattern	(whether	it	is	anchored,	has	a	fixed	first	character,
and	so	on).	It	does	this	by	calling	pcre_fullinfo()	after	compiling	a
pattern.	If	the	pattern	is	studied,	the	results	of	that	are	also	output.

The	/D	modifier	is	a	PCRE	debugging	feature,	and	is	equivalent	to
/BI,	that	is,	both	the	/B	and	the	/I	modifiers.

The	/F	modifier	causes	pcretest	to	flip	the	byte	order	of	the	fields	in
the	compiled	pattern	that	contain	2-byte	and	4-byte	numbers.	This
facility	is	for	testing	the	feature	in	PCRE	that	allows	it	to	execute
patterns	that	were	compiled	on	a	host	with	a	different	endianness.	This
feature	is	not	available	when	the	POSIX	interface	to	PCRE	is	being
used,	that	is,	when	the	/P	pattern	modifier	is	specified.	See	also	the
section	about	saving	and	reloading	compiled	patterns	below.

The	/S	modifier	causes	pcre_study()	to	be	called	after	the	expression
has	been	compiled,	and	the	results	used	when	the	expression	is
matched.

The	/M	modifier	causes	the	size	of	memory	block	used	to	hold	the
compiled	pattern	to	be	output.

The	/P	modifier	causes	pcretest	to	call	PCRE	via	the	POSIX	wrapper
API	rather	than	its	native	API.	When	this	is	done,	all	other	modifiers
except	/i,	/m,	and	/+	are	ignored.	REG_ICASE	is	set	if	/i	is	present,
and	REG_NEWLINE	is	set	if	/m	is	present.	The	wrapper	functions
force	PCRE_DOLLAR_ENDONLY	always,	and	PCRE_DOTALL
unless	REG_NEWLINE	is	set.

The	/8	modifier	causes	pcretest	to	call	PCRE	with	the	PCRE_UTF8
option	set.	This	turns	on	support	for	UTF-8	character	handling	in
PCRE,	provided	that	it	was	compiled	with	this	support	enabled.	This
modifier	also	causes	any	non-printing	characters	in	output	strings	to
be	printed	using	the	\x{hh...}	notation	if	they	are	valid	UTF-8

sequences.

If	the	/?	modifier	is	used	with	/8,	it	causes	pcretest	to	call
pcre_compile()	with	the	PCRE_NO_UTF8_CHECK	option,	to
suppress	the	checking	of	the	string	for	UTF-8	validity.

data	lines

Before	each	data	line	is	passed	to	pcre_exec(),	leading	and	trailing
whitespace	is	removed,	and	it	is	then	scanned	for	\	escapes.	Some	of
these	are	pretty	esoteric	features,	intended	for	checking	out	some	of
the	more	complicated	features	of	PCRE.	If	you	are	just	testing
"ordinary"	regular	expressions,	you	probably	don't	need	any	of	these.
The	following	escapes	are	recognized:

		\a									alarm	(BEL,	\x07)
		\b									backspace	(\x08)
		\e									escape	(\x27)
		\f									formfeed	(\x0c)
		\n									newline	(\x0a)
		\qdd							set	the	PCRE_MATCH_LIMIT	limit	to	dd	(any	number	of	digits)
		\r									carriage	return	(\x0d)
		\t									tab	(\x09)
		\v									vertical	tab	(\x0b)
		\nnn							octal	character	(up	to	3	octal	digits)
		\xhh							hexadecimal	character	(up	to	2	hex	digits)
		\x{hh...}		hexadecimal	character,	any	number	of	digits	in	UTF-8	mode
		\A									pass	the	PCRE_ANCHORED	option	to	pcre_exec()	or	pcre_dfa_exec()
		\B									pass	the	PCRE_NOTBOL	option	to	pcre_exec()	or	pcre_dfa_exec()
		\Cdd							call	pcre_copy_substring()	for	substring	dd	after	a	successful	match	(number	less	than	32)
		\Cname					call	pcre_copy_named_substring()	for	substring	"name"	after	a	successful	match	(name	termin-
															ated	by	next	non	alphanumeric	character)
		\C+								show	the	current	captured	substrings	at	callout	time
		\C-								do	not	supply	a	callout	function
		\C!n							return	1	instead	of	0	when	callout	number	n	is	reached

		\C!n!m					return	1	instead	of	0	when	callout	number	n	is	reached	for	the	nth	time
		\C*n							pass	the	number	n	(may	be	negative)	as	callout	data;	this	is	used	as	the	callout	return	value
		\D									use	the	pcre_dfa_exec()	match	function
		\F									only	shortest	match	for	pcre_dfa_exec()
		\Gdd							call	pcre_get_substring()	for	substring	dd	after	a	successful	match	(number	less	than	32)
		\Gname					call	pcre_get_named_substring()	for	substring	"name"	after	a	successful	match	(name	termin-
															ated	by	next	non-alphanumeric	character)
		\L									call	pcre_get_substringlist()	after	a	successful	match
		\M									discover	the	minimum	MATCH_LIMIT	and	MATCH_LIMIT_RECURSION	settings
		\N									pass	the	PCRE_NOTEMPTY	option	to	pcre_exec()	or	pcre_dfa_exec()
		\Odd							set	the	size	of	the	output	vector	passed	to	pcre_exec()	to	dd	(any	number	of	digits)
		\P									pass	the	PCRE_PARTIAL	option	to	pcre_exec()	or	pcre_dfa_exec()
		\Qdd							set	the	PCRE_MATCH_LIMIT_RECURSION	limit	to	dd	(any	number	of	digits)
		\R									pass	the	PCRE_DFA_RESTART	option	to	pcre_dfa_exec()
		\S									output	details	of	memory	get/free	calls	during	matching
		\Z									pass	the	PCRE_NOTEOL	option	to	pcre_exec()	or	pcre_dfa_exec()
		\?									pass	the	PCRE_NO_UTF8_CHECK	option	to	pcre_exec()	or	pcre_dfa_exec()
		\>dd							start	the	match	at	offset	dd	(any	number	of	digits);
															this	sets	the	startoffset	argument	for	pcre_exec()	or	pcre_dfa_exec()
		\<cr>						pass	the	PCRE_NEWLINE_CR	option	to	pcre_exec()	or	pcre_dfa_exec()
		\<lf>						pass	the	PCRE_NEWLINE_LF	option	to	pcre_exec()	or	pcre_dfa_exec()
		\<crlf>				pass	the	PCRE_NEWLINE_CRLF	option	to	pcre_exec()	or	pcre_dfa_exec()
		\<anycrlf>	pass	the	PCRE_NEWLINE_ANYCRLF	option	to	pcre_exec()	or	pcre_dfa_exec()
		\<any>					pass	the	PCRE_NEWLINE_ANY	option	to	pcre_exec()	or	pcre_dfa_exec()

The	escapes	that	specify	line	ending	sequences	are	literal	strings,
exactly	as	shown.	No	more	than	one	newline	setting	should	be	present
in	any	data	line.

A	backslash	followed	by	anything	else	just	escapes	the	anything	else.
If	the	very	last	character	is	a	backslash,	it	is	ignored.	This	gives	a	way
of	passing	an	empty	line	as	data,	since	a	real	empty	line	terminates	the
data	input.

If	\M	is	present,	pcretest	calls	pcre_exec()	several	times,	with
different	values	in	the	match_limit	and	match_limit_recursion	fields

of	the	pcre_extra	data	structure,	until	it	finds	the	minimum	numbers
for	each	parameter	that	allow	pcre_exec()	to	complete.	The
match_limit	number	is	a	measure	of	the	amount	of	backtracking	that
takes	place,	and	checking	it	out	can	be	instructive.	For	most	simple
matches,	the	number	is	quite	small,	but	for	patterns	with	very	large
numbers	of	matching	possibilities,	it	can	become	large	very	quickly
with	increasing	length	of	subject	string.	The	match_limit_recursion
number	is	a	measure	of	how	much	stack	(or,	if	PCRE	is	compiled	with
NO_RECURSE,	how	much	heap)	memory	is	needed	to	complete	the
match	attempt.

When	\O	is	used,	the	value	specified	may	be	higher	or	lower	than	the
size	set	by	the	-O	command	line	option	(or	defaulted	to	45);	\O
applies	only	to	the	call	of	pcre_exec()	for	the	line	in	which	it	appears.

If	the	/P	modifier	was	present	on	the	pattern,	causing	the	POSIX
wrapper	API	to	be	used,	the	only	option-setting	sequences	that	have
any	effect	are	\B	and	\Z,	causing	REG_NOTBOL	and
REG_NOTEOL,	respectively,	to	be	passed	to	regexec().

The	use	of	\x{hh...}	to	represent	UTF-8	characters	is	not	dependent	on
the	use	of	the	/8	modifier	on	the	pattern.	It	is	recognized	always.
There	may	be	any	number	of	hexadecimal	digits	inside	the	braces.
The	result	is	from	one	to	six	bytes,	encoded	according	to	the	original
UTF-8	rules	of	RFC	2279.	This	allows	for	values	in	the	range	0	to
0x7FFFFFFF.	Note	that	not	all	of	those	are	valid	Unicode	code	points,
or	indeed	valid	UTF-8	characters	according	to	the	later	rules	in	RFC
3629.

the	alternative	matching	function

By	default,	pcretest	uses	the	standard	PCRE	matching	function,
pcre_exec()	to	match	each	data	line.	From	release	6.0,	PCRE	supports

an	alternative	matching	function,	pcre_dfa_test(),	which	operates	in	a
different	way,	and	has	some	restrictions.	The	differences	between	the
two	functions	are	described	in	the	pcrematching	documentation.

If	a	data	line	contains	the	\D	escape	sequence,	or	if	the	command	line
contains	the	-dfa	option,	the	alternative	matching	function	is	called.
This	function	finds	all	possible	matches	at	a	given	point.	If,	however,
the	\F	escape	sequence	is	present	in	the	data	line,	it	stops	after	the	first
match	is	found.	This	is	always	the	shortest	possible	match.

default	output	from	pcretest

This	section	describes	the	output	when	the	normal	matching	function,
pcre_exec(),	is	being	used.

When	a	match	succeeds,	pcretest	outputs	the	list	of	captured
substrings	that	pcre_exec()	returns,	starting	with	number	0	for	the
string	that	matched	the	whole	pattern.	Otherwise,	it	outputs	"No
match"	or	"Partial	match"	when	pcre_exec()	returns
PCRE_ERROR_NOMATCH	or	PCRE_ERROR_PARTIAL,
respectively,	and	otherwise	the	PCRE	negative	error	number.	Here	is
an	example	of	an	interactive	pcretest	run.

		$	pcretest
		PCRE	version	7.0	30-Nov-2006

				re>	/^abc(\d+)/
		data>	abc123
			0:	abc123
			1:	123
		data>	xyz
		No	match

Note	that	unset	capturing	substrings	that	are	not	followed	by	one	that

is	set	are	not	returned	by	pcre_exec(),	and	are	not	shown	by	pcretest.
In	the	following	example,	there	are	two	capturing	substrings,	but
when	the	first	data	line	is	matched,	the	second,	unset	substring	is	not
shown.	An	"internal"	unset	substring	is	shown	as	"<unset>",	as	for	the
second	data	line.

				re>	/(a)|(b)/
		data>	a
			0:	a
			1:	a
		data>	b
			0:	b
			1:	<unset>
			2:	b

If	the	strings	contain	any	non-printing	characters,	they	are	output	as
\0x	escapes,	or	as	\x{...}	escapes	if	the	/8	modifier	was	present	on	the
pattern.	See	below	for	the	definition	of	non-printing	characters.	If	the
pattern	has	the	/+	modifier,	the	output	for	substring	0	is	followed	by
the	the	rest	of	the	subject	string,	identified	by	"0+"	like	this:

				re>	/cat/+
		data>	cataract
			0:	cat
			0+	aract

If	the	pattern	has	the	/g	or	/G	modifier,	the	results	of	successive
matching	attempts	are	output	in	sequence,	like	this:

				re>	/\Bi(\w\w)/g
		data>	Mississippi
			0:	iss
			1:	ss
			0:	iss
			1:	ss
			0:	ipp

			1:	pp

"No	match"	is	output	only	if	the	first	match	attempt	fails.

If	any	of	the	sequences	\C,	\G,	or	\L	are	present	in	a	data	line	that	is
successfully	matched,	the	substrings	extracted	by	the	convenience
functions	are	output	with	C,	G,	or	L	after	the	string	number	instead	of
a	colon.	This	is	in	addition	to	the	normal	full	list.	The	string	length
(that	is,	the	return	from	the	extraction	function)	is	given	in	parentheses
after	each	string	for	\C	and	\G.

Note	that	whereas	patterns	can	be	continued	over	several	lines	(a	plain
">"	prompt	is	used	for	continuations),	data	lines	may	not.	However
newlines	can	be	included	in	data	by	means	of	the	\n	escape	(or	\r,	\r\n,
etc.,	depending	on	the	newline	sequence	setting).

output	from	the	alternative	matching	function

When	the	alternative	matching	function,	pcre_dfa_exec(),	is	used	(by
means	of	the	\D	escape	sequence	or	the	-dfa	command	line	option),
the	output	consists	of	a	list	of	all	the	matches	that	start	at	the	first
point	in	the	subject	where	there	is	at	least	one	match.	For	example:

				re>	/(tang|tangerine|tan)/
		data>	yellow	tangerine\D
			0:	tangerine
			1:	tang
			2:	tan

(Using	the	normal	matching	function	on	this	data	finds	only	"tang".)
The	longest	matching	string	is	always	given	first	(and	numbered
zero).

If	/g	is	present	on	the	pattern,	the	search	for	further	matches	resumes

at	the	end	of	the	longest	match.	For	example:

				re>	/(tang|tangerine|tan)/g
		data>	yellow	tangerine	and	tangy	sultana\D
			0:	tangerine
			1:	tang
			2:	tan
			0:	tang
			1:	tan
			0:	tan

Since	the	matching	function	does	not	support	substring	capture,	the
escape	sequences	that	are	concerned	with	captured	substrings	are	not
relevant.

restarting	after	a	partial	match

When	the	alternative	matching	function	has	given	the
PCRE_ERROR_PARTIAL	return,	indicating	that	the	subject	partially
matched	the	pattern,	you	can	restart	the	match	with	additional	subject
data	by	means	of	the	\R	escape	sequence.	For	example:

				re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
		data>	23ja\P\D
		Partial	match:	23ja
		data>	n05\R\D
			0:	n05

For	further	information	about	partial	matching,	see	the	pcrepartial
documentation.

callouts

If	the	pattern	contains	any	callout	requests,	pcretest's	callout	function

is	called	during	matching.	This	works	with	both	matching	functions.
By	default,	the	called	function	displays	the	callout	number,	the	start
and	current	positions	in	the	text	at	the	callout	time,	and	the	next
pattern	item	to	be	tested.	For	example,	the	output

		--->pqrabcdef
				0				^		^					\d

indicates	that	callout	number	0	occurred	for	a	match	attempt	starting
at	the	fourth	character	of	the	subject	string,	when	the	pointer	was	at
the	seventh	character	of	the	data,	and	when	the	next	pattern	item	was
\d.	Just	one	circumflex	is	output	if	the	start	and	current	positions	are
the	same.

Callouts	numbered	255	are	assumed	to	be	automatic	callouts,	inserted
as	a	result	of	the	/C	pattern	modifier.	In	this	case,	instead	of	showing
the	callout	number,	the	offset	in	the	pattern,	preceded	by	a	plus,	is
output.	For	example:

				re>	/\d?[A-E]*/C
		data>	E*
		--->E*
			+0	^						\d?
			+3	^						[A-E]
			+8	^^					*
		+10	^	^
			0:	E*

The	callout	function	in	pcretest	returns	zero	(carry	on	matching)	by
default,	but	you	can	use	a	\C	item	in	a	data	line	(as	described	above)
to	change	this.

Inserting	callouts	can	be	helpful	when	using	pcretest	to	check
complicated	regular	expressions.	For	further	information	about
callouts,	see	the	pcrecallout	documentation.

non-printing	characters

When	pcretest	is	outputting	text	in	the	compiled	version	of	a	pattern,
bytes	other	than	32-126	are	always	treated	as	non-printing	characters
are	are	therefore	shown	as	hex	escapes.

When	pcretest	is	outputting	text	that	is	a	matched	part	of	a	subject
string,	it	behaves	in	the	same	way,	unless	a	different	locale	has	been
set	for	the	pattern	(using	the	/L	modifier).	In	this	case,	the	isprint()
function	to	distinguish	printing	and	non-printing	characters.

saving	and	reloading	compiled	patterns

The	facilities	described	in	this	section	are	not	available	when	the
POSIX	inteface	to	PCRE	is	being	used,	that	is,	when	the	/P	pattern
modifier	is	specified.

When	the	POSIX	interface	is	not	in	use,	you	can	cause	pcretest	to
write	a	compiled	pattern	to	a	file,	by	following	the	modifiers	with	>
and	a	file	name.	For	example:

		/pattern/im	>/some/file

See	the	pcreprecompile	documentation	for	a	discussion	about	saving
and	re-using	compiled	patterns.

The	data	that	is	written	is	binary.	The	first	eight	bytes	are	the	length	of
the	compiled	pattern	data	followed	by	the	length	of	the	optional	study
data,	each	written	as	four	bytes	in	big-endian	order	(most	significant
byte	first).	If	there	is	no	study	data	(either	the	pattern	was	not	studied,
or	studying	did	not	return	any	data),	the	second	length	is	zero.	The
lengths	are	followed	by	an	exact	copy	of	the	compiled	pattern.	If	there

is	additional	study	data,	this	follows	immediately	after	the	compiled
pattern.	After	writing	the	file,	pcretest	expects	to	read	a	new	pattern.

A	saved	pattern	can	be	reloaded	into	pcretest	by	specifing	<	and	a	file
name	instead	of	a	pattern.	The	name	of	the	file	must	not	contain	a	<
character,	as	otherwise	pcretest	will	interpret	the	line	as	a	pattern
delimited	by	<	characters.	For	example:

			re>	</some/file
		Compiled	regex	loaded	from	/some/file
		No	study	data

When	the	pattern	has	been	loaded,	pcretest	proceeds	to	read	data	lines
in	the	usual	way.

You	can	copy	a	file	written	by	pcretest	to	a	different	host	and	reload	it
there,	even	if	the	new	host	has	opposite	endianness	to	the	one	on
which	the	pattern	was	compiled.	For	example,	you	can	compile	on	an
i86	machine	and	run	on	a	SPARC	machine.

File	names	for	saving	and	reloading	can	be	absolute	or	relative,	but
note	that	the	shell	facility	of	expanding	a	file	name	that	starts	with	a
tilde	(~)	is	not	available.

The	ability	to	save	and	reload	files	in	pcretest	is	intended	for	testing
and	experimentation.	It	is	not	intended	for	production	use	because
only	a	single	pattern	can	be	written	to	a	file.	Furthermore,	there	is	no
facility	for	supplying	custom	character	tables	for	use	with	a	reloaded
pattern.	If	the	original	pattern	was	compiled	with	custom	tables,	an
attempt	to	match	a	subject	string	using	a	reloaded	pattern	is	likely	to
cause	pcretest	to	crash.	Finally,	if	you	attempt	to	load	a	file	that	is	not
in	the	correct	format,	the	result	is	undefined.

see	also

pcre(3),	pcreapi(3),	pcrecallout(3),	pcrematching(3),
pcrepartial(d),	pcrepattern(3),	pcreprecompile(3).

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	12	April	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

PCRETEST(1)																																																								PCRETEST(1)

NAME
							pcretest	-	a	program	for	testing	Perl-compatible	regular	expressions.

SYNOPSIS

							pcretest	[options]	[source]	[destination]

							pcretest		was	written	as	a	test	program	for	the	PCRE	regular	expression
							library	itself,	but	it	can	also	be	used	for	experimenting	with		regular
							expressions.		This	document	describes	the	features	of	the	test	program;
							for	details	of	the	regular	expressions	themselves,	see	the		pcrepattern
							documentation.	For	details	of	the	PCRE	library	function	calls	and	their
							options,	see	the	pcreapi	documentation.

OPTIONS

							-b								Behave	as	if	each	regex	has	the	/B	(show	bytecode)		modifier;
																	the	internal	form	is	output	after	compilation.

							-C								Output	the	version	number	of	the	PCRE	library,	and	all	avail-
																	able		information		about		the		optional		features		that			are
																	included,	and	then	exit.

							-d								Behave		as		if		each		regex		has	the	/D	(debug)	modifier;	the
																	internal	form	and	information	about	the	compiled		pattern		is
																	output	after	compilation;	-d	is	equivalent	to	-b	-i.

							-dfa						Behave		as	if	each	data	line	contains	the	\D	escape	sequence;
																	this				causes				the				alternative				matching				function,
																	pcre_dfa_exec(),			to			be			used		instead		of		the		standard
																	pcre_exec()	function	(more	detail	is	given	below).

							-help					Output	a	brief	summary	these	options	and	then	exit.

							-i								Behave	as	if	each	regex		has		the		/I		modifier;		information
																	about	the	compiled	pattern	is	given	after	compilation.

							-m								Output		the		size		of	each	compiled	pattern	after	it	has	been
																	compiled.	This	is	equivalent	to	adding		/M		to		each		regular
																	expression.			For		compatibility		with		earlier		versions		of
																	pcretest,	-s	is	a	synonym	for	-m.

							-o	osize		Set	the	number	of	elements	in	the	output	vector	that	is		used
																	when		calling	pcre_exec()	or	pcre_dfa_exec()	to	be	osize.	The
																	default	value	is	45,	which	is	enough	for	14	capturing		subex-
																	pressions			for		pcre_exec()		or		22		different		matches		for
																	pcre_dfa_exec().	The	vector	size	can	be	changed	for		individ-
																	ual		matching		calls		by		including		\O	in	the	data	line	(see
																	below).

							-p								Behave	as	if	each	regex	has	the	/P	modifier;	the	POSIX		wrap-
																	per		API		is	used	to	call	PCRE.	None	of	the	other	options	has
																	any	effect	when	-p	is	set.

							-q								Do	not	output	the	version	number	of	pcretest	at	the	start		of
																	execution.

							-S	size			On		Unix-like		systems,		set	the	size	of	the	runtime	stack	to
																	size	megabytes.

							-t								Run	each	compile,	study,	and	match	many	times	with		a		timer,
																	and		output	resulting	time	per	compile	or	match	(in	millisec-
																	onds).	Do	not	set	-m	with	-t,	because	you	will	then		get		the
																	size		output		a		zillion		times,		and	the	timing	will	be	dis-
																	torted.	You	can	control	the	number		of		iterations		that		are
																	used		for	timing	by	following	-t	with	a	number	(as	a	separate
																	item	on	the	command	line).	For	example,	"-t	1000"	would	iter-
																	ate	1000	times.	The	default	is	to	iterate	500000	times.

							-tm							This	is	like	-t	except	that	it	times	only	the	matching	phase,
																	not	the	compile	or	study	phases.

DESCRIPTION

							If	pcretest	is	given	two	filename	arguments,	it	reads		from		the		first
							and	writes	to	the	second.	If	it	is	given	only	one	filename	argument,	it
							reads	from	that	file	and	writes	to	stdout.		Otherwise,		it		reads		from
							stdin		and		writes	to	stdout,	and	prompts	for	each	line	of	input,	using
							"re>"	to	prompt	for	regular	expressions,	and	"data>"	to	prompt	for	data
							lines.

							When		pcretest		is		built,		a		configuration	option	can	specify	that	it
							should	be	linked	with	the	libreadline	library.	When	this		is		done,		if
							the	input	is	from	a	terminal,	it	is	read	using	the	readline()	function.
							This	provides	line-editing	and	history	facilities.	The	output	from		the
							-help	option	states	whether	or	not	readline()	will	be	used.

							The	program	handles	any	number	of	sets	of	input	on	a	single	input	file.
							Each	set	starts	with	a	regular	expression,	and	continues	with	any		num-
							ber	of	data	lines	to	be	matched	against	the	pattern.

							Each		data	line	is	matched	separately	and	independently.	If	you	want	to
							do	multi-line	matches,	you	have	to	use	the	\n	escape	sequence	(or	\r	or
							\r\n,	etc.,	depending	on	the	newline	setting)	in	a	single	line	of	input
							to	encode	the	newline	sequences.	There	is	no	limit		on		the		length		of
							data		lines;		the		input		buffer	is	automatically	extended	if	it	is	too
							small.

							An	empty	line	signals	the	end	of	the	data	lines,	at	which	point		a		new
							regular		expression	is	read.	The	regular	expressions	are	given	enclosed
							in	any	non-alphanumeric	delimiters	other	than	backslash,	for	example:

									/(a|bc)x+yz/

							White	space	before	the	initial	delimiter	is	ignored.	A	regular		expres-
							sion		may	be	continued	over	several	input	lines,	in	which	case	the	new-
							line	characters	are	included	within	it.	It	is	possible	to		include		the
							delimiter	within	the	pattern	by	escaping	it,	for	example

									/abc\/def/

							If		you		do		so,	the	escape	and	the	delimiter	form	part	of	the	pattern,
							but	since	delimiters	are	always	non-alphanumeric,	this	does	not		affect
							its		interpretation.			If	the	terminating	delimiter	is	immediately	fol-
							lowed	by	a	backslash,	for	example,

									/abc/\

							then	a	backslash	is	added	to	the	end	of	the	pattern.	This		is		done		to
							provide		a		way	of	testing	the	error	condition	that	arises	if	a	pattern
							finishes	with	a	backslash,	because

									/abc\/

							is	interpreted	as	the	first	line	of	a	pattern	that	starts	with		"abc/",
							causing	pcretest	to	read	the	next	line	as	a	continuation	of	the	regular
							expression.

PATTERN	MODIFIERS

							A	pattern	may	be	followed	by	any	number	of	modifiers,	which	are		mostly
							single		characters.		Following		Perl	usage,	these	are	referred	to	below
							as,	for	example,	"the	/i	modifier",	even	though	the		delimiter		of		the
							pattern		need		not	always	be	a	slash,	and	no	slash	is	used	when	writing
							modifiers.	Whitespace	may	appear	between	the		final		pattern		delimiter
							and	the	first	modifier,	and	between	the	modifiers	themselves.

							The	/i,	/m,	/s,	and	/x	modifiers	set	the	PCRE_CASELESS,	PCRE_MULTILINE,
							PCRE_DOTALL,	or	PCRE_EXTENDED		options,		respectively,		when		pcre_com-
							pile()		is		called.	These	four	modifier	letters	have	the	same	effect	as

							they	do	in	Perl.	For	example:

									/caseless/i

							The	following	table	shows	additional	modifiers	for	setting	PCRE	options
							that	do	not	correspond	to	anything	in	Perl:

									/A														PCRE_ANCHORED
									/C														PCRE_AUTO_CALLOUT
									/E														PCRE_DOLLAR_ENDONLY
									/f														PCRE_FIRSTLINE
									/J														PCRE_DUPNAMES
									/N														PCRE_NO_AUTO_CAPTURE
									/U														PCRE_UNGREEDY
									/X														PCRE_EXTRA
									/											PCRE_JAVASCRIPT_COMPAT
									/											PCRE_NEWLINE_CR
									/											PCRE_NEWLINE_LF
									/									PCRE_NEWLINE_CRLF
									/						PCRE_NEWLINE_ANYCRLF
									/										PCRE_NEWLINE_ANY
									/		PCRE_BSR_ANYCRLF
									/		PCRE_BSR_UNICODE

							Those		specifying		line		ending	sequences	are	literal	strings	as	shown,
							but	the	letters	can	be	in	either		case.		This		example		sets		multiline
							matching	with	CRLF	as	the	line	ending	sequence:

									/^abc/m

							Details		of	the	meanings	of	these	PCRE	options	are	given	in	the	pcreapi
							documentation.

			Finding	all	matches	in	a	string

							Searching	for	all	possible	matches	within	each	subject		string		can		be
							requested		by		the		/g		or		/G	modifier.	After	finding	a	match,	PCRE	is

							called	again	to	search	the	remainder	of	the	subject	string.	The	differ-
							ence	between	/g	and	/G	is	that	the	former	uses	the	startoffset	argument
							to	pcre_exec()	to	start	searching	at	a		new		point		within		the		entire
							string		(which		is	in	effect	what	Perl	does),	whereas	the	latter	passes
							over	a	shortened	substring.	This	makes	a		difference		to		the		matching
							process	if	the	pattern	begins	with	a	lookbehind	assertion	(including	\b
							or	\B).

							If	any	call	to	pcre_exec()	in	a	/g	or		/G		sequence		matches		an		empty
							string,		the	next	call	is	done	with	the	PCRE_NOTEMPTY	and	PCRE_ANCHORED
							flags	set	in	order	to	search	for	another,	non-empty,	match	at	the		same
							point.			If		this		second		match	fails,	the	start	offset	is	advanced	by
							one,	and	the	normal	match	is	retried.	This	imitates	the	way		Perl		han-
							dles	such	cases	when	using	the	/g	modifier	or	the	split()	function.

			Other	modifiers

							There	are	yet	more	modifiers	for	controlling	the	way	pcretest	operates.

							The	/+	modifier	requests	that	as	well	as	outputting	the	substring		that
							matched		the		entire		pattern,		pcretest		should	in	addition	output	the
							remainder	of	the	subject	string.	This	is	useful		for		tests		where		the
							subject	contains	multiple	copies	of	the	same	substring.

							The		/B	modifier	is	a	debugging	feature.	It	requests	that	pcretest	out-
							put	a	representation	of	the	compiled	byte	code	after	compilation.		Nor-
							mally		this		information	contains	length	and	offset	values;	however,	if
							/Z	is	also	present,	this	data	is	replaced	by	spaces.	This	is	a		special
							feature	for	use	in	the	automatic	test	scripts;	it	ensures	that	the	same
							output	is	generated	for	different	internal	link	sizes.

							The	/L	modifier	must	be	followed	directly	by	the	name	of	a	locale,		for
							example,

									/pattern/Lfr_FR

							For	this	reason,	it	must	be	the	last	modifier.	The	given	locale	is	set,

							pcre_maketables()	is	called	to	build	a	set	of	character	tables	for		the
							locale,		and		this		is	then	passed	to	pcre_compile()	when	compiling	the
							regular	expression.	Without	an	/L		modifier,		NULL		is		passed		as		the
							tables		pointer;	that	is,	/L	applies	only	to	the	expression	on	which	it
							appears.

							The	/I	modifier	requests	that	pcretest		output		information		about		the
							compiled		pattern	(whether	it	is	anchored,	has	a	fixed	first	character,
							and	so	on).	It	does	this	by	calling	pcre_fullinfo()	after		compiling		a
							pattern.		If		the	pattern	is	studied,	the	results	of	that	are	also	out-
							put.

							The	/D	modifier	is	a	PCRE	debugging	feature,	and	is	equivalent	to		/BI,
							that	is,	both	the	/B	and	the	/I	modifiers.

							The	/F	modifier	causes	pcretest	to	flip	the	byte	order	of	the	fields	in
							the	compiled	pattern	that		contain		2-byte		and		4-byte		numbers.		This
							facility		is		for	testing	the	feature	in	PCRE	that	allows	it	to	execute
							patterns	that	were	compiled	on	a	host	with	a	different	endianness.	This
							feature		is		not		available		when		the	POSIX	interface	to	PCRE	is	being
							used,	that	is,	when	the	/P	pattern	modifier	is	specified.	See	also		the
							section	about	saving	and	reloading	compiled	patterns	below.

							The		/S		modifier	causes	pcre_study()	to	be	called	after	the	expression
							has	been	compiled,	and	the	results	used	when	the	expression	is	matched.

							The		/M		modifier	causes	the	size	of	memory	block	used	to	hold	the	com-
							piled	pattern	to	be	output.

							The	/P	modifier	causes	pcretest	to	call	PCRE	via	the	POSIX	wrapper		API
							rather		than		its		native		API.		When	this	is	done,	all	other	modifiers
							except	/i,	/m,	and	/+	are	ignored.	REG_ICASE	is	set	if	/i		is		present,
							and		REG_NEWLINE		is		set	if	/m	is	present.	The	wrapper	functions	force
							PCRE_DOLLAR_ENDONLY	always,	and	PCRE_DOTALL	unless	REG_NEWLINE	is		set.

							The		/8	modifier	causes	pcretest	to	call	PCRE	with	the	PCRE_UTF8	option
							set.	This	turns	on	support	for	UTF-8	character	handling	in		PCRE,		pro-

							vided		that		it		was		compiled	with	this	support	enabled.	This	modifier
							also	causes	any	non-printing	characters	in	output	strings	to	be	printed
							using	the	\x{hh...}	notation	if	they	are	valid	UTF-8	sequences.

							If		the		/?		modifier		is		used		with		/8,		it		causes	pcretest	to	call
							pcre_compile()	with	the		PCRE_NO_UTF8_CHECK		option,		to		suppress		the
							checking	of	the	string	for	UTF-8	validity.

DATA	LINES

							Before		each		data		line	is	passed	to	pcre_exec(),	leading	and	trailing
							whitespace	is	removed,	and	it	is	then	scanned	for	\		escapes.		Some		of
							these		are		pretty	esoteric	features,	intended	for	checking	out	some	of
							the	more	complicated	features	of	PCRE.	If	you	are	just		testing		"ordi-
							nary"		regular		expressions,		you	probably	don't	need	any	of	these.	The
							following	escapes	are	recognized:

									\a									alarm	(BEL,	\x07)
									\b									backspace	(\x08)
									\e									escape	(\x27)
									\f									formfeed	(\x0c)
									\n									newline	(\x0a)
									\qdd							set	the	PCRE_MATCH_LIMIT	limit	to	dd
																						(any	number	of	digits)
									\r									carriage	return	(\x0d)
									\t									tab	(\x09)
									\v									vertical	tab	(\x0b)
									\nnn							octal	character	(up	to	3	octal	digits)
									\xhh							hexadecimal	character	(up	to	2	hex	digits)
									\x{hh...}		hexadecimal	character,	any	number	of	digits
																						in	UTF-8	mode
									\A									pass	the	PCRE_ANCHORED	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\B									pass	the	PCRE_NOTBOL	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\Cdd							call	pcre_copy_substring()	for	substring	dd

																						after	a	successful	match	(number	less	than	32)
									\Cname					call	pcre_copy_named_substring()	for	substring
																						"name"	after	a	successful	match	(name	termin-
																						ated	by	next	non	alphanumeric	character)
									\C+								show	the	current	captured	substrings	at	callout
																						time
									\C-								do	not	supply	a	callout	function
									\C!n							return	1	instead	of	0	when	callout	number	n	is
																						reached
									\C!n!m					return	1	instead	of	0	when	callout	number	n	is
																						reached	for	the	nth	time
									\C*n							pass	the	number	n	(may	be	negative)	as	callout
																						data;	this	is	used	as	the	callout	return	value
									\D									use	the	pcre_dfa_exec()	match	function
									\F									only	shortest	match	for	pcre_dfa_exec()
									\Gdd							call	pcre_get_substring()	for	substring	dd
																						after	a	successful	match	(number	less	than	32)
									\Gname					call	pcre_get_named_substring()	for	substring
																						"name"	after	a	successful	match	(name	termin-
																						ated	by	next	non-alphanumeric	character)
									\L									call	pcre_get_substringlist()	after	a
																						successful	match
									\M									discover	the	minimum	MATCH_LIMIT	and
																						MATCH_LIMIT_RECURSION	settings
									\N									pass	the	PCRE_NOTEMPTY	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\Odd							set	the	size	of	the	output	vector	passed	to
																						pcre_exec()	to	dd	(any	number	of	digits)
									\P									pass	the	PCRE_PARTIAL	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\Qdd							set	the	PCRE_MATCH_LIMIT_RECURSION	limit	to	dd
																						(any	number	of	digits)
									\R									pass	the	PCRE_DFA_RESTART	option	to	pcre_dfa_exec()
									\S									output	details	of	memory	get/free	calls	during	matching
									\Z									pass	the	PCRE_NOTEOL	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\?									pass	the	PCRE_NO_UTF8_CHECK	option	to

																						pcre_exec()	or	pcre_dfa_exec()
									\>dd							start	the	match	at	offset	dd	(any	number	of	digits);
																						this	sets	the	startoffset	argument	for	pcre_exec()
																						or	pcre_dfa_exec()
									\						pass	the	PCRE_NEWLINE_CR	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\						pass	the	PCRE_NEWLINE_LF	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\				pass	the	PCRE_NEWLINE_CRLF	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\	pass	the	PCRE_NEWLINE_ANYCRLF	option	to	pcre_exec()
																						or	pcre_dfa_exec()
									\					pass	the	PCRE_NEWLINE_ANY	option	to	pcre_exec()
																						or	pcre_dfa_exec()

							The	escapes	that	specify	line	ending		sequences		are		literal		strings,
							exactly	as	shown.	No	more	than	one	newline	setting	should	be	present	in
							any	data	line.

							A	backslash	followed	by	anything	else	just	escapes	the		anything		else.
							If		the	very	last	character	is	a	backslash,	it	is	ignored.	This	gives	a
							way	of	passing	an	empty	line	as	data,	since	a	real		empty		line		termi-
							nates	the	data	input.

							If		\M		is	present,	pcretest	calls	pcre_exec()	several	times,	with	dif-
							ferent	values	in	the	match_limit	and		match_limit_recursion		fields		of
							the		pcre_extra		data	structure,	until	it	finds	the	minimum	numbers	for
							each	parameter	that	allow	pcre_exec()	to	complete.	The	match_limit	num-
							ber		is		a		measure	of	the	amount	of	backtracking	that	takes	place,	and
							checking	it	out	can	be	instructive.	For	most	simple	matches,	the	number
							is		quite		small,		but	for	patterns	with	very	large	numbers	of	matching
							possibilities,	it	can	become	large	very	quickly	with	increasing		length
							of	subject	string.	The	match_limit_recursion	number	is	a	measure	of	how
							much	stack	(or,	if	PCRE	is	compiled	with		NO_RECURSE,		how		much		heap)
							memory	is	needed	to	complete	the	match	attempt.

							When		\O		is		used,	the	value	specified	may	be	higher	or	lower	than	the

							size	set	by	the	-O	command	line	option	(or	defaulted	to	45);	\O	applies
							only	to	the	call	of	pcre_exec()	for	the	line	in	which	it	appears.

							If		the	/P	modifier	was	present	on	the	pattern,	causing	the	POSIX	wrap-
							per	API	to	be	used,	the	only	option-setting		sequences		that		have		any
							effect		are	\B	and	\Z,	causing	REG_NOTBOL	and	REG_NOTEOL,	respectively,
							to	be	passed	to	regexec().

							The	use	of	\x{hh...}	to	represent	UTF-8	characters	is	not	dependent		on
							the		use		of		the		/8	modifier	on	the	pattern.	It	is	recognized	always.
							There	may	be	any	number	of	hexadecimal	digits	inside		the		braces.		The
							result		is		from		one		to		six	bytes,	encoded	according	to	the	original
							UTF-8	rules	of	RFC	2279.	This	allows	for		values		in		the		range		0		to
							0x7FFFFFFF.		Note		that	not	all	of	those	are	valid	Unicode	code	points,
							or	indeed	valid	UTF-8	characters	according	to	the	later		rules		in		RFC
							3629.

THE	ALTERNATIVE	MATCHING	FUNCTION

							By			default,		pcretest		uses		the		standard		PCRE		matching		function,
							pcre_exec()	to	match	each	data	line.	From	release	6.0,	PCRE	supports	an
							alternative		matching		function,		pcre_dfa_test(),		which	operates	in	a
							different	way,	and	has	some	restrictions.	The	differences		between		the
							two	functions	are	described	in	the	pcrematching	documentation.

							If		a	data	line	contains	the	\D	escape	sequence,	or	if	the	command	line
							contains	the	-dfa	option,	the	alternative	matching	function	is		called.
							This	function	finds	all	possible	matches	at	a	given	point.	If,	however,
							the	\F	escape	sequence	is	present	in	the	data	line,	it	stops	after		the
							first	match	is	found.	This	is	always	the	shortest	possible	match.

DEFAULT	OUTPUT	FROM	PCRETEST

							This		section		describes		the	output	when	the	normal	matching	function,
							pcre_exec(),	is	being	used.

							When	a	match	succeeds,	pcretest	outputs	the	list	of	captured	substrings
							that		pcre_exec()		returns,		starting	with	number	0	for	the	string	that
							matched	the	whole	pattern.	Otherwise,	it	outputs	"No	match"	or	"Partial
							match"		when		pcre_exec()	returns	PCRE_ERROR_NOMATCH	or	PCRE_ERROR_PAR-
							TIAL,	respectively,	and	otherwise	the	PCRE	negative	error	number.		Here
							is	an	example	of	an	interactive	pcretest	run.

									$	pcretest
									PCRE	version	7.0	30-Nov-2006

											re>	/^abc(\d+)/
									data>	abc123
										0:	abc123
										1:	123
									data>	xyz
									No	match

							Note		that	unset	capturing	substrings	that	are	not	followed	by	one	that
							is	set	are	not	returned	by	pcre_exec(),	and	are	not	shown	by		pcretest.
							In		the	following	example,	there	are	two	capturing	substrings,	but	when
							the	first	data	line	is	matched,	the		second,		unset		substring		is		not
							shown.		An	"internal"	unset	substring	is	shown	as	"",	as	for	the
							second	data	line.

											re>	/(a)|(b)/
									data>	a
										0:	a
										1:	a
									data>	b
										0:	b
										1:	
										2:	b

							If	the	strings	contain	any	non-printing	characters,	they	are	output		as
							\0x		escapes,		or		as	\x{...}	escapes	if	the	/8	modifier	was	present	on
							the	pattern.	See	below	for	the	definition	of		non-printing		characters.

							If		the	pattern	has	the	/+	modifier,	the	output	for	substring	0	is	fol-
							lowed	by	the	the	rest	of	the	subject	string,	identified		by		"0+"		like
							this:

											re>	/cat/+
									data>	cataract
										0:	cat
										0+	aract

							If		the		pattern		has		the	/g	or	/G	modifier,	the	results	of	successive
							matching	attempts	are	output	in	sequence,	like	this:

											re>	/\Bi(\w\w)/g
									data>	Mississippi
										0:	iss
										1:	ss
										0:	iss
										1:	ss
										0:	ipp
										1:	pp

							"No	match"	is	output	only	if	the	first	match	attempt	fails.

							If	any	of	the	sequences	\C,	\G,	or	\L	are	present	in	a	data		line		that
							is		successfully		matched,		the	substrings	extracted	by	the	convenience
							functions	are	output	with	C,	G,	or	L	after	the	string	number	instead	of
							a	colon.	This	is	in	addition	to	the	normal	full	list.	The	string	length
							(that	is,	the	return	from	the	extraction	function)	is	given		in		paren-
							theses	after	each	string	for	\C	and	\G.

							Note	that	whereas	patterns	can	be	continued	over	several	lines	(a	plain
							">"	prompt	is	used	for	continuations),	data	lines	may	not.	However	new-
							lines		can		be	included	in	data	by	means	of	the	\n	escape	(or	\r,	\r\n,
							etc.,	depending	on	the	newline	sequence	setting).

OUTPUT	FROM	THE	ALTERNATIVE	MATCHING	FUNCTION

							When	the	alternative	matching	function,	pcre_dfa_exec(),		is		used		(by
							means		of		the	\D	escape	sequence	or	the	-dfa	command	line	option),	the
							output	consists	of	a	list	of	all	the	matches	that	start		at		the		first
							point	in	the	subject	where	there	is	at	least	one	match.	For	example:

											re>	/(tang|tangerine|tan)/
									data>	yellow	tangerine\D
										0:	tangerine
										1:	tang
										2:	tan

							(Using		the		normal		matching	function	on	this	data	finds	only	"tang".)
							The	longest	matching	string	is	always	given	first	(and	numbered		zero).

							If	/g	is	present	on	the	pattern,	the	search	for	further	matches	resumes
							at	the	end	of	the	longest	match.	For	example:

											re>	/(tang|tangerine|tan)/g
									data>	yellow	tangerine	and	tangy	sultana\D
										0:	tangerine
										1:	tang
										2:	tan
										0:	tang
										1:	tan
										0:	tan

							Since	the	matching	function	does	not		support		substring		capture,		the
							escape		sequences		that		are	concerned	with	captured	substrings	are	not
							relevant.

RESTARTING	AFTER	A	PARTIAL	MATCH

							When	the	alternative	matching	function	has	given	the	PCRE_ERROR_PARTIAL
							return,		indicating	that	the	subject	partially	matched	the	pattern,	you
							can	restart	the	match	with	additional	subject	data	by	means	of		the		\R

							escape	sequence.	For	example:

											re>	/^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
									data>	23ja\P\D
									Partial	match:	23ja
									data>	n05\R\D
										0:	n05

							For		further		information		about		partial	matching,	see	the	pcrepartial
							documentation.

CALLOUTS

							If	the	pattern	contains	any	callout	requests,	pcretest's	callout		func-
							tion		is		called		during		matching.	This	works	with	both	matching	func-
							tions.	By	default,	the	called	function	displays	the	callout	number,	the
							start		and		current		positions	in	the	text	at	the	callout	time,	and	the
							next	pattern	item	to	be	tested.	For	example,	the	output

									--->pqrabcdef
											0				^		^					\d

							indicates	that	callout	number	0	occurred	for	a	match		attempt		starting
							at		the	fourth	character	of	the	subject	string,	when	the	pointer	was	at
							the	seventh	character	of	the	data,	and	when	the	next	pattern		item		was
							\d.		Just		one		circumflex	is	output	if	the	start	and	current	positions
							are	the	same.

							Callouts	numbered	255	are	assumed	to	be	automatic	callouts,	inserted	as
							a		result		of	the	/C	pattern	modifier.	In	this	case,	instead	of	showing
							the	callout	number,	the	offset	in	the	pattern,	preceded	by	a		plus,		is
							output.	For	example:

											re>	/\d?[A-E]*/C
									data>	E*
									--->E*

										+0	^						\d?
										+3	^						[A-E]
										+8	^^					*
									+10	^	^
										0:	E*

							The		callout		function		in	pcretest	returns	zero	(carry	on	matching)	by
							default,	but	you	can	use	a	\C	item	in	a	data	line	(as	described		above)
							to	change	this.

							Inserting		callouts	can	be	helpful	when	using	pcretest	to	check	compli-
							cated	regular	expressions.	For	further	information	about	callouts,		see
							the	pcrecallout	documentation.

NON-PRINTING	CHARACTERS

							When		pcretest	is	outputting	text	in	the	compiled	version	of	a	pattern,
							bytes	other	than	32-126	are	always	treated	as		non-printing		characters
							are	are	therefore	shown	as	hex	escapes.

							When		pcretest		is		outputting	text	that	is	a	matched	part	of	a	subject
							string,	it	behaves	in	the	same	way,	unless	a	different	locale	has		been
							set		for		the		pattern		(using		the		/L		modifier).		In		this	case,	the
							isprint()	function	to	distinguish	printing	and	non-printing	characters.

SAVING	AND	RELOADING	COMPILED	PATTERNS

							The		facilities		described		in		this	section	are	not	available	when	the
							POSIX	inteface	to	PCRE	is	being	used,	that	is,	when	the	/P	pattern	mod-
							ifier	is	specified.

							When	the	POSIX	interface	is	not	in	use,	you	can	cause	pcretest	to	write
							a	compiled	pattern	to	a	file,	by	following	the	modifiers	with	>		and		a
							file	name.		For	example:

									/pattern/im	>/some/file

							See		the	pcreprecompile	documentation	for	a	discussion	about	saving	and
							re-using	compiled	patterns.

							The	data	that	is	written	is	binary.		The		first		eight		bytes		are		the
							length		of		the		compiled		pattern		data		followed	by	the	length	of	the
							optional	study	data,	each	written	as	four		bytes		in		big-endian		order
							(most		significant		byte		first).	If	there	is	no	study	data	(either	the
							pattern	was	not	studied,	or	studying	did	not	return	any	data),	the	sec-
							ond		length		is		zero.	The	lengths	are	followed	by	an	exact	copy	of	the
							compiled	pattern.	If	there	is	additional	study	data,	this	follows	imme-
							diately		after		the		compiled	pattern.	After	writing	the	file,	pcretest
							expects	to	read	a	new	pattern.

							A	saved	pattern	can	be	reloaded	into	pcretest	by	specifing	<	and	a	file
							name		instead		of		a	pattern.	The	name	of	the	file	must	not	contain	a	<
							character,	as	otherwise	pcretest	will	interpret	the	line	as		a		pattern
							delimited	by	<	characters.		For	example:

										re>	

pcregrep	man	page
Return	to	the	PCRE	index	page.

synopsis
description
support	for	compressed	files
options
environment	variables
newlines
options	compatibility
options	with	data
matching	errors
diagnostics
see	also
author
revision

synopsis

pcregrep	[options]	[long	options]	[pattern]	[path1	path2	...]

description

pcregrep	searches	files	for	character	patterns,	in	the	same	way	as
other	grep	commands	do,	but	it	uses	the	PCRE	regular	expression
library	to	support	patterns	that	are	compatible	with	the	regular
expressions	of	Perl	5.	See	pcrepattern(3)	for	a	full	description	of
syntax	and	semantics	of	the	regular	expressions	that	PCRE	supports.

Patterns,	whether	supplied	on	the	command	line	or	in	a	separate	file,
are	given	without	delimiters.	For	example:

		pcregrep	Thursday	/etc/motd

If	you	attempt	to	use	delimiters	(for	example,	by	surrounding	a	pattern
with	slashes,	as	is	common	in	Perl	scripts),	they	are	interpreted	as	part
of	the	pattern.	Quotes	can	of	course	be	used	to	delimit	patterns	on	the
command	line	because	they	are	interpreted	by	the	shell,	and	indeed
they	are	required	if	a	pattern	contains	white	space	or	shell
metacharacters.

The	first	argument	that	follows	any	option	settings	is	treated	as	the
single	pattern	to	be	matched	when	neither	-e	nor	-f	is	present.
Conversely,	when	one	or	both	of	these	options	are	used	to	specify
patterns,	all	arguments	are	treated	as	path	names.	At	least	one	of	-e,	-f,
or	an	argument	pattern	must	be	provided.

If	no	files	are	specified,	pcregrep	reads	the	standard	input.	The
standard	input	can	also	be	referenced	by	a	name	consisting	of	a	single
hyphen.	For	example:

		pcregrep	some-pattern	/file1	-	/file3

By	default,	each	line	that	matches	a	pattern	is	copied	to	the	standard
output,	and	if	there	is	more	than	one	file,	the	file	name	is	output	at	the
start	of	each	line,	followed	by	a	colon.	However,	there	are	options	that
can	change	how	pcregrep	behaves.	In	particular,	the	-M	option	makes
it	possible	to	search	for	patterns	that	span	line	boundaries.	What
defines	a	line	boundary	is	controlled	by	the	-N	(--newline)	option.

Patterns	are	limited	to	8K	or	BUFSIZ	characters,	whichever	is	the
greater.	BUFSIZ	is	defined	in	<stdio.h>.	When	there	is	more	than	one
pattern	(specified	by	the	use	of	-e	and/or	-f),	each	pattern	is	applied	to
each	line	in	the	order	in	which	they	are	defined,	except	that	all	the	-e
patterns	are	tried	before	the	-f	patterns.	As	soon	as	one	pattern
matches	(or	fails	to	match	when	-v	is	used),	no	further	patterns	are

considered.

When	--only-matching,	--file-offsets,	or	--line-offsets	is	used,	the
output	is	the	part	of	the	line	that	matched	(either	shown	literally,	or	as
an	offset).	In	this	case,	scanning	resumes	immediately	following	the
match,	so	that	further	matches	on	the	same	line	can	be	found.	If	there
are	multiple	patterns,	they	are	all	tried	on	the	remainder	of	the	line.
However,	patterns	that	follow	the	one	that	matched	are	not	tried	on	the
earlier	part	of	the	line.

If	the	LC_ALL	or	LC_CTYPE	environment	variable	is	set,
pcregrep	uses	the	value	to	set	a	locale	when	calling	the	PCRE	library.
The	--locale	option	can	be	used	to	override	this.

support	for	compressed	files

It	is	possible	to	compile	pcregrep	so	that	it	uses	libz	or	libbz2	to	read
files	whose	names	end	in	.gz	or	.bz2,	respectively.	You	can	find	out
whether	your	binary	has	support	for	one	or	both	of	these	file	types	by
running	it	with	the	--help	option.	If	the	appropriate	support	is	not
present,	files	are	treated	as	plain	text.	The	standard	input	is	always	so
treated.

options

--	This	terminate	the	list	of	options.	It	is	useful	if	the	next	item	on	the
command	line	starts	with	a	hyphen	but	is	not	an	option.	This	allows
for	the	processing	of	patterns	and	filenames	that	start	with	hyphens.

-A	number,	--after-context=number	Output	number	lines	of	context
after	each	matching	line.	If	filenames	and/or	line	numbers	are	being
output,	a	hyphen	separator	is	used	instead	of	a	colon	for	the	context

lines.	A	line	containing	"--"	is	output	between	each	group	of	lines,
unless	they	are	in	fact	contiguous	in	the	input	file.	The	value	of
number	is	expected	to	be	relatively	small.	However,	pcregrep
guarantees	to	have	up	to	8K	of	following	text	available	for	context
output.

-B	number,	--before-context=number	Output	number	lines	of	context
before	each	matching	line.	If	filenames	and/or	line	numbers	are	being
output,	a	hyphen	separator	is	used	instead	of	a	colon	for	the	context
lines.	A	line	containing	"--"	is	output	between	each	group	of	lines,
unless	they	are	in	fact	contiguous	in	the	input	file.	The	value	of
number	is	expected	to	be	relatively	small.	However,	pcregrep
guarantees	to	have	up	to	8K	of	preceding	text	available	for	context
output.

-C	number,	--context=number	Output	number	lines	of	context	both
before	and	after	each	matching	line.	This	is	equivalent	to	setting	both
-A	and	-B	to	the	same	value.

-c,	--count	Do	not	output	individual	lines;	instead	just	output	a	count
of	the	number	of	lines	that	would	otherwise	have	been	output.	If
several	files	are	given,	a	count	is	output	for	each	of	them.	In	this
mode,	the	-A,	-B,	and	-C	options	are	ignored.

--colour,	--color	If	this	option	is	given	without	any	data,	it	is
equivalent	to	"--colour=auto".	If	data	is	required,	it	must	be	given	in
the	same	shell	item,	separated	by	an	equals	sign.

--colour=value,	--color=value	This	option	specifies	under	what
circumstances	the	part	of	a	line	that	matched	a	pattern	should	be
coloured	in	the	output.	The	value	may	be	"never"	(the	default),
"always",	or	"auto".	In	the	latter	case,	colouring	happens	only	if	the
standard	output	is	connected	to	a	terminal.	The	colour	can	be	specified
by	setting	the	environment	variable	PCREGREP_COLOUR	or

PCREGREP_COLOR.	The	value	of	this	variable	should	be	a	string	of
two	numbers,	separated	by	a	semicolon.	They	are	copied	directly	into
the	control	string	for	setting	colour	on	a	terminal,	so	it	is	your
responsibility	to	ensure	that	they	make	sense.	If	neither	of	the
environment	variables	is	set,	the	default	is	"1;31",	which	gives	red.

-D	action,	--devices=action	If	an	input	path	is	not	a	regular	file	or	a
directory,	"action"	specifies	how	it	is	to	be	processed.	Valid	values	are
"read"	(the	default)	or	"skip"	(silently	skip	the	path).

-d	action,	--directories=action	If	an	input	path	is	a	directory,	"action"
specifies	how	it	is	to	be	processed.	Valid	values	are	"read"	(the
default),	"recurse"	(equivalent	to	the	-r	option),	or	"skip"	(silently	skip
the	path).	In	the	default	case,	directories	are	read	as	if	they	were
ordinary	files.	In	some	operating	systems	the	effect	of	reading	a
directory	like	this	is	an	immediate	end-of-file.

-e	pattern,	--regex=pattern,	--regexp=pattern	Specify	a	pattern	to	be
matched.	This	option	can	be	used	multiple	times	in	order	to	specify
several	patterns.	It	can	also	be	used	as	a	way	of	specifying	a	single
pattern	that	starts	with	a	hyphen.	When	-e	is	used,	no	argument	pattern
is	taken	from	the	command	line;	all	arguments	are	treated	as	file
names.	There	is	an	overall	maximum	of	100	patterns.	They	are
applied	to	each	line	in	the	order	in	which	they	are	defined	until	one
matches	(or	fails	to	match	if	-v	is	used).	If	-f	is	used	with	-e,	the
command	line	patterns	are	matched	first,	followed	by	the	patterns
from	the	file,	independent	of	the	order	in	which	these	options	are
specified.	Note	that	multiple	use	of	-e	is	not	the	same	as	a	single
pattern	with	alternatives.	For	example,	X|Y	finds	the	first	character	in
a	line	that	is	X	or	Y,	whereas	if	the	two	patterns	are	given	separately,
pcregrep	finds	X	if	it	is	present,	even	if	it	follows	Y	in	the	line.	It
finds	Y	only	if	there	is	no	X	in	the	line.	This	really	matters	only	if	you
are	using	-o	to	show	the	part(s)	of	the	line	that	matched.

--exclude=pattern	When	pcregrep	is	searching	the	files	in	a	directory
as	a	consequence	of	the	-r	(recursive	search)	option,	any	regular	files
whose	names	match	the	pattern	are	excluded.	Subdirectories	are	not
excluded	by	this	option;	they	are	searched	recursively,	subject	to	the	--
exclude_dir	and	--include_dir	options.	The	pattern	is	a	PCRE	regular
expression,	and	is	matched	against	the	final	component	of	the	file
name	(not	the	entire	path).	If	a	file	name	matches	both	--include	and	-
-exclude,	it	is	excluded.	There	is	no	short	form	for	this	option.

--exclude_dir=pattern	When	pcregrep	is	searching	the	contents	of	a
directory	as	a	consequence	of	the	-r	(recursive	search)	option,	any
subdirectories	whose	names	match	the	pattern	are	excluded.	(Note	that
the	\fP--exclude\fP	option	does	not	affect	subdirectories.)	The	pattern
is	a	PCRE	regular	expression,	and	is	matched	against	the	final
component	of	the	name	(not	the	entire	path).	If	a	subdirectory	name
matches	both	--include_dir	and	--exclude_dir,	it	is	excluded.	There
is	no	short	form	for	this	option.

-F,	--fixed-strings	Interpret	each	pattern	as	a	list	of	fixed	strings,
separated	by	newlines,	instead	of	as	a	regular	expression.	The	-w
(match	as	a	word)	and	-x	(match	whole	line)	options	can	be	used	with
-F.	They	apply	to	each	of	the	fixed	strings.	A	line	is	selected	if	any	of
the	fixed	strings	are	found	in	it	(subject	to	-w	or	-x,	if	present).

-f	filename,	--file=filename	Read	a	number	of	patterns	from	the	file,
one	per	line,	and	match	them	against	each	line	of	input.	A	data	line	is
output	if	any	of	the	patterns	match	it.	The	filename	can	be	given	as	"-"
to	refer	to	the	standard	input.	When	-f	is	used,	patterns	specified	on
the	command	line	using	-e	may	also	be	present;	they	are	tested	before
the	file's	patterns.	However,	no	other	pattern	is	taken	from	the
command	line;	all	arguments	are	treated	as	file	names.	There	is	an
overall	maximum	of	100	patterns.	Trailing	white	space	is	removed
from	each	line,	and	blank	lines	are	ignored.	An	empty	file	contains	no

patterns	and	therefore	matches	nothing.	See	also	the	comments	about
multiple	patterns	versus	a	single	pattern	with	alternatives	in	the
description	of	-e	above.

--file-offsets	Instead	of	showing	lines	or	parts	of	lines	that	match,
show	each	match	as	an	offset	from	the	start	of	the	file	and	a	length,
separated	by	a	comma.	In	this	mode,	no	context	is	shown.	That	is,	the
-A,	-B,	and	-C	options	are	ignored.	If	there	is	more	than	one	match	in
a	line,	each	of	them	is	shown	separately.	This	option	is	mutually
exclusive	with	--line-offsets	and	--only-matching.

-H,	--with-filename	Force	the	inclusion	of	the	filename	at	the	start	of
output	lines	when	searching	a	single	file.	By	default,	the	filename	is
not	shown	in	this	case.	For	matching	lines,	the	filename	is	followed	by
a	colon	and	a	space;	for	context	lines,	a	hyphen	separator	is	used.	If	a
line	number	is	also	being	output,	it	follows	the	file	name	without	a
space.

-h,	--no-filename	Suppress	the	output	filenames	when	searching
multiple	files.	By	default,	filenames	are	shown	when	multiple	files	are
searched.	For	matching	lines,	the	filename	is	followed	by	a	colon	and
a	space;	for	context	lines,	a	hyphen	separator	is	used.	If	a	line	number
is	also	being	output,	it	follows	the	file	name	without	a	space.

--help	Output	a	help	message,	giving	brief	details	of	the	command
options	and	file	type	support,	and	then	exit.

-i,	--ignore-case	Ignore	upper/lower	case	distinctions	during
comparisons.

--include=pattern	When	pcregrep	is	searching	the	files	in	a	directory
as	a	consequence	of	the	-r	(recursive	search)	option,	only	those
regular	files	whose	names	match	the	pattern	are	included.
Subdirectories	are	always	included	and	searched	recursively,	subject

to	the	\fP--include_dir\fP	and	--exclude_dir	options.	The	pattern	is	a
PCRE	regular	expression,	and	is	matched	against	the	final	component
of	the	file	name	(not	the	entire	path).	If	a	file	name	matches	both	--
include	and	--exclude,	it	is	excluded.	There	is	no	short	form	for	this
option.

--include_dir=pattern	When	pcregrep	is	searching	the	contents	of	a
directory	as	a	consequence	of	the	-r	(recursive	search)	option,	only
those	subdirectories	whose	names	match	the	pattern	are	included.
(Note	that	the	--include	option	does	not	affect	subdirectories.)	The
pattern	is	a	PCRE	regular	expression,	and	is	matched	against	the	final
component	of	the	name	(not	the	entire	path).	If	a	subdirectory	name
matches	both	--include_dir	and	--exclude_dir,	it	is	excluded.	There
is	no	short	form	for	this	option.

-L,	--files-without-match	Instead	of	outputting	lines	from	the	files,
just	output	the	names	of	the	files	that	do	not	contain	any	lines	that
would	have	been	output.	Each	file	name	is	output	once,	on	a	separate
line.

-l,	--files-with-matches	Instead	of	outputting	lines	from	the	files,	just
output	the	names	of	the	files	containing	lines	that	would	have	been
output.	Each	file	name	is	output	once,	on	a	separate	line.	Searching
stops	as	soon	as	a	matching	line	is	found	in	a	file.

--label=name	This	option	supplies	a	name	to	be	used	for	the	standard
input	when	file	names	are	being	output.	If	not	supplied,	"(standard
input)"	is	used.	There	is	no	short	form	for	this	option.

--line-offsets	Instead	of	showing	lines	or	parts	of	lines	that	match,
show	each	match	as	a	line	number,	the	offset	from	the	start	of	the	line,
and	a	length.	The	line	number	is	terminated	by	a	colon	(as	usual;	see
the	-n	option),	and	the	offset	and	length	are	separated	by	a	comma.	In
this	mode,	no	context	is	shown.	That	is,	the	-A,	-B,	and	-C	options	are

ignored.	If	there	is	more	than	one	match	in	a	line,	each	of	them	is
shown	separately.	This	option	is	mutually	exclusive	with	--file-offsets
and	--only-matching.

--locale=locale-name	This	option	specifies	a	locale	to	be	used	for
pattern	matching.	It	overrides	the	value	in	the	LC_ALL	or
LC_CTYPE	environment	variables.	If	no	locale	is	specified,	the
PCRE	library's	default	(usually	the	"C"	locale)	is	used.	There	is	no
short	form	for	this	option.

-M,	--multiline	Allow	patterns	to	match	more	than	one	line.	When
this	option	is	given,	patterns	may	usefully	contain	literal	newline
characters	and	internal	occurrences	of	^	and	$	characters.	The	output
for	any	one	match	may	consist	of	more	than	one	line.	When	this
option	is	set,	the	PCRE	library	is	called	in	"multiline"	mode.	There	is
a	limit	to	the	number	of	lines	that	can	be	matched,	imposed	by	the
way	that	pcregrep	buffers	the	input	file	as	it	scans	it.	However,
pcregrep	ensures	that	at	least	8K	characters	or	the	rest	of	the
document	(whichever	is	the	shorter)	are	available	for	forward
matching,	and	similarly	the	previous	8K	characters	(or	all	the	previous
characters,	if	fewer	than	8K)	are	guaranteed	to	be	available	for
lookbehind	assertions.

-N	newline-type,	--newline=newline-type	The	PCRE	library	supports
five	different	conventions	for	indicating	the	ends	of	lines.	They	are	the
single-character	sequences	CR	(carriage	return)	and	LF	(linefeed),	the
two-character	sequence	CRLF,	an	"anycrlf"	convention,	which
recognizes	any	of	the	preceding	three	types,	and	an	"any"	convention,
in	which	any	Unicode	line	ending	sequence	is	assumed	to	end	a	line.
The	Unicode	sequences	are	the	three	just	mentioned,	plus	VT	(vertical
tab,	U+000B),	FF	(formfeed,	U+000C),	NEL	(next	line,	U+0085),	LS
(line	separator,	U+2028),	and	PS	(paragraph	separator,	U+2029).	

When	the	PCRE	library	is	built,	a	default	line-ending	sequence	is
specified.	This	is	normally	the	standard	sequence	for	the	operating
system.	Unless	otherwise	specified	by	this	option,	pcregrep	uses	the
library's	default.	The	possible	values	for	this	option	are	CR,	LF,
CRLF,	ANYCRLF,	or	ANY.	This	makes	it	possible	to	use	pcregrep
on	files	that	have	come	from	other	environments	without	having	to
modify	their	line	endings.	If	the	data	that	is	being	scanned	does	not
agree	with	the	convention	set	by	this	option,	pcregrep	may	behave	in
strange	ways.

-n,	--line-number	Precede	each	output	line	by	its	line	number	in	the
file,	followed	by	a	colon	and	a	space	for	matching	lines	or	a	hyphen
and	a	space	for	context	lines.	If	the	filename	is	also	being	output,	it
precedes	the	line	number.	This	option	is	forced	if	--line-offsets	is
used.

-o,	--only-matching	Show	only	the	part	of	the	line	that	matched	a
pattern.	In	this	mode,	no	context	is	shown.	That	is,	the	-A,	-B,	and	-C
options	are	ignored.	If	there	is	more	than	one	match	in	a	line,	each	of
them	is	shown	separately.	If	-o	is	combined	with	-v	(invert	the	sense
of	the	match	to	find	non-matching	lines),	no	output	is	generated,	but
the	return	code	is	set	appropriately.	This	option	is	mutually	exclusive
with	--file-offsets	and	--line-offsets.

-q,	--quiet	Work	quietly,	that	is,	display	nothing	except	error
messages.	The	exit	status	indicates	whether	or	not	any	matches	were
found.

-r,	--recursive	If	any	given	path	is	a	directory,	recursively	scan	the
files	it	contains,	taking	note	of	any	--include	and	--exclude	settings.
By	default,	a	directory	is	read	as	a	normal	file;	in	some	operating
systems	this	gives	an	immediate	end-of-file.	This	option	is	a
shorthand	for	setting	the	-d	option	to	"recurse".

-s,	--no-messages	Suppress	error	messages	about	non-existent	or
unreadable	files.	Such	files	are	quietly	skipped.	However,	the	return
code	is	still	2,	even	if	matches	were	found	in	other	files.

-u,	--utf-8	Operate	in	UTF-8	mode.	This	option	is	available	only	if
PCRE	has	been	compiled	with	UTF-8	support.	Both	patterns	and
subject	lines	must	be	valid	strings	of	UTF-8	characters.

-V,	--version	Write	the	version	numbers	of	pcregrep	and	the	PCRE
library	that	is	being	used	to	the	standard	error	stream.

-v,	--invert-match	Invert	the	sense	of	the	match,	so	that	lines	which
do	not	match	any	of	the	patterns	are	the	ones	that	are	found.

-w,	--word-regex,	--word-regexp	Force	the	patterns	to	match	only
whole	words.	This	is	equivalent	to	having	\b	at	the	start	and	end	of	the
pattern.

-x,	--line-regex,	--line-regexp	Force	the	patterns	to	be	anchored	(each
must	start	matching	at	the	beginning	of	a	line)	and	in	addition,	require
them	to	match	entire	lines.	This	is	equivalent	to	having	^	and	$
characters	at	the	start	and	end	of	each	alternative	branch	in	every
pattern.

environment	variables

The	environment	variables	LC_ALL	and	LC_CTYPE	are	examined,
in	that	order,	for	a	locale.	The	first	one	that	is	set	is	used.	This	can	be
overridden	by	the	--locale	option.	If	no	locale	is	set,	the	PCRE
library's	default	(usually	the	"C"	locale)	is	used.

newlines

The	-N	(--newline)	option	allows	pcregrep	to	scan	files	with	different
newline	conventions	from	the	default.	However,	the	setting	of	this
option	does	not	affect	the	way	in	which	pcregrep	writes	information
to	the	standard	error	and	output	streams.	It	uses	the	string	"\n"	in	C
printf()	calls	to	indicate	newlines,	relying	on	the	C	I/O	library	to
convert	this	to	an	appropriate	sequence	if	the	output	is	sent	to	a	file.

options	compatibility

The	majority	of	short	and	long	forms	of	pcregrep's	options	are	the
same	as	in	the	GNU	grep	program.	Any	long	option	of	the	form	--
xxx-regexp	(GNU	terminology)	is	also	available	as	--xxx-regex
(PCRE	terminology).	However,	the	--locale,	-M,	--multiline,	-u,	and	-
-utf-8	options	are	specific	to	pcregrep.

options	with	data

There	are	four	different	ways	in	which	an	option	with	data	can	be
specified.	If	a	short	form	option	is	used,	the	data	may	follow
immediately,	or	in	the	next	command	line	item.	For	example:

		-f/some/file
		-f	/some/file

If	a	long	form	option	is	used,	the	data	may	appear	in	the	same
command	line	item,	separated	by	an	equals	character,	or	(with	one
exception)	it	may	appear	in	the	next	command	line	item.	For	example:

		--file=/some/file
		--file	/some/file

Note,	however,	that	if	you	want	to	supply	a	file	name	beginning	with
~	as	data	in	a	shell	command,	and	have	the	shell	expand	~	to	a	home

directory,	you	must	separate	the	file	name	from	the	option,	because
the	shell	does	not	treat	~	specially	unless	it	is	at	the	start	of	an	item.

The	exception	to	the	above	is	the	--colour	(or	--color)	option,	for
which	the	data	is	optional.	If	this	option	does	have	data,	it	must	be
given	in	the	first	form,	using	an	equals	character.	Otherwise	it	will	be
assumed	that	it	has	no	data.

matching	errors

It	is	possible	to	supply	a	regular	expression	that	takes	a	very	long	time
to	fail	to	match	certain	lines.	Such	patterns	normally	involve	nested
indefinite	repeats,	for	example:	(a+)*\d	when	matched	against	a	line
of	a's	with	no	final	digit.	The	PCRE	matching	function	has	a	resource
limit	that	causes	it	to	abort	in	these	circumstances.	If	this	happens,
pcregrep	outputs	an	error	message	and	the	line	that	caused	the
problem	to	the	standard	error	stream.	If	there	are	more	than	20	such
errors,	pcregrep	gives	up.

diagnostics

Exit	status	is	0	if	any	matches	were	found,	1	if	no	matches	were
found,	and	2	for	syntax	errors	and	non-existent	or	inacessible	files
(even	if	matches	were	found	in	other	files)	or	too	many	matching
errors.	Using	the	-s	option	to	suppress	error	messages	about
inaccessble	files	does	not	affect	the	return	code.

see	also

pcrepattern(3),	pcretest(1).

author

Philip	Hazel	
University	Computing	Service	
Cambridge	CB2	3QH,	England.	

revision

Last	updated:	08	March	2008	
Copyright	©	1997-2008	University	of	Cambridge.	

Return	to	the	PCRE	index	page.

PCREGREP(1)																																																								PCREGREP(1)

NAME
							pcregrep	-	a	grep	with	Perl-compatible	regular	expressions.

SYNOPSIS
							pcregrep	[options]	[long	options]	[pattern]	[path1	path2	...]

DESCRIPTION

							pcregrep		searches		files		for		character		patterns,	in	the	same	way	as
							other	grep	commands	do,	but	it	uses	the	PCRE	regular	expression	library
							to	support	patterns	that	are	compatible	with	the	regular	expressions	of
							Perl	5.	See	pcrepattern(3)	for	a	full	description	of	syntax	and		seman-
							tics	of	the	regular	expressions	that	PCRE	supports.

							Patterns,		whether		supplied	on	the	command	line	or	in	a	separate	file,
							are	given	without	delimiters.	For	example:

									pcregrep	Thursday	/etc/motd

							If	you	attempt	to	use	delimiters	(for	example,	by	surrounding	a	pattern
							with		slashes,		as		is	common	in	Perl	scripts),	they	are	interpreted	as
							part	of	the	pattern.	Quotes	can	of	course	be	used	to		delimit		patterns
							on		the		command		line		because		they	are	interpreted	by	the	shell,	and
							indeed	they	are	required	if	a	pattern	contains		white		space		or		shell
							metacharacters.

							The		first		argument	that	follows	any	option	settings	is	treated	as	the
							single	pattern	to	be	matched	when	neither	-e	nor	-f	is		present.			Con-
							versely,		when		one		or		both	of	these	options	are	used	to	specify	pat-
							terns,	all	arguments	are	treated	as	path	names.	At	least	one	of	-e,	-f,
							or	an	argument	pattern	must	be	provided.

							If	no	files	are	specified,	pcregrep	reads	the	standard	input.	The	stan-
							dard	input	can	also	be	referenced	by	a		name		consisting		of		a		single
							hyphen.		For	example:

									pcregrep	some-pattern	/file1	-	/file3

							By		default,	each	line	that	matches	a	pattern	is	copied	to	the	standard
							output,	and	if	there	is	more	than	one	file,	the	file	name	is	output		at
							the	start	of	each	line,	followed	by	a	colon.	However,	there	are	options
							that	can	change	how	pcregrep	behaves.		In		particular,		the		-M		option
							makes		it		possible		to		search	for	patterns	that	span	line	boundaries.
							What	defines	a	line		boundary		is		controlled		by		the		-N		(--newline)
							option.

							Patterns		are		limited		to		8K		or		BUFSIZ	characters,	whichever	is	the
							greater.		BUFSIZ	is	defined	in	.	When	there	is	more		than		one
							pattern	(specified	by	the	use	of	-e	and/or	-f),	each	pattern	is	applied
							to	each	line	in	the	order	in	which	they	are	defined,		except		that		all
							the		-e		patterns	are	tried	before	the	-f	patterns.	As	soon	as	one	pat-
							tern	matches	(or	fails	to	match	when	-v	is	used),	no		further		patterns
							are	considered.

							When		--only-matching,		--file-offsets,		or	--line-offsets	is	used,	the
							output	is	the	part	of	the	line	that	matched	(either	shown	literally,	or
							as	an	offset).	In	this	case,	scanning	resumes	immediately	following	the
							match,	so	that	further	matches	on	the	same	line	can	be	found.		If	there
							are	multiple	patterns,	they	are	all	tried	on	the	remainder	of	the	line.
							However,	patterns	that	follow	the	one	that	matched	are	not	tried	on	the
							earlier	part	of	the	line.

							If		the		LC_ALL		or	LC_CTYPE	environment	variable	is	set,	pcregrep	uses
							the	value	to	set	a	locale	when	calling	the	PCRE	library.		The		--locale
							option	can	be	used	to	override	this.

SUPPORT	FOR	COMPRESSED	FILES

							It		is		possible		to	compile	pcregrep	so	that	it	uses	libz	or	libbz2	to
							read	files	whose	names	end	in	.gz	or	.bz2,	respectively.	You		can		find
							out	whether	your	binary	has	support	for	one	or	both	of	these	file	types
							by	running	it	with	the	--help	option.	If	the	appropriate	support	is	not
							present,		files	are	treated	as	plain	text.	The	standard	input	is	always
							so	treated.

OPTIONS

							--								This	terminate	the	list	of	options.	It	is	useful	if	the		next
																	item		on		the	command	line	starts	with	a	hyphen	but	is	not	an
																	option.	This	allows	for	the	processing	of	patterns	and		file-
																	names	that	start	with	hyphens.

							-A	number,	--after-context=number
																	Output		number		lines	of	context	after	each	matching	line.	If
																	filenames	and/or	line	numbers	are	being	output,	a	hyphen	sep-
																	arator		is		used		instead	of	a	colon	for	the	context	lines.	A
																	line	containing	"--"	is	output	between	each	group		of		lines,
																	unless		they		are		in		fact	contiguous	in	the	input	file.	The
																	value	of	number	is	expected	to	be	relatively	small.		However,
																	pcregrep	guarantees	to	have	up	to	8K	of	following	text	avail-
																	able	for	context	output.

							-B	number,	--before-context=number
																	Output	number	lines	of	context	before	each	matching	line.		If
																	filenames	and/or	line	numbers	are	being	output,	a	hyphen	sep-
																	arator	is	used	instead	of	a	colon	for	the		context		lines.		A
																	line		containing		"--"	is	output	between	each	group	of	lines,
																	unless	they	are	in	fact	contiguous	in		the		input		file.		The
																	value		of	number	is	expected	to	be	relatively	small.	However,
																	pcregrep	guarantees	to	have	up	to	8K	of	preceding	text	avail-
																	able	for	context	output.

							-C	number,	--context=number

																	Output		number		lines		of		context	both	before	and	after	each
																	matching	line.		This	is	equivalent	to	setting	both	-A	and		-B
																	to	the	same	value.

							-c,	--count
																	Do		not		output	individual	lines;	instead	just	output	a	count
																	of	the	number	of	lines	that	would	otherwise	have	been	output.
																	If		several		files		are		given,	a	count	is	output	for	each	of
																	them.	In	this	mode,	the	-A,	-B,	and	-C	options	are	ignored.

							--colour,	--color
																	If	this	option	is	given	without	any	data,	it	is	equivalent	to
																	"--colour=auto".			If		data		is	required,	it	must	be	given	in
																	the	same	shell	item,	separated	by	an	equals	sign.

							--colour=value,	--color=value
																	This	option	specifies	under	what	circumstances	the	part	of		a
																	line	that	matched	a	pattern	should	be	coloured	in	the	output.
																	The	value	may	be	"never"	(the	default),	"always",	or		"auto".
																	In		the		latter		case,	colouring	happens	only	if	the	standard
																	output	is	connected	to	a	terminal.	The	colour	can		be		speci-
																	fied		by		setting	the	environment	variable	PCREGREP_COLOUR	or
																	PCREGREP_COLOR.	The	value	of	this	variable	should	be	a	string
																	of		two		numbers,		separated	by	a	semicolon.		They	are	copied
																	directly	into	the	control	string	for	setting	colour	on	a	ter-
																	minal,		so	it	is	your	responsibility	to	ensure	that	they	make
																	sense.	If	neither	of	the	environment	variables		is		set,		the
																	default	is	"1;31",	which	gives	red.

							-D	action,	--devices=action
																	If		an		input		path		is		not		a		regular	file	or	a	directory,
																	"action"	specifies	how	it	is	to	be		processed.		Valid		values
																	are		"read"	(the	default)	or	"skip"	(silently	skip	the	path).

							-d	action,	--directories=action
																	If	an	input	path	is	a	directory,	"action"	specifies	how	it	is
																	to		be		processed.			Valid		values		are	"read"	(the	default),

																	"recurse"	(equivalent	to	the	-r	option),	or	"skip"		(silently
																	skip		the	path).	In	the	default	case,	directories	are	read	as
																	if	they	were	ordinary	files.	In	some		operating		systems		the
																	effect		of	reading	a	directory	like	this	is	an	immediate	end-
																	of-file.

							-e	pattern,	--regex=pattern,	--regexp=pattern
																	Specify	a	pattern	to	be	matched.	This	option	can	be	used	mul-
																	tiple	times	in	order	to	specify	several	patterns.	It	can	also
																	be	used	as	a	way	of	specifying	a	single	pattern		that		starts
																	with		a	hyphen.	When	-e	is	used,	no	argument	pattern	is	taken
																	from	the	command	line;	all		arguments		are		treated		as		file
																	names.		There	is	an	overall	maximum	of	100	patterns.	They	are
																	applied	to	each	line	in	the	order	in	which	they		are		defined
																	until	one	matches	(or	fails	to	match	if	-v	is	used).	If	-f	is
																	used	with	-e,	the	command	line	patterns		are		matched		first,
																	followed		by		the		patterns	from	the	file,	independent	of	the
																	order	in	which	these	options	are	specified.	Note	that		multi-
																	ple	use	of	-e	is	not	the	same	as	a	single	pattern	with	alter-
																	natives.	For	example,	X|Y	finds	the	first	character	in	a	line
																	that		is		X	or	Y,	whereas	if	the	two	patterns	are	given	sepa-
																	rately,	pcregrep	finds	X	if	it	is	present,	even	if	it	follows
																	Y		in	the	line.	It	finds	Y	only	if	there	is	no	X	in	the	line.
																	This	really	matters	only	if	you	are		using		-o		to		show		the
																	part(s)	of	the	line	that	matched.

							--exclude=pattern
																	When	pcregrep	is	searching	the	files	in	a	directory	as	a	con-
																	sequence	of	the	-r	(recursive		search)		option,		any		regular
																	files	whose	names	match	the	pattern	are	excluded.	Subdirecto-
																	ries	are	not	excluded		by		this		option;		they		are		searched
																	recursively,		subject		to	the	--exclude_dir	and	--include_dir
																	options.	The	pattern	is	a	PCRE		regular		expression,		and		is
																	matched	against	the	final	component	of	the	file	name	(not	the
																	entire	path).	If	a		file		name		matches		both		--include		and
																	--exclude,		it		is	excluded.		There	is	no	short	form	for	this
																	option.

							--exclude_dir=pattern
																	When	pcregrep	is	searching	the	contents	of	a	directory		as		a
																	consequence		of		the	-r	(recursive	search)	option,	any	subdi-
																	rectories	whose	names	match	the	pattern	are		excluded.		(Note
																	that		the		--exclude		option	does	not	affect	subdirectories.)
																	The	pattern	is	a	PCRE		regular		expression,		and		is		matched
																	against		the		final		component		of		the		name	(not	the	entire
																	path).	If	a	subdirectory	name	matches	both	--include_dir		and
																	--exclude_dir,		it		is		excluded.		There	is	no	short	form	for
																	this	option.

							-F,	--fixed-strings
																	Interpret	each	pattern	as	a	list	of	fixed	strings,		separated
																	by		newlines,		instead		of		as		a		regular	expression.	The	-w
																	(match	as	a	word)	and	-x	(match	whole	line)		options		can		be
																	used	with	-F.	They	apply	to	each	of	the	fixed	strings.	A	line
																	is	selected	if	any	of	the	fixed	strings	are	found	in	it	(sub-
																	ject	to	-w	or	-x,	if	present).

							-f	filename,	--file=filename
																	Read		a		number		of	patterns	from	the	file,	one	per	line,	and
																	match	them	against	each	line	of	input.	A	data	line	is		output
																	if	any	of	the	patterns	match	it.	The	filename	can	be	given	as
																	"-"	to	refer	to	the	standard	input.	When	-f	is	used,	patterns
																	specified		on		the	command	line	using	-e	may	also	be	present;
																	they	are	tested	before	the	file's	patterns.	However,	no	other
																	pattern		is		taken		from		the	command	line;	all	arguments	are
																	treated	as	file	names.	There	is	an		overall		maximum		of		100
																	patterns.	Trailing	white	space	is	removed	from	each	line,	and
																	blank	lines	are	ignored.	An	empty	file	contains		no		patterns
																	and		therefore		matches		nothing.	See	also	the	comments	about
																	multiple	patterns	versus	a	single	pattern		with		alternatives
																	in	the	description	of	-e	above.

							--file-offsets
																	Instead		of		showing	lines	or	parts	of	lines	that	match,	show

																	each	match	as	an	offset	from	the	start		of		the		file		and		a
																	length,		separated		by		a		comma.	In	this	mode,	no	context	is
																	shown.	That	is,	the	-A,	-B,	and	-C	options		are		ignored.		If
																	there	is	more	than	one	match	in	a	line,	each	of	them	is	shown
																	separately.	This	option	is	mutually		exclusive		with		--line-
																	offsets	and	--only-matching.

							-H,	--with-filename
																	Force		the		inclusion		of	the	filename	at	the	start	of	output
																	lines	when	searching	a	single	file.	By	default,	the		filename
																	is		not		shown	in	this	case.	For	matching	lines,	the	filename
																	is	followed	by	a	colon	and	a		space;		for		context		lines,		a
																	hyphen	separator	is	used.	If	a	line	number	is	also	being	out-
																	put,	it	follows	the	file	name	without	a	space.

							-h,	--no-filename
																	Suppress	the	output	filenames	when	searching	multiple		files.
																	By		default,		filenames		are		shown		when		multiple	files	are
																	searched.	For	matching	lines,	the	filename	is	followed		by		a
																	colon		and		a	space;	for	context	lines,	a	hyphen	separator	is
																	used.	If	a	line	number	is	also	being	output,	it		follows		the
																	file	name	without	a	space.

							--help				Output		a		help		message,	giving	brief	details	of	the	command
																	options	and	file	type	support,	and	then	exit.

							-i,	--ignore-case
																	Ignore	upper/lower	case	distinctions	during	comparisons.

							--include=pattern
																	When	pcregrep	is	searching	the	files	in	a	directory	as	a	con-
																	sequence	of	the	-r	(recursive	search)	option,	only	those	reg-
																	ular	files	whose	names	match	the	pattern	are	included.	Subdi-
																	rectories		are	always	included	and	searched	recursively,	sub-
																	ject	to	the	--include_dir	and	--exclude_dir	options.	The	pat-
																	tern	is	a	PCRE	regular	expression,	and	is	matched	against	the
																	final	component	of	the	file	name	(not	the	entire	path).	If		a

																	file		name		matches		both		--include		and		--exclude,		it		is
																	excluded.	There	is	no	short	form	for	this	option.

							--include_dir=pattern
																	When	pcregrep	is	searching	the	contents	of	a	directory		as		a
																	consequence		of		the	-r	(recursive	search)	option,	only	those
																	subdirectories	whose	names	match	the		pattern		are		included.
																	(Note		that		the	--include	option	does	not	affect	subdirecto-
																	ries.)	The	pattern	is		a		PCRE		regular		expression,		and		is
																	matched		against		the		final		component		of	the	name	(not	the
																	entire		path).		If			a			subdirectory			name			matches			both
																	--include_dir		and	--exclude_dir,	it	is	excluded.	There	is	no
																	short	form	for	this	option.

							-L,	--files-without-match
																	Instead	of	outputting	lines	from	the	files,	just		output		the
																	names		of		the	files	that	do	not	contain	any	lines	that	would
																	have	been	output.	Each	file	name	is	output	once,	on		a		sepa-
																	rate	line.

							-l,	--files-with-matches
																	Instead		of		outputting	lines	from	the	files,	just	output	the
																	names	of	the	files	containing	lines	that	would	have	been	out-
																	put.		Each		file		name		is		output		once,	on	a	separate	line.
																	Searching	stops	as	soon	as	a	matching		line		is		found		in		a
																	file.

							--label=name
																	This	option	supplies	a	name	to	be	used	for	the	standard	input
																	when	file	names	are	being	output.	If	not	supplied,	"(standard
																	input)"	is	used.	There	is	no	short	form	for	this	option.

							--line-offsets
																	Instead		of		showing	lines	or	parts	of	lines	that	match,	show
																	each	match	as	a	line	number,	the	offset	from	the	start	of	the
																	line,		and	a	length.	The	line	number	is	terminated	by	a	colon
																	(as	usual;	see	the	-n	option),	and	the	offset	and	length		are

																	separated		by		a		comma.		In		this	mode,	no	context	is	shown.
																	That	is,	the	-A,	-B,	and	-C	options	are	ignored.	If	there		is
																	more		than		one		match	in	a	line,	each	of	them	is	shown	sepa-
																	rately.	This	option	is	mutually	exclusive	with	--file-offsets
																	and	--only-matching.

							--locale=locale-name
																	This		option	specifies	a	locale	to	be	used	for	pattern	match-
																	ing.	It	overrides	the	value	in	the	LC_ALL	or		LC_CTYPE		envi-
																	ronment		variables.		If		no		locale		is		specified,		the	PCRE
																	library's	default	(usually	the	"C"	locale)	is	used.	There		is
																	no	short	form	for	this	option.

							-M,	--multiline
																	Allow		patterns	to	match	more	than	one	line.	When	this	option
																	is	given,	patterns	may	usefully	contain	literal	newline	char-
																	acters		and		internal		occurrences	of	^	and	$	characters.	The
																	output	for	any	one	match	may	consist	of	more	than		one		line.
																	When		this	option	is	set,	the	PCRE	library	is	called	in	"mul-
																	tiline"	mode.		There	is	a	limit	to	the	number	of		lines		that
																	can		be	matched,	imposed	by	the	way	that	pcregrep	buffers	the
																	input	file	as	it	scans	it.	However,	pcregrep	ensures	that		at
																	least	8K	characters	or	the	rest	of	the	document	(whichever	is
																	the	shorter)	are	available	for	forward		matching,		and		simi-
																	larly	the	previous	8K	characters	(or	all	the	previous	charac-
																	ters,	if	fewer	than	8K)	are	guaranteed	to		be		available		for
																	lookbehind	assertions.

							-N	newline-type,	--newline=newline-type
																	The		PCRE		library		supports		five		different	conventions	for
																	indicating	the	ends	of	lines.	They	are		the		single-character
																	sequences		CR		(carriage		return)	and	LF	(linefeed),	the	two-
																	character	sequence	CRLF,	an	"anycrlf"	convention,	which		rec-
																	ognizes		any		of	the	preceding	three	types,	and	an	"any"	con-
																	vention,	in	which	any	Unicode	line	ending	sequence	is	assumed
																	to		end	a	line.	The	Unicode	sequences	are	the	three	just	men-
																	tioned,		plus		VT		(vertical		tab,		U+000B),		FF			(formfeed,

																	U+000C),			NEL		(next		line,		U+0085),		LS		(line		separator,
																	U+2028),	and	PS	(paragraph	separator,	U+2029).

																	When		the		PCRE		library		is		built,		a		default		line-ending
																	sequence			is		specified.			This		is		normally		the		standard
																	sequence	for	the	operating	system.	Unless	otherwise	specified
																	by		this		option,		pcregrep		uses	the	library's	default.		The
																	possible	values	for	this	option	are	CR,	LF,	CRLF,	ANYCRLF,	or
																	ANY.		This		makes		it		possible	to	use	pcregrep	on	files	that
																	have	come	from	other	environments	without		having		to		modify
																	their		line		endings.		If	the	data	that	is	being	scanned	does
																	not	agree	with	the	convention	set	by		this		option,		pcregrep
																	may	behave	in	strange	ways.

							-n,	--line-number
																	Precede	each	output	line	by	its	line	number	in	the	file,	fol-
																	lowed	by	a	colon	and	a	space	for	matching	lines	or		a		hyphen
																	and		a	space	for	context	lines.	If	the	filename	is	also	being
																	output,	it	precedes	the	line	number.	This	option	is	forced	if
																	--line-offsets	is	used.

							-o,	--only-matching
																	Show		only		the		part		of	the	line	that	matched	a	pattern.	In
																	this	mode,	no	context	is	shown.	That	is,	the	-A,	-B,		and		-C
																	options		are		ignored.		If		there	is	more	than	one	match	in	a
																	line,	each	of	them	is	shown	separately.		If		-o		is		combined
																	with		-v		(invert	the	sense	of	the	match	to	find	non-matching
																	lines),	no	output	is	generated,	but	the	return		code		is		set
																	appropriately.	This	option	is	mutually	exclusive	with	--file-
																	offsets	and	--line-offsets.

							-q,	--quiet
																	Work	quietly,	that	is,	display	nothing	except	error	messages.
																	The		exit		status		indicates		whether	or	not	any	matches	were
																	found.

							-r,	--recursive

																	If	any	given	path	is	a	directory,	recursively	scan	the		files
																	it		contains,	taking	note	of	any	--include	and	--exclude	set-
																	tings.	By	default,	a	directory	is	read	as	a	normal		file;		in
																	some		operating		systems	this	gives	an	immediate	end-of-file.
																	This	option	is	a	shorthand		for		setting		the		-d		option		to
																	"recurse".

							-s,	--no-messages
																	Suppress		error		messages		about		non-existent		or	unreadable
																	files.	Such	files	are	quietly	skipped.		However,		the		return
																	code	is	still	2,	even	if	matches	were	found	in	other	files.

							-u,	--utf-8
																	Operate		in	UTF-8	mode.	This	option	is	available	only	if	PCRE
																	has	been	compiled	with	UTF-8	support.	Both	patterns	and		sub-
																	ject	lines	must	be	valid	strings	of	UTF-8	characters.

							-V,	--version
																	Write		the		version		numbers	of	pcregrep	and	the	PCRE	library
																	that	is	being	used	to	the	standard	error	stream.

							-v,	--invert-match
																	Invert	the	sense	of	the	match,	so	that		lines		which		do		not
																	match	any	of	the	patterns	are	the	ones	that	are	found.

							-w,	--word-regex,	--word-regexp
																	Force	the	patterns	to	match	only	whole	words.	This	is	equiva-
																	lent	to	having	\b	at	the	start	and	end	of	the	pattern.

							-x,	--line-regex,	--line-regexp
																	Force	the	patterns	to	be	anchored	(each	must		start		matching
																	at		the	beginning	of	a	line)	and	in	addition,	require	them	to
																	match	entire	lines.	This	is	equivalent		to		having		^		and		$
																	characters	at	the	start	and	end	of	each	alternative	branch	in
																	every	pattern.

ENVIRONMENT	VARIABLES

							The	environment	variables	LC_ALL	and	LC_CTYPE		are		examined,		in		that
							order,		for		a		locale.		The	first	one	that	is	set	is	used.	This	can	be
							overridden	by	the	--locale	option.		If		no		locale		is		set,		the		PCRE
							library's	default	(usually	the	"C"	locale)	is	used.

NEWLINES

							The		-N	(--newline)	option	allows	pcregrep	to	scan	files	with	different
							newline	conventions	from	the	default.		However,		the		setting		of		this
							option		does	not	affect	the	way	in	which	pcregrep	writes	information	to
							the	standard	error	and	output	streams.	It	uses	the		string		"\n"		in		C
							printf()		calls		to		indicate	newlines,	relying	on	the	C	I/O	library	to
							convert	this	to	an	appropriate	sequence	if	the		output		is		sent		to		a
							file.

OPTIONS	COMPATIBILITY

							The	majority	of	short	and	long	forms	of	pcregrep's	options	are	the	same
							as	in	the	GNU	grep	program.	Any	long	option	of		the		form		--xxx-regexp
							(GNU		terminology)	is	also	available	as	--xxx-regex	(PCRE	terminology).
							However,	the	--locale,	-M,	--multiline,	-u,		and		--utf-8		options		are
							specific	to	pcregrep.

OPTIONS	WITH	DATA

							There	are	four	different	ways	in	which	an	option	with	data	can	be	spec-
							ified.		If	a	short	form	option	is	used,	the		data		may		follow		immedi-
							ately,	or	in	the	next	command	line	item.	For	example:

									-f/some/file
									-f	/some/file

							If		a	long	form	option	is	used,	the	data	may	appear	in	the	same	command
							line	item,	separated	by	an	equals	character,	or	(with	one	exception)	it
							may	appear	in	the	next	command	line	item.	For	example:

									--file=/some/file
									--file	/some/file

							Note,		however,	that	if	you	want	to	supply	a	file	name	beginning	with	~
							as	data	in	a	shell	command,	and	have	the		shell		expand		~		to		a		home
							directory,	you	must	separate	the	file	name	from	the	option,	because	the
							shell	does	not	treat	~	specially	unless	it	is	at	the	start	of	an		item.

							The		exception		to		the		above	is	the	--colour	(or	--color)	option,	for
							which	the	data	is	optional.	If	this	option	does	have	data,	it		must		be
							given		in		the	first	form,	using	an	equals	character.	Otherwise	it	will
							be	assumed	that	it	has	no	data.

MATCHING	ERRORS

							It	is	possible	to	supply	a	regular	expression	that	takes		a		very		long
							time		to		fail		to		match	certain	lines.	Such	patterns	normally	involve
							nested	indefinite	repeats,	for	example:	(a+)*\d	when	matched	against		a
							line		of		a's		with		no		final		digit.	The	PCRE	matching	function	has	a
							resource	limit	that	causes	it	to	abort	in	these	circumstances.	If		this
							happens,	pcregrep	outputs	an	error	message	and	the	line	that	caused	the
							problem	to	the	standard	error	stream.	If	there	are	more		than		20		such
							errors,	pcregrep	gives	up.

DIAGNOSTICS

							Exit	status	is	0	if	any	matches	were	found,	1	if	no	matches	were	found,
							and	2	for	syntax	errors	and	non-existent	or	inacessible	files	(even		if
							matches		were		found	in	other	files)	or	too	many	matching	errors.	Using
							the	-s	option	to	suppress	error	messages	about	inaccessble		files		does
							not	affect	the	return	code.

SEE	ALSO

							pcrepattern(3),	pcretest(1).

AUTHOR

							Philip	Hazel
							University	Computing	Service
							Cambridge	CB2	3QH,	England.

REVISION

							Last	updated:	08	March	2008
							Copyright	(c)	1997-2008	University	of	Cambridge.

	PCRE Documentation v7.8
	Overview
	Introduction
	Regular Expression Syntax Summary
	Regular Expression Details
	Performance
	Precompiled Patterns
	All Manual Pages as Plain Text

