
Alphabetical	List	of	All	Turing
Elements

abs	-	absolute	value	function
addr	-	address	of	a	variable
addressint	-	type
all	-	all	members	of	a	set
and	-	operator
anyclass	-	the	ancestor	of	all	classes
arctan	-	arctangent	function	(radians)
arctand	-	arctangent	function	(degrees)
array	-	type
assert	-	statement
assignability	-	of	expression	to	variable
assignment	-	statement
begin	-	statement
bind	-	declaration
bits	-	extraction
body	-	declaration
boolean	-	true-false	type
break	-	debugger	pause	statement
buttonchoose	-	switch	mouse	modes
buttonmoved	-	has	a	mouse	event	occurred
buttonwait	-	get	a	mouse	event	procedure
case	-	selection	statement
catenation	(+)	-	joining	together	strings
ceil	-	real-to-integer	function
char(n)	-	type
char	-	type
cheat	-	type	cheating
checked	-	compiler	directive
chr	-	integer-to-character	function
class	-	declaration
clock	-	millisecs	used	procedure
close	-	file	statement

cls	-	clear	screen	graphics	procedure
collection	-	declaration
color	-	text	color	graphics	procedure
colorback	-	background	color	procedure
colour	-	text	color	graphics	procedure
colourback	-	background	color	procedure
comment	-	remark	statement
comparisonOperator
Concurrency
Concurrency.empty
Concurrency.getpriority
Concurrency.setpriority
Concurrency.simutime
condition	-	declaration
Config
Config.Display
Config.Lang
Config.Machine
const	-	constant	declaration
constantReference	-	use	of	a	constant
cos	-	cosine	function	(radians)
cosd	-	cosine	function	(degrees)
date	-	procedure
declaration	-	create	a	variable
deferred	-	subprogram	declaration
delay	-	procedure
Dir
Dir.Change
Dir.Close
Dir.Create
Dir.Current
Dir.Delete
Dir.Get
Dir.GetLong
Dir.Open
div	-	integer	truncating	division	operator
Draw
Draw.Arc
Draw.Box

Draw.Cls
Draw.Dot
Draw.Fill
Draw.FillArc
Draw.FillBox
Draw.FillMapleLeaf
Draw.FillOval
Draw.FillPolygon
Draw.FillStar
Draw.Line
Draw.MapleLeaf
Draw.Oval
Draw.Polygon
Draw.Star
Draw.Text
drawarc	-	graphics	procedure
drawbox	-	graphics	procedure
drawdot	-	graphics	procedure
drawfill	-	graphics	procedure
drawfillarc	-	graphics	procedure
drawfillbox	-	graphics	procedure
drawfillmapleleaf	-	graphics	procedure
drawfilloval	-	graphics	procedure
drawfillpolygon	-	graphics	procedure
drawfillstar	-	graphics	procedure
drawline	-	graphics	procedure
drawmapleleaf	-	graphics	procedure
drawoval	-	graphics	procedure
drawpic	-	graphics	procedure
drawpolygon	-	graphics	procedure
drawstar	-	graphics	procedure
empty	-	condition	function
enum	-	enumerated	type
enumeratedValue	-	enumerated	value
eof	-	end-of-file	function
equivalence	-	of	types
erealstr	-	real-to-string	function
Error
Error.Last

Error.LastMsg
Error.LastStr
Error.Msg
Error.Str
Error.Trip
ErrorNum
Exceptions
exit	-	statement
exp	-	exponentiation	function
explicitCharConstant	-	character	literal
explicitConstant	-	literal
explicitIntegerConstant	-	integer	literal
explicitRealConstant	-	real	literal
explicitStringConstant	-	string	literal
explicitTrueFalseConstant	-	boolean	literal
expn	-	expression
export	-	list
external	-	declaration
false	-	boolean	value	(not	true)
fetcharg	-	fetch	argument	function
File
File.Copy
File.Delete
File.DiskFree
File.Exists
File.Rename
File.Status
flexible	-	array	initialization
floor	-	real-to-integer	function
Font
Font.Draw
Font.Free
Font.GetName
Font.GetSize
Font.GetStyle
Font.Name
Font.New
Font.Sizes
Font.StartName

Font.StartSize
Font.Width
for	-	statement
fork	-	statement
forward	-	subprogram	declaration
frealstr	-	real-to-string	function
free	-	statement
function	-	declaration
functionCall
get	-	file	statement
getch	-	get	character	procedure
getchar	-	get	character	function
getenv	-	get	environment	function
getpid	-	get	process	id	function
getpriority	-	function
GUI
GUI.AddLine
GUI.AddText
GUI.Alert
GUI.Alert2
GUI.Alert3
GUI.AlertFull
GUI.Choose
GUI.ChooseFull
GUI.ClearText
GUI.CloseWindow
GUI.CreateButton
GUI.CreateButtonFull
GUI.CreateCanvas
GUI.CreateCanvasFull
GUI.CreateCheckBox
GUI.CreateCheckBoxFull
GUI.CreateFrame
GUI.CreateHorizontalScrollBar
GUI.CreateHorizontalScrollBarFull
GUI.CreateHorizontalSlider
GUI.CreateLabel
GUI.CreateLabelFull
GUI.CreateLabelledFrame

GUI.CreateLine
GUI.CreateMenu
GUI.CreateMenuItem
GUI.CreateMenuItemFull
GUI.CreatePicture
GUI.CreatePictureButton
GUI.CreatePictureButtonFull
GUI.CreatePictureRadioButton
GUI.CreatePictureRadioButtonFull
GUI.CreateRadioButton
GUI.CreateRadioButtonFull
GUI.CreateTextBox
GUI.CreateTextBoxFull
GUI.CreateTextField
GUI.CreateTextFieldFull
GUI.CreateVerticalScrollBar
GUI.CreateVerticalScrollBarFull
GUI.CreateVerticalSlider
GUI.Disable
GUI.Dispose
GUI.Draw...
GUI.Enable
GUI.FontDraw
GUI.GetCheckBox
GUI.GetEventTime
GUI.GetEventWidgetID
GUI.GetEventWindow
GUI.GetHeight
GUI.GetMenuBarHeight
GUI.GetScrollBarWidth
GUI.GetSliderValue
GUI.GetText
GUI.GetVersion
GUI.GetWidth
GUI.GetX
GUI.GetY
GUI.Hide
GUI.HideMenuBar
GUI.OpenFile

GUI.OpenFileFull
GUI.Pic...
GUI.ProcessEvent
GUI.Quit
GUI.Refresh
GUI.SaveFile
GUI.SaveFileFull
GUI.SelectRadio
GUI.SetActive
GUI.SetBackgroundColor
GUI.SetBackgroundColour
GUI.SetCheckBox
GUI.SetDefault
GUI.SetDisplayWhenCreated
GUI.SetKeyEventHandler
GUI.SetLabel
GUI.SetMouseEventHandler
GUI.SetNullEventHandler
GUI.SetPosition
GUI.SetPositionAndSize
GUI.SetScrollAmount
GUI.SetSelection
GUI.SetSize
GUI.SetSliderMinMax
GUI.SetSliderReverse
GUI.SetSliderSize
GUI.SetSliderValue
GUI.SetText
GUI.SetXOR
GUI.Show
GUI.ShowMenuBar
handler	-	exception	handler
hasch	-	has	character	function
id	-	(identifier)	name	of	an	item	in	a	program
#if	-	used	for	conditional	compilation
if	-	statement
implement	by	-	clause
implement	-	clause
import	-	list

in	-	member	of	a	set
include	-	source	files
index	-	find	pattern	in	string	function
indexType
indirection	-	operator	(@)
infix	-	operator
inherit	-	inheritance	clause
init	-	array	initialization
Input
Input.getch
Input.getchar
Input.hasch
Input.KeyDown	-	get	keyboard	state
Input.Pause	-	pause	for	keystroke
int	-	integer	type
intn	-	n-byte	integer	type
intreal	-	integer-to-real	function
intstr	-	integer-to-string	function
invariant	-	assertion
Joystick
Joystick.GetInfo
Keyboard
length	-	of	a	string	function
Limits
ln	-	natural	logarithm	function
locate	-	procedure
locatexy	-	graphics	procedure
loop	-	statement
lower	-	bound
Math
max	-	maximum	function
maxcol	-	maximum	column	function
maxcolor	-	graphics	function
maxcolour	-	graphics	function
maxint	-	maximum	integer	function
maxnat	-	maximum	natural	number	function
maxrow	-	maximum	row	function
maxx	-	graphics	function
maxy	-	graphics	function

min	-	minimum	function
minint	-	minimum	integer	function
minnat	-	minimum	natural	number	function
mod	-	modulo	operator
module	-	declaration
monitor	-	declaration
Mouse
Mouse.ButtonChoose
Mouse.ButtonMoved
Mouse.ButtonWait
Mouse.Where
mousewhere
Music
Music.Play
Music.PlayFile
Music.PlayFileStop
Music.Sound
Music.SoundOff
named	-	type
nargs	-	number	of	arguments
nat	-	natural	number	type
natn	-	n-byte	natural	number	type
natreal	-	natural	number	to	real	function
natstr	-	natural-number-to-string	function
Net
Net.BytesAvailable
Net.CharAvailable
Net.CloseConnection
Net.HostAddressFromName
Net.HostNameFromAddress
Net.LineAvailable
Net.LocalAddress
Net.LocalName
Net.OpenConnection
Net.OpenURLConnection
Net.TokenAvailable
Net.WaitForConnection
new	-	statement
nil	-	pointer	to	a	collection

not	-	true/false	(boolean)	operator
objectclass	-	of	a	pointer
opaque	-	type
open	-	file	statement
or	-	operator
ord	-	character-to-integer	function
parallelget	-	parallel	port	function
parallelput	-	parallel	port	procedure
paramDeclaration	-	parameter	declaration
pause	-	statement
PC
PC.ParallelGet
PC.ParallelPut
pervasive	-	declaration	modifier
Pic
Pic.Blend
Pic.Blur
Pic.Draw
Pic.DrawFrames
Pic.DrawFramesBack
Pic.DrawSpecial
Pic.DrawSpecialBack
Pic.FileNew
Pic.FileNewFrames
Pic.Flip
Pic.Frames
Pic.Free
Pic.Height
Pic.Mirror
Pic.New
Pic.Rotate
Pic.Save
Pic.Scale
Pic.ScreenLoad
Pic.ScreenSave
Pic.SetTransparentColor
Pic.SetTransparentColour
Pic.Width
play	-	procedure

playdone	-	function
pointer	-	type
post	-	assertion
pre	-	assertion
precedence	-	of	operators
pred	-	predecessor	function
prefix	-	operator
procedure	-	declaration
procedureCall	-	statement
process	-	declaration
program	-	a	(main)	program
put	-	statement
quit	-	fail	statement
Rand
Rand.Int
Rand.Next
Rand.Real
Rand.Reset
Rand.Seed
Rand.Set
rand	-	random	real	number	procedure
randint	-	random	integer	procedure
randnext	-	procedure
randomize	-	procedure
randseed	-	procedure
read	-	file	statement
real	-	the	real	number	type
realn	-	n-byte	real	number	type
realstr	-	real-to-string	function
record	-	type
register	-	use	machine	register
rem	-	remainder	operator
repeat	-	make	copies	of	string:function
result	-	statement
return	-	statement
RGB
RGB.AddColor
RGB.AddColour
RGB.GetColor

RGB.GetColour
RGB.maxcolor
RGB.maxcolour
RGB.SetColor
RGB.SetColour
round	-	real-to-integer	function
scalar	-	type
seek	-	(file)	statement
self	-	pointer	to	current	object
separator	-	between	tokens	in	a	program
set	-	type
setConstructor
setpriority	-	procedure
setscreen	-	graphics	procedure
shl	-	shift	left	operator
shr	-	shift	right	operator
sign	-	function
signal	-	wake	up	a	process	statement
simutime	-	simulated	time	function
sin	-	sine	function	(radians)
sind	-	sine	function	(degrees)
sizeof	-	size	of	a	type
sizepic	-	graphics	function
skip	-	used	in	get	statement
skip	-	used	in	put	statement
sound	-	statement
Sprite
Sprite.Animate
Sprite.ChangePic
Sprite.Free
Sprite.Hide
Sprite.New
Sprite.SetFrameRate
Sprite.SetHeight
Sprite.SetPosition
Sprite.Show
sqrt	-	square	root	function
standardType
statement

statementsAndDeclarations
Str
Stream
Stream.eof
Stream.Flush
Stream.FlushAll
string	-	type
string	-	comparison
strint	-	string-to-integer:function
strintok	-	string-to-integer:function
strnat	-	string	to	natural	number	function
strnatok	-	string	to	natural	number	function
strreal	-	string-to-real	function
strrealok	-	string-to-real	function
subprogramHeader
subprogramType
subrangeType
substring	-	of	another	string
succ	-	successor	function
Sys
Sys.Exec
Sys.FetchArg
Sys.GetComputerName
Sys.GetEnv
Sys.GetPid
Sys.GetUserName
Sys.Nargs
sysclock	-	millisecs	used	procedure
system	-	statement
tag	-	statement
takepic	-	graphics	procedure
tell	-	file	statement
Text
Text.Cls
Text.Color
Text.ColorBack
Text.Colour
Text.ColourBack
Text.Locate

Text.LocateXY
Text.maxcol
Text.maxrow
Text.WhatCol
Text.WhatColor
Text.WhatColorBack
Text.WhatColour
Text.WhatColourBack
Text.WhatRow
Time
Time.Date
Time.DateSec
Time.Delay
Time.Elapsed
Time.ElapsedCPU
Time.PartsSec
Time.Sec
Time.SecDate
Time.SecParts
time	-	time	of	day	as	a	string	procedure
token	-	in	input
true	-	boolean	value	(not	false)
type	-	declaration
TypeConv
typeSpec	-	type	specification
unchecked	-	compiler	directive
union	-	type
unit	-	file	containing	module,	monitor,	or	class
unqualified	-	export
upper	-	bound
var	-	declaration
variableReference	-	use	of	a	variable
View
View.ClipAdd
View.ClipOff
View.ClipSet
View.maxcolor
View.maxcolour
View.maxx

View.maxy
View.Set
View.Update	-	flicker-free	animation
View.WhatDotColor
View.WhatDotColour
wait	-	block	a	process	statement
wallclock	-	seconds	since	1/1/1970	procedure
whatcol	-	cursor	position	function
whatcolor	-	text	color	graphics	function
whatcolorback	-	color	of	background	function
whatcolour	-	text	color	graphics	function
whatcolourback	-	color	of	background	function
whatdotcolor	-	graphics	function
whatdotcolour	-	graphics	function
whatrow	-	cursor	position	function
Window
Window.Close
Window.GetActive
Window.GetPosition
Window.GetSelect
Window.Hide
Window.Open
Window.Select
Window.Set
Window.SetActive
Window.SetPosition
Window.Show
Window.Update
write	-	file	statement
xor	-	exclusive	"or"	operator

abs absolute	value	function

Syntax		 abs	(expn)

Description		
The	abs	function	is	used	to	find	the	absolute	value	of	a	number
(the	expn).	For	example,	abs	(-23)	is	23.

Example		

This	program	outputs	9.83.

								var	x	:	real	:=	-9.83

								put	abs	(x)	%	Outputs	9.83

Execute		

Details		

The	abs	function	accepts	numbers	that	are	either	int's	or	real's.
The	type	of	the	result	is	the	same	type	as	the	accepted	number.
The	abs	function	is	often	used	to	see	if	one	number	x	is	within	a
given	distance	d	of	another	number	y;	for	example:

	 if	abs	(x	-	y)	<=	d	then	…

See	also		 predefined	unit	Math.

addr address	of	a	variable

Syntax		 addr	(reference)

Description		

The	addr	attribute	is	used	to	find	the	integer	address	of	a	variable
or	non	scalar	constant.	This	is	implementation-dependent.	This
address	may	be	used	in	an	indirection	operation	@.

Example		

Set	a	to	be	the	address	of	x.

								var	x	:	real

								var	a	:	addressint	:=	addr	(x)

Details		

The	value	of	the	address	produced	by	addr	is	of	type	addressint,
an	integer	type	whose	range	is	that	of	the	underlying	memory
addresses.

The	concept	of	an	address	is	implementation-dependent.	For
example,	an	optimizing	compiler	could	determine	that	a	variable
does	not	require	space	because	the	program	could	be	computed
without	the	variable	with	no	change	in	output.	However,	in	most
implementations,	types	have	a	predictable	size	and	variables	of
that	type	occupy	that	number	of	bytes	in	memory.

See	also		

the	indirection	operator	@,	cheat,	explicitIntegerConstant	(how
to	write	hexadecimal	constants),	and	pointer	type	(in	particular
unchecked	pointer	type).	See	also	sizeof,	which	returns	the	size	of
a	variable.

addressint type

Syntax		 addressint

Description		

The	addressint	(address	integer)	type	is	an	integer	type	whose	range	of
value	is	the	same	as	that	of	the	underlying	computer.	This	range	is,	by
its	nature,	implementation-dependent.	On	32-bit	architectures,	it	is
commonly	the	same	range	as	nat4	(4-byte	natural	number).

Example		

Record	r	contains	three	fields,	one	of	which	has	type	char(28).	Variable
a	is	an	integer	whose	range	of	values	is	the	same	as	the	addresses	of	the
underlying	computer.	This	assigns	B	to	the	seventh	character	of	a
record	of	type	r	which	is	assumed	to	be	located	at	absolute	address	

								type	r	:

												record

																i	:	int

																c28	:	char	(28)

																c11	:	char	(11)

												end	record

								var	a	:	addressint						%	An	integer

								…																			%	a	is	assigned	an	integer	value

								r	@	(a)	.	c28	(7)	:=	'B'								%	Use	indirection	operator	

Details		

Although	addressint	is	called	an	integer	type,	it	is	commonly
equivalent	to	a	natural	type	such	as	nat4	(for	32-bit	machines).

Be	careful	not	to	confuse	addressint	with	pointer	types.	In	low	level
languages	such	as	assembler	and	C,	addresses	and	pointers	are	the
same.	In	Turing,	however,	a	pointer	is	a	high	level	concept	that	is	more
abstract	than	a	machine	address.	A	Turing	pointer	is	a	reference	to	an
object,	and	the	representation	of	this	reference	depends	upon	the
implementation.	In	current	Turing	implementations,	pointers	(which	are
by	default	checked)	are	represented	as	a	time	stamp	(a	unique	number)
together	with	an	address.	The	time	stamp	is	used	to	make	sure	that	the
pointer	actually	locates	an	object.	There	are	also	unchecked	pointers.
An	unchecked	pointer's	internal	representation	is	a	machine	address.
You	can	use	type	cheats	(a	dangerous	feature)	to	translate	between
addressint	and	unchecked	pointers.	This	is	meaningful	in	current

implementations.

See	also		

the	indirection	operator	@,	cheat,	explicitIntegerConstant	(how	to
write	hexadecimal	constants),	and	pointer	type	(in	particular
unchecked	pointer	type).	See	also	addr,	which	returns	the	address	of	a
variable.

all all	members	of	a	set

Syntax		 setTypeName	(all)

Description		
Given	a	set	type	named	S,	the	set	of	all	of	the	possible	elements	of
S	is	written	S	(all).

Example		
								type	smallSet	:	set	of	0	..	2

								var	x	:	smallSet	:=	smallSet	(all)

																								%	Set	x	contains	elements	0,	1	and	2

See	also		 set	type	for	details	about	sets.

and operator

Syntax		 A	and	B

Description		

The	and	(boolean)	operator	yields	a	result	of	true	if,	and	only	if,
both	operands	are	true.	The	and	operator	is	a	short	circuit
operator.	For	example,	if	A	is	false	in	A	and	B	then	B	is	not
evaluated.

Example		
								var	success	:	boolean	:=	false

								var	continuing	:=	true						%	The	type	is	boolean

								…

								continuing	:=	continuing	and	success

Details		

The	continuing	variable	is	set	to	true	if,	and	only	if,	both
continuing	and	success	are	true.	Since	Turing	uses	short	circuit
operators,	once	continuing	is	false,	success	will	not	be	looked	at.

The	and	operator	can	also	be	applied	to	natural	numbers.	The
result	is	the	natural	number	that	is	the	bit-wise	and	of	the
operands.	See	nat	(natural	number).

Example		

This	masks	out	the	everything	but	the	lower	two	bytes	of	number.

								var	number	:	nat	:=	16#ABCD

								var	mask	:	nat	:=	16#FF

								put	number	and	mask					%	Outputs	205	(CD16)

See	also		

boolean	(which	discusses	true/false	values),
explicitTrueFalseConstant	(which	discusses	the	values	true	and
false),	precedence	and	expn	(expression).

anyclass the	ancestor	of	all	classes

Syntax		 anyclass

Description		

There	is	a	predefined	class	called	anyclass,	which	is	the	root	of	the	expansion	tree.
All	classes	that	do	not	have	inherit	lists	are	considered	to	be	expansions	of	
The	main	purpose	of	anyclass	is	to	allow	pointers	that	can	locate	objects	of	any	class.

Example		

Here	is	the	declaration	of	a	pointer	p	that	can	locate	an	object	of	any	class.

								var	p	:	pointer	to	anyclass					%	Short	form:	var	p	:	^	anyclass

								var	q	:	pointer	to	stack								%	Short	form:	var	q	:	^	stack

								new	q															%	Create	a	stack	object

								p	:=	q														%	Legal	because	p's	class

																												%	is	an	ancestor	of	q's	class

Assuming	stack	is	a	class,	this	creates	a	stack	object	and	places	its	location	in	
The	compiler	will	not	allow	a	call	to	stack's	exported	subprograms	using	
in:

								p	->	push	(14)						%	ILLEGAL!		anyclass	has	no	operations

An	assignment	from	p	to	q	is	legal,	as	in:

								q	:=	p		%	Checks	that	p	locates	a	stack	object	(or	descendant)

This	implies	a	run	time	check	to	make	sure	that	p	locates	an	object	that	is	a	
descendant	of	a	stack).

Here	is	a	way	to	call	a	subprogram	exported	from	stack	using	p:

								stack	(p)	.	push	(14)			%	Checks	that	p	locates	a	stack	object

This	checks	to	see	that	p	locates	a	stack	object	(or	a	descendant)	before	calling	the
stack	operation	push.

Details		

It	is	legal	to	create	objects	of	the	class	called	anyclass,	but	this	is	not	of	much	use,
because	there	is	nothing	you	can	do	with	these	objects	(they	have	no	operations).	It	is
legal	to	assign	these	objects	to	other	objects	of	the	same	class	(anyclass
this	accomplishes	nothing.

See	also		

objectclass,	which	takes	a	class	pointer	and	produces	the	class	of	the	object	located
by	the	pointer.	This	is	used	for	testing	to	determine	the	class	of	the	object	located	by	a
pointer.

See	also	class.	See	also	export	list,	import	list,	inherit	list,	implement
implement	by	list.

arccos arccosine	function	(radians)

Syntax		 arccos	(r	:	real)	:	real

Description		
The	arccos	function	is	used	to	find	the	arc	cosine	of	a	value.	The
result	is	given	in	radians.	For	example,	arccos	(0.5)	is	p	/	3.

Example		

This	program	prints	out	the	arccosine	of	-1	through	1	in	radians.

								for	i	:	-4	..	4

												const	arg	:=	i	/	4

												put	"Arc	cosine	of	",	arg,	"	is	",

																arccos	(arg),	"	radians"

								end	for

Execute		

See	also		

the	arcsin	and	arctan	functions	for	calculating	arcsine	and
arctangent.

the	arccosd	function	which	finds	the	arc	cosine	of	a	value	with
the	result	given	in	degrees.	(2p	radians	are	the	same	as	360
degrees.)

See	also	predefined	unit	Math.

arccosd arccosine	function	(degrees)

Syntax		 arccosd	(r	:	real)	:	real

Description		
The	arccosd	function	is	used	to	find	the	arc	cosine	of	an	angle
given	in	degrees.	For	example,	arccosd	(0.5)	is	60.

Example		

This	program	prints	out	the	arccosine	of	values	from	-1	to	1	in
degrees.

								for	i	:	-4	..	4

												const	arg	:=	i	/	4

												put	"Arc	cosine	of	",	arg,	"	is	",

																arccosd	(arg),	"	degrees"

								end	for

Execute		

See	also		

the	arcsind	and	arctand	functions	for	calculating	arcsine	and
arctangent

the	arccos	function	which	finds	the	arc	cosine	of	a	value	with	the
result	given	in	radians.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

arcsin arcsine	function	(radians)

Syntax		 arcsin	(r	:	real)	:	real

Description		
The	arcsin	function	is	used	to	find	the	arc	sine	of	a	value.	The
result	is	given	in	radians.	For	example,	arcsin	(0.5)	is	p	/	6.

Example		

This	program	prints	out	the	arcsine	of	-1	through	1	in	radians.

								for	i	:	-4	..	4

												const	arg	:=	i	/	4

												put	"Arc	sine	of	",	arg,	"	is	",

																arcsin	(arg),	"	radians"

								end	for

Execute		

See	also		

the	arccos	and	arctan	functions	for	calculating	arccosine	and
arctangent.

the	arcsind	function	which	finds	the	arc	sine	of	a	value	with	the
result	given	in	degrees.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

arcsind arcsine	function	(degrees)

Syntax		 arcsind	(r	:	real)	:	real

Description		
The	arcsind	function	is	used	to	find	the	arc	sine	of	an	angle	given
in	degrees.	For	example,	arcsind	(0.5)	is	30.

Example		

This	program	prints	out	the	arcsine	of	values	from	-1	to	1	in
degrees.

								for	i	:	-4	..	4

												const	arg	:=	i	/	4

												put	"Arc	sine	of	",	arg,	"	is	",

																arcsind	(arg),	"	degrees"

								end	for

Execute		

See	also		

the	arccosd	and	arctand	functions	for	calculating	arccosine	and
arctangent

the	arcsin	function	which	finds	the	arc	sine	of	a	value	with	the
result	given	in	radians.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

arctan arctangent	function	(radians)

Syntax		 arctan	(r	:	real)	:	real

Description		
The	arctan	function	is	used	to	find	the	arc	tangent	of	a	value.	The
result	is	given	in	radians.	For	example,	arctan	(1)	is	p	/	4.

Example		

This	program	prints	out	the	arctangent	of	0	through	3	in	radians.

								for	i	:	0	..	12

												const	arg	:=	i	/	4

												put	"Arc	tangent	of	",	arg,	"	is	",

																arctan	(arg),	"	radians"

								end	for

Execute		

See	also		

the	arcsin	and	arccos	functions	for	calculating	arcsine	and
arccosine

the	arctand	function	which	finds	the	arc	tangent	of	a	value	with
the	result	given	in	degrees.	(2p	radians	are	the	same	as	360
degrees.)

See	also	predefined	unit	Math.

arctand arctangent	function	(degrees)

Syntax		 arctand	(r	:	real)	:	real

Description		
The	arctand	function	is	used	to	find	the	arc	tangent	of	an	angle
given	in	degrees.	For	example,	arctand	(0)	is	0.

Example		

This	program	prints	out	the	arctangent	of	values	from	0	to	3	in
degrees.

								for	i	:	0	..	12

												const	arg	:=	i	/	4

												put	"Arc	tangent	of	",	arg,	"	is	",

																arctand	(arg),	"	degrees"

								end	for

Execute		

See	also		

the	arcsind	and	arccosd	functions	for	calculating	arcsine	and
arccosine

the	arctan	function	which	finds	the	arc	tangent	of	a	value	with
the	result	given	in	radians.	(2p	radians	are	the	same	as	360
degrees.)

See	also	predefined	unit	Math.

array type

Syntax		 array	indexType	{	,	indexType	}	of	typeSpec

Description		

An	array	consists	of	a	number	of	elements.	The	typeSpec	gives	the	type	of	these
elements.	There	is	one	element	for	each	item	in	the	(combinations	of)	range(s)	of	the
indexType(s).	In	the	following	example,	the	array	called	marks	consists	of	100	elements,
each	of	which	is	an	integer.

Example		

								var	marks	:	array	1	..	100	of	int

								…

								var	sum	:	int	:=	0

								for	i	:	1	..	100								%	Add	up	the	elements	of	marks

												sum	:=	sum	+	marks	(i)

								end	for

Execute		

Details		

In	the	above	example,	marks(i)	is	the	i-th	element	of	the	marks	array.	We	call	
or	subscript	of	marks.	In	Turing,	a	subscript	is	surrounded	by	parentheses,	not	by	square
brackets	as	is	the	case	in	the	Pascal	or	C-like	languages.

Example		

The	prices	array	shows	how	an	array	can	have	more	than	one	dimension.	This	array	has
one	dimension	for	the	year	(1988,	1989	or	1990)	and	another	for	the	month	(1	..	12).
There	are	36	elements	of	the	array,	one	for	each	month	of	each	year.

								var	price	:	array	1988	..	1990,	1	..	12	of	int

								…

								var	sum	:	int	:=	0

								for	year	:	1988	..	1990					%	For	each	year

												for	month	:	1	..	12					%	For	each	month

																sum	:=	sum	+	price	(year,	month)

												end	for

								end	for

Execute		

Details		

Each	indexType	must	contain	at	least	one	item.	The	range	1	..	0,	for	example,	would	not
be	allowed.	Each	index	type	must	be	a	subrange	of	the	integers,	characters	(the	
type),	or	of	an	enumerated	type,	an	(entire)	enumerated	type,	the	char
type,	or	a	named	type	which	is	one	of	these.

Arrays	can	also	be	declared	in	the	form

								var	a	:	array	1	..	*	of	typeSpec	:=	init	(…)

The	upper	bound	of	a	will	be	computed	from	the	count	of	the	initializing	values.	Both
var	and	const	arrays	can	be	declared	this	way.	An	array	variable/constant	declared	with
"*"	as	an	upper	bound	must	have	an	initializing	list.	Only	one	dimensional	arrays	may
be	declared	in	this	form.

Arrays	can	be	assigned	as	a	whole	(to	arrays	of	an	equivalent	type),	but	they	cannot	be
compared.

An	array	can	be	initialized	in	its	declaration	using	init.	For	details,	see	
declarations.

Example		

In	this	example,	the	size	of	the	array	is	not	known	until	run	time.

								var	howMany	:	int

								get	howMany

								var	height	:	array	1	..	howMany	of	real

												…read	in	all	the	elements	of	this	array…

								function	total	(a	:	array	1	..	*	of	real)	:	real

												var	sum	:	real	:=	0

												for	i	:	1	..	upper	(a)

																sum	:=	sum	+	a	(i)

												end	for

												result	sum

								end	total

								

								put	"Sum	of	the	heights	is	",	total	(height)

Execute		

Details		

The	ends	of	the	range	of	a	subscript	are	called	the	bounds	of	the	array.	If	these	values
are	not	known	until	run	time,	the	array	is	said	to	be	dynamic.	In	the	above	example,
height	is	a	dynamic	array.	Dynamic	arrays	can	be	declared	as	variables,	as	in	the	case
for	height.	However,	dynamic	arrays	cannot	appear	inside	other	types	such	as	records,
and	cannot	be	named	types.	Dynamic	arrays	cannot	be	assigned	and	cannot	be
initialized	using	init.

In	the	above	example,	upper(a)	returns	the	size	of	a.	See	also	upper

In	the	declaration	of	an	array	parameter,	the	upper	bound	can	be	given	as	an	asterisk	(
as	is	done	in	the	above	example.	This	means	that	the	upper	bound	is	taken	from	that	of
the	corresponding	actual	parameter	(from	height	in	this	example).

You	can	have	arrays	of	other	types,	for	example	arrays	of	record.	If	
records,	then	R(i).f	is	the	way	to	access	the	f	field	of	the	i-th	element	of	array	

Details		

Arrays	can	also	be	made	resizeable.	This	is	done	using	the	flexible
declaration	syntax	is:

								var	name	:	flexible	array	indexType	{	,	indexType

The	indices	may	have	compile-time	or	run-time	upper	bounds	(the	lower	bound	must	be
compile-time).	The	upper	bounds	can	be	changed	by	using:

								new	name	,	newUpper1	{,newUpper2}

The	existing	array	entries	will	retain	their	values,	except	that	any	index	made	smaller
will	have	the	corresponding	array	entries	lost.	Any	index	made	larger	will	have	the	new
array	entries	uninitialized	(if	applicable).

Additionally,	the	upper	bound	(both	in	the	declaration	and	the	new	statement)	can	be
made	one	less	than	the	lower	bound.	This	effectively	makes	an	array	that	contains	0

elements.	It	can	later	be	increased	in	size	with	another	new.

In	the	current	implementation	(2002),	with	a	multi-dimensional	array	with	a	non-zero
number	of	total	elements,	it	is	a	run-time	error	to	change	any	but	the	first	dimension
(unless	one	of	the	new	upper	bounds	is	one	less	than	the	corresponding	lower	bound,
giving	0	elements	in	the	array)	as	the	algorithm	to	rearrange	the	element	memory
locations	has	not	yet	been	implemented.

Currently,	only	variables	can	be	declared	in	this	form.	There	is	no	flexible	array
parameter	type,	although	a	flexible	array	can	be	passed	to	an	array	parameter	with	“
as	the	upper	bound.

Example		

In	this	example,	the	array	is	resized	to	fit	the	number	of	elements	in	the	file.

								function	getLines	(fileName	:	string)	:	int

												var	f,	numLines	:	int

												var	line	:	string

												open	:	f,	fileName,	get

												numLines	:=	0

												loop

																exit	when	eof	(f)

																get	:	f,	line	:	*

																numLines	+=	1

												end	loop

												close	:	f

												result	numLines

								end	getLines	

								

								procedure	readFile	(var	lines	:	array	1	..	*	of	string

												var	f	:	int

												var	line	:	string

												open	:	f,	fileName,	get

												for	i	:	1	..	upper	(lines)

																get	:	f,	lines	(i)	:	*

												end	for				

	 	 	 close	:	f

								end	readFile

												

								var	lines	:	flexible	array	1	..	0	of	string

								new	lines,	getLines	("text.dat")

								readFile	(lines,	"text.dat")

								for	i	:	1	..	upper	(lines)

												put	lines	(i)

								end	for

Execute		

See	also		
init	to	initialize	arrays,	flexible	to	declare	resizable	arrays	and	indexType
index	of	an	array.

assert statement

Syntax		 assert	trueFalseExpn

Description		

An	assert	statement	is	used	to	make	sure	that	a	certain
requirement	is	met.	This	requirement	is	given	by	the
trueFalseExpn.	The	trueFalseExpn	is	evaluated.	If	it	is	true,	all	is
well	and	execution	continues.	If	it	is	false,	execution	is	terminated
with	an	appropriate	message.

Example		
Make	sure	that	n	is	positive.

								assert	n	>	0

Example		

This	program	assumes	that	the	textFile	exists	and	can	be	opened,
in	other	words,	that	the	open	will	set	the	fileNumber	to	a	positive
stream	number.	If	this	is	not	true,	the	programmer	wants	the
program	halted	immediately.

								var	fileNumber	:	int

								open	:	fileNumber,	"textFile",	read

								assert	fileNumber	>	0

Details		

In	some	Turing	systems,	checking	can	be	turned	off.	If	checking
is	turned	off,	assert	statements	may	be	ignored	and	as	a	result
never	cause	termination.

assignability of	expression	to	variable

Description		

A	value,	such	as	24,	is	assignable	to	a	variable,	such	as	i,	if	certain
rules	are	followed.	These	rules,	given	in	detail	below,	are	called
the	assignability	rules.	They	must	be	followed	in	assignment
statements	as	well	as	when	passing	values	to	non-var	parameters.

Example		

								var	i	:	int

								i	:=	24									%	24	is	assignable	to	i

								

								var	width	:	0	..	319

								width	:=	3	*	i						%	3	*	i	is	assignable	to	width

								

								var	a	:	array	1	..	25	of	string

								a	(i)	:=	"Ralph"								%	"Ralph"	is	assignable	to	a(i)

								

								var	name	:	string	(20)

								name	:=	a	(i)							%	a(i)	is	assignable	to	name

								

								…

								var	b	:	array	1	..	25	of	string

								b	:=	a										%	Array	a	is	assignable	to	b

								

								type	personType	:

												record

																age	:	int

																name	:	string	(20)

												end	record

								var	r,	s	:	personType

								…

								s	:=	r										%	Record	r	is	assignable	to	s

The	expression	on	the	right	of	:=	must	be	assignable	to	the
variable	on	the	left.	An	expression	passed	to	a	non-var	parameter
must	be	assignable	to	the	corresponding	parameter.

An	expression	is	defined	to	be	assignable	to	a	variable	if	the	two
root	types	are	equivalent	or	if	an	integer	value	is	being	assigned
to	a	real	variable	(in	which	case	the	integer	value	is	automatically
converted	to	real).	Two	types	are	considered	to	be	equivalent	if
they	are	essentially	the	same	type	(see	equivalence	for	the
detailed	definition	of	this	term).

Details		

In	most	cases	a	root	type	is	simply	the	type	itself.	The	exceptions
are	subranges	and	strings.	The	root	type	of	a	subrange,	such	as	0	..
319,	is	the	type	of	its	bounds	(int	type	in	this	example).	The	root
type	of	a	string,	such	as	the	type	string(9),	is	the	most	general
string	type,	namely	string.

When	a	subrange	variable,	such	as	width,	is	used	as	an
expression,	for	example	on	the	right	side	of	an	assignment
statement,	its	type	is	considered	to	be	the	root	type	(integer	in	this
case)	rather	than	the	subrange.	When	an	expression	is	assigned	to
a	subrange	variable	such	as	width,	the	value	(3*i	in	this	example)
must	lie	in	the	subrange.	Analogously,	any	string	variable	used	in
an	expression	is	considered	to	be	of	the	most	general	type	of
string.	When	a	string	value	is	assigned	to	a	string	variable,	its
length	must	not	exceed	the	variable's	maximum	length.

Turing's	assignability	rule	applies	to	characters	and	strings	in	this
way.	A	char	value	can	be	assigned	(or	passed	to	an	non	var
parameter)	with	automatic	conversion	to	a	char(1)	variable	and
vice	versa.	String	values	of	length	1	can	be	assigned	to	char
variables.	Character,	that	is	char,	values	can	be	assigned	to	string
variables,	yielding	a	string	of	length	1.	String	values	of	length	n
are	assignable	with	automatic	conversion	to	char(n)	variables.
Values	of	type	char(n)	can	be	assigned	with	automatic	conversion
to	string	variables.

Turing's	assignability	rule	applies	to	pointers	to	classes	in	this
way.	A	pointer	that	locates	an	object	created	as	class	E,	can	be
assigned	to	a	pointer	to	class	B	only	if	B	is	an	ancestor	of	(or	the
same	as)	E.	For	example,	a	pointer	to	an	object	that	is	a
stackWithDepth	can	be	assigned	to	a	pointer	to	stack,	where
stackWithDepth	is	a	child	of	stack,	but	not	vice	versa.	The	pointer
nil	can	be	assigned	to	any	pointer	variable,	but	the	value	nil(C)
can	only	be	assigned	to	a	pointer	to	an	ancestor	of	C.

Objects	of	classes	can	be	assigned	to	each	other	only	if	both	were
created	as	the	same	class.

assignment statement

Syntax		

An	assignmentStatement	is:

	 variableReference	:=	expn

Description		
An	assignment	statement	calculates	the	value	of	the	expression	(expn
assigns	that	value	to	the	variable	(variableReference).

Example		

								var	i	:	int

								i	:=	24									%	Variable	i	becomes	24

								var	a	:	array	1	..	25	of	string

								a	(i)	:=	"Ralph"								%	The	i-th	element	of	a	becomes	

								…

								var	b	:	array	1	..	25	of	string

								b	:=	a										%	Array	b	becomes	(is	assigned)	array	a

Details		

The	expression	on	the	right	of	:=	must	be	assignable	to	the	variable	on	the
left.	For	example,	in	the	above,	any	integer	value,	such	as	24,	is	assignable
to	i,	but	a	real	value	such	as	3.14	would	not	be	not	assignable	to	i.	Entire
arrays,	records	and	unions	can	be	assigned.	For	example,	in	the	above,
array	a	is	assigned	to	array	b.	See	assignability	for	the	exact	rules	of
allowed	assignments.

You	cannot	assign	a	new	value	to	a	constant	(const).

There	are	short	forms	that	allow	you	to	write	assignment	statements	more
compactly.	For	example,

	 i	:=	i	+	1

can	be	shortened	to

	 i	+=	1

In	Turing,	there	are	short	forms	for	combining	+,	=	and	*	with	assignment.
For	example,	i	*=	2	doubles	i.

There	are	also	short	forms	to	allow	any	binary	operator	to	be	combined

with	assignment.	For	example,	i	shl=	2	shifts	i	by	2	to	the	left.

begin statement

Syntax		

A	beginStatement	is:

	 begin
	 	 statementsAndDeclarations
	 end

Description		

A	begin	statement	limits	the	scope	of	declarations	made	within	it
to	the	confines	of	the	begin/end	block.	In	Turing,	begin	is	rarely
used,	because	declarations	can	appear	wherever	statements	can
appear,	and	because	every	structured	statement	such	as	if	ends
with	an	explicit	end.

Example		
								begin

												var	bigArray	:	array	1	..	2000	of	real

												…	bigArray	will	exist	only	inside	this	begin	statement…

								end

Details		

In	Pascal	programs,	begin	statements	are	quite	common	because
they	are	required	for	grouping	two	or	more	statements,	for
example,	to	group	the	statements	that	follow	then.	This	is	not
necessary	in	Turing	as	where	ever	you	can	write	a	single
statement,	you	can	also	write	several	statements.

bind declaration

Syntax		

A	bindDeclaration	is:

	 bind	[var]	id	to	variableReference
	 	 {	,	[var]	id	to	variableReference	}

Description		

The	bind	declaration	creates	a	new	name	(or	names)	for	a
variable	reference	(or	references).	You	are	allowed	to	change	the
named	item	only	if	you	specify	var.	You	can	also	bind	to	named
non	scalar	constants.

While	variableReference	is	bound	it	does	not	disappear	in	the
scope.

Example		

Rename	the	n-th	element	of	array	A	so	it	is	called	item	and	then
change	this	element	to	15.

								bind	var	item	to	A	(n)

								item	:=	15

Details		

The	scope	of	the	identifier	(item	above)	begins	with	the	bind
declaration	and	lasts	to	the	end	of	the	surrounding	program	or
statement	(or	to	the	end	of	the	surrounding	part	of	a	case	or	if
statement).	During	this	scope,	a	change	to	a	subscript	(n	above)
that	occurs	in	the	variable	reference	does	not	change	the	element
to	which	the	identifier	refers.

You	are	not	allowed	to	use	bind	at	the	outermost	level	of	the	main
program	(except	nested	inside	statements	such	as	if)	or	at	the
outermost	level	in	a	module.

You	can	also	optionally	use	the	register	keyword	to	request	that
the	bind	be	done	using	a	machine	register.	The	syntax	for
bindDeclaration	is	actually:

	 bind	[var]	[register]	id	to	variableReference
	 	 {	,	[var]	[register]	id	to	variableReference	}

In	the	current	(2002)	implementation,	programs	are	run
interpretively	using	pseudo-code	and	the	register	keyword	is
ignored.

bits extraction

Syntax		 bits	(expn,	subrange)

Description		

The	bits	operator	is	used	to	extract	a	sequence	of	bits	from	a	natural	(non-
negative)	number	expression.	The	bits	are	numbered	from	right	to	left	as	0,	1,
2	…

Example		

Set	bits	2	and	1	(third	and	second	from	the	right)	in	the	variable	d	to	be	01.
We	first	set	b	to	be	the	bit	string	1100.

								type	T12	:	1	..	2											%	Use	to	specify	bit	range

								var	d	:	nat2	:=	2#1100						%	Two	byte	natural	number

								%	At	this	point	bits(d,	T12)	=	2#10

								bits	(d,	T12)	:=	2#01

								%	At	this	point	d	=	2#1010

Example		

Set	bit	7	in	variable	n	to	be	1.	As	a	result,	n	will	equal	2#10000000.

								var	n	:	nat1	:=	0							%	A	one	byte	variable	set	to	zero

								bits	(n,	7)	:=	1								%	n	now	contains	the	pattern	10000000

Details		

The	form	of	subrange	must	be	one	of:

	 (a) 	 typeSpec 	 %	Subrange	type
	 (b) 	 compileTimeIntegerExpression

In	form	(a)	the	subrange	type	specifies	a	range	from	L	to	M	(for	least
most	significant).	This	is	a	little	confusing	because	the	subrange	is	written	
M	with	L	on	the	left	and	M	on	the	right,	but	in	a	number,	the	least	significant
bit	is	on	the	right	and	the	most	significant	is	on	the	left.	The	subrange	type
can	be	either	the	name	of	a	type,	for	example	T12,	or	an	explicit	subrange,	for
example	3	..	7.	The	values	in	the	explicit	subrange	must	be	compile	time
values.

Form	(b)	represents	the	range	n	..	n	where	n	is	the	non-negative	value	of	the
expression.	In	other	words,	both	L	and	M	equal	n.	The	expression	can	be	any
non-negative	integer	value	or	natural	number	value.

If	the	expression	expn	is	a	variable	reference,	the	bits	operation	can	be
assigned	to,	but	cannot	be	passed	to,	a	var	parameter.	For	example,	in	the
above,	bits	(d,	T12)	has	the	value	2#01	assigned	to	it.	For	this	assignment	to
be	allowed,	the	expression	expn	must	be	a	natural	number	type	(nat
nat2	or	nat4).

See	also		

explicitIntegerConstant	(for	description	of	constants	such	as	16#FFFF)	and
the	following	functions	that	convert	one	type	to	another	in	a	machine-
independent	manner:	ord,	chr,	intstr,	strint,	natstr,	and	strnat.	See	also	
and	shl	(shift	right	and	left).

body declaration

Syntax		

A	bodyDeclaration	is	one	of:

	 (a) body	procedure	procedureId
	 	 	 statementsAndDeclarations
	 	 end	procedureId
	 (b) body	function	functionId
	 	 	 statementsAndDeclarations
	 	 end	functionId
	 (c) body	procedure	id	[(paramDeclaration
	 	 	 	 	 	 {,	paramDeclaration	})]
	 	 	 statementsAndDeclarations
	 	 end	id
	 (d) body	function	id	[([paramDeclaration	{,
	 	 	 	 paramDeclaration	}])]	:	typeSpec
	 	 	 statementsAndDeclarations
	 	 end	id

Description		

A	body	declaration	is	used	to	resolve	either	a	forward	subprogram
or	a	deferred	subprogram.

You	declare	a	procedure	or	function	forward	when	you	want	to
define	its	header	but	not	its	body.	This	is	the	case	when	one
procedure	or	function	calls	another,	which	in	turn	calls	the	first.
This	situation	is	called	mutual	recursion.	The	use	of	forward	is
necessary	in	this	case	because	every	item	must	be	declared	before
it	can	be	used.	The	forward	declaration	must	be	followed	by	a
body	declaration	for	the	same	procedure	or	function.	For	details,
see	forward	declarations.

When	a	procedure	or	function	in	a	class	is	declared	to	be
deferred	(or	simply	exported	from	the	class),	it	can	be	resolved

or	overridden	afterward	by	giving	its	body	further	down	in	that
class	or	in	descendant	classes.	The	overriding	procedure	must	use
the	keyword	body.	See	class	or	"implement	by"	for	examples.

Details		

You	can	specify	the	parameter	and	return	values	of	the
subprogram	in	the	body	declaration.	However,	the	names	and
types	of	the	parameters	and	return	values	must	match	the	initial
declaration	exactly,	or	a	warning	results	and	the	parameter	list	and
return	values	from	the	body	declaration	are	ignored.

Example		

The	example	given	here	is	part	of	a	complete	Turing	program	that
includes	an	explanation	of	forward	declarations.

								var	token	:	string

								forward	procedure	expn	(var	eValue	:	real)

												import	forward	term,	var	token

								…	other	declarations	appear	here	…

								body	procedure	expn

												var	nextValue	:	real

												term	(eValue)															%	Evaluate	t

												loop																								%	Evaluate	{	+	t}

																exit	when	token	not=	"+"

																get	token

																term	(nextValue)

																eValue	:=	eValue	+	nextValue

												end	loop

								end	expn

Execute		

The	syntax	of	a	bodyDeclaration	presented	above	has	been
simplified	by	omitting	the	optional	result	identifier,	import	list,
pre	and	post	condition	and	init	clause.	See	procedure	and
function	declarations	for	descriptions	of	these	omissions.

The	"function"	or	"procedure"	token	in	the	declaration	is	now

Details		 optional.	In	other	words	the	following	code	fragment	is	legal

								forward	procedure	p

								…

								body		p

								…

								end	p

See	also		 class,	forward	and	implement	by

boolean true-false	type

Syntax		 boolean

Description		

The	boolean	type	is	used	for	values	that	are	either	true	or	false.
These	true-false	values	can	be	combined	by	various	operators
such	as	or	and	and.

Example		

								var	success	:	boolean	:=	false

								var	continuing	:=	true						%	The	type	is	boolean

								…

								success	:=	mark	>=	60

								continuing	:=	success	and	continuing

								if	continuing	then	…

Details		

This	type	is	named	after	the	British	mathematician,	George	Boole,
who	formulated	laws	of	logic.

The	operators	for	true	and	false	are	and,	or,	xor,	=>,	and	not.
For	two	true/false	values	A	and	B,	these	operators	are	defined	as
follows:

	 A	and	B	is	true	when	both	are	true
	 A	or	B	is	true	when	either	or	both	are	true
	 A	xor	B	is	true	when	either	but	not	both	are	true

	 A	=>	B	(A	implies	B)	is	true	when	both	are	true	or	when	A
is	false

	 not	A	is	true	when	A	is	false

The	and	operator	has	higher	precedence	than	or,	so	A	or	B	and	C
means	A	or	(B	and	C).

The	operators	or,	and	and	=>	are	short	circuit	operators.	For
example,	if	A	is	true	in	A	or	B,	B	is	not	evaluated.

Details		 The	boolean	type	can	be	used	as	an	index	to	an	array.

Declaration	of	an	array	with	boolean	index.

Example		
								var	a	:	array	boolean	of	int

								a	(false)	:=	10

								a	(true)	:=	20

Details		

The	put	and	get	semantics	allow	put's	and	get's	of	boolean	values.
true	values	will	be	output	as	"true"	and	false	values	will	be
output	as	"false".	The	only	legal	input	values	are	"true"	and
"false",	which	are	case	sensitive.

See	also		
explicitTrueFalseConstant	(which	discusses	the	values	true	and
false),	precedence	and	expn	(expression).

break debugger	pause	statement

Syntax		 break

Description		

On	systems	with	a	debugger,	the	environment	"pauses"	when
execution	reaches	the	break	statement.	While	"pausing"	is
environment	specific,	in	general,	the	program	stops	execution
until	the	user	presses	the	"Resume"	or	"Continue"	button.	While
paused,	the	program	variables	can	be	inspected,	stack	traces	done,
etc.

Example		
								for	i	:	1	..	100

												put	i

												break

								end	for

buttonchoose switch	mouse	modes

Syntax		 buttonchoose	(choice	:	string)

Description		

The	buttonchoose	procedure	is	used	to	change	the	mode	of	the
mouse.	In	Turing,	the	mouse	can	either	be	in	"single-button
mode"	or	in	"multi-button	mode".	In	"single-button	mode"	the
mouse	is	treated	as	a	one	button	mouse.	A	button	is	considered
pressed	when	any	button	is	pressed	and	released	only	when	all
buttons	have	been	released.

In	Turing,	the	mouse	starts	in	"single-button	mode".

The	parameter	choice	can	be	one	of	"singlebutton",	"onebutton"
(which	switch	the	mouse	into	"single-button	mode")	or
"multibutton"	(which	switches	the	mouse	into	"multi-button
mode").

Example		

A	program	that	displays	the	status	of	the	mouse	at	the	top	left
corner	of	the	screen.

								buttonchoose	("multibutton")

								var	x,	y,	button,	left,	middle,	right	:	int

								mousewhere	(x,	y,	button)

								left	:=	button	mod	10											%	left	=	0	or	1

								middle	:=	(button	-	left)	mod	100			%	middle	=	0	or	10

								right	:=	button	-	middle	-	left					%	right	=	0	or	100

								if	left	=	1	then

												put	"left	button	down"

								end	if

								if	middle	=	10	then

												put	"middle	button	down"

								end	if

								if	right	=	100	then

												put	"right	button	down"

								end	if

Execute		

See	also		

buttonmoved	and	buttonwait	to	get	mouse	events	saved	in	a
queue.	See	also	mousewhere	to	get	the	current	status	of	mouse
button(s).

See	also	predefined	unit	Mouse.

buttonmoved has	a	mouse	event	occurred

Syntax		 buttonmoved	(motion	:	string)	:	boolean

Description		

The	buttonmoved	function	indicates	whether	there	is	a	mouse
event	of	the	appropriate	type	on	the	mouse	queue.	Events	are
either	"up",	"down",	"updown"	or	"downup"	events	(although	the
"downup"	and	"updown"	are	the	same	event).

The	parameter	motion	must	be	one	of	"up",	"down",	"updown"	or
"downup".	If	an	event	of	the	type	requested	is	in	the	queue,
buttonmoved	returns	true.	If	the	event	is	not	in	the	queue,	then
buttonmoved	returns	false.

In	"single-button	mode"	(where	the	mouse	is	treated	like	a	one-
button	mouse),	a	"down"	event	occurs	whenever	all	the	buttons
are	up	and	a	button	is	pressed.	An	"up"	event	takes	place	when
the	last	button	is	released	so	that	no	buttons	remain	pressed.

In	"multi-button	mode",	a	"down"	event	occurs	whenever	any
button	is	pressed,	and	an	"up"	event	occurs	whenever	any	button
is	released.

Example		

This	program	draws	random	circles	on	the	screen	until	the	user
clicks	the	mouse	button,	whereupon	is	starts	drawing	random
boxes.	Clicking	the	mouse	button	switches	between	the	two.

								var	circles:	boolean	:=	true

								loop

												var	x,	y,	radius,	clr:	int

												if	buttonmoved	("down")	then

																var	buttonnumber,	buttonupdown	:	int

																buttonwait	("down",	x,	y,	buttonnumber,	

																circles	:=	not	circles

												end	if

												randint	(x,	0,	maxx)

												randint	(y,	0,	maxy)

												randint	(radius,	0,	100)

												randint	(clr,	0,	maxcolor)

												if	circles	then

																drawfilloval	(x,	y,	radius,	radius,	clr)

												else

																drawfillbox	(x,	y,	x	+	radius,	y	+	radius

												end	if

								end	loop

Execute		

Example		

This	is	an	example	demonstrating	how	to	check	for	both	character
and	mouse	input	at	the	same	time.

								var	ch	:	string	(1)

								var	x,	y,	btnnum,	btnupdown	:	int

								loop

												if	hasch	then

																getch	(ch)

																locate	(1,	1)

																put	"The	character	entered	is	a:	",	ch

												end	if

												if	buttonmoved	("down")	then

																buttonwait	("down",	x,	y,	btnnum,	btnupdown

																locate	(1,	1)

																put	"The	button	was	clicked	at	position:	",	

												end	if

								end	loop

Execute		

Details		

buttonmoved	can	be	thought	of	as	the	mouse	equivalent	of	hasch
in	that	they	both	check	for	something	in	a	queue	and	both	return
immediately.

See	also		

buttonwait	to	get	mouse	events	saved	in	the	queue.	See	also
buttonchoose	to	switch	between	"single-button	mode"	and
"multi-button	mode".

See	also	predefined	unit	Mouse.

buttonwait get	a	mouse	event	procedure

Syntax		
buttonwait	(motion	:	string,	
	 var	x,	y,	buttonnumber,	buttonupdown	:	int)

Description		

The	buttonwait	procedure	gets	information	about	a	mouse	event	and
removes	it	from	the	queue.

The	parameter	motion	must	be	one	of	"up",	"down",	"updown"	or
"downup".	If	an	event	of	the	type	requested	is	in	the	queue,
buttonwait	returns	instantly.	If	there	isn't	such	an	event,	buttonwait
waits	until	there	is	one	and	then	returns	(much	like	getch	handles
keystrokes).

In	"single-button	mode"	(where	the	mouse	is	treated	like	a	one-button
mouse),	a	"down"	event	occurs	whenever	all	the	buttons	are	up	and	a
button	is	pressed.	An	"up"	event	takes	place	when	the	last	button	is
released	so	that	no	buttons	remain	pressed.

In	"multi-button	mode",	a	"down"	event	occurs	whenever	any	button	is
pressed,	and	an	"up"	event	occurs	whenever	any	button	is	released.

The	parameters	x	and	y	are	set	to	the	position	of	the	mouse	cursor
when	the	button	was	pressed.	The	parameter	buttonnumber	is	set	to	1
when	in	"single-button	mode".	In	"multi-button	mode",	it	is	set	to	1	if
the	left	button	was	pressed,	2	if	the	middle	button	was	pressed,	and	3
if	the	right	button	was	pressed.	The	parameter	buttonupdown	is	set	to
1,	if	a	button	was	pressed	and	0	if	a	button	was	released.

Example		

This	program	draws	lines.	It	starts	a	line	where	the	user	presses	down
and	continues	to	update	the	line	while	the	mouse	button	is	held	down.
When	the	button	is	released,	the	line	is	permanently	draw	and	the	user
can	draw	another	line.

								var	x,	y,	buttonnumber,	buttonupdown,	buttons	:	

								var	nx,	ny	:	int

								loop

												buttonwait	("down",	x,	y,	buttonnumber,	buttonupdown

												nx	:=	x

												ny	:=	y

												loop

																drawline	(x,	y,	nx,	ny,	0)		%	Erase	previous	line

																exit	when	buttonmoved	("up")

																mousewhere	(nx,	ny,	buttons)

																drawline	(x,	y,	nx,	ny,	1)		%	Draw	line	to	position

												end	loop

												buttonwait	("up",	nx,	ny,	buttonnumber,	buttonupdown

												drawline	(x,	y,	nx,	ny,	2)		%	Draw	line	to	final	position

								end	loop

Execute		

Example		

In	the	previous	example,	when	the	mouse	moves,	the	line	is	erased	by
drawing	it	in	white.	This	erases	anything	that	the	line	was	drawn	on
top	of,	including	previous	lines.	A	more	complete	example	involving
the	clicking	and	dragging	of	filled	rectangles	using	the	mouse	is
available.	In	this	example,	the	background	is	fully	restored	when	the
rectangle	is	moved	by	using	"xor".

Example		

This	is	an	example	demonstrating	how	to	check	for	both	character	and
mouse	input	at	the	same	time.

								var	ch	:	string	(1)

								var	x,	y,	btnnum,	btnupdown	:	int

								loop

												if	hasch	then

																getch	(ch)

																locate	(1,	1)

																put	"The	character	entered	is	a:	",	ch

												end	if

												if	buttonmoved	("down")	then

																buttonwait	("down",	x,	y,	btnnum,	btnupdown

																locate	(1,	1)

																put	"The	button	was	clicked	at	position:	",	

												end	if

								end	loop

Execute		

Details		

buttonwait	can	be	thought	of	as	the	mouse	equivalent	of	getch	in	that
they	both	read	something	in	a	queue	and	both	wait	until	they	get	the
thing	they're	looking	for.

See	also		

buttonwait	to	see	if	an	appropriate	event	is	in	the	queue.	See	also
buttonchoose	to	switch	between	"single-button	mode"	and	"multi-
button	mode".

See	also	predefined	unit	Mouse.

case selection	statement

Syntax		

A	caseStatement	is:

	 case	expn	of

	 	 {	label	compileTimeExpn	{,	compileTimeExpn
}	:

	 	 	 statementsAndDeclarations	}
	 	 [label	:
	 	 	 statementsAndDeclarations]
	 end	case

Description		

A	case	statement	is	used	to	choose	among	a	set	of	statements	(and
declarations).	One	set	is	chosen	and	executed	and	then	execution
continues	just	beyond	end	case.

The	expression	(expn)	following	the	keyword	case	is	evaluated
and	used	to	select	one	of	the	alternatives	(sets	of	declarations	and
statements)	for	execution.	The	selected	alternative	is	the	one
having	a	label	value	equaling	the	case	expression.	If	none	are
equal	and	there	is	a	final	label	with	no	expression,	that	alternative
is	selected.

Example		

Output	a	message	based	on	value	of	mark.

								case	mark	of

												label	9,	10	:			put	"Excellent"

												label	7,	8	:								put	"Good"

												label	6	:							put	"Fair"

												label	:					put	"Poor"

								end	case

Execute		

Example		

Output	a	message	based	on	value	of	name.

								case	name	of

												label	"horse",	"cow"	:		put	"Farm	animal"

												label	"tiger",	"lion"	:	put	"Jungle	animal"

												label	"cat",	"dog"	:				put	"Pet"

												label	:									put	"Unknown	animal"

								end	case

Execute		

Details		

The	case	expression	is	required	to	match	one	of	the	labels.	If	it
does	not,	there	must	be	a	final	label	with	no	expression.	Label
expressions	must	have	values	known	at	compile	time.	All	label
values	must	be	distinct.	The	case	expression	and	the	label	values
must	have	the	same	equivalent	type,	which	must	be	an	integer,
char,	boolean,	an	enum	type	or	strings.

Note	that	there	is	no	way	to	express	a	range	of	values	(for
example	from	5	to	10)	in	a	label.	Each	individual	value	must	be
expressed	in	the	label.

catenation	(+) joining	together	strings

Syntax		

A	catenation	is:

	 stringExpn	+	stringExpn

Description		
Two	strings	(stringExpns),	char	or	char(n)	values	can	be	joined
together	(catenated)	using	the	+	operator.

Example		

								var	lastName,	wholeName	:	string

								lastName	:=	"Austere"

								wholeName	:=	"Nancy"	+	"		"	+	lastName

																%	The	three	strings	Nancy,	a	blank	and	Austere

																%	catenated	together	to	make	the	string

																%	"Nancy		Austere".	This	string	becomes	the

																%	value	of	wholeName

Details		

The	length	of	a	string	catenation	is	limited	to	255	characters.

Catenation	is	sometimes	called	concatenation.

Catenation	can	also	be	applied	to	char	and	char(n)	values.	See
char	and	char(n).	If	either	operand,	s	or	t	in	s	+	t,	is	a	string	or	a
dynamic	char(n)	(length	not	known	at	compile	time),	the	result
type	is	string.	Otherwise	(when	both	s	and	t	are	char	or	non-
dynamic	char(n))	the	result	type	is	char(n).

The	result	of	catenation	is	considered	to	be	a	compile	time	value
if	both	operands	are	compile	time	values.

If	both	operands	have	the	type	char	or	char(n)	neither	of	which	is
a	dynamic	char(n),	the	result	is	of	type	char(n),	which	is	also	of	a
non	dynamic	type.	This	allows	the	creation	of	very	long	char(n)
values	that	can	effectively	span	line	boundaries	using	catenation
to	join	lines.	If	either	operand	is	a	dynamic	type	or	a	string	type,
the	catenation	produces	a	string,	whose	length	is	limited	to	255
characters.

substrings	(for	separating	a	strings	into	parts),	repeat	(for	making

See	also		

repeated	catenations),	string	type,	length,	and	index	(to
determine	where	one	string	is	located	inside	another).

See	also	string,	char,	char(n),	explicitStringConstant,
explicitCharConstant,	substring	and	length.

ceil real-to-integer	function

Syntax		 ceil	(r	:	real)	:	int

Description		 Returns	the	smallest	integer	greater	than	or	equal	to	r.

Details		

The	ceil	(ceiling)	function	is	used	to	convert	a	real	number	to	an
integer.	The	result	is	the	smallest	integer	that	is	greater	than	or
equal	to	r.	In	other	words,	the	ceil	function	rounds	up	to	the
nearest	integer.	For	example,	ceil	(3)	is	3,	ceil	(2.25)	is	3	and	ceil
(-8.43)	is	-8.

See	also		 See	also	the	floor	and	round	functions.

char(n) type

Syntax		 char	(numberOfCharacters)

Description		
Each	variable	whose	type	is	a	char(n)	contains	exactly	n
characters.

Example		

Canadian	postal	codes	contain	six	characters,	for	example,	M4V
1Y9.	This	is	represented	in	a	char(6)	variable:

								var	postalCode	:	char	(6)	:=	'M4V1Y9'

Explicit	constants	for	the	char(n)	type	use	single	quotes	as	in
'M4V1Y9',	as	opposed	to	explicit	string	constants	which	use
double	quotes,	as	in	"Nancy".	A	single	character	single	quoted
character,	such	as	'A',	is	considered	to	have	the	type	char	instead
of	char(n),	but	since	these	two	types	can	be	assigned	to	each
other	and	compared	to	each	other,	this	fact	has	little	consequence.

The	type	char(n)	is	generally	more	difficult	to	use	than	the	string
type,	which	is	favored	for	most	simple	programs.	The	type
char(n)	has	the	advantage	that	it	is	efficient	in	terms	of	both
space	and	time.	In	particular,	it	is	represented	as	n	bytes	in	the
computer's	memory.	By	contrast,	the	string	type	must	use	extra
space	(a	trailing	zero	byte	in	current	implementations)	to
represent	the	current	length	and	allocates	space	for	the	maximum
value	it	can	hold.

The	form	of	numberOfCharacters	is	one	of:

	 (a)	expn 	 %	Integer	value
	 (b)	* 	 %	Only	in	subprogram	parameters

The	first	form	determines	n.	If	the	expression	is	a	run	time	value,
the	type	is	considered	to	be	dynamic	char(n).	The	value	of	n	must
be	at	least	1.	The	second	form	is	used	only	for	subprogram
parameters	and	uses	the	length	of	the	actual	parameter.	This	too,
is	considered	to	be	a	dynamic	char(n)	type.	Dynamic	char(n)

Details		

types	can	only	be	passed	to	char(*)	parameters.	Dynamic	char(n)
types	have	the	same	restrictions	as	dynamic	arrays.	This	implies
they	cannot	be	assigned	as	a	whole	and	cannot	appear	in	record
and	union	types.

An	implementation	may	impose	a	limit,	recommended	to	be	at
least	32767,	on	the	length	n.

Values	of	the	char(n)	type	can	be	assigned	and	they	can	be
compared	for	both	equality	and	for	ordering,	but	only	if	they	have
the	same	length	and	they	are	not	dynamic	(i.e.	the	length	must	be
known	at	compile	time).

Values	of	the	char(n)	type	can	be	read	and	written	by	get	and	put
statements.

The	char(n)	type	is	a	nonscalar,	which	implies	that	its	parameters
are	always	passed	by	reference	(by	means	of	an	implicit	pointer).

As	is	true	for	the	char	type,	all	256	possible	values	of	an	8-bit
byte	are	allowed	for	each	character	in	char(n)	type.	There	is	no
pattern	left	to	be	used	for	the	"initialized	value",	so	there	is	no
uninitialized	checking	for	char(n).

In	general,	you	can	freely	intermix	the	values	of	the	types	char,
char(n)	and	string.	This	means	that	catenation	(+),	comparisons,
length	and	substrings	can	be	applied	to	any	of	these	types.	See
catenation	and	substring.	If	two	non	dynamic	char(n)	values	(or
char	values)	are	catenated,	the	result	is	a	char(n)value.	If	either
are	dynamic,	it	is	a	string	value.	This	implies	that	very	long
char(n)	values	can	be	created	by	catenating	them	together,	for
example	to	initialize	a	char(n)	variable.

A	char	value	can	be	assigned	(or	passed	to	an	non	var	parameter)
with	automatic	conversion	to	a	char(1)	variable	and	vice	versa.
String	values	of	length	1	can	be	assigned	to	char	variables.
Character	(char)	values	can	be	assigned	to	string	variables,
yielding	a	string	of	length	1.	String	values	of	length	n	are
assignable	with	automatic	conversion	to	char(n)	variables.	Values
of	type	char(n)	can	be	assigned	with	automatic	conversion	to

string	variables.

When	comparing	two	char(n)	values,	as	in	s	>	t,	if	both	are	non-
dynamic	and	of	the	same	length,	they	are	compared	without
converting	to	strings.	If	either	are	dynamic,	they	are	converted	to
strings	and	then	compared.

See	also		
the	char	type	which	is	much	like	char(1).	See	also	the	string
type.

char type

Syntax		 char

Description		
Each	variable	whose	type	is	a	char	contains	a	single	character,	such	as
the	letter	A,	the	digit	3	or	the	special	character	&.

Example		

Count	characters	until	a	period	is	found.	Character	c	is	read	using	a	
statement	and	is	compared	to	the	explicit	character	constant	'.'.

								var	c	:	char

								var	counter	:=	0

								loop

												exit	when	eof

												get	c											%	Read	a	single	character

												exit	when	c	=	'.'			%	Single	quotes	for	char	constant

												counter	:=	counter	+	1

								end	loop

								put	counter,	"	characters	before	the	period"

Execute		

Example		

Count	capital	letters.	This	example	illustrates	the	use	of	the	char	type
as	the	subscript	type	for	the	frequency	array,	the	use	of	character
variable	c	as	a	subscript,	and	the	use	of	d	as	a	for	counter	that	ranges
across	the	letters	A	to	Z.

								var	frequency	:	array	'A'	..	'Z'	of	nat

								for	d	:	'A'	..	'Z'

												frequency	(d)	:=	0

								end	for

								loop																%	Tabulate	use	of	capital	letters

												exit	when	eof

												var	c	:	char

												get	c											%	Read	one	character

												if	c	>=	'A'	and	c	<=	'Z'	then

																frequency	(c)	:=	frequency	(c)	+	1

												end	if

								end	loop

								for	d	:	'A'	..	'Z'						%	Print	frequency	of	capital	letters

												put	d,	"	",	frequency	(d)

								end	for

Execute		

Details		

The	type	string	(or	char(n))	is	used	instead	of	char	when	more	than
one	character	needs	to	be	stored,	such	as	the	string	of	characters	Henry
Unless	the	program	needs	to	be	quite	efficient,	it	is	usually	easier	to	use
the	string	type.	See	also	the	char(n)	type,	which	always	stores	exactly
n	characters.

The	char	type	differs	from	the	string(1)	type	in	the	following	way:
char	always	represents	exactly	one	character,	while	string(1)	can
represent	either	the	null	string	or	a	string	containing	one	character.	The
char	type	is	similar	to	the	char(1)	type	in	that	both	contain	at	most	one
character.

The	char	type	is	an	index	type	and	can	be	used,	for	example,	as
subscripts,	for	ranges	and	case	labels.	For	example,	this	declaration

	 var	charCounts	:	array	char	of	int

creates	an	array	whose	subscripts	are	characters.

The	char	type	is	a	scalar	type,	which	implies	that	its	parameters	are
passed	by	value,	instead	of	by	reference	(which	is	the	case	for	char
and	string).

Values	of	the	char	type	can	be	assigned	and	they	can	be	compared	for
both	equality	and	ordering.	Explicit	char	constants	are	written	as	a
character	surrounded	by	single	quotes,	for	example,	'A'.	For	details,

including	how	to	write	control	characters,	see	explicitCharConstant

Characters	can	be	read	and	written	by	get	and	put	statements.

There	are	256	char	values,	corresponding	to	the	distinct	patterns	in	an
8-bit	byte.	This	allows	the	patterns	eos	(internal	value	0)	and	uninitchar
(internal	value	128)	to	be	char	values	(these	patterns	are	not	allowed	in
the	string	type;	see	the	string	type).	All	256	patterns	are	used,	so	there
is	no	pattern	left	to	be	the	"uninitialized	value".	Uninitialized	checking
is	not	done	for	the	char	type.

The	ord	and	chr	functions	convert	between	the	char	values	and	their
corresponding	numeric	representation	in	a	byte.	See	ord	and	chr.

In	general,	you	can	freely	intermix	the	values	of	the	types	char,
char(n)	and	string.	This	means	that	catenation	(+),	comparisons,
length	and	substrings	can	be	applied	to	any	of	these	types.	See	char
for	details	about	conversions	between	char,	char(n)	and	string.

See	also		

string	and	char(n)	for	related	types.	See	ord	and	chr	functions	for
conversion	from	and	to	ASCII	values.	See	explicitCharConstant	for
information	on	special	characters	like	caret	(^)	and	backslash	(\).

cheat type	cheating

								Dangerous

Syntax		

A	typeCheat	is	one	of:

	 (a) cheat	(targetType,	expn	[:	sizeSpec])
	 (b) #	expn
	 (c) id	:	cheat	typeSpec

Description		

A	type	cheat	interprets	the	representation	(bits)	of	one	type	as	another
type.	Type	cheats	are	dirty	(machine-dependent)	and	sometimes
dangerous	(arbitrary	corruption)	and	should	be	used	only	by
programmers	who	know	the	underlying	computer	representation	of
values.

Form	(b)	is	a	short	form	type	cheat	in	which	the	target	type	is	a	natural
number.

Form	(c)	is	used	as	a	parameter	in	a	subprogram	declaration.	It	causes
whatever	is	passed	in	to	the	parameter	to	be	interpreted	as	typeSpec

Example		

The	character	'B'	is	assigned	to	variable	i,	whose	type	is	considered	to
be	char	(although	it	is	really	int1).

								var	i	:	int1								%	One	byte	integer

								cheat	(char,	i)	:=	'B'

This	assignment	is	equivalent	(on	byte	oriented	computers)	to	either	of
the	following:

								i	:=	cheat	(int1,	'B')

								i	:=	ord	('B')

The	form	of	targetType	must	be	one	of:

	 (a) 	 [id	.]	typeId
	 (b) 	 int,	int1,	int2	or	int4

Details		

	 (c) 	 nat,	nat1,	nat2	or	nat4
	 (d) 	 boolean
	 (e) 	 char	[(numberOfCharacters)]
	 (f) 	 string	[(maximumLength)]
	 (g) 	 addressint

In	form	(a)	the	beginning	identifier	id	must	be	the	name	of	a	module,
monitor	or	class	that	exports	the	typeId.	Each	of	numberOfCharacters
and	maximumLength	must	be	compile	time	integer	expressions.

If	the	expn	in	a	type	cheat	is	a	variable	reference	and	the	sizeSpec	is
omitted,	the	type	cheat	is	considered	to	be	a	variable	whose	type	is
targetType.	This	allows,	for	example,	the	type	cheat	to	be	assigned	to,
as	in:

	 cheat	(char,	i)	:=	'B'

If	the	expn	is	a	value	that	is	not	a	variable	reference,	or	if	sizeSpec	is
present,	the	type	cheat	is	an	expression	value	whose	type	is	targetType

The	sizeSpec	is	a	compile	time	integer	expression	giving	the	size	of	the
expn's	value.	It	can	be	specified	only	for	integer	or	natural	number
values	(where	it	must	be	1,	2	or	4)	or	real	values	(where	it	must	be	4	or
8).

A	type	cheat	is	carried	out	in	two	steps.	The	first	step	converts	the	value
if	necessary	to	the	size	given	by	sizeSpec.	The	second	step,	which
involves	no	generated	code,	interprets	the	value	as	the	target	type.

The	prefix	operator	#	is	a	short	form	for	a	class	of	type	cheats.	It
interprets	its	argument	as	a	natural	number.	In	general,	#	expn	is	the
same	as	cheat	(natn,	expn)	where	n	is	determined	as	follows.	If	the
expn	is	a	variable	or	expression	of	size	1,	2	or	4,	n	is	the	size	of	the
item,	otherwise	n	is	4.

Example		

Set	the	second	character	of	d	so	it	has	the	numeric	representation	24.	In
general,	if	c	is	a	character,	then	#c	=	ord(c).	Note	that	#c	can	have	a
number	value	assigned	to	it,	but	ord(c)	cannot.

								var	d	:	char	(3)

								#d	(2)	:=	24								%	Same	as	d(2)	:=	chr(24)

Example		

The	notation	16#FFFF	means	FFFF	in	base	16,	which	is	32767	in	base
10	and	is	16	1's	in	a	row	in	base	2.	This	same	pattern	is	the	two's
complement	representation	of	the	value	-1	in	a	2-byte	integer.

								var	i	:	int2

								#i	:=	16#FFFF							%	Equivalent	to	i	:=	-1

Example		

The	following	example	prints	out	a	string	located	at	addressint	myAddr

								procedure	PrintString	(str	:	cheat	string)

												put	str

								end	PrintString	

								

								var	myAddr	:	addressint

								...													%	Assigned	a	value	to	myAddr

								PrintString	(myAddr)				%	myAddr	will	be	treated	as	a	string

Details		

An	implementation	may	prohibit	certain	type	cheats.	Memory
alignment	requirements	may	render	some	type	cheats	unfeasible.	It	is
dangerous	to	consider	a	value	to	have	a	targetType	larger	than	the
value's	type.	An	implementation	may	prohibit	certain	type	cheats	on
register	scalar	items.

See	also		

explicitIntegerConstant	(for	description	of	constants	such	as	16#FFFF)
and	the	following	functions	that	convert	one	type	to	another	in	a
machine-independent	manner:	ord,	chr,	intstr,	strint,	natstr,	and
strnat.

checked compiler	directive

Description		

Unchecked	means	that	certain	run	time	tests,	which	take	place	by
default,	can	be	eliminated,	usually	to	make	the	program	more
efficient	at	the	risk	of	unreliability.	The	keyword	checked,	used
as	a	statement,	requests	that	the	disabling	of	checking,	previously
requested	by	the	keyword	unchecked,	be	re-enabled.	See
unchecked	for	details	and	an	example.

chr integer-to-character	function

Syntax		 chr	(i	:	int)	:	char

Description		

The	chr	function	is	used	to	convert	an	integer	to	a	character.	The
character	is	the	i-th	character	of	the	ASCII	sequence	of	characters
(except	on	the	IBM	mainframe,	which	uses	the	EBCDIC
sequence.)	For	example,	chr	(65)	is	"A".

The	ord	function	is	the	inverse	of	chr,	so	for	any	character	c,:

	 chr(ord	(c))	=	c.

Execute		

Details		

There	are	two	sets	of	characters	representing	values	128-255:	the
ANSI	values	(the	default	values	for	Windows),	and	the	MS-DOS
OEM	character	set,	which	contains	various	line	drawing
characters.	To	use	the	MS-DOS	character	set,	you	must	use	the
setscreen	("msdos")	command.

Example		

Another	example	is	available	that	displays	the	entire	characters
set,	both	the	regular	ANSI	character	set	and	the	MS_DOS	OEM
character	set.

See	also		 ord,	intstr	and	strint	functions.

class declaration

Pointer	p	is	used	to	locate	individual	objects	of	the	class.	The	new	statement
creates	one	of	these	objects.	The	statement

								p	->	push	("Harvey")

is	a	short	form	for:

								stackClass	(p)	.	push	("Harvey")

This	inserts	the	string	Harvey	into	the	stack	object	located	by	p.

Syntax		

A	classDeclaration	is:

	 [monitor]
	 class	id
	 	 [inherit	inheritItem]
	 	 [implement	implementItem]
	 	 [implement	by	implementByItem]
	 	 [import	[var]	importItem	{,	[var]	importItem
	 	 [export	[howExport]	id	{,	[howExport]	id	}]
	 	 statementsAndDeclarations
	 end	id

Description		

A	class	declaration	defines	a	template	for	a	package	of	variables,	constants,	types,
subprograms,	etc.	The	name	of	the	class	(id)	is	given	in	two	places,	just	after	
just	after	end.	Items	declared	inside	the	class	can	be	accessed	outside	of	the	class	only
if	they	are	exported.	Items	from	outside	the	class	that	are	to	be	used	in	the	class,	need
to	be	imported	(unless	they	are	predefined	or	pervasive).	Instances	(objects)	of	a	class
are	created	using	the	new	statement.	Each	object	is	essentially	a	module	located	by	a
pointer.

This	class	is	a	template	for	creating	objects,	each	of	which	is	a	stack	of	strings.	(See	the
module	description	for	the	corresponding	module	that	implements	a	single	stack	of
strings.)

Example		

								class	stackClass				%	Template	for	creating	individual	stacks

												export	push,	pop

								

												var	top	:	int	:=	0

												var	contents	:	array	1	..	100	of	string

								

												procedure	push	(s	:	string)

																top	:=	top	+	1

																contents	(top)	:=	s

												end	push

								

												procedure	pop	(var	s	:	string)

																s	:=	contents	(top)

																top	:=	top	-	1

												end	pop

								end	stackClass

								

								var	p:	pointer	to	stackClass				%	Short	form:	var

								new	stackClass,	p											%	Short	form:	new	p

								p	->	push	("Harvey")

								var	name	:	string

								p	->	pop	(name)									%	This	sets	name	to	be	Harvey

Execute		

The	new	statement	is	used	to	create	objects	of	a	class.	Many	instances	of	a	class	can
exist	at	a	given	time,	each	located	by	a	pointer.	The	free	statement	is	used	to	destroy
objects	that	are	no	longer	of	use.	Turing	does	not	support	garbage	collection
(automatic	recovery	of	space	belonging	to	inaccessible	objects).

See	modules	for	a	discussion	of	importing,	exporting	and	related	concepts.	When	an
object	is	created	by	new,	its	initialization	code	is	executed.	In	this	example,	the	object's
top	variable	is	set	to	0.	As	is	true	in	modules,	an	exported	subprogram	of	an	object's
class	cannot	be	called	until	the	object	is	completely	initialized.

You	are	not	allowed	to	create	variables	of	a	class,	as	in:

								var	s	:	stack							%	Not	legal!

Details		

If	the	monitor	keyword	is	present	(just	before	class),	the	objects	are	monitors.	This
means	that	only	one	process	at	a	time	can	be	active	in	the	object.	See	
process.

Inherit	lists	are	used	to	specify	inheritance.	See	inherit	list.	Implement	and	implement-
by	lists	provide	a	special	kind	of	expansion	which	supports	the	separation	of	an
interface	from	its	implementation.	See	implement	list	and	implement-by
cannot	contain	both	an	inherit	and	an	implement	list.

Class	declarations	can	be	nested	inside	modules	and	monitors	but	cannot	be	nested
inside	other	classes	or	inside	procedures	or	functions.	A	class	must	not	contain	a	
as	one	of	its	(outermost)	declarations.	A	return	statement	cannot	be	used	as	one	of	the
(outermost)	statements	in	a	class.

A	class	cannot	export	variables	(or	run	time	constants)	as	unqualified
object	has	a	distinct	set	of	variables).

The	syntax	of	a	classDeclaration	presented	above	has	been	simplified	by	leaving	out
pre,	invariant	and	post	clauses.	The	full	syntax	which	supports	pre
post	is	the	same	as	that	for	modules.	The	initialization	of	classes	is	the	same	as	that	for
modules.	See	module.

We	will	give	an	example	in	which	a	subprogram	in	one	class	overrides	the
corresponding	subprogram	in	a	class	that	is	being	inherited.	The	example	is	based	on	a
program	that	implements	a	file	system	inside	an	operating	system.	All	files	have	
close,	read	and	write	operations.	Some	files,	called	Device	files,	also	have	an	operation
called	ioCtl	(input/output	control).	The	kind	of	file	determines	the	implementation
method.	Here	is	the	expansion	(inheritance)	hierarchy	among	the	classes	of	files.

The	class	called	File	gives	the	interface	to	all	possible	kinds	of	files.	The	
implements	files	that	are	text	(ASCII	characters).	The	Device	class	gives	the	interface

Example		

to	all	files	that	have	the	ioCtl	operation	in	addition	to	open,	close,	read	
Tape	and	Disk	classes	implement	files	that	are	actually	physical	tapes	or	disks.	Here	is
the	declaration	of	the	File	class:

								class	File

												export	open,	close,	read,	write

												deferred	procedure	open	(…	parameters	for	open	…)

												deferred	procedure	close	(…	parameters	for	close	…)

												deferred	procedure	read	(…	parameters	for	read	…)

												deferred	procedure	write	(…	parameters	for	write	…)

								end	File

The	TextFile	class	implements	the	File	interface	by	giving	variables	declarations	and
procedure	bodies	for	ASCII	files:

								class	TextFile

												inherit	File

												var	internalTextFileData	:

																…	internal	data	for	text	files	…

								

												body	procedure	open

																…	body	for	open	for	text	files	…

												end	open

								

												…	bodies	for	close,	read	and	write	procedures	for	text	files…

								end	TextFile

Objects	to	represent	individual	text	files	are	created	using	the	new	statement:

								var	textFilePtr	:	^	TextFile

																								%	Pointer	will	locate	a	text	file	object

								new	textFilePtr					%	Create	a	text	file	object

								

								textFilePtr	->	read	(…	actual	parameters	…)		%	Read	text	file

The	Device	class	adds	the	ioCtl	procedure	to	the	File	interface.

								class	Device

												inherit	File

												export	ioCtl

												deferred	procedure	ioCtl	(…	parameters	for	ioCtl

								end	Device

The	Disk	class	provides	data	and	procedures	to	implement	a	file	that	is	actually	a	disk
(the	Tape	class	is	analogous):

								class	Disk

												inherit	Device

												var	internalDiskFileData	:	…	internal	data	for	disk	files

								

												body	procedure	open

																…	body	for	open	…

												end	open

								

												…	bodies	for	close,	read,	write	and	ioCtl	procedures	for	disk	…

								end	Disk

A	pointer	that	can	locate	any	kind	of	File	object	is	declared	this	way:

								var	filePtr	:	^	File

This	may	locate,	for	example,	a	TextFile:

								filePtr	:=	textFilePtr

This	assignment	is	allowed	because	filePtr's	corresponding	class	(File
of	textFilePtr's	corresponding	class	(TextFile).	It	is	guaranteed	that	the	object	now
located	by	filePtr	supports	a	version	of	all	the	operations	of	a	File	(
and	write).

When	we	call	a	procedure	in	the	object	located	by	filePtr,	the	actual	procedure	called
will	depend	upon	the	object:

								filePtr	->	read	(…	actual	parameters	…)

For	example,	if	filePtr	currently	locates	a	Disk	file,	this	will	call	the	
from	the	Disk	class.	This	is	an	example	of	dynamic	binding	in	which	
read	to	be	used	is	selected	at	run	time	and	this	choice	is	based	on	the	object	located	by
filePtr.	This	is	called	polymorphism,	because	File	objects	can	have	more	than	one
form.

As	another	example,	consider	class	C,	which	contains	headers	and	bodies	for	functions
f	and	g.	C	exports	functions	f	and	g.	There	is	also	a	class	D,	which	inherits	from	
Class	D	contains	a	body	that	overrides	the	body	for	g.	D	also	contains	a	header	and
body	for	function	h.	D	exports	function	h.

Pointer	p	has	been	declared	to	locate	an	object	of	class	C,	but	at	runtime	
object	of	class	D.	When	p	is	used	to	call	f,	by	means	of	p->f,	the	body	of	
appears	in	C,	is	invoked.	When	p	is	used	to	call	g,	by	means	of	p->
body	in	D	is	invoked.	Any	attempt	to	use	p	to	call	h	is	illegal	because	

Example		

used	to	call	functions	that	are	exported	from	C.

								class	C

												export	f,	g

								

												procedure	f

																put	"C's	f"

												end	f

								

												procedure	g

																put	"C's	g"

												end	g

								end	C

								

								class	D

												inherit	C											%	Inherit	f	and	g

								

												body	procedure	g				%	Overrides	g	in	C

																put	"***	D's	g	***"

												end	g

								

												procedure	h

																put	"***	D's	h	***"

												end	h

								end	D

								var	p	:	pointer	to	C				%	p	can	point	to	any	descendant	of	C

								new	D,	p								%	p	locates	an	object	of	class	D

								p	->	f										%	Outputs	"C's	f"

								p	->	g										%	Outputs	"***	D's	g	***"

								p	->	h										%	Causes	error	"'h'	is	not	in	export	list	of	'C'"

Execute		

See	also		

module,	monitor	and	unit.	See	also	import	list,	export	list,	implement
implement	by	list,	and	inherit	list.	See	also	deferred	subprogram.	See	also	
and	objectclass.

clock millisecs	used	procedure

Syntax		 clock	(var	c	:	int)

Description		

The	clock	statement	is	used	to	determine	the	amount	of	time	since	a
program	(process)	started	running.	Variable	c	is	assigned	the
number	of	milliseconds	since	the	program	started	running.

Example		

This	program	tells	you	how	much	time	it	has	used.

								var	timeRunning	:	int

								clock	(timeRunning)

								put	"This	program	has	run	",	timeRunning,	"	milliseconds"

Execute		

Details		
On	Apple	Macintoshes,	the	hardware	resolution	of	duration	is	in
units	of	17	milliseconds	(1/60-th	of	a	second).

See	also		
delay,	time,	sysclock,	wallclock	and	date	statements.

See	also	predefined	unit	Time.

close file	statement

Syntax		

A	closeStatement	is:

	 close	:	fileNumber

Description		

In	Turing,	files	are	read	and	written	using	a	fileNumber.	In	most
cases,	this	number	is	given	a	value	using	the	open	statement,	which
translates	a	file	name,	such	as	"Master",	to	a	file	number,	such	as	5.
When	the	program	is	finished	using	the	file,	it	disconnects	from	the
file	using	the	close	statement.

Example		

This	program	illustrates	how	to	open,	read	and	then	close	a	file.

								var	fileName	:	string	:=	"Master"			%	Name	of	file

								var	fileNo	:	int																%	Number	of	file

								var	inputVariable	:	string	(100)

								open	:	fileNo,	fileName,	read

								…

								read	:	fileNo,	inputVariable

								…

								close	:	fileNo

Details		

In	a	Turing	implementation,	there	will	generally	be	a	limit	on	the
number	of	currently	open	files.	This	limit	will	typically	be	around	20.
To	avoid	exceeding	this	limit,	a	program	that	uses	many	files	one
after	another	should	close	files	that	are	no	longer	in	use.

If	a	program	does	not	close	a	file,	the	file	will	be	automatically
closed	when	the	program	finishes.

There	is	an	older	and	still	acceptable	version	of	close	that	has	this
syntax:

								close	(fileNumber	:	int)

See	also		 the	open,	get,	put,	read,	write,	seek	and	tell	statements.

cls clear	screen	graphics	procedure

Syntax		 cls

Description		
The	cls	(clear	screen)	procedure	is	used	to	blank	the	output
window.	The	cursor	is	set	to	the	top	left	(to	row	1,	column	1).

Details		

The	entire	output	window	is	set	to	the	current	text	background
color	(as	set	by	colorback	or	Text.ColorBack).

The	output	window	must	be	in	"graphics"	mode.	See	setscreen
for	details.

See	also		 See	also	predefined	unit	Text.

collection declaration

Syntax		

A	collectionDeclaration	is	one	of:

	 (a) var	id	{	,	id	}	:	collection	of	typeSpec
	 (b) var	id	{	,	id	}	:	collection	of	forward	typeId

Description		

A	collection	declaration	creates	a	new	collection	(or	collections).
A	collection	can	be	thought	of	as	an	array	whose	elements	are
dynamically	created	(by	new)	and	deleted	(by	free).	Elements	of
a	collection	are	referred	to	by	the	collection's	name	subscripted	by
a	pointer.	See	also	new,	free	and	pointer.

Example		

Create	a	collection	that	will	represent	a	binary	tree.

								var	tree	:	collection	of

												record

																name	:	string	(10)

																left,	right	:	pointer	to	tree

												end	record

								

								var	root	:	pointer	to	tree

								new	tree,	root

								tree	(root)	.	name	:=	"Adam"

The	statement	"new	C,p"	creates	a	new	element	in	collection	C
and	sets	p	to	point	at	i.	If	there	is	no	more	memory	space	for	the
element,	though,	p	is	set	to	nil	(C),	which	is	the	null	pointer	for
collection	C.	The	statement	"free	C,p"	deletes	the	element	of	C
pointed	to	by	p	and	sets	p	to	nil	(C).	In	each	case,	p	is	passed	as	a
var	parameter	and	must	be	a	variable	of	the	pointer	type	of	C.

The	keyword	forward	(form	b	above)	is	used	to	specify	that	the
typeId	of	the	collection	elements	will	be	given	later	in	the
collection's	scope.	The	later	declaration	must	appear	at	the	same
level	(in	the	same	list	of	declarations	and	statements)	as	the
original	declaration.	This	allows	cyclic	collections,	for	example,
when	a	collection	contains	pointers	to	another	collection,	which	in
turn	contains	pointers	to	the	first	collection.	In	this	case,	the

Details		

typeId	is	the	name	of	the	type	that	has	not	yet	been	declared;
typeId	cannot	be	used	until	its	declaration	appears.	A	collection
whose	element	type	is	forward	can	be	used	only	to	declare
pointers	to	it	until	the	type's	declaration	is	given.

Suppose	pointer	q	is	equal	to	pointer	p	and	the	element	they	point
to	is	deleted	by	"free	C,p".	We	say	q	is	a	dangling	pointer
because	it	seems	to	locate	an	element,	but	the	element	no	longer
exists.	A	dangling	pointer	is	considered	to	be	an	uninitialized
value.	It	cannot	be	assigned,	compared,	used	as	a	collection
subscript,	or	passed	to	free.

Collections	cannot	be	assigned,	compared,	passed	as	parameters,
bound	to,	or	named	by	a	const	declaration.	Collections	must	not
be	declared	in	procedures,	functions,	records	or	unions.

The	same	short	forms	for	classes	can	be	also	used	for	collections.
These	include	omission	of	the	collection	name	in	new,	free	and
nil	together	with	the	^	and	->	notations.	Pointers	to	types	(see
pointer)	can	also	be	used,	which	are	often	more	convenient	to	use
than	collections.

The	syntax	of	a	collectionDeclaration	presented	above	has	been
simplified	by	leaving	out	unchecked	collections.	With	this
feature,	a	collectionDeclaration	is	one	of:

	 (a)	var	id	{	,	id	}	:	[unchecked]	collection	of	typeSpec

	 (b)	var	id	{	,	id	}	:	[unchecked]	collection	of	forward
typeId

When	unchecked	is	specified,	the	checking	to	verify	that	pointers
actually	locate	elements	is	removed.	This	checking	is	done	using
a	"time	stamp"	attached	to	each	element	and	pointer,	and	making
sure	that	these	match	with	each	other.	When	unchecked	is
specified,	the	execution	is	dangerous,	but	faster	and	smaller,	and
the	pointers	become	simply	machine	addresses	(as	in	C).

color text	color	graphics	procedure

Syntax		 color	(Color	:	int)

Description		

The	color	procedure	is	used	to	change	the	currently	active	color.
This	is	the	color	of	characters	that	are	to	be	put	on	the	screen.
The	alternate	spelling	is	colour.

Example		

This	program	prints	out	the	message	"Bravo"	three	times,	each	in
a	different	color.

								setscreen	("graphics")

								for	i	:	1	..	3

												color	(i)

												put	"Bravo"

								end	for

Execute		

Example		

This	program	prints	out	a	message.	The	color	of	each	letter	is
different	from	the	preceding	letter.	For	letter	number	i	the	color
number	is	i	mod	maxcolor	+	1.	This	cycles	repeatedly	through	all
the	available	colors.

								setscreen	("graphics")

								const	message	:=	"Happy	New	Year!!"

								for	i	:	1	..	length	(message)

												color	(i		mod	maxcolor	+	1)

												put	message	(i)	..

								end	for

Execute		

Details		

See	maxcolor	for	the	number	of	colors	available	in	the	various
"graphics"	modes.	The	background	color	that	text	appears	upon
can	be	set	using	the	colorback	procedure.

The	screen	must	be	in	a	"graphics"	mode	to	use	the	color
procedure.	See	setscreen	for	details.

See	also		
colorback,	whatcolor	and	maxcolor.

See	also	predefined	unit	Text.

colorback background	color	procedure

Syntax		 colorback	(Color	:	int)

Description		
The	colorback	procedure	is	used	to	change	the	color	upon	which	text
appears.	The	alternate	spelling	is	colourback.

Example		

When	the	message	"Greetings"	is	output,	the	background	surrounding	each
letter	will	be	inred.

								setscreen	("graphics")

								colorback	(red)

								put	"Greetings"	..

Execute		

Details		

When	a	newline	is	output,	such	as	when	the	put	statement	does	not	contain
a	..	at	the	end,	the	rest	of	the	line	is	cleared	from	cursor	to	the	right	edge	of
the	output	window	in	the	text	background	color.

Example		

This	program	will	result	in	the	word	"Hello"	being	displayed	in	red	on	a
green	background	followed	by	the	word	"Again"	displayed	in	red	on	a
yellow	background.	The	yellow	background	stretches	across	the	window.

								setscreen	("graphics")

								color	(red)

								colorback	(green)

								put	"Hello	"	..	%	The	".."	at	the	end	of	line	stops	the	newline

								colorback	(yellow)

								put	"Again"	%	The	rest	of	the	line	is	cleared	in	yellow

Execute		

Example		

This	program	displays	the	letter	'X'	in	16	different	colors	on	16	different
backgrounds.	Note	that	the	letter	is	not	visible	when	the	text	color	and	the
bacground	color	are	the	same

								setscreen	("graphics")

								for	row	:	0	..	15

												colorback	(row)

												for	column	:	0	..	15

																color	(column)

																locate	(row,	column)

																put	"X"	..

												end	for

								end	for

Execute		

Details		

See	maxcolor	for	the	number	of	background	colors	available	.	The	color	in
which	text	appears	can	be	set	using	the	color	procedure.

The	screen	must	be	in	a	"graphics"	mode	to	use	the	color	procedure.	See
setscreen	for	details.

See	also		
color	and	whatcolorback.

See	also	predefined	unit	Text.

comment remark	statement

Description		

A	comment	is	a	remark	to	the	reader	of	the	program,	which	the
computer	ignores.	The	most	common	form	of	comment	in	Turing
starts	with	a	percent	sign	(%)	and	continues	to	the	end	of	the	current
line;	this	is	called	an	end-of-line	comment.	There	is	also	the
bracketed	comment,	which	begins	with	the	/*	and	ends	with	*/	and
which	can	continue	across	line	boundaries.

Example		

								%	This	is	an	end-of-line	comment

								var	x	:	real								%	Here	is	another	end-of-line	comment

								const	s	:=	"Hello"

								/*	Here	is	a	bracketed	comment	that

												lasts	for	two	lines	*/

								const	pi	:=	3.14159

Details		
In	the	BASIC	language,	comments	are	called	remarks	and	start	with
the	keyword	REM.	In	Pascal,	comments	are	bracketed	by	(*	and	*).

comparisonOperator

Syntax		

A	comparisonOperator	is	one	of:

	 (a) < 	 %	Less	than
	 (b) > 	 %	Greater	than
	 (c) = 	 %	Equal
	 (d) <= 	 %	Less	than	or	equal;	subset
	 (e) >= 	 %	Greater	than	or	equal;	superset
	 (f) not= 	 %	Not	equal

Description		

A	comparison	operator	is	placed	between	two	values	to	determine
their	equality	or	ordering.	For	example,	7	>	2	is	true	and	so	is
"Adam"	<	"Cathy".	The	comparison	operators	can	be	applied	to
numbers	as	well	as	to	enumerated	types.	They	can	also	be	applied
to	strings	to	determine	the	ordering	between	strings	(see	the
string	type	for	details).	Arrays,	records,	unions	and	collections
cannot	be	compared.	Boolean	values	(true	and	false)	can	be
compared	only	for	equality	(=	and	not=);	the	same	is	true	of
pointer	values.	Set	values	can	be	compared	using	<=	and	>=,
which	are	the	subset	and	superset	operators.	The	not=	operator
can	be	written	as	~=.

Comparisons	among	classes	is	also	supported	(see	class).	If	C	and
D	are	classes,	C	<=	D	means	D	is	a	descendant	of	(inherits	from)
C.	See	class.

See	also		

See	also	infix	operators	and	precedence	of	operators.	See	also	the
int,	real,	string,	set,	boolean	and	enum	types.	See	also	string
comparison.

Concurrency

Description		

This	unit	contains	the	predefined	procedures	that	deal	with
concurrency.	It	contains	one	predefined	function,	although
conceptually	it	contains	three	other	subprograms.

All	routines	in	the	Concurrency	module	are	exported	unqualified.
(This	means	you	can	call	the	entry	points	directly.)

Entry
Points		

empty* 	 Returns	true	if	no	processes	are	waiting	on	the
condition	queue.

getpriority* 	 Returns	the	priority	of	the	current	process.
setpriority* 	 Sets	the	priority	of	the	current	process.

simutime 	 Returns	the	number	of	simulated	time	units	that
have	passed.

*	Part	of	the	language,	conceptually	part	of	the	Concurrency
unit.

Concurrency.empty Part	of	Concurrency	module

Syntax		 empty	(variableReference)	:	boolean

Description		

The	empty	function	is	used	in	a	concurrent	program.	It	returns
true	if	the	variableReference,	which	must	be	a	condition	variable,
has	no	processes	waiting	for	it.	Processes	join	the	queue	of	a
condition	variable	by	executing	the	wait	statement,	and	are
awakened	by	the	signal	statement.

Status		

Part	of	the	language	and	only	conceptually	part	of	the
Concurrency	unit.

This	means	that	you	can	only	call	the	function	by	calling	empty,
not	by	calling	Concurrency.empty.

See	also		 condition,	wait,	signal,	fork	and	monitor.

Concurrency.getpriority Part	of	Concurrency	module

Syntax		 getpriority	:	nat

Description		

The	getpriority	function	returns	the	priority	of	an	executing
process	in	a	concurrent	program.	A	smaller	value	means	a	faster
speed.

Status		

Part	of	the	language	and	only	conceptually	part	of	the
Concurrency	unit.

This	means	that	you	can	only	call	the	function	by	calling
getpriority,	not	by	calling	Concurrency.getpriority.

See	also		 setpriority,	fork	and	monitor.

Concurrency.setpriority Part	of	Concurrency	module

Syntax		 setpriority	(p	:	nat)

Description		

The	setpriority	procedure	is	used	to	set	the	priority	of	a	process
in	a	concurrent	program.	This	priority	cannot	be	counted	on	to
guarantee	critical	access	to	shared	variables.	A	smaller	value	of	p
means	increased	speed.	The	argument	to	setpriority	may	be
limited	to	the	range	0	to	
2**15	-	1.

Status		

Part	of	the	language	and	only	conceptually	part	of	the
Concurrency	unit.

This	means	that	you	can	only	call	the	function	by	calling
setpriority,	not	by	calling	Concurrency.setpriority.

See	also		 getpriority,	fork	and	monitor.

Concurrency.simutime Part	of	Concurrency	module

Syntax		 simutime	:	int

Description		
The	simutime	function	returns	the	number	of	simulated	time
units	that	have	passed	since	program	execution	began.

Details		

Simulated	time	only	passes	when	all	process	are	either	paused	or
waiting.	This	simulates	the	fact	that	CPU	time	is	effectively
infinitely	faster	than	"pause"	time.

Example		

This	prints	out	the	simulated	time	passing	between	two	processes.
This	will	print	out	3,	5,	6,	9,	10,	12,	15,	15,	18,	20,	21,	...

								process	p	(t	:	int)

												loop

																pause	t

																put	simutime

												end	loop

								end	p

								

								fork	p	(3)

								fork	p	(5)

Execute		

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	simutime	or
by	calling	Concurrency.simutime.

condition declaration

Syntax		

A	conditionDeclaration	is:

	 var	id	{	,	id	}	:	[array	indexType	{,	indexType	}	of
]

	 	 [conditionOption]	condition

Description		

A	condition	is	essentially	a	queue	of	sleeping	processes.	It	is	used
in	a	concurrent	program	to	allow	processes	to	block	themselves
(by	the	wait	statement)	and	later	to	be	awakened	(by	the	signal
statement).	A	condition	variable,	which	can	occur	only	inside	a
monitor	(a	special	kind	of	module	that	handles	concurrency)	or
monitor	class,	is	used	by	the	wait	and	signal	statements	for
putting	processes	to	sleep	and	later	waking	them	up.

Example		

The	processes	use	this	monitor	to	gain	exclusive	access	to	a
resource.	A	process	wanting	to	use	the	resource	calls	the	request
entry	point	and	is	blocked	until	the	resource	is	free.	When	the
process	is	finished	with	the	resource,	it	calls	the	release	entry
point.	This	monitor	is	essentially	a	binary	semaphore	in	which	the
semaphore's	P	operation	is	the	request	and	the	V	is	the	release.

								monitor	resource

												export	request,	release

								

												var	available	:	boolean	:=	true

												var	nowAvailable	:	condition

								

												procedure	request

																if	not	available	then

																				wait	nowAvailable			%	Go	to	sleep

																end	if

																assert	available

																available	:=	false						%	Allocate	resource

												end	request

								

												procedure	release

																assert	not	available				%	Resource	is	allocated

																available	:=	true							%	Free	the	resource

																signal	nowAvailable	%	Wake	up	one	process

																																%	If	any	are	sleeping

												end	release

								

								end	resource

								process	worker

												loop

																…

																resource.request								%	Block	until	available

																…	use	resource	…

																resource.release

												end	loop

								end	worker

								

								fork	worker													%	Activate	one	worker

								fork	worker													%	Activate	another	worker

Execute		

A	conditionOption	is	one	of:

	 (a) 	 priority
	 (b) 	 deferred
	 (c) 	 timeout

The	priority	option	requires	that	the	corresponding	wait
statements	include	priorities.	Options	(b)	and	(c)	declare	deferred
conditions.	A	signal	to	a	deferred	condition	causes	the	signaled
process	to	become	ready	to	enter	the	monitor	when	the	monitor
becomes	inactive.	The	signaling	process	continues	running	in	the
monitor.	A	signal	to	an	immediate	(non	deferred)	condition	causes
the	signaled	process	to	begin	running	in	the	monitor	immediately.
The	signaling	process	waits	to	re-enter	the	monitor	when	the
monitor	becomes	inactive.	All	conditions	in	a	device	monitor
must	be	deferred	(or	timeout).

A	timeout	option	means	the	signaling	is	deferred	and	that	an

Details		 extra	parameter	to	the	wait	statement	must	give	a	timeout
interval.	If	a	process	waits	longer	than	its	interval,	it	is
automatically	signaled.	Beware	that	the	empty	function	can	be
non-repeatable	when	applied	to	timeout	conditions.	For	example,
empty(c)	may	not	be	equal	to	empty(c)	in	a	single	expression.	In
the	current	(1999)	version	of	Turing,	the	time	for	time	outs	is
measured	in	simulation	time	rather	than	real	time.	See	the	pause
statement.

Conditions	cannot	be	named	as	types,	cannot	be	contained	in
records,	unions	or	collections	and	cannot	be	declared	in
statements	(such	as	begin	or	loop)	or	in	subprograms.	They	can
only	be	declared	in	monitors	and	monitor	classes.

There	is	no	guaranteed	order	of	progress	among	awakened
deferred	processes,	processes	signaling	immediate	conditions,	and
processes	attempting	to	enter	an	active	monitor.

Note	that	conditionOption	must	precede	the	keyword	condition.

See	also		
wait	and	signal.	See	also	monitor	and	fork.	See	also	empty.	See
also	pause.

Config

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
getting	configuration	information	about	the	machine	and
environment	on	which	the	program	is	being	run.	It	exists	in	order
to	allow	users	to	obtain	information	about	the	system	that	may
only	be	available	at	run	time.

All	routines	in	the	Config	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Config.").

Entry
Points		

Display 	 Returns	information	about	the	display	currently
attached.

Lang 	
Returns	information	about	the	language
environment	that	the	program	is	currently	running
within.

Machine 	 Returns	information	about	the	hardware	on	which
the	program	is	running.

Config.Display Part	of	Config	module

Syntax		 Config.Display	(displayCode	:	int)	:	int

Description		

Config.Display	returns	information	about	the	display	(or	displays)	attached	to
the	computer.	The	parameter	displayCode	determines	what	sort	of	information	is
passed	back.	displayCode	has	a	number	of	possible	values,	all	summarized	by	a
set	of	predefined	constants.

At	the	time	of	this	writing,	the	following	constants	were	defined:

cdScreenHeight 	 return	the	height	of	the	screen	in	pixels.
cdScreenWidth 	 return	the	width	of	the	screen	in	pixels.

cdMaxNumColors 	 return	the	maximum	number	of	colors	supported	by	thedisplay.

cdMaxNumColours 	 return	the	maximum	number	of	colors	supported	by	thedisplay.

Execute		

Example		

This	program	prints	the	screen	width	and	height.

								const	width	:	int	:=	Config.Display	(cdScreenWidth

								const	height:	int	:=	Config.Display	(cdScreenHeight

								put	"The	screen	width	is	",	width,	"		the	screen	height	is	",	

Details		

On	the	Macintosh,	it's	possible	to	have	multiple	displays	attached	to	a	single
computer.	To	get	information	about	the	extra	displays,	you	can	call
Config.Display	with	any	of	the	first	four	constants	above	plus	one,	two,	three,
etc.	This	will	return	the	height,	width	or	maximum	number	of	colors	for	the
second,	third	and	beyond	displays.

Example		

This	program	prints	the	screen	width	and	height	of	the	second	display	on	a
Macintosh.

								const	width	:	int	:=	Config.Display	(cdScreenWidth

								const	height:	int	:=	Config.Display	(cdScreenHeight

								put	"The	second	display	size	is	",	width,	"		x	",	

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Config.Display
calling	Display.

Config.Lang Part	of	Config	module

Syntax		 Config.Lang	(langCode	:	int)	:	int

Description		

Config.Lang	returns	information	about	the	language	and	the	limitations
of	the	implementation	that	the	program	is	currently	running.	The
parameter	langCode	determines	what	sort	of	information	is	passed	back.
langCode	has	a	number	of	possible	values,	all	summarized	by	a	set	of
predefined	constants.

At	the	time	of	this	writing,	the	following	constants	were	defined:

clRelease 	 return	the	current	release	number	of	theenvironment	(e.g.	4.02	=	400).

clLanguageVersion 	 return	the	current	version	number	of	thelanguage	(e.g.	1.81	=	181).

clMaxNumStreams 	
return	the	maximum	number	of	I/O	streams
(used	by	the	open	and	close	statements)	that
can	be	opened	at	once.

clMaxNumDirStreams 	 return	the	maximum	number	of	directorystreams	that	can	be	opened	at	once.

clMaxNumRunTimeArgs 	 return	the	maximum	number	of	run-timearguments.

Example		

This	program	prints	the	current	environment	version.

								const	version	:	int	:=	Config.Lang	(clLanguageVersion

								put	"The	language	version	number	is	",	version

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Config.Lang
not	by	calling	Lang.

Config.Machine Part	of	Config	module

Syntax		 Config.Machine	(machineCode	:	int)	:	int

Description		

Config.Machine	returns	information	about	the	machine	that	the
program	is	currently	running	on.	The	parameter	machineCode
determines	what	sort	of	information	is	passed	back.	machineCode
has	a	number	of	possible	values,	all	summarized	by	a	set	of
predefined	constants.

At	the	time	of	this	writing,	the	following	constants	were	defined:

cmProcessor 	 return	an	encoding	of	the	processor	number.
cmFPU 	 return	1	if	there	is	an	FPU	installed,	0	if	not.

cmOS 	 return	the	current	version	number	of	the	operatingsystem	(e.g.	6.07	=	607).

Example		

This	program	prints	whether	the	machine	has	an	FPU	or	not.

								if	Config.Machine	(cmFPU)	=	1	then

												put	"The	machine	has	an	FPU	installed"

								else

												put	"The	machine	does	not	have	an	FPU	installed"

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Config.Machine,	not	by	calling	Machine.

const constant	declaration

Syntax		

A	constantDeclaration	is:

	 const	id	[:	typeSpec]	:=	initializingValue

Description		A	const	declaration	creates	a	name	id	for	a	value.

Example		

								const	c	:=	3

								const	s	:=	"Hello"						%	The	type	of	s	is	string

								const	x	:=	sin	(y)	**	2

								const	a	:	array	1..3	of	int	:=	init	(1,	2,	3)

								const	b	:	array	1..3	of	int	:=	a

								const	c	:	array	1..2,	1..2	of	int	:=	init	(1,	2,	3,	4)

																%	So	c(1,1)=1,	c(1,2)=2,	c(2,1)=3,	c(2,2)=4

Details		

The	initializing	value	can	be	an	arbitrary	value	or	else	a	list	of	items	separated	by
commas	inside	init	(…).	The	syntax	of	initializingValue	is:

	 a. 	 expn
	 b. 	 init	(initializingValue,	initializingValue)

Each	init	(…)	corresponds	to	an	array,	record	or	union	value	that	is	being	initialized.
These	must	be	nested	for	initialization	of	nested	types.	In	the	Pascal	language,	constants
must	have	values	known	at	compile	time;	Turing	has	no	such	restriction.

When	the	typeSpec	is	omitted,	the	variable's	type	is	taken	to	be	the	(root)	type	of	the
initializing	expression,	for	example,	int	or	string.	The	typeSpec	cannot	be	omitted	for
dynamic	arrays	or	when	the	initializing	value	is	of	the	form	init	(…).	The	values	inside
init	(…)	must	be	known	at	compile	time.

The	keyword	pervasive	can	be	inserted	just	after	const.	When	this	is	done,	the	constant
is	visible	inside	all	subconstructs	of	the	constant's	scope.	Without	pervasive
is	not	visible	inside	modules,	monitors	or	classes	unless	explicitly	imported.	Pervasive
constants	need	not	be	imported.	You	can	abbreviate	pervasive	as	an	asterisk	(

You	can	also	optionally	use	the	register	keyword	to	request	that	the	constant	be	placed	in
a	machine	register.	The	syntax	for	constantDeclaration	is	actually:

								const	[pervasive]	[register]	id	[:	typeSpec]	:=	

In	the	current	(2002)	implementation,	programs	are	run	interpretively	using	pseudo-code,
which	has	no	machine	registers,	and	the	register	keyword	is	ignored.	See	also	
for	restrictions	on	the	use	of	register	constants.

constantReference use	of	a	constant

Syntax		

A	constantReference	is:

	 constantId	{	componentSelector	}

Description		

In	a	Turing	program,	a	constant	is	declared	and	given	a	name
(constantId)	and	then	used.	Each	use	is	called	a	constant
reference.

If	the	constant	is	an	array,	record	or	union,	its	parts	(components)
can	be	selected	using	subscripts	and	field	names	(using
componentSelectors).	The	form	of	a	componentSelector	is	one	of:

	 (a) 	 (expn	{,	expn})
	 (b) 	 .	fieldId

Form	(a)	is	used	for	subscripting	(indexing)	arrays.	The	number
of	array	subscripts	must	be	the	same	as	in	the	array's	declaration.
Form	(b)	is	used	for	selecting	a	field	of	a	record	or	union.
Component	selectors	are	used	in	the	same	manner	as	variable
references.	See	variableReference	for	details.	See	also	const
declaration	and	explicitConstant.

Example		

								var	radius	:	real

								const	pi	:=	3.14159					%	Constant	declaration

								…

								put	"Area	is:	",	pi	*	radius	**2

																												%	pi	is	a	constant	reference

cos cosine	function	(radians)

Syntax		 cos	(r	:	real)	:	real

Description		
The	cos	function	is	used	to	find	the	cosine	of	an	angle	given	in
radians.	For	example,	cos	(0)	is	1.

Example		

This	program	prints	out	the	cosine	of	p/6,	2p/6,	3p/6,	up	to	12p/6
radians.

								const	pi	:=	3.14159

								for	i	:	1	..	12

												const	angle	:=	i	*	pi	/	6

												put	"Cos	of	",	angle,	"	is	",	cos	(angle)

								end	for

Execute		

See	also		

the	sin	and	tan	functions	for	calculating	sine	and	tangent.

the	cosd	function	which	finds	the	cosine	of	an	angle	given	in
degrees.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

cosd cosine	function	(degrees)

Syntax		 cosd	(r	:	real)	:	real

Description		
The	cosd	function	is	used	to	find	the	cosine	of	an	angle	given	in
degrees.	For	example,	cosd	(0)	is	1.

Example		

This	program	prints	out	the	cosine	of	30,	60,	90,	up	to	360
degrees.

								for	i	:	1	..	12

												const	angle	:=	i	*	30

												put	"Cos	of	",	angle,	"	is	",	cosd	(angle)

								end	for

Execute		

See	also		

the	sind	and	tand	functions	for	calculating	sine	and	tangent.

the	cos	function	which	finds	the	cosine	of	an	angle	given	in
radians.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

date procedure

Syntax		 date	(var	d	:	string)

Description		

The	date	statement	is	used	to	determine	the	current	date.	Variable
d	is	assigned	a	string	in	the	format	"dd	mmm	yy",	where	mmm	is
the	first	3	characters	of	the	month,	e.g.,	"Apr".	For	example,	if	the
date	is	Christmas	2002,	d	will	be	set	to	"25	Dec	02".

Example		

This	program	greets	you	and	tells	you	the	date.

								var	today	:	string

								date	(today)

								put	"Greetings!!		The	date	today	is	",	today

Execute		

Details		

Be	warned	that	Turing	gets	the	date	from	the	operating	system.	If
the	date	is	is	not	correctly	set	in	the	operating	system,	then	the
date	procedure	will	give	incorrect	results.

See	also		
delay,	clock,	sysclock,	wallclock	and	time	statements.

See	also	predefined	unit	Time.

declaration create	a	variable

Syntax		

A	declaration	is	one	of:

	 (a) variableDeclaration
	 (b) constantDeclaration
	 (c) typeDeclaration
	 (d) bindDeclaration
	 (e) procedureDeclaration
	 (f) functionDeclaration
	 (g) moduleDeclaration
	 (h) classDeclaration
	 (i) processDeclaration
	 (j) monitorDeclaration
	 (k) conditionDeclaration

Description		

A	declaration	creates	a	new	name	(or	names)	for	a	variable,
constant,	type,	procedure,	function,	module,	class,	process,
monitor,	or	condition.	These	names	are	called	identifiers,	where
id	is	the	abbreviation	for	identifier.

Example		

								var	width	:	int									%	Variable	declaration

								const	pi	:=	3.14159					%	Constant	declaration

								type	range	:	0	..	150							%	Type	declaration

								

								procedure	greet									%	Procedure	declaration

												put	"Hello		world"

								end	greet

Ordinarily,	each	new	name	must	be	distinct	from	names	that	are
already	visible;	that	is,	redeclaration	is	not	allowed.	There	are
certain	exceptions	to	this	rule,	for	example,	names	of	parameters
and	fields	of	records	can	be	the	same	as	existing	visible	variables.
Variables	declared	inside	a	subprogram	(a	procedure	and
function)	are	allowed	to	be	the	same	as	variables	global	to

Details		

(outside	of)	the	subprogram.

The	effect	of	a	declaration	(its	scope)	lasts	to	the	end	of	the
construct	in	which	the	declaration	occurs;	this	will	be	the	end	of
the	program,	the	end	of	the	surrounding	procedure,	function	or
module,	the	end	of	a	loop,	for,	case	or	begin	statement,	or	the
end	of	the	then,	elsif,	or	else	clause	of	an	if	statement,	or	the	end
of	the	case	statement	alternative.

A	name	must	be	declared	before	it	can	be	used;	this	is	called	the
DBU	(Declaration	Before	Use)	rule.	The	exceptions	to	this	rule
use	the	keyword	forward,	as	in	import	lists	and	in	collection
declarations.

A	declaration	can	appear	any	place	a	statement	can	appear.	This
differs	from	the	Pascal	language,	in	which	declarations	are
allowed	only	at	the	beginning	of	the	program	or	at	the	beginning
of	a	procedure	or	function.	Each	declaration	can	optionally	be
followed	by	a	semicolon	(;).

There	are	certain	restrictions	on	the	placement	of	declarations.
Procedures	and	functions	cannot	be	declared	inside	other
procedures	and	functions	nor	inside	statements	(for	example,	not
inside	an	if	statement).	A	bind	declaration	cannot	appear	at	the
outer	level	of	either	the	main	program	or	a	module.	A	condition
declaration	can	appear	only	inside	a	monitor.	Processes	cannot	be
declared	inside	procedures,	functions,	monitors	or	classes.	Classes
cannot	be	declared	inside	classes.	However,	modules	and
monitors	can	be	declared	inside	classes	and	vice	versa.	Monitors
can	be	declared	inside	modules,	not	vice	versa.

deferred subprogram	declaration

Syntax		

A	deferredDeclaration	is:

	 deferred	subprogramHeader

Description		

A	procedure	or	function	is	declared	to	be	deferred	when	you	want
to	be	able	to	override	the	subprogram	in	an	expansion.	The
procedure	or	function	must	be	in	a	module,	monitor	or	class.

Example		

The	display	procedure	is	deferred	in	this	class	of	stacks	to	allow
various	ways	of	graphically	displaying	the	stack	on	the	screen:

								class	stack

												export	push,	pop

												…	local	declarations	…

												…	declarations	of	the	push	and	pop	procedures	…

												deferred	procedure	display	(howbig	:	int)

								end	stack

An	expansion	to	the	stack	class	can	give	a	body	for	display,	as	in:

								class	stackWithSimpleDisplay

												body	procedure	display						%	(howbig	:	int)

																			…	graphically	display	the	stack	on	the	screen	…

												end	display

								end	stackWithSimpleDisplay

The	following	creates	a	stack	that	can	be	displayed	and	displays	it:

								var	p	:	^stackWithSimpleDisplay

								new	p

								…

								p	->	display	(25)							%	Display	the	stack	on	the	screen

A	deferred	procedure	is	resolved	by	giving	its	body.	This	can	be
done	in	the	scope	(module,	monitor	or	class)	containing	the
deferred	declaration	(following	the	deferred	declaration)	or	in	any
expansion	of	that	scope.	Only	one	resolution	per	scope	is	allowed.
Unresolved	subprograms	can	be	called,	but	they	immediately	abort.

All	exported	subprograms	are	implicitly	deferred	and	can	be

Details		 overridden	in	expansions.

During	initialization	of	a	module,	monitor	or	object	of	a	class,
deferred	subprograms	(including	exported	subprograms)	cannot	be
called.	This	restriction	prevents	accessing	an	object	before	it	is	fully
initialized.

A	deferred	declaration	must	not	appear	in	the	main	program.

See	also		
module,	monitor	and	class.	See	also	export	list,	import	list,
inherit	list,	implement	list	and	implement	by	list.

delay procedure

Syntax		 delay	(duration	:	int)

Description		
The	delay	statement	is	used	to	cause	the	program	to	pause	for	a
given	time.	The	time	duration	is	in	milliseconds.

Example		

This	program	prints	the	integers	1	to	10	with	a	second	delay
between	each.

								for	i	:	1	..	10

												put	i

												delay	(1000)				%	Pause	for	1	second

								end	for

Execute		

Details		

On	Apple	Macintoshes,	the	hardware	resolution	of	duration	is	in
units	of	17	milliseconds	(1/60th	of	a	second).	For	example,
delay(500)	will	delay	the	program	by	about	half	a	second,	but
may	be	off	by	as	much	as	17	milliseconds.

See	also		
sound,	clock,	sysclock,	wallclock,	time	and	date	statements.

See	also	predefined	unit	Time.

Dir

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
directories.	You	can	use	these	subprograms	to	list	the	contents	of
directories,	create	directories,	change	directories	and	return	the
current	directory.

All	routines	in	the	Dir	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Dir.").

Entry
Points		

Open 	 Opens	a	directory	stream	in	order	to	get	a	listing	of
the	directory	contents.

Get 	 Gets	the	next	file	name	in	the	directory	listing.

GetLong 	 Gets	the	next	file	name	and	other	information	in	the
directory	listing.

Close 	 Closes	the	directory	stream.
Create 	 Creates	a	new	directory.
Delete 	 Deletes	a	directory	(must	be	empty).
Change 	 Changes	the	current	execution	directory.
Current 	 Returns	the	current	execution	directory.
Exists 	 Returns	whether	a	directory	exists.

Details		

Path	names	in	Turing	can	be	expressed	using	either	forward
slashes	or	backslashes.	For	example,
Dir.Change	("d:\\turing	files\\assignment	3")	or
Dir.Change	("d:/turing	files/assignment	3")	are	both	legal.
Note	that	backslashes	must	be	doubled	in	string	literals.	The	"."
directory	represent	the	current	directory	(as	in	Dir.Open	(".")),
and	the	".."	directory	represents	the	parent	directory.	For	example,
if	the	current	execution	directory	is	"d:/turing	files/assignment	3",
then	Dir.Change	("..")	changes	the	current	execution	directory	to
"d:/turing	files".

See	also		

File	unit	for	more	explanation	of	the	different	ways	of	specifying
a	path	name	of	a	file	or	directory	under	the	different	operating
systems.

Dir.Change Part	of	Dir	module

Syntax		 Dir.Change	(directoryPathName	:	string)

Description		

Dir.Change	changes	the	execution	directory	to	that	specified	by
the	parameter	directoryPathName.	This	is	the	equivalent	of	doing
a	cd	in	UNIX.

Under	Microsoft	Windows,	specifying	a	drive	in	the
directoryPathName	parameter	causes	the	drive	to	become	the
default	drive	(unlike	the	DOS	cd	command).

Details		

If	the	Dir.Change	call	fails,	then	Error.Last	will	return	a	non-
zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
will	return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	changes	to	the	directory	called	/usr/west	and	then
lists	the	current	directory.

								Dir.Change	("/usr/west")

								if	Error.Last	=	eNoError		then

												put	"Directory	changed"

								else

												put	"Did	not	change	the	directory."

												put	"Error:	",	Error.LastMsg

								end	if

								put	"The	current	execution	directory	is	",	Dir.Current

Example		

An	example	demonstrating	the	use	of	several	of	the	Dir
subprograms	is	available.	In	this	example,	a	directory	is	created,	a
file	is	written	to	the	directory,	an	attempt	is	made	to	delete	the
directory,	the	file	is	deleted,	and	then	the	directory	is	deleted.

This	example	demonstrates	the	use	of	Dir.Change,	Dir.Current,
Dir.Create,	and	Dir.Delete.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Dir.Change,	not	by	calling	Change.

Dir.Close Part	of	Dir	module

Syntax		 Dir.Close	(streamNumber	:	int)

Description		

Dir.Close	is	part	of	a	series	of	four	subprograms	that	help	users
get	directory	listings.	Dir.Close	is	used	to	close	a	directory	stream
number	opened	by	Dir.Open.	After	the	directory	stream	number
is	closed,	it	can	not	be	used	with	Dir.Get	or	Dir.GetLong.

Details		

If	the	Dir.Close	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	prints	a	listing	of	all	the	files	in	the	directory
datafiles.

								var	streamNumber	:	int

								var	fileName	:	string

								streamNumber	:=	Dir.Open	("datafiles")

								assert	streamNumber	>	0

								loop

												fileName	:=	Dir.Get	(streamNumber)

												exit	when	fileName	=	""

												put	fileName

								end	loop

								Dir.Close	(streamNumber)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Dir.Close,	not	by	calling	Close.

Dir.Create Part	of	Dir	module

Syntax		 Dir.Create	(directoryPathName	:	string)

Description		

Dir.Create	is	used	to	create	the	directory	specified	by	the
parameter	directoryPathName.	This	is	the	equivalent	of	doing	a
mkdir	in	DOS	or	UNIX.	On	the	Macintosh,	it	creates	a	folder.

Details		

If	the	Dir.Create	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	creates	the	directory	called	information.

								Dir.Create	("information")

								if	Error.Last	=	eNoError		then

												put	"Directory	created"

								else

												put	"Did	not	create	the	directory."

												put	"Error:	",	Error.LastMsg

								end	if

Example		

An	example	demonstrating	the	use	of	several	of	the	Dir
subprograms	is	available.	In	this	example,	a	directory	is	created,	a
file	is	written	to	the	directory,	an	attempt	is	made	to	delete	the
directory,	the	file	is	deleted,	and	then	the	directory	is	deleted.

This	example	demonstrates	the	use	of	Dir.Change,	Dir.Current,
Dir.Create,	and	Dir.Delete.

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
Dir.Create,	not	by	calling	Create.

Dir.Current Part	of	Dir	module

Syntax		 Dir.Current	:	string

Description		
Dir.Current	returns	the	full	path	name	of	the	current	execution
directory.	This	is	the	equivalent	of	doing	a	pwd	in	UNIX.

Details		

If	the	Dir.Current	call	fails,	then	Error.Last	will	return	a	non-
zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
will	return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	changes	to	the	directory	called	/usr/west	and	then
lists	the	current	directory.

								Dir.Change	("/usr/west")

								if	Error.Last	=	eNoError		then

												put	"Directory	changed"

								else

												put	"Did	not	change	the	directory."

												put	"Error:	",	Error.LastMsg

								end	if

								put	"The	current	execution	directory	is	",	Dir.Current

Example		

An	example	demonstrating	the	use	of	several	of	the	Dir
subprograms	is	available.	In	this	example,	a	directory	is	created,	a
file	is	written	to	the	directory,	an	attempt	is	made	to	delete	the
directory,	the	file	is	deleted,	and	then	the	directory	is	deleted.

This	example	demonstrates	the	use	of	Dir.Change,	Dir.Current,
Dir.Create,	and	Dir.Delete.

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
Dir.Current,	not	by	calling	Current.

Dir.Delete Part	of	Dir	module

Syntax		 Dir.Delete	(directoryPathName	:	string)

Description		

Dir.Delete	is	used	to	delete	the	directory	specified	by	the
parameter	directoryPathName.	This	is	the	equivalent	of	doing	a
rmdir	in	DOS	or	UNIX.	On	the	Macintosh,	it	removes	a	folder.

Dir.Delete	will	fail	if	it	attempts	delete	a	directory	that	has	files	in
it.

Details		

If	the	Dir.Delete	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	deletes	the	directory	called	information.

								Dir.Delete	("information")

								if	Error.Last	=	eNoError	then

												put	"Directory	delete"

								else

												put	"Did	not	delete	the	directory."

												put	"Error:	",	Error.LastMsg

								end	if

Example		

An	example	demonstrating	the	use	of	several	of	the	Dir
subprograms	is	available.	In	this	example,	a	directory	is	created,	a
file	is	written	to	the	directory,	an	attempt	is	made	to	delete	the
directory,	the	file	is	deleted,	and	then	the	directory	is	deleted.

This	example	demonstrates	the	use	of	Dir.Change,	Dir.Current,
Dir.Create,	and	Dir.Delete.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Dir.Delete,	not	by	calling	Delete.

Dir.Exists Part	of	Dir	module

Syntax		 Dir.Exists	(directoryPathName	:	string)	:	boolean

Description		

Dir.Exists	returns	true	if	a	directory	by	the	name	of
directoryPathName	exists.	It	will	return	false	if
directoryPathName	is	a	file.

Details		

If	the	Dir.Exists	returns	false,	you	can	examine	Error.Last	or
Error.LastMsg	for	more	information	(i.e.	whether	the	path	failed
or	the	directory	was	simply	not	found).

Example		

The	following	program	determines	if	the	directory	"d:/usr/west"
exists,	and	outputs	an	error	message	if	it	does	not.

								if	Dir.Exists	("d:/usr/west")	then

												put	"Directory	exists"

								else

												put	"Directory	does	not	exists:	",	Error.LastMsg

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Dir.Exists,	not	by	calling	Exists.

Dir.Get Part	of	Dir	module

Syntax		 Dir.Get	(streamNumber	:	int)	:	string

Description		

Dir.Get	is	part	of	a	series	of	four	subprograms	that	help	users	get
directory	listings.	Dir.Get	is	used	to	get	the	file	names	in	the
directory.	Each	time	the	function	is	called,	it	returns	the	next	file
name	in	the	directory.	The	names	are	not	sorted.	When	there	are
no	more	file	names	in	the	directory,	Dir.Get	returns	the	empty
string.

Details		

If	the	Dir.Get	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	prints	a	listing	of	all	the	files	in	the	directory
datafiles.

								var	streamNumber	:	int

								var	fileName	:	string

								streamNumber	:=	Dir.Open	("datafiles")

								assert	streamNumber	>	0

								loop

												fileName	:=	Dir.Get	(streamNumber)

												exit	when	fileName	=	""

												put	fileName

								end	loop

								Dir.Close	(streamNumber)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Dir.Get,

not	by	calling	Get.

Dir.GetLong Part	of	Dir	module

Syntax		
Dir.GetLong	(streamNumber	:	int,	var	entryName	:	string
	 	 var	size,	attribute,	fileTime	:	int)

Description		

Dir.GetLong	is	part	of	a	series	of	four	subprograms	that	help	users	get
directory	listings.	Dir.GetLong	is	used	to	get	the	names	and	assorted
information	of	the	files	in	the	directory.	Each	time	the	function	is	called,	it
returns	the	name	and	information	of	the	next	file	in	the	directory.	The
names	are	not	sorted.	When	there	are	no	more	file	names	in	the	directory,
Dir.GetLong	returns	the	empty	string	in	the	entryName	parameter.

The	size	parameter	is	the	size	of	the	file	in	bytes.	The	attribute	parameter
has	its	individual	bits	set	as	follows	(the	individual	bits	can	be	extracted
using	the	bits	operator):

Bit	0	attrDir	set	to	1	if	entry	is	a	directory.

Bit	1	attrRead	set	to	1	if	the	program	can	read	the	file.

Bit	2	attrWrite	set	to	1	if	the	program	can	write	the	file.

Bit	3	attrExecute	set	to	1	if	the	program	can	execute	the	file.

Bit	4	attrHidden	set	to	1	if	the	entry	if	a	hidden	file	(PC,	Mac).

Bit	5	attrSystem	set	to	1	if	the	entry	is	a	system	file	(PC	only).

Bit	6	attrVolume	set	to	1	if	the	entry	is	a	volume	name	(PC	only).

Bit	7	attrArchive	set	to	1	if	the	entry	has	archive	bit	set	(PC	only).

The	attr...	constants	are	defined	in	the	Dir	unit.	They	correspond	to	the
values	of	attribute	if	a	specified	bit	is	set.	For	example,	attrSystem	is	the
value	of	the	attribute	parameter	if	bit	5	is	set	to	1.	You	can	and	or	or	
constants	to	get	combinations	of	specific	file	attributes.

The	fileTime	is	the	time	of	last	modification	of	the	file.	It	is	returned	as	the
number	of	seconds	since	00:00:00	GMT	1/1/1970.	To	convert	this	to	a

string,	use	Time.SecDate

Details		

If	the	Dir.GetLong	call	fails,	then	Error.Last	will	return	a	non-zero	value
indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a	string
which	contains	the	textual	version	of	the	error.

Example		

This	program	prints	a	listing	of	all	the	files	in	the	directory	datafiles

								var	streamNumber	:	int

								var	fileName	:	string

								var	size,	attribute,	fileTime	:	int

								streamNumber	:=	Dir.Open	("datafiles")

								assert	streamNumber	>	0

								loop

												Dir.GetLong	(streamNumber,	fileName,	size,	attribute,	fileTime

												exit	when	fileName	=	""

												put	fileName,	"		",	Time.SecDate	(fileTime)

								end	loop

								Dir.Close	(streamNumber)

Example		

This	program	prints	a	listing	of	the	attributes	of	all	the	files	in	the	current
directory.

								var	streamNumber	:	int

								var	fileName	:	string

								var	size,	attribute,	fileTime	:	int

								streamNumber	:=	Dir.Open	(Dir.Current)

								assert	streamNumber	>	0

								loop

												Dir.GetLong	(streamNumber,	fileName,	size,	attribute,	fileTime

												exit	when	fileName	=	""

												put	fileName,	"		"..

												if	(attribute	and	attrDir)	not=	0	then

																put	"Directory		"..

												end	if

												if	(attribute	and	attrRead)	not=	0	then

																put	"Readable		"..

												end	if

												if	(attribute	and	attrWrite)	not=	0	then

																put	"Writeable		"..

												end	if

												if	(attribute	and	attrExecute)	not=	0	then

																put	"Executable		"..

												end	if

												put	""

								end	loop

								Dir.Close	(streamNumber)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Dir.GetLong
by	calling	GetLong.

Dir.Open Part	of	Dir	module

Syntax		 Dir.Open	(directoryPathName	:	string)	:	int

Description		

Dir.Open	is	part	of	a	series	of	four	subprograms	that	help	users
get	directory	listings.	Dir.Open	returns	a	directory	stream	number
if	the	directory	could	be	opened.	This	stream	number	can	be	used
to	get	file	names	and	information	using	the	Dir.Get	and
Dir.GetLong	subprograms.	After	getting	the	listing,	the	user
should	call	Dir.Close.

Details		

If	the	Dir.Open	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	prints	a	listing	of	all	the	files	in	the	current
directory.

								var	streamNumber	:	int

								var	fileName	:	string

								streamNumber	:=	Dir.Open	(Dir.Current)

								assert	streamNumber	>	0

								loop

												fileName	:=	Dir.Get	(streamNumber)

												exit	when	fileName	=	""

												put	fileName

								end	loop

								Dir.Close	(streamNumber)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

Dir.Open,	not	by	calling	Open.

div integer	truncating	division	operator

Syntax		 div

Description		

The	div	operator	divides	one	number	by	another	and	produces	the
integer	result,	truncated	in	the	direction	of	zero.	For	example,	7
div	2	produces	3	and	-7	div	2	produces	-3.

Example		

In	this	example,	eggCount	is	the	total	number	of	eggs.	The	first
put	statement	determines	how	many	dozen	eggs	there	are.	The
second	put	statement	determines	how	many	extra	eggs	there	are
beyond	the	last	dozen.

								var	eggCount	:	int

								get	eggCount

								put	"You	have	",	eggCount	div	12,	"	dozen	eggs"

								put	"You	have	",	eggCount	mod	12,	"	left	over"

Execute		

See	also		 infix	operators,	precedence	of	operators	and	the	mod	operator.

Draw

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
drawing	pixel	graphics	to	the	screen.

All	routines	in	the	Draw	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Draw.").

Entry
Points		

Cls 	 Clears	the	screen	to	color	0.
Dot 	 Draws	a	dot.
Line 	 Draws	a	line.
DashedLine 	 Draws	a	dashed	or	dotted	line.
ThickLine 	 Draws	a	thick	line.
Box 	 Draws	a	box.
FillBox 	 Draws	a	filled	box.
Oval 	 Draws	an	oval.
FillOval 	 Draws	a	filled	oval.
Arc 	 Draws	an	arc.
FillArc 	 Draws	a	filled	arc	or	a	wedge.
Polygon 	 Draws	a	polygon.
FillPolygon 	 Draws	a	filled	polygon.
MapleLeaf 	 Draws	a	maple	leaf.
FillMapleLeaf 	 Draws	a	filled	maple	leaf.
Star 	 Draws	a	star.
FillStar 	 Draws	a	filled	star.
Fill 	 Does	a	flood	fill.
Text 	 Draws	text	as	graphics

Draw.Arc Part	of	Draw	module

Syntax		
Draw.Arc	(x,	y,	xRadius,	yRadius	:	int,	
	 	 initialAngle,	finalAngle,	Color	:	int)

Description		

The	Draw.Arc	procedure	is	used	to	draw	an	arc	whose	center	is	at
(x,	y).	This	is	just	like	Draw.Oval,	except	that	you	must	also	give
two	angles,	initialAngle	and	finalAngle,	which	determine	where	to
start	and	stop	drawing.	Zero	degrees	is	"three	o'clock",	90	degrees
is	"twelve	o'clock",	etc.	The	horizontal	and	vertical	distances
from	the	center	to	the	arc	are	given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	quarter	circle	whose	center	is	(midx,	midy)
the	center	of	the	screen,	using	color	number	1.	The	maxx	and
maxy	functions	are	used	to	determine	the	maximum	x	and	y
values	on	the	screen.

								View.Set	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								Draw.Arc	(midx,	midy,	midx,	midy,	0,	90,	1)

Execute		

Details		
The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Arc,	not	by	calling	Arc.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Box Part	of	Draw	module

Syntax		 Draw.Box	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.Box	procedure	is	used	to	draw	a	box	on	the	screen
with	bottom	left	and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)	using
the	specified	Color.

Example		

This	program	draws	a	large	box,	reaching	to	each	corner	of	the
screen	using	color	number	12.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen	and	(maxx,	maxy)	is
the	right	top.

								View.Set	("graphics")

								Draw.Box	(0,	0,	maxx,	maxy,	12)

Execute		

Details		

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Box,	not	by	calling	Box.

View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw

See	also		 unit.

Draw.Cls Part	of	Draw	module

Syntax		 Draw.Cls

Description		
The	Draw.Cls	(clear	screen)	procedure	is	used	to	blank	the	output
window	The	cursor	is	set	to	the	top	left	(to	row	1,	column	1).

Details		

The	Draw.Cls	procedure	sets	all	pixels	in	the	output	window	to
color	0.	In	this	way	it	differs	from	the	cls	and	Text.Cls	procedures
which	set	the	screen	to	the	text	background	color.

The	screen	must	be	in	"graphics"	mode.	See	View.Set	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Cls,	not	by	calling	Cls.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.DashedLine Part	of	Draw	module

Syntax		 Draw.DashedLine	(x1,	y1,	x2,	y2,	lineStyle,	Color	:	int)

Description		

The	Draw.DashedLine	procedure	is	used	to	draw	a	dotted	or	dashed	line
on	the	screen	from	(x1,	y1)	to	(x2,	y2)	using	the	specified	Color.

There	are	five	possible	line	styles:	drawSolid	Draws	a	solid	line	(same	as
Draw.Line)	drawDash	Draws	a	dashed	line	drawDot	Draws	a	dotted	line
drawDashDot	Draws	a	line	that	alternates	dashes	and	dots
drawDashDotDot	Draws	a	line	that	alternates	dash	and	dot-dot

Example		

This	program	draws	a	large	X,	reaching	to	each	corner	of	the	screen	in
two	different	colors.	The	maxx	and	maxy	functions	are	used	to	determine
the	maximum	x	and	y	values	on	the	screen.	The	point	(0,0)	is	the	left
bottom	of	the	screen,	(maxx,	maxy)	is	the	right	top,	etc.

								View.Set	("graphics")

								%	Draw	a	line	in	each	of	the	styles.

								Draw.DashedLine	(0,	50,	maxx,	50,	drawSolid,	brightred)	

								Draw.DashedLine	(0,	100,	maxx,	100,	drawDash,	brightred)	

								Draw.DashedLine	(0,	150,	maxx,	150,	drawDot,	brightred)	

								Draw.DashedLine	(0,	200,	maxx,	200,	drawDashDot,	brightred)	

								Draw.DashedLine	(0,	250,	maxx,	250,	drawDashDotDot,	brightred)

Execute		

Details		
The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set	procedure	for
details.	If	the	screen	is	not	in	a	"graphics"	mode,	an	error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.DashedLine,	not	by	calling	DashedLine.

See	also		 View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw	unit.

Draw.Dot Part	of	Draw	module

Syntax		 Draw.Dot	(x,	y,	Color	:	int)

Description		

The	Draw.Dot	procedure	is	used	to	color	the	dot	(pixel)	at
location	(x,	y)	using	the	specified	Color.

Example		

This	program	randomly	draws	dots	with	random	colors.	The
maxx,	maxy	and	maxcolor	functions	give	the	maximum	x,	y	and
color	values.

								View.Set	("graphics")

								var	x,	y,	c	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												c	:=	Rand.Int	(0,	maxcolor)	%	Random	color

												Draw.Dot	(x,	y,	c)

								end	loop

Execute		

Details		
The	screen	must	be	in	a	"graphics"	mode.	If	the	screen	is	not	in	a

"graphics"	mode,	an	error	will	occur.	See	View.Set	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Dot,	not	by	calling	Dot.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Fill Part	of	Draw	module

Syntax		 Draw.Fill	(x,	y	:	int,	fillColor,	borderColor	:	int)

Description		

The	Draw.Fill	procedure	is	used	to	color	in	a	figure	that	is	on	the
screen.	Starting	at	(x,	y),	the	figure	is	filled	with	fillColor	to	a
surrounding	border	whose	color	is	borderColor.

Example		

This	program	draws	an	oval	with	x	and	y	radius	of	10	in	the
center	of	the	screen	in	bright	green.	Then	the	oval	is	filled	with
red.	The	maxx	and	maxy	functions	are	used	to	determine	the
maximum	x	and	y	values	on	the	screen.

								View.Set	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								Draw.Oval	(midx,	midy,	10,	10,	brightgreen)

								Draw.Fill	(midx,	midy,	red,	brightgreen)

Execute		

Details		

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

Draw.Fill,	not	by	calling	Fill.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillArc

Syntax		
Draw.FillArc	(x,	y,	xRadius,	yRadius	:	int,
	 	 initialAngle,	finalAngle,	Color	:	int)

Description		

The	Draw.FillArc	procedure	is	used	to	draw	a	filled	arc	whose
center	is	at	(x,	y).	It	then	fills	in	the	pie-shaped	wedge	using	the
specified	Color.	To	outline	a	filled	arc,	use	Draw.FillArc	with	the
Color	parameter	set	to	the	fill	color	and	then	Draw.Arc	with	the
Color	parameter	set	to	the	border	color.	For	initialAngle	and
finalAngle,	which	determine	the	edges	of	the	wedge,	zero	degrees
is	"three	o'clock"	and	90	degrees	is	"twelve	o'clock",	etc.	The
horizontal	and	vertical	distances	from	the	center	to	the	arc	are
given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	filled	semicircle	(actually,	an
approximation	to	a	semicircle)	whose	center	is	(midx,0)	the
bottom	center	of	the	screen,	in	bright	red.	The	maxx	and	maxy
functions	are	used	to	determine	the	maximum	x	and	y	values	on
the	screen.

								View.Set	("graphics")

								const	midx	:=	maxx	div	2

								Draw.FillArc	(midx,	0,	maxy,	maxy,	0,	180,	brightred

Execute		

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set

Details		 procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.FillArc,	not	by	calling	FillArc.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillBox

Syntax		 Draw.FillBox	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.FillBox	procedure	is	used	to	draw	a	filled	box	on	the
screen	with	bottom	left	and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)
filled	using	the	specified	Color.	To	get	a	box	outlined	in	a
different	color,	use	Draw.FillBox	with	the	Color	parameter	set	to
the	fill	color	and	then	call	Draw.Box	with	the	Color	parameter	set
to	the	border	color.

Example		

This	program	will	fill	the	bottom	half	of	the	screen	with	color	1
and	then	outline	it	in	color	2.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen	and	(maxx,	maxy)	is
the	right	top.

								View.Set	("graphics")

								Draw.FillBox	(0,	0,	maxx,	maxy	div	2,	1)

								Draw.Box	(0,	0,	maxx,	maxy	div	2,	2)

Execute		

Details		

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
Draw.FillBox,	not	by	calling	FillBox.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillMapleLeaf

Syntax		 Draw.FillMapleLeaf	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.FillMapleLeaf	procedure	is	used	to	draw	a	filled
maple	leaf	on	the	screen	bounded	by	a	rectangle	with	bottom	left
and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)	and	filled	using	the
specified	Color.	To	get	a	maple	leaf	outlined	in	a	different	color,
use	Draw.FillMapleLeaf	with	the	Color	parameter	set	to	the	fill
color	and	then	call	Draw.MapleLeaf	with	the	Color	parameter
set	to	the	border	color.	If	y1	is	greater	than	y2,	then	the	mapleleaf
is	drawn	upside	down.

Example		

This	program	will	draw	two	maple	leaves	beside	each	other.	The
first	will	be	outlined	in	black	and	filled	in	brightred.	The	second
maple	leaf	will	be	upside	down	and	both	filled	and	outlined	in
green.

								View.Set	("graphics")

								Draw.FillMapleLeaf	(0,	0,	100,	100,	brightred)

								Draw.MapleLeaf	(0,	0,	100,	100,	black)

								Draw.FillMapleLeaf	(150,	100,	250,	0,	green)

Execute		

The	Draw.FillMapleLeaf	procedure	is	useful	for	drawing	the

Details		

Canadian	flag.

The	screen	should	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.FillMapleLeaf,	not	by	calling	FillMapleLeaf.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillOval

Syntax		 Draw.FillOval	(x,	y,	xRadius,	yRadius,	Color	:	int)

Description		

The	Draw.FillOval	procedure	is	used	to	draw	a	filled	oval	whose
center	is	at	(x,	y).	The	horizontal	and	vertical	distances	from	the
center	to	the	oval	are	given	by	xRadius	and	yRadius.	To	get	an
oval	outlined	in	a	different	color,	use	Draw.FillOval	with	the
Color	parameter	set	to	the	fill	color	and	then	call	Draw.Oval	with
the	Color	parameter	set	to	the	border	color.

Example		

This	program	draws	a	large	filled	oval	that	just	touches	each	edge
of	the	screen	using	color	number	1.	The	maxx	and	maxy
functions	are	used	to	determine	the	maximum	x	and	y	values	on
the	screen.	The	center	of	the	oval	is	at	(midx,	midy),	which	is	the
middle	of	the	screen.

								View.Set	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								Draw.FillOval	(midx,	midy,	midx,	midy,	1)

Execute		

Details		

Ideally,	a	circle	is	drawn	when	xRadius	=	yRadius.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set

procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,
am	error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.FillOval,	not	by	calling	FillOval.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillPolygon

Syntax		 Draw.FillPolygon	(x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

Description		

The	Draw.FillPolygon	procedure	is	used	to	draw	a	filled	polygon
with	n	points.	The	polygon	is	described	by	the	points	(x(1),	y(1))
to	(x(2),	y(2))	to	(x(3),	y(3))	and	so	on	to	(x(n),	y	(n)).	The
polygon	will	be	drawn	and	filled	with	Color.

To	get	an	polygon	outlined	in	a	different	color,	use
Draw.FillPolygon	with	the	Color	parameter	set	to	the	fill	color
and	then	call	Draw.Polygon	with	the	Color	parameter	set	to	the
border	color.

Example		

This	program	will	create	a	filled	octagon	and	display	it	in	bright
blue	and	then	outline	it	in	cyan.

								View.Set	("graphics")

								var	x	:	array	1..8	of	int	:=	init	(100,	100,	135,	185,	

																																			220,	220,	185,	135)

								var	y	:	array	1..8	of	int	:=	init	(100,	150,	185,	185,

																																			150,	100,	65,	65)

								Draw.FillPolygon	(x,	y,	8,	brightblue)

								Draw.Polygon	(x,	y,	8,	cyan)

Execute		

Details		

The	PC	allows	a	maximum	of	256	points.	As	well,
Draw.FillPolygon	can	fail	(due	to	lack	of	memory).	If	failure
occurs,	it	will	try	to	draw	an	outline	of	the	polygon.	If	that	also
fails,	it	will	not	draw	anything.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an

error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.FillPolygon,	not	by	calling	FillPolygon.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.FillStar Part	of	Draw	module

Syntax		 Draw.FillStar	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.FillStar	procedure	is	used	to	draw	a	filled	five	pointed
star	on	the	screen	bounded	by	a	rectangle	with	bottom	left	and	top
right	corners	of	(x1,	y1)	to	(x2,	y2)	and	filled	using	the	specified
Color.	To	get	a	star	outlined	in	a	different	color,	use
Draw.FillStar	with	the	Color	parameter	set	to	the	fill	color	and
then	call	Draw.Star	with	the	Color	parameter	set	to	the	border
color.	If	y1	is	greater	than	y2,	then	the	star	is	drawn	upside	down.

Example		

This	program	will	draw	two	stars	beside	each	other.	The	first	will
be	outlined	in	color	1	and	filled	in	color	2.	The	second	star	will	be
upside	down	and	both	filled	and	outlined	in	color	3.

								View.Set	("graphics")

								Draw.FillStar	(0,	0,	100,	100,	brightred)

								Draw.Star	(0,	0,	100,	100,	green)

								Draw.FillStar	(150,	100,	250,	0,	brightblue)

Execute		

The	Draw.FillStar	procedure	is	useful	for	drawing	the	American
flag.

Details		 The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.FillStar,	not	by	calling	FillStar.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Line Part	of	Draw	module

Syntax		 Draw.Line	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.Line	procedure	is	used	to	draw	a	line	on	the	screen
from	(x1,	y1)	to	(x2,	y2)	using	the	specified	Color.

Example		

This	program	draws	a	large	X,	reaching	to	each	corner	of	the
screen	using	color	number	1.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen,	(maxx,	maxy)	is	the
right	top,	etc.

								View.Set	("graphics")

								%	First	draw	a	line	from	the	left	bottom	to	right	top

								Draw.Line	(0,	0,	maxx,	maxy,	1)	

								%	Now	draw	a	line	from	the	left	top	to	right	bottom

								Draw.Line	(0,	maxy,	maxx,	0,	1)

Execute		

Details		

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Line,	not	by	calling	Line.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.MapleLeaf Part	of	Draw	module

Syntax		 Draw.MapleLeaf	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.MapleLeaf	procedure	is	used	to	draw	a	maple	leaf	on
the	screen	bounded	by	a	rectangle	described	by	the	bottom	left
and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)	using	the	specified
Color.	If	y1	is	greater	than	y2,	then	the	maple	leaf	is	drawn	upside
down.

Example		

This	program	will	draw	two	maple	leaves	beside	each	other.	The
first	will	be	in	red	and	the	second	maple	leaf	will	be	upside	down
and	in	yellow.

								View.Set	("graphics")

								Draw.MapleLeaf	(0,	0,	100,	100,	red)

								Draw.MapleLeaf	(150,	100,	250,	0,	yellow)

Execute		

Details		

The	Draw.MapleLeaf	procedure	is	useful	for	drawing	the
Canadian	flag.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.MapleLeaf,	not	by	calling	MapleLeaf.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Oval Part	of	Draw	module

Syntax		 Draw.Oval	(x,	y,	xRadius,	yRadius,	Color	:	int)

Description		

The	Draw.Oval	procedure	is	used	to	draw	an	oval	whose	center	is
at	(x,	y).	The	horizontal	and	vertical	distances	from	the	center	to
the	oval	are	given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	large	oval	that	just	touches	each	edge	of	the
screen	in	magenta.	The	maxx	and	maxy	functions	are	used	to
determine	the	maximum	x	and	y	values	on	the	screen.	The	center
of	the	oval	is	at	(midx,	midy),	which	is	the	middle	of	the	screen.

								View.Set	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								Draw.Oval	(midx,	midy,	midx,	midy,	magenta)

Execute		

Details		

Ideally,	a	circle	is	drawn	when	xRadius	=	yRadius.	In	fact,	the
aspect	ratio	(the	ratio	of	height	to	width	of	pixels	displayed	on	the
screen)	of	the	IBM	PC	compatibles	is	not	1.0,	so	this	does	not
draw	a	true	circle.	In	CGA	graphics	mode	this	ratio	is	5	to	4.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an

error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Oval,	not	by	calling	Oval.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Polygon Part	of	Draw	module

Syntax		 Draw.Polygon	(x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

Description		

The	Draw.Polygon	procedure	is	used	to	draw	a	polygon	with	n
points.	A	line	is	drawn	in	Color	from	the	point	(x(1),	y(1))	to
(x(2),	y(2))	to	(x(3),	y(3))	and	so	on.	After	drawing	the	line	to
(x(n),	y	(n)),	a	line	will	be	drawn	back	to	(x(1),	y(1)),	closing	the
polygon.	The	Draw.Polygon	procedure	is	equivalent	to:

								for	i	:	1	..	n	-	1

												Draw.Line	(x	(i),	y(i),	x	(i	+	1),	y	(i	+	1),	

								end	for

								Draw.Line	(x	(n),	y	(n),	x	(1),	y	(1),	Color)

Example		

This	program	will	create	an	octagon	and	display	it	in	color	1.

								View.Set	("graphics")

								var	x	:	array	1..8	of	int	:=	init	(100,	100,	135,	185,	

																																			220,	220,	185,	135)

								var	y	:	array	1..8	of	int	:=	init	(100,	150,	185,	185,

																																			150,	100,	65,	65)

								Draw.Polygon	(x,	y,	8,	brightblue)

Execute		

Details		

The	IBM	PC	limits	Draw.Polygon	to	a	maximum	of	256	points.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

Draw.Polygon,	not	by	calling	Polygon.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Star Part	of	Draw	module

Syntax		 Draw.Star	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	Draw.Star	procedure	is	used	to	draw	a	star	on	the	screen
bounded	by	a	rectangle	described	by	the	bottom	left	and	top	right
corners	of	(x1,	y1)	to	(x2,	y2)	using	the	specified	Color.	If	y1	is
greater	than	y2	then	the	star	is	drawn	upside	down.

Example		

This	program	will	draw	two	stars	beside	each	other.	The	first	star
will	be	in	color	1	and	the	second	star	will	be	upside	down	and	in
color	2.

								View.Set	("graphics")

								Draw.Star	(0,	0,	100,	100,	brightred)

								Draw.Star	(150,	100,	250,	0,	brightblue)

Execute		

Details		

The	Draw.Star	procedure	is	useful	for	drawing	the	American
flag.

The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Draw.Star,	not	by	calling	Star.

See	also		
View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw
unit.

Draw.Text Part	of	Draw	module

Syntax		 Draw.Text	(txtStr	:	string,	x,	y,	fontID,	Color	:	int)

Description		

Draw.Text	is	used	to	actually	draw	text	in	a	specified	font.	The	textStr
parameter	contains	the	string	to	be	drawn.	The	x	and	y	paramters	are	the
location	of	the	lower	left	hand	corner	of	the	text	to	be	displayed.	The	
parameter	is	the	number	of	the	font	in	which	the	text	is	to	be	drawn.	The	
parameter	is	used	to	specify	the	color	in	which	the	text	is	to	appear.

Note	that	the	text	that	appears	is	completely	unrelated	to	the	text	that	appears
using	put.	Draw.Text	is	a	graphics	command	and	thus	does	not	use	or	affect
the	cursor	location.

The	text	drawn	by	the	Draw.Text	procedure	does	not	erase	the	background.

Details		

If	Draw.Text	is	passed	an	invalid	font	ID,	a	fatal	error	occurs.	If	the
Draw.Text	call	fails	for	other	(non-fatal)	reasons	then	Error.Last	will	return	a
non-zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
a	string	which	contains	the	textual	version	of	the	error.

Details		
Draw.Text	is	identical	to	Font.Draw.	It	is	placed	here	for	consistency	with
other	pixel	graphics	drawing	routines.

Example		

The	program	draws	a	phrase	in	red	surrounded	by	a	box	in	bright	blue.

								var	font	:	int

								font	:=	Font.New	("serif:12")

								assert	font1	>	0

								var	width	:	int:=	Font.Width	("This	is	in	a	serif	font",	

								var	height,	ascent,	descent,	internalLeading	:	int

								Font.Sizes	(font,	height,	ascent,	descent,	internalLeading

								Draw.Text	("This	is	in	a	serif	font",	50,	30,	font

								Draw.Box	(50,	30	+	descent,	50	+	width,	30	+	height

								Font.Free	(font)

Execute		

Details		
To	use	the	same	font	as	is	used	by	the	put	statement,	use	defFontID
font	number.	This	font	does	not	have	to	be	created	or	freed	by	the	user,	and
allows	a	program	to	quickly	place	text	in	any	location	on	the	screen.

Example		

The	program	draws	two	strings	in	the	default	font	(defFontID).

								Draw.Text	("Drawing	Here",	100,	120,	defFontID,	

								Draw.Text	("and	Here",	180,	90,	defFontID,	brightgreen

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Draw.Text
calling	Text.

See	Also		 Font	module	for	more	information	about	selecting	the	font	to	be	displayed.

Draw.ThickLine Part	of	Draw	module

Syntax		 Draw.ThickLine	(x1,	y1,	x2,	y2,	lineWidth,	Color	:	int)

Description		

The	Draw.ThickLine	procedure	is	used	to	draw	a	line	on	the	screen	from	(
to	(x2,	y2)	using	the	specified	Color.

Example		

This	program	draws	a	large	X,	reaching	to	each	corner	of	the	screen	in	two
different	colors.	The	maxx	and	maxy	functions	are	used	to	determine	the	maximum
x	and	y	values	on	the	screen.	The	point	(0,0)	is	the	left	bottom	of	the	screen,
(maxx,	maxy)	is	the	right	top,	etc.

								View.Set	("graphics")

								%	First	draw	a	line	of	5	pixel	width	from	the	left	bottom	to	right	top

								Draw.ThickLine	(0,	0,	maxx,	maxy,	5,	brightred)	

								%	Now	draw	a	line	of	5	pixel	width	from	the	left	top	to	right	bottom

								Draw.ThickLine	(0,	maxy,	maxx,	0,	5,	brightgreen)

Execute		

Details		
The	screen	must	be	in	a	"graphics"	mode.	See	the	View.Set	procedure	for	details.	If
the	screen	is	not	in	a	"graphics"	mode,	an	error	will	occur.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Draw.ThickLine
calling	ThickLine.

See	also		 View.Set,	maxx,	maxy	and	the	various	procedures	in	the	Draw	unit.

drawarc graphics	procedure

Syntax		
drawarc	(x,	y,	xRadius,	yRadius	:	int,	
	 	 initialAngle,	finalAngle,	Color	:	int)

Description		

The	drawarc	procedure	is	used	to	draw	an	arc	whose	center	is	at
(x,	y).	This	is	just	like	drawoval,	except	that	you	must	also	give
two	angles,	initialAngle	and	finalAngle,	which	determine	where	to
start	and	stop	drawing.	Zero	degrees	is	"three	o'clock",	90	degrees
is	"twelve	o'clock",	etc.	The	horizontal	and	vertical	distances
from	the	center	to	the	arc	are	given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	semicircle	(actually,	an	approximation	to	a
semicircle)	whose	center	is	(midx,0)	the	bottom	center	of	the
screen,	using	color	number	1.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.

								setscreen	("graphics")

								const	midx	:=	maxx	div	2

								drawarc	(midx,	0,	maxy,	maxy,	0,	180,	1)

Execute		

Details		

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it

will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawbox graphics	procedure

Syntax		 drawbox	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawbox	procedure	is	used	to	draw	a	box	on	the	screen	with
bottom	left	and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)	using	the
specified	Color.

Example		

This	program	draws	a	large	box,	reaching	to	each	corner	of	the
screen	using	color	number	1.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen	and	(maxx,	maxy)	is
the	right	top.

								setscreen	("graphics")

								drawbox	(0,	0,	maxx,	maxy,	1)

Execute		

Details		

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawdot graphics	procedure

Syntax		 drawdot	(x,	y,	Color	:	int)

Description		

The	drawdot	procedure	is	used	to	color	the	dot	(pixel)	at	location
(x,	y)	using	the	specified	Color.

Example		

This	program	randomly	draws	dots	with	random	colors.	The
maxx,	maxy	and	maxcolor	functions	give	the	maximum	x,	y	and
color	values.

								setscreen	("graphics")

								var	x,	y,	c	:	int

								loop

												randint	(x,	0,	maxx)								%	Random	x

												randint	(y,	0,	maxy)								%	Random	y

												randint	(c,	0,	maxcolor)				%	Random	color

												drawdot	(x,	y,	c)

								end	loop

Execute		

The	screen	should	be	in	a	"graphics"	mode.	If	the	screen	is	not	in

Details		 a	"graphics"	mode,	it	will	automatically	be	set	to	"graphics"
mode.	See	setscreen	for	details.

Example		

This	program	draws	a	line	of	dots	that	bounce	off	the	“sides”	of
the	screen.	It	also	demonstrates	that	you	can	use	real	coordinates
to	store	position	(x,	y),	as	long	as	you	convert	the	coordinates	to
int	values	using	round	in	the	drawdot	call.

								var	x,	y	:	real

								var	dx,	dy	:	real

								var	clr	:	int	:=	1

								x	:=	Rand.Int	(1,	maxx	-	1)

								y	:=	Rand.Int	(1,	maxy	-	1)

								dx	:=	Rand.Real	-	0.5

								dy	:=	Rand.Real	-	0.5

								loop

												drawdot	(round	(x),	round	(y),	clr)

												clr	:=	(clr	+	1)	mod	maxcolor

												x	:=	x	+	dx

												y	:=	y	+	dy

												if	x	<=	0	or	x	>=	maxx	then

																dx	:=	-dx

												end	if

												if	y	<=	0	or	y	>=	maxy	then

																dy	:=	-dy

												end	if

								end	loop

Execute		

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfill graphics	procedure

Syntax		 drawfill	(x,	y	:	int,	fillColor,	borderColor	:	int)

Description		

The	drawfill	procedure	is	used	to	color	in	a	figure	that	is	on	the
screen.	Starting	at	(x,	y),	the	figure	is	filled	with	fillColor	to	a
surrounding	border	whose	color	is	borderColor.

Example		

This	program	draws	an	oval	with	x	and	y	radius	of	10	in	the
center	of	the	screen	using	color	1.	Then	the	oval	is	filled	with
color	2.	The	maxx	and	maxy	functions	are	used	to	determine	the
maximum	x	and	y	values	on	the	screen.

								setscreen	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								drawoval	(midx,	midy,	10,	10,	1)

								drawfill	(midx,	midy,	2,	1)

Execute		

Details		

The	meaning	of	the	Color	number	depends	on	the	current	palette;
see	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

Warning:	In	Turing	for	IBM	PC	compatibles,	drawfill	fails	to
completely	fill	in	some	complicated	figures	that	contain	"islands"
within	them	surrounded	by	the	borderColor.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfillarc graphics	procedure

Syntax		
drawfillarc	(x,	y,	xRadius,	yRadius	:	int,
	 	 initialAngle,	finalAngle,	Color	:	int)

Description		

The	drawfillarc	procedure	is	used	to	draw	a	filled	arc	whose
center	is	at	(x,	y).	It	then	fills	in	the	pie-shaped	wedge	using	the
specified	Color.	To	outline	a	filled	arc,	use	drawfillarc	with	the
Color	parameter	set	to	the	fill	color	and	then	drawarc	with	the
Color	parameter	set	to	the	border	color.	For	initialAngle	and
finalAngle,	which	determine	the	edges	of	the	wedge,	zero	degrees
is	"three	o'clock"	and	90	degrees	is	"twelve	o'clock",	etc.	The
horizontal	and	vertical	distances	from	the	center	to	the	arc	are
given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	filled	semicircle	(actually,	an
approximation	to	a	semicircle)	whose	center	is	(midx,0),	the
bottom	center	of	the	screen,	using	color	number	1.	The	maxx	and
maxy	functions	are	used	to	determine	the	maximum	x	and	y
values	on	the	screen.

								setscreen	("graphics")

								const	midx	:=	maxx	div	2

								drawfillarc	(midx,	0,	maxy,	maxy,	0,	180,	1)

Execute		

On	the	PC,	drawfillarc	fills	the	pie-shaped	wedge	by	using	a

Details		

"flood"	fill	and	is	thus	subject	to	all	the	conditions	of	a	flood	fill.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfillbox graphics	procedure

Syntax		 drawfillbox	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawfillbox	procedure	is	used	to	draw	a	filled	box	on	the
screen	with	bottom	left	and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)
filled	using	the	specified	Color.	To	get	a	box	outlined	in	a
different	color,	use	drawfillbox	with	the	Color	parameter	set	to
the	fill	color	and	then	call	drawbox	with	the	Color	parameter	set
to	the	border	color.

Example		

This	program	will	fill	the	bottom	half	of	the	screen	with	color	1
and	then	outline	it	in	color	2.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen	and	(maxx,	maxy)	is
the	right	top.

								setscreen	("graphics")

								drawfillbox	(0,	0,	maxx,	maxy	div	2,	1)

								drawbox	(0,	0,	maxx,	maxy	div	2,	2)

Execute		

Details		

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfillmapleleaf graphics	procedure

Syntax		 drawfillmapleleaf	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawfillmapleleaf	procedure	is	used	to	draw	a	filled	maple
leaf	on	the	screen	bounded	by	a	rectangle	with	bottom	left	and	top
right	corners	of	(x1,	y1)	to	(x2,	y2)	and	filled	using	the	specified
Color.	To	get	a	maple	leaf	outlined	in	a	different	color,	use
drawfillmapleleaf	with	the	Color	parameter	set	to	the	fill	color
and	then	call	drawmapleleaf	with	the	Color	parameter	set	to	the
border	color.	If	y1	is	greater	than	y2,	then	the	maple	leaf	is	drawn
upside	down.

Example		

This	program	will	draw	two	maple	leaves	beside	each	other.	The
first	will	be	outlined	in	color	1	and	filled	in	color	2.	The	second
maple	leaf	will	be	upside	down	and	both	filled	and	outlined	in
color	3.

								setscreen	("graphics")

								drawfillmapleleaf	(0,	0,	100,	100,	1)

								drawmapleleaf	(0,	0,	100,	100,	2)

								drawfillmapleleaf	(150,	100,	250,	0,	3)

Execute		

The	drawfillmapleleaf	procedure	is	useful	for	drawing	the

Details		

Canadian	flag.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfilloval graphics	procedure

Syntax		 drawfilloval	(x,	y,	xRadius,	yRadius,	Color	:	int)

Description		

The	drawfilloval	procedure	is	used	to	draw	a	filled	oval	whose
center	is	at	(x,	y).	The	horizontal	and	vertical	distances	from	the
center	to	the	oval	are	given	by	xRadius	and	yRadius.	To	get	an
oval	outlined	in	a	different	color,	use	drawfilloval	with	the	Color
parameter	set	to	the	fill	color	and	then	call	drawoval	with	the
Color	parameter	set	to	the	border	color.

Example		

This	program	draws	a	large	filled	oval	that	just	touches	each	edge
of	the	screen	using	color	number	1.	The	maxx	and	maxy
functions	are	used	to	determine	the	maximum	x	and	y	values	on
the	screen.	The	center	of	the	oval	is	at	(midx,	midy),	which	is	the
middle	of	the	screen.

								setscreen	("graphics")

								const	midx	:=	maxx	div	2

								const	midy	:=	maxy	div	2

								drawfilloval	(midx,	midy,	midx,	midy,	1)

Execute		

Ideally,	a	circle	is	drawn	when	xRadius	=	yRadius.	In	fact,	the
aspect	ratio	(the	ratio	of	height	to	width	of	pixels	displayed	on	the
screen)	of	the	IBM	PC	compatibles	is	not	1.0,	so	this	does	not

Details		

draw	a	true	circle.	In	CGA	graphics	mode	this	ratio	is	5	to	4.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfillpolygon graphics	procedure

Syntax		 drawfillpolygon	(x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

Description		

The	drawfillpolygon	procedure	is	used	to	draw	a	filled	polygon
with	n	points.	The	polygon	is	described	by	the	points	(x(1),	y(1))
to	(x(2),	y(2))	to	(x(3),	y(3))	and	so	on	to	(x(n),	y	(n)).	The
polygon	will	be	drawn	and	filled	with	Color.

To	get	an	polygon	outlined	in	a	different	color,	use
drawfillpolygon	with	the	Color	parameter	set	to	the	fill	color	and
then	call	drawpolygon	with	the	Color	parameter	set	to	the	border
color.

Example		

This	program	will	create	a	filled	octagon	and	display	it	in	color	1
and	then	outline	it	in	color	3.

								setscreen	("graphics")

								var	x	:	array	1..8	of	int	:=	init	(100,	100,	135,	185,	

																																			220,	220,	185,	135)

								var	y	:	array	1..8	of	int	:=	init	(100,	150,	185,	185,

																																			150,	100,	65,	65)

								drawfillpolygon	(x,	y,	8,	1)

								drawpolygon	(x,	y,	8,	3)

Execute		

Details		

The	PC	allows	a	maximum	of	256	points.	As	well,
drawfillpolygon	can	fail	(due	to	lack	of	memory).	If	failure
occurs,	it	will	try	to	draw	an	outline	of	the	polygon.	If	that	also
fails,	it	will	not	draw	anything.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawfillstar graphics	procedure

Syntax		 drawfillstar	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawfillstar	procedure	is	used	to	draw	a	filled	five	pointed
star	on	the	screen	bounded	by	a	rectangle	with	bottom	left	and	top
right	corners	of	(x1,	y1)	to	(x2,	y2)	and	filled	using	the	specified
Color.	To	get	a	star	outlined	in	a	different	color,	use	drawfillstar
with	the	Color	parameter	set	to	the	fill	color	and	then	call
drawstar	with	the	Color	parameter	set	to	the	border	color.	If	y1	is
greater	than	y2,	then	the	star	is	drawn	upside	down.

Example		

This	program	will	draw	two	stars	beside	each	other.	The	first	will
be	outlined	in	color	1	and	filled	in	color	2.	The	second	star	will	be
upside	down	and	both	filled	and	outlined	in	color	3.

								setscreen	("graphics")

								drawfillstar	(0,	0,	100,	100,	1)

								drawstar	(0,	0,	100,	100,	2)

								drawfillstar	(150,	100,	250,	0,	3)

Execute		

The	drawfillstar	procedure	is	useful	for	drawing	the	American
flag.

Details		
The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawline graphics	procedure

Syntax		 drawline	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawline	procedure	is	used	to	draw	a	line	on	the	screen	from
(x1,	y1)	to	(x2,	y2)	using	the	specified	Color.

Example		

This	program	draws	a	large	X,	reaching	to	each	corner	of	the
screen	using	color	number	1.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
point	(0,0)	is	the	left	bottom	of	the	screen,	(maxx,	maxy)	is	the
right	top,	etc.

								setscreen	("graphics")

								%	First	draw	a	line	from	the	left	bottom	to	right	top

								drawline	(0,	0,	maxx,	maxy,	1)	

								%	Now	draw	a	line	from	the	left	top	to	right	bottom

								drawline	(0,	maxy,	maxx,	0,	1)

Execute		

Details		

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawmapleleaf graphics	procedure

Syntax		 drawmapleleaf	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawmapleleaf	procedure	is	used	to	draw	a	maple	leaf	on
the	screen	bounded	by	a	rectangle	described	by	the	bottom	left
and	top	right	corners	of	(x1,	y1)	to	(x2,	y2)	using	the	specified
Color.	If	y1	is	greater	than	y2,	then	the	maple	leaf	is	drawn	upside
down.

Example		

This	program	will	draw	two	maple	leaves	beside	each	other.	The
first	will	be	in	color	1	and	the	second	maple	leaf	will	be	upside
down	and	in	color	2.

								setscreen	("graphics")

								drawmapleleaf	(0,	0,	100,	100,	1)

								drawmapleleaf	(150,	100,	250,	0,	2)

Execute		

Details		

The	drawmapleleaf	procedure	is	useful	for	drawing	the	Canadian
flag.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawoval graphics	procedure

Syntax		 drawoval	(x,	y,	xRadius,	yRadius,	Color	:	int)

Description		

The	drawoval	procedure	is	used	to	draw	an	oval	whose	center	is
at	(x,	y).	The	horizontal	and	vertical	distances	from	the	center	to
the	oval	are	given	by	xRadius	and	yRadius.

Example		

This	program	draws	a	large	oval	that	just	touches	each	edge	of	the
screen	using	color	number	1.	The	maxx	and	maxy	functions	are
used	to	determine	the	maximum	x	and	y	values	on	the	screen.	The
center	of	the	oval	is	at	(midx,	midy),	which	is	the	middle	of	the
screen.

												setscreen	("graphics")

												const	midx	:=	maxx	div	2

												const	midy	:=	maxy	div	2

												drawoval	(midx,	midy,	midx,	midy,	1)

Execute		

Details		

Ideally,	a	circle	is	drawn	when	xRadius	=	yRadius.	In	fact,	the
aspect	ratio	(the	ratio	of	height	to	width	of	pixels	displayed	on	the
screen)	of	the	IBM	PC	compatibles	is	not	1.0,	so	this	does	not
draw	a	true	circle.	In	CGA	graphics	mode	this	ratio	is	5	to	4.

The	meaning	of	the	Color	number	depends	on	the	current	palette.

See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawpic graphics	procedure

Syntax		 drawpic	(x,	y	:	int,	buffer	:	array	1	..	*	of	int,	picmode	:	int)

Description		

The	drawpic	procedure	is	used	to	copy	of	a	rectangular	picture
onto	the	screen.	The	left	bottom	of	the	picture	is	placed	at	(x,	y).
In	the	common	case,	the	buffer	was	initialized	by	calling	takepic.
The	values	of	picmode	are:

	 0:	Copy	actual	picture	on	screen.
	 1:	Copy	picture	by	XORing	it	onto	the	screen.

XORing	a	picture	onto	the	screen	twice	leaves	the	screen	as	it	was
(this	is	a	convenient	way	to	move	images	for	animation).	XORing
a	picture	onto	a	background	effectively	superimposes	the	picture
onto	the	background.

Details		

See	takepic	for	an	example	of	the	use	of	drawpic	and	for	further
information	about	buffers	for	drawing	pictures.

The	screen	must	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	an
error	will	occur.

Details		

The	drawpic,	takepic,	and	sizepic	subprograms	have	been	made
obsolete	by	the	subprograms	Pic.Draw	and	Pic.New	of	the	Pic
module.	Users	are	strongly	suggested	to	use	those	routines
instead.	The	Pic	module	also	contains	subprograms	to	load
images	from	files.

See	also		

takepic	and	sizepic.	See	also	setscreen,	maxx,	maxy	and	the
various	draw…	procedures.

See	also	predefined	unit	Draw	and	Pic.

drawpolygon graphics	procedure

Syntax		 drawpolygon	(x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

Description		

The	drawpolygon	procedure	is	used	to	draw	a	polygon	with	n
points.	A	line	is	drawn	in	Color	from	the	point	(x(1),	y(1))	to
(x(2),	y(2))	to	(x(3),	y(3))	and	so	on.	After	drawing	the	line	to
(x(n),	y	(n)),	a	line	will	be	drawn	back	to	(x(1),	y(1)),	closing	the
polygon.	The	drawpolygon	procedure	is	equivalent	to:

								for	i	:	1	..	n	-	1

												drawline	(x	(i),	y(i),	x	(i	+	1),	y	(i	+	1),	

								end	for

								drawline	(x	(n),	y	(n),	x	(1),	y	(1),	Color)

Example		

This	program	will	create	an	octagon	and	display	it	in	color	1.

								setscreen	("graphics")

								var	x	:	array	1..8	of	int	:=	init	(100,	100,	135,	185,	

																																			220,	220,	185,	135)

								var	y	:	array	1..8	of	int	:=	init	(100,	150,	185,	185,

																																			150,	100,	65,	65)

								drawpolygon	(x,	y,	8,	1)

Execute		

Details		

The	IBM	PC	limits	drawpolygon	to	a	maximum	of	256	points.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

drawstar graphics	procedure

Syntax		 drawstar	(x1,	y1,	x2,	y2,	Color	:	int)

Description		

The	drawstar	procedure	is	used	to	draw	a	star	on	the	screen
bounded	by	a	rectangle	described	by	the	bottom	left	and	top	right
corners	of	(x1,	y1)	to	(x2,	y2)	using	the	specified	Color.	If	y1	is
greater	than	y2,	then	the	star	is	drawn	upside	down.

Example		

This	program	will	draw	two	stars	beside	each	other.	The	first	will
be	in	color	1	and	the	second	star	will	be	upside	down	and	in	color
2.

								setscreen	("graphics")

								drawstar	(0,	0,	100,	100,	1)

								drawstar	(150,	100,	250,	0,	2)

Execute		

Details		

The	drawstar	procedure	is	useful	for	drawing	the	American	flag.

The	meaning	of	the	Color	number	depends	on	the	current	palette.
See	the	palette	statement.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it

will	automatically	be	set	to	"graphics"	mode.

See	also		 setscreen,	maxx,	maxy	and	the	various	draw…	procedures.

empty condition	function

Syntax		 empty	(variableReference)	:	boolean

Description		

The	empty	function	is	used	in	a	concurrent	program.	It	returns
true	if	the	variableReference,	which	must	be	a	condition	variable,
has	no	processes	waiting	for	it.	Processes	join	the	queue	of	a
condition	variable	by	executing	the	wait	statement,	and	are
awakened	by	the	signal	statement.

See	also		
condition,	wait,	signal,	fork	and	monitor.

See	also	predefined	unit	Concurrency.

enum enumerated	type

Syntax		

An	enumeratedType	is:

	 enum	(id	{	,	id	})

Description		

The	values	of	an	enumerated	type	are	distinct	and	increasing.
They	can	be	thought	of	as	the	values	0,	1,	2	and	so	on,	but
arithmetic	is	not	allowed	with	these	values.

Example		
								type	color	:	enum	(red,	green,	blue)

								var	c	:	color	:=	color	.	red

								var	d	:	color	:=	succ	(c)							%	d	becomes	green

Details		

Each	value	of	an	enumerated	type	is	the	name	of	the	type
followed	by	a	dot	followed	by	the	element's	name,	for	example,
color.red.	Enumerated	values	can	be	compared	for	equality	and
for	ordering.	The	succ	and	pred	functions	can	be	used	to	find	the
value	following	or	preceding	a	given	enumerated	value.	The	ord
function	can	be	used	to	find	the	enumeration	position	of	a	value,
for	example,	ord	(color.red)	is	0.

Enumerated	types	cannot	be	combined	with	integers	or	with	other
enumerated	types.

Details		

It	is	illegal	to	declare	an	"anonymous"	enum.	The	only	legal
declaration	for	an	enum	is	in	a	type	declaration.	For	example,	the
following	is	now	illegal:

								var	a	:	array	enum	(red,	green,	blue)	of	int

Given	that	there	is	no	(easy)	way	of	generating	an	enum	value
without	it	being	a	named	type,	this	should	not	impact	any	but	the
most	bizarre	code.

The	"put"	and	"get"	statement	semantics	have	been	expanded	to
allow	put's	and	get's	of	enum	values.	The	values	printed	and	input
are	the	element	names	themselves,	case	sensitive.	For	example,

Details		 for

								type	colors	:	enum	(red,	green,	blue)

								var	c	:	colors	:=	colors	.	red

								put	c							%	outputs	"red"	(without	the	quotes)

enumeratedValue enumerated	value

Syntax		

An	enumeratedValue	is:

	 enumeratedTypeId	.	enumeratedId

Description		

The	values	of	an	enumerated	type	are	written	as	the	type	name
(enumeratedTypeId)	followed	by	a	dot	followed	by	one	of	the
enumerated	values	of	the	type	(enumeratedId).

Example		

In	this	example,	color.red	is	an	enumeratedValue.

								type	color	:	enum	(red,	green,	blue)

								var	c	:	color	:=	color	.	red

								var	d	:	color	:=	succ	(c)							%	d	becomes	green

Details		

The	above	description	has	been	simplified	by	ignoring	the
possibility	that	the	enum	type	can	be	exported	from	a	module.	If
this	is	the	case,	each	use	of	one	of	the	enumerated	values	outside
of	module	M	must	be	preceded	by	the	module	name	and	a	dot,	as
in	M.color.red.

See	also		 the	enum	type	and	explicitConstant.

eof end-of-file	function

Syntax		 eof	(streamNumber	:	int)	:	boolean

Description		

The	eof	(end	of	file)	function	is	used	to	determine	if	there	is	any
more	input.	It	returns	true	when	there	are	no	more	characters	to
be	read.	The	parameter	and	its	parentheses	are	omitted	when
referring	to	the	standard	input	(usually	this	is	the	keyboard);
otherwise	the	parameter	specifies	the	number	of	a	stream.	The
stream	number	has	been	determined	(in	most	cases)	by	an	open
statement.

Example		

This	program	reads	and	outputs	all	the	lines	in	the	file	called
"info".

								var	line	:	string

								var	fileNumber	:	int

								open	:	fileNumber,	"info",	get

								loop

												exit	when	eof	(fileNumber)

												get	:	fileNumber,	line	:	*

												put	line

								end	loop

Execute		

Details		

See	also	the	description	of	the	get	statement,	which	gives	more
examples	of	the	use	of	eof.	See	also	the	open	and	read
statements.

When	the	input	is	from	the	keyboard,	the	user	can	signal	end-of-
file	by	typing	control-Z	on	a	PC	(or	control-D	on	UNIX).	If	a
program	tests	for	eof	on	the	keyboard,	and	the	user	has	not	typed
control-Z	(or	control-D)	and	the	user	has	typed	no	characters

beyond	those	that	have	been	read,	the	program	must	wait	until	the
next	character	is	typed.	Once	this	character	is	typed,	the	program
knows	whether	it	is	at	the	end	of	the	input,	and	returns	the
corresponding	true	or	false	value	for	eof.

Example		

Another	example	is	available	that	illustrates	detecting	EOF	from
the	keyboard.

equivalence of	types

Description		

Two	types	are	equivalent	to	each	other	if	they	are	essentially	the
same	types	(the	exact	rules	are	given	below).	When	a	variable	is
passed	to	a	var	formal	parameter,	the	types	of	the	variable	and	the
formal	parameter	must	be	equivalent	because	they	are	effectively	the
same	variable.	When	an	expression	is	assigned	to	a	variable,	their
types	must	be	equivalent,	except	for	special	cases.	For	example,
Turing	allows	you	to	assign	an	integer	expression	to	a	real	variable
(see	assignability	for	details).

Example		

								var	j	:	int

								

								var	b	:	array	1	..	25	of	string

								

								type	personType	:

												record

																age	:	int

																name	:	string	(20)

												end	record

								

								procedure	p	(var	i	:	int,	var	a	:	array	1	..	25	of	

																				var	r	:	personType)

								…	body	of	procedure	p,	which	modifies	each	of	i,

								end	p

								

								var	s	:	personType

								p	(j,	b,	s)					%	Procedure	call	to	p

																				%	i	and	j	have	the	equivalent	type	int

																				%	Arrays	a	and	b	have	equivalent	types

																				%	Records	r	and	s	have	equivalent	types

Two	types	are	defined	to	be	equivalent	if	they	are:

(a) 	 the	same	standard	type	(int,	real,	boolean	or	string),
(b) 	 subranges	with	equal	first	and	last	values,

(c) 	 arrays	with	equivalent	index	types	and	equivalent	componenttypes,
(d) 	 strings	with	equal	maximum	lengths,
(e) 	 sets	with	equivalent	base	types,	or

Details		

(f) 	 pointers	to	the	same	collection;	in	addition,

(g) 	
a	declared	type	identifier	is	also	equivalent	to	the	type	it	names
(and	to	the	type	named	by	that	type,	if	that	type	is	a	named
type,	etc.)

(h) 	 both	char,
(i) 	 both	char(n)	with	the	same	length,

(j) 	 both	procedure	types,	with	corresponding	equivalent	parametertypes	and	corresponding	var	or	non-var	of	the	parameters,

(k) 	
both	function	types,	with	corresponding	equivalent	parameter
types	and	corresponding	var	or	non-var	of	the	parameters	and
equivalent	result	types,

(l) 	 both	pointer	types	to	the	same	class	or	equivalent	type	and	bothare	checked	or	unchecked.

Each	separate	instance	of	a	record,	union	or	enumerated	type	(written
out	using	one	of	the	keywords	record,	union	or	enum)	creates	a
distinct	type,	equivalent	to	no	other	type.	By	contrast,	separate
instances	of	arrays,	strings,	subranges	and	sets	are	considered
equivalent	if	their	parts	are	equal	and	equivalent.

Opaque	type	T,	exported	from	a	module,	monitor	or	class	M	as
opaque,	is	a	special	case	of	equivalence.	Outside	of	M	this	type	is
written	M.T,	and	is	considered	to	be	distinct	from	all	other	types.	By
contrast,	if	type	U	is	exported	non-opaque,	the	usual	rules	of
equivalence	apply.	The	parameter	or	result	type	of	an	exported
procedure	or	function	or	an	exported	constant	is	considered	to	have
type	M.T	outside	of	M	if	the	item	is	declared	using	the	type	identifier
T.	Outside	of	M,	the	opaque	type	can	be	assigned,	but	not	compared.

It	is	not	required	that	subprogram	types	have	the	same	names	and
parameter	names	to	be	equivalent.	They	also	do	not	require	the	same
factoring	of	parameters	across	their	types,	as	in	i,	j:	int	instead	of	i:
int,	j:	int.

erealstr real-to-string	function

Syntax		
erealstr	(r	:	real,	
	 width,	fractionWidth,	exponentWidth	:	int)	:string

Description		

The	erealstr	function	is	used	to	convert	a	real	number	to	a	string;
for	example,	erealstr	(2.5e1,	10,	3,	2)="b2.500e+01"	where	b
represents	a	blank.	The	string	(including	exponent)	is	an
approximation	to	r,	padded	on	the	left	with	blanks	as	necessary	to
a	length	of	width.

The	width	must	be	a	non-negative	int	value.	If	the	width
parameter	is	not	large	enough	to	represent	the	value	of	r,	it	is
implicitly	increased	as	needed.

The	fractionWidth	parameter	is	the	non-negative	number	of
fractional	digits	to	be	displayed.	The	displayed	value	is	rounded
to	the	nearest	decimal	equivalent	with	this	accuracy.	In	the	case	of
a	tie,	the	value	is	rounded	to	the	larger	of	the	two	values.

The	exponentWidth	parameter	must	be	non-negative	and	give	the
number	of	exponent	digits	to	be	displayed.	If	exponentWidth	is
not	large	enough	to	represent	the	exponent,	more	space	is	used	as
needed.	The	string	returned	by	erealstr	is	of	the	form:

								{blank}[-]digit.{digit}e	sign	digit	{digit}

where	sign	is	a	plus	or	minus	sign.	The	leftmost	digit	is	non-zero,
unless	all	the	digits	are	zeros.

The	erealstr	function	approximates	the	inverse	of	strreal,
although	round-off	errors	keep	these	from	being	exact	inverses.

See	also		 frealstr,	realstr,	strreal,	intstr	and	strint	functions.

Error

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
errors	returned	from	other	predefined	subprograms.

All	routines	in	the	Error	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Error.").

The	constants	representing	the	possible	errors	returned	by	this
module	can	be	found	in	the	ErrorNum	module.

Entry
Points		

Last 	 Returns	the	(integer)	error	code	produced	by	the	last
call	to	a	predefined	subprogram.

LastMsg 	 Returns	the	error	string	produced	by	the	last	call	to	a
predefined	subprogram.

LastStr 	
Returns	the	string	version	of	the	error	constant
produced	by	the	last	call	to	a	predefined
subprogram.

Msg 	 Returns	the	string	that	corresponds	to	a	specified
error	code.

Str 	 Returns	the	string	version	of	the	error	constant	that
corresponds	to	a	specified	error	code.

Trip 	 This	causes	the	specified	error	code	to	be	set.

TripMsg 	 This	causes	the	specified	error	code	and	error
message	to	be	set.

Halt 	 This	causes	execution	to	halt	with	the	specified	error
message.

Error.Last Part	of	Error	module

Syntax		 Error.Last	:	int

Description		

Error.Last	is	a	function	that	returns	the	error	code	set	by	the	last
called	predefined	subprogram.	If	there	is	no	error,	then	it	returns
eNoError	(which	is	0).	If	there	is	an	error,	you	can	use
Error.LastMsg	to	obtain	a	textual	form	of	the	error	or
Error.LastStr	to	obtain	a	string	version	of	the	error	constant.

The	fact	that	Error.Last	is	not	eNoError	does	not	necessarily
mean	that	the	previous	predefined	function	failed	or	failed
completely.	Error.Last	also	returns	a	number	of	warning	codes.
For	example,	if	a	user	specifies	a	number	larger	than	maxcolor
for	the	color	parameter	of	the	Draw.Line	procedure,	the	line	is
still	drawn,	only	in	color	maxcolor.	However,	Error.Last	will
return	a	code	that	warns	the	user	of	the	fact.

Example		

This	program	creates	the	directory	called	information.	If	the
creation	fails,	it	prints	out	the	error	number	and	an	error	message.

								var	f	:	int

								open	:	f,	"testdata/information.txt",	get

								if	f	<=	0	then

												put	"File	opened"

								else

												put	"Could	not	open	file."

												put	"Error	Number:	",	Error.Last

												put	"Error	Message:	",	Error.LastMsg

												put	"Error	Constant:	",	Error.LastStr

								end	if

Execute		

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
Error.Last,	not	by	calling	Last.

Error.LastMsg Part	of	Error	module

Syntax		 Error.LastMsg	:	string

Description		

Error.LastMsg	is	a	function	that	returns	the	error	message	set	by
the	last	called	predefined	subprogram.	If	there	is	no	error,	then	it
returns	the	empty	string.	If	there	is	an	error,	you	can	use
Error.Last	to	obtain	the	error	code.

The	fact	that	Error.LastMsg	is	not	""	does	not	necessarily	mean
that	the	previous	predefined	function	failed	or	failed	completely.
Error.LastMsg	also	returns	a	number	of	warning	messages.	For
example,	if	a	user	specifies	a	number	larger	than	maxcolor	for	the
color	parameter	of	the	Draw.Line	procedure,	the	line	is	still
drawn,	only	in	color	maxcolor.	However,	Error.LastMsg	will
return	a	message	that	indicates	that	the	color	was	out	of	range

Example		

This	program	creates	the	directory	called	information.	If	the
creation	fails,	it	prints	out	the	error	number	and	an	error	message.

								Dir.Create	("testdata/information")

								if	Error.Last	=	eNoError	then

												put	"Directory	created"

								else

												put	"Did	not	create	the	directory."

												put	"Error	Number:	",	Error.Last

												put	"Error	Message:	",	Error.LastMsg

								end	if

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

Error.LastMsg,	not	by	calling	LastMsg.

Error.LastStr Part	of	Error	module

Syntax		 Error.LastStr	:	string

Description		

Error.LastStr	is	a	function	that	returns	the	string	version	of	the
error	code	set	by	the	last	called	predefined	subprogram	(i.e.	it
would	return	the	string	"eDrawClrNumTooLarge"	for	using	a
color	greater	than	maxcolor	in	a	Draw	command).	If	there	is	no
error	then	it	returns	the	empty	string.	If	there	is	an	error,	you	can
use	Error.Last	to	obtain	the	actual	error	code.

The	fact	that	Error.LastStr	is	not	""	does	not	necessarily	mean
that	the	previous	predefined	function	failed	or	failed	completely.
Error.LastStr	also	returns	a	number	of	error	codes	for	warning
messages.	For	example,	if	a	user	specifies	a	number	larger	than
maxcolor	for	the	color	parameter	of	the	Draw.Line	procedure,
the	line	is	still	drawn,	only	in	color	maxcolor.	However,
Error.LastStr	will	return	a	string	version	of	the	error	code	that
indicates	that	the	color	was	out	of	range.

You	can	take	a	look	at	the	error	constants	defined	by	looking	at
the	unit	ErrorNum	which	contains	all	defined	error	codes.

Example		

This	program	creates	the	directory	called	information.	If	the
creation	fails,	it	prints	out	the	error	number	and	an	error	message.

								Dir.Create	("testdata/information")

								if	Error.Last	=	eNoError	then

												put	"Directory	created"

								else

												put	"Did	not	create	the	directory."

												put	"Error	Number:	",	Error.Last

												put	"Error	Constant:	",	Error.LastStr

								end	if

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Error.LastStr,	not	by	calling	LastStr.

Error.Msg Part	of	Error	module

Syntax		 Error.Msg	(errorCode	:	int):	string

Description		

Error.Msg	is	a	function	that	returns	the	error	message	related	to	a
specified	error	code.	If	the	error	code	is	eNoError,	or	if	there	is	no
such	error	code,	it	returns	the	empty	string.	If	there	is	such	an
error,	it	returns	the	textual	message	associated	with	that	error.

Example		

This	program	prints	out	the	error	message	associated	with
eFsysFileNotFound	(“File	not	found”).

								put	Error.Msg	(eFsysFileNotFound)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Error.Msg,	not	by	calling	Msg.

Error.Str Part	of	Error	module

Syntax		 Error.Str	(errorCode	:	int):	string

Description		

Error.Str	is	a	function	that	returns	the	error	message	related	to	a
specified	error	code.	If	the	error	code	is	eNoError	or	if	there	is	no
such	error	code,	it	returns	the	empty	string.	If	there	is	such	an
error,	it	returns	the	textual	message	associated	with	that	error.

Example		
This	program	prints	out	the	string	"eFsysFileNotFound".

								put	Error.Str	(eFsysFileNotFound)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Error.Str,	not	by	calling	Str.

Error.Trip Part	of	Error	module

Syntax		 Error.Trip	(errorCode	:	int)

Description		

Error.Trip	is	a	procedure	that	sets	the	error	number	that	is
returned	by	Error.Last	and	Error.LastMsg.	It	does	not	halt	the
program.

Error	codes	that	do	not	correspond	to	recognized	errors	will	cause
an	abort	with	the	error	message	"Unknown	Error	#n"	where	n	is
the	error	passed	in.

You	can	find	a	list	of	constants	for	the	legal	error	codes	in	the
module	ErrorNum.	Any	call	to	Error.Trip	should	use	a	constant
found	in	the	ErrorNum	module.

Example		

This	program	sets	an	error	code.	The	program	outputs	201	for	the
error	number	and	"File	not	found"	for	the	message.

								Error.Trip	(eFsysFileNotFound)

								put	"Error	code	=	",	Error.Last

								put	"Error	message	=	",	Error.LastMsg

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Error.Trip,	not	by	calling	Trip.

ErrorNum

Description		

This	unit	contains	all	the	constants	representing	errors	used	by	the
Error	module.

All	constants	in	the	ErrorNum	module	are	exported	unqualified.
(This	means	you	can	use	the	constants	directly	without	having	to
use	the	qualifier	"ErrorNum.".)

Exceptions

Description		

This	unit	contains	all	the	constants	corresponding	to	exception
numbers	in	Turing	for	use	in	building	exception	handlers.

All	constants	in	the	Exceptions	module	are	exported	unqualified.
(This	means	you	can	use	the	constants	directly	without	having	to
use	the	qualifier	"Exceptions.".)

exit statement

Syntax		

An	exitStatement	is	one	of:

	 (a) exit	when	trueFalseExpn
	 (b) exit

Description		

An	exit	statement	is	used	to	stop	the	execution	of	a	loop	or	for
statement.	Form	(a)	is	the	most	common.	Here,	the	true/false
expression	is	evaluated.	If	it	is	true,	the	loop	is	terminated	and
execution	jumps	down	and	continues	just	beyond	end	loop	or	end
for.	If	it	is	false,	the	loop	keeps	on	repeating.	Form	(b)	always
causes	the	loop	to	terminate.	This	form	is	almost	always	used
inside	another	conditional	statement	such	as	if.

Example		

Input	names	until	finding	Jones.

								var	name	:	string

								loop

												get	name

												exit	when	name	=	"Jones"

								end	loop

Details		

Exit	statements	must	occur	only	inside	loop	or	for	statements.	An
exit	takes	you	out	of	the	closest	surrounding	loop	or	for.	The	only
other	ways	to	terminate	a	loop	or	for	is	by	return	(in	a	procedure
or	in	the	main	program,	in	which	case	the	entire	procedure	or
main	program	is	terminated)	or	by	result	(in	a	function,	in	which
case	the	entire	function	is	terminated	and	a	result	value	must	be
supplied).

The	form	"exit	when	trueFalseExpn"	is	equivalent	to	"if
trueFalseExpn	then	exit	end	if".

exp exponentiation	function

Syntax		 exp	(r	:	real)	:	real

Description		

The	exp	function	is	used	to	find	e	to	the	power	r,	where	e	is	the
natural	base	and	r	is	the	parameter	to	exp.	For	example,	exp	(0)
returns	1	and	exp	(1)	returns	the	value	of	e.

Example		

This	program	prints	out	the	exponential	values	of	1,	2,	3,	…	up	to
100.

								for	i	:	1	..	100

												put	"Exponential	of	",	i,	"	is	",	exp	(i)

								end	for

See	also		
ln	(natural	logarithm	function).

See	also	predefined	unit	Math.

explicitCharConstant character	literal

Syntax		
An	explicitCharConstant	is	a	sequence	of	characters	surrounded	by
single	quotation	marks,	for	example,	'Renzo'.

Example		

In	the	following,	the	explicit	character	constants	are	'H'	and	'Hi'.

								var	c	:	char	:=	'H'

								var	d	:	char	(2)	:=	'Hi'

Details		

An	explicit	character	constant	must	contain	at	least	one	character.	If
it	contains	exactly	one	character,	as	in	'A',	its	type	is	char.	If	it
contains	two	or	more	characters	(n	characters),	as	'Width',	its	type	is
char(n).	The	difference	between	the	char	and	char(1)	types	is	rarely
of	significance,	but	does	make	a	difference	in	declarations	without
an	explicit	type,	for	example:

								var	c	:=	'H'								%	Type	is	char

								var	d	:=	'Hi'			%	Type	is	char	(2)

								var	e	:=	"H"				%	Type	is	string

The	backslash	\	is	used	in	explicit	string	and	char(n)	constants	to
specify	special	values,	for	example,	'\T'	is	the	tab	character.
Similarly,	the	carat	^	is	used	to	specify	ASCII	control	characters,	for
example,	'^H'	is	the	ASCII	backspace.	See	explicitStringConstants
for	details.

Explicit	character	constants	cannot	cross	line	boundaries.	To
represent	a	constant	that	is	longer	than	a	line,	break	it	into	two	or
more	strings	on	separate	lines	and	use	+	(catenation)	to	join	the
individual	strings.	See	catenation.

An	explicit	character	constant	may	be	limited	in	length	by	the
implementation.	We	recommend	that	this	limitation	be	at	least
32767.

Explicit	character	constants,	but	not	strings,	are	allowed	to	contain
the	character	internal	values	0	(called	eos	for	end	of	string)	and	128
(called	uninitchar,	used	as	the	uninitialized	string	value).

explicitConstant literal

Syntax		

An	explicitConstant	is	one	of:

	 (a) explicitStringConstant 	 %	e.g.:	"Hello
world"

	 (b) explicitIntegerConstant 	 %	e.g.:	25
	 (c) explicitRealConstant 	 %	e.g.:	51.8

	 (d) explicitTrueFalseConstant
%	e.g.:	true

	 (e) explicitCharConstant 	 %	e.g.:	'Hi'

Description		
An	explicitConstant	gives	its	value	directly.	For	example,	the
value	of	the	explicit	constant	25	is	twenty-five.

Example		

In	the	following,	the	explicit	constants	are	"Hello	world",	3.14159
and	2.	Note	that	pi	is	a	named	constant	rather	than	an	explicit
constant.

								put	"Hello	world"

								var	diameter	:	real

								const	pi	:=	3.14159

								diameter	:=	pi	*	r	**	2

								var	x	:=	diameter

Details		

In	some	programming	languages,	explicit	constants	are	called
literals	or	literal	values,	because	they	literally	(explicitly)	give
their	values.

See	also		

explicitStringConstant,	explicitIntegerConstant,
explicitRealConstant,	explicitTrueFalseConstant	and
explicitCharConstant.	See	also	enumeratedValue.

explicitIntegerConstant integer	literal

Syntax		

An	explicitIntegerConstant	is	a	sequence	of	one	or	more	decimal	digits	(0	to	9)
optionally	preceded	by	a	plus	or	minus	sign.	This	is	an	alternate	form	that
specifies	a	number	base	(such	as	base	2	or	base	16).

Example		

In	the	following,	the	explicit	integer	constants	are	0,	115	and	5.

								var	count	:	int	:=	0

								const	height	:=	115

								…

								count	:=	height	-	5

Details		

In	current	implementations	of	Turing,	the	range	of	the	int	(integer)	type	is	from
-2147483647	to	2147483647.	In	other	words,	the	maximum	size	of	integer	is
2**31	-	1.	This	is	the	range	that	fits	into	four	bytes,	with	one	pattern	left	over
(the	largest	negative	4-byte	number)	to	represent	the	uninitialized	value.	See
maxint.

Values	can	be	written	in	base	2	or	16	or	any	other	base	in	the	range	2	to	36	(36
because	there	are	10	digits	and	26	letters).	This	form	begins	with	the	base,	such
as	16,	then	#,	and	then	the	value	written	in	that	base,	for	example,	16#A	has	the
value	10.	The	letters	a,	b,	c	…	represent	the	digit	values	10,	11,	12	…	Capital
letters	A,	B,	C	…	can	be	used	instead	of	lower	case.	Here	are	some	examples.

	 2#1 	 	 =	1 	 	 (Base	2)
	 2#11 	 	 =	3 	 	 (Base	2)
	 16#a 	 	 =	10 	 	 (Base	16)
	 16#FF 	 	 =	255 	 	 (Base	16)
	 16#FFFF 	 =	32767 	 (Base	16)
	 8#10 	 	 =	8 	 	 (Base	8)

Here	is	an	example	of	using	these:

								const	maxnat1	:=	16#FF						%	Largest	1-byte	natural	number

								const	maxint2	:=	16#7FFF				%	Largest	2-byte	integer

You	should	be	careful	to	avoid	confusion	about	patterns	such	as	16#FFFF.	It	is
tempting	to	think	that	this	is	the	value	1,	because	the	bit	pattern	(2-byte	two's

complement	internal	representation)	for	1	is	the	same	as	the	bit	pattern	for
16#FFFF	=	32767.	However,	the	value	(as	opposed	to	the	internal
representation)	of	1	and	32767	are	different.

See	also		

int,	maxint	(the	largest	integer	value),	nat	(positive	values	only)	and	
byte	integers).	See	also	intstr	and	natstr	which	convert	integer	and	natural
number	values	to	corresponding	character	strings	in	any	base,	for	example
intstr	(4,	0,	2)	=	"100".

explicitRealConstant real	literal

Syntax		
An	explicitRealConstant	consists	of	an	optional	plus	or	minus	sign,	a
significant	digits	part,	and	an	exponent	part.

Example		

In	the	following,	the	explicit	real	constants	are	0.0	and	2.93e3.

								var	temperature	:	real	:=	0.0

								const	speed	:=	2.93e3							%	Value	is	2,930.0

Details		

The	significant	digits	part	(or	fractional	part)	of	an	explicit	real
constant	consists	of	a	sequence	of	one	or	more	digits	(0	to	9)
optionally	containing	a	decimal	point	(a	period).	The	decimal	point
is	allowed	to	follow	the	last	digit	as	in	16.	or	to	precede	the	first
digit,	as	in	.25.

The	exponent	part	consists	of	the	letter	e	or	E	followed	optionally	by
a	plus	or	minus	sign	followed	by	one	or	more	digits.	For	example,	in
-9.837e-3	the	exponent	part	is	e-3.	The	value	of	-9.837e-3	is	-9.837
times	0.001.

If	the	significant	figures	part	contains	a	decimal	point,	then	the
exponent	part	is	not	required.

explicitStringConstant string	literal

Syntax		
An	explicitStringConstant	is	a	sequence	of	characters	surrounded	by
quotation	marks.

Example		

In	the	following,	the	explicit	string	constants	are	"Hello	world",	""
and	"273	O'Reilly	Ave.".

								var	name	:	string	:=	"Hello	world"

								name	:=	""						%	Null	string,	containing	zero	characters

								var	address	:	string	:=	"273	O'Reilly	Ave."

Details		

Within	an	explicit	string	constant	(and	within	an	explicit	character
constant),	the	back	slash	\	is	used	to	represent	certain	other
characters	as	follows:

	 \" 	 	 quotation	mark	character
	 \n	or	\N 	 end	of	line	character
	 \t	or	\T 	 tab	character
	 \f	or	\F 	 form	feed	character
	 \r	or	\R 	 return	character
	 \b	or	\B 	 backspace	character
	 \e	or	\E 	 escape	character
	 \d	or	\D 	 delete	character
	 \\ 	 	 backslash	character

For	example,	put	"One\nTwo"	will	output	One	on	one	line	and	Two
on	the	next.	In	an	explicit	character	constant	(which	is	surrounded	by
single	quotes,	as	in	'John'),	the	backslash	is	not	required	before	a
double	quote	",	but	it	is	required	before	a	single	quote	',	as	in	these
two	constants:

	 'John	said	"Hello"	to	you'
	 'Don\'t	cry'.

You	can	use	the	caret	^	to	specify	ASCII	control	characters,	for
example:

	 '^H' 	 ASCII	backspace	character

The	caret	specifies	that	the	top	three	bits	of	the	character	are	set	to
zero.	For	any	character	c,	the	following	is	true:

	 '^c'	=	chr	(ord	('c')	&	2#11111)

However	if	c	is	the	question	mark,	as	in	'^?',	the	bits	are	not	turned
off.

Explicit	string	constants	cannot	cross	line	boundaries.	To	represent	a
string	that	is	longer	than	a	line,	break	it	into	two	or	more	strings	on
separate	lines	and	use	catenation	(+)	to	join	the	individual	strings.

An	explicit	string	constant	can	contain	at	most	255	characters	(this	is
in	implementation	constraint).

String	values	are	not	allowed	to	contain	characters	with	the	code
values	of	0	or	128;	these	character	values	are	called	eos	(end	of
string)	and	uninitchar	(uninitialized	character).	These	are	reserved
by	the	implementation	to	mark	the	end	of	a	string	value	and	to	see	if
a	string	variable	has	been	initialized.

explicitTrueFalseConstant boolean	literal

Syntax		

An	explicitTrueFalseConstant	is	one	of:

	 (a) true
	 (b) false

Example		

The	following	determines	if	string	s	contains	a	period.	After	the	for
statement,	found	will	be	true	if	there	is	a	period	in	s.

								var	found	:	boolean	:=	false

								for	i	:	1	..	length	(s)

												if	s	=	"."	then

																found	:=	true

												end	if

								end	for

Details		

true/false	values	are	called	boolean	values.	A	boolean	variable,
such	as	found	in	the	above	example,	can	have	a	value	of	either	true
or	false.

See	also		 boolean	type.

expn expression

Syntax		

An	expn	is	one	of:

	 (a) explicitConstant 	 	 %	e.g.:	25

	 (b) variableReference 	 	 %	e.g.:
width

	 (c) constantReference 	 	 %	e.g.:	pi

	 (d)
expn
infixOperator
expn

	
%	e.g.:	3
+	width

	 (e) prefixOperator
expn

	 %	e.g.:	-
width

	 (f) (expn) 	 	 	
%	e.g.:
(width	-
7)

	 (g) substring 	 	 	 %	e.g.:	s
(3	..	5)

	 (h) functionCall 	 	 %	e.g.:
sqrt	(25)

	 (i) setConstructor 	 	
%	e.g.:
modes	(4,
3)

	 (j) enumeratedValue 	 	 %	e.g.:
color	.	red

Description		

An	expression	(expn)	returns	a	value;	in	the	general	case,	this	may
involve	a	calculation,	such	as	addition,	as	in	the	expression:

												3	+	width

								put	"Hello	world"											%	"Hello	world"	is	an	expn

Example		 								var	diameter	:	real

								const	pi	:=	3.14159									%	3.14159	is	an	expn

								diameter	:=	pi	*	r	**	2									%	pi	*	r	**	2	is	an	expn

								var	x	:=	diameter															%	diameter	is	an	expn

Details		

In	the	simplest	case,	an	expression	(expn)	is	simply	an	explicit	constant
such	as	25	or	"Hello	world".	A	variable	by	itself	is	considered	to	be	an
expression	when	its	value	is	used.	This	is	the	case	above,	where	the	value
of	diameter	is	used	to	initialize	x.	More	generally,	an	expression	contains
an	operator	such	as	+	and	carries	out	an	actual	calculation.	An	expression
may	also	be	a	substring,	function	call,	set	constructor	or	enumerated
value.	For	details,	see	the	descriptions	of	these	items.

The	Turing	infix	operators	are:	+,	-,	*,	/,	div,	mod,	**,	<,	>,	=,	<=,	>=,
not=,	not,	and,	or,	=>,	in,	not	in,	shr	(shift	right),	shl	(shift	left),	and	
(exclusive	or).	For	details,	see	infixOperator.	The	Turing	prefix	operators
are	+,	-	and	not,	^	(pointer	following)	and	#	(see	cheat).	For	details	see
prefix	operator.

See	also		
precedence	of	operators,	as	well	as	the	int,	real,	string	and	boolean
types.

export list

Syntax		

An	exportList	is:

	 export	[howExport]	id	{,	[howExport]	id	}

Description		

An	export	list	is	used	to	specify	those	items	declared	in	a	module,
monitor	or	class	that	can	be	used	outside	of	it.	Items	that	are
declared	inside	a	module,	monitor	or	class	but	not	exported
cannot	be	accessed	outside	of	it.

Example		

In	this	example,	the	procedures	names	pop	and	push	are	exported
from	the	stack	module.	These	two	procedures	are	called	from
outside	the	module	on	the	last	and	third	from	last	lines	of	the
example.	Notice	that	the	word	stack	and	a	dot	must	precede	the
use	of	these	names.	Since	top	and	contents	were	not	exported,
they	can	be	accessed	only	from	inside	the	module.

								module	stack

												export	push,	pop

												var	top	:	int	:=	0

												var	contents	:	array	1..100	of	string

												procedure	push	…	end	push

												procedure	pop	…	end	pop

								end	stack

								

								stack	.	push	("Harvey")

								var	name	:	string

								stack	.	pop	(name)						%	This	sets	name	to	Harvey

Procedures,	functions,	variables,	constants	and	types	can	be
exported.	Modules,	monitors	or	classes	canot	be	exported.
Parentheses	are	allowed	around	the	items	in	an	export	list,	as	in:

								export	(push,	pop)

The	following	syntax	specifies	that	each	exported	identifier	can
optionally	be	preceded	by	the	keywords	var,	unqualified,
pervasive	and	opaque.	Of	these,	only	opaque	is	available	in
Turing	proper.

Details		

The	form	of	howExport	is:

	 {	exportMethod	}

The	form	of	exportMethod	is	one	of:

	 (a) 	 var
	 (b) 	 unqualified
	 (c) 	 pervasive
	 (d) 	 opaque

The	keyword	var	means	that	the	exported	variable	can	be
changed	outside	of	the	exporting	module,	monitor	or	class.	This
keyword	applies	only	to	exported	variables.	For	example,	if	string
variable	name	is	exported	var	from	module	M,	name	can	be
changed	from	outside	of	M	by	M.name	:=	"Surprise!".

The	keyword	unqualified	means	that	references	to	the	exported
item	do	not	need	to	be	prefixed	by	the	name	of	the	exporting	item.
For	example,	if	module	M	exports	procedure	p	unqualified,	a	call
to	p	outside	of	M	can	be	simply	p	instead	of	the	usual	M.p.	A
class	cannot	export	variables	or	dynamic	constants	unqualified
(because	each	object	of	the	class	has	its	own	copies	of	these).	The
only	things	a	class	can	export	unqualified	are	types	and	compile
time	constants.	The	keyword	unqualified	can	be	abbreviated	to	~.
which	is	pronounced	as	"not	dot".

The	keyword	pervasive,	which	is	only	meaningful	if	unqualified
is	also	present,	specifies	that	the	exported	item	is	to	be	visible	in
subsequent	scopes,	in	other	words	that	it	is	not	necessary	to
import	it	into	internal	modules,	monitors	and	classes.

The	keyword	opaque,	which	can	only	precede	type	names,
specifies	that	outside	the	module,	monitor	or	class,	the	type	is
considered	to	be	distinct	from	all	other	types.	This	means,	for
example,	that	if	the	type	is	an	array,	it	cannot	be	subscripted
outside	of	the	module.	See	module	declaration	for	an	example
that	uses	opaque	types.	In	most	cases,	classes	are	preferable	to
opaque	types.

Exported	subprograms	are	considered	to	be	deferred,	meaning
that	expansions	are	allowed	to	override	these	subprograms.	See
also	deferred	subprograms.	These	can	be	overridden	using	the
keyword	body	before	the	resolving	subprogram	body.

A	class	cannot	export	items	from	its	parent	or	it	parent's
ancestors.	All	exported	item	must	be	declared	in	the	current	class.

Details		

You	can	export	all	from	a	module,	monitor	or	a	class.	This	means
that	every	sibmle	that	is	legal	to	export	is	exported.	You	may	also
qualify	the	all,	as	in	export	opaque	unqualified	pervasive	all
where	the	qualifiers	are	added	to	each	export	item	(if	it	makes
sense).

If	all	is	specified	as	the	export	item,	no	other	item	may	be
specified.	Also,	and	all	export	affects	only	the	module,	monitor	or
class	that	it	is	given	in.	Any	inheriting	or	implementing	module,
monitor	or	class	does	not	export	all	unless	they	also	specify	it.

See	also		

unit,	module,	monitor	and	class.	See	also	import	list,	inherit
clause,	implement	clause,	implement	by	clause	and	deferred
subprogram.

external declaration

								Dangerous

Syntax		

An	externalDeclaration	is	one	of:

	 (a)	external	[overrideName]	subprogramHeader
	 (b)	external	[addressSpec]	var	id	[:	typeSpec]	[:=

Description		

An	external	declaration	is	used	to	access	variables	or	subprograms	that	are	written
in	other	languages	or	which	require	special	linkage.	This	feature	is
implementation-dependent	and	dangerous	and	may	cause	arbitrary	data	or
program	corruption.	From	an	interpretive	environment	such	as	Turing,	this
provides	linkage	to	items	that	are	part	of	the	Turing	system.	For	compiled	versions
of	Turing,	the	linkage	would	be	by	means	of	a	standard,	operating	system-specific
linkage	editor.

Details		

In	form	(a)	the	optional	overrideName	must	be	an	explicit	string	constant,	such	as
"printf".	If	it	is	omitted,	the	external	name	is	the	name	in	the	subprogramHeader
See	subprogramHeader.

The	current	implementation	does	not	support	form	(b).	This	form	is	documented
here	in	case	a	future	version	supports	it.	The	addressSpec	is	a	compile	time
expression	(its	value	must	fit	in	the	range	of	the	addressint	type)	or	is	a	compile
time	string	value.	If	the	addressSpec	is	omitted,	the	identifier	is	the	name	of	an
external	variable.	This	name	represents	an	implementation-dependent	method	of
locating	a	variable.	At	least	one	of	typeSpec	or	expn	must	be	present.

Declaring	variables	at	absolute	addresses	is	useful	for	device	management	in
computer	architectures	with	memory	mapped	device	registers.	External	variables
declared	to	be	int	or	nat	will	by	default	be	checked	for	initialization.	To	avoid	this
check,	declare	them	to	be	int4	or	nat4.

Example		

Place	variable	ttyData	at	hexadecimal	location	9001	and	assign	it	the	character	A.

								external	16#9001	var	ttyData	:	char

								ttyData	:=	'A'		%	Character	A	is	assigned	to	hex	location	9001

Example		
Access	an	external	integer	variable	named	ERRFLAG.

								external	var	ERRFLAG	:	int

								if	ERRFLAG	=	0	then	…

Example		

Access	an	integer	variable	which	is	called	y	in	this	program	but	is	called	
externally.

								external	"x"	var	y	:	int

Example		
Declare	drawcircle	to	be	a	procedure	that	is	externally	known	as	circle

								external	"circle"	procedure	drawcircle	(x,	y,	r,

false boolean	value	(not	true)

Syntax		 false

Description		
A	boolean	(true/false)	variable	can	be	either	true	or	false	(see
boolean	type).

Example		

								var	found	:	boolean	:=	false

								var	word	:	int

								for	i	:	1	..	10

												get	word

												found	:=	found	or	word	=	"gold"

								end	for

								if	found	=	true	then

												put	"Found	'gold'	in	the	ten	words"

								end	if

Details		
The	line	if	found=true	then	can	be	simplified	to	if	found	then
with	no	change	to	the	meaning	of	the	program.

fetcharg fetch	argument	function

Syntax		 fetcharg	(i	:	int)	:	string

Description		

The	fetcharg	function	is	used	to	access	the	i-th	argument	that	has
been	passed	to	a	program	from	the	command	line.	For	example,	if
the	program	is	run	from	the	Turing	environment	using

	 :r	file1	file2

then	fetcharg(2)	will	return	"file2".	If	a	program	called	prog.x	is
run	under	UNIX	using	this	command:

	 prog.x	file1	file2

the	value	of	fetcharg(2)	will	similarly	be	"file2".

The	nargs	function,	which	gives	the	number	of	arguments	passed
to	the	program,	is	usually	used	together	with	the	fetcharg
function.	Parameter	i	passed	to	fetcharg	must	be	in	the	range	0	..
nargs.

The	0-th	argument	is	the	name	of	the	running	program.

Example		

This	program	lists	its	own	name	and	its	arguments.

								put	"The	name	of	this	program	is	:	",	fetcharg	(0)

								for	i	:	1	..	nargs

												put	"Argument	",	i,	"	is	",	fetcharg	(i)

								end	for

Execute		

See	also		 nargs

File

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with	file
manipulation	on	a	whole-file	basis	(as	opposed	to	manipulating
the	data	in	the	file	using	open	and	close,	etc.).	These	routines
allow	you	to	rename,	copy	and	delete	files,	as	well	as	get
information	about	a	file	and	get	the	free	space	on	disk	available
for	a	file.

All	routines	in	the	File	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"File.").

Entry
Points		

Exists 	 Returns	whether	a	file	exists.
FullPath 	 Returns	the	full	absolute	path	name	of	a	file.
Parent 	 Returns	the	parent	directory	of	a	file	or	directory.

Status 	 Gets	information	about	a	file	such	as	size,
modification	date,	etc.

Copy 	 Copies	a	file	to	another	location.
Rename 	 Renames	a	file	or	directory.
Delete 	 Deletes	a	file.

DiskFree 	 Gets	the	free	space	on	the	disk	upon	which	a	file	or
directory	resides.

Details		

On	the	PC,	a	path	name	of	a	file	or	a	directory	can	use	either	the
forward	slash	or	backward	slash	to	separate	directory	names.	The
drive	must	be	followed	by	a	colon.	Thus	the	following	are	legal
path	names:

								x:\students\west\example.t

								c:/turing/test.t

								/west/binary.t		(uses	the	default	drive).

								

On	the	Macintosh,	a	path	name	of	a	file	or	directory	can	use	the
standard	Macintosh	format	of	Volume	Name:Directory
Name:Directory	Name:File	Name	or	the	Unix	format	of	/Volume
Name/Directory	Name/Directory	Name/File	Name.	Note	that	the
names	can	have	spaces	in	them.

								HSA:Applications:Turing	Files:example.t

								/HSA/Applications/Turing	Files/example.t

								

On	UNIX	systems,	the	path	name	must	correspond	to	the	UNIX
standard	of	using	a	forward	slash	between	parts	of	the	path.

								/export/home/west/turing/example.t

								

In	general,	you	can	achieve	the	greatest	portability	by	using	the
UNIX	standard	for	use	in	path	names,	as	all	Turing	systems
support	it.

File.Copy Part	of	File	module

Syntax		 File.Copy	(srcPathName,	destPathName	:	string)

Description		

File.Copy	copies	a	file	named	by	the	srcPathName	parameter	to
the	file	named	by	the	destPathName	parameter.	The	copy	can	be
between	different	disks	or	file	systems.

Details		

The	source	file	name	must	be	an	actual	file.	This	procedure	will
not	copy	directories.

If	the	File.Copy	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Note	that	you	can	use	either	forward	or	backward	slashes	to
separate	components	in	a	path.	If	you	use	backward	slashes,	you
must	double	them	in	a	string	literal.	(i.e.	"d:\\west\\example.t")

Example		

This	program	copies	the	file	"d:\west\example.dat"	to
"new_example.t".	in	the	current	directory.

								File.Copy	("d:/west/example.dat",	"new_example.t")

								if	Error.Last	=	eNoError	then

												put	"File	copied"

								else

												put	"Did	not	copy	the	file."

												put	"Error:	",	Error.LastMsg

								end	if

Execute		

An	example	program	is	available	that	copies	a	file	to	the	current
directory	using	File.Copy,	displays	its	contents	to	the	run
window,	and	then	deletes	the	file	using	File.Delete.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.Copy,	not	by	calling	Copy.

File.Delete Part	of	File	module

Syntax		 File.Delete	(filePathName	:	string)

Description		

File.Delete	is	used	to	delete	the	file	specified	by	the	parameter
filePathName.	This	is	the	equivalent	of	doing	a	del	in	DOS	or	rm
in	UNIX.

Details		

If	the	File.Delete	call	fails,	then	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will
return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	deletes	the	file	called	information.

								File.Delete	("information")

								if	Error.Last	=	eNoError	then

												put	"File	delete"

								else

												put	"Did	not	delete	the	file."

												put	"Error:	",	Error.LastMsg

								end	if

Execute		

An	example	program	is	available	that	creates	a	file	in	the	current
directory,	and	then	deletes	the	file	using	File.Delete.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.Delete,	not	by	calling	File.

File.DiskFree Part	of	File	module

Syntax		 File.DiskFree	(pathName	:	string)	:	int

Description		

File.DiskFree	gets	the	number	of	bytes	for	the	disk	upon	which
pathName	resides.	The	pathName	parameter	can	specify	either	a
file	or	a	directory.	If	it	is	the	empty	string,	then	File.DiskFree
returns	the	number	of	bytes	of	free	disk	space	on	the	disk	upon
which	the	execution	directory	resides.

Details		

If	the	File.DiskFree	call	fails,	then	it	returns	-1.	Also	Error.Last
will	return	a	non-zero	value	indicating	the	reason	for	the	failure.
Error.LastMsg	will	return	a	string	which	contains	the	textual
version	of	the	error.

If	there	is	more	than	2,147,483,647	bytes	free	on	a	disk,	the
File.DiskFree	function	returns	2,147,483,647.

Example		

This	program	prints	out	the	amount	of	space	on	the	A:	drive	on	a
PC	and	in	the	execution	directory.

								var	bytesFree	:	int

								bytesFree	:=	File.DiskFree	("A:\\")

								if	bytesFree	=	-1	then

												put	"Can't	get	free	space	on	drive	A:."

												put	"Error:	",	Error.LastMsg

								else

												put	"There	are	",	bytesFree	,	"	bytes	free	on	drive	A:"	

								end	if

								

								bytesFree	:=	File.DiskFree	(".")

								if	bytesFree	=	-1	then

												put	"Can't	get	free	space	on	default	directory."

												put	"Error:	",	Error.LastMsg

								else

												put	"There	are	",	bytesFree	,	"	bytes	free	on	the	default	dir"	

								end	if

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.DiskFree,	not	by	calling	DiskFree.

File.Exists Part	of	File	module

Syntax		 File.Exists	(pathName	:	string)	:	boolean

Description		
File.Exists	returns	true	if	a	file	by	the	name	of	pathName	exists.
It	will	return	false	if	pathName	is	a	directory.

Details		

If	the	File.Exists	returns	false,	you	can	examine	Error.Last	or
Error.LastMsg	for	more	information	(i.e.	whether	the	path	failed
or	the	file	was	simply	not	found).

Example		

This	program	loops	until	the	user	types	in	a	path	name	that	either
doesn't	already	exist	or	is	allowed	to	be	overwritten.

								var	pathName	:	string

								var	choice	:	string

								loop

												put	"Enter	file	name	to	write	results	to"	..

												get	pathName

												if	File.Exists	(pathName)	then

																put	"Overwrite	",	pathName,	"?"	..

																get	choice

																exit	when	choice	=	"y"

												else

																exit

												end	if

								end	loop

Execute		

An	example	program	is	available	that	creates	a	file	in	the	current
directory,	tests	for	its	existence	using	File.Exists	and	deletes	the
file	using	File.Delete.

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
File.Exists,	not	by	calling	Exists.

File.FullPath Part	of	File	module

Syntax		 File.FullPath	(pathName)	:	string)	:	string

Description		

File.FullPath	returns	a	string	representing	the	full	absolute	path
name	in	Turing	format	(forward	slashes)	of	the	path	that	is	passed
to	the	function.	The	path	name	passed	in	does	not	have	to
describe	an	existing	file	or	directory.

Details		
The	full	path	name	will	be	in	Turing	format	and	include	the	drive
name	(for	example	"d:/turing/examples/games/SpaceGame.t")

Example		

This	program	obtains	a	path	from	the	user	and	then	outputs	a	full
path	name	based	on	the	path.

								var	pathName	:	string

								get	pathName

	 put	"Full	path	=	",	File.FullPath	(pathName)

Execute		

Details		

Another	example	is	available	that	checks	whether	a	file	and	all	of
the	directories	in	the	path	to	the	file	exist.	This	program	illustrates
the	use	of	File.FullPath,	File.Parent,	File.Exists,	and	Dir.Exists.

Exported	qualified.

Status		
This	means	that	you	can	only	call	the	function	by	calling
File.FullPath,	not	by	calling	FullPath.

File.Parent Part	of	File	module

Syntax		 File.Parent	(pathName	:	string)	:	string

Description		

File.Parent	returns	a	string	representing	the	parent	directory	in
Turing	format	(forward	slashes)	of	the	path	passed	as	a	parameter.
The	path	name	passed	in	does	not	have	to	describe	an	existing	file
or	directory.
Attempting	to	obtain	the	parent	directory	of	a	root	directory	(for
example	"c:/")	will	return	the	same	root	directory	and	will	set	the
value	returned	by	Error.Last	to	a	non-zero	value.

Example		

This	program	obtains	a	path	from	the	user	and	then	lists	all	the
parent	directories	until	it	reaches	the	root	directory.

								var	pathName	:	string

								put	"Enter	a	path:	"	..

								get	pathName

								loop

												pathName	:=	File.Parent	(pathName)

												exit	when	Error.Last	not=	eNoError

												put	pathName

								end	loop

Execute		

Details		

Another	example	is	available	that	checks	whether	a	file	and	all	of
the	directories	in	the	path	to	the	file	exist.	This	program	illustrates
the	use	of	File.FullPath,	File.Parent,	File.Exists,	and	Dir.Exists.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.Parent,	not	by	calling	Parent.

File.Rename Part	of	File	module

Syntax		 File.Rename	(srcPathName,	destName	:	string)

Description		

File.Copy	renames	a	file	or	directory	named	by	the	srcPathName
parameter	to	the	destName	parameter.	The	destName	parameter
must	be	a	name	only.	In	other	words	File.Rename	can't	move	a
file	between	different	directories.

Details		

If	the	File.Rename	call	fails,	then	Error.Last	will	return	a	non-
zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
will	return	a	string	which	contains	the	textual	version	of	the	error.

Example		

This	program	renames	the	file	"/usr/west/example"	to	"testcase"

								File.Rename	("/usr/west/example",	"testcase")

								if	Error.Last	=	eNoError	then

												put	"File	renamed"

								else

												put	"Did	not	rename	the	file."

												put	"Error:	",	Error.LastMsg

								end	if

Execute		

An	example	program	is	available	that	creates	a	file	in	the	current
directory,	renames	it	to	a	different	name	using	File.Rename,
checks	the	existence	of	both	files	using	File.Exists	and	then
deletes	the	file	using	File.Delete.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.Rename,	not	by	calling	Rename.

File.Status Part	of	File	module

Syntax		 File.Status	(pathName	:	string,	var	size,	attribute,	fileTime	:	int)

Description		

File.Status	is	used	to	get	assorted	information	about	a	file	or
directory.	When	the	function	is	called	with	a	specified	pathName,
it	returns	the	information	about	the	file	in	the	other	parameters.

The	size	parameter	is	the	size	of	the	file	in	bytes.

The	attribute	parameter	has	its	individual	bits	set	as	exactly	as	the
attribute	parameter	in	Dir.GetLong	subprogram	does.	See
Dir.GetLong	for	the	list	of	attribute	constants.

The	fileTime	is	the	time	of	last	modification	of	the	file.	It	is
returned	as	the	number	of	seconds	since	00:00:00	GMT	1/1/1970.
To	convert	this	to	a	string,	use	Time.SecDate.

Details		

If	the	File.Status	call	fails,	size,	attribute	and	fileTime	are	all	set
to	1.	Error.Last	will	return	a	non-zero	value	indicating	the	reason
for	the	failure.	Error.LastMsg	will	return	a	string	which	contains
the	textual	version	of	the	error.

Example		

This	program	prints	information	about	the	NotePad.exe
application	in	Windows	found	at	"c:\windows\notepad.exe".	(Note
on	some	systems,	this	will	be	"c:\winnt\notepade.exe"

								const	pathName	:	string	:=	"c:/windows/notepad.exe"

								var	size,	attribute,	fileTime	:	int

								File.Status	(pathName,	size,	attribute,	fileTime

								if	Error.Last	=	eNoError	then

												put	"						Name:	",	File.FullPath	(pathName)

												put	"			Created:	",	Time.SecDate	(fileTime)

												put	"						Size:	",	size,	"	bytes"

												put	"Attributes:	"	..

												if	(attribute	and	ootAttrDir)	not=	0	then

																put	"Directory	"	..

												else

																put	""	..

												end	if

												if	(attribute	and	ootAttrRead)	not=	0	then

																put	"Readable	"	..

												else

																put	""	..

												end	if

												if	(attribute	and	ootAttrWrite)	not=	0	then

																put	"Writable	"	..

												else

																put	""	..

												end	if

												if	(attribute	and	ootAttrExecute)	not=	0	then

																put	"Executable",	skip

												else

																put	skip

												end	if

								else

												put	"Unable	to	get	file	information"

												put	"Error:	",	Error.LastMsg,	skip

								end	if

Execute		

Execute		

Another	example	program	is	available	that	uses	File.Status	to
determine	the	status	of	several	files	and	directories.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
File.Status,	not	by	calling	Status.

flexible array	initialization

Syntax		 flexible	array	indexType	{	,	indexType	}	of	typeSpec

Description		

The	flexible	keyword	allows	an	array	to	be	resized	using	new	at	a
later	point	in	time.	The	indices	may	have	compile-time	or	run-
time	upper	bounds	(the	lower	bound	must	be	compile-time).	The
upper	bounds	can	be	changed	by	using:

								new	name	,	newUpper1	{,newUpper2}

The	existing	array	entries	will	retain	their	values,	except	that	any
index	made	smaller	will	have	the	corresponding	array	entries	lost.
Any	index	made	larger	will	have	the	new	array	entries
uninitialized	(if	applicable).

Additionally,	the	upper	bound	(both	in	the	declaration	and	the
new	statement)	can	be	made	one	less	than	the	lower	bound.	This
effectively	makes	an	array	that	contains	0	elements.	It	can	later	be
increased	in	size	with	another	new.

In	the	current	implementation	(1999),	with	a	multi-dimensional
array	with	a	non-zero	number	of	total	elements,	it	is	a	run-time
error	to	change	any	but	the	first	dimension	(unless	one	of	the	new
upper	bounds	is	one	less	than	the	corresponding	lower	bound,
giving	0	elements	in	the	array)	as	the	algorithm	to	rearrange	the
element	memory	locations	has	not	yet	been	implemented.

Currently,	only	variables	can	be	declared	in	this	form.	There	is	no
flexible	array	parameter	type,	although	a	flexible	array	can	be
passed	to	an	array	parameter	with	“*”	as	the	upper	bound.

Example		 See	array	for	an	example	of	flexible.

Execute		

See	also		 array	and	new.

floor real-to-integer	function

Syntax		 floor	(r	:	real)	:	int

Description		 Returns	the	largest	integer	that	is	less	than	or	equal	to	r.

Details		

The	floor	function	is	used	to	convert	a	real	number	to	an	integer.
The	result	is	the	largest	integer	that	is	less	than	or	equal	to	r.	In
other	words,	the	floor	function	rounds	down	to	the	nearest
integer.	For	example,	floor	(3)	is	3,	floor	(2.75)	is	2	and	floor
(-8.43)	is	-9.

See	also		 ceil	and	round	functions.

Font

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
fonts.	Using	these	routines,	you	can	display	text	in	a	selected	font
name,	size	and	style	on	the	screen.	Note	that	output	in	a	particular
font	is	treated	as	graphics	output.

All	routines	in	the	Font	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Font.").

Details		

There	is	a	default	font.	You	can	draw	in	and	obtain	information
about	the	default	font	by	passing	fontDefaultID	to	Font.Draw,
Font.Width	and	Font.Sizes.	The	default	font	is	the	same	font	as
is	used	by	put	in	the	output	window.

Entry
Points		

New 	 Selects	a	particular	font	name,	size	and	style	for	a
new	font.

Free 	 Frees	up	the	font	created	by	using	New.
Draw 	 Draws	text	in	a	given	font.

Width 	 Gets	the	width	in	pixels	of	a	particular	piece	of
text	in	a	specified	font.

Sizes 	 Gets	the	height	and	various	leadings	of	a
specified	font.

Name 	 Returns	the	name	of	the	specified	font.
StartName 	 Prepares	to	list	all	available	fonts,
GetName 	 Gets	the	next	font	name.
GetStyle 	 Gets	all	the	available	styles	for	a	specified	font.

StartSize 	 Prepares	to	list	all	available	sizes	for	a	specified
font	and	style.

GetSize 	 Gets	the	next	font	size.

Font.Draw Part	of	Font	module

Syntax		 Font.Draw	(txtStr	:	string,	x,	y,	fontID,	Color	:	int)

Description		

Font.Draw	is	used	to	actually	draw	text	in	a	specified	font.	The	textStr
contains	the	string	to	be	drawn.	The	x	and	y	parameters	are	the	location	of	the	lower
left	hand	corner	of	the	text	to	be	displayed.	The	fontID	parameter	is	the	number	of
the	font	in	which	the	text	is	to	be	drawn.	The	Color	parameter	is	used	to	specify	the
color	in	which	the	text	is	to	appear.

Note	that	the	text	that	appears	is	completely	unrelated	to	the	text	that	appears	using
put.	Font.Draw	is	a	graphics	command	and	thus	does	not	use	or	affect	the	cursor
location.

The	text	drawn	by	the	Font.Draw	procedure	does	not	erase	the	background.

Details		

If	Font.Draw	is	passed	an	invalid	font	ID,	a	fatal	error	occurs.	If	the	
fails	for	other	(non-fatal)	reasons,	then	Error.Last	will	return	a	non-zero	value
indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a	string	which
contains	the	textual	version	of	the	error.

Example		

The	program	prints	out	several	phrases	in	a	variety	of	fonts.

								var	font1,	font2,	font3,	font4	:	int

								font1	:=	Font.New	("serif:12")

								assert	font1	>	0

								font2	:=	Font.New	("sans	serif:18:bold")

								assert	font2	>	0

								font3	:=	Font.New	("mono:9")

								assert	font3	>	0

								font4	:=	Font.New	("Palatino:24:bold,italic")

								assert	font4	>	0

								Font.Draw	("This	is	in	a	serif	font",	50,	30,	font1,	red

								Font.Draw	("This	is	in	a	sans	serif	font",	50,	80,	

								Font.Draw	("This	is	in	a	mono	font",	50,	130,	font3,	colorfg

								Font.Draw	("This	is	in	Palatino	(if	available)",	50,	180,	

								Font.Free	(font1)

								Font.Free	(font2)

								Font.Free	(font3)

								Font.Free	(font4)

Execute		

Details		
To	use	the	same	font	as	is	used	by	the	put	statement,	use	defFontID
number.	This	font	does	not	have	to	be	created	or	freed	by	the	user,	and	allows	a
program	to	quickly	place	text	in	any	location	on	the	screen.

Example		

The	program	draws	two	strings	in	the	default	font	(defFontID).

								Font.Draw	("Drawing	Here",	100,	120,	defFontID,	

								Font.Draw	("and	Here",	180,	90,	defFontID,	brightgreen

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Font.Draw
Draw.

Font.Free Part	of	Font	module

Syntax		 Font.Free	(fontID	:	int)

Description		

Font.Free	is	used	to	release	a	font	that	is	no	longer	needed.	There	is	a	limit	to	the
number	of	fonts	that	may	be	defined	at	any	one	time.	By	having	a	Font.Free
every	Font.New,	the	number	of	simultaneously	defined	fonts	is	kept	to	a	minimum.

Details		

If	Font.Free	is	passed	an	invalid	font	ID,	a	fatal	error	occurs.	If	the	
fails	for	other	(non-fatal)	reasons,	Error.Last	will	return	a	non-zero	value	indicating
the	reason	for	the	failure.	Error.LastMsg	will	return	a	string	which	contains	the
textual	version	of	the	error.

Example		

The	program	prints	out	several	phrases	in	a	variety	of	fonts.

								var	font1,	font2,	font3,	font4	:	int

								font1	:=	Font.New	("serif:12")

								assert	font1	>	0

								font2	:=	Font.New	("sans	serif:18:bold")

								assert	font2	>	0

								font3	:=	Font.New	("mono:9")

								assert	font3	>	0

								font4	:=	Font.New	("Palatino:24:Bold,Italic")

								assert	font4	>	0

								Font.Draw	("This	is	in	a	serif	font",	50,	30,	font1,	red

								Font.Draw	("This	is	in	a	sans	serif	font",	50,	80,	

								Font.Draw	("This	is	in	a	mono	font",	50,	130,	font3,	colorfg

								Font.Draw	("This	is	in	Palatino	(if	available)",	50,	180,	

								Font.Free	(font1)

								Font.Free	(font2)

								Font.Free	(font3)

								Font.Free	(font4)

Execute		

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling	Font.Free
Free.

Font.GetName Part	of	Font	module

Syntax		 Font.GetName	:	string

Description		

Font.GetName	is	used	to	get	the	next	font	available	on	the
system.	By	using	Font.StartName	and	then	calling
Font.GetName	repeatedly,	you	can	get	the	names	of	all	the	fonts
available	to	the	program.

Font.StartName	must	be	called	before	any	calls	to
Font.GetName.	After	that,	Font.GetName	returns	the	list	of	the
font	names,	one	per	call.	When	there	are	no	more	sizes,
Font.GetName	returns	the	empty	string.

Once	the	name	of	a	font	is	known,	it's	possible	to	list	the	available
styles	(using	Font.GetStyle)	and	the	available	sizes	(using
Font.StartSize	and	Font.GetSize)	for	that	font.

Example		

The	program	lists	all	the	fonts	available	on	the	system.

								var	fontName	:	string

								Font.StartName

								loop

												fontName	:=	Font.GetName

												exit	when	fontName	=	""

												put	fontName

								end	loop

Execute		

Another	example	is	available	that	displays	full	information	about
the	fonts	including	name,	styles,	and	point	sizes.

Example		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Font.GetName,	not	by	calling	GetName.

Font.GetSize Part	of	Font	module

Syntax		 Font.GetSize	:	int

Description		

Font.GetSize	is	used	to	get	the	next	size	in	the	list	of	available
font	sizes	for	a	particular	font	name	and	style.

Font.StartSize	must	be	called	before	any	calls	to	Font.GetSize.
After	that,	Font.GetSize	returns	the	list	of	sizes,	one	per	call.
When	there	are	no	more	sizes,	Font.GetSize	returns	0.

Some	fonts	are	“scalable”.	This	means	that	the	computer	can
scale	the	fonts	to	fit	any	given	size.	(Under	Microsoft	Windows
and	the	Apple	Macintosh,	TrueType	and	PostScript	fonts	are
scalable	with	the	appropriate	utilities.)	In	this	case,	Font.GetSize
returns	-1.

Example		
See	Font.StartSize	for	a	program	that	lists	all	the	fonts,	styles
and	sizes	available	on	the	system.

Example		

An	example	is	available	that	displays	full	information	about	the
fonts	including	name,	styles,	and	point	sizes.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Font.GetSize,	not	by	calling	GetSize.

Font.GetStyle Part	of	Font	module

Syntax		
Font.GetStyle	(fontName	:	string,	
								var	bold,	italic,	underline	:	boolean)	:	string

Description		

Font.GetStyle	is	used	to	get	the	styles	available	on	the	system	for
a	specified	font.	bold,	italic	and	underline	are	set	to	true	if	bold,
italic	or	underline	versions	of	the	font	are	available.	Once	the
styles	available	for	a	font	are	known,	it's	possible	to	get	the	sizes
available	for	each	style	by	using	Font.StartSize	and
Font.GetSize.

Example		

The	program	lists	all	the	fonts	and	their	styles	available	on	the
system.

								var	fontName	:	string

								var	bold,	italic,	underline	:	boolean

								Font.StartName

								loop

												fontName	:=	Font.GetName

												exit	when	fontName	=	""

												Font.GetStyle	(fontName,	bold,	italic,	underline

												put	fontName	:	30	..

												if	bold	then

																put	"bold		"	..

												end	if

												if	italic	then

																put	"italic		"	..

												end	if

												if	underline	then

																put	"underline		"	..

												end	if

												put	""

								end	loop

Execute		

Example		

An	example	is	available	that	displays	full	information	about	the
fonts	including	name,	styles,	and	point	sizes.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Font.GetStyle,	not	by	calling	GetStyle.

Font.Name Part	of	Font	module

Syntax		 Font.Name	(fontID	:	int)	fontName	:	string

Description		

Font.Name	is	used	to	get	the	name	of	a	font	that	is	being	used.
The	string	that	is	returned	can	be	used	to	determine	which	font	is
actually	being	used	for	the	default	fonts	“serif”,	“sans	serif”	and
“mono”.

Example		

The	program	prints	out	the	fonts	used	for	“serif”,	“sans	serif”	and
“mono”.

								var	serifFont,	sansSerifFont,	monoFont	:	int

								serifFont	:=	Font.New	("serif:12")

								assert	serifFont	>	0

								sansSerifFont	:=	Font.New	("sans	serif:12")

								assert	sansSerifFont	>	0

								monoFont	:=	Font.New	("mono:12")

								assert	monoFont	>	0

								put	"serif	=	",	Font.Name	(serifFont)

								put	"sans	serif	=	",	Font.Name	(sansSerifFont)

								put	"mono	=	",	Font.Name	(monoFont)

								Font.Free	(serifFont)

								Font.Free	(sansSerifFont)

								Font.Free	(monoFont)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Font.Name,	not	by	calling	Name.

Font.New Part	of	Font	module

Syntax		 Font.New	(fontSelectStr	:	string)	:	int

Description		

Font.New	is	used	to	obtain	a	font	for	drawing.	The	fontSelectStrparameter	specifies
the	name,	size	and	style	of	the	font.	Font.New	returns	a	font	identifier	
used	by	the	Font.Draw	procedure	to	draw	text	in	the	selected	font.

The	format	for	the	fontSelectStrparameter	is	"Family:Size:Style".	Each	element	is
separated	by	a	colon.	The	":Style"	is	optional.	If	left	out,	the	text	appears	in	the
standard	face	for	the	font.

Family	is	the	name	of	the	font,	such	as	"Times",	"Helvetica",	etc.	The	name	must
match	an	existing	font	on	the	system.	Because	one	does	not	necessarily	know	which
fonts	will	be	available	and	names	for	the	same	font	change	between	different
systems	(i.e	Times,	Times-Roman,	etc.),	Turing	defines	three	family	names	
be	mapped	as	closely	as	possible	to	fonts	that	exist	on	the	system.

	 "serif"	is	used	for	a	serifed	body	font.	This	will	usually	be	mapped	to	Times-
Roman.

	 "sans	serif"	is	used	for	a	non-serifed	display	font.	This	will	usually	be	mapped
to	Arial.

	 "mono"	is	used	for	a	mono	spaced	font.	This	will	usually	be	mapped	to
Courier.

Size	is	the	point	size	in	which	the	text	should	appear.	If	the	number	is	larger	or
smaller	than	can	be	created	on	a	given	system,	the	system	will	return	the	font	of	the
largest	or	smallest	size	available	and	set	Error.Last.

Under	Turing,	the	size	parameter	may	also	have	the	form	height	x	width
height	and	width	are	the	pixel	height	and	width	desired.	What	is	returned	is	the	
scaled	in	order	to	fit	into	the	width	and	height	requested.	The	font	name	must	be	a
scaleable	font	for	this	to	succeed.

								example	fontID	:=	Font.New	("Ariel:18x12:Italic")

Style	is	the	font	style	in	which	the	text	should	appear.	It	can	be	one	of	"bold",	"italic"
or	"underline".	You	can	also	have	"bold,italic"	and	any	other	combination.

Details		

If	the	Font.New	call	fails,	then	it	returns	0.	Also	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a	
contains	the	textual	version	of	the	error.

It	is	quite	possible	for	Error.Last	to	be	set,	even	if	the	call	succeeds.	
report	success	even	if	unable	to	successfully	match	the	requested	font	with	the
available	resources.	A	font	will	be	set	that	matches	as	closely	as	possible	
requested	font	and	Last.Error	will	be	set	to	indicate	that	some	substitutions	were
required.

Example		

The	program	prints	out	several	phrases	in	a	variety	of	fonts.

								var	font1,	font2,	font3,	font4	:	int

								font1	:=	Font.New	("serif:12")

								font2	:=	Font.New	("sans	serif:18:bold")

								font3	:=	Font.New	("mono:9")

								font4	:=	Font.New	("Palatino:24:Bold,Italic")

								assert	font1	>	0	and	font2	>	0	and	font3	>	0	and

								Font.Draw	("This	is	in	a	serif	font",	50,	30,	font1,	red

								Font.Draw	("This	is	in	a	sans	serif	font",	50,	80,	

								Font.Draw	("This	is	in	a	mono	font",	50,	130,	font3,	colorfg

								Font.Draw	("This	is	in	Palatino	(if	available)",	50,	180,	

								Font.Free	(font1)

								Font.Free	(font2)

								Font.Free	(font3)

								Font.Free	(font4)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Font.New
New.

Font.Sizes Part	of	Font	module

Syntax		
Font.Sizes	(fontID	:	int,	var	height,	ascent,	descent,	
	 	 	 	 	 internalLeading	:	int)

Description		

Font.Sizes	is	used	to	get	the	metrics	of	a	particular	font.	The	various	parts	of	the
metric	are	illustrated	below.	Note	that	you	can	calculate	the	external	leading	by
subtracting	the	ascent	and	descent	from	the	height.

Details		

If	Font.Sizes	is	passed	an	invalid	font	ID,	a	fatal	error	occurs.	If	the	
fails	for	other	(non-fatal)	reasons,	the	metrics	for	the	default	font	will	be	returned.
As	well,	Error.Last	will	return	a	non-zero	value	indicating	the	reason	for	the
failure.	Error.LastMsg	will	return	a	string	which	contains	the	textual	version	of	the
error.

Example		

The	program	gets	information	about	24pt	Bold	Italic	Palatino.

								var	fontID,	height,	ascent,	descent,	internalLeading,	

								var	externalLeading:	int

								fontID	:=	Font.New	("Palatino:24:bold,italic")

								Font.Sizes	(fontID,	height,	ascent,	descent,	internalLeading

								externalLeading	:=	height		ascent		descent

								put	"The	height	of	the	font	is	",	height,	"	pixels"

								put	"The	ascent	of	the	font	is	",	ascent,	"	pixels"

								put	"The	descent	of	the	font	is	",	descent,	"	pixels"

								put	"The	internal	leading	of	the	font	is	",	internalLeading

								put	"The	external	leading	of	the	font	is	",	externalLeading

								Font.Free	(fontID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Font.Sizes
Sizes.

Font.StartName Part	of	Font	module

Syntax		 Font.StartName

Description		

Font.StartName	is	used	to	start	the	listing	of	all	the	fonts
available	on	the	system.	This	procedure	is	called	before	making
calls	to	Font.GetName	to	get	the	name	of	the	fonts	available.
Once	the	name	of	a	font	is	known,	it's	possible	to	list	the	available
styles	(using	Font.GetStyle)	and	the	available	sizes	(using
Font.StartSize	and	Font.GetSize).

Example		

The	program	lists	all	the	fonts	available	on	the	system.

								var	fontName	:	string

								Font.StartName

								loop

												fontName	:=	Font.GetName

												exit	when	fontName	=	""

												put	fontName

								end	loop

Execute		

Example		

Another	example	is	available	that	displays	full	information	about
the	fonts	including	name,	styles,	and	point	sizes.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Font.StartName,	not	by	calling	StartName.

Font.StartSize Part	of	Font	module

Syntax		 Font.StartSize	(fontName,	fontStyle	:	string)

Description		

Font.StartSize	is	used	to	start	a	listing	of	all	the	sizes	for	a	particular	font	name	and	style.

The	fontName	parameter	should	be	an	actual	font	name	(as	opposed	to	the	default	names	of
“serif”,	etc).	You	can	get	a	list	of	the	font	names	by	using	the	Font.StartName
Font.GetName	subprograms.	The	fontStyle	parameter	should	be	in	the	same	format	as	would
appear	in	the	Font.New	procedure.

Example		

The	program	lists	all	the	fonts,	styles	and	sizes	available	on	the	system.

								var	fontName	:	string

								var	bold,	italic,	underline	:	boolean

								var	size	:	int

								var	styles	:	array	boolean,	boolean,	boolean	of	string

												init	("",	"underline",	"italic",	"italic,	underline",	"bold",											

																									"bold,underline",	"bold,italic",	"bold,italic,underline")

								Font.StartName

								loop

												fontName	:=	Font.GetName

												exit	when	fontName	=	""

												Font.GetStyle	(fontName,	bold,	italic,	underline

												for	b	:	false	..	bold

																for	i	:	false	..	italic

																				for	u	:	false	..	underline

																								put	fontName	:	30,	styles	(b,	i,	

																								Font.StartSize	(fontName,	styles

																								loop

																												size	:=	Font.GetSize

																												exit	when	size	=	0

																												if	size	=	-1	then	put	"scalable		"	..

																												else	put	size,	"	"	..

																												end	if

																								end	loop	

																								put	""

																				end	for

																end	for

												end	for

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Font.StartSize
StartSize.

Font.Width Part	of	Font	module

Syntax		 Font.Width	(txtStr	:	string,	fontID	:	int)	:	int

Description		

Font.Width	is	used	to	obtain	the	width	in	pixels	that	a	specified	string	will
take	to	draw	in	a	specified	font.	The	textStr	parameter	is	the	string.	The
fontID	parameter	is	the	font	in	which	the	string	would	be	drawn.

Details		

If	Font.Width	is	passed	an	invalid	font	ID,	a	fatal	error	occurs.	If	the
Font.Width	call	fails	for	other	(non-fatal)	reasons,	the	width	for	string	in
the	default	font	will	be	returned.	As	well,	Error.Last	will	return	a	non-zero
value	indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a
string	which	contains	the	textual	version	of	the	error.

Example		

The	program	gets	information	about	24pt	Bold	Palatino.

								const	testString	:=	"Test	String"

								var	width,	fontID	:	int

								fontID	:=	Font.New	("Palatino:24:Bold")

								width	:=	Font.Width	(testString,	fontID)

								put	"The	width	of	\""	+	testString	+	"\"	is	",	width

								Font.Draw	(testString,	100,	100,	fontID,	black)

								Draw.Line	(100,	50,	100,	150,	brightred)

								Draw.Line	(100	+	width,	50,	100	+	width,	150,	brightred

								Font.Free	(fontID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Font.Width
by	calling	Width.

for statement

Syntax		

A	forStatement	is:

	 for	[decreasing]	[id]	:	first	..	last	[by	increment]
	 	 statementsAndDeclarations
	 end	for

Description		

The	statements	and	declarations	in	a	for	statement	are	repeatedly
executed.	In	the	first	iteration,	the	identifier	is	assigned	the	value
of	first.	With	each	additional	iteration,	the	identifier	increases	by
1	(or	by	increment,	if	the	by	clause	is	present).	The	loop	stops
executing	when	adding	1	(or	increment)	to	the	identifier	would
cause	the	identifier	to	exceed	last.	first	and	last	must	be	integer
values	(or	else	enumerated	or	char	values).	If	you	specify
decreasing,	then	the	identifier	decreases	by	1	(or	by	increment)
each	time	through.

Increment	must	be	a	positive	integer	value.	When	the	by	clause	is
present,	the	for	loop	terminates	as	soon	as	the	identifier	would
become	greater	than	last,	unless	decreasing	is	present.	If
decreasing	is	present,	the	loop	terminates	when	the	identifier
would	become	less	than	last.

Details		

The	identifier	is	checked	before	it	is	added	to	(or	subtracted
from).	This	means	that	the	loop

								for	i	:	1	..	maxint

will	not	cause	an	overflow.

Example		

Output	1,	2,	3	to	10.

								for	i	:	1	..	10

												put	i

								end	for

Output	1,	3,	5,	7	and	9.

Example		 								for	i	:	1	..	10	by	2

												put	i

								end	for

Example		

Output	10,	9,	8,	down	to	1.

								for	decreasing	j	:	10	..	1

												put	j

								end	for

Example		

Output	10,	6,	and	2.

								for	decreasing	j	:	10	..	1	by	4

												put	j

								end	for

Example		

Output	1.

								for	j	:	1	..	10	by	20

												put	j

								end	for

Example		

Output	nothing.

								for	j	:	5	..	2

												put	j

								end	for

Details		

The	for	statement	declares	the	counting	identifier	(a	separate
declaration	should	not	be	given	for	i	or	j).	The	scope	of	this
identifier	is	restricted	to	the	for	statement.

If	first	is	a	value	beyond	last,	there	will	be	no	repetitions	(and	no
error	message).	The	counting	identifier	is	always	increased	(or
decreased)	by	1	or	increment	if	the	by	clause	is	present.
Executing	an	exit	statement	inside	a	for	statement	causes	a	jump
to	just	beyond	end	for.	You	are	not	allowed	to	change	the
counting	variable	(for	example,	you	are	not	allowed	to	write	i	:=
10).

The	counting	identifier	can	be	omitted.	In	this	case,	the	statement
is	just	as	before,	except	that	the	program	cannot	use	the	value	of

the	identifier.

If	decreasing	is	not	present,	first	..	last	can	be	replaced	by	the
name	of	a	subrange	type,	for	example	by	dozen,	declared	by:

								type	dozen	:	1..12

Procedures,	functions	and	modules	cannot	be	declared	inside	a
for	statement.	Just	preceding	the	statements	and	declarations,	you
are	allowed	to	write	an	"invariant	clause"	of	the	form:

								invariant	trueFalseExpn

This	clause	is	equivalent	to:	assert	trueFalseExpn.

fork statement

								Dirty	parts

Syntax		

A	forkStatement	is:

	 fork	processId	[([expn	{	,	expn	}])]
	 	 	 [:	reference	[,	expn	[,	reference]]]

Description		

A	fork	activates	(starts	the	concurrent	execution	of)	a	process
declaration.	If	the	process	has	parameters,	a	parenthesized	list	of
expressions	(expns)	must	follow	the	process'	name	(processId).

Example		

This	program	initiates	(forks)	two	concurrent	processes,	one	of	which
repeatedly	outputs	Hi	and	the	other	Ho.	The	resulting	output	is	an
unpredictable	sequence	of	Hi's	and	Ho's,	as	greetings	executes	twice
concurrently,	one	instance	with	its	word	set	to	Hi	and	the	other	with	its
word	set	to	Ho.

								process	greetings	(word	:	string)

												loop

																put	word

												end	loop

								end	greetings

								

								fork	greetings	("Hi")

								fork	greetings	("Ho")

See	procedure	declaration	for	details	about	parameters.	The	first
optional	reference	in	the	fork	statement	must	be	a	boolean	variable
reference.	The	fork	sets	this	to	true	if	the	process	is	actually	activated.
If	this	fails	to	occur	(probably	because	stack	space	could	not	be
allocated),	this	reference	is	set	to	false.	If	the	fork	fails	but	this
reference	is	omitted,	an	exception	occurs.	See	exception	handlers.

The	optional	expn	specifies	the	number	of	bytes	for	the	process'	stack;
this	overrides	the	optionally	given	stack	size	in	the	process	declaration.
The	second	optional	reference	must	be	a	variable	reference	with	the
type	addressint.	See	addressint.	This	variable	is	set	to	identify	the

Details		 process	activation.	This	reference	has	the	implementation-dependent
meaning	of	locating	the	process'	internal	descriptor.

In	this	explanation	of	the	fork	statement,	we	have	up	to	this	point
ignored	the	possibility	of	processes	exported	from	modules.	If	the
process	is	being	forked	from	outside	of	a	module	from	which	it	has
been	exported,	the	syntax	of	the	fork	statement	is:

								fork	moduleId	.	procedureId	[(expn	{,	expn	})]	…

In	other	words,	the	module's	name	and	a	dot	must	precede	the	process'
name.

forward subprogram	declaration

Syntax		

A	forwardDeclaration	is:

	 forward	subprogramHeader
	 	 [import	importItem	{,	importItem	}]

Description		

A	procedure	or	function	is	declared	to	be	forward	when	you	want	to
define	its	header	but	not	its	body.	This	is	the	case	when	one	procedure
or	function	calls	another,	which	in	turn	calls	the	first;	this	situation	is
called	mutual	recursion.	The	use	of	forward	is	necessary	in	this	case,
because	every	item	must	be	declared	before	it	can	be	used.

Example		

This	example	program	evaluates	an	input	expression	e	of	the	form	
t	}	where	t	is	of	the	form	p	{	*	p	}	and	p	is	of	the	form	(e)	or	an
explicit	real	expression.	For	example,	the	value	of	1.5	+	3.0	*	(0.5	+
1.5)	halt	is	7.5.

								var	token	:	string

								

								forward	procedure	expn	(var	eValue	:	real)

								

								forward	procedure	term	(var	tValue	:	real)

								

								forward	procedure	primary	(var	pValue:	real)

								

								body	procedure	expn

												var	nextValue	:	real

												term	(eValue)									%	Evaluate	t

												loop																				%	Evaluate	{	+	t}

																exit	when	token	not=	"+"

																get	token

																term	(nextValue)

																eValue	:=	eValue	+	nextValue

												end	loop

								end	expn

								

								body	procedure	term

												var	nextValue	:	real

												primary	(tValue)							%	Evaluate	p

												loop																				%	Evaluate	{	*	p}

																exit	when	token	not=	"*"

																get	token

																primary	(nextValue)

																tValue	:=	tValue	*	nextValue

												end	loop

								end	term

								body	procedure	primary

												if	token	=	"("	then

																get	token

																expn	(pValue)					%	Evaluate	(e)

																assert	token	=	")"

												else																				%	Evaluate	"explicit	real

																pValue	:=	strreal	(token)

												end	if

												get	token

								end	primary

								

								get	token															%	Start	by	reading	first	token

								var	answer	:	real

								expn	(answer)									%	Scan	and	evaluate	input	expression

								put	"Answer	is	",	answer

Execute		

Details		

Following	a	forward	procedure	or	function	declaration,	the	body	of	the
procedure	must	be	given	at	the	same	level	(in	the	same	sequence	of
statements	and	declarations	as	the	forward	declaration).	This	is	the
only	use	of	the	keyword	body.	See	also	body.

Any	procedure	or	function	that	is	declared	using	forward	requires	an
import	list.	In	this	list,	imported	procedures	or	functions	that	have	not
yet	appeared	must	be	listed	as	forward.	For	example,	the	import	list	for
expn	is	import	forward	term	…	Before	a	procedure	or	function	can	be
called,	before	its	body	appears,	and	before	it	can	be	passed	as	a
parameter,	its	header	as	well	as	headers	of	procedures	or	functions
imported	directly	or	indirectly	by	it	must	have	appeared.

The	keyword	forward	is	also	used	in	collection	and	type	declarations.

See	also		 collection	and	type	declarations.

frealstr real-to-string	function

Syntax		 frealstr	(r	:	real,	width,	fractionWidth	:	int)	:	string

Description		

The	frealstr	function	is	used	to	convert	a	real	number	to	a	string.
For	example,	frealstr	(2.5e1,	5,	1)="b25.0"	where	b	represents	a
blank.	The	string	is	an	approximation	to	r,	padded	on	the	left	with
blanks	as	necessary	to	a	length	of	width.

The	number	of	digits	of	the	fraction	to	be	displayed	is	given	by
fractionWidth.

The	width	must	be	non-negative.	If	the	width	parameter	is	not
large	enough	to	represent	the	value	of	r,	it	is	implicitly	increased
as	needed.

The	fractionWidthmust	be	non-negative.	The	displayed	value	is
rounded	to	the	nearest	decimal	equivalent	with	this	accuracy.	In
the	case	of	a	tie,	the	value	is	rounded	to	the	next	larger	value.	The
result	string	is	of	the	form:

																{blank}	[-]{digit}.	{digit}

If	the	leftmost	digit	is	zero,	then	it	is	the	only	digit	to	the	left	of
the	decimal	point.

The	frealstr	function	approximates	the	inverse	of	strreal,
although	round-off	errors	keep	these	from	being	exact	inverses.

See	also		 the	erealstr,	realstr,	strreal,	intstr	and	strint	functions.

free statement

Syntax		

A	freeStatement	is:

	 free	[collectionOrClassId,]	pointerVariableReference

Description		
A	free	statement	destroys	(deallocates)	an	element	that	has	been	allocated	by	a
new	statement.

Example		

Using	a	collection,	declare	a	list	of	records	and	allocate	one	of	these	records.	Then
deallocate	the	record.

								var	list	:	collection	of

												record

																contents	:	string	(10)

																next	:	pointer	to	list

																												%	Short	form:	next	:	^	list

												end	record

								var	first	:	pointer	to	list	%	Short	form:	var	next	:	^	list

								new	list,	first

																%	Allocate	an	element	of	list;	place	its	location	in	first

																%	Short	form:	new	first

								…

								free	list,	first				%	Deallocate	the	element	of	list	located	by	first

																				%	Short	form:	free	first

Details		

The	free	statement	sets	the	pointer	variable	to	the	nil	value.	See	the	
for	examples	of	allocating	elements	of	classes	and	values	of	types.	It	the	pointer
locates	a	type,	the	collectionOrClassId	in	the	free	statement	must	be	omitted.

An	imported	class	can	have	one	of	its	objects	destroyed	(by	the	free
only	if	the	class	is	imported	var.

The	collectionOrClassId	is	optional	in	the	free	statement.

See	also		
class	and	collection	declarations,	the	pointer	type,	the	new	statement
value.

function declaration

Syntax		

A	functionDeclaration	is:

	 function	id	[([paramDeclaration	{,
paramDeclaration	}])]

	 	 	 	 	 	 	 :	typeSpec
	 	 statementsAndDeclarations
	 end	id

Description		

A	function	declaration	creates	(but	does	not	run)	a	new	function.
The	name	of	the	function	(id)	is	given	in	two	places,	just	after
function	and	just	after	end.

Example		

								function	doubleIt	(x	:	real)	:	real

												result	2.0	*	x

								end	doubleIt

								

								put	doubleIt	(5.3)								%	This	outputs	10.6

The	set	of	parameters	declared	with	the	function	are	called	formal
parameters.	For	example,	in	the	doubleIt	function,	x	is	a	formal
parameter.	A	function	is	called	(invoked)	by	a	function	call	which
consists	of	the	function's	name	followed	by	the	parenthesized	list
of	actual	parameters	(if	any).	For	example,	doubleIt	(5.3)	is	a	call
having	5.3	as	an	actual	parameter.	If	there	are	no	parameters	and
no	parentheses,	the	call	does	not	have	parentheses.	The	keyword
function	can	be	abbreviated	to	fcn.	See	also	functionCall	and
procedureDeclaration.

Each	actual	non-var	parameter	must	be	assignable	to	the	type	of
its	corresponding	formal	parameter.	See	also	assignability.

A	function	must	finish	by	executing	a	result	statement,	which
produces	the	function's	value.	In	the	above	example,	the	result
statement	computes	and	returns	the	value	2.0	*	x.

Details		

In	principle,	a	function	(1)	should	not	change	any	variables
outside	of	itself	(global	variables)	or	(2)	should	not	have	var
parameters.	In	other	words,	it	should	have	no	side	effects.	The
original	implementation	prevented	(1)	and	(2)	and	thereby
prevented	function	side	effects.	Current	implementations	of
Turing	do	not	enforce	this	restriction.

The	upper	bounds	of	arrays	and	strings	that	are	parameters	may
be	declared	to	be	an	asterisk	(*),	meaning	the	bound	is	that	of	the
actual	parameter.	See	paramDeclaration	for	details	about
parameters.

Procedures	and	functions	cannot	be	declared	inside	other
procedures	and	functions.

The	syntax	of	a	functionDeclaration	presented	above	has	been
simplified	by	leaving	out	the	optional	result	identifier,	import	list,
pre	condition,	init	clause,	post	condition	and	exception	handler.
The	full	syntax	is

								function	[pervasive]	id

												[([paramDeclaration	{,paramDeclaration	}])]	

																[resultId]	:	typeSpec

												[pre	trueFalseExpn]

												[init	id	:=	expn	{,	id	:=	expn	}]

												[post	trueFalseExpn]

												[exceptionHandler]

												statementsAndDeclarations

								end	id

The	resultId	is	the	name	of	the	result	of	the	function	and	can	be
used	only	in	the	post	condition.

A	function	must	be	declared	before	being	called;	to	allow	for
mutually	recursive	procedures	and	functions,	there	are	forward
declarations	with	later	declaration	of	the	procedure	or	function
body.	See	forward	and	body	declarations	for	explanations.

You	declare	parameterless	functions	using	an	empty	parameter
list.	When	this	is	done,	a	call	to	the	function	must	include	an
empty	parameter	list.

See	also		

import	list,	pre	condition,	init	clause,	post	condition	and
exceptionHandler	for	explanations	of	these	additional	features.

See	also	pervasive.

functionCall

Syntax		

A	functionCall	is:

	 functionId	[([expn	{	,	expn	}])]

Description		

A	function	call	is	an	expression	that	calls	(invokes	or	activates)	a
function.	If	the	function	has	parameters,	a	parenthesized	list	of
expressions	(expns)	must	follow	the	function's	name	(functionId).

Example		

This	function	takes	a	string	containing	a	blank	and	returns	the	first
word	in	the	string	(all	the	characters	up	to	the	first	blank).

								function	firstWord	(str	:	string):	string

												for	i	:	1	..	length	(str)

																if	str	(i)	=	"	"	then

																				result	str	(1	..	i	-	1)

																end	if

												end	for

								end	firstWord

								

								put	"The	first	word	is:	",	firstWord	("Henry	Hudson")			

																								%	The	output	is	Henry.

Details		

The	parameter	declared	in	the	header	of	a	function,	is	a	formal
parameter,	for	example,	str	above	is	a	formal	parameter.	Each
expression	in	the	call	is	an	actual	parameter,	for	example,	sample
above	is	an	actual	parameter.

Each	actual	parameter	passed	to	its	non-var	formal	parameter	must
be	assignable	to	that	parameter	(see	assignability	for	details).	See
also	functionDeclaration	and	procedureDeclaration.

In	this	explanation	of	functionCall,	we	have	up	to	this	point	ignored
the	possibility	of	functions	exported	from	modules.	If	the	function
is	being	called	from	outside	of	a	module	from	which	it	has	been
exported,	the	syntax	of	the	functionCall	is:

								moduleId	.	functionId	[(expn	{,	expn	})]

In	other	words,	the	module	or	monitor	name	and	a	dot	must	precede

the	function's	name.	If	the	function	is	being	called	from	outside	of	a
class	from	which	it	has	been	exported,	the	syntax	of	the
functionCall	is	one	of:

								(a)	classId	(p)	.	functionId	[([expn	{,	expn

								(b)	p	->	functionId	[([expn	{,	expn	}])]

In	these	p	must	be	a	pointer	value	that	locates	an	object	in	the	class.
Form	(b)	is	a	short	form	for	form	(a).

See	also		 class.

get file	statement

Syntax		

A	getStatement	is:

	 get	[:	streamNumber	,]	getItem	{	,	getItem	}

Description		

The	get	statement	inputs	each	of	the	getItems.	Ordinarily,	the	output
comes	from	the	keyboard.	However,	if	the	streamNumber	is	present,
the	input	comes	from	the	file	specified	by	the	stream	number	(see	the
open	statement	for	details).	Also,	input	can	be	redirected	so	it	is	taken
from	a	file	rather	than	the	keyboard.	Check	the	documentation	on	the
environment	for	instructions	on	doing	so.

The	syntax	of	a	getItem	is	one	of:

								(a)	variableReference

								(b)	skip

								(c)	variableReference	:	*

								(d)	variableReference	:	widthExpn

These	items	are	used	to	support	three	kinds	of	input:

(1)	token	and	character	oriented	input:	supported	by	forms	(a)	and	(b),

(2)	line	oriented	input:	supported	by	form	(c),	and

(3)	character	oriented	input:	supported	by	form	(d).

Examples	of	these	will	be	given,	followed	by	detailed	explanations.

Example		

Token-oriented	input.

								var	name,	title	:	string

								var	weight	:	real

								get	name								%	If	input	is	Alice,	it	is	input

								get	title							%	If	input	is	"A	lady",	A	lady	is	input

								var	weight						%	If	input	is	9.62,	it	is	input	into	weight

Example		

Line-oriented	input.

								var	query	:	string

								get	query	:	*			%	Entire	line	is	input	into	query

Example		

Character-oriented	input.

								var	code	:	string

								get	code	:	2								%	Next	2	characters	are	input	into	code.

Details		

A	token	is	a	sequence	of	characters	surrounded	by	white	space,	where
white	space	is	defined	as	the	characters:	blank,	tab,	form	feed,	new	line,
and	carriage	return	as	well	as	end-of-file.	The	sequence	of	characters
making	up	the	token	are	either	all	non-white	space	or	else	the	token
must	be	a	quoted	string	(an	explicit	string	constant).	When	the
variableReference	in	form	(a)	is	a	string,	integer,	real,	intn,	natn,	or
realn.	Turing	skips	white	space,	reads	a	token	into	the
variableReference,	and	then	skips	white	space	(stopping	at	the
beginning	of	the	next	line).

If	the	variableReference	is	a	string,	the	token	is	assigned	to	the	variable
(if	the	token	is	quoted,	the	quotation	marks	are	first	removed).	See	the
examples	involving	name	and	title	above.	If	the	variableReference	is	an
integer	or	a	real,	the	token	is	converted	to	be	numeric	before	being
assigned	to	the	variable.	See	the	example	involving	weight	above.

When	the	input	is	coming	from	the	keyboard,	no	input	is	done	until
Return	is	typed.	The	line	that	is	input	may	contain	more	than	one	token.
Any	tokens	that	are	not	input	by	one	get	statement	will	remain	to	be
input	by	the	next	get	statement.

Turing	has	been	modified	so	that	token-oriented	input	now	also	skips
white	space	following	the	token,	but	does	not	skip	beyond	the
beginning	of	the	next	line.	This	change	implies	that	form	(b)	is	usually
not	needed,	as	skip	was	used	to	skip	white	space	after	the	token.

Form	(a)	supports	char	and	char(n).	If	the	type	is	char,	exactly	one
character	is	read,	with	no	skipping	of	white	space	before	or	after.	This
character	may	be,	for	example,	a	blank	or	a	carriage	return.	If	the	type
is	char(n),	exactly	n	characters	are	read,	with	no	skipping	of	white
space.

Inputting	char	and	char(n)	types	using	form	(a).	The	statement	get	c:1

Example		

is	not	legal,	because	length	specification	is	not	allowed	with	character
variables.

								var	c	:	char

								var	d	:	char	(3)

								get	c											%	Read	one	character.

								get	d											%	Read	three	characters

Details		

Form	(a)	supports	enumerated	types.	If	the	type	is	an	enumerated	type,
then	the	token	read	in	must	be	one	of	the	elements	of	the	enumerated
type.

Example		

Inputting	an	enumerated	type	using	form	(a).	The	statement	get	c:1
not	legal,	because	length	specification	is	not	allowed	with	enumerated
variables.

								type	colors	:	enum	(red,	blue,	green)

								var	c	:	colors

								get	c											%	Read	one	of	red,	green	or	blue

Details		
Form	(a)	supports	boolean.	If	the	type	is	an	boolean	type,	then	the
token	read	in	must	be	one	of	"true"	or	"false"

Example		

Inputting	a	boolean	type	using	form	(a).	The	statement	get	c:1	is	not
legal,	because	length	specification	is	not	allowed	with	boolean
variable.

								var	tf	:	boolean

								get	tf										%	Read	one	of	true	or	false

Details		

In	form	(b)	of	getItem,	skip	causes	white	space	in	the	input	to	be
skipped	until	non-white	space	(a	token)	or	the	end-of-file	is	reached.
This	is	used	when	the	program	needs	to	determine	if	there	are	more
tokens	to	be	input.	To	determine	if	there	are	more	tokens	to	be	read,	the
program	should	first	skip	over	any	possible	white	space	(such	as	a	final
new	line	character)	and	then	test	to	see	if	eof	(end-of-file)	is	true.	This
is	illustrated	in	this	example:

Using	token-oriented	input,	input	and	then	output	all	tokens.	This
example	gives	what	used	to	be	the	standard	way	of	reading	tokens	up	to
end	of	file.	With	the	new	meaning	of	form	(a)	for	reading	tokens,	the

Example		

get	skip	line	can	be	omitted.	This	omission	is	possible	because	the	line
get	word	now	automatically	skips	white	space	following	the	input
value,	up	to	the	beginning	of	the	next	line.

								var	word	:	string

								loop

												get	skip								%	Skip	over	any	white	space

												exit	when	eof			%	Are	there	more	characters?

												get	word								%	Input	next	token

												put	word								%	Output	the	token

								end	loop

In	the	above	and	the	next	example,	if	the	input	has	been	redirected	so
that	it	is	from	a	file,	eof	becomes	true	exactly	when	there	are	no	more
characters	to	be	read.	If	the	input	is	coming	from	the	keyboard,	you	can
signal	eof	by	typing	control-Z	(on	a	PC)	or	control-D	(on	UNIX).

Details		

In	form	(c)	of	getItem,	the	variableReference	is	followed	by	:*	which
implies	line-oriented	input.	This	form	causes	the	entire	line	(or	the
remainder	of	the	current	line)	to	be	read.	In	this	case	the	variable	must
be	a	string	(not	an	integer	or	real).	The	new	line	character	at	the	end	of
the	line	is	discarded.	It	is	an	error	to	try	to	read	another	line	when	you
are	already	at	the	end	of	the	file.	The	following	example	shows	how	to
use	line-oriented	input	to	read	all	lines	in	the	input.

Example		

Using	line-oriented	input,	input	and	then	output	all	lines.

								var	line	:	string

								loop

												exit	when	eof			%	Are	there	more	characters?

												get	line	:	*				%	Read	entire	line

												put	line

								end	loop

Details		

In	form	(d)	of	getItem,	the	variableReference	is	followed	by

								:	widthExpn	

which	specifies	character-oriented	input.	This	form	causes	the	specified
number	(widthExpn)	of	characters	to	be	input	(or	all	of	the	remaining
characters	if	not	enough	are	left).	If	no	characters	remain,	the	null
string	is	read	and	no	warning	is	given.	In	this	form,	the	new	line
character	is	actually	input	into	the	variableReference	(this	differs	from

line-oriented	input	which	discards	new	line	characters).	The	following
example	shows	how	to	use	character-oriented	input	to	read	each
character	of	the	input.	Form	(d)	can	be	used	with	string	and	char(n
variables,	but	not	with	char,	int	or	any	other	type.

Example		

Using	character-oriented	input,	input	and	then	output	all	characters.

								var	ch	:	string	(1)

								loop

												exit	when	eof			%	Are	there	more	characters?

												get	ch	:	1						%	Read	one	character

												put	ch	..							%	Output	the	character,	which

																								%	may	be	a	new	line	character

								end	loop

Example		

Using	character-oriented	input,	input	two	characters.

								var	d	:	char	(3)	:=	'abc'

								get	d	:	2											%	Read	two	character	(replace	'ab')

See	also		 read	statement,	which	provides	binary	file	input.

getch get	character	procedure

Syntax		 getch	(var	ch	:	string	(1))

Description		

The	getch	procedure	is	used	to	input	a	single	character	without
waiting	for	the	end	of	a	line.	The	parameter	ch	is	set	to	the	next
character	in	the	keyboard	buffer	(the	oldest	not-yet-read
character).

Example		

This	program	contains	a	procedure	called	getKey	which	causes
the	program	to	wait	until	a	key	is	pressed.

								setscreen	("graphics")

								

								procedure	getKey

												var	ch	:	string	(1)

												getch	(ch)

								end	getKey

								

								for	i	:	1	..	1000

												put	i	:	4,	"	Pause	till	a	key	is	pressed"

												getKey

								end	for

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
setscreen	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to	"screen"	mode.

On	IBM	PC's	some	keys,	such	as	the	left	arrow	key,	insert	key,
delete	key,	and	function	keys	do	not	produce	ordinary	character
values.	These	keystrokes	are	returned	by	getch	as	their	"scan
code"	with	128	added	to	them,	unless	the	scan	code	already	has	a
value	of	128	or	greater.	This	provides	a	unique	value	for	every
key	on	the	keyboard.	See	Appendix	D	for	these	codes.

See	also		

hasch	(has	character)	which	is	used	to	see	if	a	character	has	been
typed	but	not	yet	read.

See	also	predefined	unit	Input.

getchar get	character	function

Syntax		 getchar	:	char

Description		

The	getchar	function	is	used	to	input	a	single	character	without
waiting	for	the	end	of	a	line.	The	next	character	in	the	keyboard
buffer	(the	oldest	not-yet-read	character)	is	returned.

Example		

This	program	contains	a	procedure	called	getKey	which	causes
the	program	to	wait	until	a	key	is	pressed.

								setscreen	("graphics")

								

								procedure	getKey

												var	ch	:	char

												ch	:=	getchar

								end	getKey

								

								for	i	:	1	..	1000

												put	i	:	4,	"	Pause	till	a	key	is	pressed"

												getKey

								end	for

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
setscreen	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to	"screen"	mode.

On	IBM	PC's	some	keys,	such	as	the	left	arrow	key,	insert	key,
delete	key,	and	function	keys	do	not	produce	ordinary	character
values.	These	keystrokes	are	returned	by	getchar	as	their	"scan
code"	with	128	added	to	it,	unless	the	scan	code	already	has	a
value	of	128	or	greater.	This	provides	a	unique	value	for	every
key	on	the	keyboard.	See	Appendix	D	for	these	codes.

See	also		

hasch	(has	character)	which	is	used	to	see	if	a	character	has	been
typed	but	not	yet	read.

See	also	predefined	unit	Input.

getenv get	environment	function

Syntax		 getenv	(symbol	:	string)	:	string

Description		

The	getenv	function	is	used	to	access	the	environment	string
whose	name	is	symbol.	These	strings	are	determined	by	the	shell
(command	processor)	or	the	program	that	caused	your	program	to
run.	See	also	the	nargs	and	fetcharg	functions.

Example		

On	a	PC,	this	retrieves	the	environment	variable	USERLEVEL
and	prints	extra	instructions	if	USERLEVEL	had	been	set	to
NOVICE.	USERLEVEL	can	be	set	to	NOVICE	with	the
command	SET	USERLEVEL	=	NOVICE	in	the	autoexec.bat
file	or	in	any	batch	file.

								const	userLevel	:	string

								userLevel	:=	getenv	("USERLEVEL")

												if	userLevel	=	"NOVICE"	then

												…											%	put	a	set	of	instructions

								end	if

See	also		 See	also	predefined	unit	Sys.

getpid get	process	id	function

Syntax		 getpid	:	int

Description		

The	getpid	function	is	used	to	determine	the	I.D.	(number)	that
identifies	the	current	operating	system	task	(process).	Beware	that
there	are	processes,	activated	by	the	fork	statement,	that	are
independent	of	the	operating	systems	tasks.

Under	UNIX,	the	number	is	used,	for	example,	for	creating	a
unique	name	of	a	file.

See	also		
nargs,	fetcharg	and	getenv.

See	also	predefined	unit	Sys.

getpriority function

Syntax		 getpriority	:	nat

Description		

The	getpriority	function	returns	the	priority	of	an	executing
process	in	a	concurrent	program.	A	smaller	value	means	a	faster
speed.

See	also		
setpriority,	fork	and	monitor.

See	also	predefined	unit	Concurrency.

GUI

Description		

This	unit	contains	the	predefined	subprograms	for	creating	and
using	a	GUI	(Graphical	User	Interface).	Elements	of	the	GUI
include	buttons,	check	boxes,	text	boxes,	scroll	bars,	menus,	etc.

For	a	general	introduction	to	the	the	GUI	module,	see
Introduction	to	Graphical	User	Interfaces.

GUI.AddLine Part	of	GUI	module

Syntax		 GUI.AddLine	(widgetID	:	int,	text	:	string)

Description		

GUI.AddLine	adds	text	and	a	newline	to	the	current	line	of	the
text	box	specified	by	widgetID.	It	is	essentially	equivalent	to	put
text	in	the	text	box.	GUI.AddLine	scrolls	the	text	box	(if
necessary)	so	that	the	added	text	is	now	visible.	The	widgetID
parameter	must	be	the	widget	id	of	a	text	box.	The	text	parameter
is	the	text	to	be	added	to	the	text	box.

Example		

The	following	creates	a	text	box	and	puts	the	numbers	from	1	to
25	in	it.

								import	GUI

								var	boxID	:	int	:=	GUI.CreateTextBox	(50,	50,	200,	200)

								for	i	:	1	..	25

												GUI.AddLine	(boxID,	intstr	(i))

								end	for

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.AddLine,	not	by	calling	AddLine.

See	also		 GUI.CreateTextBox.

GUI.AddText Part	of	GUI	module

Syntax		 GUI.AddText	(widgetID	:	int,	text	:	string)

Description		

GUI.AddText	adds	text	to	the	current	line	of	the	text	box
specified	by	widgetID.	It	does	not	add	a	newline	after	the	text.	It
is	essentially	equivalent	to	put	text	...	in	the	text	box.
GUI.AddLine	scrolls	the	text	box	(if	necessary)	so	that	the	added
text	is	now	visible.	The	widgetID	parameter	must	be	the	widget	id
of	a	text	box.	The	text	parameter	is	the	text	to	be	added	to	the	text
box.

Details		

To	force	a	text	box	to	scroll	to	the	end	of	the	text	without	adding
any	extra	text,	call	GUI.AddText	with	""	(the	null	string)	for	the
text	parameter.

Example		

The	following	creates	a	text	box	and	puts	the	numbers	from	1	to
26	followed	by	the	appropriate	letter	of	the	alphabet	in	it.

								import	GUI

								var	boxID	:	int	:=	GUI.CreateTextBox	(50,	50,	200,	200)

								for	i	:	1	..	26

												GUI.AddText	(boxID,	intstr	(i))

												GUI.AddText	(boxID,	"	")

												GUI.AddLine	(boxID,	chr	(64	+	i))

								end	for

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
GUI.AddText,	not	by	calling	AddText.

See	also		 GUI.CreateTextBox.

GUI.Alert[2,3,Full] Part	of	GUI	module

Syntax		

One	of	four	procedures:

	 GUI.Alert	(title,	msg	:	string)
	 GUI.Alert2	(title,	msg1,	msg2	:	string)
	 GUI.Alert3	(title,	msg1,	msg2,	msg3	:	string)
	 GUI.AlertFull	(title	:	string,
	 	 msg	:	array	1	..	*	of	string,	button	:	string)

Description		

Displays	a	dialog	box	with	the	string	specified	by	msg	in	it.	There
is	a	single	button	labelled	OK	which	dismisses	the	dialog	and
resumes	execution.	The	title	parameter	specifies	the	window	title
under	Microsoft	Windows.	On	the	Apple	Macintosh,	there	is	no
title,	so	do	not	assume	the	user	will	see	the	title.	The	dialog	box	is
centered	on	the	screen.

The	GUI.Alert2	and	GUI.Alert3	procedures	allow	the	user	to
specify	a	two	or	three	line	message	respectively.	The
GUI.AlertFull	procedure	allows	the	user	to	specify	any	number
of	lines	of	text	in	the	string	array	specified	by	msg	as	well	as	the
text	in	the	dismissal	button.	Any	empty	strings	at	the	end	of	the
array	are	not	displayed.

Note:	This	function	is	not	available	in	the	current	version	of	the
GUI	Procedure	Library	(shipping	with	Turing	4.0	and	MacOOT
1.5).	It	is	documented	here	for	use	with	future	shipping	version	of
Turing.	It	is	likely	to	be	implemented	in	the	version	of	Turing
released	in	September	2002.	Check	the	release	notes	that	are
found	in	the	on-line	help	to	find	out	if	this	function	is	now
available.

The	following	program	asks	the	user	for	the	name	of	a	file	puts	up
an	alert	dialog	box	if	it	fails.

								import	GUI	in	"%oot/lib/GUI"

								

Example		

								var	fileName	:	string

								var	streamNumber	:	int

								

								loop

												fileName	:=	GUI.SaveFile	("Save	As")

												open	:	streamNumber,	fileName,	put

												exit	when	streamNumber	>	0

												GUI.Alert	("Open	Failure",	"\""	+	fileName	+	

																"\"	could	not	be	opened")

								end	loop

								

Example		

The	following	program	asks	the	user	for	the	name	of	a	file	puts	up
a	more	complete	alert	dialog	box	if	it	fails.

								import	GUI	in	"%oot/lib/GUI"

								

								var	fileName	:	string

								var	streamNumber	:	int

								loop

												fileName	:=	GUI.SaveFile	("Save	As")

												open	:	streamNumber,	fileName,	put

												exit	when	streamNumber	>	0

												GUI.Alert2	("Open	Failure",	

																"\""	+	fileName	+	"\"	could	not	be	opened.",

																"Reason:	"	+	Error.LastMsg)

								end	loop

Example		

The	following	program	fragment	displays	an	alert	with	four	lines
of	text	and	a	button	that	says	"Abort".

								var	message	:	array	1	..	10	of	string

								for	i	:	1	..	10

												message	(i)	:=	""

								end	for

								…

								message	(1)	:=	"The	program	must	now	quit"

								message	(2)	:=	"becasue	of	an	unrecoverable	error."

								message	(3)	:=	"A	Read	Error	occurred	while	reading"

								message	(4)	:=	"file	\""	+	fileName	+	"\"."

								message	(5)	:=	Error.LastMsg

								GUI.AlertFull	("Error",	message,	"Abort")

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

GUI.Alert,	not	by	calling	Alert.

GUI.Choose[Full] Part	of	GUI	module

Syntax		

One	of	two	procedures:

	 GUI.Choose	(title,	msg1,	msg2,	msg3	:	string,
	 	 btn1,	btn2,	btn3	:	string)	:	int
	 GUI.ChooseFull	(title	:	string,
	 	 msg	:	array	1	..	*	of	string,
	 	 btn1,	btn2,	btn3	:	string,
	 	 defaultBtn	:	int)	:	int

Description		

Displays	a	dialog	box	with	text	and	from	one	to	three	buttons.	The	user	selects	a
button	to	dismiss	the	dialog.	The	number	of	the	button	pressed	is	returned	by	the
function.	The	dialog	box	is	centered	on	the	screen.

The	title	parameter	specifies	the	title	in	the	window	bar	of	the	dialog	box.	The
Apple	Macintosh	does	not	have	a	title	bar,	so	do	not	assume	that	the	user	will	see
the	string	in	the	title	parameter.	The	message	is	specified	by	strings	in	
and	msg3	for	GUI.Choose	and	the	string	array	message	for	GUI.ChooseFull
each	case,	empty	strings	at	the	end	of	the	list	of	strings	are	ignored.	The	
and	btn3	parameters	specify	the	text	to	appear	in	the	buttons.	If	the	text	is	an	empty
string	(""),	the	button	is	not	displayed.

The	function	returns	the	button	number	from	one	to	three	that	was	chosen.

The	defaultBtn	parameter	in	GUI.ChooseFull	specifies	which,	if	any,	button
should	be	the	default	button.	The	default	button	is	selected	if	the	user	presses
Enter.	If	the	default	button	is	0,	then	no	button	is	highlighted	as	the	default	button.

Note:	This	function	is	not	available	in	the	current	version	of	the	GUI	Procedure
Library	(shipping	with	Turing	4.0	and	MacOOT	1.5).	It	is	documented	here	for	use
with	future	shipping	version	of	Turing.	It	is	likely	to	be	implemented	in	the	version
of	Turing.	Check	the	release	notes	that	are	found	in	the	on-line	help	to	find	out	if
this	function	is	now	available.

The	following	program	asks	if	the	user	wants	coffee	or	tea	and	set	wantsCoffee

Example		

appropriately.

								import	GUI	in	"%oot/lib/GUI"

								var	wantsCoffee	:	boolean	

								var	choice	:	int	:=	GUI.Choose	("Beverage	Choice",	

												"Do	you	want	coffee	or	tea?",	"",	"",	"Coffee",	"Tea",	"")

								if	choice	=	1	then

												wantsCoffee	:=	true

								else

												wantsCoffee	:=	false

								end	if

Example		

The	following	program	asks	the	user	whether	they	want	to	save	their	work,	don't
save	their	work	or	Cancel.

								import	GUI	in	"%oot/lib/GUI"

								

								%	Returns	false	if	cancelling	operation

								procedure	CheckUnsavedWork	:	boolean

												var	message	:	array	1	..	3	of	string

												message	(1)	:=	"Changes	to	"	+	fileName	+	"	have	not	been	"

												message	(2)	:=	"saved.	Unsaved	work	will	be	lost.	Do	you	"

												message	(3)	:=	"want	to	save	before	quitting."

												var	choice	:	int	:=	GUI.ChooseFull	("Save	Before	Quit",	

																message,	"Save",	"Don't	Save",	"Cancel",	1)

												if	choice	=	1	then

																SaveWork

												elsif	choice	=	3		then

																return	false

												end	if

												return	true

								end	CheckUnsavedWork	

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.Choose
calling	Choose.

GUI.ClearText Part	of	GUI	module

Syntax		 GUI.ClearText	(widgetID	:	int)

Description		
Clears	all	the	text	in	a	text	box	specified	by	widgetID.	The	widgetID
must	be	the	widget	id	of	a	text	box.

Example		

The	program	lists	25	numbers	in	a	text	box.	Every	time	the	button	is	pressed,	it
clears	the	text	box	and	prints	the	next	25	numbers.

								import	GUI

								var	boxID,	buttonID,	start	:	int

								start	:=	1

								

								procedure	PrintTwentyFive

												GUI.ClearText	(boxID)

												for	i	:	start	..	start	+	24

																GUI.AddLine	(boxID,	intstr	(i))

												end	for

												start	+=	25

								end	PrintTwentyFive

								

								boxID	:=	GUI.CreateTextBox	(50,	50,	200,	200)

								buttonID	:=	GUI.CreateButton	(50,	5,	0,	"Next	25",	

								PrintTwentyFive

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.ClearText
by	calling	ClearText.

See	also		 GUI.CreateTextBox.

GUI.CloseWindow Part	of	GUI	module

Syntax		 GUI.CloseWindow	(window	:	int)

Description		

Closes	a	window	with	widgets	in	it.	This	procedure	automatically
disposes	of	any	widgets	in	the	window	and	makes	certain	that	the	GUI
Library	recognizes	that	the	window	no	longer	exists.	This	procedure	will
call	Window.Close,	so	there	is	no	need	for	the	user	to	do	so.

Example		

The	program	opens	up	a	window	with	two	buttons.	If	the	button	labelled
"Close	and	Open"	is	pressed,	the	window	is	closed	and	a	new	window
with	two	buttons	is	opened	in	a	random	location	on	the	screen.

								import	GUI

								

								const	screenWidth	:	int	:=	Config.Display	(cdScreenWidth

								const	screenHeight	:	int	:=	Config.Display	(cdScreenHeight

								const	titleBarHeight	:	int	:=	32

								const	windowEdgeSize	:	int	:=	13

								const	windowWidth	:	int	:=	150

								const	windowHeight	:	int	:=	100

								var	windowID,	windowNumber,	closeButton,	quitButton

								

								procedure	CloseAndOpen

												if	windowID	not=	0	then

																GUI.CloseWindow	(windowID)

												end	if

												windowNumber	+=	1

												var	xPos	:	int	:=	Rand.Int	(0,	screenWidth	-	

																windowEdgeSize)

												var	yPos	:	int	:=	Rand.Int	(0,	screenHeight	-	

																titleBarHeight)

												windowID	:=	Window.Open	("title:Window	#"	+	

																intstr	(windowNumber)	+	",graphics:"	+	

																intstr	(windowWidth)	+	";"	+	intstr	(windowHeight

																",position:"	+	intstr	(xPos)	+	";"	+	intstr

												closeButton	:=	GUI.CreateButton	(10,	60,	130,	

																"Close	And	Open",	CloseAndOpen)

												quitButton	:=	GUI.CreateButton	(10,	10,	130,	"Quit",	

								end	CloseAndOpen

								

								CloseAndOpen

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								GUI.CloseWindow	(windowID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CloseWindow,	not	by	calling	CloseWindow.

See	also		
GUI.ShowWindow	and	GUI.HideWindow,	for	showing	and	hiding
windows	with	widgets	in	them.

GUI.CreateButton[Full] Part	of	GUI	module

Syntax		

GUI.CreateButton	(x,	y,	width	:	int,	text	:	string,
				actionProc	:	procedure	x	())	:	int

GUI.CreateButtonFull	(x,	y,	width	:	int,	text	:	string,
				actionProc	:	procedure	x	(),	height	:	int,	shortcut	:	char,	default
int

Description		

Creates	a	button	and	returns	the	button's	widget	ID.

The	button	widget	is	used	to	implement	a	textual	button.	When	you	
button,	the	button's	action	procedure	is	called.	If	a	button	is	given	a	short	cut,
then	entering	the	keystroke	will	cause	the	action	procedure	to	be	called.	It	will
not	visibly	cause	the	button	to	depress.

Two	Buttons

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	button.	The	
parameter	specifies	the	width	of	the	button.	If	width	is	less	than	the	size
necessary	to	display	the	button,	the	button	is	automatically	enlarged	to	fit	the
text.	The	text	parameter	specifies	the	text	to	appear	in	the	button.	The	
parameter	is	the	name	of	a	procedure	that	is	called	when	the	button	is	pressed.

For	GUI.CreateButtonFull,	the	height	parameter	specifies	the	height	of	the
button.	If	height	is	less	than	the	size	necessary	to	display	the	button,	the	button	is
automatically	enlarged	to	fit	the	text.	The	shortcut	parameter	is	the	keystroke	to
be	used	as	the	button's	shortcut.	The	default	parameter	is	a	boolean	indicating

whether	the	button	should	be	the	default	button.	If	there	is	already	a	default
button,	and	default	is	set	to	true,	then	this	button	becomes	the	new	default	button.

Example		

The	following	program	creates	two	buttons,	one	which	draws	a	random	
the	screen	and	one	which	quits	the	program.

								import	GUI

								

								procedure	DrawRandomCircle

												var	r	:	int	:=	Rand.Int	(20,	50)

												var	x	:	int	:=	Rand.Int	(r,	maxx	-	r)

												var	y	:	int	:=	Rand.Int	(r,	maxy	-	r)

												var	c	:	int	:=	Rand.Int	(0,	maxcolor)

												Draw.FillOval	(x,	y,	r,	r,	c)

												%	In	case	we	drew	over	the	buttons,	redraw	them.

												GUI.Refresh

								end	DrawRandomCircle

								

								View.Set	("graphics:300;200,nobuttonbar	")

								var	draw	:	int	:=	GUI.CreateButtonFull	(50,	10,	0,	"Draw	Circle",

												DrawRandomCircle,	0,	'^D',	true)

								var	quitBtn	:	int	:=	GUI.CreateButton	(200,	10,	0,	"Quit",	

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	GUI.CreateButton	or	GUI.CreateButtonFull	is	called,	the	newly
created	button	will	be	displayed	immediately	unless	GUI.DisplayWhenCreated
has	been	called	with	the	display	parameter	set	to	false.

If	a	button's	width	or	height	is	set	to	zero	(or	not	specified	at	all),	then	the	button
is	shaped	to	fit	the	text.

A	button	can	be	the	default	button	for	a	window.	The	default	button	
with	a	thicker	border	around	it.	If	the	user	presses	ENTER	in	a	window	with	a
default	button,	the	default	button's	action	procedure	is	called.

When	a	button	is	not	enabled,	the	text	in	the	button	is	grayed	out	and	the	button
no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the	button	is	enabled
again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	button	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,	GUI.Dispose
GUI.GetX,	GUI.GetY,	GUI.GetWidth,	GUI.GetHeight,
GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize,
GUI.SetLabel,	GUI.SetDefault

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateButton
not	by	calling	CreateButton.

See	also		
GUI.SetLabel	for	changing	the	button's	text,	GUI.SetDefault	for	setting	
default	button	in	a	window	and	GUI.SetColor	for	setting	the	button's	color.

GUI.CreateCanvas[Full] Part	of	GUI	module

Syntax		

GUI.CreateCanvas	(x,	y,	width,	height	:	int)	:	int

GUI.CreateCanvasFull	(x,	y,	width,	height	:	int,
				border	:	int,
				mouseDown	:	procedure	x	(mx,	my	:	int),
				mouseDrag	:	procedure	x	(mx,	my	:	int),
				mouseUp	:	procedure	x	(mx,	my	:	int))	:	int

Description		

Creates	a	canvas	and	returns	the	canvas'	widget	ID.

A	canvas	is	a	drawing	surface	for	use	by	the	program.	It	differs	from	just
using	the	window	surface	to	draw	on	in	that	(0,	0)	represents	the	lower-
left	corner	of	the	canvas	and	all	drawing	is	clipped	to	the	canvas.	(This
means	that	if	you	accidently	attempt	to	draw	outside	of	the	canvas,	it
will	not	actually	draw	beyond	the	border	of	the	canvas.)

Canvases	have	procedures	that	emulate	all	the	procedures	in	the	Draw
module	as	well	as	a	procedure	to	emulate	Font.Draw,	Pic.Draw,	Pic.New,
Pic.ScreenLoad	and	Pic.ScreenSave.

You	can	get	mouse	feedback	from	a	canvas.	Using	the	CreateCanvasFull
method,	you	can	specify	three	routines	that	are	called	when	the	mouse
button	is	depressed	while	pointing	in	a	canvas.	One	routine	will	be	called
when	the	user	presses	the	mouse	button	down	in	a	canvas.	Another
routine	will	be	called	while	the	user	drags	the	mouse	with	the	mouse
button	down.	This	routine	is	repeatedly	called	whenever	the	mouse
changes	position	while	the	mouse	button	is	down.	The	last	routine	is
called	when	the	mouse	button	is	released.	All	three	routines	take	an	
and	y	parameter,	which	is	the	location	of	the	mouse	with	respect	to	the
canvas	(i.e.	(0,	0)	is	the	lower-left	corner	of	the	canvas).

Output	of	Canvases.dem

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	canvas.	The
width	and	height	parameters	specify	the	width	and	height	of	the	canvas.

For	GUI.CreateCanvasFull,	the	border	parameter	specifies	the	type	of
border	that	surrounds	the	canvas	and	is	one	of	0,	GUI.LINE,
GUI.INDENT	or	GUI.EXDENT.	A	border	of	0	is	the	default	and	is	the
same	as	GUI.LINE.	GUI.INDENT	and	GUI.EXDENT	only	display
properly	if	the	background	colour	has	been	set	to	gray	using
GUI.SetBackgroundColor.	GUI.INDENT	makes	the	canvas	appear
indented	or	recessed.	GUI.EXDENT	makes	the	canvas	appear	to	stand
out	from	the	window.

The	mouseDown	parameter	is	a	procedure	called	when	the	user	presses
the	mouse	button	in	the	canvas.	The	mouseDrag	parameter	is	a
procedure	called	when	the	user	drags	the	mouse	while	the	mouse	button
is	still	pressed.	The	mouseUp	parameter	is	a	procedure	called	when	the
user	releases	the	mouse	button.	The	parameters	to	all	three	are	the	x	and
y	location	of	the	mouse	where	the	button	was	pressed
(dragged/released).	The	coordinates	are	given	with	respect	to	the	canvas
(i.e.	(0,	0)	is	the	lower-left	corner	of	the	canvas).

Example		

The	following	program	draws	10	random	stars	in	the	canvas.

								import	GUI

								var	canvas	:	int	:=	GUI.CreateCanvas	(10,	10,	maxx

								for	i	:	1	..	10

												var	x	:	int	:=	Rand.Int	(0,	maxx	-	20)

												var	y	:	int	:=	Rand.Int	(0,	maxy	-	20)

												var	c	:	int	:=	Rand.Int	(0,	maxcolor)

												GUI.DrawFillOval	(canvas,	x,	y,	20,	20,	c)

								end	for

Execute		

Details		

When	GUI.CreateCanvas	or	GUI.CreateCanvasFull	is	called,	the
newly	created	canvas	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display	parameter
set	to	false.

The	border	of	the	canvas	is	just	outside	the	drawing	surface,	so
GUI.GetWidth	and	GUI.GetHeight	will	return	slight	larger	values	than
width	and	height.

When	the	canvas	is	disabled,	clicking	the	mouse	in	the	canvas	does	not
call	any	of	the	mouseDown,	mouseDrag,	or	mouseUp	procedures.	The
appearance	of	the	canvas	does	not	change.

Details		

The	following	GUI	subprograms	can	be	called	with	a	button	as	the
widgetID	parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,	GUI.Dispose
GUI.GetX,	GUI.GetY,	GUI.GetWidth,	GUI.GetHeight,
GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize,
GUI.Draw…,	GUI.FontDraw,	GUI.Pic…,	GUI.SetXOR

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateCanvas,	not	by	calling	CreateCanvas.

See	also		
GUI.Draw…,	GUI.FontDraw,	GUI.Pic…,	and	GUI.SetXOR	for
drawing	on	a	canvas.

GUI.CreateCheckBox[Full] Part	of	GUI	module

Syntax		

GUI.CreateCheckBox	(x,	y	:	int,	text	:	string,
				actionProc	:	procedure	x	(filled	:	boolean))	:	int

GUI.CreateCheckBoxFull	(x,	y	:	int,	text	:	string,
				actionProc	:	procedure	x	(filled	:	boolean),	alignment	:	int,	shortcut
int

Description		

Creates	a	check	box	(with	accompanying	text)	and	returns	the	check	box's	widget
ID.

The	check	box	widget	is	used	to	implement	a	check	box	that	can	be	set	or	unset.
When	you	click	on	a	check	box,	the	status	of	the	check	box	flips	from	set	to
unset	and	back	again	and	the	check	box's	action	procedure	is	called	with	the	new
status	as	a	parameter.	If	a	check	box	is	given	a	short	cut,	then	entering	the
keystroke	will	cause	the	check	box	to	change	status	and	the	action	procedure
be	called.	The	new	status	will	be	displayed	immediately.

Two	Check	Boxes

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	check	box	(unless
alignment	is	set	to	GUI.RIGHT,	in	which	case	they	specify	the	lower-right	corner
of	the	check	box).	The	text	parameter	specifies	the	text	(or	label)	beside	the
check	box.	The	actionProc	parameter	is	the	name	of	a	procedure	that	is	called
when	the	status	of	the	check	box	changes.	The	actionProcprocedure	must	have
one	boolean	parameter	which	is	the	new	status	of	the	check	box.	In
GUI.CreateCheckBox,	the	check	box's	text	is	always	to	the	right	of	the	actual
check	box.	In	GUI.CreateCheckBoxFull,	the	text	can	be	set	to	the	right	or	left
of	the	check	box	with	the	alignment	parameter.

For	GUI.CreateCheckBoxFull,	the	alignment	parameter	specifies	the	position
of	the	check	box	in	relation	to	the	text	as	well	as	the	meaning	of	the	

parameters.	The	alignment	parameter	is	one	of	0,	GUI.LEFT,	or	GUI.RIGHT
alignment	of	0	is	the	default	and	is	the	same	as	GUI.LEFT.	GUI.LEFT
actual	box	in	the	check	box	appears	to	the	left	of	the	check	box's	label	and	(
specifies	the	lower-left	corner.	An	alignment	of	GUI.RIGHT	means	that	the
actual	box	appears	to	the	right	of	the	check	box's	label	and	(x,	y)	specifies	the
lower-right	corner	of	the	check	box.	The	shortcut	parameter	is	the	keystroke	to
be	used	as	the	button's	shortcut.	The	default	parameter	is	a	boolean	indicating
whether	the	button	should	be	the	default	button.	If	there	is	already	a	default
button,	and	default	is	set	to	true,	then	this	button	becomes	the	new	default	button.

A	check	box's	size	is	not	specified	during	creation.	It	is	determined	based	on	the
size	of	the	text.	Instead	the	user	specifies	the	lower-left	corner	of	the	check	box
(or	the	lower-right	if	the	check	box	is	right	justified).

Example		

The	following	program	creates	two	buttons,	one	which	draws	a	random	circle	on
the	screen	and	one	which	quits	the	program

								import	GUI

								

								procedure	DoNothing	(status	:	boolean)

								end	DoNothing	

								

								View.Set	("graphics:300;100,nobuttonbar")

								var	cb1	:	int	:=	GUI.CreateCheckBox	(10,	10,	"Check	Box	1",

												DoNothing)

								var	cb2	:	int	:=	GUI.CreateCheckBoxFull	(200,	10,	"Check	Box	2",

												DoNothing,	GUI.RIGHT,	'2')

								GUI.SetCheckBox	(cb2,	true)

								var	quitBtn	:	int	:=	GUI.CreateButton	(230,	10,	0,	"Quit",	

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								var	cb1Status	:	boolean	:=	GUI.GetCheckBox	(cb1)

								var	cb2Status	:	boolean	:=	GUI.GetCheckBox	(cb2)

								if	cb1Status	then

												put	"Check	box	1:	filled"

								else

												put	"Check	box	1:	empty"

								end	if

								if	cb2Status	then

												put	"Check	box	2:	filled"

								else

												put	"Check	box	2:	empty"

								end	if

Execute		

Details		

When	GUI.CreateButton	or	GUI.CreateButtonFull	is	called,	the	newly
created	check	box	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display	parameter	set	to
false.

When	a	check	box	is	not	enabled,	the	label	beside	the	check	box	is	grayed	out
and	the	check	box	no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the
check	box	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	check	box	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,	GUI.Dispose
GUI.GetX,	GUI.GetY,	GUI.GetWidth,	GUI.GetHeight,
GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize,
GUI.SetLabel,	GUI.GetCheckBox,	GUI.SetCheckBox

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateCheckBox
not	by	calling	CreateCheckBox.

See	also		
GUI.SetLabel	for	changing	the	chec	box's	text	and	GUI.GetCheckBox
GUI.SetCheckBox	for	reading	and	setting	the	check	box's	state.

GUI.CreateFrame Part	of	GUI	module

Syntax		 GUI.CreateFrame	(x1,	y1,	x2,	y2,	kind	:	int)	:	int

Description		

Creates	a	frame	and	returns	the	frame's	widget	ID.

A	frame	is	a	box	drawn	around	other	GUI	widgets	to	make	the	window
look	better	and	help	organize	the	GUI	elements.

Three	Types	of	Frames	With	a	Label	in	Each	Frame

Frames	are	the	only	GUI	widgets	that	can	have	other	widgets	placed
within	them.	Frames	are	passive	widgets,	meaning	that	they	do	not
respond	to	button	clicks	or	keystrokes.

The	x1	and	y1	parameters	specify	the	lower-left	corner	of	the	frame	and
the	x2	and	y2	parameters	specify	the	upper-right	corner	of	the	frame.	The
kind	parameter	specifies	the	type	of	frame.	This	is	one	of	0,	GUI.LINE
GUI.INDENT,	or	GUI.EXDENT.	A	kind	of	0	is	the	default	and	is	the	same
as	GUI.LINE.

GUI.INDENT	and	GUI.EXDENT	only	display	properly	if	the	background
colour	has	been	set	to	gray	using	GUI.SetBackgroundColor.
GUI.INDENT	makes	the	contents	frame	appear	indented	or	recessed.
GUI.EXDENT	makes	the	contents	of	the	frame	appear	to	stand	out	from
the	window.

The	following	program	draws	three	frames	in	the	window	and	draws	a
label	in	each	one.

								import	GUI	

								View.Set	("graphics:250;90,nobuttonbar")	

								GUI.SetBackgroundColor	(gray)

								var	lineFrame,	indentFrame,	exdentFrame	:	int

Example		
								var	lineLabel,	indentLabel,	exdentLabel	:	int

								lineFrame	:=	GUI.CreateFrame	(10,	10,	80,	70,	0)	

								indentFrame	:=	GUI.CreateFrame	(90,	10,	160,	70,	

								exdentFrame	:=	GUI.CreateFrame	(170,	10,	240,	70,	

	 	 %	Label	the	lines.

								lineLabel	:=	GUI.CreateLabelFull	(10,	10,	"Line",	70,	60,

												GUI.CENTER	+	GUI.MIDDLE,	0)

								indentLabel	:=	GUI.CreateLabelFull	(90,	10,	"Indent",	70,	60,	

												GUI.CENTER	+	GUI.MIDDLE,	0)

								exdentLabel	:=	GUI.CreateLabelFull	(170,	10,	"Exdent",	70,	60,	

												GUI.CENTER	+	GUI.MIDDLE,	0)

Execute		

Details		

When	GUI.CreateFrame	is	called,	the	newly	created	frame	will	be
displayed	immediately	unless	GUI.DisplayWhenCreated	has	been
called	with	the	display	parameter	set	to	false.

A	frame	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	frame	as	the
widgetID	parameter:

	
GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetWidth,	GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize
GUI.SetPositionAndSize

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateFrame,	not	by	calling	CreateFrame.

GUI.CreateHorizontalScrollBar[Full] Part	of	GUI	module

Syntax		

GUI.CreateHorizontalScrollBar	(x,	y,	size	:	int,
				min,	max,	start:	int,	actionProc	:	procedure	x	(value	:	int

GUI.CreateHorizontalScrollBarFull	(x,	y,	size	:	int,
				min,	max,	start	:	int,
				actionProc	:	procedure	x	(value	:	int),
				arrowInc,	pageInc,	thumbSize	:	int)	:	int

Description		

Creates	a	horizontal	(left-right)	scroll	bar	and	returns	the	scroll	bar's	widget	ID.

A	scroll	bar	is	a	widget	that	allows	users	to	see	a	piece	of	a	document	that
cannot	be	displayed	on	the	screen	in	its	entirety.	The	picture	below	shows	a
horizontal	scroll	bar.	To	control	a	scroll	bar,	there	are	a	few	choices:	the	user
can	click	on	the	thumb	(the	box	in	the	scroll	bar)	and	slide	it	left	or	right,	or	the
user	can	click	in	the	scroll	bar	itself	to	the	left	or	right	of	the	thumb	(in	which
case	the	thumb	is	moved	up	or	down	one	"page"),	or	the	user	can	click	on	the
left	or	right	arrows	at	the	ends	of	the	scroll	bar	(in	which	case	the	thumb	is
moved	left	or	right	one	"arrow	increment").

A	Horizontal	Scroll	Bar

The	programmer	defines	a	page	or	an	arrow	increment.	When	the	value	of	the
scroll	bar	changes,	the	action	procedure	of	the	scroll	bar	is	called	with	the	new
value	as	a	parameter.	The	action	procedure	should	then	redraw	the	contents
using	the	new	value	of	the	scroll	bar.

The	range	of	values	that	the	scroll	bar	will	give	is	determined	by	the	
max	parameters	in	the	Create	call.	The	left	side	of	the	scroll	bar	represents	the
minimum	value,	while	the	right	represents	the	maximum	value.	There	is	also
the	"thumb	size".	This	represents	the	range	of	values	that	can	be	seen	at	once	on
the	screen.

By	default,	the	arrow	increment	(the	amount	the	value	is	changed	when	the
scrolling	arrows	are	pressed)	is	set	to	one.	The	page	increment	(the	amount	the
value	is	changed	when	the	user	clicks	in	the	bar	to	the	right	or	left	of	the	thumb)
is	set	to	one	quarter	the	difference	between	the	minimum	and	the	maximum.
The	"thumb	size"	is	set	to	zero	(see	the	description	of	scroll	bars	for	an
explanation	of	the	thumb	size).

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	scroll	bar.	The	
parameter	specifies	the	length	of	the	scroll	bar	(including	the	arrows)	in	pixels.
The	min	and	max	parameters	are	the	minimum	and	maximum	values	returned
by	the	scroll	bar.	The	start	parameter	is	the	initial	value	of	the	scroll	bar	and
should	be	between	min	and	max	inclusive.	The	actionProc	parameter
name	of	a	procedure	that	is	called	when	the	value	of	the	scroll	bar	is	changed.
The	parameter	to	the	action	procedure	is	the	current	value	of	the	scroll	bar.

Example		

The	following	program	creates	a	horizontal	scroll	bar.	Whenever	the	scroll	bar's
value	is	changed,	a	message	is	displayed	in	the	window.

								import	GUI	

								

								View.Set	("graphics:300;60,nobuttonbar")	

								var	scrollBar	:	int

								

								procedure	ScrollBarMoved	(value	:	int)

												Text.Locate	(2,	3)

												put	"Horizontal	Scroll	Bar:	",	value	:	4

								end	ScrollBarMoved

								

								scrollBar	:=	GUI.CreateHorizontalScrollBar	(10,	10,	250,

												50,	150,	50,	ScrollBarMoved)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

For	GUI.CreateHorizontalScrollBarFull,	the	arrowInc	parameter	specifies

Description		

the	arrow	increment	(the	amount	the	scroll	bar's	value	is	changed	when	the
scroll	arrows	are	pressed).	The	pageInc	specifies	the	page	increment	(the
amount	the	scroll	bar's	value	is	changed	when	the	user	clicks	in	the	page
left/right	section	of	the	scroll	bar).	The	thumbSize	parameter	specifies	the
"thumb	size".	(See	the	scroll	bar	explanation	for	more	detail	on	a	scroll	bar's
"thumb	size").

For	example,	if	you	have	a	window	that	can	display	20	lines	of	text	at	once	and
there	are	100	lines	of	text,	you	would	set	min	to	1,	max	to	100	and	
20.	The	value	returned	by	the	scroll	bar	would	then	be	the	line	number	of	the
first	line	on	the	screen	to	be	displayed.	When	the	scroll	bar	was	at	its	maximum
value,	it	would	return	81,	since	by	doing	so,	lines	81-100	would	be	displayed.

Example		

Here	is	an	example	program	that	scrolls	a	large	picture	over	a	smaller	window.

								%	The	"ScrollPic"	program.

								import	GUI

								

								var	h,	v	:	int						%	The	scroll	bars.

								var	canvas	:	int								%	The	canvas.

								var	pic	:	int							%	The	picture.

								const	width	:	int	:=	220				%	The	width	of	the	canvas.

								

								procedure	ScrollPic	(ignore	:	int)

												%	Get	the	current	value	of	the	scroll	bars.

												var	x	:	int	:=	GUI.GetSliderValue	(h)

												var	y	:	int	:=	GUI.GetSliderValue	(v)

												GUI.PicDraw	(canvas,	pic,	-x,	-y,	picCopy)

								end	ScrollPic

								

								pic	:=	Pic.FileNew	("Forest.jpg")

								if	pic	<=	0	then

												put	"Error	loading	picture:	",	Error.LastMsg

												return

								end	if

								

								View.Set	("graphics:265;265")

								

								canvas	:=	GUI.CreateCanvas	(15,	15	+	GUI.GetScrollBarWidth

												width,	width)

								%	Note	the	frame	of	the	canvas	is:

								%			(14,	14	+	ScrollbarWidth)	-	(235,	235	+	ScrollbarWidth)

								h	:=	GUI.CreateHorizontalScrollBarFull	(14,	14,

												221,	0,	Pic.Width	(pic)	,	0,	ScrollPic,	3,	100,	

								v	:=	GUI.CreateVerticalScrollBarFull	(235,	

												14	+	GUI.GetScrollBarWidth,	221,	0,	Pic.Height	

												Pic.Height	(pic),	ScrollPic,	3,	100,	width)

								ScrollPic	(0)	%	Draw	the	picture	initially

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

In	some	instances,	you	will	want	the	the	minimum	and	maximum	values	of	the
scroll	bar	to	be	reversed	(right/top	is	minimum).	In	that	case,	call	the
GUI.SetSliderReverse	procedure	to	flip	the	values	of	the	scroll	bar.

Scroll	bars	always	have	a	fixed	height	(for	horizontal	scroll	bars)	or	width	(for
vertical	scroll	bars).	To	get	a	scroll	bar's	width,	use	the
GUI.GetScrollBarWidth	function.

When	GUI.CreateHorizontalScrollBar	or
GUI.CreateHorizontalScrollBarFull	is	called,	the	newly	created	scroll	bar
will	be	displayed	immediately	unless	GUI.DisplayWhenCreated	has	been
called	with	the	display	parameter	set	to	false.

When	a	scroll	bar	is	not	enabled,	the	gray	in	the	bar	is	set	to	white	and	the
thumb	is	not	displayed.	The	scroll	bar	no	longer	responds	to	any	mouse	clicks
until	the	scroll	bar	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	scroll	bar	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,	GUI.Dispose
GUI.GetX,	GUI.GetY,	GUI.GetWidth,	GUI.GetHeight,
GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize,
GUI.GetSliderValue,	GUI.SetSliderValue,	GUI.SetSliderMinMax
GUI.SetSliderSize,	GUI.SetSliderReverse,	GUI.SetScrollAmount

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateHorizontalScrollBar,	not	by	calling	CreateHorizontalScrollBar

See	also		

GUI.GetSliderValue	and	GUI.SetSliderValue	for	reading	and	setting	the
value	of	a	scroll	bar,	GUI.SetSliderMinMax	for	changing	the	minimum	and
maximum	values	of	a	scroll	bar,	and	GUI.SetScrollAmount	for	changing	the
scrolling	increments	and	thumb	size	of	a	scroll	bar.	See	also	GUI.SetSliderSize
for	setting	the	length	of	a	scroll	bar	and	GUI.SetSliderReverse	for	reversing
the	sense	of	a	scroll	bar.

GUI.CreateHorizontalSlider Part	of	GUI	module

Syntax		

GUI.CreateHorizontalSlider	(x,	y,	length	:	int,
				min,	max,	start	:	int,	actionProc	:	procedure	x	(value	:
int))	:	int

Description		

Creates	a	horizontal	(left-right)	slider	and	returns	the	slider's
widget	ID.

A	slider	is	a	widget	that	allows	the	user	to	set	a	continuous	set	of
values.	It	has	a	real-life	equivalent	in	things	such	as	a	stereo
volume	control.

A	Horizontal	Slider

To	control	a	slider,	the	user	clicks	on	the	slider	box	and	drags	it
back	and	forth.	Every	time	the	value	changes,	a	procedure	is
called	with	the	new	value	as	a	parameter.

The	range	of	values	that	the	slider	will	give	is	determined	by	the
min	and	max	parameters	in	the	Create	call.	The	left	side	of	the
slider	represents	the	minimum	value,	while	the	right	represents
the	maximum	value.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	slider
track.	This	means	that	the	slider	actually	extends	above	and	below
this	point	(and	slightly	to	the	left	of	it	to	take	into	account	the
rounded	end	of	the	track).	The	length	parameter	specifies	the
length	of	the	track	in	pixels.	(You	can	use	GUI.GetX,	GetY,
GetWidth,	and	GetHeight	to	get	the	exact	dimensions	of	the
slider.)	The	min	and	max	parameters	are	the	minimum	and
maximum	values	returned	by	the	slider.	The	start	parameter	is	the
initial	value	of	the	slider	and	should	be	between	min	and	max
inclusive.	The	actionProc	parameter	is	the	name	of	a	procedure

that	is	called	when	the	value	of	the	slider	is	changed.	The
parameter	to	the	action	procedure	is	the	current	value	of	the
slider.

Example		

The	following	program	creates	a	horizontal	slider.	Whenever	the
slider's	value	is	changed,	a	message	is	displayed	in	the	window.

								import	GUI	

								

								View.Set	("graphics:300;60,nobuttonbar")	

								var	slider	:	int

								procedure	SliderMoved	(value	:	int)

												Text.Locate	(2,	3)

												put	"Horizontal	Slider:	",	value	:	4

								end	SliderMoved	

								

								slider	:=	GUI.CreateHorizontalSlider	(10,	10,	250,

												50,	150,	50,	SliderMoved)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

In	some	instances,	you	will	want	the	the	minimum	and	maximum
values	of	the	slider	to	be	reversed	(right	is	minimum).	In	that
case,	call	the	GUI.SetSliderReverse	procedure	to	flip	the	values
of	the	slider.

Sliders	always	have	a	fixed	height	(for	horizontal	sliders)	or	width
(for	vertical	sliders).

When	GUI.CreateHorizontalSlideror
GUI.CreateHorizontalSliderFull	is	called,	the	newly	created
slider	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display

parameter	set	to	false.

When	a	slider	is	not	enabled,	the	appearance	does	not	change.
However,	the	slider	no	longer	responds	to	any	mouse	clicks	until
it	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	slider	as	the
widgetID	parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,
GUI.Dispose,	GUI.GetX,	GUI.GetY,	GUI.GetWidth,
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,
GUI.SetPositionAndSize,	GUI.GetSliderValue,
GUI.SetSliderValue,	GUI.SetSliderMinMax,
GUI.SetSliderSize,	GUI.SetSliderReverse

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateHorizontalSlider,	not	by	calling
CreateHorizontalSlider.

See	also		

GUI.GetSliderValue	and	GUI.SetSliderValue	for	reading	and
setting	the	value	of	a	slider,	GUI.SetSliderMinMax	for	changing
the	minimum	and	maximum	values	of	a	slider.	See	also
GUI.SetSliderSize	for	setting	the	length	of	a	slider	and
GUI.SetSliderReverse	for	reversing	the	sense	of	a	slider.

GUI.CreateLabel[Full] Part	of	GUI	module

Syntax		

GUI.CreateLabel	(x,	y	:	int,	text	:	string)	:	int

GUI.CreateLabelFull	(x,	y	:	int,	text	:	string,	
				width,	height,	alignment,	fontID	:	int)	:	int

Description		

Creates	a	label	and	returns	the	label's	widget	ID.

The	label	widget	is	used	to	display	text.	It	can	be	used	to	display	text	in	a	variety
of	fonts	and	sizes.	Label	widgets	can	also	be	aligned	in	a	variety	of	ways.

Three	Labels

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	area	in	which	the	text
will	be	drawn.	For	GUI.CreateLabel,	this	is	the	lower-left	corner	of	the	text.	The
text	parameter	specifies	the	text	of	the	label.

For	GUI.CreateLabelFull,	the	width	and	height	parameters	specify	the	area	in
which	the	label	is	to	appear.	This	is	used	for	alignment	purposes.	See	the	program
below	for	an	example	of	aligning	the	text	to	different	corners	of	the	window.	The
alignment	parameter	specifies	the	alignment	of	the	text	in	the	text	area.	This	value
is	the	sum	of	horizontal	alignment	and	the	vertical	alignment.	The	horizontal
alignment	is	one	of	0,	GUI.LEFT,	GUI.CENTER,	or	GUI.RIGHT.	A	horizontal
alignment	of	0	is	the	default	and	is	the	same	as	the	alignment	of	GUI.LEFT
vertical	alignment	is	one	of	0,	GUI.TOP,	GUI.MIDDLE,	or	GUI.BOTTOM
horizontal	alignment	of	0	is	the	default	and	is	the	same	as	the	alignment	of
GUI.BOTTOM.	These	alignments	align	the	text	in	various	ways	in	the	text	area.
The	fontID	parameter	specifies	the	font	ID	of	the	font	to	be	used	in	the	text	field.
The	font	ID	is	received	from	a	Font.New	call.	Do	not	call	Font.Free
ID	until	the	label	has	been	disposed	of	by	calling	GUI.Dispose.

By	using	the	fondID	parameter,	labels	can	be	have	any	size	or	typeface.

Labels	are	passive	widgets,	meaning	that	they	do	not	respond	to	button	clicks	or
keystrokes.

Example		

The	following	program	creates	three	labels,	one	with	the	default	alignment,	the
other	two	aligned	to	appear	in	the	center	and	upper-right	corner	of	the	window.

								import	GUI

								View.Set	("graphics:300;100,nobuttonbar	")

								var	lowerLeft	:	int	:=	GUI.CreateLabel	(0,	0,	"Lower-Left")

								var	center	:	int	:=	GUI.CreateLabelFull	(0,	0,	"Center",	

												GUI.MIDDLE	+	GUI.CENTER,	0)

								var	upperRight	:	int	:=	GUI.CreateLabelFull	(0,	0,	"Upper-Right",	

												maxx,	maxy,	GUI.RIGHT	+	GUI.TOP,	0)

Execute		

Details		

When	GUI.CreateLabel	or	GUI.CreateLabelFull	is	called,	the	newly	created
label	will	be	displayed	immediately	unless	GUI.DisplayWhenCreated
called	with	the	display	parameter	set	to	false.

A	frame	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	label	as	the	widgetID
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetWidth,	GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize
GUI.SetPositionAndSize,	GUI.GetSliderValue,	GUI.SetSliderValue
GUI.SetSliderMinMax,	GUI.SetLabel

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateLabel
by	calling	CreateLabel.

See	also		 GUI.SetLabel	for	changing	the	label's	text.

GUI.CreateLabelledFrame Part	of	GUI	module

Syntax		
GUI.CreateLabelledFrame	(x1,	y1,	x2,	y2,	kind	:	int,
				text	:	string)	:	int

Description		

Creates	a	labelled	frame	and	returns	the	frame's	widget	ID.

A	labelled	frame	is	a	box	with	a	text	label	drawn	around	other	GUI	widgets	to
make	the	window	look	better	and	help	organize	the	GUI	elements.

Three	Types	of	Labelled	Frames

Frames	and	labelled	frames	are	the	only	GUI	widgets	that	can	have	other
widgets	placed	within	them.	Labelled	frames	are	passive	widgets,	meaning
that	they	do	not	respond	to	button	clicks	or	keystrokes.

The	x1	and	y1	parameters	specify	the	lower-left	corner	of	the	frame	and	the
x2	and	y2	parameters	specify	the	upper-right	corner	of	the	frame.	(The	text
will	extend	above	the	frame.)	The	kind	parameter	specifies	the	type	of	frame.
This	is	one	of	0,	GUI.LINE,	GUI.INDENT	or	GUI.EXDENT.	A	kind
the	default	and	is	the	same	as	GUI.LINE.

GUI.INDENT	and	GUI.EXDENT	only	display	properly	if	the	background
colour	has	been	set	to	gray	using	GUI.SetBackgroundColor.	GUI.INDENT
makes	the	contents	frame	appear	indented	or	recessed.	GUI.EXDENT
the	contents	of	the	frame	appear	to	stand	out	from	the	window.

Example		

The	following	program	draws	three	frames	in	the	window.

								import	GUI

								View.Set	("graphics:250;90,nobuttonbar")	

								GUI.SetBackgroundColor	(gray)

								var	lineFrame,	indentFrame,	exdentFrame	:	int

								lineFrame	:=	GUI.CreateLabelledFrame	(10,	10,	80,	70,	0,	"Line")	

								indentFrame	:=	GUI.	CreateLabelledFrame	(90,	10,	160,	70,			

												GUI.INDENT,	"Indent")	

								exdentFrame	:=	GUI.	CreateLabelledFrame	(170,	10,	240,	70,	

												GUI.EXDENT,	"Exdent")

Execute		

Details		

When	GUI.CreateLabelledFrame	is	called,	the	newly	created	labelled
frame	will	be	displayed	immediately	unless	GUI.DisplayWhenCreated
been	called	with	the	display	parameter	set	to	false.

A	labelled	frame	widget	is	a	passive	widget	and	cannot	be	enabled	or
disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	labelled	frame	as	the
widgetID	parameter:

	
GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetWidth,	GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize
GUI.SetPositionAndSize,	GUI.SetLabel

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateLabelledFrame,	not	by	calling	CreateLabelledFrame

See	also		 GUI.SetLabel	for	changing	the	frame's	text.

GUI.CreateLine Part	of	GUI	module

Syntax		 GUI.CreateLine	(x1,	y1,	x2,	y2,	kind	:	int)	:	int

Description		

Creates	a	line	and	returns	the	line's	widget	ID.

Lines	are	generally	used	to	separate	parts	of	a	window.	A	line	is	used	to	make	the	window
look	better	and	help	organize	the	GUI	elements.

Three	Types	of	Lines

Lines	are	passive	widgets,	meaning	that	they	do	not	respond	to	button	clicks	or	keystrokes.

The	x1	and	y1	parameters	specify	one	end-point	of	the	line	and	the	
specify	the	other	end	point.	The	line	must	either	be	horizontal	or	vertical	(i.e.	x1	must	equal
x2	or	y1	must	equal	y2).	The	kind	parameter	specifies	the	type	of	line.	This	is	one	of	0,
GUI.LINE,	GUI.INDENT	or	GUI.EXDENT.	A	kind	of	0	is	the	default	and	is	the	same	as
GUI.LINE.

GUI.INDENT	and	GUI.EXDENT	only	display	properly	if	the	background	colour	has	been
set	to	gray	using	GUI.SetBackgroundColor.	GUI.INDENT	makes	the	line	appear	indented
or	recessed.	GUI.EXDENT	makes	the	line	appear	to	stand	out	from	the	window.

Example		

The	following	program	draws	three	lines	with	three	labels	in	the	window.

								import	GUI

								View.Set	("graphics:180;100,nobuttonbar")	

								GUI.SetBackgroundColor	(gray)

								var	line,	indentLine,	exdentLine	:	int

								var	lineLabel,	indentLabel,	exdentLabel	:	int

								

								line	:=	GUI.CreateLine	(30,	20,	30,	90,	0)

								indentLine	:=	GUI.CreateLine	(90,	20,	90,	90,	GUI.INDENT

								exdentLine	:=	GUI.CreateLine	(150,	20,	150,	90,	

								lineLabel	:=	GUI.CreateLabelFull	(30,	15,	"Line",	0,	0,

												GUI.CENTER	+	GUI.TOP,	0)

								indentLabel	:=	GUI.CreateLabelFull	(90,	15,	"Indent",	0,	0,	

												GUI.CENTER	+	GUI.TOP,	0)

								exdentLabel	:=	GUI.CreateLabelFull	(150,	15,	"Exdent",	0,	0,	

												GUI.CENTER	+	GUI.TOP,	0)

Execute		

Details		

When	GUI.CreateLine	is	called,	the	newly	created	line	will	be	displayed	immediately
unless	GUI.DisplayWhenCreated	has	been	called	with	the	display

A	line	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	line	as	the	widgetID

	 GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateLine
CreateLine.

GUI.CreateMenu Part	of	GUI	module

Syntax		 GUI.CreateMenu	(name	:	string)	:	int

Description		

Creates	a	menu	and	returns	the	menu's	widget	ID.	The	menu	will	be	added
after	the	other	menus	in	the	menu	bar.	If	there	are	no	previous	menus,	then	a
menu	bar	is	automatically	created	and	the	menu	added.

The	name	parameter	specifies	the	text	that	appears	in	the	menu	bar.

A	Menu	With	an	Item	Selected

Menus	are	used	in	most	modern	interfaces.	In	order	to	create	a	full	set	of
menus,	you	must	create	the	menu	and	then	create	the	menu	items	in	that
menu.	The	menus	are	automatically	added	to	the	menu	bar	of	the	selected
menu.

As	of	the	v1.0	release	of	the	GUI	Library,	it	is	an	error	to	create	a	menu	item
without	having	created	a	menu	first.	In	future	releases	it	will	be	possible	to
create	menus	and	attach	and	remove	them	from	menu	bars	when	desired.

The	following	program	creates	a	series	of	menus	with	menu	items	in	them.
It	then	disables	the	second	menu.

								import	GUI	in	"%oot/lib/GUI"

								

								View.Set	("graphics:250;150,nobuttonbar")

								var	first,	second	:	int					%	The	menus.

								var	item	:	array	1	..	12	of	int	%	The	menu	items.

								var	name	:	array	1	..	12	of	string	(20)	:=	

												init	("Quit",	"---",	"A",	"B",	"---",	"C",	"D",	

												"Disable	B	Menu	Item",	"Enable	B	Menu	Item",	"---",	

Example		

												"Disable	Second	Menu",	"Enable	Second	Menu")

								

								procedure	MenuSelected

												for	i	:	1	..	12

																if	item	(i)	=	GUI.GetEventWidgetID	then

																				Text.Locate	(maxrow,	1)

																				put	name	(i)	+	"	selected															"	..

																end	if

												end	for

								end	MenuSelected

								

								procedure	DisableB

												GUI.Disable	(item	(4))

								end	DisableB

								

								procedure	EnableB

												GUI.Enable	(item	(4))

								end	EnableB

								

								procedure	DisableFirst

												GUI.Disable	(first)

								end	DisableFirst

								

								procedure	EnableFirst

												GUI.Enable	(first)

								end	EnableFirst

								

								%	Create	the	menus

								first	:=	GUI.CreateMenu	("First")

								item	(1)	:=	GUI.CreateMenuItem	(name	(1),	GUI.Quit

								for	cnt	:	2	..	7

												item	(cnt)	:=	GUI.CreateMenuItem	(name	(cnt),	

																MenuSelected)

								end	for

								

								second	:=	GUI.CreateMenu	("Second")

								item	(8)	:=	GUI.CreateMenuItem	(name	(8),	DisableB

								item	(9)	:=	GUI.CreateMenuItem	(name	(9),	EnableB

								item	(10)	:=	GUI.CreateMenuItem	(name	(10),	MenuSelected

								item	(11)	:=	GUI.CreateMenuItem	(name	(11),	DisableFirst

								item	(12)	:=	GUI.CreateMenuItem	(name	(12),	EnableFirst

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		
When	a	menu	is	not	enabled,	the	text	in	the	menu	bar	is	grayed	out	and
clicking	on	the	menu	does	not	cause	the	menu	to	appear.

Details		

The	following	GUI	subprograms	can	be	called	with	a	menu	as	the	widgetID
parameter:

GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.Enable,	GUI.Disable

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateMenu,	not	by	calling	CreateMenu.

See	also		

GUI.CreateMenuItem	for	adding	items	to	a	menu.	See	also
GUI.ShowMenuBar	and	GUI.HideMenuBar	for	showing	and	hiding	the
menu	bar.

GUI.CreateMenuItem[Full] Part	of	GUI	module

Syntax		

GUI.CreateMenuItem	(name	:	string,	
				actionProc	:	procedure	x	())	:	int

GUI.CreateMenuItemFull	(name	:	string,	
				actionProc	:	procedure	x	(),	shortCut	:	char,	addNow	:
boolean)	:	int

Description		

Creates	a	menu	item	and	returns	the	menu	item's	widget	ID.

Menu	items	are	the	individual	entries	of	a	menu.	To	create	menus
for	a	window,	you	must	create	a	menu,	then	create	the	menu	items
for	that	menu,	then	create	the	next	menu,	etc.	All	menu	items	are
automatically	added	to	the	last	menu	and	after	the	last	menu	item
of	the	currently	selected	(not	active!)	window.

The	menu	item	will	be	added	to	the	last	menu	after	the	other
menu	items	in	the	menu.	If	there	are	no	menus	defined,	an	error
results.

The	name	parameter	specifies	the	text	that	is	to	appear.	A	name	of
three	dashes	("---")	creates	a	separator	across	the	menu.	The
actionProc	parameter	specifies	the	name	of	a	procedure	to	be
called	when	user	the	selects	the	menu	item	from	the	menu.

For	GUI.CreateMenuItemFull,	the	shortCut	parameter	specifies
the	keystroke	to	be	used	as	the	menu	item's	shortcut.	If	no
shortcut	is	desired,	then	'\0'	can	be	used.	The	addNow	parameter
has	no	effect	in	the	current	version	of	the	GUI	Library.	In	future
versions,	it	will	allow	you	to	create	menu	items	that	can	then	be
added	to	a	menu	later	in	the	program.

Examples		 See	the	example	for	GUI.CreateMenu.

Execute		

Details		

When	a	menu	item	is	not	enabled,	the	text	of	the	menu	item	is
grayed	out	and	clicking	on	the	menu	item	does	not	cause	the
menu	to	appear.

Details		

The	following	GUI	subprograms	can	be	called	with	a	menu	as	the
widgetID	parameter:

	 GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.Enable,
GUI.Disable

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateMenuItem,	not	by	calling	CreateMenuItem.

GUI.CreatePicture Part	of	GUI	module

Syntax		
GUI.CreatePicture	(x,	y,	picture	:	int,	
				mergePic	:	boolean)	:	int

Description		

Creates	a	picture	and	returns	the	picture's	widget	ID.

The	picture	widget	is	used	to	display	a	picture.	It	can	be	used	to	display	a	picture	either
merged	into	the	background	or	not.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	picture.	The	
parameter	specifies	the	picture	ID	of	the	picture.	The	picture	ID	is	received	from	a
Pic.New	or	Pic.FileNew	call.	Do	not	call	Pic.Free	for	this	picture	ID	until	the	button
has	been	disposed	of	by	calling	GUI.Dispose.	The	mergePic	parameter	is	a	boolean	that
specifies	whether	anything	that	was	the	background	colour	in	the	picture	(usually	colour
0)	should	be	set	to	the	background	colour	of	the	window.

A	picture	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Two	Pictures

Example		

The	following	program	draws	two	pictures,	merged	and	not	merged.

								import	GUI	

								View.Set	("graphics:230;135,nobuttonbar")	

								

								%	We'll	need	to	create	a	picture	for	our	Picture	widget.	Normally	

								%	an	external	file	(and	Pic.FileNew)	would	be	used.

								Draw.FillOval	(50,	50,	50,	50,	blue)

								Draw.FillBox	(17,	17,	83,	83,	brightred)

								Draw.FillStar	(17,	17,	83,	83,	brightgreen)

								Draw.FillMapleLeaf	(37,	37,	63,	63,	brightpurple

								var	pic	:	int	:=	Pic.New	(0,	0,	100,	100)

								var	picture1,	picture2	:	int

								var	label1,	label2	:	int

								

								GUI.SetBackgroundColor	(gray)

								

								label1	:=	GUI.CreateLabel	(15,	5,	"Picture	(no	merge)")

								picture1	:=	GUI.CreatePicture	(10,	25,	pic,	false

								

								label2	:=	GUI.CreateLabel	(135,	5,	"Picture	(merge)")

								picture2	:=	GUI.CreatePicture	(120,	25,	pic,	true

Execute		

Details		

When	GUI.CreatePicture	is	called,	the	newly	created	picture	will	be	displayed
immediately	unless	GUI.DisplayWhenCreated	has	been	called	with	the	
parameter	set	to	false.

A	picture	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	picture	as	the	

	
GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreatePicture
calling	CreatePicture.

GUI.CreatePictureButton[Full] Part	of	GUI	module

Syntax		

GUI.CreatePictureButton	(x,	y,	picture	:	int,
				actionProc	:	procedure	x	())	:	int

GUI.CreatePictureButtonFull	(x,	y,	picture	:	int,
				actionProc	:	procedure	x	(),	width,	height	:	int,	
				shortcut	:	char,	mergePic	:	boolean)	:	int

Description		

Creates	a	picture	button	and	returns	the	button's	widget	ID.

Picture	buttons	behave	like	buttons	(see	GUI.CreateButton)	except	that	instead
of	text	on	the	button,	a	picture	specified	by	the	user	is	displayed	on	the	button.
The	picture	button	widget	responds	to	mouse	clicks	and	keystrokes	in	the	same
manner	as	a	regular	button	widget.

The	picture	must	be	created	by	the	program	beforehand	using	Pic.New
Pic.FileNew.	The	resulting	picture	can	then	be	used	as	a	parameter	to
GUI.CreatePictureButton.	In	general,	pictures	should	be	a	maximum	of	about
50	pixels	high	and	wide,	although	there	is	no	built-in	limit	in	the	GUI	library.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	picture	button.	The
picture	parameter	specifies	the	picture	ID	of	the	picture	to	be	displayed	on	the
button.	(Note	that,	in	general,	this	picture	should	be	fairly	small.)	The	picture	ID
is	received	from	a	Pic.New	or	Pic.FileNew	call.	Do	not	call	Pic.Free
picture	ID	until	the	button	has	been	disposed	of	by	calling	GUI.Dispose
actionProc	parameter	specifies	the	name	of	a	procedure	that	is	called	when	the
picture	button	is	pressed.

For	GUI.CreatePictureButtonFull,	the	width	and	height	parameters	specify	the
width	and	height	of	the	button.	If	they	are	set	to	0,	then	the	picture	radio	button	is
automatically	sized	to	fit	the	picture.	If	you	need	to	know	the	precise	size	of	the
button,	use	the	GUI.GetWidth	and	GUI.GetHeight	functions.	If	width
height	are	larger	than	the	picture,	the	picture	is	centered	in	the	button.	The
shortCutparameter	is	the	keystroke	to	be	used	as	the	button's	shortcut.	The
mergePic	parameter	specifies	whether	anything	that	was	the	background	colour
in	the	picture	(usually	colour	0)	should	be	set	to	the	background	colour	of	the
button	(which	is	usually	gray).	This	defaults	to	true	for	CreatePictureButton

Two	Picture	Buttons

Example		

The	following	program	displays	five	picture	buttons	which	output	a	message
when	pressed.

								import	GUI

								View.Set	("graphics:100;70")	

								

								const	size	:	int	:=	25			%	The	buttons	size.

								const	border	:	int	:=	3

								

								var	starButton,	mapleButton,	starPic,	mapleLeafPic

								

								procedure	StarPressed

												Text.Locate	(1,	1)

												put	"Star	Pressed				"

								end	StarPressed

								

								procedure	MaplePressed

												Text.Locate	(1,	1)

												put	"Maple	Pressed	"

								end	MaplePressed

								

								%	Create	the	pictures.

								%	The	star.

								Draw.Star	(border,	border,	border	+	size,	border

								Draw.Star	(border	+	1,	border	+	1,	border	+	size

												border	+	size	-	1,	black)

								Draw.FillStar	(border	+	2,	border	+	2,	border	+	

												border	+	size	-	2,	brightred)

								starPic	:=	Pic.New	(0,	0,	2	*	border	+	size,	2	*	

								

								%	The	mapleleaf.

								Draw.FillBox	(border,	border,	border	+	size,	border	+	size,	white)

								Draw.MapleLeaf	(border,	border,	border	+	size,	border

								Draw.MapleLeaf	(border	+	1,	border	+	1,	border	+	

												border	+	size	-	1,	black)

								Draw.FillMapleLeaf	(border	+	2,	border	+	2,	border

												border	+	size	-	2,	brightred)

								mapleLeafPic	:=	Pic.New	(0,	0,	2	*	border	+	size

								

								%	Create	the	picture	buttons.

								Draw.Cls

								starButton	:=	GUI.CreatePictureButton	(10,	10,	starPic

								mapleButton	:=	GUI.CreatePictureButton	(55,	10,	

												MaplePressed)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	GUI.CreatePictureButton	or	GUI.CreatePictureButtonFull
the	newly	created	picture	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display	parameter	set	to
false.

When	a	picture	button	is	not	enabled,	the	picture	button	is	grayed	out	and	the
picture	button	no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the
button	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	picture	button	as	the
widgetID	parameter:

Status			Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreatePictureButton,	not	by	calling	CreatePictureButton.

GUI.CreatePictureRadioButton[Full] Part	of	GUI	module

Syntax		

GUI.CreatePictureRadioButton	(x,	y,	picture	:	int,
				joinID	:	int,	actionProc	:	procedure	x	()):int

GUI.CreatePictureRadioButtonFull	(x,	y	:	int,
				picture,	joinID	:	int,	actionProc	:	procedure	x	(),	width,height	:	
				shortcut	:	char,	mergePic	:	boolean)	:	int

Description		

Creates	a	picture	radio	button	and	returns	the	button's	widget	ID.

Picture	radio	buttons	behave	like	picture	buttons	(see
GUI.CreatePictureButton)	except	that	they	have	the	"radio"	property.	That	is,
one	of	the	buttons	in	the	radio	group	is	always	selected,	and	if	another	button	in
the	group	is	selected,	the	previously	selected	button	is	unselected.

A	common	example	is	the	buttons	on	a	paint	program	that	indicate	the	current
shape	being	painted.	The	maple	leaf	button	is	currently	selected.	If	the	star	button
is	selected	by	the	user,	the	maple	leaf	button	becomes	unselected.	For	picture
buttons,	the	selected	button	appears	depressed.

Four	Picture	Radio	Buttons	with	the	Maple	Leaf	Seledcted

A	radio	group	is	created	by	first	creating	a	single	radio	button.	To	add	another
button	to	the	group,	a	second	radio	button	is	created	specifying	the	first	radio
button	in	the	joinID	parameter.	Subsequent	radio	buttons	are	added,	each
specifying	a	previous	member	of	the	group	in	the	joinID	parameter.

The	picture	must	be	created	by	the	program	beforehand	using	Pic.New
Pic.FileNew.	The	resulting	picture	can	then	be	used	as	a	parameter	to
GUI.CreatePictureButton.	In	general,	pictures	should	be	a	maximum	of	about
50	pixels	high	and	wide,	although	there	is	no	built-in	limit	in	the	GUI	library.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	picture	radio	button.
If	these	are	both	1	and	joinID	is	not	zero,	then	the	button	will	be	placed	directly
below	the	previous	picture	radio	button	in	the	group.	The	picture	parameter
specifies	the	picture	ID	of	the	picture	to	be	displayed	on	the	button.	(Note	that,	in
general,	this	picture	should	be	fairly	small.)	The	picture	ID	is	received	from	a
Pic.New	or	Pic.FileNew	call.	Do	not	call	Pic.Free	for	this	picture	ID	until	the
button	has	been	disposed	of	by	calling	GUI.Dispose.	The	joinID	parameter
specifies	a	member	of	the	radio	group	that	this	widget	should	join.	A	
sepecifies	this	radio	button	is	not	a	member	of	any	group.	The	actionProc
parameter	specifies	the	name	of	a	procedure	that	is	called	when	the	picture
button	is	pressed.

For	GUI.CreatePictureRadioButtonFull,	the	width	and	height	parameters
specify	the	width	and	height	of	the	button.	If	they	are	set	to	0,	then	the	picture
radio	button	is	automatically	sized	to	fit	the	picture.	If	you	need	to	know	the
precise	size	of	the	button,	use	the	GUI.GetWidth	and	GUI.GetHeight
functions.	If	width	and	height	are	larger	than	the	picture,	the	picture	is	centered	in
the	button.	The	shortCutparameter	is	the	keystroke	to	be	used	as	the	button's
shortcut.	The	mergePic	parameter	specifies	whether	anything	that	was	the
background	colour	in	the	picture	(usually	colour	0)	should	be	set	to	the
background	colour	of	the	button	(which	is	usually	gray).	This	defaults	to	true	for
CreatePictureRadioButton.

The	following	program	creates	and	displays	for	picture	radio	buttons.

								import	GUI

								View.Set	("graphics:150;200,nobuttonbar")	

								

								const	size	:	int	:=	25			%	The	buttons	size.

								const	border	:	int	:=	3

								

								var	starButton,	mapleButton,	circleButton,	squareButton

								var	starPic,	mapleLeafPic,	circlePic,	squarePic	:	

								

								procedure	StarPressed

												Text.Locate	(1,	1)

												put	"Star	Pressed				"

Example		

								end	StarPressed

								procedure	MaplePressed

												Text.Locate	(1,	1)

												put	"Maple	Pressed	"

								end	MaplePressed

								

								procedure	CirclePressed

												Text.Locate	(1,	1)

												put	"Circle	Pressed"

								end	CirclePressed

								

								procedure	SquarePressed

												Text.Locate	(1,	1)

												put	"Square	Pressed"

								end	SquarePressed

								

								%	Create	the	pictures.

								%	The	star.

								Draw.Star	(border,	border,	border	+	size,	border

								Draw.Star	(border	+	1,	border	+	1,	border	+	size

												border	+	size	-	1,	black)

								Draw.FillStar	(border	+	2,	border	+	2,	border	+	

												border	+	size	-	2,	brightred)

								starPic	:=	Pic.New	(0,	0,	2	*	border	+	size,	2	*	

								

								%	The	mapleleaf.

								Draw.FillBox	(border,	border,	border	+	size,	border

								Draw.MapleLeaf	(border,	border,	border	+	size,	border

								Draw.MapleLeaf	(border	+	1,	border	+	1,	border	+	

												border	+	size	-	1,	black)

								Draw.FillMapleLeaf	(border	+	2,	border	+	2,	border

												border	+	size	-	2,	brightred)

								mapleLeafPic	:=	Pic.New	(0,	0,	2	*	border	+	size

								

								%	The	circle.

								const	radius	:	int	:=	size	div	2

								Draw.FillBox	(border,	border,	border	+	size,	border

								Draw.Oval	(border	+	radius,	border	+	radius,	radius

								Draw.Oval	(border	+	radius,	border	+	radius,	radius

												black)

								Draw.FillOval	(border	+	radius,	border	+	radius,	

												radius	-	2,	brightred)

								circlePic	:=	Pic.New	(0,	0,	2	*	border	+	size,	2	*	

								

								%	The	square.

								Draw.FillBox	(border,	border,	border	+	size,	border

								Draw.Box	(border,	border,	border	+	size,	border	+	

								Draw.Box	(border	+	1,	border	+	1,	border	+	size	-	1,

												border	+	size	-	1,	black)

								Draw.FillBox	(border	+	2,	border	+	2,	border	+	size

												border	+	size	-	2,	brightred)

								squarePic	:=	Pic.New	(0,	0,	2	*	border	+	size,	2	*	

								

								%	Create	the	picture	buttons.

								Draw.Cls

								starButton	:=	GUI.	CreatePictureRadioButton	(10,	maxy		80,	

												starPic,	0,	StarPressed)

								mapleButton	:=	GUI.	CreatePictureRadioButton	(-1,	-1,	

												mapleLeafPic,	starButton,	MaplePressed)

								circleButton	:=	GUI.CreatePictureRadioButton	(-1,	-1,	

												circlePic,	mapleButton,	CirclePressed)

								squareButton	:=	GUI.CreatePictureRadioButton	(-1,	-1,	

												squarePic,	circleButton,	SquarePressed)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	GUI.CreatePictureRadioButton	or
GUI.CreatePictureRadioButtonFull	is	called,	the	newly	created	picture	will	be
displayed	immediately	unless	GUI.DisplayWhenCreated	has	been	called	with
the	display	parameter	set	to	false.

When	a	picture	radio	button	is	not	enabled,	the	picture	radio	button	is	grayed	out
and	the	picture	button	no	longer	responds	to	any	mouse	clicks	or	keystrokes	until
the	button	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	picture	radio	button	as	the
widgetID	parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,	GUI.Dispose
GUI.GetX,	GUI.GetY,	GUI.GetWidth,	GUI.GetHeight,
GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize,
GUI.SelectRadio

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreatePictureRadioButton,	not	by	calling	CreatePictureRadioButton

See	also		

GUI.SelectRadio	for	selecting	a	picture	radio	button	in	a	program.	See	also
GUI.CreatePictureButton	and	GUI.CreateRadioButton	for	information	on
picture	buttons	and	radio	buttons.

GUI.CreateRadioButton[Full] Part	of	GUI	module

Syntax		

GUI.CreateRadioButton	(x,	y	:	int,	text	:	string,
				joinID	:	int,	actionProc	:	procedure	x	())	:	int

GUI.CreateRadioButtonFull	(x,	y	:	int,	text	:	string,
				joinID	:	int,	actionProc	:	procedure	x	(),	alignment	:	int,
shortCut	:	char)	:	int

Description		

Creates	a	radio	button	and	returns	the	radio	button's	widget	ID.

A	slider	is	a	widget	that	allows	the	user	to	select	one	of	a	set	of
values.	It	has	a	real-life	equivalent	in	the	old	car	stereos	where	a
single	station	is	selected	at	a	time.	That	is,	one	of	the	buttons	in	the
radio	group	is	always	selected,	and	if	another	button	in	the	group	is
selected,	the	previously	selected	button	is	unselected.

Six	Radio	Buttons	in	Two	Groups

A	radio	group	is	created	by	first	creating	a	single	radio	button.	To
add	another	button	to	the	group,	a	second	radio	button	is	created
specifying	the	first	radio	button	in	the	joinID	parameter.	Subsequent
radio	buttons	are	added,	each	specifying	a	previous	member	of	the
group	in	the	joinID	parameter.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	radio
button	(unless	alignment	is	set	to	GUI.RIGHT,	in	which	case	they
specify	the	lower-right	corner	of	the	radio	button).	If	these	are	both
1	and	joinID	is	not	zero,	then	the	button	will	be	placed	directly
below	the	previous	radio	button	in	the	group.	The	text	parameter
specifies	the	text	(or	label)	beside	the	radio	button.	The	joinID
parameter	specifies	a	member	of	the	radio	group	that	this	widget
should	join.	A	joinID	of	0	sepecifies	this	radio	button	is	not	a

member	of	any	group.	The	actionProc	parameter	is	the	name	of	a
procedure	that	is	called	when	the	radio	button	is	selected.	In
GUI.CreateRadioButton,	the	radio	button's	text	is	always	to	the
right	of	the	actual	radio	button.	In	GUI.CreateRadioButtonFull,
the	text	can	be	set	to	the	right	or	left	of	the	radio	button	with	the
alignment	parameter.

For	GUI.CreateRadioButtonFull,	the	alignment	parameter
specifies	the	position	of	the	radio	button	in	relation	to	the	text	as
well	as	the	meaning	of	the	x	and	y	parameters.	The	alignment
parameter	is	one	of	0,	GUI.LEFT,	or	GUI.RIGHT.	An	alignment	of
0	is	the	default	and	is	the	same	as	GUI.LEFT.	GUI.LEFT	means	the
actual	box	in	the	check	box	appears	to	the	left	of	the	check	box's
label	and	(x,	y)	specify	the	lower-left	corner.	An	alignment	of
GUI.RIGHT	means	that	the	actual	box	appears	to	the	right	of	the
radio	button's	label	and	(x,	y)	specify	the	lower-right	corner	of	the
radio	button.	The	shortcut	parameter	is	the	keystroke	to	be	used	as
the	button's	shortcut.

A	radio	button's	size	is	not	specified	during	creation.	It	is
determined	based	on	the	size	of	the	text.	Instead	the	user	specifies
the	lower-left	corner	of	the	radio	button	(or	the	lower-right	if	the
radio	button	is	right	justified).

The	following	program	creates	six	radio	buttons	in	two	groups.

								import	GUI

								View.Set	("graphics:350;80")	

								

								var	radio	:	array	1	..	6	of	int	%	The	radio	button	IDs.

								

								procedure	RadioPressed

												Text.Locate	(1,	1)

												put	"Radio	Button	"	..

												for	i	:	1	..	6

																if	radio	(i)	=	GUI.GetEventWidgetID	then

																				put	i	..

																end	if

												end	for

												put	"	Selected"

								end	RadioPressed

								

								radio	(1)	:=	GUI.CreateRadioButton	(15,	maxy		35,	

Example		 												"Radio	Button	1",	0,	RadioPressed)

								radio	(2)	:=	GUI.CreateRadioButton	(1,	1,	"Radio	Button	2",	

												radio	(1),	RadioPressed)

								radio	(3)	:=	GUI.CreateRadioButton	(1,	1,	"Radio	Button	3",

												radio	(2),	RadioPressed)

								radio	(4)	:=	GUI.CreateRadioButtonFull	(maxx		15,	

												"Radio	Button	A	(Shortcut:	'a')",	0,	RadioPressed

												GUI.RIGHT,	'a')

								radio	(5)	:=	GUI.CreateRadioButtonFull	(1,	1,

												"Radio	Button	B	(Shortcut:	'b')",	radio	(4),	

												GUI.RIGHT,	'b')

								radio	(6)	:=	GUI.CreateRadioButtonFull	(1,	1,

												"Radio	Button	C	(Shortcut:	'c')",	radio	(5),	

												GUI.RIGHT,	'c')

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	a	group	of	radio	buttons	is	selected,	the	first	radio	button
created	in	the	group	will	be	the	selected	one.	You	can	change	this
by	using	the	GUI.SelectRadio	procedure	to	select	a	different	one.

When	GUI.CreateRadioButton	or	GUI.CreateRadioButtonFull
is	called,	the	newly	created	picture	will	be	displayed	immediately
unless	GUI.DisplayWhenCreated	has	been	called	with	the	display
parameter	set	to	false.

When	a	radio	button	is	not	enabled,	the	radio	button	is	grayed	out
and	the	radio	button	no	longer	responds	to	any	mouse	clicks	or
keystrokes	until	the	button	is	enabled	again.

The	following	GUI	subprograms	can	be	called	with	a	radio	button
as	the	widgetID	parameter:

Details		
	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,
GUI.Dispose,	GUI.GetX,	GUI.GetY,	GUI.GetWidth,
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,
GUI.SetPositionAndSize,	GUI.SetLabel,	GUI.SelectRadio

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateRadioButton,	not	by	calling	CreateRadioButton.

See	also		
GUI.SelectRadio	for	selecting	a	radio	button	in	a	program.	See
also	GUI.SetLabel	for	changing	the	radio	button's	text.

GUI.CreateTextBox[Full] Part	of	GUI	module

Syntax		

GUI.CreateTextBox	(x,	y,	width,	height	:	int)	:	int

GUI.CreateTextBoxFull	(x,	y,	width,	height	:	int,
				border,	fontID	:	int)	:	int

Description		

Creates	a	text	box	and	returns	the	text	box's	widget	ID.

A	text	box	is	a	box	used	for	displaying	text.	It	has	scroll	bars	that	activate	when
text	appears	outside	the	border	of	the	text	box.	The	user	cannot	directly	select,
edit	or	modify	the	text	in	the	text	box.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	area	in	which	the
text	will	be	drawn.	The	width	and	height	parameters	specify	the	width	and
height	of	the	text	drawing	area	The	text	box	border	is	just	outside	the	text
drawing	area.	Because	of	this,	GUI.GetX	and	GUI.GetY	will	return	a	value
slightly	smaller	than	x	and	y	and	GUI.GetWidth	and	GUI.GetHeight
return	values	slightly	larger	than	width	and	height.

For	GUI.CreateTextBox,	the	border	around	the	text	box	is	always	a	line.	For
GUI.CreateTextBoxFull,	the	type	of	border	is	specified	by	the	border
parameter.	The	border	parameter	is	one	of	0,	GUI.LINE,	GUI.INDENT
GUI.EXDENT.	A	border	of	0	is	the	default	and	is	the	same	as	GUI.LINE
GUI.INDENT	and	GUI.EXDENT	only	display	properly	if	the	background
colour	has	been	set	to	gray	using	GUI.SetBackgroundColor.	GUI.INDENT
makes	the	text	box	appear	indented	or	recessed.	GUI.EXDENT	makes	the	text
box	appear	to	stand	out	from	the	window.	The	fontID	parameter	specifies	the
font	ID	of	the	font	to	be	used	in	the	text	box.	The	font	ID	is	received	from	a
Font.New	call.	Do	not	call	Font.Free	for	this	font	ID	until	the	label	has	been
disposed	of	by	calling	GUI.Dispose.

By	using	the	fondID	parameter,	text	boxes	can	have	any	size	or	typeface.

A	text	box	displaying	the	contents	of	a	file.

Example		

The	following	program	displays	the	contents	of	a	file	in	a	text	box.

								import	GUI	

								View.Set	("graphics:300;300")	

								

								const	fileNameToBeViewed	:	string	:=	"TextBxs.DEM"

								var	textBox	:	int							%	The	Text	Field	ID.

								var	title	:	int					%	The	label	for	the	title.

								var	f	:	int									%	The	stream	number	of	the	file.

								var	line	:	string							%	Lines	to	be	read	from	the	file.

								

								%	Open	the	file.

								open	:	f,	fileNameToBeViewed,	get

								if	f	=	0	then

												put	"Unable	to	open	"	+	fileNameToBeViewed	+	"	:	",	

												return

								end	if

								

								%	Set	background	color	to	gray	for	indented	text	box.

								GUI.SetBackgroundColor	(gray)

								

								%	Create	the	title	label	and	text	box.

								title	:=	GUI.CreateLabelFull	(20,	280,	fileNameToBeViewed

												GUI.CENTER,	0)

								textBox	:=	GUI.CreateTextBoxFull	(10,	10,	280,	265,	

												GUI.INDENT,	0)

								

								%	Read	the	file	and	place	it	in	the	text	box.

								loop

												exit	when	eof	(f)

												get	:	f,	line	:	*

												GUI.AddLine	(textBox,	line)

								end	loop

								

								close	:	f			%	Close	the	file.

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	GUI.CreateTextBox	or	GUI.CreateTextBoxFull	is	called,	the	newly
created	picture	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display	parameter	set	to
false.

A	text	box	widget	is	a	passive	widget	and	cannot	be	enabled	or	disabled.

Details		

The	following	GUI	subprograms	can	be	called	with	a	text	box	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetWidth,	GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize
GUI.SetPositionAndSize,	GUI.AddLine,	GUI.AddText,
GUI.ClearText,	GUI.SetTopLine,	GUI.SetScrollOnAdd

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateTextBox
not	by	calling	CreateTextBox.

GUI.AddLine,	GUI.AddText	for	adding	text	to	the	text	box.	See	also

See	also		 GUI.SetTopLine	to	set	the	top	line	of	text	in	the	text	box.	See	also
GUI.SetScrollOnAdd	to	set	stop	the	text	box	from	scrolling	when	text	
to	the	text	box.	See	also	GUI.ClearText	for	clearing	the	text	box.

GUI.CreateTextBoxChoice Part	of	GUI	module

Syntax		
GUI.CreateTextBoxChoice	(x,	y,	width,	height	:	int,
				border,	fontID	:	int,	actionProc	:	procedure	x	(line	:	int

Description		

Creates	a	text	box	that	can	be	used	for	selecting	individual	items	and	returns	the	text
box's	widget	ID.

A	text	box	is	a	box	used	for	displaying	text.	By	using	GUI.AddLine
the	program	can	then	wait	for	the	user	to	double	click	on	lines	in	the	text	box.	
highlights	when	the	user	clicks	the	line	once,	and	calls	the	action	procedure	when	the
user	clicks	the	highlighted	line	a	second	time.	Like	a	text	box,	the	text	box	choice	has
scroll	bars	that	activate	when	text	appears	outside	the	border	of	the	text	box.	The	user
cannot	directly	edit	or	modify	the	text	in	the	text	box	choice.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	area	in	which	the	text	will	be
drawn.	The	width	and	height	parameters	specify	the	width	and	height	of	the	text
drawing	area	The	text	box	border	is	just	outside	the	text	drawing	area.	Because	of	this,
GUI.GetX	and	GUI.GetY	will	return	a	value	slightly	smaller	than	
GUI.GetWidth	and	GUI.GetHeight	will	return	values	slightly	larger	than	
height.

For	GUI.CreateTextBox,	the	border	around	the	text	box	is	always	a	line.	For
GUI.CreateTextBoxFull,	the	type	of	border	is	specified	by	the	border
border	parameter	is	one	of	0,	GUI.LINE,	GUI.INDENT,	or	GUI.EXDENT
is	the	default	and	is	the	same	as	GUI.LINE.	GUI.INDENT	and	GUI.EXDENT
display	properly	if	the	background	colour	has	been	set	to	gray	using
GUI.SetBackgroundColor.	GUI.INDENT	makes	the	text	box	appear	indented	or
recessed.	GUI.EXDENT	makes	the	text	box	appear	to	stand	out	from	the	window.	The
fontID	parameter	specifies	the	font	ID	of	the	font	to	be	used	in	the	text	box.	The	
is	received	from	a	Font.New	call.	Do	not	call	Font.Free	for	this	font	ID	until	the	label
has	been	disposed	of	by	calling	GUI.Dispose.

By	using	the	fontID	parameter,	text	boxes	can	have	any	size	or	typeface.

A	text	box	choice	after	a	user	double	clicked	a	line.

Example		

The	following	program	displays	the	contents	of	a	file	in	a	text	box.

								import	GUI	

								procedure	ChoseLine	(line	:	int)

												location	(1,	1)

												put	"The	user	chose	",	line

								end	ChoseLine

								

								var	x	:	int	:=	GUI.CreateTextBoxChoice	(20,	20,	200,	100,	0,	0,	

	 GUI.AddLine	(x,	"Choose	A")

	 GUI.AddLine	(x,	"Choose	B")

	 GUI.AddLine	(x,	"Choose	C")

	 GUI.AddLine	(x,	"Choose	D")

	 GUI.AddLine	(x,	"Choose	E")

	 GUI.AddLine	(x,	"Choose	F")

	 GUI.AddLine	(x,	"Choose	G")

	 GUI.AddLine	(x,	"Choose	H")

	 GUI.AddLine	(x,	"Choose	I")

	 GUI.AddLine	(x,	"Choose	J")

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

When	GUI.CreateTextBox	or	GUI.CreateTextBoxFull	is	called,	the	newly	created
text	box	choice	will	be	displayed	immediately	unless	GUI.DisplayWhenCreated
been	called	with	the	display	parameter	set	to	false.

Details		

The	following	GUI	subprograms	can	be	called	with	a	text	box	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,	GUI.SetPositionAndSize
GUI.AddLine,	GUI.AddText,	GUI.ClearText,	GUI.SetTopLine
GUI.SetScrollOnAdd

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.CreateTextBoxChoice
not	by	calling	CreateTextBoxChoice.

See	also		

GUI.AddLine	for	adding	text	to	the	text	box.	See	also	GUI.SetTopLine
line	of	text	in	the	text	box.	See	also	GUI.SetScrollOnAdd	to	set	stop	the	text	box	from
scrolling	when	text	is	added	to	the	text	box.	See	also	GUI.ClearText
text	box.

GUI.CreateTextField[Full] Part	of	GUI	module

Syntax		

GUI.CreateTextField	(x,	y,	width	:	int,	text	:	string,	
				actionProc	:	procedure	x	(text	:	string))	:	int

GUI.CreateTextFieldFull	(x,	y,	width	:	int,	text	:	string,	
				actionProc	:	procedure	x	(text	:	string),
				border,	fontID,	inputKind	:	int)	:	int

Description		

Creates	a	text	field	and	returns	the	text	field's	widget	ID.

A	text	field	is	used	to	create	a	line	of	text	that	can	be	edited	by	the	user.	The
user	can	use	the	mouse	to	select	part	of	the	text	and	can	enter	text	into	the	text
field.

If	one	or	more	text	fields	are	enabled	in	a	window,	then	one	of	the	text	fields
will	be	active.	This	means	that	when	any	keystrokes	are	entered	into	the
window,	the	active	text	field	will	receive	the	keystrokes.	The	active	text	field
can	be	changed	using	the	GUI.SetActive	procedure.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	area	in	which	the
text	will	be	drawn.	The	text	field	border	is	just	outside	the	text	drawing	area.
The	width	parameter	specifies	the	width	of	the	text	drawing	area.	The	height	of
the	text	field	is	determined	by	the	height	of	the	font	used	by	the	text	field.	The
border	of	the	text	field	is	just	outside	the	text	drawing	area,	so	GUI.GetWidth
will	return	values	slightly	larger	than	width.	The	actionProc	parameter
specifies	the	name	of	the	procedure	to	be	called	when	the	user	presses	ENTER
(RETURN	on	a	Macintosh)	when	the	text	field	is	active.	The	parameter	is	the
current	text	in	the	text	field.

For	GUI.CreateTextField,	the	border	around	the	text	field	is	always	a	line.
For	GUI.CreateTextFieldFull,	the	type	of	border	is	specified	by	the	
parameter.	The	border	parameter	is	one	of	0,	GUI.LINE,	GUI.INDENT
GUI.EXDENT.	A	border	of	0	is	the	default	and	is	the	same	as	GUI.LINE
GUI.INDENT	and	GUI.EXDENT	only	display	properly	if	the	background
colour	has	been	set	to	gray	using	GUI.SetBackgroundColor.	GUI.INDENT
makes	the	text	field	appear	indented	or	recessed.	GUI.EXDENT	makes	the	text
field	appear	to	stand	out	from	the	window.	The	fontID	parameter	specifies	the

font	ID	of	the	font	to	be	used	in	the	text	field.	The	font	ID	is	received	from	a
Font.New	call.	Do	not	call	Font.Free	for	this	font	ID	until	the	label	has	been
disposed	of	by	calling	GUI.Dispose.	The	inputKind	parameter	specifies	the
type	of	input	accepted	by	the	text	field.	This	is	one	of	0,	GUI.ANY,	
or	GUI.REAL.	An	input	type	of	0	is	the	default	and	is	the	same	as	GUI.ANY
GUI.ANY	allows	any	type	of	input	in	the	text	field.	GUI.INTEGER
positive	integer	input	in	the	text	field.	GUI.REAL	allows	any	real	number	input
in	the	text	field.	Note	that	using

GUI.INTEGER	or	GUI.REAL	does	not	guarantee	that	the	text	field	string	can
be	converted	to	an	integer	or	a	real.	The	text	could	be	a	null	string,	and	for
GUI.REAL	could	be	part	of	a	number	such	as	the	string	""	or	"1.25E"	both	of
which	are	illegal	numbers.	(To	check	the	conversion,	use	the	strintok
strrealok	functions	before	calling	strint	or	strreal.)

Two	Text	Fields

Example		

The	following	program	creates	a	text	field	and	echoes	it	on	the	screen	when
the	user	presses	ENTER.

								import	GUI

								View.Set	("graphics:200;100")	

								

								var	nameTextField,	addressTextField	:	int			%	The	Text	Field	IDs.

								

								procedure	NameEntered	(text	:	string)

												GUI.SetSelection	(addressTextField,	0,	0)

												GUI.SetActive	(addressTextField)

								end	NameEntered

								

								procedure	AddressEntered	(text	:	string)

												GUI.SetSelection	(nameTextField,	0,	0)

												GUI.SetActive	(nameTextField)

								end	AddressEntered

								

								GUI.SetBackgroundColor	(gray)

								var	quitButton	:=	GUI.CreateButton	(52,	5,	100,	"Quit",	

								nameTextField	:=	GUI.CreateTextFieldFull	(50,	70,	100,	"",	

												NameEntered,	GUI.INDENT,	0,	0)

								addressTextField	:=	GUI.CreateTextFieldFull	(50,	40,	100,	"",	

												AddressEntered,	GUI.INDENT,	0,	0)

								var	nameLabel	:=	GUI.CreateLabelFull	(45,	70,	"Name",	0,	0,	

												GUI.RIGHT,	0)

								var	addressLabel	:=	GUI.CreateLabelFull	(45,	40,	"Address",	0,	0,	

												GUI.RIGHT,	0)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								

								GUI.Dispose	(quitButton)

								colorback	(gray)

								Text.Locate	(maxrow	-	1,	1)

								put	"Name	=	",	GUI.GetText	(nameTextField)

								put	"Address	=	",	GUI.GetText	(addressTextField)	..

Execute		

Details		

Only	one	text	field	is	active	at	a	time.	The	active	text	field	has	a	blinking
cursor	(or	its	selection	highlighted).	If	a	keystroke	occurs	when	a	window	has
an	active	text	field	in	it,	the	keystroke	will	be	directed	to	the	active	text	field.
You	can	change	which	text	field	is	active	with	the	GUI.SetActive	procedure	or
by	simply	clicking	on	another	text	field	with	the	mouse.

When	multiple	text	fields	are	created	in	a	window,	the	first	text	field	created	is
active	when	the	program	begins.

The	current	version	of	the	text	field	does	not	support	cut	and	paste	or	keyboard
commands	to	extend	the	selection.

Because	strings	are	a	maximum	of	255	characters,	this	is	the	maximum
number	of	characters	in	a	text	field.

The	TAB	character	cycles	between	different	text	fields	in	a	window.	It	cycles
through	the	text	fields	in	the	order	in	which	they	were	created.	BACK	TAB

(shift+TAB)	cycles	through	the	fields	in	reverse	order.

Details		

When	GUI.CreateTextField	or	GUI.CreateTextFieldFull	is	called,	the
newly	created	picture	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display	parameter	set	to
false.

When	a	text	field	is	not	enabled,	the	text	field	cannot	be	made	active	and	the
text	in	the	field	cannot	be	edited.

Details		

The	following	GUI	subprograms	can	be	called	with	a	text	box	as	the	
parameter:

	

GUI.Show,	GUI.Hide,	GUI.Dispose,	GUI.GetX,	GUI.GetY
GUI.GetWidth,	GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize
GUI.SetPositionAndSize,	GUI.GetText,	GUI.SetText,
GUI.SetSelection,	GUI.SetActive,	GUI.SetEchoChar

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateTextField,	not	by	calling	CreateTextField.

See	also		

GUI.GetText	and	GUI.SetText	for	reading	and	setting	the	text	in	the	text
field.	See	also	GUI.SetEchoChar	for	setting	the	character	echoed	when	the
user	enters	a	character	in	a	text	field	(often	used	for	entering	passwords).	
also	GUI.SetSelection	for	setting	the	selected	area	of	the	text.	See	also
GUI.SetActive	for	making	the	text	field	active.

GUI.CreateVerticalScrollBar[Full] Part	of	GUI	module

Syntax		

GUI.CreateVerticalScrollBar	(x,	y,	size	:	int,
				min,	max,	start	:	int,	actionProc	:	procedure	x	(value	:
int))	:	int

GUI.CreateVerticalScrollBarFull	(x,	y,	size	:	int,
				min,	max,	start	:	int,
				actionProc	:	procedure	x	(value	:	int),
				arrowInc,	pageInc,	thumbSize	:	int)	:	int

Creates	a	vertical	(up-down)	scroll	bar	and	returns	the	scroll	bar's
widget	ID.

A	scroll	bar	is	a	widget	that	allows	users	to	see	a	piece	of	a
document	that	cannot	be	displayed	on	the	screen	in	its	entirety.
The	picture	below	shows	a	vertical	scroll	bar.	To	control	a	scroll
bar,	there	are	a	few	choices:	the	user	can	click	on	the	thumb	(the
box	in	the	scroll	bar)	and	slide	it	up	and	down,	or	the	user	can
click	in	the	scroll	bar	itself	above	or	below	the	thumb	(in	which
case	the	thumb	is	moved	up	or	down	one	"page"),	or	the	user	can
click	on	the	up	or	down	arrows	at	the	ends	of	the	scroll	bar	(in
which	case	the	thumb	is	moved	up	or	down	one	"arrow
increment"	or	"line").

A	Vertical	Scroll	Bar

Description		
The	programmer	defines	a	page	or	an	arrow	increment.	When	the
value	of	the	scroll	bar	changes,	the	action	procedure	of	the	scroll
bar	is	called	with	the	new	value	as	a	parameter.	The	action
procedure	should	then	redraw	the	contents	using	the	new	value	of
the	scroll	bar.

The	range	of	values	that	the	scroll	bar	will	give	is	determined	by
the	min	and	max	parameters	in	the	Create	call.	The	left	side	of	the
scroll	bar	represents	the	minimum	value,	while	the	right
represents	the	maximum	value.	There	is	also	the	"thumb	size".
This	represents	the	range	of	values	that	can	be	seen	at	once	on	the
screen.

By	default,	the	arrow	increment	(the	amount	the	value	is	changed
when	the	scrolling	arrows	are	pressed)	is	set	to	one.	The	page
increment	(the	amount	the	value	is	changed	when	the	user	clicks
in	the	bar	to	the	right	or	left	of	the	thumb)	is	set	to	one	quarter	the
difference	between	the	minimum	and	the	maximum.	The	"thumb
size"	is	set	to	zero	(see	the	description	of	scroll	bars	for	an
explanation	of	the	thumb	size).

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	scroll
bar.	The	size	parameter	specifies	the	length	of	the	scroll	bar
(including	the	arrows)	in	pixels.	The	min	and	max	parameters	are
the	minimum	and	maximum	valies	returned	by	the	scroll	bar.	The
start	parameter	is	the	initial	value	of	the	scroll	bar	and	should	be
between	min	and	max	inclusive.	The	actionProc	parameter	is	the
name	of	a	procedure	that	is	called	when	the	value	of	the	scroll	bar
is	changed.	The	parameter	to	the	action	procedure	is	the	current
value	of	the	scroll	bar.

The	following	program	creates	a	vertical	scroll	bar.	Whenever	the
scroll	bar's	value	is	changed,	a	message	is	displayed	in	the
window.

								import	GUI	

								

								View.Set	("graphics:125;200,nobuttonbar")	

								var	scrollBar	:	int

								

Example		
								procedure	ScrollBarMoved	(value	:	int)

												Text.Locate	(9,	7)

												put	"Scroll"

												Text.Locate	(10,	8)

												put	"Bar"

												Text.Locate	(11,	8)

												put	value	:	3

								end	ScrollBarMoved

								

								scrollBar	:=	GUI.CreateVerticalScrollBar	(10,	10,	180,

												50,	150,	50,	ScrollBarMoved)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Description		

For	GUI.CreateVerticalScrollBarFull,	the	arrowInc	parameter
specifies	the	arrow	increment	(the	amount	the	scroll	bar's	value	is
changed	when	the	scroll	arrows	are	pressed).	The	pageInc
specifies	the	page	increment	(the	amount	the	scroll	bar's	value	is
changed	when	the	user	clicks	in	the	page	left/right	section	of	the
scroll	bar).	The	thumbSize	parameter	specifies	the	"thumb	size".
See	the	scroll	bar	explanation	for	more	detail	on	a	scroll	bar's
"thumb	size".

For	example,	if	you	have	a	window	that	can	display	20	lines	of
text	at	once	and	there	are	100	lines	of	text,	you	would	set	min	to
1,	max	to	100	and	thumbSize	to	20.	The	value	returned	by	the
scroll	bar	would	then	be	the	line	number	of	the	first	line	on	the
screen	to	be	displayed.	When	the	scroll	bar	was	at	its	maximum
value,	it	would	return	81,	since	by	doing	so,	lines	81-100	would
be	displayed.

Example		
For	an	example	program	that	scrolls	a	large	picture	over	a	smaller
window,	see	GUI.CreateHorizontalScrollBar.

Details		

In	some	instances,	you	will	want	the	the	minimum	and	maximum
values	of	the	scroll	bar	to	be	reversed	(right/top	is	minimum).	In
that	case,	call	the	GUI.SetSliderReverse	procedure	to	flip	the
values	of	the	scroll	bar.

Scroll	bars	always	have	a	fixed	height	(for	horizontal	scroll	bars)
or	width	(for	vertical	scroll	bars).	To	get	the	scroll	bar's	width,	use
the	GUI.GetScrollBarWidth	function.

When	GUI.CreateVerticalScrollBar	or
GUI.CreateVerticalScrollBarFull	is	called,	the	newly	created
scroll	bar	will	be	displayed	immediately	unless
GUI.DisplayWhenCreated	has	been	called	with	the	display
parameter	set	to	false.

When	a	scroll	bar	is	not	enabled,	the	gray	in	the	bar	is	set	to	white
and	the	thumb	is	not	displayed.	The	scroll	bar	no	longer	responds
to	any	mouse	clicks	until	the	scroll	bar	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	scroll	bar	as
the	widgetID	parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,
GUI.Dispose,	GUI.GetX,	GUI.GetY,	GUI.GetWidth,
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,
GUI.SetPositionAndSize,	GUI.GetSliderValue,
GUI.SetSliderValue,	GUI.SetSliderMinMax,
GUI.SetSliderSize,	GUI.SetSliderReverse,
GUI.SetScrollAmount

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateVerticalScrollBar,	not	by	calling
CreateVerticalScrollBar.

GUI.GetSliderValue	and	GUI.SetSliderValue	for	reading	and
setting	the	value	of	a	scroll	bar,	GUI.SetSliderMinMax	for

See	also		
changing	the	minimum	and	maximum	values	of	a	scroll	bar,	and
GUI.SetScrollAmount	for	changing	the	scrolling	increments	and
thumb	size	of	a	scroll	bar.	See	also	GUI.SetSliderSize	for	setting
the	length	of	a	scroll	bar	and	GUI.SetSliderReverse	for	reversing
the	sense	of	a	scroll	bar.

GUI.CreateVerticalSlider Part	of	GUI	module

Syntax		

GUI.CreateVerticalSlider	(x,	y,	length	:	int,
				min,	max,	start	:	int,	actionProc	:	procedure	x	(value	:
int))	:	int

Description		

Creates	a	vertical	(up-down)	slider	and	returns	the	slider's	widget
ID.

A	slider	is	a	widget	that	allows	the	user	to	set	a	continuous	set	of
values.	It	has	a	real-life	equivalent	in	things	such	as	a	stereo
volume	control.

A	Vertical	Slider

To	control	a	slider,	the	user	clicks	on	the	slider	box	and	drags	it
back	and	forth.	Every	time	the	value	changes,	a	procedure	is
called	with	the	new	value	as	a	parameter.

The	range	of	values	that	the	slider	will	give	is	determined	by	the
min	and	max	parameters	in	the	Create	call.	The	left	side	of	the
slider	represents	the	minimum	value,	while	the	right	represents
the	maximum	value.

The	x	and	y	parameters	specify	the	lower-left	corner	of	the	slider
track.	This	means	that	the	slider	actually	extends	above	and	below
this	point	(and	slightly	to	the	left	of	it	to	take	into	account	the
rounded	end	of	the	track).	The	length	parameter	specifies	the

length	of	the	track	in	pixels.	(You	can	use	GUI.GetX,	GetY,
GetWidth,	and	GetHeight	to	get	the	exact	dimensions	of	the
slider.)	The	min	and	max	parameters	are	the	minimum	and
maximum	valies	returned	by	the	slider.	The	start	parameter	is	the
initial	value	of	the	slider	and	should	be	between	min	and	max
inclusive.	The	actionProc	parameter	is	the	name	of	a	procedure
that	is	called	when	the	value	of	the	slider	is	changed.	The
parameter	to	the	action	procedure	is	the	current	value	of	the
slider.

Example		

The	following	program	creates	a	vertical	slider.	Whenever	the
slider's	value	is	changed,	a	message	is	displayed	in	the	window.

								import	GUI

								

								View.Set	("graphics:125;200,nobuttonbar")	

								var	slider	:	int

								

								procedure	SliderMoved	(value	:	int)

												Text.Locate	(9,	7)

												put	"Slider"

												Text.Locate	(10,	9)

												put	value	:	3

								end	SliderMoved	

								

								slider	:=	GUI.CreateVerticalSlider	(20,	10,	180,

												50,	150,	50,	SliderMoved)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

In	some	instances,	you	will	want	the	the	minimum	and	maximum
values	of	the	slider	to	be	reversed	(right	is	minimum).	In	that
case,	call	the	GUI.SetSliderReverse	procedure	to	flip	the	values
of	the	slider.

Details		

Sliders	always	have	a	fixed	height	(for	horizontal	sliders)	or	width
(for	vertical	sliders).

When	GUI.CreateVerticalSlider	or
GUI.CreateVerticalSliderFull	is	called,	the	newly	created	slider
will	be	displayed	immediately	unless	GUI.DisplayWhenCreated
has	been	called	with	the	display	parameter	set	to	false.

When	a	slider	is	not	enabled,	the	appearance	does	not	change.
However,	the	slider	no	longer	responds	to	any	mouse	clicks	until
it	is	enabled	again.

Details		

The	following	GUI	subprograms	can	be	called	with	a	slider	as	the
widgetID	parameter:

	

GUI.Show,	GUI.Hide,	GUI.Enable,	GUI.Disable,
GUI.Dispose,	GUI.GetX,	GUI.GetY,	GUI.GetWidth,
GUI.GetHeight,	GUI.SetPosition,	GUI.SetSize,
GUI.SetPositionAndSize,	GUI.GetSliderValue,
GUI.SetSliderValue,	GUI.SetSliderMinMax,
GUI.SetSliderSize,	GUI.SetSliderReverse

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.CreateVerticalSlider,	not	by	calling	CreateVerticalSlider.

See	also		

GUI.GetSliderValue	and	GUI.SetSliderValue	for	reading	and
setting	the	value	of	a	slider,	GUI.SetSliderMinMax	for	changing
the	minimum	and	maximum	values	of	a	slider.	See	also
GUI.SetSliderSize	for	setting	the	length	of	a	slider	and
GUI.SetSliderReverse	for	reversing	the	sense	of	a	slider.

GUI.Disable Part	of	GUI	module

Syntax		 GUI.Disable	(widgetID	:	int)

Description		

Disables	a	widget	specified	by	widgetID.

Used	in	conjunction	with	GUI.Enable	to	enable	and	disable	widgets.

Disabled	widgets	generally	are	"grayed	out"	to	visually	depict	their
disabled	status.

Disabled	widgets	do	not	respond	to	keystrokes	or	mouse	clicks.

Example		

The	three	color	radio	buttons	are	enabled	only	when	the	color	check	box	is
selected.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:100;100")	

								

								var	colorCheckBox,	redRadio,	greenRadio,	blueRadio

								

								procedure	DoNothing

								end	DoNothing

								

								procedure	ColorCheckBoxProc	(filled	:	boolean)

												if	filled	then

																GUI.Enable	(redRadio)

																GUI.Enable	(greenRadio)

																GUI.Enable	(blueRadio)

												else

																GUI.Disable	(redRadio)

																GUI.Disable	(greenRadio)

																GUI.Disable	(blueRadio)

												end	if

								end	ColorCheckBoxProc

								

								colorCheckBox	:=	GUI.CreateCheckBox	(10,	80,

												"Use	Color",	ColorCheckBoxProc)

								redRadio	:=	GUI.CreateRadioButton	(33,	60,	"Red",	0,	

								greenRadio	:=	GUI.CreateRadioButton	(1,	1,	"Green",	

												redRadio,	DoNothing)

								blueRadio	:=	GUI.CreateRadioButton	(1,	1,	"Blue",	

												greenRadio,	DoNothing)

								ColorCheckBoxProc	(false)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Details		

The	following	types	of	widgets	can	be	enabled	or	disabled:

	 Buttons,	Check	Boxes,	Radio	Buttons,	Picture	Buttons,

Picture	Radio	Buttons,	Horizontal	Scroll	Bars,	Horizontal	Sliders,
Canvases,	Text	Fields,	Vertical	Scroll	Bars,	Vertical	Sliders

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedure	by	calling	GUI.Disable
not	by	calling	Disable.

See	also		 GUI.Enable.

GUI.Dispose Part	of	GUI	module

Syntax		 GUI.Dispose	(widgetID	:	int)

Description		

Eliminates	the	widget	specified	by	widgetID.

If	the	widget	is	visible,	it	is	immediately	made	invisible	before	being
deleted.	It	should	be	called	in	order	to	free	up	any	memory	that	the
widget	might	have	allocated.	Note	that	you	cannot	use	the	widget
after	it	has	been	disposed	of.	If	you	wish	to	temporarily	get	rid	of	a
widget,	consider	using	the	Hide	method	and	then	the	Show	method
when	you	want	to	use	it	again.

Example		

The	following	program	waits	for	the	Quit	button	to	be	pressed.	When
it	is,	the	Quit	button	is	deleted	and	a	message	is	displayed	in	the
center	of	the	screen.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:150;100")	

								

								var	button,	message	:	int

								

								button	:=	GUI.CreateButton	(20,	40,	0,	"Quit",	GUI.Quit

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								

								GUI.Dispose	(button)

								message	:=	GUI.CreateLabelFull	(0,	0,	"Done",	maxx

												GUI.CENTER	+	GUI.MIDDLE,	0)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedure	by	calling
GUI.Dispose	,	not	by	calling	Dispose	.

GUI.Draw... Part	of	GUI	module

Syntax		

GUI.DrawArc	(widgetID,	x,	y,	xRadius,	yRadius	:	int,
				initialAngle,	finalAngle,	Color	:	int)

GUI.DrawBox	(widgetID,	x1,	y1,	x2,	y2,	Color	:	int)

GUI.DrawCls	(widgetID	:	int)

GUI.DrawDot	(widgetID,	x,	y,	Color	:	int)

GUI.DrawFill	(widgetID,	x,	y	:	int,
				fillColor,	borderColor	:	int)

GUI.DrawFillArc	(widgetID,	x,	y	:	int,
				xRadius,	yRadius	:	int,	
				initialAngle,	finalAngle,	Color	:	int)

GUI.DrawFillBox	(widgetID,	x1,	y1,	x2,	y2	:	int,
				Color	:	int)

GUI.DrawFillMapleLeaf	(widgetID,	x1,	y1	:	int,
				x2,	y2,	Color	:	int)

GUI.DrawFillOval	(widgetID,	x,	y	:	int,
				xRadius,	yRadius	:	int,	Color	:	int)

GUI.DrawFillPolygon	(widgetID	:	int,	
				x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

GUI.DrawFillStar	(widgetID,	x1,	y1,	x2,	y2	:	int,
				Color	:	int)

GUI.DrawLine	(widgetID,	x1,	y1,	x2,	y2,	Color	:	int)

GUI.DrawMapleLeaf	(widgetID,	x1,	y1,	x2,	y2	:	int,
Color	:	int)

GUI.DrawOval	(widgetID,	x,	y	:	int,

				xRadius,	yRadius,	Color	:	int)

GUI.DrawPolygon	(widgetID	:	int,	
				x,	y	:	array	1	..	*	of	int,	n	:	int,	Color	:	int)

GUI.DrawStar	(widgetID,	x1,	y1,	x2,	y2,	Color	:	int)

GUI.DrawText	(widgetID	:	int,	textStr	:	string,	
				x,	y	:	int,	fontID,	Color	:	int)

Description		

Performs	a	Draw…	command	to	the	canvas	specified	by
widgetID.

All	of	these	routines	are	essentially	the	same	as	the	similarly-
named	procedures	in	the	Draw	module.	All	coordinates	are	based
on	the	canvas	and	all	drawing	is	clipped	to	the	canvas	drawing
surface.	If	the	canvas	is	in	"xor	mode",	all	the	drawing	will	be
done	with	"xor"	set.	(See	View.Set	for	more	information	about
"xor".)

The	widgetID	must	specify	a	canvas	widget.

Example		 See	GUI.CreateCanvas	for	an	example	of	GUI.DrawFillOval.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.Draw…,	not	by	calling	Draw….

See	also		 GUI.CreateCanvas.

GUI.Enable Part	of	GUI	module

Syntax		 GUI.Enable	(widgetID	:	int)

Description		

Enables	a	disabled	widget	specified
by	widgetID.

Used	in	conjunction	with
GUI.Disable	to	enable	and	disable
widgets.

Disabled	widgets	generally	are
"grayed	out"	to	visually	depict	their
disabled	status.

Disabled	widgets	do	not	respond	to
keystrokes	or	mouse	clicks.

Example		
See	GUI.Disable	for	an	example	of
GUI.Enable.

Details		

The	following	types	of	widgets	can
be	enabled	or	disabled: 	

Buttons,	Check	Boxes,
Radio	Buttons,	Picture
Buttons,

Picture	Radio	Buttons,	Horizontal	Scroll	Bars,	Horizontal	Sliders,
Canvases,	Text	Fields,	Vertical	Scroll	Bars,	Vertical	Sliders

Status			Exported	qualified.

This	means	that	you	can	only	call	the	procedure	by	calling	GUI.Enable,	not	by
calling	Enable.

See	also			GUI.Disable.

GUI.FontDraw Part	of	GUI	module

Syntax		
GUI.FontDraw	(widgetID	:	int,	textStr	:	string,	
x,	y,	fontID,	Color	:	int)

Description		

Performs	a	Font.Draw	command	to	the	canvas	specified	by
widgetID.

This	routine	is	essentially	the	same	as	the	Font.Draw	procedure	in
the	Font	module.	All	coordinates	are	based	on	the	canvas	and	all
drawing	is	clipped	to	the	canvas	drawing	surface.	If	the	canvas	is
in	"xor	mode",	all	the	drawing	will	be	done	with	"xor"	set.	(See
View.Set	for	more	information	about	"xor".)

The	widgetID	must	specify	a	canvas	widget.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedure	by	calling
GUI.FontDraw,	not	by	calling	FontDraw.

See	also		 GUI.CreateCanvas.

GUI.GetCheckBox Part	of	GUI	module

Syntax		 GUI.GetCheckBox	(widgetID	:	int)	:	boolean

Description		

Returns	the	status	of	the	check	box	specified	by	widgetID.	If	the
check	box	is	set	(has	an	X	in	it),	GetCheckBox	returns	true,
otherwise	it	returns	false.

Example		
See	GUI.CreateCheckBox	for	an	example	of
GUI.GetCheckBox.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetCheckBox,	not	by	calling	GetCheckBox.

See	also		 GUI.CreateCheckBox.

GUI.GetEventTime Part	of	GUI	module

Syntax		 GUI.GetEventTime	:	int

Description		

Returns	the	time	in	milliseconds	when	the	event	(mouse	button	or	keystroke)	took
place.	This	value	is	the	same	value	as	Time.Elapsed	returns	if	called	when	the	event
was	processed.	This	function	should	only	be	called	in	an	action	procedure
default	mouse,	keystroke,	or	null	event	handler,	as	it	will	return	1	when	there	is	no
event	being	processed.

This	event	can	be	used	as	a	timer	for	various	functions	such	as	determining	whether
a	single	click	or	a	double	click	of	the	mouse	button	took	place	or	for	timing
keyboard	input.

Example		

The	following	program	times	the	interval	between	two	button	presses.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:300;100")	

								

								var	startTime,	startButton,	finishButton	:	int

								

								procedure	Start

												startTime	:=	GUI.GetEventTime

								end	Start

								

								procedure	Finish

												Text.Locate	(1,	1)

												put	"The	time	between	button	pressed	is	",	

																GUI.GetEventTime		startTime,	"	msecs"

												GUI.Quit

								end	Finish

								

								startButton	:=	GUI.CreateButton	(10,	10,	110,	"Click	First",	

								finishButton	:=	GUI.CreateButton	(180,	10,	110,	"Click	Second",	

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.GetEventTime
by	calling	GetEventTime	.

See	also		 GUI.ProcessEvent.

GUI.GetEventWidgetID Part	of	GUI	module

Syntax		 GUI.GetEventWidgetID	:	int

Description		

Returns	the	widget	ID	of	the	widget	that	was	activated	by	the
mouse	button	press	or	the	keystroke.	This	function	should	only	be
called	in	an	action	procedure,	as	it	will	return	1	when	there	is	no
event	that	activated	a	widget	being	processed.

This	function	is	used	when	a	several	buttons	use	the	same	action
procedure	to	determine	which	button	was	pressed.

Example		

The	following	program	prints	a	message	stating	which	button	was
selected.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:150;210")	

								

								var	buttonNames	:	array	1	..	5	of	string	:=	init

												"Blue",	"Yellow",	"Purple")

								var	buttons	:	array	1	..	5	of	int

								

								procedure	ButtonPush

												for	i	:	1	..	5

																if	GUI.GetEventWidgetID	=	buttons	(i)	then

																				Text.Locate	(1,	1)

																				put	buttonNames	(i),	"	selected"

																end	if

												end	for

								end	ButtonPush

								for	i	:	1	..	5

												buttons	(i)	:=	GUI.CreateButton	(10,	210		40	*	

																buttonNames	(i),	ButtonPush)

								end	for

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetEventWidgetID,	not	by	calling	GetEventWidgetID.

See	also		 GUI.ProcessEvent.

GUI.GetEventWindow Part	of	GUI	module

Syntax		 GUI.GetEventWindow	:	int

Description		

Returns	the	window	ID	of	the	window	in	which	the	event	(mouse	button	or
keystroke)	took	place.	This	function	should	only	be	called	in	an	action	procedure
or	in	a	default	mouse	or	keystroke	event	handler,	as	it	will	return	1	when	there	is
no	event	being	processed.

This	function	is	commonly	used	when	several	windows	share	the	same	layout.
The	same	buttons	in	each	window	point	to	the	same	action	procedures
determine	which	button	was	actually	pressed,	the	function	is	called	to	get	the
window.

Example		

The	following	program	creates	four	windows	in	a	row,	each	with	a	button	that,
when	pressed,	causes	a	star	to	be	drawn	in	that	window.

								import	GUI	in	"%oot/lib/GUI"	

								

								procedure	DrawStar

												var	windowID	:	int	:=	GUI.GetEventWindow

												Window.Select	(windowID)

												Draw.FillStar	(25,	40,	175,	190,	Rand.Int	(10,	15))

								end	DrawStar

								

								for	i	:	0	..	3

												var	window	:	int	:=	Window.Open	("graphics:200;200")	

												%	Place	window	above	task	bar,	across	from	previous	one.

												Window.SetPosition	(window,	220	*	i,	27)	

												var	button	:	int	:=	GUI.CreateButton	(5,	5,	190,	"Draw	Star",	

																DrawStar)	

								end	for

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetEventWindow,	not	by	calling	GetEventWindow.

See	also		 GUI.ProcessEvent.

GUI.GetHeight Part	of	GUI	module

Syntax		 GUI.GetHeight	(widgetID	:	int)	:	int

Description		

Returns	the	actual	height	of	a	widget.	Note	that	this	may	be
different	from	the	height	specified	in	the	Create	call	(especially
since	many	widgets	do	not	specify	a	height.	The	GUI	module
determines	the	actual	height).

This	function	is	used	in	conjunction	with	GUI.GetX,	GUI.GetY
and	GUI.GetWidth	to	determine	the	bounds	of	a	widget.	The	entire
widget	should	always	fit	in	the	box	(GUI.GetX,	GUI.GetY)	-
(GUI.GetX	+	GUI.GetWidth	1,	GUI.GetY	+	GUI.GetHeight	1)

The	position	and	size	of	a	widget	is	known	only	after	it	has	been
drawn	to	the	screen.	Attempting	to	get	the	location	or	dimesions	of
the	widget	may	cause	an	uninitialized	variable	error.

Example		

The	following	procedure	draws	a	red	box	around	the	widget
specified	by	widgetID.

								import	GUI	in	"%oot/lib/GUI"

								

								procedure	BoxWidget	(widgetID	:	int)

												var	x,	y,	width,	height	:	int

												x	:=	GUI.GetX	(widgetID)

												y	:=	GUI.GetY	(widgetID)

												width	:=	GUI.GetWidth	(widgetID)

												height	:=	GUI.GetHeight	(widgetID)

												Draw.Box	(x		1,	x		1,	x	+	width,	y	+	height,	

												Draw.Box	(x		2,	x		2,	x	+	width	+	1,	y	+	height

								end	BoxWidget

								

								var	title	:	int	:=	GUI.CreateLabel	(20,	20,	"Frame	This!")

								BoxWidget	(title)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetHeight,	not	by	calling	GetHeight.

See	also		 GUI.GetX,	GUI.GetY,	and	GUI.GetWidth.

GUI.GetMenuBarHeight Part	of	GUI	module

Syntax		 GUI.GetMenuBarHeight	:	int

Description		

Returns	the	height	of	the	menu	bar.	Useful	when	drawing	or
placing	widgets	to	make	certain	that	they	don't	overlap	the	menu
bar.

Example		

The	following	program	draws	a	red	box	in	the	window	just
belowe	the	menu	bar.

								import	GUI	in	"%oot/lib/GUI"

								

								var	menu	:	int	:=	GUI.CreateMenu	("File")

								var	item	:	int	:=	GUI.CreateMenuItem	("Quit",	GUI.Quit

								

								Draw.FillBox	(0,	0,	maxx,	maxy		GUI.GetMenuBarHeight	

												brightred)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetMenuBarHeight,	not	by	calling	GetMenuBarHeight.

See	also		 GUI.CreateMenu.

GUI.GetScrollBarWidth Part	of	GUI	module

Syntax		 GUI.GetScrollBarWidth	:	int

Description		
Returns	the	width	of	a	scroll	bar.	Useful	when	placing	a	scroll	bar
widget	beneath	or	beside	another	widget	or	object.

Example		

See	the	ScrollPic	program	in
GUI.CreateHorizontalScrollBarFull	for	an	example	of
GUI.GetScrollBarWidth.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetScrollBarWidth,	not	by	calling	GetScrollBarWidth.

See	also		
GUI.CreateHorizontalScrollBar	and
GUI.CreateVerticalScrollBar.

GUI.GetSliderValue Part	of	GUI	module

Syntax		 GUI.GetSliderValue	(widgetID	:	int)	:	int

Description		

Returns	the	current	value	of	a	slider	or	scroll	bar	specified	by
widgetID.	The	widgetID	must	specify	either	scroll	bar	or	a	slider
(horizontal	or	vertical).

Example		

See	the	ScrollPic	program	in
GUI.CreateHorizontalScrollBarFull	for	an	example	of
GUI.GetSliderValue.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetSliderValue,	not	by	calling	GetSliderValue.

See	also		

GUI.SetSliderValue	for	setting	a	slider	or	scroll	bar's	value.	See
also	GUI.CreateHorizontalScrollBar,
GUI.CreateVerticalScrollBar,	GUI.CreateHorizontalSlider,
and	GUI.CreateVerticalSlider.

GUI.GetText Part	of	GUI	module

Syntax		 GUI.GetText	(widgetID	:	int)	:	string

Description		
Returns	the	current	text	of	a	text	field	specified	by	widgetID.	The
widgetID	must	specify	a	text	field	widget.

Example		 See	GUI.CreateTextField	for	an	example	of	GUI.GetText.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetText,	not	by	calling	GetText.

See	also		
GUI.SetText	for	setting	the	text	in	a	text	field.	See	also
GUI.CreateTextField.

GUI.GetVersion Part	of	GUI	module

Syntax		 GUI.GetVersion	:	int

Description		

Returns	the	current	version	of	the	GUI	Procedure	Library.
Because	the	GUI	Procedure	Library	is	expected	to	grow,	new
versions	will	probably	be	made	available	at	our	web	site
http://www.holtsoft.com/turing.	If	you	wish	to	use	features	that
do	not	appear	in	earlier	versions	of	the	library,	you	can	have	your
program	check	that	the	current	available	version	meets	the
programs	needs.	GUI.GetVersion	returns	an	integer	from	100	-
999	and	is	read	as	1.00	to	9.99.

Example		

The	following	program	fragment	immediately	exits	if	OOT	does
not	support	version	1.1	of	the	GUI	Procedure	Library

								import	GUI	in	"%oot/lib/GUI"

								if	GUI.GetVersion	<	110	then

												put	"You	must	update	to	at	least	version	1.1	of	the"

												put	"GUI	Procedure	Library	to	use	this	program."

												return

								end	if

Details		
In	version	1.00	(shipped	with	MacOOT	1.5),	GUI.GetVersion
did	not	exist.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetVersion,	not	by	calling	GetVersion.

GUI.GetWidth Part	of	GUI	module

Syntax		 GUI.GetWidth	(widgetID	:	int)	:	int

Description		

Returns	the	actual	width	of	a	widget.	Note	that	this	may	be	different
from	the	width	specified	in	the	Create	call	(especially	since	some
widgets	do	not	specify	a	width.	The	GUI	module	determines	the
actual	width).

This	function	is	used	in	conjunction	with	GUI.GetX,	GUI.GetY
and	GUI.GetHeight	to	determine	the	bounds	of	a	widget.	The
entire	widget	should	always	fit	in	the	box	(GUI.GetX,	GUI.GetY)
-	(GUI.GetX	+	GUI.GetWidth	1,	GUI.GetY	+	GUI.GetHeight	1)

The	position	and	size	of	a	widget	is	known	only	after	it	has	been
drawn	to	the	screen.	Attempting	to	get	the	location	or	dimesions	of
the	widget	may	cause	an	uninitialized	variable	error.

Example		

The	following	procedure	draws	a	red	box	around	the	widget
specified	by	widgetID.

								import	GUI	in	"%oot/lib/GUI"

								procedure	BoxWidget	(widgetID	:	int)

												var	x,	y,	width,	height	:	int

												x	:=	GUI.GetX	(widgetID)

												y	:=	GUI.GetY	(widgetID)

												width	:=	GUI.GetWidth	(widgetID)

												height	:=	GUI.GetHeight	(widgetID)

												Draw.Box	(x		1,	x		1,	x	+	width,	y	+	height,	

												Draw.Box	(x		2,	x		2,	x	+	width	+	1,	y	+	height

								end	BoxWidget

								

								var	title	:	int	:=	GUI.CreateLabel	(20,	20,	"Frame	This!")

								BoxWidget	(title)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.GetWidth,	not	by	calling	GetWidth.

See	also		 GUI.GetX,	GUI.GetY,	and	GUI.GetHeight.

GUI.Get{X,Y} Part	of	GUI	module

Syntax		
GUI.GetX	(widgetID	:	int)	:	int

GUI.GetY	(widgetID	:	int)	:	int

Description		

Returns	the	x	coordinate	of	the	left	edge	of	a	widget.	Note	that	this
may	be	different	from	the	x	coordinate	specified	in	the	widget's
Create	call.	For	example,	if	a	radio	button	is	created	with	right
justification,	the	x	coordinate	in	the	Create	method	specifies	the
right	edge	while	GUI.GetX	will	return	the	x	coordinate	of	the	left
edge.

This	function	is	used	in	conjunction	with	GUI.GetWidth	and
GUI.GetHeight	to	determine	the	bounds	of	a	widget.	The	entire
widget	should	always	fit	in	the	box	(GUI.GetX,	GUI.GetY)	-
(GUI.GetX	+	GUI.GetWidth	-	1,	GUI.GetY	+	GUI.GetHeight	-
1)

The	position	and	size	of	a	widget	is	known	only	after	it	has	been
drawn	to	the	screen.	Attempting	to	get	the	location	or	dimesions	of
the	widget	may	cause	an	uninitialized	variable	error.

Example		

The	following	procedure	draws	a	red	box	around	the	widget
specified	by	widgetID.

								import	GUI	in	"%oot/lib/GUI"

								procedure	BoxWidget	(widgetID	:	int)

												var	x,	y,	width,	height	:	int

												x	:=	GUI.GetX	(widgetID)

												y	:=	GUI.GetY	(widgetID)

												width	:=	GUI.GetWidth	(widgetID)

												height	:=	GUI.GetHeight	(widgetID)

												Draw.Box	(x		1,	x		1,	x	+	width,	y	+	height,	

												Draw.Box	(x		2,	x		2,	x	+	width	+	1,	y	+	height

								end	BoxWidget

								

								var	title	:	int	:=	GUI.CreateLabel	(20,	20,	"Frame	This!")

								BoxWidget	(title)

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
GUI.GetX,	not	by	calling	GetX.

See	also		 GUI.GetHeight	and	GUI.GetWidth.

GUI.Hide Part	of	GUI	module

Syntax		 GUI.Hide	(widgetID	:	int)

Description		

Hides	a	widget	specified	by	widgetID.	Used	in	conjunction	with
Show	to	hide	and	show	widgets.	Hidden	widgets	cannot	get
events	(i.e.	respond	to	keystrokes	or	mouse	clicks).	If	an	active
text	field	(see	text	field)	is	hidden,	then	any	keystrokes	in	the
window	will	be	ignored.

In	most	cases	where	a	widget	is	to	appear,	then	disappear,	then
appear	again,	it	is	advised	to	create	the	widget	once	and	hide	it
until	it	is	to	appear,	whereupon	GUI.Show	is	called.	When	the
user	is	finished	with	the	widget,	the	widget	is	hidden	using
GUI.Hide.	This	saves	the	overhead	of	creating	and	disposing	of
the	same	widget	several	times.

Example		 See	GUI.SetDisplayWhenCreated	for	an	example	of	GUI.Hide.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.Hide,	not	by	calling	Hide.

See	also		 GUI.Show.

GUI.HideMenuBar Part	of	GUI	module

Syntax		 GUI.HideMenuBar

Description		

Hides	the	menu	bar	in	the	selected	window.	No	menu	items	can
be	selected	when	the	menu	bar	is	hidden.	(Menu	item	shortcuts
are	ignored	while	the	menu	bar	is	hidden.)

Example		
See	GUI.SetMouseEventHandler	for	an	example	of
GUI.HideMenuBar.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.HideMenuBar,	not	by	calling	HideMenuBar.

See	also		 GUI.ShowMenuBar.	See	also	GUI.CreateMenu.

GUI.HideWindow Part	of	GUI	module

Syntax		 GUI.HideWindow	(window	:	int)

Description		

Hides	a	window	with	widgets	in	it.	This	procedure	makes	certain	that	the	GUI
Library	recognizes	that	the	window	no	longer	visible.	This	procedure	will	call
Window.Hide,	so	there	is	no	need	for	the	user	to	do	so.

Example		

The	program	opens	up	a	window	with	two	buttons.	If	the	button	labelled	"Close
and	Open"	is	pressed,	the	window	is	closed	and	a	new	window	with	two	buttons	is
opened	in	a	random	location	on	the	screen.

								import	GUI

								var	windowA,	windowB	:	int

								var	buttonA,	buttonB,	buttonQuit	:	int

	 var	backToMainA,	backToMainB	:	int

								procedure	ShowWindowA

												GUI.HideWindow	(defWinID)

												GUI.ShowWindow	(windowA)

								end	ShowWindowA

								procedure	ShowWindowB

												GUI.HideWindow	(defWinID)

												GUI.ShowWindow	(windowB)

								end	ShowWindowB

								procedure	ShowMain

												GUI.HideWindow	(Window.GetActive)

												GUI.ShowWindow	(defWinID)

								end	ShowMain

								View.Set	("graphics:280;100,nobuttonbar")

								%	Place	the	buttons	in	the	main	window

								buttonA	:=	GUI.CreateButton	(10,	10,	0,	"Show	Window	A",	

								buttonB	:=	GUI.CreateButton	(150,	10,	0,	"Show	Window	B",	

								buttonQuit	:=	GUI.CreateButton	(100,	60,	0,	"Quit",	

								windowA	:=	Window.Open		("title:Window	A,graphics:150;100,position:bottom;left")

								backToMainA	:=	GUI.CreateButton	(20,	20,	0,	"Back	to	Main",	

								Window.Hide	(windowA)

								windowB	:=	Window.Open		("title:Window	B,graphics:150;100,position:bottom;right")

								backToMainB	:=	GUI.CreateButton	(20,	20,	0,	"Back	to	Main",	

								Window.Hide	(windowB)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.HideWindow
by	calling	HideWindow.

See	also		
GUI.ShowWindow	for	showing	a	window	with	widgets	in	it.	See	also
GUI.CloseWindow	for	closing	a	window	with	widgets	in	it.

GUI.OpenFile Part	of	GUI	module

Syntax		 GUI.OpenFile	(title	:	string)	:	string

Description		

Displays	an	"Open	File"	dialog	box	to	obtain	the	name	of	an
already	existing	file.	The	caption	(a	window	title	under	MS
Windows,	a	string	in	a	Macintosh	dialog	box)	is	specified	by	the
title	parameter.	The	function	uses	a	dialog	box	specific	to	the
operating	system	the	program	is	being	run	on.

If	the	user	did	not	choose	a	file	(i.e.	hit	the	Cancel	button	in	the
dialog),	the	function	returns	""	(the	empty	string).

Note:	This	function	is	not	available	in	the	current	version	of	the
GUI	Procedure	Library	(shipping	with	Turing	4.0	and	MacOOT
1.5).	It	is	documented	here	for	use	with	future	shipping	version	of
Turing.	It	is	likely	to	be	implemented	in	the	version	of	Turing
released	in	September	2002.	Check	the	release	notes	that	are
found	in	the	on-line	help	to	find	out	if	this	function	is	now
available.

Example		

The	following	program	asks	the	user	for	the	name	of	a	file	and
then	echoes	the	contents	of	it.

								import	GUI	in	"%oot/lib/GUI"

								

								var	fileName,	line	:	string

								var	streamNumber	:	int

								

								fileName	:=	GUI.OpenFile	("Choose	a	Text	File")

								

								open	:	streamNumber,	fileName,	get

								assert	streamNumber	>	0

								loop

												exit	when	eof	(streamNumber)

												get	:	streamNumber,	line	:	*

												put	line

								end	loop

								close	:	streamNumber

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
GUI.OpenFile,	not	by	calling	OpenFile.

GUI.OpenFileFull Part	of	GUI	module

Syntax		
GUI.OpenFileFull	(title,	filter:	string,
startDir	:	string)	:	string

Description		

Displays	an	"Open	File"	dialog	box	to	obtain	the	name	of	an	already	existing	file.
The	caption	(a	window	title	under	MS	Windows,	a	string	in	a	Macintosh	dialog
box)	is	specified	by	the	title	parameter.	The	list	of	files	shown	is	specified	by	the
filter	parameter.	The	initial	directory	to	be	displayed	is	specified	by	the	
parameter.	The	function	uses	a	dialog	box	specific	to	the	operating	system	the
program	is	being	run	on.

The	filter	parameter	is	a	file	name	suffix	that	should	be	displayed.	Multiple
suffixes	can	be	specified	by	separating	them	with	commas.	If	the	user	specifies
the	empty	string	for	filter,	then	all	the	files	in	the	directory	are	displayed.	If	the
startDir	parameter	is	empty,	or	if	it	specifies	a	non-existent	directory,	then	the
current	directory	is	displayed	in	the	"Open	File"	dialog	box.

If	the	user	did	not	choose	a	file	(i.e.	hit	the	Cancel	button	in	the	dialog),	the
function	returns	""	(the	empty	string).

Note:	This	function	is	not	available	in	the	current	version	of	the	GUI	Procedure
Library	(shipping	with	Turing	4.0	and	MacOOT	1.5).	It	is	documented	here	for
use	with	future	shipping	version	of	Turing.	It	is	likely	to	be	implemented	in	the
version	of	Turing	released	in	September	2002.	Check	the	release	notes	that	are
found	in	the	on-line	help	to	find	out	if	this	function	is	now	available.

Example		

The	following	program	asks	the	user	to	select	a	file	ending	in	".txt".	The	initial
directory	is	the	root	directory	of	the	C	drive.

								import	GUI	in	"%oot/lib/GUI"

								

								var	fileName	:	string

								fileName	:=	GUI.OpenFileFull	("Choose	a	Text	File",	"txt",	"C:\\")

Details		
If	a	suffix	is	placed	in	single	quotes,	it	will	be	ignored	on	all	but	the	Apple
Macintosh,	where	it	will	specify	a	Macintosh	file	type.

The	example	makes	the	dialog	box	display	all	files	ending	in	".txt"	or	".text"	on

Example		
all	systems	but	the	Macintosh.	On	the	Apple	Macintosh,	only	files	of	file	type
'TEXT'	will	be	displayed.

								fileName	:=	GUI.OpenFileFull	("Open",	"txt,text,'TEXT'",	"")

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.OpenFileFull
by	calling	OpenFileFull.

GUI.Pic... Part	of	GUI	module

Syntax		

GUI.PicDraw	(widgetID	:	int,	picID,	x,	y,	mode	:	int)

GUI.PicNew	(widgetID	:	int,	x1,	y1,	x2,	y2	:	int)	:	int

GUI.PicScreenLoad	(widgetID	:	int,	fileName	:	string,
				x,	y,	mode	:	int)

GUI.PicScreenSave	(widgetID	:	int,	x1,	y1,	x2,	y2	:	int,
fileName	:	string)

Description		

Performs	a	Pic…	command	to	the	canvas	specified	by	widgetID.

All	of	these	routines	are	essentially	the	same	as	the	similarly-
named	procedures	in	the	Pic	module.	All	coordinates	are	based	on
the	canvas	and	all	drawing	is	clipped	to	the	canvas	drawing
surface.

Example		

See	the	ScrollPic	program	in
GUI.CreateHorizontalScrollBarFull	for	an	example	of
GUI.PicDraw.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.Pic…,	not	by	calling	Pic….

See	also		 GUI.CreateCanvas.

GUI.ProcessEvent Part	of	GUI	module

Syntax		 GUI.ProcessEvent	:	boolean

Description		

This	function	processes	a	single	event	(a	mouse	button	press	or	a	keystroke).	If	the
event	activates	a	widget,	then	the	action	procedure	of	the	widget	is	called.

The	function	returns	false	until	GUI.Quit	is	called.	It	then	returns	true

In	order	for	the	widgets	to	function	once	placed,	the	GUI.ProcessEvent	must	be
called	continually.	Without	a	call	to	GUI.ProcessEvent,	the	widgets	will	appear,
but	will	not	react	to	mouse	clicks	or	keystrokes.

Almost	all	programs	involving	the	GUI	Procedure	Library	have	the	following	code
fragment	in	the	program.	This	code	fragment	is	often	called	the	event	loop

								loop

												exit	when	GUI.ProcessEvent

								end	loop

The	loop	runs	continuously	until	GUI.Quit	is	called,	whereupon
GUI.ProcessEvent	will	return	true	and	the	loop	will	exit.	The	rest	of	the	program
is	reached	through	the	action	procedures	that	are	called	when	the	user	interacts	with
various	widgets.

Details		

It	is	usually	desirable	to	allow	the	user	some	way	of	quitting	the	program	without
having	to	abort	it.	This	can	be	done	most	simply	by	adding	a	Quit	button	and
placing	it	in	an	appropriate	location.

Example		

Here	is	program	that	does	nothing	but	wait	for	the	user	to	press	the	quit	button.

								import	GUI	in	"%oot/lib/GUI"

								var	quitButton	:	int	:=	GUI.CreateButton	(10,	10,	0,	"Quit",	

								loop

												exit	when	GUI.ProcessEvent

								end	loop

To	find	out	which	widget	was	activated	and	called	the	action	procedure
if	several	widgets	have	the	same	action	procedure),	you	can	call
GUI.GetEventWidgetID.	To	get	the	exact	time	that	the	event	occurred,	you	can

Details		

call	GUI.GetEventTime.	To	get	the	window	in	which	the	event	took	place,	you
can	call	GUI.GetEventWindow.

If	a	mouse	click	occured,	but	did	not	activate	any	widget,	then	the	default	mouse
event	handler	is	called.	By	default,	this	does	nothing.	However,	if	you	want	your
program	to	respond	to	mouse	events	that	do	not	affect	a	widget,	call
GUI.SetMouseEventHandler	to	specify	your	own	default	mouse	event	handler.

If	a	keystroke	occurred,	but	did	not	activate	any	widget	(i.e.	it	wasn't	a	short	cut	for
a	widget	and	there	are	no	text	fields	in	the	window)	then	the	default	keystroke
handler	is	called.	By	default,	this	does	nothing.	However,	if	you	want	your	program
to	respond	to	keystroke	events	that	do	not	affect	a	widget,	call
GUI.SetKeyEventHandler	to	specify	your	own	default	key	event	handler.

If	no	event	occurred,	then	the	null	event	handler	is	called.	By	default,	this	does
nothing.	However,	if	you	want	your	program	to	perform	some	action	repetetively
when	it	is	not	doing	anything	else,	then	call	GUI.SetNullEventHandler	
your	own	null	event	handler.	The	null	event	handler	is	often	used	for	such	things	as
updating	a	clock	and	making	certain	that	music	is	playing	in	the	background.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling	GUI.PProcessEvent
not	by	calling	ProcessEvent.

See	also		

GUI.GetEventWidgetID,	GUI.GetEventTime,	and	GUI.GetEventWindow
obtaining	information	about	an	event	in	an	action	procedure.	See	also
GUI.SetMouseEventHandler,	GUI.SetKeyEventHandler	and
GUI.SetNullEventHandler	for	handling	mouse,	keyboard	an	d	null	events	in	the
event	loop.	See	also	GUI.Quit	for	information	on	exitting	the	event	

GUI.Quit Part	of	GUI	module

Syntax		 GUI.Quit

Description		

This	procedure	causes	GUI.ProcessEvent	to	return	true.	If	the	program	is
structured	properly	with	a

								loop

												exit	when	GUI.ProcessEvent

								end	loop

at	the	end	of	the	program,	then	the	program	will	exit	the	loop	after	
current	action	procedure.	This	procedure	is	usually	called	from	the	
procedure	of	a	Quit	button	or	Exit	menu	item.

Example		

Here	is	program	that	does	nothing	but	wait	for	the	user	to	press	the	quit	button	or
type	the	letter	'Q',	'q',	'X',	or	'x'.

								import	GUI

								

								procedure	KeyHandler	(ch	:	char)

												if	ch	=	'Q'	or	ch	=	'q'	or	ch	=	'X'	or	ch	=	'x'	

																GUI.Quit

												end	if

								end	KeyHandler

								

								var	quitButton	:	int	:=	GUI.CreateButton	(10,	10,	0,	"Quit",	

								GUI.SetKeyEventHandler	(KeyHandler)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								

								put	"Done!"

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling	GUI.Quit
calling	Quit.

See	also		
GUI.ProcessEvent.	See	also	GUI.ResetQuit	for	resetting	the	"quit"	flag,	so	that	a
second	event	loop	can	be	used	in	the	same	program.

GUI.Refresh Part	of	GUI	module

Syntax		 GUI.Refresh

Description		

This	routine	redraws	all	the	widgets	in	the	currently-selected
window.	This	is	used	when	some	form	of	drawing	may	have
overwritten	the	widgets	in	a	window.

It	is	often	used	when	there	is	some	possibility	that	the	widgets
may	have	been	drawn	over.	For	example,	a	program	that	places
buttons	on	top	of	a	background	image	should	call	GUI.Refresh
when	the	image	is	changed.

Details		
GUI.Refresh	is	used	by	the	GUI	Library	to	redraw	all	the
widgets	when	the	background	colour	of	a	window	has	changed.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.Refresh,	not	by	calling	Refresh.

GUI.ResetQuit Part	of	GUI	module

Syntax		 GUI.ResetQuit

Description		

The	GUI.ResetQuit	procedure	resets	the	"quitting"	flag	that	is	set	by	the	
The	GUI.ResetQuit	can	be	used	whenever	you	want	to	have	a	program	that	exits	
main	processing	loop,	does	some	work,	and	then	reenters	the	processing	loop.

Without	GUI.ResetQuit,	the	program	will	exit	the	second	loop	immediately	because
GUI.ProcessEvent	will	return	true.

This	program	allows	the	user	to	select	the	color	that	stars	are	to	be	drawn	in.	
presses	the	button,	the	program	exits	the	first	event	loop	and	draws	the	stars.	
another	button	and	entering	a	second	event	loop,	it	calls	GUI.ResetQuit

								import	GUI

								var	radio	:	array	1	..	4	of	int

								var	button	:	int

								var	starColor	:	int	:=	red

								%	Action	procedures	for	the	radio	buttons

								procedure	Red

												starColor	:=	brightred

								end	Red

								procedure	Green

												starColor	:=	brightgreen

								end	Green

								procedure	Blue

												starColor	:=	brightblue

								end	Blue

								procedure	Cyan

												starColor	:=	brightcyan

								end	Cyan

								%	Create	the	radio	buttons

								radio	(1)	:=	GUI.CreateRadioButton	(15,	maxy	-	35,	"Red",	0,	

								radio	(2)	:=	GUI.CreateRadioButton	(-1,	-1,	"Green",	

								radio	(3)	:=	GUI.CreateRadioButton	(-1,	-1,	"Blue",	

								radio	(4)	:=	GUI.CreateRadioButton	(-1,	-1,	"Cyan",	

								%	Create	the	push	button

Example		 								button	:=	GUI.CreateButton	(100,	maxy	-	70,	0,	"Draw	Stars",	

								%	Process	events	until	the	"Draw	Stars"	button	is	pressed

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								%	Dispose	of	all	the	radio	buttons	and	the	push	button

								for	i	:	1	..	4

												GUI.Dispose	(radio	(i))

								end	for

								GUI.Dispose	(button)

								%	Draw	a	bunch	of	stars	-	No	more	handling	of	events	or	widgets

								for	i	:	1	..	100

												var	x	:	int	:=	Rand.Int	(0,	maxx	-	20)

												var	y	:	int	:=	Rand.Int	(0,	maxy	-	20)

												Draw.FillStar	(x,	y,	x	+	20,	y	+	20,	starColor)

								end	for

								%	Create	a	new	button

								button	:=	GUI.CreateButton	(300,	10,	0,	"Quit",	

								%	Reset	the	quit	flag.	Without	this	statement,	the	loop	following	would

								%	exit	immediately	because	the	quit	flag	was	set	in	the	previous	loop

								GUI.ResetQuit

								%	Process	events	until	the	"Quit"	button	is	pressed

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								%	Close	the	window

								GUI.CloseWindow	(defWinID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.ResetQuit
ResetQuit.

GUI.SaveFile Part	of	GUI	module

Syntax		 GUI.SaveFile	(title	:	string)	:	string

Description		

Displays	an	"Save	File"	dialog	box	to	obtain	the	name	of	a	file.
The	caption	(a	window	title	under	MS	Windows,	a	string	in	a
Macintosh	dialog	box)	is	specified	by	the	title	parameter.	The
function	uses	a	dialog	box	specific	to	the	operating	system	the
program	is	being	run	on.

If	the	user	did	not	choose	a	file	(i.e.	hit	the	Cancel	button	in	the
dialog),	the	function	returns	""	(the	empty	string).

Note:	This	function	is	not	available	in	the	current	version	of	the
GUI	Procedure	Library	(shipping	with	Turing	4.0	and	MacOOT
1.5).	It	is	documented	here	for	use	with	future	shipping	version	of
Turing.	Check	the	release	notes	that	are	found	in	the	on-line	help
to	find	out	if	this	function	is	now	available.

Example		

The	following	program	asks	the	user	for	the	name	of	a	file	and
then	writes	the	numbers	1	to	10	in	it.

								import	GUI	in	"%oot/lib/GUI"

								

								var	fileName	:	string

								var	streamNumber	:	int

								

								fileName	:=	GUI.SaveFile	("Choose	a	Text	File")

								

								open	:	streamNumber,	fileName,	put

								assert	streamNumber	>	0

								for	i	:	1	..	10

												put	:	streamNumber,	i

								end	loop

								close	:	streamNumber

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SaveFile,	not	by	calling	SaveFile.

GUI.SaveFileFull Part	of	GUI	module

Syntax		
GUI.SaveFileFull	(title,	filter:	string,
startDir	:	string)	:	string

Description		

Displays	an	"Save	File"	dialog	box	to	obtain	the	name	of	an
already	existing	file.	The	caption	(a	window	title	under	MS
Windows,	a	string	in	a	Macintosh	dialog	box)	is	specified	by	the
title	parameter.	The	list	of	files	shown	is	specified	by	the	filter
parameter.	The	initial	directory	to	be	displayed	is	specified	by	the
startDir	parameter.	The	function	uses	a	dialog	box	specific	to	the
operating	system	the	program	is	being	run	on.

The	filter	parameter	is	a	file	name	suffix	that	should	be	displayed.
Multiple	suffixes	can	be	specified	by	separating	them	with
commas.	If	the	user	specifies	the	empty	string	for	filter,	then	all
the	files	in	the	directory	are	displayed.	If	the	startDir	parameter	is
empty,	or	if	it	specifies	a	non-existent	directory,	then	the	current
directory	is	displayed	in	the	"Open	File"	dialog	box.

If	the	user	did	not	choose	a	file	(i.e.	hit	the	Cancel	button	in	the
dialog),	the	function	returns	""	(the	empty	string).

Note:	This	function	is	not	available	in	the	current	version	of	the
GUI	Procedure	Library	(shipping	with	Turing	4.0	and	MacOOT
1.5).	It	is	documented	here	for	use	with	future	shipping	version	of
Turing.	Check	the	release	notes	that	are	found	in	the	on-line	help
to	find	out	if	this	function	is	now	available.

Example		

The	following	program	segment	asks	the	user	for	the	name	of	a
file	ending	in	".txt".	The	initial	directory	is	the	root	directory	of
the	C	drive.

								var	fileName	:	string	:=	GUI.SaveFileFull	("Choose	a	Text	File",	

												"txt",	"C:\\")

Details		
If	a	suffix	is	placed	in	single	quotes,	it	will	be	ignored	on	all	but
the	Apple	Macintosh,	where	it	will	specify	a	Macintosh	file	type.

Example		

The	following	program	segment	asks	the	user	for	the	name	of	a
file.	It	displays	files	of	type	'TEXT'.	The	initial	directory	is	the
"Turing	Programs"	directory	on	the	"Macintosh	HD"	volume.

								var	fileName	:	string	:=	GUI.SaveFileFull	("Choose	a	Text	File",	

												"'TEXT'",	"Macintosh	HD:Turing	Programs")

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SaveFileFull,	not	by	calling	SaveFileFull.

GUI.SelectRadio Part	of	GUI	module

Syntax		 GUI.SelectRadio	(widgetID	:	int)

Description		
Selects	a	radio	button	specified	by	widgetID.	The	previously-selected	radio
button	is	"de-selected".	The	action	procedure	of	the	radio	button	is	called.

Example		

The	following	program	creates	siz	radio	buttons.	Selecting	one	of	the	buttons
cause	the	bottom	two	radio	buttons	to	become	selected.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:350;110")	

								

								var	radio	:	array	1	..	6	of	int					%	The	radio	button	IDs.

								

								procedure	RadioPressed

												Text.Locate	(1,	1)

												for	i	:	1	..	6

																if	radio	(i)	=	GUI.GetEventWidgetID	then

																				put	"Radio	Button	"	,	i,	"	Selected"

																end	if

												end	for

								end	RadioPressed

								

								procedure	Select

												GUI.SelectRadio	(radio	(3))

												GUI.SelectRadio	(radio	(6))

								end	Select

								

								radio	(1)	:=	GUI.CreateRadioButton	(15,	maxy		35,	

												"Radio	Button	1",	0,	RadioPressed)

								radio	(2)	:=	GUI.CreateRadioButton	(1,	1,	"Radio	Button	2",	

												radio	(1),	RadioPressed)

								radio	(3)	:=	GUI.CreateRadioButton	(1,	1,	"Radio	Button	3",

												radio	(2),	RadioPressed)

								radio	(4)	:=	GUI.CreateRadioButtonFull	(maxx		15,	

												"Radio	Button	4",	0,	RadioPressed,	GUI.RIGHT

								radio	(5)	:=	GUI.CreateRadioButtonFull	(1,	1,	"Radio	Button	5",	

												radio	(4),	RadioPressed,	GUI.RIGHT,	GUI.NONE

								radio	(6)	:=	GUI.CreateRadioButtonFull	(1,	1,	"Radio	Button	6",

												radio	(5),	RadioPressed,	GUI.RIGHT,	GUI.NONE

								

								var	selectButton	:	int	:=	GUI.CreateButton	(15,	10,	100,	

												"Select	Bottom	Buttons",	Select)

								var	quitButton	:	int	:=	GUI.CreateButton	(maxx		15		100,	10,	100,		

												"Quit",	GUI.Quit)loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.SelectRadio,	not	by	calling	SelectRadio.

See	also		 GUI.CreateRadioButton	and	GUI.CreatePictureRadioButton.

GUI.SetActive Part	of	GUI	module

Syntax		 GUI.SetActive	(widgetID	:	int)

Description		

Makes	a	text	field	specified	by	widgetID	active.	If	the	text	field	is
not	in	an	active	window,	then	the	text	field	will	become	active
when	the	window	does.	If	another	text	field	was	active	in	the
window,	it	is	deactivated.

Example		 See	GUI.CreateTextFieldfor	an	example	of	GUI.SetActive.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.SetActive,	not	by	calling	SetActive.

See	also		 GUI.CreateTextField.

GUI.SetBackgroundColor Part	of	GUI	module

Syntax		 GUI.SetBackgroundColor	(Color	:	int)

Description		

Changes	the	background	colour	of	the	currently-selected	window
to	the	color	specified	by	Color.	This	does	not	change	the	value	of
color	0	in	the	window.	Instead	it	fills	the	entire	window	with	the
new	background	color	and	then	redraws	all	the	widgets.

For	indented	and	extended	items,	the	background	color	is
assumed	to	be	set	to	gray.

The	alternate	spelling	is	GUI.SetBackgroundColour

Example		
See	GUI.CreateFrame	for	an	example	of
GUI.SetBackgroundColour.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.SetBackgroundColor,	not	by	calling
SetBackgroundColor.

GUI.SetCheckBox Part	of	GUI	module

Syntax		 GUI.SetCheckBox	(widgetID	:	int,	status	:	boolean)

Description		

Sets	the	status	of	a	check	box	specified	by	widgetID.	If	status	is
true,	the	check	box	is	filled	(marked	with	an	'X').	If	status	is
false,	the	check	box	is	set	empty.	GUI.SetCheckBox	calls	the
check	box's	action	procedure	with	the	new	status	and	redraws	the
widget	with	the	new	status.

Example		
See	GUI.CreateCheckBox	for	an	example	of
GUI.SetCheckBox.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.SetCheckBox,	not	by	calling	SetCheckBox.

See	also		 GUI.CreateCheckBox.

GUI.SetColor Part	of	GUI	module

Syntax		 GUI.SetColor	(widgetID	:	int,	clrNumber	:	int)

Description		

The	GUI.SetColor	procedure	is	used	buttons	to	change	the	color	of	a
button.	The	color	is	specified	by	the	clrNumber	parameter.	The	edges	of
the	button	are	a	darker	version	of	the	color	specified	by	clrNumber
general	you	should	use	brighter	colors	for	buttons.

Example		

This	program	displays	three	buttons	with	different	colors.

								import	GUI

								procedure	DoNothing

								end	DoNothing

								var	b1	:=	GUI.CreateButton	(100,	100,	0,	"Push	Me",	

								GUI.SetColor	(b1,	brightred)

								var	b2	:=	GUI.CreateButton	(100,	140,	0,	"Push	Me",	

								GUI.SetColor	(b2,	brightgreen)

								var	b3	:=	GUI.CreateButton	(100,	180,	0,	"Push	Me",	

								GUI.SetColor	(b3,	brightblue)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.SetColor
not	by	calling	SetColor.

GUI.SetDefault Part	of	GUI	module

Syntax		 GUI.SetDefault	(widgetID	:	int,	default	:	boolean)

Description		

Sets	the	"default	status"	of	a	button	specified	by	widgetID.	If	a
button	is	the	default	button,	then	it	is	drawn	with	a	heavy	outline
and	it	is	activated	when	the	user	presses	ENTER.

Only	one	button	can	be	the	default	button	per	window.	If	a	button
is	set	to	be	the	default	button,	then	the	previous	default	button	has
its	"default	status"	removed.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	procedures	by	calling
GUI.SetDefault,	not	by	calling	SetDefault.

See	also		 GUI.CreateButton.

GUI.SetDisplayWhenCreated Part	of	GUI	module

Syntax		 GUI.SetDisplayWhenCreated	(display	:	boolean)

Description		

By	default,	whenever	a	widget	is	created	with	a	GUI.Create…	procedure,
the	widget	instantly	appears.	Sometimes,	this	is	not	the	desired	behaviour.
For	example,	if	several	widgets	are	to	occupy	the	same	location	with	only
one	being	displayed	at	a	time,	then	it	is	desirable	not	to	have	the	widget
appear	when	first	created.

If	a	widget	is	not	displayed	when	created,	then	GUI.Show	must	be	called
to	make	the	widget	visible.

If	the	display	parameter	is	true,	then	widgets	are	displayed	immediately
upon	creation.	If	the	display	parameter	is	set	to	false,	then	the	widget	is
not	made	visible	on	creation	and	GUI.Show	must	be	called	to	display	the
widget.

Example		

The	following	program	toggles	the	visiblility	of	the	frame	when	the
button	is	pushed.	The	frame	starts	out	invisible.

								import	GUI	in	"%oot/lib/GUI"	

								View.Set	("graphics:150;100")	

								

								var	visible	:	boolean	:=	false

								var	button,	frame	:	int

								

								procedure	Toggle

												if	visible	then

																GUI.Hide	(frame)

												else

																GUI.Show	(frame)

												end	if

												visible	:=	not	visible

								end	Toggle

								

								button	:=	GUI.CreateButton	(25,	40,	0,	"Toggle	Frame",	

								GUI.SetDisplayWhenCreated	(false)

								frame	:=	GUI.CreateFrame	(10,	10,	140,	90,	0)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetDisplayWhenCreated,	not	by	calling	SetDisplayWhenCreated

GUI.SetEchoChar Part	of	GUI	module

Syntax		 GUI.SetEchoChar	(widgetID	:	int,	echoChar	:	char)

Description		

The	GUI.SetEchoChar	procedure	is	used	with	text	fields,	especially
when	using	a	text	field	to	input	a	password.	When	the
GUI.SetEchoChar	is	called	with	a	text	field,	any	character	entered
into	the	text	field	will	appear	as	the	character	specified	by	inputChar

This	allows	you	to	use	the	text	field	to	enter	a	password.	The	characters
that	the	user	types	will	be	echoed	with	the	character	specified	by
inputChar	(often	an	asterisk).

Example		

This	program	displays	a	text	field.	As	the	user	enters	characters,	each
character	is	represented	as	a	'*'.	When	the	user	enters	return,	the
program	exits	after	displaying	the	actual	text	entered	into	the	text	field.

								import	GUI

								procedure	EchoString	(s	:	string)

												put	"You	entered	\"",	s,	"\""

												GUI.Quit

								end	EchoString

								var	tf	:=	GUI.CreateTextField	(10,	100,	100,	"",	

								GUI.SetEchoChar	(tf,	'*')

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Details		

Note	that	the	echoChar	argument	to	GUI.SetEchoChar	must	be	a
character,	not	a	string.	This	means	the	character	should	be	enclosed	in
single	quote	marks	('),	not	double	quotes	(").

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetEchoChar,	not	by	calling	SetEchoChar.

GUI.SetKeyEventHandler Part	of	GUI	module

Syntax		
GUI.SetKeyEventHandler	(
				keyEventHandler	:	procedure	x	(ch	:	char))

Description		

Sets	the	new	default	keystroke	event	handler.	The	keyEventHandler
the	name	of	a	procedure	that	is	called	every	time	GUI.ProcessEvent
there	is	a	keystroke	which	is	not	handled	by	any	widget.	The	ch	parameter	in	the
keyEventHandler	is	the	keystroke	typed	by	the	user.

This	procedure	is	often	used	to	allow	for	more	than	one	shortcut	character	for	a
given	button.

Example		

The	following	program	draws	a	star	or	quits	depening	on	the	button.	The	Draw
Star	button	can	be	activated	by	clicking	on	it	or	typing	'D',	'd',	'S',	's'	or	Ctrl+S.
The	Quit	button	can	be	activate	by	typing	'Q',	'q'	or	Ctrl+Q.	The	Draw	Star	button
is	also	the	default	button.	It	is	activated	whenever	the	user	presses	ENTER.

								import	GUI

								View.Set	("graphics:220;200")

								procedure	DrawStar

												Draw.FillStar	(25,	40,	175,	190,	Rand.Int	(10,	15))

								end	DrawStar

								

								procedure	KeyHandler	(ch	:	char)

												if	ch	=	'q'	or	ch	=	'^Q'	then

																Draw.Cls

																GUI.Quit

												elsif	ch	=	'd'	or	ch	=	'^d'	or	ch	=	'S'	or	ch

																DrawStar

												end	if

								end	KeyHandler

								

								GUI.SetKeyEventHandler	(KeyHandler)

								var	button	:	int	:=	GUI.CreateButtonFull	(5,	5,	100,	"Draw	Star",

												DrawStar,	0,	'D',	true)

								var	quitButton	:	int	:=	GUI.CreateButtonFull	(115,	5,	100,	"Quit",	

												GUI.Quit,	0,	'Q',	false)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Exported	qualified.

Status		
This	means	that	you	can	only	call	the	function	by	calling
GUI.SetKeyEventHandler,	not	by	calling	SetKeyEventHandler.

See	also		 GUI.ProcessEvent.

GUI.SetLabel Part	of	GUI	module

Syntax		 GUI.SetLabel	(widgetID	:	int,	text	:	string)

Description		

Changes	the	text	of	a	widget	specified	by	widgetID	to	text.	This
procedure	can	accept	a	button,	check	box,	radio	button,	label,	or	a
labelled	frame	widget	as	the	widgetID	parameter.

In	most	cases,	if	the	text	will	not	fit	in	the	widget's	current	size,	the
widget	will	be	resized	to	fit	the	text.	If	the	widget	was	made	larger
to	fit	the	text	and	then	the	text	is	changed,	the	widget	will	be	resized
as	appropriate	for	the	original	width	specified	and	the	new	text.

Example		

The	following	program	changes	the	text	in	the	button	whenever	a
keystroke	occurs.	When	the	text	is	changed	back	to	"Quit",	the
button	assumes	a	width	of	100	again.

								import	GUI	in	"%oot/lib/GUI"

								View.Set	("graphics:220;50")

								

								var	short	:	boolean	:=	true

								var	button	:	int

								

								procedure	KeyHandler	(ch	:	char)

												if	short	then

																GUI.SetLabel	(button,	"Press	This	Button	to	Quit")

												else

																GUI.SetLabel	(button,	"Quit")

												end	if

												short	:=	not	short

								end	KeyHandler

								

								GUI.SetKeyEventHandler	(KeyHandler)

								button	:=	GUI.CreateButton	(10,	5,	100,	"Quit",	

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetLabel,	not	by	calling	SetLabel.

See	also		

GUI.CreateButton,	GUI.CreateCheckBox,
GUI.CreateRadioButton,	GUI.CreateLabel,	and
GUI.CreateLabelledFrame.

GUI.SetMouseEventHandler Part	of	GUI	module

Syntax		
GUI.SetMouseEventHandler	(
				mouseEventHandler	:	procedure	x	(mx,	my	:	int))

Description		

Sets	the	new	default	mouse	event	handler.	The	mouseEventHandler
parameter	is	the	name	of	a	procedure	that	is	called	every	time
GUI.ProcessEvent	is	called	and	there	is	a	mouse	button	down	which	is
not	handled	by	any	widget.	The	mx	and	my	parameters	in	the
mouseEventHandler	are	the	location	of	mouse	when	the	button	was
pressed.

This	procedure	is	used	by	programs	to	allow	for	mouse	input	in	a
program	that	uses	widgets.

This	is	a	program	that	allows	the	user	to	place	stars	on	the	screen.	The
menu	bar	allows	the	user	to	quit	the	program	at	any	time.	The	user	can
also	toggle	the	appearance	of	the	menu	bar	by	pressing	any	key.

								import	GUI

								

								var	starX,	starY,	starColor	:	array	1	..	100	of	int

								var	numStars	:	int	:=	0

								var	menuVisible	:	boolean	:=	true

								

								procedure	DrawStar	(i	:	int)

												if	menuVisible	then

																View.ClipSet	(0,	0,	maxx,	

																				maxy		GUI.GetMenuBarHeight)

												end	if

												Draw.FillStar	(starX	(i)		20,	starY	(i)		20,	

																starY	(i)	+	20,	starColor	(i))				View.ClipOff

								end	DrawStar

								

								procedure	Redraw

												for	i	:	1	..	numStars

																DrawStar	(i)

												end	for

												Text.Locate	(maxrow,	1)

												put	"Press	any	key	to	toggle	menu	bar"	..

								end	Redraw

								

								procedure	KeyHandler	(ch	:	char)

Example		 												if	menuVisible	then

																GUI.HideMenuBar				else

																GUI.ShowMenuBar

												end	if

												menuVisible	:=	not	menuVisible

												Redraw

								end	KeyHandler

								

								procedure	MouseHandler	(x,	y	:	int)

												if	numStars	=	100	then

																Text.Locate	(maxrow,	1)

																put	"Maximum	number	of	stars	exceeded!"	..

																return

												end	if

												numStars	+=	1

												starX	(numStars)	:=	x

												starY	(numStars)	:=	y

												starColor	(numStars)	:=	Rand.Int	(9,	15)

												DrawStar	(numStars)

								end	MouseHandler

								

								var	menu	:	int	:=	GUI.CreateMenu	("File")

								var	menuItem	:	int	:=	GUI.CreateMenuItemFull	("Quit",	

												GUI.Quit,	'^Q',	false)

								GUI.SetKeyEventHandler	(KeyHandler)

								GUI.SetMouseEventHandler	(MouseHandler)

								Redraw

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetMouseEventHandler,	not	by	calling
SetMouseEventHandler.

See	also		 GUI.ProcessEvent.

GUI.SetNullEventHandler Part	of	GUI	module

Syntax		
GUI.SetNullEventHandler	(nullHandler	:	procedure	x
())

Description		

Sets	the	new	null	event	handler.	The	nullHandler	parameter	is	the
name	of	a	procedure	that	is	called	every	time	GUI.ProcessEvent	is
called	and	there	are	no	mouse	button	presses	or	keystrokes	to	be
processed.

This	is	used	by	programs	that	need	to	call	subprograms	often,	but
do	not	wish	to	interrupt	the	action	of	user	widgets.

Example		

The	following	program	has	a	Quit	button.	When	no	widgets	are
being	processed,	a	clock	in	the	corner	is	updated.

								import	GUI

								View.Set	("graphics:220;50")

								

								var	oldTime	:	string	:=	""

								var	button	:	int

								

								procedure	NullHandler

												var	newTime	:	string	:=	Time.Date

												newTime	:=	newTime	(11	..	*)

												if	newTime	not=	oldTime	then

																Text.Locate	(maxrow,	maxcol		9)

																put	newTime	..

																oldTime	:=	newTime

												end	if

								end	NullHandler

								

								GUI.SetNullEventHandler	(NullHandler)

								button	:=	GUI.CreateButton	(10,	5,	100,	"Quit",	

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetNullEventHandler,	not	by	calling	SetNullEventHandler

See	also		 GUI.ProcessEvent.

GUI.SetPosition Part	of	GUI	module

Syntax		 GUI.SetPosition	(widgetID,	x,	y	:	int)

Description		

Moves	a	widget	specified	by	widgetID	to	the	location	(x,	y).	If	the
widget	is	visible,	it	is	moved	immediately	to	the	new	location.	If
the	widget	is	hidden,	it	will	appear	at	the	new	location	when	the
Show	procedure	is	called.	Note	that	the	x	and	y	specified	here	are
the	same	as	in	the	Create	method.	For	example,	if	you	had
specified	a	check	box	to	be	right	justified	in	the
CreateCheckBoxFull	function,	then	(x,	y)	in	a	call	to	SetPosition
would	specify	the	lower-right	corner	as	opposed	to	the	lower-left
corner.

Example		

The	following	program	moves	the	button	every	time	the	button	is
pressed.

								import	GUI	in	"%oot/lib/GUI"

								

								var	button	:	int

								

								procedure	MoveButton

												var	newX,	newY	:	int

												newX	:=	Rand.Int	(0,	maxx		GUI.GetWidth	(button

												newY	:=	Rand.Int	(0,	maxy		GUI.GetHeight	(button

												GUI.SetPosition	(button,	newX,	newY)

								end	MoveButton

								

								button	:=	GUI.CreateButton	(100,	100,	0,	"Move	Button",	

												MoveButton)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetPosition,	not	by	calling	SetPosition.

GUI.SetPositionAndSize Part	of	GUI	module

Syntax		
GUI.SetPositionAndSize	(widgetID,	x,	y	:	int,	
width,	height	:	int)

Description		

Changes	the	position	and	size	of	the	widget	specified	by	widgetID
simultaneously.	The	x,	y,	width	and	height	parameters	have	the
same	meaning	as	in	the	GUI.Create	function	for	that	widget.	Any
widget	except	a	menu	or	a	menu	item	can	be	resized,	although	for
some	widgets,	the	width	or	height	parameter	may	be	ignored.

GUI.SetPositionAndSize	works	the	same	way	as	the
GUI.SetPosition	and	GUI.SetSize	procedures.

Example		

The	following	program	moves	and	resizes	the	button	every	time
the	button	is	pressed.

								import	GUI	in	"%oot/lib/GUI"

								

								var	button,	minWidth,	minHeight		:	int

								

								procedure	MoveButton

												var	newX,	newY,	newWidth,	newHeight		:	int

												newWidth	:=	max	(minWidth,	Rand.Int	(0,	200))

												newHeight	:=	max	(minHeight,	Rand.Int	(0,	100))

												newX	:=	Rand.Int	(0,	maxx		newWidth)

												newY	:=	Rand.Int	(0,	maxy		newHeight)

												GUI.SetPositionAndSize	(button,	newX,	newY,	

																newWidth,	newHeight)

								end	MoveButton

								

								button	:=	GUI.CreateButton	(100,	100,	0,	"Move	Button",	

												MoveButton)

								minHeight	:=	GUI.GetHeight	(button)

								minWidth	:=	GUI.GetWidth	(button)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

GUI.SetPositionAndSize,	not	by	calling	SetPositionAndSize.

GUI.SetScrollAmount Part	of	GUI	module

Syntax		
GUI.SetScrollAmount	(widgetID	:	int,
arrowInc,	pageInc,	thumbSize	:	int)

Description		

Sets	a	scroll	bar's	arrow	increment,	page	increment	and	thumb	size.	Redraws	the	scroll	bar	to	take	into	account	the	new	thumb	size.
The	widgetID	specifies	the	scroll	bar	to	be	changed.	The	arrowInc	parameter	is	the	new	arrow	increment	(the	amount	the	scroll	bar's
value	is	changed	when	the	scroll	arrows	are	pressed).	A	value	of	1	means	to	use	the	previously-defined	arrow	increment	value.	The
pageInc	parameter	specifies	the	new	page	increment	(the	amount	the	scroll	bar's	value	is	changed	when	the	user	clicks	in	the	page
up/down	section	of	the	scroll	bar).	A	value	of	1	means	to	use	the	previously-defined	page	increment	value.	The	
specifies	he	new	thumb	size.	See	the	scroll	bar	explanation	for	more	detail	on	a	scroll	bar's	thumb	size.	A	value	of	1	means	to	use	the
previously-defined	thumb	size.

The	following	program	displays	an	image	in	a	canvas	in	a	window.	If	the	image	is	larger	than	the	canvas,	scroll	bars	to	the	bottom	and
left	are	used	to	allow	the	user	to	see	the	entire	image.	A	text	field	allows	users	to	load	additional	images	whenever	the	"Load	File"
button	is	pressed.

								%	The	"ScrollPic2"	program.

								import	GUI	in	"%oot/lib/GUI"

								

								%	The	maximum	width/height	of	the	canvas.

								const	maxSize	:	int	:=	220	

								const	leftBorder	:	int	:=	15				%	Left	margin.

								const	bottomBorder	:	int	:=	25		%	Bottom	margin.

								

								var	h,	v	:	int										%	The	scroll	bars.

								var	canvas	:	int												%	The	canvas.

								var	pic	:	int															%	The	picture.

								var	fileNameField	:	int					%	The	file	name	text	field.

								var	errorLabel	:	int								%	The	error	message	label.

								var	loadButton	:	int								%	The	"Load	Picture"	button.

								

								procedure	ScrollPic	(ignore	:	int)

												%	Get	the	current	value	of	the	scroll	bars.

												var	x	:	int	:=	GUI.GetSliderValue	(h)

												var	y	:	int	:=	GUI.GetSliderValue	(v)

												GUI.PicDraw	(canvas,	pic,	x,	y,	picCopy)

								end	ScrollPic

								

								procedure	LoadFile	(fileName	:	string)

												var	picWidth,	picHeight,	canvasWidth,	canvasHeight

												var	newPic	:	int	:=	Pic.FileNew	(fileName)

												if	newPic	<=	0	then

																GUI.SetLabel	(errorLabel,	

Example		

																				"Error	loading	picture:	"	+	Error.LastMsg

																GUI.SetSelection	(fileNameField,	1,	1)

																return

												else

																GUI.SetLabel	(errorLabel,	"")

																pic	:=	newPic

												end	if

												picWidth	:=	Pic.GetWidth	(pic)

												picHeight	:=	Pic.GetHeight	(pic)

												canvasWidth	:=	min	(picWidth,	maxSize)

												canvasHeight	:=	min	(picHeight,	maxSize)

												%	Hide	the	canvas	and	the	three	items,	readjust	them	

												%	and	then	show	them.

												GUI.Hide	(canvas)

												GUI.Hide	(h)

												GUI.Hide	(v)

												GUI.SetSize	(canvas,	canvasWidth,	canvasHeight

												GUI.SetSliderSize	(h,	canvasWidth	+	1)

												GUI.SetPosition	(v,	15	+	canvasWidth,

																bottomBorder	+	GUI.GetScrollBarWidth	-	1)

												GUI.SetSliderSize	(v,	canvasHeight	+	1)

												GUI.SetSliderMinMax	(h,	0,	picWidth		1)

												GUI.SetSliderMinMax	(v,	0,	picHeight		1)

												GUI.SetScrollAmount	(h,	3,	100,	canvasWidth)

												GUI.SetScrollAmount	(v,	3,	100,	canvasHeight

												GUI.SetSliderValue	(h,	0)

												GUI.SetSliderValue	(v,	picHeight)

												GUI.Show	(canvas)

												GUI.Show	(h)

												GUI.Show	(v)

												ScrollPic	(0)

								end	LoadFile

								

								procedure	LoadFileButton

												var	fileName	:	string	:=	GUI.GetText	(fileNameField

												LoadFile	(fileName)

								end	LoadFileButton

								

								View.Set	("graphics:265;295")

								

								%	We	place	the	canvas	first	and	everything	else	is	placed	

								%	relative	to	the	canvas.

								canvas	:=	GUI.CreateCanvas	(leftBorder,	

												bottomBorder	+	GUI.GetScrollBarWidth,	maxSize

												GUI.GetY	(canvas)		GUI.GetScrollBarWidth,

												GUI.GetWidth	(canvas),	0,	100,	0,	ScrollPic,	3,	100,	

								v	:=	GUI.CreateVerticalScrollBarFull	(

												GUI.GetX	(canvas)	+	GUI.GetWidth	(canvas),

												GUI.GetY	(canvas),	GUI.GetHeight	(canvas),	0,	100,

												100,	ScrollPic,	3,	100,	maxSize)

								fileNameField	:=	GUI.CreateTextField	(GUI.GetX	(

												GUI.GetY	(canvas)	+	GUI.GetHeight	(canvas)	+	10,	150,	"",	

												LoadFile)

								loadButton	:=	GUI.CreateButton	(GUI.GetX	(fileNameField

												GUI.GetWidth	(fileNameField)	+	20,	

												GUI.GetY	(fileNameField),	0,	"Load	File",	LoadFileButton

								errorLabel	:=	GUI.CreateLabel	(GUI.GetX	(canvas),	5,	"")

								

								%	Set	the	initial	picture	and	return	if	it	is	not	found.

								GUI.SetText	(fileNameField,	"Forest.bmp")

								LoadFileButton

								if	pic	=	0	then

												return

								end	if

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								

								

Status		
Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.SetScrollAmount

See	also		 GUI.CreateHorizontalScrollBar	and	GUI.CreateVerticalScrollBar

GUI.SetScrollOnAdd Part	of	GUI	module

Syntax		 GUI.SetScrollOnAdd	(widgetID	:	int,	scrollOnAdd	:	boolean

Description		

The	GUI.SetScrollOnAdd	procedure	allows	you	to	specify	whether	a	text	box
scrolls	to	the	bottom	of	the	text	when	new	text	is	added	(the	default	behaviour).
By	calling	this	procedure	with	scrollOnAdd	set	to	false,	the	text	box	will	not
scroll	unless	the	user	manipulates	the	text	box's	scroll	bars.

Example		

This	program	displays	the	contents	of	a	file	in	a	text	box.	After	the	file	is
displayed,	the	top	line	in	the	text	box	will	be	the	first	line	in	the	file.

								import	GUI	

								View.Set	("graphics:300;300")	

								

								const	fileNameToBeViewed	:	string	:=	"TextBxs.DEM"

								var	textBox	:	int							%	The	Text	Field	ID.

								var	title	:	int					%	The	label	for	the	title.

								var	f	:	int									%	The	stream	number	of	the	file.

								var	line	:	string							%	Lines	to	be	read	from	the	file.

								

								%	Open	the	file.

								open	:	f,	fileNameToBeViewed,	get

								if	f	=	0	then

												put	"Unable	to	open	"	+	fileNameToBeViewed	+	"	:	",	

												return

								end	if

								

								%	Set	background	color	to	gray	for	indented	text	box.

								GUI.SetBackgroundColor	(gray)

								

								%	Create	the	title	label	and	text	box.

								title	:=	GUI.CreateLabelFull	(20,	280,	fileNameToBeViewed

												GUI.CENTER,	0)

								textBox	:=	GUI.CreateTextBoxFull	(10,	10,	280,	265,	

												GUI.INDENT,	0)

								

	 GUI.SetScrollOnAdd	(textBox,	false)

								%	Read	the	file	and	place	it	in	the	text	box.

								loop

												exit	when	eof	(f)

												get	:	f,	line	:	*

												GUI.AddLine	(textBox,	line)

								end	loop

								

								close	:	f			%	Close	the	file.

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetScrollOnAdd,	not	by	calling	SetScrollOnAdd.

GUI.SetSelection Part	of	GUI	module

Syntax		 GUI.SetSelection	(widgetID,	fromSel,	toSel	:	int)

Description		

Sets	the	selected	text	in	the	text	field	specified	by	widgetID.	The	value	of
the	fromSel	and	toSel	parameters	indicate	the	characters	where	the	selection
will	begin	and	end.	For	example,	if	the	text	was	"Hello	there",	setting
fromSel	to	2	and	toSel	to	5	would	select	"ell".	Setting	fromSel	and	toSel
automatically	selects	the	entire	text.

The	fromSel	parameter	specifies	the	start	of	the	selection.	This	ranges	from
1	(before	the	first	character)	to	the	number	of	characters	in	the	text	+	1	(after
the	last	character).	A	value	of	1	for	both	fromSel	and	toSel	selects	the	entire
text.

The	toSel	parameter	specifies	the	end	of	the	selection.	This	ranges	from	1
(before	the	first	character)	to	the	number	of	characters	in	the	text	+	1	(after
the	last	character).	A	value	of	1	for	both	fromSel	and	toSel	selects	the	entire
text.

Example		

The	following	program	allows	the	user	to	type	into	a	text	field.	When	the
user	presses	ENTER,	it	searches	for	any	non-lowercase	text	and	if	it	finds
any,	selects	it	to	make	it	easy	for	the	user	to	correct	it.	If	all	the	input	is
lower-case	text,	the	program	terminates.

								import	GUI	in	"%oot/lib/GUI"

								

								var	textField,	lbl	:	int

								

								procedure	CheckInput	(s	:	string)

												for	i	:	1	..	length	(s)

																if	(s	(i)	<	'a'	or	'z'	<	s	(i))	and	s	(i

																				GUI.SetSelection	(textField,	i,	i	+	1)

																				return

																end	if

												end	for

												GUI.Quit

								end	CheckInput

								

								textField	:=	GUI.CreateTextField	(100,	100,	200,	"",	

								lbl	:=	GUI.CreateLabelFull	(100	+	GUI.GetWidth	(

												100	+	GUI.GetHeight	(textField),	

												"Only	Allows	Lower	Case	Letters",	0,	0,	

												GUI.CENTER	+	GUI.BOTTOM,	0)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

								

								GUI.SetLabel	(lbl,	"Program	Finished!")

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.SetSelection
not	by	calling	SetSelection.

See	also		 GUI.CreateTextField.

GUI.SetSize Part	of	GUI	module

Syntax		 GUI.SetSize	(widgetID,	width,	height	:	int)

Description		

Changes	the	size	of	the	widget	specified	by	widgetID.	If	the
widget	is	visible,	its	size	is	changed	immediately,	otherwise	the
widget	will	appear	in	its	new	size	when	the	widget	is	next	made
visible.	Note	that	the	width	and	height	parameters	are	no
necessarily	the	actual	width	and	height	of	the	widget.	For
example,	the	TextField	widget	ignores	the	height	parameter,
calculating	the	widget's	actual	height	from	the	height	of	the	text	in
the	TextField.

Example		

The	following	program	resizes	the	button	every	time	the	button	is
pressed.

								import	GUI	in	"%oot/lib/GUI"

								

								var	button	:	int

								

								procedure	ResizeButton

												var	newWidth,	newHeight		:	int

												newWidth	:=	Rand.Int	(0,	200)

												newHeight	:=	Rand.Int	(0,	200)

												GUI.SetSize	(button,	newWidth,	newHeight)

								end	ResizeButton

								

								button	:=	GUI.CreateButton	(100,	100,	0,	"Resize	Button",	

												ResizeButton)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetSize,	not	by	calling	SetSize.

GUI.SetSliderMinMax Part	of	GUI	module

Syntax		 GUI.SetSliderMinMax	(widgetID,	min,	max	:	int)

Description		

Sets	the	minimum	and	maximum	values	of	the	slider	or	scroll	bar
specified	by	widgetID.	The	min	parameter	specifies	the	new
minimum	value	of	the	slider	or	scroll	bar.	The	max	parameter
specifies	the	new	maximum	value	of	the	slider	or	scroll	bar.	The
max	parameter	must	be	greater	than	the	min	parameter.

GUI.SetSliderMinMax	redraws	the	thumb	to	take	into	account
the	new	minimum	and	maximum.	If	the	current	value	of	the	slider
is	outside	the	new	minimum/maximum,	then	the	value	is	adjusted
appropriately.

Example		
See	GUI.SetScrollAmount	for	an	example	of
GUI.SetSliderMinMax.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetSliderMinMax,	not	by	calling	SetSliderMinMax.

See	also		

GUI.CreateHorizontalScrollBar,
GUI.CreateVerticalScrollBar,	GUI.CreateHorizontalSlider,
and	GUI.CreateVerticalSlider.

GUI.SetSliderReverse Part	of	GUI	module

Syntax		 GUI.SetSliderReverse	(widgetID	:	int)

Description		

Sets	a	slider	or	scroll	bar	specified	by	widgetID	into	(or	out	of,	if	already
into)	"reverse	mode".	Normally,	a	slider	or	scroll	bar	is	at	its	minimum
value	when	the	thumb	is	on	the	left	hand	side	(bottom	for	a	vertical	slider).
This	reverses	it,	so	the	minimum	value	is	when	the	thumb	is	at	the	right
hand	side	(top	for	vertical	sliders)	of	the	track.	Calling	this	routine	a
second	time	reverses	it	back	to	normal.	This	procedure	redraws	the	slider
to	move	the	thumb	to	its	new	location.

Example		

The	following	program	creates	two	sliders,	one	of	which	is	reversed.

								import	GUI	in	"%oot/lib/GUI"

								

								View.Set	("graphics:300;70")

								var	sBar,	sBarLabel,	reverseSBar,	reverseSBarLabel

								

								procedure	SBarMoved	(value	:	int)

												GUI.SetLabel	(sBarLabel,	intstr	(value))

								end	SBarMoved

								

								procedure	ReverseSBarMoved	(value	:	int)

												GUI.SetLabel	(reverseSBarLabel,	intstr	(value

								end	ReverseSBarMoved

								

								sBar	:=	GUI.CreateHorizontalScrollBar	(10,	10,	250,

												50,	150,	50,	SBarMoved)

								sBarLabel	:=	GUI.CreateLabel	(

												GUI.GetX	(sBar)	+	GUI.GetWidth	(sBar)	+	10,	10,	"50")

								

								reverseSBar	:=	GUI.CreateHorizontalScrollBar	(10,	40,	250,

												50,	150,	50,	ReverseSBarMoved)

								GUI.SetSliderReverse	(reverseSBar)

								reverseSBarLabel	:=	GUI.CreateLabel	(GUI.GetX	(

												GUI.GetWidth	(reverseSBar)	+	10,	40,	"50")

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

GUI.SetSliderReverse,	not	by	calling	SetSliderReverse.

See	also		
GUI.CreateHorizontalScrollBar,	GUI.CreateVerticalScrollBar,
GUI.CreateHorizontalSlider,	and	GUI.CreateVerticalSlider.

GUI.SetSliderSize Part	of	GUI	module

Syntax		 GUI.SetSliderSize	(widgetID,	length	:	int)

Description		

Changes	the	length	of	a	slider	or	scroll	bar	specified	by	widgetID
to	the	value	specified	by	the	length	parameter.	Redraws	the	slider
or	scroll	bar	and	changes	the	position	of	the	thumb	to	take	into
account	the	new	size	of	the	slider	or	scroll	bar.

Example		
See	GUI.SetScrollAmount	for	an	example	of
GUI.SetSliderSize.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetSliderSize,	not	by	calling	SetSliderSize.

See	also		

GUI.CreateHorizontalScrollBar,
GUI.CreateVerticalScrollBar,	GUI.CreateHorizontalSlider,
and	GUI.CreateVerticalSlider.

GUI.SetSliderValue Part	of	GUI	module

Syntax		 GUI.SetSliderValue	(widgetID,	value	:	int)

Description		

Sets	the	value	of	a	slider	or	scroll	bar	specified	by	widgetID	to
value.	It	moves	the	thumb	on	the	slider	or	scroll	bar	to	the
appropriate	location	and	calls	the	slider's	action	procedure	with
the	new	value.

Example		
See	GUI.SetScrollAmount	for	an	example	of
GUI.SetSliderValue.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetSliderValue,	not	by	calling	SetSliderValue.

See	also		

GUI.GetSliderValue	for	reading	a	slider	or	scroll	bar's	value.	See
also	GUI.CreateHorizontalScrollBar,
GUI.CreateVerticalScrollBar,	GUI.CreateHorizontalSlider,
and	GUI.CreateVerticalSlider.

GUI.SetText Part	of	GUI	module

Syntax		 GUI.SetText	(widgetID	:	int,	text	:	string)

Description		
Sets	the	text	of	a	text	field	specified	by	widgetID	to	text.	The	selection	is	set
to	1,	1	(i.e.	the	cursor	is	at	the	beginning	of	the	text).

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.SetText
by	calling	SetText.

Example		

The	following	program	converts	all	lower	case	input	in	the	text	field	to
upper	case	when	the	user	presses	ENTER.

								import	GUI

								

								var	textField,	lbl	:	int

								

								procedure	CheckInput	(s	:	string)

												var	newString	:	string	:=	""

												for	i	:	1	..	length	(s)

																if	'a'	<=	s	(i)	and	s	(i)	<=	'z'	then

																				newString	+=	chr	(ord	(s	(i))		32)

																else

																				newString	+=	s	(i)

																end	if

												end	for

												GUI.SetText	(textField,	newString)

												GUI.SetSelection	(textField,	1,	1)

								end	CheckInput

								

								textField	:=	GUI.CreateTextField	(100,	100,	200,	"",	

								lbl	:=	GUI.CreateLabelFull	(100	+	GUI.GetWidth	(

												100	+	GUI.GetHeight	(textField),		"Converts	to	Upper	Case",	

												0,	0,	GUI.CENTER	+	GUI.BOTTOM,	0)

								

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling	GUI.SetText
by	calling	SetText.

See	also		 GUI.CreateTextField.

GUI.SetTopLine Part	of	GUI	module

Syntax		 GUI.SetTopLine	(widgetID	:	int,	lineNum	:	int)

Description		

The	GUI.SetTopLine	procedure	scrolls	the	text	in	a	text	box	so
as	to	place	the	line	number	specified	by	lineNum	at	the	top	of	the
text	box	(if	possible).	This	is	often	used	to	scroll	the	text	back	to
the	beginning	of	the	text	box	by	assigning	a	value	of	1	to
lineNum.

Example		

This	program	displays	100	lines	of	text	in	a	text	box,	then	sets	the
text	box	to	display	line	50	at	the	top	of	the	box.

								import	GUI

								var	textBox	:	int					%	The	Text	Field	ID.

								textBox	:=	GUI.CreateTextBoxFull	(10,	10,	180,	275,

												GUI.INDENT,	0)

								GUI.SetBackgroundColor	(gray)

								%	Read	the	file	and	place	it	in	the	text	box.

								for	i	:	1	..	100

												GUI.AddLine	(textBox,	intstr	(i))

								end	for

								GUI.SetTopLine	(textBox,	50)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetTopLine,	not	by	calling	SetTopLine.

GUI.SetXOR Part	of	GUI	module

Syntax		 GUI.SetXOR	(widgetID	:	int,	xor	:	boolean)

Description		

Sets	the	"xor	mode"	of	the	canvas	specified	by	widgetID.	If	the	xor
parmeter	is	set	to	true,	the	canvas	is	set	to	xor	mode.	When	in	xor
mode,	all	the	Draw...	procedures	of	a	canvas	are	treated	as	if	the
View.Set	("xor")	statement	had	been	executed	before	the	Draw
procedure.

Example		

See	GUI.SetDisplayWhenCreated	for	an	example	of	GUI.Show.

								import	GUI	in	"%oot/lib/GUI"

								View.Set	("graphics:400;300")

								var	canvas1,	label1,	canvas2,	label2	:	int

								canvas1	:=	GUI.CreateCanvas	(10,	20,	maxx	div	2		20,	

								label1	:=	GUI.CreateLabelFull	(10,	2,	"XOR",	maxx

												GUI.CENTER,	0)

								canvas2	:=	GUI.CreateCanvas	(maxx	div	2	+	10,	20,	

												maxx	div	2		20,	maxy		30)

								label2	:=	GUI.CreateLabelFull	(maxx	div	2	+	10,	2,	"Normal",	

												maxx	div	2		20,	0,	GUI.CENTER,	0)

								

								GUI.SetXOR	(canvas1,	true)

								for	i	:	1	..	20

												var	x	:	int	:=	Rand.Int	(0,	maxx	div	2		20)

												var	y	:	int	:=	Rand.Int	(0,	maxy		20)

												var	c	:	int	:=	Rand.Int	(1,	15)

												GUI.DrawFillStar	(canvas1,	x		20,	y		20,	x	+	20,	

								end	for

								

								GUI.SetXOR	(canvas2,	false)

								for	i	:	1	..	20

												var	x	:	int	:=	Rand.Int	(0,	maxx	div	2		20)

												var	y	:	int	:=	Rand.Int	(0,	maxy		20)

												var	c	:	int	:=	Rand.Int	(1,	15)

												GUI.DrawFillStar	(canvas2,	x		20,	y		20,	x	+	20,	

								end	for

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.SetXOR,	not	by	calling	SetXOR.

See	also		 GUI.CreateCanvas.

GUI.Show Part	of	GUI	module

Syntax		 GUI.Show	(widgetID	:	int)

Description		

Shows	a	widget	specified	by	widgetID.	Used	in	conjunction	with
GUI.Hide	to	show	and	hide	widgets.	Hidden	widgets	cannot	get
events	(i.e.	respond	to	keystrokes	or	mouse	clicks).	If	an	active
text	field	(see	text	field)	is	hidden,	then	any	keystrokes	in	the
window	will	be	ignored.

In	most	cases	where	a	widget	is	to	appear,	then	disappear,	then
appear	again,	it	is	advised	to	create	the	widget	once	and	hide	it
until	it	is	to	appear,	whereupon	GUI.Show	is	called.	When	the
user	is	finished	with	the	widget,	the	widget	is	hidden	using
GUI.Hide.	This	saves	the	overhead	of	creating	and	disposing	of
the	same	widget	several	times.

Example		
See	GUI.SetDisplayWhenCreated	for	an	example	of
GUI.Show.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.Show,	not	by	calling	Show.

See	also		 GUI.Hide.

GUI.ShowMenuBar Part	of	GUI	module

Syntax		 GUI.ShowMenuBar

Description		 Shows	the	menu	bar	in	the	selected	window.

Example		
See	GUI.SetMouseEventHandler	for	an	example	of
GUI.HideMenuBar.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
GUI.ShowMenuBar,	not	by	calling	ShowMenuBar.

See	also		 GUI.HideMenuBar.	See	also	GUI.CreateMenu.

GUI.ShowWindow Part	of	GUI	module

Syntax		 GUI.ShowWindow	(window	:	int)

Description		

Hides	a	window	with	widgets	in	it.	This	procedure	makes	certain	that	the	GUI
Library	recognizes	that	the	window	no	longer	visible.	This	procedure	will	call
Window.Hide,	so	there	is	no	need	for	the	user	to	do	so.

Example		

The	program	opens	up	a	window	with	two	buttons.	If	the	button	labelled	"Close
and	Open"	is	pressed,	the	window	is	closed	and	a	new	window	with	two	buttons	is
opened	in	a	random	location	on	the	screen.

								import	GUI

								var	windowA,	windowB	:	int

								var	buttonA,	buttonB,	buttonQuit	:	int

	 var	backToMainA,	backToMainB	:	int

								procedure	ShowWindowA

												GUI.HideWindow	(defWinID)

												GUI.ShowWindow	(windowA)

								end	ShowWindowA

								procedure	ShowWindowB

												GUI.HideWindow	(defWinID)

												GUI.ShowWindow	(windowB)

								end	ShowWindowB

								procedure	ShowMain

												GUI.HideWindow	(Window.GetActive)

												GUI.ShowWindow	(defWinID)

								end	ShowMain

								View.Set	("graphics:280;100,nobuttonbar")

								%	Place	the	buttons	in	the	main	window

								buttonA	:=	GUI.CreateButton	(10,	10,	0,	"Show	Window	A",	

								buttonB	:=	GUI.CreateButton	(150,	10,	0,	"Show	Window	B",	

								buttonQuit	:=	GUI.CreateButton	(100,	60,	0,	"Quit",	

								windowA	:=	Window.Open		("title:Window	A,graphics:150;100,position:bottom;left")

								backToMainA	:=	GUI.CreateButton	(20,	20,	0,	"Back	to	Main",	

								Window.Hide	(windowA)

								windowB	:=	Window.Open		("title:Window	B,graphics:150;100,position:bottom;right")

								backToMainB	:=	GUI.CreateButton	(20,	20,	0,	"Back	to	Main",	

								Window.Hide	(windowB)

								loop

												exit	when	GUI.ProcessEvent

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	GUI.ShowWindow
by	calling	ShowWindow.

See	also		
GUI.HideWindow	for	hiding	a	window	with	widgets	in	it.	See	also
GUI.CloseWindow	for	closing	a	window	with	widgets	in	it.

handler exception	handler

Dirty

Syntax		

A	exceptionHandler	is:

	 handler	(id)
	 	 statementsAndDeclarations
	 end	handler

Description		

An	exception	handler	is	an	optional	block	of	statements	and
declarations	in	a	subprogram	(or	process).	It	is	activated	when	the
program	(or	process)	fails.	This	occurs,	for	example	when
dividing	by	zero.

Example		

This	program	parses	the	input	stream	using	a	stack.	If	the	stack
overflows	(its	top	exceeds	its	maximum),	a	quit	statement	in	the
push	procedure	aborts	the	parsing	and	gives	control	to	the
exception	handler	in	the	parse	procedure.	The	parse	procedure
calls	parseExpn	which	calls	push.	If	push	overflows	the	stack,	it
executes	a	quit	and	control	is	passed	to	the	exception	handler	in
the	parse	procedure.	The	interrupted	procedures	(parseExpn	and
push)	are	terminated	and	their	local	variables	are	deleted.

								const	stackOverflow	:=	500

								const	maxTop	:=	100

								var	top	:	0	..	maxTop	:=	0

								var	stack	:	array	1	..	maxTop	of	int

								

								procedure	push	(i	:	int)

												if	top	=	maxTop	then

																quit	:	stackOverflow

												end	if

												top	:=	top	+	1

												stack	(top)	:=	i

								end	push

								…

								procedure	parse

												handler	(exceptionNumber)

																put	"Failure	number	",	exceptionNumber

																case	exceptionNumber	of

																label	stackOverflow	:

																				put	"Stack	has	overflowed!!"

																…	other	exceptions	handled	here	…

																label	:									%	Unexpected	failures

																				quit	>						%	Pass	exception	further

																end	case

												end	handler

												parseExpn											%	Eventually	push	is	called

								end	parse

See	the	quit	statement	for	an	explanation	of	its	quitReason
(stackOverflow	in	the	first	quit	statement	above)	and	its
guiltyParty	(>	in	the	second	quit	statement,	meaning	the
exception	is	due	to	causes	outside	of	this	handler).

An	exception	handler	can	appear	only	in	the	body	of	a
subprogram	(or	process),	just	preceding	the	declarations	and
statements.	The	form	of	a	procedure	is:

								procedure	[pervasive]	id

												[([paramDeclaration	{,paramDeclaration	}])]

												[import	[[var]	id	{,	[var]	id	}]]

												[pre	trueFalseExpn]

												[init	id	:=	expn	{,	id	:=	expn	}]

												[post	trueFalseExpn]

												[exceptionHandler]

												statementsAndDeclarations

								end	id

Exactly	the	same	declarations	and	statements	can	appear	in	a
handler	as	can	appear	in	the	subprogram	body	following	the
handler.	In	the	absence	of	exceptions,	handlers	have	no
observable	effect.	A	particular	handler	is	activated	(it	becomes
ready	to	handle	an	exception)	when	it	is	encountered	during
execution.	It	remains	active	until	the	subprogram	(or	process)
containing	it	has	completed,	or	the	handler	is	given	control.
Activation	of	a	handler	when	a	previous	handler	is	already	active
will	cause	exceptions	to	be	passed	to	the	newly-activated	handler.
In	other	words,	handlers	have	a	dynamic	scope	that	begins	when
the	exception	handler	is	encountered	and	ends	when	the
subprogram	(or	process)	containing	the	handler	has	terminated	or
the	handler	is	given	control.

Details		

When	a	handler	is	given	control,	it	becomes,	in	effect,	a
replacement	for	the	declarations	and	statements	following	it.	If
the	handler	is	in	a	function,	it	must	terminate	with	a	result
statement	or	with	a	quit.	If	the	handler	is	in	a	procedure	(or
process),	the	handler	must	terminate	with	a	return,	a	quit,	or	by
encountering	the	end	of	the	handler	(which	is	equivalent	to	a
return).

When	a	handler	terminates	with	a	result	or	return	statement	(or
by	reaching	the	end	of	a	procedure's	handler),	the	subprogram's
post	condition	(if	any)	must	be	true.	A	quit	statement	does	not
need	to	establish	the	post	condition.

Programming	with	exception	handlers	easily	leads	to
incomprehensible	software,	due	to	the	difficulty	of	keeping	track
of	the	flow	of	control.	One	of	the	most	insidious	situations	is
when	an	exception	occurs	in	a	module,	class	or	monitor	and	is
propagated	outside	of	the	unit.	This	can	leave	the	contained	data
in	an	inconsistent	state;	in	the	case	of	a	monitor,	it	is	left	locked
forever.	To	avoid	this	possibility,	you	can	use	a	handler	in	each
exported	subprogram.	If	an	exception	in	a	process	is	not	handled,
the	entire	program	is	aborted.	If	an	implementation	allocates
dynamic	arrays	on	the	heap,	an	exception	may	prevent	the
deallocation	of	such	an	array.

Without	exception	handling,	a	program	executes	according	to	the
language	definition	or	else	is	aborted.	If	an	exception	handler	is
active,	instead	of	aborting,	control	is	given	to	the	handler.	The
quitNumber	for	a	system-detected	failure	is	implementation-
dependent.	There	is	a	file	"%exceptions"	which	lists	these
numbers.	The	user	program	can	simulate	a	system	exception	by
doing	a	quit	with	the	corresponding	number.

If	the	user	turns	off	checking	explicitly,	the	system	may	not	detect
failures.	In	some	cases	the	failure	may	yield	incorrect	data	or
arbitrary	behavior.

Some	exceptions	are	unpredictable	or	implementation-dependent.
For	example,	in	x	:=	24	div	i	+	24	/	i,	if	i	is	zero,	the	exception

could	be	either	an	integer	or	a	real	division	by	zero,	because	the
order	or	evaluation	is	implementation-dependent.

hasch has	character	function

Syntax		 hasch	:	boolean

Description		
The	hasch	procedure	is	used	to	determine	if	there	is	a	character
that	has	been	typed	but	not	yet	been	read.

Example		

This	program	simulates	the	rolling	of	a	pair	of	dice	until	the	user
pressed	the	keyboard.

								put	"Press	any	key	to	stop	the	dice	rolling"

								var	die1,	die2	:	int

								var	ch	:	string	(1)

								loop

												exit	when	hasch

												randint	(die1,	1,	6)

												randint	(die2,	1,	6)

												locate	(1,	1)

												put	"You	rolled	",	die1	+	die2

								end	loop

												

								getch	(ch)				%	Discard	the	character

Execute		

Details		

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

If	there	is	the	possibility	that	there	are	already	keystrokes	in	the
keyboard	buffer,	the	Input.Flush	command	can	be	used	to	flush
the	keyboard	buffer	(remove	all	keystrokes	from	the	buffer)
before	entering	the	loop	to	check	for	input.

getch	and	getchar.

See	also		
See	also	the	Input.Flush	command	for	flushing	the	keyboard
buffer.

See	also	predefined	unit	Input.

id (identifier)	name	of	an	item	in	a	program

Description		

Variables,	constants,	types,	procedures,	etc.	in	Turing	programs
are	given	names	such	as	incomeTax,	x,	and	height.	These	names
are	called	identifiers	(ids).

An	identifier	must	start	with	a	letter	(large	or	small)	or	an
underscore	(_)	and	can	contain	up	to	50	characters,	each	of
which	must	be	a	letter,	a	digit	(0	to	9)	or	an	underscore	(_).
Large	and	small	letters	are	considered	distinct,	so	that	A	and	a	are
different	names.	This	differs	from	Pascal	where	large	and	small
letters	in	names	are	equivalent.

Every	character	in	a	name	is	significant	in	distinguishing	one
name	from	another.

By	convention,	words	that	make	up	an	identifier	are	capitalized
(except	the	first	one),	as	in	incomeTax	and	justInTime.

An	item	in	a	Turing	program	cannot	be	given	the	same	name	as	a
keyword	such	as	get	or	as	a	reserved	word	such	as	index.	See
Appendix	A	for	a	list	of	keywords	and	reserved	words.	As	well,
there	are	some	identifiers	that	are	used	by	the	Turing	error
recovery	procedures	and	are	thus	unavailable	for	use	as
identifiers.	Specifically,	they	are:	endif,	elseif,	endloop	and
endfor.

#if used	for	conditional	compilation

Syntax		

A	conditional	compilation	#if	has	the	form:

	 #if	expn	then
	 	 …	any	source	text	…
	 {	#elsif	expn	then
	 	 …	any	source	text	…	}
	 [#else
	 	 …	any	source	text	…]
	 #end	if

Description		

An	#if	construct	supports	compile	time	selection	of	sections	of
source	text	to	make	up	a	program	(or	unit	of	a	program),	in	other
words	conditional	compilation.	Any	arbitrary	source	text
(characters)	can	be	selected.

Each	of	the	selecting	expressions	(expns)	have	the	form	of	a
boolean	expression,	with	the	use	of	the	operators	and,	or	and	not
(but	not	=>)	and	parentheses.	The	short	forms	&	and	~	are
supported.	The	operands	of	the	expressions	must	be	preprocessor
flags,	which	are	set	by	a	system-	dependent	mechanism	not
described	here.	A	flag	is	considered	to	be	true	if	it	is	explicitly
set.	If	it	is	not	explicitly	set,	it	is	considered	false.

Unlike	other	parts	of	the	language,	the	#if,	#elsif,	#else	and	#end
if	constructs	are	not	free	format.	Specifically,	they	must	be	placed
by	themselves	on	a	single	line.

Example		

A	pair	of	declarations	is	chosen	if	both	stats	and	debug	are	set,
otherwise	the	put	statement	is	selected.	The	selected	part
becomes	part	of	the	program	and	the	other	parts	are	ignored.

								#if	stats	and	debug	then

												var	count	:	array	1	..	5	of	real

												var	message	:	string

								#else

												put	"Debugging	message"

								#end	if

if statement

Syntax		

An	ifStatement	is:

	 if	trueFalseExpn	then
	 	 statementsAndDeclarations
	 {	elsif	trueFalseExpn	then
	 	 statementsAndDeclarations	}
	 [else
	 	 statementsAndDeclarations]
	 end	if

Description		

An	if	statement	is	used	to	choose	among	a	set	of	statements	(and
declarations).	One	set	(at	most)	is	chosen	and	executed	and	then
execution	continues	just	beyond	end	if.

The	expressions	(the	trueFalseExpressions)	following	the
keyword	if	and	each	elsif	are	checked	one	after	the	other	until	one
of	them	is	found	to	be	true,	in	which	case	the	statements	(and
declarations)	following	the	corresponding	then	are	executed.	If
none	of	these	expressions	evaluates	to	true,	the	statements
following	else	are	executed.	If	no	else	is	present	and	none	of	the
expressions	are	true,	no	statements	are	executed	and	execution
continues	following	the	end	if.

Example		

Output	a	message	based	on	value	of	mark.

								if	mark	>=	50	then

												put	"You	pass"

								else

												put	"You	fail"

								end	if

Output	A,	B,	C,	D	or	F	depending	on	mark.

								if	mark	>=	80	then

												put	"A"

								elsif	mark	>=	70	then

Example		
												put	"B"

								elsif	mark	>=	60	then

												put	"C"

								elsif	mark	>=	50	then

												put	"D"

								else

												put	"F"

								end	if

Example		

If	x	is	negative,	change	its	sign.

								if	x	<	0	then

												x	:=	-	x

								end	if

Example		

If	x	is	less	than	zero	or	greater	than	maxx,	put	a	message.

								if	x	<	0		or	x	>	maxx	then

												put	"Out	of	bounds!"

								end	if

Example		

If	the	boolean	flag	is	true	and	name	is	“stop”,	put	a	message	and
return.

								if	flag		and	name	=	"stop"	then

												put	"Exiting	routine"

												return

								end	if

Details		
Several	statements	and	declarations	can	appear	after	a	particular
then.

See	also		 case	statements	for	another	way	to	select	among	statements.

implement	by clause

Syntax		

An	implementByClause	is:

	 implement	by	implementByItem

Description		

An	implement-by	clause	is	used	to	specify	that	a	module,	monitor
or	class	C	is	to	be	automatically	implemented	by	the
implementByItem.	C	is	called	the	interface	and	the
implementByItem,	which	must	contain	an	implement	clause,	is
called	the	implementation.	See	implement	clause	for	details	and
an	example.

The	implement-by	clause	can	only	be	used	in	a	unit.	See	unit	for
the	definition	of	a	unit.

An	implementByItem	is	one	of:

	 (a) 	 id
	 (b) 	 id	in	fileName

The	second	form	is	used	when	the	implement-by	clause	is	for	a
separate	unit	and	the	imported	item	is	in	a	file	whose	name	is
different	from	the	item's	name,	as	in:

								implement	by	ledgerBody	in	"ledgbod.t"

The	fileName	must	be	an	explicit	character	string,	e.g.,
"ledgbod.t".	See	also	unit.	Parentheses	are	allowed	around	the
items	in	an	implement-by	clauses,	as	in:

								implement	by	(ledgerBody	in	"ledgbod.t")

implement clause

Syntax		

An	implementClause	is:

	 implement	implementItem

Description		

An	implement	clause	is	used	to	specify	that	the	module,
monitor	or	class	containing	the	clause	is	to	be	the
implementation	of	another	module,	monitor	or	class.
This	implementation	is	a	special	kind	of	expansion.	The
module,	monitor	or	class	containing	the	clause	gains
access	to	(inherits)	all	the	declarations	inside	the	target
item.	See	inherit	clause	for	rules	about	expansions,
which	are	also	rules	for	implementations.

The	implement	clause	can	only	be	used	in	a	unit.	See
unit	for	the	definition	of	a	unit.

Example		

Here	is	a	stack	module	which	defers	all	of	its	exported
subprograms.	This	module	is	an	interface	but	not	an
implementation.	Following	stack	is	the	stackBody
module	that	implements	the	stack	module,	giving	the
bodies	for	stack's	subprograms.	Any	call	to	stack's	push
or	pop	procedures,	such	as	stack.push("Ed"),	will
actually	call	the	procedures	given	in	stackBody.

								module	stack																%	Interface

												implement	by	stackBody

																																%	stackBody	has	implementation

												export	push,	pop

												deferred	procedure	push	(s	:	string)

												deferred	procedure	pop	(var	s	:	string)

								end	stack

Next	comes	the	expansion	which	gives	the	bodies	for	the
deferred	procedures	push	and	pop.	The	stackBody	body
also	adds	declarations	for	the	top	and	contents	variables.

								module	stackBody								%	Implementation

												implement	stack					%	stack	has	interface

												var	top	:	int	:=	0

												var	contents	:	array	1	..	100	of	string

								

												body	procedure	push	%	(s	:	string)

																top	:=	top	+	1

																contents	(top)	:=	s

												end	push

								

												body	procedure	pop						%	(var	s	:	string)

																s	:=	contents	(top)

																top	:=	top	-	1

												end	pop

								end	stackBody

Details		

Module,	monitor	or	class	D	can	be	in	C's	implement-by
clause	if,	and	only	if,	C	is	in	D's	implement	clause.	In
other	words,	an	interface	must	apply	to	exactly	one
implementation	and	vice	versa.	A	module	can	implement
only	a	module,	a	monitor	only	a	monitor,	and	a	class	only
a	class.	Classes	(but	not	modules	and	monitors)	can
contain	inherit	clauses.	A	class	cannot	contain	both	an
inherit	and	an	implement	clause.

An	implementItem	is	one	of:

	 (a)
id

	 (b)	id	in	fileName

The	second	form	is	used	when	the	implement	clause	is	for	a	separate	unit	and
the	imported	item	is	in	a	file	whose	name	is	different	from	the	item's	name,	as	in:

								implement	ledger	in	"ledg.t"

The	fileName	must	be	an	explicit	character	string,	e.g.,	"ledg.t".	See	also	unit.
Parentheses	are	allowed	around	the	items	in	implement	clauses,	as	in:

								implement	(ledger	in	"ledg.t")

There	is	no	restriction	on	the	declarations	that	an	interface	may	contain.	In
particular,	an	interface	(any	module,	monitor	or	class	containing	an	implement-
by	clause),	can	contain	subprogram	bodies	and	variable	declarations,	exactly	as
is	the	case	in	expansions.	This	is	different	from	languages	such	as	C++	in	which
there	are	strict	rules	limiting	what	you	can	put	in	an	interface.

Even	though	D	contains	an	implement	clause,	D	can	also	contain	an	implement-
by	clause,	which	implies	further	implementation	by	further	automatic	expansion.

Suppose	class	D	is	in	class	C's	implement-by	clause	and	that	p	is	a	pointer	to
class	C:

								var	p	:	^	C

Even	though	C	is	implemented	by	D,	p	remains	a	pointer	to	class	C.	Each
creation	of	an	object	of	class	C	actually	creates	an	object	of	type	D,	for	example:

								new	p			%	Creates	object	of	class	D

Class	D,	which	implements	C,	could	also	have	an	implement-by	clause,	which
causes	its	implementation	to	be	automatically	created	and	so	on.	If	another	class
E	inherits	C,	this	expansion	does	not	include	D.

If	the	new	statement	contains	an	explicit	class	name	E	that	is	a	descendant	of	C
(but	not	actually	C),	as	in

								new	E,	p

the	object	of	the	explicit	class	is	created.	If	E	has	an	implement-by	clause,	the
expansion	is	created.

See	also			unit,	module,	monitor	and	class.	See	also	implement	by	clause,
inherit	clause,	export	list,	and	import	list.	See	also	deferred	subprograms.

import list

Syntax		

An	importList	is:

	 import	[howImport]	importItem
	 	 	 	 {,	[howImport]	importItem	}

Description		

An	import	list	is	used	to	specify	those	items	that	a	procedure,
function,	module,	monitor,	or	a	class	uses	from	outside	of	itself.
Note	that	a	function	or	procedure	is	not	allowed	to	have	an	import
list	and	thus	automatically	imports	whichever	functions	or
procedures	are	used	by	the	function	or	procedure.	The	compiler
determines	the	list	automatically	by	looking	to	see	what	items	are
actually	used.

Example		

In	this	example,	the	type	T	is	imported	into	the	stack	module	and
used	as	the	type	that	can	be	pushed	onto	or	popped	off	the	stack.
Since	no	other	items	are	imported,	the	only	identifiers	from
outside	of	stack	that	can	be	used	in	it	must	be	predefined,	such	as
sqrt,	or	declared	to	be	pervasive.

								type	T	:	string

								…

								module	stack

												import	T

												export	push,	pop

												var	top	:	int	:=	0

												var	contents	:	array	1..100	of	T

												procedure	push	…	end	push

												procedure	pop	…	end	pop

								end	stack

The	importItem	is	one	of:

	 (a)	id
	 (b)	id	in	fileName

The	second	form	is	used	in	OOT	when	the	list	is	the	import	list
for	a	separate	unit	(or	the	main	program),	and	the	imported	item

Details		

is	in	a	file	whose	name	is	different	from	the	item's	name,	for
example:

								import	ledger	in	"newledg.t"

The	fileName	must	be	an	explicit	character	string.	See	also	unit.

Parentheses	are	allowed	around	the	items	in	an	import	lists,	as	in:

								import	(ledger	in	"newledg.t")

There	are	various	ways	to	import	items,	as	determined	by
howImport.	The	form	of	howImport	is	one	of:

	 (a)	var
	 (b)	const
	 (c)	forward

Commonly	the	howImport	is	omitted,	which	means	the	default
access	for	the	item	is	the	same	access	as	the	item	has.	In	other
words,	a	read-write	item	that	is	imported	without	a	howImport	is
imported	read-write.	A	read-only	symbol	that	is	imported	without
a	howImport	is	imported	read-only.

If	the	importItem	is	forward,	the	import	list	is	part	of	a	forward
procedure	or	function	declaration	and	the	imported	item	is	itself
necessarily	a	procedure	or	function.	See	forward	declarations	for
details	and	an	example.

If	the	import	list	of	a	module,	monitor	or	class	is	omitted,	the
implementation	assumes	that	the	list	is	import(),	meaning	that	no
items	are	imported.	For	example,	a	module	must	explicitly	import
any	global	identifiers	that	are	not	predefined	or	pervasive.

Circular	(recursive)	imports	are	not	allowed.	For	example,	if	unit
A	imports	B	then	B	cannot	import	A.	However,	circular	usage	of
separately	compiled	units	is	possible	by	separating	the	units	into
interfaces	and	bodies	and	having	the	bodies	import	the	interfaces.
For	example,	if	C	is	the	parent	class	of	D,	D	can	import	C,	but	not
vice	versa.

In	an	expansion	(or	implementation),	the	import	list	of	the
expansion	augments	the	import	list	of	the	parent.

An	overriding	subprogram	(in	an	expansion)	ignores	the	import
list	of	the	target	subprogram	and	uses	its	own	import	list.

Turing	initializes	modules	and	monitors	in	order	of	importation.
Initialization	begins	with	the	main	program,	which	first	initializes
its	imports	in	the	order	given	in	its	import	list,	and	then	initializes
itself.

See	also		
unit,	module,	monitor	and	class.	See	also	export	list,	inherit
clause,	implement	clause	and	implement	by	clause.

in member	of	a	set

Syntax		 in

Description		 The	in	operator	determines	if	an	element	is	in	a	set.

Example		
								type	rankSet	:	set	of	0	..	10

								var	rankings	:	rankSet	:=	rankSet	(0)		%	The	set

								…

								if	5	in	rankings	then	…					%	Is	5	in	the	rankings	set?

Description		

The	not	in	operator	is	exactly	the	opposite	of	in.	For	example,	7
not	in	rankings	means	the	same	as	not	(7	in	rankings).

The	element	is	required	to	be	in	the	set's	index	type.	In	the	above
example	this	is	satisfied	because	element	5	is	in	the	index	type	0	..
10.

The	keyword	in	is	also	used	in	lists	such	as	import	lists.	See
import	list.

See	also		 the	set	type,	infix	operators,	and	precedence	of	operators.

include source	files

Syntax		

An	includeConstruct	is:

	 include	fileName

Description		

An	include	is	used	to	copy	parts	of	files	so	that	they	become	part
of	the	Turing	program.	This	copying	is	temporary,	that	is,	no	files
are	changed.	The	file	name	must	be	an	explicit	string	constant
such	as	"stdstuff".

Example		

On	IBM	PC	compatible	computers,	there	are	arrow	keys	that
produce	character	values	such	as	200	and	208.	Let	us	suppose	that
a	file	called	arrows	contains	definitions	of	these	values:

								const	upArrow	:=	200

								const	downArrow	:=	208

								const	rightArrow	:=	205

								const	leftArrow	:=	203

These	definitions	can	be	included	in	any	program	in	the	following
manner:

								include	"arrows"

								…

								var	ch	:	string	(1)

								getch	(ch)																%	Read	one	character

								case	ord	(ch)	of

												label	upArrow	:

																…handle	up	arrow…

												label	downArrow	:

																…handle	down	arrow…

												label	rightArrow	:

																…handle	right	arrow…

												label	leftArrow	:

																…handle	left	arrow…

												label	:

																…handle	any	other	key…

								end	case

An	include	file	can	itself	contain	include	constructs.	This	can
continue	to	any	level,	although	a	circular	pattern	of	includes

Details		
would	be	a	mistake,	as	it	would	lead	to	an	infinitely	long
program.

It	is	common	to	save	procedures,	functions	and	modules	in
separate	files.	The	files	are	collected	together	using	include.

Details		

If	the	filename	in	the	include	statement	starts	with	a	"%",	then
Turing	searches	the	system	directory	for	the	file.	See	the	editor
reference	for	the	environment	to	see	how	to	set	the	system
directory.	This	method	can	be	used	to	allow	the	system
administrator	to	easily	supply	a	set	of	routines	in	a	file	to	a	large
number	of	users	by	placing	it	in	one	easy-to-find	location.

Example		

If	the	system	directory	is	set	to	"C:\TURING",	then	the	line

								include	"%sorting.t"

will	include	the	file	"C:\TURING\SORTING.T"	in	the	program.

Details		

Under	OOT,	there	are	several	system	directories	available.	The
"%oot"	directory	is	the	directory	where	all	the	OOT	system	files
are	located.	The	"%home"	directory	is	the	user's	home	directory.

Example		

If	the	oot	directory	is	set	to	"/usr/local/lib/oot"	then	the	line

								include	"%oot/teacher/sorting.t"

will	include	the	file	"/usr/local/lib/oot/teacher/sorting.t"	in	the
program.

index find	pattern	in	string	function

Syntax		 index	(s	,	patt	:	string)	:	int

Description		
The	index	function	is	used	to	find	the	position	of	patt	within
string	s.	For	example,	index	("chair",	"air")	is	3.

Example		

This	program	outputs	2,	because	"ill"	is	a	substring	of	"willing",
starting	at	the	second	character	of	"willing".

								var	word	:	string	:=	"willing"

								put	index	(word,	"ill")

Details		

If	the	pattern	(patt)	does	not	appear	in	the	string	(s),	index	returns
0	(zero).	For	example,	here	is	an	if	statement	that	checks	to	see	if
string	s	contains	a	blank:

								if	index	(s,	"	")	not=	0	then	…

The	index	is	sometimes	used	to	efficiently	determine	if	a
character	is	one	of	a	given	set	of	characters.	For	example,	here	is
an	if	statement	that	checks	to	see	if	ch,	which	is	declared	using
var	ch	:	string	(1),	is	a	digit:

								if	index	("0123456789",	ch)	not=	0	then	…

If	a	string	contains	more	that	one	occurrence	of	the	pattern,	the
leftmost	location	is	returned.	For	example,	index	("pingpong",
"ng")	returns	3.

If	patt	is	the	null	string,	the	result	is	1.

indexType

Syntax		

An	indexType	is	one	of:

	 (a) subrangeType
	 (b) enumeratedType

	 (c) namedType 	 %	Which	is	a	subrange	or
enumerated	type

	 (d) char
	 (e) boolean

Description		

An	index	type	defines	a	range	of	values	that	can	be	used	as	an	array
subscript,	as	a	case	selector,	as	a	selector	(tag)	for	a	union	type,	or	as	the
base	type	of	a	set	type.

Example		 								var	z	:	array	1	..	9	of	real				%	0..9	is	an	index	type

								type	smallSet	:	set	of	0	..	2			%	0..2	is	an	index	type

indirection operator	(@)

Dangerous

Syntax		 targetType	@	(expn)

Description		

The	indirection	operator	@	is	used	to	access	values	that	lie	at
absolute	machine	addresses	in	the	computer's	memory.	This	is
dangerous	and	implementation-dependent	and	can	cause	arbitrary
corruption	of	data	and	programs.

Example		

Copy	the	byte	value	at	memory	location	246	into	b	and	then	set	that
memory	byte	to	zero.

								var	b	:	nat1												%	One	byte	natural	number

								b	:=	nat1	@	(246)

								nat1	@	(246)	:=	0

Details		

The	form	of	targetType	must	be	one	of:

								(a)	[id	.]	typeId

								(b)	int,	int1,	int2	or	int4

								(c)	nat,	nat1,	nat2	or	nat4

								(d)	boolean

								(e)	char	[(numberOfCharacters)]

								(f)	string	[(maximumLength)]

								(g)	addressint

In	form	(a)	the	beginning	identifier	id	must	be	the	name	of	a
module,	monitor	or	class	that	exports	the	typeId.	Each	of
numberOfCharacters	and	maximumLength	must	be	compile	time
integer	expressions.	These	are	the	same	target	types	as	in	type
cheats.

The	indirection	operator	@	takes	an	integer	as	an	address.	This
value	must	fit	in	the	range	of	addressint.	See	addressint.	See	also
pointer	types	and	the	^	operator	(which	accesses	objects	located	by
pointers).

See	also		
cheat.	See	also	explicitIntegerConstant	(which	explains	how	to
write	hexadecimal	constants,	which	are	often	used	for	addresses).

infix operator

Syntax		

An	infixOperator	is	one	of:

	 (a) + 	 %	Integer	and	real
addition;	set	union;

	 	 	 %	string
catenation

	 (b) - 	 %	Integer	and	real
subtraction;	set	difference

	 (c) * 	
%	Integer	and	real
multiplication;	set
intersection

	 (d) / 	 %	Real	division

	 (e) div 	 %	Truncating	integer
division

	 (f) mod 	 %	Modulo
	 (g) rem 	 %	Remainder

	 (h) ** 	 %	Integer	and	real
exponentiation

	 (i) < 	 %	Less	than
	 (j) > 	 %	Greater	than
	 (k) = 	 %	Equal

	 (l) <= 	 %	Less	than	or	equal;
subset

	 (m) >= 	 %	Greater	than	or	equal;
superset

	 (n) not= 	 %	Not	equal

	 (o) and 	 %	And	(boolean
conjunction)

	 (p) or 	 %	Or	(boolean
disjunction)

	 (q) => 	 %	Boolean	implication
	 (r) in 	 %	Member	of	set
	 (s) not	in 	 %	Not	member	of	set
	 (t) shr 	 %	Shift	right
	 (u) shl 	 %	Shift	left
	 (v) xor 	 %	Exclusive	OR

An	infix	operator	is	placed	between	two	values	or	operands	to
produce	a	third	value.	For	example,	the	result	of	5	+	7	is	12.	In
some	cases	the	meaning	of	the	operator	is	determined	by	its
operands.	For	example,	in	"pine"	+	"apple",	the	+	operator	means
string	catenation	while	in	5	+	7	it	means	integer	addition.	There
are	also	prefix	operators	(-,	+	and	not),	which	are	placed	in	front
of	a	single	value.	See	prefix	operator.

In	expressions	with	several	operators,	such	as	3	+	4	*	5,	the
precedence	rules	determine	the	order	in	which	the	operation	is
done	(see	precedence	for	a	listing	of	these	rules).	In	this	example,
the	multiplication	is	done	before	the	addition,	so	the	expression	is
equivalent	to	3	+	(4	*	5).

The	numerical	(integer	or	real)	operators	are	+,	-,	*,	/,	div,	mod,
and	**.	All	of	these	except	div	produce	a	real	result	when	at	least
one	of	their	operands	is	real.	If	both	operands	are	integers,	the
result	is	an	integer	except	in	the	case	of	real	division	(/)	which
always	produces	a	real	result	regardless	of	the	operands.

The	div	operator	is	like	real	division	(/),	except	that	it	always
produces	an	integer	result,	truncating	any	fraction	to	produce	the
nearest	integer	in	the	direction	of	zero.

The	mod	operator	is	the	modulo	and	the	rem	operator	is	the
remainder.	The	sign	of	the	result	of	mod	operator	is	the	same	as
the	sign	of	the	second	operand.	The	rem	operator	operates	like
the	mod	operator	in	Turing	(and	in	most	other	languages).	It

Description		
produces	the	remainder,	which	is	the	difference	between	real
division	(/)	and	integer	division	(div).	When	both	operands	are
positive,	this	is	the	modulo.	For	example,	14	mod	10	is	4.	If	one
of	the	operands	is	negative,	a	negative	answer	may	result,	for
example,	7	mod	2	is	1.	See	also	the	int	and	real	types.

The	comparison	operators	(<,	>,	=,	<=,	>=,	not=)	can	be	applied
to	numbers	as	well	as	to	enumerated	types.	They	can	also	be
applied	to	strings	to	determine	the	ordering	between	strings	(see
string	type	for	details).	Arrays,	records,	unions	and	collections
cannot	be	compared.	Boolean	values	(true	and	false)	can	be
compared	only	for	equality	(=	and	not=);	the	same	applies	to
pointer	values.	Set	values	can	be	compared	using	<=	and	>=,
which	are	the	subset	and	superset	operators.	The	not=	operator
can	be	written	as	~=.

Strings	are	manipulated	using	catenation	(+)	as	well	as	substring
expressions	(see	substring)	and	the	index	function	(see	index).
See	also	the	string	type.

The	operators	to	combine	true/false	values	are	and,	or,	and	=>
(implication),	as	well	as	equality	(=	and	not=).	See	also	the
boolean	type.

The	set	operators	are	union	(+),	intersection	(*),	set	difference	(-),
subset	(<=),	superset	(>=),	and	membership	(in	and	not	in).	See
also	the	set	type.

The	shr	(shift	right),	shl	(shift	left)	and	xor	(exclusive	OR)
operators	accept	and	produce	natural	numbers.	See	shr,	shl,	and
xor.

inherit inheritance	clause

Syntax		

An	inheritClause	is:

	 inherit	inheritItem

Description		

An	inherit	clause	specifies	that	the	class	containing	the	clause	is	to	be	an
expansion	of	another	class.	This	expansion	is	called	inheritance.	The	class
containing	the	clause	gains	access	to	(inherits)	all	the	declarations	inside
the	target	item.	Expansions	are	used	to	add	new	declarations	and	exports
and	to	support	polymorphism	(overriding	subprograms).

Example		

Here	is	an	example	of	a	stack	class.	Following	it,	we	show	another	class,
called	stackWithDepth,	that	inherits	stack	by	adding	a	function	called
depth.

								class	stack

												export	push,	pop

								

												var	top	:	int	:=	0

												var	contents	:	array	1	..	100	of	string

								

												procedure	push	(s	:	string)

																top	:=	top	+	1

																contents	(top)	:=	s

												end	push

								

												procedure	pop	(var	s	:	string)

																s	:=	contents	(top)

																top	:=	top	-	1

												end	pop

								end	stack

Next	comes	an	expansion,	which	inherits	the	internal	declarations	of	the
stack	class	and	adds	the	depth	function.

								class	stackWithDepth

												inherit	stack

												export	depth

												function	depth	:	int

																result	top

												end	push

								end	stackWithDepth

Details		

Objects	of	the	inherited	class	stackWithDepth	are	like	objects	of	the	parent
class	stack,	except	there	is	an	additional	exported	function	named	depth

An	inheritItem	is	one	of:

	 (a)	id
	 (b)	id	in	fileName

The	second	form	is	used	when	the	inherit	clause	is	for	a	separate	unit
the	imported	item	is	in	a	file	whose	name	is	different	from	the	item's	name,
for	example:

								inherit	ledger	in	"newledg.t"

The	fileName	must	be	an	explicit	character	string,	e.g.,	"newledg.t".
Parentheses	are	allowed	around	the	item	in	an	inherit	clause,	as	in:

								inherit	(ledger	in	"newledg.t")

There	is	a	special	form	of	inherit	clause,	called	an	implement	clause
is	used	to	separate	an	interface	from	an	implementation.	Modules	and
monitors,	as	well	as	classes,	use	these	clauses.	See	implement	clause	and
implement	by	clause.

If	class	D	inherits	class	C,	we	say	that	C	is	the	parent	and	D	is	the	child
Class	B	is	said	to	be	an	ancestor	of	class	D	(and	D	is	the	descendant
if	B	and	D	are	the	same	class,	or	if	B	is	the	parent	of	D,	or	if	B	is	the	parent
of	the	parent	of	D,	etc.	We	write	this	as	follows:

								B	<=	D						%	B	is	an	ancestor	of	D

If	B	is	an	ancestor	of	D	but	not	the	same	as	D,	we	say	B	is	a	strict	ancestor
of	D.	We	write	this	as:

								B	<	D							%	B	is	a	strict	ancestor	of	D

We	also	use	the	notations	D	>=	B,	D	>	B	and	D	=	B	with	the	obvious
meanings.	All	of	these	notations	can	be	used	in	a	program.	Their	main	use
is	in	conjunction	with	objectclass,	which	determines	the	class	of	an	object
located	by	a	pointer.	For	example,	if	p	is	declared	to	be	a	pointer	to	a	
we	can	write	the	following	to	see	if	p	currently	locates	an	object	with	the

depth	operation:

								%	Does	the	object	located	by	p	have	the	depth	operation

								if	stackWithDepth	<=	objectclass(p)	then

A	pointer	that	locates	an	object	created	as	class	E	can	be	assigned	to	a
pointer	to	class	B,	only	if	B	is	an	ancestor	of	E.	For	example,	a	pointer	to
an	object	that	is	a	stackWithDepth	can	be	assigned	to	a	pointer	to	stack
not	vice	versa.	The	pointer	nil	can	be	assigned	to	any	pointer	variable,	but
the	value	nil(C)	can	only	be	assigned	to	a	pointer	to	an	ancestor	of	C.

An	object	(located	by	a	pointer)	can	be	assigned	to	another	object	only	if
they	were	created	as	objects	of	the	same	class.	However,	assignment	of
objects	that	are	monitors	or	that	contain	dynamic	arrays	or	collections	is
not	allowed.

Circular	(recursive)	inherits	are	not	allowed.	For	example,	if	unit	B
A	then	A	cannot	inherit	B.	Only	one	item	is	allowed	in	an	inherit	clause;	in
other	words,	Turing	supports	single	inheritance	but	not	multiple
inheritance.

See	implement	clause	for	a	special	kind	of	expansion	that	separates	a
module,	monitor	or	class'	interface	from	its	implementation.	See	class
an	example	of	polymorphism,	in	which	an	inheriting	class	overrides
subprograms	of	its	parent	class.

The	initialization	of	a	module,	a	monitor	or	an	object	is	immediately
preceded	by	the	initialization	of	the	item	that	it	inherits	or	implements	(if
any).	Correspondingly,	if	the	item	has	an	implement	by	clause,	the
implementation	is	initialized	immediately	after	the	initialization	of	the
current	item.

Within	a	class	C,	with	ancestor	B,	you	can	force	a	call	to	exported
subprogram	p	using	the	form	C.p	(or	B.p).	This	calls	the	subprogram
declared	in	C	(or	in	B	in	the	case	of	B.p),	regardless	of	the	actual	class	of
the	object	and	any	overriding	of	p.	This	is	similar	to	the	notation	C
the	C++	language.	This	notation	can	only	be	used	inside	class	C.

See	also		

unit,	module,	monitor	and	class.	See	also	export	list,	import	list,
implement	clause,	implement	by	clause	and	deferred	subprogram.	See

also	objectclass.

init array	initialization

Syntax		 init

Description		

The	init	(initialization)	keyword	is	used	for	two	different
purposes	in	Turing.	The	most	common	is	for	initializing	arrays,
records	and	unions.	The	less	common	is	for	recording	parameter
values	in	subprograms	for	later	use	in	post	conditions.

Example		

								var	mensNames	:	array	1	..	3	of	string	:=

												init	("Tom",	"Dick",	"Harry")

								put	mensNames	(2)													%	This	outputs	Dick

								var	names	:	array	1	..	2,	1	..	3	of	string	:=

												init	("Tom",	"Dick",	"Harry",

																	"Alice",	"Barbara",	"Cathy")

								put	names	(2,	1)		%	This	outputs	Alice

Details		

The	order	of	initializing	values	for	multi-dimensional	arrays	is
based	on	varying	the	right	subscripts	(indexes)	most	rapidly.	This
is	called	row	major	order.	Initialization	of	records	and	unions	is
analogous	to	initializing	arrays.	Values	are	listed	in	the	order	in
which	they	appear	in	the	type.	See	array,	record,	and	union
types.

Example		

This	procedure	is	supposed	to	set	integer	variable	i	to	an	integer
approximation	of	its	square	root.	The	init	clause	records	the
initial	value	of	i	as	j	so	it	can	be	used	in	the	post	condition	to
make	sure	that	the	approximation	is	sufficiently	accurate.	The
name	j	can	be	used	only	in	the	post	condition	and	nowhere	else	in
the	procedure.

								procedure	intSqrt	(var	i	:	int)

												pre	i	>=	0

												init	j	:=	i

												post	abs	(i	-	sqrt	(j))	<=	1

												…	statements	to	approximate	square	root…

								end	intSqrt

See	also		 pre	and	post	assertions	and	procedure	and	process	declarations.

Input

Description		

This	unit	contains	the	predefined	procedures	that	deal	with
handling	input	on	a	character-by-character	basis.

All	routines	in	the	Input	module	are	exported	unqualified.	(This
means	you	can	call	the	entry	points	directly.)

Entry
Points		

getch 	 Gets	the	next	character	in	the	keyboard	buffer
(procedure	with	a	string	(1)	argument).

hasch 	 Returns	true	if	there	are	characters	waiting	in	the
keyboard	buffer.

getchar 	 Gets	the	next	character	in	the	keyboard	buffer
(function	returning	a	char).

Pause 	 Waits	for	a	key	to	be	pressed.
KeyDown 	 Detect	which	keys	are	currently	pressed.
Flush 	 Empty	the	keyboard	buffer.

Input.getch Part	of	Input	module

Syntax		 getch	(var	ch	:	string	(1))

Description		

The	getch	procedure	is	used	to	input	a	single	character	without
waiting	for	the	end	of	a	line.	The	parameter	ch	is	set	to	the	next
character	in	the	keyboard	buffer	(the	oldest	not-yet-read
character).

Example		

This	program	contains	a	procedure	called	getKey	which	causes
the	program	to	wait	until	a	key	is	pressed.

								View.Set	("graphics")

								

								procedure	getKey

												var	ch	:	string	(1)

												getch	(ch)

								end	getKey

								

								for	i	:	1	..	1000

												put	i	:	4,	"	Pause	till	a	key	is	pressed"

												getKey

								end	for

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
View.Set	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to	"screen"	mode.

Some	keys,	such	as	the	left	arrow	key,	insert	key,	delete	key,	and
function	keys	do	not	produce	ordinary	character	values.	These
keystrokes	are	returned	by	getch	as	special	values.	See	Appendix
D	for	these	values.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	getch	or	by
calling	Input.getch.

See	also		
hasch	(has	character)	procedure	which	is	used	to	see	if	a
character	has	been	typed	but	not	yet	read.

Input.getchar Part	of	Input	module

Syntax		 getchar	:	char

Description		

The	getchar	function	is	used	to	input	a	single	character	without
waiting	for	the	end	of	a	line.	The	next	character	in	the	keyboard
buffer	(the	oldest	not-yet-read	character)	is	returned.

Example		

This	program	contains	a	procedure	called	getKey	which	causes
the	program	to	wait	until	a	key	is	pressed.

								View.Set	("graphics")

								

								procedure	getKey

												var	ch	:	char

												ch	:=	getchar

								end	getKey

								

								for	i	:	1	..	1000

												put	i	:	4,	"	Pause	till	a	key	is	pressed"

												getKey

								end	for

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
View.Set	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to	"screen"	mode.

Some	keys,	such	as	the	left	arrow	key,	insert	key,	delete	key,	and
function	keys	do	not	produce	ordinary	character	values.	These
keystrokes	are	returned	by	getch	as	special	values.	See	Appendix
D	for	these	values.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	getchar	or	by
calling	Input.getchar.

See	also		
hasch	(has	character)	procedure	which	is	used	to	see	if	a
character	has	been	typed	but	not	yet	read.

Input.hasch Part	of	Input	module

Syntax		 hasch	:	boolean

Description		
The	hasch	procedure	is	used	to	determine	if	there	is	a	character
that	has	been	typed	but	not	yet	been	read.

Example		

The	flush	procedure	gets	rid	of	any	characters	that	have	been
typed	but	not	yet	read.

								procedure	flush

												var	ch	:	string	(1)

												loop

																exit	when	not	hasch

																getch	(ch)				%	Discard	this	character

												end	loop

								end	flush

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
View.Set	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to	"screen"	mode.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	hasch	or	by
calling	Input.hasch.

See	also		 getch	and	getchar.

Input.Flush Part	of	Input	module

Syntax		 Input.Flush

Description		

The	Input.Flush	procedure	empties	the	keyboard	buffer.	It	is
often	used	to	avoid	accidentally	reading	multiple	keystrokes
because	the	user	pressed	a	key	for	too	long,	causing	autorepeat.

Example		

This	program	echoes	input	from	the	keyboard	at	a	rate	of	10
characters	per	second.	If	you	hold	down	a	key,	the	echoing	will
stop	as	soon	as	you	stop	pressing	the	key.	Without	the
Input.Flush,	the	program	continues	to	echo	many	more
keystrokes	that	have	accumulated	in	the	keyboard	buffer.

								loop

												if	hasch	then

																put	getchar	..

																Input.Flush

																delay	(100)

												end	if

								end	loop

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Input.Flush,	not	by	calling	Flush.

Input.KeyDown Part	of	Input	module

Syntax		 Input.KeyDown	(var	chars	:	array	char	of	boolean)

Description		

The	Input.Keydown	procedure	allows	a	program	to	read	which
keys	are	currently	being	pressed.	This	procedure	is	different	from
getch	in	that	it	allows	a	program	to	detect	when	a	user	presses
and	releases	a	button.	As	such,	it	is	not	to	be	used	in	conjunction
with	getch.

The	procedure	can	be	used	in	games	where	an	action	takes	place
while	a	key	is	depressed.

Example		

Determine	if	the	T	key	is	pressed.	Note	that	we	check	for	the
lower	case	letter.

								var	chars	:	array	char	of	boolean

								Input.KeyDown	(chars)

								if	chars	('t')	then

												put	"The	T	key	is	pressed"

								end	if

Details		

The	array	returned	is	a	list	of	all	the	characters.	A	key	is	currently
pressed	if	the	array	element	with	the	corresponding	character	is
true.	For	example,	the	a	key	is	pressed	is	chars	('a')	is	true.	Note
that	each	key	is	individually	represented,	so	if	the	user	has
pressed	Shift+a	to	get	a	'A',	then	Input.KeyDown	would	register
Shift	and	'a'	as	pressed,	but	not	'A'.

A	full	list	of	all	the	possible	characters	that	can	be	set	with
Input.KeyDown	can	be	found	in	the	Key	Codes	appendix.

Details		

The	array	returned	is	a	list	of	all	the	characters.	A	key	is	currently
pressed	if	the	array	element	with	the	corresponding	character	is
true.	For	example,	the	a	key	is	pressed	is	chars	('a')	is	true.	Note
that	each	key	is	individually	represented,	so	if	the	user	has
pressed	Shift+a	to	get	a	'A',	then	Input.KeyDown	would	register
Shift	and	'a'	as	pressed,	but	not	'A'.

Details		

The	number	of	keys	that	can	be	pressed	simultaneously	is
hardware	dependent.	Most	keyboards	can	detect	a	minimum	of
two	keys	+	Shift	+	Control	+	Alt.	This	means	that	if	you	are
designing	a	two	player	game	to	be	played	at	a	single	keyboard
and	you	wish	to	make	certain	that	players	cannot	“hog	the
keyboard”	by	holding	down	keys,	you	should	not	use	more	than	6
different	keys	and	three	of	them	should	be	the	Shift,	Control	and
Alt	keys.

Example		

The	program	reads	the	keyboard	and	displays	a	message	while	the
arrow	keys	are	pressed.	It	can	detect	up	to	all	four	arrow	keys
pressed	at	once.

								var	chars	:	array	char	of	boolean

								loop

												Input.KeyDown	(chars)

												locate	(1,	1)

												if	chars	(KEY_UP_ARROW)	then

																put	"Up	Arrow	Pressed		"	..

												else

																put	"																		"	..

												end	if

												if	chars	(KEY_RIGHT_ARROW)	then

																put	"Right	Arrow	Pressed		"	..

												else

																put	"																					"	..

												end	if

												if	chars	(KEY_LEFT_ARROW)	then

																put	"Left	Arrow	Pressed		"	..

												else

																put	"																				"	..

												end	if

												if	chars	(KEY_DOWN_ARROW)	then

																put	"Down	Arrow	Pressed		"	..

												else

																put	"																		"	..

												end	if

								end	loop

Execute		

Example		

Another	example	is	available	that	checks	for	all	possible	keys.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Input.KeyDown,	not	by	calling	KeyDown.

Input.Pause Part	of	Input	module

Syntax		 Input.Pause

Description		

The	Input.Pause	procedure	simply	waits	for	a	key	to	be	pressed
and	then	returns.	It	echoes	the	key	pressed	if	echo	mode	is	set.
(See	View.Set	for	setting	echo	mode)

This	subprogram	helps	avoid	having	to	declare	a	variable
declaration	and	then	make	a	call	to	getchor	getchar.

Example		

This	program	pauses	after	every	name	read	from	the	file.

								var	f	:	int

								var	line	:	string

								open	:	f,	"data.txt",	get

								loop

												exit	when	eof	(f)

												get	:	f,	line	:	*

												put	name

												Input.Pause

								end	loop

								close	:	f

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Input.Pause,	not	by	calling	Pause.

int integer	type

Syntax		 int

Description		

The	int	(integer)	type	has	the	values	…	2,	1,	0,	1,	2	…	Integers	can	be	combined	by
various	operators	such	as	addition	(+)	and	multiplication	(*).	Integers	can	also	be
combined	with	real	numbers,	in	which	case	the	result	is	generally	a	real	number.	An
integer	can	always	be	assigned	to	a	real	variable,	with	implicit	conversion	to	

Example		
								var	counter,	i	:	int

								var	j	:	int	:=	9

								var	tax	:=	0								%	The	type	is	implicitly	int

Details		

See	also	explicitIntegerConstant.	The	real	type	is	used	instead	of	int
have	fractional	parts	as	in	16.837.	See	the	real	type	for	details.

The	operators	on	integers	are	+,	-,	*	(multiply),	div	(truncating	integer	division),	
(integer	remainder),	**	(exponentiation),	as	well	as	comparisons	(+,	
<=).	The	operators	and,	or	and	xor	can	be	applied	to	non-negative	integer	values.
The	bit-wise	boolean	result	is	produced	as	an	integer	(actually,	as	a	natural	number).
The	shr	(shift	right)	and	shl	(shift	left)	operators	are	also	introduced.

Real	numbers	can	be	converted	to	integers	using	ceil	(ceiling),	floor
descriptions	of	these	functions).	Integers	can	be	converted	to	real	numbers	using
intreal,	but	in	practice	this	is	rarely	used,	because	an	integer	value	used	in	place	of	a
real	value	will	be	automatically	converted	to	real.

Integers	can	be	converted	to	strings	and	back	using	intstr	and	strint
converted	to	corresponding	ASCII	(or	EBCDIC)	characters	using	chr
the	descriptions	of	these	functions.

Pseudo-random	sequences	of	integers	can	be	generated	using	randint

In	current	implementations	of	Turing,	the	range	of	integers	is	from	-2147483647	to
2147483647.	In	other	words,	the	maximum	size	of	integer	is	2**31	-	1.	See	
This	range	exists	because	integers	are	stored	in	4	bytes.	The	remaining	negative
value,	-2147483648	records	uninitialization.	The	types	int1,	int2	and	
integers	that	fit	into	1,	2	or	4	bytes.	The	intn	types	(int1,	int2	and	int4

checked	for	initialization	and	allow	all	their	bit	patterns	as	numbers.

The	natural	number	type	nat	allows	only	the	non-negative	values:	0,1,2,3,…	Natural
number	values	can	be	used	whenever	integer	values	are	expected	and	vice	versa,
given	that	the	value	does	not	exceed	the	range	of	the	expected	type.

See	also		 nat	and	intn.

intn n-byte	integer	type

								Dirty

Syntax		
	 (a) int1 	 	 %	1-byte	integer
	 (b) int2 	 	 %	2-byte	integer
	 (c) int4 	 	 %	4-byte	integer

Description		

The	intn	(n-byte	integer)	types	are	machine-dependent	types	that
occupy	a	specified	number	of	bytes.	By	contrast,	the	int	type	is	in
principle	a	machine-independent	and	mathematical	type	(it
overflows,	however,	when	the	value	is	too	large	or	small,	that	is,
when	the	value	does	not	fit	into	4	bytes).

Example		
								var	counter1	:	int1	%	Range	is	-128	..	127

								var	counter2	:	int2	%	Range	is	-32768	..	32767

								var	counter4	:	int4	%	Range	is	-2147483648	..	2147483647

Details		

In	current	implementations	of	Turing,	the	range	of	the	int	is
-2147483647	to	2147483647,	which	means	that	the	int4	type
allows	one	more	value,	-2147483648.	This	extra	value	is	used	in
int	to	represent	the	state	of	being	initialized.	The	intn	types	allow
use	of	all	possible	values	that	fit	into	n	bytes	and	thereby	cannot
check	for	initialization.

The	intn	types	are	like	the	C	language	types	short	int,	int,	and	long
int,	except	that	the	number	of	bytes	occupied	by	the	C	types
depends	on	the	particular	C	compiler.

See	also		
the	natn	types	which	are	n	byte	natural	(non-negative)	values.	See
also	int	and	nat.

intreal integer-to-real	function

Syntax		 intreal	(i	:	int)	:	real

Description		

The	intreal	function	is	used	to	convert	an	integer	to	a	real
number.	This	function	is	rarely	used,	because	in	Turing,	an
integer	value	can	be	used	where	ever	a	real	value	is	required.
When	the	integer	value	is	used	where	a	real	value	is	required,	the
intreal	function	is	implicitly	called	to	do	the	conversion	from	int
to	real.

See	also		 floor,	ceil	and	round	functions.

intstr integer-to-string	function

Syntax		 intstr	(i	:	int	[,	width	:	int	[,	base	:	int]])	:	string

Description		

The	intstr	function	is	used	to	convert	an	integer	to	a	string.	The
string	is	equivalent	to	i,	padded	on	the	left	with	blanks	as
necessary	to	a	length	of	width,	written	in	the	given	number	base.
For	example,	intstr	(14,	4,	10)="bb14"	where	b	represents	a
blank.	The	width	and	base	parameters	are	both	optional.	If	they
are	omitted,	the	string	is	made	just	long	enough	to	hold	the	value,
and	the	number	base	is	10.	For	example,	intstr	(14,	4)	=	"bb14"
and	intstr	(23)	=	"23".

The	width	parameter	must	be	non-negative.	If	width	is	not	large
enough	to	represent	the	value	of	i,	the	length	is	automatically
increased	as	needed.

The	string	returned	by	intstr	is	of	the	form:

	 {blank}[-]digit{digits}

where	{blank}	means	zero	or	more	blanks,	[-]	means	an	optional
minus	sign,	and	digit{digit}	means	one	or	more	digits.	The
leftmost	digit	is	either	non-zero	or	else	a	single	zero	digit.	In	other
words,	leading	zeros	are	suppressed.

The	letters	A,	B,	C	…	are	used	to	represent	the	digit	values	10,
11,	12,	…	The	base	must	be	in	the	range	2	to	36	(36	because	there
are	ten	digits	and	26	letters).	For	example,	intstr	(255,	0,	16)	=
"FF".

The	intstr	function	is	the	inverse	of	strint,	so	for	any	integer	i,

								strint	(intstr	(i))	=	i.

See	also		

chr,	ord	and	strint	functions.	See	also	the	natstr	and	strnat
functions.	See	also	explicitIntegerConstants	for	the	way	to	write
non	base	10	values	in	a	program.

invariant assertion

Syntax		

An	invariantAssertion	is:

	 invariant	trueFalseExpn

Description		

An	invariant	assertion	is	a	special	form	of	an	assert	statement
that	is	used	only	in	loop	and	for	statements	and	in	modules,
monitors,	and	classes.	It	is	used	to	make	sure	that	a	specific
requirement	is	met.	This	requirement	is	given	by	the
trueFalseExpn.	The	trueFalseExpn	is	evaluated.	If	it	is	true,	all	is
well	and	execution	continues.	If	it	is	false,	execution	is	terminated
with	an	appropriate	message.	See	assert,	loop	and	for	statements
and	the	module	declarations	for	more	details.

Example		

This	program	uses	an	invariant	in	a	for	loop.	The	invariant	uses
the	function	nameInList	to	specify	that	a	key	has	not	yet	been
found	in	an	array	of	names.

								var	name	:	array	1	..	100	of	string

								var	key	:	string

								…	input	name	and	key	…

								

								function	nameInList	(n	:	int)	:	boolean

												for	i	:	1	..	n

																if	key	=	name	(i)	then

																				result	true

																end	if

												end	for

												result	false

								end	nameInList

								

								for	j	:	1	..	100

												invariant	not	nameInList	(j	-	1)

												if	key	=	name	(j)	then

																put	"Found	name	at	",	j

																exit

												end	if

								end	loop

Joystick

Description		

This	unit	contains	the	predefined	subprogram	that	deal	with
reading	the	joystick	in	a	Turing	program.	The	routines	allow	you
to	get	the	current	joystick	position	and	whether	either	one	of	the
two	buttons	are	pressed.

All	routines	in	the	Joystick	module	are	exported	qualified	(and
thus	must	be	prefaced	with	"Joystick.").	All	the	constants	are
exported	unqualified	and	thus	do	not	need	the	Joystick	prefix.

Entry
Points		

joystick1,
joystick2 	 joystick	name	contants	(exported	unqualified)

GetInfo 	 Reads	the	current	value	of	a	joystick	and	status
of	the	joystick	buttons.

Joystick.GetInfo Part	of	Joystick	module

Syntax		
Joystick.GetInfo	(joystick	:	int,	var	xPos,	yPos	:	int,
btn1Pressed,	btn2Pressed	:	boolean)

Description		

Reads	the	position	and	button	status	of	the	joystick	specified	by	the	
parameter.	The	x	and	y	parameter	are	returned	in	the	xPos	and	yPos
If	button	1	or	button	2	on	the	joystick	are	currently	pressed,	btn1Pressed
btn2Pressed	will	be	set	to	true.	The	joystick	parameter	can	be	either	
or	joystick2.

The	x	and	y	positions	vary	from	joyMin	to	joyMax.	To	use	them	with	respect
to	a	screen,	the	coordinates	returned	from	Joystick.GetInfo	must	be	translated
into	screen	coordinates.	The	following	formula	can	be	used:

								screenX	=	round	(maxx	*	(xPos		joyMin)	/	(joyMax

								screenY	=	round	(maxy	*	(yPos		joyMin)	/	(joyMax

Details		

The	Joystick	module	contains	undocumented	subprograms	for	those	who	need
to	access	more	than	two	buttons	or	axes	on	a	joystick.	Contact	Holt	Software	if
you	need	more	information.

Example		

The	following	program	outputs	the	current	location	of	joystick	#1	and	draws	a
cursor	on	the	screen	to	point	out	where	it	is	showing.

								var	jx,	jy,	x,	y,	ox,	oy	:	int	:=	1

								var	b1,	b2,	oB1,	oB2	:	boolean	:=	false

								loop

												Joystick.GetInfo	(joystick1,	jx,	jy,	b1,	b2)

												%	Convert	joystick	coordinates	into	screen	coordinates.

												x	=	round	(maxx	*	(jx		joyMin)	/	(joyMax		joyMin

												y	=	round	(maxy	*	(jy		joyMin)	/	(joyMax		joyMin

												if	x	not=	ox	or	y	not=	oy	or		b1	not=	oB1	or

																Text.Locate	(1,	1)

																put	"x	=	",	x,	"		y	=	",	y,	"		b1	=	",	b1

																View.Set	("xor")

																Draw.Line	(ox		10,	oy,	ox	+	10,	oy,	brightred

																Draw.Line	(ox	,	oy		10,	ox	,	oy	+	10,	brightred

																Draw.Line	(x		10,	y,	x	+	10,	y,	brightred

																Draw.Line	(x,	y		10,	x,	y	+	10,	brightred

																ox	:=	x

																oy	:=	y

																oB1	:=	b1

																oB2	:=	b2

												end	if

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Joystick.GetInfo
by	calling	GetInfo.

Keyboard

Description		

This	unit	contains	all	the	constants
representing	both	the	characters	and
their	ordinal	values	for	all	possible
keystrokes	that	can	be	read	by
Turing.

Constants	beginning	with	“KEY_”
are	char	values.	These	are	the
values	returned	by	getch	and	used
as	an	index	into	the
Input.KeyDown	array.	The
constants	that	the	constants
KEY_KEYPAD_5,	KEY_SHIFT,
KEY_CTRL	and	KEY_ALT	can
only	be	used	in	conjunction	with
Input.KeyDown.	The	getch	and
getchar	subprograms	do	not	return
these	values.	All	other	constants
with	with	SHIFT,	CTRL	and	ALT	as
part	of	the	name	cannot	be	checked
for	in	the	Input.KeyDown	array.

Constants	beginning	with	“ORD_”
are	int	values	and	represent	the
ordinal	values	(values	returned	by
the	ord	function)	for	all	the	possible
keystrokes.

Here	is	a	list	of	most	of	the
constants

KEY_F1	..
KEY_F12 	

KEY_CTRL_A
..
KEY_CTRL_Z

KEY_SHIFT_F1
.. 	 KEY_ALT_A..	KEY_ALT_Z

KEY_HOME

KEY_SHIFT_F12
KEY_CTRL_F1
..
KEY_CTRL_F12

	 KEY_ALT_1	..KEY_ALT_0

KEY_ALT_F1	..	KEY_ALT_F12

KEY_UP_ARROW 	 KEY_CTRL_UP_ARROW
KEY_PGUP 	 KEY_CTRL_PGUP
KEY_LEFT_ARROW 	 KEY_CTRL_LEFT_ARROW
KEY_RIGHT_ARROW 	 KEY_CTRL_RIGHT_ARROW
KEY_END 	 KEY_CTRL_END
KEY_DOWN_ARROW 	 KEY_CTRL_DOWN_ARROW
KEY_PGDN 	 KEY_CTRL_PGDN
KEY_INSERT 	 KEY_CTRL_INSERT
KEY_DELETE 	 KEY_CTRL_DELETE
KEY_BACKSPACE 	 KEY_KEYPAD_5	*
KEY_TAB 	 KEY_SHIFT	*
KEY_ENTER 	 KEY_CTRL	*
KEY_ESC 	 KEY_ALT	*
KEY_CTRL_OPEN_BRACKET 	 KEY_CTRL_BACKSLASH
KEY_CTRL_CLOSE_BRACKET 	 KEY_CTRL_CARET
KEY_CTRL_UNDERSCORE 	 KEY_CTRL_BACKSPACE
KEY_ALT_MINUS 	 KEY_ALT_EQUALS
KEY_BACK_TAB 	 KEY_SHIFT_TAB

Above	constants	with	“ORD_”	instead	of	“KEY_”

ORD_A	..	ORD_Z 	 ORD_0	..	ORD_9
ORD_LOWER_A	..	ORD_LOWER_Z 	
ORD_SPACE 	 ORD_EXCALAMATION_MARK
ORD_QUOTATION_MARK 	 ORD_HAS_MARK
ORD_DOLLAR_SIGN 	 ORD_PERCENT_SIGN

ORD_AMPERSAND 	 ORD_SINGLE_QUOTE
ORD_OPEN_PARENTHESIS 	 ORD_CLOSE_PARENTHESIS
ORD_ASTERISK 	 ORD_PLUS
ORD_COMMA 	 ORD_MINUS
ORD_PERIOD 	 ORD_DOT
ORD_SLASH 	 ORD_COLON
ORD_SEMICOLON 	 ORD_LESS_THAN
ORD_EQUALS 	 ORD_GREATER_THAN
ORD_QUESTION_MARK 	 ORD_AT_SIGN
ORD_OPEN_BRACKET 	 ORD_BACKSLASH
ORD_CLOSE_BRACKET 	 ORD_CARET
ORD_UNDERSCORE 	 ORD_APOSTROPHE
ORD_OPEN_BRACE 	 ORD_BAR
ORD_CLOSE_BRACE 	 ORD_TILDE

Characters	marked	with	an	asterisk	(*)	are	keys	that	can	only	be	detected	using
Input.KeyDown.

All	constants	in	the	Keyboard	module	are	exported	unqualified.	(This	means	you
can	use	the	constants	directly	without	having	to	use	the	qualifier	"Keyboard.".)

See	also			getch,	getchar,	and	Input.KeyDown.

length of	a	string	function

Syntax		 length	(s	:	string)	:	int

Description		
The	length	function	returns	the	number	of	characters	in	the	string.
The	string	must	be	initialized.	For	example,	length("table")	is	5.

Example		

This	program	inputs	three	words	and	outputs	their	lengths.

								var	word	:	string

								for	i	:	1	..	3

												get	word

												put	length	(word)

								end	for

If	the	words	are	"cat",	"robin"	and	"crow",	the	program	will
output	3,	5	and	4.

Details		

The	length	function	gives	the	current	length	of	the	string.	To	find
the	maximum	length	of	a	string,	use	upper.	For	example,	given
the	declaration	var	s	:	string	(10),	upper	(s)	returns	10.

See	also		 upper.

Limits

Description		

This	unit	contains	constants	and	functions	used	in	determining	the
mathematical	accuracy	of	the	language.

All	routines	in	the	Limits	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Limits.")	except	maxint,	maxnat,	minint
and	minnat,	which	are	exported	unqualified	(this	means	you	can
call	those	entry	points	directly).

Entry
Points		

								

DefaultFW 	 Default	fraction	width	used	in	printing	using	the
"put"	statement.

DefaultEW 	 Default	exponent	width	used	in	printing	using	the
"put"	statement.

minint 	 The	minimum	integer	in	Turing	(exported
unqualified).

maxint 	 The	maximum	integer	in	Turing	(exported
unqualified).

minnat 	 The	minimum	natural	number	in	Turing
(exported	unqualified).

maxnat 	 The	maximum	natural	number	in	Turing
(exported	unqualified).

Real	numbers	are	represented	in	Turing	as:	f	*	(radix	**	e)	or
0
where	for	non-zero	f:
(1	/	radix)	<=	abs	(f)	and	abs	(f)	<	1.0
minexp	<=	e	and	e	<=	maxexp.

Radix 	 The	"radix"	(usually	2).
NumDigits 	 The	number	of	radix	digits	in	f.
MinExp 	 "minexp"	(the	smallest	exponent	allowed).
MaxExp 	 "maxexp"	(the	largest	exponent	allowed).
GetExp 	 Function	that	returns	the	value	of	"e".
SetExp 	 Procedure	that	sets	the	value	of	"e".

Rreb 	 The	relative	round-off	error	bound.

ln natural	logarithm	function

Syntax		 ln	(r	:	real)	:	real

Description		
The	ln	function	is	used	to	find	the	natural	logarithm	(base	e)	of	a
number.	For	example,	ln	(1)	is	0.

Example		

This	program	prints	out	the	logarithms	of	1,	2,	3,	…	up	to	100.

								for	i	:	1	..	100

												put	"Logarithm	of	",	i,	"	is	",	ln	(i)

								end	for

Details		
See	also	the	exp	(exponential)	function.	You	cannot	take	the
logarithm	of	zero	or	a	negative	number.

Note		 logn	(i)	=	ln	(i)	/	ln	(n)

See	also		
exp	(the	exponentiation	function).

See	also	predefined	unit	Math.

locate procedure

Syntax		 locate	(row,	column	:	int)

Description		

The	locate	procedure	is	used	to	move	the	cursor	so	that	the	next
output	from	put	will	be	at	the	given	row	and	column.	Row	1	is
the	top	of	the	screen	and	column	1	is	the	left	side	of	the	screen.

Example		

This	program	outputs	stars	of	random	colors	to	random	locations
on	the	screen.	The	variable	colr	is	purposely	spelled	differently
from	the	word	color	to	avoid	the	procedure	of	that	name	(used	to
set	the	color	of	output).	The	row	number	is	purposely	chosen	so
that	it	is	one	less	than	maxrow.	This	avoids	the	scrolling	of	the
screen	which	occurs	when	a	character	is	placed	in	the	last	column
of	the	last	row.

								setscreen	("screen")

								var	row,	column,	colr	:	int

								loop

												randint	(row,	1,	maxrow	-	1)

												randint	(column,	1,	maxcol)

												randint	(colr,	0,	maxcolor)

												color	(colr)

												locate	(row,	column)

												put	"*"	..		%	Use	dot-dot	to	avoid	clearing	end	of	line

								end	loop

Details		

The	locate	procedure	is	used	to	locate	the	next	output	based	on
row	and	column	positions.	See	also	the	locatexy	procedure	which
is	used	to	locate	the	output	based	x	and	y	positions,	where	x=0,
y=0	is	the	left	bottom	of	the	screen.

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
setscreen	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to"screen"	mode.

See	also		
setscreen	and	drawdot.

See	also	predefined	unit	Text.

locatexy graphics	procedure

Syntax		 locatexy	(x	,	y	:	int)

Description		

The	locatexy	procedure	is	used	to	move	the	cursor	so	that	the
next	output	from	put	will	be	at	approximately	(x,	y).	The	exact
location	may	be	somewhat	to	the	left	of	x	and	below	y	to	force
alignment	to	a	character	boundary.

Example		

This	program	outputs	"Hello"	starting	at	approximately	(100,	50)
on	the	screen.

								setscreen	("graphics")

								locatexy	(100,	50)

								put	"Hello"

Details		

The	locatexy	procedure	is	used	to	locate	the	next	output	based	on
x	and	y	positions,	where	the	position	x=0,	y=0	is	the	left	bottom
of	the	screen.	See	also	the	locate	procedure	which	is	used	to
locate	the	output-based	row	and	column	positions,	where	row	1	is
the	top	row	and	column	1	is	the	left	column.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		
setscreen	and	drawdot.

See	also	predefined	unit	Text.

loop statement

Syntax		

A	loopStatement	is:

	 loop
	 	 statementsAndDeclarations
	 end	loop

Description		

A	loop	statement	causes	the	statements	(and	declarations)	in	it	to
be	repeatedly	executed.	This	continues	until	terminated	by	one	of
its	enclosed	exit	statements	(or	by	an	enclosed	return	or	result
statement).

Example		

Output	on	separate	lines:	Happy,	Happy,	Happy,	etc.

								loop

												put	"Happy"

								end	loop

Example		

Read	words	up	to	the	word	Stop.

								var	word	:	string

								loop

												get	word

												exit	when	word	=	"Stop"

								end	loop

Details		

A	loop	statement	can	contain	more	than	one	exit,	or	none	at	all	(in
which	case	it	is	an	infinite	loop).	When	the	exit	when	is	at	the
beginning	of	the	loop,	the	loop	works	like	Pascal's	do	while;
when	at	the	end,	the	loop	works	like	Pascal's	repeat	until.

Just	preceding	the	statements	and	declarations,	you	are	allowed	to
write	an	"invariant	clause"	of	the	form:

								invariant	trueFalseExpn

This	clause	is	equivalent	to:	assert	trueFalseExpn.

lower bound

Syntax		 lower	(reference	[,	dimension])	:	int

Description		

The	lower	attribute	is	used	to	find	the	lower	bound	of	an	array,
string,	char(n)	or	non-opaque	subrange	type.	Since	the	lower
bound	is	necessarily	known	at	compile	time,	lower	is	rarely	used.

See	also		 upper	which	finds	the	upper	bound.

Math

Description		

This	unit	contains	all	the	mathematical	routines.	There	are	three
routines	that	are	part	of	the	language,	but	are	conceptually	part	of
the	Math	unit.

All	routines	in	the	Math	unit	except	Math.Distance	and
Math.DistancePointLine	are	exported	unqualified.	(This	means
you	can	call	the	entry	points	directly.)	Math.Distance	and
Math.DistancePointLine	are	exported	qualified.	All	constants	in
the	Math	unit	are	exported	qualified.	(Both	Math.PI	and	Math.E
must	be	prefaced	with	"Math.".)

Descriptions	of	all	the	subprograms	in	the	Math	module	can	be
found	in	this	chapter.

Constants		
Math.PI 	 The	constant	p	(3.14...).
Math.E 	 The	natural	base	e	(2.718...).

Entry
Points		

abs* 	 The	absolute	value	function.
arccos 	 The	arccos	function	(radians).
arccosd 	 The	arccos	function	(degrees).
arcsin 	 The	arcsin	function	(radians).
arcsind 	 The	arcsin	function	(degrees).
arctan 	 The	arctan	function	(radians).
arctand 	 The	arctan	function	(degrees).
cos 	 The	cosine	function	(radians).
cosd 	 The	cosine	function	(degrees).
exp 	 The	exponentiation	function.
ln 	 The	natural	logarithm	function.
max* 	 The	maximum	value	function.
min* 	 The	minimum	value	function.
sign 	 The	sign	function.
sin 	 The	sine	function	(radians).
sind 	 The	sine	function	(degrees).

tan 	 The	tangent	function	(radians).
tand 	 The	tangent	function	(degrees).
sqrt 	 The	square	root	function.
Distance 	 The	distance	between	two	points.

DistancePointLine 	 The	distance	between	a	point	and	a	line
segment.

*	Part	of	the	language,	conceptually	part	of	the	Math	unit.

Math.Distance Part	of	Math	module

Syntax		 Math.Distance	(x1,	y1,	x2,	y2	:	real)	:	real

Description		 Math.Distance	is	used	to	calculate	the	distance	between	two
points.	(x1,	y1)	is	the	location	of	the	first	point,	and	(x2,	y2)	is	the
location	of	the	second	point.

Details		 The	parameters	to	Math.Distance	are	real,	but	you	can	pass
integer	variables	and	constants.

Example		 This	progam	draws	two	circles	with	radius	75	on	the	screen	and
outputs	whether	they	touch.

								var	x1,	y1,	x2,	y2	:	int

								const	RADIUS	:	int	:=	75

								x1	:=	Rand.Int	(RADIUS,	maxx	-	RADIUS)

								y1	:=	Rand.Int	(RADIUS,	maxy	-	RADIUS)

								x2	:=	Rand.Int	(RADIUS,	maxx	-	RADIUS)

								y2	:=	Rand.Int	(RADIUS,	maxy	-	RADIUS)

								Draw.FillOval	(x1,	y1,	RADIUS,	RADIUS,	brightred

								Draw.FillOval	(x2,	y2,	RADIUS,	RADIUS,	brightgreen

								if	Math.Distance	(x1,	y1,	x2,	y2)	<	RADIUS	*	2	then

												put	"The	two	circles	touch"

								else

												put	"The	two	circles	do	not	touch"

								end	if

Execute		

Status		 Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Math.Distance,	not	by	calling	Distance.

Math.DistancePointLine Part	of	Math	module

Syntax		 Math.DistancePointLine	(xp,	yp,	x1,	y1,	x2,	y2	:	real)	:	real

Description		 Math.DistancePointLine	is	used	to	calculate	the	distance	between	a	point
and	a	line	segment.	It	is	often	used	in	games	to	determine	if	a	collision	has
occurred.	(xp,	yp)	is	the	location	between	the	point.	(x1,	y1)	and	(x2
are	the	end	points	of	the	line	segment.

Details		 The	parameters	to	Math.DistancePointLine	are	real,	but	you	can	pass
integer	variables	and	constants.	The	parameters	are	in	the	same	order	as	the
subprogram	name	(that	is	point,	then	line).

Example		 This	progam	draws	a	line	segment	and	a	circle	with	radius	75	on	the	screen
and	outputs	whether	they	touch.

								var	xp,	yp,	x1,	y1,	x2,	y2	:	int

								const	RADIUS	:	int	:=	75

								xp	:=	Rand.Int	(RADIUS,	maxx	-	RADIUS)

								yp	:=	Rand.Int	(RADIUS,	maxy	-	RADIUS)

								x1	:=	Rand.Int	(0,	maxx)

								y1	:=	Rand.Int	(0,	maxy)

								x2	:=	Rand.Int	(0,	maxx)

								y2	:=	Rand.Int	(0,	maxy)

								Draw.FillOval	(xp,	yp,	RADIUS,	RADIUS,	brightred

								Draw.Line	(x1,	y1,	x2,	y2,	brightgreen)

								if	Math.DistancePointLine	(xp,	yp,	x1,	y1,	x2,	y2

												put	"The	circle	touches	the	line"

								else

												put	"The	circle	does	not	touch	the	line"

								end	if

Execute		

Status		 Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Math.DistancePointLine,	not	by	calling	DistancePointLine.

max maximum	function

Syntax		 max	(expn	,	expn)

Description		

The	max	function	is	used	to	find	the	maximum	of	two	numbers
(the	two	expn's).	For	example,	max	(5,	7)	is	7.	If	both	numbers
are	int,	the	result	is	int.	If	both	numbers	are	nat	(natural
numbers),	the	result	is	nat.	But	if	one	or	both	of	the	numbers	are
real,	the	result	is	real.	See	also	the	min	function.

Example		

This	program	outputs	85.72.

								var	x	:	real	:=	74.61

								var	y	:	real	:=	85.72

								put	max	(x,	y)								%	Outputs	85.72

Example		

This	program	inputs	10	numbers	and	outputs	their	maximum.

								var	m,	t	:	real

								get	m											%	Input	first	number

								for	i	:	2	..	10					%	Handle	remaining	9	numbers

												get	t

												m	:=	max	(m,	t)

								end	for

								put	"The	maximum	is	",	m

See	also		 See	also	predefined	unit	Math.

maxcol maximum	column	function

Syntax		 maxcol	:	int

Description		
The	maxcol	function	is	used	to	determine	the	number	of	columns
on	the	screen.

Example		
This	program	outputs	the	maximum	column	number.

								put	"Number	of	columns	on	the	screen	is	",	maxrow

Details		

For	IBM	PC	compatibles	as	well	as	most	UNIX	dumb	terminals,	in
"text"	or	"screen"	mode,	maxcol	=	80.	For	the	default	IBM	PC
compatible	"graphics"	mode	(CGA),	maxcol	=	40.

See	also		 locate	procedure	for	an	example	of	the	use	of	maxcol.

maxcolor graphics	function

Syntax		 maxcolor	:	int

Description		

The	maxcolor	function	is	used	to	determine	the	maximum	color
number	for	the	current	mode	of	the	screen.	The	alternate	spelling
is	maxcolour.

Example		

This	program	outputs	the	maximum	color	number.

								setscreen	("graphics")

								…

								put	"The	maximum	color	number	is	",	maxcolor

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	it	is
not,	it	will	automatically	be	set	to	"screen"	mode.	See	setscreen
for	details.

For	IBM	PC	compatibles	in	"screen"	mode,	maxcolor	=	15.	For
the	default	IBM	PC	compatible	"graphics"	mode	(CGA),
maxcolor	=	3.

See	also		

drawdot	and	palette	for	examples	of	the	use	of	maxcolor.	See
the	color	procedure	which	is	used	for	setting	the	currently	active
color.

maxint maximum	integer	function

Syntax		 maxint	:	int

Description		
The	maxint	function	is	used	to	determine	the	largest	integer	(int)	that	can
be	used	in	a	program.

Example		
This	program	outputs	the	maximum	integer.

								put	"The	largest	integer	that	can	be	used	is	",	

Details		

In	current	Turing	and	OOT	implementations,	int	values	are	stored	in	4
bytes,	i.e.,	32	bits.	This	determines	the	maximum	int	value,	which	is
2**311,	equaling	2147483647.

There	is	an	anomaly	in	computer	arithmetic	in	that	the	absolute	value	of
the	largest	negative	integer	is	one	larger	than	maxint.	Turing	reserves	this
extra	value	to	represent	the	uninitialized	integer.	This	value	can	be
computed	but	any	attempt	to	assign	it	to	an	int	variable	is	detected	as	an
overflow.	You	can	use	this	extra	value	by	using	the	int4	type	instead	of
int,	but	this	type	has	no	initialization	checking.

See	also		
maxnat	and	minint.

See	also	OOT	predefined	unit	Math.

maxnat maximum	natural	number	function

Syntax		 maxnat	:	nat

Description		
The	maxnat	function	is	used	to	determine	the	largest	natural	number	that	can	be
used	in	a	program.

Example		
This	program	outputs	the	maximum	natural	number.

								put	"The	largest	natural	number	that	can	be	used	is	",	

Details		

In	current	implementations,	natural	numbers	are	stored	in	4	bytes,	i.e.,	32	bits.
This	determines	the	maximum	natural	number,	which	is	2**32	-	2,	equaling
4294967294.

In	four	bytes	it	is	possible	to	represent	one	more	value,	namely,	2**32	-	1	=
4294967295.	This	extra	value	is	used	in	Turing	to	represent	the	uninitialized
natural	number.	Although	it	can	be	computed,	any	attempt	to	assign	it	to	a	
variable	is	detected	as	an	overflow.	You	can	use	this	extra	value	by	using	the	
type	instead	of	nat,	but	this	type	has	no	initialization	checking.

See	also		
maxint	and	minnat.

See	also	predefined	unit	Limits.

maxrow maximum	row	function

Syntax		 maxrow	:	int

Description		
The	maxrow	function	is	used	to	determine	the	number	of	rows	on
the	screen.

Example		
This	program	outputs	the	maximum	row	number.

								put	"Number	of	rows	on	the	screen	is	",	maxrow

Details		
For	IBM	PC	compatibles,	maxrow	=	25.	For	many	UNIX	dumb
terminals,	maxrow	=	24.

See	also		 locate	procedure	for	an	example	of	the	use	of	maxrow.

maxx graphics	function

Syntax		 maxx	:	int

Description		
The	maxx	function	is	used	to	determine	the	maximum	value	of	x
for	the	current	graphics	mode.

Example		

This	program	outputs	the	maximum	x	value.

								setscreen	("graphics")

								…

								put	"The	maximum	x	value	is	",	maxx

Details		

The	screen	should	be	in	a	"graphics"	mode.	If	it	is	not,	it	will
automatically	be	set	to	"graphics"	mode.	See	setscreen	for
details.

For	the	default	IBM	PC	compatible	graphics	mode	(CGA),	maxx
=	319.

See	also		
drawdot	for	an	example	of	the	use	of	maxx	and	for	a	diagram
illustrating	x	and	y	positions.

maxy graphics	function

Syntax		 maxy	:	int

Description		
The	maxy	function	is	used	to	determine	the	maximum	value	of	y
for	the	current	graphics	mode.

Example		

This	program	outputs	the	maximum	y	value.

								setscreen	("graphics")

								…

								put	"The	maximum	y	value	is	",	maxy

Details		

The	screen	should	be	in	a	"graphics"	mode;.	If	it	is	not,	it	will
automatically	be	set	to	"graphics"	mode.	See	setscreen	for
details.

For	the	default	IBM	PC	compatible	graphics	mode	(CGA),	maxy
=	199.

See	also		
drawdot	for	an	example	of	the	use	of	maxy	and	for	a	diagram
illustrating	x	and	y	positions.

min minimum	function

Syntax		 min	(expn	,	expn)

Description		

The	min	function	is	used	to	find	the	minimum	of	two	numbers
(the	two	expn's).	For	example,	min	(5,	7)	is	5.	If	both	numbers
are	int,	the	result	is	int.	If	both	numbers	are	nat	(natural
numbers),	the	result	is	nat.	But	if	one	or	both	of	the	numbers	are
real,	the	result	is	real.	See	also	the	max	function.

Example		

This	program	outputs	74.61.

								var	x	:	real	:=	74.61

								var	y	:	real	:=	85.72

								put	min	(x,	y)												%	Outputs	74.61

Example		

This	program	inputs	10	numbers	and	outputs	their	minimum.

								var	m,	t	:	real

								get	m															%	Input	first	number

								for	i	:	2	..	10									%	Handle	remaining	9	numbers

												get	t

												m	:=	min	(m,	t)

								end	for

								put	"The	minimum	is	",	m

See	also		 See	also	predefined	unit	Math.

minint minimum	integer	function

Syntax		 minint	:	int

Description		
The	minint	function	is	used	to	determine	the	smallest	integer	(int)	that	can
be	used	in	a	program.

Example		
This	program	outputs	the	maximum	integer.

								put	"The	smallest	integer	that	can	be	used	is	",	

Details		

In	current	implementations,	int	values	are	stored	in	4	bytes,	i.e.,	32	bits.
This	determines	the	minimum	int	value,	which	is	-2**31-1,	equaling
-2147483647.

There	is	an	anomaly	in	computer	arithmetic	in	that	the	absolute	value	of
the	largest	negative	integer	is	one	larger	than	maxint.	Turing	reserves	this
extra	value	to	represent	the	uninitialized	integer.	This	value	can	be
computed	but	any	attempt	to	assign	it	to	an	int	variable	is	detected	as	an
overflow.	You	can	use	this	extra	value	by	using	the	int4	type	instead	of	
but	this	type	has	no	initialization	checking.

See	also		
minnat	and	maxint.

See	also	predefined	unit	Limits.

minnat minimum	natural	number	function

Syntax		 minnat	:	nat

Description		
The	minnat	function	is	used	to	determine	the	smallest	natural	number	that	can	be
used	in	a	program.

Example		
This	program	outputs	the	smallest	natural	number.

								put	"The	smallest	natural	number	that	can	be	used	is	",	

Details		

In	current	Turing	and	OOT	implementations,	natural	numbers	are	stored	in	4	bytes,
i.e.,	32	bits.	However,	the	minimum	natural	number	in	all	implementations	is	0.
minnat	is	provided	for	purposes	of	symmetry	with	minint,	maxint

In	four	bytes	it	is	possible	to	represent	one	more	value,	namely,	2**32	-	1	=
4294967295.	This	extra	value	is	used	in	Turing	to	represent	the	uninitialized	natural
number.	Although	it	can	be	computed,	any	attempt	to	assign	it	to	a	
detected	as	an	overflow.	You	can	use	this	extra	value	by	using	the	nat4
of	nat,	but	this	type	has	no	initialization	checking.

See	also		
minint	and	maxnat.

See	also	predefined	unit	Limits.

mod modulo	operator

Syntax		 mod

Description		

The	mod	(modulo)	operator	produces	the	modulo	of	one	number
with	another.	In	other	words,	the	result	is	always	a	number
between	0	and	the	second	operand.	If	both	operands	are	positive,
the	result	is	identical	to	the	remainder	operator.	For	example,	7
mod	2	produces	1	and	12	mod	5	produces	3.

Example		

In	this	example,	hours	is	the	current	time.	It	is	moved	back	and
forth	by	a	random	amount,	but	the	final	result	must	always	be
between	1	and	12	(the	mod	operation	produces	a	number	between
0	and	11	and	then	0	becomes	12).

								var	hours	:	int	:=	12

								var	hoursPassed	:	int

								put	"The	time	is	now	",	hours,	"	o'clock"

								loop

												randint	(hoursPassed,	-12,	12)

												exit	when	hoursPassed	=	0

												if	hoursPassed	<	0	then	

																put	hoursPassed,	"	hours	before	"	..

												else

																put	hoursPassed,	"	hours	later	"	..

												end	if

												put	hours,	"	o'clock"	..

												hours	:=	(hours	+	hoursPassed)	mod	12

												if	hours	=	0	then	

																hours	=	12

												end	if

												put	"	it	was	",	hours,	"	o'clock"

								end	loop

Details		

If	the	second	operand	is	positive,	then	the	result	is	always	non-
negative.	Likewise,	if	the	second	operand	is	negative,	then	the
result	is	always	non-positive.	If	both	operands	are	negative,	the
result	is	the	same	as	the	remainder	operator.

See	also		
infix	operators,	precedence	of	operators	and	the	rem	and	div
operators.

module declaration

Syntax		

A	moduleDeclaration	is:

	 module	id
	 	 [implement	implementItem]
	 	 [implement	by	implementByItem]
	 	 [import	[var]	importItem
	 	 	 	 	 {,	[var]	importItem	}]
	 	 [export	[howExport]	id	{,[howExport]	id	}]
	 	 statementsAndDeclarations
	 end	id

Description		

A	module	declaration	creates	a	package	of	variables,	constants,	types,
subprograms,	etc.	The	name	of	the	module	(id)	is	given	in	two	places,	just	after
module	and	just	after	end.	Items	declared	inside	the	module	can	be	accessed
outside	of	the	module	only	if	they	are	exported.	Items	from	outside	the	module
that	are	to	be	used	in	the	module	need	to	be	imported	(unless	they	are
predefined	or	pervasive).

Example		

This	module	implements	a	stack	of	strings.

								module	stack												%	Implements	a	LIFO	list	of	strings

												export	push,	pop

								

												var	top	:	int	:=	0

												var	contents	:	array	1	..	100	of	string

								

												procedure	push	(s	:	string)

																top	:=	top	+	1

																contents	(top)	:=	s

												end	push

								

												procedure	pop	(var	s	:	string)

																s	:=	contents	(top)

																top	:=	top	-	1

												end	pop

								end	stack

								

								stack	.	push	("Harvey")

								var	name	:	string

								stack	.	pop	(name)								%	This	sets	name	to	Harvey

Outside	of	the	stack	module,	the	procedures	push	and	pop	can	be	called	using
the	notation	stack.push	and	stack.pop.	This	access	is	allowed	because	
pop	are	exported	from	the	module.	Other	items	declared	in	the	module	(
contents)	cannot	be	accessed	from	outside	because	they	are	not	exported.

Details		

In	some	other	programming	languages,	a	module	is	called	a	package
object.

A	module	declaration	is	executed	(it	is	initialized)	by	executing	its	declarations
and	statements.	For	example,	the	stack	module	is	initialized	by	setting	the	
variable	to	0.	This	initialization	executes	all	the	statements	and	declarations	in
the	module	that	are	not	contained	in	procedures	or	functions.	The	initialization
is	completed	before	any	procedure	or	function	of	the	module	can	be	called	from
outside	the	module.	An	exported	subprogram	must	not	be	called	until
initialization	of	the	module	is	complete.

A	call	to	an	exported	procedure	or	function	from	outside	the	module	executes
the	body	of	that	procedure	or	function	(the	module	is	not	initialized	with	each
such	call).	See	also	monitor	and	class	declarations.

The	import	list	gives	the	names	of	items	declared	outside	the	module	that	can
be	accessed	inside	the	module.	Since	stack	has	no	import	list,	it	is	not	allowed
to	access	any	names	declared	outside	of	it.	See	also	import	lists.	Separately-
compiled	units	that	are	imported	are	initialized	before	the	importing	unit.

The	export	list	is	used	to	implement	information	hiding,	which	isolates
implementation	details	inside	the	module.	The	export	list	gives	the	names	of
items	declared	inside	the	module	that	can	be	used	outside	the	module.	For
example,	push	and	pop	are	exported	from	stack.	Each	such	use	of	an	exported
item	must	be	preceded	by	the	module	name	and	a	dot,	for	example,	
(See	unqualified	for	advice	on	how	to	avoid	using	the	prefix	"stack.
that	are	not	exported,	such	as	top	and	contents,	cannot	be	accessed	outside	the
module.

Procedures,	functions,	variables,	constants	and	types	can	be	exported;	modules,
monitors	or	classes	cannot	be	exported.

A	class	is	essentially	a	template	for	creating	individual	modules	(objects).	See
class	for	details.	A	monitor	is	essentially	a	module	in	which	only	one	process
can	be	active	at	a	time.	See	monitor	and	process	for	details.

The	opaque	keyword	is	used	(only)	in	export	lists	to	precede	exported	type
names	that	have	declarations	in	the	module.	Outside	of	the	module,	the	type
will	be	distinct	from	all	others	types.	This	means,	for	example,	that	if	the
opaque	type	is	a	record,	its	fields	cannot	be	accessed	outside	of	the	module.
Opaque	types	are	used	to	guarantee	that	certain	items	are	inspected	and
manipulated	in	only	one	place,	namely,	inside	the	module.	These	types	are
sometimes	called	abstract	data	types.	See	also	export	lists,	which	also
describes	unqualified	and	pervasive	exports.

Implement	and	implement-by	lists	are	used	to	separate	a	module's	interface
from	its	body.	This	allows	only	a	part	of	a	module	(its	interface)	to	be	visible	to
its	users	(its	importers),	while	hiding	its	implementation.	See	implement
implement	by	lists.

Example		

Use	an	opaque	type	to	implement	complex	arithmetic.

								module	complex

												export	opaque	value,	constant,	add,

																												…	other	operations	…

												type	value	:

																record

																				realPt,	imagPt	:	real

																end	record

								

												function	constant	(realPt,	imagPt:	real)	:	

																var	answer	:	value

																answer	.	realPt	:=	realPt

																answer	.	imagPt	:=	imagPt

																result	answer

												end	constant

								

												function	add	(L,	R	:	value)	:	value

																var	answer	:	value

																answer	.	realPt	:=	L	.	realPt	+	R	.	realPt

																answer	.	imagPt	:=	L	.	imagPt	+	R	.	imagPt

																result	answer

												end	add

								

								…	other	operations	for	complex	arithmetic	go	here	…

								end	complex

								

								var	c,d	:	complex	.value	:=complex.constant	(1,	5)	

																%	c	and	d	become	the	complex	number	(1,5)

								var	e	:	complex	.value	:=	complex.add	(c,	d)

																%	e	becomes	the	complex	number	(2,10)

Details		

Module	declarations	can	be	nested	inside	other	modules	but	cannot	be	nested
inside	procedures	or	functions.	A	module	must	not	contain	a	bind	as	one	of	its
(outermost)	declarations.	A	return	statement	cannot	be	used	as	one	of	the
(outermost)	statements	in	a	module.

The	syntax	of	a	moduleDeclaration	presented	above	has	been	simplified	by
leaving	out	pre,	invariant	and	post	clauses;	the	full	syntax	is:

								module	id

												[implement	implementItem]

												[implement	by	implementByItem]

												[import	[var]	importItem	{,	[var]	importItem

												[export	[howExport]	id	{,	[howExport]	id

												[pre	trueFalseExpn]

												statementsAndDeclarations

												[invariant	trueFalseExpn]

												statementsAndDeclarations

												[post	trueFalseExpn]

								end	id

The	true/false	expression	in	the	pre	and	post	clauses	must	be	true	when
initialization	reaches	each	of	them.	After	that,	these	have	no	effect.	The
true/false	expression	in	the	invariant	must	be	true	any	time	the	module	is
exited	(when	finishing	initialization	or	when	returning	from	an	external	call	to
an	exported	subprogram)	or	called	(via	an	exported	subprogram).	These	clauses
(pre,post	and	invariant)	are	not	inherited	by	expansions.	For	example,	if
module	B	inherits	A,	the	subprograms	of	B	are	bound	by	B's	clauses	and	not	by
A's.

See	also		
unit,	monitor	and	class.	See	also	export	list,	import	list,	implement
implement	by	list,	inherit	list	and	deferred	subprogram.

monitor declaration

Syntax		

A	monitorDeclaration	is:

	 monitor	id
	 	 [implement	implementItem]
	 	 [implement	by	implementByItem]
	 	 [import	[var]	importItem
	 	 	 	 	 {,	[var]	importItem	}]
	 	 [export	[howExport]	id	{,[howExport]	id	}]
	 	 statementsAndDeclarations
	 end	id

Description		

A	monitor	is	a	special	purpose	module	(see	module)	that	is	used
with	concurrent	processes	(see	process).	At	most,	one	concurrent
process	(see	process)	can	be	active	in	a	monitor	at	a	time.	This
means	that	a	process	will	be	blocked	if	it	calls	a	monitor	that	is
already	active.	The	process	will	not	be	allowed	to	proceed	until
the	monitor	is	inactive.	The	monitor	provides	mutually	exclusive
access	to	the	monitor's	internal	data.

This	monitor	controls	access	to	the	count	variable	so	it	can	be
updated	by	two	processes	(the	observer	and	the	reporter)	without
being	corrupted	by	this	concurrent	access.	Generally,	it	is	not	safe
to	have	one	process	update	a	variable	that	other	processes	are
simultaneously	accessing.	The	observer	process	repeatedly
increments	the	counter	when	it	observes	an	event.	The	reporter
process	repeatedly	writes	out	the	number	of	events	that	have
occurred	since	the	last	report,	resetting	the	counter	to	zero.

								monitor	controller

												export	observe,	report

								

												var	counter	:	int	:=	0

								

												procedure	observe

																counter	:=	counter	+	1

Example		

												end	observe

								

												procedure	report	(var	n	:	int)

																n	:=	counter

																counter	:=	0

												end	report

								end	controller

								process	observer

												loop

																…	observe	one	event	…

																controller	.	observe

												end	loop

								end	observer

								

								process	reporter

												var	n	:	int

												loop

																controller.report	(n)

																…	report	n	events	…

												end	loop

								end	reporter

								

								fork	observer							%	Activate	the	observer

								fork	reporter							%	Activate	the	reporter

Details		

A	monitor	is	essentially	a	module	in	which	only	one	process	can
be	active	at	a	time.	See	module	declarations	for	details	about
initialization.	Initialization	is	the	same	for	modules	and	monitors.

A	monitor	can	contain	wait	statements	(that	put	processes	to
sleep)	and	signal	statements	(that	wake	them	up	again).	These
statements	operate	on	condition	variables,	which	are	essentially
queues	of	sleeping	processes.

A	class	is	essentially	a	template	for	creating	individual	modules
(objects).	See	class	for	details.	If	the	class	declaration	is	preceded
by	the	keyword	monitor,	the	created	modules	are	actually
monitors.	Monitor	classes	can	only	inherit	(inherit	from)	other
monitor	classes.

The	body	of	a	monitor	has	the	same	form	as	that	of	a	module,
except	that	modules,	monitors	and	processes	cannot	be	declared
inside	monitors,	and	certain	statements	(wait	and	signal)	are
allowed	in	monitors.

Details		

The	syntax	of	a	monitorDeclaration	presented	above	has	been
simplified	by	leaving	out	pre,	invariant	and	post	clauses.	See
module	for	an	explanation	of	these	extra	features.	There	is	also	an
optional	compilerTimeIntegerExpression	in	the	first	line,	which	is
explained	below.	The	full	syntax	is:

								monitor	id	[:	compileTimeIntegerExpn]

												[implement	implementItem]

												[implement	by	implementByItem]

												[import	[var]	importItem	{,	[var]	importItem

												[export	[howExport]	id	{,	[howExport]	id

												[pre	trueFalseExpn]

												statementsAndDeclarations

												[invariant	trueFalseExpn]

												statementsAndDeclarations

												[post	trueFalseExpn]

								end	id

If	the	optional	compileTimeIntegerExpression	is	present,	this	is	a
device	monitor.	Its	exclusive	access	is	enforced	by	an
implementation-dependent	trick,	such	as	executing	it	at	a
hardware	priority	level	given	by	the	expression.	A	device	monitor
is	restricted	from	calling	monitors	(directly	or	indirectly).	This
restriction	is	imposed	to	eliminate	the	possibility	of	blocking	a
process	with	a	non-zero	hardware	priority	(as	this	would
inadvertently	allow	multiple	entry	into	a	device	monitor).	It	is	the
programmer's	responsibility	to	meet	this	restriction;	the	compiler
will	not	in	general	enforce	the	restriction.	The	current	(1999)
implementation	ignores	this	compileTimeIntegerExpression.

An	unexported	parameterless	procedure	in	a	monitor	can	be
specified	to	be	an	interrupt	handling	procedure	by	specifying	a
device	in	its	header,	using	the	form:

								procedure	id	[:	deviceSpecification]

The	deviceSpecification	is	a	compile	time	natural	number	that
designates,	to	the	implementation,	the	class	of	interrupts	that
effectively	call	this	procedure.	Interrupt	handling	procedures
cannot	be	called	explicitly	within	the	program.

Details		 There	are	two	restrictions	that	the	programmer	must	follow	when
using	interrupt	handling	procedures;	these	restrictions	will	not
necessarily	be	enforced	by	the	software.	The	first	is	that	an
interrupt	handling	procedure	must	not	execute	a	wait,	either
directly	or	indirectly,	by	calling	another	procedure.	The	second	is
that	the	interrupt	handling	procedure	must	not	directly	or
indirectly	cause	an	exception,	unless	the	exception	will	be	caught
by	an	exception	handler	that	is	activated	directly	or	indirectly	by
the	interrupt	handling	procedure.

Details		

Declarations	of	monitors	within	monitors	are	disallowed.	This
would	be	redundant	anyway,	as	only	one	process	can	be	inside	the
outer	monitor,	so	the	inner	monitor	is	guaranteed	to	be	successful.

Declarations	of	classes	within	monitors	are	also	disallowed.

Any	subprogram	declared	within	a	subprogram	is	now	allowed	to
be	assigned	to	a	subprogram	variable,	nor	passed	as	a	parametric
subprogram.

See	also		
unit,	module	and	class.	See	also	export	list,	import	list,
implement	list,	implement	by	list	and	deferred	subprogram.

Mouse

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
using	the	mouse	in	a	Turing	program.	The	routines	allow	you	to
get	the	current	mouse	cursor	position,	check	if	a	button	has	been
pressed	and	get	the	information	if	it	has.	There	are	also	routines	to
hide	and	show	the	mouse	on	systems	where	it	makes	sense.	(On
GUI	based	systems	like	the	Macintosh,	the	mouse	can't	be	hidden
as	it	may	be	needed	by	other	applications	running	at	the	same
time.)

All	routines	in	the	Mouse	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Mouse.").

Entry
Points		

Where 	 Gets	the	current	location	of	the	mouse	cursor
and	status	of	the	mouse	buttons.

ButtonMoved 	 Checks	to	see	if	a	mouse	button	has	been
pressed.

ButtonWait 	
Gets	information	about	a	mouse	button	being
pressed	such	as	where	it	was	pressed,	which
button	was	pressed,	etc.

ButtonChoose 	 Selects	the	mode	for	the	mouse	(either	single
button	mode	or	multi-button	mode).

Mouse.ButtonChoose Part	of	Mouse	module

Syntax		 Mouse.ButtonChoose	(choice	:	string)

Description		

The	Mouse.ButtonChoose	procedure	is	used	to	change	the	mode
of	the	mouse.	In	Turing,	the	mouse	can	either	be	in	"single-button
mode"	or	in	"multi-button	mode".	In	"single-button	mode"	the
mouse	is	treated	as	a	one	button	mouse.	A	button	is	considered
pressed	when	any	button	is	pressed	and	released	only	when	all
buttons	have	been	released.

In	Turing,	the	mouse	starts	in	"single-button	mode".

The	parameter	choice	can	be	one	of	"singlebutton",	"onebutton"
(which	switch	the	mouse	into	"single-button	mode")	or
"multibutton"	(which	switches	the	mouse	into	"multi-button
mode").

Example		

A	program	that	displays	the	status	of	the	mouse	at	the	top	left
corner	of	the	screen.

								Mouse.ButtonChoose	("multibutton")

								var	x,	y,	button,	left,	middle,	right	:	int

								Mouse.Where	(x,	y,	button)

								left	:=	button	mod	10											%	left	=	0	or	1

								middle	:=	(button	-	left)	mod	100			%	middle	=	0	or	10

								right	:=	button	-	middle	-	left					%	right	=	0	or	100

								if	left	=	1	then

												put	"left	button	down"

								end	if

								if	middle	=	10	then

												put	"middle	button	down"

								end	if

								if	right	=	100	then

												put	"right	button	down"

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Mouse.ButtonChoose,	not	by	calling	ButtonChoose.

See	also		

Mouse.ButtonMoved	and	Mouse.ButtonWait	to	get	mouse
events	saved	in	a	queue.	See	also	Mouse.Where	to	get	the	current
status	of	mouse	button(s).

Mouse.ButtonMoved Part	of	Mouse	module

Syntax		 Mouse.ButtonMoved	(motion	:	string)	:	boolean

Description		

The	Mouse.ButtonMoved	function	indicates	whether	there	is	a
mouse	event	of	the	appropriate	type	on	the	mouse	queue.	Events
are	either	"up",	"down",	"updown"	or	"downup"	events	(although
the	"downup"	and	"updown"	are	the	same	event).

The	parameter	motion	must	be	one	of	"up",	"down",	"updown"	or
"downup".	If	an	event	of	the	type	requested	is	in	the	queue,
Mouse.ButtonMoved	returns	true.	If	the	event	is	not	in	the
queue,	then	Mouse.ButtonMoved	returns	false.

In	"single-button	mode"	(where	the	mouse	is	treated	like	a	one-
button	mouse),	a	"down"	event	occurs	whenever	all	the	buttons
are	up	and	a	button	is	pressed.	An	"up"	event	takes	place	when
the	last	button	is	released	so	that	no	buttons	remain	pressed.

In	"multi-button	mode",	a	"down"	event	occurs	whenever	any
button	is	pressed,	and	an	"up"	event	occurs	whenever	any	button
is	released.

Example		

This	program	draws	random	circles	on	the	screen	until	the	user
clicks	the	mouse	button,	whereupon	is	starts	drawing	random
boxes.	Clicking	the	mouse	button	switches	between	the	two.

								var	circles:	boolean	:=	true

								loop

												var	x,	y,	radius,	clr:	int

												if	Mouse.ButtonMoved	("down")	then

																var	buttonnumber,	buttonupdown	:	int

																Mouse.ButtonWait	("down",	x,	y,	buttonnumber

																																								buttonupdown)

																circles	:=	not	circles

												end	if

												x	:=	Rand.Int	(0,	maxx)

												y	:=	Rand.Int	(0,	maxy)

												radius	:=	Rand.Int	(0,	100)

												clr	:=	Rand.Int	(0,	maxcolor)

												if	circles	then

																Draw.FillOval	(x,	y,	radius,	radius,	clr

												else

																Draw.FillBox	(x,	y,	x	+	radius,	y	+	radius

												end	if

								end	loop

Example		

This	is	an	example	demonstrating	how	to	check	for	both	character
and	mouse	input	at	the	same	time.

								var	ch	:	string	(1)

								var	x,	y,	btnnum,	btnupdown	:	int

								loop

												if	hasch	then

																getch	(ch)

																Text.Locate	(1,	1)

																put	"The	character	entered	is	a:	",	ch

												end	if

												if	Mouse.ButtonMoved	("down")	then

																Mouse.ButtonWait	("down",	x,	y,	btnnum,	

																Text.Locate	(1,	1)

																put	"The	button	was	clicked	at	position:	",	

												end	if

								end	loop

Details		

Mouse.ButtonMoved	can	be	thought	of	as	the	mouse	equivalent
of	hasch	in	that	they	both	check	for	something	in	a	queue	and
both	return	immediately.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Mouse.ButtonMoved,	not	by	calling	ButtonMoved.

See	also		

Mouse.ButtonMoved	to	get	mouse	events	saved	in	the	queue.
See	also	Mouse.ButtonChoose	to	switch	between	"single-button
mode"	and	"multi-button	mode".

Mouse.ButtonWait Part	of	Mouse	module

Syntax		
Mouse.ButtonWait	(motion	:	string,	
	 var	x,	y,	buttonNumber,	buttonUpDown	:	int)

Description		

The	Mouse.ButtonWait	procedure	gets	information	about	a	mouse
event	and	removes	it	from	the	queue.

The	parameter	motion	must	be	one	of	"up",	"down",	"updown"	or
"downup".	If	an	event	of	the	type	requested	is	in	the	queue,
Mouse.ButtonWait	returns	instantly.	If	there	isn't	such	an	event,
Mouse.ButtonWait	waits	until	there	is	one	and	then	returns	(much
like	getch	handles	keystrokes).

In	"single-button	mode"	(where	the	mouse	is	treated	like	a	one-
button	mouse),	a	"down"	event	occurs	whenever	all	the	buttons	are
up	and	a	button	is	pressed.	An	"up"	event	takes	place	when	the	last
button	is	released	so	that	no	buttons	remain	pressed.

In	"multi-button	mode",	a	"down"	event	occurs	whenever	any
button	is	pressed,	and	an	"up"	event	occurs	whenever	any	button	is
released.

The	parameters	x	and	y	are	set	to	the	position	of	the	mouse	cursor
when	the	button	was	pressed.	The	parameter	buttonnumber	is	set	to
1	when	in	"single-button	mode".	In	"multi-button	mode",	it	is	set	to
1	if	the	left	button	was	pressed,	2	if	the	middle	button	was	pressed,
and	3	if	the	right	button	was	pressed.	The	parameter	buttonupdown
is	set	to	1,	if	a	button	was	pressed	and	0	if	a	button	was	released.

This	program	draws	lines.	It	starts	a	line	where	the	user	presses
down	and	continues	to	update	the	line	while	the	mouse	button	is
held	down.	When	the	button	is	released,	the	line	is	permanently
draw	and	the	user	can	draw	another	line.

								var	x,	y,	btnNumber,	btnUpDown,	buttons	:	int

								var	nx,	ny	:	int

								loop

												Mouse.ButtonWait	("down",	x,	y,	btnNumber,	btnUpDown

Example		 												nx	:=	x

												ny	:=	y

												loop

																Draw.Line	(x,	y,	nx,	ny,	0)	%	Erase	previous	line

																exit	when	Mouse.ButtonMoved	("up")

																Mouse.Where	(nx,	ny,	buttons)

																Draw.Line	(x,	y,	nx,	ny,	1)	%	Draw	line	to	position

												end	loop

												Mouse.ButtonWait	("up",	nx,	ny,	btnNumber,	btnUpDown

												Draw.Line	(x,	y,	nx,	ny,	2)	%	Draw	line	to	final	position

								end	loop

Example		

This	is	an	example	demonstrating	how	to	check	for	both	character
and	mouse	input	at	the	same	time.

								var	ch	:	string	(1)

								var	x,	y,	btnNum,	btnUpDown	:	int

								loop

												if	hasch	then

																getch	(ch)

																Text.Locate	(1,	1)

																put	"The	character	entered	is	a:	",	ch

												end	if

												if	Mouse.ButtonMoved	("down")	then

																Mouse.ButtonWait	("down",	x,	y,	btnNum,	

																Text.Locate	(1,	1)

																put	"The	button	was	clicked	at	position:	",	

												end	if

								end	loop

Details		

Mouse.ButtonWait	can	be	thought	of	as	the	mouse	equivalent	of
getch	in	that	they	both	read	something	in	a	queue	and	both	wait
until	they	get	the	thing	they're	looking	for.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Mouse.ButtonWait,	not	by	calling	ButtonWait.

See	also		

Mouse.ButtonWait	to	see	if	an	appropriate	event	is	in	the	queue.
See	also	Mouse.ButtonChoose	to	switch	between	"single-button
mode"	and	"multi-button	mode".

Mouse.Where Part	of	Mouse	module

Syntax		 Mouse.Where	(var	x,	y,	button	:	int)

Description		

The	Mouse.Where	procedure	is	used	to	get	current	information
about	the	status	of	the	mouse.	The	parameters	x	and	y	are	set	to
the	current	location	of	the	mouse	cursor.	If	the	program	is	running
on	a	system	using	windows,	the	cursor	may	be	outside	the
window.	This	means	that	x	and	y	may	be	set	to	values	outside	of
the	bounds	of	0	to	maxx	and	0	to	maxy.

The	parameter	button	is	set	depending	on	the	current	mode.	In
"single-button	mode"	(where	the	mouse	is	treated	like	a	one-
button	mouse),	button	is	set	to	0	if	all	the	mouse	buttons	are	up,
and	1	if	any	of	the	mouse	buttons	are	down.	In	"multi-button
mode",	button	is	assigned	the	sum	of	1	if	the	left	button	is	down,
10	if	the	middle	button	is	down,	and	100	if	the	right	button	is
down.	Thus	if	button	has	the	value	of	101,	then	it	means	that	the
left	and	right	mouse	buttons	were	depressed.

Example		

A	program	that	displays	the	status	of	the	mouse	at	the	top	left
corner	of	the	screen.

								var	x,	y,	button	:	int

								loop

												Mouse.Where	(x,	y,	button)

												Text.Locate	(1,	1)

												if	button	=	0	then

																put	x	:	4,	"		",	y	:	4,	"		button	up"

												else

																put	x	:	4,	"		",	y	:	4,	"		button	down"

												end	if

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Mouse.Where,	not	by	calling	Where.

Mouse.ButtonMoved	and	Mouse.ButtonWait	to	get	mouse

See	also		 events	saved	in	a	queue.	See	also	Mouse.ButtonChoose	to	switch
between	"single-button	mode"	and	"multi-button	mode".

mousewhere

Syntax		 mousewhere	(var	x,	y,	button	:	int)

Description		

The	mousewhere	procedure	is	used	to	get	current	information
about	the	status	of	the	mouse.	The	parameters	x	and	y	are	set	to
the	current	location	of	the	mouse	cursor.	If	the	program	is	running
on	a	system	using	windows,	the	cursor	may	be	outside	the
window.	This	means	that	x	and	y	may	be	set	to	values	outside	of
the	bounds	of	0	to	maxx	and	0	to	maxy.

The	parameter	button	is	set	depending	on	the	current	mode.	In
"single-button	mode"	(where	the	mouse	is	treated	like	a	one-
button	mouse),	button	is	set	to	0	if	all	the	mouse	buttons	are	up,
and	1	if	any	of	the	mouse	buttons	are	down.	In	"multi-button
mode",	button	is	assigned	the	sum	of	1	if	the	left	button	is	down,
10	if	the	middle	button	is	down,	and	100	if	the	right	button	is
down.	Thus	if	button	has	the	value	of	101,	then	it	means	that	the
left	and	right	mouse	buttons	were	depressed.

Example		

A	program	that	displays	the	status	of	the	mouse	at	the	top	left
corner	of	the	screen.

								var	x,	y,	button	:	int

								loop

												mousewhere	(x,	y,	button)

												locate	(1,	1)

												if	button	=	0	then

																put	x	:	4,	"		",	y	:	4,	"		button	up"

												else

																put	x	:	4,	"		",	y	:	4,	"		button	down"

												end	if

								end	loop

See	also		

buttonmoved	and	buttonwait	to	get	mouse	events	saved	in	a
queue.	See	also	buttonchoose	to	switch	between	"single-button
mode"	and	"multi-button	mode".

Music

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
sound	and	music.	Some	of	these	routines	have	not	been
implemented	at	the	time	of	the	writing	of	this	manual	and	will	be
implemented	in	future	releases.

All	routines	in	the	Music	module	are	exported	qualified	(and	thus
must	be	prefaced	with	"Music.").

Entry
Points		

Play 	 Plays	a	series	of	notes.

PlayFile 	
Plays	music	from	a	file,	returning	when	the
file	is	finished	playing.	File	must	be	in	an
allowable	format.

PlayFileReturn 	
Plays	music	from	a	file,	returning	as	soon	as
the	music	starts.	File	must	be	in	an	allowable
format.

PlayFileLoop 	
Plays	music	from	a	file,	looping	over	and
over.	Returns	as	soon	as	the	music	starts.	File
must	be	in	an	allowable	format.

PlayFileStop 	 Immediately	terminates	any	playing	music
files.

Sound 	 Plays	a	specified	frequency	for	a	specified
duration.

SoundOff 	 Immediately	terminates	any	sound	playing.

Music.Play Part	of	Music	module

Syntax		 Music.Play	(music	:	string)

Description		

The	Music.Play	procedure	is	used	to	sound	musical	notes	on	the
computer.

Sounds	are	produced	synchronously	on	a	per	process	basis.	This
means	that	when	a	process	executes	a	Music.Sound	or
Music.Play	command,	it	stops	until	the	command	is	finished.
However,	other	processes	will	continue	to	executing.

Example		
This	program	sounds	the	first	three	notes	of	the	C	scale.

								Music.Play	("cde")

Example		

This	program	plays	from	middle	C	to	one	octave	above	middle	C
and	down	again	in	8th	notes.

								Music.Play	("8cdefgab>c")

								Music.Play	("<bagfedc")

Execute		

Details		

The	syntax	of	the	play	string	may	be	enhanced	in	the	future.

The	Music.Play	procedure	takes	strings	containing	characters	that
specify	notes,	rests,	sharps,	flats	and	duration.	The	notes	are	the
letters	a	to	g	(or	A	to	G).	A	rest	is	p	(for	pause).	A	sharp	is	+	and	a
flat	is	-.	The	durations	are	1	(whole	note),	2	(half	note),
4	(quarter	note),	8	(eight	note)	and	6	(sixteenth	note).	The
character	>	raises	to	the	next	octave	and	<	lowers.	For	example,
this	is	the	way	to	play	C	and	then	C	sharp	one	octave	above

middle	C	with	a	rest	between	them,	all	in	sixteenth	notes:
Music.Play(">6cpc+").	Blanks	can	be	used	for	readability	and	are
ignored	by	Music.Play.

The	Music.Play	procedure	requires	that	the	machine	have	a
sound	card	in	order	to	play	tones.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Music.Play,	not	by	calling	Play.

See	also		
the	Music.Sound	procedure,	which	makes	a	sound	of	a	given
frequency	(Hertz)	and	duration	(milliseconds).

Music.PlayFile Part	of	Music	module

Syntax		 Music.PlayFile	(fileName	:	string)

Description		

The	Music.PlayFile	procedure	is	used	to	play	a	file	of	music.	The	file
must	be	in	one	of	the	acceptable	formats	and	the	machine,	must	have	the
appropriate	hardware.

The	fileName	parameter	must	give	the	format	of	the	file:

	 WAV	files 	 "WAV:filename"	or	"filename.WAV"
	 MP3	files 	 "MP3:filename"	or	"filename.MP3"
	 MIDI	files 	 "MIDI:filename"	or	"filename.MIDI"

Sounds	are	produced	synchronously	on	a	per	process	basis.	This	means
that	when	a	process	executes	a	Music.Sound,	Music.Play	or
Music.PlayFile	command,	it	stops	until	the	command	is	finished.
However,	other	processes	will	continue	executing.

Details		

To	play	music	while	performing	any	other	activity,	the	call	to
Music.PlayFile	must	be	executed	in	its	own	process.	The	process	is
then	called	using	the	fork	command.	When	a	fork	command	is	given,
execution	starts	on	the	process	(like	a	procedure	call)	and	continues
following	the	fork	command	at	the	same	time.

Example		

This	program	plays	the	music	in	the	file	"branden3.wav"	while	drawing
ovals	on	the	screen.

								process	DoMusic

												loop

																Music.PlayFile	("branden3.wav")

												end	loop

								end	DoMusic

								

								fork	DoMusic

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)

												y	:=	Rand.Int	(0,	maxy)

												clr	:=	Rand.Int	(0,	maxcolor)

												Draw.FillOval	(x,	y,	30,	30,	clr)

								end	loop

Execute		

Details		
To	play	a	sound	file	requires	that	the	computer	be	equipped	with	a	sound
card	and	speakers.

Details		

The	Turing	4.1	software	can	play	files	in	the	following	audio	formats:
WAVE	(.wav)	files,	MIDI	files	(.midi	or	.mid),	and	MP3	files	(.mp3).	In
general,	MIDI	files	are	the	most	efficient	and	thus	are	the	preferred	form
for	longer	music	pieces	like	background	music.	WAVE	files	can	record
anything,	not	just	music,	so	are	often	used	for	sound	effects.

Details		

The	Turing	4.1	software	can	also	play	music	on	a	compact	disk.	To	play
the	complete	contents	of	the	compact	disk,	the	filename	is	“cd”.	To	play
a	single	track	from	a	compact	disk,	the	filename	is	“cd:[track	number]”.

								Music.PlayFile	("cd")							%	Play	the	entire	CD

								Music.PlayFile	("cd:3")					%	Play	the	third	track	on	the	CD

								

Details		

On	the	PC,	different	formats	of	music	can	play	simultaneously.	This
means	that	a	program	might	use	a	MIDI	file	as	a	background	soundtrack
and	then	use	WAVE	files	for	individual	sound	effects.	The	sound	effects
would	not	interfere	with	the	background	music.	Playing	a	second	music
file	with	the	same	format	as	an	already	playing	piece	immediately	halts
the	first	piece	and	starts	the	second.	This	can	be	used	to	stop	a	single
type	of	music	by	playing	a	short	silent	piece	of	music.

This	program	bounces	a	maple	leaf	around	the	screen	with	background
music	and	a	sound	effect	when	the	maple	leaf	hits	an	edge.	When	the
user	presses	any	key,	the	program	immediately	exits.

Example		

								const	STAR_SIZE	:	int	:=	80

								var	pic,	x,	y,	dx,	dy	:	int

								var	finished	:	boolean	:=	false

								

								%	Play	sound	effect	once.

								process	Boing

												Music.PlayFile	("boing.wav")

								end	Boing

								

								%	Loop	playing	background	music	until	'finished'	is	true.

								process	BackgroundMusic

												loop

																exit	when	finished

																Music.PlayFile	("background.mid")

												end	loop

								end	BackgroundMusic

								

								%	Get	the	original	picture

								Draw.FillStar	(3,	3,	STAR_SIZE	-	3,	STAR_SIZE	-	3,	

								pic	:=	Pic.New	(0,	0,	STAR_SIZE,	STAR_SIZE)

								cls

								

								%	Set	the	initial	location	and	direction	of	movement

								x	:=	Rand.Int	(0,	maxx	-	STAR_SIZE)

								y	:=	Rand.Int	(0,	maxy	-	STAR_SIZE)

								dx	:=	1

								dy	:=	1

								

								fork	BackgroundMusic				%	Start	background	music	playing

								

								loop

												if	x	+	dx	<	0	or	x	+	dx	>	maxx	-	STAR_SIZE	then

																dx	:=	-dx

																fork	Boing

												end	if

												if	y	+	dy	<	0	or	y	+	dy	>	maxy	-	STAR_SIZE	then

																dy	:=	-dy

																fork	Boing

												end	if

												x	+=	dx

												y	+=	dy

												Pic.Draw	(pic,	x,	y,	picCopy)

												exit	when	hasch

												Time.Delay	(5)

								end	loop

								

								%	Stop	the	background	music.

								finished	:=	true

								Music.PlayFileStop

Execute		

See	also		

Music.PlayFileStop	to	halt	a	music	file	that	is	current	playing,
Music.PlayFileReturn	for	a	procedure	that	starts	a	music	file	playing
and	returns	immediately	(meaning	that	you	do	not	need	to	use	process
and	fork	statements),	and	Music.PlayFileLoop	that	starts	a	music	file
playing	continuously	until	it	is	stopped	without	the	use	of	process	or
fork.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Music.PlayFile,	not	by	calling	PlayFile.

Music.PlayFileLoop Part	of	Music	module

Syntax		 Music.PlayFileLoop	(fileName	:	string)

Description		

The	Music.PlayFileLoop	procedure	is	used	to	play	a	file	of	music	continuously,
looping	until	the	program	is	halted	or	the	Music.PlayFileStop	command	is	given.
The	file	must	be	in	one	of	the	acceptable	formats	and	the	machine,	must	have	the
appropriate	hardware.

The	fileNameparameter	must	give	the	format	of	the	file:

	 WAV	files 	 "WAV:filename"	or	"filename.WAV"
	 MP3	files 	 "MP3:filename"	or	"filename.MP3"
	 MIDI	files 	 "MIDI:filename"	or	"filename.MIDI"

The	Music.PlayFileLoop	procedure	is	used	to	provide	continuous	background
music	for	a	program.	When	called,	the	music	starts	playing,	and	the	procedure
returns	immediately.

Details		

Unlike	Music.PlayFile,	the	Music.PlayFileLoop	procedure	does	not	have	to	be
called	in	a	separate	process.	However,	the	music	will	not	stop	playing	(nor	will	a
program	that	calls	this	procedure	terminate)	until	Music.PlayFileStop

Example		

This	program	continuously	plays	the	music	in	the	file	"branden3.wav
drawing	ovals	on	the	screen.

								Music.PlayFileLoop	("branden3.wav")

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)

												y	:=	Rand.Int	(0,	maxy)

												clr	:=	Rand.Int	(0,	maxcolor)

												Draw.FillOval	(x,	y,	30,	30,	clr)

												exit	when	hasch

								end	loop

								Music.PlayFileStop

Execute		

Details		
To	play	a	sound	file	requires	that	the	computer	be	equipped	with	a	sound	card	and
speakers.

Details		

The	Turing	4.1	software	can	play	files	in	the	following	audio	formats:	WAVE
(.wav)	files,	MIDI	files	(.midi	or	.mid),	and	MP3	files	(.mp3).	In	general,	MIDI
files	are	the	most	efficient	and	thus	are	the	preferred	form	for	longer	music	pieces
like	background	music.	WAVE	files	can	record	anything,	not	just	music,	so	are
often	used	for	sound	effects.

Details		

The	Turing	4.1	software	can	also	play	music	on	a	compact	disk.	Toplay	the
complete	contents	of	the	compact	disk,	the	filename	is	“cd”.	To	play	a	single	track
from	a	compact	disk,	the	filename	is	“cd:[track	number]”.

								Music.PlayFileLoop	("cd")							%	Play	the	entire	CD

								Music.PlayFileLoop	("cd:3")					%	Play	the	third	track	on	the	CD

								

Details		

On	the	PC,	different	formats	of	music	can	play	simultaneously.	This	means	that	a
program	might	use	a	MIDI	file	as	a	background	soundtrack	and	then	use	WAVE
files	for	individual	sound	effects.	The	sound	effects	would	not	interfere	with	the
background	music.	Playing	a	second	music	file	with	the	same	format	as	an	already
playing	piece	immediately	halts	the	first	piece	and	starts	the	second.	
used	to	stop	a	single	type	of	music	by	playing	a	short	silent	piece	of	music.

This	program	bounces	a	maple	leaf	around	the	screen	with	background	music	and	a
sound	effect	when	the	maple	leaf	hits	an	edge.	When	the	user	presses	any	key,	the
program	immediately	exits.

								const	STAR_SIZE	:	int	:=	80

								var	pic,	x,	y,	dx,	dy	:	int

								

								%	Get	the	original	picture

								Draw.FillStar	(3,	3,	STAR_SIZE	-	3,	STAR_SIZE	-	3,	

Example		

								pic	:=	Pic.New	(0,	0,	STAR_SIZE,	STAR_SIZE)

								cls

								

								%	Set	the	initial	location	and	direction	of	movement

								x	:=	Rand.Int	(0,	maxx	-	STAR_SIZE)

								y	:=	Rand.Int	(0,	maxy	-	STAR_SIZE)

								dx	:=	1

								dy	:=	1

								

								Music.PlayFileLoop	("background.mid")	%	Start	background	music	playing

								

								loop

												if	x	+	dx	<	0	or	x	+	dx	>	maxx	-	STAR_SIZE	then

																dx	:=	-dx

																Music.PlayFileReturn	("boing.wav")

												end	if

												if	y	+	dy	<	0	or	y	+	dy	>	maxy	-	STAR_SIZE	then

																dy	:=	-dy

																Music.PlayFileReturn	("boing.wav")

												end	if

												x	+=	dx

												y	+=	dy

												Pic.Draw	(pic,	x,	y,	picCopy)

												exit	when	hasch

												Time.Delay	(5)

								end	loop

								

								%	Stop	the	background	music.

								Music.PlayFileStop

Execute		

See	also		 Music.PlayFileStop	to	halt	a	music	file	that	is	current	playing.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Music.PlayFileLoop
by	calling	PlayFileLoop.

Music.PlayFileReturn Part	of	Music	module

Syntax		 Music.PlayFileReturn	(fileName	:	string)

Description		

The	Music.PlayFileReturn	procedure	is	used	to	play	a	file	of	music.	The	file	must
be	in	one	of	the	acceptable	formats	and	the	machine,	must	have	the	appropriate
hardware.

The	fileNameparameter	must	give	the	format	of	the	file:

	 WAV	files 	 "WAV:filename"	or	"filename.WAV"
	 MP3	files 	 "MP3:filename"	or	"filename.MP3"
	 MIDI	files 	 "MIDI:filename"	or	"filename.MIDI"

Unlike	Music.PlayFile,	the	Music.PlayFileReturn	procedure	should	not	be	called
in	a	separate	process.	Instead,	the	procedure	returns	immediately.	This	makes
Music.PlayFileReturn	easier	to	use,	but	makes	it	unsuitable	for	playing	a	set	of
files	sequentially.

Example		

This	program	plays	the	music	in	the	file	"branden3.wav"	once	while	drawing	ovals
on	the	screen.	If	the	music	has	not	finished	when	the	user	presses	a	key,	it	is	halted
using	Music.PlayFileStop

								Music.PlayFileReturn	("branden3.wav")

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)

												y	:=	Rand.Int	(0,	maxy)

												clr	:=	Rand.Int	(0,	maxcolor)

												Draw.FillOval	(x,	y,	30,	30,	clr)

												exit	when	hasch

								end	loop

								Music.PlayFileStop

Execute		

Details		
To	play	a	sound	file	requires	that	the	computer	be	equipped	with	a	sound	card	and
speakers.

Details		

The	Turing	4.1	software	can	play	files	in	the	following	audio	formats:	WAVE
(.wav)	files,	MIDI	files	(.midi	or	.mid),	and	MP3	files	(.mp3).	In	general,	MIDI
files	are	the	most	efficient	and	thus	are	the	preferred	form	for	longer	music	pieces
like	background	music.	WAVE	files	can	record	anything,	not	just	music,	so	are
often	used	for	sound	effects.

Details		

The	Turing	4.1	software	can	also	play	music	on	a	compact	disk.	Toplay	the
complete	contents	of	the	compact	disk,	the	filename	is	“cd”.	To	play	a	single	track
from	a	compact	disk,	the	filename	is	“cd:[track	number]”.

								Music.PlayFileReturn	("cd")							%	Play	the	entire	CD

								Music.PlayFileReturn	("cd:3")					%	Play	the	third	track	on	the	CD

								

Details		

On	the	PC,	different	formats	of	music	can	play	simultaneously.	This	means	that	a
program	might	use	a	MIDI	file	as	a	background	soundtrack	and	then	use	WAVE
files	for	individual	sound	effects.	The	sound	effects	would	not	interfere	with	the
background	music.	Playing	a	second	music	file	with	the	same	format	as	an	already
playing	piece	immediately	halts	the	first	piece	and	starts	the	second.	
used	to	stop	a	single	type	of	music	by	playing	a	short	silent	piece	of	music.

This	program	bounces	a	maple	leaf	around	the	screen	with	background	music	and	a
sound	effect	when	the	maple	leaf	hits	an	edge.	When	the	user	presses	any	key,	the
program	immediately	exits.

								const	STAR_SIZE	:	int	:=	80

								var	pic,	x,	y,	dx,	dy	:	int

								

								%	Get	the	original	picture

								Draw.FillStar	(3,	3,	STAR_SIZE	-	3,	STAR_SIZE	-	3,	

Example		

								pic	:=	Pic.New	(0,	0,	STAR_SIZE,	STAR_SIZE)

								cls

								

								%	Set	the	initial	location	and	direction	of	movement

								x	:=	Rand.Int	(0,	maxx	-	STAR_SIZE)

								y	:=	Rand.Int	(0,	maxy	-	STAR_SIZE)

								dx	:=	1

								dy	:=	1

								

								Music.PlayFileLoop	("background.mid")	%	Start	background	music	playing

								

								loop

												if	x	+	dx	<	0	or	x	+	dx	>	maxx	-	STAR_SIZE	then

																dx	:=	-dx

																Music.PlayFileReturn	("boing.wav")

												end	if

												if	y	+	dy	<	0	or	y	+	dy	>	maxy	-	STAR_SIZE	then

																dy	:=	-dy

																Music.PlayFileReturn	("boing.wav")

												end	if

												x	+=	dx

												y	+=	dy

												Pic.Draw	(pic,	x,	y,	picCopy)

												exit	when	hasch

												Time.Delay	(5)

								end	loop

								

								%	Stop	the	background	music.

								Music.PlayFileStop

Execute		

See	also		 Music.PlayFileStop	to	halt	a	music	file	that	is	current	playing.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Music.PlayFileReturn
not	by	calling	PlayFileReturn.

Music.PlayFileStop Part	of	Music	module

Syntax		 Music.PlayFileStop

Description		

The	Music.PlayFileStop	procedure	is	used	to	to	stop	all	music	files	currently
playing.	This	includes	processes	that	are	executing	the	Music.PlayFile
procedure	(they	exit	immediately	and	start	executing	the	next	statement	in	the
process),	and	the	Music.PlayFileReturn	and	Music.PlayFileLoop
statements,	which	simply	stop	playing	the	music.

Details		

In	Turing,	a	program	will	not	halt	execution	until	all	processes	have
terminated.	This	means	that	if	you	are	playing	background	music,	the
program	will	not	terminate,	even	if	execution	returns	from	the	main	program
unless	the	background	music	is	halted.

Example		

This	program	plays	the	background	music	for	30	seconds	and	then
terminates.	Note	that	it	is	important	to	set	the	flag	(finished)	before	calling
Music.PlayFileStop.	If	Music.PlayFileStop	comes	first,	it	is	possible	for	
process	to	return	from	Music.PlayFile,	loop	around,	skip	over	the	exit	when
and	call	Music.PlayFile	again	before	the	finished	flag	is	set.

								var	finished	:	boolean	:=	false

	 %	Loop	playing	background	music	until	'finished'	is	true.

								process	BackgroundMusic

												loop

																exit	when	finished

																Music.PlayFile	("background.mid")

												end	loop

								end	BackgroundMusic

								

								fork	BackgroundMusic				%	Start	the	background	music

								Time.Delay	(30000)		%	Wait	for	30	seconds

								

								%	Stop	the	background	music.

								finished	:=	true								%	The	flag	must	be	set	first

								Music.PlayFileStop		%	Music.PlayFile	will	return	immediately

								

Execute		

See	also		 Music.PlayFile	for	playing	music	files	and	a	larger	example.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Music.PlayFileStop,	not	by	calling	PlayFileStop.

Music.Sound Part	of	Music	module

Syntax		 Music.Sound	(frequency,	duration	:	int)

Description		

The	Music.Sound	statement	is	used	to	cause	the	computer	to	sound	a	note
of	a	given	frequency	for	a	given	time.	The	frequency	is	in	cycles	per
second	(Hertz).	The	time	duration	is	in	milliseconds.	For	example,	middle
A	on	a	piano	is	440	Hertz,	so	Music.Sound(440,	1000)	plays	middle	A	for
one	second.

Sounds	are	produced	synchronously	on	a	per	process	basis.	This	means
that	when	a	process	executes	a	Music.Sound	or	Music.Play	command,	it
stops	until	the	command	is	finished.	However,	other	processes	will
continue	executing.

Example		

This	program	plays	a	siren	sound	in	the	background.

								process	siren

												loop

																for	i	:	100	..	3000	by	100

																				Music.Sound	(i,	50)			%	Sound	note

																end	for

																for	decreasing	i	:	2900	..	200	by	100

																				Music.Sound	(i,	50)			%	Sound	note

																end	for

												end	loop

								end	siren

								

								fork	siren

								…	the	rest	of	the	program	goes	here	while	the	siren	continues	…

Execute		

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling	Music.Sound
not	by	calling	Sound.

See	also		
Music.Play	statement,	which	plays	notes	based	on	musical	notation.	For
example,	Music.Play("8C")	plays	an	eighth	note	of	middle	C.

Music.SoundOff Part	of	Music	module

Syntax		 Music.SoundOff

Description		
The	Music.SoundOff	procedure	stops	any	sound	or	music	that	is
currently	playing	or	is	waiting	to	play.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Music.SoundOff,	not	by	calling	SoundOff.

See	also		
Music.Play,	Music.PlayFile,	and	Music.Sound	procedures,
which	make	sounds	that	can	be	turned	off	with	Music.SoundOff.

named type

Syntax		

A	namedType	is	one	of:

	 (a) typeId
	 (b) moduleId	.	typeId

Description		
A	type	can	be	given	a	name	(typeId)	and	later	this	name	can	be
used	instead	of	writing	out	the	type.

Example		

In	this	example,	phoneRecord	is	a	named	type.

								type	phoneRecord	:

												record

																name	:	string	(20)

																phoneNumber	:	int

																address	:	string	(50)

												end	record

								…

								var	oneEntry	:	phoneRecord

								var	phoneBook	:	array	1	..	100	of	phoneRecord

Details		

Form	(a)	is	the	most	common	kind	of	named	type.	Form	(b)	is
used	when	the	type	name	has	been	exported	from	a	module.

Arrays	whose	bounds	are	not	known	at	compile	time	cannot	be
named.

nargs number	of	arguments

Syntax		 nargs	:	int

Description		

The	nargs	function	is	used	to	determine	the	number	of	arguments
that	have	been	passed	to	a	program	from	the	command	line.	For
example,	if	the	program	is	run	from	the	Turing	environment	using

								:r	file1	file2

then	nargs	will	return	2.	If	a	program	called	prog.x	is	run	under
UNIX	using	this	command:

								prog.x	file1	file2

the	value	of	nargs	will	similarly	be	2.

The	nargs	function	is	usually	used	together	with	the	fetcharg
function	to	access	the	arguments	that	have	been	passed	to	the
program.

See	also		 fetcharg	for	an	example	of	the	use	of	nargs.

nat natural	number	type

Syntax		 nat

Description		

The	nat	(natural	number)	type	has	the	values	0,	1,	2,	3	…	Natural
numbers	can	be	combined	by	various	operators,	such	as	addition
(+)	and	multiplication	(*).	Natural	numbers	can	be	combined	with
integers	(type	int),	in	which	case	the	result	is	an	integer.	Natural
numbers	can	also	be	combined	with	real	numbers,	in	which	case
the	result	is	generally	a	real	number.	Natural	numbers	can	always
be	assigned	to	real	variables,	with	implicit	conversion	to	real.

Example		 								var	counter	:	nat

								var	j	:	nat	:=	9

See	also	explicitIntegerConstant.	The	nat	type	is	used	instead	of
int	when	the	values	are	known	to	be	non-negative.

The	Turing	operators	on	natural	numbers	are	the	same	as	those	for
integers:	+,	-,	*	(multiply),	div	(truncating	integer	division),	mod
(integer	remainder),	**	(exponentiation),	as	well	as	comparisons
(+,	not=,	>,	>=,	<,	<=).	The	operators	and,	or	and	xor	to	be
applied	to	natural	number	values.	The	bit-wise	boolean	result	is
produced	as	a	natural	number.	The	shr	(shift	right)	and	shl	(shift
left)	operators	are	also	introduced.

In	the	current	implementation,	the	range	of	natural	numbers	is
from	0	to	4294967294.	In	other	words,	the	maximum	value	of	a
natural	number	is	2**32	-	2.	This	range	exists	because	natural
numbers	are	stored	in	4	bytes.	The	types	nat1,	nat2	and	nat4
specify	natural	numbers	that	fit	into	1,	2	or	4	bytes.

Explicit	constants	such	as	213	and	0	are	considered	to	be	integers.
As	a	result	the	type	of	tax	in	this	declaration	is	int:

								var	tax	:=	0				%	The	type	is	int

Natural	number	values	can	be	used	whenever	integer	values	are

Details		

expected	and	vice	versa,	given	that	the	value	does	not	exceed	the
range	of	the	expected	type.

When	integer	and	natural	numbers	are	combined	using	a	binary
operator	such	as	+,	the	result	is	an	integer.	This	means,	for
example,	that	if	counter	is	a	natural	number,	counter	+	1	is
considered	to	be	an	integer.	As	long	as	the	result	fits	into	the
range	that	is	the	intersection	of	the	ranges	of	int	and	nat,	the
result	will	be	as	expected.	Anomalies	occur	when	the	result	is	(or
would	be)	greater	than	the	largest	integer	(maxint=2147483647).
For	example,	if	natural	number	n	is	greater	than	maxint,	the
expression	n	+	1	will	overflow,	because	its	result	is	an	int
(because	1	is	an	int).	To	avoid	this	problem,	you	must	be	careful
that	both	operands	are	natural	numbers.

Suppose	we	have	this	declaration:

								const	natOne	:	nat	:=	1

We	can	safely	compute	n	+	natOne	because	both	operands	have
type	nat.

Natural	numbers	can	be	converted	to	real	numbers	using	natreal,
but	in	practice	this	is	rarely	used,	because	a	natural	value	used	in
place	of	a	real	value	will	be	automatically	converted	to	real.

Natural	numbers	can	be	converted	to	strings	and	back	using
natstr	and	strnat.

In	the	C	language,	a	natural	number	is	said	to	be	"unsigned".

See	also		 maxnat,	int,	natn,	intn,	natstr,	strnat	and	natreal.

natn n-byte	natural	number	type

Dirty

Syntax		
	 (a) nat1 	 	 %	1-byte	natural	number
	 (b) nat2 	 	 %	2-byte	natural	number
	 (c) nat4 	 	 %	4-byte	natural	number

Description		

The	natn	(n-byte	natural	number)	types	are	machine-dependent
types	that	occupy	a	specified	number	of	bytes.	By	contrast,	the
nat	type	is	in	principle	a	machine-independent	and	mathematical
type	(it	overflows,	however,	when	the	value	is	too	large	or	small,
that	is,	when	the	value	does	not	fit	into	4	bytes).

Example		
								var	counter1	:	nat1					%	Range	is	0	..	255

								var	counter2	:	nat2					%	Range	is	0	..	65536

								var	counter4	:	nat4					%	Range	is	0	..	4294967295

Details		

In	Turing,	the	range	of	the	nat	is	0	to	4294967294,	which	means
that	the	nat4	type	allows	one	more	value,	4294967295.	This	extra
value	is	used	in	nat	to	represent	the	state	of	being	uninitialized.
The	natn	types	allow	use	of	all	possible	values	that	fit	into	n
bytes	and	thereby	eliminates	checking	for	initialization.

The	natn	types	are	like	the	C	language	types	short	unsigned,
unsigned,	and	long	unsigned,	except	that	the	number	of	bytes
occupied	by	the	C	types	depends	on	the	particular	C	compiler.

See	also		
the	intn	types	which	are	n	byte	integer	values.	See	also	nat	and
int.

natreal natural	number	to	real	function

Syntax		 natreal	(n	:	nat)	:	real

Description		

The	natreal	function	is	used	to	convert	a	natural	number	to	a	real
number.	This	function	is	rarely	used,	because	in	Turing,	a	natural
number	can	be	used	anyplace	a	real	value	is	required.	When	this
is	done,	the	natreal	function	is	implicitly	called	to	do	the
conversion	from	nat	to	real.	The	natreal	function	is	similar	to
intreal,	except	that	natreal	handles	values	that	are	larger	than	int
values	and	does	not	handle	negative	values.

See	also		 nat.	See	also	the	intreal,	floor,	ceil	and	round	functions.

natstr natural-number-to-string	function

Syntax		 natstr	(n	:	nat	[,	width	:	int	[,	base	:	int]])	:	string

Description		

The	natstr	function	is	used	to	convert	a	natural	number	to	a
string.	The	string	is	equivalent	to	n,	padded	on	the	left	with	blanks
as	necessary	to	a	length	of	width,	written	in	the	given	number
base.	For	example,	natstr	(14,	4,	10)="bb14"	where	b	represents
a	blank.	The	width	and	base	parameters	are	both	optional.	It	they
are	omitted,	the	string	is	made	just	long	enough	to	hold	the	value
and	the	number	base	is	10.	For	example,	natstr	(23)	=	"23".

The	width	parameter	must	be	non-negative.	If	width	is	not	large
enough	to	represent	the	value	of	i,	the	length	is	automatically
increased	as	needed.

The	string	returned	by	natstr	is	of	the	form:

	 {blank}digit{digits}

where	{blank}	means	zero	or	more	blanks	and	digit{digit}	means
one	or	more	digits.	The	leftmost	digit	is	either	non-zero,	or	a
single	zero	digit;	in	other	words,	leading	zeros	are	suppressed.

The	letters	A,	B,	C	…	are	used	to	represent	the	digit	values	10,
11,	12,	…	The	base	must	be	in	the	range	2	to	36	(36	because	there
are	ten	digits	and	26	letters).	For	example,	natstr	(255,	0,	16)	=
"FF".

The	natstr	function	is	the	inverse	of	strnat,	so	for	any	natural
number	n,	strnat	(natstr(n))	=	n.

See	also		

chr,	ord	and	strnat	functions.	See	also	the	intstr	and	strint
functions.	See	also	explicitIntegerConstant	for	the	way	to	write
values	in	base	2	and	base	16	in	a	program.

Net

Description		

The	Net	module	allows	TCP/IP	equipped	machines	to
communicate.	In	the	current	implementation	(WinOOT	3.0),	this
is	available	only	under	Win32	(Windows	95,	98,	NT	and	later).

To	allow	two	machines	to	communicate,	there	must	be	a	server
(which	calls	Net,WaitForConnection)	and	a	client	(which	calls
Net.OpenConnection).	The	server	waits	until	a	client	connects
and	then	starts	communication	between	the	two.	When	a
connection	is	established,	a	net	stream	is	returned	that	can	be	used
in	the	same	fashion	as	a	file	stream	(i.e.	using	puts	and	gets).
Once	the	connection	is	finished,	the	programs	call
Net.CloseConnection.

For	ease	of	reading	web	pages,	the	Net.OpenURLConnection
opens	up	a	URL	for	reading	with	the	get	statement.	It	is	up	to	the
user	program	to	interpret	the	HTML	or	file	located	at	the	URL.

All	subprograms	in	the	Net	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Net.").

Entry
Points		

WaitForConnection 	 Waits	until	a	client	connects	to	a
specified	port.

OpenConnection 	 Opens	a	connection	to	a	specified
machine.

OpenURLConnection 	 Opens	a	connection	to	a	file
specified	by	a	URL.

CloseConnection 	 Closes	a	specified	connection.

BytesAvailable 	
Returns	the	number	of	bytes
available	to	be	read	from	a	net
stream.

CharAvailable 	
Returns	true	if	there	is	a	character
available	to	be	read	from	a	net
stream.

LineAvailable 	

Returns	true	if	there	is	a	line	of	text
available	to	be	read	from	a	net

stream.

TokenAvailable 	
Returns	true	if	there	is	a	token
available	to	be	read	from	a	net
stream.

HostAddressFromName 	 Returns	a	host's	address	given	its
host	name.

HostNameFromAddress 	 Returns	a	host's	name	given	its
address.

LocalAddress 	 Returns	the	host	name	of	the	local
machine.

LocalName 	 Returns	the	TCP/IP	address	of	the
local	machine.

Net.BytesAvailable Part	of	Net	module

Syntax		 Net.BytesAvailable	(netStream	:	int)	:	int

Description		
Returns	the	number	of	bytes	available	for	reading	from	the	net
stream	specified	by	the	netStream	parameter.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.BytesAvailable,	not	by	calling	BytesAvailable.

See	also		
Net.CharAvailable,	Net.LineAvailable,	and
Net.TokenAvailable.

Net.CharAvailable Part	of	Net	module

Syntax		 Net.CharAvailable	(netStream	:	int)	:	boolean

Description		

Returns	true	if	a	character	is	waiting	to	be	read	from	the	net
stream	specified	by	the	netStream	parameter.	If
Net.CharAvailable	returns	true,	then	a	single	character	can	be
read	from	the	stream	without	blocking.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	fragment	reads	a	character	from
netStream	only	if	there	is	one	waiting	to	be	read.

								if	Net.CharAvailable	(netStream)	then

												var	ch	:	char

												get	:	netStream,	ch

												put	ch	..

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.CharAvailable,	not	by	calling	CharAvailable.

See	also		
Net.BytesAvailable,	Net.LineAvailable,	and
Net.TokenAvailable.

Net.CloseConnection Part	of	Net	module

Syntax		 Net.CloseConnection	(netStream	:	int)

Description		

Closes	a	network	connection	made	with	Net.OpenConnection	or
Net.WaitForConnection.	After	the	connection	is	closed,	the	net	stream
cannot	be	used	for	any	purpose	on	either	side	of	the	connection.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and	operating	in
order	to	function.	It	does	not	communicate	using	any	other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net	module,
preventing	connections	from	taking	place.

Example		

The	following	program	fragment	connects	to	port	5300	on	the	machine
specified	by	netAddress,	sends	the	work	OK	to	it	and	closes	the
connection.

								netStream	:=	Net.OpenConnection	(netAddress,	chatPort

								if	netStream	<=	0	then

												put	"Unable	to	connect	to	",	netAddress

												return

								end	if

								put	:	netStream,	"OK"

								Net.CloseConnection	(netStream)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.CloseConnection,	not	by	calling	CloseConnection.

See	also		 Net.OpenConnection	and	Net.WaitForConnection.

Net.HostAddressFromName Part	of	Net	module

Syntax		
Net.HostAddressFromName	(
				hostName	:	string)	:	string

Description		
Returns	the	numeric	TCP/IP	address	of	the	machine	whose
hostname	is	specified	by	the	hostName	parameter.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	prints	out	the	hostname	of	the	current
machine.

								var	hostName	:	string	:=	"www.holtsoft.com"

								put	"The	machine	address	of	",	hostName	,	"	is	",	

												Net.HostAddressFromName	(hostName)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.HostAddressFromName,	not	by	calling
HostAddressFromName.

See	also		 Net.HostNameFromAddress.

Net.HostNameFromAddress Part	of	Net	module

Syntax		
Net.HostNameFromAddress	(
				hostAddr	:	string)	:	string

Description		
Returns	the	TCP/IP	hostname	of	the	machine	whose	numeric
address	is	specified	by	the	hostAddr	parameter.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	prints	out	the	hostname	of	the	machine
whose	TCP/IP	numeric	address	is	"128.100.5.1".

								var	hostAddr	:	string	:=	"128.100.5.1"

								put	"The	machine	name	of	",	hostAddr,	"	is	",	

												Net.HostNameFromAddress	(hostAddr)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.HostNameFromAddress,	not	by	calling	LocalName.

See	also		 Net.HostAddressFromName.

Net.LineAvailable Part	of	Net	module

Syntax		 Net.LineAvailable	(netStream	:	int)	:	boolean

Description		

Returns	true	if	a	line	of	input	is	waiting	to	be	read	from	the	net
stream	specified	by	the	netStream	parameter.	If
Net.LineAvailable	returns	true,	then	a	line	of	input	can	be	read
from	the	stream	without	blocking.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	fragment	reads	a	character	from
netStream	only	if	there	is	one	waiting	to	be	read.

								if	Net.LineAvailable	(netStream)	then

												var	line	:	string

												get	:	netStream,	line	:	*

												put	line

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.LineAvailable,	not	by	calling	LineAvailable.

See	also		
Net.BytesAvailable,	Net.CharAvailable,	and
Net.TokenAvailable.

Net.LocalAddress Part	of	Net	module

Syntax		 Net.LocalAddress	:	string

Description		

Returns	the	TCP/IP	numeric	address	of	the	machine	the	program	is
running	on.	The	numeric	address	is	of	the	form	xxx.yyy.zzz.www
where	each	segment	is	a	number	from	0	to	255.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	prints	out	the	TCP/IP	numeric	address	of
the	current	machine.

								put	"Your	machine	address	is	",	Net.LocalAddress

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.LocalAddress,	not	by	calling	LocalAddress.

See	also		 Net.LocalName.

Net.LocalName Part	of	Net	module

Syntax		 Net.LocalName	:	string

Description		
Returns	the	TCP/IP	hostname	of	the	machine	the	program	is
running	on.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	prints	out	the	hostname	of	the	current
machine.

								put	"Your	machine	name	is	",	Net.LocalName

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.LocalName,	not	by	calling	LocalName.

See	also		 Net.LocalAddress.

Net.OpenConnection Part	of	Net	module

Syntax		
Net.OpenConnection	(netAddr	:	string,	
port	:	int)	:	int

Description		

Attempts	to	open	a	connection	to	port	specified	by	the	port
parameter	on	the	machine	specified	by	netAddr	parameter.	There
must	be	a	program	listening	to	that	port	for	the	connection	to	be
made.	In	OOT,	this	is	done	using	the	Net.WaitForConnection
function.

If	successful,	Net.OpenConnection	returns	a	network	stream
descriptor	which	can	be	used	with	the	put,	get,	read,	and	write
statements	and	eof	function	to	send	and	receive	data	to	the	listening
program.	It	is	also	the	parameter	used	for	the
Net.CloseConnection,	Net.BytesAvailable,	Net.CharAvailable,
Net.LineAvailable,	and	Net.TokenAvailable	functions.

The	netAddr	parameter	is	a	string	specifying	the	net	address	of	the
machine	to	be	connected	to.	This	can	either	be	the	full	hostname	or
the	numerical	address.

In	general,	system	program	listen	in	on	ports	with	numbers	below
1024.	Port	numbers	above	1024	are	generally	available	for	use	by
user	created	programs.

The	program	will	wait	for	an	indeterminate	amount	of	time	to	make
the	connection.	If	it	fails,	it	will	return	a	non-positive	value.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

The	following	program	implements	a	"Chat"	program.	One	user
runs	the	program	on	their	machine	as	a	server,	which	waits	for

Example		

another	machine	to	connect	to	it.	The	second	user	specifies	the
machine	to	connect	to	and	then	connects.	The	two	can	then	type	at
each	other.

								%	The	"Chat"	program

								const	chatPort	:	int	:=	5055

								var	choice	:	int

								loop

												put	"Enter	1	to	run	chat	server"

												put	"Enter	2	to	run	chat	session"

												put	"Choice:	"	..

												get	choice

												exit	when	choice	=	1	or	choice	=	2

								end	loop

								var	netStream	:	int

								var	netAddress	:	string

								

								if	choice	=	1	then

												netStream	:=	Net.WaitForConnection	(chatPort

								else

												put	"Enter	the	address	to	connect	to:	"	..

												get	netAddress

												netStream	:=	Net.OpenConnection	(netAddress,	

												if	netStream	<=	0	then

																put	"Unable	to	connect	to	",	netAddress

																return

												end	if

								end	if

								Draw.Cls

								put	"Connected	to	",	netAddress

								

								var	localRow	:	int	:=	2

								var	localCol	:	int	:=	1

								var	remoteRow	:=	maxrow	div	2

								var	remoteCol	:	int	:=	1

								var	ch	:	char

								

								View.Set	("noecho")

								loop

												if	hasch	then

																ch	:=	getchar

																put	:	netStream,	ch

																if	ch	=	'\n'	then

																				localRow	:=	localRow	mod	(maxrow	div

																				localCol	:=	1

																				Text.Locate	(localRow,	localCol)

																				put	""	%	Clear	to	end	of	line

																				Text.Locate	(localRow,	localCol)

																else

																				Text.Locate	(localRow,	localCol)

																				put	ch	..

																				localCol	+=	1

																end	if

												end	if

								

												if	Net.CharAvailable	(netStream)	then

																get	:	netStream,	ch

																if	ch	=	'\n'	then

																				remoteRow	:=	remoteRow	mod	(maxrow	div

																								1	+	(maxrow	div	2)

																				remoteCol	:=	1

																				Text.Locate	(remoteRow,	remoteCol)												

																				Text.Locate	(remoteRow,	remoteCol)

																else

																				Text.Locate	(remoteRow,	remoteCol)

																				put	ch	..

																				remoteCol	+=	1

																end	if

												end	if

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.OpenConnection,	not	by	calling	OpenConnection.

See	also		 Net.WaitForConnection	and	Net.CloseConnection.

Net.OpenURLConnection Part	of	Net	module

Syntax		 Net.OpenURLConnection	(urlAddr	:	string)	:	int

Description		

Attempts	to	open	a	http	connection	to	pthe	URL	(Universal
Resource	Locator)	specified	by	the	urlAddr.

If	successful,	Net.OpenURLConnection	returns	a	network
stream	descriptor	which	can	be	used	with	the	get	statement	and
eof	function	to	read	the	web	page	located	at	the	URL.

The	program	will	wait	for	an	indeterminate	amount	of	time	to
make	the	connection.	If	it	fails,	it	will	return	a	non-positive	value.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	prints	out	the	contents	of	the	file	specified
by	the	user.

								var	url	:	string

								put	"Enter	the	URL	to	load:	"	..

								get	url	

								

								var	netStream	:	int

								var	line	:	string

								

								netStream	:=	Net.OpenURLConnection	(url)

								if	netStream	<=	0	then

												put	"Unable	to	connect	to	",	url

												return

								end	if

								loop

												exit	when	eof	(netStream)

												get	:	netStream,	line

												put	line

								end	loop

								Net.CloseConnection	(netStream)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.OpenURLConnection,	not	by	calling
OpenURLConnection.

See	also		 Net.CloseConnection.

Net.TokenAvailable Part	of	Net	module

Syntax		 Net.TokenAvailable	(netStream	:	int)	:	boolean

Description		

Returns	true	if	a	line	of	input	is	waiting	to	be	read	from	the	net
stream	specified	by	the	netStream	parameter.	If
Net.TokenAvailable	returns	true,	then	a	single	token	(character
surrounded	by	whitespace)	can	be	read	from	the	stream	without
blocking.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

Example		

The	following	program	fragment	reads	a	character	from
netStream	only	if	there	is	one	waiting	to	be	read.

								if	Net.TokenAvailable	(netStream)	then

												var	token	:	string

												get	:	netStream,	token

												put	token

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.TokenAvailable,	not	by	calling	TokenAvailable.

See	also		
Net.BytesAvailable,	Net.CharAvailable,	and
Net.LineAvailable.

Net.WaitForConnection Part	of	Net	module

Syntax		
Net.WaitForConnection	(port	:	int,	
var	netAddr	:	string)	:	int

Description		

Listens	for	a	connection	at	the	port	specified	by	the	port
parameter.	When	another	program	connects	to	the	port,	then	the
function	returns.	The	address	of	the	connecting	machine	is
specified	in	the	netAddr	parameter	and	the
Net.WaitForConnection	returns	a	network	stream	descriptor
which	can	be	used	with	the	put,	get,	read,	and	write	statements
and	eof	function	to	send	and	receive	data	to	the	connecting
program.	It	is	also	the	parameter	used	for	the
Net.CloseConnection,	Net.BytesAvailable,	Net.CharAvailable,
Net.LineAvailable,	and	Net.TokenAvailable	functions.

In	OOT,	the	connection	to	a	port	is	made	with	the
Net.OpenConnection	function.

The	netAddr	parameter	is	a	string	specifying	the	net	address	of
the	machine	that	connected	to	the	port.	It	is	the	machines
numerical	address.

In	general,	system	program	listen	in	on	ports	with	numbers	below
1024.	Port	numbers	above	1024	are	generally	available	for	use	by
user	created	programs.

The	program	will	wait	for	indefinitely	for	a	connection	to	made	to
the	port.

Details		

The	Net	module	requires	a	TCP/IP	stack	to	be	installed	and
operating	in	order	to	function.	It	does	not	communicate	using	any
other	protocols

It	is	possible	for	Firewalls	to	interfere	with	the	actions	of	the	Net
module,	preventing	connections	from	taking	place.

See	Net.OpenConnection	for	an	example	of

Example		 Net.WaitForConnection.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Net.WaitForConnection,	not	by	calling	WaitForConnection.

See	also		 Net.OpenConnection	and	Net.CloseConnection.

new statement

Syntax		

A	newStatement	is:

	 new	[collectionOrClassId	,]	pointerVariableReference

Description		

A	new	statement	creates	(allocates)	a	new	element	and	assigns	its	location	to	the
pointer	variable.	This	element	can	be	an	object	of	a	collection	or	class	or	a	value	of	a
type.	If	the	collectionOrClassId	is	omitted,	the	choice	of	element	is	determined	by
the	type	of	the	pointer.	For	example,	if	the	pointer	is	to	class	C,	an	object	of	class	
will	be	allocated.

Example		

Using	a	collection,	declare	a	list	of	records	and	allocate	one	record.

								var	list	:	collection	of

												record

																contents	:	string	(10)

																next	:	pointer	to	list		%	Short	form:	next	:	^	list

												end	record

								var	first	:	pointer	to	list					%	Short	form:	var

								new	list,	first									%	Short	form:	new	first

Example		

Using	a	class,	create	an	object	of	that	class.	The	object	is	located	by	the	

								class	node

												export	var	next,	var	name

												name	:	string	(25)

												next	:	pointer	to	node		%	Short	form:	next	:	^	node

								end	node

								var	start	:	pointer	to	node	%	Short	form:	var	start	:	^	node

								new	node,	start									%	Short	form:	new	start

Example		

Using	a	record	type,	declare	a	list	of	records	and	allocate	one	record.

								type	item:

												record

																contents	:	string	(10)

																next	:	pointer	to	item		%	Short	form:	next	:	^	item

												end	record

								var	first	:	pointer	to	item					%	Short	form:	var	

								new	first

Details		

As	the	examples	in	this	section	show,	a	pointer	can	locate	one	of	three	things:	an
object	of	a	collection,	an	object	of	a	class	or	a	value	of	a	type.

In	the	new	statement,	the	collectionOrClassId	can	be	omitted.	If	the	pointer	locates	a
type,	it	must	be	omitted.	The	free	statement	is	used	to	deallocate	an	element.

An	imported	class	can	have	one	of	its	objects	created	(by	the	new	statement)	only	if
the	class	is	imported	var.

If	there	is	no	more	space	to	allocate	an	element,	new	will	set	the	pointer	to	be	the	
value,	and	the	program	will	continue	executing.

If	the	pointer	locates	class	C	and	C	contains	an	implement	by	list,	the	object	created
by	new	is	the	inherited	object	(through	any	number	of	levels	of	implement
pointer,	however,	remains	a	pointer	to	C.

The	form	new	p	is	a	short	form	for	new	C,	p	when	C	is	the	class	or	collection	given
in	p's	type.

If	p	is	a	pointer	to	class	C	and	C	has	a	descendant	(expansion)	class	
statement	can	be	used	to	allocate	an	object	of	type	D,	as	in:

								new	D,	p				%	Allocates	an	object	of	class	D

If	D	has	an	implement	by	clause,	the	expansion	is	created.

Details		

The	new	statement	can	also	be	used	to	resize	a	flexible	array.	If	an	array	has	been
declared	flexible	using	the	syntax	.

								var	name	:	flexible	array	indexType	{	,	indexType

The	indices	may	have	compile-time	or	run-time	upper	bounds	(the	lower	bound	must
be	compile-time).	The	upper	bounds	can	be	changed	by	using:

								new	name	,	newUpper1	{,newUpper2}

The	existing	array	entries	will	retain	their	values,	except	that	any	index	made	smaller
will	have	the	corresponding	array	entries	lost.	Any	index	made	larger	will	have	the
new	array	entries	uninitialized	(if	applicable).

Additionally,	the	upper	bound	(both	in	the	declaration	and	the	new	statement)	can	be

made	one	less	than	the	lower	bound.	This	effectively	makes	an	array	that	contains	0
elements.	It	can	later	be	increased	in	size	with	another	new.

In	the	current	implementation	(1999),	with	a	multi-dimensional	array	with	a	non-
zero	number	of	total	elements,	it	is	a	run-time	error	to	change	any	but	the	first
dimension	(unless	one	of	the	new	upper	bounds	is	one	less	than	the	corresponding
lower	bound,	giving	0	elements	in	the	array)	as	the	algorithm	to	rearrange	the
element	memory	locations	has	not	yet	been	implemented.

Currently,	only	variables	can	be	declared	in	this	form.	There	is	no	flexible	array
parameter	type,	although	a	flexible	array	can	be	passed	to	an	array	parameter	with
"*"	as	the	upper	bound.

Example		 See	array	for	an	example	of	flexible	arrays.

See	also		

class	and	collection	declarations,	pointer	type,	free	statement,	nil	value	and
implement	by	list.

For	flexible	arrays,	see	also	array	and	flexible.

nil pointer	to	a	collection

Syntax		 nil	[(collectionOrClassId)]

Description		

The	nil	pointer	does	not	locate	any	element	(object).	Pointers
locate	items	in	collections,	classes	and	types.	The
collectionOrClassId	is	optional.

This	nil	pointer	is	distinct	from	pointers	to	actual	elements,	and	it
can	be	compared	to	these	pointers.	It	is	also	distinct	from	the
uninitialized	pointer	value.

Example		

In	this	example,	the	pointer	called	first	is	set	to	the	nil	pointer	of
collection	c,	that	is,	to	nil(c).

								var	c	:	collection	of

												record

																name	:	string	(50)

																next	:	pointer	to	c

												end	record

								var	first	:	pointer	to	c	:=	nil	(c)

Details		

See	also	collection,	class	and	pointer.	When	nil	is	written	without
the	collectionOrClassId,	it	can	be	assigned	to	a	pointer	to	any
collection,	class	or	type.

The	type	of	nil	without	the	collectionOrClassId	is	effectively	a
pointer	to	everyClass,	an	imaginary	class	that	has	no	objects	and
is	the	descendant	of	all	classes.	This	implies	that	it	can	be
assigned	to	any	other	class	pointer,	because	it	is	a	descendant	of
all	classes.

Turing	allows	you	to	write	nil	(id)	after	a	forward	declaration	of
id	(the	name	of	a	collection,	class	or	type)	before	(and	after)	the
resolution	of	the	id.

not true/false	(boolean)	operator

Syntax		 not

Description		
The	not	(boolean	negation)	operator	produces	the	opposite	of	a	true/false
value.	For	example,	not	(x	>y)	is	equivalent	to	x	<=	y.

Example		
								var	error	:	boolean	:=	false

								var	success	:	boolean

								…

								success	:=	not	error				%	success	becomes	the	opposite	of	error

Details		

The	not	operator	takes	true	and	produces	false	and	takes	false	and
produces	true.	The	not	operator	can	be	written	as	~.	See	also	the	boolean
type,	prefix	operators,	and	precedence	of	operators.

The	not	operator	can	be	applied	to	sets.

objectclass of	a	pointer

Syntax		 objectclass	(pointerExpn)

Description		

The	objectclass	attribute	is	used	to	find	the	class	of	an	object
located	by	a	pointer.	The	pointerExpn	must	be	an	expression	that
is	a	pointer	to	a	class.

Example		

See	class	for	an	example	of	classes	and	inheritance,	in	which	a
class	called	TextFile	is	inherited	by	a	class	called	Device.	The
Device	class	adds	a	new	exported	procedure	called	ioCtl.	In	the
present	example,	objectclass	is	used	to	test	to	make	sure	that	the
textFilePtr	currently	locates	an	object	that	was	created	as	a
Device	(or	as	a	descendant	of	Device).	The	notation
Device(textFilePtr)	converts	the	pointer	to	be	a	pointer	to	a
Device	so	that	ioCtl	can	be	called.

								var	textFilePtr	:	^	TextFile

								…

								if	objectclass	(textFilePtr)	>=	Device	then

												%	Can	safely	treat	object	as	a	Device

												Device	(textFilePtr)	.	ioCtl

												…

								end	if

Details		

This	example	uses	the	class	comparison	operator	>=	which	means
"is	a	descendant	of".	See	class.

You	can	only	use	objectclass	in	class	comparisons.	In	particular,
objectclass	cannot	be	used	to	declare	pointers.	For	example,	this:

								var	p	:	^objectclass	(q)

is	not	allowed.

opaque type

Description		

When	a	type	T	is	exported	from	module,	monitor	or	class	M	using
the	keyword	opaque,	the	type	M.T	is	distinct	from	all	other	types.
Opaque	types	are	used	to	guarantee	that	updates	to	values	of	the
type	are	done	within	M.

See	also		

module	declarations	for	an	example	of	an	opaque	type	used	to
implement	complex	arithmetic.	See	also	equivalence	of	types	for
the	definition	of	the	type	matching	rules	for	opaque	types.

open file	statement

Syntax		

An	openStatement	is	one	of:

	 (a) open	:	fileNumberVar,	fileName,	ioCapability
	 	 	 	 	 	 {	,	ioCapability	}
	 (b) open	:	fileNumberVar,	argNum,	ioCapability
	 	 	 	 	 	 {	,	ioCapability	}

Description		

The	open	statement	connects	the	program	to	a	file	so	the	program	can	perform
operations	such	as	read	on	the	file.	In	form	(a),	the	open	statement	translates	a
fileName,	such	as	"Master",	to	a	file	number	such	as	5.	Form	(b),	which	is	less-
commonly	used,	opens	a	file	whose	name	is	given	by	a	program	argument.	This	is
described	below.

The	read	statement	uses	the	file	number,	not	the	file	name,	to	access	the	file.	When
the	program	is	finished	using	the	file,	it	disconnects	from	the	file	using	the	
statement.	Each	ioCapability	is	the	name	of	an	operation,	such	as	read
performed	on	the	file.

Example		

This	programs	illustrates	how	to	open,	read	and	then	close	a	file.

								var	fileName	:	string	:=	"Master"			%	Name	of	file

								var	fileNo	:	int																%	Number	of	file

								var	inputVariable	:	string	(100)

								open	:	fileNo,	fileName,	read

								…

								read	:	fileNo,	inputVariable

								…

								close	:	fileNo

The	open	statement	always	sets	the	fileNumber	to	a	positive	number.	If	the	
fails	(generally	because	the	file	does	not	exist),	the	fileNumber	is	set	to	a	non-
positive	number.	It	is	wise	to	check	that	the	stream	number	is	greater	than	zero
before	using	it	further.

An	ioCapability	is	one	of:

	 get,	put,	read,	write,	seek,	mod

Details		

A	file	can	be	accessed	using	only	the	statements	corresponding	to	the	input/output
capabilities	with	which	it	was	opened.	Note:	tell	is	allowed	only	if	the	open	is	for
seek.

The	open	statement	truncates	the	file	to	length	zero	if	the	ioCapabilities
put	or	write	but	not	mod	(which	stands	for	modify).	In	all	other	cases,	
the	existing	file	intact.	The	mod	ioCapability	specifies	that	the	file	is	to	be
modified	without	being	truncated.	Each	open	positions	to	the	beginning	of	a	file.
There	is	no	mechanism	to	delete	a	file.

To	open	for	appending	to	the	end	of	the	file,	one	has	to	open	for	seek
write	or	put	and	then	seek	to	the	end	of	the	file.	See	the	seek	statement.

Mixed	mode	files,	which	combine	get	and	read	(or	put	and	write),	are	supported
by	some	operating	systems,	such	as	UNIX,	but	not	by	others,	such	as	Microsoft
Windows.

On	Microsoft	Windows,	one	should	note	that	opening	files	in	other	directories	uses
the	backslash	character.	This	is	because	the	backslash	is	a	special	character	in
Turing	(as	in	\t	for	tab	and	\n	for	a	newline).	To	get	a	single	backslash,	use	\\.

								e.g.	open	:	f,	"C:\\STUDENTS\\SMITH\\ACCT.DAT",	

Form	(b)	of	the	syntax	allows	you	to	open	a	file	whose	name	is	given	as	a	program
argument	on	the	command	line.	For	example,	under	UNIX,	the	command	line:

								prog.x	infile	outfile

specifies	to	execute	prog.x	with	program	arguments	infile	and	outfile
the	Turing	programming	environment,	the	run	command	can	accept	program
arguments.	The	argNumber	is	the	position	of	the	argument	on	the	command	line.
(The	first	argument	is	number	1.)	The	name	of	the	file	to	be	opened	is	the
corresponding	program	argument.	If	there	is	no	such	argument,	or	if	the	file	cannot
be	opened	successfully,	fileNumberVariable	is	set	to	zero.	See	also	
gives	the	number	of	arguments,	and	fetcharg,	which	gives	the	n-th	argument	string.

Program	argument	files	referenced	by	argument	number	and	used	in	
or	write	statements	need	not	be	explicitly	opened,	but	are	implicitly	opened	with
the	capability	corresponding	to	the	input/output	statement	in	which	they	are	first
used.	(The	fileNumbergives	the	number	of	the	argument.)

The	operating	system	standard	files	(error,	output	and	input)	are	accessed	using	file
numbers	0,	-1,	and	-2,	respectively	(although	this	may	be	subject	to	change).	These
files	are	not	opened	explicitly,	but	are	used	simply	by	using	form	(b)	with	the
number.	Beware	of	the	anomalous	case	of	a	failed	open	that	gives	you	file	number
0.	A	subsequent	use	of	this	number	in	a	put	will	produce	output	that	goes	to	the
standard	error	stream,	with	no	warning	that	the	file	you	attempted	to	open	is	not
actually	being	used.

To	append	to	a	file,	the	file	must	be	opened	with	the	mod	and	seek
then	there	must	be	a	seek	to	the	end	of	file.	For	example:

								var	streamnumber	:	int

								open	:	streamnumber,	"myfile",	put,	mod,	seek

								seek	:	streamnumber,	*

								put	:	streamnumber,	"This	appears	at	the	end	of	the	file"

There	is	an	older	and	still	acceptable	version	of	open	that	has	this	syntax:

								open	(var	fileNumber	:	int,	fileName	:	string,	

The	mode	must	be	"r"	(for	get)	or	"w	"	(for	put).

Details		

The	path	name	specified	in	the	open	statement	and	elsewhere	can	always	be	in
UNIX	format	(i.e.	with	forward	slashes,	an	initial	forward	slash	indicating	an
absolute	directory).	On	the	PC,	absolute	paths	would	have	the	form:

												a:/dir1/dir2/filename

On	the	Macintosh,	they	would	have	the	form:

												/volume	name/directory1/directory2/file	name

Note	that	in	addition	to	the	UNIX	path	format,	on	the	PC,	you	can	always	use
standard	PC	path	notation	and	on	the	Macintosh,	you	can	use	standard	Macintosh
path	notation.	On	the	Macintosh	volume,	directory	and	file	names	can	have	spaces
in	them.

All	routines	(such	as	the	File	and	Dir	module	routines)	will	return	files	names	in
UNIX	format,	regardless	of	the	machine	the	program	is	run	on.

See	also		 close,	get,	put,	read,	write,	seek	and	tell	statements.

or operator

Syntax		 A	or	B

Description		

The	or	(boolean)	operator	yields	a	result	of	true	if	at	least	one	(or
both)	of	the	operands	is	true.	or	is	a	short	circuit	operator.	For
example,	if	A	is	true	in	A	or	B	then	B	is	not	evaluated.

Example		
								var	success	:	boolean	:=	false

								var	continuing	:=	true		%	the	type	is	boolean

								…

								continuing	:=	continuing	or	success

Details		

continuing	is	set	to	false,	if	and	only	if,	both	continuing	and
success	are	false.	Since	Turing	uses	short	circuit	operators,	once
continuing	is	true,	success	will	not	be	looked	at.

The	or	operator	can	be	applied	to	natural	numbers.	The	result	is
the	natural	number	that	is	the	bit-wise	or	of	the	operands.	See	nat
(natural	number).

See	also		

boolean	(which	discusses	true/false	values),
explicitTrueFalseConstant	(which	discusses	the	values	true	and
false),	precedence	and	expn	(expression).

ord character-to-integer	function

Syntax		 ord	(ch	:	char)	:	int

Description		

The	ord	function	accepts	an	enumerated	value,	char,	or	a	string
of	length	1,	and	returns	the	position	of	the	value	in	the
enumeration,	or	of	the	character	in	the	ASCII	(or	EBCDIC	for
IBM	mainframes)	sequence.	Values	of	an	enumerated	type	are
numbered	left	to	right	starting	at	zero.	For	example,	ord	("A")	is
65.	The	ord	function	is	the	inverse	of	chr,	so	for	any	character	c,
chr	(ord	(c))	=	c.

See	also		 chr,	intstr	and	strint	functions.

parallelget parallel	port	function

Syntax		 parallelget	:	int

Description		

The	parallelget	procedure	is	used	on	a	PC	to	read	the	value	of	certain	pins	on	the
parallel	port.	This	port	corresponds	to	the	MS-DOS	device	"LPT1".	This	procedure
can	be	used	to	control	robots	and	peripherals.

Example		

This	program	reads	and	prints	the	values	of	the	five	data	pins	of	the	PC's	parallel
port.

								const	val	:	int	:=	parallelget		%	Read	in	the	set	of	pin	values

								put	"Pin	10	is:	",	(val	div	64)	mod	2

								put	"Pin	11	is:	",	(val	div	128)	mod	2

								put	"Pin	12	is:	",	(val	div	32)	mod	2

								put	"Pin	13	is:	",	(val	div	16)	mod	2

								put	"Pin	15	is:	",	(val	div	8)	mod	2

Details		

The	five	pins	that	are	used	for	parallel	input	are	pins	10-15.	The	parallelget
procedure	returns	the	sum	of

	 64 	 Pin	10	high
	 128 	 Pin	11	high
	 32 	 Pin	12	high
	 16 	 Pin	13	high
	 8 	 Pin	15	high

The	mod	and	div	operators	can	be	used	to	determine	which	pins	are	high	or	low.

See	also		
the	parallelput	procedure	for	a	diagram	of	the	pins.	That	procedure
values	on	the	parallel	port.

parallelput parallel	port	procedure

Syntax		 parallelput	(p	:	int)

Description		

The	parallelput	procedure	is	used	on	a	PC	to	set	the	values	on	the	data
pins	on	the	parallel	port.	This	port	corresponds	to	the	MS-DOS	device
"LPT1".	This	procedure	can	be	used	to	control	robots	and	peripherals.

Example		

This	program	sets	data	bit	0,	data	bit	1	and	so	on	to	data	bit	7.

								for	i	:	0	..	7

												parallelput	(2	**	i)				%Set	data	bit	i	on	the		parallel	port

												put	"Data	bit	",	i,	"		or	Pin	",	i	+	2,	"has	just	been	set"

								end	for

Details		

The	parallelput	procedure	is	used	to	set	the	eight	data	bits	on	the	PC's
parallel	port.	These	data	bits	0	-	7	correspond	to	pins	2	-	9	on	the	parallel
port.

The	value	sent	to	parallelput	is	the	sum	of	the	following:

	 1 	 Data	bit	0 	 16 	 Data	bit	4
	 2 	 Data	bit	1 	 32 	 Data	bit	5
	 4 	 Data	bit	2 	 64 	 Data	bit	6
	 8 	 Data	bit	3 	 128 	 Data	bit	7

For	example,	the	command	parallelput	(97)	sets	data	bits	0,	5	and	6
high	(97	=	1	+	32	+	64)	and	sets	the	other	data	pins	low.	Because	there
are	only	8	data	pins	in	the	parallel	port,	the	value	passed	to	parallelput
must	be	from	0	to	255.

The	parallelput	procedure	is	not	meant	for	sending	a	stream	of
characters	to	the	parallel	port	(for	example,	if	you	want	to	send	the	string
"Hello"	to	the	printer).	If	you	want	to	do	this,	open	the	file	"LPT1"	using

the	open	statement	and	put	to	the	file.

See	also		
the	parallelget	function,	which	is	used	to	read	the	values	of	pins	on	the
parallel	port.

paramDeclaration parameter	declaration

Syntax		

A	paramDeclaration	is	one	of:

	 (a) [var]	id	{,	id	}	:	typeSpec
	 (b) subprogramHeader

Description		

A	parameter	declaration,	which	is	part	of	the	header	of	a	procedure	or	function,
specifies	a	formal	parameter	(see	also	procedure	and	function	declarations).
Form	(a)	above	is	the	most	common	case.	Form	(b)	specifies	procedures	and
functions	that	are	themselves	passed	as	parameters.

Example		

								procedure	putTitle	(title	:	string)

												%	The	parameter	declaration	is:	title	:	string

												put	title

								end	putTitle

								

								procedure	x	(var	s	:	array	1	..	*	of	string	(*))

												%	Set	each	element	of	s	to	the	null	string

												for	i	:	1	..	upper	(s)

																s	(i)	:=	""

												end	for

								end	x

Details		

Parameters	to	a	procedure	may	be	declared	using	var,	which	means	that	the
parameter	can	be	changed	inside	the	procedure.	For	example,	s	is	changed	in	the	
procedure.	If	a	parameter	is	declared	without	var,	it	cannot	be	changed.	(This
differs	from	Pascal,	where	non-var	parameters	can	be	changed.)	Parameters	to
functions	cannot	be	declared	to	be	var.

Parameters	declared	var	are	passed	by	reference,	which	means	that	a	pointer	to
the	value	is	passed	to	the	procedure,	rather	than	passing	the	actual	value.	This
implies	that	in	the	call	p	(a	(i)),	in	which	array	element	a(i)	is	passed	to	procedure
p,	a	change	to	i	in	p	does	not	change	the	element	referred	to	by	p's	actual
parameter.	Every	non-scalar	(not	integer,	subrange,	real,	boolean,	enumerated,
pointer	or	the	char	type)	parameter	is	passed	by	reference	whether	or	not	it	is
declared	var.	In	all	other	cases	(scalar	non-var	parameters)	the	parameter	is
passed	by	value	(the	actual	value	is	copied	to	the	procedure).

The	upper	bound	of	an	array	or	string	that	is	a	formal	parameter	may	be	specified
as	an	asterisk	(*),	as	is	done	above	for	parameter	s	in	procedure	x.	This	specifies
that	the	size	of	the	upper	bound	is	inherited	from	the	corresponding	actual
parameter.	Parameters	declared	using	star	are	called	dynamic	parameters.

The	names	of	the	formal	parameters	must	be	distinct	from	each	other,	from	the
procedure	or	function	name,	and	from	pervasive	identifiers.	However,	they	need
not	be	distinct	from	names	outside	of	the	procedure	or	function.

Example		

Find	the	zero	of	function	f.	This	example	illustrates	form	(b),	which	is	a	parameter
that	is	a	function.	See	also	subprogramHeader.

								function	findZero	(function	f	(x	:	real)	:	real

																								left,	right,	accuracy	:	real)	:	

												pre	sign	(f	(left))	not=	sign	(f	(right)

																				and	accuracy	>	0

												var	L	:	real	:=	left

												var	R	:	real	:=	right

												var	M	:	real

												const	signLeft	:=	sign	(f	(left))

												loop

																M	:=	(R	+	L)	/	2

																exit	when	abs	(R	-	L)	<=	accuracy

																if	signLeft	=sign	(f	(M))	then

																				L	:=	M

																else

																				R	:=	M

																end	if

												end	loop

												result	M

								end	findZero

Details		

Form	(b)	of	paramDeclaration	is	used	to	specify	formal	parameters	that	are
themselves	procedures	or	functions.	For	example,	in	the	findZero	function,	
formal	parameter	that	is	itself	a	function.	The	subprogram	type	can	be	used	to
replace	form	(b).	In	particular,	the	header	to	the	findZero	function	can	be	replaced
by	the	following	with	no	change	in	the	action.	The	names	g	and	x	serve	no
purpose,	except	as	place	holders	in	the	declaration	of	f.

								function	findZero	(f	:	function	g	(x	:	real)	:	

																								left,	right,	accuracy	:	real)	:	

Parameters	that	are	declared	non	var	should,	in	principle,	be	constant.

Details		

Unfortunately,	there	is	an	anomalous	situation	in	which	these	can	change.	This
occurs	when	the	parameter	is	passed	by	reference,	because	it	is	a	non	scalar	such
as	a	string.	If	the	actual	parameter	is	changed	while	the	subprogram	is	executing,
the	formal	parameter	will	change	as	well.

You	can	also	optionally	use	the	register	keyword	to	request	that	the	variable	be
placed	in	a	machine	register.	This	changes	form	(a)	to	allow	the	optional	use	of	the
register	keyword.	The	syntax	for	form	(a)	is	actually:

								[var]	[register]	id	{,	id	}	:	[cheat]	typeSpec

In	the	current	(1999)	implementation,	programs	are	run	interpretively	using
pseudo-code,	which	has	no	machine	registers,	and	the	register	keyword	is
ignored.	See	register	for	restrictions	on	the	use	of	register	parameters.

The	optional	keyword	cheat	means	that	the	parameter	has	a	type	cheat.	See	
Any	variable	or	constant	non	scalar	(in	other	words,	items	passed	by	reference)
can	be	passed	to	a	type	cheat	parameter.	The	internal	representation	will	be
interpreted	as	a	value	of	the	specified	type.	This	is	dangerous	as	it	provides
unconstrained	access	to	the	underlying	computer	memory.

Example		

This	procedure	outputs	the	values	of	n	bytes	starting	at	the	address	of	formal
parameter	a,	using	a	parameter	type	cheat.

								procedure	dump	(a	:	cheat	array	0	..	10000	of	nat1

												for	i	:	0	..	n	-	1

																put	i,	a	(i)	:	4

												end	for

								end	dump

								

								var	s	:	string	:=	"abc"

								dump	(s,	5)							%	Dumps	5	bytes,	starting	with	

pause statement

Syntax		

A	pauseStatement	is:

	 pause	expn

Description		

The	pause	statement	blocks	the	program	(or	just	the	process	in
the	case	of	a	concurrent	program)	for	a	given	number	of
simulated	time	units.	The	expn	must	be	a	non-negative	int	value
giving	the	number	of	time	units.	This	is	analogous	to	the	delay
statement,	which	causes	blocking	for	a	given	amount	of	real	time
(actual	physical	time).

The	interpreter	maintains	a	counter	which	it	considers	to	be
simulated	time.	The	only	execution	that	causes	this	counter	to
increase	is	the	pause	statement.	The	process	executing	the	pause
is	blocked	until	the	counter	has	counted	forward	the	number	of
units	given	by	expn.	All	other	statements	(except	wait)	are
considered	to	be	infinitely	fast.	Several	processes	can	be
executing	pause	statements	simultaneously.

The	use	of	simulated	time	allows	Turing	to	be	used	as	a
simulation	language	in	which	the	pause	statement	simulates	the
passage	of	time	in	the	simulated	system.

PC

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
direct	access	to	the	hardware	under	the	IBM	PC	architecture.

All	routines	in	the	PC	unit	are	exported	qualified	(and	thus	must
be	prefaced	with	"PC.").

Entry
Points		

ParallelGet 	 Returns	the	value	of	the	pins	set	on	the	parallel
port.

ParallelPut 	 Sets	the	values	of	the	pins	on	the	parallel	port.

PC.ParallelGet Part	of	PC	module

Syntax		 PC.ParallelGet	(port	:	int)	:	nat1

Description		

The	PC.ParallelGet	function	is	used	to	read	the	value	of	certain
pins	on	a	parallel	port.	The	port	is	specified	with	the	port
parameter	which	can	have	the	value	1,	2	or	3	corresponding	to
"LPT1",	"LPT2"	and	"LPT3".	This	procedure	can	be	used	to
control	robots	and	peripherals.

Example		

This	program	reads	and	prints	the	values	of	the	five	data	pins	of
the	PC's	parallel	port.

								%	Read	in	the	set	of	pin	values	from	LPT1

								const	val	:	int	:=	PC.ParallelGet	(1)			

								put	"Pin	10	is:	",	(val	div	64)	mod	2

								put	"Pin	11	is:	",	(val	div	128)	mod	2

								put	"Pin	12	is:	",	(val	div	32)	mod	2

								put	"Pin	13	is:	",	(val	div	16)	mod	2

								put	"Pin	15	is:	",	(val	div	8)	mod	2

Details		

The	five	pins	that	are	used	for	parallel	input	are	pins	10-15.	The
PC.ParallelGet	procedure	returns	the	sum	of

	 64 	 Pin	10	high
	 128 	 Pin	11	high
	 32 	 Pin	12	high
	 16 	 Pin	13	high
	 8 	 Pin	15	high

The	mod	and	div	operators	can	be	used	to	determine	which	pins
are	high	or	low.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
PC.ParallelGet,	not	by	calling	ParallelGet.

PC.ParallelPut	procedure	for	a	diagram	of	the	pins.	That

See	also		 procedure	is	used	to	set	the	values	on	the	parallel	port.

PC.ParallelPut Part	of	PC	module

Syntax		 PC.ParallelPut	(port	:	int,	value	:	int)

Description		

The	PC.ParallelPut	procedure	is	used	on	a	PC	to	set	the	values	on
the	data	pins	on	the	parallel	port.	The	port	is	specified	with	the
port	parameter	which	can	have	the	value	1,	2	or	3	corresponding	to
"LPT1",	"LPT2"	and	"LPT3".	This	procedure	can	be	used	to
control	robots	and	peripherals.

Example		

This	program	sets	data	bit	0,	data	bit	1	and	so	on	to	data	bit	7.

								for	i	:	0	..	7

												%Set	data	bit	i	on	parallel	port	LPT2

												PC.ParallelPut	(2,	2	**	i)		

												put	"Data	bit	",	i,	"		or	Pin	",	i	+	2,	"has	just	been	set"

								end	for

Details		

The	PC.ParallelPut	procedure	is	used	to	set	the	eight	data	bits	on
the	PC's	parallel	port.	These	data	bits	0	-	7	correspond	to	pins	2	-	9
on	the	parallel	port.

The	value	sent	to	PC.ParallelPut	is	the	sum	of	the	following:

	 1 	 Data	bit	0 	 16 	 Data	bit	4
	 2 	 Data	bit	1 	 32 	 Data	bit	5
	 4 	 Data	bit	2 	 64 	 Data	bit	6
	 8 	 Data	bit	3 	 128 	 Data	bit	7

For	example,	the	command	PC.ParallelPut	(97)	sets	data	bits	0,	5
and	6	high	(97	=	1	+	32	+	64)	and	sets	the	other	data	pins	low.
Because	there	are	only	8	data	pins	in	the	parallel	port,	the	value
passed	to	PC.ParallelPut	must	be	from	0	to	255.

The	PC.ParallelPut	procedure	is	not	meant	for	sending	a	stream
of	characters	to	the	parallel	port	(for	example,	if	you	want	to	send
the	string	"Hello"	to	the	printer).	If	you	want	to	do	this,	open	the
file	"LPT1"	using	the	open	statement	and	put	to	the	file.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
PC.ParallelPut,	not	by	calling	ParallelPut.

See	also		
PC.ParallelGet	function,	which	is	used	to	read	the	values	of	pins
on	the	parallel	port.

pervasive declaration	modifier

Description		

When	a	variable,	constant,	type	or	subprogram	is	declared,	you	can	specify	that
it	is	to	be	pervasive,	which	means	that	it	does	not	need	to	be	explicitly	imported
into	modules,	monitors	or	classes	in	the	current	scope.	The	keyword	
can	be	abbreviated	as	an	asterisk	(*).

Example		

								var	pervasive	counter	:	int	%	Short	form:	var	*	count	:	int

								const	*	maxCounter	:	int	:=	100

								procedure	*	p	(x	:	real)

												…

								end	p

Details		
The	keyword	pervasive	is	also	used	in	export	lists	along	with	the	keyword
unqualified.	See	export	list	for	details.

See	also		
var	declaration,	const	declaration,	procedure	declaration,	function
subprogram	header	and	export	list	for	uses	of	pervasive.

Pic

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
taking	pictures	of	part	of	the	screen,	displaying	them	and	moving
pictures	from	file	to	screen	and	back.

All	routines	in	the	Pic	unit	are	exported	qualified	(and	thus	must
be	prefaced	with	"Pic.").

Entry
Points		

New 	 Creates	a	picture	from	a	specified
portion	of	the	screen.

Draw 	 Draws	a	picture	on	the	screen.

DrawSpecial 	 Draws	a	picture	on	the	screen	using
special	effects.

DrawSpecialBack 	
Draws	a	picture	on	the	screen	while
continuing	execution	using	special
effects.

Free 	 Frees	up	the	picture	created	by	using
New	or	FileNew.

FileNew 	 Creates	a	picture	from	a	file	in	an
allowed	format.

Save 	 Saves	a	picture	as	a	file	in	an	allowed
format.

ScreenLoad 	 Displays	a	file	in	an	allowed	format
on	the	screen	directly.

ScreenSave 	 Saves	a	specified	portion	of	the
screen	as	a	file	in	an	allowed	format.

Rotate 	 Creates	a	new	picture	by	rotating	an
existing	picture.

Scale 	 Creates	a	new	picture	by	scaling	an
existing	picture.

Flip 	 Creates	a	new	picture	by	flipping	an
existing	picture	upside-down.

Mirror 	 Creates	a	new	mirror-image	of	an
existing	picture.
Creates	a	new	picture	by	blending

Blend 	 two	existing	pictures	together.

Blur 	 Creates	a	new	picture	by	blurring	an
existing	pictures.

Width 	 Returns	the	width	of	a	picture.
Height 	 Returns	the	height	of	a	picture.

Frames 	 Returns	the	the	number	of	frames	in	a
multi-frame	GIF	file.

FileNewFrames 	 Creates	an	array	of	pictures	from	a
multi-frame	GIF	file.

DrawFrames 	
Draws	a	series	of	pictures	on	the
screen	in	sequence	while	continuing
execution.

DrawFramesBack 	 Draws	a	series	of	pictures	on	the
screen	in	sequence.

SetTransparentColor 	 Sets	the	color	to	be	ignored	when
using	picMerge	mode.

SetTransparentColour 	 Sets	the	color	to	be	ignored	when
using	picMerge	mode.

Pic.Blend Part	of	Pic	module

Syntax		 Pic.Blend	(picID1,	picID2,	pct	:	int)	:	int

Description		

Pic.Blend	is	used	to	create	a	new	picture	by	blending	two	identically	sized
pictures.	The	resulting	picture	is	created	by	taking	pct	%	of	the	first	picture	and
adding	it	to	(100	-	pct)	%	of	the	second	picture.

Details		

Note	that	the	blended	picture	is	a	newly	created	picture.	When	it	is	no	longer
needed,	its	memory	should	be	released	by	using	Pic.Free.

Note	that	if	pct	is	100,	then	the	resulting	picture	will	be	identical	to	
is	0,	then	the	resulting	picture	will	be	identical	to	picID2.

Example		

The	program	creates	two	identically	sized	pictures,	blends	them	together	and
displays	all	three	pictures.	You	can	vary	the	blend	percentage	to	obtain	different
results.

								View.Set	("graphics:340;140,nobuttonbar")

								%	Create	the	original	pictures

								var	pic1,	pic2,	picBlended	:	int

								Draw.FillBox	(0,	0,	100,	100,	brightred)

								Draw.FillOval	(50,	50,	50,	50,	brightblue)

								pic1	:=	Pic.New	(0,	0,	100,	100)

								cls

								Draw.FillStar	(10,	10,	90,	90,	brightgreen)

								Draw.FillMapleLeaf(10,	10,	90,	90,	brightred)

								pic2	:=	Pic.New	(0,	0,	100,	100)

								cls

								%	Create	new	picture	by	blending	30%	from	pic1,	70%	from	pic2

								picBlended	:=	Pic.Blend	(pic1,	pic2,	30)

								%	Draw	the	three	images

								Pic.Draw	(pic1,	10,	10,	picCopy)

								Pic.Draw	(pic2,	120,	10,	picCopy)

								Pic.Draw	(picBlended,	230,	10,	picCopy)

								

Output	from	the	Program

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Blend
Blend.

Pic.Blur Part	of	Pic	module

Syntax		 Pic.Blur	(picID,	blurAmount	:	int)	:	int

Description		

Pic.Blur	is	used	to	create	a	new	picture	by	blurring	an	existing	picture.	The
resulting	picture	is	created	by	mixing	pixels	in	a	picture	with	pixels	adjacent	to	it.
As	the	blurAmount	increases,	the	image	grows	more	and	more	blurry.

Details		

Note	that	the	blurred	picture	is	a	newly	created	picture.	When	it	is	no	longer
needed,	its	memory	should	be	released	by	using	Pic.Free.

Note	that	this	is	a	fairly	CPU	intensive	routine.	On	slow	machines,	
to	a	second	or	more	when	blurAmount	is	large.	In	such	cases,	it	is	better	to
precompute	the	pictures	before	starting	the	program.	The	second	example	shows
this	being	done.

Example		

The	program	creates	a	picture	and	then	progressively	blurs	it.

								View.Set	("graphics:270;120,nobuttonbar")

								%	Create	the	original	picture

								var	f	:=	Font.New	("serif:60:bold,italic,noantialias")

	 Font.Draw	("Turing",	10,	30,	f,	red)

								Draw.FillStar	(70,	80,	90,	100,	brightgreen)

								Draw.FillBox	(240,	5,	270,	35,	brightblue)

								var	oldPic	:	int

								oldPic	:=	Pic.New	(0,	0,	maxx,	maxy)

								loop

																var	newPic	:	int

																%	Create	the	new	picture	by	blurring	the	old	picture

									 newPic	:=	Pic.Blur	(oldPic,	10)

									 %	Free	the	old	picture	so	we	don't	run	out	of	memory

					 	 Pic.Free	(oldPic)

																Pic.Draw	(newPic,	0,	0,	picCopy)

																delay	(300)

																oldPic	:=	newPic

								end	loop

								

Output	at	start After	several	loops

Execute		

Execute		

By	precalculating	and	saving	the	results	of	the	blurred	picture,	you	
visual	effect	where	an	object	seems	to	come	into	focus.	
The	program	below	blurs	an	image,	saving	each	step.	It	then	draws	the	images	in
reverse	order,	making	it	appear	as	if	the	image	is	becoming	successively	sharper.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Blur,	not	by	calling
Blur.

Pic.Draw Part	of	Pic	module

Syntax		 Pic.Draw	(picID,	x,	y,	mode	:	int)

Description		

Pic.Draw	is	used	to	draw	a	picture	on	the	screen.	The	picture	is
drawn	with	the	lower	left	corner	at	(x,	y).

The	mode	parameter	has	one	of	the	following	values:

picCopy 	 This	draws	the	picture	on	top	of	what	wasunderneath,	obscuring	it	completely.

picXor 	

This	draws	the	picture	XORing	it	with	the
background.	In	DOS,	you	can	use	this	function
to	do	animation.	Drawing	an	object	on	top	of
itself	with	XOR	erases	it	and	restores	the
background.

picMerge 	

This	draws	the	picture	like	picCopy	except	that
any	occurrence	of	the	background	color	in	the
picture	is	not	drawn	to	the	screen.	This	allows
you	to	draw	an	irregularly-shaped	object	and
draw	it	to	the	screen.

picUnderMerge 	

This	draws	the	picture,	but	only	where	the
background	color	was	displayed	underneath	it.
The	effect	of	this	is	to	make	the	picture	appear
to	be	displayed	behind	the	background.

Execute		

If	the	Pic.Draw	call	fails,	Error.Last	will	return	a	non-zero	value
indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a
string	which	contains	the	textual	version	of	the	error.

Details		

Display	Modes	with	Pic.Draw

Example		

The	program	draws	a	graphic	on	the	screen	and	then	repeats	it	50
times	in	random	positions.

								var	picID:	int

								var	x,	y	:	int

								Draw.FillBox	(50,	50,	150,	150,	red)

								Draw.FillStar	(50,	50,	150,	150,	green)

								Draw.FillOval	(100,	100,	30,	30,	blue)

								

								picID	:=	Pic.New	(50,	50,	150,	150)

								for	i	:	1	..	50

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												Pic.Draw	(picID,	x,	y,	picCopy)

								end	for

								Pic.Free	(picID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.Draw,	not	by	calling	Draw.

See	also		

View.Update	for	information	on	how	to	produce	smooth
animation.

Pic.DrawSpecial	for	information	on	how	to	make	pictures	appear
using	special	effects	such	as	wipes	and	slides.

Pic.DrawFrames	for	information	on	how	to	display	multiple
frame	images	such	as	are	obtained	from	GIF	files.

Pic.DrawFrames Part	of	Pic	module

Syntax		

Pic.DrawFrames	(picIds	:	array	1	..	*	of	int,	x,	y,	mode	:	

	 	 numFrames,	delayBetweenFrames	:	int,	eraseAfter
boolean)

Description		

Pic.DrawFrames	is	used	to	draw	a	set	of	pictures	stored	in	an	array	of	
pictures	are	displayed	one	at	a	time,	and	there	is	a	delay	of	delayBetweenFrames
milliseconds	between	frames.	The	x,	y,	and	mode	parameters	are	the	same	as	in
Pic.Draw.	The	numFrames	parameter	specifies	the	number	of	frames	to	be
drawn	(the	picIds	array	must	be	at	least	this	big).	The	eraseAfter	parameter
specifies	whether	the	last	frame	of	the	animation	should	be	left	on	the	Run
window	when	the	call	finishes.	If	eraseAfter	is	set	to	true,	then	the	background	is
restored	after	the	last	picture	has	been	drawn	and	delayBetweenFrames
milliseconds	has	passed.

Details		

GIF	files	can	contain	multiple	frames	(pictures).	Animated	GIFs	function	by	each
frame	in	the	GIF	one	after	another	with	a	delay	between	them.

Turing	allows	users	to	load	multiple	frame	GIF	images	into	a	series	
into	an	array	using	the	Pic.FileNewFrames	procedure.	The	user	can	determine
how	many	frames	are	found	in	the	GIF	file	using	Pic.Frames.	The	frames	can	be
sequentially	displayed	using	either	Pic.DrawFrames	or	Pic.DrawFramesBack
which	display	the	images	one	at	a	time.	(Pic.DrawFrames	returns	
images	have	been	displayed,	Pic.DrawFramesBack	returns	immediately
allowing	the	program	to	continue	execution	while	the	frames	are	being	displayed.

Pic.Frames	is	a	function	which	returns	the	number	of	frames	found	in	the	GIF.	
it	is	used	on	a	GIF	that	does	not	contain	multiple	images,	or	on	a	non-GIF	image
file,	it	returns	1.

The	program	loads	a	multiple	frame	GIF	called	"globe.gif"	and	displays	it.

								%	Determine	the	number	of	frames	in	"globe.gif"

								var	numFrames	:=	Pic.Frames	("globe.gif")

								%	Load	the	picture

								var	delayTime	:	int

								var	pics	:	array	1	..	numFrames	of	int

Example		 	 Pic.FileNewFrames	("globe.gif",	pics,	delayTime)

	 Pic.DrawFrames	(pics,	10,	10,	picCopy,	numFrames

	 for	i	:	1	..	numFrames

	 				Pic.Free	(pics	(i))

	 end	for

				

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.DrawFrames
by	calling	DrawFrames.

See	also		

Pic.Frames	for	information	on	how	to	determine	the	number	of	frames	in	a	GIF
image.

Pic.FileNewFrames	for	information	on	how	to	load	a	GIF	image	with	multiple
frames	into	an	array	of	ints.

Pic.DrawFramesBack	for	information	on	how	to	sequentially	display	the
images	stored	in	array	of	pictures	while	continuing	to	execute	the	program.

Pic.DrawFramesBack Part	of	Pic	module

Syntax		
Pic.DrawFramesBack	(picIds	:	array	1	..	*	of	int,	x,	y,	mode
	 	 numFrames,	delayBetweenFrames	:	int,	eraseAfter

Description		

Pic.DrawFramesBack	is	very	similar	to	Pic.DrawFrames.	The	only	
Pic.DrawFramesBack	returns	immediately	after	being	called	and	program	execution	continues	while
the	frames	are	being	drawn.	This	allows	you	to	continue	to	draw	other	graphics	
being	drawn.

For	example,	this	procedure	is	necessary	if	you	want	to	have	two	sets	of	frames	being	drawn
simultaneously.

Details		

If	you	are	wish	to	have	several	sets	of	images	displayed	at	the	same	time,	you	must	use
Pic.DrawFramesBack	to	display	each	set	of	images	but	the	last	and	then	use	
display	the	last	set	so	that	Turing	will	wait	until	they	are	completed	before	

If	you	want	to	draw	the	same	set	of	frames	continuously,	do	not	use	

for	i	:	1	..	20

				Pic.DrawFrames	(pics,	10,	10,	picCopy,	10,	50,	false

				%	Do	not	use	Pic.DrawFramesBack	in	the	previous	statement

end	for

If	you	do,	Turing	will	attempt	to	run	each	of	the	calls	at	the	same	time,	and	the	animation	will	appear	to
only	run	once.

Details		

GIF	files	can	contain	multiple	frames	(pictures).	Animated	GIFs	function	by	each	frame	in	the	GIF	one
after	another	with	a	delay	between	them.

Turing	allows	users	to	load	multiple	frame	GIF	images	into	a	series	
Pic.FileNewFrames	procedure.	The	user	can	determine	how	many	frames	are	found	in	
using	Pic.Frames.	The	frames	can	be	sequentially	displayed	using	either	
Pic.DrawFramesBack	which	display	the	images	one	at	a	time.	(Pic.DrawFrames
images	have	been	displayed,	Pic.DrawFramesBack	returns	immediately	allowing	the	program	to
continue	execution	while	the	frames	are	being	displayed.

Pic.Frames	is	a	function	which	returns	the	number	of	frames	found	in	the	GIF.	
that	does	not	contain	multiple	images,	or	on	a	non-GIF	image	file,	

Example		

The	program	loads	a	multiple	frame	GIF	called	"globe.gif"	and	displays	it.

								%	Determine	the	number	of	frames	in	"globe.gif"

								var	numFrames	:=	Pic.Frames	("globe.gif")

								%	Load	the	picture

								var	delayTime	:	int

								var	pics	:	array	1	..	numFrames	of	int

	 Pic.FileNewFrames	("globe.gif",	pics,	delayTime)

	 for	i	:	1	..	50

	 				Pic.DrawFramesBack	(pics,	10,	10,	picMerge,	

	 				Pic.DrawFramesBack	(pics,	20	+	Pic.Width	(pics(1)),	10,	

	 				%	All	50	iterations	will	execute	at	once	if	the	next	call	is	

	 				%	Pic.DrawFramesBack,	and	not	Pic.DrawFrames

	 				Pic.DrawFrames	(pics,	30	+	2	*	Pic.Width	(pics(1)),	10,	

	 end	for

	 for	i	:	1	..	numFrames

	 				Pic.Free	(pics	(i))

	 end	for

				

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.DrawFrames
DrawFrames.

See	also		

Pic.Frames	for	information	on	how	to	determine	the	number	of	frames	in	a	GIF	image.

Pic.FileNewFrames	for	information	on	how	to	load	a	GIF	image	with	multiple	frames	into	an	array	of
ints.

Pic.DrawFramesBack	for	information	on	how	to	sequentially	display	the	images	stored	in	array	
pictures	while	continuing	to	execute	the	program.

Pic.DrawSpecial Part	of	Pic	module

Syntax		 Pic.DrawSpecial	(picID,	x,	y,	mode,	transition,	duration	:	

Pic.DrawSpecial	is	used	to	draw	a	picture	on	the	screen	with	a	special	effect	such	as	a
wipe,	a	slide,	or	a	fade-in.	The	picture	is	drawn	with	the	lower	left	corner	at	
duration	specifies	how	long	the	transition	should	take	in	milliseconds.	
fade-in	could	be	specified	to	last	1/2	a	second	by	using	a	duration	of	500.

The	mode	parameter	is	the	same	as	in	Pic.New	and	has	one	of	the	following	values:

picCopy 	 This	draws	the	picture	on	top	of	what	was	underneath,	completely.

picXor 	
This	draws	the	picture	XORing	it	with	the	background.	
can	use	this	function	to	do	animation.	Drawing	an	object	on	top	of
itself	with	XOR	erases	it	and	restores	the	background.

picMerge 	
This	draws	the	picture	like	picCopy	except	that	any	occurrence	of	the
background	color	in	the	picture	is	not	drawn	to	the	screen.	This	allows
you	to	draw	an	irregularly-shaped	object	and	draw	it	to	

picUnderMerge 	
This	draws	the	picture,	but	only	where	the	background	
displayed	underneath	it.	The	effect	of	this	is	to	make	the	picture	appear
to	be	displayed	behind	the	background.

The	transition	parameter	indicates	the	special	effect	and	has	one	of	the	following	values:

picWipeLeftToRight

The	picture	appears	as	a	solid	black	bar	sweeps
from	left	to	right,	"revealing"	the	new	picture
as	the	screen	underneath	
replaced.

In	the	picture	below,	"to	Turing"	is	replacing
the	"Welcome"	underneath	as	the	bar	sweeps
from	left	to	right.

picWipeLeftToRight	-	half	way	through

transition

picWipeRightToLeft,
picWipeTopToBottom,
picWipeBottomToTop

As	picWipeLeftToRight,	except	the	bar	sweeps
in	different	directions.

picWipeUpperLeftToLowerRight

The	picture	appears	as	a	solid	black	bar	sweeps
from	the	upper	left	corner	down	to	the	lower
right,	"revealing"	the	new	picture	
underneath	the	picture	is	replaced.

In	the	picture	below	"to	Turing"	is	replacing
the	"Welcome"	underneath	as	the	bar	sweeps
from	upper-left	to	lower-right.

picWipeUpperLeftToLowerRight	-	half	way
through	transition

picWipeUpperRightToLowerLeft,
picWipeLowerLeftToUpperRight,
picWipeLowerRightToUpperLeft

As	picWipeLeftToRight,	except	the	bar	sweeps
in	different	directions.

picWipeCentreToEdge,
picWipeCenterToEdge

The	picture	appears	inside	an	expanding	black
outlined	box	as	it	sweeps	from	the	centre	out	to
the	edges,	"revealing"	the	new	
screen	underneath	the	picture	is	replaced.

In	the	picture	below,	"to	Turing"	is	replacing
the	"Welcome"	underneath	as	the	box	expands
from	the	centre	out.

picWipeCentreToEdge	-	half	way	through
transition

picWipeLeftToRightNoBar,

Description		

picWipeRightToLeftNoBar,
picWipeTopToBottomNoBar,
picWipeBottomToTopNoBar
picWipeUpperLeftToLowerRightNoBar,
picWipeUpperRightToLowerLeftNoBar,
picWipeLowerLeftToUpperRightNoBar,
picWipeLowerRightToUpperLeftNoBar,
picWipeCentreToEdgeNoBar,
picWipeCenterToEdgeNoBar

As	the	constants	above,	expect	there	is	no	bar
to	mark	the	sweep	across.	The	bar	generally
looks	better	when	displaying	
of	a	similar	one.	No	bar	is	usually	
when	the	images	are	completely	different	(as	in
two	photographs,	and	so	on).

picSlideLeftToRight

The	picture	"slides	in"	from	the	left	as	a	solid
black	bar	sweeps	from	left	to	right,	"pushing"
the	screen	underneath	off	the	right	edge	of	the
drawing	area.

In	the	picture	below	"to	Turing"	is	replacing
the	"Welcome"	originally	present,	"pushing"
the	"Welcome"	to	the	right	
slides	in	from	the	left.

picSlideLeftToRight	-	half	way	through
transition

picSlideRightToLeft,
picSlideTopToBottom,
picSlideBottomToTop

As	picSlideLeftToRight,	except	the	bar	sweeps
in	different	directions.

picSlideLeftToRightNoBar,
picSlideRightToLeftNoBar,
picSlideTopToBottomNoBar,
picSlideBottomToTopNoBar

As	the	constants	above,	expect	there	is	no	bar
to	mark	the	sweep	across.	The	bar	generally
looks	better	when	displaying	
of	a	similar	one.	No	bar	is	often	
when	the	images	are	completely	different	(as	in
two	photographs,	and	so	on).

The	picture	"grows"	from	the	left	as	a	solid
black	bar	sweeps	from	left	to	right,
"squeezing"	the	screen	underneath	
edge	of	the	drawing	area.

picGrowLeftToRight

In	the	picture	below	"to	Turing"	is	replacing
the	"Welcome"	originally	present,	"squeezing"
the	"Welcome"	to	the	right	
"grows"	from	the	left.

picGrowLeftToRight	-	half	way	through
transition

picGrowRightToLeft,
picGrowTopToBottom,
picGrowBottomToTop

As	picGrowLeftToRight,	except	the	bar	sweeps
in	different	directions.

picGrowCentreToEdge,
picGrowCenterToEdge

The	picture	"grows"	from	the	centre	as	a
outlined	black	box	sweeps	from	outward,
replacing	the	screen	underneath.

In	the	picture	below	"to	Turing"	is	replacing
the	"Welcome"	originally	present,	as	"to
Turing"	grows	for	the	centre.

picGrowCentreToEdge	-	half	way	through
transition

picGrowLowerLeftToUpperRight

The	picture	"grows"	from	the	lower-left	corner
as	a	outlined	black	box	sweeps	right	and
upward,	replacing	the	screen	

In	the	picture	below	"to	Turing"	is	replacing
the	"Welcome"	originally	present,	as	"to
Turing"	"grows"	from	the	lower-left.

picGrowLowerLeftToUpperRight	-	half	way
through	transition

picGrowUpperLeftToLowerRight,
picGrowLowerRightToUpperLeft,
picGrowUpperRightToLowerLeft

As	picGrowLowerLeftToUpperRight
the	box	sweeps	in	different	directions.

picGrowLeftToRightNoBar,
picGrowRightToLeftNoBar,
picGrowTopToBottomNoBar,
picGrowBottomToTopNoBar
picGrowUpperLeftToLowerRightNoBar,
picGrowLowerLeftToUpperRightNoBar,
picGrowUpperRightToLowerLeftNoBar,
picGrowLowerRightToUpperLeftNoBar,
picGrowCentreToEdgeNoBar,
picGrowCenterToEdgeNoBar

As	the	constants	above,	expect	there	is	no	bar
to	mark	the	sweep	across.	The	bar	generally
looks	better	when	displaying	
of	a	similar	one.	No	bar	is	usually	
when	the	images	are	completely	different	(as	in
two	photographs,	and	so	on).

picFadeIn

The	picture	"fades	in"	over	top	of	the	image
underneath	it.	At	the	end	of	the	transition,	the
new	image	completely	replaces	the	image
underneath	it.

picFadeIn	-	half	way	through	transition

picBlend

This	transition	is	somewhat	different	because	it
doesn't	take	any	time	to	execute.	
picBlend	causes	the	new	image	to	be	blended
with	the	background.	The	
can	be	used	by	itself,	in	which	case,	
image	is	70%	the	new	image,	30%	the	old
image.	You	can	also	add	a	number	from	1	to
100	to	picBlend,	in	which	case,	the	blend	is
whatever	was	added	from	(1-100)	of	
image	over	top	of	the	old	image.	
transition	of	picBlend	+	15	would	display	an
image	that	is	composed	of	15%	the	new	image
and	85%	the	old	image.)

picBlend	-	red	star	blended	with	blue	circle

Execute		

Details		

The	Pic.DrawSpecial	requires	a	moderately	fast	machine	to	operate	successfully
(Pentium	III	or	higher).	The	picFadeIn	and	picBlend	transitions	do	not	work	well	on	8-bit
(256	color)	displays.	On	Microsoft	Windows	machines,	you	can	determine	the	
of	the	display	(the	number	of	colors	available)	by	selecting	the	Display
from	the	Start	menu.	You	can	also	use	the

							Config.Display	(cdNumMaxColors)

function	to	determine	the	bit-depth	of	the	display	(anything	over	256	colors	will	produce
acceptable	results).

Details		

If	the	Pic.DrawSpecial	call	fails,	Error.Last	will	return	a	non-zero	value	indicating	the
reason	for	the	failure.	Error.LastMsg	will	return	a	string	which	contains	the	textual
version	of	the	error.

Example		

The	program	draws	a	blue	star	on	the	screen,	then	a	red	circle,	then	
have	the	two	replace	each	other	with	a	variety	of	transitions.

								var	redID,	blueID:	int

								var	x,	y	:	int

								Draw.FillStar	(50,	50,	150,	150,	brightred)

								redID	:=	Pic.New	(50,	50,	150,	150)

								cls

								Draw.FillOval	(100,	100,	50,	50,	brightblue)

								blueID	:=	Pic.New	(50,	50,	150,	150)

	 Pic.DrawSpecial	(redID,	50,	50,	picCopy,	picWipeLeftToRight

	 Pic.DrawSpecial	(blueID,	50,	50,	picCopy,	picWipeTopToBottom

	 Pic.DrawSpecial	(redID,	50,	50,	picCopy,	picSlideLeftToRight

	 Pic.DrawSpecial	(blueID,	50,	50,	picCopy,	picSlideTopToBottom

	 Pic.DrawSpecial	(redID,	50,	50,	picCopy,	picFadeIn

	 Pic.DrawSpecial	(blueID,	50,	50,	picCopy,	picBlend

								Pic.Free	(redID)

								Pic.Free	(blueID)

Execute		

Execute		

The	following	program	demonstrates	each	of	the	different	special	effects,	first	using
pictures	containing	text,	then	pictures	loaded	from	photographs,	then	both	at	once.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.DrawSpecial
DrawSpecial.

See	also		

Pic.Draw	for	information	on	the	meaning	of	the	mode	argument.

Pic.DrawSpecialBack	for	information	on	how	to	continue	executing	the	program	while	a
special	effect	is	occurring.	This	allows	one	to	produce	several	special	

Pic.DrawSpecialBack Part	of	Pic	module

Syntax		 Pic.DrawSpecialBack	(picID,	x,	y,	mode,	transition,	duration

Description		

Pic.DrawSpecialBack	is	very	similar	to	Pic.DrawSpecial.	The	only	
Pic.DrawSpecialBack	returns	immediately	after	being	called	and	program	execution	continues	while
the	special	effect	continues.	This	allows	you	to	continue	to	draw	other	graphics	
effect	is	continuing.

For	example,	this	procedure	is	necessary	if	you	want	to	have	two	pictures	being	drawn	using	special
effects	simultaneously.

Details		

If	you	are	wish	to	have	several	images	displayed	at	the	same	time	using	special	effects,	you	must	use
Pic.DrawSpecialBack	to	display	all	the	images	but	the	last	and	then	use	
the	last	image	so	that	Turing	will	wait	until	the	special	effects	are	completed	before	continuing
execution.

If	you	want	to	draw	the	several	special	effects	continuously	over	the	same	location,	do	not	use
Pic.DrawSpecialBack.

Pic.DrawSpecial	(pic1,	10,	10,	picCopy,	picWipeLeftToRight

Pic.DrawSpecial	(pic2,	10,	10,	picCopy,	picFadeIn,	1000)

If	you	do,	Turing	will	attempt	to	run	each	of	the	calls	at	the	same	time,	and	most	of	the	special	effects
will	not	be	seen.

Description		

Pic.DrawSpecialBack	is	used	to	draw	a	picture	on	the	screen	with	a	special	effect	such	as	a	wipe,	a
slide,	or	a	fade-in.	Note	that	all	the	parameters	are	identical	to	the	parameters	of	
The	picture	is	drawn	with	the	lower	left	corner	at	(x,	y).	The	duration
transition	should	take	in	milliseconds.	For	example,	a	fade-in	could	
by	using	a	duration	of	500.

The	mode	parameter	is	the	same	as	in	Pic.New	and	has	one	of	the	following	values:

picCopy 	 This	draws	the	picture	on	top	of	what	was	underneath,	

picXor 	
This	draws	the	picture	XORing	it	with	the	background.	
function	to	do	animation.	Drawing	an	object	on	top	of	itself	with	XOR	erases	
and	restores	the	background.

picMerge 	 This	draws	the	picture	like	picCopy	except	that	any	occurrence	of	the	background
color	in	the	picture	is	not	drawn	to	the	screen.	This	allows	you	
irregularly-shaped	object	and	draw	it	to	the	screen.

picUnderMerge 	
This	draws	the	picture,	but	only	where	the	background	
underneath	it.	The	effect	of	this	is	to	make	the	picture	appear	to	be	displayed
behind	the	background.

See	Pic.DrawSpecial	for	the	list	of	possible	values	for	the	transition

Details		

The	Pic.DrawSpecialBack	requires	a	moderately	fast	machine	to	operate	successfully	(Pentium	III
or	higher).	The	picFadeIn	and	picBlend	transitions	do	not	work	well	on	8-bit	(256	color)	
Microsoft	Windows	machines,	you	can	determine	the	bit-depth	of	the	display	(the	number	of	colors
available)	by	selecting	the	Display	control	panel	from	the	Start	menu.	

							Config.Display	(cdNumMaxColors)

function	to	determine	the	bit-depth	of	the	display	(anything	over	256	colors	will	produce	acceptable
results).

Details		
If	the	Pic.DrawSpecialBack	call	fails,	Error.Last	will	return	a	non-zero	value	indicating	the	reason
for	the	failure.	Error.LastMsg	will	return	a	string	which	contains	the	textual	

Example		

The	program	draws	a	blue	star	on	the	screen,	then	a	red	circle,	then	
replace	each	simultaneously,	side-by-side.

								var	redID,	blueID:	int

								Draw.FillStar	(0,	0,	100,	100,	brightred)

								redID	:=	Pic.New	(0,	0,	100,	100)

								cls

								Draw.FillOval	(50,	50,	50,	50,	brightblue)

								blueID	:=	Pic.New	(0,	0,	100,	100)

								cls

	 Pic.DrawSpecialBack	(redID,	10,	10,	picCopy,	picWipeLeftToRightNoBar

	 Pic.DrawSpecial	(blueID,	160,	10,	picCopy,	picWipeRightToLeftNoBar

	 Pic.DrawSpecialBack	(blueID,	10,	10,	picCopy,	picSlideLeftToRightNoBar

	 Pic.DrawSpecial	(redID,	160,	10,	picCopy,	picSlideRightToLeftNoBar

	 Pic.DrawSpecialBack	(redID,	10,	10,	picCopy,	picGrowRightToLeftNoBar

	 Pic.DrawSpecial	(blueID,	160,	10,	picCopy,	picGrowLeftToRightNoBar

	 Pic.DrawSpecialBack	(blueID,	10,	10,	picCopy,	picWipeTopToBottomNoBar

	 Pic.DrawSpecial	(redID,	160,	10,	picCopy,	picWipeTopToBottomNoBar

	 Pic.DrawSpecialBack	(redID,	10,	10,	picCopy,	picFadeIn

	 Pic.DrawSpecial	(blueID,	160,	10,	picCopy,	picFadeIn

								Pic.Free	(redID)

								Pic.Free	(blueID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.DrawSpecialBack
DrawSpecialBack.

See	also		

Pic.Draw	for	information	on	the	meaning	of	the	mode	argument.

Pic.DrawSpecial	for	information	on	how	to	draw	special	effects	and	wait	for	completion	
effect.

Pic.FileNew Part	of	Pic	module

Syntax		 Pic.FileNew	(fileName	:	string)	:	int

Description		

Pic.FileNew	is	used	to	obtain	a	picture	from	a	file.	The
Pic.FileNew	procedure	allocates	the	memory	for	the	picture,
which	can	be	very	large	for	pictures	of	large	areas.	The	memory	is
freed	up	when	the	program	calls	Pic.Free	with	the	picture	ID.	The
picture	can	be	used	with	the	Pic.Draw	and	Pic.Save.

The	fileNameparameter	must	give	the	format	of	the	file:

	 GIF	files 	 "GIF:filename"	or	"filename.GIF"
	 JPG	files 	 "JPG:filename"	or	"filename.JPG"
	 BMP	files 	 "BMP:filename"	or	"filename.BMP"

Details		
Various	versions	of	Turing	can	convert	different	formats	of	files.
Turing	4.1	for	Windows	can	load	BMP,	GIF	and	JPG	files.

Details		

For,	multi-frame	GIF	files	(GIF	files	that	have	several	frames	or
pictures	and	are	used	for	animation),	Pic.FileNew	will	only	load
the	first	frame.	See	the	Pic.FileNewFrames	and	Pic.Frame	for
information	on	loading	and	displaying	a	multi-frame	GIF	file.

Details		

If	the	Pic.FileNew	call	fails,	then	it	returns	0.	Also	Error.Last
will	return	a	non-zero	value	indicating	the	reason	for	the	failure.
Error.LastMsg	will	return	a	string	which	contains	the	textual
version	of	the	error.

Example		

The	program	reads	a	graphic	from	the	file	mypic.bmp	and	then
draws	it	50	times.

								var	picID:	int

								var	x,	y	:	int

								

								picID	:=	Pic.FileNew	("mypic.bmp")

								for	i	:	1	..	50

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												Pic.Draw	(picID,	x,	y,	picCopy)

								end	for

								Pic.Free	(picID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.FileNew,	not	by	calling	FileNew.

Pic.FileNewFrames Part	of	Pic	module

Syntax		
Pic.FileNewFrames	(pathName	:	string,	var	picIDs	:	array
int,	var	delayTime	:	int)

Description		 Pic.FileNewFrames	loads	multiple	pictures	stored	in	a	single	multiframe	GIFimage	file	into	an	array	of	integers.

Details		

GIF	files	can	contain	multiple	frames	(pictures).	Animated	GIFs	function	by
displaying	each	frame	in	the	GIF	one	after	another	with	a	delay	between	them.
This	delay	can	also	be	specified	in	the	GIF	file.

Pic.FileNewFrames	reads	the	series	of	frames	from	the	multiframe	GIF	file,	and
turns	each	frame	into	a	picture.	The	picture	is	then	assigned	to	an	element	in	the
picIDs	array.	If	the	array	is	not	large	enough,	then	an	error	occurs	and	no	
are	loaded.

Pic.FileNewFrames	also	reads	the	delay	specified	in	the	GIF	file	and	sets
delayTime	to	the	delay	in	milliseconds.	Note	that	many	multiple	frame	GIF	files
do	not	specify	a	delay,	in	which	case	delayTime	will	be	set	to	0.

In	order	to	determine	the	number	of	frames	in	multiple	frame	GIF	file,	you	must
use	the	Pic.Frames	function.	This	returns	a	number	that	can	be	used	to	declare
the	array	that	will	be	passed	to	Pic.FileNewFrames.

var	numFrames	=	Pic.Frames	("mypic.gif")

var	pics	:	array	1	..	numFrames	of	int

var	delayTime	:	int

Pic.FileNewFrames	("mypic.gif",	pics,	delayTime)

The	frames	can	be	sequentially	displayed	using	either	Pic.DrawFrames
Pic.DrawFramesBack	which	display	the	images	one	at	a	time.
(Pic.DrawFrames	returns	once	all	the	images	have	been	displayed,
Pic.DrawFramesBack	returns	immediately	allowing	the	program	to	continue
execution	while	the	frames	are	being	displayed.

Details		

GIF	files	can	have	a	transparent	color.	This	color	will	be	added	to	the	color
palette,	if	not	already	present.	Thus	you	may	notice	that	maxcolor	changes	after
calling	Pic.FileNew	or	Pic.FileNewFrames.	The	GIF	image	will	be	be	displayed
without	the	transparent	color	if	mode	parameter	in	any	of	the	Pic.Draw...

procedures	is	set	to	picMerge.

Details		

Each	picture	is	in	the	array	has	been	allocated	by	the	system	and	should	be	freed
separately	once	the	program	is	finished	with	the	pictures.	Failing	to	do	so	can	use
up	the	system's	memory.

Example		

The	program	loads	a	multiple	frame	GIF	called	"globe.gif"	and	displays	it.

								%	Determine	the	number	of	frames	in	"globe.gif"

								%	Create	the	original	picture

								var	numFrames	:=	Pic.Frames	("globe.gif")

								%	Load	the	picture

								var	delayTime	:	int

								var	pics	:	array	1	..	numFrames	of	int

	 Pic.FileNewFrames	("globe.gif",	pics,	delayTime)

	 Pic.DrawFrames	(pics,	10,	10,	picCopy,	numFrames

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.FileNewFrames
not	by	calling	FileNewFrames.

See	also		

Pic.Frames	for	information	on	how	to	determine	the	number	of	frames	in	a	GIF
image.

Pic.DrawFrames	for	information	on	how	to	sequentially	display	the	images
stored	in	array	of	pictures.

Pic.DrawFramesBack	for	information	on	how	to	sequentially	display	the
images	stored	in	array	of	pictures	while	continuing	to	execute	the	program.

Pic.Flip Part	of	Pic	module

Syntax		 Pic.Flip	(picID	:	int)	:	int

Description		

Pic.Flip	is	used	to	create	a	new	picture	by	flipping	the	picture	vertically.	The
resulting	picture	is	exactly	the	same	size	as	the	original,	except	it	appears
“upside-down”.

Details		
Note	that	the	upside-down	picture	is	a	newly	created	picture.	When	
longer	needed,	its	memory	should	be	released	by	using	Pic.Free.

Example		

The	program	loads	a	picture	from	a	file,	flips	it	and	then	draws	the	original
and	the	upside-down	image	side	by	side	in	a	window	after	resizing	the
window	to	fit	the	two	pictures.

								%	Get	the	original	picture

								var	pic,	newPic,	width,	height	:	int

								pic	:=	Pic.FileNew	("lighthouse.jpg")

								newPic	:=	Pic.Flip	(pic)

								width	:=	Pic.Width	(pic)

								height	:=	Pic.Height	(pic)

								

								%	Draw	the	two	images:	original	and	flipped

								View.Set	("graphics:"	+	intstr	(2	*	width	+	30)	+	";"	+	

												intstr	(height	+	25)	+	",nobuttonbar")

								Pic.Draw	(pic,	10,	20,	picCopy)

								Draw.Text	("Original",	50,	5,	defFontID,	black)

								Pic.Draw	(newPic,	20	+	Pic.Width	(pic),	20,	picCopy

								Draw.Text	("Flipped",	60	+	Pic.Width	(pic),	5,	defFontID

								

Output	from	the	Program

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Flip,	not	by
calling	Flip.

Pic.Frames Part	of	Pic	module

Syntax		 Pic.Frames	(pathName	:	string)	:	int

Description		
Pic.Frames	is	used	to	determine	the	number	of	frames	found	in	a	multiple	frame
GIF	file.

Details		

GIF	files	can	contain	multiple	frames	(pictures).	Animated	GIFs	function	by	each
frame	in	the	GIF	one	after	another	with	a	delay	between	them.

Turing	allows	users	to	load	multiple	frame	GIF	images	into	a	series	
into	an	array	using	the	Pic.FileNewFrames	procedure.	The	user	can	determine
how	many	frames	are	found	in	the	GIF	file	using	Pic.Frames.	The	frames	can	be
sequentially	displayed	using	either	Pic.DrawFrames	or	Pic.DrawFramesBack
which	display	the	images	one	at	a	time.	(Pic.DrawFrames	returns	
images	have	been	displayed,	Pic.DrawFramesBack	returns	immediately
allowing	the	program	to	continue	execution	while	the	frames	are	being	displayed.

Pic.Frames	is	a	function	which	returns	the	number	of	frames	found	in	the	GIF.	
it	is	used	on	a	GIF	that	does	not	contain	multiple	images,	or	on	a	non-GIF	image
file,	it	returns	1.

Example		

The	program	loads	a	multiple	frame	GIF	called	"globe.gif"	and	displays	it.

								%	Determine	the	number	of	frames	in	"globe.gif"

								var	numFrames	:=	Pic.Frames	("globe.gif")

								%	Load	the	picture

								var	delayTime	:	int

								var	pics	:	array	1	..	numFrames	of	int

	 Pic.FileNewFrames	("globe.gif",	pics,	delayTime)

	 Pic.DrawFrames	(pics,	10,	10,	picCopy,	numFrames

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Frames
calling	Frames.

See	also		

Pic.FileNewFrames	for	information	on	how	to	load	a	GIF	image	with	multiple
frames	into	an	array	of	ints.

Pic.DrawFrames	for	information	on	how	to	sequentially	display	the	images
stored	in	array	of	pictures.

Pic.DrawFramesBack	for	information	on	how	to	sequentially	display	the
images	stored	in	array	of	pictures	while	continuing	to	execute	the	program.

Pic.Free Part	of	Pic	module

Syntax		 Pic.Free	(picID	:	int)

Description		

Pic.Free	is	used	to	release	the	memory	allocated	by	Pic.New.	It	frees	up	the	memory
allocated	to	the	parameter	picID.	This	means	that	picID	can	not	be	used	in	a	
or	Draw.Save	procedure	after	Pic.Free	is	called.

Turing	has	a	limited	number	of	pictures	that	are	available	at	any	one	time
(approximately	1,000).	A	program	that	continuously	allocates	pictures	(using	
or	Pic.FileNew)	will	eventually	fail	if	it	does	not	free	the	pictures	using	
well,	if	a	program	allocates	hundreds	of	pictures	and	does	not	free	any	of	them,	the
memory	devoted	to	the	pictures	will	not	be	freed	and	eventually	the	program	may
exhaust	the	memory	on	the	machine.

Details		

If	Pic.Free	is	passed	an	invalid	picture	ID,	a	fatal	error	occurs.	If	the	
for	other	(non-fatal)	reasons,	Error.Last	will	return	a	non-zero	value	indicating	
reason	for	the	failure.	Error.LastMsg	will	return	a	string	which	contains	the	textual
version	of	the	error.

The	program	animates	a	picture	moving	across	a	background.	Each	
about	to	move	to	a	new	location,	a	picture	of	the	background	at	that	location	is	taken.
When	the	picture	is	to	be	moved	to	the	next	location,	the	background	picture	is	drawn
over	top	of	the	picture,	thus	"erasing"	it.	The	Pic.Free	command	frees	
background	picture	once	it	is	no	longer	in	use.	Without	it,	the	program	would	use	up	all
the	picture	identifiers	and	crash	after	one	or	two	moves	across	the	window.

The	animation	in	the	example	flickers	slightly.	See	View.Update	for	information	on	
to	produce	flicker-free	animation.

								var	picID,	bgID	:	int

								var	x,	y,	c,	direction	:	int

								%	Create	the	picture	being	moved

								Draw.FillBox	(50,	50,	150,	150,	brightred)

								Draw.FillStar	(50,	50,	150,	150,	brightgreen)

								Draw.FillOval	(100,	100,	30,	30,	brightblue)

								picID	:=	Pic.New	(50,	50,	150,	150)

								%	Create	a	background

Example		 								for	i	:	1	..	1000

												x	:=	Rand.Int	(0,	maxx)

												y	:=	Rand.Int	(0,	maxy)

												c	:=	Rand.Int	(9,	15)				%	Use	bright	colors

												Draw.FillBox	(x,	y,	x	+	30,	y	+	30,	c)

								end	for

								x	:=	1

								y	:=	100

								direction	:=	1

								%	Main	loop

								loop

												%	Take	a	picture	of	the	background	

												bgID	:=	Pic.New	(x,	y,	x	+	100,	y	+	100)

												Pic.Draw	(picID,	x,	y,	picCopy)					%	Draw	the	picture

												delay	(20)																										%	Delay	20	milliseconds

												Pic.Draw	(bgID,	x,	y,	picCopy)						%	Draw	the	background	over	the	picture

												Pic.Free	(bgID)																					%	Free	the	background

												if	x	<=	0	or	(x	+	100)	>=	maxx	then

																direction	:=	-direction

												end	if

												x	+=	direction

								end	loop

Execute		

Status		
Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Free,	not	by	calling	

Pic.Height Part	of	Pic	module

Syntax		 Pic.Height	(picID	:	int)	:	int

Description		

Pic.Height	returns	the	width	in	pixels	of	the	picture	represented
by	picID.

This	function	is	often	used	in	conjunction	with	Pic.Width	to
obtain	the	dimensions	of	a	picture	loaded	using	Pic.FileNew.

Example		

The	program	draws	loads	a	picture	from	the	file	lighthouse.jpg
and	proceeds	to	tile	the	entire	run	window	with	copies	of	the
picture.

								var	pic	:	int	:=	Pic.FileNew	("lighthouse.jpg")

								var	width	:	int	:=	Pic.Width	(pic)

								var	height	:	int	:=	Pic.Height	(pic)

								var	x,	y	:	int	:=	0

								loop

												exit	when	y	>	maxy

												loop

																exit	when	x	>	maxx

																Pic.Draw	(pic,	x,	y,	picCopy)

																x	:=	x	+	width

												end	loop

												x	:=	0

												y	:=	y	+	height

								end	loop

								

Output	of	Example	Program

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.Height,	not	by	calling	Height.

See	also		
Pic.Width	to	obtain	a	picture's	width	and	Pic.FileNew	to	load	a
picture	from	a	graphics	file.

Pic.Mirror Part	of	Pic	module

Syntax		 Pic.Mirror	(picID	:	int)	:	int

Description		

Pic.Mirror	is	used	to	create	a	new	picture	by	flipping	the	picture
horizontally.	The	resulting	picture	is	exactly	the	same	size	as	the
original,	except	it	appears	as	a	“mirror	image”.

Details		

Note	that	the	mirror-imaged	picture	is	a	newly	created	picture.
When	it	is	no	longer	needed,	its	memory	should	be	released	by
using	Pic.Free.

Example		

The	program	draws	a	crescent	on	the	screen,	takes	a	picture	of	it
and	then	creates	a	second	picture	by	mirror-imaging	the	crescent.
It	then	draws	both	the	original	picture	and	the	mirror-imaged
version.

								View.Set	("graphics:210;125,nobuttonbar")

								

								%	Get	the	original	picture

								var	pic,	newPic	:	int

								Draw.FillOval	(50,	50,	50,	50,	brightred)

								Draw.FillOval	(70,	50,	50,	50,	colorbg)

								Draw.Text	("BLUE",	40,	60,	defFontID,	brightblue

								Draw.Text	("MOON",	40,	40,	defFontID,	brightblue

								pic	:=	Pic.New	(0,	0,	100,	100)

								newPic	:=	Pic.	Mirror	(pic)

								cls

								

								%	Draw	the	two	images:	original	and	flipped

								Pic.Draw	(pic,	10,	20,	picCopy)

								Draw.Text	("Original",	10,	5,	defFontID,	black)	

								Pic.Draw	(newPic,	110,	20,	picCopy)

								Draw.Text	("Flipped",	140,	5,	defFontID,	black)	

								

Output	from	the	Program

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.Mirror,	not	by	calling	Mirror.

Pic.New Part	of	Pic	module

Syntax		 Pic.New	(x1,	y1,	x2,	y2	:	int)	:	int

Description		

Pic.New	is	used	to	obtain	a	picture	of	a	portion	of	the	screen.	The
Pic.New	procedure	allocates	the	memory	for	the	picture,	which
can	be	very	large	for	pictures	of	large	areas.	The	memory	is	freed
up	when	the	program	calls	Pic.Free	with	the	picture	ID.	The
picture	can	be	used	with	the	Pic.Draw	and	Pic.Save.

The	picture	is	of	the	screen	area	defined	by	the	rectangle	(x1,	y1)	-
(x2,	y2).

Details		

If	the	Pic.New	call	fails,	then	it	returns	0.	Also	Error.Last	will
return	a	non-zero	value	indicating	the	reason	for	the	failure.
Error.LastMsg	will	return	a	string	which	contains	the	textual
version	of	the	error.

Example		

The	program	draws	a	graphic	on	the	screen	and	then	draws	it	50
times.

								var	picID:	int

								var	x,	y	:	int

								Draw.FillBox	(50,	50,	150,	150,	red)

								Draw.FillStar	(50,	50,	150,	150,	green)

								Draw.FillOval	(100,	100,	30,	30,	blue)

								

								picID	:=	Pic.New	(50,	50,	150,	150)

								for	i	:	1	..	50

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												Pic.Draw	(picID,	x,	y,	picCopy)

								end	for

								Pic.Free	(picID)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.New,	not	by	calling	New.

Pic.Rotate Part	of	Pic	module

Syntax		 Pic.Rotate	(picID,	angle,	x,	y	:	int)	:	int

Description		

Pic.Rotate	is	used	to	create	a	new	picture	by	rotating	an	already
existing	picture.	Rotation	can	either	be	around	a	specific	point	in
the	picture	(often	used	for	rotating	a	picure	in	place)	or	just	a
general	rotation.

The	angle	is	specified	in	degrees.	The	rotation	is	done	in	a	counter-
clockwise	direction.	The	original	picture	is	not	modified	by	the	call
to	Pic.Rotate	and	must	still	be	freed	when	no	longer	used.	The
picture	produced	by	Pic.Rotate	may	be	a	different	size	than	the
original	picture.

The	(x,	y)	point	is	the	point	around	which	the	rotation	is	to	take
place	and	is	relative	to	the	picture	being	rotated.	If	it	is	not
important	to	rotate	the	picture	in	place,	x	and	y	should	be	set	to	-1,
which	make	the	new	picture	the	minimum	size	required	to	fit	the
rotated	image.

Details		

The	Pic.Rotate	command	can	fail,	in	which	case	it	returns	0.	The
Error.LastMsg	function	can	then	be	used	to	obtain	more
information	about	the	failure.

Details		

If	x	and	y	are	set	to	a	point	in	the	picture	(rather	than	1),	it	is
possible	for	parts	of	the	original	picture	to	be	rotated	off	the	left	and
bottom	edge	of	the	new	picture.	This	occurs	because	Pic.Rotate
guarantees	that	the	point	specified	by	(x,	y)	in	the	original	picture
will	be	located	at	(x,	y)	in	the	rotated	picture.	You	can	avoid	losing
parts	of	the	picture	by	making	certain	there	is	a	margin	of
background	color	on	the	left	and	bottom	sides	of	the	picture.

As	well,	any	pixels	in	the	rotated	picture	that	were	not	part	of	the
original	picture	are	set	to	the	background	color.

Details		

Rotation	can	be	slow	on	older	machines.	Programs	that	are	using
animation	should	create	and	store	all	the	rotated	images	that	may	be
needed.	Often	pictures	of	an	object	at	various	angles	are	stored	in	an
array.

Example		

This	program	draws	“Hello”	on	the	screen	rotated	at	0,	45	and	90
degrees.

								View.Set	("graphics:200;150,nobuttonbar")

								var	f	:	int	:=	Font.New	("Serif:36")

								Font.Draw	("Hello",	10,	10,	f,	black)

								var	pic	:	int	:=	Pic.New	(5,	5,	120,	45)

								var	pic45	:	int	:=	Pic.Rotate	(pic,	45,	-1,	-1)

								var	pic90	:	int	:=	Pic.Rotate	(pic,	90,	-1,	-1)

								Pic.Draw	(pic45,	5,	50,	picCopy)

								Pic.Draw	(pic90,	150,	5,	picCopy)

								

Output	from	Program

Execute		

Example		

This	program	moves	a	spinning	“Hello”	around	the	screen,
bouncing	it	off	the	edges	of	the	output	window.	Notice	that	the
original	picture	contains	adequate	space	on	the	left	and	bottom	sides
to	contain	the	rotation.

								View.Set	("graphics:300;250,nobuttonbar")

								var	pic	:	array	0	..	35	of	int

								var	f	:	int	:=	Font.New	("Serif:36")

								const	CTR	:	int	:=	57

								Font.Draw	("Hello",	5,	45,	f,	black)

								Draw.FillOval	(CTR,	CTR,	3,	3,	brightred)

								pic	(0)	:=	Pic.New	(0,	0,	115,	115)

								cls

								for	angle	:	1	..	35

												pic	(angle)	:=	Pic.Rotate	(pic	(0),	angle	*	10,	

								end	for

								

								var	x	:	int	:=	CTR

								var	y	:	int	:=	CTR

								var	dx	:	int	:=	1

								var	dy	:	int	:=	1

								loop

												for	angle	:	0	..	35

																Pic.Draw	(pic	(angle),	x		-	CTR,	y	-	CTR

																if	x	+	dx	<	CTR	or	x	+	dx	>	maxx	-	CTR	then

																				dx	:=	dx

																end	if

																if	y	+	dy	<	CTR	or	y	+	dy	>	maxy	-	CTR	then

																				dy	:=	dy

																end	if

																x	+=	dx

																y	+=	dy

																delay	(50)

												end	for

								end	loop

Execute		

Details		
Note	that	the	rotated	picture	is	a	newly	created	picture.	When	it	is
no	longer	needed,	its	memory	should	be	released	by	using	Pic.Free

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.Rotate,	not	by	calling	Rotate.

Pic.Save Part	of	Pic	module

Syntax		 Pic.Save	(picID	:	int,	fileName	:	string)

Description		

Pic.Save	is	used	to	save	a	picture	on	the	screen	to	a	file.

The	fileNameparameter	must	give	the	format	of	the	file:

	 BMP	files 	 "BMP:filename"	or	"filename.BMP"

Details		

Various	versions	of	Turing	can	save	different	formats	of	files.	Turing	4.1	for
Windows	can	save	only	BMP	format	files,	as	they	are	loss-less	and	can	handle
24-bit	depth	images.

Details		

If	Pic.Save	is	passed	an	invalid	picture	ID,	a	fatal	error	occurs.	If	the	
call	fails	for	other	(non-fatal)	reasons,	Error.Last	will	return	a	non-zero	value
indicating	the	reason	for	the	failure.	Error.LastMsg	will	return	a	string	which
contains	the	textual	version	of	the	error.

Example		

The	program	draws	a	graphic	on	the	screen	and	then	saves	it	as	a	BMP	file.

								var	picID:	int

								var	x,	y	:	int

								Draw.FillBox	(50,	50,	150,	150,	red)

								Draw.FillStar	(50,	50,	150,	150,	green)

								Draw.FillOval	(100,	100,	50,	50,	blue)

								

								picID	:=	Pic.New	(50,	50,	150,	150)

								Pic.Save	(picID,	"BMP:mypic.dat")

								Pic.Free	(picID)

The	following	two	programs	save	and	load	a	file	in	BMP	format.

								%	Program	to	save	a	picture	in	mypic.bmp

								var	picID:	int

								var	x,	y	:	int

								Draw.FillBox	(50,	50,	150,	150,	red)

								Draw.FillStar	(50,	50,	150,	150,	green)

								Draw.FillOval	(100,	100,	50,	50,	blue)

								picID	:=	Pic.New	(50,	50,	150,	150)

								Pic.Save	(picID,	"mypic.bmp")

								Pic.Free	(picID)

Example		 								%	Program	to	load	the	picture	back	again	and	draw	50	copies

								var	picID:	int

								var	x,	y	:	int

								

								picID	:=	Pic.FileNew	("mypic.bmp")

								for	i	:	1	..	50

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												Pic.Draw	(picID,	x,	y,	picCopy)

								end	for

								Pic.Free	(picID)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Save,	not	by
calling	Save.

Pic.Scale Part	of	Pic	module

Syntax		 Pic.Scale	(picID,	newWidth,	newHeight	:	int)	:	int

Description		

Pic.Scale	is	used	to	create	a	new	picture	by	scaling	(resizing)	an	already	existing
picture.	Rotation	can	either	be	around	a	specific	point	in	the	picture	(often	used	for
rotating	a	picure	in	place)	or	just	a	general	rotation.

The	newWidth	and	newHeight	parameters	are	the	desired	width	and	height	of	the	new
picture.	The	newWidth	and	newHeight	parameters	may	be	negative,	in	which	case	
picture	is	mirror	image	(newWidth	is	negative)	or	upside-down	(newHeight
negative)	and	the	absolute	values	are	used	for	the	new	width	and	height	values.

Details		
The	Pic.Scale	command	can	fail,	in	which	case	it	returns	0.	The	Error.LastMsg
function	can	then	be	used	to	obtain	more	information	about	the	failure.

Details		

Creating	a	larger	picture	by	scaling	a	smaller	picture	will	result	in	a	"grainy"	image
with	each	pixel	being	scaled	up	into	2	or	3	pixels.	In	general	image	quality	
a	large	picture	is	scaled	down.	However,	when	a	large	picture	is	scaled	down,	thin
one-pixel	wide	lines	can	"disappear".

In	order	to	scale	a	picture	while	retaining	its	original	aspect	ratio,	scale	with	multiples
of	the	original	width	and	height.	The	width	and	height	of	a	picture	can	be	obtained
using	Pic.Width	and	Pic.Height.

Details		

Scaling	can	be	slow	on	older	machines.	Programs	that	are	using	animation	should
create	and	store	all	the	scaled	images	that	may	be	needed.	Often	pictures	of	an	object
at	various	sizes	are	stored	in	an	array.

Details		
Note	that	the	scaled	picture	is	a	newly	created	picture.	When	it	is	no	longer	needed,
its	memory	should	be	released	by	using	Pic.Free.

This	program	draws	a	set	of	stars	scaled	at	50%,	100%	and	150%	on	
Note	how	some	single-pixel	lines	are	removed	when	the	picture	is	scaled	down..

								%	The	"Pic.Scale	Example"	program.

								const	STAR_SIZE	:	int	:=	70

								

								var	pic	:	int

Example		

								var	newPic	:	int

								var	picWidth,	picHeight	:	int

								

								%	Get	the	original	picture

								Draw.FillStar	(0,	0,	STAR_SIZE,	STAR_SIZE,	brightred

								Draw.Box	(0,	0,	STAR_SIZE,	STAR_SIZE,	green)

								pic	:=	Pic.New	(0,	0,	STAR_SIZE,	STAR_SIZE)

								cls

								

								picWidth	:=	Pic.Width	(pic)

								picHeight	:=	Pic.Height	(pic)

								

								for	x	:	1	..	3

												for	y	:	1	..	3

																newPic	:=	Pic.Scale	(pic,	x	*	picWidth	div

																				y	*	picHeight	div	2)

																Pic.Draw	(newPic,	(x	-	1)	*	maxx	div	3	+	5,	

																				(y	-	1)	*	maxy	div	3	+	20,	picCopy)

																Pic.Free	(newPic)

																Draw.Text	(realstr	(x	/	2,	0)	+	"	x	"	+	

																												(x	-	1)	*	maxx	div	3	+	5,	(y

																				defFontID,	black)

												end	for

								end	for

								

Output	from	Program

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Pic.Scale
Scale.

Pic.ScreenLoad Part	of	Pic	module

Syntax		 Pic.ScreenLoad	(fileName	:	string,	x,	y,	mode	:	int)

Description		

Pic.ScreenLoad	displays	a	picture	from	a	file	straight	to	the
screen.

The	fileNameparameter	must	give	the	format	of	the	file:

	 JPG	files 	 "JPG:filename"	or	"filename.JPG"
	 BMP	files 	 "BMP:filename"	or	"filename.BMP"

The	x	and	y	parameters	set	the	lower	left	hand	corner	of	the
picture.

The	mode	parameter	has	one	of	the	following	values:

picCopy 	 This	draws	the	picture	on	top	of	what	wasunderneath,	obscuring	it	completely.

picXOR 	

This	draws	the	picture	XORing	it	with	the
background.	In	DOS,	you	can	use	this	function
to	do	animation.	Drawing	an	object	on	top	of
itself	with	XOR	erases	it	and	restores	the
background.

picMerge 	

This	draws	the	picture	like	picCopy	except	that
any	occurrence	of	the	background	color	in	the
picture	is	not	drawn	to	the	screen.	This	allows
you	to	draw	an	irregularly-shaped	object	and
draw	it	to	the	screen.

picUnderMerge 	

This	draws	the	picture,	but	only	where	the
background	color	was	displayed	underneath	it.
The	effect	of	this	is	to	make	the	picture	appear
to	be	displayed	behind	the	background.

Various	versions	of	Turing	can	convert	different	formats	of	files.
Turing	4.1	for	Windows	can	load	BMP	files	and	JPG	files.
Unfortunately,	due	to	strictly	enforced	patents	on	the	GIF

Details		 compression	algorithm,	Turing	will	not	implement	importation	of
GIF	pictures	until	the	patents	expire	in	June	2004.

Details		

At	the	time	of	writing,	MacOOT	supported	only	PICT	files.
Consult	the	release	notes	to	find	out	which	file	formats	are
currently	supported.

Details		

If	the	Pic.ScreenLoad	fails,	then	Error.Last	will	return	a	non-
zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
will	return	a	string	which	contains	the	textual	version	of	the	error.

Example		

The	program	displays	a	picture	on	the	screen	from	the	PCX	file
mypic.BMP.

								Pic.ScreenLoad	("mypic.bmp",	0,	0,	picCopy)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.ScreenLoad,	not	by	calling	ScreenLoad.

Pic.ScreenSave Part	of	Pic	module

Syntax		 Pic.ScreenSave	(x1,	y1,	x2,	y2	:	int,	fileName	:	string)

Description		

Pic.ScreenSave	saves	a	portion	of	the	screen	into	a	file	in	a
format	specified	by	the	file	name.

The	picture	saved	to	the	file	is	the	portion	of	the	screen	defined
by	the	rectangle	(x1,	y1)	-	(x2,	y2).

The	fileNameparameter	must	give	the	format	of	the	file:

	 BMP	files 	 "BMP:filename"	or	"filename.BMP"

Details		

Various	versions	of	Turing	can	save	different	formats	of	files.
Turing	4.1	for	Windows	can	save	BMP.	Unfortunately,	due	to
strictly	enforced	patents	on	the	GIF	compression	algorithm,
Turing	will	not	implement	saving	of	GIF	pictures	until	the	patents
expire	in	June	2004.

Details		

If	the	Pic.ScreenSave	fails,	then	Error.Last	will	return	a	non-
zero	value	indicating	the	reason	for	the	failure.	Error.LastMsg
will	return	a	string	which	contains	the	textual	version	of	the	error.

Example		

The	program	draws	a	graphic	and	saves	it	as	a	PICT	file	called
draw.

								Draw.FillBox	(50,	50,	150,	150,	red)

								Draw.FillStar	(50,	50,	150,	150,	green)

								Draw.FillOval	(100,	100,	50,	50,	blue)

								

								picID	:=	Pic.ScreenSave	(50,	50,	150,	150,	"PICT:draw")

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.ScreenSave,	not	by	calling	ScreenSave.

Pic.SetTransparentColor Part	of	Pic	module

Syntax		 Pic.SetTransparentColor	(colorNumber	:	int)

Description		

The	Pic.SetTransparentColor	procedure	sets	the	color	in	the	picture	that
should	be	considered	transparent	when	the	picture	is	drawn	using	the
picMerge	or	picUnderMerge	modes.	If	no	color	is	specified,	then	the
default	background	color	(colorbg,	usually	white)	is	used	as	the
transparent	color.

Details

This	call	is	often	used	when	displaying	images	that	were	originally	stored
as	GIFs	and	translated	into	another	format.	Many	GIFs	have	a	transparent
color	that	can	be	non-white.	To	use	this	call,	you	must	know	the	color
number	that	represents	the	color	in	the	image	that	is	to	be	transparent.

Example		

This	program	displays	two	images	loaded	from	the	same	file.	In	the
second	image,the	transparent	color	has	been	set	to	bright	red	(that	is,	the
parts	of	the	image	that	are	meant	to	be	transparent	are	in	bright	red).

								var	pic1	:	int	:=	Pic.FileNew	("airplane.bmp")

								var	pic2	:	int	:=	Pic.FileNew	("airplane.bmp")

								Pic.SetTransparentColor	(pic2,	brightred)

								setscreen	("offscreenonly")

								for	x	:	100	..	maxx	-	100

												cls

												put	"The	lower	image	has	the	transparent	color	set	to	bright	red"

												Pic.Draw	(pic1,	x,	150,	picMerge)

												Pic.Draw	(pic2,	x,	50,	picMerge)

												View.Update

												delay	(5)

								end	for

Execute		

Pic.SetTransparentColour	is	an	alternate	spelling	for

Details Pic.SetTransparentColor.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.SetTransparentColor,	not	by	calling	SetTransparentColor.

See	also		 Pic.Draw	and	Pic.FileNew.

Pic.Width Part	of	Pic	module

Syntax		 Pic.Width	(picID	:	int)	:	int

Description		

Pic.Width	returns	the	width	in	pixels	of	the	picture	represented
by	picID.

This	function	is	often	used	in	conjunction	with	Pic.Height	to
obtain	the	dimensions	of	a	picture	loaded	using	Pic.FileNew.

Example		

The	program	draws	loads	a	picture	from	the	file	lighthouse.jpg
and	proceeds	to	tile	the	entire	run	window	with	copies	of	the
picture..

								var	pic	:	int	:=	Pic.FileNew	("lighthouse.jpg")

								var	width	:	int	:=	Pic.Width	(pic)

								var	height	:	int	:=	Pic.Height	(pic)

								var	x,	y	:	int	:=	0

								loop

												exit	when	y	>	maxy

												loop

																exit	when	x	>	maxx

																Pic.Draw	(pic,	x,	y,	picCopy)

																x	:=	x	+	width

												end	loop

												x	:=	0

												y	:=	y	+	height

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Pic.Width,	not	by	calling	Width.

See	also		
Pic.Height	to	obtain	a	picture's	height	and	Pic.FileNew	to	load	a
picture	from	a	graphics	file.

play procedure

Syntax		 play	(music	:	string)

Description		
The	play	procedure	is	used	to	sound	musical	notes	on	the
computer.

Example		
This	program	sounds	the	first	three	notes	of	the	C	scale.

								play	("cde")

Example		

This	program	plays	from	middle	C	to	one	octave	above	middle	C
and	down	again	in	8th	notes.

								play	("8cdefgab>c")

								play	("<bagfedc")

Details		

The	play	procedure	takes	strings	containing	characters	that
specify	notes,	rests,	sharps,	flats	and	duration.	The	notes	are	the
letters	a	to	g	(or	A	to	G).	A	rest	is	p	(for	pause).	A	sharp	is	+	and	a
flat	is	-.	The	durations	are	1	(whole	note),	2	(half	note),	4	(quarter
note),	8	(eight	note)	and	6	(sixteenth	note).	The	character	>	raises
to	the	next	octave	and	<	lowers.	For	example,	this	is	the	way	to
play	C	and	then	C	sharp	one	octave	above	middle	C	with	a	rest
between	them,	all	in	sixteenth	notes:	play(">6cpc+").	Blanks	can
be	used	for	readability	and	are	ignored	by	play.

Under	some	systems	such	as	UNIX,	the	play	procedure	may	have
no	effect.

The	current	(1999)	implementation	does	not	support	play.

See	also		

the	playdone	function,	which	is	used	to	see	if	a	note	has	finished
sounding.	See	also	the	sound	procedure,	which	makes	a	sound	of
a	given	frequency	(Hertz)	and	duration	(milliseconds).

See	also	predefined	unit	Music.

playdone function

Syntax		 playdone	:	boolean

Description		
The	playdone	function	is	used	to	determine	when	notes	played	by
the	play	procedure	have	finished	sounding.

Example		

This	program	sounds	the	first	three	notes	of	the	C	scale	and
outputs	"All	done"	as	soon	as	they	are	finished.	Without	the	loop,
the	message	would	come	out	before	the	notes	are	finished.

								play	("cde")

								loop

												exit	when	playdone

								end	loop

								put	"All	done"

Details		
Under	some	systems	such	as	UNIX,	the	playdone	procedure	may
be	meaningless.

See	also		

the	play	procedure.	See	also	the	sound	procedure	which	makes	a
sound	of	a	given	frequency	(Hertz)	and	duration	(milliseconds).

See	also	predefined	unit	Music.

pointer type

Syntax 	 A	pointerType	is	one	of:

	 (a) [unchecked]	pointer	to	collectionId
	 	 	 %	Short	form:	^	collectionId
	 (b) [unchecked]	pointer	to	classId
	 	 	 %	Short	form:	^	classId
	 (c) [unchecked]	pointer	to	typeSpec
	 	 	 %	Short	form:	^	typeSpec

Description		

A	variable	declared	as	a	pointer	type	is	used	to	locate	an	element	of	a
collection	or	class	or	a	value	of	a	type.	The	new	statement	creates	a	new
element	(or	value)	and	places	the	element's	location	in	a	pointer	variable.
The	free	statement	destroys	an	element	located	by	a	pointer	variable.

Example		

Using	a	collection,	declare	a	list	or	records	and	allocate	one	record.

								var	list	:	collection	of

												record

																contents	:	string	(10)

																next	:	pointer	to	list

												end	record

								var	first	:	pointer	to	list

								new	list,	first

Example		

Create	a	collection	that	will	represent	a	binary	tree.

								var	tree	:	collection	of

												record

																name	:	string	(10)

																left,	right	:	pointer	to	tree

												end	record

								

								var	root	:	pointer	to	tree

								new	tree,	root

								tree	(root).name	:=	"Adam"

Using	a	class,	create	an	object	of	that	class.	The	object	is	located	by	the

Example		

start	pointer.	The	name	field	of	the	object	is	set	to	Ed.

								class	node

												export	var	next,	var	name

												name	:	string	(25)

												next	:	pointer	to	node		%	Short	form:	next	:	^	node

								end	node

								var	start	:	pointer	to	node	%	Short	form:	var	start	:	^	node

								new	node,	start									%	Short	form:	new	start

								node	(start)	.	name	:=	"Ed"			%	Short	form:	start->name:=

For	collections	and	classes,	a	pointer	is	effectively	a	subscript	(an	index)
for	that	collection	or	class.	Pointers	can	be	assigned,	compared	for	equality
and	passed	as	parameters.

The	keywords	pointer	to	can	be	replaced	by	the	short	form	^,	as	in

								var	first	:	^	item

Given	a	pointer	p	that	locates	an	object	of	class	or	collection	C,	the	object
is	referenced	as	C(p)	or	as	the	short	form	^	p.	A	field	f	of	the	object	is
referenced	as	C(p).f	or	^p.f	or	as	the	short	form	p->f.	For	example,	in	the
class	given	above,	the	name	field	of	the	object	located	by	the	start	
can	be	set	to	Alice	by:

								start	->	name	:=	"Alice"

Pointers	to	types	use	the	same	notation,	except	that	pointers	to	types	are
not	allowed	to	use	the	form	typeSpec(p).	See	class	for	an	example	of	the
use	of	a	class	with	pointers.

The	carat	^	is	called	the	dereferencing	operator	and	has	the	highest
precedence.	For	example,	in	^	p.a,	the	carat	applies	to	p	and	not	to	
apply	^	to	all	of	p.a,	use	parentheses:	^(p.a).	Several	carats	can	appear	in	a
row,	for	example,

								var	r	:	^	^	int

declares	a	pointer	to	a	pointer	to	an	integer	and	^	^	r	is	the	notation	for
referencing	the	integer.

A	reference	cannot	begin	with	a	left	parenthesis,	but	can	be	surrounded	by
^(…),	as	in	^	(q.b).	If	f	is	a	parameterless	function	declared	without

Details		 parentheses	that	returns	a	pointer,	the	form	^	f	calls	f	before	dereferencing
the	pointer.

By	default,	all	pointers	are	checked.	This	means	there	is	a	run	time	test	to
make	sure	that	references	such	as	C(p)	actually	locate	elements,	i.e.,	that	
is	initialized,	is	not	nil	and	is	not	dangling	(locating	an	object	that	has	been
freed).	This	checking	requires	extra	space	(the	implementation	attaches	a
time	stamp	to	each	pointer	and	object)	and	time.	In	high-performance
programs	in	which	this	extra	space	and	time	are	not	acceptable,	the	pointer
can	be	declared	to	be	unchecked.	When	this	is	done,	the	program	becomes
dangerous	and	it	is	the	programmer's	responsibility	to	make	sure	that	all
pointer	usage	is	valid.

If	this	is	not	the	case,	the	program	becomes	susceptible	to	uncontrolled
crashes.

Checked	pointers	cannot	be	assigned	to	unchecked	pointers	nor	vice	versa.
However,	you	may,	at	your	peril,	use	an	implementation-dependent	
cheat,	to	convert	a	checked	pointer	to	a	unchecked	pointer,	as	in:

								type	checkedPtr	:	^	R

								type	uncheckedPtr	:	unchecked	^	R

								var	c	:	checkedPtr										%	c	is	an	checked	pointer

								var	u	:	uncheckedPtr								%	u	is	an	unchecked	

								…

								u	:=	cheat	(uncheckedPtr,	d)				%	This	is	a	type	

Unchecked	pointers	are	equivalent	to	the	pointers	of	the	C	language,	which
are	inherently	error	prone	and	cause	difficult	to	locate	bugs.	An	entire
collection	(but	not	a	class)	can	be	declared	unchecked,	in	which	case	all	of
its	pointers	are	implicitly	unchecked.	See	collection.

See	also		

inherit	lists	for	a	description	of	the	assignability	rules	for	pointers.	See
classes	and	collections	for	more	details	about	the	use	of	pointers.	See	also
new	and	free	statements.	See	also	nil,	objectclass	and	anyclass.

post assertion

Syntax		

An	postAssertion	is:

	 post	trueFalseExpn

Description		

A	post	assertion	is	a	special	form	of	an	assert	statement	that	is
used	in	a	procedure	or	function.	It	is	used	to	give	requirements
that	the	body	of	the	procedure	or	function	is	supposed	to	satisfy.
These	requirements	are	given	by	the	trueFalseExpn.	After	the
body	has	executed	and	just	before	the	procedure	or	function
returns,	the	trueFalseExpn	is	evaluated.	If	it	is	true,	all	is	well	and
execution	continues.	If	it	is	false,	execution	is	terminated	with	an
appropriate	message.	See	assert	statements	and	procedure	and
function	declarations	for	more	details.	See	also	pre	and
invariant	assertions.

Example		

This	function	is	supposed	to	produce	an	integer	approximation	of
the	square	root	of	integer	i.	The	post	condition	requires	that	this
result,	which	is	called	answer,	must	be	within	a	distance	of	1	from
the	corresponding	real	number	square	root.

								function	intSqrt	(i	:	int)	answer	:	int

												pre	i	>=	0

												post	abs	(answer	-	sqrt	(i))	<=	1

												…	statements	to	approximate	square	root…

								end	intSqrt

Details		

A	post	assertion	can	also	be	used	in	a	module,	monitor,	class	or
process	declaration	to	make	sure	that	the	initialization	satisfies	its
requirements.

See	also		 module	and	process.

pre assertion

Syntax		

An	preAssertion	is:

	 pre	trueFalseExpn

Description		

A	pre	assertion	is	a	special	form	of	an	assert	statement	that	is	used	at	the
beginning	of	a	procedure	or	function.	It	is	used	to	give	requirements	that	the
caller	of	the	procedure	or	functions	is	supposed	to	satisfy.	These	requirements	are
given	by	the	trueFalseExpn.	The	trueFalseExpn	is	evaluated.	If	it	is	true,	all	is
well	and	execution	continues.	If	it	is	false,	execution	is	terminated	with	an
appropriate	message.	See	assert	statements	and	procedure	and	function
declarations	for	more	details.	See	also	post	and	invariant	assertions.

Example		

This	function	computes	the	average	of	n	values.	Its	pre	condition	requires	that	
must	be	strictly	positive,	to	avoid	the	possibility	of	dividing	by	zero	when
computing	the	average.

								function	average	(a	:	array	1	..	*	of	real,	n	:	

												pre	n	>	0

												var	sum	:	real	:=	0

												for	i	:	1	..	n

																sum	:=	sum	+	a	(i)

												end	for

												result	sum	/	n

								end	average

Details		
A	pre	assertion	can	also	be	used	in	a	module,	monitor,	class	or	process
declaration	to	make	sure	that	requirements	for	initialization	are	met.

See	also		 module	and	process.

precedence of	operators

Description		

Turing's	precedence	rules	determine	the	order	of	applying
operators	in	an	expression	such	as	3	+	4	*	5.	These	rules	state,	for
example,	that	multiplication	is	done	before	addition,	so	this
expression	is	equivalent	to	3+	(4	*	5).

Parenthesized	parts	of	an	expression	are	evaluated	before	being
used.	For	example,	in	(1	+	2)	*	3,	the	addition	is	done	before	the
multiplication.

The	precedence	rules	are	defined	by	this	table,	in	which	operators
appearing	earlier	in	the	table	are	applied	first.	For	example,
multiplication	is	applied	before	addition:

	 (1) 	 **,	^,	#
	 (2) 	 prefix	+	and	-
	 (3) 	 *,	/,	div,	mod,	rem,	shr,	shl
	 (4) 	 infix	+,	-,	xor

	 (5) 	 <,	>,	=,	<=,	>=,	not=,	in,	notin
	 (6) 	 not
	 (7) 	 and
	 (8) 	 or

	 (9) 	 => 	 	 (booleanimplication)

Operators	appearing	on	a	single	line	in	this	table	are	applied	from
left	to	right.	For	example,	abc	is	the	same	is	(ab)c.

Here	are	some	examples	illustrating	precedence,	in	which	the	left
and	right	expressions	are	equivalent:

	 1**2 	 	 	 (1**2)
	 a+b*c 	 	 	 a+(b*c)
	 a*b/c 	 	 	 (a*b)/c

	 b	or	c	and	d 	 	 b	or	(c	and	d)
	 x	<	y	and	y	<	z 	 	 (x	<	y)	and	(y	<	z)

The	final	example	illustrates	the	fact	that	in	Turing,	parentheses
are	not	required	when	combining	comparisons	using	and	and	or.
These	would	be	required	in	the	Pascal	language.

The	type	cheat	operator	#	is	applied	after	subscripting,
subprogram	calling,	dotting,	and	>.	For	example,	in	each	of	the
following,	#	applies	to	the	entire	reference	to	the	right.

	 #a(i)
	 #r.y
	 #p->x

The	pointer	following	operator	^	is	applied	before	subscripting,
subprogram	calling,	dotting,	and	->.	For	example,	in	the
following,	^	applies	to	a,	r	and	p.

	 ^a(i)
	 ^r.y
	 ^p->x

Use	parentheses	to	force	^	to	apply	to	more	of	the	reference.	For
example,	in	^(a(i)),	the	^	applies	to	a(i).

See	also		
infix	and	prefix	operators.	See	the	int,	real,	string,	boolean,	set,
enum,	char	and	char(n)	types.

pred predecessor	function

Syntax		 pred	(expn)

Description		

The	pred	function	accepts	an	integer,	character,	or	an	enumerated
value	and	returns	the	integer	minus	one,	the	previous	character,	or
the	previous	value	in	the	enumeration.	For	example,	pred	(7)	is
6.

Example		

This	part	of	a	Turing	program	fills	up	array	a	with	the	enumerated
values	red,	yellow,	green,	red,	yellow,	green,	etc.

								type	colors	:	enum	(green,	yellow,	red)

								var	a	:	array	1	..	100	of	colors

								var	c	:	colors	:=	colors	.	red

								for	i	:	1	..	100

												a	(i)	:=	c

												if	c	=	colors	.	green	then

																c	:=	colors	.	red

												else

																c	:=	pred	(c)

												end	if

								end	for

Details		 It	is	illegal	to	apply	pred	to	the	first	value	of	an	enumeration.

See	also		 succ,	lower	and	upper	functions.

prefix operator

Syntax		

A	prefixOperator	is	one	of:

	 (a) + 	 %	Integer	and
real	identity

	 	 	 %	(does	not
change	value)

	 (b) 	 %	Integer	and	real
negation

	 (c) not 	 %	Not	(Boolean
negation)

	 (d) # 	 %	Type	cheat

	 (e) ^ 	 %	Pointer
following

Description		

A	prefix	operator	is	placed	before	a	value	or	operand	to	produce
another	value.	For	example,	if	the	value	of	x	is	seven,	then	-x	is
negative	seven.	There	are	also	infix	operators	such	as
multiplication	(*)	and	addition	(+),	which	are	placed	between	two
values	to	produce	a	third	value.	See	infix	operator.

The	+	and	prefix	operators	can	be	applied	only	to	numeric	values
(integer,	real	and	natural	numbers).	The	not	prefix	can	be	applied
only	to	true/false	(boolean)	values.	For	example	not	(x	>	y)	is
equivalent	to	x	<=	y.	The	not	operator	produces	true	from	false
and	false	from	true.

The	#	operators	is	a	type	cheat	(see	cheat),	and	the	^	operator	is
pointer	following	(see	pointer).

See
also 	

int,	real	and	boolean	types,	as	well	as	precedence	(for	the
order	of	applying	operators)	and	infix	operators.

procedure declaration

Syntax		

A	procedureDeclaration	is:

	 procedure	id	[(paramDeclaration	{,
paramDeclaration	})]

	 	 statementsAndDeclarations
	 end	id

Description		

A	procedure	declaration	creates	(but	does	not	run)	a	new
procedure.	The	name	of	the	procedure	(id)	is	given	in	two	places,
just	after	procedure	and	just	after	end.

Example		

								procedure	greetings

												put	"Hello	world"

								end	greetings

								

								greetings											%	This	outputs	Hello	world

								

								procedure	sayItAgain	(msg	:	string,	n	:	int)

												for	i	:	1	..	n

																put	msg

												end	for

								end	sayItAgain

								

								sayItAgain	("Toot",	2)	%	Toot	is	output	twice

								

								procedure	double	(var	x	:	real)

												x	:=	2	*	x

								end	double

								

								var	y	:	real	:=	3.14

								double	(y)								%	This	doubles	the	value	of	y

The	set	of	parameters	declared	with	the	procedure	are	called
formal	parameters.	In	the	double	procedure,	for	example,	x	is	a
formal	parameter.	A	procedure	is	called	(invoked)	by	a	procedure
call	statement	which	consists	of	the	procedure's	name	followed	by
the	parenthesized	list	of	actual	parameters	(if	any).	For	example,
double(y)	is	a	call	having	y	as	an	actual	parameter.	If	there	are	no

Details		

parameters	(see	the	greet	procedure	above),	the	call	does	not	have
parentheses.	The	keyword	procedure	can	be	abbreviated	to	proc.

Ordinarily,	a	procedure	returns	(finishes	and	goes	back	to	the
place	where	it	was	called)	by	reaching	its	end.	However,	the
return	statement	in	a	procedure	causes	it	to	return	immediately.
Note	that	return	can	also	be	used	in	the	main	program	to	cause	it
to	halt	immediately.

Only	parameters	declared	using	var	may	be	changed	in	the
procedure,	for	example,	x	is	changed	in	the	double	procedure.	The
upper	bounds	of	arrays	and	strings	that	are	parameters	may	be
declared	to	be	an	asterisk	(*).	This	means	that	the	bound	is	that	of
the	actual	parameter.	See	paramDeclaration	for	details	about
parameters.

Procedures	and	functions	cannot	be	declared	inside	other
procedures	and	functions.

The	syntax	of	a	procedureDeclaration	presented	above	has	been
simplified	by	leaving	out	the	optional	import	list,	pre	condition,
init	clause,	post	condition	and	exception	handler.	The	full	syntax
is

								procedure	[pervasive]	id

												[([paramDeclaration	{,paramDeclaration	}])]

												[:	deviceSpecification]

												[pre	trueFalseExpn]

												[init	id	:=	expn	{,	id	:=	expn	}]

												[post	trueFalseExpn]

												[exceptionHandler]

												statementsAndDeclarations

								end	id

A	procedure	must	be	declared	before	being	called.	To	allow	for
mutually	recursive	procedures,	there	are	forward	declarations	of
procedures	with	later	declaration	of	each	procedure	body.	See
forward	and	body	declarations	for	explanations.

import	list,	pre	condition,	init	clause,	post	condition	and
exceptionHandler	for	explanations	of	these	features.	See
pervasive	for	information	on	pervasive	procedures.	See

See	also		 exceptionHandler.	The	optional	deviceSpecification	is	used	only
in	procedures	declared	in	monitors	and	is	used	to	create	an
interrupt	handling	procedure.	See	monitor	for	details.

procedureCall statement

Syntax		

A	procedureCall	is:

	 procedureId	[([expn	{	,	expn	}])]

Description		

A	procedure	call	is	a	statement	that	calls	(invokes	or	activates)	a
procedure.	If	the	procedure	has	parameters,	a	parenthesized	list	of
expressions	(expns)	must	follow	the	procedure's	name
(procedureId).

Example		

								procedure	greet

												put	"Hello"

								end	greet

								

								greet							%	This	is	a	call	to	the	greet	procedure

								

								procedure	times	(var	i	:	int,	factor	:	int)

												i	:=	factor	*	i

								end	times

								

								var	j	:	int

								times	(j,	4)						%	Multiply	j	by	4

A	parameter	declared	in	the	header	of	a	procedure	is	a	formal
parameter.	For	example,	i	and	factor	above	are	formal	parameters.
Each	expression	in	the	call	is	an	actual	parameter.	For	example,	j
and	4	above	are	actual	parameters.

If	a	formal	parameter	is	declared	using	var,	then	the	expression
passed	to	that	parameter	must	be	a	variable	reference	(so	its	value
can	potentially	be	changed	by	the	procedure).	This	means,	for
example,	that	it	would	be	illegal	to	pass	j+3	as	the	first	parameter
to	times.	The	variable	reference	and	the	formal	parameter	must
have	equivalent	types	(see	equivalence	for	details).

Each	actual	parameter	passed	to	a	non-var	formal	parameter	must
be	assignable	to	that	parameter	(see	assignability	for	details).	See
also	procedureDeclaration.

Details		 In	this	explanation	of	procedureCall,	we	have	up	to	this	point
ignored	the	possibility	of	procedures	exported	from	modules,
monitors	and	classes.	If	the	procedure	is	being	called	from	outside
of	a	module	or	monitor	M	from	which	it	has	been	exported,	the
syntax	of	the	procedureCall	is:

								M	.	procedureId	[([expn	{,	expn	}])]

In	other	words,	the	module	or	monitor	name	and	a	dot	must
precede	the	procedure's	name.	If	the	procedure	is	being	called
from	outside	of	a	class	from	which	it	has	been	exported,	the	syntax
of	the	procedureCall	is	one	of:

								(a)	classId	(p)	.	procedureId	[([expn	{,	expn

								(b)	p	->	procedureId	[([expn	{,	expn	}])]

In	these,	p	must	the	a	pointer	value	that	locates	an	object	in	the
class.	Form	(b)	is	a	short	form	for	form	(a).

See	also		 class.

process declaration

Syntax		

A	processDeclaration	is:

	 process	id	[([paramDeclaration
{,paramDeclaration	}])]

	 	 statementsAndDeclarations
	 end	id

Description		

A	process	declaration	is	much	like	a	procedure	declaration,	but	is
activated	by	a	fork	statement	rather	than	by	a	call.	The	fork
statement	starts	concurrent	(parallel)	execution	of	the	process
while	the	statements	following	the	fork	continue	to	execute.

Example		

This	program	initiates	(forks)	two	concurrent	processes,	one	of
which	repeatedly	outputs	Hi	and	the	other	Ho.	The	resulting
output	is	an	unpredictable	sequence	of	Hi's	and	Ho's	as	greetings
executes	twice	concurrently,	one	instance	with	word	set	to	Hi	and
the	other	with	word	set	to	Ho.

								process	greetings	(word	:	string)

												loop

																put	word

												end	loop

								end	greetings

								

								fork	greetings	("Hi")

								fork	greetings	("Ho")

The	process	declaration	creates	a	template	for	a	process	(a
concurrent	activity),	which	is	activated	by	a	fork	statement.

A	process	declaration	can	appear	wherever	a	module	declaration
is	allowed	except	that	a	process	declaration	is	not	allowed	in	a
class.	The	declarations	and	statements	in	a	process	declaration	are
the	same	as	those	in	a	procedure.

See	paramDeclaration	for	details	about	parameters.	There	is	an
anomaly	in	parameters	to	processes,	that	can	lead	to	errors.	In

Details		

particular,	non-var	parameters	that	are	non-scalars	(such	as
strings	and	arrays)	are	passed	by	reference.	The	result	is	that	the
target	of	the	reference	may	change	value	while	the	process	is
executing,	which	in	turn	means	that	the	seemingly	constant
parameter	is	not	really	constant.	For	example,	if	the	string
variable	s	were	passed	to	the	greetings	process	and	subsequently
changed,	the	value	of	greetings'	formal	parameter	would	change.

The	syntax	of	a	processDeclaration	presented	above	has	been
simplified	by	leaving	out	the	optional	stack	size
(compileTimeExpn),	import	list,	pre	condition,	init	clause,	post
condition	and	exception	handler.

The	full	syntax	is:

								process	[pervasive]	id

																[([paramDeclaration	{,paramDeclaration

																[:	compileTimeExpn]

												[pre	trueFalseExpn]

												[init	id	:=	expn	{,	id	:=	expn	}]

												[post	trueFalseExpn]

												[exceptionHandler]

												statementsAndDeclarations

								end	id

See	pervasive	for	information	on	pervasive	processes.	The
optional	compileTimeExpn	following	the	parameter	list	(if	any)	is
used	to	specify	the	number	of	bytes	for	the	process'	stack.

See	also		
import	list,	pre	condition,	init	clause,	post	condition	and
exceptionHandler	for	explanations	of	these	additional	features.

program a	(main)	program

Syntax		

A	program	is:

	 statementsAndDeclarations

Description		A	Turing	program	consists	of	a	list	of	statements	and	declarations.

Example		
This	is	a	complete	Turing	program.	It	outputs	Alan	M.	Turing.

								put	"Alan	M.	Turing"

Example		

This	is	a	complete	Turing	program.	It	outputs	a	triangle	of	stars.

								var	stars	:	string	:=	"*"

								loop

												put	stars

												stars	:=	stars	+	"*"

								end	loop

Example		

This	is	a	complete	Turing	program.	It	outputs	Hello	once	and
Goodbye	twice.

								procedure	sayItAgain	(what	:	string,	n	:	int)

												for	i	:	1	..	n

																put	what

												end	for

								end	sayItAgain

								

								sayItAgain	("Hello",	1)

								sayItAgain	("Goodbye",	2)

Details		

In	a	program	there	can	be	many	units	(see	unit),	one	of	which	is
the	program	(called	the	main	program),	the	others	of	which	are
modules,	monitors	and	classes.	The	main	program	is	optionally
preceded	by	an	import	list,	which	lists	the	units	that	it	uses.

See	also		 import	list.

put statement

Syntax		

A	putStatement	is:

	 put	[:	fileNumber	,]	putItem	{	,	putItem	}	[..]

Description		

The	put	statement	outputs	each	of	the	putItems.	Usually,	a	new	line
is	started	in	the	output	after	the	final	putItem.	If	the	optional	dot-dot
(..)	is	present,	though,	subsequent	output	will	be	continued	on	the
current	output	line.	With	character	graphics,	the	omission	of	dot-dot
causes	the	remainder	of	the	output	line	to	be	cleared	to	blanks.

Ordinarily,	the	output	goes	to	the	screen.	However,	if	the
fileNumber	is	present,	the	output	goes	to	the	file	specified	by	the
file	number	(see	the	open	statement	for	details).	Also,	output	can	be
redirected	from	the	screen	to	a	file,	in	which	case	all	put	statements
without	a	file	number	are	sent	to	the	file	instead	of	the	screen.

Example		

												var	n	:	int	:=	5

												put	"Alice	owes	me	$",	n

																				%	Output	is:	Alice	owes	me	$5

																				%	Note	that	no	extra	space	is

																				%	output	before	an	integer	such	as	n.

Example		

								Statement											Output						Notes

								

								put	24										24

								put	1/10												0.1					%	Trailing	zeros	omitted

								put	100/10										10						%	Decimal	point	omitted

								put	5/3									1.666667				%	6	fraction	digits

								put	sqrt	(2)												1.414214				%	6	fraction	digits

								put	4.86	*	10**9								4.86e9		%	Exponent	for	=	1e6

								put	121	:	5									bb121			%	Width	5;	b	is	blank

								put	1.37	:	6	:	3								b1.370		%	Fraction	width	of	3

								put	1.37	:	11	:	3	:	2			bb1.370e+00%	Exponent	width	of	2

								put	"Say	\"Hello\""	Say	"Hello"

								put	"XX"	:	4,	"Y"							XXbbY			%	Blank	shown	as	b

								put	true	and	false		false							%	Put	out	a	boolean	value

								put	1	<	2											true								%	Put	out	a	boolean	value

Example		

A	single	blank	line	is	output	this	way:

								put	""		%	Output	null	string	then	new	line

This	put	statement	is	sometimes	used	to	close	off	a	line	that	has
been	output	piece	by	piece	using	put	with	dot-dot.

Details		

The	general	form	of	a	putItem	is	one	of:

	 (a) 	 expn	[:widthExpn	[:fractionWidth	[:exponentWidth]]]
	 (b) 	 skip

See	the	above	examples	for	uses	of	widthExpn,	fractionWidth	and
exponentWidth.	For	the	exact	meaning	of	these	three	widths,	see	the
definitions	of	the	functions	realstr,	frealstr	and	erealstr.	The	skip
item	is	used	to	end	the	current	output	line	and	start	a	new	line.

Details		

The	put	semantics	allow	put's	of	enum	values.	The	values	printed
are	the	element	names	themselves,	case	sensitive.	For	example:

								type	colors	:	enum	(red,	green,	blue)

								var	c	:	colors	:=	colors	.	red

								put	c							%	outputs	"red"	(without	the	quotes)

Details		

The	put	semantics	allow	put's	of	boolean	values.	The	values
printed	are	either	“true”	or	“false”	(without	the	quotes).	For
example:

								var	c	:	boolean	:=	true	or	false

								put	c							%	outputs	"true"	(without	the	quotes)

quit fail	statement

Syntax		

A	quitStatement	is:

	 quit	[guiltyParty]	[:	quitReason]

Description		

The	quit	statement	causes	a	program	(or	concurrent	process)	to
fail.	The	failure	(called	an	exception)	either	aborts	the	program
(or	process)	or	causes	control	to	be	passed	to	an	exception
handler.

Example		

In	the	inputLines	procedure,	halt	the	program	if	end	of	file	is
encountered	before	the	string	"stop"	is	read.	Note	that	a	return
statement	in	the	procedure	would	terminate	the	procedure	but	not
the	entire	program.

								var	line	:	array	1	..	50	of	string

								

								procedure	inputLines

												var	i	:	int	:=	0

												loop

																if	eof	then

																				put	"Missing	'stop'	in	input"

																				quit								%	Halt	entire	program

																end	if

																i	:=	i	+	1

																get	line	(i)

																exit	when	line	(i)	=	"stop"

												end	loop

								end	inputLines

								

								inputLines

In	the	simple	case,	the	optional	guiltyParty	and	quitReason	are
omitted.	The	guiltyParty	option	is	used	to	specify	the	position	of
failure.	See	exceptionHandler	for	an	example	of	a	quit	statement
used	in	conjunction	with	a	handler.	A	handler,	which	is	located	at
the	beginning	of	a	subprogram	body,	is	given	control	when	a	quit
is	executed	or	a	failure,	such	as	division	by	zero,	occurs	in	the
subprogram.

Details		

The	guiltyParty	option	is	used	to	designate	the	location	of	the
failure,	for	example,	to	tell	the	debugger	what	line	is	considered
to	be	the	location	of	the	failure.	A	guiltyParty	is	one	of:

	 (a) 	 <
	 (b) 	 >

If	guiltyParty	is	omitted,	the	failure	is	considered	to	occur	at	the
quit	statement.	If	it	is	<,	the	failure	is	considered	to	occur	at	the
call	to	the	present	subprogram.	For	example,	if	the	present
subprogram	implements	square	root	sqrt	and	is	passed	a	negative
argument,	it	can	use	<	to	specify	that	the	caller	provided	a	faulty
argument.	If	guiltyParty	is	>,	this	means	the	failure	has	already
occurred	and	is	being	passed	on	to	the	next	handler	or	to	the
system.	To	summarize,	the	three	possibilities	for	designating	the
location	of	the	failure	are:

	 (a) 	 < 	 Caller	is	cause	offailure

	 (b) 	 > 	 The	exception	beinghandled	is	the	cause.

	 (c) 	 (omitted	guiltyParty)	Thepresent	quit	is	the	cause.

The	quitReason	is	an	integer	expression	which	is	used	to	identify
the	kind	of	failure.	If	it	is	omitted,	a	default	value	is	chosen	in	the
following	manner.	If	guiltyParty	is	omitted	or	is	<,	the	default	is
1.	If	guiltyParty	is	>	and	an	exception	handler	is	active,	the
default	is	the	quitReason	of	the	exception	being	handled.	If	no
exception	is	being	handled,	the	default	is	1.	In	the	case	of
program	abortion,	the	implementation	may	pass	the	quitReason	to
the	operating	system	or	programming	environment.

See	also		 exceptionHandler,	return	and	result.

Rand

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with
random	numbers.

All	routines	in	the	Rand	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Rand.").

Entry
Points		

Real 	 Returns	a	random	real	number.
Int 	 Returns	a	random	integer.
Reset 	 Sets	the	seed	in	the	default	sequence	to	a	default	value.

Set 	 Sets	the	seed	in	the	default	sequence	to	a	specified
value.

Next 	 Returns	a	random	real	number	from	a	sequence.
Seed 	 Sets	a	seed	in	a	sequence.

Rand.Int Part	of	Rand	module

Syntax		 Rand.Int	(low,	high	:	int)	:	int

Description		

The	Rand.Int	statement	is	used	to	create	a	pseudo-random
integer	in	the	range	low	to	high,	inclusive.	For	example,	if	i	is	an
integer,	after	i:=Rand.Int	(i,1,	10),	i	would	have	a	value	such	as
7	or	2	or	10.

Example		

This	program	simulates	the	repeated	rolling	of	a	six	sided	die.

								loop

												put	"Rolled	",	Rand.Int	(1,	6)

								end	loop

Details		

The	Rand.Int	statement	sets	its	parameter	to	the	next	value	of	a
sequence	of	pseudo-random	integers	that	approximates	a	uniform
distribution	over	the	range	low	=i	=	high.	It	is	required	that	low	=
high.

Each	time	a	program	runs,	Rand.Int	uses	a	different	pseudo-
random	number	sequence.	To	always	get	the	same	sequence
(actually,	to	start	the	sequence	at	the	same	point),	use	the
Rand.Set	procedure.

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	Rand.Seed	and	Rand.Next	procedures.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Int,	not	by	calling	Int.

See	also		 Rand.Real,	Rand.Set,	Rand.Seed	and	Rand.Next.

Rand.Next Part	of	Rand	module

Syntax		 Rand.Next	(seq	:	1	..	10)	:	real

Description		

The	Rand.Next	procedure	is	used	when	you	need	several
sequences	of	pseudo-random	numbers,	and	you	need	to	be	able	to
exactly	repeat	these	sequences	for	a	number	of	simulations.	The
Rand.Next	procedure	is	the	same	as	rand,	except	seq	specifies
one	of	ten	independent	and	repeatable	sequences	of	pseudo-
random	real	numbers.

The	Rand.Seed	procedure	is	used	to	start	one	of	these	sequences
at	a	particular	point.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Next,	not	by	calling	Next.

See	also		 Rand.Seed,	Rand.Int,	Rand.Real	and	Rand.Next.

Rand.Real Part	of	Rand	module

Syntax		 Rand.Real	:	real

Description		

The	Rand.Real	function	returns	a	pseudo-random	number	in	the
range	zero	to	one.	For	example,	if	x	is	a	real	number,	after	x	:=
Rand.Real,	x	would	have	a	value	such	as	0.729548	or	0.352879.

Example		

This	program	repeatedly	and	randomly	prints	out	Hi	ho,	hi	ho	or
It's	off	to	work	we	go.

								loop

												if	Rand.Real	>	0.5	then

																put	"Hi	ho,	hi	ho"

												else

																put	"It's	off	to	work	we	go"

												end	if

								end	loop

Details		

The	Rand.Real	function	sets	its	parameter	to	the	next	value	of	a
sequence	of	pseudo-random	real	numbers	that	approximates	a
uniform	distribution	over	the	range	0<r	<1.

Each	time	a	program	runs,	Rand.Real	uses	a	different	pseudo-
random	number	sequence.	To	always	get	the	same	sequence
(actually,	to	start	the	sequence	at	the	same	point),	use	the
Rand.Set	procedure.

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	Rand.Seed	and	Rand.Next	procedures.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Real,	not	by	calling	Real.

See	also		 Rand.Int,	Rand.Set,	Rand.Seed	and	Rand.Next.

Rand.Reset Part	of	Rand	module

Syntax		 Rand.Reset

Description		

This	is	a	procedure	with	no	parameters	that	resets	the	sequences
of	pseudo-random	numbers	produced	by	Rand.Real	and
Rand.Int.	This	allows	identical	executions	of	the	same	program
to	produce	identical	results.

Example		

This	program	simulates	the	repeated	rolling	of	a	six	sided	die.
Each	time	the	program	runs,	the	same	sequence	of	rolls	occurs.

								Rand.Reset

								loop

												put	"Rolled	",	Rand.Int	(1,	6)

								end	loop

Details		

If	Rand.Reset	and	Rand.Set	are	not	used,	each	time	a	program
runs	Rand.Real	and	Rand.Int	use	a	different	pseudo-random
number	sequence.	To	get	the	same	sequence	each	time	(actually,
to	start	the	sequence	at	a	different	point),	use	Rand.Reset	or
Rand.Set.

The	Rand.Reset	procedure	can	be	called	any	time.	However,	to
make	it	work,	it	should	only	be	called	once	per	program.	Any	call
to	Rand.Reset	after	the	first	one	is	ignored.

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	Rand.Seed	and	Rand.Next	procedures.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Reset,	not	by	calling	Reset.

See	also		 Rand.Set,	Rand.Int,	Rand.Real,	Rand.Seed	and	Rand.Next.

Rand.Seed Part	of	Rand	module

Syntax		 Rand.Seed	(seed	:	nat4,	seq	:	1	..	10)

Description		

The	Rand.Seed	procedure	restarts	one	of	the	sequences	generated
by	Rand.Next.	Each	restart	with	the	same	seed	causes
Rand.Next	to	produce	the	same	sequence	for	the	given	sequence.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Seed,	not	by	calling	Seed.

See	also		 Rand.Next,	Rand.Int,	Rand.Real,	and	Rand.Set.

Rand.Set Part	of	Rand	module

Syntax		 Rand.Set	(seed	:	nat4)

Description		

This	procedure	sets	the	seed	for	sequences	of	pseudo-random
numbers	produced	by	Rand.Real	and	Rand.Int.	This	allows
identical	executions	of	the	same	program	to	produce	identical
results.

Example		

This	program	simulates	the	repeated	rolling	of	a	six	sided	die.
Each	time	the	program	runs,	the	same	sequence	of	rolls	occurs.

								Rand.Set	(16#1234ABCD)

								loop

												put	"Rolled	",	Rand.Int	(1,	6)

								end	loop

Details		

If	Rand.Reset	and	Rand.Set	are	not	used,	each	time	a	program
runs	Rand.Real	and	Rand.Int	use	a	different	pseudo-random
number	sequence.	To	get	the	same	sequence	each	time	(actually,
to	start	the	sequence	at	a	different	point),	use	Rand.Reset	or
Rand.Set.

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	Rand.Seed	and	Rand.Next	procedures.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Rand.Set,	not	by	calling	Set.

See	also		 Rand.Reset,	Rand.Int,	Rand.Real,	Rand.Seed	and	Rand.Next.

rand random	real	number	procedure

Syntax		 rand	(var	r	:	real)

Description		

The	rand	statement	is	used	to	create	a	pseudo-random	number	in
the	range	zero	to	one.	For	example,	if	x	is	a	real	number,	after
rand(x),	x	would	have	a	value	such	as	0.729548	or	0.352879.

Example		

This	program	repeatedly	and	randomly	prints	out	Hi	ho,	hi	ho	or
It's	off	to	work	we	go.

								var	r	:	real

								loop

												rand	(r)

												if	r	>	0.5	then

																put	"Hi	ho,	hi	ho"

												else

																put	"It's	off	to	work	we	go"

												end	if

								end	loop

Details		

The	rand	statement	sets	its	parameter	to	the	next	value	of	a
sequence	of	pseudo-random	real	numbers	that	approximates	a
uniform	distribution	over	the	range	0<r	<1.

Each	time	a	program	runs,	rand	uses	a	different	pseudo-random
number	sequence.	To	get	the	same	sequence	(use	Rand.Set).

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	randseed	and	randnext	procedures.

In	many	languages,	rand	would	be	a	function	rather	than	a
procedure.	It	has	been	designed	as	a	procedure	in	Turing	to
respect	the	mathematical	idea	that	every	call	to	a	function	using
the	same	arguments	(or	no	arguments	at	all)	should	return	the
same	value.	If	rand	were	a	function,	this	would	not	be	true.

See	also		
randint,	randomize,	randseed	and	randnext.

See	also	predefined	unit	Rand.

randint random	integer	procedure

Syntax		 randint	(var	i	:	int,	low,	high	:	int)

Description		

The	randint	statement	is	used	to	create	a	pseudo-random	integer
in	the	range	low	to	high,	inclusive.	For	example,	if	i	is	an	integer,
after	randint(i,1,	10),	i	would	have	a	value	such	as	7	or	2	or	10.

Example		

This	program	simulates	the	repeated	rolling	of	a	six	sided	die.

								var	roll	:	int

								loop

												randint	(i,	1,	6)

												put	"Rolled	",	i

								end	loop

Details		

The	randint	statement	sets	its	parameter	to	the	next	value	of	a
sequence	of	pseudo-random	integers	that	approximates	a	uniform
distribution	over	the	range	low	=i	=	high.	It	is	required	that	low	=
high.

Each	time	a	program	runs,	randint	uses	the	same	pseudo-random
number	sequence.	To	get	a	different	sequence	(actually,	to	start
the	sequence	at	a	different	point),	use	the	randomize	procedure.

To	use	several	sequences	of	repeatable	pseudo-random	number
sequences,	use	the	randseed	and	randnext	procedures.

See	also		 rand,	randomize,	randseed	and	randnext.

randnext procedure

Syntax		 randnext	(var	v	:	real,	seq	:	1	..	10)

Description		

The	randnext	procedure	is	used	when	you	need	several
sequences	of	pseudo-random	numbers,	and	you	need	to	be	able	to
exactly	repeat	these	sequences	for	a	number	of	simulations.	The
randnext	procedure	is	the	same	as	rand,	except	seq	specifies	one
of	ten	independent	and	repeatable	sequences	of	pseudo-random
real	numbers.

The	randseed	procedure	is	used	to	start	one	of	these	sequences	at
a	particular	point.

See	also		 randseed,	randint,	rand	and	randnext.

randomize procedure

Syntax		 randomize

Description		

This	procedure	is	obsolete.	It	was	originally	used	to	produce	a
different	sequence	of	random	numbers	each	time	a	program
executed.	With	current	versions	of	Turing,	the	random	number
sequence	is	“randomized”	each	time	a	Turing	program	is
executed,	eliminating	the	need	for	this	procedure.

To	reset	the	random	number	sequence	and	thus	allow	for	a
predetermined	sequence	of	pseudo-random	numbers,	use
Rand.Set.

See	also		
randint,	rand,	randseed	and	randnext.

See	also	predefined	unit	Rand.

randseed procedure

Syntax		 randseed	(seed	:	int,	seq	:	1	..	10)

Description		

The	randseed	procedure	restarts	one	of	the	sequences	generated
by	randnext.	Each	restart	with	the	same	seed	causes	randnext	to
produce	the	same	sequence	for	the	given	sequence.

See	also		 randnext,	randint,	rand,	and	randomize.

read file	statement

								Dangerous	parts

Syntax		

A	readStatement	is:

	 read	:	fileNumber	[:	status]	,	readItem	{	,readItem	}

Description		

The	read	statement	inputs	each	of	the	readItems	from	the	specified	file.
These	items	are	input	directly	using	the	binary	format	that	they	have	on
the	file.	In	other	words,	the	items	are	not	in	source	(ASCII	or	EBCDIC)
format.	In	the	common	case,	these	items	have	been	output	to	the	file	using
the	write	statement.

By	contrast,	the	get	and	put	statements	use	source	format,	which	a	person
can	read	using	an	ordinary	text	editor.

Example		

This	example	shows	how	to	input	a	complete	employee	record	using	a
read	statement.

								var	employeeRecord	:

												record

																name	:	string	(30)

																pay	:	int

																dept	:	0	..	9

												end	record

								var	fileNo	:	int

								open	:	fileNo,	"payroll",	read

								…

								read	:	fileNo,	employeeRecord

The	fileNumber	must	specify	a	file	that	is	open	with	read	capability	(or	a
program	argument	file	that	is	implicitly	opened).

The	optional	status	is	an	int	variable	that	is	set	to	implementation-
dependent	information	about	the	read.	If	status	is	returned	as	zero,	the
read	was	successful.	Otherwise	status	gives	information	about	the
incomplete	or	failed	read	(which	is	not	documented	here).	You
commonly	use	status	when	you	are	reading	a	record	or	array	from	a	file
and	you	are	not	sure	if	the	entire	item	exists	on	the	file.	If	it	does	not

Details		

exist,	the	read	will	fail	part	way	through,	but	your	program	can	continue
and	diagnose	the	problem	by	inspecting	status.

A	readItem	is:

								variableReference	[:	requestedSize	[:	actualSize

Each	readItem	specifies	a	variable	to	be	read	in	internal	form.	The
optional	requestedSize	is	an	integer	value	giving	the	number	of	bytes	of
data	to	be	read.	The	requestedSize	should	be	less	than	or	equal	to	the	size
of	the	item's	internal	form	in	memory	(else	a	warning	message	is	issued).
If	no	requestedSize	is	given,	the	size	of	the	item	in	memory	is	used.	The
optional	actualSize	is	an	int	variable	that	is	set	to	the	number	of	bytes
actually	read.

An	array,	record	or	union	may	be	read	and	written	as	a	whole.

It	is	dangerous	to	read	into	pointer	variables,	as	this	allows	the	possibility
of	creating	incorrect	addresses	in	the	pointers.	It	is	also	dangerous	to	read
more	bytes	than	are	in	the	readItem.

See	also		 the	write,	open,	close,	seek,	tell,	get	and	put	statements.

real the	real	number	type

Syntax		 real

Description		

The	real	number	type	is	used	for	numbers	that	have	fractional	parts,
for	example,	3.14159.	Real	numbers	can	be	combined	by	various
operators	such	as	addition	(+)	and	multiplication	(*).	Real	numbers
can	also	be	combined	with	integers	(whole	numbers,	such	as	23,	0
and	-9),	in	which	case	the	result	is	generally	a	real	number.	An
integer	can	always	be	assigned	to	a	real	variable,	with	implicit
conversion	to	real.

Example		
								var	weight,	x	:	real

								var	x	:	real	:=	9.83

								var	tax	:=	0.7						%	The	type	is	implicitly	real	because

																								%	0.7	is	a	real	number

Details		

See	also	explicitRealConstant.	The	int	type	is	used	instead	of	real,
when	values	are	whole	numbers.	See	int	for	details.

Real	numbers	can	be	converted	to	integers	using	ceil	(ceiling),
floor,	or	round.	Real	numbers	can	be	converted	to	strings	using
erealstr,	frealstr,	and	realstr.	These	conversion	functions
correspond	exactly	to	the	formatting	used	for	the	put	statement	with
real	numbers.	Strings	can	be	converted	to	real	numbers	using
strreal.	See	descriptions	of	these	conversion	functions.

The	predefined	functions	for	real	numbers	include	min,	max,	sqrt,
sin,	cons,	arctan,	sind,	cosd,	arcand,	ln	and	exp.	See	the
descriptions	of	these	functions.

Pseudo-random	sequences	of	real	numbers	can	be	generated	using
rand.	See	the	description	of	this	procedure.

The	Turing	Report	gives	a	formal	definition	(not	repeated	here)	of
implemented	real	numbers	in	terms	of	their	required	accuracy
relative	to	infinitely	accurate	(mathematical)	real	numbers.

Turing	implements	real	numbers	using	8	byte	floating	point
representation.	This	provides	14	to	16	decimal	digits	of	precision
and	an	exponent	range	of	at	least	-38	..	38.	The	PC	and	Macintosh
versions	of	Turing	have	16	decimal	digits	of	accuracy	because	they
use	IEEE	standard	floating	point	representation.

See	also		 realn.

realn n-byte	real	number	type

Syntax		
	 (a) real4 	 	 %	4-byte	real	number
	 (b) real8 	 	 %	8-byte	real	number

Description		

The	realn	(n-byte	real	number)	types	are	machine-dependent
types	that	occupy	a	specified	number	of	bytes.	By	contrast,	the
real	type	is,	in	principle,	a	machine-independent	and
mathematical	type	(however,	it	overflows	when	the	exponent	of
the	value	is	too	large	or	small	and	it	has	only	a	limited	amount	of
precision).

Example		 								var	width	:	real4

								var	height	:	real8

Details		

Turing	implements	the	type	real	using	8	byte	floating	point
representation.	This	provides	14	to	16	decimal	digits	of	precision
and	an	exponent	range	of	at	least	-38	..	38.	The	PC	and	Macintosh
versions	of	Turing	have	16	decimal	digits	of	accuracy	because
they	use	IEEE	standard	floating	point	representation.

This	implies	that	real8	and	real	are	essentially	the	same	type,	so
in	practice	there	is	no	advantage	to	using	real8	rather	than	real.
However,	real4	has	the	advantage	of	occupying	half	as	much
space	(with	correspondingly	reduced	precision).

Arithmetic	for	all	real	types	(real,	real4	and	real8)	is	carried	out
with	the	accuracy	and	exponent	range	of	8-byte	reals.

The	type	real4	is	sometimes	called	single	precision	(because	it
occupies	a	single	4-byte	word)	and	real8	is	sometimes	called
double	precision.

realstr real-to-string	function

Syntax		 realstr	(r	:	real,	width	:	int)	:	string

Description		

The	realstr	function	is	used	to	convert	a	real	number	to	a	string.
For	example,	realstr	(2.5e1,	4)="bb25"	where	b	represents	a
blank.	The	string	is	an	approximation	to	r,	padded	on	the	left	with
blanks	as	necessary	to	a	length	of	width.

The	width	parameter	must	be	non-negative.	If	the	width	parameter
is	not	large	enough	to	represent	the	value	of	r	it	is	implicitly
increased	as	needed.	The	displayed	value	is	rounded	to	the	nearest
decimal	equivalent	with	this	accuracy.	In	the	case	of	a	tie,	the
display	value	is	rounded	to	the	next	larger	value.

The	string	realstr	(r,	width)	is	the	same	as	the	string	frealstr	(r,
width,	defaultfw)	when	r	=0	or	when	1e-3	<	abs	(r)	<	1e6,
otherwise	the	same	as	erealstr	(r,	width,	defaultfw,	defaultew),
with	the	following	exceptions.	With	realstr,	trailing	fraction
zeroes	are	omitted,	and	the	decimal	point	is	omitted	if	the	entire
fraction	is	zero.	(These	omissions	take	place	even	if	the	exponent
part	is	printed.)	If	an	exponent	is	printed,	any	plus	sign	and
leading	zeroes	are	omitted.	Thus,	whole	number	values	are	in
general	displayed	as	integers.

Defaultfw	is	an	implementation-defined	number	of	fractional
digits	to	be	displayed.	For	most	implementations,	defaultfw	will
be	6.

Defaultew	is	an	implementation-defined	number	of	exponent
digits	to	be	displayed.	For	most	implementations,	defaultew	will
be	2.

The	realstr	function	approximates	the	inverse	of	strreal,
although	round-off	errors	keep	these	from	being	exact	inverses.

See	also		 the	erealstr,	frealstr,	strreal,	intstr	and	strint	functions.

record type

Syntax		

A	recordType	is:

	 record
	 	 id	{,	id	}	:	typeSpec
	 	 {	id	{,	id	}	:	typeSpec	}
	 end	record

Description		

Each	value	of	a	record	type	consists	of	fields,	one	field	for	each
name	(id)	declared	inside	the	record.	In	the	following	example,
the	fields	are	name,	phoneNumber	and	address.

Example		

								type	phoneRecord	:

												record

																name	:	string	(20)

																phoneNumber	:	int

																address	:	string	(50)

												end	record

								…

								var	oneEntry	:	phoneRecord

								var	phoneBook	:	array	1	..	100	of	phoneRecord

								var	i	:	int

								oneEntry	.name	:=	"Turing,	Alan"

								…

								phoneBook	(i)	:=	oneEntry	%	Assign	whole	record

Details		

In	a	record,	id's	of	fields	must	be	distinct.	However,	these	need
not	be	distinct	from	identifiers	outside	the	record.	Records	can	be
assigned	as	a	whole	(to	records	of	an	equivalent	type),	but	they
cannot	be	compared.	A	semicolon	can	optionally	follow	each
typeSpec.

Any	array	contained	in	a	record	must	have	bounds	that	are	known
at	compile	time.

The	notation	>	can	be	used	to	access	record	fields.	For	example,	if
p	is	a	pointer	to	phoneRecord,	p>name	locates	the	name	field.	See
pointer.

register use	machine	register

Dirty

Description		

When	a	variable,	constant	or	parameter	is	declared,	you	can
request	that	the	item	be	placed	in	a	machine	register.	This	should
be	done	only	for	programs	requiring	considerable	efficiency.

Example		

								var	register	counter	:	int

								const	register	maxCounter	:	int	:=	100

								procedure	p	(register	x	:	real)

												…

								end	p

Details		

Items	can	be	requested	to	be	in	registers	only	if	they	are	local	to	a
subprogram	(not	global	variables,	declared	in	the	main	program,	a
module,	monitor	or	class).	Items	requested	to	be	in	registers
cannot	be	bound	to,	passed	to	reference	parameters,	have	their
address	taken	by	addr,	or	have	certain	type	cheats	applied	to
them	(since	a	machine	register	has	no	address).

The	request	to	use	a	register	may	be	ignored.	For	example,	the
current	(1999)	interpretive	implementation	uses	pseudo-code,
which	has	no	machine	registers,	and	so	ignores	the	register
keyword.	For	the	syntax	of	using	this	keyword,	see	var
declaration,	const	declaration	and	paramDeclaration.

rem remainder	operator

Syntax		 rem

Description		

The	rem	(remainder]	operator	produces	the	remainder	of	one
number	divided	by	another.	For	example,	7	rem	2	produces	1	and
-12	rem	5	produces	-2.

Example		

In	this	example,	eggCount	is	the	total	number	of	eggs.	The	first
put	statement	determines	how	many	dozen	eggs	there	are.	The
second	put	statement	determines	how	many	extra	eggs	there	are
beyond	the	last	dozen.

								var	eggCount	:	int

								get	eggCount

								put	"You	have	",	eggCount	div	12,	"	dozen	eggs"

								put	"You	have	",	eggCount	rem	12,	"	left	over"

See	also		
infix	operators,	precedence	of	operators	and	the	mod	and	div
operators.

repeat make	copies	of	string

function

Syntax		 repeat	(s	:	string,	i	:	int)	:	string

Description		
The	repeat	function	returns	i	copies	of	string	s	catenated	together.
For	example,	repeat	("X",	4)	is	XXXX.

Example		

This	program	outputs	HoHoHo.

								var	word	:	string	:=	"Ho"

								put	repeat	(word,	3)

Details		

If	i	is	less	than	or	equal	to	zero,	the	null	string	""	is	returned.	The
repeat	function	is	often	used	for	spacing	of	output.	For	example,
this	statement	skips	20	blanks	before	outputting	x.

								put	repeat	("	",	20),	x

result statement

Syntax		

A	resultStatement	is:

	 result	expn

Description		
A	result	statement,	which	must	appear	only	in	a	function,	is	used	to
provide	the	value	of	the	function.

Example		

This	function	doubles	its	parameter.

								function	double	(x	:	real)	:	real

												result	2	*	x

								end	double

								put	double	(5.3)						%	This	outputs	10.6

Example		

This	function	finds	the	position	of	a	name	in	a	list.

								function	find	(a	:	array	1	..	100	of	string)	:	

												for	i	:	1	..	100

																if	a	(i)	=	name	then

																				result	i

																end	if

												end	for

								end	find

Details		

The	execution	of	a	result	statement	computes	the	value	of	the
expression	(expn)	and	terminates	the	function,	returning	the	value	as
the	value	of	the	function.

The	expression	must	be	assignable	to	the	result	type	of	the	function,	for
example,	in	double,	2*x	is	assignable	to	real.	(See	the
assignmentStatement	for	the	definition	of	assignable.)

A	function	must	terminate	by	executing	a	result	statement	and	not	by
reaching	the	end	of	the	function.

return statement

Syntax		

A	returnStatement	is:

	 return

Description		

A	return	statement	terminates	the	procedure	(or	main	program)
in	which	it	appears.	Ordinarily,	a	procedure	(or	main	program)
terminates	by	reaching	its	end;	the	return	statement	is	used	to
cause	early	termination.

Example		

This	procedure	takes	no	action	if	the	errorHasOccurred	flag	has
been	set	to	true.

								procedure	double

												if	errorHasOccurred	then

																return		%	Terminate	this	procedure

												end	if

												…	handle	usual	case	in	this	procedure	…

								end	double

Details		
A	return	must	not	appear	as	a	statement	in	(the	outermost	level
of)	a	module,	nor	can	it	appear	in	a	function.

RGB

Description		

This	unit	contains	the	predefined	constants	for	the	basic	colors
and	the	subprograms	to	change	the	color	palette.

All	subprograms	in	the	RGB	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"RGB.").	All	the	color	constants	are
exported	unqualified	and	thus	do	not	need	the	RGB	prefix.

Details		

For	a	program	that	displays	the	256	predefined	colors	(and	their
associated	color	numbers)	in	Turing,	run	the	"Colors.t"	program.

Details		

The	following	names	can	be	used	for	colors.	They	represent	color
numbers	and	thus	will	not	be	accurate	if	RGB.SetColor	has	been
used	to	change	color	numbers	0	through	15.

black,	blue,	green,	cyan,	red,	magenta,	purple,	brown,	white,
gray,	grey,	brightblue,	brightgreen,	brightcyan,	brightred,
brightmagenta,	brightpurple,	yellow,	brightwhite,	darkgray,
darkgrey

The	remaining	four	colors	represent	the	foreground	color	(black
on	Windows	or	the	Macintosh,	white	on	a	DOS	system)	and	the
background	color	(white	on	Windows	or	Macintosh,	black	on	a
DOS	system).	Using	these	four	colors	allows	you	to	write
programs	that	work	on	both	Windows	and	DOS	versions	of
Turing.

colorfg,	colourfg,	colorbg,	colourbg

Turing	uses	a	palette	to	access	colors	for	display.	This	palette	is	a

Details		

list	of	color	numbers	and	their	associated	actual	color.	The	Turing
palette	starts	with	256	entries	(the	color	numbers	from	0	to	255).
With	16,	24,	and	32-bit	color	displays,	however,	a	Turing	program
can	display	thousands	of	colors	at	once.	These	colors,	however,
will	all	have	color	numbers	associated	with	them.	For	example,	if
a	Turing	program	loads	a	JPEG	image,	there	may	be	thousands	of
colors	on	the	screen,	but	the	number	of	color	numbers	will	stay	at
256.	Likewise,	16,	24,	and	32-bit	color	displays,	if	you	load	a
picture	in	GIF	format	that	has	a	256	colors	that	are	different	from
the	initial	Turing	color	palette,	they	will	appear	in	the	run
window.	However,	they	will	not	be	added	to	Turing's	color
palette.

If	you	attempt	to	determine	the	color	number	of	a	particular	pixel
that	does	not	match	any	of	the	colors	in	Turing's	color	palette,
then	Turing	will	return	the	color	number	of	the	color	in	the	Turing
palette	that	most	closely	matches	that	color	of	the	pixel.

Entry
Points		

GetColor
GetColour 	 Gets	the	current	red,	green	and	blue	values	of	a

specified	color	number.
SetColor
SetColour 	 Sets	the	red,	green	and	blue	values	of	a

specified	color	number.
AddColor
AddColour 	 Creates	a	new	color	number	with	a	specified

red,	green	and	blue	value.

RGB.AddColor Part	of	RGB	module

Syntax		 RGB.AddColor	(redComp,	greenComp,	blueComp	:	real)	:	int

Description		

The	RGB.AddColor	function	attempts	to	create	a	new	color	with
the	red,	green	and	blue	components	specified.	If	successful,	the
function	returns	a	new	color	number	(usually	one	greater	than
maxcolor)	and	maxcolor	is	updated	by	adding	1	to	it.	If	it	is
unsuccessful,	the	function	returns	1	and	Error.Last	and
Error.LastMsg	can	be	used	to	determine	the	cause	of	the
problem.

The	red,	green	and	blue	values	must	normalized	to	be	between	0
and	1.	Thus	to	add	the	pure	red	to	the	color	palette,	you	would
call:

								newColor	:=	RGB.AddColor	(1.0,	0.0,	0.0)

newColor	would	be	set	to	the	color	added,	or	1	if	the	attempt	to
add	a	color	failed.

Example		

This	program	adds	a	palette	of	16	blues	to	the	end	of	the	color
palette.

								var	clr	:	int

								for	blueShade	:	0	..	15

													clr	=	RGB.AddColor	(0,	0,	blueShade	/	15)

													if	clr	=	1	then

																put	"Color	add	failed	on	shade	number	",	

																exit

												else

																put	"Added	color	number	",	clr

												end	if

								end	for

Details 	 RGB.AddColour	is	an	alternate	spelling	forRGB.AddColor.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

RGB.AddColor,	not	by	calling	AddColor.

See	also		 RGB.GetColorand	RGB.SetColor.

RGB.GetColor Part	of	RGB	module

Syntax		
RGB.GetColor	(colorNumber	:	int,	
	 var	redComp,	greenComp,	blueComp	:	real)

Description		

The	RGB.GetColor	procedure	returns	the	red,	green	and	blue
components	to	the	color	associated	with	the	colorNumber
parameter.	The	red,	green	and	blue	values	are	normalized	to	be
between	0	and	1.	Thus	color	white	returns	1.0	for	the	redComp,
greenComp	and	blueComp	values	and	color	black	returns	0.0	for
all	three.

Example		

This	program	gets	the	components	of	all	the	available	colors.

								put	"Color			Red					Green					Blue"

								for	clr	:	0	..	maxcolor

												var	redComp,	greenComp,	blueComp	:	int

												RGB.GetColor	(clr,	redComp,	greenComp,	blueComp

												put	clr	:	4,	"		",	redComp	:	6	:	4	,	"		",	greenComp

																																								blueComp	:	6	:	4

								end	for

Details 	 RGB.GetColour	is	an	alternate	spelling	forRGB.GetColor.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
RGB.GetColor,	not	by	calling	GetColor.

See	also		 RGB.SetColorand	RGB.AddColor.

RGB.maxcolor Part	of	RGB	module

Syntax		 maxcolor	:	int

Description		

The	maxcolor	function	is	used	to	determine	the	maximum	color
number	for	the	current	mode	of	the	screen.	The	alternate	spelling
is	maxcolour.

Example		

This	program	outputs	the	maximum	color	number.

								setscreen	("graphics")

								…

								put	"The	maximum	color	number	is	",	maxcolor

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	it	is
not,	it	will	automatically	be	set	to	"screen"	mode.	See	View.Set
for	details.

For	IBM	PC	compatibles	in	"screen"	mode,	maxcolor	=	15.	For
the	default	IBM	PC	compatible	"graphics"	mode	(CGA),
maxcolor	=	3.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	maxcolor	or
by	calling	RGB.maxcolor.

See	also		

Draw.Dot	for	examples	of	the	use	of	maxcolor.	See	the
Text.Color	procedure	which	is	used	for	setting	the	currently-
active	color.

RGB.SetColor Part	of	RGB	module

Syntax		
RGB.SetColor	(colorNumber:	int,
	 redComp,	greenComp,	blueComp	:	real)

Description		

The	RGB.SetColor	function	sets	the	red,	green	and	blue
components	of	the	color	associated	with	the	colorNumber
parameter.	The	red,	green	and	blue	values	must	normalized	to
be	between	0	and	1.	Thus	to	set	the	color	associated	with	the
colorNumber	parameter	to	pure	red,	you	would	call:

								RGB.SetColor	(colorNumber,	1.0,	0.0,	0.0)

It	is	wise	to	use	Error.Last	and	Error.LastMsg	to	check	to
see	if	the	color	change	is	successful.

Example		

This	program	sets	all	the	available	colors	to	shades	of	red

								for	clr	:	0	..	maxcolor

													if	not	RGB.SetColor	(clr,	clr	/	maxcolor,	0,	0)	

																put	"Color	set	failed	on	color	number	",	

																exit

												end	if

								end	for

Details 	 RGB.SetColour	is	an	alternate	spelling	forRGB.SetColor.

Details		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
RGB.SetColor,	not	by	calling	SetColor.

See	also		 RGB.GetColorand	RGB.AddColor.

round real-to-integer	function

Syntax		 round	(r	:	real)	:	int

Description		

The	round	function	is	used	to	convert	a	real	number	to	an
integer.	The	result	is	the	nearest	integer	to	r.	In	the	case	of	a	tie,
the	numerically	larger	value	is	returned.	For	example,	round	(3)
is	3,	round	(2.85)	is	3	and	round	(-8.43)	is	-8.

See	also		 the	floor	and	ceil	functions.

scalar type

Syntax		

A	scalarType	is	one	of:

	 (a) standardType 	
%	int,	real,
boolean	or
string

	 (b) enumeratedType
	 (c) subrangeType
	 (d) pointerType
	 (e) char
	 (f) intn
	 (g) natn
	 (h) realn

	 (i) namedType 	 	
%	Must	name
one	of	the
above	types

Description		

Scalar	types	are	sometimes	called	simple	or	primitive	types.	The
non-scalar	types	are	strings,	sets,	arrays,	records,	unions	and	in
OOT	char(n).	They	are	defined	using	scalar	types.	Scalar	types
are	passed	by	value	to	parameters,	while	non-scalars	are	passed
by	reference	(by	passing	an	implicit	pointer	to	the	non-scalar
value).

Description		

In	current	Turing	implementations	scalar	types	are	directly
represented	in	1,	2,	4	or	8	bytes	in	a	computer's	memory.	This
implies	that	they	can	be	efficiently	passed	by	value.

seek (file)	statement

Syntax		

A	seekStatement	is	one	of:

	 (a) seek	:	fileNumber	,	filePosition
	 (b) seek	:	fileNumber	,	*

Description		

Random	access	of	both	source	(ASCII	or	EBCDIC)	and	internal
form	(binary)	files	is	provided	by	the	seek	and	tell	statements.
The	seek	statement	repositions	the	specified	file	so	that	the	next
input/output	operation	will	begin	at	the	specified	point
(filePosition)	in	the	file.

The	fileNumber	must	specify	a	file	that	is	open	with	seek
capability.	The	filePosition	is	a	non-negative	integer	offset	in
bytes	from	the	beginning	of	the	file.	Usually,	this	is	a	number
returned	by	the	tell	statement.	(The	first	position	in	the	file	is
position	zero.)

Form	(b)	specifies	that	the	next	operation	is	to	begin	at	the
position	immediately	following	the	current	end	of	the	file.	A
filePosition	of	zero	specifies	that	the	next	operation	is	to	start	at
the	beginning	of	the	file.	Seeking	to	a	position	beyond	the	current
end	of	the	file	and	then	writing,	automatically	fills	the	intervening
positions	with	the	internal	representation	of	zero.

Example		

This	example	shows	how	to	use	seek	to	append	to	the	end	of	a
file.

								var	employeeRecord	:

												record

																name	:	string	(30)

																pay	:	int

												end	record

								var	fileNo	:	int

								open	:	fileNo,	"payroll",	write,	seek,	mod

								seek	:	fileNo,	*								%	Seek	to	the	end	of	the	file

								write	:	fileNo,	employeeRecord

																								%	This	record	is	added	to	the	end	of	the	file

See	also		
read,	write,	open,	close,	tell,	get	and	put	statements.	Another
example	use	of	seek	is	given	with	the	explanation	of	the	tell
statement.

self pointer	to	current	object

Syntax		 self

Description		
The	self	function	produces	a	pointer	to	the	current	object.	This
function	can	be	used	only	inside	a	class	declaration.	See	class.

Example		

Enter	the	current	object	onto	a	list	of	displayable	objects.	The
module	called	displayable	has	exported	a	procedure	called	enter
whose	parameter	type	is	pointer	to	anyclass.	Since	self	is	a
pointer	to	C	and	C	is	a	descendant	of	anyclass,	it	is	legal	to	pass
self	to	displayable.enter.

								class	C

												import	displayable

												…

												displayable.enter	(self)	…

												…

								end	C

Details		

It	is	illegal	to	call	the	exported	entries	of	a	class	until	the	current
object	has	been	completely	initialized,	so,	many	calls	to	the
current	object	using	self	will	not	be	legal.

The	notation	to	call	exported	subprogram	p	of	an	enclosing	class
C	or	of	its	ancestor	D,	is	C.p	or	D.p.	Calls	of	this	form,	which	can
appear	only	within	class	C,	call	the	subprogram	in	C	(or	in	D	in
the	case	of	D.p)	regardless	of	the	object	type,	or	of	any
overriding,	or	of	the	status	of	initialization.

separator between	tokens	in	a	program

Description		

A	Turing	program	is	made	up	of	a	sequence	of	tokens	(see
tokens),	such	as	var,	x,	:,	and	int.	These	tokens	may	have
separators	between	them.	A	separator	is	a	comment	(see
comment),	blank,	tab,	form	feed	or	an	end	of	line.

set type

Syntax		

A	setType	is:

	 set	of	typeSpec

Description		

Each	value	of	a	set	type	consists	of	a	set	of	elements.	The
typeSpec,	which	is	restricted	to	being	a	subrange	or	an
enumerated	type,	gives	the	type	of	these	elements.

Example		

The	smallSet	type	is	declared	so	that	it	can	contain	any	and	all	of
the	values	0,	1	and	2.	Variable	s	is	initialized	to	be	the	set
containing	1	and	2.

								type	smallSet	:	set	of	0	..	2

								var	s	:	smallSet	:=	smallSet	(0,	1)

								…

								if	2	in	s	then	…

Details		

In	classical	mathematics,	the	set	consisting	of	0	and	1	is	written	as
{0,1}.	This	is	written	in	Turing	using	a	set	constructor	consisting
of	the	name	of	the	set	type	followed	by	a	parenthesized	list	of
elements,	which	in	this	example	is	smallInt	(0,1).	The	empty	set	is
written,	for	example,	as	smallInt	().	The	full	set	is	written	as
smallInt	(all),	so	smallInt	(all)	=	smallInt	(0,1,2).

Sets	can	be	assigned	as	a	whole	(to	sets	of	an	equivalent	type).
See	also	equivalence	of	types.

The	operators	to	combine	two	sets	are	union	(+),	intersection	(*),
set	subtraction	(-),	equality	(=),	inequality	(not=),	subset	(<=),
strict	subset	(<),	superset	(>=),	strict	superset	(>),	and	xor
("exclusive	or"	also	known	as	symmetric	difference).	Only	sets
with	equivalent	types	(equal	bounds	on	their	index	types)	can	be
combined	by	these	operators.	The	operators	which	determine	if	an
element	is,	or	is	not,	in	a	set	are	in	and	not	in.	For	example,	the
test	to	see	if	2	is	in	set	s	is	written	in	the	above	example	as:	2	in	s.

The	indexType	of	a	set	type	must	contain	at	least	one	element.	For

example,	the	range	1	..	0	would	not	be	allowed.	See	also
indexType.	In	Turing,	sets	are	limited	to	at	most	31	elements.
OOT	allows	a	very	large	number	of	elements.

Details		

It	is	illegal	to	declare	an	"anonymous"	set.	The	only	legal
declaration	for	an	set	is	in	a	type	declaration.	For	example,	the
following	is	now	illegal:

								var	a	:	array	1	..	10	of	set	of	0	..	3

Given	that	there	is	no	(easy)	way	of	generating	a	set	value	without
it	being	a	named	type,	this	should	not	impact	any	but	the	most
bizarre	code.

See	also		 precedence	of	operators	for	the	order	of	applying	set	operations.

setConstructor

Syntax		

A	setConstructor	is:

	 setTypeId	(membersOfSet)

Description		

Each	value	of	a	set	type	consists	of	a	set	of	elements.	In	classical
mathematics,	the	set	consisting	of	0	and	1	is	written	as	{0,1}.	This
is	written	in	Turing	using	a	set	constructor	consisting	of	the	name
of	the	set	type	(setTypeId)	followed	by	a	parenthesized	list	of
elements.

Example		

The	smallSet	type	is	declared	so	that	it	can	contain	any	and	all	of
the	values	0,	1	and	2.	Variable	s	is	initialized	to	be	the	set
containing	1	and	2.	The	set	{0,1}	is	written	in	this	Turing
example	as	smallInt	(0,1).

								type	smallSet	:	set	of	0	..	2

								var	s	:	smallSet	:=	smallSet	(0,	1)

								…

								if	2	in	s	then	…

Details		

The	form	of	membersOfSet	is	one	of:

								(a)	expn	{	,	expn}		%	List	of	members	of	set

								(b)	all									%	All	member	of	index	type	of	set

								(c)													%	Nothing,	meaning	the	empty	set

The	empty	set	is	written,	for	example,	as	smallInt	().	The	full	set
is	written	as	smallInt	(all),	so	smallInt	(all)	=	smallInt	(0,1,2).	See
also	the	set	type.

The	syntax	of	setConstructor	as	given	above	has	been	simplified
by	ignoring	the	fact	that	set	types	can	be	exported	from	modules.
When	a	set	type	is	exported	and	used	outside	of	a	module,	you
must	write	the	module	name,	a	dot	and	then	the	type	name.	For
example,	the	set	constructor	above	would	be	written	as
m.smallSet(1,2),	where	m	is	the	module	name.

setpriority procedure

Syntax		 setpriority	(p	:	nat)

Description		

The	setpriority	procedure	is	used	to	set	the	priority	of	a	process
in	a	concurrent	program.	This	priority	cannot	be	counted	on	to
guarantee	critical	access	to	shared	variables.	A	smaller	value	of	p
means	increased	speed.	The	argument	to	setpriority	may	be
limited	to	the	range	0	to	2**15	-	1.

See	also		
getpriority,	fork	and	monitor.

See	also	predefined	unit	Concurrency.

setscreen graphics	procedure

								setscreen	("graphics:300;100")

This	program	outputs	the	square	roots	for	the	first	200	numbers.	The	user	can
inspect	all	the	output	and	print	the	values	after	the	program	has	finished
execution

								setscreen	("text")

								for	value	:	1	..	200

												put	value	:	3,	"			",	sqrt	(value)

								end	for

This	program	creates	a	window	without	a	button	bar	at	the	top	that	is	sized	to	fit
the	screen.	It	then	draws	an	“X”	in	red	in	the	window.

								setscreen	("graphics:max;max,nobuttonbar")

								drawline	(0,	0,	maxx,	maxy,	red)

								drawline	(maxx,	0,	0,	maxy,	red)

Syntax		 setscreen	(s	:	string)

Example		

Here	are	example	uses	of	the	setscreen	procedure.	In	many	cases,	these	will
appear	as	the	first	statement	of	the	program.	They	can,	however,	appear	any
place	in	a	program.

								setscreen	("graphics")												%	Enter	graphics	mode

								setscreen	("graphics:400;300")				%	Change	window	to	400x300

								setscreen	("nocursor")												%	Turn	off	cursor

								setscreen	("noecho")										%	Do	not	echo	keys

Description		

The	setscreen	statement	is	used	to	change	the	mode	of	the	screen,	as	well	as
the	way	in	which	Turing	does	input	and	output.	The	parameter	to	setscreen
a	string,	such	as	"graphics".	The	string	contains	one	or	more	options
separated	by	commas,	such	as	"text,	noecho".

Users	should	look	at	View.Set	in	order	to	find	out	the	implementation
specified	details	of	setscreen	on	their	systems.

There	are	two	screen	modes,	text	and	graphics.	In	text	mode,	output	to	the
window	is	only	allowed	using	put	and	get.	Attempting	to	use	graphics	or
moving	the	cursor	using	locate	will	result	in	an	error.	However,	a	window	in

Details		

text	mode	will	keep	all	text	output	sent	to	it.	Any	output	that	scrolls	off	the
edge	of	the	window	can	be	read	by	adjusting	the	scroll	bars	of	the	window.
Printing	a	text	output	window	prints	all	the	output	sent	to	the	window,	not
just	the	output	currently	visible	in	the	window.	Programs	often	use	
when	they	are	displaying	large	amounts	of	text	data	that	the	user	may	wish	to
view	or	print	later.	Saving	the	contents	of	a	text	output	window	creates	a	text
file	containing	all	the	output	sent	to	the	window.

In	graphics	mode,	a	program	can	use	both	put	and	get,	locate	and	graphics
commands	to	send	output	to	the	window.	However,	any	output	that	scrolls	off
the	window	is	lost.	Printing	the	window	outputs	the	current	contents	of	the
window.	Saving	a	graphics	output	window	saves	the	current	contents	of	the
window	as	a	BMP	file.

Where	the	options	to	setscreen	are	mutually	exclusive,	they	are	listed	here
with	the	default	underlined.	Here	are	the	options:

"graphics",	"text",	Sets	the	mode	of	the	window	to	the	given	mode.	A	size
can	for	the	window	can	be	specified	at	the	same	time.	If	the	window	mode	or
size	changes,	then	the	window	will	be	cleared.

To	specify	the	size	of	a	window	in	graphics	mode,	the	graphics	can	have	a
modifier	in	the	form	"graphics:<width>;<height>".	This	sets	the	window	to
be	<width>	pixels	by	<height>	pixels	in	size.	The	maximum	size	of	a	window
is	the	size	of	the	screen.

To	specify	the	size	of	a	window	in	text	mode,	the	text	can	have	a	modifier	in
the	form	"text:<rows>;<columns>".	This	sets	the	window	to	be	<rows
lines	in	height	by	<columns>	characters	in	width.	The	maximum	size	of	a
window	is	the	size	of	the	screen.

To	set	a	window	to	the	maximum	size	available	on	the	screen,	you	
"max"	for	the	<width>,	<height>,	<rows>	or	<columns>	parameters.

"cursor",	"nocursor"	Causes	the	cursor	to	be	shown	(or	hidden).	The	cursor
only	appears	when	the	program	is	waiting	for	keyboard	input	from	the	user.

"echo",	"noecho"	Causes	(or	suppresses)	echoing	of	characters	that	are	typed.
Echoing	is	commonly	turned	off	in	interactive	programs	to	keep	typed
characters	from	being	echoed	at	inappropriate	places	on	the	screen.

"nooffscreenonly",	"offscreenonly"	Causes	or	(suppresses)	output	from
being	sent	to	the	visible	window.	When	the	offscreenonly	option	is	active,
any	text	and	graphics	output	is	drawn	to	the	offscreen	buffer	that	is
maintained	for	every	Run	window	but	not	drawn	to	the	screen.	View.Update
is	then	used	to	copy	the	entire	contents	of	the	offscreen	buffer	to	the	
window.	By	allowing	numerous	drawing	commands	to	be	sent	to	the
offscreen	buffer	and	then	updating	the	window	at	one	time,	it	is	possible	to
get	smoother	animation.

"msdos",	"nomsdos"	Causes	the	window	to	use	the	MS-DOS	character	set
(with	line	drawing	characters)	instead	of	the	Windows	ANSI	character	set.
The	"nomsdos"	option	causes	the	window	to	use	the	Windows	ANSI
character	set.	Note	that	the	"msdos"	option	only	works	if	the	Windows	font
(usually	Courier	New)	supports	it.

"buttonbar",	"nobuttonbar"	Causes	or	(suppresses)	the	display	of	a	button
bar	at	the	top	of	the	output	window	which	allows	the	user	to	easily	stop
program	execution	or	save	and	print	the	output	window.

Example		 This	program	creates	a	graphics	window	that	is	300	pixels	by	100	pixels.

See	also		

the	Draw	module,	the	draw…	subprograms	and	the	View.Update	procedure
for	doing	smooth	animation.	See	also	View.Set	for	further	setscreen	
including	positioning	the	output	window	on	the	screen.

shl shift	left	operator

Syntax		 A	shl	B

Description		

The	shl	(shift	left)	operator	produces	the	value	of	A	shifted	B	bits
to	the	left.	Both	A	and	B	must	be	non-negative	integers	(natural
numbers).

Example		

Assign	the	base	2	value	11	to	i	and	then	shift	it	left	by	2	places
and	assign	the	resulting	base	2	value	1100	to	j.

								var	i,	j	:	int

								i	:=	2	#	11					%	2#11	=	3	(base	10)

								j	:=	i	shl	2								%	j	becomes	2#1100	=	12	(base	10)

Details		

The	shl	operator	is	defined	mathematically	(in	a	machine-
independent	way)	as	follows:	A	shl	B	=	A	*	(2**B).	Overflow
occurs	when	the	result	exceeds	the	maximum	value	of	the	nat4
(4-byte	natural	number)	type.

Value	A	can	be	of	any	integer	type	(as	long	as	it	is	non-negative)
or	any	natural	number	type.

The	shl	operator	has	the	same	precedence	as	the	*	operator.

See	also		

shr	(shift	right),	or,	and	and	xor,	which	also	are	bit	manipulation
operators	that	act	on	non-negative	values.	See	also
explicitIntegerConstant	which	describes	values	such	as	2#1100.

shr shift	right	operator

Syntax		 A	shr	B

Description		

The	shr	(shift	right)	operator	produces	the	value	of	A	shifted	B
bits	to	the	right.	Both	A	and	B	must	be	non-negative	integers
(natural	numbers).

Example		

Assign	the	base	2	value	1101	to	i	and	then	shift	it	right	by	2
places	and	assign	the	resulting	base	2	value	11	to	j.

								var	i,	j	:	int

								i	:=	2	#	1101			%	2#1101	=	13	(base	10)

								j	:=	i	shr	2								%	j	becomes	2#11	=	3	(base	10)

Details		

The	shr	operator	is	defined	mathematically	(in	a	machine-
independent	way)	as	follows:	A	shr	B	=	A	div	2**B.

Value	A	can	be	of	any	integer	type	(as	long	as	it	is	non-negative)
or	any	natural	number	type.

The	shr	operator	has	the	same	precedence	as	the	*	operator.

See	also		

shl	(shift	left),	or,	and	and	xor,	which	also	are	bit	manipulation
operators	that	act	on	non-negative	values.	See	also
explicitIntegerConstant	which	describes	values	such	as	2#1101.

sign function

Syntax		 sign	(r	:	real)	:	-1	..	1

Description		

The	sign	function	is	used	to	determine	whether	a	number	is
positive,	zero	or	negative.	It	returns	1	if	r	>	0,	0	if	r	=	0,	and	-1	if
r	<	0.	For	example,	sign	(5)	is	1	and	sign	(-23)	is	-1.

Example		

This	program	reads	in	numbers	and	determines	if	they	are
positive,	zero	or	negative:

								var	x	:	real

								get	x

								case	sign	(x)	of

												label	1	:	put	"Positive"

												label	0	:	put	"Zero"

												label	-1	:	put	"Negative"

								end	case

See	also		 See	also	predefined	unit	Math.

signal wake	up	a	process	statement

Syntax		

A	signalStatement	is:

	 signal	variableReference

Description		

A	signal	statement	is	used	in	a	concurrent	program	to	wake	up	a
process	that	is	blocked	(waiting	on	a	condition	variable).	The
statement	can	only	be	used	inside	a	monitor	(a	special	kind	of
module	that	handles	concurrency).	A	signal	statement	operates	on
a	condition	variable	(the	variableReference),	which	is	essentially
a	queue	of	sleeping	processes.	See	condition	for	an	example	of	a
signal	statement.

Details		

A	signal	statement	wakes	up	one	process	that	is	doing	a	wait	on
the	specified	condition	queue,	if	such	a	process	exists.	If	the
condition	is	deferred	(or	timeout;	see	condition),	the	signaler
continues	in	the	monitor,	and	the	awakened	process	is	allowed	to
continue	only	when	the	monitor	becomes	inactive.	A	signal	to	an
immediate	(non-deferred)	condition	causes	the	signaled	process	to
begin	running	in	the	monitor	immediately.	The	signaling	process
waits	to	re-enter	the	monitor	when	the	monitor	becomes	inactive.

See	also		
condition	and	wait.	See	also	monitor	and	fork.	See	also	empty.
See	also	pause.

simutime simulated	time	function

Syntax		 simutime	:	int

Description		
The	simutime	function	returns	the	number	of	simulated	time
units	that	have	passed	since	program	execution	began.

Details		

Simulated	time	only	passes	when	all	process	are	either	paused	or
waiting.	This	simulates	the	fact	that	CPU	time	is	effectively
infinitely	fast	when	compared	to	"pause"	time.

Example		

This	prints	out	the	simulated	time	passing	between	two	processes.
This	will	print	out	3,	5,	6,	9,	10,	12,	15,	15,	18,	20,	21,	…

								process	p	(t	:	int)

												loop

																pause	t

																put	simutime

												end	loop

								end	p

								

								fork	p	(3)

								fork	p	(5)

Execute		

See	also		 See	also	predefined	unit	Concurrency.

sin sine	function	(radians)

Syntax		 sin	(r	:	real)	:	real

Description		
The	sin	function	is	used	to	find	the	sine	of	an	angle	given	in
radians.	For	example,	sin	(0)	is	0.

Example		

This	program	prints	out	the	sine	of	p/6,	2p/6,	3p/6,	up	to	12p/6
radians.

								const	pi	:=	3.14159

								for	i	:	1	..	12

												const	angle	:=	i	*	pi	/	6

												put	"Sin	of	",	angle,	"	is	",	sin	(angle)

								end	for

Execute		

See	also		

the	cos	and	tan	functions	for	calculating	cosine	and	tangent.

the	sind	function	which	finds	the	sine	of	an	angle	given	in
degrees.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

sind sine	function	(degrees)

Syntax		 sind	(r	:	real)	:	real

Description		
The	sind	function	is	used	to	find	the	sine	of	an	angle	given	in
degrees.	For	example,	sind	(0)	is	0.

Example		

This	program	prints	out	the	sine	of	30,	60,	90,	up	to	360	degrees.

								for	i	:	1	..	12

												const	angle	:=	i	*	30

												put	"Sin	of	",	angle,	"	is	",	sind	(angle)

								end	for

Execute		

See	also		

the	cosd	and	tand	functions	for	calculating	cosine	and	tangent.

the	sin	function	which	finds	the	sine	of	an	angle	given	in	radians.
(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

sizeof size	of	a	type

								Dirty

Syntax		 sizeof	(typeNameOrVariableReference)

Description		

The	sizeof	attribute	is	used	to	find	the	number	of	bytes	used	to
represent	the	type	or	variable.	This	is	implementation-dependent
(dirty).

Example		

The	size	of	int2	and	nat2	is	2.

								var	i	:	int2

								const	nat2size	:=	sizeof	(i)		%	size	is	2

Details		

The	typeNameOrVariableReference	must	be	the	name	of	a	user-
defined	type,	a	variable	reference,	a	basic	type	(such	as	real),	or	a
constant.

In	principle,	sizeof	returns	the	number	of	storage	units	which
would	not	necessarily	be	8-bit	bytes.	For	example,	in	some	older
machines,	such	as	the	CDC	6000	series,	the	storage	units	are	60
bit	words.	However,	almost	all	modern	computers	use	8-bit	bytes
so	these	are	the	units	of	sizeof.

Beware	that	sizes	may	reflect	alignment	constraints	in	the
underlying	computer.	For	example,	string	sizes	may	be	rounded
up	to	even	values	(2-byte	word	alignments).

See	also		

the	indirection	operator	@,	cheat,	explicitIntegerConstant	(how
to	write	hexadecimal	constants),	and	pointers	(in	particular
unchecked	pointers).	See	also	addr,	which	returns	the	address	of
a	variable.

sizepic graphics	function

Syntax		 sizepic	(x1,	y1,	x2,	y2	:	int)	:	int

Description		

The	sizepic	function	is	used	to	determine	the	size	buffer	needed	to
record	a	picture	from	the	screen	(see	description	of	takepic).
This	gives	the	minimum	number	of	elements	of	the	int	array	used
by	takepic.	The	buffer	is	used	by	drawpic	to	make	copies	of	the
picture	on	the	screen.

Example		

This	program	outputs	the	size	of	array	needed	to	hold	a	picture
with	left	bottom	corner	at	x=10,	y=20	and	right	top	corner	at
x=50,	y=60.

								setscreen	("graphics")

								…

								put	"The	size	of	the	array	needs	to	be",

												sizepic	(10,	20,	50,	60)

Details		

See	takepic	for	an	example	of	the	use	of	sizepic	and	for	further
information	about	buffers	for	drawing	pictures.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

See	also		

drawpic.	See	also	setscreen,	maxx,	maxy,	drawdot,	drawline,
drawbox,	and	drawoval.

See	also	predefined	unit	Pic.

skip used	in	get	statement

Syntax		 skip

Description		

Using	skip	as	an	input	item	in	a	get	statement	causes	the	current
input	to	be	skipped	until	a	non-whitespace	token	is	encountered.
Whitespace	includes	all	blanks,	tabs,	form	feeds	and	newlines.

Example		

The	skip	input	item	was	originally	intended	to	be	used	to	see	if
more	input	exists	in	an	input	file.	This	use	has	been	largely	made
redundant	by	a	change	in	the	Turing	language.	The	new	version
of	Turing	reads	a	token,	as	in	get	s	but	not	in	get	s:*	or	get	s:3,
and	automatically	skips	any	white	space	following	the	input
value,	but	will	not	go	beyond	the	beginning	of	the	next	input	line.
Originally	this	automatic	skipping	did	not	take	place,	so	skip	was
required.	The	form	of	an	input	loop	that	used	skip	was	as	follows:

								loop

												get	skip												%	This	is	line	now	redundant

												exit	when	eof

												get	…

												…

								end	loop

Details		

The	skip	bypasses	all	whitespace	characters	including	any	trailing
newlines	and	blank	lines.	By	skipping	these	characters,	a	true
end-of-file	condition	was	detected.	Otherwise,	the	end-of-file
could	have	been	hidden	by	any	whitespace	following	the	last
input	item.	With	the	change	in	Turing,	the	line	get	skip	is	no
longer	needed	(although	it	still	works	correctly).

Example		

The	skip	can	also	be	used	to	correctly	identify	the	start	of	a	long
string	(usually	to	be	read	in	line	or	counted	mode).	Here,	it	skips
the	whitespace	and	trailing	newline	as	follows:

								var	i	:	int

								var	line	:	string

								loop

												get	i,	skip,	line:*

												…

								end	loop

Details		

The	first	item	in	the	get	statement	reads	an	integer	by	skipping	all
whitespace	and	reading	digits	until	whitespace	is	encountered.
The	input	stream	is	then	left	with	the	whitespace	as	the	next	input
character.	The	skip	then	skips	past	the	whitespace,	effectively
beginning	the	next	input	at	the	next	non-whitespace	character.
This	truncates	leading	blanks	and	has	another,	potentially	more
important,	effect.	If	the	integer	is	the	last	data	on	a	line	and	the
string	is	on	a	following	line,	the	skip	is	necessary	to	avoid	setting
line	to	a	null	string	value.

See	also		 get	statement	and	loop	statement.

skip used	in	put	statement

Syntax		 skip

Description		
Using	skip	as	an	output	item	in	a	put	statement	causes	the	current
output	line	to	be	ended	and	a	new	line	to	be	started.

Example		

This	example,	To	be	is	output	on	one	line	and	Or	not	to	be	on	the
next.

								put	"To	be",	skip,	"Or	not	to	be"

Details		 Using	skip	is	equivalent	to	outputting	the	newline	character	"\n".

sound statement

Syntax		 sound	(frequency,	duration	:	int)

Description		

The	sound	procedure	is	used	to	cause	the	computer	to	sound	a
note	of	a	given	frequency	for	a	given	time.	The	frequency	is	in
cycles	per	second	(Hertz).	The	time	duration	is	in	milliseconds.
For	example,	middle	A	on	a	piano	is	440	Hertz,	so	sound(440,
1000)	plays	middle	A	for	one	second.

Example		

This	program	sounds	the	frequencies	100,	200	up	to	1000	each	for
half	a	second.

								for	i	:	1	..	10

												put	i

												sound	(100	*	i,	500)		%	Sound	note	for	1/2	second

								end	for

Details		

On	IBM	PC	compatibles,	the	hardware	resolution	of	duration	is	in
units	of	55	milliseconds.	For	example,	sound(440,	500)	will	delay
the	program	by	about	half	a	second,	but	may	be	off	by	as	much	as
55	milliseconds.

Details		 The	sound	procedure	does	not	currently	work	under	MacOOT.

See	also		

play	statement,	which	plays	notes	based	on	musical	notation.	For
example,	play("8C")	plays	an	eighth	note	of	middle	C.	See	also
the	delay,	clock,	sysclock,	wallclock,	time	and	date	statements.

See	also	predefined	unit	Music.

Sprite

Description		

Sprites	are	a	way	of	doing	animation	in	Turing	bypassing	the	Pic
module.	A	sprite	is	essentially	a	picture	with	a	specific	location
and	"depth".	You	create	a	sprite	by	calling	Sprite.New	with	a
picID	received	from	Pic.New.	You	can	then	move	the	sprite
around	by	calling	Sprite.SetPosition.	When	you	are	finished	with
the	sprite,	you	call	Sprite.Free.

Note	that	sprites	work	best	when	they	are	moderately	small.	If
you	have	large	sprites,	you	will	continue	to	have	flashing.

All	subprograms	in	the	Sprite	unit	are	exported	qualified	(and
thus	must	be	prefaced	with	"Sprite.").

Entry
Points		

New 	 Creates	a	new	sprite	from	a	picture.
Free 	 Disposes	of	a	sprite	and	free	up	its	memory.

SetHeight 	

Sets	the	height	of	a	sprite.	Sprites	with	a
greater	height	appear	above	sprites	with	a
lesser	height.	The	background	is	considered
height	0.	The	height	may	be	negative.

SetPosition 	 Sets	the	location	of	the	sprite.	Can	specify	the
center	of	the	sprite	or	the	lower-left	corner.

SetFrameRate 	 Sets	the	maximum	number	of	times	a	second
the	sprites	will	be	moved	on	screen.

ChangePic 	 Changes	the	picture	associated	with	a	sprite.

Animate 	
Changes	the	location	and	the	picture
associated	with	a	sprite.	Used	for	animating	a
moving	changing	image.

Show 	 Shows	a	previously	hidden	sprite.
Hide 	 Hides	a	visible	sprite.

Sprite.Animate Part	of	Sprite	module

Syntax		
Sprite.Animate	(spriteID,	picID,	x,	y	:	int,
				centered	:	boolean)

Description		

Moves	the	sprite	specified	by	spriteID	to	the	location	specified	by	(
true,	then	the	sprite	is	centered	on	(x,	y).	Otherwise	(x,	y)	specifies	the	lower-left	corner
of	the	sprite.	At	the	same	time,	it	changes	the	picture	associated	with	the	sprite.

A	simple	example	of	the	Sprite.Animate	procedure	would	be	of	a	
picture	associated	with	the	sprite	would	constantly	change	as	the	figure	was	walking.	At
the	same	time,	the	location	of	the	figure	would	also	change.

Example		

Here	is	a	program	that	loads	a	series	of	images	from	an	animated	GIF	file	called
"mypic.gif".	It	works	by	loading	the	images	from	the	GIF	file	into	an	array	(see
Pic.FileNewFrames	for	more	information)	and	then	displays	the	images	sequentially	on
the	screen,	moving	the	image	eight	pixels	each	time.

								var	numFrames	:=	Pic.Frames	("mypic.gif")

								%	Load	the	picture

								var	delayTime	:	int

								var	pics	:	array	1	..	numFrames	of	int

	 Pic.FileNewFrames	("mypic.gif",	pics,	delayTime)

								var	sprite:	int

								sprite:=	Sprite.New	(pics	(1))

								Sprite.SetPosition	(sprite,	0,	100,	false)

								Sprite.Show	(sprite)

								for	x	:	8	..	maxx	by	8

												Sprite.Animate	(sprite,	pics	((x	div	8)	mod	

					 				delay	(40)				%	Stop	sprite	from	moving	too	quickly

								end	for

								Sprite.Free	(sprite)

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Sprite.Animate
Animate.

See	also		 Sprite.New,	Sprite.SetPosition	and	Sprite.ChangePic.

Sprite.ChangePic Part	of	Sprite	module

Syntax		 Sprite.ChangePic	(spriteID,	picID	:	int)

Description		

Changes	the	picture	associated	with	a	sprite	while	maintaining	the
sprites	height	and	visibility	status.	A	typical	use	Sprite.ChangePic
would	be	to	animate	a	sprite	that	stays	in	position.

Example		

Here	is	a	program	that	t	that	loads	six	images	from	files	Pic1.bmp
through	Pic6.bmp	and	then	displays	them	sequentially	in	the	center
of	the	screen.

								var	pics	:	array	0	..	5	of	int

								var	sprite:	int

								for	i	:	1	..	6

												pics	(i		1)	:=	Pic.FileNew	("Pic"	+	intstr	(

												if	Error.Last	not=	0	then

																put	"Error	loading	image:	",	Error.LastMsg

																return

												end	if

								end	for

								figure	:=	Sprite.New	(pics	(0))

								Sprite.SetPosition	(sprite,	maxx	div	2,	maxy	div

								Sprite.Show	(sprite)

								for	i	:	1	..	100

												Sprite.ChangePic	(sprite,	pics	(i	mod	6))

								end	for

								Sprite.Free	(sprite)

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.ChangePic,	not	by	calling	ChangePic.

See	also		 Sprite.New.

Sprite.Free Part	of	Sprite	module

Syntax		 Sprite.Free	(spriteID	:	int)

Description		
Destroys	the	sprite	and	frees	up	the	memory	the	sprite	used.	It	is
an	error	to	use	the	spriteID	after	the	sprite	has	been	freed.

Example		 See	Sprite.Animate	for	an	example	of	Sprite.Free.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.Free,	not	by	calling	Free.

See	also		 Sprite.New.

Sprite.Hide Part	of	Sprite	module

Syntax		 Sprite.Hide	(spriteID	:	int)

Description		
Hides	a	previously	visible	sprite.	Sprite.Hide	has	no	effect	if	the	sprite	is
already	invisible.

Example		

The	following	program	animates	four	balls	on	the	screen.	When	the	balls	are
close	to	each	other	or	to	a	wall,	they	appear,	otherwise	they	are	hidden.

								var	pic,	sprite,	x,	y,	dx,	dy,	radius	:	array	1	..	6	

								var	visible	:	array	1	..	6	of	boolean

								

								setscreen	("nocursor")

								

								%	Create	all	the	sprites.

								for	i	:	1	..	6

												radius	(i)	:=	Rand.Int	(10,	25)

												Draw.FillOval	(25,	25,	radius	(i),	radius	(i

												Font.Draw	(intstr	(i),	20,	20,	0,	black)

												pic	(i)	:=	Pic.New	(0,	0,	50,	50)

												Draw.FillBox	(0,	0,	50,	50,	0)

												x	(i)	:=	Rand.Int	(radius	(i),	maxx	‹	radius

												y	(i)	:=	Rand.Int	(radius	(i),	maxy	‹	radius

												dx	(i)	:=	Rand.Int	(3,	3)

												dy	(i)	:=	Rand.Int	(3,	3)

												sprite	(i)	:=	Sprite.New	(pic	(i))

												Sprite.SetPosition	(sprite	(i),	x	(i),	y	(i),	

												Sprite.SetHeight	(sprite	(i),	i)

												visible	(i)	:=	false

								end	for

								

								%	Now	move	all	the	sprites	around	the	screen.

								loop

												for	i	:	1	..	6

																if	x	(i)	+	dx	(i)	<	radius	(i)	or

																								x	(i)	+	dx	(i)	>	maxx		radius	(i

																				dx	(i)	:=	dx	(i)

																end	if

																x	(i)	:=	x	(i)	+	dx	(i)

																if	y	(i)	+	dy	(i)	<	radius	(i)	or

																								y	(i)	+	dx	(i)	>	maxy		radius	(i

																				dy	(i)	:=	dy	(i)

																end	if

																y	(i)	:=	y	(i)	+	dy	(i)

												end	for

												for	i	:	1	..	6

																var	near	:	boolean	:=	false

																if	(x	(i)	<	50)	or	(x	(i)	>	maxx		50)	or

																								(y	(i)	<	50)	or	(y	(i)	>	maxy		50)	

																				near	:=	true

																end	if

																if	not	near	then

																				for	j	:	1	..	6

																								if	i	not=	j	then

																												if	sqrt	((x	(i)	‹	x	(j))	**	2	+

																																(y	(i)	‹	y	(j))	**	2)	<	100	

																																near	:=	true

																																exit

																												end	if

																								end	if

																				end	for

																end	if

																if	near	and	not	visible	(i)	then

																				Sprite.Show	(sprite	(i))

																				visible	(i)	:=	true

																elsif	not	near	and	visible	(i)	then

																				Sprite.Hide	(sprite	(i))

																				visible	(i)	:=	false

																end	if

																Sprite.SetPosition	(sprite	(i),	x	(i),	y

												end	for

												Time.Delay	(40)

												exit	when	hasch

								end	loop

								for	i	:	1	..	6

												Sprite.Free	(sprite	(i))

								end	for

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Sprite.Hide
calling	Hide.

See	also		 Sprite.Show.

Sprite.New Part	of	Sprite	module

Syntax		 Sprite.New	(picID	:	int)	:	int

Description		

Creates	a	new	sprite	from	a	picture	specified	by	picID.	The	sprite
starts	invisible	and	should	be	given	a	depth	using
Sprite.SetHeight	and	a	position,	given	Sprite.SetPosition	before
being	made	visible	using	Sprite.Show.	When	you	are	finished
using	the	sprite,	the	sprite	should	be	freed	using	Sprite.Free.

Sprites	work	best	when	they	are	of	moderate	size.	Large	sprites
will	cause	flashing	when	moved	across	the	screen.

Anything	that	is	is	color	0	in	the	picture	will	not	appear	when	the
sprite	is	drawn.	In	other	words,	color	0	is	transparent.	(This	is	by
default.	You	can	set	the	transparent	color	for	a	sprite	by	setting
the	picture's	transparent	colour	using	Pic.SetTransparentColor.

Example		 See	Sprite.Animate	for	an	example	of	Sprite.New.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.New,	not	by	calling	New.

See	also		
Sprite.SetHeight,	Sprite.SetPosition,	Sprite.Show	and
Sprite.Free.

Sprite.SetFrameRate Part	of	Sprite	module

Syntax		 Sprite.SetFrameRate	(framesPerSec	:	int)

Description		

Specifies	the	maximum	number	of	times	per	second	that	sprite
positions	will	be	changed	on	the	screen.	The	higher	the	number,
the	smoother	the	animation	will	appear	(and	the	more	processor
time	will	be	used	to	perform	the	animation).

Details		

When	you	change	the	position	or	appearance	of	a	sprite,	Turing
does	not	update	the	window	immediately.	Instead,	it	waits	a
certain	length	of	time	and	then	updates	all	sprites	that	have	moved
since	the	last	update.	This	allows	for	relatively	smooth	animation.

This	means	that	you	have	a	simple	loop	that	calls
Sprite.SetPosition	200	times	a	second,	the	image	of	the	sprite	on
the	screen	is	still	only	being	moved	(by	default)	33	times	a
second.

You	can	specify	how	many	times	a	second	Turing	checks	to	see	if
a	sprite	has	moved	by	using	the	Sprite.SetFrameRate	procedure.
Rates	of	5-10	will	make	the	movement	of	the	sprites	seem	very
choppy.	Rates	of	100	are	more	or	less	completely	smooth	(the
maximum	is	120)	and	most	CRT's	will	not	notice	any	difference
after	60.	The	default	rate	is	33	frames	per	second.	You	should
note	that	if	you	set	the	rate	higher	than	your	computer	can	handle,
every	other	part	of	your	program	will	slow	down	as	Turing	will
be	checking	for	sprite	movement	rather	than	executing	your
program.

A	modern	PC	(2+	GHz	with	a	decent	graphics	card)	can	probably
handle	a	frame	rate	of	60+,	depending	on	the	number	of	sprites.	A
Pentium	III	should	probably	use	the	default	rate.	Slower	machines
should	probably	use	a	lower	rate	(around	20).	Experimentation	is
the	best	way	to	determine	the	ideal	frame	rate.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling

Sprite.SetFrameRate,	not	by	calling	SetFrameRate.

Sprite.SetHeight Part	of	Sprite	module

Syntax		 Sprite.SetHeight	(spriteID,	newHeight	:	int)

Description		

Sets	the	height	of	the	sprite	specified	by	spriteID	to	the	value
specified	by	newHeight.

The	height	of	a	sprite	determines	which	sprite	appears	above
another	when	they	overlap.	The	"higher"	sprite	(the	one	with	the
greater	height)	will	appear	on	top	of	the	sprite	with	the	lower
height,	even	if	the	lower	sprite	is	drawn	second.

The	background	(i.e.	any	non-sprite)	is	considered	to	be	in	height
0.	Sprites	with	a	negative	height	will	appear	"behind"	the
background.	Note	that	if	two	sprites	have	the	same	height,	the	one
drawn	last	will	appear	above	the	first	one.

Example		 See	Sprite.Hide	for	an	example	of	Sprite.SetHeight.

Details		

It	should	be	noted	that	a	lot	more	computation	must	be	done	to
display	sprites	with	a	negative	height.	If	you	are	on	a	slower
machine	and	performance	is	not	sufficient,	consider	trying	to
eliminate	the	use	of	sprites	moving	behind	the	background.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.SetPosition,	not	by	calling	SetPosition.

See	also		 Sprite.New.

Sprite.SetPosition Part	of	Sprite	module

Syntax		
Sprite.SetPosition	(spriteID,	x,	y	:	int,	
				centered	:	boolean)

Description		

Moves	the	sprite	specified	by	spriteID	to	the	location	specified	by
(x,	y).	If	centered	is	true,	then	the	sprite	is	centered	on	(x,	y).
Otherwise	(x,	y)	specifies	the	lower-left	corner	of	the	sprite.

Example		 See	Sprite.Hide	for	an	example	of	Sprite.SetPosition.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.SetPosition,	not	by	calling	SetPosition.

See	also		 Sprite.New.

Sprite.Show Part	of	Sprite	module

Syntax		 Sprite.Show	(spriteID	:	int)

Description		
Displays	a	previously	hidden	sprite.	Sprite.Show	has	no	effect	if
the	sprite	is	already	visible.

Example		 See	Sprite.Hide	for	an	example	of	Sprite.Show.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sprite.Show,	not	by	calling	Show.

See	also		 Sprite.Hide.

sqrt square	root	function

Syntax		 sqrt	(r	:	real)	:	real

Description		
The	sqrt	function	is	used	to	find	the	square	root	of	a	number.	For
example,	sqrt	(4)	is	2.

Example		

This	program	prints	out	the	square	roots	of	1,	2,	3,	…	up	to	100.

								for	i	:	1	..	100

												put	"Square	root	of	",	i,	"	is	",	sqrt	(i)

								end	for

Details		

It	is	illegal	to	try	to	take	the	square	root	of	a	negative	number.	The
result	of	sqrt	is	always	positive	or	zero.

The	opposite	of	a	square	root	is	the	square.	For	example,	the
square	of	x	is	written	is	x**2.

See	also		 See	also	predefined	unit	Math.

standardType

Syntax		

A	standardType	is	one	of:

	 (a) int
	 (b) real

	 (c)
string	[(
maximumLength
)]

	 (d) boolean

	 (e) nat 	 	 %	natural
number

	 (f) intn 	 	
%	n-byte
integer	(n=1,
2,	4)

	 (g) natn 	 	
%	n-byte
natural	(n=
1,	2,	4)

	 (h) realn 	
%	n-byte
real	(n=4,
8)

	 (i) char 	 	 %	single
character

	 (j) char(n) 	 %	n
characters

Description		
The	standard	types	can	be	used	throughout	a	program.	They
should	not	be	included	in	an	import	list.

See	also		
int,	real,	string	and	boolean.	See	also	nat,	intn,	natn,	realn,
char,	char(n)

statement

Syntax		

A	statement	is	one	of:

	 (a) assignmentStatement 	
%
variableReference
:=	expn

	 (b) openStatement 	 %	open	…
	 (c) closeStatement 	 %	close	…
	 (d) putStatement 	 %	put	…
	 (e) getStatement 	 %	get	…
	 (f) readStatement 	 %	read	…
	 (g) writeStatement 	 %	write	…
	 (h) seekStatement 	 %	seek	…
	 (i) tellStatement 	 %	tell	…
	 (j) forStatement 	 %	for	…	end	for

	 (k) loopStatement 	 %	loop	…	end
loop

	 (l) exit	[when	trueFalseExpn]
	 (m) ifStatement 	 %	if	…	end	if

	 (n) caseStatement 	 %	case	…	end
case

	 (o) assert	trueFalseExpn
	 (p) begin
	 	 	 statementsAndDeclarations
	 	 end

	 (q) procedureCall 	 %	procedureId
[(parameters)]

	 (r) return
	 (s) result	expn

	 (t) new	[collectionId	,]
pointerVariableReference

	 (u) free	[collectionId	,]
pointerVariableReference

	 (v) tag	unionVariableReference	,
expn

	 (w) forkStatement 	 %	fork	…
	 (x) signal	variableReference

	 (y) wait	variableReference	[,
expn]

	 (z) pause	expn

	 (aa) quit	[guiltyParty]	[:quitReason]
	 (bb) unchecked
	 (cc) checked

Description		

A	statement	(or	command)	causes	a	particular	action,	for	example,
the	putStatement:

								put	"Hello"

outputs	Hello.	See	the	descriptions	of	the	individual	statements
for	explanations	of	their	actions.	Each	statement	can	optionally	by
followed	by	a	semicolon	(;).

Example		
								width	:=	24									%	Assignment	statement

								put	"Hello	world"			%	Put	statement

								exit	when	i	=	100							%	Exit	statement

								assert	width	<	320		%	Assert	statement

Details		

You	can	use	a	result	statement	only	in	a	function.	You	can	use	a
return	statement	only	to	terminate	a	procedure	or	the	main
program	(but	not	to	terminate	the	initialization	of	a	module).	See
also	result	and	return.

There	are	a	number	of	predefined	procedures,	such	as	drawline,
which	are	not	listed	as	statements	above.	These	are	considered
procedure	calls,	which	is	one	form	of	statement.

statementsAndDeclarations

Syntax		

StatementsAndDeclarations	are:

	 {	statementOrDeclaration	}

Description		

StatementsAndDeclarations	are	a	list	of	statements	and
declarations.	For	example,	a	Turing	program	consists	of	a	list	of
statements	and	declarations.	The	body	of	a	procedure	is	a	list	of
statements	and	declarations.

Each	statementOrDeclaration	is	one	of:

								(a)	statement

								(b)	declaration

See	also	statement	and	declaration.

Example		

This	list	of	statements	and	declarations	is	a	Turing	program	that
outputs	Hello	Frank.

								var	name	:	string

								name	:=	"Frank"

								put	"Hello	",	name

Str

Description		

This	unit	contains	the	predefined	constants	for	manipulating
strings.

Several	routines	in	the	Str	module	are	exported	unqualified.

Entry
Points		

Lower 	 Convert	a	string	to	lower	case.
Upper 	 Convert	a	string	to	upper	case.
Trim 	 Remove	leading	and	trailing	blanks.
index 	 Finds	a	specified	string	in	another	string.
length 	 Returns	the	length	of	a	string.

repeat 	 Creates	a	string	by	repeating	a	specified	string	a
number	of	times.

Str.Lower Part	of	Str	module

Syntax		 Str.Lower	(s	:	string)	:	string

Description		

The	Str.Lower	function	takes	the	string	s	and	returns	a	string	in
which	all	the	upper	case	letters	are	converted	to	lower	case.	For
example,	Str.Lower	("ABC123def")	returns	"abc123def".

Example		

This	program	obtains	lines	of	text	from	the	user	and	outputs	the
lines	converted	to	lower	case.

								var	line	:	string

								loop

												put	"Enter	a	line	of	text	(empty	to	quit):	"	..

												get	line	:	*

												exit	when	line	=	""

												put	"The	lower	case	version:	",	Str.Lower	(line

								end	loop

				

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Str.Lower,	not	by	calling	Lower.

See	also		 Str.Upper	and	Str.Trim.

Str.Trim Part	of	Str	module

Syntax		 Str.Trim	(str	:	string)	:	string

Description		

The	Str.Trim	function	takes	the	string	str	and	returns	a	string	in
all	the	leading	and	trailing	spaces	(the	spaces	at	the	beginning	and
the	end)	are	deleted.	For	example,	Str.Trim	("	This	is	a	test
")	returns	"This	is	a	test".	If	str	only	has	spaces	in	it,	then
Str.Trim	will	return	an	empty	string.

Example		

This	program	obtains	input	from	the	user	until	the	user	enters	a
line	with	non-whitespace	characters	in	it.

								var	line	:	string

								loop

												put	"Enter	a	non-empty	line	of	text:	"	..

												get	line	:	*

												exit	when	Str.Trim	(line)	not=	""

								end	loop

								put	"You	entered	",	line

				

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Str.Trim,	not	by	calling	Trim.

See	also		 Str.Lower	and	Str.Upper.

Str.Upper Part	of	Str	module

Syntax		 Str.Upper	(s	:	string)	:	string

Description		

The	Str.Upper	function	takes	the	string	s	and	returns	a	string	in
which	all	the	lower	case	letters	are	converted	to	upper	case.	For
example,	Str.Upper	("ABC123def")	returns	"ABC123DEF".

Example		

This	program	obtains	lines	of	text	from	the	user	and	outputs	the
lines	converted	to	upper	case.

								var	line	:	string

								loop

												put	"Enter	a	line	of	text	(empty	to	quit):	"	..

												get	line	:	*

												exit	when	line	=	""

												put	"The	upper	case	version:	",	Str.Upper	(line

								end	loop

				

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Str.Upper,	not	by	calling	Upper.

See	also		 Str.Lower	and	Str.Trim.

Stream

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with	I/O
streams.	The	basic	I/O	in	Turing	is	done	with	I/O	statements.
However,	extra	functions	are	all	part	of	the	Stream	unit.

All	routines	in	the	Stream	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Stream."),	with	the	exception	of	eof
which	is	part	of	the	language	but	conceptually	part	of	this	unit	and
is	considered	to	be	exported	unqualified.

Entry
Points		

eof* 	 Determines	if	the	end	of	file	has	been	reached.
Flush 	 Flushes	a	specified	stream.
FlushAll 	 Flushes	all	open	output	streams.

*	Part	of	the	language,	conceptually	part	of	the	Stream	unit.

Stream.eof Part	of	Stream	module

Syntax		 eof	(streamNumber	:	int)	:	boolean

Description		

The	eof	(end	of	file)	function	is	used	to	determine	if	there	is	any
more	input.	It	returns	true	when	there	are	no	more	characters	to
be	read.	The	parameter	and	its	parentheses	are	omitted	when
referring	to	the	standard	input	(usually	this	is	the	keyboard);
otherwise	the	parameter	specifies	the	number	of	a	stream.	The
stream	number	has	been	determined	(in	most	cases)	by	an	open
statement.

Example		

This	program	reads	and	outputs	all	the	lines	in	the	file	called
"info".

								var	line	:	string

								var	fileNumber	:	int

								open	:	fileNumber,	"info",	get

								loop

												exit	when	eof	(fileNumber)

												get	:	fileNumber,	line	:	*

												put	line

								end	loop

Details		

See	also	the	description	of	the	get	statement,	which	gives	more
examples	of	the	use	of	eof.	See	also	the	open	and	read
statements.

When	the	input	is	from	the	keyboard,	the	user	can	signal	end-of-
file	by	typing	control-Z	on	a	PC	(or	control-D	on	UNIX).	If	a
program	tests	for	eof	on	the	keyboard,	and	the	user	has	not	typed
control-Z	(or	control-D)	and	the	user	has	typed	no	characters
beyond	those	that	have	been	read,	the	program	must	wait	until	the
next	character	is	typed.	Once	this	character	is	typed,	the	program
knows	whether	it	is	at	the	end	of	the	input,	and	returns	the
corresponding	true	or	false	value	for	eof.

Status		

Part	of	the	language	and	only	conceptually	part	of	the	Stream
unit.

This	means	that	you	can	only	call	the	function	by	calling	eof,	not
by	calling	Stream.eof.

Stream.Flush Part	of	Stream	module

Syntax		 Stream.Flush	(streamNumber	:	int)

Description		
The	Stream.Flush	procedure	is	used	to	flush	any	buffered	output
associated	with	the	streamNumber	parameter.

Details		

Turing	automatically	flushes	any	buffered	output	when	a	stream	is
closed.	Turing	also	automatically	closes	any	open	files	when
execution	is	terminated.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Stream.Flush,	not	by	calling	Flush.

Stream.FlushAll Part	of	Stream	module

Syntax		 Stream.FlushAll

Description		
The	Stream.FlushAll	procedure	is	used	to	flush	any	buffered
output	in	any	open	file.

Details		

Turing	automatically	flushes	any	buffered	output	when	a	stream	is
closed.	Turing	also	automatically	closes	any	open	files	when
execution	is	terminated.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Stream.FlushAll,	not	by	calling	FlushAll.

string type

Syntax		

A	stringType	is:

	 string	[(maximumLength)]

Description		

Each	variable	whose	type	is	a	stringType	can	contain	a	sequence
(a	string)	of	characters.	The	length	of	this	sequence	must	not
exceed	the	stringType's	maximum	length.

Example		
								var	name	:	string

								name	:=	"Nancy"

								var	licenceNumber	:	string	(6)

								licenceNumber	:=	"175AJN"

Details		

Strings	can	be	assigned	and	they	can	be	compared	for	both
equality	and	for	ordering.	See	also	string	comparison	and
assignment	statement.

Strings	can	be	catenated	(joined	together)	using	the	+	operator
and	separated	into	substrings.	See	catenation	and	substring.
String	functions	are	provided	to	find	the	length	of	a	string,	to	find
where	one	string	appears	inside	another,	and	to	make	repeated
copies	of	a	string	all	joined	together.	See	length,	index,	and
repeat.

A	string	type	written	without	a	maximum	length	is	limited	to
holding	a	maximum	of	255	characters.

The	maximumLength	of	a	string,	if	given	as	a	part	of	the	type,
must	be	known	at	compile	time,	and	must	be	at	least	1	and	at
most	255.	The	maximum	length	of	a	string	is	given	by	upper,	for
example,	upper(licenceNumber)	is	6.	See	also	upper.

In	the	declaration	of	a	string	that	is	a	var	formal	parameter	of	a
procedure	or	function,	the	maximumLength	can	be	written	as	an
asterisk	(*).	Here,	the	maximum	length	is	taken	to	be	that	of	the
corresponding	actual	parameter,	as	in:

								procedure	deblank	(var	s	:	string	(*)).

The	star	can	also	be	used	when	the	parameter	is	an	array	of
strings.

See	also		
explicitStringConstants	for	exact	rules	for	writing	string	values
such	as	"Nancy".	See	also	char(n)	and	char	types.

string comparison

Syntax		

A	stringComparison	is	one	of:

	 (a) stringExpn	=	stringExpn
	 (b) stringExpn	not=	stringExpn
	 (c) stringExpn	>	stringExpn
	 (d) stringExpn	<	stringExpn
	 (e) stringExpn	>=	stringExpn
	 (f) stringExpn	<=	stringExpn

Description		
Strings	(stringExpns)	can	be	compared	for	equality	(=	and	not=)
and	for	ordering	(>,	<,	>=	and	<=).

Example		
								var	name	:	string	:=	"Nancy"

								var	licenceNumber	:	string	(6)

								licenceNumber	:=	"175AJN"

Details		

Two	strings	are	considered	to	be	equal	(=)	if	they	have	the	same
length	and	are	made	up,	character	by	character,	of	the	same
characters.	If	they	differ,	they	are	considered	to	be	unequal
(not=).

Ordering	among	strings	is	essentially	alphabetic	order.	String	S	is
considered	to	come	before	string	T,	that	is	S	<	T,	if	the	two	are
identical	up	to	a	certain	position	and	after	that	position,	either	the
next	character	of	S	comes	before	the	next	character	of	T,	or	else
there	are	no	more	characters	in	S	while	T	contains	more
characters.

S	>	T	(S	comes	after	T)	means	the	same	thing	as	T	<	S.	S	>=	T
means	the	same	thing	as	S	>	T	or	S	=	T.	S	<=	T	means	the	same
thing	as	S	<	T	or	S=T.

ASCII	gives	the	ordering	among	individual	characters.	It
specifies,	among	other	things,	that	letter	capital	L	comes

alphabetically	before	capital	letter	M	and	similarly	for	small
(lower	case)	letters.

On	IBM	mainframe	computers,	the	EBCDIC	specification	of
characters	may	be	used	instead	of	ASCII.

strint string-to-integer

function

Syntax		 strint	(s	:	string	[,	base	:	int])	:	int

Description		

The	strint	function	is	used	to	convert	a	string	to	an	integer.	The
integer	is	equivalent	to	string	s.	The	number	base	parameter	is
optional,	for	example,	strint	("47")	=	47.	In	Turing	proper,	the
base	is	not	allowed	and	is	assumed	to	be	10.

String	s	must	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	or	minus	sign,	and	finally	a	sequence	of	one	or
more	digits.	For	number	bases	larger	than	10,	the	digits	can
include	a,	b,	c	…	(alternately	A,	B,	C	…)	which	represent	the
digit	values	10,	11,	12	…	The	base,	if	given,	must	be	in	the	range
2	to	36	(36	because	there	are	10	base	ten	digits	and	26	letters).
For	example,	strint	("FF",	16)	=	255.

The	intstr	function	is	the	inverse	of	strint,	so	for	any	integer	i,

								strint	(intstr	(i))	=	i.

See	also		 chr,	ord,	intstr	and	strnat	functions.

strintok string-to-integer

function

Syntax		 strintok	(s	:	string	[,	base	:	int])	:	boolean

Description		

The	strintok	function	is	used	determine	whether	the	strint
function	can	be	used	to	convert	the	string	to	an	integer	without
causing	an	error.	If	the	string	can	be	successfully	converted,	then
strintok	returns	true,	otherwise	it	returns	false.

String	s	should	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	or	minus	sign,	and	finally	a	sequence	of	one	or
more	digits.	For	number	bases	larger	than	10,	the	digits	can
include	a,	b,	c	…	(alternately	A,	B,	C	…)	which	represent	the
digit	values	10,	11,	12	…	If	s	is	correctly	constructed,	then
strnatok	will	return	true,	otherwise	it	returns	false.	The	base,	if
given,	must	be	in	the	range	2	to	36	(36	because	there	are	10	base
ten	digits	and	26	letters).	For	example,	strintok	("FF",	16)	=	true.

See	also		 strint	function	that	does	the	actual	conversion.

strnat string	to	natural	number	function

Syntax		 strnat	(s	:	string	[,	base	:	int])	:	nat

Description		

The	strnat	function	is	used	to	convert	a	string	to	a	natural
number.	The	natural	number	is	equivalent	to	string	s.	The	number
base	parameter	is	optional,	for	example,	strnat("47")	=	47.

String	s	must	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	sign,	and	finally	a	sequence	of	one	or	more
digits.	For	number	bases	larger	than	10,	the	digits	can	include	a,
b,	c	…	(alternately	A,	B,	C	…)	which	represent	the	digit	values
10,	11,	12	…	The	base,	if	given,	must	be	in	the	range	2	to	36	(36
because	there	are	10	base	ten	digits	and	26	letters).	For	example,
strnat("FF",	16)	=	255.

The	natstr	function	is	the	inverse	of	strnat,	so	for	any	natural
number	n,	strnat(natstr	(n))	=	n.

The	strnat	function	is	similar	to	strint,	except	that	strnat	handles
values	that	are	larger	than	int	values	and	does	not	handle	negative
values.

See	also		 the	chr,	ord,	intstr	and	strint	functions.

strnatok string	to	natural	number	function

Syntax		 strnatok	(s	:	string	[,	base	:	int])	:	boolean

Description		

The	strnatok	function	is	used	determine	whether	the	strnat
function	can	be	used	to	convert	the	string	to	a	natural	number
without	causing	an	error.	If	the	string	can	be	successfully
converted,	then	strnatok	returns	true,	otherwise	it	returns	false.

String	s	should	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	sign,	and	finally	a	sequence	of	one	or	more
digits.	For	number	bases	larger	than	10,	the	digits	can	include	a,
b,	c	…	(alternately	A,	B,	C	…)	which	represent	the	digit	values
10,	11,	12	…	If	s	is	correctly	constructed,	then	strnatok	will
return	true,	otherwise	it	returns	false.	The	base,	if	given,	must	be
in	the	range	2	to	36	(36	because	there	are	10	base	ten	digits	and
26	letters).	For	example,	strnatok	("FF",	16)	=	true.

See	also		 strnat	function	that	does	the	actual	conversion.

strreal string-to-real	function

Syntax		 strreal	(s	:	string)	:	real

Description		

The	strreal	function	is	used	to	convert	a	string	to	a	real	number.
For	example,	strreal	("2.5e1")	will	produce	an	approximation	to
the	number	25.0.

String	s	must	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	or	minus	sign	and	finally	an	explicit	unsigned
real	or	integer	constant.

The	realstr,	erealstr	and	frealstr	functions	approximate	the
inverse	of	strreal,	although	round-off	errors	keep	these	from
being	exact	inverses.

See	also		 realstr,	erealstr,	frealstr,	intstr	and	strint	functions.

strrealok string-to-real	function

Syntax		 strrealok	(s	:	string)	:	boolean

Description		

The	strrealok	function	is	used	determine	whether	the	strreal
function	can	be	used	to	convert	the	string	to	a	real	number
without	causing	an	error.	If	the	string	can	be	successfully
converted,	then	strrealok	returns	true,	otherwise	it	returns	false.

String	s	should	consist	of	a	possibly	null	sequence	of	blanks,	then
an	optional	plus	or	minus	sign	and	finally	an	explicit	unsigned
real	or	integer	constant.	If	it	does	so,	then	strrealok	will	return
true,	otherwise	it	returns	false.

See	also		 strreal	function	that	does	the	actual	conversion.

subprogramHeader

Syntax		

A	subprogramHeader	is	one	of:

	 (a) procedure	[pervasive]	id

	 	 	 [([paramDeclaration	{,
paramDeclaration}])]

	 (b) function	[pervasive]	id

	 	 	 [([paramDeclaration	{,
paramDeclaration}])]

	 	 	 [id]	:	typeSpec

Description		

A	subprogram	header	is	used	to	describe	the	interface	to	a
subprogram.	Subprogram	headers	are	used	within	other	language
features	such	as	subprogram	types	and	external	declarations.

Parameterless	subprograms	may	use	parentheses	(with	nothing
between	them),	as	is	required	in	the	C	programming	language.
These	parentheses	can	be	used	to	disambiguate	between	the	call
to	the	subprogram	(parentheses	present)	and	a	reference	the
subprogram	(parentheses	missing).

Suppose	f	is	a	parameterless	subprogram	declared	without
parentheses	and	g	is	a	parameterless	subprogram	declared	with
parentheses.	Their	headers	are:

								procedure	f

								procedure	g	()

In	a	program,	f	and	g()	are	calls	to	these	functions,	while	g	is	a
reference	to	(not	a	call	to)	the	procedure.	There	is	no	way	to	write
a	reference	to	f.	When	in	doubt,	use	parentheses	in	the
declaration,	as	in	the	case	for	g,	so	that	calls	always	have
parentheses	and	references	always	do	not.	A	reference	to	a
subprogram	can	be	assigned	to	a	subprogram	variable.	See
subprogram	type.

Example		
Specify	that	t	is	the	type	of	procedure	with	a	var	integer
parameter	and	a	real	parameter.	See	also	subprogramType.

								type	t	:	procedure	q	(var	j	:	int,	y	:	real)

Details		

The	keyword	pervasive	can	be	inserted	just	after	procedure	or
function.	When	this	is	done,	the	subprogram	is	visible	inside	all
subconstructs	of	the	subprogram's	scope.	Without	pervasive,	the
subprogram	is	not	visible	inside	modules	unless	explicitly
imported.	Pervasive	subprograms	need	not	be	imported.	You	can
abbreviate	pervasive	as	an	asterisk	(*).

See	also		 pervasive.

subprogramType

Syntax		

A	subprogramType	is:

	 subprogramHeader

Description		

A	variable	or	constant	can	contain	a	reference	to	a	subprogram.
The	type	of	the	variable	or	constant	is	a	subprogramType.	See	also
subprogramHeader.

Example		

In	the	following	t	is	a	subprogram	type,	and	u	is	a	variable	of	type
t	initialized	to	refer	to	procedure	rnd.

								procedure	rnd	(var	i	:	int,	x	:	real)

												i	:=	round	(x)

								end	rnd

								

								type	t	:	procedure	q	(var	j	:	int,	y	:	real)

								var	u	:	t	:=	rnd				%	Procedure	variable	u	refers	to	rnd

								…

								var	j	:	int

								u	(j,	24.6)							%	Call	procedure	u	referring	to	rnd

								…

								var	v	:=	u						%	Subprogram	variable	v	initialized	to	u

Details		

The	name	of	the	subprogram,	for	example	q,	and	the	parameters,
for	example	i	and	x,	have	no	meaning	in	a	subprogram	type.	They
are	present	only	because	of	the	form	of	subprogram	headers.

If	v	is	a	variable	or	constant	that	refers	to	a	subprogram,	v	can	be
called,	compared	for	equality	to	other	subprogram	variables,
assigned	and	passed	as	a	parameter.	Variable	v	is	not	an	integer,
string	or	pointer	and	cannot	participate	in	their	corresponding
operations.

A	reference	to	a	subprogram,	rather	that	the	code	of	the
subprogram,	is	contained	in	a	variable	v	whose	type	is	a
subprogram	type.	This	implies	that	addr	(v)	is	the	address	of	the
reference	to	subprogram,	rather	than	the	address	of	the
subprogram.	The	address	of	the	code	is	given	by	#v.	See	cheat	for
an	explanation	of	the	#	operator.

You	cannot	assign	a	reference	to	a	subprogram	exported	from	a
class.	This	restriction	exists	because	these	subprograms	are
meaningless	without	an	accompanying	reference	to	an	object.

Many	potential	uses	of	subprogram	variables	are	better
programmed	using	classes	and	overriding	exported	subprograms.
See	class.

subrangeType

Syntax		

A	subrangeType	is:

	 expn	..	expn

Description		
A	subrange	type	defines	a	set	of	values,	for	example,	the	subrange	1
..	4	consists	of	1,	2,	3	and	4.

Example		

								var	i	:	1	..	10									%	i	can	be	1,	2	…	up	to	10

								type	xRange	:	0	..	319						%	Define	integer	subrange

								var	pixels	:	array	xRange	of	int

																												%	Array	elements	are

																												%	numbered	0,	1,	…	319

								for	k	:	xRange										%	k	ranges	from	0	to	319

												pixels	(k)	:=	0

								end	for

Details		

A	subrange	must	contain	at	least	one	element.	In	other	words,	the
second	expression	(expn)	must	be	at	least	as	large	as	the	first
expression.

The	lower	bound	of	a	subrange	must	be	known	at	compile	time.	The
upper	bound	is	allowed	to	be	a	run	time	value	only	in	one	situation
and	that	is	when	it	gives	the	upper	bound	of	an	array	being	declared
in	a	variable	declaration,	in	other	words	when	declaring	a	dynamic
array.

Subranges	are	usually	a	subset	of	the	integers,	as	in	1	..	10.	You	can
also	have	subranges	of	enumerated	types	and	characters	(the	char
type).

You	can	apply	lower	and	upper	to	subrange	types.

substring of	another	string

Syntax		

A	substring	is	one	of:

	 (a) stringReference	(leftPosition	..	rightPosition)
	 (b) stringReference	(charPosition)

Description		

A	substring	selects	a	part	of	another	string.	In	form	(a)	the	substring
starts	at	the	left	position	and	runs	to	the	right	position.	In	form	(b),
the	substring	is	only	a	single	character.	Turing	support	substrings	of
char(n)	values.

Example		

								var	word	:	string	:=	"bring"

								put	word	(2	..	4)							%	Outputs	rin

								put	word	(3)								%	Outputs	i

								put	word	(2	..	*)							%	Outputs	ring;	the	star	

																								%	the	end	of	the	string.

								put	word	(*	-	2	..	*	-	1)		%	Outputs	in

Details		

The	leftmost	possible	position	in	a	string	is	numbered	1.	The	last
position	in	a	string	can	be	written	as	an	asterisk	(*).	For	example,
word	(2	..	*)	is	equivalent	to	word	(2	..	length(word)).

Each	of	leftPosition,	rightPosition,	and	charPosition	must	have	one
of	these	forms:

	 (a)	expn
	 (b)	*
	 (c)	*	-	expn

The	exact	rules	for	the	allowed	values	of	leftPosition	and
rightPosition	are:

	 (1)	leftPosition	must	be	at	least	1,
	 (2)	rightPosition	must	be	at	most	length	(stringReference),	and
	 (3)	the	length	of	the	selected	substring	must	zero	or	more.

This	specifically	allows	null	substrings	such	as	word	(1,	0)	in	which
rightPosition	is	0	and	word	(6,	5)	in	which	leftPosition	is	one	more
that	length	(stringReference).

Note	that	substrings	are	not	assignable.	For	example,	if	s	is	a	string,
the	statement	s	(3)	:=	"a"	is	illegal	in	Turing.

Turing	supports	substrings	of	char(n)	values.	See	char(n).	If	a
substring	of	char(n)	value	t	has	two	operands,	as	in	t(2..77),	the
result	type	of	this	operation	is	a	string.	If	the	substring	has	one
operand,	as	in	t(7),	this	becomes,	in	effect,	a	subscript	into	an	array
of	characters.	The	result	is	a	reference	to	a	char,	which	can	be
assigned	to	or	passed	to	a	var	parameter.

See	also		
string,	char,	char(n),	explicitStringConstant,	explicitCharConstant
catenation	and	length.

succ successor	function

Syntax		 succ	(expn)

Description		

The	succ	function	accepts	an	integer,	character	or	an	enumerated
value	and	returns	the	integer	plus	one,	the	next	character,	or	the
next	value	in	the	enumeration.	For	example,	succ	(7)	is	8.

Example		

This	part	of	a	Turing	program	fills	up	array	a	with	the	enumerated
values	green,	yellow,	red,	green,	yellow,	red,	etc.

								type	colors	:	enum	(green,	yellow,	red)

								var	a	:	array	1	..	100	of	colors

								var	c	:	colors	:=	colors	.green

								for	i	:	1	..	100

												a	(i)	:=	c

												if	c	=	colors	.	red	then

																c	:=	colors	.	green

												else

																c	:=	succ	(c)

												end	if

								end	for

Details		 You	cannot	apply	succ	to	the	last	value	of	an	enumeration.

See	also		 the	pred,	lower	and	upper	functions.

Sys

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with	the
operating	system	directly	(getting	the	process	id,	getting	run	time
arguments	and	executing	commands	in	the	operating	system,
etc.).

All	routines	in	the	Sys	unit	are	exported	qualified	(and	thus	must
be	prefaced	with	"Sys.").

Entry
Points		

GetComputerName 	 Gets	the	name	of	the	computer.

GetEnv 	 Gets	a	string	associated	with	an
environment	variable.

GetPid 	 Gets	the	current	process	ID	for	Turing.

GetUserName 	 Gets	the	name	of	the	user	currently
logged	on.

Exec 	 Executes	a	program	or	opens	a	data	file
using	the	operating	system.

Nargs 	 Gets	the	number	of	run	time	arguments
(exported	unqualified).

FetchArg 	 Gets	a	specified	run	time	argument
(exported	unqualified).

Sys.Exec Part	of	Sys	module

Syntax		 Sys.Exec	(command	:	string)	:	boolean

Description		

The	Sys.Exec	function	is	used	to	execute	an	application	or	more	often,	open	a	data
file	with	its	associated	application.	Sys.Exec	can	be	used	to	launch	such	programs	as
the	Internet	Browser	by	specifying	a	URL.	Sys.Exec	launches	the	application
associated	with	file's	suffix.	(In	essence,	it	performs	the	same	operation	as	if	a	user
double	clicked	on	the	file.)

Example		

This	program	launches	an	internet	browser	and	points	it	to	Holt	Software's	home
page.	It	then	launches	a	movie	using	the	default	video	player.

								if	not	Sys.Exec	("http://www.holtsoft.com/turing/support")	

												put	"The	Sys.Exec	call	failed"

												put	"Error:	",	Error.LastMsg

								end	if

								if	not	Sys.Exec	("skate.avi")	then

												put	"The	Sys.Exec	call	failed"

												put	"Error:	",	Error.LastMsg

								end	if

Details		
When	the	Sys.Exec	procedure	is	used,	the	executing	program	continues	execution
immediately	while	the	launched	application	is	running.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Sys.Exec
Exec.

See	also		 Sys.Nargs,	Sys.FetchArg	and	Sys.GetEnv	functions.

Sys.FetchArg Part	of	Sys	module

Syntax		 System.FetchArg	(i	:	int)	:	string

Description		

The	Sys.FetchArg	function	is	used	to	access	the	i-th	argument	that	has	been
passed	to	a	program	from	the	command	line.	For	example,	if	the	program	is
run	from	the	Turing	environment	using

	 :r	file1	file2

then	Sys.FetchArg	(2)	will	return	"file2".	If	a	program	called	prog.x	
under	UNIX	using	this	command:

	 prog.x	file1	file2

the	value	of	Sys.FetchArg(2)	will	similarly	be	"file2".

The	Sys.Nargs	function,	which	gives	the	number	of	arguments	passed	to	the
program,	is	usually	used	together	with	the	Sys.FetchArg	function.
Parameter	i	passed	to	Sys.FetchArg	must	be	in	the	range	0	..	Sys.Nargs

The	0-th	argument	is	the	name	of	the	running	program.

Example		

This	program	lists	its	own	name	and	its	arguments.

								put	"The	name	of	this	program	is	:	",	Sys.FetchArg	

								for	i	:	1	..	Sys.Nargs

												put	"Argument	",	i,	"	is	",	Sys.FetchArg	(i

								end	for

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Sys.FetchArg
by	calling	FetchArg.

See	also		 Sys.Nargs

Sys.GetComputerName Part	of	Sys	module

Syntax		 Sys.GetComputerName	:	string

Description		

The	Sys.GetComputerName	function	is	used	to	determine	the
name	of	the	computer.	On	the	PC,	this	is	the	NetBIOS	name.	It
returns	“No	Name”	if	a	name	could	not	be	determined.

Example		

This	program	outputs	a	greeting	to	the	user	.

								var	computerName,	userName	:	string

								computerName	:=	Sys.GetComputerName

								userName	:=	Sys.GetUserName

								put	"Hello	",	userName,	"	on	",	computerName

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Sys.
GetComputerName,	not	by	calling	GetComputerName.

See	also		
Sys.GetUserName	to	obtain	the	user	name	of	the	user	currently
logged	in.

Sys.GetEnv Part	of	Sys	module

Syntax		 Sys.GetEnv	(symbol	:	string)	:	string

Description		

The	Sys.GetEnv	function	is	used	to	access	the	environment	string
whose	name	is	symbol.	These	strings	are	determined	by	the	shell
(command	processor)	or	the	program	that	caused	your	program	to
run.	See	also	the	Sys.Nargs	and	Sys.FetchArg	functions.

Example		

On	a	PC,	this	retrieves	the	environment	variable	USERLEVEL
and	prints	extra	instructions	if	USERLEVEL	had	been	set	to
NOVICE.	USERLEVEL	can	be	set	to	NOVICE	with	the
command	SET	USERLEVEL	=	NOVICE	in	the	autoexec.bat
file	or	in	any	batch	file.

								const	userLevel	:	string

								userLevel	:=	Sys.GetEnv	("USERLEVEL")

												if	userLevel	=	"NOVICE"	then

												…											%	put	a	set	of	instructions

								end	if

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sys.GetEnv,	not	by	calling	GetEnv.

Sys.GetPid Part	of	Sys	module

Syntax		 Sys.GetPid	:	int

Description		

The	Sys.GetPid	function	is	used	to	determine	the	I.D.	(number)
that	identifies	the	current	operating	system	task	(process).	Beware
that	there	are	processes,	activated	by	the	fork	statement,	that	are
independent	of	the	operating	systems	tasks.

Under	UNIX,	the	number	is	used,	for	example,	for	creating	a
unique	name	of	a	file.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sys.GetPid,	not	by	calling	GetPid.

See	also		 Sys.Nargs,	Sys.FetchArg	and	Sys.GetEnv.

Sys.GetUserName Part	of	Sys	module

Syntax		 Sys.GetUserName	:	string

Description		

The	Sys.GetUserName	function	is	used	to	determine	the	name	of
the	current	user.	It	returns	“Unknown”	if	a	name	could	not	be
determined.

Example		

This	program	outputs	a	greeting	to	the	user	.

								var	computerName,	userName	:	string

								computerName	:=	Sys.GetComputerName

								userName	:=	Sys.GetUserName

								put	"Hello	",	userName,	"	on	",	computerName

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sys.GetUserName,	not	by	calling	GetUserName.

See	also		 Sys.GetComputerName	to	obtain	the	name	of	the	computer.

Sys.Nargs Part	of	Sys	module

Syntax		 Sys.Nargs	:	int

Description		

The	Sys.Nargs	function	is	used	to	determine	the	number	of
arguments	that	have	been	passed	to	a	program	from	the	command
line.	For	example,	if	the	program	is	run	from	the	Turing
environment	using

								:r	file1	file2

then	Sys.Nargs	will	return	2.	If	a	program	called	prog.x	is	run
under	UNIX	using	this	command:

								prog.x	file1	file2

the	value	of	Sys.Nargs	will	similarly	be	2.

The	Sys.Nargs	function	is	usually	used	together	with	the
Sys.FetchArg	function	to	access	the	arguments	that	have	been
passed	to	the	program.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Sys.Nargs,	not	by	calling	Nargs.

See	also		 Sys.FetchArg	for	an	example	of	the	use	of	Sys.Nargs.

sysclock millisecs	used	procedure

Syntax		 sysclock	(var	c	:	int)

Description		

The	sysclock	statement	is	used	on	a	multitasking	system	such	as
UNIX	to	determine	the	amount	of	time	that	has	been	used	by	this
program	(process).	Variable	c	is	assigned	the	number	of	central
processor	milliseconds	assigned	to	this	program.	This	is	of	little
use	on	a	personal	computer,	where	sysclock	returns	the	same
value	as	clock.

Example		

On	a	UNIX	system,	this	program	tells	you	how	much	time	it	has
used.

								var	timeUsed	:	int

								sysclock	(timeUsed)

								put	"This	program	has	used	",	timeUsed,

																"	milliseconds	of	CPU	time"

See	also		
delay,	time,	clock,	wallclock	and	date	statements.

See	also	predefined	unit	Time.

system statement

Syntax		 system	(command	:	string,	var	ret	:	int)

Description		

The	system	statement	is	used	to	execute	the	shell	(operating	system)	
if	it	were	typed	at	the	terminal.	The	return	code	is	in	ret.	A	return	code	of	0	(zero)
means	no	detected	errors.	A	return	code	of	127	means	the	command	processor
could	not	be	accessed.	A	return	code	of	126	means	the	command	processor	did	not
have	room	to	run	on	the	PC.

Example		

This	program	creates	a	directory	listing	when	run	under	DOS	on	an	IBM	PC
compatible	computer.	The	same	program	will	run	under	UNIX	by	changing	"
to	"ls".

								var	success	:	int

								system	("dir",	success)

								if	success	not=	0	then

												if	success=	127	then

																put	"Sorry,	can't	find	'command.com'"

												elsif	success	=	126	then

																put	"Sorry,	no	room	to	run	'dir'"

												else

																put	"Sorry,	'dir'	did	not	work"

												end	if

								end	if

Details		

When	the	system	procedure	is	used,	the	executing	program	usually	remains	in
memory	while	the	system	command	is	executing,	and	once	execution	of	the
system	command	is	finished,	control	returns	to	the	original	program.	However,	on
the	PC,	there	is	variant	of	the	system	procedure	that	allows	"chaining".	This
means	that	when	the	system	command	is	executed,	the	originally	running	program
is	"thrown	away"	(i.e.	removed	from	memory).	When	the	executed	program
terminates,	one	is	returned	to	DOS.

To	chain	another	program,	one	prepends	"chain:"	to	the	start	command

								i.e.				system	("chain:myprog.exe",	retCode)

Note	that	this	command	is	"hazardous".	Specifically,	if	you	call	it	from	Turing	(as
opposed	to	a	program	compiled	with	TComp)	and	you	have	not	saved	your	source
file,	you	will	lose	it!	Turing	will	be	removed	from	memory	without	any	warning

when	the	system	procedure	is	executed.	Likewise	any	open	files	will	be	closed
instantly.	This	means	there	is	a	danger	if	all	files	were	not	properly	closed	before
the	system	procedure	was	called.

The	"chain:"	command	is	often	used	for	starting	menu	programs,	where	the	user
selects	a	program	to	run	and	doesn't	want	Turing	to	remain	in	memory.	It	can	also
be	used	with	extraordinarily	large	Turing	programs	that	can	be	split	into	different
parts.	By	using	TComp	and	compiling	each	part	separately,	one	can	have	each
program	call	the	other	and	never	have	all	parts	in	memory	at	once.

Example		

This	program	uses	chaining	to	launch	one	of	several	possible	programs	based	on
user	choice.	It	gives	an	error	if	for	some	reason	the	system	command	fails	to
work.	It	assumes	that	c:\chemistry.exe,	c:\math.exe,	c:\english.exe	and
c:\history.exe	already	exist.

								var	choice,	success	:	int

								put	"Enter	the	subject	(1-4):	"..

								get	choice

								var	command	:	string

								case	choice	of

												%	Note	the	use	of	the	double	backslash	in	the	file	name

												%	is	because	the	backslash	is	a	special	character	in	Turing	(as

												%	in	\t	for	tab	and	\n	for	a	newline).	To	get	a	single	backslash

												%	one	uses	\\.

												label	1	:			command	:=	"c:\\chemistry.exe"

												label	2	:			command	:=	"c:\\math.exe"

												label	3	:			command	:=	"c:\\english.exe"

												label	4	:			command	:=	"c:\\history.exe"

												label	:					put	"Choice	must	be	from	1-4."

																				assert	false				%	Wasn't	a	1-4.	Terminate.

								end	case

								system	("chain:"	+	command,	success)

								%	If	I	reach	this	line,	the	system	command	failed	and	one	should	give

								%	an	error	message.

								put	"System	called	failed."

								put	"Program	\"",	command,	"\"		couldn't	be	run."

								assert	false				%	Terminate	the	program

Details		

Here	are	the	possible	errors	under	PC-Turing

	 -1 	 Not	enough	memory	to	load	COMMAND.COM
	 -2 	 Not	enough	memory	to	run	command
	 -3 	 Argument	list	greater	than	128	bytes	or	environment	info

	 -4 	 Couldn't	find	COMMAND.COM
	 -5 	 COMMAND.COM	corrupt
	 -6 	 -noshell	option	is	selected,	the	system	procedure	is
	 	 disallowed

See	also			nargs,	fetcharg	and	getenv	functions.

See	also	predefined	unit	Sys.

tag statement

Syntax		

A	tagStatement	is:

	 tag	unionVariableReference	,	expn

Description		
A	tag	statement	is	a	special-purpose	assignment	that	is	used	for
changing	the	tag	of	a	union	variable.

Example		

In	this	example,	the	tag	field	of	union	variable	v	is	set	to	be
passenger,	thereby	activating	the	passenger	field	of	v.

								type	vehicleInfo	:

												union	kind	:	passenger	..	recreational

																label	passenger	:

																				cylinders	:	1..16

																label	farm	:

																				farmClass	:	string	(10)

																label	:	%	No	fields	for	"otherwise"	clause

												end	union

								var	v	:	vehicleInfo

								…

								tag	v,	passenger								%	Activate	passenger	part

Details		

A	tag	statement	is	the	only	way	to	modify	the	tag	field	of	a	union
variable	(other	than	by	assigning	an	entire	union	value	to	the
union	variable).

You	cannot	access	a	particular	set	of	fields	of	a	union	unless	the
tag	is	set	to	match	the	corresponding	label	value.

See	also		 union	types.

takepic graphics	procedure

								setscreen	("graphics")

								…	draw	happy	face	in	the	box	(0,0)	to	(100,100)	…

								%	Create	buffer	big	enough	to	hold	happy	face

								var	face	:	array	1	..	sizepic	(0,	0,	100,	100)	of	int

								%	Copy	picture	into	the	buffer,	which	is	the	face	array

								takepic	(0,	0,	100,	100,	face)

								%	Redraw	the	picture	with	its	left	bottom	at	(200,0)

								drawpic	(200,	0,	face,	0)

Syntax		 takepic	(x1,	y1,	x2,	y2	:	int,	var	buffer	:	array	1	..	*	of	int)

Description		

The	takepic	procedure	is	used	to	record	the	pixel	values	in	a
rectangle,	with	left	bottom	and	right	corners	of	(x1,	y1)	and	(x2,
y2),	in	the	buffer	array.	This	requires	a	sufficiently-large	buffer
(see	sizepic).	The	drawpic	procedure	is	used	to	make	copies	of
the	recorded	rectangle	on	the	screen.

Example		

After	drawing	a	happy	face,	this	program	copies	the	face	to	a	new
location.

Execute		

The	integer	values	that	takepic	places	in	the	buffer	can	be	read	or
written	(using	the	read	and	write	statements).	Unfortunately,	if	a

Details		

value	happens	to	be	the	pattern	used	to	represent	the	uninitialized
value	(the	largest	negative	number	the	hardware	can	represent)
assignment	(by:=)	and	put	of	the	individual	integer	values	in	the
buffer	will	fail.

The	screen	should	be	in	a	"graphics"	mode.	See	the	setscreen
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

Details		

The	drawpic,	takepic,	and	sizepic	subprograms	have	been	made
obsolete	by	the	subprograms	Pic.Draw	and	Pic.New	of	the	Pic
module.	Users	are	strongly	suggested	to	use	those	routines
instead.	The	Pic	module	also	contains	subprograms	to	load
images	from	files.

See	also		

sizepic	and	drawpic.	See	also	setscreen,	maxx,	maxy,	drawdot,
drawline,	drawbox,	and	drawoval.

See	also	predefined	unit	Pic.

tan tangent	function	(radians)

Syntax		 tan	(r	:	real)	:	real

Description		
The	tan	function	is	used	to	find	the	tangent	of	an	angle	given	in
radians.	For	example,	tan	(p/4)	is	0.5.

Example		

This	program	prints	out	the	tangent	of	0,	p/6,	2p/6,	3p/6,	up	to
12p/6	radians.

								for	i	:	0	..	12

												const	angle	:=	i	*	Math.PI	/	6

												put	"Tangent	of	",	angle,	"	is	",	tan	(angle

								end	for

Execute		

Details		

An	argument	to	tan	of	p/2,	3*p/2,	etc.	may	result	in	an	overflow
(and	halt	of	the	program)	as	the	result	is	technically	¥.	(It	may	not
cause	an	overflow	due	to	rounding,	in	which	case	the	result	will
simply	be	a	very	large	number.)

See	also		

the	sin	and	cos	functions	for	calculating	sine	and	cosine.

the	tand	function	which	finds	the	tangent	of	an	angle	given	in
degrees.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

tand tangent	function	(degrees)

Syntax		 tand	(r	:	real)	:	real

Description		
The	tand	function	is	used	to	find	the	tangent	of	an	angle	given	in
degrees.	For	example,	tand	(45)	is	1.

Example		

This	program	prints	out	the	tangent	of	0,	30,	60,	90,	up	to	360
degrees.

								for	i	:	0	..	12

												const	angle	:=	i	*	30

												put	"Tan	of	",	angle,	"	is	",	tand	(angle)

								end	for

Execute		

Details		

An	argument	to	tan	of	90,	270,	etc.	may	result	in	an	overflow
(and	halt	of	the	program)	as	the	result	is	technically	¥.	(It	may	not
cause	an	overflow	due	to	rounding,	in	which	case	the	result	will
simply	be	a	very	large	number.)

See	also		

the	sind	and	cosd	functions	for	calculating	sine	and	cosine.

the	tan	function	which	finds	the	tangent	of	an	angle	given	in
radians.	(2p	radians	are	the	same	as	360	degrees.)

See	also	predefined	unit	Math.

tell file	statement

Syntax		

An	tellStatement	is:

	 tell	:	fileNumber	,	filePositionVar

Description		

The	tell	statement	sets	filePositionVar,	whose	type	must	be	int,	to	the
current	offset	in	bytes	from	the	beginning	of	the	specified	file.	The
fileNumber	must	specify	a	file	that	is	open	with	seek	capability	(or	else	a
program	argument	file	that	is	implicitly	opened).	The	tell	statement	is
useful	for	recording	the	file	position	of	a	certain	piece	of	data	for	later
access	using	seek.

Example		

This	example	shows	how	to	use	tell	to	record	the	location	of	a	record	in	a
file.	This	location	is	later	used	by	seek	to	allow	the	record	to	be	read.

								var	employeeRecord	:

												record

																name	:	string	(30)

																pay	:	int

																dept	:	0	..	9

												end	record

								var	fileNo	:	int

								var	location	:	int

								open	:	fileNo,	"payroll",	write,	seek

								…

								tell	:	fileNo,	location									%	Make	note	of	this	location

								write	:	fileNo,	employeeRecord		%	Write	record	at	this	location

								…

								seek	:	fileNo,	location					%	Go	back	to	location

								read	:	fileNo,	employeeRecord			%	Read	the	record

																												%	that	was	previously	written

See	also		 the	read,	write,	open,	close,	seek,	get	and	put	statements.

Text

Description		

This	unit	contains	the	predefined	subprograms	that	handle
character	(text)	output	on	the	screen	(i.e.	output	using	put).

All	routines	in	the	Text	unit	are	exported	qualified	(and	thus	must
be	prefaced	with	"Text.")	with	the	exception	of	maxrow	and
maxcol	which	are	exported	unqualified.

Entry
Points		

Cls 	 Clears	the	screen	to	the	text	background
color.

Color 	 Sets	the	text	color	used	by	put.
Colour 	 Sets	the	text	color	used	by	put.

ColorBack 	 Sets	the	text	background	color	used	by
put.

ColourBack 	 Sets	the	text	background	color	used	by
put.

Locate 	 Moves	the	cursor	to	the	specified	row	and
column.

LocateXY 	 Moves	the	cursor	to	the	cursor	location
closest	to	a	specified	pixel	position.

maxcol 	 The	number	of	columns	on	the	screen
(exported	unqualified).

maxrow 	 The	number	of	rows	on	the	screen
(exported	unqualified).

WhatRow 	 Returns	the	current	cursor	row.
WhatCol 	 Returns	the	current	cursor	column.
WhatColor 	 Returns	the	current	text	color.
WhatColour 	 Returns	the	current	text	color.
WhatColorBack 	 Returns	the	current	text	background	color.
WhatColourBack 	 Returns	the	current	text	background	color.

Text.Cls Part	of	Text	module

Syntax		 Text.Cls

Description		

The	Text.Cls	(clear	screen)	procedure	is	used	to	blank	the	screen
to	the	text	background	color.	The	cursor	is	set	to	the	top	left	(to
row	1,	column	1).

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	the
screen	mode	has	not	been	set,	it	will	automatically	be	set	to
"screen"	mode.	See	View.Set	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.Cls,	not	by	calling	Cls.

Text.Color Part	of	Text	module

Syntax		 Text.Color	(Color	:	int)

Description		

The	Text.Color	procedure	is	used	to	change	the	currently-active
color.	This	is	the	color	of	characters	that	are	to	be	put	on	the
screen.	The	alternate	spelling	is	Text.Colour.

Example		

This	program	prints	out	the	message	"Bravo"	three	times,	each	in
a	different	color.

								View.Set	("graphics")

								for	i	:	1	..	3

												Text.Color	(i)

												put	"Bravo"

								end	for

Example		

This	program	prints	out	a	message.	The	color	of	each	letter	is
different	from	the	preceding	letter.	For	letter	number	i	the	color
number	is	i	mod	maxcolor	+	1.	This	cycles	repeatedly	through	all
the	available	colors.

								View.Set	("screen")

								const	message	:=	"Happy	New	Year!!"

								for	i	:	1	..	length	(message)

												Text.Color	(i	mod	maxcolor	+	1)

												put	message	(i)	..

								end	for

Details		

In	"screen"	mode	on	the	IBM	PC,	the	color	specified	can	actually
range	from	0	-	31.	The	upper	16	colors	(16-31)	are	the	same	as
the	lower	16,	except	that	they	blink.

See	View.Set	for	the	number	of	colors	available	in	the	various
"graphics"	modes.

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	the
screen	mode	has	not	been	set,	it	will	automatically	be	set	to
"screen"	mode.	See	View.Set	for	details.

Status		
Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.Color,	not	by	calling	Color.

See	also		
Text.ColorBack,	Text.WhatColor,	Text.WhatChar	and
View.maxcolor.

Text.ColorBack Part	of	Text	module

Syntax		 Text.ColorBack	(Color	:	int)

Description		

The	Text.ColorBack	procedure	is	used	to	change	the	current	text
background	color.	The	alternate	spelling	is	Text.ColourBack.

The	Text.ColorBack	procedure	sets	the	text	background	color	to
the	specified	color.	This	is	the	color	that	surrounds	characters
when	they	are	put	onto	the	screen.	On	an	IBM	PC	in	"screen"
mode,	the	color	can	be	from	0	-	7.	(You	can	not	have	the	upper	8
colors	as	text	background	colors.	On	UNIX	dumb	terminals,
Text.ColorBack(1)	turns	on	highlighting	and	Text.ColorBack(0)
turns	it	off.	On	other	systems,	this	procedure	may	have	no	effect.

Example		

Since	this	program	is	in	"screen"	mode,	changing	the	background
color	has	no	immediately	observable	effect.	When	the	message
"Greetings"	is	output,	the	background	surrounding	each	letter	will
be	red.

								View.Set	("screen")

								…

								Text.ColorBack	(red)

								put	"Greetings"

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	the
screen	mode	has	not	been	set,	it	will	automatically	be	set	to
"screen"	mode.	See	View.Set	for	details

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.ColorBack	,	not	by	calling	ColorBack.

See	also		 Text.Color	and	Text.WhatColorBack.

Text.Locate Part	of	Text	module

Syntax		 Text.Locate	(row,	column	:	int)

Description		

The	Text.Locate	procedure	is	used	to	move	the	cursor	so	that	the
next	output	from	put	will	be	at	the	given	row	and	column.	Row	1
is	the	top	of	the	screen	and	column	1	is	the	left	side	of	the	screen.

Example		

This	program	outputs	stars	of	random	colors	to	random	locations
on	the	screen.	The	variable	colr	is	purposely	spelled	differently
from	the	word	color	to	avoid	the	procedure	of	that	name	(used	to
set	the	color	of	output).	The	row	number	is	purposely	chosen	so
that	it	is	one	less	than	maxrow.	This	avoids	the	scrolling	of	the
screen	which	occurs	when	a	character	is	placed	in	the	last	column
of	the	last	row.

								View.Set	("screen")

								var	row,	column,	colr	:	int

								loop

												row	:=	Rand.Int	(1,	maxrow)

												column	:=	Rand.Int	(1,	maxcol)

												colr	:=	Rand.Int	(0,	maxcolor)

												Text.Color	(colr)

												Text.Locate	(row,	column)

												put	"*"	..		%	Use	dot-dot	to	avoid	clearing	end	of	line

								end	loop

Details		

The	Text.Locate	procedure	is	used	to	locate	the	next	output	based
on	row	and	column	positions.	See	also	the	Text.LocateXY
procedure	which	is	used	to	locate	the	output	based	x	and	y
positions,	where	x=0,	y=0	is	the	left	bottom	of	the	screen.

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See	the
View.Set	procedure	for	details.	If	the	screen	is	not	in	one	of	these
modes,	it	will	automatically	be	set	to"screen"	mode.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.Locate	,	not	by	calling	Locate.

See	also		 View.Set	and	Draw.Dot.

Text.LocateXY Part	of	Text	module

Syntax		 Text.LocateXY	(x	,	y	:	int)

Description		

The	Text.LocateXY	procedure	is	used	to	move	the	cursor	so	that
the	next	output	from	put	will	be	at	approximately	(x,	y).	The
exact	location	may	be	somewhat	to	the	left	of	x	and	below	y	to
force	alignment	to	a	character	boundary.

Example		

This	program	outputs	Hello	starting	at	approximately	(100,	50)	on
the	screen.

								View.Set	("graphics")

								Text.LocateXY	(100,	50)

								put	"Hello"

Details		

The	Text.LocateXY	procedure	is	used	to	locate	the	next	output
based	on	x	and	y	positions,	where	the	position	x=0,	y=0	is	the	left
bottom	of	the	screen.	See	also	the	Text.Locate	procedure	which
is	used	to	locate	the	output-based	row	and	column	positions,
where	row	1	is	the	top	row	and	column	1	is	the	left	column.

The	screen	should	be	in	a	"graphics"	mode.	See	the	View.Set
procedure	for	details.	If	the	screen	is	not	in	a	"graphics"	mode,	it
will	automatically	be	set	to	"graphics"	mode.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.LocateXY	,	not	by	calling	LocateXY.

See	also		 View.Set	and	Draw.Dot.

Text.maxcol Part	of	Text	module

Syntax		 maxcol	:	int

Description		
The	maxcol	function	is	used	to	determine	the	number	of	columns
on	the	screen.

Example		
This	program	outputs	the	maximum	column	number.

								put	"Number	of	columns	on	the	screen	is	",	maxrow

Details		

For	IBM	PC	compatibles	as	well	as	most	UNIX	dumb	terminals,	in
"text"	or	"screen"	mode,	maxcol	=	80.	For	the	default	IBM	PC
compatible	"graphics"	mode	(CGA),	maxcol	=	40.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	maxcol	or	by
calling	Text.maxcol.

See	also		 Text.Locate	procedure	for	an	example	of	the	use	of	maxcol.

Text.maxrow Part	of	Text	module

Syntax		 maxrow	:	int

Description		
The	maxrow	function	is	used	to	determine	the	number	of	rows	on
the	screen.

Example		
This	program	outputs	the	maximum	row	number.

								put	"Number	of	rows	on	the	screen	is	",	maxrow

Details		
For	IBM	PC	compatibles,	maxrow	=	25.	For	many	UNIX	dumb
terminals,	maxrow	=	24.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	maxrow	or
by	calling	Text.maxrow.

See	also		 Text.Locate	procedure	for	an	example	of	the	use	of	maxrow.

Text.WhatCol Part	of	Text	module

Syntax		 Text.WhatCol	:	int

Description		
The	Text.WhatCol	function	is	used	to	determine	the	cursor
position's	column.

Example		

This	program	outputs	The	current	row	is	5,	the	current	column	is
15.

								Text.Locate		(5,	10)

								put	"12345"..

								put	"The	current	row	is",	Text.WhatRow

								put	"The	current	column	is",	Text.WhatCol

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.
Text.WhatCol	functions	properly	even	if	the	cursor	is	invisible.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.WhatCol	,	not	by	calling	WhatCol	.

See	also		

the	Text.WhatRow	function,	which	is	used	to	determine	the
cursor	row.	See	also	the	Text.Locate,	Text.maxrow	and
Text.maxcol	procedure.

Text.WhatColor Part	of	Text	module

Syntax		 Text.WhatColor	:	int

Description		

The	Text.WhatColor	function	is	used	to	determine	the	current
text	(foreground)	color,	ie.,	the	color	used	for	characters	that	are
output	using	put.	The	alternate	spelling	is	Text.WhatColour.

Example		

This	program	outputs	the	currently-active	color	number.	The
message	is	also	given	in	the	currently-active	color.

								View.Set	("graphics")

								…

								put	"This	writing	is	in	color	number	",	Text.WhatColor

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See
View.Set	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.WhatColor,	not	by	calling	WhatColor.

See	also		
the	Text.Color	procedure,	which	is	used	to	set	the	color.	See	also
Text.ColorBack	and	Text.WhatColorBack.

Text.WhatColorBack Part	of	Text	module

Syntax		 Text.WhatColorBack	:	int

Description		

The	Text.WhatColorBack	function	is	used	to	determine	the
current	text	background	color.	The	alternate	spelling	is
whatcolourback.

Example		

This	program	outputs	the	currently-active	background	color
number.	The	background	color	of	the	message	is	determined	by
this	number.

								View.Set	("screen")

								…

								put	"The	background	of	this	writing"

								put		"is	in	color	number	",	Text.WhatColorBack

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	Beware
that	the	meaning	of	background	color	is	different	in	these	two
modes.	See	Text.ColorBack	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.WhatColorBack,	not	by	calling	WhatColorBack.

See	also		 Text.Color	and	Text.WhatColor.

Text.WhatRow Part	of	Text	module

Syntax		 Text.WhatRow	:	int

Description		
The	Text.WhatRow	function	is	used	to	determine	the	cursor
position's	row.

Example		

This	program	outputs	The	current	row	is	5,	the	current	column	is
15.

								Text.Locate		(5,	10)

								put	"12345"..

								put	"The	current	row	is",	Text.WhatRow

								put	"The	current	column	is",	Text.WhatCol

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.
Text.WhatRow	functions	properly	even	if	the	cursor	is	invisible.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Text.WhatRow,	not	by	calling	WhatRow.

See	also		

the	Text.WhatCol	function,	which	is	used	to	determine	the	cursor
column.	See	also	the	Text.Locate,	Text.maxrow	and
Text.maxcol	procedure.

Time

Description		

This	unit	contains	the	predefined	subprograms	that	handle
anything	to	do	with	time,	either	as	a	date	or	as	a	timer.

All	routines	in	the	Time	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Time.").

Entry
Points		

Sec 	 Returns	the	number	of	seconds	since
1/1/1970	00:00:00	GMT.

Date 	 Returns	the	current	date	and	time	as	a	string.

SecDate 	 Converts	a	number	of	seconds	into	a	date	/
time	string.

DateSec 	 Converts	a	date	/	time	string	to	a	number	of
seconds.

SecParts 	

Converts	the	number	of	seconds	since
1/1/1970	00:00:00	GMT	into	a	day	of	month,
month,	year,	day	of	week,	hour,	minute	and
second	integers.

PartsSec 	
Converts	a	day	of	month,	month,	year,	hour,
minute	and	second	integers	into	the	number
of	seconds	since	1/1/1970	00:00:00	GMT.

SecStr 	
Converts	the	number	of	seconds	since
1/1/1970	00:00:00	GMT	into	a	user	specified
formatted	string	representing	the	date.

Elapsed 	 Returns	the	number	of	milliseconds	elapsed
since	the	program	started	to	run.

ElapsedCPU 	
Returns	the	number	of	milliseconds	of	CPU
time	elapsed	since	the	program	started	to
run.

Delay 	 Sleeps	for	a	specified	number	of
milliseconds.

DelaySinceLast 	
Sleeps	until	a	specified	number	of
milliseconds	since	the	last	call	to
Time.DelaySinceLast.

Time.Date Part	of	Time	module

Syntax		 Time.Date	:	string

Description		

The	Time.Date	function	returns	the	current	date	and	time	as	a
string.	The	returned	string	in	the	format	"dd	mmm	yy	hh:mm:ss",
where	mmm	is	the	first	3	characters	of	the	month,	e.g.,	"Apr".	For
example,	if	the	date	is	Christmas	1989	at	9:02:37	in	the	morning,
Time.Date	will	return	"25	Dec	89	09:02:37".	Twenty-four	hour
time	is	used,	so	eleven	thirty	at	night	the	same	day	would	return	"25
Dec	89	23:30:00"

Example		

This	program	greets	you	and	tells	you	the	date	and	time.

								var	theDateTime,	theDate,	theTime	:	string

								theDateTime	:=	Time.Date

								theDate	:=	theDateTime	(1	..	9)

								theTime	:=	theDateTime	(11	..	*)

								put	"Greetings!!		The	date	and	time	today	is	",	

Details		

Be	warned	that	on	some	computers,	such	as	IBM	PC	compatibles	or
Apple	Macintoshes,	the	date	may	not	be	set	correctly	in	the
operating	system;	in	that	case,	the	Time.Date	procedure	will	give
incorrect	results.

The	string	form	of	the	date	can	be	converted	to	a	numeric	form	for
comparison	purposes	using	the	Time.DateSec	function.	The
numeric	form	can	be	converted	to	a	string	using	the	Time.SecDate
function.	The	numeric	form	of	the	time	can	be	obtained	using	the
Time.Sec	function.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.Date,	not	by	calling	Date.

See	also		 Time.Sec,	Time.DateSec	and	Time.SecDate	functions.

Time.DateSec Part	of	Time	module

Syntax		 Time.DateSec	(dateString	:	string)	:	int

Description		

The	Time.DateSec	function	is	used	to	convert	a	date	and	time
string	into	a	number,	specifically,	the	number	of	seconds	since
00:00:00	GMT	Jan	1,	1970.

The	function	can	also	convert	just	the	date	("dd	mmm	yy"),	in
which	case	it	returns	the	number	of	seconds	since	00:00:00	GMT
Jan	1,	1970	from	midnight	of	the	entered	day.	It	will	also	convert
a	time	without	the	date	("hh:mm:ss"),	in	which	case	it	returns	the
number	of	seconds	that	have	passed	since	midnight	of	that	day.

If	the	format	is	incorrect	or	can't	be	interpreted,	then
Time.DateSec	will	return	1	and	Error.Last	and	Error.LastMsg
will	be	set	to	the	appropriate	error.

Example		

This	program	gives	the	number	of	seconds	since	00:00:00	GMT
Jan	1,	1970.

								var	theDateTime,	theDate,	theTime	:	string

								theDateTime	:=	Time.Date

								theDate	:=	theDateTime	(1	..	9)

								theTime	:=	theDateTime	(11	..	*)

								put	"The	number	of	seconds	from	00:00:00	GMT	Jan	1,	1970",

												"from	midnight	",	theDate,	"is	",	Time.DateSec

								put	"The	number	of	seconds	from	midnight	to	",	theTime

												Time.DateSec	(theTime)

								put	"The	number	of	seconds	from	00:00:00	GMT	Jan	1,	1970",

												"from	",	theDateTime,	"is	",	Time.DateSec	(theDateTime

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.DateSec,	not	by	calling	DateSec.

See	also		 Time.Sec,	Time.Date	and	Time.SecDate	functions.

Time.Delay Part	of	Time	module

Syntax		 Time.Delay	(duration	:	int)

Description		
The	Time.Delay	procedure	is	used	to	cause	the	program	to	pause
for	a	given	time.	The	time	duration	is	in	milliseconds.

Example		

This	program	prints	the	integers	1	to	10	with	a	second	delay
between	each.

								for	i	:	1	..	10

												put	i

												Time.Delay	(1000)	%	Pause	for	1	second

								end	for

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.Delay,	not	by	calling	Delay.

See	also		 Time.Elapsed	and	Time.ElapsedCPU.

Time.DelaySinceLast Part	of	Time	module

Syntax		 Time.DelaySinceLast	(duration	:	int)

Description		

The	Time.DelaySinceLast	procedure	is	used	to	cause	the
program	to	pause	for	a	given	time	since	the	last	call	to
Time.DelaySinceLast.	The	time	duration	is	in	milliseconds.

Example		

This	program	outputs	from	1	to	100,000,	then	outputs	how	long	it
took	to	do	this	(in	milliseconds).	It	then	calls
Time.DelaySinceLast	to	wait	until	10	seconds	has	passed	since
the	beginning	of	the	program	(regardless	of	how	long	it	took	to
execute	the	loop).	Finally	it	outputs	how	many	milliseconds	has
passed	since	the	program	started.	This	should	be	close	to	10,000
milliseconds.

								var	t	:	int	:=	Time.Elapsed

								put	"Starting	now,	count	to	100,000"

								for	i	:	1	..	100000

												put	i	..

												locate	(whatrow,	1)

								end	for

								put	"Finished	counting	to	100,000"

								

								put	"Elapsed	time:	",	Time.Elapsed	-	t,	"	milliseconds"

								Time.DelaySinceLast	(10000)

								put	"Elapsed	time:	",	Time.Elapsed	-	t,	"	milliseconds"

				

Execute		

The	Time.DelaySinceLast	is	usually	used	to	time	a	process	so
that	it	operates	on	the	same	speed	no	matter	what	the	machine.
For	example,	in	the	above	example,	the	program	will	alwyas	take
10	seconds	to	execute,	regardless	of	the	speed	of	the	machine	(up

Details		

to	a	point).	Fast	machines	will	spend	little	time	in	the	for	loop	and
longer	waiting	to	return	from	Time.DelaySinceLast.	Slower
machines	will	take	longer	to	execute	the	loop	and	will
consequently	wait	less	time	before	returning	from
Time.DelaySinceLast.

The	Time.DelaySinceLast	procedure	is	often	used	to	time	the
speed	of	animation	in	games.

Note	that	this	only	works	up	to	a	point.	On	a	very	slow	machine,
the	for	loop	may	take	longer	than	10	seconds	to	execute,	in	which
case	the	call	to	Time.DelaySinceLast	will	return	instantly.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.DelaySinceLast,	not	by	calling	DelaySinceLast.

See	also		 Time.Elapsed	and	Time.ElapsedCPU.

Time.Elapsed Part	of	Time	module

Syntax		 Time.Elapsed	:	int

Description		

The	Time.Elapsed	function	returns	the	amount	of	time	since	a
program	(process)	started	running.	The	number	of	milliseconds
since	the	program	started	running	is	returned.

Example		

This	program	tells	you	how	much	time	it	has	used.

								var	timeRunning	:	int

								timeRunning	:=	Time.Elapsed

								put	"This	program	has	run	",	timeRunning,	"	milliseconds"

Details		

On	IBM	PC	compatibles,	this	is	the	total	time	since	the	Turing
system	was	started	up.	The	hardware	resolution	of	duration	is	in
units	of	55	milliseconds.	For	example,	Time.Elapsed	may	be	off	by
as	much	as	55	milliseconds.

On	Apple	Macintoshes,	this	is	the	total	time	since	the	machine	was
turned	on.	The	hardware	resolution	of	duration	is	in	units	of	17
milliseconds	(1/60-th	of	a	second).

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.Elapsed,	not	by	calling	Elapsed.

See	also		 Time.ElapsedCPU	and	Time.Delay	subprograms.

Time.ElapsedCPU Part	of	Time	module

Syntax		 Time.ElapsedCPU	:	int

Description		

The	Time.ElapsedCPU	function	is	used	on	a	multitasking	system
such	as	UNIX	to	determine	the	amount	of	time	that	has	been	used
by	this	program	(process).	The	number	of	central	processor
milliseconds	assigned	to	this	program	is	returned.	This	is	of	little
use	on	a	personal	computer,	where	Time.ElapsedCPU	returns	the
same	value	as	Time.Elapsed.

Example		

On	a	UNIX	system,	this	program	tells	you	how	much	time	it	has
used.

								var	timeUsed	:	int

								timeUsed	:=	Time.ElapsedCPU

								put	"This	program	has	used	",	timeUsed,

																"	milliseconds	of	CPU	time"

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.ElapsedCPU,	not	by	calling	ElapsedCPU.

See	also		 Time.Elapsed	and	Time.Delay	subprograms.

Time.PartsSec Part	of	Time	module

Syntax		
Time.PartsSec	(year,	month,	day,	hour,	minute,	second	:	int)	:
int

Description		

The	Time.PartsSec	function	is	used	to	convert	the	numeric	parts
of	a	date	(specifically	the	year,	month,	day,	hour,	minute	and
second)	into	the	number	of	seconds	since	00:00:00	GMT	Jan	1,
1970	and	the	date	specified	by	the	parts.

The	function	can	also	convert	a	time	without	a	date	(year,	month
and	day	are	all	0),	in	which	case	it	returns	the	number	of	seconds
that	have	passed	since	midnight	of	the	current	day.

If	the	numbers	don't	make	any	sense	or	can't	be	interpreted,	then
Time.PartsSec	will	return	1	and	Error.Last	and	Error.LastMsg
will	be	set	to	the	appropriate	error.

Example		

This	program	gives	the	number	of	seconds	between	00:00:00
GMT	Jan	1,	1970	and	9:27	in	the	morning,	Christmas	Day,	1989).

								put	"The	number	of	seconds	from	00:00:00	GMT	Jan	1,	1970",

												"is	",	Time.PartsSec	(1989,	12,	25,	9,	27,	0

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.PartsSec,	not	by	calling	PartsSec.

See	also		 Time.SecParts,	Time.Date	and	Time.Sec	functions.

Time.Sec Part	of	Time	module

Syntax		 Time.Sec	:	int

Description		

The	Time.Sec	function	returns	the	current	date	and	time	as	a	number.
The	returned	integer	is	the	time	in	seconds	since	00:00:00	GMT
(Greenwich	Mean	Time)	January	1,	1970.

Example		
This	program	tells	you	how	many	seconds	since	1970.

								put	"The	number	of	seconds	since	1970	is	",	Time.Sec

Details		

Be	warned	that	on	some	computers,	such	as	IBM	PC	compatibles	or
Apple	Macintoshes,	the	date	may	not	be	set	correctly	in	the	operating
system;	in	that	case,	the	Time.Date	procedure	will	give	incorrect
results.

The	string	form	of	the	date	can	be	converted	to	a	numeric	form	for
comparison	purposes	using	the	Time.DateSec	function.	The	numeric
form	can	be	converted	to	a	string	using	the	Time.SecDate	function.
The	numeric	form	of	the	time	can	be	obtained	using	the	Time.Sec
function.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Time.Sec
by	calling	Sec.

See	also		 Time.Date,	Time.DateSec	and	Time.SecDate	functions.

Time.SecDate Part	of	Time	module

Syntax		 Time.SecDate	(timeInSecs	:	int)	:	string

Description		

The	Time.SecDate	function	is	used	to	convert	the	number	of	seconds
since	00:00:00	GMT	Jan	1,	1970	into	a	date	and	time	string.

If	timeInSecs	is	incorrect	or	can't	be	interpreted,	then	Time.SecDate
will	return	the	empty	string	and	Error.Last	and	Error.LastMsg	will
be	set	to	the	appropriate	error.

Example		

This	program	gives	the	number	of	seconds	since	00:00:00	GMT	Jan	1,
1970	and	the	date	in	string	form.

								var	timeInSecs	:	int	:=	Time.Sec

								var	theDateTime:	string

								theDateTime	:=	Time.SecDate	(timeInSecs)

								put	"The	number	of	seconds	since	1970	is	",	timeInSecs

								put	"Greetings!!		The	date	and	time	today	is	",	theDateTime

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Time.SecDate,	not	by	calling	SecDate.

See	also		 Time.Sec,	Time.Date	and	Time.DateSec	functions.

Time.SecParts Part	of	Time	module

Syntax		
Time.SecParts	(sec	:	int,	var	year,	month,	day,	
	 	 	 dayOfWeek,	hour,	minute,	second	:	int)

Description		

The	Time.SecParts	function	is	used	to	convert	a	single	number	form	of	the	time
(the	number	of	seconds	since	00:00:00	GMT	Jan	1,	1970)	into	a	date	with
numeric	component	parts.

The	dayOfWeek	parameter	is	1	for	Monday,	2	for	Tuesday	through	7	for	Sunday.

If	the	sec	parameter	doesn't	make	any	sense	or	can't	be	interpreted,	then
Time.PartsSec	will	set	all	the	var	parameters	to	1	and	Error.Last	
Error.LastMsg	will	be	set	to	the	appropriate	error.

Example		

This	program	returns	the	current	day	of	the	week.

								var	year,	month,	day,	dayOfWeek,	hour,	minute,	second

								Time.SecParts	(Time.Sec,	year,	month,	day,	dayOfWeek

																																hour,	minute,	second)

								var	days	:	array	1	..	7	of	string	(10)	:=	init	("Monday",	"Tuesday",	

												"Wednesday",	"Thursday",	"Friday",	"Saturday",	"Sunday")

								put	"The	current	day	of	the	week	is	",	days	(dayOfWeek

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Time.SecParts
calling	SecParts	.

See	also 	 Time.PartsSec,	Time.Date	and	Time.Sec	functions.

Time.SecStr Part	of	Time	module

Syntax		 Time.SecStr	(timeInSecs	:	int,	formatString	:	string)	:	string

Description		

The	Time.SecStr	function	is	used	to	convert	the	number	of	seconds	since
00:00:00	GMT	Jan	1,	1970	into	a	date	and	time	string.

If	timeInSecs	is	incorrect	or	can't	be	interpreted,	then	Time.SecStr	will	return
the	empty	string	and	Error.Last	and	Error.LastMsg	will	be	set	to	the
appropriate	error.

Detailsn		

The	formatString	parameter	specifies	how	the	output	string	will	look.	The
formatString	consists	of	different	letters	specifying	the	different	formats	and
spaces	or	commas	between	these	letters.	The	different	letters	can	be	combined
to	provide	different	date	formats.

			Here	are	the	letters:

a 	Abbreviated	weekday	name
A 	Full	weekday	name
b 	Abbreviated	month	name
B 	Full	month	name
c 	Date	and	time	representation	appropriate	for	locale
d 	Day	of	month	as	decimal	number	(01	-	31)
H 	Hour	in	24-hour	format	(00	-	23)
I 	Hour	in	12-hour	format	(01	-	12)
j 	Day	of	year	as	decimal	number	(001	-	366)
m 	Month	as	decimal	number	(01	-	12)
M 	Minute	as	decimal	number	(00	-	59)
p 	Current	locale’s	A.M./P.M.	indicator	for	12-hour	clock
S 	Second	as	decimal	number	(00	-	59)

U 	Week	of	year	as	decimal	number,	with	Sunday	as	first	day	of	week	(00
-	53)

w 	Weekday	as	decimal	number	(0	-	6;	Sunday	is	0)

W 	Week	of	year	as	decimal	number,	with	Monday	as	first	day	of	week	(00
-	53)

x 	Date	representation	for	current	locale
X 	Time	representation	for	current	locale
y 	Year	without	century,	as	decimal	number	(00	-	99)
Y 	Year	with	century,	as	decimal	number
	z,Z	 	Time-zone	name

Example		

This	program	outputs	the	current	date	and	the	day	number	in	the	year.
Example	output:	Thursday	November	13,	2003	is	day	number	317	of
2003

								put	Time.SecStr	(Time.Sec,	"A	B	d,	Y"),	"	is	day	number	",

												Time.SecStr	(Time.Sec,	"j"),	"	of	",	Time.SecStr

Execute		

Execute		

This	example	demonstrates	each	of	the	formatting	letters.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Time.SecStr
calling	SecStr.

Time.Sec	and	Time.SecParts	functions.

See	also		

time time	of	day	as	a	string	procedure

Syntax		 time	(var	t	:	string)

Description		

The	time	statement	is	used	to	determine	the	current	time	of	day.
Variable	t	is	assigned	a	string	in	the	format	"hh:mm:ss".	For
example,	if	the	time	is	two	minutes	and	47	seconds	after	nine
A.M.,	t	will	be	set	to	"09:02:47".	Twenty-four	hour	time	is	used.
For	example,	eleven	thirty	P.M.	gives	the	string	"23:30:00".

Example		

This	program	greets	you	and	tells	you	the	time	of	day.

								var	timeOfDay	:	string

								time	(timeOfDay)

								put	"Greetings!!		The	time	is	",	timeOfDay

Details		

Be	warned	that	on	some	computers	such	as	IBM	PC	compatibles
or	Apple	Macintoshes,	the	time	may	not	be	set	correctly	in	the
operating	system.	In	this	case,	the	time	procedure	will	give
incorrect	results.

See	also		
delay,	clock,	sysclock,	wallclock	and	date	statements.

See	also	predefined	unit	Time.

token in	input

Description		

A	token	is	essentially	a	word,	a	number	or	a	special	symbol	such
as	:=.	In	a	Turing	program	there	are	four	kinds	of	tokens:
keywords	such	as	get,	identifiers	such	as	incomeTax,	operators
and	special	symbols,	such	as	+	and	:=,	and	explicit	constants,
such	as	1.5	and	"Hello".	Some	keywords,	such	as	index,	are
reserved	and	cannot	be	used	in	programs	to	name	variables,
procedures,	etc.

A	get	statement,	such	as

								get	incomeTax

uses	token-oriented	input.	This	means	that	white	space	(blanks,
tabs,	etc.)	is	skipped	before	reading	the	input	item	and	after	the
item	(up	to	the	beginning	of	the	next	line).	See	the	get	statement
for	details.

Example		

In	this	example,	the	tokens	are	var,	x,	:,	real,	x,	:=	and	9.84.

								var	x	:	real

								x	:=	9.84

true boolean	value	(not	false)

Syntax		 true

Description		
A	boolean	(true/false)	variable	can	be	either	true	or	false	(see
boolean	type).

Example		

								var	passed	:	boolean	:=	true

								var	mark	:	int

								for	i	:	1	..	10

												get	mark

												passed	:=	passed	and	mark	>=	60

								end	for

								if	passed	=	true	then

												put	"You	passed	all	ten	subjects"

								end	if

Details		
The	line	if	passed=true	then	can	be	simplified	to	if	passed	then
with	no	change	to	the	meaning	of	the	program.

type declaration

Syntax		

A	typeDeclaration	is	one	of:

	 (a) type	id	:	typeSpec
	 (b) type	id	:	forward

Description		
A	type	declaration	gives	a	name	to	a	type.	This	name	can	be	used
in	place	of	the	type.

Example		

								type	nameType	:	string	(30)

								type	range	:	0	..	150

								type	entry	:

												record

																name	:	nameType

																age	:	int

												end	record

Details		

The	keyword	pervasive	can	be	inserted	just	after	type.	When	this
is	done,	the	type	is	visible	inside	all	subconstructs	of	the	type
scope.	Without	pervasive,	the	type	is	not	visible	inside	modules,
monitors	and	classes	unless	explicitly	imported.	Pervasive	types
need	not	be	imported.	You	can	abbreviate	pervasive	as	an	asterisk
(*).

A	forward	type	allows	pointers	to	be	declared	to	the	type	before
the	type	is	resolved.	To	resolve	a	type,	you	must	follow	a
forward	with	a	declaration	of	the	same	name	and	in	the	same
scope.	This	type	declaration	must	include	a	typeSpec.

TypeConv

Description		

This	unit	contains	the	predefined	subprograms	that	convert
between	different	Turing	standard	types.	There	are	also	six
routines	that	are	part	of	the	language,	rather	than	part	of	the	unit,
but	are	conceptually	part	of	this	unit.

All	routines	in	the	TypeConv	unit	are	exported	unqualified.

Description	of	the	routines	in	the	TypeConv	module	can	be	found
in	this	chapter.

Entry
Points		

intreal 	 Converts	an	integer	to	a	real.
intstr* 	 Converts	an	integer	to	a	string.
natreal 	 Converts	a	natural	number	to	a	real.
natstr* 	 Converts	a	natural	number	to	a	string.
round 	 Converts	a	real	to	an	integer	(rounding).
floor 	 Converts	a	real	to	an	integer	(round	down).
ceil 	 Converts	a	real	to	an	integer	(round	up).
realstr 	 Converts	a	real	to	a	string.
erealstr 	 Converts	a	real	to	a	string	(exponential	notation).
frealstr 	 Converts	a	real	to	a	string	(no	exponent).
strint* 	 Converts	a	string	to	an	integer.

strintok* 	 Returns	whether	a	string	can	legally	be	converted
to	an	integer.

strnat* 	 Converts	a	string	to	a	natural	number.

strnatok* 	 Returns	whether	a	string	can	legally	be	converted
to	a	natural	number.

strreal 	 Converts	a	string	to	a	real.

strrealok 	 Returns	whether	a	string	can	legally	be	converted
to	a	real.

chr* 	 Returns	the	ASCII	value	of	a	specified	string	of
length	one.

ord* 	 Returns	a	string	of	length	one	with	the	ASCII	value
specified.

*	Part	of	the	language,	conceptually	part	of	the	TypeConv	unit.

typeSpec type	specification

Syntax		

A	typeSpec	(type	specification)	is	one	of:

	 (a) int
	 (b) real
	 (c) boolean
	 (d) stringType 	 %	Example:	string	(20)
	 (e) subrangeType 	 %	Example:	1	..	150

	 (f) enumeratedType 	 %	Example:	enum	(red,
green,	blue)

	 (g) arrayType 	 %	Example:	array	1	..
150	of	real

	 (h) setType 	 %	Example:	set	of	1	..	10

	 (i) recordType 	 %	Example:	record	…
end	record

	 (j) unionType 	 %	Example:	union	…
end	union

	 (k) pointerType 	 %	Example:	pointer	to
collectionVar

	 (l) namedType 	 %	Example:	colorRange
	 (m) nat 	 %	natural	number

	 (n) intn 	 %	n-byte	integer	(n=1,	2,
4)

	 (o) natn 	 %	n-byte	natural	(n=	1,
2,	4)

	 (p) realn 	 %	n-byte	real	(n=4,	8)
	 (q) char 	 %	single	character
	 (r) char(n) 	 %	n	characters
	 (s) subprogramType

Description		

A	type	specification	determines	the	allowed	values	for	a	variable
or	constant.	For	example,	if	variable	x	is	an	integer	(its	typeSpec
is	int),	the	possible	values	for	x	are	numbers	such	as	-15,	0,	3	and
348207.	If	x	is	a	real	number	(its	typeSpec	is	real),	then	its
possible	values	include	7.8,	-35.0,	and	15e12.	If	x	is	a	boolean,	its
possible	values	are	true	and	false.	If	x	is	a	string,	its	possible
values	include	Hello	and	Good-bye.

Example		

								var	numberOfSides	:	int

								var	x,	y	:	real

								type	range	:	0	..	150			%	The	typeSpec	here	is	0	

								type	entry	:												%	Here	is	a	record	typeSpec

												record

																name	:	string	(25)

																age	:	range

												end	record

See	also		

int,	real,	boolean,	string,	subrangeType,	enum,	array,	set,
record,	union,	pointer,	named,	nat,	intn,	natn,	realn,	char,	and
char(n)	types.

unchecked compiler	directive

Dangerous

Description		

OOT	adds	the	concept	of	"unchecked"	to	Turing.	Here,	you	can
request	that	certain	run	time	tests,	which	take	place	by	default,
can	be	eliminated.	This	makes	the	program	more	efficient	at	the
risk	of	unreliability.

Example		

Declare	p	to	be	an	unchecked	pointer	to	an	integer	(see	pointers
for	details).	Pointer	p	will	be	dangerous	to	use,	because	the	run
time	system	will	not	check	to	see	if	it	actually	locates	an	integer,
as	opposed	to	arbitrary	computer	memory.	In	other	words,
unchecked	pointers	are	like	C	language	pointers.

								var	p	:	unchecked	^	int

Example		

Declare	C	to	be	an	unchecked	collection	of	records	of	type	R	(see
collections	for	details).	Pointers	to	C	will	be	unchecked.

								var	C	:	unchecked	collection	of	R

Example		

Remove	checking	from	the	body	of	a	loop.

								for	i	:	1	..	500

												unchecked

												if	a	(i)	=	key	then

																exit

												end	if

								end	for

Details		

In	the	above	example,	the	unchecked	keyword	requests	that	all
checking,	in	particular,	array	bounds	checking	for	array	a,	are	to
be	omitted.	The	disabling	lasts	from	the	occurrence	of	the
keyword	unchecked	to	the	end	of	the	surrounding	construct,	in
this	case,	until	end	for.	In	a	similar	way,	the	checked	keyword
will	request	that	checking	be	re-enabled	from	the	occurence	of
checked	to	the	end	of	the	surrounding	construct.

In	the	current	(1999)	implementation,	the	use	of	unchecked	to

turn	off	checking	in	a	block	of	statements	is	ignored.	In	general,
an	implementation	may	choose	to	ignore	requests	to	disable
checking.

union type

Syntax		

A	unionType	is:

								union	[id]	:	indexType	of

												label	labelExpn	{	,	labelExpn	}	:

																								{	id	{,	id	}	:	typeSpec	}

												{	label	labelExpn	{	,	labelExpn	}	:

																								{	id	{,	id	}	:	typeSpec	}	}

												[label	:							{	id	{,	id	}	:	typeSpec	}]

								end	union

Description		

A	union	type	(also	called	a	variant	record)	is	like	a	record	in	which	there
is	a	run	time	choice	among	sets	of	accessible	fields.	This	choice	is	made
by	the	tag	statement,	which	deletes	the	current	set	of	fields	and	activates	a
new	set.

Example		

This	union	type	keeps	track	of	various	information	about	a	vehicle,
depending	on	the	kind	of	vehicle.

								const	passenger	:=	0

								const	farm		:=	1

								const	recreational		:=	2

								

								type	vehicleInfo	:

												union	kind	:	passenger	..	recreational	of

																label	passenger	:

																				cylinders	:	1..16

																label	farm	:

																				farmClass	:string	(10)

																label	:					%	No	fields	for	"otherwise"	clause

												end	union

								var	v	:	vehicleInfo

								…

								tag	v,	passenger				%	Activate	passenger	part	v.cylinders	

The	optional	identifier	following	the	keyword	union	is	the	name	of	the
tag	of	the	union	type.	If	the	identifier	is	omitted,	the	tag	is	still	considered
to	exist,	although	its	value	cannot	be	accessed.	The	tag	must	be	of	an
index	type,	for	example	1..7.	You	should	limit	the	range	of	this	index
type,	as	the	compiler	may	have	a	limit	(at	least	255)	on	the	maximum
range	it	can	handle.

Details		

Each	labelExpn	must	be	known	at	compile	time	and	must	lie	within	the
range	of	the	tag's	type.	The	fields,	including	the	tag,	of	a	union	value	are
referenced	using	the	dot	operator,	as	in	v.cylinders	and	these	can	be	used
as	variables	or	constants.	A	field	can	be	accessed	only	when	the	tag
matches	one	of	the	label	expressions	corresponding	to	the	field.	The	tag
can	be	changed	by	the	tag	statement	but	it	cannot	be	assigned	to,	passed
to	a	var	parameter,	or	bound	to	using	var.

In	a	union,	id's	of	fields,	including	the	tag,	must	be	distinct.	However,
these	need	not	be	distinct	from	identifiers	outside	the	union.	Unions	can
be	assigned	as	a	whole	(to	unions	of	an	equivalent	type),	but	they	cannot
be	compared.	A	semicolon	can	optionally	follow	each	typeSpec.

Any	array	contained	in	a	union	must	have	bounds	that	are	known	at
compile	time.

The	notation	>	can	be	used	to	access	union	fields.	For	example,	if	p
pointer	to	vehicleRecord,	p>farmClass	locates	the	farmClass	field.

See	also		 pointer.

unit file	containing	module,	monitor,	or	class

Syntax		

A	compilationUnit	is	one	of:

	 (a) [importList]	mainProgram
	 (b) unit	moduleDeclaration
	 (c) unit	monitorDeclaration
	 (d) unit	classDeclaration

Description		

A	program	can	be	divided	up	into	units,	each	in	a	separate	file.	All	
files	except	the	main	program	begin	with	the	keyword	unit.	The	unit
contains	the	main	program,	a	module,	a	monitor	or	a	class.

Example		

Here	is	stack	module	that	is	separated	out	into	a	file	whose	name	is	

								unit								%	The	keyword	unit	begins	each	separate	file

								module	stack

												export	push,	pop

								

												var	top	:	int	:=	0

												var	contents	:	array	1	..	100	of	int

								

												procedure	push	(i	:	int)

																top	+=	1

																contents	(top)	:=	i

												end	push

								

												procedure	pop	(i	:	int)

																i	:=	contents	(top)

																top	-=	1

												end	pop

								end	stack

The	main	program,	which	is	in	another	file,	gains	access	to	the	stack	by
importing	it.	Here	is	the	main	program:

								import	var	stack				%	Use	the	stack

								var	n	:	int

								…

								stack	.	push	(n)

								…

								stack	.	pop	(n)

Details		

In	this	example,	the	keyword	var	in	the	import	list	is	required	because	the
main	program	causes	a	change	in	the	stack,	by	calling	push	and	pop
import	lists	of	units	that	are	modules,	monitors	and	classes	are	used	to	gain
access	to	further	units.

If	the	stack	were	in	a	file	with	a	different	name,	say	stk.t,	the	import	list
would	be	rewritten	to	use	an	in	clause,	as	follows:

								import	var	stack	in	"stk.t"

A	mainProgram	is	simply	a	program.	See	program.

See	also		
module,	monitor	and	class.	See	also	export	list,	import	list,	inherit
implement	list	and	implement	by	list.

unqualified export

Description		

When	an	identifier	x	is	exported	from	a	module,	monitor	or	class
M	using	the	keyword	unqualified,	it	can	be	used	outside	of	M
without	the	qualification	"M.".	In	other	words,	outside	of	M,	it
can	be	referred	to	as	simply	x.	The	keyword	unqualified	can	be
written	in	its	short	form	as	~.	which	is	pronounced	"not	dot",	as
in:

								export	~.	x

See	als		 o 	 export	list.

upper bound

Syntax		 upper	(reference	[,	dimension])	:	int

Description		

The	upper	attribute	is	used	to	find	the	upper	bound	of	an	array,
string,	char(n)	or	non-opaque	subrange	type.	(See	lower	for
finding	the	lower	bound.)

Example		

In	a	procedure,	see	if	the	bound	of	array	parameter	a	is	large
enough	that	it	can	be	subscripted	by	i.	If	it	is	large	enough,	it	is	set
a(i)	to	zero.

								procedure	test	(var	a	:	array	1	..	*	of	real)

												if	i	<=	upper	(a)	then

																a	(i)	:=	0.0

												end	if

								end	test

Details		

In	a	similar	way,	if	s	is	a	string,	its	upper	bound	(not	length!)	is
given	by	upper	(s).	If	an	array	has	more	than	one	dimension,	as
in	var	b	:	array	1..10,	1	..	60	of	int,	you	must	specify	the
dimension.	For	example,	upper	(b,	2)	returns	60.

var declaration

Syntax		

A	variableDeclaration	is	one	of:

	 (a) var	id	{	,id	}	[:typeSpec]	[:=initializingValue]
	 (b) collectionDeclaration

Description		

A	variable	declaration	creates	a	new	variable	(or	variables).	Only	form	(a)	will	be	explained	here.	See
collectionDeclaration	for	explanation	of	form	(b).	The	typeSpec	of	form	(a)	can	be	omitted	only	if	the
initializing	value	is	present.

Example		
								var	j,	k	:	int	:=	1					%	j	and	k	are	assigned	value	1

								var	t	:=	"Sample"							%	The	type	of	t	is	string

								var	v	:	array	1	..	3	of	string	(6)	:=

																init	("George",	"Fred",	"Alice")

Details		

The	initializing	value,	if	present,	must	be	an	expression	or	else	a	list	of	items	separated	by	commas
inside	init	(…).	The	syntax	of	initializingValue	is	one	of:

	 (a) 	 expn
	 (b) 	 init	(initializingValue	{,	initializingValue	})

Each	init	(…)	corresponds	to	an	array,	record	or	union	value	that	is	being	initialized.	These	must	be
nested	for	initialization	of	nested	types.

If	the	typeSpec	is	omitted,	the	variable's	type	is	taken	to	be	the	(root)	type	of	the	initializing
expression,	for	example,	int	or	string.	The	typeSpec	cannot	be	omitted	for	dynamic	arrays	or	when	the
initializing	value	is	of	the	form	init	(…).	The	values	inside	init	(…)	must	be	known	at	compile	time.

The	keyword	pervasive	can	be	inserted	just	after	var.	When	this	is	done,	the	variable	is	visible	inside
all	subconstructs	of	the	variable's	scope.	Without	pervasive,	the	variable	is	not	visible	inside	modules
unless	explicitly	imported.	Pervasive	variables	need	not	be	imported.	You	can	abbreviate	
an	asterisk	(*).

OOT	extends	Turing	in	the	following	way.	OOT	changes	form	(a)	to	allow	the	optional	use	of	the
register	keyword	to	request	that	the	variable	be	placed	in	a	machine	register.	The	OOT	syntax	for	form
(a)	is	actually:

								var	[pervasive]	[register]	id	{	,	id	}	[:	typeSpec

In	the	current	(1994)	OOT	implementation,	programs	are	run	interpretively	using	pseudo-code,	which
has	no	machine	registers,	and	the	register	keyword	is	ignored.	See	
of	register	variables.

See	also		
collection,	bind,	procedure	and	function	declarations,	parameter	declarations,	
import	lists	for	other	uses	of	the	keyword	var.

variableReference use	of	a	variable

Syntax		

A	variableReference	is:

	 variableId	{	componentSelector	}

Description		

In	a	Turing	program,	a	variable	is	declared	and	given	a	name
(variableId)	and	then	used.	Each	use	is	called	a	variable
reference.

If	the	variable	is	an	array,	collection,	record	or	union,	its	parts
(components)	can	be	selected	using	subscripts	and	field	names
(using	componentSelectors).	The	form	of	a	componentSelector	is
one	of:\

	 (a) 	 (expn	{,	expn})
	 (b) 	 .	fieldId

Form	(a)	is	used	for	subscripting	(indexing)	arrays	and
collections.	The	number	of	array	subscripts	must	be	the	same	as
in	the	array's	declaration.	A	collection	has	exactly	one	subscript,
which	must	be	a	pointer	to	the	collection.	Form	(b)	is	used	for
selecting	a	field	of	a	record	or	union.

Example		

Following	the	declarations	of	k,	a	and	r,	each	of	k,	a	(k)	and
r.name	are	variable	references.

								var	k	:	int

								var	a	:	array	1	..	100	of	real

								var	r	:

												record

																name	:	string	(20)

																phone	:	string	(8)

												end	record

								…

								k	:=	5

								a	(k)	:=	3.14159

								r	.	name	:=	"Steve	Cook"

A	variable	reference	can	contain	more	than	one	component

Details		
selector,	for	example,	when	the	variable	is	an	array	of	records.
For	an	example,	see	the	record	type.	See	also	constantReference
and	var	declaration.

View

Description		

This	unit	contains	the	predefined	subprograms	that	deal	with	the
current	output	surface,	which	is	a	window.

All	routines	in	the	View	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"View.")	with	the	exception	of	maxx,
maxy,	maxcolor	and	maxcolour	which	are	exported	unqualified.

maxx 	

Returns	the
maximum	x
coordinate	(width	1)
(exported
unqualified).

maxy 	

Returns	the
maximum	y
coordinate	(height
1)	(exported
unqualified).

maxcolor 	

Returns	the
maximum	color
number	(#	colors	1)
(exported
unqualified).

maxcolour 	

Returns	the
maximum	color
number	(#	colors	1)
(exported
unqualified).

Set 	
Changes	the
configuration	of	the
output	surface.

ClipSet 	 Clips	output	to	a
specified	rectangle.

ClipAdd 	

Adds	another
specified	rectangle
to	the	clipping

Entry
Points		

region.

ClipAddOval 	
Adds	another
specified	oval	to	the
clipping	region.

ClipOff 	 Stops	all	clipping.

WhatDotColor 	 	

Gets	the
color	of	the
pixel	at	a
specified
location.

WhatDotColour 	
Gets	the	color	of	the
pixel	at	a	specified
location.

Update 	

Updates	the
onscreen	window
from	the	offscreen
bitmap.

UpdateArea 	

Updates	part	of	the
onscreen	window
from	the	offscreen
bitmap.

SetTransparentColor 	

Sets	the	transparent
color	to	be	ignored
when	using
picUnderMerge

mode.

SetTransparentColour 	

Sets	the	transparent
colour	to	be	ignored
when	using
picUnderMerge

mode.

View.ClipAdd Part	of	View	module

Syntax		 View.ClipAdd	(x1,	y1,	x2,	y2	:	int)

Description		

The	View.ClipAdd	procedure	adds	another	rectangle	specified	by
(x1,	y1)	-	(x2,	y2)	to	the	clipping	region.	This	only	works	on
systems	that	support	complex	clipping	regions.	If	no	clipping
region	has	been	specified,	then	the	rectangle	becomes	the
complete	clipping	region.

A	clipping	region	is	the	region	that	the	output	will	appear	in.	If
the	rectangle	is	specified	as	the	clipping	region,	any	drawing	done
outside	the	rectangle	will	not	appear.

To	set	the	initial	clipping,	or	remove	the	old	region	and	replace	it
with	a	new	one,	use	View.ClipSet.	To	set	the	clipping	region	back
to	the	entire	screen	or	window,	use	View.ClipOff.

These	commands	only	work	in	"graphics"	mode.

Example		

This	program	sets	the	clipping	region	to	five	rectangles	and	then
draws	random	circles.	The	circles	will	only	appear	(or	partially
appear)	in	the	rectangles.

								const	maxx13	:	int	:=	maxx	div	3

								const	maxx23	:	int	:=	2	*	maxx	div	3

								const	maxy13	:	int	:=	maxy	div	3

								const	maxy23	:	int	:=	2	*	maxy	div	3

								View.ClipSet	(0,	0,	maxx13,	maxy13)

								View.ClipAdd	(maxx23,	0,	maxx,	maxx13)

								View.ClipAdd	(maxx13,	maxy13,	maxx23,	maxy23)

								View.ClipAdd	(0,	maxy23,	maxx13,	maxy)

								View.ClipAdd	(maxx23,	maxy23,	maxx,	maxy)

								

								%	Draw	the	random	ovals	in	the	box

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												clr	:=	Rand.Int	(0,	maxcolor)			%	Random	color

												Draw.FillOval	(x,	y,	30,	30,	clr)

								end	loop

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.ClipAdd,	not	by	calling	ClipAdd.

See	also 	 View.ClipSet	and	View.ClipOff	functions.

View.ClipAddOval Part	of	View	module

Syntax		 View.ClipAddOval	(x,	y,	xradius,	yradius	:	int)

Description		

The	View.ClipAddOval	procedure	adds	another	oval	specified	by
(x,	y)	and	xradius	and	yradius)	to	the	clipping	region.	If	no
clipping	region	has	been	specified,	then	the	oval	becomes	the
complete	clipping	region.

A	clipping	region	is	the	region	that	the	output	will	appear	in.	If
the	rectangle	is	specified	as	the	clipping	region,	any	drawing	done
outside	the	oval	will	not	appear.

To	set	the	initial	clipping,	or	remove	the	old	region	and	replace	it
with	a	new	rectangle,	use	View.ClipSet.	To	set	the	clipping
region	back	to	the	entire	screen	or	window,	use	View.ClipOff.

These	commands	only	work	in	"graphics"	mode.

Example		

This	program	sets	the	clipping	region	to	five	circles	and	then
draws	random	squares.	The	squares	will	only	appear	(or	partially
appear)	in	the	ovals.

								const	c1	:	int	:=	maxy	div	4

								const	c2	:	int	:=	3*	maxy	div	4

								const	radius	:	int	:=	maxy	div	4

								View.ClipAddOval	(c1,	c1,	radius,	radius)

								View.ClipAddOval	(c1,	c2,	radius,	radius)

								View.ClipAddOval	(c2,	c1,	radius,	radius)

								View.ClipAddOval	(c2,	c2,	radius,	radius)

								%	Draw	the	random	squares	in	the	box

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx	-	30)					%	Random	x

												y	:=	Rand.Int	(0,	maxy	-	30)					%	Random	y

												clr	:=	Rand.Int	(0,	maxcolor)				%	Random	color

												Draw.FillBox	(x,	y,	x	+	30,	y	+	30,	clr)

								end	loop

Execute		

Execute		

By	combining	animation	using	View.Update	and
View.ClipAddOval,	you	can	achieve	a	moving	spotlight	effect.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.ClipAddOval,	not	by	calling	ClipAddOval.

See	also View.ClipSet,	View.ClipAdd	and	View.ClipOff	functions.

View.ClipOff Part	of	View	module

Syntax		 View.ClipOff

Description		

The	View.ClipOff	procedure	turns	off	clipping.	This	means	that
any	drawing	commands	can	appear	on	the	entire	drawing	surface
(the	screen	or	the	window,	depending	on	the	system).

These	commands	only	work	in	"graphics"	mode.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.ClipOff,	not	by	calling	ClipOff.

See	also 	 View.ClipAdd	and	View.ClipSet	functions.

View.ClipSet Part	of	View	module

Syntax		 View.ClipSet	(x1,	y1,	x2,	y2	:	int)

Description		

The	View.ClipSet	procedure	sets	the	clipping	region	to	the
rectangle	specified	by	(x1,	y1)	-	(x2,	y2).	If	a	clipping	region
already	exist,	it	is	replaced	by	the	specified	rectangle.

A	clipping	region	is	the	region	in	which	the	output	will	appear.	If
the	rectangle	is	specified	as	the	clipping	region,	any	drawing	done
outside	the	rectangle	will	not	appear.

To	set	the	initial	clipping,	or	remove	the	old	region	and	replace	it
with	a	new	one,	use	View.ClipSet.	To	set	the	clipping	region	back
to	the	entire	screen	or	window,	use	View.ClipOff.

These	commands	only	work	in	"graphics"	mode.

Example		

This	program	sets	the	clipping	region	to	five	rectangles	and	then
draws	random	circles.	The	circles	will	only	appear	(or	partially
appear)	in	the	rectangles.

								const	maxx13	:	int	:=	maxx	div	3

								const	maxx23	:	int	:=	2	*	maxx	div	3

								const	maxy13	:	int	:=	maxy	div	3

								const	maxy23	:	int	:=	2	*	maxy	div	3

								View.ClipSet	(0,	0,	maxx13,	maxy13)

								View.ClipAdd	(maxx23,	0,	maxx,	maxy13)

								View.ClipAdd	(maxx13,	maxy13,	maxx23,	maxy23)

								View.ClipAdd	(0,	maxy23,	maxx13,	maxy)

								View.ClipAdd	(maxx23,	maxy23,	maxx,	maxy)

								

								%	Draw	the	random	ovals	in	the	box

								var	x,	y,	clr	:	int

								loop

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												clr	:=	Rand.Int	(0,	maxcolor)			%	Random	color

												Draw.FillOval	(x,	y,	30,	30,	clr)

								end	loop

Exported	qualified.

Status		 This	means	that	you	can	only	call	the	function	by	calling
View.ClipSet,	not	by	calling	ClipSet.

See	also		 View.ClipAdd	and	View.ClipOff	functions.

View.maxcolor Part	of	View	module

Syntax		 View.maxcolor	:	int

Description		

The	maxcolor	function	is	used	to	determine	the	maximum	color
number	for	the	current	mode	of	the	screen.	The	alternate	spelling
is	maxcolour.

Example		

This	program	outputs	the	maximum	color	number.

								setscreen	("graphics")

								…

								put	"The	maximum	color	number	is	",	View.maxcolor

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	If	it	is
not,	it	will	automatically	be	set	to	"screen"	mode.	See	View.Set
for	details.

For	IBM	PC	compatibles	in	"screen"	mode,	maxcolor	=	15.	For
the	default	IBM	PC	compatible	"graphics"	mode	(VGA),
maxcolor	=	15.

Details		
View.maxcolor	is	identical	to	RGB.maxcolor.	It	is	placed	here
for	consistency	with	other	screen	information	routines.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.maxcolor.	Note	that	RGB.maxcolor	is	exported
unqualified,	so	that	one	can	call	maxcolor.

See	also		

Draw.Dot	for	examples	of	the	use	of	maxcolor.	See	the
Text.Color	procedure	which	is	used	for	setting	the	currently-
active	color.

View.maxx Part	of	View	module

Syntax		 maxx	:	int

Description		
The	maxx	function	is	used	to	determine	the	maximum	value	of	x
for	the	current	graphics	mode.

Example		

This	program	outputs	the	maximum	x	value.

								setscreen	("graphics")

								…

								put	"The	maximum	x	value	is	",	maxx

Details		

The	screen	should	be	in	a	"graphics"	mode.	If	it	is	not,	it	will
automatically	be	set	to	"graphics"	mode.	See	setscreen	for
details.

For	the	default	IBM	PC	compatible	graphics	mode	(CGA),	maxx
=	319.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	maxx	or	by
calling	View.maxx.

See	also		
Draw.Dot	for	an	example	of	the	use	of	maxx	and	for	a	diagram
illustrating	x	and	y	positions.

View.maxy Part	of	View	module

Syntax		 maxy	:	int

Description		
The	maxy	function	is	used	to	determine	the	maximum	value	of	y
for	the	current	graphics	mode.

Example		

This	program	outputs	the	maximum	y	value.

								setscreen	("graphics")

								…

								put	"The	maximum	y	value	is	",	maxy

Details		

The	screen	should	be	in	a	"graphics"	mode.	If	it	is	not,	it	will
automatically	be	set	to	"graphics"	mode.	See	setscreen	for
details.

For	the	default	IBM	PC	compatible	graphics	mode	(CGA),	maxy
=	199.

Status		

Exported	unqualified.

This	means	that	you	can	call	the	function	by	calling	maxy	or	by
calling	View.maxy.

See	also		
Draw.Dot	for	an	example	of	the	use	of	maxy	and	for	a	diagram
illustrating	x	and	y	positions.

View.Set Part	of	View	module

Syntax		 View.Set	(s	:	string)

Example		

Here	are	example	uses	of	the	View.Set	procedure.	In	many	cases,	these
will	appear	as	the	first	statement	of	the	program.	However,	they	can
appear	any	place	in	a	program.

								View.Set	("graphics")							%	Switch	to	graphics	mode

								View.Set	("screen")					%	Switch	to	screen	mode

								View.Set	("nocursor")							%	Turn	off	cursor

								View.Set	("noecho")					%	Do	not	echo	keystrokes

Description		

The	View.Set	statement	is	used	to	change	the	mode	of	the	screen,	as	well
as	the	way	in	which	Turing	does	input	and	output.	The	parameter	to
View.Set	is	a	string,	such	as	"graphics".	The	string	contains	one	or	more
options	separated	by	commas,	such	as	"text,	noecho".	View.Set	affects
the	active	window.

Details		

There	are	two	window	modes,	text	and	graphics.

text	mode	does	not	allow	any	graphics	whatsoever	(including	cursor
positioning,	etc.).	Only	put	and	get	are	allowed.	Any	output	that	scrolls
off	the	top	of	the	window	is	preserved	and	can	viewed	or	printed	later.

graphics	mode	allows	character	graphics	and	pixel	graphics	commands
such	and	Text.Locate	and	Draw.Box.

The	default	graphics	mode	is	defined	in	the	Turing	preferences.	It	is
good	practice	to	set	the	desired	mode	so	that	the	program	will	function
properly	regardless	of	thedefault	graphics	mode.	Note	that	if	the	user
prints	the	output	window,	in	text	mode,	all	output	sent	to	the	window	is
printed.	In	graphics	mode,	only	the	current	output	of	the	window	is
printed.	If	the	user	saves	the	output	window,	a	text	mode	window	will
produce	a	text	file	containing	all	the	output	sent	to	the	window.	A
graphics	window	will	produce	a	BMP	graphics	file	containing	the
current	contents	of	the	window.

Where	the	options	to	View.Set	are	mutually	exclusive,	they	are	listed

Details		

here	with	the	default	underlined.	Here	are	the	options:

"cursor",	"nocursor"	-	Causes	the	cursor	to	be	shown	(or	hidden).	The
cursor	is	only	displayed	when	the	program	is	awaiting	input.

"echo",	"noecho"	-	Causes	(or	suppresses)	echoing	of	characters	that	are
typed.	Echoing	is	commonly	turned	off	in	interactive	programs	to	keep
typed	characters	from	being	echoed	at	inappropriate	places	on	the
screen.

"noxor",	"xor"	-	noxor	mode	means	that	all	drawing	is	done	normally.
In	xor	mode,	all	pixel	graphics	are	drawn	XOR'ed	on	the	background
(with	the	exception	of	the	Pic	routines,	where	the	drawing	mode	is
specified).	The	most	important	property	of	an	XOR'ed	object	is	that	it
can	be	erased	and	the	background	restored	by	XOR'ing	the	object	on	top
of	itself.

"msdos",	"nomsdos"	-	Causes	the	window	to	use	the	MS-DOS	character
set	(with	line	drawing	characters)	instead	of	the	Windows	ANSI
character	set.	The	"nomsdos"	option	causes	the	window	to	use	the
Windows	ANSI	character	set.	Note	that	the	"msdos"	option	only	works
if	the	Windows	font	(usually	Courier	New)	supports	it.

"visible",	"invisible",	"popup"	-	Causes	the	active	window	to	become
visible	(invisible	or,	for	popup,	invisible	until	input	or	output	occurs	in
the	window).

"title:<text>"	-	Causes	the	title	of	the	active	window	to	be	set	to	<text

"position:<x>;<y>"	-	Causes	the	position	of	the	upper	left	corner	of	the
active	window	to	be	set	to	(x,	y).	The	<x>	parameter	can	also	be	one	of:
“left”,	“center”,	“center”	or	“right”,	in	which	case	the	window	will	be
placed	on	the	left,	center	or	right	side	of	the	screen.	The	<y>	parameter
can	also	be	one	of:	“top”,	“middle”,	“truemiddle”,	or	“bottom”	in	which
case	the	window	will	be	placed	at	the	top,	middle	about	1/3	from	the	top,
middle	or	bottom	of	the	screen.	Note	that	when	a	window	is	supposed	to
be	centered	in	the	middle	of	the	screen,	“middle”	usually	looks	better
than	“truemiddle”.

"nooffscreenonly",	"offscreenonly"	Causes	or	(suppresses)	output	from

being	sent	to	the	visible	window.	When	the	offscreenonly	option	is
active,	any	text	and	graphics	output	is	drawn	to	the	offscreen	buffer	that
is	maintained	for	every	Run	window	but	not	drawn	to	the	screen.
View.Update	is	then	used	to	copy	the	entire	contents	of	the	offscreen
buffer	to	the	Run	window.	By	allowing	numerous	drawing	commands	to
be	sent	to	the	offscreen	buffer	and	then	updating	the	window	at	one	time,
it	is	possible	to	get	smoother	animation.

"buttonbar",	"nobuttonbar"	Causes	or	(suppresses)	the	display	of	a
button	bar	at	the	top	of	the	output	window	which	allows	the	user	to
easily	stop	program	execution	or	save	and	print	the	output	window.

"text",	"screen",	"graphics"	-	Sets	window	to	the	given	mode	and
always	erases	the	screen,	even	when	already	in	the	requested	mode.

The	text	mode	can	have	a	modifier	in	the	form	"text:<rows>;<cols>".
This	sets	the	window	to	be	<rows>	by	<cols>	of	text	in	size.

The	screen	mode	actually	sets	the	window	to	graphics	mode.	It	can
have	a	modifier	in	the	form	"screen:<rows>;<cols>".	This	sets	the
window	to	be	<rows>	by	<cols>	of	text	in	size.

The	graphics	mode	can	have	a	modifier	in	the	form	"graphics:<width
<height>".	This	sets	the	window	to	be	<width>	by	<height>	pixels	in
size.

To	set	a	window	to	the	maximum	size	available	on	the	screen,	you	can
use	“max”	for	the	<width>,	<height>,	<rows>	or	<columns>	parameters.
If	the	window	requested	is	larger	than	will	fit	on	the	screen,	the	window
will	fill	the	entire	screen	and	scroll	bars	will	be	added	to	the	output
window	to	allow	the	window	user	to	see	the	rest	of	the	window.

This	program	creates	a	graphics	window	that	is	300	pixels	by	100	pixels.

								View.Set	("graphics:300;100")

This	program	outputs	the	square	roots	for	the	first	200	numbers.	The
user	can	inspect	all	the	output	and	print	the	values	after	the	program	has
finished	execution

Example		

								View.Set	("text")

								for	value	:	1	..	200

												put	value	:	3,	"			",	sqrt	(value)

								end	for

This	program	creates	a	window	without	a	button	bar	at	the	top	that	is
sized	to	fit	the	screen.	It	then	draws	an	“X”	in	red	in	the	window.

								View.Set	("graphics:max;max,nobuttonbar")

								Draw.Line	(0,	0,	maxx,	maxy,	red)

								Draw.Line	(maxx,	0,	0,	maxy,	red)

This	program	resizes	the	window	to	200x200,	moves	the	output	window
to	the	bottom-left	of	the	screen	and	hides	the	button	bar.	It	then	sets	the
window	title	to	“Bottom	Left	Window”	and	outputs	the	word	“Hello”.

								View.Set	("graphics:200;200,position:bottom;left,nobuttonbar")

								View.Set	("title:Bottom	Left	Window")

								put	"Hello"

See	also		 setscreen	for	further	information.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	View.Set,	not
by	calling	Set.

View.SetTransparentColor Part	of	View	module

Syntax		 View.SetTransparentColor	(colorNumber	:	int)

Description		

The	View.SetTransparentColor	procedure	sets	the	color	in	the
Run	window	that	should	be	considered	transparent	when	a	picture
is	drawn	on	the	window	using	the	picUnderMerge	mode.	If	no
color	is	specified,	then	the	default	background	color	(colorbg,
usually	white)	is	used	as	the	transparent	color.	You	can	change
this	background	color	using	RGB.SetColor	on	color	0.

Details
This	call	is	often	used	when	you	want	the	Run	window	to	have	a
background	color	other	than	color	0.

Example		

This	program	displays	two	images	loaded	from	the	same	file.	In
the	second	image,the	transparent	color	has	been	set	to	bright	red
(that	is,	the	parts	of	the	image	that	are	meant	to	be	transparent	are
in	bright	red).

								const	SIZE	:	int	:=	20

								procedure	DrawCheckerBoard

												cls

												for	x	:	0	..	maxx	by	SIZE

																for	y	:	0	..	maxy	by	SIZE

																				if	((x	+	y)	div	SIZE)	mod	2	=	0	then

																								Draw.FillBox	(x,	y,	x	+	SIZE,	y	+	

																				end	if

																end	for

												end	for

								end	DrawCheckerBoard

								var	pic	:	int	:=	Pic.FileNew	("data	files/airplane.bmp")

								Pic.SetTransparentColor	(pic,	brightred)

								RGB.SetColor	(0,	1.,	0.,	0.)

								DrawCheckerBoard

								Pic.Draw	(pic,	100,	100,	picUnderMerge)

								View.SetTransparentColor	(brightgreen)

								Pic.Draw	(pic,	400,	100,	picUnderMerge)

Execute		

Details
View.SetTransparentColour	is	an	alternate	spelling	for
View.SetTransparentColor.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.SetTransparentColor,	not	by	calling
SetTransparentColor.

See	also		 Pic.SetTransparentColor.

View.Update Part	of	View	module

Syntax		 View.Update

Description		

The	View.Update	procedure	updates	a	Run	window	from	an
offscreen	bitmap.	It	is	used	with	the	command
View.Set	("offscreenonly")	which	prevents	the	Run	window	from
being	updated	until	the	View.Update	command	is	given.

Example		

This	program	displays	30	circles	bouncing	around	the	screen.	To	see
the	effect	without	View.Update,	comment	out	the	line
View.Set	("offscreenonly")

								%	Place	some	circles	around	the	screen

								const	RADIUS	:	int	:=	30

								const	NUM_BALLS	:	int	:=	20

								var	x,	y,	dx,	dy,	clr	:	array	1	..	NUM_BALLS	of	int

								for	i	:	1	..	NUM_BALLS

												x	(i)	:=	Rand.Int	(RADIUS,	maxx	-	RADIUS)

												y	(i)	:=	Rand.Int	(RADIUS,	maxy	-	RADIUS)

												dx	(i)	:=	Rand.Int	(-3,	3)

												dy	(i)	:=	Rand.Int	(-3,	3)

												clr	(i)	:=	Rand.Int	(1,	15)

								end	for

								

								%	Now,	any	drawing	to	the	screen	won't	appear	until	a

								%	View.Update	is	given.

								View.Set	("offscreenonly")

								loop

												cls	%	Clear	the	offscreen	window

												for	i	:	1	..	NUM_BALLS

																if	x	(i)	+	dx	(i)	<	RADIUS	or	

																								x	(i)	+	dx	(i)	>	maxx	-	RADIUS	then

																				dx	(i)	:=	-dx	(i)

																end	if

																if	y	(i)	+	dy	(i)	<	RADIUS	or	

																								y	(i)	+	dy	(i)	>	maxy	-	RADIUS	then

																				dy	(i)	:=	-dy	(i)

																end	if

																x	(i)	:=	x	(i)	+	dx	(i)

																y	(i)	:=	y	(i)	+	dy	(i)

																Draw.FillOval	(x	(i),	y	(i),	RADIUS,	RADIUS

												end	for

												%	All	the	circles	have	been	drawn.		Now	update	the	screen.

												View.Update

												Time.Delay	(5)

								end	loop

Execute		

Details		

All	Turing	Run	windows	have	both	an	onscreen	visible	window	and
an	offscreen	window.	Whenever	any	output	is	sent	to	the	screen,	both
the	onscreen	window	and	the	offscreen	window	are	updated.	When
the	Run	window	needs	to	be	updated	(for	example	when	another
window	is	moved	over	top	of	it	and	then	removed),	Turing	copies	the
offscreen	window	onto	the	onscreen	window.

When	the	View.Set	("offscreenonly")	command	is	given,	Turing	no
longer	draws	to	the	onscreen	window	when	any	drawing	command	is
given.	However,	it	does	update	the	offscreen	window.	When	the
View.Update	command	is	given,	the	entire	offscreen	window	is
copied	to	the	onscreen	window.

This	can	be	used	to	provide	smooth,	flicker-free	animation.
Animated	objects	flicker	when	the	object	being	animated	disappears
from	the	onscreen	window	for	a	period	of	time.	By	using
View.Set	("offscreenonly")	/	View.Update,	the	onscreen	window	is
never	blank.	Instead,	the	offscreen	window	drawn	over	top	off	the	on
screen	window,	replacing	it.	This	means	that	the	on-screen	window	is
never	blanked	out,	eliminating	the	flickering	found	in	the	animation.

Details		

It's	very	easy	to	forget	that	no	output	will	appear	in	the	Run	window
when	using	View.Update.	Remember	to	use
View.Set("nooffscreenonly")	to	turn	off	this	feature	sending	output
for	debugging	purposes.

Details		

View.Update	should	not	be	used	in	conjunction	with	the	Sprite
module.	Sprites	can	be	considered	a	limited	version	of	this	technique.
View.Update	also	works	well	when	the	entire	background	is

changing.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.Update,	not	by	calling	Update.

See	also		
View.Set	for	the	"offscreenonly"	and	"nooffscreenonly"	options.

View.UpdateArea	for	updating	part	of	the	window	at	a	time.

View.UpdateArea Part	of	View	module

Syntax		 View.UpdateArea	(x1,	y1,	x2,	y2)

Description		

The	View.UpdateArea	procedure	updates	a	rectanglular	area	Run
window,	specified	by	(x1,	y1)	-	(x2,	y2)	from	the	offscreen	bitmap.
It	is	used	with	the	command	View.Set	("offscreenonly")	which
prevents	the	Run	window	from	being	updated	until	the
View.UpdateArea	or	View.Update	command	is	given.

Because	the	entire	screen	is	not	updated	each	time,	the	animation
can	be	much	faster,	especially	on	slow	machines.	This	procedure
does	take	more	effort	to	use	than	View.Update	as	it	requires	the
programmer	to	calculate	which	portion	of	the	screen	must	be
updated.

Example		

This	program	moves	a	star	back	and	forth	across	the	screen.	To
compare	the	speed	up	View.UpdateArea	with	View.Update,
replace	the	calls	to	View.UpdateArea	with	View.Update.

								View.Set	("offscreenonly")

								var	SIZE	:	int	:=	50

								loop

												for	x	:	0	..	maxx	-	SIZE

																Draw.FillStar	(x,	100,	x	+	SIZE,	100	+	SIZE

																View.UpdateArea	(x	-	1,	100,	x	+	SIZE,	100	+	

																Draw.FillStar	(x,	100,	x	+	SIZE,	100	+	SIZE

												end	for

												for	decreasing	x	:	maxx	-	SIZE	..	0

																Draw.FillStar	(x,	100,	x	+	SIZE,	100	+	SIZE

																View.UpdateArea	(x,	100,	x	+	SIZE	+	1,	100	+	

																Draw.FillStar	(x,	100,	x	+	SIZE,	100	+	SIZE

												end	for

								end	loop

Execute		

Details		

If	the	entire	screen	is	being	updated	each	time	through	the
animation	loop	(for	example	if	the	background	image	is	changing),
then	use	View.Update	instead.

When	using	View.UpdateArea,	it	is	important	to	correctly	calculate
the	region	to	be	updated.	This	region	must	not	only	contain	the	item
being	drawn,	but	also	any	area	where	the	background	should	be
replaced.	For	example,	in	the	program	above,	the	area	updated
included	the	one	pixel	to	the	left	of	the	star	when	the	star	was
moving	right-ward	and	one	pixel	to	the	right	of	the	star	when	the
star	was	moving	left-ward.

Execute		

Here	is	an	example	program	that	allows	you	to	compare	the	speed
of	animation	using	View.Update	with	View.UpdateArea.	The
program	animates	an	object	on	a	background	of	stars.	Pressing	any
key	switches	between	the	two	calls.

All	Turing	Run	windows	have	both	an	onscreen	visible	window	and
an	offscreen	window.	Whenever	any	output	is	sent	to	the	screen,
both	the	onscreen	window	and	the	offscreen	window	are	updated.
When	the	Run	window	needs	to	be	updated	(for	example	when
another	window	is	moved	over	top	of	it	and	then	removed),	Turing
copies	the	offscreen	window	onto	the	onscreen	window.

Details		

When	the	View.Set	("offscreenonly")	command	is	given,	Turing	no
longer	draws	to	the	onscreen	window	when	any	drawing	command
is	given.	However,	it	does	update	the	offscreen	window.	When	the
View.Update	command	is	given,	the	entire	offscreen	window	is
copied	to	the	onscreen	window.

This	can	be	used	to	provide	smooth,	flicker-free	animation.
Animated	objects	flicker	when	the	object	being	animated	disappears
from	the	onscreen	window	for	a	period	of	time.	By	using
View.Set	("offscreenonly")	/	View.Update,	the	onscreen	window	is
never	blank.	Instead,	the	offscreen	window	drawn	over	top	off	the
on	screen	window,	replacing	it.	This	means	that	the	on-screen
window	is	never	blanked	out,	eliminating	the	flickering	found	in	the
animation.

Details		

It's	very	easy	to	forget	that	no	output	will	appear	in	the	Run	window
when	using	View.UpdateArea.	Remember	to	use
View.Set("nooffscreenonly")	to	turn	off	this	feature	sending	output
for	debugging	purposes.

Details		

View.UpdateArea	should	not	be	used	in	conjunction	with	the
Sprite	module.	Sprites	can	be	considered	a	limited	version	of	this
technique.	View.UpdateArea	also	works	well	when	the	entire
background	is	changing.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.UpdateArea,	not	by	calling	UpdateArea.

See	also		
View.Set	for	the	"offscreenonly"	and	"nooffscreenonly"	options.

View.Update	for	procedure	to	update	the	entire	screen	at	one	time.

View.WhatDotColor Part	of	View	module

Syntax		 View.WhatDotColor	(x,	y	:	int)	:	int

Description		

The	View.WhatDotColor	function	is	used	to	determine	the	color
number	of	the	specified	pixel.	The	alternate	spelling	is
View.WhatDotColour.

Example		

This	program	draws	a	line	which	bounces	off	the	edges	of	the
screen	and	makes	a	beep	when	it	finds	a	pixel	that	has	already
been	colored.

								View.Set	("graphics")

								var	x,	y	:	int	:=	0

								var	dx,	dx	:	int	:=	1

								loop

												if	View.WhatDotColor	(x,	y)	not=	0	and

	 												View.WhatDotColor	(x,	y)	not=	brightred

																Draw.FillOval	(x,	y,	10,	10,	brightred)

												end	if

												Draw.Dot	(x,	y,	1)

												x	:=	x	+	dx

												y	:=	y	+	dy

												if	x	=	0	or	x	=	maxx	then

																dx	:=	-dx

												end	if

												if	y	=	0	or	y	=	maxy	then

																dy	:=	-dy

												end	if

								end	loop

Execute		

Another	example	illustrates	the	use	of	View.WhatDotColor	to
determine	the	color	of	pixels	in	a	window	painted	with	multi-
color	blocks.	The	actual	color	number	appears	in	the	block.	The

Example		

color	of	the	dot	under	the	mouse	cursor	appears	in	the	upper-left
corner	of	the	window.	Note	that	you	can	also	place	the	mouse
cursor	over	the	black	text	indicating	the	color	number.

Details		

The	screen	should	be	in	a"graphics"	mode.	If	is	not	set	to
"graphics"	mode,	it	will	automatically	be	set	to	"graphics"	mode.
See	View.Set	for	details.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
View.WhatDotColor,	not	by	calling	WhatDotColor.

See	also		

Draw.Dot,	which	is	used	for	setting	the	color	of	a	pixel.	See	also
maxx	and	maxy,	which	are	used	to	determine	the	number	of
pixels	on	the	screen.

wait block	a	process	statement

Syntax		

A	waitStatement	is:

	 wait	variableReference	[,	expn]

Description		

The	wait	statement	is	used	in	a	concurrent	program	to	cause	the
executing	process	to	be	blocked	(to	go	to	sleep)	until	it	is
awakened	by	a	signal	statement.	The	statement	can	only	be	used
inside	a	monitor	(a	special	kind	of	module	that	handles
concurrency).	A	wait	statement	operates	on	a	condition	variable
(the	variableReference),	which	is	essentially	a	queue	of	sleeping
processes.	See	condition	for	an	example	of	a	wait	statement.

Details		

A	wait	statement	for	a	priority	condition	must	include	the
optional	expn,.	This	expression	must	be	a	non-negative	int	value
which	is	used	to	order	processes	waiting	for	the	condition,	low
numbers	first.

A	wait	statement	for	a	timeout	condition	must	include	the
optional	expn,	which	must	be	a	non-negative	int	value	which
gives	the	timeout	interval.	A	process	waiting	for	a	timeout
condition	is	implicitly	awakened	if	it	waits	longer	than	its	timeout
interval.

See	also		
condition	and	signal.	See	also	monitor	and	fork.	See	also
empty.	See	also	pause.

wallclock seconds	since	1/1/1970	procedure

Syntax		 wallclock	(var	c	:	int)

Description		
The	wallclock	statement	is	used	to	determine	the	time	in	seconds
since	00:00:00	GMT	(Greenwich	Mean	Time)	January	1,	1970.

Example		

This	program	tells	you	how	many	seconds	since	1970.

								var	seconds	:	string

								wallclock	(seconds)

								put	"The	number	of	seconds	since	1970	is	",	seconds

Details		

Be	warned	that	on	some	computers	such	as	IBM	PC	compatibles
or	Apple	Macintoshes,	the	time	may	not	be	set	correctly	in	the
operating	system;	in	that	case,	the	wallclock	procedure	will	give
incorrect	results.	Also,	on	IBM	PC	compatibles,	the	call	is
dependent	on	having	the	time	zone	TZ	variable	correctly	set.	On
an	IBM	PC,	the	default	time	zone	is	set	to	PST	(6	hours	from
GMT).

On	the	Apple	Macintosh,	the	wallclock	procedure	returns	the
number	of	seconds	since	00:00:00	local	time	Jan.	1,	1970.

See	also		
delay,	time,	clock,	sysclock	and	date	statements.

See	also	predefined	unit	Time.

whatcol cursor	position	function

Syntax		 whatcol	:	int

Description		
The	whatcol	function	is	used	to	determine	the	cursor	position's
column.

Example		

This	program	outputs	The	current	row	is	5,	the	current	column	is
15.

								locate		(5,	10)

								put	"12345"..

								put	"The	current	row	is",	whatrow

								put	"The	current	column	is",	whatcol

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	whatcol
functions	properly	even	if	the	cursor	is	invisible.

See	also		

the	whatrow	function,	which	is	used	to	set	the	determine	the
cursor	row.	See	also	the	locate,	maxrow	and	maxcol	procedure.

See	also	predefined	unit	Text.

whatcolor text	color	graphics	function

Syntax		 whatcolor	:	int

Description		

The	whatcolor	function	is	used	to	determine	the	current
(foreground)	color,	ie.,	the	color	used	for	characters	that	are
output	using	put.	The	alternate	spelling	is	whatcolour.

Example		

This	program	outputs	the	currently-active	color	number.	The
message	is	also	given	in	the	currently-active	color.

								setscreen	("graphics")

								…

								put	"This	writing	is	in	color	number	",	whatcolor

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	See
setscreen	for	details.

See	also		

the	color	procedure,	which	is	used	to	set	the	color.	See	also
colorback	and	whatcolorback.

See	also	predefined	unit	Text.

whatcolorback color	of	background	function

Syntax		 whatcolorback	:	int

Description		
The	whatcolorback	function	is	used	to	determine	the	current
background	color.	The	alternate	spelling	is	whatcolourback.

Example		

This	program	outputs	the	currently-active	background	color
number.	The	background	color	of	the	message	is	determined	by
this	number.

								setscreen	("screen")

								…

								put	"The	background	of	this	writing"

								put		"is	in	color	number	",	whatcolorback

Details		

The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	Beware
that	the	meaning	of	background	color	is	different	in	these	two
modes.	See	colorback	for	details.

See	also		
color	and	whatcolor.

See	also	predefined	unit	Text.

whatdotcolor graphics	function

Syntax		 whatdotcolor	(x,	y	:	int)	:	int

Description		
The	whatdotcolor	function	is	used	to	determine	the	color	number
of	the	specified	pixel.	The	alternate	spelling	is	whatdotcolour.

Example		

This	program	draws	a	line	which	bounces	off	the	edges	of	the
screen	and	makes	a	beep	when	it	finds	a	pixel	that	has	already
been	colored.

								setscreen	("graphics")

								var	x,	y	:	int	:=	0

								var	dx,	dx	:	int	:=	1

								loop

												if	whatdotcolor	(x,	y)	not=	0	then

																sound	(400,	50)

												end	if

												drawdot	(x,	y,	1)

												x	:=	x	+	dx

												y	:=	y	+	dy

												if	x	=	0	or	x	=	maxx	then

																dx	:=	-dx

												end	if

												if	y	=	0	or	y	=	maxy	then

																dy	:=	-dy

												end	if

								end	loop

Details		

The	screen	should	be	in	a"graphics"	mode.	If	is	not	set	to
"graphics"	mode,	it	will	automatically	be	set	to	"graphics"	mode.
See	setscreen	for	details.

See	also		

drawdot,	which	is	used	for	setting	the	color	of	a	pixel.	See	also
maxx	and	maxy,	which	are	used	to	determine	the	number	of
pixels	on	the	screen.	See	also	sound,	which	causes	the	computer
to	make	a	sound.

See	also	predefined	unit	View.

whatrow cursor	position	function

Syntax		 whatrow	:	int

Description		
The	whatrow	function	is	used	to	determine	the	cursor	position's
row.

Example		

This	program	outputs	The	current	row	is	5,	the	current	column	is
15.

								locate		(5,	10)

								put	"12345"..

								put	"The	current	row	is",	whatrow

								put	"The	current	column	is",	whatcol

Details		
The	screen	should	be	in	a	"screen"	or	"graphics"	mode.	whatrow
functions	properly	even	if	the	cursor	is	invisible.

See	also		

the	whatcol	function,	which	is	used	to	set	the	determine	the
cursor	column.	See	also	the	locate,	maxrow	and	maxcol
procedure.

See	also	predefined	unit	Text.

Window

Description		

This	unit	contains	the	predefined	subprograms	that	handle	windows.
There	are	routines	to	open,	close,	hide,	show	and	select	windows.

All	routines	in	the	Window	unit	are	exported	qualified	(and	thus
must	be	prefaced	with	"Window.").

Details		

The	predefined	subprograms	of	the	Window	module	all	use
window	identifiers	to	indicate	which	window	to	act	upon.	The
default	Run	window	can	be	specified	by	using	defWindID.	For
example,	the	following	code	causes	the	main	Run	window	to	appear
and	then	blink	on	and	off	three	times.

								%	Output	some	data	to	make	the	Run	window	appear.

								put	"Hello,	World!"

								for	i	:	1	..	3

												delay	(1000)

												Window.Hide	(defWinID)

												delay	(1000)

												Window.Show	(defWinID)

								end	for

								put	"How	are	you?"

Entry
Points		

Open 	 Opens	a	new	execution	window.
Close 	 Closes	an	execution	window.
Select 	 Selects	an	execution	window	for	output.
GetSelect 	 Returns	the	currently-selected	execution	window.

SetActive 	 Selects	and	activate	(make	front-most)	an
execution	window.

GetActive 	 Gets	the	current	active	window.
GetPosition 	 Get	the	screen	position	of	an	execution	window.
SetPosition 	 Set	the	screen	position	of	an	execution	window.
Hide 	 Hides	an	execution	window.
Show 	 Shows	the	current	execution	window.
Set 	 Sets	the	configuration	of	the	execution	window.

Update 	 Updates	the	onscreen	window	from	the	offscreen
bitmap.

Window.Close Part	of	Window	module

Syntax		 Window.Close	(windowID	:	int)

Description		
The	Window.Close	procedure	closes	the	window	specified	by	the
windowID	parameter.

Example		

The	following	program	opens	a	window,	makes	it	active	and	then
closes	the	window	after	getting	a	keystroke	from	the	user.

								%	Open	the	window

								var	winID	:	int

								winID	:=	Window.Open	("position:300;300,graphics:200;200")

								

								%	Draw	the	random	ovals	in	the	box

								var	x,	y,	clr	:	int

								for	:	1	..	20

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												clr	:=	Rand.Int	(0,	maxcolor)			%	Random	color

												Draw.FillOval	(x,	y,	30,	30,	clr)

								end	for

								

								var	ch	:	char	:=	getchar												%	Wait	for	input

								

								Window.Close	(winID)												%	Close	the	window

Details		
If	a	window	is	selected	(i.e.	output	is	going	to	that	window)	when
it	is	closed,	the	main	Run	window	becomes	the	selected	window.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Close,	not	by	calling	Close.

See	also		 Window.Open	and	Window.Select.

Window.GetActive Part	of	Window	module

Syntax		 Window.GetActive	:	int

Description		

The	Window.GetActive	function	returns	the	window	ID	of	the
active	window.	If	the	active	window	is	a	Turing	run	window,	then
Window.GetActive	returns	defWinID	(which	is	-1)	if	the
window	is	the	default	run	window,	or	whatever	number	was
returned	from	Window.Open	for	any	other	run	window.	If	the
active	window	is	not	a	run	window,	then	it	returns	-5	and	sets
Error.Last	and	Error.LastMsg	to	indicate	the	fact.

An	active	window	is	defined	as	the	window	that	has	the	input
focus.	This	means	that	any	typing	will	be	sent	to	the	active
window.	Under	most	systems	an	active	window	is	indicated	by	a
change	in	the	appearance	of	the	window.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.GetActive,	not	by	calling	GetActive.

See	also		 Window.SetActive.

Window.GetPosition Part	of	Window	module

Syntax		 Window.GetPosition	(windowID	:	int,	var	x,	y	:	int)

Description		

The	Window.GetPosition	procedure	returns	the	location	of	the	specified	execution	window	on	the	screen	in	the	
y	parameters.	The	x	and	y	parameters	specify	the	lower	left	corner	of	the	window	in	screen	coordinates.	(0,	0)	is	the
lower	left	corner	of	the	screen.

Example		

The	following	program	outputs	the	current	position	of	the	run	window.

								%	Constants	for	windows

								const	titleBarHeight	:	int	:=	21

								const	windowEdgeSize	:	int	:=	13

								

								%	Calculate	the	actual	size	of	a	window

								var	windowWidth	:	int	:=	maxx	+	windowEdgeSize

								var	windowHeight	:	int	:=	maxy	+	windowEdgeSize	+	

								

								%	Get	the	screen	size

								var	screenWidth	:	int	:=	Config.Display	(cdScreenWidth

								var	screenHeight	:	int	:=	Config.Display	(cdScreenHeight

								

								%	Open	the	window

								var	winID	:	int	:=	Window.Open	("title:Upper	Right")

								Window.SetPosition	(winID,	screenWidth		windowWidth

								

								%	Return	the	current	position

								var	windowXPosition,	windowYPosition	:	int

								Window.GetPosition	(winID,	windowXPosition,	windowYPosition

								put	"Window	located	at	",	windowXPosition,	",",	

Status		
Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Window.GetPosition

See	also		 Window.SetPosition	to	set	the	current	window	position	and	Config.Display

Window.GetSelect Part	of	Window	module

Syntax		 Window.GetSelect	:	int

Description		

The	Window.GetSelect	function	returns	the	window	ID	of	the
selected	window.	If	the	select	window	is	the	main	(default)	run
window,	then	it	returns	defWinID	(which	is	-1).

A	selected	window	is	defined	as	the	window	that	output	will	be
sent	to.	It	can	be	invisible.	When	a	program	starts	execution,	the
selected	window	is	the	main	Run	window.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.GetSelect,	not	by	calling	GetSelect.

See	also		 Window.Select.

Window.Hide Part	of	Window	module

Syntax		 Window.Hide	(windowID	:	int)

Description		

The	Window.Hide	procedure	hides	the	specified	window.	This
means	it	disappears	from	the	user's	screen.	However,	it	is	still
possible	to	select	and	draw	the	window	while	it	remains	hidden.	If
the	user	activates	it	(using	Window.GetActive)	it	will
automatically	appear.

To	make	a	window	appear	after	it's	hidden,	you	use
Window.Show.

Details		

When	a	window	is	hidden,	output	to	it	is	faster.	It	is	quite	possible
for	the	you	to	hide	a	window,	do	complicated	drawing	to	it	and
then	make	it	appear	in	order	to	have	the	program	execute	faster.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Hide,	not	by	calling	Hide.

See	also		 Window.Select	and	Window.SetActive.

Window.Open Part	of	Window	module

Syntax		 Window.Open	(setUpString	:	string)	:	int

Description		

The	Window.Open	function	is	used	to	create	a	window.	A
window	ID	is	returned	if	the	window	is	successfully	created.	If
the	window	is	not	created	then	it	returns	0.	Error.Last	and
Error.LastMsg	can	then	be	used	to	determine	the	cause	of	the
failure.

The	setUpString	parameter	is	identical	to	that	of	View.Set.	See
View.Set	for	the	list	of	options	available.

When	the	window	is	created,	it	is	automatically	selected	(i.e.	all
output	will	be	sent	to	that	window	unless	redirected	by	a
Window.Select	command).

Example		

The	following	program	opens	a	window,	makes	it	active	and	then
close	the	window	after	getting	a	keystroke	from	the	user.

								%	Open	the	window

								var	winID	:	int

								winID	:=	Window.Open	("position:top;center,graphics:200;200")

								

								%	Draw	the	random	ovals	in	the	box

								var	x,	y,	clr	:	int

								for	:	1	..	20

												x	:=	Rand.Int	(0,	maxx)					%	Random	x

												y	:=	Rand.Int	(0,	maxy)					%	Random	y

												clr	:=	Rand.Int	(0,	maxcolor)			%	Random	color

												Draw.FillOval	(x,	y,	30,	30,	clr)

								end	for

								

								var	ch	:	char	:=	getchar												%	Wait	for	input

								

								Window.Close	(winID)																%	Close	the	window

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Open,	not	by	calling	Open.

See	also		
View.Set	for	the	syntax	of	startUpString.	See	also
Window.Select	and	Window.SetActive.

Window.Select Part	of	Window	module

Syntax		 Window.Select	(windowID	:	int)

Description		

The	Window.Select	selects	the	window	that	output	is	to	be	sent
to.

A	selected	window	is	defined	as	the	window	that	output	will	be
sent	to.	It	can	be	invisible.	When	a	program	starts	execution,	the
selected	window	is	the	main	Run	window.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Select,	not	by	calling	Select.

See	also		 Window.Select	and	Window.SetActive.

Window.Set Part	of	Window	module

Syntax		 Window.Set	(windowID	:	int,	setUpString	:	string)

Description		

The	Window.Set	procedure	sets	the	configuration	of	the	window
specified	by	the	windowID	parameter.	See	View.Set	for	a
complete	list	of	available	options.	The	setUpString	parameter	can
be	any	combination	options,	separated	by	commas.	Here	is	a
selection	of	the	available	options.

text:<rows>;<cols>	-	Sets	the	output	window	to	text	mode	and
changes	the	window	size	to	be	<rows>	rows	by	<cols>	columns
in	size.

graphics:<xsize>;<ysize>	-	Sets	the	output	window	to	graphics
mode	and	changes	the	window	size	to	be	<xsize>	pixels	across
and	<ysize>	pixels	in	height.

visible	|	invisible	|	popup	-	Sets	the	screen	to	be	visible,	invisible
or	popup.	A	popup	window	is	hidden	until	output	is	sent	to	that
window.	The	main	Run	window	is	a	popup	window.	If	you	never
send	any	output	to	it,	it	never	appears.

noxor	|	xor	-	Sets	whether	all	drawing	operations	draw	using
XOR.

nocursor	|	cursor	-	Sets	whether	the	cursor	is	visible	or	not.

noecho	|	echo	-	Sets	whether	the	input	from	the	keyboard	is
echoed	to	the	screen.

title:<text>	-	Sets	the	window	title	bar	to	<text>.

position:<x>;<y>	-	Sets	the	position	of	the	top	left	corner	of	the
window	to	be	(<x>,<y>).

offscreenonly	|	nooffscreenonly	-	Sets	whether	output	to	the
window	goes	to	offscreen	window	alone,	or	both	the	onscreen	and
offscreen	window.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Set,	not	by	calling	Set.

See	also		

View.Set	for	a	complete	list	of	the	options	available	with
Window.Set.	See	Window.Open	for	how	to	create	a	new
window.

Window.SetActive Part	of	Window	module

Syntax		 Window.SetActive	(windowID	:	int)

Description		

The	Window.SetActive	procedure	activates	the	window	specified
by	the	windowID	parameter.

An	active	window	is	defined	as	the	window	that	has	the	input
focus.	This	means	that	any	typing	will	be	sent	to	the	active
window.	Under	most	systems	an	active	window	is	indicated	by	a
change	in	the	appearance	of	the	window.

Details		

In	general,	it	is	unwise	to	change	the	active	window.	If	the	user	is
working	on	another	program	at	the	same	time	the	program	is
running	and	the	program	executes	the	Window.SetActive
procedure,	she	or	he	will	suddenly	be	returned	to	OOT	without
warning.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.SetActive,	not	by	calling	SetActive.

See	also		 Window.GetActive	and	Window.Select.

Window.SetPosition Part	of	Window	module

Syntax		 Window.SetPosition	(windowID	:	int,	x,	y	:	int)

Description		
The	Window.SetPosition	procedure	moves	the	location	of	the	specified	execution	window	on	the	screen.	
specify	the	lower	left	corner	of	the	window	in	screen	coordinates.	(0,	0)	is	the	lower	left	corner	of	the	screen.

Example		

The	following	program	opens	four	windows,	one	at	each	corner	of	the	screen.

								%	Constants	for	windows

								const	titleBarHeight	:	int	:=	21

								const	windowEdgeSize	:	int	:=	13

								

								%	Calculate	the	actual	size	of	a	window

								var	windowWidth	:	int	:=	maxx	+	windowEdgeSize

								var	windowHeight	:	int	:=	maxy	+	windowEdgeSize	+	

								

								%	Get	the	screen	size

								var	screenWidth	:	int	:=	Config.Display	(cdScreenWidth

								var	screenHeight	:	int	:=	Config.Display	(cdScreenHeight

								

								%	Open	the	window

								var	winID1	:	int	:=	Window.Open	("title:Upper	Right")

								Window.SetPosition	(winID1,	screenWidth		windowWidth

								

								var	winID2	:	int	:=	Window.Open	("title:Upper	Left")

								Window.SetPosition	(winID2,	0,	screenHeight		windowHeight

								

								var	winID3	:	int	:=	Window.Open	("title:Lower	Left")

								Window.SetPosition	(winID3,	0,	0)

								

								var	winID4	:	int	:=	Window.Open	("title:Lower	Right")

								Window.SetPosition	(winID4,	screenWidth		windowWidth

								

Status		
Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Window.SetPosition

See	also		 Window.GetPosition	to	get	the	current	window	position	and	Config.Display

Window.Show Part	of	Window	module

Syntax		 Window.Show	(windowID	:	int)

Description		

The	Window.Show	procedure	makes	the	specified	window
appear	if	it	was	invisible.

To	make	a	window	disappear	after	it's	visible,	you	use
Window.Hide.

Details		

When	a	window	is	hidden,	output	to	it	is	faster.	It	is	quite	possible
for	the	you	to	hide	a	window,	do	complicated	drawing	to	it	and
then	make	it	appear	in	order	to	have	the	program	execute	faster.

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling
Window.Show,	not	by	calling	Show.

See	also		 Window.Select	and	Window.SetActive.

Window.Update Part	of	Window	module

Syntax		 Window.Update	(windowID	:	int)

Description		

The	Window.Update	procedure	updates	a	specified	Run	window
from	an	offscreen	bitmap.	It	is	used	with	the	command
View.Set("offscreenonly")	which	prevents	the	Run	window	from
being	updated	until	the	Window.Update	command	is	given.

This	command	is	identical	to	the	View.Update	command	except
that	it	updates	the	specified	window.	It	should	be	used	when
doing	animation	with	more	than	one	window.

See	also		 View.Update	for	information	on	flicker-free	animation.

write file	statement

Syntax		

A	writeStatement	is:

	 write	:	fileNumber	[:status],	writeItem	{,
writeItem}

Description		

The	write	statement	outputs	each	of	the	writeItems	to	the
specified	file.	These	items	are	output	directly	using	the	binary
format	that	they	have	in	the	computer.	In	other	words,	the	items
are	not	in	source	(ASCII	or	EBCDIC)	format.	In	the	common
case,	these	items	will	later	be	input	from	the	file	using	the	read
statement.	By	contrast,	the	get	and	put	statements	use	source
format,	which	a	person	can	read	using	a	text	editor.

Example		

This	example	shows	how	to	output	a	complete	employee	record
using	a	write	statement.

								var	employeeRecord	:

												record

																name	:	string	(30)

																pay	:	int

																dept	:	0	..	9

												end	record

								var	fileNo	:	int

								open	:	fileNo,	"payroll",	write

								…

								write	:	fileNo,	employeeRecord

An	array,	record	or	union	may	be	read	and	written	as	a	whole.
The	fileNumber	must	specify	a	file	that	is	open	with	write
capability	(or	else	a	program	argument	file	that	is	implicitly
opened).

The	optional	status	is	an	int	variable	that	is	set	to
implementation-dependent	information	about	the	write.	If	status
is	returned	as	zero,	the	write	was	successful.	If	status	is	not
returned	as	zero,	status	gives	information	about	the	incomplete	or
failed	write	(which	is	not	documented	here).	Programmers	often
use	status	when	they	are	writing	a	record	or	array	to	a	file	and	are

Details		

not	sure	if	there	is	enough	room	on	the	disk	to	hold	the	item.	If
there	is	not	enough	room,	the	write	will	fail	part	way	through,	but
the	program	can	continue	and	diagnose	the	problem	by	inspecting
status.

A	writeItem	is:

								reference	[:	requestedSize	[:	actualSize]]

Each	writeItem	is	a	variable	or	constant,	to	be	written	in	internal
form.	The	optional	requestedSize	is	an	integer	expression	giving
the	number	of	bytes	of	data	to	be	written.	The	requestedSize
should	be	less	than	or	equal	to	the	size	of	the	item's	internal	form
in	memory	(if	it	is	not,	a	warning	message	is	issued).	If	no
requestedSize	is	given,	the	size	of	the	item	in	memory	is	used.
The	optional	actualSize	is	set	to	the	number	of	bytes	actually
written.

See	also		 write,	open,	close,	seek,	tell,	get	and	put	statements.

xor exclusive	"or"	operator

Syntax		 A	xor	B

Description		

When	applied	to	set	values,	xor	(symmetric	difference)	yields	a
set	which	includes	element	e	if	and	only	if	e	is	contained	in
exactly	one	of	the	operands.	When	applied	to	non-negative
integer	values,	xor	yields	a	natural	number	whose	bits	are	the	xor
of	the	corresponding	bits	of	the	operands.	Both	operands	A	and	B
are	evaluated.

Example		

Status	s3	will	contain	elements	that	are	in	s1	or	s2	but	not	both.
Here	xor	is	a	set	operator.	See	enum	and	set	types	for
explanations	of	these	types.

								type	status	:	enum	(ready,	sending,	repeating)

								type	statusSet	:	set	of	status

								var	s1,	s2,	s3	:	statusSet

								s1	:=	statusSet	(status.read,	status.sending)

								s2	:=	statusSet	(status.read,	status.repeating)

								…

								s3	:=	s1	xor	s2					%	Same	as	(s1	+	s2)	-	(s1	*	s2)

Example		

Each	bit	of	natural	number	n3	will	be	1	if	exactly	one	of	the
corresponding	bits	of	n1	and	n2	are	1.	For	example,	if	n1	=	2#110
(6)	and	n2	=	2#010	(2),	n3	will	be	set	to	2#100	(4).	Here	xor	is	an
integer	operator.

								var	n1,	n2,	n3	:	nat

								…

								n3	:=	n1	xor	n2

Details		

The	xor	operator	is	not	a	short	circuit	operator;	in	other	words,
both	of	its	operands	are	always	evaluated.	The	precedence	of	xor
is	the	same	as	that	of	plus	(+).

See	also		
set.	See	also	explicitIntegerConstant	which	describes	values	such
as	2#110.

Turing	Language	Elements
#if	-	used	for	conditional	compilation
addressint	-	type
all	-	all	members	of	a	set
and	-	operator
anyclass	-	the	ancestor	of	all	classes
array	-	type
assert	-	statement
assignability	-	of	expression	to	variable
assignment	-	statement
begin	-	statement
bind	-	declaration
body	-	declaration
boolean	-	true-false	type
break	-	debugger	pause	statement
case	-	selection	statement
catenation	(+)	-	joining	together	strings
char	-	type
char(n)	-	type
checked	-	compiler	directive
class	-	declaration
close	-	file	statement
collection	-	declaration
comment	-	remark	statement
comparisonOperator
condition	-	declaration
const	-	constant	declaration
constantReference	-	use	of	a	constant
declaration	-	create	a	variable
deferred	-	subprogram	declaration
div	-	integer	truncating	division	operator
enum	-	enumerated	type
enumeratedValue	-	enumerated	value
equivalence	-	of	types
exit	-	statement

explicitCharConstant	-	character	literal
explicitConstant	-	literal
explicitIntegerConstant	-	integer	literal
explicitRealConstant	-	real	literal
explicitStringConstant	-	string	literal
explicitTrueFalseConstant	-	boolean	literal
expn	-	expression
export	-	list
external	-	declaration
false	-	boolean	value	(not	true)
flexible	-	array	initialization
for	-	statement
fork	-	statement
forward	-	subprogram	declaration
free	-	statement
function	-	declaration
functionCall
get	-	file	statement
handler	-	exception	handler
id	-	(identifier)	name	of	an	item	in	a	program
if	-	statement
implement	-	clause
implement	by	-	clause
import	-	list
in	-	member	of	a	set
include	-	source	files
indexType
indirection	-	operator	(@)
infix	-	operator
inherit	-	inheritance	clause
init	-	array	initialization
int	-	integer	type
intn	-	n-byte	integer	type
invariant	-	assertion
loop	-	statement
mod	-	modulo	operator
module	-	declaration
monitor	-	declaration
named	-	type

nat	-	natural	number	type
natn	-	n-byte	natural	number	type
new	-	statement
nil	-	pointer	to	a	collection
not	-	true/false	(boolean)	operator
opaque	-	type
open	-	file	statement
or	-	operator
paramDeclaration	-	parameter	declaration
pause	-	statement
pervasive	-	declaration	modifier
pointer	-	type
post	-	assertion
pre	-	assertion
precedence	-	of	operators
prefix	-	operator
procedure	-	declaration
procedureCall	-	statement
process	-	declaration
program	-	a	(main)	program
put	-	statement
quit	-	fail	statement
read	-	file	statement
real	-	the	real	number	type
realn	-	n-byte	real	number	type
record	-	type
register	-	use	machine	register
rem	-	remainder	operator
result	-	statement
return	-	statement
scalar	-	type
seek	-	(file)	statement
separator	-	between	tokens	in	a	program
set	-	type
setConstructor
shl	-	shift	left	operator
shr	-	shift	right	operator
signal	-	wake	up	a	process	statement
skip	-	used	in	get	statement

skip	-	used	in	put	statement
standardType
statement
statementsAndDeclarations
string	-	type
string	-	comparison
subprogramHeader
subprogramType
subrangeType
substring	-	of	another	string
tag	-	statement
tell	-	file	statement
token	-	in	input
true	-	boolean	value	(not	false)
type	-	declaration
typeSpec	-	type	specification
unchecked	-	compiler	directive
union	-	type
unit	-	file	containing	module,	monitor,	or	class
unqualified	-	export
var	-	declaration
variableReference	-	use	of	a	variable
wait	-	block	a	process	statement
write	-	file	statement
xor	-	exclusive	"or"	operator

Basic	Predefined	Subprograms
Type	Conversion

From	Integer
intreal	-	integer-to-real	function
intstr	-	integer-to-string	function

From	Real
ceil	-	real-to-integer	function
erealstr	-	real-to-string	function
floor	-	real-to-integer	function
frealstr	-	real-to-string	function
realstr	-	real-to-string	function
round	-	real-to-integer	function

From	Nat
natreal	-	natural	number	to	real	function
natstr	-	natural-number-to-string	function

From	String
strint	-	string-to-integer:function
strintok	-	string-to-integer:function
strnat	-	string	to	natural	number	function
strnatok	-	string	to	natural	number	function
strreal	-	string-to-real	function
strrealok	-	string-to-real	function

To/From	ASCII
chr	-	integer-to-character	function
ord	-	character-to-integer	function

Maximum	Numbers
maxint	-	maximum	integer	function
maxnat	-	maximum	natural	number	function
minint	-	minimum	integer	function
minnat	-	minimum	natural	number	function

Math
abs	-	absolute	value	function
arctan	-	arctangent	function	(radians)
arctand	-	arctangent	function	(degrees)
cos	-	cosine	function	(radians)

cosd	-	cosine	function	(degrees)
exp	-	exponentiation	function
ln	-	natural	logarithm	function
max	-	maximum	function
min	-	minimum	function
sign	-	function
sin	-	sine	function	(radians)
sind	-	sine	function	(degrees)
sqrt	-	square	root	function

Strings
index	-	find	pattern	in	string	function
length	-	of	a	string	function
repeat	-	make	copies	of	string:function

Enumerated	Types
pred	-	predecessor	function
succ	-	successor	function

Files
eof	-	end-of-file	function

Arrays
lower	-	bound
upper	-	bound

Random	Numbers
rand	-	random	real	number	procedure
randint	-	random	integer	procedure
randnext	-	procedure
randomize	-	procedure
randseed	-	procedure

Time
clock	-	millisecs	used	procedure
date	-	procedure
sysclock	-	millisecs	used	procedure
time	-	time	of	day	as	a	string	procedure
wallclock	-	seconds	since	1/1/1970	procedure

Sound
play	-	procedure
playdone	-	function
sound	-	statement

System
delay	-	procedure

fetcharg	-	fetch	argument	function
getenv	-	get	environment	function
getpid	-	get	process	id	function
nargs	-	number	of	arguments
system	-	statement

Parallel	Port
parallelget	-	parallel	port	function
parallelput	-	parallel	port	procedure

Mouse
buttonchoose	-	switch	mouse	modes
buttonmoved	-	has	a	mouse	event	occurred
buttonwait	-	get	a	mouse	event	procedure
mousewhere

Character	Graphics
cls	-	clear	screen	graphics	procedure
color	-	text	color	graphics	procedure
colorback	-	background	color	procedure
colour	-	text	color	graphics	procedure
colourback	-	background	color	procedure
locate	-	procedure
maxcol	-	maximum	column	function
maxcolor	-	graphics	function
maxcolour	-	graphics	function
maxrow	-	maximum	row	function
setscreen	-	graphics	procedure
whatcol	-	cursor	position	function
whatcolor	-	text	color	graphics	function
whatcolorback	-	color	of	background	function
whatcolour	-	text	color	graphics	function
whatcolourback	-	color	of	background	function
whatrow	-	cursor	position	function

Pixel	Graphics
cls	-	clear	screen	graphics	procedure
color	-	text	color	graphics	procedure
colorback	-	background	color	procedure
colour	-	text	color	graphics	procedure
colourback	-	background	color	procedure
drawarc	-	graphics	procedure
drawbox	-	graphics	procedure

drawdot	-	graphics	procedure
drawfill	-	graphics	procedure
drawfillarc	-	graphics	procedure
drawfillbox	-	graphics	procedure
drawfillmapleleaf	-	graphics	procedure
drawfilloval	-	graphics	procedure
drawfillpolygon	-	graphics	procedure
drawfillstar	-	graphics	procedure
drawline	-	graphics	procedure
drawmapleleaf	-	graphics	procedure
drawoval	-	graphics	procedure
drawpic	-	graphics	procedure
drawpolygon	-	graphics	procedure
drawstar	-	graphics	procedure
locate	-	procedure
locatexy	-	graphics	procedure
maxcol	-	maximum	column	function
maxcolor	-	graphics	function
maxcolour	-	graphics	function
maxrow	-	maximum	row	function
maxx	-	graphics	function
maxy	-	graphics	function
setscreen	-	graphics	procedure
sizepic	-	graphics	function
takepic	-	graphics	procedure
whatcol	-	cursor	position	function
whatcolor	-	text	color	graphics	function
whatcolorback	-	color	of	background	function
whatcolour	-	text	color	graphics	function
whatcolourback	-	color	of	background	function
whatdotcolor	-	graphics	function
whatdotcolour	-	graphics	function
whatrow	-	cursor	position	function

Character	Input
getch	-	get	character	procedure
getchar	-	get	character	function
hasch	-	has	character	function

Concurrency
empty	-	condition	function

getpriority	-	function
setpriority	-	procedure
simutime	-	simulated	time	function

Addresses	and	Sizes
addr	-	address	of	a	variable
sizeof	-	size	of	a	type

Bit	Manipulation
bits	-	extraction

Classes
objectclass	-	of	a	pointer
self	-	pointer	to	current	object

Type	Cheats
cheat	-	type	cheating

Predefined	Modules
Concurrency

Concurrency.empty
Concurrency.getpriority
Concurrency.setpriority
Concurrency.simutime

Config
Config.Display
Config.Lang
Config.Machine

Dir
Dir.Change
Dir.Close
Dir.Create
Dir.Current
Dir.Delete
Dir.Get
Dir.GetLong
Dir.Open

Draw
Draw.Arc
Draw.Box
Draw.Cls
Draw.Dot
Draw.Fill
Draw.FillArc
Draw.FillBox
Draw.FillMapleLeaf
Draw.FillOval
Draw.FillPolygon
Draw.FillStar
Draw.Line
Draw.MapleLeaf
Draw.Oval
Draw.Polygon

Draw.Star
Draw.Text

Error
Error.Last
Error.LastMsg
Error.LastStr
Error.Msg
Error.Str
Error.Trip

ErrorNum
Exceptions
File

File.Copy
File.Delete
File.DiskFree
File.Exists
File.Rename
File.Status

Font
Font.Draw
Font.Free
Font.GetName
Font.GetSize
Font.GetStyle
Font.Name
Font.New
Font.Sizes
Font.StartName
Font.StartSize
Font.Width

GUI
GUI.AddLine
GUI.AddText
GUI.Alert
GUI.Alert2
GUI.Alert3
GUI.AlertFull
GUI.Choose
GUI.ChooseFull

GUI.ClearText
GUI.CloseWindow
GUI.CreateButton
GUI.CreateButtonFull
GUI.CreateCanvas
GUI.CreateCanvasFull
GUI.CreateCheckBox
GUI.CreateCheckBoxFull
GUI.CreateFrame
GUI.CreateHorizontalScrollBar
GUI.CreateHorizontalScrollBarFull
GUI.CreateHorizontalSlider
GUI.CreateLabel
GUI.CreateLabelFull
GUI.CreateLabelledFrame
GUI.CreateLine
GUI.CreateMenu
GUI.CreateMenuItem
GUI.CreateMenuItemFull
GUI.CreatePicture
GUI.CreatePictureButton
GUI.CreatePictureButtonFull
GUI.CreatePictureRadioButton
GUI.CreatePictureRadioButtonFull
GUI.CreateRadioButton
GUI.CreateRadioButtonFull
GUI.CreateTextBox
GUI.CreateTextBoxFull
GUI.CreateTextField
GUI.CreateTextFieldFull
GUI.CreateVerticalScrollBar
GUI.CreateVerticalScrollBarFull
GUI.CreateVerticalSlider
GUI.Disable
GUI.Dispose
GUI.Draw...
GUI.Enable
GUI.FontDraw
GUI.GetCheckBox

GUI.GetEventTime
GUI.GetEventWidgetID
GUI.GetEventWindow
GUI.GetHeight
GUI.GetMenuBarHeight
GUI.GetScrollBarWidth
GUI.GetSliderValue
GUI.GetText
GUI.GetVersion
GUI.GetWidth
GUI.GetX
GUI.GetY
GUI.Hide
GUI.HideMenuBar
GUI.OpenFile
GUI.OpenFileFull
GUI.Pic...
GUI.ProcessEvent
GUI.Quit
GUI.Refresh
GUI.SaveFile
GUI.SaveFileFull
GUI.SelectRadio
GUI.SetActive
GUI.SetBackgroundColor
GUI.SetBackgroundColour
GUI.SetCheckBox
GUI.SetDefault
GUI.SetDisplayWhenCreated
GUI.SetKeyEventHandler
GUI.SetLabel
GUI.SetMouseEventHandler
GUI.SetNullEventHandler
GUI.SetPosition
GUI.SetPositionAndSize
GUI.SetScrollAmount
GUI.SetSelection
GUI.SetSize
GUI.SetSliderMinMax

GUI.SetSliderReverse
GUI.SetSliderSize
GUI.SetSliderValue
GUI.SetText
GUI.SetXOR
GUI.Show
GUI.ShowMenuBar

Input
Input.KeyDown	-	get	keyboard	state
Input.Pause	-	pause	for	keystroke
Input.getch
Input.getchar
Input.hasch

Joystick
Joystick.GetInfo

Keyboard
Limits

maxint	-	maximum	integer	function
maxnat	-	maximum	natural	number	function
minint	-	minimum	integer	function
minnat	-	minimum	natural	number	function

Math
abs	-	absolute	value	function
arctan	-	arctangent	function	(radians)
arctand	-	arctangent	function	(degrees)
cos	-	cosine	function	(radians)
cosd	-	cosine	function	(degrees)
exp	-	exponentiation	function
ln	-	natural	logarithm	function
max	-	maximum	function
min	-	minimum	function
sign	-	function
sin	-	sine	function	(radians)
sind	-	sine	function	(degrees)
sqrt	-	square	root	function

Mouse
Mouse.ButtonChoose
Mouse.ButtonMoved
Mouse.ButtonWait

Mouse.Where
Music

Music.Play
Music.PlayFile
Music.PlayFileStop
Music.Sound
Music.SoundOff

Net
Net.BytesAvailable
Net.CharAvailable
Net.CloseConnection
Net.HostAddressFromName
Net.HostNameFromAddress
Net.LineAvailable
Net.LocalAddress
Net.LocalName
Net.OpenConnection
Net.OpenURLConnection
Net.TokenAvailable
Net.WaitForConnection

PC
PC.ParallelGet
PC.ParallelPut
parallelget	-	parallel	port	function
parallelput	-	parallel	port	procedure

Pic
Pic.Blend
Pic.Blur
Pic.Draw
Pic.DrawFrames
Pic.DrawFramesBack
Pic.DrawSpecial
Pic.DrawSpecialBack
Pic.FileNew
Pic.FileNewFrames
Pic.Flip
Pic.Frames
Pic.Free
Pic.Height

Pic.Mirror
Pic.New
Pic.Rotate
Pic.Save
Pic.Scale
Pic.ScreenLoad
Pic.ScreenSave
Pic.SetTransparentColor
Pic.SetTransparentColour
Pic.Width

RGB
RGB.AddColor
RGB.AddColour
RGB.GetColor
RGB.GetColour
RGB.SetColor
RGB.SetColour
RGB.maxcolor
RGB.maxcolour

Rand
Rand.Int
Rand.Next
Rand.Real
Rand.Reset
Rand.Seed
Rand.Set

Sprite
Sprite.Animate
Sprite.ChangePic
Sprite.Free
Sprite.Hide
Sprite.New
Sprite.SetFrameRate
Sprite.SetHeight
Sprite.SetPosition
Sprite.Show

Str
index	-	find	pattern	in	string	function
length	-	of	a	string	function

repeat	-	make	copies	of	string:function
Stream

Stream.Flush
Stream.FlushAll
Stream.eof
eof	-	end-of-file	function

Sys
Sys.Exec
Sys.FetchArg
Sys.GetComputerName
Sys.GetEnv
Sys.GetPid
Sys.GetUserName
Sys.Nargs
getenv	-	get	environment	function
getpid	-	get	process	id	function

Text
Text.Cls
Text.Color
Text.ColorBack
Text.Colour
Text.ColourBack
Text.Locate
Text.LocateXY
Text.WhatCol
Text.WhatColor
Text.WhatColorBack
Text.WhatColour
Text.WhatColourBack
Text.WhatRow
Text.maxcol
Text.maxrow

Time
Time.Date
Time.DateSec
Time.Delay
Time.Elapsed
Time.ElapsedCPU
Time.PartsSec

Time.Sec
Time.SecDate
Time.SecParts

TypeConv
From	Integer

intreal	-	integer-to-real	function
intstr	-	integer-to-string	function

From	Nat
natreal	-	natural	number	to	real	function
natstr	-	natural-number-to-string	function

From	Real
ceil	-	real-to-integer	function
erealstr	-	real-to-string	function
floor	-	real-to-integer	function
frealstr	-	real-to-string	function
realstr	-	real-to-string	function
round	-	real-to-integer	function

From	String
strint	-	string-to-integer:function
strintok	-	string-to-integer:function
strnat	-	string	to	natural	number	function
strnatok	-	string	to	natural	number	function
strreal	-	string-to-real	function
strrealok	-	string-to-real	function

To/From	ASCII
chr	-	integer-to-character	function
ord	-	character-to-integer	function

View
View.ClipAdd
View.ClipOff
View.ClipSet
View.Set
View.Update	-	flicker-free	animation
View.WhatDotColor
View.WhatDotColour
View.maxcolor
View.maxcolour
View.maxx
View.maxy

Window
Window.Close
Window.GetActive
Window.GetPosition
Window.GetSelect
Window.Hide
Window.Open
Window.Select
Window.Set
Window.SetActive
Window.SetPosition
Window.Show
Window.Update

Miscellaneous	Subprograms
Addresses	and	Sizes

addr	-	address	of	a	variable
sizeof	-	size	of	a	type

Arrays
lower	-	bound
upper	-	bound

Bit	Manipulation
bits	-	extraction

Classes
objectclass	-	of	a	pointer
self	-	pointer	to	current	object

Enumerated	Types
pred	-	predecessor	function
succ	-	successor	function

Type	Cheats
cheat	-	type	cheating

The	GUI	Module
Introduction

Since	the	introduction	of	the	Macintosh,	graphical	user	interfaces	(GUI)	have
been	becoming	more	and	more	common.	Most	commercial	programs	written	for
either	the	Macintosh	or	Microsoft	Windows	make	use	of	GUI	elements	to	make
their	program	easier	to	use.

For	some	time,	students	have	been	requesting	methods	of	putting	GUI	elements
such	as	buttons,	check	boxes,	radio	buttons,	etc,	into	their	Turing	programs.
Turing	now	includes	a	new	set	of	predefined	subprograms	that	allow	students	to
add	numerous	GUI	elements	to	their	programs	quickly	and	easily.	These
subprograms	allow	students	to	create:	buttons,	check	boxes,	radio	buttons,
sliders,	scroll	bars,	picture	buttons,	radio	picture	buttons,	text	fields,	lines,	text
labels,	and	frames.

The	entire	GUI	Library	is	written	in	Turing	and	the	source	is	included	with	the
Turing	distribution.	The	GUI	library	is	completely	procedure-oriented.	This
means	that	it	is	not	necessary	to	know	object-oriented	programming	or	concepts
in	order	to	be	able	to	use	the	library.	Advanced	students	are	welcome	(in	fact,
encouraged)	to	look	at	the	programs	as	an	example	of	a	large	project	written	in
Turing.	We	hope	that	there	will	be	enterprising	students	who	will	be	inspired	to
add	new	widgets	to	the	library	and	encourage	those	who	do	so	to	submit	them	to
Holt	Software	for	possible	inclusion	into	the	next	version	of	the	library.

Here	is	a	window	with	a	few	widgets.

Some	GUI	Widgets	(Output	of	Example.dem)

The	GUI	library	is	usable	by	students	who	understand	the	concept	of
subprograms.	In	order	to	use	the	GUI	library,	students	must	write	procedures
(although	they	may	be	as	simple	as	the	student	desires).	We	therefore	suggest
that	teachers	introduce	students	to	the	GUI	library	in	a	Grade	11	computer
science	course.

Note:Turing	has	not	changed.	It	is	not	a	visual	building	language.	Students
wishing	to	use	the	GUI	library	will	be	writing	programs	to	create	and	use	these
GUI	element,	not	spending	their	time	visually	building	user	interfaces	(which
may	be	fun,	but	teaches	very	little).	In	keeping	with	the	tradition	of	Turing,	the
more	the	students	learn	about	computer	science,	the	more	interesting	their

programs	will	be,	GUI	or	no	GUI!

Terminology

The	term	"Widget"	means	any	graphical	user	interface	element.	A	button,	a
check	box	or	radio	button	are	all	examples	of	widgets.

The	term	"Event"	means	either	a	keystroke	or	a	mouse	button	being	pressed	in	a
window.

Example	Programs

All	example	programs	shown	here	are	located	in	the	[Turing
Directory]/Examples/GUI	directory.	(In	other	words,	start	in	the	same	directory
as	the	Turing	executable,	move	to	the	Examples	folder	and	then	the	GUI	folder.)
All	the	available	GUI	widgets	have	example	programs	to	demonstrate	their	use.

General	Principles	of	the	GUI	Library

Here	are	some	general	instructions	for	the	use	of	the	GUI	library.	Read	this
section	before	looking	at	the	specifics	of	various	routines.

All	the	subprograms	for	the	GUI	library	are	placed	in	a	module	called	GUI.
To	call	any	of	the	subprograms,	preface	the	name	of	the	subprogram	with
GUI..	For	example,	the	CreateLabel	subprogram	would	be	called	using
GUI.CreateLabel.
In	general,	most	widgets	have	a	Create	subprogram.	For	example,	buttons
have	a	CreateButton	subprogram,	radio	buttons	have	a	CreateRadioButton
subprogram,	and	so	on.	The	Create	subprogram	takes	as	parameters	things
such	as	the	location,	the	size	of	the	GUI	element,	and	the	name	of	a
procedure	to	be	called	when	the	widget	is	clicked.	This	procedure	must	be
declared	before	the	call	to	the	Create	subprogram.
For	most	widgets,	there	are	two	forms	of	the	Create	subprogram.	The
Create	subprogram	and	the	CreateFull	subprogram.	The	difference	between
the	two	is	that	the	CreateFull	subprogram	allows	the	user	to	define	more
parameters	that	are	otherwise	set	to	default	values.	For	example,	the
GUI.CreateButton	procedure	allows	the	user	to	specify	the	x	and	y	location
of	the	button,	the	width	of	the	button,	the	text	that	appears	in	the	button,	and
the	procedure	to	call	when	the	button	is	clicked.	The	GUI.CreateButtonFull
routine	specifies	those	and	also	allows	the	user	to	specify	the	height	of	the
button	(otherwise	set	to	a	height	that	will	fit	the	label),	a	short	cut	keyboard
character	that	allows	the	user	to	"press"	the	button	using	a	keyboard	and	a
parameter	to	allow	the	user	to	specify	if	this	button	is	the	"default"	button
(the	one	"pressed"	if	the	user	presses	the	Enter	key).
All	Create	subprograms	return	an	integer.	This	number	is	the	ID	of	the
widget	that	has	been	created.	You	need	to	use	this	ID	if	you	want	to	do
anything	to	the	widget	later,	such	as	move	it,	change	its	size,	hide	it,	and	so
on.	Most	simple	programs	can	safely	ignore	the	widget	ID,	although	they
will	need	to	handle	the	return	value	from	the	function.
After	all	the	widgets	have	been	created,	the	program	must	repeatedly	call
GUI.ProcessEvent	until	the	function	returns	true.

%	Now	process	events	until	the	user	aborts	the	program.

loop

				exit	when	GUI.ProcessEvent

end	loop

GUI.ProcessEvent	checks	for	user	input	from	the	mouse	or	the	keyboard
and	then	checks	to	see	if	the	user	has	clicked	on	a	widget.	If	the	user	has,
then	it	responds	appropriately	(toggling	the	check	box,	pressing	the	button,
etc.)	and	then	if	appropriate,	calls	the	procedure	the	user	supplied	in	the
Create	subprogram.	GUI.ProcessEvent	returns	true	when	the	GUI.Quit	has
been	called,	otherwise	it	returns	false.

When	a	program	is	finished	execution	(for	example	if	the	user	selected
"Quit"	or	"Exit"	from	the	file	menu),	it	should	call	the	GUI.Quit	procedure.
This	will	cause	the	GUI.ProcessEvent	loop	to	exit.	The	program	should
have	any	clean	up	code	placed	after	the	end	loop.

Here	is	a	very	simple	example	of	a	program	that	puts	"Hello"	every	time	a	button
is	pressed.

%	The	"Hello"	program.

import	GUI

View.Set	("graphics:200;200")	%	Shrink	the	run	window

%	The	procedure	called	when	the	button	is	pushed.

procedure	PutHello

				put	"Hello"

end	PutHello

%	Create	the	button.	The	number	returned	is	the	ID	number	of	the	button.

var	b	:	int	:=	GUI.CreateButton	(100,	100,	0,	"Say	Hello",	PutHello)

%	Now	process	events	until	the	user	aborts	the	program.

loop

				exit	when	GUI.ProcessEvent

end	loop

Here	is	the	output	window	after	the	user	has	pressed	the	button	twice.

Output	of	Hello.dem

Active	and	Passive	Widgets

Widgets	come	in	two	forms.	Active	widgets	are	ones	that	respond	to	keystrokes
and	button	clicks.	Passive	widgets	do	not	respond	to	anything.	Examples	of
passive	widgets	are	lines,	frames,	labels,	labelled	frames	and	pictures.	Passive
widgets	are	generally	used	to	organize	the	output	window.

Here	is	an	example	of	a	small	program	that	show	some	passive	widgets.

%	The	"Passive"	program

%	This	demonstrates	some	of	the	passive	widgets	such	as:

%	Lines,	Frames,	Labelled	Frames,	Labels	and	Pictures.

import	GUI

%	We'll	need	a	picture	for	our	Picture	widget.		Most	likely

%	you	would	normally	have	it	saved	in	an	external	file	and

%	use	Pic.FileNew	to	read	it	into	a	picture.		For	the	example

%	program	we'll	construct	it	by	hand.

Draw.FillOval	(50,	50,	50,	50,	blue)

Draw.FillBox	(17,	17,	83,	83,	brightred)

Draw.FillStar	(17,	17,	83,	83,	brightgreen)

Draw.FillMapleLeaf	(37,	37,	63,	63,	brightpurple)

var	pic	:=	Pic.New	(0,	0,	100,	100)

View.Set	("graphics:310;335")

%	The	background	must	be	gray	for	indented	and	exdented

%	items	to	be	visible.

GUI.SetBackgroundColor	(gray)

%	Now	place	the	widgets.

%	Three	lines	of	the	different	types	with	labels

var	line1	:=	GUI.CreateLine	(70,	10,	maxx	-	10,	10,	GUI.LINE)

var	label1	:=	GUI.CreateLabelFull	(60,	10,	"Line",	0,	0,

				GUI.RIGHT	+	GUI.MIDDLE,	0)

var	line2	:=	GUI.CreateLine	(70,	30,	maxx	-	10,	30,	GUI.INDENT)

var	label2	:=	GUI.CreateLabelFull	(60,	30,	"Indent",	0,	0,

				GUI.RIGHT	+	GUI.MIDDLE,	0)

var	line3	:=	GUI.CreateLine	(70,	50,	maxx	-	10,	50,	GUI.EXDENT)

var	label3	:=	GUI.CreateLabelFull	(60,	50,	"Exdent",	0,	0,

				GUI.RIGHT	+	GUI.MIDDLE,	0)

%	Now	place	the	frames

var	frame1	:=	GUI.CreateFrame	(10,	70,	100,	120,	GUI.LINE)

var	label4	:=	GUI.CreateLabelFull	(10,	70,	"Line",	90,	50,

				GUI.CENTER	+	GUI.MIDDLE,	0)

var	frame2	:=	GUI.CreateFrame	(110,	70,	200,	120,	GUI.INDENT)

var	label5	:=	GUI.CreateLabelFull	(110,	70,	"Indent",	90,	50,

				GUI.CENTER	+	GUI.MIDDLE,	0)

var	frame3	:=	GUI.CreateFrame	(210,	70,	300,	120,	GUI.EXDENT)

var	label6	:=	GUI.CreateLabelFull	(210,	70,	"Exdent",	90,	50,

				GUI.CENTER	+	GUI.MIDDLE,	0)

%	Now	place	the	labelled	frames

var	frame4	:=	GUI.CreateLabelledFrame	(10,	140,	100,	190,	GUI.LINE,	"Line")

var	frame5	:=	GUI.CreateLabelledFrame	(110,	140,	200,	190,	GUI.INDENT,

				"Indent")

var	frame6	:=	GUI.CreateLabelledFrame	(210,	140,	300,	190,	GUI.EXDENT,

				"Exdent")

%	Place	the	picture

var	label7	:=	GUI.CreateLabel	(30,	315,	"Picture	without	merge")

var	pic1	:=	GUI.CreatePicture	(30,	210,	pic,	false)

var	label8	:=	GUI.CreateLabel	(maxx	-	130,	315,	"Picture	with	merge")

var	pic2	:=	GUI.CreatePicture	(maxx	-	130,	210,	pic,	true)

%	This	loop	doesn't	do	much	since	none	of	the	widgets	have	any	actions.

loop

				exit	when	GUI.ProcessEvent

end	loop

Here	is	the	output	window	from	the	program	with	some	labels,	a	line,	a	picture,
and	a	labelled	frame.

Output	of	Passive.dem

When	an	active	widget	is	initialized,	usually	an	action	procedure	must	be
specified.	This	is	the	name	of	a	procedure	that	will	be	called	when	the	widget	is
selected.	For	example,	in	the	Hello	program,	the	PutHello	procedure	was
specified	as	the	action	procedure	of	the	button.	Whenever	the	button	was
pressed,	the	PutHello	procedure	was	called.

Some	action	procedures	have	arguments.	For	example,	the	action	procedure	for	a
slider	has	a	parameter	of	the	current	value.	This	allows	the	procedure	to	use	the
current	value	without	having	to	call	a	GUI	subprogram	to	get	the	current	slider
value.

Keyboard	Shortcuts

Several	types	of	widgets	can	have	"shortcuts".	A	shortcut	is	simply	a	keystroke
that	has	the	same	effect	as	clicking	on	the	widget.	When	you	specify	a	shortcut
to	a	widget	in	the	CreateFull	procedure	for	the	widget,	you	must	specify	a	single
character.	The	easiest	way	to	do	this	is	to	use	the	chr	function	with	the	ASCII
value	of	the	character	to	be	used	as	the	shortcut.	You	can	also	specify	control
characters	using	the	"^"	notation.	For	example,	the	character	Ctrl+F	can	be
expressed	as	"^F"	in	Turing.

The	following	characters	cannot	be	used	as	shortcuts	because	the	Turing
environment	uses	them	for	various	purposes	(stopping	or	rerunning	programs,
and	so	on.):	Ctrl+C,	Ctrl+D,	Ctrl+Z,	F1,	F11	and	F12.

Background	Color

It	is	common	for	windows	to	have	a	different	background	color	from	the
standard	white.	To	change	the	background	color	of	a	window,	use	the
GUI.SetBackgroundColor	procedure.	This	procedure	takes	one	parameter,	the
new	background	color.	It	redraws	the	window	in	the	background	color	and	then
redraws	all	the	widgets.	It	also	notifies	the	widgets	about	the	new	background
color	so	that	when	the	widget	is	erased	or	moved,	the	location	of	the	widget	is
filled	with	the	new	background	color	instead	of	white.

Note	that	Microsoft	Windows	dialog	boxes	often	have	a	background	color	of
gray.	In	order	to	simulate	that,	you	should	give	the	command
GUI.SetBackgroundColor	(gray)	before	creating	widgets.

Several	widgets	(Canvas,	Frame,	Labelled	Frame,	Text	Field	and	Text	Box)	can
have	borders	of	either	type	INDENT	or	EXDENT.	These	borders	give	a	sort	of
3-D	appearance	to	the	widget.	However,	they	require	that	the	background	be	set
to	gray.

Here	is	an	example	of	a	small	program	that	creates	a	Canvas	with	a	3-D
appearance	and	then	draws	circles	in	the	corner.

%	The	"Canvas1"	program.

%	Create	a	canvas	and	draw	four	circles	on	it.

import	GUI

View.Set	("graphics:200;200")

%	Necessary	for	a	3-D	look	for	the	canvas

GUI.SetBackgroundColor	(gray)

%	This	procedure	is	needed	as	an	argument	to	CreateCanvasFull.

procedure	DoNothing	(mx,	my	:	int)

end	DoNothing

%	Create	a	label	for	the	canvas.		We	could	use	CreateLabelFull	for	more

%	precise	alignment.

var	label1	:=	GUI.CreateLabel	(70,	182,	"Four	Circles")

%	Create	the	canvas.		We	need	to	use	CreateCanvasFull	in	order	to

%	specify	the	type	of	border.

var	canvas	:=	GUI.CreateCanvasFull	(20,	20,	160,	160,	GUI.INDENT,	

				DoNothing,	DoNothing,	DoNothing)

%	Draw	the	four	ovals.		Notice	that	they	don't	extend	off	the	canvas

%	and	the	co-ordinates	they	use	are	relative	to	the	canvas,	not	the	window.

const	radius	:=	70	%	Half	the	width	-	10

GUI.DrawFillOval	(canvas,	0,	0,	radius,	radius,	brightred)

GUI.DrawFillOval	(canvas,	160,	0,	radius,	radius,	brightgreen)

GUI.DrawFillOval	(canvas,	0,	160,	radius,	radius,	brightblue)

GUI.DrawFillOval	(canvas,	160,	160,	radius,	radius,	brightpurple)

Here	is	the	output	window.

Output	of	Canvas1.dem

Widget	Sizes

The	size	that	you	specify	a	widget	to	be	is	not	necessarily	the	actual	size	that	the
widget	will	appear.	In	fact	for	many	widgets,	you	can	specify	a	width	and	height
of	0	for	the	widget	and	lets	the	initializer	decide	how	large	the	widget	should	be.
Another	example	is	with	check	boxes,	where	if	you	specify	the	check	box	to	be
right	justified,	the	x	and	y	coordinates	indicate	the	lower-right	corner	instead	of
the	lower-left	corner	as	usual.	This	means	that	you	may	have	to	do	some
experimentation	to	determine	where	you	want	the	widgets	to	be	placed.	Read	the
page	on	each	subprogram	that	you	use	to	find	out	exactly	what	you	are
specifying	with	the	x,	y,	width	and	height	parameters.

If	you	are	trying	to	align	widgets	together	(for	example	aligning	scroll	bars	with
a	canvas),	use	the	GUI.GetX,	GUI.GetY,	GUI.GetWidth,	and	GUI.GetHeight
functions	to	determine	the	size	of	the	object.

Positioning	Text	Labels	(Aligning	Labels	with
Widgets)

It	is	very	common	to	want	to	align	text	labels	with	widgets	on	the	screen.	There
are	a	few	tips	and	tricks	to	doing	so	successfully.	To	align	a	text	label	with	a
widget,	it	is	simply	a	matter	of	using	the	GUI.CreateLabelFull	function	with	the
appropriate	x,	y,	width,	height	and	alignment	arguments.

If	you	are	left	or	right	aligning	a	label,	then	generally	you	will	want	the	x
coordinate	to	specify	the	edge	to	be	aligned	from	and	the	width	parameter	should
be	set	to	0.	Similarly,	if	you	are	top	or	bottom	aligning	a	label,	then	the	y
coordinate	should	specify	the	edge	to	be	aligned	from	and	the	height	parameter
should	be	set	to	0.

To	align	a	widget	horizontally	with	a	widget,	choose	GUI.CENTER	for	the
horizontal	alignment	and	the	use	the	x	coordinate	and	width	of	the	widget	as	the
label's	x	coordinate	and	width.	You	can	get	the	x	coordinate	and	width	of	a
widget	using	GUI.GetX	and	GUI.GetWidth.

Likewise,	to	align	a	widget	vertically	with	a	widget,	choose	GUI.MIDDLE	for
the	vertical	alignment	and	the	use	the	y	coordinate	and	height	of	the	widget	as
the	label's	y	coordinate	and	height.	You	can	get	the	y	coordinate	and	height	of	a
widget	using	GUI.GetY	and	GUI.GetHeight.

Here	is	an	example	illustrating	the	placement	of	a	label	at	the	center	of	each	of
four	sides	of	a	widget	called	w:

import	GUI

View.Set	("graphics:200;50,nobuttonbar")

procedure	DoNothing	(text	:	string)

end	DoNothing

var	w	:	int	:=	GUI.CreateTextField	(50,	15,	100,	"",	DoNothing)

%	These	following	lines	are	the	important	part	of	the	program.

var	left	:=	GUI.CreateLabelFull	(GUI.GetX	(w)	-	2,	GUI.GetY	(w),	

				"Left",	0,	GUI.GetHeight	(w),	GUI.RIGHT	+	GUI.MIDDLE,	0)

var	above	:=	GUI.CreateLabelFull	(GUI.GetX	(w),	

				GUI.GetY	(w)	+	GUI.GetHeight	(w)	+	2,	"Above",	GUI.GetWidth	(w),	0,	

				GUI.CENTER	+	GUI.BOTTOM,	0)

var	right	:=	GUI.CreateLabelFull	(GUI.GetX	(w)	+	GUI.GetWidth	(w)	+	2,	

				GUI.GetY	(w),	"Right",	0,	GUI.GetHeight	(w),	GUI.LEFT	+	GUI.MIDDLE,	0)

var	below	:=	GUI.CreateLabelFull	(GUI.GetX	(w),	GUI.GetY	(w)	-	2,

				"Below",	GUI.GetWidth	(w),	0,	GUI.CENTER	+	GUI.TOP,	0)

Here's	the	result.	Note	that	the	formula	for	aligning	a	label	with	a	widget	is	the
same	for	any	type	of	widget.

Text	Box	Aligned	with	Four	Labels

Here's	an	example	illustrating	aligning	a	widget	with	the	top	of	the	window.
Notice	that	the	label	is	center	aligned	with	x	of	0	and	width	of	maxx,	and	top
aligned	with	a	y	of	maxy	and	a	height	of	0.

var	title	:=	GUI.CreateLabelFull	(0,	maxy,	"Title",	maxx,	0,

GUI.CENTER	+	GUI.TOP,	0)

Finally,	here's	an	example	illustrating	the	placement	of	a	label	in	the	center	of
the	screen.	Notice	that	the	label	is	center	aligned	with	x	of	0	and	width	of	maxx,
and	middle	aligned	with	a	y	of	0	and	a	height	of	maxy.

var	title	:=	GUI.CreateLabelFull	(0,	0,	"Title",	maxx,	maxy,

GUI.CENTER	+	GUI.MIDDLE,	0)

Note	that	if	a	label's	position	or	size	is	changed	with	GUI.SetPosition,
GUI.SetSize	or	GUI.SetPositionAndSize,	it	still	retains	its	alignment	with
respect	to	its	new	x,	y,	width,	and	height	values.

Canvases

The	canvas	is	a	rather	unique	widget.	It	is	essentially	a	drawing	surface	that	you
place	in	the	window.	There	are	calls	using	a	canvas	widget	that	essentially
duplicate	all	the	standard	Draw	module	calls,	along	with	calls	corresponding	to
Font.Draw	and	various	Pic	module	calls.

The	difference	is	that	the	calls	using	the	Canvas	widget	use	(0,	0)	to	mean	the
bottom	left	corner	of	the	canvas	(not	the	window)	and	all	drawing	is	clipped	to
the	canvas	(meaning	that	if	you	accidentally	draw	off	the	canvas,	the	part	of	the
picture	outside	the	bounds	of	the	canvas	will	not	appear).	One	of	the	most
common	bugs	is	to	accidentally	use	the	actual	Draw	module	routines	instead	of
the	GUI.Draw	routines	when	drawing	in	a	canvas.	If	the	drawing	is	goes	outside
the	bounds	of	the	Canvas,	you	have	made	this	mistake.

Another	feature	of	the	Canvas	widget	is	that	you	can	specify	a	procedures	to	be
called	whenever	a	user	clicks	in	the	Canvas	widget,	drags	the	mouse	with	the
mouse	button	down	and	then	lets	go	of	the	mouse	button.	These	procedures
allow	your	program	to	respond	to	mouse	activity	taking	place	in	the	canvas
widget.

Here	is	a	program	that	uses	a	Canvas	to	allow	the	user	to	draw	and	a	button	to
allow	the	user	to	erase	the	drawing.

%	The	"Draw"	program

import	GUI

View.Set	("graphics:300;300")

var	oldx,	oldy	:	int

var	canvas	:	int	%	The	drawing	canvas.

var	clear	:	int	%	The	clear	button.

%	Called	when	the	user	presses	the	mouse	button	in	the	canvas.

%	Sets	the	initial	mouse	position.

procedure	MouseDown	(mx,	my	:	int)

				oldx	:=	mx

				oldy	:=	my

end	MouseDown

%	Called	as	the	user	drags	the	mouse	with	the	button	down	in	the	canvas.

%	Draws	a	line	from	the	previous	mouse	position	to	the	current	position.

procedure	MouseDrag	(mx,	my	:	int)

				GUI.DrawLine	(canvas,	oldx,	oldy,	mx,	my,	colorfg)

				oldx	:=	mx

				oldy	:=	my

end	MouseDrag

%	Called	when	the	mouse	button	is	released.

procedure	DoNothing	(mx,	my	:	int)

end	DoNothing

%	Called	when	the	clear	button	is	pressed.

procedure	Clear

				GUI.DrawCls	(canvas)

end	Clear

%	Create	the	canvas

canvas	:=	GUI.CreateCanvasFull	(10,	30,	maxx	-	20,	maxy	-	40,	0,

				MouseDown,	MouseDrag,	DoNothing)

%	Create	the	clear	button

clear	:=	GUI.CreateButton	(maxx	div	2	-	20,	0,	40,	"Clear",	Clear)

loop

				exit	when	GUI.ProcessEvent

end	loop

Here	is	the	output	window	after	the	user	has	drawn	some	lines.

Output	of	Draw.dem

Multiple	Windows

Turing	allows	for	multiple	run	windows.	This	can	be	used	to	add	extra
functionality	to	programs,	however	there	are	a	few	issues	that	must	be
understood	before	multiple	windows	can	be	successfully	used.

Turing	uses	the	concept	of	selected	windows	and	active	windows.	A	selected
window	is	determined	by	the	program	and	is	changed	by	Window.Select.	The
selected	window	is	the	window	in	which	all	output	appears.	When	a	widget	is
created,	it	is	automatically	created	in	the	selected	window.

An	active	window	is	last	window	on	which	the	user	clicked.	The	active	window
is	shown	by	having	its	title	bar	highlighted.	When	a	user	types,	all	keystrokes	are
sent	to	the	active	window.

It	is	entirely	possible	to	have	the	selected	window	and	the	active	window	be	to
different	windows.

When	you	call	getch,	Mouse.ButtonWait,	or	any	other	input	routine,	Turing
checks	only	the	selected	window.	The	GUI	Library	works	around	this	by
selecting	all	the	windows	that	have	widgets	in	them	(one	at	a	time,	starting	with
the	active	window)	and	checking	each	for	events.

If	you	are	processing	an	event	from	one	of	several	windows,	make	certain	that
the	correct	window	is	selected	before	you	output	your	results.	Note	that	the
widgets	automatically	select	the	correct	window,	so	there	is	no	need	to	change
the	selected	window	before	making	any	calls	to	the	GUI	module.

If	you	close	a	window	with	widgets	in	it,	use	GUI.CloseWindow	to	close	the
window.	This	removes	all	the	widgets	in	the	window	before	closing	it.	If	you
have	several	windows	with	widgets	and	want	some	windows	to	be	hidden	and
then	shown	later,	use	the	GUI.ShowWindow	and	GUI.HideWindow	to	show	and
hide	the	windows	with	widgets	in	them.

The	GUI	Library	Internals

While	it	is	not	necessary	to	know	the	internals	of	the	GUI	Library	to	use	it,	we
provide	this	brief	overview	for	those	who	wish	to	understand	the	inner	workings
of	the	library.

The	GUI	Library	consists	of	four	parts.	The	only	part	visible	to	the	user	is	the
GUI	module.	This	is	located	in	"%oot/lib/GUI",	where	%oot	is	the	directory	in
which	the	OOT	executable	is	located.	The	GUI	module	is	essentially	a	series	of
procedures	that	provide	a	front	end	to	the	Widget	Module	and	the	Widget	Class
Library.

The	Widget	Module	is	a	module	called	WidgetModule	that	consists	of	a	series	of
subprograms	that	cover	all	the	aspects	of	GUI's	that	do	not	pertain	to	a	particular
widget.	For	example,	the	procedure	to	change	the	background	color	is	here,	as
well	as	the	procedure	to	process	an	event.	It	is	located	in
"%oot/lib/GuiClass/wdgtmod.tu"

The	GUI	Class	Library	consists	of	a	series	of	classes	arranged	in	a	hierarchy
illustrated	in	the	following	figure.	Most	of	the	actual	Turing	code	for	the	GUI
Library	is	located	in	the	Widget	Class	Library.	Each	different	type	of	widget	has
its	own	class.	Widgets	that	share	common	behavior	have	the	same	parent.	For
example,	both	the	vertical	and	horizontal	slider	have	a	slider	class	as	a	parent.
Those	classes	whose	names	start	with	Generic	are	abstract	classes.	They	should
not	be	instantiated	themselves.	They	are	used	to	define	common	behavior	among
their	subclasses.	The	Turing	source	for	the	classes	can	be	found	in	the	directory
"%oot/lib/GuiClass"

The	fourth	part	is	the	WidgetGlobals	module.	This	module	that	consists	mostly
of	global	variables	used	by	the	GUI	Class	Library	and	the	Widget	module.	It	is
located	in	"%oot/lib/GuiClass/wdgtglob.tu"

Here	is	an	example	of	how	the	GUI	module	works:	when	you	create	a	button
using	GUI.CreateButton,	the	CreateButton	function	in	the	GUI	module	creates
an	object	of	type	ButtonClass.	(ButtonClass	is	found	in	the	Widget	Class	Library
discussed	further	down).	It	then	calls	the	Initialize	procedure	of	the	ButtonClass
to	initialize	the	button	with	the	specified	parameters.	Finally	it	assigns	an	ID
number	to	the	widget	and	arranges	it	in	a	table	for	future	reference.	Here	is

another	example:	when	you	call	a	procedure	like	GUI.Show,	the	Show	procedure
takes	the	widget	ID,	looks	up	the	object	that	it	represents,	and	then	calls	the
Show	procedure	of	the	object.

Students	who	wish	to	add	new	widgets	to	the	GUI	library	will	have	to
understand	the	principles	of	object	oriented	programming,	as	they	will	be	adding
a	new	class	to	the	GUI	Class	Library	and	then	adding	new	subprograms	in	the
GUI	module	that	will	call	their	new	classes.	(At	the	very	least,	a	Create
subprogram	will	be	required	for	the	new	widget.)

A	suggested	project	would	be	to	create	new	versions	of	the	ButtonClass,
CheckBoxClass	and	RadioButtonClass	classes	that	are	buttons,	check	boxes	and
radio	buttons	with	the	new	Windows	95/NT	appearance.	They	could	be	called
the	Button95Class,	CheckBox95Class	and	RadioButton95Class.	Properly
written,	these	new	classes	should	inherit	from	ButtonClass,	etc.	and	contain	only
those	procedures	that	differ	from	the	base	class	(presumably	the	procedures	that
display	the	widget).

The	GUI	Class	Library	Hierarchy

GUI	Module	Routines	Summary

The	routines	in	the	GUI	module	are	divided	into	several	different	types.	There
are	the	routines	to	create	various	widgets,	the	routines	to	create	menus	and	menu
items,	the	routines	to	do	general	activities	(such	as	processing	an	event,	changing
the	background	color,	etc.)	and	the	routines	that	act	on	various	types	of	widgets.

Here	is	the	list	of	the	routines	that	create	widgets:

GUI.CreateButton,	GUI.CreateButtonFull Create	a	button.
GUI.CreateCheckBox,	GUI.CreateCheckBoxFull Create	a	check	box.
GUI.CreateRadioButton,	GUI.CreateRadioButtonFull Create	a	radio	button.
GUI.CreatePictureButton,
GUI.CreatePictureButtonFull Create	a	picture	button.

GUI.CreatePictureRadioButton,
GUI.CreatePictureRadioButtonFull

Create	a	picture	radio
button.

GUI.CreateHorizontalSlider Create	a	horizontal
slider.

GUI.CreateVerticalSlider Create	a	vertical	slider.
GUI.CreateHorizontalScrollBar,
GUI.CreateHorizontalScrollBarFull

Create	a	horizontal
scroll	bar.

GUI.CreateVerticalScrollBar,
GUI.CreateVerticalScrollBarFull

Create	a	vertical	scroll
bar.

GUI.CreateCanvas,	GUI.CreateCanvasFull Create	a	canvas.
GUI.CreateTextField,	GUI.CreateTextFieldFull Create	a	text	field.
GUI.CreateTextBoxFull,	GUI.CreateTextBoxFull Create	a	text	box.

GUI.CreateTextBoxChoice Create	a	multi-line
selector.

GUI.CreateLine Create	a	line.
GUI.CreateFrame Create	a	frame.
GUI.CreateLabelledFrame Create	a	labelled	frame.
GUI.CreateLabel,	GUI.CreateLabelFull Create	a	label.
GUI.CreatePicture Create	a	picture.

Here	is	the	list	of	routines	that	create	menus	and	menu	items:

GUI.CreateMenu Create	a	menu.
GUI.CreateMenuItem,	GUI.CreateMenuItemFull Create	a	menu	item.

Here	is	the	list	of	general	routines:

GUI.ProcessEvent Process	a	single	keyboard	or	mouse	down	event.
GUI.Quit Tell	the	program	to	exit	the	event	loop.

GUI.ResetQuit Reset	the	"quit"	flag	so	a	program	can	reenter	the
event	loop.

GUI.Refresh Redraw	all	the	widgets	on	the	screen.
GUI.SetBackgroundColor Change	the	window's	background	colour.
GUI.SetNullEventHandler Set	the	null	event	handler.
GUI.SetKeyEventHandler Set	the	keystroke	event	handler.
GUI.SetMouseEventHandler Set	the	mouse	event	handler.
GUI.HideMenuBar Hide	the	menu	bar	in	the	window.
GUI.ShowMenuBar Show	the	menu	bar	in	the	window.

GUI.GetEventWidgetID Get	the	selected	widget's	ID	(used	in	a	widget's
action	procedure).

GUI.GetEventWindow Get	the	window	that	the	event	took	place	in	(used
in	a	widget's	action	procedure).

GUI.GetEventTime Get	the	time	(in	milliseconds)	that	the	event	took
place	(used	in	a	widget's	action	procedure).

GUI.GetScrollBarWidth Return	the	width	of	a	scroll	bar.
GUI.GetMenuBarHeight Return	the	height	of	a	menu	bar.

GUI.GetVersion Return	the	current	version	number	of	the	GUI
module.

Here	is	a	list	of	routines	that	act	on	the	widgets	and	the	sort	of	widgets	they	act
on.

GUI.Show Display	the
widget. All

GUI.Hide Hide	the	widget. All

GUI.GetX
Return	the	x
coordinate	of	the
widget's	left	edge.

All

GUI.GetY

Return	the	y
coordinate	of	the
widget's	bottom
edge.

All

GUI.GetWidth
Return	the
widget's	actual
width.

All

GUI.GetHeight
Return	the
widget's	actual
height.

All

GUI.Dispose Dispose	of	the
widget. All

GUI.SetPosition Set	the	widget's
position. All

GUI.SetSize Set	the	widget's
size. All

GUI.SetPositionAndSize Set	the	widget's
position	and	size. All

GUI.Enable
Enable	the	widget
to	respond	to
events.

Active
Widgets

GUI.Disable

Disable	the
widget	from
responding	to
events.

Active
Widgets

GUI.SetLabel Set	the	widget's
text	label.

Button,
Check	Box,
Radio
Button,
Label,
Labelled
Frame

Set	the	button's

GUI.SetColor color. Button

GUI.SetDefault Make	the	button
the	default	button. Button

GUI.GetCheckBox
Get	whether	a
check	box	is
filled.

Check	Box

GUI.SetCheckBox Set	a	check	box	to
be	filled	or	not. Check	Box

GUI.SelectRadio Select	a	radio
button.

Radio
Button,
Picture
Radio
Button

GUI.GetSliderValue Return	the	current
value	of	the	slider.

Slider,
Scroll	Bar

GUI.SetSliderValue Set	the	value	of
the	slider.

Slider,
Scroll	Bar

GUI.SetSliderMinMax
Set	the	slider's
minimum	and
maximum.

Slider,
Scroll	Bar

GUI.SetSliderSize Set	the	slider's
length	(or	height).

Slider,
Scroll	Bar

GUI.SetSliderReverse
Reverse	the
direction	of	the
slider.

Slider,
Scroll	Bar

GUI.SetScrollAmount

Set	the	scroll	bar's
thumb	size	and
the	scroll	amount
for	arrows/page
up	and	down.

Scroll	Bar

DrawArc,	DrawBox,	DrawCls,	DrawDot,
DrawFill,	DrawFillArc,	DrawFillBox,
DrawFillMapleLeaf,	DrawFillOval,
DrawFillPolygon,	DrawFillStar,	DrawLine,
DrawMapleLeaf,	DrawOval,	DrawPolygon,

Routines	that
perform	the	same
function	as	the
Draw	module	for
the	Canvas

Canvas

DrawStar,	DrawText widget.

GUI.FontDraw
"Font.Draw"	for
the	Canvas
widget.

Canvas

PicDraw,	PicNew,	PicScreenLoad,
PicScreenSave

Routines	that
perform	the	same
function	as	the	Pic
module	for	the
Canvas	widget.

Canvas

GUI.SetXOR

Performs
View.Set	("xor")
for	the	Canvas
Widget.

Canvas

GUI.SetText Set	the	text	of	a
text	field. Text	Field

GUI.SetEchoChar

Set	the	character
that	appears	when
user	enters	a
keystroke.

Text	Field

GUI.SetSelection Set	the	selection
in	the	text	field. Text	Field

GUI.SetActive

Make	the	text
field	the	active
one	(where
keystrokes	will	go
and	where	the
cursor	blinks).

Text	Field

GUI.ClearText Clear	a	text	box. Text	Box

GUI.AddText Add	text	to	a	text
box. Text	Box

GUI.AddLine Add	a	line	of	text
to	a	text	box. Text	Box

GUI.SetTopLine
Scrolls	text	box	to
make	line	appear
at	top.

Text	Box

GUI.SetScrollOnAdd Sets	whether	text
box	scrolls	when
text	added.

Text	Box

Widgets	-	Common	Routines

All	of	the	procedures	in	this	section	can	be	used	with	any	widget,	although	some
may	have	no	effect	(for	example	GUI.GetX	on	a	menu	item	is	meaningless).

GUI.Show
Displays	a	widget.	Used	in	conjunction	with	Hide	to	hide	and	show
widgets.	Hidden	widgets	cannot	get	events	(i.e.	respond	to
keystrokes	or	mouse	clicks).

GUI.Hide

Hides	a	widget.	Used	in	conjunction	with	Show	to	hide	and	show
widgets.	Hidden	widgets	cannot	get	events	(i.e.	respond	to
keystrokes	or	mouse	clicks).	If	an	active	text	field	(see	text	field)	is
hidden,	then	any	keystrokes	in	the	window	will	be	ignored.

GUI.GetX
GUI.GetY

Returns	the	x	(y)	coordinate	of	the	left	edge	of	a	widget.	Note	that
this	may	be	different	from	the	x	coordinate	specified	in	the	widget's
Create	call.	For	example,	if	a	radio	button	is	created	with	right
justification,	the	x	coordinate	in	the	Create	method	specifies	the
right	edge.

Here	is	a	small	subprogram	that	should	draw	a	rectangle	entirely
around	a	widget	(i.e.	no	part	of	the	widget	should	stick	out).

procedure	WidgetRect	(widgetID	:	int)

				const	x	:	int	:=	GUI.GetX	(widgetID)

				const	y	:	int	:=	GUI.GetY	(widgetID)

				const	width	:	int	:=	GUI.GetWidth	(widgetID)

				const	height	:	int	:=	GUI.GetHeight	(widgetID)

				Draw.Box	(x,	y,	x	+	width	-	1,	y	+	height	-	1,	black)

end	WidgetRect

GUI.GetWidth
GUI.GetHeight

Returns	the	actual	width	(height)	of	a	widget.	Note	that	this	may	be
different	from	the	width	specified	in	the	Create	call	(especially
since	many	widgets	allow	you	to	specify	0	for	the	width	and	let	the
GUI	module	determine	the	necessary	width).

GUI.Dispose

Eliminates	a	widget.	It	should	be	called	in	order	to	free	up	any
memory	that	the	widget	might	have	allocated.	Note	that	you	cannot
use	the	widget	after	it	has	been	disposed	of.	If	you	wish	to
temporarily	get	rid	of	a	widget,	consider	using	the	Hide	method	and
then	the	Show	method	when	you	want	to	use	it	again.

GUI.SetPosition

Moves	a	widget	to	the	specified	location.	If	the	widget	is	visible,	it
is	moved	immediately	to	the	new	location.	If	the	widget	is	hidden,	it
will	appear	at	the	new	location	when	the	Show	procedure	is	called.
Note	that	the	location	specified	in	GUI.SetPosition	are	the	same	as
in	the	Create	method.	For	example,	if	you	had	specified	a	check	box
to	be	right	justified	in	the	CreateCheckBoxFull	function,	then	the
location	in	a	call	to	SetPosition	would	specify	the	lower-right	corner
as	opposed	to	the	lower-left	corner.

GUI.SetSize

Changes	the	size	of	a	widget.	If	the	widget	is	visible,	its	size	is
changed	immediately,	otherwise	the	widget	will	appear	in	its	new
size	when	the	widget	is	next	made	visible.	Note	that	the	width	and
height	parameters	are	not	necessarily	the	actual	width	and	height	of
the	widget.	For	example,	the	TextField	widget	ignores	the	height
parameter,	calculating	the	widget's	actual	height	from	the	height	of
the	text	in	the	TextField.

GUI.SetPositionAndSize Changes	the	position	and	size	of	the	widget	simultaneously.	Itworks	the	same	way	as	the	SetPosition	and	SetSize	procedures.

Widgets	-	Buttons

Output	of	Buttons.dem

The	button	widget	is	used	to	implement	a	textual	button.	When	you	click	on	a
button,	the	button's	action	procedure	is	called.	If	a	button	is	given	a	short	cut,
then	entering	the	keystroke	will	cause	the	action	procedure	to	be	called.	It	will
not	visibly	cause	the	button	to	depress.

If	a	button's	width	or	height	is	set	to	zero	(or	not	specified	at	all),	then	the	button
is	shaped	to	fit	the	text.

A	button	can	be	the	default	button	for	a	window.	If	that	is	the	case,	then	the
button	will	be	drawn	with	a	ticker	border	around	it	and	if	the	user	presses
ENTER,	then	the	button's	action	procedure	will	be	called.

When	a	button	is	not	enabled,	the	text	in	the	button	is	grayed	out	and	the	button
no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the	button	is	enabled
again.

GUI.CreateButton
Creates	and	displays	a	button.	GUI.CreateButton
specifies	the	location,	width,	text	and	action	procedure	of
the	button.

GUI.CreateButtonFull
Creates	and	displays	a	button.	GUI.CreateButtonFull
also	specifies	the	height,	keyboard	shortcut	and	default
status	of	the	button.

GUI.Enable
GUI.Disable

Enables	(disables)	a	button.	Disabled	buttons	have	their
text	grayed	out	and	cannot	get	events	(i.e.	respond	to
keystrokes	or	mouse	clicks).

GUI.SetLabel Changes	the	text	of	a	button.

GUI.SetDefault

Sets	the	"default	status"	of	a	button.	If	a	button	is	the
default	button,	then	it	is	drawn	with	a	heavy	outline	and
it	is	activated	when	the	user	presses	ENTER	(RETURN
on	a	Macintosh).

Widgets	-	Check	Boxes

Output	of	CheckBoxes.dem

The	check	box	widget	is	used	to	implement	a	check	box	that	can	be	set	or	unset.
When	you	click	on	a	check	box,	the	status	of	the	check	box	flips	from	set	to
unset	and	back	again	and	the	check	box's	action	procedure	is	called	with	the	new
status	as	a	parameter.	If	a	check	box	is	given	a	short	cut,	then	entering	the
keystroke	will	cause	the	check	box	to	change	status	and	the	action	procedure	to
be	called.	The	new	status	will	be	displayed	immediately.

A	check	box's	size	is	not	specified	during	creation.	It	is	determined	based	on	the
size	of	the	text.	Instead	the	user	specifies	the	lower-left	corner	of	the	check	box
(or	the	lower-right	if	the	check	box	is	right	justified).

When	a	check	box	is	not	enabled,	the	label	beside	the	check	box	is	grayed	out

and	the	check	box	no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the
check	box	is	enabled	again.

GUI.CreateCheckBox

Creates	and	displays	a	left	aligned	(check	box	to	the
left	of	the	label)	check	box.	GUI.CreateCheckBox
specifies	the	location,	text	and	action	procedure	of
the	check	box.

GUI.CreateCheckBoxFull

Creates	and	displays	a	check	box.
GUI.CreateCheckBoxFull	also	specifies	the
alignment	of	the	check	box	(whether	the	checkbox	is
the	right	or	left	of	the	text)	and	the	check	box's
keyboard	shortcut.

GUI.Enable
GUI.Disable

Enables	(disables)	a	check	box.	Disabled	check
boxes	have	their	text	grayed	out	and	cannot	get
events	(i.e.	respond	to	keystrokes	or	mouse	clicks).

GUI.SetLabel Changes	the	text	of	a	check	box.

GUI.GetCheckBox
Returns	a	check	box's	status.	If	the	check	box	is	set
(has	an	X	in	it),	GUI.GetCheckBox	returns	true,
otherwise	it	returns	false.

GUI.SetCheckBox
Sets	the	status	of	a	check	box.	It	calls	the	check	box's
action	procedure	with	the	new	status	and	redraws	the
widget	with	the	new	status.

Widgets	-	Radio	Buttons

Output	of	RadioButtons.dem

The	radio	button	widget	is	used	to	implement	a	set	of	buttons	of	which	one	and
only	one	button	must	be	selected	at	all	times.	(Think	old-style	radio	station
button.	Selecting	one	"deselects"	the	previously-selected	station.)	When	you
click	on	a	radio	button,	any	other	radio	button	that	is	part	of	the	set	is	deselected
and	the	radio	button's	action	procedure	is	called.	If	a	radio	button	is	given	a	short
cut,	then	entering	the	keystroke	will	cause	the	radio	button	to	be	selected	(and
any	other	radio	button	in	the	group	to	be	de-selected)	and	the	action	procedure	to
be	called.	The	newly-selected	or	deselected	radio	buttons	will	be	displayed
immediately.

When	a	radio	button	is	created,	the	widget	ID	of	another	radio	button	must	be
supplied.	A	value	of	zero	for	the	widget	ID	indicates	that	this	radio	button	is	part

of	a	new	group.	The	widget	ID	must	be	the	ID	of	the	last	radio	button	added	to
the	group.	Because	radio	buttons	are	almost	always	placed	in	groups	you	can
specify	-1	for	the	x	and	y	coordinates	and	the	radio	button	will	be	placed	just
below	the	previous	radio	button	and	retain	the	same	alignment.	When	a	group	of
radio	buttons	is	selected,	the	first	radio	button	created	in	the	group	will	be	the
selected	one.	You	can	change	this	by	using	the	GUI.SelectRadio	procedure	to
select	a	different	one.

A	radio	button's	size	is	not	specified	during	creation.	It	is	determined	based	on
the	size	of	the	text.	The	user	specifies	the	lower-left	corner	of	the	radio	button
(or	the	lower-right	if	the	radio	button	is	right	justified).

When	a	radio	button	is	not	enabled,	the	label	beside	the	radio	button	is	grayed
out	and	the	radio	button	no	longer	responds	to	any	mouse	clicks	or	keystrokes
until	the	radio	button	is	enabled	again.

GUI.CreateRadioButton

Creates	and	displays	a	left	aligned	(circle	to	the	left
of	the	label)	radio	button.	GUI.CreateRadioButton
specifies	the	location,	text,	the	radio	button	to	be
joined	to	and	the	action	procedure	of	the	radio
button.

GUI.CreateRadioButtonFull

Creates	and	displays	a	radio	button.
GUI.CreateRadioButtonFull	also	specifies	the
alignment	of	the	radio	button	(whether	the	circle	is
the	right	or	left	of	the	text)	and	the	radio	button's
keyboard	shortcut.

GUI.Enable
GUI.Disable

Enables	(disables)	a	radio	button.	Disabled	radio
buttons	have	their	text	grayed	out	and	cannot	get
events	(i.e.	respond	to	keystrokes	or	mouse	clicks).

GUI.SetLabel Changes	the	text	of	a	radio	button.

GUI.SelectRadio
Selects	a	radio	button.	The	previously-selected
radio	button	is	"de-selected".	The	action	procedure
of	the	radio	button	is	called.

Widgets	-	Picture	Buttons

Output	of	PictureButtons.dem

The	picture	button	widget	(hereafter	simply	called	a	button)	is	simply	a	button
with	a	picture	on	it	instead	of	text.	The	picture	must	be	created	by	the	program
beforehand	using	Pic.New	or	Pic.FileNew.	The	resulting	picture	can	then	be
used	as	a	parameter	to	GUI.CreatePictureButton.	In	general,	pictures	should	be	a
maximum	of	about	30	pixels	high	and	wide,	although	there	is	no	built	in	limit	in
the	GUI	library.

When	you	click	on	a	picture	button,	the	picture	button's	action	procedure	is
called.	If	a	picture	button	is	given	a	short	cut,	then	entering	the	keystroke	will
cause	the	action	procedure	to	be	called.	It	will	not	visibly	cause	the	button	to
depress.

If	a	button's	width	or	height	is	set	to	zero	(or	not	specified	at	all),	then	the	button

is	shaped	to	fit	the	picture.

When	a	picture	button	is	not	enabled,	the	picture	button	is	grayed	out	and	the
picture	button	no	longer	responds	to	any	mouse	clicks	or	keystrokes	until	the
button	is	enabled	again.

GUI.CreatePictureButton

Creates	and	displays	a	picture	button.	The	button
is	automatically	sized	to	fit	the	picture.	If	you
need	to	know	the	precise	size	of	the	button,	use
the	GUI.GetWidth	and	GUI.GetHeight	functions.
GUI.CreatePictureButton	specifies	the	location,
picture	id	and	action	procedure	of	the	button.

GUI.CreatePictureButtonFull

Creates	and	displays	a	picture	button.
GUI.CreatePictureButtonFull	also	specifies	the
width,	height	and	keyboard	shortcut	of	the	button.
It	also	specifies	whether	the	button	picture	should
be	merged	with	the	background	color	or	not.

GUI.Enable
GUI.Disable

Enables	(disables)	a	picture	button.	Disabled
picture	buttons	are	grayed	out	and	cannot	get
events	(i.e.	respond	to	keystrokes	or	mouse
clicks).

Widgets	-	Picture	Radio	Buttons

Output	of	PictureRadioButtons.dem

The	picture	radio	button	widget	(hereafter	simply	called	a	button)	is	simply	a
picture	button	(see	Widget	-	Picture	Button)	that	has	the	behavior	of	a	radio
button.	This	means	that	one	and	only	one	picture	radio	button	of	a	group	is
selected	at	any	time.	A	selected	picture	radio	button	is	displayed	as	being
pressed.

When	you	click	on	a	picture	button,	the	previously-selected	picture	radio	button
will	be	de-selected	and	the	new	picture	button's	action	procedure	is	called.	If	a
picture	button	is	given	a	short	cut,	then	entering	the	keystroke	will	cause	the
action	procedure	to	be	called	and	the	picture	radio	button	will	be	drawn	selected.

Creates	and	displays	a	picture	radio	button.
The	button	is	automatically	sized	to	fit	the

GUI.CreatePictureRadioButton

picture.	If	you	need	to	know	the	precise	size
of	the	button,	use	the	GUI.GetWidth	and
GUI.GetHeight	functions.
GUI.CreatePictureRadioButton	specifies	the
location,	picture	id	and	action	procedure	of
the	button	as	well	as	the	radio	picture	button
to	be	joined	to.

GUI.CreatePictureRadioButtonFull

Creates	and	displays	a	picture	radio	button.
GUI.CreatePictureRadioButtonFull	also
specifies	the	width,	height	and	keyboard
shortcut	of	the	button.	It	also	specifies
whether	the	button	picture	should	be
merged	with	the	background	color	or	not.

GUI.Enable
GUI.Disable

Enables	(disables)	a	picture	radio	button.
Disabled	picture	buttons	are	grayed	out	and
cannot	get	events	(i.e.	respond	to	keystrokes
or	mouse	clicks).

Widgets	-	Sliders

Output	of	Sliders.dem

Sliders	are	the	equivalent	of	a	volume	control	on	a	stereo.	To	control	a	slider,	the
user	simply	clicks	on	the	control	knob	and	slides	the	control	left	and	right	(up
and	down	for	a	vertical	slider).	Whenever	the	user	slides	the	control	knob,	the
action	procedure	of	the	widget	is	called	with	the	current	value	as	a	parameter.

The	range	of	values	that	the	slider	will	give	is	determined	by	the	min	and	max
parameters	in	the	Create	call.	The	left	side	of	the	slider	(bottom	for	vertical
sliders)	represents	the	minimum	value,	while	the	right	(top)	represents	the
maximum	value.

In	some	instances,	you	will	want	the	reverse	to	be	true	(right/top	is	minimum).	In
that	case,	call	the	GUI.SetSliderReverse	procedure	to	flip	the	values	of	the	slider.

Sliders	always	have	a	fixed	height	(for	horizontal	sliders)	or	width	(for	vertical
sliders).	The	length	parameter	in	the	Create	call	specifies	how	long	the	slider
should	be.

GUI.CreateHorizontalSlider

Creates	and	displays	a	horizontal	(left-right)	slider.
GUI.CreateHorizontalSlider	specifies	the	location,
length,	minimum	and	maximum	values	for	the
slider,	the	initial	value	of	the	slider,	and	the	action
procedure	of	the	slider.

GUI.CreateVerticalSlider

Creates	and	displays	a	vertical	(up-down)	slider.
GUI.CreateVerticalSlider	specifies	the	location,
length,	minimum	and	maximum	values	for	the
slider,	the	initial	value	of	the	slider,	and	the	action
procedure	of	the	slider.

GUI.Enable
GUI.Disable

Enables	(disables)	a	slider.	Disabled	sliders	cannot
get	events	(i.e.	respond	to	mouse	clicks).

GUI.GetSliderValue Returns	the	current	value	of	a	slider.

GUI.SetSliderValue
Sets	the	value	of	a	slider.	It	moves	the	control	knob
on	the	slider	to	the	appropriate	location	and	calls
the	slider's	action	procedure	with	the	new	value.

GUI.SetSliderMinMax

Sets	the	minimum	and	maximum	values	of	a	slider.
It	redraws	the	control	knob	to	take	into	account	the
new	minimum	and	maximum.	If	the	current	value
of	the	slider	is	outside	the	new	min/max,	then	the
value	is	adjusted	appropriately.

GUI.SetSliderSize
Changes	the	length	of	a	slider.	Redraws	the	slider
and	changes	the	position	of	the	control	knob	to	take
into	account	the	new	size	of	the	slider.

GUI.SetSliderReverse

Sets	a	slider	into	(or	out	of,	if	already	into)	"reverse
mode".	Normally,	a	slider	is	at	its	minimum	value
when	the	control	knob	is	on	the	left	side	(bottom
for	a	vertical	slider).	This	reverses	it,	so	the
minimum	value	is	when	the	slider	is	at	the	right
side	(top	for	vertical	sliders)	of	the	track.	Calling
this	routine	a	second	time	reverses	it	back	to
normal.	This	procedure	redraws	the	slider	to	move
the	control	knob	to	its	new	location.

Widgets	-	Scroll	Bars

Output	of	ScrollBars.dem

Scroll	bars	are	usually	used	to	allow	a	user	to	see	a	piece	of	a	document	that
cannot	be	displayed	on	the	screen	in	its	entirety.	The	picture	above	shows	the
scroll	bars	appearance.	To	control	a	scroll	bar,	there	are	a	few	choices:	the	user
can	click	on	the	thumb	(the	box	in	the	scroll	bar)	and	slide	it	up	and	down,	or	the
user	can	click	in	the	scroll	bar	itself	above	or	below	the	thumb	(in	which	case	the
thumb	is	moved	up	or	down	one	"page"),	or	the	user	can	click	on	the	up	or	down
arrows	at	the	ends	of	the	scroll	bar	(in	which	case	the	thumb	is	moved	up	one
"line").	The	programmer	defines	a	page	or	a	line.	When	the	value	of	the	scroll
bar	changes,	the	action	procedure	of	the	scroll	bar	is	called	with	the	new	value	as
a	parameter.

The	range	of	values	that	the	scroll	bar	will	give	is	determined	by	the	min	and

max	parameters	in	the	Create	call.	The	left	side	of	the	scroll	bar	(bottom	for
vertical	scroll	bars)	represents	the	minimum	value,	while	the	right	(top)
represents	the	maximum	value.	There	is	also	the	"thumb	size".	This	represents
the	range	of	values	that	can	be	seen	at	once	on	the	screen.

For	example,	if	you	have	a	window	that	can	display	20	lines	of	text	at	once	and
there	are	100	lines	of	text,	you	would	set	min	to	1,	max	to	100,	and	thumbSize	to
20.	The	value	returned	by	the	scroll	bar	would	then	be	the	line	number	of	the
first	line	on	the	screen	to	be	displayed.	When	the	scroll	bar	was	at	its	maximum
value,	it	would	return	81,	since	by	doing	so,	lines	81-100	would	be	displayed.

When	a	scroll	bar	is	disabled	or	the	scroll	bar's	thumb	size	is	greater	than	the
difference	between	the	minimum	and	maximum	values	(i.e.	the	item	being
scrolled	fits	in	the	window),	the	scroll	bar	is	deactivated.	The	bar	is	drawn	in
white	rather	than	gray	and	the	arrows	are	grayed	out.	The	scroll	bar	does	not
respond	to	mouse	clicks.

In	some	instances,	you	will	want	the	minimum	and	maximum	values	of	the
scroll	bar	to	be	reversed	(right/top	is	minimum).	In	that	case,	call	the
GUI.SetSliderReverse	procedure	to	flip	the	values	of	the	scroll	bar.

Scroll	bars	always	have	a	fixed	height	(for	horizontal	scroll	bars)	or	width	(for
vertical	scroll	bars).	To	get	the	scroll	bar's	width,	use	the
GUI.GetScrollBarWidth	function.	The	length	parameter	in	the	Create	call
specifies	how	long	the	scroll	bar	should	be.

GUI.CreateHorizontalScrollBar

Creates	and	displays	a	horizontal	(left-
right)	scroll	bar.
GUI.CreateHorizontalScrollBar	specifies
the	location,	length,	minimum	and
maximum	values	for	the	scroll	bar,	the
initial	value	of	the	scroll	bar,	and	the	scroll
bar's	action	procedure.

By	default,	the	arrow	increment	(the
amount	the	value	is	changed	when	the
scrolling	arrows	are	pressed)	is	set	to	one.
The	page	up/down	increment	(the	amount
the	value	is	changed	when	the	user	clicks	in

the	bar	to	the	right	or	left	of	the	thumb)	is
set	to	one	quarter	the	difference	between
the	minimum	and	the	maximum.	The
"thumb	size"	is	set	to	zero	(see	the
description	of	scroll	bars	for	an	explanation
of	the	thumb	size).

GUI.CreateVerticalScrollBar

Creates	and	displays	a	vertical	(up-down)
scroll	bar.	GUI.CreateVerticalScrollBar
specifies	the	location,	length,	minimum	and
maximum	values	for	the	scroll	bar,	the
initial	value	of	the	scroll	bar,	and	the	scroll
bar's	action	procedure.

By	default,	the	arrow	increment	(the
amount	the	value	is	changed	when	the
scrolling	arrows	are	pressed)	is	set	to	one.
The	page	up/down	increment	(the	amount
the	value	is	changed	when	the	user	clicks	in
the	bar	to	the	right	or	left	of	the	thumb)	is
set	to	one	quarter	the	difference	between
the	minimum	and	the	maximum.	The
"thumb	size"	is	set	to	zero	(see	the
description	of	scroll	bars	for	an	explanation
of	the	thumb	size).

GUI.CreateHorizontalScrollBarFull

Creates	and	displays	a	horizontal	(left-
right)	scroll	bar.
GUI.CreateHorizontalScrollBarFull	also
specifies	the	arrow	increment,	page
increment,	and	thumb	size	for	the	scroll	bar.

GUI.CreateVerticalScrollBarFull

Creates	and	displays	a	horizontal	(left-
right)	scroll	bar.
GUI.CreateVerticalScrollBarFull	also
specifies	the	arrow	increment,	page
increment	and	thumb	size	for	the	scroll	bar.

GUI.Enable
GUI.Disable

Enables	(disables)	a	scroll	bar.	Disabled
scroll	bars	cannot	get	events	(i.e.	respond	to

mouse	clicks).
GUI.GetSliderValue Returns	the	current	value	of	a	scroll	bar.

GUI.SetSliderValue

Sets	the	value	of	a	scroll	bar.	It	moves	the
control	knob	on	the	scroll	bar	to	the
appropriate	location	and	calls	the	scroll
bar's	action	procedure	with	the	new	value.

GUI.SetSliderMinMax

Sets	the	minimum	and	maximum	values	of
a	scroll	bar.	It	redraws	the	control	knob	to
take	into	account	the	new	minimum	and
maximum.	If	the	current	value	of	the	scroll
bar	is	outside	the	new	min/max,	then	the
value	is	adjusted	appropriately.

GUI.SetSliderSize

Changes	the	length	of	a	scroll	bar.	Redraws
the	scroll	bar	and	changes	the	position	of
the	control	knob	to	take	into	account	the
new	size	of	the	scroll	bar.

GUI.SetSliderReverse

Sets	a	scroll	bar	into	(or	out	of,	if	already
into)	"reverse	mode".	Normally,	a	scroll	bar
is	at	its	minimum	value	when	the	control
knob	is	on	the	left	side	(bottom	for	a
vertical	scroll	bar).	This	reverses	it,	so	the
minimum	value	is	when	the	scroll	bar	is	at
the	right	side	(top	for	vertical	scroll	bars)	of
the	track.	Calling	this	routine	a	second	time
reverses	it	back	to	normal.	This	procedure
redraws	the	scroll	bar	to	move	the	control
knob	to	its	new	location.

GUI.SetScrollAmount

Sets	a	scroll	bar's	arrow	increment,	page
increment,	and	thumb	size.	Redraws	the
scroll	bar	to	take	into	account	the	new
thumb	size.

Widgets	-	Canvases

Output	of	Canvases.dem

A	canvas	is	a	drawing	surface	for	use	by	the	program.	It	differs	from	just	using
the	window	surface	to	draw	on	in	that	(0,	0)	represents	the	lower-left	corner	of
the	canvas	and	all	drawing	is	clipped	to	the	canvas.	(This	means	that	if	you
accidentally	attempt	to	draw	outside	of	the	canvas,	it	will	not	actually	draw
beyond	the	border	of	the	canvas.)

Canvases	have	procedures	that	emulate	all	the	procedures	in	the	Draw	module	as
well	as	a	procedure	to	emulate	Font.Draw,	Pic.Draw,	Pic.New,	Pic.ScreenLoad,
and	Pic.ScreenSave.

You	can	get	mouse	feedback	from	a	canvas.	Using	the	GUI.CreateCanvasFull
method,	you	can	specify	three	routines	that	are	called	when	the	mouse	button	is
depressed	while	pointing	in	a	canvas.	One	routine	will	be	called	when	the	user
presses	the	mouse	button	down	in	a	canvas.	Another	routine	will	be	called	while
the	user	drags	the	mouse	with	the	mouse	button	down.	This	routine	is	repeatedly
called	whenever	the	mouse	changes	position	while	the	mouse	button	is	down.
The	last	routine	is	called	when	the	mouse	button	is	released.	All	three	routines

take	an	x	and	y	parameter,	which	is	the	location	of	the	mouse	with	respect	to	the
canvas	(i.e.	(0,	0)	is	the	lower-left	corner	of	the	canvas).

GUI.CreateCanvas
Creates	and	displays	a	canvas.	GUI.CreateCanvas
specifies	the	location	and	size	of	the	canvas.	The
canvas	will	have	a	line	border	around	it.

GUI.CreateCanvasFull

Creates	and	displays	a	canvas.	GUI.CreateCanvasFull
also	specifies	the	type	of	border	and	three	procedures
to	be	called	when	a	mouse	is	pressed,	dragged	or
released	on	the	canvas.

GUI.Enable
GUI.Disable

Enables	(disables)	a	canvas.	Disabled	canvases	cannot
get	events	(i.e.	respond	to	mouse	clicks).	If	no	mouse
routines	were	specified	(i.e.	the	canvas	was	created
with	GUI.CreateCanvas	and	not
GUI.CreateCanvasFull)	this	routine	essentially	does
nothing.

GUI.DrawArc
GUI.DrawBox
GUI.DrawCls
GUI.DrawDot
GUI.DrawFill
GUI.DrawFillArc
GUI.DrawFillBox
GUI.DrawFillMapleLeaf
GUI.DrawFillOval
GUI.DrawFillPolygon
GUI.DrawFillStar
GUI.DrawLine
GUI.DrawBox
GUI.DrawMapleLeaf
GUI.DrawOval
GUI.DrawPolygon
GUI.DrawStar
GUI.DrawText
GUI.FontDraw
GUI.PicDraw
GUI.PicNew
GUI.PicScreenLoad

All	these	routines	draw	to	a	canvas	in	the	same
manner	as	the	similarly	named	Draw�,	Pic�	and
Font.Draw	subprograms.
All	coordinates	are	based	on	the	canvas	and	all
drawing	is	clipped	to	the	canvas	drawing	surface.	If
the	canvas	is	in	"xor	mode",	all	the	drawing	will	be
done	with	"xor"	set.	(See	View.Set	for	more
information	about	"xor".)

GUI.PicScreenSave

GUI.SetXOR

Sets	the	"xor	mode"	of	a	canvas.	When	in	"xor	mode",
all	the	Draw...	procedures	of	a	canvas	are	treated	as	if
the	View.Set	("xor")	statement	had	been	executed
before	the	Draw	procedure.

Widgets	-	Text	Fields

Output	of	TextFields.dem

A	text	field	is	a	box	for	entering	one	line	of	text.	When	the	user	presses	ENTER,
the	text	field's	action	procedure	is	called.

Only	one	text	field	is	active	at	a	time.	The	active	text	field	has	a	blinking	cursor
(or	its	selection	highlighted).	If	a	keystroke	occurs	when	a	window	has	an	active
text	field	in	it,	the	keystroke	will	be	directed	to	the	active	text	field.	You	can
change	which	text	field	is	active	with	the	GUI.SetActive	procedure	or	by	simply
clicking	on	another	text	field	with	the	mouse.

When	multiple	text	fields	are	created	in	a	window,	the	first	text	field	created	is
active	when	the	program	begins.

The	current	version	of	the	text	field	does	not	support	cut	and	paste	or	keyboard
commands	to	extend	the	selection.

Because	strings	are	a	maximum	of	255	characters,	this	is	the	maximum	number
of	characters	in	a	text	field.

The	TAB	character	cycles	between	different	text	fields	in	a	window.	It	cycles
through	the	text	fields	in	the	order	in	which	they	were	created.	BACK	TAB
(shift+TAB)	cycles	through	the	fields	in	reverse	order.

GUI.CreateTextField

Creates	and	displays	a	text	field.	GUI.CreateTextField
specifies	the	location,	width,	initial	text	string,	and
action	procedure	of	the	text	field.	The	height	of	the
text	field	is	determined	by	the	height	of	the	font	used
by	the	text	field.	The	text	field	will	have	a	line	border
around	it.

GUI.CreateTextFieldFull

Creates	and	displays	a	text	field.
GUI.CreateTextFieldFull	also	specifies	the	type	of
border,	font	for	entered	text,	and	kind	of	input
restriction	(integer	only,	etc.)

GUI.Enable
GUI.Disable

Enables	(disables)	a	text	field.	Disabled	picture
buttons	are	grayed	out	and	cannot	get	events	(i.e.
respond	to	keystrokes	or	mouse	clicks).

GUI.SetText Sets	the	text	of	a	text	field.	The	cursor	is	set	the
beginning	of	the	text.

GUI.GetText Returns	the	current	text	of	a	text	field.
GUI.SetSelection Sets	the	selection	(the	selected	text)	in	a	text	field.
GUI.SetActive Makes	a	text	field	active.

Widgets	-	Text	Boxes

Output	of	TextBoxes.dem

A	text	box	is	a	box	used	for	displaying	larger	quantities	of	text.	It	has	both
vertical	and	horizontal	scroll	bars	to	allow	the	user	to	scroll	through	all	the	text
in	the	box.

GUI.CreateTextBox
Creates	and	displays	a	text	box.	GUI.CreateTextBox
specifies	the	location	and	size	of	the	text	box.	The	text
box	will	have	a	line	border	around	it.

GUI.CreateTextBoxFull
Creates	and	displays	a	text	box.
GUI.CreateTextBoxFull	also	specifies	the	type	of
border	and	the	font	for	displayed	text.

GUI.ClearText Clears	all	the	text	in	a	text	box.
Adds	text	to	the	current	line	of	the	text	box.	Does	not

GUI.AddText
add	a	newline	after	the	text.	Equivalent	to	put	text	...
This	scrolls	the	text	box	(if	necessary)	so	that	the	added
text	is	now	visible.	To	move	the	cursor	to	the	end	of	the
text	without	adding	any	extra	text,	call	GUI.AddText
with	""	for	the	text	parameter.

GUI.AddLine
Adds	text	to	the	current	line	of	the	text	box	followed	by
a	newline.	Equivalent	to	put	text.	This	scrolls	the	text
box	(if	necessary)	so	that	the	added	text	is	now	visible.

Widgets	-	Lines

Output	of	Lines.dem

Lines	are	organizational	elements	that	make	the	window	look	better	and	help
organize	the	GUI	elements.

GUI.CreateLine
Creates	and	displays	a	line.	GUI.CreateLine	specifies	the	end
points	of	the	line	(which	must	be	either	vertical	or	horizontal)
and	the	type	of	line.

Widgets	-	Frames

Output	of	Frames.dem

Frames	are	organizational	elements	that	make	the	window	look	better	and	help
organize	the	GUI	elements.	Frames	and	labelled	frames	are	the	only	widgets	in
which	other	widgets	can	be	placed.

GUI.CreateFrame
Creates	and	displays	a	frame.	GUI.CreateFrame	specifies	the
coordinates	of	the	lower-left	and	upper-right	corner	of	the
frame	and	the	type	of	border	of	the	frame.

Widgets	-	Labelled	Frames

Output	of	LabelledFrames.dem

Labelled	frames	are	organizational	elements	that	make	the	window	look	better
and	help	organize	the	GUI	elements.	Frames	and	labelled	frames	are	the	only
widgets	in	which	other	widgets	can	be	placed.

GUI.CreateLabelledFrame

Creates	and	displays	a	labelled	frame.
GUI.CreateLabelledFrame	specifies	the	coordinates
of	the	lower-left	and	upper-right	corner	of	the	frame,
the	type	of	border	of	the	frame,	and	the	text	of	the
frame's	label.

GUI.SetLabel Changes	the	text	of	a	labelled	frame.

Widgets	-	Labels

Output	of	Labels.dem

Labels	are	organizational	elements	that	make	the	window	look	better	and	help
organize	the	GUI	elements.	They	are	simply	text	placed	in	a	window.	To	aid	in
aligning	text	with	various	widgets,	it	is	possible	to	align	text	in	a	larger	region
(as	shown	in	the	figure).

GUI.CreateLabel
Creates	and	displays	a	label.	GUI.CreateLabel	specifies
the	lower-left	corner	of	the	text	and	the	text	itself.	The
system	font	is	used	to	display	the	label.

GUI.CreateLabelFull

Creates	and	displays	a	label.	GUI.CreateLabelFull	also
specifies	the	width,	height,	alignment,	and	font	for	the
label.	The	width	and	height	are	specified	for	alignment

purposes.
GUI.SetLabel Changes	the	text	of	a	label.

Widgets	-	Pictures

Output	of	Pictures.dem

Pictures	are	organizational	elements	that	make	the	window	look	better	and	help
organize	the	GUI	elements.	They	are	simply	a	picture	placed	in	a	window.	The
pictures	are	specified	using	a	picture	ID	from	any	of	the	Pic�	subprograms.

GUI.CreatePicture
Creates	and	displays	a	picture.	GUI.CreatePicture	specifies
the	location,	picture	ID,	and	whether	the	picture	should	be
merged	with	the	background.

Widgets	-	Menus

Output	of	Menus.dem

Menus	are	used	in	most	modern	interfaces.	In	order	to	create	a	full	set	of	menus,
you	must	create	the	menu	and	then	create	the	menu	items	in	that	menu.	The
menus	are	automatically	added	to	the	menu	bar	of	the	selected	menu.

Menu	items	are	the	individual	entries	of	a	menu.	To	create	menus	for	a	window,
you	must	create	a	menu,	then	create	the	menu	items	for	that	menu,	then	create
the	next	menu,	then	the	items	for	that	menu,	etc.	All	menu	items	are
automatically	added	to	the	last	menu	and	after	the	last	menu	item	of	the	currently
selected	(not	active!)	window.

When	you	select	an	item	in	a	menu,	the	action	procedure	of	the	item	is	called.
The	action	procedure	has	no	parameters.

As	of	the	v1.0	release	of	the	GUI	Library,	it	is	an	error	to	create	a	menu	item
without	having	created	a	menu	first.	In	future	releases	it	will	be	possible	to
create	menus	and	attach	and	remove	them	from	menu	bars	when	desired.

Menus	and	menu	items	can	be	enabled	and	disabled.	A	disabled	menu	item	is
grayed	out.	When	the	user	selects	the	menu,	all	items	in	the	menu	appear
disabled	and	cannot	be	selected.	A	disabled	menu	item	is	grayed	out	when	the
menu	is	displayed.	The	user	cannot	select	the	menu	item.

Separators	in	a	menu	appear	as	a	solid	line	across	the	menu.	These	are	created	by
creating	a	menu	item	whose	text	is	three	dashes	"---".

GUI.CreateMenu

Creates	and	displays	a	menu.	The	menu	will	be	added
after	the	other	menus	in	the	menu	bar.	If	there	are	no
previous	menus,	then	a	menu	bar	is	automatically
created	and	the	menu	added.	GUI.CreateMenu
specifies	the	text	that	will	appear	in	the	menu	bar.	It
is	suggested	that	the	text	not	have	any	spaces	in	it.

GUI.Enable
GUI.Disable

Enables	(disables)	a	menu.	Disabled	menus	are
grayed	out	in	the	menu	bar.	If	selected,	all	the	menu
items	in	the	menu	bar	appear	disabled	and	cannot	be
selected.

GUI.CreateMenuItem

Creates	a	menu	item.	GUI.CreateMenuItem	specifies
the	text	of	the	menu	item	and	the	action	procedure	to
be	called	when	the	menu	item	is	selected.	The	menu
item	will	be	added	to	the	last	menu	after	the	other
menu	items	in	the	menu.	If	there	are	no	menus
defined,	an	error	results.

GUI.CreateMenuItemFull Creates	a	menu	item.	GUI.CreateMenuItemFull	also
specifies	a	shortcut	keystroke.

GUI.Enable
GUI.Disable

Enables	(disables)	a	menu	item.	Disabled	menu	items
are	grayed	out	when	the	menu	is	displayed	and
cannot	be	selected	by	the	user.

Widgets	-	General	Routines

The	following	procedures	are	included	in	the	GUI	module	but	do	not	relate	to	a
specific	widget.

GUI.ProcessEvent

This	function	processes	a	single	event	(a	mouse
button	press	or	a	keystroke).	If	the	event	activates
a	widget,	then	the	action	procedure	of	the	widget
is	called.	To	find	out	which	widget	was	activated
and	called	the	action	procedure	(necessary	if
several	widgets	have	the	same	action	procedure),
you	can	call	GUI.GetEventWidgetID.	To	get	the
exact	time	that	the	event	occurred,	you	can	call
GUI.GetEventTime.	To	get	the	window	in	which
the	event	took	place,	you	can	call
GUI.GetEventWindow.
If	a	mouse	click	occurred,	but	did	not	activate	any
widget,	then	the	default	mouse	event	handler	is
called.	By	default,	this	does	nothing.	However,	if
you	want	your	program	to	respond	to	mouse
events	that	do	not	affect	a	widget,	call
GUI.SetMouseEventHandler	to	specify	your	own
default	mouse	event	handler.
If	a	keystroke	occurred,	but	did	not	activate	any
widget	(i.e.	it	wasn't	a	short	cut	for	a	widget	and
there	are	no	text	fields	in	the	window)	then	the
default	keystroke	handler	is	called.	By	default,
this	does	nothing.	However,	if	you	want	your
program	to	respond	to	keystroke	events	that	do
not	affect	a	widget,	call
GUI.SetKeyEventHandler	to	specify	your	own
default	key	event	handler.
If	no	event	occurred,	then	the	null	event	handler
is	called.	By	default,	this	does	nothing.	However,
if	you	want	your	program	to	perform	some	action
repetitively	when	it	is	not	doing	anything	else,
then	call	GUI.SetNullEventHandler	to	specify
your	own	null	event	handler.	The	null	event

handler	is	often	used	for	such	things	as	updating	a
clock	and	making	certain	that	music	is	playing	in
the	background.

GUI.Quit

This	procedure	causes	GUI.ProcessEvent	to
return	true.	If	the	program	is	structured	properly
with	a

loop

	 exit	when	GUI.ProcessEvent

end	loop

at	the	end	of	the	program,	then	the	program	will
exit	the	loop	after	finishing	the	current	action
procedure.	This	procedure	is	usually	called	from
the	action	procedure	of	a	Quit	button	or	Exit
menu	item.

GUI.Refresh

This	routine	redraws	all	the	widgets	in	the
currently-selected	window.	This	is	used	when
some	form	of	drawing	may	have	overwritten	the
widgets	in	a	window.	It	is	used	by	the	GUI
Library	to	redraw	all	the	widgets	when	the
background	color	of	a	window	has	changed.

GUI.SetBackgroundColor
GUI.SetBackgroundColour

Changes	the	background	color	of	the	currently-
selected	window.	(Both	spellings	of	color	are
acceptable.)	This	does	not	change	the	value	of
color	0	in	the	window.	Instead	it	fills	the	entire
window	with	the	new	background	color	and	then
redraws	all	the	widgets.	The	usual	background
color	outside	of	white	is	gray.

GUI.SetNullEventHandler

Sets	the	new	null	event	handler.	The	specified
procedure	will	be	called	every	time
GUI.ProcessEvent	is	called	and	there	is	no
keystroke	or	mouse	button	pressed.

GUI.SetMouseEventHandler

Sets	the	new	default	mouse	event	handler.	The
specified	procedure	will	be	called	every	time
GUI.ProcessEvent	is	called	and	there	is	a	mouse
button	pressed	which	is	not	handled	by	any
widget.

GUI.SetKeyEventHandler

Sets	the	new	default	keystroke	event	handler.	The
specified	procedure	will	be	called	every	time
GUI.ProcessEvent	is	called	and	there	is	a
keystroke	which	is	not	handled	by	any	widget.

GUI.HideMenuBar

Hides	the	menu	bar	in	the	selected	window.	No
menu	items	can	be	selected	when	the	menu	bar	is
hidden.	(Menu	item	shortcuts	will	be	ignored
when	the	menu	bar	is	hidden.)

GUI.ShowMenuBar Shows	the	menu	bar	in	the	selected	window.

GUI.GetEventWidgetID

Returns	the	widget	ID	of	the	widget	that	was
activated	by	the	mouse	button	press	or	the
keystroke.	This	function	should	only	be	called	in
an	action	procedure,	as	it	will	return	-1	when
there	is	no	event	that	activated	a	widget	being
processed.

GUI.GetEventWindow

Returns	the	window	ID	of	the	window	in	which
the	event	(mouse	button	or	keystroke)	took	place.
This	function	should	only	be	called	in	an	action
procedure	or	in	a	default	mouse	or	keystroke
event	handler,	as	it	will	return	-1	when	there	is	no
event	being	processed.

GUI.GetEventTime

Returns	the	time	in	milliseconds	when	the	event
(mouse	button	or	keystroke)	took	place.	This
value	is	the	same	value	that	Time.Elapsed	returns
if	called	when	the	event	was	processed.	This
function	should	only	be	called	in	an	action
procedure	or	in	a	default	mouse	or	keystroke	or
null	event	handler,	as	it	will	return	-1	when	there
is	no	event	being	processed.

GUI.SetDisplayWhenCreated

Sets	whether	widgets	are	automatically	displayed
when	created,	or	whether	GUI.Show	must	be
called	first.	By	default,	this	is	set	to	true	(widgets
are	displayed	when	created).	However,	there	may
be	times	when	you	want	to	create	a	widget	and
then	make	several	additional	calls	before
displaying	the	widget.
Closes	a	window	with	widgets	in	it.	This

GUI.CloseWindow

procedure	automatically	disposes	of	any	widgets
in	the	window	and	makes	certain	that	the	GUI
Library	recognizes	that	the	window	no	longer
exists.	This	procedure	will	call	Window.Close,	so
there	is	no	need	for	the	user	to	do	so.

GUI.ShowWindow

Shows	a	hidden	window	with	widgets	in	it.	This
procedure	makes	certain	that	the	GUI	Library
recognizes	that	the	window	is	visible.	This
procedure	will	call	Window.Show,	so	there	is	no
need	for	the	user	to	do	so.

GUI.HideWindow

Hides	a	visible	window	with	widgets	in	it.	This
procedure	makes	certain	that	the	GUI	Library
recognizes	that	the	window	is	no	longer	visible.
This	procedure	will	call	Window.Hide,	so	there	is
no	need	for	the	user	to	do	so.

GUI.GetScrollBarWidth
Returns	the	width	of	a	scroll	bar.	Useful	when
placing	a	scroll	bar	widget	beneath	another
object.

GUI.GetMenuBarHeight
Returns	the	height	of	the	menu	bar.	Useful	when
placing	widgets	to	make	certain	that	they	do	not
overlap	the	menu.

GUI.GetVersion

Returns	the	current	version	of	the	GUI	module.
Because	the	GUI	module	is	expected	to	grow,
new	versions	will	probably	be	made	available	at
Holt	Software's	web	site	located	at
http://www.holtsoft.com/turing.	If	you	wish	to
use	features	that	do	not	appear	in	earlier	versions
of	the	library,	you	can	have	your	program	check
that	the	current	available	version	meets	the
programs	needs.	GUI.GetVersion	returns	an
integer	from	100	-	999	and	is	read	as	1.00	to	9.99.

Predefined	Functions	and	Procedures
abs addr arctan arctand anyclass
break buttonchoose buttonmoved buttonwait ceil
chr clock cls color colorback
colour colourback cos cosd date
delay drawarc drawbox drawdot drawfill
drawfillarc drawfillbox drawfillmapleleaf drawfilloval drawfillpolygon
drawfillstar drawline drawmapleleaf drawoval drawpic
drawpolygon drawstar empty eof erealstr
exp fetcharg floor frealstr getch
getchar getenv getpid getpriority hasch
index intreal intstr length ln
locate locatexy lower max maxcol
maxcolor maxcolour maxint maxnat maxrow
maxx maxy min minint minnat
mousehide mouseshow mousewhere nargs natreal
natstr nil ord palette play
playdone pred rand randint randnext
randomize randseed realstr repeat round
setpriority setscreen sign simutime sin
sind sizeof sizepic sound sqrt
strint strintok strnat strnatok strreal
strrealok succ sysclock sysexit system
takepic time upper wallclock whatcol
whatcolor whatcolorback whatcolour whatcolourback whatdotcolor
whatdotcolour whatpalette whatrow whattextchar whattextcolor
whattextcolorback whattextcolour whattextcolourback

Predefined	Modules
Brush Button CheckBox Comm Concurrency
Config Dir Draw DropBox EditBox
Error ErrorNum Event File Font
GUI Input Joytick Keyboard Limits
ListBox Math Menu Mouse Music
Net Obsolete PC Pen Pic
Print RadioButton Rand RGB Sound
Sprite Str Stream Student Sys
Text Time TypeConv Video View
Window

Predefined	OOT	Constants
(...	means	several	constants	with	the	prefix,	see	the	module	for	a	complete	list)

black blue brightblue brightcyan
brightmagenta brightpurple brightred brightwhite
brushErrorBase cdMaxNumColors cdMaxNumColours cdMaxNumPages
cdScreenWidth clLanguageVersion clMaxNumDirStreams clMaxNumRunTimeArgs
clRelease cmFPU cmOS cmProcessor
colourbg colorfg colourfg configErrorBase
darkgray darkgrey defFontID defWinID
e...	(ErrorNum) errWinID excp...	(Exceptions) fileErrorBase
fontErrorBase fsysErrorBase generalErrorBase gray
grey guiErrorBase joystick1 joystick2
magenta mouseErrorBase musicErrorBase ootAttr...	(File)
penErrorBase pic...	(Pic) picXor
placeCenterDisplay placeCentreWindow printerErrorBase purple
red rgbErrorBase spriteErrorBase streamErrorBase
timeErrorBase unixSignalToException viewErrorBase white
yellow

Keywords
addressint all and array asm
assert begin bind bits body
boolean break by case char
cheat checked class close collection
condition const decreasing def deferred
div else elseif elsif end
endfor endif endloop enum exit
export external false fcn flexible
for fork forward free function
get handler if implement import
in include inherit init int
int1 int2 int4 invariant label
loop mod module monitor nat
nat1 nat2 nat4 new not
objectclass of opaque open or
packed pause pervasive pointer post
pre priority proc procedure process
put quit read real real4
real8 record register rem result
return seek self set shl
shr signal skip string tag
tell then timeout to true
type unchecked union unqualified var
wait when write xor

Operators
Mathematical	Operators

Operator Operation Result	Type
Prefix	+ Identity As	Operands
Prefix	- Negative As	Operands
+ Addition As	Operands
- Subtraction As	Operands
* Multiplication As	Operands
/ Division As	Operands
div Integer	Division int
mod Modulo int
rem Remainder int
** Exponentiation As	Operands
< Less	Than boolean
> Greater	Than boolean
= Equals boolean
<= Less	Than	or	Equal boolean
>= Greater	Than	or	Equal boolean
not= Not	Equal boolean

Boolean	Operators

Operator Operation Result	Type
Prefix	not Negation boolean
and And boolean
or Or boolean
xor Exclusive	Or boolean
=> Implication boolean

Set	Operators

Operator Operation Result	Type
+ Union set
- Set	Subtraction set
* Intersection set
= Equality boolean
not= Inequality boolean
<= Subset boolean
< Strict	(Proper)	Subset boolean
>= Superset boolean
> Strict	(Proper)	Superset boolean

Operators	on	Members	and	Sets

Operator Operation Result	Type
in Member	of	Set boolean
not	in Not	Member	of	Set boolean
xor Exclusive	Or set

Bit	Manipulation	Operators

Operator Operation Result	Type
shl Shift	left nat
shr Shift	right nat
and Bit-wise	And nat
or Bit-wise	Or nat
xor Bit-wise	Exclusive	Or nat

Pointer	Operators

Operator Operation Result	Type
^ Follow	pointer Target	type

Type	Cheats

Operator Operation Result	Type
# Type	cheat nat

Operator	Short	Forms

These	can	be	used	in	place	of	the	above	notation.
not 	 ~
not= 	 ~=
not	in 	 ~in
and 	 &
or 	 |

Operator	Precedence

Highest	precedence	operators	first.

1.	 **,	^,	#
2.	 prefix	+	and	-
3.	 *	,	/	,	div	,	mod	,	rem	,	shl	,	shr
4.	 +	,	-,	xor
5.	 <	,	>	,	=	,	<=	,	>=	,	not=	,	in	,	not	in
6.	 not
7.	 and
8.	 or
9.	 =>

File	Statements
File	Commands

	 open 	 open	a	file
	 close 	 close	a	file
	 put 	 write	alphanumeric	text	to	a	file
	 get 	 read	alphanumeric	text	from	a	file
	 write 	 binary	write	to	a	file
	 read 	 binary	read	from	a	file
	 seek 	 move	to	a	specified	position	in	a	file
	 tell 	 report	the	current	file	position
	 eof 	 check	for	end	of	file

File	Command	Syntax
open	:	streamNo,	fileName,	ioCapability	{,	ioCapability	}

	 ioCapability	is	one	of	get,	put,	read,	write,	seek,	mod

	 	 put	or	write	capability	will	cause	any	existing	file	to	be	truncated	to	zero
length	unless	the	mod	capability	is	also	specified.

	 	 seek	capability	is	needed	to	use	seek	or	tell	commands.

close	:	streamNo

get	:	streamNo	,	getItem	{	,	getItem	}

put	:	streamNo	,	putItem	{	,	putItem	}

read	:	streamNo	[:	fileStatus]	,	readItem	{	,	readItem	}

write	:	streamNo[:	fileStatus]	,	writeItem	{,	writeItem	}

seek	:	streamNo	,	filePosition	or	seek	:	streamNo	,	*

tell	:	streamNo	,	filePositionVar

eof	(streamNo)	:	boolean	(This	is	a	function)

Appending	to	a	Text	File
%	Open	the	file	for	put,	but	do	not	erase	it

open	:	streamNo,	fileName,	put	{	,	get	},	mod

%	Move	the	file	pointer	to	the	end	of	the	file

seek	:	streamNo,	*

Control	Constructs

FOR 	

for	[decreasing]	variable	:	startValue	..	endValue
...	statements	...
exit	when	expn
...	statements	...

end	for
	

LOOP 	

loop
...	statements	...
exit	when	expn
...	statements	...

end	loop
	

IF 	

if	condition	then
...	statements	...
{	elsif	condition	then
...	statements	...	}
[else
...	statements	...]

end	if
	

CASE 	

case	expn	of
...	statements	...
{	label	expn	{,	expn
...	statements	...	}
[label	:
...	statements	...]

end	case
	

Any	number	of	exit	and	exit	when	statements	can	appear	at	any	place	inside	for
..	end	for	constructs	and	loop	..	end	loop	constructs.

Key	Codes
Ordinal	values	of	keystrokes	returned	by	getch	and
getchar.

	 0

	

(space) 32

	

@ 64

	

` 96
Ctrl-A 1 ! 33 A 65 a 97
Ctrl-B 2 " 34 B 66 b 98
Ctrl-C 3 # 35 C 67 c 99
Ctrl-D 4 $ 36 D 68 d 100
Ctrl-E 5 % 37 E 69 e 101
Ctrl-F 6 & 38 F 70 f 102
Ctrl-G 7 ' 39 G 71 g 103

Ctrl-H	/	BS 8 (40 H 72 h 104
Ctrl-I	/	Tab 9) 41 I 73 i 105
Ctrl-J	/	Enter 10 * 42 J 74 j 106

Ctrl-K 11 + 43 K 75 k 107
Ctrl-L 12 , 44 L 76 l 108
Ctrl-M 13 - 45 M 77 m 109
Ctrl-N 14 . 46 N 78 n 110
Ctrl-O 15 / 47 O 79 o 111
Ctrl-P 16 0 48 P 80 p 112
Ctrl-Q 17 1 49 Q 81 q 113
Ctrl-R 18 2 50 R 82 r 114
Ctrl-S 19 3 51 S 83 s 115
Ctrl-T 20 4 52 T 84 t 116
Ctrl-U 21 5 53 U 85 u 117
Ctrl-V 22 6 54 V 86 v 118
Ctrl-W 23 7 55 W 87 w 119

Ctrl-X 24 8 56 X 88 x 120
Ctrl-Y 25 9 57 Y 89 y 121
Ctrl-Z 26 : 58 Z 90 z 122

Ctrl-[/	Esc 27 ; 59 [91 { 123
Ctrl-\ 28 < 60 \ 92 | 124
Ctrl-] 29 = 61] 93 } 125
Ctrl-^ 30 > 62 ^ 94 ~ 126
Ctrl-_ 31 ? 63 _ 95 Ctrl-BS 127

	
Alt-9 128

	

Alt-D 160

	

F6 192

	

Ctrl-F3 224
Alt-0 129 Alt-F 161 F7 193 Ctrl-F4 225
Alt-- 130 Alt-G 162 F8 194 Ctrl-F5 226
Alt-= 131 Alt-H 163 F9 195 Ctrl-F6 227

Ctrl-PgUp 132 Alt-J 164 F10 196 Ctrl-F7 228
F11 133 Alt-K 165 	 197 Ctrl-F8 229
F12 134 Alt-L 166 	 198 Ctrl-F9 230

Shift-F11 135 	 167 Home 199 Ctrl-F10 231
Shift-F12 136 	 168 Up	Arrow 200 Alt-F1 232
Ctrl-F11 137 	 169 PgUp 201 Alt-F2 233
Ctrl-F12 138 	 170 	 202 Alt-F3 234

Alt-F11 139 	 171 Left
Arrow 203 Alt-F4 235

Alt-F12 140 Alt-Z 172 	 204 Alt-F5 236

Ctrl-Up	Arrow 141 Alt-X 173 Right
Arrow 205 Alt-F6 237

	 142 Alt-C 174 	 206 Alt-F7 238
Back	Tab 143 Alt-V 175 End 207 Alt-F8 239

Alt-Q 144 Alt-B 176 Down
Arrow 208 Alt-F9 240

Ctrl-Down
Arrow 145 Alt-N 177 PgDn 209 Alt-F10 241

Ctrl-Insert 146 Alt-M 178 Insert 210 	 242

Ctrl-Delete 147 	 179 Delete 211 Ctrl-Left
Arrow 243

Alt-T 148 	 180 Shift-F1 212 Ctrl-Right
Arrow 244

Alt-Y 149 	 181 Shift-F2 213 Ctrl-End 245
Alt-U 150 	 182 Shift-F3 214 Ctrl-PgDn 246
Alt-I 151 	 183 Shift-F4 215 Ctrl-Home 247
Alt-O 152 	 184 Shift-F5 216 Alt-1 248
Alt-P 153 	 185 Shift-F6 217 Alt-2 249
	 154 	 186 Shift-F7 218 Alt-3 250
	 155 F1 187 Shift-F8 219 Alt-4 251
	 156 F2 188 Shift-F9 220 Alt-5 252
	 157 F3 189 Shift-F10 221 Alt-6 253

Alt-A 158 F4 190 Ctrl-F1 222 Alt-7 254
Alt-S 159 F5 191 Ctrl-F2 223 Alt-8 225

Ordinal	values	of	characters	that	are	set	by
Input.KeyDown.

Backspace 8

	

(space) 32

	

@ 64

	

` 96
Tab 9 ! 33 A 65 a 97
Enter 10 ! 34 B 66 b 98
Escape 27 # 35 C 67 c 99

	 $ 36 D 68 d 100
F11 133 % 37 E 69 e 101
F12 134 & 38 F 70 f 102
Shift 180 ' 39 G 71 g 103
Control 181 (40 H 72 h 104
Alt 182) 41 I 73 i 105

Keypad	5 183 * 42 J 74 j 106
F1 187 + 43 K 75 k 107
F2 188 , 44 L 76 l 108
F3 189 - 45 M 77 m 109
F4 190 . 46 N 78 n 110
F5 191 / 47 O 79 o 111
F6 192 0 48 P 80 p 112
F7 193 1 49 Q 81 q 113
F8 194 2 50 R 82 r 114
F9 195 3 51 S 83 s 115
F10 196 4 52 T 84 t 116

	 5 53 U 85 u 117
Home 199 6 54 V 86 v 118

Up	Arrow 200 7 55 W 87 w 119
PgUp 201 8 56 X 88 x 120

Left	Arrow 203 9 57 Y 89 y 121
Right	Arrow 205 : 58 Z 90 z 122

End 207 ; 59 [91 { 123
Down	Arrow 208 < 60 \ 92 | 124

PgDn 209 = 61] 93 } 125
Insert 210 > 62 ^ 94 ~ 126
Delete 211 ? 63 _ 95 	

Run	Window	Character	Set
The	Turing	character	set	and	their	ASCII	values

chr	(8)	=	backspace
chr	(9)	=	tab
char	(10)	=	newline

You	can	also	get	(on	most	systems),	the	MS-DOS	character	set	by	using	the
command	setscreen	("msdos").
This	is	the	character	set	after	the	setscreen	("msdos")	command	was	given.

Click	the	button	to	launch	the	program	to	display	the	character	set	in	Turing.

Turing	Teacher/Administrator	Quick
Start	Guide
This	guide	is	designed	to	be	the	minimal	information	that	you	should	read	if	you
are	teaching	courses	using	Turing	4.0	or	are	in	charge	of	administering	Turing
4.0

This	guide	provides	information	on	the	Turing	environment	(the	editor,	the	run
windows,	etc.)	It	does	not	provide	any	information	on	the	Turing	programming
language	itself.

Note,	if	you	have	any	questions	not	answered	here,	please	check	with	the
Turing	Teacher/Administrator's	Complete	Guide	for	more	information.

Table	of	Contents

1.	 Making	Certain	You	Have	the	Lastest	Version
2.	 Mandatory	Administration	Issues
3.	 Using	the	Parallel	Ports	in	Turing	4
4.	 Student	Distribution
5.	 Technical	Support

1.	Making	Certain	You	Have	the	Lastest	Version

Turing	4.0	is	updated	regularly.	To	find	out	what	version	you	are	currently
running,	click	the	About	Turing	menu	item	in	the	Help	menu.	To	find	out	the
current	version	of	Turing,	go	to
http://www.holtsoft.com/turing/support/#currentversion.	This	lists	the	current
version	of	the	software.

This	page	also	lists	which	bugs	have	been	fixed	and	when	new	features	have
been	added.	The	page	also	contains	a	section	(
http://www.holtsoft.com/turing/support/#turing4patches)	where	a	file	can	be
downloaded	that	will	update	most	versions	of	Turing	to	the	latest	version.

If	you	are	a	teacher	or	an	administrator	at	a	school	and	require	a	complete
installation	file	(as	opposed	to	the	publically	available	patch),	contact	Tom	West
at	(416)	978-8363.

http://www.holtsoft.com/turing/support/#currentversion
http://www.holtsoft.com/turing/support/#turing4patches

2.	Mandatory	Administration	Issues

Turing	4.0	has	been	designed	to	run	on	either	a	network	or	installed	on
individual	stand-alone	machines.	Running	on	a	network	is	often	preferred
because	of	ease	of	administration.	However,	Turing,	like	any	other	application
will	load	somewhat	faster	when	it	is	launched	if	it	is	stored	locally.

There	are	only	two	administration	issues	that	must	be	addressed	to	configure
Turing	properly.

1.	 Set	the	start-in	(often	called	the	"working")	directory	properly.

It	is	important	that	the	start-in	directory	for	Turing	be	set	to	the	student's
home	directory.	This	is	done	by	setting	the	start-in	(or	working)	directory
of	the	shortcut	or	menu	item	used	to	launch	Turing	to	the	drive	mapped	to
the	student's	home	directory.

The	shortcut's	working	directory	can	be	modified	by	changing	it's	start-in	or
working	directory	property.	(To	display	the	Properties	dialog	box,	right
click	on	the	shortcut	or	menu	item	and	select	Properties	from	the	pop-up
menu.)

	Properties	for	a	Shortcut
under	Windows	2000

This	requires	that	you	have	write	access	to	the	shortcut.	Note	that
commercial	menu	front-ends	have	their	own	way	of	setting	the	start-in
directory	of	applications.

If	there	is	no	drive	mapped	to	the	student's	home	directory,	or	this	method	is
not	applicable	to	your	system	setup,	please	check	with	the	Turing
Teacher/Administrator's	Complete	Guide	for	more	information.

2.	 Set	either	Beginner	or	Regular	Mode	for	Students.

Turing	can	be	set	to	Beginner	mode,	in	which	case	only	one	file	is	open	at
a	time.	Opening	up	another	file	closes	the	first	one.	When	the	program	is
running,	the	Editor	window	minimizes.	In	this	way,	only	one	window	is
usually	visible	at	a	time.	In	this	fashion,	Beginner	mode	is	similar	to	the
old	DOS	Turing.

In	Regular	mode,	any	number	of	files	can	be	opened	and	each	appears	in
its	own	editor	window.

In	general,	we	suggest	Beginner	mode	for	grade	9	and	10	and	Regular
mode	for	all	others.	If	you	are	using	Beginner	mode,	we	suggest	that	you
point	out	to	the	students	that	they	can	use	the	Prefences	to	change	to
Regular	mode	when	they	feel	comfortable	with	the	environment.

To	change	the	mode	(or	to	make	any	other	change	to	the	system
preferences),	you	must	open	a	DOS	window,	cd	to	the	directory	in	which
the	Turing	executable	(turing.exe)	is	located	and	issue	the	command:

turing		-admin

This	will	cause	Turing	to	start	in	Administrator	mode,	displaying	the
following	dialog	box:

Administration	Mode	Notification

Selecting	Preferences	from	the	File	menu	will	display	a	tabbed	dialog	box
of	all	the	Turing	preferences.

Preferences	in	Administrator	Mode

Set	(or	unset)	the	Beginner	Mode	preference,	click	the	OK	button	and	quit
Turing.	Of	course,	you	can	change	any	other	preferences	that	you	would
like.	Any	changes	that	you	make	here	will	affect	all	those	using	Turing.

3.	Using	the	Parallel	Ports	in	Turing	4

Turing	4.0	supports	the	parallelput	and	parallelget	commands	to	allow	you	to
set	the	pins	on	the	parallel	port	low	and	high.	If	you	are	running	under	Windows
NT,	2000	or	XP,	you	will	need	to	install	a	device	driver	on	each	machine.
Instructions	for	doing	so	can	be	found	here.	If	parallelput	and	parallelget	do
not	seem	to	function,	you	may	need	to	change	their	BIOS	settings.	You	can	get
information	on	how	to	do	that	here.

4.	Student	Distribution	of	Turing	4.0

The	Ontario	Ministry	license	does	not	include	the	right	to	redistribute	the
software	to	students.	If	you	wish	to	give	the	software	to	students,	a	separate
license	must	be	obtained	directly	from	Holt	Software.

If	your	school	does	not	have	such	a	license,	students	can	purchase	the	software
for	home	use	by	printing	and	then	mailing	an	order	form	found
http://www.holtsoft.com/studentbuy.	This	order	form	can	also	be	used	to	allow
interested	students	to	purchase	textbooks.

If	your	school	has	purchased	a	redistribution	license	(almost	200	schools	have
done	so),	then	you	may	redistribute	the	Turing	software	to	your	students.	You
can	either	burn	copies	of	the	CD	to	distribute	to	students	or	place	the	Turing
installer	file	onto	your	school	Internet	server	and	give	your	students	the	URL.

If	you	place	this	file	on	your	school	internet	server,	you	must	not	make	any
links	from	your	web	pages	to	the	software.

This	will	prevent	other	users	of	the	web	from	downloading	your	software.	If	you
place	links	from	your	school's	web	site,	then	at	some	point	a	web	search	engine
will	find	the	software	and	post	its	location	to	the	internet	at	large,	allowing	for
large	scale	piracy	(and	a	very	overloaded	school	web	server).	If	there	are	no
links	to	the	software,	then	only	those	who	have	been	told	the	exact	URL	will	be
able	to	download	the	software.

Note	that	if	you	are	copying	a	number	of	different	programs	onto	a	single	CD	for
redistribution,	you	may	rename	the	Turing	installer	program	to	something	more
descriptive.

Permanent	student	redistribution	licenses	can	be	purchased	for	$500-$750	for
most	schools.	If	you	are	interested	in	purchasing	a	student	redistribution	license,
contact	Chris	Stephenson	at	(416)	978-6476	or	chris@hsa.on.ca

http://www.holtsoft.com/studentbuy
mailto:chris@hsa.on.ca

5.	Technical	Support

If	you	have	problems,	questions	or	suggestions	about	the	Turing	software,
contact	technical	support	at:
Telephone: 	 (416)	978-8363
Toll	free: 1-800-361-8324
Fax: (416)	978-1509
E-mail: west@hsa.on.ca

mailto:west@hsa.on.ca

Turing	Teacher/Administrator	Guide
This	is	the	Turing	Teacher/Administrator	guide.	It	contains	most	of	the
information	that	you	will	need	to	administer	the	Turing	4.0	software.	It	should	be
read	by	those	who	are	teaching	courses	using	Turing	4.0	or	are	in	charge	of
administering	Turing	4.0

This	guide	provides	information	on	the	Turing	environment	(the	editor,	the	run
windows,	etc.)	It	does	not	provide	any	information	on	the	Turing	programming
language	itself.

Note	that	there	is	some	overlap	with	the	Turing	Teacher/Administrator	Quick
Start	Guide.

Table	of	Contents

1.	 Making	Certain	You	Have	the	Lastest	Version
2.	 Mandatory	Administration	Issues
3.	 Changing	System	Preferences
4.	 Turing	Preferences
5.	 Parallel	Port	and	Turing	4
6.	 Missing	Features	from	Turing	4
7.	 The	Turing	Debugger
8.	 Student	Distribution
9.	 Technical	Support

1.	Making	Certain	You	Have	the	Lastest	Version

Turing	4.0	is	updated	regularly.	To	find	out	what	version	you	are	currently
running,	click	the	About	Turing	menu	item	in	the	Help	menu.	To	find	out	the
current	version	of	Turing,	go	to
http://www.holtsoft.com/turing/support/#currentversion.	This	lists	the	current
version	of	the	software.

This	page	also	lists	which	bugs	have	been	fixed	and	when	new	features	have
been	added.	The	page	also	contains	a	section	(
http://www.holtsoft.com/turing/support/#turing4patches)	where	a	file	can	be
downloaded	that	will	update	most	versions	of	Turing	to	the	latest	version.

If	you	are	a	teacher	or	an	administrator	at	a	school	and	require	a	complete
installation	file	(as	opposed	to	the	publically	available	patch),	contact	Tom	West
at	(416)	978-8363.

http://www.holtsoft.com/turing/support/#currentversion
http://www.holtsoft.com/turing/support/#turing4patches

2.	Mandatory	Administration	Issues

Turing	4.0	has	been	designed	to	run	on	either	a	network	or	installed	on
individual	stand-alone	machines.	Running	on	a	network	is	often	preferred
because	of	each	of	installation,	however,	Turing	will	load	somewhat	faster	when
it	is	launched	if	it	is	stored	locally.

Turing	4.0	has	been	designed	to	run	on	either	a	network	or	installed	on
individual	stand-alone	machines.	Running	on	a	network	is	often	preferred
because	of	ease	of	administration.	However,	Turing,	like	any	other	application
will	load	somewhat	faster	when	it	is	launched	if	it	is	stored	locally.

There	are	a	few	administration	issues	that	must	be	addressed	to	configure	Turing
properly.

1.	 	Set	the	start-in	(often	called	the	"working")	directory	properly.

It	is	important	that	the	start-in	directory	for	Turing	be	set	to	the	student's
home	directory.	This	can	be	done	in	a	variety	of	ways,	from	least	to	most
complicated.

1.	 Many	schools	have	the	student's	home	directory	mapped	to	a	drive
(often	H:\).	If	this	is	the	case,	then	set	the	start-in	(or	working)
directory	of	the	shortcut	or	menu	item	used	to	launch	Turing	to	the
mapped	drive.

The	shortcut's	working	directory	can	be	modified	by	changing	it's
start-in	or	working	directory	property.	(To	display	the	Properties
dialog	box,	right	click	on	the	shortcut	or	menu	item	and	select
Properties	from	the	pop-up	menu.)

	Properties	for	a
Shortcut	under	Windows	2000

This	requires	changing	the	shortcut's	properties	requires	write	access
to	the	shortcut.	Note	that	commercial	menu	front-ends	have	their	own
way	of	setting	the	start-in	directory	of	applications.

2.	 If	the	"My	Documents"	folder	is	mapped	to	the	students	home
directory,	you	can	set	the	preferences	to	make	Turing	use	the
"My	Documents"	folder	as	the	start-in	folder.	Note	that	this	option	is
the	preferred	option	for	home	users,	where	the	"My	Documents"	folder
is	the	home	directory.

The	Use	"My	Documents"	Folder	in	the	Admin	Pane

To	change	the	preference,	enter	Administrator	mode	(see	Changing
System	Preferences	below)	and	set	the	Use	"My	Documents"	Folder
checkbox	in	the	Admin	pane	of	the	Turing	Preferences	(see	Turing
Preferences	below).

3.	 If	each	student's	home	directory	is	specified	differently	(i.e.	there	is	no
mapping	of	the	home	directory	to	a	drive),	then	you	may	need	to	use
environment	variables	to	create	a	useable	path.	For	example,	if
students	files	are	stored	in	g:\class108\[Student	Name]	and	there	is	an
environment	variables	USERNAME	that	contains	the	student's	name,
then	the	the	start-in	directory	for	the	shortcut	should	be	set	to
g:\class108\%USERNAME%.

4.	 Occasionally	users	have	reported	situations	like	the	previous	case,
except	that	Windows	seems	unable	to	set	the	start-in	directory	properly
using	environment	variables.

The	Startup	Directory	Text	Field	in	the	Admin	Pane

To	set	the	start-in	directory,	enter	Administrator	mode	(see	Changing
System	Preferences	below)	and	set	the	Startup	Directory	text	field	in
the	Admin	pane	of	the	Turing	Preferences	appropriately	(see	Turing
Preferences	below)	including	specifying	the	directory	using	the
environment	variables.

2.	 Set	either	Beginner	or	Regular	Mode	for	Students.

Turing	can	be	set	to	Beginner	mode,	in	which	case	only	one	file	is	open	at
a	time.	Opening	up	another	file	closes	the	first	one.	When	the	program	is
running,	the	Editor	window	minimizes.	In	this	way,	only	one	window	is
usually	visible	at	a	time.	In	this	fashion,	Beginner	mode	is	similar	to	the
old	DOS	Turing.

In	Regular	mode,	any	number	of	files	can	be	opened	and	each	appears	in
its	own	editor	window.

In	general,	we	suggest	Beginner	mode	for	grade	9	and	10	and	Regular
mode	for	all	others.	If	you	are	using	Beginner	mode,	we	suggest	that	you
point	out	to	the	students	that	they	can	use	the	Prefences	to	change	to
Regular	mode	when	they	feel	comfortable	with	the	environment.

To	change	the	preference,	you	will	need	to	enter	Administrator	mode	(see
Changing	System	Preferences	below)	and	change	the	Beginner	Mode
preference	in	the	General	pane	appropriately	(see	Turing	Preferences
below).

3.	 Windows	95	and	the	Turing	Net	module

If	you	are	using	Windows	95	(not	Windows	98/Me/NT/2000/XP)	and	you
wish	to	use	the	Turing	Net	module	in	order	to	write	programs	that
communicate	with	other	computers,	then	you	may	need	update	the	Window
95	networking	code.

This	can	be	done	by	running	the	program	located	at:

[Turing	directory]\support\Microsoft\W95ws2setup.exe

This	program	from	Microsoft	patches	Windows	95	networking	code.	It
must	be	run	on	every	computer	running	Windows	95	unless	the	machines
boot	from	a	server.

4.	 Parallel	Port	Usage	If	you	are	intend	to	use	Turing	to	control	devices
attached	to	the	parallel	port	(using	the	parallelput	and	parallelget,	and	are
running	under	Windows	NT/XP/2000,	you	will	need	to	install	a	device
driver.	(Windows	NT/XP/2000	do	not	allow	direct	access	to	the	system
hardware.).	The	device	driver	can	be	installed	by	running	the	program
located	at:

[Turing	directory]\support\dlportio_install.exe

Further	information	can	be	found	in	Parallel	Port	and	Turing	4.

3.	Changing	System	Preferences

Turing	uses	a	two	level	preference	model.	There	is	a	central	set	of	preferences
that	are	kept	in

				[Turing	Directory]\Support\Ini\turing_admin.ini

These	preferences	are	the	same	for	all	users	and	are	called	the	System
Preferences.	A	second	set	of	preferences	is	stored	in	each	student's	home
directory	in	a	file	called	turing.ini.	These	preferences	override	the	central
preferences	and	allow	students	to	individually	modify	the	behaviour	of	Turing.

When	a	student	modifies	the	preferences,	the	turing.ini	file	in	the	student's
home	directory	is	changed.	To	change	the	System	preferences	(i.e.	the	contents
of	the	turing_admin.ini	file),	Turing	must	be	started	up	with	the	command	line

				turing		-admin

This	can	be	done	by	starting	up	a	DOS	window,	doing	a	cd	to	the	directory	in
which	turing.exe	is	stored	and	then	typing	turing		-admin.	The	user	must	have
write	access	to	the	directory	in	which	the	turing_admin.ini	file	is	stored.

When	Turing	is	launched,	it	will	display	a	message	box	on	start-up	indicating
that	it	is	in	Administrator	mode	and	where	the	preferences	will	be	stored.

Administration	Mode	Notification

Selecting	Preferences	from	the	File	menu	will	display	a	tabbed	dialog	box	of	all
the	Turing	preferences.	If	you	are	in	Administrator	mode,	then	an	extra	tab
labeled	Admin	will	appear	with	extra	preferences	that	can	only	be	set	by	the
Administrator.	Note	that	individual	students	cannot	override	the	preferences	that
appear	on	the	Admin	pane.

Preferences	in	Administrator	Mode

Once	the	Preferences	have	been	set,	the	Administrator	can	exit	Turing.

4.	Turing	Preferences

This	section	lists	all	the	preferences	available	in	Turing	sorted	by	the	pane

"General"	Pane

The	"General"	Pane

Beginner	Mode
When	Beginner	mode	is	set,	only	one	file	can	be	can	be	loaded	into	the
Turing	environment	at	a	time.	The	Editor	window	is	minimized	every	time
the	Run	window	is	active	and	vice-versa.	The	debugger	cannot	be	displayed
or	used.	If	this	box	is	not	set,	then	Turing	is	in	Regular	mode	and	multiple
files	can	be	open	simultaneously.	Beginner	mode	is	recommended	for
students	who	are	overwhelmed	or	confused	by	too	many	Turing	windows
(especially	students	in	grades	9	and	10).
One	Window	Mode
This	option	is	not	available	in	Turing	4.0.	It	will	be	used	to	switch	between
MDI	and	SDI	modes	in	a	future	version	of	the	software.
Display	Full	Pathnames

The	full	path	name	and	not	just	the	file	name	are	displayed	in	the	Editor
window's	title	bar	and	recent	files	submenu.
Save	Previous	File	as	".BAK"
When	a	file	is	saved	over	top	of	an	older	file,	the	older	file	is	renamed	with
a	.BAK	suffix	(i.e.	test.t	to	test.bak)
Confirm	on	Quit
When	the	user	closes	the	last	editor	window,	Turing	displays	a	dialog	box
asking	whether	the	user	wishes	to	Quit.	On	systems	where	loading	is	slow
(usually	over	a	network),	this	can	stop	the	users	from	accidentally	quitting
Turing.
Skip	Splash	Screen
When	Turing	starts	up,	it	normally	displays	a	"Splash"	screen	with	the
version	number.	The	Splash	screen	disappears	when	the	user	clicks	a	button
or	after	3	seconds.	Turning	this	option	off	causes	the	Splash	screen	not	to	be
displayed.
Add	".t"	to	File	Names
When	a	Save	File	dialog	box	appears	and	the	user	specifies	a	file	name
without	a	file	suffix,	Turing	adds	".t".	This	can	be	removed	by	the	user.
Convert	Leading	Spaces	into	Tabs
When	Turing	saves	a	file,	it	normally	converts	groups	of	leading	spaces	into
TAB	characters,	saving	disk	space.	The	number	of	spaces	per	tab	is
specified	by	the	Spaces	per	Tab	text	field.	If	this	check	box	is	not	selected,
then	the	spaces	are	not	converted.
Don't	Save	Recent	Files	Menu
Normally	Turing	lists	the	last	several	files	opened.	However,	if	students	do
not	have	individual	accounts,	then	this	feature	may	not	be	useful	and	can	be
turned	off.
Find	Uses	Selected	Text
By	default,	Turing	uses	the	Windows	behaviour	that	when	a	Find	command
is	given	and	there	is	selected	text,	the	selected	text	is	copied	to	the	Find
dialog	box.	If	you	don't	like	this	behaviour,	then	unsetting	this	option	will
stop	this	behaviour.	If	it	is	not	set,	then	an	additional	menu	item	is	placed	in
the	Search	menu	that	finds	the	next	occurance	of	the	currently	selected	text.
Start	in	Last	Active	Directory
If	students	are	writing	large	projects	in	many	subdirectories,	then	this
option	can	be	enabled	to	automatically	start	Turing	in	the	last	directory	in
which	a	file	was	loaded	or	saved.	The	Turing	preferences	file	is	still	stored
in	the	student's	home	directory.
Spaces	per	Tab

This	specifies	the	number	of	spaces	that	a	Tab	is	converted	to	and	from.
When	Turing	reads	a	text	file	into	the	editor,	all	tabs	are	converted	on	to
spaces.	If	you	created	the	Turing	file	on	an	editor	where	Tabs	are	a	different
number	of	spaces,	then	change	this	value	appropriately.
Indent	Size
When	Tab	is	pressed	in	the	Turing	editor,	it	is	converted	into	spaces.	The
number	in	the	Indent	Size	text	field	determines	how	many	spaces	the	Tab
key	is	converted	to.	Note	the	Spaces	per	Tab	is	used	when	Turing
reads/writes	files.	The	Indent	Size	field	is	used	when	Turing	responds	to
the	Tab	key.
File	Association
Microsoft	Windows	has	the	ability	to	associate	files	with	a	particular	suffix
with	specific	programs.	The	Turing	environment	can	be	associated	with	the
following	file	suffixes:	.t,	.tur,	.dem,	.ti	and	.tu.	To	associate	these	file
suffixes	with	Turing,	click	the	Associate	".t"	files	with	Turing	button.	To
reset	the	file	associations	back	to	what	they	were	before,	click	the	Reset
".t"	File	Association.

"Editor	Window"	Pane

The	"Editor	Window"	Pane

Editor	Font
You	can	change	the	font	size	and	typeface	used	in	the	editor	window.	If	you
change	the	typeface,	you	must	choose	a	monospaced	font	where	bold	and
non-bold	letters	are	the	same	size.	Many	monospaced	fonts	have	different
sizes	for	bold	and	non-bold	letters.
Full	Screen	for	Beginner	Mode
If	in	beginner	mode,	editor	windows	are	automatically	in	full	screen	mode.
You	can	change	this	behaviour	buy	unsetting	this	checkbox.
Full	Screen	for	Regular	Mode
Editor	windows	are	normally	25x80	columns	(or	the	size	specified	by	the
Editor	Window	Rows/Columns	text	fields).	If	this	checkbox	is	set,	editor
windows	are	automatically	maximized	to	fill	the	screen.	This	option	is
suggested	for	systems	with	640x480	screen	resolution.	Users	can	change
the	window	size	by	clicking	the	full	screen/normal	window	button	in	the
window's	title	bar.
Editor	Window	Rows/Columns
These	text	fields	control	the	size	of	editor	windows	when	first	created.
Syntax	Coloring
When	selected,	parts	of	Turing	programs	appear	in	different	colors:
comments	appear	in	green,	strings	in	red,	keywords	in	bold	face,	predefined
identifiers	in	black,	and	user	identifiers	in	blue.
Always	Show	'Debugger'	Menu
In	the	interest	of	keeping	the	interface	as	simple	as	possible,	and	because
most	students	do	not	use	the	debugging	features,	Turing	does	not	display
the	Debugger	menu	by	default.	Instead,	the	user	selects	Show	Debugger
Menu	from	the	Run	menu.	Setting	this	checkbox	causes	the	Debugger
menu	to	always	be	displayed.
Text	Cursor	Width
By	default,	the	cursor	(correctly	called	the	caret)	is	2	pixels	wide,	allowing
it	to	be	seen	easily	in	the	Editor	window.	However,	some	users	prefer	the
caret	to	be	1	pixel	wide	and	some	prefer	the	caret	to	overlay	an	entire
character	(in	a	similar	manner	to	DOS	editors).	Legal	values	are	1	(which
represent	a	1	pixel	thick	caret),	2	(which	represent	a	2	pixel	thick	caret),	and
3	(which	represents	a	text	cursor	that	covers	the	entire	character.

"Run	Window"	Pane

The	"Run	Window"	Pane

Default	Run	Window	Font
You	can	change	the	font	size	and	typeface	used	in	the	Turing	run	window.	If
you	change	the	typeface,	you	must	choose	a	monospaced	font.	Note	that
changing	the	size	of	the	run	window	font	may	cause	odd	output	in	Turing
programs	that	were	written	assuming	a	particular	character	size.
Start	in	Graphics	Mode
This	makes	the	initial	run	window	a	graphics	window.	The	user	can	use
graphics	without	the	setscreen	("graphics")	command	in	the	program.
Output	that	scrolls	off	the	top	of	the	screen	is	lost.	In	text	mode,	graphics
are	not	allowed,	but	all	text	output	is	kept	and	can	be	scrolled,	saved,	and
printed	at	any	time.
Full	Screen	Run	Window
This	causes	the	default	run	window	to	occupy	the	entire	screen.
Run	Window	Rows/Columns
This	sets	the	size	of	the	default	run	window.	Changing	the	size	may	cause
programs	that	assume	a	25x80	window	to	malfunction.
Use	Small	Fonts	on	640x480	Screen
A	standard	25x80	window	does	not	quite	fit	on	a	640x480	screen	with	a
standard	size	task	bar.	As	a	result,	without	this	option,	the	default	graphics
mode	run	window	appears	with	scroll	bars.	This	option	causes	Turing	to	use

a	slightly	smaller	font	for	640x480	run	windows	so	the	entire	window	fits
on	the	screen.	This	option	may	cause	odd	output	in	Turing	programs	that
were	written	assuming	a	particular	character	size.

"Printing"	Pane

The	"Printing"	Pane

Note	that	the	options	marked	with	an	asterisk	(*)	can	be	set	in	the	printing
dialog.

Printing	Font/Printing	Header	Font
You	can	change	the	font	size	and	typeface	used	in	printing.	If	you	change
the	typeface,	you	must	choose	a	monospaced	font	where	bold	and	non-bold
letters	are	the	same	size.	Many	monospaced	fonts	have	different	sizes	for
bold	and	non-bold	letters.
Bold	Keywords/Italicize	Identifiers	*
This	allows	for	"syntax	coloring"	of	printouts.	Keywords	can	be	placed	in
bold	and	identifiers	italicized.
Print	Page	Header
On	some	systems,	a	header	page	is	automatically	printed	out	and	there	is
little	reason	for	a	page	header.	Unsetting	this	checkbox	will	cause	printouts

not	to	have	any	header	on	the	printed	programs.
User	Name	in	Header
Normally	the	user	name	is	displayed	in	the	header.	However,	on	some
systems	the	user	name	is	non-descriptive	or	non-existent.	This	allows	you
to	disable	the	printing	of	the	user	name	on	such	systems.
Two-Up	Printing	*
This	is	a	paper	saving	measure.	Text	is	printed	in	landscape	mode	with	two
"pages"	per	piece	of	paper.	This	means	that	listings	use	half	the	amount	of
paper.	Of	course,	the	font	is	much	smaller.
Line	Numbers	*
This	prints	out	line	numbers	in	front	of	each	line	of	the	program.	This	is
useful	if	you	are	printing	out	a	listing	to	hand	out	to	the	class.
Border	Around	Text
Some	users	like	to	have	a	thin	border	printed	around	the	text	for	ease	of
determining	the	margins,	etc.	Setting	this	checkbox	causes	Turing	to	display
a	hairline	border	around	program	printouts.
Margins
If	you	need	to	change	the	margins	on	printouts	(for	example,	to	facilitate
the	insertion	of	program	listings	into	3-ring	binders),	then	you	can	do	by
changing	the	values	in	the	text	fields.	Margins	are	expressed	in	inches.
User	Name
On	systems	where	the	user	name	is	non-descriptive	or	non-existent,	the	user
can	enter	a	name	that	will	appear	on	the	printout	allowing	it	to	be	identified.
If	students	are	choosing	inappropriate	user	names,	this	preference	can	be
disabled	in	the	Admin	tab	preference	dialog.

"Admin"	Pane

The	"Admin"	Pane

Note,	the	Admin	pane	is	only	available	in	administrator	mode.	Students	starting
Turing	will	not	have	access	to	this	dialog	box.

Startup	Directory
Users	will	start	in	the	directory	listed	in	this	text	field.	If	left	blank,	Turing
will	use	the	working	directory	of	the	shortcut	used	to	start	Turing.	If	no
working	directory	for	the	shortcut	is	specified,	the	directory	where	Turing	is
installed	is	used.	Environment	variables	prefixed	and	suffixed	with	%	signs
can	be	used	here	(example:	g:\students\%username%).	Note	that	in	most
cases,	this	text	field	should	be	blank.
Use	"My	Documents"	folder
The	"My	Documents"	folder	can	be	used	as	the	startup	directory	instead	of
the	contents	of	the	Startup	Directory	text	field.	This	is	most	commonly	used
in	single	user	systems.
Can	Set	User	Name
Allows	the	user	to	specify	the	user	name	to	appear	on	top	of	printouts.	This
checkbox	can	be	unset	if	students	are	choosing	inappropriate	user	names.
Can	Enter	Regular	Mode
Allows	the	user	to	turn	off	the	beginner	mode	preference.	This	checkbox
can	be	unset	if	it	is	desirable	to	have	all	students	working	in	beginner	mode.

Debugger	Available
This	checkbox	can	be	unset	in	order	to	stop	students	getting	access	to	the
debugger.
Cannot	Alter	Preferences
When	set,	this	stops	students	from	accessing	the	Preferences	dialog.	It	also
stops	Turing	from	reading	the	student's	turing.ini	file.	This	can	be	set	when
it	is	important	to	have	a	uniform	set	of	preferences	on	all	student	machines,
or	when	there	is	no	log-on	procedure	and	students	are	sharing	machines.
Prohibit	use	of	'Sys.Exec'
When	set,	the	Sys.Exec	and	system	procedures	do	nothing.	This	can	be	set
if	there	is	a	system	security	concern	about	students	starting	arbitrary
programs.
No	Sound	or	Music
When	set,	the	Turing	sound	and	music	commands	do	nothing.
Use	only	Startup	Directory	and	Below
CAUTION!	This	option	only	provides	rudimentary	security	and	is	to	be
used	only	on	systems	where	the	operating	system	cannot	provide	proper
security.	This	option	will	not	allow	students	to	save	or	load	to	any	directory
other	that	their	startup	directory	or	directories	created	in	the	startup
directory.	This	option	does	not	stop	students	from	browsing	the	names	of
files	in	other	directories,	only	from	loading	or	saving	files	in	them.
Use	Only	Allowed	Drives
CAUTION!	This	option	only	provides	rudimentary	security	and	is	to	be
used	only	on	systems	where	the	operating	system	cannot	provide	proper
security.	This	option	allows	students	to	load	files	only	from	the	set	of	drives
specified	in	the	text	field.	The	'*'	represents	network	drives.
Forbid	Use	of	Certain	Drives
CAUTION!	This	option	only	provides	rudimentary	security	and	is	to	be
used	only	on	systems	where	the	operating	system	cannot	provide	proper
security.	This	option	prevents	students	from	loading	files	from	the	set	of
drives	specified	in	the	text	field.	The	'*'	represents	network	drives.

5.	Using	the	Parallel	Ports	in	Turing	4

Under	Turing	4.0	and	,	it	is	possible	to	access	the	IBM	PC's	parallel	port	for
reading	and	writing.	This	is	normally	done	using	the	parallelput	and	parallelget
commands.	(In	Turing	4.0,	you	can	use	PC.ParallelPut	and	PC.ParallelGet	to
access	ports	other	than	LPT1.)

Under	Windows	95/98	and	Me,	the	operating	system	allows	direct	access	to	the
parallel	port.	Under	Windows	NT,	2000	and	XP,	access	to	the	parallel	port	is
restricted	by	the	operating	system.	In	order	to	access	the	port,	under	Windows
NT,	2000	and	XP,	it	is	necessary	to	install	a	device	driver	on	each	machine	that
will	be	accessing	the	parallel	port.	The	needed	device	driver	installer	is	located
at:

[Turing	directory]\support\dlportio_install.exe

where	[Turing	directory]	is	the	directory	in	which	Turing	was	installed.
Executing	this	program	will	install	the	device	driver	in	the	Windows	System
directory	of	the	machine	upon	which	it	is	executed.

Lastly,	before	accessing	the	parallel	port,	check	that	the	parallel	port	is	in
normal	mode	and	not	in	bi-directional,	PS/2,	EPP	or	ECP	mode.	You	can
determine	which	mode	the	parallel	port	is	in	using	the	Device	Manager.	In	the
list	of	devices	in	the	Device	Manager	window,	double	click	Ports	(COM	and
LPT),	and	then	the	LPT	(or	PRN)	port.	This	displays	a	property	sheet	about	the
parallel	port.	Take	a	look	at	what	it	says	about	it.	If	it	is	in	a	non-original	mode
(i.e.	mentions	bi-directional,	PS/2,	EPP	or	ECP	mode),	then	you	will	probably
need	to	adjust	the	systems	BIOS	settings.

(Under	Windows	2000	the	Device	Manager	can	be	displayed	by	selecting	the
System	Control	Panel	from	Settings	in	the	Start	menu.	Select	the	Hardware	tab
and	then	click	the	Device	Manager	button.)

If	the	setting	for	the	parallel	port	needs	to	be	changed,	restart	the	machine,	and
press	the	appropriate	key	to	enter	the	BIOS	Set	Up	Program	(the	key	varies
between	machines,	but	is	usually	noted	on	the	screen).	Often	the	parallel	port
settings	are	found	in	Advanced	Settings	of	the	program.	The	parallel	port
should	be	set	to	Normal,	Standard,	AT	or	Unidirectional	mode.	(All	four

names	are	different	descriptions	of	the	same	mode.)	Once	this	is	done	and	the
new	settings	are	saved,	then	start	the	machine	into	Windows.	Once	in	Windows,
select	Shut	Down	and	turn	the	machine	completely	off.	Once	the	machine	is	off,
wait	at	least	10	seconds	in	the	powered-off	state.	Then	restart	the	machine.
(While	shutting	down	the	machine	should	not	be	necessary,	we	have	had	several
cases	where	the	change	only	took	when	the	machine	had	been	powered-down
and	restarted.)

6.	Missing	Features	from	Turing	4

Turing	4.0	does	not	yet	incorporate	all	the	features	that	currently	exist	in	Object
Oriented	Turing	3.1.1	and	are	intended	for	future	Turing	releases.	Over	the	next
few	months,	new	features	will	be	added	and	updates	to	Turing	will	be	made
available	on	our	web	site.	The	features	to	be	added	are:

View	Variables
The	Sprite	module

If	you	have	immediate	need	of	any	of	these	features,	please	continue	to	use	the
Object	Oriented	Turing	3.1.1	software.	Ontario	users	can	obtain	the	software
through	their	OESS	software	representative.

To	determine	the	current	release	of	Turing,	check	the	Turing	web	site	at

http://www.holtsoft.com/turing/support

http://www.holtsoft.com/turing/support/#currentversion

7.	The	Turing	Debugger

The	current	version	of	Turing	has	a	Debugger	facilities	that	allow	students	to
follow	execution	of	a	program	either	pausing	after	each	line	of	execution	or
executing	slowly	while	highlighting	each	line	of	execution.	Because	of	the
confusing	nature	of	the	debugger	for	many	students,	the	default	configuration	of
Turing	does	not	display	the	debugger	menu	until	the	student	requests	it	by
selecting	the	Show	Debugger	Menu	from	the	Run	menu.

Always	Show	'Debugger'	Menu	in	the	Editor	Window	Pane

If	you	wish	students	to	have	a	more	regular	exposure	to	the	Debugger,	you	can
set	a	System	preference	to	cause	Turing	to	always	display	the	Debugger	menu.
To	set	the	this	preference,	enter	Administrator	mode	(see	Changing	System
Preferences	below)	and	set	the	Always	Show	'Debugger'	Menu	checkbox	in	the
Editor	Window	pane	of	the	Turing	Preferences.

8.	Student	Distribution	of	Turing	4.0

The	Ontario	Ministry	license	does	not	include	the	right	to	redistribute	the
software	to	students.	If	you	wish	to	give	the	software	to	students,	a	separate
license	must	be	obtained	directly	from	Holt	Software.

If	your	school	does	not	have	such	a	license,	students	can	purchase	the	software
for	home	use	by	printing	and	then	mailing	an	order	form	found
http://www.holtsoft.com/studentbuy.	This	order	form	can	also	be	used	to	allow
interested	students	to	purchase	textbooks.

If	your	school	has	purchased	a	redistribution	license	(almost	200	schools	have
done	so),	then	you	may	redistribute	the	Turing	software	to	your	students.	You
can	either	burn	copies	of	the	CD	to	distribute	to	students	or	place	the	Turing
installer	file	onto	your	school	Internet	server	and	give	your	students	the	URL.

If	you	place	this	file	on	your	school	internet	server,	you	must	not	make	any
links	from	your	web	pages	to	the	software.

This	will	prevent	other	users	of	the	web	from	downloading	your	software.	If	you
place	links	from	your	school's	web	site,	then	at	some	point	a	web	search	engine
will	find	the	software	and	post	its	location	to	the	internet	at	large,	allowing	for
large	scale	piracy	(and	a	very	overloaded	school	web	server).	If	there	are	no
links	to	the	software,	then	only	those	who	have	been	told	the	exact	URL	will	be
able	to	download	the	software.

Note	that	if	you	are	copying	a	number	of	different	programs	onto	a	single	CD	for
redistribution,	you	may	rename	the	Turing	installer	program	to	something	more
descriptive.

Permanent	student	redistribution	licenses	can	be	purchased	for	$500-$750	for
most	schools.	If	you	are	interested	in	purchasing	a	student	redistribution	license,
contact	Chris	Stephenson	at	(416)	978-6476	or	chris@hsa.on.ca

http://www.holtsoft.com/studentbuy
mailto:chris@hsa.on.ca

9.	Technical	Support

If	you	have	problems,	questions	or	suggestions	about	the	Turing	software,
contact	technical	support	at:
Telephone: 	 (416)	978-8363
Toll	free: 1-800-361-8324
Fax: (416)	978-1509
E-mail: west@hsa.on.ca

mailto:west@hsa.on.ca

Turing	Debugger	Guide
Introduction

Turing	supports	a	number	of	tools	to	enable	users	to	debug	their	programs	and
examine	program	execution.	Some	of	the	available	tools	are:

Stepping	execution	a	line	at	a	time.
Tracing	execution	with	a	set	pause	between	lines	of	execution
Setting	breakpoints	to	pause	execution	at	specified	points	in	the	program.
Viewing	all	open	resources	of	a	program	including	files,	fonts,	pictures,	etc.

As	of	May	2002,	the	Turing	4.1	software	does	not	contain	the	following	feature:

View	variables.

This	feature	will	be	implemented	as	time	and	developer	resources	permit.

Displaying	The	Debugger	Menu

In	order	to	use	any	of	the	debugger	commands,	you	need	to	have	the	Debugger
menu	showing	in	the	Editor	window.	By	default,	the	Debugger	menu	is	hidden
in	order	to	simplify	the	Turing	environment	for	the	majority	of	students	not
using	the	debugger.

There	are	two	ways	that	the	Debugger	menu	can	be	displayed.	You	can	select	the
Show	Debugger	Menu	command	in	the	Run	menu.

Show	Debugger	Menu	command	in	the	Run	menu

If	you	are	consistenly	using	the	debugger,	then	you	should	change	the
Preferences	so	that	the	Debugger	menu	is	always	displayed.	This	can	be	done	by
bringing	up	the	Editor	Window	pane	of	the	Preferences	dialog	box	and	setting
the	Always	Show	'Debugger'	Menu	check	box.

Always	Show	'Debugger'	Menu	in	the	Editor	Window	Pane

Using	The	Debugger	Menu

Show	Debugger	Menu	command	in	the	Run	menu

The	Debugger	menu	gives	you	access	to	all	the	debugging	features	in	Turing	4.0.
The	following	menu	options	are	available:

Show	Debugger	Controls
This	command	causes	each	Editor	window	to	display	a	second	row	of
controls	at	the	top	of	the	window	(called	the	Debugger	controls)	that	allow
the	user	to	step	through	a	program	and	trace	execution	of	the	program.
When	the	Debugger	controls	are	visible,	then	this	menu	item	changes	to
Hide	Debugger	Controls.

Window	with	Debugger	Controls	Visible

Show	Breakpoints	This	command	causes	each	Editor	window	to	dislay	an
area	on	the	left	where	breakpoints	can	be	placed.	A	breakpoint	is	a	marker
that	causes	the	program	to	pause	when	execution	reaches	the	marked	line.

Window	with	Breakpoint	Visible

Clear	Breakpoints	This	command	quickly	eliminates	all	breakpoints	that
have	been	set	in	any	Editor	window.
Show	Allocated	Objects	This	command	shows	all	the	files,	fonts,	pictures,
etc	that	have	been	opened	or	created	by	the	program	but	have	not	been
closed.	As	the	program	executes,	this	window	updates	every	time	a
resource	is	allocated	or	freed.

Allocated	Objects	Window

Turing	Execution

The	rest	of	this	document	will	use	some	terms	that	must	be	understood	properly.

Running	-	A	Turing	program	is	running	when	statements	are	being
continuously	executed	without	human	intervention.	However,	running	may
be	stalled	while	the	program	is	waiting	for	keyboard	input,	executing	a
delay	statement,	etc.
Paused	-	A	Turing	program	is	paused	when	execution	is	temporarily	halted.
No	input	is	accepted	by	the	program	while	it	is	paused.	A	program	can
become	paused	in	a	variety	of	ways	including:

The	user	pressing	the	Pause	button.
The	user	pressing	a	Step,	Step	Over	or	Step	Return	button.
Execution	reaching	a	breakpoint.
Execution	reaching	the	break	statement	in	a	program.

When	a	Turing	program	is	paused,	the	line	in	the	source	code	on	which	the
Turing	program	was	about	to	execute	is	highlighted.
In	each	case,	the	program	can	resume	running	by	clicking	the	Resume
button.	The	program	can	also	temporarily	resume	running	by	the	user
pressing	the	Step,	Step	Over	or	Step	Return	button.	Once	the	statement	or
statements	are	finished	running,	the	program	is	paused	again.
Executing	-	A	program	is	executing	when	it	is	either	Running	or	Paused.
Halted	-	A	Turing	program	is	halted	when	it	can	no	longer	executing.	It
cannot	be	resumed	and	must	be	started	from	the	beginning	in	order	to	run	it
again.	A	program	can	be	halted	by:

The	user	pressing	the	Stop	button.
A	run-time	error.
The	user	closing	a	Run	window.

Stepping	a	Program

Stepping	a	program	consists	of	executing	a	Turing	program	a	line	at	a	time.
After	each	step	command,	execution	pauses,	highlighting	the	next	line	to	be
executed.	To	step	a	program,	the	program	must	not	be	running.	The	Debugger
controls	in	the	Editor	window	must	be	visible.	To	step	the	program,	the	user
clicks	one	of	the	three	buttons	in	the	Debugger	Controls:

Step	-	If	the	program	is	halted,	this	executes	the	very	first	line	of	code	and
then	pauses.	If	the	program	is	paused,	it	executes	the	highlighted	line	of
code	and	then	pauses.	If	it	line	of	code	to	be	executed	is	a	subprogram	call,
then	it	enters	the	subprogram	and	pauses	at	the	first	line	of	code	in	the
subprogram.	If	it	is	at	the	end	of	the	subprogram,	then	it	leaves	the
subprogram	and	pauses	at	the	subprogram	call.	This	command	is	sometimes
called	Step	Into.
Step	Over	-	This	executes	a	single	line	of	code.	However,	if	the	program	is
paused	at	a	subprogram	call,	then	the	entire	subprogram	is	executed	and
execution	is	paused	at	the	next	line	after	the	subprogram	call.
Step	Return	-	This	resumes	execution	until	the	execution	returns	from	a
subprogram.	The	next	line	after	the	subprogram	call.	Note	that	if	this
command	is	given	in	the	main	program,	then	execution	will	continue	until
the	program	terminates.

Tracing	a	Program

Tracing	a	program	is	simply	executing	a	program	slowly	with	each	line	of	code
in	the	program	being	highlighted	as	it	is	executed.	Tracing	allows	users	to	see
how	control	constructs	operate.	Unlike	stepping,	with	tracing,	execution
continues	until	it	is	paused	or	halted	in	some	other	fashion.

To	start	a	program	tracing,	the	Debugger	Controls	must	be	visible.	The	user	then
clicks	the	Trace	Execution	check	box.	When	the	program	is	next	running,	each
time	a	statement	is	executed,	the	line	in	the	source	code	will	be	highlighted.	The
speed	at	which	the	tracing	occurs	is	controlled	by	the	Trace	Speed	slider	found
in	the	Debugger	Controls.	When	the	slider	is	on	the	left,	there	is	essentially	no
delay	between	execution	of	statements.	(Note	that	execution	will	still	be	much
slower	than	not	tracing	due	to	the	time	taken	to	highlight	each	executing
statement.)	When	the	slider	is	on	the	right,	each	statement	will	wait	for	about	5
seconds	after	executing	before	the	next	statement	is	executed.

Setting	Breakpoints

Often	only	a	particular	section	of	code	is	of	interest	to	the	user.	Breakpoints
provide	a	mechanism	for	pausing	a	program	only	when	execution	reaches	a
specified	statement.	To	set	breakpoints,	they	need	to	be	displayed	in	the	Editor
window.	This	is	done	with	the	Show	Breakpoints	command	in	the	Debugger
menu.	Once	breakpoints	are	visible,	they	can	be	set	(and	removed)	by	simply
clicking	the	mouse	in	the	breakpoint	area.	When	the	mouse	is	over	the
breakpoint	area,	it	turns	into	a	diamond.	When	the	breakpoint	is	set,	a	red
diamond	appears	in	the	breakpoint	area.	To	remove	the	breakpoint,	simply	click
the	red	diamond	and	the	breakpoint	disappears.

Window	with	Two	Breakpoints	Set

When	execution	reaches	a	line	with	a	breakpoint	on	it,	the	program	pauses	and

the	line	is	highlighted.	The	program	can	then	be	resumed	or	stepped	as	desired.
Note	that	it	is	possible	to	set	a	breakpoint	on	a	line	that	is	not	executed.	If	you
place	a	breakpoint	on	a	blank	line,	it	is	quite	likely	that	execution	will	not	stop.
Likewise,	in	lines	broken	over	multiple	lines,	it	is	best	to	put	the	breakpoint	on
the	last	line	in	the	statement.

To	clear	all	the	breakpoints,	select	Clear	Breakpoints	from	the	Debugger
menu.

Viewing	Open	Files/Pictures/Fonts,	etc.

A	common	error	in	Turing	programs	is	to	neglect	to	close	open	files	(using	the
Close	statement)	or	free	pictures	or	fonts	(using	the	Pic.Free	or	Font.Free
procedures).	The	Allocated	Objects	window	displays	all	allocated	resources
until	they	are	freed.	This	window	is	displayed	by	selecting	the	Show	Allocated
Objects	command	from	the	Debugger	menu.	The	command	can	be	given	even
after	a	program	has	halted.	It	is	a	useful	command	to	use	when	am	open,
Pic.New	or	Font.New	has	failed	because	of	too	many	open	files,	pictures	or
fonts.

The	window	will	also	display	just	how	much	memory	each	picture	takes	up.

Allocated	Objects	Window

Clicking	on	the	line	containing	the	allocated	object	will	highlight	the	line	in	the
code	where	the	object	was	allocated.	The	headings	on	each	of	the	columns	can
be	clicked	allowing	the	objects	to	be	sorted	either	by	their	ID,	or	by	where	in	the
program	they	were	allocated.

Error.TripMsg Part	of	Error	module

Syntax		 Error.TripMsg	(errorCode	:	int,	errorMessage	:	string)

Description		

Error.TripMsg	is	a	procedure	that	sets	the	error	number	and	error	message	that
is	returned	by	Error.Last	and	Error.LastMsg.	It	does	not	halt	the	program.

You	can	find	a	list	of	constants	for	the	legal	error	codes	in	the	module
ErrorNum.	Any	call	to	Error.TripMsg	should	use	a	constant	found	in	the
ErrorNum	module	or	zero,	if	the	error	code	is	not	relevant	(i.e.	only	the	error
message	is	relevant).

Example		

This	program	sets	an	error	code.	The	program	outputs	201	for	the	error	
and	"File	*really*	not	found"	for	the	message.

								Error.TripMsg	(eFsysFileNotFound,	"File	*really*	not	found")

								put	"Error	code	=	",	Error.Last

								put	"Error	message	=	",	Error.LastMsg

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Error.TripMsg
calling	TripMsg.

Error.Halt Part	of	Error	module

Syntax		 Error.Halt	(errorMessage	:	string)

Description		

Error.Halt	is	a	procedure	that	immediately	halts	execution	of	the
program	and	shows	the	specified	error	message	on	the	line	in	the
program	that	calls	Error.Halt.

This	procedure	is	useful	for	allowing	a	quick	halt	to	a	program	while
indicating	an	error	condition.

Example		

This	program	halts	on	the	first	line	with	an	error	message	stating
"Execution	terminated	by	the	program."

								Error.Halt	("Execution	terminated	by	the	program.")

Execute		

Status		

Exported	qualified.

This	means	that	you	can	only	call	the	function	by	calling	Error.Halt
not	by	calling	Halt.

