% QPENCASCADE

Open CASCADE
Technology 7.2.0

MFC samples

1. Contents

The directory samples/mfc/standard contains the following packages and
files:

e Numbered packages: 01_Geometry, 02_Modeling, etc. provide
projects and sources of samples;

o Files All-ve(number).sln are auxiliary utility projects depending on
all other sample projects. When such project is rebuilt, all samples
and mfcsample library are also rebuilt.

e Common directory provides common source and header files for
samples and dynamic-link library mfcsample.dll.

e Data directory stores data files.

o mfcsample directory contains project for mfcsample.dll library
providing basic functionality used by all OCC samples.

e File env.bat is called from msvc.bat.

2. Launching Open CASCADE Technology
samples:

To run the Open CASCADE Technology samples, use command:

execute run.bat [vcl0]|vcll|vcl2|vcl4d] [win32|win64]
[Release|Debug] [SampleName]

To run the Animation sample, use command:

execute run.bat vcl® win64 Debug Animation

3. Modifying and rebuilding samples:

You can modify, compile and launch all sample projects in MS Visual C++
at once with command:

execute msvc.bat [vcl0|vcll|vcl2]|vcld] [win32|win64]
[Release|Debug]

To run all sample projects in MS Visual C++ at once, use command:

execute msvc.bat vcl0 win64 Debug

Note: make sure that your PATH environment variable contains a
directory, where msdev.exe is located.

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j@ﬁ}j%[]
1.8.13

http://www.doxygen.org/index.html

= OPENCASCADE

Open CASCADE
Technology 7.2.0

OCCT CSharp sample

This sample demonstrates how to use OCCT libraries in .Net application
written using CSharp and Windows Forms or Windows Presentation
Foundation (WPF).

The connection between .Net and OCCT (C++) level is provided by proxy
library OCCProxy, written in C++/CLI. The proxy library contains a single
ref class encapsulating OCCT viewer and providing the functionality to
manipulate this viewer and to import / export OCCT shapes from / to
several supported CAD file formats (IGES, STEP, BREP).

The sample implements two approaches to the development of a user
interface with C#. Both applications provide the same functionality as the
standard OCCT Import/Export sample. The first project is called
IE_WinForms and uses Windows Forms for GUI. The second application
is called IE_WPF_WinForms and uses Windows Presentation
Foundation.

Note a few important details:

o OCCT template class NCollection_Haft is used to encapsulate C++
class into a field of ref class;

e It is necessary to explicitly set the target platform for C# assemblies
to x86 in project Properties - Build to work consistently on 64-bit
systems with OCCT libraries built in 32-bit mode;

¢ this sample demonstrates indirect method of wrapping C++ to C#
using a manually created proxy library. There is an alternative
method of wrapping individual OCCT classes to C# equivalents to
make their full APl available to a C# user and to let the code be
programmed on C# level similarly to C++ one. See the description of
OCCT C# Wrapper in Advanced Samples and Tools at
http://www.opencascade.org/support/products/advsamples

¢ in WPF sample, WinForms control is used to encapsulate OCC

http://www.opencascade.org/support/products/advsamples

viewer since WPF does not provide the necessary interface to
embed OpenGl view. Other possible solution could be to render
OpenGl scene in an off-screen buffer and to map it to WPF control
as an image. That approach would allow using all WPF features to
control the OCCT viewer.

Run msvc.bat to start MS Visual Studio for building the sample. Note that
project files are provided only for VS 2010, you can open them in newer
versions of Visual Studio the using automatic converter.

After conversion check option Target framework in the properties of C#
projects (tab Application) to make sure that it corresponds to the version
set in the properties of C++ projects (e.g. .Net Framework 4.0 for VS
2010).

Run run_winforms.bat or run_wpf.bat to launch the corresponding
sample.

Note that all batch scripts use the configuration defined in OCCT
custom.bat file as default; you can provide arguments specifying VS
version, bitness, and mode to override these settings, e.qg.:

> msvc.bat vcl0 win64 Debug

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j{jf'lgfg[]
1.8.13

http://www.doxygen.org/index.html

% QPENCASCADE

Open CASCADE
Technology 7.2.0

Direct3D CSharp sample

This sample demonstrates how to use OCCT and DirectX libraries in .Net
application written using CSharp and Windows Presentation
Foundation (WPF).

The connection between .Net, OCCT (C++) and DirectX level is provided
by proxy libraries, OCCProxy and D3DProxy, written in C++/CLI. The
proxy library OCCProxy contains a single ref class encapsulating OCCT
viewer and providing the functionality to manipulate this viewer and to
import / export OCCT shapes from / to several supported CAD file
formats (IGES, STEP, BREP). The proxy library D3DProxy contains
helper methods for rendering via DirectX.

The user interface in this sample is based on Windows Presentation
Foundation (WPF). It has the same functionality as the standard OCCT
Import/Export sample. The project is called IE_WPF_D3D.

Note a few important details:

e to build this sample you should to download and install DirectX SDK
http://www.microsoft.com/en-us/download/details.aspx?id=6812

e OCCT template class NCollection_Haft is used to encapsulate C++
class into a field of ref class;

e It is necessary to explicitly set the target platform for C# assemblies
to x86 in project Properties - Build to work consistently on 64-bit
systems with OCCT libraries built in 32-bit mode;

¢ this sample demonstrates indirect method of wrapping C++ to C#
using a manually created proxy library. There is an alternative
method of wrapping individual OCCT classes to C# equivalents to
make their full APl available to a C# user and to let the code be
programmed on C# level similarly to C++ one. See the description of
OCCT C# Wrapper in Advanced Samples and Tools at
http://www.opencascade.org/support/products/advsamples

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.opencascade.org/support/products/advsamples

¢ in WPF sample, WinForms control is used to encapsulate OCC
viewer since WPF does not provide the necessary interface to
embed OpenGl view. Other possible solution could be to render
OpenGl scene in an off-screen buffer and to map it to WPF control
as an image. That approach would allow using all WPF features to
control the OCCT viewer.

Run msvc.bat to start MS Visual Studio for building the sample. Note that
project files are provided only for VS 2010, you can open them in newer
versions of Visual Studio using an automatic converter.

After conversion check option Target framework in the properties of C#
projects (tab Application) to make sure that it corresponds to the version
set in the properties of C++ projects (e.g. .Net Framework 4.0 for VS
2010).

Run run_wpf-D3D.bat to launch the corresponding sample.
Note that all batch scripts use the configuration defined in OCCT

custom.bat file as default; you can provide arguments specifying VS
version, bitness, and mode to override these settings, e.qg.:

> msvc.bat vcl0 win64 Debug

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j{jf'lgfg[]
1.8.13

http://www.doxygen.org/index.html

% QPENCASCADE

Open CASCADE
Technology 7.2.0

OCCT JniViewer sample for Android

This sample demonstrates simple way of using OCCT libraries in Android
application written using Java.

The connection between Java and OCCT (C++) level is provided by
proxy library, libTKJniSample.so, written in C++ with exported JNI
methods of Java class OcctJniRenderer. The proxy library contains single
C++ class Occtdni_Viewer encapsulating OCCT viewer and providing
functionality to manipulate this viewer and to import OCCT shapes from
several supported formats of CAD files (IGES, STEP, BREP).

This sample demonstrates indirect method of wrapping C++ to Java
using manually created proxy library. Alternative method is available,
wrapping individual OCCT classes to Java equivalents so that their full
APl is available to Java user and the code can be programmed on Java
level similarly to C++ one. See description of OCCT Java Wrapper in
Advanced Samples and Tools on OCCT web site at
http://www.opencascade.org/support/products/advsamples

Run Eclipse from ADT (Android Developer Tools) for building the sample.
To import sample project perform

File -> Import... -> Android -> Existing Android code
into Workspace

and specify this directory. The project re-build will be started immediately
right after importation if "Build automatically" option is turned on (default
in Eclipse). Proxy library compilation and packaging is performed by NDK
build script, called by "C++ Builder" configured within Eclipse project. The
path to "ndk-build" tool from Android NDK (Native Development Kit)
should be specified in Eclipse project properties:

Project -> Properties -> Builders -> C++ Builder ->

http://www.opencascade.org/support/products/advsamples

Edit -> Location

Now paths to OCCT C++ libraries and additional components should be
specified in "jni/Android.mk" file:

OCCT_ROOT := $(LOCAL_PATH)/../../../..

FREETYPE_INC :=
$(OCCT_ROOT)/../freetype/include/freetype2
FREETYPE_LIBS := $(OCCT_ROOT)/../freetype/libs

FREEIMAGE_INC
FREEIMAGE_LIBS :

$(OCCT_ROOT)/../FreelImage/include
$(OCCT_ROOT)/../FreeImage/libs

OCCT_INC
OCCT_LIBS :

$(0CCT_ROOT)/inc
$(0CCT_ROOT)/and/1ibs

The list of extra components (Freetype, Freelmage) depends on OCCT
configuration. Variable is used within this script to refer to active
architecture. E.g. for 32-bit ARM build (see variable APP_ABI in
"Ini/Application.mk") the folder OCCT_LIBS should contain sub-folder
"armeabi-v7a" with OCCT libraries.

Freelmage is optional and does not required for this sample, however
you should include all extra libraries used for OCCT building and load the
explicitly from Java code within OcctJniActivity::loadNatives() method,
including toolkits from OCCT itself in proper order:

if (!'loadLibVerbose ("TKernel", alLoaded, aFailed)
| | !'loadLibVerbose ("TKMath", alLoaded, aFailed)
| | !'loadLibVerbose ("TKG2d", aLoaded, aFailed)

Note that C++ STL library is not part of Android system. Thus application
must package this library as well as extra component. "gnustl_shared"
STL implementation is expected within this sample.

After successful build, the application can be packaged to Android:

e Deploy and run application on connected device or emulator directly
from Eclipse using adb interface by menu items "Run" and "Debug".

This would sign package with debug certificate.
e Prepare signed end-user package using wizard File -> Export ->
Android -> Export Android Application.

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j@j@?:‘g@[]
1.8.13

http://www.doxygen.org/index.html

= OPENCASCADE

Open CASCADE
Technology 7.2.0

OCCT AndroidQt sample for Android

This sample demonstrates a simple way of using OCCT libraries in
Android application written using Qt/Qml.

The connection between Qt/Qml and OCCT (C++) level is provided by
proxy library, libAndroidQt.so, written in C++. The proxy library contains
single C++ class AndroidQt encapsulating OCCT viewer and providing
functionality to manipulate this viewer and to import OCCT shapes from
supported format of CAD file (BREP).

Requirements for building sample:

Java Development Kit 1.7 or higher

Qt 5.3 or higher

Android SDK from 2014.07.02 or newer
Android NDK r9d or newer

e Apache Ant 1.9.4 or higher

Configure project for building sample:
In QtCreator, open AndroidQt.pro project-file:

File -> Open file or Project...

Specify Android configurations:

Tools->0Options->Android

In JDK location specify path to Java Development Kit

In Android SDK location specify path to Android SDK

In Android NDK location specify path to Android NDK

In Ant executable specify path to ant.bat file located in Apache Ant
bin directory

Make sure that "Android for armeabi-v7a" kit has been detected

Tools->0Options->Build & Run

The paths to OCCT and 3rdparty libraries are specified in "OCCT.pri" file:
the paths to the headers:

INCLUDEPATH += /occt/inc /3rdparty/include
DEPENDPATH += /occt/inc /3rdparty/include

the libraries location:

LIBS += -L/occt/libs/armeabi-v7a

OCCT resources (Shaders, SHMessage, StdResource, TObj, UnitsAPI
and XSMessage folder) should be copied to
androidqt_dir/android/assets/opencascade/shared/ directory. Current
sample requires at least Shaders folder.

Select build configuration: Debug or Release and click Build->Build
Project "AndroidQt" or (Ctrl + B). After successful build the application
can be deployed to device or emulator.

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j{jf’lg%[]
1.8.13

http://www.doxygen.org/index.html

e o= cascape OPEN CASCADE
" Technology 7.2.0

Tutorial

Table of Contents

+Qverview
+Prerequisites
+The Model
+Model Specifications
4 Building the Profile

4 Defining Support
Points

4 Profile: Defining the
Geometry

4 Profile: Defining the
Topology

4 Profile: Completing
the Profile

4 Building the Body
+Prism the Profile
+Applying Fillets
4+ Adding the Neck

+Creating a Hollowed
Solid

4 Building the Threading
+Creating Surfaces
4+ Defining 2D Curves

+Building Edges and
Wires

4 Creating Threading

4 Building the Resulting
Compound

+ Appendix

Overview

This tutorial will teach you how to use Open CASCADE Technology
services to model a 3D object. The purpose of this tutorial is not to
describe all Open CASCADE Technology classes but to help you start
thinking in terms of Open CASCADE Technology as a tool.

Prerequisites

This tutorial assumes that you have experience in using and setting up
C++. From a programming standpoint, Open CASCADE Technology is
designed to enhance your C++ tools with 3D modeling classes, methods
and functions. The combination of all these resources will allow you to
create substantial applications.

The Model

To illustrate the use of classes provided in the 3D geometric modeling
toolkits, you will create a bottle as shown:

\szﬂf

In the tutorial we will create, step-by-step, a function that will model a
bottle as shown above. You will find the complete source code of this
tutorial, including the very function MakeBottle in the distribution of Open
CASCADE Technology. The function body is provided in the file
samples/qt/Tutorial/src/MakeBottle.cxx.

Model Specifications

We first define the bottle specifications as follows:

Object Parameter Parameter Name Parameter Value

Bottle height MyHeight 70mm
Bottle width MyWidth 50mm
Bottle thickness MyThickness 30mm

In addition, we decide that the bottle's profile (base) will be centered on
the origin of the global Cartesian coordinate system.

..-"” T

myThickness

myHeight

This modeling requires four steps:

e Dbuild the bottle's Profile

¢ Dbuild the bottle's Body

¢ build the Threading on the bottle's neck
e Dbuild the result compound

Building the Profile

Defining Support Points

To create the bottle's profile, you first create characteristic points with
their coordinates as shown below in the (XOY) plane. These points will
be the supports that define the geometry of the profile.

A
(-myWidth /2., 0, 0)

v

(myWidth/ 2., 0, 0)

S

(-myWidth / 2., -myThickness /] ,0)

(myWidth / 2., myThickne ss/4. , 0)

(0, -myThickness / 2., 0)

There are two classes to describe a 3D Cartesian point from its X, Y and
Z coordinates in Open CASCADE Technology:

¢ the primitive geometric gp_Pnt class
¢ the transient Geom_CartesianPoint class manipulated by handle

A handle is a type of smart pointer that provides automatic memory
management. To choose the best class for this application, consider the
following:

e gp_Pntis manipulated by value. Like all objects of its kind, it will
have a limited lifetime.

e Geom_CartesianPoint is manipulated by handle and may have
multiple references and a long lifetime.

Since all the points you will define are only used to create the profile's
curves, an object with a limited lifetime will do. Choose the gp_Pnt class.
To instantiate a gp_Pnt object, just specify the X, Y, and Z coordinates of
the points in the global Cartesian coordinate system:

gp_Pnt aPnti(-mywidth / 2., 0, 0);

gp_Pnt aPnt2(-mywidth / 2., -myThickness / 4., 0);
gp_Pnt aPnt3(0, -myThickness / 2., 0);
gp_Pnt aPnt4(mywidth / 2., -myThickness / 4., 0);

gp_Pnt aPnt5(mywidth / 2., 0, 0);

Once your objects are instantiated, you can use methods provided by the
class to access and modify its data. For example, to get the X coordinate

of a point:

Standard_Real xValuel = aPntl1.X();

Profile: Defining the Geometry

With the help of the previously defined points, you can compute a part of
the bottle's profile geometry. As shown in the figure below, it will consist
of two segments and one arc.

I Segment I Segment

\/

Arc of Circle

To create such entities, you need a specific data structure, which
implements 3D geometric objects. This can be found in the Geom
package of Open CASCADE Technology. In Open CASCADE
Technology a package is a group of classes providing related
functionality. The classes have names that start with the name of a
package they belong to. For example, Geom_Line and Geom_Circle
classes belong to the Geom package. The Geom package implements
3D geometric objects: elementary curves and surfaces are provided as
well as more complex ones (such as Bezier and BSpline). However, the
Geom package provides only the data structure of geometric entities. You
can directly instantiate classes belonging to Geom, but it is easier to
compute elementary curves and surfaces by using the GC package. This
is because the GC provides two algorithm classes which are exactly what
is required for our profile:

e Class GC_MakeSegment to create a segment. One of its
constructors allows you to define a segment by two end points P1
and P2

o Class GC_MakeArcOfCircle to create an arc of a circle. A useful
constructor creates an arc from two end points P1 and P3 and going
through P2.

Both of these classes return a Geom_TrimmedCurve manipulated by
handle. This entity represents a base curve (line or circle, in our case),
limited between two of its parameter values. For example, circle C is
parameterized between 0 and 2PI. If you need to create a quarter of a
circle, you create a Geom_TrimmedCurve on C limited between 0 and

M_PI/2.

Handle(Geom_TrimmedCurve) aArcOfCircle =
GC_MakeArcOfCircle(aPnt2,aPnt3,aPnt4);

Handle(Geom_TrimmedCurve) aSegmentl =
GC_MakeSegment (aPntl, aPnt2);

Handle(Geom_TrimmedCurve) aSegment2

GC_MakeSegment (aPnt4, aPnt5);

All GC classes provide a casting method to obtain a result automatically
with a function-like call. Note that this method will raise an exception if
construction has failed. To handle possible errors more explicitly, you
may use the IsDone and Value methods. For example:

GC_MakeSegment mkSeg (aPntl, aPnt2);
Handle(Geom_TrimmedCurve) aSegmentl;
(mkSegment.IsDone()){
aSegmentl = mkSeg.Value();

{

// handle error

}

}

Profile: Defining the Topology

You have created the support geometry of one part of the profile but
these curves are independent with no relations between each other. To
simplify the modeling, it would be right to manipulate these three curves
as a single entity. This can be done by using the topological data
structure of Open CASCADE Technology defined in the TopoDS
package: it defines relationships between geometric entities which can be
linked together to represent complex shapes. Each object of the TopoDS
package, inheriting from the TopoDS_Shape class, describes a
topological shape as described below:

Open CASCADE

Technology
Class

Description

Zero dimensional shape

Vertex TopoDS_Vertex corresponding to a point in
geometry.
One-dimensional shape
corresponding to a curve and
Edge TopoDS_Edge bounded by a vertex at each
extremity.
: , Sequence of edges connected by
Wire TopoDS_Wire vertices.
Part of a surface bounded by a
Face TopoDS_Face closed wire(s).
Shell TopoDS_Shell Set of faces connected by edges.
Solid TopoDS_Solid Part of 3D space bounded by Shells.
CompSolid | TopoDS_CompSolid ;i';(;f solids connected by their
Compound | TopoDS_Compound Set of any other shapes described

above.

Referring to the previous table, to build the profile, you will create:

e Three edges out of the previously computed curves.

e One wire with these edges.

IEdgel IEdgeS

\/

Edge2

However, the TopoDS package provides only the data structure of the
topological entities. Algorithm classes available to compute standard
topological objects can be found in the BRepBuilderAPI package. To
create an edge, you use the BRepBuilderAPI_MakeEdge class with the
previously computed curves:

TopoDS_Edge aEdgel =
BRepBuilderAPI_MakeEdge (aSegmentl);

TopoDS_Edge aEdge2 =
BRepBuilderAPI_MakeEdge(aArcOfCircle);

TopoDS_Edge aEdge3 =
BRepBuilderAPI_MakeEdge(aSegment2);

In Open CASCADE Technology, you can create edges in several ways.
One possibility is to create an edge directly from two points, in which
case the underlying geometry of this edge is a line, bounded by two
vertices being automatically computed from the two input points. For
example, aEdgel and aEdge3 could have been computed in a simpler
way:

TopoDS_Edge aEdgel
aPnt3);

TopoDS_Edge aEdge2
aPnt5);

BRepBuilderAPI_MakeEdge(aPnt1,

BRepBuilderAPI_MakeEdge(aPnt4,

To connect the edges, you need to create a wire with the
BRepBuilderAPI_MakeWire class. There are two ways of building a wire
with this class:

e directly from one to four edges
¢ by adding other wire(s) or edge(s) to an existing wire (this is
explained later in this tutorial)

When building a wire from less than four edges, as in the present case,
you can use the constructor directly as follows:

TopoDS_Wire aWire = BRepBuilderAPI_MakeWire(aEdgel,
aEdge2, aEdge3);

Profile: Completing the Profile

Once the first part of your wire is created you need to compute the
complete profile. A simple way to do this is to:

e compute a new wire by reflecting the existing one.
e add the reflected wire to the initial one.

D Mirror

To apply a transformation on shapes (including wires), you first need to
define the properties of a 3D geometric transformation by using the
gp_Trsf class. This transformation can be a translation, a rotation, a
scale, a reflection, or a combination of these. In our case, we need to
define a reflection with respect to the X axis of the global coordinate
system. An axis, defined with the gp_Ax1 class, is built out of a point and
has a direction (3D unitary vector). There are two ways to define this
axis. The first way is to define it from scratch, using its geometric
definition:

e X axis is located at (0, 0, 0) - use the gp_Pnt class.
e X axis direction is (1, 0, 0) - use the gp_Dir class. A gp_Dir instance
is created out of its X, Y and Z coordinates.

gp_Pnt aOrigin(0, 0, 0);
gp_Dir xDir(1, 0, 0);
gp_Ax1l xAxis(aOrigin, xDir);

The second and simplest way is to use the geometric constants defined
in the gp package (origin, main directions and axis of the global
coordinate system). To get the X axis, just call the gp::OX method:

gp_Ax1l xAxis = gp::0X();

As previously explained, the 3D geometric transformation is defined with
the gp_Trsf class. There are two different ways to use this class:

¢ by defining a transformation matrix by all its values

e by using the appropriate methods corresponding to the required
transformation (SetTranslation for a translation, SetMirror for a
reflection, etc.): the matrix is automatically computed.

Since the simplest approach is always the best one, you should use the
SetMirror method with the axis as the center of symmetry.

gp_Trsf aTrsf;
aTrsf.SetMirror (xAxis);

You now have all necessary data to apply the transformation with the
BRepBuilderAPI_Transform class by specifying:

¢ the shape on which the transformation must be applied.
e the geometric transformation

BRepBuilderAPI_Transform aBRepTrsf(awWire, aTrsf);

BRepBuilderAPI_Transform does not modify the nature of the shape: the
result of the reflected wire remains a wire. But the function-like call or the
BRepBuilderAPI_Transform::Shape method returns a TopoDS_Shape
object:

TopoDS_Shape aMirroredShape = aBRepTrsf.Shape();

What you need is a method to consider the resulting reflected shape as a
wire. The TopoDS global functions provide this kind of service by casting
a shape into its real type. To cast the transformed wire, use the
TopoDS::Wire method.

TopoDS_Wire aMirroredWire =
TopoDS: :Wire(aMirroredShape);

The bottle's profile is almost finished. You have created two wires: aWire

and aMirroredWire. You need to concatenate them to compute a single
shape. To do this, you use the BRepBuilderAPI_MakeWire class as

follows:

e create an instance of BRepBuilderAPI_MakeWire.
¢ add all edges of the two wires by using the Add method on this
object.

BRepBuilderAPI_MakeWire mkWire;
mkWire.Add(awire);
mkWire.Add(aMirroredWire);

TopoDS_Wire myWireProfile = mkWire.Wire();

Building the Body

Prism the Profile

To compute the main body of the bottle, you need to create a solid shape.
The simplest way is to use the previously created profile and to sweep it
along a direction. The Prism functionality of Open CASCADE Technology
is the most appropriate for that task. It accepts a shape and a direction as
input and generates a new shape according to the following rules:

Shape Generates

Vertex | Edge

Edge Face
Wire Shell
Face Solid

Shell Compound of Solids

myHeight

e

Your current profile is a wire. Referring to the Shape/Generates table, you
need to compute a face out of its wire to generate a solid. To create a
face, use the BRepBuilderAPI_MakeFace class. As previously explained,
a face is a part of a surface bounded by a closed wire. Generally,
BRepBuilderAPI_MakeFace computes a face out of a surface and one or
more wires. When the wire lies on a plane, the surface is automatically
computed.

TopoDS_Face myFaceProfile =
BRepBuilderAPI_MakeFace(myWireProfile);

The BRepPrimAPI package provides all the classes to create topological
primitive constructions: boxes, cones, cylinders, spheres, etc. Among
them is the BRepPrimAPI_MakePrism class. As specified above, the
prism is defined by:

e the basis shape to sweep;
e a vector for a finite prism or a direction for finite and infinite prisms.

You want the solid to be finite, swept along the Z axis and to be myHeight
height. The vector, defined with the gp_Vec class on its X, Y and Z
coordinates, is:

gp_Vec aPrismVec(0, 0, myHeight);

All the necessary data to create the main body of your bottle is now

available. Just apply the BRepPrimAPI_MakePrism class to compute the
solid:

TopoDS_Shape myBody =
BRepPrimAPI_MakePrism(myFaceProfile, aPrismVec);

Applying Fillets
The edges of the bottle's body are very sharp. To replace them by

rounded faces, you use the Fillet functionality of Open CASCADE
Technology. For our purposes, we will specify that fillets must be:

e applied on all edges of the shape
e have a radius of myThickness [12

K myThickness ! 12
\szﬂf

To apply fillets on the edges of a shape, you use the
BRepFilletAPI_MakefFillet class. This class is normally used as follows:

o Specify the shape to be filleted in the BRepFilletAPI_MakeFillet
constructor.

e Add the fillet descriptions (an edge and a radius) using the Add
method (you can add as many edges as you need).

o Ask for the resulting filleted shape with the Shape method.

BRepFilletAPI_MakeFillet mkFillet(myBody);

To add the fillet description, you need to know the edges belonging to
your shape. The best solution is to explore your solid to retrieve its
edges. This kind of functionality is provided with the TopExp_Explorer
class, which explores the data structure described in a TopoDS_Shape
and extracts the sub-shapes you specifically need. Generally, this
explorer is created by providing the following information:

¢ the shape to explore
¢ the type of sub-shapes to be found. This information is given with the

TopAbs_ShapeEnum enumeration.

TopExp_Explorer ankEdgeExplorer(myBody, TopAbs_EDGE);

An explorer is usually applied in a loop by using its three main methods:

e More() to know if there are more sub-shapes to explore.

e Current() to know which is the currently explored sub-shape (used
only if the More() method returns true).

e Next() to move onto the next sub-shape to explore.

(anEdgeExplorer.More()){
TopoDS_Edge anEdge =
TopoDS: :Edge(anEdgeExplorer.Current());
//Add edge to fillet algorithm

anEdgeExplorer.Next();
}

In the explorer loop, you have found all the edges of the bottle shape.
Each one must then be added in the BRepFilletAP|_MakeFillet instance
with the Add() method. Do not forget to specify the radius of the fillet
along with it.

mkFillet.Add(myThickness / 12., anEdge);

Once this is done, you perform the last step of the procedure by asking
for the filleted shape.

myBody = mkFillet.Shape();

Adding the Neck

To add a neck to the bottle, you will create a cylinder and fuse it to the
body. The cylinder is to be positioned on the top face of the body with a
radius of myThickness / 4. and a height of myHeight / 10.

myThickness ! 4

K I myHeight ! 10

\szﬂf

To position the cylinder, you need to define a coordinate system with the
gp_Ax2 class defining a right-handed coordinate system from a point and
two directions - the main (Z) axis direction and the X direction (the Y
direction is computed from these two). To align the neck with the center
of the top face, being in the global coordinate system (0, 0, myHeight),
with its normal on the global Z axis, your local coordinate system can be
defined as follows:

gp_Pnt neckLocation(®, O, myHeight);
gp_Dir neckAxis = gp::DzZ();
gp_Ax2 neckAx2(neckLocation, neckAxis);

To create a cylinder, use another class from the primitives construction
package: the BRepPrimAPI_MakeCylinder class. The information you
must provide is:

¢ the coordinate system where the cylinder will be located;
¢ the radius and height.

Standard_Real myNeckRadius = myThickness / 4.;

Standard_Real myNeckHeight = myHeight / 10;

BRepPrimAPI_MakeCylinder MKCylinder (neckAx2,
myNeckRadius, myNeckHeight);

TopoDS_Shape myNeck = MKCylinder.Shape();

You now have two separate parts: a main body and a neck that you need
to fuse together. The BRepAlgoAPI package provides services to perform
Boolean operations between shapes, and especially: common (Boolean
intersection), cut (Boolean subtraction) and fuse (Boolean union). Use
BRepAIlgoAPI_Fuse to fuse the two shapes:

myBody = BRepAlgoAPI_Fuse(myBody, myNeck);

Creating a Hollowed Solid

Since a real bottle is used to contain liquid material, you should now
create a hollowed solid from the bottle's top face. In Open CASCADE
Technology, a hollowed solid is called a Thick Solid and is internally
computed as follows:

e Remove one or more faces from the initial solid to obtain the first
wall W1 of the hollowed solid.

e Create a parallel wall W2 from W1 at a distance D. If D is positive,
W2 will be outside the initial solid, otherwise it will be inside.

e Compute a solid from the two walls W1 and W2.

-

-myThickness { B0

A
L

To compute a thick solid, you create an instance of the
BRepOffsetAPI_MakeThickSolid class by giving the following information:

Remore T

e The shape, which must be hollowed.

e The tolerance used for the computation (tolerance criterion for
coincidence in generated shapes).

e The thickness between the two walls W1 and W2 (distance D).

e The face(s) to be removed from the original solid to compute the first
wall W1.

The challenging part in this procedure is to find the face to remove from
your shape - the top face of the neck, which:

e has a plane (planar surface) as underlying geometry;

e is the highest face (in Z coordinates) of the bottle.

To find the face with such characteristics, you will once again use an
explorer to iterate on all the bottle's faces to find the appropriate one.

(TopExp_Explorer aFaceExplorer(myBody,
TopAbs_FACE) ; aFaceExplorer.More() ;
aFaceExplorer.Next()){

TopoDS_Face aFace =
TopoDS: :Face(aFaceExplorer.Current());

}

For each detected face, you need to access the geometric properties of
the shape: use the BRep_Tool class for that. The most commonly used
methods of this class are:

e Surface to access the surface of a face;
e Curve to access the 3D curve of an edge;
¢ Point to access the 3D point of a vertex.

Handle(Geom_Surface) aSurface =
BRep_Tool: :Surface(aFace);

As you can see, the BRep_Tool::Surface method returns an instance of
the Geom_Surface class manipulated by handle. However, the
Geom_Surface class does not provide information about the real type of
the object aSurface, which could be an instance of Geom_Plane,
Geom_CylindricalSurface, etc. All objects manipulated by handle, like
Geom_Surface, inherit from the Standard_Transient class which provides
two very useful methods concerning types:

e DynamicType to know the real type of the object
¢ /sKind to know if the object inherits from one particular type

DynamicType returns the real type of the object, but you need to
compare it with the existing known types to determine whether aSurface
is a plane, a cylindrical surface or some other type. To compare a given
type with the type you seek, use the STANDARD_TYPE macro, which
returns the type of a class:

(asurface->DynamicType() ==
STANDARD_TYPE (Geom_Plane)){
//

}

If this comparison is true, you know that the aSurface real type is
Geom_Plane. You can then convert it from Geom_Surface to
Geom_Plane by using the DownCast() method provided by each class
inheriting Standard_Transient. As its name implies, this static method is
used to downcast objects to a given type with the following syntax:

Handle(Geom_Plane) aPlane =
Handle(Geom_Plane): :DownCast(aSurface);

Remember that the goal of all these conversions is to find the highest
face of the bottle lying on a plane. Suppose that you have these two
global variables:

TopoDS_Face faceToRemove;
Standard_Real zMax = -1;

You can easily find the plane whose origin is the biggest in Z knowing
that the location of the plane is given with the Geom_Plane::Location
method. For example:

gp_Pnt aPnt = aPlane->Location();
Standard_Real aZz = aPnt.Zz();
(az > zMax){
zMax = aZ,;
faceToRemove = aFace;

}

You have now found the top face of the neck. Your final step before
creating the hollowed solid is to put this face in a list. Since more than
one face can be removed from the initial solid, the
BRepOffsetAPI_MakeThickSolid constructor takes a list of faces as
arguments. Open CASCADE Technology provides many collections for
different kinds of objects: see TColGeom package for collections of
objects from Geom package, TColgp package for collections of objects

from gp package, etc. The collection for shapes can be found in the

TopTools package. As BRepOffsetAPI_MakeThickSolid requires a list,
use the TopTools_ListOfShape class.

TopTools_ListOfShape facesToRemove;
facesToRemove.Append(faceToRemove);

All the necessary data are now available so you can create your hollowed

solid by calling the BRepOffsetAPI_Make ThickSolid
MakeThickSolidByJoin method:

BRepOffsetAPI_MakeThickSolid BodyMaker;

BodyMaker .MakeThickSolidByJoin(myBody, facesToRemove,
-myThickness / 50, 1.e-3);

myBody = BodyMaker.Shape();

Building the Threading

Creating Surfaces

Up to now, you have learned how to create edges out of 3D curves. You
will now learn how to create an edge out of a 2D curve and a surface. To
learn this aspect of Open CASCADE Technology, you will build helicoidal
profiles out of 2D curves on cylindrical surfaces. The theory is more
complex than in previous steps, but applying it is very simple. As a first
step, you compute these cylindrical surfaces. You are already familiar
with curves of the Geom package. Now you can create a cylindrical
surface (Geom_CylindricalSurface) using:

¢ a coordinate system,;
e aradius.

Using the same coordinate system neckAx2 used to position the neck,
you create two cylindrical surfaces Geom_CylindricalSurface with the
following radii:

myMeckRadius * 099 I
- |

myMeckRadius * 1 .DS—l |

| |
| |
| z |
| T.x
| |
| |
| |

f T\

Notice that one of the cylindrical surfaces is smaller than the neck. There
is a good reason for this: after the thread creation, you will fuse it with the
neck. So, we must make sure that the two shapes remain in contact.

Handle(Geom_CylindricalSurface) aCyll = new
Geom_CylindricalSurface(neckAx2, myNeckRadius *
0.99);

Handle(Geom_CylindricalSurface) aCyl2 = new

Geom_CylindricalSurface(neckAx2, myNeckRadius *
1.05);

Defining 2D Curves

To create the neck of the bottle, you made a solid cylinder based on a
cylindrical surface. You will create the profile of threading by creating 2D
curves on such a surface. All geometries defined in the Geom package
are parameterized. This means that each curve or surface from Geom is
computed with a parametric equation. A Geom_CylindricalSurface
surface is defined with the following parametric equation:

P(U, V) =0 + R * (cos(U) * xDir + sin(U) * yDir) + V * zDir, where :

e P is the point defined by parameters (U, V).

e O, *Dir, yDir and zDir are respectively the origin, the X direction, Y
direction and Z direction of the cylindrical surface local coordinate
system.

e R is the radius of the cylindrical surface.

e Urange is [0, 2PI] and V is infinite.

________—_;J PiU % =0+ R * (cos(U) * xDir + sincl) * wDir) + + * zDir

The advantage of having such parameterized geometries is that you can
compute, for any (U, V) parameters of the surface:

¢ the 3D point;
e the derivative vectors of order 1, 2 to N at this point.

There is another advantage of these parametric equations: you can
consider a surface as a 2D parametric space defined with a (U, V)
coordinate system. For example, consider the parametric ranges of the
neck's surface:

Y

[0, myheckHeight) [2*F1, myMeckHeight)

1]

m,m [2*Rl, II;j

Suppose that you create a 2D line on this parametric (U, V) space and
compute its 3D parametric curve. Depending on the line definition, results
are as follows:

Case Parametric Equation Parametric Curve

U=0 |P(V)=0+V *2zDir Line parallel to the Z direction
V=0 P(U)=0+R *(cos(U) * Circle parallel to the (O, X, Y)

- xDir + sin(U) * yDir) plane
Ul=0 P(U,V) =0+ R *(cos(U) | Helicoidal curve describing the
v - ol xDir + sin(U) * yDir) + V * | evolution of height and angle on

zDir the cylinder

The helicoidal curve type is exactly what you need. On the neck's
surface, the evolution laws of this curve will be:

¢ InV parameter: between 0 and myHeighNeck for the height
description

¢ |In U parameter: between 0 and 2PI for the angle description. But,
since a cylindrical surface is U periodic, you can decide to extend
this angle evolution to 4PI1 as shown in the following drawing:

Y

(0, myMeckHeight [2*Pl, myMeckHeight) [4*P1, myMeckHeight)

+ L
m,om 2%, 0 [4*Pl, 0

In this (U, V) parametric space, you will create a local (X, Y) coordinate
system to position the curves to be created. This coordinate system will
be defined with:

e A center located in the middle of the neck's cylinder parametric
space at (2*PIl, myNeckHeight / 2) in U, V coordinates.

e A X direction defined with the (2*PI, myNeckHeight/4) vector in U, V
coordinates, so that the curves occupy half of the neck's surfaces.

Y

[0, myMeckHeight) [2*Pl, myMeckHeight) [4*P1, myMeckHeight)

W [2*P1 , myMeckHeight 7 4)

—

. H
(2*Pl , myMeckHeight 21| X

+ L
m,om 2%, 0 [4*Pl, 0

To use 2D primitive geometry types of Open CASCADE Technology for
defining a point and a coordinate system, you will once again instantiate
classes from gp:

¢ To define a 2D point from its X and Y coordinates, use the gp_Pnt2d
class.

e To define a 2D direction (unit vector) from its X and Y coordinates,
use the gp_Dir2d class. The coordinates will automatically be
normalized.

e To define a 2D right-handed coordinate system, use the gp_Ax2d
class, which is computed from a point (origin of the coordinate
system) and a direction - the X direction of the coordinate system.

The Y direction will be automatically computed.

gp_Pnt2d aPnt(2. * M_PI, myNeckHeight / 2.);
gp_Dir2d abDir(2. * M_PI, myNeckHeight / 4.);
gp_Ax2d anAx2d(aPnt, aDir);

You will now define the curves. As previously mentioned, these thread
profiles are computed on two cylindrical surfaces. In the following figure,
curves on the left define the base (on aCyl1 surface) and the curves on
the right define the top of the thread's shape (on aCy/2 surface).

First Arc of Ellpse Second Arc of Ellpse

by by

k1 k1

Segment Segment

You have already used the Geom package to define 3D geometric
entities. For 2D, you will use the Geom2d package. As for Geom, all
geometries are parameterized. For example, a Geom2d_Ellipse ellipse is
defined from:

¢ a coordinate system whose origin is the ellipse center;

e a major radius on the major axis defined by the X direction of the
coordinate system,;

e a minor radius on the minor axis defined by the Y direction of the
coordinate system.

Supposing that:

e Both ellipses have the same major radius of 2*PI,

e Minor radius of the first ellipse is myNeckHeight / 10,

¢ And the minor radius value of the second ellipse is a fourth of the
first one,

Your ellipses are defined as follows:

Standard_Real aMajor = 2. * M_PI;

Standard_Real aMinor = myNeckHeight / 10;

Handle(Geom2d_Ellipse) anEllipsel = new
Geom2d_Ellipse(anAx2d, aMajor, aMinor);

Handle(Geom2d_Ellipse) anEllipse2 = new
Geom2d_Ellipse(anAx2d, aMajor, aMinor / 4);

To describe portions of curves for the arcs drawn above, you define
GeomZ2d_TrimmedCurve trimmed curves out of the created ellipses and
two parameters to limit them. As the parametric equation of an ellipse is
P(U) = O + (MajorRadius * cos(U) * XDirection) + (MinorRadius * sin(U) *
YDirection), the ellipses need to be limited between 0 and M_PI.

Handle(Geom2d_TrimmedCurve) anArcl = new
Geom2d_TrimmedCurve(ankEllipsel, 0, M_PI);

Handle(Geom2d_TrimmedCurve) anArc2 = new
Geom2d_TrimmedCurve(anEllipse2, 0, M_PI);

The last step consists in defining the segment, which is the same for the
two profiles: a line limited by the first and the last point of one of the arcs.
To access the point corresponding to the parameter of a curve or a
surface, you use the Value or DO method (meaning Oth derivative), D1
method is for first derivative, D2 for the second one.

gp_Pnt2d anEllipsePntl = ankEllipsel->Value(0);
gp_Pnt2d ankEllipsePnt2;
anEllipsel->DO(M_PI, ankEllipsePnt2);

When creating the bottle's profile, you used classes from the GC
package, providing algorithms to create elementary geometries. In 2D
geometry, this kind of algorithms is found in the GCE2d package. Class
names and behaviors are similar to those in GC. For example, to create a
2D segment out of two points:

Handle(Geom2d_TrimmedCurve) aSegment =
GCE2d_MakeSegment (anEllipsePntl, ankEllipsePnt2);

Building Edges and Wires

As you did when creating the base profile of the bottle, you can now:

e compute the edges of the neck's threading.
e compute two wires out of these edges.

" myMeckRadius * 099 " myleckRadius* 105

Previously, you have built:

e two cylindrical surfaces of the threading
e three 2D curves defining the base geometry of the threading

To compute the edges out of these curves, once again use the
BRepBuilderAPI_MakeEdge class. One of its constructors allows you to

build an edge out of a curve described in the 2D parametric space of a
surface.

TopoDS_Edge ankEdgelOnSurfl =
BRepBuilderAPI_MakeEdge(anArcl, aCyll);
TopoDS_Edge anEdge20nSurfl =
BRepBuilderAPI_MakeEdge(aSegment, aCyll);
TopoDS_Edge ankEdgelOnSurf2 =
BRepBuilderAPI_MakeEdge(anArc2, aCyl2);
TopoDS_Edge anEdge20nSurf2 =
BRepBuilderAPI_MakeEdge(aSegment, aCyl2);

Now, you can create the two profiles of the threading, lying on each
surface.

TopoDS_Wire threadingWirel =
BRepBuilderAPI_MakeWire(anEdgelOnSurfil,

aneEdge20nSurfl);

TopoDS_Wire threadingWire2 =
BRepBuilderAPI_MakeWire(anEdgelOnSurf2,
aneEdge20nSurf2);

Remember that these wires were built out of a surface and 2D curves.
One important data item is missing as far as these wires are concerned:
there is no information on the 3D curves. Fortunately, you do not need to
compute this yourself, which can be a difficult task since the mathematics
can be quite complex. When a shape contains all the necessary
information except 3D curves, Open CASCADE Technology provides a
tool to build them automatically. In the BRepLib tool package, you can
use the BuildCurves3d method to compute 3D curves for all the edges of
a shape.

BRepLib: :BuildCurves3d(threadingwWirel);
BRepLib: :BuildCurves3d(threadingWire?2);

Creating Threading

You have computed the wires of the threading. The threading will be a
solid shape, so you must now compute the faces of the wires, the faces
allowing you to join the wires, the shell out of these faces and then the
solid itself. This can be a lengthy operation. There are always faster ways
to build a solid when the base topology is defined. You would like to
create a solid out of two wires. Open CASCADE Technology provides a
quick way to do this by building a loft: a shell or a solid passing through a
set of wires in a given sequence. The loft function is implemented in the
BRepOffsetAPI_ThruSections class, which you use as follows:

e |nitialize the algorithm by creating an instance of the class. The first
parameter of this constructor must be specified if you want to create
a solid. By default, BRepOffsetAPI_ThruSections builds a shell.

e Add the successive wires using the AddWire method.

e Use the CheckCompatibility method to activate (or deactivate) the
option that checks whether the wires have the same number of
edges. In this case, wires have two edges each, so you can
deactivate this option.

o Ask for the resulting loft shape with the Shape method.

BRepOffsetAPI_ThruSections aTool(Standard_True);
aTool.AddWire(threadingWirel);
aTool.AddWire(threadingWire?2);
aTool.CheckCompatibility(Standard_False);
TopoDS_Shape myThreading = aTool.Shape();

Building the Resulting Compound

You are almost done building the bottle. Use the TopoDS_Compound and

BRep_Builder classes to build single shape from myBody and
myThreading:

TopoDS_Compound aRes;
BRep_Builder aBuilder;
aBuilder.MakeCompound (aRes);
aBuilder.Add (aRes, myBody);
aBuilder.Add (aRes, myThreading);

Congratulations! Your bottle is complete. Here is the result snapshot of
the Tutorial application:

.Eibﬂlh'ﬂbﬂ'ﬂlb
0% @ |m0®-0EH
soEHe 00 9% <[ao

Do

We hope that this tutorial has provided you with a feel for the industrial
strength power of Open CASCADE Technology. If you want to know more
and develop major projects using Open CASCADE Technology, we invite
you to study our training, support, and consulting services on our site at
http://www.opencascade.com/content/technology-support. Our

http://www.opencascade.com/content/technology-support

professional services can maximize the power of your Open CASCADE
Technology applications.

Appendix

Complete definition of MakeBottle function (defined in the file
src/MakeBottle.cxx of the Tutorial):

TopoDS_Shape MakeBottle(const Standard_Real myWidth,
const Standard_Real myHeight,
const Standard_Real myThickness)
{
// Profile : Define Support Points
gp_Pnt aPnti(-mywidth / 2., 0, 0);
gp_Pnt aPnt2(-mywidth / 2., -myThickness / 4.,
0);
gp_Pnt aPnt3(0, -myThickness / 2., 0);
gp_Pnt aPnt4(mywidth / 2., -myThickness / 4., 0);
gp_Pnt aPnt5(mywidth / 2., 0, 0);

// Profile : Define the Geometry
Handle(Geom_TrimmedCurve) anArcOfCircle =
GC_MakeArcOfCircle(aPnt2,aPnt3,aPnt4);
Handle(Geom_TrimmedCurve) aSegmentl =
GC_MakeSegment (aPntl, aPnt2);
Handle(Geom_TrimmedCurve) aSegment2 =
GC_MakeSegment (aPnt4, aPnt5);

// Profile : Define the Topology
TopoDS_Edge anEdgel =
BRepBuilderAPI_MakeEdge (aSegmentl);
TopoDS_Edge anEdge2 =
BRepBuilderAPI_MakeEdge(anArcOfCircle);
TopoDS_Edge anEdge3 =
BRepBuilderAPI_MakeEdge(aSegment2);
TopoDS_Wire aWire =
BRepBuilderAPI_MakeWire(anEdgel, anEdge2,
aneEdge3);

// Complete Profile
gp_Ax1l xAxis = gp::0X();
gp_Trsf aTrsf;

aTrsf.SetMirror (xAxis);

BRepBuilderAPI_Transform aBRepTrsf(awWire, aTrsf);
TopoDS_Shape aMirroredShape = aBRepTrsf.Shape();
TopoDS_Wire aMirroredWire =

TopoDS: :Wire(aMirroredShape);

BRepBuilderAPI_MakeWire mkWire;
mkWire.Add(awire);
mkWire.Add(aMirroredWire);

TopoDS_Wire myWireProfile = mkWire.Wire();

// Body : Prism the Profile
TopoDS_Face myFaceProfile =
BRepBuilderAPI_MakeFace(myWireProfile);
gp_Vec aPrismVec(0, 0, myHeight);
TopoDS_Shape myBody =
BRepPrimAPI_MakePrism(myFaceProfile, aPrismVec);

// Body : Apply Fillets
BRepFilletAPI_MakeFillet mkFillet(myBody);
TopExp_Explorer ankEdgeExplorer (myBody,
TopAbs_EDGE) ;

(anEdgeExplorer.More()){
TopoDS_Edge anEdge =
TopoDS: :Edge(anEdgeExplorer.Current());
//Add edge to fillet algorithm
mkFillet.Add(myThickness / 12., anEdge);
anEdgeExplorer.Next();

}

myBody = mkFillet.Shape();

// Body : Add the Neck
gp_Pnt neckLocation(®, O, myHeight);
gp_Dir neckAxis = gp::DzZ();
gp_Ax2 neckAx2(neckLocation, neckAxis);

Standard_Real myNeckRadius
Standard_Real myNeckHeight

= myThickness / 4.;
= myHeight / 10.;
BRepPrimAPI_MakeCylinder MKCylinder (neckAx2,
myNeckRadius, myNeckHeight);

TopoDS_Shape myNeck = MKCylinder.Shape();

myBody = BRepAlgoAPI_Fuse(myBody, myNeck);

// Body : Create a Hollowed Solid
TopoDS_Face faceToRemove;
Standard_Real zMax = -1;

(TopExp_Explorer aFaceExplorer(myBody,
TopAbs_FACE); aFaceExplorer.More();
aFaceExplorer.Next()){
TopoDS_Face aFace =
TopoDS: :Face(aFaceExplorer.Current());
// Check 1f <aFace> is the top face of the bottle's
neck
Handle(Geom_Surface) aSurface =
BRep_Tool: :Surface(aFace);
(aSurface->DynamicType() ==
STANDARD_TYPE(Geom_Plane)){
Handle(Geom_Plane) aPlane =
Handle(Geom_Plane): :DownCast(aSurface);
gp_Pnt aPnt = aPlane->Location();
Standard_Real az = aPnt.Zz();
(az > zMax){
zMax = aZ,
faceToRemove = aFace;

}

TopTools_ListOfShape facesToRemove;
facesToRemove.Append(faceToRemove);
BRepOffsetAPI_MakeThickSolid BodyMaker;
BodyMaker .MakeThickSolidByJoin(myBody,
facesToRemove, -myThickness / 50, 1.e-3);
myBody = BodyMaker.Shape();

Threading : Create Surfaces
Handle(Geom_CylindricalSurface) aCyll = new
Geom_CylindricalSurface(neckAx2, myNeckRadius *
0.99);

Handle(Geom_CylindricalSurface) aCyl2 = new
Geom_CylindricalSurface(neckAx2, myNeckRadius *
1.05);

Threading : Define 2D Curves

gp_Pnt2d aPnt(2. * M_PI, myNeckHeight / 2.
gp_Dir2d aDir(2. * M_PI, myNeckHeight / 4.
gp_Ax2d anAx2d(aPnt, aDir);

),
),

2. * M_PI;
myNeckHeight / 10;

Standard_Real aMajor
Standard_Real aMinor

Handle(Geom2d_Ellipse) anEllipsel = new
Geom2d_Ellipse(anAx2d, aMajor, aMinor);
Handle(Geom2d_Ellipse) anEllipse2 = new
Geom2d_Ellipse(anAx2d, aMajor, aMinor / 4);
Handle(Geom2d_TrimmedCurve) anArcl = new
Geom2d_TrimmedCurve(anEllipsel, 0, M_PI);
Handle(Geom2d_TrimmedCurve) anArc2 = new
Geom2d_TrimmedCurve(anEllipse2, 0, M_PI);
gp_Pnt2d anEllipsePntl = anEllipsel->Value(0);
gp_Pnt2d ankEllipsePnt2 = ankEllipsel->Value(M_PI);

Handle(Geom2d_TrimmedCurve) aSegment =

GCE2d_MakeSegment (anEllipsePntl, ankEllipsePnt2);
// Threading : Build Edges and Wires
TopoDS_Edge antEdgelOnSurfl =
BRepBuilderAPI_MakeEdge(anArcl, aCyll);
TopoDS_Edge antEdge20nSurfl =
BRepBuilderAPI_MakeEdge(aSegment, aCyll);
TopoDS_Edge antEdgelOnSurf2 =
BRepBuilderAPI_MakeEdge(anArc2, aCyl2);
TopoDS_Edge anEdge20nSurf2 =
BRepBuilderAPI_MakeEdge(aSegment, aCyl2);
TopoDS_Wire threadingWirel =
BRepBuilderAPI_MakeWire(anEdgelOnSurf1,
aneEdge20nSurfl);
TopoDS_Wire threadingWire2 =
BRepBuilderAPI_MakeWire(anEdgelOnSurf2,
aneEdge20nSurf2);
BRepLib: :BuildCurves3d(threadingwWirel);
BRepLib: :BuildCurves3d(threadingWire?2);

// Create Threading
BRepOffsetAPI_ThruSections aTool(Standard_True);
aTool.AddWire(threadingWirel);
aTool.AddWire(threadingWire2);
aTool.CheckCompatibility(Standard_False);

TopoDS_Shape myThreading = aTool.Shape();

// Bulilding the Resulting Compound
TopoDS_Compound aRes;
BRep_Builder aBuilder;
aBuilder.MakeCompound (aRes);
aBuilder.Add (aRes, myBody);
aBuilder.Add (aRes, myThreading);

aRes;

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j@é.iiﬂﬂ amn
1.8.13

http://www.doxygen.org/index.html

% QPENCASCADE

Open CASCADE
Technology 7.2.0

Technical Overview

Open CASCADE Technology (OCCT) is
an object-oriented C++ class library
designed for rapid production of
sophisticated domain-specific
CAD/CAM/CAE applications.

Table of Contents

Foundation Classes
Modeling Data
Modeling Algorithms

A typical application developed using Mesh

OCCT deals with two or three-dimensional Visualization
(2D or 3D) geometric modeling in general- Data Exchange
purpose or specialized Computer Aided Shape Healing

Design (CAD) systems, manufacturing or
analysis applications, simulation
applications, or even illustration tools.

Application Framework
Draw Test Harness

OCCT library is designed to be truly modular and extensible, providing
C++ classes for:

e Basic data structures (geometric modeling, visualization, interactive
selection and application specific services);

e Modeling algorithms;

e Working with mesh (faceted) data;

e Data interoperability with neutral formats (IGES, STEP);

The C++ classes and other types are grouped into packages. Packages
are organized into toolkits (libraries), to which you can link your
application. Finally, toolkits are grouped into seven modules.

This modular structure is illustrated in the diagram below.

. Other
= ~ input CAD
Systems
GUI Framework (Ot, MFC, .NET)
o
21! NEE OCAF: Open CASCADE
3 %Sg_ Application Framawork
=2 5
kL .
o i @B
ga1 . & 5
ool /] Mdeling] Modeling] Mesh o
28 » | Data Algorth, 2 _I Open
g ’ g’ B - g IComp-nnents
2 5 ¢ 51 ¢ §i
552 et B (s
= SvICES
Foundation Classes (handles, portability)

¢ Foundation Classes module underlies all other OCCT classes;

e Modeling Data module supplies data structures to represent 2D and
3D geometric primitives and their compositions into CAD models;

e Modeling Algorithms module contains a vast range of geometrical
and topological algorithms;

e Mesh module implements tessellated representations of objects;

¢ Visualization module provides complex mechanisms for graphical
data representation;

o Data Exchange module inter-operates with popular data formats
and relies on Shape Healing to improve compatibility between CAD
software of different vendors;

e Application Framework module offers ready-to-use solutions for
handling application-specific data (user attributes) and commonly
used functionality (save/restore, undo/redo, copy/paste, tracking

CAD modifications, etc).

In addition, Open CASCADE Test Harness, also called Draw, provides
an entry point to the library and can be used as a testing tool for its

modules.

Foundation Classes

Foundation Classes module contains data structures and services used
by higher-level Open CASCADE Technology classes:

e Primitive types, such as Boolean, Character, Integer or Real;
e String classes that handle ASCII and Unicode strings;
e Collection classes that handle statically or dynamically sized

aggregates of data, such as arrays, lists, queues, sets and hash
tables (data maps).

Classes providing commonly used numerical algorithms and basic
linear algebra calculations (addition, multiplication, transposition of
vectors and matrices, solving linear systems etc).

Fundamental types representing physical quantities and supporting
date and time information;

Primitive geometry types providing implementation of basic
geometric and algebraic entities that define and manipulate
elementary data structures.

Exception classes that describe situations, when the normal
execution of program is abandoned;

This module also provides a variety of general-purpose services, such

as.

Safe handling of dynamically created objects, ensuring automatic
deletion of unreferenced objects (smart pointers);

Configurable optimized memory manager increasing the
performance of applications that intensively use dynamically created
objects;

Extended run-time type information (RTTI) mechanism maintaining a
full type hierarchy and providing means to iterate over it;

e Encapsulation of C++ streams;
e Automated management of heap memory by means of specific

allocators;

Basic interpreter of expressions facilitating the creation of
customized scripting tools, generic definition of expressions, etc.;
Tools for dealing with configuration resource files and customizable
message files facilitating multi-language support in applications;

e Progress indication and user break interfaces, giving a possibility
even for low-level algorithms to communicate with the user in a

universal and convenient way;
e and many others...

Please, see the details in Foundation Classes User's Guide

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Modeling Data

Modeling Data supplies data structures to implement boundary
representation (BRep) of objects in 3D. In BRep the shape is represented
as an aggregation of geometry within topology. The geometry is
understood as a mathematical description of a shape, e.g. as curves and
surfaces (simple or canonical, Bezier, NURBS, etc). The topology is a
data structure binding geometrical objects together.

Geometry types and utilities provide geometric data structures and
services for:

e Description of points, vectors, curves and surfaces:
o their positioning in 3D space using axis or coordinate systems,
and
o their geometric transformation, by applying translations,
rotations, symmetries, scaling transformations and combinations
thereof.
Creation of parametric curves and surfaces by interpolation and
approximation;
Algorithms of direct construction;
Conversion of curves and surfaces to NURBS form;
Computation of point coordinates on 2D and 3D curves;
Calculation of extrema between geometric objects.

Topology defines relationships between simple geometric entities. A
shape, which is a basic topological entity, can be divided into
components (sub-shapes):

¢ \ertex — a zero-dimensional shape corresponding to a point;

e Edge — a shape corresponding to a curve and bounded by a vertex
at each extremity;

e Wire — a sequence of edges connected by their vertices;

e Face — a part of a plane (in 2D) or a surface (in 3D) bounded by
wires;

e Shell — a collection of faces connected by edges of their wire
boundaries;

e Solid — a finite closed part of 3D space bounded by shells;

e Compound solid — a collection of solids connected by faces of their

shell boundaries.
Complex shapes can be defined as assemblies of simpler entities.
Please, see the details in Modeling Data User's Guide

3D geometric models can be stored in OCCT native BREP format. See
BREP Format Description White Paper for details on the format.

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Modeling Algorithms

Modeling Algorithms module groups a wide range of topological and
geometric algorithms used in geometric modeling. Basically, there are
two groups of algorithms in Open CASCADE Technology:

¢ High-level modeling routines used in the real design;
e Low-level mathematical support functions used as a groundwork for
the modeling API;
¢ Low-level geometric tools provide the algorithms, which:
o Calculate the intersection of two curves, surfaces, or a curve
and a surface;
o Project points onto 2D and 3D curves, points onto surfaces and
3D curves onto surfaces;
o Construct lines and circles from constraints;
o Construct free-form curves and surfaces from constraints
(interpolation, approximation, skinning, gap filling, etc);
e Low-level topological tools provide the algorithms, which:
o Tessellate shapes;
o Check correct definition of shapes;
o Determine the local and global properties of shapes (derivatives,
mass-inertia properties, etc);
Perform affine transformations;
Find planes in which edges are located;
Convert shapes to NURBS geometry;
Sew connected topologies (shells and wires) from separate
topological elements (faces and edges).

O O O O

Top-level API provides the following functionality:

e Construction of Primitives:
o Boxes;
o Prisms;

Cylinders;

Cones;

Spheres;

Toruses.

¢ Kinematic Modeling:

O O O

(0]

Prisms — linear sweeps;
Revolutions — rotational sweeps;
Pipes — general-form sweeps;
Lofting.

O O O O

Shapes containing pipes with variable radius produced by sweeping

e Boolean Operations, which allow creating new shapes from the
combinations of source shapes. For two shapes S1 and S2:
o Common contains all points that are in S1 and S2;
o Fuse contains all points that are in S1 or S2;
o Cut contains all points in that are in S1 and not in S2

See Boolean Operations User's Guide for detailed documentation.

¢ Algorithms for local modifications such as:
o Hollowing;
o Shelling;
o Creation of tapered shapes using draft angles;
o Algorithms to make fillets and chamfers on shape edges,
including those with variable radius (chord).
e Algorithms for creation of mechanical features, i.e. depressions,
protrusions, ribs and grooves or slots along planar or revolution
surfaces.

Please, see the details in Modeling Algorithms User's Guide.

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Mesh

Mesh module provides the functionality to work with tessellated
representations of objects in form of triangular facets. This module
contains:

e data structures to store surface mesh data associated to shapes and
basic algorithms to handle them;

e data structures and algorithms to a build triangular surface mesh
from BRep objects (shapes);

e tools for displaying meshes with associated pre- and post-processor
data (scalars or vectors).

Open CASCADE Technology includes two mesh converters:

e VRML converter translates Open CASCADE shapes to VRML 1.0
files (Virtual Reality Modeling Language). Two representation modes
are possible: shaded, which presents shapes as sets of triangles
computed by the mesh algorithm, or wireframe, which presents
shapes as sets of curves.

e STL converter translates Open CASCADE shapes to STL files. STL
(STtereoLithography) format is widely used for rapid prototyping (3D

printing).
Open CASCADE SAS also offers Advanced Mesh Products:

e Open CASCADE Mesh Framework (OMF)
e Express Mesh

http://www.opencascade.com/content/mesh-framework
http://www.opencascade.com/content/express-mesh

Visualization

Visualization module provides ready-to-use algorithms to create graphic
presentations from various objects: shapes, meshes, etc.

In Open CASCADE Technology visualization is based on the separation
of CAD data and its graphical presentation. The presentations can be
customized to take the specificity of your application into account.

The module also supports a fast and powerful interactive selection
mechanism.

The view facilities provided by OCCT range from low-level tools working
with basic geometry and topology (such as NURBS visualization with
control points and nodes, rendering of isolines to estimate speed and
guality of parameterization, or rendering of a parametric profile of edges)
to high-level tools for real time quality rendering of models using ray
tracing: shades, reflections, transparency, anti-aliasing, etc.

Here are just a few examples:

o Camera-driven view projection and orientation. It is possible to
choose between perspective, orthographic and stereographic
projection.

e Real-time ray tracing technique using recursive Whitted's algorithm
and Bounded Volume Hierarchy effective optimization structure.

Real time visualization by ray tracing method

e Support of GLSL shaders. The shader management is fully
automatic, like with any other OpenGL resource.

Fragment shader implementing custom clipping surface

e Support of standard and custom materials, defined by transparency,
diffuse, ambient and specular reflection and refraction index. The
latter allows implementing transparent materials, such as glass,
diamond and water.

Simulation of a glass cover

e Optimization of rendering performance through the algorithms of:

o View frustum culling, which skips the presentation outside
camera at the rendering stage and

o Back face culling, which reduces the rendered number of
triangles and eliminates artifacts at shape boundaries.

o Definition of clipping planes through the plane equation coefficients.
Ability to define visual attributes for cross-section at the level or
individual clipping planes. In the image below different parts of the
rocket are clipped with different planes and hatched.

e Possibility to flexibly adjust appearance of dimensions in a 3D view.
The 3D text object represents a given text string as a true 3D object
in the model space.

N\
NN

Py e

AN

7

%

7 2
Z

| 7
7 7
= =
2

N

Display of shape cross-section and dimensions

For more details see Visualization User's Guide.

The visualization of OCCT topological shapes by means of VTK library

provided by VIS component is described in a separate VTK Integration
Services User's Guide.

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Data Exchange

Data Exchange allows developing OCCT-based applications that can
interact with other CAD systems by writing and reading CAD models to
and from external data. The exchanges run smoothly regardless of the
guality of external data or requirements to its internal representation, for
example, to the data types, accepted geometric inaccuracies, etc.

‘“—m O\

T

Shape imported from STEP

Data Exchange is organized in a modular way as a set of interfaces that
comply with various CAD formats: IGES, STEP, STL, VRML, etc. The
interfaces allow software based on OCCT to exchange data with various

CAD/PDM software packages, maintaining a good level of
interoperability.

¢ Standardized Data Exchange interfaces allow querying and
examining the input file, converting its contents to a CAD model and
running validity checks on a fully translated shape. The following
formats are currently supported.

o STEP (AP203 : Mechanical Design, this covers General 3D
CAD; AP214: Automotive Design)

o IGES (up to 5.3)

o VRML and STL meshes.

o Extended data exchange (XDE) allows translating additional
attributes attached to geometric data (colors, layers, names,
materials etc).

e Advanced Data Exchange Components are available in addition to
standard Data Exchange interfaces to support interoperability and
data adaptation (also using Shape Healing) with CAD software
using the following proprietary formats:

o ACIS SAT
o Parasolid
o DXF

These components are based on the same architecture as interfaces with
STEP and IGES.

http://www.opencascade.com/content/advanced-data-exchange-components
http://www.opencascade.com/content/acis-sat-import-export
http://www.opencascade.com/content/parasolid-import
http://www.opencascade.com/content/dxf-import-export

Shape Healing

Shape Healing library provides algorithms to correct and adapt the
geometry and topology of shapes imported to OCCT from other CAD
systems.

Shape Healing algorithms include, but are not limited to, the following
operations:

e analyze shape characteristics and, in particular, identify the shapes
that do not comply with OCCT geometry and topology validity rules
by analyzing geometrical objects and topology:

check edge and wire consistency;

check edge order in a wire;

check the orientation of face boundaries;

analyze shape tolerances;

identify closed and open wires in a boundary.

e fix incorrect or incomplete shapes:

o provide consistency between a 3D curve and its corresponding
parametric curve;

o repair defective wires;

o fit the shapes to a user-defined tolerance value;

o fill gaps between patches and edges.

¢ upgrade and change shape characteristics:

o reduce curve and surface degree;

o split shapes to obtain C1 continuity;

o convert any types of curves or surfaces to Bezier or B-Spline
curves or surfaces and back;

o split closed surfaces and revolution surfaces.

O O O O O

Each sub-domain of Shape Healing has its own scope of functionality:

Sub-
domain

Description Impact on the shape

Explores shape
properties, computes

Analysis shape features, detects The shape itself is not

violation of OCCT
requirements.

modified.

Fixes the shape to meet

The shape may change its
original form: modification,

Fixing the OCCT requirements. removal or creation of sub-
shapes, etc.)
Improves the shape to fit ;r:]%\?vhgﬁg lgurteplaced with
Upgrade some particular ’

algorithms.

geometrically they are the
same.

Customization

Modifies the shape
representation to fit
specific needs.

The shape is not modified,
only the mathematical form
of its internal

representation is changed.

Processing

Mechanism of shape
modification via a user-
editable resource file.

For more details refer to Shape Healing User's guide.

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Application Framework

Open CASCADE Application Framework (OCAF) handles Application
Data basing on the Application/Document paradigm. It uses an
associativity engine to simplify the development of a CAD application
thanks to the following ready-to-use features and services:

e Data attributes managing the application data, which can be
organized according to the development needs;

e Data storage and persistence (open/save);

e Possibility to modify and recompute attributes in documents. With
OCAF it is easy to represent the history of modification and
parametric dependencies within your model;

e Possibility to manage multiple documents;

e Predefined attributes common to CAD/CAM/CAE applications (e.g.
to store dimensions);

e Undo-Redo and Copy-Paste functions.

Since OCAF handles the application structure, the only development task
Is the creation of application-specific data and GUIs.

OCAF differs from any other CAD framework in the organization of
application data, as there the data structures are based on reference
keys rather than on shapes. In a model, such attributes as shape data,
color and material are attached to an invariant structure, which is deeper
than the shapes. A shape object becomes the value of Shape attribute, in
the same way as an integer number is the value of Integer attribute and a
string is the value of Name attribute.

OCAF organizes and embeds these attributes in a document. OCAF
documents, in their turn, are managed by an OCAF application.

For more details see OCAF User's Guide.

See also: our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Draw Test Harness

Test Harness or Draw is a convenient testing tool for OCCT libraries. It
can be used to test and prototype various algorithms before building an
entire application. It includes:

e A command interpreter based on the TCL language;
e A number of 2D and 3D viewers;
e A set of predefined commands.

The viewers support operations such as zoom, pan, rotation and full-
screen views.

The basic commands provide general-purpose services such as:

Getting help;

Evaluating a script from a file;
Capturing commands in a file;
Managing views;

Displaying objects.

In addition, Test Harness provides commands to create and manipulate
curves and surfaces (geometry) and shapes, access visualization
services, work with OCAF documents, perform data exchange, etc.

You can add custom commands to test or demonstrate any new
functionalities, which you develop.

For more details see Draw Test Harness Manual.

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j{jf’lg%[]
1.8.13

http://www.doxygen.org/index.html

e o= cascape OPEN CASCADE
" Technology 7.2.0

User Guides

OCCT User Guides are organized by OCCT modules:

e Foundation Classes
e Modeling Data
o BREP format description
e Modeling Algorithms
o Boolean Operations
o Shape Healing
e Visualization
o VTK Integration Services
e Data Exchange
o IGES translator
o STEP translator
o Extended Data Exchange (XDE)
e Open CASCADE Application Framework (OCAF)
o TObj package
e DRAW Test Harness
e Inspector

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j@j@? :@@Uﬂ
1.8.13

http://www.doxygen.org/index.html

% OPENCASCADE

Open CASCADE
Technology 7.2.0

Foundation Classes

Table of Contents

4 Introduction
4+ Basics
+Library organization

+Modules and
toolkits

+Packages
+Classes
+Inheritance
+Data Types
+Primitive Types

+Types
manipulated by
value

+Types
manipulated by

reference
(handle)

+*When is it
necessary to
use a handle?

+Programming with
Handles

+Handle
Definition

+Type
Management

+Using Handles

to Create
Objects

+Invoking

Methods

+Handle
deallocation

+Cycles
+¥Memory Management

+Usage of
Memory
Manager

+How to
configure the
Memory
Manager

4+ Optimization
Techniques

+ Benefits and
drawbacks

+Exceptions
+|ntroduction

+Raising an
Exception

+Handling an
Exception

¥ Implementation
on various
platforms.

+Plug-In Management

+ Distribution by
Plug-Ins

4 Collections, Strings,
Quantities and Unit
Conversion

+Collections
+Qverview

+Generic
general-purpose
Aggregates

+Generic Maps
4 Iterators

+Collections of
Standard Objects

+Qverview

4 Description
+NCollections
+Qverview

+|nstantiation of
collection
classes

+Arrays and
sequences

+Maps

+ QOther collection
types

+ Features
+Strings

+Examples

+Conversion
+ Quantities
+Unit Conversion

+Math Primitives and
Algorithms

+Qverview
+Vectors and Matrices

+Primitive Geometric
Types

+ Collections of
Primitive Geometric
Types

+Basic Geometric
Libraries

+¥Common Math
Algorithms

+ Precision

+The Precision
package

+Standard
Precision values

Introduction

This manual explains how to use Open CASCADE Technology (OCCT)
Foundation Classes. It provides basic documentation on foundation
classes. For advanced information on foundation classes and their
applications, see our E-learning & Training offerings.

Foundation Classes provide a variety of general-purpose services such
as automated dynamic memory management (manipulation of objects by
handle), collections, exception handling, genericity by down-casting and
plug-in creation.

Foundation Classes include the following:

Root Classes

Root classes are the basic data types and classes on which all the other
classes are built. They provide:

e fundamental types such as Boolean, Character, Integer or Real,

e safe handling of dynamically created objects, ensuring automatic
deletion of unreferenced objects (see Standard_Transient class),

e configurable optimized memory manager increasing the performance
of applications that intensively use dynamically created objects,

e extended run-time type information (RTTI) mechanism facilitating the
creation of complex programs,

e management of exceptions,

e encapsulation of C++ streams. Root classes are mainly implemented
in Standard and MMgt packages.

Strings

Strings are classes that handle dynamically sized sequences of
characters based on both ASCII (normal 8-bit character type) and
Unicode (16-bit character type). Strings may also be manipulated by
handles, and consequently be shared. Strings are implemented in the
TCollection package.

http://www.opencascade.com/content/tutorial-learning

Collections

Collections are the classes that handle dynamically sized aggregates of
data. Collection classes are generic, that is, they define a structure and
algorithms allowing to hold a variety of objects which do not necessarily
inherit from a unique root class (similarly to C++ templates). When you
need to use a collection of a given type of object, you must instantiate it
for this specific type of element. Once this declaration is compiled, all
functions available on the generic collection are available on your
instantiated class.

Collections include a wide range of generic classes such as run-time
sized arrays, lists, stacks, queues, sets and hash maps. Collections are
implemented in the TCollection and NCollection packages.

Collections of Standard Objects

The TColStd package provides frequently used instantiations of generic
classes from the TCollection package with objects from the Standard
package or strings from the TCollection package.

Vectors and Matrices

These classes provide commonly used mathematical algorithms and
basic calculations (addition, multiplication, transposition, inversion, etc.)
involving vectors and matrices.

Primitive Geometric Types

Open CASCADE Technology primitive geometric types are a STEP-
compliant implementation of basic geometric and algebraic entities. They
provide:

Descriptions of elementary geometric shapes:

Points,

Vectors,

Lines,

Circles and conics,

Planes and elementary surfaces,

Positioning of these shapes in space or in a plane by means of an

axis or a coordinate system,
o Definition and application of geometric transformations to these
shapes:
Translations
Rotations
Symmetries
Scaling transformations
Composed transformations
Tools (coordinates and matrices) for algebraic computation.

Common Math Algorithms

Open CASCADE Technology common math algorithms provide a C++
implementation of the most frequently used mathematical algorithms.
These include:

¢ Algorithms to solve a set of linear algebraic equations,

e Algorithms to find the minimum of a function of one or more
independent variables,

¢ Algorithms to find roots of one, or of a set, of non-linear equations,

¢ Algorithms to find the eigen-values and eigen-vectors of a square
matrix.

Exceptions

A hierarchy of commonly used exception classes is provided, all based
on class Failure, the root of exceptions. Exceptions describe exceptional
situations, which can arise during the execution of a function. With the
raising of an exception, the normal course of program execution is
abandoned. The execution of actions in response to this situation is
called the treatment of the exception.

Quantities

These are various classes supporting date and time information and
fundamental types representing most physical quantities such as length,
area, volume, mass, density, weight, temperature, pressure etc.

Application services

Foundation Classes also include implementation of several low-level
services that facilitate the creation of customizable and user-friendly
applications with Open CASCADE Technology. These include:

¢ Unit conversion tools, providing a uniform mechanism for dealing
with quantities and associated physical units: check unit
compatibility, perform conversions of values between different units
and so on (see package UnitsAPI);

e Basic interpreter of expressions that facilitates the creation of
customized scripting tools, generic definition of expressions and so
on (see package Exprintrp);

e Tools for dealing with configuration resource files (see package
Resource) and customizable message files (see package Message),
making it easy to provide a multi-language support in applications;

e Progress indication and user break interfaces, giving a possibility
even for low-level algorithms to communicate with the user in a
universal and convenient way.

Basics

This chapter deals with basic services such as library organization,
persistence, data types, memory management, programming with
handles, exception handling, genericity by downcasting and plug-in
creation.

Library organization

This chapter introduces some basic concepts, which are used not only in
Foundation Classes, but throughout the whole OCCT library.

Modules and toolkits

The whole OCCT library is organized in a set of modules. The first
module, providing most basic services and used by all other modules, is
called Foundation Classes and described by this manual.

Every module consists primarily of one or several toolkits (though it can
also contain executables, resource units etc.). Physically a toolkit is
represented by a shared library (e.g. .so or .dll). The toolkit is built from
one or several packages.

Packages

A package groups together a number of classes which have semantic
links. For example, a geometry package would contain Point, Line, and
Circle classes. A package can also contain enumerations, exceptions and
package methods (functions). In practice, a class nhame is prefixed with
the name of its package e.g. Geom_Circle. Data types described in a
package may include one or more of the following data types:

e Enumerations

e Object classes

e Exceptions

e Pointers to other object classes Inside a package, two data types
cannot bear the same name.

a package

el | | ™
/ S \
1 l l 1
1 1 1 1
one or more one or more one or more
ane ar more i F
deferred generc global
classes .
classes classes functions

\

must contain

T 3

can contain

R

ane ar more one or more one ar more one or more
constructors deferred instance class
methods methods methods

Contents of a package

Methods are either functions or procedures. Functions return an
object, whereas procedures only communicate by passing arguments. In
both cases, when the transmitted object is an instance manipulated by a
handle, its identifier is passed. There are three categories of methods:

e Object constructor Creates an instance of the described class. A
class will have one or more object constructors with various different
arguments or none.

¢ Instance method Operates on the instance which owns it.

e Class method Does not work on individual instances, only on the
class itself.

Classes

The fundamental software component in object-oriented software
development is the class. A class is the implementation of a data type. It

defines its behavior (the services offered by its functions) and its
representation (the data structure of the class — the fields, which store
its data).

Classes fall into three categories:

e Ordinary classes.

e Abstract classes. An abstract class cannot be instantiated. The
purpose of having such classes is to have a given behavior shared
by a hierarchy of classes and dependent on the implementation of
the descendants. This is a way of guaranteeing a certain base of
inherited behavior common to all the classes based on a particular
deferred class.

e Template classes. A template class offers a set of functional
behaviors to manipulate other data types. Instantiation of a template
class requires that a data type is given for its argument(s).

Inheritance

The purpose of inheritance is to reduce the development workload. The
inheritance mechanism allows a new class to be declared already
containing the characteristics of an existing class. This new class can
then be rapidly specialized for the task in hand. This avoids the necessity
of developing each component “from scratch”. For example, having
already developed a class BankAccount you could quickly specialize new
classes: SavingsAccount, LongTermDepositAccount,
MoneyMarketAccount, RevolvingCreditAccount, etc....

The corollary of this is that when two or more classes inherit from a
parent (or ancestor) class, all these classes guarantee as a minimum the
behavior of their parent (or ancestor). For example, if the parent class
BankAccount contains the method Print which tells it to print itself out,
then all its descendant classes guarantee to offer the same service.

One way of ensuring the use of inheritance is to declare classes at the
top of a hierarchy as being abstract. In such classes, the methods are
not implemented. This forces the user to create a new class which
redefines the methods. This is a way of guaranteeing a certain minimum
of behavior among descendant classes.

Data Types

An object-oriented language structures a system around data types
rather than around the actions carried out on this data. In this context, an
object is an instance of a data type and its definition determines how it
can be used. Each data type is implemented by one or more classes,
which make up the basic elements of the system.

The data types in Open CASCADE Technology fall into two categories:

e Data types manipulated by handle (or reference)
¢ Data types manipulated by value

Manipulated by value Manipulated by handle
, - -y ~ ” P N
/ N / \
\ I
f I | handle
| Value | | /
{ A s
"1. f ey e -
X\ /
.,
i T Y -
Value

Manipulation of data types

A data type is implemented as a class. The class not only defines its data
representation and the methods available on instances, but it also
suggests how the instance will be manipulated.

e Avariable of a type manipulated by value contains the instance itself.

e Avariable of a type manipulated by handle contains a reference to
the instance. The first examples of types manipulated by values are
the predefined primitive types: Boolean, Character, Integer, Real,
etc.

A variable of a type manipulated by handle which is not attached to an
object is said to be null. To reference an object, we instantiate the class
with one of its constructors. For example, in C++:

Handle(myClass) m = new myClass;

In Open CASCADE Technology, the Handles are specific classes that are
used to safely manipulate objects allocated in the dynamic memory by
reference, providing reference counting mechanism and automatic
destruction of the object when it is not referenced.

Primitive Types

The primitive types are predefined in the language and they are
manipulated by value.

e Boolean is used to represent logical data. It may have only two
values: Standard_True and Standard_False.

Character designates any ASCII character.

ExtCharacter is an extended character.

Integer is a whole number.

Real denotes a real number (i.e. one with whole and a fractional
part, either of which may be null).

ShortReal is a real with a smaller choice of values and memory size.
CString is used for literal constants.

ExtString is an extended string.

Address represents a byte address of undetermined size.

The services offered by each of these types are described in the
Standard Package. The table below presents the equivalence existing
between C++ fundamental types and OCCT primitive types.

Table 1: Equivalence between C++ Types and OCCT Primitive Types

C++ Types OCCT Types

int Standard_Integer
double Standard_Real

float Standard_ShortReal
unsigned int | Standard_Boolean

char Standard_Character
short Standard_ExtCharacter
char* Standard_CString

void* Standard_Address
short* Standard_ExtString

The types with asterisk are pointers.

Reminder of the classes listed above:

Standard_Integer : fundamental type representing 32-bit integers
yielding negative, positive or null values. Integer is implemented as a
typedef of the C++ int fundamental type. As such, the algebraic
operations +, -, *, / as well as the ordering and equivalence relations
<, <=, ==, 1=, >=, > are defined on it.

Standard_Real : fundamental type representing real numbers with
finite precision and finite size. Real is implemented as a typedef of
the C++ double (double precision) fundamental type. As such, the
algebraic operations +, -, *, /, unary- and the ordering and
equivalence relations <, <=, ==, I=, >=, > are defined on reals.
Standard_ShortReal : fundamental type representing real numbers
with finite precision and finite size. ShortReal is implemented as a
typedef of the C++ float (simple precision) fundamental type. As
such, the algebraic operations +, -, *, /, unary- and the ordering and
equivalence relations <, <=, ==, I=, >=, > are defined on reals.
Standard_Boolean : fundamental type representing logical
expressions. It has two values: false and true. Boolean is
implemented as a typedef of the C++ unsigned int fundamental type.
As such, the algebraic operations and, or, xor and not as well as
equivalence relations == and != are defined on Booleans.
Standard_Character : fundamental type representing the
normalized ASCII character set. It may be assigned the values of the
128 ASCII characters. Character is implemented as a typedef of the
C++ char fundamental type. As such, the ordering and equivalence
relations <, <=, ==, I=, >=, > are defined on characters using the
order of the ASCII chart (ex: A B).

Standard_ExtCharacter : fundamental type representing the
Unicode character set. It is a 16-bit character type. ExtCharacter is
implemented as a typedef of the C++ short fundamental type. As

such, the ordering and equivalence relations <, <=, ==, 1=, >=, > are
defined on extended characters using the order of the UNICODE
chart (ex: AB).

e Standard_CString : fundamental type representing string literals. A
string literal is a sequence of ASCII (8 bits) characters enclosed in
double quotes. CString is implemented as a typedef of the C++ char
fundamental type.

e Standard_Address : fundamental type representing a generic
pointer. Address is implemented as a typedef of the C++ void
fundamental type.

e Standard_ExtString is a fundamental type representing string
literals as sequences of Unicode (16 bits) characters. ExtString is
implemented as a typedef of the C++ short fundamental type.

Types manipulated by value

There are three categories of types which are manipulated by value:

¢ Primitive types

e Enumerated types

o Types defined by classes not inheriting from Standard_Transient,
whether directly or not. Types which are manipulated by value
behave in a more direct fashion than those manipulated by handle
and thus can be expected to perform operations faster, but they
cannot be stored independently in a file.

Manipulated by value

An object manipulated by value can be
composed of primitives and handles to
E other objects. It may or may not be storable.

value

Manipulation of a data type by value

Types manipulated by reference (handle)

These are types defined by classes inheriting from the Transient class.

Manipulated by handle

An object manipulated by reference can be
compounded of primitives and handles to other
objects. It may or may not be persistent

’ ~
/ \ e
| |
il handle —‘—.- r—- e
\ I | handle _I—l—ln-
“ / []
|| value | value
PR N o L R ot e

Manipulation of a data type by reference
When is it necessary to use a handle?

When you design an object, it can be difficult to choose how to
manipulate that object: by value or by handle. The following ideas can
help you to make up your mind:

e |f your object may have a long lifetime within the application and you
want to make multiple references to it, it would be preferable to
manipulate this object with a handle. The memory for the object will
be allocated on the heap. The handle which points to that memory is
a light object which can be rapidly passed in argument. This avoids
the penalty of copying a large object.

e |f your object will have a limited lifetime, for example, used within a
single algorithm, it would be preferable to manipulate this object by
value, non-regarding its size, because this object is allocated on the
stack and the allocation and de-allocation of memory is extremely
rapid, which avoids the implicit calls to new and delete occasioned
by allocation on the heap.

o Finally, if an object will be created only once during, but will exist
throughout the lifetime of the application, the best choice may be a
class manipulated by handle or a value declared as a global

variable.

Programming with Handles

Handle Definition

A handle is OCCT implementation of a smart pointer. Several handles
can reference the same object. Also, a single handle may reference

several objects, but only one at a time. To have access to the object it
refers to, the handle must be de-referenced just as with a C++ pointer.

Organization of Classes

Class Standard_Transient is a root of a big hierarchy of OCCT classes
that are said to be operable by handles. It provides a reference counter
field, inherited by all its descendant classes, that is used by associated
Handle() classes to track a number of handles pointing to this instance of
the object.

Objects of classes derived (directly or indirectly) from Transient, are
normally allocated in dynamic memory using operator new, and
manipulated by handle. Handle is defined as template class
opencascade::handle<>. Open CASCADE Technology provides
preprocessor macro Handle() that is historically used throughout OCCT
code to name a handle:

Handle(Geom_Line) aLine; // "Handle(Geom_Line)" 1is
expanded to "opencascade: :handleL<Geom_Line>"

In addition, for standard OCCT classes additional typedef is defined for a
handle, as the name of a class prefixed by Handle . For instance, the
above example can be also coded as:

Handle_Geom_Line alLine; // "Handle_Geom_Line" is
typedef to "opencascade::handleL<Geom_Line>"

Using a Handle

A handle is characterized by the object it references.

Before performing any operation on a transient object, you must declare
the handle. For example, if Point and Line are two transient classes from
the Geom package, you would write:

Handle(Geom_Point) p1, p2;

Declaring a handle creates a null handle that does not refer to any object.
The handle may be checked to be null by its method IsNull(). To nullify a
handle, use method Nullify().

To initialize a handle, either a new object should be created or the value
of another handle can be assigned to it, on condition that their types are
compatible.

Note that handles should only be used for object sharing. For all local
operations, it is advisable to use classes manipulated by values.

Type Management

Open CASCADE Technology provides a means to describe the hierarchy
of data types in a generic way, with a possibility to check the exact type
of the given object at run-time (similarly to C++ RTTI).

To enable this feature, a class declaration should include the declaration
of OCCT RTTI. Header Standard_Type.hxx provides two variants of
preprocessor macros facilitating this:

¢ Inline variant, which declares and defines RTTI methods by a single
line of code:

#include <Geom_Surface.hxx>
class Appli_ExtSurface : public Geom_Surface

{
public:

DEFINE_STANDARD_RTTIEXT(Appli_ExtSurface, Geom
_Surface)

+s

e Qut-of line variant, which uses one macro in the declaration

(normally in the header file), and another in the implementation (in
C++ source):

In Appli_ExtSurface.hxx file:

#include <Geom_Surface.hxx>
class Appli_ExtSurface : public Geom_Surface

{
public:

DEFINE_STANDARD_RTTIEXT (Appli_ExtSurface, Geom
_Surface)

i
In Appli_ExtSurface.cxx file:
#include <Appli_ExtSurface.hxx>

IMPLEMENT_STANDARD_RTTIEXT (Appli_ExtSurface, Geom_
Surface)

These macros define method DynamicType() that returns a type
descriptor - handle to singleton instance of the class Standard_Type
describing the class. The type descriptor stores the name of the class
and the descriptor of its parent class.

Note that while inline version is easier to use, for widely used classes this
method may lead to bloating of binary code of dependent libraries, due to
multiple instantiations of inline method.

To get the type descriptor for a given class type, use macro
STANDARD_TYPE() with the name of the class as argument.

Example of usage:

(aCurve->IsKind(STANDARD_TYPE(Geom_Line))) //
equivalent to "if (dynamic_cast<Geom_Line>
(aCurve.get()) '= 0)"

}

Type Conformity

The type used in the declaration of a handle is the static type of the
object, the type seen by the compiler. A handle can reference an object
instantiated from a subclass of its static type. Thus, the dynamic type of
an object (also called the actual type of an object) can be a descendant
of the type which appears in the handle declaration through which it is
manipulated.

Consider the class CartesianPoint, a sub-class of Point; the rule of type
conformity can be illustrated as follows:

Handle (Geom_Point) p1;

Handle (Geom_CartesianPoint) p2;

p2 = new Geom_CartesianPoint;

pl = p2; // 0K, the types are compatible

The compiler sees p1 as a handle to Point though the actual object
referenced by p1 is of the CartesianPoint type.

Explicit Type Conversion

According to the rule of type conformity, it is always possible to go up the
class hierarchy through successive assignments of handles. On the other
hand, assignment does not authorize you to go down the hierarchy.
Consequently, an explicit type conversion of handles is required.

A handle can be converted explicitly into one of its sub-types if the actual
type of the referenced object is a descendant of the object used to cast
the handle. If this is not the case, the handle is nullified (explicit type
conversion is sometimes called a “safe cast”). Consider the example
below.

Handle (Geom_Point) p1;

Handle (Geom_CartesianPoint) p2, pS3;
p2 = new Geom_CartesianPoint;

pl = p2; // OK, standard assignment

p3 = Handle (Geom_CartesianPoint)::DownCast (p1l);
// 0K, the actual type of pl is CartesianPoint,
although the static type of the handle is Point

If conversion is not compatible with the actual type of the referenced
object, the handle which was “cast” becomes null (and no exception is
raised). So, if you require reliable services defined in a sub-class of the
type seen by the handle (static type), write as follows:

void MyFunction (const Handle(A) & a)
{
Handle(B) b = Handle(B)::DownCast(a);
if (! b.IsNull()) {
// we can use “b” if class B inherits from A
}
else {
// the types are incompatible

}
}

Downcasting is used particularly with collections of objects of different
types; however, these objects should inherit from the same root class.

For example, with a sequence of transient objects SequenceOfTransient
and two classes A and B that both inherit from Standard_Transient, you
get the following syntax:

Handle (A) a;

Handle (B) b;

Handle (Standard_Transient) t;
SequenceOfTransient s;

a = new A;

s.Append (a);

b = new B;

s.Append (b);

t = s.Value (1);

// here, you cannot write:
// a = t; // ERROR !

// so you downcast:
a = Handle (A)::Downcast (t)
if (! a.IsNull()) {
// types are compatible, you can use a
}

else {
// the types are incompatible
}

Using Handles to Create Objects

To create an object which is manipulated by handle, declare the handle
and initialize it with the standard C++ new operator, immediately followed
by a call to the constructor. The constructor can be any of those specified
in the source of the class from which the object is instanced.

Handle (Geom_CartesianPoint) p;
p = new Geom_CartesianPoint (0, 0, 0);

Unlike for a pointer, the delete operator does not work on a handle; the
referenced object is automatically destroyed when no longer in use.

Invoking Methods

Once you have a handle to an object, you can use it like a pointer in C++.
To invoke a method which acts on the referenced object, you translate
this method by the standard arrow operator, or alternatively, by function
call syntax when this is available.

To test or to modify the state of the handle, the method is translated by
the dot operator. The example below illustrates how to access the
coordinates of an (optionally initialized) point object:

Handle (Geom_CartesianPoint) centre;
Standard_Real x, y, z;
if (centre.IsNull()) {

centre = new PGeom_CartesianPoint (0, 0, 0);

}

centre->Coord(x, y, z);

The example below illustrates how to access the type object of a
Cartesian point:

Handle(Standard_Transient) p = new
Geom_CartesianPoint(0.,0.,0.);
if (p->DynamicType() ==
STANDARD_TYPE (Geom_CartesianPoint))
cout << ;Type check OK; << endl;
else
cout << ;Type check FAILED; << endl;

NullObject exception will be raised if a field or a method of an object is
accessed via a Null handle.

Invoking Class Methods

A class method is called like a static C++ function, i.e. it is called by the
name of the class of which it is a member, followed by the “::” operator
and the name of the method.

For example, we can find the maximum degree of a Bezier curve:

Standard_Integer n;
n = Geom_BezierCurve: :MaxDegree();

Handle deallocation

Before you delete an object, you must ensure it is no longer referenced.
To reduce the programming load related to this management of object
life, the delete function in Open CASCADE Technology is secured by a
reference counter of classes manipulated by handle. A handle
automatically deletes an object when it is no longer referenced. Normally
you never call the delete operator explicitly on instances of subclasses of
Standard_Transient.

When a new handle to the same object is created, the reference counter
Is incremented. When the handle is destroyed, nullified, or reassigned to
another object, that counter is decremented. The object is automatically
deleted by the handle when reference counter becomes 0.

The principle of allocation can be seen in the example below.

{
Handle (TColStd_HSequenceOfInteger) H1 = new

TColStd_HSequenceOfInteger;

// H1 has one reference and corresponds to 48 bytes
of memory

{

Handle (TColStd_HSequenceOfInteger) H2;
H2 = H1; // H1 has two references
if (argc == 3) {
Handle (TColStd_HSequenceOfInteger) H3;
H3 = H1;
// Here, H1 has three references

}

// Here, H1 has two references

}

// Here, H1 has 1 reference
}
// Here, H1 has no reference and the referred
TColStd_HSequenceOfInteger object is deleted.

You can easily cast a reference to the handle object to void* by defining
the following:

void *pointer;

Handle(Some_class) aHandle;

// Here only a pointer will be copied
Pointer = &aHandle;

// Here the Handle object will be copied
aHandle = * (Handle(Some_Class) *)pointer;

Cycles

Cycles appear if two or more objects reference each other by handles
(stored as fields). In this condition automatic destruction will not work.

Consider for example a graph, whose objects (primitives) have to know
the graph object to which they belong, i.e. a primitive must have a
reference to complete graph object. If both primitives and the graph are
manipulated by handle and they refer to each other by keeping a handle
as a field, the cycle appears.

The graph object will not be deleted when the last handle to it is
destructed in the application, since there are handles to it stored inside its
own data structure (primitives).

There are two approaches how to avoid such situation:

e Use C++ pointer for one kind of references, e.g. from a primitive to
the graph

e Nullify one set of handles (e.g. handles to a graph in primitives)
when a graph object needs to be destroyed

Memory Management

In a work session, geometric modeling applications create and delete a
considerable number of C++ objects allocated in the dynamic memory
(heap). In this context, performance of standard functions for allocating
and deallocating memory may be not sufficient. For this reason, Open
CASCADE Technology employs a specialized memory manager
implemented in the Standard package.

The Memory Manager is based on the following principles:

¢ small memory arrays are grouped into clusters and then recycled
(clusters are never released to the system),

e large arrays are allocated and de-allocated through the standard
functions of the system (the arrays are released to system when they
are no longer used).

As a general rule, it is advisable to allocate memory through significant
blocks. In this way, the user can work with blocks of contiguous data and
it facilitates memory page manager processing.

Usage of Memory Manager

To allocate memory in a C code with Open CASCADE Technology
memory manager, simply use method Standard::Allocate() instead of
malloc() and method Standard.::Free() instead of free(). In addition,
method Standard::Reallocate() is provided to replace C function realloc().

In C++, operators new() and delete() for a class may be defined so as to
allocate memory using Standard::Allocate() and free it using
Standard::Free(). In that case all objects of that class and all inherited
classes will be allocated using the OCCT memory manager.

Preprocessor macro DEFINE_STANDARD_ALLOC provided by header
Standard_DefineAlloc.hxx defines new() and delete() in this way. It is
used for all OCCT classes (apart from a few exceptions) which thus are
allocated using the OCCT memory manager. Since operators new() and
delete() are inherited, this is also true for any class derived from an
OCCT class, for instance, for all classes derived from

Standard Transient.

Note that it is possible (though not recommended unless really
unavoidable) to redefine new() and delete() functions for a class
inheriting Standard_Transient. If that is done, the method Delete() should
be also redefined to apply operator delete to this pointer. This will ensure
that appropriate delete() function will be called, even if the object is
manipulated by a handle to a base class.

How to configure the Memory Manager

The OCCT memory manager may be configured to apply different
optimization techniques to different memory blocks (depending on their
size), or even to avoid any optimization and use C functions malloc() and
free() directly. The configuration is defined by numeric values of the
following environment variables:

MMGT_OPT: if set to O (default) every memory block is allocated in
C memory heap directly (via malloc() and free() functions). In this
case, all other options except for MMGT_CLEAR are ignored; if set
to 1 the memory manager performs optimizations as described
below; if set to 2, Intel ® TBB optimized memory manager is used.
MMGT_CLEAR: if set to 1 (default), every allocated memory block is
cleared by zeros; if set to 0, memory block is returned as it is.
MMGT_CELLSIZE: defines the maximal size of blocks allocated in
large pools of memory. Default is 200.

MMGT_NBPAGES: defines the size of memory chunks allocated for
small blocks in pages (operating-system dependent). Default is
1000.

MMGT_THRESHOLD: defines the maximal size of blocks that are
recycled internally instead of being returned to the heap. Default is
40000.

MMGT_MMAP: when set to 1 (default), large memory blocks are
allocated using memory mapping functions of the operating system;
if set to O, they will be allocated in the C heap by malloc().

Optimization Techniques

When MMGT_OPT is set to 1, the following optimization techniques are
used:

¢ Small blocks with a size less than MMGT _CELLSIZE, are not
allocated separately. Instead, a large pools of memory are allocated
(the size of each pool is MMGT_NBPAGES pages). Every new
memory block is arranged in a spare place of the current pool. When
the current memory pool is completely occupied, the next one is
allocated, and so on.

In the current version memory pools are never returned to the system
(until the process finishes). However, memory blocks that are released by
the method Standard::Free() are remembered in the free lists and later
reused when the next block of the same size is allocated (recycling).

¢ Medium-sized blocks, with a size greater than MMGT_CELLSIZE but
less than MMGT_THRESHOLD, are allocated directly in the C heap
(using malloc() and free()). When such blocks are released by the
method Standard.::Free() they are recycled just like small blocks.

However, unlike small blocks, the recycled medium blocks contained in
the free lists (i.e. released by the program but held by the memory
manager) can be returned to the heap by method Standard::Purge().

e Large blocks with a size greater than MMGT_THRESHOLD,
including memory pools used for small blocks, are allocated
depending on the value of MMGT_MMAP: if it is O, these blocks are
allocated in the C heap; otherwise they are allocated using
operating-system specific functions managing memory mapped files.
Large blocks are returned to the system immediately when
Standard::Free() is called.

Benefits and drawbacks

The major benefit of the OCCT memory manager is explained by its
recycling of small and medium blocks that makes an application work
much faster when it constantly allocates and frees multiple memory
blocks of similar sizes. In practical situations, the real gain on the
application performance may be up to 50%.

The associated drawback is that recycled memory is not returned to the
operating system during program execution. This may lead to
considerable memory consumption and even be misinterpreted as a
memory leak. To minimize this effect it is necessary to call the method

Standard::Purge after the completion of memory-intensive operations.
The overhead expenses induced by the OCCT memory manager are:

¢ size of every allocated memory block is rounded up to 8 bytes (when
MMGT_ORPT is 0 (default), the rounding is defined by the CRT; the
typical value for 32-bit platforms is 4 bytes)

e additional 4 bytes (or 8 on 64-bit platforms) are allocated in the
beginning of every memory block to hold its size (or address of the
next free memory block when recycled in free list) only when
MMGT_OPT is 1.

Note that these overheads may be greater or less than overheads
induced by the C heap memory manager, so overall memory
consumption may be greater in either optimized or standard modes,
depending on circumstances.

As a general rule, it is advisable to allocate memory through significant
blocks. In this way, you can work with blocks of contiguous data, and
processing is facilitated for the memory page manager.

OCCT memory manager uses mutex to lock access to free lists,
therefore it may have less performance than non-optimized mode in
situations when different threads often make simultaneous calls to the
memory manager. The reason is that modern implementations of malloc()
and free() employ several allocation arenas and thus avoid delays waiting
mutex release, which are possible in such situations.

Exceptions

Introduction

The behavior of any object is implemented by the methods, which were
defined in its class declaration. The definition of these methods includes
not only their signature (their programming interface) but also their
domain of validity.

This domain is expressed by exceptions. Exceptions are raised under
various error conditions to protect software quality.

Exception handling provides a means of transferring control from a given
point in a program being executed to an exception handler associated
with another point previously executed.

A method may raise an exception which interrupts its normal execution
and transfers control to the handler catching this exception.

A hierarchy of commonly used exception classes is provided. The root
class is Standard_Failure from the Standard package. So each exception
inherits from Standard_Failure either directly or by inheriting from another
exception. Exception classes list all exceptions, which can be raised by
any OCCT function.

Open CASCADE Technology also provides support for converting system
signals (such as access violation or division by zero) to exceptions, so
that such situations can be safely handled with the same uniform
approach.

However, in order to support this functionality on various platforms, some
special methods and workarounds are used. Though the implementation
details are hidden and handling of OCCT exceptions is done basically in
the same way as with C++, some peculiarities of this approach shall be
taken into account and some rules must be respected.

The following paragraphs describe recommended approaches for using
exceptions when working with Open CASCADE Technology.

Raising an Exception
“C++ like” Syntax

To raise an exception of a definite type method Raise() of the appropriate
exception class shall be used.

DomainError: :Raise(“Cannot cope with this
condition”);

raises an exception of DomainError type with the associated message
“Cannot cope with this condition”, the message being optional. This
exception may be caught by a handler of a DomainError type as follows:

try {
OCC_CATCH_SIGNALS

// try block
}

catch(DomainError) {
// handle DomainError exceptions here

}

Regular usage

Exceptions should not be used as a programming technique, to replace a
“goto” statement for example, but as a way to protect methods against
misuse. The caller must make sure its condition is such that the method

can cope with it.

Thus,

¢ No exception should be raised during normal execution of an
application.

e A method which may raise an exception should be protected by
other methods allowing the caller to check on the validity of the call.
For example, if you consider the TCollection_Arrayl class used with:

e Value function to extract an element

e [ower function to extract the lower bound of the array
e Upper function to extract the upper bound of the array.

then, the Value function may be implemented as follows:

Item TCollection_Arrayl::Value (const
Standard_Integer&index) const
{
// where r1 and r2 are the lower and upper bounds
of the array
if(index < r1 || index > r2) {
OutOfRange: :Raise(“Index out of range in
Arrayl::Value”);
}

return contents[index];

}

Here validity of the index is first verified using the Lower and Upper
functions in order to protect the call. Normally the caller ensures the
index being in the valid range before calling Value(). In this case the
above implementation of Value is not optimal since the test done in Value
Is time-consuming and redundant.

It is a widely used practice to include that kind of protections in a debug
build of the program and exclude in release (optimized) build. To support
this practice, the macros Raise_if() are provided for every OCCT
exception class:

<ErrorTypeName>_Raise_if(condition, “Error
message”);

where ErrorTypeName is the exception type, condition is the logical
expression leading to the raise of the exception, and Error message is
the associated message.

The entire call may be removed by defining one of the preprocessor
symbols No_Exception or No_<ErrorTypeName> at compile-time:

#define No_Exception /* remove all raises */

Using this syntax, the Value function becomes:

Item TCollection_Arrayl::Value (const
Standard_Integer&index) const
{
OutOfRange_Raise_if(index < r1 || index > r2,
“index out of range in
Arrayl::Value”);
return contents[index];

}

Handling an Exception

When an exception is raised, control is transferred to the nearest handler
of a given type in the call stack, that is:

¢ the handler whose try block was most recently entered and not yet

exited,
e the handler whose type matches the raise expression.

A handler of T exception type is a match for a raise expression with an
exception type of E if:

e T and E are of the same type, or
e Tis a supertype of E.

In order to handle system signals as exceptions, make sure to insert
macro OCC_CATCH_SIGNALS somewhere in the beginning of the
relevant code. The recommended location for it is first statement after
opening brace of try {} block.

As an example, consider the exceptions of type NumericError, Overflow,
Underflow and ZeroDivide, where NumericError is the parent type of the
three others.

void f(1)
{

try {
OCC_CATCH_SIGNALS

// try block

}

catch(Standard_Overflow) { // first handler
//

}

catch(Standard_NumericError) { // second handler
/] ...

}

}

Here, the first handler will catch exceptions of Overflow type and the
second one — exceptions of NumericError type and all exceptions derived
from it, including Underflow and ZeroDivide.

The handlers are checked in order of appearance, from the nearest to the
try block to the most distant from it, until one matches the raise
expression. For a try block, it would be a mistake to place a handler for a
base exception type ahead of a handler for its derived type since that
would ensure that the handler for the derived exception would never be

invoked.

void f(1)

{
int 1 = 0;
{

try {
OCC_CATCH_SIGNALS

g(i);// i is accessible
}
// statement here will produce compile-time
errors !
catch(Standard_NumericError) {
// fix up with possible reuse of i
}
// statement here may produce unexpected side
effect

}

The exceptions form a hierarchy tree completely separated from other
user defined classes. One exception of type Failure is the root of the
entire exception hierarchy. Thus, using a handler with Failure type
catches any OCCT exception. It is recommended to set up such a
handler in the main routine.

The main routine of a program would look like this:

#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include <iostream.h>
int main (int argc, char* argv[])
{
try {

OCC_CATCH_SIGNALS

// main block

return 0;

}
catch(Standard_Failure) {

Handle(Standard_Failure) error =
Standard_Failure: :Caught ();
cout error endi;

}

return 1;

}

In this example function Caught is a static member of Failure that returns
an exception object containing the error message built in the raise
expression. Note that this method of accessing a raised object is used in
Open CASCADE Technology instead of usual C++ syntax (receiving the
exception in catch argument).

Though standard C++ scoping rules and syntax apply to try block and
handlers, note that on some platforms Open CASCADE Technology may
be compiled in compatibility mode when exceptions are emulated by long
jumps (see below). In this mode it is required that no statement precedes
or follows any handler. Thus it is highly recommended to always include a

try block into additional {} braces. Also this mode requires that header file
Standard_ErrorHandler.hxx be included in your program before a try
block, otherwise it may fail to handle Open CASCADE Technology
exceptions; furthermore catch() statement does not allow passing
exception object as argument.

Catching signals

In order for the application to be able to catch system signals (access
violation, division by zero, etc.) in the same way as other exceptions, the
appropriate signal handler shall be installed in the runtime by the method
OSD::SetSignal().

Normally this method is called in the beginning of the main() function. It
installs a handler that will convert system signals into OCCT exceptions.

In order to actually convert signals to exceptions, macro
OCC_CATCH_SIGNALS needs to be inserted in the source code. The
typical place where this macro is put is beginning of the try{} block which
catches such exceptions.

Implementation on various platforms.

The exception handling mechanism in Open CASCADE Technology is
implemented in different ways depending on the preprocessor macro
OCC_CONVERT_SIGNALS, which shall be consistently defined by
compilation procedures for both Open CASCADE Technology and user
applications:

1. On Windows, these macros are not defined by default, and normal
C++ exceptions are used in all cases, including throwing from signal
handler. Thus the behavior is as expected in C++.

2. On Linux, macro OCC_CONVERT_SIGNALS is defined by default.
The C++ exception mechanism is used for catching exceptions and
for throwing them from normal code. Since it is not possible to throw
C++ exception from system signal handler function, that function
makes a long jump to the nearest (in the execution stack) invocation
of macro OCC_CATCH_SIGNALS, and only there the C++ exception
gets actually thrown. The macro OCC_CATCH_SIGNALS is defined
in the file Standard_ErrorHandler.hxx. Therefore, including this file is

necessary for successful compilation of a code containing this
macro.

This mode differs from standard C++ exception handling only for
signals:

o macro OCC_CATCH_SIGNALS is necessary (besides call to
OSD::SetSignal() described above) for conversion of signals
Into exceptions;

o the destructors for automatic C++ objects created in the code
after that macro and till the place where signal is raised will not
be called in case of signal, since no C++ stack unwinding is
performed by long jump.

In general, for writing platform-independent code it is recommended to
insert macros OCC_CATCH_SIGNALS in try {} blocks or other code
where signals may happen.

Plug-In Management

Distribution by Plug-Ins

A plug-in is a component that can be loaded dynamically into a client
application, not requiring to be directly linked to it. The plug-in is not
bound to its client, i.e. the plug-in knows only how its connection
mechanism is defined and how to call the corresponding services.

A plug-in can be used to:

e implement the mechanism of a driver, i.e dynamically changing a
driver implementation according to the current transactions (for
example, retrieving a document stored in another version of an
application),

e restrict processing resources to the minimum required (for example,
it does not load any application services at run-time as long as the
user does not need them),

e facilitate modular development (an application can be delivered with
base functions while some advanced capabilities will be added as
plug-ins when they are available).

The plug-in is identified with the help of the global universal identifier
(GUID). The GUID includes lower case characters and cannot end with a
blank space.

Once it has been loaded, the call to the services provided by the plug-in
is direct (the client is implemented in the same language as the plug-in).

C++ Plug-In Implementation

The C++ plug-in implements a service as an object with functions defined
in an abstract class (this abstract class and its parent classes with the
GUID are the only information about the plug-in implemented in the client
application). The plug-in consists of a sharable library including a method
named Factory which creates the C++ object (the client cannot
instantiate this object because the plug-in implementation is not visible).
Foundation classes provide in the package Plugin a method named

Load(), which enables the client to access the required service through a
library.

That method reads the information regarding available plug-ins and their
locations from the resource file Plugin found by environment variable
CSF_PluginDefaults:

$CSF_PluginDefaults/Plugin

The Load method looks for the library name in the resource file or registry
through its GUID, for example, on UNIX:

I METADATADRIVER whose value must be 0S or DM.

' FW
al1l48e300-5740-11d1-a904-080036aaal®3.Location:
1ibFWOSPlugin.so

Then the Load method loads the library according to the rules of the
operating system of the host machine (for example, by using environment
variables such as LD LIBRARY_PATH with Unix and PATH with
Windows). After that it invokes the PLUGINFACTORY method to return
the object, which supports the required service. The client may then call
the functions supported by this object.

C++ Client Plug-In Implementation

To invoke one of the services provided by the plug-in, you may call the
Plugin::Load() global function with the Standard_GUID of the requested
service as follows:

Handle(FADriver_PartStorer)::DownCast(PlugIn::Load
(yourStandardGUID));

Let us take FAFactory.hxx and FAFactory.cxx as an example:

#include <Standard _Macro.hxx>
#include <Standard GUID.hxx>
#include <Standard _Transient.hxx>

class FAFactory
{
public:
Standard_EXPORT static Handle(Standard_Transient)
Factory (const Standard_GUID& theGUID);
3

#include <FAFactory.hxx>

#include <FADriver_PartRetriever.hxx>
#include <FADriver_PartStorer.hxx>
#include <FirstAppSchema.hxx>
#include <Standard_Failure.hxx>
#include <FACDM_Application.hxx>
#include <Plugin_Macro.hxx>

static Standard_GUID StorageDriver ("45b3c690-22f3-
11d2-b09e-00001f8791463");

static Standard_GUID RetrievalDriver("45b3c69c-22f3-
11d2-b09e-00001f8791463");

static Standard_GUID Schema ("45b3c6a2-22f3-
11d2-b09e-00001f8791463");

// function : Factory
// purpose

Handle(Standard_Transient) FAFactory::Factory (const
Standard_GUID& theGUID)
{

1t (theGUID == StorageDriver)
{

std: :cout << "FAFactory : Create store driver\n";
static Handle(FADriver_PartStorer) sd = new

FADriver_PartStorer();
sd;

(theGUID == RetrievalDriver)
{
std::cout << "FAFactory : Create retrieve
driver\n";
static Handle(FADriver_PartRetriever) rd = new
FADriver_PartRetriever();
rd;

(theGUID == Schema)
{
std::cout << "FAFactory : Create schema\n";
static Handle(FirstAppSchema) s = new
FirstAppSchema();
S;

}

Standard_Failure::Raise ("FAFactory: unknown
GUID");
Handle(Standard_Transient)();

}

// export plugin function "PLUGINFACTORY"
PLUGIN(FAFactory)

Application might also instantiate a factory by linking to the library and
calling FAFactory::Factory() directly.

Collections, Strings, Quantities and
Unit Conversion

Collections

Overview

The Collections component contains the classes that handle
dynamically sized aggregates of data. They include a wide range of
collections such as arrays, lists and maps.

Collections classes are generic (C++ template-like), that is, they define a
structure and algorithms allowing to hold a variety of objects which do not
necessarily inherit from a unique root class (similarly to C++ templates).

When you need to use a collection of a given type of object you must
instantiate it for this specific type of element. Once this declaration is
compiled, all the functions available on the generic collection are
available on your instantiated class.

However, note that:

e Each collection directly used as an argument in OCCT public syntax
is instantiated in an OCCT component.

e The TColStd package (Collections of Standard Objects
component) provides numerous instantiations of these generic
collections with objects from the Standard package or from the
Strings component. The Collections component provides a wide
range of generic collections:

e Arrays are generally used for a quick access to the item, however
an array is a fixed sized aggregate.

e Sequences are variable-sized structures, they avoid the use of large
and quasi-empty arrays. A sequence item is longer to access than
an array item: only an exploration in sequence is effective (but
sequences are not adapted for numerous explorations). Arrays and
sequences are commonly used as data structures for more complex
objects.

e Maps are dynamic structures, where the size is constantly adapted
to the number of inserted items and access to an item is the fastest.
Maps structures are commonly used in cases of numerous
explorations: they are typically internal data structures for complex
algorithms.

e Lists are similar to sequences but have different algorithms to
explore them.

e Specific iterators for sequences and maps.

Generic general-purpose Aggregates
TCollection_Arrayl

These are unidimensional arrays similar to C arrays, i.e. of fixed size but
dynamically dimensioned at construction time. As with a C array, the
access time for an Array1 indexed item is constant and is independent of
the array size. Arrays are commonly used as elementary data structures
for more complex objects.

Arrayl is a generic class which depends on Iltem, the type of element in
the array.

Arrayl indexes start and end at a user-defined position. Thus, when
accessing an item, you must base the index on the lower and upper
bounds of the array.

TCollection_Array2

These are bi-dimensional arrays of fixed size but dynamically
dimensioned at construction time.

As with a C array, the access time for an Array2 indexed item is constant
and is independent of the array size. Arrays are commonly used as
elementary data structures for more complex objects.

Array2 is a generic class which depends on Iltem, the type of element in
the array.

Array?2 indexes start and end at a user-defined position. Thus, when
accessing an item, you must base the index on the lower and upper

bounds of the array.
TCollection_HArrayl

These are unidimensional arrays similar to C arrays, i.e. of fixed size but
dynamically dimensioned at construction time. As with a C array, the
access time for an HArrayl1 or HArray2 indexed item is constant and is
independent of the array size. Arrays are commonly used as elementary
data structures for more complex objects.

HArray1l objects are handles to arrays.

e HArrayl arrays may be shared by several objects.
e You may use a TCollection_Arrayl structure to have the actual array.

HArray1 is a generic class which depends on two parameters:
¢ Item, the type of element in the array,
o Array, the actual type of array handled by HArray1. This is an
instantiation with Item of the TCollection_Arrayl generic class.

HArray1 indexes start and end at a user-defined position. Thus, when
accessing an item, you must base the index on the lower and upper
bounds of the array.

TCollection_HArray2

These are bi-dimensional arrays of fixed size but dynamically
dimensioned at construction time.

As with a C array, the access time for an HArray2 indexed item is
constant and is independent of the array size. Arrays are commonly used
as elementary data structures for more complex objects.

HArray2 objects are handles to arrays.

e HArray2 arrays may be shared by several objects.
e You may use a TCollection_Array2 structure to have the actual array.

HArray?2 is a generic class which depends on two parameters:

e [tem, the type of element in the array,
e Array, the actual type of array handled by HArray2. This is an
instantiation with Item of the TCollection_Array2 generic class.

TCollection_HSequence

This is a sequence of items indexed by an integer.

Sequences have about the same goal as unidimensional arrays
TCollection_HArrayl: they are commonly used as elementary data
structures for more complex objects. But a sequence is a structure of
variable size: sequences avoid the use of large and quasi-empty arrays.
Exploring a sequence data structure is effective when the exploration is
done in sequence; elsewhere a sequence item is longer to read than an
array item. Note also that sequences are not effective when they have to
support numerous algorithmic explorations: a map is better for that.

HSequence objects are handles to sequences.
e HSequence sequences may be shared by several objects.
e You may use a TCollection_Sequence structure to have the actual
sequence.
HSequence is a generic class which depends on two parameters:
e [tem, the type of element in the sequence,

e Seq, the actual type of sequence handled by HSequence. This is an
instantiation with Item of the TCollection _Sequence generic class.

TCollection List

These are ordered lists of non-unique objects which can be accessed
sequentially using an iterator. Item insertion in a list is very fast at any
position. But searching for items by value may be slow if the list is long,
because it requires a sequential search.

List is a generic class, which depends on Iltem, the type of element in the
structure. Use a Listlterator iterator to explore a List structure.

An iterator class is automatically instantiated from the

TCollection Listlterator class at the time of instantiation of a List
structure.

A sequence is a better structure when searching for items by value.

Queues and stacks are other kinds of list with a different access to data.
TCollection_Sequence

This is a sequence of items indexed by an integer. Sequences have
about the same goal as unidimensional arrays (TCollection_Arrayl): they
are commonly used as elementary data structures for more complex
objects. But a sequence is a structure of variable size: sequences avoid
the use of large and quasi-empty arrays. Exploring a sequence data
structure is effective when the exploration is done in sequence;
elsewhere a sequence item is longer to read than an array item. Note
also that sequences are not effective when they have to support
numerous algorithmic explorations: a map is better for that.

Sequence is a generic class which depends on /ltem, the type of element
in the sequence.

Generic Maps

Maps are dynamically extended data structures where data is quickly
accessed with a key. TCollection_BasicMap is a root class for maps.

General properties of maps

Map items may contain complex non-unitary data, thus it can be difficult
to manage them with an array. The map allows a data structure to be
indexed by complex data.

The size of a map is dynamically extended. So a map may be first
dimensioned for a little number of items. Maps avoid the use of large and
guasi-empty arrays.

The access time for a map item is much better than the one for a
sequence, list, queue or stack item. It is comparable with the access time
for an array item. It depends on the size of the map and on the quality of

the user redefinable function (the hashing function) to find quickly where
Is the item.

The performance of a map exploration may be better of an array
exploration because the size of the map is adapted to the number of
inserted items.

That is why maps are commonly used as internal data structures for
algorithms.

Definitions

A map is a data structure for which data are addressed by keys.

Once inserted in the map, a map item is referenced as an entry of the
map.

Each entry of the map is addressed by a key. Two different keys address
two different entries of the map. The position of an entry in the map is
called a bucket.

A map is dimensioned by its number of buckets, i.e. the maximum
number of entries in the map. The performance of a map is conditioned
by the number of buckets.

The hashing function transforms a key into a bucket index. The number
of values that can be computed by the hashing function is equal to the
number of buckets of the map.

Both the hashing function and the equality test between two keys are
provided by a hasher object.

A map may be explored by a map iterator. This exploration provides only
inserted entries in the map (i.e. non empty buckets).

Collections of generic maps

The Collections component provides numerous generic derived maps.

These maps include automatic management of the number of buckets:

they are automatically resized when the number of keys exceeds the
number of buckets. If you have a fair idea of the number of items in your
map, you can save on automatic resizing by specifying a number of
buckets at the time of construction, or by using a resizing function. This
may be considered for crucial optimization issues.

Keys, items and hashers are parameters of these generic derived maps.

TCollection_MapHasher class describes the functions required by any
hasher, which is to be used with a map instantiated from the Collections
component.

An iterator class is automatically instantiated at the time of instantiation of
a map provided by the Collections component if this map is to be
explored with an iterator. Note that some provided generic maps are not
to be explored with an iterator but with indexes (indexed maps).

TCollection_DataMap

This is a map used to store keys with associated items. An entry of
DataMap is composed of both the key and the item. The DataMap can
be seen as an extended array where the keys are the indexes.

DataMap is a generic class which depends on three parameters:
e Key is the type of key for an entry in the map,
e Jtem is the type of element associated with a key in the map,
e Hasher is the type of hasher on keys.

Use a DataMaplterator iterator to explore a DataMap map.

An iterator class is automatically instantiated from the
TCollection_DataMaplterator generic class at the time of instantiation of a
DataMap map.

TCollection_MapHasher class describes the functions required for a
Hasher object.

TCollection_DoubleMap

This is a map used to bind pairs of keys (Key1,Key2) and retrieve them in

linear time.

Keyl1 is referenced as the first key of the DoubleMap and Key?2 as the
second key.

An entry of a DoubleMap is composed of a pair of two keys: the first key
and the second key.

DoubleMap is a generic class which depends on four parameters:

Keyl1 is the type of the first key for an entry in the map,
Key2 is the type of the second key for an entry in the map,
Hasherl is the type of hasher on first keys,

Hasher?2 is the type of hasher on second keys.

Use DoubleMaplterator to explore a DoubleMap map.

An iterator class is automatically instantiated from the
TCollection_DoubleMaplterator class at the time of instantiation of a
DoubleMap map.

TCollection_MapHasher class describes the functions required for a
Hasherl or a Hasher2 obiject.

TCollection_IndexedDataMap

This is map to store keys with associated items and to bind an index to
them.

Each new key stored in the map is assigned an index. Indexes are
incremented as keys (and items) stored in the map. A key can be found
by the index, and an index can be found by the key. No key but the last
can be removed, so the indexes are in the range 1...Upper, where Upper
is the number of keys stored in the map. An item is stored with each key.

An entry of an IndexedDataMap is composed of both the key, the item
and the index. An IndexedDataMap is an ordered map, which allows a
linear iteration on its contents. It combines the interest:

e of an array because data may be accessed with an index,
e and of a map because data may also be accessed with a key.

IndexedDataMap is a generic class which depends on three parameters:

e Key is the type of key for an entry in the map,
e [tem is the type of element associated with a key in the map,
e Hasher is the type of hasher on keys.

TCollection_IndexedMap

This is map used to store keys and to bind an index to them.

Each new key stored in the map is assigned an index. Indexes are
incremented as keys stored in the map. A key can be found by the index,
and an index by the key. No key but the last can be removed, so the
indexes are in the range 1...Upper where Upper is the number of keys
stored in the map.

An entry of an IndexedMap is composed of both the key and the index.
An IndexedMap is an ordered map, which allows a linear iteration on its
contents. But no data is attached to the key. An IndexedMap is typically
used by an algorithm to know if some action is still performed on
components of a complex data structure.

IndexedMap is a generic class which depends on two parameters:

e Key is the type of key for an entry in the map,
e Hasher is the type of hasher on keys.

TCollection_Map

This is a basic hashed map, used to store and retrieve keys in linear
time.

An entry of a Map is composed of the key only. No data is attached to the
key. A Map is typically used by an algorithm to know if some action is still
performed on components of a complex data structure.

Map is a generic class which depends on two parameters:

e Key is the type of key in the map,
e Hasher is the type of hasher on keys.

Use a Maplterator iterator to explore a Map map.

TCollection_MapHasher

This is a hasher on the keys of a map instantiated from the Collections
component.

A hasher provides two functions:

e HashCode() function transforms a key into a bucket index in the
map. The number of values that can be computed by the hashing
function is equal to the number of buckets in the map.

e [sEqual is the equality test between two keys. Hashers are used as
parameters in generic maps provided by the Collections
component.

MapHasher is a generic class which depends on the type of keys,
providing that Key is a type from the Standard package. In such cases
MapHasher may be directly instantiated with Key. Note that the package
TColStd provides some of these instantiations.

Elsewhere, if Key is not a type from the Standard package you must
consider MapHasher as a template and build a class which includes its
functions, in order to use it as a hasher in a map instantiated from the
Collections component.

Note that TCollection_AsciiString and TCollection ExtendedString
classes correspond to these specifications, in consequence they may be
used as hashers: when Key is one of these two types you may just define
the hasher as the same type at the time of instantiation of your map.

Iterators
TCollection_BasicMaplterator

This is a root class for map iterators. A map iterator provides a step by
step exploration of all the entries of a map.

TCollection_DataMaplterator

These are functions used for iterating the contents of a DataMap map.

A map is a non-ordered data structure. The order in which entries of a
map are explored by the iterator depends on its contents and change
when the map is edited. It is not recommended to modify the contents of
a map during the iteration: the result is unpredictable.

TCollection_DoubleMaplterator
These are functions used for iterating the contents of a DoubleMap map.
TCollection_Listlterator

These are unctions used for iterating the contents of a List data structure.

A Listlterator object can be used to go through a list sequentially, and as
a bookmark to hold a position in a list. It is not an index, however. Each
step of the iteration gives the current position of the iterator, to which
corresponds the current item in the list. The current position is not
defined if the list is empty, or when the exploration is finished.

An iterator class is automatically instantiated from this generic class at
the time of instantiation of a List data structure.

TCollection_Maplterator

These are functions used for iterating the contents of a Map map. An
iterator class is automatically instantiated from this generic class at the
time of instantiation of a Map map.

TCollection_Setlterator

These are functions used for iterating the contents of a Set data
structure. An iterator class is automatically instantiated from this generic
class at the time of instantiation of a Set structure.

TCollection_Stacklterator

These are functions used for iterating the contents of a Stack data

structure.

An iterator class is automatically instantiated from this generic class at
the time of instantiation of a Stack structure.

Collections of Standard Objects

Overview

While generic classes of the TCollection package are the root classes
that describe the generic purpose of every type of collection, classes
effectively used are extracted from the TColStd package. The TColStd
and TShort packages provide frequently used instantiations of generic
classes with objects from the Standard package or strings from the
TCollection package.

Description

These instantiations are the following:

Unidimensional arrays: instantiations of the TCollection_Array1
generic class with Standard Objects and TCollection strings.
Bidimensional arrays: instantiations of the TCollection_Array2
generic class with Standard Objects.

Unidimensional arrays manipulated by handles: instantiations of the
TCollection_HArray1 generic class with Standard Objects and
TCollection strings.

Bidimensional arrays manipulated by handles: instantiations of the
TCollection_HArray2 generic class with Standard Objects.
Sequences: instantiations of the TCollection _Sequence generic
class with Standard objects and TCollection strings.

Sequences manipulated by handles: instantiations of the
TCollection_HSequence generic class with Standard objects and
TCollection strings.

Lists: instantiations of the TCollection_List generic class with
Standard objects.

Queues: instantiations of the TCollection_Queue generic class with
Standard objects.

Sets: instantiations of the TCollection_Set generic class with
Standard objects.

Sets manipulated by handles: instantiations of the TCollection_HSet
generic class with Standard objects.

Stacks: instantiations of the TCollection_Stack generic class with

Standard objects.

Hashers on map keys: instantiations of the TCollection_MapHasher
generic class with Standard objects.

Basic hashed maps: instantiations of the TCollection_Map generic
class with Standard objects.

Hashed maps with an additional item: instantiations of the
TCollection_DataMap generic class with Standard objects.

Basic indexed maps: instantiations of the TCollection_IndexedMap
generic class with Standard objects.

Indexed maps with an additional item: instantiations of the
TCollection_IndexedDataMap generic class with Standard_Transient
objects.

Class TColStd_PackedMapOfinteger provides alternative
implementation of map of integer numbers, optimized for both
performance and memory usage (it uses bit flags to encode integers,
which results in spending only 24 bytes per 32 integers stored in
optimal case). This class also provides Boolean operations with
maps as sets of integers (union, intersection, subtraction, difference,
checks for equality and containment).

NCollections

Overview

The NCollection package provides a set of template collection classes
used throughout OCCT.

Macro definitions of these classes are stored in NCollection_Define* hxx
files. These definitions are now obsolete though still can be used,
particularly for compatibility with the existing code.

Instantiation of collection classes

Now we are going to implement the definitions from NCollection in the
code, taking as an example a sequence of points (analogue of
TColgp_SequenceOfPnt).

Definition of a new collection class

Let the header file be MyPackage SequenceOfPnt.hxx :
Template class instantiaton

#include <NCollection_Sequence.hxx>

#include <gp_Pnt.hxx>

typedef NCollection_Sequence<gp_Pnt>
MyPackage_SequenceOfPnt;

Macro instantiation

#include <NCollection_DefineSequence.hxx>
#include <gp_Pnt.hxx>

The following line defines the class "base collection of points"

DEFINE_BASECOLLECTION(MyPackage_BaseCollPnt, gp_Pnt)

The following line defines the class MyPackage SequenceOfPnt

DEFINE_SEQUENCE (MyPackage_SequenceOfPnt,
MyPackage_BaseCollPnt , gp_Pnt)

Definition of a hew collection class managed by Handle

It is necessary to provide relevant statements both in the header (.hxx
file) and the C++ source (.cxx file).

Header file MyPackage HSequenceOfPnt.hxx:

#include <NCollection_DefineHSequence.hxx>
#include <gp_Pnt.hxx>

The following line defines the class "base collection of points”

DEFINE_BASECOLLECTION(MyPackage_BaseCollPnt, gp_Pnt)

The following line defines the class MyPackage SequenceOfPnt

DEFINE_SEQUENCE (MyPackage_SequenceOfPnt,
MyPackage_BaseCollPnt, gp_Pnt)

The following line defines the classes MyPackage HSequenceOfPnt and
Handle(MyPackage HSequenceOfPnt)

DEFINE_HSEQUENCE (MyPackage_HSequenceOfPnt,
MyPackage_SequenceOfPnt)

Source code file will be MyPackage HSequenceOfPnt.cxx or any other
.cxx file (once in the whole project):

IMPLEMENT_HSEQUENCE (MyPackage_HSequenceOfPnt)

Arrays and sequences

Standard collections provided by OCCT are:

e NCollection_Arrayl — fixed-size (at initialization) one-dimensional
array; note that the index can start at any value, usually 1;

e NCollection_Array2 — fixed-size (at initialization) two-dimensional
array; note that the index can start at any value, usually 1;

e NCollection_List — plain list;

e NCollection_Sequence — double-connected list with access by index;
note that the index starts at 1.

These classes provide STL-style iterators (methods begin() and end())
and thus can be used in STL algorithms.

Maps

NCollection provides several classes for storage of objects by value,
providing fast search due to use of hash:

e NCollection_Map — hash set;

e NCollection_IndexedMap — set with a prefixed order of elements,
allowing fast access by index or by value (hash-based);

e NCollection_DataMap — hash map;

e NCollection_IndexedDataMap — map with a prefixed order of
elements, allowing fast access by index or by value (hash-based);

e NCollection_DoubleMap — two-side hash map (with two keys).

Other collection types

There are 4 collection types provided as template classes:

NCollection Vector
NCollection UBTree
NCollection_SparseArray
NCollection CellFilter

Vector

This type is implemented internally as a list of arrays of the same size. Its
properties:

e Direct (constant-time) access to members like in Arrayl type; data
are allocated in compact blocks, this provides faster iteration.

e Can grow without limits, like List, Stack or Queue types.

e Once having the size LEN, it cannot be reduced to any size less than

LEN — there is no operation of removal of items.
Insertion in a Vector-type class is made by two methods:

e SetValue(ind, theValue) — array-type insertion, where ind is the index
of the inserted item, can be any non-negative number. If it is greater
than or equal to Length(), then the vector is enlarged (its Length()
grows).

o Append(theValue) — list-type insertion equivalent to
myVec.SetValue(myVec.Length(), theValue), incrementing the size
of the collection.

Other essential properties coming from List and Arrayl type collections:

e Like in List, the method Clear() destroys all contained objects and
releases the allocated memory.

e Like in Arrayl, the methods Value() and ChangeValue() return a
contained object by index. Also, these methods have the form of
overloaded operator ().

UBTree

The name of this type stands for “Unbalanced Binary Tree”. It stores the
members in a binary tree of overlapped bounding objects (boxes or else).
Once the tree of boxes of geometric objects is constructed, the algorithm
is capable of fast geometric selection of objects. The tree can be easily
updated by adding to it a new object with bounding box. The time of
adding to the tree of one object is O(log(N)), where N is the total number
of objects, so the time of building a tree of N objects is O(N(log(N)). The
search time of one object is O(log(N)).

Defining various classes inheriting NCollection_UBTree::Selector we can
perform various kinds of selection over the same b-tree object.

The object may be of any type allowing copying. Among the best suitable
solutions there can be a pointer to an object, handled object or integer
index of object inside some collection. The bounding object may have
any dimension and geometry. The minimal interface of TheBndType
(besides public empty and copy constructor and operator =) used in
UBTree algorithm as follows:

class MyBndType
{
public:
inline void Add (const MyBndType&
other);
// Updates me with other bounding type instance

inline Standard_Boolean IsOut (const
MyBndType& other) const;

// Classifies other bounding type instance
relatively me

inline Standard_Real SquareExtent() const;

// Computes the squared maximal linear extent of me
(for a box it is the squared diagonal of the
box).

+s

This interface is implemented in types of Bnd package: Bnd_Box,
Bnd_Box2d, Bnd _B2x, Bnd_B3x.

To select objects you need to define a class derived from
UBTree::Selector that should redefine the necessary virtual methods to
maintain the selection condition. Usually this class instance is also used
to retrieve selected objects after search. The class UBTreeFiller is used
to randomly populate a UBTree instance. The quality of a tree is better
(considering the speed of searches) if objects are added to it in a random
order trying to avoid the addition of a chain of nearby objects one
following another. Instantiation of UBTreeFiller collects objects to be
added, and then adds them at once to the given UBTree instance in a
random order using the Fisher-Yates algorithm. Below is the sample code
that creates an instance of NCollection_UBTree indexed by 2D boxes
(Bnd_B2f), then a selection is performed returning the objects whose
bounding boxes contain the given 2D point.

typedef NCollection_UBTree<MyData, Bnd_B2f> UBTree;
typedef NCollection_List<MyData> ListOfSelected;
//! Tree Selector type

class MyTreeSelector : public UBTree::Selector

{

public:

+s

// This constructor initializes the selection
criterion (e.g., a point)

MyTreeSelector (const gp_XY& thePnt)
myPnt(thePnt) {}
// Get the list of selected objects

const ListOfSelected& ListAccepted () const

{ return myList; }

// Bounding box rejection - definition of virtual
method. @return True if theBox is outside the
selection criterion.

Standard_Boolean Reject (const Bnd_B2f& theBox)
const

{ return theBox.IsOut(myPnt); }

// Redefined from the base class. Called when the
bounding of theData conforms to the selection
criterion. This method updates myList.

Standard_Boolean Accept (const MyData& theData)
{ myList.Append(theData); }

private:

gp_XY myPnt;

ListOfSelected myList;

// Create a UBTree instance and fill it with data,

each data item having the corresponding 2D box.

UBTree aTree;
NCollection_UBTreeFiller <MyData, Bnd_B2f>

aTreeFiller(aTree);

for(;;) {

const MyData& aData = ..;

const Bnd_B2d& aBox = aData.GetBox();
aTreeFiller.Add(aData, aBox);

}
aTreeFiller.Fill();

// Perform selection based on ‘aPoint2d’
MyTreeSelector aSel(aPoint2d);
aTree.Select(aSel);

const ListOfSelected = aSel.ListAccepted();

SparseArray

This type has almost the same features as Vector but it allows to store
items having scattered indices. In Vector, if you set an item with index
1000000, the container will allocate memory for all items with indices in
the range 0-1000000. In SparseArray, only one small block of items will
be reserved that contains the item with index 1000000.

This class can be also seen as equivalence of

DataMap<int, TheltemType> with the only one practical difference: it can
be much less memory-expensive if items are small (e.g. Integer or
Handle).

This type has both interfaces of DataMap and Vector to access items.
CellFilter

This class represents a data structure for sorting geometric objects in n-
dimensional space into cells, with associated algorithm for fast checking
of coincidence (overlapping, intersection, etc.) with other objects. It can
be considered as a functional alternative to UBTree, as in the best case it
provides the direct access to an object like in an n-dimensional array,
while search with UBTree provides logarithmic law access time.

Features

NCollection defines some specific features, in addition to the public API
inherited from TCollection classes.

Iterators

Every collection defines its Iterator class capable of iterating the
members in some predefined order. Every Iterator is defined as a
subtype of the particular collection type (e.qg.,

MyPackage StackOfPnt::Iterator). The order of iteration is defined by a
particular collection type. The methods of Iterator are:

e void Init (const MyCollection&) — initializes the iterator on the
collection object;

e Standard_Boolean More () const — makes a query if there is another
non-iterated member;

e void Next () — increments the iterator;

e const ItemType& Value () const — returns the current member;

e [temType& ChangeValue () const — returns the mutable current
member

typedef Ncollection_Sequence<gp_Pnt>
MyPackage_SequenceOfPnt
void Perform (const MyPackage_SequenceOfPnt&

theSequence)

{
MyPackage_SequenceOfPnt::Iterator anlter
(theSequence);
for (; anIter.More(); anIter.Next()) {

const gp_Pnt aPnt& = anIter.Value();

}

}

This feature is present only for some classes in TCollection (Stack, List,
Set, Map, DataMap, DoubleMap). In NCollection it is generalized.

Class BaseCollection

There is a common abstract base class for all collections for a given item
type (e.g., gp_Pnt). Developer X can arbitrarily name this base class like
MyPackage BaseCollPnt in the examples above. This name is further
used in the declarations of any (non-abstract) collection class to

designate the C++ inheritance.
This base class has the following public API:

e abstract class Iterator as the base class for all Iterators descried
above;

e [terator& Createlterator () const — creates and returns the Iterator on

this collection;

e Standard_Integer Size () const — returns the number of items in this

collection;

¢ void Assign (const NCollection_BaseCollection& theOther) — copies

the contents of the Other to this collection object;

These members enable accessing any collection without knowing its
exact type. In particular, it makes possible to implement methods
receiving objects of the abstract collection type:

#include <NColection_Map.hxx>

typedef NCollection_Map<gp_Pnt> MyPackage_MapOfPnt;

typedef NCollection_BaseCollection<gp_Pnt>
MyPackage_BaseCollPnt;

MyPackage_MapOfPnt aMapPnt;

gp_Pnt aResult = COG (aMapPnt);

gp_Pnt COG(const MyPackage_BaseCollPnt& theColl)

{
gp_XYZ aCentreOfGravity(0., 0., 0.);

// create type-independent iterator (it is abstract
type instance)
MyPackage_BaseCollString::Iterator& anlIter =
theColl.CreateIterator();
for (; anIter.More(); anIter.Next()) {
aCentreOfGravity += anlIter.Value().XYZ();
}

return aCentreOfGravity / theColl.Size();
}

Note that there are fundamental differences between the shown type-

independent iterator and the iterator belonging to a particular non-
abstract collection:

e Type-independent iterator can only be obtained via the call
Createlterator(); the typed iterator — only via the explicit construction.

e Type-independent iterator is an abstract class, so it is impossible to
copy it or to assign it to another collection object; the typed iterators
can be copied and reassigned using the method /nit().

e Type-independent iterator is actually destroyed when its collection
object is destroyed; the typed iterator is destroyed as any other C++
object in the corresponding C++ scope.

The common point between them is that it is possible to create any
number of both types of iterators on the same collection object.

Heterogeneous Assign

The semantics of the method Assign() has been changed in comparison

to TCollection. In NCollection classes the method Assign() is virtual and it
receives the object of the abstract BaseCollection class (see the previous
section). Therefore this method can be used to assign any collection type

to any other if only these collections are instantiated on the same
ItemType.

For example, conversion of Map into Arrayl is performed like this:

#include <NCollection_Map.hxx>

#include <NCollection_Arrayl.hxx>

typedef NCollection_Map<gp_Pnt> MyPackage_MapOfPnt;

typedef NCollection_Arrayl<gp_Pnt>
MyPackage_Arrayl0fPnt;

MyPackage_MapOfPnt aMapPnt;
MyPackage_Arrayl0fPnt anArriPnt (1, aMapPnt.Size());
anArrlPnt.Assign (aMapPnt); // heterogeneous

assignment

There are some aspects to mention:

e Unlike in TCollection, in NCollection the methods Assign and
operator= do not coincide. The former is a virtual method defined in
the BaseCollection class. The latter is always defined in instance
classes as a non-virtual inline method and it corresponds exactly to
the method Assign in TCollection classes. Therefore it is always
profitable to use operator= instead of Assign wherever the types on
both sides of assignment are known.

¢ |If the method Assign copies to Arrayl or Array2 structure, it first
checks if the size of the array is equal to the number of items in the
copied collection object. If the sizes differ, an exception is thrown, as
in TCollection_Arrayl.gxx.

e Copying to Map, IndexedMap, DataMap and IndexedDataMap can
bring about a loss of data: when two or more copied data items have
the same key value, only one item is copied and the others are
discarded. It can lead to an error in the code like the following:

MyPackage_Arrayl0fPnt anArrl1Pnt (1, 100);
MyPackage_MapOfPnt aMapPnt;

aMapPnt.Assign(anArriPnt);
anArrlPnt.Assign(aMapPnt);

Objects of classes parameterised with two types (DoubleMap, DataMap
and IndexedDataMap) cannot be assigned. Their method Assign throws
the exception Standard_TypeMismatch (because it is impossible to check
if the passed BaseCollection parameter belongs to the same collection

type).
Allocator

All constructors of NCollection classes receive the Allocator Object as the
last parameter. This is an object of a type managed by Handle, inheriting
NCollection_BaseAllocator, with the following (mandatory) methods
redefined:

Standard_EXPORT virtual void* Allocate (const size_t
size);
Standard_EXPORT virtual void Free (void * anAddress);

It is used internally every time when the collection allocates memory for
its item(s) and releases this memory. The default value of this parameter
(empty Handle) designates the use of NCollection BaseAllocator X
where the functions Standard::Allocate and Standard.::Free are called.
Therefore if the user of NCollection does not specify any allocator as a
parameter to the constructor of his collection, the memory management
will be identical to the one in TCollection and other Open CASCADE
Technology classes.

Nevertheless, the it is possible to define a custom Allocator type to
manage the memory in the most optimal or convenient way for his
algorithms.

As one possible choice, the class NCollection _IncAllocator is included.
Unlike BaseAllocator, it owns all memory it allocates from the system.
Memory is allocated in big blocks (about 20kB) and the allocator keeps
track of the amount of occupied memory. The method Allocate just
increments the pointer to non-occupied memory and returns its previous
value. Memory is only released in the destructor of IncAllocator, the
method Free is empty. If used efficiently, this Allocator can greatly
improve the performance of OCCT collections.

Strings

Strings are classes that handle dynamically sized sequences of
characters based on ASCIl/Unicode UTF-8 (normal 8-bit character type)
and UTF-16/UCS-2 (16-bit character type). They provide editing
operations with built-in memory management which make the relative
objects easier to use than ordinary character arrays.

String classes provide the following services to manipulate character
strings:

e Editing operations on string objects, using a built-in string manager
e Handling of dynamically-sized sequences of characters
e Conversion from/to ASCII and UTF-8 strings.

Strings may also be manipulated by handles and therefore shared.
Examples
TCollection_AsciiString

A variable-length sequence of ASCII characters (normal 8-bit character
type). It provides editing operations with built-in memory management to
make AsciiString objects easier to use than ordinary character arrays.
AsciiString objects follow value semantics;, that is, they are the actual
strings, not handles to strings, and are copied through assignment. You
may use HAscIiString objects to get handles to strings.

TCollection_ExtendedString

A variable-length sequence of "extended" (UNICODE) characters (16-bit
character type). It provides editing operations with built-in memory
management to make ExtendedString objects easier to use than ordinary
extended character arrays.

ExtendedString objects follow value semantics;, that is, they are the
actual strings, not handles to strings, and are copied through assignment.
You may use HExtendedString objects to get handles to strings.

TCollection_HAsciiString

A variable-length sequence of ASCII characters (normal 8-bit character
type). It provides editing operations with built-in memory management to
make HAscIiString objects easier to use than ordinary character arrays.
HAsciiString objects are handles to strings.

e HASscIiString strings may be shared by several objects.
e You may use an AsciiString object to get the actual string.
HAsciiString objects use an AsciiString string as a field.

TCollection_HExtendedString

A variable-length sequence of extended; (UNICODE) characters (16-bit
character type). It provides editing operations with built-in memory
management to make ExtendedString objects easier to use than ordinary
extended character arrays. HExtendedString objects are handles to
strings.

e HExtendedString strings may be shared by several objects.
e You may use an ExtendedString object to get the actual string.
HEXxtendedString objects use an ExtendedString string as a field.

Conversion

Resource_Unicode provides functions to convert a non-ASCII C string
given in ANSI, EUC, GB or SJIS format, to a Unicode string of extended
characters, and vice versa.

Quantities

Quantities are various classes supporting date and time information and
fundamental types representing most physical quantities such as length,
area, volume, mass, density, weight, temperature, pressure etc.

Quantity classes provide the following services:

¢ Definition of primitive types representing most of mathematical and
physical quantities;

¢ Unit conversion tools providing a uniform mechanism for dealing with
guantities and associated physical units: check unit compatibility,
perform conversions of values between different units, etc. (see
package UnitsAPI)

e Resources to manage time information such as dates and time
periods

e Resources to manage color definition

A mathematical quantity is characterized by the name and the value
(real).

A physical quantity is characterized by the name, the value (real) and the
unit. The unit may be either an international unit complying with the
International Unit System (SI) or a user defined unit. The unit is managed
by the physical quantity user.

The fact that both physical and mathematical quantities are manipulated
as real values means that :

e They are defined as aliases of real values, so all functions provided
by the Standard_Real class are available on each quantity.

¢ It is possible to mix several physical quantities in a mathematical or
physical formula involving real values.

Quantity package includes all commonly used basic physical quantities.

Unit Conversion

The UnitsAPI global functions are used to convert a value from any unit
into another unit. Conversion is executed among three unit systems:

e the Sl System,

¢ the user’s Local System,

e the user’s Current System. The Sl System is the standard
international unit system. It is indicated by S/ in the signatures of the
UnitsAPI functions.

The OCCT (former MDTV) System corresponds to the Sl international
standard but the length unit and all its derivatives use the millimeter
instead of the meter.

Both systems are proposed by Open CASCADE Technology; the Sl
System is the standard option. By selecting one of these two systems,
you define your Local System through the SetLocalSystem function. The
Local System is indicated by LS in the signatures of the UnitsAPI
functions. The Local System units can be modified in the working
environment. You define your Current System by modifying its units
through the SetCurrentUnit function. The Current System is indicated by
Current in the signatures of the UnitsAPI functions. A physical quantity is
defined by a string (example: LENGTH).

Math Primitives and Algorithms

Overview

Math primitives and algorithms available in Open CASCADE Technology
include:

e Vectors and matrices
e Geometric primitives
e Math algorithms

Vectors and Matrices

The Vectors and Matrices component provides a C++ implementation of
the fundamental types Vector and Matrix, which are regularly used to
define more complex data structures.

The Vector and Matrix classes provide commonly used mathematical
algorithms which include:

Basic calculations involving vectors and matrices;

Computation of eigenvalues and eigenvectors of a square matrix;
Solvers for a set of linear algebraic equations;

Algorithms to find the roots of a set of non-linear equations;
Algorithms to find the minimum function of one or more independent
variables.

These classes also provide a data structure to represent any expression,
relation, or function used in mathematics, including the assignment of
variables.

Vectors and matrices have arbitrary ranges which must be defined at
declaration time and cannot be changed after declaration.

math_Vector v(1, 3);

// a vector of dimension 3 with range (1..3)
math_Matrix m(0, 2, 0, 2);

// a matrix of dimension 3x3 with range (0..2, 0..2)
math_Vector v(N1, N2);

// a vector of dimension N2-N1+1 with range (N1..N2)

Vector and Matrix objects use value semantics. In other words, they
cannot be shared and are copied through assignment.

math_Vector vi(1, 3), v2(0, 2);

v2 = vi;

// vl is copied into v2. a modification of v1 does
not affect v2

Vector and Matrix values may be initialized and obtained using indexes
which must lie within the range definition of the vector or the matrix.

math_Vector v(1, 3);
math_Matrix m(1, 3, 1, 3);
Standard_Real value;

v(2) = 1.0;
value = v(1);
m(1, 3) = 1.0;

value = m(2, 2);

Some operations on Vector and Matrix objects may not be legal. In this
case an exception is raised. Two standard exceptions are used:

e Standard_DimensionError exception is raised when two matrices or
vectors involved in an operation are of incompatible dimensions.

e Standard _RangeError exception is raised if an access outside the
range definition of a vector or of a matrix is attempted.

math_Vector vi(1, 3), v2(1, 2), v3(0, 2);
vl = v2;
// error: Standard_DimensionError 1s raised

vl = v3;
// OK: ranges are not equal but dimensions are
// compatible

vi(0) = 2.0;
// error: Standard_RangeError is raised

Primitive Geometric Types

Open CASCADE Technology primitive geometric types are a STEP-
compliant implementation of basic geometric and algebraic entities. They
provide:

e Descriptions of primitive geometric shapes, such as:

Points;

Vectors;

Lines;

Circles and conics;

Planes and elementary surfaces;

¢ Positioning of these shapes in space or in a plane by means of an
axis or a coordinate system;

e Definition and application of geometric transformations to these
shapes:

o Translations;

Rotations;

o Symmetries;

Scaling transformations;

Composed transformations;

¢ Tools (coordinates and matrices) for algebraic computation.

O O O O O©°

o

o O

All these functions are provided by geometric processor package gp. Its
classes for 2d and 3d objects are handled by value rather than by
reference. When this sort of object is copied, it is copied entirely.
Changes in one instance will not be reflected in another.

The gp package defines the basic geometric entities used for algebraic
calculation and basic analytical geometry in 2d & 3d space. It also
provides basic transformations such as identity, rotation, translation,
mirroring, scale transformations, combinations of transformations, etc.
Entities are handled by value.

Please, note that gp curves and surfaces are analytic: there is no
parameterization and no orientation on gp entities, i.e. these entities do
not provide functions which work with these properties.

If you need, you may use more evolved data structures provided by

Geom (in 3D space) and GeomZ2d (in the plane). However, the definition
of gp entities is identical to the one of equivalent Geom and Geom2d
entities, and they are located in the plane or in space with the same kind
of positioning systems. They implicitly contain the orientation, which they
express on the Geom and GeomZ2d entities, and they induce the
definition of their parameterization.

Therefore, it is easy to give an implicit parameterization to gp curves and
surfaces, which is the parametrization of the equivalent Geom or
Geom2d entity. This property is particularly useful when computing
projections or intersections, or for operations involving complex
algorithms where it is particularly important to manipulate the simplest
data structures, i.e. those of gp. Thus, EICLib and EISLib packages
provide functions to compute:

e the point of parameter u on a 2D or 3D gp curve,
¢ the point of parameter (u,v) on a gp elementary surface, and
e any derivative vector at this point.

Note: the gp entities cannot be shared when they are inside more
complex data structures.

Collections of Primitive Geometric Types

Before creating a geometric object, you must decide whether you are in a
2d or in a 3d context and how you want to handle the object. If you do not
need a single instance of a geometric primitive but a set of them then the
package which deals with collections of this sort of object, TColgp, will
provide the necessary functionality. In particular, this package provides
standard and frequently used instantiations of generic classes with
geometric objects, i.e. XY, XYZ, Pnt, Pnt2d, Vec, Vec2d, Lin, Lin2d, Circ,
Circ2d.

Basic Geometric Libraries

There are various library packages available which offer a range of basic
computations on curves and surfaces. If you are dealing with objects
created from the gp package, the useful algorithms are in the elementary
curves and surfaces libraries — the EICLib and EISLib packages.

e EICLIib provides methods for analytic curves. This is a library of
simple computations on curves from the gp package (Lines, Circles
and Conics). It is possible to compute points with a given parameter
or to compute the parameter for a point.

e EISLib provides methods for analytic surfaces. This is a library of
simple computations on surfaces from the package gp (Planes,
Cylinders, Spheres, Cones, Tori). It is possible to compute points
with a given pair of parameters or to compute the parameter for a
point. There is a library for calculating normals on curves and
surfaces.

Additionally, Bnd package provides a set of classes and tools to operate
with bounding boxes of geometric objects in 2d and 3d space.

Common Math Algorithms

The common math algorithms library provides a C++ implementation of
the most frequently used mathematical algorithms. These include:

e Algorithms to solve a set of linear algebraic equations,

¢ Algorithms to find the minimum of a function of one or more
independent variables,

¢ Algorithms to find roots of one, or of a set, of non-linear equations,

¢ An algorithm to find the eigenvalues and eigenvectors of a square
matrix.

All mathematical algorithms are implemented using the same principles.
They contain: A constructor performing all, or most of, the calculation,
given the appropriate arguments. All relevant information is stored inside
the resulting object, so that all subsequent calculations or interrogations
will be solved in the most efficient way.

A function IsDone returning the boolean true if the calculation was
successful. A set of functions, specific to each algorithm, enabling all the
various results to be obtained. Calling these functions is legal only if the
function IsDone answers true, otherwise the exception StdFail_NotDone
IS raised.

The example below demonstrates the use of the Gauss class, which
implements the Gauss solution for a set of linear equations.The following
definition is an extract from the header file of the class math_Gauss:

class Gauss {

public:
Gauss (const math_Matrix& A);
Standard_Boolean IsDone() const;
void Solve (const math_Vector& B,
math_Vector& X) const;

+s

Now the main program uses the Gauss class to solve the equations
a*x1=bl and a*x2=b2:

#include <math_Vector.hxx>
#include <math_Matrix.hxx>
main ()
{
math_Vector a(1, 3, 1, 3);
math_Vector bi(1, 3), b2(1, 3);
math_Vector x1(1, 3), x2(1, 3);
// a, bl and b2 are set here to the appropriate

values

math_Gauss sol(a); // computation of
the

// LU decomposition of A

if(sol.Isbone()) { // 1s it OK ?
sol.Solve(b1l, x1); // yes, so compute x1
sol.Solve(b2, x2); // then x2

}

else { // 1t 1s not OK:
// Tix up
sol.Solve(bl, x1); // error:
// StdFail_NotDone is raised

}

}

The next example demonstrates the use of the BissecNewton class,
which implements a combination of the Newton and Bissection
algorithms to find the root of a function known to lie between two bounds.
The definition is an extract from the header file of the class
math_BissecNewton:

class BissecNewton {
public:
BissecNewton (math_FunctionWithDerivative&
f,
const Standard_Real bound1l,
const Standard_Real bound2,
const Standard_Real tolx);
Standard_Boolean IsDone() const;

Standard_Real Root();
+,

The abstract class math FunctionWithDerivative describes the services
which have to be implemented for the function f which is to be used by a
BissecNewton algorithm. The following definition corresponds to the
header file of the abstract class math FunctionWithDerivative:

class math_FunctionWithDerivative {
public:
virtual Standard_Boolean Value
(const Standard_Real x, Standard_Realé&
f) =0;
virtual Standard_Boolean Derivative
(const Standard_Real x, Standard_Realé&
d) = 0;
virtual Standard_Boolean Values
(const Standard_Real X,
Standard_Real& f,
Standard_Real& d) = 0;
iy

Now the test sample uses the BissecNewton class to find the root of the
equation f(x)=x**2-4 in the interval [1.5, 2.5]: the function to solve is
implemented in the class myFunction which inherits from the class

math_FunctionWithDerivative, then the main program finds the required
root.

#include <math_BissecNewton.hxx>
#include <math_FunctionWithDerivative.hxx>
class myFunction : public math_FunctionWithDerivative

{

Standard_Real coefa, coefb, coefc;

public:

myFunction (const Standard_Real a, const
Standard_Real b,

const Standard_Real c)

coefa(a), coefb(b), coefc(c)

{}

virtual Standard_Boolean Value (const
Standard_Real x,

{

f = coefa * x * x + coefb * x + coefc;

}

virtual Standard_Boolean Derivative (const
Standard_Real x,

Standard_Real& f)

Standard_Real& d)
{

d = coefa * x * 2.0 + coefb;

}

virtual Standard_Boolean Values (const
Standard_Real x,

Standard_Real&
f, Standard_Real& d)

¢ f = coefa * x * x + coefb * x + coefc;
d = coefa * x * 2.0 + coefb;
}
Iy
main()
{

myFunction (1.0, 0.0, 4.0);

math_BissecNewton sol(F, 1.5, 2.5, 0.000001);

if(Sol.Isbone()) { // is it OK ?
Standard_Real x = sol.Root(); // yes.

}
else { // no

}

Precision

On the OCCT platform, each object stored in the database should carry
its own precision value. This is important when dealing with systems
where objects are imported from other systems as well as with various
associated precision values.

The Precision package addresses the daily problem of the geometric
algorithm developer: what precision setting to use to compare two
numbers. Real number equivalence is clearly a poor choice. The
difference between the numbers should be compared to a given precision
setting.

Do not write if (X1 == X2), instead write if (Abs(X1-X2) < Precision).

Also, to order real numbers, keep in mind that if (X1 < X2 - Precision) is
incorrect. if (X2 - X1 > Precision) is far better when X1 and X2 are high
numbers.

This package proposes a set of methods providing precision settings for
the most commonly encountered situations.

In Open CASCADE Technology, precision is usually not implicit; low-level
geometric algorithms accept precision settings as arguments. Usually
these should not refer directly to this package.

High-level modeling algorithms have to provide a precision setting to the
low level geometric algorithms they call. One way is to use the settings
provided by this package. The high-level modeling algorithms can also
have their own strategy for managing precision. As an example the
Topology Data Structure stores precision values which are later used by
algorithms. When a new topology is created, it takes the stored value.
Different precision settings offered by this package cover the most
common needs of geometric algorithms such as Intersection and
Approximation. The choice of a precision value depends both on the
algorithm and on the geometric space. The geometric space may be
either:

e areal space, 3d or 2d where the lengths are measured in meters,

micron, inches, etc.

e a parametric space, 1d on a curve or 2d on a surface where
numbers have no dimension. The choice of precision value for
parametric space depends not only on the accuracy of the machine,
but also on the dimensions of the curve or the surface. This is
because it is desirable to link parametric precision and real precision.
If you are on a curve defined by the equation P(t), you would want to
have equivalence between the following:

Abs(tl-t2) < ParametricPrecision
Distance (P(tl1),P(t2)) < RealPrecision.

The Precision package

The Precision package offers a number of package methods and default
precisions for use in dealing with angles, distances, intersections,
approximations, and parametric space. It provides values to use in
comparisons to test for real number equalities.

Angular precision compares angles.

Confusion precision compares distances.

Intersection precision is used by intersection algorithms.
Approximation precision is used by approximation algorithms.
Parametric precision gets a parametric space precision from a 3D
precision.

e [nfinite returns a high number that can be considered to be infinite.
Use -Infinite for a high negative number.

Standard Precision values

This package provides a set of real space precision values for algorithms.
The real space precisions are designed for precision to 0.1 nanometers.
The only unit available is the millimeter. The parametric precisions are
derived from the real precisions by the Parametric function. This applies
a scaling factor which is the length of a tangent to the curve or the
surface. You, the user, provide this length. There is a default value for a
curve with [0,1] parameter space and a length less than 100 meters. The
geometric packages provide Parametric precisions for the different types
of curves. The Precision package provides methods to test whether a
real number can be considered to be infinite.

Precision::Angular

This method is used to compare two angles. Its current value is Epsilon(2
* Pl) i.e. the smallest number x such that 2*PI + x is different of 2*PI.

It can be used to check confusion of two angles as follows: Abs(Anglel -
Angle2) < Precision::Angular()

It is also possible to check parallelism of two vectors (Vec from gp) as
follows V1.IsParallel(V2,Precision::Angular())

Note that Precision::Angular() can be used on both dot and cross
products because for small angles the Sine and the Angle are equivalent.
So to test if two directions of type gp_Dir are perpendicular, it is legal to
use the following code: Abs(D1 * D2) < Precision::Angular()

Precision::Confusion

This method is used to test 3D distances. The current value is 1.e-7, in
other words, 1/10 micron if the unit used is the millimeter.

It can be used to check confusion of two points (Pnt from gp) as follows:
P1.IsEqual(P2,Precision::Confusion())

It is also possible to find a vector of null length (Vec from gp) :
V.Magnitude() < Precision::Confusion()

Precision::Intersection

This is reasonable precision to pass to an Intersection process as a limit
of refinement of Intersection Points. Intersection is high enough for the
process to converge quickly. Intersection is lower than Confusion so that
you still get a point on the intersected geometries. The current value is
Confusion() / 100.

Precision::Approximation

This is a reasonable precision to pass to an approximation process as a
limit of refinement of fitting. The approximation is greater than the other

precisions because it is designed to be used when the time is at a
premium. It has been provided as a reasonable compromise by the
designers of the Approximation algorithm. The current value is
Confusion() * 10. Note that Approximation is greater than Confusion, so
care must be taken when using Confusion in an approximation process.

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @il@@@?-?m amn

———i]

1.8.13

http://www.doxygen.org/index.html

";OPE. NCASCADE

Open CASCADE
Technology 7.2.0

Modeling Data

Table of Contents

+|ntroduction
+Geometry Utilities

¥ Interpolations and
Approximations

4+ Analysis of a set
of points

+Basic
Interpolation
and
Approximation

+Advanced
Approximation

+Direct Construction

+Simple
geometric
entities

+ Geometric
entities
manipulated by
handle

+Conversion to and
from BSplines

4 Points on Curves
+Extrema

+2D Geometry

+ 3D Geometry

4 Properties of Shapes

+Local Properties of
Shapes

+Local Properties of

Curves and Surfaces

4 Continuity of Curves
and Surfaces

+Regularity of Shared
Edges

+Global Properties of
Shapes

+Adaptors for Curves
and Surfaces

+Topology

+Shape Location

+Naming shapes, sub-
shapes, their
orientation and state

+Topological
types

+ Qrientation
+ State

+Manipulating shapes
and sub-shapes

+Exploration of
Topological Data
Structures

+Lists and Maps of
Shapes

+Wire Explorer
+Storage of shapes

Introduction

Modeling Data supplies data structures to represent 2D and 3D
geometric models.

This manual explains how to use Modeling Data. For advanced
information on modeling data, see our E-learning & Training offerings.

http://www.opencascade.com/content/tutorial-learning

Geometry Utilities

Geometry Utilities provide the following services:

Creation of shapes by interpolation and approximation

Direct construction of shapes

Conversion of curves and surfaces to BSpline curves and surfaces
Computation of the coordinates of points on 2D and 3D curves
Calculation of extrema between shapes.

Interpolations and Approximations

In modeling, it is often required to approximate or interpolate points into
curves and surfaces. In interpolation, the process is complete when the
curve or surface passes through all the points; in approximation, when it
is as close to these points as possible.

Approximation of Curves and Surfaces groups together a variety of
functions used in 2D and 3D geometry for:

¢ the interpolation of a set of 2D points using a 2D BSpline or Bezier
curve;

o the approximation of a set of 2D points using a 2D BSpline or Bezier
curve;

¢ the interpolation of a set of 3D points using a 3D BSpline or Bezier
curve, or a BSpline surface;

e the approximation of a set of 3D points using a 3D BSpline or Bezier
curve, or a BSpline surface.

You can program approximations in two ways:

e Using high-level functions, designed to provide a simple method for
obtaining approximations with minimal programming,

e Using low-level functions, designed for users requiring more control
over the approximations.

Analysis of a set of points

The class PEquation from GProp package allows analyzing a collection
or cloud of points and verifying if they are coincident, collinear or
coplanar within a given precision. If they are, the algorithm computes the
mean point, the mean line or the mean plane of the points. If they are not,
the algorithm computes the minimal box, which includes all the points.

Basic Interpolation and Approximation

Packages Geom2dAPI and GeomAPI provide simple methods for
approximation and interpolation with minimal programming

2D Interpolation

The class Interpolate from Geom2dAPI package allows building a
constrained 2D BSpline curve, defined by a table of points through which
the curve passes. If required, the parameter values and vectors of the
tangents can be given for each point in the table.

3D Interpolation

The class Interpolate from GeomAPI package allows building a
constrained 3D BSpline curve, defined by a table of points through which
the curve passes. If required, the parameter values and vectors of the
tangents can be given for each point in the table.

I

Approximation of a BSpline from scattered points
This class may be instantiated as follows:

GeomAPI_Interpolate Interp(Points);

From this object, the BSpline curve may be requested as follows:

Handle(Geom_BSplineCurve) C = Interp.Curve();

2D Approximation

The class PointsToBSpline from Geom2dAPI package allows building a
2DBSpline curve, which approximates a set of points. You have to define
the lowest and highest degree of the curve, its continuity and a tolerance
value for it.The tolerance value is used to check that points are not too
close to each other, or tangential vectors not too small. The resulting

BSpline curve will beC2 or second degree continuous, except where a
tangency constraint is defined on a point through which the curve passes.
In this case, it will be only Clcontinuous.

3D Approximation

The class PointsToBSpline from GeomAPI package allows building a 3D
BSplinecurve, which approximates a set of points. It is necessary to
define the lowest and highest degree of the curve, its continuity and
tolerance. The tolerance value is used to check that points are not too
close to each other,or that tangential vectors are not too small.

The resulting BSpline curve will be C2 or second degree continuous,
except where a tangency constraint is defined on a point, through which
the curve passes. In this case, it will be only C1 continuous. This class is
instantiated as follows:

GeomAPI_PointsToBSpline
Approx(Points, DegMin, DegMax, Continuity, Tol);

From this object, the BSpline curve may be requested as follows:

Handle(Geom_BSplineCurve) K = Approx.Curve();

Surface Approximation

The class PointsToBSplineSurface from GeomAPI package allows
building a BSpline surface, which approximates or interpolates a set of
points.

Advanced Approximation

Packages AppDef and AppParCurves provide low-level functions,
allowing more control over the approximations.

The low-level functions provide a second API with functions to:

e Define compulsory tangents for an approximation. These tangents
have origins and extremities.

e Approximate a set of curves in parallel to respect identical
parameterization.
e Smooth approximations. This is to produce a faired curve.

You can also find functions to compute:
e The minimal box which includes a set of points

e The mean plane, line or point of a set of coplanar, collinear or
coincident points.

Approximation by multiple point constraints

AppDef package provides low-level tools to allow parallel approximation
of groups of points into Bezier or B-Spline curves using multiple point
constraints.

The following low level services are provided:
o Definition of an array of point constraints:
The class MuiltiLine allows defining a given number of multi-point

constraints in order to build the multi-line, multiple lines passing
through ordered multiple point constraints.

MultiPointConstraint |

MultiPointConstraint 1 MultiPointConstraint n
Definition of a MultiLine using Multiple Point Constraints
In this image:

o Pi, Qi, Ri ... Si can be 2D or 3D points.

o Defined as a group: Pn, Qn, Rn, ... Sn form a
MultipointConstraint. They possess the same passage,
tangency and curvature constraints.

o P1,P2,...Pn,orthe Q, R, ... or S series represent the lines to
be approximated.

o Definition of a set of point constraints:

The class MultiPointConstraint allows defining a multiple point
constraint and computing the approximation of sets of points to
several curves.

e Computation of an approximation of a Bezier curve from a set of
points:

The class Compute allows making an approximation of a set of
points to a Bezier curve

e Computation of an approximation of a BSpline curve from a set of
points:

The class BSplineCompute allows making an approximation of a set
of points to a BSpline curve.

e Definition of Variational Criteria:
The class TheVariational allows fairing the approximation curve to a

given number of points using a least squares method in conjunction with
a variational criterion, usually the weights at each constraint point.

Approximation by parametric or geometric constraints

AppParCurves package provides low-level tools to allow parallel
approximation of groups of points into Bezier or B-Spline curve with
parametric or geometric constraints, such as a requirement for the curve
to pass through given points, or to have a given tangency or curvature at
a particular point.

The algorithms used include:

¢ the least squares method

¢ a search for the best approximation within a given tolerance value.
The following low-level services are provided:
e Association of an index to an object:

The class ConstraintCouple allows you associating an index to an object
to compute faired curves using AppDef_TheVariational.

o Definition of a set of approximations of Bezier curves:

The class MultiCurve allows defining the approximation of a multi-line
made up of multiple Bezier curves.

o Definition of a set of approximations of BSpline curves:

The class MultiBSpCurve allows defining the approximation of a multi-line
made up of multiple BSpline curves.

¢ Definition of points making up a set of point constraints

The class MultiPoint allows defining groups of 2D or 3D points making up
a multi-line.

Example: How to approximate a curve with respect to tangency

To approximate a curve with respect to tangency, follow these steps:

1. Create an object of type AppDef_MultiPointConstraints from the set
of points to approximate and use the method SetTang to set the
tangency vectors.

2. Create an object of type AppDef_MuiltiLine from the
AppDef_MultiPointConstraint.

3. Use AppDef_BSplineCompute, which instantiates
Approx_BSplineComputeLine to perform the approximation.

Direct Construction

Direct Construction methods from gce, GC and GCEZ2d packages provide
simplified algorithms to build elementary geometric entities such as lines,
circles and curves. They complement the reference definitions provided
by the gp, Geom and GeomZ2d packages.

The algorithms implemented by gce, GCE2d and GC packages are
simple: there is no creation of objects defined by advanced positional
constraints (for more information on this subject, see Geom2dGcc and
GccAna, which describe geometry by constraints).

For example, to construct a circle from a point and a radius using the gp
package, it is necessary to construct axis Ax2d before creating the circle.
If gce package is used, and Ox is taken for the axis, it is possible to
create a circle directly from a point and a radius.

Another example is the class gce_MakeCirc providing a framework for
defining eight problems encountered in the geometric construction of
circles and implementing the eight related construction algorithms.

The object created (or implemented) is an algorithm which can be
consulted to find out, in particular:

e its result, which is a gp_Circ, and
e its status. Here, the status indicates whether or not the construction
was successful.

If it was unsuccessful, the status gives the reason for the failure.

gp_Pnt P1 (0.,0.,0.);
gp_Pnt P2 (0.,10.,0.);
gp_Pnt P3 (10.,0.,0.);
gce_MakeCirc MC (P1,P2,P3);
if (MC.IsDone()) {

const gp_Circ& C = MC.Value();
}

In addition, gce, GCE2d and GC each have a Root class. This class is

the root of all classes in the package, which return a status. The returned
status (successful construction or construction error) is described by the
enumeration gce_ErrorType.

Note, that classes, which construct geometric transformations do not
return a status, and therefore do not inherit from Root.

Simple geometric entities

The following algorithms used to build entities from gp package are
provided by gce package.

2D line parallel to another at a distance,

2D line parallel to another passing through a point,
2D circle passing through two points,

2D circle parallel to another at a distance,

2D circle parallel to another passing through a point,
2D circle passing through three points,

2D circle from a center and a radius,

2D hyperbola from five points,

2D hyperbola from a center and two apexes,

2D ellipse from five points,

2D ellipse from a center and two apexes,

2D parabola from three points,

2D parabola from a center and an apex,

line parallel to another passing through a point,
line passing through two points,

circle coaxial to another passing through a point,
circle coaxial to another at a given distance,

circle passing through three points,

circle with its center, radius, and normal to the plane,
circle with its axis (center + normal),

hyperbola with its center and two apexes,

ellipse with its center and two apexes,

plane passing through three points,

plane from its normal,

plane parallel to another plane at a given distance,
plane parallel to another passing through a point,
plane from an array of points,

cylinder from a given axis and a given radius,

cylinder from a circular base,

cylinder from three points,

cylinder parallel to another cylinder at a given distance,
cylinder parallel to another cylinder passing through a point,
cone from four points,

cone from a given axis and two passing points,

cone from two points (an axis) and two radii,

cone parallel to another at a given distance,

cone parallel to another passing through a point,

all transformations (rotations, translations, mirrors,scaling
transformations, etc.).

Each class from gp package, such as Circ, Circ2d, Mirror, Mirror2d, etc.,
has the corresponding MakeCirc, MakeCirc2d, MakeMirror,
MakeMirror2d, etc. class from gce package.

It is possible to create a point using a gce package class, then question it
to recover the corresponding gp object.

gp_Pnt2d Pointl,Point2;

//Initialization of Pointl and Point2
gce_MakeLin2d L = gce_MakelLin2d(Pointl,Point2);
(L.Status() == gce_bone()){
gp_Lin2d 1 = L.Value();

}

This is useful if you are uncertain as to whether the arguments can create
the gp object without raising an exception. In the case above, if Pointl
and Point2 are closer than the tolerance value required by MakeLin2d,
the function Status will return the enumeration gce_ConfusedPoint. This
tells you why the gp object cannot be created. If you know that the points
Point1 and Point2 are separated by the value exceeding the tolerance
value, then you may create the gp object directly, as follows:

gp_Lin2d 1 = gce_MakeLin2d(Pointl,Point2);

Geometric entities manipulated by handle

GC and GCE2d packages provides an implementation of algorithms used

to build entities from Geom and Geom2D packages. They implement the
same algorithms as the gce package, and also contain algorithms for
trimmed surfaces and curves. The following algorithms are available:

arc of a circle trimmed by two points,

arc of a circle trimmed by two parameters,

arc of a circle trimmed by one point and one parameter,

arc of an ellipse from an ellipse trimmed by two points,

arc of an ellipse from an ellipse trimmed by two parameters,

arc of an ellipse from an ellipse trimmed by one point and one

parameter,

e arc of a parabola from a parabola trimmed by two points,

e arc of a parabola from a parabola trimmed by two parameters,

e arc of a parabola from a parabola trimmed by one point and one
parameter,

e arc of a hyperbola from a hyperbola trimmed by two points,

e arc of a hyperbola from a hyperbola trimmed by two parameters,

e arc of a hyperbola from a hyperbola trimmed by one point and one

parameter,

segment of a line from two points,

segment of a line from two parameters,

segment of a line from one point and one parameter,

trimmed cylinder from a circular base and a height,

trimmed cylinder from three points,

trimmed cylinder from an axis, a radius, and a height,

trimmed cone from four points,

trimmed cone from two points (an axis) and a radius,

trimmed cone from two coaxial circles.

Each class from GCEZ2d package, such as Circle, Ellipse, Mirror, etc.,
has the corresponding MakeCircle, MakeEllipse, MakeMirror, etc. class
from Geom2d package. Besides, the class MakeArcOfCircle returns an
object of type TrimmedCurve from GeomZ2d.

Each class from GC package, such as Circle, Ellipse, Mirror, etc., has the
corresponding MakeCircle, MakeEllipse, MakeMirror, etc. class from
Geom package. The following classes return objects of type
TrimmedCurve from Geom:

e MakeArcOfCircle
o MakeArcOfEllipse

e MakeArcOfHyperbola
o MakeArcOfParabola
e MakeSegment

Conversion to and from BSplines

The Conversion to and from BSplines component has two distinct
purposes:

o Firstly, it provides a homogeneous formulation which can be used to
describe any curve or surface. This is useful for writing algorithms for
a single data structure model. The BSpline formulation can be used
to represent most basic geometric objects provided by the
components which describe geometric data structures
("Fundamental Geometry Types", "2D Geometry Types" and "3D
Geometry Types" components).

e Secondly, it can be used to divide a BSpline curve or surface into a
series of curves or surfaces, thereby providing a higher degree of
continuity. This is useful for writing algorithms which require a
specific degree of continuity in the objects to which they are applied.
Discontinuities are situated on the boundaries of objects only.

The "Conversion to and from BSplines" component is composed of three
packages.

The Convert package provides algorithms to convert the following into a
BSpline curve or surface:

e a bounded curve based on an elementary 2D curve (line, circle or
conic) from the gp package,

¢ a bounded surface based on an elementary surface (cylinder, cone,
sphere or torus) from the gp package,

e a series of adjacent 2D or 3D Bezier curves defined by their poles.

These algorithms compute the data needed to define the resulting
BSpline curve or surface. This elementary data (degrees, periodic
characteristics, poles and weights, knots and multiplicities) may then be
used directly in an algorithm, or can be used to construct the curve or the
surface by calling the appropriate constructor provided by the classes
Geom2d_BSplineCurve, Geom_BSplineCurve or Geom_BSplineSurface.

The Geom2dConvert package provides the following:

a global function which is used to construct a BSpline curve from a
bounded curve based on a 2D curve from the Geom2d package,

a splitting algorithm which computes the points at which a 2D
BSpline curve should be cut in order to obtain arcs with the same
degree of continuity,

global functions used to construct the BSpline curves created by this
splitting algorithm, or by other types of segmentation of the BSpline
curve,

an algorithm which converts a 2D BSpline curve into a series of
adjacent Bezier curves.

The GeomConvert package also provides the following:

a global function used to construct a BSpline curve from a bounded
curve based on a curve from the Geom package,

a splitting algorithm, which computes the points at which a BSpline
curve should be cut in order to obtain arcs with the same degree of
continuity,

global functions to construct BSpline curves created by this splitting
algorithm, or by other types of BSpline curve segmentation,

an algorithm, which converts a BSpline curve into a series of
adjacent Bezier curves,

a global function to construct a BSpline surface from a bounded
surface based on a surface from the Geom package,

a splitting algorithm, which determines the curves along which a
BSpline surface should be cut in order to obtain patches with the
same degree of continuity,

global functions to construct BSpline surfaces created by this
splitting algorithm, or by other types of BSpline surface
segmentation,

an algorithm, which converts a BSpline surface into a series of
adjacent Bezier surfaces,

an algorithm, which converts a grid of adjacent Bezier surfaces into a
BSpline surface.

Points on Curves

The Points on Curves component comprises high level functions
providing an API for complex algorithms that compute points on a 2D or
3D curve.

The following characteristic points exist on parameterized curves in 3d
space:

e points equally spaced on a curve,
¢ points distributed along a curve with equal chords,
e a point at a given distance from another point on a curve.

GCPnts package provides algorithms to calculate such points:

e AbscissaPoint calculates a point on a curve at a given distance from
another point on the curve.

e UniformAbscissa calculates a set of points at a given abscissa on a
curve.

e UniformDeflection calculates a set of points at maximum constant
deflection between the curve and the polygon that results from the
computed points.

Example: Visualizing a curve.

Let us take an adapted curve C, i.e. an object which is an interface
between the services provided by either a 2D curve from the package
Geom2d (in case of an Adaptor_Curve2d curve) or a 3D curve from the
package Geom (in case of an Adaptor_Curve curve), and the services
required on the curve by the computation algorithm. The adapted curve is
created in the following way:

2D case :

Handle(Geom2d_Curve) mycurve = ... ;
Geom2dAdaptor_Curve C (mycurve) ;

3D case:

Handle(Geom_Curve) mycurve = ... ;
GeomAdaptor_Curve C (mycurve)

The algorithm is then constructed with this object:

GCPnts_UniformDeflection myAlgo () ;

Standard_Real Deflection = ...

myAlgo.Initialize (C , Deflectlon)
(myAlgo.IsDone())

{

Standard_Integer nbr = myAlgo.NbPoints()
Standard_Real param ;

(Standard_Integer i =1 ; i <= nbr ; i++)
{

param = myAlgo.Parameter (1)

Extrema

The classes to calculate the minimum distance between points, curves,
and surfaces in 2d and 3d are provided by GeomAPI and Geom2dAPI
packages.

These packages calculate the extrema of distance between:

point and a curve,
point and a surface,
two curves,

a curve and a surface,
two surfaces.

Extrema between Point and Curve | Surface

The GeomAPI_ProjectPointOnCurve class allows calculation of all
extrema between a point and a curve. Extrema are the lengths of the
segments orthogonal to the curve. The GeomAPI_ProjectPointOnSurface
class allows calculation of all extrema between a point and a surface.
Extrema are the lengths of the segments orthogonal to the surface.
These classes use the "Projection” criteria for optimization.

Extrema between Curves

The Geom2dAPI_ExtremaCurveCurve class allows calculation of all
minimal distances between two 2D geometric curves. The
GeomAPI_ExtremaCurveCurve class allows calculation of all minimal
distances between two 3D geometric curves. These classes use
Euclidean distance as the criteria for optimization.

Extrema between Curve and Surface

The GeomAPI_ExtremaCurveSurface class allows calculation of one
extrema between a 3D curve and a surface. Extrema are the lengths of
the segments orthogonal to the curve and the surface. This class uses
the "Projection” criteria for optimization.

Extrema between Surfaces

The GeomAPI_ExtremaSurfaceSurface class allows calculation of one
minimal and one maximal distance between two surfaces. This class
uses Euclidean distance to compute the minimum, and "Projection”
criteria to compute the maximum.

2D Geometry

GeomZ2d package defines geometric objects in 2dspace. All geometric
entities are STEP processed. The objects are handled by reference.

In particular, Geom2d package provides classes for:

e description of points, vectors and curves,

e their positioning in the plane using coordinate systems,

¢ their geometric transformation, by applying translations, rotations,
symmetries, scaling transformations and combinations thereof.

The following objects are available:

point,

Cartesian point,

vector,

direction,

vector with magnitude,

axis,

curve,

line,

conic: circle, ellipse, hyperbola, parabola,
rounded curve: trimmed curve, NURBS curve, Bezier curve,
offset curve.

Before creating a geometric object, it is necessary to decide how the
object is handled. The objects provided by Geom2d package are handled
by reference rather than by value. Copying an instance copies the
handle, not the object, so that a change to one instance is reflected in
each occurrence of it. If a set of object instances is needed rather than a
single object instance, TColGeom2d package can be used. This package
provides standard and frequently used instantiations of one-dimensional
arrays and sequences for curves from Geom2d package. All objects are
available in two versions:

e handled by reference and
e handled by value.

The key characteristic of GeomZ2d curves is that they are parameterized.
Each class provides functions to work with the parametric equation of the
curve, and, in particular, to compute the point of parameter u on a curve
and the derivative vectors of order 1, 2.., N at this point.

As a consequence of the parameterization, a GeomZ2d curve is naturally
oriented.

Parameterization and orientation differentiate elementary GeomZ2dcurves
from their equivalent as provided by gp package. Geom2d package
provides conversion functions to transform a GeomZ2d object into a gp
object, and vice-versa, when this is possible.

Moreover, GeomZ2d package provides more complex curves, including
Bezier curves, BSpline curves, trimmed curves and offset curves.

GeomZ2d objects are organized according to an inheritance structure over
several levels.

Thus, an ellipse (specific class Geom2d_Ellipse) is also a conical curve
and inherits from the abstract class Geom2d_Conic, while a Bezier curve
(concrete class Geom2d_BezierCurve) is also a bounded curve and
inherits from the abstract class Geom2d_BoundedCurve; both these
examples are also curves (abstract class Geom2d_Curve). Curves,
points and vectors inherit from the abstract class Geom2d_Geometry,
which describes the properties common to any geometric object from the
GeomZ2d package.

This inheritance structure is open and it is possible to describe new
objects, which inherit from those provided in the Geom2d package,
provided that they respect the behavior of the classes from which they
are to inherit.

Finally, Geom2d objects can be shared within more complex data
structures. This is why they are used within topological data structures,
for example.

GeomZ2dpackage uses the services of the gp package to:

e implement elementary algebraic calculus and basic analytic
geometry,

¢ describe geometric transformations which can be applied to Geom2d
objects,
e describe the elementary data structures of Geom2d objects.

However, the Geom2d package essentially provides data structures and
not algorithms. You can refer to the GCE2d package to find more evolved
construction algorithms for Geom2d objects.

3D Geometry

The Geom package defines geometric objects in 3d space and contains
all basic geometric transformations, such as identity, rotation, translation,
mirroring, scale transformations, combinations of transformations, etc. as
well as special functions depending on the reference definition of the
geometric object (e.g. addition of a control point on a B-Spline
curve,modification of a curve, etc.). All geometrical entities are STEP
processed.

In particular, it provides classes for:

e description of points, vectors, curves and surfaces,

e their positioning in 3D space using axis or coordinate systems, and

¢ their geometric transformation, by applying translations, rotations,
symmetries, scaling transformations and combinations thereof.

The following objects are available:

Point

Cartesian point

Vector

Direction

Vector with magnitude

AXxis

Curve

Line

Conic: circle, ellipse, hyperbola, parabola

Offset curve

Elementary surface: plane, cylinder, cone, sphere, torus
Bounded curve: trimmed curve, NURBS curve, Bezier curve
Bounded surface: rectangular trimmed surface, NURBS
surface,Bezier surface

e Swept surface: surface of linear extrusion, surface of revolution
e Offset surface.

The key characteristic of Geom curves and surfaces is that they are
parameterized. Each class provides functions to work with the parametric
equation of the curve or surface, and, in particular, to compute:

¢ the point of parameter u on a curve, or
e the point of parameters (u, v) on a surface. together with the
derivative vectors of order 1, 2, ... N at this point.

As a consequence of this parameterization, a Geom curve or surface is
naturally oriented.

Parameterization and orientation differentiate elementary Geom curves
and surfaces from the classes of the same (or similar) names found in gp
package. Geom package also provides conversion functions to transform
a Geom object into a gp object, and vice-versa, when such
transformation is possible.

Moreover, Geom package provides more complex curves and surfaces,
including:

e Bezier and BSpline curves and surfaces,

o swept surfaces, for example surfaces of revolution and surfaces of
linear extrusion,

e trimmed curves and surfaces, and

o offset curves and surfaces.

Geom objects are organized according to an inheritance structure over
several levels. Thus, a sphere (concrete class Geom_SphericalSurface)
is also an elementary surface and inherits from the abstract class
Geom_ElementarySurface, while a Bezier surface (concrete class
Geom_BezierSurface) is also a bounded surface and inherits from the
abstract class Geom_BoundedSurface; both these examples are also
surfaces (abstract class Geom_Surface). Curves, points and vectors
inherit from the abstract class Geom_Geometry, which describes the
properties common to any geometric object from the Geom package.

This inheritance structure is open and it is possible to describe new
objects, which inherit from those provided in the Geom package, on the
condition that they respect the behavior of the classes from which they
are to inherit.

Finally, Geom objects can be shared within more complex data
structures. This is why they are used within topological data structures,
for example.

If a set of object instances is needed rather than a single object instance,
TColGeom package can be used. This package provides instantiations of
one- and two-dimensional arrays and sequences for curves from Geom
package. All objects are available in two versions:

e handled by reference and
e handled by value.

The Geom package uses the services of the gp package to:

e implement elementary algebraic calculus and basic analytic

geometry,
¢ describe geometric transformations which can be applied to Geom

objects,
e describe the elementary data structures of Geom objects.

However, the Geom package essentially provides data structures, not
algorithms.

You can refer to the GC package to find more evolved construction
algorithms for Geom objects.

Properties of Shapes

Local Properties of Shapes

BRepLProp package provides the Local Properties of Shapes
component, which contains algorithms computing various local properties
on edges and faces in a BRep model.

The local properties which may be queried are:

e for a point of parameter u on a curve which supports an edge :

the point,

the derivative vectors, up to the third degree,

the tangent vector,

the normal,

the curvature, and the center of curvature;

e for a point of parameter (u, v) on a surface which supports a face :
o the point,
o the derivative vectors, up to the second degree,

the tangent vectors to the u and v isoparametric curves,

the normal vector,

the minimum or maximum curvature, and the corresponding

directions of curvature;

e the degree of continuity of a curve which supports an edge, built by

the concatenation of two other edges, at their junction point.

O O O O

o

o O

o

Analyzed edges and faces are described as BRepAdaptor curves and
surfaces, which provide shapes with an interface for the description of
their geometric support. The base point for local properties is defined by
its u parameter value on a curve, or its (u, v) parameter values on a
surface.

Local Properties of Curves and Surfaces

The "Local Properties of Curves and Surfaces" component provides
algorithms for computing various local properties on a Geom curve (in 2D
or 3D space) or a surface. It is composed of:

e GeomZ2dLProp package, which allows computing Derivative and
Tangent vectors (normal and curvature) of a parametric point on a
2D curve;

e GeomLProp package, which provides local properties on 3D curves
and surfaces

* [Prop package, which provides an enumeration used to characterize
a particular point on a 2D curve.

Curves are either Geom_Curve curves (in 3D space) or Geom2d_Curve
curves (in the plane). Surfaces are Geom_Surface surfaces. The point on
which local properties are calculated is defined by its u parameter value
on a curve, and its (u,v) parameter values on a surface.

It is possible to query the same local properties for points as mentioned
above, and additionally for 2D curves:

e the points corresponding to a minimum or a maximum of curvature;
e the inflection points.

Example: How to check the surface concavity

To check the concavity of a surface, proceed as follows:

1. Sample the surface and compute at each point the Gaussian
curvature.

2. If the value of the curvature changes of sign, the surface is concave
or convex depending on the point of view.

3. To compute a Gaussian curvature, use the class SLprops from
GeomLProp, which instantiates the generic class SLProps from
LProp and use the method GaussianCurvature.

Continuity of Curves and Surfaces

Types of supported continuities for curves and surfaces are described in
GeomAbs_Shape enumeration.

In respect of curves, the following types of continuity are supported (see
the figure below):

e CO (GeomAbs_CO0) - parametric continuity. It is the same as GO
(geometric continuity), so the last one is not represented by separate
variable.

e G1 (GeomAbs_G1) - tangent vectors on left and on right are parallel.

e C1 (GeomAbs_C1) - indicates the continuity of the first derivative.

e G2 (GeomAbs_G2) - in addition to G1 continuity, the centers of
curvature on left and on right are the same.

e C2 (GeomAbs_C2) - continuity of all derivatives till the second order.

e C3 (GeomAbs_C3) - continuity of all derivatives till the third order.

e CN (GeomAbs_CN) - continuity of all derivatives till the N-th order
(infinite order of continuity).

Note: Geometric continuity (G1, G2) means that the curve can be
reparametrized to have parametric (C1, C2) continuity.

" III:

Continuity of Curves

CO continuity
(coincident boundaries)

G1 continuity
(CO + parallel tangent vector

C1 continuity
(CO + equal tangent vectors)

G2 continuity
(G1 + same center of curvatt

C2 continuity
(C1 + same center of curvatt

The following types of surface continuity are supported:

CO (GeomAbs_CO0) - parametric continuity (the surface has no points
or curves of discontinuity).

e G1 (GeomAbs_G1) - surface has single tangent plane in each point.
e Cl (GeomAbs_C1) - indicates the continuity of the first derivatives.
o G2 (GeomAbs_G2) - in addition to G1 continuity, principal curvatures

and directions are continuous.

e C2 (GeomAbs_C2) - continuity of all derivatives till the second order.
e C3 (GeomAbs_C3) - continuity of all derivatives till the third order.
e CN (GeomAbs_CN) - continuity of all derivatives till the N-th order

(infinite order of continuity).

(G1 + equal tangent vectors)
(G1 + equal principal curvatu

(different normal vectors
along shared curve)
(same tangent plane)

CO continuity
G1 continuity
C1 continuity
G2 continuity

?”:ﬁ— ———— e

(C1 + equal principal curvatu

C2 continuity
and directions)

Continuity of Surfaces

Against single surface, the connection of two surfaces (see the figure
above) defines its continuity in each intersection point only. Smoothness
of connection is a minimal value of continuities on the intersection curve.

Regularity of Shared Edges

Regularity of an edge is a smoothness of connection of two faces sharing
this edge. In other words, regularity is a minimal continuity between
connected faces in each point on edge.

Edge's regularity can be set by BRep_Builder::Continuity method. To get
the regularity use BRep_Tool::Continuity method.

Some algorithms like Fillet set regularity of produced edges by their own
algorithms. On the other hand, some other algorithms (like Boolean
Operations, Shape Healing, etc.) do not set regularity. If the regularity is
needed to be set correctly on a shape, the method
BRepLib::EncodeRegularity can be used. It calculates and sets correct
values for all edges of the shape.

The regularity flag is extensively used by the following high level
algorithms: Chamfer, Draft Angle, Hidden Line Removal, Gluer.

Global Properties of Shapes

The Global Properties of Shapes component provides algorithms for
computing the global properties of a composite geometric system in 3D
space, and frameworks to query the computed results.

The global properties computed for a system are :

* Mmass,

mass center,

matrix of inertia,

moment about an axis,

radius of gyration about an axis,

principal properties of inertia such as principal axis, principal
moments, and principal radius of gyration.

Geometric systems are generally defined as shapes. Depending on the
way they are analyzed, these shapes will give properties of:

¢ lines induced from the edges of the shape,
e surfaces induced from the faces of the shape, or
e volumes induced from the solid bounded by the shape.

The global properties of several systems may be brought together to give
the global properties of the system composed of the sum of all individual
systems.

The Global Properties of Shapes component is composed of:

e seven functions for computing global properties of a shape: one
function for lines, two functions for surfaces and four functions for
volumes. The choice of functions depends on input parameters and
algorithms used for computation (BRepGProp global functions),

e a framework for computing global properties for a set of points
(GProp_PGProps),

e a general framework to bring together the global properties retained
by several more elementary frameworks, and provide a general
programming interface to consult computed global properties.

Packages GeomLProp and GeomZ2dLProp provide algorithms calculating
the local properties of curves and surfaces

A curve (for one parameter) has the following local properties:

Point

Derivative

Tangent

Normal

Curvature

Center of curvature.

A surface (for two parameters U and V) has the following local properties:

point

derivative for U and V)
tangent line (for U and V)
normal

max curvature

min curvature

main directions of curvature
mean curvature

Gaussian curvature

The following methods are available:

CLProps — calculates the local properties of a curve (tangency,
curvature,normal);

CurAndinf2d — calculates the maximum and minimum curvatures
and the inflection points of 2d curves;

SLProps — calculates the local properties of a surface (tangency, the
normal and curvature).

Continuity — calculates regularity at the junction of two curves.

Note that the B-spline curve and surface are accepted but they are not
cut into pieces of the desired continuity. It is the global continuity, which is
seen.

Adaptors for Curves and Surfaces

Some Open CASCADE Technology general algorithms may work
theoretically on numerous types of curves or surfaces.

To do this, they simply get the services required of the analyzed curve or
surface through an interface so as to a single API, whatever the type of
curve or surface. These interfaces are called adaptors.

For example, Adaptor3d_Curve is the abstract class which provides the
required services by an algorithm which uses any 3d curve.

GeomAdaptor package provides interfaces:

e On a Geom curve;
e On a curve lying on a Geom surface;
¢ On a Geom surface;

Geom2dAdaptor package provides interfaces :
e On a GeomZ2d curve.
BRepAdaptor package provides interfaces:

e On a Face
e On an Edge

When you write an algorithm which operates on geometric objects, use
Adaptor3d (or Adaptor2d) objects.

As a result, you can use the algorithm with any kind of object, if you
provide for this object an interface derived from Adaptor3d or Adaptor2d.
These interfaces are easy to use: simply create an adapted curve or
surface from a Geom2d curve, and then use this adapted curve as an
argument for the algorithm? which requires it.

Topology

OCCT Topology allows accessing and manipulating data of objects
without dealing with their 2D or 3D representations. Whereas OCCT
Geometry provides a description of objects in terms of coordinates or
parametric values, Topology describes data structures of objects in
parametric space. These descriptions use location in and restriction of
parts of this space.

Topological library allows you to build pure topological data structures.
Topology defines relationships between simple geometric entities. In this
way, you can model complex shapes as assemblies of simpler entities.
Due to a built-in non-manifold (or mixed-dimensional) feature, you can
build models mixing:

0D entities such as points;
1D entities such as curves;
2D entities such as surfaces;
3D entities such as volumes.

You can, for example, represent a single object made of several distinct
bodies containing embedded curves and surfaces connected or non-
connected to an outer boundary.

Abstract topological data structure describes a basic entity — a shape,
which can be divided into the following component topologies:

e Vertex — a zero-dimensional shape corresponding to a point in
geometry;

e Edge — a shape corresponding to a curve, and bound by a vertex at
each extremity;

¢ Wire — a sequence of edges connected by their vertices;

e Face — part of a plane (in 2D geometry) or a surface (in 3D
geometry) bounded by a closed wire;

e Shell — a collection of faces connected by some edges of their wire
boundaries;

e Solid — a part of 3D space bound by a shell;

e Compound solid — a collection of solids.

The wire and the solid can be either infinite or closed.

A face with 3D underlying geometry may also refer to a collection of
connected triangles that approximate the underlying surface. The
surfaces can be undefined leaving the faces represented by triangles
only. If so, the model is purely polyhedral.

Topology defines the relationship between simple geometric entities,
which can thus be linked together to represent complex shapes.

Abstract Topology is provided by six packages. The first three packages
describe the topological data structure used in Open CASCADE
Technology:

TopAbs package provides general resources for topology-driven
applications. It contains enumerations that are used to describe
basic topological notions: topological shape, orientation and state. It
also provides methods to manage these enumerations.

TopLoc package provides resources to handle 3D local coordinate
systems: Datum3Dand Location. Datum3D describes an elementary
coordinate system, while Location comprises a series of elementary
coordinate systems.

TopoDS package describes classes to model and build data
structures that are purely topological.

Three additional packages provide tools to access and manipulate this
abstract topology:

TopTools package provides basic tools to use on topological data
structures.

TopExp package provides classes to explore and manipulate the
topological data structures described in the TopoDS package.
BRepTools package provides classes to explore, manipulate, read
and write BRep data structures. These more complex data structures
combine topological descriptions with additional geometric
information, and include rules for evaluating equivalence of different
possible representations of the same object, for example, a point.

Shape Location

A local coordinate system can be viewed as either of the following:

e Aright-handed trihedron with an origin and three orthonormal
vectors. The gp_Ax2 package corresponds to this definition.

e Atransformation of a +1 determinant, allowing the transformation of
coordinates between local and global references frames. This
corresponds to the gp_ Trsf.

TopLoc package distinguishes two notions:

e TopLoc_Datum3D class provides the elementary reference
coordinate, represented by a right-handed orthonormal system of
axes or by a right-handed unitary transformation.

e TopLoc_Location class provides the composite reference coordinate
made from elementary ones. It is a marker composed of a chain of
references to elementary markers. The resulting cumulative
transformation is stored in order to avoid recalculating the sum of the
transformations for the whole list.

L1=1/R2 *R1 R R2
1 |
L2=R4*R3*R3*R2 = — ?3 |

L3I=R4*R3*R3"R1

Caption
R1 myDatum
1 myPower

Ri refers to Datum3D Ri (shared)

Structure of TopLoc_Location

Two reference coordinates are equal if they are made up of the same
elementary coordinates in the same order. There is no numerical
comparison. Two coordinates can thus correspond to the same
transformation without being equal if they were not built from the same
elementary coordinates.

For example, consider three elementary coordinates: R1, R2, R3 The
composite coordinates are: CL=R1*R2,C2=R2*R3C3=C1*R3C4
=R1*C2

NOTE C3 and C4 are equal because they are both R1 * R2 * R3.

The TopLoc package is chiefly targeted at the topological data structure,
but it can be used for other purposes.

Change of coordinates

TopLoc_Datum3D class represents a change of elementary coordinates.
Such changes must be shared so this class inherits from
Standard_Transient. The coordinate is represented by a transformation
gp_Trsfpackage. This transformation has no scaling factor.

Naming shapes, sub-shapes, their orientation
and state

The TopAbs package provides general enumerations describing the
basic concepts of topology and methods to handle these enumerations. It
contains no classes. This package has been separated from the rest of
the topology because the notions it contains are sufficiently general to be
used by all topological tools. This avoids redefinition of enumerations by
remaining independent of modeling resources. The TopAbs package
defines three notions:

e Type TopAbs_ShapeEnum;
e Orientation TopAbs_Orientation ;
e State StateTopAbs_State

Topological types

TopAbs contains the TopAbs_ShapeEnum enumeration,which lists the
different topological types:

e COMPOUND - a group of any type of topological objects.

e COMPSOLID — a composite solid is a set of solids connected by
their faces. It expands the notions of WIRE and SHELL to solids.

e SOLID — a part of space limited by shells. It is three dimensional.

o SHELL — a set of faces connected by their edges. A shell can be
open or closed.

e FACE —in 2D itis a part of a plane; in 3D it is a part of a surface. Its
geometry is constrained (trimmed) by contours. It is two dimensional.

e WIRE — a set of edges connected by their vertices. It can be an open
or closed contour depending on whether the edges are linked or not.

e EDGE - a topological element corresponding to a restrained curve.
An edge is generally limited by vertices. It has one dimension.

e VERTEX — a topological element corresponding to a point. It has
zero dimension.

e SHAPE - a generic term covering all of the above.

A topological model can be considered as a graph of objects with
adjacency relationships. When modeling a part in 2D or 3D space it must

belong to one of the categories listed in the ShapeEnum enumeration.
The TopAbspackage lists all the objects, which can be found in any
model. It cannot be extended but a subset can be used. For example, the
notion of solid is useless in 2D.

The terms of the enumeration appear in order from the most complex to
the most simple, because objects can contain simpler objects in their
description. For example, a face references its wires, edges, and
vertices.

A Wire

Vertices Edges

Vertex Edge Solid

I

Face - [

I

— 4

-~
~
e ™
A CompSolid
ShapeEnhum
Orientation

The notion of orientation is represented by the TopAbs_Orientation
enumeration. Orientation is a generalized notion of the sense of direction
found in various modelers. This is used when a shape limits a geometric
domain; and is closely linked to the notion of boundary. The three cases
are the following:

e Curve limited by a vertex.
e Surface limited by an edge.
e Space limited by a face.

In each case the topological form used as the boundary of a geometric
domain of a higher dimension defines two local regions of which one is
arbitrarily considered as the default region.

For a curve limited by a vertex the default region is the set of points with
parameters greater than the vertex. That is to say it is the part of the
curve after the vertex following the natural direction along the curve.

For a surface limited by an edge the default region is on the left of the
edge following its natural direction. More precisely it is the region pointed
to by the vector product of the normal vector to the surface and the vector
tangent to the curve.

For a space limited by a face the default region is found on the negative
side of the normal to the surface.

Based on this default region the orientation allows definition of the region
to be kept, which is called the interior or material. There are four
orientations defining the interior.

Orientation Description

FORWARD | The interior is the default region.
REVERSED | The interior is the region complementary to the default.

The interior includes both regions. The boundary lies
INTERNAL inside the material. For example a surface inside a
solid.

The interior includes neither region. The boundary lies
EXTERNAL | outside the material. For example an edge in a wire-
frame model.

T External edge

i St Sy
e N |~ —
- \ "/ \ everse
i N e
Internal edge

Four Orientations

The notion of orientation is a very general one, and it can be used in any
context where regions or boundaries appear. Thus, for example, when
describing the intersection of an edge and a contour it is possible to
describe not only the vertex of intersection but also how the edge crosses
the contour considering it as a boundary. The edge would therefore be
divided into two regions: exterior and interior and the intersection vertex
would be the boundary. Thus an orientation can be associated with an
intersection vertex as in the following figure:

Orientation Association

FORWARD Entering

REVERSED | Exiting

INTERNAL Touching from inside
EXTERNAL | Touching from outside

Forward o g
Interna

— SN
Reversed

Four orientations of intersection vertices

Along with the Orientation enumeration the TopAbs package defines four
methods:

State

The TopAbs_State enumeration described the position of a vertex or a
set of vertices with respect to a region. There are four terms:

Position Description

IN The point is interior.

OouT The point is exterior,

ON The point is on the boundary(within tolerance).
UNKNOWN | The state of the point is indeterminate.

The UNKNOWN term has been introduced because this enumeration is
often used to express the result of a calculation, which can fail. This term
can be used when it is impossible to know if a point is inside or outside,
which is the case with an open wire or face.

On

On
O Out
@)

\

O

Unknown

)
on @n

oni \

The four states

The State enumeration can also be used to specify various parts of an
object. The following figure shows the parts of an edge intersecting a
face.

Ot On In

State specifies the parts of an edge intersecting a face

Manipulating shapes and sub-shapes

The TopoDS package describes the topological data structure with the
following characteristics:

e reference to an abstract shape with neither orientation nor location.
e Access to the data structure through the tool classes.

As stated above, OCCT Topology describes data structures of objects in
parametric space. These descriptions use localization in and restriction of
parts of this space. The types of shapes, which can be described in these
terms, are the vertex, the face and the shape. The vertex is defined in
terms of localization in parametric space, and the face and shape, in
terms of restriction of this space.

OCCT topological descriptions also allow the simple shapes defined in
these terms to be combined into sets. For example, a set of edges forms
a wire; a set of faces forms a shell, and a set of solids forms a composite
solid (CompSolid in Open CASCADE Technology). You can also combine
shapes of either sort into compounds. Finally, you can give a shape an
orientation and a location.

Listing shapes in order of complexity from vertex to composite solid leads
us to the notion of the data structure as knowledge of how to break a
shape down into a set of simpler shapes. This is in fact, the purpose of
the TopoDS package.

The model of a shape is a shareable data structure because it can be
used by other shapes. (An edge can be used by more than one face of a
solid). A shareable data structure is handled by reference. When a simple
reference is insufficient, two pieces of information are added: an
orientation and a local coordinate reference.

e An orientation tells how the referenced shape is used in a boundary
(Orientation from TopAbs).

o Alocal reference coordinate (Location from TopLoc) allows
referencing a shape at a position different from that of its definition.

The TopoDS_TShape class is the root of all shape descriptions. It

contains a list of shapes. Classes inheriting TopoDS_TShape can carry
the description of a geometric domain if necessary (for example, a
geometric point associated with a TVertex). A TopoDS_TShape is a
description of a shape in its definition frame of reference. This class is
manipulated by reference.

The TopoDS_Shape class describes a reference to a shape. It contains
a reference to an underlying abstract shape, an orientation,and a local
reference coordinate. This class is manipulated by value and thus cannot
be shared.

The class representing the underlying abstract shape is never referenced
directly. The TopoDS_Shape class is always used to refer to it.

The information specific to each shape (the geometric support) is always
added by inheritance to classes deriving from TopoDS_TShape. The
following figures show the example of a shell formed from two faces
connected by an edge.

TV4
TEl s . TE&
TF1 TF2 /
TEG
______---"__ T™V3 -----__"'--____ ///
e e TE3 TET e T 4
TV2 TVE

Structure of a shell formed from two faces

TS Underlying Shape

N /
S £
.-'"'------- / \
TF2 Underlying Faces
TW2 Underlying Wires

E NN
TE4 TES TEG TET Underlying
! IIII. .'I lIlII I| '|III -____.-" I| E(IgES
% N T
/! -.'r____.-' | ".III |

T ™) H\ A A)

AR LA | =< | SN | S |

TV1 T2 T™V3 Tv4 TWE TVE Underlying
Vertices

Data structure of the above shell

In the previous diagram, the shell is described by the underlying shape
TS, and the faces by TF1 and TF2. There are seven edges from TE1 to
TE7 and six vertices from TV1 to TV6.

The wire TW1 references the edges from TE1 to TE4; TW2 references
from TE4 to TE7.

The vertices are referenced by the edges as follows: TE1(TV1,TV4),
TE2(TV1,TV2), TE3(TV2,TV3), TE4(TV3,TV4), TE5(TV4,TV5),
TE6(T5,TV6), TE7(TV3,TV6).

Note that this data structure does not contain any back references. All
references go from more complex underlying shapes to less complex
ones. The techniques used to access the information are described later.
The data structure is as compact as possible. Sub-objects can be shared
among different objects.

Two very similar objects, perhaps two versions of the same object, might

share identical sub-objects. The usage of local coordinates in the data
structure allows the description of a repetitive sub-structure to be shared.

The compact data structure avoids the loss of information associated with
copy operations which are usually used in creating a new version of an
object or when applying a coordinate change.

The following figure shows a data structure containing two versions of a
solid. The second version presents a series of identical holes bored at
different positions. The data structure is compact and yet keeps all
information on the sub-elements.

The three references from TSh2 to the underlying face TFcyl have
associated local coordinate systems, which correspond to the successive
positions of the hole.

o -
______.-'"' F1 . -
= et First Version
—_
F3 51
» - ¢
L i o TSh1
g SIS
F5 i \
- £ \ \\\
I’] o TF1 TF2 TF3 TF4 TF5 TF.
= Feyl TF"1 » A 4 PR 4
e - - { b _.".) r /
i A {7
ol - | /
e) \ r/_/
- TFeyl -
e
.‘-:f____.-- -.-__.-' =S
e Second Version
g

Data structure containing two versions of a solid

Classes inheriting TopoDS_Shape

TopoDS is based on class TopoDS_Shape and the class defining its
underlying shape. This has certain advantages, but the major drawback
Is that these classes are too general. Different shapes they could
represent do not type them (Vertex, Edge, etc.) hence it is impossible to
introduce checks to avoid incoherences such as inserting a face in an
edge.

TopoDS package offers two sets of classes, one set inheriting the
underlying shape with neither orientation nor location and the other
inheriting TopoDS_Shape, which represent the standard topological
shapes enumerated in TopAbs package.

The following classes inherit Shape : TopoDS_ Vertex, TopoDS_Edge,
TopoDS_Wire, TopoDS_Face, TopoDS_Shell,

TopoDS_Solid, TopoDS_CompSolid, and TopoDS_Compound. In spite of
the similarity of names with those inheriting from TopoDS_TShape there
is a profound difference in the way they are used.

TopoDS_Shape class and the classes, which inherit from it, are the
natural means to manipulate topological objects. TopoDS_TShape
classes are hidden. TopoDS_TShape describes a class in its original
local coordinate system without orientation. TopoDS_Shape is a
reference to TopoDS_TShape with an orientation and a local reference.

TopoDS_TShape class is deferred; TopoDS_Shape class is not. Using
TopoDS_Shape class allows manipulation of topological objects without
knowing their type. It is a generic form. Purely topological algorithms
often use the TopoDS_Shape class.

TopoDS_TShape class is manipulated by reference; TopoDS_Shape
class by value. A TopoDS_Shape is nothing more than a reference
enhanced with an orientation and a local coordinate. The sharing of
TopoDS_Shapes is meaningless. What is important is the sharing of the
underlying TopoDS_TShapes. Assignment or passage in argument does
not copy the data structure: this only creates new TopoDS_Shapes which
refer to the same TopoDS_ TShape.

Although classes inheriting TopoDS_TShape are used for adding extra
information, extra fields should not be added in a class inheriting from
TopoDS_Shape. Classes inheriting from TopoDS_Shape serve only to
specialize a reference in order to benefit from static type control (carried
out by the compiler). For example, a routine that receives a

TopoDS_ Face in argument is more precise for the compiler than the one,
which receives a TopoDS_Shape. It is pointless to derive other classes
than those found inTopoDS. All references to a topological data structure
are made with the Shape class and its inheritors defined in TopoDS.

There are no constructors for the classes inheriting from the
TopoDS_Shape class, otherwise the type control would disappear
through implicit casting (a characteristic of C++). The TopoDS package
provides package methods for casting an object of the TopoDS_Shape
class in one of these sub-classes, with type verification.

The following example shows a routine receiving an argument of the
TopoDS_Shape type, then putting it into a variable V if it is a vertex or
calling the method ProcessEdge if it is an edge.

#include <TopoDS_Vertex.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>

void ProcessEdge(const TopoDS_Edge&);

void Process(const TopoDS_Shape& aShape) {
(aShape.Shapetype() == TopAbs_VERTEX) {
TopoDS_Vertex V;
V = TopoDS: :Vertex(aShape); // Also correct
TopoDS_Vertex V2 = aShape; // Rejected by the
compiler
TopoDS_Vertex V3 = TopoDS::Vertex(aShape); //
Correct

(aShape.ShapeType() == TopAbs_EDGE){
ProcesskEdge(aShape) ; // This 1is rejected
ProcesskEdge(TopoDS: :Edge(aShape)) ; // Correct

}

else {
cout <<"Neither a vertex nor an edge ?";
ProcesskEdge(TopoDS: :Edge(aShape)) ;
// OK for compiler but an exception will be raised
at run-time
}

}

Exploration of Topological Data Structures

The TopExp package provides tools for exploring the data structure
described with the TopoDS package. Exploring a topological structure
means finding all sub-objects of a given type, for example, finding all the
faces of a solid.

The TopExp package provides the class TopExp_Explorer to find all sub-
objects of a given type. An explorer is built with:

e The shape to be explored.

e The type of shapes to be found e.g. VERTEX, EDGE with the
exception of SHAPE, which is not allowed.

e The type of Shapes to avoid. e.g. SHELL, EDGE. By default, this
type is SHAPE. This default value means that there is no restriction
on the exploration.

The Explorer visits the whole structure in order to find the shapes of the
requested type not contained in the type to avoid. The example below
shows how to find all faces in the shape S:

void test() {
TopoDS_Shape S;
TopExp_Explorer EX;
(Ex.Init (S, TopAbs_FACE); Ex.More(); Ex.Next()) {
ProcessFace(Ex.Current());

}
}

Find all the vertices which are not in an edge

(Ex.Init (S, TopAbs_VERTEX, TopAbs_EDGE); ...)

Find all the faces in a SHELL, then all the faces not in a SHELL:

void test() {
TopExp_Explorer Ex1, Ex2;
TopoDS_Shape S;

(Ex1.Init(S, TopAbs_SHELL);Ex1.More();
Ex1.Next()){
// visit all shells
(Ex2.Init(Ex1.Current(), TopAbs_FACE);Ex2.More();
Ex2.Next()){
//visit all the faces of the current shell
ProcessFaceinAshell(Ex2.Current());

}

(Ex1.Init (S, TopAbs_FACE, TopAbs_SHELL);Ex1.More();
Ex1.Next()){

// visit all faces not ina shell.
ProcessFace(Ex1.Current());

}
}

The Explorer presumes that objects contain only objects of an equal or
inferior type. For example, if searching for faces it does not look at wires,
edges, or vertices to see if they contain faces.

}

The MapShapes method from TopExp package allows filling a Map. An
exploration using the Explorer class can visit an object more than once if
it is referenced more than once. For example, an edge of a solid is
generally referenced by two faces. To process objects only once, they
have to be placed in a Map.

Example

void TopExp::MapShapes (const TopoDS_Shapeé& S,
const TopAbs_ShapeEnum T,
TopTools_IndexedMapOfShape& M)
{

TopExp_Explorer EX(S,T);
(Ex.More()) {
M.Add(Ex.Current());

Ex.Next();

}

}

In the following example all faces and all edges of an object are drawn in
accordance with the following rules:

e The faces are represented by a network of Nb/so iso-parametric
lines with FacelsoColor color.
e The edges are drawn in a color, which indicates the number of faces
sharing the edge:
o FreeEdgeColor for edges, which do not belong to a face (i.e.
wireframe element).
o BorderEdgeColor for an edge belonging to a single face.
o SharedEdgeColor for an edge belonging to more than one face.
e The methods DrawEdge and DrawFacelso are also available to
display individual edges and faces.

The following steps are performed:

1. Storing the edges in a map and create in parallel an array of integers

to count the number of faces sharing the edge. This array is

initialized to zero.

Exploring the faces. Each face is drawn.

Exploring the edges and for each of them increment the counter of

faces in the array.

4. From the Map of edges, drawing each edge with the color
corresponding to the number of faces.

w N

void DrawShape (const TopoDS_Shape& aShape,
const Standard_Integer nbIsos,

const Color FaceIsocolor,

const Color FreeEdgeColor,

const Color BorderEdgeColor,

const Color SharedEdgeColor)

{

// Store the edges in aMap.
TopTools_IndexedMapOfShape edgemap;
TopExp: :MapShapes(aShape, TopAbs_EDGE, edgeMap) ;

// Create an array set to zero.
TColStd_ArraylOfInteger

faceCount (1, edgeMap.Extent());

faceCount.Init (0);

// Explore the faces.

TopExp_Explorer expFace(aShape, TopAbs_FACE);
(expFace.More()) {

//Draw the current face.

DrawFaceIsos(TopoDS: :Face(expFace.Current()),nbl
sos, FaceIsoColor);
// Explore the edges ofthe face.
TopExp_Explorer
expEdge(expFace.Current(), TopAbs_EDGE);
(expEdge.More()) {
//Increment the face count for this edge.

faceCount (edgemap.FindIndex(expEdge.Current()))+

*

expEdge.Next();
}

expFace.Next();

}
//Draw the edges of theMap

Standard_Integer i,
(i=1;i<=edgemap.Extent();i++) {

(faceCount(i)) {

0 :

DrawEdge (TopoDS: :Edge(edgemap (1)), FreeEdgeColor)

1 :

DrawkEdge (TopoDS: :Edge(edgemap(1i)),BorderEdgeColo
r);

default

DrawkEdge (TopoDS: :Edge(edgemap (1)), SharedEdgeColo

r);
break;

Lists and Maps of Shapes

TopTools package contains tools for exploiting the TopoDS data
structure. It is an instantiation of the tools from TCollection package with
the Shape classes of TopoDS.

e TopTools_ArraylOfShape, HArraylOfShape — instantiation of the
TCollection_Arrayl and TCollection_HArrayl with TopoDS_Shape.

e TopTools_SequenceOfShape — instantiation of the
TCollection_Sequence with TopoDS_Shape.

e TopTools_MapOfShape - instantiation of the TCollection_Map.
Allows the construction of sets of shapes.

e TopTools_IndexedMapOfShape - instantiation of the
TCollection_IndexedMap. Allows the construction of tables of shapes
and other data structures.

With a TopTools_Map, a set of references to Shapes can be kept without
duplication. The following example counts the size of a data structure as
a number of TShapes.

#include <TopoDS_Iterator.hxx>
Standard_Integer Size(const TopoDS_Shape& aShape)
{
// This 1s a recursive method.
// The size of a shape 1sl + the sizes of the
subshapes.
TopoDS_Iterator It;
Standard_Integer size = 1;
(It.Initialize(aShape);It.More();It.Next()) {
size += Size(It.value());

}
}

This program is incorrect if there is sharing in the data structure.

size;

Thus for a contour of four edges it should count 1 wire + 4 edges +4
vertices with the result 9, but as the vertices are each shared by two

edges this program will return 13. One solution is to put all the Shapes in
a Map so as to avoid counting them twice, as in the following example:

#include <TopoDS_Iterator.hxx>
#include <TopTools_MapOfShape.hxx>

void MapShapes(const TopoDS_Shape& aShape,
TopTools_MapOfShape& aMap)
{

//This 1s a recursive auxiliary method. It stores
all subShapes of aShape in a Map.
(aMap.Add(aShape)) {

//Add returns True if aShape was not already in the
Map .

TopoDS_Iterator It;
(It.Initialize(aShape);It.More();It.Next()){
MapShapes(It.Value(),aMap);
}
}
}

Standard_Integer Size(const TopoDS_Shape& aShape)
{
// Store Shapes in a Mapand return the size.
TopTools_MapOfShape M;
MapShapes(aShape, M) ;
M.Extent();
}

Note For more details about Maps please, refer to the TCollection
documentation. (Foundation Classes Reference Manual)

The following example is more ambitious and writes a program which
copies a data structure using an IndexedMap. The copy is an identical
structure but it shares nothing with the original. The principal algorithm is
as follows:

e All Shapes in the structure are put into an IndexedMap.

e Atable of Shapes is created in parallel with the map to receive the
copies.

e The structure is copied using the auxiliary recursive function,which
copies from the map to the array.

#include <TopoDS_Shape.hxx>

#include <TopoDS_Iterator.hxx>

#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ArraylOfShape.hxx>
#include <TopoDS_Location.hxx>

TopoDS_Shape Copy(const TopoDS_Shape& aShape,
const TopoDS_Builder& aBuilder)
{

// Coples the wholestructure of aShape using

aBuilder.

// Stores all thesub-Shapes in an IndexedMap.
TopTools_IndexedMapOfShape theMap;
TopoDS_Iterator It;

Standard_Integer 1i;
TopoDS_Shape S;
TopLoc_Location Identity;

S = aShape;
S.Location(Identity);
S.Orientation(TopAbs_FORWARD);
theMap.Add(S);

for (1i=1; i<= theMap.Extent(); i++) {

for(It.Initialize(theMap(i)); It.More(); It.Next())

{
S=It.Value();
S.Location(Identity);
S.Orientation(TopAbs_FORWARD);
theMap.Add(S);

}

}
}

In the above example, the index i is that of the first object not treated in

the Map. When i reaches the same size as the Map this means that
everything has been treated. The treatment consists in inserting in the
Map all the sub-objects, if they are not yet in the Map, they are inserted
with an index greater than i.

Note that the objects are inserted with a local reference set to the identity
and a FORWARD orientation. Only the underlying TShape is of great
interest.

//Create an array to store the copies.
TopTools_ArraylOfShapetheCopies(1, theMap.Extent());

// Use a recursivefunction to copy the first element.
void AuxiliaryCopy (Standard_Integer,

const TopTools_IndexedMapOfShape &,
TopTools_Arrayl0OfShape &,

const TopoDS_Builder&);

AuxiliaryCopy(1, theMap, theCopies, aBuilder);

// Get the result with thecorrect local reference and
orientation.
S = theCopies(1);
S.Location(aShape.Location());
S.Orientation(aShape.Orientation());
S;

Below is the auxiliary function, which copies the element of rank / from
the map to the table. This method checks if the object has been copied; if
not copied, then an empty copy is performed into the table and the copies
of all the sub-elements are inserted by finding their rank in the map.

void AuxiliaryCopy(Standard_Integer index,
const TopTools_IndexedMapOfShapes& sources,
TopTools_ArraylO0fShape& copies,
const TopoDS_Builder& aBuilder)

{
//1If the copy is a null Shape the copy is not done.

(copies(index).IsNull()) {

coplies(index) =sources(index).EmptyCopied();
//Insert coples of the sub-shapes.

TopoDS_Iterator It;

TopoDS_Shape S;

TopLoc_Location Identity;

(It.Initialize(sources(index)),It.More(), It.Next

() {
S = It.Value();

S.Location(Identity);
S.Orientation(TopAbs_FORWARD);

AuxiliaryCopy(sources.FindIndex(S), sources,copie
s,aBuilder);

S.Location(It.Value().Location());S.0Orientation(
It.Value().Orientation());

aBuilder.Add(copies(index),S);
}
}
}

Wire Explorer

BRepTools_WireExplorer class can access edges of a wire in their order
of connection.

For example, in the wire in the image we want to recuperate the edges in
the order {el, e2, e3,e4, e5}:

el

eh

el
eh

a4

el
A wire composed of 6 edges.

TopExp_Explorer, however, recuperates the lines in any order.

TopoDS_Wire W = ...;
BRepTools_WireExplorer EX;

(Ex.Init(W); Ex.More(); Ex.Next()) {
ProcessTheCurrentEdge(Ex.Current())

4

ProcessTheVertexConnectingTheCurrentEdgeToThePre
vious

One(Ex.CurrentVertex());
}

Storage of shapes

BRepTools and BinTools packages contain methods Read and Write
allowing to read and write a Shape to/from a stream or a file. The
methods provided by BRepTools package use ASCII storage format;

BinTools package uses binary format. Each of these methods has two
arguments:

e a TopoDS_Shape object to be read/written;
e a stream object or a file name to read from/write to.

The following sample code reads a shape from ASCII file and writes it to
a binary one:

TopoDS_Shape aShape;
(BRepTools::Read (aShape, "source_file.txt")) {
BinTools: :Write (aShape, "result_file.bin");

}

Generated on Wed Aug 30 2017 17:04:20 for Open CASCADE Technology by @j@ﬁ}j%[]
1.8.13

http://www.doxygen.org/index.html

h "

OPENCASCADE

Open CASCADE
Technology 7.2.0

BRep Format

Table of Contents

+Introduction

+Format Common
Structure

+Locations
+ Geometry
+3D curves
+Line - <3D
curve record 1>
+Circle - <3D
curve record 2>

+Ellipse - <3D
curve record 3>

+Parabola - <3D
curve record 4>

+Hyperbola -
<3D curve
record 5>

+Bezier Curve -
<3D curve
record 6>

+B-spline Curve -
<3D curve
record 7>

+Trimmed Curve -
<3D curve
record 8>

+ Offset Curve -
<3D curve
record 9>

+Surfaces
+Plane - <

surface record 1
>

4+ Cylinder - <
surface record 2
>

+Cone - <
surface record 3
>

+Sphere - <
surface record 4
>

+Torus - <
surface record 5
>

+Linear Extrusion
- < surface
record 6 >

+Revolution
Surface - <
surface record 7
>

+ Bezier Surface -
< surface
record 8 >

+B-spline Surface
- < surface
record 9 >

+Rectangular
Trim Surface - <
surface record
10 >

+ Offset Surface -
< surface
record 11 >

+2D curves
+Line - <2D
curve record 1>

+Circle - <2D
curve record 2>

+Ellipse - <2D
curve record 3>

+Parabola - <2D
curve record 4>

+Hyperbola -
<2D curve
record 5>

+Bezier Curve -
<2D curve
record 6>

+B-spline Curve -
<2D curve
record 7>

+Trimmed Curve -
<2D curve
record 8>

+ Offset Curve -
<2D curve
record 9>

+ 3D polygons
+Triangulations

+Polygons on
triangulations

+Geometric Sense of a
Curve

+Shapes
+¥Common Terms
+Vertex data
+Edge data
+Face data

+ Appendix

Introduction

BREP format is used to store 3D models and allows to store a model
which consists of vertices, edges, wires, faces, shells, solids, compsolids,
compounds, edge triangulations, face triangulations, polylines on
triangulations, space location and orientation. Any set of such models
may be stored as a single model which is a compound of the models.

The format is described in an order which is convenient for understanding
rather than in the order the format parts follow each other. BNF-like
definitions are used in this document. Most of the chapters contain BREP
format descriptions in the following order:

o format file fragment to illustrate the part;
e BNF-like definition of the part;
¢ detailed description of the part.

Note that the format is a part of Open CASCADE Technology (OCCT).

Some data fields of the format have additional values, which are used in
OCCT.

Some data fields of the format are specific for OCCT.

Format Common Structure

ASCII encoding is used to read/write BREP format from/to file. The
format data are stored in a file as text data.

BREP format uses the following BNF terms:

<\n>: It is the operating-system-dependent ASCII character
sequence which separates ASCII text strings in the operating system
used,;

o < \n>:=""*\n>;
e < >:=""4+; Itis a not empty sequence of space characters with

ASCII code 21h;

<flag>: ="0" | "1

<int>: It is an integer number from -231 to 231-1 which is written in
denary system;

<real>: It is a real from -1.7976931348623158 \(\cdot\) 103%8 to

1.7976931348623158 \(\cdot\) 103°8 which is written in decimal or E
form with base 10.The point is used as a delimiter of the integer and
fractional parts;

<2D point>: = <real><_><real>;

<3D point>: = <real>(<_><real)>;

<2D direction>: It is a <2D point> x y* so that *x° + y? = 1;

e <3D direction>: It is a <3D point> x y z* so that *x° + y° + z° = 1;
e <+>:|tis an arithmetic operation of addition.

The format consists of the following sections:

<content type>;
<version>;
<|locations>;
<geometry>;
<shapes>.

<content type> = "DBRep_DrawableShape" < _\n><_\n>; <content type>
have other values [1].

<version> = ("CASCADE Topology V1, (c) Matra-Datavision" |

"CASCADE Topology V2, (c) Matra-Datavision")<_\n>; The difference of
the versions is described in the document.

Sections <locations>, <geometry> and <shapes> are described below in
separate chapters of the document.

Locations

Example

Locations 3

1
0] 0] 1
0]
1 0] 0]
0]
0] 1 0]
0]
1
1 0] 0]
4
0] 1 0]
5
0] 0] 1
6

2 1121060

BNF-like Definition

<locations> = <location header> <_\n> <location
records>;

<location header> = '"Locations" <_> <location re
cord count>;

<location record count> = <int>;

<location records> = <location record> N <locatil
on record count>;

<location record> = <location record 1> | <locat
ion record 2>;

<location record 1> = "1" < \n> <location data
1>;

<location record 2> = "2" < > <location data 2>

<location data 1> = ((<_> <real>) N 4 < \n>) N 3

<location data 2> = (<int> <_> <int> < >)* "@" <
_\n>;

Description

<location data 1> is interpreted as a 3 x 4 matrix \(Q = \begin{pmatrix}
{a}_{1.1} &{a}_{1,2} &{q}_{1,3} &{a}_{1,4}\ {q}_{2,1} &{a}_{2,2} &{q}_{2,3}
&{q}_{2,47\{a}_{3,1} &{a}_{3,2} &{q}_{3,3} &{a}_{3,4} \end{pmatrix}\)
which describes transformation of 3 dimensional space and satisfies the
following constraints:

e \(d\neq 0\) where \(d = |Q_{2}|\) where \(Q_{2} = \begin{pmatrix}
{a}_{1.1} &{a} {1,2} &{a}_{1,3} &{a}_{1,4}\ {a}_{2,1} &{a} {2.2} &
{a}_{2,3} &{a}_{2,4}\\ {a}_{3.1} &{a}_{3,2} &{q}_{3,3} &{a}_{3,4}
\end{pmatrix}; \)

o \(Q_{3}NT} = Q_{3}{-1}\) where \(Q_{3} = Q_{2}/d"{1/3}. \)

The transformation transforms a point (X, y, z) to another point (u, v, w) by
the rule:

\[\begin{pmatrix} u \\ v \\ w \end{pmatrix} = Q\cdot(x\;y\;z\;1)\{T} =
\begin{pmatrix} {q}_{1,1})\cdot x +{q}_{1,2}\cdot y +{q} _{1,3}\cdot z +
{a} {1,4})\\{q} {2,1}\cdot x +{q} {2,2}\cdoty +{q} {2,3}\cdot z +{q} {2,4}\\
{q} {3,1}\cdot x +{g} {3,2}\cdot y +{q} {3,3}\cdot z +{q} {3,4}
\end{pmatrix} . \]

Q may be a composition of matrices for the following elementary
transformations:

e parallel translation — \(\begin{pmatrix} 1 &0 &0 &{q} {1,4}\\ 0 &1 &0
&{q} {2,4}\ 0 &0 &1 &{q} {3,4} \end{pmatrix}; \)
e rotation around an axis with a direction *D(D,, Dy, D,)* by an angle \(

\varphi\) —

\[\begin{pmatrix} D_{x}*{2} \cdot (1-cos(\varphi)) + cos(\varphi) &D_{x}
\cdot D_{y} \cdot (1-cos(\varphi)) - D_{z} \cdot sin(\varphi) &D_{x} \cdot
D_{z} \cdot (1-cos(\varphi)) + D_{y} \cdot sin(\varphi) &0\ D_{x} \cdot

D_{y} \cdot (1-cos(\varphi)) + D_{z} \cdot sin(\varphi) &D_{y}*{2} \cdot (1-
cos(\varphi)) + cos(\varphi) &D_{y} \cdot D_{z} \cdot (1-cos(\varphi)) -
D_{x} \cdot sin(\varphi) &0\\ D_{x} \cdot D_{z} \cdot (1-cos(\varphi)) -
{y} \cdot sin(\varphi) &D{y} \cdot D_{z} \cdot (1-cos(\varphi)) + D_{x}
\cdot sin(\varphi) &D_{z}*{2} \cdot (1-cos(\varphi)) + cos(\varphi) &0
\end{pmatrix}; \]

O

e scaling — \(\begin{pmatrix} s &0 &0 &0\ 0 &s &0 &0\ 0 &0 &s &0
\end{pmatrix} \) where \(S \in (-\infty,\; \infty)Aleft \{ O \right \}; \)

e central symmetry — \(\begin{pmatrix} -1 &0 &0 &0\ 0 &-1 &0 &0\ O
&0 &-1 &0 \end{pmatrix}; \)

e axis symmetry —\(\begin{pmatrix} -1 &0 &0 &0\ 0 &-1 &0 &0\ 0 &0
&1 &0 \end{pmatrix}; \)

e plane symmetry — \(\begin{pmatrix} 1 &0 &0 &0\ 0 &1 &0 &0\ 0 &0
&-1 &0 \end{pmatrix}. \)

<location data 2> is interpreted as a composition of locations raised to a
power and placed above this <location data 2> in the section <locations>.
<location data 2> is a sequence \(I_{1}p {1} ... | {n}p_{n}\) of \(n\geqg O
\) integer pairs \(|_{i}p_{i} \; (1 \leq i \leq n) \). <flag> 0 is the indicator of
the sequence end. The sequence is interpreted as a composition \(

L {I_{1}}p_{1}} \cdot ... \cdot L_{l_{n}}p_{n}}\) where \(L_{l {i}}\)isa
location from \(|_{i} \)-th <location record> in the section locations.
<location record> numbering starts from 1.

Geometry

<geometry> =

<2D curves>

<3D curves>

<3D polygons>

<polygons on triangulations>
<surfaces>

<triangulations>;

3D curves

Example

Curves 13

1000001
1003 -010
1020001
1000 -010
1100001
1103010
1120001
1100 -010
100010 -0
100310 -0
102010 -0
102310 -0
1100100

BNF-like Definition

<3D curves> = <3D curve header> < \n> <3D curve

records>;

<3D curve header> = "Curves" <_> <3D curve count
>

<3D curve count> = <int>;

<3D curve records> = <3D curve record> N <3D cur

ve count>;

<3
<3
<3
<3

D
D
D
D

curve
curve
curve
curve

record> =

record 1> |
record 2> |
record 3> |

<3D curve record 4> |
<3D curve record 5> |
<3D curve record 6> |
<3D curve record 7> |
<3D curve record 8> |
<3D curve record 9>;

Line - <3D curve record 1>
Example

110630106

BNF-like Definition

<3D curve record 1> = "1" <_> <3D point> <_> <3D
direction> <_\n>;

Description
<3D curve record 1> describes a line. The line data consist of a 3D point
P* and a 3D direction *D. The line passes through the point P, has the
direction *D* and is defined by the following parametric equation:

\[C(u)=P+u \cdot D, \; u\in (-\infty,\; \infty). \]
The example record is interpreted as a line which passes through a point

P=(1, 0, 3), has a direction D=(0, 1, 0) and is defined by the following
parametric equation: \(C(u)=(1,0,3)+u \cdot (0,1,0) \).

Circle - <3D curve record 2>
Example

212300110 -06-01014

BNF-like Definition

<3D curve record 2> = "2" < > <3D circle center> < >
<3D circle N> < > <3D circle Dx> < > <3D circle
Dy> <_> <3D circle radius> <_\n>;

<3D circle center> = <3D point>;

<3D circle N> = <3D direction>;

<3D circle Dx> = <3D direction>;

<3D circle Dy> = <3D direction>;
<3D circle radius> = <real>;

Description

<3D curve record 2> describes a circle. The circle data consist of a 3D
point P, pairwise orthogonal 3D directions N, D,* and *D,* and a non-

negative real *r. The circle has a center P and is located in a plane with a
normal N. The circle has a radius *r* and is defined by the following
parametric equation:

\[C(u)=P+r \cdot (cos(u) \cdot D_{x} + sin(u) \cdot D_{y}), \; u\in [0,\;2
\cdot \pi). \]

The example record is interpreted as a circle which has its center P=(1,

2, 3), is located in plane with a normal N=(0, 0 ,1). Directions for the
circle are D,=(1, 0,0) and D,=(0, 1 ,0). The circle has a radius r=4 and is

defined by the following parametric equation: \(C(u) = (1,2,3) + 4 \cdot (
cos(u) \cdot(1,0,0) + sin(u) \cdot (0,1,0)) \).

Ellipse - <3D curve record 3>

Example

312300110 -06-01025 4

BNF-like Definition

<3D curve record 3> = "3" < > <3D ellipse center> <_>
<3D ellipse N> <_> <3D ellipse Dmaj> <_> <3D
ellipse Dmin> <_> <3D ellipse Rmaj> <_> <3D
ellipse Rmin> <_\n>;

<3D ellipse center> = <3D point>;

<3D ellipse N> = <3D direction>;

<3D ellipse Dmaj> = <3D direction>;

<3D ellipse Dmin> = <3D direction>;

<3D ellipse Rmaj> = <real>;
<3D ellipse Rmin> = <real>;

Description

<3D curve record 3> describes an ellipse. The ellipse data consist of a
3D point P, pairwise orthogonal 3D directions N, *Dy,,* and *Dp,;,* and
non-negative reals *rp,* and *rp,* so that *r,;,* \(\leq\) ry,,;. The ellipse
has its center P, is located in plane with the normal N, has major and
minor axis directions D,,,* and *Dpy,;,, major and minor radii *rp,;* and
*rmin® @and is defined by the following parametric equation:

\[C(u)=P+r_{maj} \cdot cos(u) \cdot D_{maj} + r_{min} \cdot sin(u) \cdot
D_{min}, u\in [0, 2 \cdot \pi). \]

The example record is interpreted as an ellipse which has its center P=
(1, 2, 3), is located in plane with a normal N=(0, 0, 1), has major and
minor axis directions Dmaj:(l, 0, 0) and D,,;,=(0, 1, 0), major and minor
radii ry,,=5 and ry,;;=4 and is defined by the following parametric
equation: \(C(u) = (1,2,3) + 5 \cdot cos(u) \cdot(1,0,0) + 4 \cdot sin(u)
\cdot (0,1,0) \).

Parabola - <3D curve record 4>

Example
412300110 -0-010 16

BNF-like Definition

<3D curve record 4> = "4" < > <3D parabola origin>
<_> <3D parabola N> < > <3D parabola Dx> <_> <3D
parabola Dy> <_> <3D parabola focal length>
<_\n>;

<3D parabola origin> = <3D point>;

<3D parabola N> = <3D direction>;

<3D parabola Dx> = <3D direction>;

<3D parabola Dy> = <3D direction>;
<3D parabola focal length> = <real>;

Description

<3D curve record 4> describes a parabola. The parabola data consist of
a 3D point P, pairwise orthogonal 3D directions N, D,* and *D,* and a

non-negative real *f. The parabola is located in plane which passes
through the point P* and has the normal *N. The parabola has a focus
length ** and is defined by the following parametric equation:

\[C(u)=P+\frac{u™{2}}{4 \cdot f} \cdot D_{x} + u\cdot D_{y}, u\in (-\infty,\;
\infty) \Leftarrow f \neq 0; \]

\[C(u)=P+u \cdot D_{x}, u\in (-\infty,\; \infty) \Leftarrow f = 0O\;
(degenerated\;case). \]

The example record is interpreted as a parabola in plane which passes
through a point P=(1, 2, 3) and has a normal N=(0, 0, 1). Directions for
the parabola are D,=(1, 0, 0) and D,=(0, 1, 0). The parabola has a focus

length =16 and is defined by the following parametric equation: \(C(u) =

(1,2,3) + \frac{u™{2}}{64} \cdot (1,0,0) + u \cdot (0,1,0) \).
Hyperbola - <3D curve record 5>
Example

512300110 -0-01065 4

BNF-like Definition

<3D curve record 5> = "5" < > <3D hyperbola origin>
<_> <3D hyperbola N> <_> <3D hyperbola Dx> <_>
<3D hyperbola Dy> <_> <3D hyperbola Kx> <_> <3D
hyperbola Ky> <_\n>;

<3D hyperbola origin> = <3D point>;

<3D hyperbola N> = <3D direction>;

<3D hyperbola Dx> = <3D direction>;

<3D hyperbola Dy> = <3D direction>;
<3D hyperbola Kx> = <real>;
<3D hyperbola Ky> = <real>;

Descripton

<3D curve record 5> describes a hyperbola. The hyperbola data consist
of a 3D point P, pairwise orthogonal 3D directions N, D,* and *D,* and

non-negative reals *k,* and *k,. The hyperbola is located in plane which

passes through the point P* and has the normal *N. The hyperbola is
defined by the following parametric equation:

\[C(u)=P+k_{x} \cdot cosh(u) \cdot D_{x}+k_{y} \cdot sinh(u) \cdot D_{y},
u\in (-\infty,\; \infty). \]

The example record is interpreted as a hyperbola in plane which passes
through a point P=(1, 2, 3) and has a normal N=(0, 0, 1). Other hyperbola
data are D,=(1, O, 0), D,=(0, 1, 0), k,=5 and k,=4. The hyperbola is

defined by the following parametric equation: \(C(u) = (1,2,3) + 5 \cdot
cosh(u) \cdot (1,0,0) +4 \cdot sinh(u) \cdot (0,1,0) \).

Bezier Curve - <3D curve record 6>
Example

6120610 41-20 523 0 6

BNF-like Definition

<3D curve record 6> = "6" < > <3D Bezier rationa
1 flag> <_> <3D Bezier degree>
<3D Bezier weight poles> <_\n>;

<3D Bezier rational flag> = <flag>;
<3D Bezier degree> = <int>;

3D Bezier weight poles> = (<_> <3D Bezier weight
pole>) N (<3D Bezier degree> <+> "1");

<3D Bezier weight pole> = <3D point> [<_> <real>

17
Description

<3D curve record 6> describes a Bezier curve. The curve data consist of
a rational r, a degree \(m \leq 25\) and weight poles.

The weight poles are m+1 3D points B, ... B,,* if the flag *r is 0. The
weight poles are m+1 pairs *Bghg ... Byh,* if flag *r* is 1. Here *B;* is a
3D point and *h;* is a positive real \((0 \leq i \leq m) \). \(h_{i}=1\; (O \leq i
\leg m)) if the flag *r* is 0.

The Bezier curve is defined by the following parametric equation:

\[C(u) = \frac{\sum_{i=0}{m}B_{i} \cdot h_{i} \cdot C_{m}*{i} \cdot u”\i}
\cdot (1-u)Mm-i}}{\sum_{i=0}{m}h_{i} \cdot C_{m}*\{i} \cdot u”{i} \cdot (1-
u)Mm-i}},\;uin [0,\; 1] \]

where \(00} \equiv 1\).

The example record is interpreted as a Bezier curve with a rational flag
r=1, degree m=2 and weight poles B,=(0, 1, 0), h,=4, B;=(1, -2, 0),
h;=5 and B,=(2, 3, 0), h,=6. The Bezier curve is defined by the following
parametric equation:

\[C(u)=\frac{(0,1,0) \cdot 4 \cdot (1-u)™2}+(1,-2,0) \cdot 5 \cdot 2 \cdot u

\cdot (1-u) + (2,3,0) \cdot 6 \cdot u™{2})4 \cdot (1-u)*{2}+5 \cdot 2 \cdot
u \cdot (1-u)+6 \cdot u™2}}. \]

B-spline Curve - <3D curve record 7>

Example
/7106 135 06010 41-2 0 5230 6
©1 0.2510.510.75111

BNF-like Definition

<3D curve record 7> = "7" <_> <3D B-spline rational

flag> < > "0" < > <3D B-spline degree> <_>
<3D B-spline pole count> <_> <3D B-spline
multiplicity knot count> <3D B-spline weight
poles>
<_\n> <3D B-spline multiplicity knots> <_\n>;

<3D B-spline rational flag> = <flag>;
<3D B-spline degree> = <int>;

<3D B-spline pole count> = <int>;

<3D B-spline multiplicity knot count> = <int>;

<3D B-spline weight poles> = (<_> <3D B-spline weight
pole>) N <3D B-spline pole count>;

<3D B-spline weight pole> = <3D point> [<_> <real>];

<3D B-spline multiplicity knots> = (<_> <3D B-spline
multiplicity knot>) A <3D B-spline multiplicity
knot count>;

<3D B-spline multiplicity knot> = <real> <_> <int>,;

Description

<3D curve record 7> describes a B-spline curve. The curve data consist
of a rational flag r, a degree \(m \leq 25\), pole count \(n\geq 2),
multiplicity knot count k, weight poles and multiplicity knots.

The weight poles are n 3D points *B; ... B,* if the flag *r* is 0. The weight
poles are *n* pairs *B;h; ... B,h,* if the flag *r* is 1. Here *B;* is a 3D
point and *h;* is a positive real \((1 \leq i \leq n) \). \(h_{i}=1\; (1 \leq i \leq
n) \) if the flag *r* is 0.

The multiplicity knots are k* pairs *u,q; ... u,q,. Here *u* is a knot with a
multiplicity \(g_{i} \geq 1 \; (1 \leq i \leq k) \) so that

\[u_{i} <u {i+1} (1 \leqi\leq k-1),\]

\[q_{1} \leq m+1)\; g_{k} \leq m+1,\; g_{i} \leq m\; (2 \leq i \leq k-1),
\sum_{i=1}{k}q_{i}=m+n+1.\]

The B-spline curve is defined by the following parametric equation:

\[C(u) = \frac{\sum_{i=1}{n}B_{i} \cdot h_{i} \cdot N_{i,m+1}(u)}
{f\ssum_{i=1}\{n}h_{i} \cdot N_{i,m+1}w)},\;u\in [u_{1}\; u_{k}] \]

where functions \(N_{i,j} \) have the following recursion definition by j:

\[N_{i,1}(u)=\left\{\begin{matrix} 1\Leftarrow \bar{u} {i} \leq u\leq
\bar{u} {i+1}\\ O\Leftarrow u < \bar{u} {i} \vee \bar{u} {i+1}\lequ
\end{matrix} \right.,\; N_{i,j}(u)=\frac{(u-\bar{u} {i}) \cdot N_{i,j-1}(u) }
{\bar{u}_{i+j-1}-\bar{u} {i}}+ \frac{(\bar{u} {i+j}-u) \cdot N_{i+1,j-1}(u)}
{\bar{u}_{i+j}-\bar{u} {i+1}},\;(2\leq j\leq m+1)]

where

\[\bar{u} {i} =u_{j},\; (1 \leq j\leq k\; \sum_{I=1}{j-1}q_{I}+1 \leq i \leq
\sum_{I=1}{j}qa_{1}). \]

The example record is interpreted as a B-spline curve with a rational flag
r=1, a degree m=1, pole count n=3, multiplicity knot count k=5, weight
poles B;=(0,1,0), h;=4, B,=(1,-2,0), h,=5 and B5=(2,3,0), h5=6,
multiplicity knots u;=0, q;=1, u,=0.25, q,=1, u;=0.5, g5=1, u,=0.75,

q,=1 and us=1, gs=1. The B-spline curve is defined by the following
parametric equation:

\[C(u)=\frac{(0,1,0) \cdot 4 \cdot N_{1,2}(u) + (1,-2,0) \cdot 5 \cdot

N_{2,2}(u)+(2,3,0) \cdot 6 \cdot N_{3,2}(u)H{4 \cdot N_{1,2}(u)+5 \cdot
N_{2,2}(u)+6 \cdot N_{3,2}(u)}. \]

Trimmed Curve - <3D curve record 8>

Example
8 -45
1123100

BNF-like Definition

<3D curve record 8> = "8" < > <3D trimmed curve u
min> < > <3D trimmed curve u max> <_\n> <3D
curve record>;

<3D trimmed curve u min>

<real>;

<3D trimmed curve u max>

<real>;

Description

<3D curve record 8> describes a trimmed curve. The trimmed curve data
consist of reals u,,;,* and *u,,,,* and <3D curve record> so that *u,,;, <

Umax- The trimmed curve is a restriction of the base curve *B* described

in the record to the segment \([u_{min},\;u_{max}]\subseteq domain(B) \).
The trimmed curve is defined by the following parametric equation:

\[C(u)=B(u),\; u\in [u_{min},\;u_{max}]. \]

The example record is interpreted as a trimmed curve with u,,;,=-4 and
Umax=5 for the base curve \(B(u)=(1,2,3)+u \cdot (1,0,0) \). The trimmed
curve is defined by the following parametric equation: \(C(u)=(1,2,3)+u
\cdot (1,0,0),\; u\in [-4,\; 5] \).

Offset Curve - <3D curve record 9>

Example

2
10
12

R O ©

3100

BNF-like Definition

<3D curve record 9> = "9" < > <3D offset curve d
istance> <_\n>;

<3D offset curve direction> <_\n>;

<3D curve record>;

<3D offset curve distance> = <real>;
<3D offset curve direction> = <3D direction>;

Description

<3D curve record 9> describes an offset curve. The offset curve data
consist of a distance d, a 3D direction *D* and a <3D curve record>. The

offset curve is the result of offsetting the base curve *B* described in the
record to the distance *d* along the vector \([B'(u),\; D] \neq \vec{0} \).
The offset curve is defined by the following parametric equation:

\[C(u)=B(u)+d \cdot \frac{[B'(u),\; D]K|[B'(u),\; D]|},\; u\in domain(B) . \]

The example record is interpreted as an offset curve with a distance d=2,
direction D=(0, 1, 0), base curve \(B(u)=(1,2,3)+u \cdot (1,0,0) \) and
defined by the following parametric equation: \(C(u)=(1,2,3)+u \cdot
(1,0,0)+2 \cdot (0,0,1) \).

Surfaces

Example

Surfaces 6

100010 -00010 -106
1000 -01000110 -0
100300110 -06-010
1020-01000110 -0
1000600110 -06-0106
1100610 -00010 -106

BNF-like Definition

<surfaces> = <surface header> < \n> <surface rec
ords>;

<surface header> = “Surfaces” < > <surface count

<surface records> = <surface record> A <surface
count>;

<surface record> =
<surface record 1>
<surface record 2>
<surface record 3>
<surface record 4>
<surface record 5>
<surface record 6>
<surface record 7>
<surface record 8>
<surface record 9>
<surface record 10> |
<surface record 11>;

Plane - < surface record 1 >
Example

100300110 -06-010

BNF-like Definition

<surface record 1> = "1" < > <3D point> (<_> <3D
direction>) A 3 <_\n>;

Description

<surface record 1> describes a plane. The plane data consist of a 3D
point P* and pairwise orthogonal 3D directions *N, D,* and *D,,. The

plane passes through the point P, has the normal *N* and is defined by
the following parametric equation:

\[S(u,v)=P+u \cdot D_{u}+v \cdot D_{v},\; (u,\;v) \in (-\infty,\; \infty) \times
(-\infty,\; \infty). \]

The example record is interpreted as a plane which passes through a
point P=(0, 0, 3), has a normal N=(0, 0, 1) and is defined by the following
parametric equation: \(S(u,v)=(0,0,3)+u \cdot (1,0,0) + v \cdot (0,1,0) \).
Cylinder - < surface record 2 >

Example

212300110 -06-01014

BNF-like Definition

<surface record 2> = "2" < > <3D point> (<_> <3D
direction>) A 3 <_> <real> <_\n>;

Description

<surface record 2> describes a cylinder. The cylinder data consist of a
3D point P, pairwise orthogonal 3D directions D,, Dy and Dy* and a non-

negative real *r. The cylinder axis passes through the point P* and has
the direction *D,,. The cylinder has the radius *r* and is defined by the

following parametric equation:

\[S(u,v)=P+r \cdot (cos(u) \cdot D_{x}+sin(u) \cdot D_{y})+v \cdot
D_{v}\; (u,v) \in [0,\; 2 \cdot \pi) \times (-\infty,\; \infty) . \]

The example record is interpreted as a cylinder which axis passes
through a point P=(1, 2, 3) and has a direction D,~=(0, 0, 1). Directions for

the cylinder are D4=(1,0,0) and D,=(0,1,0). The cylinder has a radius

r=4 and is defined by the following parametric equation: \(S(u,v)=
(1,2,3)+4 \cdot (cos(u) \cdot D_{X} + sin(u) \cdot D_{Y}) + v \cdot D_{v}.
\)

Cone - < surface record 3 >
Example

312300110 -06-01014
0.75

BNF-like Definition

<surface record 3> = "3" < > <3D point> (<_> <3D
direction>) A 3 (<_> <real>) N 2 <_\n>,

Description

<surface record 3> describes a cone. The cone data consist of a 3D point
P, pairwise orthogonal 3D directions D, Dy and Dy, a non-negative real
r and a real \(\varphi\in (-\pi /2,\; \pi/2)\left \{ O \right \} \). The cone axis
passes through the point P* and has the direction *D,. The plane which
passes through the point P* and is parallel to directions *Dy* and *Dy* is
the cone referenced plane. The cone section by the plane is a circle with
the radius *r. The direction from the point *P* to the cone apex is \(-
sgn(\varphi) \cdot D_{Z}). The cone has a half-angle \(| \varphi | \) and is

defined by the following parametric equation:

\[S(u,v)=P+(r+v \cdot sin(\varphi)) \cdot (cos(u) \cdot D_{X}+sin(u) \cdot
D_{Y}+v \cdot cos(\varphi) \cdot D_{Z}, (u,v) \in [0,\; 2 \cdot \pi) \times (-
\infty,\; \infty) . \]

The example record is interpreted as a cone with an axis which passes
through a point P=(1, 2, 3) and has a direction D,=(0, 0, 1). Other cone

data are Dy=(1, 0, 0), D\=(0, 1, 0), r=4 and \(\varphi = 0.75\). The cone
is defined by the following parametric equation:

\[S(u,v)=(1,2,3)+(4 + v \cdot sin(0.75)) \cdot (cos(u) \cdot (1,0,0) +
sin(u) \cdot (0,1,0)) + v \cdot cos(0.75) \cdot (0,0,1) . \]

Sphere - < surface record 4 >
Example

412300110 -0-0601014

BNF-like Definition

<surface record 4> = "4" < > <3D point> (<_> <3D
direction>) A 3 <_> <real> <_\n>;

Description

<surface record 4> describes a sphere. The sphere data consist of a 3D
point P, pairwise orthogonal 3D directions D, Dy and Dy* and a non-

negative real *r. The sphere has the center P, radius *r* and is defined by
the following parametric equation:

\[S(u,v)=P+r \cdot cos(v) \cdot (cos(u) \cdot D_{x}+sin(u) \cdot D_{y}) +r
\cdot sin(v) \cdot D_{Z},\; (u,v) \in [0,\;2 \cdot \pi) \times [-\pi /2,\; \pi /2] . \]

The example record is interpreted as a sphere with its center P=(1, 2, 3).
Directions for the sphere are D,=(0, 0, 1), Dyx=(1, 0, 0) and Dy=(0, 1, 0).
The sphere has a radius r=4 and is defined by the following parametric
equation:

\[S(u,v)=(1,2,3)+ 4 \cdot cos(v) \cdot (cos(u) \cdot (1,0,0) + sin(u) \cdot
(0,1,0)) + 4 \cdot sin(v) \cdot (0,0,1) . \]

Torus - < surface record 5 >

Example

512300110 -06-0108 4

BNF-like Definition

<surface record 5> = "5" < > <3D point> (<_> <3D
direction>) A 3 (<_> <real>) N 2 <_\n>;

Description

<surface record 5> describes a torus. The torus data consist of a 3D
point P, pairwise orthogonal 3D directions D, Dy and Dy* and non-

negative reals *r;* and *r,. The torus axis passes through the point

P* and has the direction *D. r;* is the distance from the torus circle
center to the axis. The torus circle has the radius *r,. The torus is defined
by the following parametric equation:

\[S(u,v)=P+(r_{1}+r_{2} \cdot cos(v)) \cdot (cos(u) \cdot D_{x}+sin(u)
\cdot D_{y}) +r_{2} \cdot sin(v) \cdot D_{Z},\; (u,v) \in [0,\;2 \cdot \pi)
\times [0,\; 2 \cdot \pi) . \]

The example record is interpreted as a torus with an axis which passes
through a point P=(1, 2, 3) and has a direction D>=(0, 0, 1). Dy=(1, 0O, 0),
D.=(0, 1, 0), r;=8 and r,=4 for the torus. The torus is defined by the
following parametric equation:

\[S(u,v)=(1,2,3)+ (8+4 \cdot cos(v)) \cdot (cos(u) \cdot (1,0,0) + sin(u)
\cdot (0,1,0)) + 4 \cdot sin(v) \cdot (0,0,1) . \]

Linear Extrusion - < surface record 6 >

Example

6 0 0.6 0.8
212300110 -06-01014

BNF-like Definition

<surface record 6> = "6" < > <3D direction> <_\n
> <3D curve record>;

Description

<surface record 6> describes a linear extrusion surface. The surface data
consist of a 3D direction D, * and a <3D curve record>. The linear

extrusion surface has the direction *D,, the base curve *C* described in
the record and is defined by the following parametric equation:

\[S(u,v)=C(u)+v \cdot D_{v},\; (u,v) \in domain(C) \times (-\infty,\; \infty) .
\

The example record is interpreted as a linear extrusion surface with a
direction D,~=(0, 0.6, 0.8). The base curve is a circle for the surface. The

surface is defined by the following parametric equation:

\[S(u,v)=(1,2,3)+4 \cdot (cos(u) \cdot (1,0,0)+sin(u) \cdot (0,1,0))+v \cdot
(0, 0.6, 0.8),\; (u,v) \in [0,\; 2 \cdot \pi) \times (-\infty,\; \infty). \]

Revolution Surface - < surface record 7 >
Example

/7 -4 03010
212300110 -06-01014

BNF-like Definition

<surface record 7> = "7" < > <3D point> <_> <3D
direction> <_\n> <3D curve record>;

Description

<surface record 7> describes a revolution surface. The surface data
consist of a 3D point P, a 3D direction D* and a <3D curve record>. The
surface axis passes through the point *P* and has the direction *D. The
base curve *C* described by the record and the axis are coplanar. The
surface is defined by the following parametric equation:

\[S(u,v)= P+V_{D}(v)+cos(u) \cdot (V(v)-V_{D}(v))+sin(u) \cdot [D,V(V)],\;
(u,v) \in [0,\; 2 \cdot \pi)\times domain(C) \]

where \(V(v)=C(v)-P, V_{D}(v)=(D,V(v)) \cdot D \).
The example record is interpreted as a revolution surface with an axis
which passes through a point P=(-4, 0, 3) and has a direction D=(0, 1, 0).

The base curve is a circle for the surface. The surface is defined by the
following parametric equation:

\[S(u,v)= (-4,0,3)+V_{D}(v)+cos(u) \cdot (V(v)-V_{D}(v))+sin(u) \cdot
[(0,1,0),V(V)],\;(u,v) \in [0,\; 2 \cdot \pi)\times [0,\; 2 \cdot \pi) \]

where \(V(v)=(5,2,0)+4 \cdot (cos(v) \cdot (1,0,0)+sin(v) \cdot (0,1,0)),
V_{D}Vv)=((0,1,0),V(v)) \cdot (0,1,0) \).

Bezier Surface - < surface record 8 >

Example
811210601 710 -4 10
01 -2 8115 11
023 9126 12
BNF-like Definition
<surface record 8> = "8" < > <Bezier surface u

rational flag> <_> <Bezier surface v rational
flag> <_> <Bezier surface u degree> <_> <Bezier
surface v degree> <_>

<Bezier surface weight poles>;

<Bezier surface u rational flag> = <flag>;

<Bezier surface v rational flag> = <flag>;
<Bezier surface u degree> = <int>;
<Bezier surface v degree> = <int>;

<Bezier surface weight poles> =
(<Bezier surface weight pole group> <_\n>) N (<Bezier
surface u degree> <+> "1");

<Bezier surface weight pole group> = <Bezier surface
weight pole>

(<_> <Bezier surface weight pole>) A <Bezier surface
v degree>;

<Bezier surface weight pole> = <3D point> [<_>
<real>];

Description

<surface record 8> describes a Bezier surface. The surface data consist
of a u rational flag r,, v rational flag r,, u degree \(m_{u} \leq 25\), v

degree \(m_{v} \leq 25 \) and weight poles.

The weight poles are \((m_{u}+1) \cdot (m_{v}+1)\) 3D points \(B_{i,j}\;
((i,)) \in \left \{ O,...,m_{u} \right \} \times \left \{ O,...,m_{v} \right \}) \) if \(

r {u}+r _{v}=0\). The weight poles are \((m_{u}+1) \cdot (m_{v}+1)

\) pairs \(B_{i,jth_{i,j}\; ((i,)) \in \left \{ 0,...,m_{u} \right \} \times \left \{
0,....,m_{v}\right\}) V) if \(r_{u}+r_{v}\neq 0\). Here \(B_{i,j}) isa 3D
point and \(h_{i,j} \) is a positive real \(((i,j) \in \left \{ 0,...,m_{u} \right \}
\times \left \{ 0,...,m_{v} \right \}) \). \(h_{i,j}=1\; ((i,j) \in \left \{ O,...,m_{u}
\right \} \times \left \{ O,...,m_{v} \right \}) \) if \(r_{u}+r_{v} =0V\).

The Bezier surface is defined by the following parametric equation:

\[S(u,v)=\frac{\sum_{i=0}m_{u}} \sum_{j=0}m_{v}} B_{i,j} \cdot h_{i,j}
\cdot C_{m_{u}}*\{i} \cdot u{i} \cdot (1-u){m_{u}-i} \cdot C_{m_{v}}'\{j}
\cdot v*{j} \cdot (1-v){m_{v}-j}}{\sum_{i=0}{m_{u}} \sum_{j=0}{m_{v}}

h_{i,j} \cdot C_{m_{u}}*\{i} \cdot u”{i} \cdot (1-u){m_{u}-i} \cdot
C_{m_{vh™j} \cdot v*{j} \cdot (1-v)m_{v}-j}}, (u,v) \in [0,1] times [0,1] \]

where \(00} \equiv 1\).

The example record is interpreted as a Bezier surface with a u rational
flag r,=1, v rational flag r,=1, u degree m, =2, v degree m =1, weight
poles By, ,=(0, 0, 1), hg =7, By 1=(1, 0, -4), hy ;=10, B; x=(0, 1, -2), h; =8,
B; 1=(1, 1, 5), hy ;=11, B, ,=(0, 2, 3), h, »=9 and B, ;=(1, 2, 6), h, ;=12.
The surface is defined by the following parametric equation:

\[\begin{align} S(u,v)= (0,0,1) \cdot 7 \cdot (1-u)™2} \cdot (1-v)+(1,0,-4)
\cdot 10 \cdot (1-u)™2} \cdot v+ (0,1,-2) \cdot 8 \cdot 2 \cdot u \cdot (1-u)
\cdot (1-v) +\\ (1,1,5) \cdot 11 \cdot 2 \cdot u \cdot (1-u) \cdot v+ (0,2,3)
\cdot 9 \cdot u*{2} \cdot (1-v)+(1,2,6) \cdot 12 \cdot u*{2} \cdot v] \div [7
\cdot (1-u){2} \cdot (1-v)+ \\ 10 \cdot (1-u){2} \cdot v+ 8 \cdot 2 \cdot u
\cdot (1-u) \cdot (1-v)+ 11 \cdot 2 \cdot u \cdot (1-u) \cdot v+ 9 \cdot u™{2}
\cdot (1-v)+12 \cdot u*{2} \cdot v] \end{align} \]

B-spline Surface - < surface record 9 >
Example

9 1160 40061 710 -4 10

0O 1
© 23 9126 1

O NONONO)
o1
[N

SN oNoNo!
RN W
B

BNF-like Definition

<surface record 9> = "9" <_> <B-spline surface u
rational flag> <_>

<B-spline surface v rational flag> < > "0" < > "
0" < > <B-spline surface u degree> <_>

<B-spline surface v degree> <_> <B-spline surfac
e u pole count> <_>

<B-spline surface v pole count> <_> <B-spline su
rface u multiplicity knot count> <_>

<B-spline surface v multiplicity knot count> <_>
<B-spline surface weight poles> <_\n>

<B-spline surface u multiplicity knots> <_\n> <B
-spline surface v multiplicity knots>;

<B-spline surface u rational flag> = <flag>;
<B-spline surface v rational flag> = <flag>;
<B-spline surface u degree> = <int>;
<B-spline surface v degree> = <int>;
<B-spline surface u pole count> = <int>;
<B-spline surface v pole count> = <int>;

<B-spline surface u multiplicity knot count> = <
int>;

<B-spline surface v multiplicity knot count> = <
int>;

<B-spline surface weight poles> =
(<B-spline surface weight pole group> <_\n>) A <
B-spline surface u pole count>;

<B-spline surface weight pole group> =
(<B-spline surface weight pole> < >) A <B-spline
surface v pole count>;

<B-spline surface weight pole> = <3D point> [<_>
<real>];

<B-spline surface u multiplicity knots> =
(<B-spline surface u multiplicity knot> <_\n>) A
<B-spline surface u multiplicity knot count>;

<B-spline surface u multiplicity knot> = <real>
<_> <int>;

<B-spline surface v multiplicity knots> =
(<B-spline surface v multiplicity knot> <_\n>) A
<B-spline surface v multiplicity knot count>;

<B-spline surface v multiplicity knot> = <real>
<_> <int>;

Description

<surface record 9> describes a B-spline surface. The surface data
consist of a u rational flag r,, v rational flag r,,, u degree \(m_{u} \leq 25
\), vdegree \(m_{v}\leq 25), u pole count \(n_{u} \geq 2\), v pole count
\(n_{v}\geq 2), u multiplicity knot count k,, v multiplicity knot count k,,

weight poles, u multiplicity knots, v multiplicity knots.

The weight poles are \(n_{u} \cdot n_{v}\) 3D points \(B_{i,j}\; ((i,j) \in
\left \{ 1,...,n_{u} \right \} \times \left \{ 1,...,n_{v} \right \}) \) if \(

r {u}+r_{v}=0\). The weight poles are \(n_{u} \cdot n_{v}\) pairs \(
B_{i,j}h_{i,j}\; ((i,j) \in\left \{ 1,...,n_{u} \right \} \times \left \{ 1,...,n_{v} \right
\D V) if \(r_{u}+r_{v}\neq 0\). Here \(B_{i,j}\) is a 3D point and \(h_{i,j}

\) is a positive real \(((i,j) \in \left \{ 1,...,n_{u} \right \} \times \left \{
1,...,n_{v}i\right \}) \). \(h_{i,j}=1\; ((i,j) \in \left \{ 1,...,n_{u} \right \} \times
\left { 1,...,n_{v} \right \}) \) if \(r_{u}+r_{v} =0)).

The u multiplicity knots are *k * pairs \(u_{1}q_{1} ... u_{k_{u}}q_{k_{u}}
\). Here \(u_{i}\) is a knot with multiplicity \(g_{i} \geq 1 \;(1\leq i\leq
k {u})\) so that

\[u {i} <u {i+1}\; (1\leq Nleq k_{u}-1), \\ g_{1}\leg m_{u}+1\; q_{k_{u}}
\leg m_{u}+1,\; g_{i} \leg m_{u}\; (2\leq iNleq k_{u}-1),\;
\sum_{i=1}k {u}}q_{i}=m_{u}+n_{u}+1.\]

The v multiplicity knots are *k,* pairs \(v_{1}t_{1} ... v_{k_{v}}t_{k_{v}} V).
Here \(v_{j} 1) is a knot with multiplicity \(t_{i} \geq 1\;(1\leq \leq k_{v}) \)
so that

\[v_{i} <v_ {j+1}\; (I\leg Nleqg k_{v}-1), \t {1} \leq m_{v}+1\; t {k {v}}\leq
m_{v+1\; t {j} leg m_{v}\; (2\leqg \leq k_{v}-1),\;
\sum_{j=1}Mk_{v}}t_{j}=m_{v}+n_{v}+1.\]

The B-spline surface is defined by the following parametric equation:

\[S(u,v)=\frac{\sum_{i=1}n_{u}} \sum_{j=1}n_{v}} B_{i,j} \cdot h_{i,j}
\cdot N_{i,m_{u}+1}(u) \cdot M_{j,m_{v}+1}(Vv){\sum_{i=1}n_{u}}
\sum_{j=1}{n_{v}} h_{i,j} \cdot N_{i,m_{u}+1}(u) \cdot M_{j,m_{v}+1}(Vv)},
(u,v)\in [u_{1},u_{k {u}}] times [v_{1},v_{k _{v}}]]

where functions N; * and *M; * have the following recursion definition by
*j-
5.

\[\begin{align} N_{i,1}(u)= \left\{\begin{matrix} 1\Leftarrow \bar{u} {i}\leq
u\leq \bar{u} {i+1} O\Leftarrow u <\bar{u} {i} \vee \bar{u} {i+1}\leq u
\end{matrix} \right.,\; \\ N_{i,j}(u)=\frac{(u-\bar{u}_{i}) \cdot N_{i,j-1}(u) }
{\bar{u}_{i+j-1}-\bar{u} {i}}+ \frac{(\bar{u} {i+j}-u) \cdot N_{i+1,j-1}(u)}
{\bar{u}_{i+j}-\bar{u} {i+1}},\;(2\leq j\leq m_{u}+1), \; \ M_{i,1}(v)=\left\
{\begin{matrix} 1\Leftarrow \bar{v} {i}\leq v \leq \bar{v} {i+1}\\ O\Leftarrow
v <\bar{v}_{i} \vee \bar{v} {i+1}\leq v \end{matrix} \right.,\; \\ M_{i,j}
(v)=\frac{(v-\bar{v}_{i}) \cdot M_{i,j-1}(v) {\bar{v}_{i+j-1}-\bar{v} {i}}+
\frac{(\bar{v}_{i+j}-v) \cdot M_{i+1,j-1}(v)X{\bar{v} {i+j}-\bar{v} {i+1}}\;(2
\leq j \leg m_{v}+1); \end{align} \]

where

\[\bar{u} {i}=u_{j}\; (1 \leg j\leq k_{u},\; \sum_{I=1}*{j-1}q_{I} \leq i \leq
\sum_{I=1}{j}a_{1}), W \bar{v} {i}=v_{j}\; (1 \leq j \leq k_{v},\; \sum_{I=1}"{j-

1}t_{I} \leq i \leq \sum_{I=1}{j}t_{); \]

The example record is interpreted as a B-spline surface with a u rational
flag r,=1, v rational flag r,=1, u degree m, =1, v degree m =1, u pole
count n,=3, v pole count n,=2, u multiplicity knot count k=5, v multiplicity
knot count k=4, weight poles B; ;=(0, 0, 1), h; ;=7, B; ,=(1, 0, -4),

h; »=10, B, ;=(0, 1, -2), h, ;=8, B, ,=(1, 1, 5), h, ,=11, B3 ;=(0, 2, 3),

hs; ;=9 and B3 ,=(1, 2, 6), h3 ,=12, u multiplicity knots u;=0, q;=1,
u,=0.25, g,=1, u;=0.5, q5=1, u,=0.75, q,=1 and us=1, gs=1, v multiplicity
knots v;=0, r;=1, v,=0.3, r,=1, v5=0.7, r3=1 and v,=1, r,=1. The B-spline
surface is defined by the following parametric equation:

\[\begin{align} S(u,v)=1 (0,0,1) \cdot 7 \cdot N_{1,2}(u) \cdot M_{1,2}(v)+
(1,0,-4) \cdot 10 \cdot N_{1,2}(u) \cdot M_{2,2}(v)+ \\ (0,1,-2) \cdot 8 \cdot
N_{2,2}(u) \cdot M_{1,2}(v)+(1,1,5) \cdot 11 \cdot N_{2,2}(u) \cdot
M_{2,2}(v)+ \\ (0,2,3) \cdot 9 \cdot N_{3,2}(u) \cdot M_{1,2}(v)+(1,2,6)
\cdot 12 \cdot N_{3,2}(u) \cdot M_{2,2}(v)] \div \\ [7 \cdot N_{1,2}(u) \cdot
M_{1,2}(v)+10 \cdot N_{1,2}(u) \cdot M_{2,2}(v)+ 8 \cdot N_{2,2}(u) \cdot
M_{1,2}(v)+ \\ 11 \cdot N_{2,2}(u) \cdot M_{2,2}(v)+ 9 \cdot N_{3,2}(u)
\cdot M_{1,2}(v)+12 \cdot N_{3,2}(u) \cdot M_{2,2}(v)] \end{align} \]

Rectangular Trim Surface - < surface record 10 >
Example

10 -1 2 -3 4
112300110 -06-010

BNF-like Definition

<surface record 10> = "10" <_> <trim surface u m
in> <_> <trim surface u max> <_>

<trim surface v min> <_> <trim surface v max> <_
\n> <surface record>;

<trim surface u min> <real>;

<trim surface u max> <real>;

<trim surface v min> = <real>;

<trim surface v max> = <real>;

Description

<surface record 10> describes a rectangular trim surface. The surface
data consist of reals U,,in, Unax: Vmin™ @nd *v,,.,* @nd a <surface record>

SO that *U i, < Upmay* @nd *vp,i, < V... The rectangular trim surface is a
restriction of the base surface *B* described in the record to the set \(
[u_{min},u_{max}] \times [v_{min},v_{max}] \subseteq domain(B) \). The
rectangular trim surface is defined by the following parametric equation:
\[S(u,v)=B(u,v),\; (u,v) \in [u_{min},u_{max}] \times [v_{min},v_{max}] . \]
The example record is interpreted as a rectangular trim surface to the set
[-1, 2]x[-3, 4] for the base surface \(B(u,v)=(1,2,3)+u \cdot (1,0,0)+v \cdot
(0,1,0) \). The rectangular trim surface is defined by the following

parametric equation: \(B(u,v)=(1,2,3)+u \cdot (1,0,0)+ v \cdot (0,1,0),\;
(u,v) \in [-1,2] \times [-3,4] \).

Offset Surface - < surface record 11 >
Example

11 -2
112300110 -06-010

BNF-like Definition

<surface record 11> = "11" < > <surface record d
istance> <_\n> <surface record>;

<surface record distance> = <real>;

Description

<surface record 11> describes an offset surface. The offset surface data

consist of a distance d* and a <surface record>. The offset surface is the
result of offsetting the base surface *B* described in the record to the
distance *d* along the normal *N* of surface *B. The offset surface is
defined by the following parametric equation:

\[S(u,v)=B(u,v)+d \cdot N(u,v),\; (u,v) \in domain(B) . \\ N(u,v) = [S"_{u}
(u,v),S"_{v}(u,v)]\]

if\([S"_{u}(u,v),S"_{v}(u,v)] \neq \vec{0} \).

The example record is interpreted as an offset surface with a distance
d=-2 and base surface \(B(u,v)=(1,2,3)+u \cdot (1,0,0)+v \cdot (0,1,0) \).
The offset surface is defined by the following parametric equation: \(
S(u,v)=(1,2,3)+u \cdot (1,0,0)+v \cdot (0,1,0)-2 \cdot (0,0,1) \).

2D curves
Example

Curve2ds 24

10010
10010
1300 -1
10001
10 -210
10010
1000 -1
10001
10010
10110
1300 -1
11001
10 -210
10110
1000 -1
11001
10001
10010
13001
10010
10001
10210
13001
10210

BNF-like Definition

<2D curves> = <2D curve header> < \n> <2D curve
records>;

<2D curve header> = '"Curve2ds" < > <2D curve cou

nt>;
<2D curve count> = <int>;

<2D curve records> = <2D curve record> N <2D cur
ve count>;

<2D curve record> =
<2D curve record 1>
<2D curve record 2>
<2D curve record 3>
<2D curve record 4>
<2D curve record 5>
<2D curve record 6>
<2D curve record 7>
<2D curve record 8>
<2D curve record 9>;

Line - <2D curve record 1>
Example

1300 -1

BNF-like Definition

<2D curve record 1> = "1" < > <2D point> <_> <2D
direction> <_\n>;

Description
<2D curve record 1> describes a line. The line data consist of a 2D point
P* and a 2D direction *D. The line passes through the point P, has the
direction *D* and is defined by the following parametric equation:

\[C(u)=P+u \cdot D, \; u\in (-\infty,\; \infty). \]

The example record is interpreted as a line which passes through a point

P=(3,0), has a direction D=(0,-1) and is defined by the following
parametric equation: \(C(u)=(3,0)+ u \cdot (0,-1) \).

Circle - <2D curve record 2>
Example

21210 -013

BNF-like Definition

<2D curve record 2> = "2" < > <2D circle center> < >
<2D circle Dx> <_> <2D circle Dy> <_> <2D circle
radius> <_\n>;

<2D circle center> = <2D point>;
<2D circle Dx> = <2D direction>;
<2D circle Dy> = <2D direction>;
<2D circle radius> = <real>;

Description

<2D curve record 2> describes a circle. The circle data consist of a 2D
point P, orthogonal 2D directions D,* and *D,* and a non-negative real *r.

The circle has a center P. The circle plane is parallel to directions
D,*and *D,,. The circle has a radius *r* and is defined by the following

parametric equation:

\[C(u)=P+r \cdot (cos(u) \cdot D_{x} + sin(u) \cdot D_{y}),\; u\in [0,\; 2
\cdot \pi) . \]

The example record is interpreted as a circle which has a center P=(1,2).
The circle plane is parallel to directions D,=(1,0) and D,=(0,1). The circle

has a radius r=3 and is defined by the following parametric equation: \(
C(u)=(1,2)+3 \cdot (cos(u) \cdot (1,0) + sin(u) \cdot (0,1)) \).

Ellipse - <2D curve record 3>

Example

31210 -0143

BNF-like Definition

<2D curve record 3>
> < > <2D ellipse Dmaj> <_>
ellipse Dmin> <_> <2D ellipse Rmaj> <_> <2D

<2D
ellipse

<2D
<2D
<2D
<2D

<2D

Rmin> <_

ellipse
ellipse
ellipse
ellipse

ellipse

Description

\n>;

center>
Dmaj> =
Dmin> =
Rmaj> =

Rmin> =

= "3" < > <2D ellipse center

= <2D point>;
<2D direction>;
<2D direction>;
<real>;

<real>;

<2D curve record 3> describes an ellipse. The ellipse data are 2D point
P, orthogonal 2D directions *Dp,,* and *Dyi,* and non-negative reals

“Imaj” and *rpin® that *ro* \(\leq \) rpp. The ellipse has a center P, major
and minor axis directions Dp,,* and *D,,;,, major and minor radii
“Imaj” @nd *rpip* and is defined by the following parametric equation:

\[C(u)=P+r_{maj} \cdot cos(u) \cdot D_{maj}+r_{min} \cdot sin(u) \cdot
D_{min},\; u\in [0,\; 2 \cdot \pi) . \]

The example record is interpreted as an ellipse which has a center P=
(1,2), major and minor axis directions Dy,,,=(1,0) and D,;,=(0,1), major
and minor radii r,,,=4 and r,,;;=3 and is defined by the following

parametric equation: \(C(u)=(1,2)+4 \cdot cos(u) \cdot (1,0)+3 \cdot
sin(u) \cdot (0,1) \).

Parabola - <2D curve record 4>
Example

41210 -0116

BNF-like Definition

<2D curve record 4> = "4" < > <2D parabola origi
n> < > <2D parabola Dx> <_>

<2D parabola Dy> <_> <2D parabola focal length>
<_\n>;

<2D parabola origin> = <2D point>;
<2D parabola Dx> = <2D direction>;
<2D parabola Dy> = <2D direction>;
<2D parabola focal length> = <real>;

Description

<2D curve record 4> describes a parabola. The parabola data consist of
a 2D point P, orthogonal 2D directions D,* and *D,* and a non-negative

real *f. The parabola coordinate system has its origin P* and axis
directions *D,* and *D,.. The parabola has a focus length *f* and is

defined by the following parametric equation:

\[C(u)=P+\frac{u™{2}}{4 \cdot f} \cdot D_{x}+u \cdot D_{y},\; u\in (-\infty,\;
\infty) \Leftarrow f \neq O;\\ C(u)=P+u \cdot D_{x},\; u \in (-\infty,\; \infty)
\Leftarrow f = O\; (degenerated\;case). \]

The example record is interpreted as a parabola in plane which passes
through a point P=(1,2) and is parallel to directions D,=(1,0) and D =

(0,1). The parabola has a focus length =16 and is defined by the
following parametric equation: \(C(u)=(1,2)+ \frac{u®{2}}{64} \cdot (1,0)+u
\cdot (0,1) \).

Hyperbola - <2D curve record 5>
Example

51210-0134

BNF-like Definition

<2D curve record 5> = "5" < > <2D hyperbola orig
in> <_> <2D hyperbola Dx> <_>

<2D hyperbola Dy> <_> <2D hyperbola Kx> <_> <2D
hyperbola Ky> <_\n>;

<2D hyperbola origin> = <2D point>;

<2D hyperbola Dx> <2D direction>;

<2D hyperbola Dy> = <2D direction>;
<2D hyperbola Kx> = <real>;
<2D hyperbola Ky> = <real>;

Description

<2D curve record 5> describes a hyperbola. The hyperbola data consist
of a 2D point P, orthogonal 2D directions D,* and *D,* and non-negative

reals *k,* and *k,. The hyperbola coordinate system has origin P* and
axis directions *D,* and *D,. The hyperbola is defined by the following
parametric equation:

\[C(u)=P+k_{x} \cdot cosh(u) D_{x}+k_{y} \cdot sinh(u) \cdot D_{y},\; u\in
(-\infty,\; \infty). \]

The example record is interpreted as a hyperbola with coordinate system

which has origin P=(1,2) and axis directions D,=(1,0) and D,=(0,1). Other
data for the hyperbola are k,=5 and k,=4. The hyperbola is defined by the

following parametric equation: \(C(u)=(1,2)+3 \cdot cosh(u) \cdot (1,0)+4
\cdot sinh(u) \cdot (0,1) \).

Bezier Curve - <2D curve record 6>
Example

61201 41-2 523 6

BNF-like Definition

<2D curve record 6> = "6" <_> <2D Bezier rationa
1 flag> <_> <2D Bezier degree>
<2D Bezier weight poles> <_\n>;

<2D Bezier rational flag> = <flag>;
<2D Bezier degree> = <int>;

<2D Bezier weight poles> = (<_> <2D Bezier weigh
t pole>) N (<2D Bezier degree> <+> “1");

<2D Bezier weight pole> = <2D point> [<_> <real>

17
Description

<2D curve record 6> describes a Bezier curve. The curve data consist of
a rational flag r, a degree \(m \leq 25 \) and weight poles.

The weight poles are m+1 2D points By, ... B,,* if the flag *r* is 0. The
weight poles are *m+1 pairs *Bghy ... B,h,,* if the flag *r* is 1. Here *B;* is
a 2D point and *h;* is a positive real \((O\leg i\leqg m) \). h=1 \((0O\leq i\leq
m) \) if the flag *r* is O.

The Bezier curve is defined by the following parametric equation:

\[C(u)=\frac{\sum_{i=0}*{m} B_{i} \cdot h_{i} \cdot C_{m}*{i} \cdot u”\i}
\cdot (1-u)Mm-i}}{\sum_{i=0}{m} h_{i} \cdot C_{m}*\{i} \cdot u”{i} \cdot (1-
u)m-i}},\; ulin [0,1] \]

where \(00} \equiv 1\).

The example record is interpreted as a Bezier curve with a rational flag
r=1, a degree m=2 and weight poles B,=(0,1), hp,=4, B;=(1,-2), h;=5 and
B,=(2,3), h,=6. The Bezier curve is defined by the following parametric
equation:

\[C(u)=\frac{(0,1) \cdot 4 \cdot (1-u)2}+(1,-2) \cdot 5 \cdot 2 \cdot u

\cdot (1-u)+(2,3) \cdot 6 \cdot u™{2}}{ 4 \cdot (1-u){2}+5 \cdot 2 \cdot u
\cdot (1-u)+6 \cdot u™{2}} . \]

B-spline Curve - <2D curve record 7>
Example

/716 135 01 41-2 5 23 6
©10.2510.510.75111

BNF-like Definition

<2D curve record 7> = "7" <_> <2D B-spline rational
flag> < > "0" <_> <2D B-spline degree> <_> <2D
B-spline pole count> < > <2D B-spline
multiplicity knot count> <2D B-spline weight

poles> <_\n> <2D B-spline multiplicity knots>
<_\n>;

<2D B-spline rational flag> = <flag>;
<2D B-spline degree> = <int>;
<2D B-spline pole count> = <int>;

<2D B-spline multiplicity knot count> = <int>;

<2D B-spline weight poles> = <2D B-spline weight
pole> N <2D B-spline pole count>;

<2D B-spline weight pole> = < > <2D point> [<_>
<real>];

<2D B-spline multiplicity knots> =
<2D B-spline multiplicity knot> A <2D B-spline
multiplicity knot count>;

<2D B-spline multiplicity knot> = < > <real> < >
<int>;

Description

<2D curve record 7> describes a B-spline curve. The curve data consist
of a rational flag r, a degree \(m \leq 25\), a pole count \(n\geq 2\), a
multiplicity knot count k, weight poles and multiplicity knots.

The weight poles are *n* 2D points *B; ... B,* if the flag *r* is 0. The
weight poles are *n* pairs *B;h; ... B,h,* if the flag *r* is 1. Here *B* is a
2D point and *h;* is a positive real \((1\leq iNleq n) \). h=1 \((1\leq i\leq n)
\) if the flag *r* is 0.

The multiplicity knots are k* pairs *u,q; ... u,q,. Here *u* is a knot with
multiplicity \(g_{i} \geq 1\; (1 \leq i \leq k) \) so that

\[u_{i} <u_{i+1}\; (1 \leqi\leq k-1), \ g_{1} \leg m+1,\; g_{k} \leqg m+1,\;
g_{i} \leqg m\; (2 \leq i\leq k-1),\; \sum_{i=1}k}q_{i}=m+n+1 . \]

The B-spline curve is defined by the following parametric equation:

\[C(u)=\frac{\sum_{i=1}{n} B_{i} \cdot h_{i} \cdot N_{i,m+1}(u) }
{\sum_{i=1}\{n} h_{i} \cdot N_{i,m+1}(u)},\; u\in [u_{1},\; u_{k}] \]

where functions N; * have the following recursion definition by *

\[N_{i,1}(u)=\left\{\begin{matrix} 1\Leftarrow \bar{u} {i} \leq u\leq

\bar{u} {i+1}\\ O\Leftarrow u < \bar{u} {i} \vee \bar{u} {i+1}\lequ
\end{matrix} \right.,\; N_{i,j}(u)=\frac{(u-\bar{u} {i}) \cdot N_{i,j-1}(u) }
{\bar{u}_{i+j-1}-\bar{u} {i}}+ \frac{(\bar{u} {i+j}-u) \cdot N_{i+1,j-1}(u)}

{\bar{u}_{i+j}-\bar{u} {i+1}},\;(2\leq j\leq m+1)\]

where

\[\bar{u} {i}=u_{j}\; (1\leq j\leq k,\; \sum_{I=1}*{j-1}q_{I}+1 \leq i \leq
\sum_{I=1}{j}a_{1}) . \]

The example record is interpreted as a B-spline curve with a rational flag
r=1, a degree m=1, a pole count n=3, a multiplicity knot count k=5, weight
poles B;=(0,1), h;=4, B,=(1,-2), h,=5 and B3=(2,3), h;=6 and multiplicity
knots u;=0, q;=1, u,=0.25, q,=1, us=0.5, q5=1, u,=0.75, q,=1 and us=1,
gs=1. The B-spline curve is defined by the following parametric equation:

\[C(u)=\frac{(0,1) \cdot 4 \cdot N_{1,2}(u)+(1,-2) \cdot 5 \cdot N_{2,2}
(u)+(2,3) \cdot 6 \cdot N_{3,2}(u){ 4 \cdot N_{1,2}(u)+5 \cdot N_{2,2}
(u)+6 \cdot N_{3,2}(u)} . \]
Trimmed Curve - <2D curve record 8>

Example

8 -4 5
1121060

BNF-like Definition

<2D curve record 8> = "8" < > <2D trimmed curve
u min> <_> <2D trimmed curve u max> <_\n>
<2D curve record>;

<2D trimmed curve u min> <real>;

<2D trimmed curve u max> <real>;

Description

<2D curve record 8> describes a trimmed curve. The trimmed curve data
consist of reals u,,;,* and *u,,,,* and a <2D curve record> so that *u,,;,* <

*Umax- 1he trimmed curve is a restriction of the base curve *B* described

in the record to the segment \([u_{min},\;u_{max}]\subseteq domain(B) \).
The trimmed curve is defined by the following parametric equation:

\[C(u)=B(u),\; ulin [u_{min}\;u_{max}] . \]

The example record is interpreted as a trimmed curve with u,,;,=-4,
Umax=5 and base curve \(B(u)=(1,2)+u \cdot (1,0) \). The trimmed curve

is defined by the following parametric equation: \(C(u)=(1,2)+u \cdot
(1,0),\; u\in [-4,5] \).

Offset Curve - <2D curve record 9>

Example

9 2
11210
BNF-like Definition

<2D curve record 9> = "9" < > <2D offset curve dista
nce> <_\n> <2D curve record>;

<2D offset curve distance> = <real>;

Description

<2D curve record 9> describes an offset curve. The offset curve data
consist of a distance *d* and a <2D curve record>. The offset curve is the
result of offsetting the base curve *B* described in the record to the
distance *d* along the vector \((B'_{Y}(u),\; -B'_{X}(u)) \neq \vec{0}

\) where \(B(u)=(B'_{X}(u),\; B'_{Y}(u)) \). The offset curve is defined by
the following parametric equation:

\[C(u)=B(u)+d \cdot (B'_{Y}(u),\; -B'_{X}(u)),\; u \in domain(B) . \]

The example record is interpreted as an offset curve with a distance

d=2 and base curve \(B(u)=(1,2)+u \cdot (1,0) \) and is defined by the
following parametric equation: \(C(u)=(1,2)+u \cdot (1,0)+2 \cdot (0,-1) \).

3D polygons
Example

Polygon3D 1
2 1

(Ol O]

i
0200
1

BNF-like Definition

<3D polygons> = <3D polygon header> <_\n> <3D po
lygon records>;

<3D polygon header> = "Polygon3D" <_> <3D polygo
n record count>;

<3D polygon records> = <3D polygon record> A <3D
polygon record count>;

<3D polygon record> =

<3D polygon node count> <_> <3D polygon flag of
parameter presence> <_\n>

<3D polygon deflection> <_\n>

<3D polygon nodes> <_\n>

[<3D polygon parameters> <_\n>];

<3D polygon node count> = <int>;

<3D polygon flag of parameter presence> = <flag>

<3D polygon deflection> = <real>;

<3D polygon nodes> = (<3D polygon node> < >) A <

3D polygon node count>;
<3D polygon node> = <3D point>;

<3D polygon u parameters> = (<3D polygon u param
eter> <_>) N <3D polygon node count>;

<3D polygon u parameter> = <real>;

Description

<3D polygons> record describes a 3D polyline L* which approximates a
3D curve *C. The polyline data consist of a node count \(m \geq 2\), a
parameter presence flag p, a deflection \(d \geq 0\), nodes \(N_{i}\;
(1\leqg i \leg m) \) and parameters \(u_{i}\; (1\leq i \leq m) \). The
parameters are present only if p=1. The polyline L* passes through the
nodes. The deflection *d* describes the deflection of polyline *L* from the
curve *C:

\[\underset{P \in Ci{max}\; \underset{Q \in L{min}|Q-P|\leq d . \]

The parameter \(u_{i}\; (1\leq i\leg m)) is the parameter of the node
N;* on the curve *C:

\[CQu_{ih=N_{i} .

The example record describes a polyline from m=2 nodes with a
parameter presence flag p=1, a deflection d=0.1, nodes N;=(1,0,0) and

N,=(2,0,0) and parameters u;=0 and u,=1.

Triangulations

Example

Triangulations 6

4 210

OPOOOO3IB23020003 03 -20-2214
21 4

4210

O0010010630630060600 13130321
14

4210

OO030623123163000 21210321
14

4210

020120123023 000 13130321
14

4210

OO0006G2012016060000 21210321
14

4210

100103123120003 03-20-224
214

BNF-like Definition

<triangulations> = <triangulation header> <_\n>
<triangulation records>;

<triangulation header> = "Triangulations" <_>
<triangulation count>;

<triangulation records> = <triangulation record> A
<triangulation count>;

<triangulation record> = <triangulation node count>

<_> <triangulation triangle count> <_>
<triangulation parameter presence flag> <_>
<triangulation deflection> <_\n>

<triangulation nodes> [<_> <triangulation u v
parameters>] <_> <triangulation triangles>
<_\n>;

<triangulation node count> = <int>;
<triangulation triangle count> = <int>;
<triangulation parameter presence flag> = <flag>;
<triangulation deflection> = <real>;

<triangulation nodes> = (<triangulation node> <_>) A
<triangulation node count>;

<triangulation node> = <3D point>;

<triangulation u v parameters> =
(<triangulation u v parameter pair> <_>) A
<triangulation node count>;

<triangulation u v parameter pair> = <real> <_>
<real>;

<triangulation triangles> = (<triangulation triangle>
<_>) N <triangulation triangle count>;

<triangulation triangle> = <int> <_> <int> <_> <int>.

Description

<triangulation record> describes a triangulation T* which approximates a
surface *S. The triangulation data consist of a hode count \(m\geq 3\), a
triangle count \(k \geq 1\), a parameter presence flag p, a deflection \(d
\geq 0), nodes \(N_{i}\; (1\leq i \leq m) \), parameter pairs \(u_{i}\; v_{i}\;

(L\leqg i \leg m) \), triangles \(n_{j,1}\; n_{j,2}\; n_{j,3}\; (1\leq j \leq k,\;
n_{j,[} \in\left \{1,...,m \right \}\; (1\leg Nleg 3)) \). The parameters are
present only if p=1. The deflection describes the triangulation deflection
from the surface:

\[\underset{P \in S{max}\; \underset{Q \in THmin}|Q-P|\leq d . \]

The parameter pair \(u_{i}\; v_{i}\; (1\leq i \leq m) \) describes the
parameters of node *N;* on the surface:

\[S(u_{ihv_{iD=N_{i} . \]

The triangle \(n_{j,1}\; n_{j,2}\; n_{j,3}\; (1\leq j \leq k) \) is interpreted as
a triangle of nodes \(N_{n_{j},1}\; N_{n_{j},2}\) and \(N_{n_{j},3} \) with
circular traversal of the nodes in the order \(N_{n_{j},1}\; N_{n_{j},2}\)
and \(N_{n_{j},3}). From any side of the triangulation *T* all its triangles
have the same direction of the node circular traversal: either clockwise or
counterclockwise.

Triangulation record
4 210
OOO0OO0O30O0G23020003 03 -20-22143
214

describes a triangulation with m=4 nodes, k=2 triangles, parameter
presence flag p=1, deflection d=0, nodes N;=(0,0,0), N,=(0,0,3), N5=
(0,2,3) and N,=(0,2,0), parameters (uy, v;)=(0,0), (u,, v5)=(3,0), (us, V3)=
(3,-2) and (uy, v4)=(0,-2), and triangles (n; 1, N1 2, N 3)=(2,4,3) and (n, j,
N, o, Ny 3)=(2,1,4). From the point (1,0,0) ((-1,0,0)) the triangles have
clockwise (counterclockwise) direction of the node circular traversal.

Polygons on triangulations
PolygonOnTriangulations 24

Example

™ ™ N N ™ ™ N N ™ ™ N N ™ ™ N
O O O O O O O O O O O O O O O
Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al
NHATrA M AN ATHATAANANAOA O A OAMO A AT A
HEHONOHOTOHOHO O IONONOTOTONG O
NaoONoN oSN aoONaoON OO N oSO N oOON OO N OO N O NON QON ON O N

RPORORWRNRBRRWORARNR
(Y
(O]
(Y

101

T NT NMNT NMNT NMNT NMNT NMNT NT NDT
o nNvNOP~MNONORORODMMNORLROR O

BNF-like Definition

<polygons on triangulations> = <polygons on tria
ngulations header> <_\n>
<polygons on triangulations records>;

<polygons on triangulations header> =
"PolygonOnTriangulations" <_> <polygons on trian
gulations record count>;

<polygons on triangulations record count> = <int
<polygons on triangulations records> =
<polygons on triangulations record> A <polygons

on triangulations record count>;

<polygons on triangulations record> =
<polygons on triangulations node count> <_> <pol

ygons on triangulations node numbers> <_\n>
"p" <_> <polygons on triangulations deflection>
< >

N <polygons on triangulations parameter presence f
lag>

[<_> <polygons on triangulations u parameters>]
<_\n>;

<polygons on triangulations node count> = <int>;

<polygons on triangulations node numbers> =
<polygons on triangulations node number> A <poly
gons on triangulations node count>;

<polygons on triangulations node number> = <int>

<polygons on triangulations deflection> = <real>

<polygons on triangulations parameter presence f
lag> = <flag>;

<polygons on triangulations u parameters> =
(<polygons on triangulations u parameter> <_>) A
<polygons on triangulations node count>;

<polygons on triangulations u parameter> = <real
>

Description

<polygons on triangulations> describes a polyline L* on a triangulation
which approximates a curve *C. The polyline data consist of a node count
\(m\geq 2\), node numbers \(n_{i} \geq 1), deflection \(d \geq 0\), a
parameter presence flag *p* and parameters \(u_{i}\; (1\leq iNleq m) \).
The parameters are present only if p=1. The deflection d* describes the
deflection of polyline *L* from the curve *C:

\[\underset{P \in Ci{max}\; \underset{Q \in L{min}|Q-P|\leq d . \]

Parameter \(u_{i}\; (1\leq iNleq m)\) is n-th node C(u,)* parameter on
curve *C.

Geometric Sense of a Curve

Geometric sense of curve *C* described above is determined by the
direction of parameter *u* increasing.

Shapes

An example of section shapes and a whole *.brep file are given in
chapter 7 Appendix.

BNF-like Definition

<shapes> = <shape header> <_\n> <shape records>
<_\n> <shape final record>;

<shape header> = "TShapes" <_> <shape count>;

<shape count> = <int>;

<shape records> = <shape record> A <shape count>

<shape record> = <shape subrecord> <_\n> <shape
flag word> <_\n> <shape subshapes> <_\n>;

<shape flag word> = <flag> N 7;

<shape subshapes> = (<shape subshape> <_>)* "*",

<shape subshape> =

<shape subshape orientation> <shape subshape num

ber> < > <shape location number>;

<shape subshape orientation> = "+" | "-" | "i" |
" "
e,

<shape subshape number> = <int>;

<shape location number> = <int>;

<shape final record> = <shape subshape>;

<shape subrecord> =

("vVe" < \n> <vertex data> <_\n>) |
("Ed" <_\n> <edge data> <_\n>) |
("wWi" < \n> <_\n>) |

("Fa" <_\n> <face data>) |

("sSh" <_\n> < \n>) |

("So" <_\n> < _\n>) |

("CS" <_\n> <_\n>) |

("Co" <_\n> <_\n>);

Description

<shape flag word> \(f_{1}\; f_{2}\; T {3}\; f_{4}\; T_{5}\; f_{6}\; f {7}
\) <flag>s \(f_{i}\;(2\leq i \leq 7) \) are interpreted as shape flags in the
following way:

\(f_{1}\) — free;

\(f_{2}) — modified;

\(f_{3}\) — IGNORED(version 1) \ checked (version 2);
\(f_{4}\) — orientable;

\(f_{5}\) — closed;

\(f_{6}\) — infinite;

\(f_{7}\) — convex.

The flags are used in a special way [1].
<shape subshape orientation> is interpreted in the following way:

+ — forward;
- —reversed;
I —internal;

e — external.

<shape subshape orientation> is used in a special way [1].

<shape subshape number> is the number of a <shape record> which is
located in this section above the <shape subshape number>. <shape
record> numbering is backward and starts from 1.

<shape subrecord> types are interpreted in the following way:

e "Ve" — vertex;

e "Ed" — edge;

e "Wi" — wire;

e "Fa" —face;

e "Sh" —shell;

e "S0" - solid;

e "CS" - compsolid;
e "C0" — compound.

<shape final record> determines the orientation and location for the
whole model.

Common Terms

The terms below are used by <vertex data>, <edge data> and <face
data>.

BNF-like Definition
<location number> = <int>;
<3D curve number> = <int>;
<surface number> = <int>;
<2D curve number> = <int>;
<3D polygon number> = <int>;
<triangulation number> = <int>,
<polygon on triangulation number> = <int>;

<curve parameter minimal and maximal values> = <
real> <_> <real>;

<curve values for parameter minimal and maximal
values> =
real> <_> <real> <_> <real> <_> <real>;

Description

<location number> is the number of <location record> from section
locations. <location record> numbering starts from 1. <location humber>
0 is interpreted as the identity location.

<3D curve number> is the number of a <3D curve record> from
subsection <3D curves> of section <geometry>. <3D curve record>
numbering starts from 1.

<surface number> is the number of a <surface record> from subsection
<surfaces> of section <geometry>. <surface record> numbering starts
from 1.

<2D curve number> is the number of a <2D curve record> from
subsection <2D curves> of section <geometry>. <2D curve record>
numbering starts from 1.

<3D polygon number> is the number of a <3D polygon record> from
subsection <3D polygons> of section <geometry>. <3D polygon record>
numbering starts from 1.

<triangulation number> is the number of a <triangulation record> from
subsection <triangulations> of section <geometry>. <triangulation
record> numbering starts from 1.

<polygon on triangulation> number is the number of a <polygons on
triangulations record> from subsection <polygons on triangulations> of
section <geometry>. <polygons on triangulations record> numbering
starts from 1.

<curve parameter minimal and maximal values> u,,;,* and *u,,,,* are the
curve parameter *u bounds: u,,;, \(\leg\) u\(\leq\) u,,4-

<curve values for parameter minimal and maximal values> u,,,;,* and
Umax™ are real pairs Kmin Ymin™ and Xmax Ymax" that (*Xmim Ymin): C
(Umnin) @and Xmaxs Ymax)= C (Umay) Where *C* is a parametric equation of
the curve.

Vertex data
BNF-like Definition

<vertex data> = <vertex data tolerance> <_\n> <v
ertex data 3D representation> <_\n>
<vertex data representations>;

<vertex data tolerance> = <real>;
<vertex data 3D representation> = <3D point>;

<vertex data representations> = (<vertex data re
presentation> <_\n>)* "0 0";

<vertex data representation> = <vertex data repr
esentation u parameter> <_>

<vertex data representation data> <_> <location
number>;

<vertex data representation u parameter> = <real

<vertex data representation data> =

("1" <_> <vertex data representation data 1>) |
("2" <_> <vertex data representation data 2>) |
("3" <_> <vertex data representation data 3>);

<vertex data representation data 1> = <3D curve
number>;

<vertex data representation data 2> = <2D curve
number> <_> <surface number>;

<vertex data representation data 3> =
<vertex data representation v parameter> <_> <su

rface number>;

<vertex data representation v parameter> = <real
>
4

Description

The usage of <vertex data representation u parameter> *U* is described
below.

<vertex data representation data 1> and parameter U* describe the
position of the vertex *V* on a 3D curve *C. Parameter U* is a parameter
of the vertex *V* on the curve *C. C(u)=V.

<vertex data representation data 2> and parameter U* describe the
position of the vertex *V* on a 2D curve *C* which is located on a
surface. Parameter *U* is a parameter of the vertex *V* on the curve *C:
C(u)=V.

<vertex data representation data 3> and parameter u* describe the
position of the vertex *V* on a surface *S* through <vertex data
representation v parameter> *v. S(u,v)=V.

<vertex data tolerance> t* describes the maximum distance from the
vertex *V* to the set *R of vertex *V* representations:

\[\underset{P \in R {max} [P-V|\leqt.]

Edge data

BNF-like Definition

<edge data> = <_> <edge data tolerance> <_> <edge
data same parameter flag> <_> edge data same
range flag> <_> <edge data degenerated flag>
<_\n> <edge data representations>;

<edge data tolerance> = <real>;

<edge data same parameter flag> = <flag>;
<edge data same range flag> = <flag>,
<edge data degenerated flag> = <flag>;

<edge data representations> = (<edge data
representation> <_\n>)* "0@";

<edge data representation> =

"1" < > <edge data representation data 1>
"2" < > <edge data representation data 2>
"3" < > <edge data representation data 3>
"4" < > <edge data representation data 4>
"5" < > <edge data representation data 5>
"6" < > <edge data representation data 6>
"7" < > <edge data representation data 7>;

<edge data representation data 1> = <3D curve number>
<_> <location number> <_>
<curve parameter minimal and maximal values>;

<edge data representation data 2> = <2D curve number>
<_> <surface number> <_>
<location number> <_> <curve parameter minimal and

maximal values>
[<_\n> <curve values for parameter minimal and
maximal values>];

<edge data representation data 3> = (<2D curve
number> <_>) AN 2 <continulity order> <_> <surface
number> <_> <location number> <_> <curve
parameter minimal and maximal values> <\n>
<curve values for parameter minimal and maximal
values>];

<continuity order> = "ce" | "ci" | "c2" | "c3" | "CN"
| IIG1II | IIG2|I]

<edge data representation data 4> =
<continuity order> (<_> <surface number> <_>
<location number>) A 2;

<edge data representation data 5> = <3D polygon
number> <_> <location number>;

<edge data representation data 6> =
<polygon on triangulation number> <_> <triangulation
number> < > <location number>;

<edge data representation data 7> = (<polygon on
triangulation number> <_>) A 2
<triangulation number> <_> <location number>;

Description

Flags <edge data same parameter flag>, <edge data same range flag>
and <edge data degenerated flag> are used in a special way [1].

<edge data representation data 1> describes a 3D curve.

<edge data representation data 2> describes a 2D curve on a surface.
<curve values for parameter minimal and maximal values> are used only

in version 2.

<edge data representation data 3> describes a 2D curve on a closed
surface. <curve values for parameter minimal and maximal values> are
used only in version 2.

<edge data representation data 5> describes a 3D polyline.

<edge data representation data 6> describes a polyline on a
triangulation.

<edge data tolerance> t* describes the maximum distance from the edge
*E to the set *R* of edge *E* representations:

\[\underset{C \in R{max}\;\underset{P \in E{max}\;\underset{Q \in C}
{min}|Q-P| \leq t \]

Face data

BNF-like Definition

<face data> = <face data natural restriction flag>
<_> <face data tolerance> <_> <surface number>
<_> <location number> <\n> ["2" <_>
<triangulation number>];

<face data natural restriction flag> = <flag>;

<face data tolerance> = <real>;

Description

<face data> describes a surface S* of face *F* and a triangulation *T* of

face *F. The surface *S* may be empty: <surface number> = 0.

<face data tolerance> t* describes the maximum distance from the face

F to the surface *S:
\[\underset{P \in F{max}\;\underset{Q \in SH{min}|Q-P| \leq t \]

Flag <face data natural restriction flag> is used in a special way [1].

Appendix
This chapter contains a *.brep file example.
DBRep_DrawableShape

CASCADE Topology V1, (c) Matra-Datavision
Locations 3

1
0] 0]
0]
1 0]
0]
0] 1
0]
1
1 0]
4
0] 1
5
0] 0]
6
2 112160
Curve2ds 24
10010
10010
1300 -1
10001
10 -210
10010
1000 -1
10001
10010
101160
1300 -1

11001

10

-210

10110
1000

-1

11001
10001
10010
13001
10010
10001
10210
13001
10210
Curves 13

10006001

1003

-01 0

10206001

1000

-01 0

11006001
110630106
11206001

1100

-01 0

-0
-0
-0
-0

100010
100310
102010
102310

1100100

Al O
o O
™
c N
)
(@) (O
>
_m_llmu
o NoOo

01

PolygonOnTriangulations 24

N N ™ ™ N N ™ ™ N N ™ ™ N N Al Al Al Al
O O O O O O O O O O O O O (O O O O O
Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al
O - NN ATATAHNANATAODAOAOEA O AN AFTAOANATA®M AT AN
N IO OO O AIONONOTOTONOAOTO AT O O
NaoONoOoN oSN oNaoON o N OO N oOON OO N OO N OO N OO N OO N ON O N O N ON ON

-0 0010 -10

-01 000110

100010

1000

-0
-01 0

100300110 -0
-01 000110

1020

-0
-01 0

-0
-0 0010

1000600110

110010

-10

Triangulations 6

4210

-2 2 43

-2 0

OO00O0OGO360623020006063 03

21

4210

O001001030063060 1313063213

1

4210

0306231231063 006060 2121063213

1

4210

©2012012306230060 1313063213

1

4210

OO000O0620120100006060 212103213

1

4210

-2 2 43

-2 0

1001031231200063 03

21

TShapes 39

Ve
le-007

(O O)
(O O)

0101101

0101101

*

le-007 1 1 0
1 1003

Ed

2 11003
2 22003

(O O)
— N
— N

© © o

010100606

-39 0 +38 0 *

Ve

0101101

*

le-007 1 1 0
1 2002

Ed

2 31002

2 43002

(O O)
™M
M <

© ©

0

010100606
-36 © +39 0 *
Ve

0101101

*

Ed

le-007 1 1 0
30

o 0w

3
3

NI NG
cRcNcReRe)

S
6
S
6

OO O0ONDNLERE

010100606

-36 0 +34 0 *

Ed

le-007 1 1 0
4 0

(OO V)

2
2

[N oNoNONOC

71
8 5
71
8 5

OO O0ONDNLE

010100606
-34 0 +38 0 *
Wi

010100606
-37 0 -35 0 +33 0 +32 0 *

Fa

O 1e-007 1 0
2 1

010100606

+31 0 *

Ve

0101101
*

Ed

le-007 1 1 0

1 5003
96 003

10 2 0 0 3

96 0

10 2 ©

O OO DNNDN

010100606
-29 0 +28 0 *

0101101
*

OO ONN
(Y
[

010100606
-26 0 +29 0

0101101
*

Ed
1le-007 1 1
1 7003

13
14
13
14

0]
0]

OO

0]
0]
0]
0]

©OOOO0ODNNDN

010100606

-26 0 +24 0
Ed

le-007 1 1
1 8002
15
16
15
16

6 00
5 00
6 0
50

OO DNNDN

010100606
-24 0 +28 0 *

Wi

0101000

-27 O -25 0 +23 0 +22 O *
Fa

O 1e-007 6 0
2 6

0101000
+21 0 *

Ed

1le-007 1 1 0
1 9001

2 17 2 0 0 1
2 185001
6 17 2 0

6 18 50

0]

0101000

-28 0 +38 0 *
Ed

1le-007 1 1 0
1 100 0 1

2 192001
2 203 001
6 19 2 0

6 20 3 0

0]

0101000

-29 0 +39 0 *
wi

010100606

-19 0 -27
Fa

0 1e-007
2 2
01010006
+17 0 *

[N oNONONGCR

010100606
-26 0 +36
Wi

01010006
-15 0 -23
Fa

0O 1e-007
2 4
01010006
+13 0 *

©CoOoRr

[N

(ol ON N (O]

[

+18 0 +37 0 *

0

[

[

+14 0 +33 0 *

0

Wi

01010006
-32 0 -15
Fa

0 1e-007
2 5
01010006
+11 0 *
wi

010100606
-35 0 -14
Fa

0 1le-007
2 3
010100606
+9 0 *

Sh

010110606
-30 0 +20
So

0100000
+7 0 *
CS

010100606

+6 3 *
Ve

0101101
*

® +22 0 +19 @ *

50

® +25 0 +18 0 *

30

O -16 0 +12 0 -10 0

+8 0 *

0101101
*

Ed
le-007
1 13 0
5 106
0]

©oRr
R
©

0101000
+4 @ -3 @ *
Co

1100000
+5 0 +2 0 *

+1 0
0]

Generated on Wed Aug 30 2017 17:04:21 for Open CASCADE Technology by @j@j@?:@]@m
1.8.13

http://www.doxygen.org/index.html

s oS Open CASCADE

> OPENCASCADE

Technology 7.2.0

Modeling Algorithms

Table of Contents

+Introduction
+ Geometric Tools
+|ntersections

+|ntersection of
two curves

+|ntersection of
Curves and
Surfaces

+|ntersection of
two Surfaces

4 Interpolations
¥ Geom2dAPI_Interpole
¥ GeomAPI_Interpolate

+Lines and Circles
from Constraints

+Types of
constraints

+Available types
of lines and
circles

+Types of
algorithms

+Curves and Surfaces
from Constraints

+Faired and
Minimal
Variation 2D
Curves

+Ruled Surfaces
+Pipe Surfaces

+Filling a contour
*Plate surfaces
+Projections

+Projection of a
2D Point on a
Curve

+Projection of a
3D Point on a
Curve

+Projection of a
Point on a
Surface

+Switching from
2d and 3d
Curves

*+Topological Tools

+ Creation of the faces
from wireframe
model

+ Classification of the
shapes

+ Qrientation of the
shapes in the
container

+Making new shapes
4 Building PCurves

+Checking the validity
of the shapes

+Taking a point inside
the face

4+ Getting normal for
the face

+The Topology API

+Error Handling in the
Topology API

+Standard Topological
Objects

+Vertex
+Edge

+Basic edge
construction

method

+Supplementary
edge
construction
methods

+QOther
information and
error status

+Edge 2D
+Polygon
+Face

+Basic face
construction
method

+Supplementary
face
construction
methods

+Error status
+Wire
+Shell
+Solid
+Object Modification
+Transformation
4 Duplication
4+ Primitives
+Making Primitives
+Box
+Wedge
+Rotation object
4+ Cylinder
+Cone
+Sphere
+Torus
4 Revolution

+Sweeping: Prism,
Revolution and Pipe

+Sweeping
+Prism

+ Rotational
Sweep

+Boolean Operations

+Input and Result
Arguments

¥ Implementation
+Fillets and Chamfers

+Fillets

+Fillet on shape

+Chamfer

+Fillet on a planar face

+ Offsets, Drafts, Pipes
and Evolved shapes

4+ Offset computation

+Shelling

4 Draft Angle

4 Pipe Constructor

+Evolved Solid
+Sewing

4 Introduction

+Sewing Algorithm

+Tolerance
Management

+Manifold and Non-
manifold Sewing

+Local Sewing
+Features
+Form Features
+Prism
4 Draft Prism
4 Revolution
+Pipe
+Mechanical Features
4Linear Form
¥ Gluer
+Split Shape
+Hidden Line Removal

+Examples
+Meshing

+Mesh presentations

+Meshing algorithm

Introduction

This manual explains how to use the Modeling Algorithms. It provides
basic documentation on modeling algorithms. For advanced information
on Modeling Algorithms, see our E-learning & Training offerings.

The Modeling Algorithms module brings together a wide range of
topological algorithms used in modeling. Along with these tools, you will
find the geometric algorithms, which they call.

http://www.opencascade.com/content/tutorial-learning

Geometric Tools

Open CASCADE Technology geometric tools provide algorithms to:

Calculate the intersection of two 2D curves, surfaces, or a 3D curve
and a surface;

Project points onto 2D and 3D curves, points onto surfaces, and 3D
curves onto surfaces;

e Construct lines and circles from constraints;
e Construct curves and surfaces from constraints;
e Construct curves and surfaces by interpolation.

Intersections

The Intersections component is used to compute intersections between
2D or 3D geometrical objects:

the intersections between two 2D curves;

the self-intersections of a 2D curve;

the intersection between a 3D curve and a surface;
the intersection between two surfaces.

The Geom2dAPI_InterCurveCurve class allows the evaluation of the
intersection points (gp_Pnt2d) between two geometric curves
(Geom2d_Curve) and the evaluation of the points of self-intersection of a
curve.

cZ

Intersection and self-intersection of curves

In both cases, the algorithm requires a value for the tolerance
(Standard_Real) for the confusion between two points. The default
tolerance value used in all constructors is 1.0e-6.

c4 segment of
tangent
intersection

point of intersection

Intersection and tangent intersection

The algorithm returns a point in the case of an intersection and a
segment in the case of tangent intersection.

Intersection of two curves

Geom2dAPI_InterCurveCurve class may be instantiated for intersection
of curves C1 and C2.

Geom2dAPI_InterCurveCurve
Intersector(C1,C2,tolerance);

or for self-intersection of curve C3.

Geom2dAPI_InterCurveCurve Intersector(C3,tolerance);
Standard_Integer N = Intersector.NbPoints();

Calls the number of intersection points

To select the desired intersection point, pass an integer index value in
argument.

gp_Pnt2d P = Intersector.Point(Index);
To call the number of intersection segments, use

Standard_Integer M = Intersector.NbSegments();

To select the desired intersection segment pass integer index values in
argument.

Handle(Geom2d_Curve) Segl, Seg2;
Intersector.Segment(Index, Segl, Seg2);
// 1if intersection of 2 curves
Intersector.Segment(Index, Segl);

// if self-intersection of a curve

If you need access to a wider range of functionalities the following
method will return the algorithmic object for the calculation of
intersections:

Geom2dInt_GInter& Thelntersector =
Intersector.Intersector();

Intersection of Curves and Surfaces

The GeomAPI_IntCS class is used to compute the intersection points
between a curve and a surface.

This class is instantiated as follows:

GeomAPI_IntCS Intersector(C, S);

To call the number of intersection points, use:

Standard_Integer nb = Intersector.NbPoints();
gp_Pnt& P = Intersector.Point(Index);

Where Index is an integer between 1 and nb, calls the intersection points.
Intersection of two Surfaces

The GeomAPI_IntSS class is used to compute the intersection of two
surfaces from Geom_Surface with respect to a given tolerance.

This class is instantiated as follows:

GeomAPI_IntSS Intersector(S1, S2, Tolerance);

Once the GeomAPI_IntSS object has been created, it can be interpreted.
Standard_Integer nb = Intersector. NbLines();

Calls the number of intersection curves.

Handle(Geom_Curve) C = Intersector.Line(Index)

Where Index is an integer between 1 and nb, calls the intersection
curves.

Interpolations

The Interpolation Laws component provides definitions of functions:
y=f(x) .

In particular, it provides definitions of:

¢ a linear function,
e an S function, and
e an interpolation function for a range of values.

Such functions can be used to define, for example, the evolution law of a
fillet along the edge of a shape.

The validity of the function built is never checked: the Law package does
not know for what application or to what end the function will be used. In
particular, if the function is used as the evolution law of a fillet, it is
important that the function is always positive. The user must check this.

Geom2dAPIL_Interpolate

This class is used to interpolate a BSplineCurve passing through an array
of points. If tangency is not requested at the point of interpolation,
continuity will be C2. If tangency is requested at the point, continuity will
be C1. If Periodicity is requested, the curve will be closed and the
junction will be the first point given. The curve will then have a continuity
of C1 only. This class may be instantiated as follows:

Geom2dAPI_Interpolate

(const Handle_TColgp_HArraylO0fPnt2d& Points,
const Standard_Boolean PeriodicFlag,

const Standard_Real Tolerance);

Geom2dAPI_Interpolate Interp(Points, Standard_False,
Precision: :Confusion());

It is possible to call the BSpline curve from the object defined above it.

Handle(Geom2d_BSplineCurve) C = Interp.Curve();

Note that the Handle(Geom2d_BSplineCurve) operator has been
redefined by the method Curve(). Consequently, it is unnecessary to pass
via the construction of an intermediate object of the
Geom2dAPI_Interpolate type and the following syntax is correct.

Handle(Geom2d_BSplineCurve) C =
Geom2dAPI_Interpolate(Points,
Standard_False,
Precision: :Confusion());

GeomAPI_Interpolate

This class may be instantiated as follows:

GeomAPI_Interpolate

(const Handle_TColgp_HArraylO0fPnt& Points,
const Standard_Boolean PeriodicFlag,

const Standard_Real Tolerance);

GeomAPI_Interpolate Interp(Points, Standard_False,

Precision: :Confusion());
It is possible to call the BSpline curve from the object defined above it.

Handle(Geom_BSplineCurve) C = Interp.Curve();

Note that the Handle(Geom_BSplineCurve) operator has been redefined
by the method Curve(). Thus, it is unnecessary to pass via the
construction of an intermediate object of the GeomAPI_Interpolate type
and the following syntax is correct.

Handle(Geom_BSplineCurve) C = GeomAPI_Interpolate(Points,
Standard_False, 1.0e-7);

Boundary conditions may be imposed with the method Load.

GeomAPI_Interpolate AnInterpolator
(Points, Standard_False, 1.0e-5);
AnInterpolator.Load (StartingTangent, EndingTangent);

Lines and Circles from Constraints

Types of constraints

The algorithms for construction of 2D circles or lines can be described
with numeric or geometric constraints in relation to other curves.

These constraints can impose the following :

the radius of a circle,

the angle that a straight line makes with another straight line,
the tangency of a straight line or circle in relation to a curve,
the passage of a straight line or circle through a point,

the circle with center in a point or curve.

For example, these algorithms enable to easily construct a circle of a
given radius, centered on a straight line and tangential to another circle.

The implemented algorithms are more complex than those provided by
the Direct Constructions component for building 2D circles or lines.

The expression of a tangency problem generally leads to several results,
according to the relative positions of the solution and the circles or
straight lines in relation to which the tangency constraints are expressed.
For example, consider the following case of a circle of a given radius (a
small one) which is tangential to two secant circles C1 and C2:

Example of a Tangency Constraint

This diagram clearly shows that there are 8 possible solutions.

In order to limit the number of solutions, we can try to express the relative
position of the required solution in relation to the circles to which it is
tangential. For example, if we specify that the solution is inside the circle
C1 and outside the circle C2, only two solutions referenced 3 and 4 on
the diagram respond to the problem posed.

These definitions are very easy to interpret on a circle, where it is easy to
identify the interior and exterior sides. In fact, for any kind of curve the
interior is defined as the left-hand side of the curve in relation to its
orientation.

This technique of qualification of a solution, in relation to the curves to
which it is tangential, can be used in all algorithms for constructing a
circle or a straight line by geometric constraints. Four qualifiers are used:

¢ Enclosing — the solution(s) must enclose the argument;

¢ Enclosed — the solution(s) must be enclosed by the argument;

e Outside — the solution(s) and the argument must be external to one
another;

¢ Unqualified — the relative position is not qualified, i.e. all solutions

apply.

It is possible to create expressions using the qualifiers, for example:

GccAna_Circ2d2TanRad

Solver(GccEnt::Outside(C1),
GccEnt::Enclosing(C2), Rad, Tolerance);

This expression finds all circles of radius Rad, which are tangent to both
circle C1 and C2, while C1 is outside and C2 is inside.

Available types of lines and circles

The following analytic algorithms using value-handled entities for creation
of 2D lines or circles with geometric constraints are available:

circle tangent to three elements (lines, circles, curves, points),
circle tangent to two elements and having a radius,

circle tangent to two elements and centered on a third element,
circle tangent to two elements and centered on a point,

circle tangent to one element and centered on a second,
bisector of two points,

bisector of two lines,

bisector of two circles,

bisector of a line and a point,

bisector of a circle and a point,

bisector of a line and a circle,

line tangent to two elements (points, circles, curves),

line tangent to one element and parallel to a line,

line tangent to one element and perpendicular to a line,

line tangent to one element and forming angle with a line.

Exterior/interior

It is not hard to define the interior and exterior of a circle. As is shown in
the following diagram, the exterior is indicated by the sense of the
binormal, that is to say the right side according to the sense of traversing
the circle. The left side is therefore the interior (or "material”).

Exterior Interior

Exterior/interior of a Circle

By extension, the interior of a line or any open curve is defined as the left
side according to the passing direction, as shown in the following
diagram:

Exterior Exterior

Intericr
Interior

Exterior/interior of a Line and a Curve
Orientation of a Line

It is sometimes necessary to define in advance the sense of travel along
a line to be created. This sense will be from first to second argument.

The following figure shows a line, which is first tangent to circle C1 which
Is interior to the line, and then passes through point P1.

An Oriented Line
Line tangent to two circles

The following four diagrams illustrate four cases of using qualifiers in the
creation of a line. The fifth shows the solution if no qualifiers are given.

Example 1 Case 1

[| .
©
Ccz

Both circles outside
Constraints: Tangent and Exterior to C1. Tangent and Exterior to C2.
Syntax:

GccAna_Lin2d2Tan
Solver(GccEnt::Outside(C1),
GccEnt::Outside(C2),
Tolerance);

Example 1 Case 2

cZ

) m
g

Both circles enclosed
Constraints: Tangent and Including C1. Tangent and Including C2.
Syntax:

GccAna_Lin2d2Tan
Solver(GccEnt::Enclosing(C1),
GccEnt::Enclosing(C2),
Tolerance);

Example 1 Case 3

C1 enclosed and C2 outside
Constraints: Tangent and Including C1. Tangent and Exterior to C2.
Syntax:

GccAna_Lin2d2Tan
Solver(GccEnt::Enclosing(C1),
GccEnt::Outside(C2),
Tolerance);

Example 1 Case 4

C1 outside and C2 enclosed
Constraints: Tangent and Exterior to C1. Tangent and Including C2.
Syntax:

GccAna_Lin2d2Tan
Solver(GccEnt::Outside(C1),
GccEnt::Enclosing(C2),
Tolerance);

Example 1 Case 5

Without qualifiers

Constraints: Tangent and Undefined with respect to C1. Tangent and
Undefined with respect to C2.

Syntax:

GccAna_Lin2d2Tan
Solver(GccEnt::Unqualified(C1),
GccEnt::Unqualified(C2),
Tolerance);

Circle of given radius tangent to two circles

The following four diagrams show the four cases in using qualifiers in the
creation of a circle.

Example 2 Case 1

Both solutions outside
Constraints: Tangent and Exterior to C1. Tangent and Exterior to C2.
Syntax:

GccAna_Circ2d2TanRad
Solver(GccEnt::Outside(C1),
GCCEnt::0Outside(C2), Rad, Tolerance);

Example 2 Case 2

C2 encompasses C1

Constraints: Tangent and Exterior to C1. Tangent and Included by C2.
Syntax:

GccAna_Circ2d2TanRad
Solver(GccEnt::Outside(C1),
GccEnt::Enclosed(C2), Rad, Tolerance);

gl

Solutions enclose C2

Example 2 Case 3

Constraints: Tangent and Exterior to C1. Tangent and Including C2.
Syntax:

GccAna_Circ2d2TanRad
Solver(GccEnt::Outside(C1),
GccEnt::Enclosing(C2), Rad, Tolerance);

Example 2 Case 4

Solutions enclose C1
Constraints: Tangent and Enclosing C1. Tangent and Enclosing C2.
Syntax:

GccAna_Circ2d2TanRad
Solver(GccEnt::Enclosing(C1),
GccEnt::Enclosing(C2), Rad, Tolerance);

Example 2 Case 5

The following syntax will give all the circles of radius Rad, which are
tangent to C1 and C2 without discrimination of relative position:

GccAna_Circ2d2TanRad Solver(GccEnt::Unqualified(C1),
GccEnt::Unqualified(C2),
Rad, Tolerance);

Types of algorithms

OCCT implements several categories of algorithms:

¢ Analytic algorithms, where solutions are obtained by the resolution
of an equation, such algorithms are used when the geometries which
are worked on (tangency arguments, position of the center, etc.) are
points, lines or circles;

e Geometric algorithms, where the solution is generally obtained by

calculating the intersection of parallel or bisecting curves built from
geometric arguments;

e lterative algorithms, where the solution is obtained by a process of
iteration.

For each kind of geometric construction of a constrained line or circle,
OCCT provides two types of access:

¢ algorithms from the package Geom2dGcc automatically select the
algorithm best suited to the problem, both in the general case and in
all types of specific cases; the used arguments are GeomZ2d objects,
while the computed solutions are gp objects;

¢ algorithms from the package GccAna resolve the problem
analytically, and can only be used when the geometries to be worked
on are lines or circles; both the used arguments and the computed
solutions are gp objects.

The provided algorithms compute all solutions, which correspond to the
stated geometric problem, unless the solution is found by an iterative
algorithm.

lterative algorithms compute only one solution, closest to an initial
position. They can be used in the following cases:

e to build a circle, when an argument is more complex than a line or a
circle, and where the radius is not known or difficult to determine:
this is the case for a circle tangential to three geometric elements, or
tangential to two geometric elements and centered on a curve;

e to build a line, when a tangency argument is more complex than a
line or a circle.

Qualified curves (for tangency arguments) are provided either by:
e the GceEnt package, for direct use by GeccAna algorithms, or
o the Geom2dGcc package, for general use by Geom2dGcc
algorithms.

The GecEnt and Geom2dGcec packages also provide simple functions for
building qualified curves in a very efficient way.

The GccAna package also provides algorithms for constructing bisecting

loci between circles, lines or points. Bisecting loci between two geometric
objects are such that each of their points is at the same distance from the
two geometric objects. They are typically curves, such as circles, lines or
conics for GeccAna algorithms. Each elementary solution is given as an
elementary bisecting locus object (line, circle, ellipse, hyperbola,
parabola), described by the Gccint package.

Note: Curves used by GccAna algorithms to define the geometric
problem to be solved, are 2D lines or circles from the gp package: they
are not explicitly parameterized. However, these lines or circles retain an
implicit parameterization, corresponding to that which they induce on
equivalent Geom2d objects. This induced parameterization is the one
used when returning parameter values on such curves, for instance with
the functions Tangencyl1, TangencyZ2, Tangency3, Intersection2 and
CenterOn3 provided by construction algorithms from the GccAna or
Geom2dGcc packages.

Curves and Surfaces from Constraints

The Curves and Surfaces from Constraints component groups together
high level functions used in 2D and 3D geometry for:

e creation of faired and minimal variation 2D curves
e construction of ruled surfaces

e construction of pipe surfaces

e filling of surfaces

e construction of plate surfaces

e extension of a 3D curve or surface beyond its original bounds.

OPEN CASCADE company also provides a product known as Surfaces
from Scattered Points, which allows constructing surfaces from scattered
points. This algorithm accepts or constructs an initial B-Spline surface
and looks for its deformation (finite elements method) which would satisfy
the constraints. Using optimized computation methods, this algorithm is
able to construct a surface from more than 500 000 points.

SSP product is not supplied with Open CASCADE Technology, but can
be purchased separately.

Faired and Minimal Variation 2D Curves

Elastic beam curves have their origin in traditional methods of modeling
applied in boat-building, where a long thin piece of wood, a lathe, was
forced to pass between two sets of nails and in this way, take the form of
a curve based on the two points, the directions of the forces applied at
those points, and the properties of the wooden lathe itself.

Maintaining these constraints requires both longitudinal and transversal
forces to be applied to the beam in order to compensate for its internal

elasticity. The longitudinal forces can be a push or a pull and the beam
may or may not be allowed to slide over these fixed points.

Batten Curves

The class FairCurve_Batten allows producing faired curves defined on

http://www.opencascade.com/content/surfaces-scattered-points

the basis of one or more constraints on each of the two reference points.
These include point, angle of tangency and curvature settings. The
following constraint orders are available:

¢ 0 the curve must pass through a point

¢ 1 the curve must pass through a point and have a given tangent

e 2 the curve must pass through a point, have a given tangent and a
given curvature.

Only 0 and 1 constraint orders are used. The function Curve returns the
result as a 2D BSpline curve.

Minimal Variation Curves

The class FairCurve_MinimalVariation allows producing curves with
minimal variation in curvature at each reference point. The following
constraint orders are available:

¢ 0 the curve must pass through a point

¢ 1 the curve must pass through a point and have a given tangent

e 2 the curve must pass through a point, have a given tangent and a
given curvature.

Constraint orders of 0, 1 and 2 can be used. The algorithm minimizes
tension, sagging and jerk energy.

The function Curve returns the result as a 2D BSpline curve.
If you want to give a specific length to a batten curve, use:

b.SetSlidingFactor(L / b.SlidingOfReference())

where b is the name of the batten curve object

Free sliding is generally more aesthetically pleasing than constrained
sliding. However, the computation can fail with values such as angles
greater than p/2 because in this case the length is theoretically infinite.

In other cases, when sliding is imposed and the sliding factor is too large,
the batten can collapse.

The constructor parameters, Tolerance and Nblterations, control how
precise the computation is, and how long it will take.

Ruled Surfaces

A ruled surface is built by ruling a line along the length of two curves.
Creation of Bezier surfaces

The class GeomFill_BezierCurves allows producing a Bezier surface
from contiguous Bezier curves. Note that problems may occur with
rational Bezier Curves.

Creation of BSpline surfaces

The class GeomFill_BSplineCurves allows producing a BSpline surface
from contiguous BSpline curves. Note that problems may occur with
rational BSplines.

Pipe Surfaces

The class GeomFill_Pipe allows producing a pipe by sweeping a curve
(the section) along another curve (the path). The result is a BSpline
surface.

The following types of construction are available:

e pipes with a circular section of constant radius,
¢ pipes with a constant section,
e pipes with a section evolving between two given curves.

Filling a contour

It is often convenient to create a surface from some curves, which will
form the boundaries that define the new surface. This is done by the
class GeomfFill_ConstrainedFilling, which allows filling a contour defined
by three or four curves as well as by tangency constraints. The resulting
surface is a BSpline.

A case in point is the intersection of two fillets at a corner. If the radius of
the fillet on one edge is different from that of the fillet on another, it
becomes impossible to sew together all the edges of the resulting
surfaces. This leaves a gap in the overall surface of the object which you
are constructing.

‘“ﬂ-\.____'_'_'_.-"

Intersecting filleted edges with differing radiuses
These algorithms allow you to fill this gap from two, three or four curves.
This can be done with or without constraints, and the resulting surface

will be either a Bezier or a BSpline surface in one of a range of filling
styles.

Creation of a Boundary

The class GeomFill_SimpleBound allows you defining a boundary for the

surface to be constructed.
Creation of a Boundary with an adjoining surface

The class GeomFill_BoundWithSurf allows defining a boundary for the
surface to be constructed. This boundary will already be joined to another
surface.

Filling styles

The enumerations FillingStyle specify the styles used to build the surface.
These include:

e Stretch — the style with the flattest patches
e Coons — a rounded style with less depth than Curved
e Curved — the style with the most rounded patches.

Intersecting filleted edges with different radii leave a gap filled by a
surface

Plate surfaces

In CAD, it is often necessary to generate a surface which has no exact
mathematical definition, but which is defined by respective constraints.
These can be of a mathematical, a technical or an aesthetic order.

Essentially, a plate surface is constructed by deforming a surface so that
it conforms to a given number of curve or point constraints. In the figure
below, you can see four segments of the outline of the plane, and a point

which have been used as the curve constraints and the point constraint
respectively. The resulting surface can be converted into a BSpline
surface by using the function MakeApprox .

The surface is built using a variational spline algorithm. It uses the
principle of deformation of a thin plate by localised mechanical forces. If
not already given in the input, an initial surface is calculated. This
corresponds to the plate prior to deformation. Then, the algorithm is
called to calculate the final surface. It looks for a solution satisfying
constraints and minimizing energy input.

Surface generated from two curves and a point

The package GeomPlate provides the following services for creating

surfaces respecting curve and point constraints:
Definition of a Framework

The class BuildPlateSurface allows creating a framework to build
surfaces according to curve and point constraints as well as tolerance
settings. The result is returned with the function Surface.

Note that you do not have to specify an initial surface at the time of

construction. It can be added later or, if none is loaded, a surface will be
computed automatically.

Definition of a Curve Constraint

The class CurveConstraint allows defining curves as constraints to the
surface, which you want to build.

Definition of a Point Constraint

The class PointConstraint allows defining points as constraints to the
surface, which you want to build.

Applying Geom_Surface to Plate Surfaces

The class Surface allows describing the characteristics of plate surface
objects returned by BuildPlateSurface::Surface using the methods of
Geom_Surface

Approximating a Plate surface to a BSpline

The class MakeApprox allows converting a GeomPlate surface into a
Geom_BSplineSurface.

Surface generated from four curves and a point

Let us create a Plate surface and approximate it from a polyline as a
curve constraint and a point constraint

Standard_Integer NbCurFront=4,
NbPointConstraint=1;

gp_Pnt P1(0.,0.,0.);

gp_Pnt P2(0.,10.,0.);

gp_Pnt P3(0.,10.,10.);

gp_Pnt P4(0.,0.,10.);

gp_Pnt P5(5.,5.,5.);
BRepBuilderAPI_MakePolygon W;
W.Add(P1);

W.Add(P2);

W.Add(P3);

W.Add(P4);

W.Add(P1);

// Initialize a BuildPlateSurface

GeomPlate_BuildPlateSurface BPSurf(3,15,2);

// Create the curve constraints

BRepTools_WireExplorer anExp;

for(anExp.Init(W); ankExp.More(); anExp.Next())

{

TopoDS_Edge E = anExp.Current();

Handle(BRepAdaptor_HCurve) C = new

BRepAdaptor_HCurve();

C-ChangeCurve().Initialize(E);

Handle(BRepFill_CurveConstraint) Cont= new

BRepFill_CurveConstraint(C,0);

BPSurf.Add(Cont);

}

// Point constraint

Handle(GeomPlate_PointConstraint) PCont= new

GeomPlate_PointConstraint(P5,0);

BPSurf.Add(PCont);

// Compute the Plate surface

BPSurf.Perform();

// Approximation of the Plate surface

Standard_Integer MaxSeg=9;

Standard_Integer MaxDegree=8;

Standard_Integer CritOrder=0;

Standard_Real dmax,Tol;

Handle(GeomPlate_Surface) PSurf = BPSurf.Surface();

dmax = Max(0.0001,10*BPSurf.GOError());

Tol=0.0001;

GeomPlate_MakeApprox

Mapp(PSurf, Tol, MaxSeg, MaxDegree, dmax, CritOrder);

Handle (Geom_Surface) Surf (Mapp.Surface());

// create a face corresponding to the approximated
Plate

Surface
Standard_Real Umin, Umax, Vmin, Vmax;
PSurf->Bounds(Umin, Umax, Vmin, Vmax);

BRepBuilderAPI_MakeFace MF(Surf,Umin, Umax, Vmin,
Vmax) ;

Projections

Projections provide for computing the following:

the projections of a 2D point onto a 2D curve

the projections of a 3D point onto a 3D curve or surface

the projection of a 3D curve onto a surface.

the planar curve transposition from the 3D to the 2D parametric
space of an underlying plane and v. s.

¢ the positioning of a 2D gp object in the 3D geometric space.

Projection of a 2D Point on a Curve

GeomZ2dAPI_ProjectPointOnCurve allows calculation of all normals
projected from a point (gp_Pnt2d) onto a geometric curve
(Geom2d_Curve). The calculation may be restricted to a given domain.

Normals from a point to a curve

The curve does not have to be a Geom2d_TrimmedCurve. The algorithm
will function with any class inheriting Geom2d_Curve.

The class Geom2dAPI_ProjectPointOnCurve may be instantiated as in
the following example:

gp_Pnt2d P;
Handle(Geom2d_BezierCurve) C =

new Geom2d_BezierCurve(args);
Geom2dAPI_ProjectPointOnCurve Projector (P, C);

To restrict the search for normals to a given domain [U1,U2], use the
following constructor:

Geom2dAPI_ProjectPointOnCurve Projector (P, C, U1,
uz);

Having thus created the Geom2dAPI_ProjectPointOnCurve object, we
can now interrogate it.

Calling the number of solution points

Standard_Integer NumSolutions = Projector.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Projector.NbPoints(). The
point, which corresponds to a given Index may be found:

gp_Pnt2d Pn = Projector.Point(Index);

Calling the parameter of a solution point

For a given point corresponding to a given Index:

Standard_Real U = Projector.Parameter(Index);

This can also be programmed as:

Standard_Real U;
Projector.Parameter(Index,U);

Calling the distance between the start and end points

We can find the distance between the initial point and a point, which
corresponds to the given Index:

Standard_Real D = Projector.Distance(Index);
Calling the nearest solution point

This class offers a method to return the closest solution point to the
starting point. This solution is accessed as follows:

gp_Pnt2d P1 = Projector.NearestPoint();
Calling the parameter of the nearest solution point

Standard_Real U = Projector.LowerDistanceParameter();

Calling the minimum distance from the point to the curve

Standard_Real D = Projector.LowerDistance();

Redefined operators

Some operators have been redefined to find the closest solution.

Standard_Real() returns the minimum distance from the point to the
curve.

Standard_Real D = Geom2dAPI_ProjectPointOnCurve
(P,C);

Standard_Integer() returns the number of solutions.

Standard_Integer N =
Geom2dAPI_ProjectPointOnCurve (P,C);

gp_Pnt2d() returns the nearest solution point.

gp_Pnt2d P1 = Geom2dAPI_ProjectPointOnCurve (P,C);

Using these operators makes coding easier when you only need the
nearest point. Thus:

Geom2dAPI_ProjectPointOnCurve Projector (P, C);
gp_Pnt2d P1 = Projector.NearestPoint();

can be written more concisely as:

gp_Pnt2d P1 = Geom2dAPI_ProjectPointOnCurve (P,C);

However, note that in this second case no intermediate
GeomZ2dAPI_ProjectPointOnCurve object is created, and thus it is
impossible to have access to other solution points.

Access to lower-level functionalities

If you want to use the wider range of functionalities available from the
Extrema package, a call to the Extrema() method will return the
algorithmic object for calculating extrema. For example:

Extrema_ExtPC2d& TheExtrema = Projector.Extrema();

Projection of a 3D Point on a Curve

The class GeomAPI_ProjectPointOnCurve is instantiated as in the
following example:

gp_Pnt P;
Handle(Geom_BezierCurve) C =

new Geom_BezierCurve(args);
GeomAPI_ProjectPointOnCurve Projector (P, C);

If you wish to restrict the search for normals to the given domain [U1,U2],
use the following constructor:

GeomAPI_ProjectPointOnCurve Projector (P, C, U1, U2);

Having thus created the GeomAPI_ProjectPointOnCurve object, you can
now interrogate it.

Calling the number of solution points

Standard_Integer NumSolutions = Projector.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Projector.NbPoints(). The
point, which corresponds to a given index, may be found:

gp_Pnt Pn = Projector.Point(Index);

Calling the parameter of a solution point

For a given point corresponding to a given index:

Standard_Real U = Projector.Parameter(Index);

This can also be programmed as:

Standard_Real U;
Projector.Parameter(Index,U);

Calling the distance between the start and end point

The distance between the initial point and a point, which corresponds to a
given index, may be found:

Standard_Real D = Projector.Distance(Index);

Calling the nearest solution point

This class offers a method to return the closest solution point to the
starting point. This solution is accessed as follows:

gp_Pnt P1 = Projector.NearestPoint();

Calling the parameter of the nearest solution point

Standard_Real U = Projector.LowerDistanceParameter();

Calling the minimum distance from the point to the curve

Standard_Real D = Projector.LowerDistance();

Redefined operators

Some operators have been redefined to find the nearest solution.

Standard_Real() returns the minimum distance from the point to the
curve.

Standard_Real D = GeomAPI_ProjectPointOnCurve (P,C);

Standard_Integer() returns the number of solutions.

Standard_Integer N = GeomAPI_ProjectPointOnCurve
(P,C);

gp_Pnt2d() returns the nearest solution point.

gp_Pnt P1 = GeomAPI_ProjectPointOnCurve (P,C);

Using these operators makes coding easier when you only need the
nearest point. In this way,

GeomAPI_ProjectPointOnCurve Projector (P, C);
gp_Pnt P1 = Projector.NearestPoint();

can be written more concisely as:
gp_Pnt P1 = GeomAPI_ProjectPointOnCurve (P,C);
In the second case, however, no intermediate

GeomAPI_ProjectPointOnCurve object is created, and it is impossible to
access other solutions points.

Access to lower-level functionalities

If you want to use the wider range of functionalities available from the
Extrema package, a call to the Extrema() method will return the
algorithmic object for calculating the extrema. For example:

Extrema_ExtPC& TheExtrema = Projector.Extrema();

Projection of a Point on a Surface

The class GeomAPI_ProjectPointOnSurf allows calculation of all normals
projected from a point from gp_Pnt onto a geometric surface from
Geom_Surface.

Point

/

e,

Note that the surface does not have to be of
Geom_RectangularTrimmedSurface type. The algorithm will function with
any class inheriting Geom_Surface.

Projection of normals from a point to a surface

GeomAPI_ProjectPointOnSurf is instantiated as in the following example:

gp_Pnt P;

Handle (Geom_Surface) S = new
Geom_BezierSurface(args);

GeomAPI_ProjectPointOnSurf Proj (P, S);

To restrict the search for normals within the given rectangular domain
[U1, U2, V1, V2], use the constructor GeomAPI_ProjectPointOnSurf Proj
(P, S, U1, U2 V1, V2)

The values of U1, U2, V1 and V2 lie at or within their maximum and
minimum limits, i.e.:

Umin <= U1l < U2 <= Umax
Vmin <= V1 < V2 <= Vmax

Having thus created the GeomAPI_ProjectPointOnSurf object, you can
interrogate it.

Calling the number of solution points

Standard_Integer NumSolutions = Proj.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Proj.NbPoints(). The point
corresponding to the given index may be found:

gp_Pnt Pn = Proj.Point(Index);

Calling the parameters of a solution point

For a given point corresponding to the given index:

Standard_Real U,V;
Proj.Parameters(Index, U, V);

Calling the distance between the start and end point

The distance between the initial point and a point corresponding to the
given index may be found:

Standard_Real D = Projector.Distance(Index);

Calling the nearest solution point

This class offers a method, which returns the closest solution point to the
starting point. This solution is accessed as follows:

gp_Pnt P1 = Proj.NearestPoint();

Calling the parameters of the nearest solution point

Standard_Real U,V;
Proj.LowerDistanceParameters (U, V);

Calling the minimum distance from a point to the surface

Standard_Real D = Proj.LowerDistance();

Redefined operators

Some operators have been redefined to help you find the nearest
solution.

Standard_Real() returns the minimum distance from the point to the
surface.

Standard_Real D = GeomAPI_ProjectPointOnSurf (P,S);

Standard_Integer() returns the number of solutions.

Standard_Integer N = GeomAPI_ProjectPointOnSurf
(P,S);

gp_Pnt2d() returns the nearest solution point.
gp_Pnt P1 = GeomAPI_ProjectPointOnSurf (P,S);

Using these operators makes coding easier when you only need the
nearest point. In this way,

GeomAPI_ProjectPointOnSurface Proj (P, S);
gp_Pnt P1 = Proj.NearestPoint();

can be written more concisely as:

gp_Pnt P1 = GeomAPI_ProjectPointOnSurface (P,S);

In the second case, however, no intermediate
GeomAPI_ProjectPointOnSurf object is created, and it is impossible to
access other solution points.

Access to lower-level functionalities

If you want to use the wider range of functionalities available from the
Extrema package, a call to the Extrema() method will return the
algorithmic object for calculating the extrema as follows:

Extrema_ExtPS& TheExtrema = Proj.Extrema();

Switching from 2d and 3d Curves

The To2d and To3d methods are used to;

¢ build a 2d curve from a 3d Geom_Curve lying on a gp_PIn plane
e build a 3d curve from a Geom2d_Curve and a gp_PIn plane.

These methods are called as follows:

Handle(Geom2d_Curve) C2d = GeomAPI::To2d(C3d, Pln);
Handle(Geom_Curve) C3d = GeomAPI::To3d(C2d, Pln);

Topological Tools

Open CASCADE Technology topological tools provide algorithms to

Create wires from edges;

Create faces from wires;

Compute state of the shape relatively other shape;
Orient shapes in container;

Create new shapes from the existing ones;

Build PCurves of edges on the faces;

Check the validity of the shapes;

Take the point in the face;

Get the normal direction for the face.

Creation of the faces from wireframe model

It is possible to create the planar faces from the arbitrary set of planar
edges randomly located in 3D space. This feature might be useful if you
need for instance to restore the shape from the wireframe model:

Wireframe model Faces of the model

To make the faces from edges it is, firstly, necessary to create planar
wires from the given edges and than create planar faces from each wire.
The static methods BOPAIgo_Tools::EdgesToWires and
BOPAIgo_Tools::WiresToFaces can be used for that:

TopoDS_Shape anEdges = ...; /* The input edges */

Standard_Real anAngTol = 1.e-8; /* The angular
tolerance for distinguishing the planes in which
the wires are located */

Standard_Boolean bShared = Standard_False; /* Defines
whether the edges are shared or not */

//

TopoDS_Shape aWires; /* resulting wires */

Standard_Integer iErr =
BOPAlgo_Tools: :EdgesToWires(anEdges, aWires,
bShared, anAngTol);

if (iErr) {
cout << "Error: Unable to build wires from given
edges\n";
return;
}
//
TopoDS_Shape aFaces; /* resulting faces */
Standard_Boolean bDone =
BOPAlgo_Tools: :WiresToFaces(aWires, aFaces,
anAngTol);
if (!bbDone) {
cout << "Error: Unable to build faces from
wires\n";
return;

}

These methods can also be used separately:

e BOPAIgo_Tools::EdgesToWires allows creating planar wires from

edges. The input edges may be not shared, but the output wires will
be sharing the coinciding vertices and edges. For this the
intersection of the edges is performed. Although, it is possible to skip
the intersection stage (if the input edges are already shared) by
passing the corresponding flag into the method. The input edges are
expected to be planar, but the method does not check it. Thus, if the
input edges are not planar, the output wires will also be not planar. In
general, the output wires are non-manifold and may contain free
vertices, as well as multi-connected vertices.
BOPAIgo_Tools::WiresToFaces allows creating planar faces from the
planar wires. In general, the input wires are non-manifold and may
be not closed, but should share the coinciding parts. The wires
located in the same plane and completely included into other wires
will create holes in the faces built from outer wires:

Wireframe model Two faces (red face has a hole)

Classification of the shapes

The following methods allow classifying the different shapes relatively
other shapes:

e The variety of the BOPTools_AlgoTools::ComputState methods
classify the vertex/edge/face relatively solid;

e BOPTools_AlgoTools::IsHole classifies wire relatively face;

e IntTools_Tools::ClassifyPointByFace classifies point relatively face.

Orientation of the shapes in the container

The following methods allow reorienting shapes in the containers:

e BOPTools_AlgoTools::OrientEdgesOnWire correctly orients edges

on the wire;
e BOPTools_AlgoTools::OrientFacesOnShell correctly orients faces on

the shell.

Making new shapes

The following methods allow creating new shapes from the existing ones:

e The variety of the BOPTools_AlgoTools::MakeNew\Vertex creates the
new vertices from other vertices and edges;

e BOPTools_AlgoTools::MakeSplitEdge splits the edge by the given
parameters.

Building PCurves

The following methods allow building PCurves of edges on faces:

e BOPTooIs_AlgoTools::BuildPCurveForEdgeOnFace computes
PCurve for the edge on the face;

e BOPTools_AlgoTools::BuildPCurveForEdgeOnPlane and
BOPTools_AlgoTools::BuildPCurveForEdgesOnPlane allow building
PCurves for edges on the planar face;

e BOPTools_AlgoTools::AttachExistingPCurve takes PCurve on the
face from one edge and attach this PCurve to other edge coinciding
with the first one.

Checking the validity of the shapes

The following methods allow checking the validity of the shapes:

e BOPTools_AlgoTools::IsMicroEdge detects the small edges;

e BOPTools_AlgoTools::ComputeTolerance computes the correct
tolerance of the edge on the face;

e BOPTools_AlgoTools::CorrectShapeTolerances and
BOPTools_AlgoTools::CorrectTolerances allow correcting the
tolerances of the sub-shapes.

e BRepLib::FindValidRange finds a range of 3d curve of the edge not
covered by tolerance spheres of vertices.

Taking a point inside the face

The following methods allow taking a point located inside the face:

e The variety of the BOPTools_AlgoTools3D::PointNearEdge allows
getting a point inside the face located near the edge;

e BOPTools_AlgoTools3D::PointinFace allows getting a point inside
the face.

Getting normal for the face

The following methods allow getting the normal direction for the
face/surface:

e BOPTools_AlgoTools3D::GetNormalToSurface computes the normal
direction for the surface in the given point defined by UV parameters;

e BOPTooIs_AlgoTools3D::GetNormalToFaceOnEdge computes the
normal direction for the face in the point located on the edge of the
face;

e BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge
computes the normal direction for the face in the point located near
the edge of the face.

The Topology API

The Topology API of Open CASCADE Technology (OCCT) includes the
following six packages:

BRepAlgoAPI
BRepBuilderAPI
BRepFilletAPI
BRepFeat
BRepOffsetAPI
BRepPrimAPI

The classes provided by the API have the following features:

e The constructors of classes provide different construction methods;

e The class retains different tools used to build objects as fields;

e The class provides a casting method to obtain the result
automatically with a function-like call.

Let us use the class BRepBuilderAPI_MakeEdge to create a linear edge
from two points.

gp_Pnt P1(10,0,0), P2(20,0,0);
TopoDS_Edge E = BRepBuilderAPI_MakeEdge(P1,P2);

This is the simplest way to create edge E from two points P1, P2, but the
developer can test for errors when he is not as confident of the data as in
the previous example.

#include <gp_Pnt.hxx>

#include <TopoDS_Edge.hxx>

#include <BRepBuilderAPI_MakeEdge.hxx>
void EdgeTest()

{

gp_Pnt P1;

gp_Pnt P2;

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone())

{
// doing ME.Edge() or E = ME here

// would raise StdFail NotDone
Standard_DomainError: :Raise
(“ProcessPoints::Failed to createan edge”);
}

TopoDS_Edge E = ME;

}

In this example an intermediary object ME has been introduced. This can
be tested for the completion of the function before accessing the result.
More information on error handling in the topology programming
interface can be found in the next section.

BRepBuilderAPI_MakeEdge provides valuable information. For example,
when creating an edge from two points, two vertices have to be created
from the points. Sometimes you may be interested in getting these
vertices quickly without exploring the new edge. Such information can be
provided when using a class. The following example shows a function
creating an edge and two vertices from two points.

void MakeEdgeAndVertices(const gp_Pnt& P1,
const gp_Pnt& P2,

TopoDS_Edgeé& E,

TopoDS_Vertex& V1,

TopoDS_Vertex& V2)

{

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone()) {
Standard_DomainError::Raise
(“MakeEdgeAndVerices: :Failed to create an edge”);
}

E = ME,

V1 = ME.Vextex1();

V2 = ME.Vertex2();

The class BRepBuilderAPI_MakeEdge provides two methods Vertex1
and Vertex2, which return two vertices used to create the edge.

How can BRepBuilderAPI_MakeEdge be both a function and a class? It
can do this because it uses the casting capabilities of C++. The
BRepBuilderAPI_MakeEdge class has a method called Edge; in the
previous example the line E = ME could have been written.

E = ME.Edge();

This instruction tells the C++ compiler that there is an implicit casting of
a BRepBuilderAPI_MakeEdge into a TopoDS_Edge using the Edge
method. It means this method is automatically called when a
BRepBuilderAPI_MakeEdge is found where a TopoDS_Edge is required.

This feature allows you to provide classes, which have the simplicity of
function calls when required and the power of classes when advanced
processing is necessary. All the benefits of this approach are explained
when describing the topology programming interface classes.

Error Handling in the Topology API

A method can report an error in the two following situations:

e The data or arguments of the method are incorrect, i.e. they do not
respect the restrictions specified by the methods in its specifications.
Typical example: creating a linear edge from two identical points is
likely to lead to a zero divide when computing the direction of the
line.

e Something unexpected happened. This situation covers every error
not included in the first category. Including: interruption,
programming errors in the method or in another method called by the
first method, bad specifications of the arguments (i.e. a set of
arguments that was not expected to fail).

The second situation is supposed to become increasingly exceptional as
a system is debugged and it is handled by the exception mechanism.
Using exceptions avoids handling error statuses in the call to a method: a
very cumbersome style of programming.

In the first situation, an exception is also supposed to be raised because
the calling method should have verified the arguments and if it did not do
so, there is a bug. For example, if before calling MakeEdge you are not
sure that the two points are non-identical, this situation must be tested.

Making those validity checks on the arguments can be tedious to
program and frustrating as you have probably correctly surmised that the
method will perform the test twice. It does not trust you. As the test

involves a great deal of computation, performing it twice is also time-
consuming.

Consequently, you might be tempted to adopt the highly inadvisable style
of programming illustrated in the following example:

#include <Standard_ErrorHandler.hxx>

try {

TopoDS_Edge E = BRepBuilderAPI_MakeEdge(P1,P2);
// go on with the edge

}

catch {
// process the error.

}

To help the user, the Topology API classes only raise the exception
StdFail_NotDone. Any other exception means that something happened
which was unforeseen in the design of this API.

The NotDone exception is only raised when the user tries to access the
result of the computation and the original data is corrupted. At the
construction of the class instance, if the algorithm cannot be completed,
the internal flag NotDone is set. This flag can be tested and in some
situations a more complete description of the error can be queried. If the
user ignores the NotDone status and tries to access the result, an
exception is raised.

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone()) {

// doing ME.Edge() or E = ME here

// would raise StdFail_NotDone
Standard_DomainError: :Raise
(“ProcessPoints::Failed to create an edge”);

}
TopoDS_Edge E = ME;

Standard Topological Objects

The following standard topological objects can be created:

Vertices

Edges

Faces

Wires
Polygonal wires
Shells

Solids.

There are two root classes for their construction and modification:

The deferred class BRepBuilderAPI_MakeShape is the root of all
BRepBuilderAPI classes, which build shapes. It inherits from the
class BRepBuilderAPI_Command and provides a field to store the
constructed shape.

The deferred class BRepBuilderAPI_ModifyShape is used as a root
for the shape modifications. It inherits BRepBuilderAPI_MakeShape
and implements the methods used to trace the history of all sub-
shapes.

Vertex

BRepBuilderAPI_MakeVertex creates a new vertex from a 3D point from
gp.

gp_Pnt P(0,0,10);
TopoDS_Vertex V = BRepBuilderAPI_MakeVertex(P);

This class always creates a new vertex and has no other methods.

Edge
Basic edge construction method

Use BRepBuilderAPI_MakeEdge to create from a curve and vertices.
The basic method constructs an edge from a curve, two vertices, and two
parameters.

Handle(Geom_Curve) C = ...; // a curve
TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices
Standard_Real p1 = ..., p2 = ..;// two parameters

TopoDS_Edge E =
BRepBuilderAPI_MakeEdge(C,V1,V2,p1,p2),

where C is the domain of the edge; V1 is the first vertex oriented
FORWARD; V2 is the second vertex oriented REVERSED; pl and p2 are
the parameters for the vertices V1 and V2 on the curve. The default
tolerance is associated with this edge.

Curve C o

Vil P2
P ¢ ERepBuilderAPl_MakeEdge

/W/—*

Basic Edge Construction

The following rules apply to the arguments:
The curve

¢ Must not be a Null Handle.
¢ |f the curve is a trimmed curve, the basis curve is used.

The vertices

e Can be null shapes. When V1 or V2 is Null the edge is open in the
corresponding direction and the corresponding parameter pl or p2
must be infinite (i.e pl is RealFirst(), p2 is RealLast()).

e Must be different vertices if they have different 3d locations and
identical vertices if they have the same 3d location (identical vertices
are used when the curve is closed).

The parameters
e Must be increasing and in the range of the curve, i.e.:

C->FirstParameter() <= pl < p2 <= C->LastParameter()

¢ |f the parameters are decreasing, the Vertices are switched, i.e. V2
becomes V1 and V1 becomes V2.

e On a periodic curve the parameters pl and p2 are adjusted by
adding or subtracting the period to obtain p1 in the range of the
curve and p2 in the range pl < p2 <= pl+ Period. So on a
parametric curve p2 can be greater than the second parameter, see
the figure below.

e Can be infinite but the corresponding vertex must be Null (see

above).
¢ The distance between the Vertex 3d location and the point evaluated
on the curve with the parameter must be lower than the default

precision.

The figure below illustrates two special cases, a semi-infinite edge and
an edge on a periodic curve.

V2 is null

p2 is ReallLast

Ve, p2=225Pi

V1,p1

W1, p1 =3 Pi

Infinite and Periodic Edges

Supplementary edge construction methods

There exist supplementary edge construction methods derived from the
basic one.

BRepBuilderAPI_MakeEdge class provides methods, which are all
simplified calls of the previous one:

e The parameters can be omitted. They are computed by projecting
the vertices on the curve.

¢ 3d points (Pnt from gp) can be given in place of vertices. Vertices are
created from the points. Giving vertices is useful when creating
connected vertices.

e The vertices or points can be omitted if the parameters are given.
The points are computed by evaluating the parameters on the curve.

e The vertices or points and the parameters can be omitted. The first
and the last parameters of the curve are used.

The five following methods are thus derived from the basic construction:

Handle(Geom_Curve) C = ...; // a curve
TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices
Standard_Real p1 = ..., p2 = ..;// two parameters
gp_Pnt P1 = ..., P2 = ...;// two points

TopoDS_Edge E;
// project the vertices on the curve

E = BRepBuilderAPI_MakeEdge(C,V1,V2);

// Make vertices from points

E = BRepBuilderAPI_MakeEdge(C,P1,P2,p1,p2);
// Make vertices from points and project them
E = BRepBuilderAPI_MakeEdge(C,P1,P2);

// Computes the points from the parameters

E = BRepBuilderAPI_MakeEdge(C, p1l,p2);

// Make an edge from the whole curve

E = BRepBuilderAPI_MakeEdge(C);

Six methods (the five above and the basic method) are also provided for
curves from the gp package in place of Curve from Geom. The methods

create the corresponding Curve from Geom and are implemented for the
following classes:

gp_Lin creates a Geom_Line gp_Circ creates a Geom_Circle gp_Elips
creates a Geom_Ellipse gp_Hypr creates a Geom_Hyperbola gp_Parab
creates a Geom_Parabola

There are also two methods to construct edges from two vertices or two
points. These methods assume that the curve is a line; the vertices or
points must have different locations.

TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices
gp_Pnt P1 = ..., P2 = ...;// two points
TopoDS_Edge E;

// linear edge from two vertices
E = BRepBuilderAPI_MakeEdge(V1,V2);

// linear edge from two points
E = BRepBuilderAPI_MakeEdge(P1,P2);

Other information and error status

The class BRepBuilderAPI_MakeEdge can provide extra information and
return an error status.

If BRepBuilderAPI_MakeEdge is used as a class, it can provide two

vertices. This is useful when the vertices were not provided as
arguments, for example when the edge was constructed from a curve
and parameters. The two methods Vertex1 and Vertex2 return the
vertices. Note that the returned vertices can be null if the edge is open in
the corresponding direction.

The Error method returns a term of the BRepBuilderAPI_EdgeError
enumeration. It can be used to analyze the error when IsDone method
returns False. The terms are:

e EdgeDone — No error occurred, IsDone returns True.

e PointProjectionFailed — No parameters were given, but the
projection of the 3D points on the curve failed. This happens if the
point distance to the curve is greater than the precision.

o ParameterOutOfRange — The given parameters are not in the
range C->FirstParameter(), C->LastParameter()

o DifferentPointsOnClosedCurve — The two vertices or points have
different locations but they are the extremities of a closed curve.

o PointWithinfiniteParameter — A finite coordinate point was
associated with an infinite parameter (see the Precision package for
a definition of infinite values).

o DifferentsPointAndParameter — The distance of the 3D point and
the point evaluated on the curve with the parameter is greater than
the precision.

e LineThroughldenticPoints — Two identical points were given to
define a line (construction of an edge without curve), gp::Resolution
Is used to test confusion .

The following example creates a rectangle centered on the origin of
dimensions H, L with fillets of radius R. The edges and the vertices are
stored in the arrays theEdges and theVertices. We use class
Array1OfShape (i.e. not arrays of edges or vertices). See the image
below.

‘f‘
-,

SR

——— L —_—

#include
#include
#include
#include
#include
#include
#include

Creating a Wire
<BRepBuilderAPI_MakeEdge.hxx>
<TopoDS_Shape . hxx>
<gp_Circ.hxx>
<gp.hxx>
<TopoDS_Wire.hxx>
<TopTools_Arrayl0fShape.hxx>
<BRepBuilderAPI_MakeWire.hxx>

// Use MakeArc method to make an edge and two
vertices
void MakeArc(Standard_Real x,Standard_Real vy,

Standard_
Standard_

Real R,
Real ang,

TopoDS_Shapeé& E,
TopoDS_Shape& V1,
TopoDS_Shape& V2)

{

gp_Ax2 Origin = gp::X0Y();
gp_Vec Offset(x, y, 0.);
Origin.Translate(Offset);
BRepBuilderAPI_MakeEdge

ME(gp_Circ(Origin,R), ang, ang+P1/2);
E = ME;

V1l = ME.Vertex1();

V2 = ME.Vertex2();

}

TopoDS_Wire MakeFilletedRectangle(const Standard_Real
H,

const Standard_Real L,

const Standard_Real R)

{

TopTools_Arrayl0fShape theEdges(1,8);

TopTools_Arrayl0fShape theVertices(1,8);

// First create the circular edges and the vertices
// using the MakeArc function described above.

void MakeArc(Standard_Real, Standard_Real,
Standard_Real, Standard_Real,

TopoDS_Shape&, TopoDS_Shape&, TopoDS_Shape&);

Standard_Real x = L/2 - R, y = H/2 - R;
MakeArc(x, -y,R,3.*PI1/2.,theEdges(2), theVertices(2),
theVertices(3));

MakeArc(x,y,R,0.,theEdges(4), theVertices(4),
theVertices(5));
MakeArc(-x,Yy,R,PI1/2.,theEdges(6), theVertices(6),
theVertices(7));

MakeArc(-x, -y,R,PI, theEdges(8), theVertices(8),
theVertices(1));

// Create the linear edges

for (Standard_Integer i = 1; 1 <=7; 1 += 2)

{

theEdges(1i) = BRepBuilderAPI_MakeEdge

(TopoDS: :Vertex(theVertices(1i)), TopoDS: :Vertex
(thevVertices(it+l)));

}
// Create the wire using the BRepBuilderAPI_MakeWire

BRepBuilderAPI_MakeWire MW;

for (l = 1, i <= 8, i++)

{

MW.Add(TopoDS: :Edge(theEdges(1)));
}

return MW.Wire();

}

Edge 2D

Use BRepBuilderAPI_MakeEdgeZ2d class to make edges on a working
plane from 2d curves. The working plane is a default value of the
BRepBuilderAPI package (see the Plane methods).

BRepBuilderAPI_MakeEdgeZ2d class is strictly similar to
BRepBuilderAPI_MakeEdge, but it uses 2D geometry from gp and
Geom2d instead of 3D geometry.

Polygon

BRepBuilderAPI_MakePolygon class is used to build polygonal wires
from vertices or points. Points are automatically changed to vertices as in
BRepBuilderAPI_MakeEdge.

The basic usage of BRepBuilderAPI_MakePolygon is to create a wire by
adding vertices or points using the Add method. At any moment, the
current wire can be extracted. The close method can be used to close the
current wire. In the following example, a closed wire is created from an
array of points.

#include <TopoDS_Wire.hxx>
#include <BRepBuilderAPI_MakePolygon.hxx>
#include <TColgp_ArraylOfPnt.hxx>

TopoDS_Wire ClosedPolygon(const TColgp_ArraylOfPnt&
Points)
{

BRepBuilderAPI_MakePolygon MP;
for(Standard_Integer

i=Points.Lower();i=Points.Upper();i++)
{

MP.Add(Points(1));

}
MP.Close();

return MP;

}

Short-cuts are provided for 2, 3, or 4 points or vertices. Those methods
have a Boolean last argument to tell if the polygon is closed. The default
value is False.

Two examples:

Example of a closed triangle from three vertices:

TopoDS_Wire W =

BRepBuilderAPI_MakePolygon(V1,V2,V3,Standard_Tru
e);

Example of an open polygon from four points:

TopoDS_Wire W =
BRepBuilderAPI_MakePolygon(P1,P2,P3,P4);

BRepBuilderAPI_MakePolygon class maintains a current wire. The
current wire can be extracted at any moment and the construction can
proceed to a longer wire. After each point insertion, the class maintains
the last created edge and vertex, which are returned by the methods
Edge, FirstVertex and LastVertex.

When the added point or vertex has the same location as the previous
one it is not added to the current wire but the most recently created edge
becomes Null. The Added method can be used to test this condition. The
MakePolygon class never raises an error. If no vertex has been added,
the Wire is Null. If two vertices are at the same location, no edge is
created.

Face

Use BRepBuilderAPI_MakeFace class to create a face from a surface
and wires. An underlying surface is constructed from a surface and
optional parametric values. Wires can be added to the surface. A planar
surface can be constructed from a wire. An error status can be returned
after face construction.

Basic face construction method

A face can be constructed from a surface and four parameters to
determine a limitation of the UV space. The parameters are optional, if
they are omitted the natural bounds of the surface are used. Up to four
edges and vertices are created with a wire. No edge is created when the
parameter is infinite.

Handle(Geom_Surface) S = ...; // a surface

Standard_Real umin,umax,vmin,vmax; // parameters

TopoDS_Face F =
BRepBuilderAPI_MakeFace (S, umin, umax, vmin, vmax);

Lmin jumax

\ -

B |

.—-l"'-

-'———T—l-'_

vmax |

ERepBuilderAP|_MakeFace

Basic Face Construction

To make a face from the natural boundary of a surface, the parameters
are not required:

Handle(Geom_Surface) S = ...; // a surface
TopoDS_Face F = BRepBuilderAPI_MakeFace(S);

Constraints on the parameters are similar to the constraints in
BRepBuilderAPI_MakeEdge.

e umin,umax (vmin,vmax) must be in the range of the surface and

must be increasing.
e On a U (V) periodic surface umin and umax (vmin,vmax) are

adjusted.
e umin, umax, vmin, vmax can be infinite. There will be no edge in the

corresponding direction.

Supplementary face construction methods

The two basic constructions (from a surface and from a surface and
parameters) are implemented for all gp package surfaces, which are
transformed in the corresponding Surface from Geom.

gp package surface Geom package surface

gp_PIn Geom_Plane
gp_Cylinder Geom_CylindricalSurface
gp_Cone creates a | Geom_ConicalSurface
gp_Sphere Geom_SphericalSurface
gp_Torus Geom_ToroidalSurface

Once a face has been created, a wire can be added using the Add
method. For example, the following code creates a cylindrical surface
and adds a wire.

gp_Cylinder C = ..; // a cylinder
TopoDS_Wire W = ...;// a wire
BRepBuilderAPI_MakeFace MF(C);
MF.Add (W) ;

TopoDS_Face F = MF;

More than one wire can be added to a face, provided that they do not
cross each other and they define only one area on the surface. (Note that
this is not checked). The edges on a Face must have a parametric curve
description.

If there is no parametric curve for an edge of the wire on the Face it is
computed by projection.

For one wire, a simple syntax is provided to construct the face from the
surface and the wire. The above lines could be written:

TopoDS_Face F = BRepBuilderAPI_MakeFace(C,W);

A planar face can be created from only a wire, provided this wire defines
a plane. For example, to create a planar face from a set of points you can

use BRepBuilderAPI_MakePolygon and BRepBuilderAPI_MakeFace.

#include <TopoDS_Face.hxx>

#include <TColgp_ArraylOfPnt.hxx>
#include <BRepBuilderAPI_MakePolygon.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>

TopoDS_Face PolygonalFace(const TColgp_ArraylO0fPnt&
thePnts)
{

BRepBuilderAPI_MakePolygon MP;
for(Standard_Integer i=thePnts.Lower();
i<=thePnts.Upper(); i++)

{
MP.Add(thePnts(1i));

}

MP.Close();

TopoDS_Face F = BRepBuilderAPI_MakeFace(MP.Wire());
return F;

}

The last use of MakeFace is to copy an existing face to add new wires.
For example, the following code adds a new wire to a face:

TopoDS_Face F = ...; // a face
TopoDS_Wire W = ...; // a wire
F = BRepBuilderAPI_MakeFace(F,W);

To add more than one wire an instance of the
BRepBuilderAPI_MakeFace class can be created with the face and the
first wire and the new wires inserted with the Add method.

Error status

The Error method returns an error status, which is a term from the
BRepBuilderAPI_FaceError enumeration.

e FaceDone — no error occurred.
e NoFace — no initialization of the algorithm; an empty constructor was

used.

e NotPlanar — no surface was given and the wire was not planar.

e CurveProjectionFailed — no curve was found in the parametric space
of the surface for an edge.

e ParametersOutOfRange — the parameters umin, umax, vmin, vmax
are out of the surface.

Wire

The wire is a composite shape built not from a geometry, but by the
assembly of edges. BRepBuilderAPI_MakeWire class can build a wire
from one or more edges or connect new edges to an existing wire.

Up to four edges can be used directly, for example:

TopoDS_Wire W = BRepBuilderAPI_MakeWire(E1l,E2,E3,E4);

For a higher or unknown number of edges the Add method must be used;
for example, to build a wire from an array of shapes (to be edges).

TopTools_ArraylOfShapes theEdges;
BRepBuilderAPI_MakeWire MW;

for (Standard_Integer i = theEdge.Lower();
1 <= thekdges.Upper(); 1i++)

MW.Add(TopoDS: :Edge(theEdges(1));
TopoDS_Wire W = MWw;

The class can be constructed with a wire. A wire can also be added. In
this case, all the edges of the wires are added. For example to merge two
wires:

#include <TopoDS_Wire.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>

TopoDS_Wire MergeWires (const TopoDS_Wire& W1,
const TopoDS_Wire& W2)

{

BRepBuilderAPI_MakeWire Mw(W1);

MW.Add (W2) ;

return Mw,

}

BRepBuilderAPI_MakeWire class connects the edges to the wire. When
a new edge is added if one of its vertices is shared with the wire it is
considered as connected to the wire. If there is no shared vertex, the

algorithm searches for a vertex of the edge and a vertex of the wire,
which are at the same location (the tolerances of the vertices are used to
test if they have the same location). If such a pair of vertices is found, the
edge is copied with the vertex of the wire in place of the original vertex.
All the vertices of the edge can be exchanged for vertices from the wire.
If no connection is found the wire is considered to be disconnected. This
IS an error.

BRepBuilderAPl_MakeWire class can return the last edge added to the
wire (Edge method). This edge can be different from the original edge if it
was copied.

The Error method returns a term of the BRepBuilderAPI_WireError
enumeration: WireDone — no error occurred. EmptyWire — no initialization
of the algorithm, an empty constructor was used. DisconnectedWire — the
last added edge was not connected to the wire. NonManifoldWire — the
wire with some singularity.

Shell

The shell is a composite shape built not from a geometry, but by the
assembly of faces. Use BRepBuilderAPI_MakeShell class to build a Shell
from a set of Faces. What may be important is that each face should
have the required continuity. That is why an initial surface is broken up
into faces.

Solid

The solid is a composite shape built not from a geometry, but by the
assembly of shells. Use BRepBuilderAPI_MakeSolid class to build a
Solid from a set of Shells. Its use is similar to the use of the MakeWire
class: shells are added to the solid in the same way that edges are added
to the wire in MakeWire.

Object Modification

Transformation

BRepBuilderAPI_Transform class can be used to apply a transformation
to a shape (see class gp_Trsf). The methods have a boolean argument to
copy or share the original shape, as long as the transformation allows (it
is only possible for direct isometric transformations). By default, the
original shape is shared.

The following example deals with the rotation of shapes.

TopoDS_Shape myShapel

// The original shape

TopoDS_Shape myShape2 can

// The original shape2

gp_Trsf T;

T.SetRotation(gp_Ax1(gp_Pnt(0.,0.,0.),9gp_Vec(0.,0.,1.
),

2.*PI/5.);

BRepBuilderAPI_Transformation theTrsf(T);

theTrsf.Perform(myShapel);

TopoDS_Shape myNewShapel = theTrsf.Shape()

theTrsf.Perform(myShape2, Standard_True);

// Here duplication is forced

TopoDS_Shape myNewShape2 = theTrsf.Shape()

L 4

in = 1

Duplication

Use the BRepBuilderAPI_Copy class to duplicate a shape. A new shape
is thus created. In the following example, a solid is copied:

TopoDS Solid MySolid;
....// Creates a solid

TopoDS_Solid myCopy = BRepBuilderAPI_Copy(mySolid);

Primitives

The BRepPrimAPI package provides an API (Application Programming
Interface) for construction of primitives such as:

e Boxes;
e Cones;
e Cylinders;
e Prisms.

It is possible to create partial solids, such as a sphere limited by
longitude. In real models, primitives can be used for easy creation of
specific sub-parts.

e Construction by sweeping along a profile:
o Linear;
o Rotational (through an angle of rotation).

Sweeps are objects obtained by sweeping a profile along a path. The
profile can be any topology and the path is usually a curve or a wire. The
profile generates objects according to the following rules:

Vertices generate Edges

Edges generate Faces.

Wires generate Shells.

Faces generate Solids.

Shells generate Composite Solids.

It is not allowed to sweep Solids and Composite Solids. Swept
constructions along complex profiles such as BSpline curves also
available in the BRepOffsetAPI package. This API provides simple, high
level calls for the most common operations.

Making Primitives
Box

The class BRepPrimAPI_MakeBox allows building a parallelepiped box.
The result is either a Shell or a Solid. There are four ways to build a box:

e From three dimensions dx, dy and dz. The box is parallel to the axes
and extends for [0,dx] [0,dy] [0,dz] .

e From a point and three dimensions. The same as above but the
point is the new origin.

e From two points, the box is parallel to the axes and extends on the
intervals defined by the coordinates of the two points.

e From a system of axes gp_Ax2 and three dimensions. Same as the
first way but the box is parallel to the given system of axes.

An error is raised if the box is flat in any dimension using the default
precision. The following code shows how to create a box:

TopoDS_Solid theBox =
BRepPrimAPI_MakeBox(10.,20.,30.);

The four methods to build a box are shown in the figure:

BRepPrimAP|_MakeBox(dx. dy. dz) BRepPrimAPI_MakeBox P, dx, dy. dz]

t : dy
P dx dx

Making Boxes

I
I
I
I
I
dz

I
dz I
I

I = dy
I

I Z clx
dy
- |
dx I
______________ o s s s s e sie s s
BRepPrimAFIl_MakeBox{P1, P2) I BERepPrimAFI_MakeBox A, dx, dy. dz]

I
P2 |
I
I

I dz
F I
5]
I

| d
I
I
I
|

Wedge

BRepPrimAPI_MakeWedge class allows building a wedge, which is a
slanted box, i.e. a box with angles. The wedge is constructed in much the
same way as a box i.e. from three dimensions dx,dy,dz plus arguments
or from an axis system, three dimensions, and arguments.

The following figure shows two ways to build wedges. One is to add a
dimension /tx, which is the length in x of the face at dy. The second is to
add xmin, xmax, zmin and zmax to describe the face at dy.

The first method is a particular case of the second with xmin = 0, xmax =
Itx, zmin = 0, zmax = dz. To make a centered pyramid you can use xmin
=xmax =dx/2, zmin =zmax =dz/ 2.

ERepPrimAF|_MakeWedge(dx, dy, dz, Ity) BRepPrimAPI_MakeWedge
(dx. dy. dz, xmin, zmin, xmax, Zmax)

dy It | ;
| dy xmin —
| Zmax
| dz
dz | .

| Zmin
I

I

s | dx
______________ clivayy vassa D mete D mnaee B maseed
ERepPrimAPI_MakeWedge | BRepPrimAPI_MakeWedge
(che by, dz, b2 0,2, dz) | (che by, dz, b2 dzf2 a2 dzi2)

I

I

I

I

I

I

I

I

I

Making Wedges

Rotation object

BRepPrimAPI_MakeOneAxis is a deferred class used as a root class for
all classes constructing rotational primitives. Rotational primitives are
created by rotating a curve around an axis. They cover the cylinder, the
cone, the sphere, the torus, and the revolution, which provides all other
curves.

The particular constructions of these primitives are described, but they all
have some common arguments, which are:

e A system of coordinates, where the Z axis is the rotation axis..
e An angle in the range [0,2*PI].

e Avmin, vmax parameter range on the curve.

The result of the OneAxis construction is a Solid, a Shell, or a Face. The
face is the face covering the rotational surface. Remember that you will
not use the OneAxis directly but one of the derived classes, which

provide improved constructions. The following figure illustrates the
OneAxis arguments.

MakeOneAxis arguments

Cylinder

BRepPrimAPI_MakeCylinder class allows creating cylindrical primitives.
A cylinder is created either in the default coordinate system or in a given
coordinate system gp_Ax2. There are two constructions:

¢ Radius and height, to build a full cylinder.
e Radius, height and angle to build a portion of a cylinder.

The following code builds the cylindrical face of the figure, which is a

quarter of cylinder along the Y axis with the origin at X, Y,Z the length of
DY and radius R.

Standard_Real X = 20, Y = 10, Z = 15, R = 10, DY =
30;

// Make the system of coordinates

gp_Ax2 axes = gp::Z0X();

axes.Translate(gp_Vec(X,Y,Z2));
TopoDS_Face F =
BRepPrimAPI_MakeCylinder (axes,R,DY,PI1/2.);

DY

Cylinder
Cone

BRepPrimAPI_MakeCone class allows creating conical primitives. Like a
cylinder, a cone is created either in the default coordinate system or in a
given coordinate system (gp_Ax2). There are two constructions:

e Two radii and height, to build a full cone. One of the radii can be null
to make a sharp cone.
e Radii, height and angle to build a truncated cone.

The following code builds the solid cone of the figure, which is located in
the default system with radii R1 and R2 and height H.

Standard_Real R1 = 30, R2 = 10, H = 15;
TopoDS_Solid S = BRepPrimAPI_MakeCone(R1,R2,H);

Cone

Sphere

BRepPrimAPI_MakeSphere class allows creating spherical primitives.
Like a cylinder, a sphere is created either in the default coordinate
system or in a given coordinate system gp_Ax2. There are four
constructions:

e From a radius — builds a full sphere.

e From a radius and an angle — builds a lune (digon).

e From a radius and two angles — builds a wraparound spherical
segment between two latitudes. The angles al and a2 must follow
the relation: PI/2 <=al <a2 <=PI/2 .

e From a radius and three angles — a combination of two previous
methods builds a portion of spherical segment.

The following code builds four spheres from a radius and three angles.

Standard_Real R = 30, ang =
PI/2, al = -PI/2.3, a2 = PI1/4;
TopoDS_Solid S1 = BRepPrimAPI_MakeSphere(R);
TopoDS_Solid S2 = BRepPrimAPI_MakeSphere(R,ang);
TopoDS_Solid S3 = BRepPrimAPI_MakeSphere(R,al,a2);
TopoDS_Solid S4 =
BRepPrimAPI_MakeSphere(R,al, a2,ang);

Note that we could equally well choose to create Shells instead of Solids.

51

Examples of Spheres
Torus

BRepPrimAPI_MakeTorus class allows creating toroidal primitives. Like
the other primitives, a torus is created either in the default coordinate
system or in a given coordinate system gp_Ax2. There are four
constructions similar to the sphere constructions:

e Two radii — builds a full torus.

¢ Two radii and an angle — builds an angular torus segment.

e Two radii and two angles — builds a wraparound torus segment
between two radial planes. The angles al, a2 must follow the
relation 0 < a2 - al < 2*PI.

e Two radii and three angles — a combination of two previous methods
builds a portion of torus segment.

S2

S

ang

Examples of Tori

The following code builds four toroidal shells from two radii and three
angles.

Standard_Real R1 = 30, R2 = 10, ang = PI, al = 0,
a2 = PI/2;
TopoDS_Shell S1 = BRepPrimAPI_MakeTorus(R1,R2);
TopoDS_Shell S2 = BRepPrimAPI_MakeTorus(R1,R2,ang);
TopoDS_Shell S3 = BRepPrimAPI_MakeTorus(R1,R2,al,a2);
TopoDS_Shell S4 =
BRepPrimAPI_MakeTorus(R1,R2,al,a2,ang);

Note that we could equally well choose to create Solids instead of Shells.

Revolution

BRepPrimAPI_MakeRevolution class allows building a uniaxial primitive
from a curve. As other uniaxial primitives it can be created in the default
coordinate system or in a given coordinate system.

The curve can be any Geom_Curve, provided it is planar and lies in the
same plane as the Z-axis of local coordinate system. There are four
modes of construction:

e From a curve, use the full curve and make a full rotation.

e From a curve and an angle of rotation.

e From a curve and two parameters to trim the curve. The two
parameters must be growing and within the curve range.

e From a curve, two parameters, and an angle. The two parameters
must be growing and within the curve range.

Sweeping: Prism, Revolution and Pipe
Sweeping

Sweeps are the objects you obtain by sweeping a profile along a path.
The profile can be of any topology. The path is usually a curve or a wire.
The profile generates objects according to the following rules:

Vertices generate Edges

Edges generate Faces.

Wires generate Shells.

Faces generate Solids.

Shells generate Composite Solids

It is forbidden to sweep Solids and Composite Solids. A Compound
generates a Compound with the sweep of all its elements.

Path//—\

Frofile

Generating a sweep

BRepPrimAPI_MakeSweep class is a deferred class used as a root of
the the following sweep classes:

e BRepPrimAPI_MakePrism — produces a linear sweep
e BRepPrimAPI_MakeRevol — produces a rotational sweep
e BRepPrimAPI_MakePipe — produces a general sweep.

Prism

BRepPrimAPI_MakePrism class allows creating a linear prism from a
shape and a vector or a direction.

e Avector allows creating a finite prism;

e Adirection allows creating an infinite or semi-infinite prism. The
semi-infinite or infinite prism is toggled by a Boolean argument. All
constructors have a boolean argument to copy the original shape or
share it (by default).

The following code creates a finite, an infinite and a semi-infinite solid
using a face, a direction and a length.

TopoDS_Face F = ..; // The swept face

gp_Dir direc(0,0,1);

Standard_Real 1 = 10;

// create a vector from the direction and the length

gp_Vec v = direc;

v *= 1;

TopoDS_Solid P1 = BRepPrimAPI_MakePrism(F,v);

// finite

TopoDS_Solid P2 = BRepPrimAPI_MakePrism(F,direc);

// infinite

TopoDS_Solid P3 =
BRepPrimAPI_MakePrism(F,direc,Standard_False);

// semi-infinite

Face F | Salid P1
|
|
|
|
|
|
|
|
|
|
______________ A [|
Solid P2 : Solid P3
|
y il I
J‘f s f’f
,,-'" -~ |
r il -~
A I
LY __..-# v"_f‘* I
A -
\..-" .-""f I
-
- |
-7 |
|

,"Finite, infinite, and semi-infinite prisms",420
Rotational Sweep

BRepPrimAPI_MakeRevol class allows creating a rotational sweep from
a shape, an axis (gp_Ax1), and an angle. The angle has a default value
of 2*P1 which means a closed revolution.

BRepPrimAPI_MakeRevol constructors have a last argument to copy or
share the original shape. The following code creates a a full and a partial
rotation using a face, an axis and an angle.

TopoDS_Face F = ...; // the profile

gp_Ax1 axis(gp_Pnt(0,0,0),gp_Dir(0,0,1));
Standard_Real ang = PI/3;

TopoDS_Solid R1 = BRepPrimAPI_MakeRevol(F,axis);

// Full revol
TopoDS_Solid R2 = BRepPrimAPI_MakeRevol(F,axis,ang);

A
axis ang
face F
R1 R2

Full and partial rotation

Boolean Operations

Boolean operations are used to create new shapes from the
combinations of two shapes.

Operation Result

Fuse all points in S1 or S2
Common all points in S1 and S2
Cut S1 by S2 | all points in S1 and not in S2
N
-
I N
-3
N
A I B
Fuse(AB)
A
Common (A,B) Cut{AB)

Boolean Operations

From the viewpoint of Topology these are topological operations followed
by blending (putting fillets onto edges created after the topological
operation).

Topological operations are the most convenient way to create real
industrial parts. As most industrial parts consist of several simple
elements such as gear wheels, arms, holes, ribs, tubes and pipes. It is
usually easy to create those elements separately and then to combine
them by Boolean operations in the whole final part.

See Boolean Operations for detailed documentation.

Input and Result Arguments

Boolean Operations have the following types of the arguments and
produce the following results:

For arguments having the same shape type (e.g. SOLID / SOLID)
the type of the resulting shape will be a COMPOUND, containing
shapes of this type;

For arguments having different shape types (e.g. SHELL / SOLID)
the type of the resulting shape will be a COMPOUND, containing
shapes of the type that is the same as that of the low type of the
argument. Example: For SHELL/SOLID the result is a COMPOUND
of SHELLSs.

For arguments with different shape types some of Boolean
Operations can not be done using the default implementation,
because of a non-manifold type of the result. Example: the FUSE
operation for SHELL and SOLID can not be done, but the CUT
operation can be done, where SHELL is the object and SOLID is the
tool.

It is possible to perform Boolean Operations on arguments of the
COMPOUND shape type. In this case each compound must not be
heterogeneous, i.e. it must contain equidimensional shapes (EDGEs
or/and WIREs, FACEs or/and SHELLs, SOLIDs). SOLIDs inside the
COMPOUND must not contact (intersect or touch) each other. The
same condition should be respected for SHELLs or FACEs, WIRES
or EDGEs.

Boolean Operations for COMPSOLID type of shape are not
supported.

Implementation

BRepAlgoAPI_BooleanOperation class is the deferred root class for
Boolean operations.

Fuse

BRepAlgoAPI_Fuse performs the Fuse operation.

TopoDS_Shape A= ..., B = ...;
TopoDS_Shape S = BRepAlgoAPI_Fuse(A,B);

Common

BRepAlgoAPI_Common performs the Common operation.

TopoDS_Shape A= ..., B = ...;
TopoDS_Shape S = BRepAlgoAPI_Common(A,B);

Cut

BRepAlgoAPI_Cut performs the Cut operation.

TopoDS_Shape A = ..., B = ...;
TopoDS_Shape S = BRepAlgoAPI_Cut(A,B);

Section

BRepAlgoAPI_Section performs the section, described as a
TopoDS_Compound made of TopoDS_Edge.

B 1: AXON - Zoom 1.305689

Section operation
TopoDS_Shape A = ..., TopoDS_ShapeB = ...;
TopoDS_Shape S = BRepAlgoAPI_Section(A,B);

Fillets and Chamfers

This library provides algorithms to make fillets and chamfers on shape
edges. The following cases are addressed:

e Corners and apexes with different radii;
e Corners and apexes with different concavity.

If there is a concavity, both surfaces that need to be extended and those,
which do not, are processed.

Fillets

Fillet on shape

Afillet is a smooth face replacing a sharp edge.
BRepFilletAPI_MakekFillet class allows filleting a shape.

To produce a fillet, it is necessary to define the filleted shape at the
construction of the class and add fillet descriptions using the Add
method.

A fillet description contains an edge and a radius. The edge must be
shared by two faces. The fillet is automatically extended to all edges in a
smooth continuity with the original edge. It is not an error to add a fillet
twice, the last description holds.

Filleting two edges using radii r1 and r2.

In the following example a filleted box with dimensions a,b,c and radius r
is created.

Constant radius

#include <TopoDS_Shape.hxx>
#include <TopoDS.hxx>

#include <BRepPrimAPI_MakeBox.hxx>
#include <TopoDS_Solid.hxx>

#include <BRepFilletAPI_MakeFillet.hxx>
#include <TopExp_Explorer.hxx>

TopoDS_Shape FilletedBox(const Standard_Real a,
const Standard_Real b,
const Standard_Real ¢c,
const Standard_Real r)

TopoDS_Solid Box = BRepPrimAPI_MakeBox(a,b,c);

BRepFilletAPI_MakeFillet MF(Box);

// add all the edges to fillet
TopExp_Explorer ex(Box, TopAbs_EDGE);
while (ex.More())

{

MF.Add(r, TopoDS: :Edge(ex.Current()));
ex.Next();

}
return MF.Shape();

}

Fillet with constant radius

Changing radius

void

CSampleTopologicalOperationsDoc: :OnEvolvedblendl
()

TopoDS_Shape theBox =
BRepPrimAPI_MakeBox(200,200,200);

BRepFilletAPI_MakeFillet Rake(theBox);
ChFi3d_FilletShape FSh = ChFi3d_Rational;
Rake.SetFilletShape(FSh);

TColgp_Arrayl0fPnt2d ParAndRad(1, 6);
ParAndRad(1).SetCoord(0., 10.);
ParAndRad(1).SetCoord(50., 20.);
ParAndRad(1).SetCoord(70., 20.);
ParAndRad(1).SetCoord(130., 60.);
ParAndRad(1).SetCoord(160., 30.);
ParAndRad(1).SetCoord(200., 20.);

TopExp_Explorer ex(theBox, TopAbs_EDGE);
Rake.Add(ParAndRad, TopoDS: :Edge(ex.Current()));
TopoDS_Shape evolvedBox = Rake.Shape();

Tl

Fillet with changing radius

Chamfer

A chamfer is a rectilinear edge replacing a sharp vertex of the face.

The use of BRepFilletAPI_MakeChamfer class is similar to the use of
BRepFilletAPI_MakekFillet, except for the following:

e The surfaces created are ruled and not smooth.
e The Add syntax for selecting edges requires one or two distances,
one edge and one face (contiguous to the edge).

Add(dist, E, F)
Add(d1, d2, E, F) with d1 on the face F.

chamfer

Chamfer

Fillet on a planar face

BRepFilletAPI_MakeFillet2d class allows constructing fillets and
chamfers on planar faces. To create a fillet on planar face: define it,
indicate, which vertex is to be deleted, and give the fillet radius with
AddFillet method.

A chamfer can be calculated with AddChamfer method. It can be
described by

¢ two edges and two distances
e one edge, one vertex, one distance and one angle. Fillets and
chamfers are calculated when addition is complete.

If face F2 is created by 2D fillet and chamfer builder from face F1, the
builder can be rebuilt (the builder recovers the status it had before
deletion). To do so, use the following syntax:

BRepFilletAPI_MakeFillet2d builder;
builder.Init(F1,F2);

Planar Fillet

#include “BRepPrimAPI_MakeBox.hxx"
#include “TopoDS_Shape.hxx”

#include “TopExp_Explorer.hxx”

#include “BRepFilletAPI_MakeFillet2d.hxx"”
#include “TopoDS.hxx"”

#include “TopoDS_Solid.hxx"”

TopoDS_Shape FilletFace(const Standard_Real a,
const Standard_Real b,
const Standard_Real c,
const Standard_Real r)

TopoDS_Solid Box = BRepPrimAPI_MakeBox (a,b,c);
TopExp_Explorer ex1(Box, TopAbs_FACE);

const TopoDS_Face& F =

TopoDS: :Face(ex1.Current());
BRepFilletAPI_MakeFillet2d MF(F);
TopExp_Explorer ex2(F, TopAbs_VERTEX);
while (ex2.More())

{

MF.AddFillet(TopoDS: :Vertex(ex2.Current()),r);
ex2.Next();

}

// while. ..

return MF.Shape();

Offsets, Drafts, Pipes and Evolved
shapes

These classes provide the following services:

e Creation of offset shapes and their variants such as:
o Hollowing;
o Shelling;
o Lofting;

e Creation of tapered shapes using draft angles;

o Creation of sweeps.

Offset computation

Offset computation can be performed using
BRepOffsetAPI_MakeOffsetShape. This class provides API to the two
different offset algorithms:

Offset algorithm based on computation of the analytical continuation.
Meaning of the parameters can be found in
BRepOffsetAPI_MakeOffsetShape::PerformByJoin method description.
The list below demonstrates principal scheme of this algorithm:

o At the first step, the offsets are computed.

After this, the analytical continuations are computed for each offset.
Pairwise intersection is computed according to the original
topological information (sharing, number of neighbors, etc.).

The offset shape is assembled.

The second algorithm is based on the fact that the offset computation for
a single face without continuation can always be built. The list below
shows simple offset algorithm:

e Each surface is mapped to its geometric offset surface.

e For each edge, pcurves are mapped to the same pcurves on offset
surfaces.

e For each edge, 3d curve is constructed by re-approximation of
pcurve on the first offset face.

e Position of each vertex in a result shell is computed as average point
of all ends of edges sharing that vertex.

¢ Tolerances are updated according to the resulting geometry. The
possible drawback of the simple algorithm is that it leads, in general
case, to tolerance increasing. The tolerances have to grow in order
to cover the gaps between the neighbor faces in the output. It should
be noted that the actual tolerance growth depends on the offset
distance and the quality of joints between the input faces. Anyway
the good input shell (smooth connections between adjacent faces)
will lead to good result.

The snippets below show usage examples:

BRepOffsetAPI_MakeOffsetShape OffsetMakerl;
// Computes offset shape using analytical
continuation mechanism.
OffsetMakerl.PerformByJoin(Shape, OffsetValue,
Tolerance);
(OffsetMakerl.IsDone())
NewShape = OffsetMakerl.Shape();

BRepOffsetAPI_MakeOffsetShape OffsetMaker2;
// Computes offset shape using simple algorithm.
OffsetMaker2.PerformBySimple(Shape, OffsetValue);
(OffsetMaker2.IsDone())
NewShape = OffsetMaker2.Shape();

Shelling

Shelling is used to offset given faces of a solid by a specific value. It
rounds or intersects adjacent faces along its edges depending on the
convexity of the edge. The MakeThickSolidByJoin method of the
BRepOffsetAPI_MakeThickSolid takes the solid, the list of faces to
remove and an offset value as input.

TopoDS_Solid SolidInitial = ..

b 4

Standard_Real of = ...;
TopTools_ListOfShape LCF;

TopoDS_Shape Result;

Standard_Real Tol = Precision::Confusion();

for (Standard_Integer i =1 ;i <= n; 1i++) {
TopoDS_Face SF = ...; // a face from SolidInitial
LCF.Append(SF);

}

BRepOffsetAPI_MakeThickSolid SolidMaker;
SolidMaker.MakeThickSolidByJoin(SolidInitial,
LCF,
of,
Tol);
if (SolidMaker.IsDone())
Result = SolidMaker.Shape();

Faces to remove RE:SU'“PIQ solid

R Of
Y

Shelling

Also it is possible to create solid between shell, offset shell. This
functionality can be called using

BRepOffsetAPI_MakeThickSolid::MakeThickSolidBySimple method. The
code below shows usage example:

BRepOffsetAPI_MakeThickSolid SolidMaker;
SolidMaker.MakeThickSolidBySimple(Shell,
OffsetValue);
(myDone.IsDone())
Solid = SolidMaker.Shape();

Draft Angle

BRepOffsetAPI_DraftAngle class allows modifying a shape by applying
draft angles to its planar, cylindrical and conical faces.

The class is created or initialized from a shape, then faces to be modified
are added; for each face, three arguments are used:

¢ Direction: the direction with which the draft angle is measured

e Angle: value of the angle

e Neutral plane: intersection between the face and the neutral plane is
invariant.

The following code places a draft angle on several faces of a shape; the
same direction, angle and neutral plane are used for each face:

TopoDS_Shape myShape = ...

// The original shape

TopTools_ListOfShape ListOfFace;

// Creation of the list of faces to be modified

gp_Dir Direc(0.,0.,1.);

// Z direction

Standard_Real Angle = 5.*PI/180.;

// 5 degree angle

gp_Pln Neutral(gp_Pnt(0.,0.,5.), Direc);

// Neutral plane Z=5

BRepOffsetAPI_DraftAngle theDraft(myShape);

TopTools_ListIteratorOfListOfShape itl;

for (itl.Initialize(ListOfFace); itl.More();
itl.Next()) {

theDraft.Add(TopoDS: :Face(itl.Value()),Direc, Ang
le,Neutral);
if (!theDraft.AddDone()) {

// An error has occurred. The faulty face is

given by // ProblematicShape
break;
}
}
if (!'theDraft.AddDone()) {
// An error has occurred

TopoDS_Face guilty =
theDraft.ProblematicShape();

}
theDraft.Build();

if (!theDraft.Isbone()) {
// Problem encountered during reconstruction

}
else {
TopoDS_Shape myResult = theDraft.Shape();
}
ﬂ""rﬂ\"_
- N
— - -"fﬂff\ \\\

\\
\

|
\ Ersgal” ““#
\\ Du l':lEtIEl‘I \\
*.\\
.
“\\ Angln

f-””N eutral Plane

—

DraftAngle

Pipe Constructor

BRepOffsetAPI_MakePipe class allows creating a pipe from a Spine,
which is a Wire and a Profile which is a Shape. This implementation is
limited to spines with smooth transitions, sharp transitions are precessed
by BRepOffsetAPI_MakePipeShell. To be more precise the continuity
must be G1, which means that the tangent must have the same direction,
though not necessarily the same magnitude, at neighboring edges.

The angle between the spine and the profile is preserved throughout the
pipe.

TopoDS_Wire Spine =

TopoDS_Shape Profile =

TopoDS_Shape Pipe =
BRepOffsetAPI_MakePipe(Spine,Profile);

4

1 : AXON - Zoom 7 097422

Example of a Pipe

Evolved Solid

BRepOffsetAPI_MakeEvolved class allows creating an evolved solid from
a Spine (planar face or wire) and a profile (wire).

The evolved solid is an unlooped sweep generated by the spine and the
profile.

The evolved solid is created by sweeping the profile’s reference axes on
the spine. The origin of the axes moves to the spine, the X axis and the
local tangent coincide and the Z axis is hormal to the face.

The reference axes of the profile can be defined following two distinct
modes:

e The reference axes of the profile are the origin axes.
e The references axes of the profile are calculated as follows:
o the origin is given by the point on the spine which is the closest
to the profile
o the X axis is given by the tangent to the spine at the point
defined above
o the Z axis is the normal to the plane which contains the spine.

TopoDS_Face Spine = ...;

TopoDS_Wire Profile = ...;

TopoDS_Shape Evol =
BRepOffsetAPI_MakeEvolved(Spine, Profile);

Sewing

Introduction

Sewing allows creation of connected topology (shells and wires) from a
set of separate topological elements (faces and edges). For example,
Sewing can be used to create of shell from a compound of separate
faces.

Shape 1 Shape 2

Shape 1 Shape 2

Shape 2

Shape 1

Shapes with partially shared edges

It is important to distinguish between sewing and other procedures, which
modify the geometry, such as filling holes or gaps, gluing, bending curves
and surfaces, etc.

Sewing does not change geometrical representation of the shapes.
Sewing applies to topological elements (faces, edges) which are not
connected but can be connected because they are geometrically
coincident : it adds the information about topological connectivity. Already
connected elements are left untouched in case of manifold sewing.

Let us define several terms:

e Floating edges do not belong to any face;

e Free boundaries belong to one face only;

e Shared edges belong to several faces, (i.e. two faces in a manifold
topology).

e Sewn faces should have edges shared with each other.

e Sewn edges should have vertices shared with each other.

Sewing Algorithm

The sewing algorithm is one of the basic algorithms used for shape
processing, therefore its quality is very important.

Sewing algorithm is implemented in the class BRepBuilder_Sewing. This
class provides the following methods:

¢ loading initial data for global or local sewing;

e setting customization parameters, such as special operation modes,
tolerances and output results;

¢ applying analysis methods that can be used to obtain connectivity
data required by external algorithms;

e sewing of the loaded shapes.

Sewing supports working mode with big value tolerance. It is not
necessary to repeat sewing step by step while smoothly increasing
tolerance.

It is also possible to sew edges to wire and to sew locally separate faces
and edges from a shape.

The Sewing algorithm can be subdivided into several independent
stages, some of which can be turned on or off using Boolean or other
flags.

In brief, the algorithm should find a set of merge candidates for each free
boundary, filter them according to certain criteria, and finally merge the
found candidates and build the resulting sewn shape.

Each stage of the algorithm or the whole algorithm can be adjusted with
the following parameters:

e Working tolerance defines the maximal distance between
topological elements which can be sewn. It is not ultimate that such
elements will be actually sewn as many other criteria are applied to
make the final decision.

¢ Minimal tolerance defines the size of the smallest element (edge) in
the resulting shape. It is declared that no edges with size less than

this value are created after sewing. If encountered, such topology

becomes degenerated.
e Non-manifold mode enables sewing of non-manifold topology.

Example
To connect a set of n contiguous but independent faces, do the following:

BRepBuilderAPI_Sewing Sew;
Sew.Add(Facel);
Sew.Add(Face2);

Sew.Add(Facen);
Sew.Perform();
TopoDS_Shape result= Sew.SewedShape();

If all faces have been sewn correctly, the result is a shell. Otherwise, it is
a compound. After a successful sewing operation all faces have a
coherent orientation.

Tolerance Management

To produce a closed shell, Sewing allows specifying the value of working
tolerance, exceeding the size of small faces belonging to the shape.

However, if we produce an open shell, it is possible to get incorrect
sewing results if the value of working tolerance is too large (i.e. it
exceeds the size of faces lying on an open boundary).

The following recommendations can be proposed for tuning-up the
sewing process:

e Use as small working tolerance as possible. This will reduce the
sewing time and, consequently, the number of incorrectly sewn
edges for shells with free boundaries.

e Use as large minimal tolerance as possible. This will reduce the
number of small geometry in the shape, both original and appearing
after cutting.

o |fitis expected to obtain a shell with holes (free boundaries) as a
result of sewing, the working tolerance should be set to a value not
greater than the size of the smallest element (edge) or smallest
distance between elements of such free boundary. Otherwise the
free boundary may be sewn only partially.

¢ It should be mentioned that the Sewing algorithm is unable to
understand which small (Iless than working tolerance) free boundary
should be kept and which should be sewn.

Manifold and Non-manifold Sewing

To create one or several shells from a set of faces, sewing merges
edges, which belong to different faces or one closed face.

Face sewing supports manifold and non manifold modes. Manifold mode
can produce only a manifold shell. Sewing should be used in the non
manifold mode to create non manifold shells.

Manifold sewing of faces merges only two nearest edges belonging to
different faces or one closed face with each other. Non manifold sewing
of faces merges all edges at a distance less than the specified tolerance.

For a complex topology it is advisable to apply first the manifold sewing
and then the non manifold sewing a minimum possible working tolerance.
However, this is not necessary for a easy topology.

Giving a large tolerance value to non manifold sewing will cause a lot of
incorrectness since all nearby geometry will be sewn.

Local Sewing

If a shape still has some non-sewn faces or edges after sewing, it is
possible to use local sewing with a greater tolerance.

Local sewing is especially good for open shells. It allows sewing an
unwanted hole in one part of the shape and keeping a required hole,
which is smaller than the working tolerance specified for the local sewing
in the other part of the shape. Local sewing is much faster than sewing
on the whole shape.

All preexisting connections of the whole shape are kept after local
sewing.

For example, if you want to sew two open shells having coincided free
edges using local sewing, it is necessary to create a compound from two
shells then load the full compound using method
BRepBuilderAPI_Sewing::Load(). After that it is necessary to add local
sub-shapes, which should be sewn using method
BRepBuilderAPI_Sewing::Add(). The result of sewing can be obtained
using method BRepBuilderAPI_Sewing::SewedShape().

See the example:

//initial sewn shapes

TopoDS_Shape aS1, aS2; // these shapes are expected
to be well sewn shells

TopoDS_Shape aComp;

BRep_Builder aB;

aB.MakeCompound(aComp) ;

aB.Add(aComp, aS1);

aB.Add(aComp, aS2);

aSewing.Load(aComp);

//sub shapes which should be locally sewed
aSewing.Add(aF1);
aSewing.Add(aF2);

//performing sewing

aSewing.Perform();

//result shape

TopoDS_Shape aRes = aSewing.SewedShape();

Features

This library contained in BRepFeat package is necessary for creation and
manipulation of form and mechanical features that go beyond the
classical boundary representation of shapes. In that sense, BRepFeat is
an extension of BRepBuilderAPI package.

Form Features

The form features are depressions or protrusions including the following
types:

e Cylinder;

Draft Prism;
Prism;

Revolved feature;
Pipe.

Depending on whether you wish to make a depression or a protrusion,
you can choose either to remove matter (Boolean cut: Fuse equal to 0) or
to add it (Boolean fusion: Fuse equal to 1).

The semantics of form feature creation is based on the construction of
shapes:

for a certain length in a certain direction;
up to the limiting face;

from the limiting face at a height;

above and/or below a plane.

The shape defining the construction of a feature can be either a
supporting edge or a concerned area of a face.

In case of supporting edge, this contour can be attached to a face of the
basis shape by binding. When the contour is bound to this face, the
information that the contour will slide on the face becomes available to
the relevant class methods. In case of the concerned area of a face, you
can, for example, cut it out and move it at a different height, which
defines the limiting face of a protrusion or depression.

Topological definition with local operations of this sort makes calculations
simpler and faster than a global operation. The latter would entail a
second phase of removing unwanted matter to get the same result.

The Form from BRepFeat package is a deferred class used as a root for
form features. It inherits MakeShape from BRepBuilderAPI and provides

implementation of methods keep track of all sub-shapes.
Prism

The class BRepFeat_MakePrism is used to build a prism interacting with
a shape. It is created or initialized from

¢ a shape (the basic shape),

¢ the base of the prism,

¢ a face (the face of sketch on which the base has been defined and
used to determine whether the base has been defined on the basic
shape or not),

e adirection,

¢ a Boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

e another Boolean indicating if the self-intersections have to be found
(not used in every case).

There are six Perform methods:

Method Description

Perform(Height) The resulting prism is of the given length.

The prism is defined between the position of
the base and the given face.

The prism is defined between the two faces
From and Until.

The prism is semi-infinite, limited by the actual
position of the base.

The prism is semi-infinite, limited by the face
Until.

The prism is infinite. In the case of a
depression, the result is similar to a cut with
an infinite prism. In the case of a protrusion,
infinite parts are not kept in the result.

Perform(Unitil)

Perform(From, Until)

PerformUntilEnd()

PerformFromEnd(Until)

PerformThruAll()

Note that Add method can be used before Perform methods to indicate
that a face generated by an edge slides onto a face of the base shape.

In the following sequence, a protrusion is performed, i.e. a face of the
shape is changed into a prism.

TopoDS_Shape Sbase = ...; // an initial shape
TopoDS_Face Fbase =; // a base of prism

gp_Dir Extrusion (.,.,.);

// An empty face is given as the sketch face

BRepFeat_MakePrism thePrism(Sbase, Fbase,
TopoDS_Face(), Extrusion, Standard_True,
Standard_True);

thePrism, Perform(100.);

if (thePrism.IsbDone()) {
TopoDS_Shape theResult = thePrism;

vector

/ Fhase

Fusion with MakePrism

Fhase

direction

e

From Face

LIntil Face

Creating a prism between two faces with Perform()

Draft Prism

The class BRepFeat_MakeDPrism is used to build draft prism topologies
interacting with a basis shape. These can be depressions or protrusions.
A class object is created or initialized from:

¢ a shape (basic shape),

e the base of the prism,

¢ a face (face of sketch on which the base has been defined and used
to determine whether the base has been defined on the basic shape
or not),

e an angle,

¢ a Boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

e another Boolean indicating if self-intersections have to be found (not
used in every case).

Evidently the input data for MakeDPrism are the same as for MakePrism
except for a new parameter Angle and a missing parameter Direction: the
direction of the prism generation is determined automatically as the
normal to the base of the prism. The semantics of draft prism feature

creation is based on the construction of shapes:

e along a length
e up to a limiting face
e from a limiting face to a height.

The shape defining construction of the draft prism feature can be either
the supporting edge or the concerned area of a face.

In case of the supporting edge, this contour can be attached to a face of
the basis shape by binding. When the contour is bound to this face, the
information that the contour will slide on the face becomes available to
the relevant class methods. In case of the concerned area of a face, it is
possible to cut it out and move it to a different height, which will define
the limiting face of a protrusion or depression direction .

The Perform methods are the same as for MakePrism.

TopoDS_Shape S = BRepPrimAPI_MakeBox(400.,250.,300.);
TopExp_Explorer EX;

Ex.Init(S, TopAbs_FACE);

Ex.Next();

Ex.Next();

Ex.Next();

Ex.Next();

Ex.Next();

TopoDS_Face F = TopoDS::Face(Ex.Current());
Handle(Geom_Surface) surf = BRep_Tool: :Surface(F);
gp_Circ2d
c(gp_Ax2d(gp_Pnt2d(200.,130.),9gp_Dir2d(1.,0.)),50.);
BRepBuilderAPI_MakeWire MW;

Handle(Geom2d_Curve) aline = new Geom2d_Circle(c);
MW.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,PI));
MW.Add(BRepBuilderAPI_MakeEdge(aline, surf,PI,2.*PI));

BRepBuilderAPI_MakeFace MKF;
MKF.Init(surf,Standard_False);
MKF.Add(MW.Wire());
TopoDS_Face FP = MKF.Face();

BRepLib: :BuildCurves3d(FP);
BRepFeat_MakeDPrism MKDP
(S,FP,F,10*PI180,Standard_True,
Standard_True);
MKDP.Perform(200);
TopoDS_Shape resl = MKDP.Shape();

e ““f \

e

/

il e

\x\ - P
T e &
. a6

™

%

A tapered prism

Revolution

The class BRepFeat_MakeRevol is used to build a revolution interacting
with a shape. It is created or initialized from:

¢ a shape (the basic shape,)

e the base of the revolution,

¢ aface (the face of sketch on which the base has been defined and
used to determine whether the base has been defined on the basic
shape or not),

e an axis of revolution,

¢ a boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

¢ another boolean indicating whether the self-intersections have to be
found (not used in every case).

There are four Perform methods:

Method Description

Perform(Angle) | The resulting revolution is of the given magnitude.

The revolution is defined between the actual position
of the base and the given face.

Perform(From, | The revolution is defined between the two faces,
Until) From and Until.

PerformThruAll() | The result is similar to Perform(2*Pl).

Perform(Unitil)

Note that Add method can be used before Perform methods to indicate
that a face generated by an edge slides onto a face of the base shape.

In the following sequence, a face is revolved and the revolution is limited
by a face of the base shape.

TopoDS_Shape Sbase = ...; // an initial shape
TopoDS_Face Frevol =; // a base of prism
TopoDS_Face FUntil =; // face limiting the revol

gp_Dir RevolDir (.,.,.);
gp_Ax1 RevolAx(gp_Pnt(.,.,.), RevolDir);

// An empty face is given as the sketch face

BRepFeat_MakeRevol theRevol(Sbase, Frevol,
TopoDS_Face(), RevolAx, Standard_True,
Standard_True);

theRevol.Perform(FUntil);
if (theRevol.IsDone()) {
TopoDS_Shape theResult = theRevol;

}
Pipe

The class BRepFeat_MakePipe constructs compound shapes with pipe
features: depressions or protrusions. A class object is created or
initialized from:

¢ a shape (basic shape),

e a base face (profile of the pipe)

¢ a face (face of sketch on which the base has been defined and used
to determine whether the base has been defined on the basic shape
or not),

* a spine wire

¢ a Boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

e another Boolean indicating if self-intersections have to be found (not
used in every case).

There are three Perform methods:

Method Description

Performy() \Tv?reé)plpe is defined along the entire path (spine
Perform(Unitil) The pipe is defined along the path until a given face
Perform(From, The pipe is defined between the two faces From
until) and Until

Let us have a look at the example:

TopoDS_Shape S = BRepPrimAPI_MakeBox(400.,250.,300.);
TopExp_Explorer EX;

Ex.Init(S, TopAbs_FACE);

Ex.Next();

Ex.Next();

TopoDS_Face F1 = TopoDS: :Face(Ex.Current());
Handle(Geom_Surface) surf = BRep_Tool::Surface(F1);

BRepBuilderAPI_MakeWire Mw1;

gp_Pnt2d p1,p2;

pl = gp_Pnt2d(100.,100.);

p2 = gp_Pnt2d(200.,100.);

Handle(Geom2d_Line) aline =
GCE2d_MakeLine(p1,p2).Value();

MW1.Add(BRepBuilderAPI_MakeEdge(aline, surf,0.,pl.Dist

ance(p2)));
pl = p2;
p2 = gp_Pnt2d(150.,200.);
aline = GCE2d_MakelLine(p1,p2).Value();

MW1.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,pl.Dist

ance(p2)));
pl = p2;
p2 = gp_Pnt2d(100.,100.);
aline = GCE2d_MakelLine(p1,p2).Value();

MW1.Add(BRepBuilderAPI_MakeEdge(aline, surf,0.,pl.Dist
ance(p2)));

BRepBuilderAPI_MakeFace MKF1;

MKF1.Init(surf,Standard_False);

MKF1.Add(MW1.Wire());

TopoDS_Face FP = MKF1l.Face();

BRepLib: :BuildCurves3d(FP);

TColgp_Arrayl0fPnt CurvePoles(1,3);

gp_Pnt pt = gp_Pnt(150.,0.,150.);

CurvePoles(1) = pt;

pt = gp_Pnt(200.,100.,150.);

CurvePoles(2) = pt;

pt = gp_Pnt(150.,200.,150.);

CurvePoles(3) = pt;

Handle(Geom_BezierCurve) curve = new Geom_BezierCurve

(CurvePoles);

TopoDS_Edge E

TopoDS_Wire W

BRepBuilderAPI_MakeEdge(curve);
BRepBuilderAPI_MakeWire(E);

BRepFeat_MakePipe MKPipe (S, FP,F1,W,Standard_False,

Standard_True);
MKPipe.Perform();
TopoDS_Shape resl = MKPipe.Shape();

B 1: AXON - Zoom 0.657194

Pipe depression

Mechanical Features

Mechanical features include ribs, protrusions and grooves (or slots),
depressions along planar (linear) surfaces or revolution surfaces.

The semantics of mechanical features is built around giving thickness to
a contour. This thickness can either be symmetrical — on one side of the
contour — or dissymmetrical — on both sides. As in the semantics of form
features, the thickness is defined by construction of shapes in specific
contexts.

The development contexts differ, however, in the case of mechanical
features. Here they include extrusion:

e to a limiting face of the basis shape;
e to or from a limiting plane;
e to a height.

A class object is created or initialized from

e a shape (basic shape);

a wire (base of rib or groove);

a plane (plane of the wire);

directionl (a vector along which thickness will be built up);

direction2 (vector opposite to the previous one along which thickness

will be built up, may be null);

¢ a Boolean indicating the type of operation (fusion=rib or cut=groove)
on the basic shape;

¢ another Boolean indicating if self-intersections have to be found (not
used in every case).

Linear Form

Linear form is implemented in MakeLinearForm class, which creates a rib
or a groove along a planar surface. There is one Perform() method,
which performs a prism from the wire along the direction1 and direction2
interacting with base shape Sbase. The height of the prism is
Magnitude(Direction1)+Magnitude(direction2).

BRepBuilderAPI_MakeWire mkw;

gp_Pnt pl = gp_Pnt(0.,0.,0.);

gp_Pnt p2 = gp_Pnt(200.,0.,0.);

mkw.Add (BRepBuilderAPI_MakeEdge(p1,p2));
pl = p2;

p2 = gp_Pnt(200.,0.,50.);

mkw.Add (BRepBuilderAPI_MakeEdge(p1,p2));
pl = p2;

p2 gp_Pnt(50.,0.,50.);

mkw.Add (BRepBuilderAPI_MakeEdge(p1,p2));
pl = p2;

p2 = gp_Pnt(50.,0.,200.);

mkw.Add (BRepBuilderAPI_MakeEdge(p1,p2));
pl = p2;

p2 = gp_Pnt(0.,0.,200.);

mkw.Add (BRepBuilderAPI_MakeEdge(p1,p2));
pl = p2;

mkw.Add (BRepBuilderAPI_MakeEdge(p2,gp_Pnt(0.,0.,0.)))

14
TopoDS_Shape S =
BRepBuilderAPI_MakePrism(BRepBuilderAPI_MakeFace

(mkw.wire()),gp_Vec(gp_Pnt(0.,0.,0.),9p_P
nt(0.,100.,0.)));

TopoDS_Wire W =
BRepBuilderAPI_MakeWire(BRepBuilderAPI_MakeEdge (
gp_Pnt
(50.,45.,100.),

gp_Pnt(100.,45.,50.)));

Handle(Geom_Plane) aplane =
new Geom_Plane(gp_Pnt(0.,45.,0.),
gp_Vec(0.,1.,0.));

BRepFeat_MakelLinearForm aform(S, W, aplane, gp_Dir
(0'/5'/0')/ gp_Dir(O.,—S.,O.), 1/
Standard_True);

aform.Perform();

TopoDS_Shape res = aform.Shape();

Creating a rib

Gluer

The class BRepFeat_Gluer allows gluing two solids along faces. The
contact faces of the glued shape must not have parts outside the contact
faces of the basic shape. Upon completion the algorithm gives the glued
shape with cut out parts of faces inside the shape.

The class is created or initialized from two shapes: the “glued” shape and
the basic shape (on which the other shape is glued). Two Bind methods
are used to bind a face of the glued shape to a face of the basic shape
and an edge of the glued shape to an edge of the basic shape.

Note that every face and edge has to be bounded, if two edges of two
glued faces are coincident they must be explicitly bounded.

TopoDS_Shape Sbase = ...; // the basic shape
TopoDS_Shape Sglued = ...; // the glued shape

TopTools_ListOfShape Lfbase;

TopTools_ListOfShape Lfglued;
// Determination of the glued faces

BRepFeat_Gluer theGlue(Sglue, Sbase);

TopTools_ListIteratorOfListOfShape itlb(Lfbase);

TopTools_ListIteratorOfListOfShape itlg(Lfglued);

for (; itlb.More(); itlb.Next(), itlg(Next()) {

const TopoDS_Face& f1l = TopoDS::Face(itlg.Vvalue());

const TopoDS_Face& f2 = TopoDS::Face(itlb.value());

theGlue.Bind(f1,f2);

// for example, use the class FindEdges from LocOpe
to

// determine coincident edges

LocOpe_FindEdge fined(f1,f2);

for (fined.InitIterator(); fined.More();
fined.Next()) {

theGlue.Bind(fined.EdgeFrom(), fined.EdgeTo());

}

}
theGlue.Build();

if (theGlue.IsDone() {
TopoDS_Shape theResult = theGlue;

}
Split Shape

The class BRepFeat_SplitShape is used to split faces of a shape into
wires or edges. The shape containing the new entities is rebuilt, sharing
the unmodified ones.

The class is created or initialized from a shape (the basic shape). Three
Add methods are available:

e Add(Wire, Face) — adds a new wire on a face of the basic shape.
e Add(Edge, Face) — adds a new edge on a face of the basic shape.
e Add(EdgeNew, EdgeOld) — adds a new edge on an existing one (the

old edge must contain the new edge).

Note The added wires and edges must define closed wires on faces or

wires located between two existing edges. Existing edges must not be
intersected.

TopoDS_Shape Shbase .; // basic shape

TopoDS_Face Fsplit .; // face of Sbase

TopoDS_Wire Wsplit ...; // new wire contained in
Fsplit

BRepFeat_SplitShape Spls(Sbase);

Spls.Add(Wsplit, Fsplit);

TopoDS_Shape theResult = Spls;

Hidden Line Removal

To provide the precision required in industrial design, drawings need to
offer the possibility of removing lines, which are hidden in a given
projection.

For this the Hidden Line Removal component provides two algorithms:
HLRBRep_Algo and HLRBRep_PolyAlgo.

These algorithms are based on the principle of comparing each edge of
the shape to be visualized with each of its faces, and calculating the
visible and the hidden parts of each edge. Note that these are not the
algorithms used in generating shading, which calculate the visible and
hidden parts of each face in a shape to be visualized by comparing each
face in the shape with every other face in the same shape. These
algorithms operate on a shape and remove or indicate edges hidden by
faces. For a given projection, they calculate a set of lines characteristic of
the object being represented. They are also used in conjunction with
extraction utilities, which reconstruct a new, simplified shape from a
selection of the results of the calculation. This new shape is made up of
edges, which represent the shape visualized in the projection.

HLRBRep_Algo allows working with the shape itself, whereas
HLRBRep_PolyAlgo works with a polyhedral simplification of the shape.
When you use HLRBRep_Algo, you obtain an exact result, whereas,
when you use HLRBRep_PolyAlgo, you reduce the computation time, but
obtain polygonal segments.

No smoothing algorithm is provided. Consequently, a polyhedron will be
treated as such and the algorithms will give the results in form of line
segments conforming to the mathematical definition of the polyhedron.
This is always the case with HLRBRep_PolyAlgo.

HLRBRep_Algo and HLRBRep_PolyAlgo can deal with any kind of
object, for example, assemblies of volumes, surfaces, and lines, as long
as there are no unfinished objects or points within it.

However, there some restrictions in HLR use:

e Points are not processed,;
e Infinite faces or lines are not processed.

3

sewn edges

sharp edge

u""'"

sharp edges

smooth edges

,"Sharp, smooth and sewn edges in a simple screw shape",320

outline edges

isoparameters

Outline edges and isoparameters in the same shape

A simple screw shape seen with shading

Hidden
sharp
edges

K

An extraction showing hidden sharp edges

The following services are related to Hidden Lines Removal :
Loading Shapes

To pass a TopoDS_Shape to an HLRBRep_Algo object, use
HLRBRep_Algo::Add. With an HLRBRep_PolyAlgo object, use

HLRBRep_PolyAlgo::Load. If you wish to add several shapes, use Add or
Load as often as necessary.

Setting view parameters

HLRBRep_Algo::Projector and HLRBRep_PolyAlgo::Projector set a
projector object which defines the parameters of the view. This object is
an HLRAIgo_Projector.

Computing the projections

HLRBRep_PolyAlgo::Update launches the calculation of outlines of the
shape visualized by the HLRBRep_PolyAlgo framework.

In the case of HLRBRep_Algo, use HLRBRep_Algo::Update. With this
algorithm, you must also call the method HLRBRep_Algo::Hide to
calculate visible and hidden lines of the shape to be visualized. With an
HLRBRep_PolyAlgo object, visible and hidden lines are computed by
HLRBRep_PolyHLRToShape.

Extracting edges

The classes HLRBRep_HLRToShape and HLRBRep_PolyHLRToShape
present a range of extraction filters for an HLRBRep_Algo object and an
HLRBRep_PolyAlgo object, respectively. They highlight the type of edge
from the results calculated by the algorithm on a shape. With both
extraction classes, you can highlight the following types of output:

e visible/hidden sharp edges;
e visible/hidden smooth edges;
¢ visible/hidden sewn edges;
e visible/hidden outline edges.

To perform extraction on an HLRBRep_PolyHLRToShape object, use
HLRBRep_PolyHLRToShape::Update function.

For an HLRBRep_HLRToShape object built from an HLRBRepAlgo
object you can also highlight:

e visible isoparameters and
¢ hidden isoparameters.

Examples

HLRBRep_Algo

// Build The algorithm object
myAlgo = new HLRBRep_Algo();

// Add Shapes into the algorithm

TopTools_ListIteratorOfListOfShape
anlterator(myListOfShape);

for (;anIterator.More();anIterator.Next())

myAlgo-Add(anIterator.Value(),myNbIsos);

// Set The Projector (myProjector is a
HLRAlgo_Projector)
myAlgo-Projector(myProjector);

// Build HLR
myAlgo->Update();

// Set The Edge Status
myAlgo->Hide();

// Build the extraction object
HLRBRep_HLRToShape aHLRToShape(myAlgo);

// extract the results :
TopoDS_Shape VCompound =
aHLRToShape.VCompound();

TopoDS_Shape RglLineVCompound

aHLRToShape.RglLineVCompound();
TopoDS_Shape RgNLineVCompound

aHLRToShape.RgNLineVCompound();
TopoDS_Shape OutLineVCompound

aHLRToShape.OutLineVCompound();
TopoDS_Shape IsolLineVCompound

aHLRToShape.IsoLineVCompound();

TopoDS_Shape HCompound =
aHLRToShape.HCompound();

TopoDS_Shape RgilLineHCompound

aHLRToShape.RglLineHCompound();
TopoDS_Shape RgNLineHCompound

aHLRToShape.RgNLineHCompound();
TopoDS_Shape OutLineHCompound

aHLRToShape.OutLineHCompound();
TopoDS_Shape IsolLineHCompound

aHLRToShape.IsoLineHCompound();

HLRBRep_PolyAilgo

// Build The algorithm object
myPolyAlgo = new HLRBRep_PolyAlgo();

// Add Shapes into the algorithm
TopTools_ListIteratorOfListOfShape
anlterator(myListOfShape);

for (;anIterator.More();anIterator.Next())
myPolyAlgo-Load(anIterator.Value());

// Set The Projector (myProjector is a
HLRAlgo_Projector)
myPolyAlgo->Projector(myProjector);

// Build HLR
myPolyAlgo->Update();

// Build the extraction object
HLRBRep_PolyHLRToShape aPolyHLRToShape;
aPolyHLRToShape.Update(myPolyAlgo);

// extract the results :
TopoDS_Shape VCompound =
aPolyHLRToShape.VCompound();
TopoDS_Shape RglLineVCompound =
aPolyHLRToShape.RglLineVCompound();
TopoDS_Shape RgNLineVCompound =
aPolyHLRToShape.RgNLineVCompound();
TopoDS_Shape OutLineVCompound =
aPolyHLRToShape.OutLineVCompound();
TopoDS_Shape HCompound =
aPolyHLRToShape.HCompound();
TopoDS_Shape RglLineHCompound =
aPolyHLRToShape.RglLineHCompound();
TopoDS_Shape RgNLineHCompound =
aPolyHLRToShape.RgNLineHCompound();
TopoDS_Shape OutLineHCompound =
aPolyHLRToShape.OutLineHCompound();

Meshing

Mesh presentations

In addition to support of exact geometrical representation of 3D objects
Open CASCADE Technology provides functionality to work with
tessellated representations of objects in form of meshes.

Open CASCADE Technology mesh functionality provides:

e data structures to store surface mesh data associated to shapes,
and some basic algorithms to handle these data

¢ data structures and algorithms to build surface triangular mesh from
BRep objects (shapes).

e tools to extend 3D visualization capabilities of Open CASCADE
Technology with displaying meshes along with associated pre- and
post-processor data.

Open CASCADE Technology includes two mesh converters:

e VRML converter translates Open CASCADE shapes to VRML 1.0
files (Virtual Reality Modeling Language). Open CASCADE shapes
may be translated in two representations: shaded or wireframe. A
shaded representation present shapes as sets of triangles computed
by a mesh algorithm while a wireframe representation present
shapes as sets of curves.

e STL converter translates Open CASCADE shapes to STL files. STL
(STtereoLithography) format is widely used for rapid prototyping.

Open CASCADE SAS also offers Advanced Mesh Products:

e Open CASCADE Mesh Framework (OMF)
e EXxpress Mesh

Besides, we can efficiently help you in the fields of surface and volume
meshing algorithms, mesh optimization algorithms etc. If you require a
gualified advice about meshing algorithms, do not hesitate to benefit from
the expertise of our team in that domain.

http://www.opencascade.com/content/mesh-framework
http://www.opencascade.com/content/express-mesh

The projects dealing with numerical simulation can benefit from using
SALOME - an Open Source Framework for CAE with CAD data

interfaces, generic Pre- and Post- F.E. processors and API for integrating
F.E. solvers.

Learn more about SALOME platform on http://www.salome-platform.org

http://www.salome-platform.org

Meshing algorithm

The algorithm of shape triangulation is provided by the functionality of
BRepMesh_IncrementalMesh class, which adds a triangulation of the
shape to its topological data structure. This triangulation is used to
visualize the shape in shaded mode.

const Standard_Real aRadius = 10.0;

const Standard_Real aHeight = 25.0;
BRepPrimAPI_MakeCylinder aCylinder(aRadius, aHeight);
TopoDS_Shape aShape = aCylinder.Shape();

const Standard_Real alLinearDeflection = 0.01;
const Standard_Real anAngularDeflection = 0.5;

BRepMesh_IncrementalMesh aMesh(aShape,
aLinearDeflection, Standard_False,
anAngularDeflection);

The default meshing algorithm BRepMesh_ IncrementalMesh has two
major options to define triangulation — linear and angular deflections.

At the first step all edges from a face are discretized according to the
specified parameters.

At the second step, the faces are tessellated. Linear deflection limits the
distance between a curve and its tessellation, whereas angular deflection
limits the angle between subsequent segments in a polyline.

.-'-:f

d <= Tinear deflection
® <= angular deflection
Deflection parameters of BRepMesh_IncrementalMesh algorithm

Linear deflection limits the distance between triangles and the face
interior.

d <= Tinear deflection
Linear deflection

Note that if a given value of linear deflection is less than shape tolerance
then the algorithm will skip this value and will take into account the shape
tolerance.

The application should provide deflection parameters to compute a
satisfactory mesh. Angular deflection is relatively simple and allows using
a default value (12-20 degrees). Linear deflection has an absolute
meaning and the application should provide the correct value for its
models. Giving small values may result in a too huge mesh (consuming a
lot of memory, which results in a long computation time and slow
rendering) while big values result in an ugly mesh.

For an application working in dimensions known in advance it can be
reasonable to use the absolute linear deflection for all models. This
provides meshes according to metrics and precision used in the
application (for example, it it is known that the model will be stored in
meters, 0.004 m is enough for most tasks).

However, an application that imports models created in other applications
may not use the same deflection for all models. Note that actually this is
an abnormal situation and this application is probably just a viewer for
CAD models with dimensions varying by an order of magnitude. This

problem can be solved by introducing the concept of a relative linear
deflection with some LOD (level of detail). The level of detail is a scale
factor for absolute deflection, which is applied to model dimensions.

Meshing covers a shape with a triangular mesh. Other than hidden line
removal, you can use meshing to transfer the shape to another tool: a
manufacturing tool, a shading algorithm, a finite element algorithm, or a
collision algorithm.

You can obtain information on the shape by first exploring it. To access
triangulation of a face in the shape later, use BRepTool:: Triangulation. To
access a polygon, which is the approximation of an edge of the face, use
BRepTool::PolygonOnTriangulation.

Generated on Wed Aug 30 2017 17:04:21 for Open CASCADE Technology by @j{jf’lg%[]
1.8.13

http://www.doxygen.org/index.html

B Open CASCADE

> OPENCASCADE

Technology 7.2.0

Boolean Operations

Table of Contents

+|ntroduction
+Qverview
+Operators

+Boolean
operator

+General Fuse
operator

+Splitter operator
+Section operator
4 Parts of algorithms
+Terms and Definitions
¥Interferences

+Vertex/Vertex
interference

+Vertex/Edge
interference

+Vertex/Face
interference

+Edge/Edge
interference

+Edge/Face
interference

+Face/Face
Interference

+Vertex/Solid
Interference

+Edge/Soild
Interference

+Face/Soild
Interference

+Solid/Soild
Interference

+Computation
Order

+Results
+Paves
4+ Pave Blocks
+Shrunk Range
+Common Blocks
+Facelnfo

+Data Structure

¥ Arguments
+Shapes
*Interferences

+Pave, PaveBlock and
CommonBlock

+Points and Curves
+Facelnfo

+Root Classes

+Class
BOPAIgo_Options

4 Class BOPAIgo_Algo

+|ntersection Part

+|nitialization

+Compute
Vertex/Vertex
Interferences

+Compute Vertex/Edge
Interferences

+Update Pave Blocks

+Compute Edge/Edge
Interferences

+Compute Vertex/Face
Interferences

+Compute Edge/Face
Interferences

+Build Split Edges

+Compute Face/Face
Interferences

+Build Section Edges

+Build P-Curves

+Process Degenerated
Edges

+General description of
the Building Part

+General Fuse Algorithm
¥ Arguments
+Results
+Examples

+Case 1: Three
edges
intersecting at a
point

+Case 2: Two
wires and an
edge

+Case 3: An edge
intersecting
with a face

+Case 4: An edge
lying on a face

+Case 5: An edge
and a shell

+Case 6: A wire
and a shell

+Case 7: Three
faces

+Case 8: A face
and a shell

+Case 9: A shell
and a solid

+Case 10: A
compound and
a solid

+Class
BOPAlgo_Builder

+Fields
+|nitialization

+Build Images for
Vertices

4 Build Result of
Type Vertex

+Build Images for
Edges

+Build Result of
Type Edge

+Build Images for
Wires

+Build Result of
Type Wire

+Build Images for
Faces

+Build Result of
Type Face

+Build Images for
Shells

+Build Result of
Type Shell

+Build Images for
Solids

+Build Result of
Type Solid

+Build Images for
Type CompSolid

+Build Result of
Type Compsolid

+Build Images for
Compounds

+Build Result of
Type Compound

4 Post-Processing
+Splitter Algorithm
¥ Arguments
+Results
+Usage
+API
+ DRAW
+Examples
+Example 1
+Example 2

+Example 3

+Boolean Operations
Algorithm

¥ Arguments

+Results. General
Rules

+Examples

+Case 1: Two
Vertices

+Case 2: A Vertex
and an Edge

+Case 3: A Vertex
and a Face

+Case 4: A Vertex
and a Solid

+Case 5: Two
edges
intersecting at
one point

+Case 6: Two
edges having a
common block

+Case 7: An Edge
and a Face
intersecting at a
point

+Case 8: A Face
and an Edge

that have a
common block

+Case 9: An Edge
and a Solid
intersecting at a
point

+Case 10: An
Edge and a
Solid that have
a common block

+Case 11: Two
intersecting
faces

+Case 12: Two
faces that have

a common part

+Case 13: Two
faces that have
a common edge

+Case 14: Two
faces that have
a common
vertex

+Case 15: A Face
and a Solid that
have an
intersection
curve.

+Case 16: A Face
and a Solid that
have
overlapping
faces.

+Case 17: A Face
and a Solid that
have
overlapping
edges.

+Case 18: A Face
and a Solid that
have
overlapping
vertices.

+Case 19: Two
intersecting
Solids.

+Case 20: Two
Solids that have
overlapping
faces.

+Case 21: Two
Solids that have
overlapping
edges.

+Case 22: Two
Solids that have
overlapping
vertices.

+Case 23: A Shell
and a Wire cut

by a Solid.

+Case 24: Two
Wires that have
overlapping
edges.

+Class BOPAlgo_BOP

4 Building Draft Result

4 Building the Result
+Section Algorithm

¥ Arguments

+Results and general
rules

+Examples

+Case 1: Two
Vertices

+Case 1: Case 2:
A Vertex and an
Edge

+Case 1: Case 2:
A Vertex and a
Face

+Case 4: A Vertex
and a Solid

+Case 5: Two
edges
intersecting at
one point

+Case 6: Two
edges having a
common block

+Case 7: An Edge
and a Face
intersecting at a
point

+Case 8: A Face
and an Edge

that have a
common block

+Case 9: An Edge
and a Solid
intersecting at a
point

+Case 10: An

Edge and a
Solid that have
a common block

+Case 11: Two
intersecting
faces

+Case 12: Two
faces that have
a common part

+Case 13: Two
faces that have
overlapping
edges

+Case 14: Two
faces that have
overlapping
vertices

+Case 15: A Face
and a Solid that
have an
intersection
curve

+Case 16: A Face
and a Solid that
have
overlapping
faces.

+Case 17: A Face
and a Solid that
have
overlapping
edges.

+Case 18: A Face
and a Solid that
have
overlapping
vertices.

+Case 19: Two
intersecting
Solids

+Case 20: Two
Solids that have
overlapping
faces

+Case 21: Two

Solids that have
overlapping
edges

+Case 22: Two
Solids that have
overlapping
vertices

+Class
BOPAlgo_Section

4 Building the Result
+Volume Maker Algorithm
+Usage
+Examples
4 Cells Builder algorithm
+Usage
+Examples
4 Algorithm Limitations
¥ Arguments

+¥Common
requirements

+Pure self-
interference

+Self-
interferences
due to
tolerances

+Parametric
representation

+Using
tolerances of
vertices to fix
gaps
+Intersection problems

+Pure
intersections
and common
zones

+Tolerances and
inaccuracies

+Acquired Self-
interferences

+Advanced Options

+Fuzzy Boolean
Operation

+Examples
+Gluing Operation

+Usage

+Examples

+Safe processing
mode

+Usage
+Errors and warnings
reporting system
+Usage
4+ Package BRepAIgoAPI
+Package BOPTest

+Case 1. General
Fuse operation

4+ Case 2. Splitting
operation

+Case 3.
Common
operation

+Case 4. Fuse
operation

+Case 5. Cut
operation

+Case 6. Section
operation

Introduction

This document provides a comprehensive description of the Boolean
Operation Algorithm (BOA) as it is implemented in Open CASCADE
Technology. The Boolean Component contains:

General Fuse Operator (GFA),
Boolean Operator (BOA),
Section Operator (SA),
Splitter Operator (SPA).

GFA is the base algorithm for BOA, SPA, SA.

GFA has a history-based architecture designed to allow using OCAF
naming functionality. The architecture of GFA is expandable, that allows
creating new algorithms basing on it.

Overview

Operators

Boolean operator

The Boolean operator provides the operations (Common, Fuse, Cut)
between two groups: Objects and Tools. Each group consists of an
arbitrary number of arguments in terms of TopoDS_Shape.

The operator can be represented as:
RB:Bj (Glf GQ),
where:

e Rg—result of the operation;

* B, — operation of type j (Common, Fuse, Cut);
G;={S;;, S1o ... S1,1} group of arguments (Objects);
G,={S»51, Sos ... Sop0} group of arguments (Tools);
n; — Number of arguments in Objects group;

n, — Number of arguments in Tools group.

Note There is an operation Cut21, which is an extension for forward Cut
operation, i.e Cut21=Cut(G2, G1).

For more details see Boolean Operations Algorithm section.

General Fuse operator

The General fuse operator can be applied to an arbitrary number of
arguments in terms of TopoDS_Shape.

The GFA operator can be represented as:

Rer=GF (S, S»... S,),

where

e Rg — result of the operation,
e S, S,... S, —arguments of the operation,
e n —number of arguments.

The result of the Boolean operator, Rg, can be obtained from R
For example, for two arguments S; and S, the result Rgg is

Rer=GF (S1, Sp) = Sp1 + Spo + Sp1o

Sp12

Operators

This Figure shows that

* Beommon (S1: S2) = Sp12r'

® Beuiz (S1, S2) = Spl;

¢ Bcut21 (Slf 52) = Sp2;

¢ Bfuse (Slf 52) = Spl"“'spZ-"Spﬂ

RGF:GF (Slf 52) = Bfuse = Bcommon+ Bcut12+ BcutZl-

The fact that Rgg contains the components of Rg allows considering GFA

as the general case of BOA. So it is possible to implement BOA as a
subclass of GFA.

For more details see General Fuse Algorithm section.

Splitter operator

The Splitter operator can be applied to an arbitrary number of arguments
in terms of TopoDS_Shape. The arguments are divided into two groups:
Objects and Tools. The result of SPA contains all parts that belong to the
Objects but does not contain the parts that belong to the Tools.

The SPA operator can be represented as follows:

Rspa=SPA (G;, G,), where:

Rspa — IS the result of the operation;

G;={S;;, S1o ... S1,1} group of arguments (Objects);
G,={S,1, So5 ... Sop0} group of arguments (Tools);
n; — Number of arguments in Objects group;

n, — Number of arguments in Tools group.

The result Rgp, can be obtained from R .
For example, for two arguments S; and S, the result Rgp, IS
RSPA:SPA(Slfsj:Spl-I-SplZ'

In case when all arguments of the SPA are Objects and there are no
Tools, the result of SPA is equivalent to the result of GFA.

For example, when G; consists of shapes S; and S, the result of SPA is
RSPA:SPA(Slf 52) = Spl + Sp2 + S,D12 =GF (Slf 52)

The fact that the Rr contains the components of Rgp, allows

considering GFA as the general case of SPA. Thus, it is possible to
implement SPA as a subclass of GFA.

For more details see Splitter Algorithm section.
Section operator

The Section operator SA can be applied to arbitrary number of

arguments in terms of TopoDS_Shape. The result of SA contains vertices
and edges in accordance with interferences between the arguments The
SA operator can be represented as follows: Rgy,=SA(S1, S2... Sn), where

e R, — the operation result;

e S1, S2... Sn — the operation arguments;
e n —the number of arguments.

For more details see Section Algorithm section.

Parts of algorithms

GFA, BOA, SPA and SA have the same Data Structure (DS). The main
goal of the Data Structure is to store all necessary information for input
data and intermediate results.

The operators consist of two main parts:

¢ Intersection Part (IP). The main goal of IP is to compute the
interferences between sub-shapes of arguments. The IP uses DS to
retrieve input data and store the results of intersections.

¢ Building Part (BP). The main goal of BP is to build required result of
an operation. This part also uses DS to retrieve data and store the
results.

As it follows from the definition of operator results, the main differences
between GFA, BOA, SPA and SA are in the Building Part. The
Intersection Part is the same for the algorithms.

Terms and Definitions

This chapter provides the background terms and definitions that are
necessary to understand how the algorithms work.

Interferences

There are two groups of interferences.

At first, each shape having a boundary representation (vertex, edge,
face) has an internal value of geometrical tolerance. The shapes interfere
with each other in terms of their tolerances. The shapes that have a
boundary representation interfere when there is a part of 3D space where
the distance between the underlying geometry of shapes is less or equal
to the sum of tolerances of the shapes. Three types of shapes: vertex,
edge and face — produce six types of BRep interferences:

Vertex/Vertex,
Vertex/Edge,
Vertex/Face,
Edge/Edge,
Edge/Face and
Face/Face.

At second, there are interferences that occur between a solid Z1 and a
shape S2 when Z1 and S2 have no BRep interferences but S2 is
completely inside of Z1. These interferences are Non-BRep
interferences. There are four possible cases:

Vertex/Solid,
Edge/Solid,
Face/Solid and
Solid/Solid.

Vertex/Vertex interference

For two vertices Vi and Vj, the distance between their corresponding 3D
points is less than the sum of their tolerances Tol(Vi) and Tol(V)).

Tol(Vn

Vertex/vertex interference

The result is a new vertex Vn with 3D point Pn and tolerance value
Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center
and the radius of the sphere enclosing the tolerance spheres of the
source vertices (V1, V2).

Vertex/IEdge interference

For a vertex Vi and an edge Ej, the distance D between 3D point of the
vertex and its projection on the 3D curve of edge Ej is less or equal than
sum of tolerances of vertex Tol(Vi) and edge Tol(Ej).

Tol(V)

Vertexledge interference

The result is vertex Vi with the corresponding tolerance value
Tol(Vi)=Max(Tol(Vi), D+Tol(Ej)), where D = distance (Pi, PPi);

and parameter t; of the projected point PPi on 3D curve Cj of edge Ej.

Vertex/Face interference

For a vertex Vi and a face Fj the distance D between 3D point of the
vertex and its projection on the surface of the face is less or equal than
sum of tolerances of the vertex Tol(Vi) and the face Tol(Fj).

Tol(Vi)

Tol(Vi)
Pi .

N ! Vl/ Pig Vi

N\ / 5
o~ Au N_ o/

PPi u; i
—> / PPi

) Vi Fj
/ %
2°Tol(Fj)

Vertex/face interference

The result is vertex Vi with the corresponding tolerance value
Tol(Vi)=Max(Tol(Vi), D+Tol(Fj)), where D = distance (Pi, PPIi)

and parameters u;, v; of the projected point PPj on surface Sj of face Fj.

Edgel/Edge interference

For two edges Ei and Ej (with the corresponding 3D curves Ci and Cj)
there are some places where the distance between the curves is less
than (or equal to) sum of tolerances of the edges.

Let us examine two cases:

In the first case two edges have one or several common parts of 3D
curves in terms of tolerance.

Edgeledge interference: common parts

The results are:

e Parametric range [t;;, t;,] for 3D curve Ci of edge Ei.
 Parametric range [t;;, t;, | for 3D curve Cj of edge Ej.

In the second case two edges have one or several common points in
terms of tolerance.

D oy,

Tol(E) N N\

Tol

[
N\

Edgeledge interference: common points

The result is a new vertex Vn with 3D point Pn and tolerance value
Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center
and the radius of the sphere enclosing the tolerance spheres of the
corresponding nearest points Pi, Pj of 3D curves Ci, Cj of source edges
Ei, Ej.

e Parameter t; of Pi for the 3D curve Ci.
» Parameter {; of Pj for the 3D curve Cj.

EdgelFace interference

For an edge Ei (with the corresponding 3D curve Ci) and a face Fj (with
the corresponding 3D surface Sj) there are some places in 3D space,
where the distance between Ci and surface Sjis less than (or equal to)
the sum of tolerances of edge Ei and face Fj.

Let us examine two cases:

In the first case Edge Ei and Face Fj have one or several common parts
in terms of tolerance.

2-Tol(Fj)

Edgelface interference: common parts

The result is a parametric range [t;;, t;5] for the 3D curve Ci of the edge
Ei.

In the second case Edge Ei and Face Fj have one or several common
points in terms of tolerance.

Tol(Vn)

) Fi —> N Fi

2-Tol(Fj)

Tol(Ei)

\ 4

Ei

B
&

&

Edgelface interference: common points

The result is a new vertex Vn with 3D point Pn and tolerance value
Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center
and the radius of the sphere enclosing the tolerance spheres of the
corresponding nearest points Pi, Pj of 3D curve Ci and surface Sj of
source edges Ei, Fj.

o Parameter t; of Pi for the 3D curve Ci.
e Parameters u; and v; of the projected point PPj on the surface Sj of
the face Fj.

FacelFace Interference

For a face Fi and a face Fj (with the corresponding surfaces Si and Sj)
there are some places in 3D space, where the distance between the
surfaces is less than (or equal to) sum of tolerances of the faces.

2-Tol(Fi)

/!
/ Y.
[\ / /. A\
\}/ ; // v
Fj :
t - Tol(Cijk

2-Tol(Fj)

Facelface interference: common curves

In the first case the result contains intersection curves Cj (k =0, 1, 2...
kn, where ky, is the number of intersection curves with corresponding
values of tolerances Tol(Cj).

2-Tol(Fi)

Tol(Vijm)

2-Tol(Fj)
Facelface interference: common points

In the second case Face Fi and face Fj have one or several new vertices
Viims where m=0,1,2, ... mN, mN is the number of intersection points.

The coordinates of a 3D point P;,, and the value Tol(Vj;,,) are computed

as the center and the radius of the sphere enclosing the tolerance
spheres of the corresponding nearest points Pi, Pj of the surface Si, Sj of
source shapes Fi, Fj.

o Parameters u;, v; belong to point PPj projected on surface Sj of face

Fj.
e Parameters u; and v; belong to point PPi projected on surface Si of
face Fi.

Vertex/Solid Interference

For a vertex Vi and a solid Zj there is Vertex/Solid interference if the
vertex Vi has no BRep interferences with any sub-shape of Zj and Vi is
completely inside the solid Zj.

EE

Vertex/Solid Interference

Edgel/Soild Interference

For an edge Ej and a solid Zj there is Edge/Solid interference if the edge
Ei and its sub-shapes have no BRep interferences with any sub-shape of
Zj and Ei is completely inside the solid Zj.

Edge/Solid Interference

Facel/Soild Interference

For a face Fi and a solid Zj there is Face/Solid interference if the face Fi
and its sub-shapes have no BRep interferences with any sub-shape of Zj
and Fi is completely inside the solid Zj.

FacelSolid Interference

Solid/Soild Interference

For a solid Zi and a solid Zj there is Solid/Solid interference if the solid Zi
and its sub-shapes have no BRep interferences with any sub-shape of Zj
and Zi is completely inside the solid Zj.

Solid/Solid Interference

Computation Order

The interferences between shapes are computed on the basis of
increasing of the dimension value of the shape in the following order:

Vertex/Vertex,
Vertex/Edge,
Edge/Edge,
Vertex/Face,
Edge/Face,
Face/Face,
Vertex/Solid,
Edge/Solid,
Face/Solid,
Solid/Solid.

This order allows avoiding the computation of redundant interferences

between upper-level shapes Si and Sj when there are interferences
between lower sub-shapes Sik and Sjm.

Results

e The result of the interference is a shape that can be either interfered
shape itself (or its part) or a new shape.

e The result of the interference is a shape with the dimension value
that is less or equal to the minimal dimension value of interfered
shapes. For example, the result of Vertex/Edge interference is a
vertex, but not an edge.

e The result of the interference splits the source shapes on the parts
each time as it can do that.

Paves

The result of interferences of the type Vertex/Edge, Edge/Edge and
Edge/Face in most cases is a vertex (new or old) lying on an edge.

The result of interferences of the type Face/Face in most cases is
intersection curves, which go through some vertices lying on the faces.

The position of vertex Vi on curve C can be defined by a value of
parameter t; of the 3D point of the vertex on the curve. Pave PVi on curve

C is a structure containing the vertex Vi and correspondent value of the
parameter t; of the 3D point of the vertex on the curve. Curve C can be a

3D or a 2D curve.

Paves

Two paves PV1 and PV2 on the same curve C can be compared using
the parameter value

PV1i > PV2 if t1 > t2

The usage of paves allows binding of the vertex to the curve (or any
structure that contains a curve: edge, intersection curve).

Pave Blocks

A set of paves PVi (i=1, 2...nPV), where nPV is the number of paves] of
curve C can be sorted in the increasing order using the value of
parameter t on curve C.

A pave block PBi is a part of the object (edge, intersection curve)
between neighboring paves.

Pave Blocks

Any finite source edge E has at least one pave block that contains two
paves PVb and PVe:

e Pave PVb corresponds to the vertex Vb with minimal parameter t;, on

the curve of the edge.
e Pave PVe corresponds to the vertex Ve with maximal parameter t,

on the curve of the edge.

Shrunk Range

Pave block PV of curve C is bounded by vertices V1 and V2 with
tolerance values Tol(V1) and Tol(V2). Curve C has its own tolerance
value Tol(C):

¢ |n case of edge, the tolerance value is the tolerance of the edge.
¢ |n case of intersection curve, the tolerance value is obtained from an
intersection algorithm.

Tol(V»)
Tol(C)

C(t

Shrunk Range

The theoretical parametric range of the pave block is [t1C, t2C].

The positions of the vertices V1 and V2 of the pave block can be
different. The positions are determined by the following conditions:

Distance (P1, Plc) is equal or less than Tol(V1li) +
Tol(C)

Distance (P2, P2c) is equal or less than Tol(V2) +
Tol(C)

The Figure shows that each tolerance sphere of a vertex can reduce the
parametric range of the pave block to a range [t1S, t2S]. The range [t1S,
t2S] is the shrunk range of the pave block.

The shrunk range of the pave block is the part of 3D curve that can
interfere with other shapes.

Common Blocks

The interferences of the type Edge/Edge, Edge/Face produce results as
common parts.

In case of Edge/Edge interference the common parts are pave blocks
that have different base edges.

PB
E 4 A \ Vi
V,
"o - — o
o o
VZ k Y j E‘Q VZZ
PB,

Common Blocks: Edge/Edge interference

If the pave blocks PB;, PB,...PBypg , Where NbPB is the number of

pave blocks have the same bounding vertices and geometrically
coincide, the pave blocks form common block CB.

In case of Edge/Face interference the common parts are pave blocks
lying on a face(s).

e

Vi Vi)

B

CB

& »
Nl »

Common Blocks: Edgel/Face interference

If the pave blocks PBi geometrically coincide with a face Fj, the pave
blocks form common block CB.

In general case a common block CB contains:

e Pave blocks PBi (i=0,1,2, 3... NbPB).
o Aset of faces Fj (j=0,1... NbF), NbF — number of faces.

Facelnfo

The structure Facelnfo contains the following information:

Pave blocks that have state In for the face;

Vertices that have state In for the face;

Pave blocks that have state On for the face;

Vertices that have state On for the face;

Pave blocks built up from intersection curves for the face;
Vertices built up from intersection points for the face.

Face Info

In the figure, for face F1:

e Pave blocks that have state In for the face: PB;,;.

e \ertices that have state In for the face: Vj,;.

e Pave blocks that have state On for the face: PB,, 11, PBon12, PBonas
PBon3lv PBon32’ PBon4-

e \ertices that have state On for the face: V1, V2, V3, V4, V5, V6.
e Pave blocks built up from intersection curves for the face: PB;.

¢ Vertices built up from intersection points for the face: none

Data Structure

Data Structure (DS) is used to:

e Store information about input data and intermediate results;
¢ Provide the access to the information;
¢ Provide the links between the chunks of information.

This information includes:

Arguments;
Shapes;
Interferences;
Pave Blocks;
Common Blocks.

Data Structure is implemented in the class BOPDS_DS.

Arguments

The arguments are shapes (in terms of TopoDS_Shape):.

e Number of arguments is unlimited.
e Each argument is a valid shape (in terms of BRepCheck_Analyzer).
e Each argument can be of one of the following types (see the Table):

No Type Index of Type

COMPOUND

COMPSOLID

SOLID

SHELL

FACE

WIRE

EDGE

0N O W|IN|PF

N[Ol lWINIF|O

VERTEX

The argument of type 0 (COMPOUND) can include any number of
shapes of an arbitrary type (0, 1...7).

The argument should not be self-interfered, i.e. all sub-shapes of the
argument that have geometrical coincidence through any topological
entities (vertices, edges, faces) must share these entities.

There are no restrictions on the type of underlying geometry of the
shapes. The faces or edges of arguments S; can have underlying

geometry of any type supported by Open CASCADE Technology
modeling algorithms (in terms of GeomAbs_CurveType and
GeomAbs_SurfaceType).

The faces or edges of the arguments should have underlying
geometry with continuity that is not less than C1.

Shapes

The information about Shapes is stored in structure BOPDS_Shapelnfo.
The objects of type BOPDS_Shapelnfo are stored in the container of
array type. The array allows getting the access to the information by an
index (DS index). The structure BOPDS_Shapelnfo has the following
contents:

Name Contents

myShape Shape itself
myType Type of shape
myBox 3D bounding box of the shape

mySubShapes | List of DS indices of sub-shapes
myReference | Storage for some auxiliary information
myFlag Storage for some auxiliary information

Interferences

The information about interferences is stored in the instances of classes
that are inherited from class BOPDS Interf.

Name Contents

BOPDS_ Interf Root class for interference

Index1 DS index of the shape 1

Index2 DS index of the shape 2
BOPDS _ InterfVV | Storage for Vertex/Vertex interference
BOPDS _ InterfVE | Storage for Vertex/Edge interference

The value of parameter of the point of the vertex on
the curve of the edge

BOPDS_ InterfVF | Storage for Vertex/Face interference

The value of parameters of the point of the vertex on
the surface of the face

BOPDS_ InterfEE | Storage for Edge/Edge interference
myCommonPart | Common part (in terms of IntTools_CommonPart)
BOPDS_ InterfEF | Storage for Edge/Face interference
myCommonPart | Common part (in terms of IntTools_CommonPart)
BOPDS_ InterfFF | Storage for Face/Face interference

myParam

myU, myV

myTolR3D, The value of tolerances of curves (points) reached
myTolR2D in 3D and 2D

myCurves Intersection Curves (in terms of BOPDS_Curve)
myPoints Intersection Points (in terms of BOPDS_ Point)

BOPDS _InterfVZ | Storage for Vertex/Solid interference
BOPDS _ InterfEZ | Storage for Edge/Solid interference
BOPDS_ InterfFZ | Storage for Face/Solid interference
BOPDS_ InterfZZ | Storage for Solid/Solid interference

The Figure shows inheritance diagram for BOPDS_ Interf classes.

| BOPDS_Interf

BOPDS_InterfV T»’/ N BOPDS_InterfFF
BOPDSInterfVE BOPDS_Inteer*
BOPDS_InterfEE. BOPDS_InterfEZ
BOPDS_InterfV BOPDS_InterfFZt

BOPDS_InterfZZ

BOPDS_InterfE

BOPDS Interf classes

Pave, PaveBlock and CommonBlock

The information about the pave is stored in objects of type

BOPDS Pave.

Name Contents

BOPDS_Pave
mylIndex DS index of the vertex

Value of the parameter of the 3D point of vertex on
myParam curve

The information about pave blocks is stored in objects of type

BOPDS PaveBlock.

Name Contents

BOPDS_PaveBlock

DS index of the edge produced from the pave
myEdge block P i
myOiriginalEdge DS index of the source edge
myPavel Pave 1 (in terms of BOPDS_Pave)
myPaveZ2 Pave 2 (in terms of BOPDS_Pave)

The list of paves (in terms of BOPDS_Pave) that
myExtPaves is used to store paves lying inside the pave block
during intersection process

The reference to common block (in terms of
myCommonBlock | BOPDS_CommonBlock) if the pave block is a
common block
myShrunkData The shrunk range of the pave block

e To be bound to an edge (or intersection curve) the structures of type
BOPDS_PaveBlock are stored in one container of list type
(BOPDS_ ListOfPaveBlock).

¢ In case of edge, all the lists of pave blocks above are stored in one
container of array type. The array allows getting the access to the
information by index of the list of pave blocks for the edge. This

index (if exists) is stored in the field myReference.

The information about common block is stored in objects of type
BOPDS_CommonBlock.

Name Contents

BOPDS CommonBlock

The list of pave blocks that are common in
terms of Common Blocks

The list of DS indices of the faces, on which
the pave blocks lie.

myPaveBlocks

myFaces

Points and Curves

The information about intersection point is stored in objects of type
BOPDS_Point.

Name Contents

BOPDS_Point
myPnt 3D point

myPnt2D1 2D point on the facel
myPnt2D2 2D point on the face2

The information about intersection curve is stored in objects of type
BOPDS_Curve.

Name Contents

BOPDS_Curve
myCurve The intersection curve (in terms of IntTools_Curve)
myPaveBlocks | The list of pave blocks that belong to the curve
myBox The bounding box of the curve (in terms of Bnd_Box)

Facelnfo

The information about Facelnfo is stored in a structure BOPDS_Facelnfo.
The structure BOPDS_Facelnfo has the following contents.

Name Contents

BOPDS_Facelnfo
myPaveBlocksin | Pave blocks that have state In for the face
myVerticesin Vertices that have state In for the face
myPaveBlocksOn | Pave blocks that have state On for the face
myVerticesOn Vertices that have state On for the face
myPaveBlocksSc ;?;\ée blocks built up from intersection curves for the
. Vertices built up from intersection points for the face
myVerticesSc +

The objects of type BOPDS_ Facelnfo are stored in one container of array
type. The array allows getting the access to the information by index.
This index (if exists) is stored in the field myReference.

Root Classes

Class BOPAIgo_Options

The class BOPAIgo_Options provides the following options for the
algorithms:

e Set the appropriate memory allocator;

Check the presence of the Errors and Warnings;
Turn on/off the parallel processing;

Set the additional tolerance for the operation;
Break the operations by user request.

Class BOPAIgo_Algo

The class BOPAIgo_Algo provides the base interface for all algorithms:

e Perform the operation;
e Check the input data;
e Check the result.

Intersection Part

Intersection Part (IP) is used to

e Initialize the Data Structure;

e Compute interferences between the arguments (or their sub-
shapes);

Compute same domain vertices, edges;

Build split edges;

Build section edges;

Build p-curves;

Store all obtained information in DS.

IP is implemented in the class BOPAIgo_PaveFiller.

BOPAlgo Options

BOPAlgo_Algo

BOPAlgo PaveFiller

Diagram for Class BOPAlgo_PaveFiller

The description provided in the next paragraphs is coherent with the
implementation of the method BOPAIgo_PavecFiller::Perform().

Initialization

The input data for the step is the Arguments. The description of
initialization step is shown in the Table.

No Contents Implementation

Initialization the array of shapes (in terms of L
1 Shapes). Filling the array of shapes. BOPDS_DS::Init()

Initialization the array pave blocks (in terms
of Pave, PaveBlock, CommonBIlock)

Initialization of intersection lterator. The
intersection Iterator is the object that
computes intersections between sub-shapes
3 | of the arguments in terms of bounding boxes. | BOPDS _ Iterator
The intersection Iterator provides
approximate number of the interferences for
given type (in terms of Interferences)

Initialization of intersection Context. The
intersection Context is an object that contains
geometrical and topological toolkit
(classifiers, projectors, etc). The intersection
Context is used to cache the tools to
increase the algorithm performance.

2 BOPDS_DS::Init()

IntTools_Context

Compute Vertex/Vertex Interferences

The input data for this step is the DS after the Initialization. The
description of this step is shown in the table :

No Contents Implementation

Initialize array of T
1 Vertex/Vertex interferences. BOPAIgo_PaveFiller::PerformVV()

Access to the pairs of
interfered shapes (nVi, nVj)k,
k=0, 1...nk, where nVi and
nVj are DS indices of vertices
Vi and Vj and nk is the
number of pairs.

Compute the connexity
chains of interfered vertices
nV1C, nvV2C... nvVnC)k, C=0,
1...nCs, where nCs is the
number of the connexity
chains

Build new vertices from the
chains VNc. C=0, 1...nCs.

5 | Append new vertices in DS. | BOPDS_DS::Append()

Append same domain
vertices in DS.

Append Vertex/Vertex
interferences in DS.

BOPDS Iterator

BOPAIgo_Tools::MakeBlocksCnx()

BOPAIgo_PaveFiller::PerformVV()

BOPDS_DS::AddShapeSD()

BOPDS_DS::AddInterf()

e The pairs of interfered vertices are: (nV11, nv12), (nV11, nV13),
(nv12, nv13), (nV13, nv15), (nV13, nv14), (nvV14, nv15), (nV21,
nVv22), (nv21, nv23), (nvV22, nV23);

e These pairs produce two chains: (nV11, nv12, nv13, nvV14, nv15)
and (nv21, nv22, nv23);

e Each chain is used to create a new vertex, VN1 and VN2,
correspondingly.

The example of connexity chains of interfered vertices is given in the
image:

Chain 1
Connexity chains of interfered vertices

Compute Vertex/Edge Interferences

The input data for this step is the DS after computing Vertex/Vertex
interferences.

No Contents Implementation

Initialize array of Vertex/Edge I
1 interferences BOPAIgo_PaveFiller::PerformVE()

Access to the pairs of
interfered shapes (nVi, nEj)k
k=0, 1...nk, where nVi is DS
index of vertex Vi, nEj is DS
index of edge Ej and nk is the
number of pairs.

Compute paves. See
Vertex/Edge Interference

Initialize pave blocks for the
4 | edges Ej involved in the
interference

Append the paves into the
pave blocks in terms of Pave, | BOPDS_ PaveBlock::

BOPDS lIterator

BOPInt_Context::ComputeVE()

BOPDS DS::
ChangePaveBlocks()

> PaveBlock and AppendExtPave()
CommonBlock
g |/Append Vertex/Edge BOPDS_DS::Addinterf()

interferences in DS

Update Pave Blocks

The input data for this step is the DS after computing Vertex/Edge
Interferences.

No Contents Implementation

Each pave block PB containing internal

paves is split by internal paves into new .

1 |pave blocks PBN1, PBNZ2... PBNn. PB is 50;?§5£§é/00ks 0
replaced by new pave blocks PBN1, P

PBNZ2... PBNn in the DS.

Compute Edge/Edge Interferences

The input data for this step is the DS after updating Pave Blocks.

No Contents Implementation

Initialize array of
1 | Edge/Edge BOPAIgo_PavekFiller::PerformEE()
interferences

Access to the pairs of
interfered shapes
(nEi, nEj)k, k=0, 1...
nk, where nEi is DS
index of the edge Ej,
nEj is DS index of the
edge Ej and nk is the
number of pairs.

Initialize pave blocks
for the edges involved
in the interference, if it
IS necessary.

Access to the pave
blocks of interfered
shapes: (PBil1, PBi2...
PBINi) for edge Ei and
(PBj1, PBj2...PBjNj)
for edge Ej

Compute shrunk data
for pave blocks in
terms of Pave,
PaveBlock and
CommonBlock, if it is
necessary.

Compute Edge/Edge
interference for pave
blocks PBix and PBiy.
6 | The result of the IntTools_EdgeEdge
computation is a set

BOPDS Iterator

BOPDS_DS:: ChangePaveBlocks()

BOPAIgo_PaveFiller::PerformEE()

BOPAIgo_PaveFiller::FillShrunkData()

of objects of type
IntTools_CommonPart

7.1

For each
CommonPart of type
VERTEX: Create new
vertices VNI (i =1,
2...,NbVN), where
NbVN is the number
of new vertices.
Intersect the vertices
VNi using the steps
Initialization and
compute
Vertex/Vertex
interferences as
follows: a) create a
new object PFn of
type
BOPAIgo_PaveFiller
with its own DS; b)
use new vertices VNI
(i=1, 2...,NbVN),
NbVN as arguments
(in terms of
TopoDs_Shape) of
PFn; c) invoke
method Perform() for
PFn. The resulting
vertices VNXi (i=1,
2...,NbVNX), where
NbVNX is the number
of vertices, are
obtained via mapping
between VNI and the
results of PVn.

BOPTools_Tools::MakeNew\Vertex()

For each
CommonPart of type
EDGE: Compute the
coinciding connexity
chains of pave blocks

7.2

(PB1C, PB2C...
PNnC)k, C=0, 1...

nCs, where nCs is the

number of the
connexity chains.
Create common

blocks (CBc. C=0, 1...
nCs) from the chains.

Attach the common
blocks to the pave
blocks.

BOPAIgo_Tools::PerformCommonBlocks()

Post-processing.
Append the paves of
VINXi into the
corresponding pave
blocks in terms of
Pave, PaveBlock
and CommonBlock

BOPDS_PaveBlock:: AppendExtPave()

Split common blocks
CBc by the paves.

BOPDS_DS:: UpdateCommonBlock()

10

Append Edge/Edge
interferences in the
DS.

BOPDS_DS::AddInterf()

The example of coinciding chains of pave blocks is given in the image:

Chain 1

Chain 2

Coinciding chains of pave blocks

e The pairs of coincided pave blocks are: (PB11, PB12), (PB11,
PB13), (PB12, PB13), (PB21, PB22), (PB21, PB23), (PB22, PB23).

e The pairs produce two chains: (PB11, PB12, PB13) and (PB21,
PB22, PB23).

Compute Vertex/Face Interferences

The input data for this step is the DS after computing Edge/Edge
interferences.

No Contents Implementation

Initialize array of
1 | Vertex/Face BOPAIgo_PaveFiller::PerformVF()
interferences

Access to the pairs of
interfered shapes (nVi,
nFjk, k=0, 1...nk, where
2 | nViis DS index of the BOPDS _ Iterator
vertex Vi, nFj is DS index
of the edge Fj and nk is
the number of pairs.

Compute interference
3 | See Vertex/Face BOPInt_Context::ComputeVF()
Interference

Append Vertex/Face
interferences in the DS

Repeat steps 2-4 for
each new vertex VNXi
5 |[(i=1, 2...,NbVNX), where | BOPAIgo_PavefFiller:: TreatVerticesEE()
NbVNX is the number of
vertices.

BOPDS_DS::AddInterf()

Compute Edgel/Face Interferences

The input data for this step is the DS after computing Vertex/Face
Interferences.

No Contents Implementation

Initialize array of
1 | Edge/Face BOPAIgo_PaveFiller::PerformEF()
interferences

Access to the pairs of
interfered shapes
(nEI, nFj)k, k=0, 1...
nk, where nEi is DS
index of edge Ei, nFj
is DS index of face Fj
and nk is the number
of pairs.

Initialize pave blocks
for the edges involved
in the interference, if it
IS necessary.

Access to the pave
blocks of interfered
edge (PBi1, PBi2...
PBINi) for edge Ei

Compute shrunk data
for pave blocks (in
terms of Pave,
PaveBlock and
CommonBlock) if it is
necessary.

Compute Edge/Face
interference for pave
block PBix, and face
6 | nfj. The result of the | IntTools_EdgeFace
computation is a set
of objects of type

BOPDS lIterator

BOPDS_DS::ChangePaveBlocks()

BOPAIgo_PaveFiller::PerformEF()

BOPAIgo_PaveFiller::FillShrunkData()

IntTools CommonPart

7.1

For each
CommonPart of type
VERTEX: Create new
vertices VNI (i=1,
2...,NbVN), where
NbVN is the number
of new vertices.
Merge vertices VNI as
follows: a) create new
object PFn of type
BOPAIgo_PaveFiller
with its own DS; b)
use new vertices VNI
(i=1, 2...,NbVN),
NbVN as arguments
(in terms of
TopoDs_Shape) of
PFn; c) invoke
method Perform() for
PFn. The resulting
vertices VNXi (i=1,
2...,NbVNX), where
NbVNX is the number
of vertices, are
obtained via mapping
between VNI and the
results of PVn.

BOPTools _Tools::MakeNewVertex() and
BOPAIgo_PaveFiller::PerformVertices1()

7.2

For each
CommonPart of type
EDGE: Create
common blocks (CBc.
C=0, 1...nCs) from
pave blocks that lie on
the faces. Attach the
common blocks to the
pave blocks.

BOPAIlgo_Tools::PerformCommonBlocks()

Post-processing.
Append the paves of
VINXi into the

8 | corresponding pave BOPDS_PaveBlock:: AppendExtPave()
blocks in terms of
Pave, PaveBlock
and CommonBIlock.
Split pave blocks and | BOPAIgo_PavefFiller::PerformVertices1(),
9 | common blocks CBc | BOPDS_DS:: UpdatePaveBlock() and
by the paves. BOPDS_DS:: UpdateCommonBlock()
Append Edge/Face
10 |interferences in the BOPDS_DS::AddInterf()
DS
Update Facelnfo for
11 | all faces having EF BOPDS_DS:: UpdateFacelnfoln()

common parts.

Build Split Edges

The input data for this step is the DS after computing Edge/Face
Interferences.

For each pave block PB take the following steps:

No Contents Implementation

Get the real pave block
PBR, which is equal to
PB if PB is not a
common block and to
PB; if PB is a common

1 | block. PB; is the first BOPAIgo_PaveFiller::MakeSplitEdges()

pave block in the pave
blocks list of the
common block. See
Pave, PaveBlock and
CommonBlock.

Build the split edge Esp
2 | using the information BOPTools_Tools::MakeSplitEdge()
from DS and PBR.

Compute

3 | BOPDS_Shapelinfo BOPAIgo_PaveFiller::MakeSplitEdges()
contents for Esp
Append

4 | BOPDS_Shapelnfo BOPDS_DS::Append()

contents to the DS

Compute FacelFace Interferences

The input data for this step is DS after building Split Edges.

No Contents Implementation

1 | Initialize array of Face/Face BOPAIgo_PaveFiller::PerformFF()
interferences

Access to the pairs of
interfered shapes (nFi, nFj)k,
k=0, 1...nk, where nFiis DS
index of edge Fi, nFjis DS
index of face Fj and nk is the
number of pairs.

Compute Face/Face
interference

Append Face/Face
interferences in the DS.

BOPDS Iterator

IntTools_FaceFace

BOPDS_DS::AddInterf()

Build Section Edges

The input data for this step is the DS after computing Face/Face
interferences.

No Contents Implementation

For each Face/Face
interference nFi,
nFj, retrieve
Facelnfo. Create
draft vertices from
intersection points
VPk (k=1, 2...,
NbVP), where
NbVP is the number
of new vertices, and
the draft vertex VPk
is created from an
intersection point if
VPk#Vm (m=0, 1,
1 |[2... NbVm), where | BOPAlgo_PaveFiller::MakeBlocks()
Vm is an existing
vertex for the faces
nFi and nFj (On or
In in terms of
TopoDs_Shape),
NbVm is the
number of vertices
existing on faces
nFiand nFjand # —
means non-
coincidence in
terms of
Vertex/Vertex
interference.

For each
2 intersection curve
Cijk

2.1

Create paves PVc
for the curve using
existing vertices, i.e.
vertices On or In (in
terms of Facelnfo)
for faces nFi and
nFj. Append the
paves PVc

BOPAIlgo_PaveFiller::PutPaveOnCurve() and
BOPDS_PaveBlock::AppendExtPave()

2.2

Create
technological
vertices Vt, which
are the bounding
points of an
intersection curve
(with the value of
tolerance Tol(Cijk)).
Each vertex Vt with
parameter Tt on
curve Cijk forms
pave PVt on curve
Cijk. Append
technological
paves.

BOPAIgo_PaveFiller::PutBoundPaveOnCurve

2.3

Create pave blocks
PBEk for the curve
using paves (k=1,
2..., NbPB), where
NbPB is the number
of pave blocks

BOPAIlgo_PaveFiller::MakeBlocks()

Build draft section
edges ESk using
the pave blocks
(k=1, 2..., NbES),
where NbES is the
number of draft
section edges The
draft section edge is
created from a pave
block PBk if PBk
has state /In or On

2.4

for both faces nFi
and nFj and PBk #
PBm (m=0, 1, 2...
NbPBm), where
PBm is an existing
pave block for faces
nFi and nFj (On or
In in terms of
Facelnfo), NbVm is
the number of
existing pave blocks
for faces nFi and
nFj and #Z — means
non-coincidence (in
terms of
Vertex/Face
interference).

BOPTools_Tools::MakeEdge()

Intersect the draft
vertices VPk (k=1,
2..., NbVP) and the
draft section edges
ESk (k=1, 2...,
NbBES). For this: a)
create new object
PFn of type
BOPAIgo_PaveFiller
with its own DS; b)
use vertices VPk
and edges ESk as
arguments (in terms
of Arguments) of
PFn; c) invoke
method Perform()
for PFn. Resulting
vertices VPXk (k=1,
2... NbVPX) and
edges ESXk (k=1,
2... NbESX) are
obtained via
mapping between

BOPAIlgo_PaveFiller::PostTreatFF()

VPk, ESk and the
results of PVvn.

Update face info
(sections about
pave blocks and
vertices)

BOPAIlgo_PaveFiller::PerformFF()

Build P-Curves

The input data for this step is the DS after building section edges.

No Contents Implementation

For each Face/Face
interference nFi and nFj
1 | build p-Curves on nFiand | BOPAIgo_PaveFiller::MakePCurves()
nFyj for each section edge
ESXk.

For each pave block that is
common for faces nFi and
nFj build p-Curves on nFi
and nFj.

BOPAIgo_PaveFiller::MakePCurves()

Process Degenerated Edges

The input data for this step is the DS after building P-curves.

No Contents Implementation

For each degenerated
edge ED having vertex BOPAIgo_PavekFiller::ProcessDE()
VD

Find pave blocks PBi
(i=1,2... NbPB), where
1 | NbPB is the number of BOPAIgo_PavekFiller::FindPaveBlocks()
pave blocks, that go
through vertex VD.

Compute paves for the
degenerated edge ED
using a 2D curve of ED
and a 2D curve of PBiI.
2 | Form pave blocks PBDi | BOPAIgo_PaveFiller::FillPaves()
(i=1,2... NbPBD), where
NbPBD is the number of
the pave blocks for the
degenerated edge ED

Build split edges ESDi
(i=1,2...NbESD), where
3 | ESD is the number of BOPAIgo_PaveFiller:: MakeSplitEdge()
split edges, using the
pave blocks PBDi

General description of the Building
Part

Building Part (BP) is used to

¢ Build the result of the operation
e Provide history information (in terms of ::Generated(), ::Modified()

and ::IsDeleted()) BP uses the DS prepared by BOPAIgo_PavecFiller
described at chapter 5 as input data. BP is implemented in the
following classes:

BOPAIgo_Builder — for the General Fuse operator (GFA).
BOPAIgo_BOP — for the Boolean Operation operator (BOA).
BOPAIgo_Section — for the Section operator (SA).
BOPAIgo_MakerVolume — for the Volume Maker operator.
BOPAIgo_Splitter — for the Splitter operator.

BOPAIgo_CellsBuilder — for the Cells Builder operator.

BOPAlgo Options

BOPAlgo_Algo

BOPAlgo BuilderShape

BOPAlgo_Builder {

BOPAlIgo BOP BOPAlgo_CellsBuilder

BOPAlgo_Section BOPAlgo_Splitter

BOPAlIgo MakerVolume

Diagram for BP classes

The class BOPAIgo_BuilderShape provides the interface for algorithms

that have:

e A Shape as the result;
¢ History information (in terms of ::Generated(), ::Modified() and
:\IsDeleted()).

General Fuse Algorithm

Arguments

The arguments of the algorithm are shapes (in terms of TopoDS_Shape).
The main requirements for the arguments are described in Data
Structure chapter.

Results

During the operation argument Si can be split into several parts Si1,
Si2... SIINbSp, where NbSp is the number of parts. The set (Si1, Si2...
SiINbSp) is an image of argument Si.

e The result of the General Fuse operation is a compound. Each sub-
shape of the compound corresponds to the certain argument shape
S1, S2...Sn and has shared sub-shapes in accordance with
interferences between the arguments.

e For the arguments of the type EDGE, FACE, SOLID the result
contains split parts of the argument.

e For the arguments of the type WIRE, SHELL, COMPSOLID,
COMPOUND the result contains the image of the shape of the
corresponding type (i.e. WIRE, SHELL, COMPSOLID or
COMPOUND). The types of resulting shapes depend on the type of
the corresponding argument participating in the operation. See the
table below:

Type of Type of

argument

resulting Comments
shape

The resulting COMPOUND is built
from images of sub-shapes of type
COMPOUND COMPSOLID,
SHELL, WIRE and VERTEX. Sets
of split sub-shapes of type SOLID,
FACE, EDGE.

The resulting COMPSOLID is built
from split SOLIDs.

1 |COMPOUND | COMPOUND

2 | COMPSOLID | COMPSOLID

Set of split
3 |[SOLID SOLIDs
The resulting SHELL is built from
4 | SHELL SHELL split FACEs
5 |EACE Set of split

FACEs

WIRE WIRE The resulting WIRE is built from
split EDGEs

Set of split
EDGE EDGES

VERTEX VERTEX

Examples

Please, have a look at the examples, which can help to better understand
the definitions.

Case 1: Three edges intersecting at a point

Let us consider three edges: E1, E2 and E3 that intersect in one 3D
point.

fT o
E B,
By
0 S) E:
AL
By
& i

Three Intersecting Edges

The result of the GFA operation is a compound containing 6 new edges:
El11, E12, E21, E22, E31, and E32. These edges have one shared vertex
vnl.

In this case:

e The argument edge E1 has resulting split edges E11 and E12
(image of E1).

e The argument edge E2 has resulting split edges E21 and E22
(image of E2).

e The argument edge E3 has resulting split edges E31 and E32
(image of E3).

Case 2: Two wires and an edge

Let us consider two wires W1 (Ewll, Ew12, Ew13) and W2 (Ew21,
Ew22, Ew23) and edge E1.

En En En Eny

Two wires and an edge

The result of the GF operation is a compound consisting of 2 wires: Wnl1
(Ewll, Enl, En2, En3, Ew13) and Wn2 (Ew21, En2, En3, En4, Ew23)
and two edges: E11 and E12.

In this case :

e The argument W1 has image Wnl1.

e The argument W2 has image Wn2.

e The argument edge E1 has split edges E11 and E12. (image of E1).
The edges Enl1, En2, En3, En4 and vertex Vnl are new shapes
created during the operation. Edge Ew12 has split edges Enl1, En2
and En3 and edge Ew22 has split edges En2, En3 and En4.

Case 3: An edge intersecting with a face

Let us consider edge E1 and face F2:

En ks>
O - o]
|
(o) o] >
Ep»
B o——o0

B

An edge intersecting with a face

The result of the GF operation is a compound consisting of 3 shapes:

e Split edge parts E11 and E12 (image of E1).
e New face F21 with internal edge E12 (image of F2).

Case 4: An edge lying on a face

Let us consider edge E1 and face F2:

En Eyp E3

° °) B

E E;»

An edge lying on a face
The result of the GF operation is a compound consisting of 5 shapes:

e Split edge parts E11, E12 and E13 (image of E1).
e Split face parts F21 and F22 (image of F2).

Case 5: An edge and a shell

Let us consider edge E1 and shell Sh2 that consists of 2 faces: F21 and
F22

o) (o]
Ei4
Q O
| 59 E» Eo»
"\ Es
) b
/ Ep»
B, En B
o O
E Ey
o (o]

An edge and a shell

The result of the GF operation is a compound consisting of 5 shapes:

e Split edge parts E11, E12, E13 and E14 (image of E1).
e Image shell Sh21 (that contains split face parts F211, F212, F221

and F222).

Case 6: A wire and a shell

Let us consider wire W1 (E1, E2, E3, E4) and shell Sh2 (F21, F22).

Wi
Wi E»
E E
F, E : Eo E»»

a\:lﬁr le F223

e 5 h 2 e y
Shey B3

En B

A wire and a shell
The result of the GF operation is a compound consisting of 2 shapes:
e Image wire W11 that consists of split edge parts from wire W1: E11,

E12, E13 and E14.
¢ Image shell Sh21 that contains split face parts: F211, F212, F213,

F221, F222 and F223.

Case 7: Three faces

Let us consider 3 faces: F1, F2 and F3.

Fz

Fna

Fny

Fz

=

Fnz

Three faces
The result of the GF operation is a compound consisting of 7 shapes:
e Split face parts: Fnl, Fn2, Fn3, Fn4, Fn5, Fn6 and Fn7.
Case 8: A face and a shell

Let us consider shell Sh1 (F11, F12, F13) and face F2.

Shy

1 = |

Fnz
A face and a shell

an

Fnr

The result of the GF operation is a compound consisting of 4 shapes:
e Image shell Sh11 that consists of split face parts from shell Sh1:

Fnl, Fn2, Fn3, Fn4, Fn5 and Fné.
e Split parts of face F2: Fn3, Fn6 and Fn7.

Case 9: A shell and a solid

Let us consider shell Sh1 (F11, F12...F16) and solid So2.

A shell and a solid: arguments
The result of the GF operation is a compound consisting of 2 shapes:

e Image shell Sh11 consisting of split face parts of Sh1: Fnl, Fn2 ...
Fn8.
* Solid So21 with internal shell. (image of So2).

S0z

A shell and a solid: results

Case 10: A compound and a solid

Let us consider compound Cm1 consisting of 2 solids So11 and So12)
and solid So2.

A compound and a solid: arguments
The result of the GF operation is a compound consisting of 4 shapes:
e Image compound Cm11 consisting of split solid parts from So11 and

Sol12 (Sn1, Sn2, Sn3, Sn4).
e Split parts of solid So2 (Sn2, Sn3, Sn5).

A compound and a solid: results

Class BOPAIgo_Builder

GFA is implemented in the class BOPAIgo_Builder.

Fields

The main fields of the class are described in the Table:

myPaveFiller | Pointer to the BOPAIgo_PavefFiller object

myDS Pointer to the BOPDS_DS object

myContext Pointer to the intersection Context

mylmages The Map between the source shape and its images

The Map between the source shape (or split part of
myShapesSD | source shape) and the shape (or part of shape) that will
be used in result due to same domain property.

Initialization

The input data for this step is a BOPAIgo_PavecFiller object (in terms of
Intersection) at the state after Processing of degenerated edges with
the corresponding DS.

No Contents Implementation
Check the readiness of the DS ——

1 and BOPAIgo_PaveFiller. BOPAIgo_Builder::CheckData()
Build an empty result of type ——

2 Compound. BOPAIgo_Builder::Prepare()

Build Images for Vertices

The input data for this step is BOPAIgo_Builder object after Initialization.

No Contents Implementation

Fill myShapesSD by SD . . ,
vertices using the BOPAIgo_Builder::FilllmagesVertices()

information from the DS.

‘ :

Build Result of Type Vertex

The input data for this step is BOPAIgo_Builder object after building
images for vertices and Type, which is the shape type
(TopAbs_VERTEX).

No Contents Implementation

For the arguments of type Type.
If there is an image for the
argument: add the image to the
result. If there is no image for the
argument: add the argument to
the result.

BOPAIgo_Builder::BuildResult()

Build Images for Edges

The input data for this step is BOPAIgo_Builder object after building result
of type vertex.

No Contents Implementation

For all pave blocks in the
DS. Fill mylmages for the
original edge E by split
edges ESPi from pave
blocks. In case of common
blocks on edges, use edge
ESPSDj that corresponds
to the leading pave block
and fill myShapesSD by the
pairs ESPI/ESPSD;.

BOPAIgo_Builder::FilllmagesEdges()

Build Result of Type Edge

This step is the same as Building Result of Type Vertex, but for the

type Edge.
Build Images for Wires

The input data for this step is:

e BOPAIgo_Builder object after building result of type Edge;
¢ Original Shape — Wire
e Type — the shape type (TopAbs_WIRE).

No Contents Implementation

For all arguments of
the type Type. Create
a container C of the
type Type.

Add to C the images or
non-split parts of the

2 | Original Shape, taking
into account its
orientation.

Fill mylmages for the
3 | Original Shape by the | BOPAIgo_Builder::FilllmagesContainers()
information above.

BOPAIgo_Builder::FilllmagesContainers()

BOPAIgo_Builder::FilllmagesContainers()
BOPTools_Tools::IsSplitToReverse()

Build Result of Type Wire

This step is the same as Building Result of Type Vertex but for the type
Wire.

Build Images for Faces

The input data for this step is BOPAIgo_Builder object after building result
of type Wire.

No Contents Implementation

Build Split Faces for
all interfered DS

shapes Fi of type
FACE.

1.1

Collect all edges or
their images of
Fi(ESPIj).

BOPAIgo_Builder::BuildSplitFaces()

1.2

Impart to ESPIj the
orientation to be
coherent with the
original one.

BOPAIgo_Builder::BuildSplitFaces()

1.3

Collect all section
edges SEk for Fi.

BOPAIgo_Builder::BuildSplitFaces()

1.4

Build split faces for Fi
(Fil, Fi2...FiNbSp),
where NbSp is the
number of split parts
(see Building faces
from a set of edges
for more details).

BOPAIgo_BuilderFace