

Thank	You!
A	big	“thank	you!”	goes	to	everybody,	who	helped	us	to	create	OpenPPL	and
this	document:

Amstad
Bob4567
CakeWalk
ChuckNeverMuck
CoolBotMe123
CrumbleSunday
Chucksta
Dr.Kaktuz
Efu
Fn101
Gecko
JConner
Johnny
JokeDoke
KaeKruse
Kyo
Lavezzi
Mariano268
MerzkiyTipon
Morello
MrRuder
Narfal
Nik0
NPNG
PastorPoker
Poker_Dog
Postenjak
Qwerty
Rambam
Relhby
R2D2

Salem
Satanikut
Stangelnator
SteveG1963
Strikles
SuperBlak
TheHighFish
ThemAndMe
Trish
Want2Learn
Zolp

and	to	everybody	we	have	forgotten.	Without	your	help	it	would	not	have	been
possible	to	create	this	manual.
Please	contact	us	at	www.maxinmontreal.com/forums,	if	you	miss	your	name	on
the	list.

What	Is	OpenPPL
PPL	is	an	acronym	for	Poker	Programming	Language,	a	language	to	program
poker	bots.	It	was	invented	by	Shanky	BonusBots	to	ease	the	customization	of
their	proprietary	bot-logic.
One	day	an	unnamed	hero	decided	to	give	away	his	“80%	working	translator”	to
the	OpenHoldem	community.	So	OpenPPL	was	born	and	after	a	long	period	of
development	OpenPPL	finally	got	completely	integrated	into	OpenHoldem.
Whereas	the	first	version	of	OpenPPL	needed	to	be	translated	to	OH-script,
OpenHoldem	does	now	natively	support	plain-text	OpenPPL	without	any
translation	steps.	So	OpenPPL	now	combines	the	best	of	both	worlds	even
better:	easiness	of	programming	and	mighty	potential	at	the	tables.

The	Advantage	Of	OpenPPL

Of	course	OpenPPL	supports	the	main	features	of	PPL,	especially:

an	easy	English-like	programming	language,	that	can	be	learned	in	no	time.
a	library	of	several	hundred	ready-to-use	functions	for	an	easy	start.

Besides	that	OpenHoldem	&	OpenPPL	provide	some	additional	cool
functionality	that	you	might	have	missed	if	you	have	used	other	bots	in	the	past:

knowing	the	stacksize	of	every	single	player.
the	ability	to	play	at	any	casino	you	want,	provided	you	create	a	tablemap
for	it.
the	ability	to	develop	and	debug	your	bot	with	tools	like	ManualMode,
PokerAcademy	and	PokerTH.	Did	you	ever	want	to	simulate	A2o	at	the
button	or	a	flushdraw	out	of	position	several	dozen	times	until	you	are
satisfied?
an	auto-connector,	that	handles	up	to	25	tables	at	once	with	less	than	1%
CPU-overhead.	All	you	have	to	do:	open	a	table	and	sit-down.
OpenHoldem	connects	automatically	(one	instance	per	table)	and	starts	to
play.
ability	to	use	Poker	Tracker	stats	directly	in	your	OpenPPL-code.

But	if	you	are	an	expert	you	might	want	to	make	use	of	some	advanced	features:

building	symbols	on	your	own.
accessing	Openholdem’s	native	symbols	and	doing	hand-range	calculations
on	the	fly.

And	the	best	of	all:

you	can	contribute	to	the	project	to	make	it	even	better.
it’s	all	for	free.	Well	—	nearly	free;	of	course	it	requires	a	bit	of	learning
and	some	work	to	become	a	master.

Welcome	to	the	world	of	open	source!

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-09-

http://elyxer.nongnu.org/

29T21:35:37.750000

GNU	GENERAL	PUBLIC	LICENSE

Version	3,	29	June	2007

Copyright	©	2007	Free	Software	Foundation,	Inc.	<http://fsf.org/>

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this	license
document,	but	changing	it	is	not	allowed.

Preamble

The	GNU	General	Public	License	is	a	free,	copyleft	license	for	software	and
other	kinds	of	works.

The	licenses	for	most	software	and	other	practical	works	are	designed	to	take
away	your	freedom	to	share	and	change	the	works.	By	contrast,	the	GNU
General	Public	License	is	intended	to	guarantee	your	freedom	to	share	and
change	all	versions	of	a	program--to	make	sure	it	remains	free	software	for	all	its
users.	We,	the	Free	Software	Foundation,	use	the	GNU	General	Public	License
for	most	of	our	software;	it	applies	also	to	any	other	work	released	this	way	by
its	authors.	You	can	apply	it	to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our
General	Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to
distribute	copies	of	free	software	(and	charge	for	them	if	you	wish),	that	you
receive	source	code	or	can	get	it	if	you	want	it,	that	you	can	change	the	software
or	use	pieces	of	it	in	new	free	programs,	and	that	you	know	you	can	do	these
things.

To	protect	your	rights,	we	need	to	prevent	others	from	denying	you	these	rights
or	asking	you	to	surrender	the	rights.	Therefore,	you	have	certain	responsibilities
if	you	distribute	copies	of	the	software,	or	if	you	modify	it:	responsibilities	to
respect	the	freedom	of	others.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a
fee,	you	must	pass	on	to	the	recipients	the	same	freedoms	that	you	received.	You
must	make	sure	that	they,	too,	receive	or	can	get	the	source	code.	And	you	must
show	them	these	terms	so	they	know	their	rights.

http://fsf.org/

Developers	that	use	the	GNU	GPL	protect	your	rights	with	two	steps:	(1)	assert
copyright	on	the	software,	and	(2)	offer	you	this	License	giving	you	legal
permission	to	copy,	distribute	and/or	modify	it.

For	the	developers'	and	authors'	protection,	the	GPL	clearly	explains	that	there	is
no	warranty	for	this	free	software.	For	both	users'	and	authors'	sake,	the	GPL
requires	that	modified	versions	be	marked	as	changed,	so	that	their	problems
will	not	be	attributed	erroneously	to	authors	of	previous	versions.

Some	devices	are	designed	to	deny	users	access	to	install	or	run	modified
versions	of	the	software	inside	them,	although	the	manufacturer	can	do	so.	This
is	fundamentally	incompatible	with	the	aim	of	protecting	users'	freedom	to
change	the	software.	The	systematic	pattern	of	such	abuse	occurs	in	the	area	of
products	for	individuals	to	use,	which	is	precisely	where	it	is	most	unacceptable.
Therefore,	we	have	designed	this	version	of	the	GPL	to	prohibit	the	practice	for
those	products.	If	such	problems	arise	substantially	in	other	domains,	we	stand
ready	to	extend	this	provision	to	those	domains	in	future	versions	of	the	GPL,	as
needed	to	protect	the	freedom	of	users.

Finally,	every	program	is	threatened	constantly	by	software	patents.	States
should	not	allow	patents	to	restrict	development	and	use	of	software	on	general-
purpose	computers,	but	in	those	that	do,	we	wish	to	avoid	the	special	danger	that
patents	applied	to	a	free	program	could	make	it	effectively	proprietary.	To
prevent	this,	the	GPL	assures	that	patents	cannot	be	used	to	render	the	program
non-free.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.

TERMS	AND	CONDITIONS

0.	Definitions.

“This	License”	refers	to	version	3	of	the	GNU	General	Public	License.

“Copyright”	also	means	copyright-like	laws	that	apply	to	other	kinds	of	works,
such	as	semiconductor	masks.

“The	Program”	refers	to	any	copyrightable	work	licensed	under	this	License.

Each	licensee	is	addressed	as	“you”.	“Licensees”	and	“recipients”	may	be
individuals	or	organizations.

To	“modify”	a	work	means	to	copy	from	or	adapt	all	or	part	of	the	work	in	a
fashion	requiring	copyright	permission,	other	than	the	making	of	an	exact	copy.
The	resulting	work	is	called	a	“modified	version”	of	the	earlier	work	or	a	work
“based	on”	the	earlier	work.

A	“covered	work”	means	either	the	unmodified	Program	or	a	work	based	on	the
Program.

To	“propagate”	a	work	means	to	do	anything	with	it	that,	without	permission,
would	make	you	directly	or	secondarily	liable	for	infringement	under	applicable
copyright	law,	except	executing	it	on	a	computer	or	modifying	a	private	copy.
Propagation	includes	copying,	distribution	(with	or	without	modification),
making	available	to	the	public,	and	in	some	countries	other	activities	as	well.

To	“convey”	a	work	means	any	kind	of	propagation	that	enables	other	parties	to
make	or	receive	copies.	Mere	interaction	with	a	user	through	a	computer
network,	with	no	transfer	of	a	copy,	is	not	conveying.

An	interactive	user	interface	displays	“Appropriate	Legal	Notices”	to	the	extent
that	it	includes	a	convenient	and	prominently	visible	feature	that	(1)	displays	an
appropriate	copyright	notice,	and	(2)	tells	the	user	that	there	is	no	warranty	for
the	work	(except	to	the	extent	that	warranties	are	provided),	that	licensees	may
convey	the	work	under	this	License,	and	how	to	view	a	copy	of	this	License.	If
the	interface	presents	a	list	of	user	commands	or	options,	such	as	a	menu,	a
prominent	item	in	the	list	meets	this	criterion.

1.	Source	Code.

The	“source	code”	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	“Object	code”	means	any	non-source	form	of	a	work.

A	“Standard	Interface”	means	an	interface	that	either	is	an	official	standard
defined	by	a	recognized	standards	body,	or,	in	the	case	of	interfaces	specified	for
a	particular	programming	language,	one	that	is	widely	used	among	developers
working	in	that	language.

The	“System	Libraries”	of	an	executable	work	include	anything,	other	than	the
work	as	a	whole,	that	(a)	is	included	in	the	normal	form	of	packaging	a	Major
Component,	but	which	is	not	part	of	that	Major	Component,	and	(b)	serves	only
to	enable	use	of	the	work	with	that	Major	Component,	or	to	implement	a
Standard	Interface	for	which	an	implementation	is	available	to	the	public	in
source	code	form.	A	“Major	Component”,	in	this	context,	means	a	major
essential	component	(kernel,	window	system,	and	so	on)	of	the	specific
operating	system	(if	any)	on	which	the	executable	work	runs,	or	a	compiler	used
to	produce	the	work,	or	an	object	code	interpreter	used	to	run	it.

The	“Corresponding	Source”	for	a	work	in	object	code	form	means	all	the
source	code	needed	to	generate,	install,	and	(for	an	executable	work)	run	the
object	code	and	to	modify	the	work,	including	scripts	to	control	those	activities.
However,	it	does	not	include	the	work's	System	Libraries,	or	general-purpose
tools	or	generally	available	free	programs	which	are	used	unmodified	in
performing	those	activities	but	which	are	not	part	of	the	work.	For	example,
Corresponding	Source	includes	interface	definition	files	associated	with	source
files	for	the	work,	and	the	source	code	for	shared	libraries	and	dynamically
linked	subprograms	that	the	work	is	specifically	designed	to	require,	such	as	by
intimate	data	communication	or	control	flow	between	those	subprograms	and
other	parts	of	the	work.

The	Corresponding	Source	need	not	include	anything	that	users	can	regenerate
automatically	from	other	parts	of	the	Corresponding	Source.

The	Corresponding	Source	for	a	work	in	source	code	form	is	that	same	work.

2.	Basic	Permissions.

All	rights	granted	under	this	License	are	granted	for	the	term	of	copyright	on	the
Program,	and	are	irrevocable	provided	the	stated	conditions	are	met.	This
License	explicitly	affirms	your	unlimited	permission	to	run	the	unmodified
Program.	The	output	from	running	a	covered	work	is	covered	by	this	License
only	if	the	output,	given	its	content,	constitutes	a	covered	work.	This	License
acknowledges	your	rights	of	fair	use	or	other	equivalent,	as	provided	by
copyright	law.

You	may	make,	run	and	propagate	covered	works	that	you	do	not	convey,
without	conditions	so	long	as	your	license	otherwise	remains	in	force.	You	may

convey	covered	works	to	others	for	the	sole	purpose	of	having	them	make
modifications	exclusively	for	you,	or	provide	you	with	facilities	for	running
those	works,	provided	that	you	comply	with	the	terms	of	this	License	in
conveying	all	material	for	which	you	do	not	control	copyright.	Those	thus
making	or	running	the	covered	works	for	you	must	do	so	exclusively	on	your
behalf,	under	your	direction	and	control,	on	terms	that	prohibit	them	from
making	any	copies	of	your	copyrighted	material	outside	their	relationship	with
you.

Conveying	under	any	other	circumstances	is	permitted	solely	under	the
conditions	stated	below.	Sublicensing	is	not	allowed;	section	10	makes	it
unnecessary.

3.	Protecting	Users'	Legal	Rights	From	Anti-Circumvention	Law.

No	covered	work	shall	be	deemed	part	of	an	effective	technological	measure
under	any	applicable	law	fulfilling	obligations	under	article	11	of	the	WIPO
copyright	treaty	adopted	on	20	December	1996,	or	similar	laws	prohibiting	or
restricting	circumvention	of	such	measures.

When	you	convey	a	covered	work,	you	waive	any	legal	power	to	forbid
circumvention	of	technological	measures	to	the	extent	such	circumvention	is
effected	by	exercising	rights	under	this	License	with	respect	to	the	covered	work,
and	you	disclaim	any	intention	to	limit	operation	or	modification	of	the	work	as
a	means	of	enforcing,	against	the	work's	users,	your	or	third	parties'	legal	rights
to	forbid	circumvention	of	technological	measures.

4.	Conveying	Verbatim	Copies.

You	may	convey	verbatim	copies	of	the	Program's	source	code	as	you	receive	it,
in	any	medium,	provided	that	you	conspicuously	and	appropriately	publish	on
each	copy	an	appropriate	copyright	notice;	keep	intact	all	notices	stating	that	this
License	and	any	non-permissive	terms	added	in	accord	with	section	7	apply	to
the	code;	keep	intact	all	notices	of	the	absence	of	any	warranty;	and	give	all
recipients	a	copy	of	this	License	along	with	the	Program.

You	may	charge	any	price	or	no	price	for	each	copy	that	you	convey,	and	you
may	offer	support	or	warranty	protection	for	a	fee.

5.	Conveying	Modified	Source	Versions.

You	may	convey	a	work	based	on	the	Program,	or	the	modifications	to	produce
it	from	the	Program,	in	the	form	of	source	code	under	the	terms	of	section	4,
provided	that	you	also	meet	all	of	these	conditions:

a)	The	work	must	carry	prominent	notices	stating	that	you	modified	it,	and
giving	a	relevant	date.
b)	The	work	must	carry	prominent	notices	stating	that	it	is	released	under
this	License	and	any	conditions	added	under	section	7.	This	requirement
modifies	the	requirement	in	section	4	to	“keep	intact	all	notices”.
c)	You	must	license	the	entire	work,	as	a	whole,	under	this	License	to
anyone	who	comes	into	possession	of	a	copy.	This	License	will	therefore
apply,	along	with	any	applicable	section	7	additional	terms,	to	the	whole	of
the	work,	and	all	its	parts,	regardless	of	how	they	are	packaged.	This
License	gives	no	permission	to	license	the	work	in	any	other	way,	but	it
does	not	invalidate	such	permission	if	you	have	separately	received	it.
d)	If	the	work	has	interactive	user	interfaces,	each	must	display	Appropriate
Legal	Notices;	however,	if	the	Program	has	interactive	interfaces	that	do	not
display	Appropriate	Legal	Notices,	your	work	need	not	make	them	do	so.

A	compilation	of	a	covered	work	with	other	separate	and	independent	works,
which	are	not	by	their	nature	extensions	of	the	covered	work,	and	which	are	not
combined	with	it	such	as	to	form	a	larger	program,	in	or	on	a	volume	of	a
storage	or	distribution	medium,	is	called	an	“aggregate”	if	the	compilation	and
its	resulting	copyright	are	not	used	to	limit	the	access	or	legal	rights	of	the
compilation's	users	beyond	what	the	individual	works	permit.	Inclusion	of	a
covered	work	in	an	aggregate	does	not	cause	this	License	to	apply	to	the	other
parts	of	the	aggregate.

6.	Conveying	Non-Source	Forms.

You	may	convey	a	covered	work	in	object	code	form	under	the	terms	of	sections
4	and	5,	provided	that	you	also	convey	the	machine-readable	Corresponding
Source	under	the	terms	of	this	License,	in	one	of	these	ways:

a)	Convey	the	object	code	in,	or	embodied	in,	a	physical	product	(including
a	physical	distribution	medium),	accompanied	by	the	Corresponding	Source
fixed	on	a	durable	physical	medium	customarily	used	for	software

interchange.
b)	Convey	the	object	code	in,	or	embodied	in,	a	physical	product	(including
a	physical	distribution	medium),	accompanied	by	a	written	offer,	valid	for
at	least	three	years	and	valid	for	as	long	as	you	offer	spare	parts	or	customer
support	for	that	product	model,	to	give	anyone	who	possesses	the	object
code	either	(1)	a	copy	of	the	Corresponding	Source	for	all	the	software	in
the	product	that	is	covered	by	this	License,	on	a	durable	physical	medium
customarily	used	for	software	interchange,	for	a	price	no	more	than	your
reasonable	cost	of	physically	performing	this	conveying	of	source,	or	(2)
access	to	copy	the	Corresponding	Source	from	a	network	server	at	no
charge.
c)	Convey	individual	copies	of	the	object	code	with	a	copy	of	the	written
offer	to	provide	the	Corresponding	Source.	This	alternative	is	allowed	only
occasionally	and	noncommercially,	and	only	if	you	received	the	object	code
with	such	an	offer,	in	accord	with	subsection	6b.
d)	Convey	the	object	code	by	offering	access	from	a	designated	place
(gratis	or	for	a	charge),	and	offer	equivalent	access	to	the	Corresponding
Source	in	the	same	way	through	the	same	place	at	no	further	charge.	You
need	not	require	recipients	to	copy	the	Corresponding	Source	along	with
the	object	code.	If	the	place	to	copy	the	object	code	is	a	network	server,	the
Corresponding	Source	may	be	on	a	different	server	(operated	by	you	or	a
third	party)	that	supports	equivalent	copying	facilities,	provided	you
maintain	clear	directions	next	to	the	object	code	saying	where	to	find	the
Corresponding	Source.	Regardless	of	what	server	hosts	the	Corresponding
Source,	you	remain	obligated	to	ensure	that	it	is	available	for	as	long	as
needed	to	satisfy	these	requirements.
e)	Convey	the	object	code	using	peer-to-peer	transmission,	provided	you
inform	other	peers	where	the	object	code	and	Corresponding	Source	of	the
work	are	being	offered	to	the	general	public	at	no	charge	under	subsection
6d.

A	separable	portion	of	the	object	code,	whose	source	code	is	excluded	from	the
Corresponding	Source	as	a	System	Library,	need	not	be	included	in	conveying
the	object	code	work.

A	“User	Product”	is	either	(1)	a	“consumer	product”,	which	means	any	tangible
personal	property	which	is	normally	used	for	personal,	family,	or	household
purposes,	or	(2)	anything	designed	or	sold	for	incorporation	into	a	dwelling.	In
determining	whether	a	product	is	a	consumer	product,	doubtful	cases	shall	be

resolved	in	favor	of	coverage.	For	a	particular	product	received	by	a	particular
user,	“normally	used”	refers	to	a	typical	or	common	use	of	that	class	of	product,
regardless	of	the	status	of	the	particular	user	or	of	the	way	in	which	the
particular	user	actually	uses,	or	expects	or	is	expected	to	use,	the	product.	A
product	is	a	consumer	product	regardless	of	whether	the	product	has	substantial
commercial,	industrial	or	non-consumer	uses,	unless	such	uses	represent	the	only
significant	mode	of	use	of	the	product.

“Installation	Information”	for	a	User	Product	means	any	methods,	procedures,
authorization	keys,	or	other	information	required	to	install	and	execute	modified
versions	of	a	covered	work	in	that	User	Product	from	a	modified	version	of	its
Corresponding	Source.	The	information	must	suffice	to	ensure	that	the	continued
functioning	of	the	modified	object	code	is	in	no	case	prevented	or	interfered	with
solely	because	modification	has	been	made.

If	you	convey	an	object	code	work	under	this	section	in,	or	with,	or	specifically
for	use	in,	a	User	Product,	and	the	conveying	occurs	as	part	of	a	transaction	in
which	the	right	of	possession	and	use	of	the	User	Product	is	transferred	to	the
recipient	in	perpetuity	or	for	a	fixed	term	(regardless	of	how	the	transaction	is
characterized),	the	Corresponding	Source	conveyed	under	this	section	must	be
accompanied	by	the	Installation	Information.	But	this	requirement	does	not
apply	if	neither	you	nor	any	third	party	retains	the	ability	to	install	modified
object	code	on	the	User	Product	(for	example,	the	work	has	been	installed	in
ROM).

The	requirement	to	provide	Installation	Information	does	not	include	a
requirement	to	continue	to	provide	support	service,	warranty,	or	updates	for	a
work	that	has	been	modified	or	installed	by	the	recipient,	or	for	the	User	Product
in	which	it	has	been	modified	or	installed.	Access	to	a	network	may	be	denied
when	the	modification	itself	materially	and	adversely	affects	the	operation	of	the
network	or	violates	the	rules	and	protocols	for	communication	across	the
network.

Corresponding	Source	conveyed,	and	Installation	Information	provided,	in
accord	with	this	section	must	be	in	a	format	that	is	publicly	documented	(and
with	an	implementation	available	to	the	public	in	source	code	form),	and	must
require	no	special	password	or	key	for	unpacking,	reading	or	copying.

7.	Additional	Terms.

“Additional	permissions”	are	terms	that	supplement	the	terms	of	this	License	by
making	exceptions	from	one	or	more	of	its	conditions.	Additional	permissions
that	are	applicable	to	the	entire	Program	shall	be	treated	as	though	they	were
included	in	this	License,	to	the	extent	that	they	are	valid	under	applicable	law.	If
additional	permissions	apply	only	to	part	of	the	Program,	that	part	may	be	used
separately	under	those	permissions,	but	the	entire	Program	remains	governed	by
this	License	without	regard	to	the	additional	permissions.

When	you	convey	a	copy	of	a	covered	work,	you	may	at	your	option	remove	any
additional	permissions	from	that	copy,	or	from	any	part	of	it.	(Additional
permissions	may	be	written	to	require	their	own	removal	in	certain	cases	when
you	modify	the	work.)	You	may	place	additional	permissions	on	material,	added
by	you	to	a	covered	work,	for	which	you	have	or	can	give	appropriate	copyright
permission.

Notwithstanding	any	other	provision	of	this	License,	for	material	you	add	to	a
covered	work,	you	may	(if	authorized	by	the	copyright	holders	of	that	material)
supplement	the	terms	of	this	License	with	terms:

a)	Disclaiming	warranty	or	limiting	liability	differently	from	the	terms	of
sections	15	and	16	of	this	License;	or
b)	Requiring	preservation	of	specified	reasonable	legal	notices	or	author
attributions	in	that	material	or	in	the	Appropriate	Legal	Notices	displayed
by	works	containing	it;	or
c)	Prohibiting	misrepresentation	of	the	origin	of	that	material,	or	requiring
that	modified	versions	of	such	material	be	marked	in	reasonable	ways	as
different	from	the	original	version;	or
d)	Limiting	the	use	for	publicity	purposes	of	names	of	licensors	or	authors
of	the	material;	or
e)	Declining	to	grant	rights	under	trademark	law	for	use	of	some	trade
names,	trademarks,	or	service	marks;	or
f)	Requiring	indemnification	of	licensors	and	authors	of	that	material	by
anyone	who	conveys	the	material	(or	modified	versions	of	it)	with
contractual	assumptions	of	liability	to	the	recipient,	for	any	liability	that
these	contractual	assumptions	directly	impose	on	those	licensors	and
authors.

All	other	non-permissive	additional	terms	are	considered	“further	restrictions”
within	the	meaning	of	section	10.	If	the	Program	as	you	received	it,	or	any	part

of	it,	contains	a	notice	stating	that	it	is	governed	by	this	License	along	with	a
term	that	is	a	further	restriction,	you	may	remove	that	term.	If	a	license
document	contains	a	further	restriction	but	permits	relicensing	or	conveying
under	this	License,	you	may	add	to	a	covered	work	material	governed	by	the
terms	of	that	license	document,	provided	that	the	further	restriction	does	not
survive	such	relicensing	or	conveying.

If	you	add	terms	to	a	covered	work	in	accord	with	this	section,	you	must	place,
in	the	relevant	source	files,	a	statement	of	the	additional	terms	that	apply	to	those
files,	or	a	notice	indicating	where	to	find	the	applicable	terms.

Additional	terms,	permissive	or	non-permissive,	may	be	stated	in	the	form	of	a
separately	written	license,	or	stated	as	exceptions;	the	above	requirements	apply
either	way.

8.	Termination.

You	may	not	propagate	or	modify	a	covered	work	except	as	expressly	provided
under	this	License.	Any	attempt	otherwise	to	propagate	or	modify	it	is	void,	and
will	automatically	terminate	your	rights	under	this	License	(including	any	patent
licenses	granted	under	the	third	paragraph	of	section	11).

However,	if	you	cease	all	violation	of	this	License,	then	your	license	from	a
particular	copyright	holder	is	reinstated	(a)	provisionally,	unless	and	until	the
copyright	holder	explicitly	and	finally	terminates	your	license,	and	(b)
permanently,	if	the	copyright	holder	fails	to	notify	you	of	the	violation	by	some
reasonable	means	prior	to	60	days	after	the	cessation.

Moreover,	your	license	from	a	particular	copyright	holder	is	reinstated
permanently	if	the	copyright	holder	notifies	you	of	the	violation	by	some
reasonable	means,	this	is	the	first	time	you	have	received	notice	of	violation	of
this	License	(for	any	work)	from	that	copyright	holder,	and	you	cure	the
violation	prior	to	30	days	after	your	receipt	of	the	notice.

Termination	of	your	rights	under	this	section	does	not	terminate	the	licenses	of
parties	who	have	received	copies	or	rights	from	you	under	this	License.	If	your
rights	have	been	terminated	and	not	permanently	reinstated,	you	do	not	qualify
to	receive	new	licenses	for	the	same	material	under	section	10.

9.	Acceptance	Not	Required	for	Having	Copies.

You	are	not	required	to	accept	this	License	in	order	to	receive	or	run	a	copy	of
the	Program.	Ancillary	propagation	of	a	covered	work	occurring	solely	as	a
consequence	of	using	peer-to-peer	transmission	to	receive	a	copy	likewise	does
not	require	acceptance.	However,	nothing	other	than	this	License	grants	you
permission	to	propagate	or	modify	any	covered	work.	These	actions	infringe
copyright	if	you	do	not	accept	this	License.	Therefore,	by	modifying	or
propagating	a	covered	work,	you	indicate	your	acceptance	of	this	License	to	do
so.

10.	Automatic	Licensing	of	Downstream	Recipients.

Each	time	you	convey	a	covered	work,	the	recipient	automatically	receives	a
license	from	the	original	licensors,	to	run,	modify	and	propagate	that	work,
subject	to	this	License.	You	are	not	responsible	for	enforcing	compliance	by
third	parties	with	this	License.

An	“entity	transaction”	is	a	transaction	transferring	control	of	an	organization,	or
substantially	all	assets	of	one,	or	subdividing	an	organization,	or	merging
organizations.	If	propagation	of	a	covered	work	results	from	an	entity
transaction,	each	party	to	that	transaction	who	receives	a	copy	of	the	work	also
receives	whatever	licenses	to	the	work	the	party's	predecessor	in	interest	had	or
could	give	under	the	previous	paragraph,	plus	a	right	to	possession	of	the
Corresponding	Source	of	the	work	from	the	predecessor	in	interest,	if	the
predecessor	has	it	or	can	get	it	with	reasonable	efforts.

You	may	not	impose	any	further	restrictions	on	the	exercise	of	the	rights	granted
or	affirmed	under	this	License.	For	example,	you	may	not	impose	a	license	fee,
royalty,	or	other	charge	for	exercise	of	rights	granted	under	this	License,	and	you
may	not	initiate	litigation	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)
alleging	that	any	patent	claim	is	infringed	by	making,	using,	selling,	offering	for
sale,	or	importing	the	Program	or	any	portion	of	it.

11.	Patents.

A	“contributor”	is	a	copyright	holder	who	authorizes	use	under	this	License	of
the	Program	or	a	work	on	which	the	Program	is	based.	The	work	thus	licensed	is

called	the	contributor's	“contributor	version”.

A	contributor's	“essential	patent	claims”	are	all	patent	claims	owned	or
controlled	by	the	contributor,	whether	already	acquired	or	hereafter	acquired,
that	would	be	infringed	by	some	manner,	permitted	by	this	License,	of	making,
using,	or	selling	its	contributor	version,	but	do	not	include	claims	that	would	be
infringed	only	as	a	consequence	of	further	modification	of	the	contributor
version.	For	purposes	of	this	definition,	“control”	includes	the	right	to	grant
patent	sublicenses	in	a	manner	consistent	with	the	requirements	of	this	License.

Each	contributor	grants	you	a	non-exclusive,	worldwide,	royalty-free	patent
license	under	the	contributor's	essential	patent	claims,	to	make,	use,	sell,	offer
for	sale,	import	and	otherwise	run,	modify	and	propagate	the	contents	of	its
contributor	version.

In	the	following	three	paragraphs,	a	“patent	license”	is	any	express	agreement	or
commitment,	however	denominated,	not	to	enforce	a	patent	(such	as	an	express
permission	to	practice	a	patent	or	covenant	not	to	sue	for	patent	infringement).
To	“grant”	such	a	patent	license	to	a	party	means	to	make	such	an	agreement	or
commitment	not	to	enforce	a	patent	against	the	party.

If	you	convey	a	covered	work,	knowingly	relying	on	a	patent	license,	and	the
Corresponding	Source	of	the	work	is	not	available	for	anyone	to	copy,	free	of
charge	and	under	the	terms	of	this	License,	through	a	publicly	available	network
server	or	other	readily	accessible	means,	then	you	must	either	(1)	cause	the
Corresponding	Source	to	be	so	available,	or	(2)	arrange	to	deprive	yourself	of
the	benefit	of	the	patent	license	for	this	particular	work,	or	(3)	arrange,	in	a
manner	consistent	with	the	requirements	of	this	License,	to	extend	the	patent
license	to	downstream	recipients.	“Knowingly	relying”	means	you	have	actual
knowledge	that,	but	for	the	patent	license,	your	conveying	the	covered	work	in	a
country,	or	your	recipient's	use	of	the	covered	work	in	a	country,	would	infringe
one	or	more	identifiable	patents	in	that	country	that	you	have	reason	to	believe
are	valid.

If,	pursuant	to	or	in	connection	with	a	single	transaction	or	arrangement,	you
convey,	or	propagate	by	procuring	conveyance	of,	a	covered	work,	and	grant	a
patent	license	to	some	of	the	parties	receiving	the	covered	work	authorizing
them	to	use,	propagate,	modify	or	convey	a	specific	copy	of	the	covered	work,
then	the	patent	license	you	grant	is	automatically	extended	to	all	recipients	of	the

covered	work	and	works	based	on	it.

A	patent	license	is	“discriminatory”	if	it	does	not	include	within	the	scope	of	its
coverage,	prohibits	the	exercise	of,	or	is	conditioned	on	the	non-exercise	of	one
or	more	of	the	rights	that	are	specifically	granted	under	this	License.	You	may
not	convey	a	covered	work	if	you	are	a	party	to	an	arrangement	with	a	third
party	that	is	in	the	business	of	distributing	software,	under	which	you	make
payment	to	the	third	party	based	on	the	extent	of	your	activity	of	conveying	the
work,	and	under	which	the	third	party	grants,	to	any	of	the	parties	who	would
receive	the	covered	work	from	you,	a	discriminatory	patent	license	(a)	in
connection	with	copies	of	the	covered	work	conveyed	by	you	(or	copies	made
from	those	copies),	or	(b)	primarily	for	and	in	connection	with	specific	products
or	compilations	that	contain	the	covered	work,	unless	you	entered	into	that
arrangement,	or	that	patent	license	was	granted,	prior	to	28	March	2007.

Nothing	in	this	License	shall	be	construed	as	excluding	or	limiting	any	implied
license	or	other	defenses	to	infringement	that	may	otherwise	be	available	to	you
under	applicable	patent	law.

12.	No	Surrender	of	Others'	Freedom.

If	conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or
otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not	excuse	you
from	the	conditions	of	this	License.	If	you	cannot	convey	a	covered	work	so	as
to	satisfy	simultaneously	your	obligations	under	this	License	and	any	other
pertinent	obligations,	then	as	a	consequence	you	may	not	convey	it	at	all.	For
example,	if	you	agree	to	terms	that	obligate	you	to	collect	a	royalty	for	further
conveying	from	those	to	whom	you	convey	the	Program,	the	only	way	you	could
satisfy	both	those	terms	and	this	License	would	be	to	refrain	entirely	from
conveying	the	Program.

13.	Use	with	the	GNU	Affero	General	Public	License.

Notwithstanding	any	other	provision	of	this	License,	you	have	permission	to	link
or	combine	any	covered	work	with	a	work	licensed	under	version	3	of	the	GNU
Affero	General	Public	License	into	a	single	combined	work,	and	to	convey	the
resulting	work.	The	terms	of	this	License	will	continue	to	apply	to	the	part	which
is	the	covered	work,	but	the	special	requirements	of	the	GNU	Affero	General

Public	License,	section	13,	concerning	interaction	through	a	network	will	apply
to	the	combination	as	such.

14.	Revised	Versions	of	this	License.

The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of	the
GNU	General	Public	License	from	time	to	time.	Such	new	versions	will	be
similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to	address	new
problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program	specifies
that	a	certain	numbered	version	of	the	GNU	General	Public	License	“or	any	later
version”	applies	to	it,	you	have	the	option	of	following	the	terms	and	conditions
either	of	that	numbered	version	or	of	any	later	version	published	by	the	Free
Software	Foundation.	If	the	Program	does	not	specify	a	version	number	of	the
GNU	General	Public	License,	you	may	choose	any	version	ever	published	by	the
Free	Software	Foundation.

If	the	Program	specifies	that	a	proxy	can	decide	which	future	versions	of	the
GNU	General	Public	License	can	be	used,	that	proxy's	public	statement	of
acceptance	of	a	version	permanently	authorizes	you	to	choose	that	version	for
the	Program.

Later	license	versions	may	give	you	additional	or	different	permissions.
However,	no	additional	obligations	are	imposed	on	any	author	or	copyright
holder	as	a	result	of	your	choosing	to	follow	a	later	version.

15.	Disclaimer	of	Warranty.

THERE	IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE
STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER
PARTIES	PROVIDE	THE	PROGRAM	“AS	IS”	WITHOUT	WARRANTY	OF
ANY	KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY
AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS	TO
THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH	YOU.
SHOULD	THE	PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE

COST	OF	ALL	NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

16.	Limitation	of	Liability.

IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR	AGREED
TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER
PARTY	WHO	MODIFIES	AND/OR	CONVEYS	THE	PROGRAM	AS
PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR	DAMAGES,	INCLUDING
ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR	CONSEQUENTIAL
DAMAGES	ARISING	OUT	OF	THE	USE	OR	INABILITY	TO	USE	THE
PROGRAM	(INCLUDING	BUT	NOT	LIMITED	TO	LOSS	OF	DATA	OR
DATA	BEING	RENDERED	INACCURATE	OR	LOSSES	SUSTAINED	BY
YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF	THE	PROGRAM	TO
OPERATE	WITH	ANY	OTHER	PROGRAMS),	EVEN	IF	SUCH	HOLDER	OR
OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGES.

17.	Interpretation	of	Sections	15	and	16.

If	the	disclaimer	of	warranty	and	limitation	of	liability	provided	above	cannot	be
given	local	legal	effect	according	to	their	terms,	reviewing	courts	shall	apply
local	law	that	most	closely	approximates	an	absolute	waiver	of	all	civil	liability
in	connection	with	the	Program,	unless	a	warranty	or	assumption	of	liability
accompanies	a	copy	of	the	Program	in	return	for	a	fee.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Programs

If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest	possible	use
to	the	public,	the	best	way	to	achieve	this	is	to	make	it	free	software	which
everyone	can	redistribute	and	change	under	these	terms.

To	do	so,	attach	the	following	notices	to	the	program.	It	is	safest	to	attach	them
to	the	start	of	each	source	file	to	most	effectively	state	the	exclusion	of	warranty;
and	each	file	should	have	at	least	the	“copyright”	line	and	a	pointer	to	where	the
full	notice	is	found.

				<one	line	to	give	the	program's	name	and	a	brief	idea	of	what	it	does.>

				Copyright	(C)	<year>		<name	of	author>

				This	program	is	free	software:	you	can	redistribute	it	and/or	modify

				it	under	the	terms	of	the	GNU	General	Public	License	as	published	by

				the	Free	Software	Foundation,	either	version	3	of	the	License,	or

				(at	your	option)	any	later	version.

				This	program	is	distributed	in	the	hope	that	it	will	be	useful,

				but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of

				MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.		See	the

				GNU	General	Public	License	for	more	details.

				You	should	have	received	a	copy	of	the	GNU	General	Public	License

				along	with	this	program.		If	not,	see	<http://www.gnu.org/licenses/>.

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	does	terminal	interaction,	make	it	output	a	short	notice	like	this
when	it	starts	in	an	interactive	mode:

				<program>		Copyright	(C)	<year>		<name	of	author>

				This	program	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type	`show	w'.

				This	is	free	software,	and	you	are	welcome	to	redistribute	it

				under	certain	conditions;	type	`show	c'	for	details.

The	hypothetical	commands	`show	w'	and	`show	c'	should	show	the	appropriate
parts	of	the	General	Public	License.	Of	course,	your	program's	commands	might
be	different;	for	a	GUI	interface,	you	would	use	an	“about	box”.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	school,	if
any,	to	sign	a	“copyright	disclaimer”	for	the	program,	if	necessary.	For	more
information	on	this,	and	how	to	apply	and	follow	the	GNU	GPL,	see
<http://www.gnu.org/licenses/>.

The	GNU	General	Public	License	does	not	permit	incorporating	your	program
into	proprietary	programs.	If	your	program	is	a	subroutine	library,	you	may
consider	it	more	useful	to	permit	linking	proprietary	applications	with	the
library.	If	this	is	what	you	want	to	do,	use	the	GNU	Lesser	General	Public
License	instead	of	this	License.	But	first,	please	read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Structure	Of	A	PPL-File
If	you	have	used	OpenHoldem	in	the	past	you	will	know	that	you	have	to	answer
several	questions:	Shall	I	go	allin?	Shall	I	raise?	Shall	I	call?	And	if	you	answer
all	questions	with	no	then	OpenHoldem	will	fold.	That	is	one	approach	and	it
clearly	has	some	pros.	But	most	poker-playing	people	and	non-programers	will
find	a	different	approach	more	easy:	What	shall	I	do	in	this	situation?	And	that’s
exactly	how	OpenPPL	works.

Simple	When	Conditions	With	Actions

The	most	simple	way	to	code	a	bot	consists	of	a	series	of	conditions	followed	by
actions	to	be	chosen.

WHEN	HaveFlushDraw	AND	AmountToCall	<	1/3	PotSize	Call	FORCE

These	conditions	are	always	evaluated	top-down.	Once	the	first	condition	is	true,
the	appropriate	action	will	be	taken.	Always!	-	so	the	order	of	programming
matters.	Let’s	assume,	that	you	want	to	call	your	flushdraws,	but	raise	to	10bb
your	nut-flushdraws	(expert-strategy	2012).	Then	you	will	have	to	write	your
commands	in	the	following	order:

WHEN	HaveNutFlushDraw	RaiseTo	10	FORCE

WHEN	HaveFlushDraw	Call	FORCE

Do	it	the	other	way	and	your	nut-flush-draw	would	trigger	the	rule	for	normal
flush-draws.	A	call	would	be	the	result.	As	a	consequence	of	this	top-down-
evaluation	we	recommend	you	deal	with:

strong	hands	first,	special	cases	first
weak	hands	last,	general	cases	last

The	bot	simply	does	not	know	if	one	rule	is	“more	special”	or	“more	important”
—	you	have	to	tell	it	by	your	coding	order.
If	you	wonder	about	the	keyword	force:	it	was	inherited	from	Shanky-PPL	and
means,	that	it	overwrites	the	default	bot	(without	Force).	Though	we	don’t
provide	a	default	bot	and	don’t	think,	that	user-defined	actions	should	be	ignored
if	they	lack	the	FORCE,	we	kept	this	keyword	to	stay	compatible	and	because	it
is	nice	to	read	(syntactical	sugar).

Open-Ended	When	Conditions

Programming	your	bot	with	when-conditions	alone	will	—	in	principle	---	do	the
job,	but	there	will	be	lots	of	situations	that	are	very	similar.

WHEN	hand$AT	AND	StillToAct	=	2	AND	Raises	=	1	AND	AmountToCall	<=	4	RaisePot	FORCE

WHEN	hand$AT	AND	StillToAct	=	2	AND	Raises	=	1	AND	AmountToCall	>	4		Fold	FORCE

WHEN	hand$AT	AND	StillToAct	=	2	AND	Raises	=	2	...

Here	one	part	of	the	condition	gets	repeated:

WHEN	hand$AT	AND	StillToAct	=	2

For	more	sophisticated	profiles	this	would	be	lots	of	code	to	write,	lots	of	code
to	evaluate	and	a	true	nightmare	to	change	once	you	want	to	improve	it.	So
OpenPPL	provides	two	kinds	of	conditions:	top-level	conditions	without	actions
(called	“open-ended	when-conditions”)	and	simple	“when	conditions	with
actions”	like	explained	above.
Once	the	first	open-ended-when-condition	is	located	all	following	“normal”
when-conditions	are	bound	to	that	condition	and	only	evaluated	when	the	open-
ended	when-condition	is	true.	So	you	could	rewrite	the	example	above	like	that:

WHEN	hand$AT	AND	StillToAct	=	2

				WHEN	Raises	=	1	AND	AmountToCall	<=	4	RaisePot	FORCE

				WHEN	Raises	=	1	AND	AmountToCall	>	4	Fold	FORCE

				WHEN	Raises	=	2	...

WHEN	hand$A9	AND	StillToAct	=	2

				...

Each	open-ended	when-condition	is	active	until	the	next	open-ended	when-
condition	is	found.	In	the	example	above:

WHEN	hand$A9	AND	StillToAct	=	2

To	terminate	all	your	open-ended	when-conditions	just	write:

When	Others

				...

				When	Others	Fold	Force

Coding	this	way	makes	your	code	smaller,	more	easy	to	read	and	more	easy	to
change.	However:	some	people	would	like	to	take	code-structuring	to	extremes
and	use	multiple	nested	open-ended	when-conditions	like	below:

WHEN	hand$AT

				WHEN	StillToAct	=	2

								WHEN	Raises	=	1

												WHEN	(AmountToCall	<=	4)	RaisePot	FORCE

												WHEN	(AmountToCall	>	4)	Fold	FORCE

								WHEN	Raises	=	2

												WHEN...

In	principle	this	is	a	good	idea,	but	it	does	not	work.	Simply	because	there	is	no
way	to	tell,	where	one	open-ended	when-condition	ends	and	where	the	next	one
starts.	So	the	semantics	would	be	completely	undefined	(it	is	in	fact	not,	but	it	is
for	sure	not	what	you	want).	Sure	you	could	argue	about	indentation,	but	spaces
have	no	meaning	in	most	programming	languages	(except	good	old	Fortran	77)
and	everybody	does	it	differently.	So	let’s	restate:	There	is	at	most	one	level	of
open-ended	when-conditions	(without	action),	each	one	bound	to	a	sequence	of
when-conditions	with	actions.	If	you	want	to	structure	your	code	even	more	(a
very	good	idea!)	then	we	recommend	to	look	at	the	chapter	“Building	Symbols
On	Your	Own”.

Controlflow	of	Open-Ended	When-Conditions

Structure	Of	A	PPL-File

Once	you	understand	how	when-conditions	work,	programming	your	first	bot
becomes	easy	and	straightforward:	you	just	have	to	provide	a	sequence	of	when-
conditions	for	Preflop,	Flop,	Turn	and	River.	These	4	main	code-sections	are
named	f$preflop..f$river,	because	that’s	how	user-defined	OpenHoldem	symbols
get	named	and	from	a	technical	point	of	view	these	code-sections	are	functions.

##f$preflop##

				//	This	is	a	comment

				//	Your	code	belongs	here.

				WHEN	hand$AA	RaiseMax	FORCE	

				WHEN	hand$KK	...

	 ...

				WHEN	Others	Fold	FORCE

##f$flop##

##f$turn##

##f$river##

Unspecified	Return	Values

People	who	create	complete	profiles	usually	add

WHEN	Others

			WHEN	Others	Fold	FORCE

to	the	end	of	every	code-section.	But	it	does	not	hurt	if	you	don’t	so.	If	no
condition	matches	the	situation	OpenHoldem	will	automatically	continue	to
evaluate	the	built-in	default-not	(Gecko).	If	no	default-bot	is	present	(you	may
safely	delete	it)	then	OpenHoldem	will	evaluate	functions	without	a	return-value
to	zero,	which	is	also	the	encoding	for	false,	and	also	for	check/fold.

More	Advanced	Coding

Coding	sequences	of	when-conditions	is	very	easy	and	intuitive,	however	there
is	one	big	disadvantage:	poker	is	a	somewhat	complex	game	and	there	are
countless	situations	to	consider.	So	these	code-blocks	can	become	rather	large	—
too	large	for	a	sane	human	mind.	But	of	course	there	is	a	solution:	OpenPPL
supports	structured	coding,	namely:

user-defined	hand-lists
user-defined	symbols,	i.e.	named	functions,	that	get	defined	once	and	can
be	used	at	multiple	places.

Both	of	them	are	very	useful,	but	a	little	bit	“advanced”	and	not	standard
Shanky-PPL.	So	we	discuss	them	in	later	chapters	of	this	manual.

Hand	And	Board	Expressions
Hand	expressions

One	of	the	most	important	decisions	of	the	game	happens	preflop:	shall	I	play
this	hand	and	how?	This	decision	can	be	coded	with	the	self-explanatory	hand-
expression,	like	in	the	example	below:

WHEN	hand$AA	RaiseMax	FORCE

WHEN	hand$AQSuited	OR	hand$AJSuited	RaiseTo	3	FORCE

WHEN	hand$22	OR	hand$33	OR	hand$44...	Call	FORCE

AK	does	include	both	AKs	and	AKo.	So	if	you	want	to	play	suited	hands
differently	you	should	code	them	first,	as	OpenPPL	gets	evaluated	top	down.	It
will	stop	at	the	first	condition	that	matches	(evaluates	to	true).	So	always
remember:	strong	hands	first,	exceptions	first,	bad	hands	later.

Coding	For	Specific	Suits

If	you	want	you	can	also	code	for	specific	suits,	like	an	ace	of	diamonds	in	your
hand.	This	is	rarely	necessary,	but	was	used	in	the	past	(before	real
randomization	was	introduced	to	Standard	PPL)	to	randomize	actions.

WHEN	hand$AcQd	Or	hand$JhTs	...

//	Randomize	your	Action,	the	old	way

WHEN	hand$AdT	RaiseTo	10	FORCE

WHEN	hand$AT	Call	FORCE

But	be	careful	with	the	code	below:

WHEN	hand$AKs...

It	means:	any	ace	and	king	of	spades,	but	not	AK	suited

Board	Expressions

A	lot	of	the	game	also	depends	on	the	board	cards.	There	are	symbols	like
“HaveStraightDraw”	or	“FlushPossibleOnTurn“,	but	for	some	cases	might	not
be	concrete	enough.	Therefore	it	is	possible	to	specify	board-states	similar	to	the
above:

//	Calling,	if	any	ace	is	on	the	board

WHEN	board$A	Call	FORCE

//	Raising,	if	there	is	a	low	pair	on	board

WHEN	board$22	OR	board$33	OR	board$44...	RaiseTo	10	FORCE

//	Raising,	if	there	are	A	and	T	of	the	same	suit

WHEN	board$AT	SUITED	RaisePot	FORCE

You	see,	this	is	pretty	straightforward,	but	sometimes	lots	of	code	to	write.	If	you
want	to	create	code	that	is	easy	to	understand,	easy	to	reuse	and	easy	to
maintain,	then	you	should	encapsulate	expressions	like	the	second	one	in
functions	(place	it	within	its	own	function):

##f$LowPairOnBoard##

				WHEN	board$22	OR	board$33	OR	board$44...	RETURN	TRUE

User-defined	variables	would	also	be	possible,	but	they	are	not	nearly	as	good	as
functions.

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-01-
04T12:29:51.515000

http://elyxer.nongnu.org/

Actions
The	main	code	sections	of	Open-PPL	consist	of	when-conditions	with	actions.
They	look	e.g.	like	this:

##f$preflop##

//	Openraising	on	the	button

WHEN	(Raises	=	0	and	Calls	=	0	and	StillToAct	=	2)

				//	Normal	openraises

				WHEN	((Hand$AA)	or	(Hand$KK)...)	RaiseTo	3	FORCE

				//	Pushing	according	to	Sklanky

				WHEN	(StackSize	<	20	and	((Hand$...)	OR	...))	RaiseMax	FORCE

OpenPPL	provides	3	kinds	of	actions:

Fixed	Actions

Examples	look	like

BetMax	FORCE

RaiseMax	FORCE

Allin	FORCE								//	synonym	for	BetMax	and	RaiseMax,	but	no	standard	PPL

BetPot	FORCE

RaisePot	FORCE

BetThreeFourthPot	FORCE

RaiseThreeFourthPot	FORCE

BetTwoThirdPot	FORCE

RaiseTwoThirdPot	FORCE

BetHalfPot	FORCE

RaiseHalfPot	FORCE

BetThirdPot	FORCE

RaiseThirdPot	FORCE

BetFourthPot	FORCE

RaiseFourthPot	FORCE

Bet	FORCE										//	min-bet	(fixed	limit)

Raise	FORCE								//	min-raise	(fixed	limit)

BetMin	FORCE

RaiseMin	FORCE

Call	FORCE

Check	FORCE

Fold	FORCE

Beep	FORCE									//	beep,	but	don’t	act

Contrary	to	standard	PPL	OpenPPL	does	not	distinguish	bets	and	raises.
OpenHoldem	treats	them	exactly	the	same	way.
Please	note:	SitOut	is	no	longer	a	supported	action.	In	our	opinion	it	is	beneficial
to	separate	playing	logic	and	hopper	logic.	Therefore	OpenHoldem	provides
some	hopper-functionality,	especially	the	functions	f$sitin,	f$sitout,	f$leave	and
f$close.
Please	also	note:	fixed	actions	are	functions	from	a	technical	point	of	view,
therefore	they	are	case-sensitive.

Actions	With	Fixed	Betsize

Examples	look	like

RaiseTo	3.5	FORCE

or

RaiseBy	2.5	FORCE

RaiseTo	specifies	your	final	betsize,	RaiseBy	specifies	the	amount	you	want	to
add	to	the	aggressors	bet-amount.

Actions	With	Relative	Betsize

Examples	look	like

RaiseBy	70%	FORCE

Here	the	betsize	gets	measured	as	a	certain	percentage	of	the	pot	(pot	=	common
pot	+	all	players	bets	+	the	amount	to	call).	Potsized	bets	are	always	RaiseBy.

Using	Expressions	For	The	Bet-Amount

Let’s	assume	you	want	to	raise	to	3	bb	in	an	unraised	pot,	plus	1	bb	for	each
caller.	With	standard	PPL	this	would	result	in	clumsy	code.	But	with	OpenPPL
you	can	simply	write:

WHEN	(Raises	=	0)	RaiseTo	(3	+	Calls)	FORCE

If	you	want	you	could	take	this	to	extremes	and	write	good	code	like	the
following:

##f$MyFavouriteBetsizeForDryBoards##

				...

WHEN	(...)	RaiseTo	f$MyFavouriteBetsizeForDryBoards	FORCE

Being	strict:	using	“FORCE”

Every	action	in	OpenPPL	has	to	be	terminated	by	the	keyword	“FORCE”.	For
standard	PPL	this	keyword	was	optional.	If	you	left	it	out,	it	meant,	that	the	bot
continued	to	evaluate	and	finally	fell	back	to	the	default	logic.	We	deviated	from
that	behaviour,	as:

in	our	opinion	it	does	not	make	any	sense	to	specify	actions	that	have	no
effect.
OpenPPL	does	not	provide	a	default	bot.

Quickfolding	bad	hands

Most	poker-sites	provide	pre-action-buttons	to	act	before	it	is	your	turn.
Especially	useful	is	the	prefold-button	that	makes	it	possible	to	click	bad	hands
away	and	forget	about	them.	Being	able	to	click	this	button	with	your	bot	has	at
least	two	positive	effects:	more	human-like	behaviour	and	playing	more	hands
per	hour	due	to	faster	actions	.	Nothing	could	be	more	easy:

##f$prefold##

	 WHEN	AmountToCall	>	0	AND	(hand$32	OR	hand$43	OR	...)	Return	True	FORCE

Be	aware	of	potentially	unstable	game-states!

Please	note:

prefold	gets	evaluated	when	it	is	not	your	turn.	Therefore	it	might	happen
that	OpenHoldem	takes	a	screenshot,	evaluates	and	acts	while	the	casino
updates	its	table-display	and	the	game-state	is	unstable.	“Garbage	in	—
garbage	out”	will	happen.	Now	let’s	assume	you	have	some	super-nitty	bot:

##f$prefold##

				WHEN	(NOT	((Hand$AA)	OR	(Hand$KK)))	Fold	FORCE

	
”Fold	when	I	don’t	have	a	good	hand”.	But	here	your	good	hand	can	not	get
recognized	because	your	aces	get	only	displayed	partially.	Your	bot	would
fold	pocket	aces!	To	avoid	problems	like	that	it	is	recommend	to	code	more
fail-safe	like	in	the	first	example:	“Fold	when	I	have	a	bad	hand”.	It	won’t
hurt	that	much	if	that	command	failed	and	worked	only	on	the	next	heart-
beat-cycle.
There	are	even	more	consequences	of	potentially	unstable	frames:
OpenPPL	does	its	main	calculations	when	it	is	your	turn.	Especially	some

more	complex	symbols	which	depend	on	the	history	of	the	game	get
updated	only	when	we	have	stable	frames	to	guarantee	their	correctness	—
RaisesSinceLastPlay	or	LastCallerPosition	are	examples.	As	a	consequence
these	symbols	will	simply	be	undefined	before	your	first	action	preflop.
Therefore	it	is	recommended	to	be	extra	careful	about	the	GIGO-principle
and	stick	to	the	most	basic	symbols	only.	But	this	is	not	too	hard	for
prefold,	is	it?

Backup	actions

It	may	happen,	that	a	certain	action	is	not	available,	e.g.	you	might	want	to	raise
by	half	the	pot,	but	this	is	currently	not	possible,	e.g.	because	your	opponent
made	a	large	raise	and	half-pot	would	be	less	than	the	minimum.	In	such
situations	OpenPPL	behaves	in	the	following	ways:

betsize	invalid	(too	less	or	too	much	(PotLimit	or	more	than	your	balance)):
betsize	gets	automatically	adapted.	This	happens	also	to	actions	like
RaisePot	and	RaiseHalfPot,	that	get	executed	with	the	f$betsize-function.
action	can’t	be	executed,	because	it	is	not	possible,	e.g.	there	might	be	no
raise-button,	because	you	can	only	call	(allin)	or	fold.	Here	OpenPPL
behaves	in	the	following	way:

RaisePot	if	RaiseMax	is	not	possible
Raise(Min)	if	RaisePot	or	RaiseHalfPot	is	not	possible
Call	if	no	Raise	is	possible
Check	if	no	Call	is	possible
Fold	if	no	Check	is	possible	(default	behaviour	of	OpenHoldem).

This	deviates	from	standard	PPL	again.	However	we	have	the	following
reasons:

OpenHoldem	evaluates	its	technical	functions	in	the	order	above	(for
details	please	refer	to	the	OpenHoldem	Manual).
we	believe,	it	is	better	to	behave	in	a	more	conservative	way	if	an	error
occurs.	Most	probably	you	don’t	want	to	push	allin	if	you	specify
RaiseHalfPot	as	your	desired	action.	With	a	min-raise	you	are
probably	more	happy	(or	less	unhappy).

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-12-
07T18:31:26.437000

http://elyxer.nongnu.org/

Handlists
OpenHoldem	supports	preflop	handlists	to	simplify	preflop	coding.
You	can	name	handlists	what	you	like,	but	handlist	names	need	to	start	with	the
word	“list”.

##list007##

				//	Allin-range	against	crazy	maniacs

				AA	KK	QQ	JJ	TT	99							//	Pairs

				AKs	AQs	AJs	ATs	KQs					//	Suited	hands

				AKo	AQo	AJo													//	Offsuited	hands	

##list0fTr4sh1w4ntT0C4ll##

				72o	32o

After	that	you	can	use	your	custom	handlist	symbol	like	this:

WHEN	(Opponents	=	1	AND	userManiacFourBetsMe	AND	list007	RaiseMax	FORCE

There	is	no	limit	to	the	number	of	lists	you	can	define	and	you	can	use	any	name
you	want.	Indeed	it	is	recommended	that	you	choose	verbose	names	that	speek
for	themselves.

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2014-12-
12T08:54:20.061000

http://elyxer.nongnu.org/

Mathematical	Expressions
Of	course	OpenPPL	supports	arbitary	complex	mathematical	expressions.	As	an
example	let	us	consider	odds	and	outs.

//	Calling	according	to	odds	and	outs

WHEN	AmountToCall	/	(AmountToCall	+	PotSize)	>	Outs	/	CardsLeft	Call	FORCE

Off	course	this	example	is	a	bit	simplistic.	It	does	not	consider	other	players	in
the	pot,	implied	odds	on	future	streets,	the	chance	to	semi-bluff,	etc.	But	I	think
you	get	the	point.
The	following	operators	are	supported:

Equality	Operators

Operator Meaning Example Example	explained
= equal StillToAct	=	2 true,	if	you	are	on	the	button
!= not	equal Position	!=	First true,	if	you	are	not	out	of

position
< smaller AmountToCall	<	5 true,	if	there	are	less	than	5	big

blinds	to	call
> larger PotSize	>	20 true,	if	the	pot	is	larger	than	20

big	blinds
<= smaller	or

equal
AmountToCall	<=	5 true,	if	there	are	less	than	or

equal	to	5	big	blinds	to	call
>= larger	or

equal
PotSize	>=	20 true,	if	the	pot	contains	20	or

more	big	blinds

Logical	Operators

The	logical	operators	“and”,	“or”,	and	“not”	should	be	pretty	self-explanatory.
Operator Example
Not WHEN	(HaveNothing	AND	OpponentsLeft	>=	2	AND	NOT

BotIsLastRaiser)	Check	FORCE
And WHEN	(BotIsLastRaiser	AND	OpponentsLeft	=	1	AND	Bets	=	0

And	...	BetHalfPot	FORCE)
XOr Meaning:	either	or,	which	is	true,	if	exactly	one	of	the	operands	is

true,	but	not	both
Or WHEN	(hand$AA	OR	hand$KK)	RaiseMax	FORCE
Negation	(Not)	has	highest	priority	of	all	operators,	thereafter	follow	And,	XOr
and	OR	in	decreasing	order.	So	if	you	want	to	write	an	expression	like

WHEN	AmountToCall	<=	4	AND	(hand$22	OR	hand$33...))

you	have	to	throw	in	some	extra	brackets,	otherwise	the	bot	will	call	with	33	any
bet	and	that	is	probably	not	what	you	want.	More	complicated	expressions
sometimes	lead	to	confusion.	If	you	have	a	problem	with	that	you	might	want	to
revisit	the	basics	of	mathematical	logic	and	the	“Laws	of	De	Morgan”.

Arithmetical	Operators

OpenPPL	also	supports	basic	arithmetic.	The	usual	rules	apply	of	course.	The
percentage-operator	has	the	same	priority	like	multiplication	and	division,	which
is	higher	than	addition,	subtraction.
Operator Meaning Example
+ addition
- subtraction
* multiplication
/ division
% Percentage-

operator
WHEN	(AmountToCall	<=	50%	PotSize)	Call
FORCE

Mod Modulus-operator

Bitwise	Operators	(for	Experts)

Furthermore	OpenPPL	supports	bitwise	operations	that	work	on	all	single	bits	of
bit-vectors	or	binary	numbers	simultaneously.	They	are	useful	for	very	low-
level-stuff	like	detecting	which	chairs	are	seated	with	OpenHoldem’s	bitwise
symbols	(playersseatedbits,	playersdealtbits,	etc.).	Most	players	won’t	ever	need
these	symbols,	so	we	will	only	give	you	a	link	to	a	good	explanation	here:
http://en.wikipedia.org/wiki/Bitwise_operation
Operator
BitAnd
BitCount
BitNot
BitOr
BitXOr

http://en.wikipedia.org/wiki/Bitwise_operation

User-Defined	Variables
Most	probably	you	need	some	game-history	to	take	your	decision;	then	you	will
find	symbols	like	NoBettingOnFlop	and	OpenHoldem’s	history	symbols	and
they	will	be	useful	for	a	good	portion	os	use-cases,	but	identifying	very	special
situations	afterwards	only	with	the	built-in	symbols	might	be	hard	or	even
impossible.	So	wouldn’t	it	be	helpful	if	you	could	remember	what	happened	in
the	game?	Of	course	you	can	-	with	user-defined	variables.	Let’s	take	a	small
example.
User-defined	variables	need	to	be	prefixed	with	the	word	“user”,	and	the	word
Set	when	you	give	them	a	value.

WHEN	FirstCallerPosition	=	9	Set	user_UTG_Was_Limping

As	you	see,	there’s	the	Set	command	and	after	it	there	is	a	user-defined
variable	instead	of	an	action	after	a	condition,	but	no	keyword	force.
Whenever	OpenPPL	/	OpenHoldem	sees	such	a	construct	it	evaluates	the
when-condition.	If	the	condition	is	true,	OpenHoldem	sets	the	user-variable
to	true	and	continues	with	the	evaluation,	until	it	finds	a	true	condition	with
an	action.
All	user-defined	variables	start	with	false	(0).	Once	you	set	them	they
become	true	(or	1,	which	is	technically	the	same).
User-defined	variables	keep	their	value	for	the	current	hand	and	can’t	be
reset	back	by	the	user.	But	when	the	hand	is	over	they	get	reset
automatically.
Naming:	every	user-defined	variable	starts	with	the	prefix	“user”,	followed
by	a	sequence	of	characters	[a-zA-Z],	digits	[0-9]	and	underscores	[_].
Querying	the	value	of	a	variable	is	simple:	you	can	use	it	just	like	any	other
symbol	as	part	of	an	expression:

##f$preflop##

				WHEN	Hand$AA	RaiseMax	FORCE	

				WHEN	Hand$KK	Set	userDoesNotKnowWhatToDo	

				WHEN	Hand$QQ	Set	userStartsToCry	

				WHEN	userDoesNotKnowWhatToDo	Call	FORCE	

				WHEN	userStartsToCry	SitOut	FORCE	

				WHEN	Others	Fold	FORCE

Expert	Tricks	(Memory	Symbols)

Do	you	need	variables	that	can	be	set	to	any	arbitrary	value?	Do	you	need
variables	that	can	be	reset	back?	Do	you	need	variables	that	don’t	reset
automatically,	but	keep	their	values	till	the	next	hand	or	even	for	the	complete
session?	There	is	a	solution	for	it	(of	course).	Instead	of	PPL-like	user-variables
it	is	also	possible	to	use	OpenHoldem’s	memory-store-command	(following
example	store	the	decimal	number	3,14..):

WHEN	(...)	Set	me_st_MySecretVariable_3_141592653

and	then	use	it	later	with	OpenHoldem’s	memory-recall-command:

WHEN	(...	me_re_MySecretVariable	...)	...

This	construct	is	a	little	bit	more	mighty,	but	also	contains	some	possible	pitfalls
and	requires	extra	care	by	the	user.

OpenHoldem’s	user-defined	variables	are	case	sensitive.	me_st_x_1	is
something	different	than	me_st_X_1.
No	underscores	allowed	in	the	name	of	the	variable.	Underscores	are	used
to	separate	name	and	value.	(If	you	wonder,	why	underscores	are	allowed	in
simple	user-variables:	because	the	translator	removes	them).
No	automatic	reset.	If	you	need	such	a	reset,	you	could	do	it	e.g.	before
your	first	action	preflop:

##f$preflop##

WHEN	(BotsActionsOnThisRound	=	0)

				WHEN	Others	Set	me_st_MySecretVariable_0

				...

Table	occlusion	reset	the	memory	variables.

May	the	force	be	with	you!

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-09-
29T22:00:19.015000

http://elyxer.nongnu.org/

Building	Symbols	On	Your	Own
The	philosophy	of	(standard)	PPL	is:	provide	poker-logical	symbols,	that	can	be
used	by	any	poker-playing	person,	no	matter	how	much	(or	less)	programming
experience	they	have.	Examples	are	e.g.	MaxOpponentStackSize,
StartingStackSize
However	this	approach	has	some	drawbacks:	it	shifts	all	work	to	the	developers
and	limits	the	users,	who	might	need	additional	symbols	for	their	bot-logic.
Staying	with	the	example	above,	they	might	need:	SmallBlindStacksize,
BigBlindStacksize,	UTGStacksize,	...,	ButtonStacksize,	OpenRaiserStacksize,
LimpRaiserStacksize,	ThreeBetterStacksize,	FlopCheckRaiserStacksize,
TurnDonkerStacksize,	etc.	No	matter	how	busy	the	development	team	is,	they
will	never	be	able	to	satisfy	all	needs.	Therefore	OpenHoldem’s	(and	partially
OpenPPLs)	philosophy	is	slightly	different:	provide	technical	symbols	like
balance0..balance9	(the	stacksizes	for	chair0..chair9)	and	let	the	user	figure	out
the	rest.	This	way	the	end-user	is	far	more	flexible;	however	at	the	cost	of	a	bit
more	work.
As	an	example	we	develop	a	symbol	BigBlindStackSize.	As	a	first	step	we	need
to	know	the	chair	of	the	big	blind.	Then	as	a	second	step	we	will	be	able	to
return	the	stacksize	for	this	chair.	To	solve	the	first	problem	we	use	the
OpenHoldem	symbol	ac_dealposX	which	returns	the	deal-position	of	chair	X.
The	big	blind	is	(with	the	very	rare	exception	of	a	missing	small	blind)	always
the	second	player	to	be	dealt,	so	we	search	for	a	the	chair,	that	got	dealt	as
second	player.

##f$BigBlindChair##

				WHEN	ac_dealpos0	=	2	RETURN	0	FORCE

				WHEN	ac_dealpos1	=	2	RETURN	1	FORCE

				WHEN	ac_dealpos2	=	2	RETURN	2	FORCE

				WHEN	ac_dealpos3	=	2	RETURN	3	FORCE

				WHEN	ac_dealpos4	=	2	RETURN	4	FORCE

				WHEN	ac_dealpos5	=	2	RETURN	5	FORCE

				WHEN	ac_dealpos6	=	2	RETURN	6	FORCE

				WHEN	ac_dealpos7	=	2	RETURN	7	FORCE

				WHEN	ac_dealpos8	=	2	RETURN	8	FORCE

				WHEN	ac_dealpos9	=	2	RETURN	9	FORCE

				//	Other	cases	should	not	happen

				WHEN	Others	RETURN	-1	FORCE

Having	this	information	we	can	continue	with	the	second	step	(the	dull	part).	We
return	the	stacksize	for	the	chair	of	the	big	blind,	making	use	of	OpenHoldem’s
stacksize	symbols	balance0..balance9.	As	you	can	see	it	is	possible	to	use
OpenHoldem	Symbols	in	your	OpenPPL	code.	Of	course	-	we	nearly	forgot	to
mention	it.

##f$BigBlindStacksize##

				WHEN	(f$BigBlindChair	=	0)	RETURN	balance0	FORCE

				WHEN	(f$BigBlindChair	=	1)	RETURN	balance1	FORCE

				WHEN	(f$BigBlindChair	=	2)	RETURN	balance2	FORCE

				WHEN	(f$BigBlindChair	=	3)	RETURN	balance3	FORCE

				WHEN	(f$BigBlindChair	=	4)	RETURN	balance4	FORCE

				WHEN	(f$BigBlindChair	=	5)	RETURN	balance5	FORCE

				WHEN	(f$BigBlindChair	=	6)	RETURN	balance6	FORCE

				WHEN	(f$BigBlindChair	=	7)	RETURN	balance7	FORCE

				WHEN	(f$BigBlindChair	=	8)	RETURN	balance8	FORCE

				WHEN	(f$BigBlindChair	=	9)	RETURN	balance9	FORCE

				//	Other	cases	should	not	happen.

				//	But	if	you	forget	about	"WHEN	Others"

				//	there	always	is	an	implicit	"RETURN	0	FORCE".

				WHEN	Others	RETURN	0	FORCE

You	see:	it	is	not	that	difficult	to	extend	OpenPPL	on	your	own.	The	possibilites
are	nearly	endless.	For	the	moment	we	skipped	some	details,	but	creating	new
symbols	is	self-explaining:	each	new	symbol	starts	with	a	function	header,	that
defines	its	name.	The	name	of	user-defined	symbols	traditionally	begines	with
f$.	For	example	##f$BigBlindStacksize##.	Thereafter	follows	the	function’s
code,	which	usually	is	in	a	sequence	of	(optionally	open-ended)	when-
conditions.	These	when-conditions	usually	define	actions	(in	the	case	of
f$preflop...	f$river)	or	they	contain	return-statements	like	in	the	example	above.
That’s	all.	OpenPPL	is	easy.

Advantages	of	Symbols

In	our	early	versions	of	the	manual	we	didn’t	talk	about	the	advantages	of
structured	code	(especially	functions	AKA	symbols),	because	they	were	too
obvious	for	us.	This	caused	some	confusions	for	newbies.	Symbols	are	great:

to	get	understandable	and	self-documenting	code	(good	naming;
http://en.wikipedia.org/wiki/Information_hiding)
to	get	reusabel	code	(named	code-snippets)
to	get	small	code	(no	code	clones)
to	get	maintainable	code	(change	and	fix	one	location	only)
to	get	fast	code	(because	of	OpenHoldem’s	symbol-caching:	evaluates	only
once,	use	the	value	often)
to	get	readable	log-files	(because	you	see	all	the	symbol-names	and	their
values)
...

So	how	often	should	you	make	use	of	symbols?
All	day.	Everywhere.	As	much	as	possible.	Enjoy	them!

http://en.wikipedia.org/wiki/Information_hiding

OpenPPL	Symbols
Below	you	find	a	list	of	OpenPPL	symbols.	They	are	part	of	the	OpenPPL
function-library,	which	gets	loaded	automatically	when	you	load	OpenHoldem.
Most	of	these	symbols	work	exactly	the	same	way	as	their	PPL	counterparts.
Only	very	few	differ,	mostly	for	technical	reasons,	but	some	of	them	because	we
think	it	is	better	that	way.	These	differences	are	documented	of	course.	You	will
also	find	some	new	symbols,	that	are	not	part	of	standard	PPL;	some
PokerTracker	and	stacksize	symbols	for	example.	However:	we	didn’t
implement	everything	that	is	possible	and	desireable.	More	extensions	are
subject	of	the	next	chapter:	“Building	Symbols	On	Your	Own”.	Who	knows:	if
you	come	up	with	some	good	code,	reasonable	naming	and	a	good	description
your	new	symbols	might	become	part	of	a	future	OpenPPL-release.
Please	note	that	all	oPPL	symbols	are	case	sensitive

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2014-09-
23T13:50:40.366000

http://elyxer.nongnu.org/

BettingAction	Symbols
Name Meaning
AllOpponentsLeftSittingOut True,	if	all	remaining	opponents	are

sitting	out.	This	symbol	is
especially	meant	for	use	in
tournaments

Bets The	number	of	bets	made	by
opponents	this	betting	round,	can
only	be	0	or	1	since	the	2nd	bet	is	a
raise

BigBlindSittingOut True,	if	the	big	blind	is	sitting	out.
This	symbol	is	especially	meant	for
use	in	tournaments

BotCalledBeforeFlop True	if	we	called	preflop
BotCalledOnFlop True	if	we	called	on	the	flop
BotCalledOnTurn True	if	we	called	on	the	turn
BotCalledOnRiver True	if	we	called	on	the	river
BotIsLastRaiser True	if	we	have	the	betting	/	raising

initiative,	i.e	we	were	the	last	raiser
on	the	previous	round

BotRaisedBeforeFlop True	if	we	raised	preflop,	can	also
be	used	preflop

BotRaisedOnFlop True	if	we	bet	or	raised	on	the	flop,
can	also	be	used	on	the	flop

BotRaisedOnTurn True	if	we	bet	or	raised	on	the	turn,
can	also	be	used	on	the	turn

BotsActionsOnFlop Number	of	actions	where	we	put
money	in	the	pot	on	the	Flop

BotsActionsOnThisRound Number	of	actions	this	betting
round	where	we	put	money	in	the
pot

BotsActionsOnThisRoundIncludingChecks Number	of	checks	+	number	of
actions	where	we	put	money	in	the

pot
BotsActionsPreflop Number	of	actions	where	we	put

money	in	the	pot	preflop,	all-ins	are
not	counted	as	the	game	would	then
be	over

BotCheckedPreflop True	if	bot	checked	preflop
BotCheckedOnFlop True	if	bot	checked	on	the	flop
BotCheckedOnTurn True	if	bot	checked	on	the	turn
BotCheckedOnRiver True	if	bot	checked	on	the	river
BotsLastAction Bot’s	last	action,	can	be	one	of	the

following:	None,	Beep,	Raise,	Bet,
Call,	or	Check

BotsLastPreflopAction Bot’s	last	preflop	action,	can	be	one
of	the	following:	None,	Beep,
Raise,	Bet,	Call,	or	Check

BotsLastFlopAction Bot’s	last	flop	action,	can	be	one	of
the	following:	None,	Beep,	Raise,
Bet,	Call,	or	Check

BotsLastTurnAction Bot’s	last	turn	action,	can	be	one	of
the	following:	None,	Beep,	Raise,
Bet,	Call,	or	Check

Calls The	number	of	calls	by	opponents
on	this	betting	round

CallsSinceLastRaise The	number	of	calls	by	all
opponents	since	the	last	raise	by	an
opponent	on	the	current	betting
round

Checks The	number	of	checks	made	by
opponents	this	betting	round

Folds The	number	of	folds	this	betting
round

MissingSmallBlind True,	if	there	is	no	small	blind	in
this	hand,	e.g.	the	player	who	would
have	been	SB	did	bust	in	the
previous	hand.

NoBettingOnFlop True	if	no	bets/raises	were	made	on

the	Flop,	may	also	be	used	on	the
Flop.	Bets	by	hero	are	also	counted

NoBettingOnTurn True	if	no	bets/raises	were	made	on
the	Turn,	may	also	be	used	on	the
Turn,	p.	Bets	by	hero	are	also
counted

NoVillainBetOrRaisedOnFlop No	villan	bet	or	raised	on	Flop.	Bets
by	hero	are	not	counted

NoVillainBetOrRaisedOnTurn No	villan	bet	or	raised	on	Turn.	p.
Bets	by	hero	are	not	counted

NumberOfOpponentsAllin Number	of	opponents	who	raised	or
called	allin.	Range:	0..9.	If	the
amount	to	call	is	equal	to	our	stack
size	and	we	are	headsUp	we
consider	the	villan	as	being	allin.

NumberOfRaisesBeforeFlop The	number	of	raises	before	the
Flop	made	by	opponents

NumberOfRaisesOnFlop The	number	of	raises	on	the	Flop
made	by	opponents.	Bets	don’t
count

NumberOfRaisesOnTurn The	number	of	raises	on	the	Turn
made	by	opponents.	Bets	don’t
count.

OpponentCalledOnFlop An	opponent	called	on	Flop,	and
did	not	raise	or	bet

OpponentCalledOnTurn An	opponent	called	on	Turn,	and
did	not	raise	or	bet

OpponentIsAllin An	opponent	is	all	in,	there	may
still	be	other	players	in	the	hand.	If
the	amount	to	call	is	equal	to	our
stack	size	and	we	are	headsUp	we
consider	the	villan	as	being	allin.

Raises The	number	of	raises	made	by
opponents	this	betting	round.	Bets
don’t	count.

RaisesBeforeFlop True	if	any	opponent	raised	before

the	flop
RaisesOnFlop True	if	any	opponent	raised	on	the

flop.	Bets	don’t	count.
RaisesOnTurn True	if	any	opponent	raised	on	the

turn.	Bets	don’t	count.
RaisesSinceLastPlay The	number	of	raises	since	our	last

action.	Bets	don’t	count
SmallBlindSittingOut True,	if	the	big	small	is	sitting	out.

This	symbol	is	especially	meant	for
use	in	tournaments

Please	note:	OpenPPL	history	counters	like	Raises	and	Calls	need	to	get	updated
exactly	once	per	orbit	when	we	see	stable	input	(i.e.	out	turn).	This	update	gets
executed	after	autoplayer-actions.	Therefore	these	counters	need	an	active
autoplayer	to	work	properly	for	multiple	orbits.

Betsizes	And	Stacksizes
Standard	PPL	is	a	bit	restrictive:	betsizes,	stacksizes	and	potsizes	may	appear
only	on	the	left	or	on	the	right	side	of	comparison	operators	---	please	don’t	ask
us	about	the	exact	rules,	we	forgot	them.	In	OpenPPL	you	can	put	them
anywhere	you	like.

WHEN	(AmountToCall	<	Pi	*	R	*	R)	DANCE	FORCE

It’s	up	to	you,	what	and	how	you	code.
Name Meaning Limitations
AmountToCall The	amount	to	call,

counted	in	bigblinds
None

BetSize The	number	of	big	blinds
bet	by	the	last	aggressor

None

BigBlindSize The	size	of	the	bigblind,
usually	in	dollars

None

MaxStacksizeOfActiveOpponents The	biggest	stack	size
(expressed	in	bblind	and
not	dollars)	of	all
opponents	currently
playing	the	hand.

Could	be	bigger	than	your	balance.	Use
EffectiveMaxStacksizeOfActiveOpponents
to	know	exactly	the	balance	at	risk.

EffectiveMaxStacksizeOfActiveOpponents The	biggest	effective
stack	size	(expressed	in
bblind	and	not	dollars)	of
all	opponents	currently
playing	the	hand.

You	some	opponents	have	more
chips/money	than	you	the	symbol	will
return	the	amout	of	your	balance	to	reflect
how	much	bot	is	risking	in	a	specified
hand.

MaxOpponentStackSize The	biggest	stack	of	all
opponents	(playing	and
not	playing).	measured	in
big	blinds	at	the
beginning	of	the	hand

None
Depends	on	game-history	(game-state	on
your	first	action)

MaxStillToActStackSize The	number	of	big	blinds
in	the	stack	of	the
opponent	with	the	largest
stack	who	has	not	acted

First	action	preflop	only

yet
MinOpponentStackSize The	smallest	stack	of	all

opponents.	(playing	and
not	playing)	measured	in
big	blinds	at	the
beginning	of	the	hand

None
Depends	on	game-history	(game-state	on
your	first	action)

MinStillToActStackSize The	biggest	stack	of	the
opponents	behind	you
(including	SB	and	BB),
measured	in	big	blinds

First	action	preflop	only

OpponentStacksizeHeadsUp Stack	size	of	opponent
when	headsup.	Please
read	Limitations

OpponentStacksizeHeadsUp	return	-1
when	not	valid.	When	using	this	symbol
you	have	to	check	if	the	result	is	>	-1	and
then	make	your	comparison.

PotSize The	current	pot,
including	all	players
bets,	counted	in	big
blinds.	PotSize	returns
effective	pot	size	you	are
participating	in.

None

StackSize Our	current	balance,
counted	in	big	blinds

None

StackSizeAtBeginningOfCurrentRound Our	Stack	Size	at	the
beginning	of	current
betting	round	(StackSize
+
TotalInvestedThisRound)

Valid	on	every	betting	round

StackUnknown Returns	true	if	the
userchair	is	unknown,
false	otherwise.
Introduced	for
compatibility	with
Shanky-PPL

StartingChips Our	balance	at	the	start
of	a	session,	counted	in
“dollars”	This	symbol	is
especially	meant	for

None.

MTTs.
StartingStackSize Our	balance	at	the	start

of	a	session,	counted	in
big	blinds

None
Depends	on	game-history	(game-state	on
your	first	action)

TotalInvested The	money	put	into	the
pot	in	this	hand,	counted
in	big	blinds

None

TotalInvestedThisRound Amount	Invested	in
current	betting	round

None

Board	Symbols
If	a	set	is	on	board,	“PairOnBoard”	is	also	true;	full	houses	do	also	count	as	sets
and	pairs,	made	flushes	as	flushdraws,	etc.	One	of	many	reasons	why	you	should
code	strong	hands	first.
Name Meaning
SecondTopFlopCardPairedOnRiver Synonym	for

SecondTopFlopCardPairedOnRiver
SecondTopFlopCardPairedOnTurn Synonym	for

SecondTopFlopCardPairedOnTurn
AcePresentOnFlop An	ace	is	present	on	Flop
FlushOnBoard The	entire	board	are	the	same	suit
FlushPossible A	flush	is	possible	on	the	current	board

(3	or	more	of	1	suit)
FlushPossibleOnFlop The	entire	Flop	is	one	suit
FlushPossibleOnTurn A	flush	is	possible	on	the	Turn
FourCardsToWheelOnBoard True	if	a	wheel	can	be	made	by	using

only	one	hole	card,	i.e.	if	4	cards	of
A2345	are	on	the	board

FourOfOneSuitOnTurn True	if	only	1	suit	is/was	present	on	the
board	on	the	Turn

FullHouseOnBoard There	is	a	full	house	on	the	board
HighCardOfCommonStraigh Returns	the	value	of	the	highest	card	of	a

shared	straight.	Especially	meant	to
decide	if	we	have	the	shared	nuts	(Ace)
or	if	we	can	beat	the	board

KingPresentOnFlop True,	if	at	least	one	of	the	Flop-cards	is	a
king

LowCardsOnBoard The	number	of	cards	with	the	rank	of	8
or	lower	(ace	is	counted	as	low).
Duplicates	of	one	rank	are	not	counted

MoreThanOneStraightPossibleOnFlop More	than	one	straight	is	possible	on	the
Flop

MoreThanOneStraightPossibleOnTurn There	is/was	more	than	one	way	to	make
a	straight	on	the	Turn

NutsOnBoard True	if	the	best	possible	hand	is	on	the
onboard

OneCardFlushPossible The	board	contains	4	or	5	cards	of	the
same	colour

OneCardStraightFlushPossible Only	one	holecard	is	needed	to	make	a
straightflush

OneCardStraightPossible Only	one	hole	card	is	needed	to	make	a
straight

OneCardStraightPossibleOnTurn A	one	card	straight	is/was	possible	on
the	Turn

Only1OneCardStraightPossible only	one	straight	can	be	made	using	only
one	hole	card	with	the	current	board
cards

OnlyOneStraightPossible Only	one	straight	possible
OvercardsOnBoard The	number	of	common	cards	that	are

higher	than	the	highest	card	in	our	hand
PairOnBoard There	are	at	least	2	cards	of	the	same

rank	on	the	board
PairOnFlop A	pair	is	present	on	the	Flop
PairOnTurn The	board	has	a	pair	on	the	Turn	or	on

the	Flop)
QuadsOnBoard There	are	quads	on	the	board
QueenPresentOnFlop A	queen	is	present	on	the	Flop
RiverCardIsOvercardToBoard The	River	card	is	the	highest	ranked

common	card
RunnerRunnerFlushPossibleAtRiver True	if	a	Runner	Runner	Flush	is

possible	at	the	River
SecondTopFlopCardPairedOnRiver True,	if	the	2nd	highest	Flop	card	paired

on	the	River.	If	the	Flop	is	paired	it	will
be	the	lowest	card.	If	all	ranks	are	equal
quads	at	the	River	will	make	this
function	true.

SecondTopFlopCardPairedOnTurn True,	if	the	2nd	highest	Flop	card	paired
on	the	Turn.	If	the	Flop	is	paired	it	will

be	the	lowest	card.	If	all	ranks	are	equal
quads	at	the	Turn	will	make	this	function
true.

StraightFlushOnBoard Straight	flush	is	on	board
StraightFlushPossible Straight	flush	is	possible
StraightFlushPossibleByOthers A	straight	flush	can	be	made	by	an

opponent	with	regards	to	our	cards
StraightOnBoard The	board	contains	a	straight
StraightPossible Straight	is	possible
StraightPossibleOnFlop A	stright	is	possible	on	the	Flop
StraightPossibleOnTurn A	stright	is	possible	on	the	Turn
SuitsOnBoard The	number	of	different	suits	on	board.

Always	0	Preflop.
SuitsOnFlop The	number	of	different	suits	on	the

Flop.	Always	0	Preflop.
SuitsOnRiver The	number	of	different	suits	on	the

River.	Always	0	Preflop,	at	the	Flop	and
the	Turn.

SuitsOnTurn The	number	of	different	suits	on	the
Turn.	Always	0	Preflop	and	at	the	Flop.

ThreeCardStraightOnBoard There	are	at	least	three	connected	cards
on	the	board

TopFlopCardPairedOnRiver The	card	with	the	highest	rank	on	the
Flop	paired	on	the	River

TopFlopCardPairedOnTurn The	card	with	the	highest	rank	on	the
Flop	paired	on	the	Turn

TripsOnBoard At	least	three	cards	of	the	same	rank	are
present	on	the	board

TripsOnBoardOnTurn At	least	three	cards	of	the	same	rank	is
present	on	the	Turn

TurnCardIsOvercardToBoard The	Turn	card	is	the	highest	ranked
common	card

TurnCardPaired The	card	that	was	dealt	on	the	Turn
paired	on	the	River

TwoOfOneSuitPresentOnFlop True,	if	the	Flop	has	/	had	at	least	2

cards	of	the	same	suit.
TwoPairOnBoard True,	if	the	board	contains	two	pairs
TwoPairOnBoardOnTurn True,	if	the	board	contained	two	pairs	on

Turn
UncoordinatedFlop True,	if	the	Flop	contains/contained	no

pair	on	board,	no	possible	flush,	three
different	suits,	no	possible	straight	and
no	opponent	could	have	7	or	more	outs
to	a	straight

WheelPossible True,	if	a	straight	with	A2345	is	possible

HandStrength	Symbols
If	a	set	is	on	board,	“PairOnBoard”	is	also	true;	full	houses	do	also	count	as	sets
and	pairs,	made	flushes	as	flushdraws,	etc.	Therefore	it	is	a	strongly
recommended	to	code	made	hands	first	(and	strong	made	hands	at	the	very
beginning),	then	weaker	holding	with	positive	potential	and	weaker	draws	at	the
very	last.
Name Meaning
HadOverpairOnFlop Our	pocketpair	is/was	of	higher	rank	than

the	highest	ranked	flop	card
HadOverPairOnTurn Our	pocketpair	is/was	of	higher	rank	than

the	highest	ranked	turn	card
HadPairOnFlop We	had	a	pair	on	the	flop
HadPairOnTurn We	had	a	pair	on	the	turn
HadSetOnFlop We	had	a	Set	on	flop
HadSetOnTurn We	had	a	Set	on	turn
HadTopPairOnFlop Have/had	top	pair	on	flop
HadTopPairOnTurn Have/had	top	pair	on	turn
HadTwoPairOnFlop We	had	two	pair	on	the	flop
HadSecondOverPairOnFlop We	had	2nd	over	pair	on	flop
HadSecondOverPairOnTurn We	had	2nd	over	pair	on	flop
HadSecondTopPairOnFlop We	had	2nd	top	pair	on	flop
HaveSecondBestKicker There	is	only	one	card	that	is	better	than

our	current	kicker
HaveSecondBestKickerOrBetter We	have	the	best	or	second	best	kicker
HaveSecondBestOverPairOrBetter We	have	the	second	best	overpair	(KK)	or

a	stronger	hand
HaveSecondNutFlush We	have	the	second	best	flush	possible
HaveSecondNutFlushDraw We	have	the	second	best	flush	draw
HaveSecondNutStraight We	have	the	second	best	straight	possible
HaveSecondOverPair We	have	a	hole	pair	which	is	between	the

highest	board	card	and	the	2nd	highest
card	rank	on	board

HaveSecondTopPair We	have	the	second	highest	pair
HaveSecondTopSet We	have	the	second	best	set
HaveThirdBestKicker We	have	the	third	best	kicker
HaveThirdBestKickerOrBetter We	have	the	third	best	kicker	or	better
HaveThirdBestOverPairOrBetter We	have	the	third	best	overpair	(QQ)	or	a

better	hand
HaveThirdNutFlush We	have	the	Third	best	flush
HaveThirdNutFlushDraw We	have	the	Third	best	flushdraw
HaveThirdOverPair We	have	a	hole	pair	which	is	between	the

2nd	highest	board	card	and	the	3rd	highest
card	rank	on	board

HaveThirdTopPair we	have	the	Third	highest	pair
HaveThirdTopSet We	have	the	Third	highest	set
HaveFourthNutFlush We	have	the	Fourth	highest	flush
HaveFourthNutFlushDraw We	have	the	Fourth	highest	flushdraw
HaveFourthOverPair We	have	a	hole	pair	which	is	between	the

3rd	highest	board	card	and	the	4tf	highest
card	rank	on	board

HaveFourthTopPair We	have	the	Fourth	highest	pair
HaveFourthTopSet We	Have	the	Fourth	highest	set
HaveFifthNutFlush We	have	the	Fifth	highest	flush
HaveFifthNutFlushDraw We	have	the	Fifth	highest	flushdraw
HaveFifthOverPair We	have	a	hole	pair	which	is	between	the

4th	highest	board	card	and	the	5th	highest
card	rank	on	board

HaveFifthTopPair We	have	the	Fifth	pair
HaveBackdoorSecondNutFlushDrawWe	have	the	2nd	highest	backdoor	nut

flush	draw
HaveBackdoorThirdNutFlushDraw We	have	the	Third	highest	backdoor	nut

flush	draw
HaveBackdoorFlushDraw We	have	a	flush,	flushdraw	or	a	backdoor

flushdraw.	Have	BackdoorFlushdraw	is
only	true,	if

we	contribute	2	cards

or	we	contribute	1	card	to	the	nuts
or	we	contribute	1	card	to	the	2nd
nuts

HaveBackdoorNutFlushDraw We	have	a	backdoor	nut	flush	draw
HaveBackdoorStraightDraw True,	if	we	need	2	cards	to	complete	a

straight
HaveBestKicker We	have	the	best	kicker
HaveBestKickerOrBetter We	have	the	best	kickeBestOvr	or	a	better

hand
HaveBestOverPairOrBetter Have	the	best	overpair	(AA)	or	a	better

hand
HaveBottomPair We	have	a	hole	card	that	is	paired	with	the

lowest	card	on	board
HaveBottomSet We	have	a	set	with	the	lowest	board	card
HaveBottomTrips We	have	a	trips	with	the	lowest	board	card
HaveBottomTwoPair We	have	bottom	two	pair
HaveDoubleGutshotDraw We	have	a	double	gut	shot	draw
HaveFlush We	have	a	flush
HaveFlushDraw We	have	a	flushdraw
HaveFullHouse We	have	a	full	house
HaveInsideNutStraightDraw True	if	the	bot	has	an	inside	nut	straight

draw.	An	inside	nut	straight	draw	is
defined	as	a	hand	with	at	least	4	‘outs’	to	a
nut	straight.	Unlike	NutStraightDraw,	outs
that	make	a	flush	possible	are	not
excluded

HaveInsideStraightDraw We	have	an	inside	straight	draw
HaveNothing We	have	nothing	(no	pair,	overcards,

flushdraw	or	straightdraw)
HaveNutFlush We	have	the	nut	flush
HaveNutFlushCard We	have	the	nut	flush	card
HaveNutFlushDraw We	have	the	nut	flush	draw
HaveNuts We	have	the	best	hand	possible	at	this

time

HaveNutStraight We	have	the	best	possible	straight
HaveNutStraightDraw True,	if	we	have	a	draw	to	the	best

straight;	this	means:	if	we	hit,	no	better
straight	is	possible.	E.g.87	at	a	board	of
653.	A	nut	straight	draw	requires	“at	least
7	outs”	according	to	Shankys	definition.
Therefore	straight	draws	get	discounted	if
there	is	a	flush	draw	possible.	Use
HaveUnDiscountedNutStraightDraw	if
you	don’t	worry	about	possible	flushes.

HaveNutStraightFlush We	have	the	nut	straight	flush
HaveOpenEndedStraightDraw We	have	an	open	ended	straight	draw
HaveOverPair We	have	a	pocketpair	higher	than	any	card

on	the	board
HavePair We	have	a	pair,	a	paired	board	doesen’t

count
HavePocketPair We	have	a	pocket-pair	like	AA	or	55
HaveQuads We	have	quads
HaveRunnerRunnerFlushAtRiver We	have	Flush	and	we	made	it	with	Turn

and	River	card
HaveSet We	have	a	set,	i.e.	three	of	a	kind	with	a

pair	in	the	hand
HaveStraight We	have	a	straight
HaveStraightDraw We	have	a	straightdraw
HaveStraightFlush We	have	a	straight	flush
HaveTopNonBoardPairedPair One	of	our	hole	cards	is	the	same	value	as

the	highest	non-paired	card	on	board
HaveTopPair One	of	our	hole	cards	is	paired	with	the

highest	ranked	card	on	the	board
HaveTopSet True,	if	we	have	a	set	with	the	highest

board	card
HaveTopTwoPair The	two	highest	cards	on	the	board	are

paired	with	our	hole	cards
HaveTopTrips True	if	we	have	the	best	possible	trips
HaveTrips We	have	trips,	i.e.	three	of	a	kind	with	a

pair	on	the	board
HaveTwoPair We	have	two	pair,	pair	on	board	does	not

count
HaveUnderPair We	have	a	pocketpair	lower	than	the

lowest	ranked	card	on	board
HaveUnderStraight We	have	the	lower	part	of	a	straight
HaveWeakBackdoorStraightDraw These	symbolsdescribe	hands	that	are	so

weak	that	we	don’t	consider	them	as
regular	holdings,	e.g.	the	single-card	idiot-
end	of	a	straight	or	a	shared	flush-draw	at
the	board.

HaveWeakDoubleGutshotDraw
HaveWeakFlush
HaveWeakFlushDraw
HaveWeakInsideStraightDraw
HaveWeakStraight
HaveWeakStraightDraw
KingPresentOnFlop A	king	is	present	on	the	flop
NutFullHouseOrFourOfAKind This	symbol	evaluates	the	strength	of

quads	and	full	houses.	Top	quads	are
always	rated	as	1,	bottom	quads	or	best-
full	house	as	2,	next	best	hand	as	3	and	so
on.	This	symbol	does	not	take	straight
flushes	into	account.	So	it	could	return	1
even	if	our	hand	can	be	beaten	by	a
straight	flush.
Standard	PPL	returns	0	if	we	don’t	have
any	quads	/	FH	at	all.	However	we	think
this	is	counterintuitive	and	causes
problems,	as	a	smaller	number	means	a
better	hand.	OpenPPL	returns	999	for	that
case.

Overcards The	number	of	hole	cards	that	are
overcards	to	the	board

PairInHand True,	if	we	have	a	pocketpair
SuitsInHand The	number	if	unique	suits	in	our	hand

TopPairRank Rank	of	the	hole	card	giving	you	Top	Pair
(2-14	where	14	is	Ace)

SecondTopPairRank Rank	of	our	second	Top	Pair
ThirdTopPairRank Rank	of	our	third	Top	Pair
ForthTopPairRank Rank	of	our	forth	Top	Pair
FifthTopPairRank Rank	of	our	fifth	Top	Pair
TopPairKickerRank Rank	of	the	hole	kicker	card	when	you

have	Top	Pair	(2-14	where	14	is	Ace)
TripsRank Rank	of	our	Trips
TripsKickerRank Rank	of	the	kicker	of	our	Trips

Other	Symbols

Name Meaning Limitations
IsFinalTable We	are	at	the	final	table	of

a	tournament
Works	only	with	OpenHoldem
2.2.0.+	and	at	casinos	where	the
final	table	and	normal	tables	can	be
visually	distinguised.	See	the
tablemap-symbol	s$isfinaltable.

Others Always	true	-	mainly	used
for

When	Others	Fold	Force

None

Random Returns	a	random	number
in	the	range	[0..100]

Gets	evaluated	new	each	time	it
gets	used.	So	be	careful	if	you	code
sequences	of	random	actions.	If	you
need	a	random	function	that	stays
constant	for	some	time	you	could
use	the	OpenHoldem	symbols

randomheartbeat
randomround
randomround1..randomround4
randomhand

But	be	careful:	OpenHoldems
random	symbols	are	in	the	range
[0..1]

Player-	and	OpponentSymbols
Name Meaning Limitations
HandIsHeadsup True	if	two	people

compete	for	this	pot.
the	hand	might	have
been	more-handed
before.

None

LastAggressorActsAfterUs True	(returns	1)	if	the
last	aggressor	acts
after	us

None

Opponents The	number	of
opponents	that	are
currently	in	the	hand.
Does	also	count
players	that	are	allin
(contrary	to	Shanky
who	count	players	that
went	allin	in	this
betting	round,	but	not
players	allin	from
previous	rounds).

REMARK.	To	know	the
number	of	Opponents	with
balance	above	zero	you
should	use	the	formula
“Opponents	-
NumberOfOpponentsAllin”

OpponentsAtTable The	number	of
opponents	that	were
dealt	cards	this	hand

None

OpponentsLeft Same	meaning	as
Opponents	but	better
naming.

None

OpponentsOnFlop The	number	of
opponents	that	saw	the
Flop

None

OpponentsWithHigherStack The	number	of
opponents	that	are
seated	and	have	higher
balance	than	yourself

None

OpponentsWithLowerStack The	number	of
opponents	that	are
seated	and	have	less
balance	than	yourself

None

TableIsHeadsup True	if	only	two
people	have	been	dealt
(cash-game)	and	only
two	people	are	seated
(tournaments,	where
players	who	sitout	also
get	dealt).	This	symbol
is	especially	meant	to
detect	the	latest	stage
of	a	tournament,
contrary	to
HandIsHeadsup	for
cash-games.

None

Poker	Tracker	symbols	(Version	3)
Assuming	all	the	prerequisites	as	described	in	the	configuration	manual	are	met,
the	following	native	OpenHoldem	symbols	will	be	available	to	your	bot	for	use
in	its	logic	processing.	The	appropriate	use	of	these	symbols	in	opponent
modeling	is	beyond	the	scope	of	this	document,	but	plenty	of	references	can	be
found	on	the	Internet	with	a	Google	search.
All	the	symbols	below	are	available	both	for	cash	games	and	for	tournaments
(SNG,	MTT).	OpenHoldem	will	automatically	adapt	the	database-queries	for
your	game-type	and	provide	the	right	stats.	All	stats	can	be	accessed	in	3
different	ways:

for	the	chair	of	the	aggressor,	e.g.	pt_icon_raischair.	This	situation	is
one	of	the	most	common	needs	for	PokerTracker	stats.
for	a	single	opponent	headsup,	e.g.	pt_icon_headsup
to	identify	certain	players	by	their	preflop-position	use	the	postfixes
smallblind,	bigblind,	dealer,	cutoff,	user.
besides	of	that	you	can	use	firstcaller,	lastcaller	and	firstraiser.	They
work	for	the	current	orbit	only.
by	chair	number,	e.g	pt_icon0..pt_icon9:	this	is	more	complex	and	less
convenient	than	both	methods	above,	but	you	get	the	ability	to	build	any
advanced	stat	on	your	own	as	long	as	you	are	able	to	identify	the	chair
of	your	villain.

Summary	:
You	need	to	use	the	prefix	“pt_”.
Then	add	the	symbol	name.
Finally	add	one	of	those	postfix:

_raischair
_headsup
_smallblind
_bigblind
_dealer
_cutoff
_firstcaller
_lastcaller
_firstraiser
_dealer
_user

the	chair	number	between	0	and	9

General	stats

Symbol
Meaning
icon
Poker	Tracker	auto-rate	icon	code
hands
Poker	Tracker	number	of	hands	that	are	in	the	database
vpip
Poker	Tracker	VP$IP
pfr
Poker	Tracker	pre-flop	raise
wtsd
Poker	Tracker	went	to	showdown
wssd
Poker	Tracker	won	$	at	showdown
aggr_factor
Poker	Tracker	total	aggression
aggr_factor_without_preflop
Poker	Tracker	total	aggression	excluding	preflop
fold_to_3bet
Poker	Tracker	folded	while	facing	3bet	total
4bet
Poker	Tracker	Overall	4B

Preflop	stats

Symbol
Meaning
preflop_aggr_factor
Poker	Tracker	preflop	aggression	factor
preflop_rfi
Poker	Tracker	pre-flop	raise	first	in
preflop_3bet
Poker	Tracker	3bet	preflop
preflop_fold_to_3bet
Poker	Tracker	folded	while	facing	3bet	preflop

preflop_called_raise
Poker	Tracker	pre-flop	called	raise
preflop_attempt_steal
Poker	Tracker	attempt	to	steal	blinds
bigblind_fold_to_steal
Poker	Tracker	folded	big	blind	to	steal
smallblind_fold_to_steal
Poker	Tracker	folded	small	blind	to	steal
preflop_3bet_vs_steal
Poker	Tracker	3bet	vs.	steal
bigblind_3bet_vs_steal
Poker	Tracker	BB	3bet	vs.	steal
smallblind_3bet_vs_steal
Poker	Tracker	SB	3bet	vs.	steal
preflop_4bet
Poker	Tracker	Preflop	4B
preflop_fold_to_4bet
Poker	Tracker	Preflop	fold	to	4B

Flop	stats

Symbol
Meaning
flop_seen
Poker	Tracker	saw	flop
flop_aggr_factor
Poker	Tracker	flop	aggression	factor
flop_cbet
Poker	Tracker	flop	cbet
flop_fold_to_cbet
Poker	Tracker	folded	while	facing	cbet	flop
flop_raise_cbet
Poker	Tracker	raise	flop	cbet
flop_fold_to_3bet
Poker	Tracker	folded	while	facing	3bet	flop
flop_checkraise
Poker	Tracker	flop	check-raise
flop_donkbet
Poker	Tracker	donk	bet	flop

Turn	stats

Symbol
Meaning
turn_seen
Poker	Tracker	saw	turn
turn_aggr_factor
Poker	Tracker	turn	aggression	factor
turn_cbet
Poker	Tracker	turn	cbet
turn_fold_to_cbet
Poker	Tracker	folded	while	facing	cbet	turn
turn_fold_to_3bet
Poker	Tracker	folded	while	facing	3bet	turn
turn_checkraise
Poker	Tracker	turn	Check-Raise
turn_checkcall
Poker	Tracker	turn	Check-Call

River	stats

Symbol
Meaning
river_seen
Poker	Tracker	saw	river
river_aggr_factor
Poker	Tracker	river	aggression	factor
river_fold_to_3bet
Poker	Tracker	folded	while	facing	3bet	river
river_fold_to_cbet
Poker	Tracker	folded	while	facing	cbet	river
river_bet
Poker	Tracker	river	bet

Position	Symbols
Good	news:	contrary	to	Standard-PPL	most	position	symbols	are	not	restricted	to
first	orbit	preflop	only.	You	can	use	them	in	later	orbits	too	and	also	postflop.
Positions	are	always	BU	—	CO	—	MP3	—	MP2	—	MP1	—	EP3	—	EP2	---
EP1	—	BB	—	SB.	If	there	are	less	than	10	players	at	the	table,	then	some	of	the
early	positions	will	be	missing	(EP1	—	EP2,	etc.).	Symbols	like	“InButton”	can
be	spelled	in	two	different	ways:	“InButton”	or	just	“Button”.

Name Meaning Limitations
FirstCallerPosition The	position	of	the	first	caller	

(big	blind	=	0	(although	this
can	not	happen),	small	blind	=
1,	then	counter-clockwise	till

First	orbit	preflop	only

UTG	=	9)
FirstRaiserPosition The	position	of	the	first	raiser

(big	blind	=	0,	small	blind	=	1,
then	counter-clockwise	till
UTG	=	9)

First	orbit	preflop	only

InBigBlind True,	if	you	are	big	blind.
OpenPPL	is	smart	enpugh	to
detect	a	missing	small	blind
(e.g.	he	busted	in	a
tournament).	In	this	case	the
player	to	the	left	of	the	dealer
will	be	big	blind.

None

InButton True	if	you	are	button	(last	to
act	postflop)

None

InCutOff True,	if	you	are	CutOff	(right	to
the	button;	this	position	exists
only,	if	the	game	is	at	least	4-
handed,	otherwise	the	symbol
will	always	be	false)

None

InEarlyPosition True,	if	you	are	in	one	of	the
early	positions

None

InEarlyPosition1 True,	if	you	are	in	EP1	(left	to
the	big	blind,	right	to	EP2;	this
position	exists	only,	if	the	game
is	at	least	10-handed,	otherwise
the	symbol	will	always	be
false)

None

InEarlyPosition2 True,	if	you	are	in	EP2	(this
position	exists	only,	if	the	game
is	at	least	9-handed,	otherwise
the	symbol	will	always	be
false)

None

InEarlyPosition3 True,	if	you	are	in	EP3	(this
position	exists	only,	if	the	game
is	at	least	8-handed,	otherwise
the	symbol	will	always	be
false)

None

InLatePosition True,	if	you	are	either	CutOff
or	Button

None

InMiddlePosition True,	if	you	are	in	one	of	the
middle	positions

None

InMiddlePosition1 True,	if	you	are	in	MP1	(this
position	exists	only,	if	the	game
is	at	least	7-handed,	otherwise
the	symbol	will	always	be
false)

None

InMiddlePosition2 True,	if	you	are	in	MP2	(this
position	exists	only,	if	the	game
is	at	least	6-handed,	otherwise
the	symbol	will	always	be
false)

None

InMiddlePosition3 True,	if	you	are	in	MP3	(this
position	exists	only,	if	the	game
is	at	least	5-handed,	otherwise
the	symbol	will	always	be
false)

None

InSmallBlind True,	if	you	are	small	blind None
InTheBlinds True,	if	you	are	either	small

blind	or	big	blind
None

InUTG True,	if	you	are	under	the	gun
(left	to	the	big	blind),
independent	of	the	number	of
players	at	the	table.	This
symbols	is	escpecially	useful	to
sitout	after	the	last	hand	of	a
session	(before	the	next	blind),
but	should	not	be	used	for
positional	play.	Better	use
symbols	like	InEarlyPosition1
for	selection	of	your	starting
hands.

None

LastCallerPosition The	position	of	the	last	caller
(big	blind	=	0,	small	blind	=	1,

First	orbit	preflop	only

then	counter-clockwise	till
UTG	=	9)

LastRaiserPosition The	position	of	the	last	raiser
(big	blind	=	0,	small	blind	=	1,
then	counter-clockwise	till
UTG	=	9)

First	orbit	preflop	only

Position Our	position	relative	to	the
other	player,	meant	especially
for	postflop	play.	There	are	3
positions	at	the	table:

Position	=	First

Position	=	Middle

Position	=	Last

Middle	is	everything,	that	is
neither	first	nor	last.

None

StillToAct The	number	of	opponents	that
have	not	yet	acted	in	the	hand
when	it	is	your	turn,	i.e.	the
players	behind,	including	the
blinds.
The	Shanky-way	to	determine
your	preflop-position,	but	there
are	better	symbols,	e.g.
InButton,	etc.,	which	can	also
be	used	in	later	orbits	and	in
any	betting-round.

First	orbit	only,	both
Preflop	and	post	Flop

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-12-
01T12:34:24.625000

http://elyxer.nongnu.org/

Technical	Symbols
While	building	the	OpenPPL	library	the	developers	had	to	create	lots	of	internal
supporting	functions.	Most	of	them	are	so	technical	that	they	are	of	no	use	for
the	end-user.	However	some	of	them	might	be	helpful	for	people	who	want	to
extent	the	OpenPPL	library	with	their	own	symbols.	A	function	like
SmallBlindChair	might	for	example	be	useful	for	the	development	of
PokerTracker	symbols	like	PT_SmallBlind_VPIP.
Symbol Explanation Remarks
Chair0StartingStackSize	...
Chair9StartingStackSize

Starting	stacksize	of
Chair	N	at	the
beginning	of	the	hand
(balance	+	currentbet).
Measured	in	bets,	not
in	dollars.

Mainly	for
preflop.	In
other
betting
rounds	it
returns	the
starting
stack	at
the
beginning
of	that
round.

BigBlindCurrentBet,	SmallBlindCurrentBet Current	bets	of	the
blind	posters,
measured	in	dollars

Mainly
used	to
detect,	if
the	blinds
are	truely
raising	or
if	they	are
“blind
raisers”.

ConstCardTwo	...	ConstCardAce Named	card	constants
to	improve	readability
and	maintenability.
Useful	if	you	want	to
access	OpenHoldem’s
card	symbols	$$pr0,

None

$$pr1,	$$cr0	...	$$cr4.
ConstBetRoundPreflop,
ConstBetRoundFlop,	ConstBetRoundTurn,
ConstBetRoundRiver

Named	constants	for
the	four	betting	rounds.
To	be	used	with
OpenHoldem’s
“betround”	symbol

None

CommonCard0Paired	...
CommonCard4Paired

True,	if	the	rank	of
common	card	N	is
equal	to	the	rank	of
another	common	card.

Postflop
only

MaximumPossibleBetsizeIndollars Maximum	Possible	bet
size	in	dollars
considering	our	current
bet	and	balance

None

PT_LastCaller_Chair Last	Caller	Chair
number

None

RankOfSetOnBoard Rank	of	the	set	on
board

Valid	only,
if	there	are
3	or	4
cards	of
the	same
rank,
undefined
otherwise

\strikeout	off\uuline	off\uwave
offRankOfSpareCardWhenTwoPairOnBoard

\strikeout	off\uuline
off\uwave	offreturns
rank	of	the	spare	card
when	two	pair	on
board	on	the	river

River	only

RankOfTopPairOnBoard returns	rank	of	the
highest	pair	on	board
(true	also	if	set	or
twopair	or	fullhouse	on
board)

Postflop
only

SidePot Pot	size	(in	number	of
blinds)	we	are	not

None

participating	in	due	to
opponent’s	bet	being
bigger	than	the	sum	of
our	balance	plus
currentbet.	PotSize
returns	effective	pot
size	because	SidePot
amount	is	subtracted
from	it.

SidePotInDollars Pot	size	(in	dollars)	we
are	not	partecipating	in
due	to	opponent’s	bet
being	bigger	than	the
sum	of	our	balance
plus	currentbet

None

EarlyPosition1Chair	...
MiddlePosition3Chair,	CutOffChair,
ButtonChair,	SmallBlindChair,
BigBlindChair

Chair	numbers	of	the
specific	players.	Could
be	used	e.g.	for
symbols	like
PT_SmallBlind_VPIP

None

AggressorChair Same	meaning	as
ac_aggressor,	but	more
reliable.	ac_aggressor
alone	is	somewhat
unreliable,	as	it	gets
scraped	(by	bets).	But
if	we	raise	and	there
are	super-fast	calls
behind	us	(e.g.	at
PokerAcademy),	then
we	don’t	have	stable
frames	and	soon	we
will	switch	to	the	next
betting	round,	so
OpenHoldem	might
miss	the	aggressor.
This	symbol	also
considers	our	last

None

action	and	the	amount
to	call	to	overcome	this
problem.

SmallBlindRaising	...	ButtonRaising True,	if	the	chair	in
question	is	betting	or
raising.	Contrary	to
OpenHoldem’s
conventions	“blind
raisers”	are	not
counted	preflop;	only
if	they	truely	raise.

Meant	for
preflop,
also
working
postflop,
though	it
counts
betters
too.

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2014-12-
12T11:48:15.587000

http://elyxer.nongnu.org/

Differences	To	Shanky	And	Old-
Style-PPL
If	you	are	a	botter	who	used	Shanky-PPL	in	the	past	there	are	some	differences
you	should	know	about:

Plain	Text	Only

The	deciphering	of	encypted	PPL	is	a	business-secret	of	Shanky	BonusBots.	We
don’t	know	and	will	never	support	this	data-format.	Our	aim	is	to	build	an	open-
source	botting-tool	and	not	a	marketing-platform	for	shady	salesmen.	Therefore
OpenPPL	is	plain	text	only	—	for	profiles	you	own	legally,	or	even	better:	for
profiles	you	build	on	your	own.

No	Option	Settings

Standard	Shanky-PPL	supports	option	settings	to	configure	their	built-in-default
bot;	at	least	that	was	the	old	way	to	do	so,	but	nowadays	most	of	these	settings
get	overwritten	by	the	profile	and	have	no	effect	at	all.	OpenHoldems	built-in
Gecko-bot	does	not	support	any	Shanky-opttions;	they	have	no	effect	and	simply
get	ignored.

MakePotSizedPreFlopRaisesWhen	=	6

FoldToPre-FlopRaisesForAQAJsKQ	=	OFF

FoldPost-FlopBelowTopPairToAnyBetOrRaise	=	OFF

FoldToPost-FlopRaisesWithUnpairedBoardsFor	=	2	

...

custom

preflop

...

No	Keyword	Custom

As	no	built-in	default	bot	exists	the	whole	bot-logic	is	“custom”.	Sure,	we	could
ignore	that	superfluous	keyword,	however	it	is	an	indication	of	old-style	or
Shanky-style	(Open)PPL.	There	will	be	more	things	“wrong”	for	sure,	so	we
prefer	to	show	you	a	warning	as	early	as	possible.

Preflop,	Flop,	Turn	and	River	Sections

The	four	main	code-sections	are	functions	(technically	speaking),	therefore	they
have	OH-script-style	function-header-syntax:

##f$preflop##

				WHEN	...	RaiseMax	FORCE

				...

##f$flop##

##f$turn##

##f$river##

At	least	the	f$preflop-section	must	be	present	for	OpenHoldem	to	switch	to
OpenPPL-mode.

Floating	Point	Numbers

There	are	some	differences	between	Standard	PPL	and	OpenPPL	you	should
care	about	—	luckily	only	very	few:

Standard	PPL	uses	integers	everywhere,	whereas	OpenPPL	uses	floating
point	numbers.	An	example:	in	Standard	PPL	you	could	write	code	like:

WHEN	Stacksize	=	1	AND	...	RaiseBy	1	FORCE

WHEN	Stacksize	=	2	AND

or	even

WHEN	AmountToCall	=	70%	Stacksize

which	will	cause	troubles	with	OpenHoldem,	because	OpenHolden	uses
real	numbers	like	31.41.	Therefore	it	is	recommended	to	use	inequality-
operators,	for	example	like	below:

WHEN	Stacksize	<	1.5	AND	...	RaiseBy	1	FORCE

WHEN	Stacksize	<	2.5	AND

Or	you	could	even	use	the	new	approximately-equal-operator:

WHEN	Stacksize	~~	3	RaiseMax	FORCE

Standard	PPL’s	symbol	NutFullHouseOrFourOfAKind	uses	lower	numbers
for	better	full	houses	or	quads,	but	0	for	no	full	house	at	all.	This	is
somewhat	inconsistent	and	OpenPPL	uses	a	high	number	(999)	for	that
case.

Hand	And	Board	Expressions

OpenHoldem’s	formula	engine	uses	floating-point-numbers	internally	and	there
is	no	easy	way	to	represent	a	board	of	cards	as	a	single	floating-point-number.
There	could	even	be	various	different	board-expressions	at	the	right	side	of	an
equality	comparator	that	are	all	true.

WHEN	Board	=	AT	...

WHEN	Board	=	ATSuited...

Therefore	we	don’t	support	native	Shanky-syntax	here	but	use	parameterized
symbols

WHEN	board$AT	...

WHEN	board$ATSuited	...

Cases	Matter	(Partially)

OpenHoldem	is	case-sensitive	—	contrary	to	standard	PPL.	Therefore	the	case
used	(upper	and/or	lower)	matters.	The	rules	for	your	OpenPPL	code	are	more
user-friendly	and	less	rigid.	Three	areas	where	case	matters:

Keywords	like	“WHEN”,	FORCE	and	operators	like	OR	etc.	For	keywords,
three	different	formats	are	allowed:	all	upper-case,	all	lower-case,	or	a
reasonable	mix.

WHEN	(Hand$AA)	RaiseMax	FORCE

When	(Hand$AA)	RaiseMax	Force

when	(Hand$AA)	RaiseMax	force

For	better	readability	we	recommend	to	use	only	upper-case	for	keywords.
OpenHoldem	symbols.	Native	OpenHoldem	symbols	are	case-sensitive	and
always	lower-case.

WHEN	(pt_vpip0	<	0.10)	Fold	FORCE

WHEN	(balance0	<	50)	RaiseMax	FORCE

However:	you	will	probably	use	these	symbols	very	rarely	in	your	code.
Probably	only	to	create	poker-logical	symbols	like	PT_OpenRaiser_VPIP
and	BigBlindStackSize.
OpenPPL-symbols	that	are	part	of	the	library.	They	are	case-sensitive	OH-
script-functions	with	mixed	upper	and	lower	case	letters.

WHEN	(StillToAct	<	2)	RAISETO	3	FORCE

The	naming	is	pretty	intuitive,	but	the	function	that	generates	error-
messages	is	smart	enough	to	look	for	similar	named	symbols	and	will	show
you	a	helpful	warning	if	something	is	wrong.

False	Friends

Again:	case-sensitivity	matters.	There	are	some	(only	three)	symbols	with	the
“same”	name	that	have	a	different	meaning	for	OH-script	and	OpenPPL.
Symbol Meaning
bet The	minimum	bet	for	the	current	bet-round,	measured

in	dollars
Bet The	action	min-bet	(equivalent	to	min-raise)
call The	amount	you	need	to	call,	measured	in	dollars
Call The	action	“Call”.
random Generates	numbers	in	the	range	[0..1)
Random Generates	integer	numbers	in	the	range	[0..99]
You	probably	won’t	need	the	OH-script	symbols,	but	at	least	the	library	of
OpenPPL-functions	uses	them	internally,	so	they	have	to	be	there.	For	the	first
two	cases	OpenHoldem’s	parser	can	detect	if	you	took	an	identifier	instead	of	an
action	and	will	warn	you	about	that.	But	at	the	moment	you	need	to	take	care
about	the	latter	case.

Keyword	“Set”	For	User-Defined	Variables

Long	story	short:	Shanky-PPL	is	an	easy,	English-like	language	that	is	intuitive
to	use,	but	it	contains	some	technical	flaws.	For	example,	it	can’t	be	parsed	with
a	one-token-look-ahead	like	all	other	modern	programming	languages.	This
complicates	the	parser	and	especially	the	generation	of	good,	helpful	error-
messages.	Therefore	we	had	to	deviate	at	some	points	a	liitle	bit.	The	most
conspicuous	point	is	the	new	keyword	“Set”	before	a	user-variable:

WHEN	...	Set	user_utg_limp_raised_preflop

No	Shanky-Style	Delay
preflop

				WHEN	...	RaiseBy	3	Delay	5	FORCE

A	user-defined	delay	after	an	action	simply	does	not	fit	the	concept	of	functions,
that	traditionally	return	only	a	single	value.	Besides	that:	we	believe	that	it	is
very	clumsy	to	have	thousands	of	lines	with	a	fixed	delay.	OpenHoldem	natively
supports	a	solution	that	is	way	better	suited	for	this	use-case:	a	f$delay-
functions.
It	requires	only	some	(or	some	dozen)	lines	of	code	for	perfect	randomized
delays,	depending	e.g.	on	board-texture,	betting-actions,	etc.

##f$delay##

			WHEN	UncoordinatedFlop	AND	Random	<	10	RETURN	2500	FORCE

			WHEN	...

f$sitout	Function

For	similar	reasons	OpenPPL	does	no	longer	support	a	SitOut-command.	We
prefer	to	separate	the	playing	logic	from	hopper-logic.	Therefore	OpenHoldem
has	a	f$sitout-function.	Furthermore	OpenHoldem	supports	f$sitin,	f$autopost,
f$leave,	f$close	and	some	more.

##f$InUTG##

				WHEN	(dealposition	=	3)	RETURN	True	FORCE

##f$sitout##

			//	issittingin,	handsplayed	and	floppct	are	OpenHoldem	symbols	

			//	that	can	be	used	like	any	other	OpenPPL	symbol.

			//	We	wait	until	the	orbit	is	finished	and	sitout

			//	before	we	have	to	post	the	big	blind	again.

			WHEN	(issittingin

								AND	handsplayed	>	15	

								AND	floppct	<	0.20	

								AND	HaveNoCards	

								AND	InUTG)	

					RETURN	True	Force		

RaiseBy	And	RaiseTo	Actions

Let’s	assume	the	following	situation:	you	sit	in	the	big	blind	and	had	to	pay	$10.
Everybody	folds	to	the	button	who	raises	to	$30.	Now	it	is	your	turn	again	and
you	decide	to	enter	“90”	into	the	raise-box.	What	does	this	mean?
Well,	it	depends	on	the	casino.

at	some	casinos	$90	will	be	your	final	betsize	(RaiseTo,
betsizeinterpretationmethod	=	3)
other	casinos	will	add	$90	to	the	$10	you	already	posted,	so	the	final
betsize	will	be	$100	(betsizeinterpretationmethod	=	2).
and	finally	some	other	casinos	will	add	these	$90	to	the	$30	of	the	last
raiser,	so	the	final	betsize	will	be	$120	(RaiseBy,
betsizeinterpretationmethod	=	1)

How	does	Shanky	handle	this	Babylonian	confusion?

In	one	case	the	small	blind	is	counted	as	part	of	the	pot	and	in	the	other	it	is
not.	This	can	vary	between	poker	rooms	as	well.	You	just	have	to
experiment	to	get	it	where	you	like	and	save	each	profile	the	way	you	want
it.

(Egor	at
http://bonusbots.com/support/index.php/topic,7934.msg79372.html#msg79372

However	we	don’t	like	undefined	behaviour	and	we	don’t	want	to	keep	multiple
versions	of	our	bots	for	different	casinos	either.	Therefore	we	introduced	2	new
commands:	RaiseTo	and	RaiseBy.	This	way	you	can	clearly	specify	what
behaviour	you	want.	You	only	have	to	specify	the	correct
betsizeinterpretationmethod	in	your	tablemap	to	tell	OpenHoldem	how	your
casino	behaves	and	OpenHoldem	will	care	about	all	the	rest.automatically.
That’s	how	it	should	be.

http://bonusbots.com/support/index.php/topic,7934.msg79372.html#msg79372

Gecko,	Our	Default	Bot
The	Gecko	story

We	once	had	an	old-school-member	called	Gecko	from	the	Netherlands.	Gecko
had	no	experience	in	the	IT-business,	but	he	was	a	really	dedicated	guy;	a	hard
worker	and	fast	learner.	Gecko	worked	round	the	clock,	contributed	500	posts
per	month	to	the	forum,	reported	bugs	Sunday	morning	4	am.Over	the	course	of
the	next	three	years	he	rewrote	his	bot	at	least	20	times	from	scratch,	each	time
structuring	it	a	bit	better	and	making	it	stronger.	Hard	work	pays	off	and	so
Gecko	finally	got	a	winning	bot	that	made	him	a	little	fortune.	Gecko	traded	his
well-earned	botting-money	for	six	renovated	teeths,	a	twelf-man	internet-
advertising-company	in	Pakistan	and	freedom	from	the	Dutch	police.
One	day	Gecko	decided	to	visit	his	employees	in	Pakistan.	He	took	his	$200-car
(bought	from	all	the	money	the	Dutch	police	left	him),	found	the	way	through
the	snowy	mountains	of	Austria	and	sunny	Greece,	missed	Pakistan	by	some
miles	but	discovered	Thailand	where	he	now	lives	in	happiness.
Gecko	finally	quit	botting;	but	as	a	true	gentleman	he	generously	donated	his
pokerbot	to	the	OpenHoldem	community.

Its	playing	style

Lots	of	people	used	the	Gecko-bot	as	a	base	for	their	own	poker-
logic.Everybody	praised	its	coding-style	and	its	good	play.	Gecko	plays	no-limit
big-stack	in	a	tight-aggressive	(or	maybe	semi-loose-aggressive)	way.	It	uses
PokerTracker	to	adapt	to	its	opponents,	stealing	more	against	tight	blind-posters,
value-betting	harder	against	calling-stations,	being	more	cautious	if	a	passive
player	gives	action	and	more.	For	example	Gecko	is	prepared	to	play	for	full
stacks	with	mid-pair	against	hyper-maniacs.	The	Gecko-bot	is	by	far	the	best	bot
available	to	the	public	we	have	ever	seen	(demo-bots)	or	heard	of	(commercials).
It	tries	to	squeeze	the	slightest	edge	in	an	aggressive	manner;	so	be	prepared	for
some	funny	swings,	hopefully	more	often	in	the	right	direction.

Does	Gecko	play	tournaments?

To	be	honest:	not	really.	Gecko	is	designed	to	play	manly	bigstack	and	squeeze
the	slightest	edge	in	an	aggressive	manner.	But	in	tournaments	chip-EV	and
money-EV	usually	differ	(except	for	winner-takes-it-all);	tournaments	usually
get	played	for	survival	and	they	often	end	with	a	shortstacked	push-fold-phase.
Nothing	Gecko	is	really	designed	for.	The	Gecko-bot	probably	needs	a	little
tweak	on	top	of	it	that	tempers	its	aggression	here	and	there	a	little	bit	and	cares
about	ICM.

Using	the	Gecko-bot

The	Gecko-bot	is	now	fully	integrated	and	OpenHoldems	default-bot.	It	sits	in
the	background	and	waits	for	situations	where	your	bot-logic	does	not	specify	an
action.	Then	Gecko	steps	in.	You	can	use	Gecko	in	several	ways:

play	pure	Gecko.	Whenever	your	bot-logic	is	empty	or	not	loaded	or	you
click	“New”	then	Gecko	will	care	about	everything	and	play	all	games	from
the	beginning	to	the	end.	In	other	words:	forget	to	load	your	bot-logic	and
increase	your	winnings.
tweak	Gecko.	If	Gecko	satisfies	you	only	99%	or	if	you	want	to	adapt	it	to
other	game-types	like	tournaments,	then	you	can	easily	tweak	it.	Don’t
worry:	you	don’t	have	to	change	anything	in	Geckos	code	and	possibly	ruin
it.	All	you	have	to	do:	create	a	new	file	with	the	exceptional	situations	that
you	want	to	play	differently	and	leave	the	rest	unspecified.	Then
OpenHoldem	will	play	your	bot-logic	and	Gecko	will	care	about	all	the
rest.	We	call	this	type	of	bot-logic	a	Gecko-tweak.
use	Gecko	as	a	starting-point.for	your	own	complete	bot.	Even	if	you	want
to	create	a	bot	completely	from	scratch	Gecko	will	be	useful.	You	can	start
your	bot-logic	as	a	Gecko-tweak	and	as	long	as	your	logic	is	incomplete
Gecko	will	care	about	the	forgotten	situations.	So	you	can	for	example	test
your	half-made	bot	as	if	it	was	already	finished.
don’t	use	Gecko	at	all.	If	you	are	one	of	the	fortunate	old-school-members
who	already	have	a	complete	and	better	bot,	then	you	don’t	have	to	worry
that	Gecko	ruins	anything.	You	can	safely	delete	the	Gecko-file	from	the
botlogic	folder	or	just	terminate	all	evaluations	with

WHEN	Others

			WHEN	Others	Fold	FORCE

Debugging	Your	Code
Why	debugging?	If	you	code	your	bot	or	if	you	watch	it	play	you	will	for	sure
find	situations	where	the	play	doesn’t	match	your	expectations.	Sometimes	you
know	immediatelly	what	you	did	wrong	or	at	what	place	of	the	code	you	have	to
look	for	your	error.	But	sometimes	you	don’t	know	or	it	might	even	seem,	that
everything	looks	ok	on	your	side.	So	you	might	want	to	look	a	little	bit	deeper	-
at	your	code	and	maybe	even	at	the	symbol	library.	Here	in	this	chapter	we	will
show	you	some	techniques	to	locate	the	problem:

Working	with	the	debug-tab

OpenHoldem	provides	a	cool	feature	called	the	debug-tab.	Just	open	the
formula-editor	(for	OH-script),	switch	to	the	f$debug-section	and	then	you	can
enter	your	expressions.	For	example:

=	userchair

=	HaveTopPair

Here	userchair	is	a	native	OpenHoldem	symbol	and	HaveTopPair	is	an
OpenPPL-symbol.	So	once	you	have	entered	the	symbols	in	question	click
“Apply”	to	confirm	your	input	and	“Auto”	to	turn	the	evaluator	on.
OpenHoldem	will	evaluate	your	expressions	and	show	you	their	values.
Anything	wrong	with	them?

Everything	is	correct	with	this	screenshot.	But	if	something	is	wrong,	there
might	be	several	reasons:

incorrect	input.	Have	a	look	at	OpenHoldem’s	table	display:	everything	ok?
a	problem	with	your	code	(or	with	the	symbol	library):	a	symbol	like	for
example	StillToAct	depends	on	other	symbols	like	dealposition	and
nchairsdealtleft.	So	if	StillToAct	was	wrong	you	might	put	these	symbols
into	the	debug-tab	to	evaluate	further	until	you	find	the	problem.

Simulating	positions

The	debug-tab	is	a	wonderful	tool	—	but:	the	problem	happened	at	a	live-table
—	what	can	you	do?	There	are	two	things	you	could	try:	Openholdem	provides	a
tool	called	ManualMode.	Here	you	can	set	up	some	situations	to	simulate	your
bot-logic.	The	other	possibility:	you	could	shoot	so-called	replay-frames,	i.e.
screenshots	of	the	casino-table	that	get	saved	to	the	replay-directory	in	your	bot-
folder.	Once	the	session	is	over	you	can	load	these	frames	with	OHReplay.exe
and	connect	OpenHoldem	to	OHReplay	like	a	normal	casino-table.	And	then
you	can	work	with	the	debug-tab	as	described	above.	Please	refer	to
OpenHoldem’s	manual	for	a	more	detailed	description	of	these	tools.

Investigating	log-files

Not	satisfied	with	the	play?	You	might	also	look	at	the	autoplayer-log.	It	is
stored	in	your	bot-folder	and	named	e.g.	oh_0.log.	OpenHoldem	uses	this	file	to
not	only	store	the	action	it	took,	but	also	the	complete	evaluation	process.	First
locate	your	hand	(you	can	identify	it	e.g.	by	the	time,	your	cards,	the	hand-
number,	etc.).	At	first	the	log	might	look	like	a	complete	mess,	but	actually	it	is
well	structured:	function	names	on	the	very	left	are	higher-level	functions;
symbols	that	are	more	indented	got	called	by	these	higher-level	functions.	So
what	you	see	below	is	actually	an	evaluation-tree:

f$flop	=	-1000001.000	[Line	3/3]			

			HaveStraightDraw	=	0.000	[Line	2/2740]					

						HaveOpenEndedStraightDraw	=	0.000	[Line	10/2685]							

									HaveStraight	=	0.000	[Line	1/2735]									

												nstraightfill	=	3.000							

									rankbits	=	24770.000					

						HaveDoubleGutshotDraw	=	0.000	[Line	15/2286]			

			HaveQuads	=	0.000	[Line	1/2679]			

						isfourofakind	=	0.000			

			BotsLastAction	=	-1000008.000	[Line	20/549]			

						betround	=	2.000					

						ConstBetRoundPreflop	=	1.000	[Line	1/194]	

						me_re_MemBotsLastAction	=	0.000			

						Fold	=	-1000001.000	[Line	1/77]	

						PrevActionWasAllin	=	0.000	[Line	2/492]	

									prevaction	=	3.000	

				PrevActionWasAllin	=	0.000	[cached]	

			Raise	=	-1000008.000	[Line	1/134]		

			Raise	=	-1000008.000	[cached]		

			Fold	=	-1000001.000	[cached]

Long	story	short:

At	the	very	top	you	see	an	OpenPPL	main-function,	here	f$flop
Below	you	see	functions	that	get	called	by	f$flop	either	directly	or
indirectly
Functions	that	are	indented	once	are	directly	called	by	f$flop.	E.g
HaveStraightDraw,	HaveQuads,	BotsLastAction
Functions	that	are	indented	one	level	deeper	are	called	by	the	function
above	them	that	was	indented	one	level	less,	E.g.	HaveStraightDraw	calls

HaveOpenEndedStraightDraw	and	HaveDoubleGutshotDraw.
After	the	=	you	see	the	result	of	the	function	evaluation
[Line	10/2685]	means:	the	function	returned	the	result	at	its	tenth	line,
which	is	line	2685	in	the	file.
[cached]	means	that	the	result	already	got	calculated	and	the	cached	value
gets	reused.
symbols	without	line	information	are	built-in	OpenHoldem	symbols.

That’s	it,	basically.	We	were	a	bit	in	a	hurry	when	we	wrote	this	paragraph.	Any
better	explanation	is	very	welcome.

Things	To	Watch	Out	For

Incorrect	hand-reset:	Most	symbols	depend	only	on	the	state	of	the	table
(cards,	players,	etc.)	and	are	quite	reliable.	However	there	are	some
symbols,	that	depend	on	previous	game-states,	like	BettingAction-symbols;
these	symbols	reset	whenever	a	new	hand	starts.	Also	user-defined
variables	will	lose	their	value	if	a	hand-reset	occurs.	These	hand-resets	can
be	triggered	by	certain	events,	like	a	changing	dealer-chair	or	disappearing
community	cards,	depending	on	your	hand-reset-method	defined	in	the
tablemap.	Depending	on	your	settings	it	might	be	that	an	occlusion	of	the
table	will	cause	a	hand-reset	for	OpenHoldem.	So	watch	out	for	messages
like	below	in	your	log-file.

2012-01-21	19:50:17	-

HAND	RESET	(num:		dealer:	0	cards:	KhKd):	PartyPoker	Table	######	-	NL	Hold’em	$1/$2	

2012-01-21	19:50:17	-	ROUND	1

If	they	appear	in	the	middle	of	a	hand,	then	you	should	revisit	your	hand-
reset-method.
Misread	information:	Most	problems	(and	most	reported	“bugs”)	are	of	the
from	“garbage	in	-	garbage	out”.	If	OpenHoldem	gets	incorrect	data	from
the	scraper-engine	(e.g.	no	seated	players)	then	all	further	calculations	by
the	symbol-engine	and	the	evaluator	will	return	bogus	values.	The	reason	is
usually	simple:	a	beginner	with	incorrect	system	settings	or	incorrect	casino
settings.	Let	us	emphasize:	Win2000	classic	theme	and	all	animations
turned	off	are	recommended,	but	not	necessary.	In	pronciple	you	can	scrape
whatever	configuration	you	like.	However:	if	you	use	somebody	else’s
tablemap,	then	you	have	to	use	exactly	the	same	settings	as	the	profile
creator.	So	before	you	go	crazy	investigating	log-files:	have	a	look	at	basic
OpenHoldem	symbols:	are	they	reasonable	or	plain	wrong?	And	before	you
sit	at	a	real-money-table	observe	your	bot	and	OpenHoldem’s	table-display
for	some	time:	does	OpenHoldem	recognize	every	game-state	correctly?
Don’t	get	frightened:	screenscraping	is	an	easy	and	very	flexible	approach,
that	works	great.	But	it	requires	some	care	from	your	side!

Using	Flags

OpenHoldem	provides	a	useful	set	of	buttons	with	a	number	on	it,	from	0	to	19
called	flags.	When	an	OH	flag	button	is	pressed	then	corresponding	symbol
(f0..f19)	will	be	true.	For	example	our	code	could	look	like	the	following:

WHEN	betround=2	AND	(BotRaisedBeforeFlop	OR	f0)	Raise	50%	FORCE	

The	above	line	is	true	if	the	bot	raised	before	the	Flop	or	the	flag	0	button	has
been	pressed.	This	way	you	could	simulate	costom	conditions	in	Manual	Mode.

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2014-12-
12T07:42:07.449000

http://elyxer.nongnu.org/

OpenPPL	In	Practice
If	you	have	read	this	manual	up	to	this	point	you	have	some	basic	understanding
of	OpenPPL:	syntactical	rules,	symbols,	etc.	But	the	main	thing	—	turning	your
poker-knowledge	into	bot-logic	---	may	look	like	a	different	kind	of	beast,	if	you
have	no	programming	experience	at	all.	So	let	us	take	some	small	examples	and
see	how	OpenPPL	is	used	in	practice.

Folding	Trash
##list_of_biggest_trash##

				//	Trashy	hands.	

				//	Never	to	be	played,	except	we	are	in	the	blinds

				K8s	K7s	K6s	K5s	K4s	K3s	K2s	Q7s...

				K8o	...	32o

##f$preflop##

				//	Make	life	easy	and	get	rid	of	the	greatest	trash

				WHEN	NOT	In	BigBlind	AND	list_of_biggest_trash	Fold	FORCE

Open-Raising	On	The	Button
WHEN	StillToAct	=	2	AND	Calls	=	0	AND	Raises	=	0

				WHEN	hand$AA	OR	Hand$KK	OR	...	RaiseTo	3	FORCE

Threebetting	A	Steal-Raiser
//	LastRaiserPosition	<=	3	means:	CO,	BU	or	SB

WHEN	Calls	=	0	AND	Raises	=	1	AND	LastRaiserPosition	<=	3

				WHEN	AmountToCall	<=	3	AND	list...	RaiseTo	9	FORCE

Contibetting
##f$flop##

				WHEN	Bets	=	0	AND	BotIsLastRaiser

								WHEN	Opponents	=	1	AND	Random	<	80	BetHalfPot	FORCE

								WHEN	Opponents	=	2	AND	Position	=	Last	RaiseBy	66%	FORCE

Effective	StackSize
##f$EffectiveStacksize##

				//	First	orbit	preflop	only,	as	it	uses	MaxStillToActStackSize

				WHEN	StackSize	>	MaxStillToActStackSize	RETURN	MaxStillToActStackSize	FORCE

				WHEN	Others	RETURN	StackSize	FORCE

Push/Folding	In	A	SNG
//	Going	into	push-fold-mode	when	stacksizes	are	small

//	But	be	careful!

//	We	don’t	want	to	push	loosely	if	something	is	wrong	with	the	stacksize,

//	e.g.	because	the	table	was	occluded,	so	we	check,	if	it	is	non-zero.

WHEN	EffectiveStacksize	>	0	AND	EffectiveStacksize	<=	13

				WHEN	Calls	=	0	AND	Raises	=	0	AND	(Hand$...	RaiseMax	FORCE

Detecting	A	Limp-Raise
//	First	action	preflop

WHEN	BotsActionsOnThisRound	=	0	AND	Calls	>=	1	AND	Raises	=	0		

				//	FirstCallerPosition	is	limited	to	first	orbit	preflop	only,

				//	so	we	remember	it,	making	use	of	advanced	memory	symbols

				WHEN	Others	me_st_MemFirstCallerPosition_FirstCallerPosition

				//	Then	continue	with	normal	bot-logic

			

//	After	that	we	can	detect	a	limp-raise	like	that

//	(assuming,	there	are	no	other	raisers	in	the	pot)

WHEN	LastRaiserPosition	=	me_re_MemFirstCallerPosition	...

Counting	Outs
##f$MySimpleOutsCounter##

				WHEN	(HaveNutFlushDraw	AND	HaveNutStraightDraw)

								//	We	already	have	9	+	8	-	2	duplicates

								//	Plus	up	to	6	undiscounted	outs	for	Overcards

								//	but	some	may	be	already	counted	for	the	flush

								//	(if	we	want	to	make	it	extra	good,	we	should	check	the	colours

								//	of	our	hole	cards	with	OpenHoldems	symbols	$$ps0	and	$$ps1)

								//	The	others	should	be	discounted	a	bit

								WHEN	(Overcards	=	2)	RETURN	18	FORCE

								WHEN	(Overcards	=	1)	RETURN	16.5	FORCE

								WHEN	(Overcards	=	0)	RETURN	15	FORCE

				WHEN	(HaveNutFlushDraw)	//	AND	NOT	HaveNutStraightDraw

								WHEN	(HaveInsideStraightDraw	AND	Overcards	=	2)...	

				...

Calling	According	To	Odds	And	Outs
##f$CardsLeft##

				WHEN	betround	=	2	RETURN	47	FORCE

				WHEN	betround	=	3	RETURN	46	FORCE

				//	Drawing	at	other	betrounds	doesn’t	make	much	sense

				WHEN	Others	RETURN	-1	FORCE

WHEN	AmountToCall	/	(AmountToCall	+	PotSize)	>	f$Outs	/	f$CardsLeft	Call	FORCE

Playing	Fit-Or-Fold	Multiway
##f$HaveStrongDraw##

				WHEN	HaveStraightDraw	OR	HaveFlushDraw	RETURN	True	FORCE

				WHEN	HaveInsideStraightDraw	AND	Overcards	=	2	RETURN	True	FORCE

##f$HaveTopPairOrBetter##

				WHEN	HaveTopPair	RETURN	True	FORCE

				WHEN	HaveOverPair	RETURN	True	FORCE

				WHEN	HaveBestOverpairOrBetter	RETURN	True	FORCE

##f$flop##

WHEN	Opponents	>=	3	AND	NOT	(f$HaveTopPairOrBetter	OR	f$HaveStrongDraw)

				WHEN	AmountToCall	=	0	Check	FORCE

Closing	The	Tables
##f$leave##

WHEN	issittingout

					AND	elapsedauto	>	300			//	5	minutes	without	action

					AND	nopponentsseated	<	4

		RETURN	True	FORCE		

Now	it’s	up	to	you.	Let	the	fun	begin!

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-09-
29T21:48:00.750000

http://elyxer.nongnu.org/

If	you	want	to	buy...
...	we	don’t	sell	anything.
However	if	you	really	need	“more”	than	you	get	here,	especially	built-in	support
for	some	pokersites,	a	winning	bot	for	the	lowest	microstakes	(NL	2	—	yes,	that
are	blinds	of	$0.01/$0.02)	and	professional	hand-holding,	then	you	might	want
to	consider	buying	the	original	Shanky-bot	at	www.bonusbots.com.	To	our	best
knowledge	they	offer	an	advertisement-deal	of	$30	or	$50	or	something	for
every	customer	who	gets	referred.	However:	we	do	neither	want	to	nor	need	to
make	any	money	advertising	such	funny	things	like	“winning	poker-bots”,	but
we	don’t	want	to	waste	that	money	either.	So	if	you	really	buy	their	bot,	please
register	to	their	forum,	send	greetings	to	everybody	and	ask	Egor	to	send	that
money	to
Doctors	without	Borders.
333	7th	Avenue,	2nd	Floor	New	York,	NY	10001-5004
Phone:	212-679-6800	Fax:	212-679-7016
https://www.doctorswithoutborders.org/donate/
Thank	you	very	much	for	your	help	and	cooperation!

Document	generated	by	eLyXer	1.2.5	(2013-03-10)	on	2015-10-
07T21:50:29.196000

http://elyxer.nongnu.org/

	Introduction
	Contributors
	What Is OpenPPL?
	License - GPL

	OpenPPL Symbols
	Betting-Action Symbols
	Betsizes And Stacksizes
	Board Symbols
	Handstrength Symbols
	Other Symbols
	Player Symbols
	PokerTracker Symbols
	Position Symbols
	Technical Symbols

	If You Want To Buy...

