
PCAN-Basic	Documentation

PCAN-Basic	Documentation

	

	

	

Welcome	to	the	documentation	of	PCAN-Basic,	

the	new	small	Version	of	the	PCAN-API	from	PEAK-System.	

	

	

	

Introduction	 DLL	API	Reference	 Additional	Information	

	

	

	
Last	Update:	31.07.2017

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Introduction
Welcome	to	the	documentation	to	PCAN-Basic.	

	

The	PCAN	system	of	the	company	PEAK-System	Technik	GmbH
consists	of	a	collection	of	Windows	Device	Drivers,	which	allow	the
real-time	connection	of	Windows	applications	to	all	CAN	busses
physically	connected	to	a	PC.	

	

PCAN-Basic,	successor	of	PCAN-Light,	is	a	simple	programming
interface	to	the	PCAN	system.	Via	the	PCAN-Basic	Dll	it	is	possible	to
connect	own	applications	to	the	Device	drivers	and	the	PCAN
hardware,	to	communicate	with	the	CAN	busses.	

	

In	this	Chapter		

Topics	 Description	

Understanding
PCAN-Basic	

This	section	contains	an	introduction	to
PCAN-Basic	API.	

Using	Events	 Offers	support	about	how	to	read	CAN
messages	using	notifications.	

License
Regulations	

License	regulations	to	this	software.	

Contact
information	

Contact	information	-	PEAK-System	Technik
GmbH.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Understanding	PCAN-Basic
PCAN-Basic	is	the	new	version	of	the	PCAN-Light	API.	It	consists	of	a
collection	of	Windows	Device	Drivers	which	allow	the	real-time
connection	of	Windows	applications	to	all	CAN	busses	physically
connected	to	a	PC.	

	

Main	differences	between	PCAN-Light	and	PCAN-Basic
Information	about	the	receive	time	of	a	CAN	message.
Easy	switching	between	different	PCAN-Channels	(PCAN-PC
hardware).
The	possibility	to	control	some	parameters	in	the	hardware,	eg.
"Listen-Only"	mode,	automatic	reset	of	the	CAN	controller	on
bus-off,	etc.
The	use	of	event	notifications,	for	faster	processing	of	incomming
CAN	messages.
An	improved	system	for	debugging's	operations.
The	use	of	only	one	Dynamic	Link	Library	(PCAN-Basic.DLL)	for
all	supported	hardware.
The	possibility	to	connect	more	than	2	channels	per	PCAN-
Device.	The	following	list	shows	the	PCAN-Channels	that	can	be
connected	per	PCAN-Device:

	 PCAN-
ISA	

PCAN-
Dongle	

PCAN-
PCI	

PCAN-
USB	

PCAN-
PC-
Card	

PCAN-
LAN	

Number
of
Channels	

8	 1	 16	 16	 2	 16	

	

Using	the	PCAN-Basic
The	PCAN-basic	offers	the	possibility	to	use	several	PCAN-Channels

within	the	same	application	in	an	easy	way.	The	communication
process	is	divided	in	3	phases:	initialization,	interaction	and
finalization	of	a	PCAN-Channel.	

Initialization:	In	order	to	do	CAN	communication	using	a	channel,	it	is
necessary	to	first	initialize	it.	This	is	done	making	a	call	to	the	function
CAN_Initialize	(class-method:	Initialize),	or	CAN_InitializeFD	(class-
method:	InitializeFD)	in	case	FD	communication	is	desired.	
Interaction:	After	a	successful	initialization,	a	channel	is	ready	to
communicate	with	the	connected	CAN	bus.	Further	configuration	is
not	needed.	The	functions	CAN_Read	and	CAN_Write	(class-
methods:	Read	and	Write)	can	be	then	used	to	read	and	write	CAN
messages.	If	the	channel	being	used	is	FD	capable	and	it	was
initialized	using	CAN_InitializedFD,	then	the	functions	to	use	are
CAN_ReadFD	and	CAN_WriteFD	(class-methods:	ReadFD	and
WriteFD).	If	desired,	extra	configuration	can	be	made	to	improve	a
communication	session,	like	changing	the	message	filter	to	target
specific	messages.	

Finalization:	When	the	communication	is	finished,	the	function
CAN_Uninitialize	(class-method:	Uninitialize)	should	be	called	in
order	to	release	the	PCAN-Channel	and	the	resources	allocated	for	it.
In	this	way	the	channel	is	marked	as	"Free"	and	can	be	used	from
other	applications.	

	

Hardware	and	Drivers
Overview	of	the	current	PCAN	hardware	and	device	drivers:

Hardware	 Plug-and-Play
Hardware	

Driver	

PCAN-Dongle	 No	 Pcan_dng.sys	

PCAN-ISA	 No	 Pcan_isa.sys	

PCAN-PC/104	 No	 Pcan_isa.sys	

PCAN-PCI	 Yes	 Pcan_pci.sys	

PCAN-PCI	Express	 Yes	 Pcan_pci.sys	

PCAN-cPCI	 Yes	 Pcan_pci.sys	

PCAN-miniPCI	 Yes	 Pcan_pci.sys	

PCAN-PC/104-Plus	 Yes	 Pcan_pci.sys	

PCAN-USB	 Yes	 Pcan_usb.sys	

PCAN-USB	FD	 Yes	 Pcan_usb.sys	

PCAN-USB	Pro	 Yes	 Pcan_usb.sys	

PCAN-USB	Pro	FD	 Yes	 Pcan_usb.sys	

PCAN-PC	Card	 Yes	 Pcan_pcc.sys	

PCAN-Ethernet
Gateway	DR	

Yes	 Pcan_lan.sys	

PCAN-Wireless
Gateway	DR	

Yes	 Pcan_lan.sys	

PCAN-Wireless
Gateway	

Yes	 Pcan_lan.sys	

PCAN-Wireless
Automotive
Gateway	

Yes	 Pcan_lan.sys	

See	Also

PCAN	Fundamentals	

PCAN-Light	

PCAN-API

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Using	Events
Event	objects	can	be	used	to	automatically	notify	a	client	on	reception
of	a	CAN	message.	This	has	following	advantages:

The	client	program	doesn't	need	to	check	periodically	for
received	messages	any	longer.
The	response	time	on	received	messages	is	reduced.

To	use	events,	the	client	application	must	call	the	CAN_SetValue
(class-method:	SetValue)	function	to	set	the	parameter
PCAN_RECEIVE_EVENT.	This	parameter	sets	the	handle	for	the
event	object.	When	receiving	a	message,	the	driver	sets	this	event	to
the	"Signaled"	state.	

Another	thread	must	be	started	in	the	client	application,	which	waits
for	the	event	to	be	signaled,	using	one	of	the	Win32	synchronization
functions	(e.g.	 WaitForSingleObject)	without	increasing	the
processor	load.	After	the	event	is	signaled,	the	receive	buffer	of	the
client	can	be	read	with	the	CAN_Read	(class	method:	Read)
function,	and	the	CAN	messages	can	be	processed.

Remarks

Tips	for	the	creation	of	the	event	object:

Creation	of	the	event	as	"auto-reset"
Trigger	mode	"set"	(default):	After	the	first	waiting	thread	has
been	released,	the	event	object's	state	changes	to	non-
signaled.	Other	waiting	threads	are	not	released.	If	no
threads	are	waiting,	the	event	object's	state	remains
signaled.
Trigger	mode	"pulse":	After	the	first	waiting	thread	has	been
released,	the	event	object's	state	changes	to	non-signaled.
Other	waiting	threads	are	not	released.	If	no	threads	are
waiting,	or	if	no	thread	can	be	released	immediately,	the
event	object's	state	is	simply	set	to	non-signaled.

Creation	of	the	event	as	"manual-reset"

Trigger	mode	"set"	(default):	The	state	of	the	event	object
remains	signaled	until	it	is	set	explicitly	to	the	non-signaled
state	by	the	Win32	 ResetEvent	function.	Any	number	of
waiting	threads,	or	threads	that	subsequently	begin	wait
operations,	can	be	released	while	the	object's	state	remains
signaled.
Trigger	mode	"pulse":	All	waiting	threads	that	can	be
released	immediately	are	released.	The	event	object's	state
is	then	reset	to	the	non-signaled	state.	If	no	threads	are
waiting,	or	if	no	thread	can	be	released	immediately,	the
event	object's	state	is	simply	set	to	non-signaled.

See	Also

CAN_SetValue	(class-method:	SetValue)	
CAN_Read	(class-method:	Read)	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

License	Regulations
Namings	for	products	in	this	manual,	that	are	registered	trademarks,
are	not	separately	marked.	Therefore	the	missing	of	the	®	sign	does
not	implicate,	that	the	naming	is	a	free	trade	name.	Furthermore	the
used	names	do	not	indicate	patent	rights	or	anything	similar.	PEAK-
System	Technik	GmbH	makes	no	representation	or	warranties	with
respect	to	the	use	of	enclosed	software	or	the	contents	of	this
manual,	and	specifically	disclaims	any	express	or	implied	warranties
of	merchantability	or	fitness	for	any	particular	purpose.	Further,
PEAK-System	Technik	GmbH	reserves	the	right	to	revise	this
publication	and	to	make	changes	to	its	content,	at	any	time,	without
obligation	to	notify	any	person	or	entity	of	such	revisions	or	changes.	

	

Copyright	©	2000-2015	PEAK-System	Technik	GmbH	

All	rights	reserved.	

	

No	part	of	this	publication	may	be	reproduced,	photocopied,	stored	on
a	retrieval	system,	or	transmitted	without	the	express	written	consent
of	PEAK-System	Technik	GmbH.

See	Also

Contact	Information

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Contact	Information
This	software	is	a	product	of:	

	

	

PEAK-System	Technik	GmbH	
Otto-Röhm-Str.	69	
64293	Darmstadt,	Germany	
	

Info:	 info@peak-system.com	

Support:	 support@peak-
system.com	

Web:	 www.peak-system.com	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Reference
This	section	contains	information	about	the	data	types	(classes,
structures,	types,	defines,	enumerations)	and	API	functions	which	are
contained	in	the	PCAN-Basic	API.	

	

In	this	Chapter		

Topic	 Description	

Namespaces	 Lists	the	defined	namespaces	for	Microsoft's	.NET
Framework	programming	environment.	

Modules	 Lists	the	defined	modules	for	Python	2.6
programming	environment.	

Units	 Lists	the	defined	units	for	Delphi's	programming
environment.	

Classes	 Lists	the	defined	classes	that	implement	the
PCAN-Basic	API.	

Structures	 Lists	the	defined	structures.	

Types	 Lists	the	defined	types.	

Methods	 Lists	the	defined	class	methods	for	using	the
PCAN-Basic	API.	

Functions	 List	the	defined	functions	for	using	the	PCAN-
Basic	API.	

Definitions	 Lists	the	defined	values.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Namespaces
PEAK	offers	the	implementation	of	some	specific	programming
interfaces	as	namespaces	for	the	.NET	Framework	programming
environment.	The	following	namespaces	are	available	to	be	used:

Namespaces

	 Name	 Description	

{}	 Peak	 Contains	all	namespaces	that	are	part	of
the	managed	programming	environment
from	PEAK-System.	

{}	 Peak.Can	 Contains	types	and	classes	for	using	the
PCAN	API	from	PEAK-System.	

{}	 Peak.Can.Light	 Contains	types	and	classes	for	using	the
PCAN-Light	API	from	PEAK-System.	

{}	 Peak.Can.Basic	 Contains	types	and	classes	for	using	the
PCAN-Basic	API	from	PEAK-System.	

{}	 Peak.Lin	 Contains	types	and	classes	used	to	handle
with	LIN	devices	from	PEAK-System.	

{}	 Peak.RP1210A	 Contains	types	and	classes	used	to	handle
with	CAN	devices	from	PEAK-System
through	the	TMC	Recommended	Practices
1210,	version	A,	as	known	as	RP1210(A).	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Peak.Can.Basic
The	Peak.Can.Basic	namespace	contain	types	and	classes	for	using
the	PCAN-Basic	API	within	the	.NET	Framework	programming
environment,	in	order	to	handle	with	PCAN	devices	from	PEAK-
System.

Remarks

Under	the	Delphi	environment,	these	elements	are	enclosed	in	the
PCANBasic-Unit.	The	functionality	of	all	elements	included	here	is	just
the	same.	The	difference	between	this	namespace	and	the	Delphi	unit
consists	in	the	fact	that	Delphi	accesses	the	Windows	API	directly	(it
is	not	Managed	Code).

Aliases

	 Alias	 Description	

	
TPCANHandle	 Represents	a	PCAN-hardware

channel	handle.	

	
TPCANBitrateFD	 Represents	a	bit	rate	with	flexible	data

rate.	

	
TPCANTimestampFD	 Represents	the	timestamp	of	a	CAN

message	with	flexible	data	rate.	

Classes

	 Class	 Description	

	
PCANBasic	 Defines	a	class	which	represents	the

PCAN-Basic	API.	

Structures

	 Structure	 Description	

	
TPCANMsg	 Defines	a	CAN	message.	

	
TPCANTimestamp	 Defines	a	time-stamp	of	a	CAN

message.	

	
TPCANMsgFD	 Defines	a	CAN	message	with	flexible

data	rate.	

Enumerations

	 Enumeration	 Description	

	
TPCANStatus	 Represents	a	PCAN	status/error

code.	

	
TPCANDevice	 Represents	a	PCAN	device.	

	
TPCANParameter	 Represents	a	PCAN	parameter	to	be

read	or	set.	

	
TPCANMessageType	 Represents	the	type	of	a	CAN

message	

	
TPCANType	 Represents	the	type	of	a	Not-Plug-

And-Play	PCAN	hardware.	

	
TPCANMode	 Represents	a	PCAN	filter	mode.	

	
TPCANBaudrate	 Represents	a	PCAN	bit	rate	register

value.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Modules
PEAK	offers	the	implementation	of	some	specific	programming
interfaces	as	modules	for	programming	under	Python	(ver.	2.6).	The
following	modules	are	available	to	be	used:

Modules

	 Name	 Description	

{}	 PCAN-
Basic-
Module	

Python	module	for	using	the	PCAN-Basic	API
from	PEAK-System.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCANBasic	Module
The	Peak.Can.Basic	module	contain	types	and	classes	for	using	the
PCAN-Basic	API	within	Python	2.6	programming	environment,	in
order	to	handle	with	PCAN	devices	from	PEAK-System.

Classes

	 Class	 Description	

	
PCANBasic	 Defines	a	class	which	represents	the

PCAN-Basic	API.	

Structures

	 Structure	 Description	

	
TPCANMsg	 Defines	a	CAN	message.	The

members	of	this	structure	are
sequentially	byte	aligned.	

	
TPCANTimestamp	 Defines	a	time-stamp	of	a	CAN

message.	

	
TPCANMsgFD	 Defines	a	CAN	message	with	flexible

data	rate.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Units
PEAK	offers	the	implementation	of	some	specific	programming
interfaces	as	Units	for	the	Delphi's	programming	environment.	The
following	units	are	available	to	be	used:

Units

	 Name	 Description	

{}	 PCANBasic-
Unit	

Delphi	unit	for	using	the	PCAN-Basic	API	from
PEAK-System.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCANBasic	Unit
The	PCANBasic-Unit	contain	types	and	classes	for	using	the	PCAN-
Basic	API	within	the	Delphi's	programming	environment,	in	order	to
handle	with	PCAN	devices	from	PEAK-System.

Remarks

For	the	.NET	Framework,	these	elements	are	enclosed	in	the
Peak.Can.Basic	namespace.	The	functionality	of	all	elements
included	here	is	just	the	same.	The	difference	between	this	Unit	and
the	.NET	namespace	consists	in	the	fact	that	Delphi	accesses	the
Windows	API	directly	(it	is	not	Managed	Code).

Aliases

	 Alias	 Description	

	
TPCANHandle	 Represents	a	PCAN-hardware

channel	handle.	

	
TPCANBitrateFD	 Represents	a	bit	rate	with	flexible	data

rate.	

	
TPCANTimestampFD	 Represents	the	timestamp	of	a	CAN

message	with	flexible	data	rate.	

Classes

	 Class	 Description	

	
TPCANBasic	 Defines	a	class	which	represents	the

PCAN-Basic	API.	

Structures

	 Structure	 Description	

	
TPCANMsg	 Defines	a	CAN	message.	

	
TPCANTimestamp	 Defines	a	time-stamp	of	a	CAN

message.	

	
TPCANMsgFD	 Defines	a	CAN	message	with	flexible

data	rate.	

Enumerations

	 Enumeration	 Description	

	
TPCANStatus	 Represents	a	PCAN	status/error

code.	

	
TPCANDevice	 Represents	a	PCAN	device.	

	
TPCANParameter	 Represents	a	PCAN	parameter	to	be

read	or	set.	

	
TPCANMessageType	 Represents	the	type	of	a	CAN

message	

	
TPCANType	 Represents	the	type	of	a	Not-Plug-

And-Play	PCAN	hardware.	

	
TPCANMode	 Represents	a	PCAN	filter	mode.	

	
TPCANBaudrate	 Represents	a	PCAN	bit	rate	register

value.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Classes
The	following	classes	are	offered	to	make	use	of	the	PCAN-Basic	API
in	a	managed	or	unmanaged	way.

Classes

	 Class	 Description	

	
PCANBasic	 Defines	a	class	to	use	the	PCAN-

Basic	API	within	the	Microsoft's	.NET
Framework	programming
environment,	and	Python.	

	
TPCANBasic	 Defines	a	class	to	use	the	PCAN-

Basic	API	within	the	Delphi
programming	environment.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCANBasic
Defines	a	class	which	represents	the	PCAN-Basic	API	for	using	within
the	Microsoft's	.NET	Framework	and	Python	(ver.	2.6).

Syntax

C#
public	static	class	PCANBasic

C++	/	CLR
public	ref	class	PCANBasic	abstract	sealed

Visual	Basic
Public	NotInheritable	Class	PCANBasic

Python
class	PCANBasic

Remarks

The	PCANBasic	class	collects	and	implements	the	PCAN-Basic	API
functions.	Each	method	is	called	just	like	the	API	function	with	the
exception	that	the	prefix	"CAN_"	is	not	used.	The	structure	and
functionality	of	the	methods	and	API	functions	is	the	same.	

Within	the	.NET	Framework	from	Microsoft,	the	PCANBasic	class	is	a
static,	not	inheritable,	class.	It	can	(must)	directly	be	used,	without	any
instance	of	it,	e.g.	:

TPCANStatus	res;

//	Static	use,	without	any	instance

//

res	=	PCANBasic.Initialize(PCAN_USBBUS1,PCAN_BAUD_500K);

Within	Python,	a	variable	must	be	instantiated	with	an	object	of	type

PCANBasic,	in	order	to	use	the	API.

#	Object	instantiation

#

objPCAN	=	PCANBasic()

res	=	objPCAN.Initialize(PCAN_USBBUS1,	PCAN_BAUD_500K)

Note	that	this	class	under	Delphi	is	called	TPCANBasic.

See	Also

Methods	

Definitions	

	

Delphi:	TPCANBasic

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANBasic
Defines	a	class	which	represents	the	PCAN-Basic	API	in	the	Delphi
programming	environment.

Syntax

Pascal	OO
TPCANBasic	=	class

Remarks

TPCANBasic	is	a	class	containing	only	class-methods	and	constant
members,	allowing	their	use	without	the	creation	of	any	object,	just
like	an	static	class	of	another	programming	languages.	It	collects	and
implements	the	PCAN-Basic	API	functions.	Each	method	is	called	just
like	the	API	function	with	the	exception	that	the	prefix	"CAN_"	is	not
used.	The	structure	and	functionality	of	the	methods	and	API
functions	is	the	same.	

Note	that	this	class	under	.NET	Framework	is	called	PCANBasic.

See	Also

Methods	

Definitions	

	

.NET	Framework:	PCANBasic

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Structures
The	PCAN-Basic	API	defines	the	following	structures:	

	

Name	 Description	

TPCANMsg	 Defines	a	CAN	message.	

TPCANTimestamp	 Defines	the	point	of	time	at	which	a
CAN	message	was	received.	

TPCANMsgFD	 Defines	a	CAN	message	with	flexible
data	rate.	

See	Also

Reference

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANMsg
Defines	a	CAN	message.

Syntax

C++
typedef	struct

{

				DWORD	ID;

				TPCANMessageType		MSGTYPE;

				BYTE	LEN;

				BYTE	DATA[8];

}	TPCANMsg;

Pascal	OO
TPCANMsg	=	record

				ID:	Longword;

				MSGTYPE:	TPCANMessageType;

				LEN:	Byte;

				DATA:	array[0..7]	of	Byte;

end;

C#
public	struct	TPCANMsg

{

				public	uint	ID;

				[MarshalAs(UnmanagedType.U1)]

				public	TPCANMessageType	MSGTYPE;

				public	byte	LEN;

				[MarshalAs(UnmanagedType.ByValArray,	SizeConst	=	8)]

				public	byte[]	DATA;

}

C++	/	CLR
public	value	struct	TPCANMsg

{

				UInt32	ID;

				[MarshalAs(UnmanagedType.U1)]

				TPCANMessageType	MSGTYPE;

				Byte	LEN;

				[MarshalAs(UnmanagedType::ByValArray,	SizeConst	=	8)]

				array<Byte>^	DATA;

}

Visual	Basic
Public	Structure	TPCANMsg

				Public	ID	As	UInt32

				<MarshalAs(UnmanagedType.U1)>	_

				Public	MSGTYPE	As	TPCANMessageType

				Public	LEN	As	Byte

				<MarshalAs(UnmanagedType.ByValArray,	SizeConst	:=	8)>	_

				Public	DATA	As	Byte()

End	Structure

Python
from	ctypes	import	*

class	TPCANMsg	(Structure):

				fields	=	[("ID",		c_uint),

																	("MSGTYPE",		TPCANMessageType),

																	("LEN",		c_ubyte),

																	("DATA",	c_ubyte	*	8)]

Remarks

The	members	of	this	structure	are	sequentially	byte	aligned.

Fields

Name	 Description	

ID	 11/29-bit	message	identifier.	

MSGTYPE	 Type	of	the	message.	Bit	mask	indicating	the
type	of	the	message.	Several	message	types
can	be	combined.	

LEN	 Data	Length	Code	of	the	message	(0..8).	

DATA	 Data	of	the	message	(DATA[0]..DATA[7]).	

See	Also

CAN_Read	(class-method:	Read)	
CAN_Write	(class-method:	Write)	

TPCANTimestamp	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANTimestamp
Defines	a	time-stamp	of	a	CAN	message.	The	time-stamp	contains
the	number	of	microseconds	since	the	start	of	Windows.

Syntax

C++
typedef	struct

{

				DWORD		millis;

				WORD			millis_overflow;

				WORD			micros;

}	TPCANTimestamp;

Pascal	OO
TPCANTimestamp	=	record

				millis:	Longword;

				millis_overflow:	Word;

				micros:	Word;

end;

C#
public	struct	TPCANTimestamp

{

				public	uint	millis;

				public	ushort	millis_overflow;

				public	ushort	micros;

}

C++	/	CLR
public	value	struct	TPCANTimestamp

{

				UInt32	millis;

				UInt16	millis_overflow;

				UInt16	micros;

};

Visual	Basic
Public	Structure	TPCANTimestamp

				Public	millis	As	UInt32

				Public	millis_overflow	As	UInt16

				Public	micros	As	UInt16

End	Structure

Python
from	ctypes	import	*

class	TPCANTimestamp	(Structure):

				fields	=	[("millis",		c_uint),

																	("millis_overflow",		c_ushort),

																	("micros",		c_ushort)]

Remarks

The	members	of	this	structure	are	sequentially	byte	aligned.	

Calculation	of	total	of	microseconds	:	micros	+	1000	*	millis	+
0x100000000	*	1000	*	millis_overflow

Fields

Name	 Description	

millis	 Base-value:	milliseconds:	0..	2^32-1.	

millis_overflow	 Roll-arounds	of	millis.	

micros	 Microseconds:	0..999.	

See	Also

CAN_Write	(class-method:	Write)	

TPCANMsg	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANMsgFD
Defines	a	CAN	message	with	flexible	data	rate.

Syntax

C++
typedef	struct

{

				DWORD	ID;

				TPCANMessageType	MSGTYPE;

				BYTE	DLC;

				BYTE	DATA[64];

}	TPCANMsgFD;

Pascal	OO
TPCANMsgFD	=	record

				ID:	Longword;

				MSGTYPE:	TPCANMessageType;

				DLC:	Byte;

				DATA:	array[0..63]	of	Byte;

end;

C#
public	struct	TPCANMsgFD

{

				public	uint	ID;

				[MarshalAs(UnmanagedType.U1)]

				public	TPCANMessageType	MSGTYPE;

				public	byte	DLC;

				[MarshalAs(UnmanagedType.ByValArray,	SizeConst	=	64)]

				public	byte[]	DATA;

}

C++	/	CLR
public	value	struct	TPCANMsgFD

{

				UInt32	ID;

				[MarshalAs(UnmanagedType::U1)]

				TPCANMessageType	MSGTYPE;

				Byte	DLC;

				[MarshalAs(UnmanagedType::ByValArray,	SizeConst	=	64)]

				array<Byte>^	DATA;

};

Visual	Basic
Public	Structure	TPCANMsgFD

				Public	ID	As	UInt32

				<MarshalAs(UnmanagedType.U1)>	_

				Public	MSGTYPE	As	TPCANMessageType

				Public	DLC	As	Byte

				<MarshalAs(UnmanagedType.ByValArray,	SizeConst:=64)>	_

				Public	DATA	As	Byte()

End	Structure

Python
from	ctypes	import	*

class	TPCANMsgFD	(Structure):

				fields	=	[("ID",						c_uint),

																	("MSGTYPE",	TPCANMessageType),

																	("DLC",					c_ubyte),

																	("DATA",				c_ubyte	*	64)]

Remarks

The	members	of	this	structure	are	sequentially	byte	aligned.

Fields

Name	 Description	

ID	 11/29-bit	message	identifier.	

MSGTYPE	 Type	of	the	message.	Bit	mask	indicating	the
type	of	the	message.	Several	message	types
can	be	combined.	

DLC	 Data	Length	Code	of	the	message	(0..15).	

DATA	 Data	of	the	message	(DATA[0]..DATA[63]).	

Remark

Longer	Data	field	with	CAN	FD	messages:	
The	length	of	data	bytes	contained	in	a	CAN	message	is	given	by	the
DATA	LENGTH	CODE	field	(DLC).	The	coding	of	the	DLC	within	FD
messages	is	different.	There	are	7	additional	codes	(from	9	to	15)	that
allows	a	FD	Messages	to	transport	up	to	64	bytes	of	data.	The
relationship	between	DLC	and	data	bytes	length	is	as	follow:

DLC	 Data
Bytes	

0	 0	

1	 1	

2	 2	

3	 3	

4	 4	

5	 5	

6	 6	

7	 7	

8	 8	

9	 12	

10	 16	

11	 20	

12	 24	

13	 32	

14	 48	

15	 64	

See	Also

CAN_ReadFD	(class-method:	ReadFD)	
CAN_WriteFD	(class-method:	WriteFD)	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Types
The	PCAN-Basic	API	defines	the	following	types:	

	

Name	 Description	

TPCANHandle	 Represents	a	PCAN	hardware	channel
handle.	

TPCANStatus	 Represents	a	PCAN	status/error	code.	

TPCANDevice	 Represents	a	PCAN	device.	

TPCANParameter	 Represents	a	PCAN	parameter	to	be
read	or	set.	

TPCANMessageType	 Represents	the	type	of	a	PCAN
message.	

TPCANType	 Represents	the	type	of	PCAN	hardware
to	be	initialized.	

TPCANMode	 Represents	a	PCAN	filter	mode.	

TPCANBaudrate	 Represents	a	PCAN	bit	rate	register
value.	

TPCANBitrateFD	 Represents	a	bit	rate	string	with	flexible
data	rate.	

TPCANTimestampFD	 Represents	the	timestamp	of	a	CAN
message	with	flexible	data	rate.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANHandle
Represents	a	PCAN-hardware	channel	handle.

Syntax

C++
#define	TPCANHandle	WORD

Pascal	OO
TPCANHandle	=	Word;

C#
using	TPCANHandle	=	System.UInt16;

C++	/	CLR
#define	TPCANHandle	System::UInt16

Visual	Basic
Imports	TPCANHandle	=	System.UInt16

Python
TPCANHandle		=	c_ushort

Remarks

FD	capable	Hardware:	
Some	hardware	can	transmit	using	a	flexible	data	rate	(FD	capable).
Although	there	are	no	special	PCAN-Handles	to	identify	these
hardware,	it	is	possible	to	ask	if	a	hardware	is	able	to	communicate
using	the	FD	protocol.	The	PCAN-Basic	parameter
PCAN_CHANNEL_FEATURES	allows	to	investigate	whether	a
hardware	is	FD	capable	before	being	initialized.	

.NET	Framework	programming	languages:	

An	alias	is	used	to	represent	a	Channel	handle	under	Microsoft	.NET
in	order	to	originate	an	homogeneity	between	all	programming
languages	listed	above.	

Aliases	are	defined	in	the	Peak.Can.Basic	Namespace	for	C#	and	VB
.NET.	However,	including	a	namespace	does	not	include	the	defined
aliases.	

If	it	is	wished	to	work	with	aliases,	those	must	be	copied	to	the
working	file,	right	after	the	inclusion	of	the	Peak.Can.Basic
Namespace.	Otherwise,	just	use	the	native	type,	which	in	this	case	is
a	UInt16.	

C#:		

using	System;

using	Peak.Can.Basic;

using	TPCANHandle	=	System.UInt16;	//	Alias's	declaration	for	System.UInt16

Visual	Basic:

Imports	System

Imports	Peak.Can.Basic

Imports	TPCANHandle	=	System.UInt16	'	Alias	declaration	for	System.UInt16

See	Also

PCAN	Handle	Definitions

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANStatus
Represents	a	PCAN	status/error	code.	According	with	the
programming	language,	this	type	can	be	a	group	of	defined	values	or
an	enumeration.

Syntax

C++
#define	TPCANStatus	DWORD

#define	PCAN_ERROR_OK	0x00000

#define	PCAN_ERROR_XMTFULL	0x00001

#define	PCAN_ERROR_OVERRUN	0x00002

#define	PCAN_ERROR_BUSLIGHT	0x00004

#define	PCAN_ERROR_BUSHEAVY	0x00008

#define	PCAN_ERROR_BUSWARNING		PCAN_ERROR_BUSHEAVY

#define	PCAN_ERROR_BUSPASSIVE	0x40000

#define	PCAN_ERROR_BUSOFF	0x00010

#define	PCAN_ERROR_ANYBUSERR	(PCAN_ERROR_BUSWARNING	|	PCAN_ERROR_BUSLIGHT

#define	PCAN_ERROR_QRCVEMPTY	0x00020

#define	PCAN_ERROR_QOVERRUN	0x00040

#define	PCAN_ERROR_QXMTFULL	0x00080

#define	PCAN_ERROR_REGTEST	0x00100

#define	PCAN_ERROR_NODRIVER	0x00200

#define	PCAN_ERROR_HWINUSE	0x00400

#define	PCAN_ERROR_NETINUSE	0x00800

#define	PCAN_ERROR_ILLHW	0x01400

#define	PCAN_ERROR_ILLNET	0x01800

#define	PCAN_ERROR_ILLCLIENT	0x01C00

#define	PCAN_ERROR_ILLHANDLE	(PCAN_ERROR_ILLHW	|	

#define	PCAN_ERROR_RESOURCE	0x02000

#define	PCAN_ERROR_ILLPARAMTYPE	0x04000

#define	PCAN_ERROR_ILLPARAMVAL	0x08000

#define	PCAN_ERROR_UNKNOWN	0x10000

#define	PCAN_ERROR_ILLDATA	0x20000

#define	PCAN_ERROR_CAUTION	0x2000000

#define	PCAN_ERROR_INITIALIZE	0x4000000

#define	PCAN_ERROR_ILLOPERATION	0x8000000

Pascal	OO
{$Z4}

TPCANStatus	=	(

				PCAN_ERROR_OK	=	$00000,

				PCAN_ERROR_XMTFULL	=	$00001,

				PCAN_ERROR_OVERRUN	=	$00002,

				PCAN_ERROR_BUSLIGHT	=	$00004,

				PCAN_ERROR_BUSHEAVY	=	$00008,

				PCAN_ERROR_BUSHWARNING		=	Byte(PCAN_ERROR_BUSHEAVY

				PCAN_ERROR_BUSPASSIVE	=	$40000,

				PCAN_ERROR_BUSOFF	=	$00010,

				PCAN_ERROR_ANYBUSERR	=	Byte(PCAN_ERROR_BUSHWARNING

				PCAN_ERROR_QRCVEMPTY	=	$00020,

				PCAN_ERROR_QOVERRUN		=	$00040,

				PCAN_ERROR_QXMTFULL	=	$00080,

				PCAN_ERROR_REGTEST	=	$00100,

				PCAN_ERROR_NODRIVER	=	$00200,

				PCAN_ERROR_HWINUSE	=	$00400,

				PCAN_ERROR_NETINUSE	=	$00800,

				PCAN_ERROR_ILLHW	=	$01400,

				PCAN_ERROR_ILLNET	=	$01800,

				PCAN_ERROR_ILLCLIENT	=	$01C00,

				PCAN_ERROR_ILLHANDLE	=	Byte(PCAN_ERROR_ILLHW

				PCAN_ERROR_RESOURCE	=	$02000,

				PCAN_ERROR_ILLPARAMTYPE	=	$04000,

				PCAN_ERROR_ILLPARAMVAL	=	$08000,

				PCAN_ERROR_UNKNOWN	=	$10000,

				PCAN_ERROR_ILLDATA	=	$20000,

				PCAN_ERROR_CAUTION	=	$2000000,

				PCAN_ERROR_INITIALIZE	=	$4000000,

				PCAN_ERROR_ILLOPERATION	=	$8000000

);

C#
[Flags]

public	enum	TPCANStatus	:	uint

{

				PCAN_ERROR_OK	=	0x00000,

				PCAN_ERROR_XMTFULL	=	0x00001,

				PCAN_ERROR_OVERRUN	=	0x00002,

				PCAN_ERROR_BUSLIGHT	=	0x00004,

				PCAN_ERROR_BUSHEAVY	=	0x00008,

				PCAN_ERROR_BUSWARNING			=	PCAN_ERROR_BUSHEAVY,

				PCAN_ERROR_BUSPASSIVE			=	0x40000,

				PCAN_ERROR_BUSOFF	=	0x00010,

				PCAN_ERROR_ANYBUSERR	=	(PCAN_ERROR_BUSWARNING

				PCAN_ERROR_QRCVEMPTY	=	0x00020,

				PCAN_ERROR_QOVERRUN	=	0x00040,

				PCAN_ERROR_QXMTFULL	=	0x00080,

				PCAN_ERROR_REGTEST	=	0x00100,

				PCAN_ERROR_NODRIVER	=	0x00200,

				PCAN_ERROR_HWINUSE	=	0x00400,

				PCAN_ERROR_NETINUSE	=	0x00800,

				PCAN_ERROR_ILLHW	=	0x01400,

				PCAN_ERROR_ILLNET	=	0x01800,

				PCAN_ERROR_ILLCLIENT	=	0x01C00,

				PCAN_ERROR_ILLHANDLE	=	(PCAN_ERROR_ILLHW	|	

				PCAN_ERROR_RESOURCE	=	0x02000,

				PCAN_ERROR_ILLPARAMTYPE	=	0x04000,

				PCAN_ERROR_ILLPARAMVAL	=	0x08000,

				PCAN_ERROR_UNKNOWN	=	0x10000,

				PCAN_ERROR_ILLDATA	=	0x20000,

				PCAN_ERROR_CAUTION	=	0x2000000,

				PCAN_ERROR_INITIALIZE	=	0x4000000,

				PCAN_ERROR_ILLOPERATION	=	0x8000000,

}

C++	/	CLR
[Flags]

public	enum	class	TPCANStatus	:	UInt32

{

				PCAN_ERROR_OK	=	0x00000,

				PCAN_ERROR_XMTFULL	=	0x00001,

				PCAN_ERROR_OVERRUN	=	0x00002,

				PCAN_ERROR_BUSLIGHT	=	0x00004,

				PCAN_ERROR_BUSHEAVY	=	0x00008,

				PCAN_ERROR_BUSWARNING			=	PCAN_ERROR_BUSHEAVY

				PCAN_ERROR_BUSPASSIVE	=	0x40000,

				PCAN_ERROR_BUSOFF	=	0x00010,

				PCAN_ERROR_ANYBUSERR	=	(PCAN_ERROR_BUSWARNING	|	PCAN_ERROR_BUSLIGHT

				PCAN_ERROR_QRCVEMPTY	=	0x00020,

				PCAN_ERROR_QOVERRUN	=	0x00040,

				PCAN_ERROR_QXMTFULL	=	0x00080,

				PCAN_ERROR_REGTEST	=	0x00100,

				PCAN_ERROR_NODRIVER	=	0x00200,

				PCAN_ERROR_HWINUSE	=	0x00400,

				PCAN_ERROR_NETINUSE	=	0x00800,

				PCAN_ERROR_ILLHW	=	0x01400,

				PCAN_ERROR_ILLNET	=	0x01800,

				PCAN_ERROR_ILLCLIENT	=	0x01C00,

				PCAN_ERROR_ILLHANDLE	=	(PCAN_ERROR_ILLHW	|	

				PCAN_ERROR_RESOURCE	=	0x02000,

				PCAN_ERROR_ILLPARAMTYPE	=	0x04000,

				PCAN_ERROR_ILLPARAMVAL	=	0x08000,

				PCAN_ERROR_UNKNOWN	=	0x10000,

				PCAN_ERROR_ILLDATA	=	0x20000,

				PCAN_ERROR_CAUTION	=	0x2000000,

				PCAN_ERROR_INITIALIZE	=	0x4000000,

				PCAN_ERROR_ILLOPERATION	=	0x8000000,

}

Visual	Basic
<Flags()>	_

Public	Enum	TPCANStatus	As	UInt32

				PCAN_ERROR_OK	=	&H0

				PCAN_ERROR_XMTFULL	=	&H1

				PCAN_ERROR_OVERRUN	=	&H2

				PCAN_ERROR_BUSLIGHT	=	&H4

				PCAN_ERROR_BUSHEAVY	=	&H8

				PCAN_ERROR_BUSWARNING	=	PCAN_ERROR_BUSHEAVY

				PCAN_ERROR_BUSPASSIVE	=	&H40000

				PCAN_ERROR_BUSOFF	=	&H10

				PCAN_ERROR_ANYBUSERR	=	(PCAN_ERROR_BUSWARNING	

				PCAN_ERROR_QRCVEMPTY	=	&H20

				PCAN_ERROR_QOVERRUN	=	&H40

				PCAN_ERROR_QXMTFULL	=	&H80

				PCAN_ERROR_REGTEST	=	&H100

				PCAN_ERROR_NODRIVER	=	&H200

				PCAN_ERROR_HWINUSE	=	&H400

				PCAN_ERROR_NETINUSE	=	&H800

				PCAN_ERROR_ILLHW	=	&H1400

				PCAN_ERROR_ILLNET	=	&H1800

				PCAN_ERROR_ILLCLIENT	=	&H1C00

				PCAN_ERROR_ILLHANDLE	=	(PCAN_ERROR_ILLHW	Or

				PCAN_ERROR_RESOURCE	=	&H2000

				PCAN_ERROR_ILLPARAMTYPE	=	&H4000

				PCAN_ERROR_ILLPARAMVAL	=	&H8000

				PCAN_ERROR_UNKNOWN	=	&H10000

				PCAN_ERROR_ILLDATA	=	&H20000

				PCAN_ERROR_CAUTION	=	&H2000000

				PCAN_ERROR_INITIALIZE	=	&H4000000

				PCAN_ERROR_ILLOPERATION	=	&H8000000

End	Enum

Python
TPCANStatus	=	int

PCAN_ERROR_OK	=	TPCANStatus(0x00000)

PCAN_ERROR_XMTFULL	=	TPCANStatus(0x00001)

PCAN_ERROR_OVERRUN	=	TPCANStatus(0x00002

PCAN_ERROR_BUSLIGHT	=	TPCANStatus(0x00004)

PCAN_ERROR_BUSHEAVY	=	TPCANStatus(0x00008)

PCAN_ERROR_BUSWARNING	=	TPCANStatus(PCAN_ERROR_BUSHEAVY)

PCAN_ERROR_BUSPASSIVE	=	TPCANStatus(0x40000)

PCAN_ERROR_BUSOFF	=	TPCANStatus(0x00010)

PCAN_ERROR_ANYBUSERR	=	TPCANStatus(PCAN_ERROR_BUSWARNING	|	PCAN_ERROR_BUSLIGHT	

PCAN_ERROR_QRCVEMPTY	=	TPCANStatus(0x00020)

PCAN_ERROR_QOVERRUN	=	TPCANStatus(0x00040)

PCAN_ERROR_QXMTFULL	=	TPCANStatus(0x00080)

PCAN_ERROR_REGTEST	=	TPCANStatus(0x00100)

PCAN_ERROR_NODRIVER	=	TPCANStatus(0x00200)

PCAN_ERROR_HWINUSE	=	TPCANStatus(0x00400)

PCAN_ERROR_NETINUSE	=	TPCANStatus(0x00800)

PCAN_ERROR_ILLHW	=	TPCANStatus(0x01400)

PCAN_ERROR_ILLNET	=	TPCANStatus(0x01800)

PCAN_ERROR_ILLCLIENT	=	TPCANStatus(0x01C00)

PCAN_ERROR_ILLHANDLE	=	TPCANStatus(PCAN_ERROR_ILLHW	

PCAN_ERROR_RESOURCE	=	TPCANStatus(0x02000)

PCAN_ERROR_ILLPARAMTYPE	=	TPCANStatus(0x04000)

PCAN_ERROR_ILLPARAMVAL	=	TPCANStatus(0x08000)

PCAN_ERROR_UNKNOWN	=	TPCANStatus(0x10000)

PCAN_ERROR_ILLDATA	=	TPCANStatus(0x20000)

PCAN_ERROR_CAUTION	=	TPCANStatus(0x2000000)

PCAN_ERROR_INITIALIZE	=	TPCANStatus(0x4000000)

PCAN_ERROR_ILLOPERATION	=	TPCANStatus(0x8000000

Remarks

Note	that	the	values	of	the	different	PCAN-Status	definitions	are	able
to	be	bitwise	combined.	In	some	cases	it	is	possible	to	get	more	than
one	error	code	as	result	of	calling	a	function.	

*Note	that	the	values	of	PCAN_ERROR_INITIALIZE	and
PCAN_ERROR_ILLOPERATION	were	changed!	

PCAN_ERROR_INITIALIZE	changed	from	0x40000	to	0x4000000	
PCAN_ERROR_ILLOPERATION	changed	from	0x80000	to
0x8000000

Values

Name	 Value	 Description	

PCAN_ERROR_OK	 0x00000
(000000)	

No	error.
Success.	

PCAN_ERROR_XMTFULL	 0x00001
(000001)	

Transmit
buffer	in	CAN
controller	is
full.	

PCAN_ERROR_OVERRUN	 0x00002
(000002)	

CAN
controller	was
read	too	late.	

PCAN_ERROR_BUSLIGHT	 0x00004
(000004)	

Bus	error:	an
error	counter
reached	the
'light'	limit.	

PCAN_ERROR_BUSHEAVY	 0x00008 Bus	error:	an

(000008)	 error	counter
reached	the
'heavy'	limit.	

PCAN_ERROR_BUSWARNING	 0x00008
(000008)	

Bus	error:	an
error	counter
reached	the
'warning'
limit.	

PCAN_ERROR_BUSPASSIVE	 0x40000
(262144)	

Bus	error:	the
CAN
controller	is
error	passive.	

PCAN_ERROR_BUSOFF	 0x00010
(000016)	

Bus	error:	the
CAN
controller	is	in
bus-off	state.	

PCAN_ERROR_ANYBUSERR	 0x4001C
(262172)	

Mask	for	all
bus	errors.	

PCAN_ERROR_QRCVEMPTY	 0x00020
(000032)	

Receive
queue	is
empty.	

PCAN_ERROR_QOVERRUN	 0x00040
(000064)	

Receive
queue	was
read	too	late.	

PCAN_ERROR_QXMTFULL	 0x00080
(000128)	

Transmit
queue	is	full.	

PCAN_ERROR_REGTEST	 0x00100
(000256)	

Test	of	the
CAN
controller
hardware
registers
failed	(no

hardware
found).	

PCAN_ERROR_NODRIVER	 0x00200
(000512)	

Driver	not
loaded.	

PCAN_ERROR_HWINUSE	 0x00400
(001024)	

PCAN-
Hardware
already	in	use
by	a	PCAN-
Net.	

PCAN_ERROR_NETINUSE	 0x00800
(002048)	

A	PCAN-
Client	is
already
connected	to
the	PCAN-
Net.	

PCAN_ERROR_ILLHW	 0x01400
(005120)	

PCAN-
Hardware
handle	is
invalid.	

PCAN_ERROR_ILLNET	 0x01800
(006144)	

PCAN-Net
handle	is
invalid.	

PCAN_ERROR_ILLCLIENT	 0x01C00
(007168)	

PCAN-Client
handle	is
invalid.	

PCAN_ERROR_ILLHANDLE	 0x01C00
(007168)	

Mask	for	all
handle
errors.	

PCAN_ERROR_RESOURCE	 0x02000
(008192)	

Resource
(FIFO,	Client,
timeout)
cannot	be

created.	

PCAN_ERROR_ILLPARAMTYPE	 0x04000
(016384)	

Invalid
parameter.	

PCAN_ERROR_ILLPARAMVAL	 0x08000
(032768)	

Invalid
parameter
value.	

PCAN_ERROR_UNKNOWN	 0x10000
(065536)	

Unknown
error	

PCAN_ERROR_ILLDATA	 0x20000
(131072)	

Invalid	data,
function,	or
action.	

PCAN_ERROR_CAUTION	 0x2000000
(33554432)	

Operation
succeeded
but	with
irregularities.	

PCAN_ERROR_INITIALIZE*	 0x4000000
(67108864)	

Channel	is	not
initialized.	

PCAN_ERROR_ILLOPERATION*	 0x8000000
(134217728)	

Invalid
operation.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANDevice
Represents	a	PCAN	device.	According	with	the	programming
language,	this	type	can	be	a	group	of	defined	values	or	an
enumeration.

Syntax

C++
#define	TPCANDevice	BYTE

#define	PCAN_NONE	0x00

#define	PCAN_PEAKCAN	0x01

#define	PCAN_ISA	0x02

#define	PCAN_DNG	0x03

#define	PCAN_PCI	0x04

#define	PCAN_USB	0x05

#define	PCAN_PCC	0x06

#define	PCAN_VIRTUAL	0x07

#define	PCAN_LAN	0x08

Pascal	OO
{$Z1}

TPCANDevice	=	(

				PCAN_NONE	=	0,

				PCAN_PEAKCAN	=	1,

				PCAN_ISA	=	2,

				PCAN_DNG	=	3,

				PCAN_PCI	=	4,

				PCAN_USB	=	5,

				PCAN_PCC	=	6,

				PCAN_VIRTUAL	=	7,

				PCAN_LAN	=	8

);

C#
public	enum	TPCANDevice	:	byte

{

				PCAN_NONE	=	0,

				PCAN_PEAKCAN	=	1,

				PCAN_ISA	=	2,

				PCAN_DNG	=	3,

				PCAN_PCI	=	4,

				PCAN_USB	=	5,

				PCAN_PCC	=	6,

				PCAN_VIRTUAL	=	7,

				PCAN_LAN	=	8

}

C++	/	CLR
public	enum	class	TPCANDevice	:	Byte

{

				PCAN_NONE	=	0,

				PCAN_PEAKCAN	=	1,

				PCAN_ISA	=	2,

				PCAN_DNG	=	3,

				PCAN_PCI	=	4,

				PCAN_USB	=	5,

				PCAN_PCC	=	6,

				PCAN_VIRTUAL	=	7,

				PCAN_LAN	=	8

};

Visual	Basic
Public	Enum	TPCANDevice	As	Byte

				PCAN_NONE	=	0

				PCAN_PEAKCAN	=	1

				PCAN_ISA	=	2

				PCAN_DNG	=	3

				PCAN_PCI	=	4

				PCAN_USB	=	5

				PCAN_PCC	=	6

				PCAN_VIRTUAL	=	7

				PCAN_LAN	=	8

End	Enum

Python
TPCANDevice	=	c_ubyte

PCAN_NONE	=	TPCANDevice(0x00)

PCAN_PEAKCAN	=	TPCANDevice(0x01)

PCAN_ISA	=	TPCANDevice(0x02)

PCAN_DNG	=	TPCANDevice(0x03)

PCAN_PCI	=	TPCANDevice(0x04)

PCAN_USB	=	TPCANDevice(0x05)

PCAN_PCC	=	TPCANDevice(0x06)

PCAN_VIRTUAL	=	TPCANDevice(0x07)

PCAN_LAN	=	TPCANDevice(0x08)

Remarks

The	PCAN-Devices	PCAN_PEAKCAN	and	PCAN_VIRTUAL	are	not
used	within	the	PCAN-Basic	API.

Values

Name	 Value	 Description	

PCAN_NONE	 0	 Undefined,	unknown	or	not	selected
PCAN	device	value.	

PCAN_PEAKCAN	 1	 PCAN	Non-Plug	And	Play	devices.
NOT	USED	WITHIN	PCAN-Basic

API.	

PCAN_ISA	 2	 PCAN-ISA,	PCAN-PC/104.	

PCAN_DNG	 3	 PCAN-Dongle.	

PCAN_PCI	 4	 PCAN-PCI,	PCAN-cPCI,	PCAN-
miniPCI,	PCAN-PC/104-Plus,	and
PCAN-PCI	Express.	

PCAN_USB	 5	 PCAN-USB	and	PCAN-USB	Pro.	

PCAN_PCC	 6	 PCAN-PC	Card.	

PCAN_VIRTUAL	 7	 PCAN	Virtual	hardware.	NOT	USED
WITHIN	PCAN-Basic	API.	

PCAN_LAN	 8	 PCAN	Gateway	devices.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANParameter
Represents	a	PCAN	parameter	or	a	PCAN	Value	that	can	be	read	or
set.	According	with	the	programming	language,	this	type	can	be	a
group	of	defined	values	or	an	enumeration.	With	some	exceptions,	a
channel	must	first	be	initialized	before	their	parameters	can	be	read	or
set.

Syntax

C++
#define	TPCANParameter	BYTE

#define	PCAN_DEVICE_NUMBER	0x01

#define	PCAN_5VOLTS_POWER	0x02

#define	PCAN_RECEIVE_EVENT	0x03

#define	PCAN_MESSAGE_FILTER	0x04

#define	PCAN_API_VERSION	0x05

#define	PCAN_CHANNEL_VERSION	0x06

#define	PCAN_BUSOFF_AUTORESET	0x07

#define	PCAN_LISTEN_ONLY	0x08

#define	PCAN_LOG_LOCATION	0x09

#define	PCAN_LOG_STATUS	0x0A

#define	PCAN_LOG_CONFIGURE	0x0B

#define	PCAN_LOG_TEXT	0x0C

#define	PCAN_CHANNEL_CONDITION	0x0D

#define	PCAN_HARDWARE_NAME	0x0E

#define	PCAN_RECEIVE_STATUS	0x0F

#define	PCAN_CONTROLLER_NUMBER	0x10

#define	PCAN_TRACE_LOCATION	0x11

#define	PCAN_TRACE_STATUS	0x12

#define	PCAN_TRACE_SIZE	0x13

#define	PCAN_TRACE_CONFIGURE	0x14

#define	PCAN_CHANNEL_IDENTIFYING	0x15

#define	PCAN_CHANNEL_FEATURES	0x16

#define	PCAN_BITRATE_ADAPTING	0x17

#define	PCAN_BITRATE_INFO	=	0x18

#define	PCAN_BITRATE_INFO_FD	=	0x19

#define	PCAN_BUSSPEED_NOMINAL	=	0x1A

#define	PCAN_BUSSPEED_DATA	=	0x1B

#define	PCAN_IP_ADDRESS	=	0x1C

#define	PCAN_LAN_SERVICE_STATUS	=	0x1D

#define	PCAN_ALLOW_STATUS_FRAMES	=	0x1E

#define	PCAN_ALLOW_RTR_FRAMES	=	0x1F

#define	PCAN_ALLOW_ERROR_FRAMES	=	0x20

#define	PCAN_INTERFRAME_DELAY	=	0x21

#define	PCAN_ACCEPTANCE_FILTER_11BIT	=	0x22

#define	PCAN_ACCEPTANCE_FILTER_29BIT	=	0x23

Pascal	OO
{$Z1}

TPCANParameter	=	(

				PCAN_DEVICE_NUMBER	=	1,

				PCAN_5VOLTS_POWER	=	2,

				PCAN_RECEIVE_EVENT	=	3,

				PCAN_MESSAGE_FILTER	=	4,

				PCAN_API_VERSION	=	5,

				PCAN_CHANNEL_VERSION	=	6,

				PCAN_BUSOFF_AUTORESET	=	7,

				PCAN_LISTEN_ONLY	=	8,

				PCAN_LOG_LOCATION	=	9,

				PCAN_LOG_STATUS	=	10,

				PCAN_LOG_CONFIGURE	=	11,

				PCAN_LOG_TEXT	=	12,

				PCAN_CHANNEL_CONDITION	=	13,

				PCAN_HARDWARE_NAME	=	14,

				PCAN_RECEIVE_STATUS	=	15,

				PCAN_CONTROLLER_NUMBER	=	16,

				PCAN_TRACE_LOCATION	=	17,

				PCAN_TRACE_STATUS	=	18,

				PCAN_TRACE_SIZE	=	19,

				PCAN_TRACE_CONFIGURE	=	20,

				PCAN_CHANNEL_IDENTIFYING	=	21,

				PCAN_CHANNEL_FEATURES	=	22,

				PCAN_BITRATE_ADAPTING	=	23,

				PCAN_BITRATE_INFO	=	24,

				PCAN_BITRATE_INFO_FD	=	25,

				PCAN_BUSSPEED_NOMINAL	=	26,

				PCAN_BUSSPEED_DATA	=	27,

				PCAN_IP_ADDRESS	=	28,

				PCAN_LAN_SERVICE_STATUS	=	29,

				PCAN_ALLOW_STATUS_FRAMES	=	30,

				PCAN_ALLOW_RTR_FRAMES	=	31,

				PCAN_ALLOW_ERROR_FRAMES	=	32,

				PCAN_INTERFRAME_DELAY	=	33,

				PCAN_ACCEPTANCE_FILTER_11BIT	=	34,

				PCAN_ACCEPTANCE_FILTER_29BIT	=	35

);

C#
public	enum	TPCANParameter	:	byte

{

				PCAN_DEVICE_NUMBER	=	1,

				PCAN_5VOLTS_POWER	=	2,

				PCAN_RECEIVE_EVENT	=	3,

				PCAN_MESSAGE_FILTER	=	4,

				PCAN_API_VERSION	=	5,

				PCAN_CHANNEL_VERSION	=	6,

				PCAN_BUSOFF_AUTORESET	=	7,

				PCAN_LISTEN_ONLY	=	8,

				PCAN_LOG_LOCATION	=	9,

				PCAN_LOG_STATUS	=	10,

				PCAN_LOG_CONFIGURE	=	11,

				PCAN_LOG_TEXT	=	12,

				PCAN_CHANNEL_CONDITION	=	13,

				PCAN_HARDWARE_NAME	=	14,

				PCAN_RECEIVE_STATUS	=	15,

				PCAN_CONTROLLER_NUMBER	=	16,

				PCAN_TRACE_LOCATION	=	17,

				PCAN_TRACE_STATUS	=	18,

				PCAN_TRACE_SIZE	=	19,

				PCAN_TRACE_CONFIGURE	=	20,

				PCAN_CHANNEL_IDENTIFYING	=	21,

				PCAN_CHANNEL_FEATURES	=	22,

				PCAN_BITRATE_ADAPTING	=	23,

				PCAN_BITRATE_INFO	=	24,

				PCAN_BITRATE_INFO_FD	=	25,

				PCAN_BUSSPEED_NOMINAL	=	26,

				PCAN_BUSSPEED_DATA	=	27,

				PCAN_IP_ADDRESS	=	28,

				PCAN_LAN_SERVICE_STATUS	=	29,

				PCAN_ALLOW_STATUS_FRAMES	=	30,

				PCAN_ALLOW_RTR_FRAMES	=	31,

				PCAN_ALLOW_ERROR_FRAMES	=	32,

				PCAN_INTERFRAME_DELAY	=	33,

				PCAN_ACCEPTANCE_FILTER_11BIT	=	34,

				PCAN_ACCEPTANCE_FILTER_29BIT	=	35,

}

C++	/	CLR
public	enum	class	TPCANParameter	:	Byte

{

				PCAN_DEVICE_NUMBER	=	1,

				PCAN_5VOLTS_POWER	=	2,

				PCAN_RECEIVE_EVENT	=	3,

				PCAN_MESSAGE_FILTER	=	4,

				PCAN_API_VERSION	=	5,

				PCAN_CHANNEL_VERSION	=	6,

				PCAN_BUSOFF_AUTORESET	=	7,

				PCAN_LISTEN_ONLY	=	8,

				PCAN_LOG_LOCATION	=	9,

				PCAN_LOG_STATUS	=	10,

				PCAN_LOG_CONFIGURE	=	11,

				PCAN_LOG_TEXT	=	12,

				PCAN_CHANNEL_CONDITION	=	13,

				PCAN_HARDWARE_NAME	=	14,

				PCAN_RECEIVE_STATUS	=	15,

				PCAN_CONTROLLER_NUMBER	=	16,

				PCAN_TRACE_LOCATION	=	17,

				PCAN_TRACE_STATUS	=	18,

				PCAN_TRACE_SIZE	=	19,

				PCAN_TRACE_CONFIGURE	=	20,

				PCAN_CHANNEL_IDENTIFYING	=	21,

				PCAN_CHANNEL_FEATURES	=	22,

				PCAN_BITRATE_ADAPTING	=	23,

				PCAN_BITRATE_INFO	=	24,

				PCAN_BITRATE_INFO_FD	=	25,

				PCAN_BUSSPEED_NOMINAL	=	26,

				PCAN_BUSSPEED_DATA	=	27,

				PCAN_IP_ADDRESS	=	28,

				PCAN_LAN_SERVICE_STATUS	=	29,

				PCAN_ALLOW_STATUS_FRAMES	=	30,

				PCAN_ALLOW_RTR_FRAMES	=	31,

				PCAN_ALLOW_ERROR_FRAMES	=	32,

				PCAN_INTERFRAME_DELAY	=	33,

				PCAN_ACCEPTANCE_FILTER_11BIT	=	34,

				PCAN_ACCEPTANCE_FILTER_29BIT	=	35,

};

Visual	Basic

Public	Enum	TPCANParameter	As	Byte

				PCAN_DEVICE_NUMBER	=	1

				PCAN_5VOLTS_POWER	=	2

				PCAN_RECEIVE_EVENT	=	3

				PCAN_MESSAGE_FILTER	=	4

				PCAN_API_VERSION	=	5

				PCAN_CHANNEL_VERSION	=	6

				PCAN_BUSOFF_AUTORESET	=	7

				PCAN_LISTEN_ONLY	=	8

				PCAN_LOG_LOCATION	=	9

				PCAN_LOG_STATUS	=	10

				PCAN_LOG_CONFIGURE	=	11

				PCAN_LOG_TEXT	=	12

				PCAN_CHANNEL_CONDITION	=	13

				PCAN_HARDWARE_NAME	=	14

				PCAN_RECEIVE_STATUS	=	15

				PCAN_CONTROLLER_NUMBER	=	16

				PCAN_TRACE_LOCATION	=	17

				PCAN_TRACE_STATUS	=	18

				PCAN_TRACE_SIZE	=	19

				PCAN_TRACE_CONFIGURE	=	20

				PCAN_CHANNEL_IDENTIFYING	=	21

				PCAN_CHANNEL_FEATURES	=	22

				PCAN_BITRATE_ADAPTING	=	23

				PCAN_BITRATE_INFO	=	24

				PCAN_BITRATE_INFO_FD	=	25

				PCAN_BUSSPEED_NOMINAL	=	26

				PCAN_BUSSPEED_DATA	=	27

				PCAN_IP_ADDRESS	=	28

				PCAN_LAN_SERVICE_STATUS	=	29

				PCAN_ALLOW_STATUS_FRAMES	=	30

				PCAN_ALLOW_RTR_FRAMES	=	31

				PCAN_ALLOW_ERROR_FRAMES	=	32

				PCAN_INTERFRAME_DELAY	=	33

				PCAN_ACCEPTANCE_FILTER_11BIT	=	34

				PCAN_ACCEPTANCE_FILTER_29BIT	=	35

End	Enum

Python
TPCANParameter	=	c_ubyte

PCAN_DEVICE_NUMBER	=	TPCANParameter(0x01)

PCAN_5VOLTS_POWER	=	TPCANParameter(0x02)

PCAN_RECEIVE_EVENT	=	TPCANParameter(0x03)

PCAN_MESSAGE_FILTER	=	TPCANParameter(0x04)

PCAN_API_VERSION	=	TPCANParameter(0x05)

PCAN_CHANNEL_VERSION	=	TPCANParameter(0x06)

PCAN_BUSOFF_AUTORESET	=	TPCANParameter(0x07)

PCAN_LISTEN_ONLY	=	TPCANParameter(0x08)

PCAN_LOG_LOCATION	=	TPCANParameter(0x09)

PCAN_LOG_STATUS	=	TPCANParameter(0x0A)

PCAN_LOG_CONFIGURE	=	TPCANParameter(0x0B)

PCAN_LOG_TEXT	=	TPCANParameter(0x0C)

PCAN_CHANNEL_CONDITION	=	TPCANParameter(0x0D)

PCAN_HARDWARE_NAME	=	TPCANParameter(0x0E)

PCAN_RECEIVE_STATUS	=	TPCANParameter(0x0F)

PCAN_CONTROLLER_NUMBER	=	TPCANParameter(0x10)

PCAN_TRACE_LOCATION	=	TPCANParameter(0x11)

PCAN_TRACE_STATUS	=	TPCANParameter(0x12)

PCAN_TRACE_SIZE	=	TPCANParameter(0x13)

PCAN_TRACE_CONFIGURE	=	TPCANParameter(0x14)

PCAN_CHANNEL_IDENTIFYING	=	TPCANParameter(0x15)

PCAN_CHANNEL_FEATURES	=	TPCANParameter(0x16)

PCAN_BITRATE_ADAPTING	=	TPCANParameter(0x17)

PCAN_BITRATE_INFO	=	TPCANParameter(0x18)

PCAN_BITRATE_INFO_FD	=	TPCANParameter(0x19)

PCAN_BUSSPEED_NOMINAL	=	TPCANParameter(0x1A)

PCAN_BUSSPEED_DATA	=	TPCANParameter(0x1B)

PCAN_IP_ADDRESS	=	TPCANParameter(0x1C)

PCAN_LAN_SERVICE_STATUS	=	TPCANParameter(0x1D)

PCAN_ALLOW_STATUS_FRAMES	=	TPCANParameter(0x1E)

PCAN_ALLOW_RTR_FRAMES	=	TPCANParameter(0x1F)

PCAN_ALLOW_ERROR_FRAMES	=	TPCANParameter(0x20)

PCAN_INTERFRAME_DELAY	=	TPCANParameter(0x21)

PCAN_ACCEPTANCE_FILTER_11BIT	=	TPCANParameter(0x22)

PCAN_ACCEPTANCE_FILTER_29BIT	=	TPCANParameter(0x23)

Values

Name	 Value	 Data
Type	

Description	

PCAN_DEVICE_NUMBER	 1	 Integer	 PCAN-USB	"device
number"	parameter.	

PCAN_5VOLTS_POWER	 2	 Integer	 PCAN-PC	Card	"5-volt
power"	parameter.	

PCAN_RECEIVE_EVENT	 3	 Handle	 PCAN	receive	event
handler	parameter.	

PCAN_MESSAGE_FILTER	 4	 Integer	 PCAN	message	filter
parameter.	

PCAN_API_VERSION	 5	 String	 PCAN-Basic	API
version	parameter.	

PCAN_CHANNEL_VERSION	 6	 String	 PCAN	device	channel
version	parameter.	

PCAN_BUSOFF_AUTORESET	 7	 Integer	 PCAN	"reset	on	bus-off"
parameter.	

PCAN_LISTEN_ONLY	 8	 Integer	 PCAN	"listen-only"
parameter.	

PCAN_LOG_LOCATION	 9	 String	 Directory	path	for	log

files.	

PCAN_LOG_STATUS	 10	 Integer	 Debug-Log	activation
status.	

PCAN_LOG_CONFIGURE	 11	 Integer	 Configuration	of	the
debugged	information
(LOG_FUNCTION_***).	

PCAN_LOG_TEXT	 12	 String	 Custom	insertion	of	text
into	the	log	file.	

PCAN_CHANNEL_CONDITION	 13	 Integer	 Availability	status	of	a
PCAN-Channel.	

PCAN_HARDWARE_NAME	 14	 String	 PCAN	"hardware	name"
parameter.	

PCAN_RECEIVE_STATUS	 15	 Integer	 "Receive	Status"
parameter	for	incoming
messages.	

PCAN_CONTROLLER_NUMBER	 16	 Integer	 Index	of	a	CAN-
Controller	in	a	PCAN
device.	

PCAN_TRACE_LOCATION	 17	 String	 Directory	path	for	PCAN
trace	files.	

PCAN_TRACE_STATUS	 18	 Integer	 PCAN-Trace	activation
status.	

PCAN_TRACE_SIZE	 19	 Integer	 Configuration	of	the
maximum	size	for	a
PCAN-Trace.	

PCAN_TRACE_CONFIGURE	 20	 Integer	 Configuration	of	the
trace	file	storing	modes
(TRACE_FILE_***).	

PCAN_CHANNEL_IDENTIFYING	 21	 Integer	 USB	Channel
Identifying	activation

status.	

PCAN_CHANNEL_FEATURES	 22	 Integer	 Capabilities	of	a	PCAN
device	(FEATURE_***).	

PCAN_BITRATE_ADAPTING	 23	 Integer	 Attachment	to	an
existing	connection	with
unknown/different	bit
rate.	

PCAN_BITRATE_INFO	 24	 Integer	 Current	bit	rate	as
BTR0BTR1	value
(Standard	CAN).	

PCAN_BITRATE_INFO_FD	 25	 String	 Current	bit	rate	as	FD
String	value	(CAN-FD).	

PCAN_BUSSPEED_NOMINAL	 26	 Integer	 Current	nominal	CAN
bus	speed	in
bits/second.	

PCAN_BUSSPEED_DATA	 27	 Integer	 Current	CAN	data
speed	in	bits/second.	

PCAN_IP_ADDRESS	 28	 String	 Remote	address	as	a
IPv4	formated	string.	

PCAN_LAN_SERVICE_STATUS	 29	 Integer	 Running	status	of	the
LAN	Service	(Virtual
PCAN-Gateway)	

PCAN_ALLOW_STATUS_FRAMES	 30	 Integer	 "Receive	Status"
parameter	for	Status
frames.	

PCAN_ALLOW_RTR_FRAMES	 31	 Integer	 "Receive	Status"
parameter	for	RTR
frames.	

PCAN_ALLOW_ERROR_FRAMES	 32	 Integer	 "Receive	Status"
parameter	for	Error

frames.	

PCAN_INTERFRAME_DELAY	 33	 Integer	 Delay,	in	microseconds,
between	sending
frames.	

PCAN_ACCEPTANCE_FILTER_11BIT	 34	 64-Bit
Integer	

Acceptance	filter	over
code	and	mask	for	11-
bit	CAN	IDs.	

PCAN_ACCEPTANCE_FILTER_29BIT	 35	 64-Bit
Integer	

Acceptance	filter	over
code	and	mask	for	29-
bit	CAN	IDs.	

Characteristics

PCAN_DEVICE_NUMBER	 	
Access:	 	

Description:	This	parameter	is	used	on	PCAN-USB	hardware	to
distinguish	between	2	(or	more)	of	them	on	the	same	computer.	This
value	is	persistent,	i.e.	the	identifier	will	not	be	lost	after	disconnecting
and	connecting	again	the	hardware.	

Possible	values:	According	with	the	Firmware	version,	this	value	can
be	a	number	in	the	range	[1..255]	or	[1..4294967295].	If	the	Firmware
has	a	resolution	of	one	byte	and	the	specified	value	is	bigger,	than	the
value	is	truncated.	

Default	value:	If	this	parameter	was	never	set	before,	the	value	is	the
maximum	value	possible	for	the	used	resolution.	For	8-bits:	255
(FFh),	for	32	bits:	429496729	(FFFFFFFFh).	

PCAN-Device:	PCAN-USB.	
	

PCAN_5VOLTS_POWER	 	
Access:	 	

Description:	This	parameter	is	used	on	PCAN-PC	Card	hardware	for

switching	the	external	5V	on	the	D-Sub	connector	of	the	PC	Card.
This	is	useful	when	connecting	external	bus	converter	modules	to	the
card	(AU5790	/	TJA1054)).	

Possible	values:	This	parameter	can	have	one	of	these	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	PCAN-PC	Card,	PCAN-HUB.	
	

PCAN_RECEIVE_EVENT	 	
Access:	 	

Description:	This	parameter	is	used	to	let	the	PCAN	driver	notify	an
application	when	CAN	messages	are	placed	in	its	receive	queue.	In
this	form,	message	processing	tasks	of	an	application	can	react	faster
and	make	a	more	efficient	use	of	the	processor	time.	

Possible	values:	This	value	has	to	be	a	handle	for	an	event	object
returned	by	the	Windows	API	function	 CreateEvent	or	the	value	0
(IntPtr.Zero	in	a	managed	environment).	When	setting	this	parameter,
the	value	of	0	resets	the	parameter	in	the	PCAN	driver.	When	reading
the	value	of	0	indicate	that	no	event	handle	is	set.	For	more
information	about	reading	with	events,	please	refer	to	the	topic	Using
Events.	

Default	value:	Disabled	(0).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_MESSAGE_FILTER	 	
Access:	 	

Description:	This	parameter	allows	the	user	to	easy	configure	the
message	filter	of	a	PCAN	channel.	With	it	is	possible	to	fully	open	or
complete	close	the	filter.	

Possible	values:	When	setting	only	two	values	are	possible:
PCAN_FILTER_OPEN,	PCAN_FILTER_CLOSE.	When	reading	it	is
possible	to	receive	a	third	value,	PCAN_FILTER_CUSTOM,	which
indicates	that	the	filter	is	configured	to	receive	a	custom	range	of	IDs.
Note	that	other	values	will	considered	invalid.	
Default	value:	Complete	opened	(PCAN_FILTER_OPEN).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_API_VERSION	 	
Access:	 	

Description:	This	parameter	is	used	to	get	information	about	the
PCAN-Basic	API	implementation	version.	

Possible	values:	The	value	is	a	null-terminated	string	indication	the
version	number	of	the	API	implementation.	The	returned	text	has	the
following	form:	x,x,x,x	for	major,	minor,	release	and	build.	It
represents	the	binary	version	of	the	API,	within	two	32-bit	integers,
defined	by	four	16-bit	integers.	The	length	of	this	text	value	will	have	a
maximum	length	of	24	bytes,	5	bytes	for	represent	each	16-bit	value,
three	separator	characters	(,	or	.)	and	the	null-termination.	
Default	value:	NA.	
PCAN-Device:	NA.	Any	PCAN	device	can	be	used,	including	the
PCAN_NONEBUS	channel.	

	

PCAN_CHANNEL_VERSION	 	
Access:	 	

Description:	This	parameter	is	used	to	get	version	information	about
the	Driver	of	a	PCAN	Channel.	

Possible	values:	The	value	is	a	null-terminated	string	which	contains
version	number,	driver	name	and	copyright	information	about	the
driver	used	to	handle	with	an	specified	PCAN	channel.	The	length	of

the	this	text	will	have	a	maximum	length	of	256	bytes	(null-termination
included)	.	

Default	value:	NA.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	Note:	It	is	not	needed	to	have	a	PCAN	channel	initialized
before	asking	for	its	version.	

	

PCAN_BUSOFF_AUTORESET	 	
Access:	 	

Description:	This	parameter	instructs	the	PCAN	driver	to	reset
automatically	the	CAN	controller	of	a	PCAN	channel	when	a	bus-off
state	is	detected.	Since	no	communication	is	possible	on	a	bus-off
state,	it	is	useful	to	let	the	driver	to	catch	this	event	automatically	and
reset	the	controller,	avoiding	extra	handling	of	this	problem	in	an	end
application.	

Possible	values:	This	parameter	can	have	one	of	these	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	Reseting	the	hardware	has	a	duration	of	~	500
milliseconds.	After	receiving	the	PCAN_ERROR_BUSOFF	error,	an
application	should	wait	that	time	before	trying	to	read	or	write	again.	

	

PCAN_LISTEN_ONLY	 	
Access:	 	

Description:	This	parameter	allows	the	user	to	set	a	CAN	hardware
in	Listen-Only	mode.	When	this	mode	is	set,	the	CAN	controller
doens't	take	part	on	active	events	(eg.	transmit	CAN	messages)	but
stays	in	a	passive	mode	(CAN	monitor),	in	which	it	can	analyse	the

traffic	on	the	CAN	bus	used	by	a	PCAN	channel.	See	also	the	Philips
Data	Sheet	"SJA1000	Stand-alone	CAN	controller".	

Possible	values:	This	parameter	can	have	one	of	these	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS)
containing	a	SJA1000	CAN	controller.	

REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	Configuring	this	parameter	without	having	the
channel	initialized,	does	a	so	called	"pre-initialization".	This	means
that	the	channel	will	be	set	in	Listen-Only	mode	as	soon	as	possible,
after	it	has	been	successfully	connected,	using	CAN_Initialize	(class-
method:	Initialize).	Once	the	channel	is	disconnected,	further
initializations	of	this	channel	are	done	in	normal	mode.	It	is	needed	to
set	this	parameter	again	before	each	initialization	process,	if	the
behavior	described	before	is	required.	This	is	usefull	to	avoid	or
minimize	arbitration	problems	when	connecting	to	a	CAN-network.	

	

PCAN_LOG_LOCATION	 	
Access:	 	

Description:	This	value	is	used	to	set	the	folder	location	on	a
computer	for	the	Log-File	generated	by	the	PCAN-Basic	API,	within	a
debug	session.	Setting	this	value	starts	recording	debug	information
automatically.	If	a	debug	session	is	running	(a	log	file	is	being	written),
PCAN_LOG_LOCATION	instructs	the	API	to	close	the	current	log	file
and	to	start	the	process	again	with	the	new	folder	information.	Note
that	the	name	of	the	log	file	cannot	be	specified,	this	name	is	fixed	as
PCANBasic.log.	

Possible	values:	This	value	must	be	a	fully-qualified	and	valid	path	to
an	existing	directory	on	the	executing	computer.	There	is	no	limit	for
the	length	of	the	string	but	it	is	recommended	to	use	a	length	not
bigger	than	MAX_PATH.	For	more	information	see	 Naming	Files,

Paths,	and	Namespaces.	

Default	value:	Calling	process's	folder.	
PCAN-Device:	Default	channel	Only	(PCAN_NONEBUS).	
	

PCAN_LOG_STATUS	 	
Access:	 	

Description:	This	value	is	used	to	control	the	activity	status	of	a
debug	session	within	the	PCAN-Basic	API.	If	the	log	status	is	set	to
ON	without	having	set	a	location	for	the	log	file	or	without	having
configured	the	information	to	be	traced,	then	the	session	process	will
start	with	the	default	values.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	Default	channel	Only	(PCAN_NONEBUS).	
	

PCAN_LOG_CONFIGURE	 	
Access:	 	

Description:	This	value	is	used	to	configure	the	debug	information	to
be	included	in	the	log	file	generated	in	a	debug	session	within	the
PCAN-Basic	API.	

Possible	values:	The	value	must	be	one	of	the	following	values	or	a
combination	of	them:	

LOG_FUNCTION_DEFAULT:	This	value	is	always	active.	It
defines	the	default	information	to	be	traced,	which	is	an
unexpected	exception	like	a	memory	access	violation.	After
having	configured	the	log	with	more	options,	this	value	can	be
used	to	reset	that	configuration,	setting	the	log	with	its	default
value	again.	This	kind	of	entry	is	marked	with	the	word
"EXCEPTION"*	in	the	log	file.

LOG_FUNCTION_ENTRY:	This	value	causes	an	entry	in	the	log
file	each	time	an	API	function	is	entered.	This	kind	of	entry	is
marked	with	the	word	"ENTRY"*	in	the	log	file.
LOG_FUNCTION_PARAMETERS:	This	value	causes	an	entry	in
the	log	file	each	time	an	API	function	is	entered,	showing	the
name	of	the	parameters	passed	to	the	function	as	well	as	their
values.	This	kind	of	entry	is	marked	with	the	word
"PARAMETERS"*	in	the	log	file.
LOG_FUNCTION_LEAVE:	This	value	causes	an	entry	in	the	log
file	each	time	an	API	function	is	abandoned.	This	kind	of	entry	is
marked	with	the	word	"EXIT"*	in	the	log	file.
LOG_FUNCTION_WRITE:	This	value	causes	an	entry	in	the	log
file	each	time	a	CAN	message	is	written,	using	the	function
CAN_Write	(class-method:	Write).	This	kind	of	entry	is	marked
with	the	word	"CHANNEL	0xXX	(Y)"*	in	the	log	file,	where	XX	is
the	channel	number	in	hex	notation,	and	Y	the	word	"OUT"*
denoting	the	direction	(outgoing).	The	complete	CAN	message	is
also	represented	as	hex	text.
LOG_FUNCTION_READ:	This	value	causes	an	entry	in	the	log
file	each	time	a	CAN	message	is	read,	using	the	functions
CAN_Read/CAN_ReadFD	(class-methods:	Read,	ReadFD).
This	kind	of	entry	is	marked	with	the	word	"CHANNEL	0xXX	(Y)"*
in	the	log	file,	where	XX	is	the	channel	number	in	hex	notation,
and	Y	the	word	"IN"*	denoting	the	direction	(incoming).	The
complete	CAN	message	is	also	represented	as	hex	text.

*	Note	that	the	PCAN-Basic	API	supports	several	languages.	The	log
file	use	the	language	of	the	operating	system.	If	this	language	is	not
one	of	the	supported	languages,	than	English	is	used.	

*	These	words	are	always	written	in	English,	independently	of	the
operating	system's	language.	

Default	value:	Exceptions	and	Errors	(LOG_FUNCTION_DEFAULT).	
PCAN-Device:	Default	channel	Only	(PCAN_NONEBUS).	
	

PCAN_LOG_TEXT	 	

Access:	 	

Description:	This	value	is	used	to	insert	custom	information	in	the	log
file	generated	in	a	debug	session	within	the	PCAN-Basic	API.	Setting
this	value	starts	recording	debug	information	automatically.	

This	is	very	useful	when	it	is	desired	to	specially	mark	places	of	an
application's	execution	path	while	debugging	PCAN-Basic	tasks.
Furthermore,	an	application	could	use	this	feature	as	an	own	Log	file.
To	do	so,	just	use	the	default	log's	configuration
(PCAN_LOG_CONFIGURE	set	to	LOG_FUNCTION_DEFAULT)	and
include	the	desired	information	using	PCAN_LOG_TEXT.	In	this	way
the	log	file	will	contain	only	user-defined	debug	information.	Note	that
the	name	of	the	log	file	cannot	be	specified,	this	name	is	fixed	as
PCANBasic.log.	

Possible	values:	This	value	must	be	a	null-terminated	string.	There
is	no	limit	for	the	length	of	the	string	but	it	is	recommended	to	use	a
length	not	bigger	than	MAX_PATH.	For	more	information	see	
Naming	Files,	Paths,	and	Namespaces.	

Default	value:	NA.	
PCAN-Device:	Default	channel	Only	(PCAN_NONEBUS).	
	

PCAN_CHANNEL_CONDITION	 	
Access:	 	

Description:	This	parameter	is	used	to	check	and	detect	available
PCAN	hardware	on	a	computer,	even	before	trying	to	connect	any	of
them.	This	is	useful	when	an	application	wants	the	user	to	select
which	hardware	should	be	using	in	a	communication	session.	

Possible	values:	This	parameter	can	have	one	of	these	values:
PCAN_CHANNEL_UNAVAILABLE,
PCAN_CHANNEL_AVAILABLE,	PCAN_CHANNEL_OCCUPIED,
PCAN_CHANNEL_PCANVIEW.	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS

channel).	

	

PCAN_HARDWARE_NAME	 	
Access:	 	

Description:	This	parameter	is	used	to	retrieve	the	name	of	the
hardware	represented	by	a	PCAN	channel.	This	is	useful	when	an
application	wants	to	differentiate	between	several	models	of	the	same
device,	e.g.	a	PCAN-USB	and	a	PCAN-USB	Pro.	

Possible	values:	The	value	is	a	null-terminated	string	which	contains
the	name	of	the	hardware	specified	by	the	given	PCAN	channel.	The
length	of	this	text	will	have	a	maximum	length	of	32	bytes	(null-
termination	included).	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	

	

PCAN_RECEIVE_STATUS	 	
Access:	 	

Description:	This	parameter	helps	the	user	to	allow	/	disallow	the
reception	of	messages	within	a	PCAN	Channel,	regardless	of	the
value	of	its	reception	filter.	When	the	"Receive	Status"	is	active	(ON),
incoming	messages	are	forwarded	to	the	user	application	through	the
CAN_Read/CAN_ReadFD	functions	(class-methods:	Read,	ReadFD).
If	"Receive	Status"	is	deactivated	(OFF),	the	incoming	messages	are
disposed	from	the	receive	queue	and	each	call	to
CAN_Read/CAN_ReadFD	returns	PCAN_ERROR_QRCVEMPTY.
The	acceptance	filter	of	the	channel	remains	unchanged	(other
applications	working	with	the	same	PCAN-Hardware	will	not	be
disturbed).	

Possible	values:	This	parameter	can	have	one	of	these	values:

PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Activated	(PCAN_PARAMETER_ON).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS).	
REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	Configuring	this	parameter	without	having	the
channel	initialized,	does	a	so	called	"pre-initialization".	This	means
that	the	channel	will	set	the	configured	"Receive	Status"	after	it	has
been	successfully	connected,	using	CAN_Initialize	(class-method:
Initialize).	Once	the	channel	is	disconnected,	further	initializations	of
this	channel	are	done	with	the	default	value	of	this	parameter	(ON).
This	is	usefull	to	avoid	receiving	messages	immediately	after
connection,	or	before	the	receive	filter	is	configured	according	with	the
needs	of	each	application.	

	

PCAN_CONTROLLER_NUMBER	 	
Access:	 	

Description:	This	parameter	is	a	zero-based	index	used	to	identify
the	CAN	controllers	built	in	a	hardware.	This	parameter	is	useful	when
it	is	needed	to	communicate	with	a	specific	physical	channel	on	a
multichannel	CAN	Hardware,	e.g.	"0"	or	"1"	on	a	PCAN-USB	Pro
device.	

Possible	values:	A	number	in	the	range	[0..n-1],	where	n	is	the
number	of	physical	channels	on	the	device	being	used.	

Default	value:	NA.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	

	

PCAN_TRACE_LOCATION 	

Access:	 	

Description:	This	value	is	used	to	set	the	folder	location	on	a
computer	for	the	PCAN-Trace	file	generated	by	the	PCAN-Basic	API,
within	a	trace	session.	If	a	trace	session	is	active	(a	trace	file	is	being
written),	PCAN_TRACE_LOCATION	instructs	the	API	to	close	the
current	trace	file	and	to	start	recording	data	again	with	the	new	folder
information.	

Possible	values:	This	value	must	be	a	fully-qualified	and	valid	path	to
an	existing	directory	on	the	executing	computer.	There	is	no	limit	for
the	length	of	the	string	but	it	is	recommended	to	use	a	length	not
bigger	than	MAX_PATH.	For	more	information	see	 Naming	Files,
Paths,	and	Namespaces.	Passing	an	empty	string	("",	NULL	value)
instructs	the	API	to	use	the	default	value	for	this	parameter.	

Default	value:	Calling	process's	folder.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	Note	that	the	name	of	the	trace	file	cannot	be	specified.
The	file	uses	the	name	of	the	current	connection	(PCAN-Channel's
name)	plus	a	file	counter	(e.g.	PCAN_PCIBUS1_1.trc),	though	it	can
be	enhanced	by	issuing	the	parameter
PCAN_TRACE_CONFIGURE.	

	

PCAN_TRACE_STATUS	 	
Access:	 	

Description:	This	value	is	used	to	control	the	activity	status	of	a	trace
session	within	the	PCAN-Basic	API.	If	the	trace	status	is	set	to	ON
without	having	set	a	location	for	the	trace	file	or	without	having
configured	the	storing	mode,	then	the	session	process	will	start	with
the	default	values.	Trying	to	activate	a	trace	session	can	fail	if
overwriting	is	not	set	and	a	file	with	the	same	name	already	exists.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	

Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_TRACE_SIZE	 	
Access:	 	

Description:	This	value	is	used	to	set	the	maximum	size,	in
megabytes,	that	a	single	trace	file	can	have.	Trying	to	set	the	size	for
a	trace	file	will	fail	if	the	trace	session	is	active.	

Possible	values:	A	number	in	the	range	[1..100],	representing	the
amount	of	megabytes.	Passing	a	value	of	0	instructs	the	API	to	use
the	default	value	for	this	parameter.	Trying	to	set	a	size	bigger	than
100	will	fail.	

Default	value:	10	megabytes.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_TRACE_CONFIGURE	 	
Access:	 	

Description:	This	value	is	used	to	configure	the	trace	process	and
the	file	generated	in	a	trace	session	within	the	PCAN-Basic	API.
Trying	to	configure	a	trace	file	will	fail	if	the	trace	session	is	active.	

Possible	values:	The	value	must	be	one	of	the	following	values	or	a
combination	of	them:	

TRACE_FILE_SINGLE:	This	value	represents	the	default	trace
configuration.	It	defines	the	use	of	a	single	trace	file	as	output.
When	the	tracing	process	starts,	the	file	will	be	filled	out	with
messages	until	the	size	of	the	file	reaches	the	configured
maximum	size	(see	PCAN_TRACE_SIZE).	The	tracing	process
is	then	automatically	stopped.
TRACE_FILE_SEGMENTED:	This	value	indicates	the	API	to

keep	tracing	information	by	using	several	files.	When	the	trace
file	being	used	reaches	the	maximum	configured	file	size	(see
PCAN_TRACE_SIZE),	then	a	new	file	is	automatically	created
and	the	tracing	process	continues.
TRACE_FILE_DATE:	This	value	instruct	the	API	to	use	the	start
date	information	within	the	name	of	the	trace	file.	The	format
used	is	YYYYMMDD,	four	digits	for	year,	the	next	two	for	the
month,	and	the	last	two	for	the	day,	e.g.
"20130228_PCAN_USBBUS_1"	for	the	28th	February	2013.	If
both,	TRACE_FILE_DATE	and	TRACE_FILE_TIME	are
configured,	the	file	name	starts	always	with	the	date:
"20130228140733_PCAN_USBBUS1_1.trc".
TRACE_FILE_TIME:	This	value	instruct	the	API	to	use	the	start
time	information	within	the	name	of	the	trace	file.	The	format
used	is	HHMMSS,	two	digits	for	the	hour	(24	hours	format),	the
next	two	for	the	minutes,	and	the	last	two	for	the	seconds,	e.g.
"140733_PCAN_USBBUS_1"	for	14:07:33	(02:07:33	PM).	If	both,
TRACE_FILE_DATE	and	TRACE_FILE_TIME	are	configured,
the	file	name	starts	always	with	the	date:
"20130228140733_PCAN_USBBUS1_1.trc".
TRACE_FILE_OVERWRITE:	This	value	causes	the	overwriting
of	an	existing	trace	file	when	a	new	trace	session	is	started.	If	this
value	is	not	configured,	trying	to	start	a	tracing	process	will	fail,	if
the	file	name	to	generate	is	the	same	as	one	used	by	an	existing
file.

Default	value:	TRACE_FILE_SINGLE	(Single	file,	not	overwriting,
with	standard	name).	

PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_CHANNEL_IDENTIFYING	 	
Access:	 	

Description:	This	value	is	used	to	control	the	status	of	the	"channel
identifying	procedure"	on	USB	devices	within	the	PCAN-Basic	API.
The	procedure	consists	in	blinking	the	LED	associated	to	the	given

channel.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	This	identifying	procedure	is	only	available	for
USB	based	hardware	(PCAN-USB,	PCAN-USB	Pro	and	PCAN-USB
Hub).	The	blinking	of	the	LED	can	be	different	according	to	the	kind	of
hardware	used	(in	color	and	blink	rate).	Only	one	channel	can	blink
simultaneously.	

	

PCAN_CHANNEL_FEATURES	 	
Access:	 	

Description:	This	value	is	used	to	read	the	particularities	of	a	PCAN
Channel.	

Possible	values:	The	value	can	be	one	of	the	following	values	or	a
combination	of	them:	

FEATURE_FD_CAPABLE:	This	value	indicates	that	the
hardware	represented	by	a	PCAN	Channel	is	FD	capable	(it
supports	flexible	data	rate).
FEATURE_DELAY_CAPABLE:	This	value	indicates	that	the
hardware	represented	by	a	PCAN	Channel	allows	the
configuration	of	a	delay	between	sending	frames.

Default	value:	A	value	of	0,	indicating	"no	special	features".	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	can	be	used	with	an	initialized	or
uninitialized	channel.	FD	Hardware	must	be	initialized	with
CAN_InitializeFD	(class-method:	InitializeFD)	in	order	to	use	their	FD

capabilities.	In	same	way,	the	functions	CAN_ReadFD	(class-
method:	ReadFD)	and	CAN_WriteFD	(class-method:	WriteFD)	have
to	be	used	for	data	transmission.	

	

PCAN_BITRATE_ADAPTING	 	
Access:	 	

Description:	This	value	is	used	to	force	an	initialization	process	to
succeed,	even	if	the	PCAN-Channel	is	being	used	by	a	PCAN-View
with	a	different	or	unknown	bit	rate.	The	initialization	function	will
return	a	PCAN_ERROR_CAUTION	error,	when	the	bit	rate	passed	as
parameter	was	different	than	that	being	used.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	Plug-n-Play	PCAN	devices	(excluding
PCAN_NONEBUS	channel).	

REMARKS:	This	parameter	can	be	set	only	on	uninitialized
channels.	After	connecting,	an	application	can	get	the	bit	rate
currently	used	by	calling	CAN_GetValue	(class-method:	GetValue)
with	the	parameters	PCAN_SPEED_QUERY,	for	standard	CAN
channels,	or	PCAN_SPEED_QUERY_FD	for	CAN-FD	channels.	

	

PCAN_BITRATE_INFO	 	
Access:	 	

Description:	This	value	is	used	to	read	the	currently	configured
communication	speed,	as	BTR0-BTR1	value,	of	a	PCAN	Channel
connected	as	standard	CAN.	

Possible	values:	A	number	in	the	range	[0..65535]	(Word	Value).	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS

channel).	

REMARKS:	This	parameter	can	be	used	only	on	PCAN-Channels
that	have	been	initialized	with	the	function	CAN_Initialize	(class-
method:	Initialize).	
	

PCAN_BITRATE_INFO_FD	 	
Access:	 	

Description:	This	value	is	used	to	read	the	currently	configured
communication	speed,	as	a	parameterized	string	value	(FD	bit	rate
string),	of	a	PCAN	Channel	connected	as	CAN	FD.	

Possible	values:	a	String	representing	a	FD	bit	rate.	See	FD	Bit	rate
for	more	information.	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	can	be	used	only	on	PCAN-Channels
that	have	been	initialized	with	the	function	CAN_InitializeFD	(class-
method:	InitializeFD).	
	

PCAN_BUSSPEED_NOMINAL	 	
Access:	 	

Description:	This	value	is	used	to	read	the	currently	configured
nominal	CAN	Bus	speed,	as	bits/second.	

Possible	values:	a	number	representing	the	nominal	CAN	bus	speed
being	used,	as	the	amount	of	bits	that	can	be	transmitted	in	a
second.	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_BUSSPEED_DATA	 	
Access:	 	

Description:	This	value	is	used	to	read	the	currently	configured	CAN
data	speed	(Bit	Rate	Switch),	as	bits/second.	

Possible	values:	a	number	representing	the	CAN	data	speed
configured	for	BRS,	as	the	amount	of	bits	that	can	be	transmitted	in	a
second.	

Default	value:	N/A.	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	The	speed	used	for	data	transmission	is	the	same	as	the
nominal	speed	on	devices	that	don't	support	flexible	data	rate.	

	

PCAN_IP_ADDRESS	 	
Access:	 	

Description:	This	value	is	used	to	read	the	address	used	by	a	device
for	IP	communication.	

Possible	values:	a	string	representing	the	IP	address	of	a	device,	in
IPv4	format.	

Default	value:	N/A.	
PCAN-Device:	PCAN-LAN	(PCAN-Gateway	Ethernet/Wireless
devices).	

	

PCAN_LAN_SERVICE_STATUS	 	
Access:	 	

Description:	This	value	is	used	to	get	the	running	status	of	the
System-Service	that	is	part	of	the	Virtual	PCAN-Gateway	solution.	

Possible	values:	This	parameter	can	have	one	of	these	values:
SERVICE_STATUS_RUNNING,	SERVICE_STATUS_STOPPED.	

Default	value:	N/A.	
PCAN-Device:	Default	channel	Only	(PCAN_NONEBUS).	
REMARKS:	This	parameter	is	only	relevant	in	PCAN-LAN
environments	(using	PCAN-Gateway	Ethernet/Wireless	devices).	

	

PCAN_ALLOW_STATUS_FRAMES	 	
Access:	 	

Description:	This	parameter	helps	the	user	to	allow	/	disallow	the
reception	of	messages	of	type	"PCAN_MESSAGE_STATUS"	within	a
PCAN	Channel.	When	"PCAN_ALLOW_STATUS_FRAMES"	is	active
(ON),	generated	Status	messages	are	forwarded	from	the	driver	to
the	user	application	through	the	CAN_Read/CAN_ReadFD	functions
(class-methods:	Read,	ReadFD).	Otherwise,	the	reception	of	Status
frames	is	deactivated	within	the	driver	for	this	specific	user
application.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Enabled	(PCAN_PARAMETER_ON).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_ALLOW_RTR_FRAMES	 	
Access:	 	

Description:	This	parameter	helps	the	user	to	allow	/	disallow	the
reception	of	messages	of	type	"PCAN_MESSAGE_RTR"	within	a
PCAN	Channel.	When	"PCAN_ALLOW_RTR_FRAMES"	is	active
(ON),	incoming	RTR	messages	are	forwarded	to	the	user	application
through	the	CAN_Read/CAN_ReadFD	functions	(class-methods:
Read,	ReadFD).	Otherwise,	the	reception	of	RTR	frames	is
deactivated	within	the	driver	for	this	specific	user	application.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Enabled	(PCAN_PARAMETER_ON).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_ALLOW_ERROR_FRAMES	 	
Access:	 	

Description:	This	parameter	helps	the	user	to	allow	/	disallow	the
reception	of	messages	of	type	"PCAN_MESSAGE_ERRFRAME"
within	a	PCAN	Channel.	When	"PCAN_ALLOW_ERROR_FRAMES"
is	active	(ON),	generated	Error	messages	are	forwarded	from	the
driver	to	the	user	application	through	the	CAN_Read/CAN_ReadFD
functions	(class-methods:	Read,	ReadFD).	Otherwise,	the	reception
of	Error	frames	is	deactivated	within	the	driver	for	this	specific	user
application.	

Possible	values:	The	value	must	be	one	of	the	following	values:
PCAN_PARAMETER_OFF,	PCAN_PARAMETER_ON.	Note	that
other	values	will	considered	invalid.	
Default	value:	Disabled	(PCAN_PARAMETER_OFF).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

	

PCAN_INTERFRAME_DELAY	 	
Access:	 	

Description:	This	parameter	is	used	to	configure	a	delay,	in
microseconds,	between	sending	frames.	When	this	value	is	value	is
greater	than	0,	the	driver	includes	that	value	as	a	pause	between
each	written	CAN	frame.	Otherwise,	the	CAN	frames	are	sent	as	fast
as	possible.	

Possible	values:	The	parameter	has	a	value	range	between	[0..n],
where	n	is	the	maximum	value	supported	by	the	Firmware.	If	the
maximum	value	supported	by	the	firmware	is	lower	than	the	entered
one,	the	value	will	be	truncated.	

Default	value:	0	(disabled).	
PCAN-Device:	All	FPGA	based	PCAN	devices.	
	

PCAN_ACCEPTANCE_FILTER_11BIT	 	
Access:	 	

Description:	This	parameter	is	used	to	configure	the	reception	filter
of	a	PCAN	channel	with	a	specific	11-bit	acceptance	code	and	mask,
as	specified	for	the	acceptance	filter	of	the	SJA1000	CAN	controller.
The	acceptance	code	and	mask	are	coded	together	in	a	64-bit	value,
each	of	them	using	4	bytes	(Intel/Little-Endian	format).	The
acceptance	code	is	stored	at	the	most	significant	bytes.	

Possible	values:	Both	parameter	parts,	code	and	mask,	have	a
value	range	between	[0..16838].	This	means,	the	maximum	value	of
this	parameter	as	64-bit	value	is	70364449226751,	that	is,
hexadecimal	00003FFF00003FFFh.	The	mask	uses	the	bit	value	'1'
as	"don't	care	bit".	
Default	value:	00000000000007FFh	(no	filtering).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	is	particularly	adapted	to	the	SJA1000
CAN	controller.	Reception	filters	can	also	be	configured	with	the
function	CAN_FilterMessages(class-method:	FilterMessages).	Note
that	after	a	PCAN	Channel	is	initialized,	the	status	of	its	filter	is	fully
opened.	According	with	the	current	filter	status,	setting	this	parameter
causes	the	following	behavior:	

Filter	status	is	PCAN_FILTER_OPEN:	The	filter	is	automatically
closed	and	then	configured	with	the	given	acceptance	filter.
Filter	status	is	PCAN_FILTER_CLOSE:	The	filter	is	set	to	the

given	acceptance	filter.
Filter	status	is	PCAN_FILTER_CUSTOM:	The	filter	is	expanded
with	the	given	acceptance	filter.	If	a	different	acceptance	code	is
required	instead	of	expanding	the	current	one,	the	filter	has	to	be
closed	first	before	setting	the	acceptance	filter.	To	do	this	use	the
parameter	PCAN_MESSAGE_FILTER.

	

PCAN_ACCEPTANCE_FILTER_29BIT	 	
Access:	 	

Description:	This	parameter	is	used	to	configure	the	reception	filter
of	a	PCAN	channel	with	a	specific	29-bit	acceptance	code	and	mask,
as	specified	for	the	acceptance	filter	of	the	SJA1000	CAN	controller.
The	acceptance	code	and	mask	are	coded	together	in	a	64-bit	value,
each	of	them	using	4	bytes	(Intel/Little-Endian	format).	The
acceptance	code	is	stored	at	the	most	significant	bytes.	

Possible	values:	Both	parameter	parts,	code	and	mask,	have	a
value	range	between	[0..4294967295].	This	means,	the	maximum
value	of	this	parameter	as	64-bit	value	is	18446744073709551615,
that	is,	hexadecimal	FFFFFFFFFFFFFFFFh.	The	mask	uses	the	bit
value	'1'	as	"don't	care	bit".	
Default	value:	000000001FFFFFFFh	(no	filtering).	
PCAN-Device:	All	PCAN	devices	(excluding	PCAN_NONEBUS
channel).	

REMARKS:	This	parameter	is	particularly	adapted	to	the	SJA1000
CAN	controller.	Reception	filters	can	also	be	configured	with	the
function	CAN_FilterMessages(class-method:	FilterMessages).	Note
that	after	a	PCAN	Channel	is	initialized,	the	status	of	its	filter	is	fully
opened.	According	with	the	current	filter	status,	setting	this	parameter
causes	the	following	behavior:	

Filter	status	is	PCAN_FILTER_OPEN:	The	filter	is	automatically
closed	and	then	configured	with	the	given	acceptance	filter.
Filter	status	is	PCAN_FILTER_CLOSE:	The	filter	is	set	to	the
given	acceptance	filter.

Filter	status	is	PCAN_FILTER_CUSTOM:	The	filter	is	expanded
with	the	given	acceptance	filter.	If	a	different	acceptance	code	is
required	instead	of	expanding	the	current	one,	the	filter	has	to	be
closed	first	before	setting	the	acceptance	filter.	To	do	this	use	the
parameter	PCAN_MESSAGE_FILTER.

See	Also

CAN_GetValue	(class-method:	GetValue)	
CAN_SetValue	(class-method:	SetValue)	
	

Parameter	Value	Definitions	

Naming	Files,	Paths,	and	Namespaces	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANMessageType
Represents	the	type	of	a	CAN	message.	According	with	the
programming	language,	this	type	can	be	a	group	of	defined	values	or
an	enumeration.

Syntax

C++
#define	TPCANMessageType	BYTE

#define	PCAN_MESSAGE_STANDARD	0x00

#define	PCAN_MESSAGE_RTR	0x01

#define	PCAN_MESSAGE_EXTENDED	0x02

#define	PCAN_MESSAGE_FD	0x04

#define	PCAN_MESSAGE_BRS	0x08

#define	PCAN_MESSAGE_ESI	0x10

#define	PCAN_MESSAGE_ERRFRAME	0x40

#define	PCAN_MESSAGE_STATUS	0x80

Pascal	OO
{$Z1}

TPCANMessageType	=	(

				PCAN_MESSAGE_STANDARD	=	$00,

				PCAN_MESSAGE_RTR	=	$01,

				PCAN_MESSAGE_EXTENDED	=	$02,

				PCAN_MESSAGE_FD	=	$04,

				PCAN_MESSAGE_BRS	=	$08,

				PCAN_MESSAGE_ESI	=	$10,

				PCAN_MESSAGE_ERRFRAME	=	$40,

				PCAN_MESSAGE_STATUS	=	$80

);

C#

[Flags]

public	enum	TPCANMessageType	:	byte

{

				PCAN_MESSAGE_STANDARD		=	0x00,

				PCAN_MESSAGE_RTR							=	0x01,

				PCAN_MESSAGE_EXTENDED		=	0x02,

				PCAN_MESSAGE_FD	=	0x04,

				PCAN_MESSAGE_BRS	=	0x08,

				PCAN_MESSAGE_ESI	=	0x10,

				PCAN_MESSAGE_ERRFRAME	=	0x40,

				PCAN_MESSAGE_STATUS				=	0x80,

}

C++	/	CLR
[Flags]

public	enum	class	TPCANMessageType	:	Byte

{

				PCAN_MESSAGE_STANDARD		=	0x00,

				PCAN_MESSAGE_RTR	=	0x01,

				PCAN_MESSAGE_EXTENDED		=	0x02,

				PCAN_MESSAGE_FD	=	0x04,

				PCAN_MESSAGE_BRS	=	0x08,

				PCAN_MESSAGE_ESI	=	0x10,

				PCAN_MESSAGE_ERRFRAME	=	0x40,

				PCAN_MESSAGE_STATUS				=	0x80,

};

Visual	Basic
<Flags()>	_

Public	Enum	TPCANMessageType	As	Byte

				PCAN_MESSAGE_STANDARD	=	&H0

				PCAN_MESSAGE_RTR	=	&H1

				PCAN_MESSAGE_EXTENDED	=	&H2

				PCAN_MESSAGE_FD	=	&H4

				PCAN_MESSAGE_BRS	=	&H8

				PCAN_MESSAGE_ESI	=	&H10

				PCAN_MESSAGE_ERRFRAME	=	&H40

				PCAN_MESSAGE_STATUS	=	&H80

End	Enum

Python
TPCANMessageType	=	c_ubyte

PCAN_MESSAGE_STANDARD	=	TPCANMessageType(0x00)

PCAN_MESSAGE_RTR	=	TPCANMessageType(0x01)

PCAN_MESSAGE_EXTENDED	=	TPCANMessageType(0x02)

PCAN_MESSAGE_FD	=	TPCANMessageType(0x04)

PCAN_MESSAGE_BRS	=	TPCANMessageType(0x08)

PCAN_MESSAGE_ESI	=	TPCANMessageType(0x10)

PCAN_MESSAGE_ERRFRAME	=	TPCANMessageType(0x40)

PCAN_MESSAGE_STATUS	=	TPCANMessageType(0x80)

Remarks

Several	message	types	can	be	combined	(Bit	mask).	

Note	that	messages	with	type	PCAN_MESSAGE_FD,
PCAN_MESSAGE_BRS,	PCAN_MESSAGE_ESI,	or	a	combination	of
them,	can	only	be	sent/received	using	the	FD	functions	CAN_ReadFD
and	CAN_WriteFD	(class-methods:	ReadFD,	WriteFD).

Values

Name	 Value	 Description	

PCAN_MESSAGE_STANDARD	 0	 The	PCAN	message
is	a	CAN	Standard
Frame	(11-bit
identifier).	

PCAN_MESSAGE_RTR	 1	 The	PCAN	message

is	a	CAN	Remote-
Transfer-Request
Frame.	

PCAN_MESSAGE_EXTENDED	 2	 The	PCAN	message
is	a	CAN	Extended
Frame	(29-bit
identifier).	

PCAN_MESSAGE_FD	 4	 The	PCAN	message
represents	a	FD	frame
in	terms	of	CiA
specifications.	

PCAN_MESSAGE_BRS	 8	 The	PCAN	message
represents	a	FD	bit
rate	switch	(CAN	data
at	a	higher	bit	rate).	

PCAN_MESSAGE_ESI	 16	 The	PCAN	message
represents	a	FD	error
state	indicator(CAN
FD	transmitter	was
error	active).	

PCAN_MESSAGE_ERRFRAME	 64	 The	PCAN	message
represents	an	error
frame.	See	Error
Frames	for	more
information.	

PCAN_MESSAGE_STATUS	 128	 The	PCAN	message
represents	a	PCAN
status	message.	

See	Also

CAN_Read	(class-method:	Read)	
CAN_ReadFD	(class-method:	ReadFD)	

CAN_Write	(class-method:	Write)	

CAN_WriteFD	(class-method:	WriteFD)	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANType
Represents	the	type	of	PCAN	(not	plug&play)	hardware	to	be
initialized.	According	with	the	programming	language,	this	type	can	be
a	group	of	defined	values	or	an	enumeration.

Syntax

C++
#define	TPCANType	BYTE

#define	PCAN_TYPE_ISA	0x01

#define	PCAN_TYPE_ISA_SJA	0x09

#define	PCAN_TYPE_ISA_PHYTEC	0x04

#define	PCAN_TYPE_DNG	0x02

#define	PCAN_TYPE_DNG_EPP	0x03

#define	PCAN_TYPE_DNG_SJA	0x05

#define	PCAN_TYPE_DNG_SJA_EPP	0x06

Pascal	OO
{$Z1}

TPCANType	=	(

				PCAN_TYPE_ISA	=	$01,

				PCAN_TYPE_ISA_SJA	=	$09,

				PCAN_TYPE_ISA_PHYTEC	=	$04,

				PCAN_TYPE_DNG	=	$02,

				PCAN_TYPE_DNG_EPP	=	$03,

				PCAN_TYPE_DNG_SJA	=	$05,

				PCAN_TYPE_DNG_SJA_EPP	=	$06

);

C#
public	enum	TPCANType	:	byte

{

				PCAN_TYPE_ISA	=	0x01,

				PCAN_TYPE_ISA_SJA	=	0x09,

				PCAN_TYPE_ISA_PHYTEC	=	0x04,

				PCAN_TYPE_DNG	=	0x02,

				PCAN_TYPE_DNG_EPP	=	0x03,

				PCAN_TYPE_DNG_SJA	=	0x05,

				PCAN_TYPE_DNG_SJA_EPP	=	0x06,

}

C++	/	CLR
public	enum	class	TPCANType	:	Byte

{

				PCAN_TYPE_ISA	=	0x01,

				PCAN_TYPE_ISA_SJA	=	0x09,

				PCAN_TYPE_ISA_PHYTEC	=	0x04,

				PCAN_TYPE_DNG	=	0x02,

				PCAN_TYPE_DNG_EPP	=	0x03,

				PCAN_TYPE_DNG_SJA	=	0x05,

				PCAN_TYPE_DNG_SJA_EPP	=	0x06,

};

Visual	Basic
Public	Enum	TPCANType	As	Byte

				PCAN_TYPE_ISA	=	&H1

				PCAN_TYPE_ISA_SJA	=	&H9

				PCAN_TYPE_ISA_PHYTEC	=	&H4

				PCAN_TYPE_DNG	=	&H2

				PCAN_TYPE_DNG_EPP	=	&H3

				PCAN_TYPE_DNG_SJA	=	&H5

				PCAN_TYPE_DNG_SJA_EPP	=	&H6

End	Enum

Python

TPCANType	=	c_ubyte

PCAN_TYPE_ISA	=	TPCANType(0x01)

PCAN_TYPE_ISA_SJA	=	TPCANType(0x09)

PCAN_TYPE_ISA_PHYTEC	=	TPCANType(0x04)

PCAN_TYPE_DNG	=	TPCANType(0x02)

PCAN_TYPE_DNG_EPP	=	TPCANType(0x03)

PCAN_TYPE_DNG_SJA	=	TPCANType(0x05)

PCAN_TYPE_DNG_SJA_EPP	=	TPCANType(0x06)

Values

Name	 Value	 Description	

PCAN_TYPE_ISA	 1	 PCAN-ISA	82C200.	

PCAN_TYPE_ISA_SJA	 9	 PCAN-ISA	SJA1000.	

PCAN_TYPE_ISA_PHYTEC	 4	 PHYTEC	ISA	.	

PCAN_TYPE_DNG	 2	 PCAN-Dongle	82C200.	

PCAN_TYPE_DNG_EPP	 3	 PCAN-Dongle	EPP
82C200.	

PCAN_TYPE_DNG_SJA	 5	 PCAN-Dongle
SJA1000.	

PCAN_TYPE_DNG_SJA_EPP	 6	 PCAN-Dongle	EPP
SJA1000.	

See	Also

PCAN_Initialize	(class-method:	Initialize)

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANMode
Represents	a	PCAN	filter	mode.	According	with	the	programming
language,	this	type	can	be	a	group	of	defined	values	or	an
enumeration.

Syntax

C++
#define	TPCANMode	BYTE

#define	PCAN_MODE_STANDARD	PCAN_MESSAGE_STANDARD

#define	PCAN_MODE_EXTENDED	PCAN_MESSAGE_EXTENDED

Pascal	OO
{$Z1}

TPCANMode	=	(

				PCAN_MODE_STANDARD	=	Byte(PCAN_MESSAGE_STANDARD

				PCAN_MODE_EXTENDED	=	Byte(PCAN_MESSAGE_EXTENDED

);

C#
public	enum	TPCANMode	:	byte

{

				PCAN_MODE_STANDARD	=	TPCANMessageType.PCAN_MESSAGE_STANDARD

				PCAN_MODE_EXTENDED	=	TPCANMessageType.PCAN_MESSAGE_EXTENDED

}

C++	/	CLR
public	enum	class	TPCANMode	:	Byte

{

				PCAN_MODE_STANDARD	=	TPCANMessageType::PCAN_MESSAGE_STANDARD

				PCAN_MODE_EXTENDED	=	TPCANMessageType::PCAN_MESSAGE_EXTENDED

};

Visual	Basic
Public	Enum	TPCANMode	As	Byte

				PCAN_MODE_STANDARD	=	TPCANMessageType.PCAN_MESSAGE_STANDARD

				PCAN_MODE_EXTENDED	=	TPCANMessageType.PCAN_MESSAGE_EXTENDED

End	Enum

Python
TPCANMode	=	c_ubyte

PCAN_MODE_STANDARD	=	PCAN_MESSAGE_STANDARD

PCAN_MODE_EXTENDED	=	PCAN_MESSAGE_EXTENDED

Values

Name	 Value	 Description	

PCAN_MODE_STANDARD	 0	 Mode	is	Standard	(11-bit
identifier).	

PCAN_MODE_EXTENDED	 2	 Mode	is	Extended	(29-bit
identifier).	

See	Also

CAN_FilterMessages	(class-method:	FilterMessages)

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANBaudrate
Represents	a	PCAN	bit	rate	register	value.	According	with	the
programming	language,	this	type	can	be	a	group	of	defined	values	or
an	enumeration.

Syntax

C++
#define	TPCANBaudrate	WORD

#define	PCAN_BAUD_1M	0x0014

#define	PCAN_BAUD_800K	0x0016

#define	PCAN_BAUD_500K	0x001C

#define	PCAN_BAUD_250K	0x011C

#define	PCAN_BAUD_125K	0x031C

#define	PCAN_BAUD_100K	0x432F

#define	PCAN_BAUD_95K	0xC34E

#define	PCAN_BAUD_83K	0x852B

#define	PCAN_BAUD_50K	0x472F

#define	PCAN_BAUD_47K	0x1414

#define	PCAN_BAUD_33K	0x8B2F

#define	PCAN_BAUD_20K	0x532F

#define	PCAN_BAUD_10K	0x672F

#define	PCAN_BAUD_5K	0x7F7F

Pascal	OO
{$Z2}

TPCANBaudrate	=	(

				PCAN_BAUD_1M	=	$0014,

				PCAN_BAUD_800K	=	$0016,

				PCAN_BAUD_500K	=	$001C,

				PCAN_BAUD_250K	=	$011C,

				PCAN_BAUD_125K	=	$031C,

				PCAN_BAUD_100K	=	$432F,

				PCAN_BAUD_95K	=	$C34E,

				PCAN_BAUD_83K	=	$852B,

				PCAN_BAUD_50K	=	$472F,

				PCAN_BAUD_47K	=	$1414,

				PCAN_BAUD_33K	=	$8B2F,

				PCAN_BAUD_20K	=	$532F,

				PCAN_BAUD_10K	=	$672F,

				PCAN_BAUD_5K	=	$7F7F

);

C#
public	enum	TPCANBaudrate	:	ushort

{

				PCAN_BAUD_1M	=	0x0014,

				PCAN_BAUD_800K	=	0x0016,

				PCAN_BAUD_500K	=	0x001C,

				PCAN_BAUD_250K	=	0x011C,

				PCAN_BAUD_125K	=	0x031C,

				PCAN_BAUD_100K	=	0x432F,

				PCAN_BAUD_95K	=	0xC34E,

				PCAN_BAUD_83K	=	0x852B,

				PCAN_BAUD_50K	=	0x472F,

				PCAN_BAUD_47K	=	0x1414,

				PCAN_BAUD_33K	=	0x8B2F,

				PCAN_BAUD_20K	=	0x532F,

				PCAN_BAUD_10K	=	0x672F,

				PCAN_BAUD_5K	=	0x7F7F,

}

C++	/	CLR
public	enum	class	TPCANBaudrate	:	UInt16

{

				PCAN_BAUD_1M	=	0x0014,

				PCAN_BAUD_800K	=	0x0016,

				PCAN_BAUD_500K	=	0x001C,

				PCAN_BAUD_250K	=	0x011C,

				PCAN_BAUD_125K	=	0x031C,

				PCAN_BAUD_100K	=	0x432F,

				PCAN_BAUD_95K	=	0xC34E,

				PCAN_BAUD_83K	=	0x852B,

				PCAN_BAUD_50K	=	0x472F,

				PCAN_BAUD_47K	=	0x1414,

				PCAN_BAUD_33K	=	0x8B2F,

				PCAN_BAUD_20K	=	0x532F,

				PCAN_BAUD_10K	=	0x672F,

				PCAN_BAUD_5K	=	0x7F7F,

};

Visual	Basic
Public	Enum	TPCANBaudrate	As	UInt16

				PCAN_BAUD_1M	=	&H14

				PCAN_BAUD_800K	=	&H16

				PCAN_BAUD_500K	=	&H1C

				PCAN_BAUD_250K	=	&H11C

				PCAN_BAUD_125K	=	&H31C

				PCAN_BAUD_100K	=	&H432F

				PCAN_BAUD_95K	=	&C34E

				PCAN_BAUD_83K	=	&852B

				PCAN_BAUD_50K	=	&H472F

				PCAN_BAUD_47K	=	&1414

				PCAN_BAUD_33K	=	&8B2F

				PCAN_BAUD_20K	=	&H532F

				PCAN_BAUD_10K	=	&H672F

				PCAN_BAUD_5K	=	&H7F7F

End	Enum

Python

TPCANBaudrate	=	c_ushort

PCAN_BAUD_1M	=	TPCANBaudrate(0x0014)

PCAN_BAUD_800K	=	TPCANBaudrate(0x0016)

PCAN_BAUD_500K	=	TPCANBaudrate(0x001C)

PCAN_BAUD_250K	=	TPCANBaudrate(0x011C)

PCAN_BAUD_125K	=	TPCANBaudrate(0x031C)

PCAN_BAUD_100K	=	TPCANBaudrate(0x432F)

PCAN_BAUD_95K	=	TPCANBaudrate(0xC34E)

PCAN_BAUD_83K	=	TPCANBaudrate(0x852B)

PCAN_BAUD_50K	=	TPCANBaudrate(0x472F)

PCAN_BAUD_47K	=	TPCANBaudrate(0x1414)

PCAN_BAUD_33K	=	TPCANBaudrate(0x8B2F)

PCAN_BAUD_20K	=	TPCANBaudrate(0x532F)

PCAN_BAUD_10K	=	TPCANBaudrate(0x672F)

PCAN_BAUD_5K	=	TPCANBaudrate(0x7F7F)

Values

Name	 Value	 Description	

PCAN_BAUD_1M	 20	 1	MBit/s.	

PCAN_BAUD_800K	 22	 800	kBit/s.	

PCAN_BAUD_500K	 28	 500	kBit/s.	

PCAN_BAUD_250K	 284	 250	kBit/s.	

PCAN_BAUD_125K	 796	 125	kBit/s.	

PCAN_BAUD_100K	 17199	 100	kBit/s.	

PCAN_BAUD_95K	 49998	 95,238	kBit/s.	

PCAN_BAUD_83K	 34091	 83,333	kBit/s.	

PCAN_BAUD_50K	 18223	 50	kBit/s.	

PCAN_BAUD_47K	 5140	 47,619	kBit/s.	

PCAN_BAUD_33K	 35631	 33,333	kBit/s.	

PCAN_BAUD_20K	 21295	 20	kBit/s.	

PCAN_BAUD_10K	 26415	 10	kBit/s.	

PCAN_BAUD_5K	 32639	 5	kBit/s.	

See	Also

CAN_Initialize	(class-method:	Initialize)

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANBitrateFD
Represents	a	bit	rate	string	with	flexible	data	rate	(FD).

Syntax

C++
#define	TPCANBitrateFD	LPSTR

Pascal	OO
TPCANBitrateFD	=	String;

C#
using	TPCANBitrateFD	=	System.String;

C++	/	CLR
#define	TPCANBitrateFD	System::String^

Visual	Basic
Imports	TPCANBitrateFD	=	System.String

Python
TPCANBitrateFD	=	c_char_p

Remarks

.NET	Framework	programming	languages:	
An	alias	is	used	to	represent	a	flexible	data	rate	under	Microsoft	.NET
in	order	to	originate	an	homogeneity	between	all	programming
languages	listed	above.	

Aliases	are	defined	in	the	Peak.Can.Basic	Namespace	for	C#	and	VB
.NET.	However,	including	a	namespace	does	not	include	the	defined
aliases.	

If	it	is	wished	to	work	with	aliases,	those	must	be	copied	to	the
working	file,	right	after	the	inclusion	of	the	Peak.Can.Basic
Namespace.	Otherwise,	just	use	the	native	type,	which	in	this	case	is
a	String.	

C#:		

using	System;

using	Peak.Can.Basic;

using	TPCANBitrateFD	=	System.String;	//	Alias's	declaration	for	System.String

Visual	Basic:

Imports	System

Imports	Peak.Can.Basic

Imports	TPCANBitrateFD	=	System.String	'	Alias	declaration	for	System.String

See	Also

FB	Bit	rate	Parameter	Definitions

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

TPCANTimestampFD
Represents	the	timestamp	of	a	CAN	message	with	flexible	data	rate.
The	time-stamp	contains	the	number	of	microseconds	since	the	start
of	Windows.

Syntax

C++
#define	TPCANTimestampFD	UINT64

Pascal	OO
TPCANTimestampFD	=	UInt64;

C#
using	TPCANTimestampFD	=	System.UInt64;

C++	/	CLR
#define	TPCANTimestampFD	System::UInt64

Visual	Basic
Imports	TPCANTimestampFD	=	System.UInt64

Python
TPCANTimestampFD	=	c_ulonglong

Remarks

.NET	Framework	programming	languages:	
An	alias	is	used	to	represent	a	timestamp	for	flexible	data	rate
messages	under	Microsoft	.NET	in	order	to	originate	an	homogeneity
between	all	programming	languages	listed	above.	

Aliases	are	defined	in	the	Peak.Can.Basic	Namespace	for	C#	and	VB
.NET.	However,	including	a	namespace	does	not	include	the	defined

aliases.	

If	it	is	wished	to	work	with	aliases,	those	must	be	copied	to	the
working	file,	right	after	the	inclusion	of	the	Peak.Can.Basic
Namespace.	Otherwise,	just	use	the	native	type,	which	in	this	case	is
a	UInt64.	

C#:		

using	System;

using	Peak.Can.Basic;

using	TPCANTimestampFD	=	System.UInt64;	//	Alias's	declaration	for	System.UInt64

Visual	Basic:

Imports	System

Imports	Peak.Can.Basic

Imports	TPCANTimestampFD	=	System.UInt64	'	Alias	declaration	for	System.UInt64

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Methods
The	methods	defined	for	the	classes	PCANBasic	and	TPCANBasic
are	divided	in	4	groups	of	functionality.	Note	that,	with	exception	of	the
method	version	for	Python,	these	methods	are	static	and	can	be
called	in	the	name	of	the	class,	without	instantiation.

Connection

	 Function	 Description	

	
Initialize	 Initializes	a	PCAN	Channel.	

	
InitializeFD	 Initializes	a	FD	capable	PCAN

Channel.	

	
Uninitialize	 Uninitializes	a	PCAN	Channel.	

Configuration

	 Function	 Description	

	
SetValue	 Sets	a	configuration	or	information

value	within	a	PCAN	Channel.	

	
FilterMessages	 Configures	the	message's	reception

filter	of	a	PCAN	Channel.	

Information

	 Function	 Description	

GetValue	 Retrieves	information	from	a	PCAN

	 Channel.	

	
GetStatus	 Retrieves	the	current	BUS	status	of	a

PCAN	Channel.	

	
GetErrorText	 Gets	a	descriptive	text	for	an	error

code.	

Communication

	 Function	 Description	

	
Read	 Reads	a	CAN	message	from	the

receive	queue	of	a	PCAN	Channel.	

	
ReadFD	 Reads	a	CAN	message	from	the

receive	queue	of	a	FD	capable	PCAN
Channel.	

	
Write	 Transmits	a	CAN	message	using	a

connected	PCAN	Channel.	

	
WriteFD	 Transmits	a	CAN	message	using	a

connected	FD	capable	PCAN
Channel.	

	
Reset	 Resets	the	receive	and	transmit

queues	of	a	PCAN	Channel.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Initialize
Initializes	a	PCAN	Channel.

Overloads

	 Function	 Description	

	
Initialize(TPCANHandle,
TPCANBaudrate)	

Initializes	a	Plug-And-Play	PCAN
Channel.	

	
Initialize(TPCANHandle,
TPCANBaudrate,
TPCANType,	UInt32,
UInt16)	

Initializes	a	Not-Plug-And-Play
PCAN	Channel.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Initialize(TPCANHandle,	TPCANBaudrate)
Initializes	a	PCAN	Channel	which	represents	a	Plug	&	Play	PCAN-
Device.

Syntax

Pascal	OO
class	function	Initialize(

				Channel:	TPCANHandle;

				Btr0Btr1:	TPCANBaudrate

):	TPCANStatus;	overload;

C#
public	static	extern	TPCANStatus	Initialize(

				TPCANHandle	Channel,

				TPCANBaudrate	Btr0Btr1);

C++	/	CLR
static	TPCANStatus	Initialize(

				TPCANHandle	Channel,

				TPCANBaudrate	Btr0Btr1);

Visual	Basic
Public	Shared	Function	Initialize(_

				ByVal	Channel	As	TPCANHandle,	_

				ByVal	Btr0Btr1	As	TPCANBaudrate)	As	TPCANStatus

End	Function

Python
def	Initialize(

				self,

				Channel,

				Btr0Btr1)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Btr0Btr1	 The	speed	for	the
communication	(BTR0BTR1
code).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_CAUTION:	 Indicates	that	the	channel
has	been	initialized	but	at	a
different	bit	rate	as	the	given
one.	

PCAN_ERROR_ILLHANDLE:	 Indicates	that	the	desired
PCAN	Channel	is	not	valid.
Check	the	list	of	valid
Channels.	

PCAN_ERROR_ILLHW:	 Indicates	that	the	desired
PCAN	Channel	is	not
available.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	an	action
cannot	be	executed	due	to
the	state	of	the	hardware.
Possible	causes	are:

The	desired	PCAN-
Channel	is	a	LAN
Channel,	which	uses	a

different	bit	rate	than	the
specified.

	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	desired
PCAN	Channel	cannot	be
connected	because	it	is
already	in	use	(PCAN-Basic	/
PCAN-Light	environment).	

PCAN_ERROR_NETINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
with	a	different	bit	rate
(PCAN-View).	

PCAN_ERROR_HWINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
(CanApi2	connection).	

PCAN_ERROR_NODRIVER:	 The	driver	needed	for
connecting	the	desired	PCAN
Channel	is	not	loaded.	

Remarks

As	indicated	by	its	name,	the	Initialize	method	initiates	a	PCAN
Channel,	preparing	it	for	communicate	within	the	CAN	bus	connected
to	it.	Calls	to	the	other	methods	will	fail	if	they	are	used	with	a
Channel	handle,	different	than	PCAN_NONEBUS,	that	has	not	been
initialized	yet.	Each	initialized	channel	should	be	released	when	it	is
not	needed	anymore.	

Initializing	a	PCAN	Channel	means:

to	reserve	the	Channel	for	the	calling	application/process.
to	allocate	channel	resources,	like	receive	and	transmit	queues.
to	register/connect	the	Hardware	denoted	by	the	channel	handle.
to	check	and	adapt	the	bus	speed,	if	the	Channel	is	already

in	use.	(Only	if	the	Channel	was	pre-configured	as	Bitrate
Adapting;	see:	Bitrate-Adapting	Parameter).
to	set	the	channel	in	Listen-Only	mode.	(Only	if	the	channel
was	pre-configured	as	Listen-Only;	see:	Listen-Only	Parameter).
to	open	the	messages	filter	for	the	application/process.
to	set-up	the	default	values	of	the	different	parameters	(See
GetValue).
to	set	the	Receive	Status	of	the	channel.	(Pre-configured
value;	see:	Receive	Status	Parameter).

Different	than	the	PCAN-Light	API,	the	Initialization	process	will	fail	if
an	application	try	to	initialize	a	PCAN-Channel	that	has	been
initialized	already	within	the	same	process.	

Take	in	consideration	that	initializing	a	channel	causes	a	reset	of	the
CAN	hardware	,	when	the	bus	status	is	other	than	OK.	In	this	way
errors	like	BUSOFF,	BUSHEAVY,	and	BUSLIGHT,	are	removed.	

PCAN-LAN	Channels	
A	PCAN-LAN	channel	doesn't	allow	changing	the	bit	rate	using
PCAN-Basic.	In	order	to	connect	a	PCAN-LAN	Channel	it	is
necessary	to	know	the	bit	rate	of	the	PCAN-Gateway	device	that	is
represented	by	that	channel.	If	the	bit	rate	is	not	known,	the
parameter	Bitrate-Adapting	should	be	used.	

Python	Notes	
Class-Method:	Different	than	the	.NET	Framework,	under	Python
a	variable	has	to	be	instantiated	with	an	object	of	type
PCANBasic	in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.
Plug-&-Play	and	No-Plug-&-Play	hardware:	In	order	to	initialize	a
channel	which	represents	a	Plug-&-Play	PCAN	device,	only	the
Channel-handle	and	bit	rate	parameters	are	needed.	The	other
parameters	will	be	assigned	their	default	values.	For	No-Plug-&-
Play	devices,	all	parameters	have	to	be	entered.

Example

The	following	example	shows	the	initialize	and	uninitialize	processes
for	a	Plug-And-Play	channel	(channel	2	of	a	PCAN-PCI	hardware).	In
case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

//

result	=	PCANBasic.Initialize(PCANBasic.PCAN_PCIBUS2

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	new	StringBuilder(256);

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-PCI	(Ch-2)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS);

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

//

result	=	PCANBasic::Initialize(PCANBasic::PCAN_PCIBUS2

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	gcnew	StringBuilder(256);

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-PCI	(Ch-2)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic::Uninitialize(PCANBasic::PCAN_NONEBUS);

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

'	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

'

result	=	PCANBasic.Initialize(PCANBasic.PCAN_PCIBUS2

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				strMsg	=	New	StringBuilder(256)

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-PCI	(Ch-2)	was	initialized"

End	If

'	All	initialized	channels	are	released

'

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS)

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

				//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

				//

				result	:=	TPCANBasic.Initialize(TPCANBasic.PCAN_PCIBUS2

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-PCI	(Ch-2)	was	initialized'

				//	All	initialized	channels	are	released

				//

				TPCANBasic.Uninitialize(TPCANBasic.PCAN_NONEBUS

end;

Python:

#	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

#

objPCAN	=	PCANBasic()

result	=	objPCAN.Initialize(PCAN_PCIBUS2,	PCAN_BAUD_500K

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-PCI	(Ch-2)	was	initialized"

#	All	initialized	channels	are	released

#

objPCAN.Uninitialize(PCAN_NONEBUS)

See	Also

Uninitialize	

GetValue	

Understanding	PCAN-Basic	

	

Plain	function	Version:	CAN_Initialize

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Initialize(TPCANHandle,	TPCANBaudrate,
TPCANType,	UInt32,	UInt16)
Initializes	a	PCAN	Channel	which	represents	a	Not	Plug	&	Play
PCAN-Device.

Syntax

Pascal	OO
class	function	Initialize(

				Channel:	TPCANHandle;

				Btr0Btr1:	TPCANBaudrate;

				HwType:	TPCANType;

				IOPort:	LongWord;

				Interrupt:	Word

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Initialize

public	static	extern	TPCANStatus	Initialize(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U2)]

				TPCANBaudrate	Btr0Btr1,

				[MarshalAs(UnmanagedType.U1)]

				TPCANType	HwType,

				UInt32	IOPort,

				UInt16	Interrupt);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Initialize

static	TPCANStatus	Initialize(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U2)]

				TPCANBaudrate	Btr0Btr1,

				[MarshalAs(UnmanagedType::U1)]

				TPCANType	HwType,

				UInt32	IOPort,

				UInt16	Interrupt);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_Initialize

Public	Shared	Function	Initialize(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U2)>	_

				ByVal	Btr0Btr1	As	TPCANBaudrate,	_

			<MarshalAs(UnmanagedType.U1)>	_

			ByVal	HwType	As	TPCANType,	_

			ByVal	IOPort	As	UInt32,	_

			ByVal	Interrupt	As	UInt16)	As	TPCANStatus

End	Function

Python
def	Initialize(

				self,

				Channel,

				Btr0Btr1,

				HwType	=	TPCANType(0),

				IOPort	=	c_uint(0),

				Interrupt	=	c_ushort(0))

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel

(see	TPCANHandle).	

Btr0Btr1	 The	speed	for	the
communication	(BTR0BTR1
code).	

HwType	 The	type	of	hardware	and
operation	mode	(see
TPCANMode).	

IOPort	 The	I/O	address	for	the	parallel
port.	

Interrupt	 Interrupt	number	of	the	parallel
port.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_CAUTION:	 Indicates	that	the	channel
has	been	initialized	but	at	a
different	bit	rate	as	the	given
one.	

PCAN_ERROR_ILLHANDLE:	 Indicates	that	the	desired
PCAN	Channel	is	not	valid.
Check	the	list	of	valid
Channels.	

PCAN_ERROR_ILLHW:	 Indicates	that	the	desired
PCAN	Channel	is	not
available.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	an	action
cannot	be	executed	due	to
the	state	of	the	hardware.
Possible	causes	are:

The	desired	PCAN-
Channel	is	a	LAN
Channel,	which	uses	a
different	bit	rate	than	the
specified.

	

PCAN_ERROR_REGTEST:	 Indicates	a	problem	with
hardware	registration,
normally	due	to	wrong	values
in	the	parameters	'HwType',
'IOPort'	and	'Interrupt'.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	desired
PCAN	channel	cannot	be
connected	because	it	is
already	in	use	(PCAN-Basic	/
PCAN-Light	environment).	

PCAN_ERROR_NETINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
with	a	different	bit	rate
(PCAN-View).	

PCAN_ERROR_HWINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
(CanApi2	connection).	

PCAN_ERROR_NODRIVER:	 The	driver	needed	for
connecting	the	desired	PCAN
Channel	is	not	loaded.	

Remarks

As	indicated	by	its	name,	the	Initialize	method	initiates	a	PCAN
Channel,	preparing	it	for	communicate	within	the	CAN	bus	connected
to	it.	Calls	to	the	other	methods	will	fail	if	they	are	used	with	a
Channel	handle,	different	than	PCAN_NONEBUS,	that	has	not	been

initialized	yet.	Each	initialized	channel	should	be	released	when	it	is
not	needed	anymore.	

Initializing	a	PCAN	Channel	means:

to	reserve	the	Channel	for	the	calling	application/process.
to	allocate	channel	resources,	like	receive	and	transmit	queues.
to	register/connect	the	Hardware	denoted	by	the	channel	handle.
to	check	and	adapt	the	bus	speed,	if	the	Channel	is	already
in	use.	(Only	if	the	Channel	was	pre-configured	as	Bitrate
Adapting;	see:	Bitrate-Adapting	Parameter).
to	set	the	channel	in	Listen-Only	mode.	(Only	if	the	channel
was	pre-configured	as	Listen-Only;	see:	Listen-Only	Parameter).
to	configure	the	filter	to	catch	all	messages	being	transmitted	in
the	bus.
to	set-up	the	default	values	of	the	different	parameters	(See
GetValue).
to	set	the	Receive	Status	of	the	channel.	(Pre-configured
value;	see:	Receive	Status	Parameter).

Different	than	the	PCAN-Light	API,	the	Initialization	process	will	fail	if
an	application	try	to	initialize	a	PCAN-Channel	that	has	been
initialized	already	within	the	same	process.	

Take	in	consideration	that	initializing	a	channel	causes	a	reset	of	the
CAN	hardware	,	when	the	bus	status	is	other	than	OK.	In	this	way
errors	like	BUSOFF,	BUSWARNING,	and	BUSPASSIVE,	are
removed.	

PCAN-LAN	Channels	
A	PCAN-LAN	channel	doesn't	allow	changing	the	bit	rate	using
PCAN-Basic.	In	order	to	connect	a	PCAN-LAN	Channel	it	is
necessary	to	know	the	bit	rate	of	the	PCAN-Gateway	device	that	is
represented	by	that	channel.	If	the	bit	rate	is	not	known,	the
parameter	Bitrate-Adapting	should	be	used.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.

Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.
Plug-&-Play	and	No-Plug-&-Play	hardware:	In	order	to	initialize	a
channel	which	represents	a	Plug-&-Play	PCAN	device,	only	the
Channel-handle	and	bit	rate	parameters	are	needed.	The	other
parameters	will	be	assigned	their	default	values.	For	No-Plug-&-
Play	devices,	all	parameters	have	to	be	entered.

Example

The	following	example	shows	the	initialize	and	uninitialize	processes
for	a	Not-Plug-And-Play	channel	(channel	1	of	the	PCAN-DNG).	In
case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

//	The	Not	Plug	&	Play	Channel	(PCAN-DNG)	is	initialized

//

result	=	PCANBasic.Initialize(PCANBasic.PCAN_DNGBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	new	StringBuilder(256);

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-DNG	(Ch-1)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS);

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

//	The	Not	Plug	&	Play	Channel	(PCAN-DNG)	is	initialized

//

result	=	PCANBasic::Initialize(PCANBasic::PCAN_DNGBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	gcnew	StringBuilder(256);

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-DNG	(Ch-1)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic::Uninitialize(PCANBasic::PCAN_NONEBUS);

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

'	The	Not	Plug	&	Play	Channel	(PCAN-DNG)	is	initialized

'

result	=	PCANBasic.Initialize(PCANBasic.PCAN_DNGBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				strMsg	=	New	StringBuilder(256)

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-DNG	(Ch-1)	was	initialized"

End	If

'	All	initialized	channels	are	released

'

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS)

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

				//	The	Not	Plug	&	Play	Channel	(PCAN-DNG)	is	initialized

				//

				result	:=	TPCANBasic.Initialize(TPCANBasic.PCAN_DNGBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-DNG	(Ch-1)	was	initialized'

				//	All	initialized	channels	are	released

				//

				TPCANBasic.Uninitialize(TPCANBasic.PCAN_NONEBUS

end;

Python:

#	The	Not	Plug	&	Play	Channel	(PCAN-DNG)	is	initialized

#

objPCAN	=	PCANBasic()

result	=	objPCAN.Initialize(PCAN_DNGBUS1,	PCAN_BAUD_500K,	PCAN_TYPE_DNG_SJA,	

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-DNG	(Ch-1)	was	initialized"

#	All	initialized	channels	are	released

#

objPCAN.Uninitialize(PCAN_NONEBUS)

See	Also

Uninitialize	

GetValue	

Understanding	PCAN-Basic	

	

Plain	function	Version:	CAN_Initialize

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

InitializeFD
Initializes	a	FD	capable	PCAN	Channel.

Syntax

Pascal	OO
class	function	InitializeFD(

				Channel:	TPCANHandle;

				BitrateFD:	TPCANBitrateFD

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_InitializeFD

public	static	extern	TPCANStatus	InitializeFD(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				TPCANBitrateFD	BitrateFD);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_InitializeFD

static	TPCANStatus	InitializeFD(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				TPCANBitrateFD	BitrateFD);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_InitializeFD

Public	Shared	Function	InitializeFD(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				ByVal	BitrateFD	As	TPCANBitrateFD)	As	TPCANStatus

End	Function

Python
def	InitializeFD(

				self,

				Channel,

				BitrateFD)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

BitrateFD	 The	speed	for	the
communication	(FD	Bitrate
string).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_CAUTION:	 Indicates	that	the	channel
has	been	initialized	but	at	a
different	bit	rate	as	the	given
one.	

PCAN_ERROR_ILLHANDLE:	 Indicates	that	the	desired
PCAN	Channel	is	not	valid.
Check	the	list	of	valid
Channels.	

PCAN_ERROR_ILLHW:	 Indicates	that	the	desired
PCAN	Channel	is	not
available.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	an	action

cannot	be	executed	due	to
the	state	of	the	hardware.
Possible	causes	are:

The	desired	PCAN
Channel	is	not	FD
capable	and	cannot	be
initialized	using	this
method.
The	desired	PCAN-
Channel	is	a	LAN
Channel,	which	uses	a
different	bit	rate	than	the
specified.

	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	desired
PCAN	Channel	cannot	be
connected	because	it	is
already	in	use	(PCAN-Basic	/
PCAN-Light	environment).	

PCAN_ERROR_NETINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
with	a	different	bit	rate
(PCAN-View).	

PCAN_ERROR_HWINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
(CanApi	connection).	

PCAN_ERROR_NODRIVER:	 The	driver	needed	for
connecting	the	desired	PCAN
Channel	is	not	loaded.	

Remarks

Note	on	correspondence	of	methods:	

A	Channel	that	is	initialized	using	InitializeFD	must	use	ReadFD	and
WriteFD	for	communication.	Calling	Read	and/or	Write	will	result	in	a
PCAN_ERROR_ILLOPERATION	error.	
	

As	indicated	by	its	name,	the	InitializeFD	method	initiates	a	FD
capable	PCAN	Channel,	preparing	it	for	communicate	within	the	CAN
bus	connected	to	it.	Calls	to	the	API	methods	will	fail	if	they	are	used
with	a	Channel	handle,	different	than	PCAN_NONEBUS,	that	has	not
been	initialized	yet.	Each	initialized	channel	should	be	released	when
it	is	not	needed	anymore.	

Initializing	a	PCAN	Channel	means:

to	reserve	the	Channel	for	the	calling	application/process.
to	allocate	channel	resources,	like	receive	and	transmit	queues.
to	register/connect	the	Hardware	denoted	by	the	channel	handle.
to	check	and	adapt	the	bus	speed,	if	the	Channel	is	already
in	use.	(Only	if	the	Channel	was	pre-configured	as	Bitrate
Adapting;	see:	Bitrate-Adapting	Parameter).
to	set	the	channel	in	Listen-Only	mode.	(Only	if	the	channel
was	pre-configured	as	Listen-Only;	see:	Listen-Only	Parameter).
to	open	the	messages	filter	for	the	application/process.
to	set-up	the	default	values	of	the	different	parameters	(See
GetValue).
to	set	the	Receive	Status	of	the	channel.	(Pre-configured
value;	see:	Receive	Status	Parameter).

The	Initialization	process	will	fail	if	an	application	try	to	initialize	a
PCAN-Channel	that	has	been	initialized	already	within	the	same
process.	

Take	in	consideration	that	initializing	a	channel	causes	a	reset	of	the
CAN	hardware	,	when	the	bus	status	is	other	than	OK.	In	this	way
errors	like	BUSOFF,	BUSWARNING,	and	BUSPASSIVE,	are
removed.	

PCAN-LAN	Channels	
A	PCAN-LAN	channel	doesn't	allow	changing	the	bit	rate	using
PCAN-Basic.	In	order	to	connect	a	PCAN-LAN	Channel	it	is

necessary	to	know	the	bit	rate	of	the	PCAN-Gateway	device	that	is
represented	by	that	channel.	If	the	bit	rate	is	not	known,	the
parameter	Bitrate-Adapting	should	be	used.	

Python	Notes	
Class-Method:	Different	than	the	.NET	Framework,	under	Python
a	variable	has	to	be	instantiated	with	an	object	of	type
PCANBasic	in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	initialize	and	uninitialize	processes
for	a	FD	capable	channel	(channel	1	of	a	PCAN-USB	Pro	FD
hardware).	In	case	of	failure,	the	returned	code	will	be	translated	to	a
text	(according	with	the	operating	system	language)	in	English,
German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

C#:		

string	bitrate;

TPCANStatus	result;

StringBuilder	strMsg;

//	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

//

bitrate	=	"f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1"

//	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

//

result	=	PCANBasic.InitializeFD(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	new	StringBuilder(256);

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-USB	Pro	FD	(Ch-1)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS);

C++/CLR:

String^	bitrate;

TPCANStatus	result;

StringBuilder^	strMsg;

//	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

//

bitrate	=	"f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1"

//	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

//

result	=	PCANBasic::InitializeFD(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				strMsg	=	gcnew	StringBuilder(256);

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-USB	Pro	FD	(Ch-1)	was	initialized"

//	All	initialized	channels	are	released

//

PCANBasic::Uninitialize(PCANBasic::PCAN_NONEBUS);

Visual	Basic:

Dim	bitrate	As	String

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

'	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

'

bitrate	=	"f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1"

'	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

'

result	=	PCANBasic.InitializeFD(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				strMsg	=	New	StringBuilder(256)

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-USB	Pro	FD	(Ch-1)	was	initialized"

End	If

'	All	initialized	channels	are	released

'

PCANBasic.Uninitialize(PCANBasic.PCAN_NONEBUS)

Pascal	OO:

var

	bitrate:	String;

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

				//	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

				//

				bitrate	:=	'f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1'

				//	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

				//

				result	:=	TPCANBasic.InitializeFD(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-USB	Pro	FD	(Ch-1)	was	initialized'

				//	All	initialized	channels	are	released

				//

				TPCANBasic.Uninitialize(TPCANBasic.PCAN_NONEBUS

end;

Python:

#	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

#

bitrate	=	"f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1"

#	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

#

objPCAN	=	PCANBasic()

result	=	objPCAN.InitializeFD(PCAN_USBBUS1,	bitrate)

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-USB	Pro	FD	(Ch-1)	was	initialized"

#	All	initialized	channels	are	released

#

objPCAN.Uninitialize(PCAN_NONEBUS)

See	Also

Uninitialize	

ReadFD	

WriteFD	

	

Plain	function	Version:	CAN_InitializeFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Uninitialize
Uninitializes	a	PCAN	Channel.

Syntax

Pascal	OO
class	function	Uninitialize(

				Channel:	TPCANHandle

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Uninitialize

public	static	extern	TPCANStatus	Uninitialize(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Uninitialize

static	TPCANStatus	Uninitialize(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_Uninitialize

Public	Shared	Function	Uninitialize(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle)	As	TPCANStatus

End	Function

Python
def	Uninitialize(

				self,

				Channel)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	cannot	be	uninitialized
because	it	was	not	found	in	the	list
of	reserved	channels	of	the	calling
application.	

Remarks

A	PCAN	Channel	can	be	released	using	one	of	this	possibilities:	

Single-Release:	Given	a	handle	of	a	PCAN	Channel	initialized	before
with	the	method	Initialize.	If	the	given	channel	can	not	be	found	then
an	error	is	returned.	

Multiple-Release:	Giving	the	handle	value	PCAN_NONEBUS	which
instructs	the	API	to	search	for	all	channels	initialized	by	the	calling
application	and	release	them	all.	This	option	cause	no	errors	if	no
hardware	were	uninitialized.	

Transmit-queue	at	uninitialize:	When	a	PCAN-Basic	channel
connection	is	terminated,	the	underlying	hardware's	transmit-queue
will	not	immediately	be	discarded.	PCAN-Basic	will	wait	some	time
before	finalizing,	so	that	the	hardware	has	time	to	send	(or	try	to
send)	those	unsent	messages.	When	the	time	is	up	(amount	500
milliseconds),	the	rest	of	the	messages	in	the	queue	(if	any)	are

discarded.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	initialize	and	uninitialize	(Single-
Release)	processes	for	the	PCAN_PCIBUS1	channel.	In	case	of
failure,	the	returned	code	will	be	translated	to	a	text	(according	with
the	operating	system	language)	in	English,	German,	Italian,	French	or
Spanish,	and	it	will	be	shown	to	the	user.	

Note:	To	see	an	example	of	Multiple-Release,	see	the	Initialize
method.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

strMsg	=	new	StringBuilder(256);

//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

//

result	=	PCANBasic.Initialize(PCANBasic.PCAN_PCIBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	initialized"

....

//	The	PCI	Channel	is	released

//

result	=	PCANBasic.Uninitialize(PCANBasic.PCAN_PCIBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	released"

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

strMsg	=	gcnew	StringBuilder(256);

//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

//

result	=	PCANBasic::Initialize(PCANBasic::PCAN_PCIBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-PCI	(Ch-1)	was	initialized"

....

//	The	PCI	Channel	is	released

//

result	=	PCANBasic::Uninitialize(PCANBasic::PCAN_PCIBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-PCI	(Ch-1)	was	released"

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

strMsg	=	New	StringBuilder(256)

'	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

'

result	=	PCANBasic.Initialize(PCANBasic.PCAN_PCIBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	initialized"

End	If

....

'	The	PCI	Channel	is	released

'

result	=	PCANBasic.Uninitialize(PCANBasic.PCAN_PCIBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	released"

End	If

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

				//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

				//

				result	:=	TPCANBasic.Initialize(TPCANBasic.PCAN_PCIBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-PCI	(Ch-1)	was	initialized'

....

				//	The	PCI	Channel	is	released

				//

				result	:=	TPCANBasic.Uninitialize(TPCANBasic.PCAN_PCIBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-PCI	(Ch-1)	was	released'

end;

Python:

#	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

#

objPCAN	=	PCANBasic()

result	=	objPCAN.Initialize(PCAN_PCIBUS1,	PCAN_BAUD_500K

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-PCI	(Ch-1)	was	initialized"

....

#	The	PCI	Channel	is	released

#

result	=	objPCAN.Uninitialize(PCAN_PCIBUS1)

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-PCI	(Ch-1)	was	released"

See	Also

Initialize	

	

Plain	function	Version:	CAN_Uninitialize

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Reset
Resets	the	receive	and	transmit	queues	of	a	PCAN	Channel.

Syntax

Pascal	OO
class	function	Reset(

				Channel:	TPCANHandle

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Reset

public	static	extern	TPCANStatus	Reset(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Reset

static	TPCANStatus	Reset(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_Reset

Public	Shared	Function	Reset(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle)	As	TPCANStatus

End	Function

Python
def	Reset(

				self,

				Channel)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the	list	of
initialized	channels	of	the	calling
application.	

Remarks

Calling	this	method	ONLY	clear	the	queues	of	a	Channel.	A	reset	of
the	CAN	controller	doesn't	take	place.	

Normally	a	reset	of	the	CAN	Controller	is	desired	when	a	bus-off
occur.	In	this	case	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	Consider
using	the	PCAN-Basic	parameter	PCAN_BUSOFF_AUTORESET
which	instructs	the	API	to	automatically	reset	the	CAN	controller	when
a	bus-off	state	is	detected.	

Another	way	to	reset	errors	like	bus-off,	bus-heavy	and	bus-light,	is	to
uninitialize	and	initialize	again	the	channel	used.	This	causes	a
hardware	reset,	but	only	when	no	more	clients	are	connected	to	that
channel.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a

variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	Reset	on	the
channel	PCAN_PCIBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

strMsg	=	new	StringBuilder(256);

......

//	The	PCI	Channel	is	reset

//

result	=	PCANBasic.Reset(PCANBasic.PCAN_PCIBUS1);

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	reset");

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

strMsg	=	gcnew	StringBuilder(256);

......

//	The	PCI	Channel	is	reset

//

result	=	PCANBasic::Reset(PCANBasic::PCAN_PCIBUS1);

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("PCAN-PCI	(Ch-1)	was	reset");

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

strMsg	=	New	StringBuilder(256)

......

'	The	PCI	Channel	is	reset

'

result	=	PCANBasic.Reset(PCANBasic.PCAN_PCIBUS1)

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("PCAN-PCI	(Ch-1)	was	reset")

End	If

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

......

				//	The	PCI	Channel	is	reset

				//

				result	:=	TPCANBasic.Reset(TPCANBasic.PCAN_PCIBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'PCAN-PCI	(Ch-1)	was	reset','Success'

Python:

......

#	The	PCI	Channel	is	released

#

result	=	objPCAN.Reset(PCAN_PCIBUS1)

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"PCAN-PCI	(Ch-1)	was	reset"

See	Also

Read	

Write	

SetValue	

	

Plain	function	Version:	CAN_Reset

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetStatus
Gets	the	current	BUS	status	of	a	PCAN	Channel.

Syntax

Pascal	OO
class	function	GetStatus(

				Channel:	TPCANHandle

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetStatus

public	static	extern	TPCANStatus	GetStatus(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetStatus

static	TPCANStatus	GetStatus(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_GetStatus

Public	Shared	Function	GetStatus(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle)	As	TPCANStatus

End	Function

Python
def	GetStatus(

				self,

				Channel)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	The	typical	return	values
are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
Channel	was	not	found	in	the	list
of	initialized	channels	of	the
calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within	the
given	PCAN	Channel.	The
hardware	is	in	bus-light	status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within	the
given	PCAN	Channel.	The
hardware	is	in	bus-heavy	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within	the
given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_OK:	 Indicates	that	the	status	of	the
given	PCAN	Channel	is	OK.	

Remarks

When	the	hardware	status	is	bus-off,	an	application	cannot
communicate	anymore.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to

automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	bus-off,	bus-heavy	and	bus-light,	is	to
uninitialize	and	initialise	again	the	channel	used.	This	causes	a
hardware	reset.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	GetStatus	on	the
channel	PCAN_PCIBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

strMsg	=	new	StringBuilder(256);

......

//	Check	the	status	of	the	PCI	Channel

//

result	=	PCANBasic.GetStatus(PCANBasic.PCAN_PCIBUS1

switch	(result)

{

				case	TPCANStatus.PCAN_ERROR_BUSLIGHT:

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status..."

								break;

				case	TPCANStatus.PCAN_ERROR_BUSHEAVY:

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status..."

								break;

				case	TPCANStatus.PCAN_ERROR_BUSOFF:

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status..."

								break;

				case	TPCANStatus.PCAN_ERROR_OK:

								MessageBox.Show("PCAN-PCI	(Ch-1):	Status	is	OK"

								break;

				default:

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

								break;

}

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

strMsg	=	gcnew	StringBuilder(256);

......

//	Check	the	status	of	the	PCI	Channel

//

result	=	PCANBasic::GetStatus(PCANBasic::PCAN_PCIBUS1

switch	(result)

{

				case	TPCANStatus::PCAN_ERROR_BUSLIGHT:

								MessageBox::Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status..."

								break;

				case	TPCANStatus::PCAN_ERROR_BUSHEAVY:

								MessageBox::Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status..."

								break;

				case	TPCANStatus::PCAN_ERROR_BUSOFF:

								MessageBox::Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status..."

								break;

				case	TPCANStatus::PCAN_ERROR_OK:

								MessageBox::Show("PCAN-PCI	(Ch-1):	Status	is	OK"

								break;

				default:

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

								break;

}

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

strMsg	=	New	StringBuilder(256)

......

'	Check	the	status	of	the	PCI	Channel

'

result	=	PCANBasic.GetStatus(PCANBasic.PCAN_PCIBUS1

Select	Case	result

				Case	TPCANStatus.PCAN_ERROR_BUSLIGHT

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status..."

				Case	TPCANStatus.PCAN_ERROR_BUSHEAVY

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status..."

				Case	TPCANStatus.PCAN_ERROR_BUSOFF

								MessageBox.Show("PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status..."

				Case	TPCANStatus.PCAN_ERROR_OK

								MessageBox.Show("PCAN-PCI	(Ch-1):	Status	is	OK"

				Case	Else

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString)

End	Select

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

......

//	Check	the	status	of	the	PCI	Channel

//

result	:=	TPCANBasic.GetStatus(TPCANBasic.PCAN_PCIBUS1

case	result	of

				PCAN_ERROR_BUSLIGHT:

								MessageBox(0,'PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status...'

				PCAN_ERROR_BUSHEAVY:

								MessageBox(0,'PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status...'

				PCAN_ERROR_BUSOFF:

								MessageBox(0,'PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status...'

				PCAN_ERROR_OK:

								MessageBox(0,'PCAN-PCI	(Ch-1):	Status	is	OK'

				else

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end;

end;

Python:

......

#	Check	the	status	of	the	PCI	Channel

#

result	=	objPCAN.GetStatus(PCAN_PCIBUS1)

if	result	==	PCAN_ERROR_BUSLIGHT:

				print	"PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status..."

elif	result	==	PCAN_ERROR_BUSHEAVY:

				print	"PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status..."

elif	result	==	PCAN_ERROR_BUSOFF:

				print	"PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status..."

elif	result	==	PCAN_ERROR_OK:

				print	"PCAN-PCI	(Ch-1):	Status	is	OK"

else:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

See	Also

Parameter	Value	Definitions	

TPCANParameter	

	

Plain	function	Version:	CAN_GetStatus

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Read
Reads	a	CAN	message	from	the	receive	queue	of	a	PCAN	Channel.

Overloads

	 Function	 Description	

	
Read(TPCANHandle,
TPCANMsg)	

Reads	a	CAN	message	from	the
receive	queue.	

	
Read(TPCANHandle,
TPCANMsg,
TPCANTimestamp)	

Reads	a	CAN	message	and	its	time
stamp	from	the	receive	queue.	

	
Read(TPCANHandle)	 Reads	a	CAN	message	and	its	time

stamp	from	the	receive	queue.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Read(TPCANHandle,	TPCANMsg)
Reads	a	CAN	message	from	the	receive	queue	of	a	PCAN	Channel.

Syntax

Pascal	OO
class	function	Read(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsg

):	TPCANStatus;	overload;

C#
public	static	TPCANStatus	Read(

				TPCANHandle	Channel,

				out	TPCANMsg	MessageBuffer);

C++	/	CLR
static	TPCANStatus	Read(

				TPCANHandle	Channel,

				TPCANMsg	%MessageBuffer);

Visual	Basic
Public	Shared	Function	Read(_

				ByVal	Channel	As	TPCANHandle,	_

				ByRef	MessageBuffer	As	TPCANMsg)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

MessageBuffer	 A	TPCANMsg	buffer	to	store	the
CAN	message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of	the
MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the
list	of	initialized	channels	of
the	calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-light
status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-heavy
status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

The	Read	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	Read	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,
the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
If	the	time	when	the	message	was	received	is	needed,	use	the
overloaded	Read	method.	

There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	Read
method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	Read	method	in	a	loop
until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	method
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset,	but	only	when	no	more	clients	are
connected	to	that	channel.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	LEN	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	Read	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	 Error
Code	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	 0002h	

00h	 00h	 00h	 04h	 PCAN_ERROR_BUSLIGHT	 0004h	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSHEAVY	 0008h	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	 0010h	

Example

The	following	example	shows	the	use	of	method	Read	on	the	channel
PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	and	that
the	following	code	is	an	OnTimer	event	handler	method.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsg	msg;

strMsg	=	new	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic.Read(PCANBasic.PCAN_USBBUS1

				if	(result	!=	TPCANStatus.PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox.Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus.PCAN_ERROR_QRCVEMPTY)	!=	

C++CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsg	msg;

strMsg	=	gcnew	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic::Read(PCANBasic::PCAN_USBBUS1

				if	(result	!=	TPCANStatus::PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox::Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus::PCAN_ERROR_QRCVEMPTY

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsg

strMsg	=	New	StringBuilder(256)

Do

				'	Check	the	receive	queue	for	new	messages

				'

				result	=	PCANBasic.Read(PCANBasic.PCAN_USBBUS1

				If	result	<>	TPCANStatus.PCAN_ERROR_QRCVEMPTY	

								MessageBox.Show("A	message	was	received")

								ProcessMessage(msg)

				Else

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString())

								'	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								'	status	is		bus-off)

								'

								HandleReadError(result)

				End	If

'	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

'	until	the	queue	is	empty

'

Loop	While	((result	And	TPCANStatus.PCAN_ERROR_QRCVEMPTY

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsg;

begin

				repeat

								//	Check	the	receive	queue	for	new	messages

								//

								result	:=	TPCANBasic.Read(TPCANBasic.PCAN_USBBUS1

								If	(result	<>	PCAN_ERROR_QRCVEMPTY)	Then

								begin

												//	Process	the	received	message

												//

												MessageBox(0,'A	message	was	received',

												ProcessMessage(msg);

								end

								else

								begin

												//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

												//

												TPCANBasic.GetErrorText(result,	0,	strMsg);

												MessageBox(0,	strMsg,	'Error',MB_OK);

												//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

												//	status	is		bus-off)

												//

												HandleReadError(result);

								end;

				//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

				//	until	the	queue	is	empty

				//

				until	((TPCANStatus(Integer(result)	AND	Integer

See	Also

Write	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_Read

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Read(TPCANHandle,	TPCANMsg,
TPCANTimestamp)
Reads	a	CAN	message	and	its	time	stamp	from	the	receive	queue	of
a	PCAN	Channel.

Syntax

Pascal	OO
class	function	Read(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsg;

				var	TimestampBuffer:	TPCANTimestamp

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Read

public	static	extern	TPCANStatus	Read(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				out	TPCANMsg	MessageBuffer,

				ref	TPCANTimestamp	TimestampBuffer);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Read

static	TPCANStatus	Read(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				TPCANMsg	%MessageBuffer,

				TPCANTimestamp	%TimestampBuffer);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_Read

Public	Shared	Function	Read(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				ByRef	MessageBuffer	As	TPCANMsg,	_

				ByRef	TimestampBuffer	As	TPCANTimestamp)	As

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

MessageBuffer	 A	TPCANMsg	buffer	to	store	the
CAN	message.	

TimestampBuffer	 A	TPCANTimestamp	buffer	to
get	the	reception	time	of	the
message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of	the
MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the
list	of	initialized	channels	of
the	calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-light
status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-heavy
status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

The	Read	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	Read	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,
the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
If	the	time	when	the	message	was	received	is	not	needed,	use	the
overloaded	Read	method.	

There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	Read
method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	Read	method	in	a	loop
until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	method
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset,	but	only	when	no	more	clients	are
connected	to	that	channel.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	LEN	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	Read	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	 Error
Code	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	 0002h	

00h	 00h	 00h	 04h	 PCAN_ERROR_BUSLIGHT	 0004h	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSHEAVY	 0008h	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	 0010h	

Example

The	following	example	shows	the	use	of	method	Read	on	the	channel
PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	and	that
the	following	code	is	an	OnTimer	event	handler	method.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsg	msg;

TPCANTimestamp	time;

strMsg	=	new	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic.Read(PCANBasic.PCAN_USBBUS1

				if	(result	!=	TPCANStatus.PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox.Show("A	message	was	received");

								ProcessMessage(msg,	time);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus.PCAN_ERROR_QRCVEMPTY)	!=	

C++CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsg	msg;

TPCANTimestamp	time;

strMsg	=	gcnew	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic::Read(PCANBasic::PCAN_USBBUS1

				if	(result	!=	TPCANStatus::PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox::Show("A	message	was	received");

								ProcessMessage(msg,	time);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus::PCAN_ERROR_QRCVEMPTY

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsg

Dim	time	As	TPCANTimestamp

strMsg	=	New	StringBuilder(256)

Do

				'	Check	the	receive	queue	for	new	messages

				'

				result	=	PCANBasic.Read(PCANBasic.PCAN_USBBUS1

				If	result	<>	TPCANStatus.PCAN_ERROR_QRCVEMPTY	

								MessageBox.Show("A	message	was	received")

								ProcessMessage(msg,	time)

				Else

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString())

								'	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								'	status	is		bus-off)

								'

								HandleReadError(result);

				End	If

'	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

'	until	the	queue	is	empty

'

Loop	While	((result	And	TPCANStatus.PCAN_ERROR_QRCVEMPTY

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsg;

				time:	TPCANTimestamp;

begin

				repeat

								//	Check	the	receive	queue	for	new	messages

								//

								result	:=	TPCANBasic.Read(TPCANBasic.PCAN_USBBUS1

								If	(result	<>	PCAN_ERROR_QRCVEMPTY)	Then

								begin

												//	Process	the	received	message

												//

												MessageBox(0,'A	message	was	received',

												ProcessMessage(msg,	time);

								end

								else

								begin

												//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

												//

												TPCANBasic.GetErrorText(result,	0,	strMsg);

												MessageBox(0,	strMsg,	'Error',MB_OK);

												//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

												//	status	is		bus-off)

												//

												HandleReadError(result);

								end;

				//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

				//	until	the	queue	is	empty

				//

				until	((TPCANStatus(Integer(result)	AND	Integer

See	Also

Write	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_Read

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Read(TPCANHandle)
Reads	a	CAN	message	and	its	time	stamp	from	the	receive	queue	of
a	PCAN	Channel.

Syntax

Python
def	Read(

				self,

				Channel)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	3-touple.	The	order	of	the	returned	values	is	as
follow:	

[0]:	The	method's	return	value	as	a	TPCANStatus	code.
PCAN_ERROR_OK	is	returned	on	success.	The	typical	errors	in	case
of	failure	are:		

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of	the
MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the

list	of	initialized	channels	of
the	calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-light
status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-heavy
status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

[1]:	A	TPCANMsg	structure	with	the	CAN	message	read.	
[2]:	A	TPCANTimestamp	structure	with	the	time	when	a	message	was
read.	

Remarks

The	Read	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	Read	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,
the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	Read

method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	Read	method	in	a	loop
until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	method
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset,	but	only	when	no	more	clients	are
connected	to	that	channel.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	LEN	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	Read	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	 Error
Code	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	 0002h	

00h	 00h	 00h	 04h	 PCAN_ERROR_BUSLIGHT	 0004h	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSHEAVY	 0008h	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	 0010h	

Python	Notes
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	method	Read	on	the	channel
PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	and	that
the	following	code	is	executed	periodically.	

Python:		

readResult	=	PCAN_ERROR_OK,

while	(readResult[0]	&	PCAN_ERROR_QRCVEMPTY)	!=	PCAN_ERROR_QRCVEMPTY

				#	Check	the	receive	queue	for	new	messages

				#

				readResult	=	objPCAN.Read(PCAN_USBBUS1)

				if	readResult[0]	!=	PCAN_ERROR_QRCVEMPTY:

								#	Process	the	received	message

								#

								print	"A	message	was	received"

								ProcessMessage(result[1],result[2])	#	Possible	processing	function,	

				else:

								#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								#

								result	=	objPCAN.GetErrorText(readResult[0])

								print	result[1]

								HandleReadError(readResult[0])	#	Possible	errors	handling	function,	

See	Also

Write	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_Read

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

ReadFD
Reads	a	CAN	message	from	the	receive	queue	of	a	FD	capable
PCAN	Channel.

Overloads

	 Function	 Description	

	
ReadFD(TPCANHandle,
TPCANMsgFD)	

Reads	a	CAN	message	from	the
receive	queue	.	

	
ReadFD(TPCANHandle,
TPCANMsgFD,
TPCANTimestampFD)	

Reads	a	CAN	message	and	its
time	stamp	from	the	receive
queue.	

	
ReadFD(TPCANHandle)	 Reads	a	CAN	message	and	its

time	stamp	from	the	receive
queue.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

ReadFD(TPCANHandle,	TPCANMsgFD)
Reads	a	CAN	message	from	the	receive	queue	of	a	FD	capable
PCAN	Channel.

Syntax

Pascal	OO
class	function	ReadFD(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsgFD

):TPCANStatus;	overload;

C#
public	static	TPCANStatus	ReadFD(

				TPCANHandle	Channel,

				out	TPCANMsgFD	MessageBuffer)

C++	/	CLR
static	TPCANStatus	ReadFD(

				TPCANHandle	Channel,

				TPCANMsgFD	%MessageBuffer);

Visual	Basic
Public	Shared	Function	ReadFD(_

				ByVal	Channel	As	TPCANHandle,	_

				ByRef	MessageBuffer	As	TPCANMsgFD)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable

PCAN	Channel	(see
TPCANHandle).	

MessageBuffer	 A	TPCANMsgFD	buffer	to	store
the	CAN	message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
method	was	not	initialized
using	InitializeFD	(plain
function:	CAN_InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSWARNING:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
warning	status.	

PCAN_ERROR_BUSPASSIVE:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
passive	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

The	use	of	Read	and	ReadFD	are	mutually	exclusive.	The	PCAN
Channel	passed	to	this	method	must	be	initialized	using	InitializeFD
(plain	function:	CAN_InitializeFD).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

If	the	time	when	the	message	was	received	is	needed,	use	the
overloaded	ReadFD	method.	

The	ReadFD	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	ReadFD	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,
the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	ReadFD
method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	ReadFD	method	in	a
loop	until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is

received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	FD,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	DLC	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	ReadFD	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSWARNING	

00h	 04h	 00h	 00h	 PCAN_ERROR_BUSPASSIVE	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	

Example

The	following	example	shows	the	use	of	method	ReadFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using	the
method	InitializeFD	and	that	the	following	code	is	an	OnTimer	event
handler	method.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsgFD	msg;

strMsg	=	new	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic.ReadFD(PCANBasic.PCAN_USBBUS1

				if	(result	!=	TPCANStatus.PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox.Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus.PCAN_ERROR_QRCVEMPTY)	!=	

C++CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsgFD	msg;

strMsg	=	gcnew	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic::ReadFD(PCANBasic::PCAN_USBBUS1

				if	(result	!=	TPCANStatus::PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox::Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus::PCAN_ERROR_QRCVEMPTY

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsgFD

strMsg	=	New	StringBuilder(256)

Do

				'	Check	the	receive	queue	for	new	messages

				'

				result	=	PCANBasic.ReadFD(PCANBasic.PCAN_USBBUS1

				If	result	<>	TPCANStatus.PCAN_ERROR_QRCVEMPTY	

								'	Process	the	received	message

								'

								MessageBox.Show("A	message	was	received")

								ProcessMessage(msg)

				Else

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString())

								'	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								'	status	is		bus-off)

								'

								HandleReadError(result)

				End	If

'	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

'	until	the	queue	is	empty

'

Loop	While	((result	And	TPCANStatus.PCAN_ERROR_QRCVEMPTY

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsgFD;

begin

				repeat

								//	Check	the	receive	queue	for	new	messages

								//

								result	:=	TPCANBasic.ReadFD(TPCANBasic.PCAN_USBBUS1

								If	(result	<>	PCAN_ERROR_QRCVEMPTY)	Then

								begin

												//	Process	the	received	message

												//

												MessageBox(0,'A	message	was	received',

												ProcessMessage(msg);

								end

								else

								begin

												//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

												//

												TPCANBasic.GetErrorText(result,	0,	strMsg);

												MessageBox(0,	strMsg,	'Error',MB_OK);

												//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

												//	status	is		bus-off)

												//

												HandleReadError(result);

								end;

				//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

				//	until	the	queue	is	empty

				//

				until	((TPCANStatus(Integer(result)	AND	Integer

See	Also

WriteFD	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_ReadFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

ReadFD(TPCANHandle,	TPCANMsgFD,
TPCANTimestampFD)
Reads	a	CAN	message	and	its	time	stamp	from	the	receive	queue	of
a	FD	capable	PCAN	Channel.

Syntax

Pascal	OO
class	function	ReadFD(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsgFD;

				var	TimestampBuffer:	TPCANTimestampFD

):TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_ReadFD

public	static	extern	TPCANStatus	ReadFD(

					[MarshalAs(UnmanagedType.U1)]

					TPCANHandle	Channel,

					out	TPCANMsgFD	MessageBuffer,

					out	TPCANTimestampFD	TimestampBuffer);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_ReadFD

static	TPCANStatus	ReadFD(

					[MarshalAs(UnmanagedType::U1)]

					TPCANHandle	Channel,

					TPCANMsgFD	%MessageBuffer,

					TPCANTimestampFD	%TimestampBuffer);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_ReadFD

Public	Shared	Function	ReadFD(_

					<MarshalAs(UnmanagedType.U1)>	_

					ByVal	Channel	As	TPCANHandle,	_

					ByRef	MessageBuffer	As	TPCANMsgFD,	_

					ByRef	TimestampBuffer	As	TPCANTimestampFD)	

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

MessageBuffer	 A	TPCANMsgFD	buffer	to	store
the	CAN	message.	

TimestampBuffer	 A	TPCANTimestampFD	buffer	to
get	the	reception	time	of	the
message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
method	was	not	initialized

using	InitializeFD	(plain
function:	CAN_InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSWARNING:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
warning	status.	

PCAN_ERROR_BUSPASSIVE:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
passive	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

The	use	of	Read	and	ReadFD	are	mutually	exclusive.	The	PCAN
Channel	passed	to	this	method	must	be	initialized	using	InitializeFD
(plain	function:	CAN_InitializeFD).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

If	the	time	when	the	message	was	received	is	not	needed,	use	the
overloaded	ReadFD	method.	

The	ReadFD	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	ReadFD	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,

the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	ReadFD
method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	ReadFD	method	in	a
loop	until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	FD,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see

Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	DLC	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	ReadFD	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSWARNING	

00h	 04h	 00h	 00h	 PCAN_ERROR_BUSPASSIVE	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	

Example

The	following	example	shows	the	use	of	method	ReadFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using	the
method	InitializeFD	and	that	the	following	code	is	an	OnTimer	event
handler	method.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsgFD	msg;

TPCANTimestampFD	time;

strMsg	=	new	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic.ReadFD(PCANBasic.PCAN_USBBUS1

				if	(result	!=	TPCANStatus.PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox.Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus.PCAN_ERROR_QRCVEMPTY)	!=	

C++CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsgFD	msg;

TPCANTimestampFD	time;

strMsg	=	gcnew	StringBuilder(256);

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	PCANBasic::ReadFD(PCANBasic::PCAN_USBBUS1

				if	(result	!=	TPCANStatus::PCAN_ERROR_QRCVEMPTY

				{

								//	Process	the	received	message

								//

								MessageBox::Show("A	message	was	received");

								ProcessMessage(msg);

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	TPCANStatus::PCAN_ERROR_QRCVEMPTY

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsgFD

Dim	time	As	TPCANTimestampFD

strMsg	=	New	StringBuilder(256)

Do

				'	Check	the	receive	queue	for	new	messages

				'

				result	=	PCANBasic.ReadFD(PCANBasic.PCAN_USBBUS1

				If	result	<>	TPCANStatus.PCAN_ERROR_QRCVEMPTY	

								MessageBox.Show("A	message	was	received")

								ProcessMessage(msg)

				Else

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString())

								'	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								'	status	is		bus-off)

								'

								HandleReadError(result)

				End	If

'	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

'	until	the	queue	is	empty

'

Loop	While	((result	And	TPCANStatus.PCAN_ERROR_QRCVEMPTY

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsgFD;

				time:	TPCANTimestampFD;

begin

				repeat

								//	Check	the	receive	queue	for	new	messages

								//

								result	:=	TPCANBasic.ReadFD(TPCANBasic.PCAN_USBBUS1

								If	(result	<>	PCAN_ERROR_QRCVEMPTY)	Then

								begin

												//	Process	the	received	message

												//

												MessageBox(0,'A	message	was	received',

												ProcessMessage(msg);

								end

								else

								begin

												//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

												//

												TPCANBasic.GetErrorText(result,	0,	strMsg);

												MessageBox(0,	strMsg,	'Error',MB_OK);

												//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

												//	status	is		bus-off)

												//

												HandleReadError(result);

								end;

				//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

				//	until	the	queue	is	empty

				//

				until	((TPCANStatus(Integer(result)	AND	Integer

See	Also

WriteFD	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_ReadFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

ReadFD(TPCANHandle)
Reads	a	CAN	message	and	its	time	stamp	from	the	receive	queue	of
a	FD	capable	PCAN	Channel.

Syntax

Python
def	ReadFD(

				self,

				Channel)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

Returns

The	return	value	is	a	3-touple.	The	order	of	the	returned	values	is	as
follow:	

[0]:	The	method's	return	value	as	a	TPCANStatus	code.
PCAN_ERROR_OK	is	returned	on	success.	The	typical	errors	in	case
of	failure	are:		

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
method	was	not	initialized
using	InitializeFD	(plain
function:	CAN_InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSWARNING:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
warning	status.	

PCAN_ERROR_BUSPASSIVE:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
passive	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

[1]:	A	TPCANMsgFD	structure	with	the	CAN	message	read.	
[2]:	A	TPCANTimestampFD	value	with	the	time	when	a	message	was
read.	

Remarks

The	use	of	Read	and	ReadFD	are	mutually	exclusive.	The	PCAN
Channel	passed	to	this	method	must	be	initialized	using	InitializeFD
(plain	function:	CAN_InitializeFD).	Otherwise	the	error

PCAN_ERROR_ILLOPERATION	is	returned.	

The	ReadFD	method	returns	received	messages	or	status	messages
from	the	receive	queue.	It	is	important	to	call	ReadFD	repeatedly	until
the	queue	is	empty.	In	case	there	are	no	more	messages	in	queue,
the	value	PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the	ReadFD
method.	Typically,	an	application	start	a	timer	that	every	50	or	100
milliseconds	check	for	messages,	calling	the	ReadFD	method	in	a
loop	until	the	value	of	PCAN_ERROR_QRCVEMTY	or	another	error
condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	FD,	RTR,	Error,	or	Status

message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	DLC	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	ReadFD	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSWARNING	

00h	 04h	 00h	 00h	 PCAN_ERROR_BUSPASSIVE	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	

Python	Notes
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	method	ReadFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using	the
method	InitializeFD	and	that	the	following	code	is	executed
periodically.	

Python:		

readResult	=	PCAN_ERROR_OK,

while	(readResult[0]	&	PCAN_ERROR_QRCVEMPTY)	!=	PCAN_ERROR_QRCVEMPTY

				#	Check	the	receive	queue	for	new	messages

				#

				readResult	=	objPCAN.ReadFD(PCAN_USBBUS1)

				if	readResult[0]	!=	PCAN_ERROR_QRCVEMPTY:

								#	Process	the	received	message

								#

								print	"A	message	was	received"

								ProcessMessage(result[1],result[2])	#	Possible	processing	function,	

				else:

								#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								#

								result	=	objPCAN.GetErrorText(readResult[0])

								print	result[1]

								HandleReadError(readResult[0])	#	Possible	errors	handling	function,	

See	Also

WriteFD	

Using	Events	

Error	Frames	

	

Plain	function	Version:	CAN_ReadFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Write
Transmits	a	CAN	message.

Syntax

Pascal	OO
class	function	Write(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsg

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Write

public	static	extern	TPCANStatus	Write(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				ref	TPCANMsg	MessageBuffer);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_Write

static	TPCANStatus	Write(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				TPCANMsg	%MessageBuffer);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_Write

Public	Shared	Function	Write(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				ByVal	MessageBuffer	As	TPCANMsg)	As	TPCANStatus

End	Function

Python
def	Write(

				self,

				Channel,

				MessageBuffer)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

MessageBuffer	 A	TPCANMsg	buffer	containing
the	CAN	message	to	be	sent.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of	the
MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the
list	of	initialized	channels	of
the	calling	application.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QXMTFULL:	 Indicates	that	the	transmit

queue	of	the	Channel	is	full.	

Remarks

If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	method
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	Write	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsg	msg;

strMsg	=	new	StringBuilder(256);

//	A	CAN	message	is	created.	The	Data	field	(8	bytes)

//	of	the	message	must	also	be	created

//

msg	=	new	TPCANMsg();

msg.DATA	=	new	Byte[8];

//	A	CAN	message	is	configured

//

msg.ID	=	0x100;

msg.MSGTYPE	=	TPCANMessageType.PCAN_MESSAGE_STANDARD

msg.LEN	=	3;

msg.DATA[0]	=	1;

msg.DATA[1]	=	2;

msg.DATA[2]	=	3;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	PCANBasic.Write(PCANBasic.PCAN_USBBUS1,	ref

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("Message	sent	successfully");

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsg^	msg;

strMsg	=	gcnew	StringBuilder(256);

//	A	CAN	message	is	created.	The	Data	field	(8	bytes)

//	of	the	message	must	also	be	created

//

msg	=	gcnew	TPCANMsg();

msg->DATA	=	gcnew	array<Byte>(8);

//	A	CAN	message	is	configured

//

msg->ID	=	0x100;

msg->MSGTYPE	=	TPCANMessageType::PCAN_MESSAGE_STANDARD

msg->LEN	=	3;

msg->DATA[0]	=	1;

msg->DATA[1]	=	2;

msg->DATA[2]	=	3;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	PCANBasic::Write(PCANBasic::PCAN_USBBUS1,	*msg);

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("Message	sent	successfully");

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsg

strMsg	=	New	StringBuilder(256)

'	A	CAN	message	is	created.	The	Data	field	(8	bytes)

'	of	the	message	must	also	be	created

'

msg	=	New	TPCANMsg

msg.DATA	=	CType(Array.CreateInstance(GetType(Byte

'	A	CAN	message	is	configured

'

msg.ID	=	&H100

msg.MSGTYPE	=	TPCANMessageType.PCAN_MESSAGE_STANDARD

msg.LEN	=	3

msg.DATA(0)	=	1

msg.DATA(1)	=	2

msg.DATA(2)	=	3

'	The	message	is	sent	using	the	PCAN-USB	Channel	1

'

result	=	PCANBasic.Write(PCANBasic.PCAN_USBBUS1,	msg)

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("Message	sent	successfully")

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsg;

begin

				//	A	CAN	message	is	configured

				//

				msg.ID	:=	$100;

				msg.MSGTYPE	:=	PCAN_MESSAGE_STANDARD;

				msg.LEN	:=	3;

				msg.DATA[0]	:=	1;

				msg.DATA[1]	:=	2;

				msg.DATA[2]	:=	3;

				//	The	message	is	sent	using	the	PCAN-USB	Channel	1

				//

				result	:=	TPCANBasic.Write(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'Message	sent	successfully','Success'

Python:

#	A	CAN	message	is	configured

#

msg	=	TPCANMsg()

msg.ID	=	0x100

msg.MSGTYPE	=	PCAN_MESSAGE_STANDARD

msg.LEN	=	3

msg.DATA[0]	=	1

msg.DATA[1]	=	2

msg.DATA[2]	=	3

#		The	message	is	sent	using	the	PCAN-USB	Channel	1

#

result	=	objPCAN.Write(PCAN_USBBUS1,msg)

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result

else:

				print	"Message	sent	successfully"

See	Also

Read	

SetValue	

	

Plain	function	Version:	CAN_Write

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

WriteFD
Transmits	a	CAN	message	using	a	FD	capable	PCAN	Channel.

Syntax

Pascal	OO
class	function	WriteFD(

				Channel:	TPCANHandle;

				var	MessageBuffer:	TPCANMsgFD

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_WriteFD

public	static	extern	TPCANStatus	WriteFD(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				ref	TPCANMsgFD	MessageBuffer);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_WriteFD

static	TPCANStatus	WriteFD(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				TPCANMsgFD	%MessageBuffer);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_WriteFD

Public	Shared	Function	WriteFD(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				ByRef	MessageBuffer	As	TPCANMsgFD)	As	TPCANStatus

End	Function

Python
def	WriteFD(

				self,

				Channel,

				MessageBuffer)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

MessageBuffer	 A	TPCANMsgFD	buffer
containing	the	CAN	message	to
be	sent.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
method	was	not	initialized
using	InitializeFD	(plain
function:	CAN_InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given

PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QXMTFULL:	 Indicates	that	the	transmit
queue	of	the	Channel	is	full.	

Remarks

The	use	of	Write	and	WriteFD	are	mutually	exclusive.	The	PCAN
Channel	passed	to	this	method	must	be	initialized	using	InitializeFD
(plain	function:	CAN_InitializeFD).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	method
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in

a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	WriteFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using	the
method	InitializeFD.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

TPCANMsgFD	msg;

strMsg	=	new	StringBuilder(256);

//	A	CAN	message	is	created.	The	Data	field	(64	bytes)

//	of	the	message	must	also	be	created

//

msg	=	new	TPCANMsgFD();

msg.DATA	=	new	Byte[64];

//	A	CAN	message	is	configured

//

msg.ID	=	0x100;

msg.MSGTYPE	=	TPCANMessageType.PCAN_MESSAGE_STANDARD

//	DLC	9	means	12	data	bytes

//

msg.DLC	=	9;

for(byte	i=0;	i	<	12;	i++)

				msg.DATA[i]	=	i;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	PCANBasic.WriteFD(PCANBasic.PCAN_USBBUS1,	

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("Message	sent	successfully");

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

TPCANMsgFD^	msg;

strMsg	=	gcnew	StringBuilder(256);

//	A	CAN	message	is	created.	The	Data	field	(64	bytes)

//	of	the	message	must	also	be	created

//

msg	=	gcnew	TPCANMsgFD();

msg->DATA	=	gcnew	array<Byte>(64);

//	A	CAN	message	is	configured

//

msg->ID	=	0x100;

msg->MSGTYPE	=	TPCANMessageType::PCAN_MESSAGE_STANDARD	

//	DLC	9	means	12	data	bytes

//

msg->DLC	=	9;

for(Byte	i=0;	i	<	12;	i++)

				msg->DATA[i]	=	i;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	PCANBasic::WriteFD(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("Message	sent	successfully");

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	msg	As	TPCANMsgFD

strMsg	=	New	StringBuilder(256)

'	A	CAN	message	is	created.	The	Data	field	(64	bytes)

'	of	the	message	must	also	be	created

'

msg	=	New	TPCANMsgFD

msg.DATA	=	CType(Array.CreateInstance(GetType(Byte

'	A	CAN	message	is	configured

'

msg.ID	=	&H100

msg.MSGTYPE	=	TPCANMessageType.PCAN_MESSAGE_STANDARD	

'	DLC	9	means	12	data	bytes

'

msg.DLC	=	9

For	i	As	Byte	=	0	To	11

				msg.DATA(i)	=	i

Next

'	The	message	is	sent	using	the	PCAN-USB	Channel	1

'

result	=	PCANBasic.WriteFD(PCANBasic.PCAN_USBBUS1,	msg)

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("Message	sent	successfully")

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				msg:	TPCANMsgFD;

				I:	Integer;

begin

				//	A	CAN	message	is	configured

				//

				msg.ID	:=	$100;

				msg.MSGTYPE	:=	TPCANMessageType(Byte(PCAN_MESSAGE_STANDARD)	

				//	DLC	9	means	12	data	bytes

				//

				msg.DLC	:=	9;

				for	I:=0	To	11	do

								msg.DATA[I]	:=	I;

				//	The	message	is	sent	using	the	PCAN-USB	Channel	1

				//

				result	:=	TPCANBasic.WriteFD(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,'Message	sent	successfully','Success'

Python:

#	A	CAN	message	is	configured

#

msg	=	TPCANMsgFD()

msg.ID	=	0x100

msg.MSGTYPE	=	PCAN_MESSAGE_STANDARD.value	|	PCAN_MESSAGE_FD

#	DLC	9	means	12	data	bytes

#

msg.DLC	=	9

for	i	in	range(12):

				msg.DATA[i]	=	i

#		The	message	is	sent	using	the	PCAN-USB	Channel	1

#

result	=	objPCAN.WriteFD(PCAN_USBBUS1,msg)

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result

else:

				print	"Message	sent	successfully"

See	Also

ReadFD	

SetValue	

	

Plain	function	Version:	CAN_WriteFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetValue
Retrieves	information	from	a	PCAN	Channel.

Overloads

	 Function	 Description	

	
GetValue(TPCANHandle,	TPCANParameter,
String,	UInt32)	

Retrieves
information
from	a	PCAN
Channel	in	text
form.	

	
GetValue(TPCANHandle,	TPCANParameter,
UInt32,	UInt32)	

Retrieves
information
from	a	PCAN
Channel	in
numeric	form
(32-Bit).	

	
GetValue(TPCANHandle,	TPCANParameter,
UInt64,	UInt32)	

Retrieves
information
from	a	PCAN
Channel	in
numeric	form
(64-Bit).	

	
GetValue(TPCANHandle,TPCANParameter)	 Retrieves

information
from	a	PCAN
Channel.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetValue(TPCANHandle,	TPCANParameter,
String,	UInt32)
Retrieves	information	from	a	PCAN	Channel	in	text	form.

Syntax

Pascal	OO
class	function	GetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				StringBuffer:	PChar;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

public	static	extern	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				StringBuilder	StringBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

static	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				StringBuilder^	StringBuffer,

				UInt32	BufferLength);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_GetValue

Public	Shared	Function	GetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				ByVal	StringBuffer	As	StringBuilder,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	information	to
be	retrieved	(see
TPCANParameter).	

StringBuffer	 The	buffer	to	return	the	required
string	value.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the

parameters	passed	to	the
method	are	invalid.	Check
the	parameter	'StringBuffer';
it	should	point	to	a	valid	null-
terminated	string	buffer.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	read.	

Remarks

Use	the	method	GetValue	to	get	information	about	PCAN
environment	as	parameters	like	the	Message	Filter	and	values	like	the
availability	of	a	PCAN-Channel.	Take	in	account	that	not	all
parameters	are	supported	for	all	PCAN-Channels.	The	access's	type
of	the	parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	read
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	GetValue	on	the
channel	PCAN_USBBUS1	to	get	the	PCAN-Channel	version	text.	In
case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized
InitializeFD.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

strMsg	=	new	StringBuilder(256);

//	The	version	of	the	PCAN-USB	Channel	1	is	asked.

//

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				//	Show	the	version	message

				//

				MessageBox.Show(strMsg.ToString());

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

strMsg	=	gcnew	StringBuilder(256);

//	The	version	of	the	PCAN-USB	Channel	1	is	asked.

//

result	=	PCANBasic::GetValue(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				//	Show	the	version	message

				//

				MessageBox::Show(strMsg->ToString());

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

strMsg	=	New	StringBuilder(256)

'	The	version	of	the	PCAN-USB	Channel	1	is	asked.

'

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString())

Else

				'	Show	the	version	message

				'

				MessageBox.Show(strMsg.ToString())

End	If

Pascal	OO:

var

				result:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

begin

				//	The	version	of	the	PCAN-USB	Channel	1	is	asked.

				//

				result	:=	TPCANBasic.GetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								//	Show	the	version	message

								//

								MessageBox(0,	strMsg,	'Success',MB_OK);

See	Also

SetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_GetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetValue(TPCANHandle,	TPCANParameter,
UInt32,	UInt32)
Retrieves	information	from	a	PCAN	Channel	in	numeric	form.

Syntax

Pascal	OO
class	function	GetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				NumericBuffer:	PLongWord;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

public	static	extern	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				out	UInt32	NumericBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

static	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				UInt32	%NumericBuffer,

				UInt32	BufferLength);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_GetValue

Public	Shared	Function	GetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				ByRef	NumericBuffer	As	UInt32,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	information	to
be	retrieved	(see
TPCANParameter).	

NumericBuffer	 The	buffer	to	return	the	required
numeric	value.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the

parameters	passed	to	the
method	are	invalid.	Check
the	parameter
'NumericBuffer';	it	should
point	to	an	integer	buffer.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	read.	

Remarks

Use	the	method	GetValue	to	get	information	about	PCAN
environment	as	parameters	like	the	Message	Filter	and	values	like	the
availability	of	a	PCAN-Channel.	Take	in	account	that	not	all
parameters	are	supported	for	all	PCAN-Channels.	The	access's	type
of	the	parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	read
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	GetValue	on	the
channel	PCAN_USBBUS1	to	check	if	the	Message	Filter	is	fully
opened.	In	case	of	failure,	the	returned	code	will	be	translated	to	a
text	(according	with	the	operating	system	language)	in	English,
German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

UInt32	iBuffer;

strMsg	=	new	StringBuilder(256);

//	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

//

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				//	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

				//

				switch(iBuffer)

				{

								case	PCANBasic.PCAN_FILTER_OPEN:

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened."

												break;

								case	PCANBasic.PCAN_FILTER_CLOSE:

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed."

												break;

								case	PCANBasic.PCAN_FILTER_CUSTOM:

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured."

												break;

				}

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

UInt32	iBuffer;

strMsg	=	gcnew	StringBuilder(256);

//	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

//

result	=	PCANBasic::GetValue(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				//	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

				//

				switch(iBuffer)

				{

								case	PCANBasic::PCAN_FILTER_OPEN:

												MessageBox::Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened."

												break;

								case	PCANBasic::PCAN_FILTER_CLOSE:

												MessageBox::Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed."

												break;

								case	PCANBasic::PCAN_FILTER_CUSTOM:

												MessageBox::Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured."

												break;

				}

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	iBuffer	As	UInt32

strMsg	=	New	StringBuilder(256)

'	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

'

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString())

Else

				'	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

				'

				Select	Case	iBuffer

								Case	PCANBasic.PCAN_FILTER_OPEN

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened."

								Case	PCANBasic.PCAN_FILTER_CLOSE

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed."

								Case	PCANBasic.PCAN_FILTER_CUSTOM

												MessageBox.Show("The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured."

				End	Select

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				iBuffer:	LongWord;

begin

				//	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

				//

				result	:=	TPCANBasic.GetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

				begin

								//	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

								//

								if	iBuffer	=	TPCANBasic.PCAN_FILTER_OPEN	then

																MessageBox(0,	'The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened.'

								if	iBuffer	=	TPCANBasic.PCAN_FILTER_CLOSE	

																MessageBox(0,	'The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed.'

								if	iBuffer	=	TPCANBasic.PCAN_FILTER_CUSTOM

																MessageBox(0,	'The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured.'

				end;

See	Also

SetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_GetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetValue(TPCANHandle,	TPCANParameter,
UInt64,	UInt32)
Retrieves	information	from	a	PCAN	Channel	in	numeric	form.

Pascal	OO
class	function	GetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				NumericBuffer:	PUInt64;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

public	static	extern	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				out	UInt64	NumericBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetValue

static	TPCANStatus	GetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				UInt64	%NumericBuffer,

				UInt32	BufferLength);

Visual	Basic

<DllImport("PCANBasic.dll",	EntryPoint:="CAN_GetValue

Public	Shared	Function	GetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				ByRef	NumericBuffer	As	UInt64,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	information	to
be	retrieved	(see
TPCANParameter).	

NumericBuffer	 The	buffer	to	return	the	required
64-bit	numeric	value.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
method	are	invalid.	Check
the	parameter

'NumericBuffer';	it	should
point	to	a	64-bit	integer
buffer.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	read.	

Remarks

Use	the	method	GetValue	to	get	information	about	PCAN
environment	as	parameters	like	an	Acceptance	Filter.	Take	in	account
that	not	all	parameters	are	supported	for	all	PCAN-Channels.	The
access's	type	of	the	parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	read
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	GetValue	on	the
channel	PCAN_USBBUS1	to	retrieve	the	configured	message	filter	as
11-bit	acceptance	code	and	mask.	In	case	of	failure,	the	returned
code	will	be	translated	to	a	text	(according	with	the	operating	system
language)	in	English,	German,	Italian,	French	or	Spanish,	and	it	will
be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

UInt64	i64Buffer;

UInt32	iCode,	iMask;

strMsg	=	new	StringBuilder(256);

//	The	11-bit	acceptance	filter	of	the	PCAN-USB	Channel	1	is	asked

//

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

{

				//	Code	and	mask	are	extracted	from	the	64-bit	numeric	value

				//

				iCode	=	Convert.ToUInt32((i64Buffer	>>	32);

				iMask	=	Convert.ToUInt32(i64Buffer	&	UInt32.MaxValue);

				//	A	text	is	shown	giving	information	about	the	11-bit	mask	and	code	of	the	acceptance	filter

				//

				MessageBox.Show(string.Format("Configured	11-bit	acceptance	filter:	Code:	{0:X8}	|	Mask:	{1:X8}"

}

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

UInt64	i64Buffer;

UInt32	iCode,	iMask;

strMsg	=	gcnew	StringBuilder(256);

//	The	11-bit	acceptance	filter	of	the	PCAN-USB	Channel	1	is	asked

//

result	=	PCANBasic::GetValue(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

{

				//	Code	and	mask	are	extracted	from	the	64-bit	numeric	value

				//

				iCode	=	Convert::ToUInt32((i64Buffer	>>	32);

				iMask	=	Convert::ToUInt32(i64Buffer	&	UInt32::MaxValue);

				//	A	text	is	shown	giving	information	about	the	11-bit	mask	and	code	of	the	acceptance	filter

				//

				MessageBox::Show(String::Format("Configured	11-bit	acceptance	filter:	Code:	{0:X8}	|	Mask:	{1:X8}"

}

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	i64Buffer	As	UInt64

Dim	iCode	As	UInt32

Dim	iMask	As	UInt32

strMsg	=	New	StringBuilder(256)

'	The	11-bit	acceptance	filter	of	the	PCAN-USB	Channel	1	is	asked

'

result	=	PCANBasic.GetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString())

Else

				'	Code	and	mask	are	extracted	from	the	64-bit	numeric	value

				'

				iCode	=	Convert.ToUInt32(i64Buffer	>>	32)

				iMask	=	Convert.ToUInt32(i64Buffer	And	UInt32.MaxValue)

				'	A	text	is	shown	giving	information	about	the	11-bit	mask	and	code	of	the	acceptance	filter

				'

				MessageBox.Show(String.Format("Configured	11-bit	acceptance	filter:	Code:	{0:X8}	|	Mask:	{1:X8}"

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				i64Buffer:	UInt64;

				iCode,	iMask:	LongWord;

begin

				//	The	11-bit	acceptance	filter	of	the	PCAN-USB	Channel	1	is	asked

				//

				result	:=	TPCANBasic.GetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

				begin

								//	Code	and	mask	are	extracted	from	the	64-bit	numeric	value

								//

								iCode	:=	i64Buffer	shr	32;

								iMask	:=	(i64Buffer	And	$FFFFFFFF);

								//	A	text	is	shown	giving	information	about	the	11-bit	mask	and	code	of	the	acceptance	filter

								//

								MessageBox(0,	PChar(Format('Configured	11-bit	acceptance	filter:	Code:	%.8X	|	Mask:	%.8X'

				end;

end;

See	Also

SetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_GetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetValue(TPCANHandle,TPCANParameter)
Retrieves	information	from	a	PCAN	Channel.

Syntax

Python
def	GetValue(

				self,

				Channel,

				Parameter)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	information	to
be	retrieved	(see
TPCANParameter).	

Returns

The	return	value	is	a	2-touple.	The	order	of	the	returned	values	is	as
follow:	

[0]:	The	method's	return	value	as	a	TPCANStatus	code.
PCAN_ERROR_OK	is	returned	on	success.	The	typical	errors	in	case
of	failure	are:		

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
method	are	invalid.	Check
the	parameter

'NumericBuffer';	it	should
point	to	an	integer	buffer.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	read.	

[1]:	The	requested	parameter	value	(the	type	of	the	value	depends	on
the	TPCANParameter	requested).

Remarks

Use	the	method	GetValue	to	get	information	about	PCAN
environment	as	parameters	like	the	Message	Filter	and	values	like	the
availability	of	a	PCAN-Channel.	Take	in	account	that	not	all
parameters	are	supported	for	all	PCAN-Channels.	The	access's	type
of	the	parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	read
can	be	found	in	Parameter	Value	Definitions.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in

a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	GetValue	on	the
channel	PCAN_USBBUS1	to	check	if	the	Message	Filter	is	fully
opened.	In	case	of	failure,	the	returned	code	will	be	translated	to	a
text	(according	with	the	operating	system	language)	in	English,
German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

Python:		

#	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

#

result	=	objPCAN.GetValue(PCAN_USBBUS1,PCAN_MESSAGE_FILTER

if	result[0]	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result

else:

				#	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

				#

				if	result[1]	==	PCAN_FILTER_OPEN:

								print	"The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened."

				elif	result[1]	==	PCAN_FILTER_CLOSE:

								print	"The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed."

				elif	result[1]	==	PCAN_FILTER_CUSTOM:

								print	"The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured."

See	Also

SetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_GetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

SetValue
Sets	a	configuration	or	information	value	within	a	PCAN	Channel.

Overloads

	 Function	 Description	

	
SetValue(TPCANHandle,
TPCANParameter,
String,	UInt32)	

Sets	a	configuration	or	information
string	value	within	a	PCAN
Channel.	

	
SetValue(TPCANHandle,
TPCANParameter,
UInt32,	UInt32)	

Sets	a	configuration	or	information
numeric	value	within	a	PCAN
Channel	(32-Bit).	

	
SetValue(TPCANHandle,
TPCANParameter,
UInt64,	UInt32)	

Sets	a	configuration	or	information
numeric	value	within	a	PCAN
Channel	(64-Bit).	

	
SetValue(TPCANHandle,
TPCANParameter,
Object)	

Sets	a	configuration	or	information
value	within	a	PCAN	Channel.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

SetValue(TPCANHandle,	TPCANParameter,
String,	UInt32)
Sets	a	configuration	or	information	string	value	within	a	PCAN
Channel.

Syntax

Pascal	OO
class	function	SetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				StringBuffer:	PChar;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

public	static	extern	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				[MarshalAs(UnmanagedType.LPStr,SizeParamIndex=3)]

				string	StringBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

static	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				[MarshalAs(UnmanagedType::LPStr,SizeParamIndex=3)]

				String^	StringBuffer,

				UInt32	BufferLength);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_SetValue

Public	Shared	Function	SetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				<MarshalAs(UnmanagedType.LPStr,	SizeParamIndex:=3)>	_

				ByVal	StringBuffer	As	String,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	value	to	be	set
(see	TPCANParameter).	

StringBuffer	 The	buffer	containing	the	string
value	to	be	set.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is

returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
method	are	invalid.	Check
the	parameter	'StringBuffer';
it	should	point	to	a	valid	null-
terminated	string	buffer.	

PCAN_ERROR_CAUTION:	 The	configuration	of	a
parameter	failed	due	to	a	no
more	existing	channel.	The
parameter	has	been	reset	on
all	existing	channels.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	set.	

PCAN_ERROR_ILLOPERATION:	 An	underlying	process	that	is
generated	by	a	call	to	this
method	with	the	current
parameters,	is	temporarily
not	allowed.	The
configuration	in	relation	to
the	used	TPCANParameter
must	be	checked.	

Remarks

Use	the	method	SetValue	to	set	configuration	information	or
environment	values	of	a	PCAN	Channel	as	parameters	like	the
Message	Filter	and	values	like	a	custom	entry	in	the	log	file	of	PCAN-
Basic.	Take	in	account	that	not	all	parameters	are	supported	for	all
PCAN-Channels.	The	access's	type	of	the	parameters	can	also	be
different.	

More	information	about	the	parameters	and	values	that	can	be	set
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	SetValue	on	the
channel	PCAN_NONEBUS	to	set	(and	activate)	the	path	for	the	log
file	of	a	PCAN-Basic's	debug	session.	In	case	of	failure,	the	returned
code	will	be	translated	to	a	text	(according	with	the	operating	system
language)	in	English,	German,	Italian,	French	or	Spanish,	and	it	will
be	shown	to	the	user.	

Note:	It	is	not	needed	to	have	an	initialized	PCAN	channel	for	using
the	Log	functionality.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

string	strBuffer;

strMsg	=	new	StringBuilder(256);

//	The	path	for	the	Log	file	is	set.

//	Note	that	this	parameter	is	set	using	the

//	default	Channel	(PCAN_NONEBUS)

//

strBuffer	=	"C:\\Users\\Admin\\Desktop";

result	=	PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("Log	path	was	successfully	set"

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

String^	strBuffer;

strMsg	=	gcnew	StringBuilder(256);

//	The	path	for	the	Log	file	is	set.

//	Note	that	this	parameter	is	set	using	the

//	default	Channel	(PCAN_NONEBUS)

//

strBuffer	=	"C:\\Users\\Admin\\Desktop";

result	=	PCANBasic::SetValue(PCANBasic::PCAN_NONEBUS

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("Log	path	was	successfully	set"

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	strBuffer	As	String

strMsg	=	New	StringBuilder(256)

'	The	path	for	the	Log	file	is	set.

'	Note	that	this	parameter	is	set	using	the

'	default	Channel	(PCAN_NONEBUS)

'

strBuffer	=	"C:\Users\Admin\Desktop"

result	=	PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString())

Else

				MessageBox.Show("Log	path	was	successfully	set"

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				strBuffer:	string;

begin

				//	The	path	for	the	Log	file	is	set.

				//	Note	that	this	parameter	is	set	using	the

				//	default	Channel	(PCAN_NONEBUS)

				//

				strBuffer	:=	'C:\\Users\Keneth\Desktop';

				result	:=	TPCANBasic.SetValue(TPCANBasic.PCAN_NONEBUS

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,	'Log	path	was	successfully	set'

See	Also

GetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_SetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

SetValue(TPCANHandle,	TPCANParameter,
UInt32,	UInt32)
Sets	a	configuration	or	information	numeric	value	within	a	PCAN
Channel.

Syntax

Pascal	OO
class	function	SetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				NumericBuffer:	PLongWord;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

public	static	extern	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				ref	UInt32	NumericBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

static	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				UInt32	%NumericBuffer,

				UInt32	BufferLength);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_SetValue

Public	Shared	Function	SetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				ByRef	NumericBuffer	As	UInt32,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	value	to	be	set
(see	TPCANParameter).	

NumericBuffer	 The	buffer	containing	the
numeric	value	to	be	set.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the

parameters	passed	to	the
method	are	invalid.	Check
the	parameter
'NumericBuffer';	it	should
point	to	an	integer	buffer.	

PCAN_ERROR_CAUTION:	 The	configuration	of	a
parameter	failed	due	to	a	no
more	existing	channel.	The
parameter	has	been	reset	on
all	existing	channels.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	set.	

PCAN_ERROR_ILLOPERATION:	 An	underlying	process	that	is
generated	by	a	call	to	this
method	with	the	current
parameters,	is	temporarily
not	allowed.	The
configuration	in	relation	to
the	used	TPCANParameter
must	be	checked.	

Remarks

Use	the	method	SetValue	to	set	configuration	information	or

environment	values	of	a	PCAN	Channel	as	parameters	like	the
Message	Filter	and	values	like	a	custom	entry	in	the	log	file	of	PCAN-
Basic.	Take	in	account	that	not	all	parameters	are	supported	for	all
PCAN-Channels.	The	access's	type	of	the	parameters	can	also	be
different.	

More	information	about	the	parameters	and	values	that	can	be	set
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	SetValue	on	the
channel	PCAN_USBBUS1	to	close	the	message	filter.	In	case	of
failure,	the	returned	code	will	be	translated	to	a	text	(according	with
the	operating	system	language)	in	English,	German,	Italian,	French	or
Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

UInt32	iBuffer;

strMsg	=	new	StringBuilder(256);

//	The	message	filter	is	closed

//

iBuffer	=	PCANBasic.PCAN_FILTER_CLOSE;

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("The	filter	was	successfully	closed"

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

UInt32	iBuffer;

strMsg	=	gcnew	StringBuilder(256);

//	The	message	filter	is	closed

//

iBuffer	=	PCANBasic::PCAN_FILTER_CLOSE;

result	=	PCANBasic::SetValue(PCANBasic::PCAN_USBBUS1,TPCANParameter::PCAN_MESSAGE_FILTER

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("The	filter	was	successfully	closed"

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	iBuffer	As	UInt32

strMsg	=	New	StringBuilder(256)

'	The	message	filter	is	closed

'

iBuffer	=	PCANBasic.PCAN_FILTER_CLOSE

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("The	filter	was	successfully	closed"

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				iBuffer:	LongWord;

begin

				//	The	message	filter	is	closed

				//

				iBuffer	:=	TPCANBasic.PCAN_FILTER_CLOSE;

				result	:=	TPCANBasic.SetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,	'The	filter	was	successfully	closed'

See	Also

GetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_SetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

SetValue(TPCANHandle,	TPCANParameter,
UInt64,	UInt32)
Sets	a	configuration	or	information	numeric	value	within	a	PCAN
Channel.

Syntax

Pascal	OO
class	function	SetValue(

				Channel:	TPCANHandle;

				Parameter:	TPCANParameter;

				NumericBuffer:	PUInt64;

				BufferLength:	LongWord

):	TPCANStatus;	overload;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

public	static	extern	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType.U1)]

				TPCANParameter	Parameter,

				ref	UInt64	NumericBuffer,

				UInt32	BufferLength);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_SetValue

static	TPCANStatus	SetValue(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				[MarshalAs(UnmanagedType::U1)]

				TPCANParameter	Parameter,

				UInt64	%NumericBuffer,

				UInt32	BufferLength);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_SetValue

Public	Shared	Function	SetValue(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Parameter	As	TPCANParameter,	_

				ByRef	NumericBuffer	As	UInt64,	_

				ByVal	BufferLength	As	UInt32)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	value	to	be	set
(see	TPCANParameter).	

NumericBuffer	 The	buffer	containing	the	64-bit
numeric	value	to	be	set.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the

parameters	passed	to	the
method	are	invalid.	Check
the	parameter
'NumericBuffer';	it	should
point	to	a	64-bit	integer
buffer.	

PCAN_ERROR_CAUTION:	 The	configuration	of	a
parameter	failed	due	to	a	no
more	existing	channel.	The
parameter	has	been	reset	on
all	existing	channels.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	set.	

PCAN_ERROR_ILLOPERATION:	 An	underlying	process	that	is
generated	by	a	call	to	this
method	with	the	current
parameters,	is	temporarily
not	allowed.	The
configuration	in	relation	to
the	used	TPCANParameter
must	be	checked.	

Remarks

Use	the	method	SetValue	to	set	configuration	information	or
environment	values	of	a	PCAN	Channel	as	parameters	like	an
Acceptance	Filter.	Take	in	account	that	not	all	parameters	are
supported	for	all	PCAN-Channels.	The	access's	type	of	the
parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	set
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	the	method	SetValue	on	the
channel	PCAN_USBBUS1	to	set	a	message	filter	as	a	11-bit
acceptance	code	and	mask,	allowing	only	IDs	from	0x100	to	0x103.	In
case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

UInt64	i64Buffer;

strMsg	=	new	StringBuilder(256);

//	The	acceptance	code	and	mask	are	packed	as	64-bit	value

//

i64Buffer	=	0x100;		//	Acceptance	code

i64Buffer	<<=	32;

i64Buffer	|=	0x003;	//	Acceptance	mask

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

				MessageBox.Show("The	11-bit	acceptance	filter	was	configured	successfully"

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

UInt64	i64Buffer;

strMsg	=	gcnew	StringBuilder(256);

//	The	acceptance	code	and	mask	are	packed	as	64-bit	value

//

i64Buffer	=	0x100;		//	Acceptance	code

i64Buffer	<<=	32;

i64Buffer	|=	0x003;	//	Acceptance	mask

result	=	PCANBasic::SetValue(PCANBasic::PCAN_USBBUS1

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

				MessageBox::Show("The	11-bit	acceptance	filter	was	configured	successfully"

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	i64Buffer	As	UInt64

strMsg	=	New	StringBuilder(256)

'	The	acceptance	code	and	mask	are	packed	as	64-bit	value

'

i64Buffer	=	&H100													'	Acceptance	code

i64Buffer	<<=	32

i64Buffer	=	i64Buffer	Or	&H3	'	Acceptance	mask

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				MessageBox.Show("The	11-bit	acceptance	filter	was	configured	successfully"

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				i64Buffer:	UInt64;

begin

				//	The	acceptance	code	and	mask	are	packed	as	64-bit	value

				//

				i64Buffer	:=	$100;													//	Acceptance	code

				i64Buffer	:=	i64Buffer	shl	32;

				i64Buffer	:=	i64Buffer	Or	$3;		//	Acceptance	mask

				result	:=	TPCANBasic.SetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

								MessageBox(0,	'The	11-bit	acceptance	filter	was	configured	successfully'

end;

See	Also

GetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_SetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

SetValue(TPCANHandle,	TPCANParameter,
Object)
Sets	a	configuration	or	information	value	within	a	PCAN	Channel.

Syntax

Python
def	SetValue(

				self,

				Channel,

				Parameter,

				Buffer)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	value	to	be	set
(see	TPCANParameter).	

Buffer	 The	buffer	containing	the	value
to	be	set.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
method	are	invalid.	Check

the	parameter	'Buffer';	it
should	point	to	a	buffer	of	a
type	which	is	accepted	by
the	parameter	being
configured.	

PCAN_ERROR_CAUTION:	 The	configuration	of	a
parameter	failed	due	to	a	no
more	existing	channel.	The
parameter	has	been	reset	on
all	existing	channels.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	set.	

PCAN_ERROR_ILLOPERATION:	 An	underlying	process	that	is
generated	by	a	call	to	this
method	with	the	current
parameters,	is	temporarily
not	allowed.	The
configuration	in	relation	to
the	used	TPCANParameter
must	be	checked.	

Remarks

Use	the	method	SetValue	to	set	configuration	information	or

environment	values	of	a	PCAN	Channel	as	parameters	like	the
Message	Filter	and	values	like	a	custom	entry	in	the	log	file	of	PCAN-
Basic.	Take	in	account	that	not	all	parameters	are	supported	for	all
PCAN-Channels.	The	access's	type	of	the	parameters	can	also	be
different.	

More	information	about	the	parameters	and	values	that	can	be	set
can	be	found	in	Parameter	Value	Definitions.	

Python	Notes	
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	SetValue	on	the
channel	PCAN_NONEBUS	to	set	(and	activate)	the	path	for	the	log
file	of	a	PCAN-Basic's	debug	session.	In	case	of	failure,	the	returned
code	will	be	translated	to	a	text	(according	with	the	operating	system
language)	in	English,	German,	Italian,	French	or	Spanish,	and	it	will
be	shown	to	the	user.	

Note:	It	is	not	needed	to	have	an	initialized	PCAN	channel	for	using
the	Log	functionality.	

Python:		

#	The	path	for	the	Log	file	is	set.

#	Note	that	this	parameter	is	set	using	the

#	default	Channel	(PCAN_NONEBUS)

#

strBuffer	=	"C:\Users\Admin\Desktop"

result	=	objPCAN.SetValue(PCAN_NONEBUS,PCAN_LOG_LOCATION

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				print	"Log	path	was	successfully	set"

See	Also

GetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Plain	function	Version:	CAN_SetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

FilterMessages
Configures	the	reception	filter.

Syntax

Pascal	OO
class	function	FilterMessages(

				Channel:	TPCANHandle;

				FromID:	LongWord;

				ToID:	LongWord;

				Mode:	TPCANMode

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_FilterMessages

public	static	extern	TPCANStatus	FilterMessages

				[MarshalAs(UnmanagedType.U1)]

				TPCANHandle	Channel,

				UInt32	FromID,

				UInt32	ToID,

				[MarshalAs(UnmanagedType.U1)]

				TPCANMode	Mode);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_FilterMessages

static	TPCANStatus	FilterMessages(

				[MarshalAs(UnmanagedType::U1)]

				TPCANHandle	Channel,

				UInt32	FromID,

				UInt32	ToID,

				[MarshalAs(UnmanagedType::U1)]

				TPCANMode	Mode);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_FilterMessages

Public	Shared	Function	FilterMessages(_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Channel	As	TPCANHandle,	_

				ByVal	FromID	As	UInt32,	_

				ByVal	ToID	As	UInt32,	_

				<MarshalAs(UnmanagedType.U1)>	_

				ByVal	Mode	As	TPCANMode)	As	TPCANStatus

End	Function

Python
def	FilterMessages(

				self,

				Channel,

				FromID,

				ToID,

				Mode)

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

FromID	 The	lowest	CAN	ID	wanted	to	be
received.	

ToID	 The	highest	CAN	ID	wanted	to
be	received.	

Mode	 The	type	of	the	filter	being	set
(see	TPCANMode).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the	list	of
initialized	channels	of	the	calling
application.	

Remarks

Note	that	after	a	PCAN	Channel	is	initialized,	the	status	of	its	filter	is
fully	opened.	According	with	the	current	filter	status,	calling	this
method	causes	the	following	behavior:

Filter	status	is	PCAN_FILTER_OPEN:	The	filter	is	automatically
closed	and	then	configured	with	the	given	range	of	IDs	passed	to
this	function	[FromID,	ToID]	.
Filter	status	is	PCAN_FILTER_CLOSE:	The	filter	is	set	to	the
given	range	of	IDs	passed	to	this	function	[FromID,	ToID]	.
Filter	status	is	PCAN_FILTER_CUSTOM:	The	filter	is	expanded
with	the	given	range	of	Ids	[FromID,	ToID].	If	a	smaller	or	different
range	is	required	than	a	range	that	has	been	configured	before,
the	filter	has	to	be	closed	first	before	calling	the	method
FilterMessages.	To	do	this	use	the	method	SetValue.

The	parameter	'Mode'	indicates	which	kind	of	ID	is	being	used	to
register	the	new	filter	range.	There	are	two	possible	values,	Standard
(11-bit	identifier)	or	Extended	(29-bit	identifier).	Standard	frames	are
using	the	bit	positions	28	to	18	of	the	Acceptance	Mask/Code
registers	in	the	SJA1000	CAN	controller.	Drivers	for	82C200	CAN
controllers	have	to	shift	the	bits	down	to	positions	10	to	0.	

Take	in	account	that	configuring	the	message	filter	cause	the	CAN
controller	to	enter	the	Reset	state.	This	will	affect	other	applications
that	communicate	with	the	same	PCAN	hardware.	

Notes:	

1.	 There	is	only	one	filter	for	standard	and	extended	CAN
messages.	It	seems	that	the	ID	from	a	standard	message	uses
the	most	significant	11	bits	(bit	18	to	28)	of	the	29	bits.	I.e.	the
standard	ID	400h	is	also	received	by	indicating	an	extended	ID
10000000h.	For	this	reason	it	is	not	recommended	to	mix
standard	and	extended	filters,	since	it	can	increase	the	risk	of
receiving	unwanted	messages.

2.	 Multiple	calls	of	FilterMessages	expand	the	reception	filter.
3.	 It	is	not	guaranteed	that	an	application	only	receives	CAN

messages	in	the	range	of	FromID	to	ToID.	This	is	caused	by	the
operating	principle	of	the	SJA1000's	acceptance	filter.	See	also
Philips	Data	Sheet	"SJA1000	Stand-alone	CAN-controller".

Python	Notes
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	FilterMessages
on	the	channel	PCAN_USBBUS1	to	receive	a	custom	range	of	IDs.	In
case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

UInt32	iBuffer;

strMsg	=	new	StringBuilder(256);

//	The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

//

iBuffer	=	PCANBasic.PCAN_FILTER_CLOSE;

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic.GetErrorText(result,	0,	strMsg);

				MessageBox.Show(strMsg.ToString());

}

else

{

				//	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

				//

				result	=	PCANBasic.FilterMessages(PCANBasic.PCAN_USBBUS1

				if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox.Show(strMsg.ToString());

				}

				else

								MessageBox.Show("Filter	successfully	configured	for	IDs	2,3,4	and	5"

}

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

UInt32	iBuffer;

strMsg	=	gcnew	StringBuilder(256);

//	The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

//

iBuffer	=	PCANBasic::PCAN_FILTER_CLOSE;

result	=	PCANBasic::SetValue(PCANBasic::PCAN_USBBUS1,TPCANParameter::PCAN_MESSAGE_FILTER

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				PCANBasic::GetErrorText(result,	0,	strMsg);

				MessageBox::Show(strMsg->ToString());

}

else

{

				//	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

				//

				result	=	PCANBasic::FilterMessages(PCANBasic::PCAN_USBBUS1

				if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								PCANBasic::GetErrorText(result,	0,	strMsg);

								MessageBox::Show(strMsg->ToString());

				}

				else

								MessageBox::Show("Filter	successfully	configured	for	IDs	2,3,4	and	5"

}

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

Dim	iBuffer	As	UInt32

strMsg	=	New	StringBuilder(256)

'		The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

'

iBuffer	=	PCANBasic.PCAN_FILTER_CLOSE

result	=	PCANBasic.SetValue(PCANBasic.PCAN_USBBUS1

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				'

				PCANBasic.GetErrorText(result,	0,	strMsg)

				MessageBox.Show(strMsg.ToString)

Else

				'	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

				'

				result	=	PCANBasic.FilterMessages(PCANBasic.PCAN_USBBUS1

				If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

								'	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								'

								PCANBasic.GetErrorText(result,	0,	strMsg)

								MessageBox.Show(strMsg.ToString)

				Else

								MessageBox.Show("Filter	successfully	configured	for	IDs	2,3,4	and	5"

				End	If

End	If

Pascal	OO:

var

				result	:	TPCANStatus;

				strMsg:	array	[0..256]	of	Char;

				iBuffer:	LongWord;

begin

				//		The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

				//

				iBuffer	:=	TPCANBasic.PCAN_FILTER_CLOSE;

				result	:=	TPCANBasic.SetValue(TPCANBasic.PCAN_USBBUS1

				If	(result	<>	PCAN_ERROR_OK)	Then

				begin

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								TPCANBasic.GetErrorText(result,	0,	strMsg);

								MessageBox(0,	strMsg,	'Error',MB_OK);

				end

				else

				begin

								//	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

								//

								result	:=	TPCANBasic.FilterMessages(TPCANBasic.PCAN_USBBUS1

								If	(result	<>	PCAN_ERROR_OK)	Then

								begin

												//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

												//

												TPCANBasic.GetErrorText(result,	0,	strMsg);

												MessageBox(0,	strMsg,	'Error',MB_OK);

								end

								else

												MessageBox(0,'Filter	successfully	configured	for	IDs	2,3,4	and	5'

				end;

Python:

#		The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

#

result	=	objPCAN.SetValue(PCAN_USBBUS1,PCAN_MESSAGE_FILTER

if	result	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				#

				result	=	objPCAN.GetErrorText(result)

				print	result[1]

else:

				#	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

				#

				result	=	objPCAN.FilterMessages(PCAN_USBBUS1,2,5,

				if	result	!=	PCAN_ERROR_OK:

								#	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								#

								result	=	objPCAN.GetErrorText(result)

								print	result[1]

				else:

								print	"Filter	successfully	configured	for	IDs	2,3,4	and	5"

See	Also

SetValue	

	

Plain	function	Version:	CAN_FilterMessages

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetErrorText
Gets	a	descriptive	text	for	an	error	code.

Overloads

	 Function	 Description	

	
GetErrorText(TPCANStatus,UInt16,String)	 Gets	a

descriptive	text
for	an	error
code.	

	
GetErrorText(TPCANStatus,	int)	 Gets	a

descriptive	text
for	an	error
code.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetErrorText(TPCANStatus,UInt16,String)
Gets	a	descriptive	text	for	an	error	code.

Syntax

Pascal	OO
class	function	GetErrorText(

				AnError:	TPCANStatus;

				Language:	Word;

				StringBuffer:	PChar

):	TPCANStatus;

C#
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetErrorText

public	static	extern	TPCANStatus	GetErrorText(

				[MarshalAs(UnmanagedType.U4)]

				TPCANStatus	AnError,

				UInt16	Language,

				StringBuilder	StringBuffer);

C++	/	CLR
[DllImport("PCANBasic.dll",	EntryPoint	=	"CAN_GetErrorText

static	TPCANStatus	GetErrorText(

				[MarshalAs(UnmanagedType::U4)]

				TPCANStatus	AnError,

				UInt16	Language,

				StringBuilder^	StringBuffer);

Visual	Basic
<DllImport("PCANBasic.dll",	EntryPoint:="CAN_GetErrorText

Public	Shared	Function	GetErrorText(_

				<MarshalAs(UnmanagedType.U4)>	_

				ByVal	AnError	As	TPCANStatus,	_

				ByVal	Language	As	UInt16,	_

				ByVal	StringBuffer	As	StringBuilder)	As	TPCANStatus

End	Function

Parameters

Parameters	 Description	

AnError	 A	TPCANStatus	error	code.	

Language	 Indicates	a	"Primary	language
ID".	

StringBuffer	 A	buffer	for	a	null-terminated
char	array.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	parameter
'Buffer';	it	should	point	to	a
char	array,	big	enough	to
allocate	the	text	for	the	given
error	code.	

Remarks

The	"Primary	language	IDs"	are	codes	used	by	Windows	OS	from
Microsoft,	to	identify	a	human	language.	The	PCAN-Basic	API
currently	support	the	following	languages:

Language	 Primary	Language	ID	

Neutral	(System	dependant)	 00h	(0)	

English	 09h	(9)	

German	 07h	(7)	

French	 0Ch	(12)	

Italian	 10h	(16)	

Spanish	 0Ah	(10)	

Note:	If	the	buffer	is	to	small	for	the	resulting	text,	the	error
PCAN_ERROR_ILLPARAMVAL	is	returned.	Even	when	only	short
texts	are	being	currently	returned,	a	text	within	this	function	can	have
a	maximum	of	255	characters.	For	this	reason	it	is	recommended	to
use	a	buffer	with	a	length	of	at	least	256	bytes.

Example

The	following	example	shows	the	use	of	the	method	GetErrorText	to
get	the	description	of	an	error.	The	language	of	the	description's	text
will	be	the	same	used	by	the	operating	system	(if	its	language	is
supported;	otherwise	English	is	used).	

C#:		

TPCANStatus	result;

StringBuilder	strMsg;

strMsg	=	new	StringBuilder(256);

//	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	Neutral	language

//

result	=	PCANBasic.GetErrorText(TPCANStatus.PCAN_ERROR_INITIALIZE,	

if	(result	!=	TPCANStatus.PCAN_ERROR_OK)

				//	An	error	occurred,	show	a	message	indicating	it

				//

				MessageBox.Show("Error	when	recovering	Error-Code's	description"

else

				MessageBox.Show(strMsg.ToString());

C++/CLR:

TPCANStatus	result;

StringBuilder^	strMsg;

strMsg	=	gcnew	StringBuilder(256);

//	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	Neutral	language

//

result	=	PCANBasic::GetErrorText(TPCANStatus::PCAN_ERROR_INITIALIZE

if	(result	!=	TPCANStatus::PCAN_ERROR_OK)

				//	An	error	occurred,	show	a	message	indicating	it

				//

				MessageBox::Show("Error	when	recovering	Error-Code's	description"

else

				MessageBox::Show(strMsg->ToString());

Visual	Basic:

Dim	result	As	TPCANStatus

Dim	strMsg	As	StringBuilder

strMsg	=	New	StringBuilder(256)

'	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	Neutral	language

'

result	=	PCANBasic.GetErrorText(TPCANStatus.PCAN_ERROR_INITIALIZE

If	result	<>	TPCANStatus.PCAN_ERROR_OK	Then

				'	An	error	occurred,	show	a	message	indicating	it

				'

				MessageBox.Show("Error	when	recovering	Error-Code's	description"

Else

				MessageBox.Show(strMsg.ToString)

End	If

Pascal	OO:

var

	result	:	TPCANStatus;

	strMsg:	array	[0..256]	of	Char;

begin

				//	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	Neutral	language

				//

				result	:=	TPCANBasic.GetErrorText(PCAN_ERROR_INITIALIZE

				If	(result	<>	PCAN_ERROR_OK)	Then

								//	An	error	occurred,	show	a	message	indicating	it

								//

								MessageBox(0,	Error	when	recovering	Error-Code's	description'

				else

								MessageBox(0,strMsg,'Success',	MB_OK);

See	Also

Primary	Language	ID	

	

Plain	function	Version:	CAN_GetErrorText

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

GetErrorText(TPCANStatus,	int)
Gets	a	descriptive	text	for	an	error	code.

Syntax

Python
def	GetErrorText(

				self,

				Error,

				Language	=	0)

Parameters

Parameters	 Description	

Error	 A	TPCANStatus	error	code.	

Language	 Indicates	a	"Primary	language
ID".	

Returns

The	return	value	is	a	2-touple.	The	order	of	the	returned	values	is	as
follow:	

[0]:	The	method's	return	value	as	a	TPCANStatus	code.
PCAN_ERROR_OK	is	returned	on	success.	The	typical	errors	in	case
of	failure	are:		

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	method	are
invalid.	Check	the	parameter
'Buffer';	it	should	point	to	a
char	array,	big	enough	to
allocate	the	text	for	the	given

error	code.	

[1]:	The	text	corresponding	to	the	given	TPCANStatus	code.

Remarks

The	"Primary	language	IDs"	are	codes	used	by	Windows	OS	from
Microsoft,	to	identify	a	human	language.	The	PCAN-Basic	API
currently	support	the	following	languages:

Language	 Primary	Language	ID	

Neutral	(System	dependant)	 00h	(0)	

English	 09h	(9)	

German	 07h	(7)	

French	 0Ch	(12)	

Italian	 10h	(16)	

Spanish	 0Ah	(10)	

Python	Notes
Class-Method:	Unlike	the	.NET	Framework,	under	Python	a
variable	has	to	be	instantiated	with	an	object	of	type	PCANBasic
in	order	to	use	the	API	functionality.
Python's	first	argument	convention:	Under	Python,	'self'	is	a
parameter	that	is	automatically	included	within	the	call	of	this
method,	within	a	PCANBasic	object	and	hasn't	to	be	indicated	in
a	method	call.	This	parameter	represents	the	calling	object	itself.

Example

The	following	example	shows	the	use	of	the	method	GetErrorText	to
get	the	description	of	an	error.	The	language	of	the	description's	text
will	be	in	Spanish.	

Python:		

#	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	language	ID	for	Spanish

#

objPCAN	=	PCANBasic()

result	=	objPCAN.GetErrorText(PCAN_ERROR_INITIALIZE

if	result[0]	!=	PCAN_ERROR_OK:

				#	An	error	occurred,	show	a	message	indicating	it

				#

				print	"Error	when	recovering	Error-Code's	description"

else:

				print	result[1]

See	Also

Primary	Language	ID	

	

Plain	function	Version:	CAN_GetErrorText

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Functions
The	functions	of	the	PCAN-Basic	API	are	divided	in	4	groups	of
functionality:

Connection

	 Function	 Description	

	
CAN_Initialize	 Initializes	a	PCAN	Channel.	

	
CAN_InitializeFD	 Initializes	a	FD	capable	PCAN

Channel.	

	
CAN_Uninitialize	 Uninitializes	a	PCAN	Channel.	

Configuration

	 Function	 Description	

	
CAN_SetValue	 Sets	a	configuration	or	information

value	within	a	PCAN	Channel.	

	
CAN_FilterMessages	 Configures	the	message's	reception

filter	of	a	PCAN	Channel.	

Information

	 Function	 Description	

	
CAN_GetValue	 Retrieves	information	from	a	PCAN

Channel.	

	
CAN_GetStatus	 Retrieves	the	current	BUS	status	of	a

PCAN	Channel.	

	 CAN_GetErrorText	 Returns	a	descriptive	text	for	an	error
code.	

Communication

	 Function	 Description	

	
CAN_Read	 Reads	a	CAN	message	from	the

receive	queue	of	a	PCAN	Channel.	

	
CAN_ReadFD	 Reads	a	CAN	message	from	the

receive	queue	of	a	FD	capable	PCAN
Channel.	

	
CAN_Write	 Transmits	a	CAN	message	using	a

connected	PCAN	Channel.	

	
CAN_WriteFD	 Transmits	a	CAN	message	using	a

connected	FD	capable	PCAN
Channel.	

	
CAN_Reset	 Resets	the	receive	and	transmit

queues	of	a	PCAN	Channel.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_Initialize
Initializes	a	PCAN	Channel.

Syntax

C++
#ifdef	__cplusplus

#define	_DEF_ARG	=0			//	Using	of	default	arguments

#else

#define	_DEF_ARG

#endif

TPCANStatus	__stdcall	CAN_Initialize(

								TPCANHandle	Channel,

								TPCANBaudrate	Btr0Btr1,

								TPCANType	HwType	_DEF_ARG,

								DWORD	IOPort	_DEF_ARG,

								WORD	Interrupt	_DEF_ARG

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Btr0Btr1	 The	speed	for	the
communication	(BTR0BTR1
code).	

HwType	 The	type	of	the	Non-Plug-and-
Play	hardware	and	its	operation

mode.	

IOPort	 The	I/O	address	for	the	parallel
port	of	the	Non-Plug-and-Play
hardware.	

Interrupt	 The	Interrupt	number	of	the
parallel	port	of	the	Non-Plug-
and-Play	hardware.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_CAUTION:	 Indicates	that	the	channel
has	been	initialized	but	at	a
different	bit	rate	as	the	given
one.	

PCAN_ERROR_ILLHANDLE:	 Indicates	that	the	desired
PCAN	Channel	is	not	valid.
Check	the	list	of	valid
Channels.	

PCAN_ERROR_ILLHW:	 indicates	that	the	desired
PCAN	Channel	is	not
available.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	an	action
cannot	be	executed	due	to
the	state	of	the	hardware.
Possible	causes	are:

The	desired	PCAN-
Channel	is	a	LAN
Channel,	which	uses	a
different	bit	rate	than	the
specified.

	

PCAN_ERROR_REGTEST:	 (Not-Plug-And-Play	Only)
Indicates	a	problem	with
hardware	registration,
normally	due	to	wrong	values
in	the	parameters	'HwType',
'IOPort'	and	'Interrupt'.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	desired
PCAN	channel	cannot	be
connected	because	it	is
already	in	use	(PCAN-Basic	/
PCAN-Light	environment).	

PCAN_ERROR_NETINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
with	a	different	bit	rate
(PCAN-View).	

PCAN_ERROR_HWINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
(CanApi2	connection).	

PCAN_ERROR_NODRIVER:	 The	driver	needed	for
connecting	the	desired	PCAN
Channel	is	not	loaded.	

Remarks

Note	on	correspondence	of	Functions:	
A	Channel	that	is	initialized	using	CAN_Initialize	must	use	CAN_Read
and	CAN_Write	for	communication.	Calling	CAN_ReadFD	and/or
CAN_WriteFD	will	result	in	a	PCAN_ERROR_ILLOPERATION	error.	
	

As	indicated	by	its	name,	the	CAN_Initialize	function	initiates	a	PCAN
Channel,	preparing	it	for	communicate	within	the	CAN	bus	connected

to	it.	Calls	to	the	API	functions	will	fail	if	they	are	used	with	a	Channel
handle,	different	than	PCAN_NONEBUS,	that	has	not	been	initialized
jet.	Each	initialized	channel	should	be	released	when	it	is	not	needed
anymore.	

Initializing	a	PCAN	Channel	means:

to	reserve	the	Channel	for	the	calling	application/process.
to	allocate	channel	resources,	like	receive	and	transmit	queues.
to	register/connect	the	Hardware	denoted	by	the	channel	handle.
to	check	and	adapt	the	bus	speed,	if	the	Channel	is	already
in	use.	(Only	if	the	Channel	was	pre-configured	as	Bitrate
Adapting;	see:	Bitrate-Adapting	Parameter).
to	set	the	channel	in	Listen-Only	mode.	(Only	if	the	channel
was	pre-configured	as	Listen-Only;	see:	Listen-Only	Parameter).
to	open	the	messages	filter	for	the	application/process.
to	set-up	the	default	values	of	the	different	parameters	(See
CAN_GetValue).
to	set	the	Receive	Status	of	the	channel.	(Pre-configured
value;	see:	Receive	Status	Parameter).

Different	than	the	PCAN-Light	API,	the	Initialization	process	will	fail	if
an	application	try	to	initialize	a	PCAN-Channel	that	has	been
initialized	already	within	the	same	process.	

The	PCAN-Basic	API	use	the	same	function	for	initializations	of	both,
Plug-And-Play	and	Not-Plug-And-Play	hardware.	The	CAN_Initialize
function	has	three	additional	parameters	that	are	only	for	the
connection	of	Non-Plug-And-Play	hardware.	With	Plug-And-Play
hardware,	however,	only	two	parameters	are	to	be	supplied.	The
remaining	three	are	not	evaluated.	

Take	in	consideration	that	initializing	a	channel	causes	a	reset	of	the
CAN	hardware	,	when	the	bus	status	is	other	than	OK.	In	this	way
errors	like	BUSOFF,	BUSHEAVY,	and	BUSLIGHT,	are	removed.	

PCAN-LAN	Channels	
A	PCAN-LAN	channel	doesn't	allow	changing	the	bit	rate	using
PCAN-Basic.	In	order	to	connect	a	PCAN-LAN	Channel	it	is
necessary	to	know	the	bit	rate	of	the	PCAN-Gateway	device	that	is

represented	by	that	channel.	If	the	bit	rate	is	not	known,	the
parameter	Bitrate-Adapting	should	be	used.

Example

The	following	example	shows	the	initialize	and	uninitialize	processes
for	a	Plug-And-Play	channel	(channel	2	of	a	PCAN-PCI	hardware)
and	for	a	Not-Plug-And-Play	channel	(channel	1	of	the	PCAN-DNG).
In	case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	The	Plug	&	Play	Channel	(PCAN-PCI)	is	initialized

//

result	=	CAN_Initialize(PCAN_PCIBUS2,PCAN_BAUD_500K

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-PCI	(Ch-2)	was	initialized");

//	The	Not	Plug	&	Play	Channel	(PCAN-Dongle)	is	initialized

//

result	=	CAN_Initialize(PCAN_DNGBUS1,	PCAN_BAUD_500K

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-Dongle	(Ch-1)	was	initialized"

....

//	All	initialized	channels	are	released

//

CAN_Uninitialize(PCAN_NONEBUS);

See	Also

CAN_Uninitialize	

CAN_GetValue	

Understanding	PCAN-Basic	

	

Class-method	Version:	Initialize

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_InitializeFD
Initializes	a	FD	capable	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_InitializeFD(

				TPCANHandle	Channel,

				TPCANBitrateFD	BitrateFD);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

BitrateFD	 The	speed	for	the
communication	(FD	Bitrate
string).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_CAUTION:	 Indicates	that	the	channel
has	been	initialized	but	at	a
different	bit	rate	as	the	given
one.	

PCAN_ERROR_ILLHANDLE:	 Indicates	that	the	desired
PCAN	Channel	is	not	valid.
Check	the	list	of	valid

Channels.	

PCAN_ERROR_ILLHW:	 Indicates	that	the	desired
PCAN	Channel	is	not
available.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	an	action
cannot	be	executed	due	to
the	state	of	the	hardware.
Possible	causes	are:

The	desired	PCAN
Channel	is	not	FD
capable	and	cannot	be
initialized	using	this
method.
The	desired	PCAN-
Channel	is	a	LAN
Channel,	which	uses	a
different	bit	rate	than	the
specified.

	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	desired
PCAN	channel	cannot	be
connected	because	it	is
already	in	use	(PCAN-Basic	/
PCAN-Light	environment).	

PCAN_ERROR_NETINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
with	a	different	bit	rate
(PCAN-View).	

PCAN_ERROR_HWINUSE:	 Indicates	that	the	desired
PCAN-Channel	is	being	used
(CanApi	connection).	

PCAN_ERROR_NODRIVER:	 The	driver	needed	for

connecting	the	desired	PCAN
Channel	is	not	loaded.	

Remarks

Note	on	correspondence	of	functions:	
A	Channel	that	is	initialized	using	CAN_InitializeFD	must	use
CAN_ReadFD	and	CAN_WriteFD	for	communication.	Calling
CAN_Read	and/or	CAN_Write	will	result	in	a
PCAN_ERROR_ILLOPERATION	error.	
	

As	indicated	by	its	name,	the	CAN_InitializeFD	function	initiates	a	FD
capable	PCAN	Channel,	preparing	it	for	communicate	within	the	CAN
bus	connected	to	it.	Calls	to	the	API	functions	will	fail	if	they	are	used
with	a	Channel	handle,	different	than	PCAN_NONEBUS,	that	has	not
been	initialized	yet.	Each	initialized	channel	should	be	released	when
it	is	not	needed	anymore.	

Initializing	a	PCAN	Channel	means:

to	reserve	the	Channel	for	the	calling	application/process.
to	allocate	channel	resources,	like	receive	and	transmit	queues.
to	register/connect	the	Hardware	denoted	by	the	channel	handle.
to	check	and	adapt	the	bus	speed,	if	the	Channel	is	already
in	use.	(Only	if	the	Channel	was	pre-configured	as	Bitrate
Adapting;	see:	Bitrate-Adapting	Parameter).
to	set	the	channel	in	Listen-Only	mode.	(Only	if	the	channel
was	pre-configured	as	Listen-Only;	see:	Listen-Only	Parameter).
to	open	the	messages	filter	for	the	application/process.
to	set-up	the	default	values	of	the	different	parameters	(See
CAN_GetValue).
to	set	the	Receive	Status	of	the	channel.	(Pre-configured
value;	see:	Receive	Status	Parameter).

The	Initialization	process	will	fail	if	an	application	try	to	initialize	a
PCAN-Channel	that	has	been	initialized	already	within	the	same
process.	

Take	in	consideration	that	initializing	a	channel	causes	a	reset	of	the
CAN	hardware	,	when	the	bus	status	is	other	than	OK.	In	this	way
errors	like	BUSOFF,	BUSWARNING,	and	BUSPASSIVE,	are
removed.	

PCAN-LAN	Channels	
A	PCAN-LAN	channel	doesn't	allow	changing	the	bit	rate	using
PCAN-Basic.	In	order	to	connect	a	PCAN-LAN	Channel	it	is
necessary	to	know	the	bit	rate	of	the	PCAN-Gateway	device	that	is
represented	by	that	channel.	If	the	bit	rate	is	not	known,	the
parameter	Bitrate-Adapting	should	be	used.

Example

The	following	example	shows	the	initialize	and	uninitialize	processes
for	a	FD	capable	channel	(channel	1	of	a	PCAN-USB	Pro	FD
hardware).	In	case	of	failure,	the	returned	code	will	be	translated	to	a
text	(according	with	the	operating	system	language)	in	English,
German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

C++:		

TPCANStatus	result;

char	strMsg[256];

TPCANBitrateFD	bitrate;

//	Defines	a	FD	Bit	rate	string	with	nominal	and	data	Bit	rate	set	to	1	MB

//

bitrate	=	"f_clock_mhz=24,	nom_brp=1,	nom_tseg1=17,	nom_tseg2=6,	nom_sjw=1,	data_brp=1,	data_tseg1=16,	data_tseg2=7,	data_sjw=1"

//	The	FD	capable	Channel	(PCAN-USB	Pro	FD)	is	initialized

//

result	=	CAN_InitializeFD(PCAN_USBBUS1,bitrate);

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-USB	Pro	FD	(Ch-1)	was	initialized"

See	Also

CAN_Uninitialize	

CAN_ReadFD	

CAN_WriteFD	

	

Class-method	Version:	InitializeFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_Uninitialize
Uninitializes	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_Uninitialize(

								TPCANHandle	Channel

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	cannot	be	uninitialized
because	it	was	not	found	in	the	list
of	reserved	channels	of	the	calling
application.	

Remarks

A	PCAN	Channel	can	be	released	using	one	of	this	possibilities:	

Single-Release:	Given	a	handle	of	a	PCAN	Channel	initialized	before
with	CAN_Initialize.	If	the	given	channel	can	not	be	found	then	an
error	is	returned.	

Multiple-Release:	Giving	the	handle	value	PCAN_NONEBUS	which
instructs	the	API	to	search	for	all	channels	initialized	by	the	calling
application	and	release	them	all.	This	option	cause	no	errors	if	no
hardware	were	uninitialized.	

Transmit-queue	at	uninitialize:	When	a	PCAN-Basic	channel
connection	is	terminated,	the	underlying	hardware's	transmit-queue
will	not	immediately	be	discarded.	PCAN-Basic	will	wait	some	time
before	finalizing,	so	that	the	hardware	has	time	to	send	(or	try	to
send)	those	unsent	messages.	When	the	time	is	up	(amount	500
milliseconds),	the	rest	of	the	messages	in	the	queue	(if	any)	are
discarded.	

Example

The	following	example	shows	the	initialize	and	uninitialize	(Single-
Release)	processes	for	the	PCAN_PCIBUS1	channel.	In	case	of
failure,	the	returned	code	will	be	translated	to	a	text	(according	with
the	operating	system	language)	in	English,	German,	Italian,	French	or
Spanish,	and	it	will	be	shown	to	the	user.	

Note:	To	see	an	example	of	Multiple-Release,	see	the	CAN_Initialize
function.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	The	PCI	Channel	is	initialized

//

result	=	CAN_Initialize(PCAN_PCIBUS1,PCAN_BAUD_500K

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-PCI	(Ch-1)	was	initialized");

....

//	The	PCI	Channel	is	released

//

result	=	CAN_Uninitialize(PCAN_PCIBUS1);

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-PCI	(Ch-1)	was	released");

See	Also

CAN_Initialize	

	

Class-method	Version:	Uninitialize

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_Reset
Resets	the	receive	and	transmit	queues	of	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_Reset(

								TPCANHandle	Channel

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the	list	of
initialized	channels	of	the	calling
application.	

Remarks

Calling	this	function	ONLY	clear	the	queues	of	a	Channel.	A	reset	of
the	CAN	controller	doesn't	take	place.	

Normally	a	reset	of	the	CAN	Controller	is	desired	when	a	bus-off
occur.	In	this	case	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	Consider

using	the	PCAN-Basic	parameter	PCAN_BUSOFF_AUTORESET
which	instructs	the	API	to	automatically	reset	the	CAN	controller	when
a	bus-off	state	is	detected.	

Another	way	to	reset	errors	like	bus-off,	bus-heavy	and	bus-light,	is	to
uninitialize	and	initialize	again	the	channel	used.	This	causes	a
hardware	reset,	but	only	when	no	more	clients	are	connected	to	that
channel.

Example

The	following	example	shows	the	use	of	CAN_Reset	on	the	channel
PCAN_PCIBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	The	PCI	Channel	is	reset

//

result	=	CAN_Reset(PCAN_PCIBUS1);

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("PCAN-PCI	(Ch-1)	was	reset");

See	Also

CAN_Read	

CAN_Write	

CAN_SetValue	

	

Class-method	Version:	Reset

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_GetStatus
Gets	the	current	BUS	status	of	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_GetStatus(

								TPCANHandle	Channel

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Returns

The	return	value	is	a	TPCANStatus	code.	The	typical	return	values
are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
Channel	was	not	found	in	the	list
of	initialized	channels	of	the
calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within	the
given	PCAN	Channel.	The
hardware	is	in	bus-light	status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within	the
given	PCAN	Channel.	The
hardware	is	in	bus-heavy	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within	the

given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_OK:	 Indicates	that	the	status	of	the
given	PCAN	Channel	is	OK.	

Remarks

When	the	hardware	status	is	bus-off,	an	application	cannot
communicate	anymore.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	bus-off,	bus-heavy	and	bus-light,	is	to
uninitialize	and	initialise	again	the	channel	used.	This	causes	a
hardware	reset.

Example

The	following	example	shows	the	use	of	CAN_GetStatus	on	the
channel	PCAN_PCIBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	Check	the	status	of	the	PCI	Channel

//

result	=	CAN_GetStatus(PCAN_PCIBUS1);

switch(result)

{

				case	PCAN_ERROR_BUSLIGHT:

								MessageBox("PCAN-PCI	(Ch-1):	Handling	a	BUS-LIGHT	status..."

								break;

				case	PCAN_ERROR_BUSHEAVY:

								MessageBox("PCAN-PCI	(Ch-1):	Handling	a	BUS-HEAVY	status..."

								break;

				case	PCAN_ERROR_BUSOFF:

								MessageBox("PCAN-PCI	(Ch-1):	Handling	a	BUS-OFF	status..."

								break;

				case	PCAN_ERROR_OK:

								MessageBox("PCAN-PCI	(Ch-1):	Status	is	OK"

								break;

				default:

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								CAN_GetErrorText(result,	0,	strMsg);

								MessageBox(strMsg);

								break;

}

See	Also

Parameter	Value	Definitions	

TPCANParameter	

	

Class-method	Version:	GetStatus

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_Read
Reads	a	CAN	message	from	the	receive	queue	of	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_Read(

								TPCANHandle	Channel,

								TPCANMsg*	MessageBuffer,

								TPCANTimestamp*	TimestampBuffer

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

MessageBuffer	 A	TPCANMsg	buffer	to	store	the
CAN	message.	

TimestampBuffer	 A	TPCANTimestamp	buffer	to
get	the	reception	time	of	the
message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	function	are
invalid.	Check	the	value	of	the

MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the
list	of	initialized	channels	of
the	calling	application.	

PCAN_ERROR_BUSLIGHT:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-light
status.	

PCAN_ERROR_BUSHEAVY:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-heavy
status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

Specifying	the	value	of	NULL	for	the	parameter	TimetampBuffer
causes	reading	a	message	without	timestamp,	when	the	reception
time	is	not	desired.	An	"Illegal	Parameter	Value"	error	will	be	returned
when	the	MessageBuffer	is	wrong	or	the	TimestampBuffer	contains	a
value	different	than	NULL	and	provokes	an	internal	error,	eg.
accessing	its	memory.	

The	use	of	CAN_Read	and	CAN_ReadFD	are	mutually	exclusive.
The	PCAN	Channel	passed	to	this	function	must	be	initialized	using
CAN_Initialize	(class-method:	Initialize).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

The	CAN_Read	function	returns	received	messages	or	status

messages	from	the	receive	queue.	It	is	important	to	call	CAN_Read
repeatedly	until	the	queue	is	empty.	In	case	there	are	no	more
messages	in	queue,	the	value	PCAN_ERROR_QRCVEMPTY	is
returned.	The	error	code	PCAN_ERROR_QRCVEMPTY	is	also
returned	if	the	reception	of	messages	is	disabled.	See	Receive	Status
Parameter	for	more	information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the
CAN_Read	function.	Typically,	an	application	start	a	timer	that	every
50	or	100	milliseconds	check	for	messages,	calling	the	CAN_Read
function	in	a	loop	until	the	value	of	PCAN_ERROR_QRCVEMTY	or
another	error	condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	LEN	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	CAN_Read	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	 Error
Code	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	 0002h	

00h	 00h	 00h	 04h	 PCAN_ERROR_BUSLIGHT	 0004h	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSHEAVY	 0008h	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	 0010h	

Example

The	following	example	shows	the	use	of	CAN_Read	on	the	channel
PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	and	that
the	following	code	is	an	OnTimer	event	handler	function.	

C++:		

TPCANMsg	msg;

TPCANTimestamp	timestamp;

TPCANStatus	result;

char	strMsg[256];

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	CAN_Read(PCAN_USBBUS1,&msg,×tamp

				if(result	!=	PCAN_ERROR_QRCVEMPTY)

				{

								//	Process	the	received	message

								//

								MessageBox("A	message	was	received");

								ProcessMessage(msg)

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//	and	handle	the	error

								//

								CAN_GetErrorText(result,	0,	strMsg);

								MessageBox(strMsg);

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	PCAN_ERROR_QRCVEMPTY)	!=	PCAN_ERROR_QRCVEMPTY);

See	Also

CAN_Write	

Using	Events	

Error	Frames	

	

Class-method	Version:	Read

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_ReadFD
Reads	a	CAN	message	from	the	receive	queue	of	a	FD	capable
PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_ReadFD(

				TPCANHandle	Channel,

				TPCANMsgFD*	MessageBuffer,

				TPCANTimestampFD	*TimestampBuffer);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

MessageBuffer	 A	TPCANMsgFD	buffer	to	store
the	CAN	message.	

TimestampBuffer	 A	TPCANTimestampFD	buffer	to
get	the	reception	time	of	the
message.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	function	are

invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
function	was	not	initialized
using	CAN_InitializeFD
(class-method:	InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSWARNING:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
warning	status.	

PCAN_ERROR_BUSPASSIVE:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-
passive	status.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QRCVEMPTY:	 Indicates	that	the	receive
queue	of	the	Channel	is
empty.	

Remarks

Specifying	the	value	of	NULL	for	the	parameter	TimetampBuffer
causes	reading	a	message	without	timestamp,	when	the	reception

time	is	not	desired.	An	"Illegal	Parameter	Value"	error	will	be	returned
when	the	MessageBuffer	is	wrong	or	the	TimestampBuffer	contains	a
value	different	than	NULL	and	provokes	an	internal	error,	eg.
accessing	its	memory.	

The	use	of	CAN_Read	and	CAN_ReadFD	are	mutually	exclusive.
The	PCAN	Channel	passed	to	this	function	must	be	initialized	using
CAN_InitializeFD	(class-method:	InitializeFD).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

The	CAN_ReadFD	function	returns	received	messages	or	status
messages	from	the	receive	queue.	It	is	important	to	call
CAN_ReadFD	repeatedly	until	the	queue	is	empty.	In	case	there	are
no	more	messages	in	queue,	the	value
PCAN_ERROR_QRCVEMPTY	is	returned.	The	error	code
PCAN_ERROR_QRCVEMPTY	is	also	returned	if	the	reception	of
messages	is	disabled.	See	Receive	Status	Parameter	for	more
information.	

The	receive	queue	can	contain	up	to	32767	messages.	
There	are	two	possibilities	for	reading	messages	from	the	receive
queue	of	a	Channel:	

Time-Triggered	Reading:	Consists	in	periodically	calls	to	the
CAN_ReadFD	function.	Typically,	an	application	start	a	timer	that
every	50	or	100	milliseconds	check	for	messages,	calling	the
CAN_ReadFD	function	in	a	loop	until	the	value	of
PCAN_ERROR_QRCVEMTY	or	another	error	condition	is	reached.	

Event-Triggered	Reading:	Consists	in	reacting	to	a	notification	sent	by
the	PCAN	driver	to	a	registered	application,	when	a	message	is
received	and	inserted	in	its	receive	queue.	See	Using	Events	to
obtain	more	information	about	reading	with	events.	

About	bus	errors	/	Status	messages	
If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to

automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.	

The	message	type	(see	TPCANMessageType)	of	a	CAN	message
indicates	if	the	message	is	a	11-bit,	29-bit,	FD,	RTR,	Error,	or	Status
message.	This	value	should	be	checked	every	time	a	message	has
been	read	successfully.	

If	the	bit	PCAN_MESSAGE_ERRFRAME	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	an	Error	frame	(see
Error	Frames).	

If	the	bit	PCAN_MESSAGE_STATUS	is	set	in	the
TPCANMsg.MSGTYPE	field,	the	message	is	a	Status	message.	The
ID	and	DLC	fields	do	not	contain	valid	data.	The	first	4	data	bytes	of
the	message	contain	the	Error	Code.	The	MSB	of	the	Error	Code	is	in
data	byte	0,	the	LSB	is	in	data	byte	3.	If	a	status	message	was	read
the	return	value	of	CAN_ReadFD	is	also	the	error	code.	
Examples:

Data0	 Data1	 Data2	 Data3	 Error	

00h	 00h	 00h	 02h	 PCAN_ERROR_OVERRUN	

00h	 00h	 00h	 08h	 PCAN_ERROR_BUSWARNING	

00h	 04h	 00h	 00h	 PCAN_ERROR_BUSPASSIVE	

00h	 00h	 00h	 10h	 PCAN_ERROR_BUSOFF	

Example

The	following	example	shows	the	use	of	CAN_ReadFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using
CAN_InitializeFD	and	that	the	following	code	is	an	OnTimer	event
handler	function.	

C++:		

TPCANMsgFD	msg;

TPCANTimestampFD	timestamp;

TPCANStatus	result;

char	strMsg[256];

do

{

				//	Check	the	receive	queue	for	new	messages

				//

				result	=	CAN_ReadFD(PCAN_USBBUS1,&msg,×tamp

				if(result	!=	PCAN_ERROR_QRCVEMPTY)

				{

								//	Process	the	received	message

								//

								MessageBox("A	message	was	received");

								ProcessMessage(msg)

				}

				else

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//	and	handle	the	error

								//

								CAN_GetErrorText(result,	0,	strMsg);

								MessageBox(strMsg);

								//	Here	can	be	decided	if	the	loop	has	to	be		terminated	(eg.	the	bus

								//	status	is		bus-off)

								//

								HandleReadError(result);

				}

//	Try	to	read	a	message	from	the	receive	queue	of	the	PCAN-USB,	Channel	1,

//	until	the	queue	is	empty

//

}while((result	&	PCAN_ERROR_QRCVEMPTY)	!=	PCAN_ERROR_QRCVEMPTY);

See	Also

CAN_InitializeFD	

CAN_WriteFD	

Using	Events	

Error	Frames	

	

Class-method	Version:	ReadFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_Write
Transmits	a	CAN	message.

Syntax

C++
TPCANStatus	__stdcall	CAN_Write(

								TPCANHandle	Channel,

								TPCANMsg*	MessageBuffer

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

MessageBuffer	 A	TPCANMsg	buffer	containing
the	CAN	message	to	be	sent.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	function	are
invalid.	Check	the	value	of	the
MessageBuffer;	it	should	point
to	a	TPCANMsg	structure.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the
list	of	initialized	channels	of

the	calling	application.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.	The
hardware	is	in	bus-off	status.	

PCAN_ERROR_QXMTFULL:	 Indicates	that	the	transmit
queue	of	the	Channel	is	full.	

Remarks

If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSHEAVY,	and
BUSLIGTH,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset,	but	only	when	no	more	clients	are
connected	to	that	channel.

Example

The	following	example	shows	the	use	of	CAN_Write	on	the	channel
PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will	be
translated	to	a	text	(according	with	the	operating	system	language)	in
English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C++:		

TPCANMsg	msg;

TPCANStatus	result;

char	strMsg[256];

//	A	CAN	message	is	configured

//

msg.ID	=	0x100;

msg.MSGTYPE	=	PCAN_MESSAGE_STANDARD;

msg.LEN	=	3;

msg.DATA[0]	=	1;

msg.DATA[1]	=	2;

msg.DATA[2]	=	3;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	CAN_Write(PCAN_USBBUS1,	&msg);

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("Message	sent	successfully");

See	Also

CAN_Read	

CAN_SetValue	

	

Class-method	Version:	Write

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_WriteFD
Transmits	a	CAN	message	using	a	connected	FD	capable	PCAN
Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_WriteFD(

				TPCANHandle	Channel,

				TPCANMsgFD*	MessageBuffer);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	FD	capable
PCAN	Channel	(see
TPCANHandle).	

MessageBuffer	 A	TPCANMsgFD	buffer
containing	the	CAN	message	to
be	sent.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	function	are
invalid.	Check	the	value	of
the	MessageBuffer;	it	should
point	to	a	TPCANMsgFD
structure.	

PCAN_ERROR_ILLOPERATION:	 Indicates	that	the	PCAN
Channel	passed	to	the
function	was	not	initialized
using	CAN_InitializeFD
(class-method:	InitializeFD).	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not	found
in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_BUSOFF:	 Indicates	a	bus	error	within
the	given	PCAN	Channel.
The	hardware	is	in	bus-off
status.	

PCAN_ERROR_QXMTFULL:	 Indicates	that	the	transmit
queue	of	the	Channel	is	full.	

Remarks

The	use	of	CAN_Write	and	CAN_WriteFD	are	mutually	exclusive.	The
PCAN	Channel	passed	to	this	function	must	be	initialized	using
CAN_InitializeFD	(class-method:	InitializeFD).	Otherwise	the	error
PCAN_ERROR_ILLOPERATION	is	returned.	

If	a	bus-off	error	occur,	an	application	cannot	use	the	channel	to
communicate	anymore,	until	the	CAN	controller	is	reset.	With	PCAN-
Basic	it	is	not	possible	to	reset	the	CAN	controller	through	a	function
directly.	Consider	using	the	PCAN-Basic	property
PCAN_BUSOFF_AUTORESET	which	instructs	the	API	to
automatically	reset	the	CAN	controller	when	a	bus-off	state	is
detected.	

Another	way	to	reset	errors	like	BUSOFF,	BUSWARNING,	and
BUSPASSIVE,	is	to	uninitialize	and	initialise	again	the	channel	used.
This	causes	a	hardware	reset.

Example

The	following	example	shows	the	use	of	CAN_WriteFD	on	the
channel	PCAN_USBBUS1.	In	case	of	failure,	the	returned	code	will
be	translated	to	a	text	(according	with	the	operating	system	language)
in	English,	German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to
the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized	using
CAN_InitializeFD.	

C++:		

TPCANMsgFD	msg;

TPCANStatus	result;

char	strMsg[256];

//	A	CAN	FD	message	is	configured

//

msg.ID	=	0x100;

msg.MSGTYPE	=	PCAN_MESSAGE_STANDARD	|	PCAN_MESSAGE_FD

//	DLC	9	means	12	data	bytes

//

msg.DLC	=	9;

for(int	i=0;	i	<	12;	i++)

				msg.DATA[i]	=	i;

//	The	message	is	sent	using	the	PCAN-USB	Channel	1

//

result	=	CAN_WriteFD(PCAN_USBBUS1,	&msg);

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("Message	sent	successfully");

See	Also

CAN_InitializeFD	

CAN_ReadFD	

	

Class-method	Version:	WriteFD

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_GetValue
Retrieves	information	from	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_GetValue(

								TPCANHandle	Channel,

								TPCANParameter	Parameter,

								void*	Buffer,

								WORD	BufferLength

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	information	to
be	retrieved	(see
TPCANParameter).	

Buffer	 The	buffer	to	return	the	required
value.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
function	are	invalid.	Check
the	parameter	'Buffer';	it
should	point	to	a	valid	data
container	for	the	requested
value.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	read.	

Remarks

Use	the	function	CAN_GetValue	to	get	information	about	PCAN
environment	as	parameters	like	the	Message	Filter	and	values	like	the
availability	of	a	PCAN-Channel.	Take	in	account	that	not	all
parameters	are	supported	for	all	PCAN-Channels.	The	access's	type
of	the	parameters	can	also	be	different.	

More	information	about	the	parameters	and	values	that	can	be	read
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	CAN_GetValue	on	the
channel	PCAN_USBBUS1	to	check	if	the	Message	Filter	is	fully
opened.	In	case	of	failure,	the	returned	code	will	be	translated	to	a

text	(according	with	the	operating	system	language)	in	English,
German,	Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C++:		

int	iBuffer;

TPCANStatus	result;

char	strMsg[256];

//	The	status	of	the	message	filter	of	the	PCAN-USB	Channel	1	is	asked

//

result	=	CAN_GetValue(PCAN_USBBUS1,	PCAN_MESSAGE_FILTER,	&

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

{

				//	A	text	is	shown	giving	information	about	the	current	status	of	the	filter

				//

				switch(result	!=	PCAN_ERROR_OK)

				{

								case	PCAN_FILTER_OPEN:

												MessageBox("The	message	filter	for	the	PCAN-USB,	channel	1,	is	completely	opened."

												break;

								case	PCAN_FILTER_CLOSE:

												MessageBox("The	message	filter	for	the	PCAN-USB,	channel	1,	is	closed."

												break;

								case	PCAN_FILTER_CUSTOM:

												MessageBox("The	message	filter	for	the	PCAN-USB,	channel	1,	is	custom	configured."

												break;

				}

}

See	Also

CAN_SetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Class-method	Version:	GetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_SetValue
Sets	a	configuration	or	information	value	within	a	PCAN	Channel.

Syntax

C++
TPCANStatus	__stdcall	CAN_SetValue(

								TPCANHandle	Channel,

								TPCANParameter	Parameter,

								void*	Buffer,

								WORD	BufferLength

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

Parameter	 The	code	of	the	value	to	be	set
(see	TPCANParameter).	

Buffer	 The	buffer	containing	the	value
to	be	set.	

BufferLength	 The	length	in	bytes	of	the	given
buffer.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the
parameters	passed	to	the
function	are	invalid.	Check
the	parameter	'Buffer';	it
should	point	to	a	valid	data
container	for	the	requested
value.	

PCAN_ERROR_CAUTION:	 The	configuration	of	a
parameter	failed	due	to	a	no
more	existing	channel.	The
parameter	has	been	reset	on
all	existing	channels.	

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given
PCAN	channel	was	not
found	in	the	list	of	initialized
channels	of	the	calling
application.	

PCAN_ERROR_ILLPARAMTYPE:	 Indicates	that	the	requested
information	is	not	available
for	the	given	PCAN	Channel.
Check	the	value	of
'Parameter';	some	values
are	not	available	for	all
PCAN-Channels	or	cannot
be	set.	

PCAN_ERROR_ILLOPERATION:	 An	underlying	process	that	is
generated	by	a	call	to	this
function	with	the	current
parameters,	is	temporarily
not	allowed.	The
configuration	in	relation	to
the	used	TPCANParameter
must	be	checked.	

Remarks

Use	the	function	CAN_SetValue	to	set	configuration	information	or
environment	values	of	a	PCAN	Channel	as	parameters	like	the
Message	Filter	and	values	like	a	custom	entry	in	the	log	file	of	PCAN-
Basic.	Take	in	account	that	not	all	parameters	are	supported	for	all
PCAN-Channels.	The	access's	type	of	the	parameters	can	also	be
different.	

More	information	about	the	parameters	and	values	that	can	be	set
can	be	found	in	Parameter	Value	Definitions.

Example

The	following	example	shows	the	use	of	CAN_SetValue	on	the
channel	PCAN_USBBUS1	to	insert	a	text	into	the	PCAN-Basic	log
file.	In	case	of	failure,	the	returned	code	will	be	translated	to	a	text
(according	with	the	operating	system	language)	in	English,	German,
Italian,	French	or	Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	not	needed	to	have	an	initialized	PCAN	channel	for	using
the	Log	functionality.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	Sets	a	text	to	be	included	in	the	Log	file	of	the	PCAN-Basic

//

strcpy(strMsg,	"This	is	a	custom	text	from	an	application	included	in	PCAN-BASIC's	Log	File"

//	Inserts	the	given	text	into	the	Log	file	of	the	PCAN-Basic.

//	Note:	If	the	Log	functionality	is	disabled,	this	call	will	automatically

//activate	the	log	process.

//

result	=	CAN_SetValue(PCAN_NONEBUS,	PCAN_LOG_TEXT,	

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

				MessageBox("The	text	was	successfully	logged	in	the	PCAN-Basic's	Log	file."

See	Also

CAN_GetValue	

TPCANParameter	

Parameter	Value	Definitions	

	

Class-method	Version:	SetValue

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_FilterMessages
Configures	the	reception	filter.

Syntax

C++
TPCANStatus	__stdcall	CAN_FilterMessages(

								TPCANHandle	Channel,

								DWORD	FromID,

								DWORD	ToID,

								TPCANMode	Mode

);

Parameters

Parameters	 Description	

Channel	 The	handle	of	a	PCAN	Channel
(see	TPCANHandle).	

FromID	 The	lowest	CAN	ID	wanted	to	be
received.	

ToID	 The	highest	CAN	ID	wanted	to
be	received.	

Mode	 The	type	of	the	filter	being	set
(see	TPCANType).	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_INITIALIZE:	 Indicates	that	the	given	PCAN
channel	was	not	found	in	the	list	of
initialized	channels	of	the	calling
application.	

Remarks

Note	that	after	a	PCAN	Channel	is	initialized,	the	status	of	its	filter	is
fully	opened.	According	with	the	current	filter	status,	calling	this
function	causes	the	following	behavior:

Filter	status	is	PCAN_FILTER_OPEN:	The	filter	is	automatically
closed	and	then	configured	with	the	given	range	of	IDs	passed	to
this	function	[FromID,	ToID]	.
Filter	status	is	PCAN_FILTER_CLOSE:	The	filter	is	set	to	the
given	range	of	IDs	passed	to	this	function	[FromID,	ToID]	.
Filter	status	is	PCAN_FILTER_CUSTOM:	The	filter	is	expanded
with	the	given	range	of	Ids	[FromID,	ToID].	If	a	smaller	or	different
range	is	required	than	a	range	that	has	been	configured	before,
the	filter	has	to	be	closed	first	before	calling	the
CAN_FilterMessages	function.	To	do	this	use	the	function
CAN_SetValue.

The	parameter	'Mode'	indicates	which	kind	of	ID	is	being	used	to
register	the	new	filter	range.	There	are	two	possible	values,	Standard
(11-bit	identifier)	or	Extended	(29-bit	identifier).	Standard	frames	are
using	the	bit	positions	28	to	18	of	the	Acceptance	Mask/Code
registers	in	the	SJA1000	CAN	controller.	Drivers	for	82C200	CAN
controllers	have	to	shift	the	bits	down	to	positions	10	to	0.	

Take	in	account	that	configuring	the	message	filter	cause	the	CAN
controller	to	enter	the	Reset	state.	This	will	affect	other	applications
that	communicate	with	the	same	PCAN	hardware.	

Notes:	
1.	 There	is	only	one	filter	for	standard	and	extended	CAN

messages.	It	seems	that	the	ID	from	a	standard	message	uses
the	most	significant	11	bits	(bit	18	to	28)	of	the	29	bits.	I.e.	the
standard	ID	400h	is	also	received	by	indicating	an	extended	ID

10000000h.	For	this	reason	it	is	not	recommended	to	mix
standard	and	extended	filters,	since	it	can	increase	the	risk	of
receiving	unwanted	messages.

2.	 Multiple	calls	of	CAN_FilterMessages	expand	the	reception
filter.

3.	 It	is	not	guaranteed	that	an	application	only	receives	CAN
messages	in	the	range	of	FromID	to	ToID.	This	is	caused	by	the
operating	principle	of	the	SJA1000's	acceptance	filter.	See	also
Philips	Data	Sheet	"SJA1000	Stand-alone	CAN-controller".

Example

The	following	example	shows	the	use	of	CAN_FilterMessages	on	the
channel	PCAN_USBBUS1	to	receive	a	custom	range	of	IDs.	In	case
of	failure,	the	returned	code	will	be	translated	to	a	text	(according	with
the	operating	system	language)	in	English,	German,	Italian,	French	or
Spanish,	and	it	will	be	shown	to	the	user.	

Note:	It	is	assumed	that	the	channel	was	already	initialized.	

C++:		

TPCANStatus	result;

char	strMsg[256];

DWORD	iBuffer;

//	The	message	filter	is	closed	first	to	ensure	the	reception	of	the	new	range	of	IDs.

//

iBuffer	=	PCAN_FILTER_CLOSE;

result	=	CAN_SetValue(PCAN_USBBUS1,PCAN_MESSAGE_FILTER,&

if(result	!=	PCAN_ERROR_OK)

{

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

else

{

				//	The	message	filter	is	configured	to	receive	the	IDs	2,3,4	and	5	on	the	PCAN-USB,	Channel	1

				//

				result	=	CAN_FilterMessages(PCAN_USBBUS1,	2,	5,	PCAN_MESSAGE_STANDARD

				if(result	!=	PCAN_ERROR_OK)

				{

								//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

								//

								CAN_GetErrorText(result,	0,	strMsg);

								MessageBox(strMsg);

				}

				else

								MessageBox("Filter	successfully	configured	for	IDs	2,3,4	and	5"

}

See	Also

CAN_SetValue	

	

Class-method	Version:	FilterMessages

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

CAN_GetErrorText
Returns	a	descriptive	text	for	an	error	code.

Syntax

C++
TPCANStatus	__stdcall	CAN_GetErrorText(

								TPCANStatus	Error,

								WORD	Language,

								LPSTR	Buffer

);

Parameters

Parameters	 Description	

Error	 A	TPCANStatus	error	code.	

Language	 Indicates	a	"Primary	language
ID".	

Buffer	 A	buffer	for	a	null-terminated
char	array.	

Returns

The	return	value	is	a	TPCANStatus	code.	PCAN_ERROR_OK	is
returned	on	success.	The	typical	errors	in	case	of	failure	are:

PCAN_ERROR_ILLPARAMVAL:	 Indicates	that	the	parameters
passed	to	the	function	are
invalid.	Check	the	parameter
'Buffer';	it	should	point	to	a
char	array,	big	enough	to

allocate	the	text	for	the	given
error	code.	

Remarks

The	"Primary	language	IDs"	are	codes	used	by	Windows	OS	from
Microsoft,	to	identify	a	human	language.	The	PCAN-Basic	API
currently	support	the	following	languages:

Language	 Primary	Language	ID	

Neutral	(English)	 00h	(0)	

English	 09h	(9)	

German	 07h	(7)	

French	 0Ch	(12)	

Italian	 10h	(16)	

Spanish	 0Ah	(10)	

Note:	If	the	buffer	is	to	small	for	the	resulting	text,	the	error
PCAN_ERROR_ILLPARAMVAL	is	returned.	Even	when	only	short
texts	are	being	currently	returned,	a	text	within	this	function	can	have
a	maximum	of	255	characters.	For	this	reason	it	is	recommended	to
use	a	buffer	with	a	length	of	at	least	256	bytes.

Example

The	following	example	shows	the	use	of	CAN_GetErrorText	to	get	the
description	of	an	error.	The	language	of	the	description's	text	will	be
the	same	used	by	the	operating	system.	

C++:		

TPCANStatus	result;

char	strMsg[256];

//	Gets	the	description	text	for	PCAN_ERROR_INITIALIZE	using	the	Neutral	language

//

result	=	CAN_GetErrorText(PCAN_ERROR_INITIALIZE,	0,	strMsg);

if(result	!=	PCAN_ERROR_OK)

				//	An	error	occurred,	get	a	text	describing	the	error	and	show	it

				//

				MessageBox("Error	when	recovering	Error-Code's	description"

else

				MessageBox(strMsg);

See	Also

Primary	Language	ID	

	

Class-method	Version:	GetErrorText

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Definitions
The	PCAN-Basic	API	defines	the	following	values:	

	

Name	 Description	

PCAN	Handle
Definitions	

Defines	the	handles	for	the	different
PCAN	Channels.	

Parameter	Value
Definitions	

Defines	the	possible	values	for	setting
and	getting	PCAN's	environment
information	with	the	functions
CAN_SetValue	and	CAN_GetValue.	

FD	Bit	rate	Parameter
Definitions	

Defines	the	different	configuration
parameters	used	to	create	a	Flexible
Data	rate	string	for	FD	capable	PCAN-
Channels	initialization.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCAN	Handle	Definitions
Defines	the	handles	for	the	different	PCAN	buses	(Channels)	within	a
class.	These	values	are	used	as	parameter	where	a	TPCANHandle	is
needed.	

	

Default	handle	value:		

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_NONEBUS	 0	 Undefined/default

value	for	a	PCAN
bus.	

	

Handles	for	the	ISA	Bus	(Not	Plug	&	Play):

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_ISABUS1	 0x21	 PCAN-ISA

interface,
channel	1.	

	
TPCANHandle	 PCAN_ISABUS2	 0x22	 PCAN-ISA

interface,
channel	2.	

	
TPCANHandle	 PCAN_ISABUS3	 0x23	 PCAN-ISA

interface,
channel	3.	

	
TPCANHandle	 PCAN_ISABUS4	 0x24	 PCAN-ISA

interface,
channel	4.	

	
TPCANHandle	 PCAN_ISABUS5	 0x25	 PCAN-ISA

interface,

channel	5.	

	
TPCANHandle	 PCAN_ISABUS6	 0x26	 PCAN-ISA

interface,
channel	6.	

	
TPCANHandle	 PCAN_ISABUS7	 0x27	 PCAN-ISA

interface,
channel	7.	

	
TPCANHandle	 PCAN_ISABUS8	 0x28	 PCAN-ISA

interface,
channel	8.	

	

Handles	for	the	Dongle	Bus	(Not	Plug	&	Play):

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_DNGBUS1	 0x31	 PCAN-

Dongle/LPT
interface,
channel	1.	

	

Handles	for	the	PCI	Bus:

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_PCIBUS1	 0x41	 PCAN-PCI

interface,
channel	1.	

	
TPCANHandle	 PCAN_PCIBUS2	 0x42	 PCAN-PCI

interface,
channel	2.	

	
TPCANHandle	 PCAN_PCIBUS3	 0x43	 PCAN-PCI

interface,
channel	3.	

	
TPCANHandle	 PCAN_PCIBUS4	 0x44	 PCAN-PCI

interface,
channel	4.	

	
TPCANHandle	 PCAN_PCIBUS5	 0x45	 PCAN-PCI

interface,
channel	5.	

	
TPCANHandle	 PCAN_PCIBUS6	 0x46	 PCAN-PCI

interface,
channel	6.	

	
TPCANHandle	 PCAN_PCIBUS7	 0x47	 PCAN-PCI

interface,
channel	7.	

	
TPCANHandle	 PCAN_PCIBUS8	 0x48	 PCAN-PCI

interface,
channel	8.	

	
TPCANHandle	 PCAN_PCIBUS9	 0x409	 PCAN-PCI

interface,
channel	9.	

	
TPCANHandle	 PCAN_PCIBUS10	 0x40A	 PCAN-PCI

interface,
channel	10.	

	
TPCANHandle	 PCAN_PCIBUS11	 0x40B	 PCAN-PCI

interface,
channel	11.	

	
TPCANHandle	 PCAN_PCIBUS12	 0x40C	 PCAN-PCI

interface,
channel	12.	

	
TPCANHandle	 PCAN_PCIBUS13	 0x40D	 PCAN-PCI

interface,
channel	13.	

	 TPCANHandle	 PCAN_PCIBUS14	 0x40E	 PCAN-PCI
interface,
channel	14.	

	
TPCANHandle	 PCAN_PCIBUS15	 0x40F	 PCAN-PCI

interface,
channel	15.	

	
TPCANHandle	 PCAN_PCIBUS16	 0x410	 PCAN-PCI

interface,
channel	16.	

	

Handles	for	the	USB	Bus:

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_USBBUS1	 0x51	 PCAN-USB

interface,
channel	1.	

	
TPCANHandle	 PCAN_USBBUS2	 0x52	 PCAN-USB

interface,
channel	2.	

	
TPCANHandle	 PCAN_USBBUS3	 0x53	 PCAN-USB

interface,
channel	3.	

	
TPCANHandle	 PCAN_USBBUS4	 0x54	 PCAN-USB

interface,
channel	4.	

	
TPCANHandle	 PCAN_USBBUS5	 0x55	 PCAN-USB

interface,
channel	5.	

	
TPCANHandle	 PCAN_USBBUS6	 0x56	 PCAN-USB

interface,
channel	6.	

	
TPCANHandle	 PCAN_USBBUS7	 0x57	 PCAN-USB

interface,
channel	7.	

	
TPCANHandle	 PCAN_USBBUS8	 0x58	 PCAN-USB

interface,
channel	8.	

	
TPCANHandle	 PCAN_USBBUS9	 0x509	 PCAN-USB

interface,
channel	9.	

	
TPCANHandle	 PCAN_USBBUS10	 0x50A	 PCAN-USB

interface,
channel	10.	

	
TPCANHandle	 PCAN_USBBUS11	 0x50B	 PCAN-USB

interface,
channel	11.	

	
TPCANHandle	 PCAN_USBBUS12	 0x50C	 PCAN-USB

interface,
channel	12.	

	
TPCANHandle	 PCAN_USBBUS13	 0x50D	 PCAN-USB

interface,
channel	13.	

	
TPCANHandle	 PCAN_USBBUS14	 0x50E	 PCAN-USB

interface,
channel	14.	

	
TPCANHandle	 PCAN_USBBUS15	 0x50F	 PCAN-USB

interface,
channel	15.	

	
TPCANHandle	 PCAN_USBBUS16	 0x510	 PCAN-USB

interface,
channel	16.	

	

Handles	for	the	PC_Card	Bus:

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_PCCBUS1	 0x61	 PCAN-PC	Card

interface,
channel	1.	

	
TPCANHandle	 PCAN_PCCBUS2	 0x62	 PCAN-PC	Card

interface,
channel	2.	

	

Handles	for	the	LAN	Bus:

	 Type	 Constant	 Value	 Description	

	
TPCANHandle	 PCAN_LANBUS1	 0x801	 PCAN-LAN

interface,
channel	1.	

	
TPCANHandle	 PCAN_LANBUS2	 0x802	 PCAN-LAN

interface,
channel	2.	

	
TPCANHandle	 PCAN_LANBUS3	 0x803	 PCAN-LAN

interface,
channel	3.	

	
TPCANHandle	 PCAN_LANBUS4	 0x804	 PCAN-LAN

interface,
channel	4.	

	
TPCANHandle	 PCAN_LANBUS5	 0x805	 PCAN-LAN

interface,
channel	5.	

	
TPCANHandle	 PCAN_LANBUS6	 0x806	 PCAN-LAN

interface,
channel	6.	

	
TPCANHandle	 PCAN_LANBUS7	 0x807	 PCAN-LAN

interface,
channel	7.	

	
TPCANHandle	 PCAN_LANBUS8	 0x808	 PCAN-LAN

interface,
channel	8.	

	
TPCANHandle	 PCAN_LANBUS9	 0x809	 PCAN-LAN

interface,
channel	9.	

	
TPCANHandle	 PCAN_LANBUS10	 0x80A	 PCAN-LAN

interface,
channel	10.	

	
TPCANHandle	 PCAN_LANBUS11	 0x80B	 PCAN-LAN

interface,
channel	11.	

	
TPCANHandle	 PCAN_LANBUS12	 0x80C	 PCAN-LAN

interface,
channel	12.	

	
TPCANHandle	 PCAN_LANBUS13	 0x80D	 PCAN-LAN

interface,
channel	13.	

	
TPCANHandle	 PCAN_LANBUS14	 0x80E	 PCAN-LAN

interface,
channel	14.	

	
TPCANHandle	 PCAN_LANBUS15	 0x80F	 PCAN-LAN

interface,
channel	15.	

	
TPCANHandle	 PCAN_LANBUS16	 0x810	 PCAN-LAN

interface,
channel	16.	

Remarks

The	PCAN_NONEBUS	is	a	value	used	as	default	channel	value.	It	is
used	for	general	purposes	as	using	and	configuring	the	Log
capabilities	of	the	PCAN-Basic	API.	It	can	also	be	used	to	remove	all
channel	connections	made	by	an	application.	

These	definitions	are	constants	values	in	an	object	oriented
environment	(Delphi,	.NET	Framework)	and	declared	as	defines	in
C++	(plain	API).	

Hardware	Type	and	Channels:	
Not	Plug	&	Play:	The	hardware	channels	of	this	kind	are	used	as
registered.	This	mean,	for	example,	it	is	allowed	to	register	the
PCAN_ISABUS3	without	having	registered	PCAN_ISA1	and
PCAN_ISA2.	It	is	a	decision	of	each	user,	how	to	associate	a	PCAN-
Channel	(logical	part)	and	a	port/interrupt	pair	(physical	part).	

Plug	&	Play:	For	hardware	handles	of	PCI,	USB	and	PC-Card,	the
availability	of	the	channels	is	determined	by	the	count	of	hardware
connected	to	a	computer	in	a	given	moment,	in	conjunction	with	their
internal	handle.	This	mean,	that	having	four	PCAN-USB	connected	to
a	computer	will	let	the	user	to	connect	the	channels	PCAN_USBBUS1
to	PCAN_USBBUS4.	The	association	of	each	channel	with	a
hardware	is	managed	internally	using	the	handle	of	a	hardware.	

Python:	
The	definitions	of	these	values	have	the	following	form:
TPCANHandle(handle)	where	handle	is	the	value	contained	in	the
column	with	the	same	name.	e.g.	PCAN_PCCBUS1	is	defined	as
TPCANHandle(0x61).

See	Also

Parameter	Value	Definitions

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Parameter	Value	Definitions
Defines	the	possible	values	for	setting	and	getting	PCAN's
environment	information	with	the	functions	CAN_SetValue	and
CAN_GetValue.	

	

Activation	values:		

	 Type	 Constant	 Value	 Description	

	
Int32	 PCAN_PARAMETER_OFF	 0	 The	PCAN

parameter	is	not
set	(inactive).	

	
Int32	 PCAN_PARAMETER_ON	 1	 The	PCAN

parameter	is	set
(active).	

	

Filter	values:

	 Type	 Constant	 Value	 Description	

	
Int32	 PCAN_FILTER_CLOSE	 0	 The	PCAN	filter	is

closed.	No
messages	will	be
received.	

	
Int32	 PCAN_FILTER_OPEN	 1	 The	PCAN	filter	is

fully	opened.	All
messages	will	be
received.	

	
Int32	 PCAN_FILTER_CUSTOM	 2	 The	PCAN	filter	is

custom
configured.	Only
registered

messages	will	be
received.	

	

Channel	Availability	values:

	 Type	 Constant	 Value	

	
Int32	 PCAN_CHANNEL_UNAVAILABLE	 0	

	
Int32	 PCAN_CHANNEL_AVAILABLE	 1	

	
Int32	 PCAN_CHANNEL_OCCUPIED	 2	

	
Int32	 PCAN_CHANNEL_PCANVIEW	 PCAN_CHANNEL_AVAILABLE

Or
PCAN_CHANNEL_OCCUPIED	

	

Log-Configuration	values*:

	 Type	 Constant	 Value	 Description	

	
Int32	 LOG_FUNCTION_DEFAULT	 0x00	 Logs	system

exceptions
and	errors.
Custom	log
texts	are
also
included.	

	
Int32	 LOG_FUNCTION_ENTRY	 0x01	 Logs	the

entries	to	the
PCAN-Basic
API
functions.	

	
Int32	 LOG_FUNCTION_PARAMETERS	 0x02	 Logs	the

parameters
passed	to
the	PCAN-
Basic	API
functions.	

	
Int32	 LOG_FUNCTION_LEAVE	 0x04	 Logs	the

exits	from
the	PCAN-
Basic	API
functions.	

	
Int32	 LOG_FUNCTION_WRITE	 0x08	 Logs	the

CAN
messages
passed	to
the

CAN_Write
function.	

	
Int32	 LOG_FUNCTION_READ	 0x10	 Logs	the

CAN
messages
received
within	the
CAN_Read
function.	

	
Int32	 LOG_FUNCTION_ALL	 0xFFFF	 Logs	all

possible
information
within	the
PCAN-Basic
API
functions.	

*These	values	can	be	combined	using	the	bitwise	inclusive	OR
operator	

	

Trace-Configuration	values*:

	 Type	 Constant	 Value	 Description	

	
Int32	 TRACE_FILE_SINGLE	 0x00	 Stores

messages	in	a
single	file	until
the	configured
file	size	is
reached.	

	
Int32	 TRACE_FILE_SEGMENTED	 0x01	 Stores

messages
distributed	in
several	files.	

	 Int32	 TRACE_FILE_DATE	 0x02	 Includes	date
information
into	the	name
of	the	trace
file.	

	
Int32	 TRACE_FILE_TIME	 0x04	 Includes	the

time
information
into	the	name
of	the	trace
file.	

	
Int32	 TRACE_FILE_OVERWRITE	 0x08	 Forces	the

overwriting	of
available
traces	(same
name).	

*These	values	can	be	combined	using	the	bitwise	inclusive	OR
operator	

	

Feature	values*:

	 Type	 Constant	 Value	 Description	

	
Int32	 FEATURE_FD_CAPABLE	 1	 The	PCAN

Channel
represents	a
device	that
supports
flexible	data
rate	(CAN-
FD).	

	
Int32	 FEATURE_DELAY_CAPABLE	 2	 The	PCAN

Channel
represents	a

device	that
supports	the
configuration
of	a	delay
between
sending
frames
(FPGA
devices	only)	

*These	values	can	be	combined	using	the	bitwise	inclusive	OR
operator	

	

Service-Status	values:

	 Type	 Constant	 Value	 Description	

	
Int32	 SERIVCE_STATUS_STOPPED	 1	 The	service

is	not
running.	

	
Int32	 SERVICE_STATUS_RUNNING	 4	 The	service

is	running.	

Remarks

These	definitions	are	constants	values	in	an	object	oriented
environment	(Delphi,	.NET	Framework)	and	declared	as	defines	in
C++	(plain	API).	

Python:	
The	definitions	of	these	values	have	the	following	form:
TPCANParameter(value)	where	value	is	the	value	contained	in	the
column	with	the	same	name.	e.g.	LOG_FUNCTION_ENTRY	is
defined	as	TPCANParameter(0x01).

See	Also

PCAN	Handle	Definitions

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

FD	Bit	rate	Parameter	Definitions
Defines	the	different	configuration	parameters	used	to	create	a
Flexible	Data	rate	string	for	FD	capable	PCAN-Channels	initialization.
These	values	are	used	as	parameter	with	CAN_InitializeFD	(class-
method:	InitializeFD).	
	

Clock	Frequency	parameters:		

	 Type	 Constant	 Value	 Description	

	
String	 PCAN_BR_CLOCK	 "f_clock"	 Clock

frequency	in
Hertz
(80000000,
60000000,
40000000,
30000000,
24000000,
20000000).	

	
String	 PCAN_BR_CLOCK_MHZ	 "f_clock_mhz"	 Clock

frequency	in
Megahertz
(80,	60,	40,
30,	24,	20).	

	

Nominal	Bit	rate	parameters:

	 Type	 Constant	 Value	 Description	

	
String	 PCAN_BR_NOM_BRP	 "nom_brp"	 Clock	prescaler

for	nominal	time
quantum
(1..1024).	

	
String	 PCAN_BR_NOM_TSEG1	 "nom_tseg1"	 TSEG1

segment	for
nominal	bit	rate
in	time	quanta
(1..256).	

	
String	 PCAN_BR_NOM_TSEG2	 "nom_tseg2"	 TSEG2

segment	for
nominal	bit	rate
in	time	quanta
(1..128).	

	
String	 PCAN_BR_NOM_SJW	 "nom_sjw"	 Synchronization

Jump	Width	for
nominal	bit	rate
in	time	quanta
(1..128).	

	

Data	Bit	rate	parameters:

	 Type	 Constant	 Value	 Description	

	
String	 PCAN_BR_DATA_BRP	 "data_brp"	 Clock	prescaler

for	fast	data
time	quantum
(1..1024).	

	
String	 PCAN_BR_DATA_TSEG1	 "data_tseg1"	 TSEG1

segment	for
fast	data	bit
rate	in	time
quanta	(1..32).	

	
String	 PCAN_BR_DATA_TSEG2	 "data_tseg2"	 TSEG2

segment	for
fast	data	bit
rate	in	time
quanta	(1..16).	

	
String	 PCAN_BR_DATA_SJW	 "data_sjw"	 Synchronization

Jump	Width	for
fast	data	bit
rate	in	time
quanta	(1..16).	

Remarks

These	definitions	are	constants	values	in	an	object	oriented
environment	(Delphi,	.NET	Framework)	and	declared	as	defines	in
C++	(plain	API).	

Following	points	are	to	be	respected	in	order	to	construct	a	valid	FD
Bit	rate	string:

The	string	must	contain	only	one	of	the	two	possible	"Clock
Frequency"	parameters,	depending	on	the	unit	used	(Hz,	or
MHz).
The	frequency	to	use	must	be	one	of	the	6	listed	within	the
"Clock	Frequency"	parameters.
The	value	for	each	parameter	must	be	separated	with	a	'='.
Example:	"data_brp=1"
Each	pair	of	parameter/value	must	be	separated	with	a	','.	Blank
spaces	are	allowed	but	are	not	necessary.	Example:
"f_clock_mhz=24,	nom_brp=1,"
Both	Bit	rates,	or	only	the	nominal	one,	must	be	defined	within
the	string	(PCAN_BR_DATA_*	and	PCAN_BR_NOM_*,	or	only
PCAN_BR_NOM_*).

Example	with	nominal	Bit	rate	only:	
A	valid	string	representing	1	Mbit/sec	for	both,	nominal	and	data	Bit
rates:	

"f_clock_mhz=20,	nom_brp=5,	nom_tseg1=2,	nom_tseg2=1,
nom_sjw=1"	
Example	with	nominal	and	data	Bit	rate:	
A	valid	string	representing	1	Mbit/sec	for	nominal	Bit	rate,	and	2
Mbit/sec	for	data	Bit	rate:	

"f_clock_mhz=20,	nom_brp=5,	nom_tseg1=2,	nom_tseg2=1,
nom_sjw=1,	data_brp=2,	data_tseg1=3,	data_tseg2=1,
data_sjw=1"	
Parameter	Value	Ranges:		

Parameter	 Value
Range	

f_clock	 [80000000,
60000000,
40000000,
30000000,
24000000,
20000000]	

f_clock_mhz	 [80,	60,	40,
30,	24,	20]	

nom_brp	 1	..	1024	

nom_tseg1	 1	..	256	

nom_tseg2	 1	..	128	

nom_sjw	 1	..	128	

data_brp	 1	..	1024	

data_tseg1	 1	..	32	

data_tseg2	 1	..	16	

data_sjw	 1	..	16	

Python:	
The	definitions	of	these	values	have	the	following	form:
TPCANBitrateFD(string)	where	string	is	the	value	contained	in	the
"value"	column.	e.g.	PCAN_BR_CLOCK	is	defined	as
TPCANBitrateFD("f_clock").

See	Also

CAN_InitializeFD	(class-method:	InitializeFD)

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Additional	Information
PCAN	is	the	platform	for	PCAN-Basic.	In	the	following	topics	there	is
an	overview	of	PCAN	and	the	fundamental	practice	with	the	interface
DLL	CanApi4	(PCAN-API)	

	

In	this	Chapter		

Topics	 Description	

PCAN
Fundamentals	

This	section	contains	an	introduction	to
PCAN.	

PCAN-Light	 This	section	contains	information	about	the
previous	version	of	the	PCAN-Basic.	

PCAN-API	 This	section	compares	the	PCAN-Basic	and
CanApi4	interfaces,	with	a	function
description	of	CanApi4.	

Error	Frames	 This	section	contains	information	about	CAN
Error	frames.	

Log	File
Generation	

This	section	contains	information	about
logging	debug	data	within	PCAN-Basic.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCAN	Fundamentals
PCAN	is	a	synonym	for	PEAK	CAN	APPLICATIONS	and	is	a	flexible
system	for	planning,	developing	and	using	Controller	Area	Networks
(CAN).	It	is	a	powerful	product	for	both	the	developer	and	the	end-
user.	

The	PCAN	system	consists	of	a	collection	of	Windows	Device	Drivers.
These	allow	the	Real-time	connection	of	Windows	applications	to	all
CAN	busses	that	are	physically	connected	to	the	PC	via	a	PCAN
hardware.	The	interface	to	the	user	and	the	manager	of	a	CAN-
equipped	installation	are	the	so-called	PCAN	clients.	With	their	help
process	factors	are	controlled	and	visualized.	The	drivers	permit	the
connection	of	several	clients,	which	are	then	able	to	communicate	via
the	CAN	busses.	Furthermore,	several	hardware	components	are
supported,	which	are	based	on	the	CAN	controller	Philips	SJA1000.	

So-called	Nets	are	available.	These	specify	virtual	CAN	busses	that
are	extended	into	the	PC.	Several	clients	can	connect	to	a	virtual
CAN	bus.	The	connection	to	the	outside	world	(a	physical	CAN	bus)	is
possible	with	a	hardware	interface,	e.g.	the	PCAN-Dongle	or	the
PCAN-ISA	card.	The	following	figures	give	an	overview	of	possible
configurations.	

	

	

	

Following	rules	apply	to	PCAN	clients,	nets	and	hardware:	
A	PCAN	client	can	be	connected	to	more	than	one	net.
A	net	supplies	several	PCAN	clients.
A	hardware	component	belongs	to	not	more	than	one	Net.
A	Net	can	have	no	hardware.
If	a	Client	sends	a	message,	it	will	be	transferred	to	every	other
Client	and	to	the	external	CAN	bus	via	the	hardware.

If	a	message	is	received	over	the	hardware,	it	is	received	by
every	client.	Every	client	receives	only	those	messages,	which
pass	its	acceptance	filter.
Definition	of	the	installed	hardware	and	of	the	nets.	Per	hardware
several	nets	may	be	defined.	But	only	one	net	can	be	active.
Clients	connect	to	a	net	using	the	net	name.
Every	PCAN	client	has	a	transmission	queue,	where	CAN
messages	to	be	transmitted	are	waiting	until	the	individual
transmission	time.	At	occurrence	of	the	transmission	time	they
are	written	into	the	transmission	queue	of	the	PCAN	hardware.
Every	hardware	contains	a	receive	queue	for	buffering	received
CAN	messages.

See	Also

Understanding	PCAN-Basic

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCAN-Light
PCAN-Light	is	the	previous	version	of	the	PCAN-Basic,	the	small	API
variant	to	PCAN-API.	It	makes	a	fast	and	comprehensive	working
possible	with	the	CAN	bus	system.	The	connection	between	the
application	program	and	the	PCAN	hardware	is	made	by	the
appropriate	device	driver.	The	following	illustration	gives	a	short
overview.	

	

	

	

Following	rules	apply	to	PCAN-Light	client	(application	software)
and	PCAN	hardware:	

A	client	is	in	each	case	assigned	to	a	hardware	at	each	time.	A

connection	with	one	client	to	different	hardware	types	is	not
possible	at	the	same	time.
If	a	multi-channel	hardware	is	present,	each	channel	is	treated
like	a	separate	hardware.
If	a	Client	sends	a	message,	it	will	be	transferred	to	every	other
Client	and	to	the	external	CAN	bus	via	the	hardware.
If	a	PCAN	hardware	is	connected	to	a	client,	then	no	further	client
can	access	the	same	hardware.
If	a	message	is	received	over	the	hardware,	it	is	received	by
every	client.	Every	client	receives	only	those	messages,	which
pass	its	message	(acceptance)	filter.
Every	PCAN-Light	client	has	a	transmission	queue,	where	CAN
messages	to	be	transmitted	are	waiting	until	the	individual
transmission	time.	At	occurrence	of	the	transmission	time	they
are	written	into	the	transmission	queue	of	the	PCAN	hardware.
Every	hardware	contains	a	transmission	queue	for	buffering	CAN
messages	to	be	transmitted.

	

Schematic	process	flow	of	an	PCAN-Light	application	software

1.	 Start:	Call	the	Init	function	to	iniciate	the	hardware.
2.	 Operate:	After	a	successful	start,	the	message	filter	could	be

adapted	at	your	own	conception.	Furthermore	CAN	messages
can	be	read	and	written.	The	driver	of	a	type	of	hardware	defined

the	range	of	functions	and	is	structured	in	basic	and	additional
functions.

3.	 Finish:	Call	the	Close	function.	This	process	disconnect	the
application	software	from	PCAN	hardware.

See	Also

PCAN	Fundamentals

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCAN-API
Also	called	CanApi4	interface,	is	a	synonym	for	CAN	Application
Programming	Interface	(version	2)	and	is	a	comprehensively
programming	interface	to	the	PCAN	system	of	the	company	PEAK-
System	Technik	GmbH.	This	interface	is	more	comprehensive	than
PCAN-Basic.	

Important	difference	to	PCAN-Basic:

Transmit	a	CAN	message	at	a	fixed	point	of	time.
Several	application	programs	could	be	connected	to	one	PCAN-
PC	hardware.
Detailed	information	to	PCAN-PC	hardware	and	the	PCAN
system	(PCAN	net	and	PCAN	client).
The	PCAN	client	is	connected	via	the	net	to	the	PCAN-PC
hardware.

The	following	text	is	a	short	overview	to	the	CanApi2	functions.	The
functions	itself	can	be	categorized	as	follows:

Control

Register	and	remove	functions	for	nets	and	hardware.

Function	 Description	

CloseAll	 Disconnects	all	hardware,	nets,	and
clients.	

RegisterHardware	 Registers	a	Not-Plug-and-Play	CAN
hardware.	

RegisterHardwarePCI	 Registers	a	PCI	CAN	hardware.	

RegisterNet	 Defines	of	a	PCAN	net.	

RemoveHardware	 Removes	and	deactivates	CAN
hardware.	

RemoveNet	 Removes	a	PCAN	net.	

Configuration

Configuration	functions	for	nets	and	hardware.

Function	 Description	

SetDeviceName	 Sets	the	PCAN	device	to	be	used	for
subsequent	CanApi2	function	calls.	

SetDriverParam	 Configures	a	driver	parameter,	eg.	the	size	of
the	receive	or	transmit	buffer.	

SetHwParam	 Configures	a	hardware	parameter,	eg.
-	the	PEAK	serial	number,
-	and	additional	parameters	for	the	PCAN-
USB	hardware.	

SetNetParam	 Configures	net	parameter.	

Client

Functions	for	the	management	of	the	clients.

Function	 Description	

ConnectToNet	 Connects	a	client	to	a	PCAN	net.	

DisconnectFromNet	 Disconnects	a	client	from	a	PCAN	net.	

RegisterClient	 Registers	an	application	as	PCAN	client.	

RegisterMsg	 Expands	the	reception	filter	of	a	client.	

RemoveAllMsgs	 Resets	the	filter	of	a	Client	for	a	connected
Net.	

RemoveClient	 Removes	a	client	from	the	driver.	

ResetClient	 Resets	the	receive	and	transmit	queue	of	a

client.	

ResetHardware	 Resets	a	CAN	hardware.	

SetClientFilter	 Configures	the	reception	filter	of	a	client.	

SetClientFilterEx	 Configures	the	reception	filter	of	a	client	

SetClientParam	 Configures	a	client	parameter,	eg.
-	self-receive	mode	of	transmitted
messages.
-	improve	the	accuracy	of	the	reception
filter.	

Communication

Functions	for	the	data	interchange	over	the	CAN	bus.

Function	 Description	

Read	 Reads	a	number	of	CAN_*-records	from	the
client's	receive	queue.	Records	are	CAN
messages,	error	events,	and	other
information.	

Write	 Writes	a	number	of	CAN	messages	or	other
commands	into	the	transmit	queue	of	a
client.	

Information

Functions	for	the	information	about	clients,	nets,	drivers,	and
hardware.

Function	 Description	

GetClientParam	 Retrieves	client	parameter,	eg.
-	total	number	of	transmitted	or	received
CAN	messages,
-	the	PCAN	driver	name,	PCAN	net,	or

PCAN	client	name
-	the	number	of	received	bits.	

GetDeviceName	 Retrieves	the	currently	used	PCAN	device.	

GetDiagnosticText	 Reads	the	diagnostic	text	buffer.	

GetDriverName	 Retrieves	the	name	of	a	PCAN	device
type.	

GetDriverParam	 Retrieves	a	driver	parameter.	

GetErrText	 Translates	an	error	code	into	a	text.	

GetHwParam	 Retrieves	a	hardware	parameter.	

GetNetParam	 Retrieves	a	net	parameter.	

GetSystemTime	 Gets	the	system	time.	

Msg2Text	 Creates	a	text	form	of	a	CAN	message.	

GetHardwareStatus	 Detects	the	current	status	of	a	CAN
hardware.	

GetVersionInfo	 Reads	version	and	copyright	information
from	the	driver.	

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Error	Frames
Error	Frames	can	be	received	if:

the	hardware	represented	by	the	connected	PCAN-Channel
supports	error	frames	generation,
the	connected	PCAN-Channel	configured	the	parameter
PCAN_ALLOW_ERROR_FRAMES	using	the	function
CAN_SetValue	(class-method:	SetValue)	to	activate	the	error
frames.

The	error	frame	data	will	be	placed	into	a	TPCANMsg	or
TPCANMsgFD	structure,	according	to	the	kind	of	initialization	used,
and	its	MSGTYPE	field	will	have	the	PCAN_MESSAGE_ERRFRAME
bit	set.	

The	following	list	shows	the	elements	of	an	error	frame:

Field	 Information	from...	 Contents	

ID	 ECC	register
SJA1000	(Error	Code
Capture),	bits	6	and	7
(ERRC0,	ERRC1)	

0:	The	message	only	transports
updated	Error	Counter	values
1:	Bit	error
2:	Form	error
4:	Stuff	error
8:	Other	type	of	error	

DATA
[0]	

ECC	register,	bit	5
(DIR)	

0:	Error	has	occured	during
transmission
1:	Error	has	occured	during
reception	

DATA
[1]	

ECC	register,	bits	0	to
4	(SEG0	to	SEG4)	

Current	position	of	the	bit
stream	processor:
2:	ID.28	to	ID.21
3:	Start	of	frame
4:	Bit	SRTR
5:	Bit	IDE
6:	ID.20	to	ID.18

7:	ID.17	to	ID.13
8:	CRC	Sequence
9:	Reserved	Bit	0
10:	Data	Field
11:	Data	Length	Code
12:	Bit	RTR
13:	Reserved	Bit	1
14:	ID.4	to	ID.0
15:	ID.12	to	ID.5
17:	Active	Error	Flag
18:	Intermission
19:	Tolerate	Dominant	Bits
23:	Error	Delimiter
24:	CRC	Delimiter
25:	Acknowledge	Slot
26:	End	of	Frame
27:	Acknowledge	Limiter
28:	Overload	Flag	

DATA
[2]	

RX	Error	Counter
Register	(RXERR)	

Current	value	of	the	Receive
Error	counter	

DATA
[3]	

TX	Error	Counter
Register	(TXERR)	

Current	value	of	the	Transmit
Error	counter	

Remarks

For	further	information	about	this,	see	Philips	Data	Sheet	"SJA1000
Stand-alone	CAN	controller".

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

Log	File	Generation
In	order	to	support	debugging	of	problems,	that	can	arise	during	CAN
communication,	PCAN-Basic	can	generate	a	log	file,	containing	a
protocol	of	all	API	function	calls.	There	are	two	different	ways	to
configure	and	activate	this	logging	functionality:

Using	the	API.
Using	the	Windows	Registry.

Log	configuration	using	API

	

In	order	to	configure	the	Log	functionality,	PCAN-Basic	API	provides	3
parameters	that	can	be	configured	with	the	function	CAN_SetValue
(class-method:	SetValue).	These	parameters	are:

PCAN_LOG_LOCATION,	to	set	the	location	of	the	log	file.
PCAN_LOG_CONFIGURE,	to	configure	the	content	of	the	log
file.
PCAN_LOG_STATUS,	to	enable/disable	logging.

Example:
Within	the	following	example,	the	PCAN-Basic	is	configured	to	log	all
possible	information	(LOG_FUNCTION_ALL	=	0xFFFF),	as	well	as	to
store	the	log	file	on	the	desktop	of	an	user	called	"admin".	

C++:		

TPCANStatus	result;

char	strMsg[MAX_PATH];

//	Configures	the	data	in	the	log	file.

//

iBuffer	=	LOG_FUNCTION_ALL;

result	=	CAN_SetValue(PCAN_NONEBUS,	PCAN_LOG_CONFIGURE,	

if(result	!=	PCAN_ERROR_OK)

{

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

//	Configures	the	path	of	the	log	file.

//

char	*buffer	=	"C:\\users\\admin\\desktop";

result	=	CAN_SetValue(PCAN_NONEBUS,	PCAN_LOG_LOCATION

if(result	!=	PCAN_ERROR_OK)

{

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

//	Configures	the	status	of	the	log	file

//

int	iBuffer	=	PCAN_PARAMETER_ON;

result	=	CAN_SetValue(PCAN_NONEBUS,	PCAN_LOG_STATUS

if(result	!=	PCAN_ERROR_OK)

{

				CAN_GetErrorText(result,	0,	strMsg);

				MessageBox(strMsg);

}

Log	configuration	using	Windows	Registry

	

In	order	to	enable	the	log	file	generation,	the	following	registry	key
must	be	created:

HKEY_CURRENT_USER\SOFTWARE\PEAK-System\PCAN-Basic\Log

The	existence	of	this	key	is	analogous	to	use	the	function
CAN_SetValue	(class-method:	SetValue)	to	set	the	parameter
PCAN_LOG_STATUS	to	"on".	If	this	key	is	not	present,	then	no	log
file	is	generated.

Configuration:
If	no	further	configuration	is	made,	then	the	default	values	for
PCAN_LOG_LOCATION,	and	PCAN_LOG_CONFIGURE	are	used.
In	order	to	configure	the	location	and	content	of	the	log	file,	two
registry	values	are	used:	

Flags:	This	is	a	DWORD	value,	that	represents	a	logical	OR	operation
between	the	values	LOG_FUNCTION_*	that	are	wanted	to	be
included	within	the	logging	data.	The	value	LOG_FUNCTION_ALL
causes	logging	all	possible	information.	

Path:	This	is	a	String	value,	that	represents	the	path	to	a	folder	in	the
computer,	where	the	log	file	will	be	created.

Example:
Within	the	following	example,	the	PCAN-Basic	is	configured	to	log
function	entries	(LOG_FUNCTION_ENTRY	=	1),	function	parameters
(LOG_FUNCTION_PARAMETERS	=	2),	and	function	outs
(LOG_FUNCTION_LEAVE	=	4),	as	well	as	to	store	the	log	file	on	the
desktop	of	an	user	called	"admin".

[HKEY_CURRENT_USER\SOFTWARE\PEAK-System\PCAN-Basic\Log]

"Flags"=dword:00000007

"Path"="C:\\Users\\admin\\desktop"

Remarks:
The	registry	key	should	be	deleted	(or	renamed)	after	a	debug
session	is	done.	If	the	key	is	leaved,	all	PCAN-Basic	applications
running	under	the	same	user	account	will	remain	writing	data	to	their
log	files,	generating	in	this	way	huge	text	files	that	consume	hard-disk
space	unnecessarily.

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

PCAN-Basic	Documentation

PCAN-Basic	Documentation

	

	

	

Welcome	to	the	documentation	of	PCAN-Basic,	

the	new	small	Version	of	the	PCAN-API	from	PEAK-System.	

	

	

	

Introduction	 DLL	API	Reference	 Additional	Information	

	

	

	
Last	Update:	31.07.2017

Copyright	©	2017.	PEAK-System	Technik	GmbH.	All	rights	reserved.

Send	feedback	to	this	documentation

	PCAN-Basic Documentation
	Introduction
	Understanding PCAN-Basic
	Using Events
	License Regulations
	Contact Information

	Reference
	Namespaces
	Peak.Can.Basic

	Modules
	PCANBasic Module

	Units
	PCANBasic Unit

	Classes
	PCANBasic
	TPCANBasic

	Structures
	TPCANMsg
	TPCANTimestamp
	TPCANMsgFD

	Types
	TPCANHandle
	TPCANStatus
	TPCANDevice
	TPCANParameter
	TPCANMessageType
	TPCANType
	TPCANMode
	TPCANBaudrate
	TPCANBitrateFD
	TPCANTimestampFD

	Methods
	Initialize
	Initialize(TPCANHandle, TPCANBaudrate)
	Initialize(TPCANHandle, TPCANBaudrate, TPCANType, UInt32, UInt16)

	InitializeFD
	Uninitialize
	Reset
	GetStatus
	Read
	Read(TPCANHandle, TPCANMsg)
	Read(TPCANHandle, TPCANMsg, TPCANTimestamp)
	Read(TPCANHandle)

	ReadFD
	ReadFD(TPCANHandle, TPCANMsgFD)
	ReadFD(TPCANHandle, TPCANMsgFD, TPCANTimestampFD)
	ReadFD(TPCANHandle)

	Write
	WriteFD
	GetValue
	GetValue(TPCANHandle, TPCANParameter, String, UInt32)
	GetValue(TPCANHandle, TPCANParameter, UInt32, UInt32)
	GetValue(TPCANHandle, TPCANParameter, UInt64, UInt32)
	GetValue(TPCANHandle,TPCANParameter)

	SetValue
	SetValue(TPCANHandle, TPCANParameter, String, UInt32)
	SetValue(TPCANHandle, TPCANParameter, UInt32, UInt32)
	SetValue(TPCANHandle, TPCANParameter, UInt64, UInt32)
	SetValue(TPCANHandle, TPCANParameter, Object)

	FilterMessages
	GetErrorText
	GetErrorText(TPCANStatus,UInt16,String)
	GetErrorText(TPCANStatus, int)

	Functions
	CAN_Initialize
	CAN_InitializeFD
	CAN_Uninitialize
	CAN_Reset
	CAN_GetStatus
	CAN_Read
	CAN_ReadFD
	CAN_Write
	CAN_WriteFD
	CAN_GetValue
	CAN_SetValue
	CAN_FilterMessages
	CAN_GetErrorText

	Definitions
	PCAN Handle Definitions
	Parameter Value Definitions
	FD Bit rate Parameter Definitions

	Additional Information
	PCAN Fundamentals
	PCAN-Light
	PCAN-API
	Error Frames
	Log File Generation

