THE MAIN PCRE LIBRARY

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2007 University of Cambridge
All rights reserved

THE C++ WRAPPER LIBRARY

Written by: Google Inc.

Copyright (c) 2007 Google Inc
All rights reserved

HHHH

wWindows CHM file contributed by Sheri Pierce

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose
and semantics are as close as possible to those of the Perl 5 langua

Release 7 of PCRE is distributed under the terms of the "BSD" licenc
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itsel

The basic library functions are written in C and are freestanding. A

included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2007 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions a

* Redistributions of source code must retain the above copyright
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyri
notice, this list of conditions and the following disclaimer i
documentation and/or other materials provided with the distrib

* Neither the name of the University of Cambridge nor the name c
Inc. nor the names of their contributors may be used to endors
promote products derived from this software without specific g
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TC
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR F
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTOF
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWI
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
POSSIBILITY OF SUCH DAMAGE.

End

News about PCRE releases

The only change of specification is the addition of options to contr
\R matches any Unicode line ending (the default) or just CR, LF, and
Otherwise, the changes are bug fixes and a refactoring to reduce the
relocations needed in a shared library. There have also been some dc
updates, in particular, some more information about using CMake to b
has been added to the NON-UNIX-USE file.

Release 7.3 28-Aug-07

Most changes are bug fixes. Some that are not:

1. There is some support for Perl 5.10's experimental "backtracking
verbs" such as (*PRUNE).

2. UTF-8 checking is now as per RFC 3629 instead of RFC 2279; this 1
restrictive in the strings it accepts.

3. Checking for potential integer overflow has been made more dynami
consequence there is no longer a hard limit on the size of a subp
has a limited repeat count.

4. When CRLF is a valid line-ending sequence, pcre_exec() and pcre_d
no longer advance by two characters instead of one when an unanch
fails at CRLF if there are explicit CR or LF matches within the p
This gets rid of some anomalous effects that previously occurred.

5. Some PCRE-specific settings for varying the newline options at th
a pattern have been added.

Release 7.2 19-Jun-07

WARNING: saved patterns that were compiled by earlier versions of PC
recompiled for use with 7.2 (necessitated by the addition of \K, \h,
and \V).

Correction to the notes for 7.1: the note about shared libraries for
wrong. Previously, three libraries were built, but each could functi
independently. For example, the pcreposix library also included all

functions from the basic pcre library. The change is that the three
are no longer independent. They are like the Unix libraries. To use
pcreposix functions, for example, you need to link with both the pcr
the basic pcre library.

Some more features from Perl 5.10 have been added:
(?-n) and (?+n) relative references for recursion and subroutines.
(?(-n) and (?(+n) relative references as conditions.
\k{name} and \g{name} are synonyms for \k<name>.

\K to reset the start of the matched string; for example, (foo)\Kk
matches bar preceded by foo, but only sets bar as the matched stri

(?] introduces a group where the capturing parentheses in each alt
start from the same number; for example, (?|(abc)|(xyz)) sets capt
parentheses number 1 in both cases.

\h, \H, \v, \V match horizontal and vertical whitespace, respectiv

Release 7.1 24-Apr-07

There is only one new feature in this release: a linebreak setting c
PCRE_NEWLINE_ANYCRLF. It is a cut-down version of PCRE_NEWLINE_ANY,
recognizes only CRLF, CR, and LF as linebreaks.

A few bugs are fixed (see ChangelLog for details), but the major chan
complete re-implementation of the build system. This now has full Au
support and so is now "standard" in some sense. It should help with
PCRE in a wide variety of environments.

NOTE: when building shared libraries for Windows, three dlls are now
called libpcre, libpcreposix, and libpcrecpp. Previously, everything
included in a single dll.

Another important change is that the dftables auxiliary program is n
compiled and run at "make" time by default. Instead, a default set ¢
tables (assuming ASCII coding) is used. If you want to use dftables
the character tables as previously, add --enable-rebuild-chartables
"configure" command. You must do this if you are compiling PCRE to r
system that uses EBCDIC code.

There is a discussion about character tables in the README file. The
not to use dftables so that that there is no problem when cross-comp

Release 7.0 19-Dec-06

This release has a new major number because there have been some int
upheavals to facilitate the addition of new optimizations and other
and to make subsequent maintenance and extension easier. Compilation
to be a bit slower, but there should be no major effect on runtime p
Previously compiled patterns are NOT upwards compatible with this re
you have saved compiled patterns from a previous release, you will h
re-compile them. Important changes that are visible to users are:

1. The Unicode property tables have been updated to Unicode 5.0.0, w
some more scripts.

2. The option PCRE_NEWLINE_ANY causes PCRE to recognize any Unicode
sequence as a newline.

3. The \R escape matches a single Unicode newline sequence as a sing
4. New features that will appear in Perl 5.10 are now in PCRE. These

alternative Perl syntax for named parentheses, and Perl syntax fc
recursion.

5. The C++ wrapper interface has been extended by the addition of a
QuoteMeta function and the ability to allow copy construction and
assignment.

For a complete list of changes, see the ChangelLog file.

Release 6.7 04-Jul-06

The main additions to this release are the ability to use the same n
multiple sets of parentheses, and support for CRLF line endings in &k
library and pcregrep (and in pcretest for testing).

Thanks to Ian Taylor, the stack usage for many kinds of pattern has
significantly reduced for certain subject strings.

Release 6.5 01-Feb-06

Important changes in this release:
1. A number of new features have been added to pcregrep.

2. The Unicode property tables have been updated to Unicode 4.1.0, a
supported properties have been extended with script names such as

and the derived properties "Any" and "L&". This has necessitated
the interal format of compiled patterns. Any saved compiled patte
use \p or \P must be recompiled.

3. The specification of recursion in patterns has been changed so th
recursive subpatterns are automatically treated as atomic groups.
example, (?R) is treated as if it were (?>(?R)). This is necessar
otherwise there are situations where recursion does not work.

See the ChangeLog for a complete list of changes, which include a nu
fixes and tidies.

Release 6.0 07-Jun-05

The release number has been increased to 6.0 because of the addition
major new pieces of functionality.

A new function, pcre_dfa_exec(), which implements pattern matching u
algorithm, has been added. This has a number of advantages for certa
though it does run more slowly, and lacks the ability to capture sub
the other hand, it does find all matches, not just the first, and it
better for partial matching. The pcrematching man page discusses the
differences.

The pcretest program has been enhanced so that it can make use of th
pcre_dfa_exec() matching function and the extra features it provides

The distribution now includes a C++ wrapper library. This is built
automatically if a C++ compiler is found. The pcrecpp man page discu
interface.

The code itself has been re-organized into many more files, one for
function, so it no longer requires everything to be linked in when s
linkage is used. As a consequence, some internal functions have had
their names exposed. These functions all have names starting with _p
are undocumented, and are not intended for use by outside callers.

The pcregrep program has been enhanced with new functionality such a
multiline-matching and options for output more matching context. See
ChangeLog for a complete list of changes to the library and the util
programs.

Release 5.0 13-Sep-04

The licence under which PCRE is released has been changed to the mor
conventional "BSD" licence.

In the code, some bugs have been fixed, and there are also some majc
in this release (which is why I've increased the number to 5.0). Son
are internal rearrangements, and some provide a number of new facili
new features are:

1. There's an "automatic callout" feature that inserts callouts befc
item in the regex, and there's a new callout field that gives the
in the pattern - useful for debugging and tracing.

2. The extra_data structure can now be used to pass in a set of char
tables at exec time. This is useful if compiled regex are saved a
at a later time when the tables may not be at the same address. I
default internal tables are used, the pointer saved with the comp
pattern is now set to NULL, which means that you don't need to dc
special unless you are using custom tables.

3. It is possible, with some restrictions on the content of the rege
request "partial" matching. A special return code is given if all
subject string matched part of the regex. This could be useful fc
an input field as it is being typed.

4. There 1is now some optional support for Unicode character properti
means that the patterns items such as \p{Lu} and \X can now be us
the general category properties are supported. If PCRE is compile
support, an additional 90K data structure is include, which incre
size of the library dramatically.

5. There is support for saving compiled patterns and re-using them 1

6. There is support for running regular expressions that were compil
different host with the opposite endianness.

7. The pcretest program has been extended to accommodate the new fea

The main internal rearrangement is that sequences of literal charact
longer handled as strings. Instead, each character is handled on its
makes some UTF-8 handling easier, and makes the support of partial n
possible. Compiled patterns containing long literal strings will be
result of this change; I hope that performance will not be much affe

Release 4.5 01-Dec-03

Again mainly a bug-fix and tidying release, with only a couple of ne

1. It's possible now to compile PCRE so that it does not use recursi
function calls when matching. Instead it gets memory from the heap.
things down, but may be necessary on systems with limited stacks.

2. UTF-8 string checking has been tightened to reject overlong seque
check that a starting offset points to the start of a character. Fai
latter returns a new error code: PCRE_ERROR_BADUTF8_OFFSET.

3. PCRE can now be compiled for systems that use EBCDIC code.

Release 4.4 21-Aug-03

This is mainly a bug-fix and tidying release. The only new feature i
checks UTF-8 strings for validity by default. There is an option to
this, just in case anybody wants that teeny extra bit of performance

Releases 4.1 - 4.3

Sorry, I forgot about updating the NEWS file for these releases. Ple
look at ChangelLog.

Release 4.0 17-Feb-03

There have been a lot of changes for the 4.0 release, adding additic
functionality and mending bugs. Below is a list of the highlights of
functionality. For full details of these features, please consult th
documentation. For a complete list of changes, see the ChangeLog fil

1. Support for Perl's \Q...\E escapes.

2. "Possessive quantifiers" ?+, *+, ++, and {, }+ which come from Sun
package. They provide some syntactic sugar for simple cases of "aton
grouping".

3. Support for the \G assertion. It is true when the current matchin
is at the start point of the match.

4. A new feature that provides some of the functionality that Perl g
with (?{...}). The facility is termed a "callout". The way it is don
is for the caller to provide an optional function, by setting pcre_c
its entry point. To get the function called, the regex must include
appropriate points.

5. Support for recursive calls to individual subpatterns. This makes
easy to get totally confused.

6. Support for named subpatterns. The Python syntax (?P<name>...) 1is

name a group.

7. Several extensions to UTF-8 support; it is now fairly complete. T
option for pcregrep to make it operate in UTF-8 mode.

8. The single man page has been split into a number of separate man
These also give rise to individual HTML pages which are put in a segp
directory. There is an index.html page that lists them all. Some hyp
between the pages has been installed.

Release 3.5 15-Aug-01

1. The configuring system has been upgraded to use later versions of
and libtool. By default it builds both a shared and a static library
supports it. You can use --disable-shared or --disable-static on the
command if you want only one of them.

2. The pcretest utility is now installed along with pcregrep because
useful for users (to test regexs) and by doing this, it automaticall
relinked by libtool. The documentation has been turned into a man pa
there are now .1, .txt, and .html versions in /doc.

3. Upgrades to pcregrep:
(1) Added long-form option names like gnu grep.
(ii) Added --help to list all options with an explanatory phrase
(iii) Added -r, --recursive to recurse into sub-directories.
(iv) Added -f, --file to read patterns from a file.

4. Added --enable-newline-is-cr and --enable-newline-is-1f to the cc
script, to force use of CR or LF instead of \n in the source. On non
systems, the value can be set in config.h.

5. The limit of 200 on non-capturing parentheses is a _nesting_ limi
absolute limit. Changed the text of the error message to make this c
likewise updated the man page.

6. The limit of 99 on the number of capturing subpatterns has been r
The new limit is 65535, which I hope will not be a "real" limit.

Release 3.3 01-Aug-00

There is some support for UTF-8 character strings. This is incomplet
experimental. The documentation describes what is and what is not in
Otherwise, this is just a bug-fixing release.

Release 3.0 01-Feb-00

1. A "configure" script is now used to configure PCRE for Unix syste
builds a Makefile, a config.h file, and the pcre-config script.

2. PCRE is built as a shared library by default.
3. There is support for POSIX classes such as [:alpha:].

5. There is an experimental recursion feature.

IMPORTANT FOR THOSE UPGRADING FROM VERSIONS BEFORE 2.00

Please note that there has been a change in the API such that a larg
ovector is required at matching time, to provide some additional wor
The new man page has details. This change was necessary in order to
some of the new functionality in Perl 5.005.

IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.00

Another (I hope this is the last!) change has been made to the API f
pcre_compile() function. An additional argument has been added to ma
possible to pass over a pointer to character tables built in the cur
locale by pcre_maketables(). To use the default tables, this new arg
should be passed as NULL.

IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.05

Yet another (and again I hope this really is the last) change has be
to the API for the pcre_exec() function. An additional argument has
added to make it possible to start the match other than at the start
subject string. This is important if there are lookbehinds. The new
page has the details, but you just want to convert existing programs
you need to do is to stick in a new fifth argument to pcre_exec(), w
value of zero. For example, change

pcre_exec(pattern, extra, subject, length, options, ovec, ovecsize
to
pcre_exec(pattern, extra, subject, length, O, options, ovec, ovecs

*k k%

ChangeLog for PCRE

10.

Change 7.3/28 was implemented for classes by looking at the bitm
means that a class such as [\s] counted as "explicit reference t
LF". That isn't really right - the whole point of the change was
help when there was an actual mention of one of the two characte
the change happens only if \r or \n (or a literal CR or LF) char
encountered.

The 32-bit options word was also used for 6 internal flags, but
of both had grown to the point where there were only 3 bits left
Fortunately, there was spare space in the data structure, and sc
moved the internal flags into a new 16-bit field to free up more
bits.

The appearance of (?J) at the start of a pattern set the DUPNAME
but did not set the internal JCHANGED flag - either of these is

control the way the "get" function works - but the PCRE_INFO_JCH
facility is supposed to tell if (?J) was ever used, so now (?J)

start sets both bits.

Added options (at build time, compile time, exec time) to change
matching any Unicode line ending sequence to just matching CR, L

doc/pcresyntax.html was missing from the distribution.

Put back the definition of PCRE_ERROR_NULLWSLIMIT, for backward
compatibility, even though it is no longer used.

Added macro for snprintf to pcrecpp_unittest.cc and also for str
strtoull to pcrecpp.cc to select the available functions in WIN3
windows.h file is present (where different names are used). [Thi
reversed later after testing - see 16 below.]

Changed all #include <config.h> to #include "config.h". There we
some further <pcre.h> cases that I changed to "pcre.h".

When pcregrep was used with the --colour option, it missed the 1
sequence off the lines that it output.

It was pointed out to me that arrays of string pointers cause lc
relocations when a shared library is dynamically loaded. A techn
using a single long string with a table of offsets can drastical
these. I have refactored PCRE in four places to do this. The res
dramatic:

11.

12,

13.

14,

15.

16.

17.

Originally: 290

After changing UCP table: 187
After changing error message table: 43
After changing table of "verbs" 36

After changing table of Posix names 22
Thanks to the folks working on Gregex for glib for this insight.

--disable-stack-for-recursion caused compiling to fail unless -€
unicode-properties was also set.

Updated the tests so that they work when \R is defaulted to ANYC

Added checks for ANY and ANYCRLF to pcrecpp.cc where it previous
checked only for CRLF.

Added casts to pcretest.c to avoid compiler warnings.

Added Craig's patch to various pcrecpp modules to avoid compiler
Added Craig's patch to remove the WINDOWS_H tests, that were not
and instead check for _strtoi64 explicitly, and avoid the use of

entirely. This removes changes made in 7 above.

The CMake files have been updated, and there is now more informa
building with CMake in the NON-UNIX-USE document.

Version 7.3 28-Aug-07

In the rejigging of the build system that eventually resulted in
line "#include <pcre.h>" was included in pcre_internal.h. The us
brackets there is not right, since it causes compilers to look f
installed pcre.h, not the version that is in the source that is
compiled (which of course may be different). I have changed it &

#include "pcre.h"

I have a vague recollection that the change was concerned with c
different directories, but in the new build system, that is take
by the VPATH setting the Makefile.

The pattern .*$ when run in not-DOTALL UTF-8 mode with newline=a
when the subject happened to end in the byte 0x85 (e.g. if the 1
character was \x{lec5}). *Character* 0x85 is one of the "any" ne
characters but of course it shouldn't be taken as a newline when
of another character. The bug was that, for an unlimited repeat
not-DOTALL UTF-8 mode, PCRE was advancing by bytes rather than b

10.

11.

characters when looking for a newline.

. A small performance improvement in the DOTALL UTF-8 mode .* case

Debugging: adjusted the names of opcodes for different kinds of
in debug output.

. Arrange to use "%I64d" instead of "%11d" and "%I64u" instead of

long printing in the pcrecpp unittest when running under MinGW.
ESC_K was left out of the EBCDIC table.

Change 7.0/38 introduced a new limit on the number of nested non
parentheses; I made it 1000, which seemed large enough. Unfortun
limit also applies to "virtual nesting" when a pattern is recurs
this case 1000 isn't so big. I have been able to remove this lin
expense of backing off one optimization in certain circumstances
when pcre_exec() would call its internal match() function recurs
immediately return the result unconditionally, it uses a '"tail r
feature to save stack. However, when a subpattern that can match
string has an unlimited repetition quantifier, it no longer make
optimization. That gives it a stack frame in which to save the d
checking that an empty string has been matched. Previously this
from the 1000-entry workspace that had been reserved. So now the
explicit limit, but more stack is used.

. Applied Daniel's patches to solve problems with the import/expor

syntax that is required for Windows, and which was going wrong f
pcreposix and pcrecpp parts of the library. These were overlooke
problem was solved for the main library.

There were some crude static tests to avoid integer overflow whe
the size of patterns that contain repeated groups with explicit
limits. As the maximum quantifier is 65535, the maximum group le
set at 30,000 so that the product of these two numbers did not ¢
32-bit integer. However, it turns out that people want to use gr
are longer than 30,000 bytes (though not repeat them that many t
Change 7.0/17 (the refactoring of the way the pattern size is cc
made it possible to implement the integer overflow checks in a nm
dynamic way, which I have now done. The artificial limitation on
length has been removed - we now have only the limit on the tota
the compiled pattern, which depends on the LINK SIZE setting.

Fixed a bug in the documentation for get/copy named substring wh
duplicate names are permitted. If none of the named substrings a
functions return PCRE_ERROR_NOSUBSTRING (7); the doc said they r
empty string.

Because Perl interprets \Q...\E at a high level, and ignores orp
instances, patterns such as [\Q\E] or [\E] or even [A\E] cause a

10.

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

because the] is interpreted as the first data character and the
terminating] is not found. PCRE has been made compatible with F
regard. Previously, it interpreted [\Q\E] as an empty class, and
cause memory overwriting.

Like Perl, PCRE automatically breaks an unlimited repeat after a
string has been matched (to stop an infinite loop). It was not r
a conditional subpattern that could match an empty string if tha
subpattern was within another subpattern. For example, it looped
trying to match (((?(21)X]))*) but it was OK with ((?(1)X]|)*)
condition was not nested. This bug has been fixed.

A pattern like \X?\d or \P{L}?\d in non-UTF-8 mode could cause a
past the start of the subject in the presence of bytes with the
set, for example "\x8aBCD".

Added Perl 5.10 experimental backtracking controls (*FAIL), (*F)
(*SKIP), (*THEN), (*COMMIT), and (*ACCEPT).

Optimized (?!) to (*FAIL).

Updated the test for a valid UTF-8 string to conform to the late
This restricts code points to be within the range 0 to Ox10FFFF,
the "low surrogate" sequence OxD800 to OxDFFF. Previously, PCRE

full range 0 to OX7FFFFFFF, as defined by RFC 2279. Internally,

does: it's just the validity check that is more restrictive.

Inserted checks for integer overflows during escape sequence (ba
processing, and also fixed erroneous offset values for syntax er
backslash processing.

Fixed another case of looking too far back in non-UTF-8 mode (cf
for patterns like [\PPP\x8a]{1,}\x80 with the subject "A\x80".

An unterminated class in a pattern like (?1)\c[with a "forward
caused an overrun.

A pattern like (?:[\PPa*]*){8,} which had an "extended class" (c
something other than just ASCII characters) inside a group that
unlimited repeat caused a loop at compile time (while checking t
whether the group could match an empty string).

Debugging a pattern containing \p or \P could cause a crash. For
[\P{Any}] did so. (Error in the code for printing property names

An orphan \E inside a character class could cause a crash.

A repeated capturing bracket such as (A)? could cause a wild men
reference during compilation.

23.

24,

25.

26.

27.

28.

29.

There are several functions in pcre_compile() that scan along a
expression for various reasons (e.g. to see if it's fixed length
behind). There were bugs in these functions when a repeated \p c
present in the pattern. These operators have additional paramete
with \d, etc, and these were not being taken into account when n
the compiled data. Specifically:

(a) A item such as \p{Yi}{3} in a lookbehind was not treated as
length.

(b) An item such as \pL+ within a repeated group could cause cra
loops.

(c) A pattern such as \p{Yi}+(\P{Yi}+)(?1) could give an incorre
"reference to non-existent subpattern" error.

(d) A pattern like (\P{Yi}{2}\277)? could loop at compile time.

A repeated \S or \W in UTF-8 mode could give wrong answers when
characters were involved (for example /\S{2}/8g with "A\x{a3}BC"

Using pcregrep in multiline, inverted mode (-Mv) caused it to 1lc

Patterns such as [\P{Yi}A] which include \p or \P and just one c
character were causing crashes (broken optimization).

Patterns such as (\P{Yi}*\277)* (group with possible zero repeat
\p or \P) caused a compile-time loop.

More problems have arisen in unanchored patterns when CRLF is a
break. For example, the unstudied pattern [\r\n]A does not match
"\r\nA" because change 7.0/46 below moves the current point on b
characters after failing to match at the start. However, the pat
does match, because it doesn't start till \n, and if [\r\n]A i
the same is true. There doesn't seem any very clean way out of t
what I have chosen to do makes the common cases work: PCRE now t
of whether there can be an explicit match for \r or \n anywhere
pattern, and if so, 7.0/46 no longer applies. As part of this ch
there's a new PCRE_INFO_HASCRORLF option for finding out whether
pattern has explicit CR or LF references.

Added (*CR) etc for changing newline setting at start of pattern

Version 7.2 19-Jun-07

1.

If the fr_FR locale cannot be found for test 3, try the "french"
which is apparently normally available under Windows.

Re-jig the pcregrep tests with different newline settings in an
to make them independent of the local environment's newline sett

. Add code to configure.ac to remove -g from the CFLAGS default se

Some of the "internals" tests were previously cut out when the 1
was not 2, because the output contained actual offsets. The rece
"Z" feature of pcretest means that these can be cut out, making
usable with all link sizes.

Implemented Stan Switzer's goto replacement for longjmp() when n
stack recursion. This gives a massive performance boost under BS
a small improvement under Linux. However, it saves one field in
in all cases.

. Added more features from the forthcoming Perl 5.10:

(a) (?-n) (where n is a string of digits) is a relative subrouti
recursion call. It refers to the nth most recently opened pa

(b) (?+n) is also a relative subroutine call; it refers to the n
to be opened parentheses.

(c) Conditions that refer to capturing parentheses can be specif
relatively, for example, (?(-2)... or (?2(+3)...

(d) \K resets the start of the current match so that everything
is not part of it.

(e) \k{name} is synonymous with \k<name> and \k'name' (.NET comp

(f) \g{name} is another synonym - part of Perl 5.10's unificatic
reference syntax.

(g) (?] introduces a group in which the numbering of parentheses
alternative starts with the same number.

(h) \h, \H, \v, and \V match horizontal and vertical whitespace.

. Added two new calls to pcre_fullinfo(): PCRE_INFO_OKPARTIAL and
PCRE_INFO_JCHANGED.

. A pattern such as (.*(.)?)* caused pcre_exec() to fail by eith
terminating or by crashing. Diagnosed by Viktor Griph; it was in
for detecting groups that can match an empty string.

. A pattern with a very large number of alternatives (more than se
hundred) was running out of internal workspace during the pre-cc
phase, where pcre_compile() figures out how much memory will be
bit of new cunning has reduced the workspace needed for groups w

10.

11.

12,

alternatives. The 1000-alternative test pattern now uses 12 byte
workspace instead of running out of the 4096 that are available.

Inserted some missing (unsigned int) casts to get rid of compile

Applied patch from Google to remove an optimization that didn't
The report of the bug said:

pcrecpp::RE("a*").FullMatch("aaa") matches, while
pcrecpp::RE("a*?").FullMatch("aaa") does not, and
pcrecpp::RE("a*?\\z").FullMatch("aaa") does again.

If \p or \P was used in non-UTF-8 mode on a character greater th
it matched the wrong number of bytes.

Version 7.1 24-Apr-07

. Applied Bob Rossi and Daniel G's patches to convert the build sy

that is more '"standard", making use of automake and other Autotc
is some re-arrangement of the files and adjustment of comments c
on this.

Part of the patch fixed a problem with the pcregrep tests. The t
for recursive directory scanning broke on some systems because t
are not scanned in any specific order and on different systems t
was different. A call to "sort" has been inserted into RunGrepTe
approprate test as a short-term fix. In the longer term there ma
alternative.

I had an email from Eric Raymond about problems translating some
man pages to HTML (despite the fact that I distribute HTML pages
people do their own conversions for various reasons). The proble
concerned the use of low-level troff macros .br and .in. I have
removed all such uses from the man pages (some were redundant, s
be replaced by .nf/.fi pairs). The 132html script that I use to
HTML has been updated to handle .nf/.fi and to complain if it en
.br or .in.

Updated comments in configure.ac that get placed in config.h.in
arranged for config.h to be included in the distribution, with t
config.h.generic, for the benefit of those who have to compile w
Autotools (compare pcre.h, which is now distributed as pcre.h.ge

Updated the support (such as it is) for Virtual Pascal, thanks t
Weber: (1) pcre_internal.h was missing some function renames; (2
makevp.bat for the current PCRE, using the additional files
makevp_c.txt, makevp_l.txt, and pcregexp.pas.

10.

11.

12,

. A Windows user reported a minor discrepancy with test 2, which t

to be caused by a trailing space on an input line that had got 1
copy. The trailing space was an accident, so I've just removed i

. Add -Wl,-R... flags in pcre-config.in for *BSD* systems, as I'm

that is needed.

Mark ucp_table (in ucptable.h) and ucp_gentype (in pcre_ucp_sear
as '"const" (a) because they are and (b) because it helps the PHF
maintainers who have recently made a script to detect big data s
in the php code that should be moved to the .rodata section. I r
to update Builducptable as well, so it won't revert if ucptable.
re-created.

. Added some extra #ifdef SUPPORT_UTF8 conditionals into pcretest.

pcre_printint.src, pcre_compile.c, pcre_study.c, and pcre_tables
order to be able to cut out the UTF-8 tables in the latter when
support is not required. This saves 1.5-2K of code, which is imp
some applications.

Later: more #ifdefs are needed in pcre_ord2utf8.c and pcre_valid
so as not to refer to the tables, even though these functions wi
called when UTF-8 support is disabled. Otherwise there are probl
shared library.

Fixed two bugs in the emulated memmove() function in pcre_intern
(a) It was defining its arguments as char * instead of void *.

(b) It was assuming that all moves were upwards in memory; this
a long time ago when I wrote it, but is no longer the case.

The emulated memove() is provided for those environments that ha
memmove() nor bcopy(). I didn't think anyone used it these days,
is clearly not the case, as these two bugs were recently reporte

The script PrepareRelease is now distributed: it calls 132html,
and Detrail to create the HTML documentation, the .txt form of t
pages, and it removes trailing spaces from listed files. It alsc
pcre.h.generic and config.h.generic from pcre.h and config.h. In
case, it wraps all the #defines with #ifndefs. This script shoul
before "make dist".

Fixed two fairly obscure bugs concerned with quantified caseless
with Unicode property support.

(a) For a maximizing quantifier, if the two different cases of t
character were of different lengths in their UTF-8 codings (
some cases like this - I found 11), and the matching functic
back up over a mixture of the two cases, it incorrectly assu

13.

14,

15.

16.

17.

19.

were both the same length.

(b) When PCRE was configured to use the heap rather than the sta
recursion during matching, it was not correctly preserving t
the other case of a UTF-8 character when checking ahead for
while processing a minimizing repeat. If the check also invc
matching a wide character, but failed, corruption could caus
erroneous result when trying to check for a repeat of the or
character.

Some tidying changes to the testing mechanism:

(a) The RunTest script now detects the internal link size and wh
is UTF-8 and UCP support by running ./pcretest -C instead of
values substituted by "configure". (The RunGrepTest script a
this for UTF-8.) The configure.ac script no longer substitut
relevant variables.

(b) The debugging options /B and /D in pcretest show the compile
with length and offset values. This means that the output is
for different internal link sizes. Test 2 is skipped for 1lin
other than 2 because of this, bypassing the problem. Unfortu
there was also a test in test 3 (the locale tests) that used
failed for link sizes other than 2. Rather than cut the whol
I have added a new /Z option to pcretest that replaces the 1
offset values with spaces. This is now used to make test 3 i
of link size. (Test 2 will be tidied up later.)

If erroroffset was passed as NULL to pcre_compile, it provoked a
segmentation fault instead of returning the appropriate error me

In multiline mode when the newline sequence was set to "any", th
N$ would give a match between the \r and \n of a subject such as
This doesn't seem right; it now treats the CRLF combination as t
ending, and so does not match in that case. It's only a pattern
that would hit this one: something like AABC$ would have failed
and then tried again after \r\n.

Changed the comparison command for RunGrepTest from "diff -u" tc
in an attempt to make files that differ only in their line termi
compare equal. This works on Linux.

Under certain error circumstances pcregrep might try to free ran
as it exited. This is now fixed, thanks to valgrind.

In pcretest, if the pattern /(?m)A$/g<any> was matched against t
"abc\r\n\r\n", it found an unwanted second match after the secon
was because its rules for how to advance for /g after matching a
string at the end of a line did not allow for this case. They nc
it specially.

20.

21.

22,

23.

24,

pcretest is supposed to handle patterns and data of any length,
extending its buffers when necessary. It was getting this wrong
buffer for a data line had to be extended.

Added PCRE_NEWLINE_ANYCRLF which is like ANY, but matches only C
CRLF as a newline sequence.

Code for handling Unicode properties in pcre_dfa_exec() wasn't k&
out by #ifdef SUPPORT_UCP. This did no harm, as it could never k&
I have nevertheless tidied it up.

Added some casts to kill warnings from HP-UX ia64 compiler.

Added a man page for pcre-config.

Version 7.0 19-Dec-06

1.

Fixed a signed/unsigned compiler warning in pcre_compile.c, show
moving to gcc 4.1.1.

The -S option for pcretest uses setrlimit(); I had omitted to #i
sys/time.h, which is documented as needed for this function. It
seem to matter on Linux, but it showed up on some releases of OS

It seems that there are systems where bytes whose values are gre
127 match isprint() in the "C" locale. The "C" locale should be
default when a C program starts up. In most systems, only ASCII
characters match isprint(). This difference caused the output fr
to vary, making some of the tests fail. I have changed pcretest

(a) When it is outputting text in the compiled version of a patt
other than 32-126 are always shown as hex escapes.

(b) When it is outputting text that is a matched part of a subje
it does the same, unless a different locale has been set for
(using the /L modifier). In this case, it uses isprint() to

Fixed a major bug that caused incorrect computation of the amoun
required for a compiled pattern when options that changed within
pattern affected the logic of the preliminary scan that determin
length. The relevant options are -x, and -i in UTF-8 mode. The r
that the computed length was too small. The symptoms of this bug
either the PCRE error "internal error: code overflow" from pcre_
or a glibc crash with a message such as "pcretest: free(): inval
size (fast)". Examples of patterns that provoked this bug (shown
pcretest format) are:

10.

11.

12,

/(?-x:)/X
/(?X)(?-x: \s*#\s*)/
/((?1)[\x{c0}])/8
/(?1:[\x{c0}])/8

HOWEVER: Change 17 below makes this fix obsolete as the memory c
is now done differently.

. Applied patches from Google to: (a) add a QuoteMeta function to

wrapper classes; (b) implement a new function in the C++ scanner
more efficient than the old way of doing things because it avoid
recursion in the regex matching; (c) add a paragraph to the docu
for the FullMatch() function.

. The escape sequence \n was being treated as whatever was defined

"newline". Not only was this contrary to the documentation, whic
that \n is character 10 (hex 0A), but it also went horribly wron
"newline" was defined as CRLF. This has been fixed.

In pcre_dfa_exec.c the value of an unsigned integer (the variabl
was being set to -1 for the "end of line" case (supposedly a val
character can have). Though this value is never used (the check
line is "zero bytes in current character"), it caused compiler c
I've changed it to Oxffffffff.

In pcre_version.c, the version string was being built by a seque
C macros that, in the event of PCRE_PRERELEASE being defined as
string (as it is for production releases) called a macro with an
argument. The C standard says the result of this is undefined. T
compiler treats it as an empty string (which was what was wanted
reported that Visual C gives an error. The source has been hacke
avoid this problem.

. On the advice of a Windows user, included <io.h> and <fcntl.h> i

builds of pcretest, and changed the call to _setmode() to use _C
instead of Ox8000. Made all the #ifdefs test both _WIN32 and WIN
of them did).

Originally, pcretest opened its input and output without "b"; th
told that "b" was needed in some environments, so it was added f
5.0 to both the input and output. (It makes no difference on Uni
systems.) Later I was told that it is wrong for the input on Win
now abstracted the modes into two macros, to make it easier to f
them, and removed "b" from the input mode under Windows.

Added pkgconfig support for the C++ wrapper library, libpcrecpp.

Added -help and --help to pcretest as an official way of being r
of the options.

13.

14,

15.

16.

17.

18.

19.

20.

21.

Removed some redundant semicolons after macro calls in pcrecppar
and pcrecpp.cc because they annoy compilers at high warning leve

A bit of tidying/refactoring in pcre_exec.c in the main bumpalon

Fixed an occurrence of == in configure.ac that should have been
scripts are not C programs :-) and which was not noticed because
on Linux.

pcretest is supposed to handle any length of pattern and data 1li
line or as a continued sequence of lines) by extending its input
necessary. This feature was broken for very long pattern lines,
a string of junk being passed to pcre_compile() if the pattern w
than about 50K.

I have done a major re-factoring of the way pcre_compile() compu
amount of memory needed for a compiled pattern. Previously, ther
that made a preliminary scan of the pattern in order to do this.
OK when PCRE was new, but as the facilities have expanded, it ha
harder and harder to keep it in step with the real compile phase
have been a number of bugs (see for example, 4 above). I have nc
cunning way of running the real compile function in a "fake" mod
enables it to compute how much memory it would need, while actua
ever using a few hundred bytes of working memory and without toc
tests of the mode. This should make future maintenance and devel
easier. A side effect of this work is that the limit of 200 on t
depth of parentheses has been removed (though this was never a s
limitation, I suspect). However, there is a downside: pcre_compi
runs more slowly than before (30% or more, depending on the patt
hope this isn't a big issue. There is no effect on runtime perfc

Fixed a minor bug in pcretest: if a pattern line was not termina
newline (only possible for the last line of a file) and it was a
pattern that set a locale (followed by /Lsomething), pcretest cr

Added additional timing features to pcretest. (1) The -tm option
matching only, not compiling. (2) Both -t and -tm can be followe
separate command line item, by a number that specifies the numbe
repeats to use when timing. The default is 50000; this gives bet
precision, but takes uncomfortably long for very large patterns.

Extended pcre_study() to be more clever in cases where a branch
subpattern has no definite first character. For example, (a*|b*)
previously give no result from pcre_study(). Now it recognizes t
first character must be a, b, c, or d.

There was an incorrect error "recursive call could loop indefini
a subpattern (or the entire pattern) that was being tested for m
empty string contained only one non-empty item after a nested su
For example, the pattern (?>\x{100}*)\d(?R) provoked this error

22,

23.

24,

25,

26.

27.

28.

29.

30.

31.

32.

33.

incorrectly, because the \d was being skipped in the check.

The pcretest program now has a new pattern option /B and a comma
option -b, which is equivalent to adding /B to every pattern. Th
it to show the compiled bytecode, without the additional informa
-d shows. The effect of -d is now the same as -b with -i (and si
is the same as /B/I).

A new optimization is now able automatically to treat some seque
as a*b as a*+b. More specifically, if something simple (such as
or a simple class like \d) has an unlimited quantifier, and is f
something that cannot possibly match the quantified thing, the ¢
is automatically "possessified".

A recursive reference to a subpattern whose number was greater t
went wrong under certain circumstances in UTF-8 mode. This bug c
have affected the operation of pcre_study().

Realized that a little bit of performance could be had by replac
(c & OxcO) == OxcO with ¢ >= OxcO when processing UTF-8 characte

Timing data from pcretest is now shown to 4 decimal places inste

Possessive quantifiers such as a++ were previously implemented b
them into atomic groups such as ($>a+). Now they have their own
which improves performance. This includes the automatically crea
from 23 above.

A pattern such as (?=(\w+))\1: which simulates an atomic group U
lookahead was broken if it was not anchored. PCRE was mistakenly
the first matched character to be a colon. This applied both to
numbered groups.

The ucpinternal.h header file was missing its idempotency #ifdef

I was sent a "project" file called libpcre.a.dev which I underst
building PCRE on Windows easier, so I have included it in the di

There is now a check in pcretest against a ridiculously large nu
returned by pcre_exec() or pcre_dfa_exec(). If this happens in a
loop, the loop is abandoned.

Forward references to subpatterns in conditions such as (?(2)...
subpattern 2 is defined later cause pcre_compile() to search for
the pattern for the relevant set of parentheses. This search wen
when there were unescaped parentheses in a character class, pare
escaped with \Q...\E, or parentheses in a #-comment in /X mode.

"Subroutine" calls and backreferences were previously restricted
referencing subpatterns earlier in the regex. This restriction h

34.

35.

36.

37.

38.

been removed.

Added a number of extra features that are going to be in Perl 5.
whole, these are just syntactic alternatives for features that F
previously implemented using the Python syntax or my own inventi
other formats are all retained for compatibility.

(a) Named groups can now be defined as (?<name>...) or (?'name'.
as (?P<name>...). The new forms, as well as being in Perl 5.
also .NET compatible.

(b) A recursion or subroutine call to a named group can now be d
(?&name;) as well as (?P>name).

(c) A backreference to a named group can now be defined as \k<na
\k'name' as well as (?P=name). The new forms, as well as bei
5.10, are also .NET compatible.

(d) A conditional reference to a named group can now use the syn
(?(<name>) or (?('name') as well as (?(name).

(e) A "conditional group" of the form (?(DEFINE)...) can be used
groups (named and numbered) that are never evaluated inline,
called as "subroutines" from elsewhere. In effect, the DEFIN
is always false. There may be only one alternative in such a

(f) A test for recursion can be given as (?(R1).. or (?(R&name;)
as the simple (?(R). The condition is true only if the most
recursion is that of the given number or name. It does not s
through the entire recursion stack.

(g) The escape \gN or \g{N} has been added, where N is a positiv
negative number, specifying an absolute or relative referenc

Tidied to get rid of some further signed/unsigned compiler warni
some "unreachable code" warnings.

Updated the Unicode property tables to Unicode version 5.0.0. An
things, this adds five new scripts.

Perl ignores orphaned \E escapes completely. PCRE now does the s
There were also incompatibilities regarding the handling of \Q..
character classes, for example with patterns like [\Qa\E-\Qz\E]

hyphen was adjacent to \Q or \E. I hope I've cleared all this up

Like Perl, PCRE detects when an indefinitely repeated parenthesi
matches an empty string, and forcibly breaks the loop. There wer
this code in non-simple cases. For a pattern such as A(a()*)*

against aaaa the result was just "a" rather than "aaaa", for e€
separate and independent bugs (that affected different cases) ha

39.

40.

41.

42.

43.

44,

45,

46.

fixed.

Refactored the code to abolish the use of different opcodes for
capturing bracket numbers. This is a tidy that I avoided doing w
removed the limit on the number of capturing brackets for 3.5 ba
The new approach is not only tidier, it makes it possible to red
memory needed to fix the previous bug (38).

Implemented PCRE_NEWLINE_ANY to recognize any of the Unicode new
sequences (http://unicode.org/unicode/reports/tr18/) as '"newline
processing dot, circumflex, or dollar metacharacters, or #-comme
mode.

Add \R to match any Unicode newline sequence, as suggested in th
report.

Applied patch, originally from Ari Pollak, modified by Google, t
copy construction and assignment in the C++ wrapper.

Updated pcregrep to support "--newline=any". In the process, I f
couple of bugs that could have given wrong results in the "--new
case.

Added a number of casts and did some reorganization of signed/un
variables following suggestions from Dair Grant. Also renamed th
"this" as "item" because it is a C++ keyword.

Arranged for dftables to add

#include "pcre_internal.h"
to pcre_chartables.c because without it, gcc 4.x may remove the
definition from the final binary if PCRE is built into a static
dead code stripping is activated.
For an unanchored pattern, if a match attempt fails at the start

newline sequence, and the newline setting is CRLF or ANY, and th
characters are CRLF, advance by two characters instead of one.

Version 6.7 04-Jul-06

1.

2.

In order to handle tests when input lines are enormously long, p
been re-factored so that it automatically extends its buffers wh
necessary. The code is crude, but this _is_ just a test program.
default size has been increased from 32K to 50K.

The code in pcre_study() was using the value of the re argument
testing it for NULL. (Of course, in any sensible call of the fun

10.

11.

won't be NULL.)

The memmove() emulation function in pcre_internal.h, which is us
systems that lack both memmove() and bcopy() - that is, hardly e
was missing a '"static" storage class specifier.

. When UTF-8 mode was not set, PCRE looped when compiling certain

containing an extended class (one that cannot be represented by
because it contains high-valued characters or Unicode property i
[\pZ]). Almost always one would set UTF-8 mode when processing s
pattern, but PCRE should not loop if you do not (it no longer dc
[Detail: two cases were found: (a) a repeated subpattern contain
extended class; (b) a recursive reference to a subpattern that f
previous extended class. It wasn't skipping over the extended cl
correctly when UTF-8 mode was not set.]

. A negated single-character class was not being recognized as fix

in lookbehind assertions such as (?<=[Af]), leading to an incorr
compile error "lookbehind assertion is not fixed length".

The RunPerlTest auxiliary script was showing an unexpected diffe
between PCRE and Perl for UTF-8 tests. It turns out that it is h
write a Perl script that can interpret lines of an input file ei
byte characters or as UTF-8, which is what "perltest" was being
do for the non-UTF-8 and UTF-8 tests, respectively. Essentially
can't do is switch easily at run time between having the "use ut
or not. In the end, I fudged it by using the RunPerlTest script
"use utf8;" explicitly for the UTF-8 tests.

In multiline (/m) mode, PCRE was matching A after a terminating
the end of the subject string, contrary to the documentation and
Perl does. This was true of both matching functions. Now it matc
the start of the subject and immediately after *internal* newlin

. A call of pcre_fullinfo() from pcretest to get the option bits w

a pointer to an int instead of a pointer to an unsigned long int
caused problems on 64-bit systems.

. Applied a patch from the folks at Google to pcrecpp.cc, to fix "

instance of the 'standard' template library not being so standar

There was no check on the number of named subpatterns nor the ma
length of a subpattern name. The product of these values is used
the size of the memory block for a compiled pattern. By supplyin
long subpattern name and a large number of named subpatterns, th
computation could be caused to overflow. This is now prevented b
the length of names to 32 characters, and the number of named su
to 10,000.

Subpatterns that are repeated with specific counts have to be re

12,

13.

14,

15.

16.

17.

18.

19.

the compiled pattern. The size of memory for this was computed f
length of the subpattern and the repeat count. The latter is lin
65535, but there was no limit on the former, meaning that intege
could in principle occur. The compiled length of a repeated subp
now limited to 30,000 bytes in order to prevent this.

Added the optional facility to have named substrings with the sa

Added the ability to use a named substring as a condition, using
Python syntax: (?(name)yes|no). This overloads (?(R)... and name
are numbers (not recommended). Forward references are permitted.

Added forward references in named backreferences (if you see wha

In UTF-8 mode, with the PCRE_DOTALL option set, a quantified dot
pattern could run off the end of the subject. For example, the p
"(?s)(.{1,5})"8 did this with the subject "ab".

If PCRE_DOTALL or PCRE_MULTILINE were set, pcre_dfa_exec() behav
PCRE_CASELESS was set when matching characters that were quantif
or *.

A character class other than a single negated character that had
but no maximum quantifier - for example [ab]{6,} - was not handl
correctly by pce_dfa_exec(). It would match only one character.

A valid (though odd) pattern that looked like a POSIX character
class but used an invalid character after [(for example [[,abc,
pcre_compile() to give the error "Failed: internal error: code c
in some cases to crash with a glibc free() error. This could eve
the pattern terminated after [[but there just happened to be a
letters, a binary zero, and a closing] in the memory that follc

Perl's treatment of octal escapes in the range \400 to \777 has
over the years. Originally (before any Unicode support), just th
bits were taken. Thus, for example, \500 really meant \100. Nowa
output from "man perlunicode" includes this:

The regular expression compiler produces polymorphic opcodes.

is, the pattern adapts to the data and automatically switches

the Unicode character scheme when presented with Unicode data-
instead uses a traditional byte scheme when presented with byt
data.

Sadly, a wide octal escape does not cause a switch, and in a str
no other multibyte characters, these octal escapes are treated a
Thus, in Perl, the pattern /\500/ actually matches \100 but the
/\500|\x{1ff}/ matches \500 or \777 because the whole thing is t
Unicode string.

29.

21.

22,

23.

24,

25,

26.

27.

28.

I have not perpetrated such confusion in PCRE. Up till now, it t
the bottom 8 bits, as in old Perl. I have now made octal escapes
values greater than \377 illegal in non-UTF-8 mode. In UTF-8 mod
translate to the appropriate multibyte character.

Applied some refactoring to reduce the number of warnings from V
and Borland compilers. This has included removing the fudge intr
seven years ago for the 0S/2 compiler (see 2.02/2 below) because
a warning about an unused variable.

PCRE has not included VT (character 0x0b) in the set of whitespa
characters since release 4.0, because Perl (from release 5.004)

[Or at least, is documented not to: some releases seem to be in

with the documentation.] However, when a pattern was studied wit
pcre_study() and all its branches started with \s, PCRE still in
as a possible starting character. Of course, this did no harm; i
caused an unnecessary match attempt.

Removed a now-redundant internal flag bit that recorded the fact
dependency changed within the pattern. This was once needed for
byte" processing, but is no longer used. This recovers a now-sca
bit. Also moved the least significant internal flag bit to the n
significant bit of the word, which was not previously used (hang
the days when it was an int rather than a uint) to free up anoth
the future.

Added support for CRLF line endings as well as CR and LF. As wel
default being selectable at build time, it can now be changed at
via the PCRE_NEWLINE_xxx flags. There are now options for pcregr
specify that it is scanning data with non-default line endings.

Changed the definition of CXXLINK to make it agree with the defi
LINK in the Makefile, by replacing LDFLAGS to CXXFLAGS.

Applied Ian Taylor's patches to avoid using another stack frame
recursions. This makes a big different to stack usage for some p

If a subpattern containing a named recursion or subroutine refer
as (?P>B) was quantified, for example (xxx(?P>B)){3}, the calcul
the space required for the compiled pattern went wrong and gave
value. Depending on the environment, this could lead to "Failed:
error: code overflow at offset 49" or '"glibc detected double fre
corruption" errors.

Applied patches from Google (a) to support the new newline modes
advance over multibyte UTF-8 characters in GlobalReplace.

Change free() to pcre_free() in pcredemo.c. Apparently this make
difference for some implementation of PCRE in some Windows versi

29. Added some extra testing facilities to pcretest:

\g<number> in a data line sets the "match limit" value
\Q<number> in a data line sets the "match recursion limt" valu
-S <number> sets the stack size, where <number> is in megabytes

The -S option isn't available for Windows.

Version 6.6 06-Feb-06

1. Change 16(a) for 6.5 broke things, because PCRE_DATA_SCOPE was n
in pcreposix.h. I have copied the definition from pcre.h.

2. Change 25 for 6.5 broke compilation in a build directory out-of-
because pcre.h is no longer a built file.

3. Added Jeff Friedl's additional debugging patches to pcregrep. Th
not normally included in the compiled code.

Version 6.5 01-Feb-06

1. When using the partial match feature with pcre_dfa_exec(), it wa
anchoring the second and subsequent partial matches at the new s
point. This could lead to incorrect results. For example, with t
/1234/, partially matching against "123" and then "a4" gave a ma

2. Changes to pcregrep:

(a) All non-match returns from pcre_exec() were being treated as
to match the line. Now, unless the error is PCRE_ERROR_NOMAT
error message is output. Some extra information is given for
PCRE_ERROR_MATCHLIMIT and PCRE_ERROR_RECURSIONLIMIT errors,
probably the only errors that are likely to be caused by use
specifying a regex that has nested indefinite repeats, for i
If there are more than 20 of these errors, pcregrep is aband

(b) A binary zero was treated as data while matching, but termin
output line if it was written out. This has been fixed: bina
are now no different to any other data bytes.

(c) Whichever of the LC_ALL or LC_CTYPE environment variables 1is
used to set a locale for matching. The --locale=xxxx long op
been added (no short equivalent) to specify a locale explici
pcregrep command, overriding the environment variables.

(d) When -B was used with -n, some line numbers in the output we

3.

than they should have been.
(e) Added the -0 (--only-matching) option.

(f) If -A or -C was used with -c (count only), some lines of con
accidentally printed for the final match.

(g) Added the -H (--with-filename) option.

(h) The combination of options -rh failed to suppress file names
that were found from directory arguments.

(1) Added the -D (--devices) and -d (--directories) options.
(j) Added the -F (--fixed-strings) option.

(k) Allow "-" to be used as a file name for -f as well as for a
(1) Added the --colo(u)r option.

(m) Added Jeffrey Friedl's -S testing option, but within #ifdefs
is not present by default.

A nasty bug was discovered in the handling of recursive patterns
items such as (?R) or (?1), when the recursion could match a num
alternatives. If it matched one of the alternatives, but subsequ
outside the recursion, there was a failure, the code tried to ba
the recursion. However, because of the way PCRE is implemented,

possible, and the result was an incorrect result from the match.

In order to prevent this happening, the specification of recursi
been changed so that all such subpatterns are automatically trea
atomic groups. Thus, for example, (?R) is treated as if it were

I had overlooked the fact that, in some locales, there are chara
which isalpha() is true but neither isupper() nor islower() are
the fr_FR locale, for instance, the \XxAA and \xBA characters (or
and ordfeminine) are like this. This affected the treatment of \
when they appeared in character classes, but not when they appea
a character class. The bit map for "word" characters is now crea
separately from the results of isalnum() instead of just taking
upper, lower, and digit maps. (Plus the underscore character, of

. The above bug also affected the handling of POSIX character clas

[[:alpha:]] and [[:alnum:]]. These do not have their own bit map
permanent tables. Instead, the bit maps for such a class were pr
created as the appropriate unions of the upper, lower, and digit
Now they are created by subtraction from the [[:word:]] class, w
its own bitmap.

6.

7.

10.

11.

12,

13.

14,

The [[:blank:]] character class matches horizontal, but not vert
It is created by subtracting the vertical space characters (\x0¢
\x0b, \x0c) from the [[:space:]] bitmap. Previously, however, th
subtraction was done in the overall bitmap for a character class
that a class such as [\xOc[:blank:]] was incorrect because \x0c
be recognized. This bug has been fixed.

Patches from the folks at Google:

(a) pcrecpp.cc: "to handle a corner case that may or may not h
real life, but is still worth protecting against".

(b) pcrecpp.cc: "corrects a bug when negative radixes are used
regular expressions".

(c) pcre_scanner.cc: avoid use of std::count() because not all
have it.

(d) Split off pcrecpparg.h from pcrecpp.h and had the former b
"configure" and the latter not, in order to fix a problem some
with compiling the Arg class on HP-UX.

(e) Improve the error-handling of the C++ wrapper a little bit
(f) New tests for checking recursion limiting.

The pcre_memmove() function, which is used only if the environme
have a standard memmove() function (and is therefore rarely comp
contained two bugs: (a) use of int instead of size_t, and (b) it
returning a result (though PCRE never actually uses the result).

In the POSIX regexec() interface, if nmatch is specified as a ri
large number - greater than INT_MAX/(3*sizeof(int)) - REG_ESPACE
returned instead of calling malloc() with an overflowing number
most likely cause subsequent chaos.

The debugging option of pcretest was not showing the NO_AUTO_CAF
The POSIX flag REG_NOSUB is now supported. When a pattern that w
with this option is matched, the nmatch and pmatch options of re
ignored.

Added REG_UTF8 to the POSIX interface. This is not defined by PC
provided in case anyone wants to the the POSIX interface with UT
strings.

Added CXXLDFLAGS to the Makefile parameters to provide settings
C++ linking (needed for some HP-UX environments).

Avoid compiler warnings in get_ucpname() when compiled without U

15.

16.

17.

18.

(unused parameter) and in the pcre_printint() function (omitted
switch label when the default is to do nothing).

Added some code to make it possible, when PCRE is compiled as a
library, to replace subject pointers for pcre_exec() with a smar
class, thus making it possible to process discontinuous strings.

The two macros PCRE_EXPORT and PCRE_DATA_SCOPE are confusing, an
much the same function. They were added by different people who
to make PCRE easy to compile on non-Unix systems. It has been su
that PCRE_EXPORT be abolished now that there is more automatic a
for compiling on Windows systems. I have therefore replaced it w
PCRE_DATA_SCOPE. This is set automatically for Windows; if not s
defaults to "extern" for C or "extern C" for C++, which works fi
Unix-like systems. It is now possible to override the value of F
SCOPE with something explicit in config.h. In addition:

(a) pcreposix.h still had just "extern" instead of either of the
I have replaced it with PCRE_DATA_SCOPE.

(b) Functions such as _pcre_xclass(), which are internal to the
but external in the C sense, all had PCRE_EXPORT in their de
This is apparently wrong for the Windows case, so I have rern
(It makes no difference on Unix-like systems.)

Added a new limit, MATCH_LIMIT_RECURSION, which limits the depth
of recursive calls to match(). This is different to MATCH_LIMIT
that limits the total number of calls to match(), not all of whi
the depth of recursion. Limiting the recursion depth limits the
stack (or heap if NO_RECURSE is set) that is used. The default c
when PCRE is compiled, and changed at run time. A patch from Goc
this functionality to the C++ interface.

Changes to the handling of Unicode character properties:
(a) Updated the table to Unicode 4.1.0.
(b) Recognize characters that are not in the table as "Cn" (unde

(c) I revised the way the table is implemented to a much improve
which includes recognition of ranges. It now supports the ra
are defined in UnicodeData.txt, and it also amalgamates othe
characters into ranges. This has reduced the number of entri
table from around 16,000 to around 3,000, thus reducing its
considerably. I realized I did not need to use a tree struct
all - a binary chop search is just as efficient. Having redu
number of entries, I extended their size from 6 bytes to 8 b
allow for more data.

(d) Added support for Unicode script names via properties such a

19.

20.

21,

22,

23.

24,

25,

26.

In UTF-8 mode, a backslash followed by a non-Ascii character was
matching that character.

When matching a repeated Unicode property with a minimum greater
(for example \pL{2,}), PCRE could look past the end of the subje
reached it while seeking the minimum number of characters. This
happen only if some of the characters were more than one byte lc
there is a check for at least the minimum number of bytes.

Refactored the implementation of \p and \P so as to be more gene
allow for more different types of property in future. This has c
compiled form incompatibly. Anybody with saved compiled patterns
\p or \P will have to recompile them.

Added "Any" and "L&" to the supported property types.

Recognize \x{...} as a code point specifier, even when not in UT
but give a compile time error if the value is greater than Oxff.

The man pages for pcrepartial, pcreprecompile, and pcre_compile?2
accidentally not being installed or uninstalled.

The pcre.h file was built from pcre.h.in, but the only changes t
made were to insert the current release number. This seemed sill
it made things harder for people building PCRE on systems that d
"configure". I have turned pcre.h into a distributed file, no lc
by "configure", with the version identification directly include
no longer a pcre.h.in file.

However, this change necessitated a change to the pcre-config sc
well. It is built from pcre-config.in, and one of the substituti
release number. I have updated configure.ac so that ./configure
the release number by grepping pcre.h.

Added the ability to run the tests under valgrind.

Version 6.4 05-Sep-05

2.

3.

Change 6.0/10/(1) to pcregrep introduced a bug that caused separ
"--" to be printed when multiple files were scanned, even when n
-A, -B, or -C options were used. This is not compatible with Gnu
consider it to be a bug, and have restored the previous behaviou

A couple of code tidies to get rid of compiler warnings.

The pcretest program used to cheat by referring to symbols in th
whose names begin with _pcre_. These are internal symbols that a

really supposed to be visible externally, and in some environmen
possible to suppress them. The cheating is now confined to inclu
certain files from the library's source, which is a bit cleaner.

4. Renamed pcre.in as pcre.h.in to go with pcrecpp.h.in; it also ma
file's purpose clearer.

5. Reorganized pcre_ucp_findchar().

Version 6.3 15-Aug-05

1. The file libpcre.pc.in did not have general read permission in t
2. There were some problems when building without C++ support:

(a) If C++ support was not built, "make install" and "make test"
tried to test it.

(b) There were problems when the value of CXX was explicitly set
changes have been made to try to fix these, and

(c) --disable-cpp can now be used to explicitly disable C++ supp

(d) The use of @CPP_OBJ@ directly caused a blank line preceded b
backslash in a target when C++ was disabled. This confuses s
versions of "make", apparently. Using an intermediate variak
this. (Same for CPP_LOBJ.)

3. $(LINK _FOR_BUILD) now includes $(CFLAGS_FOR_BUILD) and $(LINK)
(non-Windows) now includes $(CFLAGS) because these flags are sor
necessary on certain architectures.

4. Added a setting of -export-symbols-regex to the link command to
those symbols that are exported in the C sense, but actually are
within the library, and not documented. Their names all begin wi
"_pcre_". This is not a perfect job, because (a) we have to exce
symbols that pcretest ("illegally") uses, and (b) the facility i
available (and never for static libraries). I have made a note t
find a way round (a) in the future.

Version 6.2 01-Aug-05

1. There was no test for integer overflow of quantifier values. A c
such as {11111211111111111} would give undefined results. What is
a minimum quantifier for a parenthesized subpattern overflowed a
negative, the calculation of the memory size went wrong. This cc

led to memory overwriting.

Building PCRE using VPATH was broken. Hopefully it is now fixed.

. Added "b" to the 2nd argument of fopen() in dftables.c, for non-

operating environments where this matters.

. Applied Giuseppe Maxia's patch to add additional features for cc

PCRE options from within the C++ wrapper.

Named capturing subpatterns were not being correctly counted whe
was compiled. This caused two problems: (a) If there were more t
such subpatterns, the calculation of the memory needed for the w
compiled pattern went wrong, leading to an overflow error. (b) N
back references of the form \12, where the number was greater th
not recognized as back references, even though there were suffic
previous subpatterns.

Two minor patches to pcrecpp.cc in order to allow it to compile
versions of gcc, e.g. 2.95.4.

Version 6.1 21-Jun-05

3.

There was one reference to the variable "posix" in pcretest.c th
surrounded by "#if !defined NOPOSIX".

Make it possible to compile pcretest without DFA support, UTF8 s
the cross-check on the old pcre_info() function, for the benefit
cut-down version of PCRE that is currently imported into Exim.

A (silly) pattern starting with (?1i)(?-1i) caused an internal spa
allocation error. I've done the easy fix, which wastes 2 bytes f
patterns that start (?i) but I don't think that matters. The use
just an example; this all applies to the other options as well.

Since libtool seems to echo the compile commands it is issuing,
from "make" can be reduced a bit by putting "@" in front of each
compile command.

Patch from the folks at Google for configure.in to be a bit more
in checking for a suitable C++ installation before trying to con
C++ stuff. This should fix a reported problem when a compiler wa
but no suitable headers.

The man pages all had just "PCRE" as their title. I have changed
be the relevant file name. I have also arranged that these names
retained in the file doc/pcre.txt, which is a concatenation in t
of all the man pages except the little individual ones for each

7. The NON-UNIX-USE file had not been updated for the different set
files that come with release 6. I also added a few comments abou
wrapper.

Version 6.0 07-Jun-05

1. Some minor internal re-organization to help with my DFA experime

2. Some missing #ifdef SUPPORT_UCP conditionals in pcretest and pri
didn't matter for the library itself when fully configured, but
when compiling without UCP support, or within Exim, where the uc
not imported.

3. Refactoring of the library code to split up the various function
different source modules. The addition of the new DFA matching c
below) to a single monolithic source would have made it really t
unwieldy, quite apart from causing all the code to be include in
statically linked application, when only some functions are used
relevant even without the DFA addition now that patterns can be
one application and matched in another.

The downside of splitting up is that there have to be some exter
functions and data tables that are used internally in different
the library but which are not part of the API. These have all ha
names changed to start with "_pcre_" so that they are unlikely t
with other external names.

4. Added an alternate matching function, pcre_dfa_exec(), which mat
a different (DFA) algorithm. Although it is slower than the orig
function, it does have some advantages for certain types of matc
problem.

5. Upgrades to pcretest in order to test the features of pcre_dfa_e
including restarting after a partial match.

6. A patch for pcregrep that defines INVALID_FILE ATTRIBUTES if it
defined when compiling for Windows was sent to me. I have put it
code, though I have no means of testing or verifying it.

7. Added the pcre_refcount() auxiliary function.

8. Added the PCRE_FIRSTLINE option. This constrains an unanchored p
match before or at the first newline in the subject string. In p
the /f option on a pattern can be used to set this.

9. A repeated \w when used in UTF-8 mode with characters greater th
would behave wrongly. This has been present in PCRE since releas

10. A number of changes to the pcregrep command:

(a)

(b)
(c)

(d)
(e)

(f)

(9)

(h)
(1)

(3)

(k)

(1)

(m)

Refactored how -x works; insert A(...)$ instead of setting
PCRE_ANCHORED and checking the length, in preparation for ad
something similar for -w.

Added the -w (match as a word) option.

Refactored the way lines are read and buffered so as to have
than one at a time available.

Implemented a pcregrep test script.

Added the -M (multiline match) option. This allows patterns
over several lines of the subject. The buffering ensures tha
8K, or the rest of the document (whichever is the shorter) i
for matching (and similarly the previous 8K for lookbehind a

Changed the --help output so that it now says
-w, --word-regex(p)

instead of two lines, one with "regex" and the other with "r
because that confused at least one person since the short fc
same. (This required a bit of code, as the output is generat
automatically from a table. It wasn't just a text change.)

-- can be used to terminate pcregrep options if the next thi
option but starts with a hyphen. Could be a pattern or a pat
starting with a hyphen, for instance.

"-" can be given as a file name to represent stdin.

When file names are being printed, "(standard input)" is use
the standard input, for compatibility with GNU grep. Previou
"<stdin>" was used.

The option --label=xxx can be used to supply a name to be us
stdin when file names are being printed. There is no short f

Re-factored the options decoding logic because we are going
two more options that take data. Such options can now be giv
different ways, e.g. "-fname", "-f name", "--file=name", "--

Added the -A, -B, and -C options for requesting that lines ¢
around matches be printed.

Added the -L option to print the names of files that do not
any matching lines, that is, the complement of -1.

11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

(n) The return code is 2 if any file cannot be opened, but pcreg
continue to scan other files.

(o) The -s option was incorrectly implemented. For compatibility
greps, it now suppresses the error message for a non-existen
accessible file (but not the return code). There is a new op
-q that suppresses the output of matching lines, which was w
previously doing.

(p) Added --include and --exclude options to specify files for i
and exclusion when recursing.

The Makefile was not using the Autoconf-supported LDFLAGS macro
Hopefully, it now does.

Missing cast in pcre_study().
Added an "uninstall" target to the makefile.

Replaced "extern" in the function prototypes in Makefile.in with
"PCRE_DATA_SCOPE", which defaults to 'extern' or 'extern "C"' in
world, but is set differently for Windows.

Added a second compiling function called pcre_compile2(). The on
difference is that it has an extra argument, which is a pointer
integer error code. When there is a compile-time failure, this i
non-zero, in addition to the error test pointer being set to poi
error message. The new argument may be NULL if no error number i
(but then you may as well call pcre_compile(), which is now just
wrapper). This facility is provided because some applications ne
numeric error indication, but it has also enabled me to tidy up
compile-time errors are handled in the POSIX wrapper.

Added VPATH=.libs to the makefile; this should help when buildin
prefix path and installing with another. (Or so I'm told by some
knows more about this stuff than I do.)

Added a new option, REG_DOTALL, to the POSIX function regcomp().
passes PCRE_DOTALL to the pcre_compile() function, making the ".
match everything, including newlines. This is not POSIX-compatib
somebody wanted the feature. From pcretest it can be activated kb
both the P and the s flags.

AC_PROG_LIBTOOL appeared twice in Makefile.in. Removed one.
libpcre.pc was being incorrectly installed as executable.

A couple of places in pcretest check for end-of-line by looking
it now also looks for '\r' so that it will work unmodified on Wi

21. Added Google's contributed C++ wrapper to the distribution.

22. Added some untidy missing memory free() calls in pcretest, to ke
Electric Fence happy when testing.

Version 5.0 13-Sep-04

1. Internal change: literal characters are no longer packed up intc
containing multiple characters in a single byte-string. Each cha
is now matched using a separate opcode. However, there may be mc
byte in the character in UTF-8 mode.

2. The pcre_callout_block structure has two new fields: pattern_pos
next_item_length. These contain the offset in the pattern to the
item, and its length, respectively.

3. The PCRE_AUTO_CALLOUT option for pcre_compile() requests the aut
insertion of callouts before each pattern item. Added the /C opt
pcretest to make use of this.

4. On the advice of a Windows user, the lines

#if defined(_WIN32) || defined(WIN32)
_setmode(_fileno(stdout), Ox8000);
#endif /* defined(_WIN32) || defined(WIN32) */

have been added to the source of pcretest. This apparently does
magic in relation to line terminators.

5. Changed "r" and "w" in the calls to fopen() in pcretest to "rb"
for the benefit of those environments where the "b" makes a diff

6. The icc compiler has the same options as gcc, but "configure" dc
to know about it. I have put a hack into configure.in that adds
to set GCC=yes if CC=icc. This seems to end up at a point in the
generated configure script that is early enough to affect the se
compiler options, which is what is needed, but I have no means c
whether it really works. (The user who reported this had patched
generated configure script, which of course I cannot do.)

LATER: After change 22 below (new libtool files), the configure
seems to know about icc (and also ecc). Therefore, I have commen
this hack in configure.in.

7. Added support for pkg-config (2 patches were sent in).

10.

11.

12,

13.

14,

15.

16.

17.

18.

19.

Negated POSIX character classes that used a combination of inter
were completely broken. These were [[:7Malpha:]], [[:"alnum:]], a
[[:Mascii]]. Typically, they would match almost any characters.
POSIX classes were not broken in this way.

Matching the pattern "\b.*?" against "ab cd", starting at offset
to find the match, as PCRE was deluded into thinking that the ma
start at the start point or following a newline. The same bug ap
patterns with negative forward assertions or any backward assert
preceding ".*" at the start, unless the pattern required a fixed
character. This was a failing pattern: "(?!.bcd).*". The bug is

In UTF-8 mode, when moving forwards in the subject after a faile
starting at the last subject character, bytes beyond the end of
string were read.

Renamed the variable "class" as "classbits" to make life easier
users. (Previously there was a macro definition, but it apparent
enough.)

Added the new field "tables" to the extra data so that tables ca
in at exec time, or the internal tables can be re-selected. This
a compiled regex to be saved and re-used at a later time by a di
program that might have everything at different addresses.

Modified the pcre-config script so that, when run on Solaris, it
-R library as well as a -L library.

The debugging options of pcretest (-d on the command line or D ¢
pattern) showed incorrect output for anything following an exten
that contained multibyte characters and which was followed by a

Added optional support for general category Unicode character pr
via the \p, \P, and \X escapes. Unicode property support implies
support. It adds about 90K to the size of the library. The meani
inbuilt class escapes such as \d and \s have NOT been changed.

Updated pcredemo.c to include calls to free() to release the menm
compiled pattern.

The generated file chartables.c was being created in the source
instead of in the building directory. This caused the build to f
source directory was different from the building directory, and
read-only.

Added some sample Win commands from Mark Tetrode into the NON-UN
file. No doubt somebody will tell me if they don't make sense...
Dan Mooney's comments about building on OpenVMS.

Added support for partial matching via the PCRE_PARTIAL option f

20.

21,

22,

23.

24,

pcre_exec() and the \P data escape in pcretest.
Extended pcretest with 3 new pattern features:

(1) A pattern option of the form ">rest-of-line" causes pcrete
write the compiled pattern to the file whose name is '"rest
This is a straight binary dump of the data, with the saved
the character tables forced to be NULL. The study data, if
written too. After writing, pcretest reads a new pattern.

(ii) If, instead of a pattern, "<rest-of-line" is given, pcrete
compiled pattern from the given file. There must not be an
occurrences of "<" in the file name (pretty unlikely); if
pcretest will instead treat the initial "<" as a pattern d
After reading in the pattern, pcretest goes on to read dat
usual.

(1iii) The F pattern option causes pcretest to flip the bytes in
and 16-bit fields in a compiled pattern, to simulate a pat
was compiled on a host of opposite endianness.

The pcre-exec() function can now cope with patterns that were cc
hosts of opposite endianness, with this restriction:

As for any compiled expression that is saved and used later, t
pointer field cannot be preserved; the extra_data field in the
to pcre_exec() should be used to pass in a tables address if a
other than the default internal tables were used at compile ti

Calling pcre_exec() with a negative value of the "ovecsize" para
now diagnosed as an error. Previously, most of the time, a negat
would have been treated as zero, but if in addition "ovector" wa
NULL, a crash could occur.

Updated the files ltmain.sh, config.sub, config.guess, and acloc
new versions from the libtool 1.5 distribution (the last one is
a file called libtool.m4). This seems to have fixed the need to
"configure" to support Darwin 1.3 (which I used to do). However,
had to patch ltmain.sh to ensure that ${SED} is set (it isn't on
workstation).

Changed the PCRE licence to be the more standard "BSD" licence.

Version 4.5 01-Dec-03

1.

There has been some re-arrangement of the code for the match() f
that it can be compiled in a version that does not call itself r
Instead, it keeps those local variables that need separate insta

each "recursion" in a frame on the heap, and gets/frees frames w
needs to "recurse". Keeping track of where control must go is dc
of setjmp/longjmp. The whole thing is implemented by a set of ma
hide most of the details from the main code, and operates only i
NO_RECURSE is defined while compiling pcre.c. If PCRE is built u
"configure" mechanism, "--disable-stack-for-recursion" turns on
operating.

To make it easier for callers to provide specially tailored get/
functions for this usage, two new functions, pcre_stack_malloc,
pcre_stack_free, are used. They are always called in strict stac
and the size of block requested is always the same.

The PCRE_CONFIG_STACKRECURSE info parameter can be used to find
PCRE has been compiled to use the stack or the heap for recursic
-C option of pcretest uses this to show which version is compile

A new data escape \S, is added to pcretest; it causes the amount
obtained and freed by both kinds of malloc/free at match time tc
to the output.

Changed the locale test to use "fr_FR" instead of "fr" because t
what's available on my current Linux desktop machine.

. When matching a UTF-8 string, the test for a valid string at the
been extended. If start_offset is not zero, PCRE now checks that
to a byte that is the start of a UTF-8 character. If not, it ret
PCRE_ERROR_BADUTF8_OFFSET (-11). Note: the whole string is still
this is necessary because there may be backward assertions in th
When matching the same subject several times, it may save resour
PCRE_NO_UTF8_CHECK on all but the first call if the string is lc

The code for checking the validity of UTF-8 strings has been tig
that it rejects (a) strings containing 0xfe or Oxff bytes and (b
containing "overlong sequences".

Fixed a bug (appearing twice) that I could not find any way of e
I had written "if ((digitab[*p++] && chtab_digit) == 0)" where t
should have been "&", but it just so happened that all the cases
through by mistake were picked up later in the function.

I had used a variable called "isblank" - this is a C99 function,
some compilers to warn. To avoid this, I renamed it (as '"blankcl

Cosmetic: (a) only output another newline at the end of pcretest
prompting; (b) run "./pcretest /dev/null" at the start of the te
so the version is shown; (c) stop "make test" echoing "./RunTest

. Added patches from David Burgess to enable PCRE to run on EBCDIC

10.

11.

12,

13.

14,

15.

16.

The prototype for memmove() for systems that don't have it was u
size_t, but the inclusion of the header that defines size_t was
moved the #includes for the C headers earlier to avoid this.

Added some adjustments to the code to make it easier to compiler
special systems:

(a) Some "const" qualifiers were missing.

(b) Added the macro EXPORT before all exported functions; by d
is defined to be empty.

(c) Changed the dftables auxiliary program (that builds charta
that it reads its output file name as an argument instead
to the standard output and assuming this can be redirected

In UTF-8 mode, if a recursive reference (e.g. (?1)) followed a c
class containing characters with values greater than 255, PCRE c
went into a loop.

A recursive reference to a subpattern that was within another su
that had a minimum quantifier of zero caused PCRE to crash. For
(x(y(?2))z)? provoked this bug with a subject that got as far as
recursion. If the recursively-called subpattern itself had a zer
that was OK.

In pcretest, the buffer for reading a data line was set at 30K,
buffer into which it was copied (for escape processing) was stil
1024, so long lines caused crashes.

A pattern such as /[ab]{1,3}+/ failed to compile, giving the err
"internal error: code overflow...". This applied to any characte
that was followed by a possessive quantifier.

Modified the Makefile to add libpcre.la as a prerequisite for
libpcreposix.la because I was told this is needed for a parallel
work.

If a pattern that contained .* following optional items at the s
studied, the wrong optimizing data was generated, leading to mat
errors. For example, studying /[ab]*.*c/ concluded, erroneously,
matching string must start with a or b or c. The correct conclus
this pattern is that a match can start with any character.

Version 4.4 13-Aug-03

In UTF-8 mode, a character class containing characters with valu
127 and 255 was not handled correctly if the compiled pattern wa
In fixing this, I have also improved the studying algorithm for
classes (slightly).

2. Three internal functions had redundant arguments passed to them.
might give a very teeny performance improvement.

3. Documentation bug: the value of the capture_top field in a callc
more than* the number of the hightest numbered captured substrin

4. The Makefile linked pcretest and pcregrep with -lpcre, which cou
in incorrectly linking with a previously installed version. They
explicitly with libpcre.la.

5. configure.in no longer needs to recognize Cygwin specially.
6. A problem in pcre.in for Windows platforms is fixed.

7. If a pattern was successfully studied, and the -d (or /D) flag w
pcretest, it used to include the size of the study block as part
output. Unfortunately, the structure contains a field that has a
size on different hardware architectures. This meant that the te
showed this size failed. As the block is currently always of a f
this information isn't actually particularly useful in pcretest
I have just removed it.

8. Three pre-processor statements accidentally did not start in col
Sadly, there are *still* compilers around that complain, even th
standard C has not required this for well over a decade. Sigh.

9. In pcretest, the code for checking callouts passed small integer
callout_data field, which is a void * field. However, some picky
complained about the casts involved for this on 64-bit systems.
pcretest passes the address of the small integer instead, which
rid of the warnings.

10. By default, when in UTF-8 mode, PCRE now checks for valid UTF-8
both compile and run time, and gives an error if an invalid UTF-
is found. There is a option for disabling this check in cases wh
string is known to be correct and/or the maximum performance is

11. In response to a bug report, I changed one line in Makefile.in f
-W1, --out-implib, .1ibs/1ib@WIN_PREFIX@pcreposix.dll.a \
0 -W1l, --out-implib, .1ibs/@WIN_PREFIX@libpcreposix.dll.a \

to look similar to other lines, but I have no way of telling whe

is the right thing to do, as I do not use Windows. No doubt I'll
if it's wrong...

Version 4.3 21-May-03

1. Two instances of @WIN_PREFIX@ omitted from the Windows targets in
Makefile.

2. Some refactoring to improve the quality of the code:
(1) The utf8_table... variables are now declared "const".

(ii) The code for \cx, which used the "case flipping" table to u
lower case letters, now just substracts 32. This is ASCII-s
but the whole concept of \cx is ASCII-specific, so it seems
reasonable.

(iii) PCRE was using its character types table to recognize decinm
hexadecimal digits in the pattern. This is silly, because i
only 0-9, a-f, and A-F, but the character types table is lc
specific, which means strange things might happen. A privat
table is now used for this - though it costs 256 bytes, a t
much faster than multiple explicit tests. Of course, the st
character types table is still used for matching digits in
strings against \d.

(iv) Strictly, the identifier ESC_t is reserved by POSIX (all id
ending in _t are). So I've renamed it as ESC_tee.

3. The first argument for regexec() in the POSIX wrapper should have
defined as "const".

4. Changed pcretest to use malloc() for its buffers so that they can
Electric Fenced for debugging.

5. There were several places in the code where, in UTF-8 mode, PCRE
to read one or more bytes before the start of the subject string.
had no effect on PCRE's behaviour, but in some circumstances it c
provoke a segmentation fault.

6. A lookbehind at the start of a pattern in UTF-8 mode could also c
to try to read one or more bytes before the start of the subject

7. A lookbehind in a pattern matched in non-UTF-8 mode on a PCRE con
UTF-8 support could misbehave in various ways if the subject stri
contained bytes with the 0x80 bit set and the 0x40 bit unset in a
area. (PCRE was not checking for the UTF-8 mode flag, and trying
back over UTF-8 characters.)

Version 4.2 14-Apr-03

1. Typo "#if SUPPORT_UTF8" instead of "#ifdef SUPPORT_UTF8" fixed.

2. Changes to the building process, supplied by Ronald Landheer-Cies
[ON_WINDOWS]: new variable, "#" on non-Windows platforms
[NOT_ON_WINDOWS]: new variable, "#" on Windows platforms
[WIN_PREFIX]: new variable, '"cyg" for Cygwin
* Makefile.in: use autoconf substitution for OBJEXT, EXEEXT, BU
and BUILD_EXEEXT

Note: automatic setting of the BUILD variables is not yet worki

set CPPFLAGS and BUILD_CPPFLAGS (but don't use yet) - should be
compile-time but not at link-time

[LINK]: use for linking executables only

make different versions for Windows and non-Windows

[LINKLIB]: new variable, copy of UNIX-style LINK, used for 1link
libraries

[LINK_FOR_BUILD]: new variable

[OBJEXT]: use throughout

[EXEEXT]: use throughout

<winshared>: new target

<wininstall>: new target

<dftables.o>: use native compiler

<dftables>: use native linker

<install>: handle Windows platform correctly

<clean>: ditto

<check>: ditto

copy DLL to top builddir before testing

As part of these changes, -no-undefined was removed again. This w
to give trouble on HP-UX 11.0, so getting rid of it seems like a
in any case.

3. Some tidies to get rid of compiler warnings:

In the match_data structure, match_limit was an unsigned long i
match_call_count was an int. I've made them both unsigned long

In pcretest the fact that a const uschar * doesn't automaticall
a void * provoked a warning.

Turning on some more compiler warnings threw up some "shadow" v
and a few more missing casts.

4. If PCRE was complied with UTF-8 support, but called without the F
option, a class that contained a single character with a value be
and 255 (e.g. /[\xFF]/) caused PCRE to crash.

5. If PCRE was compiled with UTF-8 support, but called without the F
option, a class that contained several characters, but with at le
whose value was between 128 and 255 caused PCRE to crash.

Version 4.1 12-Mar-03

1. Compiling with gcc -pedantic found a couple of places where casts
needed, and a string in dftables.c that was longer than standard con
required to support.

2. Compiling with Sun's compiler found a few more places where the c
be tidied up in order to avoid warnings.

3. The variables for cross-compiling were called HOST_CC and HOST_CF
first of these names is deprecated in the latest Autoconf in favour
CC_FOR_BUILD, because "host" is typically used to mean the system on
compiled code will be run. I can't find a reference for HOST_CFLAGS,
analogy I have changed it to CFLAGS_FOR_BUILD.

4. Added -no-undefined to the linking command in the Makefile, becau
apparently helpful for Windows. To make it work, also added "-L. -1p
linking step for the pcreposix library.

5. PCRE was failing to diagnose the case of two named groups with th
name.

6. A problem with one of PCRE's optimizations was discovered. PCRE r
literal character that is needed in the subject for a match, and sca
ensure that it is present before embarking on the full matching proc
saves time in cases of nested unlimited repeats that are never going
Problem: the scan can take a lot of time if the subject is very 1long
megabytes), thus penalizing straightforward matches. It is now done
amount of subject to be scanned is less than 1000 bytes.

7. A lesser problem with the same optimization is that it was record
first character of an anchored pattern as "needed", thus provoking a
right along the subject, even when the first match of the pattern wa
fail. The "needed" character is now not set for anchored patterns, u
follows something in the pattern that is of non-fixed length. Thus,

fulfils its original purpose of finding quick non-matches in cases ¢
unlimited repeats, but isn't used for simple anchored patterns such

Version 4.0 17-Feb-03

1. If a comment in an extended regex that started immediately after
extended to the end of string, PCRE compiled incorrect data. This cc
all kinds of weird effects. Example: /#/ was bad; /()#/ was bad; /a#

2. Moved to autoconf 2.53 and libtool 1.4.2.

3. Perl 5.8 no longer needs "use utf8" for doing UTF-8 things. Conse
the special perltest8 script is no longer needed - all the tests can
from a single perltest script.

4. From 5.004, Perl has not included the VT character (0x0b) in the
by \s. It has now been removed in PCRE. This means it isn't recogniz
whitespace in /x regexes too, which is the same as Perl. Note that t
class [:space:] *does* include VT, thereby creating a mess.

5. Added the class [:blank:] (a GNU extension from Perl 5.8) to matc
space and tab.

6. Perl 5.005 was a long time ago. It's time to amalgamate the tests
its new features into the main test script, reducing the number of s

7. Perl 5.8 has changed the meaning of patterns like /a(?i)b/. Earli
were backward compatible, and made the (?i) apply to the whole patte
/1 were given. Now it behaves more logically, and applies the option
only to what follows. PCRE has been changed to follow suit. However,
finds options settings right at the start of the pattern, it extract
the global options, as before. Thus, they show up in the info data.

8. Added support for the \Q...\E escape sequence. Characters in betw
treated as literals. This is slightly different from Perl in that $
also handled as literals inside the quotes. In Perl, they will cause
interpolation. Note the following examples:

Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the content
\Qabc\$xyz\E abc\$xyz abc\$xyz

\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

For compatibility with Perl, \Q...\E sequences are recognized inside
classes as well as outside them.

9. Re-organized 3 code statements in pcretest to avoid "overflow in
floating-point constant arithmetic" warnings from a Microsoft compil
(size_t) cast to one statement in pcretest and one in pcreposix to a
signed/unsigned warnings.

10. Sun0S4 doesn't have strtoul(). This was used only for unpicking
option for pcretest, so I've replaced it by a simple function that d
that job.

11. pcregrep was ending with code 0 instead of 2 for the commands "p
"pcregrep -".

12. Added "possessive quantifiers" ?+, *+, ++, and {,}+ which come f
Java package. This provides some syntactic sugar for simple cases of

documentation calls "once-only subpatterns". A pattern such as x*+ i
as (?>x*). In other words, if what is inside (?>...) 1is just a singl
item, you can use this simplified notation. Note that only makes sen
greedy quantifiers. Consequently, the use of the possessive quantifi
greediness, whatever the setting of the PCRE_UNGREEDY option.

13. A change of greediness default within a pattern was not taking e
the current level for patterns like /(b+(?U)a+)/. It did apply to pa
subpatterns that followed. Patterns like /b+(?U)a+/ worked because t
was abstracted outside.

14. PCRE now supports the \G assertion. It is true when the current
position is at the start point of the match. This differs from \A wh
starting offset is non-zero. Used with the /g option of pcretest (or
code), it works in the same way as it does for Perl's /g option. If
alternatives of a regex begin with \G, the expression is anchored tc
match position, and the "anchored" flag is set in the compiled expre

15. Some bugs concerning the handling of certain option changes with
have been fixed. These applied to options other than (?ims). For exa
"a(?x: b c)d" did not match "XabcdY" but did match "Xa b c dyY". It
been the other way round. Some of this was related to change 7 above

16. PCRE now gives errors for /[.x.]/ and /[=x=]/ as unsupported POS
features, as Perl does. Previously, PCRE gave the warnings only for
and /[[=x=]]/. PCRE now also gives an error for /[:name:]/ because i
POSIX classes only within a class (e.g. /[[:alpha:]]/).

17. Added support for Perl's \C escape. This matches one byte, even
mode. Unlike ".", it always matches newline, whatever the setting of
PCRE_DOTALL. However, PCRE does not permit \C to appear in lookbehin
assertions. Perl allows it, but it doesn't (in general) work because
calculate the length of the lookbehind. At least, that's the case fc
5.8.0 - I've been told they are going to document that it doesn't wc
future.

18. Added an error diagnosis for escapes that PCRE does not support:
\L, \1, \N, \P, \p, \U, \u, and \X.

19. Although correctly diagnosing a missing ']' in a character class
reading past the end of the pattern in cases such as /[abcd/.

20. PCRE was getting more memory than necessary for patterns with cl
contained both POSIX named classes and other characters, e.g. /[[:sf

21. Added some code, conditional on #ifdef VPCOMPAT, to make life ea
compiling PCRE for use with Virtual Pascal.

22. Small fix to the Makefile to make it work properly if the build
outside the source tree.

23. Added a new extension: a condition to go with recursion. If a cc
subpattern starts with (?(R) the "true" branch is used if recursion
happened, whereas the "false" branch is used only at the top level.

24. When there was a very long string of literal characters (over 2tE
without UTF support, over 250 bytes with UTF support), the computati
much memory was required could be incorrect, leading to segfaults or
strange effects.

25. PCRE was incorrectly assuming anchoring (either to start of subj
start of line for a non-DOTALL pattern) when a pattern started with
there was a subsequent back reference to those brackets. This meant
example, /(.*)\d+\1/ failed to match "abc123bc". Unfortunately, it i
possible to check for precisely this case. All we can do is abandon
optimization if .* occurs inside capturing brackets when there are a
references whatsoever. (See below for a better fix that came later.)

26. The handling of the optimization for finding the first character
non-anchored pattern, and for finding a character that is required 1
match were failing in some cases. This didn't break the matching; it
failed to optimize when it could. The way this is done has been re-1i

27. Fixed typo in error message for invalid (?R item (it said "(?p")

28. Added a new feature that provides some of the functionality that
provides with (?{...}). The facility is termed a "callout". The way
in PCRE is for the caller to provide an optional function, by settin
pcre_callout to its entry point. Like pcre_malloc and pcre_free, thi
global variable. By default it is unset, which disables all calling
the function called, the regex must include (?C) at appropriate poin
is, in fact, equivalent to (?C0), and any number <= 255 may be given
This provides a means of identifying different callout points. When
reaches such a point in the regex, if pcre_callout has been set, the
function is called. It is provided with data in a structure called
pcre_callout_block, which is defined in pcre.h. If the function retu
matching continues; if it returns a non-zero value, the match at the
point fails. However, backtracking will occur if possible. [This was
later and other features added - see item 49 below.]

29. pcretest is upgraded to test the callout functionality. It provi
callout function that displays information. By default, it shows the
the match and the current position in the text. There are some new d
to vary what happens:

\C+ in addition, show current contents of captured subst
\C- do not supply a callout function
\C!n return 1 when callout number n is reached

\C!n!m return 1 when callout number n is reached for the mt

30. If pcregrep was called with the -1 option and just a single file
output "<stdin>" if a match was found, instead of the file name.

31. Improve the efficiency of the POSIX API to PCRE. If the number ¢
slots is less than POSIX_MALLOC_THRESHOLD, use a block on the stack
pcre_exec(). This saves a malloc/free per call. The default value of
POSIX_MALLOC_THRESHOLD is 10; it can be changed by --with-posix-mall
when configuring.

32. The default maximum size of a compiled pattern is 64K. There hav
few cases of people hitting this limit. The code now uses macros to
storing of links as offsets within the compiled pattern. It defaults
links, but this can be changed to 3 or 4 bytes by --with-link-size w
configuring. Tests 2 and 5 work only with 2-byte links because they
debugging information about compiled patterns.

33. Internal code re-arrangements:

(a) Moved the debugging function for printing out a compiled regex i
its own source file (printint.c) and used #include to pull it in
pcretest.c and, when DEBUG is defined, into pcre.c, instead of h
separate copies.

(b) Defined the list of op-code names for debugging as a macro 1in
internal.h so that it is next to the definition of the opcodes.

(c) Defined a table of op-code lengths for simpler skipping along cc
code. This is again a macro in internal.h so that it is next to
definition of the opcodes.

34. Added support for recursive calls to individual subpatterns, alc
lines of Robin Houston's patch (but implemented somewhat differently

35. Further mods to the Makefile to help Win32. Also, added code to
allow it to read and process whole directories in Win32. This code w
contributed by Lionel Fourquaux; it has not been tested by me.

36. Added support for named subpatterns. The Python syntax (?P<name>
used to name a group. Names consist of alphanumerics and underscores
be unique. Back references use the syntax (?P=name) and recursive ca
(?P>name) which is a PCRE extension to the Python extension. Groups
numbers. The function pcre_fullinfo() can be used after compilation
a name/number map. There are three relevant calls:

PCRE_INFO_NAMEENTRYSIZE yields the size of each entry in th
PCRE_INFO_NAMECOUNT yields the number of entries
PCRE_INFO_NAMETABLE yields a pointer to the map.

The map is a vector of fixed-size entries. The size of each entry de
the length of the longest name used. The first two bytes of each ent

group number, most significant byte first. There follows the corresg
name, zero terminated. The names are in alphabetical order.

37. Make the maximum literal string in the compiled code 250 for the
case instead of 255. Making it the same both with and without UTF-8
means that the same test output works with both.

38. There was a case of malloc(@) in the POSIX testing code in pcret
calling malloc() with a zero argument.

39. Change 25 above had to resort to a heavy-handed test for the .*
optimization. I've improved things by keeping a bitmap of backrefere
numbers 1-31 so that if .* occurs inside capturing brackets that are
fact referenced, the optimization can be applied. It is unlikely tha
relevant occurrence of .* (i.e. one which might indicate anchoring c
the match to follow \n) will appear inside brackets with a number gr
31, but if it does, any back reference > 31 suppresses the optimizat

40. Added a new compile-time option PCRE_NO_AUTO_CAPTURE. This has t
of disabling numbered capturing parentheses. Any opening parenthesis
not followed by ? behaves as if it were followed by ?: but named par
can still be used for capturing (and they will acquire numbers in th

way) .

41. Redesigned the return codes from the match() function into yes/n
that errors can be passed back from deep inside the nested calls. A
failure while inside a recursive subpattern call now causes the
PCRE_ERROR_NOMEMORY return instead of quietly going wrong.

42. It is now possible to set a limit on the number of times the mat
function is called in a call to pcre_exec(). This facility makes it
limit the amount of recursion and backtracking, though not in a dire
obvious way, because the match() function is used in a number of dif
circumstances. The count starts from zero for each position in the s
string (for non-anchored patterns). The default limit is, for compat
large number, namely 10 000 000. You can change this in two ways:

(a) When configuring PCRE before making, you can use --with-match-1i
to set a default value for the compiled library.

(b) For each call to pcre_exec(), you can pass a pcre_extra block in
a different value is set. See 45 below.

If the limit is exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.

43. Added a new function pcre_config(int, void *) to enable run-time
of things that can be changed at compile time. The first argument sp
what is wanted and the second points to where the information is to
The current list of available information is:

PCRE_CONFIG_UTF8

The output is an integer that is set to one if UTF-8 support is avai
otherwise it is set to zero.

PCRE_CONFIG_NEWLINE

The output is an integer that it set to the value of the code that i
newline. It is either LF (10) or CR (13).

PCRE_CONFIG_LINK_SIZE

The output is an integer that contains the number of bytes used for
linkage in compiled expressions. The value is 2, 3, or 4. See item 3

PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

The output is an integer that contains the threshold above which the
interface uses malloc() for output vectors. See item 31 above.

PCRE_CONFIG_MATCH_LIMIT

The output is an unsigned integer that contains the default limit of
of match() calls in a pcre_exec() execution. See 42 above.

44, pcretest has been upgraded by the addition of the -C option. Thi
to extract all the available output from the new pcre_config() funct
output it. The program then exits immediately.

45. A need has arisen to pass over additional data with calls to pcr
order to support additional features. One way would have been to def
pcre_exec2() (for example) with extra arguments, but this would not
extensible, and would also have required all calls to the original f
be mapped to the new one. Instead, I have chosen to extend the mecha
is used for passing in "extra" data from pcre_study().

The pcre_extra structure is now exposed and defined in pcre.h. It cu
contains the following fields:

flags a bitmap indicating which of the following fields ar

study_data opaque data from pcre_study()

match_limit a way of specifying a limit on match() calls for a s
call to pcre_exec()

callout_data data for callouts (see 49 below)

The flag bits are also defined in pcre.h, and are
PCRE_EXTRA_STUDY_DATA

PCRE_EXTRA_MATCH_LIMIT
PCRE_EXTRA_CALLOUT_DATA

The pcre_study() function now returns one of these new pcre_extra bl
the actual study data pointed to by the study_data field, and the
PCRE_EXTRA_STUDY_DATA flag set. This can be passed directly to pcre_
before. That is, this change is entirely upwards-compatible and requ
change to existing code.

If you want to pass in additional data to pcre_exec(), you can eithe
in a pcre_extra block provided by pcre_study(), or create your own g
block.

46. pcretest has been extended to test the PCRE_EXTRA_MATCH_LIMIT fe
data string contains the escape sequence \M, pcretest calls pcre_exe
times with different match limits, until it finds the minimum value
pcre_exec() to complete. The value is then output. This can be instr
most simple matches the number is quite small, but for pathological
gets very large very quickly.

47. There's a new option for pcre_fullinfo() called PCRE_INFO_STUDYS
returns the size of the data block pointed to by the study_data fiel
pcre_extra block, that is, the value that was passed as the argument
pcre_malloc() when PCRE was getting memory in which to place the inf
created by pcre_study(). The fourth argument should point to a size_
pcretest has been extended so that this information is shown after a
pcre_study() call when information about the compiled regex is being

48. Cosmetic change to Makefile: there's no need to have / after $(C
because what follows is always an absolute path. (Later: it turns ou
is more than cosmetic for MinGW, because it doesn't like empty path
components.)

49. Some changes have been made to the callout feature (see 28 above
(1) A callout function now has three choices for what it returns:
=> success, carry on matching

=> failure at this point, but backtrack if possible
=> serious error, return this value from pcre_exec()

[oNoNo]

>
<

Negative values should normally be chosen from the set of PCRE_
values. In particular, returning PCRE_ERROR_NOMATCH forces a st
"match failed" error. The error number PCRE_ERROR_CALLOUT is re
use by callout functions. It will never be used by PCRE itself.

(1ii) The pcre_extra structure (see 45 above) has a void * field call
callout_data, with corresponding flag bit PCRE_EXTRA_CALLOUT_DA
pcre_callout_block structure has a field of the same name. The
the field passed in the pcre_extra structure are passed to the
function in the corresponding field in the callout block. This
easier to use the same callout-containing regex from multiple t

testing, the pcretest program has a new data escape
\C*n pass the number n (may be negative) as callout_da

If the callout function in pcretest receives a non-zero value a
callout_data, it returns that value.

50. Makefile wasn't handling CFLAGS properly when compiling dftables
there were some redundant $(CFLAGS) in commands that are now specifi
$(LINK), which already includes $(CFLAGS).

51. Extensions to UTF-8 support are listed below. These all apply wh
has been compiled with UTF-8 support *and* pcre_compile() has been c
with the PCRE_UTF8 flag. Patterns that are compiled without that fla
one-byte characters throughout. Note that case-insensitive matching
only to characters whose values are less than 256. PCRE doesn't supg
notion of cases for higher-valued characters.

(1) A character class whose characters are all within 0-255 is han
a bit map, and the map is inverted for negative classes. Previ
character > 255 always failed to match such a class; however i
match if the class was a negative one (e.g. [Mab]). This has k&

(ii) A negated character class with a single character < 255 is cod
"not this character" (OP_NOT). This wasn't working properly wh
character was multibyte, either singly or repeated.

(1ii) Repeats of multibyte characters are now handled correctly in U
mode, for example: \x{100}{2,3}.

(iv) The character escapes \b, \B, \d, \D, \s, \S, \w, and \W (eith
singly or repeated) now correctly test multibyte characters. H
PCRE doesn't recognize any characters with values greater than
digits, spaces, or word characters. Such characters always mat
and \W, and never match \d, \s, or \w.

(v) Classes may now contain characters and character ranges with v
greater than 255. For example: [ab\x{100}-\x{400}].

(vi) pcregrep now has a --utf-8 option (synonym -u) which makes it
PCRE in UTF-8 mode.

52. The info request value PCRE_INFO_FIRSTCHAR has been renamed
PCRE_INFO_FIRSTBYTE because it is a byte value. However, the old nan
retained for backwards compatibility. (Note that LASTLITERAL is alsc
value.)

53. The single man page has become too large. I have therefore split
a number of separate man pages. These also give rise to individual H
these are now put in a separate directory, and there is an index.htn

lists them all. Some hyperlinking between the pages has been install
54. Added convenience functions for handling named capturing parenth

55. Unknown escapes inside character classes (e.g. [\M]) and escapes
aren't interpreted therein (e.g. [\C]) are literals in Perl. This 1is
true in PCRE, except when the PCRE_EXTENDED option is set, in which
are faulted.

56. Introduced HOST_CC and HOST_CFLAGS which can be set in the envir
calling configure. These values are used when compiling the dftables
which is run to generate the source of the default character tables.
default to the values of CC and CFLAGS. If you are cross-compiling F
you will need to set these values.

57. Updated the building process for Windows DLL, as provided by Fre

Version 3.9 02-Jan-02

1. A bit of extraneous text had somehow crept into the pcregrep docu

2. If --disable-static was given, the building process failed when t
build pcretest and pcregrep. (For some reason it was using libtool t
them, which is not right, as they aren't part of the library.)

Version 3.8 18-Dec-01

1. The experimental UTF-8 code was completely screwed up. It was pac
bytes in the wrong order. How dumb can you get?

Version 3.7 29-0ct-01

1. In updating pcretest to check change 1 of version 3.6, I screwed
This caused pcretest, when used on the test data, to segfault. Unfor
this didn't happen under Solaris 8, where I normally test things.

2. The Makefile had to be changed to make it work on BSD systems, wh
doesn't seem to recognize that ./xxx and xxx are the same file. (Thi
isn't in ChangelLog distributed with 3.7 because I forgot when I hast
this fix an hour or so after the initial 3.7 release.)

Version 3.6 23-0ct-01

1. Crashed with /(sens|respons)e and \1ibility/ and "sense and sensi
offsets passed as NULL with zero offset count.

2. The config.guess and config.sub files had not been updated when I
the latest autoconf.

Version 3.5 15-Aug-01

1. Added some missing #if !defined NOPOSIX conditionals in pcretest.
had been forgotten.

2. By using declared but undefined structures, we can avoid using "v
definitions in pcre.h while keeping the internal definitions of the
private.

3. The distribution is now built using autoconf 2.50 and libtool 1.4
user point of view, this means that both static and shared libraries
by default, but this can be individually controlled. More of the wor
handling this static/shared cases is now inside libtool instead of F
file.

4. The pcretest utility is now installed along with pcregrep because
useful for users (to test regexs) and by doing this, it automaticall
relinked by libtool. The documentation has been turned into a man pa
there are now .1, .txt, and .html versions in /doc.

5. Upgrades to pcregrep:
(1) Added long-form option names like gnu grep.
(ii) Added --help to list all options with an explanatory phrase
(iii) Added -r, --recursive to recurse into sub-directories.
(iv) Added -f, --file to read patterns from a file.

6. pcre_exec() was referring to its "code" argument before testing t
argument for NULL (and giving an error if it was NULL).

7. Upgraded Makefile.in to allow for compiling in a different direct
the source directory.

8. Tiny buglet in pcretest: when pcre_fullinfo() was called to retri
options bits, the pointer it was passed was to an int instead of to
long int. This mattered only on 64-bit systems.

9. Fixed typo (3.4/1) in pcre.h again. Sigh. I had changed pcre.h (w
generated) instead of pcre.in, which it its source. Also made the sa
in several of the .c files.

10. A new release of gcc defines printf() as a macro, which broke pc

because it had an ifdef in the middle of a string argument for print
by using separate calls to printf().

11. Added --enable-newline-is-cr and --enable-newline-is-1f to the c
script, to force use of CR or LF instead of \n in the source. On non
systems, the value can be set in config.h.

12. The limit of 200 on non-capturing parentheses is a _nesting_ lin
absolute limit. Changed the text of the error message to make this c
likewise updated the man page.

13. The 1limit of 99 on the number of capturing subpatterns has been
The new limit is 65535, which I hope will not be a "real" limit.

Version 3.4 22-Aug-00

1. Fixed typo in pcre.h: unsigned const char * changed to const unsi

2. Diagnose condition (?(0) as an error instead of crashing on match

Version 3.3 01-Aug-00

1. If an octal character was given, but the value was greater than \
was not getting masked to the least significant bits, as documented.
lead to crashes in some systems.

2. Perl 5.6 (if not earlier versions) accepts classes like [a-\d] an
the hyphen as a literal. PCRE used to give an error; it now behaves

3. Added the functions pcre_free_substring() and pcre_free_substring
These just pass their arguments on to (pcre_free)(), but they are pr
because some uses of PCRE bind it to non-C systems that can call its
but cannot call free() or pcre_free() directly.

4. Add "make test" as a synonym for "make check". Corrected some com
the Makefile.

5. Add $(DESTDIR)/ in front of all the paths in the "install" target
Makefile.

6. Changed the name of pgrep to pcregrep, because Solaris has introd
command called pgrep for grepping around the active processes.

7. Added the beginnings of support for UTF-8 character strings.

8. Arranged for the Makefile to pass over the settings of CC, CFLAGS

RANLIB to ./ltconfig so that they are used by libtool. I think these
the relevant ones. (AR is not passed because ./ltconfig does its own
out for the ar command.)

Version 3.2 12-May-00

This is purely a bug fixing release.

1. If the pattern /((Z)+|A)*/ was matched agained ZABCDEFG it matche
of ZA. This was just one example of several cases that could provoke
which was introduced by change 9 of version 2.00. The code for break
infinite loops after an iteration that matches an empty string was't
correctly.

2. The pcretest program was not imitating Perl correctly for the pat
when matched against abbab (for example). After matching an empty st
wasn't forcing anchoring when setting PCRE_NOTEMPTY for the next att
caused it to match further down the string than it should.

3. The code contained an inclusion of sys/types.h. It isn't clear wh
was there because it doesn't seem to be needed, and it causes troubl
systems, as it is not a Standard C header. It has been removed.

4. Made 4 silly changes to the source to avoid stupid compiler warni
were reported on the Macintosh. The changes were from

while ((c
to
while ((c

*(++ptr)) '= 0 && c !'= '\n');

*(++ptr)) '= 0 & c !'= '\n') ;
Totally extraordinary, but if that's what it takes...

5. PCRE is being used in one environment where neither memmove() nor
available. Added HAVE_BCOPY and an autoconf test for it; if neither
HAVE_MEMMOVE nor HAVE_BCOPY is set, use a built-in emulation functic
assumes the way PCRE uses memmove() (always moving upwards).

6. PCRE is being used in one environment where strchr() is not avail
was only one use in pcre.c, and writing it out to avoid strchr() prc
faster code anyway.

Version 3.1 09-Feb-00

The only change in this release is the fixing of some bugs in Makefi
the "install" target:

(1) It was failing to install pcreposix.h.

(2) It was overwriting the pcre.3 man page with the pcreposix.3 man

Version 3.0 01-Feb-00

1. Add support for the /+ modifier to perltest (to output $° 1like it
pcretest).

2. Add support for the /g modifier to perltest.

3. Fix pcretest so that it behaves even more like Perl for /g when t
matches null strings.

4. Fix perltest so that it doesn't do unwanted things when fed an er
pattern. Perl treats empty patterns specially - it reuses the most r
pattern, which is not what we want. Replace // by /(?#)/ in order tc
effect.

5. The POSIX interface was broken in that it was just handing over t
captured string vector to pcre_exec(), but (since release 2.00) PCRE
required a bigger vector, with some working space on the end. This
the POSIX wrapper now has to get and free some memory, and copy the

6. Added some simple autoconf support, placing the test data and the
documentation in separate directories, re-organizing some of the
information files, and making it build pcre-config (a GNU standard).
libtool support for building PCRE as a shared library, which is now
default.

7. Got rid of the leading zero in the definition of PCRE_MINOR becau
09 are not valid octal constants. Single digits will be used for min
less than 10.

8. Defined REG_EXTENDED and REG_NOSUB as zero in the POSIX header, s
existing programs that set these in the POSIX interface can use PCRE
modification.

9. Added a new function, pcre_fullinfo() with an extensible interfac
return all that pcre_info() returns, plus additional data. The pcre_
function is retained for compatibility, but is considered to be obsc

10. Added experimental recursion feature (?R) to handle one common c
Perl 5.6 will be able to do with (?p{...}).

11. Added support for POSIX character classes like [:alpha:], which
adopting.

Version 2.08 31-Aug-99

1. When startoffset was not zero and the pattern began with ".*", PC
trying to match at the startoffset position, but instead was moving
the next newline as if a previous match had failed.

2. pcretest was not making use of PCRE_NOTEMPTY when repeating for /
and could get into a loop if a null string was matched other than at
of the subject.

3. Added definitions of PCRE_MAJOR and PCRE_MINOR to pcre.h so the v
be distinguished at compile time, and for completeness also added PC

5. Added Paul Sokolovsky's minor changes to make it easy to compile
in Gnuwin32 environments.

Version 2.07 29-Jul-99

1. The documentation is now supplied in plain text form and HTML as
the form of man page sources.

2. C++ compilers don't like assigning (void *) values to other point
In particular this affects malloc(). Although there is no problem in
C, I've put in casts to keep C++ compilers happy.

3. Typo on pcretest.c; a cast of (unsigned char *) in the POSIX rege
should be (const char *).

4. If NOPOSIX is defined, pcretest.c compiles without POSIX support.
be useful for non-Unix systems who don't want to bother with the POS
However, I haven't made this a standard facility. The documentation
mention it, and the Makefile doesn't support it.

5. The Makefile now contains an "install" target, with editable dest
the top of the file. The pcretest program is not installed.

6. pgrep -V now gives the PCRE version number and date.

7. Fixed bug: a zero repetition after a literal string (e.g. /abcde{
causing the entire string to be ignored, instead of just the last ch

8. If a pattern like /"([M\"]+|\\.)*"/ is applied in the normal way
non-matching string, it can take a very, very long time, even for st
quite modest length, because of the nested recursion. PCRE now does
some of these cases. It does this by remembering the last required 1
character in the pattern, and pre-searching the subject to ensure it

before running the real match. In other words, it applies a heuristi
some types of certain failure quickly, and in the above example, if
with a string that has no trailing " it gives '"no match" very quickl

9. A new runtime option PCRE_NOTEMPTY causes null string matches to
other alternatives are tried instead.

Version 2.06 09-Jun-99

1. Change pcretest's output for amount of store used to show just th
space, because the remainder (the data block) varies in size between
64-bit systems.

2. Added an extra argument to pcre_exec() to supply an offset in the
start matching at. This allows lookbehinds to work when searching fc
occurrences in a string.

3. Added additional options to pcretest for testing multiple occurre

/+ outputs the rest of the string that follows a match
/9 loops for multiple occurrences, using the new startoffset ar
/G loops for multiple occurrences by passing an incremented poi

4. PCRE wasn't doing the "first character" optimization for patterns
with \b or \B, though it was doing it for other lookbehind assertion
it wasn't noticing that a match for a pattern such as /\bxyz/ has tc
the letter 'x'. On long subject strings, this gives a significant sp

Version 2.05 21-Apr-99

1. Changed the type of magic_number from int to long int so that it
properly on 16-bit systems.

2. Fixed a bug which caused patterns starting with .* not to work cc
when the subject string contained newline characters. PCRE was assum
anchoring for such patterns in all cases, which is not correct becau
not pass a newline unless PCRE_DOTALL is set. It now assumes anchori
DOTALL is set at top level; otherwise it knows that patterns startin
must be retried after every newline in the subject.

Version 2.04 18-Feb-99

1. For parenthesized subpatterns with repeats whose minimum was zerc
computation of the store needed to hold the pattern was incorrect (t

If such patterns were nested a few deep, this could multiply and bec
problem.

2. Added /M option to pcretest to show the memory requirement of a s
pattern. Made -m a synonym of -s (which does this globally) for comp

3. Subpatterns of the form (regex){n,m} (i.e. limited maximum) were
compiled in such a way that the backtracking after subsequent failur
pessimal. Something like (a){0,3} was compiled as (a)?(a)?(a)? inste
((a)((a)(a)?)?)? with disastrous performance if the maximum was of a

Version 2.03 02-Feb-99

1. Fixed typo and small mistake in man page.

2. Added 4th condition (GPL supersedes if conflict) and created sepa
LICENCE file containing the conditions.

3. Updated pcretest so that patterns such as /abc\/def/ work like th
Perl, that is the internal \ allows the delimiter to be included in
pattern. Locked out the use of \ as a delimiter. If \ immediately fc
the final delimiter, add \ to the end of the pattern (to test the er

4. Added the convenience functions for extracting substrings after a
match. Updated pcretest to make it able to test these functions.

Version 2.02 14-Jan-99

1. Initialized the working variables associated with each extraction
their saving and restoring doesn't refer to uninitialized store.

2. Put dummy code into study.c in order to trick the optimizer of th
compiler for 0S/2 into generating correct code. Apparently IBM isn't
fix the problem.

3. Pcretest: the timing code wasn't using LOOPREPEAT for timing exec
calls, and wasn't printing the correct value for compiling calls. In
default value of LOOPREPEAT, and the number of significant figures 1
times.

4. Changed "/bin/rm" in the Makefile to "-rm" so it works on Windows

5. Renamed "deftables" as "dftables" to get it down to 8 characters,
a building problem on Windows NT with a FAT file system.

Version 2.01 21-0ct-98

1. Changed the API for pcre_compile() to allow for the provision of
to character tables built by pcre_maketables() in the current locale
is passed, the default tables are used.

Version 2.00 24-Sep-98

1. Since the (>?) facility is in Perl 5.005, don't require PCRE_EXTR
it any more.

2. Allow quantification of (?>) groups, and make it work correctly.
3. The first character computation wasn't working for (?>) groups.
4. Correct the implementation of \Z (it is permitted to match on the
end of the subject) and add 5.005's \z, which really does match only
very end of the subject.

5. Remove the \X "cut" facility; Perl doesn't have it, and (?> is ne
6. Remove the ability to specify CASELESS, MULTILINE, DOTALL, and
DOLLAR_END_ONLY at runtime, to make it possible to implement the Per

localized options. All options to pcre_study() were also removed.

7. Add other new features from 5.005:

$(?<= positive lookbehind
$(7<! negative lookbehind
(?imsx-imsx) added the unsetting capability

such a setting is global if at outer level; local
(?imsx-imsx:) non-capturing groups with option setting
(?(cond)re|re) conditional pattern matching

A backreference to itself in a repeated group matches the previou
captured string.

8. General tidying up of studying (both automatic and via "study")
consequential on the addition of new assertions.

9. As in 5.005, unlimited repeated groups that could match an empty
are no longer faulted at compile time. Instead, the loop is forcibly
runtime if any iteration does actually match an empty substring.

10. Include the RunTest script in the distribution.

11. Added tests from the Perl 5.005_02 distribution. This showed up

discrepancies, some of which were old and were also with respect to
have now been fixed.

Version 1.09 28-Apr-98

1. A negated single character class followed by a quantifier with a
value of one (e.g. ["x]{1,6}) was not compiled correctly. This cc
program crashes, or just wrong answers. This did not apply to negate
containing more than one character, or to minima other than one.

Version 1.08 27-Mar-98

1. Add PCRE_UNGREEDY to invert the greediness of quantifiers.
2. Add (?U) and (?X) to set PCRE_UNGREEDY and PCRE_EXTRA respectivel
latter must appear before anything that relies on it in the pattern.

Version 1.07 16-Feb-98

1. A pattern such as /((a)*)*/ was not being diagnosed as in error (
repeat of a potentially empty string).

Version 1.06 23-Jan-98

1. Added Markus Oberhumer's little patches for C++.

2. Literal strings longer than 255 characters were broken.

Version 1.05 23-Dec-97

1. Negated character classes containing more than one character were
PCRE_CASELESS was set at run time.

Version 1.04 19-Dec-97

1. Corrected the man page, where some "const" qualifiers had been on

2. Made debugging output print "{0,xxx}" instead of just "{,xxx}" tc

input syntax.

3. Fixed memory leak which occurred when a regex with back reference
matched with an offsets vector that wasn't big enough. The temporary
that is used in this case wasn't being freed if the match failed.

4. Tidied pcretest to ensure it frees memory that it gets.

5. Temporary memory was being obtained in the case where the passed
vector was exactly big enough.

6. Corrected definition of offsetof() from change 5 below.

7. I had screwed up change 6 below and broken the rules for the use
setjmp(). Now fixed.

Version 1.03 18-Dec-97

1. A erroneous regex with a missing opening parenthesis was correctl
diagnosed, but PCRE attempted to access brastack[-1], which could ca
on some systems.

2. Replaced offsetof(real_pcre, code) by offsetof(real_pcre, code[0]
it was reported that one broken compiler failed on the former becaus
also an independent variable.

3. The erroneous regex a[]b caused an array overrun reference.

4. A regex ending with a one-character negative class (e.g. /["k]$/)
fail on data ending with that character. (It was going on too far, a
the next character, typically a binary zero.) This was specific to t
optimized code for single-character negative classes.

5. Added a contributed patch from the TIN world which does the follc
+ Add an undef for memmove, in case the the system defines a macrc
+ Add a definition of offsetof(), in case there isn't one. (I don'
the reason behind this - offsetof() is part of the ANSI standard
it does no harm).
+ Reduce the ifdef's in pcre.c using macro DPRINTF, thereby elimin
most of the places where whitespace preceded '#'. I have given u
allowed the remaining 2 cases to be at the margin.

+ Rename some variables in pcre to eliminate shadowing. This seems
pedantic, but does no harm, of course.

6. Moved the call to setjmp() into its own function, to get rid of w
from gcc -wWall, and avoided calling it at all unless PCRE_EXTRA is u

7. Constructs such as \d{8,} were compiling into the equivalent of

\d{8}\d{0, 65527} instead of \d{8}\d* which didn't make much differen
outcome, but in this particular case used more store than had been a
which caused the bug to be discovered because it threw up an interna

8. The debugging code in both pcre and pcretest for outputting the c
form of a regex was going wrong in the case of back references follc
curly-bracketed repeats.

Version 1.02 12-Dec-97

1. Typos in pcre.3 and comments in the source fixed.

2. Applied a contributed patch to get rid of places where it used tc
'const' from variables, and fixed some signed/unsigned and uninitial
variable warnings.

3. Added the "runtest" target to Makefile.

4. Set default compiler flag to -02 rather than just -O.

Version 1.01 19-Nov-97

1. PCRE was failing to diagnose unlimited repeat of empty string for
like /([ab]*)*/, that is, for classes with more than one character i

2. Likewise, it wasn't diagnosing patterns with "once-only" subpatte
as /((?>a*))*/ (a PCRE_EXTRA facility).

Version 1.00 18-Nov-97

1. Added compile-time macros to support systems such as Sun0S4 which
memmove() or strerror() but have other things that can be used inste

2. Arranged that "make clean" removes the executables.

Version 0.99 27-0ct-97

1. Fixed bug in code for optimizing classes with only one character.

initializing a 32-byte map regardless, which could cause it to run ¢
of the memory it had got.

2. Added, conditional on PCRE_EXTRA, the proposed (?>REGEX) construc

Version 0.98 22-0ct-97

1. Fixed bug in code for handling temporary memory usage when there
back references than supplied space in the ovector. This could cause

Version 0.97 21-0ct-97

1. Added the \X "cut" facility, conditional on PCRE_EXTRA.
2. Optimized negated single characters not to use a bit map.

3. Brought error texts together as macro definitions; clarified some
fixed one that was wrong - it said "range out of order" when it mean
escape sequence".

4. Changed some char * arguments to const char *.
5. Added PCRE_NOTBOL and PCRE_NOTEOL (from POSIX).

6. Added the POSIX-style API wrapper in pcreposix.a and testing faci
pcretest.

Version 0.96 16-0ct-97

1. Added a simple "pgrep" utility to the distribution.

2. Fixed an incompatibility with Perl: "{" is now treated as a norma
unless it appears in one of the precise forms "{ddd}", "{ddd,}", or
where "ddd" means "one or more decimal digits".

3. Fixed serious bug. If a pattern had a back reference, but the cal
pcre_exec() didn't supply a large enough ovector to record the relat
identifying subpattern, the match always failed. PCRE now remembers
of the largest back reference, and gets some temporary memory in whi
the offsets during matching if necessary, in order to ensure that
backreferences always work.

4. Increased the compatibility with Perl in a number of ways:

(a) . no longer matches \n by default; an option PCRE_DOTALL is pr
to request this handling. The option can be set at compile or

(b) $ matches before a terminating newline by default; an option
PCRE_DOLLAR_ENDONLY is provided to override this (but not in m
mode). The option can be set at compile or exec time.

(c) The handling of \ followed by a digit other than 0 is now supp
the same as Perl's. If the decimal number it represents is les
or there aren't that many previous left capturing parentheses,
escape is read. Inside a character class, it's always an octal
even if it is a single digit.

(d) An escaped but undefined alphabetic character is taken as a 1li
unless PCRE_EXTRA is set. Currently this just reserves the rer
escapes.

(e) {0} is now permitted. (The previous item is removed from the c
pattern).

5. Changed all the names of code files so that the basic parts are n
than 10 characters, and abolished the teeny "globals.c" file.

6. Changed the handling of character classes; they are now done with
bit map always.

7. Added the -d and /D options to pcretest to make it possible to 1lc
internals of compilation without having to recompile pcre.

Version 0.95 23-Sep-97

1. Fixed bug in pre-pass concerning escaped "normal" characters such
\x20 at the start of a run of normal characters. These were being tr
real characters, instead of the source characters being re-checked.

Version 0.94 18-Sep-97

1. The functions are now thread-safe, with the caveat that the globa
containing pointers to malloc() and free() or alternative functions
same for all threads.

2. Get pcre_study() to generate a bitmap of initial characters for n
anchored patterns when this is possible, and use it if passed to pcr

Version 0.93 15-Sep-97

1. /(b)|(:+)/ was computing an incorrect first character.

2. Add pcre_study() to the API and the passing of pcre_extra to pcre
but not actually doing anything yet.

3. Treat "-" characters in classes that cannot be part of ranges as
as Perl does (e.g. [-az] or [az-]).

4. Set the anchored flag if a branch starts with .* or .*? because t
all possible positions.

5. Split up into different modules to avoid including unneeded funct
compiled binary. However, compile and exec are still in one module.
function is split off.

6. The character tables are now in a separate module whose source 1is
by an auxiliary program - but can then be edited by hand if required
now no calls to isalnum(), isspace(), isdigit(), isxdigit(), tolower
toupper() in the code.

7. Turn the malloc/free funtions variables into pcre_malloc and pcre

make them global. Abolish the function for setting them, as the call
set them directly.

Version 0.92 11-Sep-97

1. A repeat with a fixed maximum and a minimum of 1 for an ordinary
(e.g. /a{1,3}/) was broken (I mis-optimized it).

2. Caseless matching was not working in character classes if the cha
the pattern were in upper case.

3. Make ranges like [W-c] work in the same way as Perl for caseless
4. Make PCRE_ANCHORED public and accept as a compile option.

5. Add an options word to pcre_exec() and accept PCRE_ANCHORED and
PCRE_CASELESS at run time. Add escapes \A and \I to pcretest to caus
pass them.

6. Give an error if bad option bits passed at compile or run time.

7. Add PCRE_MULTILINE at compile and exec time, and (?m) as well. Ad
pcretest to cause it to pass that flag.

8. Add pcre_info(), to get the number of identifying subpatterns, th

options, and the first character, if set.

9. Recognize C+ or C{n,m} where n >= 1 as providing a fixed starting

Version 0.91 10-Sep-97

1. PCRE was failing to diagnose unlimited repeats of subpatterns tha
match the empty string as in /(a*)*/. It was looping and ultimately

2. PCRE was looping on encountering an indefinitely repeated back re
a subpattern that had matched an empty string, e.g. /(a|)\1*/. It nc
Perl does - treats the match as successful.

kk

README file for PCRE (Perl-compatible regular expression library)

The latest release of PCRE is always available from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar

There is a mailing list for discussion about the development of PCRE
pcre-dev@exim.org

Please read the NEWS file if you are upgrading from a previous relea
The contents of this README file are:

The PCRE APIs

Documentation for PCRE

Contributions by users of PCRE
Building PCRE on non-Unix systems
Building PCRE on Unix-like systems
Retrieving configuration information on Unix-like systems
Shared libraries on Unix-like systems
Cross-compiling on Unix-like systems
Using HP's ANSI C++ compiler (acCC)
Making new tarballs

Testing PCRE

Character tables

File manifest

The PCRE APIs

PCRE is written in C, and it has its own API. The distribution also
set of C++ wrapper functions (see the pcrecpp man page for details),
of Google Inc.

In addition, there is a set of C wrapper functions that are based on
regular expression API (see the pcreposix man page). These end up in
library called libpcreposix. Note that this just provides a POSIX ca
interface to PCRE; the regular expressions themselves still follow F
and semantics. The POSIX API is restricted, and does not give full a
all of PCRE's facilities.

The header file for the POSIX-style functions is called pcreposix.h.
official POSIX name is regex.h, but I did not want to risk possible
with existing files of that name by distributing it that way. To use
an existing program that uses the POSIX API, pcreposix.h will have t
renamed or pointed at by a link.

If you are using the POSIX interface to PCRE and there is already a

library installed on your system, as well as worrying about the rege
file (as mentioned above), you must also take care when linking prog
ensure that they link with PCRE's libpcreposix library. Otherwise th
up the POSIX functions of the same name from the other library.

One way of avoiding this confusion is to compile PCRE with the addit
-Dregcomp=PCREregcomp (and similarly for the other POSIX functions)
compiler flags (CFLAGS if you are using '"configure" -- see below). T
effect of renaming the functions so that the names no longer clash.
you have to do the same thing for your applications, or write them u
new names.

Documentation for PCRE

If you install PCRE in the normal way on a Unix-like system, you wil
with a set of man pages whose names all start with "pcre". The one t
called "pcre" lists all the others. In addition to these man pages,
documentation is supplied in two other forms:

1. There are files called doc/pcre.txt, doc/pcregrep.txt, and
doc/pcretest.txt in the source distribution. The first of these
concatenation of the text forms of all the section 3 man pages
those that summarize individual functions. The other two are th
forms of the section 1 man pages for the pcregrep and pcretest
These text forms are provided for ease of scanning with text ed
similar tools. They are installed in <prefix>/share/doc/pcre, w
<prefix> is the installation prefix (defaulting to /usr/local).

2. A set of files containing all the documentation in HTML form, h
in various ways, and rooted in a file called index.html, is dis
doc/html and installed in <prefix>/share/doc/pcre/html.

Contributions by users of PCRE

You can find contributions from PCRE users in the directory
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib

There is a README file giving brief descriptions of what they are. S
complete in themselves; others are pointers to URLs containing relev
Some of this material is likely to be well out-of-date. Several of t
contributions provided support for compiling PCRE on various flavour
Windows (I myself do not use Windows). Nowadays there is more Window
in the standard distribution, so these contibutions have been archiv

Building PCRE on non-Unix systems

For a non-Unix system, please read the comments in the file NON-UNIX
though if your system supports the use of "configure" and "make" you
able to build PCRE in the same way as for Unix-like systems. PCRE ca
configured in many platform environments using the GUI facility of C
CMakeSetup. It creates Makefiles, solution files, etc.

PCRE has been compiled on many different operating systems. It shoul
straightforward to build PCRE on any system that has a Standard C cc
library, because it uses only Standard C functions.

Building PCRE on Unix-like systems

If you are using HP's ANSI C++ compiler (aCC), please see the specia
in the section entitled "Using HP's ANSI C++ compiler (aCC)" below.

The following instructions assume the use of the widely used "config
make install" process. There is also some experimental support for "
the PCRE distribution, but it is incomplete and not documented. Howe
are a '"cmake" user, you might want to try it.

To build PCRE on a Unix-like system, first run the "configure" comma
PCRE distribution directory, with your current directory set to the
where you want the files to be created. This command is a standard C
"autoconf" configuration script, for which generic instructions are
the file INSTALL.

Most commonly, people build PCRE within its own distribution directc
this case, on many systems, just running "./configure" is sufficient
the usual methods of changing standard defaults are available. For e

CFLAGS='-02 -Wall' ./configure --prefix=/opt/local

specifies that the C compiler should be run with the flags '-02 -Wal
of the default, and that "make install" should install PCRE under /c
instead of the default /usr/local.

If you want to build in a different directory, just run "configure"
directory as current. For example, suppose you have unpacked the PCR
into /source/pcre/pcre-xxx, but you want to build it in /build/pcre/

cd /build/pcre/pcre-xxx
/source/pcre/pcre-xxx/configure

PCRE is written in C and is normally compiled as a C library. Howeve
possible to build it as a C++ library, though the provided building

does not have any features to support this.

There are some optional features that can be included or omitted frc
library. You can read more about them in the pcrebuild man page.

If you want to suppress the building of the C++ wrapper library, vy
--disable-cpp to the "configure" command. Otherwise, when "configu
it will try to find a C++ compiler and C++ header files, and if it
it will try to build the C++ wrapper.

If you want to make use of the support for UTF-8 character strings
you must add --enable-utf8 to the "configure" command. Without it,
for handling UTF-8 is not included in the library. (Even when incl
still has to be enabled by an option at run time.)

If, in addition to support for UTF-8 character strings, you want t
support for the \P, \p, and \X sequences that recognize Unicode ch
properties, you must add --enable-unicode-properties to the '"confi
command. This adds about 30K to the size of the library (in the fc
property table); only the basic two-letter properties such as Lu a
supported.

You can build PCRE to recognize either CR or LF or the sequence Ck
of the preceding, or any of the Unicode newline sequences as indic
end of a line. Whatever you specify at build time is the default;
of PCRE can change the selection at run time. The default newline
is a single LF character (the Unix standard). You can specify the
newline indicator by adding --enable-newline-is-cr or --enable-new
or --enable-newline-is-crlf or --enable-newline-is-anycrlf or
--enable-newline-is-any to the "configure" command, respectively.

If you specify --enable-newline-is-cr or --enable-newline-is-crlf,
the standard tests will fail, because the lines in the test files
LF. Even if the files are edited to change the line endings, there
to be some failures. With --enable-newline-is-anycrlf or
--enable-newline-is-any, many tests should succeed, but there may
failures.

By default, the sequence \R in a pattern matches any Unicode line
sequence. This is independent of the option specifying what PCRE c
be the end of a line (see above). However, the caller of PCRE can
to match only CR, LF, or CRLF. You can make this the default by ad
--enable-bsr-anycrlf to the "configure" command (bsr = "backslash

. When called via the POSIX interface, PCRE uses malloc() to get add
storage for processing capturing parentheses if there are more tha
them in a pattern. You can increase this threshold by setting, for

--with-posix-malloc-threshold=20

on the "configure" command.

PCRE has a counter that can be set to limit the amount of resource
If the limit is exceeded during a match, the match fails. The defa
million. You can change the default by setting, for example,

--with-match-1imit=500000

on the "configure" command. This is just the default; individual c
pcre_exec() can supply their own value. There is more discussion ¢
pcreapi man page.

There is a separate counter that limits the depth of recursive fun
during a matching process. This also has a default of ten million,
essentially "unlimited". You can change the default by setting, fc

--with-match-limit-recursion=500000

Recursive function calls use up the runtime stack; running out of
cause programs to crash in strange ways. There is a discussion abc
sizes in the pcrestack man page.

The default maximum compiled pattern size is around 64K. You can i
this by adding --with-link-size=3 to the "configure" command. You
increase it even more by setting --with-link-size=4, but this is u
ever to be necessary. Increasing the internal link size will reduc
performance.

You can build PCRE so that its internal match() function that is c
pcre_exec() does not call itself recursively. Instead, it uses men
obtained from the heap via the special functions pcre_stack_malloc
pcre_stack_free() to save data that would otherwise be saved on th
build PCRE like this, use

--disable-stack-for-recursion

on the "configure" command. PCRE runs more slowly in this mode, bu
necessary in environments with limited stack sizes. This applies ¢
pcre_exec() function; it does not apply to pcre_dfa_exec(), which
use deeply nested recursion. There is a discussion about stack siz
pcrestack man page.

For speed, PCRE uses four tables for manipulating and identifying
whose code point values are less than 256. By default, it uses a s
tables for ASCII encoding that is part of the distribution. If you
--enable-rebuild-chartables

a program called dftables is compiled and run in the default C loc
you obey "make". It builds a source file called pcre_chartables.c.

not specify this option, pcre_chartables.c is created as a copy of
pcre_chartables.c.dist. See "Character tables" below for further i

It is possible to compile PCRE for use on systems that use EBCDIC
default character code (as opposed to ASCII) by specifying

--enable-ebcdic
This automatically implies --enable-rebuild-chartables (see above)
The "configure" script builds the following files for the basic C 1li

Makefile is the makefile that builds the library

config.h contains build-time configuration options for the library
pcre.h is the public PCRE header file

pcre-config is a script that shows the settings of "configure" opt
libpcre.pc is data for the pkg-config command

libtool is a script that builds shared and/or static libraries
RunTest is a script for running tests on the basic C library
RunGrepTest is a script for running tests on the pcregrep command

Versions of config.h and pcre.h are distributed in the PCRE tarballs
the names config.h.generic and pcre.h.generic. These are provided fc
benefit of those who have to built PCRE without the benefit of '"conf
you use '"configure", the .generic versions are not used.

If a C++ compiler is found, the following files are also built:

libpcrecpp.pc is data for the pkg-config command
pcrecpparg.h is a header file for programs that call PCRE via the
pcre_stringpiece.h is the header for the C++ "stringpiece" functic

The "configure" script also creates config.status, which is an execu
script that can be run to recreate the configuration, and config.log
contains compiler output from tests that "configure" runs.

Oonce "configure" has run, you can run "make". It builds two librarie
libpcre and libpcreposix, a test program called pcretest, a demonstr
program called pcredemo, and the pcregrep command. If a C++ compiler
on your system, "make" also builds the C++ wrapper library, which 1is
libpcrecpp, and some test programs called pcrecpp_unittest,
pcre_scanner_unittest, and pcre_stringpiece_unittest. Building the C
can be disabled by adding --disable-cpp to the "configure" command.

The command "make check" runs all the appropriate tests. Details of
tests are given below in a separate section of this document.

You can use "make install" to install PCRE into live directories on
system. The following are installed (file names are all relative to
<prefix> that is set when "configure" is run):

Note that the pcredemo program that
anywhere. It is a demonstration for programmers wanting to use PCRE.

Commands (bin):
pcretest
pcregrep
pcre-config

Libraries (lib):
libpcre
libpcreposix
libpcrecpp (if C++ support is enabled)

Configuration information (lib/pkgconfig):
libpcre.pc
libpcrecpp.pc (if C++ support is enabled)

Header files (include):
pcre.h
pcreposix.h
pcre_scanner.h
pcre_stringpiece.h
pcrecpp.h
pcrecpparg.h

if C++ support is enabled

N N N N

Man pages (share/man/man{1,3}):
pcregrep.1
pcretest.1
pcre.3
pcre*.3 (lots more pages, all starting "pcre")

HTML documentation (share/doc/pcre/html):
index.html
*.html (lots more pages, hyperlinked from index.html)

Text file documentation (share/doc/pcre):
AUTHORS
COPYING
ChangelLog
LICENCE
NEWS
README
pcre.txt (a concatenation of the man(3) pages)
pcretest.txt the pcretest man page
pcregrep.txt the pcregrep man page

If you want to remove PCRE from your system, you can run "make unins

This removes all the files that "make install" installed.

remove any directories,

is built by "configure" is *not*

However,
because these are often shared with other pr

Retrieving configuration information on Unix-like systems

Running "make install" installs the command pcre-config, which can b
recall information about the PCRE configuration and installation. Fc

pcre-config --version
prints the version number, and
pcre-config --1libs

outputs information about where the library is installed. This comma
included in makefiles for programs that use PCRE, saving the progran
having to remember too many details.

The pkg-config command is another system for saving and retrieving i
about installed libraries. Instead of separate commands for each lib
single command is used. For example:

pkg-config --cflags pcre

The data is held in *.pc files that are installed in a directory cal
<prefix>/1ib/pkgconfig.

Shared libraries on Unix-1like systems

The default distribution builds PCRE as shared libraries and static
as long as the operating system supports shared libraries. Shared 1i
support relies on the "libtool" script which is built as part of the
"configure" process.

The libtool script is used to compile and link both shared and stati
libraries. They are placed in a subdirectory called .libs when they
built. The programs pcretest and pcregrep are built to use these uni
libraries (by means of wrapper scripts in the case of shared librari
you use "make install" to install shared libraries, pcregrep and pcr
automatically re-built to use the newly installed shared libraries b
installed themselves. However, the versions left in the build direct
use the uninstalled libraries.

To build PCRE using static libraries only you must use --disable-sha
configuring it. For example:

./configure --prefix=/usr/gnu --disable-shared

Then run "make" in the usual way. Similarly, you can use --disable-s
build only shared libraries.

Cross-compiling on Unix-like systems

You can specify CC and CFLAGS in the normal way to the "configure" c
order to cross-compile PCRE for some other host. However, you should
specify --enable-rebuild-chartables, because if you do, the dftables
file is compiled and run on the local host, in order to generate the
character tables (the pcre_chartables.c file). This will probably nc
because dftables.c needs to be compiled with the local compiler, not
compiler.

When --enable-rebuild-chartables is not specified, pcre_chartables.c
by making a copy of pcre_chartables.c.dist, which is a default set ¢
that assumes ASCII code. Cross-compiling with the default tables shc
a problem.

If you need to modify the character tables when cross-compiling, you
move pcre_chartables.c.dist out of the way, then compile dftables.c
run it on the local host to make a new version of pcre_chartables.c.
Then when you cross-compile PCRE this new version of the tables will

Using HP's ANSI C++ compiler (aCC)

Unless C++ support is disabled by specifying the "--disable-cpp" opt
"configure" script, you must include the "-AA" option in the CXXFLAC
environment variable in order for the C++ components to compile corr

Also, note that the aCC compiler on PA-RISC platforms may have a def
needed libraries fail to get included when specifying the "-AA" comp
option. If you experience unresolved symbols when linking the C++ pr
use the workaround of specifying the following environment variable
running the "configure" script:

CXXLDFLAGS="-1std_v2 -1Csup_v2"

Making new tarballs

The command "make dist" creates three PCRE tarballs, in tar.gz, tar.
zip formats. The command "make distcheck" does the same, but then dc
build of the new distribution to ensure that it works.

If you have modified any of the man page sources in the doc director

should first run the PrepareRelease script before making a distribut
script creates the .txt and HTML forms of the documentation from the

Testing PCRE

To test the basic PCRE library on a Unix system, run the RunTest scr
created by the configuring process. There is also a script called Ru
that tests the options of the pcregrep command. If the C++ wrapper 1
built, three test programs called pcrecpp_unittest, pcre_scanner_uni
pcre_stringpiece_unittest are also built.

Both the scripts and all the program tests are run if you obey '"make
"make test". For other systems, see the instructions in NON-UNIX-USE

The RunTest script runs the pcretest test program (which is document
own man page) on each of the testinput files in the testdata directc
turn, and compares the output with the contents of the corresponding
files. A file called testtry is used to hold the main output from pc
(testsavedregex is also used as a working file). To run pcretest on
the test files, give its number as an argument to RunTest, for examp

RunTest 2

The first test file can also be fed directly into the perltest.pl sc
check that Perl gives the same results. The only difference you shou
in the first few lines, where the Perl version is given instead of t
version.

The second set of tests check pcre_fullinfo(), pcre_info(), pcre_stu
pcre_copy_substring(), pcre_get_substring(), pcre_get_substring_list
detection, and run-time flags that are specific to PCRE, as well as
wrapper API. It also uses the debugging flags to check some of the i
pcre_compile().

If you build PCRE with a locale setting that is not the standard C 1
character tables may be different (see next paragraph). In some case
cause failures in the second set of tests. For example, in a locale

isprint() function yields TRUE for characters in the range 128-255,

[:isascii:] inside a character class defines a different set of char
this shows up in this test as a difference in the compiled code, whi
listed for checking. Where the comparison test output contains [\XOC
test will contain [\x00-\xff], and similarly in some other cases. Th
bug in PCRE.

The third set of tests checks pcre_maketables(), the facility for bu
set of character tables for a specific locale and using them instead
default tables. The tests make use of the "fr_FR" (French) locale. E
running the test, the script checks for the presence of this locale

the "locale" command. If that command fails, or if it doesn't includ
in the list of available locales, the third test cannot be run, and
is output to say why. If running this test produces instances of the

** Failed to set locale "fr_FR"

in the comparison output, it means that locale is not available on vy
despite being listed by "locale". This does not mean that PCRE is br

[If you are trying to run this test on Windows, you may be able to g
work by changing "fr_FR" to "french" everywhere it occurs. Alternati
RunTest.bat. The version of RunTest.bat included with PCRE 7.4 and a
wWindows versions of test 2. More info on using RunTest.bat is includ
document entitled NON-UNIX-USE.]

The fourth test checks the UTF-8 support. It is not run automaticall
PCRE is built with UTF-8 support. To do this you must set --enable-u
running "configure". This file can be also fed directly to the perlt
provided you are running Perl 5.8 or higher. (For Perl 5.6, a small
commented in the script, can be be used.)

The fifth test checks error handling with UTF-8 encoding, and intern
features of PCRE that are not relevant to Perl.

The sixth test checks the support for Unicode character properties.
run automatically unless PCRE is built with Unicode property support
this you must set --enable-unicode-properties when running "configur

The seventh, eighth, and ninth tests check the pcre_dfa_exec() alter
matching function, in non-UTF-8 mode, UTF-8 mode, and UTF-8 mode wit
property support, respectively. The eighth and ninth tests are not r
automatically unless PCRE is build with the relevant support.

Character tables

For speed, PCRE uses four tables for manipulating and identifying ch
whose code point values are less than 256. The final argument of the
pcre_compile() function is a pointer to a block of memory containing
concatenated tables. A call to pcre_maketables() can be used to gene
of tables in the current locale. If the final argument for pcre_comp
passed as NULL, a set of default tables that is built into the binar

The source file called pcre_chartables.c contains the default set of
default, this is created as a copy of pcre_chartables.c.dist, which
tables for ASCII coding. However, if --enable-rebuild-chartables is
for ./configure, a different version of pcre_chartables.c is built b
program dftables (compiled from dftables.c), which uses the ANSI C c
handling functions such as isalnum(), isalpha(), isupper(), islower(

build the table sources. This means that the default C locale which
your system will control the contents of these default tables. You c
the default tables by editing pcre_chartables.c and then re-building
you do this, you should take care to ensure that the file does not g
automatically re-generated. The best way to do this is t