
Open	CASCADE
Technology		7.2.0

MFC	samples

1.	Contents
The	directory	samples/mfc/standard	contains	the	following	packages	and
files:

Numbered	packages:	01_Geometry,	02_Modeling,	etc.	provide
projects	and	sources	of	samples;
Files	All-vc(number).sln	are	auxiliary	utility	projects	depending	on
all	other	sample	projects.	When	such	project	is	rebuilt,	all	samples
and	mfcsample	library	are	also	rebuilt.
Common	directory	provides	common	source	and	header	files	for
samples	and	dynamic-link	library	mfcsample.dll.
Data	directory	stores	data	files.
mfcsample	directory	contains	project	for	mfcsample.dll	library
providing	basic	functionality	used	by	all	OCC	samples.
File	env.bat	is	called	from	msvc.bat.

2.	Launching	Open	CASCADE	Technology
samples:
To	run	the	Open	CASCADE	Technology	samples,	use	command:

execute	run.bat	[vc10|vc11|vc12|vc14]	[win32|win64]	

[Release|Debug]	[SampleName]

To	run	the	Animation	sample,	use	command:

execute	run.bat	vc10	win64	Debug	Animation

3.	Modifying	and	rebuilding	samples:
You	can	modify,	compile	and	launch	all	sample	projects	in	MS	Visual	C++
at	once	with	command:

execute	msvc.bat	[vc10|vc11|vc12|vc14]	[win32|win64]	

[Release|Debug]

To	run	all	sample	projects	in	MS	Visual	C++	at	once,	use	command:

execute	msvc.bat	vc10	win64	Debug

Note:	make	sure	that	your	PATH	environment	variable	contains	a
directory,	where	msdev.exe	is	located.

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

OCCT	CSharp	sample

This	sample	demonstrates	how	to	use	OCCT	libraries	in	.Net	application
written	using	CSharp	and	Windows	Forms	or	Windows	Presentation
Foundation	(WPF).

The	connection	between	.Net	and	OCCT	(C++)	level	is	provided	by	proxy
library	OCCProxy,	written	in	C++/CLI.	The	proxy	library	contains	a	single
ref	class	encapsulating	OCCT	viewer	and	providing	the	functionality	to
manipulate	this	viewer	and	to	import	/	export	OCCT	shapes	from	/	to
several	supported	CAD	file	formats	(IGES,	STEP,	BREP).

The	sample	implements	two	approaches	to	the	development	of	a	user
interface	with	C#.	Both	applications	provide	the	same	functionality	as	the
standard	OCCT	Import/Export	sample.	The	first	project	is	called
IE_WinForms	and	uses	Windows	Forms	for	GUI.	The	second	application
is	called	IE_WPF_WinForms	and	uses	Windows	Presentation
Foundation.

Note	a	few	important	details:

OCCT	template	class	NCollection_Haft	is	used	to	encapsulate	C++
class	into	a	field	of	ref	class;
It	is	necessary	to	explicitly	set	the	target	platform	for	C#	assemblies
to	x86	in	project	Properties	-	Build	to	work	consistently	on	64-bit
systems	with	OCCT	libraries	built	in	32-bit	mode;
this	sample	demonstrates	indirect	method	of	wrapping	C++	to	C#
using	a	manually	created	proxy	library.	There	is	an	alternative
method	of	wrapping	individual	OCCT	classes	to	C#	equivalents	to
make	their	full	API	available	to	a	C#	user	and	to	let	the	code	be
programmed	on	C#	level	similarly	to	C++	one.	See	the	description	of
OCCT	C#	Wrapper	in	Advanced	Samples	and	Tools	at
http://www.opencascade.org/support/products/advsamples
in	WPF	sample,	WinForms	control	is	used	to	encapsulate	OCC

http://www.opencascade.org/support/products/advsamples

viewer	since	WPF	does	not	provide	the	necessary	interface	to
embed	OpenGl	view.	Other	possible	solution	could	be	to	render
OpenGl	scene	in	an	off-screen	buffer	and	to	map	it	to	WPF	control
as	an	image.	That	approach	would	allow	using	all	WPF	features	to
control	the	OCCT	viewer.

Run	msvc.bat	to	start	MS	Visual	Studio	for	building	the	sample.	Note	that
project	files	are	provided	only	for	VS	2010,	you	can	open	them	in	newer
versions	of	Visual	Studio	the	using	automatic	converter.

After	conversion	check	option	Target	framework	in	the	properties	of	C#
projects	(tab	Application)	to	make	sure	that	it	corresponds	to	the	version
set	in	the	properties	of	C++	projects	(e.g.	.Net	Framework	4.0	for	VS
2010).

Run	run_winforms.bat	or	run_wpf.bat	to	launch	the	corresponding
sample.

Note	that	all	batch	scripts	use	the	configuration	defined	in	OCCT
custom.bat	file	as	default;	you	can	provide	arguments	specifying	VS
version,	bitness,	and	mode	to	override	these	settings,	e.g.:

>	msvc.bat	vc10	win64	Debug

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

Direct3D	CSharp	sample

This	sample	demonstrates	how	to	use	OCCT	and	DirectX	libraries	in	.Net
application	written	using	CSharp	and	Windows	Presentation
Foundation	(WPF).

The	connection	between	.Net,	OCCT	(C++)	and	DirectX	level	is	provided
by	proxy	libraries,	OCCProxy	and	D3DProxy,	written	in	C++/CLI.	The
proxy	library	OCCProxy	contains	a	single	ref	class	encapsulating	OCCT
viewer	and	providing	the	functionality	to	manipulate	this	viewer	and	to
import	/	export	OCCT	shapes	from	/	to	several	supported	CAD	file
formats	(IGES,	STEP,	BREP).	The	proxy	library	D3DProxy	contains
helper	methods	for	rendering	via	DirectX.

The	user	interface	in	this	sample	is	based	on	Windows	Presentation
Foundation	(WPF).	It	has	the	same	functionality	as	the	standard	OCCT
Import/Export	sample.	The	project	is	called	IE_WPF_D3D.

Note	a	few	important	details:

to	build	this	sample	you	should	to	download	and	install	DirectX	SDK
http://www.microsoft.com/en-us/download/details.aspx?id=6812
OCCT	template	class	NCollection_Haft	is	used	to	encapsulate	C++
class	into	a	field	of	ref	class;
It	is	necessary	to	explicitly	set	the	target	platform	for	C#	assemblies
to	x86	in	project	Properties	-	Build	to	work	consistently	on	64-bit
systems	with	OCCT	libraries	built	in	32-bit	mode;
this	sample	demonstrates	indirect	method	of	wrapping	C++	to	C#
using	a	manually	created	proxy	library.	There	is	an	alternative
method	of	wrapping	individual	OCCT	classes	to	C#	equivalents	to
make	their	full	API	available	to	a	C#	user	and	to	let	the	code	be
programmed	on	C#	level	similarly	to	C++	one.	See	the	description	of
OCCT	C#	Wrapper	in	Advanced	Samples	and	Tools	at
http://www.opencascade.org/support/products/advsamples

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.opencascade.org/support/products/advsamples

in	WPF	sample,	WinForms	control	is	used	to	encapsulate	OCC
viewer	since	WPF	does	not	provide	the	necessary	interface	to
embed	OpenGl	view.	Other	possible	solution	could	be	to	render
OpenGl	scene	in	an	off-screen	buffer	and	to	map	it	to	WPF	control
as	an	image.	That	approach	would	allow	using	all	WPF	features	to
control	the	OCCT	viewer.

Run	msvc.bat	to	start	MS	Visual	Studio	for	building	the	sample.	Note	that
project	files	are	provided	only	for	VS	2010,	you	can	open	them	in	newer
versions	of	Visual	Studio	using	an	automatic	converter.

After	conversion	check	option	Target	framework	in	the	properties	of	C#
projects	(tab	Application)	to	make	sure	that	it	corresponds	to	the	version
set	in	the	properties	of	C++	projects	(e.g.	.Net	Framework	4.0	for	VS
2010).

Run	run_wpf-D3D.bat	to	launch	the	corresponding	sample.

Note	that	all	batch	scripts	use	the	configuration	defined	in	OCCT
custom.bat	file	as	default;	you	can	provide	arguments	specifying	VS
version,	bitness,	and	mode	to	override	these	settings,	e.g.:

>	msvc.bat	vc10	win64	Debug

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

OCCT	JniViewer	sample	for	Android

This	sample	demonstrates	simple	way	of	using	OCCT	libraries	in	Android
application	written	using	Java.

The	connection	between	Java	and	OCCT	(C++)	level	is	provided	by
proxy	library,	libTKJniSample.so,	written	in	C++	with	exported	JNI
methods	of	Java	class	OcctJniRenderer.	The	proxy	library	contains	single
C++	class	OcctJni_Viewer	encapsulating	OCCT	viewer	and	providing
functionality	to	manipulate	this	viewer	and	to	import	OCCT	shapes	from
several	supported	formats	of	CAD	files	(IGES,	STEP,	BREP).

This	sample	demonstrates	indirect	method	of	wrapping	C++	to	Java
using	manually	created	proxy	library.	Alternative	method	is	available,
wrapping	individual	OCCT	classes	to	Java	equivalents	so	that	their	full
API	is	available	to	Java	user	and	the	code	can	be	programmed	on	Java
level	similarly	to	C++	one.	See	description	of	OCCT	Java	Wrapper	in
Advanced	Samples	and	Tools	on	OCCT	web	site	at
http://www.opencascade.org/support/products/advsamples

Run	Eclipse	from	ADT	(Android	Developer	Tools)	for	building	the	sample.
To	import	sample	project	perform

File	->	Import...	->	Android	->	Existing	Android	code	

into	Workspace

and	specify	this	directory.	The	project	re-build	will	be	started	immediately
right	after	importation	if	"Build	automatically"	option	is	turned	on	(default
in	Eclipse).	Proxy	library	compilation	and	packaging	is	performed	by	NDK
build	script,	called	by	"C++	Builder"	configured	within	Eclipse	project.	The
path	to	"ndk-build"	tool	from	Android	NDK	(Native	Development	Kit)
should	be	specified	in	Eclipse	project	properties:

Project	->	Properties	->	Builders	->	C++	Builder	->	

http://www.opencascade.org/support/products/advsamples

Edit	->	Location

Now	paths	to	OCCT	C++	libraries	and	additional	components	should	be
specified	in	"jni/Android.mk"	file:

OCCT_ROOT	:=	$(LOCAL_PATH)/../../../..

FREETYPE_INC		:=	

$(OCCT_ROOT)/../freetype/include/freetype2

FREETYPE_LIBS	:=	$(OCCT_ROOT)/../freetype/libs

FREEIMAGE_INC		:=	$(OCCT_ROOT)/../FreeImage/include

FREEIMAGE_LIBS	:=	$(OCCT_ROOT)/../FreeImage/libs

OCCT_INC		:=	$(OCCT_ROOT)/inc

OCCT_LIBS	:=	$(OCCT_ROOT)/and/libs

The	list	of	extra	components	(Freetype,	FreeImage)	depends	on	OCCT
configuration.	Variable	is	used	within	this	script	to	refer	to	active
architecture.	E.g.	for	32-bit	ARM	build	(see	variable	APP_ABI	in
"jni/Application.mk")	the	folder	OCCT_LIBS	should	contain	sub-folder
"armeabi-v7a"	with	OCCT	libraries.

FreeImage	is	optional	and	does	not	required	for	this	sample,	however
you	should	include	all	extra	libraries	used	for	OCCT	building	and	load	the
explicitly	from	Java	code	within	OcctJniActivity::loadNatives()	method,
including	toolkits	from	OCCT	itself	in	proper	order:

if	(!loadLibVerbose	("TKernel",	aLoaded,	aFailed)

	||	!loadLibVerbose	("TKMath",		aLoaded,	aFailed)

	||	!loadLibVerbose	("TKG2d",			aLoaded,	aFailed)

Note	that	C++	STL	library	is	not	part	of	Android	system.	Thus	application
must	package	this	library	as	well	as	extra	component.	"gnustl_shared"
STL	implementation	is	expected	within	this	sample.

After	successful	build,	the	application	can	be	packaged	to	Android:

Deploy	and	run	application	on	connected	device	or	emulator	directly
from	Eclipse	using	adb	interface	by	menu	items	"Run"	and	"Debug".

This	would	sign	package	with	debug	certificate.
Prepare	signed	end-user	package	using	wizard	File	->	Export	->
Android	->	Export	Android	Application.

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

OCCT	AndroidQt	sample	for	Android

This	sample	demonstrates	a	simple	way	of	using	OCCT	libraries	in
Android	application	written	using	Qt/Qml.

The	connection	between	Qt/Qml	and	OCCT	(C++)	level	is	provided	by
proxy	library,	libAndroidQt.so,	written	in	C++.	The	proxy	library	contains
single	C++	class	AndroidQt	encapsulating	OCCT	viewer	and	providing
functionality	to	manipulate	this	viewer	and	to	import	OCCT	shapes	from
supported	format	of	CAD	file	(BREP).

Requirements	for	building	sample:

Java	Development	Kit	1.7	or	higher
Qt	5.3	or	higher
Android	SDK	from	2014.07.02	or	newer
Android	NDK	r9d	or	newer
Apache	Ant	1.9.4	or	higher

Configure	project	for	building	sample:

In	QtCreator,	open	AndroidQt.pro	project-file:

File	->	Open	file	or	Project...	

Specify	Android	configurations:

Tools->Options->Android

In	JDK	location	specify	path	to	Java	Development	Kit
In	Android	SDK	location	specify	path	to	Android	SDK
In	Android	NDK	location	specify	path	to	Android	NDK
In	Ant	executable	specify	path	to	ant.bat	file	located	in	Apache	Ant
bin	directory

Make	sure	that	"Android	for	armeabi-v7a"	kit	has	been	detected

Tools->Options->Build	&	Run

The	paths	to	OCCT	and	3rdparty	libraries	are	specified	in	"OCCT.pri"	file:

the	paths	to	the	headers:

INCLUDEPATH	+=	/occt/inc	/3rdparty/include

DEPENDPATH		+=	/occt/inc	/3rdparty/include

the	libraries	location:

LIBS	+=	-L/occt/libs/armeabi-v7a

OCCT	resources	(Shaders,	SHMessage,	StdResource,	TObj,	UnitsAPI
and	XSMessage	folder)	should	be	copied	to
androidqt_dir/android/assets/opencascade/shared/	directory.	Current
sample	requires	at	least	Shaders	folder.

Select	build	configuration:	Debug	or	Release	and	click	Build->Build
Project	"AndroidQt"	or	(Ctrl	+	B).	After	successful	build	the	application
can	be	deployed	to	device	or	emulator.

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Overview
Prerequisites
The	Model
Model	Specifications

Building	the	Profile
Defining	Support
Points
Profile:	Defining	the
Geometry
Profile:	Defining	the
Topology
Profile:	Completing
the	Profile

Building	the	Body
Prism	the	Profile
Applying	Fillets
Adding	the	Neck
Creating	a	Hollowed
Solid

Building	the	Threading
Creating	Surfaces
Defining	2D	Curves
Building	Edges	and
Wires
Creating	Threading

Building	the	Resulting
Compound
Appendix

Open	CASCADE
Technology		7.2.0

Tutorial

Overview
This	tutorial	will	teach	you	how	to	use	Open	CASCADE	Technology
services	to	model	a	3D	object.	The	purpose	of	this	tutorial	is	not	to
describe	all	Open	CASCADE	Technology	classes	but	to	help	you	start
thinking	in	terms	of	Open	CASCADE	Technology	as	a	tool.

Prerequisites
This	tutorial	assumes	that	you	have	experience	in	using	and	setting	up
C++.	From	a	programming	standpoint,	Open	CASCADE	Technology	is
designed	to	enhance	your	C++	tools	with	3D	modeling	classes,	methods
and	functions.	The	combination	of	all	these	resources	will	allow	you	to
create	substantial	applications.

The	Model
To	illustrate	the	use	of	classes	provided	in	the	3D	geometric	modeling
toolkits,	you	will	create	a	bottle	as	shown:

In	the	tutorial	we	will	create,	step-by-step,	a	function	that	will	model	a
bottle	as	shown	above.	You	will	find	the	complete	source	code	of	this
tutorial,	including	the	very	function	MakeBottle	in	the	distribution	of	Open
CASCADE	Technology.	The	function	body	is	provided	in	the	file
samples/qt/Tutorial/src/MakeBottle.cxx.

Model	Specifications
We	first	define	the	bottle	specifications	as	follows:

Object	Parameter Parameter	Name Parameter	Value
Bottle	height MyHeight 70mm
Bottle	width MyWidth 50mm

Bottle	thickness MyThickness 30mm

In	addition,	we	decide	that	the	bottle's	profile	(base)	will	be	centered	on
the	origin	of	the	global	Cartesian	coordinate	system.

This	modeling	requires	four	steps:

build	the	bottle's	Profile
build	the	bottle's	Body
build	the	Threading	on	the	bottle's	neck
build	the	result	compound

Building	the	Profile
Defining	Support	Points

To	create	the	bottle's	profile,	you	first	create	characteristic	points	with
their	coordinates	as	shown	below	in	the	(XOY)	plane.	These	points	will
be	the	supports	that	define	the	geometry	of	the	profile.

	

(-myWidth	/	2.,	0	,	0) 				 		 	 	 	
(myWidth	/	 2.,	0	,	0)	

(-myWidth	/	2.,	 -myThickness	/	4. 	,	0)	 	 	
(myWidth	/	2.,	 myThickne ss	/	4. 	,	0) 	

		
(0	,	 -myThickness	/	2.	,	0)

	

	

	

There	are	two	classes	to	describe	a	3D	Cartesian	point	from	its	X,	Y	and
Z	coordinates	in	Open	CASCADE	Technology:

the	primitive	geometric	gp_Pnt	class
the	transient	Geom_CartesianPoint	class	manipulated	by	handle

A	handle	is	a	type	of	smart	pointer	that	provides	automatic	memory
management.	To	choose	the	best	class	for	this	application,	consider	the
following:

gp_Pnt	is	manipulated	by	value.	Like	all	objects	of	its	kind,	it	will
have	a	limited	lifetime.
Geom_CartesianPoint	is	manipulated	by	handle	and	may	have
multiple	references	and	a	long	lifetime.

Since	all	the	points	you	will	define	are	only	used	to	create	the	profile's
curves,	an	object	with	a	limited	lifetime	will	do.	Choose	the	gp_Pnt	class.
To	instantiate	a	gp_Pnt	object,	just	specify	the	X,	Y,	and	Z	coordinates	of
the	points	in	the	global	Cartesian	coordinate	system:

gp_Pnt	aPnt1(-myWidth	/	2.,	0,	0);

gp_Pnt	aPnt2(-myWidth	/	2.,	-myThickness	/	4.,	0);

gp_Pnt	aPnt3(0,	-myThickness	/	2.,	0);

gp_Pnt	aPnt4(myWidth	/	2.,	-myThickness	/	4.,	0);

gp_Pnt	aPnt5(myWidth	/	2.,	0,	0);

Once	your	objects	are	instantiated,	you	can	use	methods	provided	by	the
class	to	access	and	modify	its	data.	For	example,	to	get	the	X	coordinate
of	a	point:

Standard_Real	xValue1	=	aPnt1.X();

Profile:	Defining	the	Geometry
With	the	help	of	the	previously	defined	points,	you	can	compute	a	part	of
the	bottle's	profile	geometry.	As	shown	in	the	figure	below,	it	will	consist
of	two	segments	and	one	arc.

To	create	such	entities,	you	need	a	specific	data	structure,	which
implements	3D	geometric	objects.	This	can	be	found	in	the	Geom
package	of	Open	CASCADE	Technology.	In	Open	CASCADE
Technology	a	package	is	a	group	of	classes	providing	related
functionality.	The	classes	have	names	that	start	with	the	name	of	a
package	they	belong	to.	For	example,	Geom_Line	and	Geom_Circle
classes	belong	to	the	Geom	package.	The	Geom	package	implements
3D	geometric	objects:	elementary	curves	and	surfaces	are	provided	as
well	as	more	complex	ones	(such	as	Bezier	and	BSpline).	However,	the
Geom	package	provides	only	the	data	structure	of	geometric	entities.	You
can	directly	instantiate	classes	belonging	to	Geom,	but	it	is	easier	to
compute	elementary	curves	and	surfaces	by	using	the	GC	package.	This
is	because	the	GC	provides	two	algorithm	classes	which	are	exactly	what
is	required	for	our	profile:

Class	GC_MakeSegment	to	create	a	segment.	One	of	its
constructors	allows	you	to	define	a	segment	by	two	end	points	P1
and	P2
Class	GC_MakeArcOfCircle	to	create	an	arc	of	a	circle.	A	useful
constructor	creates	an	arc	from	two	end	points	P1	and	P3	and	going
through	P2.

Both	of	these	classes	return	a	Geom_TrimmedCurve	manipulated	by
handle.	This	entity	represents	a	base	curve	(line	or	circle,	in	our	case),
limited	between	two	of	its	parameter	values.	For	example,	circle	C	is
parameterized	between	0	and	2PI.	If	you	need	to	create	a	quarter	of	a
circle,	you	create	a	Geom_TrimmedCurve	on	C	limited	between	0	and

M_PI/2.

Handle(Geom_TrimmedCurve)	aArcOfCircle	=	

GC_MakeArcOfCircle(aPnt2,aPnt3,aPnt4);

Handle(Geom_TrimmedCurve)	aSegment1				=	

GC_MakeSegment(aPnt1,	aPnt2);

Handle(Geom_TrimmedCurve)	aSegment2				=	

GC_MakeSegment(aPnt4,	aPnt5);

All	GC	classes	provide	a	casting	method	to	obtain	a	result	automatically
with	a	function-like	call.	Note	that	this	method	will	raise	an	exception	if
construction	has	failed.	To	handle	possible	errors	more	explicitly,	you
may	use	the	IsDone	and	Value	methods.	For	example:

GC_MakeSegment	mkSeg	(aPnt1,	aPnt2);

Handle(Geom_TrimmedCurve)	aSegment1;

if(mkSegment.IsDone()){

				aSegment1	=	mkSeg.Value();

}

else	{

//	handle	error

}

Profile:	Defining	the	Topology
You	have	created	the	support	geometry	of	one	part	of	the	profile	but
these	curves	are	independent	with	no	relations	between	each	other.	To
simplify	the	modeling,	it	would	be	right	to	manipulate	these	three	curves
as	a	single	entity.	This	can	be	done	by	using	the	topological	data
structure	of	Open	CASCADE	Technology	defined	in	the	TopoDS
package:	it	defines	relationships	between	geometric	entities	which	can	be
linked	together	to	represent	complex	shapes.	Each	object	of	the	TopoDS
package,	inheriting	from	the	TopoDS_Shape	class,	describes	a
topological	shape	as	described	below:

Shape
Open	CASCADE
Technology
Class

Description

Vertex TopoDS_Vertex
Zero	dimensional	shape
corresponding	to	a	point	in
geometry.

Edge TopoDS_Edge

One-dimensional	shape
corresponding	to	a	curve	and
bounded	by	a	vertex	at	each
extremity.

Wire TopoDS_Wire Sequence	of	edges	connected	by
vertices.

Face TopoDS_Face Part	of	a	surface	bounded	by	a
closed	wire(s).

Shell TopoDS_Shell Set	of	faces	connected	by	edges.
Solid TopoDS_Solid Part	of	3D	space	bounded	by	Shells.

CompSolid TopoDS_CompSolid Set	of	solids	connected	by	their
faces.

Compound TopoDS_Compound Set	of	any	other	shapes	described
above.

Referring	to	the	previous	table,	to	build	the	profile,	you	will	create:

Three	edges	out	of	the	previously	computed	curves.

One	wire	with	these	edges.

However,	the	TopoDS	package	provides	only	the	data	structure	of	the
topological	entities.	Algorithm	classes	available	to	compute	standard
topological	objects	can	be	found	in	the	BRepBuilderAPI	package.	To
create	an	edge,	you	use	the	BRepBuilderAPI_MakeEdge	class	with	the
previously	computed	curves:

TopoDS_Edge	aEdge1	=	

BRepBuilderAPI_MakeEdge(aSegment1);

TopoDS_Edge	aEdge2	=	

BRepBuilderAPI_MakeEdge(aArcOfCircle);

TopoDS_Edge	aEdge3	=	

BRepBuilderAPI_MakeEdge(aSegment2);

In	Open	CASCADE	Technology,	you	can	create	edges	in	several	ways.
One	possibility	is	to	create	an	edge	directly	from	two	points,	in	which
case	the	underlying	geometry	of	this	edge	is	a	line,	bounded	by	two
vertices	being	automatically	computed	from	the	two	input	points.	For
example,	aEdge1	and	aEdge3	could	have	been	computed	in	a	simpler
way:

TopoDS_Edge	aEdge1	=	BRepBuilderAPI_MakeEdge(aPnt1,	

aPnt3);

TopoDS_Edge	aEdge2	=	BRepBuilderAPI_MakeEdge(aPnt4,	

aPnt5);

To	connect	the	edges,	you	need	to	create	a	wire	with	the
BRepBuilderAPI_MakeWire	class.	There	are	two	ways	of	building	a	wire
with	this	class:

directly	from	one	to	four	edges
by	adding	other	wire(s)	or	edge(s)	to	an	existing	wire	(this	is
explained	later	in	this	tutorial)

When	building	a	wire	from	less	than	four	edges,	as	in	the	present	case,
you	can	use	the	constructor	directly	as	follows:

TopoDS_Wire	aWire	=	BRepBuilderAPI_MakeWire(aEdge1,	

aEdge2,	aEdge3);

Profile:	Completing	the	Profile
Once	the	first	part	of	your	wire	is	created	you	need	to	compute	the
complete	profile.	A	simple	way	to	do	this	is	to:

compute	a	new	wire	by	reflecting	the	existing	one.
add	the	reflected	wire	to	the	initial	one.

To	apply	a	transformation	on	shapes	(including	wires),	you	first	need	to
define	the	properties	of	a	3D	geometric	transformation	by	using	the
gp_Trsf	class.	This	transformation	can	be	a	translation,	a	rotation,	a
scale,	a	reflection,	or	a	combination	of	these.	In	our	case,	we	need	to
define	a	reflection	with	respect	to	the	X	axis	of	the	global	coordinate
system.	An	axis,	defined	with	the	gp_Ax1	class,	is	built	out	of	a	point	and
has	a	direction	(3D	unitary	vector).	There	are	two	ways	to	define	this
axis.	The	first	way	is	to	define	it	from	scratch,	using	its	geometric
definition:

X	axis	is	located	at	(0,	0,	0)	-	use	the	gp_Pnt	class.
X	axis	direction	is	(1,	0,	0)	-	use	the	gp_Dir	class.	A	gp_Dir	instance
is	created	out	of	its	X,	Y	and	Z	coordinates.

gp_Pnt	aOrigin(0,	0,	0);

gp_Dir	xDir(1,	0,	0);

gp_Ax1	xAxis(aOrigin,	xDir);

The	second	and	simplest	way	is	to	use	the	geometric	constants	defined
in	the	gp	package	(origin,	main	directions	and	axis	of	the	global
coordinate	system).	To	get	the	X	axis,	just	call	the	gp::OX	method:

gp_Ax1	xAxis	=	gp::OX();

As	previously	explained,	the	3D	geometric	transformation	is	defined	with
the	gp_Trsf	class.	There	are	two	different	ways	to	use	this	class:

by	defining	a	transformation	matrix	by	all	its	values
by	using	the	appropriate	methods	corresponding	to	the	required
transformation	(SetTranslation	for	a	translation,	SetMirror	for	a
reflection,	etc.):	the	matrix	is	automatically	computed.

Since	the	simplest	approach	is	always	the	best	one,	you	should	use	the
SetMirror	method	with	the	axis	as	the	center	of	symmetry.

gp_Trsf	aTrsf;

aTrsf.SetMirror(xAxis);

You	now	have	all	necessary	data	to	apply	the	transformation	with	the
BRepBuilderAPI_Transform	class	by	specifying:

the	shape	on	which	the	transformation	must	be	applied.
the	geometric	transformation

BRepBuilderAPI_Transform	aBRepTrsf(aWire,	aTrsf);

BRepBuilderAPI_Transform	does	not	modify	the	nature	of	the	shape:	the
result	of	the	reflected	wire	remains	a	wire.	But	the	function-like	call	or	the
BRepBuilderAPI_Transform::Shape	method	returns	a	TopoDS_Shape
object:

TopoDS_Shape	aMirroredShape	=	aBRepTrsf.Shape();

What	you	need	is	a	method	to	consider	the	resulting	reflected	shape	as	a
wire.	The	TopoDS	global	functions	provide	this	kind	of	service	by	casting
a	shape	into	its	real	type.	To	cast	the	transformed	wire,	use	the
TopoDS::Wire	method.

TopoDS_Wire	aMirroredWire	=	

TopoDS::Wire(aMirroredShape);

The	bottle's	profile	is	almost	finished.	You	have	created	two	wires:	aWire

and	aMirroredWire.	You	need	to	concatenate	them	to	compute	a	single
shape.	To	do	this,	you	use	the	BRepBuilderAPI_MakeWire	class	as
follows:

create	an	instance	of	BRepBuilderAPI_MakeWire.
add	all	edges	of	the	two	wires	by	using	the	Add	method	on	this
object.

BRepBuilderAPI_MakeWire	mkWire;

mkWire.Add(aWire);

mkWire.Add(aMirroredWire);

TopoDS_Wire	myWireProfile	=	mkWire.Wire();

Building	the	Body
Prism	the	Profile

To	compute	the	main	body	of	the	bottle,	you	need	to	create	a	solid	shape.
The	simplest	way	is	to	use	the	previously	created	profile	and	to	sweep	it
along	a	direction.	The	Prism	functionality	of	Open	CASCADE	Technology
is	the	most	appropriate	for	that	task.	It	accepts	a	shape	and	a	direction	as
input	and	generates	a	new	shape	according	to	the	following	rules:

Shape Generates
Vertex Edge
Edge Face
Wire Shell
Face Solid
Shell Compound	of	Solids

Your	current	profile	is	a	wire.	Referring	to	the	Shape/Generates	table,	you
need	to	compute	a	face	out	of	its	wire	to	generate	a	solid.	To	create	a
face,	use	the	BRepBuilderAPI_MakeFace	class.	As	previously	explained,
a	face	is	a	part	of	a	surface	bounded	by	a	closed	wire.	Generally,
BRepBuilderAPI_MakeFace	computes	a	face	out	of	a	surface	and	one	or
more	wires.	When	the	wire	lies	on	a	plane,	the	surface	is	automatically
computed.

TopoDS_Face	myFaceProfile	=	

BRepBuilderAPI_MakeFace(myWireProfile);

The	BRepPrimAPI	package	provides	all	the	classes	to	create	topological
primitive	constructions:	boxes,	cones,	cylinders,	spheres,	etc.	Among
them	is	the	BRepPrimAPI_MakePrism	class.	As	specified	above,	the
prism	is	defined	by:

the	basis	shape	to	sweep;
a	vector	for	a	finite	prism	or	a	direction	for	finite	and	infinite	prisms.

You	want	the	solid	to	be	finite,	swept	along	the	Z	axis	and	to	be	myHeight
height.	The	vector,	defined	with	the	gp_Vec	class	on	its	X,	Y	and	Z
coordinates,	is:

gp_Vec	aPrismVec(0,	0,	myHeight);

All	the	necessary	data	to	create	the	main	body	of	your	bottle	is	now
available.	Just	apply	the	BRepPrimAPI_MakePrism	class	to	compute	the
solid:

TopoDS_Shape	myBody	=	

BRepPrimAPI_MakePrism(myFaceProfile,	aPrismVec);

Applying	Fillets
The	edges	of	the	bottle's	body	are	very	sharp.	To	replace	them	by
rounded	faces,	you	use	the	Fillet	functionality	of	Open	CASCADE
Technology.	For	our	purposes,	we	will	specify	that	fillets	must	be:

applied	on	all	edges	of	the	shape
have	a	radius	of	myThickness	/	12

To	apply	fillets	on	the	edges	of	a	shape,	you	use	the
BRepFilletAPI_MakeFillet	class.	This	class	is	normally	used	as	follows:

Specify	the	shape	to	be	filleted	in	the	BRepFilletAPI_MakeFillet
constructor.
Add	the	fillet	descriptions	(an	edge	and	a	radius)	using	the	Add
method	(you	can	add	as	many	edges	as	you	need).
Ask	for	the	resulting	filleted	shape	with	the	Shape	method.

BRepFilletAPI_MakeFillet	mkFillet(myBody);

To	add	the	fillet	description,	you	need	to	know	the	edges	belonging	to
your	shape.	The	best	solution	is	to	explore	your	solid	to	retrieve	its
edges.	This	kind	of	functionality	is	provided	with	the	TopExp_Explorer
class,	which	explores	the	data	structure	described	in	a	TopoDS_Shape
and	extracts	the	sub-shapes	you	specifically	need.	Generally,	this
explorer	is	created	by	providing	the	following	information:

the	shape	to	explore
the	type	of	sub-shapes	to	be	found.	This	information	is	given	with	the
TopAbs_ShapeEnum	enumeration.

TopExp_Explorer	anEdgeExplorer(myBody,	TopAbs_EDGE);

An	explorer	is	usually	applied	in	a	loop	by	using	its	three	main	methods:

More()	to	know	if	there	are	more	sub-shapes	to	explore.
Current()	to	know	which	is	the	currently	explored	sub-shape	(used
only	if	the	More()	method	returns	true).
Next()	to	move	onto	the	next	sub-shape	to	explore.

while(anEdgeExplorer.More()){

				TopoDS_Edge	anEdge	=	

TopoDS::Edge(anEdgeExplorer.Current());

	//Add	edge	to	fillet	algorithm

				...

				anEdgeExplorer.Next();

}

In	the	explorer	loop,	you	have	found	all	the	edges	of	the	bottle	shape.
Each	one	must	then	be	added	in	the	BRepFilletAPI_MakeFillet	instance
with	the	Add()	method.	Do	not	forget	to	specify	the	radius	of	the	fillet
along	with	it.

mkFillet.Add(myThickness	/	12.,	anEdge);

Once	this	is	done,	you	perform	the	last	step	of	the	procedure	by	asking
for	the	filleted	shape.

myBody	=	mkFillet.Shape();

Adding	the	Neck
To	add	a	neck	to	the	bottle,	you	will	create	a	cylinder	and	fuse	it	to	the
body.	The	cylinder	is	to	be	positioned	on	the	top	face	of	the	body	with	a
radius	of	myThickness	/	4.	and	a	height	of	myHeight	/	10.

To	position	the	cylinder,	you	need	to	define	a	coordinate	system	with	the
gp_Ax2	class	defining	a	right-handed	coordinate	system	from	a	point	and
two	directions	-	the	main	(Z)	axis	direction	and	the	X	direction	(the	Y
direction	is	computed	from	these	two).	To	align	the	neck	with	the	center
of	the	top	face,	being	in	the	global	coordinate	system	(0,	0,	myHeight),
with	its	normal	on	the	global	Z	axis,	your	local	coordinate	system	can	be
defined	as	follows:

gp_Pnt	neckLocation(0,	0,	myHeight);

gp_Dir	neckAxis	=	gp::DZ();

gp_Ax2	neckAx2(neckLocation,	neckAxis);

To	create	a	cylinder,	use	another	class	from	the	primitives	construction
package:	the	BRepPrimAPI_MakeCylinder	class.	The	information	you
must	provide	is:

the	coordinate	system	where	the	cylinder	will	be	located;
the	radius	and	height.

Standard_Real	myNeckRadius	=	myThickness	/	4.;

Standard_Real	myNeckHeight	=	myHeight	/	10;

BRepPrimAPI_MakeCylinder	MKCylinder(neckAx2,	

myNeckRadius,	myNeckHeight);

TopoDS_Shape	myNeck	=	MKCylinder.Shape();

You	now	have	two	separate	parts:	a	main	body	and	a	neck	that	you	need
to	fuse	together.	The	BRepAlgoAPI	package	provides	services	to	perform
Boolean	operations	between	shapes,	and	especially:	common	(Boolean
intersection),	cut	(Boolean	subtraction)	and	fuse	(Boolean	union).	Use
BRepAlgoAPI_Fuse	to	fuse	the	two	shapes:

myBody	=	BRepAlgoAPI_Fuse(myBody,	myNeck);

Creating	a	Hollowed	Solid
Since	a	real	bottle	is	used	to	contain	liquid	material,	you	should	now
create	a	hollowed	solid	from	the	bottle's	top	face.	In	Open	CASCADE
Technology,	a	hollowed	solid	is	called	a	Thick	Solid	and	is	internally
computed	as	follows:

Remove	one	or	more	faces	from	the	initial	solid	to	obtain	the	first
wall	W1	of	the	hollowed	solid.
Create	a	parallel	wall	W2	from	W1	at	a	distance	D.	If	D	is	positive,
W2	will	be	outside	the	initial	solid,	otherwise	it	will	be	inside.
Compute	a	solid	from	the	two	walls	W1	and	W2.

To	compute	a	thick	solid,	you	create	an	instance	of	the
BRepOffsetAPI_MakeThickSolid	class	by	giving	the	following	information:

The	shape,	which	must	be	hollowed.
The	tolerance	used	for	the	computation	(tolerance	criterion	for
coincidence	in	generated	shapes).
The	thickness	between	the	two	walls	W1	and	W2	(distance	D).
The	face(s)	to	be	removed	from	the	original	solid	to	compute	the	first
wall	W1.

The	challenging	part	in	this	procedure	is	to	find	the	face	to	remove	from
your	shape	-	the	top	face	of	the	neck,	which:

has	a	plane	(planar	surface)	as	underlying	geometry;

is	the	highest	face	(in	Z	coordinates)	of	the	bottle.

To	find	the	face	with	such	characteristics,	you	will	once	again	use	an
explorer	to	iterate	on	all	the	bottle's	faces	to	find	the	appropriate	one.

for(TopExp_Explorer	aFaceExplorer(myBody,	

TopAbs_FACE)	;	aFaceExplorer.More()	;	

aFaceExplorer.Next()){

				TopoDS_Face	aFace	=	

TopoDS::Face(aFaceExplorer.Current());

}

For	each	detected	face,	you	need	to	access	the	geometric	properties	of
the	shape:	use	the	BRep_Tool	class	for	that.	The	most	commonly	used
methods	of	this	class	are:

Surface	to	access	the	surface	of	a	face;
Curve	to	access	the	3D	curve	of	an	edge;
Point	to	access	the	3D	point	of	a	vertex.

Handle(Geom_Surface)	aSurface	=	

BRep_Tool::Surface(aFace);

As	you	can	see,	the	BRep_Tool::Surface	method	returns	an	instance	of
the	Geom_Surface	class	manipulated	by	handle.	However,	the
Geom_Surface	class	does	not	provide	information	about	the	real	type	of
the	object	aSurface,	which	could	be	an	instance	of	Geom_Plane,
Geom_CylindricalSurface,	etc.	All	objects	manipulated	by	handle,	like
Geom_Surface,	inherit	from	the	Standard_Transient	class	which	provides
two	very	useful	methods	concerning	types:

DynamicType	to	know	the	real	type	of	the	object
IsKind	to	know	if	the	object	inherits	from	one	particular	type

DynamicType	returns	the	real	type	of	the	object,	but	you	need	to
compare	it	with	the	existing	known	types	to	determine	whether	aSurface
is	a	plane,	a	cylindrical	surface	or	some	other	type.	To	compare	a	given
type	with	the	type	you	seek,	use	the	STANDARD_TYPE	macro,	which
returns	the	type	of	a	class:

if(aSurface->DynamicType()	==	

STANDARD_TYPE(Geom_Plane)){

//

}

If	this	comparison	is	true,	you	know	that	the	aSurface	real	type	is
Geom_Plane.	You	can	then	convert	it	from	Geom_Surface	to
Geom_Plane	by	using	the	DownCast()	method	provided	by	each	class
inheriting	Standard_Transient.	As	its	name	implies,	this	static	method	is
used	to	downcast	objects	to	a	given	type	with	the	following	syntax:

Handle(Geom_Plane)	aPlane	=	

Handle(Geom_Plane)::DownCast(aSurface);

Remember	that	the	goal	of	all	these	conversions	is	to	find	the	highest
face	of	the	bottle	lying	on	a	plane.	Suppose	that	you	have	these	two
global	variables:

TopoDS_Face	faceToRemove;

Standard_Real	zMax	=	-1;

You	can	easily	find	the	plane	whose	origin	is	the	biggest	in	Z	knowing
that	the	location	of	the	plane	is	given	with	the	Geom_Plane::Location
method.	For	example:

gp_Pnt	aPnt	=	aPlane->Location();

Standard_Real	aZ	=	aPnt.Z();

if(aZ	>	zMax){

				zMax	=	aZ;

				faceToRemove	=	aFace;

}

You	have	now	found	the	top	face	of	the	neck.	Your	final	step	before
creating	the	hollowed	solid	is	to	put	this	face	in	a	list.	Since	more	than
one	face	can	be	removed	from	the	initial	solid,	the
BRepOffsetAPI_MakeThickSolid	constructor	takes	a	list	of	faces	as
arguments.	Open	CASCADE	Technology	provides	many	collections	for
different	kinds	of	objects:	see	TColGeom	package	for	collections	of
objects	from	Geom	package,	TColgp	package	for	collections	of	objects

from	gp	package,	etc.	The	collection	for	shapes	can	be	found	in	the
TopTools	package.	As	BRepOffsetAPI_MakeThickSolid	requires	a	list,
use	the	TopTools_ListOfShape	class.

TopTools_ListOfShape	facesToRemove;

facesToRemove.Append(faceToRemove);

All	the	necessary	data	are	now	available	so	you	can	create	your	hollowed
solid	by	calling	the	BRepOffsetAPI_MakeThickSolid
MakeThickSolidByJoin	method:

BRepOffsetAPI_MakeThickSolid	BodyMaker;

BodyMaker.MakeThickSolidByJoin(myBody,	facesToRemove,	

-myThickness	/	50,	1.e-3);

myBody	=	BodyMaker.Shape();

Building	the	Threading
Creating	Surfaces

Up	to	now,	you	have	learned	how	to	create	edges	out	of	3D	curves.	You
will	now	learn	how	to	create	an	edge	out	of	a	2D	curve	and	a	surface.	To
learn	this	aspect	of	Open	CASCADE	Technology,	you	will	build	helicoidal
profiles	out	of	2D	curves	on	cylindrical	surfaces.	The	theory	is	more
complex	than	in	previous	steps,	but	applying	it	is	very	simple.	As	a	first
step,	you	compute	these	cylindrical	surfaces.	You	are	already	familiar
with	curves	of	the	Geom	package.	Now	you	can	create	a	cylindrical
surface	(Geom_CylindricalSurface)	using:

a	coordinate	system;
a	radius.

Using	the	same	coordinate	system	neckAx2	used	to	position	the	neck,
you	create	two	cylindrical	surfaces	Geom_CylindricalSurface	with	the
following	radii:

Notice	that	one	of	the	cylindrical	surfaces	is	smaller	than	the	neck.	There
is	a	good	reason	for	this:	after	the	thread	creation,	you	will	fuse	it	with	the
neck.	So,	we	must	make	sure	that	the	two	shapes	remain	in	contact.

Handle(Geom_CylindricalSurface)	aCyl1	=	new	

Geom_CylindricalSurface(neckAx2,	myNeckRadius	*	

0.99);

Handle(Geom_CylindricalSurface)	aCyl2	=	new	

Geom_CylindricalSurface(neckAx2,	myNeckRadius	*	

1.05);

Defining	2D	Curves
To	create	the	neck	of	the	bottle,	you	made	a	solid	cylinder	based	on	a
cylindrical	surface.	You	will	create	the	profile	of	threading	by	creating	2D
curves	on	such	a	surface.	All	geometries	defined	in	the	Geom	package
are	parameterized.	This	means	that	each	curve	or	surface	from	Geom	is
computed	with	a	parametric	equation.	A	Geom_CylindricalSurface
surface	is	defined	with	the	following	parametric	equation:

P(U,	V)	=	O	+	R	*	(cos(U)	*	xDir	+	sin(U)	*	yDir)	+	V	*	zDir,	where	:

P	is	the	point	defined	by	parameters	(U,	V).
O,	*Dir,	yDir	and	zDir	are	respectively	the	origin,	the	X	direction,	Y
direction	and	Z	direction	of	the	cylindrical	surface	local	coordinate
system.
R	is	the	radius	of	the	cylindrical	surface.
U	range	is	[0,	2PI]	and	V	is	infinite.

The	advantage	of	having	such	parameterized	geometries	is	that	you	can
compute,	for	any	(U,	V)	parameters	of	the	surface:

the	3D	point;
the	derivative	vectors	of	order	1,	2	to	N	at	this	point.

There	is	another	advantage	of	these	parametric	equations:	you	can
consider	a	surface	as	a	2D	parametric	space	defined	with	a	(U,	V)
coordinate	system.	For	example,	consider	the	parametric	ranges	of	the
neck's	surface:

Suppose	that	you	create	a	2D	line	on	this	parametric	(U,	V)	space	and
compute	its	3D	parametric	curve.	Depending	on	the	line	definition,	results
are	as	follows:

Case Parametric	Equation Parametric	Curve
U	=	0 P(V)	=	O	+	V	*	zDir Line	parallel	to	the	Z	direction

V	=	0 P(U)	=	O	+	R	*	(cos(U)	*
xDir	+	sin(U)	*	yDir)

Circle	parallel	to	the	(O,	X,	Y)
plane

U	!=	0
V	!=	0

P(U,	V)	=	O	+	R	*	(cos(U)
*	xDir	+	sin(U)	*	yDir)	+	V	*
zDir

Helicoidal	curve	describing	the
evolution	of	height	and	angle	on
the	cylinder

The	helicoidal	curve	type	is	exactly	what	you	need.	On	the	neck's
surface,	the	evolution	laws	of	this	curve	will	be:

In	V	parameter:	between	0	and	myHeighNeck	for	the	height
description
In	U	parameter:	between	0	and	2PI	for	the	angle	description.	But,
since	a	cylindrical	surface	is	U	periodic,	you	can	decide	to	extend
this	angle	evolution	to	4PI	as	shown	in	the	following	drawing:

In	this	(U,	V)	parametric	space,	you	will	create	a	local	(X,	Y)	coordinate
system	to	position	the	curves	to	be	created.	This	coordinate	system	will
be	defined	with:

A	center	located	in	the	middle	of	the	neck's	cylinder	parametric
space	at	(2*PI,	myNeckHeight	/	2)	in	U,	V	coordinates.
A	X	direction	defined	with	the	(2*PI,	myNeckHeight/4)	vector	in	U,	V
coordinates,	so	that	the	curves	occupy	half	of	the	neck's	surfaces.

To	use	2D	primitive	geometry	types	of	Open	CASCADE	Technology	for
defining	a	point	and	a	coordinate	system,	you	will	once	again	instantiate
classes	from	gp:

To	define	a	2D	point	from	its	X	and	Y	coordinates,	use	the	gp_Pnt2d
class.
To	define	a	2D	direction	(unit	vector)	from	its	X	and	Y	coordinates,
use	the	gp_Dir2d	class.	The	coordinates	will	automatically	be
normalized.
To	define	a	2D	right-handed	coordinate	system,	use	the	gp_Ax2d
class,	which	is	computed	from	a	point	(origin	of	the	coordinate
system)	and	a	direction	-	the	X	direction	of	the	coordinate	system.

The	Y	direction	will	be	automatically	computed.

gp_Pnt2d	aPnt(2.	*	M_PI,	myNeckHeight	/	2.);

gp_Dir2d	aDir(2.	*	M_PI,	myNeckHeight	/	4.);

gp_Ax2d	anAx2d(aPnt,	aDir);

You	will	now	define	the	curves.	As	previously	mentioned,	these	thread
profiles	are	computed	on	two	cylindrical	surfaces.	In	the	following	figure,
curves	on	the	left	define	the	base	(on	aCyl1	surface)	and	the	curves	on
the	right	define	the	top	of	the	thread's	shape	(on	aCyl2	surface).

You	have	already	used	the	Geom	package	to	define	3D	geometric
entities.	For	2D,	you	will	use	the	Geom2d	package.	As	for	Geom,	all
geometries	are	parameterized.	For	example,	a	Geom2d_Ellipse	ellipse	is
defined	from:

a	coordinate	system	whose	origin	is	the	ellipse	center;
a	major	radius	on	the	major	axis	defined	by	the	X	direction	of	the
coordinate	system;
a	minor	radius	on	the	minor	axis	defined	by	the	Y	direction	of	the
coordinate	system.

Supposing	that:

Both	ellipses	have	the	same	major	radius	of	2*PI,
Minor	radius	of	the	first	ellipse	is	myNeckHeight	/	10,
And	the	minor	radius	value	of	the	second	ellipse	is	a	fourth	of	the
first	one,

Your	ellipses	are	defined	as	follows:

Standard_Real	aMajor	=	2.	*	M_PI;

Standard_Real	aMinor	=	myNeckHeight	/	10;

Handle(Geom2d_Ellipse)	anEllipse1	=	new	

Geom2d_Ellipse(anAx2d,	aMajor,	aMinor);

Handle(Geom2d_Ellipse)	anEllipse2	=	new	

Geom2d_Ellipse(anAx2d,	aMajor,	aMinor	/	4);

To	describe	portions	of	curves	for	the	arcs	drawn	above,	you	define
Geom2d_TrimmedCurve	trimmed	curves	out	of	the	created	ellipses	and
two	parameters	to	limit	them.	As	the	parametric	equation	of	an	ellipse	is
P(U)	=	O	+	(MajorRadius	*	cos(U)	*	XDirection)	+	(MinorRadius	*	sin(U)	*
YDirection),	the	ellipses	need	to	be	limited	between	0	and	M_PI.

Handle(Geom2d_TrimmedCurve)	anArc1	=	new	

Geom2d_TrimmedCurve(anEllipse1,	0,	M_PI);

Handle(Geom2d_TrimmedCurve)	anArc2	=	new	

Geom2d_TrimmedCurve(anEllipse2,	0,	M_PI);

The	last	step	consists	in	defining	the	segment,	which	is	the	same	for	the
two	profiles:	a	line	limited	by	the	first	and	the	last	point	of	one	of	the	arcs.
To	access	the	point	corresponding	to	the	parameter	of	a	curve	or	a
surface,	you	use	the	Value	or	D0	method	(meaning	0th	derivative),	D1
method	is	for	first	derivative,	D2	for	the	second	one.

gp_Pnt2d	anEllipsePnt1	=	anEllipse1->Value(0);

gp_Pnt2d	anEllipsePnt2;

anEllipse1->D0(M_PI,	anEllipsePnt2);

When	creating	the	bottle's	profile,	you	used	classes	from	the	GC
package,	providing	algorithms	to	create	elementary	geometries.	In	2D
geometry,	this	kind	of	algorithms	is	found	in	the	GCE2d	package.	Class
names	and	behaviors	are	similar	to	those	in	GC.	For	example,	to	create	a
2D	segment	out	of	two	points:

Handle(Geom2d_TrimmedCurve)	aSegment	=	

GCE2d_MakeSegment(anEllipsePnt1,	anEllipsePnt2);

Building	Edges	and	Wires
As	you	did	when	creating	the	base	profile	of	the	bottle,	you	can	now:

compute	the	edges	of	the	neck's	threading.
compute	two	wires	out	of	these	edges.

Previously,	you	have	built:

two	cylindrical	surfaces	of	the	threading
three	2D	curves	defining	the	base	geometry	of	the	threading

To	compute	the	edges	out	of	these	curves,	once	again	use	the
BRepBuilderAPI_MakeEdge	class.	One	of	its	constructors	allows	you	to
build	an	edge	out	of	a	curve	described	in	the	2D	parametric	space	of	a
surface.

TopoDS_Edge	anEdge1OnSurf1	=	

BRepBuilderAPI_MakeEdge(anArc1,	aCyl1);

TopoDS_Edge	anEdge2OnSurf1	=	

BRepBuilderAPI_MakeEdge(aSegment,	aCyl1);

TopoDS_Edge	anEdge1OnSurf2	=	

BRepBuilderAPI_MakeEdge(anArc2,	aCyl2);

TopoDS_Edge	anEdge2OnSurf2	=	

BRepBuilderAPI_MakeEdge(aSegment,	aCyl2);

Now,	you	can	create	the	two	profiles	of	the	threading,	lying	on	each
surface.

TopoDS_Wire	threadingWire1	=	

BRepBuilderAPI_MakeWire(anEdge1OnSurf1,	

anEdge2OnSurf1);

TopoDS_Wire	threadingWire2	=	

BRepBuilderAPI_MakeWire(anEdge1OnSurf2,	

anEdge2OnSurf2);

Remember	that	these	wires	were	built	out	of	a	surface	and	2D	curves.
One	important	data	item	is	missing	as	far	as	these	wires	are	concerned:
there	is	no	information	on	the	3D	curves.	Fortunately,	you	do	not	need	to
compute	this	yourself,	which	can	be	a	difficult	task	since	the	mathematics
can	be	quite	complex.	When	a	shape	contains	all	the	necessary
information	except	3D	curves,	Open	CASCADE	Technology	provides	a
tool	to	build	them	automatically.	In	the	BRepLib	tool	package,	you	can
use	the	BuildCurves3d	method	to	compute	3D	curves	for	all	the	edges	of
a	shape.

BRepLib::BuildCurves3d(threadingWire1);

BRepLib::BuildCurves3d(threadingWire2);

Creating	Threading
You	have	computed	the	wires	of	the	threading.	The	threading	will	be	a
solid	shape,	so	you	must	now	compute	the	faces	of	the	wires,	the	faces
allowing	you	to	join	the	wires,	the	shell	out	of	these	faces	and	then	the
solid	itself.	This	can	be	a	lengthy	operation.	There	are	always	faster	ways
to	build	a	solid	when	the	base	topology	is	defined.	You	would	like	to
create	a	solid	out	of	two	wires.	Open	CASCADE	Technology	provides	a
quick	way	to	do	this	by	building	a	loft:	a	shell	or	a	solid	passing	through	a
set	of	wires	in	a	given	sequence.	The	loft	function	is	implemented	in	the
BRepOffsetAPI_ThruSections	class,	which	you	use	as	follows:

Initialize	the	algorithm	by	creating	an	instance	of	the	class.	The	first
parameter	of	this	constructor	must	be	specified	if	you	want	to	create
a	solid.	By	default,	BRepOffsetAPI_ThruSections	builds	a	shell.
Add	the	successive	wires	using	the	AddWire	method.
Use	the	CheckCompatibility	method	to	activate	(or	deactivate)	the
option	that	checks	whether	the	wires	have	the	same	number	of
edges.	In	this	case,	wires	have	two	edges	each,	so	you	can
deactivate	this	option.
Ask	for	the	resulting	loft	shape	with	the	Shape	method.

BRepOffsetAPI_ThruSections	aTool(Standard_True);

aTool.AddWire(threadingWire1);	

aTool.AddWire(threadingWire2);

aTool.CheckCompatibility(Standard_False);

TopoDS_Shape	myThreading	=	aTool.Shape();

Building	the	Resulting	Compound
You	are	almost	done	building	the	bottle.	Use	the	TopoDS_Compound	and
BRep_Builder	classes	to	build	single	shape	from	myBody	and
myThreading:

TopoDS_Compound	aRes;

BRep_Builder	aBuilder;

aBuilder.MakeCompound	(aRes);

aBuilder.Add	(aRes,	myBody);

aBuilder.Add	(aRes,	myThreading);

Congratulations!	Your	bottle	is	complete.	Here	is	the	result	snapshot	of
the	Tutorial	application:

We	hope	that	this	tutorial	has	provided	you	with	a	feel	for	the	industrial
strength	power	of	Open	CASCADE	Technology.	If	you	want	to	know	more
and	develop	major	projects	using	Open	CASCADE	Technology,	we	invite
you	to	study	our	training,	support,	and	consulting	services	on	our	site	at
http://www.opencascade.com/content/technology-support.	Our

http://www.opencascade.com/content/technology-support

professional	services	can	maximize	the	power	of	your	Open	CASCADE
Technology	applications.

Appendix
Complete	definition	of	MakeBottle	function	(defined	in	the	file
src/MakeBottle.cxx	of	the	Tutorial):

TopoDS_Shape	MakeBottle(const	Standard_Real	myWidth,	

const	Standard_Real	myHeight,

	const	Standard_Real	myThickness)

{

	//	Profile	:	Define	Support	Points

				gp_Pnt	aPnt1(-myWidth	/	2.,	0,	0);								

				gp_Pnt	aPnt2(-myWidth	/	2.,	-myThickness	/	4.,	

0);

				gp_Pnt	aPnt3(0,	-myThickness	/	2.,	0);

				gp_Pnt	aPnt4(myWidth	/	2.,	-myThickness	/	4.,	0);

				gp_Pnt	aPnt5(myWidth	/	2.,	0,	0);

	//	Profile	:	Define	the	Geometry

				Handle(Geom_TrimmedCurve)	anArcOfCircle	=	

GC_MakeArcOfCircle(aPnt2,aPnt3,aPnt4);

				Handle(Geom_TrimmedCurve)	aSegment1	=	

GC_MakeSegment(aPnt1,	aPnt2);

				Handle(Geom_TrimmedCurve)	aSegment2	=	

GC_MakeSegment(aPnt4,	aPnt5);

	//	Profile	:	Define	the	Topology

				TopoDS_Edge	anEdge1	=	

BRepBuilderAPI_MakeEdge(aSegment1);

				TopoDS_Edge	anEdge2	=	

BRepBuilderAPI_MakeEdge(anArcOfCircle);

				TopoDS_Edge	anEdge3	=	

BRepBuilderAPI_MakeEdge(aSegment2);

				TopoDS_Wire	aWire		=	

BRepBuilderAPI_MakeWire(anEdge1,	anEdge2,	

anEdge3);

	//	Complete	Profile

				gp_Ax1	xAxis	=	gp::OX();

				gp_Trsf	aTrsf;

				aTrsf.SetMirror(xAxis);

				BRepBuilderAPI_Transform	aBRepTrsf(aWire,	aTrsf);

				TopoDS_Shape	aMirroredShape	=	aBRepTrsf.Shape();

				TopoDS_Wire	aMirroredWire	=	

TopoDS::Wire(aMirroredShape);

				BRepBuilderAPI_MakeWire	mkWire;

				mkWire.Add(aWire);

				mkWire.Add(aMirroredWire);

				TopoDS_Wire	myWireProfile	=	mkWire.Wire();

	//	Body	:	Prism	the	Profile

				TopoDS_Face	myFaceProfile	=	

BRepBuilderAPI_MakeFace(myWireProfile);

				gp_Vec	aPrismVec(0,	0,	myHeight);

				TopoDS_Shape	myBody	=	

BRepPrimAPI_MakePrism(myFaceProfile,	aPrismVec);

	//	Body	:	Apply	Fillets

				BRepFilletAPI_MakeFillet	mkFillet(myBody);

				TopExp_Explorer	anEdgeExplorer(myBody,	

TopAbs_EDGE);

	while(anEdgeExplorer.More()){

								TopoDS_Edge	anEdge	=	

TopoDS::Edge(anEdgeExplorer.Current());

	//Add	edge	to	fillet	algorithm

								mkFillet.Add(myThickness	/	12.,	anEdge);

								anEdgeExplorer.Next();

				}

				myBody	=	mkFillet.Shape();

	//	Body	:	Add	the	Neck

				gp_Pnt	neckLocation(0,	0,	myHeight);

				gp_Dir	neckAxis	=	gp::DZ();

				gp_Ax2	neckAx2(neckLocation,	neckAxis);

				Standard_Real	myNeckRadius	=	myThickness	/	4.;

				Standard_Real	myNeckHeight	=	myHeight	/	10.;

				BRepPrimAPI_MakeCylinder	MKCylinder(neckAx2,	

myNeckRadius,	myNeckHeight);

				TopoDS_Shape	myNeck	=	MKCylinder.Shape();

				myBody	=	BRepAlgoAPI_Fuse(myBody,	myNeck);

	//	Body	:	Create	a	Hollowed	Solid

				TopoDS_Face			faceToRemove;

				Standard_Real	zMax	=	-1;

	for(TopExp_Explorer	aFaceExplorer(myBody,	

TopAbs_FACE);	aFaceExplorer.More();	

aFaceExplorer.Next()){

								TopoDS_Face	aFace	=	

TopoDS::Face(aFaceExplorer.Current());

	//	Check	if	<aFace>	is	the	top	face	of	the	bottle's	

neck	

								Handle(Geom_Surface)	aSurface	=	

BRep_Tool::Surface(aFace);

	if(aSurface->DynamicType()	==	

STANDARD_TYPE(Geom_Plane)){

												Handle(Geom_Plane)	aPlane	=	

Handle(Geom_Plane)::DownCast(aSurface);

												gp_Pnt	aPnt	=	aPlane->Location();

												Standard_Real	aZ			=	aPnt.Z();

	if(aZ	>	zMax){

																zMax	=	aZ;

																faceToRemove	=	aFace;

												}

								}

				}

				TopTools_ListOfShape	facesToRemove;

				facesToRemove.Append(faceToRemove);

				BRepOffsetAPI_MakeThickSolid	BodyMaker;

				BodyMaker.MakeThickSolidByJoin(myBody,	

facesToRemove,	-myThickness	/	50,	1.e-3);

				myBody	=	BodyMaker.Shape();

	//	Threading	:	Create	Surfaces

				Handle(Geom_CylindricalSurface)	aCyl1	=	new	

Geom_CylindricalSurface(neckAx2,	myNeckRadius	*	

0.99);

				Handle(Geom_CylindricalSurface)	aCyl2	=	new	

Geom_CylindricalSurface(neckAx2,	myNeckRadius	*	

1.05);

	//	Threading	:	Define	2D	Curves

				gp_Pnt2d	aPnt(2.	*	M_PI,	myNeckHeight	/	2.);

				gp_Dir2d	aDir(2.	*	M_PI,	myNeckHeight	/	4.);

				gp_Ax2d	anAx2d(aPnt,	aDir);

				Standard_Real	aMajor	=	2.	*	M_PI;

				Standard_Real	aMinor	=	myNeckHeight	/	10;

				Handle(Geom2d_Ellipse)	anEllipse1	=	new	

Geom2d_Ellipse(anAx2d,	aMajor,	aMinor);

				Handle(Geom2d_Ellipse)	anEllipse2	=	new	

Geom2d_Ellipse(anAx2d,	aMajor,	aMinor	/	4);

				Handle(Geom2d_TrimmedCurve)	anArc1	=	new	

Geom2d_TrimmedCurve(anEllipse1,	0,	M_PI);

				Handle(Geom2d_TrimmedCurve)	anArc2	=	new	

Geom2d_TrimmedCurve(anEllipse2,	0,	M_PI);

				gp_Pnt2d	anEllipsePnt1	=	anEllipse1->Value(0);

				gp_Pnt2d	anEllipsePnt2	=	anEllipse1->Value(M_PI);

				Handle(Geom2d_TrimmedCurve)	aSegment	=	

GCE2d_MakeSegment(anEllipsePnt1,	anEllipsePnt2);

	//	Threading	:	Build	Edges	and	Wires

				TopoDS_Edge	anEdge1OnSurf1	=	

BRepBuilderAPI_MakeEdge(anArc1,	aCyl1);

				TopoDS_Edge	anEdge2OnSurf1	=	

BRepBuilderAPI_MakeEdge(aSegment,	aCyl1);

				TopoDS_Edge	anEdge1OnSurf2	=	

BRepBuilderAPI_MakeEdge(anArc2,	aCyl2);

				TopoDS_Edge	anEdge2OnSurf2	=	

BRepBuilderAPI_MakeEdge(aSegment,	aCyl2);

				TopoDS_Wire	threadingWire1	=	

BRepBuilderAPI_MakeWire(anEdge1OnSurf1,	

anEdge2OnSurf1);

				TopoDS_Wire	threadingWire2	=	

BRepBuilderAPI_MakeWire(anEdge1OnSurf2,	

anEdge2OnSurf2);

				BRepLib::BuildCurves3d(threadingWire1);

				BRepLib::BuildCurves3d(threadingWire2);

	//	Create	Threading	

				BRepOffsetAPI_ThruSections	aTool(Standard_True);

				aTool.AddWire(threadingWire1);

				aTool.AddWire(threadingWire2);

				aTool.CheckCompatibility(Standard_False);

				TopoDS_Shape	myThreading	=	aTool.Shape();

	//	Building	the	Resulting	Compound	

				TopoDS_Compound	aRes;

				BRep_Builder	aBuilder;

				aBuilder.MakeCompound	(aRes);

				aBuilder.Add	(aRes,	myBody);

				aBuilder.Add	(aRes,	myThreading);

	return	aRes;

}

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Foundation	Classes
Modeling	Data
Modeling	Algorithms
Mesh
Visualization
Data	Exchange
Shape	Healing
Application	Framework
Draw	Test	Harness

Open	CASCADE
Technology		7.2.0

Technical	Overview

Open	CASCADE	Technology	(OCCT)	is
an	object-oriented	C++	class	library
designed	for	rapid	production	of
sophisticated	domain-specific
CAD/CAM/CAE	applications.

A	typical	application	developed	using
OCCT	deals	with	two	or	three-dimensional
(2D	or	3D)	geometric	modeling	in	general-
purpose	or	specialized	Computer	Aided
Design	(CAD)	systems,	manufacturing	or
analysis	applications,	simulation
applications,	or	even	illustration	tools.

OCCT	library	is	designed	to	be	truly	modular	and	extensible,	providing
C++	classes	for:

Basic	data	structures	(geometric	modeling,	visualization,	interactive
selection	and	application	specific	services);
Modeling	algorithms;
Working	with	mesh	(faceted)	data;
Data	interoperability	with	neutral	formats	(IGES,	STEP);

The	C++	classes	and	other	types	are	grouped	into	packages.	Packages
are	organized	into	toolkits	(libraries),	to	which	you	can	link	your
application.	Finally,	toolkits	are	grouped	into	seven	modules.

This	modular	structure	is	illustrated	in	the	diagram	below.

Foundation	Classes	module	underlies	all	other	OCCT	classes;
Modeling	Data	module	supplies	data	structures	to	represent	2D	and
3D	geometric	primitives	and	their	compositions	into	CAD	models;
Modeling	Algorithms	module	contains	a	vast	range	of	geometrical
and	topological	algorithms;
Mesh	module	implements	tessellated	representations	of	objects;
Visualization	module	provides	complex	mechanisms	for	graphical
data	representation;
Data	Exchange	module	inter-operates	with	popular	data	formats
and	relies	on	Shape	Healing	to	improve	compatibility	between	CAD
software	of	different	vendors;
Application	Framework	module	offers	ready-to-use	solutions	for
handling	application-specific	data	(user	attributes)	and	commonly
used	functionality	(save/restore,	undo/redo,	copy/paste,	tracking
CAD	modifications,	etc).

In	addition,	Open	CASCADE	Test	Harness,	also	called	Draw,	provides
an	entry	point	to	the	library	and	can	be	used	as	a	testing	tool	for	its
modules.

Foundation	Classes
Foundation	Classes	module	contains	data	structures	and	services	used
by	higher-level	Open	CASCADE	Technology	classes:

Primitive	types,	such	as	Boolean,	Character,	Integer	or	Real;
String	classes	that	handle	ASCII	and	Unicode	strings;
Collection	classes	that	handle	statically	or	dynamically	sized
aggregates	of	data,	such	as	arrays,	lists,	queues,	sets	and	hash
tables	(data	maps).
Classes	providing	commonly	used	numerical	algorithms	and	basic
linear	algebra	calculations	(addition,	multiplication,	transposition	of
vectors	and	matrices,	solving	linear	systems	etc).
Fundamental	types	representing	physical	quantities	and	supporting
date	and	time	information;
Primitive	geometry	types	providing	implementation	of	basic
geometric	and	algebraic	entities	that	define	and	manipulate
elementary	data	structures.
Exception	classes	that	describe	situations,	when	the	normal
execution	of	program	is	abandoned;

This	module	also	provides	a	variety	of	general-purpose	services,	such
as:

Safe	handling	of	dynamically	created	objects,	ensuring	automatic
deletion	of	unreferenced	objects	(smart	pointers);
Configurable	optimized	memory	manager	increasing	the
performance	of	applications	that	intensively	use	dynamically	created
objects;
Extended	run-time	type	information	(RTTI)	mechanism	maintaining	a
full	type	hierarchy	and	providing	means	to	iterate	over	it;
Encapsulation	of	C++	streams;
Automated	management	of	heap	memory	by	means	of	specific
allocators;
Basic	interpreter	of	expressions	facilitating	the	creation	of
customized	scripting	tools,	generic	definition	of	expressions,	etc.;
Tools	for	dealing	with	configuration	resource	files	and	customizable
message	files	facilitating	multi-language	support	in	applications;

Progress	indication	and	user	break	interfaces,	giving	a	possibility
even	for	low-level	algorithms	to	communicate	with	the	user	in	a
universal	and	convenient	way;
and	many	others...

Please,	see	the	details	in	Foundation	Classes	User's	Guide

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Modeling	Data
Modeling	Data	supplies	data	structures	to	implement	boundary
representation	(BRep)	of	objects	in	3D.	In	BRep	the	shape	is	represented
as	an	aggregation	of	geometry	within	topology.	The	geometry	is
understood	as	a	mathematical	description	of	a	shape,	e.g.	as	curves	and
surfaces	(simple	or	canonical,	Bezier,	NURBS,	etc).	The	topology	is	a
data	structure	binding	geometrical	objects	together.

Geometry	types	and	utilities	provide	geometric	data	structures	and
services	for:

Description	of	points,	vectors,	curves	and	surfaces:
their	positioning	in	3D	space	using	axis	or	coordinate	systems,
and
their	geometric	transformation,	by	applying	translations,
rotations,	symmetries,	scaling	transformations	and	combinations
thereof.

Creation	of	parametric	curves	and	surfaces	by	interpolation	and
approximation;
Algorithms	of	direct	construction;
Conversion	of	curves	and	surfaces	to	NURBS	form;
Computation	of	point	coordinates	on	2D	and	3D	curves;
Calculation	of	extrema	between	geometric	objects.

Topology	defines	relationships	between	simple	geometric	entities.	A
shape,	which	is	a	basic	topological	entity,	can	be	divided	into
components	(sub-shapes):

Vertex	–	a	zero-dimensional	shape	corresponding	to	a	point;
Edge	–	a	shape	corresponding	to	a	curve	and	bounded	by	a	vertex
at	each	extremity;
Wire	–	a	sequence	of	edges	connected	by	their	vertices;
Face	–	a	part	of	a	plane	(in	2D)	or	a	surface	(in	3D)	bounded	by
wires;
Shell	–	a	collection	of	faces	connected	by	edges	of	their	wire
boundaries;
Solid	–	a	finite	closed	part	of	3D	space	bounded	by	shells;
Compound	solid	–	a	collection	of	solids	connected	by	faces	of	their

shell	boundaries.

Complex	shapes	can	be	defined	as	assemblies	of	simpler	entities.

Please,	see	the	details	in	Modeling	Data	User's	Guide

3D	geometric	models	can	be	stored	in	OCCT	native	BREP	format.	See
BREP	Format	Description	White	Paper	for	details	on	the	format.

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Modeling	Algorithms
Modeling	Algorithms	module	groups	a	wide	range	of	topological	and
geometric	algorithms	used	in	geometric	modeling.	Basically,	there	are
two	groups	of	algorithms	in	Open	CASCADE	Technology:

High-level	modeling	routines	used	in	the	real	design;
Low-level	mathematical	support	functions	used	as	a	groundwork	for
the	modeling	API;
Low-level	geometric	tools	provide	the	algorithms,	which:

Calculate	the	intersection	of	two	curves,	surfaces,	or	a	curve
and	a	surface;
Project	points	onto	2D	and	3D	curves,	points	onto	surfaces	and
3D	curves	onto	surfaces;
Construct	lines	and	circles	from	constraints;
Construct	free-form	curves	and	surfaces	from	constraints
(interpolation,	approximation,	skinning,	gap	filling,	etc);

Low-level	topological	tools	provide	the	algorithms,	which:
Tessellate	shapes;
Check	correct	definition	of	shapes;
Determine	the	local	and	global	properties	of	shapes	(derivatives,
mass-inertia	properties,	etc);
Perform	affine	transformations;
Find	planes	in	which	edges	are	located;
Convert	shapes	to	NURBS	geometry;
Sew	connected	topologies	(shells	and	wires)	from	separate
topological	elements	(faces	and	edges).

Top-level	API	provides	the	following	functionality:

Construction	of	Primitives:
Boxes;
Prisms;
Cylinders;
Cones;
Spheres;
Toruses.

Kinematic	Modeling:

Prisms	–	linear	sweeps;
Revolutions	–	rotational	sweeps;
Pipes	–	general-form	sweeps;
Lofting.

Shapes	containing	pipes	with	variable	radius	produced	by	sweeping

Boolean	Operations,	which	allow	creating	new	shapes	from	the
combinations	of	source	shapes.	For	two	shapes	S1	and	S2:

Common	contains	all	points	that	are	in	S1	and	S2;
Fuse	contains	all	points	that	are	in	S1	or	S2;
Cut	contains	all	points	in	that	are	in	S1	and	not	in	S2

See	Boolean	Operations	User's	Guide	for	detailed	documentation.

Algorithms	for	local	modifications	such	as:
Hollowing;
Shelling;
Creation	of	tapered	shapes	using	draft	angles;
Algorithms	to	make	fillets	and	chamfers	on	shape	edges,
including	those	with	variable	radius	(chord).

Algorithms	for	creation	of	mechanical	features,	i.e.	depressions,
protrusions,	ribs	and	grooves	or	slots	along	planar	or	revolution
surfaces.

Please,	see	the	details	in	Modeling	Algorithms	User's	Guide.

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Mesh
Mesh	module	provides	the	functionality	to	work	with	tessellated
representations	of	objects	in	form	of	triangular	facets.	This	module
contains:

data	structures	to	store	surface	mesh	data	associated	to	shapes	and
basic	algorithms	to	handle	them;
data	structures	and	algorithms	to	a	build	triangular	surface	mesh
from	BRep	objects	(shapes);
tools	for	displaying	meshes	with	associated	pre-	and	post-processor
data	(scalars	or	vectors).

Open	CASCADE	Technology	includes	two	mesh	converters:

VRML	converter	translates	Open	CASCADE	shapes	to	VRML	1.0
files	(Virtual	Reality	Modeling	Language).	Two	representation	modes
are	possible:	shaded,	which	presents	shapes	as	sets	of	triangles
computed	by	the	mesh	algorithm,	or	wireframe,	which	presents
shapes	as	sets	of	curves.
STL	converter	translates	Open	CASCADE	shapes	to	STL	files.	STL
(STtereoLithography)	format	is	widely	used	for	rapid	prototyping	(3D
printing).

Open	CASCADE	SAS	also	offers	Advanced	Mesh	Products:

Open	CASCADE	Mesh	Framework	(OMF)
Express	Mesh

http://www.opencascade.com/content/mesh-framework
http://www.opencascade.com/content/express-mesh

Visualization
Visualization	module	provides	ready-to-use	algorithms	to	create	graphic
presentations	from	various	objects:	shapes,	meshes,	etc.

In	Open	CASCADE	Technology	visualization	is	based	on	the	separation
of	CAD	data	and	its	graphical	presentation.	The	presentations	can	be
customized	to	take	the	specificity	of	your	application	into	account.

The	module	also	supports	a	fast	and	powerful	interactive	selection
mechanism.

The	view	facilities	provided	by	OCCT	range	from	low-level	tools	working
with	basic	geometry	and	topology	(such	as	NURBS	visualization	with
control	points	and	nodes,	rendering	of	isolines	to	estimate	speed	and
quality	of	parameterization,	or	rendering	of	a	parametric	profile	of	edges)
to	high-level	tools	for	real	time	quality	rendering	of	models	using	ray
tracing:	shades,	reflections,	transparency,	anti-aliasing,	etc.

Here	are	just	a	few	examples:

Camera-driven	view	projection	and	orientation.	It	is	possible	to
choose	between	perspective,	orthographic	and	stereographic
projection.
Real-time	ray	tracing	technique	using	recursive	Whitted's	algorithm
and	Bounded	Volume	Hierarchy	effective	optimization	structure.

Real	time	visualization	by	ray	tracing	method

Support	of	GLSL	shaders.	The	shader	management	is	fully
automatic,	like	with	any	other	OpenGL	resource.

Fragment	shader	implementing	custom	clipping	surface

Support	of	standard	and	custom	materials,	defined	by	transparency,
diffuse,	ambient	and	specular	reflection	and	refraction	index.	The
latter	allows	implementing	transparent	materials,	such	as	glass,
diamond	and	water.

Simulation	of	a	glass	cover

Optimization	of	rendering	performance	through	the	algorithms	of:
View	frustum	culling,	which	skips	the	presentation	outside
camera	at	the	rendering	stage	and
Back	face	culling,	which	reduces	the	rendered	number	of
triangles	and	eliminates	artifacts	at	shape	boundaries.

Definition	of	clipping	planes	through	the	plane	equation	coefficients.
Ability	to	define	visual	attributes	for	cross-section	at	the	level	or
individual	clipping	planes.	In	the	image	below	different	parts	of	the
rocket	are	clipped	with	different	planes	and	hatched.
Possibility	to	flexibly	adjust	appearance	of	dimensions	in	a	3D	view.
The	3D	text	object	represents	a	given	text	string	as	a	true	3D	object
in	the	model	space.

Display	of	shape	cross-section	and	dimensions

For	more	details	see	Visualization	User's	Guide.

The	visualization	of	OCCT	topological	shapes	by	means	of	VTK	library
provided	by	VIS	component	is	described	in	a	separate	VTK	Integration
Services	User's	Guide.

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Data	Exchange
Data	Exchange	allows	developing	OCCT-based	applications	that	can
interact	with	other	CAD	systems	by	writing	and	reading	CAD	models	to
and	from	external	data.	The	exchanges	run	smoothly	regardless	of	the
quality	of	external	data	or	requirements	to	its	internal	representation,	for
example,	to	the	data	types,	accepted	geometric	inaccuracies,	etc.

Shape	imported	from	STEP

Data	Exchange	is	organized	in	a	modular	way	as	a	set	of	interfaces	that
comply	with	various	CAD	formats:	IGES,	STEP,	STL,	VRML,	etc.	The
interfaces	allow	software	based	on	OCCT	to	exchange	data	with	various

CAD/PDM	software	packages,	maintaining	a	good	level	of
interoperability.

Standardized	Data	Exchange	interfaces	allow	querying	and
examining	the	input	file,	converting	its	contents	to	a	CAD	model	and
running	validity	checks	on	a	fully	translated	shape.	The	following
formats	are	currently	supported.

STEP	(AP203	:	Mechanical	Design,	this	covers	General	3D
CAD;	AP214:	Automotive	Design)
IGES	(up	to	5.3)
VRML	and	STL	meshes.

Extended	data	exchange	(XDE)	allows	translating	additional
attributes	attached	to	geometric	data	(colors,	layers,	names,
materials	etc).
Advanced	Data	Exchange	Components	are	available	in	addition	to
standard	Data	Exchange	interfaces	to	support	interoperability	and
data	adaptation	(also	using	Shape	Healing)	with	CAD	software
using	the	following	proprietary	formats:

ACIS	SAT
Parasolid
DXF

These	components	are	based	on	the	same	architecture	as	interfaces	with
STEP	and	IGES.

http://www.opencascade.com/content/advanced-data-exchange-components
http://www.opencascade.com/content/acis-sat-import-export
http://www.opencascade.com/content/parasolid-import
http://www.opencascade.com/content/dxf-import-export

Shape	Healing
Shape	Healing	library	provides	algorithms	to	correct	and	adapt	the
geometry	and	topology	of	shapes	imported	to	OCCT	from	other	CAD
systems.

Shape	Healing	algorithms	include,	but	are	not	limited	to,	the	following
operations:

analyze	shape	characteristics	and,	in	particular,	identify	the	shapes
that	do	not	comply	with	OCCT	geometry	and	topology	validity	rules
by	analyzing	geometrical	objects	and	topology:

check	edge	and	wire	consistency;
check	edge	order	in	a	wire;
check	the	orientation	of	face	boundaries;
analyze	shape	tolerances;
identify	closed	and	open	wires	in	a	boundary.

fix	incorrect	or	incomplete	shapes:
provide	consistency	between	a	3D	curve	and	its	corresponding
parametric	curve;
repair	defective	wires;
fit	the	shapes	to	a	user-defined	tolerance	value;
fill	gaps	between	patches	and	edges.

upgrade	and	change	shape	characteristics:
reduce	curve	and	surface	degree;
split	shapes	to	obtain	C1	continuity;
convert	any	types	of	curves	or	surfaces	to	Bezier	or	B-Spline
curves	or	surfaces	and	back;
split	closed	surfaces	and	revolution	surfaces.

Each	sub-domain	of	Shape	Healing	has	its	own	scope	of	functionality:

Sub-
domain Description Impact	on	the	shape

Analysis

Explores	shape
properties,	computes
shape	features,	detects The	shape	itself	is	not

violation	of	OCCT
requirements.

modified.

Fixing Fixes	the	shape	to	meet
the	OCCT	requirements.

The	shape	may	change	its
original	form:	modification,
removal	or	creation	of	sub-
shapes,	etc.)

Upgrade
Improves	the	shape	to	fit
some	particular
algorithms.

The	shape	is	replaced	with
a	new	one,	but
geometrically	they	are	the
same.

Customization
Modifies	the	shape
representation	to	fit
specific	needs.

The	shape	is	not	modified,
only	the	mathematical	form
of	its	internal
representation	is	changed.

Processing
Mechanism	of	shape
modification	via	a	user-
editable	resource	file.

For	more	details	refer	to	Shape	Healing	User's	guide.

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Application	Framework
Open	CASCADE	Application	Framework	(OCAF)	handles	Application
Data	basing	on	the	Application/Document	paradigm.	It	uses	an
associativity	engine	to	simplify	the	development	of	a	CAD	application
thanks	to	the	following	ready-to-use	features	and	services:

Data	attributes	managing	the	application	data,	which	can	be
organized	according	to	the	development	needs;
Data	storage	and	persistence	(open/save);
Possibility	to	modify	and	recompute	attributes	in	documents.	With
OCAF	it	is	easy	to	represent	the	history	of	modification	and
parametric	dependencies	within	your	model;
Possibility	to	manage	multiple	documents;
Predefined	attributes	common	to	CAD/CAM/CAE	applications	(e.g.
to	store	dimensions);
Undo-Redo	and	Copy-Paste	functions.

Since	OCAF	handles	the	application	structure,	the	only	development	task
is	the	creation	of	application-specific	data	and	GUIs.

OCAF	differs	from	any	other	CAD	framework	in	the	organization	of
application	data,	as	there	the	data	structures	are	based	on	reference
keys	rather	than	on	shapes.	In	a	model,	such	attributes	as	shape	data,
color	and	material	are	attached	to	an	invariant	structure,	which	is	deeper
than	the	shapes.	A	shape	object	becomes	the	value	of	Shape	attribute,	in
the	same	way	as	an	integer	number	is	the	value	of	Integer	attribute	and	a
string	is	the	value	of	Name	attribute.

OCAF	organizes	and	embeds	these	attributes	in	a	document.	OCAF
documents,	in	their	turn,	are	managed	by	an	OCAF	application.

For	more	details	see	OCAF	User's	Guide.

See	also:	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Draw	Test	Harness
Test	Harness	or	Draw	is	a	convenient	testing	tool	for	OCCT	libraries.	It
can	be	used	to	test	and	prototype	various	algorithms	before	building	an
entire	application.	It	includes:

A	command	interpreter	based	on	the	TCL	language;
A	number	of	2D	and	3D	viewers;
A	set	of	predefined	commands.

The	viewers	support	operations	such	as	zoom,	pan,	rotation	and	full-
screen	views.

The	basic	commands	provide	general-purpose	services	such	as:

Getting	help;
Evaluating	a	script	from	a	file;
Capturing	commands	in	a	file;
Managing	views;
Displaying	objects.

In	addition,	Test	Harness	provides	commands	to	create	and	manipulate
curves	and	surfaces	(geometry)	and	shapes,	access	visualization
services,	work	with	OCAF	documents,	perform	data	exchange,	etc.

You	can	add	custom	commands	to	test	or	demonstrate	any	new
functionalities,	which	you	develop.

For	more	details	see	Draw	Test	Harness	Manual.

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

User	Guides

OCCT	User	Guides	are	organized	by	OCCT	modules:

Foundation	Classes
Modeling	Data

BREP	format	description
Modeling	Algorithms

Boolean	Operations
Shape	Healing

Visualization
VTK	Integration	Services

Data	Exchange
IGES	translator
STEP	translator
Extended	Data	Exchange	(XDE)

Open	CASCADE	Application	Framework	(OCAF)
TObj	package

DRAW	Test	Harness
Inspector

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Basics
Library	organization

Modules	and
toolkits
Packages
Classes
Inheritance

Data	Types
Primitive	Types
Types
manipulated	by
value
Types
manipulated	by
reference
(handle)
When	is	it
necessary	to
use	a	handle?

Programming	with
Handles

Handle
Definition
Type
Management
Using	Handles
to	Create
Objects
Invoking

Open	CASCADE
Technology		7.2.0

Foundation	Classes

Methods
Handle
deallocation
Cycles

Memory	Management
Usage	of
Memory
Manager
How	to
configure	the
Memory
Manager
Optimization
Techniques
Benefits	and
drawbacks

Exceptions
Introduction
Raising	an
Exception
Handling	an
Exception
Implementation
on	various
platforms.

Plug-In	Management
Distribution	by
Plug-Ins

Collections,	Strings,
Quantities	and	Unit
Conversion
Collections

Overview
Generic
general-purpose
Aggregates
Generic	Maps
Iterators

Collections	of
Standard	Objects

Overview

Description
NCollections

Overview
Instantiation	of
collection
classes
Arrays	and
sequences
Maps
Other	collection
types
Features

Strings
Examples
Conversion

Quantities
Unit	Conversion

Math	Primitives	and
Algorithms
Overview
Vectors	and	Matrices
Primitive	Geometric
Types
Collections	of
Primitive	Geometric
Types
Basic	Geometric
Libraries
Common	Math
Algorithms
Precision

The	Precision
package
Standard
Precision	values

Introduction
This	manual	explains	how	to	use	Open	CASCADE	Technology	(OCCT)
Foundation	Classes.	It	provides	basic	documentation	on	foundation
classes.	For	advanced	information	on	foundation	classes	and	their
applications,	see	our	E-learning	&	Training	offerings.

Foundation	Classes	provide	a	variety	of	general-purpose	services	such
as	automated	dynamic	memory	management	(manipulation	of	objects	by
handle),	collections,	exception	handling,	genericity	by	down-casting	and
plug-in	creation.

Foundation	Classes	include	the	following:

Root	Classes

Root	classes	are	the	basic	data	types	and	classes	on	which	all	the	other
classes	are	built.	They	provide:

fundamental	types	such	as	Boolean,	Character,	Integer	or	Real,
safe	handling	of	dynamically	created	objects,	ensuring	automatic
deletion	of	unreferenced	objects	(see	Standard_Transient	class),
configurable	optimized	memory	manager	increasing	the	performance
of	applications	that	intensively	use	dynamically	created	objects,
extended	run-time	type	information	(RTTI)	mechanism	facilitating	the
creation	of	complex	programs,
management	of	exceptions,
encapsulation	of	C++	streams.	Root	classes	are	mainly	implemented
in	Standard	and	MMgt	packages.

Strings

Strings	are	classes	that	handle	dynamically	sized	sequences	of
characters	based	on	both	ASCII	(normal	8-bit	character	type)	and
Unicode	(16-bit	character	type).	Strings	may	also	be	manipulated	by
handles,	and	consequently	be	shared.	Strings	are	implemented	in	the
TCollection	package.

http://www.opencascade.com/content/tutorial-learning

Collections

Collections	are	the	classes	that	handle	dynamically	sized	aggregates	of
data.	Collection	classes	are	generic,	that	is,	they	define	a	structure	and
algorithms	allowing	to	hold	a	variety	of	objects	which	do	not	necessarily
inherit	from	a	unique	root	class	(similarly	to	C++	templates).	When	you
need	to	use	a	collection	of	a	given	type	of	object,	you	must	instantiate	it
for	this	specific	type	of	element.	Once	this	declaration	is	compiled,	all
functions	available	on	the	generic	collection	are	available	on	your
instantiated	class.

Collections	include	a	wide	range	of	generic	classes	such	as	run-time
sized	arrays,	lists,	stacks,	queues,	sets	and	hash	maps.	Collections	are
implemented	in	the	TCollection	and	NCollection	packages.

Collections	of	Standard	Objects

The	TColStd	package	provides	frequently	used	instantiations	of	generic
classes	from	the	TCollection	package	with	objects	from	the	Standard
package	or	strings	from	the	TCollection	package.

Vectors	and	Matrices

These	classes	provide	commonly	used	mathematical	algorithms	and
basic	calculations	(addition,	multiplication,	transposition,	inversion,	etc.)
involving	vectors	and	matrices.

Primitive	Geometric	Types

Open	CASCADE	Technology	primitive	geometric	types	are	a	STEP-
compliant	implementation	of	basic	geometric	and	algebraic	entities.	They
provide:

Descriptions	of	elementary	geometric	shapes:
Points,
Vectors,
Lines,
Circles	and	conics,
Planes	and	elementary	surfaces,
Positioning	of	these	shapes	in	space	or	in	a	plane	by	means	of	an

axis	or	a	coordinate	system,
Definition	and	application	of	geometric	transformations	to	these
shapes:
Translations
Rotations
Symmetries
Scaling	transformations
Composed	transformations
Tools	(coordinates	and	matrices)	for	algebraic	computation.

Common	Math	Algorithms

Open	CASCADE	Technology	common	math	algorithms	provide	a	C++
implementation	of	the	most	frequently	used	mathematical	algorithms.
These	include:

Algorithms	to	solve	a	set	of	linear	algebraic	equations,
Algorithms	to	find	the	minimum	of	a	function	of	one	or	more
independent	variables,
Algorithms	to	find	roots	of	one,	or	of	a	set,	of	non-linear	equations,
Algorithms	to	find	the	eigen-values	and	eigen-vectors	of	a	square
matrix.

Exceptions

A	hierarchy	of	commonly	used	exception	classes	is	provided,	all	based
on	class	Failure,	the	root	of	exceptions.	Exceptions	describe	exceptional
situations,	which	can	arise	during	the	execution	of	a	function.	With	the
raising	of	an	exception,	the	normal	course	of	program	execution	is
abandoned.	The	execution	of	actions	in	response	to	this	situation	is
called	the	treatment	of	the	exception.

Quantities

These	are	various	classes	supporting	date	and	time	information	and
fundamental	types	representing	most	physical	quantities	such	as	length,
area,	volume,	mass,	density,	weight,	temperature,	pressure	etc.

Application	services

Foundation	Classes	also	include	implementation	of	several	low-level
services	that	facilitate	the	creation	of	customizable	and	user-friendly
applications	with	Open	CASCADE	Technology.	These	include:

Unit	conversion	tools,	providing	a	uniform	mechanism	for	dealing
with	quantities	and	associated	physical	units:	check	unit
compatibility,	perform	conversions	of	values	between	different	units
and	so	on	(see	package	UnitsAPI);
Basic	interpreter	of	expressions	that	facilitates	the	creation	of
customized	scripting	tools,	generic	definition	of	expressions	and	so
on	(see	package	ExprIntrp);
Tools	for	dealing	with	configuration	resource	files	(see	package
Resource)	and	customizable	message	files	(see	package	Message),
making	it	easy	to	provide	a	multi-language	support	in	applications;
Progress	indication	and	user	break	interfaces,	giving	a	possibility
even	for	low-level	algorithms	to	communicate	with	the	user	in	a
universal	and	convenient	way.

Basics
This	chapter	deals	with	basic	services	such	as	library	organization,
persistence,	data	types,	memory	management,	programming	with
handles,	exception	handling,	genericity	by	downcasting	and	plug-in
creation.

Library	organization
This	chapter	introduces	some	basic	concepts,	which	are	used	not	only	in
Foundation	Classes,	but	throughout	the	whole	OCCT	library.

Modules	and	toolkits

The	whole	OCCT	library	is	organized	in	a	set	of	modules.	The	first
module,	providing	most	basic	services	and	used	by	all	other	modules,	is
called	Foundation	Classes	and	described	by	this	manual.

Every	module	consists	primarily	of	one	or	several	toolkits	(though	it	can
also	contain	executables,	resource	units	etc.).	Physically	a	toolkit	is
represented	by	a	shared	library	(e.g.	.so	or	.dll).	The	toolkit	is	built	from
one	or	several	packages.

Packages

A	package	groups	together	a	number	of	classes	which	have	semantic
links.	For	example,	a	geometry	package	would	contain	Point,	Line,	and
Circle	classes.	A	package	can	also	contain	enumerations,	exceptions	and
package	methods	(functions).	In	practice,	a	class	name	is	prefixed	with
the	name	of	its	package	e.g.	Geom_Circle.	Data	types	described	in	a
package	may	include	one	or	more	of	the	following	data	types:

Enumerations
Object	classes
Exceptions
Pointers	to	other	object	classes	Inside	a	package,	two	data	types
cannot	bear	the	same	name.

Contents	of	a	package

Methods	are	either	functions	or	procedures.	Functions	return	an
object,	whereas	procedures	only	communicate	by	passing	arguments.	In
both	cases,	when	the	transmitted	object	is	an	instance	manipulated	by	a
handle,	its	identifier	is	passed.	There	are	three	categories	of	methods:

Object	constructor	Creates	an	instance	of	the	described	class.	A
class	will	have	one	or	more	object	constructors	with	various	different
arguments	or	none.
Instance	method	Operates	on	the	instance	which	owns	it.
Class	method	Does	not	work	on	individual	instances,	only	on	the
class	itself.

Classes

The	fundamental	software	component	in	object-oriented	software
development	is	the	class.	A	class	is	the	implementation	of	a	data	type.	It

defines	its	behavior	(the	services	offered	by	its	functions)	and	its
representation	(the	data	structure	of	the	class	–	the	fields,	which	store
its	data).

Classes	fall	into	three	categories:

Ordinary	classes.
Abstract	classes.	An	abstract	class	cannot	be	instantiated.	The
purpose	of	having	such	classes	is	to	have	a	given	behavior	shared
by	a	hierarchy	of	classes	and	dependent	on	the	implementation	of
the	descendants.	This	is	a	way	of	guaranteeing	a	certain	base	of
inherited	behavior	common	to	all	the	classes	based	on	a	particular
deferred	class.
Template	classes.	A	template	class	offers	a	set	of	functional
behaviors	to	manipulate	other	data	types.	Instantiation	of	a	template
class	requires	that	a	data	type	is	given	for	its	argument(s).

Inheritance

The	purpose	of	inheritance	is	to	reduce	the	development	workload.	The
inheritance	mechanism	allows	a	new	class	to	be	declared	already
containing	the	characteristics	of	an	existing	class.	This	new	class	can
then	be	rapidly	specialized	for	the	task	in	hand.	This	avoids	the	necessity
of	developing	each	component	“from	scratch”.	For	example,	having
already	developed	a	class	BankAccount	you	could	quickly	specialize	new
classes:	SavingsAccount,	LongTermDepositAccount,
MoneyMarketAccount,	RevolvingCreditAccount,	etc....

The	corollary	of	this	is	that	when	two	or	more	classes	inherit	from	a
parent	(or	ancestor)	class,	all	these	classes	guarantee	as	a	minimum	the
behavior	of	their	parent	(or	ancestor).	For	example,	if	the	parent	class
BankAccount	contains	the	method	Print	which	tells	it	to	print	itself	out,
then	all	its	descendant	classes	guarantee	to	offer	the	same	service.

One	way	of	ensuring	the	use	of	inheritance	is	to	declare	classes	at	the
top	of	a	hierarchy	as	being	abstract.	In	such	classes,	the	methods	are
not	implemented.	This	forces	the	user	to	create	a	new	class	which
redefines	the	methods.	This	is	a	way	of	guaranteeing	a	certain	minimum
of	behavior	among	descendant	classes.

Data	Types
An	object-oriented	language	structures	a	system	around	data	types
rather	than	around	the	actions	carried	out	on	this	data.	In	this	context,	an
object	is	an	instance	of	a	data	type	and	its	definition	determines	how	it
can	be	used.	Each	data	type	is	implemented	by	one	or	more	classes,
which	make	up	the	basic	elements	of	the	system.

The	data	types	in	Open	CASCADE	Technology	fall	into	two	categories:

Data	types	manipulated	by	handle	(or	reference)
Data	types	manipulated	by	value

Manipulation	of	data	types

A	data	type	is	implemented	as	a	class.	The	class	not	only	defines	its	data
representation	and	the	methods	available	on	instances,	but	it	also
suggests	how	the	instance	will	be	manipulated.

A	variable	of	a	type	manipulated	by	value	contains	the	instance	itself.
A	variable	of	a	type	manipulated	by	handle	contains	a	reference	to
the	instance.	The	first	examples	of	types	manipulated	by	values	are
the	predefined	primitive	types:	Boolean,	Character,	Integer,	Real,
etc.

A	variable	of	a	type	manipulated	by	handle	which	is	not	attached	to	an
object	is	said	to	be	null.	To	reference	an	object,	we	instantiate	the	class
with	one	of	its	constructors.	For	example,	in	C++:

Handle(myClass)		m	=	new	myClass;	

In	Open	CASCADE	Technology,	the	Handles	are	specific	classes	that	are
used	to	safely	manipulate	objects	allocated	in	the	dynamic	memory	by
reference,	providing	reference	counting	mechanism	and	automatic
destruction	of	the	object	when	it	is	not	referenced.

Primitive	Types

The	primitive	types	are	predefined	in	the	language	and	they	are
manipulated	by	value.

Boolean	is	used	to	represent	logical	data.	It	may	have	only	two
values:	Standard_True	and	Standard_False.
Character	designates	any	ASCII	character.
ExtCharacter	is	an	extended	character.
Integer	is	a	whole	number.
Real	denotes	a	real	number	(i.e.	one	with	whole	and	a	fractional
part,	either	of	which	may	be	null).
ShortReal	is	a	real	with	a	smaller	choice	of	values	and	memory	size.
CString	is	used	for	literal	constants.
ExtString	is	an	extended	string.
Address	represents	a	byte	address	of	undetermined	size.

The	services	offered	by	each	of	these	types	are	described	in	the
Standard	Package.	The	table	below	presents	the	equivalence	existing
between	C++	fundamental	types	and	OCCT	primitive	types.

Table	1:	Equivalence	between	C++	Types	and	OCCT	Primitive	Types

C++	Types OCCT	Types
int Standard_Integer
double Standard_Real
float Standard_ShortReal
unsigned	int Standard_Boolean

char Standard_Character
short Standard_ExtCharacter
char* Standard_CString
void* Standard_Address
short* Standard_ExtString

The	types	with	asterisk	are	pointers.

Reminder	of	the	classes	listed	above:

Standard_Integer	:	fundamental	type	representing	32-bit	integers
yielding	negative,	positive	or	null	values.	Integer	is	implemented	as	a
typedef	of	the	C++	int	fundamental	type.	As	such,	the	algebraic
operations	+,	-,	*,	/	as	well	as	the	ordering	and	equivalence	relations
<,	<=,	==,	!=,	>=,	>	are	defined	on	it.
Standard_Real	:	fundamental	type	representing	real	numbers	with
finite	precision	and	finite	size.	Real	is	implemented	as	a	typedef	of
the	C++	double	(double	precision)	fundamental	type.	As	such,	the
algebraic	operations	+,	-,	*,	/,	unary-	and	the	ordering	and
equivalence	relations	<,	<=,	==,	!=,	>=,	>	are	defined	on	reals.
Standard_ShortReal	:	fundamental	type	representing	real	numbers
with	finite	precision	and	finite	size.	ShortReal	is	implemented	as	a
typedef	of	the	C++	float	(simple	precision)	fundamental	type.	As
such,	the	algebraic	operations	+,	-,	*,	/,	unary-	and	the	ordering	and
equivalence	relations	<,	<=,	==,	!=,	>=,	>	are	defined	on	reals.
Standard_Boolean	:	fundamental	type	representing	logical
expressions.	It	has	two	values:	false	and	true.	Boolean	is
implemented	as	a	typedef	of	the	C++	unsigned	int	fundamental	type.
As	such,	the	algebraic	operations	and,	or,	xor	and	not	as	well	as
equivalence	relations	==	and	!=	are	defined	on	Booleans.
Standard_Character	:	fundamental	type	representing	the
normalized	ASCII	character	set.	It	may	be	assigned	the	values	of	the
128	ASCII	characters.	Character	is	implemented	as	a	typedef	of	the
C++	char	fundamental	type.	As	such,	the	ordering	and	equivalence
relations	<,	<=,	==,	!=,	>=,	>	are	defined	on	characters	using	the
order	of	the	ASCII	chart	(ex:	A	B).
Standard_ExtCharacter	:	fundamental	type	representing	the
Unicode	character	set.	It	is	a	16-bit	character	type.	ExtCharacter	is
implemented	as	a	typedef	of	the	C++	short	fundamental	type.	As

such,	the	ordering	and	equivalence	relations	<,	<=,	==,	!=,	>=,	>	are
defined	on	extended	characters	using	the	order	of	the	UNICODE
chart	(ex:	A	B).
Standard_CString	:	fundamental	type	representing	string	literals.	A
string	literal	is	a	sequence	of	ASCII	(8	bits)	characters	enclosed	in
double	quotes.	CString	is	implemented	as	a	typedef	of	the	C++	char
fundamental	type.
Standard_Address	:	fundamental	type	representing	a	generic
pointer.	Address	is	implemented	as	a	typedef	of	the	C++	void
fundamental	type.
Standard_ExtString	is	a	fundamental	type	representing	string
literals	as	sequences	of	Unicode	(16	bits)	characters.	ExtString	is
implemented	as	a	typedef	of	the	C++	short	fundamental	type.

Types	manipulated	by	value

There	are	three	categories	of	types	which	are	manipulated	by	value:

Primitive	types
Enumerated	types
Types	defined	by	classes	not	inheriting	from	Standard_Transient,
whether	directly	or	not.	Types	which	are	manipulated	by	value
behave	in	a	more	direct	fashion	than	those	manipulated	by	handle
and	thus	can	be	expected	to	perform	operations	faster,	but	they
cannot	be	stored	independently	in	a	file.

Manipulation	of	a	data	type	by	value

Types	manipulated	by	reference	(handle)

These	are	types	defined	by	classes	inheriting	from	the	Transient	class.

Manipulation	of	a	data	type	by	reference

When	is	it	necessary	to	use	a	handle?

When	you	design	an	object,	it	can	be	difficult	to	choose	how	to
manipulate	that	object:	by	value	or	by	handle.	The	following	ideas	can
help	you	to	make	up	your	mind:

If	your	object	may	have	a	long	lifetime	within	the	application	and	you
want	to	make	multiple	references	to	it,	it	would	be	preferable	to
manipulate	this	object	with	a	handle.	The	memory	for	the	object	will
be	allocated	on	the	heap.	The	handle	which	points	to	that	memory	is
a	light	object	which	can	be	rapidly	passed	in	argument.	This	avoids
the	penalty	of	copying	a	large	object.
If	your	object	will	have	a	limited	lifetime,	for	example,	used	within	a
single	algorithm,	it	would	be	preferable	to	manipulate	this	object	by
value,	non-regarding	its	size,	because	this	object	is	allocated	on	the
stack	and	the	allocation	and	de-allocation	of	memory	is	extremely
rapid,	which	avoids	the	implicit	calls	to	new	and	delete	occasioned
by	allocation	on	the	heap.
Finally,	if	an	object	will	be	created	only	once	during,	but	will	exist
throughout	the	lifetime	of	the	application,	the	best	choice	may	be	a
class	manipulated	by	handle	or	a	value	declared	as	a	global

variable.

Programming	with	Handles

Handle	Definition

A	handle	is	OCCT	implementation	of	a	smart	pointer.	Several	handles
can	reference	the	same	object.	Also,	a	single	handle	may	reference
several	objects,	but	only	one	at	a	time.	To	have	access	to	the	object	it
refers	to,	the	handle	must	be	de-referenced	just	as	with	a	C++	pointer.

Organization	of	Classes

Class	Standard_Transient	is	a	root	of	a	big	hierarchy	of	OCCT	classes
that	are	said	to	be	operable	by	handles.	It	provides	a	reference	counter
field,	inherited	by	all	its	descendant	classes,	that	is	used	by	associated
Handle()	classes	to	track	a	number	of	handles	pointing	to	this	instance	of
the	object.

Objects	of	classes	derived	(directly	or	indirectly)	from	Transient,	are
normally	allocated	in	dynamic	memory	using	operator	new,	and
manipulated	by	handle.	Handle	is	defined	as	template	class
opencascade::handle<>.	Open	CASCADE	Technology	provides
preprocessor	macro	Handle()	that	is	historically	used	throughout	OCCT
code	to	name	a	handle:

Handle(Geom_Line)	aLine;	//	"Handle(Geom_Line)"	is	

expanded	to	"opencascade::handleL<Geom_Line>"

In	addition,	for	standard	OCCT	classes	additional	typedef	is	defined	for	a
handle,	as	the	name	of	a	class	prefixed	by	Handle_.	For	instance,	the
above	example	can	be	also	coded	as:

Handle_Geom_Line	aLine;	//	"Handle_Geom_Line"	is	

typedef	to	"opencascade::handleL<Geom_Line>"

Using	a	Handle

A	handle	is	characterized	by	the	object	it	references.

Before	performing	any	operation	on	a	transient	object,	you	must	declare
the	handle.	For	example,	if	Point	and	Line	are	two	transient	classes	from
the	Geom	package,	you	would	write:

Handle(Geom_Point)		p1,	p2;	

Declaring	a	handle	creates	a	null	handle	that	does	not	refer	to	any	object.
The	handle	may	be	checked	to	be	null	by	its	method	IsNull().	To	nullify	a
handle,	use	method	Nullify().

To	initialize	a	handle,	either	a	new	object	should	be	created	or	the	value
of	another	handle	can	be	assigned	to	it,	on	condition	that	their	types	are
compatible.

Note	that	handles	should	only	be	used	for	object	sharing.	For	all	local
operations,	it	is	advisable	to	use	classes	manipulated	by	values.

Type	Management

Open	CASCADE	Technology	provides	a	means	to	describe	the	hierarchy
of	data	types	in	a	generic	way,	with	a	possibility	to	check	the	exact	type
of	the	given	object	at	run-time	(similarly	to	C++	RTTI).

To	enable	this	feature,	a	class	declaration	should	include	the	declaration
of	OCCT	RTTI.	Header	Standard_Type.hxx	provides	two	variants	of
preprocessor	macros	facilitating	this:

Inline	variant,	which	declares	and	defines	RTTI	methods	by	a	single
line	of	code:
#include	<Geom_Surface.hxx>

class	Appli_ExtSurface	:	public	Geom_Surface

{

.	.	.

public:

		

DEFINE_STANDARD_RTTIEXT(Appli_ExtSurface,Geom

_Surface)

};

Out-of	line	variant,	which	uses	one	macro	in	the	declaration

(normally	in	the	header	file),	and	another	in	the	implementation	(in
C++	source):

In	Appli_ExtSurface.hxx	file:

#include	<Geom_Surface.hxx>

class	Appli_ExtSurface	:	public	Geom_Surface

{

.	.	.

public:

		

DEFINE_STANDARD_RTTIEXT(Appli_ExtSurface,Geom

_Surface)

};

In	Appli_ExtSurface.cxx	file:

#include	<Appli_ExtSurface.hxx>

IMPLEMENT_STANDARD_RTTIEXT(Appli_ExtSurface,Geom_

Surface)

These	macros	define	method	DynamicType()	that	returns	a	type
descriptor	-	handle	to	singleton	instance	of	the	class	Standard_Type
describing	the	class.	The	type	descriptor	stores	the	name	of	the	class
and	the	descriptor	of	its	parent	class.

Note	that	while	inline	version	is	easier	to	use,	for	widely	used	classes	this
method	may	lead	to	bloating	of	binary	code	of	dependent	libraries,	due	to
multiple	instantiations	of	inline	method.

To	get	the	type	descriptor	for	a	given	class	type,	use	macro
STANDARD_TYPE()	with	the	name	of	the	class	as	argument.

Example	of	usage:

if	(aCurve->IsKind(STANDARD_TYPE(Geom_Line)))	//	

equivalent	to	"if	(dynamic_cast<Geom_Line>

(aCurve.get())	!=	0)"

{

...

}

Type	Conformity

The	type	used	in	the	declaration	of	a	handle	is	the	static	type	of	the
object,	the	type	seen	by	the	compiler.	A	handle	can	reference	an	object
instantiated	from	a	subclass	of	its	static	type.	Thus,	the	dynamic	type	of
an	object	(also	called	the	actual	type	of	an	object)	can	be	a	descendant
of	the	type	which	appears	in	the	handle	declaration	through	which	it	is
manipulated.

Consider	the	class	CartesianPoint,	a	sub-class	of	Point;	the	rule	of	type
conformity	can	be	illustrated	as	follows:

Handle	(Geom_Point)	p1;

Handle	(Geom_CartesianPoint)	p2;

p2	=	new	Geom_CartesianPoint;

p1	=	p2;		//	OK,		the	types	are	compatible

The	compiler	sees	p1	as	a	handle	to	Point	though	the	actual	object
referenced	by	p1	is	of	the	CartesianPoint	type.

Explicit	Type	Conversion

According	to	the	rule	of	type	conformity,	it	is	always	possible	to	go	up	the
class	hierarchy	through	successive	assignments	of	handles.	On	the	other
hand,	assignment	does	not	authorize	you	to	go	down	the	hierarchy.
Consequently,	an	explicit	type	conversion	of	handles	is	required.

A	handle	can	be	converted	explicitly	into	one	of	its	sub-types	if	the	actual
type	of	the	referenced	object	is	a	descendant	of	the	object	used	to	cast
the	handle.	If	this	is	not	the	case,	the	handle	is	nullified	(explicit	type
conversion	is	sometimes	called	a	“safe	cast”).	Consider	the	example
below.

Handle	(Geom_Point)	p1;

Handle	(Geom_CartesianPoint)	p2,	p3;

p2	=	new	Geom_CartesianPoint;

p1	=	p2;	//	OK,	standard	assignment

p3	=	Handle	(Geom_CartesianPoint)::DownCast	(p1);

//	OK,	the	actual	type	of	p1	is	CartesianPoint,	

although	the	static	type	of	the	handle	is	Point

If	conversion	is	not	compatible	with	the	actual	type	of	the	referenced
object,	the	handle	which	was	“cast”	becomes	null	(and	no	exception	is
raised).	So,	if	you	require	reliable	services	defined	in	a	sub-class	of	the
type	seen	by	the	handle	(static	type),	write	as	follows:

void	MyFunction	(const	Handle(A)	&	a)

{

		Handle(B)	b	=		Handle(B)::DownCast(a);

		if	(!	b.IsNull())	{

				//	we	can	use	“b”	if	class	B	inherits	from	A

		}

		else	{

				//	the	types	are	incompatible

		}

}

Downcasting	is	used	particularly	with	collections	of	objects	of	different
types;	however,	these	objects	should	inherit	from	the	same	root	class.

For	example,	with	a	sequence	of	transient	objects	SequenceOfTransient
and	two	classes	A	and	B	that	both	inherit	from	Standard_Transient,	you
get	the	following	syntax:

Handle	(A)	a;

Handle	(B)	b;

Handle	(Standard_Transient)	t;

SequenceOfTransient	s;

a	=	new	A;

s.Append	(a);

b	=	new	B;

s.Append	(b);

t	=	s.Value	(1);

//	here,	you	cannot	write:

//	a	=	t;	//	ERROR	!

//	so	you	downcast:

a	=	Handle	(A)::Downcast	(t)

if	(!	a.IsNull())	{

								//	types	are	compatible,	you	can	use	a

}

else	{

							//	the	types	are	incompatible

}

Using	Handles	to	Create	Objects

To	create	an	object	which	is	manipulated	by	handle,	declare	the	handle
and	initialize	it	with	the	standard	C++	new	operator,	immediately	followed
by	a	call	to	the	constructor.	The	constructor	can	be	any	of	those	specified
in	the	source	of	the	class	from	which	the	object	is	instanced.

Handle	(Geom_CartesianPoint)	p;

p	=	new	Geom_CartesianPoint	(0,	0,	0);

Unlike	for	a	pointer,	the	delete	operator	does	not	work	on	a	handle;	the
referenced	object	is	automatically	destroyed	when	no	longer	in	use.

Invoking	Methods

Once	you	have	a	handle	to	an	object,	you	can	use	it	like	a	pointer	in	C++.
To	invoke	a	method	which	acts	on	the	referenced	object,	you	translate
this	method	by	the	standard	arrow	operator,	or	alternatively,	by	function
call	syntax	when	this	is	available.

To	test	or	to	modify	the	state	of	the	handle,	the	method	is	translated	by
the	dot	operator.	The	example	below	illustrates	how	to	access	the
coordinates	of	an	(optionally	initialized)	point	object:

Handle	(Geom_CartesianPoint)	centre;

Standard_Real	x,	y,	z;

if	(centre.IsNull())	{

		centre	=	new	PGeom_CartesianPoint	(0,	0,	0);

}

centre->Coord(x,	y,	z);

The	example	below	illustrates	how	to	access	the	type	object	of	a
Cartesian	point:

Handle(Standard_Transient)		p	=	new	

Geom_CartesianPoint(0.,0.,0.);

if	(p->DynamicType()	==		

STANDARD_TYPE(Geom_CartesianPoint))

		cout		<<	;Type	check	OK;		<<	endl;	

else	

		cout	<<	;Type	check	FAILED;	<<		endl;			

NullObject	exception	will	be	raised	if	a	field	or	a	method	of	an	object	is
accessed	via	a	Null	handle.

Invoking	Class	Methods

A	class	method	is	called	like	a	static	C++	function,	i.e.	it	is	called	by	the
name	of	the	class	of	which	it	is	a	member,	followed	by	the	“::”	operator
and	the	name	of	the	method.

For	example,	we	can	find	the	maximum	degree	of	a	Bezier	curve:

Standard_Integer		n;	

n	=	Geom_BezierCurve::MaxDegree();

Handle	deallocation

Before	you	delete	an	object,	you	must	ensure	it	is	no	longer	referenced.
To	reduce	the	programming	load	related	to	this	management	of	object
life,	the	delete	function	in	Open	CASCADE	Technology	is	secured	by	a
reference	counter	of	classes	manipulated	by	handle.	A	handle
automatically	deletes	an	object	when	it	is	no	longer	referenced.	Normally
you	never	call	the	delete	operator	explicitly	on	instances	of	subclasses	of
Standard_Transient.

When	a	new	handle	to	the	same	object	is	created,	the	reference	counter
is	incremented.	When	the	handle	is	destroyed,	nullified,	or	reassigned	to
another	object,	that	counter	is	decremented.	The	object	is	automatically
deleted	by	the	handle	when	reference	counter	becomes	0.

The	principle	of	allocation	can	be	seen	in	the	example	below.

...

{

Handle	(TColStd_HSequenceOfInteger)	H1	=	new	

TColStd_HSequenceOfInteger;

		//	H1	has	one	reference	and	corresponds	to	48	bytes	

of		memory

		{

				Handle	(TColStd_HSequenceOfInteger)	H2;

				H2	=	H1;	//	H1	has	two	references

				if	(argc	==	3)	{

						Handle	(TColStd_HSequenceOfInteger)	H3;

						H3	=	H1;

						//	Here,	H1	has	three	references

						...

				}

				//	Here,	H1	has	two	references

		}

		//	Here,	H1	has	1	reference

}

//	Here,	H1	has	no	reference	and	the	referred	

TColStd_HSequenceOfInteger	object	is	deleted.	

You	can	easily	cast	a	reference	to	the	handle	object	to	void*	by	defining
the	following:

void	*pointer;

Handle(Some_class)	aHandle;

//	Here	only	a	pointer	will	be	copied

Pointer	=	&aHandle;

//	Here	the	Handle	object	will	be	copied

aHandle	=	*	(Handle(Some_Class)	*)pointer;

Cycles

Cycles	appear	if	two	or	more	objects	reference	each	other	by	handles
(stored	as	fields).	In	this	condition	automatic	destruction	will	not	work.

Consider	for	example	a	graph,	whose	objects	(primitives)	have	to	know
the	graph	object	to	which	they	belong,	i.e.	a	primitive	must	have	a
reference	to	complete	graph	object.	If	both	primitives	and	the	graph	are
manipulated	by	handle	and	they	refer	to	each	other	by	keeping	a	handle
as	a	field,	the	cycle	appears.

The	graph	object	will	not	be	deleted	when	the	last	handle	to	it	is
destructed	in	the	application,	since	there	are	handles	to	it	stored	inside	its
own	data	structure	(primitives).

There	are	two	approaches	how	to	avoid	such	situation:

Use	C++	pointer	for	one	kind	of	references,	e.g.	from	a	primitive	to
the	graph
Nullify	one	set	of	handles	(e.g.	handles	to	a	graph	in	primitives)
when	a	graph	object	needs	to	be	destroyed

Memory	Management
In	a	work	session,	geometric	modeling	applications	create	and	delete	a
considerable	number	of	C++	objects	allocated	in	the	dynamic	memory
(heap).	In	this	context,	performance	of	standard	functions	for	allocating
and	deallocating	memory	may	be	not	sufficient.	For	this	reason,	Open
CASCADE	Technology	employs	a	specialized	memory	manager
implemented	in	the	Standard	package.

The	Memory	Manager	is	based	on	the	following	principles:

small	memory	arrays	are	grouped	into	clusters	and	then	recycled
(clusters	are	never	released	to	the	system),
large	arrays	are	allocated	and	de-allocated	through	the	standard
functions	of	the	system	(the	arrays	are	released	to	system	when	they
are	no	longer	used).

As	a	general	rule,	it	is	advisable	to	allocate	memory	through	significant
blocks.	In	this	way,	the	user	can	work	with	blocks	of	contiguous	data	and
it	facilitates	memory	page	manager	processing.

Usage	of	Memory	Manager

To	allocate	memory	in	a	C	code	with	Open	CASCADE	Technology
memory	manager,	simply	use	method	Standard::Allocate()	instead	of
malloc()	and	method	Standard::Free()	instead	of	free().	In	addition,
method	Standard::Reallocate()	is	provided	to	replace	C	function	realloc().

In	C++,	operators	new()	and	delete()	for	a	class	may	be	defined	so	as	to
allocate	memory	using	Standard::Allocate()	and	free	it	using
Standard::Free().	In	that	case	all	objects	of	that	class	and	all	inherited
classes	will	be	allocated	using	the	OCCT	memory	manager.

Preprocessor	macro	DEFINE_STANDARD_ALLOC	provided	by	header
Standard_DefineAlloc.hxx	defines	new()	and	delete()	in	this	way.	It	is
used	for	all	OCCT	classes	(apart	from	a	few	exceptions)	which	thus	are
allocated	using	the	OCCT	memory	manager.	Since	operators	new()	and
delete()	are	inherited,	this	is	also	true	for	any	class	derived	from	an
OCCT	class,	for	instance,	for	all	classes	derived	from

Standard_Transient.

Note	that	it	is	possible	(though	not	recommended	unless	really
unavoidable)	to	redefine	new()	and	delete()	functions	for	a	class
inheriting	Standard_Transient.	If	that	is	done,	the	method	Delete()	should
be	also	redefined	to	apply	operator	delete	to	this	pointer.	This	will	ensure
that	appropriate	delete()	function	will	be	called,	even	if	the	object	is
manipulated	by	a	handle	to	a	base	class.

How	to	configure	the	Memory	Manager

The	OCCT	memory	manager	may	be	configured	to	apply	different
optimization	techniques	to	different	memory	blocks	(depending	on	their
size),	or	even	to	avoid	any	optimization	and	use	C	functions	malloc()	and
free()	directly.	The	configuration	is	defined	by	numeric	values	of	the
following	environment	variables:

MMGT_OPT:	if	set	to	0	(default)	every	memory	block	is	allocated	in
C	memory	heap	directly	(via	malloc()	and	free()	functions).	In	this
case,	all	other	options	except	for	MMGT_CLEAR	are	ignored;	if	set
to	1	the	memory	manager	performs	optimizations	as	described
below;	if	set	to	2,	Intel	®	TBB	optimized	memory	manager	is	used.
MMGT_CLEAR:	if	set	to	1	(default),	every	allocated	memory	block	is
cleared	by	zeros;	if	set	to	0,	memory	block	is	returned	as	it	is.
MMGT_CELLSIZE:	defines	the	maximal	size	of	blocks	allocated	in
large	pools	of	memory.	Default	is	200.
MMGT_NBPAGES:	defines	the	size	of	memory	chunks	allocated	for
small	blocks	in	pages	(operating-system	dependent).	Default	is
1000.
MMGT_THRESHOLD:	defines	the	maximal	size	of	blocks	that	are
recycled	internally	instead	of	being	returned	to	the	heap.	Default	is
40000.
MMGT_MMAP:	when	set	to	1	(default),	large	memory	blocks	are
allocated	using	memory	mapping	functions	of	the	operating	system;
if	set	to	0,	they	will	be	allocated	in	the	C	heap	by	malloc().

Optimization	Techniques

When	MMGT_OPT	is	set	to	1,	the	following	optimization	techniques	are
used:

Small	blocks	with	a	size	less	than	MMGT_CELLSIZE,	are	not
allocated	separately.	Instead,	a	large	pools	of	memory	are	allocated
(the	size	of	each	pool	is	MMGT_NBPAGES	pages).	Every	new
memory	block	is	arranged	in	a	spare	place	of	the	current	pool.	When
the	current	memory	pool	is	completely	occupied,	the	next	one	is
allocated,	and	so	on.

In	the	current	version	memory	pools	are	never	returned	to	the	system
(until	the	process	finishes).	However,	memory	blocks	that	are	released	by
the	method	Standard::Free()	are	remembered	in	the	free	lists	and	later
reused	when	the	next	block	of	the	same	size	is	allocated	(recycling).

Medium-sized	blocks,	with	a	size	greater	than	MMGT_CELLSIZE	but
less	than	MMGT_THRESHOLD,	are	allocated	directly	in	the	C	heap
(using	malloc()	and	free()).	When	such	blocks	are	released	by	the
method	Standard::Free()	they	are	recycled	just	like	small	blocks.

However,	unlike	small	blocks,	the	recycled	medium	blocks	contained	in
the	free	lists	(i.e.	released	by	the	program	but	held	by	the	memory
manager)	can	be	returned	to	the	heap	by	method	Standard::Purge().

Large	blocks	with	a	size	greater	than	MMGT_THRESHOLD,
including	memory	pools	used	for	small	blocks,	are	allocated
depending	on	the	value	of	MMGT_MMAP:	if	it	is	0,	these	blocks	are
allocated	in	the	C	heap;	otherwise	they	are	allocated	using
operating-system	specific	functions	managing	memory	mapped	files.
Large	blocks	are	returned	to	the	system	immediately	when
Standard::Free()	is	called.

Benefits	and	drawbacks

The	major	benefit	of	the	OCCT	memory	manager	is	explained	by	its
recycling	of	small	and	medium	blocks	that	makes	an	application	work
much	faster	when	it	constantly	allocates	and	frees	multiple	memory
blocks	of	similar	sizes.	In	practical	situations,	the	real	gain	on	the
application	performance	may	be	up	to	50%.

The	associated	drawback	is	that	recycled	memory	is	not	returned	to	the
operating	system	during	program	execution.	This	may	lead	to
considerable	memory	consumption	and	even	be	misinterpreted	as	a
memory	leak.	To	minimize	this	effect	it	is	necessary	to	call	the	method

Standard::Purge	after	the	completion	of	memory-intensive	operations.

The	overhead	expenses	induced	by	the	OCCT	memory	manager	are:

size	of	every	allocated	memory	block	is	rounded	up	to	8	bytes	(when
MMGT_OPT	is	0	(default),	the	rounding	is	defined	by	the	CRT;	the
typical	value	for	32-bit	platforms	is	4	bytes)
additional	4	bytes	(or	8	on	64-bit	platforms)	are	allocated	in	the
beginning	of	every	memory	block	to	hold	its	size	(or	address	of	the
next	free	memory	block	when	recycled	in	free	list)	only	when
MMGT_OPT	is	1.

Note	that	these	overheads	may	be	greater	or	less	than	overheads
induced	by	the	C	heap	memory	manager,	so	overall	memory
consumption	may	be	greater	in	either	optimized	or	standard	modes,
depending	on	circumstances.

As	a	general	rule,	it	is	advisable	to	allocate	memory	through	significant
blocks.	In	this	way,	you	can	work	with	blocks	of	contiguous	data,	and
processing	is	facilitated	for	the	memory	page	manager.

OCCT	memory	manager	uses	mutex	to	lock	access	to	free	lists,
therefore	it	may	have	less	performance	than	non-optimized	mode	in
situations	when	different	threads	often	make	simultaneous	calls	to	the
memory	manager.	The	reason	is	that	modern	implementations	of	malloc()
and	free()	employ	several	allocation	arenas	and	thus	avoid	delays	waiting
mutex	release,	which	are	possible	in	such	situations.

Exceptions

Introduction

The	behavior	of	any	object	is	implemented	by	the	methods,	which	were
defined	in	its	class	declaration.	The	definition	of	these	methods	includes
not	only	their	signature	(their	programming	interface)	but	also	their
domain	of	validity.

This	domain	is	expressed	by	exceptions.	Exceptions	are	raised	under
various	error	conditions	to	protect	software	quality.

Exception	handling	provides	a	means	of	transferring	control	from	a	given
point	in	a	program	being	executed	to	an	exception	handler	associated
with	another	point	previously	executed.

A	method	may	raise	an	exception	which	interrupts	its	normal	execution
and	transfers	control	to	the	handler	catching	this	exception.

A	hierarchy	of	commonly	used	exception	classes	is	provided.	The	root
class	is	Standard_Failure	from	the	Standard	package.	So	each	exception
inherits	from	Standard_Failure	either	directly	or	by	inheriting	from	another
exception.	Exception	classes	list	all	exceptions,	which	can	be	raised	by
any	OCCT	function.

Open	CASCADE	Technology	also	provides	support	for	converting	system
signals	(such	as	access	violation	or	division	by	zero)	to	exceptions,	so
that	such	situations	can	be	safely	handled	with	the	same	uniform
approach.

However,	in	order	to	support	this	functionality	on	various	platforms,	some
special	methods	and	workarounds	are	used.	Though	the	implementation
details	are	hidden	and	handling	of	OCCT	exceptions	is	done	basically	in
the	same	way	as	with	C++,	some	peculiarities	of	this	approach	shall	be
taken	into	account	and	some	rules	must	be	respected.

The	following	paragraphs	describe	recommended	approaches	for	using
exceptions	when	working	with	Open	CASCADE	Technology.

Raising	an	Exception

“C++	like”	Syntax

To	raise	an	exception	of	a	definite	type	method	Raise()	of	the	appropriate
exception	class	shall	be	used.

DomainError::Raise(“Cannot	cope	with	this	

condition”);

raises	an	exception	of	DomainError	type	with	the	associated	message
“Cannot	cope	with	this	condition”,	the	message	being	optional.	This
exception	may	be	caught	by	a	handler	of	a	DomainError	type	as	follows:

try	{

		OCC_CATCH_SIGNALS

		//	try	block

}

catch(DomainError)	{

//	handle	DomainError	exceptions	here

}

Regular	usage

Exceptions	should	not	be	used	as	a	programming	technique,	to	replace	a
“goto”	statement	for	example,	but	as	a	way	to	protect	methods	against
misuse.	The	caller	must	make	sure	its	condition	is	such	that	the	method
can	cope	with	it.

Thus,

No	exception	should	be	raised	during	normal	execution	of	an
application.
A	method	which	may	raise	an	exception	should	be	protected	by
other	methods	allowing	the	caller	to	check	on	the	validity	of	the	call.

For	example,	if	you	consider	the	TCollection_Array1	class	used	with:

Value	function	to	extract	an	element

Lower	function	to	extract	the	lower	bound	of	the	array
Upper	function	to	extract	the	upper	bound	of	the	array.

then,	the	Value	function	may	be	implemented	as	follows:

Item		TCollection_Array1::Value	(const	

Standard_Integer&index)	const

{

		//	where	r1	and	r2	are		the	lower	and	upper	bounds	

of	the	array

		if(index	<	r1	||	index	>	r2)	{

				OutOfRange::Raise(“Index		out	of	range	in	

Array1::Value”);

		}

		return	contents[index];

}

Here	validity	of	the	index	is	first	verified	using	the	Lower	and	Upper
functions	in	order	to	protect	the	call.	Normally	the	caller	ensures	the
index	being	in	the	valid	range	before	calling	Value().	In	this	case	the
above	implementation	of	Value	is	not	optimal	since	the	test	done	in	Value
is	time-consuming	and	redundant.

It	is	a	widely	used	practice	to	include	that	kind	of	protections	in	a	debug
build	of	the	program	and	exclude	in	release	(optimized)	build.	To	support
this	practice,	the	macros	Raise_if()	are	provided	for	every	OCCT
exception	class:

<ErrorTypeName>_Raise_if(condition,		“Error	

message”);	

where	ErrorTypeName	is	the	exception	type,	condition	is	the	logical
expression	leading	to	the	raise	of	the	exception,	and	Error	message	is
the	associated	message.

The	entire	call	may	be	removed	by	defining	one	of	the	preprocessor
symbols	No_Exception	or	No_<ErrorTypeName>	at	compile-time:

#define		No_Exception	/*	remove	all	raises	*/	

Using	this	syntax,	the	Value	function	becomes:

Item		TCollection_Array1::Value	(const	

Standard_Integer&index)	const

					{	

		OutOfRange_Raise_if(index	<	r1	||	index	>	r2,

																						“index	out	of	range	in		

Array1::Value”);

		return	contents[index];

}

Handling	an	Exception

When	an	exception	is	raised,	control	is	transferred	to	the	nearest	handler
of	a	given	type	in	the	call	stack,	that	is:

the	handler	whose	try	block	was	most	recently	entered	and	not	yet
exited,
the	handler	whose	type	matches	the	raise	expression.

A	handler	of	T	exception	type	is	a	match	for	a	raise	expression	with	an
exception	type	of	E	if:

T	and	E	are	of	the	same	type,	or
T	is	a	supertype	of	E.

In	order	to	handle	system	signals	as	exceptions,	make	sure	to	insert
macro	OCC_CATCH_SIGNALS	somewhere	in	the	beginning	of	the
relevant	code.	The	recommended	location	for	it	is	first	statement	after
opening	brace	of	try	{}	block.

As	an	example,	consider	the	exceptions	of	type	NumericError,	Overflow,
Underflow	and	ZeroDivide,	where	NumericError	is	the	parent	type	of	the
three	others.

void	f(1)

	{

		try	{

				OCC_CATCH_SIGNALS

				//	try	block

		}

		catch(Standard_Overflow)	{	//	first	handler

				//	...

		}

		catch(Standard_NumericError)	{	//	second	handler

				//	...

		}

}

Here,	the	first	handler	will	catch	exceptions	of	Overflow	type	and	the
second	one	–	exceptions	of	NumericError	type	and	all	exceptions	derived
from	it,	including	Underflow	and	ZeroDivide.

The	handlers	are	checked	in	order	of	appearance,	from	the	nearest	to	the
try	block	to	the	most	distant	from	it,	until	one	matches	the	raise
expression.	For	a	try	block,	it	would	be	a	mistake	to	place	a	handler	for	a
base	exception	type	ahead	of	a	handler	for	its	derived	type	since	that
would	ensure	that	the	handler	for	the	derived	exception	would	never	be
invoked.

void	f(1)

{

		int	i	=	0;

		{

				try	{

						OCC_CATCH_SIGNALS

						g(i);//	i	is	accessible

				}

				//	statement	here	will	produce	compile-time	

errors	!

				catch(Standard_NumericError)	{

						//	fix	up	with	possible	reuse	of	i

				}

				//	statement	here	may	produce	unexpected	side	

effect	

		}

		.	.	.

}

The	exceptions	form	a	hierarchy	tree	completely	separated	from	other
user	defined	classes.	One	exception	of	type	Failure	is	the	root	of	the
entire	exception	hierarchy.	Thus,	using	a	handler	with	Failure	type
catches	any	OCCT	exception.	It	is	recommended	to	set	up	such	a
handler	in	the	main	routine.

The	main	routine	of	a	program	would	look	like	this:

#include	<Standard_ErrorHandler.hxx>

#include	<Standard_Failure.hxx>

#include	<iostream.h>

int	main	(int	argc,	char*	argv[])

{

		try	{

				OCC_CATCH_SIGNALS

				//	main	block

				return	0;

		}

		catch(Standard_Failure)	{

				Handle(Standard_Failure)	error	=	

Standard_Failure::Caught		();

				cout		error		end1;

		}

		return	1;

}

In	this	example	function	Caught	is	a	static	member	of	Failure	that	returns
an	exception	object	containing	the	error	message	built	in	the	raise
expression.	Note	that	this	method	of	accessing	a	raised	object	is	used	in
Open	CASCADE	Technology	instead	of	usual	C++	syntax	(receiving	the
exception	in	catch	argument).

Though	standard	C++	scoping	rules	and	syntax	apply	to	try	block	and
handlers,	note	that	on	some	platforms	Open	CASCADE	Technology	may
be	compiled	in	compatibility	mode	when	exceptions	are	emulated	by	long
jumps	(see	below).	In	this	mode	it	is	required	that	no	statement	precedes
or	follows	any	handler.	Thus	it	is	highly	recommended	to	always	include	a

try	block	into	additional	{}	braces.	Also	this	mode	requires	that	header	file
Standard_ErrorHandler.hxx	be	included	in	your	program	before	a	try
block,	otherwise	it	may	fail	to	handle	Open	CASCADE	Technology
exceptions;	furthermore	catch()	statement	does	not	allow	passing
exception	object	as	argument.

Catching	signals

In	order	for	the	application	to	be	able	to	catch	system	signals	(access
violation,	division	by	zero,	etc.)	in	the	same	way	as	other	exceptions,	the
appropriate	signal	handler	shall	be	installed	in	the	runtime	by	the	method
OSD::SetSignal().

Normally	this	method	is	called	in	the	beginning	of	the	main()	function.	It
installs	a	handler	that	will	convert	system	signals	into	OCCT	exceptions.

In	order	to	actually	convert	signals	to	exceptions,	macro
OCC_CATCH_SIGNALS	needs	to	be	inserted	in	the	source	code.	The
typical	place	where	this	macro	is	put	is	beginning	of	the	try{}	block	which
catches	such	exceptions.

Implementation	on	various	platforms.

The	exception	handling	mechanism	in	Open	CASCADE	Technology	is
implemented	in	different	ways	depending	on	the	preprocessor	macro
OCC_CONVERT_SIGNALS,	which	shall	be	consistently	defined	by
compilation	procedures	for	both	Open	CASCADE	Technology	and	user
applications:

1.	 On	Windows,	these	macros	are	not	defined	by	default,	and	normal
C++	exceptions	are	used	in	all	cases,	including	throwing	from	signal
handler.	Thus	the	behavior	is	as	expected	in	C++.

2.	 On	Linux,	macro	OCC_CONVERT_SIGNALS	is	defined	by	default.
The	C++	exception	mechanism	is	used	for	catching	exceptions	and
for	throwing	them	from	normal	code.	Since	it	is	not	possible	to	throw
C++	exception	from	system	signal	handler	function,	that	function
makes	a	long	jump	to	the	nearest	(in	the	execution	stack)	invocation
of	macro	OCC_CATCH_SIGNALS,	and	only	there	the	C++	exception
gets	actually	thrown.	The	macro	OCC_CATCH_SIGNALS	is	defined
in	the	file	Standard_ErrorHandler.hxx.	Therefore,	including	this	file	is

necessary	for	successful	compilation	of	a	code	containing	this
macro.

This	mode	differs	from	standard	C++	exception	handling	only	for
signals:

macro	OCC_CATCH_SIGNALS	is	necessary	(besides	call	to
OSD::SetSignal()	described	above)	for	conversion	of	signals
into	exceptions;
the	destructors	for	automatic	C++	objects	created	in	the	code
after	that	macro	and	till	the	place	where	signal	is	raised	will	not
be	called	in	case	of	signal,	since	no	C++	stack	unwinding	is
performed	by	long	jump.

In	general,	for	writing	platform-independent	code	it	is	recommended	to
insert	macros	OCC_CATCH_SIGNALS	in	try	{}	blocks	or	other	code
where	signals	may	happen.

Plug-In	Management

Distribution	by	Plug-Ins

A	plug-in	is	a	component	that	can	be	loaded	dynamically	into	a	client
application,	not	requiring	to	be	directly	linked	to	it.	The	plug-in	is	not
bound	to	its	client,	i.e.	the	plug-in	knows	only	how	its	connection
mechanism	is	defined	and	how	to	call	the	corresponding	services.

A	plug-in	can	be	used	to:

implement	the	mechanism	of	a	driver,	i.e	dynamically	changing	a
driver	implementation	according	to	the	current	transactions	(for
example,	retrieving	a	document	stored	in	another	version	of	an
application),
restrict	processing	resources	to	the	minimum	required	(for	example,
it	does	not	load	any	application	services	at	run-time	as	long	as	the
user	does	not	need	them),
facilitate	modular	development	(an	application	can	be	delivered	with
base	functions	while	some	advanced	capabilities	will	be	added	as
plug-ins	when	they	are	available).

The	plug-in	is	identified	with	the	help	of	the	global	universal	identifier
(GUID).	The	GUID	includes	lower	case	characters	and	cannot	end	with	a
blank	space.

Once	it	has	been	loaded,	the	call	to	the	services	provided	by	the	plug-in
is	direct	(the	client	is	implemented	in	the	same	language	as	the	plug-in).

C++	Plug-In	Implementation

The	C++	plug-in	implements	a	service	as	an	object	with	functions	defined
in	an	abstract	class	(this	abstract	class	and	its	parent	classes	with	the
GUID	are	the	only	information	about	the	plug-in	implemented	in	the	client
application).	The	plug-in	consists	of	a	sharable	library	including	a	method
named	Factory	which	creates	the	C++	object	(the	client	cannot
instantiate	this	object	because	the	plug-in	implementation	is	not	visible).
Foundation	classes	provide	in	the	package	Plugin	a	method	named

Load(),	which	enables	the	client	to	access	the	required	service	through	a
library.

That	method	reads	the	information	regarding	available	plug-ins	and	their
locations	from	the	resource	file	Plugin	found	by	environment	variable
CSF_PluginDefaults:

$CSF_PluginDefaults/Plugin	

The	Load	method	looks	for	the	library	name	in	the	resource	file	or	registry
through	its	GUID,	for	example,	on	UNIX:

!	METADATADRIVER	whose	value	must	be	OS	or	DM.

!	FW

a148e300-5740-11d1-a904-080036aaa103.Location:	

libFWOSPlugin.so

Then	the	Load	method	loads	the	library	according	to	the	rules	of	the
operating	system	of	the	host	machine	(for	example,	by	using	environment
variables	such	as	LD_LIBRARY_PATH	with	Unix	and	PATH	with
Windows).	After	that	it	invokes	the	PLUGINFACTORY	method	to	return
the	object,	which	supports	the	required	service.	The	client	may	then	call
the	functions	supported	by	this	object.

C++	Client	Plug-In	Implementation

To	invoke	one	of	the	services	provided	by	the	plug-in,	you	may	call	the
Plugin::Load()	global	function	with	the	Standard_GUID	of	the	requested
service	as	follows:

Handle(FADriver_PartStorer)::DownCast(PlugIn::Load	

(yourStandardGUID));

Let	us	take	FAFactory.hxx	and	FAFactory.cxx	as	an	example:

#include	<Standard_Macro.hxx>

#include	<Standard_GUID.hxx>

#include	<Standard_Transient.hxx>

class	FAFactory

{

public:

		Standard_EXPORT	static	Handle(Standard_Transient)	

Factory	(const	Standard_GUID&	theGUID);

};

#include	<FAFactory.hxx>

#include	<FADriver_PartRetriever.hxx>

#include	<FADriver_PartStorer.hxx>

#include	<FirstAppSchema.hxx>

#include	<Standard_Failure.hxx>

#include	<FACDM_Application.hxx>

#include	<Plugin_Macro.hxx>

static	Standard_GUID	StorageDriver		("45b3c690-22f3-

11d2-b09e-0000f8791463");

static	Standard_GUID	RetrievalDriver("45b3c69c-22f3-

11d2-b09e-0000f8791463");

static	Standard_GUID	Schema									("45b3c6a2-22f3-

11d2-b09e-0000f8791463");

//===

===

//	function	:	Factory

//	purpose	:

//===

===

Handle(Standard_Transient)	FAFactory::Factory	(const	

Standard_GUID&	theGUID)

{

	if	(theGUID	==	StorageDriver)

		{

				std::cout	<<	"FAFactory	:	Create	store	driver\n";

	static	Handle(FADriver_PartStorer)	sd	=	new	

FADriver_PartStorer();

	return	sd;

		}

	if	(theGUID	==	RetrievalDriver)

		{

				std::cout	<<	"FAFactory	:	Create	retrieve	

driver\n";

	static	Handle(FADriver_PartRetriever)	rd	=	new	

FADriver_PartRetriever();

	return	rd;

		}

	if	(theGUID	==	Schema)

		{

				std::cout	<<	"FAFactory	:	Create	schema\n";

	static	Handle(FirstAppSchema)	s	=	new	

FirstAppSchema();

	return	s;

		}

		Standard_Failure::Raise	("FAFactory:	unknown	

GUID");

	return	Handle(Standard_Transient)();

}

//	export	plugin	function	"PLUGINFACTORY"

PLUGIN(FAFactory)

Application	might	also	instantiate	a	factory	by	linking	to	the	library	and
calling	FAFactory::Factory()	directly.

Collections,	Strings,	Quantities	and
Unit	Conversion
Collections

Overview

The	Collections	component	contains	the	classes	that	handle
dynamically	sized	aggregates	of	data.	They	include	a	wide	range	of
collections	such	as	arrays,	lists	and	maps.

Collections	classes	are	generic	(C++	template-like),	that	is,	they	define	a
structure	and	algorithms	allowing	to	hold	a	variety	of	objects	which	do	not
necessarily	inherit	from	a	unique	root	class	(similarly	to	C++	templates).

When	you	need	to	use	a	collection	of	a	given	type	of	object	you	must
instantiate	it	for	this	specific	type	of	element.	Once	this	declaration	is
compiled,	all	the	functions	available	on	the	generic	collection	are
available	on	your	instantiated	class.

However,	note	that:

Each	collection	directly	used	as	an	argument	in	OCCT	public	syntax
is	instantiated	in	an	OCCT	component.
The	TColStd	package	(Collections	of	Standard	Objects
component)	provides	numerous	instantiations	of	these	generic
collections	with	objects	from	the	Standard	package	or	from	the
Strings	component.	The	Collections	component	provides	a	wide
range	of	generic	collections:
Arrays	are	generally	used	for	a	quick	access	to	the	item,	however
an	array	is	a	fixed	sized	aggregate.
Sequences	are	variable-sized	structures,	they	avoid	the	use	of	large
and	quasi-empty	arrays.	A	sequence	item	is	longer	to	access	than
an	array	item:	only	an	exploration	in	sequence	is	effective	(but
sequences	are	not	adapted	for	numerous	explorations).	Arrays	and
sequences	are	commonly	used	as	data	structures	for	more	complex
objects.

Maps	are	dynamic	structures,	where	the	size	is	constantly	adapted
to	the	number	of	inserted	items	and	access	to	an	item	is	the	fastest.
Maps	structures	are	commonly	used	in	cases	of	numerous
explorations:	they	are	typically	internal	data	structures	for	complex
algorithms.
Lists	are	similar	to	sequences	but	have	different	algorithms	to
explore	them.
Specific	iterators	for	sequences	and	maps.

Generic	general-purpose	Aggregates

TCollection_Array1

These	are	unidimensional	arrays	similar	to	C	arrays,	i.e.	of	fixed	size	but
dynamically	dimensioned	at	construction	time.	As	with	a	C	array,	the
access	time	for	an	Array1	indexed	item	is	constant	and	is	independent	of
the	array	size.	Arrays	are	commonly	used	as	elementary	data	structures
for	more	complex	objects.

Array1	is	a	generic	class	which	depends	on	Item,	the	type	of	element	in
the	array.

Array1	indexes	start	and	end	at	a	user-defined	position.	Thus,	when
accessing	an	item,	you	must	base	the	index	on	the	lower	and	upper
bounds	of	the	array.

TCollection_Array2

These	are	bi-dimensional	arrays	of	fixed	size	but	dynamically
dimensioned	at	construction	time.

As	with	a	C	array,	the	access	time	for	an	Array2	indexed	item	is	constant
and	is	independent	of	the	array	size.	Arrays	are	commonly	used	as
elementary	data	structures	for	more	complex	objects.

Array2	is	a	generic	class	which	depends	on	Item,	the	type	of	element	in
the	array.

Array2	indexes	start	and	end	at	a	user-defined	position.	Thus,	when
accessing	an	item,	you	must	base	the	index	on	the	lower	and	upper

bounds	of	the	array.

TCollection_HArray1

These	are	unidimensional	arrays	similar	to	C	arrays,	i.e.	of	fixed	size	but
dynamically	dimensioned	at	construction	time.	As	with	a	C	array,	the
access	time	for	an	HArray1	or	HArray2	indexed	item	is	constant	and	is
independent	of	the	array	size.	Arrays	are	commonly	used	as	elementary
data	structures	for	more	complex	objects.

HArray1	objects	are	handles	to	arrays.

HArray1	arrays	may	be	shared	by	several	objects.
You	may	use	a	TCollection_Array1	structure	to	have	the	actual	array.

HArray1	is	a	generic	class	which	depends	on	two	parameters:

Item,	the	type	of	element	in	the	array,
Array,	the	actual	type	of	array	handled	by	HArray1.	This	is	an
instantiation	with	Item	of	the	TCollection_Array1	generic	class.

HArray1	indexes	start	and	end	at	a	user-defined	position.	Thus,	when
accessing	an	item,	you	must	base	the	index	on	the	lower	and	upper
bounds	of	the	array.

TCollection_HArray2

These	are	bi-dimensional	arrays	of	fixed	size	but	dynamically
dimensioned	at	construction	time.

As	with	a	C	array,	the	access	time	for	an	HArray2	indexed	item	is
constant	and	is	independent	of	the	array	size.	Arrays	are	commonly	used
as	elementary	data	structures	for	more	complex	objects.

HArray2	objects	are	handles	to	arrays.

HArray2	arrays	may	be	shared	by	several	objects.
You	may	use	a	TCollection_Array2	structure	to	have	the	actual	array.

HArray2	is	a	generic	class	which	depends	on	two	parameters:

Item,	the	type	of	element	in	the	array,
Array,	the	actual	type	of	array	handled	by	HArray2.	This	is	an
instantiation	with	Item	of	the	TCollection_Array2	generic	class.

TCollection_HSequence

This	is	a	sequence	of	items	indexed	by	an	integer.

Sequences	have	about	the	same	goal	as	unidimensional	arrays
TCollection_HArray1:	they	are	commonly	used	as	elementary	data
structures	for	more	complex	objects.	But	a	sequence	is	a	structure	of
variable	size:	sequences	avoid	the	use	of	large	and	quasi-empty	arrays.
Exploring	a	sequence	data	structure	is	effective	when	the	exploration	is
done	in	sequence;	elsewhere	a	sequence	item	is	longer	to	read	than	an
array	item.	Note	also	that	sequences	are	not	effective	when	they	have	to
support	numerous	algorithmic	explorations:	a	map	is	better	for	that.

HSequence	objects	are	handles	to	sequences.

HSequence	sequences	may	be	shared	by	several	objects.
You	may	use	a	TCollection_Sequence	structure	to	have	the	actual
sequence.

HSequence	is	a	generic	class	which	depends	on	two	parameters:

Item,	the	type	of	element	in	the	sequence,
Seq,	the	actual	type	of	sequence	handled	by	HSequence.	This	is	an
instantiation	with	Item	of	the	TCollection_Sequence	generic	class.

TCollection_List

These	are	ordered	lists	of	non-unique	objects	which	can	be	accessed
sequentially	using	an	iterator.	Item	insertion	in	a	list	is	very	fast	at	any
position.	But	searching	for	items	by	value	may	be	slow	if	the	list	is	long,
because	it	requires	a	sequential	search.

List	is	a	generic	class,	which	depends	on	Item,	the	type	of	element	in	the
structure.	Use	a	ListIterator	iterator	to	explore	a	List	structure.

An	iterator	class	is	automatically	instantiated	from	the

TCollection_ListIterator	class	at	the	time	of	instantiation	of	a	List
structure.

A	sequence	is	a	better	structure	when	searching	for	items	by	value.

Queues	and	stacks	are	other	kinds	of	list	with	a	different	access	to	data.

TCollection_Sequence

This	is	a	sequence	of	items	indexed	by	an	integer.	Sequences	have
about	the	same	goal	as	unidimensional	arrays	(TCollection_Array1):	they
are	commonly	used	as	elementary	data	structures	for	more	complex
objects.	But	a	sequence	is	a	structure	of	variable	size:	sequences	avoid
the	use	of	large	and	quasi-empty	arrays.	Exploring	a	sequence	data
structure	is	effective	when	the	exploration	is	done	in	sequence;
elsewhere	a	sequence	item	is	longer	to	read	than	an	array	item.	Note
also	that	sequences	are	not	effective	when	they	have	to	support
numerous	algorithmic	explorations:	a	map	is	better	for	that.

Sequence	is	a	generic	class	which	depends	on	Item,	the	type	of	element
in	the	sequence.

Generic	Maps

Maps	are	dynamically	extended	data	structures	where	data	is	quickly
accessed	with	a	key.	TCollection_BasicMap	is	a	root	class	for	maps.

General	properties	of	maps

Map	items	may	contain	complex	non-unitary	data,	thus	it	can	be	difficult
to	manage	them	with	an	array.	The	map	allows	a	data	structure	to	be
indexed	by	complex	data.

The	size	of	a	map	is	dynamically	extended.	So	a	map	may	be	first
dimensioned	for	a	little	number	of	items.	Maps	avoid	the	use	of	large	and
quasi-empty	arrays.

The	access	time	for	a	map	item	is	much	better	than	the	one	for	a
sequence,	list,	queue	or	stack	item.	It	is	comparable	with	the	access	time
for	an	array	item.	It	depends	on	the	size	of	the	map	and	on	the	quality	of

the	user	redefinable	function	(the	hashing	function)	to	find	quickly	where
is	the	item.

The	performance	of	a	map	exploration	may	be	better	of	an	array
exploration	because	the	size	of	the	map	is	adapted	to	the	number	of
inserted	items.

That	is	why	maps	are	commonly	used	as	internal	data	structures	for
algorithms.

Definitions

A	map	is	a	data	structure	for	which	data	are	addressed	by	keys.

Once	inserted	in	the	map,	a	map	item	is	referenced	as	an	entry	of	the
map.

Each	entry	of	the	map	is	addressed	by	a	key.	Two	different	keys	address
two	different	entries	of	the	map.	The	position	of	an	entry	in	the	map	is
called	a	bucket.

A	map	is	dimensioned	by	its	number	of	buckets,	i.e.	the	maximum
number	of	entries	in	the	map.	The	performance	of	a	map	is	conditioned
by	the	number	of	buckets.

The	hashing	function	transforms	a	key	into	a	bucket	index.	The	number
of	values	that	can	be	computed	by	the	hashing	function	is	equal	to	the
number	of	buckets	of	the	map.

Both	the	hashing	function	and	the	equality	test	between	two	keys	are
provided	by	a	hasher	object.

A	map	may	be	explored	by	a	map	iterator.	This	exploration	provides	only
inserted	entries	in	the	map	(i.e.	non	empty	buckets).

Collections	of	generic	maps

The	Collections	component	provides	numerous	generic	derived	maps.

These	maps	include	automatic	management	of	the	number	of	buckets:

they	are	automatically	resized	when	the	number	of	keys	exceeds	the
number	of	buckets.	If	you	have	a	fair	idea	of	the	number	of	items	in	your
map,	you	can	save	on	automatic	resizing	by	specifying	a	number	of
buckets	at	the	time	of	construction,	or	by	using	a	resizing	function.	This
may	be	considered	for	crucial	optimization	issues.

Keys,	items	and	hashers	are	parameters	of	these	generic	derived	maps.

TCollection_MapHasher	class	describes	the	functions	required	by	any
hasher,	which	is	to	be	used	with	a	map	instantiated	from	the	Collections
component.

An	iterator	class	is	automatically	instantiated	at	the	time	of	instantiation	of
a	map	provided	by	the	Collections	component	if	this	map	is	to	be
explored	with	an	iterator.	Note	that	some	provided	generic	maps	are	not
to	be	explored	with	an	iterator	but	with	indexes	(indexed	maps).

TCollection_DataMap

This	is	a	map	used	to	store	keys	with	associated	items.	An	entry	of
DataMap	is	composed	of	both	the	key	and	the	item.	The	DataMap	can
be	seen	as	an	extended	array	where	the	keys	are	the	indexes.

DataMap	is	a	generic	class	which	depends	on	three	parameters:

Key	is	the	type	of	key	for	an	entry	in	the	map,
Item	is	the	type	of	element	associated	with	a	key	in	the	map,
Hasher	is	the	type	of	hasher	on	keys.

Use	a	DataMapIterator	iterator	to	explore	a	DataMap	map.

An	iterator	class	is	automatically	instantiated	from	the
TCollection_DataMapIterator	generic	class	at	the	time	of	instantiation	of	a
DataMap	map.

TCollection_MapHasher	class	describes	the	functions	required	for	a
Hasher	object.

TCollection_DoubleMap

This	is	a	map	used	to	bind	pairs	of	keys	(Key1,Key2)	and	retrieve	them	in

linear	time.

Key1	is	referenced	as	the	first	key	of	the	DoubleMap	and	Key2	as	the
second	key.

An	entry	of	a	DoubleMap	is	composed	of	a	pair	of	two	keys:	the	first	key
and	the	second	key.

DoubleMap	is	a	generic	class	which	depends	on	four	parameters:

Key1	is	the	type	of	the	first	key	for	an	entry	in	the	map,
Key2	is	the	type	of	the	second	key	for	an	entry	in	the	map,
Hasher1	is	the	type	of	hasher	on	first	keys,
Hasher2	is	the	type	of	hasher	on	second	keys.

Use	DoubleMapIterator	to	explore	a	DoubleMap	map.

An	iterator	class	is	automatically	instantiated	from	the
TCollection_DoubleMapIterator	class	at	the	time	of	instantiation	of	a
DoubleMap	map.

TCollection_MapHasher	class	describes	the	functions	required	for	a
Hasher1	or	a	Hasher2	object.

TCollection_IndexedDataMap

This	is	map	to	store	keys	with	associated	items	and	to	bind	an	index	to
them.

Each	new	key	stored	in	the	map	is	assigned	an	index.	Indexes	are
incremented	as	keys	(and	items)	stored	in	the	map.	A	key	can	be	found
by	the	index,	and	an	index	can	be	found	by	the	key.	No	key	but	the	last
can	be	removed,	so	the	indexes	are	in	the	range	1...Upper,	where	Upper
is	the	number	of	keys	stored	in	the	map.	An	item	is	stored	with	each	key.

An	entry	of	an	IndexedDataMap	is	composed	of	both	the	key,	the	item
and	the	index.	An	IndexedDataMap	is	an	ordered	map,	which	allows	a
linear	iteration	on	its	contents.	It	combines	the	interest:

of	an	array	because	data	may	be	accessed	with	an	index,
and	of	a	map	because	data	may	also	be	accessed	with	a	key.

IndexedDataMap	is	a	generic	class	which	depends	on	three	parameters:

Key	is	the	type	of	key	for	an	entry	in	the	map,
Item	is	the	type	of	element	associated	with	a	key	in	the	map,
Hasher	is	the	type	of	hasher	on	keys.

TCollection_IndexedMap

This	is	map	used	to	store	keys	and	to	bind	an	index	to	them.

Each	new	key	stored	in	the	map	is	assigned	an	index.	Indexes	are
incremented	as	keys	stored	in	the	map.	A	key	can	be	found	by	the	index,
and	an	index	by	the	key.	No	key	but	the	last	can	be	removed,	so	the
indexes	are	in	the	range	1...Upper	where	Upper	is	the	number	of	keys
stored	in	the	map.

An	entry	of	an	IndexedMap	is	composed	of	both	the	key	and	the	index.
An	IndexedMap	is	an	ordered	map,	which	allows	a	linear	iteration	on	its
contents.	But	no	data	is	attached	to	the	key.	An	IndexedMap	is	typically
used	by	an	algorithm	to	know	if	some	action	is	still	performed	on
components	of	a	complex	data	structure.

IndexedMap	is	a	generic	class	which	depends	on	two	parameters:

Key	is	the	type	of	key	for	an	entry	in	the	map,
Hasher	is	the	type	of	hasher	on	keys.

TCollection_Map

This	is	a	basic	hashed	map,	used	to	store	and	retrieve	keys	in	linear
time.

An	entry	of	a	Map	is	composed	of	the	key	only.	No	data	is	attached	to	the
key.	A	Map	is	typically	used	by	an	algorithm	to	know	if	some	action	is	still
performed	on	components	of	a	complex	data	structure.

Map	is	a	generic	class	which	depends	on	two	parameters:

Key	is	the	type	of	key	in	the	map,
Hasher	is	the	type	of	hasher	on	keys.

Use	a	MapIterator	iterator	to	explore	a	Map	map.

TCollection_MapHasher

This	is	a	hasher	on	the	keys	of	a	map	instantiated	from	the	Collections
component.

A	hasher	provides	two	functions:

HashCode()	function	transforms	a	key	into	a	bucket	index	in	the
map.	The	number	of	values	that	can	be	computed	by	the	hashing
function	is	equal	to	the	number	of	buckets	in	the	map.
IsEqual	is	the	equality	test	between	two	keys.	Hashers	are	used	as
parameters	in	generic	maps	provided	by	the	Collections
component.

MapHasher	is	a	generic	class	which	depends	on	the	type	of	keys,
providing	that	Key	is	a	type	from	the	Standard	package.	In	such	cases
MapHasher	may	be	directly	instantiated	with	Key.	Note	that	the	package
TColStd	provides	some	of	these	instantiations.

Elsewhere,	if	Key	is	not	a	type	from	the	Standard	package	you	must
consider	MapHasher	as	a	template	and	build	a	class	which	includes	its
functions,	in	order	to	use	it	as	a	hasher	in	a	map	instantiated	from	the
Collections	component.

Note	that	TCollection_AsciiString	and	TCollection_ExtendedString
classes	correspond	to	these	specifications,	in	consequence	they	may	be
used	as	hashers:	when	Key	is	one	of	these	two	types	you	may	just	define
the	hasher	as	the	same	type	at	the	time	of	instantiation	of	your	map.

Iterators

TCollection_BasicMapIterator

This	is	a	root	class	for	map	iterators.	A	map	iterator	provides	a	step	by
step	exploration	of	all	the	entries	of	a	map.

TCollection_DataMapIterator

These	are	functions	used	for	iterating	the	contents	of	a	DataMap	map.

A	map	is	a	non-ordered	data	structure.	The	order	in	which	entries	of	a
map	are	explored	by	the	iterator	depends	on	its	contents	and	change
when	the	map	is	edited.	It	is	not	recommended	to	modify	the	contents	of
a	map	during	the	iteration:	the	result	is	unpredictable.

TCollection_DoubleMapIterator

These	are	functions	used	for	iterating	the	contents	of	a	DoubleMap	map.

TCollection_ListIterator

These	are	unctions	used	for	iterating	the	contents	of	a	List	data	structure.

A	ListIterator	object	can	be	used	to	go	through	a	list	sequentially,	and	as
a	bookmark	to	hold	a	position	in	a	list.	It	is	not	an	index,	however.	Each
step	of	the	iteration	gives	the	current	position	of	the	iterator,	to	which
corresponds	the	current	item	in	the	list.	The	current	position	is	not
defined	if	the	list	is	empty,	or	when	the	exploration	is	finished.

An	iterator	class	is	automatically	instantiated	from	this	generic	class	at
the	time	of	instantiation	of	a	List	data	structure.

TCollection_MapIterator

These	are	functions	used	for	iterating	the	contents	of	a	Map	map.	An
iterator	class	is	automatically	instantiated	from	this	generic	class	at	the
time	of	instantiation	of	a	Map	map.

TCollection_SetIterator

These	are	functions	used	for	iterating	the	contents	of	a	Set	data
structure.	An	iterator	class	is	automatically	instantiated	from	this	generic
class	at	the	time	of	instantiation	of	a	Set	structure.

TCollection_StackIterator

These	are	functions	used	for	iterating	the	contents	of	a	Stack	data

structure.

An	iterator	class	is	automatically	instantiated	from	this	generic	class	at
the	time	of	instantiation	of	a	Stack	structure.

Collections	of	Standard	Objects

Overview

While	generic	classes	of	the	TCollection	package	are	the	root	classes
that	describe	the	generic	purpose	of	every	type	of	collection,	classes
effectively	used	are	extracted	from	the	TColStd	package.	The	TColStd
and	TShort	packages	provide	frequently	used	instantiations	of	generic
classes	with	objects	from	the	Standard	package	or	strings	from	the
TCollection	package.

Description

These	instantiations	are	the	following:

Unidimensional	arrays:	instantiations	of	the	TCollection_Array1
generic	class	with	Standard	Objects	and	TCollection	strings.
Bidimensional	arrays:	instantiations	of	the	TCollection_Array2
generic	class	with	Standard	Objects.
Unidimensional	arrays	manipulated	by	handles:	instantiations	of	the
TCollection_HArray1	generic	class	with	Standard	Objects	and
TCollection	strings.
Bidimensional	arrays	manipulated	by	handles:	instantiations	of	the
TCollection_HArray2	generic	class	with	Standard	Objects.
Sequences:	instantiations	of	the	TCollection_Sequence	generic
class	with	Standard	objects	and	TCollection	strings.
Sequences	manipulated	by	handles:	instantiations	of	the
TCollection_HSequence	generic	class	with	Standard	objects	and
TCollection	strings.
Lists:	instantiations	of	the	TCollection_List	generic	class	with
Standard	objects.
Queues:	instantiations	of	the	TCollection_Queue	generic	class	with
Standard	objects.
Sets:	instantiations	of	the	TCollection_Set	generic	class	with
Standard	objects.
Sets	manipulated	by	handles:	instantiations	of	the	TCollection_HSet
generic	class	with	Standard	objects.
Stacks:	instantiations	of	the	TCollection_Stack	generic	class	with

Standard	objects.
Hashers	on	map	keys:	instantiations	of	the	TCollection_MapHasher
generic	class	with	Standard	objects.
Basic	hashed	maps:	instantiations	of	the	TCollection_Map	generic
class	with	Standard	objects.
Hashed	maps	with	an	additional	item:	instantiations	of	the
TCollection_DataMap	generic	class	with	Standard	objects.
Basic	indexed	maps:	instantiations	of	the	TCollection_IndexedMap
generic	class	with	Standard	objects.
Indexed	maps	with	an	additional	item:	instantiations	of	the
TCollection_IndexedDataMap	generic	class	with	Standard_Transient
objects.
Class	TColStd_PackedMapOfInteger	provides	alternative
implementation	of	map	of	integer	numbers,	optimized	for	both
performance	and	memory	usage	(it	uses	bit	flags	to	encode	integers,
which	results	in	spending	only	24	bytes	per	32	integers	stored	in
optimal	case).	This	class	also	provides	Boolean	operations	with
maps	as	sets	of	integers	(union,	intersection,	subtraction,	difference,
checks	for	equality	and	containment).

NCollections

Overview

The	NCollection	package	provides	a	set	of	template	collection	classes
used	throughout	OCCT.

Macro	definitions	of	these	classes	are	stored	in	NCollection_Define*.hxx
files.	These	definitions	are	now	obsolete	though	still	can	be	used,
particularly	for	compatibility	with	the	existing	code.

Instantiation	of	collection	classes

Now	we	are	going	to	implement	the	definitions	from	NCollection	in	the
code,	taking	as	an	example	a	sequence	of	points	(analogue	of
TColgp_SequenceOfPnt).

Definition	of	a	new	collection	class

Let	the	header	file	be	MyPackage_SequenceOfPnt.hxx	:

Template	class	instantiaton

#include	<NCollection_Sequence.hxx>

#include	<gp_Pnt.hxx>

typedef	NCollection_Sequence<gp_Pnt>	

MyPackage_SequenceOfPnt;

Macro	instantiation

#include	<NCollection_DefineSequence.hxx>

#include	<gp_Pnt.hxx>

The	following	line	defines	the	class	"base	collection	of	points"

DEFINE_BASECOLLECTION(MyPackage_BaseCollPnt,	gp_Pnt)

The	following	line	defines	the	class	MyPackage_SequenceOfPnt

DEFINE_SEQUENCE	(MyPackage_SequenceOfPnt,	

MyPackage_BaseCollPnt	,	gp_Pnt)		

Definition	of	a	new	collection	class	managed	by	Handle

It	is	necessary	to	provide	relevant	statements	both	in	the	header	(.hxx
file)	and	the	C++	source	(.cxx	file).

Header	file	MyPackage_HSequenceOfPnt.hxx:

#include	<NCollection_DefineHSequence.hxx>

#include	<gp_Pnt.hxx>

The	following	line	defines	the	class	"base	collection	of	points"

DEFINE_BASECOLLECTION(MyPackage_BaseCollPnt,	gp_Pnt)

The	following	line	defines	the	class	MyPackage_SequenceOfPnt

DEFINE_SEQUENCE	(MyPackage_SequenceOfPnt,	

MyPackage_BaseCollPnt,	gp_Pnt)

The	following	line	defines	the	classes	MyPackage_HSequenceOfPnt	and
Handle(MyPackage_HSequenceOfPnt)

DEFINE_HSEQUENCE	(MyPackage_HSequenceOfPnt,	

MyPackage_SequenceOfPnt)

Source	code	file	will	be	MyPackage_HSequenceOfPnt.cxx	or	any	other
.cxx	file	(once	in	the	whole	project):

IMPLEMENT_HSEQUENCE	(MyPackage_HSequenceOfPnt)

Arrays	and	sequences

Standard	collections	provided	by	OCCT	are:

NCollection_Array1	–	fixed-size	(at	initialization)	one-dimensional
array;	note	that	the	index	can	start	at	any	value,	usually	1;

NCollection_Array2	–	fixed-size	(at	initialization)	two-dimensional
array;	note	that	the	index	can	start	at	any	value,	usually	1;
NCollection_List	–	plain	list;
NCollection_Sequence	–	double-connected	list	with	access	by	index;
note	that	the	index	starts	at	1.

These	classes	provide	STL-style	iterators	(methods	begin()	and	end())
and	thus	can	be	used	in	STL	algorithms.

Maps

NCollection	provides	several	classes	for	storage	of	objects	by	value,
providing	fast	search	due	to	use	of	hash:

NCollection_Map	–	hash	set;
NCollection_IndexedMap	–	set	with	a	prefixed	order	of	elements,
allowing	fast	access	by	index	or	by	value	(hash-based);
NCollection_DataMap	–	hash	map;
NCollection_IndexedDataMap	–	map	with	a	prefixed	order	of
elements,	allowing	fast	access	by	index	or	by	value	(hash-based);
NCollection_DoubleMap	–	two-side	hash	map	(with	two	keys).

Other	collection	types

There	are	4	collection	types	provided	as	template	classes:

NCollection_Vector
NCollection_UBTree
NCollection_SparseArray
NCollection_CellFilter

Vector

This	type	is	implemented	internally	as	a	list	of	arrays	of	the	same	size.	Its
properties:

Direct	(constant-time)	access	to	members	like	in	Array1	type;	data
are	allocated	in	compact	blocks,	this	provides	faster	iteration.
Can	grow	without	limits,	like	List,	Stack	or	Queue	types.
Once	having	the	size	LEN,	it	cannot	be	reduced	to	any	size	less	than

LEN	–	there	is	no	operation	of	removal	of	items.

Insertion	in	a	Vector-type	class	is	made	by	two	methods:

SetValue(ind,	theValue)	–	array-type	insertion,	where	ind	is	the	index
of	the	inserted	item,	can	be	any	non-negative	number.	If	it	is	greater
than	or	equal	to	Length(),	then	the	vector	is	enlarged	(its	Length()
grows).
Append(theValue)	–	list-type	insertion	equivalent	to
myVec.SetValue(myVec.Length(),	theValue),	incrementing	the	size
of	the	collection.

Other	essential	properties	coming	from	List	and	Array1	type	collections:

Like	in	List,	the	method	Clear()	destroys	all	contained	objects	and
releases	the	allocated	memory.
Like	in	Array1,	the	methods	Value()	and	ChangeValue()	return	a
contained	object	by	index.	Also,	these	methods	have	the	form	of
overloaded	operator	().

UBTree

The	name	of	this	type	stands	for	“Unbalanced	Binary	Tree”.	It	stores	the
members	in	a	binary	tree	of	overlapped	bounding	objects	(boxes	or	else).
Once	the	tree	of	boxes	of	geometric	objects	is	constructed,	the	algorithm
is	capable	of	fast	geometric	selection	of	objects.	The	tree	can	be	easily
updated	by	adding	to	it	a	new	object	with	bounding	box.	The	time	of
adding	to	the	tree	of	one	object	is	O(log(N)),	where	N	is	the	total	number
of	objects,	so	the	time	of	building	a	tree	of	N	objects	is	O(N(log(N)).	The
search	time	of	one	object	is	O(log(N)).

Defining	various	classes	inheriting	NCollection_UBTree::Selector	we	can
perform	various	kinds	of	selection	over	the	same	b-tree	object.

The	object	may	be	of	any	type	allowing	copying.	Among	the	best	suitable
solutions	there	can	be	a	pointer	to	an	object,	handled	object	or	integer
index	of	object	inside	some	collection.	The	bounding	object	may	have
any	dimension	and	geometry.	The	minimal	interface	of	TheBndType
(besides	public	empty	and	copy	constructor	and	operator	=)	used	in
UBTree	algorithm	as	follows:

class	MyBndType

{

	public:

		inline	void																			Add	(const	MyBndType&	

other);

		//	Updates	me	with	other	bounding	type	instance

		inline	Standard_Boolean							IsOut	(const	

MyBndType&	other)	const;

		//	Classifies	other	bounding	type	instance	

relatively	me

		inline	Standard_Real										SquareExtent()	const;

		//	Computes	the	squared	maximal	linear	extent	of	me	

(for	a	box	it	is	the	squared	diagonal	of	the	

box).

};

This	interface	is	implemented	in	types	of	Bnd	package:	Bnd_Box,
Bnd_Box2d,	Bnd_B2x,	Bnd_B3x.

To	select	objects	you	need	to	define	a	class	derived	from
UBTree::Selector	that	should	redefine	the	necessary	virtual	methods	to
maintain	the	selection	condition.	Usually	this	class	instance	is	also	used
to	retrieve	selected	objects	after	search.	The	class	UBTreeFiller	is	used
to	randomly	populate	a	UBTree	instance.	The	quality	of	a	tree	is	better
(considering	the	speed	of	searches)	if	objects	are	added	to	it	in	a	random
order	trying	to	avoid	the	addition	of	a	chain	of	nearby	objects	one
following	another.	Instantiation	of	UBTreeFiller	collects	objects	to	be
added,	and	then	adds	them	at	once	to	the	given	UBTree	instance	in	a
random	order	using	the	Fisher-Yates	algorithm.	Below	is	the	sample	code
that	creates	an	instance	of	NCollection_UBTree	indexed	by	2D	boxes
(Bnd_B2f),	then	a	selection	is	performed	returning	the	objects	whose
bounding	boxes	contain	the	given	2D	point.

typedef	NCollection_UBTree<MyData,	Bnd_B2f>	UBTree;

typedef	NCollection_List<MyData>	ListOfSelected;

//!	Tree	Selector	type

class	MyTreeSelector	:	public	UBTree::Selector

{

public:

		//	This	constructor	initializes	the	selection	

criterion	(e.g.,	a	point)

		MyTreeSelector	(const	gp_XY&	thePnt)	:	

myPnt(thePnt)	{}

		//	Get	the	list	of	selected	objects

		const	ListOfSelected&	ListAccepted	()	const

		{	return	myList;	}

		//	Bounding	box	rejection	-	definition	of	virtual	

method.		@return	True	if	theBox	is	outside	the	

selection	criterion.

		Standard_Boolean	Reject		(const	Bnd_B2f&	theBox)	

const

		{	return	theBox.IsOut(myPnt);	}

		//	Redefined	from	the	base	class.	Called	when	the	

bounding	of	theData	conforms	to	the	selection	

criterion.	This	method	updates	myList.

		Standard_Boolean	Accept		(const	MyData&	theData)

		{	myList.Append(theData);	}

		private:

		gp_XY										myPnt;

		ListOfSelected	myList;

};

.	.	.

//	Create	a	UBTree	instance	and	fill	it	with	data,	

each	data	item	having	the	corresponding	2D	box.

UBTree	aTree;

NCollection_UBTreeFiller	<MyData,	Bnd_B2f>	

aTreeFiller(aTree);

for(;;)	{

		const	MyData&	aData	=	…;

		const	Bnd_B2d&	aBox	=	aData.GetBox();

		aTreeFiller.Add(aData,	aBox);

}

aTreeFiller.Fill();

.	.	.

//	Perform	selection	based	on	‘aPoint2d’

MyTreeSelector	aSel(aPoint2d);

aTree.Select(aSel);

const	ListOfSelected	=	aSel.ListAccepted();

SparseArray

This	type	has	almost	the	same	features	as	Vector	but	it	allows	to	store
items	having	scattered	indices.	In	Vector,	if	you	set	an	item	with	index
1000000,	the	container	will	allocate	memory	for	all	items	with	indices	in
the	range	0-1000000.	In	SparseArray,	only	one	small	block	of	items	will
be	reserved	that	contains	the	item	with	index	1000000.

This	class	can	be	also	seen	as	equivalence	of
DataMap<int,TheItemType>	with	the	only	one	practical	difference:	it	can
be	much	less	memory-expensive	if	items	are	small	(e.g.	Integer	or
Handle).

This	type	has	both	interfaces	of	DataMap	and	Vector	to	access	items.

CellFilter

This	class	represents	a	data	structure	for	sorting	geometric	objects	in	n-
dimensional	space	into	cells,	with	associated	algorithm	for	fast	checking
of	coincidence	(overlapping,	intersection,	etc.)	with	other	objects.	It	can
be	considered	as	a	functional	alternative	to	UBTree,	as	in	the	best	case	it
provides	the	direct	access	to	an	object	like	in	an	n-dimensional	array,
while	search	with	UBTree	provides	logarithmic	law	access	time.

Features

NCollection	defines	some	specific	features,	in	addition	to	the	public	API
inherited	from	TCollection	classes.

Iterators

Every	collection	defines	its	Iterator	class	capable	of	iterating	the
members	in	some	predefined	order.	Every	Iterator	is	defined	as	a
subtype	of	the	particular	collection	type	(e.g.,
MyPackage_StackOfPnt::Iterator).	The	order	of	iteration	is	defined	by	a
particular	collection	type.	The	methods	of	Iterator	are:

void	Init	(const	MyCollection&)	–	initializes	the	iterator	on	the
collection	object;
Standard_Boolean	More	()	const	–	makes	a	query	if	there	is	another
non-iterated	member;
void	Next	()	–	increments	the	iterator;
const	ItemType&	Value	()	const	–	returns	the	current	member;
ItemType&	ChangeValue	()	const	–	returns	the	mutable	current
member

typedef	Ncollection_Sequence<gp_Pnt>

MyPackage_SequenceOfPnt

void	Perform	(const	MyPackage_SequenceOfPnt&	

theSequence)

{

				MyPackage_SequenceOfPnt::Iterator	anIter	

(theSequence);

				for	(;	anIter.More();	anIter.Next())	{

								const	gp_Pnt	aPnt&	=	anIter.Value();

....

				}

}

This	feature	is	present	only	for	some	classes	in	TCollection	(Stack,	List,
Set,	Map,	DataMap,	DoubleMap).	In	NCollection	it	is	generalized.

Class	BaseCollection

There	is	a	common	abstract	base	class	for	all	collections	for	a	given	item
type	(e.g.,	gp_Pnt).	Developer	X	can	arbitrarily	name	this	base	class	like
MyPackage_BaseCollPnt	in	the	examples	above.	This	name	is	further
used	in	the	declarations	of	any	(non-abstract)	collection	class	to

designate	the	C++	inheritance.

This	base	class	has	the	following	public	API:

abstract	class	Iterator	as	the	base	class	for	all	Iterators	descried
above;
Iterator&	CreateIterator	()	const	–	creates	and	returns	the	Iterator	on
this	collection;
Standard_Integer	Size	()	const	–	returns	the	number	of	items	in	this
collection;
void	Assign	(const	NCollection_BaseCollection&	theOther)	–	copies
the	contents	of	the	Other	to	this	collection	object;

These	members	enable	accessing	any	collection	without	knowing	its
exact	type.	In	particular,	it	makes	possible	to	implement	methods
receiving	objects	of	the	abstract	collection	type:

#include	<NColection_Map.hxx>

typedef	NCollection_Map<gp_Pnt>	MyPackage_MapOfPnt;

typedef	NCollection_BaseCollection<gp_Pnt>	

MyPackage_BaseCollPnt;

MyPackage_MapOfPnt	aMapPnt;

....

gp_Pnt	aResult	=	COG	(aMapPnt);

....

gp_Pnt	COG(const	MyPackage_BaseCollPnt&	theColl)

{

		gp_XYZ	aCentreOfGravity(0.,	0.,	0.);

//	create	type-independent	iterator	(it	is	abstract	

type	instance)

		MyPackage_BaseCollString::Iterator&	anIter	=	

theColl.CreateIterator();

		for	(;	anIter.More();	anIter.Next())	{

				aCentreOfGravity	+=	anIter.Value().XYZ();

		}

		return	aCentreOfGravity	/	theColl.Size();

}

Note	that	there	are	fundamental	differences	between	the	shown	type-

independent	iterator	and	the	iterator	belonging	to	a	particular	non-
abstract	collection:

Type-independent	iterator	can	only	be	obtained	via	the	call
CreateIterator();	the	typed	iterator	–	only	via	the	explicit	construction.
Type-independent	iterator	is	an	abstract	class,	so	it	is	impossible	to
copy	it	or	to	assign	it	to	another	collection	object;	the	typed	iterators
can	be	copied	and	reassigned	using	the	method	Init().
Type-independent	iterator	is	actually	destroyed	when	its	collection
object	is	destroyed;	the	typed	iterator	is	destroyed	as	any	other	C++
object	in	the	corresponding	C++	scope.

The	common	point	between	them	is	that	it	is	possible	to	create	any
number	of	both	types	of	iterators	on	the	same	collection	object.

Heterogeneous	Assign

The	semantics	of	the	method	Assign()	has	been	changed	in	comparison
to	TCollection.	In	NCollection	classes	the	method	Assign()	is	virtual	and	it
receives	the	object	of	the	abstract	BaseCollection	class	(see	the	previous
section).	Therefore	this	method	can	be	used	to	assign	any	collection	type
to	any	other	if	only	these	collections	are	instantiated	on	the	same
ItemType.

For	example,	conversion	of	Map	into	Array1	is	performed	like	this:

#include	<NCollection_Map.hxx>

#include	<NCollection_Array1.hxx>

typedef	NCollection_Map<gp_Pnt>	MyPackage_MapOfPnt;

typedef	NCollection_Array1<gp_Pnt>	

MyPackage_Array1OfPnt;

....

MyPackage_MapOfPnt	aMapPnt;

....

MyPackage_Array1OfPnt	anArr1Pnt	(1,	aMapPnt.Size());

anArr1Pnt.Assign	(aMapPnt);	//	heterogeneous	

assignment

There	are	some	aspects	to	mention:

Unlike	in	TCollection,	in	NCollection	the	methods	Assign	and
operator=	do	not	coincide.	The	former	is	a	virtual	method	defined	in
the	BaseCollection	class.	The	latter	is	always	defined	in	instance
classes	as	a	non-virtual	inline	method	and	it	corresponds	exactly	to
the	method	Assign	in	TCollection	classes.	Therefore	it	is	always
profitable	to	use	operator=	instead	of	Assign	wherever	the	types	on
both	sides	of	assignment	are	known.
If	the	method	Assign	copies	to	Array1	or	Array2	structure,	it	first
checks	if	the	size	of	the	array	is	equal	to	the	number	of	items	in	the
copied	collection	object.	If	the	sizes	differ,	an	exception	is	thrown,	as
in	TCollection_Array1.gxx.
Copying	to	Map,	IndexedMap,	DataMap	and	IndexedDataMap	can
bring	about	a	loss	of	data:	when	two	or	more	copied	data	items	have
the	same	key	value,	only	one	item	is	copied	and	the	others	are
discarded.	It	can	lead	to	an	error	in	the	code	like	the	following:

MyPackage_Array1OfPnt	anArr1Pnt	(1,	100);	

MyPackage_MapOfPnt	aMapPnt;

....

aMapPnt.Assign(anArr1Pnt);

anArr1Pnt.Assign(aMapPnt);

Objects	of	classes	parameterised	with	two	types	(DoubleMap,	DataMap
and	IndexedDataMap)	cannot	be	assigned.	Their	method	Assign	throws
the	exception	Standard_TypeMismatch	(because	it	is	impossible	to	check
if	the	passed	BaseCollection	parameter	belongs	to	the	same	collection
type).

Allocator

All	constructors	of	NCollection	classes	receive	the	Allocator	Object	as	the
last	parameter.	This	is	an	object	of	a	type	managed	by	Handle,	inheriting
NCollection_BaseAllocator,	with	the	following	(mandatory)	methods
redefined:

Standard_EXPORT	virtual	void*	Allocate	(const	size_t	

size);	

Standard_EXPORT	virtual	void	Free	(void	*	anAddress);

It	is	used	internally	every	time	when	the	collection	allocates	memory	for
its	item(s)	and	releases	this	memory.	The	default	value	of	this	parameter
(empty	Handle)	designates	the	use	of	NCollection_BaseAllocator	X
where	the	functions	Standard::Allocate	and	Standard::Free	are	called.
Therefore	if	the	user	of	NCollection	does	not	specify	any	allocator	as	a
parameter	to	the	constructor	of	his	collection,	the	memory	management
will	be	identical	to	the	one	in	TCollection	and	other	Open	CASCADE
Technology	classes.

Nevertheless,	the	it	is	possible	to	define	a	custom	Allocator	type	to
manage	the	memory	in	the	most	optimal	or	convenient	way	for	his
algorithms.

As	one	possible	choice,	the	class	NCollection_IncAllocator	is	included.
Unlike	BaseAllocator,	it	owns	all	memory	it	allocates	from	the	system.
Memory	is	allocated	in	big	blocks	(about	20kB)	and	the	allocator	keeps
track	of	the	amount	of	occupied	memory.	The	method	Allocate	just
increments	the	pointer	to	non-occupied	memory	and	returns	its	previous
value.	Memory	is	only	released	in	the	destructor	of	IncAllocator,	the
method	Free	is	empty.	If	used	efficiently,	this	Allocator	can	greatly
improve	the	performance	of	OCCT	collections.

Strings
Strings	are	classes	that	handle	dynamically	sized	sequences	of
characters	based	on	ASCII/Unicode	UTF-8	(normal	8-bit	character	type)
and	UTF-16/UCS-2	(16-bit	character	type).	They	provide	editing
operations	with	built-in	memory	management	which	make	the	relative
objects	easier	to	use	than	ordinary	character	arrays.

String	classes	provide	the	following	services	to	manipulate	character
strings:

Editing	operations	on	string	objects,	using	a	built-in	string	manager
Handling	of	dynamically-sized	sequences	of	characters
Conversion	from/to	ASCII	and	UTF-8	strings.

Strings	may	also	be	manipulated	by	handles	and	therefore	shared.

Examples

TCollection_AsciiString

A	variable-length	sequence	of	ASCII	characters	(normal	8-bit	character
type).	It	provides	editing	operations	with	built-in	memory	management	to
make	AsciiString	objects	easier	to	use	than	ordinary	character	arrays.
AsciiString	objects	follow	value	semantics;,	that	is,	they	are	the	actual
strings,	not	handles	to	strings,	and	are	copied	through	assignment.	You
may	use	HAsciiString	objects	to	get	handles	to	strings.

TCollection_ExtendedString

A	variable-length	sequence	of	"extended"	(UNICODE)	characters	(16-bit
character	type).	It	provides	editing	operations	with	built-in	memory
management	to	make	ExtendedString	objects	easier	to	use	than	ordinary
extended	character	arrays.

ExtendedString	objects	follow	value	semantics;,	that	is,	they	are	the
actual	strings,	not	handles	to	strings,	and	are	copied	through	assignment.
You	may	use	HExtendedString	objects	to	get	handles	to	strings.

TCollection_HAsciiString

A	variable-length	sequence	of	ASCII	characters	(normal	8-bit	character
type).	It	provides	editing	operations	with	built-in	memory	management	to
make	HAsciiString	objects	easier	to	use	than	ordinary	character	arrays.
HAsciiString	objects	are	handles	to	strings.

HAsciiString	strings	may	be	shared	by	several	objects.
You	may	use	an	AsciiString	object	to	get	the	actual	string.
HAsciiString	objects	use	an	AsciiString	string	as	a	field.

TCollection_HExtendedString

A	variable-length	sequence	of	extended;	(UNICODE)	characters	(16-bit
character	type).	It	provides	editing	operations	with	built-in	memory
management	to	make	ExtendedString	objects	easier	to	use	than	ordinary
extended	character	arrays.	HExtendedString	objects	are	handles	to
strings.

HExtendedString	strings	may	be	shared	by	several	objects.
You	may	use	an	ExtendedString	object	to	get	the	actual	string.
HExtendedString	objects	use	an	ExtendedString	string	as	a	field.

Conversion

Resource_Unicode	provides	functions	to	convert	a	non-ASCII	C	string
given	in	ANSI,	EUC,	GB	or	SJIS	format,	to	a	Unicode	string	of	extended
characters,	and	vice	versa.

Quantities
Quantities	are	various	classes	supporting	date	and	time	information	and
fundamental	types	representing	most	physical	quantities	such	as	length,
area,	volume,	mass,	density,	weight,	temperature,	pressure	etc.

Quantity	classes	provide	the	following	services:

Definition	of	primitive	types	representing	most	of	mathematical	and
physical	quantities;
Unit	conversion	tools	providing	a	uniform	mechanism	for	dealing	with
quantities	and	associated	physical	units:	check	unit	compatibility,
perform	conversions	of	values	between	different	units,	etc.	(see
package	UnitsAPI)
Resources	to	manage	time	information	such	as	dates	and	time
periods
Resources	to	manage	color	definition

A	mathematical	quantity	is	characterized	by	the	name	and	the	value
(real).

A	physical	quantity	is	characterized	by	the	name,	the	value	(real)	and	the
unit.	The	unit	may	be	either	an	international	unit	complying	with	the
International	Unit	System	(SI)	or	a	user	defined	unit.	The	unit	is	managed
by	the	physical	quantity	user.

The	fact	that	both	physical	and	mathematical	quantities	are	manipulated
as	real	values	means	that	:

They	are	defined	as	aliases	of	real	values,	so	all	functions	provided
by	the	Standard_Real	class	are	available	on	each	quantity.
It	is	possible	to	mix	several	physical	quantities	in	a	mathematical	or
physical	formula	involving	real	values.

Quantity	package	includes	all	commonly	used	basic	physical	quantities.

Unit	Conversion
The	UnitsAPI	global	functions	are	used	to	convert	a	value	from	any	unit
into	another	unit.	Conversion	is	executed	among	three	unit	systems:

the	SI	System,
the	user’s	Local	System,
the	user’s	Current	System.	The	SI	System	is	the	standard
international	unit	system.	It	is	indicated	by	SI	in	the	signatures	of	the
UnitsAPI	functions.

The	OCCT	(former	MDTV)	System	corresponds	to	the	SI	international
standard	but	the	length	unit	and	all	its	derivatives	use	the	millimeter
instead	of	the	meter.

Both	systems	are	proposed	by	Open	CASCADE	Technology;	the	SI
System	is	the	standard	option.	By	selecting	one	of	these	two	systems,
you	define	your	Local	System	through	the	SetLocalSystem	function.	The
Local	System	is	indicated	by	LS	in	the	signatures	of	the	UnitsAPI
functions.	The	Local	System	units	can	be	modified	in	the	working
environment.	You	define	your	Current	System	by	modifying	its	units
through	the	SetCurrentUnit	function.	The	Current	System	is	indicated	by
Current	in	the	signatures	of	the	UnitsAPI	functions.	A	physical	quantity	is
defined	by	a	string	(example:	LENGTH).

Math	Primitives	and	Algorithms
Overview

Math	primitives	and	algorithms	available	in	Open	CASCADE	Technology
include:

Vectors	and	matrices
Geometric	primitives
Math	algorithms

Vectors	and	Matrices
The	Vectors	and	Matrices	component	provides	a	C++	implementation	of
the	fundamental	types	Vector	and	Matrix,	which	are	regularly	used	to
define	more	complex	data	structures.

The	Vector	and	Matrix	classes	provide	commonly	used	mathematical
algorithms	which	include:

Basic	calculations	involving	vectors	and	matrices;
Computation	of	eigenvalues	and	eigenvectors	of	a	square	matrix;
Solvers	for	a	set	of	linear	algebraic	equations;
Algorithms	to	find	the	roots	of	a	set	of	non-linear	equations;
Algorithms	to	find	the	minimum	function	of	one	or	more	independent
variables.

These	classes	also	provide	a	data	structure	to	represent	any	expression,
relation,	or	function	used	in	mathematics,	including	the	assignment	of
variables.

Vectors	and	matrices	have	arbitrary	ranges	which	must	be	defined	at
declaration	time	and	cannot	be	changed	after	declaration.

math_Vector		v(1,	3);	

//		a	vector	of	dimension	3	with	range	(1..3)	

math_Matrix		m(0,	2,	0,	2);	

//		a	matrix	of	dimension	3x3	with	range	(0..2,	0..2)	

math_Vector		v(N1,	N2);	

//		a	vector	of	dimension	N2-N1+1	with	range	(N1..N2)

Vector	and	Matrix	objects	use	value	semantics.	In	other	words,	they
cannot	be	shared	and	are	copied	through	assignment.

math_Vector		v1(1,	3),	v2(0,	2);	

v2		=	v1;	

//		v1	is	copied	into	v2.	a	modification	of	v1	does	

not	affect		v2	

Vector	and	Matrix	values	may	be	initialized	and	obtained	using	indexes
which	must	lie	within	the	range	definition	of	the	vector	or	the	matrix.

math_Vector	v(1,	3);

math_Matrix	m(1,	3,	1,	3);

Standard_Real	value;

v(2)	=	1.0;

value	=	v(1);

m(1,	3)	=	1.0;

value	=	m(2,	2);

Some	operations	on	Vector	and	Matrix	objects	may	not	be	legal.	In	this
case	an	exception	is	raised.	Two	standard	exceptions	are	used:

Standard_DimensionError	exception	is	raised	when	two	matrices	or
vectors	involved	in	an	operation	are	of	incompatible	dimensions.
Standard_RangeError	exception	is	raised	if	an	access	outside	the
range	definition	of	a	vector	or	of	a	matrix	is	attempted.

math_Vector	v1(1,	3),	v2(1,	2),	v3(0,	2);

v1	=	v2;

//	error:	Standard_DimensionError	is	raised

v1	=	v3;

//	OK:	ranges	are	not	equal	but	dimensions	are

//	compatible

v1(0)	=	2.0;

//	error:	Standard_RangeError	is	raised

Primitive	Geometric	Types
Open	CASCADE	Technology	primitive	geometric	types	are	a	STEP-
compliant	implementation	of	basic	geometric	and	algebraic	entities.	They
provide:

Descriptions	of	primitive	geometric	shapes,	such	as:
Points;
Vectors;
Lines;
Circles	and	conics;
Planes	and	elementary	surfaces;

Positioning	of	these	shapes	in	space	or	in	a	plane	by	means	of	an
axis	or	a	coordinate	system;
Definition	and	application	of	geometric	transformations	to	these
shapes:

Translations;
Rotations;
Symmetries;
Scaling	transformations;
Composed	transformations;

Tools	(coordinates	and	matrices)	for	algebraic	computation.

All	these	functions	are	provided	by	geometric	processor	package	gp.	Its
classes	for	2d	and	3d	objects	are	handled	by	value	rather	than	by
reference.	When	this	sort	of	object	is	copied,	it	is	copied	entirely.
Changes	in	one	instance	will	not	be	reflected	in	another.

The	gp	package	defines	the	basic	geometric	entities	used	for	algebraic
calculation	and	basic	analytical	geometry	in	2d	&	3d	space.	It	also
provides	basic	transformations	such	as	identity,	rotation,	translation,
mirroring,	scale	transformations,	combinations	of	transformations,	etc.
Entities	are	handled	by	value.

Please,	note	that	gp	curves	and	surfaces	are	analytic:	there	is	no
parameterization	and	no	orientation	on	gp	entities,	i.e.	these	entities	do
not	provide	functions	which	work	with	these	properties.

If	you	need,	you	may	use	more	evolved	data	structures	provided	by

Geom	(in	3D	space)	and	Geom2d	(in	the	plane).	However,	the	definition
of	gp	entities	is	identical	to	the	one	of	equivalent	Geom	and	Geom2d
entities,	and	they	are	located	in	the	plane	or	in	space	with	the	same	kind
of	positioning	systems.	They	implicitly	contain	the	orientation,	which	they
express	on	the	Geom	and	Geom2d	entities,	and	they	induce	the
definition	of	their	parameterization.

Therefore,	it	is	easy	to	give	an	implicit	parameterization	to	gp	curves	and
surfaces,	which	is	the	parametrization	of	the	equivalent	Geom	or
Geom2d	entity.	This	property	is	particularly	useful	when	computing
projections	or	intersections,	or	for	operations	involving	complex
algorithms	where	it	is	particularly	important	to	manipulate	the	simplest
data	structures,	i.e.	those	of	gp.	Thus,	ElCLib	and	ElSLib	packages
provide	functions	to	compute:

the	point	of	parameter	u	on	a	2D	or	3D	gp	curve,
the	point	of	parameter	(u,v)	on	a	gp	elementary	surface,	and
any	derivative	vector	at	this	point.

Note:	the	gp	entities	cannot	be	shared	when	they	are	inside	more
complex	data	structures.

Collections	of	Primitive	Geometric	Types
Before	creating	a	geometric	object,	you	must	decide	whether	you	are	in	a
2d	or	in	a	3d	context	and	how	you	want	to	handle	the	object.	If	you	do	not
need	a	single	instance	of	a	geometric	primitive	but	a	set	of	them	then	the
package	which	deals	with	collections	of	this	sort	of	object,	TColgp,	will
provide	the	necessary	functionality.	In	particular,	this	package	provides
standard	and	frequently	used	instantiations	of	generic	classes	with
geometric	objects,	i.e.	XY,	XYZ,	Pnt,	Pnt2d,	Vec,	Vec2d,	Lin,	Lin2d,	Circ,
Circ2d.

Basic	Geometric	Libraries
There	are	various	library	packages	available	which	offer	a	range	of	basic
computations	on	curves	and	surfaces.	If	you	are	dealing	with	objects
created	from	the	gp	package,	the	useful	algorithms	are	in	the	elementary
curves	and	surfaces	libraries	–	the	ElCLib	and	ElSLib	packages.

EICLib	provides	methods	for	analytic	curves.	This	is	a	library	of
simple	computations	on	curves	from	the	gp	package	(Lines,	Circles
and	Conics).	It	is	possible	to	compute	points	with	a	given	parameter
or	to	compute	the	parameter	for	a	point.
EISLib	provides	methods	for	analytic	surfaces.	This	is	a	library	of
simple	computations	on	surfaces	from	the	package	gp	(Planes,
Cylinders,	Spheres,	Cones,	Tori).	It	is	possible	to	compute	points
with	a	given	pair	of	parameters	or	to	compute	the	parameter	for	a
point.	There	is	a	library	for	calculating	normals	on	curves	and
surfaces.

Additionally,	Bnd	package	provides	a	set	of	classes	and	tools	to	operate
with	bounding	boxes	of	geometric	objects	in	2d	and	3d	space.

Common	Math	Algorithms
The	common	math	algorithms	library	provides	a	C++	implementation	of
the	most	frequently	used	mathematical	algorithms.	These	include:

Algorithms	to	solve	a	set	of	linear	algebraic	equations,
Algorithms	to	find	the	minimum	of	a	function	of	one	or	more
independent	variables,
Algorithms	to	find	roots	of	one,	or	of	a	set,	of	non-linear	equations,
An	algorithm	to	find	the	eigenvalues	and	eigenvectors	of	a	square
matrix.

All	mathematical	algorithms	are	implemented	using	the	same	principles.
They	contain:	A	constructor	performing	all,	or	most	of,	the	calculation,
given	the	appropriate	arguments.	All	relevant	information	is	stored	inside
the	resulting	object,	so	that	all	subsequent	calculations	or	interrogations
will	be	solved	in	the	most	efficient	way.

A	function	IsDone	returning	the	boolean	true	if	the	calculation	was
successful.	A	set	of	functions,	specific	to	each	algorithm,	enabling	all	the
various	results	to	be	obtained.	Calling	these	functions	is	legal	only	if	the
function	IsDone	answers	true,	otherwise	the	exception	StdFail_NotDone
is	raised.

The	example	below	demonstrates	the	use	of	the	Gauss	class,	which
implements	the	Gauss	solution	for	a	set	of	linear	equations.The	following
definition	is	an	extract	from	the	header	file	of	the	class	math_Gauss:

class	Gauss	{

public:

		Gauss	(const	math_Matrix&	A);

		Standard_Boolean	IsDone()	const;

		void	Solve	(const	math_Vector&	B,

		math_Vector&	X)	const;

};

Now	the	main	program	uses	the	Gauss	class	to	solve	the	equations
a*x1=b1	and	a*x2=b2:

#include	<math_Vector.hxx>	

#include	<math_Matrix.hxx>

main	()

{

		math_Vector	a(1,	3,	1,	3);

		math_Vector	b1(1,	3),	b2(1,	3);

		math_Vector	x1(1,	3),	x2(1,	3);

		//	a,	b1	and	b2	are	set	here	to	the	appropriate	

values

		math_Gauss	sol(a);														//	computation	of	

the

		//	LU	decomposition	of	A

		if(sol.IsDone())	{														//	is	it	OK	?

				sol.Solve(b1,	x1);						//	yes,	so	compute	x1

				sol.Solve(b2,	x2);						//	then	x2

				...

		}

		else	{																				//	it	is	not	OK:

				//	fix	up

				sol.Solve(b1,	x1);												//	error:

				//	StdFail_NotDone	is	raised

		}

}

The	next	example	demonstrates	the	use	of	the	BissecNewton	class,
which	implements	a	combination	of	the	Newton	and	Bissection
algorithms	to	find	the	root	of	a	function	known	to	lie	between	two	bounds.
The	definition	is	an	extract	from	the	header	file	of	the	class
math_BissecNewton:

class		BissecNewton	{	

				public:	

								BissecNewton		(math_FunctionWithDerivative&	

f,	

												const	Standard_Real	bound1,	

												const	Standard_Real	bound2,	

												const	Standard_Real	tolx);	

				Standard_Boolean	IsDone()	const;	

				Standard_Real	Root();	

};	

The	abstract	class	math_FunctionWithDerivative	describes	the	services
which	have	to	be	implemented	for	the	function	f	which	is	to	be	used	by	a
BissecNewton	algorithm.	The	following	definition	corresponds	to	the
header	file	of	the	abstract	class	math_FunctionWithDerivative:

class		math_FunctionWithDerivative	{	

				public:	

								virtual	Standard_Boolean	Value	

												(const	Standard_Real	x,	Standard_Real&		

f)	=	0;	

								virtual	Standard_Boolean	Derivative	

												(const	Standard_Real	x,	Standard_Real&		

d)	=	0;	

								virtual	Standard_Boolean	Values	

												(const	Standard_Real	x,	

												Standard_Real&	f,	

												Standard_Real&	d)	=	0;	

};	

Now	the	test	sample	uses	the	BissecNewton	class	to	find	the	root	of	the
equation	f(x)=x**2-4	in	the	interval	[1.5,	2.5]:	the	function	to	solve	is
implemented	in	the	class	myFunction	which	inherits	from	the	class
math_FunctionWithDerivative,	then	the	main	program	finds	the	required
root.

#include	<math_BissecNewton.hxx>	

#include	<math_FunctionWithDerivative.hxx>

class	myFunction	:	public	math_FunctionWithDerivative	

{

		Standard_Real	coefa,	coefb,	coefc;

		public:

				myFunction	(const		Standard_Real	a,	const	

Standard_Real	b,

																const	Standard_Real	c)	:

						coefa(a),	coefb(b),	coefc(c)

				{}

				virtual		Standard_Boolean	Value	(const	

Standard_Real	x,	

																																				Standard_Real&	f)

				{

						f	=	coefa	*	x	*	x	+	coefb	*	x	+	coefc;

				}

				virtual		Standard_Boolean	Derivative	(const	

Standard_Real	x,

																																									

Standard_Real&		d)

				{

						d	=	coefa	*	x	*	2.0	+	coefb;

				}

				virtual		Standard_Boolean	Values	(const	

Standard_Real	x,

																																					Standard_Real&	

f,	Standard_Real&	d)

				{

						f	=	coefa	*	x	*	x	+	coefb	*	x	+	coefc;

						d	=	coefa	*	x	*		2.0	+	coefb;

				}

};

main()

{

		myFunction	f(1.0,	0.0,	4.0);

		math_BissecNewton	sol(F,	1.5,	2.5,	0.000001);

		if(Sol.IsDone())	{	//	is	it	OK	?

				Standard_Real	x	=	sol.Root();	//	yes.

		}

		else	{	//	no

		}

Precision
On	the	OCCT	platform,	each	object	stored	in	the	database	should	carry
its	own	precision	value.	This	is	important	when	dealing	with	systems
where	objects	are	imported	from	other	systems	as	well	as	with	various
associated	precision	values.

The	Precision	package	addresses	the	daily	problem	of	the	geometric
algorithm	developer:	what	precision	setting	to	use	to	compare	two
numbers.	Real	number	equivalence	is	clearly	a	poor	choice.	The
difference	between	the	numbers	should	be	compared	to	a	given	precision
setting.

Do	not	write	if	(X1	==	X2),	instead	write	if	(Abs(X1-X2)	<	Precision).

Also,	to	order	real	numbers,	keep	in	mind	that	if	(X1	<	X2	-	Precision)	is
incorrect.	if	(X2	-	X1	>	Precision)	is	far	better	when	X1	and	X2	are	high
numbers.

This	package	proposes	a	set	of	methods	providing	precision	settings	for
the	most	commonly	encountered	situations.

In	Open	CASCADE	Technology,	precision	is	usually	not	implicit;	low-level
geometric	algorithms	accept	precision	settings	as	arguments.	Usually
these	should	not	refer	directly	to	this	package.

High-level	modeling	algorithms	have	to	provide	a	precision	setting	to	the
low	level	geometric	algorithms	they	call.	One	way	is	to	use	the	settings
provided	by	this	package.	The	high-level	modeling	algorithms	can	also
have	their	own	strategy	for	managing	precision.	As	an	example	the
Topology	Data	Structure	stores	precision	values	which	are	later	used	by
algorithms.	When	a	new	topology	is	created,	it	takes	the	stored	value.
Different	precision	settings	offered	by	this	package	cover	the	most
common	needs	of	geometric	algorithms	such	as	Intersection	and
Approximation.	The	choice	of	a	precision	value	depends	both	on	the
algorithm	and	on	the	geometric	space.	The	geometric	space	may	be
either:

a	real	space,	3d	or	2d	where	the	lengths	are	measured	in	meters,

micron,	inches,	etc.
a	parametric	space,	1d	on	a	curve	or	2d	on	a	surface	where
numbers	have	no	dimension.	The	choice	of	precision	value	for
parametric	space	depends	not	only	on	the	accuracy	of	the	machine,
but	also	on	the	dimensions	of	the	curve	or	the	surface.	This	is
because	it	is	desirable	to	link	parametric	precision	and	real	precision.
If	you	are	on	a	curve	defined	by	the	equation	P(t),	you	would	want	to
have	equivalence	between	the	following:

Abs(t1-t2)		<	ParametricPrecision	

Distance		(P(t1),P(t2))	<	RealPrecision.	

The	Precision	package

The	Precision	package	offers	a	number	of	package	methods	and	default
precisions	for	use	in	dealing	with	angles,	distances,	intersections,
approximations,	and	parametric	space.	It	provides	values	to	use	in
comparisons	to	test	for	real	number	equalities.

Angular	precision	compares	angles.
Confusion	precision	compares	distances.
Intersection	precision	is	used	by	intersection	algorithms.
Approximation	precision	is	used	by	approximation	algorithms.
Parametric	precision	gets	a	parametric	space	precision	from	a	3D
precision.
Infinite	returns	a	high	number	that	can	be	considered	to	be	infinite.
Use	-Infinite	for	a	high	negative	number.

Standard	Precision	values

This	package	provides	a	set	of	real	space	precision	values	for	algorithms.
The	real	space	precisions	are	designed	for	precision	to	0.1	nanometers.
The	only	unit	available	is	the	millimeter.	The	parametric	precisions	are
derived	from	the	real	precisions	by	the	Parametric	function.	This	applies
a	scaling	factor	which	is	the	length	of	a	tangent	to	the	curve	or	the
surface.	You,	the	user,	provide	this	length.	There	is	a	default	value	for	a
curve	with	[0,1]	parameter	space	and	a	length	less	than	100	meters.	The
geometric	packages	provide	Parametric	precisions	for	the	different	types
of	curves.	The	Precision	package	provides	methods	to	test	whether	a
real	number	can	be	considered	to	be	infinite.

Precision::Angular

This	method	is	used	to	compare	two	angles.	Its	current	value	is	Epsilon(2
*	PI)	i.e.	the	smallest	number	x	such	that	2*PI	+	x	is	different	of	2*PI.

It	can	be	used	to	check	confusion	of	two	angles	as	follows:	Abs(Angle1	-
Angle2)	<	Precision::Angular()

It	is	also	possible	to	check	parallelism	of	two	vectors	(Vec	from	gp)	as
follows	V1.IsParallel(V2,Precision::Angular())

Note	that	Precision::Angular()	can	be	used	on	both	dot	and	cross
products	because	for	small	angles	the	Sine	and	the	Angle	are	equivalent.
So	to	test	if	two	directions	of	type	gp_Dir	are	perpendicular,	it	is	legal	to
use	the	following	code:	Abs(D1	*	D2)	<	Precision::Angular()

Precision::Confusion

This	method	is	used	to	test	3D	distances.	The	current	value	is	1.e-7,	in
other	words,	1/10	micron	if	the	unit	used	is	the	millimeter.

It	can	be	used	to	check	confusion	of	two	points	(Pnt	from	gp)	as	follows:
P1.IsEqual(P2,Precision::Confusion())

It	is	also	possible	to	find	a	vector	of	null	length	(Vec	from	gp)	:
V.Magnitude()	<	Precision::Confusion()

Precision::Intersection

This	is	reasonable	precision	to	pass	to	an	Intersection	process	as	a	limit
of	refinement	of	Intersection	Points.	Intersection	is	high	enough	for	the
process	to	converge	quickly.	Intersection	is	lower	than	Confusion	so	that
you	still	get	a	point	on	the	intersected	geometries.	The	current	value	is
Confusion()	/	100.

Precision::Approximation

This	is	a	reasonable	precision	to	pass	to	an	approximation	process	as	a
limit	of	refinement	of	fitting.	The	approximation	is	greater	than	the	other

precisions	because	it	is	designed	to	be	used	when	the	time	is	at	a
premium.	It	has	been	provided	as	a	reasonable	compromise	by	the
designers	of	the	Approximation	algorithm.	The	current	value	is
Confusion()	*	10.	Note	that	Approximation	is	greater	than	Confusion,	so
care	must	be	taken	when	using	Confusion	in	an	approximation	process.

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Geometry	Utilities
Interpolations	and
Approximations

Analysis	of	a	set
of	points
Basic
Interpolation
and
Approximation
Advanced
Approximation

Direct	Construction
Simple
geometric
entities
Geometric
entities
manipulated	by
handle

Conversion	to	and
from	BSplines
Points	on	Curves
Extrema

2D	Geometry
3D	Geometry
Properties	of	Shapes
Local	Properties	of
Shapes
Local	Properties	of

Open	CASCADE
Technology		7.2.0

Modeling	Data

Curves	and	Surfaces
Continuity	of	Curves
and	Surfaces
Regularity	of	Shared
Edges
Global	Properties	of
Shapes
Adaptors	for	Curves
and	Surfaces

Topology
Shape	Location
Naming	shapes,	sub-
shapes,	their
orientation	and	state

Topological
types
Orientation
State

Manipulating	shapes
and	sub-shapes
Exploration	of
Topological	Data
Structures
Lists	and	Maps	of
Shapes

Wire	Explorer
Storage	of	shapes

Introduction
Modeling	Data	supplies	data	structures	to	represent	2D	and	3D
geometric	models.

This	manual	explains	how	to	use	Modeling	Data.	For	advanced
information	on	modeling	data,	see	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Geometry	Utilities
Geometry	Utilities	provide	the	following	services:

Creation	of	shapes	by	interpolation	and	approximation
Direct	construction	of	shapes
Conversion	of	curves	and	surfaces	to	BSpline	curves	and	surfaces
Computation	of	the	coordinates	of	points	on	2D	and	3D	curves
Calculation	of	extrema	between	shapes.

Interpolations	and	Approximations
In	modeling,	it	is	often	required	to	approximate	or	interpolate	points	into
curves	and	surfaces.	In	interpolation,	the	process	is	complete	when	the
curve	or	surface	passes	through	all	the	points;	in	approximation,	when	it
is	as	close	to	these	points	as	possible.

Approximation	of	Curves	and	Surfaces	groups	together	a	variety	of
functions	used	in	2D	and	3D	geometry	for:

the	interpolation	of	a	set	of	2D	points	using	a	2D	BSpline	or	Bezier
curve;
the	approximation	of	a	set	of	2D	points	using	a	2D	BSpline	or	Bezier
curve;
the	interpolation	of	a	set	of	3D	points	using	a	3D	BSpline	or	Bezier
curve,	or	a	BSpline	surface;
the	approximation	of	a	set	of	3D	points	using	a	3D	BSpline	or	Bezier
curve,	or	a	BSpline	surface.

You	can	program	approximations	in	two	ways:

Using	high-level	functions,	designed	to	provide	a	simple	method	for
obtaining	approximations	with	minimal	programming,
Using	low-level	functions,	designed	for	users	requiring	more	control
over	the	approximations.

Analysis	of	a	set	of	points

The	class	PEquation	from	GProp	package	allows	analyzing	a	collection
or	cloud	of	points	and	verifying	if	they	are	coincident,	collinear	or
coplanar	within	a	given	precision.	If	they	are,	the	algorithm	computes	the
mean	point,	the	mean	line	or	the	mean	plane	of	the	points.	If	they	are	not,
the	algorithm	computes	the	minimal	box,	which	includes	all	the	points.

Basic	Interpolation	and	Approximation

Packages	Geom2dAPI	and	GeomAPI	provide	simple	methods	for
approximation	and	interpolation	with	minimal	programming

2D	Interpolation

The	class	Interpolate	from	Geom2dAPI	package	allows	building	a
constrained	2D	BSpline	curve,	defined	by	a	table	of	points	through	which
the	curve	passes.	If	required,	the	parameter	values	and	vectors	of	the
tangents	can	be	given	for	each	point	in	the	table.

3D	Interpolation

The	class	Interpolate	from	GeomAPI	package	allows	building	a
constrained	3D	BSpline	curve,	defined	by	a	table	of	points	through	which
the	curve	passes.	If	required,	the	parameter	values	and	vectors	of	the
tangents	can	be	given	for	each	point	in	the	table.

Approximation	of	a	BSpline	from	scattered	points

This	class	may	be	instantiated	as	follows:

GeomAPI_Interpolate	Interp(Points);	

From	this	object,	the	BSpline	curve	may	be	requested	as	follows:

Handle(Geom_BSplineCurve)	C	=	Interp.Curve();	

2D	Approximation

The	class	PointsToBSpline	from	Geom2dAPI	package	allows	building	a
2DBSpline	curve,	which	approximates	a	set	of	points.	You	have	to	define
the	lowest	and	highest	degree	of	the	curve,	its	continuity	and	a	tolerance
value	for	it.The	tolerance	value	is	used	to	check	that	points	are	not	too
close	to	each	other,	or	tangential	vectors	not	too	small.	The	resulting

BSpline	curve	will	beC2	or	second	degree	continuous,	except	where	a
tangency	constraint	is	defined	on	a	point	through	which	the	curve	passes.
In	this	case,	it	will	be	only	C1continuous.

3D	Approximation

The	class	PointsToBSpline	from	GeomAPI	package	allows	building	a	3D
BSplinecurve,	which	approximates	a	set	of	points.	It	is	necessary	to
define	the	lowest	and	highest	degree	of	the	curve,	its	continuity	and
tolerance.	The	tolerance	value	is	used	to	check	that	points	are	not	too
close	to	each	other,or	that	tangential	vectors	are	not	too	small.

The	resulting	BSpline	curve	will	be	C2	or	second	degree	continuous,
except	where	a	tangency	constraint	is	defined	on	a	point,	through	which
the	curve	passes.	In	this	case,	it	will	be	only	C1	continuous.	This	class	is
instantiated	as	follows:

GeomAPI_PointsToBSpline	

Approx(Points,DegMin,DegMax,Continuity,	Tol);	

From	this	object,	the	BSpline	curve	may	be	requested	as	follows:

Handle(Geom_BSplineCurve)	K	=	Approx.Curve();	

Surface	Approximation

The	class	PointsToBSplineSurface	from	GeomAPI	package	allows
building	a	BSpline	surface,	which	approximates	or	interpolates	a	set	of
points.

Advanced	Approximation

Packages	AppDef	and	AppParCurves	provide	low-level	functions,
allowing	more	control	over	the	approximations.

The	low-level	functions	provide	a	second	API	with	functions	to:

Define	compulsory	tangents	for	an	approximation.	These	tangents
have	origins	and	extremities.

Approximate	a	set	of	curves	in	parallel	to	respect	identical
parameterization.
Smooth	approximations.	This	is	to	produce	a	faired	curve.

You	can	also	find	functions	to	compute:

The	minimal	box	which	includes	a	set	of	points
The	mean	plane,	line	or	point	of	a	set	of	coplanar,	collinear	or
coincident	points.

Approximation	by	multiple	point	constraints

AppDef	package	provides	low-level	tools	to	allow	parallel	approximation
of	groups	of	points	into	Bezier	or	B-Spline	curves	using	multiple	point
constraints.

The	following	low	level	services	are	provided:

Definition	of	an	array	of	point	constraints:

The	class	MultiLine	allows	defining	a	given	number	of	multi-point
constraints	in	order	to	build	the	multi-line,	multiple	lines	passing
through	ordered	multiple	point	constraints.

Definition	of	a	MultiLine	using	Multiple	Point	Constraints
In	this	image:

Pi,	Qi,	Ri	...	Si	can	be	2D	or	3D	points.
Defined	as	a	group:	Pn,	Qn,	Rn,	...	Sn	form	a
MultipointConstraint.	They	possess	the	same	passage,
tangency	and	curvature	constraints.
P1,	P2,	...	Pn,	or	the	Q,	R,	...	or	S	series	represent	the	lines	to
be	approximated.

Definition	of	a	set	of	point	constraints:

The	class	MultiPointConstraint	allows	defining	a	multiple	point
constraint	and	computing	the	approximation	of	sets	of	points	to
several	curves.

Computation	of	an	approximation	of	a	Bezier	curve	from	a	set	of
points:

The	class	Compute	allows	making	an	approximation	of	a	set	of
points	to	a	Bezier	curve

Computation	of	an	approximation	of	a	BSpline	curve	from	a	set	of
points:

The	class	BSplineCompute	allows	making	an	approximation	of	a	set
of	points	to	a	BSpline	curve.

Definition	of	Variational	Criteria:

The	class	TheVariational	allows	fairing	the	approximation	curve	to	a
given	number	of	points	using	a	least	squares	method	in	conjunction	with
a	variational	criterion,	usually	the	weights	at	each	constraint	point.

Approximation	by	parametric	or	geometric	constraints

AppParCurves	package	provides	low-level	tools	to	allow	parallel
approximation	of	groups	of	points	into	Bezier	or	B-Spline	curve	with
parametric	or	geometric	constraints,	such	as	a	requirement	for	the	curve
to	pass	through	given	points,	or	to	have	a	given	tangency	or	curvature	at
a	particular	point.

The	algorithms	used	include:

the	least	squares	method

a	search	for	the	best	approximation	within	a	given	tolerance	value.

The	following	low-level	services	are	provided:

Association	of	an	index	to	an	object:

The	class	ConstraintCouple	allows	you	associating	an	index	to	an	object
to	compute	faired	curves	using	AppDef_TheVariational.

Definition	of	a	set	of	approximations	of	Bezier	curves:

The	class	MultiCurve	allows	defining	the	approximation	of	a	multi-line
made	up	of	multiple	Bezier	curves.

Definition	of	a	set	of	approximations	of	BSpline	curves:

The	class	MultiBSpCurve	allows	defining	the	approximation	of	a	multi-line
made	up	of	multiple	BSpline	curves.

Definition	of	points	making	up	a	set	of	point	constraints

The	class	MultiPoint	allows	defining	groups	of	2D	or	3D	points	making	up
a	multi-line.

Example:	How	to	approximate	a	curve	with	respect	to	tangency

To	approximate	a	curve	with	respect	to	tangency,	follow	these	steps:

1.	 Create	an	object	of	type	AppDef_MultiPointConstraints	from	the	set
of	points	to	approximate	and	use	the	method	SetTang	to	set	the
tangency	vectors.

2.	 Create	an	object	of	type	AppDef_MultiLine	from	the
AppDef_MultiPointConstraint.

3.	 Use	AppDef_BSplineCompute,	which	instantiates
Approx_BSplineComputeLine	to	perform	the	approximation.

Direct	Construction
Direct	Construction	methods	from	gce,	GC	and	GCE2d	packages	provide
simplified	algorithms	to	build	elementary	geometric	entities	such	as	lines,
circles	and	curves.	They	complement	the	reference	definitions	provided
by	the	gp,	Geom	and	Geom2d	packages.

The	algorithms	implemented	by	gce,	GCE2d	and	GC	packages	are
simple:	there	is	no	creation	of	objects	defined	by	advanced	positional
constraints	(for	more	information	on	this	subject,	see	Geom2dGcc	and
GccAna,	which	describe	geometry	by	constraints).

For	example,	to	construct	a	circle	from	a	point	and	a	radius	using	the	gp
package,	it	is	necessary	to	construct	axis	Ax2d	before	creating	the	circle.
If	gce	package	is	used,	and	Ox	is	taken	for	the	axis,	it	is	possible	to
create	a	circle	directly	from	a	point	and	a	radius.

Another	example	is	the	class	gce_MakeCirc	providing	a	framework	for
defining	eight	problems	encountered	in	the	geometric	construction	of
circles	and	implementing	the	eight	related	construction	algorithms.

The	object	created	(or	implemented)	is	an	algorithm	which	can	be
consulted	to	find	out,	in	particular:

its	result,	which	is	a	gp_Circ,	and
its	status.	Here,	the	status	indicates	whether	or	not	the	construction
was	successful.

If	it	was	unsuccessful,	the	status	gives	the	reason	for	the	failure.

gp_Pnt	P1	(0.,0.,0.);

gp_Pnt	P2	(0.,10.,0.);

gp_Pnt	P3	(10.,0.,0.);

gce_MakeCirc	MC	(P1,P2,P3);

if	(MC.IsDone())	{

				const	gp_Circ&	C	=	MC.Value();

}

In	addition,	gce,	GCE2d	and	GC	each	have	a	Root	class.	This	class	is

the	root	of	all	classes	in	the	package,	which	return	a	status.	The	returned
status	(successful	construction	or	construction	error)	is	described	by	the
enumeration	gce_ErrorType.

Note,	that	classes,	which	construct	geometric	transformations	do	not
return	a	status,	and	therefore	do	not	inherit	from	Root.

Simple	geometric	entities

The	following	algorithms	used	to	build	entities	from	gp	package	are
provided	by	gce	package.

2D	line	parallel	to	another	at	a	distance,
2D	line	parallel	to	another	passing	through	a	point,
2D	circle	passing	through	two	points,
2D	circle	parallel	to	another	at	a	distance,
2D	circle	parallel	to	another	passing	through	a	point,
2D	circle	passing	through	three	points,
2D	circle	from	a	center	and	a	radius,
2D	hyperbola	from	five	points,
2D	hyperbola	from	a	center	and	two	apexes,
2D	ellipse	from	five	points,
2D	ellipse	from	a	center	and	two	apexes,
2D	parabola	from	three	points,
2D	parabola	from	a	center	and	an	apex,
line	parallel	to	another	passing	through	a	point,
line	passing	through	two	points,
circle	coaxial	to	another	passing	through	a	point,
circle	coaxial	to	another	at	a	given	distance,
circle	passing	through	three	points,
circle	with	its	center,	radius,	and	normal	to	the	plane,
circle	with	its	axis	(center	+	normal),
hyperbola	with	its	center	and	two	apexes,
ellipse	with	its	center	and	two	apexes,
plane	passing	through	three	points,
plane	from	its	normal,
plane	parallel	to	another	plane	at	a	given	distance,
plane	parallel	to	another	passing	through	a	point,
plane	from	an	array	of	points,
cylinder	from	a	given	axis	and	a	given	radius,

cylinder	from	a	circular	base,
cylinder	from	three	points,
cylinder	parallel	to	another	cylinder	at	a	given	distance,
cylinder	parallel	to	another	cylinder	passing	through	a	point,
cone	from	four	points,
cone	from	a	given	axis	and	two	passing	points,
cone	from	two	points	(an	axis)	and	two	radii,
cone	parallel	to	another	at	a	given	distance,
cone	parallel	to	another	passing	through	a	point,
all	transformations	(rotations,	translations,	mirrors,scaling
transformations,	etc.).

Each	class	from	gp	package,	such	as	Circ,	Circ2d,	Mirror,	Mirror2d,	etc.,
has	the	corresponding	MakeCirc,	MakeCirc2d,	MakeMirror,
MakeMirror2d,	etc.	class	from	gce	package.

It	is	possible	to	create	a	point	using	a	gce	package	class,	then	question	it
to	recover	the	corresponding	gp	object.

gp_Pnt2d	Point1,Point2;	

...

//Initialization	of	Point1	and	Point2	

gce_MakeLin2d	L	=	gce_MakeLin2d(Point1,Point2);	

if	(L.Status()	==	gce_Done()){	

		gp_Lin2d	l	=	L.Value();	

}

This	is	useful	if	you	are	uncertain	as	to	whether	the	arguments	can	create
the	gp	object	without	raising	an	exception.	In	the	case	above,	if	Point1
and	Point2	are	closer	than	the	tolerance	value	required	by	MakeLin2d,
the	function	Status	will	return	the	enumeration	gce_ConfusedPoint.	This
tells	you	why	the	gp	object	cannot	be	created.	If	you	know	that	the	points
Point1	and	Point2	are	separated	by	the	value	exceeding	the	tolerance
value,	then	you	may	create	the	gp	object	directly,	as	follows:

gp_Lin2d	l	=	gce_MakeLin2d(Point1,Point2);	

Geometric	entities	manipulated	by	handle

GC	and	GCE2d	packages	provides	an	implementation	of	algorithms	used

to	build	entities	from	Geom	and	Geom2D	packages.	They	implement	the
same	algorithms	as	the	gce	package,	and	also	contain	algorithms	for
trimmed	surfaces	and	curves.	The	following	algorithms	are	available:

arc	of	a	circle	trimmed	by	two	points,
arc	of	a	circle	trimmed	by	two	parameters,
arc	of	a	circle	trimmed	by	one	point	and	one	parameter,
arc	of	an	ellipse	from	an	ellipse	trimmed	by	two	points,
arc	of	an	ellipse	from	an	ellipse	trimmed	by	two	parameters,
arc	of	an	ellipse	from	an	ellipse	trimmed	by	one	point	and	one
parameter,
arc	of	a	parabola	from	a	parabola	trimmed	by	two	points,
arc	of	a	parabola	from	a	parabola	trimmed	by	two	parameters,
arc	of	a	parabola	from	a	parabola	trimmed	by	one	point	and	one
parameter,
arc	of	a	hyperbola	from	a	hyperbola	trimmed	by	two	points,
arc	of	a	hyperbola	from	a	hyperbola	trimmed	by	two	parameters,
arc	of	a	hyperbola	from	a	hyperbola	trimmed	by	one	point	and	one
parameter,
segment	of	a	line	from	two	points,
segment	of	a	line	from	two	parameters,
segment	of	a	line	from	one	point	and	one	parameter,
trimmed	cylinder	from	a	circular	base	and	a	height,
trimmed	cylinder	from	three	points,
trimmed	cylinder	from	an	axis,	a	radius,	and	a	height,
trimmed	cone	from	four	points,
trimmed	cone	from	two	points	(an	axis)	and	a	radius,
trimmed	cone	from	two	coaxial	circles.

Each	class	from	GCE2d	package,	such	as	Circle,	Ellipse,	Mirror,	etc.,
has	the	corresponding	MakeCircle,	MakeEllipse,	MakeMirror,	etc.	class
from	Geom2d	package.	Besides,	the	class	MakeArcOfCircle	returns	an
object	of	type	TrimmedCurve	from	Geom2d.

Each	class	from	GC	package,	such	as	Circle,	Ellipse,	Mirror,	etc.,	has	the
corresponding	MakeCircle,	MakeEllipse,	MakeMirror,	etc.	class	from
Geom	package.	The	following	classes	return	objects	of	type
TrimmedCurve	from	Geom:

MakeArcOfCircle
MakeArcOfEllipse

MakeArcOfHyperbola
MakeArcOfParabola
MakeSegment

Conversion	to	and	from	BSplines
The	Conversion	to	and	from	BSplines	component	has	two	distinct
purposes:

Firstly,	it	provides	a	homogeneous	formulation	which	can	be	used	to
describe	any	curve	or	surface.	This	is	useful	for	writing	algorithms	for
a	single	data	structure	model.	The	BSpline	formulation	can	be	used
to	represent	most	basic	geometric	objects	provided	by	the
components	which	describe	geometric	data	structures
("Fundamental	Geometry	Types",	"2D	Geometry	Types"	and	"3D
Geometry	Types"	components).
Secondly,	it	can	be	used	to	divide	a	BSpline	curve	or	surface	into	a
series	of	curves	or	surfaces,	thereby	providing	a	higher	degree	of
continuity.	This	is	useful	for	writing	algorithms	which	require	a
specific	degree	of	continuity	in	the	objects	to	which	they	are	applied.
Discontinuities	are	situated	on	the	boundaries	of	objects	only.

The	"Conversion	to	and	from	BSplines"	component	is	composed	of	three
packages.

The	Convert	package	provides	algorithms	to	convert	the	following	into	a
BSpline	curve	or	surface:

a	bounded	curve	based	on	an	elementary	2D	curve	(line,	circle	or
conic)	from	the	gp	package,
a	bounded	surface	based	on	an	elementary	surface	(cylinder,	cone,
sphere	or	torus)	from	the	gp	package,
a	series	of	adjacent	2D	or	3D	Bezier	curves	defined	by	their	poles.

These	algorithms	compute	the	data	needed	to	define	the	resulting
BSpline	curve	or	surface.	This	elementary	data	(degrees,	periodic
characteristics,	poles	and	weights,	knots	and	multiplicities)	may	then	be
used	directly	in	an	algorithm,	or	can	be	used	to	construct	the	curve	or	the
surface	by	calling	the	appropriate	constructor	provided	by	the	classes
Geom2d_BSplineCurve,	Geom_BSplineCurve	or	Geom_BSplineSurface.

The	Geom2dConvert	package	provides	the	following:

a	global	function	which	is	used	to	construct	a	BSpline	curve	from	a
bounded	curve	based	on	a	2D	curve	from	the	Geom2d	package,
a	splitting	algorithm	which	computes	the	points	at	which	a	2D
BSpline	curve	should	be	cut	in	order	to	obtain	arcs	with	the	same
degree	of	continuity,
global	functions	used	to	construct	the	BSpline	curves	created	by	this
splitting	algorithm,	or	by	other	types	of	segmentation	of	the	BSpline
curve,
an	algorithm	which	converts	a	2D	BSpline	curve	into	a	series	of
adjacent	Bezier	curves.

The	GeomConvert	package	also	provides	the	following:

a	global	function	used	to	construct	a	BSpline	curve	from	a	bounded
curve	based	on	a	curve	from	the	Geom	package,
a	splitting	algorithm,	which	computes	the	points	at	which	a	BSpline
curve	should	be	cut	in	order	to	obtain	arcs	with	the	same	degree	of
continuity,
global	functions	to	construct	BSpline	curves	created	by	this	splitting
algorithm,	or	by	other	types	of	BSpline	curve	segmentation,
an	algorithm,	which	converts	a	BSpline	curve	into	a	series	of
adjacent	Bezier	curves,
a	global	function	to	construct	a	BSpline	surface	from	a	bounded
surface	based	on	a	surface	from	the	Geom	package,
a	splitting	algorithm,	which	determines	the	curves	along	which	a
BSpline	surface	should	be	cut	in	order	to	obtain	patches	with	the
same	degree	of	continuity,
global	functions	to	construct	BSpline	surfaces	created	by	this
splitting	algorithm,	or	by	other	types	of	BSpline	surface
segmentation,
an	algorithm,	which	converts	a	BSpline	surface	into	a	series	of
adjacent	Bezier	surfaces,
an	algorithm,	which	converts	a	grid	of	adjacent	Bezier	surfaces	into	a
BSpline	surface.

Points	on	Curves
The	Points	on	Curves	component	comprises	high	level	functions
providing	an	API	for	complex	algorithms	that	compute	points	on	a	2D	or
3D	curve.

The	following	characteristic	points	exist	on	parameterized	curves	in	3d
space:

points	equally	spaced	on	a	curve,
points	distributed	along	a	curve	with	equal	chords,
a	point	at	a	given	distance	from	another	point	on	a	curve.

GCPnts	package	provides	algorithms	to	calculate	such	points:

AbscissaPoint	calculates	a	point	on	a	curve	at	a	given	distance	from
another	point	on	the	curve.
UniformAbscissa	calculates	a	set	of	points	at	a	given	abscissa	on	a
curve.
UniformDeflection	calculates	a	set	of	points	at	maximum	constant
deflection	between	the	curve	and	the	polygon	that	results	from	the
computed	points.

Example:	Visualizing	a	curve.

Let	us	take	an	adapted	curve	C,	i.e.	an	object	which	is	an	interface
between	the	services	provided	by	either	a	2D	curve	from	the	package
Geom2d	(in	case	of	an	Adaptor_Curve2d	curve)	or	a	3D	curve	from	the
package	Geom	(in	case	of	an	Adaptor_Curve	curve),	and	the	services
required	on	the	curve	by	the	computation	algorithm.	The	adapted	curve	is
created	in	the	following	way:

2D	case	:

Handle(Geom2d_Curve)	mycurve	=	...	;	

Geom2dAdaptor_Curve	C	(mycurve)	;	

3D	case	:

Handle(Geom_Curve)	mycurve	=	...	;	

GeomAdaptor_Curve	C	(mycurve)	;	

The	algorithm	is	then	constructed	with	this	object:

GCPnts_UniformDeflection	myAlgo	()	;	

Standard_Real	Deflection	=	...	;	

myAlgo.Initialize	(C	,	Deflection)	;	

if	(myAlgo.IsDone())	

{

		Standard_Integer	nbr	=	myAlgo.NbPoints()	;	

		Standard_Real	param	;	

	for	(Standard_Integer	i	=	1	;	i	<=	nbr	;	i++)	

		{	

				param	=	myAlgo.Parameter	(i)	;	

				...

		}	

}

Extrema
The	classes	to	calculate	the	minimum	distance	between	points,	curves,
and	surfaces	in	2d	and	3d	are	provided	by	GeomAPI	and	Geom2dAPI
packages.

These	packages	calculate	the	extrema	of	distance	between:

point	and	a	curve,
point	and	a	surface,
two	curves,
a	curve	and	a	surface,
two	surfaces.

Extrema	between	Point	and	Curve	/	Surface

The	GeomAPI_ProjectPointOnCurve	class	allows	calculation	of	all
extrema	between	a	point	and	a	curve.	Extrema	are	the	lengths	of	the
segments	orthogonal	to	the	curve.	The	GeomAPI_ProjectPointOnSurface
class	allows	calculation	of	all	extrema	between	a	point	and	a	surface.
Extrema	are	the	lengths	of	the	segments	orthogonal	to	the	surface.
These	classes	use	the	"Projection"	criteria	for	optimization.

Extrema	between	Curves

The	Geom2dAPI_ExtremaCurveCurve	class	allows	calculation	of	all
minimal	distances	between	two	2D	geometric	curves.	The
GeomAPI_ExtremaCurveCurve	class	allows	calculation	of	all	minimal
distances	between	two	3D	geometric	curves.	These	classes	use
Euclidean	distance	as	the	criteria	for	optimization.

Extrema	between	Curve	and	Surface

The	GeomAPI_ExtremaCurveSurface	class	allows	calculation	of	one
extrema	between	a	3D	curve	and	a	surface.	Extrema	are	the	lengths	of
the	segments	orthogonal	to	the	curve	and	the	surface.	This	class	uses
the	"Projection"	criteria	for	optimization.

Extrema	between	Surfaces

The	GeomAPI_ExtremaSurfaceSurface	class	allows	calculation	of	one
minimal	and	one	maximal	distance	between	two	surfaces.	This	class
uses	Euclidean	distance	to	compute	the	minimum,	and	"Projection"
criteria	to	compute	the	maximum.

2D	Geometry
Geom2d	package	defines	geometric	objects	in	2dspace.	All	geometric
entities	are	STEP	processed.	The	objects	are	handled	by	reference.

In	particular,	Geom2d	package	provides	classes	for:

description	of	points,	vectors	and	curves,
their	positioning	in	the	plane	using	coordinate	systems,
their	geometric	transformation,	by	applying	translations,	rotations,
symmetries,	scaling	transformations	and	combinations	thereof.

The	following	objects	are	available:

point,
Cartesian	point,
vector,
direction,
vector	with	magnitude,
axis,
curve,
line,
conic:	circle,	ellipse,	hyperbola,	parabola,
rounded	curve:	trimmed	curve,	NURBS	curve,	Bezier	curve,
offset	curve.

Before	creating	a	geometric	object,	it	is	necessary	to	decide	how	the
object	is	handled.	The	objects	provided	by	Geom2d	package	are	handled
by	reference	rather	than	by	value.	Copying	an	instance	copies	the
handle,	not	the	object,	so	that	a	change	to	one	instance	is	reflected	in
each	occurrence	of	it.	If	a	set	of	object	instances	is	needed	rather	than	a
single	object	instance,	TColGeom2d	package	can	be	used.	This	package
provides	standard	and	frequently	used	instantiations	of	one-dimensional
arrays	and	sequences	for	curves	from	Geom2d	package.	All	objects	are
available	in	two	versions:

handled	by	reference	and
handled	by	value.

The	key	characteristic	of	Geom2d	curves	is	that	they	are	parameterized.
Each	class	provides	functions	to	work	with	the	parametric	equation	of	the
curve,	and,	in	particular,	to	compute	the	point	of	parameter	u	on	a	curve
and	the	derivative	vectors	of	order	1,	2..,	N	at	this	point.

As	a	consequence	of	the	parameterization,	a	Geom2d	curve	is	naturally
oriented.

Parameterization	and	orientation	differentiate	elementary	Geom2dcurves
from	their	equivalent	as	provided	by	gp	package.	Geom2d	package
provides	conversion	functions	to	transform	a	Geom2d	object	into	a	gp
object,	and	vice-versa,	when	this	is	possible.

Moreover,	Geom2d	package	provides	more	complex	curves,	including
Bezier	curves,	BSpline	curves,	trimmed	curves	and	offset	curves.

Geom2d	objects	are	organized	according	to	an	inheritance	structure	over
several	levels.

Thus,	an	ellipse	(specific	class	Geom2d_Ellipse)	is	also	a	conical	curve
and	inherits	from	the	abstract	class	Geom2d_Conic,	while	a	Bezier	curve
(concrete	class	Geom2d_BezierCurve)	is	also	a	bounded	curve	and
inherits	from	the	abstract	class	Geom2d_BoundedCurve;	both	these
examples	are	also	curves	(abstract	class	Geom2d_Curve).	Curves,
points	and	vectors	inherit	from	the	abstract	class	Geom2d_Geometry,
which	describes	the	properties	common	to	any	geometric	object	from	the
Geom2d	package.

This	inheritance	structure	is	open	and	it	is	possible	to	describe	new
objects,	which	inherit	from	those	provided	in	the	Geom2d	package,
provided	that	they	respect	the	behavior	of	the	classes	from	which	they
are	to	inherit.

Finally,	Geom2d	objects	can	be	shared	within	more	complex	data
structures.	This	is	why	they	are	used	within	topological	data	structures,
for	example.

Geom2dpackage	uses	the	services	of	the	gp	package	to:

implement	elementary	algebraic	calculus	and	basic	analytic
geometry,

describe	geometric	transformations	which	can	be	applied	to	Geom2d
objects,
describe	the	elementary	data	structures	of	Geom2d	objects.

However,	the	Geom2d	package	essentially	provides	data	structures	and
not	algorithms.	You	can	refer	to	the	GCE2d	package	to	find	more	evolved
construction	algorithms	for	Geom2d	objects.

3D	Geometry
The	Geom	package	defines	geometric	objects	in	3d	space	and	contains
all	basic	geometric	transformations,	such	as	identity,	rotation,	translation,
mirroring,	scale	transformations,	combinations	of	transformations,	etc.	as
well	as	special	functions	depending	on	the	reference	definition	of	the
geometric	object	(e.g.	addition	of	a	control	point	on	a	B-Spline
curve,modification	of	a	curve,	etc.).	All	geometrical	entities	are	STEP
processed.

In	particular,	it	provides	classes	for:

description	of	points,	vectors,	curves	and	surfaces,
their	positioning	in	3D	space	using	axis	or	coordinate	systems,	and
their	geometric	transformation,	by	applying	translations,	rotations,
symmetries,	scaling	transformations	and	combinations	thereof.

The	following	objects	are	available:

Point
Cartesian	point
Vector
Direction
Vector	with	magnitude
Axis
Curve
Line
Conic:	circle,	ellipse,	hyperbola,	parabola
Offset	curve
Elementary	surface:	plane,	cylinder,	cone,	sphere,	torus
Bounded	curve:	trimmed	curve,	NURBS	curve,	Bezier	curve
Bounded	surface:	rectangular	trimmed	surface,	NURBS
surface,Bezier	surface
Swept	surface:	surface	of	linear	extrusion,	surface	of	revolution
Offset	surface.

The	key	characteristic	of	Geom	curves	and	surfaces	is	that	they	are
parameterized.	Each	class	provides	functions	to	work	with	the	parametric
equation	of	the	curve	or	surface,	and,	in	particular,	to	compute:

the	point	of	parameter	u	on	a	curve,	or
the	point	of	parameters	(u,	v)	on	a	surface.	together	with	the
derivative	vectors	of	order	1,	2,	...	N	at	this	point.

As	a	consequence	of	this	parameterization,	a	Geom	curve	or	surface	is
naturally	oriented.

Parameterization	and	orientation	differentiate	elementary	Geom	curves
and	surfaces	from	the	classes	of	the	same	(or	similar)	names	found	in	gp
package.	Geom	package	also	provides	conversion	functions	to	transform
a	Geom	object	into	a	gp	object,	and	vice-versa,	when	such
transformation	is	possible.

Moreover,	Geom	package	provides	more	complex	curves	and	surfaces,
including:

Bezier	and	BSpline	curves	and	surfaces,
swept	surfaces,	for	example	surfaces	of	revolution	and	surfaces	of
linear	extrusion,
trimmed	curves	and	surfaces,	and
offset	curves	and	surfaces.

Geom	objects	are	organized	according	to	an	inheritance	structure	over
several	levels.	Thus,	a	sphere	(concrete	class	Geom_SphericalSurface)
is	also	an	elementary	surface	and	inherits	from	the	abstract	class
Geom_ElementarySurface,	while	a	Bezier	surface	(concrete	class
Geom_BezierSurface)	is	also	a	bounded	surface	and	inherits	from	the
abstract	class	Geom_BoundedSurface;	both	these	examples	are	also
surfaces	(abstract	class	Geom_Surface).	Curves,	points	and	vectors
inherit	from	the	abstract	class	Geom_Geometry,	which	describes	the
properties	common	to	any	geometric	object	from	the	Geom	package.

This	inheritance	structure	is	open	and	it	is	possible	to	describe	new
objects,	which	inherit	from	those	provided	in	the	Geom	package,	on	the
condition	that	they	respect	the	behavior	of	the	classes	from	which	they
are	to	inherit.

Finally,	Geom	objects	can	be	shared	within	more	complex	data
structures.	This	is	why	they	are	used	within	topological	data	structures,
for	example.

If	a	set	of	object	instances	is	needed	rather	than	a	single	object	instance,
TColGeom	package	can	be	used.	This	package	provides	instantiations	of
one-	and	two-dimensional	arrays	and	sequences	for	curves	from	Geom
package.	All	objects	are	available	in	two	versions:

handled	by	reference	and
handled	by	value.

The	Geom	package	uses	the	services	of	the	gp	package	to:

implement	elementary	algebraic	calculus	and	basic	analytic
geometry,
describe	geometric	transformations	which	can	be	applied	to	Geom
objects,
describe	the	elementary	data	structures	of	Geom	objects.

However,	the	Geom	package	essentially	provides	data	structures,	not
algorithms.

You	can	refer	to	the	GC	package	to	find	more	evolved	construction
algorithms	for	Geom	objects.

Properties	of	Shapes
Local	Properties	of	Shapes

BRepLProp	package	provides	the	Local	Properties	of	Shapes
component,	which	contains	algorithms	computing	various	local	properties
on	edges	and	faces	in	a	BRep	model.

The	local	properties	which	may	be	queried	are:

for	a	point	of	parameter	u	on	a	curve	which	supports	an	edge	:
the	point,
the	derivative	vectors,	up	to	the	third	degree,
the	tangent	vector,
the	normal,
the	curvature,	and	the	center	of	curvature;

for	a	point	of	parameter	(u,	v)	on	a	surface	which	supports	a	face	:
the	point,
the	derivative	vectors,	up	to	the	second	degree,
the	tangent	vectors	to	the	u	and	v	isoparametric	curves,
the	normal	vector,
the	minimum	or	maximum	curvature,	and	the	corresponding
directions	of	curvature;

the	degree	of	continuity	of	a	curve	which	supports	an	edge,	built	by
the	concatenation	of	two	other	edges,	at	their	junction	point.

Analyzed	edges	and	faces	are	described	as	BRepAdaptor	curves	and
surfaces,	which	provide	shapes	with	an	interface	for	the	description	of
their	geometric	support.	The	base	point	for	local	properties	is	defined	by
its	u	parameter	value	on	a	curve,	or	its	(u,	v)	parameter	values	on	a
surface.

Local	Properties	of	Curves	and	Surfaces
The	"Local	Properties	of	Curves	and	Surfaces"	component	provides
algorithms	for	computing	various	local	properties	on	a	Geom	curve	(in	2D
or	3D	space)	or	a	surface.	It	is	composed	of:

Geom2dLProp	package,	which	allows	computing	Derivative	and
Tangent	vectors	(normal	and	curvature)	of	a	parametric	point	on	a
2D	curve;
GeomLProp	package,	which	provides	local	properties	on	3D	curves
and	surfaces
LProp	package,	which	provides	an	enumeration	used	to	characterize
a	particular	point	on	a	2D	curve.

Curves	are	either	Geom_Curve	curves	(in	3D	space)	or	Geom2d_Curve
curves	(in	the	plane).	Surfaces	are	Geom_Surface	surfaces.	The	point	on
which	local	properties	are	calculated	is	defined	by	its	u	parameter	value
on	a	curve,	and	its	(u,v)	parameter	values	on	a	surface.

It	is	possible	to	query	the	same	local	properties	for	points	as	mentioned
above,	and	additionally	for	2D	curves:

the	points	corresponding	to	a	minimum	or	a	maximum	of	curvature;
the	inflection	points.

Example:	How	to	check	the	surface	concavity

To	check	the	concavity	of	a	surface,	proceed	as	follows:

1.	 Sample	the	surface	and	compute	at	each	point	the	Gaussian
curvature.

2.	 If	the	value	of	the	curvature	changes	of	sign,	the	surface	is	concave
or	convex	depending	on	the	point	of	view.

3.	 To	compute	a	Gaussian	curvature,	use	the	class	SLprops	from
GeomLProp,	which	instantiates	the	generic	class	SLProps	from
LProp	and	use	the	method	GaussianCurvature.

Continuity	of	Curves	and	Surfaces
Types	of	supported	continuities	for	curves	and	surfaces	are	described	in
GeomAbs_Shape	enumeration.

In	respect	of	curves,	the	following	types	of	continuity	are	supported	(see
the	figure	below):

C0	(GeomAbs_C0)	-	parametric	continuity.	It	is	the	same	as	G0
(geometric	continuity),	so	the	last	one	is	not	represented	by	separate
variable.
G1	(GeomAbs_G1)	-	tangent	vectors	on	left	and	on	right	are	parallel.
C1	(GeomAbs_C1)	-	indicates	the	continuity	of	the	first	derivative.
G2	(GeomAbs_G2)	-	in	addition	to	G1	continuity,	the	centers	of
curvature	on	left	and	on	right	are	the	same.
C2	(GeomAbs_C2)	-	continuity	of	all	derivatives	till	the	second	order.
C3	(GeomAbs_C3)	-	continuity	of	all	derivatives	till	the	third	order.
CN	(GeomAbs_CN)	-	continuity	of	all	derivatives	till	the	N-th	order
(infinite	order	of	continuity).

Note:	Geometric	continuity	(G1,	G2)	means	that	the	curve	can	be
reparametrized	to	have	parametric	(C1,	C2)	continuity.

C0	continuity
(coincident	boundaries)

G1	continuity
(C0	+	parallel	tangent	vectors)

C1	continuity
(C0	+	equal	tangent	vectors)

G2	continuity
(G1	+	same	center	of	curvature)

C2	continuity
(C1	+	same	center	of	curvature)

Continuity	of	Curves

The	following	types	of	surface	continuity	are	supported:

C0	(GeomAbs_C0)	-	parametric	continuity	(the	surface	has	no	points
or	curves	of	discontinuity).
G1	(GeomAbs_G1)	-	surface	has	single	tangent	plane	in	each	point.
C1	(GeomAbs_C1)	-	indicates	the	continuity	of	the	first	derivatives.
G2	(GeomAbs_G2)	-	in	addition	to	G1	continuity,	principal	curvatures
and	directions	are	continuous.
C2	(GeomAbs_C2)	-	continuity	of	all	derivatives	till	the	second	order.
C3	(GeomAbs_C3)	-	continuity	of	all	derivatives	till	the	third	order.
CN	(GeomAbs_CN)	-	continuity	of	all	derivatives	till	the	N-th	order
(infinite	order	of	continuity).

C0	continuity
(different	normal	vectors
	along	shared	curve)

G1	continuity
(same	tangent	plane)

C1	continuity
(G1	+	equal	tangent	vectors)

G2	continuity
(G1	+	equal	principal	curvatures)

C2	continuity
(C1	+	equal	principal	curvatures
	and	directions)

Continuity	of	Surfaces

Against	single	surface,	the	connection	of	two	surfaces	(see	the	figure
above)	defines	its	continuity	in	each	intersection	point	only.	Smoothness
of	connection	is	a	minimal	value	of	continuities	on	the	intersection	curve.

Regularity	of	Shared	Edges
Regularity	of	an	edge	is	a	smoothness	of	connection	of	two	faces	sharing
this	edge.	In	other	words,	regularity	is	a	minimal	continuity	between
connected	faces	in	each	point	on	edge.

Edge's	regularity	can	be	set	by	BRep_Builder::Continuity	method.	To	get
the	regularity	use	BRep_Tool::Continuity	method.

Some	algorithms	like	Fillet	set	regularity	of	produced	edges	by	their	own
algorithms.	On	the	other	hand,	some	other	algorithms	(like	Boolean
Operations,	Shape	Healing,	etc.)	do	not	set	regularity.	If	the	regularity	is
needed	to	be	set	correctly	on	a	shape,	the	method
BRepLib::EncodeRegularity	can	be	used.	It	calculates	and	sets	correct
values	for	all	edges	of	the	shape.

The	regularity	flag	is	extensively	used	by	the	following	high	level
algorithms:	Chamfer,	Draft	Angle,	Hidden	Line	Removal,	Gluer.

Global	Properties	of	Shapes
The	Global	Properties	of	Shapes	component	provides	algorithms	for
computing	the	global	properties	of	a	composite	geometric	system	in	3D
space,	and	frameworks	to	query	the	computed	results.

The	global	properties	computed	for	a	system	are	:

mass,
mass	center,
matrix	of	inertia,
moment	about	an	axis,
radius	of	gyration	about	an	axis,
principal	properties	of	inertia	such	as	principal	axis,	principal
moments,	and	principal	radius	of	gyration.

Geometric	systems	are	generally	defined	as	shapes.	Depending	on	the
way	they	are	analyzed,	these	shapes	will	give	properties	of:

lines	induced	from	the	edges	of	the	shape,
surfaces	induced	from	the	faces	of	the	shape,	or
volumes	induced	from	the	solid	bounded	by	the	shape.

The	global	properties	of	several	systems	may	be	brought	together	to	give
the	global	properties	of	the	system	composed	of	the	sum	of	all	individual
systems.

The	Global	Properties	of	Shapes	component	is	composed	of:

seven	functions	for	computing	global	properties	of	a	shape:	one
function	for	lines,	two	functions	for	surfaces	and	four	functions	for
volumes.	The	choice	of	functions	depends	on	input	parameters	and
algorithms	used	for	computation	(BRepGProp	global	functions),
a	framework	for	computing	global	properties	for	a	set	of	points
(GProp_PGProps),
a	general	framework	to	bring	together	the	global	properties	retained
by	several	more	elementary	frameworks,	and	provide	a	general
programming	interface	to	consult	computed	global	properties.

Packages	GeomLProp	and	Geom2dLProp	provide	algorithms	calculating
the	local	properties	of	curves	and	surfaces

A	curve	(for	one	parameter)	has	the	following	local	properties:

Point
Derivative
Tangent
Normal
Curvature
Center	of	curvature.

A	surface	(for	two	parameters	U	and	V)	has	the	following	local	properties:

point
derivative	for	U	and	V)
tangent	line	(for	U	and	V)
normal
max	curvature
min	curvature
main	directions	of	curvature
mean	curvature
Gaussian	curvature

The	following	methods	are	available:

CLProps	–	calculates	the	local	properties	of	a	curve	(tangency,
curvature,normal);
CurAndInf2d	–	calculates	the	maximum	and	minimum	curvatures
and	the	inflection	points	of	2d	curves;
SLProps	–	calculates	the	local	properties	of	a	surface	(tangency,	the
normal	and	curvature).
Continuity	–	calculates	regularity	at	the	junction	of	two	curves.

Note	that	the	B-spline	curve	and	surface	are	accepted	but	they	are	not
cut	into	pieces	of	the	desired	continuity.	It	is	the	global	continuity,	which	is
seen.

Adaptors	for	Curves	and	Surfaces
Some	Open	CASCADE	Technology	general	algorithms	may	work
theoretically	on	numerous	types	of	curves	or	surfaces.

To	do	this,	they	simply	get	the	services	required	of	the	analyzed	curve	or
surface	through	an	interface	so	as	to	a	single	API,	whatever	the	type	of
curve	or	surface.	These	interfaces	are	called	adaptors.

For	example,	Adaptor3d_Curve	is	the	abstract	class	which	provides	the
required	services	by	an	algorithm	which	uses	any	3d	curve.

GeomAdaptor	package	provides	interfaces:

On	a	Geom	curve;
On	a	curve	lying	on	a	Geom	surface;
On	a	Geom	surface;

Geom2dAdaptor	package	provides	interfaces	:

On	a	Geom2d	curve.

BRepAdaptor	package	provides	interfaces:

On	a	Face
On	an	Edge

When	you	write	an	algorithm	which	operates	on	geometric	objects,	use
Adaptor3d	(or	Adaptor2d)	objects.

As	a	result,	you	can	use	the	algorithm	with	any	kind	of	object,	if	you
provide	for	this	object	an	interface	derived	from	Adaptor3d	or	Adaptor2d.
These	interfaces	are	easy	to	use:	simply	create	an	adapted	curve	or
surface	from	a	Geom2d	curve,	and	then	use	this	adapted	curve	as	an
argument	for	the	algorithm?	which	requires	it.

Topology
OCCT	Topology	allows	accessing	and	manipulating	data	of	objects
without	dealing	with	their	2D	or	3D	representations.	Whereas	OCCT
Geometry	provides	a	description	of	objects	in	terms	of	coordinates	or
parametric	values,	Topology	describes	data	structures	of	objects	in
parametric	space.	These	descriptions	use	location	in	and	restriction	of
parts	of	this	space.

Topological	library	allows	you	to	build	pure	topological	data	structures.
Topology	defines	relationships	between	simple	geometric	entities.	In	this
way,	you	can	model	complex	shapes	as	assemblies	of	simpler	entities.
Due	to	a	built-in	non-manifold	(or	mixed-dimensional)	feature,	you	can
build	models	mixing:

0D	entities	such	as	points;
1D	entities	such	as	curves;
2D	entities	such	as	surfaces;
3D	entities	such	as	volumes.

You	can,	for	example,	represent	a	single	object	made	of	several	distinct
bodies	containing	embedded	curves	and	surfaces	connected	or	non-
connected	to	an	outer	boundary.

Abstract	topological	data	structure	describes	a	basic	entity	–	a	shape,
which	can	be	divided	into	the	following	component	topologies:

Vertex	–	a	zero-dimensional	shape	corresponding	to	a	point	in
geometry;
Edge	–	a	shape	corresponding	to	a	curve,	and	bound	by	a	vertex	at
each	extremity;
Wire	–	a	sequence	of	edges	connected	by	their	vertices;
Face	–	part	of	a	plane	(in	2D	geometry)	or	a	surface	(in	3D
geometry)	bounded	by	a	closed	wire;
Shell	–	a	collection	of	faces	connected	by	some	edges	of	their	wire
boundaries;
Solid	–	a	part	of	3D	space	bound	by	a	shell;
Compound	solid	–	a	collection	of	solids.

The	wire	and	the	solid	can	be	either	infinite	or	closed.

A	face	with	3D	underlying	geometry	may	also	refer	to	a	collection	of
connected	triangles	that	approximate	the	underlying	surface.	The
surfaces	can	be	undefined	leaving	the	faces	represented	by	triangles
only.	If	so,	the	model	is	purely	polyhedral.

Topology	defines	the	relationship	between	simple	geometric	entities,
which	can	thus	be	linked	together	to	represent	complex	shapes.

Abstract	Topology	is	provided	by	six	packages.	The	first	three	packages
describe	the	topological	data	structure	used	in	Open	CASCADE
Technology:

TopAbs	package	provides	general	resources	for	topology-driven
applications.	It	contains	enumerations	that	are	used	to	describe
basic	topological	notions:	topological	shape,	orientation	and	state.	It
also	provides	methods	to	manage	these	enumerations.
TopLoc	package	provides	resources	to	handle	3D	local	coordinate
systems:	Datum3Dand	Location.	Datum3D	describes	an	elementary
coordinate	system,	while	Location	comprises	a	series	of	elementary
coordinate	systems.
TopoDS	package	describes	classes	to	model	and	build	data
structures	that	are	purely	topological.

Three	additional	packages	provide	tools	to	access	and	manipulate	this
abstract	topology:

TopTools	package	provides	basic	tools	to	use	on	topological	data
structures.
TopExp	package	provides	classes	to	explore	and	manipulate	the
topological	data	structures	described	in	the	TopoDS	package.
BRepTools	package	provides	classes	to	explore,	manipulate,	read
and	write	BRep	data	structures.	These	more	complex	data	structures
combine	topological	descriptions	with	additional	geometric
information,	and	include	rules	for	evaluating	equivalence	of	different
possible	representations	of	the	same	object,	for	example,	a	point.

Shape	Location
A	local	coordinate	system	can	be	viewed	as	either	of	the	following:

A	right-handed	trihedron	with	an	origin	and	three	orthonormal
vectors.	The	gp_Ax2	package	corresponds	to	this	definition.
A	transformation	of	a	+1	determinant,	allowing	the	transformation	of
coordinates	between	local	and	global	references	frames.	This
corresponds	to	the	gp_Trsf.

TopLoc	package	distinguishes	two	notions:

TopLoc_Datum3D	class	provides	the	elementary	reference
coordinate,	represented	by	a	right-handed	orthonormal	system	of
axes	or	by	a	right-handed	unitary	transformation.
TopLoc_Location	class	provides	the	composite	reference	coordinate
made	from	elementary	ones.	It	is	a	marker	composed	of	a	chain	of
references	to	elementary	markers.	The	resulting	cumulative
transformation	is	stored	in	order	to	avoid	recalculating	the	sum	of	the
transformations	for	the	whole	list.

Structure	of	TopLoc_Location

Two	reference	coordinates	are	equal	if	they	are	made	up	of	the	same
elementary	coordinates	in	the	same	order.	There	is	no	numerical
comparison.	Two	coordinates	can	thus	correspond	to	the	same
transformation	without	being	equal	if	they	were	not	built	from	the	same
elementary	coordinates.

For	example,	consider	three	elementary	coordinates:	R1,	R2,	R3	The
composite	coordinates	are:	C1	=	R1	*	R2,	C2	=	R2	*	R3	C3	=	C1	*	R3	C4
=	R1	*	C2

NOTE	C3	and	C4	are	equal	because	they	are	both	R1	*	R2	*	R3.

The	TopLoc	package	is	chiefly	targeted	at	the	topological	data	structure,
but	it	can	be	used	for	other	purposes.

Change	of	coordinates
TopLoc_Datum3D	class	represents	a	change	of	elementary	coordinates.
Such	changes	must	be	shared	so	this	class	inherits	from
Standard_Transient.	The	coordinate	is	represented	by	a	transformation
gp_Trsfpackage.	This	transformation	has	no	scaling	factor.

Naming	shapes,	sub-shapes,	their	orientation
and	state
The	TopAbs	package	provides	general	enumerations	describing	the
basic	concepts	of	topology	and	methods	to	handle	these	enumerations.	It
contains	no	classes.	This	package	has	been	separated	from	the	rest	of
the	topology	because	the	notions	it	contains	are	sufficiently	general	to	be
used	by	all	topological	tools.	This	avoids	redefinition	of	enumerations	by
remaining	independent	of	modeling	resources.	The	TopAbs	package
defines	three	notions:

Type	TopAbs_ShapeEnum;
Orientation	TopAbs_Orientation	;
State	StateTopAbs_State

Topological	types

TopAbs	contains	the	TopAbs_ShapeEnum	enumeration,which	lists	the
different	topological	types:

COMPOUND	–	a	group	of	any	type	of	topological	objects.
COMPSOLID	–	a	composite	solid	is	a	set	of	solids	connected	by
their	faces.	It	expands	the	notions	of	WIRE	and	SHELL	to	solids.
SOLID	–	a	part	of	space	limited	by	shells.	It	is	three	dimensional.
SHELL	–	a	set	of	faces	connected	by	their	edges.	A	shell	can	be
open	or	closed.
FACE	–	in	2D	it	is	a	part	of	a	plane;	in	3D	it	is	a	part	of	a	surface.	Its
geometry	is	constrained	(trimmed)	by	contours.	It	is	two	dimensional.
WIRE	–	a	set	of	edges	connected	by	their	vertices.	It	can	be	an	open
or	closed	contour	depending	on	whether	the	edges	are	linked	or	not.
EDGE	–	a	topological	element	corresponding	to	a	restrained	curve.
An	edge	is	generally	limited	by	vertices.	It	has	one	dimension.
VERTEX	–	a	topological	element	corresponding	to	a	point.	It	has
zero	dimension.
SHAPE	–	a	generic	term	covering	all	of	the	above.

A	topological	model	can	be	considered	as	a	graph	of	objects	with
adjacency	relationships.	When	modeling	a	part	in	2D	or	3D	space	it	must

belong	to	one	of	the	categories	listed	in	the	ShapeEnum	enumeration.
The	TopAbspackage	lists	all	the	objects,	which	can	be	found	in	any
model.	It	cannot	be	extended	but	a	subset	can	be	used.	For	example,	the
notion	of	solid	is	useless	in	2D.

The	terms	of	the	enumeration	appear	in	order	from	the	most	complex	to
the	most	simple,	because	objects	can	contain	simpler	objects	in	their
description.	For	example,	a	face	references	its	wires,	edges,	and
vertices.

ShapeEnum

Orientation

The	notion	of	orientation	is	represented	by	the	TopAbs_Orientation
enumeration.	Orientation	is	a	generalized	notion	of	the	sense	of	direction
found	in	various	modelers.	This	is	used	when	a	shape	limits	a	geometric
domain;	and	is	closely	linked	to	the	notion	of	boundary.	The	three	cases
are	the	following:

Curve	limited	by	a	vertex.
Surface	limited	by	an	edge.
Space	limited	by	a	face.

In	each	case	the	topological	form	used	as	the	boundary	of	a	geometric
domain	of	a	higher	dimension	defines	two	local	regions	of	which	one	is
arbitrarily	considered	as	the	default	region.

For	a	curve	limited	by	a	vertex	the	default	region	is	the	set	of	points	with
parameters	greater	than	the	vertex.	That	is	to	say	it	is	the	part	of	the
curve	after	the	vertex	following	the	natural	direction	along	the	curve.

For	a	surface	limited	by	an	edge	the	default	region	is	on	the	left	of	the
edge	following	its	natural	direction.	More	precisely	it	is	the	region	pointed
to	by	the	vector	product	of	the	normal	vector	to	the	surface	and	the	vector
tangent	to	the	curve.

For	a	space	limited	by	a	face	the	default	region	is	found	on	the	negative
side	of	the	normal	to	the	surface.

Based	on	this	default	region	the	orientation	allows	definition	of	the	region
to	be	kept,	which	is	called	the	interior	or	material.	There	are	four
orientations	defining	the	interior.

Orientation Description
FORWARD The	interior	is	the	default	region.
REVERSED The	interior	is	the	region	complementary	to	the	default.

INTERNAL
The	interior	includes	both	regions.	The	boundary	lies
inside	the	material.	For	example	a	surface	inside	a
solid.

EXTERNAL
The	interior	includes	neither	region.	The	boundary	lies
outside	the	material.	For	example	an	edge	in	a	wire-
frame	model.

Four	Orientations

The	notion	of	orientation	is	a	very	general	one,	and	it	can	be	used	in	any
context	where	regions	or	boundaries	appear.	Thus,	for	example,	when
describing	the	intersection	of	an	edge	and	a	contour	it	is	possible	to
describe	not	only	the	vertex	of	intersection	but	also	how	the	edge	crosses
the	contour	considering	it	as	a	boundary.	The	edge	would	therefore	be
divided	into	two	regions:	exterior	and	interior	and	the	intersection	vertex
would	be	the	boundary.	Thus	an	orientation	can	be	associated	with	an
intersection	vertex	as	in	the	following	figure:

Orientation Association
FORWARD Entering
REVERSED Exiting
INTERNAL Touching	from	inside
EXTERNAL Touching	from	outside

Four	orientations	of	intersection	vertices

Along	with	the	Orientation	enumeration	the	TopAbs	package	defines	four
methods:

State

The	TopAbs_State	enumeration	described	the	position	of	a	vertex	or	a
set	of	vertices	with	respect	to	a	region.	There	are	four	terms:

Position Description
IN The	point	is	interior.
OUT The	point	is	exterior.
ON The	point	is	on	the	boundary(within	tolerance).
UNKNOWN The	state	of	the	point	is	indeterminate.

The	UNKNOWN	term	has	been	introduced	because	this	enumeration	is
often	used	to	express	the	result	of	a	calculation,	which	can	fail.	This	term
can	be	used	when	it	is	impossible	to	know	if	a	point	is	inside	or	outside,
which	is	the	case	with	an	open	wire	or	face.

The	four	states

The	State	enumeration	can	also	be	used	to	specify	various	parts	of	an
object.	The	following	figure	shows	the	parts	of	an	edge	intersecting	a
face.

State	specifies	the	parts	of	an	edge	intersecting	a	face

Manipulating	shapes	and	sub-shapes
The	TopoDS	package	describes	the	topological	data	structure	with	the
following	characteristics:

reference	to	an	abstract	shape	with	neither	orientation	nor	location.
Access	to	the	data	structure	through	the	tool	classes.

As	stated	above,	OCCT	Topology	describes	data	structures	of	objects	in
parametric	space.	These	descriptions	use	localization	in	and	restriction	of
parts	of	this	space.	The	types	of	shapes,	which	can	be	described	in	these
terms,	are	the	vertex,	the	face	and	the	shape.	The	vertex	is	defined	in
terms	of	localization	in	parametric	space,	and	the	face	and	shape,	in
terms	of	restriction	of	this	space.

OCCT	topological	descriptions	also	allow	the	simple	shapes	defined	in
these	terms	to	be	combined	into	sets.	For	example,	a	set	of	edges	forms
a	wire;	a	set	of	faces	forms	a	shell,	and	a	set	of	solids	forms	a	composite
solid	(CompSolid	in	Open	CASCADE	Technology).	You	can	also	combine
shapes	of	either	sort	into	compounds.	Finally,	you	can	give	a	shape	an
orientation	and	a	location.

Listing	shapes	in	order	of	complexity	from	vertex	to	composite	solid	leads
us	to	the	notion	of	the	data	structure	as	knowledge	of	how	to	break	a
shape	down	into	a	set	of	simpler	shapes.	This	is	in	fact,	the	purpose	of
the	TopoDS	package.

The	model	of	a	shape	is	a	shareable	data	structure	because	it	can	be
used	by	other	shapes.	(An	edge	can	be	used	by	more	than	one	face	of	a
solid).	A	shareable	data	structure	is	handled	by	reference.	When	a	simple
reference	is	insufficient,	two	pieces	of	information	are	added:	an
orientation	and	a	local	coordinate	reference.

An	orientation	tells	how	the	referenced	shape	is	used	in	a	boundary
(Orientation	from	TopAbs).
A	local	reference	coordinate	(Location	from	TopLoc)	allows
referencing	a	shape	at	a	position	different	from	that	of	its	definition.

The	TopoDS_TShape	class	is	the	root	of	all	shape	descriptions.	It

contains	a	list	of	shapes.	Classes	inheriting	TopoDS_TShape	can	carry
the	description	of	a	geometric	domain	if	necessary	(for	example,	a
geometric	point	associated	with	a	TVertex).	A	TopoDS_TShape	is	a
description	of	a	shape	in	its	definition	frame	of	reference.	This	class	is
manipulated	by	reference.

The	TopoDS_Shape	class	describes	a	reference	to	a	shape.	It	contains
a	reference	to	an	underlying	abstract	shape,	an	orientation,and	a	local
reference	coordinate.	This	class	is	manipulated	by	value	and	thus	cannot
be	shared.

The	class	representing	the	underlying	abstract	shape	is	never	referenced
directly.	The	TopoDS_Shape	class	is	always	used	to	refer	to	it.

The	information	specific	to	each	shape	(the	geometric	support)	is	always
added	by	inheritance	to	classes	deriving	from	TopoDS_TShape.	The
following	figures	show	the	example	of	a	shell	formed	from	two	faces
connected	by	an	edge.

Structure	of	a	shell	formed	from	two	faces

Data	structure	of	the	above	shell

In	the	previous	diagram,	the	shell	is	described	by	the	underlying	shape
TS,	and	the	faces	by	TF1	and	TF2.	There	are	seven	edges	from	TE1	to
TE7	and	six	vertices	from	TV1	to	TV6.

The	wire	TW1	references	the	edges	from	TE1	to	TE4;	TW2	references
from	TE4	to	TE7.

The	vertices	are	referenced	by	the	edges	as	follows:TE1(TV1,TV4),
TE2(TV1,TV2),	TE3(TV2,TV3),	TE4(TV3,TV4),	TE5(TV4,TV5),
TE6(T5,TV6),TE7(TV3,TV6).

Note	that	this	data	structure	does	not	contain	any	back	references.	All
references	go	from	more	complex	underlying	shapes	to	less	complex
ones.	The	techniques	used	to	access	the	information	are	described	later.
The	data	structure	is	as	compact	as	possible.	Sub-objects	can	be	shared
among	different	objects.

Two	very	similar	objects,	perhaps	two	versions	of	the	same	object,	might

share	identical	sub-objects.	The	usage	of	local	coordinates	in	the	data
structure	allows	the	description	of	a	repetitive	sub-structure	to	be	shared.

The	compact	data	structure	avoids	the	loss	of	information	associated	with
copy	operations	which	are	usually	used	in	creating	a	new	version	of	an
object	or	when	applying	a	coordinate	change.

The	following	figure	shows	a	data	structure	containing	two	versions	of	a
solid.	The	second	version	presents	a	series	of	identical	holes	bored	at
different	positions.	The	data	structure	is	compact	and	yet	keeps	all
information	on	the	sub-elements.

The	three	references	from	TSh2	to	the	underlying	face	TFcyl	have
associated	local	coordinate	systems,	which	correspond	to	the	successive
positions	of	the	hole.

Data	structure	containing	two	versions	of	a	solid

Classes	inheriting	TopoDS_Shape
TopoDS	is	based	on	class	TopoDS_Shape	and	the	class	defining	its
underlying	shape.	This	has	certain	advantages,	but	the	major	drawback
is	that	these	classes	are	too	general.	Different	shapes	they	could
represent	do	not	type	them	(Vertex,	Edge,	etc.)	hence	it	is	impossible	to
introduce	checks	to	avoid	incoherences	such	as	inserting	a	face	in	an
edge.

TopoDS	package	offers	two	sets	of	classes,	one	set	inheriting	the
underlying	shape	with	neither	orientation	nor	location	and	the	other
inheriting	TopoDS_Shape,	which	represent	the	standard	topological
shapes	enumerated	in	TopAbs	package.

The	following	classes	inherit	Shape	:	TopoDS_Vertex,	TopoDS_Edge,
TopoDS_Wire,	TopoDS_Face,	TopoDS_Shell,
TopoDS_Solid,TopoDS_CompSolid,	and	TopoDS_Compound.	In	spite	of
the	similarity	of	names	with	those	inheriting	from	TopoDS_TShape	there
is	a	profound	difference	in	the	way	they	are	used.

TopoDS_Shape	class	and	the	classes,	which	inherit	from	it,	are	the
natural	means	to	manipulate	topological	objects.	TopoDS_TShape
classes	are	hidden.	TopoDS_TShape	describes	a	class	in	its	original
local	coordinate	system	without	orientation.	TopoDS_Shape	is	a
reference	to	TopoDS_TShape	with	an	orientation	and	a	local	reference.

TopoDS_TShape	class	is	deferred;	TopoDS_Shape	class	is	not.	Using
TopoDS_Shape	class	allows	manipulation	of	topological	objects	without
knowing	their	type.	It	is	a	generic	form.	Purely	topological	algorithms
often	use	the	TopoDS_Shape	class.

TopoDS_TShape	class	is	manipulated	by	reference;	TopoDS_Shape
class	by	value.	A	TopoDS_Shape	is	nothing	more	than	a	reference
enhanced	with	an	orientation	and	a	local	coordinate.	The	sharing	of
TopoDS_Shapes	is	meaningless.	What	is	important	is	the	sharing	of	the
underlying	TopoDS_TShapes.	Assignment	or	passage	in	argument	does
not	copy	the	data	structure:	this	only	creates	new	TopoDS_Shapes	which
refer	to	the	same	TopoDS_TShape.

Although	classes	inheriting	TopoDS_TShape	are	used	for	adding	extra
information,	extra	fields	should	not	be	added	in	a	class	inheriting	from
TopoDS_Shape.	Classes	inheriting	from	TopoDS_Shape	serve	only	to
specialize	a	reference	in	order	to	benefit	from	static	type	control	(carried
out	by	the	compiler).	For	example,	a	routine	that	receives	a
TopoDS_Face	in	argument	is	more	precise	for	the	compiler	than	the	one,
which	receives	a	TopoDS_Shape.	It	is	pointless	to	derive	other	classes
than	those	found	inTopoDS.	All	references	to	a	topological	data	structure
are	made	with	the	Shape	class	and	its	inheritors	defined	in	TopoDS.

There	are	no	constructors	for	the	classes	inheriting	from	the
TopoDS_Shape	class,	otherwise	the	type	control	would	disappear
through	implicit	casting	(a	characteristic	of	C++).	The	TopoDS	package
provides	package	methods	for	casting	an	object	of	the	TopoDS_Shape
class	in	one	of	these	sub-classes,	with	type	verification.

The	following	example	shows	a	routine	receiving	an	argument	of	the
TopoDS_Shape	type,	then	putting	it	into	a	variable	V	if	it	is	a	vertex	or
calling	the	method	ProcessEdge	if	it	is	an	edge.

#include	<TopoDS_Vertex.hxx>	

#include	<TopoDS_Edge.hxx>	

#include	<TopoDS_Shape.hxx>	

void	ProcessEdge(const	TopoDS_Edge&);	

void	Process(const	TopoDS_Shape&	aShape)	{	

	if	(aShape.Shapetype()	==	TopAbs_VERTEX)	{	

				TopoDS_Vertex	V;	

				V	=	TopoDS::Vertex(aShape);	//	Also	correct	

				TopoDS_Vertex	V2	=	aShape;	//	Rejected	by	the	

compiler	

				TopoDS_Vertex	V3	=	TopoDS::Vertex(aShape);	//	

Correct	

		}	

	else	if	(aShape.ShapeType()	==	TopAbs_EDGE){	

				ProcessEdge(aShape)	;	//	This	is	rejected	

				ProcessEdge(TopoDS::Edge(aShape))	;	//	Correct	

		}	

	else	{	

				cout	<<"Neither	a	vertex	nor	an	edge	?";	

				ProcessEdge(TopoDS::Edge(aShape))	;	

	//	OK	for	compiler	but	an	exception	will	be	raised	

at	run-time	

		}

}	

Exploration	of	Topological	Data	Structures
The	TopExp	package	provides	tools	for	exploring	the	data	structure
described	with	the	TopoDS	package.	Exploring	a	topological	structure
means	finding	all	sub-objects	of	a	given	type,	for	example,	finding	all	the
faces	of	a	solid.

The	TopExp	package	provides	the	class	TopExp_Explorer	to	find	all	sub-
objects	of	a	given	type.	An	explorer	is	built	with:

The	shape	to	be	explored.
The	type	of	shapes	to	be	found	e.g.	VERTEX,	EDGE	with	the
exception	of	SHAPE,	which	is	not	allowed.
The	type	of	Shapes	to	avoid.	e.g.	SHELL,	EDGE.	By	default,	this
type	is	SHAPE.	This	default	value	means	that	there	is	no	restriction
on	the	exploration.

The	Explorer	visits	the	whole	structure	in	order	to	find	the	shapes	of	the
requested	type	not	contained	in	the	type	to	avoid.	The	example	below
shows	how	to	find	all	faces	in	the	shape	S:

void	test()	{	

		TopoDS_Shape	S;	

		TopExp_Explorer	Ex;	

	for	(Ex.Init(S,TopAbs_FACE);	Ex.More();	Ex.Next())	{	

				ProcessFace(Ex.Current());	

		}	

}	

Find	all	the	vertices	which	are	not	in	an	edge

for	(Ex.Init(S,TopAbs_VERTEX,TopAbs_EDGE);	...)	

Find	all	the	faces	in	a	SHELL,	then	all	the	faces	not	in	a	SHELL:

void	test()	{	

		TopExp_Explorer	Ex1,	Ex2;	

		TopoDS_Shape	S;	

	for	(Ex1.Init(S,TopAbs_SHELL);Ex1.More();	

Ex1.Next()){	

	//	visit	all	shells	

	for	(Ex2.Init(Ex1.Current(),TopAbs_FACE);Ex2.More();	

						Ex2.Next()){	

	//visit	all	the	faces	of	the	current	shell	

						ProcessFaceinAshell(Ex2.Current());	

						...	

				}	

		}	

	for(Ex1.Init(S,TopAbs_FACE,TopAbs_SHELL);Ex1.More();	

Ex1.Next()){	

	//	visit	all	faces	not	ina	shell.	

				ProcessFace(Ex1.Current());	

		}

}

The	Explorer	presumes	that	objects	contain	only	objects	of	an	equal	or
inferior	type.	For	example,	if	searching	for	faces	it	does	not	look	at	wires,
edges,	or	vertices	to	see	if	they	contain	faces.

The	MapShapes	method	from	TopExp	package	allows	filling	a	Map.	An
exploration	using	the	Explorer	class	can	visit	an	object	more	than	once	if
it	is	referenced	more	than	once.	For	example,	an	edge	of	a	solid	is
generally	referenced	by	two	faces.	To	process	objects	only	once,	they
have	to	be	placed	in	a	Map.

Example

void	TopExp::MapShapes	(const	TopoDS_Shape&	S,	

	const	TopAbs_ShapeEnum	T,	

												TopTools_IndexedMapOfShape&	M)	

{	

		TopExp_Explorer	Ex(S,T);	

	while	(Ex.More())	{	

				M.Add(Ex.Current());	

				Ex.Next();	

		}

}

In	the	following	example	all	faces	and	all	edges	of	an	object	are	drawn	in
accordance	with	the	following	rules:

The	faces	are	represented	by	a	network	of	NbIso	iso-parametric
lines	with	FaceIsoColor	color.
The	edges	are	drawn	in	a	color,	which	indicates	the	number	of	faces
sharing	the	edge:

FreeEdgeColor	for	edges,	which	do	not	belong	to	a	face	(i.e.
wireframe	element).
BorderEdgeColor	for	an	edge	belonging	to	a	single	face.
SharedEdgeColor	for	an	edge	belonging	to	more	than	one	face.

The	methods	DrawEdge	and	DrawFaceIso	are	also	available	to
display	individual	edges	and	faces.

The	following	steps	are	performed:

1.	 Storing	the	edges	in	a	map	and	create	in	parallel	an	array	of	integers
to	count	the	number	of	faces	sharing	the	edge.	This	array	is
initialized	to	zero.

2.	 Exploring	the	faces.	Each	face	is	drawn.
3.	 Exploring	the	edges	and	for	each	of	them	increment	the	counter	of

faces	in	the	array.
4.	 From	the	Map	of	edges,	drawing	each	edge	with	the	color

corresponding	to	the	number	of	faces.

void	DrawShape	(const	TopoDS_Shape&	aShape,	

const	Standard_Integer	nbIsos,	

const	Color	FaceIsocolor,	

const	Color	FreeEdgeColor,	

const	Color	BorderEdgeColor,	

const	Color	SharedEdgeColor)	

{	

	//	Store	the	edges	in	aMap.	

		TopTools_IndexedMapOfShape	edgemap;	

		TopExp::MapShapes(aShape,TopAbs_EDGE,edgeMap);	

	//	Create	an	array	set	to	zero.	

		TColStd_Array1OfInteger	

faceCount(1,edgeMap.Extent());	

		faceCount.Init	(0);	

	//	Explore	the	faces.	

		TopExp_Explorer	expFace(aShape,TopAbs_FACE);	

	while	(expFace.More())	{	

	//Draw	the	current	face.	

				

DrawFaceIsos(TopoDS::Face(expFace.Current()),nbI

sos,FaceIsoColor);	

	//	Explore	the	edges	ofthe	face.	

				TopExp_Explorer	

expEdge(expFace.Current(),TopAbs_EDGE);	

	while	(expEdge.More())	{	

	//Increment	the	face	count	for	this	edge.	

						

faceCount(edgemap.FindIndex(expEdge.Current()))+

+;	

						expEdge.Next();	

				}	

				expFace.Next();	

		}	

	//Draw	the	edges	of	theMap	

		Standard_Integer	i;	

	for	(i=1;i<=edgemap.Extent();i++)	{	

	switch	(faceCount(i))	{	

	case	0	:	

						

DrawEdge(TopoDS::Edge(edgemap(i)),FreeEdgeColor)

;	

	break;	

	case	1	:	

						

DrawEdge(TopoDS::Edge(edgemap(i)),BorderEdgeColo

r);	

	break;	

						default	:	

						

DrawEdge(TopoDS::Edge(edgemap(i)),SharedEdgeColo

r);	

	break;	

				}

		}	

}	

Lists	and	Maps	of	Shapes
TopTools	package	contains	tools	for	exploiting	the	TopoDS	data
structure.	It	is	an	instantiation	of	the	tools	from	TCollection	package	with
the	Shape	classes	of	TopoDS.

TopTools_Array1OfShape,	HArray1OfShape	–	instantiation	of	the
TCollection_Array1	and	TCollection_HArray1	with	TopoDS_Shape.
TopTools_SequenceOfShape	–	instantiation	of	the
TCollection_Sequence	with	TopoDS_Shape.
TopTools_MapOfShape	-	instantiation	of	the	TCollection_Map.
Allows	the	construction	of	sets	of	shapes.
TopTools_IndexedMapOfShape	-	instantiation	of	the
TCollection_IndexedMap.	Allows	the	construction	of	tables	of	shapes
and	other	data	structures.

With	a	TopTools_Map,	a	set	of	references	to	Shapes	can	be	kept	without
duplication.	The	following	example	counts	the	size	of	a	data	structure	as
a	number	of	TShapes.

#include	<TopoDS_Iterator.hxx>	

Standard_Integer	Size(const	TopoDS_Shape&	aShape)	

{	

	//	This	is	a	recursive	method.	

	//	The	size	of	a	shape	is1	+	the	sizes	of	the	

subshapes.	

		TopoDS_Iterator	It;	

		Standard_Integer	size	=	1;	

	for	(It.Initialize(aShape);It.More();It.Next())	{	

				size	+=	Size(It.Value());	

		}	

	return	size;	

}	

This	program	is	incorrect	if	there	is	sharing	in	the	data	structure.

Thus	for	a	contour	of	four	edges	it	should	count	1	wire	+	4	edges	+4
vertices	with	the	result	9,	but	as	the	vertices	are	each	shared	by	two

edges	this	program	will	return	13.	One	solution	is	to	put	all	the	Shapes	in
a	Map	so	as	to	avoid	counting	them	twice,	as	in	the	following	example:

#include	<TopoDS_Iterator.hxx>	

#include	<TopTools_MapOfShape.hxx>	

void	MapShapes(const	TopoDS_Shape&	aShape,	

TopTools_MapOfShape&	aMap)

{	

	//This	is	a	recursive	auxiliary	method.	It	stores	

all	subShapes	of	aShape	in	a	Map.

	if	(aMap.Add(aShape))	{	

	//Add	returns	True	if	aShape	was	not	already	in	the	

Map.	

				TopoDS_Iterator	It;	

	for	(It.Initialize(aShape);It.More();It.Next()){	

						MapShapes(It.Value(),aMap);	

				}	

		}	

}

Standard_Integer	Size(const	TopoDS_Shape&	aShape)	

{	

	//	Store	Shapes	in	a	Mapand	return	the	size.	

		TopTools_MapOfShape	M;	

		MapShapes(aShape,M);	

	return	M.Extent();

}

Note	For	more	details	about	Maps	please,	refer	to	the	TCollection
documentation.	(Foundation	Classes	Reference	Manual)

The	following	example	is	more	ambitious	and	writes	a	program	which
copies	a	data	structure	using	an	IndexedMap.	The	copy	is	an	identical
structure	but	it	shares	nothing	with	the	original.	The	principal	algorithm	is
as	follows:

All	Shapes	in	the	structure	are	put	into	an	IndexedMap.

A	table	of	Shapes	is	created	in	parallel	with	the	map	to	receive	the
copies.
The	structure	is	copied	using	the	auxiliary	recursive	function,which
copies	from	the	map	to	the	array.

#include	<TopoDS_Shape.hxx>	

#include	<TopoDS_Iterator.hxx>	

#include	<TopTools_IndexedMapOfShape.hxx>	

#include	<TopTools_Array1OfShape.hxx>	

#include	<TopoDS_Location.hxx>	

TopoDS_Shape	Copy(const	TopoDS_Shape&	aShape,	

const	TopoDS_Builder&	aBuilder)	

{	

	//	Copies	the	wholestructure	of	aShape	using	

aBuilder.	

	//	Stores	all	thesub-Shapes	in	an	IndexedMap.	

		TopTools_IndexedMapOfShape	theMap;	

		TopoDS_Iterator	It;	

		Standard_Integer	i;	

		TopoDS_Shape	S;	

		TopLoc_Location	Identity;	

		S	=	aShape;	

		S.Location(Identity);	

		S.Orientation(TopAbs_FORWARD);	

		theMap.Add(S);	

	for	(i=1;	i<=	theMap.Extent();	i++)	{	

	for(It.Initialize(theMap(i));	It.More();	It.Next())	

{	

						S=It.Value();	

						S.Location(Identity);	

						S.Orientation(TopAbs_FORWARD);	

						theMap.Add(S);	

				}

		}	

}	

In	the	above	example,	the	index	i	is	that	of	the	first	object	not	treated	in

the	Map.	When	i	reaches	the	same	size	as	the	Map	this	means	that
everything	has	been	treated.	The	treatment	consists	in	inserting	in	the
Map	all	the	sub-objects,	if	they	are	not	yet	in	the	Map,	they	are	inserted
with	an	index	greater	than	i.

Note	that	the	objects	are	inserted	with	a	local	reference	set	to	the	identity
and	a	FORWARD	orientation.	Only	the	underlying	TShape	is	of	great
interest.

//Create	an	array	to	store	the	copies.	

TopTools_Array1OfShapetheCopies(1,theMap.Extent());

//	Use	a	recursivefunction	to	copy	the	first	element.	

void	AuxiliaryCopy	(Standard_Integer,	

const	TopTools_IndexedMapOfShape	&,	

TopTools_Array1OfShape	&,	

const	TopoDS_Builder&);	

AuxiliaryCopy(1,theMap,theCopies,aBuilder);	

//	Get	the	result	with	thecorrect	local	reference	and	

orientation.	

S	=	theCopies(1);	

S.Location(aShape.Location());	

S.Orientation(aShape.Orientation());	

return	S;	

Below	is	the	auxiliary	function,	which	copies	the	element	of	rank	i	from
the	map	to	the	table.	This	method	checks	if	the	object	has	been	copied;	if
not	copied,	then	an	empty	copy	is	performed	into	the	table	and	the	copies
of	all	the	sub-elements	are	inserted	by	finding	their	rank	in	the	map.

void	AuxiliaryCopy(Standard_Integer	index,	

const	TopTools_IndexedMapOfShapes&	sources,	

TopTools_Array1OfShape&	copies,	

const	TopoDS_Builder&	aBuilder)	

{	

	//If	the	copy	is	a	null	Shape	the	copy	is	not	done.	

	if	(copies(index).IsNull())	{	

				copies(index)	=sources(index).EmptyCopied();	

	//Insert	copies	of	the	sub-shapes.	

				TopoDS_Iterator	It;	

				TopoDS_Shape	S;	

				TopLoc_Location	Identity;	

	for(It.Initialize(sources(index)),It.More(),	It.Next	

())	{

						S	=	It.Value();	

						S.Location(Identity);	

						S.Orientation(TopAbs_FORWARD);	

						

AuxiliaryCopy(sources.FindIndex(S),sources,copie

s,aBuilder);	

						

S.Location(It.Value().Location());S.Orientation(

It.Value().Orientation());	

aBuilder.Add(copies(index),S);

				}

		}

}

Wire	Explorer

BRepTools_WireExplorer	class	can	access	edges	of	a	wire	in	their	order
of	connection.

For	example,	in	the	wire	in	the	image	we	want	to	recuperate	the	edges	in
the	order	{e1,	e2,	e3,e4,	e5}	:

A	wire	composed	of	6	edges.

TopExp_Explorer,	however,	recuperates	the	lines	in	any	order.

TopoDS_Wire	W	=	...;	

BRepTools_WireExplorer	Ex;	

for(Ex.Init(W);	Ex.More();	Ex.Next())	{	

		ProcessTheCurrentEdge(Ex.Current());	

		

ProcessTheVertexConnectingTheCurrentEdgeToThePre

vious	

		One(Ex.CurrentVertex());	

}	

Storage	of	shapes
BRepTools	and	BinTools	packages	contain	methods	Read	and	Write
allowing	to	read	and	write	a	Shape	to/from	a	stream	or	a	file.	The
methods	provided	by	BRepTools	package	use	ASCII	storage	format;
BinTools	package	uses	binary	format.	Each	of	these	methods	has	two
arguments:

a	TopoDS_Shape	object	to	be	read/written;
a	stream	object	or	a	file	name	to	read	from/write	to.

The	following	sample	code	reads	a	shape	from	ASCII	file	and	writes	it	to
a	binary	one:

TopoDS_Shape	aShape;

if	(BRepTools::Read	(aShape,	"source_file.txt"))	{

		BinTools::Write	(aShape,	"result_file.bin");

}

Generated	on	Wed	Aug	30	2017	17:04:20	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Format	Common
Structure
Locations
Geometry
3D	curves

Line	-	<3D
curve	record	1>
Circle	-	<3D
curve	record	2>
Ellipse	-	<3D
curve	record	3>
Parabola	-	<3D
curve	record	4>
Hyperbola	-
<3D	curve
record	5>
Bezier	Curve	-
<3D	curve
record	6>
B-spline	Curve	-
<3D	curve
record	7>
Trimmed	Curve	-
<3D	curve
record	8>
Offset	Curve	-
<3D	curve
record	9>

Surfaces
Plane	-	<

Open	CASCADE
Technology		7.2.0

BRep	Format

surface	record	1
>
Cylinder	-	<
surface	record	2
>
Cone	-	<
surface	record	3
>
Sphere	-	<
surface	record	4
>
Torus	-	<
surface	record	5
>
Linear	Extrusion
-	<	surface
record	6	>
Revolution
Surface	-	<
surface	record	7
>
Bezier	Surface	-
<	surface
record	8	>
B-spline	Surface
-	<	surface
record	9	>
Rectangular
Trim	Surface	-	<
surface	record
10	>
Offset	Surface	-
<	surface
record	11	>

2D	curves
Line	-	<2D
curve	record	1>
Circle	-	<2D
curve	record	2>
Ellipse	-	<2D
curve	record	3>
Parabola	-	<2D
curve	record	4>

Hyperbola	-
<2D	curve
record	5>
Bezier	Curve	-
<2D	curve
record	6>
B-spline	Curve	-
<2D	curve
record	7>
Trimmed	Curve	-
<2D	curve
record	8>
Offset	Curve	-
<2D	curve
record	9>

3D	polygons
Triangulations
Polygons	on
triangulations
Geometric	Sense	of	a
Curve

Shapes
Common	Terms
Vertex	data
Edge	data
Face	data

Appendix

Introduction
BREP	format	is	used	to	store	3D	models	and	allows	to	store	a	model
which	consists	of	vertices,	edges,	wires,	faces,	shells,	solids,	compsolids,
compounds,	edge	triangulations,	face	triangulations,	polylines	on
triangulations,	space	location	and	orientation.	Any	set	of	such	models
may	be	stored	as	a	single	model	which	is	a	compound	of	the	models.

The	format	is	described	in	an	order	which	is	convenient	for	understanding
rather	than	in	the	order	the	format	parts	follow	each	other.	BNF-like
definitions	are	used	in	this	document.	Most	of	the	chapters	contain	BREP
format	descriptions	in	the	following	order:

format	file	fragment	to	illustrate	the	part;
BNF-like	definition	of	the	part;
detailed	description	of	the	part.

Note	that	the	format	is	a	part	of	Open	CASCADE	Technology	(OCCT).

Some	data	fields	of	the	format	have	additional	values,	which	are	used	in
OCCT.

Some	data	fields	of	the	format	are	specific	for	OCCT.

Format	Common	Structure
ASCII	encoding	is	used	to	read/write	BREP	format	from/to	file.	The
format	data	are	stored	in	a	file	as	text	data.

BREP	format	uses	the	following	BNF	terms:

<\n>:	It	is	the	operating-system-dependent	ASCII	character
sequence	which	separates	ASCII	text	strings	in	the	operating	system
used;
<_\n>:	=	"	"*<\n>;
<_>:	=	"	"+;	It	is	a	not	empty	sequence	of	space	characters	with
ASCII	code	21h;
<flag>:	=	"0"	|	"1";
<int>:	It	is	an	integer	number	from	-231	to	231-1	which	is	written	in
denary	system;
<real>:	It	is	a	real	from	-1.7976931348623158	\(\cdot\)	10308	to
1.7976931348623158	\(\cdot\)	10308	which	is	written	in	decimal	or	E
form	with	base	10.The	point	is	used	as	a	delimiter	of	the	integer	and
fractional	parts;
<2D	point>:	=	<real><_><real>;
<3D	point>:	=	<real>(<_><real)>2;
<2D	direction>:	It	is	a	<2D	point>	x	y*	so	that	*x2	+	y2	=	1;
<3D	direction>:	It	is	a	<3D	point>	x	y	z*	so	that	*x2	+	y2	+	z2	=	1;
<+>:	It	is	an	arithmetic	operation	of	addition.

The	format	consists	of	the	following	sections:

<content	type>;
<version>;
<locations>;
<geometry>;
<shapes>.

<content	type>	=	"DBRep_DrawableShape"	<_\n><_\n>;	<content	type>
have	other	values	[1].

<version>	=	("CASCADE	Topology	V1,	(c)	Matra-Datavision"	|

"CASCADE	Topology	V2,	(c)	Matra-Datavision")<_\n>;	The	difference	of
the	versions	is	described	in	the	document.

Sections	<locations>,	<geometry>	and	<shapes>	are	described	below	in
separate	chapters	of	the	document.

Locations
Example

				Locations		3		

				1		

																			0															0															1

															0			

																			1															0															0

															0			

																			0															1															0

															0			

				1		

																			1															0															0

															4			

																			0															1															0

															5			

																			0															0															1

															6			

				2			1	1	2	1	0		

BNF-like	Definition

				<locations>	=	<location	header>	<_\n>	<location	

records>;		

				<location	header>	=	"Locations"	<_>	<location	re

cord	count>;		

				<location	record	count>	=	<int>;		

				<location	records>	=	<location	record>	^	<locati

on	record	count>;		

				<location	record>	=	<location	record	1>	|	<locat

ion	record	2>;		

				<location	record	1>	=	"1"	<_\n>	<location		data	

1>;		

				<location	record	2>	=	"2"	<_>	<location		data	2>

;		

				<location	data	1>	=	((<_>	<real>)	^	4	<_\n>)	^	3

;		

				<location	data	2>	=	(<int>	<_>	<int>	<_>)*	"0"	<

_\n>;		

Description

<location	data	1>	is	interpreted	as	a	3	x	4	matrix	\(Q	=	\begin{pmatrix}
{q}_{1,1}	&{q}_{1,2}	&{q}_{1,3}	&{q}_{1,4}\\	{q}_{2,1}	&{q}_{2,2}	&{q}_{2,3}
&{q}_{2,4}\\	{q}_{3,1}	&{q}_{3,2}	&{q}_{3,3}	&{q}_{3,4}	\end{pmatrix}\)	
which	describes	transformation	of	3	dimensional	space	and	satisfies	the
following	constraints:

\(d	\neq	0\)	where	\(d	=	|Q_{2}|\)	where	\(Q_{2}	=	\begin{pmatrix}
{q}_{1,1}	&{q}_{1,2}	&{q}_{1,3}	&{q}_{1,4}\\	{q}_{2,1}	&{q}_{2,2}	&
{q}_{2,3}	&{q}_{2,4}\\	{q}_{3,1}	&{q}_{3,2}	&{q}_{3,3}	&{q}_{3,4}
\end{pmatrix};	\)
\(Q_{3}^{T}	=	Q_{3}^{-1}\)	where	\(Q_{3}	=	Q_{2}/d^{1/3}.	\)

The	transformation	transforms	a	point	(x,	y,	z)	to	another	point	(u,	v,	w)	by
the	rule:

\[\begin{pmatrix}	u	\\	v	\\	w	\end{pmatrix}	=	Q\cdot(x\;y\;z\;1)^{T}	=
\begin{pmatrix}	{q}_{1,1}\cdot	x	+{q}_{1,2}\cdot	y	+{q}_{1,3}\cdot	z	+

{q}_{1,4}\\	{q}_{2,1}\cdot	x	+{q}_{2,2}\cdot	y	+{q}_{2,3}\cdot	z	+{q}_{2,4}\\
{q}_{3,1}\cdot	x	+{q}_{3,2}\cdot	y	+{q}_{3,3}\cdot	z	+{q}_{3,4}

\end{pmatrix}	.	\]

Q	may	be	a	composition	of	matrices	for	the	following	elementary
transformations:

parallel	translation	–	\(\begin{pmatrix}	1	&0	&0	&{q}_{1,4}\\	0	&1	&0
&{q}_{2,4}\\	0	&0	&1	&{q}_{3,4}	\end{pmatrix};	\)
rotation	around	an	axis	with	a	direction	*D(Dx,	Dy,	Dz)*	by	an	angle	\(
\varphi	\)	–

\[\begin{pmatrix}	D_{x}^{2}	\cdot	(1-cos(\varphi))	+	cos(\varphi)	&D_{x}
\cdot	D_{y}	\cdot	(1-cos(\varphi))	-	D_{z}	\cdot	sin(\varphi)	&D_{x}	\cdot
D_{z}	\cdot	(1-cos(\varphi))	+	D_{y}	\cdot	sin(\varphi)	&0\\	D_{x}	\cdot

D_{y}	\cdot	(1-cos(\varphi))	+	D_{z}	\cdot	sin(\varphi)	&D_{y}^{2}	\cdot	(1-
cos(\varphi))	+	cos(\varphi)	&D_{y}	\cdot	D_{z}	\cdot	(1-cos(\varphi))	-
D_{x}	\cdot	sin(\varphi)	&0\\	D_{x}	\cdot	D_{z}	\cdot	(1-cos(\varphi))	-

D_{y}	\cdot	sin(\varphi)	&D_{y}	\cdot	D_{z}	\cdot	(1-cos(\varphi))	+	D_{x}
\cdot	sin(\varphi)	&D_{z}^{2}	\cdot	(1-cos(\varphi))	+	cos(\varphi)	&0

\end{pmatrix};	\]

scaling	–	\(\begin{pmatrix}	s	&0	&0	&0\\	0	&s	&0	&0\\	0	&0	&s	&0
\end{pmatrix}	\)	where	\(S	\in	(-\infty,\;	\infty)/\left	\{	0	\right	\};	\)
central	symmetry	–	\(\begin{pmatrix}	-1	&0	&0	&0\\	0	&-1	&0	&0\\	0
&0	&-1	&0	\end{pmatrix};	\)
axis	symmetry	–	\(\begin{pmatrix}	-1	&0	&0	&0\\	0	&-1	&0	&0\\	0	&0
&1	&0	\end{pmatrix};	\)
plane	symmetry	–	\(\begin{pmatrix}	1	&0	&0	&0\\	0	&1	&0	&0\\	0	&0
&-1	&0	\end{pmatrix}.	\)

<location	data	2>	is	interpreted	as	a	composition	of	locations	raised	to	a
power	and	placed	above	this	<location	data	2>	in	the	section	<locations>.
<location	data	2>	is	a	sequence	\(l_{1}p_{1}	...	l_{n}p_{n}\)	of	\(n	\geq	0
\)	integer	pairs	\(l_{i}p_{i}	\;	(1	\leq	i	\leq	n)	\).	<flag>	0	is	the	indicator	of
the	sequence	end.	The	sequence	is	interpreted	as	a	composition	\(
L_{l_{1}}^{p_{1}}	\cdot	...	\cdot	L_{l_{n}}^{p_{n}}	\)	where	\(L_{l_{i}}	\)	is	a
location	from	\(l_{i}	\)-th	<location	record>	in	the	section	locations.
<location	record>	numbering	starts	from	1.

Geometry
				<geometry>	=		

				<2D	curves>		

				<3D	curves>		

				<3D	polygons>	

				<polygons	on	triangulations>		

				<surfaces>		

				<triangulations>;		

3D	curves
Example

				Curves	13		

				1	0	0	0	0	0	1			

				1	0	0	3	-0	1	0			

				1	0	2	0	0	0	1			

				1	0	0	0	-0	1	0			

				1	1	0	0	0	0	1			

				1	1	0	3	0	1	0			

				1	1	2	0	0	0	1			

				1	1	0	0	-0	1	0			

				1	0	0	0	1	0	-0			

				1	0	0	3	1	0	-0			

				1	0	2	0	1	0	-0			

				1	0	2	3	1	0	-0			

				1	1	0	0	1	0	0			

BNF-like	Definition

				<3D	curves>	=	<3D	curve	header>	<_\n>	<3D	curve	

records>;		

					

				<3D	curve	header>	=	"Curves"	<_>	<3D	curve	count

>;		

					

				<3D	curve	count>	=	<int>;		

					

				<3D	curve	records>	=	<3D	curve	record>	^	<3D	cur

ve	count>;		

					

				<3D	curve	record>	=		

				<3D	curve	record	1>	|		

				<3D	curve	record	2>	|		

				<3D	curve	record	3>	|		

				<3D	curve	record	4>	|		

				<3D	curve	record	5>	|		

				<3D	curve	record	6>	|		

				<3D	curve	record	7>	|		

				<3D	curve	record	8>	|		

				<3D	curve	record	9>;		

Line	-	<3D	curve	record	1>

Example

				1	1	0	3	0	1	0			

BNF-like	Definition

				<3D	curve	record	1>	=	"1"	<_>	<3D	point>	<_>	<3D

	direction>	<_\n>;		

Description

<3D	curve	record	1>	describes	a	line.	The	line	data	consist	of	a	3D	point
P*	and	a	3D	direction	*D.	The	line	passes	through	the	point	P,	has	the
direction	*D*	and	is	defined	by	the	following	parametric	equation:

\[C(u)=P+u	\cdot	D,	\;	u	\in	(-\infty,\;	\infty).	\]

The	example	record	is	interpreted	as	a	line	which	passes	through	a	point
P=(1,	0,	3),	has	a	direction	D=(0,	1,	0)	and	is	defined	by	the	following
parametric	equation:	\(C(u)=(1,0,3)+u	\cdot	(0,1,0)	\).

Circle	-	<3D	curve	record	2>

Example

				2	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

BNF-like	Definition

<3D	curve	record	2>	=	"2"	<_>	<3D	circle	center>	<_>	

<3D	circle	N>	<_>	<3D	circle	Dx>	<_>	<3D	circle	

Dy>	<_>	<3D	circle	radius>	<_\n>;		

<3D	circle	center>	=	<3D	point>;		

<3D	circle	N>	=	<3D	direction>;		

<3D	circle	Dx>	=	<3D	direction>;		

<3D	circle	Dy>	=	<3D	direction>;		

<3D	circle	radius>	=	<real>;		

Description

<3D	curve	record	2>	describes	a	circle.	The	circle	data	consist	of	a	3D
point	P,	pairwise	orthogonal	3D	directions	N,	Dx*	and	*Dy*	and	a	non-
negative	real	*r.	The	circle	has	a	center	P	and	is	located	in	a	plane	with	a
normal	N.	The	circle	has	a	radius	*r*	and	is	defined	by	the	following
parametric	equation:

\[C(u)=P+r	\cdot	(cos(u)	\cdot	D_{x}	+	sin(u)	\cdot	D_{y}),	\;	u	\in	[o,\;2
\cdot	\pi).	\]

The	example	record	is	interpreted	as	a	circle	which	has	its	center	P=(1,
2,	3),	is	located	in	plane	with	a	normal	N=(0,	0	,1).	Directions	for	the
circle	are	Dx=(1,	0	,0)	and	Dy=(0,	1	,0).	The	circle	has	a	radius	r=4	and	is
defined	by	the	following	parametric	equation:	\(C(u)	=	(1,2,3)	+	4	\cdot	(
cos(u)	\cdot(1,0,0)	+	sin(u)	\cdot	(0,1,0))	\).

Ellipse	-	<3D	curve	record	3>

Example

				3	1	2	3	0	0	1	1	0	-0	-0	1	0	5		4		

BNF-like	Definition

<3D	curve	record	3>	=	"3"	<_>	<3D	ellipse	center>	<_>	

<3D	ellipse	N>	<_>	<3D	ellipse	Dmaj>	<_>	<3D	

ellipse	Dmin>	<_>	<3D	ellipse	Rmaj>	<_>	<3D	

ellipse	Rmin>	<_\n>;		

<3D	ellipse	center>	=	<3D	point>;		

<3D	ellipse	N>	=	<3D	direction>;		

<3D	ellipse	Dmaj>	=	<3D	direction>;		

<3D	ellipse	Dmin>	=	<3D	direction>;		

<3D	ellipse	Rmaj>	=	<real>;		

<3D	ellipse	Rmin>	=	<real>;		

Description

<3D	curve	record	3>	describes	an	ellipse.	The	ellipse	data	consist	of	a
3D	point	P,	pairwise	orthogonal	3D	directions	N,	*Dmaj*	and	*Dmin*	and
non-negative	reals	*rmaj*	and	*rmin*	so	that	*rmin*		\(\leq	\)	rmaj.	The	ellipse
has	its	center	P,	is	located	in	plane	with	the	normal	N,	has	major	and
minor	axis	directions	Dmaj*	and	*Dmin,	major	and	minor	radii	*rmaj*	and
rmin	and	is	defined	by	the	following	parametric	equation:

\[C(u)=P+r_{maj}	\cdot	cos(u)	\cdot	D_{maj}	+	r_{min}	\cdot	sin(u)	\cdot
D_{min},	u	\in	[0,	2	\cdot	\pi).	\]

The	example	record	is	interpreted	as	an	ellipse	which	has	its	center	P=
(1,	2,	3),	is	located	in	plane	with	a	normal	N=(0,	0,	1),	has	major	and
minor	axis	directions	Dmaj=(1,	0,	0)	and	Dmin=(0,	1,	0),	major	and	minor
radii	rmaj=5	and	rmin=4	and	is	defined	by	the	following	parametric
equation:	\(C(u)	=	(1,2,3)	+	5	\cdot	cos(u)	\cdot(1,0,0)	+	4	\cdot	sin(u)
\cdot	(0,1,0)	\).

Parabola	-	<3D	curve	record	4>

Example

				4	1	2	3	0	0	1	1	0	-0	-0	1	0		16		

BNF-like	Definition

<3D	curve	record	4>	=	"4"	<_>	<3D	parabola	origin>	

<_>	<3D	parabola	N>	<_>	<3D	parabola	Dx>	<_>	<3D	

parabola	Dy>	<_>	<3D	parabola	focal	length>	

<_\n>;		

<3D	parabola	origin>	=	<3D	point>;		

<3D	parabola	N>	=	<3D	direction>;		

<3D	parabola	Dx>	=	<3D	direction>;		

<3D	parabola	Dy>	=	<3D	direction>;		

<3D	parabola	focal	length>	=	<real>;		

Description

<3D	curve	record	4>	describes	a	parabola.	The	parabola	data	consist	of
a	3D	point	P,	pairwise	orthogonal	3D	directions	N,	Dx*	and	*Dy*	and	a
non-negative	real	*f.	The	parabola	is	located	in	plane	which	passes
through	the	point	P*	and	has	the	normal	*N.	The	parabola	has	a	focus
length	*f*	and	is	defined	by	the	following	parametric	equation:

\[C(u)=P+\frac{u^{2}}{4	\cdot	f}	\cdot	D_{x}	+	u	\cdot	D_{y},	u	\in	(-\infty,\;
\infty)	\Leftarrow	f	\neq	0;	\]

\[C(u)=P+u	\cdot	D_{x},	u	\in	(-\infty,\;	\infty)	\Leftarrow	f	=	0\;
(degenerated\;case).	\]

The	example	record	is	interpreted	as	a	parabola	in	plane	which	passes
through	a	point	P=(1,	2,	3)	and	has	a	normal	N=(0,	0,	1).	Directions	for
the	parabola	are	Dx=(1,	0,	0)	and	Dy=(0,	1,	0).	The	parabola	has	a	focus
length	f=16	and	is	defined	by	the	following	parametric	equation:	\(C(u)	=

(1,2,3)	+	\frac{u^{2}}{64}	\cdot	(1,0,0)	+	u	\cdot	(0,1,0)	\).

Hyperbola	-	<3D	curve	record	5>

Example

				5	1	2	3	0	0	1	1	0	-0	-0	1	0	5		4		

BNF-like	Definition

<3D	curve	record	5>	=	"5"	<_>	<3D	hyperbola	origin>	

<_>	<3D	hyperbola	N>	<_>	<3D	hyperbola	Dx>	<_>	

<3D	hyperbola	Dy>	<_>	<3D	hyperbola	Kx>	<_>	<3D	

hyperbola	Ky>	<_\n>;		

<3D	hyperbola	origin>	=	<3D	point>;		

<3D	hyperbola	N>	=	<3D	direction>;		

<3D	hyperbola	Dx>	=	<3D	direction>;		

<3D	hyperbola	Dy>	=	<3D	direction>;		

<3D	hyperbola	Kx>	=	<real>;		

<3D	hyperbola	Ky>	=	<real>;		

Descripton

<3D	curve	record	5>	describes	a	hyperbola.	The	hyperbola	data	consist
of	a	3D	point	P,	pairwise	orthogonal	3D	directions	N,	Dx*	and	*Dy*	and
non-negative	reals	*kx*	and	*ky.	The	hyperbola	is	located	in	plane	which
passes	through	the	point	P*	and	has	the	normal	*N.	The	hyperbola	is
defined	by	the	following	parametric	equation:

\[C(u)=P+k_{x}	\cdot	cosh(u)	\cdot	D_{x}+k_{y}	\cdot	sinh(u)	\cdot	D_{y}	,
u	\in	(-\infty,\;	\infty).	\]

The	example	record	is	interpreted	as	a	hyperbola	in	plane	which	passes
through	a	point	P=(1,	2,	3)	and	has	a	normal	N=(0,	0,	1).	Other	hyperbola
data	are	Dx=(1,	0,	0),	Dy=(0,	1,	0),	kx=5	and	ky=4.	The	hyperbola	is
defined	by	the	following	parametric	equation:	\(C(u)	=	(1,2,3)	+	5	\cdot
cosh(u)	\cdot	(1,0,0)	+4	\cdot	sinh(u)	\cdot	(0,1,0)	\).

Bezier	Curve	-	<3D	curve	record	6>

Example

				6	1	2	0	1	0		4	1	-2	0		5	2	3		0		6			

BNF-like	Definition

				<3D	curve	record	6>	=	"6"	<_>	<3D	Bezier	rationa

l	flag>	<_>	<3D	Bezier	degree>	

				<3D	Bezier	weight	poles>	<_\n>;

								

				<3D	Bezier	rational	flag>	=	<flag>;

								

				<3D	Bezier	degree>	=	<int>;

				3D	Bezier	weight	poles>	=	(<_>	<3D	Bezier	weight

	pole>)	^	(<3D	Bezier	degree>	<+>	"1");

				<3D	Bezier	weight	pole>	=	<3D	point>	[<_>	<real>

];

Description

<3D	curve	record	6>	describes	a	Bezier	curve.	The	curve	data	consist	of
a	rational	r,	a	degree	\(m	\leq	25	\)	and	weight	poles.

The	weight	poles	are	m+1	3D	points	B0	...	Bm*	if	the	flag	*r	is	0.	The
weight	poles	are	m+1	pairs	*B0h0	...	Bmhm*	if	flag	*r*	is	1.	Here	*Bi*	is	a
3D	point	and	*hi*	is	a	positive	real	\((0	\leq	i	\leq	m)	\).	\(h_{i}=1\;	(0	\leq	i
\leq	m)	\)	if	the	flag	*r*	is	0.

The	Bezier	curve	is	defined	by	the	following	parametric	equation:

\[C(u)	=	\frac{\sum_{i=0}^{m}B_{i}	\cdot	h_{i}	\cdot	C_{m}^{i}	\cdot	u^{i}
\cdot	(1-u)^{m-i}}{\sum_{i=0}^{m}h_{i}	\cdot	C_{m}^{i}	\cdot	u^{i}	\cdot	(1-

u)^{m-i}},\;u	\in	[0,\;	1]	\]

where	\(0^{0}	\equiv	1	\).

The	example	record	is	interpreted	as	a	Bezier	curve	with	a	rational	flag
r=1,	degree	m=2	and	weight	poles	B0=(0,	1,	0),	h0=4,	B1=(1,	-2,	0),
h1=5	and	B2=(2,	3,	0),	h2=6.	The	Bezier	curve	is	defined	by	the	following
parametric	equation:

\[C(u)=\frac{(0,1,0)	\cdot	4	\cdot	(1-u)^{2}+(1,-2,0)	\cdot	5	\cdot	2	\cdot	u
\cdot	(1-u)	+	(2,3,0)	\cdot	6	\cdot	u^{2})}{4	\cdot	(1-u)^{2}+5	\cdot	2	\cdot

u	\cdot	(1-u)+6	\cdot	u^{2}}.	\]

B-spline	Curve	-	<3D	curve	record	7>

Example

				7	1	0		1	3	5		0	1	0		4	1	-2		0		5	2	3	0		6		

					0	1	0.25	1	0.5	1	0.75	1	1	1		

BNF-like	Definition

<3D	curve	record	7>	=	"7"	<_>	<3D	B-spline	rational	

flag>	<_>	"0"	<_>	<3D	B-spline	degree>	<_>	

<3D	B-spline	pole	count>	<_>	<3D	B-spline	

multiplicity	knot	count>	<3D	B-spline	weight	

poles>	

<_\n>	<3D	B-spline	multiplicity	knots>	<_\n>;

<3D	B-spline	rational	flag>	=	<flag>;

<3D	B-spline	degree>	=	<int>;

<3D	B-spline	pole	count>	=	<int>;

<3D	B-spline	multiplicity	knot	count>	=	<int>;

<3D	B-spline	weight	poles>	=	(<_>	<3D	B-spline	weight	

pole>)	^	<3D	B-spline	pole	count>;

<3D	B-spline	weight	pole>	=	<3D	point>	[<_>	<real>];

<3D	B-spline	multiplicity	knots>	=	(<_>	<3D	B-spline	

multiplicity	knot>)	^	<3D	B-spline	multiplicity	

knot	count>;

<3D	B-spline	multiplicity	knot>	=	<real>	<_>	<int>;		

Description

<3D	curve	record	7>	describes	a	B-spline	curve.	The	curve	data	consist
of	a	rational	flag	r,	a	degree	\(m	\leq	25	\),	pole	count	\(n	\geq	2	\),
multiplicity	knot	count	k,	weight	poles	and	multiplicity	knots.

The	weight	poles	are	n	3D	points	*B1	...	Bn*	if	the	flag	*r*	is	0.	The	weight
poles	are	*n*	pairs	*B1h1	...	Bnhn*	if	the	flag	*r*	is	1.	Here	*Bi*	is	a	3D
point	and	*hi*	is	a	positive	real	\((1	\leq	i	\leq	n)	\).	\(h_{i}=1\;	(1	\leq	i	\leq
n)	\)	if	the	flag	*r*	is	0.

The	multiplicity	knots	are	k*	pairs	*u1q1	...	ukqk.	Here	*ui*	is	a	knot	with	a
multiplicity	\(q_{i}	\geq	1	\;	(1	\leq	i	\leq	k)	\)	so	that

\[u_{i}	<	u_{i+1}	(1	\leq	i	\leq	k-1),\]

\[q_{1}	\leq	m+1,\;	q_{k}	\leq	m+1,\;	q_{i}	\leq	m\;	(2	\leq	i	\leq	k-1),
\sum_{i=1}^{k}q_{i}=m+n+1.	\]

The	B-spline	curve	is	defined	by	the	following	parametric	equation:

\[C(u)	=	\frac{\sum_{i=1}^{n}B_{i}	\cdot	h_{i}	\cdot	N_{i,m+1}(u)}
{\sum_{i=1}^{n}h_{i}	\cdot	N_{i,m+1}(u)},\;u	\in	[u_{1},\;	u_{k}]	\]

where	functions	\(N_{i,j}	\)	have	the	following	recursion	definition	by	j:

\[N_{i,1}(u)=\left\{\begin{matrix}	1\Leftarrow	\bar{u}_{i}	\leq	u	\leq
\bar{u}_{i+1}\\	0\Leftarrow	u	<	\bar{u}_{i}	\vee	\bar{u}_{i+1}	\leq	u

\end{matrix}	\right.,\;	N_{i,j}(u)=\frac{(u-\bar{u}_{i})	\cdot	N_{i,j-1}(u)	}
{\bar{u}_{i+j-1}-\bar{u}_{i}}+	\frac{(\bar{u}_{i+j}-u)	\cdot	N_{i+1,j-1}(u)}

{\bar{u}_{i+j}-\bar{u}_{i+1}},\;(2	\leq	j	\leq	m+1)	\]

where

\[\bar{u}_{i}	=	u_{j},\;	(1	\leq	j	\leq	k,\;	\sum_{l=1}^{j-1}q_{l}+1	\leq	i	\leq
\sum_{l=1}^{j}q_{l}).	\]

The	example	record	is	interpreted	as	a	B-spline	curve	with	a	rational	flag
r=1,	a	degree	m=1,	pole	count	n=3,	multiplicity	knot	count	k=5,	weight
poles	B1=(0,1,0),	h1=4,	B2=(1,-2,0),	h2=5	and	B3=(2,3,0),	h3=6,
multiplicity	knots	u1=0,	q1=1,	u2=0.25,	q2=1,	u3=0.5,	q3=1,	u4=0.75,
q4=1	and	u5=1,	q5=1.	The	B-spline	curve	is	defined	by	the	following
parametric	equation:

\[C(u)=\frac{(0,1,0)	\cdot	4	\cdot	N_{1,2}(u)	+	(1,-2,0)	\cdot	5	\cdot
N_{2,2}(u)+(2,3,0)	\cdot	6	\cdot	N_{3,2}(u)}{4	\cdot	N_{1,2}(u)+5	\cdot

N_{2,2}(u)+6	\cdot	N_{3,2}(u)}.	\]

Trimmed	Curve	-	<3D	curve	record	8>

Example

				8		-4	5		

				1	1	2	3	1	0	0			

BNF-like	Definition

<3D	curve	record	8>	=	"8"	<_>	<3D	trimmed	curve	u	

min>	<_>	<3D	trimmed	curve	u	max>	<_\n>	<3D	

curve	record>;

<3D	trimmed	curve	u	min>	=	<real>;

<3D	trimmed	curve	u	max>	=	<real>;		

Description

<3D	curve	record	8>	describes	a	trimmed	curve.	The	trimmed	curve	data
consist	of	reals	umin*	and	*umax*	and	<3D	curve	record>	so	that	*umin	<
umax.	The	trimmed	curve	is	a	restriction	of	the	base	curve	*B*	described
in	the	record	to	the	segment	\([u_{min},\;u_{max}]\subseteq	domain(B)	\).
The	trimmed	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=B(u),\;	u	\in	[u_{min},\;u_{max}].	\]

The	example	record	is	interpreted	as	a	trimmed	curve	with	umin=-4	and
umax=5	for	the	base	curve	\(B(u)=(1,2,3)+u	\cdot	(1,0,0)	\).	The	trimmed
curve	is	defined	by	the	following	parametric	equation:	\(C(u)=(1,2,3)+u
\cdot	(1,0,0),\;	u	\in	[-4,\;	5]	\).

Offset	Curve	-	<3D	curve	record	9>

Example

				9	2		

				0	1	0			

				1	1	2	3	1	0	0			

BNF-like	Definition

				<3D	curve	record	9>	=	"9"	<_>	<3D	offset	curve	d

istance>	<_\n>;

				<3D	offset	curve	direction>	<_\n>;

				<3D	curve	record>;

				<3D	offset	curve	distance>	=	<real>;

				<3D	offset	curve	direction>	=	<3D	direction>;		

Description

<3D	curve	record	9>	describes	an	offset	curve.	The	offset	curve	data
consist	of	a	distance	d,	a	3D	direction	*D*	and	a	<3D	curve	record>.	The

offset	curve	is	the	result	of	offsetting	the	base	curve	*B*	described	in	the
record	to	the	distance	*d*	along	the	vector	\([B'(u),\;	D]	\neq	\vec{0}	\).
The	offset	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=B(u)+d	\cdot	\frac{[B'(u),\;	D]}{|[B'(u),\;	D]|},\;	u	\in	domain(B)	.	\]

The	example	record	is	interpreted	as	an	offset	curve	with	a	distance	d=2,
direction	D=(0,	1,	0),	base	curve	\(B(u)=(1,2,3)+u	\cdot	(1,0,0)	\)	and
defined	by	the	following	parametric	equation:	\(C(u)=(1,2,3)+u	\cdot
(1,0,0)+2	\cdot	(0,0,1)	\).

Surfaces
Example

				Surfaces	6		

				1	0	0	0	1	0	-0	0	0	1	0	-1	0			

				1	0	0	0	-0	1	0	0	0	1	1	0	-0			

				1	0	0	3	0	0	1	1	0	-0	-0	1	0			

				1	0	2	0	-0	1	0	0	0	1	1	0	-0			

				1	0	0	0	0	0	1	1	0	-0	-0	1	0			

				1	1	0	0	1	0	-0	0	0	1	0	-1	0			

BNF-like	Definition

				<surfaces>	=	<surface	header>	<_\n>	<surface	rec

ords>;

				<surface	header>	=	“Surfaces”	<_>	<surface	count

>;

				<surface	records>	=	<surface	record>	^	<surface	

count>;

				<surface	record>	=

				<surface	record	1>	|

				<surface	record	2>	|

				<surface	record	3>	|

				<surface	record	4>	|

				<surface	record	5>	|

				<surface	record	6>	|

				<surface	record	7>	|

				<surface	record	8>	|

				<surface	record	9>	|

				<surface	record	10>	|

				<surface	record	11>;		

Plane	-	<	surface	record	1	>

Example

				1	0	0	3	0	0	1	1	0	-0	-0	1	0			

BNF-like	Definition

				<surface	record	1>	=	"1"	<_>	<3D	point>	(<_>	<3D

	direction>)	^	3	<_\n>;

Description

<surface	record	1>	describes	a	plane.	The	plane	data	consist	of	a	3D
point	P*	and	pairwise	orthogonal	3D	directions	*N,	Du*	and	*Dv.	The
plane	passes	through	the	point	P,	has	the	normal	*N*	and	is	defined	by
the	following	parametric	equation:

\[S(u,v)=P+u	\cdot	D_{u}+v	\cdot	D_{v},\;	(u,\;v)	\in	(-\infty,\;	\infty)	\times
(-\infty,\;	\infty).	\]

The	example	record	is	interpreted	as	a	plane	which	passes	through	a
point	P=(0,	0,	3),	has	a	normal	N=(0,	0,	1)	and	is	defined	by	the	following
parametric	equation:	\(S(u,v)=(0,0,3)+u	\cdot	(1,0,0)	+	v	\cdot	(0,1,0)	\).

Cylinder	-	<	surface	record	2	>

Example

				2	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

BNF-like	Definition

				<surface	record	2>	=	"2"	<_>	<3D	point>	(<_>	<3D

	direction>)	^	3	<_>	<real>	<_\n>;

Description

<surface	record	2>	describes	a	cylinder.	The	cylinder	data	consist	of	a
3D	point	P,	pairwise	orthogonal	3D	directions	Dv,	DX	and	DY*	and	a	non-
negative	real	*r.	The	cylinder	axis	passes	through	the	point	P*	and	has
the	direction	*Dv.	The	cylinder	has	the	radius	*r*	and	is	defined	by	the
following	parametric	equation:

\[S(u,v)=P+r	\cdot	(cos(u)	\cdot	D_{x}+sin(u)	\cdot	D_{y})+v	\cdot
D_{v},\;	(u,v)	\in	[0,\;	2	\cdot	\pi)	\times	(-\infty,\;	\infty)	.	\]

The	example	record	is	interpreted	as	a	cylinder	which	axis	passes
through	a	point	P=(1,	2,	3)	and	has	a	direction	Dv=(0,	0,	1).	Directions	for
the	cylinder	are	DX=(1,0,0)	and	DY=(0,1,0).	The	cylinder	has	a	radius
r=4	and	is	defined	by	the	following	parametric	equation:	\(S(u,v)=
(1,2,3)+4	\cdot	(cos(u)	\cdot	D_{X}	+	sin(u)	\cdot	D_{Y})	+	v	\cdot	D_{v}.
\)

Cone	-	<	surface	record	3	>

Example

				3	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

				0.75

BNF-like	Definition

				<surface	record	3>	=	"3"	<_>	<3D	point>	(<_>	<3D

	direction>)	^	3	(<_>	<real>)	^	2	<_\n>;		

Description

<surface	record	3>	describes	a	cone.	The	cone	data	consist	of	a	3D	point
P,	pairwise	orthogonal	3D	directions	DZ,	DX	and	DY,	a	non-negative	real
r	and	a	real	\(\varphi	\in	(-\pi	/2,\;	\pi/2)/\left	\{	0	\right	\}	\).	The	cone	axis
passes	through	the	point	P*	and	has	the	direction	*DZ.	The	plane	which
passes	through	the	point	P*	and	is	parallel	to	directions	*DX*	and	*DY*	is
the	cone	referenced	plane.	The	cone	section	by	the	plane	is	a	circle	with
the	radius	*r.	The	direction	from	the	point	*P*	to	the	cone	apex	is	\(-
sgn(\varphi)	\cdot	D_{Z}	\).	The	cone	has	a	half-angle	\(|	\varphi	|	\)	and	is

defined	by	the	following	parametric	equation:

\[S(u,v)=P+(r+v	\cdot	sin(\varphi))	\cdot	(cos(u)	\cdot	D_{X}+sin(u)	\cdot
D_{Y})+v	\cdot	cos(\varphi)	\cdot	D_{Z},	(u,v)	\in	[0,\;	2	\cdot	\pi)	\times	(-

\infty,\;	\infty)	.	\]

The	example	record	is	interpreted	as	a	cone	with	an	axis	which	passes
through	a	point	P=(1,	2,	3)	and	has	a	direction	DZ=(0,	0,	1).	Other	cone
data	are	DX=(1,	0,	0),	DY=(0,	1,	0),	r=4	and	\(\varphi	=	0.75	\).	The	cone
is	defined	by	the	following	parametric	equation:

\[S(u,v)=(1,2,3)+(4	+	v	\cdot	sin(0.75))	\cdot	(cos(u)	\cdot	(1,0,0)	+
sin(u)	\cdot	(0,1,0))	+	v	\cdot	cos(0.75)	\cdot	(0,0,1)	.	\]

Sphere	-	<	surface	record	4	>

Example

				4	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

BNF-like	Definition

				<surface	record	4>	=	"4"	<_>	<3D	point>	(<_>	<3D

	direction>)	^	3	<_>	<real>	<_\n>;		

Description

<surface	record	4>	describes	a	sphere.	The	sphere	data	consist	of	a	3D
point	P,	pairwise	orthogonal	3D	directions	DZ,	DX	and	DY*	and	a	non-
negative	real	*r.	The	sphere	has	the	center	P,	radius	*r*	and	is	defined	by
the	following	parametric	equation:

\[S(u,v)=P+r	\cdot	cos(v)	\cdot	(cos(u)	\cdot	D_{x}+sin(u)	\cdot	D_{y})	+r
\cdot	sin(v)	\cdot	D_{Z},\;	(u,v)	\in	[0,\;2	\cdot	\pi)	\times	[-\pi	/2,\;	\pi	/2]	.	\]

The	example	record	is	interpreted	as	a	sphere	with	its	center	P=(1,	2,	3).
Directions	for	the	sphere	are	DZ=(0,	0,	1),	DX=(1,	0,	0)	and	DY=(0,	1,	0).
The	sphere	has	a	radius	r=4	and	is	defined	by	the	following	parametric
equation:

\[S(u,v)=(1,2,3)+	4	\cdot	cos(v)	\cdot	(cos(u)	\cdot	(1,0,0)	+	sin(u)	\cdot
(0,1,0))	+	4	\cdot	sin(v)	\cdot	(0,0,1)	.	\]

Torus	-	<	surface	record	5	>

Example

				5	1	2	3	0	0	1	1	0	-0	-0	1	0	8		4		

BNF-like	Definition

				<surface	record	5>	=	"5"	<_>	<3D	point>	(<_>	<3D

	direction>)	^	3	(<_>	<real>)	^	2	<_\n>;		

Description

<surface	record	5>	describes	a	torus.	The	torus	data	consist	of	a	3D
point	P,	pairwise	orthogonal	3D	directions	DZ,	DX	and	DY*	and	non-
negative	reals	*r1*	and	*r2.	The	torus	axis	passes	through	the	point
P*	and	has	the	direction	*DZ.	r1*	is	the	distance	from	the	torus	circle
center	to	the	axis.	The	torus	circle	has	the	radius	*r2.	The	torus	is	defined
by	the	following	parametric	equation:

\[S(u,v)=P+(r_{1}+r_{2}	\cdot	cos(v))	\cdot	(cos(u)	\cdot	D_{x}+sin(u)
\cdot	D_{y})	+r_{2}	\cdot	sin(v)	\cdot	D_{Z},\;	(u,v)	\in	[0,\;2	\cdot	\pi)

\times	[0,\;	2	\cdot	\pi)	.	\]

The	example	record	is	interpreted	as	a	torus	with	an	axis	which	passes
through	a	point	P=(1,	2,	3)	and	has	a	direction	DZ=(0,	0,	1).	DX=(1,	0,	0),
DY=(0,	1,	0),	r1=8	and	r2=4	for	the	torus.	The	torus	is	defined	by	the
following	parametric	equation:

\[S(u,v)=(1,2,3)+	(8+4	\cdot	cos(v))	\cdot	(cos(u)	\cdot	(1,0,0)	+	sin(u)
\cdot	(0,1,0))	+	4	\cdot	sin(v)	\cdot	(0,0,1)	.	\]

Linear	Extrusion	-	<	surface	record	6	>

Example

				6	0	0.6	0.8			

				2	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

BNF-like	Definition

				<surface	record	6>	=	"6"	<_>	<3D	direction>	<_\n

>	<3D	curve	record>;		

Description

<surface	record	6>	describes	a	linear	extrusion	surface.	The	surface	data
consist	of	a	3D	direction	Dv*	and	a	<3D	curve	record>.	The	linear
extrusion	surface	has	the	direction	*Dv,	the	base	curve	*C*	described	in
the	record	and	is	defined	by	the	following	parametric	equation:

\[S(u,v)=C(u)+v	\cdot	D_{v},\;	(u,v)	\in	domain(C)	\times	(-\infty,\;	\infty)	.
\]

The	example	record	is	interpreted	as	a	linear	extrusion	surface	with	a
direction	Dv=(0,	0.6,	0.8).	The	base	curve	is	a	circle	for	the	surface.	The
surface	is	defined	by	the	following	parametric	equation:

\[S(u,v)=(1,2,3)+4	\cdot	(cos(u)	\cdot	(1,0,0)+sin(u)	\cdot	(0,1,0))+v	\cdot
(0,	0.6,	0.8),\;	(u,v)	\in	[0,\;	2	\cdot	\pi)	\times	(-\infty,\;	\infty).	\]

Revolution	Surface	-	<	surface	record	7	>

Example

				7	-4	0	3	0	1	0			

				2	1	2	3	0	0	1	1	0	-0	-0	1	0	4		

BNF-like	Definition

				<surface	record	7>	=	"7"	<_>	<3D	point>	<_>	<3D	

direction>	<_\n>	<3D	curve	record>;		

Description

<surface	record	7>	describes	a	revolution	surface.	The	surface	data
consist	of	a	3D	point	P,	a	3D	direction	D*	and	a	<3D	curve	record>.	The
surface	axis	passes	through	the	point	*P*	and	has	the	direction	*D.	The
base	curve	*C*	described	by	the	record	and	the	axis	are	coplanar.	The
surface	is	defined	by	the	following	parametric	equation:

\[S(u,v)=	P+V_{D}(v)+cos(u)	\cdot	(V(v)-V_{D}(v))+sin(u)	\cdot	[D,V(v)],\;
(u,v)	\in	[0,\;	2	\cdot	\pi)\times	domain(C)	\]

where	\(V(v)=C(v)-P,	V_{D}(v)=(D,V(v))	\cdot	D	\).

The	example	record	is	interpreted	as	a	revolution	surface	with	an	axis
which	passes	through	a	point	P=(-4,	0,	3)	and	has	a	direction	D=(0,	1,	0).
The	base	curve	is	a	circle	for	the	surface.	The	surface	is	defined	by	the
following	parametric	equation:

\[S(u,v)=	(-4,0,3)+V_{D}(v)+cos(u)	\cdot	(V(v)-V_{D}(v))+sin(u)	\cdot
[(0,1,0),V(v)],\;(u,v)	\in	[0,\;	2	\cdot	\pi)\times	[0,\;	2	\cdot	\pi)	\]

where	\(V(v)=(5,2,0)+4	\cdot	(cos(v)	\cdot	(1,0,0)+sin(v)	\cdot	(0,1,0)),
V_{D}(v)=((0,1,0),V(v))	\cdot	(0,1,0)	\).

Bezier	Surface	-	<	surface	record	8	>

Example

				8	1	1	2	1	0	0	1		7	1	0	-4		10				

				0	1	-2		8	1	1	5		11			

				0	2	3		9	1	2	6		12			

BNF-like	Definition

<surface	record	8>	=	"8"	<_>	<Bezier	surface	u	

rational	flag>	<_>	<Bezier	surface	v	rational	

flag>	<_>	<Bezier	surface	u	degree>	<_>	<Bezier	

surface	v	degree>	<_>	

<Bezier	surface	weight	poles>;

<Bezier	surface	u	rational	flag>	=	<flag>;

<Bezier	surface	v	rational	flag>	=	<flag>;

<Bezier	surface	u	degree>	=	<int>;

<Bezier	surface	v	degree>	=	<int>;

<Bezier	surface	weight	poles>	=

(<Bezier	surface	weight	pole	group>	<_\n>)	^	(<Bezier	

surface	u	degree>	<+>	"1");

<Bezier	surface	weight	pole	group>	=	<Bezier	surface	

weight	pole>

(<_>	<Bezier	surface	weight	pole>)	^	<Bezier	surface	

v	degree>;

<Bezier	surface	weight	pole>	=	<3D	point>	[<_>	

<real>];		

Description

<surface	record	8>	describes	a	Bezier	surface.	The	surface	data	consist
of	a	u	rational	flag	ru,	v	rational	flag	rv,	u	degree	\(m_{u}	\leq	25	\),	v
degree	\(m_{v}	\leq	25	\)	and	weight	poles.

The	weight	poles	are	\((m_{u}+1)	\cdot	(m_{v}+1)	\)	3D	points	\(B_{i,j}\;
((i,j)	\in	\left	\{	0,...,m_{u}	\right	\}	\times	\left	\{	0,...,m_{v}	\right	\})	\)	if	\(
r_{u}+r_{v}=0	\).	The	weight	poles	are	\((m_{u}+1)	\cdot	(m_{v}+1)
\)	pairs	\(B_{i,j}h_{i,j}\;	((i,j)	\in	\left	\{	0,...,m_{u}	\right	\}	\times	\left	\{
0,...,m_{v}	\right	\})	\)	if	\(r_{u}+r_{v}	\neq	0	\).	Here	\(B_{i,j}	\)	is	a	3D
point	and	\(h_{i,j}	\)	is	a	positive	real	\(((i,j)	\in	\left	\{	0,...,m_{u}	\right	\}
\times	\left	\{	0,...,m_{v}	\right	\})	\).	\(h_{i,j}=1\;	((i,j)	\in	\left	\{	0,...,m_{u}
\right	\}	\times	\left	\{	0,...,m_{v}	\right	\})	\)	if	\(r_{u}+r_{v}	=	0	\).

The	Bezier	surface	is	defined	by	the	following	parametric	equation:

\[S(u,v)=\frac{\sum_{i=0}^{m_{u}}	\sum_{j=0}^{m_{v}}	B_{i,j}	\cdot	h_{i,j}
\cdot	C_{m_{u}}^{i}	\cdot	u^{i}	\cdot	(1-u)^{m_{u}-i}	\cdot	C_{m_{v}}^{j}
\cdot	v^{j}	\cdot	(1-v)^{m_{v}-j}}{\sum_{i=0}^{m_{u}}	\sum_{j=0}^{m_{v}}

h_{i,j}	\cdot	C_{m_{u}}^{i}	\cdot	u^{i}	\cdot	(1-u)^{m_{u}-i}	\cdot
C_{m_{v}}^{j}	\cdot	v^{j}	\cdot	(1-v)^{m_{v}-j}},	(u,v)	\in	[0,1]	\times	[0,1]	\]

where	\(0^{0}	\equiv	1	\).

The	example	record	is	interpreted	as	a	Bezier	surface	with	a	u	rational
flag	ru=1,	v	rational	flag	rv=1,	u	degree	mu=2,	v	degree	mv=1,	weight
poles	B0,0=(0,	0,	1),	h0,0=7,	B0,1=(1,	0,	-4),	h0,1=10,	B1,0=(0,	1,	-2),	h1,0=8,
B1,1=(1,	1,	5),	h1,1=11,	B2,0=(0,	2,	3),	h2,0=9	and	B2,1=(1,	2,	6),	h2,1=12.
The	surface	is	defined	by	the	following	parametric	equation:

\[\begin{align}	S(u,v)=	[(0,0,1)	\cdot	7	\cdot	(1-u)^{2}	\cdot	(1-v)+(1,0,-4)
\cdot	10	\cdot	(1-u)^{2}	\cdot	v+	(0,1,-2)	\cdot	8	\cdot	2	\cdot	u	\cdot	(1-u)
\cdot	(1-v)	+	\\	(1,1,5)	\cdot	11	\cdot	2	\cdot	u	\cdot	(1-u)	\cdot	v+	(0,2,3)
\cdot	9	\cdot	u^{2}	\cdot	(1-v)+(1,2,6)	\cdot	12	\cdot	u^{2}	\cdot	v]	\div	[7
\cdot	(1-u)^{2}	\cdot	(1-v)+	\\	10	\cdot	(1-u)^{2}	\cdot	v+	8	\cdot	2	\cdot	u
\cdot	(1-u)	\cdot	(1-v)+	11	\cdot	2	\cdot	u	\cdot	(1-u)	\cdot	v+	9	\cdot	u^{2}

\cdot	(1-v)+12	\cdot	u^{2}	\cdot	v]	\end{align}	\]

B-spline	Surface	-	<	surface	record	9	>

Example

				9		1	1	0	0	1	1	3	2	5	4	0	0	1		7	1	0	-4		10			

				0		1	-2		8	1	1	5		11			

				0		2	3		9	1	2	6		12			

					

				0		1		

				0.25		1		

				0.5		1		

				0.75		1		

				1		1		

					

				0		1		

				0.3		1		

				0.7		1		

				1	1		

BNF-like	Definition

				<surface	record	9>	=	"9"	<_>	<B-spline	surface	u

	rational	flag>	<_>	

				<B-spline	surface	v	rational	flag>	<_>	"0"	<_>	"

0"	<_>	<B-spline	surface	u	degree>	<_>	

				<B-spline	surface	v	degree>	<_>	<B-spline	surfac

e	u	pole	count>	<_>	

				<B-spline	surface	v	pole	count>	<_>	<B-spline	su

rface	u	multiplicity	knot	count>	<_>	

				<B-spline	surface	v	multiplicity	knot	count>	<_>

	<B-spline	surface	weight	poles>	<_\n>	

				<B-spline	surface	u	multiplicity	knots>	<_\n>	<B

-spline	surface	v	multiplicity	knots>;

				<B-spline	surface	u	rational	flag>	=	<flag>;

				<B-spline	surface	v	rational	flag>	=	<flag>;

				<B-spline	surface	u	degree>	=	<int>;

				<B-spline	surface	v	degree>	=	<int>;

				<B-spline	surface	u	pole	count>	=	<int>;

				<B-spline	surface	v	pole	count>	=	<int>;

				<B-spline	surface	u	multiplicity	knot	count>	=	<

int>;

				<B-spline	surface	v	multiplicity	knot	count>	=	<

int>;

				<B-spline	surface	weight	poles>	=

				(<B-spline	surface	weight	pole	group>	<_\n>)	^	<

B-spline	surface	u	pole	count>;

				<B-spline	surface	weight	pole	group>	=

				(<B-spline	surface	weight	pole>	<_>)	^	<B-spline

	surface	v	pole	count>;

				<B-spline	surface	weight	pole>	=	<3D	point>	[<_>

	<real>];

				<B-spline	surface	u	multiplicity	knots>	=

				(<B-spline	surface	u	multiplicity	knot>	<_\n>)	^

	<B-spline	surface	u	multiplicity	knot	count>;

				<B-spline	surface	u	multiplicity	knot>	=	<real>	

<_>	<int>;

				<B-spline	surface	v	multiplicity	knots>	=

				(<B-spline	surface	v	multiplicity	knot>	<_\n>)	^

	<B-spline	surface	v	multiplicity	knot	count>;

				<B-spline	surface	v	multiplicity	knot>	=	<real>	

<_>	<int>;

Description

<surface	record	9>	describes	a	B-spline	surface.	The	surface	data
consist	of	a	u	rational	flag	ru,	v	rational	flag	rv,	u	degree	\(m_{u}	\leq	25
\),	v	degree	\(m_{v}	\leq	25	\),	u	pole	count	\(n_{u}	\geq	2	\),	v	pole	count
\(n_{v}	\geq	2	\),	u	multiplicity	knot	count	ku,	v	multiplicity	knot	count	kv,
weight	poles,	u	multiplicity	knots,	v	multiplicity	knots.

The	weight	poles	are	\(n_{u}	\cdot	n_{v}	\)	3D	points	\(B_{i,j}\;	((i,j)	\in
\left	\{	1,...,n_{u}	\right	\}	\times	\left	\{	1,...,n_{v}	\right	\})	\)	if	\(
r_{u}+r_{v}=0	\).	The	weight	poles	are	\(n_{u}	\cdot	n_{v}	\)	pairs	\(
B_{i,j}h_{i,j}\;	((i,j)	\in	\left	\{	1,...,n_{u}	\right	\}	\times	\left	\{	1,...,n_{v}	\right
\})	\)	if	\(r_{u}+r_{v}	\neq	0	\).	Here	\(B_{i,j}	\)	is	a	3D	point	and	\(h_{i,j}
\)	is	a	positive	real	\(((i,j)	\in	\left	\{	1,...,n_{u}	\right	\}	\times	\left	\{
1,...,n_{v}	\right	\})	\).	\(h_{i,j}=1\;	((i,j)	\in	\left	\{	1,...,n_{u}	\right	\}	\times
\left	\{	1,...,n_{v}	\right	\})	\)	if	\(r_{u}+r_{v}	=	0	\).

The	u	multiplicity	knots	are	*ku*	pairs	\(u_{1}q_{1}	...	u_{k_{u}}q_{k_{u}}
\).	Here	\(u_{i}	\)	is	a	knot	with	multiplicity	\(q_{i}	\geq	1	\;(1\leq	i\leq
k_{u})	\)	so	that

\[u_{i}	<	u_{i+1}	\;	(1\leq	i\leq	k_{u}-1),	\\	q_{1}	\leq	m_{u}+1,\;	q_{k_{u}}
\leq	m_{u}+1,\;	q_{i}	\leq	m_{u}\;	(2\leq	i\leq	k_{u}-1),\;

\sum_{i=1}^{k_{u}}q_{i}=m_{u}+n_{u}+1.	\]

The	v	multiplicity	knots	are	*kv*	pairs	\(v_{1}t_{1}	...	v_{k_{v}}t_{k_{v}}	\).
Here	\(v_{j}	\)	is	a	knot	with	multiplicity	\(t_{i}	\geq	1\;(1\leq	i\leq	k_{v})	\)
so	that

\[v_{j}	<	v_{j+1}	\;	(1\leq	j\leq	k_{v}-1),	\\	t_{1}	\leq	m_{v}+1,\;	t_{k_{v}}	\leq
m_{v}+1,\;	t_{j}	\leq	m_{v}\;	(2\leq	j\leq	k_{v}-1),\;

\sum_{j=1}^{k_{v}}t_{j}=m_{v}+n_{v}+1.	\]

The	B-spline	surface	is	defined	by	the	following	parametric	equation:

\[S(u,v)=\frac{\sum_{i=1}^{n_{u}}	\sum_{j=1}^{n_{v}}	B_{i,j}	\cdot	h_{i,j}
\cdot	N_{i,m_{u}+1}(u)	\cdot	M_{j,m_{v}+1}(v)}{\sum_{i=1}^{n_{u}}

\sum_{j=1}^{n_{v}}	h_{i,j}	\cdot	N_{i,m_{u}+1}(u)	\cdot	M_{j,m_{v}+1}(v)},
(u,v)	\in	[u_{1},u_{k_{u}}]	\times	[v_{1},v_{k_{v}}]	\]

where	functions	Ni,j*	and	*Mi,j*	have	the	following	recursion	definition	by
*j:

\[\begin{align}	N_{i,1}(u)=	\left\{\begin{matrix}	1\Leftarrow	\bar{u}_{i}	\leq
u	\leq	\bar{u}_{i+1}	0\Leftarrow	u	<	\bar{u}_{i}	\vee	\bar{u}_{i+1}	\leq	u
\end{matrix}	\right.,\;	\\	N_{i,j}(u)=\frac{(u-\bar{u}_{i})	\cdot	N_{i,j-1}(u)	}
{\bar{u}_{i+j-1}-\bar{u}_{i}}+	\frac{(\bar{u}_{i+j}-u)	\cdot	N_{i+1,j-1}(u)}
{\bar{u}_{i+j}-\bar{u}_{i+1}},\;(2	\leq	j	\leq	m_{u}+1),	\;	\\	M_{i,1}(v)=\left\

{\begin{matrix}	1\Leftarrow	\bar{v}_{i}	\leq	v	\leq	\bar{v}_{i+1}\\	0\Leftarrow
v	<	\bar{v}_{i}	\vee	\bar{v}_{i+1}	\leq	v	\end{matrix}	\right.,\;	\\	M_{i,j}
(v)=\frac{(v-\bar{v}_{i})	\cdot	M_{i,j-1}(v)	}{\bar{v}_{i+j-1}-\bar{v}_{i}}+

\frac{(\bar{v}_{i+j}-v)	\cdot	M_{i+1,j-1}(v)}{\bar{v}_{i+j}-\bar{v}_{i+1}},\;(2
\leq	j	\leq	m_{v}+1);	\end{align}	\]

where

\[\bar{u}_{i}=u_{j}\;	(1	\leq	j	\leq	k_{u},\;	\sum_{l=1}^{j-1}q_{l}	\leq	i	\leq
\sum_{l=1}^{j}q_{l}),	\\	\bar{v}_{i}=v_{j}\;	(1	\leq	j	\leq	k_{v},\;	\sum_{l=1}^{j-

1}t_{l}	\leq	i	\leq	\sum_{l=1}^{j}t_{l});	\]

The	example	record	is	interpreted	as	a	B-spline	surface	with	a	u	rational
flag	ru=1,	v	rational	flag	rv=1,	u	degree	mu=1,	v	degree	mv=1,	u	pole
count	nu=3,	v	pole	count	nv=2,	u	multiplicity	knot	count	ku=5,	v	multiplicity
knot	count	kv=4,	weight	poles	B1,1=(0,	0,	1),	h1,1=7,	B1,2=(1,	0,	-4),
h1,2=10,	B2,1=(0,	1,	-2),	h2,1=8,	B2,2=(1,	1,	5),	h2,2=11,	B3,1=(0,	2,	3),
h3,1=9	and	B3,2=(1,	2,	6),	h3,2=12,	u	multiplicity	knots	u1=0,	q1=1,
u2=0.25,	q2=1,	u3=0.5,	q3=1,	u4=0.75,	q4=1	and	u5=1,	q5=1,	v	multiplicity
knots	v1=0,	r1=1,	v2=0.3,	r2=1,	v3=0.7,	r3=1	and	v4=1,	r4=1.	The	B-spline
surface	is	defined	by	the	following	parametric	equation:

\[\begin{align}	S(u,v)=	[(0,0,1)	\cdot	7	\cdot	N_{1,2}(u)	\cdot	M_{1,2}(v)+
(1,0,-4)	\cdot	10	\cdot	N_{1,2}(u)	\cdot	M_{2,2}(v)+	\\	(0,1,-2)	\cdot	8	\cdot

N_{2,2}(u)	\cdot	M_{1,2}(v)+(1,1,5)	\cdot	11	\cdot	N_{2,2}(u)	\cdot
M_{2,2}(v)+	\\	(0,2,3)	\cdot	9	\cdot	N_{3,2}(u)	\cdot	M_{1,2}(v)+(1,2,6)

\cdot	12	\cdot	N_{3,2}(u)	\cdot	M_{2,2}(v)]	\div	\\	[7	\cdot	N_{1,2}(u)	\cdot
M_{1,2}(v)+10	\cdot	N_{1,2}(u)	\cdot	M_{2,2}(v)+	8	\cdot	N_{2,2}(u)	\cdot
M_{1,2}(v)+	\\	11	\cdot	N_{2,2}(u)	\cdot	M_{2,2}(v)+	9	\cdot	N_{3,2}(u)
\cdot	M_{1,2}(v)+12	\cdot	N_{3,2}(u)	\cdot	M_{2,2}(v)]	\end{align}	\]

Rectangular	Trim	Surface	-	<	surface	record	10	>

Example

				10	-1	2	-3	4		

				1	1	2	3	0	0	1	1	0	-0	-0	1	0			

BNF-like	Definition

				<surface	record	10>	=	"10"	<_>	<trim	surface	u	m

in>	<_>	<trim	surface	u	max>	<_>	

				<trim	surface	v	min>	<_>	<trim	surface	v	max>	<_

\n>	<surface	record>;

				<trim	surface	u	min>	=	<real>;

				<trim	surface	u	max>	=	<real>;

				<trim	surface	v	min>	=	<real>;

				<trim	surface	v	max>	=	<real>;		

Description

<surface	record	10>	describes	a	rectangular	trim	surface.	The	surface
data	consist	of	reals	umin,	umax,	vmin*	and	*vmax*	and	a	<surface	record>
so	that	*umin	<	umax*	and	*vmin	<	vmax.	The	rectangular	trim	surface	is	a
restriction	of	the	base	surface	*B*	described	in	the	record	to	the	set	\(
[u_{min},u_{max}]	\times	[v_{min},v_{max}]	\subseteq	domain(B)	\).	The
rectangular	trim	surface	is	defined	by	the	following	parametric	equation:

\[S(u,v)=B(u,v),\;	(u,v)	\in	[u_{min},u_{max}]	\times	[v_{min},v_{max}]	.	\]

The	example	record	is	interpreted	as	a	rectangular	trim	surface	to	the	set
[-1,	2]x[-3,	4]	for	the	base	surface	\(B(u,v)=(1,2,3)+u	\cdot	(1,0,0)+v	\cdot
(0,1,0)	\).	The	rectangular	trim	surface	is	defined	by	the	following
parametric	equation:	\(B(u,v)=(1,2,3)+u	\cdot	(1,0,0)+	v	\cdot	(0,1,0),\;
(u,v)	\in	[-1,2]	\times	[-3,4]	\).

Offset	Surface	-	<	surface	record	11	>

Example

				11	-2		

				1	1	2	3	0	0	1	1	0	-0	-0	1	0			

BNF-like	Definition

				<surface	record	11>	=	"11"	<_>	<surface	record	d

istance>	<_\n>	<surface	record>;

				<surface	record	distance>	=	<real>;		

Description

<surface	record	11>	describes	an	offset	surface.	The	offset	surface	data

consist	of	a	distance	d*	and	a	<surface	record>.	The	offset	surface	is	the
result	of	offsetting	the	base	surface	*B*	described	in	the	record	to	the
distance	*d*	along	the	normal	*N*	of	surface	*B.	The	offset	surface	is
defined	by	the	following	parametric	equation:

\[S(u,v)=B(u,v)+d	\cdot	N(u,v),\;	(u,v)	\in	domain(B)	.	\\	N(u,v)	=	[S'_{u}
(u,v),S'_{v}(u,v)]	\]

if	\([S'_{u}(u,v),S'_{v}(u,v)]	\neq	\vec{0}	\).

The	example	record	is	interpreted	as	an	offset	surface	with	a	distance
d=-2	and	base	surface	\(B(u,v)=(1,2,3)+u	\cdot	(1,0,0)+v	\cdot	(0,1,0)	\).
The	offset	surface	is	defined	by	the	following	parametric	equation:	\(
S(u,v)=(1,2,3)+u	\cdot	(1,0,0)+v	\cdot	(0,1,0)-2	\cdot	(0,0,1)	\).

2D	curves
Example

				Curve2ds	24		

				1	0	0	1	0			

				1	0	0	1	0			

				1	3	0	0	-1			

				1	0	0	0	1			

				1	0	-2	1	0			

				1	0	0	1	0			

				1	0	0	0	-1			

				1	0	0	0	1			

				1	0	0	1	0			

				1	0	1	1	0			

				1	3	0	0	-1			

				1	1	0	0	1			

				1	0	-2	1	0			

				1	0	1	1	0			

				1	0	0	0	-1			

				1	1	0	0	1			

				1	0	0	0	1			

				1	0	0	1	0			

				1	3	0	0	1			

				1	0	0	1	0			

				1	0	0	0	1			

				1	0	2	1	0			

				1	3	0	0	1			

				1	0	2	1	0			

BNF-like	Definition

				<2D	curves>	=	<2D	curve	header>	<_\n>	<2D	curve	

records>;

				<2D	curve	header>	=	"Curve2ds"	<_>	<2D	curve	cou

nt>;

				<2D	curve	count>	=	<int>;

				<2D	curve	records>	=	<2D	curve	record>	^	<2D	cur

ve	count>;

				<2D	curve	record>	=

				<2D	curve	record	1>	|

				<2D	curve	record	2>	|

				<2D	curve	record	3>	|

				<2D	curve	record	4>	|

				<2D	curve	record	5>	|

				<2D	curve	record	6>	|

				<2D	curve	record	7>	|

				<2D	curve	record	8>	|

				<2D	curve	record	9>;		

Line	-	<2D	curve	record	1>

Example

				1	3	0	0	-1			

BNF-like	Definition

				<2D	curve	record	1>	=	"1"	<_>	<2D	point>	<_>	<2D

	direction>	<_\n>;		

Description

<2D	curve	record	1>	describes	a	line.	The	line	data	consist	of	a	2D	point
P*	and	a	2D	direction	*D.	The	line	passes	through	the	point	P,	has	the
direction	*D*	and	is	defined	by	the	following	parametric	equation:

\[C(u)=P+u	\cdot	D,	\;	u	\in	(-\infty,\;	\infty).	\]

The	example	record	is	interpreted	as	a	line	which	passes	through	a	point

P=(3,0),	has	a	direction	D=(0,-1)	and	is	defined	by	the	following
parametric	equation:	\(C(u)=(3,0)+	u	\cdot	(0,-1)	\).

Circle	-	<2D	curve	record	2>

Example

				2	1	2	1	0	-0	1	3		

BNF-like	Definition

<2D	curve	record	2>	=	"2"	<_>	<2D	circle	center>	<_>	

<2D	circle	Dx>	<_>	<2D	circle	Dy>	<_>	<2D	circle	

radius>	<_\n>;

<2D	circle	center>	=	<2D	point>;

<2D	circle	Dx>	=	<2D	direction>;

<2D	circle	Dy>	=	<2D	direction>;

<2D	circle	radius>	=	<real>;		

Description

<2D	curve	record	2>	describes	a	circle.	The	circle	data	consist	of	a	2D
point	P,	orthogonal	2D	directions	Dx*	and	*Dy*	and	a	non-negative	real	*r.
The	circle	has	a	center	P.	The	circle	plane	is	parallel	to	directions
Dx*	and	*Dy.	The	circle	has	a	radius	*r*	and	is	defined	by	the	following
parametric	equation:

\[C(u)=P+r	\cdot	(cos(u)	\cdot	D_{x}	+	sin(u)	\cdot	D_{y}),\;	u	\in	[0,\;	2
\cdot	\pi)	.	\]

The	example	record	is	interpreted	as	a	circle	which	has	a	center	P=(1,2).
The	circle	plane	is	parallel	to	directions	Dx=(1,0)	and	Dy=(0,1).	The	circle
has	a	radius	r=3	and	is	defined	by	the	following	parametric	equation:	\(
C(u)=(1,2)+3	\cdot	(cos(u)	\cdot	(1,0)	+	sin(u)	\cdot	(0,1))	\).

Ellipse	-	<2D	curve	record	3>

Example

				3	1	2	1	0	-0	1	4	3		

BNF-like	Definition

				<2D	curve	record	3>	=	"3"	<_>	<2D	ellipse	center

>	<_>	<2D	ellipse	Dmaj>	<_>	

				<2D	ellipse	Dmin>	<_>	<2D	ellipse	Rmaj>	<_>	<2D	

ellipse	Rmin>	<_\n>;

				<2D	ellipse	center>	=	<2D	point>;

				<2D	ellipse	Dmaj>	=	<2D	direction>;

				<2D	ellipse	Dmin>	=	<2D	direction>;

				<2D	ellipse	Rmaj>	=	<real>;

				<2D	ellipse	Rmin>	=	<real>;	

Description

<2D	curve	record	3>	describes	an	ellipse.	The	ellipse	data	are	2D	point
P,	orthogonal	2D	directions	*Dmaj*	and	*Dmin*	and	non-negative	reals
rmaj	and	*rmin*	that	*rmaj*		\(\leq	\)	rmin.	The	ellipse	has	a	center	P,	major
and	minor	axis	directions	Dmaj*	and	*Dmin,	major	and	minor	radii
rmaj	and	*rmin*	and	is	defined	by	the	following	parametric	equation:

\[C(u)=P+r_{maj}	\cdot	cos(u)	\cdot	D_{maj}+r_{min}	\cdot	sin(u)	\cdot
D_{min},\;	u	\in	[0,\;	2	\cdot	\pi)	.	\]

The	example	record	is	interpreted	as	an	ellipse	which	has	a	center	P=
(1,2),	major	and	minor	axis	directions	Dmaj=(1,0)	and	Dmin=(0,1),	major
and	minor	radii	rmaj=4	and	rmin=3	and	is	defined	by	the	following

parametric	equation:	\(C(u)=(1,2)+4	\cdot	cos(u)	\cdot	(1,0)+3	\cdot
sin(u)	\cdot	(0,1)	\).

Parabola	-	<2D	curve	record	4>

Example

				4	1	2	1	0	-0	1	16		

BNF-like	Definition

				<2D	curve	record	4>	=	"4"	<_>	<2D	parabola	origi

n>	<_>	<2D	parabola	Dx>	<_>	

				<2D	parabola	Dy>	<_>	<2D	parabola	focal	length>	

<_\n>;

				<2D	parabola	origin>	=	<2D	point>;

				<2D	parabola	Dx>	=	<2D	direction>;

				<2D	parabola	Dy>	=	<2D	direction>;

				<2D	parabola	focal	length>	=	<real>;		

Description

<2D	curve	record	4>	describes	a	parabola.	The	parabola	data	consist	of
a	2D	point	P,	orthogonal	2D	directions	Dx*	and	*Dy*	and	a	non-negative
real	*f.	The	parabola	coordinate	system	has	its	origin	P*	and	axis
directions	*Dx*	and	*Dy.	The	parabola	has	a	focus	length	*f*	and	is
defined	by	the	following	parametric	equation:

\[C(u)=P+\frac{u^{2}}{4	\cdot	f}	\cdot	D_{x}+u	\cdot	D_{y},\;	u	\in	(-\infty,\;
\infty)	\Leftarrow	f	\neq	0;\\	C(u)=P+u	\cdot	D_{x},\;	u	\in	(-\infty,\;	\infty)

\Leftarrow	f	=	0\;	(degenerated\;case).	\]

The	example	record	is	interpreted	as	a	parabola	in	plane	which	passes
through	a	point	P=(1,2)	and	is	parallel	to	directions	Dx=(1,0)	and	Dy=

(0,1).	The	parabola	has	a	focus	length	f=16	and	is	defined	by	the
following	parametric	equation:	\(C(u)=(1,2)+	\frac{u^{2}}{64}	\cdot	(1,0)+u
\cdot	(0,1)	\).

Hyperbola	-	<2D	curve	record	5>

Example

5	1	2	1	0	-0	1	3	4

BNF-like	Definition

				<2D	curve	record	5>	=	"5"	<_>	<2D	hyperbola	orig

in>	<_>	<2D	hyperbola	Dx>	<_>	

				<2D	hyperbola	Dy>	<_>	<2D	hyperbola	Kx>	<_>	<2D	

hyperbola	Ky>	<_\n>;

				<2D	hyperbola	origin>	=	<2D	point>;

				<2D	hyperbola	Dx>	=	<2D	direction>;

				<2D	hyperbola	Dy>	=	<2D	direction>;

				<2D	hyperbola	Kx>	=	<real>;

				<2D	hyperbola	Ky>	=	<real>;		

Description

<2D	curve	record	5>	describes	a	hyperbola.	The	hyperbola	data	consist
of	a	2D	point	P,	orthogonal	2D	directions	Dx*	and	*Dy*	and	non-negative
reals	*kx*	and	*ky.	The	hyperbola	coordinate	system	has	origin	P*	and
axis	directions	*Dx*	and	*Dy.	The	hyperbola	is	defined	by	the	following
parametric	equation:

\[C(u)=P+k_{x}	\cdot	cosh(u)	D_{x}+k_{y}	\cdot	sinh(u)	\cdot	D_{y},\;	u	\in
(-\infty,\;	\infty).	\]

The	example	record	is	interpreted	as	a	hyperbola	with	coordinate	system

which	has	origin	P=(1,2)	and	axis	directions	Dx=(1,0)	and	Dy=(0,1).	Other
data	for	the	hyperbola	are	kx=5	and	ky=4.	The	hyperbola	is	defined	by	the
following	parametric	equation:	\(C(u)=(1,2)+3	\cdot	cosh(u)	\cdot	(1,0)+4
\cdot	sinh(u)	\cdot	(0,1)	\).

Bezier	Curve	-	<2D	curve	record	6>

Example

6	1	2	0	1		4	1	-2		5	2	3		6			

BNF-like	Definition

				<2D	curve	record	6>	=	"6"	<_>	<2D	Bezier	rationa

l	flag>	<_>	<2D	Bezier	degree>	

				<2D	Bezier	weight	poles>	<_\n>;

				<2D	Bezier	rational	flag>	=	<flag>;

				<2D	Bezier	degree>	=	<int>;

				<2D	Bezier	weight	poles>	=	(<_>	<2D	Bezier	weigh

t	pole>)	^	(<2D	Bezier	degree>	<+>	“1”);

				<2D	Bezier	weight	pole>	=	<2D	point>	[<_>	<real>

];

Description

<2D	curve	record	6>	describes	a	Bezier	curve.	The	curve	data	consist	of
a	rational	flag	r,	a	degree	\(m	\leq	25	\)	and	weight	poles.

The	weight	poles	are	m+1	2D	points	B0	...	Bm*	if	the	flag	*r*	is	0.	The
weight	poles	are	*m+1	pairs	*B0h0	...	Bmhm*	if	the	flag	*r*	is	1.	Here	*Bi*	is
a	2D	point	and	*hi*	is	a	positive	real	\((0\leq	i\leq	m)	\).	hi=1	\((0\leq	i\leq
m)	\)	if	the	flag	*r*	is	0.

The	Bezier	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=	\frac{\sum_{i=0}^{m}	B_{i}	\cdot	h_{i}	\cdot	C_{m}^{i}	\cdot	u^{i}
\cdot	(1-u)^{m-i}}{\sum_{i=0}^{m}	h_{i}	\cdot	C_{m}^{i}	\cdot	u^{i}	\cdot	(1-

u)^{m-i}},\;	u	\in	[0,1]	\]

where	\(0^{0}	\equiv	1	\).

The	example	record	is	interpreted	as	a	Bezier	curve	with	a	rational	flag
r=1,	a	degree	m=2	and	weight	poles	B0=(0,1),	h0=4,	B1=(1,-2),	h1=5	and
B2=(2,3),	h2=6.	The	Bezier	curve	is	defined	by	the	following	parametric
equation:

\[C(u)=	\frac{(0,1)	\cdot	4	\cdot	(1-u)^{2}+(1,-2)	\cdot	5	\cdot	2	\cdot	u
\cdot	(1-u)+(2,3)	\cdot	6	\cdot	u^{2}}{	4	\cdot	(1-u)^{2}+5	\cdot	2	\cdot	u

\cdot	(1-u)+6	\cdot	u^{2}}	.	\]

B-spline	Curve	-	<2D	curve	record	7>

Example

7	1	0		1	3	5		0	1		4	1	-2		5		2	3		6		

	0	1	0.25	1	0.5	1	0.75	1	1	1		

BNF-like	Definition

<2D	curve	record	7>	=	"7"	<_>	<2D	B-spline	rational	

flag>	<_>	"0"	<_>	<2D	B-spline	degree>	<_>	<2D	

B-spline	pole	count>	<_>	<2D	B-spline	

multiplicity	knot	count>	<2D	B-spline	weight	

poles>	<_\n>	<2D	B-spline	multiplicity	knots>	

<_\n>;

<2D	B-spline	rational	flag>	=	<flag>;

<2D	B-spline	degree>	=	<int>;

<2D	B-spline	pole	count>	=	<int>;

<2D	B-spline	multiplicity	knot	count>	=	<int>;

<2D	B-spline	weight	poles>	=	<2D	B-spline	weight	

pole>	^	<2D	B-spline	pole	count>;

<2D	B-spline	weight	pole>	=	<_>	<2D	point>	[<_>	

<real>];

<2D	B-spline	multiplicity	knots>	=

<2D	B-spline	multiplicity	knot>	^	<2D	B-spline	

multiplicity	knot	count>;

<2D	B-spline	multiplicity	knot>	=	<_>	<real>	<_>	

<int>;

Description

<2D	curve	record	7>	describes	a	B-spline	curve.	The	curve	data	consist
of	a	rational	flag	r,	a	degree	\(m	\leq	25	\),	a	pole	count	\(n	\geq	2	\),	a
multiplicity	knot	count	k,	weight	poles	and	multiplicity	knots.

The	weight	poles	are	*n*	2D	points	*B1	...	Bn*	if	the	flag	*r*	is	0.	The
weight	poles	are	*n*	pairs	*B1h1	...	Bnhn*	if	the	flag	*r*	is	1.	Here	*Bi*	is	a
2D	point	and	*hi*	is	a	positive	real	\((1\leq	i\leq	n)	\).	hi=1	\((1\leq	i\leq	n)
\)	if	the	flag	*r*	is	0.

The	multiplicity	knots	are	k*	pairs	*u1q1	...	ukqk.	Here	*ui*	is	a	knot	with
multiplicity	\(q_{i}	\geq	1\;	(1	\leq	i	\leq	k)	\)	so	that

\[u_{i}	<	u_{i+1}\;	(1	\leq	i	\leq	k-1),	\\	q_{1}	\leq	m+1,\;	q_{k}	\leq	m+1,\;
q_{i}	\leq	m\;	(2	\leq	i	\leq	k-1),\;	\sum_{i=1}^{k}q_{i}=m+n+1	.	\]

The	B-spline	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=	\frac{\sum_{i=1}^{n}	B_{i}	\cdot	h_{i}	\cdot	N_{i,m+1}(u)	}
{\sum_{i=1}^{n}	h_{i}	\cdot	N_{i,m+1}(u)},\;	u	\in	[u_{1},\;	u_{k}]	\]

where	functions	Ni,j*	have	the	following	recursion	definition	by	*j

\[N_{i,1}(u)=\left\{\begin{matrix}	1\Leftarrow	\bar{u}_{i}	\leq	u	\leq

\bar{u}_{i+1}\\	0\Leftarrow	u	<	\bar{u}_{i}	\vee	\bar{u}_{i+1}	\leq	u
\end{matrix}	\right.,\;	N_{i,j}(u)=\frac{(u-\bar{u}_{i})	\cdot	N_{i,j-1}(u)	}
{\bar{u}_{i+j-1}-\bar{u}_{i}}+	\frac{(\bar{u}_{i+j}-u)	\cdot	N_{i+1,j-1}(u)}

{\bar{u}_{i+j}-\bar{u}_{i+1}},\;(2	\leq	j	\leq	m+1)	\]

where

\[\bar{u}_{i}=u_{j}\;	(1\leq	j\leq	k,\;	\sum_{l=1}^{j-1}q_{l}+1	\leq	i	\leq
\sum_{l=1}^{j}q_{l})	.	\]

The	example	record	is	interpreted	as	a	B-spline	curve	with	a	rational	flag
r=1,	a	degree	m=1,	a	pole	count	n=3,	a	multiplicity	knot	count	k=5,	weight
poles	B1=(0,1),	h1=4,	B2=(1,-2),	h2=5	and	B3=(2,3),	h3=6	and	multiplicity
knots	u1=0,	q1=1,	u2=0.25,	q2=1,	u3=0.5,	q3=1,	u4=0.75,	q4=1	and	u5=1,
q5=1.	The	B-spline	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=	\frac{(0,1)	\cdot	4	\cdot	N_{1,2}(u)+(1,-2)	\cdot	5	\cdot	N_{2,2}
(u)+(2,3)	\cdot	6	\cdot	N_{3,2}(u)}{	4	\cdot	N_{1,2}(u)+5	\cdot	N_{2,2}

(u)+6	\cdot	N_{3,2}(u)}	.	\]

Trimmed	Curve	-	<2D	curve	record	8>

Example

				8	-4	5		

				1	1	2	1	0			

BNF-like	Definition

				<2D	curve	record	8>	=	"8"	<_>	<2D	trimmed	curve	

u	min>	<_>	<2D	trimmed	curve	u	max>	<_\n>	

				<2D	curve	record>;

				<2D	trimmed	curve	u	min>	=	<real>;

				<2D	trimmed	curve	u	max>	=	<real>;

Description

<2D	curve	record	8>	describes	a	trimmed	curve.	The	trimmed	curve	data
consist	of	reals	umin*	and	*umax*	and	a	<2D	curve	record>	so	that	*umin*	<
*umax.	The	trimmed	curve	is	a	restriction	of	the	base	curve	*B*	described
in	the	record	to	the	segment	\([u_{min},\;u_{max}]\subseteq	domain(B)	\).
The	trimmed	curve	is	defined	by	the	following	parametric	equation:

\[C(u)=B(u),\;	u	\in	[u_{min},\;u_{max}]	.	\]

The	example	record	is	interpreted	as	a	trimmed	curve	with	umin=-4,
umax=5	and	base	curve	\(B(u)=(1,2)+u	\cdot	(1,0)	\).	The	trimmed	curve
is	defined	by	the	following	parametric	equation:	\(C(u)=(1,2)+u	\cdot
(1,0),\;	u	\in	[-4,5]	\).

Offset	Curve	-	<2D	curve	record	9>

Example

				9	2		

				1	1	2	1	0			

BNF-like	Definition

<2D	curve	record	9>	=	"9"	<_>	<2D	offset	curve	dista

nce>	<_\n>	<2D	curve	record>;

<2D	offset	curve	distance>	=	<real>;

Description

<2D	curve	record	9>	describes	an	offset	curve.	The	offset	curve	data
consist	of	a	distance	*d*	and	a	<2D	curve	record>.	The	offset	curve	is	the
result	of	offsetting	the	base	curve	*B*	described	in	the	record	to	the
distance	*d*	along	the	vector	\((B'_{Y}(u),\;	-B'_{X}(u))	\neq	\vec{0}
\)	where	\(B(u)=(B'_{X}(u),\;	B'_{Y}(u))	\).	The	offset	curve	is	defined	by
the	following	parametric	equation:

\[C(u)=B(u)+d	\cdot	(B'_{Y}(u),\;	-B'_{X}(u)),\;	u	\in	domain(B)	.	\]

The	example	record	is	interpreted	as	an	offset	curve	with	a	distance

d=2	and	base	curve	\(B(u)=(1,2)+u	\cdot	(1,0)	\)	and	is	defined	by	the
following	parametric	equation:	\(C(u)=(1,2)+u	\cdot	(1,0)+2	\cdot	(0,-1)	\).

3D	polygons
Example

				Polygon3D	1		

				2	1		

				0.1		

				1	0	0	2	0	0			

				0	1			

BNF-like	Definition

				<3D	polygons>	=	<3D	polygon	header>	<_\n>	<3D	po

lygon	records>;

				<3D	polygon	header>	=	"Polygon3D"	<_>	<3D	polygo

n	record	count>;

				<3D	polygon	records>	=	<3D	polygon	record>	^	<3D

	polygon	record	count>;

				<3D	polygon	record>	=

				<3D	polygon	node	count>	<_>	<3D	polygon	flag	of	

parameter	presence>	<_\n>

				<3D	polygon	deflection>	<_\n>

				<3D	polygon	nodes>	<_\n>

				[<3D	polygon	parameters>	<_\n>];

				<3D	polygon	node	count>	=	<int>;

				<3D	polygon	flag	of	parameter	presence>	=	<flag>

;

				<3D	polygon	deflection>	=	<real>;

				<3D	polygon	nodes>	=	(<3D	polygon	node>	<_>)	^	<

3D	polygon	node	count>;

				<3D	polygon	node>	=	<3D	point>;

				<3D	polygon	u	parameters>	=	(<3D	polygon	u	param

eter>	<_>)	^	<3D	polygon	node	count>;

				<3D	polygon	u	parameter>	=	<real>;

Description

<3D	polygons>	record	describes	a	3D	polyline	L*	which	approximates	a
3D	curve	*C.	The	polyline	data	consist	of	a	node	count	\(m	\geq	2	\),	a
parameter	presence	flag	p,	a	deflection	\(d	\geq	0	\),	nodes	\(N_{i}\;
(1\leq	i	\leq	m)	\)	and	parameters	\(u_{i}\;	(1\leq	i	\leq	m)	\).	The
parameters	are	present	only	if	p=1.	The	polyline	L*	passes	through	the
nodes.	The	deflection	*d*	describes	the	deflection	of	polyline	*L*	from	the
curve	*C:

\[\underset{P	\in	C}{max}\;	\underset{Q	\in	L}{min}|Q-P|	\leq	d	.	\]

The	parameter	\(u_{i}\;	(1\leq	i	\leq	m)	\)	is	the	parameter	of	the	node
Ni*	on	the	curve	*C:

\[C(u_{i})=N_{i}	.	\]

The	example	record	describes	a	polyline	from	m=2	nodes	with	a
parameter	presence	flag	p=1,	a	deflection	d=0.1,	nodes	N1=(1,0,0)	and
N2=(2,0,0)	and	parameters	u1=0	and	u2=1.

Triangulations
Example

				Triangulations	6		

				4	2	1	0		

				0	0	0	0	0	3	0	2	3	0	2	0	0	0	3		0	3	-2	0	-2	2	4	3

	2	1	4			

				4	2	1	0		

				0	0	0	1	0	0	1	0	3	0	0	3	0	0	0		1	3	1	3	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	0	3	0	2	3	1	2	3	1	0	3	0	0	0		2	1	2	1	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	2	0	1	2	0	1	2	3	0	2	3	0	0	0		1	3	1	3	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	0	0	0	2	0	1	2	0	1	0	0	0	0	0		2	1	2	1	0	3	2	1	3

	1	4			

				4	2	1	0		

				1	0	0	1	0	3	1	2	3	1	2	0	0	0	3		0	3	-2	0	-2	2	4	3

	2	1	4			

BNF-like	Definition

<triangulations>	=	<triangulation	header>	<_\n>	

<triangulation	records>;

<triangulation	header>	=	"Triangulations"	<_>	

<triangulation	count>;

<triangulation	records>	=	<triangulation	record>	^	

<triangulation	count>;

<triangulation	record>	=	<triangulation	node	count>	

<_>	<triangulation	triangle	count>	<_>	

<triangulation	parameter	presence	flag>	<_>	

<triangulation	deflection>	<_\n>	

<triangulation	nodes>	[<_>	<triangulation	u	v	

parameters>]	<_>	<triangulation	triangles>	

<_\n>;

<triangulation	node	count>	=	<int>;

<triangulation	triangle	count>	=	<int>;

<triangulation	parameter	presence	flag>	=	<flag>;

<triangulation	deflection>	=	<real>;

<triangulation	nodes>	=	(<triangulation	node>	<_>)	^	

<triangulation	node	count>;

<triangulation	node>	=	<3D	point>;

<triangulation	u	v	parameters>	=				

(<triangulation	u	v	parameter	pair>	<_>)	^	

<triangulation	node	count>;

<triangulation	u	v	parameter	pair>	=	<real>	<_>	

<real>;

<triangulation	triangles>	=	(<triangulation	triangle>	

<_>)	^	<triangulation	triangle	count>;

<triangulation	triangle>	=	<int>	<_>	<int>	<_>	<int>.		

Description

<triangulation	record>	describes	a	triangulation	T*	which	approximates	a
surface	*S.	The	triangulation	data	consist	of	a	node	count	\(m	\geq	3	\),	a
triangle	count	\(k	\geq	1	\),	a	parameter	presence	flag	p,	a	deflection	\(d
\geq	0	\),	nodes	\(N_{i}\;	(1\leq	i	\leq	m)	\),	parameter	pairs	\(u_{i}\;	v_{i}\;

(1\leq	i	\leq	m)	\),	triangles	\(n_{j,1}\;	n_{j,2}\;	n_{j,3}\;	(1\leq	j	\leq	k,\;
n_{j,l}	\in	\left	\{1,...,m	\right	\}\;	(1\leq	l\leq	3))	\).	The	parameters	are
present	only	if	p=1.	The	deflection	describes	the	triangulation	deflection
from	the	surface:

\[\underset{P	\in	S}{max}\;	\underset{Q	\in	T}{min}|Q-P|	\leq	d	.	\]

The	parameter	pair	\(u_{i}\;	v_{i}\;	(1\leq	i	\leq	m)	\)	describes	the
parameters	of	node	*Ni*	on	the	surface:

\[S(u_{i},v_{i})=N_{i}	.	\]

The	triangle	\(n_{j,1}\;	n_{j,2}\;	n_{j,3}\;	(1\leq	j	\leq	k)	\)	is	interpreted	as
a	triangle	of	nodes	\(N_{n_{j},1}\;	N_{n_{j},2}\)	and	\(N_{n_{j},3}	\)	with
circular	traversal	of	the	nodes	in	the	order	\(N_{n_{j},1}\;	N_{n_{j},2}\)
and	\(N_{n_{j},3}	\).	From	any	side	of	the	triangulation	*T*	all	its	triangles
have	the	same	direction	of	the	node	circular	traversal:	either	clockwise	or
counterclockwise.

Triangulation	record

				4	2	1	0		

				0	0	0	0	0	3	0	2	3	0	2	0	0	0	3		0	3	-2	0	-2	2	4	3

	2	1	4			

describes	a	triangulation	with	m=4	nodes,	k=2	triangles,	parameter
presence	flag	p=1,	deflection	d=0,	nodes	N1=(0,0,0),	N2=(0,0,3),	N3=
(0,2,3)	and	N4=(0,2,0),	parameters	(u1,	v1)=(0,0),	(u2,	v2)=(3,0),	(u3,	v3)=
(3,-2)	and	(u4,	v4)=(0,-2),	and	triangles	(n1,1,	n1,2,	n1,3)=(2,4,3)	and	(n2,1,
n2,2,	n2,3)=(2,1,4).	From	the	point	(1,0,0)	((-1,0,0))	the	triangles	have
clockwise	(counterclockwise)	direction	of	the	node	circular	traversal.

Polygons	on	triangulations
Example

				PolygonOnTriangulations	24		

				2	1	2			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	1			

				2	1	4			

				p	0.1	1	0	1			

				2	4	3			

				p	0.1	1	0	1			

				2	1	4			

				p	0.1	1	0	1			

				2	1	2			

				p	0.1	1	0	1			

				2	2	3			

				p	0.1	1	0	1			

				2	4	3			

				p	0.1	1	0	1			

				2	2	3			

				p	0.1	1	0	1			

BNF-like	Definition

				<polygons	on	triangulations>	=	<polygons	on	tria

ngulations	header>	<_\n>

				<polygons	on	triangulations	records>;

				<polygons	on	triangulations	header>	=

				"PolygonOnTriangulations"	<_>	<polygons	on	trian

gulations	record	count>;

				<polygons	on	triangulations	record	count>	=	<int

>;

				<polygons	on	triangulations	records>	=

				<polygons	on	triangulations	record>	^	<polygons	

on	triangulations	record	count>;

				<polygons	on	triangulations	record>	=

				<polygons	on	triangulations	node	count>	<_>	<pol

ygons	on	triangulations	node	numbers>	<_\n>

				"p"	<_>	<polygons	on	triangulations	deflection>	

<_>

				<polygons	on	triangulations	parameter	presence	f

lag>

				[<_>	<polygons	on	triangulations	u	parameters>]	

<_\n>;

				<polygons	on	triangulations	node	count>	=	<int>;

				<polygons	on	triangulations	node	numbers>	=

				<polygons	on	triangulations	node	number>	^	<poly

gons	on	triangulations	node	count>;

				<polygons	on	triangulations	node	number>	=	<int>

;

				<polygons	on	triangulations	deflection>	=	<real>

;

				<polygons	on	triangulations	parameter	presence	f

lag>	=	<flag>;

				<polygons	on	triangulations	u	parameters>	=

				(<polygons	on	triangulations	u	parameter>	<_>)	^

	<polygons	on	triangulations	node	count>;

				<polygons	on	triangulations	u	parameter>	=	<real

>;

Description

<polygons	on	triangulations>	describes	a	polyline	L*	on	a	triangulation
which	approximates	a	curve	*C.	The	polyline	data	consist	of	a	node	count
\(m	\geq	2	\),	node	numbers	\(n_{i}	\geq	1	\),	deflection	\(d	\geq	0	\),	a
parameter	presence	flag	*p*	and	parameters	\(u_{i}\;	(1\leq	i\leq	m)	\).
The	parameters	are	present	only	if	p=1.	The	deflection	d*	describes	the
deflection	of	polyline	*L*	from	the	curve	*C:

\[\underset{P	\in	C}{max}\;	\underset{Q	\in	L}{min}|Q-P|	\leq	d	.	\]

Parameter	\(u_{i}\;	(1\leq	i\leq	m)	\)	is	ni-th	node	C(ui)*	parameter	on
curve	*C.

Geometric	Sense	of	a	Curve
Geometric	sense	of	curve	*C*	described	above	is	determined	by	the
direction	of	parameter	*u*	increasing.

Shapes
An	example	of	section	shapes	and	a	whole	*.brep	file	are	given	in
chapter	7	Appendix.

BNF-like	Definition

				<shapes>	=	<shape	header>	<_\n>	<shape	records>	

<_\n>	<shape	final	record>;

				<shape	header>	=	"TShapes"	<_>	<shape	count>;

				<shape	count>	=	<int>;

				<shape	records>	=	<shape	record>	^	<shape	count>

;

				<shape	record>	=	<shape	subrecord>	<_\n>	<shape	

flag	word>	<_\n>	<shape	subshapes>	<_\n>;

				<shape	flag	word>	=	<flag>	^	7;

				<shape	subshapes>	=	(<shape	subshape>	<_>)*	"*";

				<shape	subshape>	=

				<shape	subshape	orientation>	<shape	subshape	num

ber>	<_>	<shape	location	number>;

				<shape	subshape	orientation>	=	"+"	|	"-"	|	"i"	|

	"e";

				<shape	subshape	number>	=	<int>;

				<shape	location	number>	=	<int>;

				<shape	final	record>	=	<shape	subshape>;

				<shape	subrecord>	=

				("Ve"	<_\n>	<vertex	data>	<_\n>)	|

				("Ed"	<_\n>	<edge	data>	<_\n>)	|

				("Wi"	<_\n>	<_\n>)	|

				("Fa"	<_\n>	<face	data>)	|

				("Sh"	<_\n>	<_\n>)	|

				("So"	<_\n>	<_\n>)	|

				("CS"	<_\n>	<_\n>)	|

				("Co"	<_\n>	<_\n>);

Description

<shape	flag	word>	\(f_{1}\;	f_{2}\;	f_{3}\;	f_{4}\;	f_{5}\;	f_{6}\;	f_{7}
\)	<flag>s	\(f_{i}\;(1\leq	i	\leq	7)	\)	are	interpreted	as	shape	flags	in	the
following	way:

\(f_{1}	\)	–	free;
\(f_{2}	\)	–	modified;
\(f_{3}	\)	–	IGNORED(version	1)	\	checked	(version	2);
\(f_{4}	\)	–	orientable;
\(f_{5}	\)	–	closed;
\(f_{6}	\)	–	infinite;
\(f_{7}	\)	–	convex.

The	flags	are	used	in	a	special	way	[1].

<shape	subshape	orientation>	is	interpreted	in	the	following	way:

+	–	forward;
-	–	reversed;
i	–	internal;
e	–	external.

<shape	subshape	orientation>	is	used	in	a	special	way	[1].

<shape	subshape	number>	is	the	number	of	a	<shape	record>	which	is
located	in	this	section	above	the	<shape	subshape	number>.	<shape
record>	numbering	is	backward	and	starts	from	1.

<shape	subrecord>	types	are	interpreted	in	the	following	way:

"Ve"	–	vertex;
"Ed"	–	edge;
"Wi"	–	wire;
"Fa"	–	face;
"Sh"	–	shell;
"So"	–	solid;
"CS"	–	compsolid;
"Co"	–	compound.

<shape	final	record>	determines	the	orientation	and	location	for	the
whole	model.

Common	Terms
The	terms	below	are	used	by	<vertex	data>,	<edge	data>	and	<face
data>.

BNF-like	Definition

				<location	number>	=	<int>;

				<3D	curve	number>	=	<int>;

				<surface	number>	=	<int>;

				<2D	curve	number>	=	<int>;

				<3D	polygon	number>	=	<int>;

				<triangulation	number>	=	<int>;

				<polygon	on	triangulation	number>	=	<int>;

				<curve	parameter	minimal	and	maximal	values>	=	<

real>	<_>	<real>;

				<curve	values	for	parameter	minimal	and	maximal	

values>	=

				real>	<_>	<real>	<_>	<real>	<_>	<real>;

Description

<location	number>	is	the	number	of	<location	record>	from	section
locations.	<location	record>	numbering	starts	from	1.	<location	number>
0	is	interpreted	as	the	identity	location.

<3D	curve	number>	is	the	number	of	a	<3D	curve	record>	from
subsection	<3D	curves>	of	section	<geometry>.	<3D	curve	record>
numbering	starts	from	1.

<surface	number>	is	the	number	of	a	<surface	record>	from	subsection
<surfaces>	of	section	<geometry>.	<surface	record>	numbering	starts
from	1.

<2D	curve	number>	is	the	number	of	a	<2D	curve	record>	from
subsection	<2D	curves>	of	section	<geometry>.	<2D	curve	record>
numbering	starts	from	1.

<3D	polygon	number>	is	the	number	of	a	<3D	polygon	record>	from
subsection	<3D	polygons>	of	section	<geometry>.	<3D	polygon	record>
numbering	starts	from	1.

<triangulation	number>	is	the	number	of	a	<triangulation	record>	from
subsection	<triangulations>	of	section	<geometry>.	<triangulation
record>	numbering	starts	from	1.

<polygon	on	triangulation>	number	is	the	number	of	a	<polygons	on
triangulations	record>	from	subsection	<polygons	on	triangulations>	of
section	<geometry>.	<polygons	on	triangulations	record>	numbering
starts	from	1.

<curve	parameter	minimal	and	maximal	values>	umin*	and	*umax*	are	the
curve	parameter	*u	bounds:	umin	\(\leq	\)	u	\(\leq	\)	umax.

<curve	values	for	parameter	minimal	and	maximal	values>	umin*	and
umax	are	real	pairs	*xmin	ymin*	and	*xmax	ymax*	that	(*xmin,	ymin)=	C
(umin)	and	(xmax,	ymax)=	C	(umax)	where	*C*	is	a	parametric	equation	of
the	curve.

Vertex	data
BNF-like	Definition

				<vertex	data>	=	<vertex	data	tolerance>	<_\n>	<v

ertex	data	3D	representation>	<_\n>	

				<vertex	data	representations>;

				<vertex	data	tolerance>	=	<real>;

				<vertex	data	3D	representation>	=	<3D	point>;

				<vertex	data	representations>	=	(<vertex	data	re

presentation>	<_\n>)*	"0	0";

				<vertex	data	representation>	=	<vertex	data	repr

esentation	u	parameter>	<_>

				<vertex	data	representation	data>	<_>	<location	

number>;

				<vertex	data	representation	u	parameter>	=	<real

>;

				<vertex	data	representation	data>	=

				("1"	<_>	<vertex	data	representation	data	1>)	|

				("2"	<_>	<vertex	data	representation	data	2>)	|

				("3"	<_>	<vertex	data	representation	data	3>);

				<vertex	data	representation	data	1>	=	<3D	curve	

number>;

				<vertex	data	representation	data	2>	=	<2D	curve	

number>	<_>	<surface	number>;

				<vertex	data	representation	data	3>	=

				<vertex	data	representation	v	parameter>	<_>	<su

rface	number>;

				<vertex	data	representation	v	parameter>	=	<real

>;

Description

The	usage	of	<vertex	data	representation	u	parameter>	*U*	is	described
below.

<vertex	data	representation	data	1>	and	parameter	U*	describe	the
position	of	the	vertex	*V*	on	a	3D	curve	*C.	Parameter	U*	is	a	parameter
of	the	vertex	*V*	on	the	curve	*C:	C(u)=V.

<vertex	data	representation	data	2>	and	parameter	U*	describe	the
position	of	the	vertex	*V*	on	a	2D	curve	*C*	which	is	located	on	a
surface.	Parameter	*U*	is	a	parameter	of	the	vertex	*V*	on	the	curve	*C:
C(u)=V.

<vertex	data	representation	data	3>	and	parameter	u*	describe	the
position	of	the	vertex	*V*	on	a	surface	*S*	through	<vertex	data
representation	v	parameter>	*v:	S(u,v)=V.

<vertex	data	tolerance>	t*	describes	the	maximum	distance	from	the
vertex	*V*	to	the	set	*R	of	vertex	*V*	representations:

\[\underset{P	\in	R	}{max}	|P-V|	\leq	t	.	\]

Edge	data
BNF-like	Definition

<edge	data>	=	<_>	<edge	data	tolerance>	<_>	<edge	

data	same	parameter	flag>	<_>	edge	data	same	

range	flag>	<_>	<edge	data	degenerated	flag>	

<_\n>	<edge	data	representations>;

<edge	data	tolerance>	=	<real>;

<edge	data	same	parameter	flag>	=	<flag>;

<edge	data	same	range	flag>	=	<flag>;

<edge	data	degenerated	flag>	=	<flag>;

<edge	data	representations>	=	(<edge	data	

representation>	<_\n>)*	"0";

<edge	data	representation>	=

"1"	<_>	<edge	data	representation	data	1>

"2"	<_>	<edge	data	representation	data	2>

"3"	<_>	<edge	data	representation	data	3>

"4"	<_>	<edge	data	representation	data	4>

"5"	<_>	<edge	data	representation	data	5>

"6"	<_>	<edge	data	representation	data	6>

"7"	<_>	<edge	data	representation	data	7>;

<edge	data	representation	data	1>	=	<3D	curve	number>	

<_>	<location	number>	<_>

<curve	parameter	minimal	and	maximal	values>;

<edge	data	representation	data	2>	=	<2D	curve	number>	

<_>	<surface	number>	<_>	

<location	number>	<_>	<curve	parameter	minimal	and	

maximal	values>

[<_\n>	<curve	values	for	parameter	minimal	and	

maximal	values>];

<edge	data	representation	data	3>	=	(<2D	curve	

number>	<_>)	^	2	<continuity	order>	<_>	<surface	

number>	<_>	<location	number>	<_>	<curve	

parameter	minimal	and	maximal	values>	<\n>	

<curve	values	for	parameter	minimal	and	maximal	

values>];

<continuity	order>	=	"C0"	|	"C1"	|	"C2"	|	"C3"	|	"CN"	

|	"G1"	|	"G2".

<edge	data	representation	data	4>	=

<continuity	order>	(<_>	<surface	number>	<_>	

<location	number>)	^	2;

<edge	data	representation	data	5>	=	<3D	polygon	

number>	<_>	<location	number>;

<edge	data	representation	data	6>	=

<polygon	on	triangulation	number>	<_>	<triangulation	

number>	<_>	<location	number>;

<edge	data	representation	data	7>	=	(<polygon	on	

triangulation	number>	<_>)	^	2	

<triangulation	number>	<_>	<location	number>;

Description

Flags	<edge	data	same	parameter	flag>,	<edge	data	same	range	flag>
and	<edge	data	degenerated	flag>	are	used	in	a	special	way	[1].

<edge	data	representation	data	1>	describes	a	3D	curve.

<edge	data	representation	data	2>	describes	a	2D	curve	on	a	surface.
<curve	values	for	parameter	minimal	and	maximal	values>	are	used	only

in	version	2.

<edge	data	representation	data	3>	describes	a	2D	curve	on	a	closed
surface.	<curve	values	for	parameter	minimal	and	maximal	values>	are
used	only	in	version	2.

<edge	data	representation	data	5>	describes	a	3D	polyline.

<edge	data	representation	data	6>	describes	a	polyline	on	a
triangulation.

<edge	data	tolerance>	t*	describes	the	maximum	distance	from	the	edge
*E	to	the	set	*R*	of	edge	*E*	representations:

\[\underset{C	\in	R}{max}\;\underset{P	\in	E}{max}\;\underset{Q	\in	C}
{min}|Q-P|	\leq	t	\]

Face	data
BNF-like	Definition

<face	data>	=	<face	data	natural	restriction	flag>	

<_>	<face	data	tolerance>	<_>	<surface	number>	

<_>	<location	number>	<\n>	["2"	<_>	

<triangulation	number>];

<face	data	natural	restriction	flag>	=	<flag>;

<face	data	tolerance>	=	<real>;

Description

<face	data>	describes	a	surface	S*	of	face	*F*	and	a	triangulation	*T*	of
face	*F.	The	surface	*S*	may	be	empty:	<surface	number>	=	0.

<face	data	tolerance>	t*	describes	the	maximum	distance	from	the	face
F	to	the	surface	*S:

\[\underset{P	\in	F}{max}\;\underset{Q	\in	S}{min}|Q-P|	\leq	t	\]

Flag	<face	data	natural	restriction	flag>	is	used	in	a	special	way	[1].

Appendix
This	chapter	contains	a	*.brep	file	example.

				DBRep_DrawableShape		

					

				CASCADE	Topology	V1,	(c)		Matra-Datavision		

				Locations	3		

				1		

																		0																0															1

															0			

																		1																0															0

															0			

																		0																1															0

															0			

				1		

																		1																0															0

															4			

																		0																1															0

															5			

																		0																0															1

															6			

				2		1	1	2	1	0		

				Curve2ds	24		

				1	0	0	1	0			

				1	0	0	1	0			

				1	3	0	0	-1			

				1	0	0	0	1			

				1	0	-2	1	0			

				1	0	0	1	0			

				1	0	0	0	-1			

				1	0	0	0	1			

				1	0	0	1	0			

				1	0	1	1	0			

				1	3	0	0	-1			

				1	1	0	0	1			

				1	0	-2	1	0			

				1	0	1	1	0			

				1	0	0	0	-1			

				1	1	0	0	1			

				1	0	0	0	1			

				1	0	0	1	0			

				1	3	0	0	1			

				1	0	0	1	0			

				1	0	0	0	1			

				1	0	2	1	0			

				1	3	0	0	1			

				1	0	2	1	0			

				Curves	13		

				1	0	0	0	0	0	1			

				1	0	0	3	-0	1	0			

				1	0	2	0	0	0	1			

				1	0	0	0	-0	1	0			

				1	1	0	0	0	0	1			

				1	1	0	3	0	1	0			

				1	1	2	0	0	0	1			

				1	1	0	0	-0	1	0			

				1	0	0	0	1	0	-0			

				1	0	0	3	1	0	-0			

				1	0	2	0	1	0	-0			

				1	0	2	3	1	0	-0			

				1	1	0	0	1	0	0			

				Polygon3D	1		

				2	1		

				0.1		

				1	0	0	2	0	0			

				0	1			

				PolygonOnTriangulations	24		

				2	1	2			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	3			

				2	2	3			

				p	0.1	1	0	3			

				2	1	4			

				p	0.1	1	0	2			

				2	4	3			

				p	0.1	1	0	2			

				2	1	2			

				p	0.1	1	0	1			

				2	1	4			

				p	0.1	1	0	1			

				2	4	3			

				p	0.1	1	0	1			

				2	1	4			

				p	0.1	1	0	1			

				2	1	2			

				p	0.1	1	0	1			

				2	2	3			

				p	0.1	1	0	1			

				2	4	3			

				p	0.1	1	0	1			

				2	2	3			

				p	0.1	1	0	1			

				Surfaces	6		

				1	0	0	0	1	0	-0	0	0	1	0	-1	0			

				1	0	0	0	-0	1	0	0	0	1	1	0	-0			

				1	0	0	3	0	0	1	1	0	-0	-0	1	0			

				1	0	2	0	-0	1	0	0	0	1	1	0	-0			

				1	0	0	0	0	0	1	1	0	-0	-0	1	0			

				1	1	0	0	1	0	-0	0	0	1	0	-1	0			

				Triangulations	6		

				4	2	1	0		

				0	0	0	0	0	3	0	2	3	0	2	0	0	0	3		0	3	-2	0	-2	2	4	3

	2	1	4			

				4	2	1	0		

				0	0	0	1	0	0	1	0	3	0	0	3	0	0	0		1	3	1	3	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	0	3	0	2	3	1	2	3	1	0	3	0	0	0		2	1	2	1	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	2	0	1	2	0	1	2	3	0	2	3	0	0	0		1	3	1	3	0	3	2	1	3

	1	4			

				4	2	1	0		

				0	0	0	0	2	0	1	2	0	1	0	0	0	0	0		2	1	2	1	0	3	2	1	3

	1	4			

				4	2	1	0		

				1	0	0	1	0	3	1	2	3	1	2	0	0	0	3		0	3	-2	0	-2	2	4	3

	2	1	4			

					

				TShapes	39		

				Ve		

				1e-007		

				0	0	3		

				0	0		

					

				0101101		

				*		

				Ve		

				1e-007		

				0	0	0		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		1	0	0	3		

				2		1	1	0	0	3		

				2		2	2	0	0	3		

				6		1	1	0		

				6		2	2	0		

				0		

					

				0101000		

				-39	0	+38	0	*		

				Ve		

				1e-007		

				0	2	3		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		2	0	0	2		

				2		3	1	0	0	2		

				2		4	3	0	0	2		

				6		3	1	0		

				6		4	3	0		

				0		

					

				0101000		

				-36	0	+39	0	*		

				Ve		

				1e-007		

				0	2	0		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		3	0	0	3		

				2		5	1	0	0	3		

				2		6	4	0	0	3		

				6		5	1	0		

				6		6	4	0		

				0		

					

				0101000		

				-36	0	+34	0	*		

				Ed		

					1e-007	1	1	0		

				1		4	0	0	2		

				2		7	1	0	0	2		

				2		8	5	0	0	2		

				6		7	1	0		

				6		8	5	0		

				0		

					

				0101000		

				-34	0	+38	0	*		

				Wi		

					

				0101000		

				-37	0	-35	0	+33	0	+32	0	*		

				Fa		

				0		1e-007	1	0		

				2		1		

				0101000		

				+31	0	*		

				Ve		

				1e-007		

				1	0	3		

				0	0		

					

				0101101		

				*		

				Ve		

				1e-007		

				1	0	0		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		5	0	0	3		

				2		9	6	0	0	3		

				2		10	2	0	0	3		

				6		9	6	0		

				6		10	2	0		

				0		

					

				0101000		

				-29	0	+28	0	*		

				Ve		

				1e-007		

				1	2	3		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		6	0	0	2		

				2		11	6	0	0	2		

				2		12	3	0	0	2		

				6		11	6	0		

				6		12	3	0		

				0		

					

				0101000		

				-26	0	+29	0	*		

				Ve		

				1e-007		

				1	2	0		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		7	0	0	3		

				2		13	6	0	0	3		

				2		14	4	0	0	3		

				6		13	6	0		

				6		14	4	0		

				0		

					

				0101000		

				-26	0	+24	0	*		

				Ed		

					1e-007	1	1	0		

				1		8	0	0	2		

				2		15	6	0	0	2		

				2		16	5	0	0	2		

				6		15	6	0		

				6		16	5	0		

				0		

					

				0101000		

				-24	0	+28	0	*		

				Wi		

					

				0101000		

				-27	0	-25	0	+23	0	+22	0	*		

				Fa		

				0		1e-007	6	0		

				2		6		

				0101000		

				+21	0	*		

				Ed		

					1e-007	1	1	0		

				1		9	0	0	1		

				2		17	2	0	0	1		

				2		18	5	0	0	1		

				6		17	2	0		

				6		18	5	0		

				0		

					

				0101000		

				-28	0	+38	0	*		

				Ed		

					1e-007	1	1	0		

				1		10	0	0	1		

				2		19	2	0	0	1		

				2		20	3	0	0	1		

				6		19	2	0		

				6		20	3	0		

				0		

					

				0101000		

				-29	0	+39	0	*		

				Wi		

					

				0101000		

				-19	0	-27	0	+18	0	+37	0	*		

				Fa		

				0		1e-007	2	0		

				2		2		

				0101000		

				+17	0	*		

				Ed		

					1e-007	1	1	0		

				1		11	0	0	1		

				2		21	4	0	0	1		

				2		22	5	0	0	1		

				6		21	4	0		

				6		22	5	0		

				0		

					

				0101000		

				-24	0	+34	0	*		

				Ed		

					1e-007	1	1	0		

				1		12	0	0	1		

				2		23	4	0	0	1		

				2		24	3	0	0	1		

				6		23	4	0		

				6		24	3	0		

				0		

					

				0101000		

				-26	0	+36	0	*		

				Wi		

					

				0101000		

				-15	0	-23	0	+14	0	+33	0	*		

				Fa		

				0		1e-007	4	0		

				2		4		

				0101000		

				+13	0	*		

				Wi		

					

				0101000		

				-32	0	-15	0	+22	0	+19	0	*		

				Fa		

				0		1e-007	5	0		

				2		5		

				0101000		

				+11	0	*		

				Wi		

					

				0101000		

				-35	0	-14	0	+25	0	+18	0	*		

				Fa		

				0		1e-007	3	0		

				2		3		

				0101000		

				+9	0	*		

				Sh		

					

				0101100		

				-30	0	+20	0	-16	0	+12	0	-10	0		+8	0	*		

				So		

					

				0100000		

				+7	0	*		

				CS		

					

				0101000		

				+6	3	*		

				Ve		

				1e-007		

				1	0	0		

				0	0		

					

				0101101		

				*		

				Ve		

				1e-007		

				2	0	0		

				0	0		

					

				0101101		

				*		

				Ed		

					1e-007	1	1	0		

				1		13	0	0	1		

				5		1	0		

				0		

					

				0101000		

				+4	0	-3	0	*		

				Co		

					

				1100000		

				+5	0	+2	0	*		

					

				+1	0			

				0		

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Geometric	Tools
Intersections

Intersection	of
two	curves
Intersection	of
Curves	and
Surfaces
Intersection	of
two	Surfaces

Interpolations
Geom2dAPI_Interpolate
GeomAPI_Interpolate

Lines	and	Circles
from	Constraints

Types	of
constraints
Available	types
of	lines	and
circles
Types	of
algorithms

Curves	and	Surfaces
from	Constraints

Faired	and
Minimal
Variation	2D
Curves
Ruled	Surfaces
Pipe	Surfaces

Open	CASCADE
Technology		7.2.0

Modeling	Algorithms

Filling	a	contour
Plate	surfaces

Projections
Projection	of	a
2D	Point	on	a
Curve
Projection	of	a
3D	Point	on	a
Curve
Projection	of	a
Point	on	a
Surface
Switching	from
2d	and	3d
Curves

Topological	Tools
Creation	of	the	faces
from	wireframe
model
Classification	of	the
shapes
Orientation	of	the
shapes	in	the
container
Making	new	shapes
Building	PCurves
Checking	the	validity
of	the	shapes
Taking	a	point	inside
the	face
Getting	normal	for
the	face

The	Topology	API
Error	Handling	in	the
Topology	API

Standard	Topological
Objects
Vertex
Edge

Basic	edge
construction

method
Supplementary
edge
construction
methods
Other
information	and
error	status

Edge	2D
Polygon
Face

Basic	face
construction
method
Supplementary
face
construction
methods
Error	status

Wire
Shell
Solid

Object	Modification
Transformation
Duplication

Primitives
Making	Primitives

Box
Wedge
Rotation	object
Cylinder
Cone
Sphere
Torus
Revolution

Sweeping:	Prism,
Revolution	and	Pipe

Sweeping
Prism

Rotational
Sweep

Boolean	Operations
Input	and	Result
Arguments
Implementation

Fillets	and	Chamfers
Fillets
Fillet	on	shape
Chamfer
Fillet	on	a	planar	face

Offsets,	Drafts,	Pipes
and	Evolved	shapes
Offset	computation
Shelling
Draft	Angle
Pipe	Constructor
Evolved	Solid

Sewing
Introduction
Sewing	Algorithm
Tolerance
Management
Manifold	and	Non-
manifold	Sewing
Local	Sewing

Features
Form	Features

Prism
Draft	Prism
Revolution
Pipe

Mechanical	Features
Linear	Form
Gluer
Split	Shape

Hidden	Line	Removal

Examples
Meshing
Mesh	presentations
Meshing	algorithm

Introduction
This	manual	explains	how	to	use	the	Modeling	Algorithms.	It	provides
basic	documentation	on	modeling	algorithms.	For	advanced	information
on	Modeling	Algorithms,	see	our	E-learning	&	Training	offerings.

The	Modeling	Algorithms	module	brings	together	a	wide	range	of
topological	algorithms	used	in	modeling.	Along	with	these	tools,	you	will
find	the	geometric	algorithms,	which	they	call.

http://www.opencascade.com/content/tutorial-learning

Geometric	Tools
Open	CASCADE	Technology	geometric	tools	provide	algorithms	to:

Calculate	the	intersection	of	two	2D	curves,	surfaces,	or	a	3D	curve
and	a	surface;
Project	points	onto	2D	and	3D	curves,	points	onto	surfaces,	and	3D
curves	onto	surfaces;
Construct	lines	and	circles	from	constraints;
Construct	curves	and	surfaces	from	constraints;
Construct	curves	and	surfaces	by	interpolation.

Intersections
The	Intersections	component	is	used	to	compute	intersections	between
2D	or	3D	geometrical	objects:

the	intersections	between	two	2D	curves;
the	self-intersections	of	a	2D	curve;
the	intersection	between	a	3D	curve	and	a	surface;
the	intersection	between	two	surfaces.

The	Geom2dAPI_InterCurveCurve	class	allows	the	evaluation	of	the
intersection	points	(gp_Pnt2d)	between	two	geometric	curves
(Geom2d_Curve)	and	the	evaluation	of	the	points	of	self-intersection	of	a
curve.

Intersection	and	self-intersection	of	curves

In	both	cases,	the	algorithm	requires	a	value	for	the	tolerance
(Standard_Real)	for	the	confusion	between	two	points.	The	default
tolerance	value	used	in	all	constructors	is	1.0e-6.

Intersection	and	tangent	intersection

The	algorithm	returns	a	point	in	the	case	of	an	intersection	and	a
segment	in	the	case	of	tangent	intersection.

Intersection	of	two	curves

Geom2dAPI_InterCurveCurve	class	may	be	instantiated	for	intersection
of	curves	C1	and	C2.

Geom2dAPI_InterCurveCurve	

Intersector(C1,C2,tolerance);	

or	for	self-intersection	of	curve	C3.

Geom2dAPI_InterCurveCurve	Intersector(C3,tolerance);	

Standard_Integer	N	=	Intersector.NbPoints();	

Calls	the	number	of	intersection	points

To	select	the	desired	intersection	point,	pass	an	integer	index	value	in
argument.

gp_Pnt2d	P	=	Intersector.Point(Index);	

To	call	the	number	of	intersection	segments,	use

Standard_Integer	M	=	Intersector.NbSegments();	

To	select	the	desired	intersection	segment	pass	integer	index	values	in
argument.

Handle(Geom2d_Curve)	Seg1,	Seg2;	

Intersector.Segment(Index,Seg1,Seg2);	

//	if	intersection	of	2	curves	

Intersector.Segment(Index,Seg1);	

//	if	self-intersection	of	a	curve	

If	you	need	access	to	a	wider	range	of	functionalities	the	following
method	will	return	the	algorithmic	object	for	the	calculation	of
intersections:

Geom2dInt_GInter&	TheIntersector	=	

Intersector.Intersector();	

Intersection	of	Curves	and	Surfaces

The	GeomAPI_IntCS	class	is	used	to	compute	the	intersection	points
between	a	curve	and	a	surface.

This	class	is	instantiated	as	follows:

GeomAPI_IntCS	Intersector(C,	S);	

To	call	the	number	of	intersection	points,	use:

Standard_Integer	nb	=	Intersector.NbPoints();	

gp_Pnt&	P	=	Intersector.Point(Index);	

Where	Index	is	an	integer	between	1	and	nb,	calls	the	intersection	points.

Intersection	of	two	Surfaces

The	GeomAPI_IntSS	class	is	used	to	compute	the	intersection	of	two
surfaces	from	Geom_Surface	with	respect	to	a	given	tolerance.

This	class	is	instantiated	as	follows:

GeomAPI_IntSS	Intersector(S1,	S2,	Tolerance);	

Once	the	GeomAPI_IntSS	object	has	been	created,	it	can	be	interpreted.

Standard_Integer	nb	=	Intersector.	NbLines();	

Calls	the	number	of	intersection	curves.

Handle(Geom_Curve)	C	=	Intersector.Line(Index)	

Where	Index	is	an	integer	between	1	and	nb,	calls	the	intersection
curves.

Interpolations
The	Interpolation	Laws	component	provides	definitions	of	functions:
y=f(x)	.

In	particular,	it	provides	definitions	of:

a	linear	function,
an	S	function,	and
an	interpolation	function	for	a	range	of	values.

Such	functions	can	be	used	to	define,	for	example,	the	evolution	law	of	a
fillet	along	the	edge	of	a	shape.

The	validity	of	the	function	built	is	never	checked:	the	Law	package	does
not	know	for	what	application	or	to	what	end	the	function	will	be	used.	In
particular,	if	the	function	is	used	as	the	evolution	law	of	a	fillet,	it	is
important	that	the	function	is	always	positive.	The	user	must	check	this.

Geom2dAPI_Interpolate

This	class	is	used	to	interpolate	a	BSplineCurve	passing	through	an	array
of	points.	If	tangency	is	not	requested	at	the	point	of	interpolation,
continuity	will	be	C2.	If	tangency	is	requested	at	the	point,	continuity	will
be	C1.	If	Periodicity	is	requested,	the	curve	will	be	closed	and	the
junction	will	be	the	first	point	given.	The	curve	will	then	have	a	continuity
of	C1	only.	This	class	may	be	instantiated	as	follows:

Geom2dAPI_Interpolate	

(const		Handle_TColgp_HArray1OfPnt2d&	Points,	

const		Standard_Boolean	PeriodicFlag,	

const	Standard_Real		Tolerance);	

Geom2dAPI_Interpolate	Interp(Points,	Standard_False,	

																																				

Precision::Confusion());	

It	is	possible	to	call	the	BSpline	curve	from	the	object	defined	above	it.

Handle(Geom2d_BSplineCurve)	C	=	Interp.Curve();	

Note	that	the	Handle(Geom2d_BSplineCurve)	operator	has	been
redefined	by	the	method	Curve().	Consequently,	it	is	unnecessary	to	pass
via	the	construction	of	an	intermediate	object	of	the
Geom2dAPI_Interpolate	type	and	the	following	syntax	is	correct.

Handle(Geom2d_BSplineCurve)	C	=	

Geom2dAPI_Interpolate(Points,	

				Standard_False,	

				Precision::Confusion());	

GeomAPI_Interpolate

This	class	may	be	instantiated	as	follows:

GeomAPI_Interpolate	

(const		Handle_TColgp_HArray1OfPnt&	Points,	

const		Standard_Boolean	PeriodicFlag,	

const	Standard_Real		Tolerance);	

GeomAPI_Interpolate	Interp(Points,	Standard_False,	

																																				

Precision::Confusion());	

It	is	possible	to	call	the	BSpline	curve	from	the	object	defined	above	it.

Handle(Geom_BSplineCurve)	C	=	Interp.Curve();	

Note	that	the	Handle(Geom_BSplineCurve)	operator	has	been	redefined
by	the	method	Curve().	Thus,	it	is	unnecessary	to	pass	via	the
construction	of	an	intermediate	object	of	the	GeomAPI_Interpolate	type
and	the	following	syntax	is	correct.

Handle(Geom_BSplineCurve)	C	=	GeomAPI_Interpolate(Points,
Standard_False,	1.0e-7);

Boundary	conditions	may	be	imposed	with	the	method	Load.

GeomAPI_Interpolate	AnInterpolator	

(Points,	Standard_False,	1.0e-5);	

AnInterpolator.Load	(StartingTangent,	EndingTangent);	

Lines	and	Circles	from	Constraints

Types	of	constraints

The	algorithms	for	construction	of	2D	circles	or	lines	can	be	described
with	numeric	or	geometric	constraints	in	relation	to	other	curves.

These	constraints	can	impose	the	following	:

the	radius	of	a	circle,
the	angle	that	a	straight	line	makes	with	another	straight	line,
the	tangency	of	a	straight	line	or	circle	in	relation	to	a	curve,
the	passage	of	a	straight	line	or	circle	through	a	point,
the	circle	with	center	in	a	point	or	curve.

For	example,	these	algorithms	enable	to	easily	construct	a	circle	of	a
given	radius,	centered	on	a	straight	line	and	tangential	to	another	circle.

The	implemented	algorithms	are	more	complex	than	those	provided	by
the	Direct	Constructions	component	for	building	2D	circles	or	lines.

The	expression	of	a	tangency	problem	generally	leads	to	several	results,
according	to	the	relative	positions	of	the	solution	and	the	circles	or
straight	lines	in	relation	to	which	the	tangency	constraints	are	expressed.
For	example,	consider	the	following	case	of	a	circle	of	a	given	radius	(a
small	one)	which	is	tangential	to	two	secant	circles	C1	and	C2:

Example	of	a	Tangency	Constraint

This	diagram	clearly	shows	that	there	are	8	possible	solutions.

In	order	to	limit	the	number	of	solutions,	we	can	try	to	express	the	relative
position	of	the	required	solution	in	relation	to	the	circles	to	which	it	is
tangential.	For	example,	if	we	specify	that	the	solution	is	inside	the	circle
C1	and	outside	the	circle	C2,	only	two	solutions	referenced	3	and	4	on
the	diagram	respond	to	the	problem	posed.

These	definitions	are	very	easy	to	interpret	on	a	circle,	where	it	is	easy	to
identify	the	interior	and	exterior	sides.	In	fact,	for	any	kind	of	curve	the
interior	is	defined	as	the	left-hand	side	of	the	curve	in	relation	to	its
orientation.

This	technique	of	qualification	of	a	solution,	in	relation	to	the	curves	to
which	it	is	tangential,	can	be	used	in	all	algorithms	for	constructing	a
circle	or	a	straight	line	by	geometric	constraints.	Four	qualifiers	are	used:

Enclosing	–	the	solution(s)	must	enclose	the	argument;
Enclosed	–	the	solution(s)	must	be	enclosed	by	the	argument;
Outside	–	the	solution(s)	and	the	argument	must	be	external	to	one
another;
Unqualified	–	the	relative	position	is	not	qualified,	i.e.	all	solutions
apply.

It	is	possible	to	create	expressions	using	the	qualifiers,	for	example:

GccAna_Circ2d2TanRad	

				Solver(GccEnt::Outside(C1),	

								GccEnt::Enclosing(C2),		Rad,	Tolerance);	

This	expression	finds	all	circles	of	radius	Rad,	which	are	tangent	to	both
circle	C1	and	C2,	while	C1	is	outside	and	C2	is	inside.

Available	types	of	lines	and	circles

The	following	analytic	algorithms	using	value-handled	entities	for	creation
of	2D	lines	or	circles	with	geometric	constraints	are	available:

circle	tangent	to	three	elements	(lines,	circles,	curves,	points),
circle	tangent	to	two	elements	and	having	a	radius,
circle	tangent	to	two	elements	and	centered	on	a	third	element,
circle	tangent	to	two	elements	and	centered	on	a	point,
circle	tangent	to	one	element	and	centered	on	a	second,
bisector	of	two	points,
bisector	of	two	lines,
bisector	of	two	circles,
bisector	of	a	line	and	a	point,
bisector	of	a	circle	and	a	point,
bisector	of	a	line	and	a	circle,
line	tangent	to	two	elements	(points,	circles,	curves),
line	tangent	to	one	element	and	parallel	to	a	line,
line	tangent	to	one	element	and	perpendicular	to	a	line,
line	tangent	to	one	element	and	forming	angle	with	a	line.

Exterior/Interior

It	is	not	hard	to	define	the	interior	and	exterior	of	a	circle.	As	is	shown	in
the	following	diagram,	the	exterior	is	indicated	by	the	sense	of	the
binormal,	that	is	to	say	the	right	side	according	to	the	sense	of	traversing
the	circle.	The	left	side	is	therefore	the	interior	(or	"material").

Exterior/Interior	of	a	Circle

By	extension,	the	interior	of	a	line	or	any	open	curve	is	defined	as	the	left
side	according	to	the	passing	direction,	as	shown	in	the	following
diagram:

Exterior/Interior	of	a	Line	and	a	Curve

Orientation	of	a	Line

It	is	sometimes	necessary	to	define	in	advance	the	sense	of	travel	along
a	line	to	be	created.	This	sense	will	be	from	first	to	second	argument.

The	following	figure	shows	a	line,	which	is	first	tangent	to	circle	C1	which
is	interior	to	the	line,	and	then	passes	through	point	P1.

An	Oriented	Line

Line	tangent	to	two	circles

The	following	four	diagrams	illustrate	four	cases	of	using	qualifiers	in	the
creation	of	a	line.	The	fifth	shows	the	solution	if	no	qualifiers	are	given.

Example	1	Case	1

Both	circles	outside

Constraints:	Tangent	and	Exterior	to	C1.	Tangent	and	Exterior	to	C2.

Syntax:

GccAna_Lin2d2Tan	

				Solver(GccEnt::Outside(C1),	

								GccEnt::Outside(C2),	

								Tolerance);	

Example	1	Case	2

Both	circles	enclosed

Constraints:	Tangent	and	Including	C1.	Tangent	and	Including	C2.

Syntax:

GccAna_Lin2d2Tan	

				Solver(GccEnt::Enclosing(C1),	

								GccEnt::Enclosing(C2),	

								Tolerance);	

Example	1	Case	3

C1	enclosed	and	C2	outside

Constraints:	Tangent	and	Including	C1.	Tangent	and	Exterior	to	C2.

Syntax:

GccAna_Lin2d2Tan	

				Solver(GccEnt::Enclosing(C1),	

								GccEnt::Outside(C2),	

								Tolerance);	

Example	1	Case	4

C1	outside	and	C2	enclosed

Constraints:	Tangent	and	Exterior	to	C1.	Tangent	and	Including	C2.

Syntax:

GccAna_Lin2d2Tan	

				Solver(GccEnt::Outside(C1),	

								GccEnt::Enclosing(C2),	

								Tolerance);	

Example	1	Case	5

Without	qualifiers

Constraints:	Tangent	and	Undefined	with	respect	to	C1.	Tangent	and
Undefined	with	respect	to	C2.

Syntax:

GccAna_Lin2d2Tan	

				Solver(GccEnt::Unqualified(C1),	

								GccEnt::Unqualified(C2),	

								Tolerance);	

Circle	of	given	radius	tangent	to	two	circles

The	following	four	diagrams	show	the	four	cases	in	using	qualifiers	in	the
creation	of	a	circle.

Example	2	Case	1

Both	solutions	outside

Constraints:	Tangent	and	Exterior	to	C1.	Tangent	and	Exterior	to	C2.

Syntax:

GccAna_Circ2d2TanRad	

				Solver(GccEnt::Outside(C1),	

				GccEnt::Outside(C2),		Rad,	Tolerance);	

Example	2	Case	2

C2	encompasses	C1

Constraints:	Tangent	and	Exterior	to	C1.	Tangent	and	Included	by	C2.

Syntax:

GccAna_Circ2d2TanRad	

				Solver(GccEnt::Outside(C1),	

								GccEnt::Enclosed(C2),		Rad,	Tolerance);	

Example	2	Case	3

Solutions	enclose	C2

Constraints:	Tangent	and	Exterior	to	C1.	Tangent	and	Including	C2.

Syntax:

GccAna_Circ2d2TanRad	

				Solver(GccEnt::Outside(C1),	

								GccEnt::Enclosing(C2),		Rad,	Tolerance);	

Example	2	Case	4

Solutions	enclose	C1

Constraints:	Tangent	and	Enclosing	C1.	Tangent	and	Enclosing	C2.

Syntax:

GccAna_Circ2d2TanRad	

				Solver(GccEnt::Enclosing(C1),	

								GccEnt::Enclosing(C2),		Rad,	Tolerance);	

Example	2	Case	5

The	following	syntax	will	give	all	the	circles	of	radius	Rad,	which	are
tangent	to	C1	and	C2	without	discrimination	of	relative	position:

GccAna_Circ2d2TanRad		Solver(GccEnt::Unqualified(C1),	

																												GccEnt::Unqualified(C2),	

																												Rad,Tolerance);	

Types	of	algorithms

OCCT	implements	several	categories	of	algorithms:

Analytic	algorithms,	where	solutions	are	obtained	by	the	resolution
of	an	equation,	such	algorithms	are	used	when	the	geometries	which
are	worked	on	(tangency	arguments,	position	of	the	center,	etc.)	are
points,	lines	or	circles;
Geometric	algorithms,	where	the	solution	is	generally	obtained	by

calculating	the	intersection	of	parallel	or	bisecting	curves	built	from
geometric	arguments;
Iterative	algorithms,	where	the	solution	is	obtained	by	a	process	of
iteration.

For	each	kind	of	geometric	construction	of	a	constrained	line	or	circle,
OCCT	provides	two	types	of	access:

algorithms	from	the	package	Geom2dGcc	automatically	select	the
algorithm	best	suited	to	the	problem,	both	in	the	general	case	and	in
all	types	of	specific	cases;	the	used	arguments	are	Geom2d	objects,
while	the	computed	solutions	are	gp	objects;
algorithms	from	the	package	GccAna	resolve	the	problem
analytically,	and	can	only	be	used	when	the	geometries	to	be	worked
on	are	lines	or	circles;	both	the	used	arguments	and	the	computed
solutions	are	gp	objects.

The	provided	algorithms	compute	all	solutions,	which	correspond	to	the
stated	geometric	problem,	unless	the	solution	is	found	by	an	iterative
algorithm.

Iterative	algorithms	compute	only	one	solution,	closest	to	an	initial
position.	They	can	be	used	in	the	following	cases:

to	build	a	circle,	when	an	argument	is	more	complex	than	a	line	or	a
circle,	and	where	the	radius	is	not	known	or	difficult	to	determine:
this	is	the	case	for	a	circle	tangential	to	three	geometric	elements,	or
tangential	to	two	geometric	elements	and	centered	on	a	curve;
to	build	a	line,	when	a	tangency	argument	is	more	complex	than	a
line	or	a	circle.

Qualified	curves	(for	tangency	arguments)	are	provided	either	by:

the	GccEnt	package,	for	direct	use	by	GccAna	algorithms,	or
the	Geom2dGcc	package,	for	general	use	by	Geom2dGcc
algorithms.

The	GccEnt	and	Geom2dGcc	packages	also	provide	simple	functions	for
building	qualified	curves	in	a	very	efficient	way.

The	GccAna	package	also	provides	algorithms	for	constructing	bisecting

loci	between	circles,	lines	or	points.	Bisecting	loci	between	two	geometric
objects	are	such	that	each	of	their	points	is	at	the	same	distance	from	the
two	geometric	objects.	They	are	typically	curves,	such	as	circles,	lines	or
conics	for	GccAna	algorithms.	Each	elementary	solution	is	given	as	an
elementary	bisecting	locus	object	(line,	circle,	ellipse,	hyperbola,
parabola),	described	by	the	GccInt	package.

Note:	Curves	used	by	GccAna	algorithms	to	define	the	geometric
problem	to	be	solved,	are	2D	lines	or	circles	from	the	gp	package:	they
are	not	explicitly	parameterized.	However,	these	lines	or	circles	retain	an
implicit	parameterization,	corresponding	to	that	which	they	induce	on
equivalent	Geom2d	objects.	This	induced	parameterization	is	the	one
used	when	returning	parameter	values	on	such	curves,	for	instance	with
the	functions	Tangency1,	Tangency2,	Tangency3,	Intersection2	and
CenterOn3	provided	by	construction	algorithms	from	the	GccAna	or
Geom2dGcc	packages.

Curves	and	Surfaces	from	Constraints
The	Curves	and	Surfaces	from	Constraints	component	groups	together
high	level	functions	used	in	2D	and	3D	geometry	for:

creation	of	faired	and	minimal	variation	2D	curves
construction	of	ruled	surfaces
construction	of	pipe	surfaces
filling	of	surfaces
construction	of	plate	surfaces
extension	of	a	3D	curve	or	surface	beyond	its	original	bounds.

OPEN	CASCADE	company	also	provides	a	product	known	as	Surfaces
from	Scattered	Points,	which	allows	constructing	surfaces	from	scattered
points.	This	algorithm	accepts	or	constructs	an	initial	B-Spline	surface
and	looks	for	its	deformation	(finite	elements	method)	which	would	satisfy
the	constraints.	Using	optimized	computation	methods,	this	algorithm	is
able	to	construct	a	surface	from	more	than	500	000	points.

SSP	product	is	not	supplied	with	Open	CASCADE	Technology,	but	can
be	purchased	separately.

Faired	and	Minimal	Variation	2D	Curves

Elastic	beam	curves	have	their	origin	in	traditional	methods	of	modeling
applied	in	boat-building,	where	a	long	thin	piece	of	wood,	a	lathe,	was
forced	to	pass	between	two	sets	of	nails	and	in	this	way,	take	the	form	of
a	curve	based	on	the	two	points,	the	directions	of	the	forces	applied	at
those	points,	and	the	properties	of	the	wooden	lathe	itself.

Maintaining	these	constraints	requires	both	longitudinal	and	transversal
forces	to	be	applied	to	the	beam	in	order	to	compensate	for	its	internal
elasticity.	The	longitudinal	forces	can	be	a	push	or	a	pull	and	the	beam
may	or	may	not	be	allowed	to	slide	over	these	fixed	points.

Batten	Curves

The	class	FairCurve_Batten	allows	producing	faired	curves	defined	on

http://www.opencascade.com/content/surfaces-scattered-points

the	basis	of	one	or	more	constraints	on	each	of	the	two	reference	points.
These	include	point,	angle	of	tangency	and	curvature	settings.	The
following	constraint	orders	are	available:

0	the	curve	must	pass	through	a	point
1	the	curve	must	pass	through	a	point	and	have	a	given	tangent
2	the	curve	must	pass	through	a	point,	have	a	given	tangent	and	a
given	curvature.

Only	0	and	1	constraint	orders	are	used.	The	function	Curve	returns	the
result	as	a	2D	BSpline	curve.

Minimal	Variation	Curves

The	class	FairCurve_MinimalVariation	allows	producing	curves	with
minimal	variation	in	curvature	at	each	reference	point.	The	following
constraint	orders	are	available:

0	the	curve	must	pass	through	a	point
1	the	curve	must	pass	through	a	point	and	have	a	given	tangent
2	the	curve	must	pass	through	a	point,	have	a	given	tangent	and	a
given	curvature.

Constraint	orders	of	0,	1	and	2	can	be	used.	The	algorithm	minimizes
tension,	sagging	and	jerk	energy.

The	function	Curve	returns	the	result	as	a	2D	BSpline	curve.

If	you	want	to	give	a	specific	length	to	a	batten	curve,	use:

b.SetSlidingFactor(L	/	b.SlidingOfReference())	

where	b	is	the	name	of	the	batten	curve	object

Free	sliding	is	generally	more	aesthetically	pleasing	than	constrained
sliding.	However,	the	computation	can	fail	with	values	such	as	angles
greater	than	p/2	because	in	this	case	the	length	is	theoretically	infinite.

In	other	cases,	when	sliding	is	imposed	and	the	sliding	factor	is	too	large,
the	batten	can	collapse.

The	constructor	parameters,	Tolerance	and	NbIterations,	control	how
precise	the	computation	is,	and	how	long	it	will	take.

Ruled	Surfaces

A	ruled	surface	is	built	by	ruling	a	line	along	the	length	of	two	curves.

Creation	of	Bezier	surfaces

The	class	GeomFill_BezierCurves	allows	producing	a	Bezier	surface
from	contiguous	Bezier	curves.	Note	that	problems	may	occur	with
rational	Bezier	Curves.

Creation	of	BSpline	surfaces

The	class	GeomFill_BSplineCurves	allows	producing	a	BSpline	surface
from	contiguous	BSpline	curves.	Note	that	problems	may	occur	with
rational	BSplines.

Pipe	Surfaces

The	class	GeomFill_Pipe	allows	producing	a	pipe	by	sweeping	a	curve
(the	section)	along	another	curve	(the	path).	The	result	is	a	BSpline
surface.

The	following	types	of	construction	are	available:

pipes	with	a	circular	section	of	constant	radius,
pipes	with	a	constant	section,
pipes	with	a	section	evolving	between	two	given	curves.

Filling	a	contour

It	is	often	convenient	to	create	a	surface	from	some	curves,	which	will
form	the	boundaries	that	define	the	new	surface.	This	is	done	by	the
class	GeomFill_ConstrainedFilling,	which	allows	filling	a	contour	defined
by	three	or	four	curves	as	well	as	by	tangency	constraints.	The	resulting
surface	is	a	BSpline.

A	case	in	point	is	the	intersection	of	two	fillets	at	a	corner.	If	the	radius	of
the	fillet	on	one	edge	is	different	from	that	of	the	fillet	on	another,	it
becomes	impossible	to	sew	together	all	the	edges	of	the	resulting
surfaces.	This	leaves	a	gap	in	the	overall	surface	of	the	object	which	you
are	constructing.

Intersecting	filleted	edges	with	differing	radiuses

These	algorithms	allow	you	to	fill	this	gap	from	two,	three	or	four	curves.
This	can	be	done	with	or	without	constraints,	and	the	resulting	surface
will	be	either	a	Bezier	or	a	BSpline	surface	in	one	of	a	range	of	filling
styles.

Creation	of	a	Boundary

The	class	GeomFill_SimpleBound	allows	you	defining	a	boundary	for	the

surface	to	be	constructed.

Creation	of	a	Boundary	with	an	adjoining	surface

The	class	GeomFill_BoundWithSurf	allows	defining	a	boundary	for	the
surface	to	be	constructed.	This	boundary	will	already	be	joined	to	another
surface.

Filling	styles

The	enumerations	FillingStyle	specify	the	styles	used	to	build	the	surface.
These	include:

Stretch	–	the	style	with	the	flattest	patches
Coons	–	a	rounded	style	with	less	depth	than	Curved
Curved	–	the	style	with	the	most	rounded	patches.

Intersecting	filleted	edges	with	different	radii	leave	a	gap	filled	by	a
surface

Plate	surfaces

In	CAD,	it	is	often	necessary	to	generate	a	surface	which	has	no	exact
mathematical	definition,	but	which	is	defined	by	respective	constraints.
These	can	be	of	a	mathematical,	a	technical	or	an	aesthetic	order.

Essentially,	a	plate	surface	is	constructed	by	deforming	a	surface	so	that
it	conforms	to	a	given	number	of	curve	or	point	constraints.	In	the	figure
below,	you	can	see	four	segments	of	the	outline	of	the	plane,	and	a	point

which	have	been	used	as	the	curve	constraints	and	the	point	constraint
respectively.	The	resulting	surface	can	be	converted	into	a	BSpline
surface	by	using	the	function	MakeApprox	.

The	surface	is	built	using	a	variational	spline	algorithm.	It	uses	the
principle	of	deformation	of	a	thin	plate	by	localised	mechanical	forces.	If
not	already	given	in	the	input,	an	initial	surface	is	calculated.	This
corresponds	to	the	plate	prior	to	deformation.	Then,	the	algorithm	is
called	to	calculate	the	final	surface.	It	looks	for	a	solution	satisfying
constraints	and	minimizing	energy	input.

Surface	generated	from	two	curves	and	a	point

The	package	GeomPlate	provides	the	following	services	for	creating

surfaces	respecting	curve	and	point	constraints:

Definition	of	a	Framework

The	class	BuildPlateSurface	allows	creating	a	framework	to	build
surfaces	according	to	curve	and	point	constraints	as	well	as	tolerance
settings.	The	result	is	returned	with	the	function	Surface.

Note	that	you	do	not	have	to	specify	an	initial	surface	at	the	time	of
construction.	It	can	be	added	later	or,	if	none	is	loaded,	a	surface	will	be
computed	automatically.

Definition	of	a	Curve	Constraint

The	class	CurveConstraint	allows	defining	curves	as	constraints	to	the
surface,	which	you	want	to	build.

Definition	of	a	Point	Constraint

The	class	PointConstraint	allows	defining	points	as	constraints	to	the
surface,	which	you	want	to	build.

Applying	Geom_Surface	to	Plate	Surfaces

The	class	Surface	allows	describing	the	characteristics	of	plate	surface
objects	returned	by	BuildPlateSurface::Surface	using	the	methods	of
Geom_Surface

Approximating	a	Plate	surface	to	a	BSpline

The	class	MakeApprox	allows	converting	a	GeomPlate	surface	into	a
Geom_BSplineSurface.

Surface	generated	from	four	curves	and	a	point

Let	us	create	a	Plate	surface	and	approximate	it	from	a	polyline	as	a
curve	constraint	and	a	point	constraint

Standard_Integer	NbCurFront=4,	

NbPointConstraint=1;	

gp_Pnt	P1(0.,0.,0.);	

gp_Pnt	P2(0.,10.,0.);	

gp_Pnt	P3(0.,10.,10.);	

gp_Pnt	P4(0.,0.,10.);	

gp_Pnt	P5(5.,5.,5.);	

BRepBuilderAPI_MakePolygon	W;	

W.Add(P1);	

W.Add(P2);	

W.Add(P3);	

W.Add(P4);	

W.Add(P1);	

//	Initialize	a	BuildPlateSurface	

GeomPlate_BuildPlateSurface	BPSurf(3,15,2);	

//	Create	the	curve	constraints	

BRepTools_WireExplorer	anExp;	

for(anExp.Init(W);	anExp.More();	anExp.Next())	

{	

TopoDS_Edge	E	=	anExp.Current();	

Handle(BRepAdaptor_HCurve)	C	=	new	

BRepAdaptor_HCurve();	

C-ChangeCurve().Initialize(E);	

Handle(BRepFill_CurveConstraint)	Cont=	new	

BRepFill_CurveConstraint(C,0);	

BPSurf.Add(Cont);	

}	

//	Point	constraint	

Handle(GeomPlate_PointConstraint)	PCont=	new	

GeomPlate_PointConstraint(P5,0);	

BPSurf.Add(PCont);	

//	Compute	the	Plate	surface	

BPSurf.Perform();	

//	Approximation	of	the	Plate	surface	

Standard_Integer	MaxSeg=9;	

Standard_Integer	MaxDegree=8;	

Standard_Integer	CritOrder=0;	

Standard_Real	dmax,Tol;	

Handle(GeomPlate_Surface)	PSurf	=	BPSurf.Surface();	

dmax	=	Max(0.0001,10*BPSurf.G0Error());	

Tol=0.0001;	

GeomPlate_MakeApprox	

Mapp(PSurf,Tol,MaxSeg,MaxDegree,dmax,CritOrder);	

Handle	(Geom_Surface)	Surf	(Mapp.Surface());	

//	create	a	face	corresponding	to	the	approximated	

Plate	

Surface	

Standard_Real	Umin,	Umax,	Vmin,	Vmax;	

PSurf->Bounds(Umin,	Umax,	Vmin,	Vmax);	

BRepBuilderAPI_MakeFace	MF(Surf,Umin,	Umax,	Vmin,	

Vmax);	

Projections
Projections	provide	for	computing	the	following:

the	projections	of	a	2D	point	onto	a	2D	curve
the	projections	of	a	3D	point	onto	a	3D	curve	or	surface
the	projection	of	a	3D	curve	onto	a	surface.
the	planar	curve	transposition	from	the	3D	to	the	2D	parametric
space	of	an	underlying	plane	and	v.	s.
the	positioning	of	a	2D	gp	object	in	the	3D	geometric	space.

Projection	of	a	2D	Point	on	a	Curve

Geom2dAPI_ProjectPointOnCurve	allows	calculation	of	all	normals
projected	from	a	point	(gp_Pnt2d)	onto	a	geometric	curve
(Geom2d_Curve).	The	calculation	may	be	restricted	to	a	given	domain.

Normals	from	a	point	to	a	curve

The	curve	does	not	have	to	be	a	Geom2d_TrimmedCurve.	The	algorithm
will	function	with	any	class	inheriting	Geom2d_Curve.

The	class	Geom2dAPI_ProjectPointOnCurve	may	be	instantiated	as	in
the	following	example:

gp_Pnt2d	P;	

Handle(Geom2d_BezierCurve)	C	=	

				new		Geom2d_BezierCurve(args);	

Geom2dAPI_ProjectPointOnCurve	Projector	(P,	C);	

To	restrict	the	search	for	normals	to	a	given	domain	[U1,U2],	use	the
following	constructor:

Geom2dAPI_ProjectPointOnCurve	Projector	(P,	C,	U1,	

U2);	

Having	thus	created	the	Geom2dAPI_ProjectPointOnCurve	object,	we
can	now	interrogate	it.

Calling	the	number	of	solution	points

Standard_Integer	NumSolutions	=	Projector.NbPoints();	

Calling	the	location	of	a	solution	point

The	solutions	are	indexed	in	a	range	from	1	to	Projector.NbPoints().	The
point,	which	corresponds	to	a	given	Index	may	be	found:

gp_Pnt2d	Pn	=	Projector.Point(Index);	

Calling	the	parameter	of	a	solution	point

For	a	given	point	corresponding	to	a	given	Index:

Standard_Real	U	=	Projector.Parameter(Index);	

This	can	also	be	programmed	as:

Standard_Real	U;	

Projector.Parameter(Index,U);	

Calling	the	distance	between	the	start	and	end	points

We	can	find	the	distance	between	the	initial	point	and	a	point,	which
corresponds	to	the	given	Index:

Standard_Real	D	=	Projector.Distance(Index);	

Calling	the	nearest	solution	point

This	class	offers	a	method	to	return	the	closest	solution	point	to	the
starting	point.	This	solution	is	accessed	as	follows:

gp_Pnt2d	P1	=	Projector.NearestPoint();	

Calling	the	parameter	of	the	nearest	solution	point

Standard_Real	U	=	Projector.LowerDistanceParameter();	

Calling	the	minimum	distance	from	the	point	to	the	curve

Standard_Real	D	=	Projector.LowerDistance();	

Redefined	operators

Some	operators	have	been	redefined	to	find	the	closest	solution.

Standard_Real()	returns	the	minimum	distance	from	the	point	to	the
curve.

Standard_Real	D	=	Geom2dAPI_ProjectPointOnCurve	

(P,C);	

Standard_Integer()	returns	the	number	of	solutions.

Standard_Integer	N	=	

Geom2dAPI_ProjectPointOnCurve	(P,C);	

gp_Pnt2d()	returns	the	nearest	solution	point.

gp_Pnt2d	P1	=	Geom2dAPI_ProjectPointOnCurve	(P,C);	

Using	these	operators	makes	coding	easier	when	you	only	need	the
nearest	point.	Thus:

Geom2dAPI_ProjectPointOnCurve	Projector	(P,	C);	

gp_Pnt2d	P1	=	Projector.NearestPoint();	

can	be	written	more	concisely	as:

gp_Pnt2d	P1	=	Geom2dAPI_ProjectPointOnCurve	(P,C);	

However,	note	that	in	this	second	case	no	intermediate
Geom2dAPI_ProjectPointOnCurve	object	is	created,	and	thus	it	is
impossible	to	have	access	to	other	solution	points.

Access	to	lower-level	functionalities

If	you	want	to	use	the	wider	range	of	functionalities	available	from	the
Extrema	package,	a	call	to	the	Extrema()	method	will	return	the
algorithmic	object	for	calculating	extrema.	For	example:

Extrema_ExtPC2d&	TheExtrema	=	Projector.Extrema();	

Projection	of	a	3D	Point	on	a	Curve

The	class	GeomAPI_ProjectPointOnCurve	is	instantiated	as	in	the
following	example:

gp_Pnt	P;	

Handle(Geom_BezierCurve)	C	=	

				new		Geom_BezierCurve(args);	

GeomAPI_ProjectPointOnCurve	Projector	(P,	C);	

If	you	wish	to	restrict	the	search	for	normals	to	the	given	domain	[U1,U2],
use	the	following	constructor:

GeomAPI_ProjectPointOnCurve	Projector	(P,	C,	U1,	U2);	

Having	thus	created	the	GeomAPI_ProjectPointOnCurve	object,	you	can
now	interrogate	it.

Calling	the	number	of	solution	points

Standard_Integer	NumSolutions	=	Projector.NbPoints();	

Calling	the	location	of	a	solution	point

The	solutions	are	indexed	in	a	range	from	1	to	Projector.NbPoints().	The
point,	which	corresponds	to	a	given	index,	may	be	found:

gp_Pnt	Pn	=	Projector.Point(Index);	

Calling	the	parameter	of	a	solution	point

For	a	given	point	corresponding	to	a	given	index:

Standard_Real	U	=	Projector.Parameter(Index);	

This	can	also	be	programmed	as:

Standard_Real	U;	

Projector.Parameter(Index,U);	

Calling	the	distance	between	the	start	and	end	point

The	distance	between	the	initial	point	and	a	point,	which	corresponds	to	a
given	index,	may	be	found:

Standard_Real	D	=	Projector.Distance(Index);	

Calling	the	nearest	solution	point

This	class	offers	a	method	to	return	the	closest	solution	point	to	the
starting	point.	This	solution	is	accessed	as	follows:

gp_Pnt	P1	=	Projector.NearestPoint();	

Calling	the	parameter	of	the	nearest	solution	point

Standard_Real	U	=	Projector.LowerDistanceParameter();	

Calling	the	minimum	distance	from	the	point	to	the	curve

Standard_Real	D	=		Projector.LowerDistance();	

Redefined	operators

Some	operators	have	been	redefined	to	find	the	nearest	solution.

Standard_Real()	returns	the	minimum	distance	from	the	point	to	the
curve.

Standard_Real	D	=	GeomAPI_ProjectPointOnCurve	(P,C);	

Standard_Integer()	returns	the	number	of	solutions.

Standard_Integer	N	=		GeomAPI_ProjectPointOnCurve	

(P,C);	

gp_Pnt2d()	returns	the	nearest	solution	point.

gp_Pnt	P1	=	GeomAPI_ProjectPointOnCurve	(P,C);	

Using	these	operators	makes	coding	easier	when	you	only	need	the
nearest	point.	In	this	way,

GeomAPI_ProjectPointOnCurve	Projector	(P,	C);	

gp_Pnt	P1	=	Projector.NearestPoint();	

can	be	written	more	concisely	as:

gp_Pnt	P1	=	GeomAPI_ProjectPointOnCurve	(P,C);	

In	the	second	case,	however,	no	intermediate
GeomAPI_ProjectPointOnCurve	object	is	created,	and	it	is	impossible	to
access	other	solutions	points.

Access	to	lower-level	functionalities

If	you	want	to	use	the	wider	range	of	functionalities	available	from	the
Extrema	package,	a	call	to	the	Extrema()	method	will	return	the
algorithmic	object	for	calculating	the	extrema.	For	example:

Extrema_ExtPC&	TheExtrema	=	Projector.Extrema();	

Projection	of	a	Point	on	a	Surface

The	class	GeomAPI_ProjectPointOnSurf	allows	calculation	of	all	normals
projected	from	a	point	from	gp_Pnt	onto	a	geometric	surface	from
Geom_Surface.

Projection	of	normals	from	a	point	to	a	surface

Note	that	the	surface	does	not	have	to	be	of
Geom_RectangularTrimmedSurface	type.	The	algorithm	will	function	with
any	class	inheriting	Geom_Surface.

GeomAPI_ProjectPointOnSurf	is	instantiated	as	in	the	following	example:

gp_Pnt	P;	

Handle	(Geom_Surface)	S	=	new	

Geom_BezierSurface(args);	

GeomAPI_ProjectPointOnSurf	Proj	(P,	S);	

To	restrict	the	search	for	normals	within	the	given	rectangular	domain
[U1,	U2,	V1,	V2],	use	the	constructor	GeomAPI_ProjectPointOnSurf	Proj
(P,	S,	U1,	U2,	V1,	V2)

The	values	of	U1,	U2,	V1	and	V2	lie	at	or	within	their	maximum	and
minimum	limits,	i.e.:

Umin	<=		U1	<	U2	<=	Umax	

Vmin	<=		V1	<	V2	<=	Vmax	

Having	thus	created	the	GeomAPI_ProjectPointOnSurf	object,	you	can
interrogate	it.

Calling	the	number	of	solution	points

Standard_Integer	NumSolutions	=	Proj.NbPoints();	

Calling	the	location	of	a	solution	point

The	solutions	are	indexed	in	a	range	from	1	to	Proj.NbPoints().	The	point
corresponding	to	the	given	index	may	be	found:

gp_Pnt	Pn	=	Proj.Point(Index);	

Calling	the	parameters	of	a	solution	point

For	a	given	point	corresponding	to	the	given	index:

Standard_Real	U,V;	

Proj.Parameters(Index,	U,	V);	

Calling	the	distance	between	the	start	and	end	point

The	distance	between	the	initial	point	and	a	point	corresponding	to	the
given	index	may	be	found:

Standard_Real	D	=	Projector.Distance(Index);	

Calling	the	nearest	solution	point

This	class	offers	a	method,	which	returns	the	closest	solution	point	to	the
starting	point.	This	solution	is	accessed	as	follows:

gp_Pnt	P1	=	Proj.NearestPoint();	

Calling	the	parameters	of	the	nearest	solution	point

Standard_Real	U,V;	

Proj.LowerDistanceParameters	(U,	V);	

Calling	the	minimum	distance	from	a	point	to	the	surface

Standard_Real	D	=	Proj.LowerDistance();	

Redefined	operators

Some	operators	have	been	redefined	to	help	you	find	the	nearest
solution.

Standard_Real()	returns	the	minimum	distance	from	the	point	to	the
surface.

Standard_Real	D	=	GeomAPI_ProjectPointOnSurf	(P,S);	

Standard_Integer()	returns	the	number	of	solutions.

Standard_Integer	N	=	GeomAPI_ProjectPointOnSurf	

(P,S);	

gp_Pnt2d()	returns	the	nearest	solution	point.

gp_Pnt	P1	=	GeomAPI_ProjectPointOnSurf	(P,S);	

Using	these	operators	makes	coding	easier	when	you	only	need	the
nearest	point.	In	this	way,

GeomAPI_ProjectPointOnSurface	Proj	(P,	S);	

gp_Pnt	P1	=	Proj.NearestPoint();	

can	be	written	more	concisely	as:

gp_Pnt	P1	=	GeomAPI_ProjectPointOnSurface	(P,S);	

In	the	second	case,	however,	no	intermediate
GeomAPI_ProjectPointOnSurf	object	is	created,	and	it	is	impossible	to
access	other	solution	points.

Access	to	lower-level	functionalities

If	you	want	to	use	the	wider	range	of	functionalities	available	from	the
Extrema	package,	a	call	to	the	Extrema()	method	will	return	the
algorithmic	object	for	calculating	the	extrema	as	follows:

Extrema_ExtPS&	TheExtrema	=	Proj.Extrema();	

Switching	from	2d	and	3d	Curves

The	To2d	and	To3d	methods	are	used	to;

build	a	2d	curve	from	a	3d	Geom_Curve	lying	on	a	gp_Pln	plane
build	a	3d	curve	from	a	Geom2d_Curve	and	a	gp_Pln	plane.

These	methods	are	called	as	follows:

Handle(Geom2d_Curve)	C2d	=	GeomAPI::To2d(C3d,	Pln);	

Handle(Geom_Curve)	C3d	=	GeomAPI::To3d(C2d,	Pln);	

Topological	Tools
Open	CASCADE	Technology	topological	tools	provide	algorithms	to

Create	wires	from	edges;
Create	faces	from	wires;
Compute	state	of	the	shape	relatively	other	shape;
Orient	shapes	in	container;
Create	new	shapes	from	the	existing	ones;
Build	PCurves	of	edges	on	the	faces;
Check	the	validity	of	the	shapes;
Take	the	point	in	the	face;
Get	the	normal	direction	for	the	face.

Creation	of	the	faces	from	wireframe	model
It	is	possible	to	create	the	planar	faces	from	the	arbitrary	set	of	planar
edges	randomly	located	in	3D	space.	This	feature	might	be	useful	if	you
need	for	instance	to	restore	the	shape	from	the	wireframe	model:

Wireframe	model Faces	of	the	model

To	make	the	faces	from	edges	it	is,	firstly,	necessary	to	create	planar
wires	from	the	given	edges	and	than	create	planar	faces	from	each	wire.
The	static	methods	BOPAlgo_Tools::EdgesToWires	and
BOPAlgo_Tools::WiresToFaces	can	be	used	for	that:

TopoDS_Shape	anEdges	=	...;	/*	The	input	edges	*/

Standard_Real	anAngTol	=	1.e-8;	/*	The	angular	

tolerance	for	distinguishing	the	planes	in	which	

the	wires	are	located	*/

Standard_Boolean	bShared	=	Standard_False;	/*	Defines	

whether	the	edges	are	shared	or	not	*/

//

TopoDS_Shape	aWires;	/*	resulting	wires	*/

Standard_Integer	iErr	=	

BOPAlgo_Tools::EdgesToWires(anEdges,	aWires,	

bShared,	anAngTol);

if	(iErr)	{

		cout	<<	"Error:	Unable	to	build	wires	from	given	

edges\n";

		return;

}

//

TopoDS_Shape	aFaces;	/*	resulting	faces	*/

Standard_Boolean	bDone	=	

BOPAlgo_Tools::WiresToFaces(aWires,	aFaces,	

anAngTol);

if	(!bDone)	{

		cout	<<	"Error:	Unable	to	build	faces	from	

wires\n";

		return;

}

These	methods	can	also	be	used	separately:

BOPAlgo_Tools::EdgesToWires	allows	creating	planar	wires	from
edges.	The	input	edges	may	be	not	shared,	but	the	output	wires	will
be	sharing	the	coinciding	vertices	and	edges.	For	this	the
intersection	of	the	edges	is	performed.	Although,	it	is	possible	to	skip
the	intersection	stage	(if	the	input	edges	are	already	shared)	by
passing	the	corresponding	flag	into	the	method.	The	input	edges	are
expected	to	be	planar,	but	the	method	does	not	check	it.	Thus,	if	the
input	edges	are	not	planar,	the	output	wires	will	also	be	not	planar.	In
general,	the	output	wires	are	non-manifold	and	may	contain	free
vertices,	as	well	as	multi-connected	vertices.
BOPAlgo_Tools::WiresToFaces	allows	creating	planar	faces	from	the
planar	wires.	In	general,	the	input	wires	are	non-manifold	and	may
be	not	closed,	but	should	share	the	coinciding	parts.	The	wires
located	in	the	same	plane	and	completely	included	into	other	wires
will	create	holes	in	the	faces	built	from	outer	wires:

Wireframe	model Two	faces	(red	face	has	a	hole)

Classification	of	the	shapes
The	following	methods	allow	classifying	the	different	shapes	relatively
other	shapes:

The	variety	of	the	BOPTools_AlgoTools::ComputState	methods
classify	the	vertex/edge/face	relatively	solid;
BOPTools_AlgoTools::IsHole	classifies	wire	relatively	face;
IntTools_Tools::ClassifyPointByFace	classifies	point	relatively	face.

Orientation	of	the	shapes	in	the	container
The	following	methods	allow	reorienting	shapes	in	the	containers:

BOPTools_AlgoTools::OrientEdgesOnWire	correctly	orients	edges
on	the	wire;
BOPTools_AlgoTools::OrientFacesOnShell	correctly	orients	faces	on
the	shell.

Making	new	shapes
The	following	methods	allow	creating	new	shapes	from	the	existing	ones:

The	variety	of	the	BOPTools_AlgoTools::MakeNewVertex	creates	the
new	vertices	from	other	vertices	and	edges;
BOPTools_AlgoTools::MakeSplitEdge	splits	the	edge	by	the	given
parameters.

Building	PCurves
The	following	methods	allow	building	PCurves	of	edges	on	faces:

BOPTools_AlgoTools::BuildPCurveForEdgeOnFace	computes
PCurve	for	the	edge	on	the	face;
BOPTools_AlgoTools::BuildPCurveForEdgeOnPlane	and
BOPTools_AlgoTools::BuildPCurveForEdgesOnPlane	allow	building
PCurves	for	edges	on	the	planar	face;
BOPTools_AlgoTools::AttachExistingPCurve	takes	PCurve	on	the
face	from	one	edge	and	attach	this	PCurve	to	other	edge	coinciding
with	the	first	one.

Checking	the	validity	of	the	shapes
The	following	methods	allow	checking	the	validity	of	the	shapes:

BOPTools_AlgoTools::IsMicroEdge	detects	the	small	edges;
BOPTools_AlgoTools::ComputeTolerance	computes	the	correct
tolerance	of	the	edge	on	the	face;
BOPTools_AlgoTools::CorrectShapeTolerances	and
BOPTools_AlgoTools::CorrectTolerances	allow	correcting	the
tolerances	of	the	sub-shapes.
BRepLib::FindValidRange	finds	a	range	of	3d	curve	of	the	edge	not
covered	by	tolerance	spheres	of	vertices.

Taking	a	point	inside	the	face
The	following	methods	allow	taking	a	point	located	inside	the	face:

The	variety	of	the	BOPTools_AlgoTools3D::PointNearEdge	allows
getting	a	point	inside	the	face	located	near	the	edge;
BOPTools_AlgoTools3D::PointInFace	allows	getting	a	point	inside
the	face.

Getting	normal	for	the	face
The	following	methods	allow	getting	the	normal	direction	for	the
face/surface:

BOPTools_AlgoTools3D::GetNormalToSurface	computes	the	normal
direction	for	the	surface	in	the	given	point	defined	by	UV	parameters;
BOPTools_AlgoTools3D::GetNormalToFaceOnEdge	computes	the
normal	direction	for	the	face	in	the	point	located	on	the	edge	of	the
face;
BOPTools_AlgoTools3D::GetApproxNormalToFaceOnEdge
computes	the	normal	direction	for	the	face	in	the	point	located	near
the	edge	of	the	face.

The	Topology	API
The	Topology	API	of	Open	CASCADE	Technology	(OCCT)	includes	the
following	six	packages:

BRepAlgoAPI
BRepBuilderAPI
BRepFilletAPI
BRepFeat
BRepOffsetAPI
BRepPrimAPI

The	classes	provided	by	the	API	have	the	following	features:

The	constructors	of	classes	provide	different	construction	methods;
The	class	retains	different	tools	used	to	build	objects	as	fields;
The	class	provides	a	casting	method	to	obtain	the	result
automatically	with	a	function-like	call.

Let	us	use	the	class	BRepBuilderAPI_MakeEdge	to	create	a	linear	edge
from	two	points.

gp_Pnt	P1(10,0,0),	P2(20,0,0);	

TopoDS_Edge	E	=	BRepBuilderAPI_MakeEdge(P1,P2);

This	is	the	simplest	way	to	create	edge	E	from	two	points	P1,	P2,	but	the
developer	can	test	for	errors	when	he	is	not	as	confident	of	the	data	as	in
the	previous	example.

#include	<gp_Pnt.hxx>	

#include	<TopoDS_Edge.hxx>	

#include	<BRepBuilderAPI_MakeEdge.hxx>	

void	EdgeTest()	

{	

gp_Pnt	P1;	

gp_Pnt	P2;	

BRepBuilderAPI_MakeEdge	ME(P1,P2);	

if	(!ME.IsDone())	

{	

//	doing	ME.Edge()	or	E	=	ME	here	

//	would	raise	StdFail_NotDone	

Standard_DomainError::Raise	

(“ProcessPoints::Failed	to	createan	edge”);	

}	

TopoDS_Edge	E	=	ME;	

}	

In	this	example	an	intermediary	object	ME	has	been	introduced.	This	can
be	tested	for	the	completion	of	the	function	before	accessing	the	result.
More	information	on	error	handling	in	the	topology	programming
interface	can	be	found	in	the	next	section.

BRepBuilderAPI_MakeEdge	provides	valuable	information.	For	example,
when	creating	an	edge	from	two	points,	two	vertices	have	to	be	created
from	the	points.	Sometimes	you	may	be	interested	in	getting	these
vertices	quickly	without	exploring	the	new	edge.	Such	information	can	be
provided	when	using	a	class.	The	following	example	shows	a	function
creating	an	edge	and	two	vertices	from	two	points.

void	MakeEdgeAndVertices(const	gp_Pnt&	P1,	

const	gp_Pnt&	P2,	

TopoDS_Edge&	E,	

TopoDS_Vertex&	V1,	

TopoDS_Vertex&	V2)	

{	

BRepBuilderAPI_MakeEdge	ME(P1,P2);	

if	(!ME.IsDone())	{	

Standard_DomainError::Raise	

(“MakeEdgeAndVerices::Failed		to	create	an	edge”);	

}	

E	=	ME;	

V1	=	ME.Vextex1();	

V2	=	ME.Vertex2();	

The	class	BRepBuilderAPI_MakeEdge	provides	two	methods	Vertex1
and	Vertex2,	which	return	two	vertices	used	to	create	the	edge.

How	can	BRepBuilderAPI_MakeEdge	be	both	a	function	and	a	class?	It
can	do	this	because	it	uses	the	casting	capabilities	of	C++.	The
BRepBuilderAPI_MakeEdge	class	has	a	method	called	Edge;	in	the
previous	example	the	line	E	=	ME	could	have	been	written.

E	=	ME.Edge();	

This	instruction	tells	the	C++	compiler	that	there	is	an	implicit	casting	of
a	BRepBuilderAPI_MakeEdge	into	a	TopoDS_Edge	using	the	Edge
method.	It	means	this	method	is	automatically	called	when	a
BRepBuilderAPI_MakeEdge	is	found	where	a	TopoDS_Edge	is	required.

This	feature	allows	you	to	provide	classes,	which	have	the	simplicity	of
function	calls	when	required	and	the	power	of	classes	when	advanced
processing	is	necessary.	All	the	benefits	of	this	approach	are	explained
when	describing	the	topology	programming	interface	classes.

Error	Handling	in	the	Topology	API
A	method	can	report	an	error	in	the	two	following	situations:

The	data	or	arguments	of	the	method	are	incorrect,	i.e.	they	do	not
respect	the	restrictions	specified	by	the	methods	in	its	specifications.
Typical	example:	creating	a	linear	edge	from	two	identical	points	is
likely	to	lead	to	a	zero	divide	when	computing	the	direction	of	the
line.
Something	unexpected	happened.	This	situation	covers	every	error
not	included	in	the	first	category.	Including:	interruption,
programming	errors	in	the	method	or	in	another	method	called	by	the
first	method,	bad	specifications	of	the	arguments	(i.e.	a	set	of
arguments	that	was	not	expected	to	fail).

The	second	situation	is	supposed	to	become	increasingly	exceptional	as
a	system	is	debugged	and	it	is	handled	by	the	exception	mechanism.
Using	exceptions	avoids	handling	error	statuses	in	the	call	to	a	method:	a
very	cumbersome	style	of	programming.

In	the	first	situation,	an	exception	is	also	supposed	to	be	raised	because
the	calling	method	should	have	verified	the	arguments	and	if	it	did	not	do
so,	there	is	a	bug.	For	example,	if	before	calling	MakeEdge	you	are	not
sure	that	the	two	points	are	non-identical,	this	situation	must	be	tested.

Making	those	validity	checks	on	the	arguments	can	be	tedious	to
program	and	frustrating	as	you	have	probably	correctly	surmised	that	the
method	will	perform	the	test	twice.	It	does	not	trust	you.	As	the	test
involves	a	great	deal	of	computation,	performing	it	twice	is	also	time-
consuming.

Consequently,	you	might	be	tempted	to	adopt	the	highly	inadvisable	style
of	programming	illustrated	in	the	following	example:

#include	<Standard_ErrorHandler.hxx>	

try	{	

TopoDS_Edge	E	=	BRepBuilderAPI_MakeEdge(P1,P2);	

//	go	on	with	the	edge	

}	

catch	{	

//	process	the	error.	

}	

To	help	the	user,	the	Topology	API	classes	only	raise	the	exception
StdFail_NotDone.	Any	other	exception	means	that	something	happened
which	was	unforeseen	in	the	design	of	this	API.

The	NotDone	exception	is	only	raised	when	the	user	tries	to	access	the
result	of	the	computation	and	the	original	data	is	corrupted.	At	the
construction	of	the	class	instance,	if	the	algorithm	cannot	be	completed,
the	internal	flag	NotDone	is	set.	This	flag	can	be	tested	and	in	some
situations	a	more	complete	description	of	the	error	can	be	queried.	If	the
user	ignores	the	NotDone	status	and	tries	to	access	the	result,	an
exception	is	raised.

BRepBuilderAPI_MakeEdge	ME(P1,P2);	

if	(!ME.IsDone())	{	

//	doing	ME.Edge()	or	E	=	ME	here	

//	would	raise	StdFail_NotDone	

Standard_DomainError::Raise	

(“ProcessPoints::Failed	to	create	an	edge”);	

}	

TopoDS_Edge	E	=	ME;	

Standard	Topological	Objects
The	following	standard	topological	objects	can	be	created:

Vertices
Edges
Faces
Wires
Polygonal	wires
Shells
Solids.

There	are	two	root	classes	for	their	construction	and	modification:

The	deferred	class	BRepBuilderAPI_MakeShape	is	the	root	of	all
BRepBuilderAPI	classes,	which	build	shapes.	It	inherits	from	the
class	BRepBuilderAPI_Command	and	provides	a	field	to	store	the
constructed	shape.
The	deferred	class	BRepBuilderAPI_ModifyShape	is	used	as	a	root
for	the	shape	modifications.	It	inherits	BRepBuilderAPI_MakeShape
and	implements	the	methods	used	to	trace	the	history	of	all	sub-
shapes.

Vertex
BRepBuilderAPI_MakeVertex	creates	a	new	vertex	from	a	3D	point	from
gp.

gp_Pnt	P(0,0,10);	

TopoDS_Vertex	V	=	BRepBuilderAPI_MakeVertex(P);	

This	class	always	creates	a	new	vertex	and	has	no	other	methods.

Edge

Basic	edge	construction	method

Use	BRepBuilderAPI_MakeEdge	to	create	from	a	curve	and	vertices.
The	basic	method	constructs	an	edge	from	a	curve,	two	vertices,	and	two
parameters.

Handle(Geom_Curve)	C	=	...;	//	a	curve	

TopoDS_Vertex	V1	=	...,V2	=	...;//	two	Vertices	

Standard_Real	p1	=	...,	p2	=	..;//	two	parameters	

TopoDS_Edge	E	=	

BRepBuilderAPI_MakeEdge(C,V1,V2,p1,p2);	

where	C	is	the	domain	of	the	edge;	V1	is	the	first	vertex	oriented
FORWARD;	V2	is	the	second	vertex	oriented	REVERSED;	p1	and	p2	are
the	parameters	for	the	vertices	V1	and	V2	on	the	curve.	The	default
tolerance	is	associated	with	this	edge.

Basic	Edge	Construction

The	following	rules	apply	to	the	arguments:

The	curve

Must	not	be	a	Null	Handle.
If	the	curve	is	a	trimmed	curve,	the	basis	curve	is	used.

The	vertices

Can	be	null	shapes.	When	V1	or	V2	is	Null	the	edge	is	open	in	the
corresponding	direction	and	the	corresponding	parameter	p1	or	p2
must	be	infinite	(i.e	p1	is	RealFirst(),	p2	is	RealLast()).
Must	be	different	vertices	if	they	have	different	3d	locations	and
identical	vertices	if	they	have	the	same	3d	location	(identical	vertices
are	used	when	the	curve	is	closed).

The	parameters

Must	be	increasing	and	in	the	range	of	the	curve,	i.e.:

C->FirstParameter()	<=		p1	<	p2	<=	C->LastParameter()	

If	the	parameters	are	decreasing,	the	Vertices	are	switched,	i.e.	V2
becomes	V1	and	V1	becomes	V2.
On	a	periodic	curve	the	parameters	p1	and	p2	are	adjusted	by
adding	or	subtracting	the	period	to	obtain	p1	in	the	range	of	the
curve	and	p2	in	the	range	p1	<	p2	<=	p1+	Period.	So	on	a
parametric	curve	p2	can	be	greater	than	the	second	parameter,	see
the	figure	below.
Can	be	infinite	but	the	corresponding	vertex	must	be	Null	(see
above).
The	distance	between	the	Vertex	3d	location	and	the	point	evaluated
on	the	curve	with	the	parameter	must	be	lower	than	the	default
precision.

The	figure	below	illustrates	two	special	cases,	a	semi-infinite	edge	and
an	edge	on	a	periodic	curve.

Infinite	and	Periodic	Edges

Supplementary	edge	construction	methods

There	exist	supplementary	edge	construction	methods	derived	from	the
basic	one.

BRepBuilderAPI_MakeEdge	class	provides	methods,	which	are	all
simplified	calls	of	the	previous	one:

The	parameters	can	be	omitted.	They	are	computed	by	projecting
the	vertices	on	the	curve.
3d	points	(Pnt	from	gp)	can	be	given	in	place	of	vertices.	Vertices	are
created	from	the	points.	Giving	vertices	is	useful	when	creating
connected	vertices.
The	vertices	or	points	can	be	omitted	if	the	parameters	are	given.
The	points	are	computed	by	evaluating	the	parameters	on	the	curve.
The	vertices	or	points	and	the	parameters	can	be	omitted.	The	first
and	the	last	parameters	of	the	curve	are	used.

The	five	following	methods	are	thus	derived	from	the	basic	construction:

Handle(Geom_Curve)	C	=	...;	//	a	curve	

TopoDS_Vertex	V1	=	...,V2	=	...;//	two	Vertices	

Standard_Real	p1	=	...,	p2	=	..;//	two	parameters	

gp_Pnt	P1	=	...,	P2	=	...;//	two	points	

TopoDS_Edge	E;	

//	project	the	vertices	on	the	curve	

E	=	BRepBuilderAPI_MakeEdge(C,V1,V2);	

//	Make	vertices	from	points	

E	=	BRepBuilderAPI_MakeEdge(C,P1,P2,p1,p2);	

//	Make	vertices	from	points	and	project	them	

E	=	BRepBuilderAPI_MakeEdge(C,P1,P2);	

//	Computes	the	points	from	the	parameters	

E	=	BRepBuilderAPI_MakeEdge(C,p1,p2);	

//	Make	an	edge	from	the	whole	curve	

E	=	BRepBuilderAPI_MakeEdge(C);	

Six	methods	(the	five	above	and	the	basic	method)	are	also	provided	for
curves	from	the	gp	package	in	place	of	Curve	from	Geom.	The	methods
create	the	corresponding	Curve	from	Geom	and	are	implemented	for	the
following	classes:

gp_Lin	creates	a	Geom_Line	gp_Circ	creates	a	Geom_Circle	gp_Elips
creates	a	Geom_Ellipse	gp_Hypr	creates	a	Geom_Hyperbola	gp_Parab
creates	a	Geom_Parabola

There	are	also	two	methods	to	construct	edges	from	two	vertices	or	two
points.	These	methods	assume	that	the	curve	is	a	line;	the	vertices	or
points	must	have	different	locations.

TopoDS_Vertex	V1	=	...,V2	=	...;//	two	Vertices	

gp_Pnt	P1	=	...,	P2	=	...;//	two	points	

TopoDS_Edge	E;	

//	linear	edge	from	two	vertices	

E	=	BRepBuilderAPI_MakeEdge(V1,V2);	

//	linear	edge	from	two	points	

E	=	BRepBuilderAPI_MakeEdge(P1,P2);	

Other	information	and	error	status

The	class	BRepBuilderAPI_MakeEdge	can	provide	extra	information	and
return	an	error	status.

If	BRepBuilderAPI_MakeEdge	is	used	as	a	class,	it	can	provide	two

vertices.	This	is	useful	when	the	vertices	were	not	provided	as
arguments,	for	example	when	the	edge	was	constructed	from	a	curve
and	parameters.	The	two	methods	Vertex1	and	Vertex2	return	the
vertices.	Note	that	the	returned	vertices	can	be	null	if	the	edge	is	open	in
the	corresponding	direction.

The	Error	method	returns	a	term	of	the	BRepBuilderAPI_EdgeError
enumeration.	It	can	be	used	to	analyze	the	error	when	IsDone	method
returns	False.	The	terms	are:

EdgeDone	–	No	error	occurred,	IsDone	returns	True.
PointProjectionFailed	–	No	parameters	were	given,	but	the
projection	of	the	3D	points	on	the	curve	failed.	This	happens	if	the
point	distance	to	the	curve	is	greater	than	the	precision.
ParameterOutOfRange	–	The	given	parameters	are	not	in	the
range	C->FirstParameter(),	C->LastParameter()
DifferentPointsOnClosedCurve	–	The	two	vertices	or	points	have
different	locations	but	they	are	the	extremities	of	a	closed	curve.
PointWithInfiniteParameter	–	A	finite	coordinate	point	was
associated	with	an	infinite	parameter	(see	the	Precision	package	for
a	definition	of	infinite	values).
DifferentsPointAndParameter	–	The	distance	of	the	3D	point	and
the	point	evaluated	on	the	curve	with	the	parameter	is	greater	than
the	precision.
LineThroughIdenticPoints	–	Two	identical	points	were	given	to
define	a	line	(construction	of	an	edge	without	curve),	gp::Resolution
is	used	to	test	confusion	.

The	following	example	creates	a	rectangle	centered	on	the	origin	of
dimensions	H,	L	with	fillets	of	radius	R.	The	edges	and	the	vertices	are
stored	in	the	arrays	theEdges	and	theVertices.	We	use	class
Array1OfShape	(i.e.	not	arrays	of	edges	or	vertices).	See	the	image
below.

Creating	a	Wire
#include	<BRepBuilderAPI_MakeEdge.hxx>	

#include	<TopoDS_Shape.hxx>	

#include	<gp_Circ.hxx>	

#include	<gp.hxx>	

#include	<TopoDS_Wire.hxx>	

#include	<TopTools_Array1OfShape.hxx>	

#include	<BRepBuilderAPI_MakeWire.hxx>	

//	Use	MakeArc	method	to	make	an	edge	and	two	

vertices	

void	MakeArc(Standard_Real	x,Standard_Real	y,	

Standard_Real	R,	

Standard_Real	ang,	

TopoDS_Shape&	E,	

TopoDS_Shape&	V1,	

TopoDS_Shape&	V2)	

{	

gp_Ax2	Origin	=	gp::XOY();	

gp_Vec	Offset(x,	y,	0.);	

Origin.Translate(Offset);	

BRepBuilderAPI_MakeEdge	

ME(gp_Circ(Origin,R),		ang,	ang+PI/2);	

E	=	ME;	

V1	=	ME.Vertex1();	

V2	=	ME.Vertex2();	

}	

TopoDS_Wire	MakeFilletedRectangle(const	Standard_Real	

H,	

const	Standard_Real	L,	

const	Standard_Real		R)	

{	

TopTools_Array1OfShape	theEdges(1,8);	

TopTools_Array1OfShape	theVertices(1,8);	

//	First	create	the	circular	edges	and	the	vertices	

//	using	the	MakeArc	function	described	above.	

void	MakeArc(Standard_Real,	Standard_Real,	

Standard_Real,	Standard_Real,	

TopoDS_Shape&,	TopoDS_Shape&,		TopoDS_Shape&);	

Standard_Real	x	=	L/2	-	R,	y	=	H/2	-	R;	

MakeArc(x,-y,R,3.*PI/2.,theEdges(2),theVertices(2),	

theVertices(3));	

MakeArc(x,y,R,0.,theEdges(4),theVertices(4),	

theVertices(5));	

MakeArc(-x,y,R,PI/2.,theEdges(6),theVertices(6),	

theVertices(7));	

MakeArc(-x,-y,R,PI,theEdges(8),theVertices(8),	

theVertices(1));	

//	Create	the	linear	edges	

for	(Standard_Integer	i	=	1;	i	<=	7;	i	+=	2)	

{	

theEdges(i)	=	BRepBuilderAPI_MakeEdge	

(TopoDS::Vertex(theVertices(i)),TopoDS::Vertex	

(theVertices(i+1)));	

}	

//	Create	the	wire	using	the	BRepBuilderAPI_MakeWire	

BRepBuilderAPI_MakeWire	MW;	

for	(i	=	1;	i	<=	8;	i++)	

{	

MW.Add(TopoDS::Edge(theEdges(i)));	

}	

return	MW.Wire();	

}	

Edge	2D
Use	BRepBuilderAPI_MakeEdge2d	class	to	make	edges	on	a	working
plane	from	2d	curves.	The	working	plane	is	a	default	value	of	the
BRepBuilderAPI	package	(see	the	Plane	methods).

BRepBuilderAPI_MakeEdge2d	class	is	strictly	similar	to
BRepBuilderAPI_MakeEdge,	but	it	uses	2D	geometry	from	gp	and
Geom2d	instead	of	3D	geometry.

Polygon
BRepBuilderAPI_MakePolygon	class	is	used	to	build	polygonal	wires
from	vertices	or	points.	Points	are	automatically	changed	to	vertices	as	in
BRepBuilderAPI_MakeEdge.

The	basic	usage	of	BRepBuilderAPI_MakePolygon	is	to	create	a	wire	by
adding	vertices	or	points	using	the	Add	method.	At	any	moment,	the
current	wire	can	be	extracted.	The	close	method	can	be	used	to	close	the
current	wire.	In	the	following	example,	a	closed	wire	is	created	from	an
array	of	points.

#include	<TopoDS_Wire.hxx>	

#include	<BRepBuilderAPI_MakePolygon.hxx>	

#include	<TColgp_Array1OfPnt.hxx>	

TopoDS_Wire	ClosedPolygon(const	TColgp_Array1OfPnt&		

Points)	

{	

BRepBuilderAPI_MakePolygon	MP;	

for(Standard_Integer	

i=Points.Lower();i=Points.Upper();i++)	

{	

MP.Add(Points(i));	

}	

MP.Close();	

return	MP;	

}	

Short-cuts	are	provided	for	2,	3,	or	4	points	or	vertices.	Those	methods
have	a	Boolean	last	argument	to	tell	if	the	polygon	is	closed.	The	default
value	is	False.

Two	examples:

Example	of	a	closed	triangle	from	three	vertices:

TopoDS_Wire	W	=		

BRepBuilderAPI_MakePolygon(V1,V2,V3,Standard_Tru

e);	

Example	of	an	open	polygon	from	four	points:

TopoDS_Wire	W	=	

BRepBuilderAPI_MakePolygon(P1,P2,P3,P4);	

BRepBuilderAPI_MakePolygon	class	maintains	a	current	wire.	The
current	wire	can	be	extracted	at	any	moment	and	the	construction	can
proceed	to	a	longer	wire.	After	each	point	insertion,	the	class	maintains
the	last	created	edge	and	vertex,	which	are	returned	by	the	methods
Edge,	FirstVertex	and	LastVertex.

When	the	added	point	or	vertex	has	the	same	location	as	the	previous
one	it	is	not	added	to	the	current	wire	but	the	most	recently	created	edge
becomes	Null.	The	Added	method	can	be	used	to	test	this	condition.	The
MakePolygon	class	never	raises	an	error.	If	no	vertex	has	been	added,
the	Wire	is	Null.	If	two	vertices	are	at	the	same	location,	no	edge	is
created.

Face
Use	BRepBuilderAPI_MakeFace	class	to	create	a	face	from	a	surface
and	wires.	An	underlying	surface	is	constructed	from	a	surface	and
optional	parametric	values.	Wires	can	be	added	to	the	surface.	A	planar
surface	can	be	constructed	from	a	wire.	An	error	status	can	be	returned
after	face	construction.

Basic	face	construction	method

A	face	can	be	constructed	from	a	surface	and	four	parameters	to
determine	a	limitation	of	the	UV	space.	The	parameters	are	optional,	if
they	are	omitted	the	natural	bounds	of	the	surface	are	used.	Up	to	four
edges	and	vertices	are	created	with	a	wire.	No	edge	is	created	when	the
parameter	is	infinite.

Handle(Geom_Surface)	S	=	...;	//	a	surface	

Standard_Real	umin,umax,vmin,vmax;	//	parameters	

TopoDS_Face	F	=		

BRepBuilderAPI_MakeFace(S,umin,umax,vmin,vmax);	

Basic	Face	Construction

To	make	a	face	from	the	natural	boundary	of	a	surface,	the	parameters
are	not	required:

Handle(Geom_Surface)	S	=	...;	//	a	surface	

TopoDS_Face	F	=	BRepBuilderAPI_MakeFace(S);	

Constraints	on	the	parameters	are	similar	to	the	constraints	in
BRepBuilderAPI_MakeEdge.

umin,umax	(vmin,vmax)	must	be	in	the	range	of	the	surface	and
must	be	increasing.
On	a	U	(V)	periodic	surface	umin	and	umax	(vmin,vmax)	are
adjusted.
umin,	umax,	vmin,	vmax	can	be	infinite.	There	will	be	no	edge	in	the
corresponding	direction.

Supplementary	face	construction	methods

The	two	basic	constructions	(from	a	surface	and	from	a	surface	and
parameters)	are	implemented	for	all	gp	package	surfaces,	which	are
transformed	in	the	corresponding	Surface	from	Geom.

gp	package	surface Geom	package	surface
gp_Pln Geom_Plane
gp_Cylinder Geom_CylindricalSurface
gp_Cone creates	a Geom_ConicalSurface
gp_Sphere Geom_SphericalSurface
gp_Torus Geom_ToroidalSurface

Once	a	face	has	been	created,	a	wire	can	be	added	using	the	Add
method.	For	example,	the	following	code	creates	a	cylindrical	surface
and	adds	a	wire.

gp_Cylinder	C	=	..;	//	a	cylinder	

TopoDS_Wire	W	=	...;//	a	wire	

BRepBuilderAPI_MakeFace	MF(C);	

MF.Add(W);	

TopoDS_Face	F	=	MF;	

More	than	one	wire	can	be	added	to	a	face,	provided	that	they	do	not
cross	each	other	and	they	define	only	one	area	on	the	surface.	(Note	that
this	is	not	checked).	The	edges	on	a	Face	must	have	a	parametric	curve
description.

If	there	is	no	parametric	curve	for	an	edge	of	the	wire	on	the	Face	it	is
computed	by	projection.

For	one	wire,	a	simple	syntax	is	provided	to	construct	the	face	from	the
surface	and	the	wire.	The	above	lines	could	be	written:

TopoDS_Face	F	=	BRepBuilderAPI_MakeFace(C,W);	

A	planar	face	can	be	created	from	only	a	wire,	provided	this	wire	defines
a	plane.	For	example,	to	create	a	planar	face	from	a	set	of	points	you	can

use	BRepBuilderAPI_MakePolygon	and	BRepBuilderAPI_MakeFace.

#include	<TopoDS_Face.hxx>	

#include	<TColgp_Array1OfPnt.hxx>	

#include	<BRepBuilderAPI_MakePolygon.hxx>	

#include	<BRepBuilderAPI_MakeFace.hxx>	

TopoDS_Face	PolygonalFace(const	TColgp_Array1OfPnt&		

thePnts)	

{	

BRepBuilderAPI_MakePolygon	MP;	

for(Standard_Integer	i=thePnts.Lower();	

i<=thePnts.Upper();	i++)	

{	

MP.Add(thePnts(i));	

}	

MP.Close();	

TopoDS_Face	F	=	BRepBuilderAPI_MakeFace(MP.Wire());	

return	F;	

}	

The	last	use	of	MakeFace	is	to	copy	an	existing	face	to	add	new	wires.
For	example,	the	following	code	adds	a	new	wire	to	a	face:

TopoDS_Face	F	=	...;	//	a	face	

TopoDS_Wire	W	=	...;	//	a	wire	

F	=	BRepBuilderAPI_MakeFace(F,W);	

To	add	more	than	one	wire	an	instance	of	the
BRepBuilderAPI_MakeFace	class	can	be	created	with	the	face	and	the
first	wire	and	the	new	wires	inserted	with	the	Add	method.

Error	status

The	Error	method	returns	an	error	status,	which	is	a	term	from	the
BRepBuilderAPI_FaceError	enumeration.

FaceDone	–	no	error	occurred.
NoFace	–	no	initialization	of	the	algorithm;	an	empty	constructor	was

used.
NotPlanar	–	no	surface	was	given	and	the	wire	was	not	planar.
CurveProjectionFailed	–	no	curve	was	found	in	the	parametric	space
of	the	surface	for	an	edge.
ParametersOutOfRange	–	the	parameters	umin,	umax,	vmin,	vmax
are	out	of	the	surface.

Wire
The	wire	is	a	composite	shape	built	not	from	a	geometry,	but	by	the
assembly	of	edges.	BRepBuilderAPI_MakeWire	class	can	build	a	wire
from	one	or	more	edges	or	connect	new	edges	to	an	existing	wire.

Up	to	four	edges	can	be	used	directly,	for	example:

TopoDS_Wire	W	=	BRepBuilderAPI_MakeWire(E1,E2,E3,E4);	

For	a	higher	or	unknown	number	of	edges	the	Add	method	must	be	used;
for	example,	to	build	a	wire	from	an	array	of	shapes	(to	be	edges).

TopTools_Array1OfShapes	theEdges;	

BRepBuilderAPI_MakeWire	MW;	

for	(Standard_Integer	i	=	theEdge.Lower();	

i	<=	theEdges.Upper();	i++)	

MW.Add(TopoDS::Edge(theEdges(i));	

TopoDS_Wire	W	=	MW;	

The	class	can	be	constructed	with	a	wire.	A	wire	can	also	be	added.	In
this	case,	all	the	edges	of	the	wires	are	added.	For	example	to	merge	two
wires:

#include	<TopoDS_Wire.hxx>	

#include	<BRepBuilderAPI_MakeWire.hxx>	

TopoDS_Wire	MergeWires	(const	TopoDS_Wire&	W1,	

const		TopoDS_Wire&	W2)	

{	

BRepBuilderAPI_MakeWire	MW(W1);	

MW.Add(W2);	

return	MW;	

}	

BRepBuilderAPI_MakeWire	class	connects	the	edges	to	the	wire.	When
a	new	edge	is	added	if	one	of	its	vertices	is	shared	with	the	wire	it	is
considered	as	connected	to	the	wire.	If	there	is	no	shared	vertex,	the

algorithm	searches	for	a	vertex	of	the	edge	and	a	vertex	of	the	wire,
which	are	at	the	same	location	(the	tolerances	of	the	vertices	are	used	to
test	if	they	have	the	same	location).	If	such	a	pair	of	vertices	is	found,	the
edge	is	copied	with	the	vertex	of	the	wire	in	place	of	the	original	vertex.
All	the	vertices	of	the	edge	can	be	exchanged	for	vertices	from	the	wire.
If	no	connection	is	found	the	wire	is	considered	to	be	disconnected.	This
is	an	error.

BRepBuilderAPI_MakeWire	class	can	return	the	last	edge	added	to	the
wire	(Edge	method).	This	edge	can	be	different	from	the	original	edge	if	it
was	copied.

The	Error	method	returns	a	term	of	the	BRepBuilderAPI_WireError
enumeration:	WireDone	–	no	error	occurred.	EmptyWire	–	no	initialization
of	the	algorithm,	an	empty	constructor	was	used.	DisconnectedWire	–	the
last	added	edge	was	not	connected	to	the	wire.	NonManifoldWire	–	the
wire	with	some	singularity.

Shell
The	shell	is	a	composite	shape	built	not	from	a	geometry,	but	by	the
assembly	of	faces.	Use	BRepBuilderAPI_MakeShell	class	to	build	a	Shell
from	a	set	of	Faces.	What	may	be	important	is	that	each	face	should
have	the	required	continuity.	That	is	why	an	initial	surface	is	broken	up
into	faces.

Solid
The	solid	is	a	composite	shape	built	not	from	a	geometry,	but	by	the
assembly	of	shells.	Use	BRepBuilderAPI_MakeSolid	class	to	build	a
Solid	from	a	set	of	Shells.	Its	use	is	similar	to	the	use	of	the	MakeWire
class:	shells	are	added	to	the	solid	in	the	same	way	that	edges	are	added
to	the	wire	in	MakeWire.

Object	Modification
Transformation

BRepBuilderAPI_Transform	class	can	be	used	to	apply	a	transformation
to	a	shape	(see	class	gp_Trsf).	The	methods	have	a	boolean	argument	to
copy	or	share	the	original	shape,	as	long	as	the	transformation	allows	(it
is	only	possible	for	direct	isometric	transformations).	By	default,	the
original	shape	is	shared.

The	following	example	deals	with	the	rotation	of	shapes.

TopoDS_Shape	myShape1	=	...;	

//	The	original	shape	1	

TopoDS_Shape	myShape2	=	...;	

//	The	original	shape2	

gp_Trsf	T;	

T.SetRotation(gp_Ax1(gp_Pnt(0.,0.,0.),gp_Vec(0.,0.,1.

)),	

2.*PI/5.);	

BRepBuilderAPI_Transformation	theTrsf(T);	

theTrsf.Perform(myShape1);	

TopoDS_Shape	myNewShape1	=	theTrsf.Shape()	

theTrsf.Perform(myShape2,Standard_True);	

//	Here	duplication	is	forced	

TopoDS_Shape	myNewShape2	=	theTrsf.Shape()	

Duplication
Use	the	BRepBuilderAPI_Copy	class	to	duplicate	a	shape.	A	new	shape
is	thus	created.	In	the	following	example,	a	solid	is	copied:

TopoDS	Solid	MySolid;	

....//	Creates	a	solid	

TopoDS_Solid	myCopy	=	BRepBuilderAPI_Copy(mySolid);	

Primitives
The	BRepPrimAPI	package	provides	an	API	(Application	Programming
Interface)	for	construction	of	primitives	such	as:

Boxes;
Cones;
Cylinders;
Prisms.

It	is	possible	to	create	partial	solids,	such	as	a	sphere	limited	by
longitude.	In	real	models,	primitives	can	be	used	for	easy	creation	of
specific	sub-parts.

Construction	by	sweeping	along	a	profile:
Linear;
Rotational	(through	an	angle	of	rotation).

Sweeps	are	objects	obtained	by	sweeping	a	profile	along	a	path.	The
profile	can	be	any	topology	and	the	path	is	usually	a	curve	or	a	wire.	The
profile	generates	objects	according	to	the	following	rules:

Vertices	generate	Edges
Edges	generate	Faces.
Wires	generate	Shells.
Faces	generate	Solids.
Shells	generate	Composite	Solids.

It	is	not	allowed	to	sweep	Solids	and	Composite	Solids.	Swept
constructions	along	complex	profiles	such	as	BSpline	curves	also
available	in	the	BRepOffsetAPI	package.	This	API	provides	simple,	high
level	calls	for	the	most	common	operations.

Making	Primitives

Box

The	class	BRepPrimAPI_MakeBox	allows	building	a	parallelepiped	box.
The	result	is	either	a	Shell	or	a	Solid.	There	are	four	ways	to	build	a	box:

From	three	dimensions	dx,	dy	and	dz.	The	box	is	parallel	to	the	axes
and	extends	for	[0,dx]	[0,dy]	[0,dz]	.
From	a	point	and	three	dimensions.	The	same	as	above	but	the
point	is	the	new	origin.
From	two	points,	the	box	is	parallel	to	the	axes	and	extends	on	the
intervals	defined	by	the	coordinates	of	the	two	points.
From	a	system	of	axes	gp_Ax2	and	three	dimensions.	Same	as	the
first	way	but	the	box	is	parallel	to	the	given	system	of	axes.

An	error	is	raised	if	the	box	is	flat	in	any	dimension	using	the	default
precision.	The	following	code	shows	how	to	create	a	box:

TopoDS_Solid	theBox	=	

BRepPrimAPI_MakeBox(10.,20.,30.);	

The	four	methods	to	build	a	box	are	shown	in	the	figure:

Making	Boxes

Wedge

BRepPrimAPI_MakeWedge	class	allows	building	a	wedge,	which	is	a
slanted	box,	i.e.	a	box	with	angles.	The	wedge	is	constructed	in	much	the
same	way	as	a	box	i.e.	from	three	dimensions	dx,dy,dz	plus	arguments
or	from	an	axis	system,	three	dimensions,	and	arguments.

The	following	figure	shows	two	ways	to	build	wedges.	One	is	to	add	a
dimension	ltx,	which	is	the	length	in	x	of	the	face	at	dy.	The	second	is	to
add	xmin,	xmax,	zmin	and	zmax	to	describe	the	face	at	dy.

The	first	method	is	a	particular	case	of	the	second	with	xmin	=	0,	xmax	=
ltx,	zmin	=	0,	zmax	=	dz.	To	make	a	centered	pyramid	you	can	use	xmin
=	xmax	=	dx	/	2,	zmin	=	zmax	=	dz	/	2.

Making	Wedges

Rotation	object

BRepPrimAPI_MakeOneAxis	is	a	deferred	class	used	as	a	root	class	for
all	classes	constructing	rotational	primitives.	Rotational	primitives	are
created	by	rotating	a	curve	around	an	axis.	They	cover	the	cylinder,	the
cone,	the	sphere,	the	torus,	and	the	revolution,	which	provides	all	other
curves.

The	particular	constructions	of	these	primitives	are	described,	but	they	all
have	some	common	arguments,	which	are:

A	system	of	coordinates,	where	the	Z	axis	is	the	rotation	axis..
An	angle	in	the	range	[0,2*PI].

A	vmin,	vmax	parameter	range	on	the	curve.

The	result	of	the	OneAxis	construction	is	a	Solid,	a	Shell,	or	a	Face.	The
face	is	the	face	covering	the	rotational	surface.	Remember	that	you	will
not	use	the	OneAxis	directly	but	one	of	the	derived	classes,	which
provide	improved	constructions.	The	following	figure	illustrates	the
OneAxis	arguments.

MakeOneAxis	arguments

Cylinder

BRepPrimAPI_MakeCylinder	class	allows	creating	cylindrical	primitives.
A	cylinder	is	created	either	in	the	default	coordinate	system	or	in	a	given
coordinate	system	gp_Ax2.	There	are	two	constructions:

Radius	and	height,	to	build	a	full	cylinder.
Radius,	height	and	angle	to	build	a	portion	of	a	cylinder.

The	following	code	builds	the	cylindrical	face	of	the	figure,	which	is	a
quarter	of	cylinder	along	the	Y	axis	with	the	origin	at	X,Y,Z	the	length	of
DY	and	radius	R.

Standard_Real	X	=	20,	Y	=	10,	Z	=	15,	R	=	10,	DY	=	

30;	

//	Make	the	system	of	coordinates	

gp_Ax2	axes	=	gp::ZOX();	

axes.Translate(gp_Vec(X,Y,Z));	

TopoDS_Face	F	=	

BRepPrimAPI_MakeCylinder(axes,R,DY,PI/2.);	

Cylinder

Cone

BRepPrimAPI_MakeCone	class	allows	creating	conical	primitives.	Like	a
cylinder,	a	cone	is	created	either	in	the	default	coordinate	system	or	in	a
given	coordinate	system	(gp_Ax2).	There	are	two	constructions:

Two	radii	and	height,	to	build	a	full	cone.	One	of	the	radii	can	be	null
to	make	a	sharp	cone.
Radii,	height	and	angle	to	build	a	truncated	cone.

The	following	code	builds	the	solid	cone	of	the	figure,	which	is	located	in
the	default	system	with	radii	R1	and	R2	and	height	H.

Standard_Real	R1	=	30,	R2	=	10,	H	=	15;	

TopoDS_Solid	S	=	BRepPrimAPI_MakeCone(R1,R2,H);	

Cone

Sphere

BRepPrimAPI_MakeSphere	class	allows	creating	spherical	primitives.
Like	a	cylinder,	a	sphere	is	created	either	in	the	default	coordinate
system	or	in	a	given	coordinate	system	gp_Ax2.	There	are	four
constructions:

From	a	radius	–	builds	a	full	sphere.
From	a	radius	and	an	angle	–	builds	a	lune	(digon).
From	a	radius	and	two	angles	–	builds	a	wraparound	spherical
segment	between	two	latitudes.	The	angles	a1	and	a2	must	follow
the	relation:	PI/2	<=	a1	<	a2	<=	PI/2	.
From	a	radius	and	three	angles	–	a	combination	of	two	previous
methods	builds	a	portion	of	spherical	segment.

The	following	code	builds	four	spheres	from	a	radius	and	three	angles.

Standard_Real	R	=	30,	ang	=	

				PI/2,	a1	=	-PI/2.3,		a2	=	PI/4;	

TopoDS_Solid	S1	=	BRepPrimAPI_MakeSphere(R);	

TopoDS_Solid	S2	=	BRepPrimAPI_MakeSphere(R,ang);	

TopoDS_Solid	S3	=	BRepPrimAPI_MakeSphere(R,a1,a2);	

TopoDS_Solid	S4	=	

BRepPrimAPI_MakeSphere(R,a1,a2,ang);	

Note	that	we	could	equally	well	choose	to	create	Shells	instead	of	Solids.

Examples	of	Spheres

Torus

BRepPrimAPI_MakeTorus	class	allows	creating	toroidal	primitives.	Like
the	other	primitives,	a	torus	is	created	either	in	the	default	coordinate
system	or	in	a	given	coordinate	system	gp_Ax2.	There	are	four
constructions	similar	to	the	sphere	constructions:

Two	radii	–	builds	a	full	torus.
Two	radii	and	an	angle	–	builds	an	angular	torus	segment.
Two	radii	and	two	angles	–	builds	a	wraparound	torus	segment
between	two	radial	planes.	The	angles	a1,	a2	must	follow	the
relation	0	<	a2	-	a1	<	2*PI.

Two	radii	and	three	angles	–	a	combination	of	two	previous	methods
builds	a	portion	of	torus	segment.

Examples	of	Tori

The	following	code	builds	four	toroidal	shells	from	two	radii	and	three
angles.

Standard_Real	R1	=	30,	R2	=	10,	ang	=	PI,	a1	=	0,	

				a2	=	PI/2;	

TopoDS_Shell	S1	=	BRepPrimAPI_MakeTorus(R1,R2);	

TopoDS_Shell	S2	=	BRepPrimAPI_MakeTorus(R1,R2,ang);	

TopoDS_Shell	S3	=	BRepPrimAPI_MakeTorus(R1,R2,a1,a2);	

TopoDS_Shell	S4	=	

				BRepPrimAPI_MakeTorus(R1,R2,a1,a2,ang);	

Note	that	we	could	equally	well	choose	to	create	Solids	instead	of	Shells.

Revolution

BRepPrimAPI_MakeRevolution	class	allows	building	a	uniaxial	primitive
from	a	curve.	As	other	uniaxial	primitives	it	can	be	created	in	the	default
coordinate	system	or	in	a	given	coordinate	system.

The	curve	can	be	any	Geom_Curve,	provided	it	is	planar	and	lies	in	the
same	plane	as	the	Z-axis	of	local	coordinate	system.	There	are	four
modes	of	construction:

From	a	curve,	use	the	full	curve	and	make	a	full	rotation.
From	a	curve	and	an	angle	of	rotation.
From	a	curve	and	two	parameters	to	trim	the	curve.	The	two
parameters	must	be	growing	and	within	the	curve	range.
From	a	curve,	two	parameters,	and	an	angle.	The	two	parameters
must	be	growing	and	within	the	curve	range.

Sweeping:	Prism,	Revolution	and	Pipe

Sweeping

Sweeps	are	the	objects	you	obtain	by	sweeping	a	profile	along	a	path.
The	profile	can	be	of	any	topology.	The	path	is	usually	a	curve	or	a	wire.
The	profile	generates	objects	according	to	the	following	rules:

Vertices	generate	Edges
Edges	generate	Faces.
Wires	generate	Shells.
Faces	generate	Solids.
Shells	generate	Composite	Solids

It	is	forbidden	to	sweep	Solids	and	Composite	Solids.	A	Compound
generates	a	Compound	with	the	sweep	of	all	its	elements.

Generating	a	sweep

BRepPrimAPI_MakeSweep	class	is	a	deferred	class	used	as	a	root	of
the	the	following	sweep	classes:

BRepPrimAPI_MakePrism	–	produces	a	linear	sweep
BRepPrimAPI_MakeRevol	–	produces	a	rotational	sweep
BRepPrimAPI_MakePipe	–	produces	a	general	sweep.

Prism

BRepPrimAPI_MakePrism	class	allows	creating	a	linear	prism	from	a
shape	and	a	vector	or	a	direction.

A	vector	allows	creating	a	finite	prism;
A	direction	allows	creating	an	infinite	or	semi-infinite	prism.	The
semi-infinite	or	infinite	prism	is	toggled	by	a	Boolean	argument.	All
constructors	have	a	boolean	argument	to	copy	the	original	shape	or
share	it	(by	default).

The	following	code	creates	a	finite,	an	infinite	and	a	semi-infinite	solid
using	a	face,	a	direction	and	a	length.

TopoDS_Face	F	=	..;	//	The	swept	face	

gp_Dir	direc(0,0,1);	

Standard_Real	l	=	10;	

//	create	a	vector	from	the	direction	and	the	length	

gp_Vec	v	=	direc;	

v	*=	l;	

TopoDS_Solid	P1	=	BRepPrimAPI_MakePrism(F,v);	

//	finite	

TopoDS_Solid	P2	=	BRepPrimAPI_MakePrism(F,direc);	

//	infinite	

TopoDS_Solid	P3	=		

BRepPrimAPI_MakePrism(F,direc,Standard_False);	

//	semi-infinite	

,"Finite,	infinite,	and	semi-infinite	prisms",420

Rotational	Sweep

BRepPrimAPI_MakeRevol	class	allows	creating	a	rotational	sweep	from
a	shape,	an	axis	(gp_Ax1),	and	an	angle.	The	angle	has	a	default	value
of	2*PI	which	means	a	closed	revolution.

BRepPrimAPI_MakeRevol	constructors	have	a	last	argument	to	copy	or
share	the	original	shape.	The	following	code	creates	a	a	full	and	a	partial
rotation	using	a	face,	an	axis	and	an	angle.

TopoDS_Face	F	=	...;	//	the	profile	

gp_Ax1	axis(gp_Pnt(0,0,0),gp_Dir(0,0,1));	

Standard_Real	ang	=	PI/3;	

TopoDS_Solid	R1	=	BRepPrimAPI_MakeRevol(F,axis);	

//	Full	revol	

TopoDS_Solid	R2	=	BRepPrimAPI_MakeRevol(F,axis,ang);	

Full	and	partial	rotation

Boolean	Operations
Boolean	operations	are	used	to	create	new	shapes	from	the
combinations	of	two	shapes.

Operation Result
Fuse all	points	in	S1	or	S2
Common all	points	in	S1	and	S2
Cut	S1	by	S2 all	points	in	S1	and	not	in	S2

Boolean	Operations

From	the	viewpoint	of	Topology	these	are	topological	operations	followed
by	blending	(putting	fillets	onto	edges	created	after	the	topological
operation).

Topological	operations	are	the	most	convenient	way	to	create	real
industrial	parts.	As	most	industrial	parts	consist	of	several	simple
elements	such	as	gear	wheels,	arms,	holes,	ribs,	tubes	and	pipes.	It	is
usually	easy	to	create	those	elements	separately	and	then	to	combine
them	by	Boolean	operations	in	the	whole	final	part.

See	Boolean	Operations	for	detailed	documentation.

Input	and	Result	Arguments
Boolean	Operations	have	the	following	types	of	the	arguments	and
produce	the	following	results:

For	arguments	having	the	same	shape	type	(e.g.	SOLID	/	SOLID)
the	type	of	the	resulting	shape	will	be	a	COMPOUND,	containing
shapes	of	this	type;
For	arguments	having	different	shape	types	(e.g.	SHELL	/	SOLID)
the	type	of	the	resulting	shape	will	be	a	COMPOUND,	containing
shapes	of	the	type	that	is	the	same	as	that	of	the	low	type	of	the
argument.	Example:	For	SHELL/SOLID	the	result	is	a	COMPOUND
of	SHELLs.
For	arguments	with	different	shape	types	some	of	Boolean
Operations	can	not	be	done	using	the	default	implementation,
because	of	a	non-manifold	type	of	the	result.	Example:	the	FUSE
operation	for	SHELL	and	SOLID	can	not	be	done,	but	the	CUT
operation	can	be	done,	where	SHELL	is	the	object	and	SOLID	is	the
tool.
It	is	possible	to	perform	Boolean	Operations	on	arguments	of	the
COMPOUND	shape	type.	In	this	case	each	compound	must	not	be
heterogeneous,	i.e.	it	must	contain	equidimensional	shapes	(EDGEs
or/and	WIREs,	FACEs	or/and	SHELLs,	SOLIDs).	SOLIDs	inside	the
COMPOUND	must	not	contact	(intersect	or	touch)	each	other.	The
same	condition	should	be	respected	for	SHELLs	or	FACEs,	WIREs
or	EDGEs.
Boolean	Operations	for	COMPSOLID	type	of	shape	are	not
supported.

Implementation
BRepAlgoAPI_BooleanOperation	class	is	the	deferred	root	class	for
Boolean	operations.

Fuse

BRepAlgoAPI_Fuse	performs	the	Fuse	operation.

TopoDS_Shape	A	=	...,	B	=	...;	

TopoDS_Shape	S	=	BRepAlgoAPI_Fuse(A,B);	

Common

BRepAlgoAPI_Common	performs	the	Common	operation.

TopoDS_Shape	A	=	...,	B	=	...;	

TopoDS_Shape	S	=	BRepAlgoAPI_Common(A,B);	

Cut

BRepAlgoAPI_Cut	performs	the	Cut	operation.

TopoDS_Shape	A	=	...,	B	=	...;	

TopoDS_Shape	S	=	BRepAlgoAPI_Cut(A,B);	

Section

BRepAlgoAPI_Section	performs	the	section,	described	as	a
TopoDS_Compound	made	of	TopoDS_Edge.

Section	operation
TopoDS_Shape	A	=	...,		TopoDS_ShapeB	=	...;	

TopoDS_Shape	S	=		BRepAlgoAPI_Section(A,B);	

Fillets	and	Chamfers
This	library	provides	algorithms	to	make	fillets	and	chamfers	on	shape
edges.	The	following	cases	are	addressed:

Corners	and	apexes	with	different	radii;
Corners	and	apexes	with	different	concavity.

If	there	is	a	concavity,	both	surfaces	that	need	to	be	extended	and	those,
which	do	not,	are	processed.

Fillets

Fillet	on	shape

A	fillet	is	a	smooth	face	replacing	a	sharp	edge.

BRepFilletAPI_MakeFillet	class	allows	filleting	a	shape.

To	produce	a	fillet,	it	is	necessary	to	define	the	filleted	shape	at	the
construction	of	the	class	and	add	fillet	descriptions	using	the	Add
method.

A	fillet	description	contains	an	edge	and	a	radius.	The	edge	must	be
shared	by	two	faces.	The	fillet	is	automatically	extended	to	all	edges	in	a
smooth	continuity	with	the	original	edge.	It	is	not	an	error	to	add	a	fillet
twice,	the	last	description	holds.

Filleting	two	edges	using	radii	r1	and	r2.

In	the	following	example	a	filleted	box	with	dimensions	a,b,c	and	radius	r
is	created.

Constant	radius

#include	<TopoDS_Shape.hxx>	

#include	<TopoDS.hxx>	

#include	<BRepPrimAPI_MakeBox.hxx>	

#include	<TopoDS_Solid.hxx>	

#include	<BRepFilletAPI_MakeFillet.hxx>	

#include	<TopExp_Explorer.hxx>	

TopoDS_Shape	FilletedBox(const	Standard_Real	a,	

																								const	Standard_Real		b,	

																								const	Standard_Real		c,	

																								const	Standard_Real		r)	

{	

				TopoDS_Solid	Box	=		BRepPrimAPI_MakeBox(a,b,c);	

				BRepFilletAPI_MakeFillet		MF(Box);	

				//	add	all	the	edges		to	fillet	

				TopExp_Explorer		ex(Box,TopAbs_EDGE);	

				while	(ex.More())	

				{	

				MF.Add(r,TopoDS::Edge(ex.Current()));	

				ex.Next();	

				}	

				return	MF.Shape();	

				}	

Fillet	with	constant	radius

Changing	radius

void	

CSampleTopologicalOperationsDoc::OnEvolvedblend1

()	

{	

				TopoDS_Shape	theBox		=	

BRepPrimAPI_MakeBox(200,200,200);	

				BRepFilletAPI_MakeFillet		Rake(theBox);	

				ChFi3d_FilletShape		FSh	=	ChFi3d_Rational;	

				Rake.SetFilletShape(FSh);	

				TColgp_Array1OfPnt2d		ParAndRad(1,	6);	

				ParAndRad(1).SetCoord(0.,		10.);	

				ParAndRad(1).SetCoord(50.,		20.);	

				ParAndRad(1).SetCoord(70.,		20.);	

				ParAndRad(1).SetCoord(130.,		60.);	

				ParAndRad(1).SetCoord(160.,		30.);	

				ParAndRad(1).SetCoord(200.,		20.);	

				TopExp_Explorer		ex(theBox,TopAbs_EDGE);	

				Rake.Add(ParAndRad,	TopoDS::Edge(ex.Current()));	

				TopoDS_Shape		evolvedBox	=	Rake.Shape();	

}	

Fillet	with	changing	radius

Chamfer
A	chamfer	is	a	rectilinear	edge	replacing	a	sharp	vertex	of	the	face.

The	use	of	BRepFilletAPI_MakeChamfer	class	is	similar	to	the	use	of
BRepFilletAPI_MakeFillet,	except	for	the	following:

The	surfaces	created	are	ruled	and	not	smooth.
The	Add	syntax	for	selecting	edges	requires	one	or	two	distances,
one	edge	and	one	face	(contiguous	to	the	edge).

Add(dist,		E,	F)	

Add(d1,		d2,	E,	F)	with	d1	on	the	face	F.	

Chamfer

Fillet	on	a	planar	face
BRepFilletAPI_MakeFillet2d	class	allows	constructing	fillets	and
chamfers	on	planar	faces.	To	create	a	fillet	on	planar	face:	define	it,
indicate,	which	vertex	is	to	be	deleted,	and	give	the	fillet	radius	with
AddFillet	method.

A	chamfer	can	be	calculated	with	AddChamfer	method.	It	can	be
described	by

two	edges	and	two	distances
one	edge,	one	vertex,	one	distance	and	one	angle.	Fillets	and
chamfers	are	calculated	when	addition	is	complete.

If	face	F2	is	created	by	2D	fillet	and	chamfer	builder	from	face	F1,	the
builder	can	be	rebuilt	(the	builder	recovers	the	status	it	had	before
deletion).	To	do	so,	use	the	following	syntax:

BRepFilletAPI_MakeFillet2d	builder;	

builder.Init(F1,F2);	

Planar	Fillet
#include	“BRepPrimAPI_MakeBox.hxx”	

#include	“TopoDS_Shape.hxx”	

#include	“TopExp_Explorer.hxx”	

#include	“BRepFilletAPI_MakeFillet2d.hxx”	

#include	“TopoDS.hxx”	

#include	“TopoDS_Solid.hxx”	

TopoDS_Shape	FilletFace(const	Standard_Real	a,	

																								const	Standard_Real		b,	

																								const	Standard_Real	c,	

																								const	Standard_Real		r)	

{	

				TopoDS_Solid	Box	=		BRepPrimAPI_MakeBox	(a,b,c);	

				TopExp_Explorer		ex1(Box,TopAbs_FACE);	

				const		TopoDS_Face&	F	=	

TopoDS::Face(ex1.Current());	

				BRepFilletAPI_MakeFillet2d		MF(F);	

				TopExp_Explorer		ex2(F,	TopAbs_VERTEX);	

				while	(ex2.More())	

				{	

				MF.AddFillet(TopoDS::Vertex(ex2.Current()),r);	

				ex2.Next();	

				}	

				//	while...	

				return	MF.Shape();	

}	

Offsets,	Drafts,	Pipes	and	Evolved
shapes
These	classes	provide	the	following	services:

Creation	of	offset	shapes	and	their	variants	such	as:
Hollowing;
Shelling;
Lofting;

Creation	of	tapered	shapes	using	draft	angles;
Creation	of	sweeps.

Offset	computation
Offset	computation	can	be	performed	using
BRepOffsetAPI_MakeOffsetShape.	This	class	provides	API	to	the	two
different	offset	algorithms:

Offset	algorithm	based	on	computation	of	the	analytical	continuation.
Meaning	of	the	parameters	can	be	found	in
BRepOffsetAPI_MakeOffsetShape::PerformByJoin	method	description.
The	list	below	demonstrates	principal	scheme	of	this	algorithm:

At	the	first	step,	the	offsets	are	computed.
After	this,	the	analytical	continuations	are	computed	for	each	offset.
Pairwise	intersection	is	computed	according	to	the	original
topological	information	(sharing,	number	of	neighbors,	etc.).
The	offset	shape	is	assembled.

The	second	algorithm	is	based	on	the	fact	that	the	offset	computation	for
a	single	face	without	continuation	can	always	be	built.	The	list	below
shows	simple	offset	algorithm:

Each	surface	is	mapped	to	its	geometric	offset	surface.
For	each	edge,	pcurves	are	mapped	to	the	same	pcurves	on	offset
surfaces.
For	each	edge,	3d	curve	is	constructed	by	re-approximation	of
pcurve	on	the	first	offset	face.
Position	of	each	vertex	in	a	result	shell	is	computed	as	average	point
of	all	ends	of	edges	sharing	that	vertex.
Tolerances	are	updated	according	to	the	resulting	geometry.	The
possible	drawback	of	the	simple	algorithm	is	that	it	leads,	in	general
case,	to	tolerance	increasing.	The	tolerances	have	to	grow	in	order
to	cover	the	gaps	between	the	neighbor	faces	in	the	output.	It	should
be	noted	that	the	actual	tolerance	growth	depends	on	the	offset
distance	and	the	quality	of	joints	between	the	input	faces.	Anyway
the	good	input	shell	(smooth	connections	between	adjacent	faces)
will	lead	to	good	result.

The	snippets	below	show	usage	examples:

BRepOffsetAPI_MakeOffsetShape	OffsetMaker1;

//	Computes	offset	shape	using	analytical	

continuation	mechanism.

OffsetMaker1.PerformByJoin(Shape,	OffsetValue,	

Tolerance);

if	(OffsetMaker1.IsDone())

		NewShape	=	OffsetMaker1.Shape();

BRepOffsetAPI_MakeOffsetShape	OffsetMaker2;

//	Computes	offset	shape	using	simple	algorithm.

OffsetMaker2.PerformBySimple(Shape,	OffsetValue);

if	(OffsetMaker2.IsDone())

		NewShape	=	OffsetMaker2.Shape();

Shelling
Shelling	is	used	to	offset	given	faces	of	a	solid	by	a	specific	value.	It
rounds	or	intersects	adjacent	faces	along	its	edges	depending	on	the
convexity	of	the	edge.	The	MakeThickSolidByJoin	method	of	the
BRepOffsetAPI_MakeThickSolid	takes	the	solid,	the	list	of	faces	to
remove	and	an	offset	value	as	input.

TopoDS_Solid	SolidInitial	=	...;

Standard_Real											Of						=	...;

TopTools_ListOfShape				LCF;

TopoDS_Shape												Result;

Standard_Real											Tol	=	Precision::Confusion();

for	(Standard_Integer	i	=	1	;i	<=	n;	i++)	{

				TopoDS_Face	SF	=	...;	//	a	face	from	SolidInitial

				LCF.Append(SF);

}

BRepOffsetAPI_MakeThickSolid	SolidMaker;

SolidMaker.MakeThickSolidByJoin(SolidInitial,

																																LCF,

																																Of,

																																Tol);

if	(SolidMaker.IsDone())

		Result	=	SolidMaker.Shape();

Shelling

Also	it	is	possible	to	create	solid	between	shell,	offset	shell.	This
functionality	can	be	called	using
BRepOffsetAPI_MakeThickSolid::MakeThickSolidBySimple	method.	The
code	below	shows	usage	example:

BRepOffsetAPI_MakeThickSolid	SolidMaker;

SolidMaker.MakeThickSolidBySimple(Shell,	

OffsetValue);

if	(myDone.IsDone())

		Solid	=	SolidMaker.Shape();

Draft	Angle
BRepOffsetAPI_DraftAngle	class	allows	modifying	a	shape	by	applying
draft	angles	to	its	planar,	cylindrical	and	conical	faces.

The	class	is	created	or	initialized	from	a	shape,	then	faces	to	be	modified
are	added;	for	each	face,	three	arguments	are	used:

Direction:	the	direction	with	which	the	draft	angle	is	measured
Angle:	value	of	the	angle
Neutral	plane:	intersection	between	the	face	and	the	neutral	plane	is
invariant.

The	following	code	places	a	draft	angle	on	several	faces	of	a	shape;	the
same	direction,	angle	and	neutral	plane	are	used	for	each	face:

TopoDS_Shape	myShape	=	...	

//	The	original	shape	

TopTools_ListOfShape	ListOfFace;	

//	Creation	of	the	list	of	faces	to	be	modified	

...	

gp_Dir	Direc(0.,0.,1.);	

//	Z	direction	

Standard_Real	Angle	=	5.*PI/180.;	

//	5	degree	angle	

gp_Pln	Neutral(gp_Pnt(0.,0.,5.),	Direc);	

//	Neutral	plane	Z=5	

BRepOffsetAPI_DraftAngle	theDraft(myShape);	

TopTools_ListIteratorOfListOfShape	itl;	

for	(itl.Initialize(ListOfFace);	itl.More();	

itl.Next())		{	

				

theDraft.Add(TopoDS::Face(itl.Value()),Direc,Ang

le,Neutral);	

				if		(!theDraft.AddDone())	{	

								//	An	error	has	occurred.	The	faulty	face	is	

given	by	//		ProblematicShape	

								break;	

								}	

}	

if	(!theDraft.AddDone())	{	

				//	An	error	has		occurred	

				TopoDS_Face	guilty	=		

theDraft.ProblematicShape();	

				...	

}	

theDraft.Build();	

if	(!theDraft.IsDone())	{	

				//	Problem		encountered	during	reconstruction	

				...	

}	

else	{	

				TopoDS_Shape		myResult	=	theDraft.Shape();	

				...	

}	

DraftAngle

Pipe	Constructor
BRepOffsetAPI_MakePipe	class	allows	creating	a	pipe	from	a	Spine,
which	is	a	Wire	and	a	Profile	which	is	a	Shape.	This	implementation	is
limited	to	spines	with	smooth	transitions,	sharp	transitions	are	precessed
by	BRepOffsetAPI_MakePipeShell.	To	be	more	precise	the	continuity
must	be	G1,	which	means	that	the	tangent	must	have	the	same	direction,
though	not	necessarily	the	same	magnitude,	at	neighboring	edges.

The	angle	between	the	spine	and	the	profile	is	preserved	throughout	the
pipe.

TopoDS_Wire	Spine	=	...;	

TopoDS_Shape	Profile	=	...;	

TopoDS_Shape	Pipe	=		

BRepOffsetAPI_MakePipe(Spine,Profile);	

Example	of	a	Pipe

Evolved	Solid
BRepOffsetAPI_MakeEvolved	class	allows	creating	an	evolved	solid	from
a	Spine	(planar	face	or	wire)	and	a	profile	(wire).

The	evolved	solid	is	an	unlooped	sweep	generated	by	the	spine	and	the
profile.

The	evolved	solid	is	created	by	sweeping	the	profile’s	reference	axes	on
the	spine.	The	origin	of	the	axes	moves	to	the	spine,	the	X	axis	and	the
local	tangent	coincide	and	the	Z	axis	is	normal	to	the	face.

The	reference	axes	of	the	profile	can	be	defined	following	two	distinct
modes:

The	reference	axes	of	the	profile	are	the	origin	axes.
The	references	axes	of	the	profile	are	calculated	as	follows:

the	origin	is	given	by	the	point	on	the	spine	which	is	the	closest
to	the	profile
the	X	axis	is	given	by	the	tangent	to	the	spine	at	the	point
defined	above
the	Z	axis	is	the	normal	to	the	plane	which	contains	the	spine.

TopoDS_Face	Spine	=	...;	

TopoDS_Wire	Profile	=	...;	

TopoDS_Shape	Evol	=	

BRepOffsetAPI_MakeEvolved(Spine,Profile);	

Sewing
Introduction

Sewing	allows	creation	of	connected	topology	(shells	and	wires)	from	a
set	of	separate	topological	elements	(faces	and	edges).	For	example,
Sewing	can	be	used	to	create	of	shell	from	a	compound	of	separate
faces.

Shapes	with	partially	shared	edges

It	is	important	to	distinguish	between	sewing	and	other	procedures,	which
modify	the	geometry,	such	as	filling	holes	or	gaps,	gluing,	bending	curves
and	surfaces,	etc.

Sewing	does	not	change	geometrical	representation	of	the	shapes.
Sewing	applies	to	topological	elements	(faces,	edges)	which	are	not
connected	but	can	be	connected	because	they	are	geometrically
coincident	:	it	adds	the	information	about	topological	connectivity.	Already
connected	elements	are	left	untouched	in	case	of	manifold	sewing.

Let	us	define	several	terms:

Floating	edges	do	not	belong	to	any	face;
Free	boundaries	belong	to	one	face	only;
Shared	edges	belong	to	several	faces,	(i.e.	two	faces	in	a	manifold
topology).
Sewn	faces	should	have	edges	shared	with	each	other.
Sewn	edges	should	have	vertices	shared	with	each	other.

Sewing	Algorithm
The	sewing	algorithm	is	one	of	the	basic	algorithms	used	for	shape
processing,	therefore	its	quality	is	very	important.

Sewing	algorithm	is	implemented	in	the	class	BRepBuilder_Sewing.	This
class	provides	the	following	methods:

loading	initial	data	for	global	or	local	sewing;
setting	customization	parameters,	such	as	special	operation	modes,
tolerances	and	output	results;
applying	analysis	methods	that	can	be	used	to	obtain	connectivity
data	required	by	external	algorithms;
sewing	of	the	loaded	shapes.

Sewing	supports	working	mode	with	big	value	tolerance.	It	is	not
necessary	to	repeat	sewing	step	by	step	while	smoothly	increasing
tolerance.

It	is	also	possible	to	sew	edges	to	wire	and	to	sew	locally	separate	faces
and	edges	from	a	shape.

The	Sewing	algorithm	can	be	subdivided	into	several	independent
stages,	some	of	which	can	be	turned	on	or	off	using	Boolean	or	other
flags.

In	brief,	the	algorithm	should	find	a	set	of	merge	candidates	for	each	free
boundary,	filter	them	according	to	certain	criteria,	and	finally	merge	the
found	candidates	and	build	the	resulting	sewn	shape.

Each	stage	of	the	algorithm	or	the	whole	algorithm	can	be	adjusted	with
the	following	parameters:

Working	tolerance	defines	the	maximal	distance	between
topological	elements	which	can	be	sewn.	It	is	not	ultimate	that	such
elements	will	be	actually	sewn	as	many	other	criteria	are	applied	to
make	the	final	decision.
Minimal	tolerance	defines	the	size	of	the	smallest	element	(edge)	in
the	resulting	shape.	It	is	declared	that	no	edges	with	size	less	than

this	value	are	created	after	sewing.	If	encountered,	such	topology
becomes	degenerated.
Non-manifold	mode	enables	sewing	of	non-manifold	topology.

Example

To	connect	a	set	of	n	contiguous	but	independent	faces,	do	the	following:

BRepBuilderAPI_Sewing	Sew;

Sew.Add(Face1);	

Sew.Add(Face2);	

...

Sew.Add(Facen);	

Sew.Perform();

TopoDS_Shape	result=	Sew.SewedShape();

If	all	faces	have	been	sewn	correctly,	the	result	is	a	shell.	Otherwise,	it	is
a	compound.	After	a	successful	sewing	operation	all	faces	have	a
coherent	orientation.

Tolerance	Management
To	produce	a	closed	shell,	Sewing	allows	specifying	the	value	of	working
tolerance,	exceeding	the	size	of	small	faces	belonging	to	the	shape.

However,	if	we	produce	an	open	shell,	it	is	possible	to	get	incorrect
sewing	results	if	the	value	of	working	tolerance	is	too	large	(i.e.	it
exceeds	the	size	of	faces	lying	on	an	open	boundary).

The	following	recommendations	can	be	proposed	for	tuning-up	the
sewing	process:

Use	as	small	working	tolerance	as	possible.	This	will	reduce	the
sewing	time	and,	consequently,	the	number	of	incorrectly	sewn
edges	for	shells	with	free	boundaries.
Use	as	large	minimal	tolerance	as	possible.	This	will	reduce	the
number	of	small	geometry	in	the	shape,	both	original	and	appearing
after	cutting.
If	it	is	expected	to	obtain	a	shell	with	holes	(free	boundaries)	as	a
result	of	sewing,	the	working	tolerance	should	be	set	to	a	value	not
greater	than	the	size	of	the	smallest	element	(edge)	or	smallest
distance	between	elements	of	such	free	boundary.	Otherwise	the
free	boundary	may	be	sewn	only	partially.
It	should	be	mentioned	that	the	Sewing	algorithm	is	unable	to
understand	which	small	(less	than	working	tolerance)	free	boundary
should	be	kept	and	which	should	be	sewn.

Manifold	and	Non-manifold	Sewing
To	create	one	or	several	shells	from	a	set	of	faces,	sewing	merges
edges,	which	belong	to	different	faces	or	one	closed	face.

Face	sewing	supports	manifold	and	non	manifold	modes.	Manifold	mode
can	produce	only	a	manifold	shell.	Sewing	should	be	used	in	the	non
manifold	mode	to	create	non	manifold	shells.

Manifold	sewing	of	faces	merges	only	two	nearest	edges	belonging	to
different	faces	or	one	closed	face	with	each	other.	Non	manifold	sewing
of	faces	merges	all	edges	at	a	distance	less	than	the	specified	tolerance.

For	a	complex	topology	it	is	advisable	to	apply	first	the	manifold	sewing
and	then	the	non	manifold	sewing	a	minimum	possible	working	tolerance.
However,	this	is	not	necessary	for	a	easy	topology.

Giving	a	large	tolerance	value	to	non	manifold	sewing	will	cause	a	lot	of
incorrectness	since	all	nearby	geometry	will	be	sewn.

Local	Sewing
If	a	shape	still	has	some	non-sewn	faces	or	edges	after	sewing,	it	is
possible	to	use	local	sewing	with	a	greater	tolerance.

Local	sewing	is	especially	good	for	open	shells.	It	allows	sewing	an
unwanted	hole	in	one	part	of	the	shape	and	keeping	a	required	hole,
which	is	smaller	than	the	working	tolerance	specified	for	the	local	sewing
in	the	other	part	of	the	shape.	Local	sewing	is	much	faster	than	sewing
on	the	whole	shape.

All	preexisting	connections	of	the	whole	shape	are	kept	after	local
sewing.

For	example,	if	you	want	to	sew	two	open	shells	having	coincided	free
edges	using	local	sewing,	it	is	necessary	to	create	a	compound	from	two
shells	then	load	the	full	compound	using	method
BRepBuilderAPI_Sewing::Load().	After	that	it	is	necessary	to	add	local
sub-shapes,	which	should	be	sewn	using	method
BRepBuilderAPI_Sewing::Add().	The	result	of	sewing	can	be	obtained
using	method	BRepBuilderAPI_Sewing::SewedShape().

See	the	example:

//initial	sewn	shapes

TopoDS_Shape	aS1,	aS2;		//	these	shapes	are	expected	

to	be	well	sewn	shells

TopoDS_Shape	aComp;

BRep_Builder	aB;

aB.MakeCompound(aComp);

aB.Add(aComp,	aS1);

aB.Add(aComp,	aS2);

................................

aSewing.Load(aComp);

//sub	shapes	which	should	be	locally	sewed

aSewing.Add(aF1);

aSewing.Add(aF2);

//performing	sewing

aSewing.Perform();

//result	shape

TopoDS_Shape	aRes	=	aSewing.SewedShape();

Features
This	library	contained	in	BRepFeat	package	is	necessary	for	creation	and
manipulation	of	form	and	mechanical	features	that	go	beyond	the
classical	boundary	representation	of	shapes.	In	that	sense,	BRepFeat	is
an	extension	of	BRepBuilderAPI	package.

Form	Features
The	form	features	are	depressions	or	protrusions	including	the	following
types:

Cylinder;
Draft	Prism;
Prism;
Revolved	feature;
Pipe.

Depending	on	whether	you	wish	to	make	a	depression	or	a	protrusion,
you	can	choose	either	to	remove	matter	(Boolean	cut:	Fuse	equal	to	0)	or
to	add	it	(Boolean	fusion:	Fuse	equal	to	1).

The	semantics	of	form	feature	creation	is	based	on	the	construction	of
shapes:

for	a	certain	length	in	a	certain	direction;
up	to	the	limiting	face;
from	the	limiting	face	at	a	height;
above	and/or	below	a	plane.

The	shape	defining	the	construction	of	a	feature	can	be	either	a
supporting	edge	or	a	concerned	area	of	a	face.

In	case	of	supporting	edge,	this	contour	can	be	attached	to	a	face	of	the
basis	shape	by	binding.	When	the	contour	is	bound	to	this	face,	the
information	that	the	contour	will	slide	on	the	face	becomes	available	to
the	relevant	class	methods.	In	case	of	the	concerned	area	of	a	face,	you
can,	for	example,	cut	it	out	and	move	it	at	a	different	height,	which
defines	the	limiting	face	of	a	protrusion	or	depression.

Topological	definition	with	local	operations	of	this	sort	makes	calculations
simpler	and	faster	than	a	global	operation.	The	latter	would	entail	a
second	phase	of	removing	unwanted	matter	to	get	the	same	result.

The	Form	from	BRepFeat	package	is	a	deferred	class	used	as	a	root	for
form	features.	It	inherits	MakeShape	from	BRepBuilderAPI	and	provides

implementation	of	methods	keep	track	of	all	sub-shapes.

Prism

The	class	BRepFeat_MakePrism	is	used	to	build	a	prism	interacting	with
a	shape.	It	is	created	or	initialized	from

a	shape	(the	basic	shape),
the	base	of	the	prism,
a	face	(the	face	of	sketch	on	which	the	base	has	been	defined	and
used	to	determine	whether	the	base	has	been	defined	on	the	basic
shape	or	not),
a	direction,
a	Boolean	indicating	the	type	of	operation	(fusion=protrusion	or
cut=depression)	on	the	basic	shape,
another	Boolean	indicating	if	the	self-intersections	have	to	be	found
(not	used	in	every	case).

There	are	six	Perform	methods:

Method Description
Perform(Height) The	resulting	prism	is	of	the	given	length.

Perform(Until) The	prism	is	defined	between	the	position	of
the	base	and	the	given	face.

Perform(From,	Until) The	prism	is	defined	between	the	two	faces
From	and	Until.

PerformUntilEnd() The	prism	is	semi-infinite,	limited	by	the	actual
position	of	the	base.

PerformFromEnd(Until) The	prism	is	semi-infinite,	limited	by	the	face
Until.

PerformThruAll()

The	prism	is	infinite.	In	the	case	of	a
depression,	the	result	is	similar	to	a	cut	with
an	infinite	prism.	In	the	case	of	a	protrusion,
infinite	parts	are	not	kept	in	the	result.

Note	that	Add	method	can	be	used	before	Perform	methods	to	indicate
that	a	face	generated	by	an	edge	slides	onto	a	face	of	the	base	shape.

In	the	following	sequence,	a	protrusion	is	performed,	i.e.	a	face	of	the
shape	is	changed	into	a	prism.

TopoDS_Shape	Sbase	=	...;		//	an	initial	shape	

TopoDS_Face	Fbase	=;	//	a	base	of	prism	

gp_Dir	Extrusion	(.,.,.);	

//	An	empty	face	is	given	as	the	sketch	face	

BRepFeat_MakePrism	thePrism(Sbase,	Fbase,	

TopoDS_Face(),		Extrusion,	Standard_True,	

Standard_True);	

thePrism,	Perform(100.);	

if	(thePrism.IsDone())	{	

				TopoDS_Shape		theResult	=	thePrism;	

				...	

}	

Fusion	with	MakePrism

Creating	a	prism	between	two	faces	with	Perform()

Draft	Prism

The	class	BRepFeat_MakeDPrism	is	used	to	build	draft	prism	topologies
interacting	with	a	basis	shape.	These	can	be	depressions	or	protrusions.
A	class	object	is	created	or	initialized	from:

a	shape	(basic	shape),
the	base	of	the	prism,
a	face	(face	of	sketch	on	which	the	base	has	been	defined	and	used
to	determine	whether	the	base	has	been	defined	on	the	basic	shape
or	not),
an	angle,
a	Boolean	indicating	the	type	of	operation	(fusion=protrusion	or
cut=depression)	on	the	basic	shape,
another	Boolean	indicating	if	self-intersections	have	to	be	found	(not
used	in	every	case).

Evidently	the	input	data	for	MakeDPrism	are	the	same	as	for	MakePrism
except	for	a	new	parameter	Angle	and	a	missing	parameter	Direction:	the
direction	of	the	prism	generation	is	determined	automatically	as	the
normal	to	the	base	of	the	prism.	The	semantics	of	draft	prism	feature

creation	is	based	on	the	construction	of	shapes:

along	a	length
up	to	a	limiting	face
from	a	limiting	face	to	a	height.

The	shape	defining	construction	of	the	draft	prism	feature	can	be	either
the	supporting	edge	or	the	concerned	area	of	a	face.

In	case	of	the	supporting	edge,	this	contour	can	be	attached	to	a	face	of
the	basis	shape	by	binding.	When	the	contour	is	bound	to	this	face,	the
information	that	the	contour	will	slide	on	the	face	becomes	available	to
the	relevant	class	methods.	In	case	of	the	concerned	area	of	a	face,	it	is
possible	to	cut	it	out	and	move	it	to	a	different	height,	which	will	define
the	limiting	face	of	a	protrusion	or	depression	direction	.

The	Perform	methods	are	the	same	as	for	MakePrism.

TopoDS_Shape	S	=	BRepPrimAPI_MakeBox(400.,250.,300.);	

TopExp_Explorer	Ex;	

Ex.Init(S,TopAbs_FACE);	

Ex.Next();	

Ex.Next();	

Ex.Next();	

Ex.Next();	

Ex.Next();	

TopoDS_Face	F	=	TopoDS::Face(Ex.Current());	

Handle(Geom_Surface)	surf	=	BRep_Tool::Surface(F);	

gp_Circ2d	

c(gp_Ax2d(gp_Pnt2d(200.,130.),gp_Dir2d(1.,0.)),50.);	

BRepBuilderAPI_MakeWire	MW;	

Handle(Geom2d_Curve)	aline	=	new	Geom2d_Circle(c);	

MW.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,PI));	

MW.Add(BRepBuilderAPI_MakeEdge(aline,surf,PI,2.*PI));

	

BRepBuilderAPI_MakeFace	MKF;	

MKF.Init(surf,Standard_False);	

MKF.Add(MW.Wire());	

TopoDS_Face	FP	=	MKF.Face();	

BRepLib::BuildCurves3d(FP);	

BRepFeat_MakeDPrism	MKDP	

(S,FP,F,10*PI180,Standard_True,	

																												Standard_True);	

MKDP.Perform(200);	

TopoDS_Shape	res1	=	MKDP.Shape();	

A	tapered	prism

Revolution

The	class	BRepFeat_MakeRevol	is	used	to	build	a	revolution	interacting
with	a	shape.	It	is	created	or	initialized	from:

a	shape	(the	basic	shape,)
the	base	of	the	revolution,
a	face	(the	face	of	sketch	on	which	the	base	has	been	defined	and
used	to	determine	whether	the	base	has	been	defined	on	the	basic
shape	or	not),

an	axis	of	revolution,
a	boolean	indicating	the	type	of	operation	(fusion=protrusion	or
cut=depression)	on	the	basic	shape,
another	boolean	indicating	whether	the	self-intersections	have	to	be
found	(not	used	in	every	case).

There	are	four	Perform	methods:

Method Description
Perform(Angle) The	resulting	revolution	is	of	the	given	magnitude.

Perform(Until) The	revolution	is	defined	between	the	actual	position
of	the	base	and	the	given	face.

Perform(From,
Until)

The	revolution	is	defined	between	the	two	faces,
From	and	Until.

PerformThruAll() The	result	is	similar	to	Perform(2*PI).

Note	that	Add	method	can	be	used	before	Perform	methods	to	indicate
that	a	face	generated	by	an	edge	slides	onto	a	face	of	the	base	shape.

In	the	following	sequence,	a	face	is	revolved	and	the	revolution	is	limited
by	a	face	of	the	base	shape.

TopoDS_Shape	Sbase	=	...;		//	an	initial	shape	

TopoDS_Face	Frevol	=;	//	a	base	of	prism	

TopoDS_Face	FUntil	=;	//	face	limiting	the	revol	

gp_Dir	RevolDir	(.,.,.);	

gp_Ax1	RevolAx(gp_Pnt(.,.,.),	RevolDir);	

//	An	empty	face	is	given	as	the	sketch	face	

BRepFeat_MakeRevol	theRevol(Sbase,	Frevol,	

TopoDS_Face(),	RevolAx,		Standard_True,	

Standard_True);	

theRevol.Perform(FUntil);	

if	(theRevol.IsDone())	{	

				TopoDS_Shape		theResult	=	theRevol;	

				...	

}	

Pipe

The	class	BRepFeat_MakePipe	constructs	compound	shapes	with	pipe
features:	depressions	or	protrusions.	A	class	object	is	created	or
initialized	from:

a	shape	(basic	shape),
a	base	face	(profile	of	the	pipe)
a	face	(face	of	sketch	on	which	the	base	has	been	defined	and	used
to	determine	whether	the	base	has	been	defined	on	the	basic	shape
or	not),
a	spine	wire
a	Boolean	indicating	the	type	of	operation	(fusion=protrusion	or
cut=depression)	on	the	basic	shape,
another	Boolean	indicating	if	self-intersections	have	to	be	found	(not
used	in	every	case).

There	are	three	Perform	methods:

Method Description

Perform() The	pipe	is	defined	along	the	entire	path	(spine
wire)

Perform(Until) The	pipe	is	defined	along	the	path	until	a	given	face
Perform(From,
Until)

The	pipe	is	defined	between	the	two	faces	From
and	Until

Let	us	have	a	look	at	the	example:

TopoDS_Shape	S	=	BRepPrimAPI_MakeBox(400.,250.,300.);	

TopExp_Explorer	Ex;	

Ex.Init(S,TopAbs_FACE);	

Ex.Next();	

Ex.Next();	

TopoDS_Face	F1	=	TopoDS::Face(Ex.Current());	

Handle(Geom_Surface)	surf	=	BRep_Tool::Surface(F1);	

BRepBuilderAPI_MakeWire	MW1;	

gp_Pnt2d	p1,p2;	

p1	=	gp_Pnt2d(100.,100.);	

p2	=	gp_Pnt2d(200.,100.);	

Handle(Geom2d_Line)	aline	=	

GCE2d_MakeLine(p1,p2).Value();	

MW1.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,p1.Dist

ance(p2)));	

p1	=	p2;	

p2	=	gp_Pnt2d(150.,200.);	

aline	=	GCE2d_MakeLine(p1,p2).Value();	

MW1.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,p1.Dist

ance(p2)));	

p1	=	p2;	

p2	=	gp_Pnt2d(100.,100.);	

aline	=	GCE2d_MakeLine(p1,p2).Value();	

MW1.Add(BRepBuilderAPI_MakeEdge(aline,surf,0.,p1.Dist

ance(p2)));	

BRepBuilderAPI_MakeFace	MKF1;	

MKF1.Init(surf,Standard_False);	

MKF1.Add(MW1.Wire());	

TopoDS_Face	FP	=	MKF1.Face();	

BRepLib::BuildCurves3d(FP);	

TColgp_Array1OfPnt	CurvePoles(1,3);	

gp_Pnt	pt	=	gp_Pnt(150.,0.,150.);	

CurvePoles(1)	=	pt;	

pt	=	gp_Pnt(200.,100.,150.);	

CurvePoles(2)	=	pt;	

pt	=	gp_Pnt(150.,200.,150.);	

CurvePoles(3)	=	pt;	

Handle(Geom_BezierCurve)	curve	=	new	Geom_BezierCurve	

(CurvePoles);	

TopoDS_Edge	E	=	BRepBuilderAPI_MakeEdge(curve);	

TopoDS_Wire	W	=	BRepBuilderAPI_MakeWire(E);	

BRepFeat_MakePipe	MKPipe	(S,FP,F1,W,Standard_False,	

Standard_True);	

MKPipe.Perform();	

TopoDS_Shape	res1	=	MKPipe.Shape();	

Pipe	depression

Mechanical	Features
Mechanical	features	include	ribs,	protrusions	and	grooves	(or	slots),
depressions	along	planar	(linear)	surfaces	or	revolution	surfaces.

The	semantics	of	mechanical	features	is	built	around	giving	thickness	to
a	contour.	This	thickness	can	either	be	symmetrical	–	on	one	side	of	the
contour	–	or	dissymmetrical	–	on	both	sides.	As	in	the	semantics	of	form
features,	the	thickness	is	defined	by	construction	of	shapes	in	specific
contexts.

The	development	contexts	differ,	however,	in	the	case	of	mechanical
features.	Here	they	include	extrusion:

to	a	limiting	face	of	the	basis	shape;
to	or	from	a	limiting	plane;
to	a	height.

A	class	object	is	created	or	initialized	from

a	shape	(basic	shape);
a	wire	(base	of	rib	or	groove);
a	plane	(plane	of	the	wire);
direction1	(a	vector	along	which	thickness	will	be	built	up);
direction2	(vector	opposite	to	the	previous	one	along	which	thickness
will	be	built	up,	may	be	null);
a	Boolean	indicating	the	type	of	operation	(fusion=rib	or	cut=groove)
on	the	basic	shape;
another	Boolean	indicating	if	self-intersections	have	to	be	found	(not
used	in	every	case).

Linear	Form

Linear	form	is	implemented	in	MakeLinearForm	class,	which	creates	a	rib
or	a	groove	along	a	planar	surface.	There	is	one	Perform()	method,
which	performs	a	prism	from	the	wire	along	the	direction1	and	direction2
interacting	with	base	shape	Sbase.	The	height	of	the	prism	is
Magnitude(Direction1)+Magnitude(direction2).

BRepBuilderAPI_MakeWire	mkw;	

gp_Pnt	p1	=	gp_Pnt(0.,0.,0.);	

gp_Pnt	p2	=	gp_Pnt(200.,0.,0.);	

mkw.Add(BRepBuilderAPI_MakeEdge(p1,p2));	

p1	=	p2;	

p2	=	gp_Pnt(200.,0.,50.);	

mkw.Add(BRepBuilderAPI_MakeEdge(p1,p2));	

p1	=	p2;	

p2	=	gp_Pnt(50.,0.,50.);	

mkw.Add(BRepBuilderAPI_MakeEdge(p1,p2));	

p1	=	p2;	

p2	=	gp_Pnt(50.,0.,200.);	

mkw.Add(BRepBuilderAPI_MakeEdge(p1,p2));	

p1	=	p2;	

p2	=	gp_Pnt(0.,0.,200.);	

mkw.Add(BRepBuilderAPI_MakeEdge(p1,p2));	

p1	=	p2;	

mkw.Add(BRepBuilderAPI_MakeEdge(p2,gp_Pnt(0.,0.,0.)))

;	

TopoDS_Shape	S	=	

BRepBuilderAPI_MakePrism(BRepBuilderAPI_MakeFace

	

				(mkw.Wire()),gp_Vec(gp_Pnt(0.,0.,0.),gp_P	

					nt(0.,100.,0.)));	

TopoDS_Wire	W	=	

BRepBuilderAPI_MakeWire(BRepBuilderAPI_MakeEdge(

gp_Pnt	

				(50.,45.,100.),	

gp_Pnt(100.,45.,50.)));	

Handle(Geom_Plane)	aplane	=	

				new	Geom_Plane(gp_Pnt(0.,45.,0.),		

gp_Vec(0.,1.,0.));	

BRepFeat_MakeLinearForm	aform(S,	W,	aplane,	gp_Dir	

				(0.,5.,0.),	gp_Dir(0.,-3.,0.),		1,	

Standard_True);	

aform.Perform();	

TopoDS_Shape	res	=	aform.Shape();	

Creating	a	rib

Gluer

The	class	BRepFeat_Gluer	allows	gluing	two	solids	along	faces.	The
contact	faces	of	the	glued	shape	must	not	have	parts	outside	the	contact
faces	of	the	basic	shape.	Upon	completion	the	algorithm	gives	the	glued
shape	with	cut	out	parts	of	faces	inside	the	shape.

The	class	is	created	or	initialized	from	two	shapes:	the	“glued”	shape	and
the	basic	shape	(on	which	the	other	shape	is	glued).	Two	Bind	methods
are	used	to	bind	a	face	of	the	glued	shape	to	a	face	of	the	basic	shape
and	an	edge	of	the	glued	shape	to	an	edge	of	the	basic	shape.

Note	that	every	face	and	edge	has	to	be	bounded,	if	two	edges	of	two
glued	faces	are	coincident	they	must	be	explicitly	bounded.

TopoDS_Shape	Sbase	=	...;	//	the	basic	shape	

TopoDS_Shape	Sglued	=	...;	//	the	glued	shape	

TopTools_ListOfShape	Lfbase;	

TopTools_ListOfShape	Lfglued;	

//	Determination	of	the	glued	faces	

...	

BRepFeat_Gluer	theGlue(Sglue,	Sbase);	

TopTools_ListIteratorOfListOfShape	itlb(Lfbase);	

TopTools_ListIteratorOfListOfShape	itlg(Lfglued);	

for	(;	itlb.More();	itlb.Next(),	itlg(Next())	{	

const	TopoDS_Face&	f1	=	TopoDS::Face(itlg.Value());	

const	TopoDS_Face&	f2	=	TopoDS::Face(itlb.Value());	

theGlue.Bind(f1,f2);	

//	for	example,	use	the	class	FindEdges	from	LocOpe	

to	

//	determine	coincident	edges	

LocOpe_FindEdge	fined(f1,f2);	

for	(fined.InitIterator();	fined.More();	

fined.Next())	{	

theGlue.Bind(fined.EdgeFrom(),fined.EdgeTo());	

}	

}	

theGlue.Build();	

if	(theGlue.IsDone()	{	

TopoDS_Shape		theResult	=	theGlue;	

...	

}	

Split	Shape

The	class	BRepFeat_SplitShape	is	used	to	split	faces	of	a	shape	into
wires	or	edges.	The	shape	containing	the	new	entities	is	rebuilt,	sharing
the	unmodified	ones.

The	class	is	created	or	initialized	from	a	shape	(the	basic	shape).	Three
Add	methods	are	available:

Add(Wire,	Face)	–	adds	a	new	wire	on	a	face	of	the	basic	shape.
Add(Edge,	Face)	–	adds	a	new	edge	on	a	face	of	the	basic	shape.
Add(EdgeNew,	EdgeOld)	–	adds	a	new	edge	on	an	existing	one	(the

old	edge	must	contain	the	new	edge).

Note	The	added	wires	and	edges	must	define	closed	wires	on	faces	or
wires	located	between	two	existing	edges.	Existing	edges	must	not	be
intersected.

TopoDS_Shape	Sbase	=	...;	//	basic	shape	

TopoDS_Face	Fsplit	=	...;	//	face	of	Sbase	

TopoDS_Wire	Wsplit	=	...;	//	new	wire	contained	in	

Fsplit	

BRepFeat_SplitShape	Spls(Sbase);	

Spls.Add(Wsplit,	Fsplit);	

TopoDS_Shape	theResult	=	Spls;	

...

Hidden	Line	Removal
To	provide	the	precision	required	in	industrial	design,	drawings	need	to
offer	the	possibility	of	removing	lines,	which	are	hidden	in	a	given
projection.

For	this	the	Hidden	Line	Removal	component	provides	two	algorithms:
HLRBRep_Algo	and	HLRBRep_PolyAlgo.

These	algorithms	are	based	on	the	principle	of	comparing	each	edge	of
the	shape	to	be	visualized	with	each	of	its	faces,	and	calculating	the
visible	and	the	hidden	parts	of	each	edge.	Note	that	these	are	not	the
algorithms	used	in	generating	shading,	which	calculate	the	visible	and
hidden	parts	of	each	face	in	a	shape	to	be	visualized	by	comparing	each
face	in	the	shape	with	every	other	face	in	the	same	shape.	These
algorithms	operate	on	a	shape	and	remove	or	indicate	edges	hidden	by
faces.	For	a	given	projection,	they	calculate	a	set	of	lines	characteristic	of
the	object	being	represented.	They	are	also	used	in	conjunction	with
extraction	utilities,	which	reconstruct	a	new,	simplified	shape	from	a
selection	of	the	results	of	the	calculation.	This	new	shape	is	made	up	of
edges,	which	represent	the	shape	visualized	in	the	projection.

HLRBRep_Algo	allows	working	with	the	shape	itself,	whereas
HLRBRep_PolyAlgo	works	with	a	polyhedral	simplification	of	the	shape.
When	you	use	HLRBRep_Algo,	you	obtain	an	exact	result,	whereas,
when	you	use	HLRBRep_PolyAlgo,	you	reduce	the	computation	time,	but
obtain	polygonal	segments.

No	smoothing	algorithm	is	provided.	Consequently,	a	polyhedron	will	be
treated	as	such	and	the	algorithms	will	give	the	results	in	form	of	line
segments	conforming	to	the	mathematical	definition	of	the	polyhedron.
This	is	always	the	case	with	HLRBRep_PolyAlgo.

HLRBRep_Algo	and	HLRBRep_PolyAlgo	can	deal	with	any	kind	of
object,	for	example,	assemblies	of	volumes,	surfaces,	and	lines,	as	long
as	there	are	no	unfinished	objects	or	points	within	it.

However,	there	some	restrictions	in	HLR	use:

Points	are	not	processed;
Infinite	faces	or	lines	are	not	processed.

,"Sharp,	smooth	and	sewn	edges	in	a	simple	screw	shape",320

Outline	edges	and	isoparameters	in	the	same	shape

A	simple	screw	shape	seen	with	shading

An	extraction	showing	hidden	sharp	edges

The	following	services	are	related	to	Hidden	Lines	Removal	:

Loading	Shapes

To	pass	a	TopoDS_Shape	to	an	HLRBRep_Algo	object,	use
HLRBRep_Algo::Add.	With	an	HLRBRep_PolyAlgo	object,	use
HLRBRep_PolyAlgo::Load.	If	you	wish	to	add	several	shapes,	use	Add	or
Load	as	often	as	necessary.

Setting	view	parameters

HLRBRep_Algo::Projector	and	HLRBRep_PolyAlgo::Projector	set	a
projector	object	which	defines	the	parameters	of	the	view.	This	object	is
an	HLRAlgo_Projector.

Computing	the	projections

HLRBRep_PolyAlgo::Update	launches	the	calculation	of	outlines	of	the
shape	visualized	by	the	HLRBRep_PolyAlgo	framework.

In	the	case	of	HLRBRep_Algo,	use	HLRBRep_Algo::Update.	With	this
algorithm,	you	must	also	call	the	method	HLRBRep_Algo::Hide	to
calculate	visible	and	hidden	lines	of	the	shape	to	be	visualized.	With	an
HLRBRep_PolyAlgo	object,	visible	and	hidden	lines	are	computed	by
HLRBRep_PolyHLRToShape.

Extracting	edges

The	classes	HLRBRep_HLRToShape	and	HLRBRep_PolyHLRToShape
present	a	range	of	extraction	filters	for	an	HLRBRep_Algo	object	and	an
HLRBRep_PolyAlgo	object,	respectively.	They	highlight	the	type	of	edge
from	the	results	calculated	by	the	algorithm	on	a	shape.	With	both
extraction	classes,	you	can	highlight	the	following	types	of	output:

visible/hidden	sharp	edges;
visible/hidden	smooth	edges;
visible/hidden	sewn	edges;
visible/hidden	outline	edges.

To	perform	extraction	on	an	HLRBRep_PolyHLRToShape	object,	use
HLRBRep_PolyHLRToShape::Update	function.

For	an	HLRBRep_HLRToShape	object	built	from	an	HLRBRepAlgo
object	you	can	also	highlight:

visible	isoparameters	and
hidden	isoparameters.

Examples

HLRBRep_Algo

//	Build	The	algorithm	object	

myAlgo	=	new	HLRBRep_Algo();	

//	Add	Shapes	into	the	algorithm	

TopTools_ListIteratorOfListOfShape	

anIterator(myListOfShape);	

for	(;anIterator.More();anIterator.Next())	

myAlgo-Add(anIterator.Value(),myNbIsos);	

//	Set	The	Projector	(myProjector	is	a	

HLRAlgo_Projector)	

myAlgo-Projector(myProjector);	

//	Build	HLR	

myAlgo->Update();	

//	Set	The	Edge	Status	

myAlgo->Hide();	

//	Build	the	extraction	object	:	

HLRBRep_HLRToShape	aHLRToShape(myAlgo);	

//	extract	the	results	:	

TopoDS_Shape	VCompound											=	

aHLRToShape.VCompound();	

TopoDS_Shape	Rg1LineVCompound																												

=	

aHLRToShape.Rg1LineVCompound();	

TopoDS_Shape	RgNLineVCompound																												

=	

aHLRToShape.RgNLineVCompound();	

TopoDS_Shape	OutLineVCompound																												

=	

aHLRToShape.OutLineVCompound();	

TopoDS_Shape	IsoLineVCompound																												

=	

aHLRToShape.IsoLineVCompound();	

TopoDS_Shape	HCompound											=	

aHLRToShape.HCompound();	

TopoDS_Shape	Rg1LineHCompound																												

=	

aHLRToShape.Rg1LineHCompound();	

TopoDS_Shape	RgNLineHCompound																												

=	

aHLRToShape.RgNLineHCompound();	

TopoDS_Shape	OutLineHCompound																												

=	

aHLRToShape.OutLineHCompound();	

TopoDS_Shape	IsoLineHCompound																												

=	

aHLRToShape.IsoLineHCompound();	

HLRBRep_PolyAlgo

//	Build	The	algorithm	object	

myPolyAlgo	=	new	HLRBRep_PolyAlgo();	

//	Add	Shapes	into	the	algorithm	

TopTools_ListIteratorOfListOfShape	

anIterator(myListOfShape);	

for	(;anIterator.More();anIterator.Next())	

myPolyAlgo-Load(anIterator.Value());	

//	Set	The	Projector	(myProjector	is	a	

HLRAlgo_Projector)	

myPolyAlgo->Projector(myProjector);	

//	Build	HLR	

myPolyAlgo->Update();	

//	Build	the	extraction	object	:	

HLRBRep_PolyHLRToShape	aPolyHLRToShape;	

aPolyHLRToShape.Update(myPolyAlgo);	

//	extract	the	results	:	

TopoDS_Shape	VCompound	=	

aPolyHLRToShape.VCompound();	

TopoDS_Shape	Rg1LineVCompound	=	

aPolyHLRToShape.Rg1LineVCompound();	

TopoDS_Shape	RgNLineVCompound	=	

aPolyHLRToShape.RgNLineVCompound();	

TopoDS_Shape	OutLineVCompound	=	

aPolyHLRToShape.OutLineVCompound();	

TopoDS_Shape	HCompound	=	

aPolyHLRToShape.HCompound();	

TopoDS_Shape	Rg1LineHCompound	=	

aPolyHLRToShape.Rg1LineHCompound();	

TopoDS_Shape	RgNLineHCompound	=	

aPolyHLRToShape.RgNLineHCompound();	

TopoDS_Shape	OutLineHCompound	=	

aPolyHLRToShape.OutLineHCompound();	

Meshing
Mesh	presentations

In	addition	to	support	of	exact	geometrical	representation	of	3D	objects
Open	CASCADE	Technology	provides	functionality	to	work	with
tessellated	representations	of	objects	in	form	of	meshes.

Open	CASCADE	Technology	mesh	functionality	provides:

data	structures	to	store	surface	mesh	data	associated	to	shapes,
and	some	basic	algorithms	to	handle	these	data
data	structures	and	algorithms	to	build	surface	triangular	mesh	from
BRep	objects	(shapes).
tools	to	extend	3D	visualization	capabilities	of	Open	CASCADE
Technology	with	displaying	meshes	along	with	associated	pre-	and
post-processor	data.

Open	CASCADE	Technology	includes	two	mesh	converters:

VRML	converter	translates	Open	CASCADE	shapes	to	VRML	1.0
files	(Virtual	Reality	Modeling	Language).	Open	CASCADE	shapes
may	be	translated	in	two	representations:	shaded	or	wireframe.	A
shaded	representation	present	shapes	as	sets	of	triangles	computed
by	a	mesh	algorithm	while	a	wireframe	representation	present
shapes	as	sets	of	curves.
STL	converter	translates	Open	CASCADE	shapes	to	STL	files.	STL
(STtereoLithography)	format	is	widely	used	for	rapid	prototyping.

Open	CASCADE	SAS	also	offers	Advanced	Mesh	Products:

Open	CASCADE	Mesh	Framework	(OMF)
Express	Mesh

Besides,	we	can	efficiently	help	you	in	the	fields	of	surface	and	volume
meshing	algorithms,	mesh	optimization	algorithms	etc.	If	you	require	a
qualified	advice	about	meshing	algorithms,	do	not	hesitate	to	benefit	from
the	expertise	of	our	team	in	that	domain.

http://www.opencascade.com/content/mesh-framework
http://www.opencascade.com/content/express-mesh

The	projects	dealing	with	numerical	simulation	can	benefit	from	using
SALOME	-	an	Open	Source	Framework	for	CAE	with	CAD	data
interfaces,	generic	Pre-	and	Post-	F.E.	processors	and	API	for	integrating
F.E.	solvers.

Learn	more	about	SALOME	platform	on	http://www.salome-platform.org

http://www.salome-platform.org

Meshing	algorithm
The	algorithm	of	shape	triangulation	is	provided	by	the	functionality	of
BRepMesh_IncrementalMesh	class,	which	adds	a	triangulation	of	the
shape	to	its	topological	data	structure.	This	triangulation	is	used	to
visualize	the	shape	in	shaded	mode.

const	Standard_Real	aRadius	=	10.0;	

const	Standard_Real	aHeight	=	25.0;	

BRepPrimAPI_MakeCylinder	aCylinder(aRadius,	aHeight);	

TopoDS_Shape	aShape	=	aCylinder.Shape();

const	Standard_Real	aLinearDeflection			=	0.01;

const	Standard_Real	anAngularDeflection	=	0.5;

BRepMesh_IncrementalMesh	aMesh(aShape,	

aLinearDeflection,	Standard_False,	

anAngularDeflection);

The	default	meshing	algorithm	BRepMesh_IncrementalMesh	has	two
major	options	to	define	triangulation	–	linear	and	angular	deflections.

At	the	first	step	all	edges	from	a	face	are	discretized	according	to	the
specified	parameters.

At	the	second	step,	the	faces	are	tessellated.	Linear	deflection	limits	the
distance	between	a	curve	and	its	tessellation,	whereas	angular	deflection
limits	the	angle	between	subsequent	segments	in	a	polyline.

Deflection	parameters	of	BRepMesh_IncrementalMesh	algorithm

Linear	deflection	limits	the	distance	between	triangles	and	the	face
interior.

Linear	deflection

Note	that	if	a	given	value	of	linear	deflection	is	less	than	shape	tolerance
then	the	algorithm	will	skip	this	value	and	will	take	into	account	the	shape
tolerance.

The	application	should	provide	deflection	parameters	to	compute	a
satisfactory	mesh.	Angular	deflection	is	relatively	simple	and	allows	using
a	default	value	(12-20	degrees).	Linear	deflection	has	an	absolute
meaning	and	the	application	should	provide	the	correct	value	for	its
models.	Giving	small	values	may	result	in	a	too	huge	mesh	(consuming	a
lot	of	memory,	which	results	in	a	long	computation	time	and	slow
rendering)	while	big	values	result	in	an	ugly	mesh.

For	an	application	working	in	dimensions	known	in	advance	it	can	be
reasonable	to	use	the	absolute	linear	deflection	for	all	models.	This
provides	meshes	according	to	metrics	and	precision	used	in	the
application	(for	example,	it	it	is	known	that	the	model	will	be	stored	in
meters,	0.004	m	is	enough	for	most	tasks).

However,	an	application	that	imports	models	created	in	other	applications
may	not	use	the	same	deflection	for	all	models.	Note	that	actually	this	is
an	abnormal	situation	and	this	application	is	probably	just	a	viewer	for
CAD	models	with	dimensions	varying	by	an	order	of	magnitude.	This

problem	can	be	solved	by	introducing	the	concept	of	a	relative	linear
deflection	with	some	LOD	(level	of	detail).	The	level	of	detail	is	a	scale
factor	for	absolute	deflection,	which	is	applied	to	model	dimensions.

Meshing	covers	a	shape	with	a	triangular	mesh.	Other	than	hidden	line
removal,	you	can	use	meshing	to	transfer	the	shape	to	another	tool:	a
manufacturing	tool,	a	shading	algorithm,	a	finite	element	algorithm,	or	a
collision	algorithm.

You	can	obtain	information	on	the	shape	by	first	exploring	it.	To	access
triangulation	of	a	face	in	the	shape	later,	use	BRepTool::Triangulation.	To
access	a	polygon,	which	is	the	approximation	of	an	edge	of	the	face,	use
BRepTool::PolygonOnTriangulation.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Overview
Operators

Boolean
operator
General	Fuse
operator
Splitter	operator
Section	operator

Parts	of	algorithms
Terms	and	Definitions
Interferences

Vertex/Vertex
interference
Vertex/Edge
interference
Vertex/Face
interference
Edge/Edge
interference
Edge/Face
interference
Face/Face
Interference
Vertex/Solid
Interference
Edge/Soild
Interference
Face/Soild
Interference

Open	CASCADE
Technology		7.2.0

Boolean	Operations

Solid/Soild
Interference
Computation
Order
Results

Paves
Pave	Blocks
Shrunk	Range
Common	Blocks
FaceInfo

Data	Structure
Arguments
Shapes
Interferences
Pave,	PaveBlock	and
CommonBlock
Points	and	Curves
FaceInfo

Root	Classes
Class
BOPAlgo_Options
Class	BOPAlgo_Algo

Intersection	Part
Initialization
Compute
Vertex/Vertex
Interferences
Compute	Vertex/Edge
Interferences
Update	Pave	Blocks
Compute	Edge/Edge
Interferences
Compute	Vertex/Face
Interferences
Compute	Edge/Face
Interferences
Build	Split	Edges
Compute	Face/Face
Interferences

Build	Section	Edges
Build	P-Curves
Process	Degenerated
Edges

General	description	of
the	Building	Part
General	Fuse	Algorithm
Arguments
Results
Examples

Case	1:	Three
edges
intersecting	at	a
point
Case	2:	Two
wires	and	an
edge
Case	3:	An	edge
intersecting
with	a	face
Case	4:	An	edge
lying	on	a	face
Case	5:	An	edge
and	a	shell
Case	6:	A	wire
and	a	shell
Case	7:	Three
faces
Case	8:	A	face
and	a	shell
Case	9:	A	shell
and	a	solid
Case	10:	A
compound	and
a	solid

Class
BOPAlgo_Builder

Fields
Initialization
Build	Images	for
Vertices

Build	Result	of
Type	Vertex
Build	Images	for
Edges
Build	Result	of
Type	Edge
Build	Images	for
Wires
Build	Result	of
Type	Wire
Build	Images	for
Faces
Build	Result	of
Type	Face
Build	Images	for
Shells
Build	Result	of
Type	Shell
Build	Images	for
Solids
Build	Result	of
Type	Solid
Build	Images	for
Type	CompSolid
Build	Result	of
Type	Compsolid
Build	Images	for
Compounds
Build	Result	of
Type	Compound
Post-Processing

Splitter	Algorithm
Arguments
Results
Usage

API
DRAW

Examples
Example	1
Example	2

Example	3
Boolean	Operations
Algorithm
Arguments
Results.	General
Rules
Examples

Case	1:	Two
Vertices
Case	2:	A	Vertex
and	an	Edge
Case	3:	A	Vertex
and	a	Face
Case	4:	A	Vertex
and	a	Solid
Case	5:	Two
edges
intersecting	at
one	point
Case	6:	Two
edges	having	a
common	block
Case	7:	An	Edge
and	a	Face
intersecting	at	a
point
Case	8:	A	Face
and	an	Edge
that	have	a
common	block
Case	9:	An	Edge
and	a	Solid
intersecting	at	a
point
Case	10:	An
Edge	and	a
Solid	that	have
a	common	block
Case	11:	Two
intersecting
faces
Case	12:	Two
faces	that	have

a	common	part
Case	13:	Two
faces	that	have
a	common	edge
Case	14:	Two
faces	that	have
a	common
vertex
Case	15:	A	Face
and	a	Solid	that
have	an
intersection
curve.
Case	16:	A	Face
and	a	Solid	that
have
overlapping
faces.
Case	17:	A	Face
and	a	Solid	that
have
overlapping
edges.
Case	18:	A	Face
and	a	Solid	that
have
overlapping
vertices.
Case	19:	Two
intersecting
Solids.
Case	20:	Two
Solids	that	have
overlapping
faces.
Case	21:	Two
Solids	that	have
overlapping
edges.
Case	22:	Two
Solids	that	have
overlapping
vertices.
Case	23:	A	Shell
and	a	Wire	cut

by	a	Solid.
Case	24:	Two
Wires	that	have
overlapping
edges.

Class	BOPAlgo_BOP
Building	Draft	Result
Building	the	Result

Section	Algorithm
Arguments
Results	and	general
rules
Examples

Case	1:	Two
Vertices
Case	1:	Case	2:
A	Vertex	and	an
Edge
Case	1:	Case	2:
A	Vertex	and	a
Face
Case	4:	A	Vertex
and	a	Solid
Case	5:	Two
edges
intersecting	at
one	point
Case	6:	Two
edges	having	a
common	block
Case	7:	An	Edge
and	a	Face
intersecting	at	a
point
Case	8:	A	Face
and	an	Edge
that	have	a
common	block
Case	9:	An	Edge
and	a	Solid
intersecting	at	a
point
Case	10:	An

Edge	and	a
Solid	that	have
a	common	block
Case	11:	Two
intersecting
faces
Case	12:	Two
faces	that	have
a	common	part
Case	13:	Two
faces	that	have
overlapping
edges
Case	14:	Two
faces	that	have
overlapping
vertices
Case	15:	A	Face
and	a	Solid	that
have	an
intersection
curve
Case	16:	A	Face
and	a	Solid	that
have
overlapping
faces.
Case	17:	A	Face
and	a	Solid	that
have
overlapping
edges.
Case	18:	A	Face
and	a	Solid	that
have
overlapping
vertices.
Case	19:	Two
intersecting
Solids
Case	20:	Two
Solids	that	have
overlapping
faces
Case	21:	Two

Solids	that	have
overlapping
edges
Case	22:	Two
Solids	that	have
overlapping
vertices

Class
BOPAlgo_Section
Building	the	Result

Volume	Maker	Algorithm
Usage
Examples

Cells	Builder	algorithm
Usage
Examples

Algorithm	Limitations
Arguments

Common
requirements
Pure	self-
interference
Self-
interferences
due	to
tolerances
Parametric
representation
Using
tolerances	of
vertices	to	fix
gaps

Intersection	problems
Pure
intersections
and	common
zones
Tolerances	and
inaccuracies
Acquired	Self-
interferences

Advanced	Options
Fuzzy	Boolean
Operation

Examples
Gluing	Operation

Usage
Examples

Safe	processing
mode

Usage
Errors	and	warnings
reporting	system
Usage
Package	BRepAlgoAPI
Package	BOPTest

Case	1.	General
Fuse	operation
Case	2.	Splitting
operation
Case	3.
Common
operation
Case	4.	Fuse
operation
Case	5.	Cut
operation
Case	6.	Section
operation

Introduction
This	document	provides	a	comprehensive	description	of	the	Boolean
Operation	Algorithm	(BOA)	as	it	is	implemented	in	Open	CASCADE
Technology.	The	Boolean	Component	contains:

General	Fuse	Operator	(GFA),
Boolean	Operator	(BOA),
Section	Operator	(SA),
Splitter	Operator	(SPA).

GFA	is	the	base	algorithm	for	BOA,	SPA,	SA.

GFA	has	a	history-based	architecture	designed	to	allow	using	OCAF
naming	functionality.	The	architecture	of	GFA	is	expandable,	that	allows
creating	new	algorithms	basing	on	it.

Overview
Operators

Boolean	operator

The	Boolean	operator	provides	the	operations	(Common,	Fuse,	Cut)
between	two	groups:	Objects	and	Tools.	Each	group	consists	of	an
arbitrary	number	of	arguments	in	terms	of	TopoDS_Shape.

The	operator	can	be	represented	as:

RB=Bj	(G1,	G2),

where:

RB	–	result	of	the	operation;
Bj	–	operation	of	type	j	(Common,	Fuse,	Cut);
G1={S11,	S12	...	S1n1}	group	of	arguments	(Objects);
G2={S21,	S22	...	S2n2}	group	of	arguments	(Tools);
n1	–	Number	of	arguments	in	Objects	group;
n2	–	Number	of	arguments	in	Tools	group.

Note	There	is	an	operation	Cut21,	which	is	an	extension	for	forward	Cut
operation,	i.e	Cut21=Cut(G2,	G1).

For	more	details	see	Boolean	Operations	Algorithm	section.

General	Fuse	operator

The	General	fuse	operator	can	be	applied	to	an	arbitrary	number	of
arguments	in	terms	of	TopoDS_Shape.

The	GFA	operator	can	be	represented	as:

RGF	=	GF	(S1,	S2	...	Sn),

where

RGF	–	result	of	the	operation,
S1,	S2	...	Sn	–	arguments	of	the	operation,
n	–	number	of	arguments.

The	result	of	the	Boolean	operator,	RB,	can	be	obtained	from	RGF.

For	example,	for	two	arguments	S1	and	S2	the	result	RGF	is

RGF	=	GF	(S1,	S2)	=	Sp1	+	Sp2	+	Sp12

	

S1	

S2	

Sp1	

Sp2	

Sp12	

Operators

This	Figure	shows	that

Bcommon	(S1,	S2)	=	Sp12;
Bcut12	(S1,	S2)	=	Sp1;
Bcut21	(S1,	S2)	=	Sp2;
Bfuse	(S1,	S2)	=	Sp1+Sp2+Sp12

RGF=GF	(S1,	S2)	=	Bfuse	=	Bcommon+	Bcut12+	Bcut21.

The	fact	that	RGF	contains	the	components	of	RB	allows	considering	GFA
as	the	general	case	of	BOA.	So	it	is	possible	to	implement	BOA	as	a
subclass	of	GFA.

For	more	details	see	General	Fuse	Algorithm	section.

Splitter	operator

The	Splitter	operator	can	be	applied	to	an	arbitrary	number	of	arguments
in	terms	of	TopoDS_Shape.	The	arguments	are	divided	into	two	groups:
Objects	and	Tools.	The	result	of	SPA	contains	all	parts	that	belong	to	the
Objects	but	does	not	contain	the	parts	that	belong	to	the	Tools.

The	SPA	operator	can	be	represented	as	follows:

RSPA=SPA	(G1,	G2),	where:

RSPA	–	is	the	result	of	the	operation;
G1={S11,	S12	...	S1n1}	group	of	arguments	(Objects);
G2={S21,	S22	...	S2n2}	group	of	arguments	(Tools);
n1	–	Number	of	arguments	in	Objects	group;
n2	–	Number	of	arguments	in	Tools	group.

The	result	RSPA	can	be	obtained	from	RGF	.

For	example,	for	two	arguments	S1	and	S2	the	result	RSPA	is

RSPA=SPA(S1,S2)=Sp1+Sp12.

In	case	when	all	arguments	of	the	SPA	are	Objects	and	there	are	no
Tools,	the	result	of	SPA	is	equivalent	to	the	result	of	GFA.

For	example,	when	G1	consists	of	shapes	S1	and	S2	the	result	of	SPA	is

RSPA=SPA(S1,	S2)	=	Sp1	+	Sp2	+	Sp12	=	GF	(S1,	S2)

The	fact	that	the	RGF	contains	the	components	of	RSPA	allows
considering	GFA	as	the	general	case	of	SPA.	Thus,	it	is	possible	to
implement	SPA	as	a	subclass	of	GFA.

For	more	details	see	Splitter	Algorithm	section.

Section	operator

The	Section	operator	SA	can	be	applied	to	arbitrary	number	of

arguments	in	terms	of	TopoDS_Shape.	The	result	of	SA	contains	vertices
and	edges	in	accordance	with	interferences	between	the	arguments	The
SA	operator	can	be	represented	as	follows:	RSA=SA(S1,	S2…	Sn),	where

RSA	–	the	operation	result;
S1,	S2	...	Sn	–	the	operation	arguments;
n	–	the	number	of	arguments.

For	more	details	see	Section	Algorithm	section.

Parts	of	algorithms
GFA,	BOA,	SPA	and	SA	have	the	same	Data	Structure	(DS).	The	main
goal	of	the	Data	Structure	is	to	store	all	necessary	information	for	input
data	and	intermediate	results.

The	operators	consist	of	two	main	parts:

Intersection	Part	(IP).	The	main	goal	of	IP	is	to	compute	the
interferences	between	sub-shapes	of	arguments.	The	IP	uses	DS	to
retrieve	input	data	and	store	the	results	of	intersections.
Building	Part	(BP).	The	main	goal	of	BP	is	to	build	required	result	of
an	operation.	This	part	also	uses	DS	to	retrieve	data	and	store	the
results.

As	it	follows	from	the	definition	of	operator	results,	the	main	differences
between	GFA,	BOA,	SPA	and	SA	are	in	the	Building	Part.	The
Intersection	Part	is	the	same	for	the	algorithms.

Terms	and	Definitions
This	chapter	provides	the	background	terms	and	definitions	that	are
necessary	to	understand	how	the	algorithms	work.

Interferences
There	are	two	groups	of	interferences.

At	first,	each	shape	having	a	boundary	representation	(vertex,	edge,
face)	has	an	internal	value	of	geometrical	tolerance.	The	shapes	interfere
with	each	other	in	terms	of	their	tolerances.	The	shapes	that	have	a
boundary	representation	interfere	when	there	is	a	part	of	3D	space	where
the	distance	between	the	underlying	geometry	of	shapes	is	less	or	equal
to	the	sum	of	tolerances	of	the	shapes.	Three	types	of	shapes:	vertex,
edge	and	face	–	produce	six	types	of	BRep	interferences:

Vertex/Vertex,
Vertex/Edge,
Vertex/Face,
Edge/Edge,
Edge/Face	and
Face/Face.

At	second,	there	are	interferences	that	occur	between	a	solid	Z1	and	a
shape	S2	when	Z1	and	S2	have	no	BRep	interferences	but	S2	is
completely	inside	of	Z1.	These	interferences	are	Non-BRep
interferences.	There	are	four	possible	cases:

Vertex/Solid,
Edge/Solid,
Face/Solid	and
Solid/Solid.

Vertex/Vertex	interference

For	two	vertices	Vi	and	Vj,	the	distance	between	their	corresponding	3D
points	is	less	than	the	sum	of	their	tolerances	Tol(Vi)	and	Tol(Vj).

	

Tol(Vi)	Tol(Vj)	

Vj	 Vi	

T	s	

	 	

D	

Tol(Vn)	

Vn	
Pn	

Vertex/vertex	interference

The	result	is	a	new	vertex	Vn	with	3D	point	Pn	and	tolerance	value
Tol(Vn).

The	coordinates	of	Pn	and	the	value	Tol(Vn)	are	computed	as	the	center
and	the	radius	of	the	sphere	enclosing	the	tolerance	spheres	of	the
source	vertices	(V1,	V2).

Vertex/Edge	interference

For	a	vertex	Vi	and	an	edge	Ej,	the	distance	D	between	3D	point	of	the
vertex	and	its	projection	on	the	3D	curve	of	edge	Ej	is	less	or	equal	than
sum	of	tolerances	of	vertex	Tol(Vi)	and	edge	Tol(Ej).

	

Ej	

Vi	

Tol(Ej)	

Tol(Vi)	

Vi	

Cj	

Tol(Vi)	

ti	
PPi	

Pi	

Vertex/edge	interference

The	result	is	vertex	Vi	with	the	corresponding	tolerance	value
Tol(Vi)=Max(Tol(Vi),	D+Tol(Ej)),	where	D	=	distance	(Pi,	PPi);

and	parameter	ti	of	the	projected	point	PPi	on	3D	curve	Cj	of	edge	Ej.

Vertex/Face	interference

For	a	vertex	Vi	and	a	face	Fj	the	distance	D	between	3D	point	of	the
vertex	and	its	projection	on	the	surface	of	the	face	is	less	or	equal	than
sum	of	tolerances	of	the	vertex	Tol(Vi)	and	the	face	Tol(Fj).

	

Tol(Vi)	

Fj	

Vi	Pi	

PPi	

2·Tol(Fj)	

Tol(Vi)	

Fj	

Vi	Pi	

PPi	

u	

v
	

vi	

ui	

	

Vertex/face	interference

The	result	is	vertex	Vi	with	the	corresponding	tolerance	value
Tol(Vi)=Max(Tol(Vi),	D+Tol(Fj)),	where	D	=	distance	(Pi,	PPi)

and	parameters	ui,	vi	of	the	projected	point	PPi	on	surface	Sj	of	face	Fj.

Edge/Edge	interference

For	two	edges	Ei	and	Ej	(with	the	corresponding	3D	curves	Ci	and	Cj)
there	are	some	places	where	the	distance	between	the	curves	is	less
than	(or	equal	to)	sum	of	tolerances	of	the	edges.

Let	us	examine	two	cases:

In	the	first	case	two	edges	have	one	or	several	common	parts	of	3D
curves	in	terms	of	tolerance.

	

Ej	

Tol(Ej)	 Tol(Ei)	

E
i2	

Ej	
Ei	

t j2
	tj1	

Cj	

j2

i

i1V

V

V

i

Vi2

j2

C

t

tj1
Vj1

Edge/edge	interference:	common	parts

The	results	are:

Parametric	range	[ti1,	ti2]	for	3D	curve	Ci	of	edge	Ei.
Parametric	range	[tj1,	tj2]	for	3D	curve	Cj	of	edge	Ej.

In	the	second	case	two	edges	have	one	or	several	common	points	in
terms	of	tolerance.

	

Ej	

Tol(Ej)	

Ei	

Tol(Ei)	

Ej	

Ei	

tj	

Cj 	

Vn	Tol(Vn)	

Ci	

	

	
	

	

ti	

Edge/edge	interference:	common	points

The	result	is	a	new	vertex	Vn	with	3D	point	Pn	and	tolerance	value
Tol(Vn).

The	coordinates	of	Pn	and	the	value	Tol(Vn)	are	computed	as	the	center
and	the	radius	of	the	sphere	enclosing	the	tolerance	spheres	of	the
corresponding	nearest	points	Pi,	Pj	of	3D	curves	Ci,	Cj	of	source	edges
Ei,	Ej.

Parameter	ti	of	Pi	for	the	3D	curve	Ci.
Parameter	tj	of	Pj	for	the	3D	curve	Cj.

Edge/Face	interference

For	an	edge	Ei	(with	the	corresponding	3D	curve	Ci)	and	a	face	Fj	(with
the	corresponding	3D	surface	Sj)	there	are	some	places	in	3D	space,
where	the	distance	between	Ci	and	surface	Sj	is	less	than	(or	equal	to)
the	sum	of	tolerances	of	edge	Ei	and	face	Fj.

Let	us	examine	two	cases:

In	the	first	case	Edge	Ei	and	Face	Fj	have	one	or	several	common	parts
in	terms	of	tolerance.

	

Tol(Ei)	

Fj	

2·Tol(Fj)	

Ei	

Fj	
Ei	

Ci	

ti2	

t i1 	

Edge/face	interference:	common	parts

The	result	is	a	parametric	range	[ti1,	ti2]	for	the	3D	curve	Ci	of	the	edge
Ei.

In	the	second	case	Edge	Ei	and	Face	Fj	have	one	or	several	common
points	in	terms	of	tolerance.

	

Tol(Ei)	

Fj	

2·Tol(Fj)	

Ei	

Fj	

Ei	

Tol(Vn)	

Vn	

Ci	

ti	

Edge/face	interference:	common	points

The	result	is	a	new	vertex	Vn	with	3D	point	Pn	and	tolerance	value
Tol(Vn).

The	coordinates	of	Pn	and	the	value	Tol(Vn)	are	computed	as	the	center
and	the	radius	of	the	sphere	enclosing	the	tolerance	spheres	of	the
corresponding	nearest	points	Pi,	Pj	of	3D	curve	Ci	and	surface	Sj	of
source	edges	Ei,	Fj.

Parameter	ti	of	Pi	for	the	3D	curve	Ci.
Parameters	ui	and	vi	of	the	projected	point	PPi	on	the	surface	Sj	of
the	face	Fj.

Face/Face	Interference

For	a	face	Fi	and	a	face	Fj	(with	the	corresponding	surfaces	Si	and	Sj)
there	are	some	places	in	3D	space,	where	the	distance	between	the
surfaces	is	less	than	(or	equal	to)	sum	of	tolerances	of	the	faces.

	

Tol(Cijk)	Fi	
2·Tol(Fj)	

2·Tol(Fi)	

Fj	 Cijk	

Face/face	interference:	common	curves

In	the	first	case	the	result	contains	intersection	curves	Cijk	(k	=	0,	1,	2…
kN,	where	kN	is	the	number	of	intersection	curves	with	corresponding
values	of	tolerances	Tol(Cijk).

	

Tol(Vijm)	

Fi	

2·Tol(Fj)	

2·Tol(Fi)	

Fj	

Vijm	

Face/face	interference:	common	points

In	the	second	case	Face	Fi	and	face	Fj	have	one	or	several	new	vertices
Vijm,	where	m=0,1,2,	...	mN,	mN	is	the	number	of	intersection	points.

The	coordinates	of	a	3D	point	Pijm	and	the	value	Tol(Vijm)	are	computed
as	the	center	and	the	radius	of	the	sphere	enclosing	the	tolerance
spheres	of	the	corresponding	nearest	points	Pi,	Pj	of	the	surface	Si,	Sj	of
source	shapes	Fi,	Fj.

Parameters	uj,	vj	belong	to	point	PPj	projected	on	surface	Sj	of	face

Fj.
Parameters	ui	and	vi	belong	to	point	PPi	projected	on	surface	Si	of
face	Fi.

Vertex/Solid	Interference

For	a	vertex	Vi	and	a	solid	Zj	there	is	Vertex/Solid	interference	if	the
vertex	Vi	has	no	BRep	interferences	with	any	sub-shape	of	Zj	and	Vi	is
completely	inside	the	solid	Zj.

Vertex/Solid	Interference

Edge/Soild	Interference

For	an	edge	Ei	and	a	solid	Zj	there	is	Edge/Solid	interference	if	the	edge
Ei	and	its	sub-shapes	have	no	BRep	interferences	with	any	sub-shape	of
Zj	and	Ei	is	completely	inside	the	solid	Zj.

Edge/Solid	Interference

Face/Soild	Interference

For	a	face	Fi	and	a	solid	Zj	there	is	Face/Solid	interference	if	the	face	Fi
and	its	sub-shapes	have	no	BRep	interferences	with	any	sub-shape	of	Zj
and	Fi	is	completely	inside	the	solid	Zj.

Face/Solid	Interference

Solid/Soild	Interference

For	a	solid	Zi	and	a	solid	Zj	there	is	Solid/Solid	interference	if	the	solid	Zi
and	its	sub-shapes	have	no	BRep	interferences	with	any	sub-shape	of	Zj
and	Zi	is	completely	inside	the	solid	Zj.

Solid/Solid	Interference

Computation	Order

The	interferences	between	shapes	are	computed	on	the	basis	of
increasing	of	the	dimension	value	of	the	shape	in	the	following	order:

Vertex/Vertex,
Vertex/Edge,
Edge/Edge,
Vertex/Face,
Edge/Face,
Face/Face,
Vertex/Solid,
Edge/Solid,
Face/Solid,
Solid/Solid.

This	order	allows	avoiding	the	computation	of	redundant	interferences

between	upper-level	shapes	Si	and	Sj	when	there	are	interferences
between	lower	sub-shapes	Sik	and	Sjm.

Results

The	result	of	the	interference	is	a	shape	that	can	be	either	interfered
shape	itself	(or	its	part)	or	a	new	shape.
The	result	of	the	interference	is	a	shape	with	the	dimension	value
that	is	less	or	equal	to	the	minimal	dimension	value	of	interfered
shapes.	For	example,	the	result	of	Vertex/Edge	interference	is	a
vertex,	but	not	an	edge.
The	result	of	the	interference	splits	the	source	shapes	on	the	parts
each	time	as	it	can	do	that.

Paves
The	result	of	interferences	of	the	type	Vertex/Edge,	Edge/Edge	and
Edge/Face	in	most	cases	is	a	vertex	(new	or	old)	lying	on	an	edge.

The	result	of	interferences	of	the	type	Face/Face	in	most	cases	is
intersection	curves,	which	go	through	some	vertices	lying	on	the	faces.

The	position	of	vertex	Vi	on	curve	C	can	be	defined	by	a	value	of
parameter	ti	of	the	3D	point	of	the	vertex	on	the	curve.	Pave	PVi	on	curve
C	is	a	structure	containing	the	vertex	Vi	and	correspondent	value	of	the
parameter	ti	of	the	3D	point	of	the	vertex	on	the	curve.	Curve	C	can	be	a
3D	or	a	2D	curve.

	

PVb	

E	

C	
PVe	

PVi	
ti	

te	

tb=0	

Ve	Vb	

Vi	

Paves

Two	paves	PV1	and	PV2	on	the	same	curve	C	can	be	compared	using
the	parameter	value

PV1	>	PV2	if	t1	>	t2	

The	usage	of	paves	allows	binding	of	the	vertex	to	the	curve	(or	any
structure	that	contains	a	curve:	edge,	intersection	curve).

Pave	Blocks
A	set	of	paves	PVi	(i=1,	2...nPV),	where	nPV	is	the	number	of	paves]	of
curve	C	can	be	sorted	in	the	increasing	order	using	the	value	of
parameter	t	on	curve	C.

A	pave	block	PBi	is	a	part	of	the	object	(edge,	intersection	curve)
between	neighboring	paves.

	

PVb	

E	

C	
PVe	

PVi	

tb=0	
Ve	Vb	

Vi	

PVh	 PVj	th	

ti	

tj	

te	

Vh	

Vj	

PBi	

Pave	Blocks

Any	finite	source	edge	E	has	at	least	one	pave	block	that	contains	two
paves	PVb	and	PVe:

Pave	PVb	corresponds	to	the	vertex	Vb	with	minimal	parameter	tb	on
the	curve	of	the	edge.
Pave	PVe	corresponds	to	the	vertex	Ve	with	maximal	parameter	te
on	the	curve	of	the	edge.

Shrunk	Range
Pave	block	PV	of	curve	C	is	bounded	by	vertices	V1	and	V2	with
tolerance	values	Tol(V1)	and	Tol(V2).	Curve	C	has	its	own	tolerance
value	Tol(C):

In	case	of	edge,	the	tolerance	value	is	the	tolerance	of	the	edge.
In	case	of	intersection	curve,	the	tolerance	value	is	obtained	from	an
intersection	algorithm.

	

V1	

V2	

C(t)	

Tol(V2)	
Tol(V1)	 Tol(C)	

t1C	

t2C	t2S	t1S
	

	 	

P1	

P2	

P2C	

P1C	

Shrunk	Range

The	theoretical	parametric	range	of	the	pave	block	is	[t1C,	t2C].

The	positions	of	the	vertices	V1	and	V2	of	the	pave	block	can	be
different.	The	positions	are	determined	by	the	following	conditions:

Distance	(P1,	P1c)	is	equal	or	less	than	Tol(V1)	+	

Tol(C)

Distance	(P2,	P2c)	is	equal	or	less	than	Tol(V2)	+	

Tol(C)

The	Figure	shows	that	each	tolerance	sphere	of	a	vertex	can	reduce	the
parametric	range	of	the	pave	block	to	a	range	[t1S,	t2S].	The	range	[t1S,
t2S]	is	the	shrunk	range	of	the	pave	block.

The	shrunk	range	of	the	pave	block	is	the	part	of	3D	curve	that	can
interfere	with	other	shapes.

Common	Blocks
The	interferences	of	the	type	Edge/Edge,	Edge/Face	produce	results	as
common	parts.

In	case	of	Edge/Edge	interference	the	common	parts	are	pave	blocks
that	have	different	base	edges.

	

E1	

E2	

V11	 V12	

V21	 V22	

CB	

PB2	

PB1	

Common	Blocks:	Edge/Edge	interference

If	the	pave	blocks	PB1,	PB2…PBNbPB	,	where	NbPB	is	the	number	of
pave	blocks	have	the	same	bounding	vertices	and	geometrically
coincide,	the	pave	blocks	form	common	block	CB.

In	case	of	Edge/Face	interference	the	common	parts	are	pave	blocks
lying	on	a	face(s).

	

V11	
PB	

F2	
F3	

E1	

CB	

Vi	

Vj	

Common	Blocks:	Edge/Face	interference

If	the	pave	blocks	PBi	geometrically	coincide	with	a	face	Fj,	the	pave
blocks	form	common	block	CB.

In	general	case	a	common	block	CB	contains:

Pave	blocks	PBi	(i=0,1,2,	3…	NbPB).
A	set	of	faces	Fj	(j=0,1...	NbF),	NbF	–	number	of	faces.

FaceInfo
The	structure	FaceInfo	contains	the	following	information:

Pave	blocks	that	have	state	In	for	the	face;
Vertices	that	have	state	In	for	the	face;
Pave	blocks	that	have	state	On	for	the	face;
Vertices	that	have	state	On	for	the	face;
Pave	blocks	built	up	from	intersection	curves	for	the	face;
Vertices	built	up	from	intersection	points	for	the	face.

	

F1	

F2	

F3	

Ex	

Vin1	
PBon11	

PBon12	PBon2	PBon31	

PBon32	

PBon4	

PBin1	 PBsc1	
E1	

E2	

E3	

E4	 V1	

V2	V3	

V4	

V5	
V6 	

Face	Info

In	the	figure,	for	face	F1:

Pave	blocks	that	have	state	In	for	the	face:	PBin1.
Vertices	that	have	state	In	for	the	face:	Vin1.
Pave	blocks	that	have	state	On	for	the	face:	PBon11,	PBon12,	PBon2,
PBon31,	PBon32,	PBon4.
Vertices	that	have	state	On	for	the	face:	V1,	V2,	V3,	V4,	V5,	V6.
Pave	blocks	built	up	from	intersection	curves	for	the	face:	PBsc1.
Vertices	built	up	from	intersection	points	for	the	face:	none

Data	Structure
Data	Structure	(DS)	is	used	to:

Store	information	about	input	data	and	intermediate	results;
Provide	the	access	to	the	information;
Provide	the	links	between	the	chunks	of	information.

This	information	includes:

Arguments;
Shapes;
Interferences;
Pave	Blocks;
Common	Blocks.

Data	Structure	is	implemented	in	the	class	BOPDS_DS.

Arguments
The	arguments	are	shapes	(in	terms	of	TopoDS_Shape):

Number	of	arguments	is	unlimited.
Each	argument	is	a	valid	shape	(in	terms	of	BRepCheck_Analyzer).
Each	argument	can	be	of	one	of	the	following	types	(see	the	Table):

No Type Index	of	Type
1 COMPOUND 0
2 COMPSOLID 1
3 SOLID 2
4 SHELL 3
5 FACE 4
6 WIRE 5
7 EDGE 6
8 VERTEX 7

The	argument	of	type	0	(COMPOUND)	can	include	any	number	of
shapes	of	an	arbitrary	type	(0,	1…7).
The	argument	should	not	be	self-interfered,	i.e.	all	sub-shapes	of	the
argument	that	have	geometrical	coincidence	through	any	topological
entities	(vertices,	edges,	faces)	must	share	these	entities.
There	are	no	restrictions	on	the	type	of	underlying	geometry	of	the
shapes.	The	faces	or	edges	of	arguments	Si	can	have	underlying
geometry	of	any	type	supported	by	Open	CASCADE	Technology
modeling	algorithms	(in	terms	of	GeomAbs_CurveType	and
GeomAbs_SurfaceType).
The	faces	or	edges	of	the	arguments	should	have	underlying
geometry	with	continuity	that	is	not	less	than	C1.

Shapes
The	information	about	Shapes	is	stored	in	structure	BOPDS_ShapeInfo.
The	objects	of	type	BOPDS_ShapeInfo	are	stored	in	the	container	of
array	type.	The	array	allows	getting	the	access	to	the	information	by	an
index	(DS	index).	The	structure	BOPDS_ShapeInfo	has	the	following
contents:

Name Contents
myShape Shape	itself
myType Type	of	shape
myBox 3D	bounding	box	of	the	shape
mySubShapes List	of	DS	indices	of	sub-shapes
myReference Storage	for	some	auxiliary	information
myFlag Storage	for	some	auxiliary	information

Interferences
The	information	about	interferences	is	stored	in	the	instances	of	classes
that	are	inherited	from	class	BOPDS_Interf.

Name Contents
BOPDS_Interf Root	class	for	interference
Index1 DS	index	of	the	shape	1
Index2 DS	index	of	the	shape	2
BOPDS_InterfVV Storage	for	Vertex/Vertex	interference
BOPDS_InterfVE Storage	for	Vertex/Edge	interference

myParam The	value	of	parameter	of	the	point	of	the	vertex	on
the	curve	of	the	edge

BOPDS_InterfVF Storage	for	Vertex/Face	interference

myU,	myV The	value	of	parameters	of	the	point	of	the	vertex	on
the	surface	of	the	face

BOPDS_InterfEE Storage	for	Edge/Edge	interference
myCommonPart Common	part	(in	terms	of	IntTools_CommonPart)
BOPDS_InterfEF Storage	for	Edge/Face	interference
myCommonPart Common	part	(in	terms	of	IntTools_CommonPart)
BOPDS_InterfFF Storage	for	Face/Face	interference
myTolR3D,
myTolR2D

The	value	of	tolerances	of	curves	(points)	reached
in	3D	and	2D

myCurves Intersection	Curves	(in	terms	of	BOPDS_Curve)
myPoints Intersection	Points	(in	terms	of	BOPDS_Point)
BOPDS_InterfVZ Storage	for	Vertex/Solid	interference
BOPDS_InterfEZ Storage	for	Edge/Solid	interference
BOPDS_InterfFZ Storage	for	Face/Solid	interference
BOPDS_InterfZZ Storage	for	Solid/Solid	interference

The	Figure	shows	inheritance	diagram	for	BOPDS_Interf	classes.

	

BOPDS_Interf	
	

BOPDS_InterfVV

	

	

BOPDS_InterfVE

	

	

BOPDS_InterfVF

	

	BOPDS_InterfEE

	

	BOPDS_InterfEF

	

	

BOPDS_InterfFF

	

	

BOPDS_InterfVZ

BOPDS_InterfEZ

BOPDS_InterfFZ

BOPDS_InterfZZ

BOPDS_Interf	classes

Pave,	PaveBlock	and	CommonBlock
The	information	about	the	pave	is	stored	in	objects	of	type
BOPDS_Pave.

Name Contents
BOPDS_Pave
myIndex DS	index	of	the	vertex

myParam Value	of	the	parameter	of	the	3D	point	of	vertex	on
curve.

The	information	about	pave	blocks	is	stored	in	objects	of	type
BOPDS_PaveBlock.

Name Contents
BOPDS_PaveBlock

myEdge DS	index	of	the	edge	produced	from	the	pave
block

myOriginalEdge DS	index	of	the	source	edge
myPave1 Pave	1	(in	terms	of	BOPDS_Pave)
myPave2 Pave	2	(in	terms	of	BOPDS_Pave)

myExtPaves
The	list	of	paves	(in	terms	of	BOPDS_Pave)	that
is	used	to	store	paves	lying	inside	the	pave	block
during	intersection	process

myCommonBlock
The	reference	to	common	block	(in	terms	of
BOPDS_CommonBlock)	if	the	pave	block	is	a
common	block

myShrunkData The	shrunk	range	of	the	pave	block

To	be	bound	to	an	edge	(or	intersection	curve)	the	structures	of	type
BOPDS_PaveBlock	are	stored	in	one	container	of	list	type
(BOPDS_ListOfPaveBlock).
In	case	of	edge,	all	the	lists	of	pave	blocks	above	are	stored	in	one
container	of	array	type.	The	array	allows	getting	the	access	to	the
information	by	index	of	the	list	of	pave	blocks	for	the	edge.	This

index	(if	exists)	is	stored	in	the	field	myReference.

The	information	about	common	block	is	stored	in	objects	of	type
BOPDS_CommonBlock.

Name Contents
BOPDS_CommonBlock

myPaveBlocks The	list	of	pave	blocks	that	are	common	in
terms	of	Common	Blocks

myFaces The	list	of	DS	indices	of	the	faces,	on	which
the	pave	blocks	lie.

Points	and	Curves
The	information	about	intersection	point	is	stored	in	objects	of	type
BOPDS_Point.

Name Contents
BOPDS_Point
myPnt 3D	point
myPnt2D1 2D	point	on	the	face1
myPnt2D2 2D	point	on	the	face2

The	information	about	intersection	curve	is	stored	in	objects	of	type
BOPDS_Curve.

Name Contents
BOPDS_Curve
myCurve The	intersection	curve	(in	terms	of	IntTools_Curve)
myPaveBlocks The	list	of	pave	blocks	that	belong	to	the	curve
myBox The	bounding	box	of	the	curve	(in	terms	of	Bnd_Box)

FaceInfo
The	information	about	FaceInfo	is	stored	in	a	structure	BOPDS_FaceInfo.
The	structure	BOPDS_FaceInfo	has	the	following	contents.

Name Contents
BOPDS_FaceInfo
myPaveBlocksIn Pave	blocks	that	have	state	In	for	the	face
myVerticesIn Vertices	that	have	state	In	for	the	face
myPaveBlocksOn Pave	blocks	that	have	state	On	for	the	face
myVerticesOn Vertices	that	have	state	On	for	the	face

myPaveBlocksSc Pave	blocks	built	up	from	intersection	curves	for	the
face

myVerticesSc Vertices	built	up	from	intersection	points	for	the	face
+

The	objects	of	type	BOPDS_FaceInfo	are	stored	in	one	container	of	array
type.	The	array	allows	getting	the	access	to	the	information	by	index.
This	index	(if	exists)	is	stored	in	the	field	myReference.

Root	Classes
Class	BOPAlgo_Options

The	class	BOPAlgo_Options	provides	the	following	options	for	the
algorithms:

Set	the	appropriate	memory	allocator;
Check	the	presence	of	the	Errors	and	Warnings;
Turn	on/off	the	parallel	processing;
Set	the	additional	tolerance	for	the	operation;
Break	the	operations	by	user	request.

Class	BOPAlgo_Algo
The	class	BOPAlgo_Algo	provides	the	base	interface	for	all	algorithms:

Perform	the	operation;
Check	the	input	data;
Check	the	result.

Intersection	Part
Intersection	Part	(IP)	is	used	to

Initialize	the	Data	Structure;
Compute	interferences	between	the	arguments	(or	their	sub-
shapes);
Compute	same	domain	vertices,	edges;
Build	split	edges;
Build	section	edges;
Build	p-curves;
Store	all	obtained	information	in	DS.

IP	is	implemented	in	the	class	BOPAlgo_PaveFiller.

Diagram	for	Class	BOPAlgo_PaveFiller

The	description	provided	in	the	next	paragraphs	is	coherent	with	the
implementation	of	the	method	BOPAlgo_PaveFiller::Perform().

Initialization
The	input	data	for	the	step	is	the	Arguments.	The	description	of
initialization	step	is	shown	in	the	Table.

No Contents Implementation

1 Initialization	the	array	of	shapes	(in	terms	of
Shapes).	Filling	the	array	of	shapes. BOPDS_DS::Init()

2 Initialization	the	array	pave	blocks	(in	terms
of	Pave,	PaveBlock,	CommonBlock) BOPDS_DS::Init()

3

Initialization	of	intersection	Iterator.	The
intersection	Iterator	is	the	object	that
computes	intersections	between	sub-shapes
of	the	arguments	in	terms	of	bounding	boxes.
The	intersection	Iterator	provides
approximate	number	of	the	interferences	for
given	type	(in	terms	of	Interferences)

BOPDS_Iterator

4

Initialization	of	intersection	Context.	The
intersection	Context	is	an	object	that	contains
geometrical	and	topological	toolkit
(classifiers,	projectors,	etc).	The	intersection
Context	is	used	to	cache	the	tools	to
increase	the	algorithm	performance.

IntTools_Context

Compute	Vertex/Vertex	Interferences
The	input	data	for	this	step	is	the	DS	after	the	Initialization.	The
description	of	this	step	is	shown	in	the	table	:

No Contents Implementation

1 Initialize	array	of
Vertex/Vertex	interferences. BOPAlgo_PaveFiller::PerformVV()

2

Access	to	the	pairs	of
interfered	shapes	(nVi,	nVj)k,
k=0,	1…nk,	where	nVi	and
nVj	are	DS	indices	of	vertices
Vi	and	Vj	and	nk	is	the
number	of	pairs.

BOPDS_Iterator

3

Compute	the	connexity
chains	of	interfered	vertices
nV1C,	nV2C…	nVnC)k,	C=0,
1…nCs,	where	nCs	is	the
number	of	the	connexity
chains

BOPAlgo_Tools::MakeBlocksCnx()

4 Build	new	vertices	from	the
chains	VNc.	C=0,	1…nCs. BOPAlgo_PaveFiller::PerformVV()

5 Append	new	vertices	in	DS. BOPDS_DS::Append()

6 Append	same	domain
vertices	in	DS. BOPDS_DS::AddShapeSD()

7 Append	Vertex/Vertex
interferences	in	DS. BOPDS_DS::AddInterf()

The	pairs	of	interfered	vertices	are:	(nV11,	nV12),	(nV11,	nV13),
(nV12,	nV13),	(nV13,	nV15),	(nV13,	nV14),	(nV14,	nV15),	(nV21,
nV22),	(nV21,	nV23),	(nV22,	nV23);
These	pairs	produce	two	chains:	(nV11,	nV12,	nV13,	nV14,	nV15)
and	(nV21,	nV22,	nV23);
Each	chain	is	used	to	create	a	new	vertex,	VN1	and	VN2,
correspondingly.

The	example	of	connexity	chains	of	interfered	vertices	is	given	in	the
image:

	

V11	

V12	
V13	

V14	

V15	

V21	

V22	

V23	

VN1	
VN2	

Chain	1 Chain	2

Connexity	chains	of	interfered	vertices

Compute	Vertex/Edge	Interferences
The	input	data	for	this	step	is	the	DS	after	computing	Vertex/Vertex
interferences.

No Contents Implementation

1 Initialize	array	of	Vertex/Edge
interferences BOPAlgo_PaveFiller::PerformVE()

2

Access	to	the	pairs	of
interfered	shapes	(nVi,	nEj)k
k=0,	1…nk,	where	nVi	is	DS
index	of	vertex	Vi,	nEj	is	DS
index	of	edge	Ej	and	nk	is	the
number	of	pairs.

BOPDS_Iterator

3 Compute	paves.	See
Vertex/Edge	Interference BOPInt_Context::ComputeVE()

4
Initialize	pave	blocks	for	the
edges	Ej	involved	in	the
interference

BOPDS_DS::
ChangePaveBlocks()

5

Append	the	paves	into	the
pave	blocks	in	terms	of	Pave,
PaveBlock	and
CommonBlock

BOPDS_PaveBlock::
AppendExtPave()

6 Append	Vertex/Edge
interferences	in	DS BOPDS_DS::AddInterf()

Update	Pave	Blocks
The	input	data	for	this	step	is	the	DS	after	computing	Vertex/Edge
Interferences.

No Contents Implementation

1

Each	pave	block	PB	containing	internal
paves	is	split	by	internal	paves	into	new
pave	blocks	PBN1,	PBN2…	PBNn.	PB	is
replaced	by	new	pave	blocks	PBN1,
PBN2…	PBNn	in	the	DS.

BOPDS_DS::
UpdatePaveBlocks()

Compute	Edge/Edge	Interferences
The	input	data	for	this	step	is	the	DS	after	updating	Pave	Blocks.

No Contents Implementation

1
Initialize	array	of
Edge/Edge
interferences

BOPAlgo_PaveFiller::PerformEE()

2

Access	to	the	pairs	of
interfered	shapes
(nEi,	nEj)k,	k=0,	1…
nk,	where	nEi	is	DS
index	of	the	edge	Ei,
nEj	is	DS	index	of	the
edge	Ej	and	nk	is	the
number	of	pairs.

BOPDS_Iterator

3

Initialize	pave	blocks
for	the	edges	involved
in	the	interference,	if	it
is	necessary.

BOPDS_DS::	ChangePaveBlocks()

4

Access	to	the	pave
blocks	of	interfered
shapes:	(PBi1,	PBi2…
PBiNi)	for	edge	Ei	and
(PBj1,	PBj2…PBjNj)
for	edge	Ej

BOPAlgo_PaveFiller::PerformEE()

5

Compute	shrunk	data
for	pave	blocks	in
terms	of	Pave,
PaveBlock	and
CommonBlock,	if	it	is
necessary.

BOPAlgo_PaveFiller::FillShrunkData()

6

Compute	Edge/Edge
interference	for	pave
blocks	PBix	and	PBiy.
The	result	of	the
computation	is	a	set

IntTools_EdgeEdge

of	objects	of	type
IntTools_CommonPart

7.1

For	each
CommonPart	of	type
VERTEX:	Create	new
vertices	VNi	(i	=1,
2…,NbVN),	where
NbVN	is	the	number
of	new	vertices.
Intersect	the	vertices
VNi	using	the	steps
Initialization	and
compute
Vertex/Vertex
interferences	as
follows:	a)	create	a
new	object	PFn	of
type
BOPAlgo_PaveFiller
with	its	own	DS;	b)
use	new	vertices	VNi
(i=1,	2…,NbVN),
NbVN	as	arguments
(in	terms	of
TopoDs_Shape)	of
PFn;	c)	invoke
method	Perform()	for
PFn.	The	resulting
vertices	VNXi	(i=1,
2…,NbVNX),	where
NbVNX	is	the	number
of	vertices,	are
obtained	via	mapping
between	VNi	and	the
results	of	PVn.

BOPTools_Tools::MakeNewVertex()

For	each
CommonPart	of	type
EDGE:	Compute	the
coinciding	connexity
chains	of	pave	blocks

7.2

(PB1C,	PB2C…
PNnC)k,	C=0,	1…
nCs,	where	nCs	is	the
number	of	the
connexity	chains.
Create	common
blocks	(CBc.	C=0,	1…
nCs)	from	the	chains.
Attach	the	common
blocks	to	the	pave
blocks.

BOPAlgo_Tools::PerformCommonBlocks()

8

Post-processing.
Append	the	paves	of
VNXi	into	the
corresponding	pave
blocks	in	terms	of
Pave,	PaveBlock
and	CommonBlock

BOPDS_PaveBlock::	AppendExtPave()

9 Split	common	blocks
CBc	by	the	paves. BOPDS_DS::	UpdateCommonBlock()

10
Append	Edge/Edge
interferences	in	the
DS.

BOPDS_DS::AddInterf()

The	example	of	coinciding	chains	of	pave	blocks	is	given	in	the	image:

Coinciding	chains	of	pave	blocks

The	pairs	of	coincided	pave	blocks	are:	(PB11,	PB12),	(PB11,
PB13),	(PB12,	PB13),	(PB21,	PB22),	(PB21,	PB23),	(PB22,	PB23).
The	pairs	produce	two	chains:	(PB11,	PB12,	PB13)	and	(PB21,
PB22,	PB23).

Compute	Vertex/Face	Interferences
The	input	data	for	this	step	is	the	DS	after	computing	Edge/Edge
interferences.

No Contents Implementation

1
Initialize	array	of
Vertex/Face
interferences

BOPAlgo_PaveFiller::PerformVF()

2

Access	to	the	pairs	of
interfered	shapes	(nVi,
nFj)k,	k=0,	1…nk,	where
nVi	is	DS	index	of	the
vertex	Vi,	nFj	is	DS	index
of	the	edge	Fj	and	nk	is
the	number	of	pairs.

BOPDS_Iterator

3
Compute	interference
See	Vertex/Face
Interference

BOPInt_Context::ComputeVF()

4 Append	Vertex/Face
interferences	in	the	DS BOPDS_DS::AddInterf()

5

Repeat	steps	2-4	for
each	new	vertex	VNXi
(i=1,	2…,NbVNX),	where
NbVNX	is	the	number	of
vertices.

BOPAlgo_PaveFiller::TreatVerticesEE()

Compute	Edge/Face	Interferences
The	input	data	for	this	step	is	the	DS	after	computing	Vertex/Face
Interferences.

No Contents Implementation

1
Initialize	array	of
Edge/Face
interferences

BOPAlgo_PaveFiller::PerformEF()

2

Access	to	the	pairs	of
interfered	shapes
(nEi,	nFj)k,	k=0,	1…
nk,	where	nEi	is	DS
index	of	edge	Ei,	nFj
is	DS	index	of	face	Fj
and	nk	is	the	number
of	pairs.

BOPDS_Iterator

3

Initialize	pave	blocks
for	the	edges	involved
in	the	interference,	if	it
is	necessary.

BOPDS_DS::ChangePaveBlocks()

4

Access	to	the	pave
blocks	of	interfered
edge	(PBi1,	PBi2…
PBiNi)	for	edge	Ei

BOPAlgo_PaveFiller::PerformEF()

5

Compute	shrunk	data
for	pave	blocks	(in
terms	of	Pave,
PaveBlock	and
CommonBlock)	if	it	is
necessary.

BOPAlgo_PaveFiller::FillShrunkData()

6

Compute	Edge/Face
interference	for	pave
block	PBix,	and	face
nFj.	The	result	of	the
computation	is	a	set
of	objects	of	type

IntTools_EdgeFace

IntTools_CommonPart

7.1

For	each
CommonPart	of	type
VERTEX:	Create	new
vertices	VNi	(i=1,
2…,NbVN),	where
NbVN	is	the	number
of	new	vertices.
Merge	vertices	VNi	as
follows:	a)	create	new
object	PFn	of	type
BOPAlgo_PaveFiller
with	its	own	DS;	b)
use	new	vertices	VNi
(i=1,	2…,NbVN),
NbVN	as	arguments
(in	terms	of
TopoDs_Shape)	of
PFn;	c)	invoke
method	Perform()	for
PFn.	The	resulting
vertices	VNXi	(i=1,
2…,NbVNX),	where
NbVNX	is	the	number
of	vertices,	are
obtained	via	mapping
between	VNi	and	the
results	of	PVn.

BOPTools_Tools::MakeNewVertex()	and
BOPAlgo_PaveFiller::PerformVertices1()

7.2

For	each
CommonPart	of	type
EDGE:	Create
common	blocks	(CBc.
C=0,	1…nCs)	from
pave	blocks	that	lie	on
the	faces.	Attach	the
common	blocks	to	the
pave	blocks.

BOPAlgo_Tools::PerformCommonBlocks()

Post-processing.
Append	the	paves	of
VNXi	into	the

8 corresponding	pave
blocks	in	terms	of
Pave,	PaveBlock
and	CommonBlock.

BOPDS_PaveBlock::	AppendExtPave()

9
Split	pave	blocks	and
common	blocks	CBc
by	the	paves.

BOPAlgo_PaveFiller::PerformVertices1(),
BOPDS_DS::	UpdatePaveBlock()	and
BOPDS_DS::	UpdateCommonBlock()

10
Append	Edge/Face
interferences	in	the
DS

BOPDS_DS::AddInterf()

11
Update	FaceInfo	for
all	faces	having	EF
common	parts.

BOPDS_DS::	UpdateFaceInfoIn()

Build	Split	Edges
The	input	data	for	this	step	is	the	DS	after	computing	Edge/Face
Interferences.

For	each	pave	block	PB	take	the	following	steps:

No Contents Implementation

1

Get	the	real	pave	block
PBR,	which	is	equal	to
PB	if	PB	is	not	a
common	block	and	to
PB1	if	PB	is	a	common
block.	PB1	is	the	first
pave	block	in	the	pave
blocks	list	of	the
common	block.	See
Pave,	PaveBlock	and
CommonBlock.

BOPAlgo_PaveFiller::MakeSplitEdges()

2
Build	the	split	edge	Esp
using	the	information
from	DS	and	PBR.

BOPTools_Tools::MakeSplitEdge()

3
Compute
BOPDS_ShapeInfo
contents	for	Esp

BOPAlgo_PaveFiller::MakeSplitEdges()

4
Append
BOPDS_ShapeInfo
contents	to	the	DS

BOPDS_DS::Append()

Compute	Face/Face	Interferences
The	input	data	for	this	step	is	DS	after	building	Split	Edges.

No Contents Implementation

1 Initialize	array	of	Face/Face
interferences BOPAlgo_PaveFiller::PerformFF()

2

Access	to	the	pairs	of
interfered	shapes	(nFi,	nFj)k,
k=0,	1…nk,	where	nFi	is	DS
index	of	edge	Fi,	nFj	is	DS
index	of	face	Fj	and	nk	is	the
number	of	pairs.

BOPDS_Iterator

3 Compute	Face/Face
interference IntTools_FaceFace

4 Append	Face/Face
interferences	in	the	DS. BOPDS_DS::AddInterf()

Build	Section	Edges
The	input	data	for	this	step	is	the	DS	after	computing	Face/Face
interferences.

No Contents Implementation

1

For	each	Face/Face
interference	nFi,
nFj,	retrieve
FaceInfo.	Create
draft	vertices	from
intersection	points
VPk	(k=1,	2…,
NbVP),	where
NbVP	is	the	number
of	new	vertices,	and
the	draft	vertex	VPk
is	created	from	an
intersection	point	if
VPk	≠	Vm	(m	=	0,	1,
2…	NbVm),	where
Vm	is	an	existing
vertex	for	the	faces
nFi	and	nF,j	(On	or
In	in	terms	of
TopoDs_Shape),
NbVm	is	the
number	of	vertices
existing	on	faces
nFi	and	nF,j	and	≠	–
means	non-
coincidence	in
terms	of
Vertex/Vertex
interference.

BOPAlgo_PaveFiller::MakeBlocks()

2
For	each
intersection	curve
Cijk

2.1

Create	paves	PVc
for	the	curve	using
existing	vertices,	i.e.
vertices	On	or	In	(in
terms	of	FaceInfo)
for	faces	nFi	and
nFj.	Append	the
paves	PVc

BOPAlgo_PaveFiller::PutPaveOnCurve()	and
BOPDS_PaveBlock::AppendExtPave()

2.2

Create
technological
vertices	Vt,	which
are	the	bounding
points	of	an
intersection	curve
(with	the	value	of
tolerance	Tol(Cijk)).
Each	vertex	Vt	with
parameter	Tt	on
curve	Cijk	forms
pave	PVt	on	curve
Cijk.	Append
technological
paves.

BOPAlgo_PaveFiller::PutBoundPaveOnCurve()

2.3

Create	pave	blocks
PBk	for	the	curve
using	paves	(k=1,
2…,	NbPB),	where
NbPB	is	the	number
of	pave	blocks

BOPAlgo_PaveFiller::MakeBlocks()

Build	draft	section
edges	ESk	using
the	pave	blocks
(k=1,	2…,	NbES),
where	NbES	is	the
number	of	draft
section	edges	The
draft	section	edge	is
created	from	a	pave
block	PBk	if	PBk
has	state	In	or	On

2.4

for	both	faces	nFi
and	nF,j	and	PBk	≠
PBm	(m=0,	1,	2…
NbPBm),	where
PBm	is	an	existing
pave	block	for	faces
nFi	and	nF,j	(On	or
In	in	terms	of
FaceInfo),	NbVm	is
the	number	of
existing	pave	blocks
for	faces	nFi	and
nF,j	and	≠	–	means
non-coincidence	(in
terms	of
Vertex/Face
interference).

BOPTools_Tools::MakeEdge()

3

Intersect	the	draft
vertices	VPk	(k=1,
2…,	NbVP)	and	the
draft	section	edges
ESk	(k=1,	2…,
NbES).	For	this:	a)
create	new	object
PFn	of	type
BOPAlgo_PaveFiller
with	its	own	DS;	b)
use	vertices	VPk
and	edges	ESk	as
arguments	(in	terms
of	Arguments)	of
PFn;	c)	invoke
method	Perform()
for	PFn.	Resulting
vertices	VPXk	(k=1,
2…	NbVPX)	and
edges	ESXk	(k=1,
2…	NbESX)	are
obtained	via
mapping	between

BOPAlgo_PaveFiller::PostTreatFF()

VPk,	ESk	and	the
results	of	PVn.

4

Update	face	info
(sections	about
pave	blocks	and
vertices)

BOPAlgo_PaveFiller::PerformFF()

Build	P-Curves
The	input	data	for	this	step	is	the	DS	after	building	section	edges.

No Contents Implementation

1

For	each	Face/Face
interference	nFi	and	nFj
build	p-Curves	on	nFi	and
nFj	for	each	section	edge
ESXk.

BOPAlgo_PaveFiller::MakePCurves()

2

For	each	pave	block	that	is
common	for	faces	nFi	and
nFj	build	p-Curves	on	nFi
and	nFj.

BOPAlgo_PaveFiller::MakePCurves()

Process	Degenerated	Edges
The	input	data	for	this	step	is	the	DS	after	building	P-curves.

No Contents Implementation
For	each	degenerated
edge	ED	having	vertex
VD

BOPAlgo_PaveFiller::ProcessDE()

1

Find	pave	blocks	PBi
(i=1,2…	NbPB),	where
NbPB	is	the	number	of
pave	blocks,	that	go
through	vertex	VD.

BOPAlgo_PaveFiller::FindPaveBlocks()

2

Compute	paves	for	the
degenerated	edge	ED
using	a	2D	curve	of	ED
and	a	2D	curve	of	PBi.
Form	pave	blocks	PBDi
(i=1,2…	NbPBD),	where
NbPBD	is	the	number	of
the	pave	blocks	for	the
degenerated	edge	ED

BOPAlgo_PaveFiller::FillPaves()

3

Build	split	edges	ESDi
(i=1,2…NbESD),	where
ESD	is	the	number	of
split	edges,	using	the
pave	blocks	PBDi

BOPAlgo_PaveFiller::	MakeSplitEdge()

General	description	of	the	Building
Part
Building	Part	(BP)	is	used	to

Build	the	result	of	the	operation
Provide	history	information	(in	terms	of	::Generated(),	::Modified()
and	::IsDeleted())	BP	uses	the	DS	prepared	by	BOPAlgo_PaveFiller
described	at	chapter	5	as	input	data.	BP	is	implemented	in	the
following	classes:
BOPAlgo_Builder	–	for	the	General	Fuse	operator	(GFA).
BOPAlgo_BOP	–	for	the	Boolean	Operation	operator	(BOA).
BOPAlgo_Section	–	for	the	Section	operator	(SA).
BOPAlgo_MakerVolume	–	for	the	Volume	Maker	operator.
BOPAlgo_Splitter	–	for	the	Splitter	operator.
BOPAlgo_CellsBuilder	–	for	the	Cells	Builder	operator.

Diagram	for	BP	classes

The	class	BOPAlgo_BuilderShape	provides	the	interface	for	algorithms

that	have:

A	Shape	as	the	result;
History	information	(in	terms	of	::Generated(),	::Modified()	and
::IsDeleted()).

General	Fuse	Algorithm
Arguments

The	arguments	of	the	algorithm	are	shapes	(in	terms	of	TopoDS_Shape).
The	main	requirements	for	the	arguments	are	described	in	Data
Structure	chapter.

Results
During	the	operation	argument	Si	can	be	split	into	several	parts	Si1,
Si2…	Si1NbSp,	where	NbSp	is	the	number	of	parts.	The	set	(Si1,	Si2…
Si1NbSp)	is	an	image	of	argument	Si.

The	result	of	the	General	Fuse	operation	is	a	compound.	Each	sub-
shape	of	the	compound	corresponds	to	the	certain	argument	shape
S1,	S2…Sn	and	has	shared	sub-shapes	in	accordance	with
interferences	between	the	arguments.
For	the	arguments	of	the	type	EDGE,	FACE,	SOLID	the	result
contains	split	parts	of	the	argument.
For	the	arguments	of	the	type	WIRE,	SHELL,	COMPSOLID,
COMPOUND	the	result	contains	the	image	of	the	shape	of	the
corresponding	type	(i.e.	WIRE,	SHELL,	COMPSOLID	or
COMPOUND).	The	types	of	resulting	shapes	depend	on	the	type	of
the	corresponding	argument	participating	in	the	operation.	See	the
table	below:

No Type	of
argument

Type	of
resulting
shape

Comments

1 COMPOUND COMPOUND

The	resulting	COMPOUND	is	built
from	images	of	sub-shapes	of	type
COMPOUND	COMPSOLID,
SHELL,	WIRE	and	VERTEX.	Sets
of	split	sub-shapes	of	type	SOLID,
FACE,	EDGE.

2 COMPSOLID COMPSOLID The	resulting	COMPSOLID	is	built
from	split	SOLIDs.

3 SOLID Set	of	split
SOLIDs

4 SHELL SHELL The	resulting	SHELL	is	built	from
split	FACEs

5 FACE Set	of	split
FACEs

6 WIRE WIRE The	resulting	WIRE	is	built	from
split	EDGEs

7 EDGE Set	of	split
EDGEs

8 VERTEX VERTEX

Examples
Please,	have	a	look	at	the	examples,	which	can	help	to	better	understand
the	definitions.

Case	1:	Three	edges	intersecting	at	a	point

Let	us	consider	three	edges:	E1,	E2	and	E3	that	intersect	in	one	3D
point.

	

E1	

E2	
E3	

Vn1	

E31	

E11	

E21	

E12	

E22	
E32	

Three	Intersecting	Edges

The	result	of	the	GFA	operation	is	a	compound	containing	6	new	edges:
E11,	E12,	E21,	E22,	E31,	and	E32.	These	edges	have	one	shared	vertex
Vn1.

In	this	case:

The	argument	edge	E1	has	resulting	split	edges	E11	and	E12
(image	of	E1).
The	argument	edge	E2	has	resulting	split	edges	E21	and	E22
(image	of	E2).
The	argument	edge	E3	has	resulting	split	edges	E31	and	E32
(image	of	E3).

Case	2:	Two	wires	and	an	edge

Let	us	consider	two	wires	W1	(Ew11,	Ew12,	Ew13)	and	W2	(Ew21,
Ew22,	Ew23)	and	edge	E1.

	

E1	W1	

W2	

Ew21	

Ew22	

Ew23	

Ew11	

Ew12	

Ew13	
E11	Wn1	

W2	

Ew11	 Ew13	

Ew21	
Ew23	E12	

En1	 En2	 En3	 En4	

Vn1	

Two	wires	and	an	edge

The	result	of	the	GF	operation	is	a	compound	consisting	of	2	wires:	Wn1
(Ew11,	En1,	En2,	En3,	Ew13)	and	Wn2	(Ew21,	En2,	En3,	En4,	Ew23)
and	two	edges:	E11	and	E12.

In	this	case	:

The	argument	W1	has	image	Wn1.
The	argument	W2	has	image	Wn2.
The	argument	edge	E1	has	split	edges	E11	and	E12.	(image	of	E1).
The	edges	En1,	En2,	En3,	En4	and	vertex	Vn1	are	new	shapes
created	during	the	operation.	Edge	Ew12	has	split	edges	En1,	En2
and	En3	and	edge	Ew22	has	split	edges	En2,	En3	and	En4.

Case	3:	An	edge	intersecting	with	a	face

Let	us	consider	edge	E1	and	face	F2:

	

E1	

F2	

F21	

E11	 E12	

E12	

An	edge	intersecting	with	a	face

The	result	of	the	GF	operation	is	a	compound	consisting	of	3	shapes:

Split	edge	parts	E11	and	E12	(image	of	E1).
New	face	F21	with	internal	edge	E12	(image	of	F2).

Case	4:	An	edge	lying	on	a	face

Let	us	consider	edge	E1	and	face	F2:

E1	

F2	

F21	

F22	

E12	

E12	

E11	 E13	

An	edge	lying	on	a	face

The	result	of	the	GF	operation	is	a	compound	consisting	of	5	shapes:

Split	edge	parts	E11,	E12	and	E13	(image	of	E1).
Split	face	parts	F21	and	F22	(image	of	F2).

Case	5:	An	edge	and	a	shell

Let	us	consider	edge	E1	and	shell	Sh2	that	consists	of	2	faces:	F21	and
F22

	

F21	

F22	

E1	 E11	

E14	

F212	

F222	

F211	

F221	

E13	

E12	

An	edge	and	a	shell

The	result	of	the	GF	operation	is	a	compound	consisting	of	5	shapes:

Split	edge	parts	E11,	E12	,	E13	and	E14	(image	of	E1).
Image	shell	Sh21	(that	contains	split	face	parts	F211,	F212,	F221
and	F222).

Case	6:	A	wire	and	a	shell

Let	us	consider	wire	W1	(E1,	E2,	E3,	E4)	and	shell	Sh2	(F21,	F22).

	

Sh2	 F21	

F22	W1	

F212	

F222	

F211	

F221	
F223	

F213	

W11	

Sh2	

E11	 E12	

E13	E14	

Sh21	

E1	 E2	

E3	E4	

Sh2

A	wire	and	a	shell

The	result	of	the	GF	operation	is	a	compound	consisting	of	2	shapes:

Image	wire	W11	that	consists	of	split	edge	parts	from	wire	W1:	E11,
E12,	E13	and	E14.
Image	shell	Sh21	that	contains	split	face	parts:	F211,	F212,	F213,
F221,	F222	and	F223.

Case	7:	Three	faces

Let	us	consider	3	faces:	F1,	F2	and	F3.

Three	faces

The	result	of	the	GF	operation	is	a	compound	consisting	of	7	shapes:

Split	face	parts:	Fn1,	Fn2,	Fn3,	Fn4,	Fn5,	Fn6	and	Fn7.

Case	8:	A	face	and	a	shell

Let	us	consider	shell	Sh1	(F11,	F12,	F13)	and	face	F2.

A	face	and	a	shell

The	result	of	the	GF	operation	is	a	compound	consisting	of	4	shapes:

Image	shell	Sh11	that	consists	of	split	face	parts	from	shell	Sh1:
Fn1,	Fn2,	Fn3,	Fn4,	Fn5	and	Fn6.
Split	parts	of	face	F2:	Fn3,	Fn6	and	Fn7.

Case	9:	A	shell	and	a	solid

Let	us	consider	shell	Sh1	(F11,	F12…F16)	and	solid	So2.

A	shell	and	a	solid:	arguments

The	result	of	the	GF	operation	is	a	compound	consisting	of	2	shapes:

Image	shell	Sh11	consisting	of	split	face	parts	of	Sh1:	Fn1,	Fn2	...
Fn8.
Solid	So21	with	internal	shell.	(image	of	So2).

A	shell	and	a	solid:	results

Case	10:	A	compound	and	a	solid

Let	us	consider	compound	Cm1	consisting	of	2	solids	So11	and	So12)
and	solid	So2.

A	compound	and	a	solid:	arguments

The	result	of	the	GF	operation	is	a	compound	consisting	of	4	shapes:

Image	compound	Cm11	consisting	of	split	solid	parts	from	So11	and
So12	(Sn1,	Sn2,	Sn3,	Sn4).
Split	parts	of	solid	So2	(Sn2,	Sn3,	Sn5).

A	compound	and	a	solid:	results

Class	BOPAlgo_Builder
GFA	is	implemented	in	the	class	BOPAlgo_Builder.

Fields

The	main	fields	of	the	class	are	described	in	the	Table:

Name Contents
myPaveFiller Pointer	to	the	BOPAlgo_PaveFiller	object
myDS Pointer	to	the	BOPDS_DS	object
myContext Pointer	to	the	intersection	Context
myImages The	Map	between	the	source	shape	and	its	images

myShapesSD
The	Map	between	the	source	shape	(or	split	part	of
source	shape)	and	the	shape	(or	part	of	shape)	that	will
be	used	in	result	due	to	same	domain	property.

Initialization

The	input	data	for	this	step	is	a	BOPAlgo_PaveFiller	object	(in	terms	of
Intersection)	at	the	state	after	Processing	of	degenerated	edges	with
the	corresponding	DS.

No Contents Implementation

1 Check	the	readiness	of	the	DS
and	BOPAlgo_PaveFiller. BOPAlgo_Builder::CheckData()

2 Build	an	empty	result	of	type
Compound. BOPAlgo_Builder::Prepare()

Build	Images	for	Vertices

The	input	data	for	this	step	is	BOPAlgo_Builder	object	after	Initialization.

No Contents Implementation

1
Fill	myShapesSD	by	SD
vertices	using	the
information	from	the	DS.

BOPAlgo_Builder::FillImagesVertices()

Build	Result	of	Type	Vertex

The	input	data	for	this	step	is	BOPAlgo_Builder	object	after	building
images	for	vertices	and	Type,	which	is	the	shape	type
(TopAbs_VERTEX).

No Contents Implementation

1

For	the	arguments	of	type	Type.
If	there	is	an	image	for	the
argument:	add	the	image	to	the
result.	If	there	is	no	image	for	the
argument:	add	the	argument	to
the	result.

BOPAlgo_Builder::BuildResult()

Build	Images	for	Edges

The	input	data	for	this	step	is	BOPAlgo_Builder	object	after	building	result
of	type	vertex.

No Contents Implementation

1

For	all	pave	blocks	in	the
DS.	Fill	myImages	for	the
original	edge	E	by	split
edges	ESPi	from	pave
blocks.	In	case	of	common
blocks	on	edges,	use	edge
ESPSDj	that	corresponds
to	the	leading	pave	block
and	fill	myShapesSD	by	the
pairs	ESPi/ESPSDj.

BOPAlgo_Builder::FillImagesEdges()

Build	Result	of	Type	Edge

This	step	is	the	same	as	Building	Result	of	Type	Vertex,	but	for	the

type	Edge.

Build	Images	for	Wires

The	input	data	for	this	step	is:

BOPAlgo_Builder	object	after	building	result	of	type	Edge;
Original	Shape	–	Wire
Type	–	the	shape	type	(TopAbs_WIRE).

No Contents Implementation

1

For	all	arguments	of
the	type	Type.	Create
a	container	C	of	the
type	Type.

BOPAlgo_Builder::FillImagesContainers()

2

Add	to	C	the	images	or
non-split	parts	of	the
Original	Shape,	taking
into	account	its
orientation.

BOPAlgo_Builder::FillImagesContainers()
BOPTools_Tools::IsSplitToReverse()

3
Fill	myImages	for	the
Original	Shape	by	the
information	above.

BOPAlgo_Builder::FillImagesContainers()

Build	Result	of	Type	Wire

This	step	is	the	same	as	Building	Result	of	Type	Vertex	but	for	the	type
Wire.

Build	Images	for	Faces

The	input	data	for	this	step	is	BOPAlgo_Builder	object	after	building	result
of	type	Wire.

No Contents Implementation

1

Build	Split	Faces	for
all	interfered	DS

shapes	Fi	of	type
FACE.

1.1
Collect	all	edges	or
their	images	of
Fi(ESPij).

BOPAlgo_Builder::BuildSplitFaces()

1.2

Impart	to	ESPij	the
orientation	to	be
coherent	with	the
original	one.

BOPAlgo_Builder::BuildSplitFaces()

1.3 Collect	all	section
edges	SEk	for	Fi. BOPAlgo_Builder::BuildSplitFaces()

1.4

Build	split	faces	for	Fi
(Fi1,	Fi2…FiNbSp),
where	NbSp	is	the
number	of	split	parts
(see	Building	faces
from	a	set	of	edges
for	more	details).

BOPAlgo_BuilderFace

1.5

Impart	to	(Fi1,	Fi2…
FiNbSp)	the
orientation	coherent
with	the	original	face
Fi.

BOPAlgo_Builder::BuildSplitFaces()

1.6
Fill	the	map	mySplits
with	Fi/(Fi1,	Fi2…
FiNbSp)

BOPAlgo_Builder::BuildSplitFaces()

2 Fill	Same	Domain
faces BOPAlgo_Builder::FillSameDomainFaces

2.1

Find	and	collect	in
the	contents	of
mySplits	the	pairs	of
same	domain	split
faces	(Fij,	Fkl)m,
where	m	is	the
number	of	pairs.

BOPAlgo_Builder::FillSameDomainFaces
BOPTools_Tools::AreFacesSameDomain()

Compute	the
connexity	chains	1)
of	same	domain

2.2 faces	(F1C,	F2C…
FnC)k,	C=0,	1…nCs,
where	nCs	is	the
number	of	connexity
chains.

BOPAlgo_Builder::FillSameDomainFaces()

2.3
Fill	myShapesSD
using	the	chains
(F1C,	F2C…	FnC)k

BOPAlgo_Builder::FillSameDomainFaces()

2.4 Add	internal	vertices
to	split	faces. BOPAlgo_Builder::FillSameDomainFaces()

2.5
Fill	myImages	using
myShapesSD	and
mySplits.

BOPAlgo_Builder::FillSameDomainFaces()

The	example	of	chains	of	same	domain	faces	is	given	in	the	image:

	

F2	

Chain	1 	
Chain	2 	

F1	 F3	

F4	

F5	

F11 	
F21 	 F22 	

F31 	
F6	F51 	

F41 	

Chains	of	same	domain	faces

The	pairs	of	same	domain	faces	are:	(F11,	F21),	(F22,	F31),	(F41,
F51)	,	(F41,	F6)	and	(F51,	F6).
The	pairs	produce	the	three	chains:	(F11,	F21),	(F22,	F31)	and	(F41,
F51,	F6).

Build	Result	of	Type	Face

This	step	is	the	same	as	Building	Result	of	Type	Vertex	but	for	the	type
Face.

Build	Images	for	Shells

The	input	data	for	this	step	is:

BOPAlgo_Builder	object	after	building	result	of	type	face;
Original	Shape	–	a	Shell;
Type	–	the	type	of	the	shape	(TopAbs_SHELL).

The	procedure	is	the	same	as	for	building	images	for	wires.

Build	Result	of	Type	Shell

This	step	is	the	same	as	Building	Result	of	Type	Vertex	but	for	the	type
Shell.

Build	Images	for	Solids

The	input	data	for	this	step	is	BOPAlgo_Builder	object	after	building	result
of	type	Shell.

The	following	procedure	is	executed	for	all	interfered	DS	shapes	Si	of
type	SOLID.

No Contents Implementation

1

Collect	all	images	or	non-
split	parts	for	all	faces
(FSPij)	that	have	3D	state
In	Si.

BOPAlgo_Builder::FillIn3DParts	()

2
Collect	all	images	or	non-
split	parts	for	all	faces	of
Si

BOPAlgo_Builder::BuildSplitSolids()

3

Build	split	solids	for	Si	->
(Si1,	Si2…SiNbSp),
where	NbSp	is	the
number	of	split	parts	(see
Building	faces	from	a
set	of	edges	for	more
details)

BOPAlgo_BuilderSolid

4
Fill	the	map	Same
Domain	solids
myShapesSD

BOPAlgo_Builder::BuildSplitSolids()

5 Fill	the	map	myImages BOPAlgo_Builder::BuildSplitSolids()

6 Add	internal	vertices	to
split	solids BOPAlgo_Builder::FillInternalShapes()

Build	Result	of	Type	Solid

This	step	is	the	same	as	Building	Result	of	Type	Vertex,	but	for	the
type	Solid.

Build	Images	for	Type	CompSolid

The	input	data	for	this	step	is:

BOPAlgo_Builder	object	after	building	result	of	type	solid;
Original	Shape	–	a	Compsolid;
Type	–	the	type	of	the	shape	(TopAbs_COMPSOLID).

The	procedure	is	the	same	as	for	building	images	for	wires.

Build	Result	of	Type	Compsolid

This	step	is	the	same	as	Building	Result	of	Type	Vertex,	but	for	the
type	Compsolid.

Build	Images	for	Compounds

The	input	data	for	this	step	is	as	follows:

BOPAlgo_Builder	object	after	building	results	of	type	compsolid;
Original	Shape	–	a	Compound;
Type	–	the	type	of	the	shape	(TopAbs_COMPOUND).

The	procedure	is	the	same	as	for	building	images	for	wires.

Build	Result	of	Type	Compound

This	step	is	the	same	as	Building	Result	of	Type	Vertex,	but	for	the
type	Compound.

Post-Processing

The	purpose	of	the	step	is	to	correct	tolerances	of	the	result	to	provide	its
validity	in	terms	of	BRepCheck_Analyzer.

The	input	data	for	this	step	is	a	BOPAlgo_Builder	object	after	building
result	of	type	compound.

No Contents Implementation

1 Correct	tolerances	of
vertices	on	curves BOPTools_Tools::CorrectPointOnCurve()

2 Correct	tolerances	of
edges	on	faces BOPTools_Tools::CorrectCurveOnSurface()

Splitter	Algorithm
The	Splitter	algorithm	allows	splitting	a	group	of	arbitrary	shapes	by
another	group	of	arbitrary	shapes.
It	is	based	on	the	General	Fuse	algorithm,	thus	all	options	of	the	General
Fuse	such	as	Fuzzy	mode,	safe	processing	mode,	parallel	mode,	gluing
mode	and	history	support	are	also	available	in	this	algorithm.

Arguments
The	arguments	of	the	Splitter	algorithm	are	divided	into	two	groups	-
Objects	(shapes	that	will	be	split)	and	Tools	(shapes,	by	which	the
Objects	will	be	split);
The	requirements	for	the	arguments	(both	for	Objects	and	Tools)	are
the	same	as	for	the	General	Fuse	algorithm	-	there	can	be	any
number	of	arguments	of	any	type	in	each	group,	but	each	argument
should	be	valid	and	not	self-interfered.

Results
The	result	of	Splitter	algorithm	contains	only	the	split	parts	of	the
shapes	included	into	the	group	of	Objects;
The	split	parts	of	the	shapes	included	only	into	the	group	of	Tools
are	excluded	from	the	result;
If	there	are	no	shapes	in	the	group	of	Tools	the	result	of	the
operation	will	be	equivalent	to	the	result	of	General	Fuse	operation;
The	shapes	can	be	split	by	other	shapes	from	the	same	group	(if
these	shapes	are	interfering).

Usage

API

On	the	low	level	the	Splitter	algorithm	is	implemented	in	class
BOPAlgo_Splitter.	The	usage	of	this	algorithm	looks	as	follows:

BOPAlgo_Splitter	aSplitter;

BOPCol_ListOfShape	aLSObjects	=	…;	//	Objects

BOPCol_ListOfShape	aLSTools	=	…;	//	Tools

Standard_Boolean	bRunParallel	=	Standard_False;	/*	

parallel	or	single	mode	(the	default	value	is	

FALSE)*/

Standard_Real	aTol	=	0.0;	/*	fuzzy	option	(default	

value	is	0)*/

Standard_Boolean	bSafeMode	=	Standard_False;	/*	

protect	or	not	the	arguments	from	modification*/

BOPAlgo_Glue	aGlue	=	BOPAlgo_GlueOff;	/*	Glue	option	

to	speed	up	intersection	of	the	arguments*/

//	setting	arguments

aSplitter.SetArguments(aLSObjects);

aSplitter.SetTools(aLSTools);

//	setting	options

aSplitter.SetRunParallel(bRunParallel);

aSplitter.SetFuzzyValue(aTol);

aSplitter.SetNonDestructive(bSafeMode);

aSplitter.SetGlue(aGlue);

//

aSplitter.Perform();	//perform	the	operation

if	(aSplitter.HasErrors())	{	//check	error	status

		return;

}

//

const	TopoDS_Shape&	aResult	=	aSplitter.Shape();	//	

result	of	the	operation

DRAW

The	command	bsplit	implements	the	Splitter	algorithm	in	DRAW.	Similarly
to	the	bbuild	command	for	the	General	Fuse	algorithm,	the	bsplit
command	should	be	used	after	the	Pave	Filler	is	filled.

#	s1	s2	s3	-	objects

#	t1	t2	t3	-	tools

bclearobjects

bcleartools

baddobjects	s1	s2	s3

baddtools	t1	t2	t3

bfillds

bsplit	result

Examples

Example	1

Splitting	a	face	by	the	set	of	edges:

#	draw	script	for	reproducing

bclearobjects

bcleartools

set	height	20

cylinder	cyl	0	0	0	0	0	1	10

mkface	f	cyl	0	2*pi	-$height	$height

baddobjects	f

#	create	tool	edges

compound	edges

set	nb_uedges	10

set	pi2	[dval	2*pi]

set	ustep	[expr	$pi2/$nb_uedges]

for	{set	i	0}	{$i	<=	$pi2}	{set	i	[expr	$i	+	$ustep]}	

{

		uiso	c	cyl	$i

		mkedge	e	c	-25	25

		add	e	edges

}

set	nb_vedges	10

set	vstep	[expr	2*$height/$nb_vedges]

for	{set	i	-20}	{$i	<=	20}	{set	i	[expr	$i	+	$vstep]}	

{

		viso	c	cyl	$i

		mkedge	e	c

		add	e	edges

}

baddctools	edges

bfillds

bsplit	result

Arguments Result

Example	2

Splitting	a	plate	by	the	set	of	cylinders:

#	draw	script	for	reproducing:

bclearobjects

bcleartools

box	plate	100	100	1

baddobjects	plate

pcylinder	p	1	11

compound	cylinders

for	{set	i	0}	{$i	<	101}	{incr	i	5}	{

		for	{set	j	0}	{$j	<	101}	{incr	j	5}	{

				copy	p	p1;

				ttranslate	p1	$i	$j	-5;

				add	p1	cylinders

		}

}

baddtools	cylinders

bfillds

bsplit	result

Arguments

Result

Example	3

Splitting	shell	hull	by	the	planes:

Arguments

Results

Boolean	Operations	Algorithm
Arguments

The	arguments	of	BOA	are	shapes	in	terms	of	TopoDS_Shape.	The
main	requirements	for	the	arguments	are	described	in	the	Data
Structure
There	are	two	groups	of	arguments	in	BOA:

Objects	(S1=S11,	S12,	...);
Tools	(S2=S21,	S22,	...).

The	following	table	contains	the	values	of	dimension	for	different
types	of	arguments:

No Type	of	Argument Index	of	Type Dimension
1 COMPOUND 0 One	of	0,	1,	2,	3
2 COMPSOLID 1 3
3 SOLID 2 3
4 SHELL 3 2
5 FACE 4 2
6 WIRE 5 1
7 EDGE 6 1
8 VERTEX 7 0

For	Boolean	operation	Fuse	all	arguments	should	have	equal
dimensions.
For	Boolean	operation	Cut	the	minimal	dimension	of	S2	should	not
be	less	than	the	maximal	dimension	of	S1.
For	Boolean	operation	Common	the	arguments	can	have	any
dimension.

Results.	General	Rules
The	result	of	the	Boolean	operation	is	a	compound	(if	defined).	Each
sub-shape	of	the	compound	has	shared	sub-shapes	in	accordance
with	interferences	between	the	arguments.
The	content	of	the	result	depends	on	the	type	of	the	operation
(Common,	Fuse,	Cut12,	Cut21)	and	the	dimensions	of	the
arguments.
The	result	of	the	operation	Fuse	is	defined	for	arguments	S1	and	S2
that	have	the	same	dimension	value	:	Dim(S1)=Dim(S2).	If	the
arguments	have	different	dimension	values	the	result	of	the
operation	Fuse	is	not	defined.	The	dimension	of	the	result	is	equal	to
the	dimension	of	the	arguments.	For	example,	it	is	impossible	to	fuse
an	edge	and	a	face.
The	result	of	the	operation	Fuse	for	arguments	S1	and	S2	contains
the	parts	of	arguments	that	have	states	OUT	relative	to	the	opposite
arguments.
The	result	of	the	operation	Fuse	for	arguments	S1	and	S2	having
dimension	value	3	(Solids)	is	refined	by	removing	all	possible
internal	faces	to	provide	minimal	number	of	solids.
The	result	of	the	operation	Common	for	arguments	S1	and	S2	is
defined	for	all	values	of	the	dimensions	of	the	arguments.	The	result
can	contain	shapes	of	different	dimensions,	but	the	minimal
dimension	of	the	result	will	be	equal	to	the	minimal	dimension	of	the
arguments.	For	example,	the	result	of	the	operation	Common
between	edges	cannot	be	a	vertex.
The	result	of	the	operation	Common	for	the	arguments	S1	and	S2
contains	the	parts	of	the	argument	that	have	states	IN	and	ON
relative	to	the	opposite	argument.
The	result	of	the	operation	Cut	is	defined	for	arguments	S1	and	S2
that	have	values	of	dimensions	Dim(S2)	that	should	not	be	less	than
Dim(S1).	The	result	can	contain	shapes	of	different	dimensions,	but
the	minimal	dimension	of	the	result	will	be	equal	to	the	minimal
dimension	of	the	objects	Dim(S1).	The	result	of	the	operation	Cut12
is	not	defined	for	other	cases.	For	example,	it	is	impossible	to	cut	an
edge	from	a	solid,	because	a	solid	without	an	edge	is	not	defined.
The	result	of	the	operation	Cut12	for	arguments	S1	and	S2	contains
the	parts	of	argument	S1	that	have	state	OUT	relative	to	the
opposite	argument	S2.

The	result	of	the	operation	Cut21	for	arguments	S1	and	S2	contains
the	parts	of	argument	S2	that	have	state	OUT	relative	to	the
opposite	argument	S1.
For	the	arguments	of	collection	type	(WIRE,	SHELL,	COMPSOLID)
the	type	will	be	passed	in	the	result.	For	example,	the	result	of
Common	operation	between	Shell	and	Wire	will	be	a	compound
containing	Wire.
For	the	arguments	of	collection	type	(WIRE,	SHELL,	COMPSOLID)
containing	overlapping	parts	the	overlapping	parts	passed	into	result
will	be	repeated	for	each	container	from	the	input	shapes	containing
such	parts.	The	containers	completely	included	in	other	containers
will	be	avoided	in	the	result.
For	the	arguments	of	collection	type	(WIRE,	SHELL,	COMPSOLID)
the	containers	included	into	result	will	have	the	same	orientation	as
the	original	containers	from	arguments.	In	case	of	duplication	its
orientation	will	be	defined	by	the	orientation	of	the	first	container	in
arguments.	Each	container	included	into	result	will	have	coherent
orientation	of	its	sub-shapes.
The	result	of	the	operation	Fuse	for	the	arguments	of	collection	type
(WIRE,	SHELL)	will	consist	of	the	shapes	of	the	same	collection
type.	The	overlapping	parts	(EDGES/FACES)	will	be	shared	among
containers,	but	duplicating	containers	will	be	avoided	in	the	result.
For	example,	the	result	of	Fuse	operation	between	two	fully
coinciding	wires	will	be	one	wire,	but	the	result	of	Fuse	operation
between	two	partially	coinciding	wires	will	be	two	wires	sharing
coinciding	edges.
The	result	of	the	operation	Fuse	for	the	arguments	of	type
COMPSOLID	will	consist	of	the	compound	containing	COMPSOLIDs
created	from	connexity	blocks	of	fused	solids.
The	result	of	the	operation	Common	for	the	arguments	of	collection
type	(WIRE,	SHELL,	COMPSOLID)	will	consist	of	the	unique
containers	containing	the	overlapping	parts.	For	example,	the	result
of	Common	operation	between	two	fully	overlapping	wires	will	be
one	wire	containing	all	splits	of	edges.	The	number	of	wires	in	the
result	of	Common	operation	between	two	partially	overlapping	wires
will	be	equal	to	the	number	of	connexity	blocks	of	overlapping	edges.

Examples

Case	1:	Two	Vertices

Let	us	consider	two	interfering	vertices	V1	and	V2:

	
V1	 V2	

The	result	of	Fuse	operation	is	the	compound	that	contains	new
vertex	V.

	

V1	 V2	

V	

The	result	of	Common	operation	is	a	compound	containing	new
vertex	V.
The	result	of	Cut12	operation	is	an	empty	compound.
The	result	of	Cut21	operation	is	an	empty	compound.

Case	2:	A	Vertex	and	an	Edge

Let	us	consider	vertex	V1	and	the	edge	E2,	that	intersect	in	a	3D	point:

The	result	of	Fuse	operation	is	result	is	not	defined	because	the
dimension	of	the	vertex	(0)	is	not	equal	to	the	dimension	of	the	edge
(1).
The	result	of	Common	operation	is	a	compound	containing	vertex	V1
as	the	argument	V1	has	a	common	part	with	edge	E2.

The	result	of	Cut12	operation	is	an	empty	compound.
The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	vertex	(0)	is	less	than	the	dimension	of	the	edge	(1).

Case	3:	A	Vertex	and	a	Face

Let	us	consider	vertex	V1	and	face	F2,	that	intersect	in	a	3D	point:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	vertex	(0)	is	not	equal	to	the	dimension	of	the	face	(2).
The	result	of	Common	operation	is	a	compound	containing	vertex	V1
as	the	argument	V1	has	a	common	part	with	face	F2.

The	result	of	Cut12	operation	is	an	empty	compound.
The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	vertex	(0)	is	less	than	the	dimension	of	the	face	(2).

Case	4:	A	Vertex	and	a	Solid

Let	us	consider	vertex	V1	and	solid	S2,	that	intersect	in	a	3D	point:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	vertex	(0)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	a	compound	containing	vertex	V1
as	the	argument	V1	has	a	common	part	with	solid	S2.

The	result	of	Cut12	operation	is	an	empty	compound.
The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	vertex	(0)	is	less	than	the	dimension	of	the	solid	(3).

Case	5:	Two	edges	intersecting	at	one	point

Let	us	consider	edges	E1	and	E2	that	intersect	in	a	3D	point:

	

E2	

E1	

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments	i.e.	4	new	edges	E11,	E12,	E21,	and	E22.	These	edges
have	one	shared	vertex	Vn1.	In	this	case:

argument	edge	E1	has	resulting	split	edges	E11	and	E12
(image	of	E1);
argument	edge	E2	has	resulting	split	edges	E21	and	E22
(image	of	E2).

	

Vn1	

E21	

E11	 E12	

E22	

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(0)	of	the	common	part	between	the	edges	(vertex)	is	less
than	the	dimension	of	the	arguments	(1).
The	result	of	Cut12	operation	is	a	compound	containing	split	parts	of
the	argument	E1,	i.e.	2	new	edges	E11	and	E12.	These	edges	have
one	shared	vertex	Vn1.

In	this	case	the	argument	edge	E1	has	resulting	split	edges	E11	and	E12
(image	of	E1).

	

Vn1	

E11	 E12	

The	result	of	Cut21	operation	is	a	compound	containing	split	parts	of
the	argument	E2,	i.e.	2	new	edges	E21	and	E12.	These	edges	have
one	shared	vertex	Vn1.

In	this	case	the	argument	edge	E2	has	resulting	split	edges	E21	and	E22
(image	of	E2).

	

Vn1	

E21	

E22	

Case	6:	Two	edges	having	a	common	block

Let	us	consider	edges	E1	and	E2	that	have	a	common	block:

	
E2	

E1	

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments	i.e.	3	new	edges	E11,	E12	and	E22.	These	edges	have
two	shared	vertices.	In	this	case:

argument	edge	E1	has	resulting	split	edges	E11	and	E12
(image	of	E1);
argument	edge	E2	has	resulting	split	edges	E21	and	E22
(image	of	E2);
edge	E12	is	common	for	the	images	of	E1	and	E2.

	

E12	

E22	

E11	

The	result	of	Common	operation	is	a	compound	containing	split	parts
of	arguments	i.e.	1	new	edge	E12.	In	this	case	edge	E12	is	common
for	the	images	of	E1	and	E2.	The	common	part	between	the	edges
(edge)	has	the	same	dimension	(1)	as	the	dimension	of	the
arguments	(1).

	

E12	

The	result	of	Cut12	operation	is	a	compound	containing	a	split	part
of	argument	E1,	i.e.	new	edge	E11.

	

E11	

The	result	of	Cut21	operation	is	a	compound	containing	a	split	part
of	argument	E2,	i.e.	new	edge	E22.

	

E 22

	

Case	7:	An	Edge	and	a	Face	intersecting	at	a	point

Let	us	consider	edge	E1	and	face	F2	that	intersect	at	a	3D	point:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	edge	(1)	is	not	equal	to	the	dimension	of	the	face	(2).
The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(0)	of	the	common	part	between	the	edge	and	face
(vertex)	is	less	than	the	dimension	of	the	arguments	(1).
The	result	of	Cut12	operation	is	a	compound	containing	split	parts	of
the	argument	E1,	i.e.	2	new	edges	E11	and	E12.

In	this	case	the	argument	edge	E1	has	no	common	parts	with	the	face	F2
so	the	whole	image	of	E1	is	in	the	result.

The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	edge	(1)	is	less	than	the	dimension	of	the	face	(2).

Case	8:	A	Face	and	an	Edge	that	have	a	common	block

Let	us	consider	edge	E1	and	face	F2	that	have	a	common	block:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	edge	(1)	is	not	equal	to	the	dimension	of	the	face	(2).
The	result	of	Common	operation	is	a	compound	containing	a	split
part	of	the	argument	E1,	i.e.	new	edge	E12.

In	this	case	the	argument	edge	E1	has	a	common	part	with	face	F2	so
the	corresponding	part	of	the	image	of	E1	is	in	the	result.	The	yellow
square	is	not	a	part	of	the	result.	It	only	shows	the	place	of	F2.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	E1,	i.e.	new	edge	E11.

In	this	case	the	argument	edge	E1	has	a	common	part	with	face	F2	so
the	corresponding	part	is	not	included	into	the	result.	The	yellow	square
is	not	a	part	of	the	result.	It	only	shows	the	place	of	F2.

The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	edge	(1)	is	less	than	the	dimension	of	the	face	(2).

Case	9:	An	Edge	and	a	Solid	intersecting	at	a	point

Let	us	consider	edge	E1	and	solid	S2	that	intersect	at	a	point:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	edge	(1)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	a	compound	containing	a	split
part	of	the	argument	E1,	i.e.	new	edge	E12.

In	this	case	the	argument	edge	E1	has	a	common	part	with	solid	S2	so
the	corresponding	part	of	the	image	of	E1	is	in	the	result.	The	yellow
square	is	not	a	part	of	the	result.	It	only	shows	the	place	of	S2.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	E1,	i.e.	new	edge	E11.

In	this	case	the	argument	edge	E1	has	a	common	part	with	solid	S2	so
the	corresponding	part	is	not	included	into	the	result.	The	yellow	square
is	not	a	part	of	the	result.	It	only	shows	the	place	of	S2.

The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	edge	(1)	is	less	than	the	dimension	of	the	solid	(3).

Case	10:	An	Edge	and	a	Solid	that	have	a	common	block

Let	us	consider	edge	E1	and	solid	S2	that	have	a	common	block:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	edge	(1)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	a	compound	containing	a	split
part	of	the	argument	E1,	i.e.	new	edge	E12.

In	this	case	the	argument	edge	E1	has	a	common	part	with	solid	S2	so
the	corresponding	part	of	the	image	of	E1	is	in	the	result.	The	yellow
square	is	not	a	part	of	the	result.	It	only	shows	the	place	of	S2.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	E1,	i.e.	new	edge	E11.

In	this	case	the	argument	edge	E1	has	a	common	part	with	solid	S2	so
the	corresponding	part	is	not	included	into	the	result.	The	yellow	square
is	not	a	part	of	the	result.	It	only	shows	the	place	of	S2.

The	result	of	Cut21	operation	is	not	defined	because	the	dimension
of	the	edge	(1)	is	less	than	the	dimension	of	the	solid	(3).

Case	11:	Two	intersecting	faces

Let	us	consider	two	intersecting	faces	F1	and	F2:

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments	i.e.	2	new	faces	F11	and	F21.	These	faces	have	one
shared	edge	En1.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(1)	of	the	common	part	between	F1	and	F2	(edge)	is	less
than	the	dimension	of	arguments	(2).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1,	i.e.	new	face	F11.

The	result	of	Cut21	operation	is	a	compound	containing	split	parts	of
the	argument	F2,	i.e.	1	new	face	F21.

Case	12:	Two	faces	that	have	a	common	part

Let	us	consider	two	faces	F1	and	F2	that	have	a	common	part:

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments,	i.e.	3	new	faces:	F11,	F12	and	F22.	These	faces	are
shared	through	edges	In	this	case:

the	argument	edge	F1	has	resulting	split	faces	F11	and	F12
(image	of	F1)
the	argument	face	F2	has	resulting	split	faces	F12	and	F22
(image	of	F2)
the	face	F12	is	common	for	the	images	of	F1	and	F2.

The	result	of	Common	operation	is	a	compound	containing	split	parts
of	arguments	i.e.	1	new	face	F12.	In	this	case:	face	F12	is	common
for	the	images	of	F1	and	F2.	The	common	part	between	the	faces
(face)	has	the	same	dimension	(2)	as	the	dimension	of	the
arguments	(2).

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1,	i.e.	new	face	F11.

The	result	of	Cut21	operation	is	a	compound	containing	split	parts	of
the	argument	F2,	i.e.	1	new	face	F21.

Case	13:	Two	faces	that	have	a	common	edge

Let	us	consider	two	faces	F1	and	F2	that	have	a	common	edge:

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments,	i.e.	2	new	faces:	F11	and	F21.	These	faces	have	one
shared	edge	En1.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(1)	of	the	common	part	between	F1	and	F2	(edge)is	less
than	the	dimension	of	the	arguments	(2)
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1,	i.e.	new	face	F11.	The	vertices	are	shown	just	to
clarify	the	fact	that	the	edges	are	spitted.

The	result	of	Cut21	operation	is	a	compound	containing	split	parts	of
the	argument	F2,	i.e.	1	new	face	F21.	The	vertices	are	shown	just	to
clarify	the	fact	that	the	edges	are	spitted.

Case	14:	Two	faces	that	have	a	common	vertex

Let	us	consider	two	faces	F1	and	F2	that	have	a	common	vertex:

The	result	of	Fuse	operation	is	a	compound	containing	split	parts	of
arguments,	i.e.	2	new	faces:	F11	and	F21.	These	faces	have	one
shared	vertex	Vn1.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(0)	of	the	common	part	between	F1	and	F2	(vertex)	is
less	than	the	dimension	of	the	arguments	(2)
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1,	i.e.	new	face	F11.

The	result	of	Cut21	operation	is	a	compound	containing	split	parts	of
the	argument	F2,	i.e.	1	new	face	F21.

Case	15:	A	Face	and	a	Solid	that	have	an	intersection
curve.

Let	us	consider	face	F1	and	solid	S2	that	have	an	intersection	curve:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	face	(2)	is	not	equal	to	the	dimension	of	the	solid	(3).

The	result	of	Common	operation	is	a	compound	containing	split	part
of	the	argument	F1.	In	this	case	the	argument	face	F1	has	a
common	part	with	solid	S2,	so	the	corresponding	part	of	the	image	of
F1	is	in	the	result.	The	yellow	contour	is	not	a	part	of	the	result.	It
only	shows	the	place	of	S2.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1.	In	this	case	argument	face	F1	has	a	common	part
with	solid	S2	so	the	corresponding	part	is	not	included	into	the	result.
The	yellow	contour	is	not	a	part	of	the	result.	It	only	shows	the	place
of	S2.

The	result	of	Cut21	operation	is	is	not	defined	because	the
dimension	of	the	face	(2)	is	less	than	the	dimension	of	the	solid	(3).

Case	16:	A	Face	and	a	Solid	that	have	overlapping	faces.

Let	us	consider	face	F1	and	solid	S2	that	have	overlapping	faces:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	face	(2)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	a	compound	containing	split	part
of	the	argument	F1.	In	this	case	the	argument	face	F1	has	a
common	part	with	solid	S2,	so	the	corresponding	part	of	the	image	of
F1	is	included	in	the	result.	The	yellow	contour	is	not	a	part	of	the
result.	It	only	shows	the	place	of	S2.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1.	In	this	case	argument	face	F1	has	a	common	part
with	solid	S2	so	the	corresponding	part	is	not	included	into	the	result.
The	yellow	contour	is	not	a	part	of	the	result.	It	only	shows	the	place
of	S2.

The	result	of	Cut21	operation	is	is	not	defined	because	the
dimension	of	the	face	(2)	is	less	than	the	dimension	of	the	solid	(3).

Case	17:	A	Face	and	a	Solid	that	have	overlapping	edges.

Let	us	consider	face	F1	and	solid	S2	that	have	overlapping	edges:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	face	(2)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(1)	of	the	common	part	between	F1	and	S2	(edge)	is	less
than	the	lower	dimension	of	the	arguments	(2).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1.	In	this	case	argument	face	F1	has	a	common	part
with	solid	S2	so	the	corresponding	part	is	not	included	into	the	result.
The	yellow	contour	is	not	a	part	of	the	result.	It	only	shows	the	place
of	S2.

The	result	of	Cut21	operation	is	is	not	defined	because	the
dimension	of	the	face	(2)	is	less	than	the	dimension	of	the	solid	(3).

Case	18:	A	Face	and	a	Solid	that	have	overlapping
vertices.

Let	us	consider	face	F1	and	solid	S2	that	have	overlapping	vertices:

The	result	of	Fuse	operation	is	not	defined	because	the	dimension	of
the	face	(2)	is	not	equal	to	the	dimension	of	the	solid	(3).
The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(1)	of	the	common	part	between	F1	and	S2	(vertex)	is
less	than	the	lower	dimension	of	the	arguments	(2).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	F1.	In	this	case	argument	face	F1	has	a	common	part
with	solid	S2	so	the	corresponding	part	is	not	included	into	the	result.
The	yellow	contour	is	not	a	part	of	the	result.	It	only	shows	the	place
of	S2.

The	result	of	Cut21	operation	is	is	not	defined	because	the
dimension	of	the	face	(2)	is	less	than	the	dimension	of	the	solid	(3).

Case	19:	Two	intersecting	Solids.

Let	us	consider	two	intersecting	solids	S1	and	S2:

The	result	of	Fuse	operation	is	a	compound	composed	from	the	split
parts	of	arguments	S11,	S12	and	S22	(Cut12,	Common,	Cut21).	All
inner	webs	are	removed,	so	the	result	is	one	new	solid	R.

The	result	of	Common	operation	is	a	compound	containing	split	parts
of	arguments	i.e.	one	new	solid	S12.	In	this	case	solid	S12	is

common	for	the	images	of	S1	and	S2.	The	common	part	between
the	solids	(solid)	has	the	same	dimension	(3)	as	the	dimension	of	the
arguments	(3).	The	yellow	contour	is	not	a	part	of	the	result.	It	only
shows	the	place	of	S1.

The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	S1,	i.e.	1	new	solid	S11.

The	result	of	Cut21	operation	is	a	compound	containing	split	part	of
the	argument	S2,	i.e.	1	new	solid	S21.

Case	20:	Two	Solids	that	have	overlapping	faces.

Let	us	consider	two	solids	S1	and	S2	that	have	a	common	part	on	face:

The	result	of	Fuse	operation	is	a	compound	composed	from	the	split
parts	of	arguments	S11,	S12	and	S22	(Cut12,	Common,	Cut21).	All
inner	webs	are	removed,	so	the	result	is	one	new	solid	R.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(2)	of	the	common	part	between	S1	and	S2	(face)	is	less
than	the	lower	dimension	of	the	arguments	(3).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	S1,	i.e.	1	new	solid	S11.

The	result	of	Cut21	operation	is	a	compound	containing	split	part	of
the	argument	S2,	i.e.	1	new	solid	S21.

Case	21:	Two	Solids	that	have	overlapping	edges.

Let	us	consider	two	solids	S1	and	S2	that	have	overlapping	edges:

The	result	of	Fuse	operation	is	a	compound	composed	from	the	split
parts	of	arguments	i.e.	2	new	solids	S11	and	S21.	These	solids	have
one	shared	edge	En1.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(1)	of	the	common	part	between	S1	and	S2	(edge)	is	less
than	the	lower	dimension	of	the	arguments	(3).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	S1.	In	this	case	argument	S1	has	a	common	part	with
solid	S2	so	the	corresponding	part	is	not	included	into	the	result.

The	result	of	Cut21	operation	is	a	compound	containing	split	part	of
the	argument	S2.	In	this	case	argument	S2	has	a	common	part	with
solid	S1	so	the	corresponding	part	is	not	included	into	the	result.

Case	22:	Two	Solids	that	have	overlapping	vertices.

Let	us	consider	two	solids	S1	and	S2	that	have	overlapping	vertices:

The	result	of	Fuse	operation	is	a	compound	composed	from	the	split
parts	of	arguments	i.e.	2	new	solids	S11	and	S21.	These	solids
share	Vn1.

The	result	of	Common	operation	is	an	empty	compound	because	the
dimension	(0)	of	the	common	part	between	S1	and	S2	(vertex)	is
less	than	the	lower	dimension	of	the	arguments	(3).
The	result	of	Cut12	operation	is	a	compound	containing	split	part	of
the	argument	S1.

The	result	of	Cut21	operation	is	a	compound	containing	split	part	of
the	argument	S2.

Case	23:	A	Shell	and	a	Wire	cut	by	a	Solid.

Let	us	consider	Shell	Sh	and	Wire	W	as	the	objects	and	Solid	S	as	the
tool:

The	result	of	Fuse	operation	is	not	defined	as	the	dimension	of	the
arguments	is	not	the	same.
The	result	of	Common	operation	is	a	compound	containing	the	parts
of	the	initial	Shell	and	Wire	common	for	the	Solid.	The	new	Shell	and
Wire	are	created	from	the	objects.

The	result	of	Cut12	operation	is	a	compound	containing	new	Shell
and	Wire	split	from	the	arguments	Sh	and	W.	In	this	case	they	have
a	common	part	with	solid	S	so	the	corresponding	part	is	not	included
into	the	result.

The	result	of	Cut21	operation	is	not	defined	as	the	objects	have	a
lower	dimension	than	the	tool.

Case	24:	Two	Wires	that	have	overlapping	edges.

Let	us	consider	two	Wires	that	have	overlapping	edges,	W1	is	the	object
and	W2	is	the	tool:

The	result	of	Fuse	operation	is	a	compound	containing	two	Wires,
which	share	an	overlapping	edge.	The	new	Wires	are	created	from
the	objects:

The	result	of	Common	operation	is	a	compound	containing	one	Wire
consisting	of	an	overlapping	edge.	The	new	Wire	is	created	from	the
objects:

The	result	of	Cut12	operation	is	a	compound	containing	a	wire	split
from	object	W1.	Its	common	part	with	W2	is	not	included	into	the
result.

The	result	of	Cut21	operation	is	a	compound	containing	a	wire	split
from	W2.	Its	common	part	with	W1	is	not	included	into	the	result.

Class	BOPAlgo_BOP
BOA	is	implemented	in	the	class	BOPAlgo_BOP.	The	main	fields	of	this
class	are	described	in	the	Table:

Name Contents
myOperation The	type	of	the	Boolean	operation	(Common,	Fuse,	Cut)
myTools The	tools
myDims[2] The	values	of	the	dimensions	of	the	arguments
myRC The	draft	result	(shape)

The	main	steps	of	the	BOPAlgo_BOP	are	the	same	as	of
BOPAlgo_Builder	except	for	some	aspects	described	in	the	next
paragraphs.

Building	Draft	Result
The	input	data	for	this	step	is	as	follows:

BOPAlgo_BOP	object	after	building	result	of	type	Compound;
Type	of	the	Boolean	operation.

No Contents Implementation

1 For	the	Boolean	operation	Fuse	add
to	myRC	all	images	of	arguments. BOPAlgo_BOP::BuildRC()

2

For	the	Boolean	operation	Common	or
Cut	add	to	myRC	all	images	of
argument	S1	that	are	Common	for	the
Common	operation	and	are	Not
Common	for	the	Cut	operation

BOPAlgo_BOP::BuildRC()

Building	the	Result
The	input	data	for	this	step	is	as	follows:

BOPAlgo_BOP	object	the	state	after	building	draft	result.

No Contents Implementation

1

For	the	Type	of	the
Boolean	operation
Common,	Cut	with	any
dimension	and
operation	Fuse	with
myDim[0]	<	3

1.1

Find	containers
(WIRE,	SHELL,
COMPSOLID)	in	the
arguments

BOPAlgo_BOP::	BuildShape()

1.2

Make	connexity	blocks
from	splits	of	each
container	that	are	in
myRC

BOPTools_Tools::MakeConnexityBlocks()

1.3
Build	the	result	from
shapes	made	from	the
connexity	blocks

BOPAlgo_BOP::	BuildShape()

1.4
Add	the	remaining
shapes	from	myRC	to
the	result

BOPAlgo_BOP::	BuildShape()

2

For	the	Type	of	the
Boolean	operation
Fuse	with	myDim[0]	=
3

2.1 Find	internal	faces
(FWi)	in	myRC BOPAlgo_BOP::BuildSolid()

2.2

Collect	all	faces	of
myRC	except	for
internal	faces	(FWi)	-> BOPAlgo_BOP::BuildSolid	()

SFS

2.3 Build	solids	(SDi)	from
SFS. BOPAlgo_BuilderSolid

2.4 Add	the	solids	(SDi)	to
the	result

Section	Algorithm
Arguments

The	arguments	of	BOA	are	shapes	in	terms	of	TopoDS_Shape.	The	main
requirements	for	the	arguments	are	described	in	the	Algorithms.

Results	and	general	rules
The	result	of	Section	operation	is	a	compound.	Each	sub-shape	of
the	compound	has	shared	sub-shapes	in	accordance	with
interferences	between	the	arguments.
The	result	of	Section	operation	contains	shapes	that	have	dimension
that	is	less	then	2	i.e.	vertices	and	edges.
The	result	of	Section	operation	contains	standalone	vertices	if	these
vertices	do	not	belong	to	the	edges	of	the	result.
The	result	of	Section	operation	contains	vertices	and	edges	of	the
arguments	(or	images	of	the	arguments)	that	belong	to	at	least	two
arguments	(or	two	images	of	the	arguments).
The	result	of	Section	operation	contains	Section	vertices	and	edges
obtained	from	Face/Face	interferences.
The	result	of	Section	operation	contains	vertices	that	are	the	result	of
interferences	between	vertices	and	faces.
The	result	of	Section	operation	contains	edges	that	are	the	result	of
interferences	between	edges	and	faces	(Common	Blocks),

Examples

Case	1:	Two	Vertices

Let	us	consider	two	interfering	vertices:	V1	and	V2.

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	V.

Case	1:	Case	2:	A	Vertex	and	an	Edge

Let	us	consider	vertex	V1	and	the	edge	E2,	that	intersect	in	a	3D	point:

The	result	of	Section	operation	is	the	compound	that	contains	vertex	V1.

Case	1:	Case	2:	A	Vertex	and	a	Face

Let	us	consider	vertex	V1	and	face	F2,	that	intersect	in	a	3D	point:

The	result	of	Section	operation	is	the	compound	that	contains	vertex	V1.

Case	4:	A	Vertex	and	a	Solid

Let	us	consider	vertex	V1	and	solid	Z2.	The	vertex	V1	is	inside	the	solid
Z2.

The	result	of	Section	operation	is	an	empty	compound.

Case	5:	Two	edges	intersecting	at	one	point

Let	us	consider	edges	E1	and	E2,	that	intersect	in	a	3D	point:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Case	6:	Two	edges	having	a	common	block

Let	us	consider	edges	E1	and	E2,	that	have	a	common	block:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	7:	An	Edge	and	a	Face	intersecting	at	a	point

Let	us	consider	edge	E1	and	face	F2,	that	intersect	at	a	3D	point:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Case	8:	A	Face	and	an	Edge	that	have	a	common	block

Let	us	consider	edge	E1	and	face	F2,	that	have	a	common	block:

The	result	of	Section	operation	is	the	compound	that	contains	new	edge
Enew.

Case	9:	An	Edge	and	a	Solid	intersecting	at	a	point

Let	us	consider	edge	E1	and	solid	Z2,	that	intersect	at	a	point:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Case	10:	An	Edge	and	a	Solid	that	have	a	common	block

Let	us	consider	edge	E1	and	solid	Z2,	that	have	a	common	block	at	a
face:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	11:	Two	intersecting	faces

Let	us	consider	two	intersecting	faces	F1	and	F2:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	12:	Two	faces	that	have	a	common	part

Let	us	consider	two	faces	F1	and	F2	that	have	a	common	part:

The	result	of	Section	operation	is	the	compound	that	contains	4	new
edges.

Case	13:	Two	faces	that	have	overlapping	edges

Let	us	consider	two	faces	F1	and	F2	that	have	a	overlapping	edges:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	14:	Two	faces	that	have	overlapping	vertices

Let	us	consider	two	faces	F1	and	F2	that	have	overlapping	vertices:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Case	15:	A	Face	and	a	Solid	that	have	an	intersection
curve

Let	us	consider	face	F1	and	solid	Z2	that	have	an	intersection	curve:

The	result	of	Section	operation	is	the	compound	that	contains	new
edges.

Case	16:	A	Face	and	a	Solid	that	have	overlapping	faces.

Let	us	consider	face	F1	and	solid	Z2	that	have	overlapping	faces:

The	result	of	Section	operation	is	the	compound	that	contains	new	edges

Case	17:	A	Face	and	a	Solid	that	have	overlapping	edges.

Let	us	consider	face	F1	and	solid	Z2	that	have	a	common	part	on	edge:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	18:	A	Face	and	a	Solid	that	have	overlapping
vertices.

Let	us	consider	face	F1	and	solid	Z2	that	have	overlapping	vertices:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Case	19:	Two	intersecting	Solids

Let	us	consider	two	intersecting	solids	Z1	and	Z2:

The	result	of	Section	operation	is	the	compound	that	contains	new
edges.

Case	20:	Two	Solids	that	have	overlapping	faces

Let	us	consider	two	solids	Z1	and	Z2	that	have	a	common	part	on	face:

The	result	of	Section	operation	is	the	compound	that	contains	new
edges.

Case	21:	Two	Solids	that	have	overlapping	edges

Let	us	consider	two	solids	Z1	and	Z2	that	have	overlapping	edges:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
edge	Enew.

Case	22:	Two	Solids	that	have	overlapping	vertices

Let	us	consider	two	solids	Z1	and	Z2	that	have	overlapping	vertices:

The	result	of	Section	operation	is	the	compound	that	contains	a	new
vertex	Vnew.

Class	BOPAlgo_Section
SA	is	implemented	in	the	class	BOPAlgo_Section.	The	class	has	no
specific	fields.	The	main	steps	of	the	BOPAlgo_Section	are	the	same	as
of	BOPAlgo_Builder	except	for	the	following	steps:

Build	Images	for	Wires;
Build	Result	of	Type	Wire;
Build	Images	for	Faces;
Build	Result	of	Type	Face;
Build	Images	for	Shells;
Build	Result	of	Type	Shell;
Build	Images	for	Solids;
Build	Result	of	Type	Solid;
Build	Images	for	Type	CompSolid;
Build	Result	of	Type	CompSolid;
Build	Images	for	Compounds;	Some	aspects	of	building	the	result
are	described	in	the	next	paragraph

Building	the	Result

No Contents Implementation

1
Build	the	result	of	the	operation	using	all
information	contained	in	FaceInfo,	Common
Block,	Shared	entities	of	the	arguments,	etc.

BOPAlgo_Section::
BuildSection()

Volume	Maker	Algorithm
The	Volume	Maker	algorithm	has	been	designed	for	building	the
elementary	volumes	(solids)	from	a	set	of	connected,	intersecting,	or
nested	shapes.	The	algorithm	can	also	be	useful	for	splitting	solids	into
parts,	or	constructing	new	solid(s)	from	set	of	intersecting	or	connected
faces	or	shells.	The	algorithm	creates	only	closed	solids.	In	general	case
the	result	solids	are	non-manifold:	fragments	of	the	input	shapes	(wires,
faces)	located	inside	the	solids	are	added	as	internal	sub-shapes	to
these	solids.	But	the	algorithm	allows	preventing	the	addition	of	the
internal	for	solids	parts	into	result.	In	this	case	the	result	solids	will	be
manifold	and	not	contain	any	internal	parts.	However,	this	option	does	not
prevent	from	the	occurrence	of	the	internal	edges	or	vertices	in	the	faces.
Non-closed	faces,	free	wires	etc.	located	outside	of	any	solid	are	always
excluded	from	the	result.

The	Volume	Maker	algorithm	is	implemented	in	the	class
BOPAlgo_MakerVolume.	It	is	based	on	the	General	Fuse	(GF)	algorithm.
All	the	options	of	the	GF	algorithm	such	as	possibility	to	run	algorithm	in
parallel	mode,	fuzzy	option,	safe	mode,	glue	options	and	history	support
are	also	available	in	this	algorithm.

The	requirements	for	the	arguments	are	the	same	as	for	the	arguments
of	GF	algorithm	-	they	could	be	of	any	type,	but	each	argument	should	be
valid	and	not	self-interfered.

The	algorithm	allows	disabling	the	calculation	of	intersections	among	the
arguments.	In	this	case	the	algorithm	will	run	much	faster,	but	the	user
should	guarantee	that	the	arguments	do	not	interfere	with	each	other,
otherwise	the	result	will	be	invalid	(e.g.	contain	unexpected	parts)	or
empty.	This	option	is	useful	e.g.	for	building	a	solid	from	the	faces	of	one
shell	or	from	the	shapes	that	have	already	been	intersected.

Usage

C++	Level

The	usage	of	the	algorithm	on	the	API	level:

BOPAlgo_MakerVolume	aMV;

BOPCol_ListOfShape	aLS	=	…;	//	arguments

Standard_Boolean	bRunParallel	=	Standard_False;	/*	

parallel	or	single	mode	(the	default	value	is	

FALSE)*/

Standard_Boolean	bIntersect	=	Standard_True;	/*	

intersect	or	not	the	arguments	(the	default	

value	is	TRUE)*/

Standard_Real	aTol	=	0.0;	/*	fuzzy	option	(default	

value	is	0)*/

Standard_Boolean	bSafeMode	=	Standard_False;	/*	

protect	or	not	the	arguments	from	modification*/

BOPAlgo_Glue	aGlue	=	BOPAlgo_GlueOff;	/*	Glue	option	

to	speed	up	intersection	of	the	arguments*/

Standard_Boolean	bAvoidInternalShapes	=	

Standard_False;	/*	Avoid	or	not	the	internal	for	

solids	shapes	in	the	result*/

//

aMV.SetArguments(aLS);

aMV.SetRunParallel(bRunParallel);

aMV.SetIntersect(bIntersect);

aMV.SetFuzzyValue(aTol);

aMV.SetNonDestructive(bSafeMode);

aMV.SetGlue(aGlue);

aMV.SetAvoidInternalShapes(bAvoidInternalShapes);

//

aMV.Perform();	//perform	the	operation

if	(aMV.HasErrors())	{	//check	error	status

		return;

}

//

const	TopoDS_Shape&	aResult	=	aMV.Shape();	//	result	

of	the	operation

Tcl	Level

To	use	the	algorithm	in	Draw	the	command	mkvolume	has	been
implemented.	The	usage	of	this	command	is	following:

Usage:	mkvolume	r	b1	b2	...	[-c]	[-ni]	[-ai]

Options:

-c	-	use	this	option	to	have	input	compounds	

considered	as	set	of	separate	arguments	(allows	

passing	multiple	arguments	as	one	compound);

-ni	-	use	this	option	to	disable	the	intersection	of	

the	arguments;

-ai	-	use	this	option	to	avoid	internal	for	solids	

shapes	in	the	result.

Examples

Example	1

Creation	of	9832	solids	from	sphere	and	set	of	63	planes:

Arguments Results

Example	2

Creating	compartments	on	a	ship	defined	by	hull	shell	and	a	set	of
planes.	The	ship	is	divided	on	compartments	by	five	transverse
bulkheads	and	a	deck	–	six	compartments	are	created:

Arguments Results

Cells	Builder	algorithm
The	Cells	Builder	algorithm	is	an	extension	of	the	General	Fuse
algorithm.	The	result	of	General	Fuse	algorithm	contains	all	split	parts	of
the	arguments.	The	Cells	Builder	algorithm	provides	means	to	specify	if
any	given	split	part	of	the	arguments	(referred	to	as	Cell)	can	be	taken	or
avoided	in	the	result.

The	possibility	of	selecting	any	Cell	allows	combining	any	possible	result
and	gives	the	Cells	Builder	algorithm	a	very	wide	sphere	of	application	-
from	building	the	result	of	any	Boolean	operation	to	building	the	result	of
any	application-specific	operation.

The	algorithm	builds	Cells	only	once	and	then	just	reuses	them	for
combining	the	result.	This	gives	this	algorithm	the	performance
advantage	over	Boolean	operations,	which	always	rebuild	the	splits	to
obtain	the	desirable	result.

Thus,	the	Cells	Builder	algorithm	can	be	especially	useful	for	simulating
Boolean	expressions,	i.e.	a	sequence	of	Boolean	operations	on	the	same
arguments.	Instead	of	performing	many	Boolean	operations	it	allows
getting	the	final	result	in	a	single	operation.	The	Cells	Builder	will	also	be
beneficial	to	obtain	the	results	of	different	Boolean	operations	on	the
same	arguments	-	Cut	and	Common,	for	example.

The	Cells	Builder	algorithm	also	provides	the	possibility	to	remove	any
internal	boundaries	between	splits	of	the	same	type,	i.e.	to	fuse	any
same-dimensional	parts	added	into	the	result	and	to	keep	any	other	parts
as	separate.	This	possibility	is	implemented	through	the	Cells	material
approach:	to	remove	the	boundary	between	two	Cells,	both	Cells	should
be	assigned	with	the	same	material	ID.	However,	if	the	same	material	ID
has	been	assigned	to	the	Cells	of	different	dimension,	the	removal	of	the
internal	boundaries	for	that	material	will	not	be	performed.	Currently,	such
case	is	considered	a	limitation	for	the	algorithm.

The	algorithm	can	also	create	containers	from	the	connected	Cells	added
into	result	-	WIRES	from	Edges,	SHELLS	from	Faces	and	COMPSOLIDS
from	Solids.

Usage
The	algorithm	has	been	implemented	in	the	BOPAlgo_CellsBuilder	class.

Cells	Builder	is	based	on	the	General	Fuse	algorithm.	Thus	all	options	of
the	General	Fuse	algorithm,	such	as	parallel	processing	mode,	fuzzy
mode,	safe	processing	mode,	gluing	mode	and	history	support	are	also
available	in	this	algorithm.

The	requirements	for	the	input	shapes	are	the	same	as	for	General	Fuse
-	each	argument	should	be	valid	in	terms	of	BRepCheck_Analyzer	and
BOPAlgo_ArgumentAnalyzer.

The	result	of	the	algorithm	is	a	compound	containing	the	selected	parts	of
the	basic	type	(VERTEX,	EDGE,	FACE	or	SOLID).	The	default	result	is
an	empty	compound.	It	is	possible	to	add	any	Cell	by	using	the	methods
AddToRessult()	and	AddAllToResult().	It	is	also	possible	to	remove	any
part	from	the	result	by	using	methods	RemoveFromResult()	and
RemoveAllFromResult().	The	method	RemoveAllFromResult()	is	also
suitable	for	clearing	the	result.

The	Cells	that	should	be	added/removed	to/from	the	result	are	defined
through	the	input	shapes	containing	the	parts	that	should	be	taken	*
(ShapesToTake)*	and	the	ones	containing	parts	that	should	be	avoided
(ShapesToAvoid).	To	be	taken	into	the	result	the	part	must	be	IN	all
shapes	from	ShapesToTake	and	OUT	of	all	shapes	from	ShapesToAvoid.

To	remove	Internal	boundaries,	it	is	necessary	to	set	the	same	material	to
the	Cells,	between	which	the	boundaries	should	be	removed,	and	call	the
method	RemoveInternalBoundaries().	The	material	should	not	be	equal
to	0,	as	this	is	the	default	material	ID.	The	boundaries	between	Cells	with
this	material	ID	will	not	be	removed.	The	same	Cell	cannot	be	added	with
different	materials.	It	is	also	possible	to	remove	the	boundaries	when	the
result	is	combined.	To	do	this,	it	is	necessary	to	set	the	material	for	parts
(not	equal	to	0)	and	set	the	flag	bUpdate	to	TRUE.	If	the	same	material
ID	has	been	set	for	parts	of	different	dimension,	the	removal	of	internal
boundaries	for	this	material	will	not	be	performed.

It	is	possible	to	create	typed	Containers	from	the	parts	added	into	result

by	using	method	MakeContainers().	The	type	of	the	containers	will
depend	on	the	type	of	the	input	shapes:	WIRES	for	EDGE,	SHELLS	for
FACES	and	COMPSOLIDS	for	SOLIDS.	The	result	will	be	a	compound
containing	containers.

API	usage

Here	is	the	example	of	the	algorithm	use	on	the	API	level:

BOPAlgo_CellsBuilder	aCBuilder;

BOPCol_ListOfShape	aLS	=	…;	//	arguments

Standard_Boolean	bRunParallel	=	Standard_False;	/*	

parallel	or	single	mode	(the	default	value	is	

FALSE)*/

Standard_Real	aTol	=	0.0;	/*	fuzzy	option	(the	

default	value	is	0)*/

Standard_Boolean	bSafeMode	=	Standard_False;	/*	

protect	or	not	the	arguments	from	modification*/

BOPAlgo_Glue	aGlue	=	BOPAlgo_GlueOff;	/*	Glue	option	

to	speed	up	the	intersection	of	arguments*/

//

aCBuilder.SetArguments(aLS);

aCBuilder.SetRunParallel(bRunParallel);

aCBuilder.SetFuzzyValue(aTol);

aCBuilder.SetNonDestructive(bSafeMode);

aCBuilder.SetGlue(aGlue);

//

aCBuilder.Perform();	//	build	splits	of	all	arguments	

(GF)

if	(aCBuilder.HasErrors())	{	//	check	error	status

		return;

}

//

//	collecting	of	the	cells	into	result

const	TopoDS_Shape&	anEmptyRes	=	aCBuilder.Shape();	

//	empty	result,	as	nothing	has	been	added	yet	

const	TopoDS_Shape&	anAllCells	=	

aCBuilder.GetAllParts();	//all	split	parts	

//

BOPCol_ListOfShape	aLSToTake	=	...;	//	parts	of	these	

arguments	will	be	taken	into	result

BOPCol_ListOfShape	aLSToAvoid	=	...;	//	parts	of	

these	arguments	will	not	be	taken	into	result

//

Standard_Integer	iMaterial	=	1;	//	defines	the	

material	for	the	cells

Standard_Boolean	bUpdate	=	Standard_False;	//	defines	

whether	to	update	the	result	right	now	or	not

//	adding	to	result

aCBuilder.AddToResult(aLSToTake,	aLSToAvoid,	

iMaterial,	bUpdate);

aCBuilder.RemoveInternalBoundaries();	//	removing	of	

the	boundaries

TopoDS_Shape	aResult	=	aCBuilder.Shape();	//	the	

result

//	removing	from	result

aCBuilder.AddAllToResult();

aCBuilder.RemoveFromResult(aLSToTake,	aLSToAvoid);

aResult	=	aCBuilder.Shape();	//	the	result

DRAW	usage

The	following	set	of	new	commands	has	been	implemented	to	run	the
algorithm	in	DRAW	Test	Harness:

bcbuild										:	Initialization	of	the	Cells	

Builder.	Use:	*bcbuild	r*

bcadd												:	Add	parts	to	result.	Use:	*bcadd	r	

s1	(0,1)	s2	(0,1)	...	[-m	material	[-u]]*

bcaddall									:	Add	all	parts	to	result.	Use:	

bcaddall	r	[-m	material	[-u]]

bcremove									:	Remove	parts	from	result.	Use:	

bcremove	r	s1	(0,1)	s2	(0,1)	...

bcremoveall						:	Remove	all	parts	from	result.	Use:	

bcremoveall

bcremoveint						:	Remove	internal	boundaries.	Use:	

bcremoveint	r

bcmakecontainers	:	Make	containers	from	the	parts	

added	to	result.	Use:	*bcmakecontainers	r*

Here	is	the	example	of	the	algorithm	use	on	the	DRAW	level:

psphere	s1	15

psphere	s2	15

psphere	s3	15

ttranslate	s1	0	0	10

ttranslate	s2	20	0	10

ttranslate	s3	10	0	0	

bclearobjects;	bcleartools

baddobjects	s1	s2	s3

bfillds

#	rx	will	contain	all	split	parts

bcbuild	rx	

#	add	to	result	the	part	that	is	common	for	all	three	

spheres

bcadd	res	s1	1	s2	1	s3	1	-m	1

#	add	to	result	the	part	that	is	common	only	for	

first	and	third	spheres

bcadd	res	s1	1	s2	0	s3	1	-m	1

#	remove	internal	boundaries

bcremoveint	res

Examples
The	following	simple	example	illustrates	the	possibilities	of	the	algorithm
working	on	a	cylinder	and	a	sphere	intersected	by	a	plane:

pcylinder	c	10	30	

psphere	s	15

ttranslate	s	0	0	30

plane	p	0	0	20	1	0	0

mkface	f	p	-25	30	-17	17

Arguments
bclearobjects

bcleartools

baddobjects	c	s	f

bfillds

bcbuild	r

1.	Common	for	all	arguments

bcremoveall

bcadd	res	c	1	s	1	f	1

The	result	of	COMMON	operation

2.	Common	between	cylinder	and	face

bcremoveall

bcadd	res	f	1	c	1

The	result	of	COMMON	operation	between	cylinder	and	face

3.	Common	between	cylinder	and	sphere

bcremoveall

bcadd	res	c	1	s	1

The	result	of	COMMON	operation	between	cylinder	and	sphere

4.	Fuse	of	cylinder	and	sphere

bcremoveall

bcadd	res	c	1	-m	1

bcadd	res	s	1	-m	1

bcremoveint	res

The	result	of	FUSE	operation	between	cylinder	and	sphere

5.	Parts	of	the	face	inside	solids	-	FUSE(COMMON(f,	c),
COMMON(f,	s))

bcremoveall

bcadd	res	f	1	s	1	-m	1

bcadd	res	f	1	c	1	-m	1

Parts	of	the	face	inside	solids
bcremoveint	res

Unified	parts	of	the	face	inside	solids

6.	Part	of	the	face	outside	solids

bcremoveall

bcadd	res	f	1	c	0	s	0

Part	of	the	face	outside	solids

7.	Fuse	operation	(impossible	using	standard	Boolean	Fuse
operation)

bcremoveall

bcadd	res	c	1	-m	1

bcadd	res	s	1	-m	1

bcadd	res	f	1	c	0	s	0

bcremoveint	res

Fuse	operation

These	examples	may	last	forever.	To	define	any	new	operation,	it	is	just
necessary	to	define,	which	Cells	should	be	taken	and	which	should	be
avoided.

Algorithm	Limitations
The	chapter	describes	the	problems	that	are	considered	as	Algorithm
limitations.	In	most	cases	an	Algorithm	failure	is	caused	by	a	combination
of	various	factors,	such	as	self-interfered	arguments,	inappropriate	or
ungrounded	values	of	the	argument	tolerances,	adverse	mutual	position
of	the	arguments,	tangency,	etc.

A	lot	of	failures	of	GFA	algorithm	can	be	caused	by	bugs	in	low-level
algorithms:	Intersection	Algorithm,	Projection	Algorithm,	Approximation
Algorithm,	Classification	Algorithm,	etc.

The	Intersection,	Projection	and	Approximation	Algorithms	are
mostly	used	at	the	Intersection	step.	Their	bugs	directly	cause	wrong
section	results	(i.e.	incorrect	section	edges,	section	points,	missing
section	edges	or	micro	edges).	It	is	not	possible	to	obtain	a	correct
final	result	of	the	GFA	if	a	section	result	is	wrong.
The	Projection	Algorithm	is	used	at	the	Intersection	step.	The
purpose	of	Projection	Algorithm	is	to	compute	2D	curves	on
surfaces.	Wrong	results	here	lead	to	incorrect	or	missing	faces	in	the
final	GFA	result.
The	Classification	Algorithm	is	used	at	the	Building	step.	The	bugs	in
the	Classification	Algorithm	lead	to	errors	in	selecting	shape	parts
(edges,	faces,	solids)	and	ultimately	to	a	wrong	final	GFA	result.

The	description	below	illustrates	some	known	GFA	limitations.	It	does	not
enumerate	exhaustively	all	problems	that	can	arise	in	practice.	Please,
address	cases	of	Algorithm	failure	to	the	OCCT	Maintenance	Service.

Arguments

Common	requirements

Each	argument	should	be	valid	(in	terms	of	BRepCheck_Analyzer),	or
conversely,	if	the	argument	is	considered	as	non-valid	(in	terms	of
BRepCheck_Analyzer),	it	cannot	be	used	as	an	argument	of	the
algorithm.

The	class	BRepCheck_Analyzer	is	used	to	check	the	overall	validity	of	a
shape.	In	OCCT	a	Shape	(or	its	sub-shapes)	is	considered	valid	if	it
meets	certain	criteria.	If	the	shape	is	found	as	invalid,	it	can	be	fixed	by
tools	from	ShapeAnalysis,	ShapeUpgrade	and	ShapeFix	packages.

However,	it	is	important	to	note	that	class	BRepCheck_Analyzer	is	just	a
tool	that	can	have	its	own	problems;	this	means	that	due	to	a	specific
factor(s)	this	tool	can	sometimes	provide	a	wrong	result.

Let	us	consider	the	following	example:

The	Analyzer	checks	distances	between	couples	of	3D	check-points	(Pi,
PSi)	of	edge	E	on	face	F.	Point	Pi	is	obtained	from	the	3D	curve	(at	the
parameter	ti)	of	the	edge.	PSi	is	obtained	from	2D	curve	(at	the
parameter	ti)	of	the	edge	on	surface	S	of	face	F.	To	be	valid	the	distance
should	be	less	than	Tol(E)	for	all	couples	of	check-points.	The	number	of
these	check-points	is	a	predefined	value	(e.g.	23).

Let	us	consider	the	case	when	edge	E	is	recognized	valid	(in	terms	of
BRepCheck_Analyzer).

Further,	after	some	operation,	edge	E	is	split	into	two	edges	E1	and	E2.
Each	split	edge	has	the	same	3D	curve	and	2D	curve	as	the	original
edge	E.

Let	us	check	E1	(or	E2).	The	Analyzer	again	checks	the	distances
between	the	couples	of	check-points	points	(Pi,	PSi).	The	number	of
these	check-points	is	the	same	constant	value	(23),	but	there	is	no
guarantee	that	the	distances	will	be	less	than	Tol(E),	because	the	points
chosen	for	E1	are	not	the	same	as	for	E.

Thus,	if	E1	is	recognized	by	the	Analyzer	as	non-valid,	edge	E	should
also	be	non-valid.	However	E	has	been	recognized	as	valid.	Thus	the
Analyzer	gives	a	wrong	result	for	E.

The	fact	that	the	argument	is	a	valid	shape	(in	terms	of
BRepCheck_Analyzer)	is	a	necessary	but	insufficient	requirement	to
produce	a	valid	result	of	the	Algorithms.

Pure	self-interference

The	argument	should	not	be	self-interfered,	i.e.	all	sub-shapes	of	the
argument	that	have	geometrical	coincidence	through	any	topological
entities	(vertices,	edges,	faces)	should	share	these	entities.

Example	1:	Compound	of	two	edges

The	compound	of	two	edges	E1	and	E2	is	a	self-interfered	shape	and
cannot	be	used	as	the	argument	of	the	Algorithms.

	

E1	

E2	

Compound	of	two	edges

Example	2:	Self-interfered	Edge

The	edge	E	is	a	self-interfered	shape	and	cannot	be	used	as	an
argument	of	the	Algorithms.

Self-interfered	Edge

Example	3:	Self-interfered	Face

The	face	F	is	a	self-interfered	shape	and	cannot	be	used	as	an	argument
of	the	Algorithms.

	

F	

Self-interfered	Face

Example	4:	Face	of	Revolution

The	face	F	has	been	obtained	by	revolution	of	edge	E	around	line	L.

Face	of	Revolution:	Arguments

Face	of	Revolution:	Result

In	spite	of	the	fact	that	face	F	is	valid	(in	terms	of	BRepCheck_Analyzer)
it	is	a	self-interfered	shape	and	cannot	be	used	as	the	argument	of	the
Algorithms.

Self-interferences	due	to	tolerances

Example	1:	Non-closed	Edge

Let	us	consider	edge	E	based	on	a	non-closed	circle.

Edge	based	on	a	non-closed	circle

The	distance	between	the	vertices	of	E	is	D=0.69799.	The	values	of	the
tolerances	Tol(V1)=Tol(V2)=0.5.

Distance	and	Tolerances

In	spite	of	the	fact	that	the	edge	E	is	valid	in	terms	of
BRepCheck_Analyzer,	it	is	a	self-interfered	shape	because	its	vertices
are	interfered.	Thus,	edge	E	cannot	be	used	as	an	argument	of	the
Algorithms.

Example	2:	Solid	containing	an	interfered	vertex

Let	us	consider	solid	S	containing	vertex	V.

Solid	containing	an	interfered	vertex

The	value	of	tolerance	Tol(V)=	50.000075982061.

Tolerance

In	spite	of	the	fact	that	solid	S	is	valid	in	terms	of	BRepCheck_Analyzer	it
is	a	self-interfered	shape	because	vertex	V	is	interfered	with	a	lot	of	sub-
shapes	from	S	without	any	topological	connection	with	them.	Thus	solid
S	cannot	be	used	as	an	argument	of	the	Algorithms.

Parametric	representation

The	parameterization	of	some	surfaces	(cylinder,	cone,	surface	of
revolution)	can	be	the	cause	of	limitation.

Example	1:	Cylindrical	surface

The	parameterization	range	for	cylindrical	surface	is:

The	range	of	U	coordinate	is	always	restricted	while	the	range	of	V
coordinate	is	non-restricted.

Let	us	consider	a	cylinder-based	Face	1	with	radii	R=3	and	H=6.

Face	1

P-Curves	for	Face	1

Let	us	also	consider	a	cylinder-based	Face	2	with	radii	R=3000	and
H=6000	(resulting	from	scaling	Face	1	with	scale	factor	ScF=1000).

Face	2

P-Curves	for	Face	2

Please,	pay	attention	to	the	Zoom	value	of	the	Figures.

It	is	obvious	that	starting	with	some	value	of	ScF,	e.g.	ScF>1000000,	all
sloped	p-Curves	on	Face	2	will	be	almost	vertical.	At	least,	there	will	be
no	difference	between	the	values	of	angles	computed	by	standard	C
Run-Time	Library	functions,	such	as	double	acos(double	x).	The	loss	of
accuracy	in	computation	of	angles	can	cause	failure	of	some	BP	sub-
algorithms,	such	as	building	faces	from	a	set	of	edges	or	building	solids
from	a	set	of	faces.

Using	tolerances	of	vertices	to	fix	gaps

It	is	possible	to	create	shapes	that	use	sub-shapes	of	lower	order	to
avoid	gaps	in	the	tolerance-based	data	model.

Let	us	consider	the	following	example:

Example

Face	F	has	two	edges	E1	and	E2	and	two	vertices,	the	base	plane	is
{0,0,0,	0,0,1};
Edge	E1	is	based	on	line	{0,0,0,	1,0,0},	Tol(E1)	=	1.e-7;
Edge	E2	is	based	on	line	{0,1,0,	1,0,0},	Tol(E2)	=	1.e-7;
Vertex	V1,	point	{0,0.5,0},	Tol(V1)	=	1;
Vertex	V2,	point	{10,0.5,0},	Tol(V2)	=	1;
Face	F	is	valid	(in	terms	of	BRepCheck_Analyzer).

The	values	of	tolerances	Tol(V1)	and	Tol(V2)	are	big	enough	to	fix	the
gaps	between	the	ends	of	the	edges,	but	the	vertices	V1	and	V2	do	not
contain	any	information	about	the	trajectories	connecting	the
corresponding	ends	of	the	edges.	Thus,	the	trajectories	are	undefined.
This	will	cause	failure	of	some	sub-algorithms	of	BP.	For	example,	the
sub-algorithms	for	building	faces	from	a	set	of	edges	use	the	information
about	all	edges	connected	in	a	vertex.	The	situation	when	a	vertex	has
several	pairs	of	edges	such	as	above	will	not	be	solved	in	a	right	way.

Intersection	problems

Pure	intersections	and	common	zones

Example:	Intersecting	Edges

Let	us	consider	the	intersection	between	two	edges:

E1	is	based	on	a	line:	{0,-10,0,	1,0,0},	Tol(E1)=2.
E2	is	based	on	a	circle:	{0,0,0,	0,0,1},	R=10,	Tol(E2)=2.

Intersecting	Edges

The	result	of	pure	intersection	between	E1	and	E2	is	vertex	Vx	{0,-10,0}.

The	result	of	intersection	taking	into	account	tolerances	is	the	common
zone	CZ	(part	of	3D-space	where	the	distance	between	the	curves	is	less
than	or	equals	to	the	sum	of	edge	tolerances.

The	Intersection	Part	of	Algorithms	uses	the	result	of	pure	intersection	Vx
instead	of	CZ	for	the	following	reasons:

The	Algorithms	do	not	produce	Common	Blocks	between	edges

based	on	underlying	curves	of	explicitly	different	type	(e.g.	Line	/
Circle).	If	the	curves	have	different	types,	the	rule	of	thumb	is	that
the	produced	result	is	of	type	vertex.	This	rule	does	not	work	for
non-analytic	curves	(Bezier,	B-Spline)	and	their	combinations	with
analytic	curves.
The	algorithm	of	intersection	between	two	surfaces
IntPatch_Intersection	does	not	compute	CZ	of	the	intersection
between	curves	and	points.	So	even	if	CZ	were	computed	by
Edge/Edge	intersection	algorithm,	its	result	could	not	be	treated	by
Face/Face	intersection	algorithm.

Tolerances	and	inaccuracies

The	following	limitations	result	from	modeling	errors	or	inaccuracies.

Example:	Intersection	of	planar	faces

Let	us	consider	two	planar	rectangular	faces	F1	and	F2.

The	intersection	curve	between	the	planes	is	curve	C12.	The	curve
produces	a	new	intersection	edge	EC12.	The	edge	goes	through	vertices
V1	and	V2	thanks	to	big	tolerance	values	of	vertices	Tol(V1)	and	Tol(V2).
So,	two	straight	edges	E12	and	EC12	go	through	two	vertices,	which	is
impossible	in	this	case.

	

V3	

Tol(V1)	

V2	

E12	

E23	E41	 F1	

C12	

E34	
V4	

F2	EC12	

V1	

Tol(V2)	

Intersecting	Faces

The	problem	cannot	be	solved	in	general,	because	the	length	of	E12	can

be	infinite	and	the	values	of	Tol(V1)	and	Tol(V2)	theoretically	can	be
infinite	too.

In	a	particular	case	the	problem	can	be	solved	in	several	ways:

Reduce,	if	possible,	the	values	of	Tol(V1)	and	Tol(V2)	(refinement	of
F1).
Analyze	the	value	of	Tol(EC12)	and	increase	Tol(EC12)	to	get	a
common	part	between	the	edges	EC12	and	E12.	Then	the	common
part	will	be	rejected	as	there	is	an	already	existing	edge	E12	for	face
F1.

It	is	easy	to	see	that	if	C12	is	slightly	above	the	tolerance	spheres	of	V1
and	V2	the	problem	does	not	appear.

Example:	Intersection	of	two	edges

Let	us	consider	two	edges	E1	and	E2,	which	have	common	vertices	V1
and	V2.	The	edges	E1	and	E2	have	3D-curves	C1	and	C2.	Tol(E1)=1.e-7,
Tol(E2)=1.e-7.

C1	practically	coincides	in	3D	with	C2.	The	value	of	deflection	is	Dmax
(e.g.	Dmax=1.e-6).

	

E1	

E2	

Dmax	

V1	 V2	

C1	

C2	

Intersecting	Edges

The	evident	and	prospective	result	should	be	the	Common	Block
between	E1	and	E2.	However,	the	result	of	intersection	differs.

	

E1	

E2	

2*Tol(E1)	 2*Tol(E2)	

VX1	 VX2	 VX3	
V1	 V2	

Result	of	Intersection

The	result	contains	three	new	vertices	Vx1,	Vx2	and	Vx3,	8	new	edges
(V1,	Vx1,	Vx2,	Vx3,	V2)	and	no	Common	Blocks.	This	is	correct	due	to
the	source	data:	Tol(E1)=1.e-7,	Tol(E2)=1.e-7	and	Dmax=1.e-6.

In	this	particular	case	the	problem	can	be	solved	by	several	ways:

Increase,	if	possible,	the	values	Tol(E1)	and	Tol(E2)	to	get
coincidence	in	3D	between	E1	and	E2	in	terms	of	tolerance.
Replace	E1	by	a	more	accurate	model.

The	example	can	be	extended	from	1D	(edges)	to	2D	(faces).

	

F1	

F2	

Dmax	

	

Ex1	 Ex2	 Ex3	E1	 E2	

Intersecting	Faces

The	comments	and	recommendations	are	the	same	as	for	1D	case
above.

Acquired	Self-interferences

Example	1:	Vertex	and	edge

Let	us	consider	vertex	V1	and	edge	E2.

	

V21	 V22	

E2	

V1	

Tol(V1)	

Tol(V21)	 Tol(V22)	

Vertex	and	Edge

Vertex	V1	interferes	with	vertices	V12	and	V22.	So	vertex	V21	should
interfere	with	vertex	V22,	which	is	impossible	because	vertices	V21	and

V22	are	the	vertices	of	edge	E2,	thus	V21	is	not	equal	to	V22.

The	problem	cannot	be	solved	in	general,	because	the	length	can	be	as
small	as	possible	to	provide	validity	of	E2	(in	the	extreme	case:	Length
(E2)	=	Tol(V21)	+	Tol(V22)	+	e,	where	e->	0).

In	a	particular	case	the	problem	can	be	solved	by	refinement	of
arguments,	i.e.	by	decreasing	the	values	of	Tol(V21),	Tol(V22)	and
Tol(V1).

Example	2:	Vertex	and	wire

Let	us	consider	vertex	V2	and	wire	consisting	of	edges	E11	and	E12.

	

Tol(V2)	

E11	 E12	

Tol(E11)	
Tol(E12)	

Vertex	and	Wire

The	arguments	themselves	are	not	self-intersected.	Vertex	V2	interferes
with	edges	E11	and	E12.	Thus,	edge	E11	should	interfere	with	edge	E22,
but	it	is	impossible	because	edges	E11	and	E12	cannot	interfere	by	the
condition.

The	cases	when	a	non-self-interfered	argument	(or	its	sub-shapes)
become	interfered	due	to	the	intersections	with	other	arguments	(or	their

sub-shapes)	are	considered	as	limitations	for	the	Algorithms.

Advanced	Options
The	previous	chapters	describe	so	called	Basic	Operations.	Most	of	tasks
can	be	solved	using	Basic	Operations.	Nonetheless,	there	are	cases	that
can	not	be	solved	straightforwardly	by	Basic	Operations.	The	tasks	are
considered	as	limitations	of	Basic	Operations.

The	chapter	is	devoted	to	Advanced	Options.	In	some	cases	the	usage	of
Advanced	Options	allows	overcoming	the	limitations,	improving	the
quality	of	the	result	of	operations,	robustness	and	performance	of	the
operators	themselves.

Fuzzy	Boolean	Operation
Fuzzy	Boolean	operation	is	the	option	of	Basic	Operations	such	as
General	Fuse,	Splitting,	Boolean,	Section,	Maker	Volume	and	Cells
building	operations,	in	which	additional	user-specified	tolerance	is	used.
This	option	allows	operators	to	handle	robustly	cases	of	touching	and
near-coincident,	misaligned	entities	of	the	arguments.

The	Fuzzy	option	is	useful	on	the	shapes	with	gaps	or	embeddings
between	the	entities	of	these	shapes,	which	are	not	covered	by	the
tolerance	values	of	these	entities.	Such	shapes	can	be	the	result	of
modeling	mistakes,	or	translating	process,	or	import	from	other	systems
with	loss	of	precision,	or	errors	in	some	algorithms.

Most	likely,	the	Basic	Operations	will	give	unsatisfactory	results	on	such
models.	The	result	may	contain	unexpected	and	unwanted	small	entities,
faulty	entities	(in	terms	of	BRepCheck_Analyzer),	or	there	can	be	no
result	at	all.

With	the	Fuzzy	option	it	is	possible	to	get	the	expected	result	–	it	is	just
necessary	to	define	the	appropriate	value	of	fuzzy	tolerance	for	the
operation.	To	define	that	value	it	is	necessary	to	measure	the	value	of	the
gap	(or	the	value	of	embedding	depth)	between	the	entities	of	the
models,	slightly	increase	it	(to	make	the	shifted	entities	coincident	in
terms	of	their	tolerance	plus	the	additional	one)	and	pass	it	to	the
algorithm.

Fuzzy	option	is	included	in	interface	of	Intersection	Part	(class
BOPAlgo_PaveFiller)	and	application	programming	interface	(class
BRepAlgoAPI_BooleanOperation)

Examples

The	following	examples	demonstrate	the	advantages	of	usage	Fuzzy
option	operations	over	the	Basic	Operations	in	typical	situations.

Case	1

In	this	example	the	cylinder	(shown	in	yellow	and	transparent)	is
subtracted	from	the	box	(shown	in	red).	The	cylinder	is	shifted	by	5e-5
relatively	to	the	box	along	its	axis	(the	distance	between	rear	faces	of	the
box	and	cylinder	is	5e-5).

The	following	results	are	obtained	using	Basic	Operations	and	the	Fuzzy
ones	with	the	fuzzy	value	5e-5:

Result	of	CUT	operation	obtained	with	Basic	Operations

Result	of	CUT	operation	obtained	with	Fuzzy	Option

In	this	example	Fuzzy	option	allows	eliminating	a	very	thin	part	of	the
result	shape	produced	by	Basic	algorithm	due	to	misalignment	of	rear
faces	of	the	box	and	the	cylinder.

Case	2

In	this	example	two	boxes	are	fused.	One	of	them	has	dimensions
10*10*10,	and	the	other	is	10*10.000001*10.000001	and	adjacent	to	the
first	one.	There	is	no	gap	in	this	case	as	the	surfaces	of	the	neighboring
faces	coincide,	but	one	box	is	slightly	greater	than	the	other.

The	following	results	are	obtained	using	Basic	Operations	and	the	Fuzzy
ones	with	the	fuzzy	value	1e-6:

Result	of	CUT	operation	obtained	with	Basic	Operations

Result	of	CUT	operation	obtained	with	Fuzzy	Option

In	this	example	Fuzzy	option	allows	eliminating	an	extremely	narrow	face
in	the	result	produced	by	Basic	operation.

Case	3

In	this	example	the	small	planar	face	(shown	in	orange)	is	subtracted
from	the	big	one	(shown	in	yellow).	There	is	a	gap	1e-5	between	the
edges	of	these	faces.

The	following	results	are	obtained	using	Basic	Operations	and	the	Fuzzy
ones	with	the	fuzzy	value	1e-5:

Result	of	CUT	operation	obtained	with	Basic	Operations

Result	of	CUT	operation	obtained	with	Fuzzy	Option

In	this	example	Fuzzy	options	eliminated	a	pin-like	protrusion	resulting
from	the	gap	between	edges	of	the	argument	faces.

Case	4

In	this	example	the	small	edge	is	subtracted	from	the	big	one.	The	edges
are	overlapping	not	precisely,	with	max	deviation	between	them	equal	to
5.28004e-5.	We	will	use	6e-5	value	for	Fuzzy	option.

The	following	results	are	obtained	using	Basic	Operations	and	the	Fuzzy
ones	with	the	fuzzy	value	6e-5:

Result	of	CUT	operation	obtained	with	Basic	Operations

Result	of	CUT	operation	obtained	with	Fuzzy	Option

This	example	stresses	not	only	the	validity,	but	also	the	performance
issue.	The	usage	of	Fuzzy	option	with	the	appropriate	value	allows
processing	the	case	much	faster	than	with	the	pure	Basic	operation.	The

performance	gain	for	the	case	is	45	(Processor:	Intel(R)	Core(TM)	i5-
3450	CPU	@	3.10	GHz).

Gluing	Operation
The	Gluing	operation	is	the	option	of	the	Basic	Operations	such	as
General	Fuse,	Splitting,	Boolean,	Section,	Maker	Volume	and	Cells
building	operations.	It	has	been	designed	to	speed	up	the	computation	of
the	interferences	among	arguments	of	the	operations	on	special	cases,	in
which	the	arguments	may	be	overlapping	but	do	not	have	real
intersections	between	their	sub-shapes.

This	option	cannot	be	used	on	the	shapes	having	real	intersections,	like
intersection	vertex	between	edges,	or	intersection	vertex	between	edge
and	a	face	or	intersection	line	between	faces:

Intersecting	faces

There	are	two	possibilities	of	overlapping	shapes:

The	shapes	can	be	partially	coinciding	-	the	faces	do	not	have
intersection	curves,	but	overlapping.	The	faces	of	such	arguments
will	be	split	during	the	operation.	The	following	picture	illustrates
such	shapes:

Partially	coinciding	faces

The	shapes	can	be	fully	coinciding	-	there	should	be	no	partial
overlapping	of	the	faces,	thus	no	intersection	of	type	EDGE/FACE	at
all.	In	such	cases	the	faces	will	not	be	split	during	the	operation.

Full	coinciding	faces	of	the	boxes

Thus,	there	are	two	possible	options	-	for	full	and	partial	coincidence	of
the	shapes.

Even	though	there	are	no	real	intersections	on	such	cases	without	Gluing
options	the	algorithm	will	still	intersect	the	sub-shapes	of	the	arguments
with	interfering	bounding	boxes.

The	performance	improvement	in	gluing	mode	is	achieved	by	excluding
the	most	time	consuming	computations	and	in	some	case	can	go	up	to
90%:

Exclude	computation	of	FACE/FACE	intersections	for	partial
coincidence;
Exclude	computation	of	VERTEX/FACE,	EDGE/FACE	and
FACE/FACE	intersections	for	full	coincidence.

By	setting	the	Gluing	option	for	the	operation	user	should	guarantee	that
the	arguments	are	really	coinciding.	The	algorithm	does	not	check	this
itself.	Setting	inappropriate	option	for	the	operation	is	likely	to	lead	to
incorrect	result.

Usage

The	Gluing	option	is	an	enumeration	implemented	in
BOPAlgo_GlueEnum.hxx:

BOPAlgo_GlueOff	-	default	value	for	the	algorithms,	Gluing	is
switched	off;
BOPAlgo_GlueShift	-	Glue	option	for	shapes	with	partial
coincidence;
BOPAlgo_GlueFull	-	Glue	option	for	shapes	with	full	coincidence.

API	level

For	setting	the	Gluing	options	for	the	algorithm	it	is	just	necessary	to	call
the	SetGlue(const	BOPAlgo_Glue)	method	with	appropriate	value:

BOPAlgo_Builder	aGF;

//

....

//	setting	the	gluing	option	to	speed	up	intersection	

of	the	arguments

aGF.SetGlue(BOPAlgo_GlueShift)

//

....

TCL	level

For	setting	the	Gluing	options	in	DRAW	it	is	necessary	to	call	the	bglue
command	with	appropriate	value:

0	-	default	value,	Gluing	is	off;
1	-	for	partial	coincidence;
2	-	for	full	coincidence

bglue	1

Examples

Case1	-	Fusing	the	64	bspline	boxes	into	one	solid

BSpline	Boxes	with	partial	coincidence

Performance	improvement	from	using	the	GlueShift	option	in	this	case	is
about	70	percent.

Case2	-	Sewing	faces	of	the	shape	after	reading	from	IGES

Faces	with	coinciding	but	not	shared	edges

Performance	improvement	in	this	case	is	also	about	70	percent.

Safe	processing	mode
The	safe	processing	mode	is	the	advanced	option	in	Boolean	Operation
component.	This	mode	can	be	applied	to	all	Basic	operations	such	as
General	Fuse,	Splitting,	Boolean,	Section,	Maker	Volume,	Cells	building.
This	option	allows	keeping	the	input	arguments	untouched.	In	other
words,	switching	this	option	on	prevents	the	input	arguments	from	any
modification	such	as	tolerance	increase,	addition	of	the	P-Curves	on
edges,	etc.

The	option	can	be	very	useful	for	implementation	of	the	Undo/Redo
mechanism	in	the	applications	and	allows	performing	the	operation	many
times	without	changing	the	inputs.

By	default	the	safe	processing	option	is	switched	off	for	the	algorithms.
Enabling	this	option	might	slightly	decrease	the	performance	of	the
operation,	because	instead	of	the	modification	of	some	entity	it	will	be
necessary	to	create	the	copy	of	this	entity	and	modify	it.	However,	this
degradation	should	be	very	small	because	the	copying	is	performed	only
in	case	of	necessity.

The	option	is	also	available	in	the	Intersection	algorithm	-
BOPAlgo_PaveFiller.	To	perform	several	different	operations	on	the	same
arguments,	the	safe	processing	mode	can	be	enabled	in	PaveFiller,
prepared	only	once	and	then	used	in	operations.	It	is	enough	to	set	this
option	to	PaveFiller	only	and	all	algorithms	taking	this	PaveFiller	will	also
work	in	the	safe	mode.

Usage

API	level

To	enable/disable	the	safe	processing	mode	for	the	algorithm,	it	is
necessary	to	call	SetNonDestructive()	method	with	the	appropriate	value:

BOPAlgo_Builder	aGF;

//

....

//	enabling	the	safe	processing	mode	to	prevent	

modification	of	the	input	shapes

aGF.SetNonDestructive(Standard_True);

//

....

TCL	level

To	enable	the	safe	processing	mode	for	the	operation	in	DRAW,	it	is
necessary	to	call	the	bnondestructive	command	with	the	appropriate
value:

0	-	default	value,	the	safe	mode	is	switched	off;
1	-	the	safe	mode	will	be	switched	on.

bnondestructive	1

Errors	and	warnings	reporting
system
The	chapter	describes	the	Error/Warning	reporting	system	of	the
algorithms	in	the	Boolean	Component.

The	errors	and	warnings	are	collected	in	the	instance	of	the	class
Message_Report	maintained	as	a	field	by	common	base	class	of
Boolean	operation	algorithms	BOPAlgo_Options.

The	error	is	reported	in	for	problems	which	cannot	be	treated	and	cause
the	algorithm	to	fail.	In	this	case	the	result	of	the	operation	will	be
incorrect	or	incomplete	or	there	will	be	no	result	at	all.

The	warnings	are	reported	for	the	problems	which	can	be	potentially
handled	or	ignored	and	thus	do	not	cause	the	algorithms	to	stop	their
work	(but	probably	affect	the	result).

All	possible	errors	and	warnings	that	can	be	set	by	the	algorithm	are
listed	in	its	header	file.	The	complete	list	of	errors	and	warnings	that	can
be	generated	by	Boolean	operations	is	defined	in	BOPAlgo_Alerts.hxx.

Use	method	HasErrors()	to	check	for	presence	of	error;	method
HasError()	can	be	used	to	check	for	particular	error.	Methods
DumpErrors()	outputs	textual	description	of	collected	errors	into	the
stream.	Similar	methods	HasWarnings(),	HasWarning(),	and
DumpWarnings()	are	provided	for	warnings.

Note	that	messages	corresponding	to	errors	and	warnings	are	defined	in
resource	file	BOPAlgo.msg.	These	messages	can	be	localized;	for	that
put	translated	version	to	separate	file	and	load	it	in	the	application	by	call
to	Message_MsgFile::Load()	.

Here	is	the	example	of	how	to	use	this	system:

BOPAlgo_PaveFiller	aPF;

aPF.SetArguments(...);

aPF.Perform();

if	(aPF.HasErrors())	{

		aPF.DumpErrors(std::cerr);

		//

		if	

(aPF.HasError(STANDARD_TYPE(BOPAlgo_AlertNullInp

utShapes))	{

				//	some	actions

		}

		if	

(aPF.HasWarning(STANDARD_TYPE(BOPAlgo_AlertTooSm

allEdge))	{

				//	some	actions

		}

		...

}

DRAW	commands	executing	Boolean	operations	output	errors	and
warnings	generated	by	these	operations	in	textual	form.	Additional	option
allows	saving	shapes	for	which	warnings	have	been	generated,	as
DRAW	variables.	To	activate	this	option,	run	command
bdrawwarnshapes	with	argument	1	(or	with	0	to	deactivate):

bdrawwarnshapes	1

After	setting	this	option	and	running	an	algorithm	the	result	will	look	as
follows:

Warning:	The	interfering	vertices	of	the	same	

argument:	ws_1_1	ws_1_2

Warning:	The	positioning	of	the	shapes	leads	to	

creation	of	small	edges	without	valid	range:	

ws_2_1

Usage
The	chapter	contains	some	examples	of	the	OCCT	Boolean	Component
usage.	The	usage	is	possible	on	two	levels:	C++	and	Tcl.

Package	BRepAlgoAPI
The	package	BRepAlgoAPI	provides	the	Application	Programming
Interface	of	the	Boolean	Component.

The	package	consists	of	the	following	classes:

BRepAlgoAPI_Algo	–	the	root	class	that	provides	the	interface	for
algorithms.
BRepAlgoAPI_BuilderAlgo	–	the	class	API	level	of	General	Fuse
algorithm.
BRepAlgoAPI_Splitter	–	the	class	API	level	of	the	Splitter	algorithm.
BRepAlgoAPI_BooleanOperation	–	the	root	class	for	the	classes
BRepAlgoAPI_Fuse.	BRepAlgoAPI_Common,	BRepAlgoAPI_Cut
and	BRepAlgoAPI_Section.
BRepAlgoAPI_Fuse	–	the	class	provides	Boolean	fusion	operation.
BRepAlgoAPI_Common	–	the	class	provides	Boolean	common
operation.
BRepAlgoAPI_Cut	–	the	class	provides	Boolean	cut	operation.
BRepAlgoAPI_Section	–	the	class	provides	Boolean	section
operation.

Diagram	of	BRepAlgoAPI	package

The	detailed	description	of	the	classes	can	be	found	in	the	corresponding
.hxx	files.	The	examples	are	below	in	this	chapter.

Package	BOPTest
The	package	BOPTest	provides	the	usage	of	the	Boolean	Component	on
Tcl	level.	The	method	BOPTest::APICommands	contains	corresponding
Tcl	commands:

bapibuild	–	for	General	Fuse	Operator;
bapisplit	–	for	Splitter	Operator;
bapibop	–	for	Boolean	Operator	and	Section	Operator.

The	examples	of	how	to	use	the	commands	are	below	in	this	chapter.

Case	1.	General	Fuse	operation

The	following	example	illustrates	how	to	use	General	Fuse	operator:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<BRepAlgoAPI_BuilderAlgo.hxx>

	{…

		Standard_Boolean	bRunParallel;

		Standard_Real	aFuzzyValue;

		BRepAlgoAPI_BuilderAlgo	aBuilder;

		//

		//	prepare	the	arguments

		TopTools_ListOfShape&	aLS=…;

		//

		bRunParallel=Standard_True;

		aFuzzyValue=2.1e-5;

		//

		//	set	the	arguments		

		aBuilder.SetArguments(aLS);

		//	set	parallel	processing	mode	

		//	if		bRunParallel=	Standard_True	:		the	parallel	

processing	is	switched	on

		//	if		bRunParallel=	Standard_False	:		the	parallel	

processing	is	switched	off

		aBuilder.SetRunParallel(bRunParallel);

		//

		//	set	Fuzzy	value

		//	if	aFuzzyValue=0.:	the	Fuzzy	option	is	off

		//		if	aFuzzyValue>0.:	the	Fuzzy	option	is	on

		aBuilder.SetFuzzyValue(aFuzzyValue);

		//

		//	safe	mode	-	avoid	modification	of	the	arguments

		Standard_Boolean	bSafeMode	=	Standard_True;

		//	if	bSafeMode	==	Standard_True		-	the	safe	mode	

is	switched	on

		//	if	bSafeMode	==	Standard_False	-	the	safe	mode	

is	switched	off

		aBuilder.SetNonDestructive(bSafeMode);

		//

		//	gluing	options	-	for	coinciding	arguments

		BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

		//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	

mode	is	switched	off

		//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	

mode	is	switched	on

		//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	

mode	is	switched	on

		aBuilder.SetGlue(aGlueOpt);

		//

		//	run	the	algorithm	

		aBuilder.Build();	

		if	(aBuilder.HasErrors())	{

				//	an	error	treatment

				return;

		}

		//

		//	result	of	the	operation	aR

		const	TopoDS_Shape&	aR=aBuilder.Shape();

…

}

Tcl	Level

#	prepare	the	arguments

box	b1	10	10	10	

box	b2	3	4	5	10	10	10	

box	b3	5	6	7	10	10	10	

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	arguments

baddobjects	b1	b2	b3

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1	

#

#	set	Fuzzy	value

#	0.				:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#

#	set	gluing	mode

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

bapibuild	r	

Case	2.	Splitting	operation

The	following	example	illustrates	how	to	use	the	Splitter	operator:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<BRepAlgoAPI_Splitter.hxx>

//

BRepAlgoAPI_BuilderAlgo	aSplitter;

//

//	prepare	the	arguments

//	objects

TopTools_ListOfShape&	aLSObjects	=	…	;

//	tools

TopTools_ListOfShape&	aLSTools	=	…	;

//

//	set	the	arguments

aSplitter.SetArguments(aLSObjects);

aSplitter.SetTools(aLSTools);

//

//	set	options

//	parallel	processing	mode	

Standard_Boolean	bRunParallel	=	Standard_True;

//	bRunParallel	==	Standard_True		-	the	parallel	

processing	is	switched	on

//	bRunParallel	==	Standard_False	-	the	parallel	

processing	is	switched	off

aSplitter.SetRunParallel();

//

//	fuzzy	value	-	additional	tolerance	for	the	

operation

Standard_Real	aFuzzyValue	=	1.e-5;

//	if	aFuzzyValue	==	0.	-	the	Fuzzy	option	is	off

//	if	aFuzzyValue	>	0.		-	the	Fuzzy	option	is	on

aSplitter.SetFuzzyValue(aFuzzyValue);

//

//	safe	mode	-	avoid	modification	of	the	arguments

Standard_Boolean	bSafeMode	=	Standard_True;

//	if	bSafeMode	==	Standard_True		-	the	safe	mode	is	

switched	on

//	if	bSafeMode	==	Standard_False	-	the	safe	mode	is	

switched	off

aSplitter.SetNonDestructive(bSafeMode);

//

//	gluing	options	-	for	coinciding	arguments

BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	mode	

is	switched	off

//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	mode	

is	switched	on

//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	mode	

is	switched	on

aSplitter.SetGlue(aGlueOpt);

//

//	run	the	algorithm	

aSplitter.Build();	

//	check	error	status

if	(aSplitter.HasErrors())	{

		return;

}

//

//	result	of	the	operation	aResult

const	TopoDS_Shape&	aResult	=	aSplitter.Shape();

Tcl	Level

#	prepare	the	arguments

#	objects

box	b1	10	10	10	

box	b2	7	0	0	10	10	10

#	tools

plane	p	10	5	5	0	1	0

mkface	f	p	-20	20	-20	20

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	objects

baddobjects	b1	b2

#	set	the	tools

baddtools	f

#

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1	

#

#	set	Fuzzy	value

#	0.		:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#

#	set	gluing	mode

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

bapisplit	r	

Case	3.	Common	operation

The	following	example	illustrates	how	to	use	Common	operation:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<	BRepAlgoAPI_Common.hxx>

	{…

		Standard_Boolean	bRunParallel;

		Standard_Real	aFuzzyValue;

		BRepAlgoAPI_Common	aBuilder;

		//	perpare	the	arguments

		TopTools_ListOfShape&	aLS=…;

		TopTools_ListOfShape&	aLT=…;

		//

		bRunParallel=Standard_True;

		aFuzzyValue=2.1e-5;

		//

		//	set	the	arguments		

		aBuilder.SetArguments(aLS);

		aBuilder.SetTools(aLT);

		//				

		//	set	parallel	processing	mode	

		//	if		bRunParallel=	Standard_True	:		the	parallel	

processing	is	switched	on

		//	if		bRunParallel=	Standard_False	:		the	parallel	

processing	is	switched	off

		aBuilder.SetRunParallel(bRunParallel);

		//

		//	set	Fuzzy	value

		//	if	aFuzzyValue=0.:	the	Fuzzy	option	is	off

		//		if	aFuzzyValue>0.:	the	Fuzzy	option	is	on

		aBuilder.SetFuzzyValue(aFuzzyValue);

		//

		//	safe	mode	-	avoid	modification	of	the	arguments

		Standard_Boolean	bSafeMode	=	Standard_True;

		//	if	bSafeMode	==	Standard_True		-	the	safe	mode	

is	switched	on

		//	if	bSafeMode	==	Standard_False	-	the	safe	mode	

is	switched	off

		aBuilder.SetNonDestructive(bSafeMode);

		//

		//	gluing	options	-	for	coinciding	arguments

		BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

		//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	

mode	is	switched	off

		//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	

mode	is	switched	on

		//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	

mode	is	switched	on

		aBuilder.SetGlue(aGlueOpt);

		//

		//	run	the	algorithm	

		aBuilder.Build();	

		if	(aBuilder.HasErrors())	{

				//	an	error	treatment

				return;

		}

		//

		//	result	of	the	operation	aR

		const	TopoDS_Shape&	aR=aBuilder.Shape();

…

}

Tcl	Level

#	prepare	the	arguments

box	b1	10	10	10	

box	b2	7	0	4	10	10	10	

box	b3	14	0	0	10	10	10	

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	arguments

baddobjects	b1	b3

baddtools	b2

#

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1

#

#	set	Fuzzy	value

#	0.				:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#

#	set	gluing	mode

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

#	0	means	Common	operation

bapibop	r	0

Case	4.	Fuse	operation

The	following	example	illustrates	how	to	use	Fuse	operation:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<	BRepAlgoAPI_Fuse.hxx>

	{…

		Standard_Boolean	bRunParallel;

		Standard_Real	aFuzzyValue;

		BRepAlgoAPI_Fuse	aBuilder;

		//	perpare	the	arguments

		TopTools_ListOfShape&	aLS=…;

		TopTools_ListOfShape&	aLT=…;

		//

		bRunParallel=Standard_True;

		aFuzzyValue=2.1e-5;

		//

		//	set	the	arguments		

		aBuilder.SetArguments(aLS);

		aBuilder.SetTools(aLT);

		//				

		//	set	parallel	processing	mode	

		//	if		bRunParallel=	Standard_True	:		the	parallel	

processing	is	switched	on

		//	if		bRunParallel=	Standard_False	:		the	parallel	

processing	is	switched	off

		aBuilder.SetRunParallel(bRunParallel);

		//

		//	set	Fuzzy	value

		//	if	aFuzzyValue=0.:	the	Fuzzy	option	is	off

		//		if	aFuzzyValue>0.:	the	Fuzzy	option	is	on

		aBuilder.SetFuzzyValue(aFuzzyValue);

		//

		//	safe	mode	-	avoid	modification	of	the	arguments

		Standard_Boolean	bSafeMode	=	Standard_True;

		//	if	bSafeMode	==	Standard_True		-	the	safe	mode	

is	switched	on

		//	if	bSafeMode	==	Standard_False	-	the	safe	mode	

is	switched	off

		aBuilder.SetNonDestructive(bSafeMode);

		//

		//	gluing	options	-	for	coinciding	arguments

		BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

		//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	

mode	is	switched	off

		//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	

mode	is	switched	on

		//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	

mode	is	switched	on

		aBuilder.SetGlue(aGlueOpt);

		//

		//	run	the	algorithm	

		aBuilder.Build();	

		if	(aBuilder.HasErrors())	{

				//	an	error	treatment

				return;

		}

		//

		//	result	of	the	operation	aR

		const	TopoDS_Shape&	aR=aBuilder.Shape();

…

}

Tcl	Level

#	prepare	the	arguments

box	b1	10	10	10	

box	b2	7	0	4	10	10	10	

box	b3	14	0	0	10	10	10	

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	arguments

baddobjects	b1	b3

baddtools	b2

#

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1

#

#	set	Fuzzy	value

#	0.				:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#

#	set	gluing	mode

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

#	1	means	Fuse	operation

bapibop	r	1

Case	5.	Cut	operation

The	following	example	illustrates	how	to	use	Cut	operation:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<	BRepAlgoAPI_Cut.hxx>

	{…

		Standard_Boolean	bRunParallel;

		Standard_Real	aFuzzyValue;

		BRepAlgoAPI_Cut	aBuilder;

		//	perpare	the	arguments

		TopTools_ListOfShape&	aLS=…;

		TopTools_ListOfShape&	aLT=…;

		//

		bRunParallel=Standard_True;

		aFuzzyValue=2.1e-5;

		//

		//	set	the	arguments		

		aBuilder.SetArguments(aLS);

		aBuilder.SetTools(aLT);

		//				

		//	set	parallel	processing	mode	

		//	if		bRunParallel=	Standard_True	:		the	parallel	

processing	is	switched	on

		//	if		bRunParallel=	Standard_False	:		the	parallel	

processing	is	switched	off

		aBuilder.SetRunParallel(bRunParallel);

		//

		//	set	Fuzzy	value

		//	if	aFuzzyValue=0.:	the	Fuzzy	option	is	off

		//		if	aFuzzyValue>0.:	the	Fuzzy	option	is	on

		aBuilder.SetFuzzyValue(aFuzzyValue);

		//

		//	safe	mode	-	avoid	modification	of	the	arguments

		Standard_Boolean	bSafeMode	=	Standard_True;

		//	if	bSafeMode	==	Standard_True		-	the	safe	mode	

is	switched	on

		//	if	bSafeMode	==	Standard_False	-	the	safe	mode	

is	switched	off

		aBuilder.SetNonDestructive(bSafeMode);

		//

		//	gluing	options	-	for	coinciding	arguments

		BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

		//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	

mode	is	switched	off

		//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	

mode	is	switched	on

		//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	

mode	is	switched	on

		aBuilder.SetGlue(aGlueOpt);

		//

		//	run	the	algorithm	

		aBuilder.Build();	

		if	(aBuilder.HasErrors())	{

				//	an	error	treatment

				return;

		}

		//

		//	result	of	the	operation	aR

		const	TopoDS_Shape&	aR=aBuilder.Shape();

…

}

Tcl	Level

#	prepare	the	arguments

box	b1	10	10	10	

box	b2	7	0	4	10	10	10	

box	b3	14	0	0	10	10	10	

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	arguments

baddobjects	b1	b3

baddtools	b2

#

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1

#

#	set	Fuzzy	value

#	0.				:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#	set	gluing	mode

#

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

#	2	means	Cut	operation

bapibop	r	2

Case	6.	Section	operation

The	following	example	illustrates	how	to	use	Section	operation:

C++	Level

#include	<TopoDS_Shape.hxx>

#include	<TopTools_ListOfShape.hxx>

#include	<	BRepAlgoAPI_Section.hxx>

	{…

		Standard_Boolean	bRunParallel;

		Standard_Real	aFuzzyValue;

		BRepAlgoAPI_Section	aBuilder;

		//	perpare	the	arguments

		TopTools_ListOfShape&	aLS=…;

		TopTools_ListOfShape&	aLT=…;

		//

		bRunParallel=Standard_True;

		aFuzzyValue=2.1e-5;

		//

		//	set	the	arguments		

		aBuilder.SetArguments(aLS);

		aBuilder.SetTools(aLT);

		//				

		//	set	parallel	processing	mode	

		//	if		bRunParallel=	Standard_True	:		the	parallel	

processing	is	switched	on

		//	if		bRunParallel=	Standard_False	:		the	parallel	

processing	is	switched	off

		aBuilder.SetRunParallel(bRunParallel);

		//

		//	set	Fuzzy	value

		//	if	aFuzzyValue=0.:	the	Fuzzy	option	is	off

		//		if	aFuzzyValue>0.:	the	Fuzzy	option	is	on

		aBuilder.SetFuzzyValue(aFuzzyValue);

		//

		//	safe	mode	-	avoid	modification	of	the	arguments

		Standard_Boolean	bSafeMode	=	Standard_True;

		//	if	bSafeMode	==	Standard_True		-	the	safe	mode	

is	switched	on

		//	if	bSafeMode	==	Standard_False	-	the	safe	mode	

is	switched	off

		aBuilder.SetNonDestructive(bSafeMode);

		//

		//	gluing	options	-	for	coinciding	arguments

		BOPAlgo_GlueEnum	aGlueOpt	=	BOPAlgo_GlueFull;

		//	if	aGlueOpt	==	BOPAlgo_GlueOff			-	the	gluing	

mode	is	switched	off

		//	if	aGlueOpt	==	BOPAlgo_GlueShift	-	the	gluing	

mode	is	switched	on

		//	if	aGlueOpt	==	BOPAlgo_GlueFull		-	the	gluing	

mode	is	switched	on

		aBuilder.SetGlue(aGlueOpt);

		//

		//	run	the	algorithm	

		aBuilder.Build();	

		if	(aBuilder.HasErrors())	{

				//	an	error	treatment

				return;

		}

		//

		//	result	of	the	operation	aR

		const	TopoDS_Shape&	aR=aBuilder.Shape();

…

}

Tcl	Level

#	prepare	the	arguments

box	b1	10	10	10	

box	b2	3	4	5	10	10	10	

box	b3	5	6	7	10	10	10	

#

#	clear	inner	contents

bclearobjects;	bcleartools;

#

#	set	the	arguments

baddobjects	b1	b3

baddtools	b2

#

#	set	parallel	processing	mode

#	1:		the	parallel	processing	is	switched	on

#	0:		the	parallel	processing	is	switched	off

brunparallel	1

#

#	set	Fuzzy	value

#	0.				:	the	Fuzzy	option	is	off

#	>0.	:	the	Fuzzy	option	is	on

bfuzzyvalue	0.

#

#	set	safe	processing	mode

bnondestructive	1

#	set	safe	mode

#	1	-	the	safe	processing	mode	is	switched	on

#	0	-	the	safe	processing	mode	is	switched	off

#

#	set	gluing	mode

bglue	1

#	set	the	gluing	mode

#	1	or	2	-	the	gluing	mode	is	switched	on

#	0	-	the	gluing	mode	is	switched	off

#

#	run	the	algorithm

#	r	is	the	result	of	the	operation

#	4	means	Section	operation

bapibop	r	4

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Overview
Introduction
Examples	of	use
Toolkit	Structure
Querying	the
statuses

Repair
Basic	Shape	Repair
Shape	Correction.

Fixing	sub-
shapes

Repairing	tools
General
Workflow
Flags
Management
Repairing	tool
for	shapes
Repairing	tool
for	solids
Repairing	tool
for	shells
Repairing	tool
for	faces
Repairing	tool
for	wires
Repairing	tool
for	edges
Repairing	tool
for	the

Open	CASCADE
Technology		7.2.0

Shape	Healing

wireframe	of	a
shape
Tool	for
removing	small
faces	from	a
shape
Tool	to	modify
tolerances	of
shapes	(Class
ShapeFix_ShapeTolerance).

Analysis
Analysis	of	shape
validity

Analysis	of
orientation	of
wires	on	a	face.
Analysis	of	wire
validity
Analysis	of	edge
validity
Analysis	of
presence	of
small	faces
Analysis	of	shell
validity	and
closure

Analysis	of	shape
properties.

Analysis	of
tolerance	on
shape
Analysis	of	free
boundaries.
Analysis	of
shape	contents

Upgrading
Tools	for	splitting	a
shape	according	to	a
specified	criterion

Overview
Using	tools
available	for
shape	splitting.

Creation	of	a
new	tool	for
splitting	a
shape.

General	splitting
tools.

General	tool	for
shape	splitting
General	tool	for
face	splitting
General	tool	for
wire	splitting
General	tool	for
edge	splitting
General	tools
for	geometry
splitting

Specific	splitting
tools.

Conversion	of
shape	geometry
to	the	target
continuity
Splitting	by
angle
Conversion	of
2D,	3D	curves
and	surfaces	to
Bezier
Tool	for	splitting
closed	faces
Tool	for	splitting
a	C0	BSpline	2D
or	3D	curve	to	a
sequence	C1
BSpline	curves
Tool	for	splitting
faces

Customization	of
shapes

Conversion	of
indirect
surfaces.

Shape	Scaling
Conversion	of
curves	and
surfaces	to
BSpline
Conversion	of
elementary
surfaces	into
surfaces	of
revolution
Conversion	of
elementary
surfaces	into
Bspline	surfaces
Getting	the
history	of
modification	of
sub-shapes.
Remove	internal
wires
Conversion	of
surfaces
Unify	Same
Domain

Auxiliary	tools	for
repairing,	analysis	and
upgrading
Tool	for	rebuilding
shapes
Status	definition
Tool	representing	a
wire
Tool	for	exploring
shapes
Tool	for	attaching
messages	to	objects
Tools	for	performance
measurement

Shape	Processing
Usage	Workflow
Operators

Messaging	mechanism

Message	Gravity
Tool	for	loading	a
message	file	into
memory
Tool	for	managing
filling	messages
Tool	for	managing
trace	files

Overview
Introduction

This	manual	explains	how	to	use	Shape	Healing.	It	provides	basic
documentation	on	its	operation.	For	advanced	information	on	Shape
Healing	and	its	applications,	see	our	E-learning	&	Training	offerings.

The	Shape	Healing	toolkit	provides	a	set	of	tools	to	work	on	the
geometry	and	topology	of	Open	CASCADE	Technology	(OCCT)	shapes.
Shape	Healing	adapts	shapes	so	as	to	make	them	as	appropriate	for	use
by	Open	CASCADE	Technology	as	possible.

http://www.opencascade.com/content/tutorial-learning

Examples	of	use
Here	are	a	few	examples	of	typical	problems	with	illustrations	of	how
Shape	Healing	deals	with	them:

Face	with	missing	seam	edge

The	problem:	Face	on	a	periodical	surface	is	limited	by	wires	which	make
a	full	trip	around	the	surface.	These	wires	are	closed	in	3d	but	not	closed
in	parametric	space	of	the	surface.	This	is	not	valid	in	Open	CASCADE.
The	solution:	Shape	Healing	fixes	this	face	by	inserting	seam	edge	which
combines	two	open	wires	and	thus	closes	the	parametric	space.	Note
that	internal	wires	are	processed	correctly.

Wrong	orientation	of	wires

The	problem:	Wires	on	face	have	incorrect	orientation,	so	that	interior
and	outer	parts	of	the	face	are	mixed.	The	solution:	Shape	Healing
recovers	correct	orientation	of	wires.

Self-intersecting	wire

The	problem:	Face	is	invalid	because	its	boundary	wire	has	self-
intersection	(on	two	adjacent	edges)	The	solution:	Shape	Healing	cuts
intersecting	edges	at	intersection	points	thus	making	boundary	valid.

Lacking	edge

The	problem:	There	is	a	gap	between	two	edges	in	the	wire,	so	that	wire
is	not	closed	The	solution:	Shape	Healing	closes	a	gap	by	inserting
lacking	edge.

Toolkit	Structure
Shape	Healing	currently	includes	several	packages	that	are	designed	to
help	you	to:

analyze	shape	characteristics	and,	in	particular,	identify	shapes	that
do	not	comply	with	Open	CASCADE	Technology	validity	rules
fix	some	of	the	problems	shapes	may	have
upgrade	shape	characteristics	for	users	needs,	for	example	a	C0
supporting	surface	can	be	upgraded	so	that	it	becomes	C1
continuous.

The	following	diagram	shows	dependencies	of	API	packages:
	 	

	

	

ShapeFix 	 ShapeUpgrade 	 ShapeCustom 	

ShapeExtend 	

ShapeAnalysis 	

Message 		
Shape	Healing	packages

Each	sub-domain	has	its	own	scope	of	functionality:

analysis	–	exploring	shape	properties,	computing	shape	features,
detecting	violation	of	OCCT	requirements	(shape	itself	is	not
modified);
fixing	–	fixing	shape	to	meet	the	OCCT	requirements	(the	shape	may
change	its	original	form:	modifying,	removing,	constructing	sub-
shapes,	etc.);
upgrade	–	shape	improvement	for	better	usability	in	Open

CASCADE	Technology	or	other	algorithms	(the	shape	is	replaced
with	a	new	one,	but	geometrically	they	are	the	same);
customization	–	modifying	shape	representation	to	fit	specific	needs
(shape	is	not	modified,	only	the	form	of	its	representation	is
modified);
processing	–	mechanism	of	managing	shape	modification	via	a	user-
editable	resource	file.

Message	management	is	used	for	creating	messages,	filling	them	with
various	parameters	and	storing	them	in	the	trace	file.	This	tool	provides
functionality	for	attaching	messages	to	the	shapes	for	deferred	analysis
of	various	run-time	events.	In	this	document	only	general	principles	of
using	Shape	Healing	will	be	described.	For	more	detailed	information
please	see	the	corresponding	header	files.

Tools	responsible	for	analysis,	fixing	and	upgrading	of	shapes	can	give
the	information	about	how	these	operations	were	performed.	This
information	can	be	obtained	by	the	user	with	the	help	of	mechanism	of
status	querying.

Querying	the	statuses
Each	fixing	and	upgrading	tool	has	its	own	status,	which	is	reset	when
their	methods	are	called.	The	status	can	contain	several	flags,	which	give
the	information	about	how	the	method	was	performed.	For	exploring	the
statuses,	a	set	of	methods	named	Status...()	is	provided.	These	methods
accept	enumeration	ShapeExtend_Status	and	return	True	if	the	status
has	the	corresponding	flag	set.	The	meaning	of	flags	for	each	method	is
described	below.

The	status	may	contain	a	set	of	Boolean	flags	(internally	represented	by
bits).	Flags	are	coded	by	enumeration	ShapeExtend_Status.	This
enumeration	provides	the	following	families	of	statuses:

ShapeExtend_OK	–	The	situation	is	OK,	no	operation	is	necessary
and	has	not	been	performed.
ShapeExtend_DONE	–	The	operation	has	been	successfully
performed.
ShapeExtend_FAIL	–	An	error	has	occurred	during	operation.

It	is	possible	to	test	the	status	for	the	presence	of	some	flag(s),	using
Status...()	method(s)	provided	by	the	class:

if	(object.Status..	(ShapeExtend_DONE))	{//	

something	was	done	

}	

8	'DONE'	and	8	'FAIL'	flags,	named	ShapeExtend_DONE1	...
ShapeExtend_FAIL8,	are	defined	for	a	detailed	analysis	of	the
encountered	situation.	Each	method	assigns	its	own	meaning	to	each
flag,	documented	in	the	header	for	that	method.	There	are	also	three
enumerative	values	used	for	testing	several	flags	at	a	time:

ShapeExtend_OK	–	if	no	flags	have	been	set;
ShapeExtend_DONE	–	if	at	least	one	ShapeExtend_DONEi	has
been	set;
ShapeExtend_FAIL	–	if	at	least	one	ShapeExtend_FAILi	has	been
set.

Repair
Algorithms	for	fixing	problematic	(violating	the	OCCT	requirements)
shapes	are	placed	in	package	ShapeFix.

Each	class	of	package	ShapeFix	deals	with	one	certain	type	of	shapes	or
with	some	family	of	problems.

There	is	no	necessity	for	you	to	detect	problems	before	using	ShapeFix
because	all	components	of	package	ShapeFix	make	an	analysis	of
existing	problems	before	fixing	them	by	a	corresponding	tool	from
package	of	ShapeAnalysis	and	then	fix	the	discovered	problems.

The	ShapeFix	package	currently	includes	functions	that:

add	a	2D	curve	or	a	3D	curve	where	one	is	missing,
correct	a	deviation	of	a	2D	curve	from	a	3D	curve	when	it	exceeds	a
given	tolerance	value,
limit	the	tolerance	value	of	shapes	within	a	given	range,
set	a	given	tolerance	value	for	shapes,
repair	the	connections	between	adjacent	edges	of	a	wire,
correct	self-intersecting	wires,
add	seam	edges,
correct	gaps	between	3D	and	2D	curves,
merge	and	remove	small	edges,
correct	orientation	of	shells	and	solids.

Basic	Shape	Repair
The	simplest	way	for	fixing	shapes	is	to	use	classes	ShapeFix_Shape
and	ShapeFix_Wireframe	on	a	whole	shape	with	default	parameters.	A
combination	of	these	tools	can	fix	most	of	the	problems	that	shapes	may
have.	The	sequence	of	actions	is	as	follows	:

1.	 Create	tool	ShapeFix_Shape	and	initialize	it	by	shape:
Handle(ShapeFix_Shape)	sfs	=	new	ShapeFix_Shape;

	

sfs->Init	(shape);	

2.	 Set	the	basic	precision,	the	maximum	allowed	tolerance,	the	minimal
allowed	tolerance:

	sfs->SetPrecision	(Prec);	

	sfs->SetMaxTolerance	(maxTol);	

	sfs->SetMinTolerance	(mintol);

where:

Prec	–	basic	precision.
maxTol	–	maximum	allowed	tolerance.	All	problems	will	be
detected	for	cases	when	a	dimension	of	invalidity	is	larger	than
the	basic	precision	or	a	tolerance	of	sub-shape	on	that	problem
is	detected.	The	maximum	tolerance	value	limits	the	increasing
tolerance	for	fixing	a	problem	such	as	fix	of	not	connected	and
self-intersected	wires.	If	a	value	larger	than	the	maximum
allowed	tolerance	is	necessary	for	correcting	a	detected
problem	the	problem	can	not	be	fixed.	The	maximal	tolerance	is
not	taking	into	account	during	computation	of	tolerance	of	edges
in	ShapeFix_SameParameter()	method	and
ShapeFix_Edge::FixVertexTolerance()	method.	See	Repairing
tool	for	edges	for	details.
minTol	–	minimal	allowed	tolerance.	It	defines	the	minimal
allowed	length	of	edges.	Detected	edges	having	length	less
than	the	specified	minimal	tolerance	will	be	removed	if
ModifyTopologyMode	in	Repairing	tool	for	wires	is	set	to	true.
See	Repairing	tool	for	wires	for	details.

3.	 Launch	fixing:
	sfs->Perform();	

4.	 Get	the	result:

	TopoDS_Shape	aResult	=	sfs->Shape();	

In	some	cases	using	only	ShapeFix_Shape	can	be	insufficient.	It	is
possible	to	use	tools	for	merging	and	removing	small	edges	and
fixing	gaps	between	2D	and	3D	curves.

5.	 Create	ShapeFix_Wireframe	tool	and	initialize	it	by	shape:
Handle(ShapeFix_Wirefarme)	SFWF	=	new	

ShapeFix_Wirefarme(shape);	

Or	

Handle(ShapeFix_Wirefarme)	SFWF	=	new	

ShapeFix_Wirefarme;	

SFWF->Load(shape);	

6.	 Set	the	basic	precision	and	the	maximum	allowed	tolerance:
sfs->SetPrecision	(Prec);	

sfs->SetMaxTolerance	(maxTol);	

See	the	description	for	Prec	and	maxTol	above.
7.	 Merge	and	remove	small	edges:

SFWF->DropSmallEdgesMode()	=	Standard_True;	

SFWF->FixSmallEdges();	

Note:	Small	edges	are	not	removed	with	the	default	mode,	but	in
many	cases	removing	small	edges	is	very	useful	for	fixing	a	shape.

8.	 Fix	gaps	for	2D	and	3D	curves
SFWF->FixWireGaps();	

9.	 Get	the	result
TopoDS_Shape	Result	=	SFWF->Shape();	

Shape	Correction.
If	you	do	not	want	to	make	fixes	on	the	whole	shape	or	make	a	definite
set	of	fixes	you	can	set	flags	for	separate	fix	cases	(marking	them	ON	or
OFF)	and	you	can	also	use	classes	for	fixing	specific	types	of	sub-
shapes	such	as	solids,	shells,	faces,	wires,	etc.

For	each	type	of	sub-shapes	there	are	specific	types	of	fixing	tools	such
as	ShapeFix_Solid,	ShapeFix_Shell,	ShapeFix_Face,	ShapeFix_Wire,
etc.

Fixing	sub-shapes

If	you	want	to	make	a	fix	on	one	sub-shape	of	a	certain	shape	it	is
possible	to	take	the	following	steps:

create	a	tool	for	a	specified	sub-shape	type	and	initialize	this	tool	by
the	sub-shape;
create	a	tool	for	rebuilding	the	shape	and	initialize	it	by	the	whole
shape	(section	5.1);
set	a	tool	for	rebuilding	the	shape	in	the	tool	for	fixing	the	sub-shape;
fix	the	sub-shape;
get	the	resulting	whole	shape	containing	a	new	corrected	sub-shape.

For	example,	in	the	following	way	it	is	possible	to	fix	face	Face1	of	shape
Shape1:

//create	tools	for	fixing	a	face	

Handle(ShapeFix_Face)		SFF=	new	ShapeFix_Face;	

//	create	tool	for	rebuilding	a	shape	and	initialize	

it	by	shape	

Handle(ShapeBuild_ReShape)	Context	=	new	

ShapeBuild_ReShape;		

Context->Apply(Shape1);	

//set	a	tool	for	rebuilding	a	shape	in	the	tool	for	

fixing	

SFF->SetContext(Context);	

//initialize	the	fixing	tool	by	one	face	

SFF->Init(Face1);	

//fix	the	set	face	

SFF->Perform();	

//get	the	result	

TopoDS_Shape		NewShape	=	Context->Apply(Shape1);	

//Resulting	shape	contains	the	fixed	face.	

A	set	of	required	fixes	and	invalid	sub-shapes	can	be	obtained	with	the
help	of	tools	responsible	for	the	analysis	of	shape	validity	(section	3.2).

Repairing	tools
Each	class	of	package	ShapeFix	deals	with	one	certain	type	of	shapes	or
with	a	family	of	problems.	Each	repairing	tool	makes	fixes	for	the
specified	shape	and	its	sub-shapes	with	the	help	of	method	Perform()
containing	an	optimal	set	of	fixes.	The	execution	of	these	fixes	in	the
method	Perform	can	be	managed	with	help	of	a	set	of	control	flags	(fixes
can	be	either	forced	or	forbidden).

General	Workflow

The	following	sequence	of	actions	should	be	applied	to	perform	fixes:

1.	 Create	a	tool.
2.	 Set	the	following	values:

the	working	precision	by	method	SetPrecision()	(default	1.e-7)
set	the	maximum	allowed	tolerance	by	method
SetMaxTolerance()	(by	default	it	is	equal	to	the	working
precision).
set	the	minimum	tolerance	by	method	SetMinTolerance()	(by
default	it	is	equal	to	the	working	precision).
set	a	tool	for	rebuilding	shapes	after	the	modification	(tool
ShapeBuild_ReShape)	by	method	SetContext().	For	separate
faces,	wires	and	edges	this	tool	is	set	optionally.
to	force	or	forbid	some	of	fixes,	set	the	corresponding	flag	to	0
or	1.

3.	 Initialize	the	tool	by	the	shape	with	the	help	of	methods	Init	or	Load
4.	 Use	method	Perform()	or	create	a	custom	set	of	fixes.
5.	 Check	the	statuses	of	fixes	by	the	general	method	Status	or

specialized	methods	Status_(for	example	StatusSelfIntersection
(ShapeExtentd_DONE)).	See	the	description	of	statuses	below.

6.	 Get	the	result	in	two	ways	:
with	help	of	a	special	method	Shape(),Face(),Wire().Edge().
from	the	rebuilding	tool	by	method	Apply	(for	access	to
rebuilding	tool	use	method	Context()):
TopoDS_Shape	resultShape	=	fixtool->Context()-

>Apply(initialShape);	

Modification	fistory	for	the	shape	and	its	sub-shapes	can	be

obtained	from	the	tool	for	shape	re-building
(ShapeBuild_ReShape).

TopoDS_Shape	modifsubshape	=	fixtool->Context()	->	

Apply(initsubshape);	

Flags	Management

The	flags	Fix...Mode()	are	used	to	control	the	execution	of	fixing
procedures	from	the	API	fixing	methods.	By	default,	these	flags	have
values	equal	to	-1,	this	means	that	the	corresponding	procedure	will
either	be	called	or	not	called,	depending	on	the	situation.	If	the	flag	is	set
to	1,	the	procedure	is	executed	anyway;	if	the	flag	is	0,	the	procedure	is
not	executed.	The	name	of	the	flag	corresponds	to	the	fixing	procedure
that	is	controlled.	For	each	fixing	tool	there	exists	its	own	set	of	flags.	To
set	a	flag	to	the	desired	value,	get	a	tool	containing	this	flag	and	set	the
flag	to	the	required	value.

For	example,	it	is	possible	to	forbid	performing	fixes	to	remove	small
edges	-	FixSmall

Handle(ShapeFix_Shape)	Sfs	=	new	

ShapeFix_Shape(shape);	

Sfs->	FixWireTool	()->FixSmallMode	()	=0;	

if(Sfs->Perform())	

				TopoDS_Shape	resShape	=	Sfs->Shape();	

Repairing	tool	for	shapes

Class	ShapeFix_Shape	allows	using	repairing	tools	for	all	sub-shapes	of
a	shape.	It	provides	access	to	all	repairing	tools	for	fixing	sub-shapes	of
the	specified	shape	and	to	all	control	flags	from	these	tools.

For	example,	it	is	possible	to	force	the	removal	of	invalid	2D	curves	from
a	face.

TopoDS_Face	face	…	//	face	with	invalid	2D	curves.	

//creation	of	tool	and	its	initialization	by	shape.	

Handle(ShapeFix_Shape)	sfs	=	new	

ShapeFix_Shape(face);	

//set	work	precision	and	max	allowed	tolerance.	

sfs->SetPrecision(prec);	

sfs->SetMaxTolerance(maxTol);	

//set	the	value	of	flag	for	forcing	the	removal	of	2D	

curves	

sfs->FixWireTool()->FixRemovePCurveMode()	=1;	

//reform	fixes	

sfs->Perform();	

//getting	the	result	

if(sfs->Status(ShapeExtend_DONE))	{	

	cout	<<	"Shape	was	fixed"	<<	endl;	

	TopoDS_Shape	resFace	=	sfs->Shape();	

}	

else	if(sfs->Status(ShapeExtend_FAIL))	{	

cout<<	"Shape	could	not	be	fixed"	<<	endl;	

}	

else	if(sfs->Status(ShapeExtent_OK))	{	

cout<<	"Initial	face	is	valid	with	specified	

precision	="<<	precendl;	

}	

Repairing	tool	for	solids

Class	ShapeFix_Solid	allows	fixing	solids	and	building	a	solid	from	a
shell	to	obtain	a	valid	solid	with	a	finite	volume.	The	tool	ShapeFix_Shell
is	used	for	correction	of	shells	belonging	to	a	solid.

This	tool	has	the	following	control	flags:

FixShellMode	–	Mode	for	applying	fixes	of	ShapeFix_Shell,	True	by
default.
CreateOpenShellMode	–	If	it	is	equal	to	true	solids	are	created	from
open	shells,	else	solids	are	created	from	closed	shells	only,	False	by
default.

Repairing	tool	for	shells

Class	ShapeFix_Shell	allows	fixing	wrong	orientation	of	faces	in	a	shell.	It
changes	the	orientation	of	faces	in	the	shell	so	that	all	faces	in	the	shell
have	coherent	orientations.	If	it	is	impossible	to	orient	all	faces	in	the
shell	(like	in	case	of	Mebious	tape),	then	a	few	manifold	or	non-manifold
shells	will	be	created	depending	on	the	specified	Non-manifold	mode.
The	ShapeFix_Face	tool	is	used	to	correct	faces	in	the	shell.	This	tool
has	the	following	control	flags:

FixFaceMode	–	mode	for	applying	the	fixes	of	ShapeFix_Face,	True
by	default.
FixOrientationMode	–	mode	for	applying	a	fix	for	the	orientation	of
faces	in	the	shell.

Repairing	tool	for	faces

Class	ShapeFix_Face	allows	fixing	the	problems	connected	with	wires	of
a	face.	It	allows	controlling	the	creation	of	a	face	(adding	wires),	and
fixing	wires	by	means	of	tool	ShapeFix_Wire.	When	a	wire	is	added	to	a
face,	it	can	be	reordered	and	degenerated	edges	can	be	fixed.	This	is
performed	or	not	depending	on	the	user-defined	flags	(by	default,	False).
The	following	fixes	are	available:

fixing	of	wires	orientation	on	the	face.	If	the	face	has	no	wire,	the
natural	bounds	are	computed.	If	the	face	is	on	a	spherical	surface
and	has	two	or	more	wires	on	it	describing	holes,	the	natural	bounds
are	added.	In	case	of	a	single	wire,	it	is	made	to	be	an	outer	one.	If
the	face	has	several	wires,	they	are	oriented	to	lay	one	outside
another	(if	possible).	If	the	supporting	surface	is	periodic,	2D	curves
of	internal	wires	can	be	shifted	on	integer	number	of	periods	to	put
them	inside	the	outer	wire.
fixing	the	case	when	the	face	on	the	closed	surface	is	defined	by	a
set	of	closed	wires,	and	the	seam	is	missing	(this	is	not	valid	in
OCCT).	In	that	case,	these	wires	are	connected	by	means	of	seam
edges	into	the	same	wire.

This	tool	has	the	following	control	flags:

FixWireMode	–	mode	for	applying	fixes	of	a	wire,	True	by	default.
FixOrientationMode	–	mode	for	orienting	a	wire	to	border	a	limited
square,	True	by	default.
FixAddNaturalBoundMode	–	mode	for	adding	natural	bounds	to	a

face,	False	by	default.
FixMissingSeamMode	–	mode	to	fix	a	missing	seam,	True	by
default.	If	True,	tries	to	insert	a	seam.
FixSmallAreaWireMode	–	mode	to	fix	a	small-area	wire,	False	by
default.	If	True,	drops	wires	bounding	small	areas.

TopoDS_Face	face	=	...;	

TopoDS_Wire	wire	=	...;	

//Creates	a	tool	and	adds	a	wire	to	the	face	

ShapeFix_Face	sff	(face);	

sff.Add	(wire);	

//use	method	Perform	to	fix	the	wire	and	the	face	

sff.Perfom();	

//or	make	a	separate	fix	for	the	orientation	of	wire	

on	the	face	

sff.FixOrientation();	

//Get	the	resulting	face	

TopoDS_Face	newface	=	sff.Face();	

Repairing	tool	for	wires

Class	ShapeFix_Wire	allows	fixing	a	wire.	Its	method	Perform()	performs
all	the	available	fixes	in	addition	to	the	geometrical	filling	of	gaps.	The
geometrical	filling	of	gaps	can	be	made	with	the	help	of	the	tool	for	fixing
the	wireframe	of	shape	ShapeFix_Wireframe.

The	fixing	order	and	the	default	behavior	of	Perform()	is	as	follows:

Edges	in	the	wire	are	reordered	by	FixReorder.	Most	of	fixing
methods	expect	edges	in	a	wire	to	be	ordered,	so	it	is	necessary	to
make	call	to	FixReorder()	before	making	any	other	fixes.	Even	if	it	is
forbidden,	the	analysis	of	whether	the	wire	is	ordered	or	not	is
performed	anyway.
Small	edges	are	removed	by	FixSmall	.
Edges	in	the	wire	are	connected	(topologically)	by	FixConnected	(if

the	wire	is	ordered).
Edges	(3Dcurves	and	2D	curves)	are	fixed	by	FixEdgeCurves
(without	FixShifted	if	the	wire	is	not	ordered).
Degenerated	edges	are	added	by	FixDegenerated(if	the	wire	is
ordered).
Self-intersection	is	fixed	by	FixSelfIntersection	(if	the	wire	is	ordered
and	ClosedMode	is	True).
Lacking	edges	are	fixed	by	FixLacking	(if	the	wire	is	ordered).

The	flag	ClosedWireMode	specifies	whether	the	wire	is	(or	should	be)
closed	or	not.	If	that	flag	is	True	(by	default),	fixes	that	require	or	force
connection	between	edges	are	also	executed	for	the	last	and	the	first
edges.

The	fixing	methods	can	be	turned	on/off	by	using	their	corresponding
control	flags:

FixReorderMode,
FixSmallMode,
FixConnectedMode,
FixEdgeCurvesMode,
FixDegeneratedMode,
FixSelfIntersectionMode

Some	fixes	can	be	made	in	three	ways:

Increasing	the	tolerance	of	an	edge	or	a	vertex.
Changing	topology	(adding/removing/replacing	an	edge	in	the	wire
and/or	replacing	the	vertex	in	the	edge,	copying	the	edge	etc.).
Changing	geometry	(shifting	a	vertex	or	adjusting	ends	of	an	edge
curve	to	vertices,	or	recomputing	a	3D	curve	or	2D	curves	of	the
edge).

When	it	is	possible	to	make	a	fix	in	more	than	one	way	(e.g.,	either	by
increasing	the	tolerance	or	shifting	a	vertex),	it	is	chosen	according	to	the
user-defined	flags:

ModifyTopologyMode	–	allows	modifying	topology,	False	by	default.
ModifyGeometryMode	–	allows	modifying	geometry.	Now	this	flag	is
used	only	in	fixing	self-intersecting	edges	(allows	to	modify	2D
curves)	and	is	True	by	default.

Fixing	disordered	edges

FixReorder	is	necessary	for	most	other	fixes	(but	is	not	necessary	for
Open	CASCADE	Technology).	It	checks	whether	edges	in	the	wire	go	in
a	sequential	order	(the	end	of	a	preceding	edge	is	the	start	of	a	following
one).	If	it	is	not	so,	an	attempt	to	reorder	the	edges	is	made.

Fixing	small	edges

FixSmall	method	searches	for	the	edges,	which	have	a	length	less	than
the	given	value	(degenerated	edges	are	ignored).	If	such	an	edge	is
found,	it	is	removed	provided	that	one	of	the	following	conditions	is
satisfied:

both	end	vertices	of	that	edge	are	one	and	the	same	vertex,
end	vertices	of	the	edge	are	different,	but	the	flag
ModifyTopologyMode	is	True.	In	the	latter	case,	method
FixConnected	is	applied	to	the	preceding	and	the	following	edges	to
ensure	their	connection.

Fixing	disconnected	edges

FixConnected	method	forces	two	adjacent	edges	to	share	the	same
common	vertex	(if	they	do	not	have	a	common	one).	It	checks	whether
the	end	vertex	of	the	preceding	edge	coincides	with	the	start	vertex	of	the
following	edge	with	the	given	precision,	and	then	creates	a	new	vertex
and	sets	it	as	a	common	vertex	for	the	fixed	edges.	At	that	point,	edges
are	copied,	hence	the	wire	topology	is	changed	(regardless	of	the
ModifyTopologyMode	flag).	If	the	vertices	do	not	coincide,	this	method
fails.

Fixing	the	consistency	of	edge	curves

FixEdgeCurves	method	performs	a	set	of	fixes	dealing	with	3D	curves
and	2D	curves	of	edges	in	a	wire.

These	fixes	will	be	activated	with	the	help	of	a	set	of	fixes	from	the
repairing	tool	for	edges	called	ShapeFix_Edge.	Each	of	these	fixes	can
be	forced	or	forbidden	by	means	of	setting	the	corresponding	flag	to

either	True	or	False.

The	mentioned	fixes	and	the	conditions	of	their	execution	are:

fixing	a	disoriented	2D	curve	by	call	to
ShapeFix_Edge::FixReversed2d	–	if	not	forbidden	by	flag
FixReversed2dMode;
removing	a	wrong	2D	curve	by	call	to
ShapeFix_Edge::FixRemovePCurve	–	only	if	forced	by	flag
FixRemovePCurveMode;
fixing	a	missing	2D	curve	by	call	to	ShapeFix_Edge::FixAddPCurve
–	if	not	forbidden	by	flag	FixAddPCurveMode;
removing	a	wrong	3D	curve	by	call	to
ShapeFix_Edge::FixRemoveCurve3d	–	only	if	forced	by	flag
FixRemoveCurve3dMode;
fixing	a	missing	3D	curve	by	call	to	ShapeFix_Edge::FixAddCurve3d
–	if	not	forbidden	by	flag	FixAddCurve3dMode;
fixing	2D	curves	of	seam	edges	–	if	not	forbidden	by	flag
FixSeamMode;
fixing	2D	curves	which	can	be	shifted	at	an	integer	number	of
periods	on	the	closed	surface	by	call	to	ShapeFix_Edge::FixShifted	–
if	not	forbidden	by	flag	FixShiftedMode.

This	fix	is	required	if	2D	curves	of	some	edges	in	a	wire	lying	on	a	closed
surface	were	recomputed	from	3D	curves.	In	that	case,	the	2D	curve	for
the	edge,	which	goes	along	the	seam	of	the	surface,	can	be	incorrectly
shifted	at	an	integer	number	of	periods.	The	method	FixShifted	detects
such	cases	and	shifts	wrong	2D	curves	back,	ensuring	that	the	2D	curves
of	the	edges	in	the	wire	are	connected.

fixing	the	SameParameter	problem	by	call	to
ShapeFix_Edge::FixSameParameter	–	if	not	forbidden	by	flag
FixSameParameterMode.

Fixing	degenerated	edges

FixDegenerated	method	checks	whether	an	edge	in	a	wire	lies	on	a
degenerated	point	of	the	supporting	surface,	or	whether	there	is	a
degenerated	point	between	the	edges.	If	one	of	these	cases	is	detected
for	any	edge,	a	new	degenerated	edge	is	created	and	it	replaces	the

current	edge	in	the	first	case	or	is	added	to	the	wire	in	the	second	case.
The	newly	created	degenerated	edge	has	a	straight	2D	curve,	which
goes	from	the	end	of	the	2D	curve	of	the	preceding	edge	to	the	start	of
the	following	one.

Fixing	intersections	of	2D	curves	of	the	edges

FixSelfIntersection	method	detects	and	fixes	the	following	problems:

self-intersection	of	2D	curves	of	individual	edges.	If	the	flag
ModifyGeometryMode()	is	False	this	fix	will	be	performed	by
increasing	the	tolerance	of	one	of	end	vertices	to	a	value	less	then
MaxTolerance().
intersection	of	2D	curves	of	each	of	the	two	adjacent	edges	(except
the	first	and	the	last	edges	if	the	flag	ClosedWireMode	is	False).	If
such	intersection	is	found,	the	common	vertex	is	modified	in	order	to
comprise	the	intersection	point.	If	the	flag	ModifyTopologyMode	is
False	this	fix	will	be	performed	by	increasing	the	tolerance	of	the
vertex	to	a	value	less	then	MaxTolerance().
intersection	of	2D	curves	of	non-adjacent	edges.	If	such	intersection
is	found	the	tolerance	of	the	nearest	vertex	is	increased	to	comprise
the	intersection	point.	If	such	increase	cannot	be	done	with	a
tolerance	less	than	MaxTolerance	this	fix	will	not	be	performed.

Fixing	a	lacking	edge

FixLacking	method	checks	whether	a	wire	is	not	closed	in	the	parametric
space	of	the	surface	(while	it	can	be	closed	in	3D).	This	is	done	by
checking	whether	the	gap	between	2D	curves	of	each	of	the	two	adjacent
edges	in	the	wire	is	smaller	than	the	tolerance	of	the	corresponding
vertex.	The	algorithm	computes	the	gap	between	the	edges,	analyses
positional	relationship	of	the	ends	of	these	edges	and	(if	possible)	tries	to
insert	a	new	edge	into	the	gap	or	increases	the	tolerance.

Fixing	gaps	in	2D	and	3D	wire	by	geometrical	filling

The	following	methods	check	gaps	between	the	ends	of	2D	or	3D	curves
of	adjacent	edges:

Method	FixGap2d	moves	the	ends	of	2D	curves	to	the	middle	point.
Method	FixGaps3d	moves	the	ends	of	3D	curves	to	a	common
vertex.

Boolean	flag	FixGapsByRanges	is	used	to	activate	an	additional	mode
applied	before	converting	to	B-Splines.	When	this	mode	is	on,	methods
try	to	find	the	most	precise	intersection	of	curves,	or	the	most	precise
projection	of	a	target	point,	or	an	extremity	point	between	two	curves	(to
modify	their	parametric	range	accordingly).	This	mode	is	off	by	default.
Independently	of	the	additional	mode	described	above,	if	gaps	remain,
these	methods	convert	curves	to	B-Spline	form	and	shift	their	ends	if	a
gap	is	detected.

Example:	A	custom	set	of	fixes

Let	us	create	a	custom	set	of	fixes	as	an	example.

TopoDS_Face	face	=	...;	

TopoDS_Wire	wire	=	...;	

Standard_Real	precision	=	1e-04;	

ShapeFix_Wire	sfw	(wire,	face,	precision);	

//Creates	a	tool	and	loads	objects	into	it	

sfw.FixReorder();	

//Orders	edges	in	the	wire	so	that	each	edge	starts	

at	the	end	of	the	one	before	it.	

sfw.FixConnected();	

//Forces	all	adjacent	edges	to	share	

//the	same	vertex	

Standard_Boolean	LockVertex	=	Standard_True;	

				if	(sfw.FixSmall	(LockVertex,	precision))	{	

				//Removes	all	edges	which	are	shorter	than	the	

given	precision	and	have	the	same	vertex	at	both	

ends.	

}	

				if	(sfw.FixSelfIntersection())	{	

				//Fixes	self-intersecting	edges	and	intersecting	

adjacent	edges.	

				cout	<<"Wire	was	slightly	self-intersecting.	

Repaired"<<endl;	

}	

				if	(sfw.FixLacking	(Standard_False))	{	

				//Inserts	edges	to	connect	adjacent	non-

continuous	edges.	

}	

TopoDS_Wire	newwire	=	sfw.Wire();	

//Returns	the	corrected	wire	

Example:	Correction	of	a	wire

Let	us	correct	the	following	wire:

Initial	shape

It	is	necessary	to	apply	the	tools	for	the	analysis	of	wire	validity	to
check	that:

the	edges	are	correctly	oriented;
there	are	no	edges	that	are	too	short;
there	are	no	intersecting	adjacent	edges;	and	then	immediately
apply	fixing	tools.

TopoDS_Face	face	=	...;

TopoDS_Wire	wire	=	...;

Standard_Real	precision	=	1e-04;

ShapeAnalysis_Wire	saw	(wire,	face,	precision);

ShapeFix_Wire	sfw	(wire,	face,	precision);

if	(saw.CheckOrder())	{

		cout<<“Some	edges	in	the	wire	need	to	be	

reordered”<<endl;

		//	Two	edges	are	incorrectly	oriented

		sfw.FixReorder();

		cout<<“Reordering	is	done”<<endl;

}

//	their	orientation	is	corrected

if	(saw.CheckSmall	(precision))	{

		cout<<“Wire	contains	edge(s)	shorter	than	

“<<precision<<endl;

		//	An	edge	that	is	shorter	than	the	given	tolerance	

is	found.

		Standard_Boolean	LockVertex	=	Standard_True;

		if	(sfw.FixSmall	(LockVertex,	precision))	{

				cout<<“Edges	shorter	than	“<<precision<<“	have	

been	removed”

<<endl;

				//The	edge	is	removed

		}

}

if	(saw.CheckSelfIntersection())	{

		cout<<“Wire	has	self-intersecting	or	intersecting

adjacent	edges”<<endl;

		//	Two	intersecting	adjacent	edges	are	found.

		if	(sfw.FixSelfIntersection())	{

				cout<<“Wire	was	slightly	self-intersecting.	

Repaired”<<endl;

				//	The	edges	are	cut	at	the	intersection	point	so	

that	they	no	longer	intersect.

		}

}

As	the	result	all	failures	have	been	fixed.

Resulting	shape

Repairing	tool	for	edges

Class	ShapeFix_Edge	provides	tools	for	fixing	invalid	edges.	The
following	geometrical	and/or	topological	inconsistencies	are	detected	and
fixed:

missing	3D	curve	or	2D	curve,
mismatching	orientation	of	a	3D	curve	and	a	2D	curve,
incorrect	SameParameter	flag	(curve	deviation	is	greater	than	the
edge	tolerance).	Each	fixing	method	first	checks	whether	the
problem	exists	using	methods	of	the	ShapeAnalysis_Edge	class.	If
the	problem	is	not	detected,	nothing	is	done.	This	tool	does	not	have
the	method	Perform().

To	see	how	this	tool	works,	it	is	possible	to	take	an	edge,	where	the
maximum	deviation	between	the	3D	curve	and	2D	curve	P1	is	greater
than	the	edge	tolerance.

Initial	shape

First	it	is	necessary	to	apply	the	tool	for	checking	the	edge	validity	to
find	that	the	maximum	deviation	between	pcurve	and	3D	curve	is	greater
than	tolerance.	Then	we	can	use	the	repairing	tool	to	increase	the
tolerance	and	make	the	deviation	acceptable.

ShapeAnalysis_Edge	sae;

TopoDS_Face	face	=	...;	

TopoDS_Wire	wire	=	...;	

Standard_Real	precision	=	1e-04;	

ShapeFix_Edge	sfe;

Standard_Real	maxdev;

if	(sae.CheckSameParameter	(edge,	maxdev))	{

		cout<<“Incorrect	SameParameter	flag”<<endl;

		cout<<“Maximum	deviation	“<<maxdev<<	“,	tolerance	“

<<BRep_Tool::Tolerance(edge)<<endl;

		sfe.FixSameParameter();

		cout<<“New	tolerance	“<<BRep_Tool::Tolerance(edge)

<<endl;

}

Resulting	shape

As	the	result,	the	edge	tolerance	has	been	increased.

Repairing	tool	for	the	wireframe	of	a	shape

Class	ShapeFix_Wireframe	provides	methods	for	geometrical	fixing	of
gaps	and	merging	small	edges	in	a	shape.	This	class	performs	the
following	operations:

fills	gaps	in	the	2D	and	3D	wireframe	of	a	shape.
merges	and	removes	small	edges.

Fixing	of	small	edges	can	be	managed	with	the	help	of	two	flags:

ModeDropSmallEdges()	–	mode	for	removing	small	edges	that	can
not	be	merged,	by	default	it	is	equal	to	Standard_False.
LimitAngle	–	maximum	possible	angle	for	merging	two	adjacent
edges,	by	default	no	limit	angle	is	applied	(-1).	To	perform	fixes	it	is
necessary	to:
create	a	tool	and	initialize	it	by	shape,
set	the	working	precision	problems	will	be	detected	with	and	the
maximum	allowed	tolerance
perform	fixes

//creation	of	a	tool	

Handle(ShapeFix_Wireframe)	sfwf	=	new	

ShapeFix_Wireframe(shape);	

//sets	the	working	precision	problems	will	be	

detected	with	and	the	maximum	allowed	tolerance	

sfwf->SetPrecision(prec);	

sfwf->SetMaxTolerance(maxTol);	

//fixing	of	gaps	

sfwf->FixWireGaps();	

//fixing	of	small	edges	

//setting	of	the	drop	mode	for	the	fixing	of	small	

edges	and	max	possible	angle	between	merged	

edges.	

sfwf->ModeDropSmallEdges	=	Standard_True;	

sfwf->SetLimliteAngle(angle);	

//performing	the	fix	

sfwf->FixSmallEdges();	

//getting	the	result	

TopoDS_Shape	resShape	=	sfwf->Shape();	

It	is	desirable	that	a	shape	is	topologically	correct	before	applying	the
methods	of	this	class.

Tool	for	removing	small	faces	from	a	shape

Class	ShapeFix_FixSmallFaceThis	tool	is	intended	for	dropping	small
faces	from	the	shape.	The	following	cases	are	processed:

Spot	face:	if	the	size	of	the	face	is	less	than	the	given	precision;
Strip	face:	if	the	size	of	the	face	in	one	dimension	is	less	then	the
given	precision.

The	sequence	of	actions	for	performing	the	fix	is	the	same	as	for	the	fixes
described	above:

//creation	of	a	tool	

Handle(ShapeFix_FixSmallFace)	sff	=	new	

ShapeFix_FixSmallFace(shape);	

//setting	of	tolerances	

sff->SetPrecision(prec);	

sff->SetMaxTolerance(maxTol);	

//performing	fixes	

sff.Perform();	

//getting	the	result	

TopoDS_Shape	resShape	=	sff.FixShape();	

Tool	to	modify	tolerances	of	shapes	(Class
ShapeFix_ShapeTolerance).

This	tool	provides	a	functionality	to	set	tolerances	of	a	shape	and	its	sub-
shapes.	In	Open	CASCADE	Technology	only	vertices,	edges	and	faces
have	tolerances.

This	tool	allows	processing	each	concrete	type	of	sub-shapes	or	all	types
at	a	time.	You	set	the	tolerance	functionality	as	follows:

set	a	tolerance	for	sub-shapes,	by	method	SetTolerance,
limit	tolerances	with	given	ranges,	by	method	LimitTolerance.

//creation	of	a	tool	

ShapeFix_ShapeTolerance	Sft;	

//setting	a	specified	tolerance	on	shape	and	all	of	

its	sub-shapes.	

Sft.SetTolerance(shape,toler);	

//setting	a	specified	tolerance	for	vertices	only	

Sft.SetTolerance(shape,toler,TopAbs_VERTEX);	

//limiting	the	tolerance	on	the	shape	and	its	sub-

shapes	between	minimum	and	maximum	tolerances	

Sft.LimitTolerance(shape,tolermin,tolermax);	

Analysis
Analysis	of	shape	validity

The	ShapeAnalysis	package	provides	tools	for	the	analysis	of	topological
shapes.	It	is	not	necessary	to	check	a	shape	by	these	tools	before	the
execution	of	repairing	tools	because	these	tools	are	used	for	the	analysis
before	performing	fixes	inside	the	repairing	tools.	However,	if	you	want,
these	tools	can	be	used	for	detecting	some	of	shape	problems
independently	from	the	repairing	tools.

It	can	be	done	in	the	following	way:

create	an	analysis	tool.
initialize	it	by	shape	and	set	a	tolerance	problems	will	be	detected
with	if	it	is	necessary.
check	the	problem	that	interests	you.

TopoDS_Face	face	=	...;	

ShapeAnalysis_Edge	sae;	

//Creates	a	tool	for	analyzing	an	edge	

for(TopExp_Explorer	

Exp(face,TopAbs_EDGE);Exp.More();Exp.Next())	{	

		TopoDS_Edge	edge	=	TopoDS::Edge	(Exp.Current());	

		if	(!sae.HasCurve3d	(edge))	{	

				cout		<<"Edge	has	no	3D	curve"<<		endl;		}	

}	

Analysis	of	orientation	of	wires	on	a	face.

It	is	possible	to	check	whether	a	face	has	an	outer	boundary	with	the	help
of	method	ShapeAnalysis::IsOuterBound.

TopoDS_Face	face	…	//analyzed	face	

if(!ShapeAnalysis::IsOuterBound(face))	{	

cout<<"Face	has	not	outer	boundary"<<endl;	

}	

Analysis	of	wire	validity

Class	ShapeAnalysis_Wire	is	intended	to	analyze	a	wire.	It	provides
functionalities	both	to	explore	wire	properties	and	to	check	its
conformance	to	Open	CASCADE	Technology	requirements.	These
functionalities	include:

checking	the	order	of	edges	in	the	wire,
checking	for	the	presence	of	small	edges	(with	a	length	less	than	the
given	value),
checking	for	the	presence	of	disconnected	edges	(adjacent	edges
having	different	vertices),
checking	the	consistency	of	edge	curves,
checking	for	the	presence	or	missing	of	degenerated	edges,
checking	for	the	presence	of	self-intersecting	edges	and	intersecting
edges	(edges	intersection	is	understood	as	intersection	of	their	2D
curves),
checking	for	lacking	edges	to	fill	gaps	in	the	surface	parametric
space,
analyzing	the	wire	orientation	(to	define	the	outer	or	the	inner	bound
on	the	face),
analyzing	the	orientation	of	the	shape	(edge	or	wire)	being	added	to
an	already	existing	wire.

Note	that	all	checking	operations	except	for	the	first	one	are	based	on
the	assumption	that	edges	in	the	wire	are	ordered.	Thus,	if	the	wire	is
detected	as	non-ordered	it	is	necessary	to	order	it	before	calling	other
checking	operations.	This	can	be	done,	for	example,	with	the	help	of	the
ShapeFix_Wire::FixOrder()	method.

This	tool	should	be	initialized	with	wire,	face	(or	a	surface	with	a	location)
or	precision.	Once	the	tool	has	been	initialized,	it	is	possible	to	perform
the	necessary	checking	operations.	In	order	to	obtain	all	information	on	a
wire	at	a	time	the	global	method	Perform	is	provided.	It	calls	all	other	API
checking	operations	to	check	each	separate	case.

API	methods	check	for	corresponding	cases	only,	the	value	and	the
status	they	return	can	be	analyzed	to	understand	whether	the	case	was

detected	or	not.

Some	methods	in	this	class	are:

CheckOrder	checks	whether	edges	in	the	wire	are	in	the	right	order
CheckConnected	checks	whether	edges	are	disconnected
CheckSmall	checks	whether	there	are	edges	that	are	shorter	than
the	given	value
CheckSelfIntersection	checks,	whether	there	are	self-intersecting	or
adjacent	intersecting	edges.	If	the	intersection	takes	place	due	to
nonadjacent	edges,	it	is	not	detected.

This	class	maintains	status	management.	Each	API	method	stores	the
status	of	its	last	execution	which	can	be	queried	by	the	corresponding
Status..()	method.	In	addition,	each	API	method	returns	a	Boolean	value,
which	is	True	when	a	case	being	analyzed	is	detected	(with	the	set
ShapeExtend_DONE	status),	otherwise	it	is	False.

TopoDS_Face	face	=	...;	

TopoDS_Wire	wire	=	...;	

Standard_Real	precision	=	1e-04;	

ShapeAnalysis_Wire	saw	(wire,	face,	precision);	

//Creates	a	tool	and	loads	objects	into	it	

if	(saw.CheckOrder())	{	

		cout<<"Some	edges	in	the	wire	need	to	be	reordered"

<<endl;	

		cout<<"Please	ensure	that	all	the	edges	are	

correctly	ordered	before	further	analysis"

<<endl;	

		return;	

}	

if	(saw.CheckSmall	(precision))	{	

		cout<<"Wire	contains	edge(s)	shorter	than	"

<<precisionendl;	

}	

if	(saw.CheckConnected())	{	

		cout<<"Wire	is	disconnected"<<endl;	

}	

if	(saw.CheckSelfIntersection())	{	

		cout<<"Wire	has	self-intersecting	or	intersecting	

adjacent	edges"<<		endl;	

}	

Analysis	of	edge	validity

Class	ShapeAnalysis_Edge	is	intended	to	analyze	edges.	It	provides	the
following	functionalities	to	work	with	an	edge:

querying	geometrical	representations	(3D	curve	and	pcurve(s)	on	a
given	face	or	surface),
querying	topological	sub-shapes	(bounding	vertices),
checking	overlapping	edges,
analyzing	the	curves	consistency:

mutual	orientation	of	the	3D	curve	and	2D	curve	(co-directions
or	opposite	directions),
correspondence	of	3D	and	2D	curves	to	vertices.

This	class	supports	status	management	described	above.

TopoDS_Face	face	=	...;	

ShapeAnalysis_Edge	sae;	

//Creates	a	tool	for	analyzing	an	edge	

for(TopExp_Explorer	

Exp(face,TopAbs_EDGE);Exp.More();Exp.Next())	{	

		TopoDS_Edge	edge	=	TopoDS::Edge	(Exp.Current());	

		if	(!sae.HasCurve3d	(edge))	{	

				cout	<<	"Edge	has	no	3D	curve"	<<		endl;	

		}	

		Handle(Geom2d_Curve)	pcurve;	

		Standard_Real	cf,	cl;	

		if	(sae.PCurve	(edge,	face,	pcurve,	cf,	cl,	

Standard_False))	{	

				//Returns	the	pcurve	and	its	range	on	the	given	

face	

				cout<<"Pcurve	range	["<<cf<<",	"<<cl<<"]"<<	endl;	

		}	

		Standard_Real	maxdev;	

		if	(sae.CheckSameParameter	(edge,	maxdev))	{	

				//Checks	the	consistency	of	all	the	curves	in	the	

edge	

				cout<<"Incorrect	SameParameter	flag"<<endl;	

		}	

		cout<<"Maximum	deviation	"<<maxdev<<",	tolerance"	

													<<BRep_Tool::Tolerance(edge)<<endl;	

}	

//checks	the	overlapping	of	two	edges	

if(sae.CheckOverlapping(edge1,edge2,prec,dist))	{	

					cout<<"Edges	are	overlapped	with	tolerance	=	"

<<prec<<endl;	

					cout<<"Domain	of	overlapping	="<<dist<<endl;	

}	

Analysis	of	presence	of	small	faces

Class	ShapeAnalysis_CheckSmallFace	class	is	intended	for	analyzing
small	faces	from	the	shape	using	the	following	methods:

CheckSpotFace()	checks	if	the	size	of	the	face	is	less	than	the	given
precision;
CheckStripFace	checks	if	the	size	of	the	face	in	one	dimension	is
less	than	the	given	precision.

TopoDS_Shape	shape	…	//	checked	shape	

//Creation	of	a	tool	

ShapeAnalysis_CheckSmallFace	saf;	

//exploring	the	shape	on	faces	and	checking	each	face	

Standard_Integer	numSmallfaces	=0;	

for(TopExp_Explorer	aExp(shape,TopAbs_FACE);	

aExp.More();	aExp.Next())	{	

	TopoDS_Face	face	=	TopoDS::Face(aexp.Current());	

	TopoDS_Edge	E1,E2;	

if(saf.CheckSpotFace(face,prec)	||	

saf.CheckStripFace(face,E1,E2,prec))	

NumSmallfaces++;	

}	

if(numSmallfaces)	

	cout<<"Number	of	small	faces	in	the	shape	="<<	

numSmallfaces	<<endl;	

Analysis	of	shell	validity	and	closure

Class	ShapeAnalysis_Shell	allows	checking	the	orientation	of	edges	in	a
manifold	shell.	With	the	help	of	this	tool,	free	edges	(edges	entered	into
one	face)	and	bad	edges	(edges	entered	into	the	shell	twice	with	the
same	orientation)	can	be	found.	By	occurrence	of	bad	and	free	edges	a
conclusion	about	the	shell	validity	and	the	closure	of	the	shell	can	be
made.

TopoDS_Shell	shell	//	checked	shape	

ShapeAnalysis_Shell	sas(shell);	

//analysis	of	the	shell	,	second	parameter	is	set	to	

True	for	//getting	free	edges,(default	False)	

sas.CheckOrientedShells(shell,Standard_True);	

//getting	the	result	of	analysis	

if(sas.HasBadEdges())	{	

cout<<"Shell	is	invalid"<<endl;	

TopoDS_Compound	badEdges	=	sas.BadEdges();	

}	

if(sas.HasFreeEdges())	{	

	cout<<"Shell	is	open"<<endl;	

	TopoDS_Compound	freeEdges	=	sas.FreeEdges();	

}	

Analysis	of	shape	properties.

Analysis	of	tolerance	on	shape

Class	ShapeAnalysis_ShapeTolerance	allows	computing	tolerances	of
the	shape	and	its	sub-shapes.	In	Open	CASCADE	Technology	only
vertices,	edges	and	faces	have	tolerances:

This	tool	allows	analyzing	each	concrete	type	of	sub-shapes	or	all	types
at	a	time.	The	analysis	of	tolerance	functionality	is	the	following:

computing	the	minimum,	maximum	and	average	tolerances	of	sub-
shapes,
finding	sub-shapes	with	tolerances	exceeding	the	given	value,
finding	sub-shapes	with	tolerances	in	the	given	range.

TopoDS_Shape	shape	=	...;	

ShapeAnalysis_ShapeTolerance	sast;	

Standard_Real	AverageOnShape	=	sast.Tolerance	(shape,	

0);	

cout<<"Average	tolerance	of	the	shape	is	"

<<AverageOnShape<<endl;	

Standard_Real	MinOnEdge	=	sast.Tolerance	

(shape,-1,TopAbs_EDGE);	

cout<<"Minimum	tolerance	of	the	edges	is	"

<<MinOnEdge<<endl;	

Standard_Real	MaxOnVertex	=	sast.Tolerance	

(shape,1,TopAbs_VERTEX);	

cout<<"Maximum	tolerance	of	the	vertices	is	"

<<MaxOnVertex<<endl;	

Standard_Real	MaxAllowed	=	0.1;	

if	(MaxOnVertex	>	MaxAllowed)	{	

		cout<<"Maximum	tolerance	of	the	vertices	exceeds	

maximum	allowed"<<endl;	

}	

Analysis	of	free	boundaries.

Class	ShapeAnalysis_FreeBounds	is	intended	to	analyze	and	output	the
free	bounds	of	a	shape.	Free	bounds	are	wires	consisting	of	edges
referenced	only	once	by	only	one	face	in	the	shape.	This	class	works	on
two	distinct	types	of	shapes	when	analyzing	their	free	bounds:

Analysis	of	possible	free	bounds	taking	the	specified	tolerance	into
account.	This	analysis	can	be	applied	to	a	compound	of	faces.	The
analyzer	of	the	sewing	algorithm	(BRepAlgo_Sewing)	is	used	to
forecast	what	free	bounds	would	be	obtained	after	the	sewing	of
these	faces	is	performed.	The	following	method	should	be	used	for
this	analysis:
ShapeAnalysis_FreeBounds	safb(shape,toler);	

Analysis	of	already	existing	free	bounds.	Actual	free	bounds	(edges
shared	by	the	only	face	in	the	shell)	are	output	in	this	case.
ShapeAnalysis_Shell	is	used	for	that.
ShapeAnalysis_FreeBounds	safb(shape);	

When	connecting	edges	into	wires	this	algorithm	tries	to	build	wires	of
maximum	length.	Two	options	are	provided	for	the	user	to	extract	closed
sub-contours	out	of	closed	and/or	open	contours.	Free	bounds	are
returned	as	two	compounds,	one	for	closed	and	one	for	open	wires.	To
obtain	a	result	it	is	necessary	to	use	methods:

TopoDS_Compound	ClosedWires		=	safb.GetClosedWires();	

TopoDS_Compound	OpenWires	=	safb.GetOpenWires();	

This	class	also	provides	some	static	methods	for	advanced	use:
connecting	edges/wires	to	wires,	extracting	closed	sub-wires	from	wires,
distributing	wires	into	compounds	for	closed	and	open	wires.

TopoDS_Shape	shape	=	...;	

Standard_Real	SewTolerance	=	1.e-03;	

//Tolerance	for	sewing	

Standard_Boolean	SplitClosed	=	Standard_False;	

Standard_Boolean	SplitOpen	=	Standard_True;	

//in	case	of	analysis	of	possible	free	boundaries	

ShapeAnalysis_FreeBounds	safb	(shape,	SewTolerance,	

SplitClosed,	SplitOpen);	

//in	case	of	analysis	of	existing	free	bounds	

ShapeAnalysis_FreeBounds	safb	(shape,	SplitClosed,	

SplitOpen);	

//getting	the	results	

TopoDS_Compound	ClosedWires	=	safb.GetClosedWires();	

//Returns	a	compound	of	closed	free	bounds	

TopoDS_Compound	OpenWires	=	safb.GetClosedWires();	

//Returns	a	compound	of	open	free	bounds	

Analysis	of	shape	contents

Class	ShapeAnalysis_ShapeContents	provides	tools	counting	the
number	of	sub-shapes	and	selecting	a	sub-shape	by	the	following
criteria:

Methods	for	getting	the	number	of	sub-shapes:

number	of	solids,
number	of	shells,
number	of	faces,
number	of	edges,
number	of	vertices.

Methods	for	calculating	the	number	of	geometrical	objects	or	sub-shapes
with	a	specified	type:

number	of	free	faces,
number	of	free	wires,
number	of	free	edges,
number	of	C0	surfaces,
number	of	C0	curves,
number	of	BSpline	surfaces,…	etc

and	selecting	sub-shapes	by	various	criteria.

The	corresponding	flags	should	be	set	to	True	for	storing	a	shape	by	a
specified	criteria:

faces	based	on	indirect	surfaces	–	safc.MofifyIndirectMode()	=
Standard_True;
faces	based	on	offset	surfaces	–	safc.ModifyOffsetSurfaceMode()	=

Standard_True;
edges	if	their	3D	curves	are	trimmed	–	safc.ModifyTrimmed3dMode()
=	Standard_True;
edges	if	their	3D	curves	and	2D	curves	are	offset	curves	–
safc.ModifyOffsetCurveMode()	=	Standard_True;
edges	if	their	2D	curves	are	trimmed	–	safc.ModifyTrimmed2dMode()
=	Standard_True;

Let	us,	for	example,	select	faces	based	on	offset	surfaces.

ShapeAnalysis_ShapeContents	safc;	

//set	a	corresponding	flag	for	storing	faces	based	on	

the	offset	surfaces	

safc.ModifyOffsetSurfaceMode()	=	Standard_True;	

safc.Perform(shape);	

//getting	the	number	of	offset	surfaces	in	the	shape	

Standard_Integer	NbOffsetSurfaces	=	

safc.NbOffsetSurf();	

//getting	the	sequence	of	faces	based	on	offset	

surfaces.	

Handle(TopTools_HSequenceOfShape)	seqFaces	=	

safc.OffsetSurfaceSec();	

Upgrading
Upgrading	tools	are	intended	for	adaptation	of	shapes	for	better	use	by
Open	CASCADE	Technology	or	for	customization	to	particular	needs,	i.e.
for	export	to	another	system.	This	means	that	not	only	it	corrects	and
upgrades	but	also	changes	the	definition	of	a	shape	with	regard	to	its
geometry,	size	and	other	aspects.	Convenient	API	allows	you	to	create
your	own	tools	to	perform	specific	upgrading.	Additional	tools	for
particular	cases	provide	an	ability	to	divide	shapes	and	surfaces
according	to	certain	criteria.

Tools	for	splitting	a	shape	according	to	a
specified	criterion

Overview

These	tools	provide	such	modifications	when	one	topological	object	can
be	divided	or	converted	to	several	ones	according	to	specified	criteria.
Besides,	there	are	high	level	API	tools	for	particular	cases	which:

Convert	the	geometry	of	shapes	up	to	a	given	continuity,
split	revolutions	by	U	to	segments	less	than	the	given	value,
convert	to	Bezier	surfaces	and	Bezier	curves,
split	closed	faces,
convert	C0	BSpline	curve	to	a	sequence	of	C1	BSpline	curves.

All	tools	for	particular	cases	are	based	on	general	tools	for	shape	splitting
but	each	of	them	has	its	own	tools	for	splitting	or	converting	geometry	in
accordance	with	the	specified	criteria.

General	tools	for	shape	splitting	are:

tool	for	splitting	the	whole	shape,
tool	for	splitting	a	face,
tool	for	splitting	wires.

Tools	for	shape	splitting	use	tools	for	geometry	splitting:

tool	for	splitting	surfaces,
tool	for	splitting	3D	curves,
tool	for	splitting	2D	curves.

Using	tools	available	for	shape	splitting.

If	it	is	necessary	to	split	a	shape	by	a	specified	continuity,	split	closed
faces	in	the	shape,	split	surfaces	of	revolution	in	the	shape	by	angle	or	to
convert	all	surfaces,	all	3D	curves,	all	2D	curves	in	the	shape	to	Bezier,	it
is	possible	to	use	the	existing/available	tools.

The	usual	way	to	use	these	tools	exception	for	the	tool	of	converting	a	C0
BSpline	curve	is	the	following:

a	tool	is	created	and	initialized	by	shape.
work	precision	for	splitting	and	the	maximum	allowed	tolerance	are
set
the	value	of	splitting	criterion	Is	set	(if	necessary)
splitting	is	performed.
splitting	statuses	are	obtained.
result	is	obtained
the	history	of	modification	of	the	initial	shape	and	its	sub-shapes	is
output	(this	step	is	optional).

Let	us,	for	example,	split	all	surfaces	and	all	3D	and	2D	curves	having	a
continuity	of	less	the	C2.

//create	a	tool	and	initializes	it	by	shape.	

ShapeUpgrade_ShapeDivideContinuity	

ShapeDivedeCont(initShape);	

//set	the	working	3D	and	2D	precision	and	the	maximum	

allowed	//tolerance	

ShapeDivideCont.SetTolerance(prec);	

ShapeDivideCont.SetTolerance2D(prec2d);	

ShapeDivideCont.SetMaxTolerance(maxTol);	

//set	the	values	of	criteria	for	surfaces,	3D	curves	

and	2D	curves.	

ShapeDivideCont.SetBoundaryCriterion(GeomAbs_C2);	

ShapeDivideCont.SetPCurveCriterion(GeomAbs_C2);	

ShapeDivideCont.SetSurfaceCriterion(GeomAbs_C2);	

//perform	the	splitting.	

ShapeDivideCont.Perform();	

//check	the	status	and	gets	the	result	

if(ShapeDivideCont.Status(ShapeExtend_DONE)	

	TopoDS_Shape	result	=	ShapeDivideCont.GetResult();	

//get	the	history	of	modifications	made	to	faces	

for(TopExp_Explorer	aExp(initShape,TopAbs_FACE);	

aExp.More(0;	aExp.Next())	{	

		TopoDS_Shape	modifShape	=	

ShapeDivideCont.GetContext()->	

Apply(aExp.Current());	

}	

Creation	of	a	new	tool	for	splitting	a	shape.

To	create	a	new	splitting	tool	it	is	necessary	to	create	tools	for	geometry
splitting	according	to	a	desirable	criterion.	The	new	tools	should	be
inherited	from	basic	tools	for	geometry	splitting.	Then	the	new	tools
should	be	set	into	corresponding	tools	for	shape	splitting.

a	new	tool	for	surface	splitting	should	be	set	into	the	tool	for	face
splitting
new	tools	for	splitting	of	3D	and	2D	curves	should	be	set	into	the
splitting	tool	for	wires.

To	change	the	value	of	criterion	of	shape	splitting	it	is	necessary	to	create
a	new	tool	for	shape	splitting	that	should	be	inherited	from	the	general
splitting	tool	for	shapes.

Let	us	split	a	shape	according	to	a	specified	criterion.

//creation	of	new	tools	for	geometry	splitting	by	a	

specified	criterion.	

Handle(MyTools_SplitSurfaceTool)	MySplitSurfaceTool	=	

new	MyTools_SplitSurfaceTool;	

Handle(MyTools_SplitCurve3DTool)	MySplitCurve3Dtool	=	

new	MyTools_SplitCurve3DTool;	

Handle(MyTools_SplitCurve2DTool)	MySplitCurve2Dtool	=	

new	MyTools_SplitCurve2DTool;	

//creation	of	a	tool	for	splitting	the	shape	and	

initialization	of	that	tool	by	shape.	

TopoDS_Shape	initShape	

MyTools_ShapeDivideTool	ShapeDivide	(initShape);	

//setting	of	work	precision	for	splitting	and	maximum	

allowed	tolerance.	

ShapeDivide.SetPrecision(prec);	

ShapeDivide.SetMaxTolerance(MaxTol);	

//setting	of	new	splitting	geometry	tools	in	the	

shape	splitting	tools	

Handle(ShapeUpgrade_FaceDivide)	FaceDivide	=	

ShapeDivide->GetSplitFaceTool();	

Handle(ShapeUpgrade_WireDivide)	WireDivide	=	

FaceDivide->GetWireDivideTool();	

FaceDivide->SetSplitSurfaceTool(MySplitSurfaceTool);	

WireDivide->SetSplitCurve3dTool(MySplitCurve3DTool);	

WireDivide->SetSplitCurve2dTool(MySplitCurve2DTool);	

//setting	of	the	value	criterion.	

	ShapeDivide.SetValCriterion(val);	

//shape	splitting	

ShapeDivide.Perform();	

//getting	the	result	

TopoDS_Shape	splitShape	=	ShapeDivide.GetResult();	

//getting	the	history	of	modifications	of	faces	

for(TopExp_Explorer	aExp(initShape,TopAbs_FACE);	

aExp.More(0;	aExp.Next())	{	

TopoDS_Shape	modifShape	=	ShapeDivide.GetContext()->	

Apply(aExp.Current());	

}	

General	splitting	tools.

General	tool	for	shape	splitting

Class	ShapeUpgrade_ShapeDivide	provides	shape	splitting	and
converting	according	to	the	given	criteria.	It	performs	these	operations	for
each	face	with	the	given	tool	for	face	splitting
(ShapeUpgrade_FaceDivide	by	default).

This	tool	provides	access	to	the	tool	for	dividing	faces	with	the	help	of	the
methods	SetSplitFaceTool	and	GetSpliFaceTool.

General	tool	for	face	splitting

Class	ShapeUpgrade_FaceDivide	divides	a	Face	(edges	in	the	wires,	by
splitting	3D	and	2D	curves,	as	well	as	the	face	itself,	by	splitting	the
supporting	surface)	according	to	the	given	criteria.

The	area	of	the	face	intended	for	division	is	defined	by	2D	curves	of	the
wires	on	the	Face.	All	2D	curves	are	supposed	to	be	defined	(in	the
parametric	space	of	the	supporting	surface).	The	result	is	available	after
the	call	to	the	Perform	method.	It	is	a	Shell	containing	all	resulting	Faces.
All	modifications	made	during	the	splitting	operation	are	recorded	in	the
external	context	(ShapeBuild_ReShape).

This	tool	provides	access	to	the	tool	for	wire	division	and	surface	splitting
by	means	of	the	following	methods:

SetWireDivideTool,
GetWireDivideTool,
SetSurfaceSplitTool,
GetSurfaceSplitTool.

General	tool	for	wire	splitting

Class	ShapeUpgrade_WireDivide	divides	edges	in	the	wire	lying	on	the
face	or	free	wires	or	free	edges	with	a	given	criterion.	It	splits	the	3D
curve	and	2D	curve(s)	of	the	edge	on	the	face.	Other	2D	curves,	which

may	be	associated	with	the	edge,	are	simply	copied.	If	the	3D	curve	is
split	then	the	2D	curve	on	the	face	is	split	as	well,	and	vice-versa.	The
original	shape	is	not	modified.	Modifications	made	are	recorded	in	the
context	(ShapeBuild_ReShape).

This	tool	provides	access	to	the	tool	for	dividing	and	splitting	3D	and	2D
curves	by	means	of	the	following	methods:

SetEdgeDivdeTool,
GetEdgeDivideTool,
SetSplitCurve3dTool,
GetSplitCurve3dTool,
SetSplitCurve2dTool,
GetSplitCurve2dTool

and	it	also	provides	access	to	the	mode	for	splitting	edges	by	methods
SetEdgeMode	and	GetEdgeMode.

This	mode	sets	whether	only	free	edges,	only	shared	edges	or	all	edges
are	split.

General	tool	for	edge	splitting

Class	ShapeUpgrade_EdgeDivide	divides	edges	and	their	geometry
according	to	the	specified	criteria.	It	is	used	in	the	wire-dividing	tool.

This	tool	provides	access	to	the	tool	for	dividing	and	splitting	3D	and	2D
curves	by	the	following	methods:

SetSplitCurve3dTool,
GetSplitCurve3dTool,
SetSplitCurve2dTool,
GetSplitCurve2dTool.

General	tools	for	geometry	splitting

There	are	three	general	tools	for	geometry	splitting.

General	tool	for	surface	splitting.(ShapeUpgrade_SplitSurface)
General	tool	for	splitting	3D	curves.(ShapeUpgrade_SplitCurve3d)
General	tool	for	splitting	2D	curves.(ShapeUpgrade_SplitCurve2d)

All	these	tools	are	constructed	the	same	way:	They	have	methods:

for	initializing	by	geometry	(method	Init)
for	splitting	(method	Perform)
for	getting	the	status	after	splitting	and	the	results:

Status	–	for	getting	the	result	status;
ResSurface	–	for	splitting	surfaces;
GetCurves	–	for	splitting	3D	and	2D	curves.	During	the	process
of	splitting	in	the	method	Perform	:

splitting	values	in	the	parametric	space	are	computed	according	to	a
specified	criterion	(method	Compute)
splitting	is	made	in	accordance	with	the	values	computed	for	splitting
(method	Build).

To	create	new	tools	for	geometry	splitting	it	is	enough	to	inherit	a	new	tool
from	the	general	tool	for	splitting	a	corresponding	type	of	geometry	and	to
redefine	the	method	for	computation	of	splitting	values	according	to	the
specified	criterion	in	them.	(method	Compute).

Header	file	for	the	tool	for	surface	splitting	by	continuity:

class	ShapeUpgrade_SplitSurfaceContinuity	:	public	

ShapeUpgrade_SplitSurface	{	

Standard_EXPORT	

ShapeUpgrade_SplitSurfaceContinuity();	

//methods	to	set	the	criterion	and	the	tolerance	into	

the	splitting	tool	

Standard_EXPORT			void	SetCriterion(const	

GeomAbs_Shape	Criterion)	;	

Standard_EXPORT			void	SetTolerance(const	

Standard_Real	Tol)	;	

//redefinition	of	method	Compute	

Standard_EXPORT	virtual	void	Compute(const	

Standard_Boolean	Segment)	;	

Standard_EXPORT	

~ShapeUpgrade_SplitSurfaceContinuity();	

private:	

GeomAbs_Shape	myCriterion;	

Standard_Real	myTolerance;	

Standard_Integer	myCont;	

};	

Specific	splitting	tools.

Conversion	of	shape	geometry	to	the	target	continuity

Class	ShapeUpgrade_ShapeDivideContinuity	allows	converting
geometry	with	continuity	less	than	the	specified	continuity	to	geometry
with	target	continuity.	If	converting	is	not	possible	than	geometrical	object
is	split	into	several	ones,	which	satisfy	the	given	criteria.	A	topological
object	based	on	this	geometry	is	replaced	by	several	objects	based	on
the	new	geometry.

ShapeUpgrade_ShapeDivideContinuity	sdc	(shape);	

sdc.SetTolerance	(tol3d);	

sdc.SetTolerance3d	(tol2d);	//	if	known,	else	1.e-09	

is	taken	

sdc.SetBoundaryCriterion	(GeomAbs_C2);	//	for	Curves	

3D	

sdc.SetPCurveCriterion	(GeomAbs_C2);	//	for	Curves	2D	

sdc.SetSurfaceCriterion	(GeomAbs_C2);	//	for	Surfaces	

sdc.Perform	();	

TopoDS_Shape	bshape	=	sdc.Result();	

//..	to	also	get	the	correspondances	before/after	

Handle(ShapeBuild_ReShape)	ctx	=	sdc.Context();	

//..	on	a	given	shape	

if	(ctx.IsRecorded	(sh))	{	

		TopoDS_Shape	newsh	=	ctx->Value	(sh);	

//	if	there	are	several	results,	they	are	recorded	

inside	a	Compound.

//	..	process	as	needed	

}	

Splitting	by	angle

Class	ShapeUpgrade_ShapeDivideAngle	allows	splitting	all	surfaces	of
revolution,	cylindrical,	toroidal,	conical,	spherical	surfaces	in	the	given
shape	so	that	each	resulting	segment	covers	not	more	than	the	defined
angle	(in	radians).

Conversion	of	2D,	3D	curves	and	surfaces	to	Bezier

Class	ShapeUpgrade_ShapeConvertToBezier	is	an	API	tool	for
performing	a	conversion	of	3D,	2D	curves	to	Bezier	curves	and	surfaces
to	Bezier	based	surfaces	(Bezier	surface,	surface	of	revolution	based	on
Bezier	curve,	offset	surface	based	on	any	of	previous	types).

This	tool	provides	access	to	various	flags	for	conversion	of	different	types
of	curves	and	surfaces	to	Bezier	by	methods:

For	3D	curves:
Set3dConversion,
Get3dConversion,
Set3dLineConversion,
Get3dLineConversion,
Set3dCircleConversion,
Get3dCircleConversion,
Set3dConicConversion,
Get3dConicConversion

For	2D	curves:
Set2dConversion,
Get2dConversion

For	surfaces	:
GetSurfaceConversion,
SetPlaneMode,
GetPlaneMode,
SetRevolutionMode,
GetRevolutionMode,
SetExtrusionMode,
GetExtrusionMode,
SetBSplineMode,
GetBSplineMode,

Let	us	attempt	to	produce	a	conversion	of	planes	to	Bezier	surfaces.

//Creation	and	initialization	of	a	tool.	

ShapeUpgrade_ShapeConvertToBezier	SCB	(Shape);	

//setting	tolerances	

...

//setting	mode	for	conversion	of	planes	

SCB.SetSurfaceConversion	(Standard_True);	

SCB.SetPlaneMode(Standard_True);	

SCB.Perform();	

If(SCB.Status(ShapeExtend_DONE)	

				TopoDS_Shape	result	=	SCB.GetResult();	

Tool	for	splitting	closed	faces

Class	ShapeUpgrade_ShapeDivideClosed	provides	splitting	of	closed
faces	in	the	shape	to	a	defined	number	of	components	by	the	U	and	V
parameters.	It	topologically	and	(partially)	geometrically	processes	closed
faces	and	performs	splitting	with	the	help	of	class
ShapeUpgrade_ClosedFaceDivide.

TopoDS_Shape	aShape	=	…;	

ShapeUpgrade_ShapeDivideClosed	tool	(aShape);	

Standard_Real	closeTol	=	…;	

tool.SetPrecision(closeTol);	

Standard_Real	maxTol	=	…;	

tool.SetMaxTolerance(maxTol);	

Standard_Integer	NbSplitPoints	=	…;	

tool.SetNbSplitPoints(num);	

if	(!	tool.Perform()	&&	tool.Status	

(ShapeExtend_FAIL))	{	

		cout<<"Splitting	of	closed	faces	failed"<<endl;	

		.	.	.	

}	

TopoDS_Shape	aResult	=	tool.Result();	

Tool	for	splitting	a	C0	BSpline	2D	or	3D	curve	to	a
sequence	C1	BSpline	curves

The	API	methods	for	this	tool	is	a	package	of	methods
ShapeUpgrade::C0BSplineToSequenceOfC1BsplineCurve,	which
converts	a	C0	B-Spline	curve	into	a	sequence	of	C1	B-Spline	curves.
This	method	splits	a	B-Spline	at	the	knots	with	multiplicities	equal	to
degree,	it	does	not	use	any	tolerance	and	therefore	does	not	change	the
geometry	of	the	B-Spline.	The	method	returns	True	if	C0	B-Spline	was

successfully	split,	otherwise	returns	False	(if	BS	is	C1	B-Spline).

Tool	for	splitting	faces

ShapeUpgrade_ShapeDivideArea	can	work	with	compounds,	solids,
shells	and	faces.	During	the	work	this	tool	examines	each	face	of	a
specified	shape	and	if	the	face	area	exceeds	the	specified	maximal	area,
this	face	is	divided.	Face	splitting	is	performed	in	the	parametric	space	of
this	face.	The	values	of	splitting	in	U	and	V	directions	are	calculated	with
the	account	of	translation	of	the	bounding	box	form	parametric	space	to
3D	space.

Such	calculations	are	necessary	to	avoid	creation	of	strip	faces.	In	the
process	of	splitting	the	holes	on	the	initial	face	are	taken	into	account.
After	the	splitting	all	new	faces	are	checked	by	area	again	and	the
splitting	procedure	is	repeated	for	the	faces	whose	area	still	exceeds	the
max	allowed	area.	Sharing	between	faces	in	the	shape	is	preserved	and
the	resulting	shape	is	of	the	same	type	as	the	source	shape.

An	example	of	using	this	tool	is	presented	in	the	figures	below:

Source	Face

Resulting	shape

ShapeUpgrade_ShapeDivideArea	is	inherited	from	the	base	class
ShapeUpgrade_ShapeDivide	and	should	be	used	in	the	following	way:

This	class	should	be	initialized	on	a	shape	with	the	help	of	the
constructor	or	method	Init()	from	the	base	class.
The	maximal	allowed	area	should	be	specified	by	the	method
MaxArea().
To	produce	a	splitting	use	method	Perform	from	the	base	class.
The	result	shape	can	be	obtained	with	the	help	the	method	Result().

ShapeUpgrade_ShapeDivideArea	tool	(inputShape);	

tool.MaxArea()	=	aMaxArea;	

tool.Perform();	

if(tool.Status(ShapeExtend_DONE))	{	

		TopoDS_Shape	ResultShape	=	tool.Result();	

		ShapeFix::SameParameter	(ResultShape,	

Standard_False);	

}	

Note	that	the	use	of	method	ShapeFix::SameParameter	is	necessary,
otherwise	the	parameter	edges	obtained	as	a	result	of	splitting	can	be
different.

Additional	methods

Class	ShapeUpgrade_FaceDivideArea	inherited	from
ShapeUpgrade_FaceDivide	is	intended	for	splitting	a	face	by	the
maximal	area	criterion.
Class	ShapeUpgrade_SplitSurfaceArea	inherited	from
ShapeUpgrade_SplitSurface	calculates	the	parameters	of	face
splitting	in	the	parametric	space.

Customization	of	shapes
Customization	tools	are	intended	for	adaptation	of	shape	geometry	in
compliance	with	the	customer	needs.	They	modify	a	geometrical	object	to
another	one	in	the	shape.

To	implement	the	necessary	shape	modification	it	is	enough	to	initialize
the	appropriate	tool	by	the	shape	and	desirable	parameters	and	to	get
the	resulting	shape.	For	example	for	conversion	of	indirect	surfaces	in	the
shape	do	the	following:

TopoDS_Shape	initialShape	..	

TopoDS_Shape	resultShape	=	

ShapeCustom::DirectFaces(initialShape);	

Conversion	of	indirect	surfaces.

ShapeCustom::DirectFaces	

				static	TopoDS_Shape	DirectFaces(const	

TopoDS_Shape&	S);	

This	method	provides	conversion	of	indirect	elementary	surfaces
(elementary	surfaces	with	left-handed	coordinate	systems)	in	the	shape
into	direct	ones.	New	2d	curves	(recomputed	for	converted	surfaces)	are
added	to	the	same	edges	being	shared	by	both	the	resulting	shape	and
the	original	shape	S.

Shape	Scaling

ShapeCustom::ScaleShape	

				TopoDS_Shape	ShapeCustom::ScaleShape(const	

TopoDS_Shape&	S,

								const	Standard_Real	scale);	

This	method	returns	a	new	shape,	which	is	a	scaled	original	shape	with	a
coefficient	equal	to	the	specified	value	of	scale.	It	uses	the	tool
ShapeCustom_TrsfModification.

Conversion	of	curves	and	surfaces	to	BSpline

ShapeCustom_BSplineRestriction	allows	approximation	of	surfaces,
curves	and	2D	curves	with	a	specified	degree,	maximum	number	of
segments,	2d	tolerance	and	3d	tolerance.	If	the	approximation	result
cannot	be	achieved	with	the	specified	continuity,	the	latter	can	be
reduced.

The	method	with	all	parameters	looks	as	follows:

ShapeCustom::BsplineRestriction	

				TopoDS_Shape	ShapeCustom::BSplineRestriction	

(const	TopoDS_Shape&	S,	

								const	Standard_Real	Tol3d,	const	

Standard_Real	Tol2d,	

								const	Standard_Integer	MaxDegree,	

								const	Standard_Integer	MaxNbSegment,	

								const	GeomAbs_Shape	Continuity3d,	

								const	GeomAbs_Shape	Continuity2d,	

								const	Standard_Boolean	Degree,	

								const	Standard_Boolean	Rational,	

								const	

Handle(ShapeCustom_RestrictionParameters)&	

aParameters)	

It	returns	a	new	shape	with	all	surfaces,	curves	and	2D	curves	of
BSpline/Bezier	type	or	based	on	them,	converted	with	a	degree	less	than
MaxDegree	or	with	a	number	of	spans	less	then	NbMaxSegment
depending	on	the	priority	parameter	Degree.	If	this	parameter	is	equal	to
True	then	Degree	will	be	increased	to	the	value	GmaxDegree,	otherwise
NbMaxSegments	will	be	increased	to	the	value	GmaxSegments.
GmaxDegree	and	GMaxSegments	are	the	maximum	possible	degree
and	the	number	of	spans	correspondingly.	These	values	will	be	used	in
cases	when	an	approximation	with	specified	parameters	is	impossible
and	either	GmaxDegree	or	GMaxSegments	is	selected	depending	on	the
priority.

Note	that	if	approximation	is	impossible	with	GMaxDegree,	even	then	the
number	of	spans	can	exceed	the	specified	GMaxSegment.	Rational

specifies	whether	Rational	BSpline/Bezier	should	be	converted	into
polynomial	B-Spline.

Also	note	that	the	continuity	of	surfaces	in	the	resulting	shape	can	be
less	than	the	given	value.

Flags

To	convert	other	types	of	curves	and	surfaces	to	BSpline	with	required
parameters	it	is	necessary	to	use	flags	from	class
ShapeCustom_RestrictionParameters,	which	is	just	a	container	of	flags.
The	following	flags	define	whether	a	specified-type	geometry	has	been
converted	to	BSpline	with	the	required	parameters:

ConvertPlane,
ConvertBezierSurf,
ConvertRevolutionSurf,
ConvertExtrusionSurf,
ConvertOffsetSurf,
ConvertCurve3d,	–	for	conversion	of	all	types	of	3D	curves.
ConvertOffsetCurv3d,	–	for	conversion	of	offset	3D	curves.
ConvertCurve2d,	–	for	conversion	of	all	types	of	2D	curves.
ConvertOffsetCurv2d,	–	for	conversion	of	offset	2D	curves.
SegmentSurfaceMode	–	defines	whether	the	surface	would	be
approximated	within	the	boundaries	of	the	face	lying	on	this	surface.

Conversion	of	elementary	surfaces	into	surfaces	of
revolution

ShapeCustom::ConvertToRevolution()

				TopoDS_Shape	

ShapeCustom::ConvertToRevolution(const	

TopoDS_Shape&	S)	;	

This	method	returns	a	new	shape	with	all	elementary	periodic	surfaces
converted	to	Geom_SurfaceOfRevolution.	It	uses	the	tool
ShapeCustom_ConvertToRevolution.

Conversion	of	elementary	surfaces	into	Bspline	surfaces

ShapeCustom::ConvertToBSpline()	

				TopoDS_Shape	ShapeCustom::ConvertToBSpline(const	

TopoDS_Shape&	S,	

								const	Standard_Boolean	extrMode,	

								const	Standard_Boolean	revolMode,	

								const	Standard_Boolean	offsetMode);	

This	method	returns	a	new	shape	with	all	surfaces	of	linear	extrusion,
revolution	and	offset	surfaces	converted	according	to	flags	to
Geom_BSplineSurface	(with	the	same	parameterization).	It	uses	the	tool
ShapeCustom_ConvertToBSpline.

Getting	the	history	of	modification	of	sub-shapes.

If,	in	addition	to	the	resulting	shape,	you	want	to	get	the	history	of
modification	of	sub-shapes	you	should	not	use	the	package	methods
described	above	and	should	use	your	own	code	instead:

1.	 Create	a	tool	that	is	responsible	for	the	necessary	modification.
2.	 Create	the	tool	BRepTools_Modifier	that	performs	a	specified

modification	in	the	shape.
3.	 To	get	the	history	and	to	keep	the	assembly	structure	use	the

method	ShapeCustom::ApplyModifier.

The	general	calling	syntax	for	scaling	is

TopoDS_Shape	scaled_shape	=	

ShapeCustom::ScaleShape(shape,	scale);	

Note	that	scale	is	a	real	value.	You	can	refine	your	mapping	process	by
using	additional	calls	to	follow	shape	mapping	sub-shape	by	sub-shape.
The	following	code	along	with	pertinent	includes	can	be	used:

p_Trsf	T;	

Standard_Real	scale	=	100;	//	for	example!	

T.SetScale	(gp_Pnt	(0,	0,	0),	scale);	

Handle(ShapeCustom_TrsfModification)	TM	=	new	

ShapeCustom_TrsfModification(T);	

TopTools_DataMapOfShapeShape	context;	

BRepTools_Modifier	MD;	

TopoDS_Shape	res	=	ShapeCustom::ApplyModifier	(

Shape,	TM,	context,MD);	

The	map,	called	context	in	our	example,	contains	the	history.
Substitutions	are	made	one	by	one	and	all	shapes	are	transformed.	To
determine	what	happens	to	a	particular	sub-shape,	it	is	possible	to	use:

TopoDS_Shape	oneres	=	context.Find	(oneshape);	

//In	case	there	is	a	doubt,	you	can	also	add:	

if	(context.IsBound(oneshape))	oneres	=	

context.Find(oneshape);	

//You	can	also	sweep	the	entire	data	map	by	using:	

TopTools_DataMapIteratorOfDataMapOfShapeShape	

//To	do	this,	enter:	

for(TopTools_DataMapIteratorOfDataMapOfShapeShape	

iter(context);iter(more	();iter.next	())	{	

		TopoDs_Shape	oneshape	=	iter.key	();	

		TopoDs_Shape	oneres	=	iter.value	();	

}	

Remove	internal	wires

ShapeUpgrade_RemoveInternalWires	tool	removes	internal	wires	with
contour	area	less	than	the	specified	minimal	area.	It	can	work	with
compounds,	solids,	shells	and	faces.

If	the	flag	RemoveFaceMode	is	set	to	TRUE,	separate	faces	or	a	group
of	faces	with	outer	wires,	which	consist	only	of	edges	that	belong	to	the
removed	internal	wires,	are	removed	(seam	edges	are	not	taken	into
account).	Such	faces	can	be	removed	only	for	a	sewed	shape.

Internal	wires	can	be	removed	by	the	methods	Perform.	Both	methods
Perform	can	not	be	carried	out	if	the	class	has	not	been	initialized	by	the
shape.	In	such	case	the	status	of	Perform	is	set	to	FAIL	.

The	method	Perform	without	arguments	removes	from	all	faces	in	the
specified	shape	internal	wires	whose	area	is	less	than	the	minimal	area.

The	other	method	Perform	has	a	sequence	of	shapes	as	an	argument.
This	sequence	can	contain	faces	or	wires.	If	the	sequence	of	shapes
contains	wires,	only	the	internal	wires	are	removed.

If	the	sequence	of	shapes	contains	faces,	only	the	internal	wires	from
these	faces	are	removed.

The	status	of	the	performed	operation	can	be	obtained	using	method
Status();
The	resulting	shape	can	be	obtained	using	method	GetResult().

An	example	of	using	this	tool	is	presented	in	the	figures	below:

Source	Face

Resulting	shape

After	the	processing	three	internal	wires	with	contour	area	less	than	the
specified	minimal	area	have	been	removed.	One	internal	face	has	been
removed.	The	outer	wire	of	this	face	consists	of	the	edges	belonging	to
the	removed	internal	wires	and	a	seam	edge.	Two	other	internal	faces
have	not	been	removed	because	their	outer	wires	consist	not	only	of
edges	belonging	to	the	removed	wires.

Source	Face

Resulting	shape

After	the	processing	six	internal	wires	with	contour	area	less	than	the
specified	minimal	area	have	been	removed.	Six	internal	faces	have	been
removed.	These	faces	can	be	united	into	groups	of	faces.	Each	group	of
faces	has	an	outer	wire	consisting	only	of	edges	belonging	to	the
removed	internal	wires.	Such	groups	of	faces	are	also	removed.

The	example	of	method	application	is	also	given	below:

//Initialization	of	the	class	by	shape.	

Handle(ShapeUpgrade_RemoveInternalWires)	aTool	=	new	

ShapeUpgrade_RemoveInternalWires(inputShape);	

//setting	parameters	

aTool->MinArea()	=	aMinArea;	

aTool->RemoveFaceMode()	=	aModeRemoveFaces;	

//when	method	Perform	is	carried	out	on	separate	

shapes.	

aTool->Perform(aSeqShapes);	

//when	method	Perform	is	carried	out	on	whole	shape.	

aTool->Perform();	

//check	status	set	after	method	Perform	

if(aTool->Status(ShapeExtend_FAIL)	{	

		cout<<"Operation	failed"<<	<<"\n";	

			return;	

}	

if(aTool->Status(ShapeExtend_DONE1))	{	

				const	TopTools_SequenceOfShape&	aRemovedWires	

=aTool->RemovedWires();	

					cout<<aRemovedWires.Length()<<"	internal	wires	

were	removed"<<"\n";	

		}	

		if(aTool->Status(ShapeExtend_DONE2))	{	

				const	TopTools_SequenceOfShape&	aRemovedFaces	

=aTool->RemovedFaces();	

					cout<<aRemovedFaces.Length()<<"	small	faces	were	

removed"<<"\n";	

		}			

				//getting	result	shape	

		TopoDS_Shape	res	=	aTool->GetResult();	

Conversion	of	surfaces

Class	ShapeCustom_Surface	allows:

converting	BSpline	and	Bezier	surfaces	to	the	analytical	form	(using
method	ConvertToAnalytical())
converting	closed	B-Spline	surfaces	to	periodic	ones.(using	method
ConvertToPeriodic)

To	convert	surfaces	to	analytical	form	this	class	analyzes	the	form	and
the	closure	of	the	source	surface	and	defines	whether	it	can	be
approximated	by	analytical	surface	of	one	of	the	following	types:

Geom_Plane,
Geom_SphericalSurface,
Geom_CylindricalSurface,

Geom_ConicalSurface,
Geom_ToroidalSurface.

The	conversion	is	done	only	if	the	new	(analytical)	surface	does	not
deviate	from	the	source	one	more	than	by	the	given	precision.

Handle(Geom_Surface)	initSurf;	

ShapeCustom_Surface	ConvSurf(initSurf);	

//conversion	to	analytical	form	

Handle(Geom_Surface)	newSurf		=	

ConvSurf.ConvertToAnalytical(allowedtol,Standard

_False);	

//or	conversion	to	a	periodic	surface	

Handle(Geom_Surface)	newSurf		=	

ConvSurf.ConvertToPeriodic(Standard_False);	

//getting	the	maximum	deviation	of	the	new	surface	

from	the	initial	surface	

Standard_Real	maxdist	=	ConvSurf.Gap();	

Unify	Same	Domain

ShapeUpgrade_UnifySameDomain	tool	allows	unifying	all	possible	faces
and	edges	of	a	shape,	which	lies	on	the	same	geometry.	Faces/edges
are	considered	as	'same-domain'	if	the	neighboring	faces/edges	lie	on
coincident	surfaces/curves.	Such	faces/edges	can	be	unified	into	one
face/edge.	This	tool	takes	an	input	shape	and	returns	a	new	one.	All
modifications	of	the	initial	shape	are	recorded	during	the	operation.

The	following	options	are	available:

If	the	flag	UnifyFaces	is	set	to	TRUE,	UnifySameDomain	tries	to
unify	all	possible	faces;
If	the	flag	UnifyEdges	is	set	to	TRUE,	UnifySameDomain	tries	to
unify	all	possible	edges;
if	the	flag	ConcatBSplines	is	set	to	TRUE,	all	neighboring	edges,
which	lie	on	the	BSpline	or	Bezier	curves	with	C1	continuity	on	their
common	vertices	will	be	merged	into	one	common	edge.

By	default,	UnifyFaces	and	UnifyEdges	are	set	to	TRUE;	ConcatBSplines

is	set	to	FALSE.

The	common	methods	of	this	tool	are	as	follows:

Method	Build()	is	used	to	unify.
Method	Shape()	is	used	to	get	the	resulting	shape.
Method	Generated()	is	used	to	get	a	new	common	shape	from	the
old	shape.	If	a	group	of	edges	has	been	unified	into	one	common
edge	then	method	Generated()	called	on	any	edge	from	this	group
will	return	the	common	edge.	The	same	goes	for	the	faces.

The	example	of	the	usage	is	given	below:

//	'Sh'	is	the	initial	shape

ShapeUpgrade_UnifySameDomain	USD(Sh,	true,	true,	

true);	//	UnifyFaces	mode	on,	UnifyEdges	mode	

on,	ConcatBSplines	mode	on.

USD.Build();

//get	the	result

TopoDS_Shape	Result	=	USD.Shape();	

//Let	Sh1	as	a	part	of	Sh

//get	the	new	(probably	unified)	shape	form	the	Sh1

TopoDS_Shape	ResSh1	=	USD.Generated(Sh1);

Auxiliary	tools	for	repairing,
analysis	and	upgrading
Tool	for	rebuilding	shapes

Class	ShapeBuild_ReShape	rebuilds	a	shape	by	making	predefined
substitutions	on	some	of	its	components.	During	the	first	phase,	it	records
requests	to	replace	or	remove	some	individual	shapes.	For	each	shape,
the	last	given	request	is	recorded.	Requests	may	be	applied	as	Oriented
(i.e.	only	to	an	item	with	the	same	orientation)	or	not	(the	orientation	of
the	replacing	shape	corresponds	to	that	of	the	original	one).	Then	these
requests	may	be	applied	to	any	shape,	which	may	contain	one	or	more	of
these	individual	shapes.

This	tool	has	a	flag	for	taking	the	location	of	shapes	into	account	(for
keeping	the	structure	of	assemblies)	(ModeConsiderLocation).	If	this
mode	is	equal	to	Standard_True,	the	shared	shapes	with	locations	will	be
kept.	If	this	mode	is	equal	to	Standard_False,	some	different	shapes	will
be	produced	from	one	shape	with	different	locations	after	rebuilding.	By
default,	this	mode	is	equal	to	Standard_False.

To	use	this	tool	for	the	reconstruction	of	shapes	it	is	necessary	to	take	the
following	steps:

1.	 Create	this	tool	and	use	method	Apply()	for	its	initialization	by	the
initial	shape.	Parameter	until	sets	the	level	of	shape	type	and
requests	are	taken	into	account	up	to	this	level	only.	Sub-shapes	of
the	type	standing	beyond	the	line	set	by	parameter	until	will	not	be
rebuilt	and	no	further	exploration	will	be	done

2.	 Replace	or	remove	sub-shapes	of	the	initial	shape.	Each	sub-shape
can	be	replaced	by	a	shape	of	the	same	type	or	by	shape	containing
shapes	of	that	type	only	(for	example,	TopoDS_Edge	can	be
replaced	by	TopoDS_Edge,	TopoDS_Wire	or	TopoDS_Compound
containing	TopoDS_Edges).	If	an	incompatible	shape	type	is
encountered,	it	is	ignored	and	flag	FAIL1	is	set	in	Status.	For	a	sub-
shape	it	is	recommended	to	use	method	Apply	before	methods
Replace	and	Remove,	because	the	sub-shape	has	already	been

changed	for	the	moment	by	its	previous	modifications	or	modification
of	its	sub-shape	(for	example	TopoDS_Edge	can	be	changed	by	a
modification	of	its	TopoDS_Vertex,	etc.).

3.	 Use	method	Apply	for	the	initial	shape	again	to	get	the	resulting
shape	after	all	modifications	have	been	made.

4.	 Use	method	Apply	to	obtain	the	history	of	sub-shape	modification.

Additional	method	IsNewShape	can	be	used	to	check	if	the	shape	has
been	recorded	by	BRepTools_ReShape	tool	as	a	value.

Note	that	in	fact	class	ShapeBuild_ReShape	is	an	alias	for	class
BRepTools_ReShape.	They	differ	only	in	queries	of	statuses	in	the
ShapeBuild_ReShape	class.

Let	us	use	the	tool	to	get	the	result	shape	after	modification	of	sub-
shapes	of	the	initial	shape:

TopoDS_Shape	initialShape…	

//creation	of	a	rebuilding	tool	

Handle(ShapeBuild_ReShape)	Context	=	new	

ShapeBuild_ReShape.	

//next	step	is	optional.	It	can	be	used	for	keeping	

the	assembly	structure.	

Context->	ModeConsiderLocation	=	Standard_True;	

//initialization	of	this	tool	by	the	initial	shape	

Context->Apply(initialShape);	

…	

//getting	the	intermediate	result	for	replacing	

subshape1	with	the	modified	subshape1.	

TopoDS_Shape	tempshape1	=	Context->Apply(subshape1);	

//replacing	the	intermediate	shape	obtained	from	

subshape1	with	the	newsubshape1.	

Context->Replace(tempsubshape1,newsubshape1);	

…	

//for	removing	the	sub-shape	

TopoDS_Shape	tempshape2	=	Context->Apply(subshape2);	

Context->Remove(tempsubshape2);	

//getting	the	result	and	the	history	of	modification	

TopoDS_Shape	resultShape	=	Context-

>Apply(initialShape);	

//getting	the	resulting	sub-shape	from	the	subshape1	

of	the	initial	shape.	

TopoDS_Shape	result_subshape1	=	Context-

>Apply(subshape1);	

Status	definition
ShapExtend_Status	is	used	to	report	the	status	after	executing	some
methods	that	can	either	fail,	do	something,	or	do	nothing.	The	status	is	a
set	of	flags	DONEi	and	FAILi.	Any	combination	of	them	can	be	set	at	the
same	time.	For	exploring	the	status,	enumeration	is	used.

The	values	have	the	following	meaning:

Value Meaning
OK, Nothing	is	done,	everything	OK
DONE1, Something	was	done,	case	1
DONE8, Something	was	done,	case	8
DONE, Something	was	done	(any	of	DONE#)
FAIL1, The	method	failed,	case	1
FAIL8, The	method	failed,	case	8
FAIL The	method	failed	(any	of	FAIL#	occurred)

Tool	representing	a	wire
Class	ShapeExtend_WireData	provides	a	data	structure	necessary	to
work	with	the	wire	as	with	an	ordered	list	of	edges,	and	that	is	required
for	many	algorithms.	The	advantage	of	this	class	is	that	it	allows	to	work
with	incorrect	wires.

The	object	of	the	class	ShapeExtend_WireData	can	be	initialized	by
TopoDS_Wire	and	converted	back	to	TopoDS_Wire.

An	edge	in	the	wire	is	defined	by	its	rank	number.	Operations	of
accessing,	adding	and	removing	an	edge	at/to	the	given	rank	number	are
provided.	Operations	of	circular	permutation	and	reversing	(both
orientations	of	all	edges	and	the	order	of	edges)	are	provided	on	the
whole	wire	as	well.

This	class	also	provides	a	method	to	check	if	the	edge	in	the	wire	is	a
seam	(if	the	wire	lies	on	a	face).

Let	us	remove	edges	from	the	wire	and	define	whether	it	is	seam	edge

TopoDS_Wire	ini	=	..	

Handle(ShapeExtend_Wire)	asewd	=	new	

ShapeExtend_Wire(initwire);	

//Removing	edge	Edge1	from	the	wire.	

Standard_Integer	index_edge1	=	asewd->Index(Edge1);	

asewd.Remove(index_edge1);	

//Definition	of	whether	Edge2	is	a	seam	edge	

Standard_Integer	index_edge2	=	asewd->Index(Edge2);	

asewd->IsSeam(index_edge2);	

Tool	for	exploring	shapes
Class	ShapeExtend_Explorer	is	intended	to	explore	shapes	and	convert
different	representations	(list,	sequence,	compound)	of	complex	shapes.
It	provides	tools	for:

obtaining	the	type	of	the	shapes	in	the	context	of
TopoDS_Compound,
exploring	shapes	in	the	context	of	TopoDS_Compound,
converting	different	representations	of	shapes	(list,	sequence,
compound).

Tool	for	attaching	messages	to	objects
Class	ShapeExtend_MsgRegistrator	attaches	messages	to	objects
(generic	Transient	or	shape).	The	objects	of	this	class	are	transmitted	to
the	Shape	Healing	algorithms	so	that	they	could	collect	messages
occurred	during	shape	processing.	Messages	are	added	to	the	Maps
(stored	as	a	field)	that	can	be	used,	for	instance,	by	Data	Exchange
processors	to	attach	those	messages	to	initial	file	entities.

Let	us	send	and	get	a	message	attached	to	object:

Handle(ShapeExtend_MsgRegistrator)	MessageReg	=	new	

ShapeExtend_MsgRegistrator;	

//attaches	messages	to	an	object	(shape	or	entity)	

Message_Msg	msg..	

TopoDS_Shape	Shape1…	

MessageReg->Send(Shape1,msg,Message_WARNING);	

Handle(Standard_Transient)	ent	..	

MessageReg->Send(ent,msg,Message_WARNING);	

//gets	messages	attached	to	shape	

const	ShapeExtend_DataMapOfShapeListOfMsg&	msgmap	=	

MessageReg->MapShape();	

if	(msgmap.IsBound	(Shape1))	{	

	const	Message_ListOfMsg	&msglist	=	msgmap.Find	

(Shape1);	

	for	(Message_ListIteratorOfListOfMsg	iter	(msglist);	

iter.More();	iter.Next())	{	

							Message_Msg	msg	=	iter.Value();	

	}	

				}	

Tools	for	performance	measurement
Classes	MoniTool_Timer	and	MoniTool_TimerSentry	are	used	for
measuring	the	performance	of	a	current	operation	or	any	part	of	code,
and	provide	the	necessary	API.	Timers	are	used	for	debugging	and
performance	optimizing	purposes.

Let	us	try	to	use	timers	in	XSDRAWIGES.cxx	and
IGESBRep_Reader.cxx	to	analyse	the	performance	of	command
igesbrep:

XSDRAWIGES.cxx

		...

		#include	<MoniTool_Timer.hxx>

		#include	<MoniTool_TimerSentry.hxx>

		...

		MoniTool_Timer::ClearTimers();

		...

		MoniTool_TimerSentry	MTS("IGES_LoadFile");

		Standard_Integer	status	=	

Reader.LoadFile(fnom.ToCString());

		MTS.Stop();

		...

		MoniTool_Timer::DumpTimers(cout);

		return;

IGESBRep_Reader.cxx

		...

		#include	<MoniTool_TimerSentry.hxx>

		...

		Standard_Integer	nb	=	theModel->NbEntities();

		...

		for	(Standard_Integer	i=1;	i<=nb;	i++)	{

				MoniTool_TimerSentry	MTS("IGESToBRep_Transfer");

				...

				try	{

						TP.Transfer(ent);

						shape	=	TransferBRep::ShapeResult	

(theProc,ent);

				}

				...

		}

The	result	of	DumpTimer()	after	file	translation	is	as	follows:

TIMER Elapsed CPU	User CPU	Sys Hits
IGES_LoadFile 1.0	sec 0.9	sec 0.0	sec 1
IGESToBRep_Transfer 14.5	sec 4.4	sec 0.1	sec 1311

Shape	Processing
Usage	Workflow

The	Shape	Processing	module	allows	defining	and	applying	the	general
Shape	Processing	as	a	customizable	sequence	of	Shape	Healing
operators.	The	customization	is	implemented	via	the	user-editable
resource	file,	which	defines	the	sequence	of	operators	to	be	executed
and	their	parameters.

The	Shape	Processing	functionality	is	implemented	with	the	help	of	the
XSAlgo	interface.	The	main	function
XSAlgo_AlgoContainer::ProcessShape()	does	shape	processing	with
specified	tolerances	and	returns	the	resulting	shape	and	associated
information	in	the	form	of	Transient.

This	function	is	used	in	the	following	way:

TopoDS_Shape	aShape	=	…;	

Standard_Real	Prec	=	…,	

Standard_Real	MaxTol	=	…;	

TopoDS_Shape	aResult;	

Handle(Standard_Transient)	info;	

TopoDS_Shape	aResult	=	XSAlgo::AlgoContainer()-

>ProcessShape(aShape,	Prec,	MaxTol.,	"Name	of	

ResourceFile",	"NameSequence",	info);	

Let	us	create	a	custom	sequence	of	operations:

1.	 Create	a	resource	file	with	the	name	ResourceFile,	which	includes
the	following	string:
NameSequence.exec.op:				MyOper	

where	MyOper	is	the	name	of	operation.
2.	 Input	a	custom	parameter	for	this	operation	in	the	resource	file,	for

example:
NameSequence.MyOper.Tolerance:	0.01	

where	Tolerance	is	the	name	of	the	parameter	and	0.01	is	its	value.
3.	 Add	the	following	string	into	void	ShapeProcess_OperLibrary::Init():

ShapeProcess::RegisterOperator(;MyOper;,	

new	ShapeProcess_UOperator(myfunction));	

where	myfunction	is	a	function	which	implements	the	operation.
4.	 Create	this	function	in	ShapeProcess_OperLibrary	as	follows:

static	Standard_Boolean	myfunction	(const	

												Handle(ShapeProcess_Context)&	

context)	

{	

				Handle(ShapeProcess_ShapeContext)	ctx	=	

Handle(ShapeProcess_ShapeContext)::DownCast(c

ontext);	

		if(ctx.IsNull())	return	Standard_False;	

		TopoDS_Shape	aShape	=	ctx->Result();	

		//receive	our	parameter:	

		Standard_Real	toler;	

		ctx->GetReal(;Tolerance;,	toler);

5.	 Make	the	necessary	operations	with	aShape	using	the	received
value	of	parameter	Tolerance	from	the	resource	file.
		return	Standard_True;	

}	

6.	 Define	some	operations	(with	their	parameters)	MyOper1,	MyOper2,
MyOper3,	etc.	and	describe	the	corresponding	functions	in
ShapeProcess_OperLibrary.

7.	 Perform	the	required	sequence	using	the	specified	name	of
operations	and	values	of	parameters	in	the	resource	file.

For	example:	input	of	the	following	string:

NameSequence.exec.op:				MyOper1,MyOper3	

means	that	the	corresponding	functions	from	ShapeProcess_OperLibrary
will	be	performed	with	the	original	shape	aShape	using	parameters
defined	for	MyOper1	and	MyOper3	in	the	resource	file.

It	is	necessary	to	note	that	these	operations	will	be	performed	step	by
step	and	the	result	obtained	after	performing	the	first	operation	will	be

used	as	the	initial	shape	for	the	second	operation.

Operators

DirectFaces

This	operator	sets	all	faces	based	on	indirect	surfaces,	defined	with	left-
handed	coordinate	systems	as	direct	faces.	This	concerns	surfaces
defined	by	Axis	Placement	(Cylinders,	etc).	Such	Axis	Placement	may	be
indirect,	which	is	allowed	in	Cascade,	but	not	allowed	in	some	other
systems.	This	operator	reverses	indirect	placements	and	recomputes
PCurves	accordingly.

SameParameter

This	operator	is	required	after	calling	some	other	operators,	according	to
the	computations	they	do.	Its	call	is	explicit,	so	each	call	can	be	removed
according	to	the	operators,	which	are	either	called	or	not	afterwards.	This
mainly	concerns	splitting	operators	that	can	split	edges.

The	operator	applies	the	computation	SameParameter	which	ensures
that	various	representations	of	each	edge	(its	3d	curve,	the	pcurve	on
each	of	the	faces	on	which	it	lies)	give	the	same	3D	point	for	the	same
parameter,	within	a	given	tolerance.

For	each	edge	coded	as	same	parameter,	deviation	of	curve
representation	is	computed	and	if	the	edge	tolerance	is	less	than
that	deviation,	the	tolerance	is	increased	so	that	it	satisfies	the
deviation.	No	geometry	modification,	only	an	increase	of	tolerance	is
possible.
For	each	edge	coded	as	not	same	parameter	the	deviation	is
computed	as	in	the	first	case.	Then	an	attempt	is	made	to	achieve
the	edge	equality	to	same	parameter	by	means	of	modification	of	2d
curves.	If	the	deviation	of	this	modified	edge	is	less	than	the	original
deviation	then	this	edge	is	returned,	otherwise	the	original	edge	(with
non-modified	2d	curves)	is	returned	with	an	increased	(if	necessary)
tolerance.	Computation	is	done	by	call	to	the	standard	algorithm
BRepLib::SameParameter.

This	operator	can	be	called	with	the	following	parameters:

Boolean	:	Force	(optional)	–	if	True,	encodes	all	edges	as	not	same
parameter	then	runs	the	computation.	Else,	the	computation	is	done
only	for	those	edges	already	coded	as	not	same	parameter.
Real	:	Tolerance3d	(optional)	–	if	not	defined,	the	local	tolerance	of
each	edge	is	taken	for	its	own	computation.	Else,	this	parameter
gives	the	global	tolerance	for	the	whole	shape.

BSplineRestriction

This	operator	is	used	for	conversion	of	surfaces,	curves	2d	curves	to
BSpline	surfaces	with	a	specified	degree	and	a	specified	number	of
spans.	It	performs	approximations	on	surfaces,	curves	and	2d	curves
with	a	specified	degree,	maximum	number	of	segments,	2d	tolerance,	3d
tolerance.	The	specified	continuity	can	be	reduced	if	the	approximation
with	a	specified	continuity	was	not	done	successfully.

This	operator	can	be	called	with	the	following	parameters:

Boolean	:	SurfaceMode	allows	considering	the	surfaces;
Boolean	:	Curve3dMode	allows	considering	the	3d	curves;
Boolean	:	Curve2dMode	allows	considering	the	2d	curves;
Real	:	Tolerance3d	defines	3d	tolerance	to	be	used	in	computation;
Real	:	Tolerance2d	defines	2d	tolerance	to	be	used	when	computing
2d	curves;
GeomAbs_Shape	(C0	G1	C1	G2	C2	CN)	:	Continuity3d	is	the
continuity	required	in	2d;
GeomAbs_Shape	(C0	G1	C1	G2	C2	CN)	:	Continuity2d	is	the
continuity	required	in	3d;
Integer	:	RequiredDegree	gives	the	required	degree;
Integer	:	RequiredNbSegments	gives	the	required	number	of
segments;
Boolean	:	PreferDegree	if	true,	RequiredDegree	has	a	priority,	else
RequiredNbSegments	has	a	priority;
Boolean	:	RationalToPolynomial	serves	for	conversion	of	BSplines	to
polynomial	form;
Integer	:	MaxDegree	gives	the	maximum	allowed	Degree,	if
RequiredDegree	cannot	be	reached;
Integer	:	MaxNbSegments	gives	the	maximum	allowed	NbSegments,
if	RequiredNbSegments	cannot	be	reached.

The	following	flags	allow	managing	the	conversion	of	special	types	of
curves	or	surfaces,	in	addition	to	BSpline.	They	are	controlled	by
SurfaceMode,	Curve3dMode	or	Curve2dMode	respectively;	by	default,
only	BSplines	and	Bezier	Geometries	are	considered:

Boolean	:	OffsetSurfaceMode
Boolean	:	LinearExtrusionMode
Boolean	:	RevolutionMode
Boolean	:	OffsetCurve3dMode
Boolean	:	OffsetCurve2dMode
Boolean	:	PlaneMode
Boolean	:	BezierMode
Boolean	:	ConvCurve3dMode
Boolean	:	ConvCurve2dMode

For	each	of	the	Mode	parameters	listed	above,	if	it	is	True,	the	specified
geometry	is	converted	to	BSpline,	otherwise	only	its	basic	geometry	is
checked	and	converted	(if	necessary)	keeping	the	original	type	of
geometry	(revolution,	offset,	etc).

Boolean	:SegmentSurfaceMode	has	effect	only	for	Bsplines	and
Bezier	surfaces.	When	False	a	surface	will	be	replaced	by	a
Trimmed	Surface,	else	new	geometry	will	be	created	by	splitting	the
original	Bspline	or	Bezier	surface.

ElementaryToRevolution

This	operator	converts	elementary	periodic	surfaces	to
SurfaceOfRevolution.

SplitAngle

This	operator	splits	surfaces	of	revolution,	cylindrical,	toroidal,	conical,
spherical	surfaces	in	the	given	shape	so	that	each	resulting	segment
covers	not	more	than	the	defined	number	of	degrees.

It	can	be	called	with	the	following	parameters:

Real	:	Angle	–	the	maximum	allowed	angle	for	resulting	faces;
Real	:	MaxTolerance	–	the	maximum	tolerance	used	in

computations.

SurfaceToBSpline

This	operator	converts	some	specific	types	of	Surfaces,	to	BSpline
(according	to	parameters).	It	can	be	called	with	the	following	parameters:

Boolean	:	LinearExtrusionMode	allows	converting	surfaces	of	Linear
Extrusion;
Boolean	:	RevolutionMode	allows	converting	surfaces	of	Revolution;
Boolean	:	OffsetMode	allows	converting	Offset	Surfaces

ToBezier

This	operator	is	used	for	data	supported	as	Bezier	only	and	converts
various	types	of	geometries	to	Bezier.	It	can	be	called	with	the	following
parameters	used	in	computation	of	conversion	:

Boolean	:	SurfaceMode
Boolean	:	Curve3dMode
Boolean	:	Curve2dMode
Real	:	MaxTolerance
Boolean	:	SegmentSurfaceMode	(default	is	True)	has	effect	only	for
Bsplines	and	Bezier	surfaces.	When	False	a	surface	will	be	replaced
by	a	Trimmed	Surface,	else	new	geometry	will	be	created	by	splitting
the	original	Bspline	or	Bezier	surface.

The	following	parameters	are	controlled	by	SurfaceMode,	Curve3dMode
or	Curve2dMode	(according	to	the	case):

Boolean	:	Line3dMode
Boolean	:	Circle3dMode
Boolean	:	Conic3dMode
Boolean	:	PlaneMode
Boolean	:	RevolutionMode
Boolean	:	ExtrusionMode
Boolean	:	BSplineMode

SplitContinuity

This	operator	splits	a	shape	in	order	to	have	each	geometry	(surface,
curve	3d,	curve	2d)	correspond	the	given	criterion	of	continuity.	It	can	be
called	with	the	following	parameters:

Real	:	Tolerance3d
Integer	(GeomAbs_Shape)	:	CurveContinuity
Integer	(GeomAbs_Shape)	:	SurfaceContinuity
Real	:	MaxTolerance

Because	of	algorithmic	limitations	in	the	operator	BSplineRestriction	(in
some	particular	cases,	this	operator	can	produce	unexpected	C0
geometry),	if	SplitContinuity	is	called,	it	is	recommended	to	call	it	after
BSplineRestriction.	Continuity	Values	will	be	set	as	GeomAbs_Shape
(i.e.	C0	G1	C1	G2	C2	CN)	besides	direct	integer	values	(resp.	0	1	2	3	4
5).

SplitClosedFaces

This	operator	splits	faces,	which	are	closed	even	if	they	are	not
revolutionary	or	cylindrical,	conical,	spherical,	toroidal.	This	corresponds
to	BSpline	or	Bezier	surfaces	which	can	be	closed	(whether	periodic	or
not),	hence	they	have	a	seam	edge.	As	a	result,	no	more	seam	edges
remain.	The	number	of	points	allows	to	control	the	minimum	count	of
faces	to	be	produced	per	input	closed	face.

This	operator	can	be	called	with	the	following	parameters:

Integer	:	NbSplitPoints	gives	the	number	of	points	to	use	for	splitting
(the	number	of	intervals	produced	is	NbSplitPoints+1);
Real	:	CloseTolerance	tolerance	used	to	determine	if	a	face	is
closed;
Real	:	MaxTolerance	is	used	in	the	computation	of	splitting.

FixGaps

This	operator	must	be	called	when	FixFaceSize	and/or	DropSmallEdges
are	called.	Using	Surface	Healing	may	require	an	additional	call	to
BSplineRestriction	to	ensure	that	modified	geometries	meet	the
requirements	for	BSpline.	This	operators	repairs	geometries	which
contain	gaps	between	edges	in	wires	(always	performed)	or	gaps	on

faces,	controlled	by	parameter	SurfaceMode,	Gaps	on	Faces	are	fixed	by
using	algorithms	of	Surface	Healing	This	operator	can	be	called	with	the
following	parameters:

Real	:	Tolerance3d	sets	the	tolerance	to	reach	in	3d.	If	a	gap	is	less
than	this	value,	it	is	not	fixed.
Boolean	:	SurfaceMode	sets	the	mode	of	fixing	gaps	between	edges
and	faces	(yes/no)	;
Integer	:	SurfaceAddSpans	sets	the	number	of	spans	to	add	to	the
surface	in	order	to	fix	gaps	;
GeomAbs_Shape	(C0	G1	C1	G2	C2	CN)	:	SurfaceContinuity	sets
the	minimal	continuity	of	a	resulting	surface	;
Integer	:	NbIterations	sets	the	number	of	iterations
Real	:	Beta	sets	the	elasticity	coefficient	for	modifying	a	surface	[1-
1000]	;
Reals	:	Coeff1	to	Coeff6	sets	energy	coefficients	for	modifying	a
surface	[0-10000]	;
Real	:	MaxDeflection	sets	maximal	deflection	of	surface	from	an	old
position.

This	operator	may	change	the	original	geometry.	In	addition,	it	is	CPU
consuming,	and	it	may	fail	in	some	cases.	Also	FixGaps	can	help	only
when	there	are	gaps	obtained	as	a	result	of	removal	of	small	edges	that
can	be	removed	by	DropSmallEdges	or	FixFaceSize.

FixFaceSize

This	operator	removes	faces,	which	are	small	in	all	directions	(spot	face)
or	small	in	one	direction	(strip	face).	It	can	be	called	with	the	parameter
Real	:	Tolerance,	which	sets	the	minimal	dimension,	which	is	used	to
consider	a	face,	is	small	enough	to	be	removed.

DropSmallEdges

This	operator	drops	edges	in	a	wire,	and	merges	them	with	adjacent
edges,	when	they	are	smaller	than	the	given	value	(Tolerance3d)	and
when	the	topology	allows	such	merging	(i.e.	same	adjacent	faces	for
each	of	the	merged	edges).	Free	(non-shared	by	adjacent	faces)	small
edges	can	be	also	removed	in	case	if	they	share	the	same	vertex
Parameters.

It	can	be	called	with	the	parameter	Real	:	Tolerance3d,	which	sets	the
dimension	used	to	determine	if	an	edge	is	small.

FixShape

This	operator	may	be	added	for	fixing	invalid	shapes.	It	performs	various
checks	and	fixes,	according	to	the	modes	listed	hereafter.	Management
of	a	set	of	fixes	can	be	performed	by	flags	as	follows:

if	the	flag	for	a	fixing	tool	is	set	to	0	,	it	is	not	performed;
if	set	to	1	,	it	is	performed	in	any	case;
if	not	set,	or	set	to	-1	,	for	each	shape	to	be	applied	on,	a	check	is
done	to	evaluate	whether	a	fix	is	needed.	The	fix	is	performed	if	the
check	is	positive.

By	default,	the	flags	are	not	set,	the	checks	are	carried	out	each
individual	shape.

This	operator	can	be	called	with	the	following	parameters:

Real	:	Tolerance3d	sets	basic	tolerance	used	for	fixing;
Real	:	MaxTolerance3d	sets	maximum	allowed	value	for	the	resulting
tolerance;
Real	:	MinTolerance3d	sets	minimum	allowed	value	for	the	resulting
tolerance.
Boolean	:	FixFreeShellMode
Boolean	:	FixFreeFaceMode
Boolean	:	FixFreeWireMode
Boolean	:	FixSameParameterMode
Boolean	:	FixSolidMode
Boolean	:	FixShellMode
Boolean	:	FixFaceMode
Boolean	:	FixWireMode
Boolean	:	FixOrientationMode
Boolean	:	FixMissingSeamMode
Boolean	:	FixSmallAreaWireMode
Boolean	(not	checked)	:	ModifyTopologyMode	specifies	the	mode	for
modifying	topology.	Should	be	False	(default)	for	shapes	with	shells
and	can	be	True	for	free	faces.
Boolean	(not	checked)	:	ModifyGeometryMode	specifies	the	mode
for	modifying	geometry.	Should	be	False	if	geometry	is	to	be	kept

and	True	if	it	can	be	modified.
Boolean	(not	checked)	:	ClosedWireMode	specifies	the	mode	for
wires.	Should	be	True	for	wires	on	faces	and	False	for	free	wires.
Boolean	(not	checked)	:	PreferencePCurveMode	(not	used)	specifies
the	preference	of	3d	or	2d	representations	for	an	edge
Boolean	:	FixReorderMode
Boolean	:	FixSmallMode
Boolean	:	FixConnectedMode
Boolean	:	FixEdgeCurvesMode
Boolean	:	FixDegeneratedMode
Boolean	:	FixLackingMode
Boolean	:	FixSelfIntersectionMode
Boolean	:	FixGaps3dMode
Boolean	:	FixGaps2dMode
Boolean	:	FixReversed2dMode
Boolean	:	FixRemovePCurveMode
Boolean	:	FixRemoveCurve3dMode
Boolean	:	FixAddPCurveMode
Boolean	:	FixAddCurve3dMode
Boolean	:	FixSeamMode
Boolean	:	FixShiftedMode
Boolean	:	FixEdgeSameParameterMode
Boolean	:	FixSelfIntersectingEdgeMode
Boolean	:	FixIntersectingEdgesMode
Boolean	:	FixNonAdjacentIntersectingEdgesMode

SplitClosedEdges

This	operator	handles	closed	edges	i.e.	edges	with	one	vertex.	Such
edges	are	not	supported	in	some	receiving	systems.	This	operator	splits
topologically	closed	edges	(i.e.	edges	having	one	vertex)	into	two	edges.
Degenerated	edges	and	edges	with	a	size	of	less	than	Tolerance	are	not
processed.

Messaging	mechanism
Various	messages	about	modification,	warnings	and	fails	can	be
generated	in	the	process	of	shape	fixing	or	upgrade.	The	messaging
mechanism	allows	generating	messages,	which	will	be	sent	to	the
chosen	target	medium	a	file	or	the	screen.	The	messages	may	report
failures	and/or	warnings	or	provide	information	on	events	such	as
analysis,	fixing	or	upgrade	of	shapes.

Message	Gravity
Enumeration	Message_Gravity	is	used	for	defining	message	gravity.	It
provides	the	following	message	statuses:

Message_FAIL	–	the	message	reports	a	fail;
Message_WARNING	–	the	message	reports	a	warning;
Message_INFO	–	the	message	supplies	information.

Tool	for	loading	a	message	file	into	memory
Class	Message_MsgFile	allows	defining	messages	by	loading	a	custom
message	file	into	memory.	It	is	necessary	to	create	a	custom	message
file	before	loading	it	into	memory,	as	its	path	will	be	used	as	the	argument
to	load	it.	Each	message	in	the	message	file	is	identified	by	a	key.	The
user	can	get	the	text	content	of	the	message	by	specifying	the	message
key.

Format	of	the	message	file

The	message	file	is	an	ASCII	file,	which	defines	a	set	of	messages.	Each
line	of	the	file	must	have	a	length	of	less	than	255	characters.	All	lines	in
the	file	starting	with	the	exclamation	sign	(perhaps	preceded	by	spaces
and/or	tabs)	are	considered	as	comments	and	are	ignored.	A	message
file	may	contain	several	messages.	Each	message	is	identified	by	its	key
(string).	Each	line	in	the	file	starting	with	the	dot	character	(perhaps
preceded	by	spaces	and/or	tabs)	defines	the	key.	The	key	is	a	string
starting	with	a	symbol	placed	after	the	dot	and	ending	with	the	symbol
preceding	the	ending	of	the	newline	character	\n.	All	lines	in	the	file	after
the	key	and	before	the	next	keyword	(and	which	are	not	comments)
define	the	message	for	that	key.	If	the	message	consists	of	several	lines,
the	message	string	will	contain	newline	symbols	\n	between	each	line
(but	not	at	the	end).

The	following	example	illustrates	the	structure	of	a	message	file:

!This	is	a	sample	message	file	

!------------------------------	

!Messages	for	ShapeAnalysis	package	

!	

.SampleKeyword	

Your	message	string	goes	here	

!	

!...	

!	

!End	of	the	message	file	

Loading	the	message	file

A	custom	file	can	be	loaded	into	memory	using	the	method
Message_MsgFile::LoadFile,	taking	as	an	argument	the	path	to	your	file
as	in	the	example	below:

Standard_CString	MsgFilePath	=	;(path)/sample.file;;	

Message_MsgFile::LoadFile	(MsgFilePath);	

Tool	for	managing	filling	messages
The	class	Message_Msg	allows	using	the	message	file	loaded	as	a
template.	This	class	provides	a	tool	for	preparing	the	message,	filling	it
with	parameters,	storing	and	outputting	to	the	default	trace	file.	A
message	is	created	from	a	key:	this	key	identifies	the	message	to	be
created	in	the	message	file.	The	text	of	the	message	is	taken	from	the
loaded	message	file	(class	Message_MsgFile	is	used).	The	text	of	the
message	can	contain	places	for	parameters,	which	are	to	be	filled	by	the
proper	values	when	the	message	is	prepared.	These	parameters	can	be
of	the	following	types:

string	–	coded	in	the	text	as	%s,
integer	–	coded	in	the	text	as	%d,
real	–	coded	in	the	text	as	%f.	The	parameter	fields	are	filled	by	the
message	text	by	calling	the	corresponding	methods	AddInteger,
AddReal	and	AddString.	Both	the	original	text	of	the	message	and
the	input	text	with	substituted	parameters	are	stored	in	the	object.
The	prepared	and	filled	message	can	be	output	to	the	default	trace
file.	The	text	of	the	message	(either	original	or	filled)	can	be	also
obtained.
Message_Msg	msg01	(;SampleKeyword;);	

//Creates	the	message	msg01,	identified	in	the	

file	by	the	keyword	SampleKeyword	

msg1.AddInteger	(73);	

msg1.AddString	(;SampleFile;);	

//fills	out	the	code	areas	

Tool	for	managing	trace	files
Class	Message_TraceFile	is	intended	to	manage	the	trace	file	(or	stream)
for	outputting	messages	and	the	current	trace	level.	Trace	level	is	an
integer	number,	which	is	used	when	messages	are	sent.	Generally,	0
means	minimum,	>	0	various	levels.	If	the	current	trace	level	is	lower
than	the	level	of	the	message	it	is	not	output	to	the	trace	file.	The	trace
level	is	to	be	managed	and	used	by	the	users.	There	are	two	ways	of
using	trace	files:

define	an	object	of	Message_TraceFile,	with	its	own	definition	(file
name	or	cout,	trace	level),	and	use	it	where	it	is	defined,
use	the	default	trace	file	(file	name	or	cout,	trace	level),	usable	from
anywhere.	Use	the	constructor	method	to	define	the	target	file	and
the	level	of	the	messages	as	in	the	example	below:
Message_TraceFile	myTF	

				(tracelevel,	"tracefile.log",	

Standard_False);	

The	parameters	are	as	follows:
tracelevel	is	a	Standard_Integer	and	modifies	the	level	of	messages.
It	has	the	following	values	and	semantics:

0:	gives	general	information	such	as	the	start	and	end	of
process;
1:	gives	exceptions	raised	and	fail	messages;
2:	gives	the	same	information	as	1	plus	warning	messages.

filename	is	the	string	containing	the	path	to	the	log	file.	The	Boolean
set	to	False	will	rewrite	the	existing	file.	When	set	to	True,	new
messages	will	be	appended	to	the	existing	file.

A	new	default	log	file	can	be	added	using	method	SetDefault	with	the
same	arguments	as	in	the	constructor.	The	default	trace	level	can	be
changed	by	using	method	SetDefLevel.	In	this	way,	the	information
received	in	the	log	file	is	modified.	It	is	possible	to	close	the	log	file	and
set	the	default	trace	output	to	the	screen	display	instead	of	the	log	file
using	the	method	SetDefault	without	any	arguments.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

http://www.doxygen.org/index.html

1.8.13

Table	of	Contents

Introduction
Fundamental	Concepts
Presentation

Structure	of	the
Presentation
Presentation
packages
A	Basic
Example:	How
to	display	a	3D
object

Selection
Terms	and
notions
Algorithm
Packages	and
classes
Examples	of
usage

Application	Interactive
Services
Introduction
Interactive	objects

Presentations
Hidden	Line
Removal
Presentation
modes
Selection
Graphic

Open	CASCADE
Technology		7.2.0

Visualization

attributes
Complementary
Services
Object	hierarchy
Instancing

Interactive	Context
Rules
Groups	of
functions
Management	of
the	Interactive
Context

Local	Selection
Selection	Modes
Filters
Selection

Standard	Interactive
Object	Classes

Datum
Object
Relations
Dimensions
MeshVS_Mesh

Dynamic	Selection
3D	Presentations
Glossary	of	3D	terms
Graphic	primitives

Structure
hierarchies
Graphic
primitives
Primitive	arrays
Text	primitive
Materials
Textures
Shaders

Graphic	attributes
Aspect	package

overview
3D	view	facilities

Overview
A	programming
example
Define	viewing
parameters
Orthographic
Projection
Perspective
Projection
Stereographic
Projection
View	frustum
culling
View
background
styles
Dumping	a	3D
scene	into	an
image	file
Ray	tracing
support
Display
priorities
Z-layer	support
Clipping	planes
Automatic	back
face	culling

Examples:	creating	a
3D	scene

Create
attributes
Create	a	3D
Viewer	(a
Windows
example)
Create	a	3D
view	(a
Windows
example)
Create	an

interactive
context
Create	your	own
interactive
object
Create
primitives	in	the
interactive
object

Mesh	Visualization
Services

Introduction
Visualization	in	Open	CASCADE	Technology	is	based	on	the	separation
of:

on	the	one	hand	–	the	data	which	stores	the	geometry	and	topology
of	the	entities	you	want	to	display	and	select,	and
on	the	other	hand	–	its	presentation	(what	you	see	when	an	object
is	displayed	in	a	scene)	and	selection	(possibility	to	choose	the
whole	object	or	its	sub-parts	interactively	to	apply	application-defined
operations	to	the	selected	entities).

Presentations	are	managed	through	the	Presentation	component,	and
selection	through	the	Selection	component.

Application	Interactive	Services	(AIS)	provides	the	means	to	create
links	between	an	application	GUI	viewer	and	the	packages,	which	are
used	to	manage	selection	and	presentation,	which	makes	management
of	these	functionalities	in	3D	more	intuitive	and	consequently,	more
transparent.

AIS	uses	the	notion	of	the	Interactive	Object,	a	displayable	and
selectable	entity,	which	represents	an	element	from	the	application	data.
As	a	result,	in	3D,	you,	the	user,	have	no	need	to	be	familiar	with	any
functions	underlying	AIS	unless	you	want	to	create	your	own	interactive
objects	or	selection	filters.

If,	however,	you	require	types	of	interactive	objects	and	filters	other	than
those	provided,	you	will	need	to	know	the	mechanics	of	presentable	and
selectable	objects,	specifically	how	to	implement	their	virtual	functions.	To
do	this	requires	familiarity	with	such	fundamental	concepts	as	the
Sensitive	Primitive	and	the	Presentable	Object.

The	the	following	packages	are	used	to	display	3D	objects:

AIS;
StdPrs;
Prs3d;
PrsMgr;

V3d;
Graphic3d.

The	packages	used	to	display	3D	objects	are	also	applicable	for
visualization	of	2D	objects.

The	figure	below	presents	a	schematic	overview	of	the	relations	between
the	key	concepts	and	packages	in	visualization.	Naturally,	"Geometry	&
Topology"	is	just	an	example	of	application	data	that	can	be	handled	by
AIS,	and	application-specific	interactive	objects	can	deal	with	any	kind	of
data.

Key	concepts	and	packages	in	visualization

To	answer	different	needs	of	CASCADE	users,	this	User's	Guide	offers
the	following	three	paths	in	reading	it.

If	the	3D	services	proposed	in	AIS	meet	your	requirements,	you
need	only	read	chapter	3	AIS:	Application	Interactive	Services.
If	you	need	more	detail,	for	example,	a	selection	filter	on	another
type	of	entity	–	you	should	read	chapter	2	Fundamental	Concepts,
chapter	3	AIS:	Application	Interactive	Services,	and	4	3D
Presentations.	You	may	want	to	begin	with	the	chapter	presenting

AIS.

For	advanced	information	on	visualization	algorithms,	see	our	E-learning
&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Fundamental	Concepts
Presentation

In	Open	CASCADE	Technology,	presentation	services	are	separated
from	the	data,	which	they	represent,	which	is	generated	by	applicative
algorithms.	This	division	allows	you	to	modify	a	geometric	or	topological
algorithm	and	its	resulting	objects	without	modifying	the	visualization
services.

Structure	of	the	Presentation

Displaying	an	object	on	the	screen	involves	three	kinds	of	entities:

a	presentable	object,	the	AIS_InteractiveObject
a	viewer
an	interactive	context,	the	AIS_InteractiveContext.

The	presentable	object

The	purpose	of	a	presentable	object	is	to	provide	the	graphical
representation	of	an	object	in	the	form	of	Graphic3d	structure.	On	the	first
display	request,	it	creates	this	structure	by	calling	the	appropriate
algorithm	and	retaining	this	framework	for	further	display.

Standard	presentation	algorithms	are	provided	in	the	StdPrs	and	Prs3d
packages.	You	can,	however,	write	specific	presentation	algorithms	of
your	own,	provided	that	they	create	presentations	made	of	structures
from	the	Graphic3d	packages.	You	can	also	create	several	presentations
of	a	single	presentable	object:	one	for	each	visualization	mode	supported
by	your	application.

Each	object	to	be	presented	individually	must	be	presentable	or
associated	with	a	presentable	object.

The	viewer

The	viewer	allows	interactively	manipulating	views	of	the	object.	When
you	zoom,	translate	or	rotate	a	view,	the	viewer	operates	on	the	graphic
structure	created	by	the	presentable	object	and	not	on	the	data	model	of
the	application.	Creating	Graphic3d	structures	in	your	presentation
algorithms	allows	you	to	use	the	3D	viewers	provided	in	Open	CASCADE
Technology	for	3D	visualisation.

The	Interactive	Context

The	interactive	context	controls	the	entire	presentation	process	from	a
common	high-level	API.	When	the	application	requests	the	display	of	an
object,	the	interactive	context	requests	the	graphic	structure	from	the
presentable	object	and	sends	it	to	the	viewer	for	displaying.

Presentation	packages

Presentation	involves	at	least	the	AIS,	PrsMgr,	StdPrs	and	V3d
packages.	Additional	packages,	such	as	Prs3d	and	Graphic3d	may	be
used	if	you	need	to	implement	your	own	presentation	algorithms.

AIS	package	provides	all	classes	to	implement	interactive	objects
(presentable	and	selectable	entities).
PrsMgr	package	provides	low	level	services	and	is	only	to	be	used
when	you	do	not	want	to	use	the	services	provided	by	AIS.	It
contains	all	classes	needed	to	implement	the	presentation	process:
abstract	classes	Presentation	and	PresentableObject	and	concrete
class	PresentationManager3d.
StdPrs	package	provides	ready-to-use	standard	presentation
algorithms	for	specific	geometries:	points,	curves	and	shapes	of	the
geometry	and	topology	toolkits.
Prs3d	package	provides	generic	presentation	algorithms	such	as
wireframe,	shading	and	hidden	line	removal	associated	with	a
Drawer	class,	which	controls	the	attributes	of	the	presentation	to	be
created	in	terms	of	color,	line	type,	thickness,	etc.
V3d	package	provides	the	services	supported	by	the	3D	viewer.
Graphic3d	package	provides	resources	to	create	3D	graphic
structures.
Visual3d	package	contains	classes	implementing	commands	for	3D
viewer.
DsgPrs	package	provides	tools	for	display	of	dimensions,	relations

and	XYZ	trihedrons.

A	Basic	Example:	How	to	display	a	3D	object

Handle(V3d_Viewer)	theViewer;

Handle(AIS_InteractiveContext)	aContext	=	new	

AIS_InteractiveContext	(theViewer);

BRepPrimAPI_MakeWedge	aWedgeMaker	(theWedgeDX,	

theWedgeDY,	theWedgeDZ,	theWedgeLtx);

TopoDS_Solid	aShape	=	aWedgeMaker.Solid();

Handle(AIS_Shape)	aShapePrs	=	new	AIS_Shape	(aShape);	

//	creation	of	the	presentable	object

aContext->Display	(aShapePrs);	//	display	the	

presentable	object	in	the	3d	viewer

The	shape	is	created	using	the	BRepPrimAPI_MakeWedge	command.
An	AIS_Shape	is	then	created	from	the	shape.	When	calling	the	Display
command,	the	interactive	context	calls	the	Compute	method	of	the
presentable	object	to	calculate	the	presentation	data	and	transfer	it	to	the
viewer.	See	figure	below.

uses	algorithms	of	Prs3D	
and	StdPrs	packages	to	

Class	AIS_Shape	
Compute()

create	Graphics3d	structure	

Topological	Object

StdPrs	and	Prs3d	packages	
Contain	various	algorithms	

to	transform	object	structures	
into	Graphics3d	structures	

Declares	Compute()	method	

Deferred	class	
AIS_InteractiveObject

uses

inherits

Object	presentation

Class	PresentationManager3d
calls	Compute()	method	of	AIS_InteractiveObject
to	obtain	Graphics3d	structure

deals	withcalls
Compute()

Creation	of
AIS_Shape

Creation	of
topological

object

Processes	involved	in	displaying	a	presentable	shape

Selection
Standard	OCCT	selection	algorithm	is	represented	by	2	parts:	dynamic
and	static.	Dynamic	selection	causes	objects	to	be	automatically
highlighted	as	the	mouse	cursor	moves	over	them.	Static	selection	allows
to	pick	particular	object	(or	objects)	for	further	processing.

There	are	3	different	selection	types:

Point	selection	–	allows	picking	and	highlighting	a	single	object	(or
its	part)	located	under	the	mouse	cursor;
Rectangle	selection	–	allows	picking	objects	or	parts	located	under
the	rectangle	defined	by	the	start	and	end	mouse	cursor	positions;
Polyline	selection	–	allows	picking	objects	or	parts	located	under	a
user-defined	non-self-intersecting	polyline.

For	OCCT	selection	algorithm,	all	selectable	objects	are	represented	as	a
set	of	sensitive	zones,	called	sensitive	entities.	When	the	mouse	cursor
moves	in	the	view,	the	sensitive	entities	of	each	object	are	analyzed	for
collision.

Terms	and	notions

This	section	introduces	basic	terms	and	notions	used	throughout	the
algorithm	description.

Sensitive	entity

Sensitive	entities	in	the	same	way	as	entity	owners	are	links	between
objects	and	the	selection	mechanism.

The	purpose	of	entities	is	to	define	what	parts	of	the	object	will	be
selectable	in	particular.	Thus,	any	object	that	is	meant	to	be	selectable
must	be	split	into	sensitive	entities	(one	or	several).	For	instance,	to	apply
face	selection	to	an	object	it	is	necessary	to	explode	it	into	faces	and	use
them	for	creation	of	a	sensitive	entity	set.

Example	of	a	shape	divided	into	sensitive	entities

Depending	on	the	user's	needs,	sensitive	entities	may	be	atomic	(point	or
edge)	or	complex.	Complex	entities	contain	many	sub-elements	that	can
be	handled	by	detection	mechanism	in	a	similar	way	(for	example,	a
polyline	stored	as	a	set	of	line	segments	or	a	triangulation).

Entities	are	used	as	internal	units	of	the	selection	algorithm	and	do	not
contain	any	topological	data,	hence	they	have	a	link	to	an	upper-level
interface	that	maintains	topology-specific	methods.

Entity	owner

Each	sensitive	entity	stores	a	reference	to	its	owner,	which	is	a	class
connecting	the	entity	and	the	corresponding	selectable	object.	Besides,
owners	can	store	any	additional	information,	for	example,	the	topological
shape	of	the	sensitive	entity,	highlight	colors	and	methods,	or	if	the	entity
is	selected	or	not.

Selection

To	simplify	the	handling	of	different	selection	modes	of	an	object,
sensitive	entities	linked	to	their	owners	are	organized	into	sets,	called
selections.	Each	selection	contains	entities	created	for	a	certain	mode
along	with	the	sensitivity	and	update	states.

Selectable	object

Selectable	object	stores	information	about	all	created	selection	modes

and	sensitive	entities.

All	successors	of	a	selectable	object	must	implement	the	method	that
splits	its	presentation	into	sensitive	entities	according	to	the	given	mode.
The	computed	entities	are	arranged	in	one	selection	and	added	to	the	list
of	all	selections	of	this	object.	No	selection	will	be	removed	from	the	list
until	the	object	is	deleted	permanently.

For	all	standard	OCCT	shapes,	zero	mode	is	supposed	to	select	the
whole	object	(but	it	may	be	redefined	easily	in	the	custom	object).	For
example,	the	standard	OCCT	selection	mechanism	and	AIS_Shape
determine	the	following	modes:

0	–	selection	of	entire	object	(AIS_Shape);
1	–	selection	of	the	vertices;
2	–	selection	of	the	edges;
3	–	selection	of	the	wires;
4	–	selection	of	the	faces;
5	–	selection	of	the	shells;
6	–	selection	of	the	constituent	solids.

Hierarchy	of	references	from	sensitive	entity	to	selectable	object

The	principle	of	entities	organization	within	the	selectable	object

Viewer	selector

For	each	OCCT	viewer	there	is	a	Viewer	selector	class	instance.	It
provides	a	high-level	API	for	the	whole	selection	algorithm	and
encapsulates	the	processing	of	objects	and	sensitive	entities	for	each
mouse	pick.	The	viewer	selector	maintains	activation	and	deactivation	of
selection	modes,	launches	the	algorithm,	which	detects	candidate	entities
to	be	picked,	and	stores	its	results,	as	well	as	implements	an	interface	for
keeping	selection	structures	up-to-date.

Selection	manager

Selection	manager	is	a	high-level	API	to	manipulate	selection	of	all
displayed	objects.	It	handles	all	viewer	selectors,	activates	and
deactivates	selection	modes	for	the	objects	in	all	or	particular	selectors,
manages	computation	and	update	of	selections	for	each	object.
Moreover,	it	keeps	selection	structures	updated	taking	into	account
applied	changes.

The	relations	chain	between	viewer	selector	and	selection	manager

Algorithm

All	three	types	of	OCCT	selection	are	implemented	as	a	single	concept,
based	on	the	search	for	overlap	between	frustum	and	sensitive	entity
through	3-level	BVH	tree	traversal.

Selection	Frustum

The	first	step	of	each	run	of	selection	algorithm	is	to	build	the	selection
frustum	according	to	the	currently	activated	selection	type.

For	the	point	or	the	rectangular	selection	the	base	of	the	frustum	is	a
rectangle	built	in	conformity	with	the	pixel	tolerance	or	the	dimensions	of
a	user-defined	area,	respectively.	For	the	polyline	selection,	the	polygon
defined	by	the	constructed	line	is	triangulated	and	each	triangle	is	used
as	the	base	for	its	own	frustum.	Thus,	this	type	of	selection	uses	a	set	of
triangular	frustums	for	overlap	detection.

The	frustum	length	is	limited	by	near	and	far	view	volume	planes	and
each	plane	is	built	parallel	to	the	corresponding	view	volume	plane.

The	image	above	shows	the	rectangular	frustum:	a)	after	mouse	move	or
click,	b)	after	applying	the	rectangular	selection.

In	the	image	above	triangular	frustum	is	set:	a)	by	a	user-defined
polyline,	b)	by	triangulation	of	the	polygon	based	on	the	given	polyline,	c)
by	a	triangular	frustum	based	on	one	of	the	triangles.

BVH	trees

To	maintain	selection	mechanism	at	the	viewer	level,	a	speedup	structure
composed	of	3	BVH	trees	is	used.

The	first	level	tree	is	constructed	of	axis-aligned	bounding	boxes	of	each
selectable	object.	Hence,	the	root	of	this	tree	contains	the	combination	of
all	selectable	boundaries	even	if	they	have	no	currently	activated
selections.	Objects	are	added	during	the	display	of	AIS_InteractiveObject
and	will	be	removed	from	this	tree	only	when	the	object	is	destroyed.	The
1st	level	BVH	tree	is	build	on	demand	simultaneously	with	the	first	run	of
the	selection	algorithm.

The	second	level	BVH	tree	consists	of	all	sensitive	entities	of	one
selectable	object.	The	2nd	level	trees	are	built	automatically	when	the
default	mode	is	activated	and	rebuilt	whenever	a	new	selection	mode	is
calculated	for	the	first	time.

The	third	level	BVH	tree	is	used	for	complex	sensitive	entities	that
contain	many	elements:	for	example,	triangulations,	wires	with	many
segments,	point	sets,	etc.	It	is	built	on	demand	for	sensitive	entities	with
under	800K	sub-elements.

Selection	BVH	tree	hierarchy:	from	the	biggest	object-level	(first)	to
the	smallest	complex	entity	level	(third)

Stages	of	the	algorithm

The	algorithm	includes	pre-processing	and	three	main	stages.

Pre-processing

Implies	calculation	of	the	selection	frustum	and	its	main	characteristics.

First	stage	–	traverse	of	the	first	level	BVH	tree

After	successful	building	of	the	selection	frustum,	the	algorithm	starts
traversal	of	the	object-level	BVH	tree.	The	nodes	containing	axis-aligned
bounding	boxes	are	tested	for	overlap	with	the	selection	frustum	following
the	terms	of	separating	axis	theorem	(SAT).	When	the	traversal	goes
down	to	the	leaf	node,	it	means	that	a	candidate	object	with	possibly
overlapping	sensitive	entities	has	been	found.	If	no	such	objects	have
been	detected,	the	algorithm	stops	and	it	is	assumed	that	no	object

needs	to	be	selected.	Otherwise	it	passes	to	the	next	stage	to	process
the	entities	of	the	found	selectable	object.

Second	stage	–	traversal	of	the	second	level	BVH	tree

At	this	stage	it	is	necessary	to	determine	if	there	are	candidates	among
all	sensitive	entities	of	one	object.

First	of	all,	at	this	stage	the	algorithm	checks	if	there	is	any
transformation	applied	for	the	current	object.	If	it	has	its	own	location,
then	the	correspondingly	transformed	frustum	will	be	used	for	further
calculations.	At	the	next	step	the	nodes	of	the	second	level	BVH	tree	of
the	given	object	are	visited	to	search	for	overlapping	leaves.	If	no	such
leafs	have	been	found,	the	algorithm	returns	to	the	second	stage.
Otherwise	it	starts	processing	the	found	entities	by	performing	the
following	checks:

activation	check	-	the	entity	may	be	inactive	at	the	moment	as	it
belongs	to	deactivated	selection;
tolerance	check	-	current	selection	frustum	may	be	too	large	for
further	checks	as	it	is	always	built	with	the	maximum	tolerance
among	all	activated	entities.	Thus,	at	this	step	the	frustum	may	be
scaled.

After	these	checks	the	algorithm	passes	to	the	last	stage.

Third	stage	–	overlap	or	inclusion	test	of	a	particular	sensitive	entity

If	the	entity	is	atomic,	a	simple	SAT	test	is	performed.	In	case	of	a
complex	entity,	the	third	level	BVH	tree	is	traversed.	The	quantitative
characteristics	(like	depth,	distance	to	the	center	of	geometry)	of	matched
sensitive	entities	is	analyzed	and	clipping	planes	are	applied	(if	they	have
been	set).	The	result	of	detection	is	stored	and	the	algorithm	returns	to
the	second	stage.

Packages	and	classes

Selection	is	implemented	as	a	combination	of	various	algorithms	divided
among	several	packages	–	SelectBasics,	Select3D,	SelectMgr	and
StdSelect.

SelectBasics

SelectBasics	package	contains	basic	classes	and	interfaces	for	selection.
The	most	notable	are:

SelectBasics_SensitiveEntity	–	the	base	definition	of	a	sensitive
entity;
SelectBasics_EntityOwner	–	the	base	definition	of	the	an	entity
owner	–	the	link	between	the	sensitive	entity	and	the	object	to	be
selected;
SelectBasics_PickResult	–	the	structure	for	storing	quantitative
results	of	detection	procedure,	for	example,	depth	and	distance	to
the	center	of	geometry;
SelectBasics_SelectingVolumeManager	–	the	interface	for
interaction	with	the	current	selection	frustum.

Each	custom	sensitive	entity	must	inherit	at	least
SelectBasics_SensitiveEntity.

Select3D

Select3D	package	provides	a	definition	of	standard	sensitive	entities,
such	as:

box;
circle;
curve;
face;
group;
point;
segment;
triangle;
triangulation;
wire.

Each	basic	sensitive	entity	inherits	Select3D_SensitiveEntity,	which	is	a
child	class	of	SelectBasics_SensitiveEntity.	The	package	also	contains
two	auxiliary	classes,	Select3D_SensitivePoly	and
Select3D_SensitiveSet.

Select3D_SensitiveSet	–	a	base	class	for	all	complex	sensitive	entities
that	require	the	third	level	BVH	usage.	It	implements	traverse	of	the	tree
and	defines	an	interface	for	the	methods	that	check	sub-entities.

Select3D_SensitivePoly	–	describes	an	arbitrary	point	set	and
implements	basic	functions	for	selection.	It	is	important	to	know	that	this
class	does	not	perform	any	internal	data	checks.	Hence,	custom
implementations	of	sensitive	entity	inherited	from	Select3D_SensitivePoly
must	satisfy	the	terms	of	Separating	Axis	Theorem	to	use	standard
OCCT	overlap	detection	methods.

SelectMgr

SelectMgr	package	is	used	to	maintain	the	whole	selection	process.	For
this	purpose,	the	package	provides	the	following	services:

activation	and	deactivation	of	selection	modes	for	all	selectable
objects;
interfaces	to	compute	selection	mode	of	the	object;
definition	of	selection	filter	classes;
keeping	selection	BVH	data	up-to-date.

A	brief	description	of	the	main	classes:

SelectMgr_FrustumBase,	SelectMgr_Frustum,
SelectMgr_RectangularFrustum,	SelectMgr_TriangluarFrustum	and
SelectMgr_TriangularFrustumSet	–	interfaces	and	implementations
of	selecting	frustums,	these	classes	implement	different	SAT	tests	for
overlap	and	inclusion	detection.	They	also	contain	methods	to
measure	characteristics	of	detected	entities	(depth,	distance	to
center	of	geometry);
SelectMgr_SensitiveEntity,	SelectMgr_Selection	and
SelectMgr_SensitiveEntitySet	–	store	and	handle	sensitive	entities;
SelectMgr_SensitiveEntitySet	implements	a	primitive	set	for	the
second	level	BVH	tree;
SelectMgr_SelectableObject	and	SelectMgr_SelectableObjectSet	–
describe	selectable	objects.	They	also	manage	storage,	calculation
and	removal	of	selections.	SelectMgr_SelectableObjectSet
implements	a	primitive	set	for	the	first	level	BVH	tree;
SelectMgr_ViewerSelector	–	encapsulates	all	logics	of	the	selection

algorithm	and	implements	the	third	level	BVH	tree	traverse;
SelectMgr_SelectionManager	–	manages	activation/deactivation,
calculation	and	update	of	selections	of	every	selectable	object,	and
keeps	BVH	data	up-to-date.

StdSelect

StdSelect	package	contains	the	implementation	of	some	SelectMgr
classes	and	tools	for	creation	of	selection	structures.	For	example,

StdSelect_BRepOwner	–	defines	an	entity	owner	with	a	link	to	its
topological	shape	and	methods	for	highlighting;
StdSelect_BRepSelectionTool	–	contains	algorithms	for	splitting
standard	AIS	shapes	into	sensitive	primitives;
StdSelect_ViewerSelector3d	–	an	example	of
SelectMgr_ViewerSelecor	implementation,	which	is	used	in	a	default
OCCT	selection	mechanism;
StdSelect_FaceFilter,	StdSelect_EdgeFilter	–	implementation	of
selection	filters.

Examples	of	usage

The	first	code	snippet	illustrates	the	implementation	of
SelectMgr_SelectableObject::ComputeSelection()	method	in	a	custom
interactive	object.	The	method	is	used	for	computation	of	user-defined
selection	modes.	Let	us	assume	it	is	required	to	make	a	box	selectable	in
two	modes	–	the	whole	shape	(mode	0)	and	each	of	its	edges	(mode	1).
To	select	the	whole	box,	the	application	can	create	a	sensitive	primitive
for	each	face	of	the	interactive	object.	In	this	case,	all	primitives	share	the
same	owner	–	the	box	itself.	To	select	box's	edge,	the	application	must
create	one	sensitive	primitive	per	edge.	Here	all	sensitive	entities	cannot
share	the	owner	since	different	geometric	primitives	must	be	highlighted
as	the	result	of	selection	procedure.

void	InteractiveBox::ComputeSelection	(const	

Handle(SelectMgr_Selection)&	theSel,

																																							const	

Standard_Integer	theMode)

{

		switch	(theMode)

		{

				case	0:			//	creation	of	face	sensitives	for	

selection	of	the	whole	box

				{

						Handle(SelectMgr_EntityOwner)	anOwner	=	new	

SelectMgr_EntityOwner	(this,	5);

						for	(Standard_Integer	aFaceIter	=	1;	aFaceIter	

<=	myNbFaces;	++aFaceIter)

						{

								Select3D_TypeOfSensitivity	aSensType	=	

myIsInterior;

								theSel->Add	(new		Select3D_SensitiveFace	

(anOwner,	myFaces[aFaceIter]->PointArray(),	

aSensType));

						}

						break;

				}

				case	1:	//	creation	of	edge	sensitives	for	

selection	of	box	edges	only

				{

						for	(Standard_Integer	anEdgeIter	=	1;	

anEdgeIter	<=	12;	++anEdgeIter)

						{

								//	1	owner	per	edge,	where	6	is	a	priority	of	

the	sensitive

								Handle(MySelection_EdgeOwner)	anOwner	=	new	

MySelection_EdgeOwner	(this,	anEdgeIter,	6);

								theSel->Add	(new		Select3D_SensitiveSegment	

(anOwner,	myFirstPnt[anEdgeIter]),	

myLastPnt[anEdgeIter]));

						}

						break;

				}

		}

}

The	algorithms	for	creating	selection	structures	store	sensitive	primitives
in	SelectMgr_Selection	instance.	Each	SelectMgr_Selection	sequence	in
the	list	of	selections	of	the	object	must	correspond	to	a	particular
selection	mode.	To	describe	the	decomposition	of	the	object	into
selectable	primitives,	a	set	of	ready-made	sensitive	entities	is	supplied	in
Select3D	package.	Custom	sensitive	primitives	can	be	defined	through
inheritance	from	SelectBasics_SensitiveEntity.	To	make	custom
interactive	objects	selectable	or	customize	selection	modes	of	existing
objects,	the	entity	owners	must	be	defined.	They	must	inherit
SelectMgr_EntityOwner	interface.

Selection	structures	for	any	interactive	object	are	created	in
SelectMgr_SelectableObject::ComputeSelection()	method.	The	example
below	shows	how	computation	of	different	selection	modes	of	the
topological	shape	can	be	done	using	standard	OCCT	mechanisms,
implemented	in	StdSelect_BRepSelectionTool.

void	MyInteractiveObject::ComputeSelection	(const	

Handle(SelectMgr_Selection)&	theSelection,

																																												const	

Standard_Integer	theMode)

{

		switch	(theMode)

		{

				case	0:	StdSelect_BRepSelectionTool::Load	

(theSelection,	this,	myShape,	TopAbs_SHAPE);		

break;

				case	1:	StdSelect_BRepSelectionTool::Load	

(theSelection,	this,	myShape,	TopAbs_VERTEX);	

break;

				case	2:	StdSelect_BRepSelectionTool::Load	

(theSelection,	this,	myShape,	TopAbs_EDGE);			

break;

				case	3:	StdSelect_BRepSelectionTool::Load	

(theSelection,	this,	myShape,	TopAbs_WIRE);			

break;

				case	4:	StdSelect_BRepSelectionTool::Load	

(theSelection,	this,	myShape,	TopAbs_FACE);			

break;

		}

}

The	StdSelect_BRepSelectionTool	class	provides	a	high	level	API	for
computing	sensitive	entities	of	the	given	type	(for	example,	face,	vertex,
edge,	wire	and	others)	using	topological	data	from	the	given
TopoDS_Shape.

The	traditional	way	of	highlighting	selected	entity	owners	adopted	by
Open	CASCADE	Technology	assumes	that	each	entity	owner	highlights
itself	on	its	own.	This	approach	has	two	drawbacks:

each	entity	owner	has	to	maintain	its	own	Prs3d_Presentation
object,	that	results	in	a	considerable	memory	overhead;
drawing	selected	owners	one	by	one	is	not	efficient	from	the
visualization	point	of	view.

Therefore,	to	overcome	these	limitations,	OCCT	has	an	alternative	way
to	implement	the	highlighting	of	a	selected	presentation.	Using	this
approach,	the	interactive	object	itself	will	be	responsible	for	the
highlighting,	not	the	entity	owner.

On	the	basis	of	SelectMgr_EntityOwner::IsAutoHilight()	return	value,
AIS_InteractiveContext	object	either	uses	the	traditional	way	of
highlighting	(in	case	if	IsAutoHilight()	returns	TRUE)	or	groups	such
owners	according	to	their	selectable	objects	and	finally	calls
SelectMgr_SelectableObject::HilightSelected()	or
SelectMgr_SelectableObject::ClearSelected(),	passing	a	group	of	owners
as	an	argument.

Hence,	an	application	can	derive	its	own	interactive	object	and	redefine
virtual	methods	HilightSelected(),	ClearSelected()	and
HilightOwnerWithColor()	from	SelectMgr_SelectableObject.
SelectMgr_SelectableObject::GetHilightPresentation	and
SelectMgr_SelectableObject::GetSelectPresentation	methods	can	be
used	to	optimize	filling	of	selection	and	highlight	presentations	according
to	the	user's	needs.	The	AIS_InteractiveContext::HighlightSelected()
method	can	be	used	for	efficient	redrawing	of	the	selection	presentation
for	a	given	interactive	object	from	an	application	code.

After	all	the	necessary	sensitive	entities	are	computed	and	packed	in

SelectMgr_Selection	instance	with	the	corresponding	owners	in	a
redefinition	of	SelectMgr_SelectableObject::ComputeSelection()	method,
it	is	necessary	to	register	the	prepared	selection	in
SelectMgr_SelectionManager	through	the	following	steps:

if	there	was	no	AIS_InteractiveContext	opened,	create	an	interactive
context	and	display	the	selectable	object	in	it;
load	the	selectable	object	to	the	selection	manager	of	the	interactive
context	using	AIS_InteractiveContext::Load()	method.	If	the	selection
mode	passed	as	a	parameter	to	this	method	is	not	equal	to	-1,
ComputeSelection()	for	this	selection	mode	will	be	called;
activate	or	deactivate	the	defined	selection	mode	using
AIS_InteractiveContext::Activate()	or
AIS_InteractiveContext::Deactivate()	methods.

After	these	steps,	the	selection	manager	of	the	created	interactive
context	will	contain	the	given	object	and	its	selection	entities,	and	they
will	be	involved	in	the	detection	procedure.

The	code	snippet	below	illustrates	the	above	steps.	It	also	contains	the
code	to	start	the	detection	procedure	and	parse	the	results	of	selection.

//	Suppose	there	is	an	instance	of	class	

InteractiveBox	from	the	previous	sample.

//	It	contains	an	implementation	of	method	

InteractiveBox::ComputeSelection()	for	selection

//	modes	0	(whole	box	must	be	selected)	and	1	(edge	

of	the	box	must	be	selectable)

Handle(InteractiveBox)	theBox;

Handle(AIS_InteractiveContext)	theContext;

//	To	prevent	automatic	activation	of	the	default	

selection	mode

theContext->SetAutoActivateSelection	(false);

theContext->Display	(theBox,	false);

//	Load	a	box	to	the	selection	manager	without	

computation	of	any	selection	mode

theContext->Load	(theBox,	-1,	true);

//	Activate	edge	selection

theContext->Activate	(theBox,	1);

//	Run	the	detection	mechanism	for	activated	entities	

in	the	current	mouse	coordinates	and	in	the	

current	view.

//	Detected	owners	will	be	highlighted	with	context	

highlight	color

theContext->MoveTo	(aXMousePos,	aYMousePos,	myView);

//	Select	the	detected	owners

theContext->Select();

//	Iterate	through	the	selected	owners

for	(theContext->InitSelected();	theContext-

>MoreSelected()	&&	!aHasSelected;	theContext-

>NextSelected())

{

		Handle(AIS_InteractiveObject)	anIO	=	theContext-

>SelectedInteractive();

}

//	deactivate	all	selection	modes	for	aBox1

theContext->Deactivate	(aBox1);

It	is	also	important	to	know,	that	there	are	2	types	of	detection
implemented	for	rectangular	selection	in	OCCT:

inclusive	detection.	In	this	case	the	sensitive	primitive	is	considered
detected	only	when	all	its	points	are	included	in	the	area	defined	by
the	selection	rectangle;
overlap	detection.	In	this	case	the	sensitive	primitive	is	considered
detected	when	it	is	partially	overlapped	by	the	selection	rectangle.

The	standard	OCCT	selection	mechanism	uses	inclusion	detection	by
default.	To	change	this,	use	the	following	code:

//	Assume	there	is	a	created	interactive	context

const	Handle(AIS_InteractiveContext)	theContext;

//	Retrieve	the	current	viewer	selector

const	Handle(StdSelect_ViewerSelector3d)&	

aMainSelector	=	theContext->MainSelector();

//	Set	the	flag	to	allow	overlap	detection

aMainSelector->AllowOverlapDetection	(true);

Application	Interactive	Services
Introduction

Application	Interactive	Services	allow	managing	presentations	and
dynamic	selection	in	a	viewer	in	a	simple	and	transparent	manner.	The
central	entity	for	management	of	visualization	and	selections	is	the
Interactive	Context.	It	is	connected	to	the	main	viewer.

Interactive	context	by	default	starts	at	Neutral	Point	with	each	selectable
object	picked	as	a	whole,	but	the	user	might	activate	Local	Selection	for
specific	objects	to	make	selectable	parts	of	the	objects.	Local/global
selection	is	managed	by	a	list	of	selection	modes	activated	for	each
displayed	object	with	0	(default	selection	mode)	usually	meaning	Global
(entire	object)	selection.

Interactive	Objects	are	the	entities,	which	are	visualized	and	selected.
You	can	use	classes	of	standard	interactive	objects	for	which	all
necessary	functions	have	already	been	programmed,	or	you	can
implement	your	own	classes	of	interactive	objects,	by	respecting	a
certain	number	of	rules	and	conventions	described	below.

An	Interactive	Object	is	a	"virtual"	entity,	which	can	be	presented	and
selected.	An	Interactive	Object	can	have	a	certain	number	of	specific
graphic	attributes,	such	as	visualization	mode,	color	and	material.	When
an	Interactive	Object	is	visualized,	the	required	graphic	attributes	are
taken	from	its	own	Drawer	(Prs3d_Drawer)	if	it	has	the	required	custom
attributes	or	otherwise	from	the	context	drawer.

It	can	be	necessary	to	filter	the	entities	to	be	selected.	Consequently
there	are	Filter	entities,	which	allow	refining	the	dynamic	detection
context.	Some	of	these	filters	can	be	used	only	within	at	the	Neutral
Point,	others	only	within	Local	Selection.	It	is	possible	to	program	custom
filters	and	load	them	into	the	interactive	context.

Interactive	objects
Entities	which	are	visualized	and	selected	in	the	AIS	viewer	are	objects.
They	connect	the	underlying	reference	geometry	of	a	model	to	its	graphic
representation	in	AIS.	You	can	use	the	predefined	OCCT	classes	of
standard	interactive	objects,	for	which	all	necessary	functions	have
already	been	programmed,	or,	if	you	are	an	advanced	user,	you	can
implement	your	own	classes	of	interactive	objects.

Presentations

An	interactive	object	can	have	as	many	presentations	as	its	creator
wants	to	give	it.	3D	presentations	are	managed	by	Presentation
Manager	(PrsMgr_PresentationManager).	As	this	is	transparent	in	AIS,
the	user	does	not	have	to	worry	about	it.

A	presentation	is	identified	by	an	index	(Display	Mode)	and	by	the
reference	to	the	Presentation	Manager,	which	it	depends	on.	By
convention,	the	default	mode	of	representation	for	the	Interactive	Object
has	index	0.

Calculation	of	different	presentations	of	an	interactive	object	is	done	by
the	Compute	functions	inheriting	from
PrsMgr_PresentableObject::Compute	functions.	They	are	automatically
called	by	PresentationManager	at	a	visualization	or	an	update	request.

If	you	are	creating	your	own	type	of	interactive	object,	you	must
implement	the	Compute	function	in	one	of	the	following	ways:

For	3D:

void	PackageName_ClassName::Compute	(const	

Handle(PrsMgr_PresentationManager3d)&	

thePresentationManager,

																																					const	

Handle(Prs3d_Presentation)&	thePresentation,

																																					const	

Standard_Integer	theMode);

####	For	hidden	line	removal	(HLR)	mode	in	3D:

void	PackageName_ClassName::Compute	(const	

Handle(Prs3d_Projector)&	theProjector,

																																					const	

Handle(Prs3d_Presentation)&	thePresentation);

Hidden	Line	Removal

The	view	can	have	two	states:	the	normal	mode	or	the	computed	mode
(Hidden	Line	Removal	mode).	When	the	latter	is	active,	the	view	looks	for
all	presentations	displayed	in	the	normal	mode,	which	have	been
signalled	as	accepting	HLR	mode.	An	internal	mechanism	allows	calling
the	interactive	object's	own	Compute,	that	is	projector	function.

By	convention,	the	Interactive	Object	accepts	or	rejects	the
representation	of	HLR	mode.	It	is	possible	to	make	this	declaration	in	one
of	two	ways:

Initially	by	using	one	of	the	values	of	the	enumeration
PrsMgr_TypeOfPresentation:

PrsMgr_TOP_AllView,
PrsMgr_TOP_ProjectorDependant

Later	by	using	the	function
PrsMgr_PresentableObject::SetTypeOfPresentation

AIS_Shape	class	is	an	example	of	an	interactive	object	that	supports
HLR	representation.	The	type	of	the	HLR	algorithm	is	stored	in
Prs3d_Drawer	of	the	shape.	It	is	a	value	of	the	Prs3d_TypeOfHLR
enumeration	and	can	be	set	to:

Prs3d_TOH_PolyAlgo	for	a	polygonal	algorithm	based	on	the

shape's	triangulation;
Prs3d_TOH_Algo	for	an	exact	algorithm	that	works	with	the	shape's
real	geometry;
Prs3d_TOH_NotSet	if	the	type	of	algorithm	is	not	set	for	the	given
interactive	object	instance.

The	type	of	the	HLR	algorithm	used	for	AIS_Shape	can	be	changed	by
calling	the	AIS_Shape::SetTypeOfHLR()	method.	The	current	HLR
algorithm	type	can	be	obtained	using	AIS_Shape::TypeOfHLR()	method
is	to	be	used.

These	methods	get	the	value	from	the	drawer	of	AIS_Shape.	If	the	HLR
algorithm	type	in	the	AIS_Drawer	is	set	to	Prs3d_TOH_NotSet,	the
AIS_Drawer	gets	the	value	from	the	default	drawer	of
AIS_InteractiveContext.	So	it	is	possible	to	change	the	default	HLR
algorithm	used	by	all	newly	displayed	interactive	objects.	The	value	of	the
HLR	algorithm	type	stored	in	the	context	drawer	can	be
Prs3d_TOH_Algo	or	Prs3d_TOH_PolyAlgo.	The	polygonal	algorithm	is
the	default	one.

Presentation	modes

There	are	four	types	of	interactive	objects	in	AIS:

the	"construction	element"	or	Datum,
the	Relation	(dimensions	and	constraints)
the	Object
the	None	type	(when	the	object	is	of	an	unknown	type).

Inside	these	categories,	additional	characterization	is	available	by	means
of	a	signature	(an	index.)	By	default,	the	interactive	object	has	a	NONE
type	and	a	signature	of	0	(equivalent	to	NONE).	If	you	want	to	give	a
particular	type	and	signature	to	your	interactive	object,	you	must	redefine
two	virtual	functions:

AIS_InteractiveObject::Type
AIS_InteractiveObject::Signature.

Note	that	some	signatures	are	already	used	by	"standard"	objects
provided	in	AIS	(see	the	List	of	Standard	Interactive	Object	Classes).

The	interactive	context	can	have	a	default	mode	of	representation	for	the
set	of	interactive	objects.	This	mode	may	not	be	accepted	by	a	given
class	of	objects.	Consequently,	to	get	information	about	this	class	it	is
necessary	to	use	virtual	function
AIS_InteractiveObject::AcceptDisplayMode.

Display	Mode

The	functions	AIS_InteractiveContext::SetDisplayMode	and
AIS_InteractiveContext::UnsetDisplayMode	allow	setting	a	custom
display	mode	for	an	objects,	which	can	be	different	from	that	proposed	by
the	interactive	context.

Highlight	Mode

At	dynamic	detection,	the	presentation	echoed	by	the	Interactive	Context,
is	by	default	the	presentation	already	on	the	screen.

The	functions	AIS_InteractiveObject::SetHilightMode	and
AIS_InteractiveObject::UnSetHilightMode	allow	specifying	the	display
mode	used	for	highlighting	(so	called	highlight	mode),	which	is	valid
independently	from	the	active	representation	of	the	object.	It	makes	no
difference	whether	this	choice	is	temporary	or	definitive.

Note	that	the	same	presentation	(and	consequently	the	same	highlight
mode)	is	used	for	highlighting	detected	objects	and	for	highlighting
selected	objects,	the	latter	being	drawn	with	a	special	selection	color
(refer	to	the	section	related	to	Interactive	Context	services).

For	example,	you	want	to	systematically	highlight	the	wireframe
presentation	of	a	shape	-	non	regarding	if	it	is	visualized	in	wireframe
presentation	or	with	shading.	Thus,	you	set	the	highlight	mode	to	0	in	the
constructor	of	the	interactive	object.	Do	not	forget	to	implement	this
representation	mode	in	the	Compute	functions.

Infinite	Status

If	you	do	not	want	an	object	to	be	affected	by	a	FitAll	view,	you	must
declare	it	infinite;	you	can	cancel	its	"infinite"	status	using

AIS_InteractiveObject::SetInfiniteState	and
AIS_InteractiveObject::IsInfinite	functions.

Let	us	take	for	example	the	class	called	IShape	representing	an
interactive	object:

myPk_IShape::myPK_IShape	(const	TopoDS_Shape&	

theShape,	PrsMgr_TypeOfPresentation	theType)

:	AIS_InteractiveObject	(theType),	myShape	(theShape)	

{	SetHilightMode	(0);	}

void	myPk_IShape::Compute	(const	

Handle(PrsMgr_PresentationManager3d)&	thePrsMgr,

																											const	

Handle(Prs3d_Presentation)&	thePrs,

																											const	Standard_Integer	

theMode)

{

		switch	(theMode)

		{

				//	algo	for	calculation	of	wireframe	presentation

				case	0:	StdPrs_WFDeflectionShape::Add	(thePrs,	

myShape,	myDrawer);	return;

				//	algo	for	calculation	of	shading	presentation

				case	1:	StdPrs_ShadedShape::Add	(thePrs,	myShape,	

myDrawer);	return;

		}

}

void	myPk_IShape::Compute	(const	

Handle(Prs3d_Projector)&	theProjector,

																											const	

Handle(Prs3d_Presentation)&	thePrs)

{

		//	Hidden	line	mode	calculation	algorithm

		StdPrs_HLRPolyShape::Add	(thePrs,	myShape,	

myDrawer,	theProjector);

}		

Selection

An	interactive	object	can	have	an	indefinite	number	of	selection	modes,
each	representing	a	"decomposition"	into	sensitive	primitives.	Each
primitive	has	an	Owner	(SelectMgr_EntityOwner)	which	allows	identifying
the	exact	interactive	object	or	shape	which	has	been	detected	(see
Selection	chapter).

The	set	of	sensitive	primitives,	which	correspond	to	a	given	mode,	is
stocked	in	a	Selection	(SelectMgr_Selection).

Each	selection	mode	is	identified	by	an	index.	By	convention,	the	default
selection	mode	that	allows	us	to	grasp	the	interactive	object	in	its	entirety
is	mode	0.	However,	it	can	be	modified	in	the	custom	interactive	objects
using	method	SelectMgr_SelectableObject::setGlobalSelMode().

The	calculation	of	selection	primitives	(or	sensitive	entities)	is	done	in	a
virtual	function	ComputeSelection.	It	should	be	implemented	for	each
type	of	interactive	object	that	is	assumed	to	have	different	selection
modes	using	the	function	AIS_InteractiveObject::ComputeSelection.	A
detailed	explanation	of	the	mechanism	and	the	manner	of	implementing
this	function	has	been	given	in	Selection	chapter.

There	are	some	examples	of	selection	mode	calculation	for	the	most
widely	used	interactive	object	in	OCCT	–	AIS_Shape	(selection	by	vertex,
by	edges,	etc).	To	create	new	classes	of	interactive	objects	with	the	same
selection	behavior	as	AIS_Shape	–	such	as	vertices	and	edges	–	you
must	redefine	the	virtual	function
AIS_InteractiveObject::AcceptShapeDecomposition.

Graphic	attributes

Graphic	attributes	manager,	or	Prs3d_Drawer,	stores	graphic	attributes
for	specific	interactive	objects	and	for	interactive	objects	controlled	by
interactive	context.

Initially,	all	drawer	attributes	are	filled	out	with	the	predefined	values
which	will	define	the	default	3D	object	appearance.	When	an	interactive
object	is	visualized,	the	required	graphic	attributes	are	first	taken	from	its
own	drawer	if	one	exists,	or	from	the	context	drawer	if	no	specific	drawer

for	that	type	of	object	exists.

Keep	in	mind	the	following	points	concerning	graphic	attributes:

Each	interactive	object	can	have	its	own	visualization	attributes.
By	default,	the	interactive	object	takes	the	graphic	attributes	of	the
context	in	which	it	is	visualized	(visualization	mode,	deflection	values
for	the	calculation	of	presentations,	number	of	isoparameters,	color,
type	of	line,	material,	etc.)
In	the	AIS_InteractiveObject	abstract	class,	standard	attributes
including	color,	line	thickness,	material,	and	transparency	have	been
privileged.	Consequently,	there	is	a	certain	number	of	virtual
functions,	which	allow	acting	on	these	attributes.	Each	new	class	of
interactive	object	can	redefine	these	functions	and	change	the
behavior	of	the	class.

AIS_Shape::SetColor Prs3d_Drawer::FreeBoundaryAspect

Prs3d_Drawer::UnFreeBoundaryAspect

Prs3d_Drawer::UIsoAspect

Prs3d_Drawer::VIsoAspect

Prs3d_Drawer::ShadingAspect

Prs3d_Drawer::SeenLineAspect

Prs3d_Drawer::HiddenLineAspect

Change: redefine:

AIS_TextLabel::SetColor Prs3d_Drawer::TextAspectChange: redefine:

Redefinition	of	virtual	functions	for	changes	in	AIS_Shape	and
AIS_TextLabel.

The	following	virtual	functions	provide	settings	for	color,	width,	material
and	transparency:

AIS_InteractiveObject::UnsetColor
AIS_InteractiveObject::SetWidth
AIS_InteractiveObject::UnsetWidth
AIS_InteractiveObject::SetMaterial
AIS_InteractiveObject::UnsetMaterial

AIS_InteractiveObject::SetTransparency
AIS_InteractiveObject::UnsetTransparency

These	methods	can	be	used	as	a	shortcut	assigning	properties	in
common	way,	but	result	might	be	not	available.	Some	interactive	objects
might	not	implement	these	methods	at	all	or	implement	only	a	sub-set	of
them.	Direct	modification	of	Prs3d_Drawer	properties	returned	by
AIS_InteractiveObject::Attributes	can	be	used	for	more	precise	and
predictable	configuration.

It	is	important	to	know	which	functions	may	imply	the	recalculation	of
presentations	of	the	object.	If	the	presentation	mode	of	an	interactive
object	is	to	be	updated,	a	flag	from	PrsMgr_PresentableObject	indicates
this.	The	mode	can	be	updated	using	the	functions	Display	and
Redisplay	in	AIS_InteractiveContext.

Complementary	Services

When	you	use	complementary	services	for	interactive	objects,	pay
special	attention	to	the	cases	mentioned	below.

Change	the	location	of	an	interactive	object

The	following	functions	allow	"moving"	the	representation	and	selection
of	Interactive	Objects	in	a	view	without	recalculation	(and	modification	of
the	original	shape).

AIS_InteractiveContext::SetLocation
AIS_InteractiveContext::ResetLocation
AIS_InteractiveContext::HasLocation
AIS_InteractiveContext::Location

Connect	an	interactive	object	to	an	applicative	entity

Each	Interactive	Object	has	functions	that	allow	attributing	it	an	Owner	in
form	of	a	Transient.

AIS_InteractiveObject::SetOwner
AIS_InteractiveObject::HasOwner
AIS_InteractiveObject::Owner

An	interactive	object	can	therefore	be	associated	or	not	with	an
applicative	entity,	without	affecting	its	behavior.

NOTE:	Don't	be	confused	by	owners	of	another	kind	-
SelectBasics_EntityOwner	used	for	identifying	selectable	parts	of	the
object	or	object	itself.

Resolving	coincident	topology

Due	to	the	fact	that	the	accuracy	of	three-dimensional	graphics
coordinates	has	a	finite	resolution	the	elements	of	topological	objects	can
coincide	producing	the	effect	of	"popping"	some	elements	one	over
another.

To	the	problem	when	the	elements	of	two	or	more	Interactive	Objects	are
coincident	you	can	apply	the	polygon	offset.	It	is	a	sort	of	graphics
computational	offset,	or	depth	buffer	offset,	that	allows	you	to	arrange
elements	(by	modifying	their	depth	value)	without	changing	their
coordinates.	The	graphical	elements	that	accept	this	kind	of	offsets	are
solid	polygons	or	displayed	as	boundary	lines	and	points.	The	polygons
could	be	displayed	as	lines	or	points	by	setting	the	appropriate	interior
style.

The	methods	AIS_InteractiveObject::SetPolygonOffsets	and
AIS_InteractiveContext::SetPolygonOffsets	allow	setting	up	the	polygon
offsets.

Object	hierarchy

Each	PrsMgr_PresentableObject	has	a	list	of	objects	called	myChildren.
Any	transformation	of	PrsMgr_PresentableObject	is	also	applied	to	its
children.	This	hierarchy	does	not	propagate	to	Graphic3d	level	and
below.

PrsMgr_PresentableObject	sends	its	combined	(according	to	the
hierarchy)	transformation	down	to	Graphic3d_Structure.	The	materials	of
structures	are	not	affected	by	the	hierarchy.

Object	hierarchy	can	be	controlled	by	the	following	API	calls:

PrsMgr_PresentableObject::AddChild;
PrsMgr_PresentableObject::RemoveChild.

Instancing

The	conception	of	instancing	operates	the	object	hierarchy	as	follows:

Instances	are	represented	by	separated	AIS	objects.
Instances	do	not	compute	any	presentations.

Classes	AIS_ConnectedInteractive	and
AIS_MultipleConnectedInteractive	are	used	to	implement	this	conception.

AIS_ConnectedInteractive	is	an	object	instance,	which	reuses	the
geometry	of	the	connected	object	but	has	its	own	transformation,
material,	visibility	flag,	etc.	This	connection	is	propagated	down	to
OpenGl	level,	namely	to	OpenGl_Structure.	OpenGl_Structure	can	be
connected	only	to	a	single	other	structure.

AIS_ConnectedInteractive	can	be	referenced	to	any
AIS_InteractiveObject	in	general.	When	it	is	referenced	to	another
AIS_ConnectedInteractive,	it	just	copies	the	reference.

AIS_MultipleConnectedInteractive	represents	an	assembly,	which	does
not	have	its	own	presentation.	The	assemblies	are	able	to	participate	in
the	object	hierarchy	and	are	intended	to	handle	a	grouped	set	of
instanced	objects.	It	behaves	as	a	single	object	in	terms	of	selection.	It
applies	high	level	transformation	to	all	sub-elements	since	it	is	located
above	in	the	hierarchy.

All	AIS_MultipleConnectedInteractive	are	able	to	have	child	assemblies.
Deep	copy	of	object	instances	tree	is	performed	if	one	assembly	is
attached	to	another.

Note	that	AIS_ConnectedInteractive	cannot	reference
AIS_MultipleConnectedInteractive.	AIS_ConnectedInteractive	copies
sensitive	entities	of	the	origin	object	for	selection,	unlike
AIS_MultipleConnectedInteractive	that	re-uses	the	entities	of	the	origin
object.

Instances	can	be	controlled	by	the	following	DRAW	commands:

vconnect	:	Creates	and	displays	AIS_MultipleConnectedInteractive
object	from	input	objects	and	location.
vconnectto	:	Makes	an	instance	of	object	with	the	given	position.
vdisconnect	:	Disconnects	all	objects	from	an	assembly	or
disconnects	an	object	by	name	or	number.
vaddconnected	:	Adds	an	object	to	the	assembly.
vlistconnected	:	Lists	objects	in	the	assembly.

Have	a	look	at	the	examples	below:

pload	ALL

vinit

psphere	s	1

vdisplay	s

vconnectto	s2	3	0	0	s		#	make	instance

vfit

See	how	proxy	OpenGl_Structure	is	used	to	represent	instance:

The	original	object	does	not	have	to	be	displayed	in	order	to	make
instance.	Also	selection	handles	transformations	of	instances	correctly:

pload	ALL

vinit

psphere	s	1

psphere	p	0.5

vdisplay	s													#	p	is	not	displayed

vsetloc	s	-2	0	0

vconnect	x	3	0	0	s	p			#	make	assembly

vfit

Here	is	the	example	of	a	more	complex	hierarchy	involving	sub-
assemblies:

pload	ALL

vinit

box	b	1	1	1

psphere	s	0.5

vdisplay	b	s

vsetlocation	s	0	2.5	0

box	d	0.5	0.5	3

box	d2	0.5	3	0.5

vdisplay	d	d2

vconnectto	b1	-2	0	0	b

vconnect	z	2	0	0	b	s

vconnect	z2	4	0	0	d	d2

vconnect	z3	6	0	0	z	z2

vfit

Interactive	Context

Rules

The	Interactive	Context	allows	managing	in	a	transparent	way	the
graphic	and	selectable	behavior	of	interactive	objects	in	one	or	more
viewers.	Most	functions	which	allow	modifying	the	attributes	of	interactive
objects,	and	which	were	presented	in	the	preceding	chapter,	will	be
looked	at	again	here.

There	is	one	essential	rule	to	follow:	the	modification	of	an	interactive
object,	which	is	already	known	by	the	Context,	must	be	done	using
Context	functions.	You	can	only	directly	call	the	functions	available	for	an
interactive	object	if	it	has	not	been	loaded	into	an	Interactive	Context.

Handle(AIS_Shape)	aShapePrs	=	new	AIS_Shape	

(theShape);

myIntContext->Display	(aShapePrs,	AIS_Shaded,	0,	

false,	aShapePrs->AcceptShapeDecomposition());

myIntContext->SetColor(aShapePrs,	Quantity_NOC_RED);

You	can	also	write

Handle(AIS_Shape)	aShapePrs	=	new	AIS_Shape	

(theShape);

aShapePrs->SetColor	(Quantity_NOC_RED);

aShapePrs->SetDisplayMode	(AIS_Shaded);

myIntContext->Display	(aShapePrs);

Groups	of	functions

Neutral	Point	and	Local	Selection	constitute	the	two	operating	modes
or	states	of	the	Interactive	Context,	which	is	the	central	entity	which
pilots	visualizations	and	selections.	The	Neutral	Point,	which	is	the
default	mode,	allows	easily	visualizing	and	selecting	interactive	objects,
which	have	been	loaded	into	the	context.	Activating	Local	Selection	for
specific	Objects	allows	selecting	of	their	sub-parts.

Management	of	the	Interactive	Context

An	interactive	object	can	have	a	certain	number	of	specific	graphic
attributes,	such	as	visualization	mode,	color,	and	material.
Correspondingly,	the	interactive	context	has	a	set	of	graphic	attributes,
the	Drawer,	which	is	valid	by	default	for	the	objects	it	controls.	When	an
interactive	object	is	visualized,	the	required	graphic	attributes	are	first
taken	from	the	object's	own	Drawer	if	it	exists,	or	from	the	context	drawer
if	otherwise.

The	following	adjustable	settings	allow	personalizing	the	behavior	of
presentations	and	selections:

Default	Drawer,	containing	all	the	color	and	line	attributes	which	can
be	used	by	interactive	objects,	which	do	not	have	their	own
attributes.
Default	Visualization	Mode	for	interactive	objects.	By	default:	mode
0;
Highlight	color	of	entities	detected	by	mouse	movement.	By	default:
Quantity_NOC_CYAN1;
Pre-selection	color.	By	default:	Quantity_NOC_GREEN;
Selection	color	(when	you	click	on	a	detected	object).	By	default:
Quantity_NOC_GRAY80;

All	of	these	settings	can	be	modified	by	functions	proper	to	the	Context.
When	you	change	a	graphic	attribute	pertaining	to	the	Context
(visualization	mode,	for	example),	all	interactive	objects,	which	do	not
have	the	corresponding	appropriate	attribute,	are	updated.

Let	us	examine	the	case	of	two	interactive	objects:	theObj1	and	theObj2:

theCtx->Display	(theObj1,	false);

theCtx->Display	(theObj2,	true);		//	TRUE	for	viewer	

update

theCtx->SetDisplayMode	(theObj1,	3,	false);

theCtx->SetDisplayMode	(2,	true);

//	theObj2	is	visualised	in	mode	2	(if	it	accepts	

this	mode)

//	theObj1	stays	visualised	in	its	mode	3

PresentationManager	and	Selector3D,	which	manage	the	presentation
and	selection	of	present	interactive	objects,	are	associated	to	the	main
Viewer.

Local	Selection

Selection	Modes

The	Local	Selection	is	defined	by	index	(Selection	Mode).	The	Selection
Modes	implemented	by	a	specific	interactive	object	and	their	meaning
should	be	checked	within	the	documentation	of	this	class.	See,	for
example,	MeshVS_SelectionModeFlags	for	MeshVS_Mesh	object.

The	interactive	object,	which	is	used	the	most	by	applications,	is
AIS_Shape.	Consequently,	there	are	standard	functions,	which	allow	you
to	easily	prepare	selection	operations	on	the	constituent	elements	of
shapes	(selection	of	vertices,	edges,	faces,	etc.).	The	Selection	Mode	for
a	specific	shape	type	(TopAbs_ShapeEnum)	is	returned	by	method
AIS_Shape::SelectionMode().

The	function	AIS_InteractiveObject::Display	(without	argument	taking
Selection	Mode)	activates	the	object's	default	Selection	Mode.	The
functions	AIS_InteractiveContext::Activate	and
AIS_InteractiveContext::Deactivate	activate	and	deactivate	specific
Selection	Mode.

More	than	one	Selection	Mode	can	be	activated	at	the	same	time	(but
default	0	mode	for	selecting	entire	object	is	exclusive	-	it	cannot	be
combined	with	others).	The	list	of	active	modes	can	be	retrieved	using
function	AIS_InteractiveContext::ActivatedModes.

Filters

To	define	an	environment	of	dynamic	detection,	you	can	use	standard
filter	classes	or	create	your	own.	A	filter	questions	the	owner	of	the
sensitive	primitive	to	determine	if	it	has	the	desired	qualities.	If	it	answers
positively,	it	is	kept.	If	not,	it	is	rejected.

The	root	class	of	objects	is	SelectMgr_Filter.	The	principle	behind	it	is
straightforward:	a	filter	tests	to	see	whether	the	owners
(SelectMgr_EntityOwner)	detected	in	mouse	position	by	selector	answer
OK.	If	so,	it	is	kept,	otherwise	it	is	rejected.	You	can	create	a	custom
class	of	filter	objects	by	implementing	the	deferred	function

SelectMgr_Filter::IsOk().

In	SelectMgr,	there	are	also	Composition	filters	(AND	Filters,	OR	Filters),
which	allow	combining	several	filters.	In	Interactive	Context,	all	filters	that
you	add	are	stored	in	an	OR	filter	(which	answers	OK	if	at	least	one	filter
answers	OK).

There	are	Standard	filters,	which	have	already	been	implemented	in
several	packages:

StdSelect_EdgeFilter	–	for	edges,	such	as	lines	and	circles;
StdSelect_FaceFilter	–	for	faces,	such	as	planes,	cylinders	and
spheres;
StdSelect_ShapeTypeFilter	–	for	shape	types,	such	as	compounds,
solids,	shells	and	wires;
AIS_TypeFilter	–	for	types	of	interactive	objects;
AIS_SignatureFilter	–	for	types	and	signatures	of	interactive	objects;
AIS_AttributeFilter	–	for	attributes	of	Interactive	Objects,	such	as
color	and	width.

There	are	several	functions	to	manipulate	filters:

AIS_InteractiveContext::AddFilter	adds	a	filter	passed	as	an
argument.
AIS_InteractiveContext::RemoveFilter	removes	a	filter	passed	as	an
argument.
AIS_InteractiveContext::RemoveFilters	removes	all	present	filters.
AIS_InteractiveContext::Filters	gets	the	list	of	filters	active	in	a
context.

Example

//	shading	visualization	mode,	no	specific	mode,	

authorization	for	decomposition	into	sub-shapes

const	TopoDS_Shape	theShape;

Handle(AIS_Shape)	aShapePrs	=	new	AIS_Shape	

(theShape);

myContext->Display	(aShapePrs,	AIS_Shaded,	-1,	true,	

true);

//	activates	decomposition	of	shapes	into	faces

const	int	aSubShapeSelMode	=	AIS_Shape::SelectionMode	

(TopAbs_Face);

myContext->Activate	(aShapePrs,	aSubShapeSelMode);

Handle(StdSelect_FaceFilter)	aFil1	=	new	

StdSelect_FaceFilter	(StdSelect_Revol);

Handle(StdSelect_FaceFilter)	aFil2	=	new	

StdSelect_FaceFilter	(StdSelect_Plane);

myContext->AddFilter	(aFil1);

myContext->AddFilter	(aFil2);

//	only	faces	of	revolution	or	planar	faces	will	be	

selected

myContext->MoveTo	(thePixelX,	thePixelY,	myView);

Selection

Dynamic	detection	and	selection	are	put	into	effect	in	a	straightforward
way.	There	are	only	a	few	conventions	and	functions	to	be	familiar	with:

AIS_InteractiveContext::MoveTo	–	passes	mouse	position	to
Interactive	Context	selectors.
AIS_InteractiveContext::Select	–	stores	what	has	been	detected	at
the	last	MoveTo.	Replaces	the	previously	selected	object.	Empties
the	stack	if	nothing	has	been	detected	at	the	last	move.
AIS_InteractiveContext::ShiftSelect	–	if	the	object	detected	at	the	last
move	was	not	already	selected,	it	is	added	to	the	list	of	the	selected
objects.	If	not,	it	is	withdrawn.	Nothing	happens	if	you	click	on	an
empty	area.
AIS_InteractiveContext::Select	–	selects	everything	found	in	the
surrounding	area.
AIS_InteractiveContext::ShiftSelect	–	selects	what	was	not
previously	in	the	list	of	selected,	deselects	those	already	present.

Highlighting	of	detected	and	selected	entities	is	automatically	managed
by	the	Interactive	Context.	The	Highlight	colors	are	those	dealt	with
above.	You	can	nonetheless	disconnect	this	automatic	mode	if	you	want
to	manage	this	part	yourself:

AIS_InteractiveContext::SetAutomaticHilight

AIS_InteractiveContext::AutomaticHilight

You	can	question	the	Interactive	context	by	moving	the	mouse.	The
following	functions	can	be	used:

AIS_InteractiveContext::HasDetected	–	checks	if	there	is	a	detected
entity;
AIS_InteractiveContext::DetectedOwner	–	returns	the	(currently
highlighted)	detected	entity.

After	using	the	Select	and	ShiftSelect	functions,	you	can	explore	the	list
of	selections.	The	following	functions	can	be	used:

AIS_InteractiveContext::InitSelected	–	initializes	an	iterator;
AIS_InteractiveContext::MoreSelected	–	checks	if	the	iterator	is
valid;
AIS_InteractiveContext::NextSelected	–	moves	the	iterator	to	the
next	position;
AIS_InteractiveContext::SelectedOwner	–	returns	an	entity	at	the
current	iterator	position.

The	owner	object	SelectMgr_EntityOwner	is	a	key	object	identifying
selectable	entitiy	in	the	viewer	(returned	by	methods
AIS_InteractiveContext::DetectedOwner	and
AIS_InteractiveContext::SelectedOwner).	The	Interactive	Object	itself	can
be	retrieved	by	method	SelectMgr_EntityOwner::Selectable,	while
identifying	sub-part	depends	on	type	of	Interactive	Object.	In	case	of
AIS_Shape,	the	(sub)shape	is	returned	by	method
StdSelect_BRepOwner::Shape.

####	Example

for	(myAISCtx->InitSelected();	myAISCtx-

>MoreSelected();	myAISCtx->NextSelected())

{

		Handle(SelectMgr_EntityOwner)	anOwner	=	myAISCtx-

>SelectedOwner();

		Handle(AIS_InteractiveObject)	anObj	=	

Handle(AIS_InteractiveObject)::DownCast	

(anOwner->Selectable());

		if	(Handle(StdSelect_BRepOwner)	aBRepOwner	=	

Handle(StdSelect_BRepOwner)::DownCast	(anOwner))

		{

				//	to	be	able	to	use	the	picked	shape

				TopoDS_Shape	aShape	=	aBRepOwner->Shape();

		}

}

Standard	Interactive	Object	Classes
Interactive	Objects	are	selectable	and	viewable	objects	connecting
graphic	representation	and	the	underlying	reference	geometry.

They	are	divided	into	four	types:

the	Datum	–	a	construction	geometric	element;
the	Relation	–	a	constraint	on	the	interactive	shape	and	the
corresponding	reference	geometry;
the	Object	–	a	topological	shape	or	connection	between	shapes;
None	–	a	token,	that	instead	of	eliminating	the	object,	tells	the
application	to	look	further	until	it	finds	an	acceptable	object	definition
in	its	generation.

Inside	these	categories,	there	is	a	possibility	of	additional
characterization	by	means	of	a	signature.	The	signature	provides	an
index	to	the	further	characterization.	By	default,	the	Interactive	Object
has	a	None	type	and	a	signature	of	0	(equivalent	to	None).	If	you	want	to
give	a	particular	type	and	signature	to	your	interactive	object,	you	must
redefine	the	two	virtual	methods:	Type	and	Signature.

Datum

The	Datum	groups	together	the	construction	elements	such	as	lines,
circles,	points,	trihedrons,	plane	trihedrons,	planes	and	axes.

AIS_Point,	AIS_Axis,	AIS_Line,	AIS_Circle,	AIS_Plane	and
AIS_Trihedron	have	four	selection	modes:

mode	0	:	selection	of	a	trihedron;
mode	1	:	selection	of	the	origin	of	the	trihedron;
mode	2	:	selection	of	the	axes;
mode	3	:	selection	of	the	planes	XOY,	YOZ,	XOZ.

when	you	activate	one	of	modes:	1	2	3	4,	you	pick	AIS	objects	of	type:

AIS_Point;
AIS_Axis	(and	information	on	the	type	of	axis);

AIS_Plane	(and	information	on	the	type	of	plane).

AIS_PlaneTrihedron	offers	three	selection	modes:

mode	0	:	selection	of	the	whole	trihedron;
mode	1	:	selection	of	the	origin	of	the	trihedron;
mode	2	:	selection	of	the	axes	–	same	remarks	as	for	the	Trihedron.

For	the	presentation	of	planes	and	trihedra,	the	default	length	unit	is
millimeter	and	the	default	value	for	the	representation	of	axes	is	10.	To
modify	these	dimensions,	you	must	temporarily	recover	the	object
Drawer.	From	it,	take	the	DatumAspect()	and	change	the	value
FirstAxisLength.	Finally,	recalculate	the	presentation.

Object

The	Object	type	includes	topological	shapes,	and	connections	between
shapes.

AIS_Shape	has	two	visualization	modes:

mode	0	:	Line	(default	mode)
mode	1	:	Shading	(depending	on	the	type	of	shape)

AIS_ConnectedInteractive	is	an	Interactive	Object	connecting	to	another
interactive	object	reference,	and	located	elsewhere	in	the	viewer	makes	it
possible	not	to	calculate	presentation	and	selection,	but	to	deduce	them
from	your	object	reference.	AIS_MultipleConnectedInteractive	is	an
object	connected	to	a	list	of	interactive	objects	(which	can	also	be
Connected	objects.	It	does	not	require	memory-hungry	presentation
calculations).

MeshVS_Mesh	is	an	Interactive	Object	that	represents	meshes,	it	has	a
data	source	that	provides	geometrical	information	(nodes,	elements)	and
can	be	built	up	from	the	source	data	with	a	custom	presentation	builder.

The	class	AIS_ColoredShape	allows	using	custom	colors	and	line	widths
for	TopoDS_Shape	objects	and	their	sub-shapes.

AIS_ColoredShape	aColoredShape	=	new	AIS_ColoredShape	

(theShape);

//	setup	color	of	entire	shape

aColoredShape->SetColor	(Quantity_NOC_RED);

//	setup	line	width	of	entire	shape

aColoredShape->SetWidth	(1.0);

//	set	transparency	value

aColoredShape->SetTransparency	(0.5);

//	customize	color	of	specified	sub-shape

aColoredShape->SetCustomColor	(theSubShape,	

Quantity_NOC_BLUE1);

//	customize	line	width	of	specified	sub-shape

aColoredShape->SetCustomWidth	(theSubShape,	0.25);

The	presentation	class	AIS_PointCloud	can	be	used	for	efficient	drawing
of	large	arbitrary	sets	of	colored	points.	It	uses	Graphic3d_ArrayOfPoints
to	pass	point	data	into	OpenGl	graphic	driver	to	draw	a	set	points	as	an
array	of	"point	sprites".	The	point	data	is	packed	into	vertex	buffer	object
for	performance.

The	type	of	point	marker	used	to	draw	points	can	be	specified	as	a
presentation	aspect.
The	presentation	provides	selection	by	a	bounding	box	of	the
visualized	set	of	points.	It	supports	two	display	/	highlighting	modes:
points	or	bounding	box.

A	random	colored	cloud	of	points

Example:

Handle(Graphic3d_ArrayOfPoints)	aPoints	=	new	

Graphic3d_ArrayOfPoints	(2000,	Standard_True);

aPoints->AddVertex	(gp_Pnt(-40.0,	-40.0,	-40.0),	

Quantity_Color	(Quantity_NOC_BLUE1));

aPoints->AddVertex	(gp_Pnt	(40.0,		40.0,		40.0),	

Quantity_Color	(Quantity_NOC_BLUE2));

Handle(AIS_PointCloud)	aPntCloud	=	new	

AIS_PointCloud();

aPntCloud->SetPoints	(aPoints);

The	draw	command	vpointcloud	builds	a	cloud	of	points	from	shape
triangulation.	This	command	can	also	draw	a	sphere	surface	or	a	volume
with	a	large	amount	of	points	(more	than	one	million).

Relations

The	Relation	is	made	up	of	constraints	on	one	or	more	interactive
shapes	and	the	corresponding	reference	geometry.	For	example,	you
might	want	to	constrain	two	edges	in	a	parallel	relation.	This	constraint	is
considered	as	an	object	in	its	own	right,	and	is	shown	as	a	sensitive
primitive.	This	takes	the	graphic	form	of	a	perpendicular	arrow	marked
with	the	||	symbol	and	lying	between	the	two	edges.

The	following	relations	are	provided	by	AIS:

AIS_ConcentricRelation
AIS_FixRelation
AIS_IdenticRelation
AIS_ParallelRelation
AIS_PerpendicularRelation
AIS_Relation
AIS_SymmetricRelation
AIS_TangentRelation

The	list	of	relations	is	not	exhaustive.

Dimensions

AIS_AngleDimension
AIS_Chamf3dDimension
AIS_DiameterDimension
AIS_DimensionOwner
AIS_LengthDimension
AIS_OffsetDimension
AIS_RadiusDimension

MeshVS_Mesh

MeshVS_Mesh	is	an	Interactive	Object	that	represents	meshes.	This
object	differs	from	the	AIS_Shape	as	its	geometrical	data	is	supported	by
the	data	source	MeshVS_DataSource	that	describes	nodes	and
elements	of	the	object.	As	a	result,	you	can	provide	your	own	data
source.

However,	the	DataSource	does	not	provide	any	information	on	attributes,
for	example	nodal	colors,	but	you	can	apply	them	in	a	special	way	–	by

choosing	the	appropriate	presentation	builder.

The	presentations	of	MeshVS_Mesh	are	built	with	the	presentation
builders	MeshVS_PrsBuilder.	You	can	choose	between	the	builders	to
represent	the	object	in	a	different	way.	Moreover,	you	can	redefine	the
base	builder	class	and	provide	your	own	presentation	builder.

You	can	add/remove	builders	using	the	following	methods:

MeshVS_Mesh::AddBuilder	(const	

Handle(MeshVS_PrsBuilder)&	theBuilder,	

Standard_Boolean	theToTreatAsHilighter);

MeshVS_Mesh::RemoveBuilder	(const	Standard_Integer	

theIndex);

MeshVS_Mesh::RemoveBuilderById	(const	

Standard_Integer	theId);

There	is	a	set	of	reserved	display	and	highlighting	mode	flags	for
MeshVS_Mesh.	Mode	value	is	a	number	of	bits	that	allows	selecting
additional	display	parameters	and	combining	the	following	mode	flags,
which	allow	displaying	mesh	in	wireframe,	shading	and	shrink	modes:

MeshVS_DMF_WireFrame

MeshVS_DMF_Shading

MeshVS_DMF_Shrink

It	is	also	possible	to	display	deformed	mesh	in	wireframe,	shading	or
shrink	modes	usung:

MeshVS_DMF_DeformedPrsWireFrame

MeshVS_DMF_DeformedPrsShading

MeshVS_DMF_DeformedPrsShrink

The	following	methods	represent	different	kinds	of	data:

MeshVS_DMF_VectorDataPrs

MeshVS_DMF_NodalColorDataPrs

MeshVS_DMF_ElementalColorDataPrs

MeshVS_DMF_TextDataPrs

MeshVS_DMF_EntitiesWithData

The	following	methods	provide	selection	and	highlighting:

MeshVS_DMF_SelectionPrs

MeshVS_DMF_HilightPrs

MeshVS_DMF_User	is	a	user-defined	mode.

These	values	will	be	used	by	the	presentation	builder.	There	is	also	a	set
of	selection	modes	flags	that	can	be	grouped	in	a	combination	of	bits:

MeshVS_SMF_0D
MeshVS_SMF_Link
MeshVS_SMF_Face
MeshVS_SMF_Volume
MeshVS_SMF_Element	–	groups	0D,	Link,	Face	and	Volume	as	a
bit	mask;
MeshVS_SMF_Node
MeshVS_SMF_All	–	groups	Element	and	Node	as	a	bit	mask;
MeshVS_SMF_Mesh
MeshVS_SMF_Group

Such	an	object,	for	example,	can	be	used	for	displaying	the	object	and
stored	in	the	STL	file	format:

//	read	the	data	and	create	a	data	source

Handle(Poly_Triangulation)	aSTLMesh	=	RWStl::ReadFile	

(aFileName);

Handle(XSDRAWSTLVRML_DataSource)	aDataSource	=	new	

XSDRAWSTLVRML_DataSource	(aSTLMesh);

//	create	mesh

Handle(MeshVS_Mesh)	aMeshPrs	=	new	MeshVS();

aMeshPrs->SetDataSource	(aDataSource);

//	use	default	presentation	builder

Handle(MeshVS_MeshPrsBuilder)	aBuilder	=	new	

MeshVS_MeshPrsBuilder	(aMeshPrs);

aMeshPrs->AddBuilder	(aBuilder,	true);

MeshVS_NodalColorPrsBuilder	allows	representing	a	mesh	with	a	color
scaled	texture	mapped	on	it.	To	do	this	you	should	define	a	color	map	for
the	color	scale,	pass	this	map	to	the	presentation	builder,	and	define	an
appropriate	value	in	the	range	of	0.0	-	1.0	for	every	node.	The	following
example	demonstrates	how	you	can	do	this	(check	if	the	view	has	been
set	up	to	display	textures):

//	assign	nodal	builder	to	the	mesh

Handle(MeshVS_NodalColorPrsBuilder)	aBuilder	=	new	

MeshVS_NodalColorPrsBuilder	(theMeshPrs,	

MeshVS_DMF_NodalColorDataPrs	|	

MeshVS_DMF_OCCMask);

aBuilder->UseTexture	(true);

//	prepare	color	map

Aspect_SequenceOfColor	aColorMap;

aColorMap.Append	(Quantity_NOC_RED);

aColorMap.Append	(Quantity_NOC_BLUE1);

//	assign	color	scale	map		values	(0..1)	to	nodes

TColStd_DataMapOfIntegerReal	aScaleMap;

...

//	iterate	through	the		nodes	and	add	an	node	id	and	

an	appropriate	value	to	the	map

aScaleMap.Bind	(anId,	aValue);

//	pass	color	map	and	color	scale	values	to	the	

builder

aBuilder->SetColorMap	(aColorMap);

aBuilder->SetInvalidColor	(Quantity_NOC_BLACK);

aBuilder->SetTextureCoords	(aScaleMap);

aMesh->AddBuilder	(aBuilder,	true);

Dynamic	Selection
The	dynamic	selection	represents	the	topological	shape,	which	you	want
to	select,	by	decomposition	of	sensitive	primitives	–	the	sub-parts	of	the
shape	that	will	be	detected	and	highlighted.	The	sets	of	these	primitives
are	handled	by	the	powerful	three-level	BVH	tree	selection	algorithm.

For	more	details	on	the	algorithm	and	examples	of	usage,	please,	refer	to
Selection	chapter.

3D	Presentations
Glossary	of	3D	terms

Group	–	a	set	of	primitives	and	attributes	on	those	primitives.
Primitives	and	attributes	may	be	added	to	a	group	but	cannot	be
removed	from	it,	unless	erased	globally.	A	group	can	have	a	pick
identity.
Light	There	are	five	kinds	of	light	source	–	ambient,	headlight,
directional,	positional	and	spot.	The	light	is	only	activated	in	a
shading	context	in	a	view.
Primitive	–	a	drawable	element.	It	has	a	definition	in	3D	space.
Primitives	can	either	be	lines,	faces,	text,	or	markers.	Once
displayed	markers	and	text	remain	the	same	size.	Lines	and	faces
can	be	modified	e.g.	zoomed.	Primitives	must	be	stored	in	a	group.
Structure	–	manages	a	set	of	groups.	The	groups	are	mutually
exclusive.	A	structure	can	be	edited,	adding	or	removing	groups.	A
structure	can	reference	other	structures	to	form	a	hierarchy.	It	has	a
default	(identity)	transformation	and	other	transformations	may	be
applied	to	it	(rotation,	translation,	scale,	etc).	It	has	no	default
attributes	for	the	primitive	lines,	faces,	markers,	and	text.	Attributes
may	be	set	in	a	structure	but	they	are	overridden	by	the	attributes	in
each	group.	Each	structure	has	a	display	priority	associated	with	it,
which	rules	the	order	in	which	it	is	redrawn	in	a	3D	viewer.	If	the
visualization	mode	is	incompatible	with	the	view	it	is	not	displayed	in
that	view,	e.g.	a	shading-only	object	is	not	visualized	in	a	wireframe
view.
View	–	is	defined	by	a	view	orientation,	a	view	mapping,	and	a
context	view.
Viewer	–	manages	a	set	of	views.
View	orientation	–	defines	the	manner	in	which	the	observer	looks
at	the	scene	in	terms	of	View	Reference	Coordinates.
View	mapping	–	defines	the	transformation	from	View	Reference
Coordinates	to	the	Normalized	Projection	Coordinates.	This	follows
the	Phigs	scheme.
Z-Buffering	–	a	form	of	hidden	surface	removal	in	shading	mode
only.	This	is	always	active	for	a	view	in	the	shading	mode.	It	cannot
be	suppressed.

Graphic	primitives
The	Graphic3d	package	is	used	to	create	3D	graphic	objects	in	a	3D
viewer.	These	objects	called	structures	are	made	up	of	groups	of
primitives	and	attributes,	such	as	polylines,	planar	polygons	with	or
without	holes,	text	and	markers,	and	attributes,	such	as	color,
transparency,	reflection,	line	type,	line	width,	and	text	font.	A	group	is	the
smallest	editable	element	of	a	structure.	A	transformation	can	be	applied
to	a	structure.	Structures	can	be	connected	to	form	a	tree	of	structures,
composed	by	transformations.	Structures	are	globally	manipulated	by	the
viewer.

Graphic	structures	can	be:

Displayed,
Highlighted,
Erased,
Transformed,
Connected	to	form	a	tree	hierarchy	of	structures,	created	by
transformations.

There	are	classes	for:

Visual	attributes	for	lines,	faces,	markers,	text,	materials,
Vectors	and	vertices,
Graphic	objects,	groups,	and	structures.

Structure	hierarchies

The	root	is	the	top	of	a	structure	hierarchy	or	structure	network.	The
attributes	of	a	parent	structure	are	passed	to	its	descendants.	The
attributes	of	the	descendant	structures	do	not	affect	the	parent.
Recursive	structure	networks	are	not	supported.

Graphic	primitives

Markers
Have	one	or	more	vertices,
Have	a	type,	a	scale	factor,	and	a	color,

Have	a	size,	shape,	and	orientation	independent	of
transformations.

Triangulation
Have	at	least	three	vertices,
Have	nodal	normals	defined	for	shading,
Have	interior	attributes	–	style,	color,	front	and	back	material,
texture	and	reflection	ratio,

Polylines	or	Segments
Have	two	or	more	vertices,
Have	the	following	attributes	–	type,	width	scale	factor,	color.

Text
Has	geometric	and	non-geometric	attributes,
Geometric	attributes	–	character	height,	character	up	vector,	text
path,	horizontal	and	vertical	alignment,	orientation,	three-
dimensional	position,	zoomable	flag
Non-geometric	attributes	–	text	font,	character	spacing,
character	expansion	factor,	color.

Primitive	arrays

The	different	types	of	primitives	could	be	presented	with	the	following
primitive	arrays:

Graphic3d_ArrayOfPoints,
Graphic3d_ArrayOfPolylines,
Graphic3d_ArrayOfSegments,
Graphic3d_ArrayOfTriangleFans,
Graphic3d_ArrayOfTriangles,
Graphic3d_ArrayOfTriangleStrips.

The	Graphic3d_ArrayOfPrimitives	is	a	base	class	for	these	primitive
arrays.	Method	set	Graphic3d_ArrayOfPrimitives::AddVertex	allows
adding	vertices	to	the	primitive	array	with	their	attributes	(color,	normal,
texture	coordinates).	You	can	also	modify	the	values	assigned	to	the
vertex	or	query	these	values	by	the	vertex	index.

The	following	example	shows	how	to	define	an	array	of	points:

//	create	an	array

Handle(Graphic3d_ArrayOfPoints)	anArray	=	new	

Graphic3d_ArrayOfPoints	(theVerticiesMaxCount);

//	add	vertices	to	the	array

anArray->AddVertex	(10.0,	10.0,	10.0);

anArray->AddVertex	(0.0,		10.0,	10.0);

//	add	the	array	to	the	structure

Handle(Graphic3d_Group)	aGroup	=	thePrs->NewGroup();

aGroup->AddPrimitiveArray	(anArray);

aGroup->SetGroupPrimitivesAspect	(myDrawer-

>PointAspect()->Aspect());

If	the	primitives	share	the	same	vertices	(polygons,	triangles,	etc.)	then
you	can	define	them	as	indices	of	the	vertices	array.	The	method
Graphic3d_ArrayOfPrimitives::AddEdge	allows	defining	the	primitives	by
indices.	This	method	adds	an	"edge"	in	the	range	[1,	VertexNumber()]	in
the	array.	It	is	also	possible	to	query	the	vertex	defined	by	an	edge	using
method	Graphic3d_ArrayOfPrimitives::Edge.

The	following	example	shows	how	to	define	an	array	of	triangles:

//	create	an	array

Standard_Boolean	hasNormals					=	false;

Standard_Boolean	hasColors						=	false;

Standard_Boolean	hasTextureCrds	=	false;

Handle(Graphic3d_ArrayOfTriangles)	anArray	=	new	

Graphic3d_ArrayOfTriangles	(theVerticesMaxCount,	

theEdgesMaxCount,	hasNormals,	hasColors,	

hasTextureCrds);

//	add	vertices	to	the	array

anArray->AddVertex	(-1.0,	0.0,	0.0);	//	vertex	1

anArray->AddVertex	(1.0,	0.0,	0.0);	//	vertex	2

anArray->AddVertex	(0.0,	1.0,	0.0);	//	vertex	3

anArray->AddVertex	(0.0,-1.0,	0.0);	//	vertex	4

//	add	edges	to	the	array

anArray->AddEdge	(1);		//	first	triangle

anArray->AddEdge	(2);

anArray->AddEdge	(3);

anArray->AddEdge	(1);		//	second	triangle

anArray->AddEdge	(2);

anArray->AddEdge	(4);

//	add	the	array	to	the	structure

Handle(Graphic3d_Group)	aGroup	=	thePrs->NewGroup();

aGroup->AddPrimitiveArray	(anArray);

aGroup->SetGroupPrimitivesAspect	(myDrawer-

>ShadingAspect()->Aspect());

Text	primitive

TKOpenGL	toolkit	renders	text	labels	using	texture	fonts.	Graphic3d	text
primitives	have	the	following	features:

fixed	size	(non-zoomable)	or	zoomable,
can	be	rotated	to	any	angle	in	the	view	plane,
support	unicode	charset.

The	text	attributes	for	the	group	could	be	defined	with	the
Graphic3d_AspectText3d	attributes	group.	To	add	any	text	to	the	graphic
structure	you	can	use	the	following	methods:

void	Graphic3d_Group::Text	(const	Standard_CString	

theText,

																												const	Graphic3d_Vertex&	

thePoint,

																												const	Standard_Real	

theHeight,

																												const	Quantity_PlaneAngle	

theAngle,

																												const	Graphic3d_TextPath	

theTp,

																												const	

Graphic3d_HorizontalTextAlignment	theHta,

																												const	

Graphic3d_VerticalTextAlignment	theVta,

																												const	Standard_Boolean	

theToEvalMinMax);

theText	parameter	is	the	text	string,	thePoint	is	the	three-dimensional
position	of	the	text,	theHeight	is	the	text	height,	theAngle	is	the
orientation	of	the	text	(at	the	moment,	this	parameter	has	no	effect,	but
you	can	specify	the	text	orientation	through	the	Graphic3d_AspectText3d
attributes).	theTp	parameter	defines	the	text	path,	theHta	is	the	horizontal
alignment	of	the	text,	theVta	is	the	vertical	alignment	of	the	text.	You	can
pass	FALSE	as	theToEvalMinMax	if	you	do	not	want	the	graphic3d
structure	boundaries	to	be	affected	by	the	text	position.

Note	that	the	text	orientation	angle	can	be	defined	by
Graphic3d_AspectText3d	attributes.

void	Graphic3d_Group::Text	(const	Standard_CString	

theText,

																												const	Graphic3d_Vertex&	

thePoint,

																												const	Standard_Real	

theHeight,

																												const	Standard_Boolean	

theToEvalMinMax);

void	Graphic3d_Group::Text	(const	

TCcollection_ExtendedString&	theText,

																												const	Graphic3d_Vertex&	

thePoint,

																												const	Standard_Real	

theHeight,

																												const	Quantity_PlaneAngle	

theAngle,

																												const	Graphic3d_TextPath	

theTp,

																												const	

Graphic3d_HorizontalTextAlignment	theHta,

																												const	

Graphic3d_VerticalTextAlignment	theVta,

																												const	Standard_Boolean	

theToEvalMinMax);

void	Graphic3d_Group::Text	(const	

TCcollection_ExtendedString&	theText,

																												const	Graphic3d_Vertex&	

thePoint,

																												const	Standard_Real	

theHeight,

																												const	Standard_Boolean	

theToEvalMinMax);

See	the	example:

//	get	the	group

Handle(Graphic3d_Group)	aGroup	=	thePrs->NewGroup();

//	change	the	text	aspect

Handle(Graphic3d_AspectText3d)	aTextAspect	=	new	

Graphic3d_AspectText3d();

aTextAspect->SetTextZoomable	(true);

aTextAspect->SetTextAngle	(45.0);

aGroup->SetPrimitivesAspect	(aTextAspect);

//	add	a	text	primitive	to	the	structure

Graphic3d_Vertex	aPoint	(1,	1,	1);

aGroup->Text	(Standard_CString	("Text"),	aPoint,	

16.0);

Materials

A	Graphic3d_MaterialAspect	is	defined	by:

Transparency;
Diffuse	reflection	–	a	component	of	the	object	color;
Ambient	reflection;
Specular	reflection	–	a	component	of	the	color	of	the	light	source;
Refraction	index.

The	following	items	are	required	to	determine	the	three	colors	of

reflection:

Color;
Coefficient	of	diffuse	reflection;
Coefficient	of	ambient	reflection;
Coefficient	of	specular	reflection.

Textures

A	texture	is	defined	by	a	name.	Three	types	of	texture	are	available:

1D;
2D;
Environment	mapping.

Shaders

OCCT	visualization	core	supports	GLSL	shaders.	Shaders	can	be
assigned	to	a	generic	presentation	by	its	drawer	attributes	(Graphic3d
aspects).	To	enable	custom	shader	for	a	specific	AIS_Shape	in	your
application,	the	following	API	functions	can	be	used:

//	Create	shader	program

Handle(Graphic3d_ShaderProgram)	aProgram	=	new	

Graphic3d_ShaderProgram();

//	Attach	vertex	shader

aProgram->AttachShader	

(Graphic3d_ShaderObject::CreateFromFile	

(Graphic3d_TOS_VERTEX,	"<Path	to	VS>"));

//	Attach	fragment	shader

aProgram->AttachShader	

(Graphic3d_ShaderObject::CreateFromFile	

(Graphic3d_TOS_FRAGMENT,	"<Path	to	FS>"));

//	Set	values	for	custom	uniform	variables	(if	they	

are)

aProgram->PushVariable	("MyColor",	Graphic3d_Vec3	

(0.0f,	1.0f,	0.0f));

//	Set	aspect	property	for	specific	AIS_Shape

theAISShape->Attributes()->ShadingAspect()->Aspect()-

>SetShaderProgram	(aProgram);

Graphic	attributes

Aspect	package	overview

The	Aspect	package	provides	classes	for	the	graphic	elements	in	the
viewer:

Groups	of	graphic	attributes;
Edges,	lines,	background;
Window;
Driver;
Enumerations	for	many	of	the	above.

3D	view	facilities

Overview

The	V3d	package	provides	the	resources	to	define	a	3D	viewer	and	the
views	attached	to	this	viewer	(orthographic,	perspective).	This	package
provides	the	commands	to	manipulate	the	graphic	scene	of	any	3D
object	visualized	in	a	view	on	screen.

A	set	of	high-level	commands	allows	the	separate	manipulation	of
parameters	and	the	result	of	a	projection	(Rotations,	Zoom,	Panning,
etc.)	as	well	as	the	visualization	attributes	(Mode,	Lighting,	Clipping,	etc.)
in	any	particular	view.

The	V3d	package	is	basically	a	set	of	tools	directed	by	commands	from
the	viewer	front-end.	This	tool	set	contains	methods	for	creating	and
editing	classes	of	the	viewer	such	as:

Default	parameters	of	the	viewer,
Views	(orthographic,	perspective),
Lighting	(positional,	directional,	ambient,	spot,	headlight),
Clipping	planes,
Instantiated	sequences	of	views,	planes,	light	sources,	graphic
structures,	and	picks,
Various	package	methods.

A	programming	example

This	sample	TEST	program	for	the	V3d	Package	uses	primary	packages
Xw	and	Graphic3d	and	secondary	packages	Visual3d,	Aspect,	Quantity
and	math.

//	create	a	default	display	connection

Handle(Aspect_DisplayConnection)	aDispConnection	=	

new	Aspect_DisplayConnection();

//	create	a	Graphic	Driver

Handle(OpenGl_GraphicDriver)	aGraphicDriver	=	new	

OpenGl_GraphicDriver	(aDispConnection);

//	create	a	Viewer	to	this	Driver

Handle(V3d_Viewer)	VM	=	new	V3d_Viewer	

(aGraphicDriver);

VM->SetDefaultBackgroundColor	

(Quantity_NOC_DARKVIOLET);

VM->SetDefaultViewProj	(V3d_Xpos);

//	Create	a	structure	in	this	Viewer

Handle(Graphic3d_Structure)	aStruct	=	new	

Graphic3d_Structure	(VM->Viewer());

//	Type	of	structure

aStruct->SetVisual	(Graphic3d_TOS_SHADING);

//	Create	a	group	of	primitives		in	this	structure

Handle(Graphic3d_Group)	aPrsGroup	=	new	

Graphic3d_Group	(aStruct);

//	Fill	this	group	with	one	quad	of	size	100

Handle(Graphic3d_ArrayOfTriangleStrips)	aTriangles	=	

new	Graphic3d_ArrayOfTriangleStrips	(4);

aTriangles->AddVertex	(-100./2.,	-100./2.,	0.0);

aTriangles->AddVertex	(-100./2.,		100./2.,	0.0);

aTriangles->AddVertex	(100./2.,	-100./2.,	0.0);

aTriangles->AddVertex	(100./2.,		100./2.,	0.0);

aPrsGroup->AddPrimitiveArray	(aTriangles);

aPrsGroup->SetGroupPrimitivesAspect	(new	

Graphic3d_AspectFillArea3d());

//	Create	Ambient	and	Infinite	Lights	in	this	Viewer

Handle(V3d_AmbientLight)	aLight1	=	new	

V3d_AmbientLight	(VM,	Quantity_NOC_GRAY50);

Handle(V3d_DirectionalLight)	aLight2	=	new	

V3d_DirectionalLight	(VM,	V3d_XnegYnegZneg,	

Quantity_NOC_WHITE);

//	Create	a	3D	quality		Window	with	the	same	

DisplayConnection

Handle(Xw_Window)	aWindow	=	new	Xw_Window	

(aDispConnection,	"Test	V3d",	0.5,	0.5,	0.5,	

0.5);

//	Map	this	Window	to	this	screen

aWindow->Map();

//	Create	a	Perspective		View	in	this	Viewer

Handle(V3d_View)	aView	=	new	V3d_View	(VM);

aView->Camera()->SetProjectionType	

(Graphic3d_Camera::Projection_Perspective);

//	Associate	this	View	with	the	Window

aView	->SetWindow	(aWindow);

//	Display	ALL	structures	in	this	View

VM->Viewer()->Display();

//	Finally	update	the	Visualization	in	this	View

aView->Update();

//	Fit	view	to	object	size

V->FitAll();

Define	viewing	parameters

View	projection	and	orientation	in	OCCT	V3d_View	are	driven	by	camera.
The	camera	calculates	and	supplies	projection	and	view	orientation
matrices	for	rendering	by	OpenGL.	The	allows	to	the	user	to	control	all
projection	parameters.	The	camera	is	defined	by	the	following	properties:

Eye	–	defines	the	observer	(camera)	position.	Make	sure	the	Eye
point	never	gets	between	the	Front	and	Back	clipping	planes.
Center	–	defines	the	origin	of	View	Reference	Coordinates	(where
camera	is	aimed	at).
Direction	–	defines	the	direction	of	camera	view	(from	the	Eye	to	the
Center).
Distance	–	defines	the	distance	between	the	Eye	and	the	Center.
Front	Plane	–	defines	the	position	of	the	front	clipping	plane	in	View
Reference	Coordinates	system.
Back	Plane	–	defines	the	position	of	the	back	clipping	plane	in	View
Reference	Coordinates	system.

ZNear	–	defines	the	distance	between	the	Eye	and	the	Front	plane.
ZFar	–	defines	the	distance	between	the	Eye	and	the	Back	plane.

Most	common	view	manipulations	(panning,	zooming,	rotation)	are
implemented	as	convenience	methods	of	V3d_View	class,	however
Graphic3d_Camera	class	can	also	be	used	directly	by	application
developers:

Example:

//	rotate	camera	by	X	axis	on	30.0	degrees

gp_Trsf	aTrsf;

aTrsf.SetRotation	(gp_Ax1	(gp_Pnt	(0.0,	0.0,	0.0),	

gp_Dir	(1.0,	0.0,	0.0)),	30.0);

aView->Camera()->Transform	(aTrsf);

Orthographic	Projection

Perspective	and	orthographic	projection

The	following	code	configures	the	camera	for	orthographic	rendering:

//	Create	an	orthographic	View	in	this	Viewer

Handle(V3d_View)	aView	=	new	V3d_View	(VM);

aView->Camera()->SetProjectionType	

(Graphic3d_Camera::Projection_Orthographic);

//	update	the	Visualization	in	this	View

aView->Update();

Perspective	Projection

Field	of	view	(FOVy)	–	defines	the	field	of	camera	view	by	y	axis	in
degrees	(45�	is	default).

Perspective	frustum

The	following	code	configures	the	camera	for	perspective	rendering:

//	Create	a	perspective	View	in	this	Viewer

Handle(V3d_View)	aView	=	new	V3d_View(VM);

aView->Camera()->SetProjectionType	

(Graphic3d_Camera::Projection_Perspective);

aView->Update();

Stereographic	Projection

IOD	–	defines	the	intraocular	distance	(in	world	space	units).

There	are	two	types	of	IOD:

IODType_Absolute	:	Intraocular	distance	is	defined	as	an	absolute
value.
IODType_Relative	:	Intraocular	distance	is	defined	relative	to	the
camera	focal	length	(as	its	coefficient).

Field	of	view	(FOV)	–	defines	the	field	of	camera	view	by	y	axis	in
degrees	(45�	is	default).

ZFocus	–	defines	the	distance	to	the	point	of	stereographic	focus.

Stereographic	projection

To	enable	stereo	projection,	your	workstation	should	meet	the	following
requirements:

The	graphic	card	should	support	quad	buffering.
You	need	active	3D	glasses	(LCD	shutter	glasses).
The	graphic	driver	needs	to	be	configured	to	impose	quad	buffering
for	newly	created	OpenGl	contexts;	the	viewer	and	the	view	should
be	created	after	that.

In	stereographic	projection	mode	the	camera	prepares	two	projection
matrices	to	display	different	stereo-pictures	for	the	left	and	for	the	right
eye.	In	a	non-stereo	camera	this	effect	is	not	visible	because	only	the
same	projection	is	used	for	both	eyes.

To	enable	quad	buffering	support	you	should	provide	the	following
settings	to	the	graphic	driver	opengl_caps:

Handle(OpenGl_GraphicDriver)	aDriver	=	new	

OpenGl_GraphicDriver();

OpenGl_Caps&	aCaps	=	aDriver->ChangeOptions();

aCaps.contextStereo	=	Standard_True;

The	following	code	configures	the	camera	for	stereographic	rendering:

//	Create	a	Stereographic	View	in	this	Viewer

Handle(V3d_View)	aView	=	new	V3d_View(VM);

aView->Camera()->SetProjectionType	

(Graphic3d_Camera::Projection_Stereo);

//	Change	stereo	parameters

aView->Camera()->SetIOD	(IODType_Absolute,	5.0);

//	Finally	update	the	Visualization	in	this	View

aView->Update();

View	frustum	culling

The	algorithm	of	frustum	culling	on	CPU-side	is	activated	by	default	for
3D	viewer.	This	algorithm	allows	skipping	the	presentation	outside
camera	at	the	rendering	stage,	providing	better	performance.	The
following	features	support	this	method:

Graphic3d_Structure::CalculateBoundBox()	is	used	to	calculate	axis-
aligned	bounding	box	of	a	presentation	considering	its
transformation.
V3d_View::SetFrustumCulling	enables	or	disables	frustum	culling	for
the	specified	view.
Classes	OpenGl_BVHClipPrimitiveSet	and
OpenGl_BVHTreeSelector	handle	the	detection	of	outer	objects	and
usage	of	acceleration	structure	for	frustum	culling.

BVH_BinnedBuilder	class	splits	several	objects	with	null	bounding
box.

View	background	styles

There	are	three	types	of	background	styles	available	for	V3d_View:	solid
color,	gradient	color	and	image.

To	set	solid	color	for	the	background	you	can	use	the	following	method:

void	V3d_View::SetBackgroundColor	(const	

Quantity_Color&	theColor);

The	gradient	background	style	could	be	set	up	with	the	following	method:

void	V3d_View::SetBgGradientColors	(const	

Quantity_Color&	theColor1,

																																				const	

Quantity_Color&	theColor2,

																																				const	

Aspect_GradientFillMethod	theFillStyle,

																																				const	

Standard_Boolean	theToUpdate	=	false);

The	theColor1	and	theColor2	parameters	define	the	boundary	colors	of
interpolation,	the	theFillStyle	parameter	defines	the	direction	of
interpolation.

To	set	the	image	as	a	background	and	change	the	background	image
style	you	can	use	the	following	method:

void	V3d_View::SetBackgroundImage	(const	

Standard_CString	theFileName,

																																			const	

Aspect_FillMethod	theFillStyle,

																																			const	

Standard_Boolean	theToUpdate	=	false);

The	theFileName	parameter	defines	the	image	file	name	and	the	path	to

it,	the	theFillStyle	parameter	defines	the	method	of	filling	the	background
with	the	image.	The	methods	are:

Aspect_FM_NONE	–	draws	the	image	in	the	default	position;
Aspect_FM_CENTERED	–	draws	the	image	at	the	center	of	the
view;
Aspect_FM_TILED	–	tiles	the	view	with	the	image;
Aspect_FM_STRETCH	–	stretches	the	image	over	the	view.

Dumping	a	3D	scene	into	an	image	file

The	3D	scene	displayed	in	the	view	can	be	dumped	into	image	file	with
resolution	independent	from	window	size	(using	offscreen	buffer).	The
V3d_View	has	the	following	methods	for	dumping	the	3D	scene:

Standard_Boolean	V3d_View::Dump	(const	

Standard_CString	theFile,

																																	const	

Image_TypeOfImage	theBufferType);

Dumps	the	scene	into	an	image	file	with	the	view	dimensions.	The	raster
image	data	handling	algorithm	is	based	on	the	Image_AlienPixMap	class.
The	supported	extensions	are	".png",	".bmp",	".jpg"	and	others	supported
by	FreeImage	library.	The	value	passed	as	theBufferType	argument
defines	the	type	of	the	buffer	for	an	output	image	*(RGB,	RGBA,	floating-
point,	RGBF,	RGBAF)*.	Method	returns	TRUE	if	the	scene	has	been
successfully	dumped.

Standard_Boolean	V3d_View::ToPixMap	(Image_PixMap&															

theImage,

																																					const	

V3d_ImageDumpOptions&	theParams);

Dumps	the	displayed	3d	scene	into	a	pixmap	with	a	width	and	height
passed	through	parameters	structure	theParams.

Ray	tracing	support

OCCT	visualization	provides	rendering	by	real-time	ray	tracing	technique.

It	is	allowed	to	switch	easily	between	usual	rasterization	and	ray	tracing
rendering	modes.	The	core	of	OCCT	ray	tracing	is	written	using	GLSL
shaders.	The	ray	tracing	has	a	wide	list	of	features:

Hard	shadows
Refractions
Reflection
Transparency
Texturing
Support	of	non-polygon	objects,	such	as	lines,	text,	highlighting,
selection.
Performance	optimization	using	2-level	bounding	volume	hierarchy
(BVH).

The	ray	tracing	algorithm	is	recursive	(Whitted's	algorithm).	It	uses	BVH
effective	optimization	structure.	The	structure	prepares	optimized	data	for
a	scene	geometry	for	further	displaying	it	in	real-time.	The	time-
consuming	re-computation	of	the	BVH	is	not	necessary	for	view
operations,	selections,	animation	and	even	editing	of	the	scene	by
transforming	location	of	the	objects.	It	is	only	necessary	when	the	list	of
displayed	objects	or	their	geometry	changes.	To	make	the	BVH	reusable
it	has	been	added	into	an	individual	reusable	OCCT	package
TKMath/BVH.

There	are	several	ray-tracing	options	that	user	can	switch	on/off:

Maximum	ray	tracing	depth
Shadows	rendering
Specular	reflections
Adaptive	anti	aliasing
Transparency	shadow	effects

Example:

Graphic3d_RenderingParams&	aParams	=	aView-

>ChangeRenderingParams();

//	specifies	rendering	mode

aParams.Method	=	Graphic3d_RM_RAYTRACING;

//	maximum	ray-tracing	depth

aParams.RaytracingDepth	=	3;

//	enable	shadows	rendering

aParams.IsShadowEnabled	=	true;

//	enable	specular	reflections.

aParams.IsReflectionEnabled	=	true;

//	enable	adaptive	anti-aliasing

aParams.IsAntialiasingEnabled	=	true;

//	enable	light	propagation	through	transparent	

media.

aParams.IsTransparentShadowEnabled	=	true;

//	update	the	view

aView->Update();

Display	priorities

Structure	display	priorities	control	the	order,	in	which	structures	are
drawn.	When	you	display	a	structure	you	specify	its	priority.	The	lower	is
the	value,	the	lower	is	the	display	priority.	When	the	display	is
regenerated,	the	structures	with	the	lowest	priority	are	drawn	first.	The
structures	with	the	same	display	priority	are	drawn	in	the	same	order	as
they	have	been	displayed.	OCCT	supports	eleven	structure	display
priorities.

Z-layer	support

OCCT	features	depth-arranging	functionality	called	z-layer.	A	graphical
presentation	can	be	put	into	a	z-layer.	In	general,	this	function	can	be
used	for	implementing	"bring	to	front"	functionality	in	a	graphical
application.

Example:

//	set	z-layer	to	an	interactive	object

Handle(AIS_InteractiveContext)	theContext;

Handle(AIS_InteractiveObject)	theInterObj;

Standard_Integer	anId	=	3;

aViewer->AddZLayer	(anId);

theContext->SetZLayer	(theInterObj,	anId);

For	each	z-layer,	it	is	allowed	to:

Enable	/	disable	depth	test	for	layer.
Enable	/	disable	depth	write	for	layer.
Enable	/	disable	depth	buffer	clearing.
Enable	/	disable	polygon	offset.

You	can	get	the	options	using	getter	from	V3d_Viewer.	It	returns
Graphic3d_ZLayerSettings	for	a	given	LayerId.

Example:

//	change	z-layer	settings

Graphic3d_ZLayerSettings	aSettings	=	aViewer-

>ZLayerSettings	(anId);

aSettings.SetEnableDepthTest	(true);

aSettings.SetEnableDepthWrite(true);

aSettings.SetClearDepth						(true);

aSettings.SetPolygonOffset			

(Graphic3d_PolygonOffset());

aViewer->SetZLayerSettings	(anId,	aSettings);

Another	application	for	Z-Layer	feature	is	treating	visual	precision	issues
when	displaying	objects	far	from	the	World	Center.	The	key	problem	with
such	objects	is	that	visualization	data	is	stored	and	manipulated	with
single	precision	floating-point	numbers	(32-bit).	Single	precision	32-bit
floating-point	numbers	give	only	6-9	significant	decimal	digits	precision,
while	double	precision	64-bit	numbers	give	15-17	significant	decimal
digits	precision,	which	is	sufficient	enough	for	most	applications.

When	moving	an	Object	far	from	the	World	Center,	float	number	steadily
eats	precision.	The	camera	Eye	position	adds	leading	decimal	digits	to
the	overall	Object	transformation,	which	discards	smaller	digits	due	to
floating	point	number	nature.	For	example,	the	object	of	size	0.0000123
moved	to	position	1000	has	result	transformation	1000.0000123,	which
overflows	single	precision	floating	point	-	considering	the	most	optimistic
scenario	of	9	significant	digits	(but	it	is	really	not	this	case),	the	result
number	will	be	1000.00001.

This	imprecision	results	in	visual	artifacts	of	two	kinds	in	the	3D	Viewer:

Overall	per-vertex	Object	distortion.	This	happens	when	each	vertex
position	has	been	defined	within	World	Coordinate	system.
The	object	itself	is	not	distorted,	but	its	position	in	the	World	is
unstable	and	imprecise	-	the	object	jumps	during	camera
manipulations.	This	happens	when	vertices	have	been	defined	within
Local	Coordinate	system	at	the	distance	small	enough	to	keep
precision	within	single	precision	float,	however	Local	Transformation
applied	to	the	Object	is	corrupted	due	to	single	precision	float.

The	first	issue	cannot	be	handled	without	switching	the	entire
presentation	into	double	precision	(for	each	vertex	position).	However,
visualization	hardware	is	much	faster	using	single	precision	float	number
rather	than	double	precision	-	so	this	is	not	an	option	in	most	cases.	The
second	issue,	however,	can	be	negated	by	applying	special	rendering
tricks.

So,	to	apply	this	feature	in	OCCT,	the	application:

Defines	Local	Transformation	for	each	object	to	fit	the	presentation
data	into	single	precision	float	without	distortion.
Spatially	splits	the	world	into	smaller	areas/cells	where	single
precision	float	will	be	sufficient.	The	size	of	such	cell	might	vary	and
depends	on	the	precision	required	by	application	(e.g.	how	much
user	is	able	to	zoom	in	camera	within	application).
Defines	a	Z-Layer	for	each	spatial	cell	containing	any	object.
Defines	the	Local	Origin	property	of	the	Z-Layer	according	to	the
center	of	the	cell.

Graphic3d_ZLayerSettings	aSettings	=	aViewer-

>ZLayerSettings	(anId);

aSettings.SetLocalOrigin	(400.0,	0.0,	0.0);

Assigns	a	presentable	object	to	the	nearest	Z-Layer.

Note	that	Local	Origin	of	the	Layer	is	used	only	for	rendering	-	everything
outside	will	be	still	defined	in	the	World	Coordinate	System,	including
Local	Transformation	of	the	Object	and	Detection	results.	E.g.,	while
moving	the	presentation	between	Z-layers	with	different	Local	Origins,
the	Object	will	stay	at	the	same	place	-	only	visualization	quality	will	vary.

Clipping	planes

The	ability	to	define	custom	clipping	planes	could	be	very	useful	for	some
tasks.	OCCT	provides	such	an	opportunity.

The	Graphic3d_ClipPlane	class	provides	the	services	for	clipping	planes:
it	holds	the	plane	equation	coefficients	and	provides	its	graphical
representation.	To	set	and	get	plane	equation	coefficients	you	can	use
the	following	methods:

Graphic3d_ClipPlane::Graphic3d_ClipPlane	(const	

gp_Pln&	thePlane)

void	Graphic3d_ClipPlane::SetEquation	(const	gp_Pln&	

thePlane)

Graphic3d_ClipPlane::Graphic3d_ClipPlane	(const	

Equation&	theEquation)

void	Graphic3d_ClipPlane::SetEquation	(const	

Equation&	theEquation)

gp_Pln	Graphic3d_ClipPlane::ToPlane()	const

The	clipping	planes	can	be	activated	with	the	following	method:

void	Graphic3d_ClipPlane::SetOn	(const	

Standard_Boolean	theIsOn)

The	number	of	clipping	planes	is	limited.	You	can	check	the	limit	value
via	method	Graphic3d_GraphicDriver::InquireLimit();

//	get	the	limit	of	clipping	planes	for	the	current	

view

Standard_Integer	aMaxClipPlanes	=	aView->Viewer()-

>Driver()->InquireLimit	

(Graphic3d_TypeOfLimit_MaxNbClipPlanes);

Let	us	see	for	example	how	to	create	a	new	clipping	plane	with	custom
parameters	and	add	it	to	a	view	or	to	an	object:

//	create	a	new	clipping	plane

const	Handle(Graphic3d_ClipPlane)&	aClipPlane	=	new	

Graphic3d_ClipPlane();

//	change	equation	of	the	clipping	plane

Standard_Real	aCoeffA	=	...

Standard_Real	aCoeffB	=	...

Standard_Real	aCoeffC	=	...

Standard_Real	aCoeffD	=	...

aClipPlane->SetEquation	(gp_Pln	(aCoeffA,	aCoeffB,	

aCoeffC,	aCoeffD));

//	set	capping

aClipPlane->SetCapping	(aCappingArg	==	"on");

//	set	the	material	with	red	color	of	clipping	plane

Graphic3d_MaterialAspect	aMat	=	aClipPlane-

>CappingMaterial();

Quantity_Color	aColor	(1.0,	0.0,	0.0,	

Quantity_TOC_RGB);

aMat.SetAmbientColor	(aColor);

aMat.SetDiffuseColor	(aColor);

aClipPlane->SetCappingMaterial	(aMat);

//	set	the	texture	of	clipping	plane

Handle(Graphic3d_Texture2Dmanual)	aTexture	=	...

aTexture->EnableModulate();

aTexture->EnableRepeat();

aClipPlane->SetCappingTexture	(aTexture);

//	add	the	clipping	plane	to	an	interactive	object

Handle(AIS_InteractiveObject)	aIObj	=	...

aIObj->AddClipPlane	(aClipPlane);

//	or	to	the	whole	view

aView->AddClipPlane	(aClipPlane);

//	activate	the	clipping	plane

aClipPlane->SetOn(Standard_True);

//	update	the	view

aView->Update();

Automatic	back	face	culling

Back	face	culling	reduces	the	rendered	number	of	triangles	(which
improves	the	performance)	and	eliminates	artifacts	at	shape	boundaries.

However,	this	option	can	be	used	only	for	solid	objects,	where	the	interior
is	actually	invisible	from	any	point	of	view.	Automatic	back-face	culling
mechanism	is	turned	on	by	default,	which	is	controlled	by
V3d_View::SetBackFacingModel().

The	following	features	are	applied	in
StdPrs_ToolShadedShape::IsClosed(),	which	is	used	for	definition	of
back	face	culling	in	ShadingAspect:

disable	culling	for	free	closed	Shells	(not	inside	the	Solid)	since
reversed	orientation	of	a	free	Shell	is	a	valid	case;
enable	culling	for	Solids	packed	into	a	compound;
ignore	Solids	with	incomplete	triangulation.

Back	face	culling	is	turned	off	at	TKOpenGl	level	in	the	following	cases:

clipping/capping	planes	are	in	effect;
for	translucent	objects;
with	hatching	presentation	style.

Examples:	creating	a	3D	scene
To	create	3D	graphic	objects	and	display	them	in	the	screen,	follow	the
procedure	below:

1.	 Create	attributes.
2.	 Create	a	3D	viewer.
3.	 Create	a	view.
4.	 Create	an	interactive	context.
5.	 Create	interactive	objects.
6.	 Create	primitives	in	the	interactive	object.
7.	 Display	the	interactive	object.

Create	attributes

Create	colors.

Quantity_Color	aBlack	(Quantity_NOC_BLACK);

Quantity_Color	aBlue	(Quantity_NOC_MATRABLUE);

Quantity_Color	aBrown	(Quantity_NOC_BROWN4);

Quantity_Color	aFirebrick	(Quantity_NOC_FIREBRICK);

Quantity_Color	aForest	(Quantity_NOC_FORESTGREEN);

Quantity_Color	aGray	(Quantity_NOC_GRAY70);

Quantity_Color	aMyColor	(0.99,	0.65,	0.31,	

Quantity_TOC_RGB);

Quantity_Color	aBeet	(Quantity_NOC_BEET);

Quantity_Color	aWhite	(Quantity_NOC_WHITE);

Create	line	attributes.

Handle(Graphic3d_AspectLine3d)	anAspectBrown	=	new	

Graphic3d_AspectLine3d();

Handle(Graphic3d_AspectLine3d)	anAspectBlue	=	new	

Graphic3d_AspectLine3d();

Handle(Graphic3d_AspectLine3d)	anAspectWhite	=	new	

Graphic3d_AspectLine3d();

anAspectBrown->SetColor	(aBrown);

anAspectBlue	->SetColor	(aBlue);

anAspectWhite->SetColor	(aWhite);

Create	marker	attributes.

Handle(Graphic3d_AspectMarker3d	aFirebrickMarker	=	

new	Graphic3d_AspectMarker3d();

//	marker	attributes

aFirebrickMarker->SetColor	(Firebrick);

aFirebrickMarker->SetScale	(1.0);

aFirebrickMarker->SetType	(Aspect_TOM_BALL);

//	or	this

//	it	is	a	preferred	way	(supports	full-color	images	

on	modern	hardware).

aFirebrickMarker->SetMarkerImage	(theImage)

Create	facet	attributes.

Handle(Graphic3d_AspectFillArea3d)	aFaceAspect	=		new	

Graphic3d_AspectFillArea3d();

Graphic3d_MaterialAspect	aBrassMaterial	

(Graphic3d_NOM_BRASS);

Graphic3d_MaterialAspect	aGoldMaterial		

(Graphic3d_NOM_GOLD);

aFaceAspect->SetInteriorStyle	(Aspect_IS_SOLID);

aFaceAspect->SetInteriorColor	(aMyColor);

aFaceAspect->SetDistinguishOn	();

aFaceAspect->SetFrontMaterial	(aGoldMaterial);

aFaceAspect->SetBackMaterial		(aBrassMaterial);

aFaceAspect->SetEdgeOn();

Create	text	attributes.

Handle(Graphic3d_AspectText3d)	aTextAspect	=	new	

Graphic3d_AspectText3d	(aForest,	

Graphic3d_NOF_ASCII_MONO,	1.0,	0.0);

Create	a	3D	Viewer	(a	Windows	example)

//	create	a	default	connection

Handle(Aspect_DisplayConnection)	aDisplayConnection;

//	create	a	graphic	driver	from	default	connection

Handle(OpenGl_GraphicDriver)	aGraphicDriver	=	new	

OpenGl_GraphicDriver	(aDisplayConnection);

//	create	a	viewer

myViewer	=	new	V3d_Viewer	(aGraphicDriver);

//	set	parameters	for	V3d_Viewer

//	defines	default	lights	-

//			positional-light	0.3	0.0	0.0

//			directional-light	V3d_XnegYposZpos

//			directional-light	V3d_XnegYneg

//			ambient-light

a3DViewer->SetDefaultLights();

//	activates	all	the	lights	defined	in	this	viewer

a3DViewer->SetLightOn();

//	set	background	color	to	black

a3DViewer->SetDefaultBackgroundColor	

(Quantity_NOC_BLACK);

Create	a	3D	view	(a	Windows	example)

It	is	assumed	that	a	valid	Windows	window	may	already	be	accessed	via
the	method	GetSafeHwnd()	(as	in	case	of	MFC	sample).

Handle(WNT_Window)	aWNTWindow	=	new	WNT_Window	

(GetSafeHwnd());

myView	=	myViewer->CreateView();

myView->SetWindow	(aWNTWindow);

Create	an	interactive	context

myAISContext	=	new	AIS_InteractiveContext	(myViewer);

You	are	now	able	to	display	interactive	objects	such	as	an	AIS_Shape.

TopoDS_Shape	aShape	=	BRepAPI_MakeBox	(10,	20,	

30).Solid();

Handle(AIS_Shape)	anAISShape	=	new	AIS_Shape	

(aShape);

myAISContext->Display	(anAISShape);

Create	your	own	interactive	object

Follow	the	procedure	below	to	compute	the	presentable	object:

1.	 Build	a	presentable	object	inheriting	from	AIS_InteractiveObject
(refer	to	the	Chapter	on	Presentable	Objects).

2.	 Reuse	the	Prs3d_Presentation	provided	as	an	argument	of	the
compute	methods.

Note	that	there	are	two	compute	methods:	one	for	a	standard
representation,	and	the	other	for	a	degenerated	representation,	i.e.	in
hidden	line	removal	and	wireframe	modes.

Let	us	look	at	the	example	of	compute	methods

void	MyPresentableObject::Compute	(const	

Handle(PrsMgr_PresentationManager3d)&	

thePrsManager,

																																			const	

Handle(Prs3d_Presentation)&	thePrs,

																																			const	

Standard_Integer	theMode)

(

		//...

)

void	MyPresentableObject::Compute	(const	

Handle(Prs3d_Projector)&	theProjector,

																																			const	

Handle(Prs3d_Presentation)&	thePrs)

(

		//...

)

Create	primitives	in	the	interactive	object

Get	the	group	used	in	Prs3d_Presentation.

Handle(Graphic3d_Group)	aGroup	=	thePrs->NewGroup();

Update	the	group	attributes.

aGroup->SetGroupPrimitivesAspect	(anAspectBlue);

Create	two	triangles	in	aGroup.

Standard_Integer	aNbTria	=	2;

Handle(Graphic3d_ArrayOfTriangles)	aTriangles	=	new	

Graphic3d_ArrayOfTriangles	(3	*	aNbTria,	0,	

true);

for	(Standard_Integer	aTriIter	=	1;	aTriIter	<=	

aNbTria;	++aTriIter)

{

		aTriangles->AddVertex	(aTriIter	*	5.,						0.,	0.,	

1.,	1.,	1.);

		aTriangles->AddVertex	(aTriIter	*	5	+	5,			0.,	0.,	

1.,	1.,	1.);

		aTriangles->AddVertex	(aTriIter	*	5	+	2.5,	5.,	0.,	

1.,	1.,	1.);

}

aGroup->AddPrimitiveArray	(aTriangles);

aGroup->SetGroupPrimitivesAspect	(new	

Graphic3d_AspectFillArea3d());

Use	the	polyline	function	to	create	a	boundary	box	for	the	thePrs
structure	in	group	aGroup.

Standard_Real	Xm,	Ym,	Zm,	XM,	YM,	ZM;

thePrs->MinMaxValues	(Xm,	Ym,	Zm,	XM,	YM,	ZM);

Handle(Graphic3d_ArrayOfPolylines)	aPolylines	=	new	

Graphic3d_ArrayOfPolylines	(16,	4);

aPolylines->AddBound	(4);

aPolylines->AddVertex	(Xm,		Ym,	Zm);

aPolylines->AddVertex	(Xm,		Ym,	ZM);

aPolylines->AddVertex	(Xm,		YM,	ZM);

aPolylines->AddVertex	(Xm,		YM,	Zm);

aPolylines->AddBound	(4);

aPolylines->AddVertex	(Xm,		Ym,	Zm);

aPolylines->AddVertex	(XM,		Ym,	Zm);

aPolylines->AddVertex	(XM,		Ym,	ZM);

aPolylines->AddVertex	(XM,		YM,	ZM);

aPolylines->AddBound	(4);

aPolylines->AddVertex	(XM,		YM,	Zm);

aPolylines->AddVertex	(XM,		Ym,	Zm);

aPolylines->AddVertex	(XM,		YM,	Zm);

aPolylines->AddVertex	(Xm,		YM,	Zm);

aPolylines->AddBound	(4);

aPolylines->AddVertex	(Xm,		YM,	ZM);

aPolylines->AddVertex	(XM,		YM,	ZM);

aPolylines->AddVertex	(XM,		Ym,	ZM);

aPolylines->AddVertex	(Xm,		Ym,	ZM);

aGroup->AddPrimitiveArray(aPolylines);

aGroup->SetGroupPrimitivesAspect	(new	

Graphic3d_AspectLine3d());

Create	text	and	markers	in	group	aGroup.

static	char*	texte[3]	=

{

		"Application	title",

		"My	company",

		"My	company	address."

};

Handle(Graphic3d_ArrayOfPoints)	aPtsArr	=	new	

Graphic3d_ArrayOfPoints	(2,	1);

aPtsArr->AddVertex	(-40.0,	-40.0,	-40.0);

aPtsArr->AddVertex	(40.0,	40.0,	40.0);

aGroup->AddPrimitiveArray	(aPtsArr);

aGroup->SetGroupPrimitivesAspect	(new	

Graphic3d_AspectText3d());

Graphic3d_Vertex	aMarker	(0.0,	0.0,	0.0);

for	(int	i	=	0;	i	<=	2;	i++)

{

		aMarker.SetCoord	(-(Standard_Real)i	*	4	+	30,

																					(Standard_Real)i	*	4,

																				-(Standard_Real)i	*	4);

		aGroup->Text	(texte[i],	Marker,	20.);

}

Mesh	Visualization	Services
MeshVS	(Mesh	Visualization	Service)	component	extends	3D
visualization	capabilities	of	Open	CASCADE	Technology.	It	provides
flexible	means	of	displaying	meshes	along	with	associated	pre-	and	post-
processor	data.

From	a	developer's	point	of	view,	it	is	easy	to	integrate	the	MeshVS
component	into	any	mesh-related	application	with	the	following
guidelines:

Derive	a	data	source	class	from	the	MeshVS_DataSource	class.
Re-implement	its	virtual	methods,	so	as	to	give	the	MeshVS
component	access	to	the	application	data	model.	This	is	the	most
important	part	of	the	job,	since	visualization	performance	is	affected
by	performance	of	data	retrieval	methods	of	your	data	source	class.
Create	an	instance	of	MeshVS_Mesh	class.
Create	an	instance	of	your	data	source	class	and	pass	it	to	a
MeshVS_Mesh	object	through	the	SetDataSource()	method.
Create	one	or	several	objects	of	MeshVS_PrsBuilder-derived
classes	(standard,	included	in	the	MeshVS	package,	or	your	custom
ones).
Each	PrsBuilder	is	responsible	for	drawing	a	MeshVS_Mesh
presentation	in	a	certain	display	mode(s)	specified	as	a	PrsBuilder
constructor's	argument.	Display	mode	is	treated	by	MeshVS	classes
as	a	combination	of	bit	flags	(two	least	significant	bits	are	used	to
encode	standard	display	modes:	wireframe,	shading	and	shrink).
Pass	these	objects	to	the	MeshVS_Mesh::AddBuilder()	method.
MeshVS_Mesh	takes	advantage	of	improved	selection	highlighting
mechanism:	it	highlights	its	selected	entities	itself,	with	the	help	of	so
called	"highlighter"	object.	You	can	set	one	of	PrsBuilder	objects	to
act	as	a	highlighter	with	the	help	of	a	corresponding	argument	of	the
AddBuilder()	method.

Visual	attributes	of	the	MeshVS_Mesh	object	(such	as	shading	color,
shrink	coefficient	and	so	on)	are	controlled	through	MeshVS_Drawer
object.	It	maintains	a	map	"Attribute	ID	-->	attribute	value"	and	can	be
easily	extended	with	any	number	of	custom	attributes.

In	all	other	respects,	MeshVS_Mesh	is	very	similar	to	any	other	class
derived	from	AIS_InteractiveObject	and	it	should	be	used	accordingly
(refer	to	the	description	of	AIS	package	in	the	documentation).

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Component	Architecture
Common	structure
IVtk	package
IVtkOCC	package
IVtkVtk	package
IVtkTools	package

Using	high-level	API
(simple	scenario)
OCCT	shape
presentation	in	VTK
viewer
Color	schemes

Default	OCCT
color	scheme
Custom	color
scheme
Setting	custom
colors	for	sub-
shapes
Using	color
scheme	of
mapper

Display	modes
Interactive	selection

Selection	of
sub-shapes

Using	of	low-level	API
(advanced	scenario)
Shape	presentation

Open	CASCADE
Technology		7.2.0

VTK	Integration	Services	(VIS)

Usage	of	OCCT
picking	algorithm

DRAW	Test	Harness

Introduction
VIS	component	provides	adaptation	functionality	for	visualization	of
OCCT	topological	shapes	by	means	of	VTK	library.	This	User’s	Guide
describes	how	to	apply	VIS	classes	in	application	dealing	with	3D
visualization	based	on	VTK	library.

3D	visualization	based	on	VTK	library

There	are	two	ways	to	use	VIS	in	the	application:

Use	a	high-level	API.	It	is	a	simple	scenario	to	use	VTK	viewer	with
displayed	OCCT	shapes.	It	considers	usage	of	tools	provided	with
VIS	component	such	as	a	specific	VTK	data	source,	a	picker	class
and	specific	VTK	filters.	Basically,	in	this	scenario	you	enrich	your
custom	VTK	pipeline	with	extensions	coming	from	VIS.
Use	a	low-level	API.	It	is	an	advanced	scenario	for	the	users	with
specific	needs,	which	are	not	addressed	by	the	higher-level	utilities
of	VIS.	It	presumes	implementation	of	custom	VTK	algorithms	(such
as	filters)	with	help	of	low-level	API	of	VIS	component.	This
document	describes	both	scenarios	of	VIS	integration	into
application.	To	understand	this	document,	it	is	necessary	to	be
familiar	with	VTK	and	OCCT	libraries.

Component	Architecture
Common	structure

VIS	component	consists	of	the	following	packages:

IVtk	–	common	interfaces	which	define	the	principal	objects	playing
as	foundation	of	VIS.
IVtkOCC	–	implementation	of	interfaces	related	to	CAD	domain.	The
classes	from	this	package	deal	with	topological	shapes,	faceting	and
interactive	selection	facilities	of	OCCT;
IVtkVTK	–	implementation	of	interfaces	related	to	VTK	visualization
toolkit;
IVtkTools	–	high-level	tools	designed	for	integration	into	VTK
visualization	pipelines.

Dependencies	of	VIS	packages

The	idea	behind	the	mentioned	organization	of	packages	is	separation	of
interfaces	from	their	actual	implementations	by	their	dependencies	from	a
particular	library	(OCCT,	VTK).	Besides	providing	of	semantic	separation,
such	splitting	helps	to	avoid	excessive	dependencies	on	other	OCCT
toolkits	and	VTK.

IVtk	package	does	not	depend	on	VTK	libraries	at	all	and	needs

OCCT	libraries	only	because	of	collections	usage	(TKernel	library);
Implementation	classes	from	IVtkOCC	package	depend	on	OCCT
libraries	only	and	do	not	need	VTK;
IVtkVTK	package	depends	on	VTK	libraries	only	and	does	not	need
any	OCCT	functionality	except	collections.

Dependencies	of	VIS	packages

Basically,	it	is	enough	to	use	the	first	three	packages	in	the	end	user’s
application	(IVtk,	IVtkOCC	and	IVtkVTK)	to	be	able	to	work	with	OCCT
shapes	in	VTK	viewer.	However,	IVtkTools	package	is	also	provided	as	a
part	of	the	component	to	make	the	work	more	comfortable.

IVtk	package
IVtk	package	contains	the	following	classes:

IVtk_Interface	–	Base	class	for	all	interfaces	of	the	component.
Provides	inheritance	for	Handle	(OCCT	“smart	pointer”)	functionality.
IVtk_IShape	–	Represents	a	3D	shape	of	arbitrary	nature.	Provides
its	ID	property.	Implementation	of	this	interface	should	maintain
unique	IDs	for	all	visualized	shapes.	These	IDs	can	be	easily
converted	into	original	shape	objects	at	the	application	level.
IVtk_IShapeData	–	Represents	faceted	data.	Provides	methods	for
adding	coordinates	and	cells	(vertices,	lines,	triangles).
IVtk_IShapeMesher	–	Interface	for	faceting,	i.e.	constructing
IVtk_IShapeData	from	IVtk_IShape	input	shape.
IVtk_IShapePickerAlgo	–	Algorithmic	interface	for	interactive	picking
of	shapes	in	a	scene.	Provides	methods	for	finding	shapes	and	their
parts	(sub-shapes)	at	a	given	location	according	to	the	chosen
selection	mode.
IVtk_IView	–	Interface	for	obtaining	view	transformation	parameters.
It	is	used	by	IVtk_IShapePickerAlgo.

IVtkOCC	package
IVtkOCC	package	contains	the	implementation	of	classes	depending	on
OCCT:

IVtkOCC_Shape	–	Implementation	of	IVtk_IShape	interface	as	a
wrapper	for	TopoDS_Shape.
IVtkOCC_ShapeMesher	–	Implementation	of	IVtk_IShapeMesher
interface	for	construction	of	facets	from	TopoDS	shapes.
IVtkOCC_ShapePickerAlgo	–	Implementation	of	interactive	picking
algorithm.	It	provides	enabling/disabling	of	selection	modes	for
shapes	(IVtk_IShape	instances)	and	picking	facilities	for	a	given
position	of	cursor.
IVtkOCC_ViewerSelector	–	Interactive	selector,	which	implements
Pick()	methods	for	the	picking	algorithm	IVtkOCC_ShapePickerAlgo
and	connects	to	the	visualization	layer	with	help	of	abstract	IView
interface.

IVtkOCC_ViewerSelector	is	a	descendant	of	OCCT	native
SelectMgr_ViewerSelector,	so	it	implements	OCCT	selection	mechanism
for	IVtkVTK_View	(similarly	to	StdSelect_ViewerSelector3D	which
implements	SelectMgr_ViewerSelector	for	OCCT	native	V3d_View).
IVtkOCC_ViewerSelector	encapsulates	all	projection	transformations	for
the	picking	mechanism.	These	transformations	are	extracted	from
vtkCamera	instance	available	via	VTK	Renderer.
IVtkOCC_ViewerSelector	operates	with	native	OCCT
SelectMgr_Selection	entities.	Each	entity	represents	one	selection	mode
of	an	OCCT	selectable	object.	ViewerSelector	is	an	internal	class,	so	it	is
not	a	part	of	the	public	API.

IVtkOCC_SelectableObject	–	OCCT	shape	wrapper	used	in	the
picking	algorithm	for	computation	of	selection	primitives	of	a	shape
for	a	chosen	selection	mode.

IVtkVtk	package
IVtkVTK	package	contains	implementation	of	classes	depending	on	VTK:

IVtkVTK_ShapeData	–	Implementation	of	IVtk_IShapeData	interface
for	VTK	polydata.	This	class	also	stores	information	related	to	sub-
shape	IDs	and	sub-shape	mesh	type	IVtk_MeshType	(free	vertex,
shared	vertex,	free	edge,	boundary	edge,	shared	edge,	wireframe
face	or	shaded	face).	This	information	is	stored	in	VTK	data	arrays
for	cells.
IVtkVTK_View	–	Implementation	of	IVtk_IView	interface	for	VTK
viewer.	This	implementation	class	is	used	to	connect
IVtkOCC_ViewerSelector	to	VTK	renderer.

IVtkTools	package
IVtkTools	package	gives	you	a	ready-to-use	toolbox	of	algorithms
facilitating	the	integration	of	OCCT	shapes	into	visualization	pipeline	of
VTK.	This	package	contains	the	following	classes:

IVtkTools_ShapeDataSource	–	VTK	polygonal	data	source	for	OCCT
shapes.	It	inherits	vtkPolyDataAlgorithm	class	and	provides	a
faceted	representation	of	OCCT	shape	for	visualization	pipelines.
IVtkTools_ShapeObject	–	Auxiliary	wrapper	class	for	OCCT	shapes
to	pass	them	through	pipelines	by	means	of	VTK	information	keys.
IVtkTools_ShapePicker	–	VTK	picker	for	shape	actors.	Uses	OCCT
selection	algorithm	internally.
IVtkTools_DisplayModeFilter	–	VTK	filter	for	extracting	cells	of	a
particular	mesh	type	according	to	a	given	display	mode
IVtk_DisplayMode	(Wireframe	or	Shading).
IVtkTools_SubPolyDataFilter	–	VTK	filter	for	extracting	the	cells
corresponding	to	a	given	set	of	sub-shape	IDs.

Additionally,	IVtkTools	package	contains	auxiliary	methods	in	IVtkTools
namespace.	E.g.	there	is	a	convenience	function	populating
vtkLookupTable	instances	to	set	up	a	color	scheme	for	better
visualization	of	sub-shapes.

Using	high-level	API	(simple
scenario)
OCCT	shape	presentation	in	VTK	viewer

To	visualize	an	OCCT	topological	shape	in	VTK	viewer,	it	is	necessary	to
perform	the	following	steps:

1.	 Create	IVtkOCC_Shape	instance	(VIS	wrapper	for	OCCT	shape)
and	initialize	it	with	TopoDS_Shape	object	containing	the	actual
geometry:
TopoDS_Shape	aShape;

//	Initialize	aShape	variable:	e.g.	load	it	from	

BREP	file

IVtkOCC_Shape::Handle	aShapeImpl	=	new	

IVtkOCC_Shape(aShape);

2.	 Create	VTK	polygonal	data	source	for	the	target	OCCT	topological
shape	and	initialize	it	with	created	IVtkOCC_Shape	instance.	At	this
stage	the	faceter	is	implicitly	plugged:
vtkSmartPointer<IVtkTools_ShapeDataSource>	DS	=	

vtkSmartPointer<IVtkTools_ShapeDataSource>::N

ew();

DS->SetShape(aShapeImpl);

3.	 Visualize	the	loaded	shape	in	usual	VTK	way	starting	a	pipeline	from
the	newly	created	specific	source:
vtkSmartPointer<vtkPolyDataMapper>	Mapper	=	

vtkSmartPointer<vtkPolyDataMapper>::New();

Mapper->SetInputConnection(aDS->GetOutputPort());

vtkSmartPointer<vtkActor>	Actor	=	

vtkSmartPointer<vtkActor>::New();

Actor->SetMapper(Mapper);

It	is	always	possible	to	access	the	shape	data	source	from	VTK	actor	by
means	of	dedicated	methods	from	IVtkTools_ShapeObject	class:

IVtkTools_ShapeDataSource*	DS	=	

IVtkTools_ShapeObject::GetShapeSource(Actor);

IVtkOCC_Shape::Handle	occShape	=	

IVtkTools_ShapeObject::GetOccShape(Actor);

It	is	also	possible	to	get	a	shape	wrapper	from	the	shape	data	source:

IVtkOCC_Shape::Handle	occShape	=	DS->GetShape();

Color	schemes

Default	OCCT	color	scheme

To	colorize	different	parts	of	a	shape	according	to	the	default	OCCT	color
scheme,	it	is	possible	to	configure	the	corresponding	VTK	mapper	using
a	dedicated	auxiliary	function	of	IVtkTools	namespace:

IVtkTools::InitShapeMapper(Mapper);

It	is	possible	to	get	an	instance	of	vtkLookupTable	class	with	a	default
OCCT	color	scheme	by	means	of	the	following	method:

vtkSmartPointer<vtkLookupTable>	Table	=	

IVtkTools::InitLookupTable();

Custom	color	scheme

To	set	up	application-specific	colors	for	a	shape	presentation,	use
InitShapeMapper	function	with	an	additional	argument	passing	a	custom
lookup	table:

IVtkTools::InitShapeMapper(Mapper,	Table);

Setting	custom	colors	for	sub-shapes

It	is	also	possible	to	bind	custom	colors	to	any	sub-shape	type	listed	in
IVtk_MeshType	enumeration.	For	example,	to	access	the	color	bound	to
free	edge	entities,	the	following	calls	are	available	in	IVtkTools
namespace:

SetLookupTableColor(aLookupTable,	MT_FreeEdge,	R,	G,	

B);

SetLookupTableColor(aLookupTable,	MT_FreeEdge,	R,	G,	

B,	A);

GetLookupTableColor(aLookupTable,	MT_FreeEdge,	R,	G,	

B);

GetLookupTableColor(aLookupTable,	MT_FreeEdge,	R,	G,	

B,	A);

Here	R,	G,	B	are	double	values	of	red,	green	and	blue	components	of	a
color	from	the	range	[0,	1].	The	optional	parameter	A	stands	for	the	alpha
value	(the	opacity)	as	a	double	from	the	same	range	[0,	1].	By	default
alpha	value	is	1,	i.e.	a	color	is	not	transparent.

Using	color	scheme	of	mapper

As	VTK	color	mapping	approach	is	based	on	associating	scalar	data
arrays	to	VTK	cells,	the	coloring	of	shape	components	can	be	turned
on/off	in	the	following	way:

Mapper->ScalarVisibilityOn();		//	use	colors	from	

lookup	table

Mapper->ScalarVisibilityOff();	//	use	a	color	of	

actor’s	property

For	example,	the	scalar-based	coloring	can	be	disabled	to	bind	a	single
color	to	the	entire	VTK	actor	representing	the	shape.

Display	modes
The	output	of	the	shape	data	source	can	be	presented	in	wireframe	or
shading	display	mode.	A	specific	filter	from	class
IVtkTools_DisplayModeFilter	can	be	applied	to	select	the	display	mode.
The	filter	passes	only	the	cells	corresponding	to	the	given	mode.	The	set
of	available	modes	is	defined	by	IVtk_DisplayMode	enumeration.

For	example,	the	shading	representation	can	be	obtained	in	the	following
way:

vtkSmartPointer<IVtkTools_ShapeDataSource>	DS	=	

vtkSmartPointer<IVtkTools_ShapeDataSource>::New(

);

vtkSmartPointer<IVtkTools_DisplayModeFilter>	DMFilter	

=	

vtkSmartPointer<IVtkTools_DisplayModeFilter>::Ne

w();

DMFilter->AddInputConnection(DS->GetOutputPort());

DMFilter->SetDisplayMode(DM_Shading);

vtkSmartPointer<vtkDataSetMapper>	M	=	

vtkSmartPointer<vtkDataSetMapper>::New();

M->SetInputConnection(DMFilter->GetOutputPort());

By	default,	the	display	mode	filter	works	in	a	wireframe	mode.

TIP:	to	make	the	shading	representation	smooth,	use	additional
vtkPolyDataNormals	filter.	This	filter	must	be	applied	after	the	display

mode	filter.

Interactive	selection
IVtkTools	package	provides	IVtkTools_ShapePicker	class	to	perform
selection	of	OCCT	shapes	and	sub-shapes	in	VTK	viewer	and	access	the
picking	results.	The	typical	usage	of	IVtkTools_ShapePicker	tool	consists
in	the	following	sequence	of	actions:

1.	 Create	a	picker	and	set	its	renderer	to	your	active	VTK	renderer:
vtkSmartPointer<IVtkTools_ShapePicker>	aPicker	=	

vtkSmartPointer<IVtkTools_ShapePicker>::New();

aPicker->SetRenderer(aRenderer);

2.	 Activate	the	desired	selection	mode	by	choosing	the	corresponding
sub-shape	types	from	IVtk_SelectionMode	enumeration.	For
example,	the	following	call	allows	selection	of	edges	on	all	selectable
shape	actors	of	the	renderer:
aPicker->SetSelectionMode(SM_Edge);

If	it	is	necessary	to	limit	selection	by	a	particular	shape	actor,	one
can	use	the	mentioned	SetSelectionMode	method	with	IVtk_IShape
handle	or	vtkActor	pointer	as	the	first	argument:
IVtk_IShape::Handle	aShape	=	new	

IVtkOCC_Shape(occShape);

aPicker->SetSelectionMode(aShape,	SM_Edge);	//	If	

shape	handle	is	available

aPicker->SetSelectionMode(anActor,	SM_Edge);	//	

If	shape	actor	is	available

Different	selection	modes	can	be	turned	on/off	for	a	picker	at	the
same	time	independently	from	each	other.
aPicker->SetSelectionMode(SM_Edge);

aPicker->SetSelectionMode(SM_Face);

To	turn	off	a	selection	mode,	the	additional	optional	Boolean
parameter	is	used	with	false	value,	for	example:
aPicker->SetSelectionMode(aShape,	SM_Edge,	

false);

3.	 Call	Pick	method	passing	the	mouse	display	coordinates:
aPicker->Pick(x,	y,	0);

By	default,	the	renderer	passed	in	the	step	1	is	used.	In	order	to
perform	pick	operation	for	another	renderer	an	additional	optional
parameter	can	be	specified:
aPicker->Pick(x,	y,	0,	aRenderer);

4.	 Obtain	the	top-level	picking	results	as	a	collection	of	picked	VTK
actors:
vtkActorCollection*	anActorCollection	=	aPicker-

>GetPickedActors();

or	as	a	collection	of	picked	shape	IDs:
IVtk_ShapeIdList	ids	=	aPicker-

>GetPickedShapesIds();

These	methods	return	a	single	top	picked	actor	or	a	shape	by
default.	To	get	all	the	picked	actors	or	shapes	it	is	necessary	to	send
“true”	value	in	the	optional	Boolean	parameter:
anActorCollection	=	aPicker-

>GetPickedActors(true);

ids	=	aPicker->GetPickedShapesIds(true);

5.	 Obtain	the	picked	sub-shape	IDs:
IVtk_ShapeIdList	subShapeIds	=	aPicker-

>GetPickedSubShapesIds(shapeId);

This	method	also	returns	a	single	ID	of	a	top-level	picked	sub-shape
and	has	the	same	optional	Boolean	parameter	to	get	all	the	picked
sub-shapes	of	a	shape:
subShapeIds	=	aPicker-

>GetPickedSubShapesIds(shapeId,	true);

It	should	be	noted	that	it	is	more	efficient	to	create	a	sole	picker	instance
and	feed	it	with	the	renderer	only	once.	The	matter	is	that	the	picking
algorithm	performs	internal	calculations	each	time	the	renderer	or	some
of	its	parameters	are	changed.	Therefore,	it	makes	sense	to	minimize	the
number	of	such	updates.

OCCT	picking	algorithm	IVtkTools_ShapePicker	calculates	a	new
transformation	matrix	for	building	of	projection	each	time	some

parameters	of	a	view	are	changed.	Likewise,	the	shape	selection
primitives	for	each	selection	mode	are	built	once	an	appropriate	selection
mode	is	turned	on	for	this	shape	in	SetSelectionMode	method.

WARNING:	VIS	picker	essentially	works	on	the	initial	topological	data
structures	rather	than	on	the	actually	visualized	actors.	This	peculiarity
allows	VIS	to	take	advantage	of	standard	OCCT	selection	mechanism,
but	puts	strict	limitations	on	the	corresponding	visualization	pipelines.
Once	constructed,	the	faceted	shape	representation	should	not	be
morphed	or	translated	anyhow.	Otherwise,	the	picking	results	will	lose
their	associativity	with	the	source	geometry.	E.g.	you	should	never	use
vtkTransform	filter,	but	rather	apply	OCCT	isometric	transformation	on	the
initial	model	in	order	to	work	on	already	relocated	facet.	These	limitations
are	often	acceptable	for	CAD	visualization.	If	not,	consider	usage	of	a
custom	VTK-style	picker	working	on	the	actually	visualized	actors.

Selection	of	sub-shapes

IVtkTools_SubPolyDataFilter	is	a	handy	VTK	filter	class	which	allows
extraction	of	polygonal	cells	corresponding	to	the	sub-shapes	of	the	initial
shape.	It	can	be	used	to	produce	a	vtkPolyData	object	from	the	input
vtkPolyData	object,	using	selection	results	from	IVTkTools_ShapePicker
tool.

For	example,	sub-shapes	can	be	represented	in	VTK	viewer	in	the
following	way:

//	Load	a	shape	into	data	source	(see	3.1)

...

vtkSmartPointer<IVtkTools_ShapeDataSource>	DS	=	

vtkSmartPointer<IVtkTools_ShapeDataSource>::New(

);

DS->SetShape(shapeImpl);

...

//	Create	a	new	sub-polydata	filter	for	sub-shapes	

filtering

vtkSmartPointer<IVtkTools_SubPolyDataFilter>	

subShapesFilter	=	

IVtkTools_SubPolyDataFilter::New();

//	Set	a	shape	source	as	an	input	of	the	sub-polydata	

filter

subShapesFilter->SetInputConnection(DS-

>GetOutputPort());

//	Get	all	picked	sub-shapes	ids	of	the	shape	from	a	

picker	(see	3.4)

IVtk_ShapeIdList	subShapeIds	=	aPicker-

>GetPickedSubShapesIds(ds->GetId(),	true);

//	Set	ids	to	the	filter	to	pass	only	picked	sub-

shapes

subShapesFilter->SetData(subShapeIds);

subShapesFilter->Modified();

//	Output	the	result	into	a	mapper

vtkSmartPointer<vtkPolyDataMapper>	aMapper	=	

vtkPolyDataMapper::New();

aMapper->AddInputConnection(subShapesFilter-

>GetOutputPort());

...

Using	of	low-level	API	(advanced
scenario)
Shape	presentation

The	usage	of	low-level	tools	is	justified	in	cases	when	the	utilities	from
IVtkTools	are	not	enough.

The	low-level	scenario	of	VIS	usage	in	VTK	pipeline	is	shown	in	the
figure	below.	The	Mesher	component	produces	shape	facet	(VTK
polygonal	data)	using	implementation	of	IShapeData	interface.	Then
result	can	be	retrieved	from	this	implementation	as	a	vtkPolyData
instance.

IShapeData	IShape	 IShape
Mesher Implementation

for	VTK
vtkPolyData

Low-level	VIS	usage	with	VTK

420

The	visualization	pipeline	for	OCCT	shape	presentation	can	be	initialized
as	follows:

1.	 Create	an	instance	of	IShape	class	initialized	by	OCCT	topological
shape:
TopoDS_Shape	aShape;

//	Load	or	create	a	TopoDS_Shape	in	the	variable	

a	Shape

...

IVtkOCC_Shape::Handle	aShapeImpl	=	new	

IVtkOCC_Shape(aShape);

2.	 Create	an	empty	instance	of	IShapeData	implementation	for	VTK:
IVtk_IShapeData::Handle	aDataImpl	=	new	

IVtkVTK_ShapeData();

3	Create	an	instance	of	IShapeMesher	implementation	for	OCCT
(any	faceter	can	be	used	at	this	stage):
IVtk_IShapeMesher::Handle	aMesher	=	new	

IVtkOCC_ShapeMesher();

4	Triangulate	the	OCCT	topological	shape	by	means	of	the	Mesher
and	access	the	result:
aMesher->Build	(aShapeImpl,	aDataImpl);

vtkPolyData*	aPolyData	=	aDataImpl-

>GetVtkPolyData();

The	resulting	vtkPolyData	instance	can	be	used	for	initialization	of	VTK
pipelines.	IVtkVTK_ShapeData	object	is	used	to	keep	and	pass	the
mapping	between	sub-shapes,	their	mesh	types	and	the	resulting	mesh
cells	through	a	pipeline.	It	stores	sub-shape	IDs	and	mesh	type	in	VTK
data	arrays	for	each	generated	cell.	As	a	result,	the	generated	VTK	cells
get	the	following	data	arrays	populated:

SUBSHAPE_IDS	-	array	of	vtkIdTypeArray	type.	It	contains	the
shape	IDs	the	corresponding	cells	were	generated	for.	The	name	of
this	array	is	defined	in	ARRNAME_SUBSHAPE_IDS	constant	of
IVtkVTK_ShapeData	class.
MESH_TYPES	-	array	of	vtkShortArray	type.	It	contains	the	type
tags	of	the	shape	parts	the	corresponding	cells	were	generated	for.
The	name	of	this	array	is	defined	in	ARRNAME_MESH_TYPES
constant	of	IVtkVTK_ShapeData	class.

Usage	of	OCCT	picking	algorithm
It	is	possible	to	create	a	custom	VTK	picker	for	interactive	selection	of
OCCT	3D	shapes	using	an	instance	of	the	picking	algorithm
IVtk_IShapePickerAlgo.

Picking	algorithm	uses	an	instance	of	viewer	selector	(OCCT	term),
which	manages	picking	along	with	activation	and	deactivation	of	selection
modes.	VIS	component	implements	OCCT	selection	principle	in
IVtkOCC_ShapePickerAlgo	and	IVtkOCC_ViewerSelector	classes.
IVtkOCC_ViewerSelector	is	an	internal	class	that	implements	OCCT
selection	mechanism	applied	in	IVtkVTK_View.

IVtkOCC_ShapePickerAlgo	has	to	be	used	to	activate/deactivate
selection	modes	for	shapes	IVtk_IShape.	IVtkOCC_ShapePickerAlgo	is
the	implementation	of	IVtk_IShapePickerAlgo	interface.

The	typical	usage	of	IVtk_IShapePickerAlgo	consists	in	the	following
sequence	of	actions:

1.	 Create	an	instance	of	the	picker	class:
IVtkOCC_ShapePickerAlgo::Handle	Picker	=	new	

IVtkOCC_ShapePickerAlgo();

2.	 Set	an	instance	of	IVtk_IView	class	to	the	algorithm	in	order	to	define
the	viewer	parameters:
IVtkVTK_View::Handle	View	=	new	

IVtkVTK_View(Renderer);

Picker->SetView(View);

3.	 Activate	the	desired	selection	modes	using	values	from
IVtk_SelectionMode	enumeration.	For	example,	the	following	call
allows	selection	of	edges:
TopoDS_Shape	aShape;

//	Load	or	create	a	TopoDS_Shape	in	the	variable	

a	Shape

...

IVtk_IShape::Handle	shapeImpl	=	new	

IVtkOCC_Shape(aShape);

...

myOccPickerAlgo->SetSelectionMode(occShape,	

SM_Edge);

Different	selection	modes	can	be	turned	on/off	for	a	picker	at	the
same	time	independently	from	each	other.	To	turn	off	a	selection
mode	the	additional	optional	Boolean	parameter	is	used	with	false
value,	for	example:
myOccPickerAlgo->SetSelectionMode(occShape,	

SM_Edge,	false);

4.	 Call	Pick	method	passing	the	mouse	coordinates:
myOccPickerAlgo->Pick(x,	y);

5.	 Obtain	top-level	picking	results	as	IDs	of	the	picked	top-level	shapes:
IVtk_ShapeIdList	ids	=	myOccPickerAlgo-

>ShapesPicked();

6.	 Obtain	IDs	of	the	picked	sub-shapes:
IVtk_ShapeIdList	subShapeIds

		=	myOccPickerAlgo->SubShapesPicked(shapeId);

DRAW	Test	Harness
TKIVtkDraw	toolkit	contains	classes	for	embedding	VIS	functionality	into
DRAW	Test	Harness	with	possibility	of	simple	interactions,	including
detection	and	highlighting.

IVtkDraw_HighlightAndSelectionPipeline	–	Creates	VTK	pipeline
with	OCCT	shape	data	source	and	properly	initialized	VIS	filters.
IVtkDraw_Interactor	–	Controls	simple	interactive	actions,	such	as
detection	and	selection	of	the	displayed	shapes.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Reading	IGES
Procedure
Domain	covered

Translatable
entities
Attributes
Administrative
data

Description	of	the
process

Loading	the
IGES	file
Checking	the
IGES	file
Setting
translation
parameters
Selecting
entities
Performing	the
IGES	file
translation
Getting	the
translation
results

Mapping	of	IGES
entities	to	Open
CASCADE	Technology
shapes

Points

Open	CASCADE
Technology		7.2.0

IGES	Support

Curves
Surfaces
Boundary
Representation
Solid	Entities
Structure
Entities
Subfigures
Transformation
Matrix

Messages
Tolerance
management

Values	used	for
tolerances
during	reading
IGES
Initial	setting	of
tolerances	in
translating
objects
Transfer	process

Code	architecture
Example

Writing	IGES
Procedure
Domain	covered
Description	of	the
process

Initializing	the
process
Setting	the
translation
parameters
Performing	the
Open	CASCADE
Technology
shape
translation
Writing	the	IGES
file

Mapping	Open
CASCADE	Technology
shapes	to	IGES
entities

Curves
Surfaces
Topological
entities	--
Translation	in
Face	mode
Topological
entities	--
Translation	in
BRep	mode

Tolerance
management

Setting
resolution	in	an
IGES	file

Code	architecture
Graph	of	calls

Example
Using	XSTEPDRAW
Setting	interface
parameters
Reading	IGES	files
Analyzing	the
transferred	data

Checking	file
contents
Estimating	the
results	of
reading	IGES

Writing	an	IGES	file
Reading	from	and	writing
to	IGES
Reading	from	IGES
Writing	to	IGES

Introduction
The	IGES	interface	reads	IGES	files	and	translates	them	to	Open
CASCADE	Technology	models.	The	interface	is	able	to	translate	one
entity,	a	group	of	entities	or	a	whole	file.	Before	beginning	a	translation,
you	can	set	a	range	of	parameters	to	manage	the	translation	process.	If
you	like,	you	can	also	check	file	consistency	before	translation.	The	IGES
interface	also	translates	OCCT	models	to	IGES	files.

Other	kinds	of	data	such	as	colors	and	names	can	be	read	or	written	with
the	help	of	XDE	tools	IGESCAFControl_Reader	and
IGESCAFControl_Writer.

Please,	note:

an	IGES	model	is	an	IGES	file	that	has	been	loaded	into	memory.
an	IGES	entity	is	an	entity	in	the	IGES	normal	sense.
a	root	entity	is	the	highest	level	entity	of	any	given	type,	e.g.	type
144	for	surfaces	and	type	186	for	solids.	Roots	are	not	referenced	by
other	entities.

This	manual	mainly	explains	how	to	convert	an	IGES	file	to	an	Open
CASCADE	Technology	(OCCT)	shape	and	vice	versa.	It	provides	basic
documentation	on	conversion.	For	advanced	information	on	conversion,
see	our	E-learning	&	Training	offerings.

IGES	files	produced	in	accordance	with	IGES	standard	versions	up	to
and	including	version	5.3	can	be	read.	IGES	files	that	are	produced	by
this	interface	conform	to	IGES	version	5.3	(Initial	Graphics	Exchange
Specification,	IGES	5.3.	ANS	US	PRO/IPO-100-1996).

This	manual	principally	deals	with	two	OCCT	classes:

The	Reader	class,	which	loads	IGES	files	and	translates	their
contents	to	OCCT	shapes,
The	Writer	class,	which	translates	OCCT	shapes	to	IGES	entities
and	then	writes	these	entities	to	IGES	files.

File	translation	is	performed	in	the	programming	mode,	via	C++	calls,	and

http://www.opencascade.com/content/tutorial-learning

the	resulting	OCCT	objects	are	shapes.

All	definitions	in	IGES	version	5.3	are	recognized	but	only	3D	geometric
entities	are	translated.	When	the	processor	encounters	data,	which	is	not
translated,	it	ignores	it	and	writes	a	message	identifying	the	types	of	data,
which	was	not	handled.	This	message	can	be	written	either	to	a	log	file	or
to	screen	output.

Shape	Healing	toolkit	provides	tools	to	heal	various	problems,	which
may	be	encountered	in	translated	shapes,	and	to	make	them	valid	in
Open	CASCADE.	The	Shape	Healing	is	smoothly	connected	to	IGES
translator	using	the	same	API,	only	the	names	of	API	packages	change.

Reading	IGES
Procedure

You	can	translate	an	IGES	file	to	an	OCCT	shape	by	following	the	steps
below:

1.	 Load	the	file,
2.	 Check	file	consistency,
3.	 Set	the	translation	parameters,
4.	 Perform	the	file	translation,
5.	 Fetch	the	results.

Domain	covered

Translatable	entities

The	types	of	IGES	entities,	which	can	be	translated,	are:

Points
Lines
Curves
Surfaces
B-Rep	entities
Structure	entities	(groups).	Each	entity	in	the	group	outputs	a	shape.
There	can	be	a	group	of	groups.
Subfigures.	Each	entity	defined	in	a	sub-figure	outputs	a	shape
Transformation	Matrix.

Note	that	all	non-millimeter	length	unit	values	in	the	IGES	file	are
converted	to	millimeters.

Attributes

Entity	attributes	in	the	Directory	Entry	Section	of	the	IGES	file	(such	as
layers,	colors	and	thickness)	are	translated	to	Open	CASCADE
Technology	using	XDE.

Administrative	data

Administrative	data,	in	the	Global	Section	of	the	IGES	file	(such	as	the
file	name,	the	name	of	the	author,	the	date	and	time	a	model	was	created
or	last	modified)	is	not	translated	to	Open	CASCADE	Technology.
Administrative	data	can,	however,	be	consulted	in	the	IGES	file.

Description	of	the	process

Loading	the	IGES	file

Before	performing	any	other	operation,	you	have	to	load	the	file	using	the
syntax	below.

IGESControl_Reader	reader;	

IFSelect_ReturnStatus	stat		=	

reader.ReadFile(“filename.igs”);	

The	loading	operation	only	loads	the	IGES	file	into	computer	memory;	it
does	not	translate	it.

Checking	the	IGES	file

This	step	is	not	obligatory.	Check	the	loaded	file	with:

Standard_Boolean	ok	=		reader.Check(Standard_True);	

The	variable	“ok	is	True”	is	returned	if	no	fail	message	was	found;	“ok	is
False”	is	returned	if	there	was	at	least	one	fail	message.

reader.PrintCheckLoad		(failsonly,	mode);	

Error	messages	are	displayed	if	there	are	invalid	or	incomplete	IGES
entities,	giving	you	information	on	the	cause	of	the	error.

Standard_Boolean	failsonly		=	Standard_True	or	

Standard_False;	

If	you	give	True,	you	will	see	fail	messages	only.	If	you	give	False,	you
will	see	both	fail	and	warning	messages.

Your	analysis	of	the	file	can	be	either	message-oriented	or	entity-
oriented.	Choose	your	preference	with	IFSelect_PrintCount	mode	=
IFSelect_xxx,	where	xxx	can	be	any	of	the	following:

ItemsByEntity	gives	a	sequential	list	of	all	messages	per	IGES	entity.
CountByItem	gives	the	number	of	IGES	entities	with	their	types	per
message.
ShortByItem	gives	the	number	of	IGES	entities	with	their	types	per
message	and	displays	rank	numbers	of	the	first	five	IGES	entities
per	message.
ListByItem	gives	the	number	of	IGES	entities	with	their	type	and	rank
numbers	per	message.
EntitiesByItem	gives	the	number	of	IGES	entities	with	their	types,
rank	numbers	and	Directory	Entry	numbers	per	message.

Setting	translation	parameters

The	following	parameters	can	be	used	to	translate	an	IGES	file	to	an
OCCT	shape.	If	you	give	a	value	that	is	not	within	the	range	of	possible
values,	it	will	be	ignored.

read.iges.bspline.continuity

manages	the	continuity	of	BSpline	curves	(IGES	entities	106,	112	and
126)	after	translation	to	Open	CASCADE	Technology	(Open	CASCADE
Technology	requires	that	the	curves	in	a	model	be	at	least	C1	continuous;
no	such	requirement	is	made	by	IGES).

0:	no	change;	the	curves	are	taken	as	they	are	in	the	IGES	file.	C0
entities	of	Open	CASCADE	Technology	may	be	produced.
1:	if	an	IGES	BSpline,	Spline	or	CopiousData	curve	is	C0
continuous,	it	is	broken	down	into	pieces	of	C1	continuous
Geom_BSplineCurve.
2:	This	option	concerns	IGES	Spline	curves	only.	IGES	Spline
curves	are	broken	down	into	pieces	of	C2	continuity.	If	C2	cannot	be
ensured,	the	Spline	curves	will	be	broken	down	into	pieces	of	C1
continuity.

Read	this	parameter	with:

Standard_Integer	ic	=		

Interface_Static::IVal("read.iges.bspline.contin

uity");	

Modify	this	value	with:

if		(!Interface_Static::SetIVal	

("read.iges.bspline.continuity",2))		

..	error	..;	

Default	value	is	1.

This	parameter	does	not	change	the	continuity	of	curves	that	are	used	in
the	construction	of	IGES	BRep	entities.	In	this	case,	the	parameter	does
not	influence	the	continuity	of	the	resulting	OCCT	curves	(it	is	ignored).

read.precision.mode

reads	the	precision	value.

File	(0)	the	precision	value	is	read	in	the	IGES	file	header	(default).
User	(1)	the	precision	value	is	that	of	the	read.precision.val
parameter.

Read	this	parameter	with:

Standard_Integer	ic	=		

Interface_Static::IVal("read.precision.mode");	

Modify	this	value	with:

if		(!Interface_Static::SetIVal	

("read.precision.mode",1))		

..	error	..;	

Default	value	is	File	(0).

read.precision.val

User	defined	precision	value.	This	parameter	gives	the	precision	for
shape	construction	when	the	read.precision.mode	parameter	value	is	1.
By	default	it	is	0.0001,	but	can	be	any	real	positive	(non	null)	value.

This	value	is	in	the	measurement	unit	defined	in	the	IGES	file	header.

Read	this	parameter	with:

Standard_Real	rp	=		

Interface_Static::RVal("read.precision.val");	

Modify	this	parameter	with:

if		(!Interface_Static::SetRVal	

("read.precision.val",0.001))		

..	error	..;	

Default	value	is	0.0001.

The	value	given	to	this	parameter	is	a	target	value	that	is	applied	to
TopoDS_Vertex,	TopoDS_Edge	and	TopoDS_Face	entities.	The
processor	does	its	best	to	reach	it.	Under	certain	circumstances,	the
value	you	give	may	not	be	attached	to	all	of	the	entities	concerned	at	the
end	of	processing.	IGES-to-OCCT	translation	does	not	improve	the
quality	of	the	geometry	in	the	original	IGES	file.	This	means	that	the
value	you	enter	may	be	impossible	to	attain	the	given	quality	of	geometry
in	the	IGES	file.

Value	of	tolerance	used	for	computation	is	calculated	by	multiplying	the
value	of	read.precision.val	and	the	value	of	coefficient	of	transfer	from	the
file	units	to	millimeters.

read.maxprecision.mode

defines	the	mode	of	applying	the	maximum	allowed	tolerance.	Its
possible	values	are:

Preferred(0)	maximum	tolerance	is	used	as	a	limit	but	sometimes	it
can	be	exceeded	(currently,	only	for	deviation	of	a	3D	curve	of	an
edge	from	its	pcurves	and	from	vertices	of	such	edge)	to	ensure
shape	validity;
Forced(1)	maximum	tolerance	is	used	as	a	rigid	limit,	i.e.	it	can	not
be	exceeded	and,	if	this	happens,	tolerance	is	trimmed	to	suit	the
maximum-allowable	value.

Read	this	parameter	with:

Standard_Integer	mv	=		

Interface_Static::IVal("read.maxprecision.mode")

;	

Modify	this	parameter	with:

if		(!Interface_Static::SetIVal	

("read.maxprecision.mode",1))		

..	error	..;	

Default	value	is	Preferred	(0).

read.maxprecision.val

defines	the	maximum	allowable	tolerance	(in	mm)	of	the	shape.	It	should
be	not	less	than	the	basis	value	of	tolerance	set	in	processor	(either
Resolution	from	the	file	or	read.precision.val).	Actually,	the	maximum
between	read.maxprecision.val	and	basis	tolerance	is	used	to	define
maximum	allowed	tolerance.	Read	this	parameter	with:

Standard_Real	rp	=		

Interface_Static::RVal("read.maxprecision.val");

	

Modify	this	parameter	with:

if		(!Interface_Static::SetRVal	

("read.maxprecision.val",0.1))		

..	error	..;	

Default	value	is	1.

read.stdsameparameter.mode

defines	the	using	of	BRepLib::SameParameter.	Its	possible	values	are:

0	(Off)	–	BRepLib::SameParameter	is	not	called,

1	(On)	–	BRepLib::SameParameter	is	called.
BRepLib::SameParameter	is	used	through
ShapeFix_Edge::SameParameter.	It	ensures	that	the	resulting	edge
will	have	the	lowest	tolerance	taking	pcurves	either	unmodified	from
the	IGES	file	or	modified	by	BRepLib::SameParameter.	Read	this
parameter	with:
Standard_Integer	mv	=		

Interface_Static::IVal("read.stdsameparameter

.mode");	

Modify	this	parameter	with:
if		(!Interface_Static::SetIVal	

("read.stdsameparameter.mode",1))		

..	error	..;	

Deafault	value	is	0	(Off).

read.surfacecurve.mode

preference	for	the	computation	of	curves	in	case	of	2D/3D	inconsistency
in	an	entity	which	has	both	2D	and	3D	representations.

Here	we	are	talking	about	entity	types	141	(Boundary),	142
(CurveOnSurface)	and	508	(Loop).	These	are	entities	representing	a
contour	lying	on	a	surface,	which	is	translated	to	a	TopoDS_Wire,	formed
by	TopoDS_Edges.	Each	TopoDS_Edge	must	have	a	3D	curve	and	a	2D
curve	that	reference	the	surface.

The	processor	also	decides	to	re-compute	either	the	3D	or	the	2D	curve
even	if	both	curves	are	translated	successfully	and	seem	to	be	correct,	in
case	there	is	inconsistency	between	them.	The	processor	considers	that
there	is	inconsistency	if	any	of	the	following	conditions	is	satisfied:

the	number	of	sub-curves	in	the	2D	curve	is	different	from	the
number	of	sub-curves	in	the	3D	curve.	This	can	be	either	due	to
different	numbers	of	sub-curves	given	in	the	IGES	file	or	because	of
splitting	of	curves	during	translation.
3D	or	2D	curve	is	a	Circular	Arc	(entity	type	100)	starting	and	ending
in	the	same	point	(note	that	this	case	is	incorrect	according	to	the
IGES	standard).

The	parameter	read.surfacecurve.mode	defines	which	curve	(3D	or	2D)
is	used	for	re-computing	the	other	one:

Default(0)	use	the	preference	flag	value	in	the	entity's	Parameter
Data	section.	The	flag	values	are:

0:	no	preference	given,
1:	use	2D	for	142	entities	and	3D	for	141	entities,
2:	use	3D	for	142	entities	and	2D	for	141	entities,
3:	both	representations	are	equally	preferred.

2DUse_Preferred	(2)	:	the	2D	is	used	to	rebuild	the	3D	in	case	of
their	inconsistency,
2DUse_Forced	(-2):	the	2D	is	always	used	to	rebuild	the	3D	(even	if
3D	is	present	in	the	file),
3DUse_Preferred	(3):	the	3D	is	used	to	rebuild	the	2D	in	case	of
their	inconsistency,
3DUse_Forced	(-3):	the	3D	is	always	used	to	rebuild	the	2D	(even	if
2D	is	present	in	the	file),

If	no	preference	is	defined	(if	the	value	of	read.surfacecurve.mode	is
Default	and	the	value	of	the	preference	flag	in	the	entity's	Parameter
Data	section	is	0	or	3),	an	additional	analysis	is	performed.

The	3D	representation	is	preferred	to	the	2D	in	two	cases:

if	3D	and	2D	contours	in	the	file	have	a	different	number	of	curves,
if	the	2D	curve	is	a	Circular	Arc	(entity	type	100)	starting	and	ending
in	the	same	point	and	the	3D	one	is	not.

In	any	other	case,	the	2D	representation	is	preferred	to	the	3D.

If	either	a	3D	or	a	2D	contour	is	absent	in	the	file	or	cannot	be	translated,
then	it	is	re-computed	from	another	contour.	If	the	translation	of	both	2D
and	3D	contours	fails,	the	whole	curve	(type	141	or	142)	is	not	translated.
If	this	curve	is	used	for	trimming	a	face,	the	face	will	be	translated	without
this	trimming	and	will	have	natural	restrictions.

Read	this	parameter	with:

Standard_Integer	ic	=		

Interface_Static::IVal("read.surfacecurve.mode")

;	

Modify	this	value	with:

if		(!Interface_Static::SetIVal	

("read.surfacecurve.mode",3))		

..	error	..;	

Default	value	is	Default	(0).

read.encoderegularity.angle

This	parameter	is	used	within	the	BRepLib::EncodeRegularity()	function
which	is	called	for	a	shape	read	from	an	IGES	or	a	STEP	file	at	the	end
of	translation	process.	This	function	sets	the	regularity	flag	of	an	edge	in
a	shell	when	this	edge	is	shared	by	two	faces.	This	flag	shows	the
continuity,	which	these	two	faces	are	connected	with	at	that	edge.

Read	this	parameter	with:

Standard_Real	era	=			

Interface_Static::RVal("read.encoderegularity.an

gle");	

Modify	this	parameter	with:

if		(!Interface_Static::SetRVal	

("read.encoderegularity.angle",0.1))			

..	error	..;	

Default	value	is	0.01.

read.iges.bspline.approxd1.mode

This	parameter	is	obsolete	(it	is	rarely	used	in	real	practice).	If	set	to
True,	it	affects	the	translation	of	bspline	curves	of	degree	1	from	IGES:
these	curves	(which	geometrically	are	polylines)	are	split	by	duplicated
points,	and	the	translator	attempts	to	convert	each	of	the	obtained	parts
to	a	bspline	of	a	higher	continuity.

Read	this	parameter	with:

Standard_Real	bam	=			

Interface_Static::CVal("read.iges.bspline.approx

d1.mode");	

Modify	this	parameter	with:

if		(!Interface_Static::SetRVal	

("read.encoderegularity.angle","On"))			

..	error	..;	

Default	value	is	Off.

read.iges.resource.name	and	read.iges.sequence

These	two	parameters	define	the	name	of	the	resource	file	and	the	name
of	the	sequence	of	operators	(defined	in	that	file)	for	Shape	Processing,
which	is	automatically	performed	by	the	IGES	translator.	The	Shape
Processing	is	a	user-configurable	step,	which	is	performed	after	the
translation	and	consists	in	application	of	a	set	of	operators	to	a	resulting
shape.	This	is	a	very	powerful	tool	allowing	to	customize	the	shape	and
to	adapt	it	to	the	needs	of	a	receiving	application.	By	default,	the
sequence	consists	of	a	single	operator	ShapeFix	that	calls	Shape
Healing	from	the	IGES	translator.

Please	find	an	example	of	the	resource	file	for	IGES	(which	defines
parameters	corresponding	to	the	sequence	applied	by	default,	i.e.	if	the
resource	file	is	not	found)	in	the	Open	CASCADE	Technology	installation,
by	the	path	CASROOT%/src/XSTEPResource/IGES	.

In	order	for	the	IGES	translator	to	use	that	file,	you	have	to	define	the
environment	variable	CSF_IGESDefaults,	which	should	point	to	the
directory	where	the	resource	file	resides.	Note	that	if	you	change
parameter	read.iges.resource.name,	you	should	change	the	name	of	the
resource	file	and	the	name	of	the	environment	variable	correspondingly.
The	variable	should	contain	a	path	to	the	resource	file.

Default	values:

read.iges.resource.name	–	IGES,
read.iges.sequence	–	FromIGES.

xstep.cascade.unit

This	parameter	defines	units	to	which	a	shape	should	be	converted	when
translated	from	IGES	or	STEP	to	CASCADE.	Normally	it	is	MM;	only
those	applications	that	work	internally	in	units	other	than	MM	should	use
this	parameter.

Default	value	is	MM.

Selecting	entities

A	list	of	entities	can	be	formed	by	invoking	the	method
IGESControl_Reader::GiveList.

Handle(TColStd_HSequenceOfTransient)		list	=	

reader.GiveList();	

Several	predefined	operators	can	be	used	to	select	a	list	of	entities	of	a
specific	type.	To	make	a	selection,	you	use	the	method
IGESControl_Reader::GiveList	with	the	selection	type	in	quotation	marks
as	an	argument.	You	can	also	make	cumulative	selections.	For	example,
you	would	use	the	following	syntax:

1.	 Requesting	the	faces	in	the	file:
faces	=		Reader.GiveList("iges-faces");	

2.	 Requesting	the	visible	roots	in	the	file:
visibles	=		Reader.GiveList(iges-visible-roots);	

3.	 Requesting	the	visible	faces:
visfac	=		Reader.GiveList(iges-visible-

roots,faces);	

Using	a	signature,	you	can	define	a	selection	dynamically,	filtering
the	string	by	means	of	a	criterion.	When	you	request	a	selection
using	the	method	GiveList,	you	can	give	either	a	predefined
selection	or	a	selection	by	signature.	You	make	your	selection	by
signature	using	the	predefined	signature	followed	by	your	criterion	in
parentheses	as	shown	in	the	example	below.	The	syntaxes	given	are
equivalent	to	each	other.
faces	=		Reader.GiveList(“xst-

type(SurfaceOfRevolution)”);	

faces	=		Reader.GiveList(“iges-type(120)”);	

You	can	also	look	for:
values	returned	by	your	signature	which	match	your	criterion
exactly
faces	=		Reader.GiveList(“xst-

type(=SurfaceOfRevolution)”);	

values	returned	by	your	signature	which	do	not	contain	your
criterion
faces	=	Reader.GiveList(“xst-

type(!SurfaceOfRevolution)”);	

values	returned	by	your	signature	which	do	not	exactly	match
your	criterion.
faces	=		Reader.GiveList(“xst-

type(!=SurfaceOfRevolution)”);	

List	of	predefined	operators	that	can	be	used:

xst-model-all	–	selects	all	entities.
xst-model-roots	–	selects	all	roots.
xst-transferrable-all	–	selects	all	translatable	entities.
xst-transferrable-roots	–	selects	all	translatable	roots	(default).
xst-sharing	+	<selection>	–	selects	all	entities	sharing	at	least	one
entity	selected	by	<selection>.
xst-shared	+	<selection>	–	selects	all	entities	shared	by	at	least	one
entity	selected	by	<selection>.
iges-visible-roots	–	selects	all	visible	roots,	whether	translatable	or
not.
iges-visible-transf-roots	–	selects	all	visible	and	translatable	roots.
iges-blanked-roots	–	selects	all	blank	roots,	whether	translatable	or
not.
iges-blanked-transf-roots	–	selects	all	blank	and	translatable	roots.
iges-status-independant	–	selects	entities	whose	IGES	Subordinate
Status	=	0.
iges-bypass-group	–	selects	all	root	entities.	If	a	root	entity	is	a	group
(402/7	or	402/9),	the	entities	in	the	group	are	selected.
iges-bypass-subfigure	–	selects	all	root	entities.	If	a	root	entity	is	a
subfigure	definition	(308),	the	entities	in	the	subfigure	definition	are

selected.
iges-bypass-group-subfigure	–	selects	all	root	entities.	If	a	root	entity
is	a	group	(402/7	or	402/9)	or	a	subfigure	definition	(308),	the	entities
in	the	group	and	in	the	subfigure	definition	are	selected.
iges-curves-3d	–	selects	3D	curves,	whether	they	are	roots	or	not
(e.g.	a	3D	curve	on	a	surface).
iges-basic-geom	–	selects	3D	curves	and	untrimmed	surfaces.
iges-faces	–	selects	face-supporting	surfaces	(trimmed	or	not).
iges-surfaces	–	selects	surfaces	not	supporting	faces	(i.e.	with
natural	bounds).
iges-basic-curves-3d	–	selects	the	same	entities	as	iges-curves-3d.
Composite	Curves	are	broken	down	into	their	components	and	the
components	are	selected.

Performing	the	IGES	file	translation

Perform	translation	according	to	what	you	want	to	translate:

1.	 Translate	an	entity	identified	by	its	rank	with:
Standard_Boolean	ok	=		reader.Transfer	(rank);	

2.	 Translate	an	entity	identified	by	its	handle	with:
Standard_Boolean	ok	=		reader.TransferEntity	

(ent);	

3.	 Translate	a	list	of	entities	in	one	operation	with:
Standard_Integer	nbtrans	=		reader.TransferList	

(list);	

reader.IsDone();	

where	nbtrans	returns	the	number	of	items	in	the	list	that	produced	a
shape	and	reader.IsDone()	indicates	whether	at	least	one	entity	was
translated.

4.	 Translate	a	list	of	entities,	entity	by	entity:
Standard_Integer	i,nb	=		list-Length();		

for	(i	=	1;	i		<=	nb;	i	++)	{		

				Handle(Standard_Transient)	ent	=	list-

Value(i);		

				Standard_Boolean	OK	=	reader.TransferEntity	

(ent);		

}	

5.	 Translate	the	whole	file	(all	entities	or	only	visible	entities)	with:
Standard_Boolean		onlyvisible	=	Standard_True	or	

Standard_False;		

reader.TransferRoots(onlyvisible)	

Getting	the	translation	results

Each	successful	translation	operation	outputs	one	shape.	A	series	of
translations	gives	a	series	of	shapes.	Each	time	you	invoke
TransferEntity,	Transfer	or	Transferlist,	their	results	are	accumulated	and
NbShapes	increases.	You	can	clear	the	results	(Clear	function)	between
two	translation	operations,	if	you	do	not	do	this,	the	results	from	the	next
translation	will	be	added	to	the	accumulation.	TransferRoots	operations
automatically	clear	all	existing	results	before	they	start.

Standard_Integer	nbs	=		reader.NbShapes();	

returns	the	number	of	shapes	recorded	in	the	result.

TopoDS_Shape	shape	=		reader.Shape(num);,	

returns	the	result	num,	where	num	is	an	integer	between	1	and
NbShapes.

TopoDS_Shape	shape	=		reader.Shape();	

returns	the	first	result	in	a	translation	operation.

TopoDS_Shape	shape	=		reader.OneShape();	

returns	all	results	in	a	single	shape	which	is:

a	null	shape	if	there	are	no	results,
in	case	of	a	single	result,	a	shape	that	is	specific	to	that	result,
a	compound	that	lists	the	results	if	there	are	several	results.
reader.Clear();	

erases	the	existing	results.
reader.PrintTransferInfo		(failsonly,	mode);	

displays	the	messages	that	appeared	during	the	last	invocation	of
Transfer	or	TransferRoots.

If	failsonly	is	IFSelect_FailOnly,	only	fail	messages	will	be	output,	if	it	is
IFSelect_FailAndWarn,	all	messages	will	be	output.	Parameter	“mode”
can	have	IFSelect_xxx	values	where	xxx	can	be:

GeneralCount	–	gives	general	statistics	on	the	transfer	(number	of
translated	IGES	entities,	number	of	fails	and	warnings,	etc)
CountByItem	–	gives	the	number	of	IGES	entities	with	their	types	per
message.
ListByItem	–	gives	the	number	of	IGES	entities	with	their	type	and
DE	numbers	per	message.
ResultCount	–	gives	the	number	of	resulting	OCCT	shapes	per	type.
Mapping	–	gives	mapping	between	roots	of	the	IGES	file	and	the
resulting	OCCT	shape	per	IGES	and	OCCT	type.

Mapping	of	IGES	entities	to	Open	CASCADE
Technology	shapes
NOTE	that	IGES	entity	types	that	are	not	given	in	the	following	tables	are
not	translatable.

Points

IGES	entity	type CASCADE	shape Comments
116:	Point TopoDS_Vertex

Curves

Curves,	which	form	the	2D	of	face	boundaries,	are	translated	as
Geom2D_Curves	(Geom2D	circles,	etc.).

IGES
entity
type

CASCADE
shape Comments

100:
Circular
Arc

TopoDS_Edge
The	geometrical	support	is	a	Geom_Circle
or	a	Geom_TrimmedCurve	(if	the	arc	is
not	closed).

102:
Composite
Curve

TopoDS_Wire

The	resulting	shape	is	always	a
TopoDS_Wire	that	is	built	from	a	set	of
TopoDS_Edges.	Each	TopoDS_Edge	is
connected	to	the	preceding	and	to	the
following	edge	by	a	common
TopoDS_Vertex.

104:	Conic
Arc TopoDS_Edge

The	geometric	support	depends	on
whether	the	IGES	entity's	form	is	0
(Geom_Circle),	1	(Geom_Ellipse),	2
(Geom_Hyperbola),	or	3
(Geom_Parabola).	A
Geom_TrimmedCurve	is	output	if	the	arc
is	not	closed.

106:
Copious
Data

TopoDS_Edge
or
TopoDS_Wire

IGES	entity	Copious	Data	(type	106,	forms
1-3)	is	translated	just	as	the	IGES	entities
Linear	Path	(106/11-13)	and	the	Simple
Closed	Planar	Curve	(106/63).	Vectors
applying	to	forms	other	than	11,12	or	63
are	ignored.	The	Geom_BSplineCurve
(geometrical	support)	has	C0	continuity.	If
the	Copious	Data	has	vectors	(DataType	=
3)	they	will	be	ignored.

110:	Line TopoDS_Edge
The	supporting	curve	is	a
Geom_TrimmedCurve	whose	basis	curve
is	a	Geom_Line.

112:
Parametric
Spline
Curve

TopoDS_Edge
or
TopoDS_Wire

The	geometric	support	is	a
Geom_BsplineCurve.

126:
BSpline
Curve

TopoDS_Edge
or
TopoDS_Wire

130:
Offset
Curve

TopoDS_Edge
or
TopoDS_Wire

The	resulting	shape	is	a	TopoDS_Edge	or
a	TopoDS_Wire	(depending	on	the
translation	of	the	basis	curve)	whose
geometrical	support	is	a
Geom_OffsetCurve	built	from	a	basis
Geom_Curve.	Limitation:	The	IGES	Offset
Type	value	must	be	1.

141:
Boundary TopoDS_Wire

Same	behavior	as	for	the	Curve	On
Surface	(see	below).	The	translation	of	a
non-referenced	Boundary	IGES	entity	in	a
BoundedSurface	IGES	entity	outputs	a
TopoDS_Edge	or	a	TopoDS_Wire	with	a
Geom_Curve.

142:
Curve	On
Surface

TopoDS_Wire
Each	TopoDS_Edge	is	defined	by	a	3D
curve	and	by	a	2D	curve	that	references
the	surface.

The	type	of	OCCT	shapes	(either	TopDS_Edges	or	TopoDS_Wires)	that
result	from	the	translation	of	IGES	entities	106,	112	and	126	depends	on
the	continuity	of	the	curve	in	the	IGES	file	and	the	value	of	the

read.iges.bspline.continuity	translation	parameter.

Surfaces

Translation	of	a	surface	outputs	either	a	TopoDS_Face	or	a
TopoDS_Shell.	If	a	TopoDS_Face	is	output,	its	geometrical	support	is	a
Geom_Surface	and	its	outer	and	inner	boundaries	(if	it	has	any)	are
TopoDS_Wires.

IGES
entity
type

CASCADE
shape Comments

108:	Plane TopoDS_Face

The	geometrical	support	for	the
TopoDS_Face	is	a	Geom_Plane	and	the
orientation	of	its	TopoDS_Wire	depends
on	whether	it	is	an	outer	TopoDS_Wire	or
whether	it	is	a	hole.

114:
Parametric
Spline
Surface

TopoDS_Face The	geometrical	support	of	a
TopoDS_Face	is	a	Geom_BSplineSurface.

118:	Ruled
Surface

TopoDS_Face
or
TopoDS_Shell

The	translation	of	a	Ruled	Surface	outputs
a	TopoDS_Face	if	the	profile	curves
become	TopoDS_Edges,	or	a
TopoDS_Shell	if	the	profile	curves	become
TopoDS_Wires.	Limitation:	This	translation
cannot	be	completed	when	these	two
TopoDS_Wires	are	oriented	in	different
directions.

120:
Surface	Of
Revolution

TopoDS_Face
or
TopoDS_Shell

The	translation	of	a	Surface	Of	Revolution
outputs:	a	TopoDS_Face	if	the	generatrix
becomes	a	TopoDS_Edge,	a
TopoDS_Shell	if	the	generatrix	becomes	a
TopoDS_Wire.	The	geometrical	support
may	be:	Geom_CylindricalSurface,
Geom_ConicalSurface,
Geom_SphericalSurface,
Geom_ToroidalSurface	or	a

Geom_SurfaceOfRevolution	depending	on
the	result	of	the	CASCADE	computation
(based	on	the	generatrix	type).

122:
Tabulated
Cylinder

TopoDS_Face
or
TopoDS_Shell

The	translation	outputs	a	TopoDS_Face	if
the	base	becomes	a	TopoDS_Edge	or	a
TopoDS_Shell	if	the	base	becomes	a
TopoDS_Wire.	The	geometrical	support
may	be	Geom_Plane,	Geom_Cylindrical
Surface	or	a
Geom_SurfaceOfLinearExtrusion
depending	on	the	result	of	the	CASCADE
computation	(based	on	the	generatrix
type).	The	Geom_Surface	geometrical
support	is	limited	according	to	the
generatrix.

128:
BSpline
Surface

TopoDS_Face The	geometrical	support	of	the
TopoDS_Face	is	a	Geom_BsplineSurface.

140:
Offset
Surface

TopoDS_Face

The	translation	of	an	Offset	Surface
outputs	a	TopoDS_Face	whose
geometrical	support	is	a
Geom_OffsetSurface.	Limitations:	For
OCCT	algorithms,	the	original	surface
must	be	C1-continuous	so	that	the
Geom_OffsetSurface	can	be	created.	If
the	basis	surface	is	not	C1-continuous,	its
translation	outputs	a	TopoDS_Shell	and
only	the	first	TopoDS_Face	in	the
TopoDS_Shell	is	offset.

143:
Bounded
Surface

TopoDS_Face
or
TopoDS_Shell

If	the	basis	surface	outputs	a
TopoDS_Shell	(that	has	more	than	one
TopoDS_Face),	the	IGES	boundaries	are
not	translated.	Limitations:	If	the	bounding
curves	define	holes,	natural	bounds	are
not	created.	If	the	orientation	of	the
contours	is	wrong,	it	is	not	corrected.
For	the	needs	of	interface	processing,	the
basis	surface	must	be	a	face.	Shells	are
only	processed	if	they	are	single-face.	The

144:
Trimmed
Surface

TopoDS_Face
or
TopoDS_Shell

contours	(wires	that	are	correctly	oriented
according	to	the	definition	of	the	IGES
142:	Curve	On	Surface	entity)	are	added
to	the	face	that	is	already	created.	If	the
orientation	of	the	contours	is	wrong,	it	is
corrected.

190:	Plane
Surface TopoDS_Face

This	type	of	IGES	entity	can	only	be	used
in	BRep	entities	in	place	of	an	IGES	108
type	entity.	The	geometrical	support	of	the
face	is	a	Geom_Plane.

Boundary	Representation	Solid	Entities

IGES
entity	type

CASCADE
shape Comments

186:
ManifoldSolid TopoDS_Solid

514:	Shell TopoDS_Shell

510:	Face TopoDS_Face
This	is	the	lowest	IGES	entity	in	the
BRep	structure	that	can	be	specified	as
a	starting	point	for	translation.

508:	Loop TopoDS_Wire
504:	Edge
List
502:	Vertex
List

Structure	Entities

IGES
entity
type

CASCADE
shape Comments

402/1:
Associativity
Instance:

TopoDS_Compound

Group	with
back
pointers
402/7:
Associativity
Instance:
Group
without
back
pointers

TopoDS_Compound

402/9:
Associativity
Instance:
Single
Parent

TopoDS_Face

The	translation	of	a	SingleParent
entity	is	only	performed	for	402
form	9	with	entities	108/1	and
108/-1.	The	geometrical	support	for
the	TopoDS_Face	is	a
Geom_Plane	with	boundaries:	the
parent	plane	defines	the	outer
boundary;	the	child	planes	define
the	inner	boundaries.

Subfigures

IGES
entity
type

CASCADE
shape Comments

308:
Subfigure
Definition

TopoDS_Compound
This	IGES	entity	is	only	translated
when	there	are	no	Singular
Subfigure	Instance	entities.

408:
Singular
Subfigure
Instance

TopoDS_Compound

This	shape	has	the	Subfigure
Definition	Compound	as	its	origin
and	is	positioned	in	space	by	its
translation	vector	and	its	scale
factor.

Transformation	Matrix

IGES	entity CASCADE	shape Comments

type
124:
Transformation
Matrix

Geom_Transformation
This	entity	is	never	translated
alone.	It	must	be	included	in
the	definition	of	another	entity.

Messages
Messages	are	displayed	concerning	the	normal	functioning	of	the
processor	(transfer,	loading,	etc.).	You	must	declare	an	include	file:

#include	<Interface_DT.hxx>	

You	have	the	choice	of	the	following	options	for	messages:

IDT_SetLevel	(level);	

level	modifies	the	level	of	messages:

0:	no	messages
1:	raise	and	fail	messages	are	displayed,	as	are	messages
concerning	file	access,
2:	warnings	are	also	displayed.
IDT_SetFile	(“tracefile.log”);	

prints	the	messages	in	a	file,
IDT_SetStandard();	

restores	screen	output.

Tolerance	management

Values	used	for	tolerances	during	reading	IGES

During	the	transfer	of	IGES	to	Open	CASCADE	Technology	several
parameters	are	used	as	tolerances	and	precisions	for	different
algorithms.	Some	of	them	are	computed	from	other	using	specific
functions.

3D	(spatial)	tolerances

Package	method	Precision::Confusion	equal	to	10-7	is	used	as	a
minimal	distance	between	points,	which	are	considered	distinct.
Resolution	in	the	IGES	file	is	defined	in	the	Global	section	of	an
IGES	file.	It	is	used	as	a	fundamental	value	of	precision	during	the
transfer.
User-defined	variable	read.precision.val	can	be	used	instead	of
resolution	from	the	file	when	parameter	read.precision.mode	is	set	to
1	("User").
Field	EpsGeom	of	the	class	IGESToBRep_CurveAndSurface	is	a
basic	precision	for	translating	an	IGES	object.	It	is	set	for	each	object
of	class	IGESToBRep_CurveAndSurface	and	its	derived	classes.	It
is	initialized	for	the	root	of	transfer	either	by	value	of	resolution	from
the	file	or	by	value	of	read.precision.val,	depending	on	the	value	of
read.precision.mode	parameter.	It	is	returned	by	call	to	method
IGESToBRep_CurvAndSurface::GetEpsGeom.	As	this	value	belongs
to	measurement	units	of	the	IGES	file,	it	is	usually	multiplied	by	the
coefficient	UnitFactor	(returned	by	method
IGESToBRep_CurvAndSurface::GetUnitFactor)	to	convert	it	to	Open
CASCADE	Technology	units.
Field	MaxTol	of	the	class	IGESToBRep_CurveAndSurface	is	used	as
the	maximum	tolerance	for	some	algorithms.	Currently,	it	is
computed	as	the	maximum	between	1	and	GetEpsGeom	*
GetUnitFactor.	This	field	is	returned	by	method
IGESToBRep_CurvAndSurface::GetMaxTol.

2D	(parametric)	tolerances

Package	method	Precision::PConfusion	equal	to
0.01*Precision::Confusion,	i.e.	10-9.	It	is	used	to	compare	parametric
bounds	of	curves.
Field	EpsCoeff	of	the	class	IGESToBRep_CurveAndSurface	is	a
parametric	precision	for	translating	an	IGES	object.	It	is	set	for	each
object	of	class	IGESToBRep_CurveAndSurface	and	its	derived
classes.	Currently,	it	always	has	its	default	value	10-6.	It	is	returned
by	call	to	method	IGESToBRep_CurvAndSurface::GetEpsCoeff.	This
value	is	used	for	translating	2d	objects	(for	instance,	parametric
curves).
Methods	UResolution(tolerance3d)	and	VResolution(tolerance3d)	of
the	class	GeomAdaptor_Surface	or	BRepAdaptor_Surface	return
tolerance	in	parametric	space	of	a	surface	computed	from	3D
tolerance.	When	one	tolerance	value	is	to	be	used	for	both	U	and	V
parametric	directions,	the	maximum	or	the	minimum	value	of
UResolution	and	VResolution	is	used.
Methods	Resolution(tolerance3d)	of	the	class	GeomAdaptor_Curve
or	BRepAdaptor_Curve	return	tolerance	in	the	parametric	space	of	a
curve	computed	from	3d	tolerance.

Zero-dimensional	tolerances

Field	Epsilon	of	the	class	IGESToBRep_CurveAndSurface	is	set	for
each	object	of	class	IGESToBRep_CurveAndSurface	and	returned
by	call	to	method	GetEpsilon.	It	is	used	in	comparing	angles	and
converting	transformation	matrices.	In	most	cases,	it	is	reset	to	a
fixed	value	(10-5	-	10-3)	right	before	use.	The	default	value	is	10-4.

Initial	setting	of	tolerances	in	translating	objects

Transfer	starts	from	one	entity	treated	as	a	root	(either	the	actual	root	in
the	IGES	file	or	an	entity	selected	by	the	user).	The	function	which
performs	the	transfer	(that	is	IGESToBRep_Actor::Transfer	or
IGESToBRep_Reader::Transfer)	creates	an	object	of	the	type
IGESToBRep_CurveAndSurface,	which	is	intended	for	translating
geometry.

This	object	contains	three	tolerances:	Epsilon,	EpsGeom	and	EpsCoeff.

Parameter	Epsilon	is	set	by	default	to	value	10-4.	In	most	cases	when	it	is
used	in	the	package	IGESToBRep,	it	is	reset	to	a	fixed	value,	either	10-5
or	10-4	or	10-3.	It	is	used	as	precision	when	comparing	angles	and
transformation	matrices	and	does	not	have	influence	on	the	tolerance	of
the	resulting	shape.

Parameter	EpsGeom	is	set	right	after	creating	a
IGESToBRep_CurveAndSurface	object	to	the	value	of	resolution,	taken
either	from	the	Global	section	of	an	IGES	file,	or	from	the
XSTEP.readprecision.val	parameter,	depending	on	the	value	of
XSTEP.readprecision.mode.

Parameter	EpsCoeff	is	set	by	default	to	10-6	and	is	not	changed.

During	the	transfer	of	a	shape,	new	objects	of	type
IGESToBRep_CurveAndSurface	are	created	for	translating	subshapes.
All	of	them	have	the	same	tolerances	as	the	root	object.

Transfer	process

Translating	into	Geometry

Geometrical	entities	are	translated	by	classes	IGESToBRep_BasicCurve
and	IGESToBRep_BasicSurface.	Methods	of	these	classes	convert
curves	and	surfaces	of	an	IGES	file	to	Open	CASCADE	Technology
geometry	objects:	Geom_Curve,	Geom_Surface,	and
Geom_Transformation.

Since	these	objects	are	not	BRep	objects,	they	do	not	have	tolerances.
Hence,	tolerance	parameters	are	used	in	these	classes	only	as
precisions:	to	detect	specific	cases	(e.g.,	to	distinguish	a	circle,	an
ellipse,	a	parabola	and	a	hyperbola)	and	to	detect	bad	cases	(such	as
coincident	points).

Use	of	precision	parameters	is	reflected	in	the	following	classes:

IGESToBRep_BasicCurve	–	all	parameters	and	points	are	compared
with	precision	EpsGeom.	All	transformations	(except
IGESToBRep_BasicCurve::TransferTransformation)	are	fulfilled	with
precision	Epsilon	which	is	set	to	10-3	(in	the

IGESToBRep_BasicCurve::TransferTransformation	the	value	10-5	is
used).
IGESToBRep_BasicCurve::TransferBSplineCurve	–	all	weights	of
BSplineCurve	are	assumed	to	be	more	than	Precision::PConfusion
(else	the	curve	is	not	translated).
IGESToBRep_BasicSurface	–	all	parameters	and	points	are
compared	with	precision	EpsGeom.	All	transformations	are	fulfilled
with	precision	Epsilon,	which	is	set	to	10-3.
IGESToBRep_BasicSurface::TransferBSplineSurface	–	all	weights	of
BSplineSurface	are	assumed	to	be	more	than	Precision::PConfusion
(else	the	surface	is	not	translated).

Translating	into	Topology

IGES	entities	represented	as	topological	shapes	and	geometrical	objects
are	translated	into	OCCT	shapes	by	use	of	the	classes
IGESToBRep_TopoCurve,	IGESToBRep_TopoSurface,
IGESToBRep_BRepEntity	and	ShapeFix_Wire.

Class	IGESToBRep_BRepEntity	is	intended	for	transferring	BRep	entities
(IGES	version	is	5.1	or	greater)	while	the	two	former	are	used	for
translating	geometry	and	topology	defined	in	IGES	versions	prior	to	5.1.
Methods	from	IGESToBRep_BRepEntity	call	methods	from
IGESToBRep_TopoCurve	and	IGESToBRep_TopoSurface,	while	those
call	methods	from	IGESToBRep_BasicCurve	and
IGESToBRep_BasicSurface	to	translate	IGES	geometry	into	OCCT
geometry.

Although	the	IGES	file	contains	only	one	parameter	for	tolerance	in	the
Global	Section,	OCCT	shapes	are	produced	with	different	tolerances.	As
a	rule,	updating	the	tolerance	is	fulfilled	according	to	local	distances
between	shapes	(distance	between	vertices	of	adjacent	edges,	deviation
of	edge’s	3D	curve	and	its	parametric	curve	and	so	on)	and	may	be	less
or	greater	than	precision	in	the	file.

The	following	classes	show	what	default	tolerances	are	used	when
creating	shapes	and	how	they	are	updated	during	transfer.

Class	IGESToBRep_TopoCurve

All	methods	are	in	charge	of	transferring	curves	from	IGES	curve	entities
(TransferCompositeCurve,	Transfer2dCompositeCurve,
TransferCurveOnFace,	TransferBoundaryOnFace,	TransferOffsetCurve,
TransferTopoBasicCurve)	if	an	entity	has	transformation	call	to
IGESData_ToolLocation::ConvertLocation	with	Epsilon	value	set	to	10-4.

IGESToBRep_TopoCurve::TransferPoint	–	vertex	is	constructed	from
a	Point	entity	with	tolerance	EpsGeom*UnitFactor.
IGESToBRep_TopoCurve::Transfer2dPoint	–	vertex	is	constructed
from	a	Point	entity	with	tolerance	EpsCoeff.
IGESToBRep_TopoCurve::TransferCompositeCurveGeneral	–
obtains	shapes	(edges	or	wires)	from	other	methods	and	adds	them
into	the	resulting	wire.	Two	adjacent	edges	of	the	wire	can	be
connected	with	tolerance	up	to	MaxTol.
IGESToBRep_TopoCurve::TransferCurveOnFace	and
IGESToBRep_TopoCurve::TransferBoundaryOnFace	build	a	wire
from	3D	and	2D	representations	of	a	curve	on	surface.	Edges	and
vertices	of	the	wire	cannot	have	tolerance	larger	than	MaxTol.	The
value	EpsGeom*UnitFactor	is	passed	into
ShapeFix_Wire::SetPrecision	and	MaxTol	is	passed	into
ShapeFix_Wire::MaxTolerance.	To	find	out	how	these	parameters
affect	the	resulting	tolerance	changes,	please,	refer	to	class
ShapeFix_Wire.
IGESToBRep_TopoCurve::TransferTopoBasicCurve	and
IGESToBRep_TopoCurve::Transfer2dTopoBasicCurve	–	the
boundary	vertices	of	an	edge	(or	a	wire	if	a	curve	was	of	C0
continuity)	translated	from	a	basis	IGES	curve	(BSplineCurve,
CopiousData,	Line,	etc.)	are	built	with	tolerance
EpsGeom*UnitFactor,	the	edge	tolerance	is	Precision::Confusion.	If
a	curve	was	divided	into	several	edges,	the	common	vertices	of	such
adjacent	edges	have	tolerance	Precision::Confusion.

Class	IGESToBRep_TopoSurface

All	faces	created	by	this	class	have	tolerance	Precision::Confusion.

Class	IGESToBRep_BRepEntity

IGESToBRep_BRepEntity::TransferVertex	–	the	vertices	from	the
VertexList	entity	are	constructed	with	tolerance

EpsGeom*UnitFactor.
IGESToBRep_BRepEntity::TransferEdge	–	the	edges	from	the
EdgeList	entity	are	constructed	with	tolerance	Precision::Confusion.
IGESToBRep_BRepEntity::TransferLoop	–	this	function	works	like
IGESToBRep_TopoCurve::TransferCurveOnFace	and
IGESToBRep_TopoCurve::TransferBoundaryOnFace.
IGESToBRep_BRepEntity::TransferFace	–	the	face	from	the	Face
IGES	entity	is	constructed	with	tolerance	Precision::Confusion.

Shape	Healing	classes

After	performing	a	simple	mapping,	shape-healing	algorithms	are	called
(class	ShapeFix_Shape)	by	IGESToBRep_Actor::Transfer().	Shape-
healing	algorithm	performs	the	correction	of	the	resulting	OCCT	shape.
Class	ShapeFix_Wire	can	increase	the	tolerance	of	a	shape.	This	class
is	used	in	IGESToBRep_BRepEntity::TransferLoop,
IGESToBRep_TopoCurve::TransferBoundaryOnFace	and
IGESToBRep_TopoCurve::TransferCurveOnFace	for	correcting	a	wire.
The	maximum	possible	tolerance	applied	to	the	edges	or	vertices	after
invoking	the	methods	of	this	class	is	MaxTolerance	(set	by	method
ShapeFix_Wire::MaxTolerance()).

Code	architecture
The	following	diagram	illustrates	the	structure	of	calls	in	reading	IGES.
The	highlighted	classes	produce	OCCT	geometry.

The	structure	of	calls	in	reading	IGES

Example
#include	“IGESControl_Reader.hxx”	

#include	“TColStd_HSequenceOfTransient.hxx”	

#include	“TopoDS_Shape.hxx”	

{	

IGESControl_Reader	myIgesReader;	

Standard_Integer	nIgesFaces,nTransFaces;	

myIgesReader.ReadFile	(“MyFile.igs”);	

//loads	file	MyFile.igs	

Handle(TColStd_HSequenceOfTransient)	myList	=		

myIgesReader.GiveList(“iges-faces”);	

//selects	all	IGES	faces	in	the	file	and	puts	them	

into	a	list		called	//MyList,	

nIgesFaces	=	myList-Length();		

nTransFaces	=	myIgesReader.TransferList(myList);	

//translates	MyList,	

cout<<"IGES	Faces:	"<<nIgesFaces<<"			Transferred:"

<<nTransFaces<<endl;	

TopoDS_Shape	sh	=	myIgesReader.OneShape();	

//and	obtains	the	results	in	an	OCCT	shape.	

}	

Writing	IGES
Procedure

You	can	translate	OCCT	shapes	to	IGES	entities	in	the	following	steps:

1.	 Initialize	the	process.
2.	 Set	the	translation	parameters,
3.	 Perform	the	model	translation,
4.	 Write	the	output	IGES	file.

You	can	translate	several	shapes	before	writing	a	file.	Each	shape	will	be
a	root	entity	in	the	IGES	model.

Domain	covered
There	are	two	families	of	OCCT	objects	that	can	be	translated:

geometrical,
topological.

Description	of	the	process

Initializing	the	process

Choose	the	unit	and	the	mode	you	want	to	use	to	write	the	output	file	as
follows:

IGESControl_Controller::Init	performs	standard	initialization.	Returns
False	if	an	error	occurred.
IGESControl_Writer	writer	uses	the	default	unit	(millimeters)	and	the
default	write	mode	(Face).
IGESControl_Writer	writer	(UNIT)	uses	the	Face	write	mode	and	any
of	the	units	that	are	accepted	by	IGES.
IGESControl_Writer	writer	(UNIT,modecr)	uses	the	unit	(accepted	by
IGES)	and	the	write	mode	of	your	choice.

0:	Faces,
1:	BRep	The	result	is	an	IGESControl_Writer	object.

Setting	the	translation	parameters

The	following	parameters	are	used	for	the	OCCT-to-IGES	translation.

write.iges.brep.mode:	allows	choosing	the	write	mode:
"Faces"	(0):	OCCT	TopoDS_Faces	will	be	translated	into	IGES
144	(Trimmed	Surface)	entities,	no	BRep	entities	will	be	written
to	the	IGES	file,
"BRep"	(1):	OCCT	TopoDS_Faces	will	be	translated	into	IGES
510	(Face)	entities,	the	IGES	file	will	contain	BRep	entities.
Read	this	parameter	with:
Standard_Integer	byvalue	=		

Interface_Static::IVal("write.iges.brep.mo

de");	

Modify	this	parameter	with:
Interface_Static::SetIVal		

("write.iges.brep.mode",	1);	

Default	value	is	"Faces"	(0).
write.convertsurface.mode	when	writing	to	IGES	in	the	BRep	mode,

this	parameter	indicates	whether	elementary	surfaces	(cylindrical,
conical,	spherical,	and	toroidal)	are	converted	into	corresponding
IGES	5.3	entities	(if	the	value	of	a	parameter	value	is	On),	or	written
as	surfaces	of	revolution	(by	default).
write.iges.unit:	allows	choosing	the	unit.	The	default	unit	for	Open
CASCADE	Technology	is	"MM"	(millimeter).	You	can	choose	to	write
a	file	into	any	unit	accepted	by	IGES.

Read	this	parameter	with	Standard_String	byvalue	=
Interface_Static::CVal("write.iges.unit");
Modify	this	parameter	with	Interface_Static::SetCVal
("write.iges.unit",	"INCH");

write.iges.header.autor:	gives	the	name	of	the	author	of	the	file.	The
default	value	is	the	system	name	of	the	user.

Read	this	parameter	with	Standard_String	byvalue	=
Interface_Static::CVal("write.iges.header.author");
Modify	this	value	with	Interface_Static::SetCVal
("write.iges.header.author",	"name");

write.iges.header.company:	gives	the	name	of	the	sending	company.
The	default	value	is	""	(empty).

Read	this	parameter	with	Standard_String	byvalue	=
Interface_Static::CVal("write.iges.header.company");
Modify	this	value	with	Interface_Static::SetCVal
("write.iges.header.company",	"Open	CASCADE");

write.iges.header.product:	gives	the	name	of	the	sending	product.
The	default	value	is	"CAS.CADE	IGES	processor	Vx.x",	where	x.x
means	the	current	version	of	Open	CASCADE	Technology.

Read	this	parameter	with	Standard_String	byvalue	=
Interface_Static::CVal("write.iges.header.product");
Modify	this	value	with	Interface_Static::SetCVal
("write.iges.header.product",	"product	name");

write.iges.header.receiver:	–	gives	the	name	of	the	receiving
company.	The	default	value	is	""	(empty).

Read	this	parameter	with	Standard_String	byvalue	=
Interface_Static::CVal("write.iges.header.receiver");
Modify	this	value	with	Interface_Static::SetCVal
("write.iges.header.receiver",	"reciever	name");

write.precision.mode:	specifies	the	mode	of	writing	the	resolution
value	into	the	IGES	file.

"Least"	(-1):	resolution	value	is	set	to	the	minimum	tolerance	of
all	edges	and	all	vertices	in	an	OCCT	shape.

"Average"	(0):	resolution	value	is	set	to	average	between	the
average	tolerance	of	all	edges	and	the	average	tolerance	of	all
vertices	in	an	OCCT	shape.	This	is	the	default	value.
"Greatest"	(1):	resolution	value	is	set	to	the	maximum	tolerance
of	all	edges	and	all	vertices	in	an	OCCT	shape.
"Session"	(2):	resolution	value	is	that	of	the	write.precision.val
parameter.
Read	this	parameter	with	Standard_Integer	ic	=
Interface_Static::IVal("write.precision.mode");
Modify	this	parameter	with	if
(!Interface_Static::SetIVal("write.precision.mode",1))	..	error	..

write.precision.val:	is	the	user	precision	value.	This	parameter	gives
the	resolution	value	for	an	IGES	file	when	the	write.precision.mode
parameter	value	is	1.	It	is	equal	to	0.0001	by	default,	but	can	take
any	real	positive	(non	null)	value.

Read	this	parameter	with:

Standard_Real	rp	=		

Interface_Static::RVal(;write.precision.val;);	

Modify	this	parameter	with:

if		

(!Interface_Static::SetRVal(;write.precision.val

;,0.01))		

..	error	..	

Default	value	is	0.0001.

write.iges.resource.name

and

write.iges.sequence

are	the	same	as	the	corresponding	read.iges.*	parameters,	please,	see
above.	Note	that	the	default	sequence	for	writing	contains	DirectFaces
operator,	which	converts	elementary	surfaces	based	on	left-hand	axes

(valid	in	CASCADE)	to	right-hand	axes	(which	are	valid	only	in	IGES).

Default	values	:

write.iges.resource.name	-	IGES,

write.iges.sequence	-	ToIGES.	

Performing	the	Open	CASCADE	Technology	shape
translation

You	can	perform	the	translation	in	one	or	several	operations.	Here	is	how
you	translate	topological	and	geometrical	objects:

Standard_Boolean	ok	=		writer.AddShape	

(TopoDS_Shape);	

ok	is	True	if	translation	was	correctly	performed	and	False	if	there	was	at
least	one	entity	that	was	not	translated.

Standard_Boolean	ok	=		writer.AddGeom	(geom);	

where	geom	is	Handle(Geom_Curve)	or	Handle(Geom_Surface);	ok	is
True	if	the	translation	was	correctly	performed	and	False	if	there	was	at
least	one	entity	whose	geometry	was	not	among	the	allowed	types.

Writing	the	IGES	file

Write	the	IGES	file	with:

Standard_Boolean	ok	=		writer.Write	("filename.igs");	

to	give	the	file	name.

Standard_Boolean	ok	=		writer.Write	(S);	

where	S	is	Standard_OStream	ok	is	True	if	the	operation	was	correctly
performed	and	False	if	an	error	occurred	(for	instance,	if	the	processor
could	not	create	the	file).

Mapping	Open	CASCADE	Technology	shapes
to	IGES	entities
Translated	objects	depend	on	the	write	mode	that	you	chose.	If	you
chose	the	Face	mode,	all	of	the	shapes	are	translated,	but	the	level	of
topological	entities	becomes	lower	(geometrical	one).	If	you	chose	the
BRep	mode,	topological	OCCT	shapes	become	topological	IGES	entities.

Curves

CASCADE	shape
IGES
entity
type

Comments

Geom_BsplineCurve
126:
BSpline
Curve

Geom_BezierCurve
126:
BSpline
Curve

Geom_TrimmedCurve

All	types	of
translatable
IGES
curves

The	type	of	entity	output	depends
on	the	type	of	the	basis	curve.	If
the	curve	is	not	trimmed,	limiting
points	will	be	defined	by	the
CASCADE	RealLast	value.

Geom_Circle

100:
Circular
Arc	or	126:
BSpline
Curve

A	BSpline	Curve	is	output	if	the
Geom_Circle	is	closed

Geom_Ellipse

104:	Conic
Arc	or	126:
BSpline
Curve

A	Conic	Arc	has	Form	1.	A
BSpline	Curve	is	output	if	the
Geom_Ellipse	is	closed.

Geom_Hyperbola
104:	Conic
Arc Form	2

Geom_Parabola 104:	Conic
Arc Form	3

Geom_Line 110:	Line

Geom_OffsetCurve 130:	Offset
Curve

Surfaces

CASCADE	shapes
IGES
entity
type

Comments

Geom_BSplineSurface
128:
BSpline
Surface

Geom_BezierSurface
128:
BSpline
Surface

Geom_RectangularTrimmedSurface

All	types	of
translatable
IGES
surfaces.

The	type	of	entity
output	depends	on
the	type	of	the	basis
surface.	If	the
surface	is	not
trimmed	and	has
infinite	edges/sides,
the	coordinates	of
the	sides	in	IGES
will	be	limited	to	the
CASCADE
RealLast	value.

Geom_Plane

128:
BSpline
Surface	or
190:	Plane
Surface

A	BSpline	Surface
(of	degree	1	in	U
and	V)	is	output	if
you	are	working	in
the	face	mode.	A
Plane	Surface	is
output	if	you	are
working	in	the	BRep

mode.

Geom_CylindricalSurface
120:
Surface	Of
Revolution

Geom_ConicalSurface
120:
Surface	Of
Revolution

Geom_SphericalSurface
120:
Surface	Of
Revolution

Geom_ToroidalSurface
120:
Surface	Of
Revolution

Geom_SurfaceOfLinearExtrusion
122:
Tabulated
Cylinder

Geom_SurfaceOfRevolution
120:
Surface	Of
Revolution

Geom_OffsetSurface 140:	Offset
Surface

Topological	entities	--	Translation	in	Face	mode

CASCADE
shapes

IGES
entity
type

Comments

Single
TopoDS_Vertex

116:	3D
Point

TopoDS_Vertex	in	a
TopoDS_Edge

No
equivalent Not	transferred.

TopoDS_Edge

All	types	of
translatable
IGES
curves

The	output	IGES	curve	will	be	the
one	that	corresponds	to	the	Open
CASCADE	Technology	definition.

Single 102: Each	TopoDS_Edge	in	the

TopoDS_Wire Composite
Curve

TopoDS_Wire	results	in	a	curve.

TopoDS_Wire	in	a
TopoDS_Face

142:	Curve
On	Surface

Both	curves	(3D	and	pcurve)	are
transferred	if	they	are	defined	and
result	in	a	simple	curve	or	a
composite	curve	depending	on
whether	there	is	one	or	more	edges
in	the	wire.Note:	if	the	basis	surface
is	a	plane	(108),	only	the	3D	curve
is	used.

TopoDS_Face
144:
Trimmed
Surface

TopoDS_Shell

402:	Form
1	Group	or
no
equivalent

Group	is	created	only	if
TopoDS_Shell	contains	more	than
one	TopoDS_Face.	The	IGES
group	contains	Trimmed	Surfaces.

TopoDS_Solid

402:	Form
1	Group	or
no
equivalent

Group	is	created	only	if
TopoDS_Solid	contains	more	than
one	TopoDS_Shell.	One	IGES
entity	is	created	per	TopoDS_Shell.

TopoDS_CompSolid

402:	Form
1	Group	or
no
equivalent

Group	is	created	only	if
TopoDS_CompSolid	contains	more
than	one	TopoDS_Solid.	One	IGES
entity	is	created	per	TopoDS_Solid.

TopoDS_Compound

402:	Form
1	Group	or
no
equivalent

Group	is	created	only	if
TopoDS_Compound	contains	more
than	one	item.	One	IGES	entity	is
created	per	TopoDS_Shape	in	the
TopoDS_Compound.	If
TopoDS_Compound	is	nested	into
another	TopoDS_Compound,	it	is
not	mapped.

Topological	entities	--	Translation	in	BRep	mode

CASCADE IGES
entity Comments

shapes type
Single
TopoDS_Vertex

No
equivalent Not	transferred.

TopoDS_Vertex	in	a
TopoDS_Edge

One	item
in	a	502:
VertexList

TopoDS_Edge No
equivalent

Not	transferred	as	such.	This	entity
serves	as	a	part	of	a	Loop	entity.

TopoDS_Edge	in	a
TopoDS_Wire

One	item
in	a	504:
EdgeList

TopoDS_Wire 508:	Loop

TopoDS_Face 510:	Face
If	the	geometrical	support	of	the	face
is	a	plane,	it	will	be	translated	as	a
190	entity	PlaneSurface.

TopoDS_Shell 514:	Shell

TopoDS_Solid
186:
Manifold
Solid

TopoDS_CompSolid

402
Form1
Group	or
no
equivalent

Group	is	created	only	if
TopoDS_Compound	contains	more
than	one	item.	One	IGES	Manifold
Solid	is	created	for	each
TopoDS_Solid	in	the
TopoDS_CompSolid.

TopoDS_Compound

402
Form1
Group	or
no
equivalent

Group	is	created	only	if
TopoDS_Compound	contains	more
than	one	item.	One	IGES	entity	is
created	per	TopoDS_Shape	in	the
TopoDS_Compound.	If
TopoDS_Compound	is	nested	into
another	TopoDS_Compound	it	is	not
mapped.

Tolerance	management

Setting	resolution	in	an	IGES	file

There	are	several	possibilities	to	set	resolution	in	an	IGES	file.	They	are
controlled	by	write.precision.mode	parameter;	the	dependence	between
the	value	of	this	parameter	and	the	set	resolution	is	described	in
paragraph	Setting	the	translation	parameters.

If	the	value	of	parameter	write.precision.mode	is	-1,	0	or	1,	resolution	is
computed	from	tolerances	of	sub-shapes	inside	the	shape	to	be
translated.	In	this	computation,	only	tolerances	of	TopoDS_Edges	and
TopoDS_Vertices	participate	since	they	reflect	the	accuracy	of	the	shape.
TopoDS_Faces	are	ignored	in	computations	since	their	tolerances	may
have	influence	on	resulting	computed	resolution	while	IGES	resolution
mainly	concerns	points	and	curves	but	not	surfaces.

Code	architecture

Graph	of	calls

The	following	diagram	illustrates	the	class	structure	in	writing	IGES.	The
highlighted	classes	are	intended	to	translate	geometry.

The	class	structure	in	writing	IGES

Example
{c++}

#include	<IGESControl_Controller.hxx>	

#include	<IGESControl_Writer.hxx>	

#include	<TopoDS_Shape.hxx>	

Standard_Integer	main()	

{	

		IGESControl_Controller::Init();	

		IGESControl_Writer	ICW	(;MM;,	0);	

		//creates	a	writer	object	for	writing	in	Face	mode	

with		millimeters	

		TopoDS_Shape	sh;	

		ICW.AddShape	(sh);	

		//adds	shape	sh	to	IGES	model	

		ICW.ComputeModel();	

		Standard_Boolean	OK	=	ICW.Write	(;MyFile.igs;);	

		//writes	a	model	to	the	file	MyFile.igs	

}	

Using	XSTEPDRAW
XSTEPDRAW	UL	is	intended	for	creating	executables	for	testing	XSTEP
interfaces	interactively	in	the	DRAW	environment.	It	provides	an
additional	set	of	DRAW	commands	specific	for	the	data	exchange	tasks,
which	allow	loading	and	writing	data	files	and	analysis	of	resulting	data
structures	and	shapes.

In	the	description	of	commands,	square	brackets	([])	are	used	to	indicate
optional	parameters.	Parameters	given	in	the	angle	brackets	(<>)	and
sharps	(#)	are	to	be	substituted	by	an	appropriate	value.	When	several
exclusive	variants	are	possible,	vertical	dash	(|)	is	used.

Setting	interface	parameters
A	set	of	parameters	for	importing	and	exporting	IGES	files	is	defined	in
the	XSTEP	resource	file.	In	XSTEPDRAW,	these	parameters	can	be
viewed	or	changed	using	command

Draw>	param	[<parameter_name>	[<value>]]		

Command	param	with	no	arguments	gives	a	list	of	all	parameters	with
their	values.	When	argument	parameter_name	is	specified,	information
about	this	parameter	is	printed	(current	value	and	short	description).

The	third	argument	is	used	to	set	a	new	value	of	the	given	parameter.
The	result	of	the	setting	is	printed	immediately.

During	all	interface	operations,	the	protocol	of	the	process	(fail	and
warning	messages,	mapping	of	the	loaded	entities	into	OCCT	shapes
etc.)	can	be	output	to	the	trace	file.	Two	parameters	are	defined	in	the
DRAW	session:	trace	level	(integer	value	from	0	to	9,	default	is	0),	and
trace	file	(default	is	a	standard	output).

Command	xtrace	is	intended	to	view	and	change	these	parameters:

Draw>	xtrace	–	prints	current	settings	(e.g.:	"Level=0	-	Standard
Output");
Draw>	xtrace	#	–	sets	the	trace	level	to	the	value	#;
Draw>	xtrace	tracefile.log	–	sets	the	trace	file	as	tracefile.log;
Draw	xtrace	–	directs	all	messages	to	the	standard	output.

Reading	IGES	files
For	a	description	of	parameters	used	in	reading	an	IGES	file	refer	to
Setting	the	translation	parameters.

These	parameters	are	set	by	command	param	:

Description Name Values
Precision	for	input	entities read.precision.mode 0	or	1

read.precision.val real
Continuity	of	B	splines read.iges.bspline.continuity 0-2
Surface	curves read.surfacecurve.mode 2,	3	or	0

It	is	possible	either	only	to	load	an	IGES	file	into	memory	(i.e.	to	fill	the
model	with	data	from	the	file),	or	to	read	it	(i.e.	to	load	and	convert	all
entities	to	OCCT	shapes).

Loading	is	done	by	the	command

Draw>	xload	<file_name>

Once	the	file	is	loaded,	it	is	possible	to	investigate	the	structure	of	the
loaded	data.	To	learn	how	to	do	it	see	Analyzing	the	transferred.

Reading	of	an	IGES	file	is	done	by	the	command

Draw>	igesbrep	<file_name>	<result_shape_name>	

[<selection>]

Here	a	dot	can	be	used	instead	of	a	filename	if	the	file	is	already	loaded
by	xload	or	igesbrep	command.	In	that	case,	only	conversion	of	IGES
entities	to	OCCT	shapes	will	be	done.

Command	igesbrep	will	interactively	ask	the	user	to	select	a	set	of
entities	to	be	converted:

N Mode Description

0 End finish	conversion	and	exit	igesbrep
1 Visible	roots convert	only	visible	roots
2 All	roots convert	all	roots
3 One	entity convert	entity	with	number	provided	by	the	user
4 Selection convert	only	entities	contained	in	selection

After	the	selected	set	of	entities	is	loaded	the	user	will	be	asked	how
loaded	entities	should	be	converted	into	OCCT	shapes	(e.g.,	one	shape
per	root	or	one	shape	for	all	the	entities).	It	is	also	possible	to	save
loaded	shapes	in	files,	and	to	cancel	loading.

The	second	parameter	of	the	igesbrep	command	defines	the	name	of	the
loaded	shape.	If	several	shapes	are	created,	they	will	get	indexed
names.	For	instance,	if	the	last	parameter	is	‘s’,	they	will	be	s_1,	...	s_N.

<selection>	specifies	the	scope	of	selected	entities	in	the	model,	it	is	xst-
transferrable-roots	by	default.	An	asterisk	“*”	can	be	specified	instead	of
iges-visible-transf-roots.	For	possible	values	of	selection	refer	to
Selecting	entities	section.

Instead	of	igesbrep	it	is	possible	to	use	commands:

Draw>	trimport	<file_name>	<result_shape_name>	

<selection>

which	outputs	the	result	of	translation	of	each	selected	entity	into	one
shape,	or

Draw>	trimpcomp	<file_name>	<result_shape_name>	

<selection>

which	outputs	the	result	of	translation	of	all	selected	entities	into	one
shape	(TopoDS_Compound	for	several	entities).

An	asterisk	“*”	can	be	specified	instead	of	selection,	it	means	xst-
transferrable-roots.

During	the	IGES	translation,	a	map	of	correspondence	between	IGES
entities	and	OCCT	shapes	is	created.	The	following	commands	are
available:

Draw>	tpent	#	–	provides	information	on	the	result	of	translation	of
the	given	IGES	entity;
Draw>	tpdraw	#	–creates	an	OCCT	shape	corresponding	to	an	IGES
entity;
Draw>	fromshape	<shape_name>	–	provides	the	number	of	an
IGES	entity	corresponding	to	an	OCCT	shape;
Draw>	tpclear	–	clears	the	map	of	correspondences	between	IGES
entities	and	OCCT	shapes.

Analyzing	the	transferred	data
The	procedure	of	analysis	of	the	data	import	can	be	divided	into	two
stages:

1.	 Checking	the	file	contents;
2.	 Estimation	of	translation	results	(conversion	and	validated	ratios).

Checking	file	contents

General	statistics	on	the	loaded	data	can	be	obtained	by	using	command

Draw>	data	<symbol>	

The	information	printed	by	this	command	depends	on	the	symbol
specified:

Symbol Output

g Prints	information	contained	in	the	header	of	the	file	(Start
and	Global	sections)

c	or	f
Runs	check	procedure	of	the	integrity	of	the	loaded	data
and	prints	the	resulting	statistics	(f	works	only	with	fails
while	c	with	both	fail	and	warning	messages)

t The	same	as	c	or	f,	with	a	list	of	failed	or	warned	entities
m	or	l The	same	as	t	but	also	prints	a	status	for	each	entity

e Lists	all	entities	of	the	model	with	their	numbers,	types,
status	of	validity	etc.

r The	same	as	e	but	lists	only	root	entities

There	is	a	set	of	special	objects,	which	can	be	used	to	operate	with	the
loaded	model.	They	can	be	of	the	following	types:

Special	object
type Operation

allow	selecting	subsets	of	entities	of	the	loaded

Selection	Filters model

Counters Calculate	statistics	on	the	model	data

A	list	of	these	objects	defined	in	the	current	session	can	be	printed	in
DRAW	by	command

Draw>	listitems	

In	the	following	commands	if	several	<selection>	arguments	are	specified
the	results	of	each	following	selection	are	applied	to	the	results	of	the
previous	one.

Draw>	givelist	<selection_name>	[<selection_name>]

prints	a	list	of	loaded	entities	defined	by	selection	argument.

Draw>	givecount	<selection_name>	[<selection_name>]

prints	a	number	of	loaded	entities	defined	by	selection	argument.

Three	commands	are	used	to	calculate	statistics	on	the	entities	in	the
model:

Draw>	count	<counter>	[<selection>	...]	–	prints	only	a	number	of
entities	per	each	type	matching	the	criteria	defined	by	arguments.
Draw>	sumcount	<counter>	[<selection>	...]	–	prints	the	total	number
of	entities	of	all	types	matching	the	criteria	defined	by	arguments	and
the	largest	number	corresponding	to	one	type.
Draw>	listcount	<counter>	[<selection>	...]	–	prints	a	list	of	entities
per	each	type	matching	the	criteria	defined	by	arguments.

Optional	<selection>	argument,	if	specified,	defines	a	subset	of	entities,
which	are	to	be	taken	into	account.	Argument	<counter>	should	be	one	of
the	currently	defined	counters:

Counter Operation
xst-types Calculates	how	much	entities	of	each	OCCT	type	exist
iges- Calculates	how	much	entities	of	each	IGES	type	and	form

types exist
iges-
levels Calculates	how	much	entities	lie	in	different	IGES	levels

The	command:

Draw>	listtypes	<selection_name>	...

gives	a	list	of	entity	types	which	were	encountered	in	the	last	loaded	file
(with	a	number	of	IGES	entities	of	each	type).	The	list	can	be	shown	not
for	all	entities	but	for	a	subset	of	them.	This	subset	is	defined	by	an
optional	selection	argument.

Entities	in	the	IGES	file	are	numbered	in	the	succeeding	order.	An	entity
can	be	identified	either	by	its	number	(#)	or	by	its	label.	Label	is	the	letter
‘D’	followed	by	the	index	of	the	first	line	with	the	data	for	this	entity	in	the
Directory	Entry	section	of	the	IGES	file.	The	label	can	be	calculated	on
the	basis	of	the	number	as	‘D(2*#	-1)’.	For	example,	entity	#	6	has	label
D11.

Draw>	elab	#	–	provides	a	label	for	an	entity	with	a	known	number;
Draw>	enum	#	–	prints	a	number	for	an	entity	with	the	given	label;
Draw>	entity	#	<level_of_information>	–	gives	the	content	of	an
IGES	entity;
Draw>	estat	#	–	provides	the	list	of	entities	referenced	by	a	given
entity	and	the	list	of	entities	referencing	to	it.

Estimating	the	results	of	reading	IGES

All	of	the	following	commands	are	available	only	after	the	data	are
converted	into	OCCT	shapes	(i.e.	after	command	igesbrep).

Draw>	tpstat	[*|?]<symbol>	[<selection>]

provides	all	statistics	on	the	last	transfer,	including	the	list	of	transferred
entities	with	mapping	from	IGES	to	OCCT	types,	as	well	as	fail	and
warning	messages.	The	parameter	<symbol>	defines	what	information
will	be	printed:

G	–	General	statistics	(list	of	results	and	messages)

C	–	Count	of	all	warning	and	fail	messages
C	–	List	of	all	warning	and	fail	messages
F	–	Count	of	all	fail	messages
F	–	List	of	all	fail	messages
N	–	List	of	all	transferred	roots
S	–	The	same,	with	types	of	source	entity	and	result	type
B	–	The	same,	with	messages
T	–	Count	of	roots	for	geometrical	types
R	–	Count	of	roots	for	topological	types
l	–	The	same,	with	a	type	of	the	source	entity

The	sign	‘*’	before	the	parameters	n,	s,	b,	t,	r	makes	it	work	on	all	entities
(not	only	on	roots).	The	sign	‘?’	before	n,	s,	b,	t	limits	the	scope	of
information	to	invalid	entities.

Optional	argument	<selection>	can	limit	the	action	of	the	command	with	a
selected	subset	of	entities.	To	get	help,	run	this	command	without
arguments.

For	example,	to	get	translation	ratio	on	IGES	faces,	you	can	use.

Draw:>	tpstat	*l	iges-faces

The	second	version	of	the	same	command	is	TPSTAT	(not	capital
spelling).

Draw:>	TPSTAT	<symbol>	

Symbol	can	be	of	the	following	values:

g	–	General	statistics	(list	of	results	and	messages)
c	–	Count	of	all	warning	and	fail	messages
C	–	List	of	all	warning	and	fail	messages
r	–	Count	of	resulting	OCCT	shapes	per	each	type
s	–	Mapping	of	IGES	roots	and	resulting	OCCT	shapes

Sometimes	the	trimming	contours	of	IGES	faces	(i.e.,	entity	141	for	143,
142	for	144)	can	be	lost	during	translation	due	to	fails.

The	number	of	lost	trims	and	the	corresponding	IGES	entities	can	be
obtained	by	the	command:

Draw>	tplosttrim	[<IGES_type>]	

It	outputs	the	rank	and	DE	numbers	of	faces	that	lost	their	trims	and	their
numbers	for	each	type	(143,	144,	510)	and	their	total	number.	If	a	face
lost	several	of	its	trims	it	is	output	only	once.

Optional	parameter	<IGES_type>	can	be	TrimmedSurface,
BoundedSurface	or	Face	to	specify	the	only	type	of	IGES	faces.

For	example,	to	get	untrimmed	144	entities,	use	command

Draw>	tplosttrim	TrimmedSurface	

To	get	the	information	on	OCCT	shape	contents,	use	command

Draw>	statshape	<shape_name>	

It	outputs	the	number	of	each	kind	of	shapes	(vertex,	edge,	wire,	etc.)	in
a	shape	and	some	geometrical	data	(number	of	C0	surfaces,	curves,
indirect	surfaces,	etc.).

Note.	The	number	of	faces	is	returned	as	a	number	of	references.	To
obtain	the	number	of	single	instances	the	standard	command	(from
TTOPOLOGY	executable)	nbshapes	can	be	used.

To	analyze	the	internal	validity	of	a	shape,	use	command

Draw>	checkbrep	<shape_name>	<expurged_shape_name>

It	checks	the	geometry	and	topology	of	a	shape	for	different	cases	of
inconsistency,	like	self-intersecting	wires	or	wrong	orientation	of	trimming
contours.	If	an	error	is	found,	it	copies	bad	parts	of	the	shape	with	the
names	"expurged_subshape_name	_#"	and	generates	an	appropriate
message.	If	possible,	this	command	also	tries	to	find	IGES	entities	the
OCCT	shape	was	produced	from.

<expurged_shape_name>	will	contain	the	original	shape	without	invalid
subshapes.

To	get	information	on	tolerances	of	subshapes,	use	command

Draw>	tolerance	<shape_name>	[<min>	[<max>]	

[<symbol>]]

It	outputs	maximum,	average	and	minimum	values	of	tolerances	for	each
kind	of	subshapes	having	tolerances	or	it	can	output	tolerances	of	all
subshapes	of	the	whole	shape.

When	specifying	min	and	max	arguments	this	command	outputs	shapes
with	names	<shape_name>...	and	their	total	number	with	tolerances	in
the	range	[min,	max].

<Symbol>	is	used	for	specifying	the	kind	of	sub-shapes	to	analyze:

v	–	for	vertices,
e	–	for	edges,
f	–	for	faces,
c	–	for	shells	and	faces.

Writing	an	IGES	file
Refer	to	Setting	the	translation	parameters	for	a	description	of
parameters	used	in	reading	an	IGES	file.	The	parameters	are	set	by
command	param:

Description Name Values
Author XSTEP.iges.header.author String
Company XSTEP.iges.header.company String
Receiver XSTEP.iges.header.receiver String
Write	mode	for
shapes XSTEP.iges.writebrep.mode 0/Faces	or

1/BRep

Measurement	units XSTEP.iges.unit 1-11	(or	a	string
value)

Several	shapes	can	be	written	in	one	file.	To	start	writing	a	new	file,	enter
command

Draw>	newmodel	

This	command	clears	the	InterfaceModel	to	make	it	empty.

Draw>	brepiges	<shape_name_1>	[<filename.igs>]

Converts	the	specified	shapes	into	IGES	entities	and	puts	them	into	the
InterfaceModel.

Draw>	writeall	<filename.igs>

Allows	writing	the	prepared	model	to	a	file	with	name	filename.igs.

Reading	from	and	writing	to	IGES
Reading	from	IGES

Load	an	IGES	file

Before	performing	any	other	operation,	you	must	load	an	IGES	file	with:

IGESCAFControl_Reader	reader(XSDRAW::Session(),		

Standard_False);	

IFSelect_ReturnStatus	stat	=	

reader.ReadFile(“filename.igs”);	

Loading	the	file	only	memorizes,	but	does	not	translate	the	data.

Check	the	loaded	IGES	file

This	step	is	not	obligatory.	See	the	description	of	Checking	the	IGES	file
above.

Set	parameters	for	translation	to	XDE

See	the	description	of	Setting	translation	parameters	above.

In	addition,	the	following	parameters	can	be	set	for	XDE	translation	of
attributes:

For	transferring	colors:
reader.SetColorMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

For	transferring	names:
reader.SetNameMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

Translate	an	IGES	file	to	XDE

The	following	function	performs	a	translation	of	the	whole	document:

Standard_Boolean	ok	=	reader.Transfer(doc);		

where	doc	is	a	variable	which	contains	a	handle	to	the	output	document
and	should	have	a	type	Handle(TDocStd_Document).

Writing	to	IGES
The	translation	from	XDE	to	IGES	can	be	initialized	as	follows:

IGESCAFControl_Writer	

aWriter(XSDRAW::Session(),Standard_False);	

Set	parameters	for	translation	from	XDE	to	IGES

The	following	parameters	can	be	set	for	translation	of	attributes	to	IGES:

For	transferring	colors:
aWriter.SetColorMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

For	transferring	names:
aWriter.SetNameMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

Translate	an	XDE	document	to	IGES

You	can	perform	the	translation	of	a	document	by	calling	the	function:

IFSelect_ReturnStatus	aRetSt	=	aWriter.Transfer(doc);	

where	"doc"	is	a	variable	which	contains	a	handle	to	the	input	document
for	transferring	and	should	have	a	type	Handle(TDocStd_Document).

Write	an	IGES	file

Write	an	IGES	file	with:

IFSelect_ReturnStatus	statw	=		

aWriter.WriteFile("filename.igs");	

or

IFSelect_ReturnStatus	statw	=	writer.WriteFile	(S);	

where	S	is	OStream.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
STEP	Exchanges	in
Open	Cascade
technology
STEP	Interface

Reading	STEP
Procedure
Domain	covered

Assemblies
Shape
representations
Topological
entities
Geometrical
entities

Description	of	the
process

Loading	the
STEP	file
Checking	the
STEP	file
Setting	the
translation
parameters
Performing	the
STEP	file
translation
Getting	the
translation
results

Open	CASCADE
Technology		7.2.0

STEP	processor

Selecting	STEP
entities	for
translation

Mapping	STEP
entities	to	Open
CASCADE	Technology
shapes

Assembly
structure
representation
entities
Models
Topological
entities
Geometrical
entities

Tolerance
management

Values	used	for
tolerances
during	reading
STEP
Initial	setting	of
tolerances	in
translating
objects
Transfer	process

Code	architecture
Example

Writing	STEP
Procedure
Domain	covered

Writing
geometry	and
topology
Writing
assembly
structures

Description	of	the
process

Initializing	the
process

Setting	the
translation
parameters
Performing	the
Open	CASCADE
Technology
shape
translation
Writing	the	STEP
file

Mapping	Open
CASCADE	Technology
shapes	to	STEP
entities

Assembly
structures	and
product
information
Topological
shapes
Geometrical
objects

Tolerance
management
Code	architecture

Graph	of	calls
Example

Physical	STEP	file
reading	and	writing
Architecture	of	STEP
Read	and	Write
classes

General
principles
Complex
entities

Physical	file	reading
Loading	a	STEP
file	and
syntactic
analysis	of	its
contents
Mapping	STEP

entities	to
arrays	of	strings
Creating	empty
Open	CASCADE
Technology
objects	that
represent	STEP
entities
Initializing	Open
CASCADE
Technology
objects
Building	a	graph

How	to	add	a	new
entity	in	scope	of	the
STEP	processor
Physical	file	writing
How	to	add	a	new
entity	to	write	in	the
STEP	file.

Using	DRAW
DRAW	STEP
Commands	Overview
Setting	the	interface
parameters
Reading	a	STEP	file
Analyzing	the
transferred	data

Checking	file
contents
Estimating	the
results	of
reading	STEP

Writing	a	STEP	file
Reading	from	and	writing
to	STEP
Reading	from	STEP
Attributes	read	from
STEP
Writing	to	STEP
Attributes	written	to
STEP

Introduction
STEP	is	more	and	more	widely	used	to	exchange	data	between	various
software,	involved	in	CAD,	PDM,	Analysis,	etc...	STEP	is	far	more	than
an	"exchange	standard"	:	it	provides	a	technology	and	a	set	of
methodologies	to	describe	the	data	to	exchange	in	a	modular	and
upgradeable	way.	Regarding	OCCT,	this	mostly	applies	to	CAD	data	but
it	is	not	a	limitation,	other	kinds	of	data	for	specific	applications	can	be
addressed	too.

Image	imported	from	STEP

Open	Cascade	allows	its	users	to	employ	STEP	in	the	following	domains:

Exchange	of	data	for	technical	applications,	following	the	state-of-
the-art	definitions	and	rules;
Extension	of	case	coverage,	according	to	specific	needs	or	to	the
evolution	of	general	business	uses;
Expertise	in	data	architecture	of	an	application,	to	get	experience
from	STEP	definitions	and	make	easier	the	mapping	to	them,	for	a

better	interoperability	with	outer	world.

This	manual	is	intended	to	provide	technical	documentation	on	the	Open
CASCADE	Technology	(OCCT)	STEP	processor	and	to	help	Open
CASCADE	Technology	users	with	the	use	of	the	STEP	processor	(to
read	and	write	STEP	files).

Only	geometrical,	topological	STEP	entities	(shapes)	and	assembly
structures	are	translated	by	the	basic	translator	described	in	sections	2	to
6.	Data	that	cannot	be	translated	on	this	level	are	also	loaded	from	a
STEP	file	and	can	be	translated	later.	XDE	STEP	translator	(see	section
7	Reading	from	and	writing	to	XDE)	translates	names,	colors,	layers,
validation	properties	and	other	data	associated	with	shapes	and
assemblies	into	XDE	document.

File	translation	is	performed	in	the	programming	mode,	via	C++	calls.

Shape	Healing	toolkit	provides	tools	to	heal	various	problems,	which
may	be	encountered	in	translated	shapes,	and	to	make	them	valid	in
Open	CASCADE.	The	Shape	Healing	is	smoothly	connected	to	STEP
translator	using	the	same	API,	only	the	names	of	API	packages	change.

For	testing	the	STEP	component	in	DRAW	Test	Harness,	a	set	of
commands	for	reading	and	writing	STEP	files	and	analysis	of	relevant
data	are	provided	by	the	TKXSDRAW	plugin.

See	also	our	E-learning	&	Training	offerings.

http://www.opencascade.com/content/tutorial-learning

STEP	Exchanges	in	Open	Cascade	technology
Beyond	the	upper	level	API,	which	is	fitted	for	an	easy	end-use,	the
STEP	exchange	functions	enter	in	the	general	frame	of	Exchanges	in
Open	Cascade,	adapted	for	STEP:

Specific	packages	for	Data	definition	and	checking;
Physical	Access	supported	by	Drivers	(Part	21	file	access	is
embedded);
Conversion	to/from	Open	Cascade	or	applicative	data	supported	by
drivers	(OCC-BREP	and	XDE	ard	basically	provided);
Tools	for	analysis,	filtering,	etc...	including	DRAW	commands.

These	modules	share	common	architecture	and	capabilities	with	other
exchange	modules	of	Open	Cascade,	like	Shape	Healing.	Also,	built-in
Viewer	and	Converter	(as	Plugin	for	Netscape,	Internet	Explorer	..),	are
based	on	the	same	technology.

In	addition,	Open	Cascade	provides	tools	to	process	models	described
using	STEP:	to	reflect	EXPRESS	descriptions,	to	read,	write	and	check
data,	to	analyze	the	whole	models	...	Their	key	features	are:

Modularity	by	sets	of	data	types,	which	can	be	hierarchized	to	reflect
the	original	modularity	describing	the	resources	and	application
protocols;
Implementation	as	C++	classes,	providing	comprehensive	access	to
their	members;
Early	binding	is	basically	used,	providing	good	performance,	easy
installation	and	use	as	well	as	the	capability	to	support	non-compiled
descriptions.

This	provides	a	natural	way	to	deal	with	non-supported	protocols	when
they	share	common	definitions,	as	for	geometry,	which	can	then	be
exploited.	The	common	frame,	as	the	already	supported	data	types,	give
a	good	foundation	to	go	towards	new	uses	of	STEP,	either	on	data
definition	(protocols	from	ISO	or	from	industrial	consortia)	or	on	mapping
with	applicative	data.

STEP	Interface
The	STEP	interface	reads	STEP	files	produced	in	accordance	with	STEP
Application	Protocol	214	(Conformance	Class	2	both	CD	and	DIS
versions	of	schema)	and	translates	them	to	Open	CASCADE	Technology
models.	STEP	Application	Protocol	203	and	some	parts	of	AP242	are
also	supported.

The	STEP	interface	also	translates	OCCT	models	to	STEP	files.	STEP
files	that	are	produced	by	this	interface	conform	to	STEP	AP	203	or	AP
214	(Conformance	Class	2,	either	CD	or	DIS	version	of	the	schema)
depending	on	the	user's	option.

Basic	interface	reads	and	writes	geometrical,	topological	STEP	data	and
assembly	structures.

The	interface	is	able	to	translate	one	entity,	a	group	of	entities	or	a	whole
file.

Other	kinds	of	data	such	as	colors,	validation	properties,	layers,	GD&T,
names	and	the	structure	of	assemblies	can	be	read	or	written	with	the
help	of	XDE	tools:	STEPCAFControl_Reader	and
STEPCAFControl_Writer.

To	choose	a	translation	mode	when	exporting	to	a	STEP	format,	use
STEPControl_STEPModelType.

There	is	a	set	of	parameters	that	concern	the	translation	and	can	be	set
before	the	beginning	of	the	translation.

Please,	note:

a	STEP	model	is	a	STEP	file	that	has	been	loaded	into	memory;
all	references	to	shapes	indicate	OCCT	shapes	unless	otherwise
explicitly	stated;
a	root	entity	is	the	highest	level	entity	of	any	given	type,	i.e.	an	entity
that	is	not	referenced	by	any	other	one.

Reading	STEP
Procedure

You	can	translate	a	STEP	file	into	an	OCCT	shape	in	the	following	steps:

1.	 load	the	file,
2.	 check	file	consistency,
3.	 set	the	translation	parameters,
4.	 perform	the	translation,
5.	 fetch	the	results.

Domain	covered

Assemblies

The	ProSTEP	Round	Table	Agreement	Log	(version	July	1998),	item
21,	defines	two	alternatives	for	the	implementation	of	assembly	structure
representations:	using	mapped_item	entities	and	using
representation_relationship_with_transformation	entities.	Both	these
alternative	representations	are	recognized	and	processed	at	reading.	On
writing,	the	second	alternative	is	always	employed.

Handling	of	assemblies	is	implemented	in	two	separate	levels:	firstly
STEP	assembly	structures	are	translated	into	OCCT	shapes,	and
secondly	the	OCCT	shape	representing	the	assembly	is	converted	into
any	data	structure	intended	for	representing	assemblies	(for	example,
OCAF).

The	first	part	of	this	document	describes	the	basic	STEP	translator
implementing	translation	of	the	first	level,	i.e.	translation	to	OCCT
Shapes.	On	this	level,	the	acyclic	graph	representing	the	assembly
structure	in	a	STEP	file	is	mapped	into	the	structure	of	nested
TopoDS_Compounds	in	Open	CASCADE	Technology.	The
(sub)assemblies	become	(sub)compounds	containing	shapes	which	are
the	results	of	translating	components	of	that	(sub)assembly.	The	sharing
of	components	of	assemblies	is	preserved	as	Open	CASCADE
Technology	sharing	of	subshapes	in	compounds.

The	attributive	information	attached	to	assembly	components	in	a	STEP
file	(such	as	names	and	descriptions	of	products,	colors,	layers	etc.)	can
be	translatd	after	the	translation	of	the	shape	itself	by	parsing	the	STEP
model	(loaded	in	memory).	Several	tools	from	the	package
STEPConstruct	provide	functionalities	to	read	styles	(colors),	validation
properties,	product	information	etc.	Implementation	of	the	second	level	of
translation	(conversion	to	XDE	data	structure)	is	provided	by	XDE	STEP
translator.

Shape	representations

Length	units,	plane	angle	units	and	the	uncertainty	value	are	taken	from

shape_representation	entities.	This	data	is	used	in	the	translation
process.

The	types	of	STEP	representation	entities	that	are	recognized	are:

advanced_brep_shape_representation
faceted_brep_shape_representation
manifold_surface_shape_representation
geometrically_bounded_wireframe_shape_representation
geometrically_bounded_surface_shape_representation
hybrid	representations	(shape_representation	containing	models	of
different	type)

Topological	entities

The	types	of	STEP	topological	entities	that	can	be	translated	are:

vertices
edges
loops
faces
shells
solids	For	further	information	see	Mapping	STEP	entities	to	Open
CASCADE	Technology	shapes.

Geometrical	entities

The	types	of	STEP	geometrical	entities	that	can	be	translated	are:

points
vectors
directions
curves
surfaces

For	further	information	see	2.4	Mapping	STEP	entities	to	Open
CASCADE	Technology	shapes.

Description	of	the	process

Loading	the	STEP	file

Before	performing	any	other	operation	you	have	to	load	the	file	with:

STEPControl_Reader	reader;	

IFSelect_ReturnStatus	stat	=	

reader.ReadFile(;filename.stp;);	

Loading	the	file	only	memorizes	the	data,	it	does	not	translate	it.

Checking	the	STEP	file

This	step	is	not	obligatory.	Check	the	loaded	file	with:

reader.PrintCheckLoad(failsonly,mode);	

Error	messages	are	displayed	if	there	are	invalid	or	incomplete	STEP
entities,	giving	you	the	information	on	the	cause	of	error.

If	failsonly	is	true	only	fail	messages	are	displayed.	All	messages	are
displayed	if	failsonly	is	false.	Your	analysis	of	the	file	can	be	either
message-oriented	or	entity-oriented.	Choose	your	preference	with:

IFSelect_PrintCount	mode	=	IFSelect_xxx	

Where	xxx	can	be	one	of	the	following:

ItemsByEntity	–	gives	a	sequential	list	of	all	messages	per	STEP
entity,
CountByItem	–	gives	the	number	of	STEP	entities	with	their	types
per	message
ListByItem	–	gives	the	number	of	STEP	entities	with	their	types	and
rank	numbers	per	message

Setting	the	translation	parameters

The	following	parameters	can	be	used	to	translate	a	STEP	file	into	an
OCCT	shape.

If	you	give	a	value	that	is	not	within	the	range	of	possible	values	it	will
simply	be	ignored.

read.precision.mode

Defines	which	precision	value	will	be	used	during	translation	(see	section
2.5	below	for	details	on	precision	and	tolerances).

File	(0)	–	the	precision	value	is	set	to	length_measure	in
uncertainty_measure_with_unit	from	STEP	file.
User	(1)	–	the	precision	value	is	that	of	the	read.precision.val
parameter.

Read	this	parameter	with:

Standard_Integer	ic	=	

Interface_Static::IVal("read.precision.mode");		

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.precision.mode",1

))		

..	error	..	

Default	value	is	File	(0).

read.precision.val:

User	defined	precision	value.	This	parameter	gives	the	precision	for
shape	construction	when	the	read.precision.mode	parameter	value	is	1.
By	default	it	is	0.0001,	but	can	be	any	real	positive	(non	null)	value.

This	value	is	a	basic	value	of	tolerance	in	the	processor.	The	value	is	in
millimeters,	independently	of	the	length	unit	defined	in	the	STEP	file.

Read	this	parameter	with:

Standard_Real	rp	=	

Interface_Static::RVal("read.precision.val");	

Modify	this	parameter	with:

if(!Interface_Static::SetRVal("read.precision.val",0.

01))		

..	error	..	

By	default	this	value	is	0.0001.

The	value	given	to	this	parameter	is	a	basic	value	for	ShapeHealing
algorithms	and	the	processor.	It	does	its	best	to	reach	it.	Under	certain
circumstances,	the	value	you	give	may	not	be	attached	to	all	of	the
entities	concerned	at	the	end	of	processing.	STEP-to-OpenCASCADE
translation	does	not	improve	the	quality	of	the	geometry	in	the	original
STEP	file.	This	means	that	the	value	you	enter	may	be	impossible	to
attach	to	all	shapes	with	the	given	quality	of	the	geometry	in	the	STEP
file.

read.maxprecision.val

Defines	the	maximum	allowed	tolerance	(in	mm)	of	the	shape.	It	should
be	not	less	than	the	basic	value	of	tolerance	set	in	the	processor	(either
the	uncertainty	from	the	file	or	read.precision.val).	Actually,	the	maximum
between	read.maxprecision.val	and	the	basis	tolerance	is	used	to	define
the	maximum	allowed	tolerance.

Read	this	parameter	with:

Standard_Real	rp	=	

Interface_Static::RVal("read.maxprecision.val");

	

Modify	this	parameter	with:

if(!Interface_Static::SetRVal("read.maxprecision.val"

,0.1))		

..	error	..	

Default	value	is	1.	Note	that	maximum	tolerance	even	explicitly	defined
by	the	user	may	be	insufficient	to	ensure	the	validity	of	the	shape	(if	real
geometry	is	of	bad	quality).	Therefore	the	user	is	provided	with	an
additional	parameter,	which	allows	him	to	choose:	either	he	prefers	to
ensure	the	shape	validity	or	he	rigidly	sets	the	value	of	maximum
tolerance.	In	the	first	case	there	is	a	possibility	that	the	tolerance	will	not
have	any	upper	limit,	in	the	second	case	the	shape	may	be	invalid.

read.maxprecision.mode:

Defines	the	mode	of	applying	the	maximum	allowed	tolerance.	Its
possible	values	are:

0	(Preferred)	–	maximum	tolerance	is	used	as	a	limit	but	sometimes
it	can	be	exceeded	(currently,	only	for	deviation	of	a	3D	curve	and
pcurves	of	an	edge,	and	vertices	of	such	edge)	to	ensure	the	shape
validity,
1	(Forced)	–	maximum	tolerance	is	used	as	a	rigid	limit,	i.e.	no
tolerance	can	exceed	it	and	if	it	is	the	case,	the	tolerance	is	trimmed
by	the	maximum	tolerance.

Read	this	parameter	with:

Standard_Integer	ic	=	

Interface_Static::IVal("read.maxprecision.mode")

;	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.maxprecision.mode

",1))		

..	error	..	

Default	value	is	0	("Preferred").

read.stdsameparameter.mode

defines	the	use	of	BRepLib::SameParameter.	Its	possible	values	are:

0	(Off)	–	BRepLib::SameParameter	is	not	called,
1	(On)	–	BRepLib::SameParameter	is	called.	The	functionality	of
BRepLib::SameParameter	is	used	through
ShapeFix_Edge::SameParameter.	It	ensures	that	the	resulting	edge
will	have	the	lowest	tolerance	taking	pcurves	either	unmodified	from
the	STEP	file	or	modified	by	BRepLib::SameParameter.

Read	this	parameter	with:

Standard_Integer	mv	=	

Interface_Static::IVal("read.stdsameparameter.mo

de");	

Modify	this	parameter	with:

if	(!Interface_Static::SetIVal	

("read.stdsameparameter.mode",1))	

..	error	..;	

Default	value	is	0	(;Off;).

read.surfacecurve.mode:

a	preference	for	the	computation	of	curves	in	an	entity	which	has	both	2D
and	3D	representation.	Each	TopoDS_Edge	in	TopoDS_Face	must	have
a	3D	and	2D	curve	that	references	the	surface.

If	both	2D	and	3D	representation	of	the	entity	are	present,	the
computation	of	these	curves	depends	on	the	following	values	of
parameter:

Default	(0)	:	no	preference,	both	curves	are	taken	(default	value),
3DUse_Preferred	(3)	:	3D	curves	are	used	to	rebuild	2D	ones.

Read	this	parameter	with:

Standard_Integer	rp	=	

Interface_Static::IVal("read.surfacecurve.mode")

;	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.surfacecurve.mode

",3))		

..	error	..	

Default	value	is	(0).

read.encoderegularity.angle

This	parameter	is	used	for	call	to	BRepLib::EncodeRegularity()	function
which	is	called	for	the	shape	read	from	an	IGES	or	a	STEP	file	at	the	end
of	translation	process.	This	function	sets	the	regularity	flag	of	the	edge	in
the	shell	when	this	edge	is	shared	by	two	faces.	This	flag	shows	the
continuity	these	two	faces	are	connected	with	at	that	edge.	Read	this
parameter	with:

Standard_Real	era	=		

Interface_Static::RVal("read.encoderegularity.an

gle");	

Modify	this	parameter	with:

if	(!Interface_Static::SetRVal	

("read.encoderegularity.angle",0.1))		

..	error	..;	

Default	value	is	0.01.

step.angleunit.mode

This	parameter	is	obsolete	(it	was	required	in	the	past	for	STEP	files	with
a	badly	encoded	angle	unit).	It	indicates	what	angle	units	should	be	used
when	a	STEP	file	is	read:	the	units	from	file	(default),	or	forced	RADIANS
or	DEGREES.

Default	value	is	File

read.step.resource.name	and	read.step.sequence

These	two	parameters	define	the	name	of	the	resource	file	and	the	name
of	the	sequence	of	operators	(defined	in	that	file)	for	Shape	Processing,
which	is	automatically	performed	by	the	STEP	translator.	Shape
Processing	is	a	user-configurable	step,	which	is	performed	after
translation	and	consists	in	applying	a	set	of	operators	to	a	resulting
shape.	This	is	a	very	powerful	tool	allowing	customizing	the	shape	and
adapting	it	to	the	needs	of	a	receiving	application.	By	default	the
sequence	consists	of	a	single	operator	ShapeFix	–	that	is	how	Shape
Healing	is	called	from	the	STEP	translator.

Please	find	an	example	of	the	resource	file	for	STEP	(which	defines
parameters	corresponding	to	the	sequence	applied	by	default,	i.e.	if	the
resource	file	is	not	found)	in	the	Open	CASCADE	Technology	installation,
by	the	path	CASROOT%/src/XSTEPResource/STEP.

In	order	for	the	STEP	translator	to	use	that	file,	you	have	to	define	the
CSF_STEPDefaults	environment	variable,	which	should	point	to	the
directory	where	the	resource	file	resides.	Note	that	if	you	change
parameter	read.step.resource.name,	you	will	change	the	name	of	the
resource	file	and	the	environment	variable	correspondingly.

Default	values:

read.step.resource.name	–	STEP,
read.step.sequence	–	FromSTEP.

xstep.cascade.unit

This	parameter	defines	units	to	which	a	shape	should	be	converted	when
translated	from	IGES	or	STEP	to	CASCADE.	Normally	it	is	MM;	only
those	applications	that	work	internally	in	units	other	than	MM	should	use
this	parameter.

Default	value	is	MM.

read.step.product.mode:

Defines	the	approach	used	for	selection	of	top-level	STEP	entities	for
translation,	and	for	recognition	of	assembly	structures

1	(ON)	–	PRODUCT_DEFINITION	entities	are	taken	as	top-level
ones;	assembly	structure	is	recognized	by
NEXT_ASSEMBLY_USAGE_OCCURRENCE	entities.	This	is
regular	mode	for	reading	valid	STEP	files	conforming	to	AP	214,
AP203	or	AP	209.
0	(OFF)	–	SHAPE_DEFINITION_REPRESENTATION	entities	are
taken	as	top-level	ones;	assembly	is	recognized	by
CONTEXT_DEPENDENT_SHAPE_REPRESENTATION	entities.
This	is	compatibility	mode,	which	can	be	used	for	reading	legacy
STEP	files	produced	by	older	versions	of	STEP	translators	and
having	incorrect	or	incomplete	product	information.

Read	this	parameter	with:

Standard_Integer	ic	=	

Interface_Static::IVal("read.step.product.mode")

;		

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.step.product.mode

",1))		

..	error	..	

Default	value	is	1	(ON).

Note	that	the	following	parameters	have	effect	only	if
read.step.product.mode	is	ON.

read.step.product.context:

When	reading	AP	209	STEP	files,	allows	selecting	either	only	`design'	or
`analysis',	or	both	types	of	products	for	translation

1	(all)	–	translates	all	products;
2	(design)	–	translates	only	products	that	have
PRODUCT_DEFINITION_CONTEXT	with	field	life_cycle_stage	set
to	`design';
3	(analysis)	–	translates	only	products	associated	with
PRODUCT_DEFINITION_CONTEXT	entity	whose	field

life_cycle_stage	set	to	`analysis'.

Note	that	in	AP	203	and	AP214	files	all	products	should	be	marked	as
`design',	so	if	this	mode	is	set	to	`analysis',	nothing	will	be	read.

Read	this	parameter	with:

Standard_Integer	ic	=		

Interface_Static::IVal("read.step.product.contex

t");

Modify	this	parameter	with:

if(!Interface_Static::SetIVal(;read.step.product.cont

ext;,1))		

..	error	..	

Default	value	is	1	(all).

read.step.shape.repr:

Specifies	preferred	type	of	representation	of	the	shape	of	the	product,	in
case	if	a	STEP	file	contains	more	than	one	representation	(i.e.	multiple
PRODUCT_DEFINITION_SHAPE	entities)	for	a	single	product

1	(All)	–	Translate	all	representations	(if	more	than	one,	put	in
compound).
2	(ABSR)	-	Prefer	ADVANCED_BREP_SHAPE_REPRESENTATION
3	(MSSR)	–	Prefer
MANIFOLD_SURFACE_SHAPE_REPRESENTATION
4	(GBSSR)	–	Prefer
GEOMETRICALLY_BOUNDED_SURFACE_SHAPE_REPRESENTATION
5	(FBSR)	–	Prefer	FACETTED_BREP_SHAPE_REPRESENTATION
6	(EBWSR)	–	Prefer
EDGE_BASED_WIREFRAME_SHAPE_REPRESENTATION
7	(GBWSR)	–	Prefer	GEOMETRICALLY_BOUNDED_WIREFRAME
_SHAPE_REPRESENTATION

When	this	option	is	not	equal	to	1,	for	products	with	multiple
representations	the	representation	having	a	type	closest	to	the	selected

one	in	this	list	will	be	translated.

Read	this	parameter	with:

Standard_Integer	ic	=	

Interface_Static::IVal("read.step.shape.repr");		

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.step.shape.repr",

1))		

..	error	..	

Default	value	is	1	(All).

read.step.assembly.level:

Specifies	which	data	should	be	read	for	the	products	found	in	the	STEP
file:

1	(All)	–	Translate	both	the	assembly	structure	and	all	associated
shapes.	If	both	shape	and	sub-assemblies	are	associated	with	the
same	product,	all	of	them	are	read	and	put	in	a	single	compound.
Note	that	this	situation	is	confusing,	as	semantics	of	such
configuration	is	not	defined	clearly	by	the	STEP	standard	(whether
this	shape	is	an	alternative	representation	of	the	assembly	or	is	an
addition	to	it),	therefore	warning	will	be	issued	in	such	case.
2	(assembly)	–	Translate	the	assembly	structure	and	shapes
associated	with	parts	only	(not	with	sub-assemblies).
3	(structure)	–	Translate	only	the	assembly	structure	without	shapes
(a	structure	of	empty	compounds).	This	mode	can	be	useful	as	an
intermediate	step	in	applications	requiring	specialized	processing	of
assembly	parts.
4	(shape)	–	Translate	only	shapes	associated	with	the	product,
ignoring	the	assembly	structure	(if	any).	This	can	be	useful	to
translate	only	a	shape	associated	with	specific	product,	as	a
complement	to	assembly	mode.

Read	this	parameter	with:

Standard_Integer	ic	=																			

Interface_Static::IVal("read.step.assembly.level

");	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("read.step.assembly.lev

el",1))		

..	error	..	

Default	value	is	1	(All).

read.step.shape.relationship:

Defines	whether	shapes	associated	with	the	main
SHAPE_DEFINITION_REPRESENTATION	entity	of	the	product	via
SHAPE_REPRESENTATIONSHIP_RELATION	should	be	translated.	This
kind	of	association	is	used	for	the	representation	of	hybrid	models	(i.e.
models	whose	shape	is	composed	of	different	types	of	representations)
in	AP	203	files	since	1998,	but	it	can	be	also	used	to	associate	auxiliary
data	with	the	product.	This	parameter	allows	to	avoid	translation	of	such
auxiliary	data.

1	(ON)	–	translate
0	(OFF)	–	do	not	translate

Read	this	parameter	with:

Standard_Integer	ic	=											

Interface_Static::IVal("read.step.shape.relation

ship");

Modify	this	parameter	with:

if(!Interface_Static::SetIVal(;read.step.shape.relati

onship;,1))		

..	error	..	

Default	value	is	1	(ON).

read.step.shape.aspect:

Defines	whether	shapes	associated	with	the
PRODUCT_DEFINITION_SHAPE	entity	of	the	product	via
SHAPE_ASPECT	should	be	translated.	This	kind	of	association	was
used	for	the	representation	of	hybrid	models	(i.e.	models	whose	shape	is
composed	of	different	types	of	representations)	in	AP	203	files	before
1998,	but	it	is	also	used	to	associate	auxiliary	information	with	the	sub-
shapes	of	the	part.	Though	STEP	translator	tries	to	recognize	such	cases
correctly,	this	parameter	may	be	useful	to	avoid	unconditionally
translation	of	shapes	associated	via	SHAPE_ASPECT	entities.

1	(ON)	–	translate
0	(OFF)	–	do	not	translate

Read	this	parameter	with:

Standard_Integer	ic	=																			

Interface_Static::IVal("read.step.shape.aspect")

;	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal(;read.step.shape.aspect

;,1))		

..	error	..	

Default	value	is	1	(ON).

Performing	the	STEP	file	translation

Perform	the	translation	according	to	what	you	want	to	translate.	You	can
choose	either	root	entities	(all	or	selected	by	the	number	of	root),	or
select	any	entity	by	its	number	in	the	STEP	file.	There	is	a	limited	set	of
types	of	entities	that	can	be	used	as	starting	entities	for	translation.	Only
the	following	entities	are	recognized	as	transferable:

product_definition
next_assembly_usage_occurrence
shape_definition_representation

subtypes	of	shape_representation	(only	if	referred	representation	is
transferable)
manifold_solid_brep
brep_with_voids
faceted_brep
faceted_brep_and_brep_with_voids
shell_based_surface_model
geometric_set	and	geometric_curve_set
mapped_item
subtypes	of	face_surface	(including	advanced_face)
subtypes	of	shape_representation_relationship
context_dependent_shape_representation

The	following	methods	are	used	for	translation:

Standard_Boolean	ok	=	reader.TransferRoot(rank)	–	translates	a
root	entity	identified	by	its	rank;
Standard_Boolean	ok	=	reader.TransferOne(rank)	–	translates	an
entity	identified	by	its	rank;
Standard_Integer	num	=	reader.TransferList(list)	–	translates	a	list	of
entities	in	one	operation	(this	method	returns	the	number	of
successful	translations);
Standard_Integer	NbRoots	=	reader.NbRootsForTransfer()	and
Standard_Integer	num	=	reader.TransferRoots()	–	translate	all
transferable	roots.

Getting	the	translation	results

Each	successful	translation	operation	outputs	one	shape.	A	series	of
translations	gives	a	set	of	shapes.

Each	time	you	invoke	TransferOne(),	TransferRoot()	or	TransferList(),
their	results	are	accumulated	and	the	counter	of	results	increases.	You
can	clear	the	results	with:

reader.ClearShapes();	

between	two	translation	operations,	if	you	do	not,	the	results	from	the
next	translation	will	be	added	to	the	accumulation.

TransferRoots()	operations	automatically	clear	all	existing	results	before

they	start.

Standard_Integer	num	=	reader.NbShapes()	–	gets	the	number	of
shapes	recorded	in	the	result;
TopoDS_Shape	shape	=	reader.Shape(rank)	–	gets	the	result
identified	by	its	rank,	where	rank	is	an	integer	between	1	and
NbShapes;
TopoDS_Shape	shape	=	reader.Shape()	–	gets	the	first	result	of
translation;
TopoDS_Shape	shape	=	reader.OneShape()	–	gets	all	results	in	a
single	shape,	which	is:

a	null	shape	if	there	are	no	results,
in	case	of	a	single	result,	a	shape	that	is	specific	to	that	result,
a	compound	that	lists	the	results	if	there	are	several	results.

Clearing	the	accumulation	of	results

If	several	individual	translations	follow	each	other,	the	results	give	a	list
that	can	be	purged	with	reader.ClearShapes(),	which	erases	the	existing
results.

Checking	that	translation	was	correctly	performed

Each	time	you	invoke	Transfer	or	TransferRoots(),	you	can	display	the
related	messages	with	the	help	of:

reader.PrintCheckTransfer(failsonly,mode);	

This	check	concerns	the	last	invocation	of	Transfer	or	TransferRoots()
only.

Selecting	STEP	entities	for	translation

Selection	possibilities

There	are	three	selection	possibilities.	You	can	select:

the	whole	file,
a	list	of	entities,

one	entity.

The	whole	file

Transferring	the	whole	file	means	transferring	all	root	entities.	The
number	of	roots	can	be	evaluated	when	the	file	is	loaded:

Standard_Integer	NbRoots	=	

reader.NbRootsForTransfer();	

Standard_Integer	num	=	reader.TransferRoots();	

List	of	entities

A	list	of	entities	can	be	formed	by	invoking
STEP214Control_Reader::GiveList	(this	is	a	method	of	the	parent	class).

Here	is	a	simple	example	of	how	a	list	is	translated:

Handle(TColStd_HSequenceOfTransient)	list	=	

reader.GiveList();	

The	result	is	a	TColStd_HSequenceOfTransient.	You	can	either	translate
a	list	entity	by	entity	or	all	at	once.	An	entity-by-entity	operation	lets	you
check	each	individual	entity	translated.

Translating	a	whole	list	in	one	operation

Standard_Integer	nbtrans	=	reader.TransferList	

(list);	

nbtrans	gives	the	number	of	items	in	the	list	that	produced	a	shape.

Translating	a	list	entity	by	entity:

Standard_Integer	i,nb	=	list->Length();

for	(i	=	1;	i	<=	nb;	i	++)	{

	Handle(Standard_Transient)	ent	=	list->Value(i);

	Standard_Boolean	OK	=	reader.TransferEntity	(ent);

}

Selections

There	is	a	number	of	predefined	operators	that	can	be	used.	They	are:

step214-placed-items	–	selects	all	mapped_items	or
context_depended_shape_representations.
step214-shape-def-repr	–	selects	all
shape_definition_representations.
step214-shape-repr	–	selects	all	shape_representations.
step214-type(<entity_type>)	–	selects	all	entities	of	a	given	type
step214-faces	–	selects	all	faces_surface,	advanced_face	entities
and	the	surface	entity	or	any	sub	type	if	these	entities	are	not	shared
by	any	face	entity	or	shared	by	geometric_set	entity.
step214-derived(<entity_type>)	–	selects	entities	of	a	given	type	or
any	subtype.
step214-GS-curves	–	selects	all	curve	entities	or	any	subtype	except
the	composite_curve	if	these	entities	are	shared	by	the
geometric_set	entity.
step214-assembly	–	selects	all	mapped_items	or
context_depended_shape_representations	involved	into	the
assembly	structure.
xst-model-all	–	selects	all	entities.
xst-model-roots	–	selects	all	roots.
xst-shared	+	<selection>	–	selects	all	entities	shared	by	at	least	one
entity	selected	by	selection.
xst-sharing	+	<selection>	–	selects	all	entities	sharing	at	least	one
entity	selected	by	selection.
xst-transferrable-all	–	selects	all	transferable	entities.
xst-transferrable-roots	–	selects	all	translatable	roots.	Cumulative
lists	can	be	used	as	well.

Single	entities

You	can	select	an	entity	either	by	its	rank	or	by	its	handle	(an	entity's
handle	can	be	obtained	by	invoking	the	StepData_StepModel::Entity
function).

Selection	by	rank

Use	method	StepData_StepModel::NextNumberForLabel	to	find	its	rank
with	the	following:

Standard_CString	label	=	`#...';	

StepData_StepModel	model	=	reader.StepModel();	

rank	=	model->NextNumberForLabe(label,	0,	

Standard_False);	

Translate	an	entity	specified	by	its	rank:

Standard_Boolean	ok	=	reader.Transfer	(rank);	

Direct	selection	of	an	entity

ent	is	the	entity.	The	argument	is	a	Handle(Standard_Transient).

Standard_Boolean	ok	=	reader.TransferEntity	(ent);	

Mapping	STEP	entities	to	Open	CASCADE
Technology	shapes
Tables	given	in	this	paragraph	show	the	mapping	of	STEP	entities	to
OCCT	objects.	Only	topological	and	geometrical	STEP	entities	and
entities	defining	assembly	structures	are	described	in	this	paragraph.	For
a	full	list	of	STEP	entities	please	refer	to	Appendix	A.

Assembly	structure	representation	entities

Not	all	entities	defining	the	assembly	structure	in	the	STEP	file	are
translated	to	OCCT	shapes,	but	they	are	used	to	identify	the	relationships
between	assemblies	and	their	components.	Since	the	graph	of	`natural'
dependencies	of	entities	based	on	direct	references	between	them	does
not	include	the	references	from	assemblies	to	their	components,	these
dependencies	are	introduced	in	addition	to	the	former	ones.	This	is	made
basing	on	the	analysis	of	the	following	entities	describing	the	structure	of
the	assembly.

STEP	entity	type CASCADE
shape

product_definition

A
TopoDS_Compound
for	assemblies,	a
CASCADE	shape
corresponding	to
the	component	type
of	for	components,

product_definition_shape

A
TopoDS_Compound
for	assemblies,	a

shape_definition_representation CASCADE	shape
corresponding	to
the	component	type
for	components.

next_assembly_usage_occurence

mapped_item TopoDS_Shape

context_dependent_shape_representation TopoDS_Shape

shape_representation_relationship_with_transformation

item_defined_transformation

cartesian_transformation_operator

Models

STEP	entity	type CASCADE
shape Comments

Solid	Models
brep_with_voids TopoDS_Solid
faceted_brep TopoDS_Solid
manifold_solid_brep TopoDS_Solid
Surface	Models

shell_based_surface_model TopoDS_Compound

shell_based_surface_model
is	translated	into	one	or
more	TopoDS_Shell
grouped	in	a
TopoDS_Compound

geometric_set TopoDS_Compound

TopoDS_Compound
contains	only
TopoDS_Faces,
TopoDS_Wires,
TopoDS_Edges	and/or
TopoDS_Vertices.

Wireframe	Models

geometric_curve_set TopoDS_Compound

TopoDS_Compound
contains	only
TopoDS_Wires,
TopoDS_Edges	and/or
TopoDS_Vertices.

Topological	entities

Topology STEP	entity	type CASCADE
shape Comments

Vertices vertex_point TopoDS_Vertex
Edges oriented_edge TopoDS_Edge

edge_curve TopoDS_Edge
Loops face_bound TopoDS_Wire

face_outer_bound TopoDS_Wire
edge_loop TopoDS_Wire

Each	segment	of
poly_loop	is

poly_loop TopoDS_Wire translated	into
TopoDS_Edge
with	support	of
Geom_Line

vertex_loop TopoDS_Wire

Resulting
TopoDS_Wire
contains	only
one	degenerated
TopoDS_Edge

Faces face_surface TopoDS_Face
advanced_face TopoDS_Face

Shells connected_face_set TopoDS_Shell
oriented_closed_shell TopoDS_Shell
closed_shell TopoDS_Shell
open_shell TopoDS_Shell

Geometrical	entities

3D	STEP	entities	are	translated	into	geometrical	objects	from	the	Geom
package	while	2D	entities	are	translated	into	objects	from	the	Geom2d
package.

Geometry STEP	entity	type CASCADE	object

Points cartesian_point Geom_CartesianPoint,
Geom2d_CartesianPoint

Directions direction Geom_Direction,
Geom2d_Direction

Vectors vector Geom_VectorWithMagnitude,
Geom2d_VectorWithMagnitude

Placements axis1_placement Geom_Axis1Placement
axis2_placement_2d Geom2d_AxisPlacement
axis2_placement_3d Geom_Axis2Placement

Curves circle Geom_Circle,	Geom2d_Circle,
Geom2d_BsplineCurve

ellipse Geom_Ellipse,	Geom2d_Ellipse,
Geom2d_BsplineCurve

hyperbola Geom_Hyperbola,
Geom2d_Hyperbola

line Geom_Line,	Geom2d_Line

parabola Geom_Parabola,
Geom2d_Parabola

pcurve Geom2d_Curve

curve_replica Geom_Curve	or	Geom2d_Curve

offset_curve_3d Geom_OffsetCurve

trimmed_curve Geom_TrimmedCurve	or
Geom2d_BsplineCurve

b_spline_curve Geom_BsplineCurve	or
Geom2d_BsplineCurve

b_spline_curve_with_knots Geom_BsplineCurve	or
Geom2d_BsplineCurve

bezier_curve Geom_BsplineCurve	or
Geom2d_BsplineCurve

rational_b_spline_curve Geom_BsplineCurve	or
Geom2d_BsplineCurve

uniform_curve Geom_BsplineCurve	or
Geom2d_BsplineCurve

quasi_	uniform_curve Geom_BsplineCurve	or
Geom2d_BsplineCurve

surface_curve TopoDS_Edge

seam_curve TopoDS_Edge

composite_curve_segment TopoDS_Edge

composite_curve TopoDS_Wire
composite_curve_on_surface TopoDS_Wire
boundary_curve TopoDS_Wire

Surfaces b_spline_surface Geom_BsplineSurface
b_spline_surface_with_knots Geom_BsplineSurface
bezier_surface Geom_BSplineSurface
conical_surface Geom_ConicalSurface
cylindrical_surface Geom_CylindricalSurface
offset_surface Geom_OffsetSurface

surface_replica Geom_Surface

plane Geom_Plane
rational_b_spline_surface Geom_BSplineSurface
rectangular_trimmed_surface Geom_RectangularTrimmedSurface
spherical_surface Geom_SphericalSurface
surface_of_linear_extrusion Geom_SurfaceOfLinearExtrusion
surface_of_revolution Geom_SurfaceOfRevolution
toroidal_surface Geom_ToroidalSurface
degenerate_toroidal_surface Geom_ToroidalSurface
uniform_surface Geom_BSplineSurface
quasi_uniform_surface Geom_BSplineSurface

rectangular_composite_surface TopoDS_Compound

curve_bounded_surface TopoDS_Face

Tolerance	management

Values	used	for	tolerances	during	reading	STEP

During	the	STEP	to	OCCT	translation	several	parameters	are	used	as
tolerances	and	precisions	for	different	algorithms.	Some	of	them	are
computed	from	other	tolerances	using	specific	functions.

3D	(spatial)	tolerance

Package	method	Precision::Confusion()	Value	is	10-7.	It	is	used	as
the	minimal	distance	between	points,	which	are	considered	to	be
distinct.
Uncertainty	parameter	is	attached	to	each	shape_representation
entity	in	a	STEP	file	and	defined	as	length_measure	in
uncertainty_measure_with_unit.	It	is	used	as	a	fundamental	value	of
precision	during	translation.
User-defined	variable	read.precision.val	is	used	instead	of
uncertainty	from	a	STEP	file	when	parameter	read.precision.mode	is
1	(User).

2D	(parametric)	tolerances

Package	method	Precision::PConfusion()	is	a	value	of
0.01*Precision::Confusion().	It	is	used	to	compare	parametric
bounds	of	curves.
Methods	UResolution	and	VResolution	(tolerance3d)	of	the	class
GeomAdaptor_Surface	or	BRepAdaptor_Surface	return	tolerance	in
parametric	space	of	a	surface	computed	from	3d	tolerance.	When
one	tolerance	value	is	to	be	used	for	both	U	and	V	parametric
directions,	the	maximum	or	the	minimum	value	of	UResolution	and
VResolution	is	used.
Methods	Resolution	(tolerance3d)	of	the	class	GeomAdaptor_Curve
or	BRepAdaptor_Curve	return	tolerance	in	parametric	space	of	a
curve	computed	from	3d	tolerance.

Initial	setting	of	tolerances	in	translating	objects

In	the	STEP	processor,	the	basic	value	of	tolerance	is	set	in	method
STEPControl_ActorRead::Transfer()	to	either	value	of	uncertainty	in
shape_representation	in	STEP	file	(if	parameter	read.precision.mode	is
0),	or	to	a	value	of	parameter	read.precision.val	(if	read.precision.mode	is
1	or	if	the	uncertainty	is	not	attached	to	the	current	entity	in	the	STEP
file).

Translation	starts	from	one	entity	translated	as	a	root.
STEPControl_ActorRead::Transfer(),	function	which	performs	the
translation	creates	an	object	of	the	type	StepToTopoDS_Builder,	which	is
intended	to	translate	topology.

This	object	gets	the	initial	tolerance	value	that	is	equal	to
read.precision.val	or	the	uncertainty	from	shape_representation.	During
the	translation	of	the	entity,	new	objects	of	types
StepToTopoDS_Translate...	are	created	for	translating	sub-entities.	All	of
them	use	the	same	tolerances	as	a	StepToTopoDS_Builder	object.

Transfer	process

Evolution	of	shape	tolerances	during	transfer

Let	us	follow	the	evolution	of	tolerances	during	the	translation	of	STEP
entities	into	an	OCCT	shape.

If	the	starting	STEP	entity	is	a	geometric_curve_set	all	the	edges	and
vertices	are	constructed	with	Precision::Confusion().

If	the	starting	STEP	entity	is	not	a	geometric_curve_set	the	sub-shapes
of	the	resulting	shape	have	the	following	tolerance:

all	the	faces	are	constructed	with	Precision::Confusion(),
edges	are	constructed	with	Precision::Confusion().	It	can	be	modified
later	by:
ShapeFix::SameParameter()	–	the	tolerance	of	edge	shows	real
deviation	of	the	3D	curve	and	pcurves.
ShapeFix_Wire::FixSelfIntersection()	if	a	pcurve	of	a	self-intersecting
edge	is	modified.
vertices	are	constructed	with	Precision::Confusion().	It	can	be
modified	later	by:	StepToTopoDS_TranslateEdge

ShapeFix::SameParameter()	ShapeFix_Wire::FixSelfIntersection()
ShapeFix_Wire::FixLacking()	ShapeFix_Wire::Connected()

So,	the	final	tolerance	of	sub-shapes	shows	the	real	local	geometry	of
shapes	(distance	between	vertices	of	adjacent	edges,	deviation	of	a	3D
curve	of	an	edge	and	its	parametric	curves	and	so	on)	and	may	be	less
or	greater	than	the	basic	value	of	tolerance	in	the	STEP	processor.

Translating	into	Geometry

Geometrical	entities	are	translated	by	classes	StepToGeom_Make...
Methods	of	these	classes	translate	STEP	geometrical	entities	into	OCCT
geometrical	objects.	Since	these	objects	are	not	BRep	objects,	they	do
not	have	tolerances.	Tolerance	is	used	only	as	precision	for	detecting	bad
cases	(such	as	points	coincidence).

Translating	into	Topology

STEP	topological	entities	are	translated	into	OCCT	shapes	by	use	of
classes	from	package	StepToTopoDS.

Although	in	a	STEP	file	the	uncertainty	value	is	assigned	to
shape_representation	entities	and	this	value	is	applied	to	all	entities	in
this	shape_representation,	OCCT	shapes	are	produced	with	different
tolerances.	As	a	rule,	updating	the	tolerance	is	fulfilled	according	to	the
local	geometry	of	shapes	(distance	between	vertices	of	adjacent	edges,
deviation	of	edge's	3D	curve	and	its	parametric	curves	and	so	on)	and
may	be	either	less	or	greater	than	the	uncertainty	value	assigned	to	the
entity.

The	following	default	tolerances	are	used	when	creating	shapes	and	how
they	are	updated	during	translation.

StepToTopoDS_TranslateVertex	constructs	TopoDS_Vertex	from	a
STEP	vertex_point	entity	with	Precision::Confusion().
StepToTopoDS_TranslateVertexLoop	creates	degenerated
TopoDS_Edge	in	TopoDS_Wire	with	tolerance
Precision::Confusion().	TopoDS_Vertex	of	a	degenerated	edge	is
constructed	with	the	initial	value	of	tolerance.
StepToTopoDS_TranslateEdge	constructs	TopoDS_Edge	only	on	the

basis	of	3D	curve	with	Precision::Confusion().	Tolerance	of	the
vertices	can	be	increased	up	to	a	distance	between	their	positions
and	ends	of	3D	curve.
StepToTopoDS_TranslateEdgeLoop	constructs	TopoDS_Edges	in
TopoDS_Wire	with	help	of	class	StepToTopoDS_TranslateEdge.
Pcurves	from	a	STEP	file	are	translated	if	they	are	present	and
read.surfacecurve.mode	is	0.	For	each	edge	method
ShapeFix_Edge::FixSameParameter()	is	called.	If	the	resulting
tolerance	of	the	edge	is	greater	than	the	maximum	value	between
1.0	and	2*Value	of	basis	precision,	then	the	pcurve	is	recomputed.
The	best	of	the	original	and	the	recomputed	pcurve	is	put	into
TopoDS_Edge.	The	resulting	tolerance	of	TopoDS_Edge	is	a
maximal	deviation	of	its	3D	curve	and	its	pcurve(s).
StepToTopoDS_TranslatePolyLoop	constructs	TopoDS_Edges	in
TopoDS_Wire	with	help	of	class	StepToTopoDS_TranslateEdge.
Their	tolerances	are	not	modified	inside	this	method.
StepToTopoDS_TranslateFace	constructs	TopoDS_Face	with	the
initial	value	of	tolerance.	TopoDS_Wire	on	TopoDS_Face	is
constructed	with	the	help	of	classes
StepToTopoDS_TranslatePolyLoop,
StepToTopoDS_TranslateEdgeLoop	or
StepToTopoDS_TranslateVertexLoop.
StepToTopoDS_TranslateShell	calls
StepToTopoDS_TranslateFace::Init	for	each	face.	This	class	does
not	modify	the	tolerance	value.
StepToTopoDS_TranslateCompositeCurve	constructs
TopoDS_Edges	in	TopoDS_Wire	with	help	of	class
BRepAPI_MakeEdge	and	have	a	tolerance	10-7.	Pcurves	from	a
STEP	file	are	translated	if	they	are	present	and	if
read.surfacecurve.mode	is	not	-3.	The	connection	between
segments	of	a	composite	curve	(edges	in	the	wire)	is	provided	by
calling	method	ShapeFix_Wire::FixConnected()*	with	a	precision
equal	to	the	initial	value	of	tolerance.
StepToTopoDS_TranslateCurveBoundedSurface	constructs
TopoDS_Face	with	tolerance	Precision::Confusion().	TopoDS_Wire
on	TopoDS_Face	is	constructed	with	the	help	of	class
StepToTopoDS_TranslateCompositeCurve.	Missing	pcurves	are
computed	using	projection	algorithm	with	the	help	of	method
ShapeFix_Face::FixPcurves().	For	resulting	face	method
ShapeFix::SameParameter()	is	called.	It	calls	standard

BRepLib::SameParameter	for	each	edge	in	each	wire,	which	can
either	increase	or	decrease	the	tolerances	of	the	edges	and	vertices.
SameParameter	writes	the	tolerance	corresponding	to	the	real
deviation	of	pcurves	from	3D	curve	which	can	be	less	or	greater	than
the	tolerance	in	a	STEP	file.
StepToTopoDS_Builder	a	high	level	class.	Its	methods	perform
translation	with	the	help	of	the	classes	listed	above.	If	the	value	of
read.maxprecision.mode	is	set	to	1	then	the	tolerance	of	subshapes
of	the	resulting	shape	is	limited	by	0	and	read.maxprecision.val.	Else
this	class	does	not	change	the	tolerance	value.
StepToTopoDS_MakeTransformed	performs	a	translation	of
mapped_item	entity	and	indirectly	uses	class
StepToTopoDS_Builder.	The	tolerance	of	the	resulting	shape	is	not
modified	inside	this	method.

Healing	of	resulting	shape	in	ShapeHealing	component

ShapeFix_Wire::FixSelfIntersection()

This	method	is	intended	for	detecting	and	fixing	self-intersecting	edges
and	intersections	of	adjacent	edges	in	a	wire.	It	fixes	self-intersections	by
cutting	edges	at	the	intersection	point	and/or	by	increasing	the	tolerance
of	the	vertex	(so	that	the	vertex	comprises	the	point	of	intersection).
There	is	a	maximum	tolerance	that	can	be	set	by	this	method	transmitted
as	a	parameter,	currently	is	read.maxprecision.value.

When	a	self-intersection	of	one	edge	is	found,	it	is	fixed	by	one	of	the	two
methods:

tolerance	of	the	vertex	of	that	edge	which	is	nearest	to	the	point	of
self-intersection	is	increased	so	that	it	comprises	both	its	own	old
position	and	the	intersection	point
the	self-intersecting	loop	on	the	pcurve	is	cut	out	and	a	new	pcurve
is	constructed.	This	can	increase	the	tolerance	of	the	edge.

The	method	producing	a	smaller	tolerance	is	selected.

When	an	intersection	of	two	adjacent	edges	is	detected,	edges	are	cut	at
that	point.	Tolerance	of	the	common	vertex	of	these	edges	is	increased	in
order	to	comprise	both	the	intersection	point	and	the	old	position.

This	method	can	increase	the	tolerance	of	the	vertex	up	to	a	value	of
read.maxprecision.value.

ShapeFix_Wire::FixLacking()

This	method	is	intended	to	detect	gaps	between	pcurves	of	adjacent
edges	(with	the	precision	of	surface	UVResolution	computed	from
tolerance	of	a	corresponding	vertex)	and	to	fix	these	gaps	either	by
increasing	the	tolerance	of	the	vertex,	or	by	inserting	a	new	degenerated
edge	(straight	in	parametric	space).

If	it	is	possible	to	compensate	a	gap	by	increasing	the	tolerance	of	the
vertex	to	a	value	of	less	than	the	initial	value	of	tolerance,	the	tolerance
of	the	vertex	is	increased.	Else,	if	the	vertex	is	placed	in	a	degenerated
point	then	a	degenerated	edge	is	inserted.

ShapeFix_Wire::FixConnected()

This	method	is	intended	to	force	two	adjacent	edges	in	the	wire	to	share
the	same	vertex.	This	method	can	increase	the	tolerance	of	the	vertex.
The	maximal	value	of	tolerance	is	read.maxprecision.value.

Code	architecture
The	following	diagram	illustrates	the	structure	of	calls	in	reading	STEP.
The	highlighted	classes	are	intended	to	translate	geometry

The	structure	of	calls	in	reading	STEP

Example
#include	<STEPControl_Reader.hxx>	

#include	<TopoDS_Shape.hxx>	

#include	<BRepTools.hxx>	

Standard_Integer	main()	

{	

		STEPControl_Reader	reader;	

		reader.ReadFile(;MyFile.stp;);	

		//	Loads	file	MyFile.stp	

		Standard_Integer	NbRoots	=	

reader.NbRootsForTransfer();	

		//	gets	the	number	of	transferable	roots	

		cout;Number	of	roots	in	STEP	file:	;	NbRootsendl;	

		Standard_Integer	NbTrans	=	reader.TransferRoots();	

		//	translates	all	transferable	roots,	and	returns	

the	number	of				//successful	translations	

		cout;STEP	roots	transferred:	;	NbTransendl;	

		cout;Number	of	resulting	shapes	is:	

;reader.NbShapes()endl;	

		TopoDS_Shape	result	=	reader.OneShape();	

		//	obtain	the	results	of	translation	in	one	OCCT	

shape	

		.	.	.	

}	

Writing	STEP
Procedure

You	can	translate	OCCT	shapes	into	STEP	entities	in	the	following	steps:
1.initialize	the	process,	2.set	the	translation	parameters,	3.perform	the
shape	translation,	4.write	the	output	file.

You	can	translate	several	shapes	before	writing	a	file.	All	these
translations	output	a	separate	shape_representation	entity	in	STEP	file.

The	user-defined	option	(parameter	write.step.schema)	is	provided	to
define	which	version	of	schema	(AP214	CD	or	DIS,	or	AP203)	is	used	for
the	output	STEP	file.

Domain	covered

Writing	geometry	and	topology

There	are	two	families	of	OCCT	objects	that	can	be	translated:

geometrical	objects,
topological	shapes.

Writing	assembly	structures

The	shapes	organized	in	a	structure	of	nested	compounds	can	be
translated	either	as	simple	compound	shapes,	or	into	the	assembly
structure,	depending	on	the	parameter	write.step.assembly,	which	is
described	below.

The	assembly	structure	placed	in	the	produced	STEP	file	corresponds	to
the	structure	described	in	the	ProSTEP	Agreement	Log	(item	21)	as	the
second	alternative	(assembly	structure	through
representation_relationship	/	item_defined_transformation).	To	represent
an	assembly	it	uses	entities	of	the
representation_relationship_with_transformation	type.	Transformation
operators	used	for	locating	assembly	components	are	represented	by
item_defined_transformation	entities.	If	mode	write.step.assembly	is	set
to	the	values	ON	or	Auto	then	an	OCC	shape	consisting	of	nested
compounds	will	be	written	as	an	assembly,	otherwise	it	will	be	written	as
separate	solids.

Please	see	also	Mapping	OCCT	shapes	to	STEP	entities.

Description	of	the	process

Initializing	the	process

Before	performing	any	other	operation	you	have	to	create	a	writer	object:

STEPControl_Writer	writer;	

Setting	the	translation	parameters

The	following	parameters	are	used	for	the	OCCT-to-STEP	translation.

write.precision.mode

writes	the	precision	value.

Least	(-1)	:	the	uncertainty	value	is	set	to	the	minimum	tolerance	of
an	OCCT	shape
Average	(0)	:	the	uncertainty	value	is	set	to	the	average	tolerance	of
an	OCCT	shape.
Greatest	(1)	:	the	uncertainty	value	is	set	to	the	maximum	tolerance
of	an	OCCT	shape
Session	(2)	:	the	uncertainty	value	is	that	of	the	write.precision.val
parameter.

Read	this	parameter	with:

Standard_Integer	ic	=	Interface_Static::IVal("write.precision.mode");
Modify	this	parameter	with:

if(!Interface_Static::SetIVal("write.precision.mode",

1))		

..	error	..	

Default	value	is	0.

write.precision.val

a	user-defined	precision	value.	This	parameter	gives	the	uncertainty	for
STEP	entities	constructed	from	OCCT	shapes	when	the
write.precision.mode	parameter	value	is	1.

0.0001:	default
any	real	positive	(non	null)	value.

This	value	is	stored	in	shape_representation	in	a	STEP	file	as	an
uncertainty.

Read	this	parameter	with:

Standard_Real	rp	=	

Interface_Static::RVal("write.precision.val");		

Modify	this	parameter	with:

if(!Interface_Static::SetRVal("write.precision.val",0

.01))		

..	error	..	

Default	value	is	0.0001.

write.step.assembly

writing	assembly	mode.

0	(Off)	:	(default)	writes	STEP	files	without	assemblies.
1	(On)	:	writes	all	shapes	in	the	form	of	STEP	assemblies.
2	(Auto)	:	writes	shapes	having	a	structure	of	(possibly	nested)
TopoDS_Compounds	in	the	form	of	STEP	assemblies,	single	shapes
are	written	without	assembly	structures.

Read	this	parameter	with:

Standard_Integer	rp	=	

Interface_Static::IVal("write.step.assembly");	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("write.step.assembly",1

))		

..	error	..	

Default	value	is	0.

write.step.schema

defines	the	version	of	schema	used	for	the	output	STEP	file:

1	or	AP214CD	(default):	AP214,	CD	version	(dated	26	November
1996),
2	or	AP214DIS:	AP214,	DIS	version	(dated	15	September	1998).
3	or	AP203:	AP203,	possibly	with	modular	extensions	(depending	on
data	written	to	a	file).
4	or	AP214IS:	AP214,	IS	version	(dated	2002)
5	or	AP242DIS:	AP242,	DIS	version.

Read	this	parameter	with:

TCollection_AsciiString	schema	=	

Interface_Static::CVal("write.step.schema");	

Modify	this	parameter	with:

if(!Interface_Static::SetCVal("write.step.schema","DI

S"))		

..	error	..	

Default	value	is	1	(;CD;).	For	the	parameter	write.step.schema	to	take
effect,	method	STEPControl_Writer::Model(Standard_True)	should	be
called	after	changing	this	parameter	(corresponding	command	in	DRAW
is	newmodel).

write.step.product.name

Defines	the	text	string	that	will	be	used	for	field	`name'	of	PRODUCT
entities	written	to	the	STEP	file.

Default	value:	OCCT	STEP	translator	(current	OCCT	version	number).

write.surfacecurve.mode

This	parameter	indicates	whether	parametric	curves	(curves	in
parametric	space	of	surface)	should	be	written	into	the	STEP	file.	This
parameter	can	be	set	to	Off	in	order	to	minimize	the	size	of	the	resulting
STEP	file.

Off	(0)	:	writes	STEP	files	without	pcurves.	This	mode	decreases	the
size	of	the	resulting	STEP	file	.
On	(1)	:	(default)	writes	pcurves	to	STEP	file

Read	this	parameter	with:

Standard_Integer	wp	=	

Interface_Static::IVal("write.surfacecurve.mode"

);	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("write.surfacecurve.mod

e",1))		

..	error	..	

Default	value	is	On.

write.step.unit

Defines	a	unit	in	which	the	STEP	file	should	be	written.	If	set	to	unit	other
than	MM,	the	model	is	converted	to	these	units	during	the	translation.

Default	value	is	MM.

write.step.resource.name	and	write.step.sequence

These	two	parameters	define	the	name	of	the	resource	file	and	the	name
of	the	sequence	of	operators	(defined	in	that	file)	for	Shape	Processing,
which	is	automatically	performed	by	the	STEP	translator	before

translating	a	shape	to	a	STEP	file.	Shape	Processing	is	a	user-
configurable	step,	which	is	performed	before	the	translation	and	consists
in	applying	a	set	of	operators	to	a	resulting	shape.	This	is	a	very	powerful
tool	allowing	customizing	the	shape	and	adapting	it	to	the	needs	of	a
receiving	application.	By	default	the	sequence	consists	of	two	operators:
SplitCommonVertex	and	DirectFaces,	which	convert	some	geometry	and
topological	constructs	valid	in	Open	CASCADE	Technology	but	not	in
STEP	to	equivalent	definitions	conforming	to	STEP	format.

See	description	of	parameter	read.step.resource.name	above	for	more
details	on	using	resource	files.

Default	values:

read.step.resource.name	–	STEP,
read.step.sequence	–	ToSTEP.

write.step.vertex.mode

This	parameter	indicates	which	of	free	vertices	writing	mode	is	switch	on.

0	(One	Compound)	:	(default)	All	free	vertices	are	united	into	one
compound	and	exported	in	one	SHAPE	DEFINITION
REPRESENTATION	(vertex	name	and	style	are	lost).
1	(Single	Vertex)	:	Each	vertex	exported	in	its	own	SHAPE
DEFINITION	REPRESENTATION	(vertex	name	and	style	are	not
lost,	but	size	of	STEP	file	increases).

Read	this	parameter	with:

Standard_Integer	ic	=	

Interface_Static::IVal("write.step.vertex.mode")

;	

Modify	this	parameter	with:

if(!Interface_Static::SetIVal("write.step.vertex.mode

",1))		

..	error	..	

Default	value	is	0.

Performing	the	Open	CASCADE	Technology	shape
translation

An	OCCT	shape	can	be	translated	to	STEP	using	one	of	the	following
models	(shape_representations):

manifold_solid_brep	(advanced_brep_shape_representation)
brep_with_voids	(advanced_brep_shape_representation)
faceted_brep	(faceted_brep_shape_representation)
shell_based_surface_model
(manifold_surface_shape_representation)
geometric_curve_set
(geometrically_bounded_wireframe_shape_representation)

The	enumeration	STEPControl_StepModelType	is	intended	to	define	a
particular	transferring	model.	The	following	values	of	enumeration	are
allowed:

STEPControl_AsIs	Translator	selects	the	resulting	representation
automatically,	according	to	the	type	of	CASCADE	shape	to	translate
it	in	its	highest	possible	model;
STEPControl_ManifoldSolidBrep	resulting	entity	is
manifold_solid_brep	or	brep_with_voids
STEPControl_FacetedBrep	resulting	entity	is	faceted_brep	or
faceted_brep_and_brep_with_voids	Note	that	only	planar-face
shapes	with	linear	edges	can	be	written;
STEPControl_ShellBasedSurfaceModel	resulting	entity	is
shell_based_surface_model;
STEPControl_GeometricCurveSet	resulting	entity	is
geometric_curve_set;

The	following	list	shows	which	shapes	can	be	translated	in	which	mode:

STEP214Control_AsIs	–	any	OCCT	shape
STEP214Control_ManifoldSolidBrep	–	TopoDS_Solid,
TopoDS_Shell,	TopoDS_Compound	(if	it	contains	TopoDS_Solids
and	TopoDS_Shells.
STEP214Control_FacetedBrep	–	TopoDS_Solid	or

TopoDS_Compound	containing	TopoDS_Solids	if	all	its	surfaces	are
Geom_Planes	and	all	curves	are	Geom_Lines.
STEP214Control_ShellBasedSurfaceModel	–	TopoDS_Solid,
TopoDS_Shell,	TopoDS_Face	and	TopoDS_Compound	(if	it	contains
all	mentioned	shapes)
STEP214Control_GeometricCurveSet	–	any	OCCT	shape.

If	TopoDS_Compound	contains	any	other	types	besides	the	ones
mentioned	in	the	table,	these	sub-shapes	will	be	ignored.

In	case	if	an	OCCT	shape	cannot	be	translated	according	to	its	mode	the
result	of	translation	is	void.

STEP214Control_StepModelTope	mode	=	

STEP214Control_ManifoldSolidBrep;	

IFSelect_ReturnStatus	stat	=	

writer.Transfer(shape,mode);	

Writing	the	STEP	file

Write	the	STEP	file	with:

IFSelect_ReturnStatus	stat	=	

writer.Write("filename.stp");	

to	give	the	file	name.

Mapping	Open	CASCADE	Technology	shapes
to	STEP	entities
Only	STEP	entities	that	have	a	corresponding	OCCT	object	and	mapping
of	assembly	structures	are	described	in	this	paragraph.	For	a	full	list	of
STEP	entities	please	refer	to	Appendix	A.

Assembly	structures	and	product	information

The	assembly	structures	are	written	to	the	STEP	file	if	parameter
write.step.assembly	is	1	or	2.	Each	TopoDS_Compound	is	written	as	an
assembly	with	subshapes	of	that	compound	being	components	of	the
assembly.	The	structure	of	nested	compounds	is	translated	to	the
structure	of	nested	assemblies.	Shared	subshapes	are	translated	into
shared	components	of	assemblies.	Shapes	that	are	not	compounds	are
translated	into	subtypes	of	shape_representation	according	to	their	type
(see	the	next	subchapter	for	details).

A	set	of	STEP	entities	describing	general	product	information	is	written	to
the	STEP	file	together	with	the	entities	describing	the	product	geometry,
topology	and	assembly	structure.	Most	of	these	entities	are	attached	to
the	entities	being	subtypes	of	shape_representation,	but	some	of	them
are	created	only	one	per	STEP	file.

The	table	below	describes	STEP	entities,	which	are	created	when	the
assembly	structure	and	product	information	are	written	to	the	STEP	file,
and	shows	how	many	of	these	entities	are	created.	Note	that	the
appearance	of	some	of	these	entities	depends	on	the	version	of	the
schema	(AP214,	CD,	DIS	or	IS,	or	AP203).

CASCADE
shape STEP	entity

application_protocol_definition

application_context

TopoDS_Compound shape_representation

TopoDS_Shape subtypes	of	shape_representation

next_assembly_usage_occurence

context_dependent_shape_representation

shape_representation_relationship_with_transformation

item_defined_transformation

shape_definition_representation

product_definition_shape

product_definition

product_definition_formation

Product

product_type	(CD)	or
product_related_product_category	(DIS,IS)
Mechanical_context	(CD)	or	product_context	(DIS,IS)
product_definition_context

Topological	shapes

CASCADE
shape STEP	entity Comments

TopoDS_Compound geometric_curve_set

If	the	write	mode	is
STEP214Control_GeometricCurveSet
3D	curves	of	the	edges	found	in
TopoDS_Compound	and	all	its	subshapes
are	translated

manifold_solid_brep
If	the	write	mode	is	STEP214Control_AsIs
and	TopoDS_Compound
TopoDS_Solids.

shell_based_surface_model

If	the	write	mode	is	STEP214Control_AsIs
and	TopoDS_Compound
TopoDS_Solids,	TopoDS_Shells
TopoDS_Faces.

geometric_curve_set

If	the	write	mode	is	STEP214Control_AsIs
and	TopoDS_Compound
TopoDS_Wires,	TopoDS_Edges,
TopoDS_Vertices.	If	the	write	mode	is	not
STEP214Control_AsIs
STEP214Control_GeometricCurveSet
TopoDS_Solids,	TopoDS_Shells
TopoDS_Faces	are	translated	according	to
this	table.

TopoDS_Solid manifold_solid_brep
If	the	write	mode	is	STEP214Control_AsIs
or	STEP214Control_ManifoldSolidBrep
CASCADE	TopoDS_Solid

faceted_brep If	the	write	mode	is
STEP214Control_FacetedBrep

brep_with_voids
If	the	write	mode	is	STEP214Control_AsIs
or	STEP214Control_ManifoldSolidBrep
CASCADE	TopoDS_Solid

shell_based_surface_model If	the	write	mode	is
STEP214Control_ShellBasedSurfaceModel

geometric_curve_set
If	the	write	mode	is
STEP214Control_GeometricCurveSet
3D	curves	of	the	edges	are	translated.

TopoDS_Shell	in	a

TopoDS_Solid closed_shell If	TopoDS_Shell	is	closed	shell.

TopoDS_Shell manifold_solid_brep If	the	write	mode	is
STEP214Control_ManifoldSolidBrep

shell_based_surface_model
If	the	write	mode	is	STEP214Control_AsIs
or
STEP214Control_ShellBasedSurfaceModel

geometric_curve_set
If	the	write	mode	is
STEP214Control_GeometricCurveSet
3D	curves	of	the	edges	are	translated.

TopoDS_Face advanced_face

TopoDS_Wire	in	a
TopoDS_Face face_bound

The	resulting	face_bound
poly_loop	if	write	mode	is	
edge_loop	if	it	is	not.

TopoDS_Wire geometric_curve_set
If	the	write	mode	is
STEP214Control_GeometricCurveSet
3D	curves	of	the	edges	are	translated.

TopoDS_Edge oriented_edge
TopoDS_Vertex vertex_point

Geometrical	objects

Geometry CASCADE	object STEP	entity

Points Geom_CartesianPoint,
Geom2d_CartesianPoint cartesian_point

TColgp_Array1OfPnt,
TColgp_Array1OfPnt2d polyline

Placements Geom_Axis1Plasement,
Geom2d_AxisPlacement axis1_placement

Geom_Axis2Placement axis2_placement_3d

Directions Geom_Direction,
Geom2d_Direction direction

Vectors Geom_Vector,	Geom2d_Vector vector
Curves Geom_Circle circle

Geom2d_Circle circle,
rational_b_spline_curve

Geom_Ellipse Ellipse

Geom2d_Ellipse Ellipse,
rational_b_spline_curve

Geom_Hyperbola,
Geom2d_Hyperbola Hyperbola

Geom_Parabola,
Geom2d_Parabola Parabola

Geom_BSplineCurve b_spline_curve_with_knots
or	rational_b_spline_curve

Geom2d_BSplineCurve b_spline_curve_with_knots
or	rational_b_spline_curve

Geom_BezierCurve b_spline_curve_with_knots
Geom_Line	or	Geom2d_Line Line

Surfaces Geom_Plane Plane
Geom_OffsetSurface offset_surface
Geom_ConicalSurface conical_surface
Geom_CylindricalSurface cylindrical_surface
Geom_OffsetSurface offset_surface
Geom_RectangularTrimmedSurface rectangular_trimmed_surface
Geom_SphericalSurface spherical_surface
Geom_SurfaceOfLinear	Extrusion surface_of_linear_extrusion
Geom_SurfaceOf	Revolution surface_of_revolution

Geom_ToroidalSurface toroidal_surface	or
degenerate_toroidal_surface

Geom_BezierSurface b_spline_surface_with_knots

Geom_BsplineSurface b_spline_surface_with_knots
or	rational_b_spline_surface

Tolerance	management
There	are	four	possible	values	for	the	uncertainty	when	writing	a	STEP
file:

user-defined	value	of	the	uncertainty
minimal	value	of	sub-shapes	tolerances
average	value	of	sub-shapes	tolerances
maximal	value	of	sub-shapes	tolerances

The	chosen	value	of	the	uncertainty	is	the	final	value	that	will	be	written
into	the	STEP	file.	See	parameter	write.precision.mode.

Code	architecture

Graph	of	calls

The	following	diagram	illustrates	the	structure	of	calls	in	writing	STEP.
The	highlighted	classes	are	intended	to	translate	geometry.

The	structure	of	calls	in	writing	STEP

Example
#include	<STEPControl.hxx>	

#include	<STEPControl_Writer.hxx>	

#include	<TopoDS_Shape.hxx>	

#include	<BRepTools.hxx>	

#include	<BRep_Builder.hxx>	

Standard_Integer	main()	

{	

TopoDS_Solid	source;	

.	.	.	

STEPControl_Writer	writer;	

writer.Transfer(source,	

STEPControl_ManifoldSolidBrep);	

//	Translates	TopoDS_Shape	into	manifold_solid_brep	

entity	

writer.Write(;Output.stp;);	

//	writes	the	resulting	entity	in	the	STEP	file	

}	

Physical	STEP	file	reading	and
writing
Architecture	of	STEP	Read	and	Write	classes

General	principles

To	perform	data	loading	from	a	STEP	file	and	to	translate	this	data	it	is
necessary	to	create	correspondence	between	the	EXPRESS	schema
and	the	structure	of	the	classes.	There	are	two	possibilities	to	organize
such	correspondence:	the	so-called	early	binding	and	late	binding.

Late	binding	means	that	the	processor	works	with	a	description	of
the	schema.	The	processor	builds	a	dictionary	of	entities	and	can
recognize	and	read	any	entity	that	is	described	in	the	schema.	To
change	the	behavior	and	the	scope	of	processor	based	on	late
binding	it	is	enough	to	change	the	description	of	the	schema.
However,	this	binding	has	some	disadvantages	(for	example	low
speed	of	reading	process).
In	case	of	early	binding,	the	structure	of	the	classes	is	created
beforehand	with	the	help	of	a	specific	automatic	tool	or	manually.	If
the	processor	finds	an	entity	that	is	not	found	in	this	schema,	it	will
simply	be	ignored.	The	processor	calls	constructors	of	appropriate
classes	and	their	read	methods.	To	add	a	new	type	in	the	scope	of
the	processor	it	is	necessary	to	create	a	class	corresponding	to	the
new	entity.

The	STEP	processor	is	based	on	early	binding	principles.	It	means	that
specific	classes	for	each	EXPRESS	type	have	been	created	with	the	help
of	an	automatic	tool	from	the	EXPRESS	schema.	There	are	two	classes
for	each	EXPRESS	type.	The	first	class	(named	the	representing	class)
represents	the	STEP	entity	in	memory.	The	second	one	(RW-class)	is
intended	to	perform	the	initialization	of	the	representing	class	and	to
output	data	to	an	intermediate	structure	to	be	written	in	a	STEP	file.

Complex	entities

EXPRESS	schema	allows	multiple	inheritance.	Entities	that	are	built	on
the	basis	of	multiple	inheritance	are	called	complex	entities.	EXPRESS
enables	any	type	of	complex	entities	that	can	be	inherited	from	any
EXPRESS	type.	In	the	manner	of	early	binding	it	is	not	possible	to	create
a	C++	class	for	any	possible	complex	type.	Thus,	only	widespread
complex	entities	have	corresponding	representing	classes	and	RW-
classes	that	are	created	manually	beforehand.

Physical	file	reading
Physical	file	reading	consists	of	the	following	steps:	1.Loading	a	STEP
file	and	syntactic	analysis	of	its	contents	2.Mapping	STEP	entities	to	the
array	of	strings	3.Creating	empty	OCCT	objects	representing	STEP
entities	4.Initializing	OCCT	objects	5.Building	a	references	graph

Loading	a	STEP	file	and	syntactic	analysis	of	its	contents

In	the	first	phase,	a	STEP	file	is	syntactically	checked	and	loaded	in
memory	as	a	sequence	of	strings.

Syntactic	check	is	performed	on	the	basis	of	rules	defined	in	step.lex	and
step.yacc	files.	Files	step.lex	and	step.yacc	are	located	in	the	StepFile
nocdlpack	development	unit.	These	files	describe	text	encoding	of	STEP
data	structure	(for	additional	information	see	ISO	10303	Part	21).	The
step.lex	file	describes	the	lexical	structure	of	the	STEP	file.	It	describes
identifiers,	numbers,	delimiters,	etc.	The	step.yacc	file	describes	the
syntactic	structure	of	the	file,	such	as	entities,	parameters,	and	headers.

These	files	have	been	created	only	once	and	need	to	be	updated	only
when	norm	ISO	10303-21	is	changed.

Mapping	STEP	entities	to	arrays	of	strings

For	each	entity	specified	by	its	rank	number	the	arrays	storing	its
identifier,	STEP	type	and	parameters	are	filled.

Creating	empty	Open	CASCADE	Technology	objects	that
represent	STEP	entities

For	each	STEP	entity	an	empty	OCCT	object	representing	this	entity	is
created.	A	map	of	correspondence	between	entity	rank	and	OCCT	object
is	created	and	filled	out.	If	a	STEP	entity	is	not	recognized	by	the	STEP
processor	then	the	StepData_UndefinedEntity	object	is	created.

Initializing	Open	CASCADE	Technology	objects

Each	OCCT	object	(including	StepData_UndefinedEntity)	is	initialized	by
its	parameters	with	the	help	of	the	appropriate	RW-class.	If	an	entity	has
another	entity	as	its	parameter,	the	object	that	represents	the	latter	entity
will	be	initialized	immediately.	All	initialized	objects	are	put	into	a	special
map	to	avoid	repeated	initialization.

Building	a	graph

The	final	phase	is	building	a	graph	of	references	between	entities.	For
each	entity	its	RW-class	is	used	to	find	entities	referenced	by	this	entity.
Back	references	are	built	on	the	basis	of	direct	references.	In	addition	to
explicit	references	defined	in	the	STEP	entities	some	additional	(implicit)
references	are	created	for	entities	representing	assembly	structures
(links	from	assemblies	to	their	components).

How	to	add	a	new	entity	in	scope	of	the	STEP
processor
If	it	is	necessary	to	read	and	translate	a	new	entity	by	the	STEP
processor	the	Reader	and	Actor	scope	should	be	enhanced.	Note	that
some	actions	to	be	made	for	adding	a	new	type	are	different	for	simple
and	complex	types.	The	following	steps	should	be	taken:

Create	a	class	representing	a	new	entity.	This	can	be
Stepxxx_NewEntity	class	where	xxx	can	be	one	of	the	following:

Basic
Geom
Shape
Visual
Repr
AP214
AP203
AP242

Each	field	of	a	STEP	entity	should	be	represented	by	a	corresponding
field	of	this	class.	The	class	should	have	methods	for	initializing,	setting
and	obtaining	fields	and	it	should	also	have	the	default	constructor.

Create	the	RWStepxxx_RWNewEntity	class	with	a	default
constructor	and	methods	ReadStep(),	WriteStep()	and	if	the	entity
references	other	entities,	then	method	Share().
Update	file	StepAP214_Protocol.cxx.	In	the	constructor
StepAP214_Protocol::StepAP214_Protocol()	add	the	new	type	to	the
map	of	registered	types	and	associate	the	unique	integer	identifier
with	this	type.
Update	file	RWStepAP214_ReadWriteModule.cxx.	The	changes
should	be	the	following:

For	simple	types:
Add	a	static	object	of	class	TCollection_AsciiString	with
name	Reco_NewEntity	and	initialize	it	with	a	string
containing	the	STEP	type.
In	constructor
WStepAP214_ReadWriteModule::RWStepAP214_ReadWriteModule()
add	this	object	onto	the	list	with	the	unique	integer	identifier

of	the	new	entity	type.
In	function	RWStepAP214_ReadWriteModule::StepType()
add	a	new	C++	case	operator	for	this	identifier.

For	complex	types:
In	the	method
RWStepAP214_ReadWriteModule::CaseStep()	add	a	code
for	recognition	the	new	entity	type	returning	its	unique
integer	identifier.
In	the	method
RWStepAP214_ReadWriteModule::IsComplex()	return	True
for	this	type.
In	the	method
RWStepAP214_ReadWriteModule::ComplexType()	fill	the
list	of	subtypes	composing	this	complex	type.

For	both	simple	and	complex	types:
In	function	RWStepAP214_ReadWriteModule::ReadStep()
add	a	new	C++	case	operator	for	the	new	identifier	and	call
the	RWStepxxx_RWNewEntity	class,	method	ReadStep	to
initialize	the	new	class.

Update	file	RWStepAP214_GeneralModule.cxx.	Add	new	C++	case
operators	to	functions	NewVoid()	and	FillSharedCase(),	and	in	the
method	CategoryNumber()	add	a	line	defining	a	category	of	the	new
type.
Enhance	the	STEPControl_ActorRead	class	(methods	Recognize()
and	Transfer()),	or	class(es)	translating	some	entities,	to	translate
the	new	entity	into	an	OCCT	shape.

Physical	file	writing
Physical	file	writing	consists	of	the	following	steps:

1.	 Building	a	references	graph.	Physical	writing	starts	when	STEP
model,	which	was	either	loaded	from	a	STEP	file	or	created	from
OCCT	shape	with	the	help	of	translator,	is	available	together	with
corresponding	graph	of	references.	During	this	step	the	graph	of
references	can	be	recomputed.

2.	 Transferring	data	from	a	model	to	a	sequence	of	strings.	For	each
representing	entity	from	the	model	a	corresponding	RW-class	is
called.	RW-class	writes	data	that	is	contained	in	the	representing
class	into	an	intermediate	data	structure.	The	mentioned	structure	is
a	sequence	of	strings	in	memory.

3.	 Writing	the	sequence	of	strings	into	the	file.	The	sequence	of	strings
is	written	into	the	file.	This	is	the	last	phase	of	physical	STEP	writing.

How	to	add	a	new	entity	to	write	in	the	STEP
file.
If	it	is	necessary	to	write	and	translate	an	OCCT	shape	into	a	new	entity
by	the	STEP	processor	the	Writer	and	Actor	scope	should	be	enhanced.

For	a	description	of	steps,	which	should	be	taken	for	adding	a	new	entity
type	to	the	STEP	processor,	see	Physical	file	reading.	Then,	enhance
the	STEPControl_ActorWrite	class	i.e.	methods	Recognize()	and
Transfer(),	or	other	classes	from	TopoDSToStep,	to	translate	the	OCCT
shape	into	a	new	STEP	entity.

Using	DRAW
DRAW	STEP	Commands	Overview

TKXSDRAW	toolkit	provides	commands	for	testing	XSTEP	interfaces
interactively	in	the	DRAW	environment.	It	provides	an	additional	set	of
DRAW	commands	specific	for	data	exchange	tasks,	which	allows	loading
and	writing	data	files	and	an	analysis	of	the	resulting	data	structures	and
shapes.

This	section	is	divided	into	five	parts.	Two	of	them	deal	with	reading	and
writing	a	STEP	file	and	are	specific	for	the	STEP	processor.	The	first	and
the	forth	parts	describe	some	general	tools	for	setting	parameters	and
analyzing	the	data.	Most	of	them	are	independent	of	the	norm	being
tested.	Additionally,	a	table	of	mentioned	DRAW	commands	is	provided.

In	the	description	of	commands,	square	brackets	([])	are	used	to	indicate
optional	parameters.	Parameters	given	in	the	angle	brackets	(<>)	and
sharps	(#)	are	to	be	substituted	by	an	appropriate	value.	When	several
exclusive	variants	are	possible,	a	vertical	dash	(|)	is	used.

Setting	the	interface	parameters
A	set	of	parameters	for	importing	and	exporting	STEP	data	is	defined	in
the	XSTEP	resource	file.	In	XSDRAW,	these	parameters	can	be	viewed
or	changed	using	the	command

Draw:>	param	[<parameter_name>	[<value>]]	

Command	param	with	no	arguments	gives	a	list	of	all	parameters	with
their	values.	When	the	argument	parameter_name	is	specified,
information	about	this	parameter	is	printed	(current	value	and	short
description).

The	third	argument	is	used	to	set	a	new	value	of	the	given	parameter.
The	result	of	the	setting	is	printed	immediately.

During	all	interface	operations,	the	protocol	of	the	process	(fail	and
warning	messages,	mapping	of	loaded	entities	into	OCCT	shapes	etc.)
can	be	output	to	the	trace	file.	Two	parameters	are	defined	in	the	DRAW
session:	trace	level	(integer	value	from	0	to	9,	default	is	0),	and	trace	file
(default	is	standard	output).

Command	xtrace	is	intended	to	view	and	change	these	parameters:

Draw:>	xtrace	–	prints	current	settings	(e.g.:	`Level=1	-	Standard
Output');
Draw:>	xtrace	#	–	sets	trace	level	to	the	value	#;
Draw:>	xtrace	tracefile.log	–	sets	the	trace	file	as	tracefile.log;
Draw:>	xtrace.	–	directs	all	messages	to	the	standard	output.

Reading	a	STEP	file
For	a	description	of	parameters	used	in	reading	a	STEP	file	refer	to
Setting	the	translation	parameters	section.

For	reading	a	STEP	file,	the	following	parameters	are	defined	(see
above,	the	command	*param*):

Description Name Values Meaning

Precision	for
input	entities read.precision.mode 0	or	1

If	0	(File),	precision
of	the	input	STEP
file	will	be	used	for
the	loaded	shapes;
If	1	(Session),	the
following
parameter	will	be
used	as	the
precision	value.

read.precision.val real

Value	of	precision
(used	if	the
previous
parameter	is	1)

Surface
curves read.surfacecurve.mode 0	or	3

Defines	a
preferable	way	of
representing
surface	curves	(2d
or	3d
representation).	If
0,	no	preference.

Maximal
tolerance read.maxprecision.mode 0	or	1

If	1,	maximum
tolerance	is	used
as	a	rigid	limit	If	0,
maximum
tolerance	is	used
as	a	limit	but	can
be	exceeded	by
some	algorithms.

read.maxprecision.val real Value	of	maximum
precision

It	is	possible	either	only	to	load	a	STEP	file	into	memory	(i.e.	fill	the
InterfaceModel	with	data	from	the	file),	or	to	read	it	(i.e.	load	and	convert
all	entities	to	OCCT	shapes).	Loading	is	done	by	the	command

Draw:>	xload	<file_name>

Once	the	file	is	loaded,	it	is	possible	to	investigate	the	structure	of	the
loaded	data.	To	find	out	how	you	do	it,	look	in	the	beginning	of	the
analysis	subsection.	Reading	a	STEP	file	is	done	by	the	command

Draw:>	stepread	<file_name>	<result_shape_name>	

[selection]	

Here	a	dot	can	be	used	instead	of	a	filename	if	the	file	is	already	loaded
by	xload	or	stepread.	The	optional	selection	(see	below	for	a	description
of	selections)	specifies	a	set	of	entities	to	be	translated.	If	an	asterisk	`*'
is	given,	all	transferable	roots	are	translated.	If	a	selection	is	not	given,
the	user	is	prompted	to	define	a	scope	of	transfer	interactively:

N Mode Description
0 End Finish	transfer	and	exit	stepread
1 root	with	rank	1 Transfer	first	root
2 root	by	its	rank Transfer	root	specified	by	its	rank
3 One	entity Transfer	entity	with	a	number	provided	by	the	user
4 Selection Transfer	only	entities	contained	in	selection

root	is	an	entity	in	the	STEP	file	which	is	not	referenced	by	another
entities	Second	parameter	of	the	stepread	command	defines	the
name	of	the	loaded	shape.

During	the	STEP	translation,	a	map	of	correspondence	between	STEP
entities	and	OCCT	shapes	is	created.

To	get	information	on	the	result	of	translation	of	a	given	STEP	entity	use
the	command

Draw:>	tpent	#*.

To	create	an	OCCT	shape,	corresponding	to	a	STEP	entity,	use	the
command

Draw:>	tpdraw	#*.	

To	get	the	number	of	a	STEP	entity,	corresponding	to	an	OCCT	shape,
use	the	command

Draw:>	fromshape	<shape_name>.	

To	clear	the	map	of	correspondences	between	STEP	entities	and	OCCT
shapes	use	the	command

Draw:>	tpclear.	

Analyzing	the	transferred	data
The	procedure	of	analysis	of	data	import	can	be	divided	into	two	stages:

1.	 to	check	the	file	contents,
2.	 to	estimate	the	translation	results	(conversion	and	validated	ratios).

Checking	file	contents

General	statistics	on	the	loaded	data	can	be	obtained	by	using	the
command

Draw:>	data	<symbol>	

Information	printed	by	this	command	depends	on	the	symbol	specified:

g	–	Prints	the	information	contained	in	the	header	of	the	file;
c	or	f	–	Prints	messages	generated	during	the	loading	of	the	STEP
file	(when	the	procedure	of	the	integrity	of	the	loaded	data	check	is
performed)	and	the	resulting	statistics	(f	works	only	with	fails	while	c
with	both	fail	and	warning	messages)	;
t	–	The	same	as	c	or	f,	with	a	list	of	failed	or	warned	entities;
m	or	l	–	The	same	as	t	but	also	prints	a	status	for	each	entity;
e	–	Lists	all	entities	of	the	model	with	their	numbers,	types,	validity
status	etc;
R	–	The	same	as	e	but	lists	only	root	entities.

There	is	a	set	of	special	objects,	which	can	be	used	to	operate	with	a
loaded	model.	They	can	be	of	the	following	types:

Selection	Filters	–	allow	selecting	subsets	of	entities	of	the	loaded
model;
Counter	–	calculates	some	statistics	on	the	model	data.

A	list	of	these	objects	defined	in	the	current	session	can	be	printed	in
DRAW	by	command

Draw:>	listitems.	

Command

Draw:>	givelist	<selection_name>	

prints	a	list	of	a	subset	of	loaded	entities	defined	by	the	<selection>
argument:

xst-model-all	all	entities	of	the	model;
xst-model-roots	all	roots;
xst-pointed	(Interactively)	pointed	entities	(not	used	in	DRAW);
xst-transferrable-all	all	transferable	(recognized)	entities;
xst-transferrable-roots	Transferable	roots.

The	command	listtypes	gives	a	list	of	entity	types,	which	were
encountered	in	the	last	loaded	file	(with	a	number	of	STEP	entities	of
each	type).

The	list	cannot	be	shown	for	all	entities	but	for	a	subset	of	them.	This
subset	is	defined	by	an	optional	selection	argument	(for	the	list	of
possible	values	for	STEP,	see	the	table	above).

Two	commands	are	used	to	calculate	statistics	on	the	entities	in	the
model:

Draw:>	count	<counter>	[<selection>]	

Draw:>	listcount	<counter>	[<selection>]	

The	former	only	prints	a	count	of	entities	while	the	latter	also	gives	a	list
of	them.

The	optional	selection	argument,	if	specified,	defines	a	subset	of	entities,
which	are	to	be	taken	into	account.	The	first	argument	should	be	one	of
the	currently	defined	counters:

xst-types	–	calculates	how	many	entities	of	each	OCCT	type	exist
step214-types	–	calculates	how	many	entities	of	each	STEP	type
exist

Entities	in	the	STEP	file	are	numbered	in	the	succeeding	order.	An	entity
can	be	identified	either	by	its	number	or	by	its	label.	Label	is	the	letter	#
followed	by	the	rank.

Draw:>	elab	#	outputs	a	label	for	an	entity	with	a	known	number.
Draw:>	enum	#	prints	a	number	for	the	entity	with	a	given	label.
Draw:>	entity	#	<level_of_information>	outputs	the	contents	of	a
STEP	entity.
Draw:	estat	#	outputs	the	list	of	entities	referenced	by	a	given	entity
and	the	list	of	entities	referencing	to	it.
Draw:	dumpassembly	prints	a	STEP	assembly	as	a	tree.

Information	about	product	names,	next_assembly_usage_occurence,
shape_definition_representation,
context_dependent_shape_representation	or	mapped_item	entities	that
are	involved	into	the	assembly	structure	will	be	printed.

Estimating	the	results	of	reading	STEP

All	the	following	commands	are	available	only	after	data	is	converted	into
OCCT	shapes	(i.e.	after	command	214read).

Command	Draw:>	tpstat	[*|?]<symbol>	[<selection>]	is	provided	to	get	all
statistics	on	the	last	transfer,	including	a	list	of	transferred	entities	with
mapping	from	STEP	to	OCCT	types,	as	well	as	fail	and	warning
messages.	The	parameter	<symbol>	defines	what	information	will	be
printed:

g	–	General	statistics	(a	list	of	results	and	messages)
c	–	Count	of	all	warning	and	fail	messages
C	–	List	of	all	warning	and	fail	messages
f	–	Count	of	all	fail	messages
F	–	List	of	all	fail	messages
n	–	List	of	all	transferred	roots
s	–	The	same,	with	types	of	source	entity	and	the	type	of	result
b	–	The	same,	with	messages
t	–	Count	of	roots	for	geometrical	types
r	–	Count	of	roots	for	topological	types
l	–	The	same,	with	the	type	of	the	source	entity

The	sign	*	before	parameters	n,	s,	b,	t,	r	makes	it	work	on	all	entities	(not
only	on	roots).

The	sign	?	before	n,	s,	b,	t	limits	the	scope	of	information	to	invalid
entities.

Optional	argument	<selection>	can	limit	the	action	of	the	command	to	the
selection,	not	to	all	entities.

To	get	help,	run	this	command	without	arguments.

The	command	Draw:>	tpstat	*1	gives	statistics	on	the	result	of	translation
of	different	types	of	entities	(taking	check	messages	into	account)	and
calculates	summary	translation	ratios.

To	get	information	on	OCCT	shape	contents	use	command	Draw:>
statshape	<shape_name>	.	It	outputs	the	number	of	each	kind	of	shapes
(vertex,	edge,	wire,	etc.)	in	the	shape	and	some	geometrical	data
(number	of	C0	surfaces,	curves,	indirect	surfaces,	etc.).

The	number	of	faces	is	returned	as	a	number	of	references.	To	obtain	the
number	of	single	instances,	the	standard	command	(from	TTOPOLOGY
executable)	nbshapes	can	be	used.

To	analyze	the	internal	validity	of	the	shape,	use	command	Draw:>
checkbrep	<shape_name>	<expurged_shape_name>.	It	checks	shape
geometry	and	topology	for	different	cases	of	inconsistency,	like	self-
intersecting	wires	or	wrong	orientation	of	trimming	contours.	If	an	error	is
found,	it	copies	bad	parts	of	the	shape	with	the	names
expurged_subshape_name	_#	and	generates	an	appropriate	message.	If
possible	this	command	also	tries	to	find	STEP	entities	the	OCCT	shape
was	produced	from.

<expurged_shape_name>	will	contain	the	original	shape	without	invalid
subshapes.	To	get	information	on	tolerances	of	the	shape	use	command
Draw:>	tolerance	<shape_name>	[<min>	[<max>]	[<symbol>]]	.	It	outputs
maximum,	average	and	minimum	values	of	tolerances	for	each	kind	of
subshapes	having	tolerances	and	for	the	whole	shape	in	general.

When	specifying	min	and	max	arguments	this	command	saves	shapes
with	tolerances	in	the	range	[min,	max]	with	names	shape_name_...	and
gives	their	total	number.

<Symbol>	is	used	for	specifying	the	kind	of	sub-shapes	to	analyze:

v	–	for	vertices,
e	–	for	edges,

f	–	for	faces,
c	–	for	shells	and	faces.

Writing	a	STEP	file
For	writing	shapes	to	a	STEP	file,	the	following	parameters	are	defined
(see	above,	the	command	*param*):

Description Name Values Meaning

Uncertainty
for	resulting
entities

Write.precision.mode -1,	0,	1
or	2

If	-1	the	uncertainty
value	is	set	to	the
minimal	tolerance	of
CASCADE
subshapes.	If	0	the
uncertainty	value	is
set	to	the	average
tolerance	of
CASCADE
subshapes.	If	1	the
uncertainty	value	is
set	to	the	maximal
tolerance	of
CASCADE
subshapes.	If	2	the
uncertainty	value	is
set	to
write.precision.val

Value	of
uncertainty Write.precision.val real

Value	of	uncertainty
(used	if	previous
parameter	is	2).

Several	shapes	can	be	written	in	one	file.	To	start	writing	a	new	file,	enter
command	Draw:>	newmodel.	Actually,	command	newmodel	will	clear	the
InterfaceModel	to	empty	it,	and	the	next	command	will	convert	the
specified	shape	to	STEP	entities	and	add	them	to	the	InterfaceModel:

Draw:>	stepwrite	<mode>	<shape_name>	[<file_name>]	

The	following	modes	are	available	:

a	–	"as	is"	–	the	mode	is	selected	automatically	depending	on	the

type	&	geometry	of	the	shape;
m	–	manifold_solid_brep	or	brep_with_voids
f	–	faceted_brep
w	–	geometric_curve_set
s	–	shell_based_surface_model

After	a	successful	translation,	if	file_name	parameter	is	not	specified,	the
procedure	asks	you	whether	to	write	a	STEP	model	in	the	file	or	not:

execution	status	:	1	

Mode	(0	end,	1	file)	:	

It	is	necessary	to	call	command	newmodel	to	perform	a	new	translation
of	the	next	OCCT	shape.

Reading	from	and	writing	to	STEP
The	STEPCAFControl	package	(TKXDESTEP	toolkit)	provides	tools	to
read	and	write	STEP	files	(see	XDE	User's	Guide).

In	addition	to	the	translation	of	shapes	implemented	in	basic	translator,	it
provides	the	following:

STEP	assemblies,	read	as	OCCT	compounds	by	basic	translator,
are	translated	to	XDE	assemblies;
Names	of	products	are	translated	and	assigned	to	assembly
components	and	instances	in	XDE;
STEP	external	references	are	recognized	and	translated	(if	external
documents	are	STEP	files);
Colors,	layers,	materials	and	validation	properties	assigned	to	parts
or	subparts	are	translated;
STEP	Geometric	Dimensions	and	Tolerances	are	translated;
STEP	Saved	Views	are	translated.

Reading	from	STEP

Load	a	STEP	file

Before	performing	any	other	operation,	you	must	load	a	STEP	file	with:

STEPCAFControl_Reader	reader(XSDRAW::Session(),	

Standard_False);	

IFSelect_ReturnStatus	stat	=	

reader.ReadFile("filename.stp");	

Loading	the	file	only	memorizes	the	data,	it	does	not	translate	it.

Check	the	loaded	STEP	file

This	step	is	not	obligatory.	See	a	description	of	this	step	in	section
Checking	the	STEP	file.

Set	parameters	for	translation	to	XDE

See	a	description	of	this	step	in	section	Setting	the	translation
parameters.

In	addition,	the	following	parameters	can	be	set	for	XDE	translation	of
attributes:

Parameter	for	transferring	colors:
reader.SetColorMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

Parameter	for	transferring	names:
reader.SetNameMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

Translate	a	STEP	file	to	XDE

The	following	function	performs	a	translation	of	the	whole	document:

Standard_Boolean	ok	=	reader.Transfer(doc);	

where	doc	is	a	variable	which	contains	a	handle	to	the	output	document
and	should	have	a	type	Handle(TDocStd_Document).

Attributes	read	from	STEP

Colors

Colors	are	implemented	in	accordance	with	Recommended	practices	for
model	styling	and	organization	sections	4	and	5.

The	following	attributes	are	imported	from	STEP	file:

colors	linked	to	assemblies,	solids,	shells,	faces/surfaces,
wireframes,	edges/curves	and	vertices/points;
information	about	invisibility.

The	following	attributes	are	mentioned	in	the	Recommended	Practices,
but	not	handled	by	OCCT:

styling	different	sides	of	surfaces	with	different	colors;
transparency	and	reflectance	for	surfaces;
curve	styles;
point	markers.

Layers

Layers	are	implemented	in	accordance	with	Recommended	practices	for
model	styling	and	organization	section	6.	All	layers	are	imported,	but
invisibility	styles	are	skipped.

Materials

Materials	are	implemented	in	accordance	with	Recommended	practices
for	material	identification	and	density	section	4.	OCCT	translator
processes	materials	attached	to	solids	in	shape	representations.	The
name,	description	and	density	(name	and	value)	are	imported	for	each
material.

Validation	properties

Validation	properties	are	implemented	in	accordance	with	Recommended

http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/rec_prac_styling_org_v15.pdf
http://www.cax-if.org/documents/RecPrac_MaterialDensity_v21.pdf
http://www.cax-if.org/documents/rec_prac_gvp_v44.pdf

practices	for	geometric	and	assembly	validation	properties	section	4	for
AP214.	OCCT	processes	several	types	of	geometric	validation	properties
for	solids,	shells	and	geometric	sets:

area;
volume;
centroid.

Geometric	dimensions	and	tolerances

General	types	of	STEP	entities	imported	by	OCCT	are	listed	in	the	table
below:

STEP	entity OCCT	attribute
Dimensional_Size XCAFDoc_Dimension
Dimensional_Location XCAFDoc_Dimension
Dimensional_Size_With_Path XCAFDoc_Dimension
Dimensional_Location_With_Path XCAFDoc_Dimension
Angular_Size XCAFDoc_Dimension
Angular_Location XCAFDoc_Dimension
Geometric_Tolerance	and	subtypes XCAFDoc_GeometricTolerance
Datum XCAFDoc_Datum
Datum_Feature XCAFDoc_Datum
Datum_Target XCAFDoc_Datum

Processing	of	GD&T	is	realized	in	accordance	with	Recommended
practices	for	the	Representation	and	Presentation	of	Product
Manufacturing	for	AP242.	The	general	restriction	is	that	OCCT	STEP
Reader	imports	GD&T	assigned	only	to	shapes	(faces,	edges,	vertices,
etc)	or	to	shape	groups	from	general	shape	model	i.e.	any	constructive
geometries	are	not	translated	as	referenced	shapes.

Dimensions

Dimensions	are	implemented	according	to	section	5	of	the	latter
document.	Additionally	to	the	reference	shapes,	the	Reader	imports	from
STEP	file	some	auxiliary	geometry	for	dimensional	line	building:

http://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf

connection	points	and	line	orientation,	if	exist.

The	following	values	and	modifiers	described	in	sections	5.2	and	5.3	can
be	imported	from	STEP	file:

qualifiers	(minimum,	maximum	and	average);
plus/minus	bounds;
value	range;
class	of	tolerance;
text	notes,	attached	to	dimension	value;
dimension	modifiers	type	2	(Table	8);
number	of	decimal	places.

Datums

Datums	are	implemented	in	accordance	with	sections	6.5	and	6.6.1-
6.6.2.	Each	datum	can	have	one	or	several	datum	features	(shapes	from
the	model,	to	which	the	datum	is	linked)	and	datum	targets	(auxiliary
geometry:	point,	line,	rectangle,	circle	or	area).

Tolerances

Tolerances	are	implemented	in	accordance	with	sections	6.7-6.9	with
several	restrictions.

Types	of	imported	tolerances:

simple	tolerances	(see	Table	10);
tolerance	with	modifiers	(section	6.9.3);
tolerance	with	maximum	value	(section	6.9.5);
tolerance	with	datums	(section	6.9.7	(simple	datums	and	datum	with
modifiers)	and	6.9.8	(common	datums));
superposition	of	the	mentioned	types.

Not	all	tolerance	zones	can	be	imported	by	OCCT	STEP	Reader,	only	the
Tolerance	Zones	with	associated	symbols	from	Table	11,	Projected
tolerance	zone	(section	6.9.2.2)	and	Runout	zone	definition.

Presentations

Each	semantic	representation	of	GD&T	(Dimension,	Tolerance,	Datum
Feature	or	Datum	Target)	can	have	a	presentation;	its	processing	by
OCCT	is	implemented	in	accordance	with	sections	7.3,	8	and	9.1-9.2.
Presentations	have	several	types:

Graphic	Presentation	(polylines	or	tessellated	wireframes)	-	partially
implemented	in	OCCT;
Minimal	Presentation	(position	and	orientation)	-	implemented	in
OCCT	as	a	part	of	Graphic	presentation;
Character-based	Presentation	(3D	Text	with	information	about	fonts,
curve	styles	etc.)	-	not	handled	by	OCCT.

Note,	that	separate	Minimal	presentation	and	Character-based
Presentation	are	not	described	in	any	Recommended	Practices,	so	there
is	no	agreement	about	how	such	information	should	be	saved	in	STEP
file.

OCCT	STEP	Reader	imports	only	Annotation	Planes,	outline/stroked
Polylines	and	Tessellated	wireframes,	i.e.	all	styling	information	(color,
curve	style,	etc.)	and	filled	characters	are	missed.

OCCT	STEP	Reader	also	handles	Annotations,	linked	directly	to	shapes
(section	9.3.1),	processing	of	these	presentations	is	subject	to	the	same
restrictions	as	the	processing	of	presentations,	linked	to	GD&T	semantic.

Geometric	dimensions	and	tolerances	AP214

Simple	types	of	GD&T	(Dimensions,	Tolerances	and	Datums	without
presentations	or	any	types	of	modifiers)	are	also	handled	in	AP214.
However,	according	to	the	Recommended	Practices	for	the
Representation	and	Presentation	of	Product	Manufacturing,	this
implementation	is	obsolete.

Saved	views

Saved	views	are	implemented	in	accordance	with	Recommended
practices	for	the	Representation	and	Presentation	of	Product
Manufacturing	section	9.4.1-9.4.4.	For	each	Saved	View	OCCT	STEP
Reader	will	retrieve	the	following	attributes:

http://www.cax-if.org/documents/rec_pracs_pmi_v40.pdf

set	of	displayed	shape	representations;
set	of	displayed	PMI	presentations;
projection	point;
view	direction;
up	direction	of	view	window;
horizontal	size	of	view	window;
vertical	size	of	view	window;
zoom	factor;
clipping	planes	(single	plane	of	combination	of	planes);
front	and	back	plane	clipping.

Writing	to	STEP
The	translation	from	XDE	to	STEP	can	be	initialized	as	follows:

STEPCAFControl_Writer	

aWriter(XSDRAW::Session(),Standard_False);	

Set	parameters	for	translation	from	XDE	to	STEP

The	following	parameters	can	be	set	for	a	translation	of	attributes	to
STEP:

For	transferring	colors:
aWriter.SetColorMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

For	transferring	names:
aWriter.SetNameMode(mode);	

//	mode	can	be	Standard_True	or	Standard_False	

Translate	an	XDE	document	to	STEP

You	can	perform	the	translation	of	document	by	calling	the	function:

IFSelect_ReturnStatus	aRetSt	=	aWriter.Transfer(doc);	

where	doc	is	a	variable,	which	contains	a	handle	to	the	input	document
for	transferring	and	should	have	a	type	Handle(TDocStd_Document).

Write	a	STEP	file

Write	a	STEP	file	with:

IFSelect_ReturnStatus	statw	=	

aWriter.WriteFile("filename.stp");	

or

IFSelect_ReturnStatus	statw	=	writer.WriteFile	(S);	

where	S	is	OStream.

Attributes	written	to	STEP

Colors

The	following	attributes	are	exported	to	STEP	file:

colors	linked	to	assemblies,	solids,	shells,	faces/surfaces,
wireframes,	edges/curves;
information	about	visibility.

Restrictions:

colors	and	visibility	information	for	points	is	not	exported	by	default,	it
is	necessary	to	use	write.step.vertex.mode	parameter;
all	colors	are	always	applied	to	both	sides	of	surfaces;
all	curves	are	exported	with	'continuous'	curve	style.

Layers

All	layers	are	exported,	but	invisibility	styles	can	be	connected	only	to
shapes.

Materials

For	solids	with	materials,	the	material	is	exported	to	STEP	file	(name,
description	and	density	(name	and	value)).

Validation	properties

Geometric	validation	properties,	such	as	volume,	area	and	centroid,
which	are	attached	to	shape,	are	exported	to	STEP	file.

Geometric	dimensions	and	tolerances

All	entities,	which	can	be	imported	from	STEP,	can	be	exported	too.
Please	see	the	same	item	in	section	Reading	from	STEP	to	find	more
information.

Note:	OCCT	use	AP214	by	default,	so	for	GD&T	exporting	AP242	should
be	set	manually:

Interface_Static::SetCVal("write.step.schema",	

"AP242DIS"));		

or

Interface_Static::SetIVal("write.step.schema",	5));		

Saved	views

Saved	Views	are	not	exported	by	OCCT.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Basic	terms
XDE	Organization
Assemblies
Validation	Properties
Names
Colors	and	Layers
Custom	notes

Working	with	XDE
Getting	started

Environment
variables
General	Check
Get	an
Application	or
an	Initialized
Document

Shapes	and
Assemblies

Initialize	an	XDE
Document
(Shapes)
Get	a	Node
considered	as
an	Assembly
Updating	the
Assemblies	after
Filling	or	Editing
Adding	or
Setting	Top

Open	CASCADE
Technology		7.2.0

Extended	Data	Exchange	(XDE)

Level	Shapes
Setting	a	given
Shape	at	a
given	Label
Getting	a	Shape
from	a	Label
Getting	a	Label
from	a	Shape
Other	Queries
on	a	Label
Instances	and
References	for
Components

Editing	Shapes
Management	of	Sub-
Shapes
Properties

Name
Centroid
Area
Volume

Colors	and	Layers
Initialization
Adding	a	Color
Queries	on
Colors
Editing	Colors

Custom	notes
Initialization
Creating	Notes
Editing	a	Note
Adding	Notes
Finding	Notes
Removing	Notes
Deleting	Notes

Reading	and	Writing
STEP	or	IGES

Reading	a	STEP
file

Writing	a	STEP
file
Reading	an	IGES
File
Writing	an	IGES
File

Using	an	XDE
Document

XDE	Data	inside
an	Application
Document

Introduction
This	manual	explains	how	to	use	the	Extended	Data	Exchange	(XDE).	It
provides	basic	documentation	on	setting	up	and	using	XDE.	For
advanced	information	on	XDE	and	its	applications,	see	our	E-learning	&
Training	offerings.

The	Extended	Data	Exchange	(XDE)	module	allows	extending	the	scope
of	exchange	by	translating	additional	data	attached	to	geometric	BREP
data,	thereby	improving	the	interoperability	with	external	software.

Data	types	such	as	colors,	layers,	assembly	descriptions	and	validation
properties	(i.e.	center	of	gravity,	etc.)	are	supported.	These	data	are
stored	together	with	shapes	in	an	XCAF	document.	It	is	also	possible	to
add	a	new	types	of	data	taking	the	existing	tools	as	prototypes.

Finally,	the	XDE	provides	reader	and	writer	tools	for	reading	and	writing
the	data	supported	by	XCAF	to	and	from	IGES	and	STEP	files.

Shape	imported	using	XDE

http://www.opencascade.com/content/tutorial-learning

The	XDE	component	requires	Shape	Healing	toolkit	for	operation.

Basic	terms
For	better	understanding	of	XDE,	certain	key	terms	are	defined:

Shape	–	a	standalone	shape,	which	does	not	belong	to	the
assembly	structure.
Instance	–	a	replication	of	another	shape	with	a	location	that	can	be
the	same	location	or	a	different	one.
Assembly	–	a	construction	that	is	either	a	root	or	a	sub-assembly.

XDE	Organization
The	basis	of	XDE,	called	XCAF,	is	a	framework	based	on	OCAF	(Open
CASCADE	Technology	Application	Framework)	and	is	intended	to	be
used	with	assemblies	and	with	various	kinds	of	attached	data	(attributes).
Attributes	can	be	Individual	attributes	for	a	shape,	specifying	some
characteristics	of	a	shape,	or	they	can	be	Grouping	attributes,	specifying
that	a	shape	belongs	to	a	given	group	whose	definition	is	specified	apart
from	the	shapes.

XDE	works	in	an	OCAF	document	with	a	specific	organization	defined	in
a	dedicated	XCAF	module.	This	organization	is	used	by	various	functions
of	XDE	to	exchange	standardized	data	other	than	shapes	and	geometry.

The	Assembly	Structure	and	attributes	assigned	to	shapes	are	stored	in
the	OCAF	tree.	It	is	possible	to	obtain	TopoDS	representation	for	each
level	of	the	assembly	in	the	form	of	TopoDS_Compound	or
TopoDS_Shape	using	the	API.

Basic	elements	used	by	XDE	are	introduced	in	the	XCAF	sub-module	by
the	package	XCAFDoc.	These	elements	consist	in	descriptions	of
commonly	used	data	structures	(apart	from	the	shapes	themselves)	in
normalized	data	exchanges.	They	are	not	attached	to	specific
applications	and	do	not	bring	specific	semantics,	but	are	structured
according	to	the	use	and	needs	of	data	exchanges.	The	Document	used
by	XDE	usually	starts	as	a	TDocStd_Document.

Assemblies
XDE	supports	assemblies	by	separating	shape	definitions	and	their
locations.	Shapes	are	simple	OCAF	objects	without	a	location	definition.
An	assembly	consists	of	several	components.	Each	of	these	components
references	one	and	the	same	specified	shape	with	different	locations.	All
this	provides	an	increased	flexibility	in	working	on	multi-level	assemblies.

For	example,	a	mechanical	assembly	can	be	defined	as	follows:

Assembly	Description

Assembly	View

XDE	defines	the	specific	organization	of	the	assembly	content.	Shapes
are	stored	on	sub-labels	of	label	0:1:1.	There	can	be	one	or	more	roots
(called	free	shapes)	whether	they	are	true	trees	or	simple	shapes.	A
shape	can	be	considered	to	be	an	Assembly	(such	as	AS1	under	0:1:1:1
in	Figure1)	if	it	is	defined	with	Components	(sub-shapes,	located	or	not).

XCAFDoc_ShapeTool	is	a	tool	that	allows	managing	the	Shape	section
of	the	XCAF	document.	This	tool	is	implemented	as	an	attribute	and
located	at	the	root	label	of	the	shape	section.

Validation	Properties
Validation	properties	are	geometric	characteristics	of	Shapes	(volume,
centroid,	surface	area)	written	to	STEP	files	by	the	sending	system.
These	characteristics	are	read	by	the	receiving	system	to	validate	the
quality	of	the	translation.	This	is	done	by	comparing	the	values	computed
by	the	original	system	with	the	same	values	computed	by	the	receiving
system	on	the	resulting	model.

Advanced	Data	Exchange	supports	both	reading	and	writing	of	validation
properties,	and	provides	a	tool	to	check	them.

Validation	Property	Descriptions

Check	logs	contain	deviations	of	computed	values	from	the	values	stored
in	a	STEP	file.	A	typical	example	appears	as	follows:

Area Volume

Label defect defect dX dY DZ Name

0:1:1:1 312.6
(0%)

-181.7
(0%) 0.00 0.00 0.00 "S1"

0:1:1:2 -4.6
(0%)

-191.2
(0%) -0.00 0.00 -0.00 "MAINBODY"

0:1:1:3 -2.3
(0%)

-52.5
(0%) -0.00 0.00 0.00 "MAIN_BODY_BACK"

0:1:1:4 -2.3
(0%)

-51.6
(0%) 0.00 0.00 -0.00 "MAIN_BODY_FRONT"

0:1:1:5 2.0
(0%)

10.0
(0%) -0.00 0.00 -0.00 "HEAD"

0:1:1:6 0.4
(0%) 0.0	(0%) 0.00 -0.00 -0.00 "HEAD_FRONT"

0:1:1:7 0.4
(0%) 0.0	(0%) 0.00 -0.00 -0.00 "HEAD_BACK"

0:1:1:8 -320.6
(0%)

10.9
(0%) -0.00 0.00 0.00 "TAIL"

0:1:1:9 0.0
(0%) 0.0	(0%) -0.00 -0.00 0.00 "TAIL_MIDDLE"

0:1:1:10 -186.2
(0%) 4.8	(0%) -0.00 0.00 -0.00 "TAIL_TURBINE"

0:1:1:11 0.3
(0%)

-0.0
(0%) -0.00 -0.00 0.00 "FOOT"

0:1:1:12 0.0
(0%)

-0.0
(0%) 0.00 -0.00 -0.00 "FOOT_FRONT"

0:1:1:13 0.0
(0%) 0.0	(0%) -0.00 0.00 0.00 "FOOT_BACK"

In	our	example,	it	can	be	seen	that	no	errors	were	detected	for	either
area,	volume	or	positioning	data.

Names
XDE	supports	reading	and	writing	the	names	of	shapes	to	and	from	IGES
and	STEP	file	formats.	This	functionality	can	be	switched	off	if	you	do	not
need	this	type	of	data,	thereby	reducing	the	size	of	the	document.

Instance	Names

Colors	and	Layers
XDE	can	read	and	write	colors	and	layers	assigned	to	shapes	or	their
subparts	(down	to	the	level	of	faces	and	edges)	to	and	from	both	IGES
and	STEP	formats.	Three	types	of	colors	are	defined	in	the	enumeration
XCAFDoc_ColorType:

generic	color	(XCAFDoc_ColorGen)
surface	color	(XCAFDoc_ColorSurf)
curve	color	(XCAFDoc_ColorCurv)

Colors	and	Layers

Custom	notes
Custom	notes	is	a	kind	of	application	specific	data	attached	to	assembly
items,	their	attributes	and	sub-shapes.	Basically,	there	are	simple	textual
comments,	binary	data	and	other	application	specific	data.	Each	note	is
provided	with	a	timestamp	and	the	user	created	it.

Notes	API	provides	the	following	functionality:

Returns	total	number	of	notes	and	annotated	items
Returns	labels	for	all	notes	and	annotated	items
Creates	notes:

Comment	note	from	a	text	string
Binary	data	note	from	a	file	or	byte	array

Checks	if	an	assembly	item	is	annotated
Finds	a	label	for	the	annotated	item
Returns	all	note	labels	for	the	annotated	item
Add	a	note	to	item(s):

Assembly	item
Assembly	item	attribute
Assembly	item	subshape	index

Remove	note(s)	from	an	annotated	assembly	item;	orphan	note(s)
might	be	deleted	optionally	(items	without	linked	notes	will	be
deleted	automatically)
Delete	note(s)	and	removes	them	from	annotated	items
Get	/	delete	orphan	notes

Working	with	XDE
Getting	started

As	explained	in	the	last	chapter,	XDE	uses	TDocStd_Documents	as	a
starting	point.	The	general	purpose	of	XDE	is:

Checking	if	an	existing	document	is	fit	for	XDE;
Getting	an	application	and	initialized	document;
Initializing	a	document	to	fit	it	for	XDE;
Adding,	setting	and	finding	data;
Querying	and	managing	shapes;
Attaching	properties	to	shapes.

The	Document	used	by	XDE	usually	starts	as	a	TDocStd_Document.

Environment	variables

To	use	XDE	you	have	to	set	the	environment	variables	properly.	Make
sure	that	two	important	environment	variables	are	set	as	follows:

CSF_PluginDefaults	points	to	sources	of
%CASROOT%/src/XCAFResources
($CASROOT/src/XCAFResources).
CSF_XCAFDefaults	points	to	sources	of
%CASROOT%/src/XCAFResources
($CASROOT/src/XCAFResources).

General	Check

Before	working	with	shapes,	properties,	and	other	types	of	information,
the	global	organization	of	an	XDE	Document	can	be	queried	or
completed	to	determine	if	an	existing	Document	is	actually	structured	for
use	with	XDE.

To	find	out	if	an	existing	TDocStd_Document	is	suitable	for	XDE,	use:

Handle(TDocStd_Document)	doc...	

if	(XCAFDoc_DocumentTool::IsXCAFDocument	(doc))	{	

..	yes	..	}	

If	the	Document	is	suitable	for	XDE,	you	can	perform	operations	and
queries	explained	in	this	guide.	However,	if	a	Document	is	not	fully
structured	for	XDE,	it	must	be	initialized.

Get	an	Application	or	an	Initialized	Document

If	you	want	to	retrieve	an	existing	application	or	an	existing	document
(known	to	be	correctly	structured	for	XDE),	use:

Handle(TDocStd_Document)	aDoc;	

Handle(XCAFApp_Application)	anApp	=	

XCAFApp_Application::GetApplication();	

anApp->NewDocument(;MDTV-XCAF;,aDoc);	

Shapes	and	Assemblies

Initialize	an	XDE	Document	(Shapes)

An	XDE	Document	begins	with	a	TDocStd_Document.	Assuming	you
have	a	TDocStd_Document	already	created,	you	can	ensure	that	it	is
correctly	structured	for	XDE	by	initializing	the	XDE	structure	as	follows:

Handle(TDocStd_Document)	doc...	

Handle	(XCAFDoc_ShapeTool)	myAssembly	=	

XCAFDoc_DocumentTool::ShapeTool	(Doc->Main());	

TDF_Label	aLabel	=	myAssembly->NewShape()	

Note	that	the	method	XCAFDoc_DocumentTool::ShapeTool	returns	the
XCAFDoc_ShapeTool.	The	first	time	this	method	is	used,	it	creates	the
XCAFDoc_ShapeTool.	In	our	example,	a	handle	is	used	for	the
TDocStd_Document.

Get	a	Node	considered	as	an	Assembly

To	get	a	node	considered	as	an	Assembly	from	an	XDE	structure,	you
can	use	the	Label	of	the	node.	Assuming	that	you	have	a	properly
initialized	TDocStd_Document,	use:

Handle(TDocStd_Document)	doc...	

Handle(XCAFDoc_ShapeTool)	myAssembly	=	

XCAFDoc_DocumentTool::ShapeTool	(aLabel);	

In	the	previous	example,	you	can	also	get	the	Main	Item	of	an	XDE
document,	which	records	the	root	shape	representation	(as	a	Compound
if	it	is	an	Assembly)	by	using	ShapeTool(Doc->Main())	instead	of
ShapeTool(aLabel).

You	can	then	query	or	edit	this	Assembly	node,	the	Main	Item	or	another
one	(myAssembly	in	our	examples).

Note	that	for	the	examples	in	the	rest	of	this	guide,	myAssembly	is
always	presumed	to	be	accessed	this	way,	so	this	information	will	not	be

repeated.

Updating	the	Assemblies	after	Filling	or	Editing

Some	actions	in	this	chapter	affect	the	content	of	the	document,
considered	as	an	Assembly.	As	a	result,	you	will	sometimes	need	to
update	various	representations	(including	the	compounds).

To	update	the	representations,	use:

myAssembly->UpdateAssemblies();	

This	call	performs	a	top-down	update	of	the	Assembly	compounds	stored
in	the	document.

Note	that	you	have	to	run	this	method	manually	to	actualize	your
Assemblies	after	any	low-level	modifications	on	shapes.

Adding	or	Setting	Top	Level	Shapes

Shapes	can	be	added	as	top-level	shapes.	Top	level	means	that	they	can
be	added	to	an	upper	level	assembly	or	added	on	their	own	at	the
highest	level	as	a	component	or	referred	by	a	located	instance.	Therefore
two	types	of	top-level	shapes	can	be	added:

shapes	with	upper	level	references
free	shapes	(that	correspond	to	roots)	without	any	upper	reference

Note	that	several	top-level	shapes	can	be	added	to	the	same
component.

A	shape	to	be	added	can	be	defined	as	a	compound	(if	required),	with	the
following	interpretations:

If	the	Shape	is	a	compound,	according	to	the	user	choice,	it	may	or
may	not	be	interpreted	as	representing	an	Assembly.	If	it	is	an
Assembly,	each	of	its	sub-shapes	defines	a	sub-label.
If	the	Shape	is	not	a	compound,	it	is	taken	as	a	whole,	without
breaking	it	down.

To	break	down	a	Compound	in	the	assembly	structure,	use:

Standard_Boolean	makeAssembly;	

//	True	to	interpret	a	Compound	as	an	Assembly,	

//	False	to	take	it	as	a	whole	

aLabel	=	myAssembly->AddShape(aShape,	makeAssembly);	

Each	node	of	the	assembly	therefore	refers	to	its	sub-shapes.

Concerning	located	instances	of	sub-shapes,	the	corresponding	shapes,
(without	location)	appear	at	distinct	sub-labels.	They	are	referred	to	by	a
shape	instance,	which	associates	a	location.

Setting	a	given	Shape	at	a	given	Label

A	top-level	shape	can	be	changed.	In	this	example,	no	interpretation	of
compound	is	performed:

Standard_CString	LabelString	...;	

//	identifies	the	Label	(form	;0:i:j...;)	

TDF_Label	aLabel...;	

//	A	label	must	be	present	

myAssembly->SetShape(aLabel,	aShape);	

Getting	a	Shape	from	a	Label

To	get	a	shape	from	its	Label	from	the	top-level,	use:

TDF_Label	aLabel...

//	A	label	must	be	present

if	(aLabel.IsNull())	{	

		//	no	such	label	:	abandon

}

TopoDS_Shape	aShape;

aShape	=	myAssembly->GetShape(aLabel);

if	(aShape.IsNull())	{

		//	this	label	is	not	for	a	Shape

}

Note	that	if	the	label	corresponds	to	an	assembly,	the	result	is	a
compound.

Getting	a	Label	from	a	Shape

To	get	a	Label,	which	is	attached	to	a	Shape	from	the	top-level,	use:

Standard_Boolean	findInstance	=	Standard_False;	

//	(this	is	default	value)

aLabel	=	myAssembly->FindShape(aShape	

[,findInstance]);

if	(aLabel.IsNull())	{	

		//	no	label	found	for	this	shape

}

If	findInstance	is	True,	a	search	is	made	for	the	shape	with	the	same
location.	If	it	is	False	(default	value),	a	search	is	made	among	original,
non-located	shapes.

Other	Queries	on	a	Label

Various	other	queries	can	be	made	from	a	Label	within	the	Main	Item	of
XDE:

Main	Shapes

To	determine	if	a	Shape	is	recorded	(or	not),	use:

if	(myAssembly->IsShape(aLabel))	{	..	yes	..	}	

To	determine	if	the	shape	is	top-level,	i.e.	was	added	by	the	AddShape
method,	use:

if	(myAssembly->IsTopLevel(aLabel))	{	..	yes	..	}	

To	get	a	list	of	top-level	shapes	added	by	the	AddShape	method,	use:

TDF_LabelSequence	frshapes;	

myAssembly->GetShapes(frshapes);	

To	get	all	free	shapes	at	once	if	the	list	above	has	only	one	item,	use:

TopoDS_Shape	result	=	myAssembly-

>GetShape(frshapes.Value(1));	

If	there	is	more	than	one	item,	you	must	create	and	fill	a	compound,	use:

TopoDS_Compound	C;	

BRep_Builder	B;	

B.MakeCompound(C);	

for(Standard_Integer	i=1;	i=frshapes.Length();	i++)	{	

		TopoDS_Shape	S	=	myAssembly-

>GetShape(frshapes.Value(i));	

		B.Add(C,S);	

}	

In	our	example,	the	result	is	the	compound	C.	To	determine	if	a	shape	is
a	free	shape	(no	reference	or	super-assembly),	use:

if	(myAssembly->IsFree(aLabel))	{	..	yes	..	}	

To	get	a	list	of	Free	Shapes	(roots),	use:

TDF_LabelSequence	frshapes;	

myAssembly->GetFreeShapes(frshapes);	

To	get	the	shapes,	which	use	a	given	shape	as	a	component,	use:

TDF_LabelSequence	users;	

Standard_Integer	nbusers	=	myAssembly-

>GetUsers(aLabel,users);	

The	count	of	users	is	contained	with	nbusers.	It	contains	0	if	there	are	no
users.

Assembly	and	Components

To	determine	if	a	label	is	attached	to	the	main	part	or	to	a	sub-part
(component),	use:

if	(myAssembly->IsComponent(aLabel))	{	..	yes	..	}	

To	determine	whether	a	label	is	a	node	of	a	(sub-)	assembly	or	a	simple
shape,	use:

if	(myAssembly->IsAssembly(aLabel))	{	..	yes	..	}	

If	the	label	is	a	node	of	a	(sub-)	assembly,	you	can	get	the	count	of
components,	use:

Standard_Boolean	subchilds	=	Standard_False;	

//default	

Standard_Integer	nbc	=	myAssembly->NbComponents	

(aLabel	[,subchilds]);	

If	subchilds	is	True,	commands	also	consider	sub-levels.	By	default,	only
level	one	is	checked.

To	get	component	Labels	themselves,	use:

Standard_Boolean	subchilds	=	Standard_False;	

//default	

TDF_LabelSequence	comps;	

Standard_Boolean	isassembly	=	myAssembly-

>GetComponents	

(aLabel,comps[,subchilds]);	

Instances	and	References	for	Components

To	determine	if	a	label	is	a	simple	shape,	use:

if	(myAssembly->IsSimpleShape(aLabel))	{	..	yes	..	

}	

To	determine	if	a	label	is	a	located	reference	to	another	one,	use:

if	(myAssembly->IsReference(aLabel))	{	..	yes	..	}	

If	the	label	is	a	located	reference,	you	can	get	the	location,	use:

TopLoc_Location	loc	=	myAssembly->GetLocation	

(aLabel);	

To	get	the	label	of	a	referenced	original	shape	(also	tests	if	it	is	a
reference),	use:

Standard_Boolean	isref	=	myAssembly->GetReferredShape	

(aLabel,	refLabel);	

Note	isref	returns	False	if	aLabel	is	not	for	a	reference.

Editing	Shapes
In	addition	to	the	previously	described	AddShape	and	SetShape,	several
shape	edits	are	possible.

To	remove	a	Shape,	and	all	its	sub-labels,	use:

Standard_Boolean	remsh	=	myAssembly-

>RemoveShape(aLabel);	

//	remsh	is	returned	True	if	done	

This	operation	will	fail	if	the	shape	is	neither	free	nor	top	level.

To	add	a	Component	to	the	Assembly,	from	a	new	shape,	use:

Standard_Boolean	expand	=	Standard_False;	//default	

TDF_Label	aLabel	=	myAssembly->AddComponent	(aShape	

[,expand]);	

If	expand	is	True	and	aShape	is	a	Compound,	aShape	is	broken	down	to
produce	sub-components,	one	for	each	of	its	sub-shapes.

To	add	a	component	to	the	assembly,	from	a	previously	recorded	shape
(the	new	component	is	defined	by	the	label	of	the	reference	shape,	and
its	location),	use:

TDF_Label	refLabel	...;	//	the	label	of	reference	

shape	

TopLoc_Location	loc	...;	//	the	desired	location	

TDF_Label	aLabel	=	myAssembly->AddComponent	

(refLabel,	loc);	

To	remove	a	component	from	the	assembly,	use:

myAssembly->RemoveComponent	(aLabel);	

Management	of	Sub-Shapes
In	addition	to	components	of	a	(sub-)assembly,	it	is	possible	to	have
individual	identification	of	some	sub-shapes	inside	any	shape.	Therefore,
you	can	attach	specific	attributes	such	as	Colors.	Some	additional
actions	can	be	performed	on	sub-shapes	that	are	neither	top-level,	nor
components:	To	add	a	sub-shape	to	a	given	Label,	use:

TDF_Label	subLabel	=	myAssembly->AddSubShape	(aLabel,	

subShape);	

To	find	the	Label	attached	to	a	given	sub-shape,	use:

TDF_Label	subLabel;	//	new	label	to	be	computed	

if	(myAssembly->	FindSubShape	(aLabel,	subShape,	

subLabel))	{	..	yes	..	}	

If	the	sub-shape	is	found	(yes),	subLabel	is	filled	by	the	correct	value.

To	find	the	top-level	simple	shape	(not	a	compound	whether	free	or	not),
which	contains	a	given	sub-shape,	use:

TDF_Label	mainLabel	=	myAssembly-

>FindMainShape(subShape);	

Note	that	there	should	be	only	one	shape	for	a	valid	model.	In	any	case,
the	search	stops	on	the	first	one	found.

To	get	the	sub-shapes	of	a	shape,	which	are	recorded	under	a	label,	use:

TDF_LabelSequence	subs;	

Standard_Boolean	hassubs	=	myAssembly->GetSubShapes	

(aLabel,subs);	

Properties
Some	properties	can	be	attached	directly	to	shapes.	These	properties
are:

Name	(standard	definition	from	OCAF)
Centroid	(for	validation	of	transfer)
Volume	(for	validation	of	transfer)
Area	(for	validation	of	transfer)	Some	other	properties	can	also	be
attached,	and	are	also	managed	by	distinct	tools	for	Colors	and
Layers.	Colors	and	Layers	are	managed	as	an	alternative	way	of
organizing	data	(by	providing	a	way	of	identifying	groups	of	shapes).
Colors	are	put	into	a	table	of	colors	while	shapes	refer	to	this	table.
There	are	two	ways	of	attaching	a	color	to	a	shape:
By	attaching	an	item	from	the	table.
Adding	the	color	directly.	When	the	color	is	added	directly,	a	search
is	performed	in	the	table	of	contents	to	determine	if	it	contains	the
requested	color.	Once	this	search	and	initialize	operation	is	done,
the	first	way	of	attaching	a	color	to	a	shape	is	used.

Name

Name	is	implemented	and	used	as	a	TDataStd_Name,	which	can	be
attached	to	any	label.	Before	proceeding,	consider	that:

In	IGES,	every	entity	can	have	a	name	with	an	optional	numeric	part
called	a	Subscript	Label.	For	example,	MYCURVE	is	a	name,	and
MYCURVE(60)	is	a	name	with	a	Subscript	Label.
In	STEP,	there	are	two	levels:	Part	Names	and	Entity	Names:

Part	Names	are	attached	to	;main	shapes;	such	as	parts	and
assemblies.	These	Part	Names	are	specifically	supported	by
XDE.
Entity	Names	can	be	attached	to	every	Geometric	Entity.	This
option	is	rarely	used,	as	it	tends	to	overload	the	exploitation	of
the	data	structure.	Only	some	specific	cases	justify	using	this
option:	for	example,	when	the	sending	system	can	really	ensure
the	stability	of	an	entity	name	after	each	STEP	writing.	If	such
stability	is	ensured,	you	can	use	this	option	to	send	an	Identifier
for	external	applications	using	a	database.	Note	that	both	IGES

or	STEP	files	handle	names	as	pure	ASCII	strings.

These	considerations	are	not	specific	to	XDE.	What	is	specific	to	data
exchange	is	the	way	names	are	attached	to	entities.

To	get	the	name	attached	to	a	label	(as	a	reminder	using	OCAF),	use:

Handle(TDataStd_Name)	N;	

if	(!aLabel.FindAttribute(TDataStd_Name::GetID(),N))	

{	

		//	no	name	is	attached	

}	

TCollection_ExtendedString	name	=	N->Get();	

Don't	forget	to	consider	Extended	String	as	ASCII,	for	the	exchange	file.

To	set	a	name	to	a	label	(as	a	reminder	using	OCAF),	use:

TCollection_ExtendedString	aName	...;	

//	contains	the	desired	name	for	this	Label	(ASCII)	

TDataStd_Name::Set	(aLabel,	aName);	

Centroid

A	Centroid	is	defined	by	a	Point	to	fix	its	position.	It	is	handled	as	a
property,	item	of	the	class	XCAFDoc_Centroid,	sub-class	of
TDF_Attribute.	However,	global	methods	give	access	to	the	position
itself.

This	notion	has	been	introduced	in	STEP,	together	with	that	of	Volume,
and	Area,	as	defining	the	Validation	Properties:	this	feature	allows
exchanging	the	geometries	and	some	basic	attached	values,	in	order	to
perform	a	synthetic	checking	on	how	they	are	maintained	after	reading
and	converting	the	exchange	file.	This	exchange	depends	on	reliable
exchanges	of	Geometry	and	Topology.	Otherwise,	these	values	can	be
considered	irrelevant.

A	centroid	can	be	determined	at	any	level	of	an	assembly,	thereby
allowing	a	check	of	both	individual	simple	shapes	and	their	combinations
including	locations.

To	get	a	Centroid	attached	to	a	Shape,	use:

gp_Pnt	pos;	

Handle(XCAFDoc_Centroid)	C;	

aLabel.FindAttribute	(XCAFDoc_Centroid::GetID(),	C	

);	

if	(!C.IsNull())	pos	=	C->Get();	

To	set	a	Centroid	to	a	Shape,	use:

gp_Pnt	pos	(X,Y,Z);	

//	the	position	previously	computed	for	the	centroid	

XCAFDoc_Centroid::Set	(aLabel,	pos);	

Area

An	Area	is	defined	by	a	Real,	it	corresponds	to	the	computed	Area	of	a
Shape,	provided	that	it	contains	surfaces.	It	is	handled	as	a	property,	item
of	the	class	XCAFDoc_Area,	sub-class	of	TDF_Attribute.	This	notion	has
been	introduced	in	STEP	but	it	is	usually	disregarded	for	a	Solid,	as
Volume	is	used	instead.	In	addition,	it	is	attached	to	simple	shapes,	not	to
assemblies.

To	get	an	area	attached	to	a	Shape,	use:

Standard_Real	area;	

Handle(XCAFDoc_Area)	A;	

L.FindAttribute	(XCAFDoc_Area::GetID(),	A);	

if	(!A.IsNull())	area	=	A->Get();	

To	set	an	area	value	to	a	Shape,	use:	

Standard_Real	area	...;	

//	value	previously	computed	for	the	area	

XCAFDoc_Area::Set	(aLabel,	area);	

Volume

A	Volume	is	defined	by	a	Real	and	corresponds	to	the	computed	volume
of	a	Shape,	provided	that	it	contains	solids.	It	is	handled	as	a	property,	an

item	of	the	class	XCAFDoc_Volume,	sub-class	of	TDF_Attribute.	This
notion	has	been	introduced	in	STEP.	It	may	be	attached	to	simple	shapes
or	their	assemblies	for	computing	cumulated	volumes	and	centers	of
gravity.

To	get	a	Volume	attached	to	a	Shape,	use:

Standard_Real	volume;	

Handle(XCAFDoc_Volume)	V;	

L.FindAttribute	(XCAFDoc_Volume::GetID(),	V);	

if	(!V.IsNull())	volume	=	V->Get();	

To	set	a	volume	value	to	a	Shape,	use:

Standard_Real	volume	...;	

//	value	previously	computed	for	the	volume	

XCAFDoc_Volume::Set	(aLabel,	volume);	

Colors	and	Layers
XDE	can	read	and	write	colors	and	layers	assigned	to	shapes	or	their
subparts	(down	to	level	of	faces	and	edges)	to	and	from	both	IGES	and
STEP	formats.

Motor	Head

In	an	XDE	document,	colors	are	managed	by	the	class
XCAFDoc_ColorTool.	This	is	done	with	the	same	principles	as	for
ShapeTool	with	Shapes,	and	with	the	same	capability	of	having	a	tool	on
the	Main	Label,	or	on	any	sub-label.	The	Property	itself	is	defined	as	an
XCAFDoc_Color,	sub-class	of	TDF_Attribute.

Colors	are	stored	in	a	child	of	the	starting	document	label:	it	is	the	second
level	(0.1.2),	while	Shapes	are	at	the	first	level.	Each	color	then
corresponds	to	a	dedicated	label,	the	property	itself	is	a	Quantity_Color,
which	has	a	name	and	value	for	Red,	Green,	Blue.	A	Color	may	be
attached	to	Surfaces	(flat	colors)	or	to	Curves	(wireframe	colors),	or	to
both.	A	Color	may	be	attached	to	a	sub-shape.	In	such	a	case,	the	sub-

shape	(and	its	own	sub-shapes)	takes	its	own	Color	as	a	priority.

Layers	are	handled	using	the	same	principles	as	Colors.	In	all	operations
described	below	you	can	simply	replace	Color	with	Layer	when	dealing
with	Layers.	Layers	are	supported	by	the	class	XCAFDoc_LayerTool.

The	class	of	the	property	is	XCAFDoc_Layer,	sub-class	of	TDF_Attribute
while	its	definition	is	a	TCollection_ExtendedString.	Integers	are
generally	used	when	dealing	with	Layers.	The	general	cases	are:

IGES	has	LevelList	as	a	list	of	Layer	Numbers	(not	often	used)
STEP	identifies	a	Layer	(not	by	a	Number,	but	by	a	String),	to	be
more	general.

Colors	and	Shapes	are	related	to	by	Tree	Nodes.

These	definitions	are	common	to	various	exchange	formats,	at	least	for
STEP	and	IGES.

Initialization

To	query,	edit,	or	initialize	a	Document	to	handle	Colors	of	XCAF,	use:

Handle(XCAFDoc_ColorTool)	myColors	=	

XCAFDoc_DocumentTool::ColorTool(Doc->Main	());	

This	call	can	be	used	at	any	time.	The	first	time	it	is	used,	a	relevant
structure	is	added	to	the	document.	This	definition	is	used	for	all	the
following	color	calls	and	will	not	be	repeated	for	these.

Adding	a	Color

There	are	two	ways	to	add	a	color.	You	can:

add	a	new	Color	defined	as	Quantity_Color	and	then	directly	set	it	to
a	Shape	(anonymous	Color)
define	a	new	Property	Color,	add	it	to	the	list	of	Colors,	and	then	set
it	to	various	shapes.	When	the	Color	is	added	by	its	value
Quantity_Color,	it	is	added	only	if	it	has	not	yet	been	recorded	(same
RGB	values)	in	the	Document.

To	set	a	Color	to	a	Shape	using	a	label,	use:

Quantity_Color	Col	(red,green,blue);	

XCAFDoc_ColorType	ctype	..;	

//	can	take	one	of	these	values	:	

//	XCAFDoc_ColorGen	:	all	types	of	geometries	

//	XCAFDoc_ColorSurf	:	surfaces	only	

//	XCAFDoc_ColorCurv	:	curves	only	

myColors->SetColor	(aLabel,	Col,	ctype);	

Alternately,	the	Shape	can	be	designated	directly,	without	using	its	label,
use:

myColors->SetColor	(aShape,	Col,	ctype);	

//	Creating	and	Adding	a	Color,	explicitly	

Quantity_Color	Col	(red,green,blue);	

TDF_Label	ColLabel	=	myColors->AddColor	(Col);	

Note	that	this	Color	can	then	be	named,	allowing	later	retrieval	by	its
Name	instead	of	its	Value.

To	set	a	Color,	identified	by	its	Label	and	already	recorded,	to	a	Shape,
use:

XCAFDoc_ColorType	ctype	..;	//	see	above

if	(myColors->SetColors	(aLabel,	ColLabel,	ctype))	

{..	it	is	done	..	}

In	this	example,	aLabel	can	be	replaced	by	aShape	directly.

Queries	on	Colors

Various	queries	can	be	performed	on	colors.	However,	only	specific
queries	are	included	in	this	section,	not	general	queries	using	names.

To	determine	if	a	Color	is	attached	to	a	Shape,	for	a	given	color	type
(ctype),	use:

if	(myColors->IsSet	(aLabel	,	ctype))	{	

		//	yes,	there	is	one	..	

}	

In	this	example,	aLabel	can	be	replaced	by	aShape	directly.

To	get	the	Color	attached	to	a	Shape	(for	any	color	type),	use:

Quantity_Color	col;	

//	will	receive	the	recorded	value	(if	there	is	some)

if	(!myColors->GetColor(aLabel,	col))	{	

//	sorry,	no	color	..	

}

Color	name	can	also	be	queried	from	col.StringName	or	col.Name.	In	this
example,	aLabel	can	be	replaced	by	aShape	directly.

To	get	the	Color	attached	to	a	Shape,	with	a	specific	color	type,	use:

XCAFDoc_ColorType	ctype	..;	

Quantity_Color	col;	

//	will	receive	the	recorded	value	(if	there	is	some)	

if	(!myColors->GetColor(aLabel,	ctype,	col))	{	

//	sorry,	no	color	..	

}	

To	get	all	the	Colors	recorded	in	the	Document,	use:

Quantity_Color	col;	//	to	receive	the	values	

TDF_LabelSequence	ColLabels;	

myColors->GetColors(ColLabels);	

Standard_Integer	i,	nbc	=	ColLabels.Length();	

for	(i	=	1;	i	=	nbc;	i	++)	{	

		aLabel	=	Labels.Value(i);	

		if	(!myColors->GetColor(aLabel,	col))	continue;	

		//	col	receives	the	color	n0	i	..	

}	

To	find	a	Color	from	its	Value,	use:

Quantity_Color	Col	(red,green,blue);	

TDF_Label	ColLabel	=	myColors-FindColor	(Col);	

if	(!ColLabel.IsNull())	{	..	found	..	}	

Editing	Colors

Besides	adding	colors,	the	following	attribute	edits	can	be	made:

To	unset	a	Color	on	a	Shape,	use:

XCAFDoc_ColorType	ctype	...;	

//	desired	type	(XCAFDoc_ColorGen	for	all)	

myColors->UnSetColor	(aLabel,ctype);	

To	remove	a	Color	and	all	the	references	to	it	(so	that	the	related	shapes
will	become	colorless),	use:

myColors->RemoveColor(ColLabel);	

Custom	notes
In	an	XDE	document,	custom	notes	are	managed	by	the	class
XCAFDoc_NotesTool.	This	is	done	with	the	same	principles	as	for
ShapeTool	with	Shapes,	and	with	the	same	capability	of	having	a	tool	on
the	Main	Label,	or	on	any	sub-label.	The	Property	itself	is	defined	as	sub-
classes	of	an	XCAFDoc_Note	abstract	class,	which	is	a	sub-class	of
TDF_Attribute	one.

Custom	notes	are	stored	in	a	child	of	the	XCAFDoc_NotesTool	label:	it	is
at	label	0.1.9.1.	Each	note	then	corresponds	to	a	dedicated	label.	A	note
may	be	attached	to	a	document	item	identified	by	a	label,	a	sub-shape
identified	by	integer	index	or	an	attribute	identified	by	GUID.	Annotations
are	stored	in	a	child	of	the	XCAFDoc_NotesTool	label:	it	is	at	label
0.1.9.2.	Notes	binding	is	done	through	XCAFDoc_GraphNode	attribute.

Structure	of	notes	part	of	XCAF	document

Initialization

To	query,	edit,	or	initialize	a	Document	to	handle	custom	notes	of	XCAF,
use:

Handle(XCAFDoc_NotesTool)	myNotes	=	

XCAFDoc_DocumentTool::NotesTool(Doc->Main	());	

This	call	can	be	used	at	any	time.	The	first	time	it	is	used,	a	relevant
structure	is	added	to	the	document.	This	definition	is	used	for	all	the
following	notes	calls	and	will	not	be	repeated	for	these.

Creating	Notes

Before	annotating	a	Document	item	a	note	must	be	created	using	one	of
the	following	methods	of	XCAFDoc_NotesTool	class:

CreateComment	:	creates	a	note	with	a	textual	comment
CreateBinData	:	creates	a	note	with	arbitrary	binary	data,	e.g.
contents	of	a	file

Both	methods	return	an	instance	of	XCAFDoc_Note	class.

Handle(XCAFDoc_NotesTool)	myNotes	=	...

Handle(XCAFDoc_Note)	myNote	=	myNotes-

>CreateComment("User",	"Timestamp",	"Hello,	

World!");

This	code	adds	a	child	label	to	label	0.1.9.1	with
XCAFDoc_NoteComment	attribute.

Editing	a	Note

An	instance	of	XCAFDoc_Note	class	can	be	used	for	note	editing.	One
may	change	common	note	data.

myNote->Set("New	User",	"New	Timestamp");

To	change	specific	data	one	need	to	down	cast	myNote	handle	to	the
appropriate	sub-class:

Handle(XCAFDoc_NoteComment)	myCommentNote	=	

Handle(XCAFDoc_NoteComment)::DownCast(myNote);

if	(!myCommentNote.IsNull())	{

		myCommentNote->Set("New	comment");

}

Adding	Notes

Once	a	note	has	been	created	it	can	be	bound	to	a	Document	item	using
the	following	XCAFDoc_NotesTool	methods:

AddNote	:	binds	a	note	to	a	label
AddNoteToAttr	:	binds	a	note	to	a	label's	attribute
AddNoteToSubshape	:	binds	a	note	to	a	sub-shape

All	methods	return	a	pointer	to	XCAFDoc_AssemblyItemRef	attribute
identifying	the	annotated	item.

Handle(XCAFDoc_NotesTool)	myNotes	=	...

Handle(XCAFDoc_Note)	myNote	=	...

TDF_Label	theLabel;	...

Handle(XCAFDoc_AssemblyItemRef)	myRef	=	myNotes-

>AddNote(myNote->Label(),	theLabel);

Standard_GUID	theAttrGUID;	...

Handle(XCAFDoc_AssemblyItemRef)	myRefAttr	=	myNotes-

>AddNoteToAttr(myNote->Label(),	theAttrGUID);

Standard_Integer	theSubshape	=	1;

Handle(XCAFDoc_AssemblyItemRef)	myRefSubshape	=	

myNotes->AddNoteToSubshape(myNote->Label(),	

theSubshape);

This	code	adds	three	child	labels	to	label	0.1.9.2	with
XCAFDoc_AssemblyItemRef	attribute	with	XCAFDoc_GraphNode
attributes	added	to	this	and	note	labels.

Finding	Notes

To	find	annotation	labels	under	label	0.1.9.2	use	the	following
XCAFDoc_NotesTool	methods:

FindAnnotatedItem	:	returns	an	annotation	label	for	a	label
FindAnnotatedItemAttr	:	returns	an	annotation	label	for	a	label's
attribute
FindAnnotatedItemSubshape	:	returns	an	annotation	label	for	a	sub-
shape

Handle(XCAFDoc_NotesTool)	myNotes	=	...

TDF_Label	theLabel;	...

TDF_Label	myLabel	=	myNotes-

>FindAnnotatedItem(theLabel);

Standard_GUID	theAttrGUID;	...

TDF_Label	myLabelAttr	=	myNotes-

>FindAnnotatedItemAttr(theLabel,	theAttrGUID);

Standard_Integer	theSubshape	=	1;

TDF_Label	myLabelSubshape	=	myNotes-

>FindAnnotatedItemSubshape(theLabel,	

theSubshape);

Null	label	will	be	returned	if	there	is	no	corresponding	annotation.

To	get	all	notes	of	the	Document	item	use	the	following
XCAFDoc_NotesTool	methods:

GetNotes	:	outputs	a	sequence	of	note	labels	bound	to	a	label
GetAttrNotes	:	outputs	a	sequence	of	note	labels	bound	to	a	label's
attribute
GetAttrSubshape	:	outputs	a	sequence	of	note	labels	bound	to	a
sub-shape

All	these	methods	return	the	number	of	notes.

Handle(XCAFDoc_NotesTool)	myNotes	=	...

TDF_Label	theLabel;	...

TDF_LabelSequence	theNotes;

myNotes->GetNotes(theLabel,	theNotes);

Standard_GUID	theAttrGUID;	...

TDF_LabelSequence	theNotesAttr;

myNotes->GetAttrNotes(theLabel,	theAttrGUID,	

theNotesAttr);

Standard_Integer	theSubshape	=	1;

TDF_LabelSequence	theNotesSubshape;

myNotes->GetAttrSubshape(theLabel,	theSubshape,	

theNotesSubshape);

Removing	Notes

To	remove	a	note	use	one	of	the	following	XCAFDoc_NotesTool
methods:

RemoveNote	:	unbinds	a	note	from	a	label
RemoveAttrNote	:	unbinds	a	note	from	a	label's	attribute
RemoveSubshapeNote	:	unbinds	a	note	from	a	sub-shape

Handle(XCAFDoc_Note)	myNote	=	...

TDF_Label	theLabel;	...

myNotes->RemoveNote(myNote->Label(),	theLabel);

Standard_GUID	theAttrGUID;	...

myRefAttr	=	myNotes->RemoveAttrNote(myNote->Label(),	

theAttrGUID);

Standard_Integer	theSubshape	=	1;

myNotes->RemoveSubshapeNote(myNote->Label(),	

theSubshape);

A	note	will	not	be	deleted	automatically.	Counterpart	methods	to	remove
all	notes	are	available	too.

Deleting	Notes

To	delete	note(s)	use	the	following	XCAFDoc_NotesTool	methods:

DeleteNote	:	deletes	a	single	note
DeleteNotes	:	deletes	a	sequence	of	notes
DeleteAllNotes	:	deletes	all	Document	notes
DeleteOrphanNotes	:	deletes	notes	not	bound	to	Document	items

All	these	methods	excepting	the	last	one	break	all	links	with	Document
items	as	well.

Reading	and	Writing	STEP	or	IGES
Note	that	saving	and	restoring	the	document	itself	are	standard	OCAF
operations.	As	the	various	previously	described	definitions	enter	into	this
frame,	they	will	not	be	explained	any	further.	The	same	can	be	said	for
Viewing:	presentations	can	be	defined	from	Shapes	and	Colors.

There	are	several	important	points	to	consider:

Previously	defined	Readers	and	Writers	for	dealing	with	Shapes
only,	whether	Standard	or	Advanced,	remain	unchanged	in	their	form
and	in	their	dependencies.	In	addition,	functions	other	than	mapping
are	also	unchanged.
XDE	provides	mapping	with	data	other	than	Shapes.	Names,	Colors,
Layers,	Validation	Properties	(Centroid,	Volume,	Area),	and
Assembly	Structure	are	hierarchic	with	rigid	motion.
XDE	mapping	is	relevant	for	use	within	the	Advanced	level	of	Data
Exchanges,	rather	than	Standard	ones,	because	a	higher	level	of
information	is	better	suited	to	a	higher	quality	of	shapes.	In	addition,
this	allows	to	avoid	the	multiplicity	of	combinations	between	various
options.	Note	that	this	choice	is	not	one	of	architecture	but	of
practical	usage	and	packaging.
Reader	and	Writer	classes	for	XDE	are	generally	used	like	those	for
Shapes.	However,	their	use	is	adapted	to	manage	a	Document
rather	than	a	Shape.

The	packages	to	manage	this	are	IGESCAFControl	for	IGES,	and
STEPCAFControl	for	STEP.

Reading	a	STEP	file

To	read	a	STEP	file	by	itself,	use:

STEPCAFControl_Reader	reader;	

IFSelect_ReturnStatus	readstat	=	

reader.ReadFile(filename);	

//	The	various	ways	of	reading	a	file	are	available	

here	too	:	

//	to	read	it	by	the	reader,	to	take	it	from	a	

WorkSession	...	

Handle(TDocStd_Document)	doc...	

//	the	document	referred	to	is	already	defined	and	

//	properly	initialized.	

//	Now,	the	transfer	itself	

if	(!reader.Transfer	(doc))	{	

		cout;Cannot	read	any	relevant	data	from	the	STEP	

file;endl;	

		//	abandon	..	

}	

//	Here,	the	Document	has	been	filled	from	a	STEP	

file,	

//	it	is	ready	to	use	

In	addition,	the	reader	provides	methods	that	are	applicable	to	document
transfers	and	for	directly	querying	of	the	data	produced.

Writing	a	STEP	file

To	write	a	STEP	file	by	itself,	use:

STEPControl_StepModelType	mode	=	

STEPControl_AsIs;	

//	Asis	is	the	recommended	value,	others	are	

available	

//	Firstly,	perform	the	conversion	to	STEP	entities	

STEPCAFControl_Writer	writer;	

//(the	user	can	work	with	an	already	prepared	

WorkSession	or	create	a	//new	one)	

Standard_Boolean	scratch	=	Standard_False;	

STEPCAFControl_Writer	writer	(WS,	scratch);	

//	Translating	document	(conversion)	to	STEP	

if	(!	writer.Transfer	(Doc,	mode))	{	

		cout;The	document	cannot	be	translated	or	gives	no	

result;endl;	

		//	abandon	..	

}	

//	Writing	the	File	

IFSelect_ReturnStatus	stat	=	writer.Write(file-name);	

Reading	an	IGES	File

Use	the	same	procedure	as	for	a	STEP	file	but	with	IGESCAFControl
instead	of	STEPCAFControl.

Writing	an	IGES	File

Use	the	same	procedure	as	for	a	STEP	file	but	with	IGESCAFControl
instead	of	STEPCAFControl.

Using	an	XDE	Document
There	are	several	ways	of	exploiting	XDE	data	from	an	application,	you
can:

1.	 Get	the	data	relevant	for	the	application	by	mapping	XDE/Appli,	then
discard	the	XDE	data	once	it	has	been	used.

2.	 Create	a	reference	from	the	Application	Document	to	the	XDE
Document,	to	have	its	data	available	as	external	data.

3.	 Embed	XDE	data	inside	the	Application	Document	(see	the	following
section	for	details).

4.	 Directly	exploit	XDE	data	such	as	when	using	file	checkers.

XDE	Data	inside	an	Application	Document

To	have	XCAF	data	elsewhere	than	under	label	0.1,	you	use	the
DocLabel	of	XDE.	The	method	DocLabel	from	XCAFDoc_DocumentTool
determines	the	relevant	Label	for	XCAF.	However,	note	that	the	default	is
0.1.

In	addition,	as	XDE	data	is	defined	and	managed	in	a	modular	way,	you
can	consider	exclusively	Assembly	Structure,	only	Colors,	and	so	on.

As	XDE	provides	an	extension	of	the	data	structure,	for	relevant	data	in
standardized	exchanges,	note	the	following:

This	data	structure	is	fitted	for	data	exchange,	rather	than	for	use	by
the	final	application.
The	provided	definitions	are	general,	for	common	use	and	therefore
do	not	bring	strongly	specific	semantics.

As	a	result,	if	an	application	works	on	Assemblies,	on	Colors	or	Layers,
on	Validation	Properties	(as	defined	in	STEP),	it	can	rely	on	all	or	a	part
of	the	XDE	definitions,	and	include	them	in	its	own	data	structure.

In	addition,	if	an	application	has	a	data	structure	far	from	these	notions,	it
can	get	data	(such	as	Colors	and	Names	on	Shapes)	according	to	its
needs,	but	without	having	to	consider	the	whole.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Purpose	of	OCAF
Architecture
Overview

Application
Document
Attribute

Reference-key	model
The	Data	Framework
Data	Structure
Examples	of	a	Data
Structure
Tag

Creating	child
labels	using
random	delivery
of	tags
Creation	of	a
child	label	by
user	delivery
from	a	tag

Label
Label	creation
Creating	child
labels
Retrieving	child
labels
Retrieving	the
father	label

Attribute

Open	CASCADE
Technology		7.2.0

OCAF

Retrieving	an
attribute	from	a
label
Identifying	an
attribute	using	a
GUID
Attaching	an
attribute	to	a
label
Testing	the
attachment	to	a
label
Removing	an
attribute	from	a
label
Specific
attribute
creation

Compound
documents
Transaction
mechanism

Standard	Document
Services
Overview
The	Application

Creating	an
application
Creating	a	new
document
Retrieving	the
application	to
which	the
document
belongs

The	Document
Accessing	the
main	label	of
the	framework
Retrieving	the
document	from
a	label	in	its
framework

Defining	storage
format
Defining	storage
format	by
resource	files
Saving	a
document
Opening	the
document	from
a	file
Cutting,	copying
and	pasting
inside	a
document

External	Links
Copying	the
document

OCAF	Shape	Attributes
Overview
Shape	attributes	in
data	framework.
Registering	shapes
and	their	evolution
Using	naming
resources
Reading	the	contents
of	a	named	shape
attribute
Topological	naming

Algorithm
history
Loading	history
in	data
framework
Selection	/	re-
computation
mechanism

Exploring	shape
evolution
Example	of
topological	naming
usage

Standard	Attributes
Overview
Services	common	to
all	attributes

Accessing
GUIDs
Conventional
Interface	of
Standard
Attributes

The	choice	between
standard	and	custom
attributes

Comparison	and
analysis	of
approaches
Conclusion

Visualization	Attributes
Overview
Services	provided

Defining	an
interactive
viewer	attribute

Defining	a
presentation	attribute

Creating	your
own	driver
Using	a
container	for
drivers

Function	Services
Finding	functions,
their	owners	and
roots
Storing	and
accessing	information
about	function	status
Propagating
modifications

Example	of	Function
Mechanism	Usage
Introduction

Step	1:	Data	Tree
Step	2:	Interfaces

Creation	of	the
nail
Computation
Visualization
Removal	of	the
nail

Step	3:	Functions
Example	1:	iteration
and	execution	of
functions.
Example	2:	Cylinder
function	driver

XML	Support
Document	Drivers
Attribute	Drivers
XML	Document
Structure
XML	Schema

GLOSSARY
Samples
Getting	Started
Implementation	of
Attribute
Transformation	in	a
HXX	file
Implementation	of
Attribute
Transformation	in	a
CPP	file
Implementation	of
typical	actions	with
standard	OCAF
attributes.

Introduction
This	manual	explains	how	to	use	the	Open	CASCADE	Application
Framework	(OCAF).	It	provides	basic	documentation	on	using	OCAF.	For
advanced	information	on	OCAF	and	its	applications,	see	our	E-learning	&
Training	offerings.

http://www.opencascade.com/content/tutorial-learning

Purpose	of	OCAF
OCAF	(the	Open	CASCADE	Application	Framework)	is	an	easy-to-use
platform	for	rapidly	developing	sophisticated	domain-specific	design
applications.	A	typical	application	developed	using	OCAF	deals	with	two
or	three-dimensional	(2D	or	3D)	geometric	modeling	in	trade-specific
Computer	Aided	Design	(CAD)	systems,	manufacturing	or	analysis
applications,	simulation	applications	or	illustration	tools.

Developing	a	design	application	requires	addressing	many	technical
aspects.	In	particular,	given	the	functional	specification	of	your
application,	you	must	at	least:

Design	the	architecture	of	the	application—	definition	of	the	software
components	and	the	way	they	cooperate;
Define	the	data	model	able	to	support	the	functionality	required	—	a
design	application	operates	on	data	maintained	during	the	whole
end-user	working	session;
Structure	the	software	in	order	to:

synchronize	the	display	with	the	data	—	commands	modifying
objects	must	update	the	views;
support	generalized	undo-redo	commands	—	this	feature	has	to
be	taken	into	account	very	early	in	the	design	process;

Implement	the	function	for	saving	the	data	—	if	the	application	has	a
long	life	cycle,	the	compatibility	of	data	between	versions	of	the
application	has	to	be	addressed;
Build	the	application	user	interface.

Architectural	guidance	and	ready-to-use	solutions	provided	by	OCAF
offer	you	the	following	benefits:

You	can	concentrate	on	the	functionality	specific	for	your	application;
The	underlying	mechanisms	required	to	support	the	application	are
already	provided;
The	application	can	be	rapidly	be	prototyped	thanks	to	the	coupling
the	other	Open	CASCADE	Technology	modules;
The	final	application	can	be	developed	by	industrializing	the
prototype	—	you	don't	need	to	restart	the	development	from	scratch.
The	Open	Source	nature	of	the	platform	guarantees	the	long-term

usefulness	of	your	development.

OCAF	is	much	more	than	just	one	toolkit	among	many	in	the	CAS.CADE
Object	Libraries.	Since	it	can	handle	any	data	and	algorithms	in	these
libraries	–	be	it	modeling	algorithms,	topology	or	geometry	–	OCAF	is
their	logical	supplement.

The	table	below	contrasts	the	design	of	a	modeling	application	using
object	libraries	alone	and	using	OCAF.

Table	1:	Services	provided	by	OCAF

Development
tasks Comments Without

OCAF
With

OCAF

Creation	of
geometry

Algorithm	Calling	the
modeling	libraries

To	be
created	by
the	user

To	be
created	by
the	user

Data
organization

Including	specific
attributes	and	modeling

process

To	be
created	by
the	user

Simplified

Saving	data	in	a
file Notion	of	document

To	be
created	by
the	user

Provided

Document-view
management

To	be
created	by
the	user

Provided

Application
infrastructure

New,	Open,	Close,	Save
and	Save	As	File	menus

To	be
created	by
the	user

Provided

Undo-Redo Robust,	multi-level
To	be

created	by
the	user

Provided

Application-
specific	dialog

boxes

To	be
created	by
the	user

To	be
created	by
the	user

OCAF	uses	other	modules	of	Open	CASCADE	Technology	—	the	Shape
is	implemented	with	the	geometry	supported	by	the	Modeling	Data

module	and	the	viewer	is	the	one	provided	with	the	Visualization	module.
Modeling	functions	can	be	implemented	using	the	Modeling	Algorithms
module.

The	relationship	between	OCAF	and	the	Open	CASCADE	Technology
(OCCT)	Object	Libraries	can	be	seen	in	the	image	below.

	

	 Visualization
	

	 Shape
	

	Graphic
	

Kernel		

OCAF	(Open	CASCADE	Application	Framework) 	

OCCT 	Object	Libraries	required	by	OCAF 	

	
OCCT	Architecture

In	the	image,	the	OCAF	(Open	CASCADE	Application	Framework)	is
shown	with	black	rectangles	and	OCCT	Object	Libraries	required	by
OCAF	are	shown	with	white	rectangles.

The	subsequent	chapters	of	this	document	explain	the	concepts	and
show	how	to	use	the	services	of	OCAF.

Architecture	Overview
OCAF	provides	you	with	an	object-oriented	Application-Document-
Attribute	model	consisting	of	C++	class	libraries.

The	Application-Document-Attribute	model

Application

The	Application	is	an	abstract	class	in	charge	of	handling	documents
during	the	working	session,	namely:

Creating	new	documents;
Saving	documents	and	opening	them;
Initializing	document	views.

Document

The	document,	implemented	by	the	concrete	class	Document,	is	the
container	for	the	application	data.	Documents	offer	access	to	the	data
framework	and	serve	the	following	purposes:

Manage	the	notification	of	changes
Update	external	links
Manage	the	saving	and	restoring	of	data
Store	the	names	of	software	extensions.
Manage	command	transactions
Manage	Undo	and	Redo	options.

Each	document	is	saved	in	a	single	flat	ASCII	file	defined	by	its	format
and	extension	(a	ready-to-use	format	is	provided	with	OCAF).

Apart	from	their	role	as	a	container	of	application	data,	documents	can
refer	to	each	other;	Document	A,	for	example,	can	refer	to	a	specific	label
in	Document	B.	This	functionality	is	made	possible	by	means	of	the
reference	key.

Attribute

Application	data	is	described	by	Attributes,	which	are	instances	of
classes	derived	from	the	Attribute	abstract	class,	organized	according	to
the	OCAF	Data	Framework.

The	OCAF	Data	Framework	references	aggregations	of	attributes	using
persistent	identifiers	in	a	single	hierarchy.	A	wide	range	of	attributes
come	with	OCAF,	including:

Standard	attributes	allow	operating	with	simple	common	data	in	the
data	framework	(for	example:	integer,	real,	string,	array	kinds	of
data),	realize	auxiliary	functions	(for	example:	tag	sources	attribute
for	the	children	of	the	label	counter),	create	dependencies	(for
example:	reference,	tree	node)....;
Shape	attributes	contain	the	geometry	of	the	whole	model	or	its
elements	including	reference	to	the	shapes	and	tracking	of	shape
evolution;
Other	geometric	attributes	such	as	Datums	(points,	axis	and	plane)
and	Constraints	(tangent-to,	at-a-given-distance,	from-a-given-
angle,	concentric,	etc.)
User	attributes,	that	is,	attributes	typed	by	the	application
Visualization	attributes	allow	placing	viewer	information	to	the	data
framework,	visual	representation	of	objects	and	other	auxiliary	visual
information,	which	is	needed	for	graphical	data	representation.
Function	services	—	the	purpose	of	these	attributes	is	to	rebuild
objects	after	they	have	been	modified	(parameterization	of	models).
While	the	document	manages	the	notification	of	changes,	a	function
manages	propagation	of	these	changes.	The	function	mechanism
provides	links	between	functions	and	calls	to	various	algorithms.

In	addition,	application-specific	data	can	be	added	by	defining	new
attribute	classes;	naturally,	this	changes	the	standard	file	format.	The

only	functions	that	have	to	be	implemented	are:

Copying	the	attribute
Converting	it	from	and	persistent	data	storage

Reference-key	model
In	most	existing	geometric	modeling	systems,	the	data	are	topology
driven.	They	usually	use	a	boundary	representation	(BRep),	where
geometric	models	are	defined	by	a	collection	of	faces,	edges	and
vertices,	to	which	application	data	are	attached.	Examples	of	data
include:

a	color;
a	material;
information	that	a	particular	edge	is	blended.

When	the	geometric	model	is	parameterized,	that	is,	when	you	can
change	the	value	of	parameters	used	to	build	the	model	(the	radius	of	a
blend,	the	thickness	of	a	rib,	etc.),	the	geometry	is	highly	subject	to
change.	In	order	to	maintain	the	attachment	of	application	data,	the
geometry	must	be	distinguished	from	other	data.

In	OCAF,	the	data	are	reference-key	driven.	It	is	a	uniform	model	in	which
reference-keys	are	the	persistent	identification	of	data.	All	accessible
data,	including	the	geometry,	are	implemented	as	attributes	attached	to
reference-keys.	The	geometry	becomes	the	value	of	the	Shape	attribute,
just	as	a	number	is	the	value	of	the	Integer	and	Real	attributes	and	a
string	that	of	the	Name	attribute.

On	a	single	reference-key,	many	attributes	can	be	aggregated;	the
application	can	ask	at	runtime	which	attributes	are	available.	For
example,	to	associate	a	texture	to	a	face	in	a	geometric	model,	both	the
face	and	the	texture	are	attached	to	the	same	reference-key.

Topology	driven	versus	reference-key	driven	approaches

Reference-keys	can	be	created	in	two	ways:

At	programming	time,	by	the	application
At	runtime,	by	the	end-user	of	the	application	(providing	that	you
include	this	capability	in	the	application)

As	an	application	developer,	you	generate	reference-keys	in	order	to	give
semantics	to	the	data.	For	example,	a	function	building	a	prism	may
create	three	reference-keys:	one	for	the	base	of	the	prism,	a	second	for
the	lateral	faces	and	a	third	for	the	top	face.	This	makes	up	a	semantic
built-in	the	application's	prism	feature.	On	the	other	hand,	in	a	command
allowing	the	end-user	to	set	a	texture	to	a	face	he/she	selects,	you	must
create	a	reference-key	to	the	selected	face	if	it	has	not	previously	been
referenced	in	any	feature	(as	in	the	case	of	one	of	the	lateral	faces	of	the
prism).

When	you	create	a	reference-key	to	selected	topological	elements
(faces,	edges	or	vertices),	OCAF	attaches	to	the	reference-key
information	defining	the	selected	topology	—	the	Naming	attribute.	For
example,	it	may	be	the	faces	to	which	a	selected	edge	is	common	to.
This	information,	as	well	as	information	about	the	evolution	of	the
topology	at	each	modeling	step	(the	modified,	updated	and	deleted
faces),	is	used	by	the	naming	algorithm	to	maintain	the	topology	attached
to	the	reference-key.	As	such,	on	a	parametrized	model,	after	modifying
the	value	of	a	parameter,	the	reference-keys	still	address	the	appropriate
faces,	even	if	their	geometry	has	changed.	Consequently,	you	change
the	size	of	the	cube	shown	in	the	figure	above,	the	user	texture	stay
attached	to	the	right	face.

Note	As	Topological	naming	is	based	on	the	reference-key	and	attributes
such	as	Naming	(selection	information)	and	Shape	(topology	evolution
information),	OCAF	is	not	coupled	to	the	underlying	modeling	libraries.
The	only	modeling	services	required	by	OCAF	are	the	following:

Each	algorithm	must	provide	information	about	the	evolution	of	the
topology	(the	list	of	faces	modified,	updated	and	deleted	by	the
algorithm)
Exploration	of	the	geometric	model	must	be	available	(a	3D	model	is
made	of	faces	bounded	by	close	wires,	themselves	composed	by	a
sequence	of	edges	connected	by	their	vertices)

Currently,	OCAF	uses	the	Open	CASCADE	Technology	modeling
libraries.

To	design	an	OCAF-based	data	model,	the	application	developer	is
encouraged	to	aggregate	ready-to-use	attributes	instead	of	defining	new
attributes	by	inheriting	from	an	abstract	root	class.	There	are	two	major
advantages	in	using	aggregation	rather	than	inheritance:

As	you	don't	implement	data	by	defining	new	classes,	the	format	of
saved	data	provided	with	OCAF	doesn't	change;	so	you	don't	have
to	write	the	Save	and	Open	functions
The	application	can	query	the	data	at	runtime	if	a	particular	attribute
is	available

Summary

OCAF	is	based	on	a	uniform	reference-key	model	in	which:
Reference-keys	provide	persistent	identification	of	data;
Data,	including	geometry,	are	implemented	as	attributes
attached	to	reference-keys;
Topological	naming	maintains	the	selected	geometry	attached	to
reference-keys	in	parametrized	models;

In	many	applications,	the	data	format	provided	with	OCAF	doesn't
need	to	be	extended;
OCAF	is	not	coupled	to	the	underlying	modeling	libraries.

The	Data	Framework
Data	Structure

The	OCAF	Data	Framework	is	the	Open	CASCADE	Technology
realization	of	the	reference-key	model	in	a	tree	structure.	It	offers	a	single
environment	where	data	from	different	application	components	can	be
handled.	This	allows	exchanging	and	modifying	data	simply,	consistently,
with	a	maximum	level	of	information	and	stable	semantics.

The	building	blocks	of	this	approach	are:

The	tag
The	label
The	attribute

As	it	has	been	mentioned	earlier,	the	first	label	in	a	framework	is	the	root
label	of	the	tree.	Each	label	has	a	tag	expressed	as	an	integer	value,	and
a	label	is	uniquely	defined	by	an	entry	expressed	as	a	list	of	tags	from	the
root,	0:1:2:1,	for	example.

Each	label	can	have	a	list	of	attributes,	which	contain	data,	and	several
attributes	can	be	attached	to	a	label.	Each	attribute	is	identified	by	a
GUID,	and	although	a	label	may	have	several	attributes	attached	to	it,	it
must	not	have	more	than	one	attribute	of	a	single	GUID.

The	sub-labels	of	a	label	are	called	its	children.	Conversely,	each	label,
which	is	not	the	root,	has	a	father.	Brother	labels	cannot	share	the	same
tag.

The	most	important	property	is	that	a	label’s	entry	is	its	persistent
address	in	the	data	framework.

A	simple	framework	model

In	this	image	the	circles	contain	tags	of	the	corresponding	labels.	The
lists	of	tags	are	located	under	the	circles.	The	root	label	always	has	a
zero	tag.

The	children	of	a	root	label	are	middle-level	labels	with	tags	1	and	3.
These	labels	are	brothers.

List	of	tags	of	the	right-bottom	label	is	"0:3:4":	this	label	has	tag	4,	its
father	(with	entry	"0:3")	has	tag	3,	father	of	father	has	tag	0	(the	root	label
always	has	"0"	entry).

Examples	of	a	Data	Structure
Let's	have	a	look	at	the	example:

The	coffee	machine

In	the	image	the	application	for	designing	coffee	machines	first	allocates
a	label	for	the	machine	unit.	It	then	adds	sub-labels	for	the	main	features
(glass	coffee	pot,	water	receptacle	and	filter)	which	it	refines	as	needed
(handle	and	reservoir	of	the	coffee	pot	and	spout	of	the	reservoir).

You	now	attach	technical	data	describing	the	handle	—	its	geometry	and
color	—	and	the	reservoir	—	its	geometry	and	material.	Later	on,	you	can
modify	the	handle's	geometry	without	changing	its	color	—	both	remain
attached	to	the	same	label.

The	data	structure	of	the	coffee	machine

The	nesting	of	labels	is	key	to	OCAF.	This	allows	a	label	to	have	its	own
structure	with	its	local	addressing	scheme	which	can	be	reused	in	a	more
complex	structure.	Take,	for	example,	the	coffee	machine.	Given	that	the
coffee	pot's	handle	has	a	label	of	tag	[1],	the	entry	for	the	handle	in	the
context	of	the	coffee	pot	only	(without	the	machine	unit)	is	[0:1:1].	If	you
now	model	a	coffee	machine	with	two	coffee	pots,	one	at	the	label	[1],	the
second	at	the	label	[4]	in	the	machine	unit,	the	handle	of	the	first	pot
would	have	the	entry	[0:1:1:1]	whereas	the	handle	of	the	second	pot
would	be	[0:1:4:1].	This	way,	we	avoid	any	confusion	between	coffee	pot
handles.

Another	example	is	the	application	for	designing	table	lamps.	The	first
label	is	allocated	to	the	lamp	unit.

The	root	label	cannot	have	brother	labels.	Consequently,	various	lamps
in	the	framework	allocation	correspond	to	the	sub-labels	of	the	root	label.
This	allows	avoiding	any	confusion	between	table	lamps	in	the	data
framework.	Different	lamp	parts	have	different	material,	color	and	other
attributes,	so	a	child	label	of	the	lamp	with	the	specified	tags	is	allocated
for	each	sub-unit	of	the	lamp:

a	lamp-shade	label	with	tag	1
a	bulb	label	with	tag	2
a	stem	label	with	tag	3

Label	tags	are	chosen	at	will.	They	are	only	identifiers	of	the	lamp	parts.
Now	you	can	refine	all	units:	by	setting	geometry,	color,	material	and
other	information	about	the	lamp	or	its	parts	to	the	specified	label.	This
information	is	placed	into	special	attributes	of	the	label:	the	pure	label
contains	no	data	–	it	is	only	a	key	to	access	data.

Remember	that	tags	are	private	addresses	without	any	meaning	outside
the	data	framework.	It	would,	for	instance,	be	an	error	to	use	part	names
as	tags.	These	might	change	or	be	removed	from	production	in	next
versions	of	the	application,	whereas	the	exact	form	of	that	part	might	be
reused	in	your	design,	the	part	name	could	be	integrated	into	the
framework	as	an	attribute.

So,	after	the	user	changes	the	lamp	design,	only	corresponding	attributes
are	changed,	but	the	label	structure	is	maintained.	The	lamp	shape	must
be	recreated	by	new	attribute	values	and	attributes	of	the	lamp	shape
must	refer	to	a	new	shape.

The	previous	figure	shows	the	table-lamps	document	structure:	each
child	of	the	root	label	contains	a	lamp	shape	attribute	and	refers	to	the
sub-labels,	which	contain	some	design	information	about	corresponding
sub-units.

The	data	framework	structure	allows	to	create	more	complex	structures:
each	lamp	label	sub-label	may	have	children	labels	with	more	detailed
information	about	parts	of	the	table	lamp	and	its	components.

Note	that	the	root	label	can	have	attributes	too,	usually	global	attributes:
the	name	of	the	document,	for	example.

Tag
A	tag	is	an	integer,	which	identifies	a	label	in	two	ways:

Relative	identification
Absolute	identification.

In	relative	identification,	a	label’s	tag	has	a	meaning	relative	to	the	father
label	only.	For	a	specific	label,	you	might,	for	example,	have	four	child
labels	identified	by	the	tags	2,	7,	18,	100.	In	using	relative	identification,
you	ensure	that	you	have	a	safe	scope	for	setting	attributes.

In	absolute	identification,	a	label’s	place	in	the	data	framework	is
specified	unambiguously	by	a	colon-separated	list	of	tags	of	all	the	labels
from	the	one	in	question	to	the	root	of	the	data	framework.	This	list	is
called	an	entry.	TDF_Tool::TagList	allows	retrieving	the	entry	for	a
specific	label.

In	both	relative	and	absolute	identification,	it	is	important	to	remember
that	the	value	of	an	integer	has	no	intrinsic	semantics	whatsoever.	In
other	words,	the	natural	sequence	that	integers	suggest,	i.e.	0,	1,	2,	3,	4
...	–	has	no	importance	here.	The	integer	value	of	a	tag	is	simply	a	key.

The	tag	can	be	created	in	two	ways:

Random	delivery
User-defined	delivery

As	the	names	suggest,	in	random	delivery,	the	tag	value	is	generated	by
the	system	in	a	random	manner.	In	user-defined	delivery,	you	assign	it	by
passing	the	tag	as	an	argument	to	a	method.

Creating	child	labels	using	random	delivery	of	tags

To	append	and	return	a	new	child	label,	you	use
TDF_TagSource::NewChild.	In	the	example	below,	the	argument	level2,
which	is	passed	to	NewChild,	is	a	TDF_Label.

TDF_Label	child1	=	TDF_TagSource::NewChild	(level2);	

TDF_Label	child2	=	TDF_TagSource::NewChild	(level2);	

Creation	of	a	child	label	by	user	delivery	from	a	tag

The	other	way	to	create	a	child	label	from	a	tag	is	by	user	delivery.	In
other	words,	you	specify	the	tag,	which	you	want	your	child	label	to	have.

To	retrieve	a	child	label	from	a	tag	which	you	have	specified	yourself,	you
need	to	use	TDF_Label::FindChild	and	TDF_Label::Tag	as	in	the
example	below.	Here,	the	integer	3	designates	the	tag	of	the	label	you
are	interested	in,	and	the	Boolean	false	is	the	value	for	the	argument
create.	When	this	argument	is	set	to	false,	no	new	child	label	is	created.

TDF_Label	achild	=	root.FindChild(3,Standard_False);	

if	(!achild.IsNull())	{	

Standard_Integer	tag	=	achild.Tag();	

}	

Label
The	tag	gives	a	persistent	address	to	a	label.	The	label	–	the	semantics
of	the	tag	–	is	a	place	in	the	data	framework	where	attributes,	which
contain	data,	are	attached.	The	data	framework	is,	in	fact,	a	tree	of	labels
with	a	root	as	the	ultimate	father	label.

Label	can	not	be	deleted	from	the	data	framework,	so,	the	structure	of
the	data	framework	that	has	been	created	can	not	be	removed	while	the
document	is	opened.	Hence	any	kind	of	reference	to	an	existing	label	will
be	actual	while	an	application	is	working	with	the	document.

Label	creation

Labels	can	be	created	on	any	labels,	compared	with	brother	labels	and
retrieved.	You	can	also	find	their	depth	in	the	data	framework	(depth	of
the	root	label	is	0,	depth	of	child	labels	of	the	root	is	1	and	so	on),
whether	they	have	children	or	not,	relative	placement	of	labels,	data
framework	of	this	label.	The	class	TDF_Label	offers	the	above	services.

Creating	child	labels

To	create	a	new	child	label	in	the	data	framework	using	explicit	delivery	of
tags,	use	TDF_Label::FindChild.

//creating	a	label	with	tag	10	at	Root	

TDF_Label	lab1	=	aDF->Root().FindChild(10);	

//creating	labels	7	and	2	on	label	10	

TDF_Label	lab2	=	lab1.FindChild(7);	

TDF_Label	lab3	=	lab1.FindChild(2);	

You	could	also	use	the	same	syntax	but	add	the	Boolean	true	as	a	value
of	the	argument	create.	This	ensures	that	a	new	child	label	will	be
created	if	none	is	found.	Note	that	in	the	previous	syntax,	this	was	also
the	case	since	create	is	true	by	default.

TDF_Label	level1	=	root.FindChild(3,Standard_True);	

TDF_Label	level2	=	level1.FindChild(1,Standard_True);	

Retrieving	child	labels

You	can	retrieve	child	labels	of	your	current	label	by	iteration	on	the	first
level	in	the	scope	of	this	label.

TDF_Label	current;	

//	

for	(TDF_ChildIterator	it1	(current,Standard_False);	

it1.More();	it1.Next())	{	

achild	=	it1.Value();	

//	

//	do	something	on	a	child	(level	1)	

//	

}	

You	can	also	retrieve	all	child	labels	in	every	descendant	generation	of
your	current	label	by	iteration	on	all	levels	in	the	scope	of	this	label.

for	(TDF_ChildIterator	itall	(current,Standard_True);	

itall.More();	itall.Next())	{	

achild	=	itall.Value();	

//	

//	do	something	on	a	child	(all	levels)	

//	

}	

Using	TDF_Tool::Entry	with	TDF_ChildIterator	you	can	retrieve	the
entries	of	your	current	label’s	child	labels	as	well.

void	DumpChildren(const	TDF_Label&	aLabel)	

{	

		TDF_ChildIterator	it;	

		TCollection_AsciiString	es;	

	for	(it.Initialize(aLabel,Standard_True);	it.More();	

it.Next()){	

				TDF_Tool::Entry(it.Value(),es);	

				cout		<<		as.ToCString()		<<		endl;	

		}	

}	

Retrieving	the	father	label

Retrieving	the	father	label	of	a	current	label.

TDF_Label	father	=	achild.Father();	

isroot	=	father.IsRoot();	

Attribute
The	label	itself	contains	no	data.	All	data	of	any	type	whatsoever	–
application	or	non-application	–	is	contained	in	attributes.	These	are
attached	to	labels,	and	there	are	different	types	for	different	types	of	data.
OCAF	provides	many	ready-to-use	standard	attributes	such	as	integer,
real,	constraint,	axis	and	plane.	There	are	also	attributes	for	topological
naming,	functions	and	visualization.	Each	type	of	attribute	is	identified	by
a	GUID.

The	advantage	of	OCAF	is	that	all	of	the	above	attribute	types	are
handled	in	the	same	way.	Whatever	the	attribute	type	is,	you	can	create
new	instances	of	them,	retrieve	them,	attach	them	to	and	remove	them
from	labels,	"forget"	and	"remember"	the	attributes	of	a	particular	label.

Retrieving	an	attribute	from	a	label

To	retrieve	an	attribute	from	a	label,	you	use	TDF_Label::FindAttribute.	In
the	example	below,	the	GUID	for	integer	attributes,	and	INT,	a	handle	to
an	attribute	are	passed	as	arguments	to	FindAttribute	for	the	current
label.

if(current.FindAttribute(TDataStd_Integer::GetID(),IN

T))	

{	

	//	the	attribute	is	found	

}	

else	

{	

	//	the	attribute	is	not	found	

}	

Identifying	an	attribute	using	a	GUID

You	can	create	a	new	instance	of	an	attribute	and	retrieve	its	GUID.	In
the	example	below,	a	new	integer	attribute	is	created,	and	its	GUID	is
passed	to	the	variable	guid	by	the	method	ID	inherited	from

TDF_Attribute.

Handle(TDataStd_Integer)	INT	=	new	

TDataStd_Integer();	

Standard_GUID	guid	=	INT->ID();	

Attaching	an	attribute	to	a	label

To	attach	an	attribute	to	a	label,	you	use	TDF_Label::Add.	Repetition	of
this	syntax	raises	an	error	message	because	there	is	already	an	attribute
with	the	same	GUID	attached	to	the	current	label.

TDF_Attribute::Label	for	INT	then	returns	the	label	attach	to	which	INT	is
attached.

current.Add	(INT);	//	INT	is	now	attached	to	current	

current.Add	(INT);	//	causes	failure	

TDF_Label	attach	=	INT->Label();	

Testing	the	attachment	to	a	label

You	can	test	whether	an	attribute	is	attached	to	a	label	or	not	by	using
TDF_Attribute::IsA	with	the	GUID	of	the	attribute	as	an	argument.	In	the
example	below,	you	test	whether	the	current	label	has	an	integer
attribute,	and	then,	if	that	is	so,	how	many	attributes	are	attached	to	it.
TDataStd_Integer::GetID	provides	the	GUID	argument	needed	by	the
method	IsAttribute.

TDF_Attribute::HasAttribute	tests	whether	there	is	an	attached	attribute,
and	TDF_Tool::NbAttributes	returns	the	number	of	attributes	attached	to
the	label	in	question,	e.g.	current.

//	Testing	of	attribute	attachment	

//	

if	(current.IsA(TDataStd_Integer::GetID()))	{	

//	the	label	has	an	Integer	attribute	attached	

}	

if	(current.HasAttribute())	{	

//	the	label	has	at	least	one	attribute	attached	

Standard_Integer	nbatt	=	current.NbAttributes();	

//	the	label	has	nbatt	attributes	attached	

}	

Removing	an	attribute	from	a	label

To	remove	an	attribute	from	a	label,	you	use	TDF_Label::Forget	with	the
GUID	of	the	deleted	attribute.	To	remove	all	attributes	of	a	label,
TDF_Label::ForgetAll.

current.Forget(TDataStd_Integer::GetID());	

//	integer	attribute	is	now	not	attached	to	current	

label	

current.ForgetAll();	

//	current	has	now	0	attributes	attached	

Specific	attribute	creation

If	the	set	of	existing	and	ready	to	use	attributes	implementing	standard
data	types	does	not	cover	the	needs	of	a	specific	data	presentation	task,
the	user	can	build	his	own	data	type	and	the	corresponding	new	specific
attribute	implementing	this	new	data	type.

There	are	two	ways	to	implement	a	new	data	type:	create	a	new	attribute
(standard	approach),	or	use	the	notion	of	User	Attribute	by	means	of	a
combination	of	standard	attributes	(alternative	way)

In	order	to	create	a	new	attribute	in	the	standard	way,	create	a	class
inherited	from	TDF_Attribute	and	implement	all	purely	virtual	and
necessary	virtual	methods:

ID()	–	returns	a	unique	GUID	of	a	given	attribute
Restore(attribute)	–	sets	fields	of	this	attribute	equal	to	the	fields	of
a	given	attribute	of	the	same	type
Paste(attribute,	relocation_table)	–	sets	fields	of	a	given	attribute
equal	to	the	field	values	of	this	attribute	;	if	the	attribute	has
references	to	some	objects	of	the	data	framework	and
relocation_table	has	this	element,	then	the	given	attribute	must	also
refer	to	this	object	.

NewEmpty()	–	returns	a	new	attribute	of	this	class	with	empty	fields
Dump(stream)	–	outputs	information	about	a	given	attribute	to	a
given	stream	debug	(usually	outputs	an	attribute	of	type	string	only)

Methods	NewEmpty,	Restore	and	Paste	are	used	for	the	common
transactions	mechanism	(Undo/Redo	commands).	If	you	don’t	need	this
attribute	to	react	to	undo/redo	commands,	you	can	write	only	stubs	of
these	methods,	else	you	must	call	the	Backup	method	of	the
TDF_Attribute	class	every	time	attribute	fields	are	changed.

To	enable	possibility	to	save	/	restore	the	new	attribute	in	XML	format,	do
the	following:

1.	 Create	a	new	package	with	the	name	Xml[package	name]	(for
example	XmlMyAttributePackage)	containing	class
XmlMyAttributePackage_MyAttributeDriver.	The	new	class	inherits
XmlMDF_ADriver	class	and	contains	the	translation	functionality:
from	transient	to	persistent	and	vice	versa	(see	the	realization	of	the
standard	attributes	in	the	packages	XmlMDataStd,	for	example).	Add
package	method	AddDrivers	which	adds	your	class	to	a	driver	table
(see	below).

2.	 Create	a	new	package	(or	do	it	in	the	current	one)	with	two	package
methods:

Factory,	which	loads	the	document	storage	and	retrieval	drivers;
and
AttributeDrivers,	which	calls	the	methods	AddDrivers	for	all
packages	responsible	for	persistence	of	the	document.

3.	 Create	a	plug-in	implemented	as	an	executable	(see	example
XmlPlugin).	It	calls	a	macro	PLUGIN	with	the	package	name	where
you	implemented	the	method	Factory.

To	enable	possibility	to	save	/	restore	the	new	attribute	in	binary	format,
do	the	following:

1.	 Create	a	new	package	with	name	Bin[package	name]	(for	example
BinMyAttributePackage)	containing	a	class
BinMyAttributePackage_MyAttributeDriver.	The	new	class	inherits
BinMDF_ADriver	class	and	contains	the	translation	functionality:
from	transient	to	persistent	and	vice	versa	(see	the	realization	of	the
standard	attributes	in	the	packages	BinMDataStd,	for	example).	Add
package	method	AddDrivers,	which	adds	your	class	to	a	driver	table.

2.	 Create	a	new	package	(or	do	it	in	the	current	one)	with	two	package
methods:

Factory,	which	loads	the	document	storage	and	retrieval	drivers;
and
AttributeDrivers,	which	calls	the	methods	AddDrivers	for	all
packages	responsible	for	persistence	of	the	document.

3.	 Create	a	plug-in	implemented	as	an	executable	(see	example
BinPlugin).	It	calls	a	macro	PLUGIN	with	the	package	name	where
you	implemented	the	method	Factory.	See	Saving	the	document
and	Opening	the	document	from	a	file	for	the	description	of
document	save/open	mechanisms.

If	you	decided	to	use	the	alternative	way	(create	a	new	attribute	by
means	of	UAttribute	and	a	combination	of	other	standard	attributes),	do
the	following:

1.	 Set	a	TDataStd_UAttribute	with	a	unique	GUID	attached	to	a	label.
This	attribute	defines	the	semantics	of	the	data	type	(identifies	the
data	type).

2.	 Create	child	labels	and	allocate	all	necessary	data	through	standard
attributes	at	the	child	labels.

3.	 Define	an	interface	class	for	access	to	the	data	of	the	child	labels.

Choosing	the	alternative	way	of	implementation	of	new	data	types	allows
to	forget	about	creating	persistence	classes	for	your	new	data	type.
Standard	persistence	classes	will	be	used	instead.	Besides,	this	way
allows	separating	the	data	and	the	methods	for	access	to	the	data
(interfaces).	It	can	be	used	for	rapid	development	in	all	cases	when
requirements	to	application	performance	are	not	very	high.

Let’s	study	the	implementation	of	the	same	data	type	in	both	ways	by	the
example	of	transformation	represented	by	gp_Trsf	class.	The	class
gp_Trsf	defines	the	transformation	according	to	the	type	(gp_TrsfForm)
and	a	set	of	parameters	of	the	particular	type	of	transformation	(two
points	or	a	vector	for	translation,	an	axis	and	an	angle	for	rotation,	and	so
on).

1.	 The	first	way:	creation	of	a	new	attribute.	The	implementation	of	the
transformation	by	creation	of	a	new	attribute	is	represented	in	the
Samples.

2.	 The	second	way:	creation	of	a	new	data	type	by	means	of

combination	of	standard	attributes.	Depending	on	the	type	of
transformation	it	may	be	kept	in	data	framework	by	different	standard
attributes.	For	example,	a	translation	is	defined	by	two	points.
Therefore	the	data	tree	for	translation	looks	like	this:

Type	of	transformation	(gp_Translation)	as	TDataStd_Integer;
First	point	as	TDataStd_RealArray	(three	values:	X1,	Y1	and
Z1);
Second	point	as	TDataStd_RealArray	(three	values:	X2,	Y2	and
Z2).

Data	tree	for	translation

If	the	type	of	transformation	is	changed	to	rotation,	the	data	tree	looks
like	this:

Type	of	transformation	(gp_Rotation)	as	TDataStd_Integer;
Point	of	axis	of	rotation	as	TDataStd_RealArray	(three	values:	X,	Y
and	Z);
Axis	of	rotation	as	TDataStd_RealArray	(three	values:	DX,	DY	and
DZ);
Angle	of	rotation	as	TDataStd_Real.

Data	tree	for	rotation

The	attribute	TDataStd_UAttribute	with	the	chosen	unique	GUID
identifies	the	data	type.	The	interface	class	initialized	by	the	label	of	this
attribute	allows	access	to	the	data	container	(type	of	transformation	and
the	data	of	transformation	according	to	the	type).

Compound	documents
As	the	identification	of	data	is	persistent,	one	document	can	reference
data	contained	in	another	document,	the	referencing	and	referenced
documents	being	saved	in	two	separate	files.

Lets	look	at	the	coffee	machine	application	again.	The	coffee	pot	can	be
placed	in	one	document.	The	coffee	machine	document	then	includes	an
occurrence	—	a	positioned	copy	—	of	the	coffee	pot.	This	occurrence	is
defined	by	an	XLink	attribute	(the	external	Link)	which	references	the
coffee	pot	of	the	first	document	(the	XLink	contains	the	relative	path	of
the	coffee	pot	document	and	the	entry	of	the	coffee	pot	data	[0:1]).

The	coffee	machine	compound	document

In	this	context,	the	end-user	of	the	coffee	machine	application	can	open
the	coffee	pot	document,	modify	the	geometry	of,	for	example,	the
reservoir,	and	overwrite	the	document	without	worrying	about	the	impact
of	the	modification	in	the	coffee	machine	document.	To	deal	with	this
situation,	OCAF	provides	a	service	which	allows	the	application	to	check
whether	a	document	is	up-to-date.	This	service	is	based	on	a
modification	counter	included	in	each	document:	when	an	external	link	is
created,	a	copy	of	the	referenced	document	counter	is	associated	to	the
XLink	in	the	referencing	document.	Providing	that	each	modification	of
the	referenced	document	increments	its	own	counter,	we	can	detect	that
the	referencing	document	has	to	be	updated	by	comparing	the	two
counters	(an	update	function	importing	the	data	referenced	by	an	XLink
into	the	referencing	document	is	also	provided).

Transaction	mechanism
The	Data	Framework	also	provides	a	transaction	mechanism	inspired
from	database	management	systems:	the	data	are	modified	within	a
transaction	which	is	terminated	either	by	a	Commit	if	the	modifications
are	validated	or	by	an	Abort	if	the	modifications	are	abandoned	—	the
data	are	then	restored	to	the	state	it	was	in	prior	to	the	transaction.	This
mechanism	is	extremely	useful	for:

Securing	editing	operations	(if	an	error	occurs,	the	transaction	is
abandoned	and	the	structure	retains	its	integrity)
Simplifying	the	implementation	of	the	Cancel	function	(when	the
end-user	begins	a	command,	the	application	may	launch	a
transaction	and	operate	directly	in	the	data	structure;	abandoning	the
action	causes	the	transaction	to	Abort)
Executing	Undo	(at	commit	time,	the	modifications	are	recorded	in
order	to	be	able	to	restore	the	data	to	their	previous	state)

The	transaction	mechanism	simply	manages	a	backup	copy	of	attributes.
During	a	transaction,	attributes	are	copied	before	their	first	modification.	If
the	transaction	is	validated,	the	copy	is	destroyed.	If	the	transaction	is
abandoned,	the	attribute	is	restored	to	its	initial	value	(when	attributes	are
added	or	deleted,	the	operation	is	simply	reversed).

Transactions	are	document-centered,	that	is,	the	application	starts	a
transaction	on	a	document.	So,	modifying	a	referenced	document	and
updating	one	of	its	referencing	documents	requires	two	transactions,
even	if	both	operations	are	done	in	the	same	working	session.

Standard	Document	Services
Overview

Standard	documents	offer	ready-to-use	documents	containing	a	TDF-
based	data	framework.	Each	document	can	contain	only	one	framework.

The	documents	themselves	are	contained	in	the	instantiation	of	a	class
TDocStd_Application	(or	its	descendant).	This	application	manages	the
creation,	storage	and	retrieval	of	documents.

You	can	implement	undo	and	redo	in	your	document,	and	refer	from	the
data	framework	of	one	document	to	that	of	another	one.	This	is	done	by
means	of	external	link	attributes,	which	store	the	path	and	the	entry	of
external	links.

To	sum	up,	standard	documents	alone	provide	access	to	the	data
framework.	They	also	allow	you	to:

Update	external	links
Manage	the	saving	and	opening	of	data
Manage	the	undo/redo	functionality.

The	Application
As	a	container	for	your	data	framework,	you	need	a	document,	and	your
document	must	be	contained	in	your	application.	This	application	will	be
a	class	TDocStd_Application	or	a	class	inheriting	from	it.

Creating	an	application

To	create	an	application,	use	the	following	syntax.

Handle(TDocStd_Application)	app	=	new	

TDocStd_Application	();	

Creating	a	new	document

To	the	application	which	you	declared	in	the	previous	example	(4.2.1),
you	must	add	the	document	doc	as	an	argument	of
TDocStd_Application::NewDocument.

Handle(TDocStd_Document)	doc;	

app->NewDocument("NewDocumentFormat",	doc);	

Here	"NewDocumentFormat"	is	identifier	of	the	format	of	your	document.
OCCT	defines	several	standard	formats,	distinguishing	by	a	set	of
supported	OCAF	attributes,	and	method	of	encoding	(e.g.	binary	data	or
XML),	described	below.	If	your	application	defines	specific	OCAF
attributes,	you	need	to	define	your	own	format	for	it.

Retrieving	the	application	to	which	the	document	belongs

To	retrieve	the	application	containing	your	document,	you	use	the	syntax
below.

app	=	Handle(TDocStd_Application)::DownCast	(doc-

>Application());	

The	Document
The	document	contains	your	data	framework,	and	allows	you	to	retrieve
this	framework,	recover	its	main	label,	save	it	in	a	file,	and	open	or	close
this	file.

Accessing	the	main	label	of	the	framework

To	access	the	main	label	in	the	data	framework,	you	use
TDocStd_Document::Main	as	in	the	example	below.	The	main	label	is	the
first	child	of	the	root	label	in	the	data	framework,	and	has	the	entry	0:1.

TDF_Label	label	=	doc->Main();	

Retrieving	the	document	from	a	label	in	its	framework

To	retrieve	the	document	from	a	label	in	its	data	framework,	you	use
TDocStd_Document::Get	as	in	the	example	below.	The	argument	label
passed	to	this	method	is	an	instantiation	of	TDF_Label.

doc	=	TDocStd_Document::Get(label);	

Defining	storage	format

OCAF	uses	a	customizable	mechanism	for	storage	of	the	documents.	In
order	to	use	OCAF	persistence	to	save	and	read	your	documents	to	/
from	the	file,	you	need	to	define	one	or	several	formats	in	your
application.

For	that,	use	method	TDocStd_Application::DefineFormat(),	for	instance:

app->DefineFormat	("NewDocumentFormat",	"New	format	

for	OCAF	documents",	"ndf",

																			new	

NewDocumentFormat_RetrievalDriver(),

																			new	

NewDocumentFormat_StorageDriver());

This	example	defines	format	"NewDocumentFormat"	with	a	default	file
extension	"ndf",	and	instantiates	drivers	for	reading	and	storing
documents	from	and	to	that	format.	Either	of	the	drivers	can	be	null,	in
this	case	the	corresponding	action	will	not	be	supported	for	that	format.

OCAF	provides	several	standard	formats,	each	covering	some	set	of
OCAF	attributes:

Format Persistent	toolkit OCAF	attributes	covered
Legacy	formats	(read	only)
OCC-StdLite TKStdL TKLCAF
MDTV-Standard TKStd TKLCAF	+	TKCAF
Binary	formats
BinLOcaf TKBinL TKLCAF
BinOcaf TKBin TKLCAF	+	TKCAF
BinXCAF TKBinXCAF TKLCAF	+	TKCAF	+	TKXCAF
TObjBin TKBinTObj TKLCAF	+	TKTObj
XML	formats
XmlLOcaf TKXmlL TKLCAF
XmlOcaf TKXml TKLCAF	+	TKCAF
XmlXCAF TKXmlXCAF TKLCAF	+	TKCAF	+	TKXCAF
TObjXml TKXmlTObj TKLCAF	+	TKTObj

For	convenience,	these	toolkits	provide	static	methods	DefineFormat()
accepting	handle	to	application.	These	methods	allow	defining
corresponding	formats	easily,	e.g.:

BinDrivers::DefineFormat	(app);	//	define	format	

"BinOcaf"

Use	these	toolkits	as	an	example	for	implementation	of	persistence
drivers	for	custom	attributes,	or	new	persistence	formats.

The	application	can	define	several	storage	formats.	On	save,	the	format
specified	in	the	document	(see	TDocStd_Document::StorageFormat())
will	be	used	(save	will	fail	if	that	format	is	not	defined	in	the	application).

On	reading,	the	format	identifier	stored	in	the	file	is	used	and	recorded	in
the	document.

Defining	storage	format	by	resource	files

The	alternative	method	to	define	formats	is	via	usage	of	resource	files.
This	method	was	used	in	earlier	versions	of	OCCT	and	is	considered	as
deprecated	since	version	7.1.0.	This	method	allows	loading	persistence
drivers	on	demand,	using	plugin	mechanism.

To	use	this	method,	create	your	own	application	class	inheriting	from
TDocStd_Application,	and	override	method	ResourcesName().	That
method	should	return	a	string	with	a	name	of	resource	file,	e.g.
"NewDocumentFormat",	which	will	contain	a	description	of	the	format.

Then	create	that	resource	file	and	define	the	parameters	of	your	format:

ndf.FileFormat:	NewDocumentFormat

NewDocumentFormat.Description:	New	Document	Format	

Version	1.0	

NewDocumentFormat.FileExtension:	ndf	

NewDocumentFormat.StoragePlugin:	bb5aa176-c65c-4c84-

862e-6b7c1fe16921

NewDocumentFormat.RetrievalPlugin:	76fb4c04-ea9a-

46aa-88a2-25f6a228d902	

The	GUIDs	should	be	unique	and	correspond	to	the	GUIDs	supported	by
relevant	plugin.	You	can	use	an	existing	plugins	(see	the	table	above)	or
create	your	own.

Finally,	make	a	copy	of	the	resource	file	"Plugin"	from
$CASROOT/src/StdResource	and,	if	necessary,	add	the	definition	of	your
plugin	in	it,	for	instance:

bb5aa176-c65c-4c84-862e-6b7c1fe16921.Location:	

TKNewFormat

76fb4c04-ea9a-46aa-88a2-25f6a228d902.Location:	

TKNewFormat

In	order	to	have	these	resource	files	loaded	during	the	program

execution,	it	is	necessary	to	set	two	environment	variables:
CSF_PluginDefaults	and	CSF_NewFormatDefaults.	For	example,	set	the
files	in	the	directory	MyApplicationPath/MyResources:

setenv	CSF_PluginDefaults	

MyApplicationPath/MyResources	

setenv	CSF_NewFormatDefaults	

MyApplicationPath/MyResources	

Saving	a	document

To	save	the	document,	make	sure	that	its	parameter	StorageFormat()
corresponds	to	one	of	the	formats	defined	in	the	application,	and	use
method	TDocStd_Application::SaveAs,	for	instance:

app->SaveAs(doc,	"/tmp/example.caf");	

Opening	the	document	from	a	file

To	open	the	document	from	a	file	where	it	has	been	previously	saved,
you	can	use	TDocStd_Application::Open	as	in	the	example	below.	The
arguments	are	the	path	of	the	file	and	the	document	saved	in	this	file.

app->Open("/tmp/example.caf",	doc);	

Cutting,	copying	and	pasting	inside	a	document

To	cut,	copy	and	paste	inside	a	document,	use	the	class
TDF_CopyLabel.

In	fact,	you	must	define	a	Label,	which	contains	the	temporary	value	of	a
cut	or	copy	operation	(say,	in	Lab_Clipboard).	You	must	also	define	two
other	labels:

The	data	container	(e.g.	Lab_source)
The	destination	of	the	copy	(e.g.	Lab_	Target)

Copy	=	copy	(Lab_Source	=>	Lab_Clipboard)

Cut	=	copy	+	Lab_Source.ForgetAll()	//	command	clear	

the	contents	of	LabelSource.

Paste	=	copy	(Lab_Clipboard	=>	Lab_target)

So	we	need	a	tool	to	copy	all	(or	a	part)	of	the	content	of	a	label	and	its
sub-label,	to	another	place	defined	by	a	label.

TDF_CopyLabel	aCopy;

TDF_IDFilter	aFilter	(Standard_False);

//Don't	copy	TDataStd_TreeNode	attribute

	aFilter.Ignore(TDataStd_TreeNode::GetDefaultTreeID()

);

	aCopy.Load(aSource,	aTarget);	

aCopy.UseFilter(aFilter);	aCopy.Perform();

//	copy	the	data	structure	to	clipboard	

return	aCopy.IsDone();	}

The	filter	is	used	to	forbid	copying	a	specified	type	of	attribute.

You	can	also	have	a	look	at	the	class	TDF_Closure,	which	can	be	useful
to	determine	the	dependencies	of	the	part	you	want	to	cut	from	the
document.

External	Links
External	links	refer	from	one	document	to	another.	They	allow	you	to
update	the	copy	of	data	framework	later	on.

External	links	between	documents

Note	that	documents	can	be	copied	with	or	without	a	possibility	of
updating	an	external	link.

Copying	the	document

With	the	possibility	of	updating	it	later

To	copy	a	document	with	a	possibility	of	updating	it	later,	you	use
TDocStd_XLinkTool::CopyWithLink.

Handle(TDocStd_Document)	doc1;	

Handle(TDocStd_Document)	doc2;	

TDF_Label	source	=	doc1->GetData()->Root();	

TDF_Label	target	=	doc2->GetData()->Root();	

TDocStd_XLinkTool	XLinkTool;	

XLinkTool.CopyWithLink(target,source);	

Now	the	target	document	has	a	copy	of	the	source	document.	The	copy
also	has	a	link	in	order	to	update	the	content	of	the	copy	if	the	original
changes.

In	the	example	below,	something	has	changed	in	the	source	document.
As	a	result,	you	need	to	update	the	copy	in	the	target	document.	This
copy	is	passed	to	TDocStd_XLinkTool::UpdateLink	as	the	argument
target.

XLinkTool.UpdateLink(target);	

Without	any	link	between	the	copy	and	the	original

You	can	also	create	a	copy	of	the	document	with	no	link	between	the
original	and	the	copy.	The	syntax	to	use	this	option	is
TDocStd_XLinkTool::Copy.	The	copied	document	is	again	represented
by	the	argument	target,	and	the	original	–	by	source.

XLinkTool.Copy(target,	source);	

OCAF	Shape	Attributes
Overview

A	topological	attribute	can	be	seen	as	a	hook	into	the	topological
structure.	It	is	possible	to	attach	data	to	define	references	to	it.

OCAF	shape	attributes	are	used	for	topology	objects	and	their	evolution
access.	All	topological	objects	are	stored	in	one	TNaming_UsedShapes
attribute	at	the	root	label	of	the	data	framework.	This	attribute	contains	a
map	with	all	topological	shapes	used	in	a	given	document.

The	user	can	add	the	TNaming_NamedShape	attribute	to	other	labels.
This	attribute	contains	references	(hooks)	to	shapes	from	the
TNaming_UsedShapes	attribute	and	an	evolution	of	these	shapes.	The
TNaming_NamedShape	attribute	contains	a	set	of	pairs	of	hooks:	to	the
Old	shape	and	to	a	New	shape	(see	the	following	figure).	It	allows	not
only	to	get	the	topological	shapes	by	the	labels,	but	also	to	trace	the
evolution	of	the	shapes	and	to	correctly	update	dependent	shapes	by	the
changed	one.

If	a	shape	is	newly	created,	then	the	old	shape	of	a	corresponding	named
shape	is	an	empty	shape.	If	a	shape	is	deleted,	then	the	new	shape	in
this	named	shape	is	empty.

Shape	attributes	in	data	framework.
Different	algorithms	may	dispose	sub-shapes	of	the	result	shape	at	the
individual	labels	depending	on	whether	it	is	necessary	to	do	so:

If	a	sub-shape	must	have	some	extra	attributes	(material	of	each
face	or	color	of	each	edge).	In	this	case	a	specific	sub-shape	is
placed	to	a	separate	label	(usually	to	a	sub-label	of	the	result	shape
label)	with	all	attributes	of	this	sub-shape.
If	the	topological	naming	algorithm	is	needed,	a	necessary	and
sufficient	set	of	sub-shapes	is	placed	to	child	labels	of	the	result
shape	label.	As	usual,	for	a	basic	solid	and	closed	shells,	all	faces	of
the	shape	are	disposed.

TNaming_NamedShape	may	contain	a	few	pairs	of	hooks	with	the	same
evolution.	In	this	case	the	topology	shape,	which	belongs	to	the	named
shape	is	a	compound	of	new	shapes.

Consider	the	following	example.	Two	boxes	(solids)	are	fused	into	one
solid	(the	result	one).	Initially	each	box	was	placed	to	the	result	label	as	a
named	shape,	which	has	evolution	PRIMITIVE	and	refers	to	the
corresponding	shape	of	the	TNaming_UsedShapes	map.	The	box	result
label	has	a	material	attribute	and	six	child	labels	containing	named
shapes	of	Box	faces.

Resulting	box

After	the	fuse	operation	a	modified	result	is	placed	to	a	separate	label	as

a	named	shape,	which	refers	to	the	old	shape	(one	of	the	boxes)	and	to
the	new	shape	resulting	from	the	fuse	operation,	and	has	evolution
MODIFY	(see	the	following	figure).

Named	shapes,	which	contain	information	about	modified	faces,	belong
to	the	fuse	result	sub-labels:

sub-label	with	tag	1	–	modified	faces	from	box	1,
sub-label	with	tag	2	–	modified	faces	from	box	2.

This	is	necessary	and	sufficient	information	for	the	functionality	of	the
right	naming	mechanism:	any	sub-shape	of	the	result	can	be	identified
unambiguously	by	name	type	and	set	of	labels,	which	contain	named
shapes:

face	F1’	as	a	modification	of	face	F11
face	F1’’	as	generation	of	face	F12
edges	as	an	intersection	of	two	contiguous	faces
vertices	as	an	intersection	of	three	contiguous	faces

After	any	modification	of	source	boxes	the	application	must	automatically
rebuild	the	naming	entities:	recompute	the	named	shapes	of	the	boxes
(solids	and	faces)	and	fuse	the	resulting	named	shapes	(solids	and
faces)	that	reference	to	the	new	named	shapes.

Registering	shapes	and	their	evolution
When	using	TNaming_NamedShape	to	create	attributes,	the	following
fields	of	an	attribute	are	filled:

A	list	of	shapes	called	the	"old"	and	the	"new"	shapes	A	new	shape
is	recomputed	as	the	value	of	the	named	shape.	The	meaning	of	this
pair	depends	on	the	type	of	evolution.
The	type	of	evolution,	which	is	a	term	of	the	TNaming_Evolution
enumeration	used	for	the	selected	shapes	that	are	placed	to	the
separate	label:

PRIMITIVE	–	newly	created	topology,	with	no	previous	history;
GENERATED	–	as	usual,	this	evolution	of	a	named	shape
means,	that	the	new	shape	is	created	from	a	low-level	old	shape
(a	prism	face	from	an	edge,	for	example);
MODIFY	–	the	new	shape	is	a	modified	old	shape;
DELETE	–	the	new	shape	is	empty;	the	named	shape	with	this
evolution	just	indicates	that	the	old	shape	topology	is	deleted
from	the	model;
SELECTED	–	a	named	shape	with	this	evolution	has	no	effect
on	the	history	of	the	topology.

Only	pairs	of	shapes	with	equal	evolution	can	be	stored	in	one	named
shape.

Using	naming	resources
The	class	TNaming_Builder	allows	creating	a	named	shape	attribute.	It
has	a	label	of	a	future	attribute	as	an	argument	of	the	constructor.
Respective	methods	are	used	for	the	evolution	and	setting	of	shape
pairs.	If	for	the	same	TNaming_Builder	object	a	lot	of	pairs	of	shapes	with
the	same	evolution	are	given,	then	these	pairs	would	be	placed	in	the
resulting	named	shape.	After	the	creation	of	a	new	object	of	the
TNaming_Builder	class,	an	empty	named	shape	is	created	at	the	given
label.

//	a	new	empty	named	shape	is	created	at	"label"	

TNaming_Builder	builder(label);	

//	set	a	pair	of	shapes	with	evolution	GENERATED	

builder.Generated(oldshape1,newshape1);	

//	set	another	pair	of	shapes	with	the	same	evolution	

builder.Generated(oldshape2,newshape2);	

//	get	the	result	-	TNaming_NamedShape	attribute	

Handle(TNaming_NamedShape)	ns	=	builder.NamedShape();	

Reading	the	contents	of	a	named	shape
attribute
You	can	use	the	method	TNaming_NamedShape::Evolution()	to	get	the
evolution	of	this	named	shape	and	the	method
TNaming_NamedShape::Get()	to	get	a	compound	of	new	shapes	of	all
pairs	of	this	named	shape.

More	detailed	information	about	the	contents	of	the	named	shape	or
about	the	modification	history	of	a	topology	can	be	obtained	with	the
following:

TNaming_Tool	provides	a	common	high-level	functionality	for	access
to	the	named	shapes	contents:

The	method	GetShape(Handle(TNaming_NamedShape))
returns	a	compound	of	new	shapes	of	the	given	named	shape;
The	method	CurrentShape(Handle(TNaming_NamedShape))
returns	a	compound	of	the	shapes,	which	are	latest	versions	of
the	shapes	from	the	given	named	shape;
The	method	NamedShape(TopoDS_Shape,TDF_Label)	returns
a	named	shape,	which	contains	a	given	shape	as	a	new	shape.
A	given	label	is	any	label	from	the	data	framework	–	it	just	gives
access	to	it.

TNaming_Iterator	gives	access	to	the	named	shape	and	hooks	pairs.

//	create	an	iterator	for	a	named	shape	

TNaming_Iterator	iter(namedshape);	

//	iterate	while	some	pairs	are	not	iterated	

while(iter.More())	{	

//	get	the	new	shape	from	the	current	pair	

TopoDS_Shape	newshape	=	iter.NewShape();	

//	get	the	old	shape	from	the	current	pair	

TopoDS_Shape	oldshape	=	iter.OldShape();	

//	do	something...	

//	go	to	the	next	pair	

iter.Next();	

}	

Topological	naming
The	Topological	Naming	mechanism	is	based	on	3	components:

History	of	the	used	modeling	operation	algorithm;
Registering	of	the	built	result	in	Data	Framework	(i.e.	loading	the
necessary	elements	of	the	extracted	history	in	OCAF	document);
Selection	/	Recomputation	of	a	"selected"	sub-shape	of	the	algorithm
result.

To	get	the	expected	result	the	work	of	the	three	components	should	be
synchronized	and	the	rules	of	each	component	should	be	respected.

Algorithm	history

The	"correct"	history	of	a	used	modeling	operation	serves	the	basis	of
naming	mechanism.	It	should	be	provided	by	the	algorithm	supporting	the
operation.	The	history	content	depends	on	the	type	of	the	topological
result.	The	purpose	of	the	history	is	to	provide	all	entities	for	consistent
and	correct	work	of	the	Selection	/	Recomputation	mechanism.	The	table
below	presents	expected	types	of	entities	depending	on	the	result	type.

Result
type

Type	of	sub-shapes	to
be	returned	by	history
of	algorithm

Comments

Solid	or
closed
shell

Faces All	faces

Open	shell
or	single
face

Faces	and	edges	of
opened	boundaries	only

All	faces	plus	all	edges	of
opened	boundaries

Closed
wire Edges All	edges

Opened
wire Edges	and	ending	vertexes All	edges	plus	ending

vertexes	of	the	wire
Edge Vertexes Two	vertexes	are	expected

Compound
or
CompSolid

To	be	used	consequentially
the	above	declared	rule
applied	to	all	sub-shapes	of
the	first	level

Compound/CompSolid	to	be
explored	level	by	level	until
any	the	mentioned	above
types	will	be	met

The	history	should	return	(and	track)	only	elementary	types	of	sub-
shapes,	i.e.	Faces,	Edges	and	Vertexes,	while	other	so-called
aggregation	types:	Compounds,	Shells,	Wires,	are	calculated	by
Selection	mechanism	automatically.

There	are	some	simple	exceptions	for	several	cases.	For	example,	if	the
Result	contains	a	seam	edge	–	in	conical,	cylindrical	or	spherical
surfaces	–	this	seam	edge	should	be	tracked	by	the	history	and	in
addition	should	be	defined	before	the	types.	All	degenerated	entities
should	be	filtered	and	excluded	from	consideration.

Loading	history	in	data	framework

All	elements	returned	by	the	used	algorithm	according	to	the
aforementioned	rules	should	be	put	in	the	Data	Framework	(or	OCAF
document	in	other	words)	consequently	in	linear	order	under	the	so-
called	Result	Label.

The	"Result	Label"	is	TDF_label	used	to	keep	the	algorithm	result	Shape
from	TopoDS	in	NamedShape	attribute.	During	loading	sub-shapes	of	the
result	in	Data	Framework	should	be	used	the	rules	of	chapter
Registering	shapes	and	their	evolution.	These	rules	are	also
applicable	for	loading	the	main	shape,	i.e.	the	resulting	shape	produced
by	the	modeling	algorithm.

Selection	/	re-computation	mechanism

When	the	Data	Framework	is	filled	with	all	impacted	entities	(including
the	data	structures	resulting	from	the	current	modeling	operation	and	the
data	structures	resulting	from	the	previous	modeling	operations,	on	which
the	current	operation	depends)	any	sub-shape	of	the	current	result	can
be	selected,	i.e.	the	corresponding	new	naming	data	structures,	which
support	this	functionality,	can	be	produced	and	kept	in	the	Data
Framework.

One	of	the	user	interfaces	for	topological	naming	is	the	class
TNaming_Selector.	It	implements	the	above	mentioned	sub-shape
"selection"	functionality	as	an	additional	one.	I.e.	it	can	be	used	for:

Storing	the	selected	shape	on	a	label	–	its	Selection;
Accessing	the	named	shape	–	check	the	kept	value	of	the	shape
Update	of	this	naming	–	recomputation	of	an	earlier	selected	shape.

The	selector	places	a	new	named	shape	with	evolution	SELECTED	to
the	given	label.	The	selector	creates	a	name	of	the	selected	shape,
which	is	a	unique	description	(data	structure)	of	how	to	find	the	selected
topology	using	as	resources:

the	given	context	shape,	i.e.	the	main	shape	kept	on	Result	Label,
which	contains	a	selected	sub-shape,
its	evolution	and
naming	structure.

After	any	modification	of	a	context	shape	and	update	of	the
corresponding	naming	structure,	it	is	necessary	to	call	method
TNaming_Selector::Solve.	If	the	naming	structure,	i.e.	the	above
mentioned	name,	is	correct,	the	selector	automatically	updates	the
selected	sub-shape	in	the	corresponding	named	shape,	else	it	fails.

Exploring	shape	evolution
The	class	TNaming_Tool	provides	a	toolkit	to	read	current	data	contained
in	the	attribute.

If	you	need	to	create	a	topological	attribute	for	existing	data,	use	the
method	NamedShape.

class	MyPkg_MyClass	

{	

public:	Standard_Boolean	SameEdge	(const	

Handle(CafTest_Line)&	L1,	const	

Handle(CafTest_Line)&	L2);	

};	

Standard_Boolean	CafTest_MyClass::SameEdge	(const	

Handle(CafTest_Line)&	L1,	const	

Handle(CafTest_Line)&	L2)	

{	

		Handle(TNaming_NamedShape)	NS1	=	L1->NamedShape();	

		Handle(TNaming_NamedShape)	NS2	=	L2->NamedShape();	

	return	BRepTools::Compare(NS1,NS2);	

}	

Example	of	topological	naming	usage
Topological	naming	is	a	mechanism	of	Open	CASCADE	aimed	to	keep
reference	to	the	selected	shape.	If,	for	example,	we	select	a	vertex	of	a
solid	shape	and	“ask”	the	topological	naming	to	keep	reference	to	this
vertex,	it	will	refer	to	the	vertex	whatever	happens	with	the	shape
(translations,	scaling,	fusion	with	another	shape,	etc.).

Let	us	consider	an	example:	imagine	a	wooden	plate.	The	job	is	to	drive
several	nails	in	it:

A	nail	driven	in	a	wooden	plate

There	may	be	several	nails	with	different	size	and	position.	A	Hammer
should	push	each	Nail	exactly	in	the	center	point	of	the	top	surface.	For
this	the	user	does	the	following:

Makes	several	Nails	of	different	height	and	diameter	(according	to
the	need),
Chooses	(selects)	the	upper	surface	of	each	Nail	for	the	Hammer.

The	job	is	done.	The	application	should	do	the	rest	–	the	Hammer
calculates	a	center	point	for	each	selected	surface	of	the	Nail	and
“strikes”	each	Nail	driving	it	into	the	wooden	plate.

What	happens	if	the	user	changes	the	position	of	some	Nails?	How	will
the	Hammer	know	about	it?	It	keeps	reference	to	the	surface	of	each
Nail.	However,	if	a	Nail	is	relocated,	the	Hammer	should	know	the	new

position	of	the	selected	surface.	Otherwise,	it	will	“strike”	at	the	old
position	(keep	the	fingers	away!)…

Topological	naming	mechanism	should	help	the	Hammer	to	obtain	the
relocated	surfaces.	The	Hammer	“asks”	the	mechanism	to	“resolve”	the
selected	shapes	by	calling	method	TNaming_Selection::Solve()	and	the
mechanism	“returns”	the	modified	surfaces	located	at	the	new	position	by
calling	TNaming_Selector::NamedShape().

The	topological	naming	is	represented	as	a	“black	box”	in	the	example
above.	Now	it	is	time	to	make	the	box	a	little	more	“transparent”.

The	application	contains	3	functions:

Nail	–	produces	a	shape	representing	a	nail,
Translator	–	translates	a	shape	along	the	wooden	plate,
Hammer	–	drives	the	nail	in	the	wooden	plate.

Each	function	gives	the	topological	naming	some	hints	how	to	“re-solve”
the	selected	sub-shapes:

The	Nail	constructs	a	solid	shape	and	puts	each	face	of	the	shape
into	sub-labels:

Distribution	of	faces	through	sub-labels	of	the	Nail

The	Translator	moves	a	shape	and	registers	modification	for	each
face:	it	puts	a	pair:	“old”	shape	–	“new”	shape	at	a	sub-label	of	each
moving	Nail.	The	“old”	shape	represents	a	face	of	the	Nail	at	the
initial	position.	The	“new”	shape	–	is	the	same	face,	but	at	a	new
position:

Registration	of	relocation	of	faces	of	a	Nail

How	does	it	work?

The	Hammer	selects	a	face	of	a	Nail	calling
TNaming_Selector::Select().	This	call	makes	a	unique	name	for	the
selected	shape.	In	our	example,	it	will	be	a	direct	reference	to	the
label	of	the	top	face	of	the	Nail	(Face	1).
When	the	user	moves	a	Nail	along	the	wooden	plate,	the	Translator
registers	this	modification	by	putting	the	pairs:	“old”	face	of	the	Nail	–
new	face	of	the	Nail	into	its	sub-labels.
When	the	Hammer	calls	TNaming::Solve(),	the	topological	naming
“looks”	at	the	unique	name	of	the	selected	shape	and	tries	to	re-
solve	it:

It	finds	the	1st	appearance	of	the	selected	shape	in	the	data	tree
–	it	is	a	label	under	the	Nail	function	Face	1.
It	follows	the	evolution	of	this	face.	In	our	case,	there	is	only	one
evolution	–	the	translation:	Face	1	(top	face)	–	Face	1’
(relocated	top	face).	So,	the	last	evolution	is	the	relocated	top
face.

Calling	the	method	TNaming_Selector::NamedShape()	the	Hammer
obtains	the	last	evolution	of	the	selected	face	–	the	relocated	top
face.

The	job	is	done.

P.S.	Let	us	say	a	few	words	about	a	little	more	complicated	case	–
selection	of	a	wire	of	the	top	face.	Its	topological	name	is	an	“intersection”
of	two	faces.	We	remember	that	the	Nail	puts	only	faces	under	its	label.
So,	the	selected	wire	will	represent	an	“intersection”	of	the	top	face	and

the	conic	face	keeping	the	“head”	of	the	nail.	Another	example	is	a
selected	vertex.	Its	unique	name	may	be	represented	as	an	“intersection”
of	three	or	even	more	faces	(depends	on	the	shape).

Standard	Attributes
Overview

Standard	attributes	are	ready-to-use	attributes,	which	allow	creating	and
modifying	attributes	for	many	basic	data	types.	They	are	available	in	the
packages	TDataStd,	TDataXtd	and	TDF.	Each	attribute	belongs	to	one	of
four	types:

Geometric	attributes;
General	attributes;
Relationship	attributes;
Auxiliary	attributes.

Geometric	attributes

Axis	–	simply	identifies,	that	the	concerned	TNaming_NamedShape
attribute	with	an	axis	shape	inside	belongs	to	the	same	label;
Constraint	–	contains	information	about	a	constraint	between
geometries:	used	geometry	attributes,	type,	value	(if	exists),	plane	(if
exists),	"is	reversed",	"is	inverted"	and	"is	verified"	flags;
Geometry	–	simply	identifies,	that	the	concerned
TNaming_NamedShape	attribute	with	a	specified-type	geometry
belongs	to	the	same	label;
Plane	–	simply	identifies,	that	the	concerned
TNaming_NamedShape	attribute	with	a	plane	shape	inside	belongs
to	the	same	label;
Point	–	simply	identifies,	that	the	concerned	TNaming_NamedShape
attribute	with	a	point	shape	inside	belongs	to	the	same	label;
Shape	–	simply	identifies,	that	the	concerned
TNaming_NamedShape	attribute	belongs	to	the	same	label;
PatternStd	–	identifies	one	of	five	available	pattern	models	(linear,
circular,	rectangular,	circular	rectangular	and	mirror);
Position	–	identifies	the	position	in	3d	global	space.

General	attributes

AsciiString	–	contains	AsciiString	value;
BooleanArray	–	contains	an	array	of	Boolean;
BooleanList	–	contains	a	list	of	Boolean;
ByteArray	–	contains	an	array	of	Byte	(unsigned	char)	values;
Comment	–	contains	a	string	–	the	comment	for	a	given	label	(or
attribute);
Expression	–	contains	an	expression	string	and	a	list	of	used
variables	attributes;
ExtStringArray	–	contains	an	array	of	ExtendedString	values;
ExtStringList	–	contains	a	list	of	ExtendedString	values;
Integer	–	contains	an	integer	value;
IntegerArray	–	contains	an	array	of	integer	values;
IntegerList	–	contains	a	list	of	integer	values;
IntPackedMap	–	contains	a	packed	map	of	integers;
Name	–	contains	a	string	–	the	name	of	a	given	label	(or	attribute);
NamedData	–	may	contain	up	to	6	of	the	following	named	data	sets
(vocabularies):	DataMapOfStringInteger,	DataMapOfStringReal,
DataMapOfStringString,	DataMapOfStringByte,
DataMapOfStringHArray1OfInteger	or
DataMapOfStringHArray1OfReal;
NoteBook	–	contains	a	NoteBook	object	attribute;
Real	–	contains	a	real	value;
RealArray	–	contains	an	array	of	real	values;
RealList	–	contains	a	list	of	real	values;
Relation	–	contains	a	relation	string	and	a	list	of	used	variables
attributes;
Tick	–	defines	a	boolean	attribute;
Variable	–	simply	identifies,	that	a	variable	belongs	to	this	label;
contains	the	flag	is	constraint	and	a	string	of	used	units	("mm",
"m"...);
UAttribute	–	attribute	with	a	user-defined	GUID.	As	a	rule,	this
attribute	is	used	as	a	marker,	which	is	independent	of	attributes	at
the	same	label	(note,	that	attributes	with	the	same	GUIDs	can	not
belong	to	the	same	label).

Relationship	attributes

Reference	–	contains	reference	to	the	label	of	its	own	data
framework;
ReferenceArray	–	contains	an	array	of	references;

ReferenceList	–	contains	a	list	of	references;
TreeNode	–	this	attribute	allows	to	create	an	internal	tree	in	the	data
framework;	this	tree	consists	of	nodes	with	the	specified	tree	ID;
each	node	contains	references	to	the	father,	previous	brother,	next
brother,	first	child	nodes	and	tree	ID.

Auxiliary	attributes

Directory	–	high-level	tool	attribute	for	sub-labels	management;
TagSource	–	this	attribute	is	used	for	creation	of	new	children:	it
stores	the	tag	of	the	last-created	child	of	the	label	and	gives	access
to	the	new	child	label	creation	functionality.

All	attributes	inherit	class	TDF_Attribute,	so,	each	attribute	has	its	own
GUID	and	standard	methods	for	attribute	creation,	manipulation,	getting
access	to	the	data	framework.

Services	common	to	all	attributes

Accessing	GUIDs

To	access	the	GUID	of	an	attribute,	you	can	use	two	methods:

Method	GetID	is	the	static	method	of	a	class.	It	returns	the	GUID	of
any	attribute,	which	is	an	object	of	a	specified	class	(for	example,
TDataStd_Integer	returns	the	GUID	of	an	integer	attribute).	Only	two
classes	from	the	list	of	standard	attributes	do	not	support	these
methods:	TDataStd_TreeNode	and	TDataStd_Uattribute,	because
the	GUIDs	of	these	attributes	are	variable.
Method	ID	is	the	method	of	an	object	of	an	attribute	class.	It	returns
the	GUID	of	this	attribute.	Absolutely	all	attributes	have	this	method:
only	by	this	identifier	you	can	discern	the	type	of	an	attribute.

To	find	an	attribute	attached	to	a	specific	label,	you	use	the	GUID	of	the
attribute	type	you	are	looking	for.	This	information	can	be	found	using	the
method	GetID	and	the	method	Find	for	the	label	as	follows:

Standard_GUID	anID	=	MyAttributeClass::GetID();

Standard_Boolean	HasAttribute	=	

aLabel.Find(anID,anAttribute);

Conventional	Interface	of	Standard	Attributes

It	is	usual	to	create	standard	named	methods	for	the	attributes:

Method	Set(label,	[value])	is	the	static	method,	which	allows	to	add
an	attribute	to	a	given	label.	If	an	attribute	is	characterized	by	one
value	this	method	may	set	it.
Method	Get()	returns	the	value	of	an	attribute	if	it	is	characterized	by
one	value.
Method	Dump(Standard_OStream)	outputs	debug	information	about
a	given	attribute	to	a	given	stream.

The	choice	between	standard	and	custom
attributes
When	you	start	to	design	an	application	based	on	OCAF,	usually	it	is
necessary	to	choose,	which	attribute	will	be	used	for	allocation	of	data	in
the	OCAF	document:	standard	or	newly-created?

It	is	possible	to	describe	any	model	by	means	of	standard	OCAF
attributes.	However,	it	is	still	a	question	if	this	description	will	be	efficient
in	terms	of	memory	and	speed,	and,	at	the	same	time,	convenient	to	use.

This	depends	on	a	particular	model.

OCAF	imposes	the	restriction	that	only	one	attribute	type	may	be
allocated	to	one	label.	It	is	necessary	to	take	into	account	the	design	of
the	application	data	tree.	For	example,	if	a	label	should	possess	several
double	values,	it	is	necessary	to	distribute	them	through	several	child
sub-labels	or	use	an	array	of	double	values.

Let	us	consider	several	boundary	implementations	of	the	same	model	in
OCAF	tree	and	analyze	the	advantages	and	disadvantages	of	each
approach.

Comparison	and	analysis	of	approaches

Below	are	described	two	different	model	implementations:	one	is	based
on	standard	OCAF	attributes	and	the	other	is	based	on	the	creation	of	a
new	attribute	possessing	all	data	of	the	model.

A	load	is	distributed	through	the	shape.	The	measurements	are	taken	at
particular	points	defined	by	(x,	y	and	z)	co-ordinates.	The	load	is
represented	as	a	projection	onto	X,	Y	and	Z	axes	of	the	local	co-ordinate
system	at	each	point	of	measurement.	A	matrix	of	transformation	is
needed	to	convert	the	local	co-ordinate	system	to	the	global	one,	but	this
is	optional.

So,	we	have	15	double	values	at	each	point	of	measurement.	If	the
number	of	such	points	is	100	000,	for	example,	it	means	that	we	have	to
store	1	500	000	double	values	in	the	OCAF	document.

The	first	approach	consists	in	using	standard	OCAF	attributes.	Besides,
there	are	several	variants	of	how	the	standard	attributes	may	be	used:

Allocation	of	all	1	500	000	double	values	as	one	array	of	double
values	attached	to	one	label;
Allocation	of	values	of	one	measure	of	load	(15	values)	as	one	array
of	double	values	and	attachment	of	one	point	of	measure	to	one
label;
Allocation	of	each	point	of	measure	as	an	array	of	3	double	values
attached	to	one	label,	the	projection	of	load	onto	the	local	co-
ordinate	system	axes	as	another	array	of	3	double	values	attached
to	a	sub-label,	and	the	matrix	of	projection	(9	values)	as	the	third
array	also	attached	to	a	sub-label.

Certainly,	other	variants	are	also	possible.

Allocation	of	all	data	as	one	array	of	double	values

The	first	approach	to	allocation	of	all	data	represented	as	one	array	of
double	values	saves	initial	memory	and	is	easy	to	implement.	But	access
to	the	data	is	difficult	because	the	values	are	stored	in	a	flat	array.	It	will
be	necessary	to	implement	a	class	with	several	methods	giving	access	to
particular	fields	like	the	measurement	points,	loads	and	so	on.

If	the	values	may	be	edited	in	the	application,	it	means	that	the	whole
array	will	be	backed-up	on	each	edition.	The	memory	usage	will	increase
very	fast!	So,	this	approach	may	be	considered	only	in	case	of	non-
editable	data.

Let’s	consider	the	allocation	of	data	of	each	measurement	point	per	label
(the	second	case).	In	this	case	we	create	100	000	labels	–	one	label	for
each	measurement	point	and	attach	an	array	of	double	values	to	these
labels:

Allocation	of	data	of	each	measurement	point	as	arrays	of	double
values

Now	edition	of	data	is	safer	as	far	as	memory	usage	is	concerned.
Change	of	value	for	one	measurement	point	(any	value:	point	co-
ordinates,	load,	and	so	on)	backs-up	only	one	small	array	of	double
values.	But	this	structure	(tree)	requires	more	memory	space	(additional
labels	and	attributes).

Besides,	access	to	the	values	is	still	difficult	and	it	is	necessary	to	have	a
class	with	methods	of	access	to	the	array	fields.

The	third	case	of	allocation	of	data	through	OCAF	tree	is	represented
below:

Allocation	of	data	into	separate	arrays	of	double	values

In	this	case	sub-labels	are	involved	and	we	can	easily	access	the	values
of	each	measurement	point,	load	or	matrix.	We	don’t	need	an	interface
class	with	methods	of	access	to	the	data	(if	it	exists,	it	would	help	to	use
the	data	structure,	but	this	is	optional).

On	the	one	hand,	this	approach	requires	more	memory	for	allocation	of
the	attributes	(arrays	of	double	values).	On	the	other	hand,	it	saves
memory	during	the	edition	of	data	by	backing-up	only	the	small	array
containing	the	modified	data.	So,	if	the	data	is	fully	modifiable,	this
approach	is	more	preferable.

Before	making	a	conclusion,	let’s	consider	the	same	model	implemented

through	a	newly	created	OCAF	attribute.

For	example,	we	might	allocate	all	data	belonging	to	one	measurement
point	as	one	OCAF	attribute.	In	this	case	we	implement	the	third	variant
of	using	the	standard	attributes	(see	picture	3),	but	we	use	less	memory
(because	we	use	only	one	attribute	instead	of	three):

Allocation	of	data	into	newly	created	OCAF	attribute

The	second	variant	of	using	standard	OCAF	attributes	still	has
drawbacks:	when	data	is	edited,	OCAF	backs-up	all	values	of	the
measurement	point.

Let’s	imagine	that	we	have	some	non-editable	data.	It	would	be	better	for
us	to	allocate	this	data	separately	from	editable	data.	Back-up	will	not
affect	non-editable	data	and	memory	will	not	increase	so	much	during
data	edition.

Conclusion

When	deciding	which	variant	of	data	model	implementation	to	choose,	it
is	necessary	to	take	into	account	the	application	response	time,	memory
allocation	and	memory	usage	in	transactions.

Most	of	the	models	may	be	implemented	using	only	standard	OCAF
attributes.	Some	other	models	need	special	treatment	and	require
implementation	of	new	OCAF	attributes.

Visualization	Attributes
Overview

Standard	visualization	attributes	implement	the	Application	Interactive
Services	(see	Visualization	User's	Guide).	in	the	context	of	Open
CASCADE	Technology	Application	Framework.	Standard	visualization
attributes	are	AISViewer	and	Presentation	and	belong	to	the	TPrsStd
package.

Services	provided

Defining	an	interactive	viewer	attribute

The	class	TPrsStd_AISViewer	allows	you	to	define	an	interactive	viewer
attribute.	There	may	be	only	one	such	attribute	per	one	data	framework
and	it	is	always	placed	to	the	root	label.	So,	it	could	be	set	or	found	by
any	label	("access	label")	of	the	data	framework.	Nevertheless	the	default
architecture	can	be	easily	extended	and	the	user	can	manage	several
Viewers	per	one	framework	by	himself.

To	initialize	the	AIS	viewer	as	in	the	example	below,	use	method	Find.

//	"access"	is	any	label	of	the	data	framework	

Handle(TPrsStd_AISViewer)	viewer	=	

TPrsStd_AISViewer::Find(access)	

Defining	a	presentation	attribute
The	class	TPrsStd_AISPresentation	allows	you	to	define	the	visual
presentation	of	document	labels	contents.	In	addition	to	various	visual
fields	(color,	material,	transparency,	isDisplayed,	etc.),	this	attribute
contains	its	driver	GUID.	This	GUID	defines	the	functionality,	which	will
update	the	presentation	every	time	when	needed.

Creating	your	own	driver

The	abstract	class	TPrsStd_Driver	allows	you	to	define	your	own	driver
classes.	Simply	redefine	the	Update	method	in	your	new	class,	which	will
rebuild	the	presentation.

If	your	driver	is	placed	to	the	driver	table	with	the	unique	driver	GUID,
then	every	time	the	viewer	updates	presentations	with	a	GUID	identical	to
your	driver’s	GUID,	the	Update	method	of	your	driver	for	these
presentations	must	be	called:

As	usual,	the	GUID	of	a	driver	and	the	GUID	of	a	displayed	attribute	are
the	same.

Using	a	container	for	drivers

You	frequently	need	a	container	for	different	presentation	drivers.	The
class	TPrsStd_DriverTable	provides	this	service.	You	can	add	a	driver	to
the	table,	see	if	one	is	successfully	added,	and	fill	it	with	standard	drivers.

To	fill	a	driver	table	with	standard	drivers,	first	initialize	the	AIS	viewer	as

in	the	example	above,	and	then	pass	the	return	value	of	the	method
InitStandardDrivers	to	the	driver	table	returned	by	the	method	Get.	Then
attach	a	TNaming_NamedShape	to	a	label	and	set	the	named	shape	in
the	presentation	attribute	using	the	method	Set.	Then	attach	the
presentation	attribute	to	the	named	shape	attribute,	and	the
AIS_InteractiveObject,	which	the	presentation	attribute	contains,	will
initialize	its	drivers	for	the	named	shape.	This	can	be	seen	in	the	example
below.

Example

DriverTable::Get()	->	InitStandardDrivers();	

//	next,	attach	your	named	shape	to	a	label	

TPrsStd_AISPresentation::Set(NS};	

//	here,	attach	the	AISPresentation	to	NS.	

Function	Services
Function	services	aggregate	data	necessary	for	regeneration	of	a	model.
The	function	mechanism	–	available	in	the	package	TFunction	–	provides
links	between	functions	and	any	execution	algorithms,	which	take	their
arguments	from	the	data	framework,	and	write	their	results	inside	the
same	framework.

When	you	edit	any	application	model,	you	have	to	regenerate	the	model
by	propagating	the	modifications.	Each	propagation	step	calls	various
algorithms.	To	make	these	algorithms	independent	of	your	application
model,	you	need	to	use	function	services.

Document	structure

Take,	for	example,	the	case	of	a	modeling	sequence	made	up	of	a	box
with	the	application	of	a	fillet	on	one	of	its	edges.	If	you	change	the	height
of	the	box,	the	fillet	will	need	to	be	regenerated	as	well.

Finding	functions,	their	owners	and	roots
The	class	TFunction_Function	is	an	attribute,	which	stores	a	link	to	a
function	driver	in	the	data	framework.	In	the	static	table
TFunction_DriverTable	correspondence	links	between	function	attributes
and	drivers	are	stored.

You	can	write	your	function	attribute,	a	driver	for	such	attribute,	which
updates	the	function	result	in	accordance	to	a	given	map	of	changed
labels,	and	set	your	driver	with	the	GUID	to	the	driver	table.

Then	the	solver	algorithm	of	a	data	model	can	find	the	Function	attribute
on	a	corresponding	label	and	call	the	Execute	driver	method	to	update
the	result	of	the	function.

Storing	and	accessing	information	about
function	status
For	updating	algorithm	optimization,	each	function	driver	has	access	to
the	TFunction_Logbook	object	that	is	a	container	for	a	set	of	touched,
impacted	and	valid	labels.	Using	this	object	a	driver	gets	to	know	which
arguments	of	the	function	were	modified.

Propagating	modifications
An	application	must	implement	its	functions,	function	drivers	and	the
common	solver	for	parametric	model	creation.	For	example,	check	the
following	model:

The	procedure	of	its	creation	is	as	follows:

create	a	rectangular	planar	face	F	with	height	100	and	width	200;
create	prism	P	using	face	F	as	a	basis;
create	fillet	L	at	the	edge	of	the	prism;
change	the	width	of	F	from	200	to	300;
the	solver	for	the	function	of	face	F	starts;
the	solver	detects	that	an	argument	of	the	face	F	function	has	been
modified;
the	solver	calls	the	driver	of	the	face	F	function	for	a	regeneration	of
the	face;
the	driver	rebuilds	face	F	and	adds	the	label	of	the	face	width
argument	to	the	logbook	as	touched	and	the	label	of	the	function	of
face	F	as	impacted;
the	solver	detects	the	function	of	P	–	it	depends	on	the	function	of	F;
the	solver	calls	the	driver	of	the	prism	P	function;
the	driver	rebuilds	prism	P	and	adds	the	label	of	this	prism	to	the
logbook	as	impacted;
the	solver	detects	the	function	of	L	–	it	depends	on	the	function	of	P;
the	solver	calls	the	L	function	driver;
the	driver	rebuilds	fillet	L	and	adds	the	label	of	the	fillet	to	the
logbook	as	impacted.

Example	of	Function	Mechanism
Usage
Introduction

Let	us	describe	the	usage	of	the	Function	Mechanism	of	Open
CASCADE	Application	Framework	on	a	simple	example.	This	example
represents	a	"nail"	composed	by	a	cone	and	two	cylinders	of	different
radius	and	height:

A	nail

These	three	objects	(a	cone	and	two	cylinders)	are	independent,	but	the
Function	Mechanism	makes	them	connected	to	each	other	and
representing	one	object	–	a	nail.	The	object	"nail"	has	the	following
parameters:

The	position	of	the	nail	is	defined	by	the	apex	point	of	the	cone.	The
cylinders	are	built	on	the	cone	and	therefore	they	depend	on	the
position	of	the	cone.	In	this	way	we	define	a	dependency	of	the
cylinders	on	the	cone.
The	height	of	the	nail	is	defined	by	the	height	of	the	cone.	Let’s
consider	that	the	long	cylinder	has	3	heights	of	the	cone	and	the
header	cylinder	has	a	half	of	the	height	of	the	cone.
The	radius	of	the	nail	is	defined	by	the	radius	of	the	cone.	The	radius
of	the	long	cylinder	coincides	with	this	value.	Let’s	consider	that	the

header	cylinder	has	one	and	a	half	radiuses	of	the	cone.

So,	the	cylinders	depend	on	the	cone	and	the	cone	parameters	define
the	size	of	the	nail.

It	means	that	re-positioning	the	cone	(changing	its	apex	point)	moves	the
nail,	the	change	of	the	radius	of	the	cone	produces	a	thinner	or	thicker
nail,	and	the	change	of	the	height	of	the	cone	shortens	or	prolongates	the
nail.		It	is	suggested	to	examine	the	programming	steps	needed	to	create
a	3D	parametric	model	of	the	"nail".

Step	1:	Data	Tree
The	first	step	consists	in	model	data	allocation	in	the	OCAF	tree.	In	other
words,	it	is	necessary	to	decide	where	to	put	the	data.

In	this	case,	the	data	can	be	organized	into	a	simple	tree	using
references	for	definition	of	dependent	parameters:

Nail

Cone
Position	(x,y,z)
Radius
Height

Cylinder	(stem)
Position	=	"Cone"	position	translated	for	"Cone"	height
along	Z;
Radius	=	"Cone"	radius;
Height	=	"Cone"	height	multiplied	by	3;

Cylinder	(head)
Position	=	"Long	cylinder"	position	translated	for	"Long
cylinder"	height	along	Z;
Radius	=	"Long	cylinder"	radius	multiplied	by	1.5;
Height	=	"Cone"	height	divided	by	2.

The	"nail"	object	has	three	sub-leaves	in	the	tree:	the	cone	and	two
cylinders.

The	cone	object	is	independent.

The	long	cylinder	representing	a	"stem"	of	the	nail	refers	to	the
corresponding	parameters	of	the	cone	to	define	its	own	data
(position,	radius	and	height).	It	means	that	the	long	cylinder	depends
on	the	cone.

The	parameters	of	the	head	cylinder	may	be	expressed	through	the
cone	parameters	only	or	through	the	cone	and	the	long	cylinder
parameters.	It	is	suggested	to	express	the	position	and	the	radius	of
the	head	cylinder	through	the	position	and	the	radius	of	the	long
cylinder,	and	the	height	of	the	head	cylinder	through	the	height	of	the

cone.	It	means	that	the	head	cylinder	depends	on	the	cone	and	the
long	cylinder.

Step	2:	Interfaces
The	interfaces	of	the	data	model	are	responsible	for	dynamic	creation	of
the	data	tree	of	the	represented	at	the	previous	step,	data	modification
and	deletion.

The	interface	called	INail	should	contain	the	methods	for	creation	of	the
data	tree	for	the	nail,	setting	and	getting	of	its	parameters,	computation,
visualization	and	removal.

Creation	of	the	nail

This	method	of	the	interface	creates	a	data	tree	for	the	nail	at	a	given	leaf
of	OCAF	data	tree.

It	creates	three	sub-leaves	for	the	cone	and	two	cylinders	and	allocates
the	necessary	data	(references	at	the	sub-leaves	of	the	long	and	the
head	cylinders).

It	sets	the	default	values	of	position,	radius	and	height	of	the	nail.

The	nail	has	the	following	user	parameters:

The	position	–	coincides	with	the	position	of	the	cone
The	radius	of	the	stem	part	of	the	nail	–	coincides	with	the	radius	of
the	cone
The	height	of	the	nail	–	a	sum	of	heights	of	the	cone	and	both
cylinders

The	values	of	the	position	and	the	radius	of	the	nail	are	defined	for	the
cone	object	data.	The	height	of	the	cone	is	recomputed	as	2	*	heights	of
nail	and	divided	by	9.

Computation

The	Function	Mechanism	is	responsible	for	re-computation	of	the	nail.	It
will	be	described	in	detail	later	in	this	document.

A	data	leaf	consists	of	the	reference		to	the	location	of	the	real	data	and	a

real	value	defining	a	coefficient	of	multiplication	of	the	referenced	data.

For	example,	the	height	of	the	long	cylinder	is	defined	as	a	reference	to
the	height	of	the	cone	with	coefficient	3.	The	data	leaf	of	the	height	of	the
long	cylinder	should	contain	two	attributes:	a	reference	to	the	height	of
cone	and	a	real	value	equal	to	3.

Visualization

	The	shape	resulting	of	the	nail	function	can	be	displayed	using	the
standard	OCAF	visualization	mechanism.

Removal	of	the	nail

To	automatically	erase	the	nail	from	the	viewer	and	the	data	tree	it	is
enough	to	clean	the	nail	leaf	from	attributes.

Step	3:	Functions
The	nail	is	defined	by	four	functions:	the	cone,	the	two	cylinders	and	the
nail	function.	The	function	of	the	cone	is	independent.	The	functions	of
the	cylinders	depend	on	the	cone	function.	The	nail	function	depends	on
the	results	of	all	functions:

A	graph	of	dependencies	between	functions

Computation	of	the	model	starts	with	the	cone	function,	then	the	long
cylinder,	after	that	the	header	cylinder	and,	finally,	the	result	is	generated
by	the	nail	function	at	the	end	of	function	chain.

The	Function	Mechanism	of	Open	CASCADE	Technology	creates	this
graph	of	dependencies	and	allows	iterating	it	following	the	dependencies.
The	only	thing	the	Function	Mechanism	requires	from	its	user	is	the
implementation	of	pure	virtual	methods	of	TFunction_Driver:

::Arguments()	–	returns	a	list	of	arguments	for	the	function
::Results()	–	returns	a	list	of	results	of	the	function

These	methods	give	the	Function	Mechanism	the	information	on	the
location	of	arguments	and	results	of	the	function	and	allow	building	a
graph	of	functions.	The	class	TFunction_Iterator	iterates	the	functions	of
the	graph	in	the	execution	order.

The	pure	virtual	method	TFunction_Driver::Execute()	calculating	the
function	should	be	overridden.

The	method	::MustExecute()	calls	the	method	::Arguments()	of	the
function	driver	and	ideally	this	information	(knowledge	of	modification	of
arguments	of	the	function)	is	enough	to	make	a	decision	whether	the
function	should	be	executed	or	not.	Therefore,	this	method	usually
shouldn’t	be	overridden.

The	cone	and	cylinder	functions	differ	only	in	geometrical	construction
algorithms.	Other	parameters	are	the	same	(position,	radius	and	height).

It	means	that	it	is	possible	to	create	a	base	class	–	function	driver	for	the
three	functions,	and	two	descendant	classes	producing:	a	cone	or	a
cylinder.

For	the	base	function	driver	the	methods	::Arguments()	and	::Results()
will	be	overridden.	Two	descendant	function	drivers	responsible	for
creation	of	a	cone	and	a	cylinder	will	override	only	the	method
::Execute().

The	method	::Arguments()	of	the	function	driver	of	the	nail	returns	the
results	of	the	functions	located	under	it	in	the	tree	of	leaves.	The	method
::Execute()	just	collects	the	results	of	the	functions	and	makes	one	shape
–	a	nail.

This	way	the	data	model	using	the	Function	Mechanism	is	ready	for
usage.	Do	not	forget	to	introduce	the	function	drivers	for	a	function	driver
table	with	the	help	of	TFunction_DriverTable	class.

Example	1:	iteration	and	execution	of
functions.
This	is	an	example	of	the	code	for	iteration	and	execution	of	functions.

//	The	scope	of	functions	is		defined.		

Handle(TFunction_Scope)	scope	=	TFunction_Scope::Set(

anyLabel);		

//	The	information	on		modifications	in	the	model	is	

received.		

TFunction_Logbook&	log	=	scope-GetLogbook();		

//	The	iterator	is	iInitialized	by		the	scope	of	

functions.		

TFunction_Iterator	iterator(anyLabel);		

Iterator.SetUsageOfExecutionOrder(true);		

//	The	function	is	iterated,		its		dependency	is	

checked	on	the	modified	data	and		executed	if	

necessary.		

for	(;	iterator.more();	iterator.Next())		

{		

	//	The	function	iterator	may	return	a	list	of		

current	functions	for	execution.		

	//	It	might	be	useful	for	multi-threaded	execution		

of	functions.		

	const		TDF_LabelList&	currentFunctions	=	

iterator.Current();		

	//The	list	of	current	functions	is	iterated.		

		TDF_ListIteratorOfLabelList		currentterator(

currentFucntions);		

	for	(;		currentIterator.More();	

currentIterator.Next())		

		{		

	//		An	interface	for	the	function	is	created.		

				TFunction_IFunction		interface(

currentIterator.Value());		

	//		The	function	driver	is	retrieved.		

				Handle(TFunction_Driver)		driver	=	

interface.GetDriver();		

	//		The	dependency	of	the	function	on	the		modified	

data	is	checked.		

				If		(driver-MustExecute(log))		

				{		

	//	The	function	is	executed.		

	int		ret	=	driver-Execute(log);		

	if	(ret)	

	return	false;		

				}	//	end	if	check	on	modification		

		}	//	end	of	iteration	of	current	functions		

}	//	end	of	iteration	of		functions.

Example	2:	Cylinder	function	driver
This	is	an	example	of	the	code	for	a	cylinder	function	driver.	To	make	the
things	clearer,	the	methods	::Arguments()	and	::Results()	from	the	base
class	are	also	mentioned.

//	A	virtual	method		::Arguments()	returns	a	list	of	

arguments	of	the	function.		

CylinderDriver::Arguments(TDF_LabelList&	args)		

{		

	//	The	direct	arguments,	located	at	sub-leaves	of		

the	fucntion,	are	collected	(see	picture	2).		

		TDF_ChildIterator		cIterator(Label(),	false);		

	for	(;		cIterator.More();	cIterator.Next())		

		{		

	//	Direct	argument.		

				TDF_Label		sublabel	=	cIterator.Value();		

				Args.Append(sublabel);		

	//	The	references	to	the	external	data	are		checked.		

				Handle(TDF_Reference)		ref;		

				If	(sublabel.FindAttribute(

TDF_Reference::GetID(),	ref))		

				{		

						args.Append(ref-Get());		

				}

}

//	A	virtual	method	::Results()		returns	a	list	of	

result	leaves.		

CylinderDriver::Results(TDF_LabelList&	res)		

{		

	//	The	result	is	kept	at	the	function		label.		

		Res.Append(Label());		

}

//	Execution	of	the	function		driver.		

Int	CylinderDriver::Execute(TFunction_Logbook&	

log)		

{		

	//	Position	of	the	cylinder	-	position	of	the	first		

function	(cone)			

	//is		elevated	along	Z	for	height	values	of	all		

previous	functions.		

		gp_Ax2	axes	=	….	//	out	of	the	scope	of	this	guide.		

	//	The	radius	value	is	retrieved.		

	//	It	is	located	at	second	child	sub-leaf	(see	the		

picture	2).		

		TDF_Label	radiusLabel		=	Label().FindChild(2);		

	//	The	multiplicator	of	the	radius	()is	retrieved.		

		Handle(TDataStd_Real)		radiusValue;		

		radiusLabel.FindAttribute(TDataStd_Real::GetID(),	

radiusValue);		

	//	The	reference	to	the	radius	is	retrieved.		

		Handle(TDF_Reference)		refRadius;		

		RadiusLabel.FindAttribute(TDF_Reference::GetID(),	

refRadius);		

	//	The	radius	value	is	calculated.		

	double	radius	=	0.0;

	if	(refRadius.IsNull())

		{

				radius		=	radiusValue-Get();		

		}

	else	

		{		

	//	The	referenced	radius	value	is		retrieved.			

				Handle(TDataStd_Real)		referencedRadiusValue;		

				RefRadius-

Get().FindAttribute(TDataStd_Real::GetID()		

,referencedRadiusValue);		

				radius		=	referencedRadiusValue-Get()	*	

radiusValue-Get();		

		}		

	//	The	height	value	is	retrieved.		

	double	height	=	…	//	similar	code	to	taking	the	

radius	value.		

	//	The	cylinder	is	created.		

		TopoDS_Shape	cylinder		=	

BRepPrimAPI_MakeCylinder(axes,	radius,	height);		

	//	The	result	(cylinder)	is	set		

		TNaming_Builder		builder(Label());		

		Builder.Generated(cylinder);		

	//	The	modification	of	the	result	leaf	is	saved	in		

the	log.		

		log.SetImpacted(Label());		

	return	0;

}

XML	Support
Writing	and	reading	XML	files	in	OCCT	is	provided	by	LDOM	package,
which	constitutes	an	integral	part	of	XML	OCAF	persistence,	which	is	the
optional	component	provided	on	top	of	Open	CASCADE	Technology.

The	Light	DOM	(LDOM)	package	contains	classes	maintaining	a	data
structure	whose	main	principles	conform	to	W3C	DOM	Level	1
Recommendations.	The	purpose	of	these	classes	as	required	by	XML
OCAF	persistence	schema	is	to:

Maintain	a	tree	structure	of	objects	in	memory	representing	the	XML
document.	The	root	of	the	structure	is	an	object	of	the
LDOM_Document	type.	This	object	contains	all	the	data
corresponding	to	a	given	XML	document	and	contains	one	object	of
the	LDOM_Element	type	named	"document	element".	The	document
element	contains	other	LDOM_Element	objects	forming	a	tree.	Other
types	of	nodes:	LDOM_Attr,	LDOM_Text,	LDOM_Comment	and
LDOM_CDATASection	–	represent	the	corresponding	XML	types
and	serve	as	branches	of	the	tree	of	elements.
Provide	class	LDOM_Parser	to	read	XML	files	and	convert	them	to
LDOM_Document	objects.
Provide	class	LDOM_XmlWriter	to	convert	LDOM_Document	to	a
character	stream	in	XML	format	and	store	it	in	file.

This	package	covers	the	functionality	provided	by	numerous	products
known	as	"DOM	parsers".	Unlike	most	of	them,	LDOM	was	specifically
developed	to	meet	the	following	requirements:

To	minimize	the	virtual	memory	allocated	by	DOM	data	structures.	In
average,	the	amount	of	memory	of	LDOM	is	the	same	as	the	XML
file	size	(UTF-8).
To	minimize	the	time	required	for	parsing	and	formatting	XML,	as
well	as	for	access	to	DOM	data	structures.

Both	these	requirements	are	important	when	XML	files	are	processed	by
applications	if	these	files	are	relatively	large	(occupying	megabytes	and
even	hundreds	of	megabytes).	To	meet	the	requirements,	some
limitations	were	imposed	on	the	DOM	Level	1	specification;	these

limitations	are	insignificant	in	applications	like	OCAF.	Some	of	these
limitations	can	be	overridden	in	the	course	of	future	developments.	The
main	limitations	are:

No	Unicode	support	as	well	as	various	other	encodings;	only	ASCII
strings	are	used	in	DOM/XML.	Note:	There	is	a	data	type
TCollection_ExtendedString	for	wide	character	data.	This	type	is
supported	by	LDOM_String	as	a	sequence	of	numbers.
Some	superfluous	methods	are	deleted:	getPreviousSibling,
getParentNode,	etc.
No	resolution	of	XML	Entities	of	any	kind
No	support	for	DTD:	the	parser	just	checks	for	observance	of
general	XML	rules	and	never	validates	documents.
Only	5	available	types	of	DOM	nodes:	LDOM_Element,	LDOM_Attr,
LDOM_Text,	LDOM_Comment	and	LDOM_CDATASection.
No	support	of	Namespaces;	prefixed	names	are	used	instead	of
qualified	names.
No	support	of	the	interface	DOMException	(no	exception	when
attempting	to	remove	a	non-existing	node).

LDOM	is	dependent	on	Kernel	OCCT	classes	only.	Therefore,	it	can	be
used	outside	OCAF	persistence	in	various	algorithms	where	DOM/XML
support	may	be	required.

Document	Drivers
The	drivers	for	document	storage	and	retrieval	manage	conversion
between	a	transient	OCAF	Document	in	memory	and	its	persistent
reflection	in	a	container	(disk,	memory,	network).	For	XML	Persistence,
they	are	defined	in	the	package	XmlDrivers.

The	main	methods	(entry	points)	of	these	drivers	are:

Write()	–	for	a	storage	driver;
Read()	–	for	a	retrieval	driver.

The	most	common	case	(which	is	implemented	in	XML	Persistence)	is
writing/reading	document	to/from	a	regular	OS	file.	Such	conversion	is
performed	in	two	steps:

First	it	is	necessary	to	convert	the	transient	document	into	another	form
(called	persistent),	suitable	for	writing	into	a	file,	and	vice	versa.	In	XML
Persistence	LDOM_Document	is	used	as	the	persistent	form	of	an	OCAF
Document	and	the	DOM_Nodes	are	the	persistent	objects.	An	OCAF
Document	is	a	tree	of	labels	with	attributes.	Its	transformation	into	a
persistent	form	can	be	functionally	divided	into	two	parts:

Conversion	of	the	labels	structure,	which	is	performed	by	the	method
XmlMDF::FromTo()
Conversion	of	the	attributes	and	their	underlying	objects,	which	is
performed	by	the	corresponding	attribute	drivers	(one	driver	per
attribute	type).

The	driver	for	each	attribute	is	selected	from	a	table	of	drivers,	either	by
attribute	type	(on	storage)	or	by	the	name	of	the	corresponding
DOM_Element	(on	retrieval).	The	table	of	drivers	is	created	by	by
methods	XmlDrivers_DocumentStorageDriver::AttributeDrivers()	and
XmlDrivers_DocumentRetrievalDriver::AttributeDrivers().

Then	the	persistent	document	is	written	into	a	file	(or	read	from	a	file).	In
standard	persistence	Storage	and	FSD	packages	contain	classes	for
writing/reading	the	persistent	document	into	a	file.	In	XML	persistence
LDOMParser	and	LDOM_XmlWriter	are	used	instead.

Usually,	the	library	containing	document	storage	and	retrieval	drivers	is
loaded	at	run	time	by	a	plugin	mechanism.	To	support	this	in	XML
Persistence,	there	is	a	plugin	XmlPlugin	and	a	Factory()	method	in	the
XmlDrivers	package.	This	method	compares	passed	GUIDs	with	known
GUIDs	and	returns	the	corresponding	driver	or	generates	an	exception	if
the	GUID	is	unknown.

The	application	defines	which	GUID	is	needed	for	document	storage	or
retrieval	and	in	which	library	it	should	be	found.	This	depends	on
document	format	and	application	resources.	Resources	for	XML
Persistence	and	also	for	standard	persistence	are	found	in	the
StdResource	unit.	They	are	written	for	the	XmlOcaf	document	format.

Attribute	Drivers
There	is	one	attribute	driver	for	XML	persistence	for	each	transient
attribute	from	a	set	of	standard	OCAF	attributes,	with	the	exception	of
attribute	types,	which	are	never	stored	(pure	transient).	Standard	OCAF
attributes	are	collected	in	six	packages,	and	their	drivers	also	follow	this
distribution.	Driver	for	attribute	T*_*	is	called	XmlM*_*.	Conversion
between	transient	and	persistent	form	of	attribute	is	performed	by	two
methods	Paste()	of	attribute	driver.

XmlMDF_ADriver	is	the	root	class	for	all	attribute	drivers.

At	the	beginning	of	storage/retrieval	process,	one	instance	of	each
attribute	driver	is	created	and	appended	to	driver	table	implemented	as
XmlMDF_ADriverTable.	During	OCAF	Data	storage,	attribute	drivers	are
retrieved	from	the	driver	table	by	the	type	of	attribute.	In	the	retrieval
step,	a	data	map	is	created	linking	names	of	DOM_Elements	and
attribute	drivers,	and	then	attribute	drivers	are	sought	in	this	map	by
DOM_Element	qualified	tag	names.

Every	transient	attribute	is	saved	as	a	DOM_Element	(root	element	of
OCAF	attribute)	with	attributes	and	possibly	sub-nodes.	The	name	of	the
root	element	can	be	defined	in	the	attribute	driver	as	a	string	passed	to
the	base	class	constructor.	The	default	is	the	attribute	type	name.
Similarly,	namespace	prefixes	for	each	attribute	can	be	set.	There	is	no
default	value,	but	it	is	possible	to	pass	NULL	or	an	empty	string	to	store
attributes	without	namespace	prefixes.

The	basic	class	XmlMDF_ADriver	supports	errors	reporting	via	the
method	WriteMessage(const	TCollection_ExtendedString&).	It	sends	a
message	string	to	its	message	driver	which	is	initialized	in	the	constructor
with	a	Handle(CDM_MessageDriver)	passed	from	the	application	by
Document	Storage/Retrieval	Driver.

XML	Document	Structure
Every	XML	Document	has	one	root	element,	which	may	have	attributes
and	contain	other	nodes.	In	OCAF	XML	Documents	the	root	element	is
named	"document"	and	has	attribute	"format"	with	the	name	of	the	OCAF
Schema	used	to	generate	the	file.	The	standard	XML	format	is
"XmlOcaf".	The	following	elements	are	sub-elements	of	<document>	and
should	be	unique	entries	as	its	sub-elements,	in	a	specific	order.	The
order	is:

Element	info	–	contains	strings	identifying	the	format	version	and
other	parameters	of	the	OCAF	XML	document.	Normally,	data	under
the	element	is	used	by	persistence	algorithms	to	correctly	retrieve
and	initialize	an	OCAF	document.	The	data	also	includes	a	copyright
string.
Element	comments	–	consists	of	an	unlimited	number	of
<comment>	sub-elements	containing	necessary	comment	strings.
Element	label	–	the	root	label	of	the	document	data	structure,	with
the	XML	attribute	"tag"	equal	to	0.	It	contains	all	the	OCAF	data
(labels,	attributes)	as	tree	of	XML	elements.	Every	sub-label	is
identified	by	a	tag	(positive	integer)	defining	a	unique	key	for	all	sub-
labels	of	a	label.	Every	label	can	contain	any	number	of	elements
representing	OCAF	attributes	(see	OCAF	Attributes	Representation
below).
Element	shapes	–	contains	geometrical	and	topological	entities	in
BRep	format.	These	entities	being	referenced	by	OCAF	attributes
written	under	the	element	<label>.	This	element	is	empty	if	there	are
no	shapes	in	the	document.	It	is	only	output	if	attribute	driver
XmlMNaming_NamedShapeDriver	has	been	added	to	drivers	table
by	the	DocumentStorageDriver.

OCAF	Attributes	Representation

In	XML	documents,	OCAF	attributes	are	elements	whose	name	identifies
the	OCAF	attribute	type.	These	elements	may	have	a	simple	(string	or
number)	or	complex	(sub-elements)	structure,	depending	on	the
architecture	of	OCAF	attribute.	Every	XML	type	for	OCAF	attribute
possesses	a	unique	positive	integer	"id"	XML	attribute	identifying	the
OCAF	attribute	throughout	the	document.	To	ensure	"id"	uniqueness,	the

attribute	name	"id"	is	reserved	and	is	only	used	to	indicate	and	identify
elements	which	may	be	referenced	from	other	parts	of	the	OCAF	XML
document.	For	every	standard	OCAF	attribute,	its	XML	name	matches
the	name	of	a	C++	class	in	Transient	data	model.	Generally,	the	XML
name	of	OCAF	attribute	can	be	specified	in	the	corresponding	attribute
driver.	XML	types	for	OCAF	attributes	are	declared	with	XML	W3C
Schema	in	a	few	XSD	files	where	OCAF	attributes	are	grouped	by	the
package	where	they	are	defined.

Example	of	resulting	XML	file

The	following	example	is	a	sample	text	from	an	XML	file	obtained	by
storing	an	OCAF	document	with	two	labels	(0:	and	0:2)	and	two	attributes
–	TDataStd_Name	(on	label	0:)	and	TNaming_NamedShape	(on	label
0:2).	The	<shapes>	section	contents	are	replaced	by	an	ellipsis.

<?xml	version="1.0"	encoding="UTF-8"?>	

<document	format="XmlOcaf"	

xmlns="http://www.opencascade.org/OCAF/XML"	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.opencascade.org/OCAF/X

ML	

http://www.opencascade.org/OCAF/XML/XmlOcaf.xsd">

<info	date="2001-10-04"	schemav="0"	objnb="3">	

<iitem>Copyright:	Open	Cascade,	2001</iitem>	

<iitem>STORAGE_VERSION:	PCDM_ReadWriter_1</iitem>	

<iitem>REFERENCE_COUNTER:	0</iitem>	

<iitem>MODIFICATION_COUNTER:	1</iitem>	

</info>	

<comments/>	

<label	tag="0">	

<TDataStd_Name	id="1">Document_1</TDataStd_Name>	

<label	tag="2">	

<TNaming_NamedShape	id="2"	evolution="primitive">	

<olds/>	

<news>	

<shape	tshape="+34"	index="1"/>	

</news>	

</TNaming_NamedShape>	

</label>	

</label>	

<shapes>	

...	

</shapes>	

</document>	

XML	Schema
The	XML	Schema	defines	the	class	of	a	document.

The	full	structure	of	OCAF	XML	documents	is	described	as	a	set	of	XML
W3C	Schema	files	with	definitions	of	all	XML	element	types.	The
definitions	provided	cannot	be	overridden.	If	any	application	defines	new
persistence	schemas,	it	can	use	all	the	definitions	from	the	present	XSD
files	but	if	it	creates	new	or	redefines	existing	types,	the	definition	must
be	done	under	other	namespace(s).

There	are	other	ways	to	declare	XML	data,	different	from	W3C	Schema,
and	it	should	be	possible	to	use	them	to	the	extent	of	their	capabilities	of
expressing	the	particular	structure	and	constraints	of	our	XML	data
model.	However,	it	must	be	noted	that	the	W3C	Schema	is	the	primary
format	for	declarations	and	as	such,	it	is	the	format	supported	for	future
improvements	of	Open	CASCADE	Technology,	including	the
development	of	specific	applications	using	OCAF	XML	persistence.

The	Schema	files	(XSD)	are	intended	for	two	purposes:

documenting	the	data	format	of	files	generated	by	OCAF;
validation	of	documents	when	they	are	used	by	external	(non-OCAF)
applications,	e.g.,	to	generate	reports.

The	Schema	definitions	are	not	used	by	OCAF	XML	Persistence
algorithms	when	saving	and	restoring	XML	documents.	There	are	internal
checks	to	ensure	validity	when	processing	every	type	of	data.

Management	of	Namespaces

Both	the	XML	format	and	the	XML	OCAF	persistence	code	are	extensible
in	the	sense	that	every	new	development	can	reuse	everything	that	has
been	created	in	previous	projects.	For	the	XML	format,	this	extensibility	is
supported	by	assigning	names	of	XML	objects	(elements)	to	different
XML	Namespaces.	Hence,	XML	elements	defined	in	different	projects	(in
different	persistence	libraries)	can	easily	be	combined	into	the	same	XML
documents.	An	example	is	the	XCAF	XML	persistence	built	as	an
extension	to	the	Standard	OCAF	XML	persistence	[File	XmlXcaf.xsd].	For

the	correct	management	of	Namespaces	it	is	necessary	to:

Define	targetNamespace	in	the	new	XSD	file	describing	the	format.
Declare	(in	XSD	files)	all	elements	and	types	in	the
targetNamespace	to	appear	without	a	namespace	prefix;	all	other
elements	and	types	use	the	appropriate	prefix	(such	as	"ocaf:").
Add	(in	the	new	DocumentStorageDriver)	the	targetNamespace
accompanied	with	its	prefix,	using	method
XmlDrivers_DocumentStorageDriver::AddNamespace.	The	same	is
done	for	all	namespaces	objects	which	are	used	by	the	new
persistence,	with	the	exception	of	the	"ocaf"	namespace.
Pass	(in	every	OCAF	attribute	driver)	the	namespace	prefix	of	the
targetNamespace	to	the	constructor	of	XmlMDF_ADriver.

GLOSSARY
Application	–	a	document	container	holding	all	documents
containing	all	application	data.
Application	data	–	the	data	produced	by	an	application,	as	opposed
to	data	referring	to	it.
Associativity	of	data	–	the	ability	to	propagate	modifications	made
to	one	document	to	other	documents,	which	refer	to	such	document.
Modification	propagation	is:

unidirectional,	that	is,	from	the	referenced	to	the	referencing
document(s),	or
bi-directional,	from	the	referencing	to	the	referenced	document
and	vice-versa.

Attribute	–	a	container	for	application	data.	An	attribute	is	attached
to	a	label	in	the	hierarchy	of	the	data	framework.
Child	–	a	label	created	from	another	label,	which	by	definition,	is	the
father	label.
Compound	document	–	a	set	of	interdependent	documents,	linked
to	each	other	by	means	of	external	references.	These	references
provide	the	associativity	of	data.
Data	framework	–	a	tree-like	data	structure	which	in	OCAF,	is	a	tree
of	labels	with	data	attached	to	them	in	the	form	of	attributes.	This
tree	of	labels	is	accessible	through	the	services	of	the
TDocStd_Document	class.
Document	–	a	container	for	a	data	framework	which	grants	access
to	the	data,	and	is,	in	its	turn,	contained	by	an	application.	A
document	also	allows	you	to:

Manage	modifications,	providing	Undo	and	Redo	functions
Manage	command	transactions
Update	external	links
Manage	save	and	restore	options
Store	the	names	of	software	extensions.

Driver	–	an	abstract	class,	which	defines	the	communications
protocol	with	a	system.
Entry	–	an	ASCII	character	string	containing	the	tag	list	of	a	label.
For	example:
0:3:24:7:2:7	

External	links	–	references	from	one	data	structure	to	another	data

structure	in	another	document.	To	store	these	references	properly,	a
label	must	also	contain	an	external	link	attribute.
Father	–	a	label,	from	which	other	labels	have	been	created.	The
other	labels	are,	by	definition,	the	children	of	this	label.
Framework	–	a	group	of	co-operating	classes	which	enable	a
design	to	be	re-used	for	a	given	category	of	problem.	The	framework
guides	the	architecture	of	the	application	by	breaking	it	up	into
abstract	classes,	each	of	which	has	different	responsibilities	and
collaborates	in	a	predefined	way.	Application	developer	creates	a
specialized	framework	by:

defining	new	classes	which	inherit	from	these	abstract	classes
composing	framework	class	instances
implementing	the	services	required	by	the	framework.

In	C++,	the	application	behavior	is	implemented	in	virtual	functions
redefined	in	these	derived	classes.	This	is	known	as	overriding.

GUID	–	Global	Universal	ID.	A	string	of	37	characters	intended	to
uniquely	identify	an	object.	For	example:
2a96b602-ec8b-11d0-bee7-080009dc3333	

Label	–	a	point	in	the	data	framework,	which	allows	data	to	be
attached	to	it	by	means	of	attributes.	It	has	a	name	in	the	form	of	an
entry,	which	identifies	its	place	in	the	data	framework.
Modified	label	–	containing	attributes	whose	data	has	been
modified.
Reference	key	–	an	invariant	reference,	which	may	refer	to	any	type
of	data	used	in	an	application.	In	its	transient	form,	it	is	a	label	in	the
data	framework,	and	the	data	is	attached	to	it	in	the	form	of
attributes.	In	its	persistent	form,	it	is	an	entry	of	the	label.	It	allows	an
application	to	recover	any	entity	in	the	current	session	or	in	a
previous	session.
Resource	file	–	a	file	containing	a	list	of	each	document’s	schema
name	and	the	storage	and	retrieval	plug-ins	for	that	document.
Root	–	the	starting	point	of	the	data	framework.	This	point	is	the	top
label	in	the	framework.	It	is	represented	by	the	[0]	entry	and	is
created	at	the	same	time	with	the	document	you	are	working	on.
Scope	–	the	set	of	all	the	attributes	and	labels	which	depend	on	a
given	label.
Tag	list	–	a	list	of	integers,	which	identify	the	place	of	a	label	in	the
data	framework.	This	list	is	displayed	in	an	entry.

Topological	naming	–	systematic	referencing	of	topological	entities
so	that	these	entities	can	still	be	identified	after	the	models	they
belong	to	have	gone	through	several	steps	in	modeling.	In	other
words,	topological	naming	allows	you	to	track	entities	through	the
steps	in	the	modeling	process.	This	referencing	is	needed	when	a
model	is	edited	and	regenerated,	and	can	be	seen	as	a	mapping	of
labels	and	name	attributes	of	the	entities	in	the	old	version	of	a
model	to	those	of	the	corresponding	entities	in	its	new	version.	Note
that	if	the	topology	of	a	model	changes	during	the	modeling,	this
mapping	may	not	fully	coincide.	A	Boolean	operation,	for	example,
may	split	edges.
Topological	tracking	–	following	a	topological	entity	in	a	model
through	the	steps	taken	to	edit	and	regenerate	that	model.
Valid	label	–	in	a	data	framework,	this	is	a	label,	which	is	already
recomputed	in	the	scope	of	regeneration	sequence	and	includes	the
label	containing	a	feature	which	is	to	be	recalculated.	Consider	the
case	of	a	box	to	which	you	first	add	a	fillet,	then	a	protrusion	feature.
For	recalculation	purposes,	only	valid	labels	of	each	construction
stage	are	used.	In	recalculating	a	fillet,	they	are	only	those	of	the	box
and	the	fillet,	not	the	protrusion	feature	which	was	added	afterwards.

Samples
Getting	Started

At	the	beginning	of	your	development,	you	first	define	an	application
class	by	inheriting	from	the	Application	abstract	class.	You	only	have	to
create	and	determine	the	resources	of	the	application	for	specifying	the
format	of	your	documents	(you	generally	use	the	standard	one)	and	their
file	extension.

Then,	you	design	the	application	data	model	by	organizing	attributes	you
choose	among	those	provided	with	OCAF.	You	can	specialize	these
attributes	using	the	User	attribute.	For	example,	if	you	need	a	reflection
coefficient,	you	aggregate	a	User	attribute	identified	as	a	reflection
coefficient	with	a	Real	attribute	containing	the	value	of	the	coefficient	(as
such,	you	don't	define	a	new	class).

If	you	need	application	specific	data	not	provided	with	OCAF,	for
example,	to	incorporate	a	finite	element	model	in	the	data	structure,	you
define	a	new	attribute	class	containing	the	mesh,	and	you	include	its
persistent	homologue	in	a	new	file	format.

Once	you	have	implemented	the	commands	which	create	and	modify	the
data	structure	according	to	your	specification,	OCAF	provides	you,
without	any	additional	programming:

Persistent	reference	to	any	data,	including	geometric	elements	—
several	documents	can	be	linked	with	such	reference;
Document-View	association;
Ready-to-use	functions	such	as	:

Undo-redo;
Save	and	open	application	data.

Finally,	you	develop	the	application's	graphical	user	interface	using	the
toolkit	of	your	choice,	for	example:

KDE	Qt	or	GNOME	GTK+	on	Linux;
Microsoft	Foundation	Classes	(MFC)	on	Windows	Motif	on	Sun;

Other	commercial	products	such	as	Ilog	Views.

You	can	also	implement	the	user	interface	in	the	Java	language	using	the
Swing-based	Java	Application	Desktop	component	(JAD)	provided	with
OCAF.

Implementation	of	Attribute	Transformation	in	a
HXX	file
#include	<TDF_Attribute.hxx>

#include	<gp_Ax3.hxx>

#include	<gp_Pnt.hxx>

#include	<gp_Vec.hxx>

#include	<gp_Trsf.hxx>

//	This	attribute	implements	a	transformation	data	

container

class	MyPackage_Transformation	:	public	TDF_Attribute

{

public:

		//!@	name	Static	methods	

		//!	The	method	returns	a	unique	GUID	of	this	

attribute.	

		//!	By	means	of	this	GUID	this	attribute	may	be	

identified			

		//!	among	other	attributes	attached	to	the	same	

label.	

		Standard_EXPORT	static	const	Standard_GUID&	GetID	

();

		//!	Finds	or	creates	the	attribute	attached	to	

<theLabel>.	

		//!	The	found	or	created	attribute	is	returned.	

		Standard_EXPORT	static	

Handle(MyPackage_Transformation)	Set	(const	

TDF_Label	theLabel);

		//!@	name	Methods	for	access	to	the	attribute	data	

		//!	The	method	returns	the	transformation.	

		Standard_EXPORT	gp_Trsf	Get	()	const;	

		//!@	name	Methods	for	setting	the	data	of	

transformation	

		//!	The	method	defines	a	rotation	type	of	

transformation.	

		Standard_EXPORT	void	SetRotation	(const	gp_Ax1&	

theAxis,	Standard_Real	theAngle);	

		//!	The	method	defines	a	translation	type	of	

transformation.	

		Standard_EXPORT	void	SetTranslation	(const	gp_Vec&	

theVector);	

		//!	The	method	defines	a	point	mirror	type	of	

transformation	(point	symmetry).	

		Standard_EXPORT	void	SetMirror	(const	gp_Pnt&	

thePoint);	

		//!	The	method	defines	an	axis	mirror	type	of	

transformation	(axial	symmetry).	

		Standard_EXPORT	void	SetMirror	(const	gp_Ax1&	

theAxis);	

		//!	The	method	defines	a	point	mirror	type	of	

transformation	(planar	symmetry).	

		Standard_EXPORT	void	SetMirror	(const	gp_Ax2&	

thePlane);	

		//!	The	method	defines	a	scale	type	of	

transformation.	

		Standard_EXPORT	void	SetScale	(const	gp_Pnt&	

thePoint,	Standard_Real	theScale);	

		//!	The	method	defines	a	complex	type	of	

transformation	from	one	co-ordinate	system	to	

another.	

		Standard_EXPORT	void	SetTransformation	(const	

gp_Ax3&	theCoordinateSystem1,	const	gp_Ax3&	

theCoordinateSystem2);	

		//!@	name	Overridden	methods	from	TDF_Attribute	

		//!	The	method	returns	a	unique	GUID	of	the	

attribute.	

		//!	By	means	of	this	GUID	this	attribute	may	be	

identified	among	other	attributes	attached	to	

the	same	label.	

		Standard_EXPORT	const	Standard_GUID&	ID	()	const;	

		//!	The	method	is	called	on	Undo	/	Redo.	

		//!	It	copies	the	content	of	theAttribute	into	this	

attribute	(copies	the	fields).	

		Standard_EXPORT	void	Restore	(const	

Handle(TDF_Attribute)&	theAttribute);	

		//!	It	creates	a	new	instance	of	this	attribute.	

		//!	It	is	called	on	Copy	/	Paste,	Undo	/	Redo.	

		Standard_EXPORT	Handle(TDF_Attribute)	NewEmpty	()	

const;

		//!	The	method	is	called	on	Copy	/	Paste.	

		//!	It	copies	the	content	of	this	attribute	into	

theAttribute	(copies	the	fields).	

		Standard_EXPORT	void	Paste	(const	

Handle(TDF_Attribute)&	theAttribute,	const	

Handle(TDF_RelocationTable)&	

theRelocationTable);	

		//!	Prints	the	content	of	this	attribute	into	the	

stream.	

		Standard_EXPORT	Standard_OStream&	

Dump(Standard_OStream&	theOS);

		//!@	name	Constructor	

		//!	The	C++	constructor	of	this	atribute	class.	

		//!	Usually	it	is	never	called	outside	this	class.	

		Standard_EXPORT	MyPackage_Transformation();

private:

		gp_TrsfForm	myType;

	//	Axes	(Ax1,	Ax2,	Ax3)	

		gp_Ax1	myAx1;

		gp_Ax2	myAx2;

		gp_Ax3	myFirstAx3;

		gp_Ax3	mySecondAx3;

	//	Scalar	values	

		Standard_Real	myAngle;

		Standard_Real	myScale;

	//	Points	

		gp_Pnt	myFirstPoint;

		gp_Pnt	mySecondPoint;

};	

Implementation	of	Attribute	Transformation	in	a
CPP	file
#include	<MyPackage_Transformation.hxx>	

//===

====================	

//function	:	GetID	

//purpose		:	The	method	returns	a	unique	GUID	of	this	

attribute.	

//											By	means	of	this	GUID	this	attribute	may	

be	identified			

//											among	other	attributes	attached	to	the	

same	label.	

//===

====================	

const	Standard_GUID&	

MyPackage_Transformation::GetID()			

{	

	static	Standard_GUID	ID("4443368E-C808-4468-984D-

B26906BA8573");	

	return	ID;	

}	

//===

====================	

//function	:	Set	

//purpose		:	Finds	or	creates	the	attribute	attached	

to	<theLabel>.	

//											The	found	or	created	attribute	is	

returned.	

//===

====================	

Handle(MyPackage_Transformation)	

MyPackage_Transformation::Set(const	TDF_Label&	

theLabel)			

{	

		Handle(MyPackage_Transformation)	T;	

	if	

(!theLabel.FindAttribute(MyPackage_Transformatio

n::GetID(),	T))			

		{	

				T	=	new	MyPackage_Transformation();			

				theLabel.AddAttribute(T);	

		}	

	return	T;	

}	

//===

====================	

//function	:	Get	

//purpose		:	The	method	returns	the	transformation.	

//===

====================	

gp_Trsf	MyPackage_Transformation::Get()	const	

{	

		gp_Trsf	transformation;	

	switch	(myType)	

		{	

	case	gp_Identity:	

				{	

	break;	

				}	

	case	gp_Rotation:	

				{	

						transformation.SetRotation(myAx1,	myAngle);	

	break;	

				}	

	case	gp_Translation:	

				{	

						transformation.SetTranslation(myFirstPoint,	

mySecondPoint);	

	break;	

				}	

	case	gp_PntMirror:	

				{	

						transformation.SetMirror(myFirstPoint);	

	break;	

				}	

	case	gp_Ax1Mirror:	

				{	

						transformation.SetMirror(myAx1);	

	break;	

				}	

	case	gp_Ax2Mirror:	

				{	

						transformation.SetMirror(myAx2);	

	break;	

				}	

	case	gp_Scale:	

				{	

						transformation.SetScale(myFirstPoint,	myScale);	

	break;	

				}	

	case	gp_CompoundTrsf:	

				{	

						transformation.SetTransformation(myFirstAx3,	

mySecondAx3);	

	break;	

				}	

	case	gp_Other:	

				{	

	break;	

				}	

		}	

	return	transformation;	

}	

//===

====================	

//function	:	SetRotation	

//purpose		:	The	method	defines	a	rotation	type	of	

transformation.	

//===

====================	

void	MyPackage_Transformation::SetRotation(const	

gp_Ax1&	theAxis,	const	Standard_Real	theAngle)	

{	

		Backup();	

		myType	=	gp_Rotation;	

		myAx1	=	theAxis;	

		myAngle	=	theAngle;	

}	

//===

====================	

//function	:	SetTranslation	

//purpose		:	The	method	defines	a	translation	type	of	

transformation.	

//===

====================	

void	MyPackage_Transformation::SetTranslation(const	

gp_Vec&	theVector)	

{	

		Backup();	

		myType	=	gp_Translation;	

		myFirstPoint.SetCoord(0,	0,	0);	

		mySecondPoint.SetCoord(theVector.X(),	

theVector.Y(),	theVector.Z());	

}	

//===

====================	

//function	:	SetMirror	

//purpose		:	The	method	defines	a	point	mirror	type	

of	transformation	

//											(point	symmetry).	

//===

====================	

void	MyPackage_Transformation::SetMirror(const	

gp_Pnt&	thePoint)	

{	

		Backup();	

		myType	=	gp_PntMirror;	

		myFirstPoint	=	thePoint;	

}	

//===

====================	

//function	:	SetMirror	

//purpose		:	The	method	defines	an	axis	mirror	type	

of	transformation	

//											(axial	symmetry).	

//===

====================	

void	MyPackage_Transformation::SetMirror(const	

gp_Ax1&	theAxis)	

{	

		Backup();	

		myType	=	gp_Ax1Mirror;	

		myAx1	=	theAxis;	

}	

//===

====================	

//function	:	SetMirror	

//purpose		:	The	method	defines	a	point	mirror	type	

of	transformation	

//											(planar	symmetry).	

//===

====================	

void	MyPackage_Transformation::SetMirror(const	

gp_Ax2&	thePlane)	

{	

		Backup();	

		myType	=	gp_Ax2Mirror;	

		myAx2	=	thePlane;	

}	

//===

====================	

//function	:	SetScale	

//purpose		:	The	method	defines	a	scale	type	of	

transformation.	

//===

====================	

void	MyPackage_Transformation::SetScale(const	gp_Pnt&	

thePoint,	const	Standard_Real	theScale)	

{	

		Backup();	

		myType	=	gp_Scale;	

		myFirstPoint	=	thePoint;	

		myScale	=	theScale;	

}	

//===

====================	

//function	:	SetTransformation	

//purpose		:	The	method	defines	a	complex	type	of	

transformation	

//											from	one	co-ordinate	system	to	another.	

//===

====================	

void	

MyPackage_Transformation::SetTransformation(cons

t	gp_Ax3&	theCoordinateSystem1,			

	const	gp_Ax3&	theCoordinateSystem2)	

{	

		Backup();	

		myFirstAx3	=	theCoordinateSystem1;	

		mySecondAx3	=	theCoordinateSystem2;	

}	

//===

====================	

//function	:	ID	

//purpose		:	The	method	returns	a	unique	GUID	of	the	

attribute.	

//											By	means	of	this	GUID	this	attribute	may	

be	identified			

//											among	other	attributes	attached	to	the	

same	label.	

//===

====================	

const	Standard_GUID&	MyPackage_Transformation::ID()	

const			

{			

	return	GetID();			

}	

//===

====================	

//function	:	Restore	

//purpose		:	The	method	is	called	on	Undo	/	Redo.	

//											It	copies	the	content	of	<theAttribute>	

//											into	this	attribute	(copies	the	fields).	

//===

====================	

void	MyPackage_Transformation::Restore(const	

Handle(TDF_Attribute)&	theAttribute)			

{	

		Handle(MyPackage_Transformation)	theTransformation	

=	

Handle(MyPackage_Transformation)::DownCast(theAt

tribute);	

		myType	=	theTransformation->myType;	

		myAx1	=	theTransformation->myAx1;	

		myAx2	=	theTransformation->myAx2;	

		myFirstAx3	=	theTransformation->myFirstAx3;	

		mySecondAx3	=	theTransformation->mySecondAx3;	

		myAngle	=	theTransformation->myAngle;	

		myScale	=	theTransformation->myScale;	

		myFirstPoint	=	theTransformation->myFirstPoint;	

		mySecondPoint	=	theTransformation->mySecondPoint;	

}	

//===

====================	

//function	:	NewEmpty	

//purpose		:	It	creates	a	new	instance	of	this	

attribute.	

//											It	is	called	on	Copy	/	Paste,	Undo	/	

Redo.	

//===

====================	

Handle(TDF_Attribute)	

MyPackage_Transformation::NewEmpty()	const	

{				

	return	new	MyPackage_Transformation();			

}	

//===

====================	

//function	:	Paste	

//purpose		:	The	method	is	called	on	Copy	/	Paste.	

//											It	copies	the	content	of	this	attribute	

into	

//											<theAttribute>	(copies	the	fields).	

//===

====================	

void	MyPackage_Transformation::Paste(const	

Handle(TDF_Attribute)&	theAttribute,	

	const	Handle(TDF_RelocationTable)&)	const	

{	

		Handle(MyPackage_Transformation)	theTransformation	

=	

Handle(MyPackage_Transformation)::DownCast(theAt

tribute);	

		theTransformation->myType	=	myType;	

		theTransformation->myAx1	=	myAx1;	

		theTransformation->myAx2	=	myAx2;	

		theTransformation->myFirstAx3	=	myFirstAx3;	

		theTransformation->mySecondAx3	=	mySecondAx3;	

		theTransformation->myAngle	=	myAngle;	

		theTransformation->myScale	=	myScale;	

		theTransformation->myFirstPoint	=	myFirstPoint;	

		theTransformation->mySecondPoint	=	mySecondPoint;	

}	

//===

====================	

//function	:	Dump	

//purpose		:	Prints	the	content	of	this	attribute	

into	the	stream.	

//===

====================	

Standard_OStream&	

MyPackage_Transformation::Dump(Standard_OStream&	

anOS)	const	

{				

		anOS	=	"Transformation:	";	

	switch	(myType)	

		{	

	case	gp_Identity:	

				{	

						anOS	=	"gp_Identity";	

	break;	

				}	

	case	gp_Rotation:	

				{	

						anOS	=	"gp_Rotation";	

	break;	

				}	

	case	gp_Translation:	

				{	

						anOS	=	"gp_Translation";	

	break;	

				}	

	case	gp_PntMirror:	

				{	

						anOS	=	"gp_PntMirror";	

	break;	

				}	

	case	gp_Ax1Mirror:	

				{	

						anOS	=	"gp_Ax1Mirror";	

	break;	

				}	

	case	gp_Ax2Mirror:	

				{	

						anOS	=	"gp_Ax2Mirror";	

	break;	

				}	

	case	gp_Scale:	

				{	

						anOS	=	"gp_Scale";	

	break;	

				}	

	case	gp_CompoundTrsf:	

				{	

						anOS	=	"gp_CompoundTrsf";	

	break;	

				}	

	case	gp_Other:	

				{	

						anOS	=	"gp_Other";	

	break;	

				}	

		}	

	return	anOS;	

}	

//===

====================

//function	:	MyPackage_Transformation	

//purpose		:	A	constructor.	

//===

====================

MyPackage_Transformation::MyPackage_Transformation():

myType(gp_Identity){	

}

Implementation	of	typical	actions	with	standard
OCAF	attributes.
There	are	four	sample	files	provided	in	the	directory
'OpenCasCade/ros/samples/ocafsamples'.	They	present	typical	actions
with	OCAF	services	(mainly	for	newcomers).	The	method	Sample()	of
each	file	is	not	dedicated	for	execution	'as	is',	it	is	rather	a	set	of	logical
actions	using	some	OCAF	services.

TDataStd_Sample.cxx

This	sample	contains	templates	for	typical	actions	with	the	following
standard	OCAF	attributes:

Starting	with	data	framework;
TDataStd_Integer	attribute	management;
TDataStd_RealArray	attribute	management;
TDataStd_Comment	attribute	management;
TDataStd_Name	attribute	management;
TDataStd_UAttribute	attribute	management;
TDF_Reference	attribute	management;
TDataXtd_Point	attribute	management;
TDataXtd_Plane	attribute	management;
TDataXtd_Axis	attribute	management;
TDataXtd_Geometry	attribute	management;
TDataXtd_Constraint	attribute	management;
TDataStd_Directory	attribute	management;
TDataStd_TreeNode	attribute	management.

TDocStd_Sample.cxx

This	sample	contains	template	for	the	following	typical	actions:

creating	application;
creating	the	new	document	(document	contains	a	framework);
retrieving	the	document	from	a	label	of	its	framework;
filling	a	document	with	data;
saving	a	document	in	the	file;

closing	a	document;
opening	the	document	stored	in	the	file;
copying	content	of	a	document	to	another	document	with	possibility
to	update	the	copy	in	the	future.

TPrsStd_Sample.cxx

This	sample	contains	template	for	the	following	typical	actions:

starting	with	data	framework;
setting	the	TPrsStd_AISViewer	in	the	framework;
initialization	of	aViewer;
finding	TPrsStd_AISViewer	attribute	in	the	DataFramework;
getting	AIS_InteractiveContext	from	TPrsStd_AISViewer;
adding	driver	to	the	map	of	drivers;
getting	driver	from	the	map	of	drivers;
setting	TNaming_NamedShape	to	<ShapeLabel>;
setting	the	new	TPrsStd_AISPresentation	to	<ShapeLabel>;
displaying;
erasing;
updating	and	displaying	presentation	of	the	attribute	to	be	displayed;
setting	a	color	to	the	displayed	attribute;
getting	transparency	of	the	displayed	attribute;
modify	attribute;
updating	presentation	of	the	attribute	in	viewer.

TNaming_Sample.cxx

This	sample	contains	template	for	typical	actions	with	OCAF	Topological
Naming	services.	The	following	scenario	is	used:

data	framework	initialization;
creating	Box1	and	pushing	it	as	PRIMITIVE	in	DF;
creating	Box2	and	pushing	it	as	PRIMITIVE	in	DF;
moving	Box2	(applying	a	transformation);
pushing	the	selected	edges	of	the	top	face	of	Box1	in	DF;
creating	a	Fillet	(using	the	selected	edges)	and	pushing	the	result	as
a	modification	of	Box1;
creating	a	Cut	(Box1,	Box2)	as	a	modification	of	Box1	and	push	it	in
DF;

recovering	the	result	from	DF.

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Applicability

TObj	Model
TObj	Model	structure
Data	Model	basic
features
Model	Persistence
Access	to	the	objects
in	the	model
Own	model	data
Object	naming
API	for	transaction
mechanism
Model	format	and
version
Model	update
Model	copying
Messaging

Model	object
Separation	of	data
and	interface
Basic	features
Data	layout	and
inheritance
Persistence
Names	of	objects
References	between
objects

Open	CASCADE
Technology		7.2.0

TObj	Package

Creation	and	deletion
of	objects
Transformation	and
replication	of	object
data
Object	flags
Partitions

Auxiliary	classes
Packaging

Introduction
This	document	describes	the	package	TObj,	which	is	an	add-on	to	the
Open	CASCADE	Application	Framework	(OCAF).

This	package	provides	a	set	of	classes	and	auxiliary	tools	facilitating	the
creation	of	object-oriented	data	models	on	top	of	low-level	OCAF	data
structures.	This	includes:

Definition	of	classes	representing	data	objects.	Data	objects	store
their	data	using	primitive	OCAF	attributes,	taking	advantage	of
OCAF	mechanisms	for	Undo/Redo	and	persistence.	At	the	same
time	they	provide	a	higher	level	abstraction	over	the	pure	OCAF
document	structure	(labels	/	attributes).
Organization	of	the	data	model	as	a	hierarchical	(tree-like)	structure
of	objects.
Support	of	cross-references	between	objects	within	one	model	or
among	different	models.	In	case	of	cross-model	references	the
models	should	depend	hierarchically.
Persistence	mechanism	for	storing	TObj	objects	in	OCAF	files,	which
allows	storing	and	retrieving	objects	of	derived	types	without	writing
additional	code	to	support	persistence.

This	document	describes	basic	principles	of	logical	and	physical
organization	of	TObj-based	data	models	and	typical	approaches	to
implementation	of	classes	representing	model	objects.

Applicability
The	main	purpose	of	the	TObj	data	model	is	rapid	development	of	the
object-oriented	data	models	for	applications,	using	the	existing
functionality	provided	by	OCAF	(Undo/Redo	and	persistence)	without	the
necessity	to	redevelop	such	functionality	from	scratch.

As	opposed	to	using	bare	OCAF	(at	the	level	of	labels	and	attributes),
TObj	facilitates	dealing	with	higher	level	abstracts,	which	are	closer	to	the
application	domain.	It	works	best	when	the	application	data	are	naturally
organized	in	hierarchical	structures,	and	is	especially	useful	for	complex
data	models	with	dependencies	between	objects	belonging	to	different
parts	of	the	model.

It	should	be	noted	that	TObj	is	efficient	for	representing	data	structures
containing	a	limited	number	of	objects	at	each	level	of	the	data	structure
(typically	less	than	1000).	A	greater	number	of	objects	causes
performance	problems	due	to	list-based	organization	of	OCAF
documents.	Therefore,	other	methods	of	storage,	such	as	arrays,	are
advisable	for	data	models	or	their	sub-parts	containing	a	great	number	of
uniform	objects.	However,	these	methods	can	be	combined	with	the
usage	of	TObj	to	represent	the	high-level	structure	of	the	model.

TObj	Model
TObj	Model	structure

In	the	TObj	data	model	the	data	are	separated	from	the	interfaces	that
manage	them.

It	should	be	emphasized	that	TObj	package	defines	only	the	interfaces
and	the	basic	structure	of	the	model	and	objects,	while	the	actual
contents	and	structure	of	the	model	of	a	particular	application	are	defined
by	its	specific	classes	inherited	from	TObj	classes.	The	implementation
can	add	its	own	features	or	even	change	the	default	behaviour	and	the
data	layout,	though	this	is	not	recommended.

Logically	the	TObj	data	model	is	represented	as	a	tree	of	model	objects,
with	upper-level	objects	typically	being	collections	of	other	objects	(called
partitions,	represented	by	the	class	TObj_Partition).	The	root	object	of	the
model	is	called	the	Main	partition	and	is	maintained	by	the	model	itself.
This	partition	contains	a	list	of	sub-objects	called	its	children	each	sub-
object	may	contain	its	own	children	(according	to	its	type),	etc.

TObj	Data	Model

As	the	TObj	Data	Model	is	based	on	OCAF	(Open	CASCADE	Application
Framework)	technology,	it	stores	its	data	in	the	underlying	OCAF
document.	The	OCAF	document	consists	of	a	tree	of	items	called	labels.
Each	label	has	some	data	attached	to	it	in	the	form	of	attributes,	and	may
contain	an	arbitrary	number	of	sub-labels.	Each	sub-label	is	identified	by
its	sequential	number	called	the	tag.	The	complete	sequence	of	tag
numbers	of	the	label	and	its	parents	starting	from	the	document	root
constitutes	the	complete	entry	of	the	label,	which	uniquely	identifies	its
position	in	the	document.

Generally	the	structure	of	the	OCAF	tree	of	the	TObj	data	model
corresponds	to	the	logical	structure	of	the	model	and	can	be	presented
as	in	the	following	picture:

TObj	Data	Model	mapped	on	OCAF	document

All	data	of	the	model	are	stored	in	the	root	label	(0:1)	of	the	OCAF
document.	An	attribute	TObj_TModel	is	located	in	this	root	label.	It	stores
the	object	of	type	TObj_Model.	This	object	serves	as	a	main	interface
tool	to	access	all	data	and	functionalities	of	the	data	model.

In	simple	cases	all	data	needed	by	the	application	may	be	contained	in	a
single	data	model.	Moreover,	TObj	gives	the	possibility	to	distribute	the
data	between	several	interconnected	data	models.	This	can	be	especially
useful	for	the	applications	dealing	with	great	amounts	of	data.	because

only	the	data	required	for	the	current	operation	is	loaded	in	the	memory
at	one	time.	It	is	presumed	that	the	models	have	a	hierarchical	(tree-like)
structure,	where	the	objects	of	the	child	models	can	refer	to	the	objects	of
the	parent	models,	not	vice-versa.	Provided	that	the	correct	order	of
loading	and	closing	of	the	models	is	ensured,	the	TObj	classes	will
maintain	references	between	the	objects	automatically.

Data	Model	basic	features
The	class	TObj_Model	describing	the	data	model	provides	the	following
functionalities:

Loading	and	saving	of	the	model	from	or	in	a	file	(methods	Load	and
Save)
Closing	and	removal	of	the	model	from	memory	(method	Close)
Definition	of	the	full	file	name	of	the	persistence	storage	for	this
model	(method	GetFile)
Tools	to	organize	data	objects	in	partitions	and	iterate	on	objects
(methods	GetObjects,	GetMainPartition,	GetChildren,	getPartition,
getElementPartition)
Mechanism	to	give	unique	names	to	model	objects
Copy	(clone)	of	the	model	(methods	NewEmpty	and	Paste)
Support	of	earlier	model	formats	for	proper	conversion	of	a	model
loaded	from	a	file	written	by	a	previous	version	of	the	application
(methods	GetFormatVersion	and	SetFormatVersion)
Interface	to	check	and	update	the	model	if	necessary	(method
Update)
Support	of	several	data	models	in	one	application.	For	this	feature
use	OCAF	multi-transaction	manager,	unique	names	and	GUIDs	of
the	data	model	(methods	GetModelName,	GetGUID)

Model	Persistence
The	persistent	representation	of	any	OCAF	model	is	contained	in	an	XML
or	a	binary	file,	which	is	defined	by	the	format	string	returned	by	the
method	GetFormat.	The	default	implementation	works	with	a	binary
OCAF	document	format	(BinOcaf).	The	other	available	format	is
XmlOcaf.	The	class	TObj_Model	declares	and	provides	a	default
implementation	of	two	virtual	methods:

virtual	Standard_Boolean	Load	(const	char*	theFile);	

virtual	Standard_Boolean	SaveAs	(const	char*	

theFile);	

which	retrieve	and	store	the	model	from	or	in	the	OCAF	file.	The
descendants	should	define	the	following	protected	method	to	support
Load	and	Save	operations:

virtual	Standard_Boolean	initNewModel	(const	

Standard_Boolean	IsNew);	

This	method	is	called	by	Load	after	creation	of	a	new	model	or	after	its
loading	from	the	file;	its	purpose	is	to	perform	the	necessary	initialization
of	the	model	(such	as	creation	of	necessary	top-level	partitions,	model
update	due	to	version	changes	etc.).	Note	that	if	the	specified	file	does
not	exist,	method	Load	will	create	a	new	document	and	call	initNewModel
with	the	argument	True.	If	the	file	has	been	normally	loaded,	the
argument	False	is	passed.	Thus,	a	new	empty	TObj	model	is	created	by
calling	Load	with	an	empty	string	or	the	path	to	a	nonexistent	file	as
argument.

The	method	Load	returns	True	if	the	model	has	been	retrieved
successfully	(or	created	a	new),	or	False	if	the	model	could	not	be
loaded.	If	no	errors	have	been	detected	during	initialization	(model
retrieval	or	creation),	the	virtual	method	AfterRetrieval	is	invoked	for	all
objects	of	the	model.	This	method	initializes	or	updates	the	objects
immediately	after	the	model	initialization.	It	could	be	useful	when	some
object	data	should	be	imported	from	an	OCAF	attribute	into	transient
fields	which	could	be	changed	outside	of	the	OCAF	transaction
mechanism.	Such	fields	can	be	stored	into	OCAF	attributes	for	saving

into	persistent	storage	during	the	save	operation.

To	avoid	memory	leaks,	the	TObj_Model	class	destructor	invokes	Close
method	which	clears	the	OCAF	document	and	removes	all	data	from
memory	before	the	model	is	destroyed.

For	XML	and	binary	persistence	of	the	TObj	data	model	the
corresponding	drivers	are	implemented	in	BinLDrivers,	BinMObj	and
XmlLDrivers,	XmlMObj	packages.	These	packages	contain	retrieval	and
storage	drivers	for	the	model,	model	objects	and	custom	attributes	from
the	TObj	package.	The	schemas	support	persistence	for	the	standard
OCAF	and	TObj	attributes.	This	is	sufficient	for	the	implementation	of
simple	data	models,	but	in	some	cases	it	can	be	reasonable	to	add
specific	OCAF	attributes	to	facilitate	the	storage	of	the	data	specific	to	the
application.	In	this	case	the	schema	should	be	extended	using	the
standard	OCAF	mechanism.

Access	to	the	objects	in	the	model
All	objects	in	the	model	are	stored	in	the	main	partition	and	accessed	by
iterators.	To	access	all	model	objects	use:

virtual	Handle(TObj_ObjectIterator)	GetObjects	()	

const;	

This	method	returns	a	recursive	iterator	on	all	objects	stored	in	the
model.

virtual	Handle(TObj_ObjectIterator)	GetChildren	()	

const;	

This	method	returns	an	iterator	on	child	objects	of	the	main	partition.	Use
the	following	method	to	get	the	main	partition:

Handle(TObj_Partition)	GetMainPartition()	const;	

To	receive	the	iterator	on	objects	of	a	specific	type	AType	use	the
following	call:

GetMainPartition()-

>GetChildren(STANDARD_TYPE(AType));	

The	set	of	protected	methods	is	provided	for	descendant	classes	to	deal
with	partitions:

virtual	Handle(TObj_Partition)	getPartition	(const	

TDF_Label,	const	Standard_Boolean		theHidden)	

const;	

This	method	returns	(creating	if	necessary)	a	partition	in	the	specified
label	of	the	document.	The	partition	can	be	created	as	hidden
(TObj_HiddenPartition	class).	A	hidden	partition	can	be	useful	to
distinguish	the	data	that	should	not	be	visible	to	the	user	when	browsing
the	model	in	the	application.

The	following	two	methods	allow	getting	(creating)	a	partition	in	the	sub-
label	of	the	specified	label	in	the	document	(the	label	of	the	main	partition
for	the	second	method)	and	with	the	given	name:

virtual	Handle(TObj_Partition)	getPartition	(const	

TDF_Label,	const	Standard_Integer	theIndex,	

const	TCollection_ExtendedString&	theName,	const	

Standard_Boolean		theHidden)	const;	

virtual	Handle(TObj_Partition)	getPartition	(const	

Standard_Integer	theIndex,	const	

TCollection_ExtendedString&	theName,	const	

Standard_Boolean		theHidden)	const;	

If	the	default	object	naming	and	the	name	register	mechanism	is	turned
on,	the	object	can	be	found	in	the	model	by	its	unique	name:

Handle(TObj_Object)	FindObject	(const	

Handle(TCollection_HExtendedString)&	theName,	

const	Handle(TObj_TNameContainer)&	

theDictionary)	const;	

Own	model	data
The	model	object	can	store	its	own	data	in	the	Data	label	of	its	main
partition,	however,	there	is	no	standard	API	for	setting	and	getting	these
data	types.	The	descendants	can	add	their	own	data	using	standard
OCAF	methods.	The	enumeration	DataTag	is	defined	in	TObj_Model	to
avoid	conflict	of	data	labels	used	by	this	class	and	its	descendants,
similarly	to	objects	(see	below).

Object	naming
The	basic	implementation	of	TObj_Model	provides	the	default	naming
mechanism:	all	objects	must	have	unique	names,	which	are	registered
automatically	in	the	data	model	dictionary.	The	dictionary	is	a
TObj_TNameContainer	attribute	whose	instance	is	located	in	the	model
root	label.	If	necessary,	the	developer	can	add	several	dictionaries	into
the	specific	partitions,	providing	the	name	registration	in	the	correct	name
dictionary	and	restoring	the	name	map	after	document	is	loaded	from	file.
To	ignore	name	registering	it	is	necessary	to	redefine	the	methods
SetName,	AfterRetrieval	of	the	TObj_Object	class	and	skip	the
registration	of	the	object	name.	Use	the	following	methods	for	the	naming
mechanism:

Standard_Boolean	IsRegisteredName	(const	

Handle(TCollection_HExtendedString)&	theName,	

const	Handle(TObj_TNameContainer)&	theDictionary	

)	const;	

Returns	True	if	the	object	name	is	already	registered	in	the	indicated	(or
model)	dictionary.

void	RegisterName	(const	

Handle(TCollection_HExtendedString)&	theName,	

const	TDF_Label&	theLabel,	const	

Handle(TObj_TNameContainer)&	theDictionary)	

const;	

Registers	the	object	name	with	the	indicated	label	where	the	object	is
located	in	the	OCAF	document.	Note	that	the	default	implementation	of
the	method	SetName	of	the	object	registers	the	new	name	automatically
(if	the	name	is	not	yet	registered	for	any	other	object)

void	UnRegisterName	(const	

Handle(TCollection_HExtendedString)&	theName,	

const	Handle(TObj_TNameContainer)&	theDictionary	

)	const;	

Unregisters	the	name	from	the	dictionary.	Ther	names	of	TObj	model
objects	are	removed	from	the	dictionary	when	the	objects	are	deleted
from	the	model.

Handle(TObj_TNameContainer)	GetDictionary()	const;

Returns	a	default	instance	of	the	model	dictionary	(located	at	the	model
root	label).	The	default	implementation	works	only	with	one	dictionary.	If
there	are	a	necessity	to	have	more	than	one	dictionary	for	the	model
objects,	it	is	recommended	to	redefine	the	corresponding	virtual	method
of	TObj_Object	that	returns	the	dictionary	where	names	of	objects	should
be	registered.

API	for	transaction	mechanism
Class	TObj_Model	provides	the	API	for	transaction	mechanism
(supported	by	OCAF):

Standard_Boolean	HasOpenCommand()	const;	

Returns	True	if	a	Command	transaction	is	open

void	OpenCommand()	const;	

Opens	a	new	command	transaction.

void	CommitCommand()	const;	

Commits	the	Command	transaction.	Does	nothing	If	there	is	no	open
Command	transaction.

void	AbortCommand()	const;	

Aborts	the	Command	transaction.	Does	nothing	if	there	is	no	open
Command	transaction.

Standard_Boolean	IsModified()	const;	

Returns	True	if	the	model	document	has	a	modified	status	(has	changes
after	the	last	save)

void	SetModified(const	Standard_Boolean);	

Changes	the	modified	status	by	force.	For	synchronization	of
transactions	within	several	TObj_Model	documents	use	class
TDocStd_MultiTransactionManager.

Model	format	and	version
Class	TObj_Model	provides	the	descendant	classes	with	a	means	to
control	the	format	of	the	persistent	file	by	choosing	the	schema	used	to
store	or	retrieve	operations.

virtual	TCollection_ExtendedString	GetFormat	()	

const;	

Returns	the	string	TObjBin	or	TObjXml	indicating	the	current	persistent
mechanism.	The	default	value	is	TObjBin.	Due	to	the	evolution	of
functionality	of	the	developed	application,	the	contents	and	the	structure
of	its	data	model	vary	from	version	to	version.	TObj	package	provides	a
basic	mechanism	supporting	backward	versions	compatibility,	which
means	that	newer	versions	of	the	application	will	be	able	to	read	Data
Model	files	created	by	previous	versions	(but	not	vice-versa)	with	a
minimum	loss	of	data.	For	each	type	of	Data	Model,	all	known	versions	of
the	data	format	should	be	enumerated	in	increasing	order,	incremented
with	every	change	of	the	model	format.	The	current	version	of	the	model
format	is	stored	in	the	model	file	and	can	be	checked	upon	retrieval.

Standard_Integer	GetFormatVersion()	const;	

Returns	the	format	version	stored	in	the	model	file

void	SetFormatVersion(const	Standard_Integer	

theVersion);	

Defines	the	format	version	used	for	save.

Upon	loading	a	model,	the	method	initNewModel(),	called	immediately
after	opening	a	model	from	disk	(on	the	level	of	the	OCAF	document),
provides	a	specific	code	that	checks	the	format	version	stored	in	that
model.	If	it	is	older	than	the	current	version	of	the	application,	the	data
update	can	be	performed.	Each	model	can	have	its	own	specific
conversion	code	that	performs	the	necessary	data	conversion	to	make
them	compliant	with	the	current	version.

When	the	conversion	ends	the	user	is	advised	of	that	by	the	messenger

interface	provided	by	the	model	(see	messaging	chapter	for	more
details),	and	the	model	version	is	updated.	If	the	version	of	data	model	is
not	supported	(it	is	newer	than	the	current	or	too	old),	the	load	operation
should	fail.	The	program	updating	the	model	after	version	change	can	be
implemented	as	static	methods	directly	in	C++	files	of	the	corresponding
Data	Model	classes,	not	exposing	it	to	the	other	parts	of	the	application.
These	codes	can	use	direct	access	to	the	model	and	objects	data
(attributes)	not	using	objects	interfaces,	because	the	data	model	API	and
object	classes	could	have	already	been	changed.

Note	that	this	mechanism	has	been	designed	to	maintain	version
compatibility	for	the	changes	of	data	stored	in	the	model,	not	for	the
changes	of	low-level	format	of	data	files	(such	as	the	storage	format	of	a
specific	OCAF	attribute).	If	the	format	of	data	files	changes,	a	specific
treatment	on	a	case-by-case	basis	will	be	required.

Model	update
The	following	methods	are	used	for	model	update	to	ensure	its
consistency	with	respect	to	the	other	models	in	case	of	cross-model
dependencies:

virtual	Standard_Boolean	Update();	

This	method	is	usually	called	after	loading	of	the	model.	The	default
implementation	does	nothing	and	returns	True.

virtual	Standard_Boolean	initNewModel(const	

Standard_Boolean	IsNew);	

This	method	performs	model	initialization,	check	and	updates	(as
described	above).

virtual	void	updateBackReferences(const	

Handle(TObj_Object)&	theObj);	

This	method	is	called	from	the	previous	method	to	update	back
references	of	the	indicated	object	after	the	retrieval	of	the	model	from	file
(see	data	model	-	object	relationship	chapter	for	more	details)

Model	copying
To	copy	the	model	between	OCAF	documents	use	the	following	methods:

virtual	Standard_Boolean	Paste	(Handle(TObj_Model)	

theModel,	Handle(TDF_RelocationTable)	

theRelocTable	=	0);	

Pastes	the	current	model	to	the	new	model.	The	relocation	table	ensures
correct	copying	of	the	sub-data	shared	by	several	parts	of	the	model.	It
stores	a	map	of	processed	original	objects	of	relevant	types	in	their
copies.

virtual	Handle(TObj_Model)	NewEmpty()	=	0;	

Redefines	a	pure	virtual	method	to	create	a	new	empty	instance	of	the
model.

void	CopyReferences	(const	Handle(TObj_Model)&	

theTarget,	const	Handle(TDF_RelocationTable)&	

theRelocTable);	

Copies	the	references	from	the	current	model	to	the	target	model.

Messaging
The	messaging	is	organised	using	Open	CASCADE	Messenger	from	the
package	Message.	The	messenger	is	stored	as	the	field	of	the	model
instance	and	can	be	set	and	retrieved	by	the	following	methods:

void	SetMessenger(const	Handle(Message_Messenger)&	

);	

Handle(Message_Messenger)	Messenger()	const;	

A	developer	should	create	his	own	instance	of	the	Messenger	bound	to
the	application	user	interface,	and	attribute	it	to	the	model	for	future
usage.	In	particular	the	messenger	is	used	for	reporting	errors	and
warnings	in	the	persistence	mechanism.	Each	message	has	a	unique
string	identifier	(key).	All	message	keys	are	stored	in	a	special	resource
file	TObj.msg.	This	file	should	be	loaded	at	the	start	of	the	application	by
call	to	the	appropriate	method	of	the	class	Message_MsgFile.

Model	object
Class	TObj_Object	provides	basic	interface	and	default	implementation
of	important	features	of	TObj	model	objects.	This	implementation	defines
basic	approaches	that	are	recommended	for	all	descendants,	and
provides	tools	to	facilitate	their	usage.

TObj	objects	hierarchy

Separation	of	data	and	interface
In	the	TObj	data	model,	the	data	are	separated	from	the	interfaces	that
manage	them.	The	data	belonging	to	a	model	object	are	stored	in	its	root
label	and	sub-labels	in	the	form	of	standard	OCAF	attributes.	This	allows
using	standard	OCAF	mechanisms	for	work	with	these	data,	and	eases
the	implementation	of	the	persistence	mechanism.

The	instance	of	the	interface	which	serves	as	an	API	for	managing	object
data	(e.g.	represents	the	model	object)	is	stored	in	the	root	label	of	the
object,	and	typically	does	not	bring	its	own	data.	The	interface	classes
are	organized	in	a	hierarchy	corresponding	to	the	natural	hierarchy	of	the
model	objects	according	to	the	application.

In	the	text	below	the	term	'object'	is	used	to	denote	either	the	instance	of
the	interface	class	or	the	object	itself	(both	interface	and	data	stored	in
OCAF).

The	special	type	of	attribute	TObj_TObject	is	used	for	storing	instances	of
objects	interfaces	in	the	OCAF	tree.	TObj_TObject	is	a	simple	container
for	the	object	of	type	TObj_Object.	All	objects	(interfaces)	of	the	data
model	inherit	this	class.

TObj	object	stored	on	OCAF	label

Basic	features
The	TObj_Object	class	provides	some	basic	features	that	can	be
inherited	(or,	if	necessary,	redefined)	by	the	descendants:

Gives	access	to	the	model	to	which	the	object	belongs	(method
GetModel)	and	to	the	OCAF	label	in	which	the	object	is	stored
(method	GetLabel).
Supports	references	(and	back	references)	to	other	objects	in	the
same	or	in	another	model	(methods	getReference,	setReference,
addReference,	GetReferences,	GetBackReferences,
AddBackReference,	RemoveBackReference,	ReplaceReference)
Provides	the	ability	to	contain	child	objects,	as	it	is	actual	for	partition
objects	(methods	GetChildren,	GetFatherObject)
Organizes	its	data	in	the	OCAF	structure	by	separating	the	sub-
labels	of	the	main	label	intended	for	various	kinds	of	data	and
providing	tools	to	organize	these	data	(see	below).	The	kinds	of	data
stored	separately	are:

Child	objects	stored	in	the	label	returned	by	the	method
GetChildLabel
References	to	other	objects	stored	in	the	label	returned	by	the
method	GetReferenceLabel
Other	data,	both	common	to	all	objects	and	specific	for	each
subtype	of	the	model	object,	are	stored	in	the	label	returned	by
the	method	GetDataLabel

Provides	unique	names	of	all	objects	in	the	model	(methods
GetDictionary,	GetName,	SetName)
Provides	unified	means	to	maintain	persistence	(implemented	in
descendants	with	the	help	of	macros
DECLARE_TOBJOCAF_PERSISTENCE	and
IMPLEMENT_TOBJOCAF_PERSISTENCE)
Allows	an	object	to	remove	itself	from	the	OCAF	document	and
check	the	depending	objects	can	be	deleted	according	to	the	back
references	(method	Detach)
Implements	methods	for	identification	and	versioning	of	objects
Manages	the	object	interaction	with	OCAF	Undo/Redo	mechanism
(method	IsAlive,	AfterRetrieval,	BeforeStoring)
Allows	make	a	clone	(methods	Clone,	CopyReferences,
CopyChildren,	copyData)

Contains	additional	word	of	bit	flags	(methods	GetFlags,	SetFlags,
TestFlags,	ClearFlags)
Defines	the	interface	to	sort	the	objects	by	rank	(methods	GetOrder,
SetOrder)
Provides	a	number	of	auxiliary	methods	for	descendants	to	set/get
the	standard	attribute	values,	such	as	int,	double,	string,	arrays	etc.

An	object	can	be	received	from	the	model	by	the	following	methods:

static	Standard_Boolean	GetObj	(const	TDF_Label&	

theLabel,	Handle(TObj_Object)&	theResObject,	

const	Standard_Boolean	isSuper	=	Standard_False	

);	

Returns	True	if	the	object	has	been	found	in	the	indicated	label	(or	in	the
upper	level	label	if	isSuper	is	True).

Handle(TObj_Object)	GetFatherObject	(const	

Handle(Standard_Type)&	theType	=	NULL)	const;	

Returns	the	father	object	of	the	indicated	type	for	the	current	object	(the
direct	father	object	if	the	type	is	NULL).

Data	layout	and	inheritance
As	far	as	the	data	objects	are	separated	from	the	interfaces	and	stored	in
the	OCAF	tree,	the	functionality	to	support	inheritance	is	required.	Each
object	has	its	own	data	and	references	stored	in	the	labels	in	the	OCAF
tree.	All	data	are	stored	in	the	sub-tree	of	the	main	object	label.	If	it	is
necessary	to	inherit	a	class	from	the	base	class,	the	descendant	class
should	use	different	labels	for	data	and	references	than	its	ancestor.

Therefore	each	TObj	class	can	reserve	the	range	of	tags	in	each	of	Data,
References,	and	Child	sub-labels.	The	reserved	range	is	declared	by	the
enumeration	defined	in	the	class	scope	(called	DataTag,	RefTag,	and
ChildTag,	respectively).	The	item	First	of	the	enumeration	of	each	type	is
defined	via	the	Last	item	of	the	corresponding	enumeration	of	the	parent
class,	thus	ensuring	that	the	tag	numbers	do	not	overlap.	The	item	Last
of	the	enumeration	defines	the	last	tag	reserved	by	this	class.	Other
items	of	the	enumeration	define	the	tags	used	for	storing	particular	data
items	of	the	object.	See	the	declaration	of	the	TObj_Partition	class	for	the
example.

TObj_Object	class	provides	a	set	of	auxiliary	methods	for	descendants	to
access	the	data	stored	in	sub-labels	by	their	tag	numbers:

TDF_Label	getDataLabel	(const	Standard_Integer	

theRank1,	const	Standard_Integer	theRank2	=	0)	

const;	

TDF_Label	getReferenceLabel	(const	Standard_Integer	

theRank1,	const	Standard_Integer	theRank2	=	0)	

const;	

Returns	the	label	in	Data	or	References	sub-labels	at	a	given	tag	number
(theRank1).	The	second	argument,	theRank2,	allows	accessing	the	next
level	of	hierarchy	(theRank2-th	sub-label	of	theRank1-th	data	label).	This
is	useful	when	the	data	to	be	stored	are	represented	by	multiple	OCAF
attributes	of	the	same	type	(e.g.	sequences	of	homogeneous	data	or
references).

The	get/set	methods	allow	easily	accessing	the	data	located	in	the
specified	data	label	for	the	most	widely	used	data	types	(Standard_Real,

Standard_Integer,	TCollection_HExtendedString,
TColStd_HArray1OfReal,	TColStd_HArray1OfInteger,
TColStd_HArray1OfExtendedString).	For	instance,	methods	provided	for
real	numbers	are:

Standard_Real	getReal	(const	Standard_Integer	

theRank1,	const	Standard_Integer	theRank2	=	0)	

const;	

Standard_Boolean	setReal	(const	Standard_Real	

theValue,	const	Standard_Integer	theRank1,	const	

Standard_Integer	theRank2	=	0,	const	

Standard_Real	theTolerance	=	0.)	const;	

Similar	methods	are	provided	to	access	references	to	other	objects:

Handle(TObj_Object)	getReference	(const	

Standard_Integer	theRank1,	const	

Standard_Integer	theRank2	=	0)	const;	

Standard_Boolean	setReference	(const	

Handle(TObj_Object)	&theObject,	const	

Standard_Integer	theRank1,	const	

Standard_Integer	theRank2	=	0);	

The	method	addReference	gives	an	easy	way	to	store	a	sequence	of
homogeneous	references	in	one	label.

TDF_Label	addReference	(const	Standard_Integer	

theRank1,	const	Handle(TObj_Object)	&theObject);	

Note	that	while	references	to	other	objects	should	be	defined	by
descendant	classes	individually	according	to	the	type	of	object,
TObj_Object	provides	methods	to	manipulate	(check,	remove,	iterate)	the
existing	references	in	the	uniform	way,	as	described	below.

Persistence
The	persistence	of	the	TObj	Data	Model	is	implemented	with	the	help	of
standard	OCAF	mechanisms	(a	schema	defining	necessary	plugins,
drivers,	etc.).	This	implies	the	possibility	to	store/retrieve	all	data	that	are
stored	as	standard	OCAF	attributes.,	The	corresponding	handlers	are
added	to	the	drivers	for	TObj-specific	attributes.

The	special	tool	is	provided	for	classes	inheriting	from	TObj_Object	to
add	the	new	types	of	persistence	without	regeneration	of	the	OCAF
schema.	The	class	TObj_Persistence	provides	basic	means	for	that:

automatic	run-time	registration	of	object	types
creation	of	a	new	object	of	the	specified	type	(one	of	the	registered
types)

Two	macros	defined	in	the	file	TObj_Persistence.hxx	have	to	be	included
in	the	definition	of	each	model	object	class	inheriting	TObj_Object	to
activate	the	persistence	mechanism:

DECLARE_TOBJOCAF_PERSISTENCE	(classname,	

ancestorname)	

Should	be	included	in	the	private	section	of	declaration	of	each	class
inheriting	TObj_Object	(hxx	file).	This	macro	adds	an	additional
constructor	to	the	object	class,	and	declares	an	auxiliary	(private)	class
inheriting	TObj_Persistence	that	provides	a	tool	to	create	a	new	object	of
the	proper	type.

IMPLEMENT_TOBJOCAF_PERSISTENCE	(classname)	

Should	be	included	in	.cxx	file	of	each	object	class	that	should	be	saved
and	restored.	This	is	not	needed	for	abstract	types	of	objects.	This	macro
implements	the	functions	declared	by	the	previous	macro	and	creates	a
static	member	that	automatically	registers	that	type	for	persistence.

When	the	attribute	TObj_TObject	that	contains	the	interface	object	is
saved,	its	persistence	handler	stores	the	runtime	type	of	the	object	class.
When	the	type	is	restored	the	handler	dynamically	recognizes	the	type

and	creates	the	corresponding	object	using	mechanisms	provided	by
TObj_Persistence.

Names	of	objects
All	TObj	model	objects	have	names	by	which	the	user	can	refer	to	the
object.	Upon	creation,	each	object	receives	a	default	name,	constructed
from	the	prefix	corresponding	to	the	object	type	(more	precisely,	the
prefix	is	defined	by	the	partition	to	which	the	object	belongs),	and	the
index	of	the	object	in	the	current	partition.	The	user	has	the	possibility	to
change	this	name.	The	uniqueness	of	the	name	in	the	model	is	ensured
by	the	naming	mechanism	(if	the	name	is	already	used,	it	cannot	be
attributed	to	another	object).	This	default	implementation	of	TObj
package	works	with	a	single	instance	of	the	name	container	(dictionary)
for	name	registration	of	objects	and	it	is	enough	in	most	simple	projects.
If	necessary,	it	is	easy	to	redefine	a	couple	of	object	methods	(for
instance	GetDictionary())	and	to	take	care	of	construction	and
initialization	of	containers.

This	functionality	is	provided	by	the	following	methods:

virtual	Handle(TObj_TNameContainer)	GetDictionary()	

const;	

Returns	the	name	container	where	the	name	of	object	should	be
registered.	The	default	implementation	returns	the	model	name	container.

Handle(TCollection_HExtendedString)	GetName()	const;	

Standard_Boolean	GetName(TCollection_ExtendedString&	

theName)	const;	

Standard_Boolean	GetName(TCollection_AsciiString&	

theName)	const;	

Returns	the	object	name.	The	methods	with	in	/	out	argument	return
False	if	the	object	name	is	not	defined.

virtual	Standard_Boolean	SetName	(const	

Handle(TCollection_HExtendedString)&	theName)	

const;	

Standard_Boolean	SetName									(const	

Handle(TCollection_HAsciiString)&	theName)	

const;	

Standard_Boolean	SetName									(const	

Standard_CString	theName)	const;	

Attributes	a	new	name	to	the	object	and	returns	True	if	the	name	has
been	attributed	successfully.	Returns	False	if	the	name	has	been	already
attributed	to	another	object.	The	last	two	methods	are	short-cuts	to	the
first	one.

References	between	objects
Class	TObj_Object	allows	creating	references	to	other	objects	in	the
model.	Such	references	describe	relations	among	objects	which	are	not
adequately	reflected	by	the	hierarchical	objects	structure	in	the	model
(parent-child	relationship).

The	references	are	stored	internally	using	the	attribute	TObj_TReference.
This	attribute	is	located	in	the	sub-label	of	the	referring	object	(called
master)	and	keeps	reference	to	the	main	label	of	the	referred	object.	At
the	same	time	the	referred	object	can	maintain	the	back	reference	to	the
master	object.

Objects	relationship

The	back	references	are	stored	not	in	the	OCAF	document	but	as	a
transient	field	of	the	object;	they	are	created	when	the	model	is	restored
from	file,	and	updated	automatically	when	the	references	are
manipulated.	The	class	TObj_TReference	allows	storing	references
between	objects	from	different	TObj	models,	facilitating	the	construction
of	complex	relations	between	objects.

The	most	used	methods	for	work	with	references	are:

virtual	Standard_Boolean	HasReference(const	

Handle(TObj_Object)&	theObject)	const;	

Returns	True	if	the	current	object	refers	to	the	indicated	object.

virtual	Handle(TObj_ObjectIterator)	GetReferences	(

const	Handle(Standard_Type)&	theType	=	NULL)	

const;	

Returns	an	iterator	on	the	object	references.	The	optional	argument
theType	restricts	the	types	of	referred	objects,	or	does	not	if	it	is	NULL.

virtual	void	RemoveAllReferences();	

Removes	all	references	from	the	current	object.

virtual	void	RemoveReference(const	

Handle(TObj_Object)&	theObject);	

Removes	the	reference	to	the	indicated	object.

virtual	Handle(TObj_ObjectIterator)	GetBackReferences	

(const	Handle(Standard_Type)&	theType	=	NULL)	

const;	

Returns	an	iterator	on	the	object	back	references.	The	argument	theType
restricts	the	types	of	master	objects,	or	does	not	if	it	is	NULL.

virtual	void	ReplaceReference		(const	

Handle(TObj_Object)&	theOldObject,		const	

Handle(TObj_Object)&	theNewObject);	

Replaces	the	reference	to	theOldObject	by	the	reference	to
theNewObject.	The	handle	theNewObject	may	be	NULL	to	remove	the
reference.

virtual	Standard_Boolean	RelocateReferences		(const	

TDF_Label&	theFromRoot,		const	TDF_Label&	

theToRoot,	const	Standard_Boolean	

theUpdateackRefs	=	Standard_True);	

Replaces	all	references	to	a	descendant	label	of	theFromRoot	by	the
references	to	an	equivalent	label	under	theToRoot.	Returns	False	if	the
resulting	reference	does	not	point	at	a	TObj_Object.	Updates	back
references	if	theUpdateackRefs	is	True.

virtual	Standard_Boolean	CanRemoveReference	(const	

Handle(TObj_Object)&	theObj)	const;	

Returns	True	if	the	reference	can	be	removed	and	the	master	object	will
remain	valid	(weak	reference).	Returns	False	if	the	master	object	cannot
be	valid	without	the	referred	object	(strong	reference).	This	affects	the
behaviour	of	objects	removal	from	the	model	–	if	the	reference	cannot	be
removed,	either	the	referred	object	will	not	be	removed,	or	both	the
referred	and	the	master	objects	will	be	removed	(depends	on	the	deletion
mode	in	the	method	Detach)

Creation	and	deletion	of	objects
It	is	recommended	that	all	objects	inheriting	from	TObj_Object	should
implement	the	same	approach	to	creation	and	deletion.

The	object	of	the	TObj	data	model	cannot	be	created	independently	of
the	model	instance,	as	far	as	it	stores	the	object	data	in	OCAF	data
structures.	Therefore	an	object	class	cannot	be	created	directly	as	its
constructor	is	protected.

Instead,	each	object	should	provide	a	static	method	Create(),	which
accepts	the	model,	with	the	label,	which	stores	the	object	and	other	type-
dependent	parameters	necessary	for	proper	definition	of	the	object.	This
method	creates	a	new	object	with	its	data	(a	set	of	OCAF	attributes)	in
the	specified	label,	and	returns	a	handle	to	the	object's	interface.

The	method	Detach()	is	provided	for	deletion	of	objects	from	OCAF
model.	Object	data	are	deleted	from	the	corresponding	OCAF	label;
however,	the	handle	on	object	remains	valid.	The	only	operation	available
after	object	deletion	is	the	method	IsAlive()	checking	whether	the	object
has	been	deleted	or	not,	which	returns	False	if	the	object	has	been
deleted.

When	the	object	is	deleted	from	the	data	model,	the	method	checks
whether	there	are	any	alive	references	to	the	object.	Iterating	on
references	the	object	asks	each	referring	(master)	object	whether	the
reference	can	be	removed.	If	the	master	object	can	be	unlinked,	the
reference	is	removed,	otherwise	the	master	object	will	be	removed	too	or
the	referred	object	will	be	kept	alive.	This	check	is	performed	by	the
method	Detach	,	but	the	behavior	depends	on	the	deletion	mode
TObj_DeletingMode:

TObj_FreeOnly	–	the	object	will	be	destroyed	only	if	it	is	free,	i.e.
there	are	no	references	to	it	from	other	objects
TObj_KeepDepending	–	the	object	will	be	destroyed	if	there	are	no
strong	references	to	it	from	master	objects	(all	references	can	be
unlinked)
TObj_Force	–	the	object	and	all	depending	master	objects	that	have
strong	references	to	it	will	be	destroyed.

The	most	used	methods	for	object	removing	are:

virtual	Standard_Boolean	CanDetachObject	(const	

TObj_DeletingMode	theMode	=	TObj_FreeOnly);	

Returns	True	if	the	object	can	be	deleted	with	the	indicated	deletion
mode.

virtual	Standard_Boolean	Detach	(const	

TObj_DeletingMode	theMode	=	TObj_FreeOnly);	

Removes	the	object	from	the	document	if	possible	(according	to	the
indicated	deletion	mode).	Unlinks	references	from	removed	objects.
Returns	True	if	the	objects	have	been	successfully	deleted.

Transformation	and	replication	of	object	data
TObj_Object	provides	a	number	of	special	virtual	methods	to	support
replications	of	objects.	These	methods	should	be	redefined	by
descendants	when	necessary.

virtual	Handle(TObj_Object)	Clone	(const	TDF_Label&	

theTargetLabel,	Handle(TDF_RelocationTable)	

theRelocTable	=	0);	

Copies	the	object	to	theTargetLabel.	The	new	object	will	have	all
references	of	its	original.	Returns	a	handle	to	the	new	object	(null	handle
if	fail).	The	data	are	copied	directly,	but	the	name	is	changed	by	adding
the	postfix	*_copy*.	To	assign	different	names	to	the	copies	redefine	the
method:

virtual	Handle(TCollection_HExtendedString)	

GetNameForClone	(const	Handle(TObj_Object)&)	

const;	

Returns	the	name	for	a	new	object	copy.	It	could	be	useful	to	return	the
same	object	name	if	the	copy	will	be	in	the	other	model	or	in	the	other
partition	with	its	own	dictionary.	The	method	Clone	uses	the	following
public	methods	for	object	data	replications:

virtual	void	CopyReferences	(const	const	

Handle(TObj_Object)&	theTargetObject,	const	

Handle(TDF_RelocationTable)	theRelocTable);	

Adds	to	the	copy	of	the	original	object	its	references.

virtual	void	CopyChildren	(TDF_Label&	theTargetLabel,	

const	Handle(TDF_RelocationTable)	

theRelocTable);	

Copies	the	children	of	an	object	to	the	target	child	label.

Object	flags
Each	instance	of	TObj_Object	stores	a	set	of	bit	flags,	which	facilitate	the
storage	of	auxiliary	logical	information	assigned	to	the	objects	(object
state).	Several	typical	state	flags	are	defined	in	the	enumeration
ObjectState:

ObjectState_Hidden	–	the	object	is	marked	as	hidden
ObjectState_Saved	–	the	object	has	(or	should	have)	the
corresponding	saved	file	on	disk
ObjectState_Imported	–	the	object	is	imported	from	somewhere
ObjectState_ImportedByFile	–	the	object	has	been	imported	from	file
and	should	be	updated	to	have	correct	relations	with	other	objects
ObjectState_Ordered	–	the	partition	contains	objects	that	can	be
ordered.

The	user	(developer)	can	define	any	new	flags	in	descendant	classes.	To
set/get	an	object,	the	flags	use	the	following	methods:

Standard_Integer	GetFlags()	const;	

void	SetFlags(const	Standard_Integer	theMask);	

Stadnard_Boolean	TestFlags(const	Standard_Integer	

theMask)	const;	

void	ClearFlags(const	Standard_Integer	theMask	=	0	

);	

In	addition,	the	generic	virtual	interface	stores	the	logical	properties	of	the
object	class	in	the	form	of	a	set	of	bit	flags.	Type	flags	can	be	received	by
the	method:

virtual	Standard_Integer	GetTypeFlags()	const;	

The	default	implementation	returns	the	flag	Visible	defined	in	the
enumeration	TypeFlags.	This	flag	is	used	to	define	visibility	of	the	object
for	the	user	browsing	the	model	(see	class	TObj_HiddenPartition).	Other
flags	can	be	added	by	the	applications.

Partitions
The	special	kind	of	objects	defined	by	the	class	TObj_Partition	(and	its
descendant	TObj_HiddenPartition)	is	provided	for	partitioning	the	model
into	a	hierarchical	structure.	This	object	represents	the	container	of	other
objects.	Each	TObj	model	contains	the	main	partition	that	is	placed	in	the
same	OCAF	label	as	the	model	object,	and	serves	as	a	root	of	the
object's	tree.	A	hidden	partition	is	a	simple	partition	with	a	predefined
hidden	flag.

The	main	partition	object	methods:

TDF_Label	NewLabel()	const;	

Allocates	and	returns	a	new	label	for	creation	of	a	new	child	object.

void	SetNamePrefix		(const	

Handle(TCollection_HExtendedString)&	thePrefix);	

Defines	the	prefix	for	automatic	generation	of	names	of	the	newly	created
objects.

Handle(TCollection_HExtendedString)	GetNamePrefix()	

const;	

Returns	the	current	name	prefix.

Handle(TCollection_HExtendedString)	GetNewName	(

const	Standard_Boolean	theIsToChangeCount)	

const;	

Generates	the	new	name	and	increases	the	internal	counter	of	child
objects	if	theIsToChangeCount	is	True.

Standard_Integer	GetLastIndex()	const;	

Returns	the	last	reserved	child	index.

void	SetLastIndex(const	Standard_Integer	theIndex);	

Sets	the	last	reserved	index.

Auxiliary	classes
Apart	from	the	model	and	the	object,	package	TObj	provides	a	set	of
auxiliary	classes:

TObj_Application	–	defines	OCAF	application	supporting	existence
and	operation	with	TObj	documents.
TObj_Assistant	–	class	provides	an	interface	to	the	static	data	to	be
used	during	save	and	load	operations	on	models.	In	particular,	in
case	of	cross-model	dependencies	it	allows	passing	information	on
the	parent	model	to	the	OCAF	loader	to	correctly	resolve	the
references	when	loading	a	dependent	model.
TObj_TReference	–	OCAF	attribute	describes	the	references
between	objects	in	the	TObj	model(s).	This	attribute	stores	the	label
of	the	referred	model	object,	and	provides	transparent	cross-model
references.	At	runtime,	these	references	are	simple	Handles;	in
persistence	mode,	the	cross-model	references	are	automatically
detected	and	processed	by	the	persistence	mechanism	of
TObj_TReference	attribute.
Other	classes	starting	with	TObj_T...	–	define	OCAF	attributes	used
to	store	TObj-specific	classes	and	some	types	of	data	on	OCAF
labels.
Iterators	–	a	set	of	classes	implementing	TObj_ObjectIterator
interface,	used	for	iterations	on	TObj	objects:

TObj_ObjectIterator	–	a	basic	abstract	class	for	other	TObj
iterators.	Iterates	on	TObj_Object	instances.
TObj_LabelIterator	–	iterates	on	object	labels	in	the	TObj	model
document
TObj_ModelIterator	–	iterates	on	all	objects	in	the	model.	Works
with	sequences	of	other	iterators.
TObj_OcafObjectIterator	–	Iterates	on	TObj	data	model	objects.
Can	iterate	on	objects	of	a	specific	type.
TObj_ReferenceIterator	–	iterates	on	object	references.
TObj_SequenceIterator	–	iterates	on	a	sequence	of	TObj
objects.
TObj_CheckModel	–	a	tool	that	checks	the	internal	consistency
of	the	model.	The	basic	implementation	checks	only	the
consistency	of	references	between	objects.

The	structure	of	TObj	iterators	hierarchy	is	presented	below:

Hierarchy	of	iterators

Packaging
The	TObj	sources	are	distributed	in	the	following	packages:

TObj	–	defines	basic	classes	that	implement	TObj	interfaces	for
OCAF-based	modelers.
BinLDrivers,	XmlLDrivers	–	binary	and	XML	driver	of	TObj	package
BinLPlugin,	XmlLPlugin	–	plug-in	for	binary	and	XML	persistence
BinMObj,	XmlMObj	–	binary	and	XML	drivers	to	store	and	retrieve
specific	TObj	data	to	or	from	OCAF	document
TKBinL,	TKXmlL	–	toolkits	of	binary	and	XML	persistence

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Overview
Contents	of	this
documentation
Getting	started

Launching
DRAW	Test
Harness
Plug-in	resource
file
Activation	of
commands
implemented	in
the	plug-in

The	Command	Language
Overview
Syntax	of	TCL
Accessing	variables
in	TCL	and	Draw

set,	unset
dset,	dval
del,	dall

lists
Control
Structures
if
while,	for,
foreach
break,	continue

Open	CASCADE
Technology		7.2.0

Draw	Test	Harness

Procedures
proc
global,	upvar

Basic	Commands
General	commands

help
source
spy
cpulimit
wait
chrono

Variable
management
commands

isdraw,
directory
whatis,	dump
renamevar,
copy
datadir,	save,
restore

User	defined
commands

set
get

Graphic	Commands
Axonometric	viewer

view,	delete
axo,	pers,	top,
...
mu,	md,	2dmu,
2dmd,	zoom,
2dzoom
pu,	pd,	pl,	pr,
2dpu,	2dpd,
2dpl,	2dpr
fit,	2dfit
u,	d,	l,	r
focal,	fu,	fd

color
dtext
hardcopy,
hcolor,	xwd
wclick,	pick
autodisplay
display,	donly
erase,	clear,
2dclear
disp,	don,	era
repaint,	dflush

AIS	viewer	--	view
commands

vinit
vhelp
vtop
vaxo
vsetbg
vclear
vrepaint
vfit
vzfit
vreadpixel
vselect
vmoveto
vviewparams
vchangeselected
vzclipping
vnbselected
vpurgedisplay
vhlr
vhlrtype
vcamera
vstereo
vfrustumculling

AIS	viewer	--	display
commands

vdisplay
vdonly
vdisplayall
verase
veraseall
vsetdispmode
vdisplaytype
verasetype
vtypes
vaspects
vsetshading
vunsetshading
vsetam
vunsetam
vdump
vdir
vsub
vsensdis
vsensera
vr
vstate
vraytrace
vrenderparams
vshaderprog
vsetcolorbg

AIS	viewer	--	object
commands

vtrihedron
vplanetri
vsize
vaxis
vaxispara
vaxisortho
vpoint
vplane
vplanepara

vplaneortho
vline
vcircle
vtri2d
vselmode
vconnect
vtriangle
vsegment
vpointcloud
vclipplane
vdimension
vdimparam
vangleparam
vlengthparam
vmovedim

AIS	viewer	--	Mesh
Visualization	Service

meshfromstl
meshdispmode
meshselmode
meshshadcolor
meshlinkcolor
meshmat
meshshrcoef
meshshow
meshhide
meshhidesel
meshshowsel
meshshowall
meshdelete

VIS	Viewer
commands

ivtkinit
ivtkdisplay
ivtkerase
ivtkfit

ivtkdispmode
ivtksetselmode
ivtkmoveto
ivtkselect
ivtkdump
ivtkbgcolor

OCAF	commands
Application
commands

NewDocument
IsInSession
ListDocuments
Open
Close
Save
SaveAs

Basic	commands
Label
NewChild
Children
ForgetAll
Application
commands
Main
UndoLimit
Undo
Redo
OpenCommand
CommitCommand
NewCommand
AbortCommand
Copy
UpdateLink
CopyWithLink
UpdateXLinks
DumpDocument

Data	Framework
commands

MakeDF
ClearDF
CopyDF
CopyLabel
MiniDumpDF
XDumpDF

General	attributes
commands

SetInteger
GetInteger
SetReal
GetReal
SetIntArray
GetIntArray
SetRealArray
GetRealArray
SetComment
GetComment
SetExtStringArray
GetExtStringArray
SetName
GetName
SetReference
GetReference
SetUAttribute
GetUAttribute
SetFunction
GetFunction
NewShape
SetShape
GetShape

Geometric	attributes
commands

SetPoint
GetPoint

SetAxis
GetAxis
SetPlane
GetPlane
SetGeometry
GetGeometryType
SetConstraint
GetConstraint
SetVariable
GetVariable

Tree	attributes
commands

RootNode
SetNode
AppendNode
PrependNode
InsertNodeBefore
InsertNodeAfter
DetachNode
ChildNodeIterate
InitChildNodeIterator
ChildNodeMore
ChildNodeNext
ChildNodeValue
ChildNodeNextBrother

Standard
presentation
commands

AISInitViewer
AISRepaint
AISDisplay
AISUpdate
AISErase
AISRemove
AISSet
AISDriver
AISUnset

AISTransparency
AISHasOwnTransparency
AISMaterial
AISHasOwnMaterial
AISColor
AISHasOwnColor

Geometry	commands
Overview
Curve	creation

point
line
circle
ellipse
hyperbola
parabola
beziercurve,
2dbeziercurve
bsplinecurve,
2dbsplinecurve,
pbsplinecurve,
2dpbsplinecurve
uiso,	viso
to3d,	to2d
project

Surface	creation
plane
cylinder
cone
sphere
torus
beziersurf
bsplinesurf,
upbsplinesurf,
vpbsplinesurf,
uvpbsplinesurf
trim,	trimu,
trimv
offset

revsurf
extsurf
convert

Curve	and	surface
modifications

reverse,
ureverse,
vreverse
exchuv
segment,
segsur
iincudeg,
incvdeg
cmovep,
movep,
movecolp,
moverowp
insertpole,
rempole,
remcolpole,
remrowpole
insertknot,
insertuknot,
insertvknot
remknot,
remuknot,
remvknot
setperiodic,
setnotperiodic,
setuperiodic,
setunotperiodic,
setvperiodic,
setvnotperiodic
setorigin,
setuorigin,
setvorigin

Transformations
translate,
dtranslate
rotate,	2drotate
pmirror,	lmirror,
smirror,
dpmirror,

dlmirror
pscale,	dpscale

Curve	and	surface
analysis

coord
cvalue,
2dcvalue
svalue
localprop,
minmaxcurandinf
parameters
proj,	2dproj
surface_radius

Intersections
intersect
dintersect

Approximations
appro,	dapprox
surfapp,	grilapp

Projections
projponf

Constraints
cirtang
lintan

Display
dmod,	discr,
defle
nbiso
clpoles,	shpoles
clknots,	shknots

Topology	commands
Basic	topology

isos,
discretisation
orientation,
complement,
invert,	normals,
range

explode,	exwire,
nbshapes
emptycopy,
add,	compound
compare
issubshape

Curve	and	surface
topology

vertex
mkpoint
edge,	mkedge,
uisoedge,
visoedge
wire,	polyline,
polyvertex
profile
bsplineprof
mkoffset
mkplane,
mkface
mkcurve,
mksurface
pcurve
chfi2d
nproject

Primitives
box,	wedge
pcylinder,
pcone,	psphere,
ptorus
halfspace

Sweeping
prism
revol
pipe
mksweep,
addsweep,
setsweep,
deletesweep,
buildsweep,

simulsweep
thrusections

Topological
transformation

tcopy
tmove,	treset
ttranslate,
trotate
tmirror,	tscale

Old	Topological
operations

fuse,	cut,
common
section,
psection
sewing

New	Topological
operations

bparallelmode
bop,	bopfuse,
bopcut,	boptuc,
bopcommon
bopsection
bopcheck,
bopargshape

Drafting	and	blending
depouille
chamf
blend
bfuseblend
bcutblend
mkevol,
updatevol,
buildevol

Analysis	of	topology
and	geometry

lprops,	sprops,
vprops
bounding

distmini
xdistef,	xdistcs,
xdistcc,
xdistc2dc2dss,
xdistcc2ds
checkshape
tolsphere
validrange

Surface	creation
gplate,
filling,
fillingparam

Complex	Topology
offsetshape,
offsetcompshape
featprism,
featdprism,
featrevol,	featlf,
featrf
draft
deform
nurbsconvert
edgestofaces

Texture	Mapping	to	a
Shape

vtexture
vtexscale
vtexorigin
vtexrepeat
vtexdefault

General	Fuse	Algorithm
commands
Definitions
General	commands
Commands	for
Intersection	Part

bopds
bopdsdump
bopindex

bopiterator
bopinterf
bopsp
bopcb
bopfin
bopfon
bopwho
bopnews

Commands	for	the
Building	Part

bopim
Data	Exchange
commands
IGES	commands

igesread
tplosttrim
brepiges

STEP	commands
stepread
stepwrite

General	commands
count
data
elabel
entity
enum
estatus
fromshape
givecount
givelist
listcount
listitems
listtypes
newmodel
param
sumcount

tpclear
tpdraw
tpent
tpstat
xload

Overview	of	XDE
commands

ReadIges
ReadStep
WriteIges
WriteStep
XFileCur
XFileList
XFileSet
XFromShape

XDE	general
commands

XNewDoc
XShow
XStat
XWdump
Xdump

XDE	shape
commands

XAddComponent
XAddShape
XFindComponent
XFindShape
XGetFreeShapes
XGetOneShape
XGetReferredShape
XGetShape
XGetTopLevelShapes
XLabelInfo
XNewShape
XRemoveComponent
XRemoveShape

XSetShape
XUpdateAssemblies

XDE	color	commands
XAddColor
XFindColor
XGetAllColors
XGetColor
XGetObjVisibility
XGetShapeColor
XRemoveColor
XSetColor
XSetObjVisibility
XUnsetColor

XDE	layer	commands
XAddLayer
XFindLayer
XGetAllLayers
XGetLayers
XGetOneLayer
XIsVisible
XRemoveAllLayers
XRemoveLayer
XSetLayer
XSetVisibility
XUnSetAllLayers
XUnSetLayer

XDE	property
commands

XCheckProps
XGetArea
XGetCentroid
XGetVolume
XSetArea
XSetCentroid
XSetMaterial
XSetVolume

XShapeMassProps
XShapeVolume

Shape	Healing
commands
General	commands

bsplres
checkfclass2d
checkoverlapedges
comtol
convtorevol
directfaces
expshape
fixsmall
fixsmalledges
fixshape
fixwgaps
offsetcurve,
offset2dcurve
projcurve
projpcurve
projface
scaleshape
settolerance
splitface
statshape
tolerance

Conversion
commands

DT_ClosedSplit
DT_ShapeConvert,
DT_ShapeConvertRev
DT_ShapeDivide
DT_SplitAngle
DT_SplitCurve
DT_SplitCurve2d
DT_SplitSurface
DT_ToBspl

Performance	evaluation
commands
VDrawSphere

Simple	vector	algebra
and	measurements
Vector	algebra
commands

vec
2dvec
pln
module
2dmodule
norm
2dnorm
inverse
2dinverse
2dort
distpp
2ddistpp
distplp
distlp
2ddistlp
distppp
2ddistppp
barycen
2dbarycen
cross
2dcross
dot
2ddot
scale
2dscale

Measurements
commands

pnt
pntc
2dpntc

pntsu
pntcons
drseg
2ddrseg
mpick
mdist

Inspector	commands
tinspector

Extending	Test	Harness
with	custom	commands
Custom	command
implementation
Registration	of
commands	in	Test
Harness
Creating	a	toolkit
(library)	as	a	plug-in
Creation	of	the	plug-
in	resource	file
Dynamic	loading	and
activation

Introduction
This	manual	explains	how	to	use	Draw,	the	test	harness	for	Open
CASCADE	Technology	(OCCT).	Draw	is	a	command	interpreter	based
on	TCL	and	a	graphical	system	used	to	test	and	demonstrate	Open
CASCADE	Technology	modeling	libraries.

Overview
Draw	is	a	test	harness	for	Open	CASCADE	Technology.	It	provides	a
flexible	and	easy	to	use	means	of	testing	and	demonstrating	the	OCCT
modeling	libraries.

Draw	can	be	used	interactively	to	create,	display	and	modify	objects	such
as	curves,	surfaces	and	topological	shapes.

Scripts	may	be	written	to	customize	Draw	and	perform	tests.	New	types
of	objects	and	new	commands	may	be	added	using	the	C++	programing
language.

Draw	consists	of:

A	command	interpreter	based	on	the	TCL	command	language.
A	3d	graphic	viewer	based	on	the	X	system.
A	basic	set	of	commands	covering	scripts,	variables	and	graphics.
A	set	of	geometric	commands	allowing	the	user	to	create	and	modify
curves	and	surfaces	and	to	use	OCCT	geometry	algorithms.	This	set
of	commands	is	optional.
A	set	of	topological	commands	allowing	the	user	to	create	and
modify	BRep	shapes	and	to	use	the	OCCT	topology	algorithms.

There	is	also	a	set	of	commands	for	each	delivery	unit	in	the	modeling
libraries:

GEOMETRY,
TOPOLOGY,
ADVALGOS,
GRAPHIC,
PRESENTATION.

Contents	of	this	documentation
This	documentation	describes:

The	command	language.
The	basic	set	of	commands.
The	graphical	commands.
The	Geometry	set	of	commands.
The	Topology	set	of	commands.
OCAF	commands.
Data	Exchange	commands
Shape	Healing	commands

This	document	is	a	reference	manual.	It	contains	a	full	description	of
each	command.	All	descriptions	have	the	format	illustrated	below	for	the
exit	command.

exit

Terminates	the	Draw,	TCL	session.	If	the	commands	are	read	from	a	file
using	the	source	command,	this	will	terminate	the	file.

Example:

#	this	is	a	very	short	example	

exit	

Getting	started
Install	Draw	and	launch	Emacs.	Get	a	command	line	in	Emacs	using	Esc
x	and	key	in	woksh.

All	DRAW	Test	Harness	can	be	activated	in	the	common	executable
called	DRAWEXE.	They	are	grouped	in	toolkits	and	can	be	loaded	at	run-
time	thereby	implementing	dynamically	loaded	plug-ins.	Thus,	it	is
possible	to	work	only	with	the	required	commands	adding	them
dynamically	without	leaving	the	Test	Harness	session.

Declaration	of	available	plug-ins	is	done	through	the	special	resource
file(s).	The	pload	command	loads	the	plug-in	in	accordance	with	the
specified	resource	file	and	activates	the	commands	implemented	in	the
plug-in.

Launching	DRAW	Test	Harness

Test	Harness	executable	DRAWEXE	is	located	in	the
$CASROOT/<platform>/bin	directory	(where	<platform>	is	Win	for
Windows	and	Linux	for	Linux	operating	systems).	Prior	to	launching	it	is
important	to	make	sure	that	the	environment	is	correctly	setup	(usually
this	is	done	automatically	after	the	installation	process	on	Windows	or
after	launching	specific	scripts	on	Linux).

Plug-in	resource	file

Open	CASCADE	Technology	is	shipped	with	the	DrawPlugin	resource	file
located	in	the	$CASROOT/src/DrawResources	directory.

The	format	of	the	file	is	compliant	with	standard	Open	CASCADE
Technology	resource	files	(see	the	Resource_Manager.hxx	file	for
details).

Each	key	defines	a	sequence	of	either	further	(nested)	keys	or	a	name	of
the	dynamic	library.	Keys	can	be	nested	down	to	an	arbitrary	level.
However,	cyclic	dependencies	between	the	keys	are	not	checked.

Example:	(excerpt	from	DrawPlugin):

OCAF															:	VISUALIZATION,	OCAFKERNEL	

VISUALIZATION						:	AISV	

OCAFKERNEL									:	DCAF	

DCAF															:	TKDCAF	

AISV															:	TKViewerTest	

Activation	of	commands	implemented	in	the	plug-in

To	load	a	plug-in	declared	in	the	resource	file	and	to	activate	the
commands	the	following	command	must	be	used	in	Test	Harness:

pload	[-PluginFileName]	[[Key1]	[Key2]...]

where:

-PluginFileName	–	defines	the	name	of	a	plug-in	resource	file	(prefix
"-"	is	mandatory)	described	above.	If	this	parameter	is	omitted	then
the	default	name	DrawPlugin	is	used.
Key	–	defines	the	key(s)	enumerating	plug-ins	to	be	loaded.	If	no
keys	are	specified	then	the	key	named	DEFAULT	is	used	(if	there	is
no	such	key	in	the	file	then	no	plug-ins	are	loaded).

According	to	the	OCCT	resource	file	management	rules,	to	access	the
resource	file	the	environment	variable	CSF_PluginFileNameDefaults	(and
optionally	CSF_PluginFileNameUserDefaults)	must	be	set	and	point	to
the	directory	storing	the	resource	file.	If	it	is	omitted	then	the	plug-in
resource	file	will	be	searched	in	the	$CASROOT/src/DrawResources
directory.

Draw[]								pload	-DrawPlugin	OCAF	

This	command	will	search	the	resource	file	DrawPlugin	using	variable
CSF_DrawPluginDefaults	(and	CSF_DrawPluginUserDefaults)	and	will
start	with	the	OCAF	key.	Since	the	DrawPlugin	is	the	file	shipped	with
Open	CASCADE	Technology	it	will	be	found	in	the
$CASROOT/src/DrawResources	directory	(unless	this	location	is
redefined	by	user's	variables).	The	OCAF	key	will	be	recursively
extracted	into	two	toolkits/plug-ins:	TKDCAF	and	TKViewerTest	(e.g.	on
Windows	they	correspond	to	TKDCAF.dll	and	TKViewerTest.dll).	Thus,

commands	implemented	for	Visualization	and	OCAF	will	be	loaded	and
activated	in	Test	Harness.

Draw[]								pload	(equivalent	to	pload	-DrawPlugin	

DEFAULT).	

This	command	will	find	the	default	DrawPlugin	file	and	the	DEFAULT	key.
The	latter	finally	maps	to	the	TKTopTest	toolkit	which	implements	basic
modeling	commands.

The	Command	Language
Overview

The	command	language	used	in	Draw	is	Tcl.	Tcl	documentation	such	as
"TCL	and	the	TK	Toolkit"	by	John	K.	Ousterhout	(Addison-Wesley)	will
prove	useful	if	you	intend	to	use	Draw	extensively.

This	chapter	is	designed	to	give	you	a	short	outline	of	both	the	TCL
language	and	some	extensions	included	in	Draw.	The	following	topics	are
covered:

Syntax	of	the	TCL	language.
Accessing	variables	in	TCL	and	Draw.
Control	structures.
Procedures.

Syntax	of	TCL
TCL	is	an	interpreted	command	language,	not	a	structured	language	like
C,	Pascal,	LISP	or	Basic.	It	uses	a	shell	similar	to	that	of	csh.	TCL	is,
however,	easier	to	use	than	csh	because	control	structures	and
procedures	are	easier	to	define.	As	well,	because	TCL	does	not	assign	a
process	to	each	command,	it	is	faster	than	csh.

The	basic	program	for	TCL	is	a	script.	A	script	consists	of	one	or	more
commands.	Commands	are	separated	by	new	lines	or	semicolons.

set	a	24	

set	b	15	

set	a	25;	set	b	15	

Each	command	consists	of	one	or	more	words;	the	first	word	is	the	name
of	a	command	and	additional	words	are	arguments	to	that	command.

Words	are	separated	by	spaces	or	tabs.	In	the	preceding	example	each
of	the	four	commands	has	three	words.	A	command	may	contain	any
number	of	words	and	each	word	is	a	string	of	arbitrary	length.

The	evaluation	of	a	command	by	TCL	is	done	in	two	steps.	In	the	first
step,	the	command	is	parsed	and	broken	into	words.	Some	substitutions
are	also	performed.	In	the	second	step,	the	command	procedure
corresponding	to	the	first	word	is	called	and	the	other	words	are
interpreted	as	arguments.	In	the	first	step,	there	is	only	string
manipulation,	The	words	only	acquire	meaning	in	the	second	step	by	the
command	procedure.

The	following	substitutions	are	performed	by	TCL:

Variable	substitution	is	triggered	by	the	$	character	(as	with	csh),	the
content	of	the	variable	is	substitued;	{	}	may	be	used	as	in	csh	to	enclose
the	name	of	the	variable.

Example:

#	set	a	variable	value	

set	file	documentation	

puts	$file	#to	display	file	contents	on	the	screen	

#	a	simple	substitution,	set	psfile	to	

documentation.ps	

set	psfile	$file.ps	

puts	$psfile	

#	another	substitution,	set	pfile	to	documentationPS	

set	pfile	${file}PS	

#	a	last	one,	

#	delete	files	NEWdocumentation	and	OLDdocumentation	

foreach	prefix	{NEW	OLD}	{rm	$prefix$file}	

Command	substitution	is	triggered	by	the	[]	characters.	The	brackets
must	enclose	a	valid	script.	The	script	is	evaluated	and	the	result	is
substituted.

Compare	command	construction	in	csh.

Example:

set	degree	30	

set	pi	3.14159265	

#	expr	is	a	command	evaluating	a	numeric	expression	

set	radian	[expr	$pi*$degree/180]	

Backslash	substitution	is	triggered	by	the	backslash	character.	It	is	used
to	insert	special	characters	like	$,	[,]	,	etc.	It	is	also	useful	to	insert	a
new	line,	a	backslash	terminated	line	is	continued	on	the	following	line.

TCL	uses	two	forms	of	quoting	to	prevent	substitution	and	word	breaking.

Double	quote	quoting	enables	the	definition	of	a	string	with	space	and
tabs	as	a	single	word.	Substitutions	are	still	performed	inside	the	inverted
commas	"	".

Example:

#	set	msg	to	;the	price	is	12.00;	

set	price	12.00	

set	msg	;the	price	is	$price;	

Braces	quoting	prevents	all	substitutions.	Braces	are	also	nested.	The
main	use	of	braces	is	to	defer	evaluation	when	defining	procedures	and
control	structures.	Braces	are	used	for	a	clearer	presentation	of	TCL
scripts	on	several	lines.

Example:

set	x	0	

#	this	will	loop	for	ever	

#	because	while	argument	is	;0	<	3;	

while	;$x	<	3;	{set	x	[expr	$x+1]}	

#	this	will	terminate	as	expected	because	

#	while	argument	is	{$x	<	3}	

while	{$x	<	3}	{set	x	[expr	$x+1]}	

#	this	can	be	written	also	

while	{$x	<	3}	{	

set	x	[expr	$x+1]	

}	

#	the	following	cannot	be	written	

#	because	while	requires	two	arguments	

while	{$x	<	3}	

{	

set	x	[expr	$x+1]	

}	

Comments	start	with	a	#	character	as	the	first	non-blank	character	in	a
command.	To	add	a	comment	at	the	end	of	the	line,	the	comment	must
be	preceded	by	a	semi-colon	to	end	the	preceding	command.

Example:

#	This	is	a	comment	

set	a	1	#	this	is	not	a	comment	

set	b	1;	#	this	is	a	comment	

The	number	of	words	is	never	changed	by	substitution	when	parsing	in
TCL.	For	example,	the	result	of	a	substitution	is	always	a	single	word.
This	is	different	from	csh	but	convenient	as	the	behavior	of	the	parser	is
more	predictable.	It	may	sometimes	be	necessary	to	force	a	second
round	of	parsing.	eval	accomplishes	this:	it	accepts	several	arguments,
concatenates	them	and	executes	the	resulting	script.

Example:

#	I	want	to	delete	two	files	

set	files	;foo	bar;	

#	this	will	fail	because	rm	will	receive	only	one	

argument	

#	and	complain	that	;foo	bar;	does	not	exit	

exec	rm	$files	

#	a	second	evaluation	will	do	it	

Accessing	variables	in	TCL	and	Draw
TCL	variables	have	only	string	values.	Note	that	even	numeric	values	are
stored	as	string	literals,	and	computations	using	the	expr	command	start
by	parsing	the	strings.	Draw,	however,	requires	variables	with	other	kinds
of	values	such	as	curves,	surfaces	or	topological	shapes.

TCL	provides	a	mechanism	to	link	user	data	to	variables.	Using	this
functionality,	Draw	defines	its	variables	as	TCL	variables	with	associated
data.

The	string	value	of	a	Draw	variable	is	meaningless.	It	is	usually	set	to	the
name	of	the	variable	itself.	Consequently,	preceding	a	Draw	variable	with
a	$	does	not	change	the	result	of	a	command.	The	content	of	a	Draw
variable	is	accessed	using	appropriate	commands.

There	are	many	kinds	of	Draw	variables,	and	new	ones	may	be	added
with	C++.	Geometric	and	topological	variables	are	described	below.

Draw	numeric	variables	can	be	used	within	an	expression	anywhere	a
Draw	command	requires	a	numeric	value.	The	expr	command	is	useless
in	this	case	as	the	variables	are	stored	not	as	strings	but	as	floating	point
values.

Example:

#	dset	is	used	for	numeric	variables	

#	pi	is	a	predefined	Draw	variable	

dset	angle	pi/3	radius	10	

point	p	radius*cos(angle)	radius*sin(angle)	0	

It	is	recommended	that	you	use	TCL	variables	only	for	strings	and	Draw
for	numerals.	That	way,	you	will	avoid	the	expr	command.	As	a	rule,
Geometry	and	Topology	require	numbers	but	no	strings.

set,	unset

Syntax:

set	varname	[value]	

unset	varname	[varname	varname	...]	

set	assigns	a	string	value	to	a	variable.	If	the	variable	does	not	already
exist,	it	is	created.

Without	a	value,	set	returns	the	content	of	the	variable.

unset	deletes	variables.	It	is	is	also	used	to	delete	Draw	variables.

Example:

set	a	"Hello	world"

set	b	"Goodbye"	

set	a	

==	"Hello	world"	

unset	a	b	

set	a	

Note,	that	the	set	command	can	set	only	one	variable,	unlike	the	dset
command.

dset,	dval

Syntax

dset	var1	value1	vr2	value2	...	

dval	name	

dset	assigns	values	to	Draw	numeric	variables.	The	argument	can	be	any
numeric	expression	including	Draw	numeric	variables.	Since	all	Draw
commands	expect	a	numeric	expression,	there	is	no	need	to	use	$	or
expr.	The	dset	command	can	assign	several	variables.	If	there	is	an	odd
number	of	arguments,	the	last	variable	will	be	assigned	a	value	of	0.	If
the	variable	does	not	exist,	it	will	be	created.

dval	evaluates	an	expression	containing	Draw	numeric	variables	and
returns	the	result	as	a	string,	even	in	the	case	of	a	single	variable.	This	is
not	used	in	Draw	commands	as	these	usually	interpret	the	expression.	It
is	used	for	basic	TCL	commands	expecting	strings.

Example:

#	z	is	set	to	0	

dset	x	10	y	15	z	

==	0	

#	no	$	required	for	Draw	commands	

point	p	x	y	z	

#	"puts"	prints	a	string	

puts	;x	=	[dval	x],	cos(x/pi)	=	[dval	cos(x/pi)];	

==	x	=	10,	cos(x/pi)	=	-0.99913874099467914	

Note,	that	in	TCL,	parentheses	are	not	considered	to	be	special
characters.	Do	not	forget	to	quote	an	expression	if	it	contains	spaces	in
order	to	avoid	parsing	different	words.	(a	+	b)	is	parsed	as	three	words:	"
(a	+	b)"	or	(a+b)	are	correct.

del,	dall

Syntax:

del	varname_pattern	[varname_pattern	...]	

dall

del	command	does	the	same	thing	as	unset,	but	it	deletes	the	variables
matched	by	the	pattern.

dall	command	deletes	all	variables	in	the	session.

lists
TCL	uses	lists.	A	list	is	a	string	containing	elements	separated	by	spaces
or	tabs.	If	the	string	contains	braces,	the	braced	part	accounts	as	one
element.

This	allows	you	to	insert	lists	within	lists.

Example:

#	a	list	of	3	strings	

;a	b	c;	

#	a	list	of	two	strings	the	first	is	a	list	of	2	

;{a	b}	c;	

Many	TCL	commands	return	lists	and	foreach	is	a	useful	way	to	create
loops	on	list	elements.

Control	Structures

TCL	allows	looping	using	control	structures.	The	control	structures	are
implemented	by	commands	and	their	syntax	is	very	similar	to	that	of	their
C	counterparts	(if,	while,	switch,	etc.).	In	this	case,	there	are	two	main
differences	between	TCL	and	C:

You	use	braces	instead	of	parentheses	to	enclose	conditions.
You	do	not	start	the	script	on	the	next	line	of	your	command.

if

Syntax

if	condition	script	[elseif	script	else	script]	

If	evaluates	the	condition	and	the	script	to	see	whether	the	condition	is
true.

Example:

if	{$x	>	0}	{	

puts	;positive;	

}	elseif	{$x	==	0}	{	

puts	;null;	

}	else	{	

puts	;negative;	

}	

while,	for,	foreach

Syntax:

while	condition	script	

for	init	condition	reinit	script	

foreach	varname	list	script	

The	three	loop	structures	are	similar	to	their	C	or	csh	equivalent.	It	is
important	to	use	braces	to	delay	evaluation.	foreach	will	assign	the
elements	of	the	list	to	the	variable	before	evaluating	the	script.	\

Example:

#	while	example	

dset	x	1.1	

while	{[dval	x]	<	100}	{	

		circle	c	0	0	x	

		dset	x	x*x	

}	

#	for	example	

#	incr	var	d,	increments	a	variable	of	d	(default	1)	

for	{set	i	0}	{$i	<	10}	{incr	i}	{	

		dset	angle	$i*pi/10	

		point	p$i	cos(angle0	sin(angle)	0	

}	

#	foreach	example	

foreach	object	{crapo	tomson	lucas}	{display	$object}	

break,	continue

Syntax:

break	

continue	

Within	loops,	the	break	and	continue	commands	have	the	same	effect
as	in	C.

break	interrupts	the	innermost	loop	and	continue	jumps	to	the	next
iteration.

Example:

#	search	the	index	for	which	t$i	has	value	;secret;	

for	{set	i	1}	{$i	<=	100}	{incr	i}	{	

	if	{[set	t$i]	==	;secret;}	break;	

}	

Procedures
TCL	can	be	extended	by	defining	procedures	using	the	proc	command,
which	sets	up	a	context	of	local	variables,	binds	arguments	and	executes
a	TCL	script.

The	only	problematic	aspect	of	procedures	is	that	variables	are	strictly
local,	and	as	they	are	implicitly	created	when	used,	it	may	be	difficult	to
detect	errors.

There	are	two	means	of	accessing	a	variable	outside	the	scope	of	the
current	procedures:	global	declares	a	global	variable	(a	variable	outside
all	procedures);	upvar	accesses	a	variable	in	the	scope	of	the	caller.
Since	arguments	in	TCL	are	always	string	values,	the	only	way	to	pass
Draw	variables	is	by	reference,	i.e.	passing	the	name	of	the	variable	and
using	the	upvar	command	as	in	the	following	examples.

As	TCL	is	not	a	strongly	typed	language	it	is	very	difficult	to	detect
programming	errors	and	debugging	can	be	tedious.	TCL	procedures	are,
of	course,	not	designed	for	large	scale	software	development	but	for
testing	and	simple	command	or	interactive	writing.

proc

Syntax:

proc	argumentlist	script	

proc	defines	a	procedure.	An	argument	may	have	a	default	value.	It	is
then	a	list	of	the	form	{argument	value}.	The	script	is	the	body	of	the
procedure.

return	gives	a	return	value	to	the	procedure.

Example:

#	simple	procedure	

proc	hello	{}	{	

		puts	;hello	world;	

}	

#	procedure	with	arguments	and	default	values	

proc	distance	{x1	y1	{x2	0}	{y2	0}}	{	

	set	d	[expr	(x2-x1)*(x2-x1)	+	(y2-y1)*(y2-y1)]	

	return	[expr	sqrt(d)]	

}	

proc	fact	n	{	

	if	{$n	==	0}	{return	1}	else	{	

	return	[expr	n*[fact	[expr	n	-1]]]	

		}	

}	

global,	upvar

Syntax:

global	varname	[varname	...]	

upvar	varname	localname	[varname	localname	...]	

global	accesses	high	level	variables.	Unlike	C,	global	variables	are	not
visible	in	procedures.

upvar	gives	a	local	name	to	a	variable	in	the	caller	scope.	This	is	useful
when	an	argument	is	the	name	of	a	variable	instead	of	a	value.	This	is	a
call	by	reference	and	is	the	only	way	to	use	Draw	variables	as
arguments.

Note	that	in	the	following	examples	the	$	character	is	always	necessarily
used	to	access	the	arguments.

Example:

#	convert	degree	to	radian	

#	pi	is	a	global	variable	

proc	deg2rad	(degree}	{	

	return	[dval	pi*$degree/2.]	

}	

#	create	line	with	a	point	and	an	angle	

proc	linang	{linename	x	y	angle}	{	

		upvar	linename	l	

		line	l	$x	$y	cos($angle)	sin($angle)	

}

Basic	Commands
This	chapter	describes	all	the	commands	defined	in	the	basic	Draw
package.	Some	are	TCL	commands,	but	most	of	them	have	been
formulated	in	Draw.	These	commands	are	found	in	all	Draw	applications.
The	commands	are	grouped	into	four	sections:

General	commands,	which	are	used	for	Draw	and	TCL
management.
Variable	commands,	which	are	used	to	manage	Draw	variables	such
as	storing	and	dumping.
Graphic	commands,	which	are	used	to	manage	the	graphic	system,
and	so	pertain	to	views.
Variable	display	commands,	which	are	used	to	manage	the	display
of	objects	within	given	views.

Note	that	Draw	also	features	a	GUI	task	bar	providing	an	alternative	way
to	give	certain	general,	graphic	and	display	commands

General	commands
This	section	describes	several	useful	commands:

help	to	get	information,
source	to	eval	a	script	from	a	file,
spy	to	capture	the	commands	in	a	file,
cpulimit	to	limit	the	process	cpu	time,
wait	to	waste	some	time,
chrono	to	time	commands.

help

Syntax:

help	[command	[helpstring	group]]	

Provides	help	or	modifies	the	help	information.

help	without	arguments	lists	all	groups	and	the	commands	in	each	group.

Specifying	the	command	returns	its	syntax	and	in	some	cases,
information	on	the	command,	The	joker	*	is	automatically	added	at	the
end	so	that	all	completing	commands	are	returned	as	well.

Example:

#	Gives	help	on	all	commands	starting	with	*a*	

source

Syntax:

source	filename	

Executes	a	file.

The	exit	command	will	terminate	the	file.

spy

Syntax:

spy	[filename]	

Saves	interactive	commands	in	the	file.	If	spying	has	already	been
performed,	the	current	file	is	closed.	spy	without	an	argument	closes	the
current	file	and	stops	spying.	If	a	file	already	exists,	the	file	is	overwritten.
Commands	are	not	appended.

If	a	command	returns	an	error	it	is	saved	with	a	comment	mark.

The	file	created	by	spy	can	be	executed	with	the	source	command.

Example:

#	all	commands	will	be	saved	in	the	file	;session;	

spy	session	

#	the	file	;session;	is	closed	and	commands	are	not	

saved	

spy	

cpulimit

Syntax:

cpulimit	[nbseconds]	

cpulimit**limits	a	process	after	the	number	of	seconds	specified	in
nbseconds.	It	is	used	in	tests	to	avoid	infinite	loops.	**cpulimit
without	arguments	removes	all	existing	limits.

Example:

#limit	cpu	to	one	hour	

cpulimit	3600	

wait

Syntax:

wait	[nbseconds]	

Suspends	execution	for	the	number	of	seconds	specified	in	nbseconds.
The	default	value	is	ten	(10)	seconds.	This	is	a	useful	command	for	a
slide	show.

#	You	have	ten	seconds	...	

wait	

chrono

Syntax:

chrono	[name	start/stop/reset/show/restart/[counter	

text]]

Without	arguments,	chrono	activates	Draw	chronometers.	The	elapsed
time	,cpu	system	and	cpu	user	times	for	each	command	will	be	printed.

With	arguments,	chrono	is	used	to	manage	activated	chronometers.	You
can	perform	the	following	actions	with	a	chronometer.

run	the	chronometer	(start).
stop	the	chronometer	(stop).
reset	the	chronometer	to	0	(reset).
restart	the	chronometer	(restart).
display	the	current	time	(show).
display	the	current	time	with	specified	text	(output	example	-
COUNTER	text:	N),	command	testdiff	will	compare	such	outputs
between	two	test	runs	(counter).

Example:

chrono	

==Chronometers	activated.	

ptorus	t	20	5	

==Elapsed	time:	0	Hours	0	Minutes	0.0318	Seconds	

==CPU	user	time:	0.01	seconds	

==CPU	system	time:	0	seconds	

Variable	management	commands

isdraw,	directory

Syntax:

isdraw	varname	

directory	[pattern]	

isdraw	tests	to	see	if	a	variable	is	a	Draw	variable.	isdraw	will	return	1	if
there	is	a	Draw	value	attached	to	the	variable.

Use	directory	to	return	a	list	of	all	Draw	global	variables	matching	a
pattern.

Example:

set	a	1	

isdraw	a	

===	0	

dset	a	1	

isdraw	a	

===	1	

circle	c	0	0	1	0	5	

isdraw	c	

===	1	

#	to	destroy	all	Draw	objects	with	name	containing	

curve	

foreach	var	[directory	*curve*]	{unset	$var}	

whatis,	dump

Syntax:

whatis	varname	[varname	...]	

dump	varname	[varname	...]	

whatis	returns	short	information	about	a	Draw	variable.	This	is	usually
the	type	name.

dump	returns	a	brief	type	description,	the	coordinates,	and	if	need	be,
the	parameters	of	a	Draw	variable.

Example:

circle	c	0	0	1	0	5	

whatis	c	

c	is	a	2d	curve	

dump	c	

*****	Dump	of	c	*****	

Circle	

Center	:0,	0	

XAxis	:1,	0	

YAxis	:-0,	1	

Radius	:5	

Note	The	behavior	of	whatis	on	other	variables	(not	Draw)	is	not
excellent.

renamevar,	copy

Syntax:

renamevar	varname	tovarname	[varname	tovarname	...]	

copy	varname	tovarname	[varname	tovarname	...]	

renamevar	changes	the	name	of	a	Draw	variable.	The	original
variable	will	no	longer	exist.	Note	that	the	content	is	not	modified.
Only	the	name	is	changed.
copy	creates	a	new	variable	with	a	copy	of	the	content	of	an	existing
variable.	The	exact	behavior	of	copy	is	type	dependent;	in	the	case

of	certain	topological	variables,	the	content	may	still	be	shared.

Example:

circle	c1	0	0	1	0	5	

renamevar	c1	c2	

#	curves	are	copied,	c2	will	not	be	modified	

copy	c2	c3	

datadir,	save,	restore

Syntax:

datadir	[directory]	

save	variable	[filename]	

restore	filename	[variablename]	

datadir	without	arguments	prints	the	path	of	the	current	data
directory.
datadir	with	an	argument	sets	the	data	directory	path.	\

If	the	path	starts	with	a	dot	(.)	only	the	last	directory	name	will	be
changed	in	the	path.

save	writes	a	file	in	the	data	directory	with	the	content	of	a	variable.
By	default	the	name	of	the	file	is	the	name	of	the	variable.	To	give	a
different	name	use	a	second	argument.
restore	reads	the	content	of	a	file	in	the	data	directory	in	a	local
variable.	By	default,	the	name	of	the	variable	is	the	name	of	the	file.
To	give	a	different	name,	use	a	second	argument.

The	exact	content	of	the	file	is	type-dependent.	They	are	usually	ASCII
files	and	so,	architecture	independent.

Example:

#	note	how	TCL	accesses	shell	environment	variables	

#	using	$env()	

datadir	

==.	

datadir	$env(WBCONTAINER)/data/default	

==/adv_20/BAG/data/default	

box	b	10	20	30	

save	b	theBox	

==/adv_20/BAG/data/default/theBox	

#	when	TCL	does	not	find	a	command	it	tries	a	shell	

command	

ls	[datadir]	

==	theBox	

restore	theBox	

==	theBox	

User	defined	commands
DrawTrSurf	provides	commands	to	create	and	display	a	Draw	geometric
variable	from	a	Geom_Geometry	object	and	also	get	a	Geom_Geometry
object	from	a	Draw	geometric	variable	name.

DBRep	provides	commands	to	create	and	display	a	Draw	topological
variable	from	a	TopoDS_Shape	object	and	also	get	a	TopoDS_Shape
object	from	a	Draw	topological	variable	name.

set

In	DrawTrSurf	package:

void	Set(Standard_CString&	Name,const	gp_Pnt&	G)	;	

void	Set(Standard_CString&	Name,const	gp_Pnt2d&	G)	;	

void	Set(Standard_CString&	Name,	

const	Handle(Geom_Geometry)&	G)	;	

void	Set(Standard_CString&	Name,	

const	Handle(Geom2d_Curve)&	C)	;	

void	Set(Standard_CString&	Name,	

const	Handle(Poly_Triangulation)&	T)	;	

void	Set(Standard_CString&	Name,	

const	Handle(Poly_Polygon3D)&	P)	;	

void	Set(Standard_CString&	Name,	

const	Handle(Poly_Polygon2D)&	P)	;	

In	DBRep	package:

void	Set(const	Standard_CString	Name,	

const	TopoDS_Shape&	S)	;	

Example	of	DrawTrSurf

Handle(Geom2d_Circle)	C1	=	new	Geom2d_Circle	

(gce_MakeCirc2d	(gp_Pnt2d(50,0,)	25));	

DrawTrSurf::Set(char*,	C1);	

Example	of	DBRep

TopoDS_Solid	B;	

B	=	BRepPrimAPI_MakeBox	(10,10,10);	

DBRep::Set(char*,B);	

get

In	DrawTrSurf	package:

Handle_Geom_Geometry	Get(Standard_CString&	Name)	;	

In	DBRep	package:

TopoDS_Shape	Get(Standard_CString&	Name,	

const	TopAbs_ShapeEnum	Typ	=	TopAbs_SHAPE,	

const	Standard_Boolean	Complain	

=	Standard_True)	;	

Example	of	DrawTrSurf

Standard_Integer	MyCommand	

(Draw_Interpretor&	theCommands,	

Standard_Integer	argc,	char**	argv)	

{......	

//	Creation	of	a	Geom_Geometry	from	a	Draw	geometric	

//	name	

Handle	(Geom_Geometry)	aGeom=	

DrawTrSurf::Get(argv[1]);	

}	

Example	of	DBRep

Standard_Integer	MyCommand	

(Draw_Interpretor&	theCommands,	

Standard_Integer	argc,	char**	argv)	

{......	

//	Creation	of	a	TopoDS_Shape	from	a	Draw	topological	

//	name	

TopoDS_Solid	B	=	DBRep::Get(argv[1]);	

}	

Graphic	Commands
Graphic	commands	are	used	to	manage	the	Draw	graphic	system.	Draw
provides	a	2d	and	a	3d	viewer	with	up	to	30	views.	Views	are	numbered
and	the	index	of	the	view	is	displayed	in	the	window’s	title.	Objects	are
displayed	in	all	2d	views	or	in	all	3d	views,	depending	on	their	type.	2d
objects	can	only	be	viewed	in	2d	views	while	3d	objects	–	only	in	3d
views	correspondingly.

Axonometric	viewer

view,	delete

Syntax:

view	index	type	[X	Y	W	H]	

delete	[index]	

view	is	the	basic	view	creation	command:	it	creates	a	new	view	with	the
given	index.	If	a	view	with	this	index	already	exits,	it	is	deleted.	The	view
is	created	with	default	parameters	and	X	Y	W	H	are	the	position	and
dimensions	of	the	window	on	the	screen.	Default	values	are	0,	0,	500,
500.

As	a	rule	it	is	far	simpler	either	to	use	the	procedures	axo,	top,	left	or	to
click	on	the	desired	view	type	in	the	menu	under	Views	in	the	task	bar..

delete	deletes	a	view.	If	no	index	is	given,	all	the	views	are	deleted.

Type	selects	from	the	following	range:

AXON	:	Axonometric	view
PERS	:	Perspective	view
+X+Y	:	View	on	both	axes	(i.e.	a	top	view),	other	codes	are	-X+Y,
+Y-Z,	etc.
-2D-	:	2d	view

The	index,	the	type,	the	current	zoom	are	displayed	in	the	window	title	.

Example:

#	this	is	the	content	of	the	mu4	procedure	

proc	mu4	{}	{	

delete	

view	1	+X+Z	320	20	400	400	

view	2	+X+Y	320	450	400	400	

view	3	+Y+Z	728	20	400	400	

view	4	AXON	728	450	400	400	

}	

See	also:	axo,	pers,	top,	bottom,	left,	right,	front,	back,	mu4,	v2d,
av2d,	smallview

axo,	pers,	top,	...

Syntax:

axo	

pers	

...	

smallview	type	

All	these	commands	are	procedures	used	to	define	standard	screen
layout.	They	delete	all	existing	views	and	create	new	ones.	The	layout
usually	complies	with	the	European	convention,	i.e.	a	top	view	is	under	a
front	view.

axo	creates	a	large	window	axonometric	view;
pers	creates	a	large	window	perspective	view;
top,	bottom,	left,	right,	front,	back	create	a	large	window	axis
view;
mu4	creates	four	small	window	views:	front,	left,	top	and	axo.
v2d	creates	a	large	window	2d	view.
av2d	creates	two	small	window	views,	one	2d	and	one	axo
smallview	creates	a	view	at	the	bottom	right	of	the	screen	of	the
given	type.

See	also:	view,	delete

mu,	md,	2dmu,	2dmd,	zoom,	2dzoom

Syntax:

mu	[index]	value	

2dmu	[index]	value	

zoom	[index]	value	

wzoom	

mu	(magnify	up)	increases	the	zoom	in	one	or	several	views	by	a
factor	of	10%.
md	(magnify	down)	decreases	the	zoom	by	the	inverse	factor.	2dmu
and	2dmd	perform	the	same	on	one	or	all	2d	views.
zoom	and	2dzoom	set	the	zoom	factor	to	a	value	specified	by	you.
The	current	zoom	factor	is	always	displayed	in	the	window’s	title	bar.
Zoom	20	represents	a	full	screen	view	in	a	large	window;	zoom	10,	a
full	screen	view	in	a	small	one.
wzoom	(window	zoom)	allows	you	to	select	the	area	you	want	to
zoom	in	on	with	the	mouse.	You	will	be	prompted	to	give	two	of	the
corners	of	the	area	that	you	want	to	magnify	and	the	rectangle	so
defined	will	occupy	the	window	of	the	view.

Example:

#	set	a	zoom	of	2.5	

zoom	2.5	

#	magnify	by	10%	

mu	1	

#	magnify	by	20%	

See	also:	fit,	2dfit

pu,	pd,	pl,	pr,	2dpu,	2dpd,	2dpl,	2dpr

Syntax:

pu	[index]	

pd	[index]	

The	p_	commands	are	used	to	pan.	pu	and	pd	pan	up	and	down
respectively;	pl	and	pr	pan	to	the	left	and	to	the	right	respectively.	Each
time	the	view	is	displaced	by	40	pixels.	When	no	index	is	given,	all	views
will	pan	in	the	direction	specified.

#	you	have	selected	one	anonometric	view

pu

#	or

pu	1

#	you	have	selected	an	mu4	view;	the	object	in	the	

third	view	will	pan	up

pu	3

See	also:	fit,	2dfit

fit,	2dfit

Syntax:

fit	[index]	

2dfit	[index]	

fit	computes	the	best	zoom	and	pans	on	the	content	of	the	view.	The
content	of	the	view	will	be	centered	and	fit	the	whole	window.

When	fitting	all	views	a	unique	zoom	is	computed	for	all	the	views.	All
views	are	on	the	same	scale.

Example:

#	fit	only	view	1	

fit	1	

#	fit	all	2d	views	

2dfit	

See	also:	zoom,	mu,	pu

u,	d,	l,	r

Syntax:

u	[index]	

d	[index]	

l	[index]	

r	[index]	

u,	d,	l,	r	Rotate	the	object	in	view	around	its	axis	by	five	degrees	up,
down,	left	or	right	respectively.	This	command	is	restricted	to	axonometric
and	perspective	views.

Example:

#	rotate	the	view	up	

u	

focal,	fu,	fd

Syntax:

focal	[f]	

fu	[index]	

fd	[index]	

focal	changes	the	vantage	point	in	perspective	views.	A	low	f	value
increases	the	perspective	effect;	a	high	one	give	a	perspective
similar	to	that	of	an	axonometric	view.	The	default	value	is	500.
fu	and	fd	increase	or	decrease	the	focal	value	by	10%.	fd	makes	the
eye	closer	to	the	object.

Example:

pers	

repeat	10	fd	

Note:	Do	not	use	a	negative	or	null	focal	value.

See	also:	pers

color

Syntax:

color	index	name	

color	sets	the	color	to	a	value.	The	index	of	the	color	is	a	value	between
0	and	15.	The	name	is	an	X	window	color	name.	The	list	of	these	can	be
found	in	the	file	rgb.txt	in	the	X	library	directory.

The	default	values	are:	0	White,	1	Red,	2	Green,	3	Blue,	4	Cyan,	5	Gold,
6	Magenta,	7	Marron,	8	Orange,	9	Pink,	10	Salmon,	11	Violet,	12	Yellow,
13	Khaki,	14	Coral.

Example:

#	change	the	value	of	blue	

color	3	"navy	blue"	

Note	that	the	color	change	will	be	visible	on	the	next	redraw	of	the	views,
for	example,	after	fit	or	mu,	etc.

dtext

Syntax:

dtext	[x	y	[z]]	string	

dtext	displays	a	string	in	all	3d	or	2d	views.	If	no	coordinates	are	given,	a
graphic	selection	is	required.	If	two	coordinates	are	given,	the	text	is
created	in	a	2d	view	at	the	position	specified.	With	3	coordinates,	the	text
is	created	in	a	3d	view.

The	coordinates	are	real	space	coordinates.

Example:

#	mark	the	origins	

dtext	0	0	bebop	

dtext	0	0	0	bebop	

hardcopy,	hcolor,	xwd

Syntax:

hardcopy	[index]	

hcolor	index	width	gray	

xwd	[index]	filename	

hardcopy	creates	a	postcript	file	called	a4.ps	in	the	current
directory.	This	file	contains	the	postscript	description	of	the	view
index,	and	will	allow	you	to	print	the	view.
hcolor	lets	you	change	the	aspect	of	lines	in	the	postscript	file.	It
allows	to	specify	a	width	and	a	gray	level	for	one	of	the	16	colors.
width	is	measured	in	points	with	default	value	as	1,	gray	is	the	gray
level	from	0	=	black	to	1	=	white	with	default	value	as	0.	All	colors
are	bound	to	the	default	values	at	the	beginning.
xwd	creates	an	X	window	xwd	file	from	an	active	view.	By	default,
the	index	is	set	to1.	To	visualize	an	xwd	file,	use	the	unix	command
xwud.

Example:

#	all	blue	lines	(color	3)	

#	will	be	half-width	and	gray	

hcolor	3	0.5	

#	make	a	postscript	file	and	print	it	

hardcopy	

lpr	a4.ps	

#	make	an	xwd	file	and	display	it	

xwd	theview	

xwud	-in	theview	

Note:	When	more	than	one	view	is	present,	specify	the	index	of	the	view.

Only	use	a	postscript	printer	to	print	postscript	files.

See	also:	color

wclick,	pick

Syntax:

wclick	

pick	index	X	Y	Z	b	[nowait]	

wclick	defers	an	event	until	the	mouse	button	is	clicked.	The	message
just	click	is	displayed.

Use	the	pick	command	to	get	graphic	input.	The	arguments	must	be
names	for	variables	where	the	results	are	stored.

index:	index	of	the	view	where	the	input	was	made.
X,Y,Z:	3d	coordinates	in	real	world.
b:	b	is	the	mouse	button	1,2	or	3.

When	there	is	an	extra	argument,	its	value	is	not	used	and	the	command
does	not	wait	for	a	click;	the	value	of	b	may	then	be	0	if	there	has	not
been	a	click.

This	option	is	useful	for	tracking	the	pointer.

Note	that	the	results	are	stored	in	Draw	numeric	variables.

Example:

#	make	a	circle	at	mouse	location	

pick	index	x	y	z	b	

circle	c	x	y	z	0	0	1	1	0	0	0	30	

#	make	a	dynamic	circle	at	mouse	location	

#	stop	when	a	button	is	clicked	

#	(see	the	repaint	command)	

dset	b	0	

while	{[dval	b]	==	0}	{	

pick	index	x	y	z	b	nowait	

circle	c	x	y	z	0	0	1	1	0	0	0	30	

repaint	

}	

See	also:	repaint

Draw	provides	commands	to	manage	the	display	of	objects.

display,	donly	are	used	to	display,
erase,	clear,	2dclear	to	erase.
autodisplay	command	is	used	to	check	whether	variables	are
displayed	when	created.

The	variable	name	"."	(dot)	has	a	special	status	in	Draw.	Any	Draw
command	expecting	a	Draw	object	as	argument	can	be	passed	a	dot.
The	meaning	of	the	dot	is	the	following.

If	the	dot	is	an	input	argument,	a	graphic	selection	will	be	made.
Instead	of	getting	the	object	from	a	variable,	Draw	will	ask	you	to
select	an	object	in	a	view.
If	the	dot	is	an	output	argument,	an	unnamed	object	will	be	created.
Of	course	this	makes	sense	only	for	graphic	objects:	if	you	create	an
unnamed	number	you	will	not	be	able	to	access	it.	This	feature	is
used	when	you	want	to	create	objects	for	display	only.
If	you	do	not	see	what	you	expected	while	executing	loops	or
sourcing	files,	use	the	repaint	and	dflush	commands.

Example:

#	OK	use	dot	to	dump	an	object	on	the	screen	

dump	.	

point	.	x	y	z	

#Not	OK.	display	points	on	a	curve	c	

#	with	dot	no	variables	are	created	

for	{set	i	0}	{$i	<=	10}	{incr	i}	{	

cvalue	c	$i/10	x	y	z	

point	.	x	y	z	

}	

#	point	p	x	y	z	

#	would	have	displayed	only	one	point	

#	because	the	precedent	variable	content	is	erased	

#	point	p$i	x	y	z	

#	is	an	other	solution,	creating	variables	

#	p0,	p1,	p2,	

#	give	a	name	to	a	graphic	object	

renamevar	.	x	

autodisplay

Syntax:

autodisplay	[0/1]	

By	default,	Draw	automatically	displays	any	graphic	object	as	soon	as	it
is	created.	This	behavior	known	as	autodisplay	can	be	removed	with	the
command	autodisplay.	Without	arguments,	autodisplay	toggles	the
autodisplay	mode.	The	command	always	returns	the	current	mode.

When	autodisplay	is	off,	using	the	dot	return	argument	is	ineffective.

Example:

#	c	is	displayed	

circle	c	0	0	1	0	5	

#	toggle	the	mode	

autodisplay	

==	0	

circle	c	0	0	1	0	5	

#	c	is	erased,	but	not	displayed	

display	c	

display,	donly

Syntax:

display	varname	[varname	...]	

donly	varname	[varname	...]	

display	makes	objects	visible.
donly	display	only	makes	objects	visible	and	erases	all	other
objects.	It	is	very	useful	to	extract	one	object	from	a	messy	screen.

Example:

\#	to	see	all	objects	

foreach	var	[directory]	{display	$var}	

\#	to	select	two	objects	and	erase	the	other	ones	

donly	.	.	

erase,	clear,	2dclear

Syntax:

erase	[varname	varname	...]	

clear	

2dclear	

erase	removes	objects	from	all	views.	erase	without	arguments	erases
everything	in	2d	and	3d.

clear	erases	only	3d	objects	and	2dclear	only	2d	objects.	erase	without
arguments	is	similar	to	clear;	2dclear.

Example:

#	erase	eveerything	with	a	name	starting	with	c_	

foreach	var	[directory	c_*]	{erase	$var}	

#	clear	2d	views	

2dclear	

disp,	don,	era

These	commands	have	the	same	meaning	as	correspondingly	display,

donly	and	erase,	but	with	the	difference	that	they	evaluate	the	arguments
using	glob	pattern	rules.	For	example,	to	display	all	objects	with	names
d_1,	d_2,	d_3,	etc.	it	is	enouth	to	run	the	command:

disp	d_*

repaint,	dflush

Syntax:

repaint	

dflush	

repaint	forces	repainting	of	views.
dflush	flushes	the	graphic	buffers.

These	commands	are	useful	within	loops	or	in	scripts.

When	an	object	is	modified	or	erased,	the	whole	view	must	be	repainted.
To	avoid	doing	this	too	many	times,	Draw	sets	up	a	flag	and	delays	the
repaint	to	the	end	of	the	command	in	which	the	new	prompt	is	issued.	In
a	script,	you	may	want	to	display	the	result	of	a	change	immediately.	If
the	flag	is	raised,	repaint	will	repaint	the	views	and	clear	the	flag.

Graphic	operations	are	buffered	by	Draw	(and	also	by	the	X	system).
Usually	the	buffer	is	flushed	at	the	end	of	a	command	and	before	graphic
selection.	If	you	want	to	flush	the	buffer	from	inside	a	script,	use	the
dflush	command.

See	also:	pick	command.

AIS	viewer	--	view	commands

vinit

Syntax:

vinit	

Creates	a	new	View	window	with	the	specified	view_name.	By	default	the
view	is	created	in	the	viewer	and	in	the	graphic	driver	shared	with	the
active	view.

name	=	{driverName/viewerName/viewName	|	

viewerName/viewName	|	viewName}

If	driverName	is	not	specified	the	driver	will	be	shared	with	the	active
view.	If	viewerName	is	not	specified	the	viewer	will	be	shared	with	the
active	view.

vhelp

Syntax:

vhelp	

Displays	help	in	the	3D	viewer	window.	The	help	consists	in	a	list	of
hotkeys	and	their	functionalities.

vtop

Syntax:

vtop	

Displays	top	view	in	the	3D	viewer	window.	Orientation	+X+Y.

Example:

vinit	

box	b	10	10	10	

vdisplay	b	

vfit	

vtop	

vaxo

Syntax:

vaxo	

Displays	axonometric	view	in	the	3D	viewer	window.	Orientation	+X-Y+Z.

Example:

vinit	

box	b	10	10	10	

vdisplay	b	

vfit	

vaxo	

vsetbg

Syntax:

vsetbg	imagefile	[filltype]	

Loads	image	file	as	background.	filltype	must	be	NONE,	CENTERED,
TILED	or	STRETCH.

Example:

vinit	

vsetbg	myimage.brep	CENTERED	

vclear

Syntax:

vclear	

Removes	all	objects	from	the	viewer.

vrepaint

Syntax:

vrepaint	

Forcibly	redisplays	the	shape	in	the	3D	viewer	window.

vfit

Syntax:

vfit	

Automatic	zoom/panning.	Objects	in	the	view	are	visualized	to	occupy
the	maximum	surface.

vzfit

Syntax:

vzfit	

Automatic	depth	panning.	Objects	in	the	view	are	visualized	to	occupy
the	maximum	3d	space.

vreadpixel

Syntax:

vreadpixel	xPixel	yPixel	

[{rgb|rgba|depth|hls|rgbf|rgbaf}=rgba]	[name]	

Read	pixel	value	for	active	view.

vselect

Syntax:

vselect	x1	y1	[x2	y2	[x3	y3	...	xn	yn]]	[-

allowoverlap	0|1]	[shift_selection	=	0|1]

Emulates	different	types	of	selection:

single	mouse	click	selection
selection	with	a	rectangle	having	the	upper	left	and	bottom	right
corners	in	(x1,y1)	and	(x2,y2)	respectively
selection	with	a	polygon	having	the	corners	in	pixel	positions	(x1,y1),
(x2,y2),…,	(xn,yn)
-allowoverlap	manages	overlap	and	inclusion	detection	in
rectangular	selection.	If	the	flag	is	set	to	1,	both	sensitives	that	were
included	completely	and	overlapped	partially	by	defined	rectangle
will	be	detected,	otherwise	algorithm	will	chose	only	fully	included
sensitives.	Default	behavior	is	to	detect	only	full	inclusion.
any	of	these	selections	if	shift_selection	is	set	to	1.

vmoveto

Syntax:

vmoveto	x	y

Emulates	cursor	movement	to	pixel	position	(x,y).

vviewparams

Syntax:

vviewparams	[-scale	[s]]	[-eye	[x	y	z]]	[-at	[x	y	z]]	

[-up	[x	y	z]]	[-proj	[x	y	z]]	[-center	x	y]	[-

size	sx]

Gets	or	sets	the	current	view	parameters.

If	called	without	arguments,	all	view	parameters	are	printed.

The	options	are:
-scale	[s]	:	prints	or	sets	the	relative	scale	of	viewport.
-eye	[x	y	z]	:	prints	or	sets	the	eye	location.
-at	[x	y	z]	:	prints	or	sets	the	view	center.
-up	[x	y	z]	:	prints	or	sets	the	up	vector	direction.
-proj	[x	y	z]	:	prints	or	sets	the	view	direction.
-center	x	y	:	sets	the	screen	center	location	in	pixels.
-size	[sx]	:	prints	viewport	projection	width	and	height	sizes	or
changes	the	size	of	its	maximum	dimension.

vchangeselected

Syntax:

vchangeselected	shape

Adds	a	shape	to	selection	or	removes	one	from	it.

vzclipping

Syntax:

vzclipping	[mode]	[depth	width]

Gets	or	sets	ZClipping	mode,	width	and	depth,	where

mode	=	OFF|BACK|FRONT|SLICE
depth	is	a	real	value	from	segment	[0,1]
width	is	a	real	value	from	segment	[0,1]

vnbselected

Syntax:

vnbselected

Returns	the	number	of	selected	objects	in	the	interactive	context.

vpurgedisplay

Syntax:

vpurgedisplay	[CollectorToo	=	0|1]

Removes	structures	which	do	not	belong	to	objects	displayed	in	neutral
point.

vhlr

Syntax:

vhlr	is_enabled={on|off}	[show_hidden={1|0}]

Hidden	line	removal	algorithm:

is_enabled	applies	HLR	algorithm.
show_hidden	if	equals	to	1,	hidden	lines	are	drawn	as	dotted	ones.

vhlrtype

Syntax:

vhlrtype		algo_type={algo|polyalgo}	[shape_1	...	

shape_n]

Changes	the	type	of	HLR	algorithm	used	for	shapes.	If	the	algo_type	is
algo,	the	exact	HLR	algorithm	is	used,	otherwise	the	polygonal	algorithm
is	used	for	defined	shapes.

If	no	shape	is	specified	through	the	command	arguments,	the	given	HLR
algorithm_type	is	applied	to	all	AIS_Shape	isntances	in	the	current
context,	and	the	command	also	changes	the	default	HLR	algorithm	type.

Note	that	this	command	works	with	instances	of	AIS_Shape	or	derived
classes	only,	other	interactive	object	types	are	ignored.

vcamera

Syntax:

vcamera	[-ortho]	[-projtype]

								[-persp]

								[-fovy			[Angle]]	[-distance	[Distance]]

								[-stereo]	[-leftEye]	[-rightEye]

								[-iod	[Distance]]	[-iodType				

[absolute|relative]]

								[-zfocus	[Value]]	[-zfocusType	

[absolute|relative]]

Manages	camera	parameters.	Prints	the	current	value	when	the	option	is
called	without	argument.

Orthographic	camera:

-ortho	–	activates	orthographic	projection.

Perspective	camera:

-persp	–	activated	perspective	projection	(mono);
-fovy	–	field	of	view	in	y	axis,	in	degrees;
-distance	–	distance	of	eye	from	the	camera	center.

Stereoscopic	camera:

-stereo	–	perspective	projection	(stereo);
-leftEye	–	perspective	projection	(left	eye);
-rightEye	–	perspective	projection	(right	eye);
-iod	–	intraocular	distance	value;
-iodType	–	distance	type,	absolute	or	relative;
-zfocus	–	stereographic	focus	value;
-zfocusType	–	focus	type,	absolute	or	relative.

Example:

vinit

box	b	10	10	10

vdisplay	b

vfit

vcamera	-persp

vstereo

Syntax:

vstereo	[0|1]	[-mode	Mode]	[-reverse	{0|1}]	[-

anaglyph	Filter]

Defines	the	stereo	output	mode.	The	following	modes	are	available:

quadBuffer	–	OpenGL	QuadBuffer	stereo,	requires	driver	support.
Should	be	called	BEFORE	vinit!
anaglyph	–	Anaglyph	glasses;
rowInterlaced	–	row-interlaced	display;
columnInterlaced	–	column-interlaced	display;
chessBoard	–	chess-board	output;
sideBySide	–	horizontal	pair;
overUnder	–	vertical	pair;	Available	Anaglyph	filters	for	-anaglyph:
redCyan,	redCyanSimple,	yellowBlue,	yellowBlueSimple,
greenMagentaSimple.

Example:

vinit

box	b	10	10	10

vdisplay	b

vstereo	1

vfit

vcamera	-stereo	-iod	1

vcamera	-lefteye

vcamera	-righteye

vfrustumculling

Syntax:

vfrustumculling	[toEnable]

Enables/disables	objects	clipping.

AIS	viewer	--	display	commands

vdisplay

Syntax:

vdisplay	[-noupdate|-update]	[-local]	[-mutable]	[-

neutral]

									[-trsfPers	

{pan|zoom|rotate|trihedron|full|none}=none]	[-

trsfPersPos	X	Y	[Z]]	[-3d|-2d|-2dTopDown]

									[-dispMode	mode]	[-highMode	mode]

									[-layer	index]	[-top|-topmost|-overlay|-

underlay]

									[-redisplay]

									name1	[name2]	...	[name	n]

Displays	named	objects.	Option	-local	enables	display	of	objects	in	the
local	selection	context.	Local	selection	context	will	be	opened	if	there	is
not	any.

noupdate	suppresses	viewer	redraw	call.
mutable	enables	optimization	for	mutable	objects.
neutral	draws	objects	in	the	main	viewer.
layer	sets	z-layer	for	objects.	It	can	use	-overlay|-underlay|-top|-
topmost	instead	of	-layer	index	for	the	default	z-layers.
top	draws	objects	on	top	of	main	presentations	but	below	the
topmost	level.
topmost	draws	in	overlay	for	3D	presentations	with	independent
Depth.
overlay	draws	objects	in	overlay	for	2D	presentations	(On-Screen-
Display).
underlay	draws	objects	in	underlay	for	2D	presentations	(On-Screen-
Display).
selectable|-noselect	controls	selection	of	objects.
trsfPers	sets	transform	persistence	flags.	Flag	full	allows	to	pan,
zoom	and	rotate.
trsfPersPos	sets	an	anchor	point	for	transform	persistence.

2d|-2dTopDown	displays	object	in	screen	coordinates.
dispmode	sets	display	mode	for	objects.
highmode	sets	highlight	mode	for	objects.
redisplay	recomputes	presentation	of	objects.

Example:

vinit	

box	b	40	40	40	10	10	10	

psphere	s	20	

vdisplay	s	b	

vfit	

vdonly

Syntax:

vdonly	[-noupdate|-update]	[name1]	...		[name	n]

Displays	only	selected	or	named	objects.	If	there	are	no	selected	or
named	objects,	nothing	is	done.

Example:

vinit	

box	b	40	40	40	10	10	10	

psphere	s	20	

vdonly	b	

vfit

vdisplayall

Syntax:

vdisplayall	[-local]

Displays	all	erased	interactive	objects	(see	vdir	and	vstate).	Option	-local
enables	displaying	objects	in	the	local	selection	context.

Example:

vinit	

box	b	40	40	40	10	10	10	

psphere	s	20	

vdisplayall	

vfit	

verase

Syntax:

verase	[name1]	[name2]	…	[name	n]

Erases	some	selected	or	named	objects.	If	there	are	no	selected	or
named	objects,	the	whole	viewer	is	erased.

Example:

vinit	

box	b1	40	40	40	10	10	10	

box	b2	-40	-40	-40	10	10	10	

psphere	s	20	

vdisplayall	

vfit	

#	erase	only	first	box	

verase	b1	

#	erase	second	box	and	sphere	

verase

veraseall

Syntax:

veraseall

Erases	all	objects	displayed	in	the	viewer.

Example:

vinit	

box	b1	40	40	40	10	10	10	

box	b2	-40	-40	-40	10	10	10	

psphere	s	20	

vdisplayall	

vfit	

#	erase	only	first	box	

verase	b1	

#	erase	second	box	and	sphere	

verseall

vsetdispmode

Syntax:

vsetdispmode	[name]	mode(0,1,2,3)

Sets	display	mode	for	all,	selected	or	named	objects.

0	(WireFrame),
1	(Shading),
2	(Quick	HideLineremoval),
3	(Exact	HideLineremoval).

Example:

vinit	

box	b	10	10	10	

vdisplay	b	

vsetdispmode	1	

vfit

vdisplaytype

Syntax:

vdisplaytype	type

Displays	all	objects	of	a	given	type.	The	following	types	are	possible:

Point,	Axis,	Trihedron,	PlaneTrihedron,	Line,	Circle,	Plane,	Shape,
ConnectedShape,	MultiConn.Shape,	ConnectedInter.,	MultiConn.,
Constraint	and	Dimension.

verasetype

Syntax:

verasetype	type

Erases	all	objects	of	a	given	type.	Possible	type	is	Point,	Axis,	Trihedron,
PlaneTrihedron,	Line,	Circle,	Plane,	Shape,	ConnectedShape,
MultiConn.Shape,	ConnectedInter.,	MultiConn.,	Constraint	and
Dimension.

vtypes

Syntax:

vtypes

Makes	a	list	of	known	types	and	signatures	in	AIS.

vaspects

Syntax:

vaspects	[-noupdate|-update]	[name1	[name2	[...]]	|	-

defaults]

									[-setVisibility	0|1]

									[-setColor	ColorName]	[-setcolor	R	G	B]	[-

unsetColor]

									[-setMaterial	MatName]	[-unsetMaterial]

									[-setTransparency	Transp]	[-

unsetTransparency]

									[-setWidth	LineWidth]	[-unsetWidth]

									[-setLineType	{solid|dash|dot|dotDash}]	[-

unsetLineType]

									[-freeBoundary	{off/on	|	0/1}]

									[-setFreeBoundaryWidth	Width]	[-

unsetFreeBoundaryWidth]

									[-setFreeBoundaryColor	{ColorName	|	R	G	B}]	

[-unsetFreeBoundaryColor]

									[-subshapes	subname1	[subname2	[...]]]

									[-isoontriangulation	0|1]

									[-setMaxParamValue	{value}]

Manages	presentation	properties	of	all,	selected	or	named	objects.

-subshapes	–	assigns	presentation	properties	to	the	specified	sub-
shapes.
-defaults	–	assigns	presentation	properties	to	all	objects	that	do	not
have	their	own	specified	properties	and	to	all	objects	to	be	displayed
in	the	future.	If	-defaults	option	is	used	there	should	not	be	any
names	of	objects	and	-subshapes	specifier.

Aliases:

vsetcolor	[-noupdate|-update]	[name]	ColorName

Manages	presentation	properties	(color,	material,	transparency)	of	all
objects,	selected	or	named.

Color.	The	ColorName	can	be:	BLACK,	MATRAGRAY,	MATRABLUE,
ALICEBLUE,	ANTIQUEWHITE,	ANTIQUEWHITE1,	ANTIQUEWHITE2,
ANTIQUEWHITE3,	ANTIQUEWHITE4,	AQUAMARINE1,
AQUAMARINE2,	AQUAMARINE4,	AZURE,	AZURE2,	AZURE3,
AZURE4,	BEIGE,	BISQUE,	BISQUE2,	BISQUE3,	BISQUE4,
BLANCHEDALMOND,	BLUE1,	BLUE2,	BLUE3,	BLUE4,	BLUEVIOLET,
BROWN,	BROWN1,	BROWN2,	BROWN3,	BROWN4,	BURLYWOOD,
BURLYWOOD1,	BURLYWOOD2,	BURLYWOOD3,	BURLYWOOD4,
CADETBLUE,	CADETBLUE1,	CADETBLUE2,	CADETBLUE3,
CADETBLUE4,	CHARTREUSE,	CHARTREUSE1,	CHARTREUSE2,
CHARTREUSE3,	CHARTREUSE4,	CHOCOLATE,	CHOCOLATE1,
CHOCOLATE2,	CHOCOLATE3,	CHOCOLATE4,	CORAL,	CORAL1,
CORAL2,	CORAL3,	CORAL4,	CORNFLOWERBLUE,	CORNSILK1,
CORNSILK2,	CORNSILK3,	CORNSILK4,	CYAN1,	CYAN2,	CYAN3,
CYAN4,	DARKGOLDENROD,	DARKGOLDENROD1,
DARKGOLDENROD2,	DARKGOLDENROD3,	DARKGOLDENROD4,

DARKGREEN,	DARKKHAKI,	DARKOLIVEGREEN,
DARKOLIVEGREEN1,	DARKOLIVEGREEN2,	DARKOLIVEGREEN3,
DARKOLIVEGREEN4,	DARKORANGE,	DARKORANGE1,
DARKORANGE2,	DARKORANGE3,	DARKORANGE4,	DARKORCHID,
DARKORCHID1,	DARKORCHID2,	DARKORCHID3,	DARKORCHID4,
DARKSALMON,	DARKSEAGREEN,	DARKSEAGREEN1,
DARKSEAGREEN2,	DARKSEAGREEN3,	DARKSEAGREEN4,
DARKSLATEBLUE,	DARKSLATEGRAY1,	DARKSLATEGRAY2,
DARKSLATEGRAY3,	DARKSLATEGRAY4,	DARKSLATEGRAY,
DARKTURQUOISE,	DARKVIOLET,	DEEPPINK,	DEEPPINK2,
DEEPPINK3,	DEEPPINK4,	DEEPSKYBLUE1,	DEEPSKYBLUE2,
DEEPSKYBLUE3,	DEEPSKYBLUE4,	DODGERBLUE1,
DODGERBLUE2,	DODGERBLUE3,	DODGERBLUE4,	FIREBRICK,
FIREBRICK1,	FIREBRICK2,	FIREBRICK3,	FIREBRICK4,
FLORALWHITE,	FORESTGREEN,	GAINSBORO,	GHOSTWHITE,
GOLD,	GOLD1,	GOLD2,	GOLD3,	GOLD4,	GOLDENROD,
GOLDENROD1,	GOLDENROD2,	GOLDENROD3,	GOLDENROD4,
GRAY,	GRAY0,	GRAY1,	GRAY10,	GRAY11,	GRAY12,	GRAY13,
GRAY14,	GRAY15,	GRAY16,	GRAY17,	GRAY18,	GRAY19,	GRAY2,
GRAY20,	GRAY21,	GRAY22,	GRAY23,	GRAY24,	GRAY25,	GRAY26,
GRAY27,	GRAY28,	GRAY29,	GRAY3,	GRAY30,	GRAY31,	GRAY32,
GRAY33,	GRAY34,	GRAY35,	GRAY36,	GRAY37,	GRAY38,	GRAY39,
GRAY4,	GRAY40,	GRAY41,	GRAY42,	GRAY43,	GRAY44,	GRAY45,
GRAY46,	GRAY47,	GRAY48,	GRAY49,	GRAY5,	GRAY50,	GRAY51,
GRAY52,	GRAY53,	GRAY54,	GRAY55,	GRAY56,	GRAY57,	GRAY58,
GRAY59,	GRAY6,	GRAY60,	GRAY61,	GRAY62,	GRAY63,	GRAY64,
GRAY65,	GRAY66,	GRAY67,	GRAY68,	GRAY69,	GRAY7,	GRAY70,
GRAY71,	GRAY72,	GRAY73,	GRAY74,	GRAY75,	GRAY76,	GRAY77,
GRAY78,	GRAY79,	GRAY8,	GRAY80,	GRAY81,	GRAY82,	GRAY83,
GRAY85,	GRAY86,	GRAY87,	GRAY88,	GRAY89,	GRAY9,	GRAY90,
GRAY91,	GRAY92,	GRAY93,	GRAY94,	GRAY95,	GREEN,	GREEN1,
GREEN2,	GREEN3,	GREEN4,	GREENYELLOW,	GRAY97,	GRAY98,
GRAY99,	HONEYDEW,	HONEYDEW2,	HONEYDEW3,	HONEYDEW4,
HOTPINK,	HOTPINK1,	HOTPINK2,	HOTPINK3,	HOTPINK4,
INDIANRED,	INDIANRED1,	INDIANRED2,	INDIANRED3,	INDIANRED4,
IVORY,	IVORY2,	IVORY3,	IVORY4,	KHAKI,	KHAKI1,	KHAKI2,	KHAKI3,
KHAKI4,	LAVENDER,	LAVENDERBLUSH1,	LAVENDERBLUSH2,
LAVENDERBLUSH3,	LAVENDERBLUSH4,	LAWNGREEN,
LEMONCHIFFON1,	LEMONCHIFFON2,	LEMONCHIFFON3,
LEMONCHIFFON4,	LIGHTBLUE,	LIGHTBLUE1,	LIGHTBLUE2,

LIGHTBLUE3,	LIGHTBLUE4,	LIGHTCORAL,	LIGHTCYAN1,
LIGHTCYAN2,	LIGHTCYAN3,	LIGHTCYAN4,	LIGHTGOLDENROD,
LIGHTGOLDENROD1,	LIGHTGOLDENROD2,	LIGHTGOLDENROD3,
LIGHTGOLDENROD4,	LIGHTGOLDENRODYELLOW,	LIGHTGRAY,
LIGHTPINK,	LIGHTPINK1,	LIGHTPINK2,	LIGHTPINK3,	LIGHTPINK4,
LIGHTSALMON1,	LIGHTSALMON2,	LIGHTSALMON3,
LIGHTSALMON4,	LIGHTSEAGREEN,	LIGHTSKYBLUE,
LIGHTSKYBLUE1,	LIGHTSKYBLUE2,	LIGHTSKYBLUE3,
LIGHTSKYBLUE4,	LIGHTSLATEBLUE,	LIGHTSLATEGRAY,
LIGHTSTEELBLUE,	LIGHTSTEELBLUE1,	LIGHTSTEELBLUE2,
LIGHTSTEELBLUE3,	LIGHTSTEELBLUE4,	LIGHTYELLOW,
LIGHTYELLOW2,	LIGHTYELLOW3,	LIGHTYELLOW4,	LIMEGREEN,
LINEN,	MAGENTA1,	MAGENTA2,	MAGENTA3,	MAGENTA4,	MAROON,
MAROON1,	MAROON2,	MAROON3,	MAROON4,
MEDIUMAQUAMARINE,	MEDIUMORCHID,	MEDIUMORCHID1,
MEDIUMORCHID2,	MEDIUMORCHID3,	MEDIUMORCHID4,
MEDIUMPURPLE,	MEDIUMPURPLE1,	MEDIUMPURPLE2,
MEDIUMPURPLE3,	MEDIUMPURPLE4,	MEDIUMSEAGREEN,
MEDIUMSLATEBLUE,	MEDIUMSPRINGGREEN,
MEDIUMTURQUOISE,	MEDIUMVIOLETRED,	MIDNIGHTBLUE,
MINTCREAM,	MISTYROSE,	MISTYROSE2,	MISTYROSE3,
MISTYROSE4,	MOCCASIN,	NAVAJOWHITE1,	NAVAJOWHITE2,
NAVAJOWHITE3,	NAVAJOWHITE4,	NAVYBLUE,	OLDLACE,
OLIVEDRAB,	OLIVEDRAB1,	OLIVEDRAB2,	OLIVEDRAB3,
OLIVEDRAB4,	ORANGE,	ORANGE1,	ORANGE2,	ORANGE3,
ORANGE4,	ORANGERED,	ORANGERED1,	ORANGERED2,
ORANGERED3,	ORANGERED4,	ORCHID,	ORCHID1,	ORCHID2,
ORCHID3,	ORCHID4,	PALEGOLDENROD,	PALEGREEN,
PALEGREEN1,	PALEGREEN2,	PALEGREEN3,	PALEGREEN4,
PALETURQUOISE,	PALETURQUOISE1,	PALETURQUOISE2,
PALETURQUOISE3,	PALETURQUOISE4,	PALEVIOLETRED,
PALEVIOLETRED1,	PALEVIOLETRED2,	PALEVIOLETRED3,
PALEVIOLETRED4,	PAPAYAWHIP,	PEACHPUFF,	PEACHPUFF2,
PEACHPUFF3,	PEACHPUFF4,	PERU,	PINK,	PINK1,	PINK2,	PINK3,
PINK4,	PLUM,	PLUM1,	PLUM2,	PLUM3,	PLUM4,	POWDERBLUE,
PURPLE,	PURPLE1,	PURPLE2,	PURPLE3,	PURPLE4,	RED,	RED1,
RED2,	RED3,	RED4,	ROSYBROWN,	ROSYBROWN1,	ROSYBROWN2,
ROSYBROWN3,	ROSYBROWN4,	ROYALBLUE,	ROYALBLUE1,
ROYALBLUE2,	ROYALBLUE3,	ROYALBLUE4,	SADDLEBROWN,
SALMON,	SALMON1,	SALMON2,	SALMON3,	SALMON4,

SANDYBROWN,	SEAGREEN,	SEAGREEN1,	SEAGREEN2,
SEAGREEN3,	SEAGREEN4,	SEASHELL,	SEASHELL2,	SEASHELL3,
SEASHELL4,	BEET,	TEAL,	SIENNA,	SIENNA1,	SIENNA2,	SIENNA3,
SIENNA4,	SKYBLUE,	SKYBLUE1,	SKYBLUE2,	SKYBLUE3,
SKYBLUE4,	SLATEBLUE,	SLATEBLUE1,	SLATEBLUE2,	SLATEBLUE3,
SLATEBLUE4,	SLATEGRAY1,	SLATEGRAY2,	SLATEGRAY3,
SLATEGRAY4,	SLATEGRAY,	SNOW,	SNOW2,	SNOW3,	SNOW4,
SPRINGGREEN,	SPRINGGREEN2,	SPRINGGREEN3,
SPRINGGREEN4,	STEELBLUE,	STEELBLUE1,	STEELBLUE2,
STEELBLUE3,	STEELBLUE4,	TAN,	TAN1,	TAN2,	TAN3,	TAN4,
THISTLE,	THISTLE1,	THISTLE2,	THISTLE3,	THISTLE4,	TOMATO,
TOMATO1,	TOMATO2,	TOMATO3,	TOMATO4,	TURQUOISE,
TURQUOISE1,	TURQUOISE2,	TURQUOISE3,	TURQUOISE4,	VIOLET,
VIOLETRED,	VIOLETRED1,	VIOLETRED2,	VIOLETRED3,
VIOLETRED4,	WHEAT,	WHEAT1,	WHEAT2,	WHEAT3,	WHEAT4,
WHITE,	WHITESMOKE,	YELLOW,	YELLOW1,	YELLOW2,	YELLOW3,
YELLOW4	and	YELLOWGREEN.

vaspects				[name]	[-setcolor	ColorName]	[-setcolor	R	

G	B]	[-unsetcolor]

vsetcolor			[name]	ColorName

vunsetcolor	[name]

Transparency.	The	Transp	may	be	between	0.0	(opaque)	and	1.0
(fully	transparent).	**Warning:	at	1.0	the	shape	becomes	invisible.

vaspects											[name]	[-settransparency	Transp]	

[-unsettransparency]

vsettransparency			[name]	Transp

vunsettransparency	[name]

Material.	The	MatName	can	be	BRASS,	BRONZE,	COPPER,	GOLD,
PEWTER,	PLASTER,	PLASTIC,	SILVER,	STEEL,	STONE,
SHINY_PLASTIC,	SATIN,	METALIZED,	NEON_GNC,	CHROME,
ALUMINIUM,	OBSIDIAN,	NEON_PHC,	JADE,	WATER,	GLASS,
DIAMOND	or	CHARCOAL.

vaspects							[name]	[-setmaterial	MatName]	[-

unsetmaterial]

vsetmaterial			[name]	MatName

vunsetmaterial	[name]

Line	width.	Specifies	width	of	the	edges.	The	LineWidth	may	be
between	0.0	and	10.0.

vaspects				[name]	[-setwidth	LineWidth]	[-

unsetwidth]

vsetwidth			[name]	LineWidth

vunsetwidth	[name]

Example:

vinit

box	b	10	10	10

vdisplay	b

vfit

vsetdispmode	b	1

vaspects	-setcolor	red	-settransparency	0.2

vrotate	10	10	10

vsetshading

Syntax:

vsetshading	shapename	[coefficient]

Sets	deflection	coefficient	that	defines	the	quality	of	the	shape’s
representation	in	the	shading	mode.	Default	coefficient	is	0.0008.

Example:

vinit	

psphere	s	20	

vdisplay	s	

vfit	

vsetdispmode	1	

vsetshading	s	0.005

vunsetshading

Syntax:

vunsetshading	[shapename]

Sets	default	deflection	coefficient	(0.0008)	that	defines	the	quality	of	the
shape’s	representation	in	the	shading	mode.

vsetam

Syntax:

vsetam	[shapename]	mode

Activates	selection	mode	for	all	selected	or	named	shapes:

0	for	shape	itself,
1	(vertices),
2	(edges),
3	(wires),
4	(faces),
5	(shells),
6	(solids),
7	(compounds).

Example:

vinit	

box	b	10	10	10	

vdisplay	b	

vfit	

vsetam	b	2

vunsetam

Syntax:

vunsetam

Deactivates	all	selection	modes	for	all	shapes.

vdump

Syntax:

vdump	<filename>.{png|bmp|jpg|gif}	[-width	Width	-

height	Height]

						[-buffer	rgb|rgba|depth=rgb]

						[-stereo	

mono|left|right|blend|sideBySide|overUnder=mono]

Extracts	the	contents	of	the	viewer	window	to	a	image	file.

vdir

Syntax:

vdir

Displays	the	list	of	displayed	objects.

vsub

Syntax:

vsub	0/1(on/off)[shapename]

Hilights/unhilights	named	or	selected	objects	which	are	displayed	at
neutral	state	with	subintensity	color.

Example:

vinit	

box	b	10	10	10	

psphere	s	20	

vdisplay	b	s	

vfit	

vsetdispmode	1	

vsub	b	1

vsensdis

Syntax:

vsensdis

Displays	active	entities	(sensitive	entities	of	one	of	the	standard	types
corresponding	to	active	selection	modes).

Standard	entity	types	are	those	defined	in	Select3D	package:

sensitive	box
sensitive	face
sensitive	curve
sensitive	segment
sensitive	circle
sensitive	point
sensitive	triangulation
sensitive	triangle	Custom	(application-defined)	sensitive	entity	types
are	not	processed	by	this	command.

vsensera

Syntax:

vsensera

Erases	active	entities.

vr

Syntax:

vr	filename

Reads	shape	from	BREP-format	file	and	displays	it	in	the	viewer.

Example:

vinit	

vr	myshape.brep

vstate

Syntax:

vstate	[-entities]	[-hasSelected]	[name1]	...	[nameN]

Reports	show/hidden	state	for	selected	or	named	objects:

entities	–	prints	low-level	information	about	detected	entities;
hasSelected	–	prints	1	if	the	context	has	a	selected	shape	and	0
otherwise.

vraytrace

Syntax:

vraytrace	[0/1]

Turns	on/off	ray	tracing	renderer.

vrenderparams

Syntax:

vrenderparams	[-rayTrace|-raster]	[-rayDepth	0..10]	

[-shadows	{on|off}]

														[-reflections	{on|off}]	[-fsaa	

{on|off}]	[-gleam	{on|off}]

														[-gi	{on|off}]	[-brng	{on|off}]	[-env	

{on|off}]

														[-shadin	{color|flat|gouraud|phong}]

Manages	rendering	parameters:

rayTrace	–	Enables	GPU	ray-tracing
raster	–	Disables	GPU	ray-tracing

rayDepth	–	Defines	maximum	ray-tracing	depth
shadows	–	Enables/disables	shadows	rendering
reflections	–	Enables/disables	specular	reflections
fsaa	–	Enables/disables	adaptive	anti-aliasing
gleam	–	Enables/disables	transparency	shadow	effects
gi	–	Enables/disables	global	illumination	effects
brng	–	Enables/disables	blocked	RNG	(fast	coherent	PT)
env	–	Enables/disables	environment	map	background
shadingModel	–	Controls	shading	model	from	enumeration	color,	flat,
gouraud,	phong

Unlike	vcaps,	these	parameters	dramatically	change	visual	properties.
The	command	is	intended	to	control	presentation	quality	depending	on
hardware	capabilities	and	performance.

Example:

vinit

box	b	10	10	10

vdisplay	b

vfit

vraytrace	1

vrenderparams	-shadows	1	-reflections	1	-fsaa	1

vshaderprog

Syntax:

			'vshaderprog	[name]	pathToVertexShader	

pathToFragmentShader'

or	'vshaderprog	[name]	off'			to	disable	GLSL	program

or	'vshaderprog	[name]	phong'	to	enable	per-pixel	

lighting	calculations

Enables	rendering	using	a	shader	program.

vsetcolorbg

Syntax:

vsetcolorbg	r	g	b

Sets	background	color.

Example:

vinit

vsetcolorbg	200	0	200

AIS	viewer	--	object	commands

vtrihedron

Syntax:

vtrihedron	name	[-dispMode	{wf|sh|wireframe|shading}]

																[-origin	x	y	z]

																[-zaxis	u	v	w	-xaxis	u	v	w]

																[-drawaxes	{X|Y|Z|XY|YZ|XZ|XYZ}]

																[-hidelabels	{on|off}]"

																[-label	{XAxis|YAxis|ZAxis}	value]"

																[-attribute	

{XAxisLength|YAxisLength|ZAxisLength

																																								

|TubeRadiusPercent|ConeRadiusPercent"

																																								

|ConeLengthPercent|OriginRadiusPercent"

																																								

|ShadingNumberOfFacettes}	value]"

																[-color	

{Origin|XAxis|YAxis|ZAxis|XOYAxis|YOZAxis"

																																								

|XOZAxis|Whole}	{r	g	b	|	colorName}]"

																[-textcolor	{r	g	b	|	colorName}]"

																[-arrowscolor	{r	g	b	|	colorName}]"

																[-priority	

{Origin|XAxis|YAxis|ZAxis|XArrow"

																																								

|YArrow|ZArrow|XOYAxis|YOZAxis"

																																								

|XOZAxis|Whole}	value]

Creates	a	new	AIS_Trihedron	object	or	changes	existing	trihedron.	If	no
argument	is	set,	the	default	trihedron	(0XYZ)	is	created.

Example:

vinit	

vtrihedron	tr1

vtrihedron	t2	-dispmode	shading	-origin	-200	-200	

-300

vtrihedron	t2	-color	XAxis	Quantity_NOC_RED

vtrihedron	t2	-color	YAxis	Quantity_NOC_GREEN

vtrihedron	t2	-color	ZAxis|Origin	Quantity_NOC_BLUE1

vplanetri

Syntax:

vplanetri	name

Creates	a	plane	from	a	trihedron	selection.	If	no	arguments	are	set,	the
default	plane	is	created.

vsize

Syntax:

vsize	[name]	[size]

Changes	the	size	of	a	named	or	selected	trihedron.	If	the	name	is	not
defined:	it	affects	the	selected	trihedrons	otherwise	nothing	is	done.	If	the
value	is	not	defined,	it	is	set	to	100	by	default.

Example:

vinit	

vtrihedron	tr1	

vtrihedron	tr2	0	0	0	1	0	0	1	0	0	

vsize	tr2	400

vaxis

Syntax:

vaxis	name	[Xa	Ya	Za	Xb	Yb	Zb]

Creates	an	axis.	If	the	values	are	not	defined,	an	axis	is	created	by
interactive	selection	of	two	vertices	or	one	edge

Example:

vinit	

vtrihedron	tr	

vaxis	axe1	0	0	0	1	0	0	

vaxispara

Syntax:

vaxispara	name

Creates	an	axis	by	interactive	selection	of	an	edge	and	a	vertex.

vaxisortho

Syntax:

vaxisotrho	name

Creates	an	axis	by	interactive	selection	of	an	edge	and	a	vertex.	The	axis
will	be	orthogonal	to	the	selected	edge.

vpoint

Syntax:

vpoint	name	[Xa	Ya	Za]

Creates	a	point	from	coordinates.	If	the	values	are	not	defined,	a	point	is
created	by	interactive	selection	of	a	vertice	or	an	edge	(in	the	center	of
the	edge).

Example:

vinit	

vpoint	p	0	0	0	

vplane

Syntax:

vplane	name	[AxisName]	[PointName]	

vplane	name	[PointName]	[PointName]	[PointName]	

vplane	name	[PlaneName]	[PointName]

Creates	a	plane	from	named	or	interactively	selected	entities.
TypeOfSensitivity:

0	–	Interior
1	–	Boundary

Example:

vinit	

vpoint	p1	0	50	0	

vaxis	axe1	0	0	0	0	0	1	

vtrihedron	tr	

vplane	plane1	axe1	p1	

vplanepara

Syntax:

vplanepara	name

Creates	a	plane	from	interactively	selected	vertex	and	face.

vplaneortho

Syntax:

vplaneortho	name

Creates	a	plane	from	interactive	selected	face	and	coplanar	edge.

vline

Syntax:

vline	name	[PointName]	[PointName]	

vline	name	[Xa	Ya	Za	Xb	Yb	Zb]

Creates	a	line	from	coordinates,	named	or	interactively	selected	vertices.

Example:

vinit	

vtrihedron	tr	

vpoint	p1	0	50	0	

vpoint	p2	50	0	0	

vline	line1	p1	p2	

vline	line2	0	0	0	50	0	1	

vcircle

Syntax:

vcircle	name	[PointName	PointName	PointName	IsFilled]	

vcircle	name	[PlaneName	PointName	Radius	IsFilled]	

Creates	a	circle	from	named	or	interactively	selected	entities.	Parameter
IsFilled	is	defined	as	0	or	1.

Example:

vinit	

vtrihedron	tr	

vpoint	p1	0	50	0	

vpoint	p2	50	0	0	

vpoint	p3	0	0	0	

vcircle	circle1	p1	p2	p3	1

vtri2d

Syntax:

vtri2d	name

Creates	a	plane	with	a	2D	trihedron	from	an	interactively	selected	face.

vselmode

Syntax:

vselmode	[object]	mode_number	is_turned_on=(1|0)

Sets	the	selection	mode	for	an	object.	If	the	object	value	is	not	defined,
the	selection	mode	is	set	for	all	displayed	objects.	Mode_number	is	a
non-negative	integer	encoding	different	interactive	object	classes.	For
shapes	the	following	mode_number	values	are	allowed:

0	–	shape
1	–	vertex
2	–	edge
3	–	wire
4	–	face
5	–	shell
6	–	solid
7	–	compsolid
8	–	compound	is_turned_on	is:
1	if	mode	is	to	be	switched	on
0	if	mode	is	to	be	switched	off

Example:

vinit	

vpoint	p1	0	0	0	

vpoint	p2	50	0	0	

vpoint	p3	25	40	0	

vtriangle	triangle1	p1	p2	p3	

vconnect

Syntax:

vconnect	vconnect	name	Xo	Yo	Zo	object1	object2	...	

[color=NAME]

Creates	AIS_ConnectedInteractive	object	from	the	input	object	and
location	and	displays	it.

Example:

vinit	

vpoint	p1	0	0	0	

vpoint	p2	50	0	0	

vsegment	segment	p1	p2	

restore	CrankArm.brep	obj	

vdisplay	obj	

vconnect	new	obj	100100100	1	0	0	0	0	1

vtriangle

Syntax:

vtriangle	name	PointName	PointName	PointName

Creates	and	displays	a	filled	triangle	from	named	points.

Example:

vinit	

vpoint	p1	0	0	0	

vpoint	p2	50	0	0	

vpoint	p3	25	40	0	

vtriangle	triangle1	p1	p2	p3

vsegment

Syntax:

vsegment	name	PointName	PointName	

Creates	and	displays	a	segment	from	named	points.

Example:

Vinit	

vpoint	p1	0	0	0	

vpoint	p2	50	0	0	

vsegment	segment	p1	p2	

vpointcloud

Syntax:

vpointcloud	name	shape	[-randColor]	[-normals]	[-

noNormals]

Creates	an	interactive	object	for	an	arbitrary	set	of	points	from	the
triangulated	shape.	Additional	options:

randColor	–	generates	a	random	color	per	point;
normals	–	generates	a	normal	per	point	(default);
noNormals	–	does	not	generate	a	normal	per	point.

vpointcloud	name	x	y	z	r	npts	{surface|volume}	[-

randColor]	[-normals]	[-noNormals]

Creates	an	arbitrary	set	of	points	(npts)	randomly	distributed	on	a	spheric
surface	or	within	a	spheric	volume	(x	y	z	r).	Additional	options:

randColor	–	generates	a	random	color	per	point;
normals	–	generates	a	normal	per	point	(default);
noNormals	–	does	not	generate	a	normal	per	point.

Example:

vinit

vpointcloud	pc	0	0	0	100	100000	surface	-randColor

vfit

vclipplane

Syntax:

vclipplane	maxplanes	<view_name>	--	gets	plane	limit	

for	the	view.

vclipplane	create	<plane_name>	--	creates	a	new	

plane.

vclipplane	delete	<plane_name>	--	deletes	a	plane.

vclipplane	clone	<source_plane>	<plane_name>	--	

clones	the	plane	definition.

vclipplane	set/unset	<plane_name>	object	<object	

list>	--	sets/unsets	the	plane	for	an	IO.

vclipplane	set/unset	<plane_name>	view	<view	list>	--	

sets/unsets	plane	for	a	view.

vclipplane	change	<plane_name>	on/off	--	turns	

clipping	on/off.

vclipplane	change	<plane_name>	equation	<a>		<c>	

<d>	--	changes	plane	equation.

vclipplane	change	<plane_name>	capping	on/off	--	

turns	capping	on/off.

vclipplane	change	<plane_name>	capping	color	<r>	<g>	

	--	sets	color.

vclipplane	change	<plane	name>	capping	texname	

<texture>	--	sets	texture.

vclipplane	change	<plane_name>	capping	texscale	<sx>	

<sy>	--	sets	texture	scale.

vclipplane	change	<plane_name>	capping	texorigin	<tx>	

<ty>	--	sets	texture	origin.

vclipplane	change	<plane_name>	capping	texrotate	

<angle>	--	sets	texture	rotation.

vclipplane	change	<plane_name>	capping	hatch	

on/off/<id>	--	sets	hatching	mask.

Manages	clipping	planes

Example:

vinit

vclipplane	create	pln1

vclipplane	change	pln1	equation	1	0	0	-0.1

vclipplane	set	pln1	view	Driver1/Viewer1/View1

box	b	100	100	100

vdisplay	b

vsetdispmode	1

vfit

vrotate	10	10	10

vselect	100	100

vdimension

Syntax:

vdimension	name	{-angle|-length|-radius|-diameter}	-

shapes	shape1	[shape2	[shape3]]

																[-text	3d|2d	wf|sh|wireframe|shading	

IntegerSize]

																[-label	left|right|hcenter|hfit	

top|bottom|vcenter|vfit]

																[-arrow	external|internal|fit]	[{-

arrowlength|-arlen}	RealArrowLength]

																[{-arrowangle|-arangle}	

ArrowAngle(degrees)]	[-plane	xoy|yoz|zox]

																[-flyout	FloatValue	-extension	

FloatValue]

																[-autovalue]	[-value	CustomRealValue]	

[-textvalue	CustomTextValue]

																[-dispunits	DisplayUnitsString]

																[-modelunits	ModelUnitsString]	[-

showunits	|	-hideunits]

Builds	angle,	length,	radius	or	diameter	dimension	interactive	object

name.

Attension:	length	dimension	can't	be	built	without	working	plane.

Example:

vinit

vpoint	p1	0	0	0

vpoint	p2	50	50	0

vdimension	dim1	-length	-plane	xoy	-shapes	p1	p2

vpoint	p3	100	0	0

vdimension	dim2	-angle	-shapes	p1	p2	p3

vcircle	circle	p1	p2	p3	0

vdimension	dim3	-radius	-shapes	circle

vfit

vdimparam

Syntax:

vdimparam	name	[-text	3d|2d	wf|sh|wireframe|shading	

IntegerSize]

															[-label	left|right|hcenter|hfit	

top|bottom|vcenter|vfit]

															[-arrow	external|internal|fit]

															[{-arrowlength|-arlen}	

RealArrowLength]

															[{-arrowangle|-arangle}	

ArrowAngle(degrees)]

															[-plane	xoy|yoz|zox]

															[-flyout	FloatValue	-extension	

FloatValue]

															[-autovalue]

															[-value	CustomRealValue]

															[-textvalue	CustomTextValue]

															[-dispunits	DisplayUnitsString]

															[-modelunits	ModelUnitsString]

															[-showunits	|	-hideunits]

Sets	parameters	for	angle,	length,	radius	and	diameter	dimension	name.

Example:

vinit

vpoint	p1	0	0	0

vpoint	p2	50	50	0

vdimension	dim1	-length	-plane	xoy	-shapes	p1	p2

vdimparam	dim1	-flyout	-15	-arrowlength	4	-showunits	

-value	10

vfit

vdimparam	dim1	-textvalue	"w_1"

vdimparam	dim1	-autovalue

vangleparam

Syntax:

vangleparam	name	[-type	interior|exterior]

																	[-showarrow	first|second|both|none]

Sets	parameters	for	angle	dimension	name.

Example:

vinit

vpoint	p1	0	0	0

vpoint	p2	10	0	0

vpoint	p3	10	5	0

vdimension	dim1	-angle	-plane	xoy	-shapes	p1	p2	p3

vfit

vangleparam	dim1	-type	exterior	-showarrow	first

vlengthparam

Syntax:

vlengthparam	name	[-type	interior|exterior]

																		[-showarrow	first|second|both|none]

Sets	parameters	for	length	dimension	name.

Example:

vinit

vpoint	p1	20	20	0

vpoint	p2	80	80	0

vdimension	dim1	-length	-plane	xoy	-shapes	p1	p2

vtop

vfit

vzoom	0.5

vlengthparam	dim1	-direction	ox

vmovedim

Syntax:

vmovedim	[name]	[x	y	z]

Moves	picked	or	named	(if	name	parameter	is	defined)	dimension	to
picked	mouse	position	or	input	point	with	coordinates	x,y,z.	Text	label	of
dimension	name	is	moved	to	position,	another	parts	of	dimension	are
adjusted.

Example:

vinit

vpoint	p1	0	0	0

vpoint	p2	50	50	0

vdimension	dim1	-length	-plane	xoy	-shapes	p1	p2

vmovedim	dim1	-10	30	0

AIS	viewer	--	Mesh	Visualization	Service
MeshVS	(Mesh	Visualization	Service)	component	provides	flexible
means	of	displaying	meshes	with	associated	pre-	and	post-	processor
data.

meshfromstl

Syntax:

meshfromstl	meshname	file

Creates	a	MeshVS_Mesh	object	based	on	STL	file	data.	The	object	will
be	displayed	immediately.

Example:

meshfromstl	mesh	myfile.stl

meshdispmode

Syntax:

meshdispmode	meshname	displaymode

Changes	the	display	mode	of	object	meshname.	The	displaymode	is
integer,	which	can	be:

1	for	wireframe,
2	for	shading	mode,	or
3	for	shrink	mode.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshdispmode	mesh	2

meshselmode

Syntax:

meshselmode	meshname	selectionmode

Changes	the	selection	mode	of	object	meshname.	The	selectionmode	is
integer	OR-combination	of	mode	flags.	The	basic	flags	are	the	following:

1	–	node	selection;
2	–	0D	elements	(not	supported	in	STL);
4	–	links	(not	supported	in	STL);
8	–	faces.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshselmode	mesh	1

meshshadcolor

Syntax:

meshshadcolor	meshname	red	green	blue

Changes	the	face	interior	color	of	object	meshname.	The	red,	green	and
blue	are	real	values	between	0	and	1.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshshadcolormode	mesh	0.5	0.5	0.5

meshlinkcolor

Syntax:

meshlinkcolor	meshname	red	green	blue

Changes	the	color	of	face	borders	for	object	meshname.	The	red,	green
and	blue	are	real	values	between	0	and	1.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshlinkcolormode	mesh	0.5	0.5	0.5

meshmat

Syntax:

meshmat	meshname	material

Changes	the	material	of	object	meshname.

material	is	represented	with	an	integer	value	as	follows	(equivalent	to
enumeration	Graphic3d_NameOfMaterial):

0	–	BRASS,
1	–	BRONZE,
2	–	COPPER,
3	–	GOLD,
4	–	PEWTER,
5	–	PLASTER,
6	–	PLASTIC,
7	–	SILVER,
8	–	STEEL,
9	–	STONE,
10	–	SHINY_PLASTIC,
11	–	SATIN,
12	–	METALIZED,
13	–	NEON_GNC,
14	–	CHROME,
15	–	ALUMINIUM,
16	–	OBSIDIAN,
17	–	NEON_PHC,

18	–	JADE,
19	–	DEFAULT,
20	–	UserDefined

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshmat	mesh	JADE	

meshshrcoef

Syntax:

meshshrcoef	meshname	shrinkcoefficient

Changes	the	value	of	shrink	coefficient	used	in	the	shrink	mode.	In	the
shrink	mode	the	face	is	shown	as	a	congruent	part	of	a	usual	face,	so
that	shrinkcoefficient	controls	the	value	of	this	part.	The	shrinkcoefficient
is	a	positive	real	number.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshshrcoef	mesh	0.05

meshshow

Syntax:

meshshow	meshname

Displays	meshname	in	the	viewer	(if	it	is	erased).

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshshow	mesh

meshhide

Syntax:

meshhide	meshname

Hides	meshname	in	the	viewer.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshhide	mesh

meshhidesel

Syntax:

meshhidesel	meshname

Hides	only	selected	entities.	The	other	part	of	meshname	remains
visible.

meshshowsel

Syntax:

meshshowsel	meshname

Shows	only	selected	entities.	The	other	part	of	meshname	becomes
invisible.

meshshowall

Syntax:

meshshowall	meshname

Changes	the	state	of	all	entities	to	visible	for	meshname.

meshdelete

Syntax:

meshdelete	meshname

Deletes	MeshVS_Mesh	object	meshname.

Example:

vinit	

meshfromstl	mesh	myfile.stl	

meshdelete	mesh	

VIS	Viewer	commands
A	specific	plugin	with	alias	VIS	should	be	loaded	to	have	access	to	VIS
functionality	in	DRAW	Test	Harness:

>	pload	VIS

ivtkinit

Syntax:

ivtkinit

Creates	a	window	for	VTK	viewer.

ivtkdisplay

Syntax:

ivtkdisplay	name1	[name2]	…[name	n]

Displays	named	objects.

Example:

ivtkinit

#	create	cone

pcone	c	5	0	10

ivtkdisplay	c

ivtkerase

Syntax:

ivtkerase	[name1]	[name2]	…	[name	n]

Erases	named	objects.	If	no	arguments	are	passed,	erases	all	displayed
objects.

Example:

ivtkinit

#	create	a	sphere

psphere	s	10

#	create	a	cone

pcone	c	5	0	10

#	create	a	cylinder

pcylinder	cy	5	10

#	display	objects

ivtkdisplay	s	c	cy

#	erase	only	the	cylinder

ivtkerase	cy

#	erase	the	sphere	and	the	cone

ivtkerase	s	c

ivtkfit

Syntax:

ivtkfit

Automatic	zoom/panning.

ivtkdispmode

Syntax:

ivtksetdispmode	[name]	{0|1}

Sets	display	mode	for	a	named	object.	If	no	arguments	are	passed,	sets
the	given	display	mode	for	all	displayed	objects	The	possible	modes	are:
0	(WireFrame)	and	1	(Shading).

Example:

ivtkinit

#	create	a	cone

pcone	c	5	0	10

#	display	the	cone

ivtkdisplay	c

#	set	shading	mode	for	the	cone

ivtksetdispmode	c	1

ivtksetselmode

Syntax:

ivtksetselmode	[name]	mode	{0|1}

Sets	selection	mode	for	a	named	object.	If	no	arguments	are	passed,
sets	the	given	selection	mode	for	all	the	displayed	objects.

Example:

ivtkinit

#	load	a	shape	from	file

restore	CrankArm.brep	a

#	display	the	loaded	shape

ivtkdisplay	a

#	set	the	face	selection	mode

ivtksetselmode	a	4	1

ivtkmoveto

Syntax:

ivtkmoveto	x	y

Imitates	mouse	cursor	moving	to	point	with	the	given	display	coordinates
x,y.

Example:

ivtkinit

pcone	c	5	0	10

ivtkdisplay	c

ivtkmoveto	40	50

ivtkselect

Syntax:

ivtkselect	x	y

Imitates	mouse	cursor	moving	to	point	with	the	given	display	coordinates
and	performs	selection	at	this	point.

Example:

ivtkinit

pcone	c	5	0	10

ivtkdisplay	c

ivtkselect	40	50

ivtkdump

Syntax:

ivtkdump	*filename*	[buffer={rgb|rgba|depth}]	[width	

height]	[stereoproj={L|R}]

Dumps	the	contents	of	VTK	viewer	to	image.	It	supports:

dumping	in	different	raster	graphics	formats:	PNG,	BMP,	JPEG,	TIFF
or	PNM.
dumping	of	different	buffers:	RGB,	RGBA	or	depth	buffer.
defining	of	image	sizes	(width	and	height	in	pixels).
dumping	of	stereo	projections	(left	or	right).

Example:

ivtkinit

pcone	c	5	0	10

ivtkdisplay	c

ivtkdump	D:/ConeSnapshot.png	rgb	768	768

ivtkbgcolor

Syntax:

ivtkbgcolor	r	g	b	[r2	g2	b2]

Sets	uniform	background	color	or	gradient	background	if	second	triple	of
parameters	is	set.	Color	parameters	r,g,b	have	to	be	chosen	in	the
interval	[0..255].

Example:

ivtkinit

ivtkbgcolor	200	220	250

ivtkbgcolor	10	30	80	255	255	255

OCAF	commands
This	chapter	contains	a	set	of	commands	for	Open	CASCADE
Technology	Application	Framework	(OCAF).

Application	commands

NewDocument

Syntax:

NewDocument	docname	[format]

Creates	a	new	docname	document	with	MDTV-Standard	or	described
format.

Example:

#	Create	new	document	with	default	(MDTV-Standard)	

format	

NewDocument	D	

#	Create	new	document	with	BinOcaf	format	

NewDocument	D2	BinOcaf	

IsInSession

Syntax:

IsInSession	path

Returns	0,	if	path	document	is	managed	by	the	application	session,	1	–
otherwise.

Example:

IsInSession	/myPath/myFile.std	

ListDocuments

Syntax:

ListDocuments

Makes	a	list	of	documents	handled	during	the	session	of	the	application.

Open

Syntax:

Open	path	docname	[-stream]

Retrieves	the	document	of	file	docname	in	the	path	path.	Overwrites	the
document,	if	it	is	already	in	session.

option	-stream	activates	usage	of	alternative	interface	of	OCAF
persistence	working	with	C++	streams	instead	of	file	names.

Example:

Open	/myPath/myFile.std	D

Close

Syntax:

Close	docname

Closes	docname	document.	The	document	is	no	longer	handled	by	the
applicative	session.

Example:

Close	D	

Save

Syntax:

Save	docname

Saves	docname	active	document.

Example:

Save	D	

SaveAs

Syntax:

SaveAs	docname	path	[-stream]

Saves	the	active	document	in	the	file	docname	in	the	path	path.
Overwrites	the	file	if	it	already	exists.

option	-stream	activates	usage	of	alternative	interface	of	OCAF
persistence	working	with	C++	streams	instead	of	file	names.

Example:

SaveAs	D	/myPath/myFile.std

Basic	commands

Label

Syntax:

Label	docname	entry

Creates	the	label	expressed	by	<entry>	if	it	does	not	exist.

Example

Label	D	0:2

NewChild

Syntax:

NewChild	docname	[taggerlabel	=	Root	label]

Finds	(or	creates)	a	TagSource	attribute	located	at	father	label	of
<taggerlabel>	and	makes	a	new	child	label.

Example

#	Create	new	child	of	root	label

NewChild	D

#	Create	new	child	of	existing	label

Label	D	0:2

NewChild	D	0:2

Children

Syntax:

Children	docname	label

Returns	the	list	of	attributes	of	label.

Example

Children	D	0:2

ForgetAll

Syntax:

ForgetAll	docname	label

Forgets	all	attributes	of	the	label.

Example

ForgetAll	D	0:2

Application	commands

Main

Syntax:

Main	docname

Returns	the	main	label	of	the	framework.

Example:

Main	D	

UndoLimit

Syntax:

UndoLimit	docname	[value=0]

Sets	the	limit	on	the	number	of	Undo	Delta	stored.	0	will	disable	Undo	on

the	document.	A	negative	value	means	that	there	is	no	limit.	Note	that	by
default	Undo	is	disabled.	Enabling	it	will	take	effect	with	the	next	call	to
NewCommand.	Of	course,	this	limit	is	the	same	for	Redo

Example:

UndoLimit	D	100	

Undo

Syntax:

Undo	docname	[value=1]

Undoes	value	steps.

Example:

Undo	D	

Redo

Syntax:

Redo	docname	[value=1]

Redoes	value	steps.

Example:

Redo	D	

OpenCommand

Syntax:

OpenCommand	docname

Opens	a	new	command	transaction.

Example:

OpenCommand	D

CommitCommand

Syntax:

CommitCommand	docname

Commits	the	Command	transaction.

Example:

CommitCommand	D

NewCommand

Syntax:

NewCommand	docname

This	is	a	shortcut	for	Commit	and	Open	transaction.

Example:

NewCommand	D	

AbortCommand

Syntax:

AbortCommand	docname

Aborts	the	Command	transaction.

Example:

AbortCommand	D	

Copy

Syntax:

Copy	docname	entry	Xdocname	Xentry

Copies	the	contents	of	entry	to	Xentry.	No	links	are	registered.

Example:

Copy	D1	0:2	D2	0:4	

UpdateLink

Syntax:

UpdateLink	docname	[entry]	

Updates	external	reference	set	at	entry.

Example:

UpdateLink	D	

CopyWithLink

Syntax:

CopyWithLink	docname	entry	Xdocname	Xentry

Aborts	the	Command	transaction.	Copies	the	content	of	entry	to	Xentry.
The	link	is	registered	with	an	Xlink	attribute	at	Xentry	label.

Example:

CopyWithLink	D1	0:2	D2	0:4

UpdateXLinks

Syntax:

UpdateXLinks	docname	entry

Sets	modifications	on	labels	impacted	by	external	references	to	the	entry.
The	document	becomes	invalid	and	must	be	recomputed

Example:

UpdateXLinks	D	0:2	

DumpDocument

Syntax:

DumpDocument	docname

Displays	parameters	of	docname	document.

Example:

DumpDocument	D	

Data	Framework	commands

MakeDF

Syntax:

MakeDF	dfname

Creates	a	new	data	framework.

Example:

MakeDF	D	

ClearDF

Syntax:

ClearDF	dfname

Clears	a	data	framework.

Example:

ClearDF	D	

CopyDF

Syntax:

CopyDF	dfname1	entry1	[dfname2]	entry2

Copies	a	data	framework.

Example:

CopyDF	D	0:2	0:4	

CopyLabel

Syntax:

CopyLabel	dfname	fromlabel	tolablel

Copies	a	label.

Example:

CopyLabel	D1	0:2	0:4	

MiniDumpDF

Syntax:

MiniDumpDF	dfname

Makes	a	mini-dump	of	a	data	framework.

Example:

MiniDumpDF	D	

XDumpDF

Syntax:

XDumpDF	dfname

Makes	an	extended	dump	of	a	data	framework.

Example:

XDumpDF	D

General	attributes	commands

SetInteger

Syntax:

SetInteger	dfname	entry	value

Finds	or	creates	an	Integer	attribute	at	entry	label	and	sets	value.

Example:

SetInteger	D	0:2	100	

GetInteger

Syntax:

GetInteger	dfname	entry	[drawname]

Gets	a	value	of	an	Integer	attribute	at	entry	label	and	sets	it	to	drawname
variable,	if	it	is	defined.

Example:

GetInteger	D	0:2	Int1	

SetReal

Syntax:

SetReal	dfname	entry	value

Finds	or	creates	a	Real	attribute	at	entry	label	and	sets	value.

Example:

SetReal	D	0:2	100.	

GetReal

Syntax:

GetReal	dfname	entry	[drawname]

Gets	a	value	of	a	Real	attribute	at	entry	label	and	sets	it	to	drawname
variable,	if	it	is	defined.

Example:

GetReal	D	0:2	Real1	

SetIntArray

Syntax:

SetIntArray	dfname	entry	lower	upper	value1	value2	…	

Finds	or	creates	an	IntegerArray	attribute	at	entry	label	with	lower	and
upper	bounds	and	sets	**value1*,	value2...

Example:

SetIntArray	D	0:2	1	4	100	200	300	400

GetIntArray

Syntax:

GetIntArray	dfname	entry

Gets	a	value	of	an	IntegerArray	attribute	at	entry	label.

Example:

GetIntArray	D	0:2

SetRealArray

Syntax:

SetRealArray	dfname	entry	lower	upper	value1	value2	…

Finds	or	creates	a	RealArray	attribute	at	entry	label	with	lower	and	upper
bounds	and	sets	value1,	*value2*…

Example:

GetRealArray	D	0:2	1	4	100.	200.	300.	400.	

GetRealArray

Syntax:

GetRealArray	dfname	entry

Gets	a	value	of	a	RealArray	attribute	at	entry	label.

Example:

GetRealArray	D	0:2	

SetComment

Syntax:

SetComment	dfname	entry	value

Finds	or	creates	a	Comment	attribute	at	entry	label	and	sets	value.

Example:

SetComment	D	0:2	"My	comment"

GetComment

Syntax:

GetComment	dfname	entry

Gets	a	value	of	a	Comment	attribute	at	entry	label.

Example:

GetComment	D	0:2

SetExtStringArray

Syntax:

SetExtStringArray	dfname	entry	lower	upper	value1	

value2	…

Finds	or	creates	an	ExtStringArray	attribute	at	entry	label	with	lower	and
upper	bounds	and	sets	value1,	*value2*…

Example:

SetExtStringArray	D	0:2	1	3	*string1*	*string2*	

string3

GetExtStringArray

Syntax:

GetExtStringArray	dfname	entry

Gets	a	value	of	an	ExtStringArray	attribute	at	entry	label.

Example:

GetExtStringArray	D	0:2	

SetName

Syntax:

SetName	dfname	entry	value	

Finds	or	creates	a	Name	attribute	at	entry	label	and	sets	value.

Example:

SetName	D	0:2	*My	name*	

GetName

Syntax:

GetName	dfname	entry	

Gets	a	value	of	a	Name	attribute	at	entry	label.

Example:

GetName	D	0:2	

SetReference

Syntax:

SetReference	dfname	entry	reference	

Creates	a	Reference	attribute	at	entry	label	and	sets	reference.

Example:

SetReference	D	0:2	0:4	

GetReference

Syntax:

GetReference	dfname	entry	

Gets	a	value	of	a	Reference	attribute	at	entry	label.

Example:

GetReference	D	0:2	

SetUAttribute

Syntax:

SetUAttribute	dfname	entry	localGUID	

Creates	a	UAttribute	attribute	at	entry	label	with	localGUID.

Example:

set	localGUID	"c73bd076-22ee-11d2-acde-080009dc4422"	

SetUAttribute	D	0:2	${localGUID}	

GetUAttribute

Syntax:

GetUAttribute	dfname	entry	loacalGUID	

Finds	a	UAttribute	at	entry	label	with	localGUID.

Example:

set	localGUID	"c73bd076-22ee-11d2-acde-080009dc4422"	

GetUAttribute	D	0:2	${localGUID}	

SetFunction

Syntax:

SetFunction	dfname	entry	ID	failure	

Finds	or	creates	a	Function	attribute	at	entry	label	with	driver	ID	and
failure	index.

Example:

set	ID	"c73bd076-22ee-11d2-acde-080009dc4422"	

SetFunction	D	0:2	${ID}	1	

GetFunction

Syntax:

GetFunction	dfname	entry	ID	failure	

Finds	a	Function	attribute	at	entry	label	and	sets	driver	ID	to	ID	variable
and	failure	index	to	failure	variable.

Example:

GetFunction	D	0:2	ID	failure	

NewShape

Syntax:

NewShape	dfname	entry	[shape]	

Finds	or	creates	a	Shape	attribute	at	entry	label.	Creates	or	updates	the
associated	NamedShape	attribute	by	shape	if	shape	is	defined.

Example:

box	b	10	10	10	

NewShape	D	0:2	b	

SetShape

Syntax:

SetShape	dfname	entry	shape	

Creates	or	updates	a	NamedShape	attribute	at	entry	label	by	shape.

Example:

box	b	10	10	10	

SetShape	D	0:2	b	

GetShape

Syntax:

GetShape2	dfname	entry	shape	

Sets	a	shape	from	NamedShape	attribute	associated	with	entry	label	to
shape	draw	variable.

Example:

GetShape2	D	0:2	b	

Geometric	attributes	commands

SetPoint

Syntax:

SetPoint	dfname	entry	point

Finds	or	creates	a	Point	attribute	at	entry	label	and	sets	point	as
generated	in	the	associated	NamedShape	attribute.

Example:

point	p	10	10	10	

SetPoint	D	0:2	p	

GetPoint

Syntax:

GetPoint	dfname	entry	[drawname]	

Gets	a	vertex	from	NamedShape	attribute	at	entry	label	and	sets	it	to
drawname	variable,	if	it	is	defined.

Example:

GetPoint	D	0:2	p	

SetAxis

Syntax:

SetAxis	dfname	entry	axis	

Finds	or	creates	an	Axis	attribute	at	entry	label	and	sets	axis	as
generated	in	the	associated	NamedShape	attribute.

Example:

line	l	10	20	30	100	200	300	

SetAxis	D	0:2	l	

GetAxis

Syntax:

GetAxis	dfname	entry	[drawname]	

Gets	a	line	from	NamedShape	attribute	at	entry	label	and	sets	it	to
drawname	variable,	if	it	is	defined.

Example:

GetAxis	D	0:2	l	

SetPlane

Syntax:

SetPlane	dfname	entry	plane	

Finds	or	creates	a	Plane	attribute	at	entry	label	and	sets	plane	as
generated	in	the	associated	NamedShape	attribute.

Example:

plane	pl	10	20	30	-1	0	0	

SetPlane	D	0:2	pl	

GetPlane

Syntax:

GetPlane	dfname	entry	[drawname]	

Gets	a	plane	from	NamedShape	attribute	at	entry	label	and	sets	it	to

drawname	variable,	if	it	is	defined.

Example:

GetPlane	D	0:2	pl	

SetGeometry

Syntax:

SetGeometry	dfname	entry	[type]	[shape]	

Creates	a	Geometry	attribute	at	entry	label	and	sets	type	and	shape	as
generated	in	the	associated	NamedShape	attribute	if	they	are	defined.
type	must	be	one	of	the	following:	any,	pnt,	lin,	cir,	ell,	spl,	pln,	cyl.

Example:

point	p	10	10	10	

SetGeometry	D	0:2	pnt	p	

GetGeometryType

Syntax:

GetGeometryType	dfname	entry

Gets	a	geometry	type	from	Geometry	attribute	at	entry	label.

Example:

GetGeometryType	D	0:2	

SetConstraint

Syntax:

SetConstraint	dfname	entry	keyword	geometrie	

[geometrie	…]	

SetConstraint	dfname	entry	"plane"	geometrie	

SetConstraint	dfname	entry	"value"	value

1.	 Creates	a	Constraint	attribute	at	entry	label	and	sets	keyword
constraint	between	geometry(ies).	keyword	must	be	one	of	the
following:	rad,	dia,	minr,	majr,	tan,	par,	perp,	concentric,	equal,	dist,
angle,	eqrad,	symm,	midp,	eqdist,	fix,	rigid,	or	from,	axis,	mate,
alignf,	aligna,	axesa,	facesa,	round,	offset

2.	 Sets	plane	for	the	existing	constraint.
3.	 Sets	value	for	the	existing	constraint.

Example:

SetConstraint	D	0:2	"value"	5	

GetConstraint

Syntax:

GetConstraint	dfname	entry

Dumps	a	Constraint	attribute	at	entry	label

Example:

GetConstraint	D	0:2	

SetVariable

Syntax:

SetVariable	dfname	entry	isconstant(0/1)	units	

Creates	a	Variable	attribute	at	entry	label	and	sets	isconstant	flag	and
units	as	a	string.

Example:

SetVariable	D	0:2	1	"mm"	

GetVariable

Syntax:

GetVariable	dfname	entry	isconstant	units	

Gets	an	isconstant	flag	and	units	of	a	Variable	attribute	at	entry	label.

Example:

GetVariable	D	0:2	isconstant	units	

puts	"IsConstant=${isconstant}"	

puts	"Units=${units}"	

Tree	attributes	commands

RootNode

Syntax:

RootNode	dfname	treenodeentry	[ID]

Returns	the	ultimate	father	of	TreeNode	attribute	identified	by	its
treenodeentry	and	its	ID	(or	default	ID,	if	ID	is	not	defined).

SetNode

Syntax:

SetNode	dfname	treenodeentry	[ID]

Creates	a	TreeNode	attribute	on	the	treenodeentry	label	with	its	tree	ID
(or	assigns	a	default	ID,	if	the	ID	is	not	defined).

AppendNode

Syntax:

AppendNode	dfname	fatherentry	childentry	[fatherID]

Inserts	a	TreeNode	attribute	with	its	tree	fatherID	(or	default	ID,	if	fatherID
is	not	defined)	on	childentry	as	last	child	of	fatherentry.

PrependNode

Syntax:

PrependNode	dfname	fatherentry	childentry	[fatherID]

Inserts	a	TreeNode	attribute	with	its	tree	fatherID	(or	default	ID,	if	fatherID
is	not	defined)	on	childentry	as	first	child	of	fatherentry.

InsertNodeBefore

Syntax:

InsertNodeBefore	dfname	treenodeentry	beforetreenode	

[ID]

Inserts	a	TreeNode	attribute	with	tree	ID	(or	default	ID,	if	ID	is	not
defined)	beforetreenode	before	treenodeentry.

InsertNodeAfter

Syntax:

InsertNodeAfter	dfname	treenodeentry	aftertreenode	

[ID]

Inserts	a	TreeNode	attribute	with	tree	ID	(or	default	ID,	if	ID	is	not
defined)	aftertreenode	after	treenodeentry.

DetachNode

Syntax:

DetachNode	dfname	treenodeentry	[ID]

Removes	a	TreeNode	attribute	with	tree	ID	(or	default	ID,	if	ID	is	not
defined)	from	treenodeentry.

ChildNodeIterate

Syntax:

ChildNodeIterate	dfname	treenodeentry	alllevels(0/1)	

[ID]

Iterates	on	the	tree	of	TreeNode	attributes	with	tree	ID	(or	default	ID,	if	ID
is	not	defined).	If	alllevels	is	set	to	1	it	explores	not	only	the	first,	but	all
the	sub	Step	levels.

Example:

Label	D	0:2	

Label	D	0:3	

Label	D	0:4	

Label	D	0:5	

Label	D	0:6	

Label	D	0:7	

Label	D	0:8	

Label	D	0:9	

#	Set	root	node	

SetNode	D	0:2	

AppendNode	D	0:2	0:4	

AppendNode	D	0:2	0:5	

PrependNode	D	0:4	0:3	

PrependNode	D	0:4	0:8	

PrependNode	D	0:4	0:9	

InsertNodeBefore	D	0:5	0:6	

InsertNodeAfter	D	0:4	0:7	

DetachNode	D	0:8	

#	List	all	levels	

ChildNodeIterate	D	0:2	1	

==0:4	

==0:9	

==0:3	

==0:7	

==0:6	

==0:5	

#	List	only	first	levels	

ChildNodeIterate	D	0:2	1	

==0:4	

==0:7	

==0:6	

==0:5	

InitChildNodeIterator

Syntax:

InitChildNodeIterator	dfname	treenodeentry	

alllevels(0/1)	[ID]

Initializes	the	iteration	on	the	tree	of	TreeNode	attributes	with	tree	ID	(or
default	ID,	if	ID	is	not	defined).	If	alllevels	is	set	to	1	it	explores	not	only
the	first,	but	also	all	sub	Step	levels.

Example:

InitChildNodeIterate	D	0:5	1	

set	aChildNumber	0	

for	{set	i	1}	{$i	<	100}	{incr	i}	{	

				if	{[ChildNodeMore]	==	*TRUE*}	{	

								puts	*Tree	node	=	[ChildNodeValue]*	

								incr	aChildNumber	

								ChildNodeNext	

				}	

}	

puts	"aChildNumber=$aChildNumber"

ChildNodeMore

Syntax:

ChildNodeMore

Returns	TRUE	if	there	is	a	current	item	in	the	iteration.

ChildNodeNext

Syntax:

ChildNodeNext

Moves	to	the	next	Item.

ChildNodeValue

Syntax:

ChildNodeValue

Returns	the	current	treenode	of	ChildNodeIterator.

ChildNodeNextBrother

Syntax:

ChildNodeNextBrother

Moves	to	the	next	Brother.	If	there	is	none,	goes	up.	This	method	is
interesting	only	with	allLevels	behavior.

Standard	presentation	commands

AISInitViewer

Syntax:

AISInitViewer	docname

Creates	and	sets	AISViewer	attribute	at	root	label,	creates	AIS	viewer
window.

Example:

AISInitViewer	D	

AISRepaint

Syntax:

AISRepaint	docname	

Updates	the	AIS	viewer	window.

Example:

AISRepaint	D	

AISDisplay

Syntax:

AISDisplay	docname	entry	[not_update]	

Displays	a	presantation	of	AISobject	from	entry	label	in	AIS	viewer.	If
not_update	is	not	defined	then	AISobject	is	recomputed	and	all
visualization	settings	are	applied.

Example:

AISDisplay	D	0:5	

AISUpdate

Syntax:

AISUpdate	docname	entry	

Recomputes	a	presentation	of	AISobject	from	entry	label	and	applies	the
visualization	setting	in	AIS	viewer.

Example:

AISUpdate	D	0:5	

AISErase

Syntax:

AISErase	docname	entry	

Erases	AISobject	of	entry	label	in	AIS	viewer.

Example:

AISErase	D	0:5	

AISRemove

Syntax:

AISRemove	docname	entry	

Erases	AISobject	of	entry	label	in	AIS	viewer,	then	AISobject	is	removed
from	AIS_InteractiveContext.

Example:

AISRemove	D	0:5	

AISSet

Syntax:

AISSet	docname	entry	ID	

Creates	AISPresentation	attribute	at	entry	label	and	sets	as	driver	ID.	ID
must	be	one	of	the	following:	A	(axis),	C	(constraint),	NS	(namedshape),
G	(geometry),	PL	(plane),	PT	(point).

Example:

AISSet	D	0:5	NS	

AISDriver

Syntax:

AISDriver	docname	entry	[ID]	

Returns	DriverGUID	stored	in	AISPresentation	attribute	of	an	entry	label
or	sets	a	new	one.	ID	must	be	one	of	the	following:	A	(axis),	C
(constraint),	NS	(namedshape),	G	(geometry),	PL	(plane),	PT	(point).

Example:

#	Get	Driver	GUID	

AISDriver	D	0:5	

AISUnset

Syntax:

AISUnset	docname	entry	

Deletes	AISPresentation	attribute	(if	it	exists)	of	an	entry	label.

Example:

AISUnset	D	0:5	

AISTransparency

Syntax:

AISTransparency	docname	entry	[transparency]	

Sets	(if	transparency	is	defined)	or	gets	the	value	of	transparency	for
AISPresentation	attribute	of	an	entry	label.

Example:

AISTransparency	D	0:5	0.5	

AISHasOwnTransparency

Syntax:

AISHasOwnTransparency	docname	entry	

Tests	AISPresentation	attribute	of	an	entry	label	by	own	transparency.

Example:

AISHasOwnTransparency	D	0:5	

AISMaterial

Syntax:

AISMaterial	docname	entry	[material]	

Sets	(if	material	is	defined)	or	gets	the	value	of	transparency	for
AISPresentation	attribute	of	an	entry	label.	material	is	integer	from	0	to
20	(see	meshmat	command).

Example:

AISMaterial	D	0:5	5	

AISHasOwnMaterial

Syntax:

AISHasOwnMaterial	docname	entry	

Tests	AISPresentation	attribute	of	an	entry	label	by	own	material.

Example:

AISHasOwnMaterial	D	0:5	

AISColor

Syntax:

AISColor	docname	entry	[color]	

Sets	(if	color	is	defined)	or	gets	value	of	color	for	AISPresentation
attribute	of	an	entry	label.	color	is	integer	from	0	to	516	(see	color	names
in	vsetcolor).

Example:

AISColor	D	0:5	25	

AISHasOwnColor

Syntax:

AISHasOwnColor	docname	entry	

Tests	AISPresentation	attribute	of	an	entry	label	by	own	color.

Example:

AISHasOwnColor	D	0:5	

Geometry	commands
Overview

Draw	provides	a	set	of	commands	to	test	geometry	libraries.	These
commands	are	found	in	the	TGEOMETRY	executable,	or	in	any	Draw
executable	which	includes	GeometryTest	commands.

In	the	context	of	Geometry,	Draw	includes	the	following	types	of	variable:

2d	and	3d	points
The	2d	curve,	which	corresponds	to	Curve	in	Geom2d.
The	3d	curve	and	surface,	which	correspond	to	Curve	and	Surface	in
Geom	package.

Draw	geometric	variables	never	share	data;	the	copy	command	will
always	make	a	complete	copy	of	the	content	of	the	variable.

The	following	topics	are	covered	in	the	nine	sections	of	this	chapter:

Curve	creation	deals	with	the	various	types	of	curves	and	how	to
create	them.
Surface	creation	deals	with	the	different	types	of	surfaces	and	how
to	create	them.
Curve	and	surface	modification	deals	with	the	commands	used	to
modify	the	definition	of	curves	and	surfaces,	most	of	which	concern
modifications	to	bezier	and	bspline	curves.
Geometric	transformations	covers	translation,	rotation,	mirror
image	and	point	scaling	transformations.
Curve	and	Surface	Analysis	deals	with	the	commands	used	to
compute	points,	derivatives	and	curvatures.
Intersections	presents	intersections	of	surfaces	and	curves.
Approximations	deals	with	creating	curves	and	surfaces	from	a	set
of	points.
Constraints	concerns	construction	of	2d	circles	and	lines	by
constraints	such	as	tangency.
Display	describes	commands	to	control	the	display	of	curves	and
surfaces.

Where	possible,	the	commands	have	been	made	broad	in	application,
i.e.	they	apply	to	2d	curves,	3d	curves	and	surfaces.	For	instance,	the
circle	command	may	create	a	2d	or	a	3d	circle	depending	on	the	number
of	arguments	given.

Likewise,	the	translate	command	will	process	points,	curves	or	surfaces,
depending	on	argument	type.	You	may	not	always	find	the	specific
command	you	are	looking	for	in	the	section	where	you	expect	it	to	be.	In
that	case,	look	in	another	section.	The	trim	command,	for	example,	is
described	in	the	surface	section.	It	can,	nonetheless,	be	used	with	curves
as	well.

Curve	creation
This	section	deals	with	both	points	and	curves.	Types	of	curves	are:

Analytical	curves	such	as	lines,	circles,	ellipses,	parabolas,	and
hyperbolas.
Polar	curves	such	as	bezier	curves	and	bspline	curves.
Trimmed	curves	and	offset	curves	made	from	other	curves	with	the
trim	and	offset	commands.	Because	they	are	used	on	both	curves
and	surfaces,	the	trim	and	offset	commands	are	described	in	the
surface	creation	section.
NURBS	can	be	created	from	other	curves	using	convert	in	the
Surface	Creation	section.
Curves	can	be	created	from	the	isoparametric	lines	of	surfaces	by
the	uiso	and	viso	commands.
3d	curves	can	be	created	from	2d	curves	and	vice	versa	using	the
to3d	and	to2d	commands.	The	project	command	computes	a	2d
curve	on	a	3d	surface.

Curves	are	displayed	with	an	arrow	showing	the	last	parameter.

point

Syntax:

point	name	x	y	[z]	

Creates	a	2d	or	3d	point,	depending	on	the	number	of	arguments.

Example:

#	2d	point	

point	p1	1	2	

#	3d	point	

point	p2	10	20	-5	

line

Syntax:

line	name	x	y	[z]	dx	dy	[dz]

Creates	a	2d	or	3d	line.	x	y	z	are	the	coordinates	of	the	line’s	point	of
origin;	dx,	dy,	dz	give	the	direction	vector.

A	2d	line	will	be	represented	as	x	y	dx	dy,	and	a	3d	line	as	x	y	z	dx	dy	dz
.	A	line	is	parameterized	along	its	length	starting	from	the	point	of	origin
along	the	direction	vector.	The	direction	vector	is	normalized	and	must
not	be	null.	Lines	are	infinite,	even	though	their	representation	is	not.

Example:

#	a	2d	line	at	45	degrees	of	the	X	axis	

line	l	2	0	1	1	

#	a	3d	line	through	the	point	10	0	0	and	parallel	to	

Z	

line	l	10	0	0	0	0	1	

circle

Syntax:

circle	name	x	y	[z	[dx	dy	dz]]	[ux	uy	[uz]]	radius

Creates	a	2d	or	a	3d	circle.

In	2d,	x,	y	are	the	coordinates	of	the	center	and	ux,	uy	define	the	vector
towards	the	point	of	origin	of	the	parameters.	By	default,	this	direction	is
(1,0).	The	X	Axis	of	the	local	coordinate	system	defines	the	origin	of	the
parameters	of	the	circle.	Use	another	vector	than	the	x	axis	to	change	the
origin	of	parameters.

In	3d,	x,	y,	z	are	the	coordinates	of	the	center;	dx,	dy,	dz	give	the	vector
normal	to	the	plane	of	the	circle.	By	default,	this	vector	is	(0,0,1)	i.e.	the	Z
axis	(it	must	not	be	null).	ux,	uy,	uz	is	the	direction	of	the	origin;	if	not
given,	a	default	direction	will	be	computed.	This	vector	must	neither	be
null	nor	parallel	to	dx,	dy,	dz.

The	circle	is	parameterized	by	the	angle	in	[0,2*pi]	starting	from	the	origin
and.	Note	that	the	specification	of	origin	direction	and	plane	is	the	same
for	all	analytical	curves	and	surfaces.

Example:

#	A	2d	circle	of	radius	5	centered	at	10,-2	

circle	c1	10	-2	5	

#	another	2d	circle	with	a	user	defined	origin	

#	the	point	of	parameter	0	on	this	circle	will	be	

#	1+sqrt(2),1+sqrt(2)	

circle	c2	1	1	1	1	2	

#	a	3d	circle,	center	10	20	-5,	axis	Z,	radius	17	

circle	c3	10	20	-5	17	

#	same	3d	circle	with	axis	Y	

circle	c4	10	20	-5	0	1	0	17	

#	full	3d	circle,	axis	X,	origin	on	Z	

circle	c5	10	20	-5	1	0	0	0	0	1	17	

ellipse

Syntax:

ellipse	name	x	y	[z	[dx	dy	dz]]	[ux	uy	[uz]]	

firstradius	secondradius	

Creates	a	2d	or	3d	ellipse.	In	a	2d	ellipse,	the	first	two	arguments	define
the	center;	in	a	3d	ellipse,	the	first	three.	The	axis	system	is	given	by
firstradius,	the	major	radius,	and	secondradius,	the	minor	radius.	The
parameter	range	of	the	ellipse	is	[0,2.*pi]	starting	from	the	X	axis	and
going	towards	the	Y	axis.	The	Draw	ellipse	is	parameterized	by	an	angle:

P(u)	=	O	+	firstradius*cos(u)*Xdir	+	

secondradius*sin(u)*Ydir	

where:

P	is	the	point	of	parameter	u,
O,	Xdir	and	Ydir	are	respectively	the	origin,	X	Direction	and	Y
Direction	of	its	local	coordinate	system.

Example:

#	default	2d	ellipse	

ellipse	e1	10	5	20	10	

#	2d	ellipse	at	angle	60	degree	

ellipse	e2	0	0	1	2	30	5	

#	3d	ellipse,	in	the	XY	plane	

ellipse	e3	0	0	0	25	5	

#	3d	ellipse	in	the	X,Z	plane	with	axis	1,	0	,1	

ellipse	e4	0	0	0	0	1	0	1	0	1	25	5	

hyperbola

Syntax:

hyperbola	name	x	y	[z	[dx	dy	dz]]	[ux	uy	[uz]]	

firstradius	secondradius

Creates	a	2d	or	3d	conic.	The	first	arguments	define	the	center.	The	axis
system	is	given	by	firstradius,	the	major	radius,	and	secondradius,	the
minor	radius.	Note	that	the	hyperbola	has	only	one	branch,	that	in	the	X
direction.

The	Draw	hyperbola	is	parameterized	as	follows:

P(U)	=	O	+	firstradius*Cosh(U)*XDir	+	

secondradius*Sinh(U)*YDir	

where:

P	is	the	point	of	parameter	U,
O,	XDir	and	YDir	are	respectively	the	origin,	X	Direction	and
YDirection	of	its	local	coordinate	system.

Example:

#	default	2d	hyperbola,	with	asymptotes	1,1	-1,1	

hyperbola	h1	0	0	30	30	

#	2d	hyperbola	at	angle	60	degrees	

hyperbola	h2	0	0	1	2	20	20	

#	3d	hyperbola,	in	the	XY	plane	

hyperbola	h3	0	0	0	50	50	

parabola

Syntax:

parabola	name	x	y	[z	[dx	dy	dz]]	[ux	uy	[uz]]	

FocalLength	

Creates	a	2d	or	3d	parabola.	in	the	axis	system	defined	by	the	first
arguments.	The	origin	is	the	apex	of	the	parabola.

The	Geom_Parabola	is	parameterized	as	follows:

P(u)	=	O	+	u*u/(4.*F)*XDir	+	u*YDir	

where:

P	is	the	point	of	parameter	u,
O,	XDir	and	YDir	are	respectively	the	origin,	X	Direction	and	Y
Direction	of	its	local	coordinate	system,
F	is	the	focal	length	of	the	parabola.

Example:

#	2d	parabola	

parabola	p1	0	0	50	

#	2d	parabola	with	convexity	+Y	

parabola	p2	0	0	0	1	50	

#	3d	parabola	in	the	Y-Z	plane,	convexity	+Z	

parabola	p3	0	0	0	1	0	0	0	0	1	50	

beziercurve,	2dbeziercurve

Syntax:

beziercurve	name	nbpole	pole,	[weight]	

2dbeziercurve	name	nbpole	pole,	[weight]

Creates	a	3d	rational	or	non-rational	Bezier	curve.	Give	the	number	of
poles	(control	points,)	and	the	coordinates	of	the	poles	*(x1	y1	z1	[w1]	x2
y2	z2	[w2])*.	The	degree	will	be	nbpoles-1.	To	create	a	rational	curve,
give	weights	with	the	poles.	You	must	give	weights	for	all	poles	or	for
none.	If	the	weights	of	all	the	poles	are	equal,	the	curve	is	polynomial,
and	therefore	non-rational.

Example:

#	a	rational	2d	bezier	curve	(arc	of	circle)	

2dbeziercurve	ci	3	0	0	1	10	0	sqrt(2.)/2.	10	10	1	

#	a	3d	bezier	curve,	not	rational	

beziercurve	cc	4	0	0	0	10	0	0	10	0	10	10	10	10	

bsplinecurve,	2dbsplinecurve,	pbsplinecurve,
2dpbsplinecurve

Syntax:

bsplinecurve			name	degree	nbknots	knot,	umult	pole,	

weight

2dbsplinecurve	name	degree	nbknots	knot,	umult	pole,	

weight

pbsplinecurve			name	degree	nbknots	knot,	umult	pole,	

weight	(periodic)

2dpbsplinecurve	name	degree	nbknots	knot,	umult	pole,	

weight	(periodic)

Creates	2d	or	3d	bspline	curves;	the	pbsplinecurve	and
2dpbsplinecurve	commands	create	periodic	bspline	curves.

A	bspline	curve	is	defined	by	its	degree,	its	periodic	or	non-periodic
nature,	a	table	of	knots	and	a	table	of	poles	(i.e.	control	points).
Consequently,	specify	the	degree,	the	number	of	knots,	and	for	each
knot,	the	multiplicity,	for	each	pole,	the	weight.	In	the	syntax	above,	the
commas	link	the	adjacent	arguments	which	they	fall	between:	knot	and
multiplicities,	pole	and	weight.

The	table	of	knots	is	an	increasing	sequence	of	reals	without	repetition.
Multiplicities	must	be	lower	or	equal	to	the	degree	of	the	curve.	For	non-
periodic	curves,	the	first	and	last	multiplicities	can	be	equal	to	degree+1.
For	a	periodic	curve,	the	first	and	last	multiplicities	must	be	equal.

The	poles	must	be	given	with	their	weights,	use	weights	of	1	for	a	non
rational	curve,	the	number	of	poles	must	be:

For	a	non	periodic	curve:	Sum	of	multiplicities	-	degree	+	1
For	a	periodic	curve:	Sum	of	multiplicities	-	last	multiplicity

Example:

#	a	bspline	curve	with	4	poles	and	3	knots	

bsplinecurve	bc	2	3	0	3	1	1	2	3	\	

10	0	7	1	7	0	7	1	3	0	8	1	0	0	7	1	

#	a	2d	periodic	circle	(parameter	from	0	to	2*pi	!!)	

dset	h	sqrt(3)/2	

2dpbsplinecurve	c	2	\	

4	0	2	pi/1.5	2	pi/0.75	2	2*pi	2	\	

0	-h/3	1	\	

0.5	-h/3	0.5	\	

0.25	h/6	1	\	

0	2*h/3	0.5	\	

-0.25	h/6	1	\	

-0.5	-h/3	0.5	\	

0	-h/3	1	

Note	that	you	can	create	the	NURBS	subset	of	bspline	curves	and
surfaces	by	trimming	analytical	curves	and	surfaces	and	executing	the
command	convert.

uiso,	viso

Syntax:

uiso	name	surface	u	

viso	name	surface	u	

Creates	a	U	or	V	isoparametric	curve	from	a	surface.

Example:

#	create	a	cylinder	and	extract	iso	curves	

cylinder	c	10	

uiso	c1	c	pi/6	

viso	c2	c	

Note	that	this	cannot	be	done	from	offset	surfaces.

to3d,	to2d

Syntax:

to3d	name	curve2d	[plane]	

to2d	name	curve3d	[plane]	

Create	respectively	a	3d	curve	from	a	2d	curve	and	a	2d	curve	from	a	3d
curve.	The	transformation	uses	a	planar	surface	to	define	the	XY	plane	in
3d	(by	default	this	plane	is	the	default	OXYplane).	to3d	always	gives	a
correct	result,	but	as	to2d	is	not	a	projection,	it	may	surprise	you.	It	is
always	correct	if	the	curve	is	planar	and	parallel	to	the	plane	of

projection.	The	points	defining	the	curve	are	projected	on	the	plane.	A
circle,	however,	will	remain	a	circle	and	will	not	be	changed	to	an	ellipse.

Example:

#	the	following	commands	

circle	c	0	0	5	

plane	p	-2	1	0	1	2	3	

to3d	c	c	p	

#	will	create	the	same	circle	as	

circle	c	-2	1	0	1	2	3	5	

See	also:	project

project

Syntax:

project	name	curve3d	surface	

Computes	a	2d	curve	in	the	parametric	space	of	a	surface	corresponding
to	a	3d	curve.	This	can	only	be	used	on	analytical	surfaces.

If	we,	for	example,	intersect	a	cylinder	and	a	plane	and	project	the
resulting	ellipse	on	the	cylinder,	this	will	create	a	2d	sinusoid-like	bspline.

cylinder	c	5	

plane	p	0	0	0	0	1	1	

intersect	i	c	p	

project	i2d	i	c	

Surface	creation
The	following	types	of	surfaces	exist:

Analytical	surfaces:	plane,	cylinder,	cone,	sphere,	torus;
Polar	surfaces:	bezier	surfaces,	bspline	surfaces;
Trimmed	and	Offset	surfaces;
Surfaces	produced	by	Revolution	and	Extrusion,	created	from	curves
with	the	revsurf	and	extsurf;
NURBS	surfaces.

Surfaces	are	displayed	with	isoparametric	lines.	To	show	the
parameterization,	a	small	parametric	line	with	a	length	1/10	of	V	is
displayed	at	1/10	of	U.

plane

Syntax:

plane	name	[x	y	z	[dx	dy	dz	[ux	uy	uz]]]

Creates	an	infinite	plane.

A	plane	is	the	same	as	a	3d	coordinate	system,	x,y,z	is	the	origin,	dx,	dy,
dz	is	the	Z	direction	and	ux,	uy,	uz	is	the	X	direction.

The	plane	is	perpendicular	to	Z	and	X	is	the	U	parameter.	dx,dy,dz	and
ux,uy,uz	must	not	be	null	or	collinear.	ux,uy,uz	will	be	modified	to	be
orthogonal	to	dx,dy,dz.

There	are	default	values	for	the	coordinate	system.	If	no	arguments	are
given,	the	global	system	(0,0,0),	(0,0,1),	(1,0,0).	If	only	the	origin	is	given,
the	axes	are	those	given	by	default(0,0,1),	(1,0,0).	If	the	origin	and	the	Z
axis	are	given,	the	X	axis	is	generated	perpendicular	to	the	Z	axis.

Note	that	this	definition	will	be	used	for	all	analytical	surfaces.

Example:

#	a	plane	through	the	point	10,0,0	perpendicular	to	X	

#	with	U	direction	on	Y	

plane	p1	10	0	0	1	0	0	0	1	0	

#	an	horixontal	plane	with	origin	10,	-20,	-5	

plane	p2	10	-20	-5	

cylinder

Syntax:

cylinder	name	[x	y	z	[dx	dy	dz	[ux	uy	uz]]]	radius	

A	cylinder	is	defined	by	a	coordinate	system,	and	a	radius.	The	surface
generated	is	an	infinite	cylinder	with	the	Z	axis	as	the	axis.	The	U
parameter	is	the	angle	starting	from	X	going	in	the	Y	direction.

Example:

#	a	cylinder	on	the	default	Z	axis,	radius	10	

cylinder	c1	10	

#	a	cylinder,	also	along	the	Z	axis	but	with	origin	

5,	

10,	-3	

cylinder	c2	5	10	-3	10	

#	a	cylinder	through	the	origin	and	on	a	diagonal	

#	with	longitude	pi/3	and	latitude	pi/4	(euler	

angles)	

dset	lo	pi/3.	la	pi/4.	

cylinder	c3	0	0	0	cos(la)*cos(lo)	cos(la)*sin(lo)	

sin(la)	10	

cone

Syntax:

cone	name	[x	y	z	[dx	dy	dz	[ux	uy	uz]]]	semi-angle	

radius	

Creates	a	cone	in	the	infinite	coordinate	system	along	the	Z-axis.	The
radius	is	that	of	the	circle	at	the	intersection	of	the	cone	and	the	XY
plane.	The	semi-angle	is	the	angle	formed	by	the	cone	relative	to	the
axis;	it	should	be	between	-90	and	90.	If	the	radius	is	0,	the	vertex	is	the
origin.

Example:

#	a	cone	at	45	degrees	at	the	origin	on	Z	

cone	c1	45	0	

#	a	cone	on	axis	Z	with	radius	r1	at	z1	and	r2	at	z2	

cone	c2	0	0	z1	180.*atan2(r2-r1,z2-z1)/pi	r1	

sphere

Syntax:

sphere	name	[x	y	z	[dx	dy	dz	[ux	uy	uz]]]	radius	

Creates	a	sphere	in	the	local	coordinate	system	defined	in	the	plane
command.	The	sphere	is	centered	at	the	origin.

To	parameterize	the	sphere,	u	is	the	angle	from	X	to	Y,	between	0	and
2*pi.	v	is	the	angle	in	the	half-circle	at	angle	u	in	the	plane	containing	the
Z	axis.	v	is	between	-pi/2	and	pi/2.	The	poles	are	the	points	Z	=	+/-
radius;	their	parameters	are	u,+/-pi/2	for	any	u	in	0,2*pi.

Example:

#	a	sphere	at	the	origin	

sphere	s1	10	

#	a	sphere	at	10	10	10,	with	poles	on	the	axis	1,1,1	

sphere	s2	10	10	10	1	1	1	10	

torus

Syntax:

torus	name	[x	y	z	[dx	dy	dz	[ux	uy	uz]]]	major	minor

Creates	a	torus	in	the	local	coordinate	system	with	the	given	major	and
minor	radii.	Z	is	the	axis	for	the	major	radius.	The	major	radius	may	be
lower	in	value	than	the	minor	radius.

To	parameterize	a	torus,	u	is	the	angle	from	X	to	Y;	v	is	the	angle	in	the
plane	at	angle	u	from	the	XY	plane	to	Z.	u	and	v	are	in	0,2*pi.

Example:

#	a	torus	at	the	origin	

torus	t1	20	5	

#	a	torus	in	another	coordinate	system	

torus	t2	10	5	-2	2	1	0	20	5	

beziersurf

Syntax:

beziersurf	name	nbupoles	nbvolpes	pole,	[weight]	

Use	this	command	to	create	a	bezier	surface,	rational	or	non-rational.
First	give	the	numbers	of	poles	in	the	u	and	v	directions.

Then	give	the	poles	in	the	following	order:	pole(1,	1),	pole(nbupoles,	1),
pole(1,	nbvpoles)	and	pole(nbupoles,	nbvpoles).

Weights	may	be	omitted,	but	if	you	give	one	weight	you	must	give	all	of
them.

Example:

#	a	non-rational	degree	2,3	surface	

beziersurf	s	3	4	\	

0	0	0	10	0	5	20	0	0	\	

0	10	2	10	10	3	20	10	2	\	

0	20	10	10	20	20	20	20	10	\	

0	30	0	10	30	0	20	30	0	

bsplinesurf,	upbsplinesurf,	vpbsplinesurf,	uvpbsplinesurf

Syntax:

bsplinesurf	name	udegree	nbuknots	uknot	umult	...	

nbvknot	vknot	

vmult	...	x	y	z	w	...	

upbsplinesurf	...	

vpbsplinesurf	...	

uvpbsplinesurf	...	

bsplinesurf	generates	bspline	surfaces;
upbsplinesurf	creates	a	bspline	surface	periodic	in	u;
vpbsplinesurf	creates	one	periodic	in	v;
uvpbsplinesurf	creates	one	periodic	in	uv.

The	syntax	is	similar	to	the	bsplinecurve	command.	First	give	the	degree
in	u	and	the	knots	in	u	with	their	multiplicities,	then	do	the	same	in	v.	The
poles	follow.	The	number	of	poles	is	the	product	of	the	number	in	u	and
the	number	in	v.

See	bsplinecurve	to	compute	the	number	of	poles,	the	poles	are	first
given	in	U	as	in	the	beziersurf	command.	You	must	give	weights	if	the
surface	is	rational.

Example:

#	create	a	bspline	surface	of	degree	1	2	

#	with	two	knots	in	U	and	three	in	V	

bsplinesurf	s	\	

1	2	0	2	1	2	\	

2	3	0	3	1	1	2	3	\	

0	0	0	1	10	0	5	1	\	

0	10	2	1	10	10	3	1	\	

0	20	10	1	10	20	20	1	\	

0	30	0	1	10	30	0	1	

trim,	trimu,	trimv

Syntax:

trim	newname	name	[u1	u2	[v1	v2]]	

trimu	newname	name	

trimv	newname	name	

The	trim	commands	create	trimmed	curves	or	trimmed	surfaces.	Note
that	trimmed	curves	and	surfaces	are	classes	of	the	Geom	package.

trim	creates	either	a	new	trimmed	curve	from	a	curve	or	a	new
trimmed	surface	in	u	and	v	from	a	surface.
trimu	creates	a	u-trimmed	surface,
trimv	creates	a	v-trimmed	surface.

After	an	initial	trim,	a	second	execution	with	no	parameters	given
recreates	the	basis	curve.	The	curves	can	be	either	2d	or	3d.	If	the
trimming	parameters	decrease	and	if	the	curve	or	surface	is	not	periodic,
the	direction	is	reversed.

Note	that	a	trimmed	curve	or	surface	contains	a	copy	of	the	basis
geometry:	modifying	that	will	not	modify	the	trimmed	geometry.	Trimming
trimmed	geometry	will	not	create	multiple	levels	of	trimming.	The	basis
geometry	will	be	used.

Example:

#	create	a	3d	circle	

circle	c	0	0	0	10	

#	trim	it,	use	the	same	variable,	the	original	is	

deleted	

trim	c	c	0	pi/2	

#	the	original	can	be	recovered!	

trim	orc	c	

#	trim	again	

trim	c	c	pi/4	pi/2	

#	the	original	is	not	the	trimmed	curve	but	the	basis	

trim	orc	c	

#	as	the	circle	is	periodic,	the	two	following	

commands	

are	identical	

trim	cc	c	pi/2	0	

trim	cc	c	pi/2	2*pi	

#	trim	an	infinite	cylinder	

cylinder	cy	10	

trimv	cy	cy	0	50	

offset

Syntax:

offset	name	basename	distance	[dx	dy	dz]

Creates	offset	curves	or	surfaces	at	a	given	distance	from	a	basis	curve
or	surface.	Offset	curves	and	surfaces	are	classes	from	the	*Geom
*package.

The	curve	can	be	a	2d	or	a	3d	curve.	To	compute	the	offsets	for	a	3d
curve,	you	must	also	give	a	vector	dx,dy,dz.	For	a	planar	curve,	this
vector	is	usually	the	normal	to	the	plane	containing	the	curve.

The	offset	curve	or	surface	copies	the	basic	geometry,	which	can	be
modified	later.

Example:

#	graphic	demonstration	that	the	outline	of	a	torus	

#	is	the	offset	of	an	ellipse	

smallview	+X+Y	

dset	angle	pi/6	

torus	t	0	0	0	0	cos(angle)	sin(angle)	50	20	

fit	

ellipse	e	0	0	0	50	50*sin(angle)	

#	note	that	the	distance	can	be	negative	

offset	l1	e	20	0	0	1	

revsurf

Syntax:

revsurf	name	curvename	x	y	z	dx	dy	dz

Creates	a	surface	of	revolution	from	a	3d	curve.

A	surface	of	revolution	or	revolved	surface	is	obtained	by	rotating	a	curve
(called	the	meridian)	through	a	complete	revolution	about	an	axis
(referred	to	as	the	axis	of	revolution).	The	curve	and	the	axis	must	be	in
the	same	plane	(the	reference	plane	of	the	surface).	Give	the	point	of
origin	x,y,z	and	the	vector	dx,dy,dz	to	define	the	axis	of	revolution.

To	parameterize	a	surface	of	revolution:	u	is	the	angle	of	rotation	around
the	axis.	Its	origin	is	given	by	the	position	of	the	meridian	on	the	surface.
v	is	the	parameter	of	the	meridian.

Example:

#	another	way	of	creating	a	torus	like	surface	

circle	c	50	0	0	20	

revsurf	s	c	0	0	0	0	1	0	

extsurf

Syntax:

extsurf	newname	curvename	dx	dy	dz	

Creates	a	surface	of	linear	extrusion	from	a	3d	curve.	The	basis	curve	is
swept	in	a	given	direction,the	direction	of	extrusion	defined	by	a	vector.

In	the	syntax,	dx,dy,dz	gives	the	direction	of	extrusion.

To	parameterize	a	surface	of	extrusion:	u	is	the	parameter	along	the
extruded	curve;	the	v	parameter	is	along	the	direction	of	extrusion.

Example:

#	an	elliptic	cylinder	

ellipse	e	0	0	0	10	5	

extsurf	s	e	0	0	1	

#	to	make	it	finite	

trimv	s	s	0	10	

convert

Syntax:

convert	newname	name	

Creates	a	2d	or	3d	NURBS	curve	or	a	NURBS	surface	from	any	2d
curve,	3d	curve	or	surface.	In	other	words,	conics,	beziers	and	bsplines
are	turned	into	NURBS.	Offsets	are	not	processed.

Example:

#	turn	a	2d	arc	of	a	circle	into	a	2d	NURBS	

circle	c	0	0	5	

trim	c	c	0	pi/3	

convert	c1	c	

#	an	easy	way	to	make	a	planar	bspline	surface	

plane	p	

trim	p	p	-1	1	-1	1	

convert	p1	p	

Note	that	offset	curves	and	surfaces	are	not	processed	by	this	command.

Curve	and	surface	modifications
Draw	provides	commands	to	modify	curves	and	surfaces,	some	of	them
are	general,	others	restricted	to	bezier	curves	or	bsplines.

General	modifications:

Reversing	the	parametrization:	reverse,	ureverse,	vreverse

Modifications	for	both	bezier	curves	and	bsplines:

Exchanging	U	and	V	on	a	surface:	exchuv
Segmentation:	segment,	segsur
Increasing	the	degree:	incdeg,	incudeg,	incvdeg
Moving	poles:	cmovep,	movep,	movecolp,	moverowp

Modifications	for	bezier	curves:

Adding	and	removing	poles:	insertpole,	rempole,	remcolpole,
remrowpole

Modifications	for	bspline:

Inserting	and	removing	knots:	insertknot,	remknot,	insertuknot,
remuknot,	insetvknot,	remvknot
Modifying	periodic	curves	and	surfaces:	setperiodic,
setnotperiodic,	setorigin,	setuperiodic,	setunotperiodic,
setuorigin,	setvperiodic,	setvnotperiodic,	setvorigin

reverse,	ureverse,	vreverse

Syntax:

reverse	curvename	

ureverse	surfacename	

vreverse	surfacename	

The	reverse	command	reverses	the	parameterization	and	inverses	the
orientation	of	a	2d	or	3d	curve.	Note	that	the	geometry	is	modified.	To

keep	the	curve	or	the	surface,	you	must	copy	it	before	modification.

ureverse	or	vreverse	reverse	the	u	or	v	parameter	of	a	surface.	Note
that	the	new	parameters	of	the	curve	may	change	according	to	the	type
of	curve.	For	instance,	they	will	change	sign	on	a	line	or	stay	0,1	on	a
bezier.

Reversing	a	parameter	on	an	analytical	surface	may	create	an	indirect
coordinate	system.

Example:

#	reverse	a	trimmed	2d	circle	

circle	c	0	0	5	

trim	c	c	pi/4	pi/2	

reverse	c	

#	dumping	c	will	show	that	it	is	now	trimmed	between	

#	3*pi/2	and	7*pi/4	i.e.	2*pi-pi/2	and	2*pi-pi/4	

exchuv

Syntax:

exchuv	surfacename	

For	a	bezier	or	bspline	surface	this	command	exchanges	the	u	and	v
parameters.

Example:

#	exchanging	u	and	v	on	a	spline	(made	from	a	

cylinder)	

cylinder	c	5	

trimv	c	c	0	10	

convert	c1	c	

exchuv	c1	

segment,	segsur

Syntax:

segment	curve	Ufirst	Ulast	

segsur	surface	Ufirst	Ulast	Vfirst	Vlast	

segment	and	segsur	segment	a	bezier	curve	and	a	bspline	curve	or
surface	respectively.

These	commands	modify	the	curve	to	restrict	it	between	the	new
parameters:	Ufirst,	the	starting	point	of	the	modified	curve,	and	Ulast,	the
end	point.	Ufirst	is	less	than	Ulast.

This	command	must	not	be	confused	with	trim	which	creates	a	new
geometry.

Example:

#	segment	a	bezier	curve	in	half	

beziercurve	c	3	0	0	0	10	0	0	10	10	0	

segment	c	ufirst	ulast	

iincudeg,	incvdeg

Syntax:

incudeg	surfacename	newdegree	

incvdeg	surfacename	newdegree	

incudeg	and	incvdeg	increase	the	degree	in	the	U	or	V	parameter	of	a
bezier	or	bspline	surface.

Example:

#	make	a	planar	bspline	and	increase	the	degree	to	2	

3	

plane	p	

trim	p	p	-1	1	-1	1	

convert	p1	p	

incudeg	p1	2	

incvdeg	p1	3	

Note	that	the	geometry	is	modified.

cmovep,	movep,	movecolp,	moverowp

Syntax:

cmovep	curve	index	dx	dy	[dz]	

movep	surface	uindex	vindex	dx	dy	dz	

movecolp	surface	uindex	dx	dy	dz	

moverowp	surface	vindex	dx	dy	dz	

move	methods	translate	poles	of	a	bezier	curve,	a	bspline	curve	or	a
bspline	surface.

cmovep	and	movep	translate	one	pole	with	a	given	index.
movecolp	and	moverowp	translate	a	whole	column	(expressed	by
the	uindex)	or	row	(expressed	by	the	vindex)	of	poles.

Example:

#	start	with	a	plane	

#	transform	to	bspline,	raise	degree	and	add	relief	

plane	p	

trim	p	p	-10	10	-10	10	

convert	p1	p	

incud	p1	2	

incvd	p1	2	

movecolp	p1	2	0	0	5	

moverowp	p1	2	0	0	5	

movep	p1	2	2	0	0	5	

insertpole,	rempole,	remcolpole,	remrowpole

Syntax:

insertpole	curvename	index	x	y	[z]	[weight]	

rempole	curvename	index	

remcolpole	surfacename	index	

remrowpole	surfacename	index

insertpole	inserts	a	new	pole	into	a	2d	or	3d	bezier	curve.	You	may	add
a	weight	for	the	pole.	The	default	value	for	the	weight	is	1.	The	pole	is
added	at	the	position	after	that	of	the	index	pole.	Use	an	index	0	to	insert
the	new	pole	before	the	first	one	already	existing	in	your	drawing.

rempole	removes	a	pole	from	a	2d	or	3d	bezier	curve.	Leave	at	least	two
poles	in	the	curves.

remcolpole	and	remrowpole	remove	a	column	or	a	row	of	poles	from	a
bezier	surface.	A	column	is	in	the	v	direction	and	a	row	in	the	u	direction
The	resulting	degree	must	be	at	least	1;	i.e	there	will	be	two	rows	and
two	columns	left.

Example:

#	start	with	a	segment,	insert	a	pole	at	end	

#	then	remove	the	central	pole	

beziercurve	c	2	0	0	0	10	0	0	

insertpole	c	2	10	10	0	

rempole	c	2	

insertknot,	insertuknot,	insertvknot

Syntax:

insertknot	name	knot	[mult	=	1]	[knot	mult	...]	

insertuknot	surfacename	knot	mult	

insertvknot	surfacename	knot	mult	

insertknot	inserts	knots	in	the	knot	sequence	of	a	bspline	curve.	You
must	give	a	knot	value	and	a	target	multiplicity.	The	default	multiplicity	is
1.	If	there	is	already	a	knot	with	the	given	value	and	a	multiplicity	lower
than	the	target	one,	its	multiplicity	will	be	raised.

insertuknot	and	insertvknot	insert	knots	in	a	surface.

Example:

#	create	a	cylindrical	surface	and	insert	a	knot	

cylinder	c	10	

trim	c	c	0	pi/2	0	10	

convert	c1	c	

insertuknot	c1	pi/4	1	

remknot,	remuknot,	remvknot

Syntax:

remknot	index	[mult]	[tol]	

remuknot	index	[mult]	[tol]	

remvknot	index	[mult]	[tol]	

remknot	removes	a	knot	from	the	knot	sequence	of	a	curve	or	a	surface.
Give	the	index	of	the	knot	and	optionally,	the	target	multiplicity.	If	the
target	multiplicity	is	not	0,	the	multiplicity	of	the	knot	will	be	lowered.	As
the	curve	may	be	modified,	you	are	allowed	to	set	a	tolerance	to	control
the	process.	If	the	tolerance	is	low,	the	knot	will	only	be	removed	if	the
curve	will	not	be	modified.

By	default,	if	no	tolerance	is	given,	the	knot	will	always	be	removed.

Example:

#	bspline	circle,	remove	a	knot	

circle	c	0	0	5	

convert	c1	c	

incd	c1	5	

remknot	c1	2	

Note	that	Curves	or	Surfaces	may	be	modified.

setperiodic,	setnotperiodic,	setuperiodic,	setunotperiodic,
setvperiodic,	setvnotperiodic

Syntax:

setperiodic	curve	

setnotperiodic	curve	

setuperiodic	surface	

setunotperiodic	surface	

setvperiodic	surface	

setvnotperiodic	surface

setperiodic	turns	a	bspline	curve	into	a	periodic	bspline	curve;	the	knot
vector	stays	the	same	and	excess	poles	are	truncated.	The	curve	may	be
modified	if	it	has	not	been	closed.	setnotperiodic	removes	the
periodicity	of	a	periodic	curve.	The	pole	table	mau	be	modified.	Note	that
knots	are	added	at	the	beginning	and	the	end	of	the	knot	vector	and	the
multiplicities	are	knots	set	to	degree+1	at	the	start	and	the	end.

setuperiodic	and	setvperiodic	make	the	u	or	the	v	parameter	of	bspline
surfaces	periodic;	setunotperiodic,	and	setvnotperiodic	remove
periodicity	from	the	u	or	the	v	parameter	of	bspline	surfaces.

Example:

#	a	circle	deperiodicized	

circle	c	0	0	5	

convert	c1	c	

setnotperiodic	c1	

setorigin,	setuorigin,	setvorigin

Syntax:

setorigin	curvename	index	

setuorigin	surfacename	index	

setuorigin	surfacename	index	

These	commands	change	the	origin	of	the	parameters	on	periodic	curves
or	surfaces.	The	new	origin	must	be	an	existing	knot.	To	set	an	origin
other	than	an	existing	knot,	you	must	first	insert	one	with	the	insertknot
command.

Example:

#	a	torus	with	new	U	and	V	origins	

torus	t	20	5	

convert	t1	t	

setuorigin	t1	2	

setvorigin	t1	2

Transformations
Draw	provides	commands	to	apply	linear	transformations	to	geometric
objects:	they	include	translation,	rotation,	mirroring	and	scaling.

translate,	dtranslate

Syntax:

translate	name	[names	...]	dx	dy	dz	

2dtranslate	name	[names	...]	dx	dy	

The	Translate	command	translates	3d	points,	curves	and	surfaces	along
a	vector	dx,dy,dz.	You	can	translate	more	than	one	object	with	the	same
command.

For	2d	points	or	curves,	use	the	2dtranslate	command.

Example:

#	3d	tranlation	

point	p	10	20	30	

circle	c	10	20	30	5	

torus	t	10	20	30	5	2	

translate	p	c	t	0	0	15

NOTE	Objects	are	modified	by	this	command.

rotate,	2drotate

Syntax:

rotate	name	[name	...]	x	y	z	dx	dy	dz	angle	

2drotate	name	[name	...]	x	y	angle

The	rotate	command	rotates	a	3d	point	curve	or	surface.	You	must	give
an	axis	of	rotation	with	a	point	x,y,z,	a	vector	dx,dy,dz	and	an	angle	in
degrees.

For	a	2d	rotation,	you	need	only	give	the	center	point	and	the	angle.	In	2d
or	3d,	the	angle	can	be	negative.

Example:

#	make	a	helix	of	circles.	create	a	script	file	with	

this	code	and	execute	it	using	**source**.	

circle	c0	10	0	0	3	

for	{set	i	1}	{$i	<=	10}	{incr	i}	{	

copy	c[expr	$i-1]	c$i	

translate	c$i	0	0	3	

rotate	c$i	0	0	0	0	0	1	36	

}	

pmirror,	lmirror,	smirror,	dpmirror,	dlmirror

Syntax:

pmirror	name	[names	...]	x	y	z	

lmirror	name	[names	...]	x	y	z	dx	dy	dz	

smirror	name	[names	...]	x	y	z	dx	dy	dz	

2dpmirror	name	[names	...]	x	y	

2dlmirror	name	[names	...]	x	y	dx	dy	

The	mirror	commands	perform	a	mirror	transformation	of	2d	or	3d
geometry.

pmirror	is	the	point	mirror,	mirroring	3d	curves	and	surfaces	about	a
point	of	symmetry.
lmirror	is	the	line	mirror	commamd,	mirroring	3d	curves	and
surfaces	about	an	axis	of	symmetry.
smirror	is	the	surface	mirror,	mirroring	3d	curves	and	surfaces	about
a	plane	of	symmetry.	In	the	last	case,	the	plane	of	symmetry	is
perpendicular	to	dx,dy,dz.
2dpmirror	is	the	point	mirror	in	2D.
2dlmirror	is	the	axis	symmetry	mirror	in	2D.

Example:

#	build	3	images	of	a	torus	

torus	t	10	10	10	1	2	3	5	1	

copy	t	t1	

pmirror	t1	0	0	0	

copy	t	t2	

lmirror	t2	0	0	0	1	0	0	

copy	t	t3	

smirror	t3	0	0	0	1	0	0	

pscale,	dpscale

Syntax:

pscale	name	[name	...]	x	y	z	s	

2dpscale	name	[name	...]	x	y	s	

The	pscale	and	2dpscale	commands	transform	an	object	by	point
scaling.	You	must	give	the	center	and	the	scaling	factor.	Because	other
scalings	modify	the	type	of	the	object,	they	are	not	provided.	For
example,	a	sphere	may	be	transformed	into	an	ellipsoid.	Using	a	scaling
factor	of	-1	is	similar	to	using	pmirror.

Example:

#	double	the	size	of	a	sphere	

sphere	s	0	0	0	10	

pscale	s	0	0	0	2	

Curve	and	surface	analysis
Draw	provides	methods	to	compute	information	about	curves	and
surfaces:

coord	to	find	the	coordinates	of	a	point.
cvalue	and	2dcvalue	to	compute	points	and	derivatives	on	curves.
svalue	to	compute	points	and	derivatives	on	a	surface.
localprop	and	minmaxcurandif	to	compute	the	curvature	on	a
curve.
parameters	to	compute	(u,v)	values	for	a	point	on	a	surface.
proj	and	2dproj	to	project	a	point	on	a	curve	or	a	surface.
surface_radius	to	compute	the	curvature	on	a	surface.

coord

Syntax:

coord	P	x	y	[z]	

Sets	the	x,	y	(and	optionally	z)	coordinates	of	the	point	P.

Example:

#	translate	a	point	

point	p	10	5	5	

translate	p	5	0	0	

coord	p	x	y	z	

#	x	value	is	15	

cvalue,	2dcvalue

Syntax:

cvalue	curve	U	x	y	z	[d1x	d1y	d1z	[d2x	d2y	d2z]]	

2dcvalue	curve	U	x	y	[d1x	d1y	[d2x	d2y]]	

For	a	curve	at	a	given	parameter,	and	depending	on	the	number	of

arguments,	cvalue	computes	the	coordinates	in	x,y,z,	the	first	derivative
in	d1x,d1y,d1z	and	the	second	derivative	in	d2x,d2y,d2z.

Example:

Let	on	a	bezier	curve	at	parameter	0	the	point	is	the	first	pole;	the	first
derivative	is	the	vector	to	the	second	pole	multiplied	by	the	degree;	the
second	derivative	is	the	difference	first	to	the	second	pole,	second	to	the
third	pole	multipied	by	degree-1	:

2dbeziercurve	c	4	0	0	1	1	2	1	3	0	

2dcvalue	c	0	x	y	d1x	d1y	d2x	d2y	

#	values	of	x	y	d1x	d1y	d2x	d2y	

#	are	0	0	3	3	0	-6	

svalue

Syntax:

svalue	surfname	U	v	x	y	z	[dux	duy	duz	dvx	dvy	dvz	

[d2ux	d2uy	d2uz	d2vx	d2vy	d2vz	d2uvx	d2uvy	

d2uvz]]	

Computes	points	and	derivatives	on	a	surface	for	a	pair	of	parameter
values.	The	result	depends	on	the	number	of	arguments.	You	can
compute	the	first	and	the	second	derivatives.

Example:

#	display	points	on	a	sphere	

sphere	s	10	

for	{dset	t	0}	{[dval	t]	<=	1}	{dset	t	t+0.01}	{	

svalue	s	t*2*pi	t*pi-pi/2	x	y	z	

point	.	x	y	z	

}	

localprop,	minmaxcurandinf

Syntax:

localprop	curvename	U	

minmaxcurandinf	curve

localprop	computes	the	curvature	of	a	curve.	minmaxcurandinf
computes	and	prints	the	parameters	of	the	points	where	the	curvature	is
minimum	and	maximum	on	a	2d	curve.

Example:

#	show	curvature	at	the	center	of	a	bezier	curve	

beziercurve	c	3	0	0	0	10	2	0	20	0	0	

localprop	c	0.5	

==	Curvature	:	0.02	

parameters

Syntax:

parameters	surf/curve	x	y	z	U	[V]	

Returns	the	parameters	on	the	surface	of	the	3d	point	x,y,z	in	variables	u
and	v.	This	command	may	only	be	used	on	analytical	surfaces:	plane,
cylinder,	cone,	sphere	and	torus.

Example:

#	Compute	parameters	on	a	plane	

plane	p	0	0	10	1	1	0	

parameters	p	5	5	5	u	v	

#	the	values	of	u	and	v	are	:	0	5	

proj,	2dproj

Syntax:

proj	name	x	y	z	

2dproj	name	xy	

Use	proj	to	project	a	point	on	a	3d	curve	or	a	surface	and	2dproj	for	a	2d
curve.

The	command	will	compute	and	display	all	points	in	the	projection.	The
lines	joining	the	point	to	the	projections	are	created	with	the	names
*ext_1,	ext_2,	...	*

Example:

Let	us	project	a	point	on	a	torus

torus	t	20	5	

proj	t	30	10	7	

==	ext_1	ext_2	ext_3	ext_4	

surface_radius

Syntax:

surface_radius	surface	u	v	[c1	c2]	

Computes	the	main	curvatures	of	a	surface	at	parameters	*(u,v)*.	If	there
are	extra	arguments,	their	curvatures	are	stored	in	variables	c1	and	c2.

Example:

Let	us	compute	curvatures	of	a	cylinder:

cylinder	c	5	

surface_radius	c	pi	3	c1	c2	

==	Min	Radius	of	Curvature	:	-5	

==	Min	Radius	of	Curvature	:	infinite	

Intersections
intersect	computes	intersections	of	surfaces;
2dintersect	computes	intersections	of	2d	curves.

intersect

Syntax:

intersect	name	surface1	surface2

Intersects	two	surfaces;	if	there	is	one	intersection	curve	it	will	be	named
name,	if	there	are	more	than	one	they	will	be	named	name_1,	name_2,
...

Example:

#	create	an	ellipse	

cone	c	45	0	

plane	p	0	0	40	0	1	5	

intersect	e	c	p	

dintersect

Syntax:

2dintersect	curve1	curve2	

Displays	the	intersection	points	between	two	2d	curves.

Example:

#	intersect	two	2d	ellipses	

ellipse	e1	0	0	5	2	

ellipse	e2	0	0	0	1	5	2	

2dintersect	e1	e2	

Approximations
Draw	provides	command	to	create	curves	and	surfaces	by
approximation.

2dapprox	fits	a	curve	through	2d	points;
appro	fits	a	curve	through	3d	points;
surfapp	and	grilapp	fit	a	surface	through	3d	points;
2dinterpolate	interpolates	a	curve.

appro,	dapprox

Syntax:

appro	result	nbpoint	[curve]	

2dapprox	result	nbpoint	[curve	/	x1	y1	x2	y2]

These	commands	fit	a	curve	through	a	set	of	points.	First	give	the
number	of	points,	then	choose	one	of	the	three	ways	available	to	get	the
points.	If	you	have	no	arguments,	click	on	the	points.	If	you	have	a	curve
argument	or	a	list	of	points,	the	command	launches	computation	of	the
points	on	the	curve.

Example:

Let	us	pick	points	and	they	will	be	fitted

2dapprox	c	10	

surfapp,	grilapp

Syntax:

surfapp	name	nbupoints	nbvpoints	x	y	z	

grilapp	name	nbupoints	nbvpoints	xo	dx	yo	dy	z11	z12	

...	

surfapp	fits	a	surface	through	an	array	of	u	and	v	points,

nbupoints*nbvpoints.
grilapp	has	the	same	function,	but	the	x,y	coordinates	of	the	points
are	on	a	grid	starting	at	x0,y0	with	steps	dx,dy.

Example:

#	a	surface	using	the	same	data	as	in	the	beziersurf	

example	sect	4.4	

surfapp	s	3	4	\	

0	0	0	10	0	5	20	0	0	\	

0	10	2	10	10	3	20	10	2	\	

0	20	10	10	20	20	20	20	10	\	

0	30	0	10	30	0	20	30	0	

Projections
Draw	provides	commands	to	project	points/curves	on	curves/surfaces.

proj	projects	point	on	the	curve/surface	(see	proj	command
description);
project	projects	3D	curve	on	the	surface	(see	project	command
description);
projponf	projects	point	on	the	face.

projponf

Syntax:

projponf	face	pnt	[extrema	flag:	-min/-max/-minmax]	

[extrema	algo:	-g(grad)/-t(tree)]

projponf	projects	point	pnt	on	the	face	face.	You	can	change	the
Extrema	options:

To	change	the	Extrema	search	algorithm	use	the	following	options:
-g	-	for	Grad	algorithm;
-t	-	for	Tree	algorithm;
To	change	the	Extrema	search	solutions	use	the	following	options:
-min	-	to	look	for	Min	solutions;
-max	-	to	look	for	Max	solutions;
-minmax	-	to	look	for	MinMax	solutions.

Example

plane	p	0	0	0	0	0	1

mkface	f	p

point	pnt	5	5	10

projponf	f	pnt

#	proj	dist	=	10

#	uvproj	=	5	5

#	pproj	=	5	5	0

Constraints
cirtang	constructs	2d	circles	tangent	to	curves;
lintan	constructs	2d	lines	tangent	to	curves.

cirtang

Syntax:

cirtang	cname	curve/point/radius	curve/point/radius	

curve/point/radius	

Builds	all	circles	satisfying	the	three	constraints	which	are	either	a	curve
(the	circle	must	be	tangent	to	that	curve),	a	point	(the	circle	must	pass
through	that	point),	or	a	radius	for	the	circle.	Only	one	constraint	can	be	a
radius.	The	solutions	will	be	stored	in	variables	name_1,	name_2,	etc.

Example:

#	a	point,	a	line	and	a	radius.	2	solutions	

point	p	0	0	

line	1	10	0	-1	1	

cirtang	c	p	1	4	

==	c_1	c_2	

lintan

Syntax:

lintan	name	curve	curve	[angle]	

Builds	all	2d	lines	tangent	to	two	curves.	If	the	third	angle	argument	is
given	the	second	curve	must	be	a	line	and	lintan	will	build	all	lines
tangent	to	the	first	curve	and	forming	the	given	angle	with	the	line.	The
angle	is	given	in	degrees.	The	solutions	are	named	name_1,	name_2,
etc.

Example:

#	lines	tangent	to	2	circles,	4	solutions	

circle	c1	-10	0	10	

circle	c2	10	0	5	

lintan	l	c1	c2	

#	lines	at	15	degrees	tangent	to	a	circle	and	a	line,	

2	

solutions:	l1_1	l1_2	

circle	c1	-10	0	1	

line	l	2	0	1	1	

lintan	l1	c1	l	15	

Display
Draw	provides	commands	to	control	the	display	of	geometric	objects.
Some	display	parameters	are	used	for	all	objects,	others	are	valid	for
surfaces	only,	some	for	bezier	and	bspline	only,	and	others	for	bspline
only.

On	curves	and	surfaces,	you	can	control	the	mode	of	representation	with
the	dmode	command.	You	can	control	the	parameters	for	the	mode	with
the	defle	command	and	the	discr	command,	which	control	deflection	and
discretization	respectively.

On	surfaces,	you	can	control	the	number	of	isoparametric	curves
displayed	on	the	surface	with	the	nbiso	command.

On	bezier	and	bspline	curve	and	surface	you	can	toggle	the	display	of
the	control	points	with	the	clpoles	and	shpoles	commands.

On	bspline	curves	and	surfaces	you	can	toggle	the	display	of	the	knots
with	the	shknots	and	clknots	commands.

dmod,	discr,	defle

Syntax:

dmode	name	[name	...]	u/d	

discr	name	[name	...]	nbintervals	

defle	name	[name	...]	deflection	

dmod	command	allows	choosing	the	display	mode	for	a	curve	or	a
surface.

In	mode	u,	or	uniform	deflection,	the	points	are	computed	to	keep	the
polygon	at	a	distance	lower	than	the	deflection	of	the	geometry.	The
deflection	is	set	with	the	defle	command.	This	mode	involves	intensive
use	of	computational	power.

In	d,	or	discretization	mode,	a	fixed	number	of	points	is	computed.	This
number	is	set	with	the	discr	command.	This	is	the	default	mode.	On	a

bspline,	the	fixed	number	of	points	is	computed	for	each	span	of	the
curve.	(A	span	is	the	interval	between	two	knots).

If	the	curve	or	the	isolines	seem	to	present	too	many	angles,	you	can
either	increase	the	discretization	or	lower	the	deflection,	depending	on
the	mode.	This	will	increase	the	number	of	points.

Example:

#	increment	the	number	of	points	on	a	big	circle	

circle	c	0	0	50	50	

discr	100	

#	change	the	mode	

dmode	c	u	

nbiso

Syntax:

nbiso	name	[names...]	nuiso	nviso	

Changes	the	number	of	isoparametric	curves	displayed	on	a	surface	in
the	U	and	V	directions.	On	a	bspline	surface,	isoparametric	curves	are
displayed	by	default	at	knot	values.	Use	nbiso	to	turn	this	feature	off.

Example:

Let	us	display	35	meridians	and	15	parallels	on	a	sphere:

sphere	s	20	

nbiso	s	35	15	

clpoles,	shpoles

Syntax:

clpoles	name	

shpoles	name	

On	bezier	and	bspline	curves	and	surfaces,	the	control	polygon	is
displayed	by	default:	clpoles	erases	it	and	shpoles	restores	it.

Example:

Let	us	make	a	bezier	curve	and	erase	the	poles

beziercurve	c	3	0	0	0	10	0	0	10	10	0	

clpoles	c	

clknots,	shknots

Syntax:

clknots	name	

shknots	name	

By	default,	knots	on	a	bspline	curve	or	surface	are	displayed	with
markers	at	the	points	with	parametric	value	equal	to	the	knots.	clknots
removes	them	and	shknots	restores	them.

Example:

#	hide	the	knots	on	a	bspline	curve	

bsplinecurve	bc	2	3	0	3	1	1	2	3	\	

10	0	7	1	7	0	7	1	3	0	8	1	0	0	7	1	

clknots	bc

Topology	commands
Draw	provides	a	set	of	commands	to	test	OCCT	Topology	libraries.	The
Draw	commands	are	found	in	the	DRAWEXE	executable	or	in	any
executable	including	the	BRepTest	commands.

Topology	defines	the	relationship	between	simple	geometric	entities,
which	can	thus	be	linked	together	to	represent	complex	shapes.	The	type
of	variable	used	by	Topology	in	Draw	is	the	shape	variable.

The	different	topological	shapes	include:

COMPOUND:	A	group	of	any	type	of	topological	object.
COMPSOLID:	A	set	of	solids	connected	by	their	faces.	This	expands
the	notions	of	WIRE	and	SHELL	to	solids.
SOLID:	A	part	of	space	limited	by	shells.	It	is	three	dimensional.
SHELL:	A	set	of	faces	connected	by	their	edges.	A	shell	can	be
open	or	closed.
FACE:	In	2d,	a	plane;	in	3d,	part	of	a	surface.	Its	geometry	is
constrained	(trimmed)	by	contours.	It	is	two	dimensional.
WIRE:	A	set	of	edges	connected	by	their	vertices.	It	can	be	open	or
closed	depending	on	whether	the	edges	are	linked	or	not.
EDGE:	A	topological	element	corresponding	to	a	restrained	curve.
An	edge	is	generally	limited	by	vertices.	It	has	one	dimension.
VERTEX:	A	topological	element	corresponding	to	a	point.	It	has	a
zero	dimension.

Shapes	are	usually	shared.	copy	will	create	a	new	shape	which	shares
its	representation	with	the	original.	Nonetheless,	two	shapes	sharing	the
same	topology	can	be	moved	independently	(see	the	section	on
transformation).

The	following	topics	are	covered	in	the	eight	sections	of	this	chapter:

Basic	shape	commands	to	handle	the	structure	of	shapes	and
control	the	display.
Curve	and	surface	topology,	or	methods	to	create	topology	from
geometry	and	vice	versa.
Primitive	construction	commands:	box,	cylinder,	wedge	etc.

Sweeping	of	shapes.
Transformations	of	shapes:	translation,	copy,	etc.
Topological	operations,	or	booleans.
Drafting	and	blending.
Analysis	of	shapes.

Basic	topology
The	set	of	basic	commands	allows	simple	operations	on	shapes,	or	step-
by-step	construction	of	objects.	These	commands	are	useful	for	analysis
of	shape	structure	and	include:

isos	and	discretisation	to	control	display	of	shape	faces	by
isoparametric	curves	.
orientation,	complement	and	invert	to	modify	topological	attributes
such	as	orientation.
explode,	exwire	and	nbshapes	to	analyze	the	structure	of	a	shape.
emptycopy,	add,	compound	to	create	shapes	by	stepwise
construction.

In	Draw,	shapes	are	displayed	using	isoparametric	curves.	There	is	color
coding	for	the	edges:

a	red	edge	is	an	isolated	edge,	which	belongs	to	no	faces.
a	green	edge	is	a	free	boundary	edge,	which	belongs	to	one	face,
a	yellow	edge	is	a	shared	edge,	which	belongs	to	at	least	two	faces.

isos,	discretisation

Syntax:

isos	[name	...][nbisos]	

discretisation	nbpoints

Determines	or	changes	the	number	of	isoparametric	curves	on	shapes.

The	same	number	is	used	for	the	u	and	v	directions.	With	no	arguments,
isos	prints	the	current	default	value.	To	determine,	the	number	of	isos	for
a	shape,	give	it	name	as	the	first	argument.

discretisation	changes	the	default	number	of	points	used	to	display	the
curves.	The	default	value	is	30.

Example:

#	Display	only	the	edges	(the	wireframe)	

isos	0	

Warning:	don’t	confuse	isos	and	discretisation	with	the	geometric
commands	nbisos	and	discr.

orientation,	complement,	invert,	normals,	range

Syntax:

orientation	name	[name	...]	F/R/E/I	

complement	name	[name	...]	

invert	name	

normals	s	(length	=	10),	disp	normals	

range	name	value	value	

orientation	–	assigns	the	orientation	of	simple	and	complex	shapes
to	one	of	the	following	four	values:	FORWARD,	REVERSED,
INTERNAL,	EXTERNAL.
complement	–	changes	the	current	orientation	of	shapes	to	its
complement:	FORWARD	to	REVERSED	and	INTERNAL	to
EXTERNAL.
invert	–	creates	a	copy	of	the	original	shape	with	a	reversed
orientation	of	all	subshapes.	For	example,	it	may	be	useful	to
reverse	the	normals	of	a	solid.
*normals**	–	returns	the	assignment	of	colors	to	orientation	values.
range	–	defines	the	length	of	a	selected	edge	by	defining	the	values
of	a	starting	point	and	an	end	point.

Example:

#	to	invert	normals	of	a	box	

box	b	10	20	30	

normals	b	5	

invert	b	

normals	b	5	

#	to	assign	a	value	to	an	edge	

box	b1	10	20	30	

#	to	define	the	box	as	edges	

explode	b1	e	

b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_10	b_11	b_12	

#	to	define	as	an	edge	

makedge	e	1	

#	to	define	the	length	of	the	edge	as	starting	from	0	

and	finishing	at	1	

range	e	0	1	

explode,	exwire,	nbshapes

Syntax:

explode	name	[C/So/Sh/F/W/E/V]	

exwire	name	

nbshapes	name	

explode	extracts	subshapes	from	an	entity.	The	subshapes	will	be
named	name_1,	name_2,	...	Note	that	they	are	not	copied	but	shared
with	the	original.

With	name	only,	explode	will	extract	the	first	sublevel	of	shapes:	the
shells	of	a	solid	or	the	edges	of	a	wire,	for	example.	With	one	argument,
explode	will	extract	all	subshapes	of	that	type:	C	for	compounds,	So	for
solids,	Sh	for	shells,	F	for	faces,	W	for	wires,	E	for	edges,	V	for	vertices.

exwire	is	a	special	case	of	explode	for	wires,	which	extracts	the	edges
in	an	ordered	way,	if	possible.	Each	edge,	for	example,	is	connected	to
the	following	one	by	a	vertex.

nbshapes	counts	the	number	of	shapes	of	each	type	in	an	entity.

Example:

#	on	a	box	

box	b	10	20	30	

#	whatis	returns	the	type	and	various	information	

whatis	b	

=	b	is	a	shape	SOLID	FORWARD	Free	Modified	

#	make	one	shell	

explode	b	

whatis	b_1	

=	b_1	is	a	shape	SHELL	FORWARD	Modified	Orientable	

Closed	

#	extract	the	edges	b_1,	...	,	b_12	

explode	b	e	

==b_1	...	b_12	

#	count	subshapes	

nbshapes	b	

==	

Number	of	shapes	in	b	

VERTEX	:	8	

EDGE	:	12	

WIRE	:	6	

FACE	:	6	

SHELL	:	1	

SOLID	:	1	

COMPSOLID	:	0	

COMPOUND	:	0	

SHAPE	:	34	

emptycopy,	add,	compound

Syntax:

emptycopy	[newname]	name	

add	name	toname	

compound	[name	...]	compoundname	

emptycopy	returns	an	empty	shape	with	the	same	orientation,	location,
and	geometry	as	the	target	shape,	but	with	no	sub-shapes.	If	the
newname	argument	is	not	given,	the	new	shape	is	stored	with	the	same
name.	This	command	is	used	to	modify	a	frozen	shape.	A	frozen	shape	is

a	shape	used	by	another	one.	To	modify	it,	you	must	emptycopy	it.	Its
subshape	may	be	reinserted	with	the	add	command.

add	inserts	shape	C	into	shape	S.	Verify	that	C	and	S	reference
compatible	types	of	objects:

Any	Shape	can	be	added	to	a	Compound.
Only	a	Solid	can	be	added	to	a	CompSolid.
Only	a	Shell	can	Edge	or	a	Vertex	can	be	added	into	a	Solid.
Only	a	Face	can	be	added	to	a	Shell.
Only	a	Wire	and	Vertex	can	be	added	in	a	Solid.
Only	an	Edge	can	be	added	to	a	Wire.
Only	a	Vertex	can	be	added	to	an	Edge.
Nothing	can	be	added	to	a	Vertex.

emptycopy	and	add	should	be	used	with	care.

On	the	other	hand,	compound	is	a	safe	way	to	achieve	a	similar	result.	It
creates	a	compound	from	shapes.	If	no	shapes	are	given,	the	compound
is	empty.

Example:

#	a	compound	with	three	boxes	

box	b1	0	0	0	1	1	1	

box	b2	3	0	0	1	1	1	

box	b3	6	0	0	1	1	1	

compound	b1	b2	b3	c	

compare

Syntax:

compare	shape1	shape2

compare	compares	the	two	shapes	shape1	and	shape2	using	the
methods	TopoDS_Shape::IsSame()	and	TopoDS_Shape::IsEqual().

Example

box	b1	1	1	1

copy	b1	b2

compare	b1	b2

#	same	shapes

#	equal	shapes

orientation	b2	R

compare	b1	b2

#	same	shapes

box	b2	1	1	1

compare	b1	b2

#	shapes	are	not	same

issubshape

Syntax:

issubshape	subshape	shape

issubshape	checks	if	the	shape	subshape	is	sub-shape	of	the	shape
shape	and	gets	its	index	in	the	shape.

Example

box	b	1	1	1

explode	b	f

issubshape	b_2	b

#	b_2	is	sub-shape	of	b.	Index	in	the	shape:	2.

Curve	and	surface	topology
This	group	of	commands	is	used	to	create	topology	from	shapes	and	to
extract	shapes	from	geometry.

To	create	vertices,	use	the	vertex	command.
To	create	edges	use,	the	edge,	mkedge	commands.
To	create	wires,	use	the	wire,	polyline,	polyvertex	commands.
To	create	faces,	use	the	mkplane,	mkface	commands.
To	extract	the	geometry	from	edges	or	faces,	use	the	mkcurve	and
mkface	commands.
To	extract	the	2d	curves	from	edges	or	faces,	use	the	pcurve
command.

vertex

Syntax:

vertex	name	[x	y	z	/	p	edge]	

Creates	a	vertex	at	either	a	3d	location	x,y,z	or	the	point	at	parameter	p
on	an	edge.

Example:

vertex	v1	10	20	30	

mkpoint

Syntax:

mkpoint	name	vertex

Creates	a	point	from	the	coordinates	of	a	given	vertex.

Example:

mkpoint	p	v1

edge,	mkedge,	uisoedge,	visoedge

Syntax:

edge	name	vertex1	vertex2	

mkedge	edge	curve	[surface]	[pfirst	plast]	[vfirst	

[pfirst]	vlast	[plast]]	

uisoedge	edge	face	u	v1	v2	

visoedge	edge	face	v	u1	u2	

edge	creates	a	straight	line	edge	between	two	vertices.
mkedge	generates	edges	from	curves<.Two	parameters	can	be
given	for	the	vertices:	the	first	and	last	parameters	of	the	curve	are
given	by	default.	Vertices	can	also	be	given	with	their	parameters,
this	option	allows	blocking	the	creation	of	new	vertices.	If	the
parameters	of	the	vertices	are	not	given,	they	are	computed	by
projection	on	the	curve.	Instead	of	a	3d	curve,	a	2d	curve	and	a
surface	can	be	given.

Example:

#	straight	line	edge	

vertex	v1	10	0	0	

vertex	v2	10	10	0	

edge	e1	v1	v2	

#	make	a	circular	edge	

circle	c	0	0	0	5	

mkedge	e2	c	0	pi/2	

#	A	similar	result	may	be	achieved	by	trimming	the	

curve	

#	The	trimming	is	removed	by	mkedge	

trim	c	c	0	pi/2	

mkedge	e2	c	

visoedge	and	uisoedge	are	commands	that	generate	a	uiso
parameter	edge	or	a	viso	parameter	edge.

Example:

#	to	create	an	edge	between	v1	and	v2	at	point	u	

#	to	create	the	example	plane	

plane	p	

trim	p	p	0	1	0	1	

convert	p	p	

incudeg	p	3	

incvdeg	p	3	

movep	p	2	2	0	0	1	

movep	p	3	3	0	0	0.5	

mkface	p	p	

#	to	create	the	edge	in	the	plane	at	the	u	axis	point	

0.5,	and	between	the	v	axis	points	v=0.2	and	v	=0.8	

uisoedge	e	p	0.5	0.20	0.8	

wire,	polyline,	polyvertex

Syntax:

wire	wirename	e1/w1	[e2/w2	...]	

polyline	name	x1	y1	z1	x2	y2	z2	...	

polyvertex	name	v1	v2	...	

wire	creates	a	wire	from	edges	or	wires.	The	order	of	the	elements
should	ensure	that	the	wire	is	connected,	and	vertex	locations	will	be
compared	to	detect	connection.	If	the	vertices	are	different,	new	edges
will	be	created	to	ensure	topological	connectivity.	The	original	edge	may
be	copied	in	the	new	one.

polyline	creates	a	polygonal	wire	from	point	coordinates.	To	make	a
closed	wire,	you	should	give	the	first	point	again	at	the	end	of	the
argument	list.

polyvertex	creates	a	polygonal	wire	from	vertices.

Example:

#	create	two	polygonal	wires	

#	glue	them	and	define	as	a	single	wire	

polyline	w1	0	0	0	10	0	0	10	10	0	

polyline	w2	10	10	0	0	10	0	0	0	0	

wire	w	w1	w2	

profile

Syntax

profile	name	[code	values]	[code	values]	...	

profile	builds	a	profile	in	a	plane	using	a	moving	point	and	direction.	By
default,	the	profile	is	closed	and	a	face	is	created.	The	original	point	is	0
0,	and	direction	is	1	0	situated	in	the	XY	plane.

Code Values	** **Action
O X	Y	Z Sets	the	origin	of	the	plane
P DX	DY	DZ	UX	UY	UZ Sets	the	normal	and	X	of	the	plane
F X	Y Sets	the	first	point
X DX Translates	a	point	along	X
Y DY Translates	a	point	along	Y
L DL Translates	a	point	along	direction
XX X Sets	point	X	coordinate
YY Y Sets	point	Y	coordinate
T DX	DY Translates	a	point
TT X	Y Sets	a	point
R Angle Rotates	direction
RR Angle Sets	direction
D DX	DY Sets	direction
IX X Intersects	with	vertical
IY Y Intersects	with	horizontal
C Radius	Angle Arc	of	circle	tangent	to	direction

Codes	and	values	are	used	to	define	the	next	point	or	change	the
direction.	When	the	profile	changes	from	a	straight	line	to	a	curve,	a

tangent	is	created.	All	angles	are	in	degrees	and	can	be	negative.

The	point	[code	values]	can	be	repeated	any	number	of	times	and	in	any
order	to	create	the	profile	contour.

Suffix Action
No	suffix Makes	a	closed	face
W Make	a	closed	wire
WW Make	an	open	wire

The	profile	shape	definition	is	the	suffix;	no	suffix	produces	a	face,	w	is	a
closed	wire,	ww	is	an	open	wire.

Code	letters	are	not	case-sensitive.

Example:

#	to	create	a	trianglular	plane	using	a	vertex	at	the	

origin,	in	the	xy	plane	

profile	p	O	0	0	0	X	1	Y	0	x	1	y	1	

Example:

#	to	create	a	contour	using	the	different	code	

possibilities	

#	two	vertices	in	the	xy	plane	

profile	p	F	1	0	x	2	y	1	ww	

#	to	view	from	a	point	normal	to	the	plane	

top	

#	add	a	circular	element	of	45	degrees	

profile	p	F	1	0	x	2	y	1	c	1	45	ww	

#	add	a	tangential	segment	with	a	length	value	1	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	ww	

#	add	a	vertex	with	xy	values	of	1.5	and	1.5	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	ww	

#	add	a	vertex	with	the	x	value	0.2,	y	value	is	

constant	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

ww	

#	add	a	vertex	with	the	y	value	2	x	value	is	constant	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	yy	2	ww	

#	add	a	circular	element	with	a	radius	value	of	1	and	

a	circular	value	of	290	degrees	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

yy	2	c	1	290	

#	wire	continues	at	a	tangent	to	the	intersection	x	=	

0	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

yy	2	c	1	290	ix	0	ww	

#	continue	the	wire	at	an	angle	of	90	degrees	until	

it	intersects	the	y	axis	at	y=	-o.3	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

yy	2	c	1	290	ix	0	r	90	ix	-0.3	ww	

#close	the	wire	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

yy	2	c	1	290	ix	0	r	90	ix	-0.3	w	

#	to	create	the	plane	with	the	same	contour	

profile	p	F	1	0	x	2	y	1	c	1	45	l	1	tt	1.5	1.5	xx	0.2	

yy	2	c	1	290	ix	0	r	90	ix	-0.3	

bsplineprof

Syntax:

bsplineprof	name	[S	face]	[W	WW]	

for	an	edge	:	<digitizes>	...	<mouse	button	2>
to	end	profile	:	<mouse	button	3>

Builds	a	profile	in	the	XY	plane	from	digitizes.	By	default	the	profile	is
closed	and	a	face	is	built.

bsplineprof	creates	a	2d	profile	from	bspline	curves	using	the	mouse	as
the	input.	MB1	creates	the	points,	MB2	finishes	the	current	curve	and
starts	the	next	curve,	MB3	closes	the	profile.

The	profile	shape	definition	is	the	suffix;	no	suffix	produces	a	face,	w	is	a
closed	wire,	ww	is	an	open	wire.

Example:

#to	view	the	xy	plane	

top	

#to	create	a	2d	curve	with	the	mouse	

bsplineprof	res	

#	click	mb1	to	start	the	curve	

#	click	mb1	to	create	the	second	vertex	

#	click	mb1	to	create	a	curve	

==	

#click	mb2	to	finish	the	curve	and	start	a	new	curve	

==	

#	click	mb1	to	create	the	second	curve	

#	click	mb3	to	create	the	face	

mkoffset

mkoffset	creates	a	parallel	wire	in	the	same	plane	using	a	face	or	an
existing	continuous	set	of	wires	as	a	reference.	The	number	of
occurrences	is	not	limited.	The	offset	distance	defines	the	spacing	and
the	positioning	of	the	occurrences.

Syntax:

mkoffset	result	shape	nboffset	stepoffset	

[jointype(a/i)	[alt]]

where:

result	-	the	base	name	for	the	resulting	wires.	The	index	of	the
occurrence	(starting	with	1)	will	be	added	to	this	name,	so	the
resulting	wires	will	have	the	names	-	result_1,	result_2	...;
shape	-	input	shape	(face	or	compound	of	wires);
nboffset	-	the	number	of	the	parallel	occurrences;
stepoffset	-	offset	distance	between	occurrences;
jointype(a/i)	-	join	type	(a	for	arc	(default)	and	i	for	intersection);
alt	-	altitude	from	the	plane	of	the	input	face	in	relation	to	the	normal
to	the	face.

Example:

#	Create	a	box	and	select	a	face	

box	b	1	2	3	

explode	b	f	

#	Create	three	exterior	parallel	contours	with	an	

offset	value	of	2	

mkoffset	r	b_1	3	2	

#	wires	r_1,	r_2	and	r_3	are	created

#	Create	three	exterior	parallel	contours	with	an	

offset	value	of	2	without	round	corners

mkoffset	r	b_1	3	2	i

#	wires	r_1,	r_2	and	r_3	are	created

#	Create	one	interior	parallel	contour	with	an	offset	

value	of	0.4	

mkoffset	r	b_1	1	-0.4	

Note	that	on	a	concave	input	contour	for	an	interior	step	mkoffset
command	may	produce	several	wires	which	will	be	contained	in	a	single
compound.

Example:

#	to	create	the	example	contour	

profile	p	F	0	0	x	2	y	4	tt	1	1	tt	0	4	w	

#	creates	an	incoherent	interior	offset	

mkoffset	r	p	1	-0.50	

#	creates	two	incoherent	wires	

mkoffset	r	p	1	-0.55	

#	r_1	is	a	compound	of	two	wires

mkplane,	mkface

Syntax:

mkplane	name	wire	

mkface	name	surface	[ufirst	ulast	vfirst	vlast]	

mkplane	generates	a	face	from	a	planar	wire.	The	planar	surface	will	be
constructed	with	an	orientation	which	keeps	the	face	inside	the	wire.

mkface	generates	a	face	from	a	surface.	Parameter	values	can	be	given
to	trim	a	rectangular	area.	The	default	boundaries	are	those	of	the
surface.

Example:

#	make	a	polygonal	face	

polyline	f	0	0	0	20	0	0	20	10	0	10	10	0	10	20	0	0	20	

0	0	0	0	

mkplane	f	f	

#	make	a	cylindrical	face	

cylinder	g	10	

trim	g	g	-pi/3	pi/2	0	15	

mkface	g	g	

mkcurve,	mksurface

Syntax:

mkcurve	curve	edge	

mksurface	name	face	

mkcurve	creates	a	3d	curve	from	an	edge.	The	curve	will	be	trimmed	to
the	edge	boundaries.

mksurface	creates	a	surface	from	a	face.	The	surface	will	not	be
trimmed.

Example:

#	make	a	line	

vertex	v1	0	0	0	

vertex	v2	10	0	0	

edge	e	v1	v2	

pcurve

Syntax:

pcurve	[name	edgename]	facename	

Extracts	the	2d	curve	of	an	edge	on	a	face.	If	only	the	face	is	specified,
the	command	extracts	all	the	curves	and	colors	them	according	to	their
orientation.	This	is	useful	in	checking	to	see	if	the	edges	in	a	face	are
correctly	oriented,	i.e.	they	turn	counter-clockwise.	To	make	curves
visible,	use	a	fitted	2d	view.

Example:

#	view	the	pcurves	of	a	face	

plane	p	

trim	p	p	-1	1	-1	1	

mkface	p	p	

av2d;	#	a	2d	view	

pcurve	p	

2dfit	

chfi2d

Syntax:

chfi2d	result	face	[edge1	edge2	(F	radius/CDD	d1	

d2/CDA	d	ang)	

Creates	chamfers	and	fillets	on	2D	objects.	Select	two	adjacent	edges
and:

a	radius	value
two	respective	distance	values
a	distance	value	and	an	angle

The	radius	value	produces	a	fillet	between	the	two	faces.

The	distance	is	the	length	value	from	the	edge	between	the	two	selected
faces	in	a	normal	direction.

Example:

Let	us	create	a	2d	fillet:

top	

profile	p	x	2	y	2	x	-2	

chfi2d	cfr	p	.	.	F	0.3	

==Pick	an	object	

#select	an	edge	

==Pick	an	object	

#select	an	edge	

Let	us	create	a	2d	chamfer	using	two	distances:

profile	p	x	2	y	2	x	-2	

chfi2d	cfr	p	.	.	CDD	0.3	0.6	

==Pick	an	object	

#select	an	edge	

==Pick	an	object	

#select	an	edge	

Let	us	create	a	2d	chamfer	using	a	defined	distance	and	angle

top	

profile	p	x	2	y	2	x	-2	

chfi2d	cfr	p	.	.	CDA	0.3	75	

==Pick	an	object	

#select	an	edge	

==Pick	an	object	

#select	an	edge	

nproject

Syntax:

nproject	pj	e1	e2	e3	...	surf	-g	-d	[dmax]	[Tol	

[continuity	[maxdeg	[maxseg]]]	

Creates	a	shape	projection	which	is	normal	to	the	target	surface.

Example:

#	create	a	curved	surface	

line	l	0	0	0	1	0	0	

trim	l	l	0	2	

convert	l	l	

incdeg	l	3	

cmovep	l	1	0	0.5	0	

cmovep	l	3	0	0.5	0	

copy	l	ll	

translate	ll	2	-0.5	0	

mkedge	e1	l	

mkedge	e2	ll	

wire	w	e1	e2	

prism	p	w	0	0	3	

donl	p	

#display	in	four	views	

mu4	

fit	

#	create	the	example	shape	

circle	c	1.8	-0.5	1	0	1	0	1	0	0	0.4	

mkedge	e	c	

donly	p	e	

#	create	the	normal	projection	of	the	shape(circle)	

nproject	r	e	p	

Primitives
Primitive	commands	make	it	possible	to	create	simple	shapes.	They
include:

box	and	wedge	commands.
pcylinder,	pcone,	psphere,	ptorus	commands.
halfspace	command

box,	wedge

Syntax:

box	name	[x	y	z]	dx	dy	dz	

wedge	name	dx	dy	dz	ltx	/	xmin	zmin	xmax	xmax	

box	creates	a	box	parallel	to	the	axes	with	dimensions	dx,dy,dz.	x,y,z	is
the	corner	of	the	box.	It	is	the	default	origin.

wedge	creates	a	box	with	five	faces	called	a	wedge.	One	face	is	in	the
OXZ	plane,	and	has	dimensions	dx,dz	while	the	other	face	is	in	the	plane
y	=	dy.	This	face	either	has	dimensions	ltx,	dz	or	is	bounded	by
xmin,zmin,xmax,zmax.

The	other	faces	are	defined	between	these	faces.	The	face	in	the	y=yd
plane	may	be	degenerated	into	a	line	if	ltx	=	0,	or	a	point	if	xmin	=	xmax
and	ymin	=	ymax.	In	these	cases,	the	line	and	the	point	both	have	5
faces	each.	To	position	the	wedge	use	the	ttranslate	and	trotate
commands.

Example:

#	a	box	at	the	origin	

box	b1	10	20	30	

#	another	box	

box	b2	30	30	40	10	20	30	

#	a	wedge	

wedge	w1	10	20	30	5	

#	a	wedge	with	a	sharp	edge	(5	faces)	

wedge	w2	10	20	30	0	

#	a	pyramid	

wedge	w3	20	20	20	10	10	10	10	

pcylinder,	pcone,	psphere,	ptorus

Syntax:

pcylinder	name	[plane]	radius	height	[angle]	

pcone	name	[plane]	radius1	radius2	height	[angle]	

pcone	name	[plane]	radius1	radius2	height	[angle]	

psphere	name	[plane]	radius1	[angle1	angle2]	[angle]	

ptorus	name	[plane]	radius1	radius2	[angle1	angle2]	

[angle]	

All	these	commands	create	solid	blocks	in	the	default	coordinate	system,
using	the	Z	axis	as	the	axis	of	revolution	and	the	X	axis	as	the	origin	of
the	angles.	To	use	another	system,	translate	and	rotate	the	resulting	solid
or	use	a	plane	as	first	argument	to	specify	a	coordinate	system.	All
primitives	have	an	optional	last	argument	which	is	an	angle	expressed	in
degrees	and	located	on	the	Z	axis,	starting	from	the	X	axis.	The	default
angle	is	360.

pcylinder	creates	a	cylindrical	block	with	the	given	radius	and	height.

pcone	creates	a	truncated	cone	of	the	given	height	with	radius1	in	the
plane	z	=	0	and	radius2	in	the	plane	z	=	height.	Neither	radius	can	be
negative,	but	one	of	them	can	be	null.

psphere	creates	a	solid	sphere	centered	on	the	origin.	If	two	angles,
angle1	and	angle2,	are	given,	the	solid	will	be	limited	by	two	planes	at
latitude	angle1	and	angle2.	The	angles	must	be	increasing	and	in	the
range	-90,90.

ptorus	creates	a	solid	torus	with	the	given	radii,	centered	on	the	origin,
which	is	a	point	along	the	z	axis.	If	two	angles	increasing	in	degree	in	the
range	0	–	360	are	given,	the	solid	will	be	bounded	by	two	planar	surfaces
at	those	positions	on	the	circle.

Example:

#	a	can	shape	

pcylinder	cy	5	10	

#	a	quarter	of	a	truncated	cone	

pcone	co	15	10	10	90	

#	three-quarters	of	sphere	

psphere	sp	10	270	

#	half	torus	

ptorus	to	20	5	0	90	

halfspace

Syntax:

halfspace	result	face/shell	x	y	z	

halfspace	creates	an	infinite	solid	volume	based	on	a	face	in	a	defined
direction.	This	volume	can	be	used	to	perform	the	boolean	operation	of
cutting	a	solid	by	a	face	or	plane.

Example:

box	b	0	0	0	1	2	3	

explode	b	f	

==b_1	b_2	b_3	b_4	b_5	b_6	

halfspace	hr	b_3	0.5	0.5	0.5	

Sweeping
Sweeping	creates	shapes	by	sweeping	out	a	shape	along	a	defined	path:

prism	–	sweeps	along	a	direction.
revol	–	sweeps	around	an	axis.
pipe	–	sweeps	along	a	wire.
mksweep	and	buildsweep	–	to	create	sweeps	by	defining	the
arguments	and	algorithms.
thrusections	–	creates	a	sweep	from	wire	in	different	planes.

prism

Syntax:

prism	result	base	dx	dy	dz	[Copy	|	Inf	|	SemiInf]	

Creates	a	new	shape	by	sweeping	a	shape	in	a	direction.	Any	shape	can
be	swept:	a	vertex	gives	an	edge;	an	edge	gives	a	face;	and	a	face	gives
a	solid.

The	shape	is	swept	along	the	vector	dx	dy	dz.	The	original	shape	will	be
shared	in	the	result	unless	Copy	is	specified.	If	Inf	is	specified	the	prism
is	infinite	in	both	directions.	If	SemiInf	is	specified	the	prism	is	infinite	in
the	dx,dy,dz	direction,	and	the	length	of	the	vector	has	no	importance.

Example:

#	sweep	a	planar	face	to	make	a	solid	

polyline	f	0	0	0	10	0	0	10	5	0	5	5	0	5	15	0	0	15	0	0	

0	0	

mkplane	f	f	

revol

Syntax:

revol	result	base	x	y	z	dx	dy	dz	angle	[Copy]	

Creates	a	new	shape	by	sweeping	a	base	shape	through	an	angle	along
the	axis	x,y,z	dx,dy,dz.	As	with	the	prism	command,	the	shape	can	be	of
any	type	and	is	not	shared	if	Copy	is	specified.

Example:

#	shell	by	wire	rotation	

polyline	w	0	0	0	10	0	0	10	5	0	5	5	0	5	15	0	0	15	0	

revol	s	w	20	0	0	0	1	0	90	

pipe

Syntax:

pipe	name	wire_spine	Profile	

Creates	a	new	shape	by	sweeping	a	shape	known	as	the	profile	along	a
wire	known	as	the	spine.

Example:

#	sweep	a	circle	along	a	bezier	curve	to	make	a	solid	

pipe	

beziercurve	spine	4	0	0	0	10	0	0	10	10	0	20	10	0	

mkedge	spine	spine	

wire	spine	spine	

circle	profile	0	0	0	1	0	0	2	

mkedge	profile	profile	

wire	profile	profile	

mkplane	profile	profile	

pipe	p	spine	profile	

mksweep,	addsweep,	setsweep,	deletesweep,
buildsweep,	simulsweep

Syntax:

mksweep	wire	

addsweep	wire[vertex][-M][-C]	[auxiilaryshape]

deletesweep	wire	

setsweep	options	[arg1	[arg2	[...]]]	

simulsweep	r	[n]	[option]	

buildsweep	[r]	[option]	[Tol]	

options	are	:

-FR	:	Tangent	and	Normal	are	defined	by	a	Frenet	trihedron
-CF	:	Tangent	is	given	by	Frenet,	the	Normal	is	computed	to
minimize	the	torsion
-DX	Surf	:	Tangent	and	Normal	are	given	by	Darboux	trihedron,	surf
must	be	a	shell	or	a	face
-CN	dx	dy	dz	:	BiNormal	is	given	by	dx	dy	dz
-FX	Tx	Ty	TZ	[Nx	Ny	Nz]	:	Tangent	and	Normal	are	fixed
-G	guide

These	commands	are	used	to	create	a	shape	from	wires.	One	wire	is
designated	as	the	contour	that	defines	the	direction;	it	is	called	the	spine.
At	least	one	other	wire	is	used	to	define	the	the	sweep	profile.

mksweep	–	initializes	the	sweep	creation	and	defines	the	wire	to	be
used	as	the	spine.
addsweep	–	defines	the	wire	to	be	used	as	the	profile.
deletesweep	–	cancels	the	choice	of	profile	wire,	without	leaving	the
mksweep	mode.	You	can	re-select	a	profile	wire.
setsweep	–	commands	the	algorithms	used	for	the	construction	of
the	sweep.
simulsweep	–	can	be	used	to	create	a	preview	of	the	shape.	[n]	is
the	number	of	sections	that	are	used	to	simulate	the	sweep.
buildsweep	–	creates	the	sweep	using	the	arguments	defined	by	all
the	commands.

Example:

#create	a	sweep	based	on	a	semi-circular	wire	using	

the	

Frenet	algorithm	

#create	a	circular	figure	

circle	c2	0	0	0	1	0	0	10	

trim	c2	c2	-pi/2	pi/2	

mkedge	e2	c2	

donly	e2	

wire	w	e2	

whatis	w	

mksweep	w	

#	to	display	all	the	options	for	a	sweep	

setsweep	

#to	create	a	sweep	using	the	Frenet	algorithm	where	

the	

#normal	is	computed	to	minimise	the	torsion	

setsweep	-CF	

addsweep	w	-R	

#	to	simulate	the	sweep	with	a	visual	approximation	

simulsweep	w	3	

thrusections

Syntax:

thrusections	[-N]	result	issolid	isruled	wire1	wire2	

[..wire..]	

thrusections	creates	a	shape	using	wires	that	are	positioned	in	different
planes.	Each	wire	selected	must	have	the	same	number	of	edges	and
vertices.	A	bezier	curve	is	generated	between	the	vertices	of	each	wire.
The	option	[-N]	means	that	no	check	is	made	on	wires	for	direction.

Example:

#create	three	wires	in	three	planes	

polyline	w1	0	0	0	5	0	0	5	5	0	2	3	0	

polyline	w2	0	1	3	4	1	3	4	4	3	1	3	3	

polyline	w3	0	0	5	5	0	5	5	5	5	2	3	5	

#	create	the	shape	

thrusections	th	issolid	isruled	w1	w2	w3	

==thrusections	th	issolid	isruled	w1	w2	w3	

Tolerances	obtenues			--	3d	:	0	

--	2d	:	0	

Topological	transformation
Transformations	are	applications	of	matrices.	When	the	transformation	is
nondeforming,	such	as	translation	or	rotation,	the	object	is	not	copied.
The	topology	localcoordinate	system	feature	is	used.	The	copy	can	be
enforced	with	the	tcopy	command.

tcopy	–	makes	a	copy	of	the	structure	of	a	shape.
ttranslate,	trotate,	tmove	and	reset	–	move	a	shape.
tmirror	and	tscale	–	always	modify	the	shape.

tcopy

Syntax:

tcopy	name	toname	[name	toname	...]	

Copies	the	structure	of	one	shape,	including	the	geometry,	into	another,
newer	shape.

Example:

#	create	an	edge	from	a	curve	and	copy	it	

beziercurve	c	3	0	0	0	10	0	0	20	10	0	

mkedge	e1	c	

ttranslate	e1	0	5	0	

tcopy	e1	e2	

ttranslate	e2	0	5	0	

#	now	modify	the	curve,	only	e1	and	e2	will	be	

modified	

tmove,	treset

Syntax:

tmove	name	[name	...]	shape	

reset	name	[name	...]	

tmove	and	reset	modify	the	location,	or	the	local	coordinate	system	of	a
shape.

tmove	applies	the	location	of	a	given	shape	to	other	shapes.	reset
restores	one	or	several	shapes	it	to	its	or	their	original	coordinate
system(s).

Example:

#	create	two	boxes	

box	b1	10	10	10	

box	b2	20	0	0	10	10	10	

#	translate	the	first	box	

ttranslate	b1	0	10	0	

#	and	apply	the	same	location	to	b2	

tmove	b2	b1	

#	return	to	original	positions	

reset	b1	b2	

ttranslate,	trotate

Syntax:

ttranslate	[name	...]	dx	dy	dz	

trotate	[name	...]	x	y	z	dx	dy	dz	angle	

ttranslate	translates	a	set	of	shapes	by	a	given	vector,	and	trotate
rotates	them	by	a	given	angle	around	an	axis.	Both	commands	only
modify	the	location	of	the	shape.	When	creating	multiple	shapes,	the
same	location	is	used	for	all	the	shapes.	(See	toto.tcl	example	below.
Note	that	the	code	of	this	file	can	also	be	directly	executed	in	interactive
mode.)

Locations	are	very	economic	in	the	data	structure	because	multiple
occurences	of	an	object	share	the	topological	description.

Example:

#	make	rotated	copies	of	a	sphere	in	between	two	

cylinders	

#	create	a	file	source	toto.tcl	

#	toto.tcl	code:	

for	{set	i	0}	{$i	<	360}	{incr	i	20}	{	

copy	s	s$i	

trotate	s$i	0	0	0	0	0	1	$i	

}	

#	create	two	cylinders	

pcylinder	c1	30	5	

copy	c1	c2	

ttranslate	c2	0	0	20	

#create	a	sphere	

psphere	s	3	

ttranslate	s	25	0	12.5	

#	call	the	source	file	for	multiple	copies	

source	toto.tcl	

tmirror,	tscale

Syntax:

tmirror	name	x	y	z	dx	dy	dz	

tscale	name	x	y	z	scale	

tmirror	makes	a	mirror	copy	of	a	shape	about	a	plane	x,y,z	dx,dy,dz.
Tscale	applies	a	central	homotopic	mapping	to	a	shape.

Example:

#	mirror	a	portion	of	cylinder	about	the	YZ	plane	

pcylinder	c1	10	10	270	

copy	c1	c2	

tmirror	c2	15	0	0	1	0	0	

#	and	scale	it	

tscale	c1	0	0	0	0.5	

Old	Topological	operations
fuse,	cut,	common	are	boolean	operations.
section,	psection	compute	sections.
sewing	joins	two	or	more	shapes.

fuse,	cut,	common

Syntax:

fuse	name	shape1	shape2	

cut	name	shape1	shape2	

common	name	shape1	shape2	

fuse	creates	a	new	shape	by	a	boolean	operation	on	two	existing
shapes.	The	new	shape	contains	both	originals	intact.

cut	creates	a	new	shape	which	contains	all	parts	of	the	second	shape
but	only	the	first	shape	without	the	intersection	of	the	two	shapes.

common	creates	a	new	shape	which	contains	only	what	is	in	common
between	the	two	original	shapes	in	their	intersection.

Example:

#	all	four	boolean	operations	on	a	box	and	a	cylinder	

box	b	0	-10	5	20	20	10	

pcylinder	c	5	20	

fuse	s1	b	c	

ttranslate	s1	40	0	0	

cut	s2	b	c	

ttranslate	s2	-40	0	0	

cut	s3	c	b	

ttranslate	s3	0	40	0	

common	s4	b	c	

ttranslate	s4	0	-40	0	

section,	psection

Syntax:

section	result	shape1	shape2	

psection	name	shape	plane	

section	creates	a	compound	object	consisting	of	the	edges	for	the
intersection	curves	on	the	faces	of	two	shapes.

psection	creates	a	planar	section	consisting	of	the	edges	for	the
intersection	curves	on	the	faces	of	a	shape	and	a	plane.

Example:

#	section	line	between	a	cylinder	and	a	box	

pcylinder	c	10	20	

box	b	0	0	5	15	15	15	

trotate	b	0	0	0	1	1	1	20	

section	s	b	c	

#	planar	section	of	a	cone	

pcone	c	10	30	30	

plane	p	0	0	15	1	1	2	

psection	s	c	p	

sewing

Syntax:

sewing	result	[tolerance]	shape1	shape2	...	

Sewing	joins	shapes	by	connecting	their	adjacent	or	near	adjacent
edges.	Adjacency	can	be	redefined	by	modifying	the	tolerance	value.

Example:

#	create	two	adjacent	boxes	

box	b	0	0	0	1	2	3	

box	b2	0	2	0	1	2	3	

sewing	sr	b	b2	

whatis	sr	

sr	is	a	shape	COMPOUND	FORWARD	Free	Modified	

New	Topological	operations
The	new	algorithm	of	Boolean	operations	avoids	a	large	number	of	weak
points	and	limitations	presented	in	the	old	boolean	operation	algorithm.

bparallelmode

bparallelmode	enable	or	disable	parallel	mode	for	boolean
operations.	Sequential	computing	is	used	by	default.

Syntax:

bparallelmode	[1/0]

Without	arguments,	bparallelmode	shows	current	state	of	parallel	mode
for	boolean	operations.

0	Disable	parallel	mode,
1	Enable	parallel	mode

Example:

#	Enable	parallel	mode	for	boolean	operations.

bparallelmode	1

#	Show	state	of	parallel	mode	for	boolean	operations.

bparallelmode

bop,	bopfuse,	bopcut,	boptuc,	bopcommon

bop	defines	shape1	and	shape2	subject	to	ulterior	Boolean
operations
bopfuse	creates	a	new	shape	by	a	boolean	operation	on	two
existing	shapes.	The	new	shape	contains	both	originals	intact.
bopcut	creates	a	new	shape	which	contains	all	parts	of	the	second
shape	but	only	the	first	shape	without	the	intersection	of	the	two
shapes.
boptuc	is	a	reverced	bopcut.

bopcommon	creates	a	new	shape	which	contains	only	whatever	is
in	common	between	the	two	original	shapes	in	their	intersection.

Syntax:

bop	shape1	shape2	

bopcommon	result	

bopfuse	result	

bopcut	result	

boptuc	result	

These	commands	have	short	variants:

bcommon	result	shape1	shape2	

bfuse	result	shape1	shape2	

bcut	result	shape1	shape2	

bop	fills	data	structure	(DS)	of	boolean	operation	for	shape1	and	shape2.
bopcommon,	bopfuse,	bopcut,	boptuc	commands	are	used	after	bop
command.	After	one	bop	command	it	is	possible	to	call	several
commands	from	the	list	above.	For	example:

bop	S1	S2

bopfuse	R

Example:

Let	us	produce	all	four	boolean	operations	on	a	box	and	a	cylinder:

box	b	0	-10	5	20	20	10	

pcylinder	c	5	20	

#	fills	data	structure	

bop	b	c	

bopfuse	s1	

ttranslate	s1	40	0	0	

bopcut	s2	

ttranslate	s2	-40	0	0	

boptuc	s3	

ttranslate	s3	0	40	0	

bopcommon	s4	

ttranslate	s4	0	-40	0	

Now	use	short	variants	of	the	commands:

bfuse	s11	b	c	

ttranslate	s11	40	0	100	

bcut	s12	b	c	

ttranslate	s12	-40	0	100	

bcommon	s14	b	c	

ttranslate	s14	0	-40	100	

bopsection

Syntax:

bop	shape1	shape2	

bopsection	result	

bopsection	–	creates	a	compound	object	consisting	of	the	edges	for
the	intersection	curves	on	the	faces	of	two	shapes.
bop	–	fills	data	structure	(DS)	of	boolean	operation	for	shape1	and
shape2.
bopsection	–	is	used	after	bop	command.

Short	variant	syntax:

bsection	result	shape1	shape2	[-2d/-2d1/-2s2]	[-a]	

-2d	–	PCurves	are	computed	on	both	parts.
-2d1	–	PCurves	are	computed	on	first	part.
-2d2	–	PCurves	are	computed	on	second	part.

-a	–	built	geometries	are	approximated.

Example:

Let	us	build	a	section	line	between	a	cylinder	and	a	box

pcylinder	c	10	20	

box	b	0	0	5	15	15	15	

trotate	b	0	0	0	1	1	1	20	

bop	b	c	

bopsection	s	

#	Short	variant:	

bsection	s2	b	c	

bopcheck,	bopargshape

Syntax:

bopcheck	shape	

bopargcheck	shape1	[[shape2]	[-F/O/C/T/S/U]	

[/R|F|T|V|E|I|P]]	[#BF]	

bopcheck	checks	a	shape	for	self-interference.

bopargcheck	checks	the	validity	of	argument(s)	for	boolean	operations.

Boolean	Operation	–	(by	default	a	section	is	made)	:
F	(fuse)
O	(common)
C	(cut)
T	(cut21)
S	(section)
U	(unknown)

Test	Options	–	(by	default	all	options	are	enabled)	:
R	(disable	small	edges	(shrink	range)	test)
F	(disable	faces	verification	test)
T	(disable	tangent	faces	searching	test)
V	(disable	test	possibility	to	merge	vertices)
E	(disable	test	possibility	to	merge	edges)
I	(disable	self-interference	test)

P	(disable	shape	type	test)
Additional	Test	Options	:

B	(stop	test	on	first	faulty	found)	–	by	default	it	is	off;
F	(full	output	for	faulty	shapes)	–	by	default	the	output	is	made	in
a	short	format.

Note	that	Boolean	Operation	and	Test	Options	are	used	only	for	a	couple
of	argument	shapes,	except	for	I	and	P	options	that	are	always	used	to
test	a	couple	of	shapes	as	well	as	a	single	shape.

Example:

#	checks	a	shape	on	self-interference	

box	b1	0	0	0	1	1	1	

bopcheck	b1	

#	checks	the	validity	of	argument	for	boolean	cut	

operations	

box	b2	0	0	0	10	10	10	

bopargcheck	b1	b2	-C	

Drafting	and	blending
Drafting	is	creation	of	a	new	shape	by	tilting	faces	through	an	angle.

Blending	is	the	creation	of	a	new	shape	by	rounding	edges	to	create	a
fillet.

Use	the	depouille	command	for	drafting.
Use	the	chamf	command	to	add	a	chamfer	to	an	edge
Use	the	blend	command	for	simple	blending.
Use	bfuseblend	for	a	fusion	+	blending	operation.
Use	bcutblend	for	a	cut	+	blending	operation.
Use	buildevol,	mkevol,	updatevol	to	realize	varying	radius
blending.

depouille

Syntax:

dep	result	shape	dirx	diry	dirz	face	angle	x	y	x	dx	

dy	dz	[face	angle...]	

Creates	a	new	shape	by	drafting	one	or	more	faces	of	a	shape.

Identify	the	shape(s)	to	be	drafted,	the	drafting	direction,	and	the	face(s)
with	an	angle	and	an	axis	of	rotation	for	each	face.	You	can	use	dot
syntax	to	identify	the	faces.

Example:

#	draft	a	face	of	a	box	

box	b	10	10	10	

explode	b	f	

==	b_1	b_2	b_3	b_4	b_5	b_6	

dep	a	b	0	0	1	b_2	10	0	10	0	1	0	5	

chamf

Syntax:

chamf	newname	shape	edge	face	S	dist	

chamf	newname	shape	edge	face	dist1	dist2	

chamf	newname	shape	edge	face	A	dist	angle	

Creates	a	chamfer	along	the	edge	between	faces	using:

a	equal	distances	from	the	edge
the	edge,	a	face	and	distance,	a	second	distance
the	edge,	a	reference	face	and	an	angle

Use	the	dot	syntax	to	select	the	faces	and	edges.

Examples:

Let	us	create	a	chamfer	based	on	equal	distances	from	the	edge	(45
degree	angle):

#	create	a	box	

box	b	1	2	3	

chamf	ch	b	.	.	S	0.5	

==Pick	an	object	

#	select	an	edge	

==Pick	an	object	

#	select	an	adjacent	face	

Let	us	create	a	chamfer	based	on	different	distances	from	the	selected
edge:

box	b	1	2	3	

chamf	ch	b	.	.	0.3	0.4	

==Pick	an	object	

#	select	an	edge	

==Pick	an	object	

#	select	an	adjacent	face

Let	us	create	a	chamfer	based	on	a	distance	from	the	edge	and	an	angle:

box	b	1	2	3	

chamf	ch	b	.	.	A	0.4	30	

==Pick	an	object	

#	select	an	edge	

==Pick	an	object	

#	select	an	adjacent	face	

blend

Syntax:

blend	result	object	rad1	ed1	rad2	ed2	...	[R/Q/P]	

Creates	a	new	shape	by	filleting	the	edges	of	an	existing	shape.	The
edge	must	be	inside	the	shape.	You	may	use	the	dot	syntax.	Note	that
the	blend	is	propagated	to	the	edges	of	tangential	planar,	cylindrical	or
conical	faces.

Example:

#	blend	a	box,	click	on	an	edge	

box	b	20	20	20	

blend	b	b	2	.	

==tolerance	ang	:	0.01	

==tolerance	3d	:	0.0001	

==tolerance	2d	:	1e-05	

==fleche	:	0.001	

==tolblend	0.01	0.0001	1e-05	0.001	

==Pick	an	object	

#	click	on	the	edge	you	want	ot	fillet	

==COMPUTE:	temps	total	0.1s	dont	:	

==-	Init	+	ExtentAnalyse	0s	

==-	PerformSetOfSurf	0.02s	

==-	PerformFilletOnVertex	0.02s	

==-	FilDS	0s	

==-	Reconstruction	0.06s	

==-	SetRegul	0s	

bfuseblend

Syntax:

bfuseblend	name	shape1	shape2	radius	[-d]

Creates	a	boolean	fusion	of	two	shapes	and	then	blends	(fillets)	the
intersection	edges	using	the	given	radius.	Option	[-d]	enables	the
Debugging	mode	in	which	the	error	messages,	if	any,	will	be	printed.

Example:

#	fuse-blend	two	boxes

box	b1	20	20	5

copy	b1	b2

ttranslate	b2	-10	10	3

bfuseblend	a	b1	b2	1

bcutblend

Syntax:

bcutblend	name	shape1	shape2	radius	[-d]

Creates	a	boolean	cut	of	two	shapes	and	then	blends	(fillets)	the
intersection	edges	using	the	given	radius.	Option	[-d]	enables	the
Debugging	mode	in	which	the	error	messages,	if	any,	will	be	printed.

Example:

#	cut-blend	two	boxes

box	b1	20	20	5

copy	b1	b2

ttranslate	b2	-10	10	3

bcutblend	a	b1	b2	1

mkevol,	updatevol,	buildevol

Syntax:

mkevol	result	object	(then	use	updatevol)	[R/Q/P]	

updatevol	edge	u1	radius1	[u2	radius2	...]	

buildevol	

These	three	commands	work	together	to	create	fillets	with	evolving	radii.

mkevol	allows	specifying	the	shape	and	the	name	of	the	result.	It
returns	the	tolerances	of	the	fillet.
updatevol	allows	describing	the	filleted	edges	you	want	to	create.
For	each	edge,	you	give	a	set	of	coordinates:	parameter	and	radius
and	the	command	prompts	you	to	pick	the	edge	of	the	shape	which
you	want	to	modify.	The	parameters	will	be	calculated	along	the
edges	and	the	radius	function	applied	to	the	whole	edge.
buildevol	produces	the	result	described	previously	in	mkevol	and
updatevol.

Example:

#	makes	an	evolved	radius	on	a	box	

box	b	10	10	10	

mkevol	b	b	

==tolerance	ang	:	0.01	

==tolerance	3d	:	0.0001	

==tolerance	2d	:	1e-05	

==fleche	:	0.001	

==tolblend	0.01	0.0001	1e-05	0.001	

#	click	an	edge	

updatevol	.	0	1	1	3	2	2	

==Pick	an	object	

buildevol	

==Dump	of	SweepApproximation	

==Error	3d	=	1.28548881203818e-14	

==Error	2d	=	1.3468326936926e-14	,	

==1.20292299999388e-14	

==2	Segment(s)	of	degree	3	

==COMPUTE:	temps	total	0.91s	dont	:	

==-	Init	+	ExtentAnalyse	0s	

==-	PerformSetOfSurf	0.33s	

==-	PerformFilletOnVertex	0.53s	

==-	FilDS	0.01s	

==-	Reconstruction	0.04s	

==-	SetRegul	0s	

Analysis	of	topology	and	geometry
Analysis	of	shapes	includes	commands	to	compute	length,	area,	volumes
and	inertial	properties,	as	well	as	to	compute	some	aspects	impacting
shape	validity.

Use	lprops,	sprops,	vprops	to	compute	integral	properties.
Use	bounding	to	display	the	bounding	box	of	a	shape.
Use	distmini	to	calculate	the	minimum	distance	between	two
shapes.
Use	xdistef,	xdistcs,	xdistcc,	xdistc2dc2dss,	xdistcc2ds	to	check
the	distance	between	two	objects	on	even	grid.
Use	checkshape	to	check	validity	of	the	shape.
Use	tolsphere	to	see	the	tolerance	spheres	of	all	vertices	in	the
shape.
Use	validrange	to	check	range	of	an	edge	not	covered	by	vertices.

lprops,	sprops,	vprops

Syntax:

lprops	shape	

sprops	shape	

vprops	shape	

lprops	computes	the	mass	properties	of	all	edges	in	the	shape	with
a	linear	density	of	1;
sprops	of	all	faces	with	a	surface	density	of	1;
vprops	of	all	solids	with	a	density	of	1.

All	three	commands	print	the	mass,	the	coordinates	of	the	center	of
gravity,	the	matrix	of	inertia	and	the	moments.	Mass	is	either	the	length,
the	area	or	the	volume.	The	center	and	the	main	axis	of	inertia	are
displayed.

Example:

#	volume	of	a	cylinder	

pcylinder	c	10	20	

vprops	c	

==	results	

Mass	:	6283.18529981086	

Center	of	gravity	:	

X	=	4.1004749224903e-06	

Y	=	-2.03392858349861e-16	

Z	=	9.9999999941362	

Matrix	of	Inertia	:	

366519.141445068																				

5.71451850691484e-12	

0.257640437382627	

5.71451850691484e-12																366519.141444962	

2.26823064169991e-10																0.257640437382627	

2.26823064169991e-10																314159.265358863	

Moments	:	

IX	=	366519.141446336	

IY	=	366519.141444962	

I.Z	=	314159.265357595	

bounding

Syntax:

bounding	shape	

Displays	the	bounding	box	of	a	shape.	The	bounding	box	is	a	cuboid
created	with	faces	parallel	to	the	x,	y,	and	z	planes.	The	command
returns	the	dimension	values	of	the	the	box,	xmin	ymin	zmin	xmax	ymax
zmax.

Example:

#	bounding	box	of	a	torus	

ptorus	t	20	5	

bounding	t	

==-27.059805107309852														

-27.059805107309852	-	

5.0000001000000003	

==27.059805107309852															27.059805107309852	

5.0000001000000003	

distmini

Syntax:

distmini	name	Shape1	Shape2	

Calculates	the	minimum	distance	between	two	shapes.	The	calculation
returns	the	number	of	solutions,	If	more	than	one	solution	exists.	The
options	are	displayed	in	the	viewer(red)	and	the	results	are	listed	in	the
shell	window.	The	distmini	lines	are	considered	as	shapes	which	have	a
value	v.

Example:

box	b	0	0	0	10	20	30	

box	b2	30	30	0	10	20	30	

distmini	d1	b	b2	

==the	distance	value	is	:	22.3606797749979	

==the	number	of	solutions	is	:2	

==solution	number	1	

==the	type	of	the	solution	on	the	first	shape	is	0	

==the	type	of	the	solution	on	the	second	shape	is	0	

==the	coordinates	of	the	point	on	the	first	shape	

are:	

==X=10	Y=20	Z=30	

==the	coordinates	of	the	point	on	the	second	shape	

are:	

==X=30	Y=30	Z=30	

==solution	number	2:	

==the	type	of	the	solution	on	the	first	shape	is	0	

==the	type	of	the	solution	on	the	second	shape	is	0	

==the	coordinates	of	the	point	on	the	first	shape	

are:	

==X=10	Y=20	Z=0	

==the	coordinates	of	the	point	on	the	second	shape	

are:	

==X=30	Y=30	Z=0	

==d1_val	d1	d12	

xdistef,	xdistcs,	xdistcc,	xdistc2dc2dss,	xdistcc2ds

Syntax:

xdistef	edge	face

xdistcs	curve	surface	firstParam	lastParam	

[NumberOfSamplePoints]

xdistcc	curve1	curve2	startParam	finishParam	

[NumberOfSamplePoints]

xdistcc2ds	c	curve2d	surf	startParam	finishParam	

[NumberOfSamplePoints]

xdistc2dc2dss	curve2d_1	curve2d_2	surface_1	surface_2	

startParam	finishParam	[NumberOfSamplePoints]

It	is	assumed	that	curves	have	the	same	parametrization	range	and
startParam	is	less	than	finishParam.

Commands	with	prefix	xdist	allow	checking	the	distance	between	two
objects	on	even	grid:

xdistef	–	distance	between	edge	and	face;
xdistcs	–	distance	between	curve	and	surface.	This	means	that	the
projection	of	each	sample	point	to	the	surface	is	computed;
xdistcc	–	distance	between	two	3D	curves;
xdistcc2ds	–	distance	between	3d	curve	and	2d	curve	on	surface;
xdistc2dc2dss	–	distance	between	two	2d	curves	on	surface.

Examples

bopcurves	b1	b2	-2d	

mksurf	s1	b1

mksurf	s2	b2

xdistcs	c_1	s1	0	1	100

xdistcc2ds	c_1	c2d2_1	s2	0	1

xdistc2dc2dss	c2d1_1	c2d2_1	s1	s2	0	1	1000

checkshape

Syntax:

checkshape	[-top]	shape	[result]	[-short]	

Where:

top	–	optional	parameter,	which	allows	checking	only	topological
validity	of	a	shape.
shape	–	the	only	required	parameter	which	represents	the	name	of
the	shape	to	check.
result	–	optional	parameter	which	is	the	prefix	of	the	output	shape
names.
short	–	a	short	description	of	the	check.

checkshape	examines	the	selected	object	for	topological	and	geometric
coherence.	The	object	should	be	a	three	dimensional	shape.

Example:

#	checkshape	returns	a	comment	valid	or	invalid	

box	b1	0	0	0	1	1	1	

checkshape	b1	

#	returns	the	comment	

this	shape	seems	to	be	valid	

tolsphere

Syntax:

tolsphere	shape

Where:

shape	–	the	name	of	the	shape	to	process.

tolsphere	shows	vertex	tolerances	by	drawing	spheres	around	each
vertex	in	the	shape.	Each	sphere	is	assigned	a	name	of	the	shape	with
suffix	"_vXXX",	where	XXX	is	the	number	of	the	vertex	in	the	shape.

Example:

#	tolsphere	returns	all	names	of	created	spheres.

box	b1	0	0	0	1	1	1	

settolerance	b1	0.05

tolsphere	b1

#	creates	spheres	and	returns	the	names

b1_v1	b1_v2	b1_v3	b1_v4	b1_v5	b1_v6	b1_v7	b1_v8

validrange

Syntax:

validrange	edge	[(out)	u1	u2]

Where:

edge	–	the	name	of	the	edge	to	analyze.
u1,	u2	–	optional	names	of	variables	to	put	the	range	into.

validrange	computes	valid	range	of	the	edge.	If	u1	and	u2	are	not	given
it	returns	first	and	last	parameters.	Otherwise,	it	sets	the	variables	u1	and
u2.

Example:

circle	c	0	0	0	10

mkedge	e	c

mkedge	e	c	0	pi

validrange	e

#	returns	the	range

1.9884375000000002e-008	3.1415926337054181

validrange	e	u1	u2

dval	u1

1.9884375000000002e-008

dval	u2

3.1415926337054181

Surface	creation
Surface	creation	commands	include	surfaces	created	from	boundaries
and	from	spaces	between	shapes.

gplate	creates	a	surface	from	a	boundary	definition.
filling	creates	a	surface	from	a	group	of	surfaces.

gplate,

Syntax:

gplate	result	nbrcurfront	nbrpntconst	[SurfInit]	

[edge	0]	[edge	tang	(1:G1;2:G2)	surf]...[point]	

[u	v	tang	(1:G1;2:G2)	surf]	...	

Creates	a	surface	from	a	defined	boundary.	The	boundary	can	be	defined
using	edges,	points,	or	other	surfaces.

Example:

plane	p	

trim	p	p	-1	3	-1	3	

mkface	p	p	

beziercurve	c1	3	0	0	0	1	0	1	2	0	0	

mkedge	e1	c1	

tcopy	e1	e2	

tcopy	e1	e3	

ttranslate	e2	0	2	0	

trotate	e3	0	0	0	0	0	1	90	

tcopy	e3	e4	

ttranslate	e4	2	0	0	

#	create	the	surface	

gplate	r1	4	0	p	e1	0	e2	0	e3	0	e4	0	

==	

========	Results	===========	

DistMax=8.50014503228635e-16	

*	GEOMPLATE	END*	

Calculation	time:	0.33	

Loop	number:	1	

Approximation	results	

Approximation	error	:	2.06274907619957e-13	

Criterium	error	:	4.97600631215754e-14	

#to	create	a	surface	defined	by	edges	and	passing	

through	a	point	

#	to	define	the	border	edges	and	the	point	

plane	p	

trim	p	p	-1	3	-1	3	

mkface	p	p	

beziercurve	c1	3	0	0	0	1	0	1	2	0	0	

mkedge	e1	c1	

tcopy	e1	e2	

tcopy	e1	e3	

ttranslate	e2	0	2	0	

trotate	e3	0	0	0	0	0	1	90	

tcopy	e3	e4	

ttranslate	e4	2	0	0	

#	to	create	a	point	

point	pp	1	1	0	

#	to	create	the	surface	

gplate	r2	4	1	p	e1	0	e2	0	e3	0	e4	0	pp	

==	

========	Results	===========	

DistMax=3.65622157610934e-06	

*	GEOMPLATE	END*	

Calculculation	time:	0.27	

Loop	number:	1	

Approximation	results	

Approximation	error	:	0.000422195884750181	

Criterium	error	:	3.43709808053967e-05	

filling,	fillingparam

Syntax:

filling	result	nbB	nbC	nbP	[SurfInit]	[edge]

[face]order...	

edge[face]order...	point/u	v	face	order...	

Creates	a	surface	between	borders.	This	command	uses	the	gplate
algorithm	but	creates	a	surface	that	is	tangential	to	the	adjacent	surfaces.
The	result	is	a	smooth	continuous	surface	based	on	the	G1	criterion.

To	define	the	surface	border:

enter	the	number	of	edges,	constraints,	and	points
enumerate	the	edges,	constraints	and	points

The	surface	can	pass	through	other	points.	These	are	defined	after	the
border	definition.

You	can	use	the	fillingparam	command	to	access	the	filling	parameters.

The	options	are:

-l	:	to	list	current	values
-i	:	to	set	default	values
-rdeg	nbPonC	nbIt	anis	:	to	set	filling	options
-c	t2d	t3d	tang	tcur	:	to	set	tolerances
-a	maxdeg	maxseg	:	Approximation	option

Example:

#	to	create	four	curved	survaces	and	a	point	

plane	p	

trim	p	p	-1	3	-1	3	

mkface	p	p	

beziercurve	c1	3	0	0	0	1	0	1	2	0	0	

mkedge	e1	c1	

tcopy	e1	e2	

tcopy	e1	e3	

ttranslate	e2	0	2	0	

trotate	e3	0	0	0	0	0	1	90	

tcopy	e3	e4	

ttranslate	e4	2	0	0	

point	pp	1	1	0	

prism	f1	e1	0	-1	0	

prism	f2	e2	0	1	0	

prism	f3	e3	-1	0	0	

prism	f4	e4	1	0	0	

#	to	create	a	tangential	surface	

filling	r1	4	0	0	p	e1	f1	1	e2	f2	1	e3	f3	1	e4	f4	1	

#	to	create	a	tangential	surface	passing	through	

point	pp	

filling	r2	4	0	1	p	e1	f1	1	e2	f2	1	e3	f3	1	e4	f4	1	

pp#	

#	to	visualise	the	surface	in	detail	

isos	r2	40	

#	to	display	the	current	filling	parameters	

fillingparam	-l	

==	

Degree	=	3	

NbPtsOnCur	=	10	

NbIter	=	3	

Anisotropie	=	0	

Tol2d	=	1e-05	

Tol3d	=	0.0001	

TolAng	=	0.01	

TolCurv	=	0.1	

MaxDeg	=	8	

MaxSegments	=	9	

Complex	Topology
Complex	topology	is	the	group	of	commands	that	modify	the	topology	of
shapes.	This	includes	feature	modeling.

offsetshape,	offsetcompshape

Syntax:

offsetshape	r	shape	offset	[tol]	[face	...]	

offsetcompshape	r	shape	offset	[face	...]	

offsetshape	and	offsetcompshape	assign	a	thickness	to	the	edges	of	a
shape.	The	offset	value	can	be	negative	or	positive.	This	value	defines
the	thickness	and	direction	of	the	resulting	shape.	Each	face	can	be
removed	to	create	a	hollow	object.

The	resulting	shape	is	based	on	a	calculation	of	intersections.	In	case	of
simple	shapes	such	as	a	box,	only	the	adjacent	intersections	are	required
and	you	can	use	the	offsetshape	command.

In	case	of	complex	shapes,	where	intersections	can	occur	from	non-
adjacent	edges	and	faces,	use	the	offsetcompshape	command.	comp
indicates	complete	and	requires	more	time	to	calculate	the	result.

The	opening	between	the	object	interior	and	exterior	is	defined	by	the
argument	face	or	faces.

Example:

box	b1	10	20	30	

explode	b1	f	

==	b1_1	b1_2	b1_3	b1_4	b1_5	b1_6	

offsetcompshape	r	b1	-1	b1_3	

featprism,	featdprism,	featrevol,	featlf,	featrf

Syntax:

featprism	shape	element	skface	Dirx	Diry	Dirz	

Fuse(0/1/2)	Modify(0/1)	

featdprism	shape	face	skface	angle	Fuse(0/1/2)	

Modify(0/1)	

featrevol	shape	element	skface	Ox	Oy	Oz	Dx	Dy	Dz	

Fuse(0/1/2)	Modify(0/1)	

featlf	shape	wire	plane	DirX	DirY	DirZ	DirX	DirY	DirZ	

Fuse(0/1/2)	Modify(0/1)	

featrf	shape	wire	plane	X	Y	Z	DirX	DirY	DirZ	Size	

Size	Fuse(0/1/2)	Modify(0/1)	

featperform	prism/revol/pipe/dprism/lf	result	

[[Ffrom]	Funtil]	

featperformval	prism/revol/dprism/lf	result	value	

featprism	loads	the	arguments	for	a	prism	with	contiguous	sides	normal
to	the	face.

featdprism	loads	the	arguments	for	a	prism	which	is	created	in	a
direction	normal	to	the	face	and	includes	a	draft	angle.

featrevol	loads	the	arguments	for	a	prism	with	a	circular	evolution.

featlf	loads	the	arguments	for	a	linear	rib	or	slot.	This	feature	uses	planar
faces	and	a	wire	as	a	guideline.

featrf	loads	the	arguments	for	a	rib	or	slot	with	a	curved	surface.	This
feature	uses	a	circular	face	and	a	wire	as	a	guideline.

featperform	loads	the	arguments	to	create	the	feature.

featperformval	uses	the	defined	arguments	to	create	a	feature	with	a
limiting	value.

All	the	features	are	created	from	a	set	of	arguments	which	are	defined
when	you	initialize	the	feature	context.	Negative	values	can	be	used	to
create	depressions.

Examples:

Let	us	create	a	feature	prism	with	a	draft	angle	and	a	normal	direction	:

#	create	a	box	with	a	wire	contour	on	the	upper	face	

box	b	1	1	1	

profil	f	O	0	0	1	F	0.25	0.25	x	0.5	y	0.5	x	-0.5	

explode	b	f	

#	loads	the	feature	arguments	defining	the	draft	

angle	

featdprism	b	f	b_6	5	1	0	

#	create	the	feature	

featperformval	dprism	r	1	

==BRepFeat_MakeDPrism::Perform(Height)	

BRepFeat_Form::GlobalPerform	()	

	Gluer	

	still	Gluer	

	Gluer	result	

Let	us	create	a	feature	prism	with	circular	direction	:

#	create	a	box	with	a	wire	contour	on	the	upper	face	

box	b	1	1	1	

profil	f	O	0	0	1	F	0.25	0.25	x	0.5	y	0.5	x	-0.5	

explode	b	f	

#	loads	the	feature	arguments	defining	a	rotation	

axis	

featrevol	b	f	b_6	1	0	1	0	1	0	1	0	

featperformval	revol	r	45	

==BRepFeat_MakeRevol::Perform(Angle)	

BRepFeat_Form::GlobalPerform	()	

	Gluer	

	still	Gluer	

	Gluer	result	

Let	us	create	a	slot	using	the	linear	feature	:

#create	the	base	model	using	the	multi	viewer	

mu4	

profile	p	x	5	y	1	x	-3	y	-0.5	x	-1.5	y	0.5	x	0.5	y	4	

x	-1	y	-5	

prism	pr	p	0	0	1	

#	create	the	contour	for	the	linear	feature	

vertex	v1	-0.2	4	0.3	

vertex	v2	0.2	4	0.3	

vertex	v3	0.2	0.2	0.3	

vertex	v4	4	0.2	0.3	

vertex	v5	4	-0.2	0.3	

edge	e1	v1	v2	

edge	e2	v2	v3	

edge	e3	v3	v4	

edge	e4	v4	v5	

wire	w	e1	e2	e3	e4	

#	define	a	plane	

plane	pl	0.2	0.2	0.3	0	0	1	

#	loads	the	linear	feature	arguments	

featlf	pr	w	pl	0	0	0.3	0	0	0	0	1	

featperform	lf	result	

Let	us	create	a	rib	using	the	revolution	feature	:

#create	the	base	model	using	the	multi	viewer	

mu4	

pcylinder	c1	3	5	

#	create	the	contour	for	the	revolution	feature	

profile	w	c	1	190	WW	

trotate	w	0	0	0	1	0	0	90	

ttranslate	w	-3	0	1	

trotate	w	-3	0	1.5	0	0	1	180	

plane	pl	-3	0	1.5	0	1	0	

#	loads	the	revolution	feature	arguments	

featrf	c1	w	pl	0	0	0	0	0	1	0.3	0.3	1	1	

featperform	rf	result	

draft

Syntax:

draft	result	shape	dirx	diry	dirz	angle	

shape/surf/length	[-IN/-OUT]	[Ri/Ro]	[-Internal]	

Computes	a	draft	angle	surface	from	a	wire.	The	surface	is	determined
by	the	draft	direction,	the	inclination	of	the	draft	surface,	a	draft	angle,
and	a	limiting	distance.

The	draft	angle	is	measured	in	radians.
The	draft	direction	is	determined	by	the	argument	-INTERNAL
The	argument	Ri/Ro	deftermines	wether	the	corner	edges	of	the
draft	surfaces	are	angular	or	rounded.
Arguments	that	can	be	used	to	define	the	surface	distance	are:

length,	a	defined	distance
shape,	until	the	surface	contacts	a	shape
surface,	until	the	surface	contacts	a	surface.

Note	that	the	original	aim	of	adding	a	draft	angle	to	a	shape	is	to	produce
a	shape	which	can	be	removed	easily	from	a	mould.	The	Examples
below	use	larger	angles	than	are	used	normally	and	the	calculation
results	returned	are	not	indicated.

Example:

#	to	create	a	simple	profile	

profile	p	F	0	0	x	2	y	4	tt	0	4	w	

#	creates	a	draft	with	rounded	angles	

draft	res	p	0	0	1	3	1	-Ro	

#	to	create	a	profile	with	an	internal	angle	

profile	p	F	0	0	x	2	y	4	tt	1	1.5	tt	0	4	w	

#	creates	a	draft	with	rounded	external	angles	

draft	res	p	0	0	1	3	1	-Ro	

deform

Syntax:

deform	newname	name	CoeffX	CoeffY	CoeffZ

Modifies	the	shape	using	the	x,	y,	and	z	coefficients.	You	can	reduce	or
magnify	the	shape	in	the	x,y,	and	z	directions.

Example:

pcylinder	c	20	20	

deform	a	c	1	3	5	

#	the	conversion	to	bspline	is	followed	by	the	

deformation	

nurbsconvert

Syntax:

nurbsconvert	result	name	[result	name]	

Changes	the	NURBS	curve	definition	of	a	shape	to	a	Bspline	curve
definition.	This	conversion	is	required	for	assymetric	deformation	and
prepares	the	arguments	for	other	commands	such	as	deform.	The
conversion	can	be	necessary	when	transferring	shape	data	to	other
applications.

edgestofaces

edgestofaces	-	The	command	allows	building	planar	faces	from	the
planar	edges	randomly	located	in	3D	space.

It	has	the	following	syntax:

edgestofaces	r_faces	edges	[-a	AngTol	-s	Shared(0/1)]

Options:

-a	AngTol	-	angular	tolerance	used	for	distinguishing	the	planar
faces;
-s	Shared(0/1)	-	boolean	flag	which	defines	whether	the	input	edges
are	already	shared	or	have	to	be	intersected.

Texture	Mapping	to	a	Shape
Texture	mapping	allows	you	to	map	textures	on	a	shape.	Textures	are
texture	image	files	and	several	are	predefined.	You	can	control	the
number	of	occurrences	of	the	texture	on	a	face,	the	position	of	a	texture
and	the	scale	factor	of	the	texture.

vtexture

Syntax:

vtexture	NameOfShape	TextureFile	

vtexture	NameOfShape	

vtexture	NameOfShape	?	

vtexture	NameOfShape	IdOfTexture	

TextureFile	identifies	the	file	containing	the	texture	you	want.	The	same
syntax	without	TextureFile	disables	texture	mapping.	The	question-mark
?	lists	available	textures.	IdOfTexture	allows	applying	predefined
textures.

vtexscale

Syntax:

vtexscale	NameOfShape	ScaleU	ScaleV	

vtexscale	NameOfShape	ScaleUV	

vtexscale	NameOfShape	

ScaleU	and	Scale	V	allow	scaling	the	texture	according	to	the	U	and	V
parameters	individually,	while	ScaleUV	applies	the	same	scale	to	both
parameters.

The	syntax	without	ScaleU,	ScaleV	or	ScaleUV	disables	texture	scaling.

vtexorigin

Syntax:

vtexorigin	NameOfShape	UOrigin	VOrigin	

vtexorigin	NameOfShape	UVOrigin	

vtexorigin	NameOfShape	

UOrigin	and	VOrigin	allow	placing	the	texture	according	to	the	U	and	V
parameters	individually,	while	UVOrigin	applies	the	same	position	value
to	both	parameters.

The	syntax	without	UOrigin,	VOrigin	or	UVOrigin	disables	origin
positioning.

vtexrepeat

Syntax:

vtexrepeat	NameOfShape	URepeat	VRepeat	

vtexrepeat	NameOfShape	UVRepeat	

vtexrepeat	NameOfShape	

URepeat	and	VRepeat	allow	repeating	the	texture	along	the	U	and	V
parameters	individually,	while	UVRepeat	applies	the	same	number	of
repetitions	for	both	parameters.

The	same	syntax	without	URepeat,	VRepeat	or	UVRepeat	disables
texture	repetition.

vtexdefault

Syntax:

vtexdefault	NameOfShape	

Vtexdefault	sets	or	resets	the	texture	mapping	default	parameters.

The	defaults	are:

URepeat	=	VRepeat	=	1	no	repetition
UOrigin	=	VOrigin	=	1	origin	set	at	(0,0)
UScale	=	VScale	=	1	texture	covers	100%	of	the	face

General	Fuse	Algorithm	commands
This	chapter	describes	existing	commands	of	Open	CASCADE	Draw
Test	Harness	that	are	used	for	debugging	of	General	Fuse	Algorithm
(GFA).	It	is	also	applicable	for	all	General	Fuse	based	algorithms	such	as
Boolean	Operations	Algorithm	(BOA),	Splitter	Algorithm	(SPA),	Cells
Builder	Algorithm	etc.

See	Boolean	operations	user's	guide	for	the	description	of	these
algorithms.

Definitions
The	following	terms	and	definitions	are	used	in	this	document:

Objects	–	list	of	shapes	that	are	arguments	of	the	algorithm.
Tools	–	list	of	shapes	that	are	arguments	of	the	algorithm.	Difference
between	Objects	and	Tools	is	defined	by	specific	requirements	of	the
operations	(Boolean	Operations,	Splitting	Operation).
DS	–	internal	data	structure	used	by	the	algorithm	(BOPDS_DS
object).
PaveFiller	–	intersection	part	of	the	algorithm	(BOPAlgo_PaveFiller
object).
Builder	–	builder	part	of	the	algorithm	(BOPAlgo_Builder	object).
IDS	Index	–	the	index	of	the	vector	myLines.

General	commands
bclearobjects	–	clears	the	list	of	Objects;
bcleartools	–	clears	the	list	of	Tools;
baddobjects	S1	S2...Sn	–	adds	shapes	S1,	S2,	...	Sn	as	Objects;
baddtools	S1	S2...Sn	–	adds	shapes	S1,	S2,	...	Sn	as	Tools;
bfillds	–	performs	the	Intersection	Part	of	the	Algorithm;
bbuild	r	–	performs	the	Building	Part	of	the	Algorithm	(General	Fuse
operation);	r	is	the	resulting	shape;
bsplit	r	–	performs	the	Splitting	operation;	r	is	the	resulting	shape;
bbop	r	iOp	–	performs	the	Boolean	operation;	r	is	the	resulting
shape;	iOp	-	type	of	the	operation	(0	-	COMMON;	1	-	FUSE;	2	-	CUT;
3	-	CUT21;	4	-	SECTION);
bcbuild	rx	–	performs	initialization	of	the	Cells	Builder	algorithm	(see
Usage	of	the	Cells	Builder	algorithm	for	more	details).

Commands	for	Intersection	Part
All	commands	listed	below	are	available	when	the	Intersection	Part	of	the
algorithm	is	done	(i.e.	after	the	command	bfillds).

bopds

Syntax:

bopds	-v	[e,	f]	

Displays:

all	BRep	shapes	of	arguments	that	are	in	the	DS	[default];
-v	:	only	vertices	of	arguments	that	are	in	the	DS;
-e	:	only	edges	of	arguments	that	are	in	the	DS;
-f	:	only	faces	of	arguments	that	are	in	the	DS.

bopdsdump

Prints	contents	of	the	DS.

Example:

Draw[28]>	bopdsdump

***	DS	***

Ranges:2											number	of	ranges

range:	0	33								indices	for	range	1

range:	34	67							indices	for	range	2

Shapes:68						total	number	of	source	shapes

0	:	SOLID	{	1	}

1	:	SHELL	{	2	12	22	26	30	32	}

2	:	FACE	{	4	5	6	7	8	9	10	11	}

3	:	WIRE	{	4	7	9	11	}

4	:	EDGE	{	5	6	}

5	:	VERTEX	{	}

6	:	VERTEX	{	}

7	:	EDGE	{	8	5	}

8	:	VERTEX	{	}

0	:	SOLID	{	1	}	

has	the	following	meaning:

0	–	index	in	the	DS;
SOLID	–	type	of	the	shape;
{	1	}	–	a	DS	index	of	the	successors.

bopindex

Syntax:

bopindex	S

Prints	DS	index	of	shape	S.

bopiterator

Syntax:

bopiterator	[t1	t2]

Prints	pairs	of	DS	indices	of	source	shapes	that	are	intersected	in	terms
of	bounding	boxes.

[t1	t2]	are	types	of	the	shapes:

7	–	vertex;
6	–	edge;
4	–	face.

Example:

Draw[104]>	bopiterator	6	4

EF:	(z58	z12)

EF:	(z17	z56)

EF:	(z19	z64)

EF:	(z45	z26)

EF:	(z29	z36)

EF:	(z38	z32)

bopiterator	6	4	prints	pairs	of	indices	for	types:	edge/face;
z58	z12	–	DS	indices	of	intersecting	edge	and	face.

bopinterf

Syntax:

bopinterf	t

Prints	contents	of	myInterfTB	for	the	type	of	interference	t:

t=0	:	vertex/vertex;
t=1	:	vertex/edge;
t=2	:	edge/edge;
t=3	:	vertex/face;
t=4	:	edge/face.

Example:

Draw[108]>	bopinterf	4

EF:	(58,	12,	68),	(17,	56,	69),	(19,	64,	70),	(45,	

26,	71),	(29,	36,	72),	(38,	32,	73),	6	EF	found.

Here,	record	(58,	12,	68)	means:

58	–	a	DS	index	of	the	edge;
12	–	a	DS	index	of	the	face;
68	–	a	DS	index	of	the	new	vertex.

bopsp

Displays	split	edges.

Example:

Draw[33]>	bopsp

edge	58	:	z58_74	z58_75

edge	17	:	z17_76	z17_77

edge	19	:	z19_78	z19_79

edge	45	:	z45_80	z45_81

edge	29	:	z29_82	z29_83

edge	38	:	z38_84	z38_85

edge	58	–	58	is	a	DS	index	of	the	original	edge.
z58_74	z58_75	–	split	edges,	where	74,	75	are	DS	indices	of	the
split	edges.

bopcb

Syntax:

bopcb	[nE]

Prints	Common	Blocks	for:

all	source	edges	(by	default);
the	source	edge	with	the	specified	index	nE.

Example:

Draw[43]>	bopcb	17

--	CB:

PB:{	E:71	orE:17	Pave1:	{	68	3.000	}	Pave2:	{	18	

10.000	}	}

Faces:	36

This	command	dumps	common	blocks	for	the	source	edge	with	index	17.

PB	–	information	about	the	Pave	Block;
71	–	a	DS	index	of	the	split	edge
17	–	a	DS	index	of	the	original	edge

Pave1	:	{	68	3.000	}	–	information	about	the	Pave:
68	–	a	DS	index	of	the	vertex	of	the	pave
3.000	–	a	parameter	of	vertex	68	on	edge	17

Faces:	36	–	36	is	a	DS	index	of	the	face	the	common	block	belongs
to.

bopfin

Syntax:

bopfin	nF			

Prints	Face	Info	about	IN-parts	for	the	face	with	DS	index	nF.

Example:

Draw[47]>	bopfin	36

pave	blocks	In:

PB:{	E:71	orE:17	Pave1:	{	68	3.000	}	Pave2:	{	18	

10.000	}	}

PB:{	E:75	orE:19	Pave1:	{	69	3.000	}	Pave2:	{	18	

10.000	}	}

vrts	In:

18

PB:{	E:71	orE:17	Pave1:	{	68	3.000	}	Pave2:	{	18	10.000	}	}	–
information	about	the	Pave	Block;
vrts	In	...	18	–	a	DS	index	of	the	vertex	IN	the	face.

bopfon

Syntax:

bopfon	nF

Print	Face	Info	about	ON-parts	for	the	face	with	DS	index	nF.

Example:

Draw[58]>	bopfon	36

pave	blocks	On:

PB:{	E:72	orE:38	Pave1:	{	69	0.000	}	Pave2:	{	68	

10.000	}	}

PB:{	E:76	orE:45	Pave1:	{	69	0.000	}	Pave2:	{	71	

10.000	}	}

PB:{	E:78	orE:43	Pave1:	{	71	0.000	}	Pave2:	{	70	

10.000	}	}

PB:{	E:74	orE:41	Pave1:	{	68	0.000	}	Pave2:	{	70	

10.000	}	}

vrts	On:

68	69	70	71

PB:{	E:72	orE:38	Pave1:	{	69	0.000	}	Pave2:	{	68	10.000	}	}	–
information	about	the	Pave	Block;
vrts	On:	...	68	69	70	71	–	DS	indices	of	the	vertices	ON	the	face.

bopwho

Syntax:

bopwho	nS

Prints	the	information	about	the	shape	with	DS	index	nF.

Example:

Draw[116]>	bopwho	5

rank:	0

rank:	0	–	means	that	shape	5	results	from	the	Argument	with	index
0.

Example:

Draw[118]>	bopwho	68

the	shape	is	new

EF:	(58,	12),

FF	curves:	(12,	56),

FF	curves:	(12,	64),

This	means	that	shape	68	is	a	result	of	the	following	interferences:

EF:	(58,	12)	–	edge	58	/	face	12
FF	curves:	(12,	56)	–	edge	from	the	intersection	curve	between

faces	12	and	56
FF	curves:	(12,	64)	–	edge	from	the	intersection	curve	between
faces	12	and	64

bopnews

Syntax:

bopnews	-v	[-e]

-v	–	displays	all	new	vertices	produced	during	the	operation;
-e	–	displays	all	new	edges	produced	during	the	operation.

Commands	for	the	Building	Part
The	commands	listed	below	are	available	when	the	Building	Part	of	the
algorithm	is	done	(i.e.	after	the	command	bbuild).

bopim

Syntax:

bopim	S

Shows	the	compound	of	shapes	that	are	images	of	shape	S	from	the
argument.

Data	Exchange	commands
This	chapter	presents	some	general	information	about	Data	Exchange
(DE)	operations.

DE	commands	are	intended	for	translation	files	of	various	formats
(IGES,STEP)	into	OCCT	shapes	with	their	attributes	(colors,	layers	etc.)

This	files	include	a	number	of	entities.	Each	entity	has	its	own	number	in
the	file	which	we	call	label	and	denote	as	#	for	a	STEP	file	and	D	for	an
IGES	file.	Each	file	has	entities	called	roots	(one	or	more).	A	full
description	of	such	entities	is	contained	in	the	Users'	Guides

for	STEP	format	and
for	IGES	format.

Each	Draw	session	has	an	interface	model,	which	is	a	structure	for
keeping	various	information.

The	first	step	of	translation	is	loading	information	from	a	file	into	a	model.
The	second	step	is	creation	of	an	OpenCASCADE	shape	from	this
model.

Each	entity	from	a	file	has	its	own	number	in	the	model	(num).	During	the
translation	a	map	of	correspondences	between	labels(from	file)	and
numbers	(from	model)	is	created.

The	model	and	the	map	are	used	for	working	with	most	of	DE
commands.

IGES	commands

igesread

Syntax:

igesread	<file_name>	<result_shape_name>	

[<selection>]

Reads	an	IGES	file	to	an	OCCT	shape.	This	command	will	interactively
ask	the	user	to	select	a	set	of	entities	to	be	converted.

N Mode Description
0 End finish	conversion	and	exit	igesbrep
1 Visible	roots convert	only	visible	roots
2 All	roots convert	all	roots
3 One	entity convert	entity	with	number	provided	by	the	user
4 Selection convert	only	entities	contained	in	selection

After	the	selected	set	of	entities	is	loaded	the	user	will	be	asked	how
loaded	entities	should	be	converted	into	OCCT	shapes	(e.g.,	one	shape
per	root	or	one	shape	for	all	the	entities).	It	is	also	possible	to	save
loaded	shapes	in	files,	and	to	cancel	loading.

The	second	parameter	of	this	command	defines	the	name	of	the	loaded
shape.	If	several	shapes	are	created,	they	will	get	indexed	names.	For
instance,	if	the	last	parameter	was	s,	they	will	be	s_1,	...	s_N.

<selection>	specifies	the	scope	of	selected	entities	in	the	model,	by
default	it	is	xst-transferrable-roots.	If	we	use	symbol	*	as	<selection>	all
roots	will	be	translated.

See	also	the	detailed	description	of	Selecting	IGES	entities.

Example:

#	translation	all	roots	from	file	

igesread	/disk01/files/model.igs	a		*	

tplosttrim

Syntax:

tplosttrim	[<IGES_type>]	

Sometimes	the	trimming	contours	of	IGES	faces	(i.e.,	entity	141	for	143,
142	for	144)	can	be	lost	during	translation	due	to	fails.	This	command
gives	us	a	number	of	lost	trims	and	the	number	of	corresponding	IGES
entities.	It	outputs	the	rank	and	numbers	of	faces	that	lost	their	trims	and
their	numbers	for	each	type	(143,	144,	510)	and	their	total	number.	If	a
face	lost	several	of	its	trims	it	is	output	only	once.	Optional	parameter
<IGES_type>	can	be	0TrimmedSurface,	BoundedSurface	or	Face	to
specify	the	only	type	of	IGES	faces.

Example:

tplosttrim	TrimmedSurface	

brepiges

Syntax:

brepiges	<shape_name>	<filename.igs>

Writes	an	OCCT	shape	to	an	IGES	file.

Example:

#	write	shape	with	name	aa	to	IGES	file	

brepiges	aa	/disk1/tmp/aaa.igs	

==	unit	(write)	:	MM	

==	mode		write		:	Faces	

==			To	modifiy	:	command		param	

==	1	Shapes	written,	giving	345	Entities	

==		Now,	to	write	a	file,	command	:	writeall	filename	

==		Output	on	file	:	/disk1/tmp/aaa.igs	

==		Write	OK	

STEP	commands
These	commands	are	used	during	the	translation	of	STEP	models.

stepread

Syntax:

stepread	file_name	result_shape_name	[selection]	

Read	a	STEP	file	to	an	OCCT	shape.	This	command	will	interactively	ask
the	user	to	select	a	set	of	entities	to	be	converted:

N Mode Description
0 End Finish	transfer	and	exit	stepread
1 root	with	rank	1 Transfer	first	root
2 root	by	its	rank Transfer	root	specified	by	its	rank
3 One	entity Transfer	entity	with	a	number	provided	by	the	user
4 Selection Transfer	only	entities	contained	in	selection

After	the	selected	set	of	entities	is	loaded	the	user	will	be	asked	how
loaded	entities	should	be	converted	into	OCCT	shapes.	The	second
parameter	of	this	command	defines	the	name	of	the	loaded	shape.	If
several	shapes	are	created,	they	will	get	indexed	names.	For	instance,	if
the	last	parameter	was	s,	they	will	be	s_1,	...	s_N.	<selection>	specifies
the	scope	of	selected	entities	in	the	model.	If	we	use	symbol	*	as
<selection>	all	roots	will	be	translated.

See	also	the	detailed	description	of	Selecting	STEP	entities.

Example:

#	translation	all	roots	from	file	

stepread	/disk01/files/model.stp	a		*	

stepwrite

Syntax:

stepwrite	mode	shape_name	file_name	

Writes	an	OCCT	shape	to	a	STEP	file.

The	following	modes	are	available	:

a	–	as	is	–	the	mode	is	selected	automatically	depending	on	the	type
&	geometry	of	the	shape;
m	–	manifold_solid_brep	or	brep_with_voids
f	–	faceted_brep
w	–	geometric_curve_set
s	–	shell_based_surface_model

For	further	information	see	Writing	a	STEP	file.

Example:

Let	us	write	shape	a	to	a	STEP	file	in	mode	0.

stepwrite	0	a	/disk1/tmp/aaa.igs	

General	commands
These	are	auxilary	commands	used	for	the	analysis	of	result	of
translation	of	IGES	and	STEP	files.

count

Syntax:

count	<counter>	[<selection>]	

Calculates	statistics	on	the	entities	in	the	model	and	outputs	a	count	of
entities.

The	optional	selection	argument,	if	specified,	defines	a	subset	of	entities,
which	are	to	be	taken	into	account.	The	first	argument	should	be	one	of
the	currently	defined	counters.

Counter Operation
xst-types Calculates	how	many	entities	of	each	OCCT	type	exist
step214-types Calculates	how	many	entities	of	each	STEP	type	exist

Example:

count	xst-types	

data

Syntax:

data	<symbol>

Obtains	general	statistics	on	the	loaded	data.	The	information	printed	by
this	command	depends	on	the	symbol	specified.

Example:

#	print	full	information	about	warnings	and	fails	

data	c	

Symbol Output
g Prints	the	information	contained	in	the	header	of	the	file

c	or	f

Prints	messages	generated	during	the	loading	of	the	STEP
file	(when	the	procedure	of	the	integrity	of	the	loaded	data
check	is	performed)	and	the	resulting	statistics	(f	works	only
with	fail	messages	while	c	with	both	fail	and	warning
messages)

t The	same	as	c	or	f,	with	a	list	of	failed	or	warned	entities
m	or	l The	same	as	t	but	also	prints	a	status	for	each	entity

e Lists	all	entities	of	the	model	with	their	numbers,	types,
validity	status	etc.

R The	same	as	e	but	lists	only	root	entities

elabel

Syntax:

elabel	<num>

Entities	in	the	IGES	and	STEP	files	are	numbered	in	the	succeeding
order.	An	entity	can	be	identified	either	by	its	number	or	by	its	label.	Label
is	the	letter	‘#'(for	STEP,	for	IGES	use	‘D’)	followed	by	the	rank.	This
command	gives	us	a	label	for	an	entity	with	a	known	number.

Example:

elabel	84	

entity

Syntax:

entity	<#(D)>_or_<num>	<level_of_information>

The	content	of	an	IGES	or	STEP	entity	can	be	obtained	by	using	this

command.	Entity	can	be	determined	by	its	number	or	label.
<level_of_information>	has	range	[0-6].	You	can	get	more	information
about	this	level	using	this	command	without	parameters.

Example:

#	full	information	for	STEP	entity	with	label	84	

entity	#84	6	

enum

Syntax:

enum	<#(D)>	

Prints	a	number	for	the	entity	with	a	given	label.

Example:

#	give	a	number	for	IGES	entity	with	label	21	

enum	D21	

estatus

Syntax:

estatus	<#(D)>_or_<num>

The	list	of	entities	referenced	by	a	given	entity	and	the	list	of	entities
referencing	to	it	can	be	obtained	by	this	command.

Example:

estatus	#315	

fromshape

Syntax:

fromshape	<shape_name>

Gives	the	number	of	an	IGES	or	STEP	entity	corresponding	to	an	OCCT
shape.	If	no	corresponding	entity	can	be	found	and	if	OCCT	shape	is	a
compound	the	command	explodes	it	to	subshapes	and	try	to	find
corresponding	entities	for	them.

Example:

fromshape	a_1_23	

givecount

Syntax:

givecount	<selection_name>	[<selection_name>]

Prints	a	number	of	loaded	entities	defined	by	the	selection	argument.
Possible	values	of	<selection_name>	you	can	find	in	the	“IGES	FORMAT
Users’s	Guide”.

Example:

givecount	xst-model-roots	

givelist

Syntax:

givelist	<selection_name>

Prints	a	list	of	a	subset	of	loaded	entities	defined	by	the	selection
argument:

Selection Description
xst-model-all all	entities	of	the	model
xst-model-roots all	roots

xst-pointed
(Interactively)	pointed	entities	(not	used	in

DRAW)
xst-transferrable-all all	transferable	(recognized)	entities
xst-transferrable-
roots Transferable	roots

Example:

#	give	a	list	of	all	entities	of	the	model	

givelist	xst-model-all	

listcount

Syntax:	listcount	<counter>	[<selection>	...]

Prints	a	list	of	entities	per	each	type	matching	the	criteria	defined	by
arguments.	Optional	<selection>	argument,	if	specified,	defines	a	subset
of	entities,	which	are	to	be	taken	into	account.	Argument	<counter>
should	be	one	of	the	currently	defined	counters:

Counter Operation
xst-types Calculates	how	many	entities	of	each	OCCT	type	exist
iges-
types

Calculates	how	many	entities	of	each	IGES	type	and	form
exist

iges-
levels Calculates	how	many	entities	lie	in	different	IGES	levels

Example:

listcount	xst-types	

listitems

Syntax:

listitems	

This	command	prints	a	list	of	objects	(counters,	selections	etc.)	defined	in
the	current	session.

listtypes

Syntax:

listtypes	[<selection_name>	...]

Gives	a	list	of	entity	types	which	were	encountered	in	the	last	loaded	file
(with	a	number	of	entities	of	each	type).	The	list	can	be	shown	not	for	all
entities	but	for	a	subset	of	them.	This	subset	is	defined	by	an	optional
selection	argument.

newmodel

Syntax:

newmodel	

Clears	the	current	model.

param

Syntax:

param	[<parameter>]	[<value>]

This	command	is	used	to	manage	translation	parameters.	Command
without	arguments	gives	a	full	list	of	parameters	with	current	values.
Command	with	<parameter>	(without

)	gives	us	the	current	value	of	this	parameter	and	all	possible	values	for
it.	Command	with

sets	this	new	value	to	<parameter>.

Example:

Let	us	get	the	information	about	possible	schemes	for	writing	STEP	file	:

param	write.step.schema	

sumcount

Syntax:

sumcount	<counter>	[<selection>	...]

Prints	only	a	number	of	entities	per	each	type	matching	the	criteria
defined	by	arguments.

Example:

sumcount	xst-types	

tpclear

Syntax:

tpclear		

Clears	the	map	of	correspondences	between	IGES	or	STEP	entities	and
OCCT	shapes.

tpdraw

Syntax:

tpdraw	<#(D)>_or_<num>

Example:

tpdraw	57	

tpent

Syntax:

tpent	<#(D)>_or_<num>

Get	information	about	the	result	of	translation	of	the	given	IGES	or	STEP

entity.

Example:

tpent	\#23	

tpstat

Syntax:

tpstat	[*|?]<symbol>	[<selection>]

Provides	all	statistics	on	the	last	transfer,	including	a	list	of	transferred
entities	with	mapping	from	IGES	or	STEP	to	OCCT	types,	as	well	as	fail
and	warning	messages.	The	parameter	<symbol>	defines	what
information	will	be	printed:

g	–	General	statistics	(a	list	of	results	and	messages)
c	–	Count	of	all	warning	and	fail	messages
C	–	List	of	all	warning	and	fail	messages
f	–	Count	of	all	fail	messages
F	–	List	of	all	fail	messages
n	–	List	of	all	transferred	roots
s	–	The	same,	with	types	of	source	entity	and	the	type	of	result
b	–	The	same,	with	messages
t	–	Count	of	roots	for	geometrical	types
r	–	Count	of	roots	for	topological	types
l	–	The	same,	with	the	type	of	the	source	entity

The	sign	*	before	parameters	n,	s,	b,	t,	r	makes	it	work	on	all	entities	(not
only	on	roots).

The	sign	?	before	n,	s,	b,	t	limits	the	scope	of	information	to	invalid
entities.

Optional	argument	<selection>	can	limit	the	action	of	the	command	to	the
selection,	not	to	all	entities.

To	get	help,	run	this	command	without	arguments.

Example:

#	translation	ratio	on	IGES	faces	

tpstat	*l	iges-faces	

xload

Syntax:

xload	<file_name>

This	command	loads	an	IGES	or	STEP	file	into	memory	(i.e.	to	fill	the
model	with	data	from	the	file)	without	creation	of	an	OCCT	shape.

Example:

xload	/disk1/tmp/aaa.stp	

Overview	of	XDE	commands
These	commands	are	used	for	translation	of	IGES	and	STEP	files	into	an
XCAF	document	(special	document	is	inherited	from	CAF	document	and
is	intended	for	Extended	Data	Exchange	(XDE))	and	working	with	it.
XDE	translation	allows	reading	and	writing	of	shapes	with	additional
attributes	–	colors,	layers	etc.	All	commands	can	be	divided	into	the
following	groups:

XDE	translation	commands
XDE	general	commands
XDE	shape’s	commands
XDE	color’s	commands
XDE	layer’s	commands
XDE	property’s	commands

Reminding:	All	operations	of	translation	are	performed	with	parameters
managed	by	command	param.

ReadIges

Syntax:

ReadIges	document	file_name	

Reads	information	from	an	IGES	file	to	an	XCAF	document.

Example:

ReadIges	D	/disk1/tmp/aaa.igs	

==>	Document	saved	with	name	D	

ReadStep

Syntax:

ReadStep	<document>	<file_name>

Reads	information	from	a	STEP	file	to	an	XCAF	document.

Example:

ReadStep	D	/disk1/tmp/aaa.stp	

==	Document	saved	with	name	D	

WriteIges

Syntax:

WriteIges	<document>	<file_name>

Example:

WriteIges	D	/disk1/tmp/aaa.igs	

WriteStep

Syntax:

WriteStep	<document>	<file_name>

Writes	information	from	an	XCAF	document	to	a	STEP	file.

Example:

WriteStep	D	/disk1/tmp/aaa.stp	

XFileCur

Syntax:

XFileCur		

Returns	the	name	of	file	which	is	set	as	the	current	one	in	the	Draw
session.

Example:

XFileCur	

==	*as1-ct-203.stp*	

XFileList

Syntax:

XFileList		

Returns	a	list	all	files	that	were	transferred	by	the	last	transfer.	This
command	is	meant	(assigned)	for	the	assemble	step	file.

Example:

XFileList	

==>	*as1-ct-Bolt.stp*	

==>	*as1-ct-L-Bracktet.stp*	

==>	*as1-ct-LBA.stp*	

==>	*as1-ct-NBA.stp*	

==>	…	

XFileSet

Syntax:

XFileSet	<filename>	

Sets	the	current	file	taking	it	from	the	components	list	of	the	assemble
file.

Example:

XFileSet	as1-ct-NBA.stp	

XFromShape

Syntax:

XFromShape	<shape>

This	command	is	similar	to	the	command	fromshape,	but	gives
additional	information	about	the	file	name.	It	is	useful	if	a	shape	was
translated	from	several	files.

Example:

XFromShape	a	

==>	Shape	a:	imported	from	entity	217:#26	in	file	

as1-ct-Nut.stp	

XDE	general	commands

XNewDoc

Syntax:

XNewDoc	<document>

Creates	a	new	XCAF	document.

Example:

XNewDoc	D	

XShow

Syntax:

XShow	<document>	[<label1>	…]

Shows	a	shape	from	a	given	label	in	the	3D	viewer.	If	the	label	is	not
given	–	shows	all	shapes	from	the	document.

Example:

#	show	shape	from	label	0:1:1:4	from	document	D	

XShow	D	0:1:1:4	

XStat

Syntax:

XStat	<document>

Prints	common	information	from	an	XCAF	document.

Example:

XStat	D	

==>Statistis	of	shapes	in	the	document:	

==>level	N	0	:	9	

==>level	N	1	:	18	

==>level	N	2	:	5	

==>Total	number	of	labels	for	shapes	in	the	document	

=	32	

==>Number	of	labels	with	name	=	27	

==>Number	of	labels	with	color	link	=	3	

==Number	of	labels	with	layer	link	=	0	

==>Statistis	of	Props	in	the	document:	

==>Number	of	Centroid	Props	=	5	

==>Number	of	Volume	Props	=	5	

==>Number	of	Area	Props	=	5	

==>Number	of	colors	=	4	

==>BLUE1	RED	YELLOW	BLUE2	

==>Number	of	layers	=	0	

XWdump

Syntax:

XWdump	<document>	<filename>

Saves	the	contents	of	the	viewer	window	as	an	image	(XWD,	png	or
BMP	file).	<filename>	must	have	a	corresponding	extention.

Example:

XWdump	D	/disk1/tmp/image.png	

Xdump

Syntax:

Xdump	<document>	[int	deep	{0|1}]

Prints	information	about	the	tree	structure	of	the	document.	If	parameter

1	is	given,	then	the	tree	is	printed	with	a	link	to	shapes.

Example:

Xdump	D	1	

==>	ASSEMBLY	0:1:1:1	L-BRACKET(0xe8180448)	

==>	ASSEMBLY	0:1:1:2	NUT(0xe82151e8)	

==>	ASSEMBLY	0:1:1:3	BOLT(0xe829b000)	

==>	ASSEMBLY	0:1:1:4	PLATE(0xe8387780)	

==>	ASSEMBLY	0:1:1:5	ROD(0xe8475418)	

==>	ASSEMBLY	0:1:1:6	AS1(0xe8476968)	

==>				ASSEMBLY	0:1:1:7	L-BRACKET-

ASSEMBLY(0xe8476230)	

==>							ASSEMBLY	0:1:1:1	L-BRACKET(0xe8180448)	

==>							ASSEMBLY	0:1:1:8	NUT-BOLT-

ASSEMBLY(0xe8475ec0)	

==>															ASSEMBLY	0:1:1:2	NUT(0xe82151e8)	

==>															ASSEMBLY	0:1:1:3	BOLT(0xe829b000)	

etc.	

XDE	shape	commands

XAddComponent

Syntax:

XAddComponent	<document>	<label>	<shape>	

Adds	a	component	shape	to	assembly.

Example:

Let	us	add	shape	b	as	component	shape	to	assembly	shape	from	label
0:1:1:1

XAddComponent	D	0:1:1:1	b	

XAddShape

Syntax:

XAddShape	<document>	<shape>	[makeassembly=1]

Adds	a	shape	(or	an	assembly)	to	a	document.	If	this	shape	already
exists	in	the	document,	then	prints	the	label	which	points	to	it.	By	default,
a	new	shape	is	added	as	an	assembly	(i.e.	last	parameter	1),	otherwise	it
is	necessary	to	pass	0	as	the	last	parameter.

Example:

#	add	shape	b	to	document	D	

XAddShape	D	b	0	

==	0:1:1:10	

#	if	pointed	shape	is	compound	and	last	parameter	in	

#	XAddShape	command	is	used	by	default	(1),	then	for	

#	each	subshapes	new	label	is	created	

XFindComponent

Syntax:

XFindComponent	<document>	<shape>

Prints	a	sequence	of	labels	of	the	assembly	path.

Example:

XFindComponent	D	b	

XFindShape

Syntax:

XFindShape	<document>	<shape>

Finds	and	prints	a	label	with	an	indicated	top-level	shape.

Example:

XFindShape	D	a	

XGetFreeShapes

Syntax:

XGetFreeShapes	<document>	[shape_prefix]

Print	labels	or	create	DRAW	shapes	for	all	free	shapes	in	the	document.
If	shape_prefix	is	absent	–	prints	labels,	else	–	creates	DRAW	shapes
with	names	shape_prefix_num	(i.e.	for	example:	there	are	3	free	shapes
and	shape_prefix	=	a	therefore	shapes	will	be	created	with	names	a_1,
a_2	and	a_3).

Note:	a	free	shape	is	a	shape	to	which	no	other	shape	refers	to.

Example:

XGetFreeShapes	D	

==	0:1:1:6	0:1:1:10	0:1:1:12	0:1:1:13	

XGetFreeShapes	D	sh	

==	sh_1	sh_2	sh_3	sh_4	

XGetOneShape

Syntax:

XGetOneShape	<shape>	<document>

Creates	one	DRAW	shape	for	all	free	shapes	from	a	document.

Example:

XGetOneShape	a	D	

XGetReferredShape

Syntax:

XGetReferredShape	<document>	<label>

Prints	a	label	that	contains	a	top-level	shape	that	corresponds	to	a	shape
at	a	given	label.

Example:

XGetReferredShape	D	0:1:1:1:1	

XGetShape

Syntax:

XGetShape	<result>	<document>	<label>

Puts	a	shape	from	the	indicated	label	in	document	to	result.

Example:

XGetShape	b	D	0:1:1:3	

XGetTopLevelShapes

Syntax:

XGetTopLevelShapes	<document>

Prints	labels	that	contain	top-level	shapes.

Example:

XGetTopLevelShapes	D	

==	0:1:1:1	0:1:1:2	0:1:1:3	0:1:1:4	0:1:1:5	0:1:1:6	

0:1:1:7	

0:1:1:8	0:1:1:9	

XLabelInfo

Syntax:

XLabelInfo	<document>	<label>

Prints	information	about	a	shape,	stored	at	an	indicated	label.

Example:

XLabelInfo	D	0:1:1:6	

==>	There	are	TopLevel	shapes.	There	is	an	Assembly.	

This	Shape	is	not	used.	

XNewShape

Syntax:

XNewShape	<document>

Creates	a	new	empty	top-level	shape.

Example:

XNewShape	D	

XRemoveComponent

Syntax:

XRemoveComponent	<document>	<label>

Removes	a	component	from	the	components	label.

Example:

XRemoveComponent	D	0:1:1:1:1	

XRemoveShape

Syntax:

XRemoveShape	<document>	<label>

Removes	a	shape	from	a	document	(by	it’s	label).

Example:

XRemoveShape	D	0:1:1:2	

XSetShape

Syntax:

XSetShape	<document>	<label>	<shape>

Sets	a	shape	at	the	indicated	label.

Example:

XSetShape	D	0:1:1:3	b	

XUpdateAssemblies

Syntax:

XUpdateAssemblies	<document>

Updates	all	assembly	compounds	in	the	XDE	document.

Example:

XUpdateAssemblies	D

XDE	color	commands

XAddColor

Syntax:

XAddColor	<document>	<R>	<G>	

Adds	color	in	document	to	the	color	table.	Parameters	R,G,B	are	real.

Example:

XAddColor	D	0.5	0.25	0.25	

XFindColor

Syntax:

XFindColor	<document>	<R>	<G>	

Finds	a	label	where	the	indicated	color	is	situated.

Example:

XFindColor	D	0.25	0.25	0.5	

==>	0:1:2:2	

XGetAllColors

Syntax:

XGetAllColors	<document>	

Prints	all	colors	that	are	defined	in	the	document.

Example:

XGetAllColors	D	

==>	RED	DARKORANGE	BLUE1	GREEN	YELLOW3	

XGetColor

Syntax:

XGetColor	<document>	<label>

Returns	a	color	defined	at	the	indicated	label	from	the	color	table.

Example:

XGetColor	D	0:1:2:3	

==	BLUE1	

XGetObjVisibility

Syntax:

XGetObjVisibility	<document>	{<label>|<shape>}

Returns	the	visibility	of	a	shape.

Example:

XGetObjVisibility	D	0:1:1:4	

XGetShapeColor

Syntax:

XGetShapeColor	<document>	<label>	<colortype(s|c)>

Returns	the	color	defined	by	label.	If	colortype=’s’	–	returns	surface	color,
else	–	returns	curve	color.

Example:

XGetShapeColor	D	0:1:1:4	c	

XRemoveColor

Syntax:

XRemoveColor	<document>	<label>

Removes	a	color	from	the	color	table	in	a	document.

Example:

XRemoveColor	D	0:1:2:1	

XSetColor

Syntax:

XSetColor	<document>	{<label>|<shape>}	<R>	<G>	

Sets	an	RGB	color	to	a	shape	given	by	label.

Example:

XsetColor	D	0:1:1:4	0.5	0.5	0.	

XSetObjVisibility

Syntax:

XSetObjVisibility	<document>	{<label>|<shape>}	{0|1}

Sets	the	visibility	of	a	shape.

Example:

#	set	shape	from	label	0:1:1:4	as	invisible	

XSetObjVisibility	D	0:1:1:4	0	

XUnsetColor

Syntax:

XUnsetColor	<document>	{<label>|<shape>}	<colortype>

Unset	a	color	given	type	(‘s’	or	‘c’)	for	the	indicated	shape.

Example:

XUnsetColor	D	0:1:1:4	s	

XDE	layer	commands

XAddLayer

Syntax:

XAddLayer	<document>	<layer>

Adds	a	new	layer	in	an	XCAF	document.

Example:

XAddLayer	D	layer2	

XFindLayer

Syntax:

XFindLayer	<document>	<layer>

Prints	a	label	where	a	layer	is	situated.

Example:

XFindLayer	D	Bolt	

==	0:1:3:2	

XGetAllLayers

Syntax:

XGetAllLayers	<document>	

Prints	all	layers	in	an	XCAF	document.

Example:

XGetAllLayers	D	

==	*0:1:1:3*	*Bolt*	*0:1:1:9*	

XGetLayers

Syntax:

XGetLayers	<document>	{<shape>|<label>}

Returns	names	of	layers,	which	are	pointed	to	by	links	of	an	indicated
shape.

Example:

XGetLayers	D	0:1:1:3	

==	*bolt*	*123*	

XGetOneLayer

Syntax:

XGetOneLayer	<document>	<label>

Prints	the	name	of	a	layer	at	a	given	label.

Example:

XGetOneLayer	D	0:1:3:2	

XIsVisible

Syntax:

XIsVisible	<document>	{<label>|<layer>}

Returns	1	if	the	indicated	layer	is	visible,	else	returns	0.

Example:

XIsVisible	D	0:1:3:1	

XRemoveAllLayers

Syntax:

XRemoveAllLayers	<document>	

Removes	all	layers	from	an	XCAF	document.

Example:

XRemoveAllLayers	D	

XRemoveLayer

Syntax:

XRemoveLayer	<document>	{<label>|<layer>}

Removes	the	indicated	layer	from	an	XCAF	document.

Example:

XRemoveLayer	D	layer2	

XSetLayer

Syntax:

XSetLayer	XSetLayer	<document>	{<shape>|<label>}	

<layer>	[shape_in_one_layer	{0|1}]

Sets	a	reference	between	a	shape	and	a	layer	(adds	a	layer	if	it	is
necessary).	Parameter	<shape_in_one_layer>	shows	whether	a	shape
could	be	in	a	number	of	layers	or	only	in	one	(0	by	default).

Example:

XSetLayer	D	0:1:1:2	layer2	

XSetVisibility

Syntax:

XSetVisibility	<document>	{<label>|<layer>}	

<isvisible	{0|1}>

Sets	the	visibility	of	a	layer.

Example:

#	set	layer	at	label	0:1:3:2	as	invisible	

XSetVisibility	D	0:1:3:2	0	

XUnSetAllLayers

Syntax:

XUnSetAllLayers	<document>	{<label>|<shape>}

Unsets	a	shape	from	all	layers.

Example:

XUnSetAllLayers	D	0:1:1:2	

XUnSetLayer

Syntax:

XUnSetLayer	<document>	{<label>|<shape>}	<layer>

Unsets	a	shape	from	the	indicated	layer.

Example:

XUnSetLayer	D	0:1:1:2	layer1	

XDE	property	commands

XCheckProps

Syntax:

XCheckProps	<document>	[{0|deflection}	[<shape>|

<label>]]

Gets	properties	for	a	given	shape	(volume,	area	and	centroid)	and
compares	them	with	the	results	after	internal	calculations.	If	the	second
parameter	is	0,	the	standard	OCCT	tool	is	used	for	the	computation	of
properties.	If	the	second	parameter	is	not	0,	it	is	processed	as	a
deflection.	If	the	deflection	is	positive	the	computation	is	done	by
triangulations,	if	it	is	negative	–	meshing	is	forced.

Example:

#	check	properties	for	shapes	at	label	0:1:1:1	from	

#	document	using	standard	Open	CASCADE	Technology	

tools	

XCheckProps	D	0	0:1:1:1	

==	Label	0:1:1:1						;L-BRACKET*	

==		Area	defect:								-0.0	(0%)	

==		Volume	defect:							0.0	(0%)	

==		CG	defect:	dX=-0.000,	dY=0.000,	dZ=0.000	

XGetArea

Syntax:

XGetArea	<document>	{<shape>|<label>}

Returns	the	area	of	a	given	shape.

Example:

XGetArea	D	0:1:1:1	

==	24628.31815094999	

XGetCentroid

Syntax:

XGetCentroid	<document>	{<shape>|<label>}

Returns	the	center	of	gravity	coordinates	of	a	given	shape.

Example:

XGetCentroid	D	0:1:1:1	

XGetVolume

Syntax:

XGetVolume	<document>	{<shape>|<label>}

Returns	the	volume	of	a	given	shape.

Example:

XGetVolume	D	0:1:1:1	

XSetArea

Syntax:

XSetArea	<document>	{<shape>|<label>}	<area>

Sets	new	area	to	attribute	list	???	given	shape.

Example:

XSetArea	D	0:1:1:1	2233.99	

XSetCentroid

Syntax:

XSetCentroid	<document>	{<shape>|<label>}	<x>	<y>	<z>

Sets	new	center	of	gravity	to	the	attribute	list	given	shape.

Example:

XSetCentroid	D	0:1:1:1	0.	0.	100.	

XSetMaterial

Syntax:

XSetMaterial	<document>	{<shape>|<label>}	<name>	

<density(g/cu	sm)>

Adds	a	new	label	with	material	into	the	material	table	in	a	document,	and
adds	a	link	to	this	material	to	the	attribute	list	of	a	given	shape	or	a	given
label.	The	last	parameter	sets	the	density	of	a	pointed	material.

Example:

XSetMaterial	D	0:1:1:1	Titanium	8899.77	

XSetVolume

Syntax:

XSetVolume	<document>	{<shape>|<label>}	<volume>

Sets	new	volume	to	the	attribute	list	???	given	shape.

Example:

XSetVolume	D	0:1:1:1	444555.33	

XShapeMassProps

Syntax:

XShapeMassProps	<document>	[<deflection>	[{<shape>|

<label>}]]

Computes	and	returns	real	mass	and	real	center	of	gravity	for	a	given
shape	or	for	all	shapes	in	a	document.	The	second	parameter	is	used	for
calculation	of	the	volume	and	CG(center	of	gravity).	If	it	is	0,	then	the
standard	CASCADE	tool	(geometry)	is	used	for	computation,	otherwise	–
by	triangulations	with	a	given	deflection.

Example:

XShapeMassProps	D	

==	Shape	from	label	:	0:1:1:1	

==	Mass	=	193.71681469282299	

==	CenterOfGravity	X	=	14.594564763807696,Y	=	

				20.20271885211281,Z	=	49.999999385313245	

==	Shape	from	label	:	0:1:1:2	not	have	a	mass	

etc.	

XShapeVolume

Syntax:

XShapeVolume	<shape>	<deflection>

Calculates	the	real	volume	of	a	pointed	shape	with	a	given	deflection.

Example:

XShapeVolume	a	0	

Shape	Healing	commands
General	commands

bsplres

Syntax:

bsplres	<result>	<shape>	<tol3d>	<tol2d<	<reqdegree>	

<reqnbsegments>	<continuity3d>	<continuity2d>	

<PriorDeg>	<RationalConvert>

Performs	approximations	of	a	given	shape	(BSpline	curves	and	surfaces
or	other	surfaces)	to	BSpline	with	given	required	parameters.	The
specified	continuity	can	be	reduced	if	the	approximation	with	a	specified
continuity	was	not	done	successfully.	Results	are	put	into	the	shape,
which	is	given	as	a	parameter	result.	For	a	more	detailed	description	see
the	ShapeHealing	User’s	Guide	(operator:	BSplineRestriction).

checkfclass2d

Syntax:

checkfclass2d	<face>	<ucoord>	<vcoord>

Shows	where	a	point	which	is	given	by	coordinates	is	located	in	relation
to	a	given	face	–	outbound,	inside	or	at	the	bounds.

Example:

checkfclass2d	f	10.5	1.1	

==	Point	is	OUT	

checkoverlapedges

Syntax:

checkoverlapedges	<edge1>	<edge2>	[<toler>	

<domaindist>]

Checks	the	overlapping	of	two	given	edges.	If	the	distance	between	two
edges	is	less	than	the	given	value	of	tolerance	then	edges	are
overlapped.	Parameter	<domaindist>	sets	length	of	part	of	edges	on
which	edges	are	overlapped.

Example:

checkoverlapedges	e1	e2	

comtol

Syntax:

comptol	<shape>	[nbpoints]	[prefix]

Compares	the	real	value	of	tolerance	on	curves	with	the	value	calculated
by	standard	(using	23	points).	The	maximal	value	of	deviation	of	3d	curve
from	pcurve	at	given	simple	points	is	taken	as	a	real	value	(371	is	by
default).	Command	returns	the	maximal,	minimal	and	average	value	of
tolerance	for	all	edges	and	difference	between	real	values	and	set
values.	Edges	with	the	maximal	value	of	tolerance	and	relation	will	be
saved	if	the	‘prefix’	parameter	is	given.

Example:

comptol	h	871	t	

==>	Edges	tolerance	computed	by	871	points:	

==>	MAX=8.0001130696523449e-008	

AVG=6.349346868091096e-009	MIN=0	

==>	Relation	real	tolerance	/	tolerance	set	in	edge	

==>	MAX=0.80001130696523448	AVG=0.06349345591805905	

MIN=0	

==>	Edge	with	max	tolerance	saved	to	t_edge_tol	

==>	Concerned	faces	saved	to	shapes	t_1,	t_2	

convtorevol

Syntax:

convtorevol	<result>	<shape>

Converts	all	elementary	surfaces	of	a	given	shape	into	surfaces	of
revolution.	Results	are	put	into	the	shape,	which	is	given	as	the	<result>
parameter.

Example:

convtorevol	r	a	

directfaces

Syntax:

directfaces	<result>	<shape>

Converts	indirect	surfaces	and	returns	the	results	into	the	shape,	which	is
given	as	the	result	parameter.

Example:

directfaces	r	a	

expshape

Syntax:

expshape	<shape>	<maxdegree>	<maxseg>

Gives	statistics	for	a	given	shape.	This	test	command	is	working	with
Bezier	and	BSpline	entities.

Example:

expshape	a	10	10	

==>	Number	of	Rational	Bspline	curves	128	

==>	Number	of	Rational	Bspline	pcurves	48	

fixsmall

Syntax:

fixsmall	<result>	<shape>	[<toler>=1.]

Fixes	small	edges	in	given	shape	by	merging	adjacent	edges	with	agiven
tolerance.	Results	are	put	into	the	shape,	which	is	given	as	the	result
parameter.

Example:

fixsmall	r	a	0.1	

fixsmalledges

Syntax:

fixsmalledges	<result>	<shape>	[<toler>	<mode>	

<maxangle>]

Searches	at	least	one	small	edge	at	a	given	shape.	If	such	edges	have
been	found,	then	small	edges	are	merged	with	a	given	tolerance.	If
parameter	<mode>	is	equal	to	Standard_True	(can	be	given	any	values,
except	2),	then	small	edges,	which	can	not	be	merged,	are	removed,
otherwise	they	are	to	be	kept	(Standard_False	is	used	by	default).
Parameter	<maxangle>	sets	a	maximum	possible	angle	for	merging	two
adjacent	edges,	by	default	no	limit	angle	is	applied	(-1).	Results	are	put
into	the	shape,	which	is	given	as	parameter	result.

Example:

fixsmalledges	r	a	0.1	1	

fixshape

Syntax:

fixshape	<result>	<shape>	[<preci>	[<maxpreci>]]	

[{switches}]

Performs	fixes	of	all	sub-shapes	(such	as	Solids,	Shells,	Faces,	Wires
and	Edges)	of	a	given	shape.	Parameter	<preci>	sets	a	basic	precision
value,	<maxpreci>	sets	the	maximal	allowed	tolerance.	Results	are	put
into	the	shape,	which	is	given	as	parameter	result.	{switches}	allows	to
tune	parameters	of	ShapeFix

The	following	syntax	is	used:

<symbol>	may	be
"-"	to	set	parameter	off,
"+"	to	set	on	or
"*"	to	set	default

<parameter>	is	identified	by	letters:
l	–	FixLackingMode
o	–	FixOrientationMode
h	–	FixShiftedMode
m	–	FixMissingSeamMode
d	–	FixDegeneratedMode
s	–	FixSmallMode
i	–	FixSelfIntersectionMode
n	–	FixNotchedEdgesMode	For	enhanced	message	output,	use
switch	'+?'

Example:

fixshape	r	a	0.001	

fixwgaps

Syntax:

fixwgaps	<result>	<shape>	[<toler>=0]

Fixes	gaps	between	ends	of	curves	of	adjacent	edges	(both	3d	and
pcurves)	in	wires	in	a	given	shape	with	a	given	tolerance.	Results	are	put
into	the	shape,	which	is	given	as	parameter	result.

Example:

fixwgaps	r	a	

offsetcurve,	offset2dcurve

Syntax:

offsetcurve	<result>	<curve>	<offset>	<direction(as	

point)>

offset2dcurve	<result>	<curve>	<offset>

offsetcurve	works	with	the	curve	in	3d	space,	offset2dcurve	in	2d
space.

Both	commands	are	intended	to	create	a	new	offset	curve	by	copying	the
given	curve	to	distance,	given	by	parameter	<offset>.	Parameter
<direction>	defines	direction	of	the	offset	curve.	It	is	created	as	a	point.
For	correct	work	of	these	commands	the	direction	of	normal	of	the	offset
curve	must	be	perpendicular	to	the	plane,	the	basis	curve	is	located
there.	Results	are	put	into	the	curve,	which	is	given	as	parameter
<result>.

Example:

point	pp	10	10	10	

offsetcurve	r	c	20	pp	

projcurve

Syntax:

projcurve	<edge>|<curve3d>|<curve3d	first	last>		<X>	

<Y>	<Z>

projcurve	returns	the	projection	of	a	given	point	on	a	given	curve.	The
curve	may	be	defined	by	three	ways:	by	giving	the	edge	name,	giving	the
3D	curve	and	by	giving	the	unlimited	curve	and	limiting	it	by	pointing	its
start	and	finish	values.

Example:

projcurve	k_1	0	1	5	

==Edge	k_1	Params	from	0	to	1.3	

==Precision	(BRepBuilderAPI)	:	9.9999999999999995e-

008		==Projection	:	0		1		5	

==Result	:	0		1.1000000000000001		0	

==Param	=	-0.20000000000000001		Gap	=	

5.0009999000199947	

projpcurve

Syntax:

projpcurve	<edge>	<face>		<Tol>	<X>	<Y>	<Z>	

[<start_param>]

projpcurve	returns	the	projection	of	a	given	point	on	a	given	curve	on
surface.	The	curve	on	surface	is	defined	by	giving	the	edge	and	face
names.	Edge	must	have	curve	2D	repesentation	on	the	face.	Optional
parameter	<start_param>	is	any	parameter	of	pcurve,	which	is	used	by
algoritm	as	start	point	for	searching	projection	of	given	point	with	help	of
local	Extrema	algorithm.	If	this	parameter	is	not	set,	algorithm	uses	whole
parametric	interval	of	pcurve	for	searching	projection.

Example:

#	Using	global	searching			

projpcurve	f_1	f	1.e-7	0.877	0	0.479

==Point:	0.87762772831890712	0	0.47934285275342808

==Param:	0.49990578239977856

==Dist:	0.0007152557954264938

#	Using	starting	parameter	on	edge

projpcurve	f_1	f	1.e-7	0.877	0	0.479	.6

==Point:	0.87762772831890712	0	0.47934285275342808

==Param:	0.49990578239977856

==Dist:	0.0007152557954264938

projface

Syntax:

projface	<face>	<X>	<Y>	[<Z>]

Returns	the	projection	of	a	given	point	to	a	given	face	in	2d	or	3d	space.
If	two	coordinates	(2d	space)	are	given	then	returns	coordinates
projection	of	this	point	in	3d	space	and	vice	versa.

Example:

projface	a_1	10.0	0.0	

==		Point	UV		U	=	10		V	=	0	

==			=			proj		X	=	-116		Y	=	-45		Z	=	0	

scaleshape

Syntax:

scaleshape	<result>	<shape>	<scale>

Returns	a	new	shape,	which	is	the	result	of	scaling	of	a	given	shape	with
a	coefficient	equal	to	the	parameter	<scale>.	Tolerance	is	calculated	for
the	new	shape	as	well.

Example:

scaleshape	r	a_1	0.8	

settolerance

Syntax:

settolerance	<shape>	[<mode>=v-e-w-f-a]	<val>(fix	

value)	or

																			<tolmin>	<tolmax>

Sets	new	values	of	tolerance	for	a	given	shape.	If	the	second	parameter

mode	is	given,	then	the	tolerance	value	is	set	only	for	these	sub	shapes.

Example:

settolerance	a	0.001	

splitface

Syntax:

splitface	<result>	<face>	[u	usplit1	usplit2...]	[v	

vsplit1	vsplit2	...]

Splits	a	given	face	in	parametric	space	and	puts	the	result	into	the	given
parameter	<result>.	Returns	the	status	of	split	face.

Example:

#	split	face	f	by	parameter	u	=	5	

splitface	r	f	u	5	

==>	Splitting	by			U:			,5	

==>	Status:		DONE1	

statshape

Syntax:

statshape	<shape>	[particul]

Returns	the	number	of	sub-shapes,	which	compose	the	given	shape.	For
example,	the	number	of	solids,	number	of	faces	etc.	It	also	returns	the
number	of	geometrical	objects	or	sub-shapes	with	a	specified	type,
example,	number	of	free	faces,	number	of	C0	surfaces.	The	last
parameter	becomes	out	of	date.

Example:

statshape	a	

==>	Count					Item	

==>	-----					----	

==>	402					Edge	(oriented)	

==>	402					Edge	(Shared)	

==>	74						Face	

==>	74						Face	(Free)	

==>	804					Vertex	(Oriented)	

==>	402					Vertex	(Shared)	

==>	78						Wire	

==>	4						Face	with	more	than	one	wire	

==>	34					bspsur:	BSplineSurface	

tolerance

Syntax:

tolerance	<shape>	[<mode>:D	v	e	f	c]	[<tolmin>	

<tolmax>:real]

Returns	tolerance	(maximal,	avg	and	minimal	values)	of	all	given	shapes
and	tolerance	of	their	Faces,	Edges	and	Vertices.	If	parameter	<tolmin>
or	<tolmax>	or	both	of	them	are	given,	then	sub-shapes	are	returned	as	a
result	of	analys	of	this	shape,	which	satisfy	the	given	tolerances.	If	a
particular	value	of	entity	((D)all	shapes	(v)	vertices	(e)	edges	(f)	faces	(c)
combined	(faces))	is	given	as	the	second	parameter	then	only	this	group
will	be	analyzed	for	tolerance.

Example:

tolerance	a	

==>	Tolerance	MAX=0.31512672416608001	

AVG=0.14901359484722074	MIN=9.9999999999999995e-

08	

==>	FACE				:	MAX=9.9999999999999995e-08	

AVG=9.9999999999999995e-08	

MIN=9.9999999999999995e-08	

==>	EDGE				:	MAX=0.31512672416608001	

AVG=0.098691334511810405	

MIN=9.9999999999999995e-08	

==>	VERTEX		:	MAX=0.31512672416608001	

AVG=0.189076074499648	MIN=9.9999999999999995e-08	

tolerance	a	v	0.1	0.001	

==>		Analysing	Vertices	gives	6	Shapes	between	

tol1=0.10000000000000001	and	tol2=0.001	,	named	

tol_1	to	tol_6	

Conversion	commands

DT_ClosedSplit

Syntax:

DT_ClosedSplit	<result>	<shape>

Divides	all	closed	faces	in	the	shape	(for	example	cone)	and	returns
result	of	given	shape	into	shape,	which	is	given	as	parameter	result.
Number	of	faces	in	resulting	shapes	will	be	increased.	Note:	A	closed
face	is	a	face	with	one	or	more	seam.

Example:

DT_ClosetSplit	r	a	

DT_ShapeConvert,	DT_ShapeConvertRev

Syntax:

DT_ShapeConvert	<result>	<shape>	<convert2d>	

<convert3d>

DT_ShapeConvertRev	<result>	<shape>	<convert2d>	

<convert3d>

Both	commands	are	intended	for	the	conversion	of	3D,	2D	curves	to
Bezier	curves	and	surfaces	to	Bezier	based	surfaces.	Parameters
convert2d	and	convert3d	take	on	a	value	0	or	1.	If	the	given	value	is	1,
then	the	conversion	will	be	performed,	otherwise	it	will	not	be	performed.
The	results	are	put	into	the	shape,	which	is	given	as	parameter	Result.
Command	DT_ShapeConvertRev	differs	from	DT_ShapeConvert	by
converting	all	elementary	surfaces	into	surfaces	of	revolution	first.

Example:

DT_ShapeConvert	r	a	1	1	

==	Status:	DONE1	

DT_ShapeDivide

Syntax:

DT_ShapeDivide	<result>	<shape>	<tol>

Divides	the	shape	with	C1	criterion	and	returns	the	result	of	geometry
conversion	of	a	given	shape	into	the	shape,	which	is	given	as	parameter
result.	This	command	illustrates	how	class
ShapeUpgrade_ShapeDivideContinuity	works.	This	class	allows	to
convert	geometry	with	a	continuity	less	than	the	specified	continuity	to
geometry	with	target	continuity.	If	conversion	is	not	possible	then	the
geometrical	object	is	split	into	several	ones,	which	satisfy	the	given
tolerance.	It	also	returns	the	status	shape	splitting:

OK	:	no	splitting	was	done
Done1	:	Some	edges	were	split
Done2	:	Surface	was	split
Fail1	:	Some	errors	occurred

Example:

DT_ShapeDivide	r	a	0.001	

==	Status:	OK	

DT_SplitAngle

Syntax:

DT_SplitAngle	<result>	<shape>	[MaxAngle=95]

Works	with	all	revolved	surfaces,	like	cylinders,	surfaces	of	revolution,
etc.	This	command	divides	given	revolved	surfaces	into	segments	so	that
each	resulting	segment	covers	not	more	than	the	given	MaxAngle
degrees	and	puts	the	result	of	splitting	into	the	shape,	which	is	given	as
parameter	result.	Values	of	returned	status	are	given	above.	This
command	illustrates	how	class	ShapeUpgrade_ShapeDivideAngle	works.

Example:

DT_SplitAngle	r	a	

==	Status:	DONE2	

DT_SplitCurve

Syntax:

DT_SplitCurve	<curve>	<tol>	<split(0|1)>

Divides	the	3d	curve	with	C1	criterion	and	returns	the	result	of	splitting	of
the	given	curve	into	a	new	curve.	If	the	curve	had	been	divided	by
segments,	then	each	segment	is	put	to	an	individual	result.	This
command	can	correct	a	given	curve	at	a	knot	with	the	given	tolerance,	if
it	is	impossible,	then	the	given	surface	is	split	at	that	knot.	If	the	last
parameter	is	1,	then	5	knots	are	added	at	the	given	curve,	and	its	surface
is	split	by	segments,	but	this	will	be	performed	not	for	all	parametric
spaces.

Example:

DT_SplitCurve	r	c	

DT_SplitCurve2d

Syntax:

DT_SplitCurve2d	Curve	Tol	Split(0/1)	

Works	just	as	DT_SplitCurve	(see	above),	only	with	2d	curve.

Example:

DT_SplitCurve2d	r	c	

DT_SplitSurface

Syntax:

DT_SplitSurface	<result>	<Surface|GridSurf>	<tol>	

<split(0|1)>

Divides	surface	with	C1	criterion	and	returns	the	result	of	splitting	of	a
given	surface	into	surface,	which	is	given	as	parameter	result.	If	the
surface	has	been	divided	into	segments,	then	each	segment	is	put	to	an
individual	result.	This	command	can	correct	a	given	C0	surface	at	a	knot
with	a	given	tolerance,	if	it	is	impossible,	then	the	given	surface	is	split	at
that	knot.	If	the	last	parameter	is	1,	then	5	knots	are	added	to	the	given
surface,	and	its	surface	is	split	by	segments,	but	this	will	be	performed
not	for	all	parametric	spaces.

Example:

split	surface	with	name	"su"
DT_SplitSurface	res	su	0.1	1	==>	single	surf	==>	appel	a
SplitSurface::Init	==>	appel	a	SplitSurface::Build	==>	appel	a
SplitSurface::GlobalU/VKnots	==>	nb	GlobalU;nb	GlobalV=7	2	0	1	2	3	4
5	6.2831853072	0	1	==>	appel	a	Surfaces	==>	transfert	resultat	==>
res1_1_1	res1_2_1	res1_3_1	res1_4_1	res1_5_1	res1_6_1

DT_ToBspl

Syntax:

DT_ToBspl	<result>	<shape>

Converts	a	surface	of	linear	extrusion,	revolution	and	offset	surfaces	into
BSpline	surfaces.	Returns	the	result	into	the	shape,	which	is	given	as
parameter	result.

Example:

DT_ToBspl	res	sh	

==	error	=	5.20375663162094e-08			spans	=	10	

==		Surface	is	aproximated	with	continuity	2	

Performance	evaluation	commands
VDrawSphere

Syntax:

vdrawsphere	shapeName	Fineness	[X=0.0	Y=0.0	Z=0.0]	

[Radius=100.0]	[ToEnableVBO=1]	

[NumberOfViewerUpdate=1]	[ToShowEdges=0]	

Calculates	and	displays	in	a	given	number	of	steps	a	sphere	with	given
coordinates,	radius	and	fineness.	Returns	the	information	about	the
properties	of	the	sphere,	the	time	and	the	amount	of	memory	required	to
build	it.

This	command	can	be	used	for	visualization	performance	evaluation
instead	of	the	outdated	Visualization	Performance	Meter.

Example:

vdrawsphere	s	200	1	1	1	500	1	

==	Compute	Triangulation...	

==	NumberOfPoints:	39602	

==	NumberOfTriangles:	79200	

==	Amount	of	memory	required	for	PolyTriangulation	

without	Normals:	2	Mb	

==	Amount	of	memory	for	colors:	0	Mb	

==	Amount	of	memory	for	PolyConnect:	1	Mb	

==	Amount	of	graphic	card	memory	required:	2	Mb	

==	Number	of	scene	redrawings:	1	

==	CPU	user	time:	15.6000999999998950	msec	

==	CPU	system	time:	0.0000000000000000	msec	

==	CPU	average	time	of	scene	redrawing:	

15.6000999999998950	msec	

Simple	vector	algebra	and
measurements
This	section	contains	description	of	auxiliary	commands	that	can	be
useful	for	simple	calculations	and	manipulations	needed	when	analyzing
complex	models.

Vector	algebra	commands
This	section	describes	commands	providing	simple	calculations	with	2D
and	3D	vectors.	The	vector	is	represented	by	a	TCL	list	of	double	values
(coordinates).	The	commands	get	input	vector	coordinates	from	the
command	line	as	distinct	values.	So,	if	you	have	a	vector	stored	in	a
variable	you	need	to	use	eval	command	as	a	prefix,	for	example,	to
compute	the	magnitude	of	cross	products	of	two	vectors	given	by	3
points	the	following	commands	can	be	used:

Draw[10]>	set	vec1	[vec	12	28	99	12	58	99]

0	30	0

Draw[13]>	set	vec2	[vec	12	28	99	16	21	89]

4	-7	-10

Draw[14]>	set	cross	[eval	cross	$vec1	$vec2]

-300	0	-120

Draw[15]>	eval	module	$cross

323.10988842807024

vec

Syntax:

vec	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>

Returns	coordinates	of	vector	between	two	3D	points.

Example:

vec	1	2	3	6	5	4

2dvec

Syntax:

2dvec	<x1>	<y1>	<x2>	<y2>

Returns	coordinates	of	vector	between	two	2D	points.

Example:

2dvec	1	2	4	3

pln

Syntax:

pln	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>	<x3>	<y3>	<z3>

Returns	plane	built	on	three	points.	A	plane	is	represented	by	6	double
values:	coordinates	of	the	origin	point	and	the	normal	directoin.

Example:

pln	1	2	3	6	5	4	9	8	7

module

Syntax:

module	<x>	<y>	<z>

Returns	module	of	a	vector.

Example:

module	1	2	3

2dmodule

Syntax:

2dmodule	<x>	<y>

Returns	module	of	a	2D	vector.

Example:

2dmodule	1	2

norm

Syntax:

norm	<x>	<y>	<z>

Returns	unified	vector	from	a	given	3D	vector.

Example:

norm	1	2	3

2dnorm

Syntax:

2dnorm	<x>	<y>

Returns	unified	vector	from	a	given	2D	vector.

Example:

2dnorm	1	2

inverse

Syntax:

inverse	<x>	<y>	<z>

Returns	inversed	3D	vector.

Example:

inverse	1	2	3

2dinverse

Syntax:

2dinverse	<x>	<y>

Returns	inversed	2D	vector.

Example:

2dinverse	1	2

2dort

Syntax:

2dort	<x>	<y>

Returns	2D	vector	rotated	on	90	degrees.

Example:

2dort	1	2

distpp

Syntax:

distpp	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>

Returns	distance	between	two	3D	points.

Example:

distpp	1	2	3	4	5	6

2ddistpp

Syntax:

2ddistpp	<x1>	<y1>	<x2>	<y2>

Returns	distance	between	two	2D	points.

Example:

2ddistpp	1	2	3	4

distplp

Syntax:

distplp	<x0>	<y0>	<z0>	<nx>	<ny>	<nz>	<xp>	<yp>	<zp>

Returns	distance	between	plane	defined	by	point	and	normal	direction
and	another	point.

Example:

distplp	0	0	0	0	0	1	5	6	7

distlp

Syntax:

distlp	<x0>	<y0>	<z0>	<dx>	<dy>	<dz>	<xp>	<yp>	<zp>

Returns	distance	between	3D	line	defined	by	point	and	direction	and
another	point.

Example:

distlp	0	0	0	1	0	0	5	6	7

2ddistlp

Syntax:

2ddistlp	<x0>	<y0>	<dx>	<dy>	<xp>	<yp>

Returns	distance	between	2D	line	defined	by	point	and	direction	and
another	point.

Example:

2ddistlp	0	0	1	0	5	6

distppp

Syntax:

distppp	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>	<x3>	<y3>	<z3>

Returns	deviation	of	point	(x2,y2,z2)	from	segment	defined	by	points
(x1,y1,z1)	and	(x3,y3,z3).

Example:

distppp	0	0	0	1	1	0	2	0	0

2ddistppp

Syntax:

2ddistppp	<x1>	<y1>	<x2>	<y2>	<x3>	<y3>

Returns	deviation	of	point	(x2,y2)	from	segment	defined	by	points	(x1,y1)
and	(x3,y3).	The	result	is	a	signed	value.	It	is	positive	if	the	point	(x2,y2)
is	on	the	left	side	of	the	segment,	and	negative	otherwise.

Example:

2ddistppp	0	0	1	-1	2	0

barycen

Syntax:

barycen	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>	<par>

Returns	point	of	a	given	parameter	between	two	3D	points.

Example:

barycen	0	0	0	1	1	1	0.3

2dbarycen

Syntax:

2dbarycen	<x1>	<y1>	<x2>	<y2>	<par>

Returns	point	of	a	given	parameter	between	two	2D	points.

Example:

2dbarycen	0	0	1	1	0.3

cross

Syntax:

cross	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>

Returns	cross	product	of	two	3D	vectors.

Example:

cross	1	0	0	0	1	0

2dcross

Syntax:

2dcross	<x1>	<y1>	<x2>	<y2>

Returns	cross	product	of	two	2D	vectors.

Example:

2dcross	1	0	0	1

dot

Syntax:

dot	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>

Returns	scalar	product	of	two	3D	vectors.

Example:

dot	1	0	0	0	1	0

2ddot

Syntax:

2ddot	<x1>	<y1>	<x2>	<y2>

Returns	scalar	product	of	two	2D	vectors.

Example:

2ddot	1	0	0	1

scale

Syntax:

scale	<x>	<y>	<z>	<factor>

Returns	3D	vector	multiplied	by	scalar.

Example:

scale	1	0	0	5

2dscale

Syntax:

2dscale	<x>	<y>	<factor>

Returns	2D	vector	multiplied	by	scalar.

Example:

2dscale	1	0	5

Measurements	commands
This	section	describes	commands	that	make	possible	to	provide
measurements	on	a	model.

pnt

Syntax:

pnt	<object>

Returns	coordinates	of	point	in	the	given	Draw	variable.	Object	can	be	of
type	point	or	vertex.	Actually	this	command	is	built	up	from	the
commands	mkpoint	and	coord.

Example:

vertex	v	0	1	0

pnt	v

pntc

Syntax:

pntc	<curv>	<par>

Returns	coordinates	of	point	on	3D	curve	with	given	parameter.	Actually
this	command	is	based	on	the	command	cvalue.

Example:

circle	c	0	0	0	10

pntc	c	[dval	pi/2]

2dpntc

Syntax:

2dpntc	<curv2d>	<par>

Returns	coordinates	of	point	on	2D	curve	with	given	parameter.	Actually
this	command	is	based	on	the	command	2dcvalue.

Example:

circle	c	0	0	10

2dpntc	c	[dval	pi/2]

pntsu

Syntax:

pntsu	<surf>	<u>	<v>

Returns	coordinates	of	point	on	surface	with	given	parameters.	Actually
this	command	is	based	on	the	command	svalue.

Example:

cylinder	s	10

pntsu	s	[dval	pi/2]	5

pntcons

Syntax:

pntcons	<curv2d>	<surf>	<par>

Returns	coordinates	of	point	on	surface	defined	by	point	on	2D	curve	with
given	parameter.	Actually	this	command	is	based	on	the	commands
2dcvalue	and	svalue.

Example:

line	c	0	0	1	0

cylinder	s	10

pntcons	c	s	[dval	pi/2]

drseg

Syntax:

drseg	<name>	<x1>	<y1>	<z1>	<x2>	<y2>	<z2>

Creates	a	linear	segment	between	two	3D	points.	The	new	object	is
given	the	name.	The	object	is	drawn	in	the	axonometric	view.

Example:

drseg	s	0	0	0	1	0	0

2ddrseg

Syntax:

2ddrseg	<name>	<x1>	<y1>	<x2>	<y2>

Creates	a	linear	segment	between	two	2D	points.	The	new	object	is
given	the	name.	The	object	is	drawn	in	the	2D	view.

Example:

2ddrseg	s	0	0	1	0

mpick

Syntax:

mpick

Prints	in	the	console	the	coordinates	of	a	point	clicked	by	mouse	in	a
view	(axonometric	or	2D).	This	command	will	wait	for	mouse	click	event
in	a	view.

Example:

mpick

mdist

Syntax:

mdist

Prints	in	the	console	the	distance	between	two	points	clicked	by	mouse	in
a	view	(axonometric	or	2D).	This	command	will	wait	for	two	mouse	click
events	in	a	view.

Example:

mdist

Inspector	commands
This	section	describes	commands	that	make	possible	to	use	Inspector.

tinspector
Syntax:

tinspector	[-plugins	{name1	...	[nameN]	|	all}]

											[-activate	name]

											[-shape	object	[name1]	...	[nameN]]

											[-open	file_name	[name1]	...	[nameN]]

											[-update]

											[-select	{object	|	name1	...	[nameN]}]

											[-show	{0|1}	=	1]

Starts	tool	of	inspection.	Options:

plugins	enters	plugins	that	should	be	added	in	the	inspector.
Available	names	are:	dfbrowser,	vinspector	and	shapeview.	Plugins
order	will	be	the	same	as	defined	in	arguments.	'all'	adds	all
available	plugins	in	the	order:	DFBrowser,	VInspector	and
ShapeView.	If	at	the	first	call	this	option	is	not	used,	'all'	option	is
applyed;
activate	activates	the	plugin	in	the	tool	view.	If	at	the	first	call	this
option	is	not	used,	the	first	plugin	is	activated;
shape	initializes	plugin/s	by	the	shape	object.	If	'name'	is	empty,
initializes	all	plugins;
open	gives	the	file	to	the	plugin/s.	If	the	plugin	is	active,	after	open,
update	content	will	be	done;
update	updates	content	of	the	active	plugin;
select	sets	the	parameter	that	should	be	selected	in	an	active	tool
view.	Depending	on	active	tool	the	parameter	is:	ShapeView:	'object'
is	an	instance	of	TopoDS_Shape	TShape,	DFBrowser:	'name'	is	an
entry	of	TDF_Label	and	name2(optionaly)	for	TDF_Attribute	type
name,	VInspector:	'object'	is	an	instance	of	AIS_InteractiveObject;
show	sets	Inspector	view	visible	or	hidden.	The	first	call	of	this
command	will	show	it.

Example:

pload	DCAF	INSPECTOR

NewDocument	Doc	BinOcaf

set	aSetAttr1	100

set	aLabel	0:2

SetInteger	Doc	${aLabel}	${aSetAttr1}

tinspector	-plugins	dfbrowser	-select	0:2	

TDataStd_Integer

Example:

pload	ALL	INSPECTOR

box	b1	200	100	120

box	b2	100	200	220	100	120	100

tinspector	-plugins	shapeview	-shape	b1	-shape	b2	-

select	b1

Example:

pload	ALL	INSPECTOR

tinspector	-plugins	vinspector

vinit

box	box_1	100	100	100

vdisplay	box_1

box	box_2	180	120	200	150	150	150

vdisplay	box_2

vfit

vselmode	box_1	1	1

vselmode	box_1	3	1

tinspector	-update	-select	box_1

Extending	Test	Harness	with
custom	commands
The	following	chapters	explain	how	to	extend	Test	Harness	with	custom
commands	and	how	to	activate	them	using	a	plug-in	mechanism.

Custom	command	implementation
Custom	command	implementation	has	not	undergone	any	changes	since
the	introduction	of	the	plug-in	mechanism.	The	syntax	of	every	command
should	still	be	like	in	the	following	example.

Example:

static	Standard_Integer	myadvcurve(Draw_Interpretor&	

di,	Standard_Integer	n,	char**	a)	

{	

...	

}	

For	examples	of	existing	commands	refer	to	Open	CASCADE
Technology	(e.g.	GeomliteTest.cxx).

Registration	of	commands	in	Test	Harness
To	become	available	in	the	Test	Harness	the	custom	command	must	be
registered	in	it.	This	should	be	done	as	follows.

Example:

void	MyPack::CurveCommands(Draw_Interpretor&	

theCommands)	

{	

...	

char*	g	=	"Advanced	curves	creation";	

theCommands.Add	("myadvcurve",	"myadvcurve	name	p1	

p2	p3	-	Creates	my	advanced	curve	from	points",	

																		__FILE__,	myadvcurve,	g);	

...	

}	

Creating	a	toolkit	(library)	as	a	plug-in
All	custom	commands	are	compiled	and	linked	into	a	dynamic	library	(.dll
on	Windows,	or	.so	on	Unix/Linux).	To	make	Test	Harness	recognize	it	as
a	plug-in	it	must	respect	certain	conventions.	Namely,	it	must	export
function	PLUGINFACTORY()	accepting	the	Test	Harness	interpreter
object	(Draw_Interpretor).	This	function	will	be	called	when	the	library	is
dynamically	loaded	during	the	Test	Harness	session.

This	exported	function	PLUGINFACTORY()	must	be	implemented	only
once	per	library.

For	convenience	the	DPLUGIN	macro	(defined	in	the
Draw_PluginMacro.hxx	file)	has	been	provided.	It	implements	the
PLUGINFACTORY()	function	as	a	call	to	the	Package::Factory()	method
and	accepts	Package	as	an	argument.	Respectively,	this
Package::Factory()	method	must	be	implemented	in	the	library	and
activate	all	implemented	commands.

Example:

#include	<Draw_PluginMacro.hxx>

void	MyPack::Factory(Draw_Interpretor&	theDI)

{

...

//	

MyPack::CurveCommands(theDI);

...

}

//	Declare	entry	point	PLUGINFACTORY

DPLUGIN(MyPack)

Creation	of	the	plug-in	resource	file
As	mentioned	above,	the	plug-in	resource	file	must	be	compliant	with
Open	CASCADE	Technology	requirements	(see	Resource_Manager.hxx
file	for	details).	In	particular,	it	should	contain	keys	separated	from	their
values	by	a	colon	(;:;).	For	every	created	plug-in	there	must	be	a	key.	For
better	readability	and	comprehension	it	is	recommended	to	have	some
meaningful	name.	Thus,	the	resource	file	must	contain	a	line	mapping
this	name	(key)	to	the	library	name.	The	latter	should	be	without	file
extension	(.dll	on	Windows,	.so	on	Unix/Linux)	and	without	the	;lib;	prefix
on	Unix/Linux.	For	several	plug-ins	one	resource	file	can	be	created.	In
such	case,	keys	denoting	plug-ins	can	be	combined	into	groups,	these
groups	–	into	their	groups	and	so	on	(thereby	creating	some	hierarchy).
Any	new	parent	key	must	have	its	value	as	a	sequence	of	child	keys
separated	by	spaces,	tabs	or	commas.	Keys	should	form	a	tree	without
cyclic	dependencies.

Examples	(file	MyDrawPlugin):

!	Hierarchy	of	plug-ins	

ALL																:	ADVMODELING,	MESHING	

DEFAULT												:	MESHING	

ADVMODELING								:	ADVSURF,	ADVCURV	

!	Mapping	from	naming	to	toolkits	(libraries)	

ADVSURF												:	TKMyAdvSurf	

ADVCURV												:	TKMyAdvCurv	

MESHING												:	TKMyMesh	

For	other	examples	of	the	plug-in	resource	file	refer	to	the	Plug-in
resource	file	chapter	above	or	to	the	$CASROOT/src/DrawPlugin	file
shipped	with	Open	CASCADE	Technology.

Dynamic	loading	and	activation
Loading	a	plug-in	and	activating	its	commands	is	described	in	the
Activation	of	the	commands	implemented	in	the	plug-in	chapter.

The	procedure	consists	in	defining	the	system	variables	and	using	the
pload	commands	in	the	Test	Harness	session.

Example:

Draw[]>	set	env(CSF_MyDrawPluginDefaults)	/users/test

Draw[]>	pload	-MyDrawPlugin	ALL

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Overview
Getting	started

Inspector
Overview
DFBrowser	Plugin

Overview
Elements
Elements
cooperation
TopoDS_Shape
export

VInspector	Plugin
Overview
Elements
Elements
cooperation

ShapeView	Plugin
Overview
Elements
Elements
cooperation

Common	controls
3D	View

Overview
Elements

TInspectorEXE	sample
Launch	in	DRAW	Test

Open	CASCADE
Technology		7.2.0

Inspector

Harness
Using	in	a	custom
application
Build	procedure
Sources	and	packaging
Glossary
TDF_Attribute	Simple
types
TDF_Attribute	List
types
TDF_Attribute	Array
types
XDE	tree	node	ID
description

Introduction
This	manual	explains	how	to	use	Inspector.

Overview
Inspector	is	a	Qt-based	library	that	provides	functionality	to	interactively
inspect	low-level	content	of	the	OCAF	data	model,	OCCT	viewer	and
Modelisation	Data.	This	component	is	aimed	to	assist	the	developers	of
OCCT-based	applications	to	debug	the	problematic	situations	that	occur
in	their	applications.

Inspector	has	a	plugin-oriented	architecture.	The	current	release	contains
the	following	plugins:

Plugin OCCT
component

Root	class	of	OCCT	investigated
component

DFBrowser OCAF TDocStd_Application
VInspector Visualization AIS_InteractiveContext

ShapeView Modelisation
Data TopoDS_Shape

Each	plugin	implements	logic	of	a	corresponding	OCCT	component.

Each	of	the	listed	plugins	is	embeded	in	the	common	framework.	The
user	is	able	to	manage	which	plugins	should	be	loaded	by	Inspector.	Also
he	can	extend	number	of	plugins	by	implementing	a	new	plugin.

Getting	started
There	are	two	launch	modes:

1.	 Launch	TInspectorEXE	executable	sample.	For	more	details	see
TInspectorEXE	section;

2.	 Launch	DRAW,	load	plugin	INSPECTOR,	and	use	tinspector
command.	For	more	details	see	Launch	in	DRAW	Test	Harness
section.

Note.	If	you	have	no	Inspector	library	in	your	build	directory,	please	make
sure	that	OCCT	is	compiled	with	BUILD_Inspector	option	ON.	For	more
details	see	Build	procedure.

Inspector
Overview

Inspector	consists	of	the	following	components:

buttons	to	activate	the	corresponding	plugin;
view	area	to	visualize	the	plugin	content.

Plugins	placement	in	Inspector

DFBrowser	Plugin

Overview

DFBrowser

This	plugin	visualizes	content	of	TDocStd_Application	in	a	tree	view.	It
shows	documents	of	the	application,	hierarchy	of	TDF_Labels,	content	of
TDF_Attributes	and	interconnection	between	attributes	(e.g.	references).
Additionally	it	has	3D	view	to	visualize	TopoDS_Shape	elements	stored
in	the	document.

Elements

Update SearchTree	Navigation

OCAF	tree	view
Property	Panel

3D	View
Dump	View

DFBrowser	Elements

OCAF	tree	view

Each	OCAF	element	has	own	tree	view	item:

Type Tree
item Text Description

TDocStd_Application Application TDocStd_Application

It	is	the	root	of
tree	view.
Children	are
documents.

TDocStd_Document Document entry	:	name

It	is	a	child	of
Application	item.
Children	are
Labels	and
Attributes	items.
Text	view	is	an
entry	of	the	root
label	and	the
value	of
TDataStd_Name

attribute	for	the
label	if	it	exists.

TDF_Label Label entry	:	name

It	is	a	child	of	a
Document	or
another	Label
item.	Children
and	text	view
are	the	same	as
for	Document
item.

TDF_Attribute Attribute
attribute	type
[additional
information]

It	is	a	child	of	a
Label.	It	has	no
children.	
Text	view	is	the
attribute	type
(DynamicType()-
>Name()	of
TDF_Attribute)
and	additional
information	(a
combination	of
attribute	values)

Additional	information	of	TDF_Attributes:

Type Text
TDocStd_Owner [storage	format]
TDataStd_AsciiString,
TDataStd_Name,
TDataStd_Real,
other	Simple	types

[value]

TDataStd_BooleanList,
TDataStd_ExtStringList,
other	List	types

[value_1	...	value_n]

TDataStd_BooleanArray,
TDataStd_ByteArray,
other	Array	types

[value_1	...	value_n]

[tree	node	ID	==>	Father()->Label()]	(if	it

TDataStd_TreeNode has	father)	or	
[tree	node	ID	<==	First()->Label()]	(if	it	has
NO	father)

TDataStd_TreeNode(XDE)

[XDE	tree	node	ID	==>	Father()->Label()]
(if	it	has	father),	
[XDE	tree	Node	ID	<==	label_1,	...,
label_n]	(if	it	has	NO	father)

TNaming_NamedShape [shape	type	:	evolution]
TNaming_UsedShapes [map	extent]

Custom	color	of	items:

OCAF	element
Type Color

TDF_Label

dark	green,	if	the	label	has	TDataStd_Name
attribute,	
light	grey	if	the	label	is	empty	(has	no
attributes	on	all	levels	of	hierarchy),
black	otherwise

TNaming_NamedShape

dark	gray	for	TopAbs_FORWARD	orientation
of	TopoDS_Shape,	
gray	for	TopAbs_REVERSED	orientation	of
TopoDS_Shape,	
black	for	other	orientation

Context	popup	menu:

Action Functionality
Expand Expands	the	next	two	levels	under	the	selected	item
Expand	All Expands	the	whole	tree	of	the	selected	item
Collapse	All Collapses	the	whole	tree	of	the	selected	item

Property	Panel

Property	panel	is	used	to	display	content	of	Label	or	Attribute	tree	view
items.	This	control	is	used	for	content	of	Label	or	Attribute	tree	view	items
or	Search	result	view.	Information	is	usually	shown	in	one	or	several

tables.

TDF_Attribute	has	the	following	content	in	Property	Panel:

Type Description Content

TDF_Label a	table	of	[entry	or	attribute
name,	value]

TDocStd_Owner,
Simple	types,	
List	types

a	table	of	[method	name,
value]

TDataStd_BooleanArray,
TDataStd_ByteArray,
other	Array	types

2	controls:	
*	a	table	of	[array	bound,
value],	
*	table	of	[method	name,
value]

TDataStd_TreeNode

2	controls:	
*	a	table	of	[Tree	ID,	value]
(visible	only	if	Tree	ID()	!=
ID()),	
*	a	tree	view	of	tree	nodes
starting	from	Root()	of	the
tree	node.	The	current	tree
node	has	dark	blue	text.

TDataStd_NamedData
tab	bar	of	attribute	elements,
each	tab	has	a	table	of
[name,	value]

TNaming_UsedShapes a	table	of	all	the	shapes
handled	by	the	framework

TNaming_NamedShape

2	controls:	
*	a	table	of	[method	name,
value]	including
CurrentShape/OriginalShape
methods	result	of
TNaming_Tools,	
*	an	evolution	table.	
Tables	contain	buttons	for

TopoDS_Shape	export.

TNaming_Naming

2	controls:	
*	a	table	of	TNaming_Name
vlaues,
*	a	table	of	[method	name,
value]

Dump	view

Dump	of	TDF_Attribute

Dump	view	shows	result	of	TDF_Attribute::Dump()	or
TDF_Label::Dump()	of	selected	tree	view	item.

3D	view

3D	View	visualizes	TopoDS_Shape	elements	of	OCAF	attribute	via	AIS
facilities.

DFBrowser	creates	two	kinds	presentations	depending	on	the	selection
place:

Kind Source	object Visualization
propeties View

Main
presentation

Tree	view	item:
TPrsStd_AISPresentation,
TNaming_NamedShape,
TNaming_Naming

Color:	a	default
color	for	shape
type	of	the
current
TopoDS_Shape

Additional
presentation

References	in	Property
panel Color:	white

Tree	Navigation

Tree	Navigation	shows	a	path	to	the	item	selected	in	the	tree	view.	The
path	is	a	sequence	of	label	entries	and	attribute	type	name.	Each
element	in	the	path	is	selectable	-	the	user	can	click	on	it	to	select	the
corresponding	tree	view	item.

Navigation	control	has	buttons	to	go	to	the	previous	and	the	next
selected	tree	view	items.

Update	Button

Update	button	synchronizes	content	of	tree	view	to	the	current	content	of
OCAF	document	that	could	be	modified	outside.

Search

The	user	can	search	OCAF	element	by	typing:

TDF_Label	entry,
TDF_Attribute	name,
TDataStd_Name	and	TDataStd_Comment	attributes	value.

Search

As	soon	as	the	user	confirms	the	typed	criteria,	the	Property	panel	is
filled	by	all	satisfied	values.	The	user	can	click	a	value	to	hightligt	the
corresponding	tree	view	item.	By	double	click	the	item	will	be	selected.

Elements	cooperation

Tree	item	selection

Selection	of	tree	view	item	updates	content	of	the	following	controls:

Navigation	line
Property	Panel
3D	View	(if	it	is	possible	to	create	an	interactive	presentation)
Dump	View

Property	Panel	item	selection

If	property	panel	shows	content	of	TDF_Label:

selection	of	the	table	row	hightlights	the	corresponding	item	in	tree
view,
double	click	on	the	table	row	selects	this	item	in	tree	view.

If	property	panel	shows	content	of	TDF_Attribute	that	has	reference	to

another	attribute,	selection	of	this	reference:

highlights	the	referenced	item	in	TreeView,
displays	additional	presentation	in	3D	view	if	it	can	be	created.

Attributes	having	references:

Type Reference Additional
presentation

TDF_Reference TDF_Label
TDataStd_ReferenceArray,
TDataStd_ReferenceList,	
TNaming_Naming

one	or	several
TDF_Label	in	a
container

TDataStd_TreeNode TDF_Label

TNaming_NamedShape TDF_Label	in	Evolution
table

selected
TopoDS_Shapes	in
property	panel	tables

TNaming_UsedShapes one	or	several
TNaming_NamedShape

TopoDS_Shapes	of
selected
TNaming_NamedShape

TopoDS_Shape	export

Property	panel	of	TNaming_NamedShape	attribute	has	controls	to	export
TopoDS_Shape	to:

BREP.	The	save	file	dialog	is	started	to	enter	the	result	file	name,
ShapeView	plugin.	Dialog	about	exporting	element	to	ShapeView	is
shown	with	a	possibility	to	activate	this	plugin	immediatelly.

VInspector	Plugin

Overview

VInspector

It	visualizes	interactive	objects	displayed	in	AIS_InteractiveContext	in	a
tree	view	with	columputed	selection	components	for	each	presentation.	It
shows	the	selected	elements	in	the	context	and	allows	to	select	these
elements.

Elements

Update Selection	controls

Presentations	tree	view

History	view

VInspector	Elements

Presentations	tree	view

It	shows	presentations	and	selection	computed	of	them.	Also,	the	view
has	columns	with	information	about	state	of	visualization	elements.

VInspector	tree	items.

Type Description

AIS_InteractiveContext

It	is	the	root	of	tree	view.	Children	are
interactive	objects	obtained	by
DisplayedObjects	and	ErasedObjects
methods.

AIS_InteractiveObject
It	is	a	child	of	AIS_InteractiveContext	item.
Children	are	SelectMgr_Selection	obtained
by	iteration	on	CurrentSelection

SelectMgr_Selection
It	is	a	child	of	AIS_InteractiveObject.
Children	are	SelectMgr_SensitiveEntity
obtaining	by	iteration	on	Sensitive

SelectMgr_SensitiveEntity
It	is	a	child	of	SelectMgr_Selection.
Children	are	SelectMgr_SensitiveEntity

obtaining	by	iteration	on	OwnerId

SelectBasics_EntityOwner It	is	a	child	SelectMgr_SensitiveEntity.	It
has	no	children.

Custom	color	of	tree	view	items:

OCAF	element	Type Column What Color

AIS_InteractiveObject 0 Text

dark	gray,	it	is	in
ErasedObjects	list	of
AIS_InteractiveContext,
black	otherwise

AIS_InteractiveObject,	
SelectMgr_SensitiveEntity,
SelectBasics_EntityOwner

1 Background

dark	blue,	if	there	is	a
selected	owner	under	the
item,	
black	otherwise

SelectMgr_Selection,
SelectMgr_SensitiveEntity,
SelectBasics_EntityOwner

all Text

dark	gray,	if
SelectionState	of
SelectMgr_Selection	is	not
SelectMgr_SOS_Activated
black	otherwise

Context	popup	menu	in	tree	view:

Action Item Functionality

Export	to
ShapeView AIS_InteractiveObject

Exports	TopoDS_Shape	of
AIS_Interactive	presentation	to
ShapeView	plugin.	
It	should	be	AIS_Shape
presentation	and	ShapeView
plugin	should	be	registered	in
Inspector
Dialog	about	exporting	element	to
ShapeView	is	shown	with	a
possibility	to	activate	this	plugin
immediatelly.

Show AIS_InteractiveObject Display	presentation	in
AIS_InteractiveContext

Hide AIS_InteractiveObject Erase	presentation	from
AIS_InteractiveContext

Update

It	synchronizes	content	of	the	plugin	to	the	current	state	of
AIS_InteractiveContext.	It	updates	the	presence	of	items	and	the	current
selection	for	the	items.

Selection	controls

Selection	controls	switch	on/off	the	posibility	to	set	selection	in	the
context	from	VInspector	plugin.

Action Tree	view	item Functionality

Select
Presentations AIS_InteractiveObject

Calls
AddOrRemoveSelected	of
interactive	object	for	the
selected	item

Select
Owners

SelectMgr_EntityOwner
or	
SelectMgr_SensitiveEntity

Calls
AddOrRemoveSelected	of
SelectMgr_EntityOwner	for
the	selected	item

Please	note,	that	the	initial	selection	in	context	will	be	cleared.	If	the
button	is	toggled,	the	button	selection	is	active.	Only	one	button	may	be
toggled	at	the	moment.

History	view

At	present	the	History	view	is	under	implementation	and	may	be	used
only	in	a	custom	application	where	Inspector	is	loaded.

To	fill	this	view,	VInspectorAPI_CallBack	should	be	redefined	in	the
application	and	send	signals	about	some	actions	applyed	to	context.
After,	the	call	back	should	be	given	as	parameter	in	the	plugin.	If	done,
new	items	will	be	created	in	the	history	view	for	each	action.

Elements	cooperation

Vinspector	markes	current	selected	presentations	in
AIS_InteractiveContext	with	blue	background	in	tree	items.	Use	"Update"
button	to	synchronize	VInspector	selected	items	state	to	the	context.

It	is	also	possible	to	perform	selection	in	context	using	"Selection
controls"	VInspector.	However,	it	should	be	performed	carefully	as	it
clears	the	current	selection	in	AIS_InteractiveContext.

Selection	change:

From To Action

AIS_InteractiveContext VInspector perform	selection	in
AIS_InteractiveContext

VInspector AIS_InteractiveContext

activate	one	of
Selection	controls	and
select	one	or	several
elements	in	tree	view

ShapeView	Plugin

Overview

ShapeView

This	plugin	visualizes	content	of	TopoDS_Shape	in	a	tree	view.

Elements

TopoDS_Shape	View 3D	View

ShapeView	Elements

TopoDS_Shape	View

Elements	of	the	view	are	TopoDS_Shape	objects.	This	shape	is	exploded
into	sub-shapes	using	TopoDS_Iterator	of	the	TopoDS_Shape.	Child	sub-
shapes	are	presented	in	the	view	as	children	of	the	initial	shape.	Iterating
recursively	by	all	shapes	we	obtain	a	tree	view	of	items	shown	in	the
ShapeView.

Columns	of	the	View	show	some	information	about	TopoDS_Shape	of
the	item.	The	most	informative	column	is	the	last	column	of
TopoDS_Vertex	and	TopoDS_Edge	shape	types.

For	TopoDS_Vertex	it	contains	the	point	coordinates,

for	TopoDS_Edge	it	contains	the	first	and	the	last	point	coordinates,	the
edge	length	and	some	other	parameters.

Context	popup	menu	in	tree	view:

Action Functionality
Load Opens	selected	file	and	appends	the	result

BREP	file TopoDS_Shape	into	tree	view
Remove	all
shape
items

Clears	tree	view

BREP	view Shows	text	view	with	BREP	content	of	the	selected	item.
It	creates	BREP	file	in	temporary	directory	of	the	plugin.

Close	All
BREP
views

Closes	all	opened	text	views

BREP
directory

Displays	folder	where	temporary	BREP	files	have	been
stored.

Elements	cooperation

Selection	of	one	or	several	items	in	TopoDS_Shape	View	creates
AIS_Shape	presentation	for	it	and	displays	it	in	the	3D	View.

Common	controls
3D	View

Overview

3D	View

Control	for	OCCT	3D	viewer.	It	creates	visualization	view	components
with	possibilities	to	perform	some	user	actions	for	the	view.

Elements

Single Clean

3D	view

View Multi

3DView	Elements

3D	View	contains:

Element Functionality
3D	view V3d	viewer	with	mouse	events	processing

Context

choice	of	another	context	that	should	be	used	in	the
plugin.	
It	is	possible	to	use	the	next	contexts:
Own	-	context	of	this	view,	
External	-	context	come	in	parameters	which	intializes
plugin,	
None	-	do	not	perform	visualization	at	all

Multi/Single

Buttons	defined	what	to	do	with	the	previous	displayed
objects:	
Multi	displays	new	presentations	in	additional	to	already
displayed,	
Single	removes	all	previuos	displayed	presentations

Clean Removes	all	displayed	presentations
Fit	All,
Fit	Area,
Zoom, Scene	manipulation	actions

Pan,
Rotation
Display
Mode

Sets	AIS_Shading	or	AIS_WireFrame	display	mode	for	all
presentations

TInspectorEXE	sample
Inspector	functionality	can	be	tried	using	this	sample.

Use	inspector.bat	script	file	placed	in	binary	directory	of	OCCT	to	launch
it.

This	script	accepts	the	names	of	plugin's	DLL	that	should	be	loaded.	By
default	it	loads	all	described	above	plugins.

TStandaloneEXE

Click	on	the	Open	button	shows	the	dialog	to	select	a	file.	The	user	is
able	to	select	one	of	the	sample	files	or	load	own	one.

Depending	on	the	active	plugin,	the	following	files	should	be	selected	in
the	dialog:	OCAF	document	or	STEP	files	for	DFBRowser	and	BREP	files
for	VInspector	and	ShapeView	plugins.

It	is	possible	to	click	the	file	name	in	the	proposed	directory,	enter	it
manually	or	using	Browser	button.	The	last	Loading	icon	becomes
enabled	if	file	name	is	correct.

By	default	TInspectorEXE	opens	the	next	files	for	plugins:

Plugin	DLL	library	name Files
TKDFBrowser step/screw.step
TKVInspector occ/hammer.brep

TKShapeView occ/face1.brep,	
occ/face2.brep

These	files	are	found	relatively	CSF_OCCTDataPath.

Source	code	of	TIspectorEXE	is	a	good	sample	for	Using	Inspector	in	a
custom	application.

Launch	in	DRAW	Test	Harness
TKToolsDraw	plugin	is	created	to	provide	DRAW	commands	for	Qt	tools.
Use	INSPECTOR	parameter	of	pload	command	to	download	commands
of	this	library.	It	contains	tinspector	command	to	start	Inspector	under
DRAW.	See	more	detailed	description	of	the	tinspector	command.

The	simple	code	to	start	Inspector	with	all	plugins	loaded:

pload	INSPECTOR

tinspector

tinspector

Result	of	this	command	is	the	next:

all	available	Plugins	are	presented	in	the	Inspector.	These	are
DFBrowser,	VInspector	and	ShapeView.
DFBrowser	is	an	active	plugin
tree	of	OCAF	is	empty.

After,	we	should	create	objects	in	DRAW	and	update	tinspector.

Using	in	a	custom	application
To	use	Inspector	in	an	application,	the	next	steps	should	be	done:

Set	dependencies	to	OCCT	and	Qt	in	application	(Header	and	Link)
Create	an	instance	of	TInspector_Communicator.
Register	plugins	of	interest	in	the	communicator	by	DLL	library	name
Initialize	communicator	with	objects	that	will	be	investigated
Set	visible	true	for	commumicator

C++	code	is	similar:

#include	<inspector/TInspector_Communicator.hxx>

static	TInspector_Communicator*	MyTCommunicator;

void	CreateInspector()

{

		NCollection_List<Handle(Standard_Transient)>	

aParameters;

	//...	append	parameters	in	the	list

	if	(!MyTCommunicator)

		{

				MyTCommunicator	=	new	TInspector_Communicator();

				MyTCommunicator->RegisterPlugin	("TKDFBrowser");

				MyTCommunicator->RegisterPlugin	("TKVInspector");

				MyTCommunicator->RegisterPlugin	("TKShapeView");

				MyTCommunicator->Init	(aParameters);

				MyTCommunicator->Activate	("TKDFBrowser");

		}

		MyTCommunicator->SetVisible	(true);

}

Plugin to	be	initialized	by

TKDFBrowser TDocStd_Application
TKVInspector AIS_InteractiveContext
TKShapeView TopoDS_TShape

Build	procedure
By	default	the	Inspector	compilation	is	off.	To	compile	it,	set	the
BUILD_Inspector	flag	to	"ON".	See	Configuration	process.

When	this	option	is	switched	On,	MS	Visual	Studio	project	has	an
additional	tree	of	folders:

Inspector	packages	in	MS	Visual	Studio

Sources	and	packaging
OCCT	sources	are	extended	by	the	/tools	directory.

Distribution	of	packages	participated	in	plugins:

Sources	packages Plugin
DFBrowser,	
DFBrowserPane,	
DFBrowserPaneXDE,	
TKDFBrowser

DFBrowser

VInspector,	
TKVInspector VInspector

ShapeView,	
TKShapeView ShapeView

Other	packages:

Sources
packages Used	in

TInspectorAPI,	
TKInspectorAPI Iterface	for	connection	to	plugin.

TreeModel,	
TKTreeView

Items-oriented	model	to	simplify	work	with	GUI
tree	control.

View,	
TKView 3D	View	component

TInspector,	
TKTInspector Inspector	window	where	plugins	are	placed

ToolsDraw,	
TKToolsDraw Plugin	for	DRAW	to	start	Inspector

In	MSVC	studio	the	separate	folder	contains	Inspector	projects.

Glossary
Component	–	OCCT	part,	e.g.	OCAF,	VISUALIZATION,	MODELING
and	others.
Plugin	–	library	that	is	loaded	in	some	executable/library.	Here,	the
plugins	are:

DFBrowser,
ShapeView,
VInspector.

TDF_Attribute	Simple	types
Types	where	the	content	is	a	single	value

Type Kind	of	value
TDataStd_AsciiString TDataStd_AsciiString
TDataStd_Comment TCollection_ExtendedString
TDataStd_Integer Standard_Integer
TDataStd_Name TCollection_ExtendedString
TDataStd_Real Standard_Real
TDF_Reference TDF_Label
TDF_TagSource Standard_Integer

TDF_Attribute	List	types

Type Kind	of	value	(container	of)
TDataStd_BooleanList Standard_Boolean
TDataStd_ExtStringList TCollection_ExtendedString
TDataStd_IntegerList Standard_Integer
TDataStd_RealList Standard_Real
TDataStd_ReferenceList TDF_Label

TDF_Attribute	Array	types

Type Kind	of	value	(container	of)
TDataStd_BooleanArray Standard_Boolean
TDataStd_ByteArray Standard_Byte
TDataStd_ExtStringArray TCollection_ExtendedString
TDataStd_IntegerArray Standard_Integer
TDataStd_RealArray Standard_Real
TDataStd_ReferenceArray TDF_Label

XDE	tree	node	ID	description

GUID Text
XCAFDoc::ShapeRefGUID() Shape	Instance	Link
XCAFDoc::ColorRefGUID	(XCAFDoc_ColorGen) Generic	Color	Link
XCAFDoc::ColorRefGUID	(XCAFDoc_ColorSurf) Surface	Color	Link
XCAFDoc::ColorRefGUID
(XCAFDoc_ColorCurv) Curve	Color	Link

XCAFDoc::DimTolRefGUID() DGT	Link
XCAFDoc::DatumRefGUID() Datum	Link
XCAFDoc::MaterialRefGUID() Material	Link

Generated	on	Wed	Aug	30	2017	17:04:21	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

Developer	Guides

The	following	documents	provide	information	on	OCCT	building,
development	and	testing:

Building	OCCT	from	sources
Documentation	system
Coding	Rules
Contribution	Workflow
Guide	to	installing	and	using	Git	for	OCCT	development
Automatic	Testing	system
Debugging	tools	and	hints

The	following	guide	provides	information	relevant	to	upgrading
applications	developed	with	previous	versions	of	OCCT,	to	recent	one:

Upgrade	from	previous	OCCT	versions

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

Building	OCCT	from	sources

Before	building	OCCT,	make	sure	to	have	all	the	required	third-party
libraries	installed.	The	list	of	required	libraries	depends	on	what	OCCT
modules	will	be	used,	and	your	preferences.	The	typical	minimum	is
Freetype	(necessary	for	Visualization)	and	Tcl/Tk	(for	DRAW	Test
Harness).	See	"Third-party	libraries"	section	in	Overview	for	a	full	list.

On	Windows,	the	easiest	way	to	install	third-party	libraries	is	to	download
archive	with	pre-built	binaries	from
http://www.opencascade.com/content/3rd-party-components.	On	Linux
and	OS	X,	it	is	recommended	to	use	the	version	installed	in	the	system
natively.

You	can	also	build	third-party	libraries	from	their	sources:

Building	3rd-party	libraries	on	Windows
Building	3rd-party	libraries	on	Linux
Building	3rd-party	libraries	on	MacOS	X

Build	OCCT	using	your	preferred	build	tool.

Building	with	CMake	(cross-platform)
Building	with	CMake	for	Android	(cross-platform)
Building	on	Windows	with	MS	Visual	Studio	projects
Building	on	Mac	OS	X	with	Code::Blocks	projects
Building	on	Mac	OS	X	with	Xcode	projects

The	current	version	of	OCCT	can	be	consulted	in	the	file
src/Standard/Standard_Version.hxx

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.opencascade.com/content/3rd-party-components
http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Building	Mandatory
Third-party	Products
Tcl/Tk

Installation	from
sources:	Tcl
Installation	from
sources:	Tk

FreeType
Building	Optional	Third-
party	Products
TBB
gl2ps
FreeImage
VTK

Open	CASCADE
Technology		7.2.0

Building	3rd-party	libraries	on	Windows

Introduction
This	document	presents	guidelines	for	building	third-party	products	used
by	Open	CASCADE	Technology	(OCCT)	and	samples	on	Windows
platform.	It	is	assumed	that	you	are	already	familiar	with	MS	Visual
Studio	/	Visual	C++.

You	need	to	use	the	same	version	of	MS	Visual	Studio	for	building	all
third-party	products	and	OCCT	itself,	in	order	to	receive	a	consistent	set
of	run-time	binaries.

The	links	for	downloading	the	third-party	products	are	available	on	the
web	site	of	OPEN	CASCADE	SAS	at
http://www.opencascade.com/content/3rd-party-components.

There	are	two	types	of	third-party	products	used	by	OCCT:

Mandatory	products:
Tcl/Tk	8.5	–	8.6;
FreeType	2.4.10	–	2.5.3.

Optional	products:
TBB	3.x	–	4.x;
gl2ps	1.3.5	–	1.3.8;
FreeImage	3.14.1	–	3.16.0;
VTK	6.1.0.

It	is	recommended	to	create	a	separate	new	folder	on	your	workstation,
where	you	will	unpack	the	downloaded	archives	of	the	third-party
products,	and	where	you	will	build	these	products	(for	example,
c:\occ3rdparty).

Further	in	this	document,	this	folder	is	referred	to	as	3rdparty.

http://www.opencascade.com/content/3rd-party-components

Building	Mandatory	Third-party
Products
Tcl/Tk

Tcl/Tk	is	required	for	DRAW	test	harness.

Installation	from	sources:	Tcl

Download	the	necessary	archive	from
http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

1.	 In	the	win	sub-directory,	edit	file	buildall.vc.bat:
Edit	the	line	"call	...	vcvars32.bat"	to	have	correct	path	to	the
version	of	Visual	Studio	to	be	used	for	building,	for	instance:

call	"%VS80COMNTOOLS%\vsvars32.bat"

If	you	are	building	64-bit	version,	set	environment	accordingly,
e.g.:

call	"%VS80COMNTOOLS%\..\..\VC\vcvarsall.bat"

	amd64

Define	variable	INSTALLDIR	pointing	to	directory	where	Tcl/Tk
will	be	installed,	e.g.:
set	INSTALLDIR=D:\OCCT\3rdparty\tcltk-86-32

Add	option	install	to	the	first	command	line	calling	nmake:
nmake	-nologo	-f	makefile.vc	release	htmlhelp

	install	%1

Remove	second	call	to	nmake	(building	statically	linked
executable)

2.	 Edit	file	rules.vc	replacing	line

SUFX					=	tsgx

http://www.tcl.tk/software/tcltk/download.html

by

SUFX					=	sgx

This	is	to	avoid	extra	prefix	't'	in	the	library	name,	which	is	not
recognized	by	default	by	OCCT	build	tools.

3.	 By	default,	Tcl	uses	dynamic	version	of	run-time	library	(MSVCRT),
which	must	be	installed	on	the	system	where	Tcl	will	be	used.	You
may	wish	to	link	Tcl	library	with	static	version	of	run-time	to	avoid	this
dependency.	For	that:

Edit	file	makefile.vc	replacing	strings	"crt	=	-MD"	by	"crt	=	-MT"
Edit	source	file	tclMain.c	(located	in	folder	generic)	commenting
out	forward	declaration	of	function	isatty().

4.	 In	the	command	prompt,	run	buildall.vc.bat

You	might	need	to	run	this	script	twice	to	have	tclsh	executable
installed;	check	subfolder	bin	of	specified	installation	path	to	verify
this.

5.	 For	convenience	of	use,	we	recommend	making	a	copy	of	tclsh
executable	created	in	subfolder	bin	of	INSTALLDIR	and	named	with
Tcl	version	number	suffix,	as	tclsh.exe	(with	no	suffix)
>	cd	D:\OCCT\3rdparty\tcltk-86-32\bin

>	cp	tclsh86.exe	tclsh.exe

Installation	from	sources:	Tk

Download	the	necessary	archive	from
http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

Apply	the	same	steps	as	described	for	building	Tcl	above,	with	the	same
INSTALLDIR.	Note	that	Tk	produces	its	own	executable,	called	wish.

You	might	need	to	edit	default	value	of	TCLDIR	variable	defined	in
buildall.vc.bat	(should	be	not	necessary	if	you	unpack	both	Tcl	and	Tk
sources	in	the	same	folder).

http://www.tcl.tk/software/tcltk/download.html

FreeType
FreeType	is	required	for	text	display	in	a	3D	viewer.	You	can	download	its
sources	from	http://sourceforge.net/projects/freetype/files/

The	building	procedure

1.	 Unpack	the	downloaded	archive	of	FreeType	product	into	the
3rdparty	folder.	As	a	result,	you	will	get	a	folder	named,	for	example,
3rdparty\freetype-2.4.10.	Further	in	this	document,	this	folder	is
referred	to	as	freetype.

2.	 Open	the	solution	file	freetype\builds\win32\vc20xx\freetype.sln	in
Visual	Studio.	Here	vc20xx	stands	for	your	version	of	Visual	Studio.

3.	 Select	the	configuration	to	build:	either	Debug	or	Release.
4.	 Build	the	freetype	project.

As	a	result,	you	will	get	a	freetype	import	library	(.lib)	in	the
freetype\obj\win32\vc20xx	folder.

5.	 If	you	build	FreeType	for	a	64	bit	platform,	select	in	the	main	menu
Build	-	Configuration	Manager	and	add	x64	platform	to	the	solution
configuration	by	copying	the	settings	from	Win32	platform:

http://sourceforge.net/projects/freetype/files/

Update	the	value	of	the	Output	File	for	x64	configuration:

Build	the	freetype	project.

As	a	result,	you	will	obtain	a	64	bit	import	library	(.lib)	file	in	the
freetype\x64\vc20xx	folder.

To	build	FreeType	as	a	dynamic	library	(.dll)	follow	steps	6,	7	and	8
of	this	procedure.

6.	 Open	menu	Project->	Properties->	Configuration	Properties->
General	and	change	option	Configuration	Type	to	Dynamic	Library
(.dll).

7.	 Edit	file	freetype\include\freetype\config\ftoption.h:

in	line	255,	uncomment	the	definition	of	macro	FT_EXPORT	and
change	it	as	follows:

#define	FT_EXPORT(x)			__declspec(dllexport)	x	

8.	 Build	the	freetype	project.

As	a	result,	you	will	obtain	the	files	of	the	import	library	(.lib)	and	the
dynamic	library	(.dll)	in	folders	freetype	\objs\release	or	\objs\debug	.

If	you	build	for	a	64	bit	platform,	follow	step	5	of	the	procedure.

To	facilitate	the	use	of	FreeType	libraries	in	OCCT	with	minimal
adjustment	of	build	procedures,	it	is	recommended	to	copy	the
include	files	and	libraries	of	FreeType	into	a	separate	folder,	named
according	to	the	pattern:	freetype-compiler-bitness-building	mode,
where:

compiler	is	vc8	or	vc9	or	vc10	or	vc11;
bitness	is	32	or	64;
building	mode	is	opt	(for	Release)	or	deb	(for	Debug).

The	include	subfolder	should	be	copied	as	is,	while	libraries	should
be	renamed	to	freetype.lib	and	freetype.dll	(suffixes	removed)	and
placed	to	subdirectories	lib	*and	*bin,	respectively.	If	the	Debug
configuration	is	built,	the	Debug	libraries	should	be	put	into
subdirectories	libd	and	bind.

Building	Optional	Third-party
Products
TBB

This	third-party	product	is	installed	with	binaries	from	the	archive	that	can
be	downloaded	from	http://threadingbuildingblocks.org/.	Go	to	the
Download	page,	find	the	release	version	you	need	(e.g.	tbb30_018oss)
and	pick	the	archive	for	Windows	platform.

Unpack	the	downloaded	archive	of	TBB	product	into	the	3rdparty	folder.

Further	in	this	document,	this	folder	is	referred	to	as	tbb.

http://threadingbuildingblocks.org/

gl2ps
This	third-party	product	should	be	built	as	a	dynamically	loadable	library
(dll	file).	You	can	download	its	sources	from	http://geuz.org/gl2ps/src/.

The	building	procedure

1.	 Unpack	the	downloaded	archive	of	gl2ps	product	(e.g.	gl2ps-
1.3.5.tgz)	into	the	3rdparty	folder.

As	a	result,	you	will	get	a	folder	named,	for	example,	3rdparty\gl2ps-
1.3.5-source.

Rename	it	into	gl2ps-platform-compiler-building	mode,	where

platform	–	win32	or	win64;
compiler	–	vc8,	vc9	or	vc10;
building	mode	–	opt	(for	release)	or	deb	(for	debug).

For	example,	gl2ps-win64-vc10-deb

Further	in	this	document,	this	folder	is	referred	to	as	gl2ps.

2.	 Download	(from
http://www.cmake.org/cmake/resources/software.html)	and	install	the
CMake	build	system.

3.	 Edit	the	file	gl2ps\CMakeLists.txt.

After	line	113	in	CMakeLists.txt:

set_target_properties(shared	PROPERTIES		COMPILE

_FLAGS	\"-DGL2PSDLL	-DGL2PSDLL_EXPORTS\")

add	the	following	line:

add_definitions(-D_USE_MATH_DEFINES)		

Attention:	If	Cygwin	was	installed	on	your	computer,	make	sure	that
there	is	no	path	to	it	in	the	PATH	variable	to	avoid	possible	conflicts
during	the	configuration.

http://geuz.org/gl2ps/src/
http://www.cmake.org/cmake/resources/software.html

4.	 Launch	CMake	(cmake-gui.exe)	using	the	Program	menu.

In	CMake:

Define	where	the	source	code	is.	This	path	must	point	to	gl2ps
folder.
Define	where	to	build	the	binaries.	This	path	must	point	to	the
folder	where	generated	gl2ps	project	binaries	will	be	placed	(for
example,	gl2ps\bin).	Further	in	this	document,	this	folder	is
referred	to	as	gl2ps_bin.
Press	Configure	button.

Select	the	generator	(the	compiler	and	the	target	platform	–	32
or	64	bit)	in	the	pop-up	window.

Press	Finish	button	to	return	to	the	main	CMake	window.
Expand	the	ENABLE	group	and	uncheck	ENABLE_PNG	and
ENABLE_ZLIB	check	boxes.

Expand	the	CMAKE	group	and	define
CMAKE_INSTALL_PREFIX	which	is	the	path	where	you	want	to
install	the	build	results,	for	example,	c:\occ3rdparty\gl2ps-1.3.5.

Press	Configure	button	again,	then	press	Generate	button	to
generate	Visual	Studio	projects.	After	completion,	close	CMake
application.

5.	 Open	the	solution	file	gl2ps_bin\gl2ps.sln	in	Visual	Studio.
Select	a	configuration	to	build

Choose	Release	to	build	Release	binaries.
Choose	Debug	to	build	Debug	binaries.

Select	a	platform	to	build.
Choose	Win32	to	build	for	a	32	bit	platform.
Choose	x64	to	build	for	a	64	bit	platform.

Build	the	solution.
Build	the	INSTALL	project.

As	a	result,	you	should	have	the	installed	gl2ps	product	in	the
CMAKE_INSTALL_PREFIX	path.

FreeImage
This	third-party	product	should	be	built	as	a	dynamically	loadable	library
(.dll	file).	You	can	download	its	sources	from
http://sourceforge.net/projects/freeimage/files/Source%20Distribution/

The	building	procedure:

1.	 Unpack	the	downloaded	archive	of	FreeImage	product	into	3rdparty
folder.

As	a	result,	you	should	have	a	folder	named	3rdparty\FreeImage.

Rename	it	according	to	the	rule:	freeimage-platform-compiler-
building	mode,	where

platform	is	win32	or	win64;
compiler	is	vc8	or	vc9	or	vc10	or	vc11;
building	mode	is	opt	(for	release)	or	deb	(for	debug)

Further	in	this	document,	this	folder	is	referred	to	as	freeimage.

2.	 Open	the	solution	file	freeimage\FreeImage..sln*	in	your	Visual
Studio.

If	you	use	a	Visual	Studio	version	higher	than	VC++	2008,	apply
conversion	of	the	workspace.	Such	conversion	should	be	suggested
automatically	by	Visual	Studio.

3.	 Select	a	configuration	to	build.

Choose	Release	if	you	are	building	Release	binaries.
Choose	Debug	if	you	are	building	Debug	binaries.

Note:

If	you	want	to	build	a	debug	version	of	FreeImage	binaries	then	you
need	to	rename	the	following	files	in	FreeImage	and	FreeimagePlus
projects:

Project	->	Properties	->	Configuration	Properties	->	Linker	->

http://sourceforge.net/projects/freeimage/files/Source%20Distribution/

General	->	Output	File

FreeImage*d*.dll		to	FreeImage.dll	

FreeImagePlus*d*.dll	to	FreeImagePlus.dll	

Project	->	Properties	->	Configuration	Properties	->	Linker	->
Debugging->	Generate	Program	Database	File

FreeImage*d*.pdb		to	FreeImage.pdb	

FreeImagePlus*d*.pdb	to	FreeImagePlus.pdb	

Project	->	Properties	->	Configuration	Properties	->	Linker	->
Advanced-Import	Library

FreeImage*d*.lib		to	FreeImage.lib	

FreeImagePlus*d*.lib		to	FreeImagePlus.lib	

Project	->	Properties	->	Configuration	Properties	->	Build	Events	->
Post	->	Build	Event	->	Command	Line

FreeImage*d*.dll					to	FreeImage.dll	

FreeImage*d*.lib					to	FreeImage.lib	

FreeImagePlus*d*.dll	to	FreeImagePlus.dll	

FreeImagePlus*d*.lib	to	FreeImagePlus.lib	

Additionally,	rename	in	project	FreeImagePlus

Project	->	Properties	->	Configuration	Properties	->	Linker	->	Input	->
Additional	Dependencies

from	FreeImage*d*.lib	to	FreeImage.lib	

4.	 Select	a	platform	to	build.
Choose	Win32	if	you	are	building	for	a	32	bit	platform.
Choose	x64	if	you	are	building	for	a	64	bit	platform.

5.	 Start	the	building	process.

As	a	result,	you	should	have	the	library	files	of	FreeImage	product	in
freeimage\Dist	folder	(FreeImage.dll	and	FreeImage.lib)	and	in
freeimage\Wrapper\FreeImagePlus\dist	folder	(FreeImagePlus.dll
and	FreeImagePlus.lib).

VTK
VTK	is	an	open-source,	freely	available	software	system	for	3D	computer
graphics,	image	processing	and	visualization.	VTK	Integration	Services
component	provides	adaptation	functionality	for	visualization	of	OCCT
topological	shapes	by	means	of	VTK	library.

The	building	procedure:

1.	 Download	the	necessary	archive	from
http://www.vtk.org/VTK/resources/software.html	and	unpack	it	into
3rdparty	folder.

As	a	result,	you	will	get	a	folder	named,	for	example,	3rdparty\VTK-
6.1.0.

Further	in	this	document,	this	folder	is	referred	to	as	VTK.

2.	 Use	CMake	to	generate	VS	projects	for	building	the	library:
Start	CMake-GUI	and	select	VTK	folder	as	source	path,	and	the
folder	of	your	choice	for	VS	project	and	intermediate	build	data.
Click	Configure.
Select	the	VS	version	to	be	used	from	the	ones	you	have
installed	(we	recommend	using	VS	2010)	and	the	architecture
(32	or	64-bit).
Generate	VS	projects	with	default	CMake	options.	The	open
solution	VTK.sln	will	be	generated	in	the	build	folder.

3.	 Build	project	VTK	in	Release	mode.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.vtk.org/VTK/resources/software.html
http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Building	Mandatory
Third-party	Products
Tcl/Tk

Installation	from
sources:	Tcl
Installation	from
sources:	Tk

FreeType
Building	Optional	Third-
party	Products
TBB
gl2ps
FreeImage
VTK

Installation	From	Official
Repositories
Debian-based
distributives

Open	CASCADE
Technology		7.2.0

Building	3rd-party	libraries	on	Linux

Introduction
This	document	presents	additional	guidelines	for	building	third-party
products	used	by	Open	CASCADE	Technology	and	samples	on	Linux
platform.

The	links	for	downloading	the	third-party	products	are	available	on	the
web	site	of	OPEN	CASCADE	SAS	at
http://www.opencascade.com/content/3rd-party-components.

There	are	two	types	of	third-party	products,	which	are	necessary	to	build
OCCT:

Mandatory	products:
Tcl/Tk	8.5	-	8.6;		
FreeType	2.4.10	-	2.5.3;

Optional	products:
TBB	3.x	-	4.x;
gl2ps	1.3.5	-	1.3.8;
FreeImage	3.14.1	-	3.16.0;
VTK	6.1.0.

http://www.opencascade.com/content/3rd-party-components

Building	Mandatory	Third-party
Products
Tcl/Tk

Tcl/Tk	is	required	for	DRAW	test	harness.

Installation	from	sources:	Tcl

Download	the	necessary	archive	from
http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

1.	 Enter	the	unix	sub-directory	of	the	directory	where	the	Tcl	source
files	are	located	(TCL_SRC_DIR).
cd	TCL_SRC_DIR/unix			

2.	 Run	the	configure	command:

configure	--enable-gcc		--enable-shared	--enable

-threads	--prefix=TCL_INSTALL_DIR			

For	a	64	bit	platform	also	add	–enable-64bit	option	to	the	command
line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process:
make			

4.	 If	building	is	finished	successfully,	start	the	installation	of	Tcl.	All
binary	and	service	files	of	the	product	will	be	copied	to	the	directory
defined	by	TCL_INSTALL_DIR
make	install			

Installation	from	sources:	Tk

Download	the	necessary	archive	from

http://www.tcl.tk/software/tcltk/download.html

http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

1.	 Enter	the	unix	sub-directory	of	the	directory	where	the	Tk	source	files
are	located	(TK_SRC_DIR)
cd	TK_SRC_DIR/unix			

2.	 Run	the	configure	command,	where	TCL_LIB_DIR	is
TCL_INSTALL_DIR/lib.

configure	--enable-gcc		--enable-shared	--enable

-threads	--with-tcl=TCL_LIB_DIR		--prefix=TK_INS

TALL_DIR			

For	a	64	bit	platform	also	add	–enable-64bit	option	to	the	command
line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process:
make			

4.	 If	the	building	has	finished	successfully,	start	the	installation	of	Tk.	All
binary	and	service	files	of	the	product	will	be	copied	to	the	directory
defined	by	TK_INSTALL_DIR	(usually	it	is	TCL_INSTALL_DIR)
make	install			

http://www.tcl.tk/software/tcltk/download.html

FreeType
FreeType	is	required	for	text	display	in	the	3D	viewer.	Download	the
necessary	archive	from	http://sourceforge.net/projects/freetype/files/	and
unpack	it.

1.	 Enter	the	directory	where	the	source	files	of	FreeType	are	located
(FREETYPE_SRC_DIR).
cd	FREETYPE_SRC_DIR			

2.	 Run	the	configure	command:

configure		--prefix=FREETYPE_INSTALL_DIR			

For	a	64	bit	platform	also	add	CFLAGS='-m64	-fPIC'	CPPFLAGS='-
m64	-fPIC'	option	to	the	command	line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process:
make			

4.	 If	the	building	has	finished	successfully,	start	the	installation	of
FreeType.	All	binary	and	service	files	of	the	product	will	be	copied	to
the	directory	defined	by	FREETYPE_INSTALL_DIR
make	install			

http://sourceforge.net/projects/freetype/files/

Building	Optional	Third-party
Products
TBB

This	third-party	product	is	installed	with	binaries	from	the	archive	that	can
be	downloaded	from	http://threadingbuildingblocks.org.	Go	to	the
Download	page,	find	the	release	version	you	need	and	pick	the	archive
for	Linux	platform.	To	install,	unpack	the	downloaded	archive	of	TBB
product.

http://threadingbuildingblocks.org

gl2ps
Download	the	necessary	archive	from	http://geuz.org/gl2ps/	and	unpack
it.

1.	 Install	or	build	cmake	product	from	the	source	file.
2.	 Start	cmake	in	GUI	mode	with	the	directory	where	the	source	files	of

gl2ps	are	located:

ccmake	GL2PS_SRC_DIR			

Press	[c]	to	make	the	initial	configuration;
Define	the	necessary	options	in	CMAKE_INSTALL_PREFIX
Press	[c]	to	make	the	final	configuration
Press	[g]	to	generate	Makefile	and	exit

or	just	run	the	following	command:

cmake		–DCMAKE_INSTALL_PREFIX=GL2PS_INSTALL_DIR	

–DCMAKE_BUILD_TYPE=Release			

3.	 Start	the	building	of	gl2ps:
make			

4.	 Start	the	installation	of	gl2ps.	Binaries	will	be	installed	according	to
the	CMAKE_INSTALL_PREFIX	option.
make	install			

http://geuz.org/gl2ps/

FreeImage
Download	the	necessary	archive	from
http://sourceforge.net/projects/freeimage/files/Source%20Distribution/
and	unpack	it.	The	directory	with	unpacked	sources	is	further	referred	to
as	FREEIMAGE_SRC_DIR.

1.	 Modify
FREEIMAGE_SRC_DIR/Source/OpenEXR/Imath/ImathMatrix.h:	In
line	60	insert	the	following:
#include	string.h			

2.	 Enter	the	directory	where	the	source	files	of	FreeImage	are	located
(FREEIMAGE_SRC_DIR).
cd	FREEIMAGE_SRC_DIR			

3.	 Run	the	building	process
make			

4.	 Run	the	installation	process

a.	If	you	have	the	permission	to	write	into	directories	/usr/include	and
/usr/lib,	run	the	following	command:

			make	install			

b.	If	you	do	not	have	this	permission,	you	need	to	modify	file
FREEIMAGE_SRC_DIR/Makefile.gnu:

Change	lines	7-9	from:

DESTDIR	?=	/			

INCDIR		?=	$(DESTDIR)/usr/include			

INSTALLDIR		?=	$(DESTDIR)/usr/lib			

to:

DESTDIR		?=	$(DESTDIR)			

INCDIR		?=	$(DESTDIR)/include			

http://sourceforge.net/projects/freeimage/files/Source%20Distribution/

INSTALLDIR		?=	$(DESTDIR)/lib			

Change	lines	65-67	from:

install		-m	644	-o	root	-g	root	$(HEADER)	$(INCD

IR)			

install		-m	644	-o	root	-g	root	$(STATICLIB)	$(I

NSTALLDIR)			

install		-m	755	-o	root	-g	root	$(SHAREDLIB)	$(I

NSTALLDIR)			

to:

install		-m	755	$(HEADER)	$(INCDIR)			

install		-m	755	$(STATICLIB)	$(INSTALLDIR)			

install		-m	755	$(SHAREDLIB)	$(INSTALLDIR)

Change	line	70	from:	

ldconfig

to:

\#ldconfig			

Then	run	the	installation	process	by	the	following	command:

	make	DESTDIR=FREEIMAGE_INSTALL_DIR		install			

5.	 Clean	temporary	files
	make	clean

VTK
You	can	download	VTK	sources	from
http://www.vtk.org/VTK/resources/software.html

The	building	procedure:

Download	the	necessary	archive	from
http://www.vtk.org/VTK/resources/software.html	and	unpack	it.

1.	 Install	or	build	cmake	product	from	the	source	file.
2.	 Start	cmake	in	GUI	mode	with	the	directory	where	the	source	files	of

VTK	are	located:
ccmake	VTK_SRC_DIR

Press	[c]	to	make	the	initial	configuration
Define	the	necessary	options	in	VTK_INSTALL_PREFIX
Press	[c]	to	make	the	final	configuration
Press	[g]	to	generate	Makefile	and	exit

3.	 Start	the	building	of	VTK:
make

4.	 Start	the	installation	of	gl2ps.	Binaries	will	be	installed	according	to
the	VTK_INSTALL_PREFIX	option.
make	install

http://www.vtk.org/VTK/resources/software.html
http://www.vtk.org/VTK/resources/software.html

Installation	From	Official
Repositories
Debian-based	distributives

All	3rd-party	products	required	for	building	of	OCCT	could	be	installed
from	official	repositories.	You	may	install	them	from	console	using	apt-get
utility:

sudo	apt-get	install	tcllib	tklib	tcl-dev	tk-dev	lib

freetype-dev	libxt-dev	libxmu-dev	libxi-dev	libgl1-m

esa-dev	libglu1-mesa-dev	libfreeimage-dev	libtbb-dev

	libgl2ps-dev

To	launch	binaries	built	with	WOK	you	need	to	install	C	shell	and	32-bit
libraries	on	x86_64	distributives:

#	you	may	need	to	add	i386	if	not	done	already	by	co

mmand	"dpkg	--add-architecture	i386"

sudo	apt-get	install	csh	libstdc++6:i386	libxt6:i386

	libxext6:i386	libxmu6:i386

Building	is	possible	with	C++	compliant	compiler:

sudo	apt-get	install	g++

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Building	Mandatory
Third-party	Products
Tcl/Tk	8.5

Installation	from
sources:	Tcl	8.5
Installation	from
sources:	Tk	8.5

FreeType	2.4.10
Building	Optional	Third-
party	Products
TBB	3.x	or	4.x
gl2ps	1.3.5
FreeImage	3.14.1	or
3.15.x

Open	CASCADE
Technology		7.2.0

Building	3rd-party	libraries	on	MacOS	X

Introduction
This	document	presents	additional	guidelines	for	building	third-party
products	used	by	Open	CASCADE	Technology	and	samples	on	Mac	OS
X	platform	(10.6.4	and	later).

The	links	for	downloading	the	third-party	products	are	available	on	the
web	site	of	OPEN	CASCADE	SAS	at
http://www.opencascade.com/content/3rd-party-components.

There	are	two	types	of	third-party	products,	which	are	necessary	to	build
OCCT:

Mandatory	products:
Tcl/Tk	8.5	-	8.6;
FreeType	2.4.10	-	2.5.3.

Optional	products:
TBB	3.x	-	4.x;
gl2ps	1.3.5	-	1.3.8;
FreeImage	3.14.1	-	3.16.0

http://www.opencascade.com/content/3rd-party-components

Building	Mandatory	Third-party
Products
Tcl/Tk	8.5

Tcl/Tk	is	required	for	DRAW	test	harness.	Version	8.5	or	8.6	can	be	used
with	OCCT.

Installation	from	sources:	Tcl	8.5

Download	the	necessary	archive	from
http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

1.	 Enter	the	macosx	sub-directory	of	the	directory	where	the	Tcl	source
files	are	located	(TCL_SRC_DIR).
cd	TCL_SRC_DIR/macosx			

2.	 Run	the	configure	command

configure	--enable-gcc		--enable-shared	--enable

-threads	--prefix=TCL_INSTALL_DIR			

For	a	64	bit	platform	also	add	–enable-64bit	option	to	the	command
line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process
make			

4.	 If	building	is	finished	successfully,	start	the	installation	of	Tcl.	All
binary	and	service	files	of	the	product	will	be	copied	to	the	directory
defined	by	TCL_INSTALL_DIR.
make	install			

Installation	from	sources:	Tk	8.5

http://www.tcl.tk/software/tcltk/download.html

Download	the	necessary	archive	from
http://www.tcl.tk/software/tcltk/download.html	and	unpack	it.

1.	 Enter	the	macosx	sub-directory	of	the	directory	where	the	source
files	of	Tk	are	located	(TK_SRC_DIR).
cd	TK_SRC_DIR/macosx			

2.	 Run	the	configure	command,	where	TCL_LIB_DIR	is
TCL_INSTALL_DIR/lib

configure	--enable-gcc	--enable-shared	--enable-

threads	--with-tcl=TCL_LIB_DIR	--prefix=TK_INSTA

LL_DIR			

For	a	64	bit	platform	also	add	–enable-64bit	option	to	the	command
line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process:
make			

4.	 If	the	building	has	finished	successfully,	start	the	installation	of	Tk.	All
binary	and	service	files	of	the	product	will	be	copied	to	the	directory
defined	by	TK_INSTALL_DIR	(usually	it	is	TCL_INSTALL_DIR)
make	install			

http://www.tcl.tk/software/tcltk/download.html

FreeType	2.4.10
FreeType	is	required	for	text	display	in	the	3D	viewer.

Download	the	necessary	archive	from
http://sourceforge.net/projects/freetype/files/	and	unpack	it.

1.	 Enter	the	directory	where	the	source	files	of	FreeType	are	located
(FREETYPE_SRC_DIR).
cd	FREETYPE_SRC_DIR			

2.	 Run	the	configure	command

configure		--prefix=FREETYPE_INSTALL_DIR			

For	a	64	bit	platform	also	add	CFLAGS='-m64	-fPIC'	CPPFLAGS='-
m64	-fPIC'	option	to	the	command	line.

3.	 If	the	configure	command	has	finished	successfully,	start	the	building
process
make			

4.	 If	building	has	finished	successfully,	start	the	installation	of
FreeType.	All	binary	and	service	files	of	the	product	will	be	copied	to
the	directory	defined	by	FREETYPE_INSTALL_DIR.
make	install			

http://sourceforge.net/projects/freetype/files/

Building	Optional	Third-party
Products
TBB	3.x	or	4.x

This	third-party	product	is	installed	with	binaries	from	the	archive	that	can
be	downloaded	from	http://threadingbuildingblocks.org/.	Go	to	the
Download	page,	find	the	release	version	you	need	(e.g.	tbb30_018oss)
and	pick	the	archive	for	Mac	OS	X	platform.	To	install,	unpack	the
downloaded	archive	of	TBB	3.0	product	(tbb30_018oss_osx.tgz).

http://threadingbuildingblocks.org/

gl2ps	1.3.5
Download	the	necessary	archive	from	http://geuz.org/gl2ps/	and	unpack
it.

1.	 Install	or	build	cmake	product	from	the	source	file.
2.	 Start	cmake	in	GUI	mode	with	the	directory,	where	the	source	files	of

fl2ps	are	located:

ccmake	GL2PS_SRC_DIR			

Press	[c]	to	make	the	initial	configuration;
Define	the	necessary	options	in	CMAKE_INSTALL_PREFIX;
Press	[c]	to	make	the	final	configuration;
Press	[g]	to	generate	Makefile	and	exit.

or	just	run	the	following	command:

cmake		–DCMAKE_INSTALL_PREFIX=GL2PS_INSTALL_DIR	

–DCMAKE_BUILD_TYPE=Release			

3.	 Start	the	building	of	gl2ps
make			

4.	 Start	the	installation	of	gl2ps.	Binaries	will	be	installed	according	to
the	CMAKE_INSTALL_PREFIX	option
make	install			

http://geuz.org/gl2ps/

FreeImage	3.14.1	or	3.15.x
Download	the	necessary	archive	from
http://sourceforge.net/projects/freeimage/files/Source%20Distribution/
and	unpack	it.	The	directory	with	unpacked	sources	is	further	referred	to
as	FREEIMAGE_SRC_DIR.

Note	that	for	building	FreeImage	on	Mac	OS	X	10.7	you	should	replace
Makefile.osx	in	FREEIMAGE_SRC_DIR	by	the	corrected	file,	which	you
can	find	in	attachment	to	issue	#22811	in	OCCT	Mantis	bug	tracker
(http://tracker.dev.opencascade.org/file_download.php?
file_id=6937&type=bug).

1.	 If	you	build	FreeImage	3.15.x	you	can	skip	this	step.	Modify
FREEIMAGE_SRC_DIR/Source/OpenEXR/Imath/ImathMatrix.h:

In	line	60	insert	the	following:

#include	string.h	

Modify
FREEIMAGE_SRC_DIR/Source/FreeImage/PluginTARGA.cpp:

In	line	320	replace:

SwapShort(value);	

with:

SwapShort(&value);	

2.	 Enter	the	directory	where	the	source	files	of	FreeImage	are	located
(FREEIMAGE_SRC_DIR).
cd	FREEIMAGE_SRC_DIR	

3.	 Run	the	building	process
make			

4.	 Run	the	installation	process
1.	 If	you	have	the	permission	to	write	into	/usr/local/include	and

http://sourceforge.net/projects/freeimage/files/Source%20Distribution/
http://tracker.dev.opencascade.org/file_download.php?file_id=6937&type=bug

/usr/local/lib	directories,	run	the	following	command:
make	install			

2.	 If	you	do	not	have	this	permission,	you	need	to	modify	file
FREEIMAGE_SRC_DIR/Makefile.osx:

Change	line	49	from:			

PREFIX	?=	/usr/local

to:

PREFIX		?=	$(PREFIX)	

		Change	lines	65-69	from:

		install	-d	-m	755	-o		root	-g	wheel	$(INCDI

R)	$(INSTALLDIR)	

		install		-m	644	-o	root	-g	wheel	$(HEADER)	

$(INCDIR)	

		install		-m	644	-o	root	-g	wheel	$(SHAREDLI

B)	$(STATICLIB)	$(INSTALLDIR)	

		ranlib		-sf	$(INSTALLDIR)/$(STATICLIB)	

		ln		-sf	$(SHAREDLIB)	$(INSTALLDIR)/$(LIBNAM

E)	

to:

install		-d	$(INCDIR)	$(INSTALLDIR)	

install		-m	755	$(HEADER)	$(INCDIR)	

install		-m	755	$(STATICLIB)	$(INSTALLDIR)	

install		-m	755	$(SHAREDLIB)	$(INSTALLDIR)	

ln		-sf	$(SHAREDLIB)	$(INSTALLDIR)/$(VERLIBNA

ME)		

ln		-sf	$(VERLIBNAME)	$(INSTALLDIR)/$(LIBNAME

)

Then	run	the	installation	process	by	the	following	command:

make	PREFIX=FREEIMAGE_INSTALL_DIR		install	

5.	 Clean	temporary	files
make	clean	

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

General
Start	CMake
Configuration	process
3rd	party	search
mechanism
Projects	generation
Building
Installation

Open	CASCADE
Technology		7.2.0

Building	with	CMake

General
This	article	describes	the	CMake-based	build	process,	which	is	now
suggested	as	a	standard	way	to	produce	the	binaries	of	Open	CASCADE
Technology	from	sources.	OCCT	requires	CMake	version	2.8.12	or	later.

Note
Compared	to	the	previous	(6.x)	releases	of	Open	CASCADE
Technology,	OCCT	7.x	has	a	complete	set	of	CMake	scripts	and
projects,	so	that	there	is	no	need	to	use	WOK	anymore.	Moreover,
CMake	gives	you	a	powerful	configuration	tool,	which	allows	to
control	many	aspects	of	OCCT	deployment.	At	the	same	time	this
tool	is	quite	intuitive,	which	is	a	significant	advantage	over	the	legacy
WOK	utilities.

Here	we	describe	the	build	procedure	on	the	example	of	Windows
platform	with	Visual	Studio	2010.	However,	CMake	is	cross-platform	and
can	be	used	to	build	OCCT	on	Linux	and	OS	X	in	essentially	the	same
way.

Note
Before	you	start,	make	sure	to	have	installed	all	3-rd	party	products
that	you	are	going	to	use	with	OCCT;	see	Building	OCCT	from
sources.

Start	CMake
CMake	is	a	tool	that	generates	the	actual	project	files	for	the	selected
target	build	system	(e.g.	Unix	makefiles)	or	IDE	(e.g.	Visual	Studio	2010).

For	unexperienced	users	we	recommend	to	start	with	cmake-gui	–	a
cross-platform	GUI	tool	provided	by	CMake	on	Windows,	Mac	and	Linux.
A	command-line	alternative,	ccmake	can	also	be	used.

CMake	deals	with	three	directories:	source,	build	or	binary	and
installation.

The	source	directory	is	where	the	sources	of	OCCT	are	located	in
your	file	system;
The	build	or	binary	directory	is	where	all	files	created	during	CMake
configuration	and	generation	process	will	be	located.	The	mentioned
process	will	be	described	below.
The	installation	directory	is	where	binaries	will	be	installed	after
building	the	INSTALL	project	that	is	created	by	CMake	generation
process,	along	with	header	files	and	resources	required	for	OCCT
use	in	applications.

The	good	practice	is	not	to	use	the	source	directory	as	a	build	one.
Different	configurations	should	be	built	in	different	build	directories	to
avoid	conflicts.	It	is	however	possible	to	choose	one	installation	directory
for	several	configurations	of	OCCT	(differentiated	by	platform,	bitness,
compiler	and	build	type),	for	example:

d:/occt/																			--	the	source	directory

d:/tmp/occt-build-vc10-x64	--	the	build	directory	wi

th	the	generated

																														solution	and	other	int

ermediate	files	created	during	a	CMake	tool	working

d:/occt-install												--	the	installation	direc

tory	that	is

																														able	to	contain	severa

l	OCCT	configurations

Configuration	process
If	the	command-line	tool	is	used,	run	the	tool	from	the	build	directory	with
a	single	argument	indicating	the	source	(relative	or	absolute	path)
directory:

cd	d:/tmp/occt-build-vc10-x64

ccmake	d:/occt

Press	c	to	configure.

All	actions	required	in	the	configuration	process	with	the	GUI	tool	will	be
described	below.

If	the	GUI	tool	is	used,	run	this	tool	without	additional	arguments	and
after	that	specify	the	source	directory	by	clicking	Browse	Source	and	the
build	(binary)	one	by	clicking	Browse	Build.

Note:	Each	configuration	of	the	project	should	be	built	in	its	own
directory.	When	building	multiple	configurations	it	is	recommended	to
indicate	in	the	name	of	build	directories	the	system,	bitness	and	compiler
(e.g.,	d:/occt/build/win32-vc10).

Once	the	source	and	build	directories	are	selected,	"Configure"	button
should	be	pressed	in	order	to	start	manual	configuration	process.	It
begins	with	selection	of	a	target	configurator.	It	is	"Visual	Studio	10	2010
Win64"	in	our	example.

To	build	OCCT	for	Universal	Windows	Platform	(UWP)	specify	the	path
to	toolchain	file	for	cross-compiling
d:/occt/adm/templates/uwp.toolchain.config.cmake.

Alternatively,	if	you	are	using	CMake	from	the	command	line	add	options
-DCMAKE_SYSTEM_NAME=WindowsStore	-
DCMAKE_SYSTEM_VERSION=10.0	.

Note:	Universal	Windows	Platform	(UWP)	is	supported	only	on	"Visual
Studio	14	2015".	File	d:/occt/samples/xaml/ReadMe.md	describes	the
building	procedure	of	XAML	(UWP)	sample.

Once	"Finish"	button	is	pressed,	the	first	pass	of	the	configuration
process	is	executed.	At	the	end	of	the	process,	CMake	outputs	the	list	of
environment	variables,	which	have	to	be	properly	specified	for	successful
configuration.

The	error	message	provides	some	information	about	these	variables.
This	message	will	appear	after	each	pass	of	the	process	until	all	required
variables	are	specified	correctly.

The	change	of	the	state	of	some	variables	can	lead	to	the	appearance	of
new	variables.	The	new	variables	appeared	after	the	pass	of	the
configuration	process	are	highlighted	with	red	color	by	CMake	GUI	tool.

Note:	There	is	"grouped"	option,	which	groups	variables	with	a	common
prefix.

The	following	table	gives	the	full	list	of	environment	variables	used	at	the
configuration	stage:

Variable Type

CMAKE_BUILD_TYPE String
Specifies	the	build	type	on	single-configuration
generators	(such	as	make).	Possible	values	are
Debug,	Release	and	RelWithDebInfo

USE_FREEIMAGE Boolean
Indicates	whether	FreeImage	product	should	be
used	in	OCCT	visualization	module	for	support	of

flag popular	graphics	image	formats	(PNG,	BMP,
etc.)

USE_GL2PS Boolean
flag

Indicates	whether	GL2PS	product	should	be
used	in	OCCT	visualization	module	for	support	of
vector	image	formats	(PS,	EPS,	etc.)

USE_TBB Boolean
flag

Indicates	whether	TBB	3rd	party	is	used	or	not.
TBB	stands	for	Threading	Building	Blocks,	the
technology	of	Intel	Corp,	which	comes	with
different	mechanisms	and	patterns	for	injecting
parallelism	into	your	application.	OCCT	remains
parallel	even	without	TBB	product

USE_VTK Boolean
flag

Indicates	whether	VTK	3rd	party	is	used	or	not.
VTK	stands	for	Visualization	ToolKit,	the
technology	of	Kitware	Inc	intended	for	general-
purpose	scientific	visualization.	OCCT	comes
with	a	bridge	between	CAD	data	representation
and	VTK	by	means	of	its	dedicated	VIS
component	(VTK	Integration	Services).	You	may
skip	this	3rd	party	unless	you	are	planning	to	use
VTK	visualization	for	OCCT	geometry.	See	the
official	documentation	
(VIS)	for	the	details	on	VIS

3RDPARTY_DIR Path

Defines	the	root	directory	where	all	required	3rd
party	products	will	be	searched.	Once	you	define
this	path	it	is	very	convenient	to	click	"Configure"
button	in	order	to	let	CMake	automatically	detect
all	necessary	products

3RDPARTY_FREETYPE_* Path Path	to	Freetype	binaries
3RDPARTY_TCL_*	3RDPARTY_TK_* Path Path	to	Tcl/Tk	binaries
3RDPARTY_FREEIMAGE* Path Path	to	Freeimage	binaries
3RDPARTY_GL2PS_* Path Path	to	GL2PS	binaries
3RDPARTY_TBB* Path Path	to	TBB	binaries
3RDPARTY_VTK_* Path Path	to	VTK	binaries

BUILD_MODULE_<MODULE> Boolean
flag

Indicates	whether	the	corresponding	OCCT
module	should	be	built	or	not.	It	should	be	noted
that	some	toolkits	of	a	module	can	be	built	even
if	this	module	is	not	checked	(this	happens	if

some	other	modules	depend	on	these	toolkits).
The	main	modules	and	their	descriptions	can	be
found	in	User	Guides

BUILD_LIBRARY_TYPE String

Specifies	the	type	of	library	to	be	created.
"Shared"	libraries	are	linked	dynamically	and
loaded	at	runtime.	"Static"	libraries	are	archives
of	object	files	used	when	linking	other	targets

BUILD_ADDITIONAL_TOOLKITS String

Semicolon-separated	individual	toolkits	to
include	into	build	process.	If	you	want	to	build
some	particular	libraries	(toolkits)	only,	then	you
may	uncheck	all	modules	in	the	corresponding
BUILD_MODUE_<MODULE>
provide	the	list	of	necessary	libraries	here.	Of
course,	all	dependencies	will	be	resolved
automatically

BUILD_YACCLEX Boolean
flag

Enables	Flex/Bison	lexical	analyzers.	OCCT
source	files	relating	to	STEP	reader	and
ExprIntrp	functionality	are	generated
automatically	with	Flex/Bison.	Checking	this
option	leads	to	automatic	search	of	Flex/Bison
binaries	and	regeneration	of	the	mentioned	files

BUILD_MODULE_MfcSamples Boolean
flag

Indicates	whether	MFC	samples	should	be	built
together	with	OCCT.	This	option	is	only	relevant
to	Windows	platforms

BUILD_Inspector Boolean
flag

Indicates	whether	Inspector	should	be	built
together	with	OCCT.

BUILD_DOC_Overview Boolean
flag

Indicates	whether	OCCT	overview
documentation	project	should	be	created
together	with	OCCT.	It	is	not	built	together	with
OCCT.	Checking	this	option	leads	to	automatic
search	of	Doxygen	binaries.	Its	building	calls
Doxygen	command	to	generate	the
documentation	in	HTML	format

BUILD_PATCH Path

Points	to	the	directory	recognized	as	a	"patch"
for	OCCT.	If	specified,	the	files	from	this	directory
take	precedence	over	the	corresponding	native
OCCT	sources.	This	way	you	are	able	to
introduce	patches	to	Open	CASCADE
Technology	not	affecting	the	original	source

distribution

BUILD_WITH_DEBUG Boolean
flag

Enables	extended	messages	of	many	OCCT
algorithms,	usually	printed	to	cout.	These	include
messages	on	internal	errors	and	special	cases
encountered,	timing,	etc.

BUILD_ENABLE_FPE_SIGNAL_HANDLER Boolean
flag

Enable/Disable	the	floating	point	exceptions
(FPE)	during	DRAW	execution	only.
Corresponding	environment	variable	(CSF_FPE)
can	be	changed	manually	in	custom.bat/sh
scripts	without	regeneration	by	CMake.

CMAKE_CONFIGURATION_TYPES String Semicolon-separated	CMake	configurations

INSTALL_DIR Path

Points	to	the	installation	directory.	
is	a	synonym	of	CMAKE_INSTALL_PREFIX
user	can	specify	both	
CMAKE_INSTALL_PREFIX

INSTALL_DIR_BIN Path
Relative	path	to	the	binaries	installation	directory
(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_BIN})

INSTALL_DIR_SCRIPT Path
Relative	path	to	the	scripts	installation	directory
(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_SCRIPT})

INSTALL_DIR_LIB Path
Relative	path	to	the	libraries	installation	directory
(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_LIB})

INSTALL_DIR_INCLUDE Path
Relative	path	to	the	includes	installation	directory
(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_INCLUDE})

INSTALL_DIR_RESOURCE Path
Relative	path	to	the	resources	installation
directory	(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_RESOURCE})

INSTALL_DIR_LAYOUT String

Defines	the	structure	of	OCCT	files	(binaries,
resources,	headers,	etc.)	for	the	install	directory.
Two	variants	are	predefined:	for	Windows
(standard	OCCT	layout)	and	for	Unix	operating
systems	(standard	Linux	layout).	If	needed,	the
layout	can	be	customized	with	INSTALL_DIR_*
variables

INSTALL_DIR_DATA Path Relative	path	to	the	data	files	installation
directory	(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_DATA})

INSTALL_DIR_SAMPLES Path

Relative	path	to	the	samples	installation
directory.	Note	that	only	"samples/tcl"	folder	will
be	installed.	(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_SAMPLES})

INSTALL_DIR_TESTS Path
Relative	path	to	the	tests	installation	directory
(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_TESTS})

INSTALL_DIR_DOC Path
Relative	path	to	the	documentation	installation
directory	(absolute	path	is
${INSTALL_DIR}/${INSTALL_DIR_DOC})

INSTALL_FREETYPE Boolean
flag

Indicates	whether	Freetype	binaries	should	be
installed	into	the	installation	directory

INSTALL_FREEIMAGE* Boolean
flag

Indicates	whether	Freeimage	binaries	should	be
installed	into	the	installation	directory

INSTALL_GL2PS Boolean
flag

Indicates	whether	GL2PS	binaries	should	be
installed	into	the	installation	directory

INSTALL_TBB Boolean
flag

Indicates	whether	TBB	binaries	should	be
installed	into	the	installation	directory

INSTALL_VTK Boolean
flag

Indicates	whether	VTK	binaries	should	be
installed	into	the	installation	directory

INSTALL_TCL Boolean
flag

Indicates	whether	TCL	binaries	should	be
installed	into	the	installation	directory

INSTALL_TEST_CASES Boolean
flag

Indicates	whether	non-regression	OCCT	test
scripts	should	be	installed	into	the	installation
directory

INSTALL_DOC_Overview Boolean
flag

Indicates	whether	OCCT	overview
documentation	should	be	installed	into	the
installation	directory

Note:	Only	the	forward	slashes	("/")	are	acceptable	in	the	CMake	options
defining	paths.

3rd	party	search	mechanism
If	3RDPARTY_DIR	directory	is	defined,	then	required	3rd	party	binaries
are	sought	in	it,	and	default	system	folders	are	ignored.

The	procedure	expects	to	find	binary	and	header	files	of	each	3rd	party
product	in	its	own	sub-directory:	bin,	lib	and	include.

The	results	of	the	search	(achieved	on	the	next	pass	of	the	configuration
process)	are	recorded	in	the	corresponding	variables:

3RDPARTY_<PRODUCT>_DIR	–	path	to	the	3rdparty	directory	(with
directory	name)	(e.g.	D:/3rdparty/tcltk-86-32)
3RDPARTY_<PRODUCT>_LIBRARY_DIR	–	path	to	the	directory
containing	a	library	(e.g.	D:/3rdparty/tcltk-86-32/lib).
3RDPARTY_<PRODUCT>_INCLUDE_DIR	–	path	to	the	directory
containing	a	header	file	(e.g.,	D:/3rdparty/tcltk-86-32/include)
3RDPARTY_<PRODUCT>_DLL_DIR	–	path	to	the	directory
containing	a	shared	library	(e.g.,	D:/3rdparty/tcltk-86-32/bin)	This
variable	is	only	relevant	to	Windows	platforms.

Note:	each	library	and	include	directory	should	be	children	of	the	product
directory	if	the	last	one	is	defined.

The	search	process	is	as	follows:

1.	 Common	path:	3RDPARTY_DIR
2.	 Path	to	a	particular	3rd-party	library:	3RDPARTY_<PRODUCT>_DIR
3.	 Paths	to	headers	and	binaries:

1.	 3RDPARTY_<PRODUCT>_INCLUDE_DIR
2.	 3RDPARTY_<PRODUCT>_LIBRARY_DIR
3.	 3RDPARTY_<PRODUCT>_DLL_DIR

If	a	variable	of	any	level	is	not	defined	(empty	or	<variable	name>-
NOTFOUND)	and	the	upper	level	variable	is	defined,	the	content	of	the
non-defined	variable	will	be	sought	at	the	next	configuration	step.	If	the
search	process	at	level	3	does	not	find	the	required	files,	it	seeks	in
default	places.

If	a	search	result	(include	path,	or	library	path,	or	dll	path)	does	not	meet
your	expectations,	you	can	change	3RDPARTY_<PRODUCT>__DIR
variable*,	clear	(if	they	are	not	empty)
3RDPARTY_<PRODUCT>_DLL_DIR,
3RDPARTY_<PRODUCT>_INCLUDE_DIR	and
3RDPARTY_<PRODUCT>_LIBRARY_DIR	variables	(or	clear	one	of
them)	and	run	the	configuration	process	again.

At	this	time	the	search	will	be	performed	in	the	newly	identified	directory
and	the	result	will	be	recorded	to	corresponding	variables	(replace	old
value	if	it	is	necessary).

For	example,	3RDPARTY_FREETYPE_DIR	variable

d:/3rdparty/freetype-2.4.10

can	be	changed	to

d:/3rdparty/freetype-2.5.3

During	the	configuration	process	the	related	variables
(3RDPARTY_FREETYPE_DLL_DIR,
3RDPARTY_FREETYPE_INCLUDE_DIR	and
3RDPARTY_FREETYPE_LIBRARY_DIR)	will	be	filled	with	new	found
values.

Note:	The	names	of	searched	libraries	and	header	files	are	hard-coded.
If	there	is	the	need	to	change	their	names,	change	appropriate	cmake
variables	(edit	CMakeCache.txt	file	or	edit	in	cmake-gui	in	advance
mode)	without	reconfiguration:	3RDPARTY_<PRODUCT>_INCLUDE	for
include,	3RDPARTY_<PRODUCT>_LIB	for	library	and
3RDPARTY_<PRODUCT>_DLL	for	shared	library.

Projects	generation
Once	the	configuration	process	is	done,	the	"Generate"	button	is	used	to
prepare	project	files	for	the	target	IDE.	In	our	exercise	the	Visual	Studio
solution	will	be	automatically	created	in	the	buid	directory.

Building
Go	to	the	build	folder,	start	the	Visual	Studio	solution	OCCT.sln	and	build
it	by	clicking	Build	->	Build	Solution.

By	default	the	build	solution	process	skips	the	building	of	the	INSTALL
and	Overview	project.

When	the	building	process	is	finished	build:

Overview	project	to	generate	OCCT	overview	documentation	(if
BUILD_DOC_Overview	variable	is	checked)
the	INSTALL	project	to	run	the	installation	process

For	this,	right-click	on	the	Overview/INSTALL	project	and	select	Project
Only	->	Build	Only	->	Overview/INSTALL	in	the	solution	explorer.

Installation
Installation	is	a	process	of	extracting	redistributable	resources	(binaries,
include	files	etc)	from	the	build	directory	into	the	installation	one.	The
installation	directory	will	be	free	of	project	files,	intermediate	object	files
and	any	other	information	related	to	the	build	routines.

Normally	you	use	the	installation	directory	of	OCCT	to	link	against	your
specific	application.

The	directory	structure	is	as	follows:

data												--	data	files	for	OCCT	(brep,	iges,	

stp)

doc													--	OCCT	overview	documentation	in	HT

ML	format

inc													--	header	files

samples									--	samples

src													--	all	required	source	files	for	OCC

T

tests											--	OCCT	test	suite

win32\vc10\bind	--	binary	files	(installed	3rdpartie

s	and	occt)

										\libd	--	libraries	(installed	3rdparties	a

nd	occt)

Note:	The	above	example	is	given	for	debug	configuration.	However,	it	is
generally	safe	to	use	the	same	installation	directory	for	the	release	build.
In	the	latter	case	the	contents	of	install	directory	will	be	enriched	with
subdirectories	and	files	related	to	the	release	configuration.	In	particular,
the	binaries	directory	win64	will	be	expanded	as	follows:

\win32\vc10\bind

											\libd

											\bin

											\lib

If	CMake	installation	flags	are	enabled	for	the	3rd	party	products	(e.g.
INSTALL_FREETYPE),	then	the	corresponding	binaries	will	be	copied	to
the	same	bin(d)	and	lib(d)	directories	together	with	the	native	binaries	of
OCCT.	Such	organization	of	libraries	can	be	especially	helpful	if	your
OCCT-based	software	does	not	use	itself	the	3rd	parties	of	Open
CASCADE	Technology	(thus,	there	is	no	sense	to	pack	them	into
dedicated	directories).

The	installation	folder	contains	the	scripts	to	run	DRAWEXE	(draw.bat	or
draw.sh),	samples	(if	they	were	installed)	and	overview.html	(short-cut	for
installed	OCCT	overview	documentation).

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

Building	with	CMake	for	Android

This	article	describes	the	steps	to	build	OCCT	libraries	for	Android	from	a
complete	source	package	with	GNU	make	(makefiles)	on	Windows	7	and
Ubuntu	15.10.

The	steps	on	Windows	and	Ubuntu	are	similar.	There	is	the	only	one
difference:	makefiles	are	built	with	mingw32-make	on	Windows	and
native	GNU	make	on	Ubuntu.

Required	tools	(download	and	install	if	it	is	required):

CMake	v3.7+	http://www.cmake.org/cmake/resources/software.html
Android	NDK	rev.10+
https://developer.android.com/tools/sdk/ndk/index.html
GNU	Make:	MinGW	v4.82+	for	Windows
(http://sourceforge.net/projects/mingw/files/),	GNU	Make	4.0	for
Ubuntu.

http://www.cmake.org/cmake/resources/software.html
https://developer.android.com/tools/sdk/ndk/index.html
http://sourceforge.net/projects/mingw/files/

Prerequisites
In	toolchain	file
$CASROOT/adm/templates/android.toolchain.config.cmake:

Set	CMAKE_ANDROID_NDK	variable	equal	to	your	Android	NDK
path.
Set	CMAKE_ANDROID_STL_TYPE	variable	to	specify	which	C++
standard	library	to	use.

The	default	value	of	CMAKE_ANDROID_STL_TYPE	is	gnustl_shared
(GNU	libstdc++	Shared)

Generation	of	makefiles	using	CMake	GUI	tool
Run	GUI	tool	provided	by	CMake:	cmake-gui

Tools	configuration

Specify	the	root	folder	of	OCCT	($CASROOT,	which	contains
CMakelists.txt	file)	by	clicking	Browse	Source.
Specify	the	location	(build	folder)	for	Cmake	generated	project	files
by	clicking	Browse	Build.

Click	Configure	button.	It	opens	the	window	with	a	drop-down	list	of
generators	supported	by	CMake	project.

Select	"MinGW	Makefiles"	item	from	the	list

Choose	"Specify	toolchain	file	for	cross-compiling"

Click	"Next"

Specify	a	toolchain	file	at	the	next	dialog	by
android.toolchain.config.cmake	.	It	is	contained	by	cross-compilation
toolchain	for	CMake
Click	"Finish"

If	on	Windows	the	message	is	appeared:	"CMake	Error:	CMake	was
unable	to	find	a	build	program	corresponding	to	"MinGW	Makefiles"
CMAKE_MAKE_PROGRAM	is	not	set.	You	probably	need	to	select	a
different	build	tool.",	specify	CMAKE_MAKE_PROGRAM	to	mingw32-
make	executable.

OCCT	Configuration

How	to	configure	OCCT,	see	"OCCT	Configuration"	section	of	Building
with	CMake

Generation	of	makefiles

Click	Generate	button	and	wait	until	the	generation	process	is	finished.
Then	makefiles	will	appear	in	the	build	folder	(e.g.	D:/occt/build-android).

Generation	of	makefiles	using	CMake	from	the
command	line
Alternatively	one	may	specify	the	values	without	a	toolchain	file:

cmake	-G	"MinGW	Makefiles"	-
DCMAKE_SYSTEM_NAME=Android	-
DCMAKE_ANDROID_NDK=D:/DevTools/android-ndk-r13b	-
DCMAKE_ANDROID_STL_TYPE=gnustl_shared	-
DCMAKE_SYSTEM_VERSION=15	-
DCMAKE_ANDROID_ARCH_ABI=armeabi-v7a	-
DCMAKE_MAKE_PROGRAM=D:/DevTools/MinGW/bin/mingw32-
make.exe	-D3RDPARTY_DIR=D:/occt-3rdparty	D:/occt

Building	makefiles	of	OCCT
Open	console	and	go	to	the	build	folder.	Type	"mingw32-make"
(Windows)	or	"make"	(Ubuntu)	to	start	build	process.

mingw32-make

or

make

Parallel	building	can	be	started	with	using	**"-jN"**	argument	of
"mingw32-make/make",	where	N	is	the	number	of	building	threads.

mingw32-make	-j4

or

make	-j4

Install	built	OCCT	libraries
Type	"mingw32-make/make"	with	argument	"install"	to	place	the	libraries
to	the	install	folder	(see	"OCCT	Configuration"	section	of	Building	with
CMake)

mingw32-make	install

or

make	install

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

General
Third-party	libraries
Configuration
Projects	generation
Building

Open	CASCADE
Technology		7.2.0

Building	with	MS	Visual	C++

General
This	page	describes	steps	to	build	OCCT	libraries	from	a	complete
source	archive	on	Windows	with	MS	Visual	C++	using	projects
generated	by	genproj	tool.	It	is	an	alternative	to	use	of	CMake	build
system	(see	Building	with	CMake).

genproj	is	a	legacy	tool	(originated	from	command	"wgenproj"	in	WOK)
for	generation	of	Visual	Studio,	Code.Blocks,	and	XCode	project	files
used	for	building	Open	CASCADE	Technology.	These	project	files	are
placed	inside	OCCT	directory	(in	adm	subfolder)	and	use	relative	paths,
thus	can	be	moved	together	with	sources.

The	project	files	included	in	official	distribution	of	OCCT	are	generated	by
this	tool.	If	you	have	official	distribution	with	project	files	included,	you
can	use	them	directly	without	a	need	to	call	genproj.

Third-party	libraries
Before	building	OCCT,	make	sure	to	have	all	the	required	third-party
libraries	installed.

The	easiest	way	to	install	third-party	libraries	is	to	download	archive	with
pre-built	binaries,	corresponding	to	version	of	Visual	Studio	you	are
using,	from	http://www.opencascade.com/content/3rd-party-components.

You	can	also	build	third-party	libraries	from	their	sources,	see	Building
3rd-party	libraries	on	Windows	for	instructions.

http://www.opencascade.com/content/3rd-party-components

Configuration
If	you	have	Visual	Studio	projects	already	available	(pre-installed	or
generated),	you	can	edit	file	custom.bat	manually	to	adjust	the
environment:

VCVER	–	specification	of	format	of	project	files,	defining	also	version
of	Visual	Studio	to	be	used,	and	default	name	of	the	sub-folder	for
binaries:

VCVER Visual	Studio
version Windows	Platform Binaries

folder	name

vc10 2010	(10) Desktop	(Windows
API) vc10

vc11 2012	(11) Desktop	(Windows
API) vc11

vc12 2013	(12) Desktop	(Windows
API) vc12

vc14 2015	(14) Desktop	(Windows
API) vc14

vc14-
uwp 2015	(14) UWP	(Universal

Windows	Platform) vc14-uwp

vc141 2017	(15) Desktop	(Windows
API) vc14

vc141-
uwp 2017	(15) UWP	(Universal

Windows	Platform) vc14-uwp

ARCH	–	architecture	(32	or	64),	affects	only	PATH	variable	for
execution
HAVE_*	–	flags	to	enable	or	disable	use	of	optional	third-party
products
CSF_OPT_*	–	paths	to	search	for	includes	and	binaries	of	all	used
third-party	products
SHORTCUT_HEADERS	–	defines	method	for	population	of	folder
inc	by	header	files.	Supported	methods	are:

Copy	-	headers	will	be	copied	from	src;

ShortCut	-	short-cut	header	files	will	be	created,	redirecting	to
same-named	header	located	in	src;
"HardLink*	-	hard	links	to	headers	located	in	src	will	be	created.

Alternatively,	you	can	launch	genconf,	a	GUI	tool	allowing	to	configure
build	options	interactively.	That	tool	will	analyze	your	environment	and
propose	you	to	choose	available	options:

Version	of	Visual	Studio	to	be	used	(from	the	list	of	installed	ones,
detected	by	presence	of	environment	variables	like
VS100COMNTOOLS).
Method	to	populate	folder	inc	(short-cuts	by	default).
Location	of	third-party	libraries	(usually	downloaded	from	OCCT	web
site,	see	above).
Path	to	common	directory	where	third-party	libraries	are	located
(optional).
Paths	to	headers	and	binaries	of	the	third-party	libraries	(found
automatically	basing	on	previous	options;	click	button	"Reset"	to
update).
Generation	of	PDB	files	within	Release	build	("Release	with	Debug
info",	false	by	default).

Click	"Save"	to	store	the	specified	configuration	in	custom.bat	file.

Projects	generation
Launch	genproj	to	update	content	of	inc	folder	and	generate	project	files
after	changes	in	OCCT	code	affecting	layout	or	composition	of	source
files.

Note
To	use	genproj	and	genconf	tools	you	need	to	have	Tcl	installed
and	accessible	by	PATH.	If	Tcl	is	not	found,	the	tool	may	prompt	you
to	enter	the	path	to	directory	where	Tcl	can	be	found.

$	genproj.bat

Note	that	if	custom.bat	is	not	present,	genproj	will	start	genconf	to
configure	environment.

Building
Launch	msvc.bat	to	start	Visual	Studio	with	all	necessary	environment
variables	defined,	and	build	the	whole	solution	or	required	toolkits.

Note:	the	MSVC	project	files	are	located	in	folders	adm\msvc\vc....
Binaries	are	produced	in	win32	or	win64	folders.

To	start	DRAW,	launch	draw.bat.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

General
Third-party	libraries
Configuration
Projects	generation
Building

Open	CASCADE
Technology		7.2.0

Building	with	Code::Blocks

General
This	file	describes	steps	to	build	OCCT	libraries	from	sources	using
Code::Blocks,	a	cross-platform	IDE,	using	project	files	generated	by
OCCT	legacy	tool	genproj.	It	can	be	used	as	an	alternative	to	CMake
build	system	(see	Building	with	CMake)	for	all	supported	platforms.

Third-party	libraries
Before	building	OCCT,	make	sure	to	have	all	the	needed	third-party
libraries	installed,	see	Building	OCCT	from	sources.

Configuration
Before	building	it	is	necessary	to	set	up	build	environment.

The	environment	is	defined	in	the	file	custom.sh	(on	Linux	and	OS	X)	or
custom.bat	(on	Windows)	which	can	be	edited	directly:

Add	paths	to	includes	of	used	third-party	libraries	in	variable
CSF_OPT_INC.
Add	paths	to	their	binary	libraries	in	variable	CSF_OPT_LIB64.
Set	variable	SHORTCUT_HEADERS	to	specify	a	method	for
population	of	folder	inc	by	header	files.	Supported	methods	are:

Copy	-	headers	will	be	copied	from	src;
ShortCut	-	short-cut	header	files	will	be	created,	redirecting	to
same-named	header	located	in	src;
"HardLink*	-	hard	links	to	headers	located	in	src	will	be	created.

For	optional	third-party	libraries,	set	corresponding	environment
variable	HAVE_<LIBRARY_NAME>	to	either	false,	e.g.:
export	HAVE_GL2PS=false

Alternatively,	or	when	custom.sh	or	custom.bat	does	not	exist,	you	can
launch	genconf	tool	to	configure	environment	interactively:

Click	"Save"	to	store	the	specified	configuration	in	custom.sh	or
custom.bat	file.

Projects	generation
Launch	genproj	tool	with	option	cbp	to	update	content	of	inc	folder	and
generate	project	files	after	changes	in	OCCT	code	affecting	layout	or
composition	of	source	files:

$	cd	/dev/OCCT/opencascade-7.0.0

$./genproj	cbp

The	generated	Code::Blocks	project	are	placed	into	subfolder
adm/<OS>/cbp.

Note
To	use	genproj	and	genconf	tools	you	need	to	have	Tcl	installed
and	accessible	by	PATH.

Building
To	start	Code::Blocks,	launch	script	codeblocks.sh.

To	build	all	toolkits,	click	Build->Build	workspace	in	the	menu	bar.

To	start	DRAWEXE,	which	has	been	built	with	Code::Blocks	on	Mac	OS
X,	run	the	script

./draw.sh	cbp	[d]

Option	d	is	used	if	OCCT	has	been	built	in	Debug	mode.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

General
Third-party	libraries
Configuration
Projects	generation
Building
Launching	DRAW

Open	CASCADE
Technology		7.2.0

Building	with	Xcode

General
This	file	describes	steps	to	build	OCCT	libraries	from	sources	on	Mac	OS
X	with	Xcode	projects,	generated	by	OCCT	legacy	tool	genproj.

Third-party	libraries
Before	building	OCCT,	make	sure	to	have	all	the	needed	third-party
libraries	installed.	On	OS	X	we	recommend	to	use	native	libraries.	You
can	also	build	third-party	libraries	from	their	sources,	see	Building	3rd-
party	libraries	on	MacOS	X	for	instructions.

Configuration
Before	building	it	is	necessary	to	set	up	build	environment.

The	environment	is	defined	in	the	file	custom.sh	which	can	be	edited
directly:

Add	paths	to	includes	of	used	third-party	libraries	in	variable
CSF_OPT_INC	(use	colon	":"	as	path	separator).
Add	paths	to	their	binary	libraries	in	variable	CSF_OPT_LIB64.
Set	variable	SHORTCUT_HEADERS	to	specify	a	method	for
population	of	folder	inc	by	header	files.	Supported	methods	are:

Copy	-	headers	will	be	copied	from	src;
ShortCut	-	short-cut	header	files	will	be	created,	redirecting	to
same-named	header	located	in	src;
"HardLink*	-	hard	links	to	headers	located	in	src	will	be	created.

For	optional	third-party	libraries,	set	corresponding	environment
variable	HAVE_<LIBRARY_NAME>	to	either	false,	e.g.:
export	HAVE_GL2PS=false

Alternatively,	or	when	custom.sh	does	not	exist,	you	can	launch
genconf.sh	to	configure	environment	interactively:

Click	"Save"	to	store	the	specified	configuration	in	custom.sh	file.

Projects	generation
Launch	genproj	tool	to	update	content	of	inc	folder	and	generate	project
files	after	changes	in	OCCT	code	affecting	layout	or	composition	of
source	files.

Note
To	use	genproj	and	genconf	tools	you	need	to	have	Tcl	installed
and	accessible	by	PATH.

For	instance,	in	Terminal	application:

$	cd	/dev/OCCT/opencascade-7.0.0

$./genproj

Building
To	start	Xcode,	launch	script	xcode.sh.

To	build	a	certain	toolkit,	select	it	in	Scheme	drop-down	list	in	Xcode
toolbar,	press	Product	in	the	menu	and	click	Build	button.

To	build	the	entire	OCCT:

Create	a	new	empty	project	(select	File	->	New	->	Project	->	Empty
project	in	the	menu;	input	the	project	name,	e.g.	OCCT;	then	click
Next	and	Create).
Drag	and	drop	the	OCCT	folder	in	the	created	OCCT	project	in	the
Project	navigator.
Select	File	->	New	->	Target	->	Aggregate	in	the	menu.
Enter	the	project	name	(e.g.	OCCT)	and	click	Finish.	The	Build
Phases	tab	will	open.
Click	"+"	button	to	add	the	necessary	toolkits	to	the	target	project.	It
is	possible	to	select	all	toolkits	by	pressing	Command+A
combination.

Launching	DRAW
To	start	DRAWEXE,	which	has	been	built	with	Xcode	on	Mac	OS	X,
perform	the	following	steps:

1.Open	Terminal	application

2.Enter	<OCCT_ROOT_DIR>:

cd	<OCCT_ROOT_DIR>

3.Run	the	script

./draw_cbp.sh	xcd	[d]

Option	d	is	used	if	OCCT	has	been	built	in	Debug	mode.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Prerequisites
Documentation
Generation
Documentation
Conventions
File	Format
Directory	Structure

Adding	a	New	Document
Additional	Resources
Appendix	1:	Document
Syntax
Headers	and
hierarchic	document
structure
Plain	Text
Lists
Tables
Code	Blocks
Quotes
References
Images
Table	Of	Contents
Formulas

Open	CASCADE
Technology		7.2.0

Documentation	System

Introduction
This	document	provides	practical	guidelines	for	generation	and	editing	of
OCCT	user	documentation.

Prerequisites
You	need	to	have	the	following	software	installed	to	generate	the
documentation.

Tcl/Tk	Version	8.5	or	8.6:	http://www.tcl.tk/software/tcltk/download.html

Doxygen	Version	1.8.4	or	above:
http://www.stack.nl/~dimitri/doxygen/download.html

Dot	Part	of	Graphviz	software,	used	by	Doxygen	for	generation	of	class
diagrams	in	Reference	Manual:	http://www.graphviz.org/Download..php

MiKTeX	or	other	package	providing	pdflatex	command	(only	needed	for
generation	of	PDF	documents):	http://miktex.org/download

Inkscape	(only	needed	for	generation	of	PDF	documents	containing
SVG	images):	http://www.inkscape.org/download

When	generating	PDF	documentation,	pdflatex	and	inkscape
executables	should	be	accessible	by	PATH	variable.	You	can	use
custom.bat	file	to	add	necessary	paths	to	the	PATH	variable.

Note	that	in	the	process	of	PDF	generation	MiKTeX	may	need	some
packages	not	installed	by	default.	We	recommend	setting	option	"Install
missing	packages	on-the-fly"	to	"Ask	me	first"	(default)	during	MiKTeX
installation:

http://www.tcl.tk/software/tcltk/download.html
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/Download..php
http://miktex.org/download
http://www.inkscape.org/download

On	the	first	run	of	pdflatex	it	will	open	a	dialog	window	prompting	for
installation	of	missing	packages.	Follow	the	instructions	to	proceed
(define	proxy	settings	if	needed,	select	a	mirror	site	to	download	from,
etc.).

MathJax	is	used	for	rendering	math	formulas	in	browser	(HTML	and
CHM	outputs):	http://www.mathjax.org.

By	default	MathJAX	scripts	and	fonts	work	on-line	and	no	installation	of
MathJAX	is	necessary	if	Internet	is	accessible.	If	you	need	to	use	OCCT
documentation	while	off-line,	you	can	install	a	local	copy	of	MatJAX,	see
https://docs.mathjax.org/en/v2.7-latest/start.html#installing-your-own-
copy-of-mathjax.	See	Formulas	for	more	details	on	inserting
mathematical	expressions.

http://www.mathjax.org
https://docs.mathjax.org/en/v2.7-latest/start.html#installing-your-own-copy-of-mathjax

Documentation	Generation
Run	command	gendoc	from	command	prompt	(with	OCCT	directory	as
current	one)	to	generate	OCCT	documentation.	The	synopsis	is:

gendoc	\[-h\]	{-refman|-overview}	\[-html|-pdf|-chm\

]	\[-m=<list	of	modules>|-ug=<list	of	docs>\]	\[-v\]

	\[-s=<search_mode>\]	\[-mathjax=<path>\]

Here	the	options	are:

Choice	of	documentation	to	be	generated:
-overview:	To	generate	Overview	and	User	Guides	(cannot	be
used	with	-refman)
-refman:	To	generate	class	Reference	Manual	(cannot	be	used
with	-overview)

Choice	of	output	format:
-html:	To	generate	HTML	files	(default,	cannot	be	used	with	-pdf
or	-chm)
-pdf:	To	generate	PDF	files	(cannot	be	used	with	-refman,	-html,
or	-chm)
-chm:	To	generate	CHM	files	(cannot	be	used	with	-html	or	-pdf)

Additional	options:
-m=<modules_list>:	List	of	OCCT	modules	(separated	with
comma),	for	generation	of	Reference	Manual
-ug=<docs_list>:	List	of	MarkDown	documents	(separated	with
comma),	to	use	for	generation	of	Overview	/	User	Guides
-mathjax=<path>:	To	use	local	or	alternative	copy	of	MathJax
-s=<search_mode>:	Specifies	the	Search	mode	of	HTML
documents;	can	be:	none	|	local	|	server	|	external
-h:	Prints	this	help	message
-v:	Enables	more	verbose	output

Note

In	case	of	PDF	output	the	utility	generates	a	separate	PDF	file	for
each	document;
In	case	of	HTML	output	the	utility	generates	a	common	Table	of

contents	containing	references	to	all	documents.
In	case	of	CHM	output	single	CHM	file	is	generated

Examples

To	generate	the	output	for	a	specific	document	specify	the	path	to	the
corresponding	MarkDown	file	(paths	relative	to	dox	sub-folder	can	be
given),	for	instance:

>	gendoc	-overview	-

ug=dev_guides/documentation/documentation.md

To	generate	Reference	Manual	for	the	whole	Open	CASCADE
Technology	library,	run:

>	gendoc	-refman

To	generate	Reference	Manual	for	Foundation	Classes	and	Modeling
Data	modules	only,	with	search	option,	run:

>	gendoc	-refman	-

m=FoundationClasses,ModelingData,ModelingAlgorit

hms	-s=local

Documentation	Conventions
This	section	contains	information	about	file	format	conventions,
directories	structure,	etc.

File	Format
The	format	used	for	documentation	is	MarkDown	with	Doxygen
extensions.	The	MarkDown	files	have	a	*.md	extension	and	are	based	on
rules	described	in	Appendix	1:	Document	Syntax	section.

Directory	Structure

Each	document	has	its	own	folder	if	there	are	any	images	used	in	it.
These	images	are	stored	in	images	subfolder.

If	you	want	to	use	the	same	image	for	several	documents,	you	can	place
it	in	dox/resources	folder.

Note:	To	avoid	incorrect	image	display,	use	a	relative	path	to	the	image
(starting	from	dox	folder).	For	instance:

@figure{/dev_guides/documentation/images/documentati

on_test_image.svg,"",420}

The	documentation	is	generated	in	subfolder	doc	:

html	–	a	directory	for	generated	HTML	pages;
pdf	–	a	directory	for	generated	PDF	files.

Adding	a	New	Document
Place	a	new	document	in	the	folder	taking	into	account	its	logical	position
in	the	documentation	hierarchy.	For	instance,	the	document	svn.md
about	the	use	of	SVN	to	work	with	OCCT	source	code	can	be	placed	into
/dox/dev_guides/.

If	there	are	images	in	the	document,	it	should	be	placed	in	its	own	folder
containing	a	subfolder	for	images.	For	instance:

/dox/dev_guides/svn/	–	for	svn.md	file;
/dox/dev_guides/svn/images/	–	for	images.

Add	a	relative	path	to	svn.md	in	file	dox/FILES.txt.	For	instance

dev_guides/svn/svn.md

Note	that	the	order	of	paths	to	documents	in	FILES.txt	is	reproduced	in
the	Table	of	Contents	in	the	HTML	output.	Please,	place	them	logically.

Note	that	you	should	specify	a	file	tag,	not	the	document	name.	See
Header	and	hierarchic	document	structure	section	for	details.

Additional	Resources
More	information	about	OCCT	can	be	found	at
http://www.opencascade.com	and	
http://dev.opencascade.org	sites.

The	information	on	formula	syntax	can	be	found	at:	
http://en.wikipedia.org/wiki/Help:Displaying_a_formula

More	information	on	MarkDown	and	Doxygen	syntax	can	be	found	at:	
http://www.stack.nl/~dimitri/doxygen/manual

http://www.opencascade.com
http://dev.opencascade.org
http://en.wikipedia.org/wiki/Help:Displaying_a_formula
http://www.stack.nl/~dimitri/doxygen/manual

Appendix	1:	Document	Syntax
A	document	file	in	*.md	format	must	start	with	a	proper	header	defining	a
caption	and	a	unique	tag.

Documentation	System	{#dev_guides__documentation}

=====================

The	document	structure	is	formed	by	sections	that	must	be	defined
consistently.

The	document	can	contain	plain	text,	lists,	tables,	code	snippets,	images,
math,	etc.	Any	specific	text	elements	can	be	introduced	by	Markdown
language	tags	or	by	usual	HTML	tags.

The	table	of	contents,	page	numbers	(in	PDF),	and	figure	numbers	(in
PDF)	are	generated	automatically.

Headers	and	hierarchic	document	structure
Headers	of	different	levels	can	be	specified	with	the	following	tags:

@section	–	for	the	first-level	headers;
@subsection	–	for	the	second	level	headers;
@subsubsection	–	for	the	third	level	headers.

For	example:

		@section	occt_ocaf_1	Basic	Concepts

		@subsection	occt_ocaf_1_1	Applications	and	Documen

ts

		@subsubsection	occt_ocaf_1_1_1	The	document	and	th

e	data	framework

Please,	note	that	section	names	can	be	used	for	references	within	the
document	and	in	other	documents,	so	it	is	necessary	to	use	the	common
prefix	indicative	of	the	document	name	for	all	section	names	in	the	given
document.	For	example,	occt_ocaf	for	sections	in	Open	CASCADE
Application	Framework	manual.

The	remaining	part	of	section	names	in	most	documents	consists	only	of
numbers,	for	example	1_1.	Actually,	the	hierarchical	structure	of	the
output	table	of	contents	is	not	based	on	these	numbers	and	is	generated
automatically.

The	numbers	are	only	indicative	of	a	section	location	in	the	body	of	the
document.	However,	duplicate	section	names	in	a	document	inevitably
cause	errors	during	generation.

If	you	insert	a	section	in	the	middle	of	a	big	document,	do	not	renumber
the	document	to	the	end	(which	is	inefficient	and	error	prone),	but	choose
an	arbitrary	number	or	letter,	not	yet	used	in	the	document	section
naming,	and	base	the	naming	in	this	section	on	it.

The	section	hierarchy	is	limited	to	three	levels	and	further	levels	cannot
be	presented	in	the	Table	of	Contents.

However,	the	fourth	and	fifth	level	headers	can	be	tagged	with	####	and
#####	correspondingly.

It	is	also	possible	to	use	tags	##	and	###	for	second	and	third	level
headers	if	you	do	not	wish	to	show	them	in	the	table	of	contents	or	make
references	to	them.

Plain	Text
A	plain	text	is	organized	in	paragraphs,	separated	by	empty	lines	in
MarkDown	source.	The	length	of	lines	is	not	restricted;	it	is
recommended	to	put	each	sentence	on	a	separate	line	–	this	is	optimal
for	easier	comparison	of	different	versions	of	the	same	document.

To	insert	special	symbols,	like	<	,	>	or	\,	prepend	them	with	\	character:	\
<,	\>,	\\,	etc.	To	emphasize	a	word	or	a	group	of	words,	wrap	the	text	with
one	pair	of	asterisks	(*)	or	underscores	(_)	to	make	it	italic	and	two	pairs
of	these	symbols	to	make	it	Bold.

Note	that	if	your	emphasized	text	starts	or	ends	with	a	special	symbol,
the	asterisks	may	not	work.	Use	explicit	HTML	tags	<i></i>	and	
instead.

Lists
To	create	a	bulleted	list,	start	each	line	with	a	hyphen	or	an	asterisk,
followed	by	a	space.	List	items	can	be	nested.	This	code:

*	Bullet	1

*	Bullet	2

		-	Bullet	2a

		-	Bullet	2b

*	Bullet	3

produces	this	list:

Bullet	1
Bullet	2

Bullet	2a
Bullet	2b

Bullet	3

To	create	a	numbered	list,	start	each	line	with	number	and	a	period,	then
a	space.	Numbered	lists	can	also	be	nested.	Thus	this	code

1.	List	item	1

			1.	Sub-item	1

			2.	Sub-item	2

2.	List	item	2

4.	List	item	3

produces	this	list:

1.	 List	item	1
1.	 Sub-item	1
2.	 Sub-item	2

2.	 List	item	2
3.	 List	item	3

Note	that	numbers	of	list	items	in	the	output	are	generated	so	they	do	not
necessarily	follow	the	numbering	of	source	items.

In	some	cases	automatic	generation	adversely	restarts	the	numbering,
i.e.	you	get	list	items	1.	1.	1.	instead	of	1.	2.	3.	in	the	output.	The	use	of
explicit	HTML	tags		and		can	help	in	this	case.

Each	list	item	can	contain	several	paragraphs	of	text;	these	paragraphs
must	have	the	same	indentation	as	text	after	bullet	or	number	in	the
numbered	list	item	(otherwise	numbering	will	be	broken).

Code	blocks	can	be	inserted	as	paragraphs	with	additional	indentation	(4
spaces	more).	Note	that	fenced	code	blocks	do	not	work	within
numbered	lists	and	their	use	may	cause	numeration	to	be	reset.

Example	of	a	complex	nested	list:

1.	 List	item	1

Additional	paragraph

code	fragment

One	more	paragraph

1.	 Sub-item	1
code	fragment	for	sub-item	1

2.	 Sub-item	2

Paragraph	for	sub-item	2

Yet	one	more	paragraph	for	list	item	1

2.	 List	item	2

Tables
A	table	consists	of	a	header	line,	a	separator	line,	and	at	least	one	row
line.	Table	columns	are	separated	by	the	pipe	(|)	character.	The	following
example:

First	Header		|	Second	Header

-------------	|	-------------

Content	Cell		|	Content	Cell	

Content	Cell		|	Content	Cell	

will	produce	the	following	table:

First	Header Second	Header
Content	Cell Content	Cell
Content	Cell Content	Cell

Column	alignment	can	be	controlled	via	one	or	two	colons	at	the	header
separator	line:

|	Right	|	Center	|	Left		|

|	----:	|	:----:	|	:----	|

|	10				|	10					|	10				|

|	1000		|	1000			|	1000		|

which	will	looks	as	follows:

Right Center Left
10 10 10

1000 1000 1000

Note	that	each	table	row	should	be	contained	in	one	line	of	text;	complex
tables	can	be	created	using	HTML	tags.

Code	Blocks
Paragraphs	indented	with	4	or	more	spaces	are	considered	as	code
fragments	and	rendered	using	Courier	font.	Example:

This	line	is	indented	by	4	spaces	and	rendered	as	a	

code	block.

A	fenced	code	block	does	not	require	indentation,	and	is	defined	by	a	pair
of	"fence	lines".	Such	line	consists	of	3	or	more	tilde	(~)	characters	on	a
line.	The	end	of	the	block	should	have	the	same	number	of	tildes.	Thus	it
is	strongly	advised	to	use	only	three	or	four	tildes.

By	default	the	output	is	the	same	as	for	a	normal	code	block.	To	highlight
the	code,	the	developer	has	to	indicate	the	typical	file	extension,	which
corresponds	to	the	programming	language,	after	the	opening	fence.	For
highlighting	according	to	the	C++	language,	for	instance,	write	the
following	code	(the	curly	braces	and	dot	are	optional):

~~~{.cpp}

int	func(int	a,int	b)	{	return	a*b;	}

~~~

which	will	produce:

int	func(int	a,int	b)	{	return	a*b;	}

Smaller	code	blocks	can	be	inserted	by	wrapping	with	tags	@code	and
@endcode.

Verbatim	content	(same	as	code	but	without	syntax	highlighting)	can	be
inserted	by	wrapping	with	tags	@verbatim	and	@endverbatim.

Quotes
Text	quoted	from	other	sources	can	be	indented	using	">"	tag.	For
example:

>	[Regression	in	6.9.0]	*IGES	-	Export	of	a	reversed

	face	leads	to	wrong	data*

will	produce

[Regression	in	6.9.0]	IGES	-	Export	of	a	reversed	face	leads	to
wrong	data

Note	that	this	tag	should	prefix	each	line	of	the	quoted	text.	Empty	lines
in	the	quoted	text,	if	any,	should	not	have	trailing	spaces	after	the	">"
(lines	with	trailing	spaces	will	break	the	quote	block).

References
To	insert	a	reference	to	a	website,	it	is	sufficient	to	write	an	URL.	For
example:	http://en.wikipedia.org

To	insert	a	reference	to	a	document	or	its	subsection,	use	command	@ref
followed	by	the	document	or	section	tag	name.	For	instance,

@ref	OCCT_DM_SECTION_A	

will	be	rendered	as	Appendix	1:	Document	Syntax.

Note	that	links	between	documents	will	not	work	in	PDF	output	if	each
document	is	generated	independently.	Hence	it	is	recommended	to	add	a
name	of	the	referenced	section	after	the	tag	name	in	the	@ref	command
(in	quotes):	this	will	guarantee	that	the	reference	is	recognizable	for	the
reader	even	if	the	cross-link	is	not	instantiated.	For	instance:

@ref	occt_modat_1	"Geometry	Utilities"	

will	be	rendered	as	Geometry	Utilities.

http://en.wikipedia.org

Images
For	inserting	images	into	the	document	use	the	command	@figure,	as
follows:

		@figure{/relative/path/to/image/image_file_name.pn

g,"Image	caption"}

The	first	argument	is	a	path	to	the	image	file,	relative	to	the	dox	folder.
The	supported	formats	for	images	are	PNG,	JPG,	and	SVG.	The	file
extension	must	be	lowercase	and	correspond	to	the	file	format.	The
image	file	name	should	have	no	dots	except	for	the	one	before	extension
(names	with	more	than	one	dot	confuse	pdflatex).

The	second	argument	is	optional,	it	defines	the	caption	for	the	image	to
be	inserted.	The	caption	argument,	if	given,	should	be	quoted,	even	if	it	is
a	single	word.	Captions	are	included	below	the	image;	in	PDF	output	the
images	with	caption	are	numbered	automatically.

Example:

		@figure{/dev_guides/documentation/images/documenta

tion_test_image.svg,"Test	SVG	image"}

is	rendered	as:

Test	SVG	image

Test	SVG	image

We	recommend	using	Inkscape	for	creation	and	edition	of	vector
graphics.	The	graphics	created	in	MS	Word	Draw	and	some	other	vector

editors	can	be	copy-pasted	to	Inkscape	and	saved	as	SVG	images.

Note	that	the	image	that	will	be	included	in	documentation	is	the	whole
page	of	the	Inkscape	document;	use	option	"Resize	page	to	content"	in
menu	File	->	Document	properties	of	Inkscape	to	fit	page	dimensions
to	the	picture	(adding	margins	as	necessary).

Note	that	the	figure	command	is	an	alias	to	the	standard	Doxygen
command	image	repeated	twice:	once	for	HTML	and	then	for	Latex
output	(used	for	PDF	generation).	Thus	if	HTML	and	PDF	outputs	should
include	different	images	or	captions,	command	"image"	can	be	used:

		@image	html	/relative/path/to/image/occ_logo_for_h

tml.png

		@image	latex	/relative/path/to/image/occ_logo_for_

pdf.png

Table	Of	Contents
Use	@tableofcontents	tag	to	get	the	table	of	contents	at	the	beginning	of
the	document.

Actually,	it	is	not	strictly	necessary	now	because	TreeView	option	for
HTML	is	used.	The	TOC	in	the	PDF	document	will	be	generated
automatically.

Formulas
Formulas	within	MarkDown	documents	can	be	defined	using	LaTeX
syntax.

Equations	can	be	written	by	several	ways:

1.Unnumbered	displayed	formulas	that	are	centered	on	a	separate	line.
These	formulas	should	be	put	between	@f[and	@f]	tags.	An	example:

@f[

				|I_2|=\left|	\int_{0}^T	\psi(t)

												\left\{	

																u(a,t)-

																\int_{\gamma(t)}^a	

																\frac{d\theta}{k(\theta,t)}

																\int_{a}^\theta	c(\xi)u_t(\xi,t)\,d\

xi

												\right\}	dt

								\right|

@f]

gives	the	following	result:

\(|I_2|=\left|	\int_{0}^T	\psi(t)	\left\{	u(a,t)-	\int_{\gamma(t)}^a	\frac{d\theta}
{k(\theta,t)}	\int_{a}^\theta	c(\xi)u_t(\xi,t)\,d\xi	\right\}	dt	\right|	\)

2.Formulas	can	also	be	put	between

\begin{align}	

and

\end{align}	

tags.

For	example:

		\begin{align}

		\dot{x}	&	=	\sigma(y-x)	\\

		\dot{y}	&	=	\rho	x	-	y	-	xz	\\

		\dot{z}	&	=	-\beta	z	+	xy

		\end{align}

gives	the	following	result:

\begin{align}	\dot{x}	&	=	\sigma(y-x)	\\	\dot{y}	&	=	\rho	x	-	y	-	xz	\\	\dot{z}	&
=	-\beta	z	+	xy	\end{align}

3.Inline	formulas	can	be	specified	using	this	syntax:

		@f$	\sqrt{3x-1}+(1+x)^2	@f$

that	leads	to	the	following	result:	\(\sqrt{3x-1}+(1+x)^2	\)

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Scope	of	the
document

Naming	Conventions
General	naming	rules
Names	of
development	units
Names	of	variables

Formatting	rules
Documentation	rules
Application	design
General	C/C++	rules
Portability	issues
Stability	issues
Performance	issues
Draw	Harness	command
Examples

Open	CASCADE
Technology		7.2.0

Coding	Rules

Introduction
The	purpose	of	this	document	is	to	define	a	common	programming	style
for	Open	CASCADE	Technology.

The	common	style	facilitates	understanding	and	maintaining	a	code
developed	cooperatively	by	several	programmers.	In	addition,	it	enables
construction	of	tools	that	incorporate	knowledge	of	these	standards	to
help	in	the	programming.

OCCT	programming	style	follows	common	and	appropriate	best
practices,	so	some	guidelines	have	been	excerpted	from	the	public
domain.

The	guide	can	be	improved	in	the	future	as	new	ideas	and
enhancements	are	added.

Scope	of	the	document
Rules	in	this	document	refer	to	C++	code.	However,	with	minor
exceptions	due	to	language	restrictions,	they	are	applicable	to	any
sources	in	Open	CASCADE	Technology	framework,	including:

C/C++
GLSL	programs
OpenCL	kernels
TCL	scripts	and	test	cases

Naming	Conventions
General	naming	rules

The	names	considered	in	this	section	mainly	refer	to	the	interface	of
Open	CASCADE	Technology	libraries	or	source	code	itself.

International	language	[MANDATORY]

Open	CASCADE	Technology	is	an	open	source	platform	available	for	an
international	community,	thus	all	names	need	to	be	composed	of	English
words	or	their	abbreviations.

Meaningful	names

Names	should	be	meaningful	or,	at	least,	contain	a	meaningful	part.	To
better	understand	this	requirement,	let	us	examine	the	existing	names	of
toolkits,	packages,	classes	and	methods:

Packages	containing	words	Geom	or	Geom2d	in	their	names	are
related	to	geometrical	data	and	operations.
Packages	containing	words	TopoDS	or	BRep	in	their	names	are
related	to	topological	data	and	operations.
Packages	ending	with	...Test	define	Draw	Harness	plugins.
Methods	starting	with	Get...	and	Set...	are	usually	responsible	for
correspondingly	retrieving	and	storing	data.

Related	names

Names	related	to	a	logically	connected	functionality	should	have	the
same	prefix	(start	with	the	same	letters)	or,	at	least,	have	any	other
common	part.	For	example,	method	GetCoord	returns	a	triple	of	real
values	and	is	defined	for	directions,	vectors	and	points.	The	logical
connection	is	obvious.

Camel	Case	style

Camel	Case	style	is	preferred	for	names.	For	example:

Standard_Integer	awidthofbox;		//	this	is	bad

Standard_Integer	width_of_box;	//	this	is	bad

Standard_Integer	aWidthOfBox;		//	this	is	OK

Names	of	development	units
Usually	a	unit	(e.g.	a	package)	is	a	set	of	classes,	methods,
enumerations	or	any	other	sources	implementing	a	common	functionality,
which	is	self-contained	and	independent	from	other	parts	of	the	library.

No	underscores	in	unit	names	[MANDATORY]

Names	of	units	should	not	contain	underscores,	unless	the	use	of
underscores	is	allowed	explicitly.

File	name	extensions	[MANDATORY]

The	following	extensions	should	be	used	for	source	files,	depending	on
their	type:

.cxx	–	C++	source	files

.hxx	–	C++	header	files

.lxx	–	additional	headers	containing	definitions	of	inline	methods	and
auxiliary	code

Note	that	.lxx	files	should	be	avoided	in	most	cases	-	inline	method
should	be	placed	in	header	file	instead.

Prefix	for	toolkit	names	[MANDATORY]

Toolkit	names	are	prefixed	by	TK,	followed	by	a	meaningful	part	of	the
name	explaining	the	domain	of	functionality	covered	by	the	toolkit	(e.g.
TKOpenGl).

Names	of	classes

Usually	the	names	of	source	files	located	in	a	unit	start	from	the	unit
name	separated	from	the	other	part	of	the	file	name	by	underscore	"_".

Thus,	the	names	of	files	containing	sources	of	C++	classes	that	belong	to
a	package	are	constructed	according	to	the	following	template:

<package-name>_<class-name>.cxx	(or	.hxx)

For	example,	file	Adaptor2d_Curve2d.cxx	belongs	to	the	package
Adaptor2d

Files	that	contain	sources	related	to	the	whole	unit	are	called	by	the	unit
name	with	appropriate	extension.

Names	of	functions

The	term	function	here	is	defined	as:

Any	class	method
Any	package	method
Any	non-member	procedure	or	function

It	is	preferred	to	start	names	of	public	methods	from	an	upper	case
character	and	to	start	names	of	protected	and	private	methods	from	a
lower	case	character.

class	MyPackage_MyClass

{

public:

		Standard_Integer	Value()	const;

	void													SetValue	(const	Standard_Integer	

theValue);

private:

	void	setIntegerValue	(const	Standard_Integer	

theValue);

};

Names	of	variables
There	are	several	rules	that	describe	currently	accepted	practices	for
naming	variables.

Naming	of	variables

Name	of	a	variable	should	not	conflict	with	the	existing	or	possible	global
names	(for	packages,	macros,	functions,	global	variables,	etc.).

The	name	of	a	variable	should	not	start	with	an	underscore.

See	the	following	examples:

Standard_Integer	Elapsed_Time	=	0;	//	this	is	bad	-	

possible	class			name

Standard_Integer	gp	=	0;											//	this	is	bad	-	

existing	package	name

Standard_Integer	aGp	=	0;										//	this	is	OK

Standard_Integer	_KERNEL	=	0;						//	this	is	bad

Standard_Integer	THE_KERNEL	=	0;			//	this	is	OK

Names	of	function	parameters

The	name	of	a	function	(procedure,	class	method)	parameter	should	start
with	prefix	the	followed	by	the	meaningful	part	of	the	name	starting	with	a
capital	letter.

See	the	following	examples:

void	Package_MyClass::MyFunction	(const	gp_Pnt&	p);								

//	this	is	bad

void	Package_MyClass::MyFunction	(const	gp_Pnt&	

theP);					//	this	is	OK

void	Package_MyClass::MyFunction	(const	gp_Pnt&	

thePoint);	//	this	is	preferred

Names	of	class	member	variables

The	name	of	a	class	member	variable	should	start	with	prefix	my	followed
by	the	meaningful	of	the	name	starting	with	a	capital	letter.

See	the	following	examples:

Standard_Integer	counter;			//	This	is	bad

Standard_Integer	myC;							//	This	is	OK

Standard_Integer	myCounter;	//	This	is	preferred

Names	of	global	variables

It	is	strongly	recommended	to	avoid	defining	any	global	variables.
However,	as	soon	as	a	global	variable	is	necessary,	its	name	should	be
prefixed	by	the	name	of	a	class	or	a	package	where	it	is	defined	followed
with	_my.

See	the	following	examples:

Standard_Integer	MyPackage_myGlobalVariable	=	0;

Standard_Integer	MyPackage_MyClass_myGlobalVariable	=	

0;

Static	constants	within	the	file	should	be	written	in	upper-case	and	begin
with	prefix	THE_:

namespace

{

	static	const	Standard_Real	THE_CONSTANT_COEF	=	3.14;

};

Names	of	local	variables

The	name	of	a	local	variable	should	be	distinguishable	from	the	name	of
a	function	parameter,	a	class	member	variable	and	a	global	variable.

It	is	preferred	to	prefix	local	variable	names	with	a	and	an	(or	is,	to	and
has	for	Boolean	variables).

See	the	following	example:

Standard_Integer	theI;				//	this	is	bad

Standard_Integer	i;							//	this	is	bad

Standard_Integer	index;			//	this	is	bad

Standard_Integer	anIndex;	//	this	is	OK

Avoid	dummy	names

Avoid	dummy	names,	such	as	i,	j,	k.	Such	names	are	meaningless	and
easy	to	mix	up.

The	code	becomes	more	and	more	complicated	when	such	dummy
names	are	used	there	multiple	times	with	different	meanings,	or	in	cycles
with	different	iteration	ranges,	etc.

See	the	following	examples	for	preferred	style:

void	Average	(const	Standard_Real**	theArray,

														Standard_Integer						theRowsNb,

														Standard_Integer						theRowLen,

														Standard_Real&								theResult)

{

		theResult	=	0.0;

	for	(Standard_Integer	aRow	=	0;	aRow	<	aRowsNb;	

++aRow)

		{

	for	(Standard_Integer	aCol	=	0;	aCol	<	aRowLen;	

++aCol)

				{

						theResult	+=	theArray[aRow][aCol];

				}

				theResult	/=	Standard_Real(aRowsNb	*	aRowLen);

		}

}

Formatting	rules
To	improve	the	open	source	readability	and,	consequently,
maintainability,	the	following	set	of	rules	is	applied.

International	language	[MANDATORY]

All	comments	in	all	sources	must	be	in	English.

Line	length

Try	to	stay	within	the	limit	of	120	characters	per	line	in	all	sources.

C++	style	comments

Prefer	C++	style	comments	in	C++	sources.

Commenting	out	unused	code

Delete	unused	code	instead	of	commenting	it	or	using	#define.

Indentation	in	sources	[MANDATORY]

Indentation	in	all	sources	should	be	set	to	two	space	characters.	Use	of
tabulation	characters	for	indentation	is	disallowed.

Separating	spaces

Punctuation	rules	follow	the	rules	of	the	English	language.

C/C++	reserved	words,	commas,	colons	and	semicolons	should	be
followed	by	a	space	character	if	they	are	not	at	the	end	of	a	line.
There	should	be	no	space	characters	after	'('	and	before	')'.	Closing
and	opening	brackets	should	be	separated	by	a	space	character.
For	better	readability	it	is	also	recommended	to	surround
conventional	operators	by	a	space	character.	Examples:

while	(true)																												//	NOT:	

while(true)	...

{

		DoSomething	(theA,	theB,	theC,	theD);	//	NOT:	

DoSomething(theA,theB,theC,theD);

}

for	(anIter	=	0;	anIter	<	10;	++anIter)	//	NOT:	for	

(anIter=0;anIter<10;++anIter){

{

		theA	=	(theB	+	theC)	*	theD;										//	NOT:	theA=

(theB+theC)*theD

}

Declaration	of	pointers	and	references

In	declarations	of	simple	pointers	and	references	put	asterisk	(*)	or
ampersand	(&)	right	after	the	type	without	extra	space.

Since	declaration	of	several	variables	with	mixed	pointer	types
contrudicts	this	rule,	it	should	be	avoided.	Instead,	declare	each	variable
independently	with	fully	qualified	type.

Examples:

Standard_Integer			*theVariable;						//	not	

recommended

Standard_Integer	*		theVariable;						//	not	

recommended

Standard_Integer*			theVariable;						//	this	is	OK

Standard_Integer		*&theVariable;						//	not	

recommended

Standard_Integer	*&	theVariable;						//	not	

recommended

Standard_Integer*&		theVariable;						//	this	is	OK

Standard_Integer		**theVariable;						//	not	

recommended

Standard_Integer	**	theVariable;						//	not	

recommended

Standard_Integer**		theVariable;						//	this	is	OK

Standard_Integer	*theA,	theB,	**theC;	//	not	

recommended	(declare	each	variable	

independently)

Separate	logical	blocks

Separate	logical	blocks	of	code	with	one	blank	line	and	comments.

See	the	following	example:

//	check	arguments

Standard_Integer	anArgsNb	=	argCount();

if	(anArgsNb	<	3	||	isSmthInvalid)

{

	return	THE_ARG_INVALID;

}

//	read	and	check	header

...

...

//	do	our	job

...

...

Notice	that	multiple	blank	lines	should	be	avoided.

Separate	function	bodies	[MANDATORY]

Use	function	descriptive	blocks	to	separate	function	bodies	from	each
other.	Each	descriptive	block	should	contain	at	least	a	function	name	and
purpose	description.

See	the	following	example:

//	

==

=======================

//	function	:	TellMeSmthGood

//	purpose		:	Gives	me	good	news

//	

==

=======================

void	TellMeSmthGood()

{

		...

}

//	

==

=======================

//	function	:	TellMeSmthBad

//	purpose		:	Gives	me	bad	news

//	

==

=======================

void	TellMeSmthBad()

{

		...

}

Block	layout	[MANDATORY]

Figure	brackets	{	}	and	each	operator	(for,	if,	else,	try,	catch)	should	be
written	on	a	dedicated	line.

In	general,	the	layout	should	be	as	follows:

while	(expression)

{

		...

}

Entering	a	block	increases	and	leaving	a	block	decreases	the	indentation
by	one	tabulation.

Single-line	operators

Single-line	conditional	operators	(if,	while,	for,	etc.)	can	be	written	without
brackets	on	the	following	line.

if	(!myIsInit)	return	Standard_False;	//	bad

if	(thePtr	==	NULL)																			//	OK

	return	Standard_False;

if	(!theAlgo.IsNull())																//	preferred

{

		DoSomething();

}

Having	all	code	in	the	same	line	is	less	convenient	for	debugging.

Comparison	expressions	with	constants

In	comparisons,	put	the	variable	(in	the	current	context)	on	the	left	side
and	constant	on	the	right	side	of	expression.	That	is,	the	so	called	"Yoda
style"	is	to	be	avoided.

if	(NULL	!=	thePointer)				//	Yoda	style,	not	

recommended

if	(thePointer	!=	NULL)				//	OK

if	(34	<	anIter)											//	Yoda	style,	not	

recommended

if	(anIter	>	34)											//	OK

if	(theNbValues	>=	anIter)	//	bad	style	(constant	

function	argument	vs.	local	variable)

if	(anIter	<=	theNbValues)	//	OK

if	(THE_LIMIT	==	theValue)	//	bad	style	(global	

constant	vs.	variable)

if	(theValue	==	THE_LIMIT)	//	OK

Alignment

Use	alignment	wherever	it	enhances	the	readability.	See	the	following
example:

MyPackage_MyClass	anObject;

Standard_Real					aMinimum	=	0.0;

Standard_Integer		aVal					=	theVal;

switch	(aVal)

{

	case	0:		computeSomething();														break;

	case	12:	computeSomethingElse	(aMinimum);	break;

	case	3:

	default:	computeSomethingElseYet();							break;

}

Indentation	of	comments

Comments	should	be	indented	in	the	same	way	as	the	code	to	which
they	refer	or	they	can	be	in	the	same	line	if	they	are	short.

The	text	of	the	comment	should	be	separated	from	the	slash	character	by
a	single	space	character.

See	the	following	example:

while	(expression)			//bad	comment

{

	//	this	is	a	long	multi-line	comment

	//	which	is	really	required

		DoSomething();					//	maybe,	enough

		DoSomethingMore();	//	again

}

Early	return	statement

Use	an	early	return	condition	rather	than	collect	indentations.

Write	like	this:

Standard_Integer	ComputeSumm	(const	Standard_Integer*	

theArray,

	const	Standard_Size					theSize)

{

		Standard_Integer	aSumm	=	0;

	if	(theArray	==	NULL	||	theSize	==	0)

		{

	return	0;

		}

		...	computing	summ	...

	return	aSumm;

}

Rather	than:

Standard_Integer	ComputeSumm	(const	Standard_Integer*	

theArray,

	const	Standard_Size					theSize)

{

		Standard_Integer	aSumm	=	0;

	if	(theArray	!=	NULL	&&	theSize	!=	0)

		{

				...	computing	summ	...

		}

	return	aSumm;

}

This	helps	to	improve	readability	and	reduce	the	unnecessary	indentation
depth.

Trailing	spaces

Trailing	spaces	should	be	removed	whenever	possible.	Spaces	at	the
end	of	a	line	are	useless	and	do	not	affect	functionality.

Headers	order

Split	headers	into	groups:	system	headers,	headers	per	each	framework,
project	headers;	sort	the	list	of	includes	alphabetically.	Within	the	class
source	file,	the	class	header	file	should	be	included	first.

This	rule	improves	readability,	allows	detecting	useless	multiple	header
inclusions	and	makes	3rd-party	dependencies	clearly	visible.	Inclusion	of
class	header	on	top	verifies	consistency	of	the	header	(e.g.	that	header
file	does	not	use	any	undefined	declarations	due	to	missing	includes	of
dependencies).

An	exception	to	the	rule	is	ordering	system	headers	generating	a	macros
declaration	conflicts	(like	"windows.h"	or	"X11/Xlib.h")	-	these	headers
should	be	placed	in	the	way	solving	the	conflict.

//	the	header	file	of	implemented	class

#include	<PackageName_ClassName.hxx>

//	OCCT	headers

#include	<gp_Pnt.hxx>

#include	<gp_Vec.hxx>

#include	<NCollection_List.hxx>

//	Qt	headers

#include	<QDataStream>

#include	<QString>

//	system	headers

#include	<iostream>

#include	<windows.h>

Documentation	rules
The	source	code	is	one	of	the	most	important	references	for
documentation.	The	comments	in	the	source	code	should	be	complete
enough	to	allow	understanding	the	corresponding	code	and	to	serve	as
basis	for	other	documents.

The	main	reasons	why	the	comments	are	regarded	as	documentation
and	should	be	maintained	are:

The	comments	are	easy	to	reach	–	they	are	always	together	with	the
source	code;
It	is	easy	to	update	a	description	in	the	comment	when	the	source	is
modified;
The	source	by	itself	is	a	good	context	to	describe	various	details	that
would	require	much	more	explanations	in	a	separate	document;
As	a	summary,	this	is	the	most	cost-effective	documentation.

The	comments	should	be	compatible	with	Doxygen	tool	for	automatic
documentation	generation	(thus	should	use	compatible	tags).

Documenting	classes	[MANDATORY]

Each	class	should	be	documented	in	its	header	file	(.hxx).	The	comment
should	give	enough	details	for	the	reader	to	understand	the	purpose	of
the	class	and	the	main	way	of	work	with	it.

Documenting	class	methods	[MANDATORY]

Each	class	or	package	method	should	be	documented	in	the	header	file
(.hxx).

The	comment	should	explain	the	purpose	of	the	method,	its	parameters,
and	returned	value(s).	Accepted	style	is:

//!	Method	computes	the	square	value.

//!	@param	theValue	the	input	value

//!	@return	squared	value

Standard_Export	Standard_Real	Square	(Standard_Real	

theValue);

Documenting	C/C++	sources

It	is	very	desirable	to	put	comments	in	the	C/C++	sources	of	the
package/class.

They	should	be	detailed	enough	to	allow	any	person	to	understand	what
each	part	of	code	does.

It	is	recommended	to	comment	all	static	functions	(like	methods	in
headers),	and	to	insert	at	least	one	comment	per	each	10-100	lines	in	the
function	body.

There	are	also	some	rules	that	define	how	comments	should	be
formatted,	see	Formatting	Rules.

Following	these	rules	is	important	for	good	comprehension	of	the
comments.	Moreover,	this	approach	allows	automatically	generating
user-oriented	documentation	directly	from	the	commented	sources.

Application	design
The	following	rules	define	the	common	style,	which	should	be	applied	by
any	developer	contributing	to	the	open	source.

Allow	possible	inheritance

Try	to	design	general	classes	(objects)	keeping	possible	inheritance	in
mind.	This	rule	means	that	the	user	who	makes	possible	extensions	of
your	class	should	not	encounter	problems	of	private	implementation.	Try
to	use	protected	members	and	virtual	methods	wherever	you	expect
extensions	in	the	future.

Avoid	friend	declarations

Avoid	using	'friend'	classes	or	functions	except	for	some	specific	cases
(for	example,	iteration)	'Friend'	declarations	increase	coupling.

Set/get	methods

Avoid	providing	set/get	methods	for	all	fields	of	the	class.	Intensive
set/get	functions	break	down	encapsulation.

Hiding	virtual	functions	[MANDATORY]

Avoid	hiding	a	base	class	virtual	function	by	a	redefined	function	with	a
different	signature.	Most	of	the	compilers	issue	warning	on	this.

Avoid	mixing	error	reporting	strategies

Try	not	to	mix	different	error	indication/handling	strategies	(exceptions	or
returned	values)	on	the	same	application	level.

Minimize	compiler	warnings	[MANDATORY]

When	compiling	the	source	pay	attention	to	and	try	to	minimize	compiler
warnings.

Avoid	unnecessary	inclusions

Try	to	minimize	compilation	dependencies	by	removing	unnecessary
inclusions.

General	C/C++	rules
This	section	defines	the	rules	for	writing	a	portable	and	maintainable
C/C++	source	code.

Wrapping	of	global	variables	[MANDATORY]

Use	package	or	class	methods	returning	reference	to	wrap	global
variables	to	reduce	possible	name	space	conflicts.

Avoid	private	members

Use	protected	members	instead	of	private	wherever	reasonable	to
enable	future	extensions.	Use	private	fields	if	future	extensions	should	be
disabled.

Constants	and	inlines	over	defines	[MANDATORY]

Use	constant	variables	(const)	and	inline	functions	instead	of	defines
(#define).

Avoid	explicit	numerical	values	[MANDATORY]

Avoid	usage	of	explicit	numeric	values.	Use	named	constants	and
enumerations	instead.	Numbers	produce	difficulties	for	reading	and
maintenance.

Three	mandatory	methods

If	a	class	has	a	destructor,	an	assignment	operator	or	a	copy	constructor,
it	usually	needs	the	other	two	methods.

Virtual	destructor

A	class	with	virtual	function(s)	ought	to	have	a	virtual	destructor.

Overriding	virtual	methods

Declaration	of	overriding	method	should	contains	specifiers	"virtual"	and
"override"	(using	Standard_OVERRIDE	alias	for	compatibility	with	old
compilers).

class	MyPackage_BaseClass

{

public:

		Standard_EXPORT	virtual	Standard_Boolean	Perform();

};

class	MyPackage_MyClass	:	public	MyPackage_BaseClass

{

public:

		Standard_EXPORT	virtual	Standard_Boolean	Perform()	

Standard_OVERRIDE;

};

This	makes	class	definition	more	clear	(virtual	methods	become
highlighted).

Declaration	of	interface	using	pure	virtual	functions	protects	against
incomplete	inheritance	at	first	level,	but	does	not	help	when	method	is
overridden	multiple	times	within	nested	inheritance	or	when	method	in
base	class	is	intended	to	be	optional.

And	here	"override"	specifier	introduces	additional	protection	against
situations	when	interface	changes	might	be	missed	(class	might	contain
old	methods	which	will	be	never	called).

Default	parameter	value

Do	not	redefine	a	default	parameter	value	in	an	inherited	function.

Use	const	modifier

Use	const	modifier	wherever	possible	(functions	parameters,	return
values,	etc.)

Usage	of	goto	[MANDATORY]

Avoid	goto	statement	unless	it	is	really	needed.

Declaring	variable	in	for()	header

Declare	a	cycle	variable	in	the	header	of	the	for()	statement	if	not	used
out	of	cycle.

Standard_Real	aMinDist	=	Precision::Infinite();

for	(NCollection_Sequence<gp_Pnt>::Iterator	aPntIter	

(theSequence);

					aPntIter.More();	aPntIter.Next())

{

		aMinDist	=	Min	(aMinDist,	theOrigin.Distance	

(aPntIter.Value()));

}

Condition	statements	within	zero

Avoid	usage	of	C-style	comparison	for	non-boolean	variables:

void	Function	(Standard_Integer	theValue,

															Standard_Real*			thePointer)

{

	if	(!theValue)										//	bad	style	-	ambiguous	

logic

		{

				DoSome();

		}

	if	(theValue	==	0)						//	OK

		{

				DoSome();

		}

	if	(thePointer	!=	NULL)	//	OK,	predefined	NULL	makes	

pointer	comparison	cleaner	to	reader

		{																							//	(nullptr	should	be	used	

instead	as	soon	as	C++11	will	be	available)

				DoSome2();

		}

}

Portability	issues
This	chapter	contains	rules	that	are	critical	for	cross-platform	portability.

Provide	code	portability	[MANDATORY]

The	source	code	must	be	portable	to	all	platforms	listed	in	the	official
'Technical	Requirements'.	The	term	'portable'	here	means	'able	to	be	built
from	source'.

The	C++	source	code	should	meet	C++03	standard.	Any	usage	of
compiler-specific	features	or	further	language	versions	(for	example,
C++11,	until	all	major	compilers	on	all	supported	platforms	implement	all
its	features)	should	be	optional	(used	only	with	appropriate	preprocessor
checks)	and	non-exclusive	(an	alternative	implementation	compatible
with	other	compilers	should	be	provided).

Avoid	usage	of	global	variables	[MANDATORY]

Avoid	usage	of	global	variables.	Usage	of	global	variables	may	cause
problems	when	accessed	from	another	shared	library.

Use	global	(package	or	class)	functions	that	return	reference	to	static
variable	local	to	this	function	instead	of	global	variables.

Another	possible	problem	is	the	order	of	initialization	of	global	variables
defined	in	various	libraries	that	may	differ	depending	on	platform,
compiler	and	environment.

Avoid	explicit	basic	types

Avoid	explicit	usage	of	basic	types	(int,	float,	double,	etc.),	use	Open
CASCADE	Technology	types	from	package	Standard:	Standard_Integer,
Standard_Real,	Standard_ShortReal,	Standard_Boolean,
Standard_CString	and	others	or	a	specific	typedef	instead.

Use	sizeof()	to	calculate	sizes	[MANDATORY]

Do	not	assume	sizes	of	types.	Use	sizeof()	instead	to	calculate	sizes.

Empty	line	at	the	end	of	file	[MANDATORY]

In	accordance	with	C++03	standard	source	files	should	be	trailed	by	an
empty	line.	It	is	recommended	to	follow	this	rule	for	any	plain	text	files	for
consistency	and	for	correct	work	of	git	difference	tools.

Stability	issues
The	rules	listed	in	this	chapter	are	important	for	stability	of	the	programs
that	use	Open	CASCADE	Technology	libraries.

Use	OSD::SetSignal()	to	catch	exceptions

When	using	Open	CASCADE	Technology	in	an	application,	call
OSD::SetSignal()	function	when	the	application	is	initialized.

This	will	install	C	handlers	for	run-time	interrupt	signals	and	exceptions,
so	that	low-level	exceptions	(such	as	access	violation,	division	by	zero,
etc.)	will	be	redirected	to	C++	exceptions	that	use	try	{...}	catch
(Standard_Failure)	{...}	blocks.

The	above	rule	is	especially	important	for	robustness	of	modeling
algorithms.

Cross-referenced	handles

Take	care	about	cycling	of	handled	references	to	avoid	chains,	which	will
never	be	freed.	For	this	purpose,	use	a	pointer	at	one	(subordinate)	side.

See	the	following	example:

class	Slave;

class	Master	:	public	Standard_Transient

{

...

	void	SetSlave	(const	Handle(Slave)&	theSlave)

		{	

				mySlave	=	theSlave;

		}

...

private:

		Handle(Slave)	theSlave;	//	smart	pointer

...

}

class	Slave	:	public	Standard_Transient

{

...

	void	SetMaster	(const	Handle(Master)&	theMaster)

		{	

				myMaster	=	theMaster.get();

		}

...

private:

		Master*	theMaster;	//	simple	pointer

...

}

C++	memory	allocation

In	C++	use	new	and	delete	operators	instead	of	malloc()	and	free().	Try
not	to	mix	different	memory	allocation	techniques.

Match	new	and	delete	[MANDATORY]

Use	the	same	form	of	new	and	delete.

aPtr1	=	new	TypeA[n];														...	;	delete[]								

aPtr1;

aPtr2	=	new	TypeB();															...	;	delete										

aPtr2;

aPtr3	=	Standard::Allocate	(4096);	...	;	

Standard::Free	(aPtr3);

Methods	managing	dynamical	allocation	[MANDATORY]

Define	a	destructor,	a	copy	constructor	and	an	assignment	operator	for
classes	with	dynamically	allocated	memory.

Uninitialized	variables	[MANDATORY]

Every	variable	should	be	initialized.

Standard_Integer	aTmpVar1;					//	bad

Standard_Integer	aTmpVar2	=	0;	//	OK

Uninitialized	variables	might	be	kept	only	within	performance-sensitive
code	blocks	and	only	when	their	initialization	is	guaranteed	by
subsequent	code.

Do	not	hide	global	new

Avoid	hiding	the	global	new	operator.

Assignment	operator

In	operator=()	assign	to	all	data	members	and	check	for	assignment	to
self.

Float	comparison

Don't	check	floats	for	equality	or	non-equality;	check	for	GT,	GE,	LT	or
LE.

if	(Abs	(theFloat1	-	theFloat2)	<	theTolerance)

{

		DoSome();

}

Package	Precision	provides	standard	values	for	SI	units	and	widely
adopted	by	existing	modeling	algorithms:

Precision::Confusion()	for	lengths	in	meters;
Precision::Angular()	for	angles	in	radians.

as	well	as	definition	of	infinite	values	within	normal	range	of	double
precision:

Precision::Infinite()
Precision::IsInfinite()
Precision::IsPositiveInfinite()
Precision::IsNegativeInfinite()

Non-indexed	iteration

Avoid	usage	of	iteration	over	non-indexed	collections	of	objects.	If	such
iteration	is	used,	make	sure	that	the	result	of	the	algorithm	does	not
depend	on	the	order	of	iterated	items.

Since	the	order	of	iteration	is	unpredictable	in	case	of	a	non-indexed
collection	of	objects,	it	frequently	leads	to	different	behavior	of	the
application	from	one	run	to	another,	thus	embarrassing	the	debugging
process.

It	mostly	concerns	mapped	objects	for	which	pointers	are	involved	in
calculating	the	hash	function.	For	example,	the	hash	function	of
TopoDS_Shape	involves	the	address	of	TopoDS_TShape	object.	Thus
the	order	of	the	same	shape	in	the	TopTools_MapOfShape	will	vary	in
different	sessions	of	the	application.

Do	not	throw	in	destructors

Do	not	throw	from	within	a	destructor.

Assigning	to	reference	[MANDATORY]

Avoid	the	assignment	of	a	temporary	object	to	a	reference.	This	results	in
a	different	behavior	for	different	compilers	on	different	platforms.

Performance	issues
These	rules	define	the	ways	of	avoiding	possible	loss	of	performance
caused	by	ineffective	programming.

Class	fields	alignment

Declare	fields	of	a	class	in	the	decreasing	order	of	their	size	for	better
alignment.	Generally,	try	to	reduce	misaligned	accesses	since	they
impact	the	performance	(for	example,	on	Intel	machines).

Fields	initialization	order	[MANDATORY]

List	class	data	members	in	the	constructor's	initialization	list	in	the	order
they	are	declared.

class	MyPackage_MyClass

{

public:

		MyPackage_MyClass()

		:	myPropertyA	(1),

				myPropertyB	(2)	{}

//	NOT

//	:	myPropertyB	(2),

//			myPropertyA	(1)	{}

private:

		Standard_Integer	myPropertyA;

		Standard_Integer	myPropertyB;

};

Initialization	over	assignment

Prefer	initialization	over	assignment	in	class	constructors.

MyPackage_MyClass()

:	myPropertyA	(1)		//	preferred

{

		myPropertyB	=	2;	//	not	recommended

}

Optimize	caching

When	programming	procedures	with	extensive	memory	access,	try	to
optimize	them	in	terms	of	cache	behavior.	Here	is	an	example	of	how	the
cache	behavior	can	be	impacted:

On	x86	this	code

Standard_Real	anArray[4096][2];

for	(Standard_Integer	anIter	=	0;	anIter	<	4096;	

++anIter)

{

		anArray[anIter][0]	=	anArray[anIter][1];

}

is	more	efficient	then

Standard_Real	anArray[2][4096];

for	(Standard_Integer	anIter	=	0;	anIter	<	4096;	

++anIter)

{

		anArray[0][anIter]	=	anArray[1][anIter];

}

since	linear	access	does	not	invalidate	cache	too	often.

Draw	Harness	command
Draw	Harness	provides	TCL	interface	for	OCCT	algorithms.

There	is	no	TCL	wrapper	over	OCCT	C++	classes,	instead	interface	is
provided	through	the	set	of	TCL	commands	implemented	in	C++.

There	is	a	list	of	common	rules	which	should	be	followed	to	implement
well-formed	Draw	Harness	command.

Return	value

Command	should	return	0	in	most	cases	even	if	the	executed	algorithm
has	failed.	Returning	1	would	lead	to	a	TCL	exception,	thus	should	be
used	in	case	of	a	command	line	syntax	error	and	similar	issues.

Validate	input	parameters

Command	arguments	should	be	validated	before	usage.	The	user	should
see	a	human-readable	error	description	instead	of	a	runtime	exception
from	the	executed	algorithm.

Validate	the	number	of	input	parameters

Command	should	warn	the	user	about	unknown	arguments,	including
cases	when	extra	parameters	have	been	pushed	for	the	command	with	a
fixed	number	of	arguments.

if	(theArgsNb	!=	3)

{

		std::cout	<<	"Syntax	error	-	wrong	number	of	

arguments!\n";

	return	1;

}

Standard_Integer	anArgIter		=	1;

Standard_CString	aResName			=	theArgVec[anArgIter++];

Standard_CString	aFaceName		=	theArgVec[anArgIter++];

TopoDS_Shape					aFaceShape	=	DBRep::Get	(aFaceName);

if	(aFaceShape.IsNull()

	||	aFaceShape.ShapeType()	!=	TopAbs_FACE)

{

		std::cout	<<	"Shape	"	<<	aFaceName	<<	"	is	empty	or	

not	a	Face!\n";

	return	1;

}

DBRep::Set	(aResName,	aFaceShape);

return	0;

Message	printing

Informative	messages	should	be	printed	into	standard	output	std::cout,
whilst	command	results	(if	any)	–	into	Draw	Interpreter.

Information	printed	into	Draw	Interpreter	should	be	well-structured	to
allow	usage	in	TCL	script.

Long	list	of	arguments

Any	command	with	a	long	list	of	obligatory	parameters	should	be
considered	as	ill-formed	by	design.	Optional	parameters	should	start	with
flag	name	(with	'-'	prefix)	and	followed	by	its	values:

				1 	myCommand	-flag1	value1	value2	-flag2	value3

Arguments	parser

Integer	values	should	be	read	using	Draw::Atoi()	function.
Real	values	should	be	read	using	Draw::Atof()	function.
Flags	names	should	be	checked	in	case	insensitive	manner.

Functions	Draw::Atof()	and	Draw::Atoi()	support	expressions	and	read
values	in	C-locale.

Standard_Real	aPosition[3]	=	{0.0,	0.0,	0.0};

for	(Standard_Integer	anArgIter	=	1;	anArgIter	<	

theArgsNb;	++anArgIter)

{

		Standard_CString	anArg	=	theArgVec[anArgIter];

		TCollection_AsciiString	aFlag	(anArg);

		aFlag.LowerCase();	//!<	for	case	insensitive	

comparison

	if	(aFlag	==	"position")

		{

	if	((anArgIt	+	3)	>=	theArgsNb)

				{

						std::cerr	<<	"Wrong	syntax	at	argument	'"	<<	

anArg	<<	"'!\n";

	return	1;

				}

				aPosition[0]	=	Draw::Atof	(theArgVec[++anArgIt]);

				aPosition[1]	=	Draw::Atof	(theArgVec[++anArgIt]);

				aPosition[2]	=	Draw::Atof	(theArgVec[++anArgIt]);

		}

	else

		{

				std::cout	<<	"Syntax	error!	Unknown	flag	'"	<<	

anArg	<<	"'\n";

	return	1;

		}

}

Examples
Sample	documented	class

class	Package_Class

{

public:	//!	@name	public	methods

		//!	Method	computes	the	square	value.

		//!	@param	theValue	the	input	value

		//!	@return	squared	value

		Standard_Export	Standard_Real	Square	(const	Standa

rd_Real	theValue);

private:	//!	\@name	private	methods

		//!	Auxiliary	method

		void	increment();

private:	//!	\@name	private	fields

		Standard_Integer	myCounter;	//!<	usage	counter

};

#include	<Package_Class.hxx>

//	

==

==========

//	function	:	Square

//	purpose		:	Method	computes	the	square	value

//	

==

==========

Standard_Real	Package_Class::Square	(const	

Standard_Real	theValue)

{

		increment();

		return	theValue	*	theValue;

}

//	

==

==========

//	function	:	increment

//	purpose		:

//	

==

==========

void	Package_Class::increment()

{

		++myCounter;

}

TCL	script	for	Draw	Harness

				1 	#	show	fragments	(solids)	in	shading	with	

different	colors

				2 	proc	DisplayColored	{theShape}	{

				3 			set	aSolids	[uplevel	#0	explode	$theShape	

so]

				4 		set	aColorIter	0

				5 		set	THE_COLORS	{red	green	blue1	magenta1	

yellow	cyan1	brown}

				6 		foreach	aSolIter	$aSolids	{

				7 					uplevel	#0	vdisplay									$aSolIter

				8 					uplevel	#0	vsetcolor								$aSolIter	

[lindex	$THE_COLORS	[expr	[incr	aColorIter]	%	

[llength	$THE_COLORS]]]

				9 					uplevel	#0	vsetdispmode					$aSolIter	1

			10 					uplevel	#0	vsetmaterial					$aSolIter	

plastic

			11 					uplevel	#0	vsettransparency	$aSolIter	0.5

			12 			}

			13 	}

			14 	

			15 	#	load	modules

			16 	pload	MODELING	VISUALIZATION

			17 	

			18 	#	create	boxes

			19 	box	bc		0	0	0	1	1	1

			20 	box	br		1	0	0	1	1	2

			21 	compound	bc	br	c

			22 	

			23 	#	show	fragments	(solids)	in	shading	with	

different	colors

			24 	vinit	View1

			25 	vclear

			26 	vaxo

			27 	vzbufftrihedron

			28 	DisplayColored	c

			29 	vfit

			30 	vdump	$imagedir/${casename}.png	512	512

GLSL	program:

vec3	Ambient;		//!<	Ambient		contribution	of	light	

sources

vec3	Diffuse;		//!<	Diffuse		contribution	of	light	

sources

vec3	Specular;	//!<	Specular	contribution	of	light	

sources

//!	Computes	illumination	from	light	sources

vec4	ComputeLighting	(in	vec3	theNormal,

																						in	vec3	theView,

																						in	vec4	thePoint)

{

		//	clear	the	light	intensity	accumulators

		Ambient		=	occLightAmbient.rgb;

		Diffuse		=	vec3	(0.0);

		Specular	=	vec3	(0.0);

		vec3	aPoint	=	thePoint.xyz	/	thePoint.w;

		for	(int	anIndex	=	0;	anIndex	<	

occLightSourcesCount;	++anIndex)

		{

				int	aType	=	occLight_Type	(anIndex);

				if	(aType	==	OccLightType_Direct)

				{

						directionalLight	(anIndex,	theNormal,	theView);

				}

				else	if	(aType	==	OccLightType_Point)

				{

						pointLight	(anIndex,	theNormal,	theView,	

aPoint);

				}

		}

		return	vec4	(Ambient,		1.0)	*	

occFrontMaterial_Ambient()

							+	vec4	(Diffuse,		1.0)	*	

occFrontMaterial_Diffuse()

							+	vec4	(Specular,	1.0)	*	

occFrontMaterial_Specular();

}

//!	Entry	point	to	the	Fragment	Shader

void	main()

{

		gl_FragColor	=	computeLighting	(normalize	(Normal),

																																		normalize	(View),

																																		Position);

}

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

http://www.doxygen.org/index.html

1.8.13

Table	of	Contents

Introduction
Use	of	issue	tracker
system
Access	levels

Standard	workflow	for	an
issue
General	scheme
Issue	registration
Assigning	the	issue
Resolving	the	issue

Requirements	to
the	code
modification
Providing	a	test
case
Updating	user
and	developer
guides
Submission	of
change	as	a	Git
branch
Requirements	to
the	commit
message
Marking	issue
as	resolved

Code	review
Testing
Integration	of	a
solution

Open	CASCADE
Technology		7.2.0

Contribution	Workflow

Closing	an	issue
Additional	workflow
elements
Requesting	more
information	or
specific	action
Defining	relationships
between	issues
Submission	of	a
change	as	a	patch
Updating	branches	in
Git
Minor	corrections
Handling	non-
reproducible	issues

Appendix:	Issue
attributes
Category
Severity
Status
Resolution

Introduction
The	purpose	of	this	document	is	to	describe	standard	workflow	for
processing	contributions	to	certified	version	of	OCCT.

Use	of	issue	tracker	system
Each	contribution	should	have	corresponding	issue	(bug,	or	feature,	or
integration	request)	registered	in	the	MantisBT	issue	tracker	system
accessible	by	URL	http://tracker.dev.opencascade.org.	The	issue	is
processed	according	to	the	described	workflow.

http://tracker.dev.opencascade.org

Access	levels
Access	level	defines	the	permissions	of	the	user	to	view,	register	and
modify	issues	in	the	issue	tracker.	The	correspondence	of	access	level
and	user	permissions	is	defined	in	the	table	below.

Access
level Granted	to Permissions Can	set

statuses

Viewer Everyone	(anonymous
access)

View	public
issues	only None

Updater
Users	registered	on
dev.opencascade.org,	in
Open	CASCADE	project

View	and
comment
issues

None

Reporter
Users	registered	on
dev.opencascade.org,	in
Community	project

View,	report,
and	comment
issues

New,
Resolved,
Feedback

Developer

OCC	developers	and	(in
Community	project)
external	contributors	who
signed	the	CLA

View,	report,
modify,	and
handle	issues

New,
Assigned,
Resolved,
Reviewed,
Feedback

Tester OCC	engineer	devoted	to
certification	testing

View,	report,
modify,	and
handle	issues

Assigned,
Tested,
Feedback

Maintainer
Person	responsible	for	a
project	or	OCCT
component

View,	report,
modify,	and
handle	issues

New,
Resolved,
Reviewed,
Tested,
Closed,
Feedback

Bugmaster

Person	responsible	for
Mantis	issue	tracker,
integrations,	certification,
and	releases

Full	access All	statuses

According	to	his	access	level,	the	user	can	participate	in	the	issue

handling	process	under	different	roles,	as	described	below.

Standard	workflow	for	an	issue
General	scheme

YES,	bug

Reporter	
provides	
more	info

Not	clear: more	info
requested

Developer	resolves	
the	issue

Reporter	registers	an	issue

New

Resolved

Maintainer
checks

the	 description

Feedback

YES,	fixed

Reporter is	not	satisfied	
with	 the	 fix

YES,	fixed ,	no	regressions

Tester	 is	not	satisfied	
with	the	 fix

Integrator	merges	the	fix	to	trunk

Tester	verifies	the	solution

Tested

Integration	to	the	trunk
Verified

Fixed?

Conflict	?

YES,	fixed

Assigned

Reviewer verifies	the	solution
Reviewer is	not	
satisfied	with	 the	fix

Good ?

Reviewed

+	Resolution
Delivery	of	the	release
Closed

YES,	code	is	good

Reporter	can	re -check	the	fix
OK?

Conflict	with	other	
change	is	detected

YES,	fix	providedClear?
Fix	provided?

Standard	life	cycle	of	an	issue

Issue	registration
An	issue	is	registered	in	Mantis	bugtracker	by	the	Reporter	with
definition	of	the	necessary	attributes	(see	also	Appendix:	Issue
attributes):

Category	–	indicates	the	OCCT	component,	to	which	the	issue	relates.
(If	in	doubt,	assign	to	OCCT:Foundation	Classes.)

Severity	–	indicates	the	impact	of	the	issue	in	the	context	where	it	was
discovered.

Profile	–	specifies	the	configuration,	on	which	the	problem	was	detected.
For	specific	configurations	it	is	possible	to	specify	separately	platform,
OS,	and	version.	These	fields	can	be	left	empty	if	the	issue	is	not
configuration-specific.	Additional	details	relevant	for	the	environment
where	the	issue	is	reproduced	(such	as	compiler	version,	bitness,	etc.)
can	be	provided	in	the	Description.

Products	Version	–	defines	the	OCCT	version,	on	which	the	problem
has	been	detected.

It	is	preferable	to	indicate	the	version	of	the	earliest	known	official	release
where	the	problem	can	be	reproduced.	If	the	issue	is	reported	on	the
current	development	version	of	OCCT,	the	current	development	version
should	be	used	(for	convenience,	this	version	is	marked	by	asterisk	in
Mantis).

Note
OCCT	version	number	can	be	consulted	in	the	file
Standard_Version.hxx	(value	of	OCC_VERSION_COMPLETE
macro).

Assign	to	–	developer	to	whom	the	issue	will	be	assigned.	By	default,	it
is	set	to	Maintainer	of	the	OCCT	component	selected	in	Category	field.

Target	Version	–	defines	the	target	version	for	the	fix	to	be	provided.	By
default,	it	is	set	to	the	current	version	under	development.

Summary	–	a	short,	one	sentence	description	of	the	issue.

The	Summary	has	a	limit	of	128	characters.	It	should	be	informative	and
useful	for	the	developers.	It	is	not	allowed	to	mention	the	issue	originator,
and	in	particular	the	customer,	in	the	name	of	the	registered	issue.

A	good	practice	is	to	start	the	issue	with	indication	of	the	relevant
component	(OCCT	module,	package,	class	etc.)	to	better	represent	its
context.

The	summary	should	be	given	in	imperative	mood	when	it	can	be
formulated	as	goal	to	be	achieved	or	action	to	be	done.	In	particular,	this
applies	to	feature	requests	and	improvements,	for	instance:

Visualization	-	provide	a	support	of	zoom	persistent	selection

If	the	issue	reports	a	problem,	the	summary	should	be	given	in	Present
Simple.	If	reported	problem	is	believed	to	be	a	regression,	it	is
recommended	to	indicate	this	in	the	summary,	like	this:

[Regression	in	6.9.0]	IGES	-	Export	of	a	reversed	face	leads	to
wrong	data

Description	–	should	contain	a	detailed	definition	of	the	nature	of	the
registered	issue	depending	on	its	type.

For	a	bug	it	is	required	to	submit	a	detailed	description	of	the	incorrect
behavior,	including	the	indication	of	the	cause	of	the	problem	(if	known	at
this	stage),	and	details	on	the	context	where	the	issue	has	been
detected.

For	a	feature	or	integration	request	it	is	necessary	to	describe	the
proposed	feature	in	details	(as	much	as	possible	at	that	stage),	including
the	changes	required	for	its	implementation	and	the	main	features	of	the
new	functionality.

Example:

Currently	selection	does	not	work	correctly	for	non-zoomable
objects	(those	defined	using	transform	persistence).	To	provide
correct	selection	for	such	objects,	first-level	(object)	BVH
structures	must	be	updated	on	each	camera	change,	and	frustum
must	be	rebuilt	accordingly.

Note
In	the	description	and	notes	to	the	issues	you	can	refer	to	another
issue	by	its	ID	prefixed	by	number	sign	(e.g.:	#12345),	and	refer	to	a
note	by	its	ID	prefixed	by	tilde	(e.g.:	~20123).	These	references	will
be	expanded	by	Mantis	into	links	to	the	corresponding	issue	or	note.
When	the	number	sign	or	the	tilde	followed	by	digits	are	a	part	of	a
normal	text,	add	a	space	before	digits	(e.g.:	"face	#	12345	contains	~
1000	edges")	to	avoid	this	conversion.

Steps	To	Reproduce	–	allows	describing	in	detail	how	to	reproduce	the
issue.

This	information	is	crucial	for	the	developer	to	investigate	the	cause	of
the	problem	and	to	create	the	test	case.	The	optimal	approach	is	to	give
a	sequence	of	DRAW	Test	Harness	commands	to	reproduce	the
problem	in	DRAW.	This	information	can	also	be	provided	as	a	DRAW	Tcl
script	attached	to	the	issue	(in	Upload	File	field).

Additional	information	and	documentation	updates	–	any	additional
information,	remarks	to	be	taken	into	account	in	Release	Notes,	etc..

Upload	File	–	allows	attaching	the	shapes,	snapshots,	scripts,
documents,	or	modified	source	files	of	OCCT.

This	field	can	be	used	to	attach	a	prototype	test	case	in	form	of	a	Tcl
script	for	DRAW,	a	C++	code	which	can	be	organized	in	DRAW
commands,	sample	shapes,	documents	describing	proposed	change	or
analysis	of	the	problem,	or	other	data	required	for	reproduction	of	the
issue.	Where	applicable,	pictures	demonstrating	a	problem	and/or
desired	result	can	be	attached.

The	newly	registered	issue	gets	status	NEW	and	is	assigned	to	the
person	indicated	in	the	Assign	to	field.

Assigning	the	issue
The	description	of	the	new	issue	is	checked	by	the	Maintainer	and	if	it	is
feasible,	he	may	assign	the	issue	to	a	Developer.	Alternatively,	any	user
with	Developer	access	level	or	higher	can	assign	the	issue	to	himself	if
he	wants	to	provide	a	solution.

The	recommended	way	to	handle	contributions	is	that	the	Reporter
assigns	the	issue	to	himself	and	provides	a	solution.

The	Maintainer	or	Bugmaster	can	close	or	reassign	the	issue	(in
FEEDBACK	state)	to	the	Reporter	after	it	has	been	registered,	if	its
description	does	not	contain	sufficient	details	to	reproduce	the	bug	or
explain	the	need	of	the	new	feature.	That	decision	shall	be	documented
in	the	comments	to	the	issue	in	the	Bugtracker.

The	assigned	issue	has	status	ASSIGNED.

Resolving	the	issue
The	Developer	responsible	for	the	issue	assigned	to	him	provides	a
solution	including:

Changes	in	the	code,	with	appropriate	comments;
Test	case	(when	applicable)	and	data	necessary	for	its	execution;
Changes	in	the	user	and	developer	guides	(when	necessary).

The	change	is	integrated	to	branch	named	CRxxxxx	(where	xxxxx	is
issue	number)	in	the	OCCT	Git	repository,	based	on	current	master,	and
containing	a	single	commit	with	the	appropriate	description.	Then	the
issue	is	switched	to	RESOLVED	for	further	review	and	testing.

The	following	sub-sections	describe	this	process,	relevant	requirements
and	options,	in	more	details.

Requirements	to	the	code	modification

The	amount	of	code	affected	by	the	change	should	be	limited	to	the
changes	required	for	the	bug	fix	or	improvement.	Change	of	layout	or	re-
formatting	of	the	existing	code	is	allowed	only	in	the	parts	where
meaningful	changes	related	to	the	issue	have	been	made.

Note
If	deemed	useful,	re-formatting	or	cosmetic	changes	affecting
considerable	parts	of	the	code	can	be	made	within	a	dedicated
issue.

The	changes	should	comply	with	the	OCCT	Codng	Rules.	It	is	especially
important	to	comment	the	code	properly	so	that	other	people	can
understand	it	easier.

The	modification	should	be	tested	by	running	OCCT	tests	(on	the
platform	and	scope	available	to	Developer)	and	ensuring	absence	of
regressions.	In	case	if	modification	affects	results	of	some	existing	test
case	and	the	new	result	is	correct,	such	test	case	should	be	updated	to
report	OK	(or	BAD),	as	descibed	in	Automated	Test	System	/
Interpretation	of	Test	Results.

Providing	a	test	case

For	modifications	affecting	OCCT	functionality,	a	test	case	should	be
created	(unless	already	exists)	and	included	in	the	commit	or	patch.	See
Automated	Test	System	/	Creating	a	New	Test	for	relevant	instructions.

The	data	files	required	for	a	test	case	should	be	attached	to	the
corresponding	issue	in	Mantis	(i.e.	not	included	in	the	commit).

When	the	test	case	cannot	be	provided	for	any	reason,	the	maximum
possible	information	on	how	the	problem	can	be	reproduced	and	how	to
check	the	fix	should	be	provided	in	the	Steps	to	Reproduce	field	of	an
issue.

Updating	user	and	developer	guides

If	the	change	affects	a	functionality	described	in	User	Guides,	the
corresponding	user	guide	should	be	updated	to	reflect	the	change.

If	the	change	affects	OCCT	test	system,	build	environment,	or
development	tools	described	in	Developer	Guides,	the	corresponding
guide	should	be	updated.

The	changes	that	break	compatibility	with	the	previous	versions	of	OCCT
(i.e.	affecting	API	or	behavior	of	existing	functionality	in	the	way	that	may
require	update	of	existing	applications	based	on	an	earlier	official	release
of	OCCT	to	work	correctly)	should	be	described	in	the	document
Upgrade	from	previous	OCCT	versions.	It	is	recommended	to	add	a
sub-section	for	each	change	described.	The	description	should	provide
the	explanation	of	the	incompatibility	introduced	by	the	change,	and
describe	how	it	can	be	resolved	(at	least,	in	known	situations).	When
feasible,	the	automatic	upgrade	procedure	(adm/upgrade.tcl)	can	be
extended	by	a	new	option	to	perform	the	required	upgrade	of	the
dependent	code	automatically.

Submission	of	change	as	a	Git	branch

The	modification	of	sources	should	be	provided	in	the	dedicated	branch
of	the	official	OCCT	Git	repository.

The	branch	should	contain	a	single	commit,	with	the	appropriate	commit
message	(see	Requirements	to	the	commit	message	below).

In	general,	this	branch	should	be	based	on	the	recent	version	of	the
master	branch.	It	is	highly	preferable	to	submit	changes	basing	on	the
current	master.	In	case	if	the	fix	is	implemented	on	the	previous	release
of	OCCT,	the	branch	can	be	based	on	the	corresponding	tag	in	Git,
instead	of	the	master.

The	branch	name	should	be	composed	of	letters	CR	(abbreviation	of
"Change	Request")	followed	by	the	issue	ID	number	(without	leading
zeros).	It	is	possible	to	add	an	optional	suffix	to	the	branch	name	after	the
issue	ID,	e.g.	to	distinguish	between	several	versions	of	the	fix	(see
Updating	branches	in	Git).

See	Guide	to	using	GIT	for	help.

Note
When	a	branch	with	the	name	given	according	to	the	above	rule	is
pushed	to	Git,	a	note	is	automatically	added	to	the	corresponding
issue	in	Mantis,	indicating	the	person	who	has	made	the	push,	the
commit	hash,	and	(for	new	commits)	the	description.

Requirements	to	the	commit	message

The	commit	message	posted	in	Git	constitutes	an	integral	part	of	both	the
fix	and	the	release	documentation.

The	first	line	of	the	commit	message	should	contain	the	Summary	of	the
issue	(starting	with	its	ID	followed	by	colon,	e.g.	"0022943:	Bug	in
TDataXtd_PatternStd"),	followed	by	an	empty	line.

The	following	lines	should	provide	a	description	of	the	context	and	details
on	the	changes	made.	The	contents	and	the	recommended	structure	of
the	description	depend	on	the	nature	of	the	bug.

In	a	general	case,	the	following	elements	should	be	present:

Problem	–	a	description	of	the	unwanted	behavior;
Change	–	a	description	of	the	implemented	changes,	including	the
names	of	involved	classes	/	methods	/	enumerations	etc.;

Result	–	a	description	of	the	current	behavior	(after	the
implementation).

Example:

0026330:	BRepOffsetAPI_ThruSections	creates	invalid	shape.

Methods	BRep_Tool::CurveOnSurface()	and
BRepCheck_Edge::InContext()	now	properly	handle	parametric
range	on	a	3D	curve	when	it	is	used	to	generate	a	p-curve
dynamically	(on	a	planar	surface)	and	both	the	surface	and	the	3D
curve	have	non-null	locations.

Provide	sufficient	context	so	that	potential	user	of	the	affected
functionality	can	understand	what	has	been	changed	and	how	the
algorithm	works	now.	Describe	reason	and	essence	of	the	changes
made,	but	do	not	go	too	deep	into	implementation	details	–	these	should
be	reflected	in	comments	in	the	code.

Marking	issue	as	resolved

To	mark	the	change	as	ready	for	review	and	testing,	the	corresponding
issue	should	be	switched	to	RESOLVED	state.	By	default,	the	issue	gets
assigned	to	the	Maintainer	of	the	component,	who	is	thus	responsible	for
its	review.	Alternatively,	another	person	can	be	selected	as	a	reviewer	at
this	step.

When	the	issue	is	switched	to	RESOLVED,	it	is	required	to	update	or	fill
the	field	Steps	to	reproduce.	The	possible	variants	are:

The	name	of	an	existing	or	new	test	case	(preferred	variant);
A	sequence	of	DRAW	commands;
N/A	(Not	required	/	Not	possible	/	Not	applicable);
Reference	to	an	issue	in	the	bug	tracker	of	another	project.

Code	review
The	Reviewer	analyzes	the	proposed	solution	for	applicability	in
accordance	with	OCCT	Coding	Rules	and	examines	all	changes	in	the
sources,	test	case(s),	and	documentation	to	detect	obvious	and	possible
errors,	misprints,	or	violations	of	the	coding	style.

If	the	Reviewer	detects	some	problems,	he	can	either:

Fix	these	issues	and	provide	a	new	solution.	The	issue	can	then	be
switched	to	REVIEWED.

In	case	of	doubt	or	possible	disagreement	the	Reviewer	can
reassign	the	issue	(in	RESOLVED	state)	to	the	Developer,	who	then
becomes	a	Reviewer.	Possible	disagreements	should	be	resolved
through	discussion,	which	is	done	normally	within	issue	notes	(or	on
the	OCCT	developer’s	forum	if	necessary).

Reassign	the	issue	back	to	the	Developer,	providing	detailed	list	of
remarks.	The	issue	then	gets	status	ASSIGNED	and	a	new	solution
should	be	provided.

If	Reviewer	does	not	detect	any	problems,	or	provides	a	corrected
version,	he	changes	status	to	REVIEWED.	The	issue	gets	assigned	to
the	Bugmaster.

Testing
The	issues	that	are	in	REVIEWED	state	are	subject	of	certification	(non-
regression)	testing.	The	issue	is	assigned	to	an	OCCT	Tester	when	he
starts	processing	it.

If	the	branch	submitted	for	testing	is	based	on	obsolete	status	of	the
master	branch,	Tester	rebases	it	on	master	HEAD.	In	case	of	conflicts,
the	issue	is	assigned	back	to	Developer	in	FEEDBACK	status,
requesting	for	a	rebase.

Certification	testing	includes:

Addition	of	new	data	models	(if	required	for	a	new	test	case)	to	the
data	base;
Revision	of	the	new	test	case(s)	added	by	developer,	and	changes	in
the	existing	test	cases	included	in	commit.	The	Tester	can	amend
tests	to	ensure	their	correct	behavior	in	the	certification	environment.
Building	OCCT	on	a	sub-set	of	supported	configurations	(OS	and
compiler),	watching	for	errors	and	warnings;
Execution	of	tests	on	sub-set	of	supported	platforms	(at	least,	one
Windows	and	one	Linux	configuration),	watching	for	regressions;
Building	OCCT	samples,	watching	for	errors;
Building	and	testing	of	OCC	products	based	on	OCCT.

If	the	Tester	does	not	detect	problems	or	regressions,	he	changes	the
status	to	TESTED	for	further	integration.

If	the	Tester	detects	build	problems	or	regressions,	he	changes	the
status	to	ASSIGNED	and	reassigns	the	issue	to	the	Developer	with	a
detailed	description	of	the	problems.	The	Developer	should	analyze	the
reported	problems	and,	depending	on	results	of	this	analysis,	either:

Confirm	that	the	detected	problems	are	expected	changes	and	they
should	be	accepted	as	a	new	status	of	the	code.	Then	the	issue
should	be	switched	to	FEEDBACK	and	assigned	to	the	Bugmaster.
Produce	a	new	solution	(see	Resolving	the	issue,	and	also	Minor
corrections).

Integration	of	a	solution
Before	integration	into	the	master	branch	of	the	repository	the	Integrator
checks	the	following	conditions:

the	change	has	been	reviewed;
the	change	has	been	tested	without	regressions	(or	with	regressions
treated	properly);
the	test	case	has	been	created	for	this	issue	(when	applicable),	and
the	change	has	been	rechecked	on	this	test	case;
the	change	does	not	conflict	with	other	changes	integrated
previously.

If	the	result	of	check	is	successful	the	Integrator	integrates	the	solution
into	the	branch.	The	integrations	are	performed	weekly;	integration
branches	are	named	following	the	pattern	IR-YYYY-MM-DD.

Each	change	is	integrated	as	a	single	commit	without	preserving	the
history	of	changes	made	in	the	branch	(by	rebase,	squashing	all
intermediate	commits	if	any),	however,	preserving	the	author	when
possible.	This	is	done	to	have	the	master	branch	history	plain	and	clean.
The	following	picture	illustrates	the	process:

Integration	of	several	branches

The	new	integration	branch	is	tested	against	possible	regressions	that
might	appear	due	to	interference	between	separate	changes.	When	the
tests	are	OK,	the	integration	branch	is	pushed	as	the	new	master	to	the
official	repository.	The	issue	status	is	set	then	to	VERIFIED	and	is
assigned	to	the	Reporter	so	that	he	could	check	the	fix	as	integrated.

The	branches	corresponding	to	the	integrated	fixes	are	removed	from	the
repository	by	the	Bugmaster.

Closing	an	issue
When	possible,	the	Reporter	should	check	whether	the	problem	is
actually	resolved	in	the	environment	where	it	has	been	discovered,	after
the	fix	is	integrated	to	master.	If	the	fix	does	not	actually	resolve	the
original	problem,	the	issue	in	VERIFIED	status	can	be	reopened	and
assigned	back	to	the	Developer	for	rework.	The	details	on	how	to	check
that	the	issue	is	still	reproducible	should	be	provided.	However,	if	the
issue	does	resolve	the	problem	as	described	in	the	original	report,	but	a
similar	problem	is	discovered	for	another	input	data	or	configuration,	or
the	fix	has	caused	a	regression,	that	problem	should	be	registered	as	a
separate	(related)	issue.

If	the	fix	integrated	to	master	causes	regressions,	Bugmaster	can	revert
it	and	reopen	the	issue.

The	Bugmaster	closes	the	issue	after	the	regular	OCCT	Release,
provided	that	the	issue	status	is	VERIFIED	and	the	change	was	actually
included	in	the	release.	The	final	issue	state	is	CLOSED.

The	field	Fixed	in	Version	of	the	issue	is	set	to	the	OCCT	version	where
it	is	fixed.

Additional	workflow	elements
Requesting	more	information	or	specific	action

If,	at	any	step	of	the	issue	lifetime,	the	person	responsible	for	it	cannot
process	it	due	to	absence	of	required	information,	expertise,	or	rights,	he
can	switch	it	to	status	FEEDBACK	and	assign	to	the	person	who	is
(presumably)	able	to	resolve	the	block.	Some	examples	of	typical
situations	where	FEEDBACK	is	used	are:

The	Maintainer	or	the	Developer	requests	for	more	information
from	the	Reporter	to	reproduce	the	issue;
The	Tester	requests	the	Developer	or	the	Maintainer	to	help	him	in
the	interpretation	of	testing	results;
The	Developer	or	the	Maintainer	asks	the	Bugmaster	to	close	the
issue	that	is	found	irrelevant	or	already	fixed	(see	Handling	non-
reproducible	issues).

In	general,	issues	with	status	FEEDBACK	should	be	processed	as	fast
as	possible,	to	avoid	unjustified	delays.

Defining	relationships	between	issues
When	two	or	more	issues	are	related	to	each	other,	this	relationship
should	be	reflected	in	the	issue	tracker.	It	is	also	highly	recommended	to
add	a	note	to	explain	the	relationship.	Typical	cases	of	relationships	are:

Issue	A	is	caused	by	previous	fix	made	for	issue	B	(A	is	a	child	of	B);
Issue	A	describes	the	same	problem	as	issue	B	(A	is	a	duplicate	of
B);
Issues	A	and	B	relate	to	the	same	piece	of	code,	functionality	etc.,	in
the	sense	that	the	fix	for	one	of	these	issues	will	affect	the	other	(A	is
related	to	B)

When	the	fix	made	for	one	issue	also	resolves	another	one,	these	issues
should	be	marked	as	related	or	duplicate.	In	general,	the	duplicate	issue
should	have	the	same	status,	and,	when	closed,	be	marked	as	fixed	in
the	same	OCCT	version,	as	the	main	one.

Submission	of	a	change	as	a	patch
In	some	cases	(if	Git	is	not	accessible	for	the	contributor),	external
contributions	can	be	submitted	as	a	patch	file	(generated	by	diff
command)	or	as	modified	sources	attached	to	the	Mantis	issue.	The
OCCT	version,	for	which	the	patch	is	generated,	should	be	clearly
specified	(e.g.	as	hash	code	of	Git	commit	if	the	patch	is	based	on	an
intermediate	state	of	the	master).

Note
Such	contributions	should	be	put	to	Git	by	someone	else	(e.g.	the
Reviewer),	this	may	cause	delay	in	their	processing.

Updating	branches	in	Git
Updates	of	the	existing	branch	(e.g.	taking	into	account	the	remarks	of
the	Reviewer,	or	fixing	regressions)	should	be	provided	as	new	commits
on	top	of	previous	state	of	the	branch.

It	is	allowed	to	rebase	the	branch	on	the	new	state	of	the	master	and
push	it	to	the	repository	under	the	same	name	(with	–force	option)
provided	that	the	original	sequence	of	commits	is	preserved.

When	a	change	is	squashed	into	a	single	commit	(e.g.	to	be	submitted
for	review),	it	should	be	pushed	into	a	branch	a	with	different	name.

The	recommended	approach	is	to	add	a	numeric	suffix	(index)	indicating
the	version	of	the	change,	e.g.	"CR12345_5".	Usually	it	is	worth	keeping
a	non-squashed	branch	in	Git	for	reference.

To	avoid	confusions,	the	branch	corresponding	to	the	latest	version	of	the
change	should	have	a	greater	index.

Note
Make	sure	to	revise	the	commit	message	after	squashing	a	branch,
to	keep	it	meaningful	and	comprehensive.

Minor	corrections
In	some	cases	review	remarks	or	results	of	testing	require	only	minor
corrections	to	be	done	in	the	branch	containing	a	change.	"Minor"	implies
that	the	correction	does	not	impact	the	functionality	and	does	not	affect
the	description	of	the	previously	committed	change.

As	an	exception	to	general	single-commit	rule,	it	is	allowed	to	put	such
minor	corrections	on	top	of	the	existing	branch	as	a	separate	commit,
and	re-submit	it	for	further	processing	in	the	same	branch,	without
squashing.

Minor	commits	should	have	a	single-line	message	starting	with	#.	These
messages	will	be	ignored	when	the	branch	is	squashed	at	integration.

Typical	cases	of	minor	corrections	are:

Amendments	of	test	cases	(including	those	made	by	the	Tester	to
adjust	a	test	script	to	a	specific	platform);
Trivial	corrections	of	compilation	warnings	(such	as	removal	of	an
unused	variable);
Addition	or	correction	of	comments	or	documentation;
Corrections	of	code	formatting	(e.g.	reversion	of	irrelevant	formatting
changes	made	in	the	main	commit).

Handling	non-reproducible	issues
Investigation	of	each	issue	starts	with	reproducing	it	on	current
development	version	(master).

If	it	cannot	be	reproduced	on	the	current	master,	but	can	be	reproduced
on	one	of	previous	releases	(or	previous	state	of	the	master),	it	is
considered	as	solved	by	a	change	made	for	another	issue.	If	that	"fixing"
issue	can	be	identified	(e.g.	by	parsing	Git	log),	it	should	be	set	as	related
to	that	issue.	The	issue	should	be	switched	to	FEEDBACK	and	assigned
to	the	Bugmaster	for	further	processing.

The	Bugmaster	decides	whether	it	is	necessary	to	create	a	test	case	for
that	issue,	and	if	so	may	assign	it	to	the	Developer	or	the	Tester	to
create	a	test.	The	issue	then	follows	the	standard	workflow.

Otherwise,	if	the	issue	is	fixed	in	one	of	previous	releases,	the
Bugmaster	closes	it	setting	the	appropriate	value	in	Fixed	in	Version
field,	or,	if	the	issue	is	fixed	after	the	last	release,	switches	it	to	VERIFIED
status.

If	the	issue	cannot	be	reproduced	due	to	an	unclear	description,	missing
data,	etc.,	it	should	be	assigned	back	to	the	Reporter	in	FEEDBACK
status,	requesting	for	more	information.	The	Reporter	should	provide
additional	information	within	one	month;	after	that	time,	if	no	new
information	is	provided,	the	issue	should	be	closed	by	the	Bugmaster
with	resolution	Unable	to	reproduce.

Appendix:	Issue	attributes
Category

The	category	corresponds	to	the	component	of	OCCT	where	the	issue	is
found:

Category Component
OCCT:Foundation
Classes Foundation	Classes	module

OCCT:Modeling	Data Modeling	Data	classes
OCCT:Modeling
Algorithms

Modeling	Algorithms,	except	shape	healing
and	meshing

OCCT:Shape	Healing Shape	Healing	component	(TKShapeHealing)
OCCT:Mesh BRepMesh	algorithm
OCCT:Data	Exchange Data	Exchange	module
OCCT:Visualization Visualization	module
OCCT:Application
Framework OCAF

OCCT:DRAW DRAW	Test	Harness
OCCT:Tests Automatic	Test	System
OCCT:Documentation Documentation
OCCT:Coding General	code	quality
OCCT:Configuration Configuration,	build	system,	etc.
OCCT:Releases Official	OCCT	releases

Website:Tracker OCCT	Mantis	issue	tracker,
tracker.dev.opencascade.org

Website:Portal OCCT	development	portal,
dev.opencascade.org

Website:Git OCCT	Git	repository,	git.dev.opencascade.org

Severity
Severity	shows	at	which	extent	the	issue	affects	the	product.	The	list	of
used	severities	is	given	in	the	table	below	in	the	descending	order.

Severity Description
crash Crash	of	the	application	or	OS,	loss	of	data

block

Regression	corresponding	to	the	previously	delivered
official	version.	Impossible	operation	of	a	function	on	any
data	with	no	work-around.	Missing	function	previously
requested	in	software	requirements	specification.
Destroyed	data.

major

Impossible	operation	of	a	function	with	existing	work-
around.	Incorrect	operation	of	a	function	on	a	particular
dataset.	Impossible	operation	of	a	function	after	intentional
input	of	incorrect	data.	Incorrect	behavior	of	a	function	after
intentional	input	of	incorrect	data.

minor
Incorrect	behavior	of	a	function	corresponding	to	the
description	in	software	requirements	specification.
Insufficient	performance	of	a	function.

tweak Ergonomic	inconvenience,	need	of	light	updates.

text

Non-conformance	of	the	program	code	to	the	Coding
Rules,	mistakes	and	non-functional	errors	in	the	source
text	(e.g.	unnecessary	variable	declarations,	missing
comments,	grammatical	errors	in	user	manuals).

trivial Cosmetic	issues.
feature Request	for	a	new	feature	or	improvement.
integration
request

Requested	integration	of	an	existing	feature	into	the
product.

just	a
question

A	question	to	be	processed,	without	need	of	any	changes
in	the	product.

Status
The	bug	statuses	that	can	be	applied	to	the	issues	are	listed	in	the	table
below.

Status Description
New A	new,	just	registered	issue.
Acknowledged Can	be	used	to	mark	the	issue	as	postponed.
Confirmed Can	be	used	to	mark	the	issue	as	postponed.

Feedback The	issue	requires	more	information	or	a	specific
action.

Assigned Assigned	to	a	developer.

Resolved The	issue	has	been	fixed,	and	now	is	waiting	for
review.

Reviewed The	issue	has	been	reviewed,	and	now	is	waiting	for
testing	(or	being	tested).

Tested
The	fix	has	been	internally	tested	by	the	tester	with
success	on	the	full	non-regression	database	or	its	part
and	a	test	case	has	been	created	for	this	issue.

Verified The	fix	has	been	integrated	into	the	master	of	the
corresponding	repository

Closed	+
resolution

The	fix	has	been	integrated	to	the	master.	The
corresponding	test	case	has	been	executed
successfully.	The	issue	is	no	longer	reproduced.

Resolution
Resolution	is	set	when	the	bug	is	closed.	"Reopen"	resolution	is	added
automatically	when	the	bug	is	reopened.

Resolution Description
Open The	issue	is	pending.
Fixed The	issue	has	been	successfully	fixed.

Reopened The	bug	has	been	reopened	because	of	insufficient	fix
or	regression.

Unable	to
reproduce The	bug	is	not	reproduced.

Not	fixable The	bug	cannot	be	fixed	because	e.g.	it	is	a	bug	of
third	party	software,	OS	or	hardware	limitation,	etc.

Duplicate The	bug	for	the	same	issue	already	exists	in	the
tracker.

Not	a	bug It	is	a	normal	behavior	in	accordance	with	the
specification	of	the	product.

No	change
required

The	issue	didn’t	require	any	change	of	the	product,
such	as	a	question	issue.

Suspended The	issue	is	postponed	(for	Acknowledged	status).
Documentation
updated

The	documentation	has	been	updated	to	resolve	a
misunderstanding	causing	the	issue.

Won’t	fix It	is	decided	to	keep	the	existing	behavior.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Overview
Purpose
Git	URL
Content
Short	rules	of	use
Version	of	Git

Installing	Tools	for	Work
with	Git
Windows	platform

Installation	of
Git	for	Windows
Installation	and
configuration	of
TortoiseGit

Linux	platform
Getting	access	to	the
repository
Prerequisites
How	to	generate	a
key

Generating	key
with	Putty
Generating	key
with	command-
line	tools
Generating	key
with	Git	GUI

Adding	public	key	in

Open	CASCADE
Technology		7.2.0

Guide	to	installing	and	using	Git	for	OCCT
development

your	account
Work	with	repository:
developer	operations
General	workflow
Cloning	official
repository
Branch	creation
Branch	switching
Committing	branch
changes
Pushing	branch	to	the
remote	repository
Synchronizing	with
remote	repository
Applying	a	fix	made
on	older	version	of
OCCT
Rebasing	with	history
clean-up

Work	with	repository:
Reviewer	operations
Review	branch
changes	using
GitWeb
Review	branch
changes	with
TortoiseGit

Overview
Purpose

The	purpose	of	this	document	is	to	provide	a	practical	introduction	to	Git
to	OCCT	developers	who	are	not	familiar	with	this	tool	and	to	facilitate
the	use	of	the	official	OCCT	Git	repository	for	code	contribution	to	OCCT.

Reading	this	document	does	not	exempt	from	the	need	to	learn	Git
concepts	and	tools.	Please	consult	a	book	or	manual	describing	Git	to
get	acquainted	with	this	tool.	Many	good	books	on	Git	can	be	found	at
http://git-scm.com/documentation

For	the	experienced	Git	users	it	can	be	enough	to	read	sections	1	and	3
of	this	document	to	start	working	with	the	repository.

Please	make	sure	to	get	familiar	with	the	Contribution	Workflow
document	that	describes	how	Git	is	used	for	processing	contributions	to
OCCT.

This	and	related	documents	are	available	at	the	Resources	page	of	the
OCCT	development	portal	at	http://dev.opencascade.org/index.php?
q=home/resources.

http://git-scm.com/documentation
http://dev.opencascade.org/index.php?q=home/resources

Git	URL
URL	of	the	official	OCCT	source	code	Git	repository	(accessed	by	SSH
protocol)	is:

gitolite@git.dev.opencascade.org:occt

or

ssh://gitolite@dev.opencascade.org/occt.git

Content
The	official	repository	contains:

The	current	certified	version	of	OCCT:	the	"master"	branch.	This
branch	is	updated	by	the	Bugmaster	only.	Official	OCCT	releases
are	marked	by	tags.
Topic	branches	created	by	contributors	to	submit	changes	for	review
/	testing	or	for	collaborative	development.	The	topic	branches	should
be	named	by	the	pattern	"CR12345"	where	12345	is	the	ID	of	the
relevant	issue	registered	in	Mantis	(without	leading	zeroes),	and
"CR"	stands	for	"Change	Request".	The	name	can	have	an
additional	postfix	used	if	more	than	one	branch	was	created	for	the
same	issue.
Occasionally	topic	branches	with	non-standard	names	can	be
created	by	the	Bugmaster	for	special	needs.

Short	rules	of	use
The	name	specified	in	the	user.name	field	in	Git	configuration	should
correspond	to	your	login	name	on	the	OCCT	development	portal.	This	is
important	to	clearly	identify	the	authorship	of	commits.	(The	full	real	name
can	be	used	as	well;	in	this	case	add	the	login	username	in	parentheses.)

By	default,	contributors	are	allowed	to	push	branches	only	with	the
names	starting	with	CR	(followed	by	the	relevant	Mantis	issue	ID).
Possibility	to	work	with	other	branches	can	be	enabled	by	the	Bugmaster
on	request.

The	branch	is	created	by	the	developer	in	his	local	repository	when	the
development	of	a	contribution	starts.	The	branch	for	new	developments	is
to	be	created	from	the	current	master.	The	branch	for	integration	of
patches	or	developments	based	on	an	obsolete	version	is	created	from	a
relevant	tag	or	commit.	The	branch	should	be	pushed	to	the	official	repo
only	when	sharing	with	other	people	(for	collaborative	work	or	review	/
testing)	is	needed.

Rebasing	the	local	branch	to	the	current	master	is	encouraged	before	the
first	submission	to	the	official	repository.	If	rebasing	was	needed	after	the
branch	is	pushed	to	the	official	repo,	the	rebased	branch	should	have	a
different	name	(use	suffix).

Integration	of	contributions	that	have	passed	certification	testing	is	made
exclusively	by	the	Bugmaster.	Normally	this	is	made	by	rebasing	the
contribution	branch	on	the	current	master	and	squashing	it	into	a	single
commit.	This	is	made	to	have	the	master	branch	history	plain	and	clean,
following	the	general	rule	“one	issue	–	one	commit”.	The	description	of
the	commit	integrated	to	the	master	branch	is	taken	from	the	Mantis
issue	(ID,	'Summary',	followed	by	the	information	from	'Documentation'
field	if	present).

In	special	cases	when	it	is	important	to	save	the	commits	history	in	the
branch	(e.g.	in	case	of	a	long-term	development	integration)	it	can	be
integrated	by	merge	(no	fast-forward).

The	authorship	of	the	contribution	is	respected	by	preserving	the	Author

field	of	the	commit	when	integrating.	Branches	are	removed	from	the
official	repository	when	integrated	to	the	master.	The	Bugmaster	can	also
remove	branches	which	have	no	commits	during	one-month	period.

The	Bugmaster	may	ask	the	developer	(normally	the	one	who	produced
the	contribution)	to	rebase	a	branch	on	the	current	master,	in	the	case	if
merge	conflicts	appear	during	integration.

Version	of	Git
The	repository	is	tested	to	work	with	Git	1.7.6	and	above.	Please	do	not
use	versions	below	1.7.1	as	they	are	known	to	cause	troubles.

Installing	Tools	for	Work	with	Git
Windows	platform

Installation	of	Git	for	Windows	(provided	by	MSysGit	project)	is	required.

In	addition,	it	is	recommended	to	install	TortoiseGit	to	work	with	Git	on
Windows.	If	you	do	not	install	TortoiseGit	or	any	other	GUI	tool,	you	can
use	GitGui	and	Gitk	GUI	tools	delivered	with	Git	and	available	on	all
platforms.

Installation	of	Git	for	Windows

Download	Git	for	Windows	distributive	from	https://git-for-
windows.github.io/	During	the	installation:

Check-in	"Windows	Explorer	integration"	options:
"Git	Bash	Here";
"Git	GUI	Here".

To	avoid	a	mess	in	your	PATH,	we	recommend	selecting	"Run	Git
from	Windows	Prompt"	in	the	environment	settings	dialog:
In	"Configuring	the	line	ending	conversions"	dialog,	select	"Checkout
Windows-style,	commit	Unix	style	endings".

Note	that	by	default	Git	user	interface	is	localized	to	the	system	default
language.	If	you	prefer	to	work	with	the	English	interface,	remove	or
rename	.msg	localization	file	in	subdirectories	share/git-gui/lib/msgs	and
share/gitk/lib/msgs	of	the	Git	installation	directory.

Before	the	first	commit	to	the	OCCT	repository,	make	sure	that	your	User
Name	in	the	Git	configuration	file	(file	.gitconfig	in	the	$HOME	directory)
is	equal	to	your	username	on	the	OCCT	development	portal.

Installation	and	configuration	of	TortoiseGit

Download	TortoiseGit	distributive	from
http://code.google.com/p/tortoisegit/downloads/list.	Launch	the

https://git-for-windows.github.io/
http://code.google.com/p/tortoisegit/downloads/list

installation.

Select	your	SSH	client.	Choose	option
"OpenSSH,	Git	default	SSH	Client"	if	you	prefer	to	use
command-line	tools	for	SSH	keys	generation,	or
"TortoisePLink,	coming	from	Putty,	integrates	with	Windows
better"	if	you	prefer	to	use	GUI	tool	(PuttyGen,	see	3.2).

Complete	the	installation.

TortoiseGit	integrates	into	Windows	Explorer,	thus	it	is	possible	to
use	context	menu	in	Windows	Explorer	to	access	its	functionality:

Note	that	if	you	have	installed	MSysGit	or	have	Git	installed	in	non-
default	path,	on	the	first	time	you	use	TortoiseGit	you	may	get	the

message	demanding	to	define	path	to	Git.	In	such	case,	click	on	Set
MSysGit	path	button	and	add	the	path	to	git.exe	and	path	to	MigGW
libraries	in	the	Settings	dialog.

After	the	installation	select	Start	->	Programs	->	TortoiseGit	Settings
to	configure	TortoiseGit.

Select	Git->Config	to	add	your	user	name	and	Email	address	to	the	local
.gitconfig	file

Optionally,	you	can	set	up	TortoiseGit	to	use	visual	diff	utility	for	SVG
images	used	in	OCCT	documentation.	For	that,	click	on	item	"Diff	Viewer"
in	the	Settings	dialog,	then	click	button	"Advanced..."	on	the	right	tab	add
new	record	with	the	following	parameters:

Extension:	.svg
External	program:	<path_to_OCCT>\adm\svgdiff.bat	%base	%mine
%bname	%yname

Linux	platform
We	assume	that	Linux	users	have	Git	already	installed	and	available	in
the	PATH.

Make	sure	to	configure	Git	so	that	the	user	name	is	equal	to	your
username	on	the	OCCT	development	portal,	and	set	SafeCrLf	option	to
true:

>	git	config	--global	user.name	"Your	User	Name"

>	git	config	--global	user.email	your@mail.address

>	git	config	--global	your@mail.address

Getting	access	to	the	repository
Prerequisites

Access	to	the	repository	is	granted	to	the	users	who	have	signed	the
Contributor	License	Agreement.

The	repository	is	accessed	by	SSH	protocol,	thus	you	need	to	register
your	public	SSH	key	on	the	development	portal	to	get	access	to	the
repository.

SSH	keys	are	used	for	secure	authentication	of	the	user	when	accessing
the	Git	server.	Private	key	is	the	one	stored	on	the	user	workstation
(optionally	encrypted).	Open	(or	public)	key	is	stored	in	the	user	account
page	on	the	web	site.	When	Git	client	accesses	the	remote	repository
through	SSH,	it	uses	this	key	pair	to	identify	the	user	and	acquire
relevant	access	rights.

Normally	when	you	have	Git	installed,	you	should	have	also	SSH	client
available.	On	Unix/Linux	it	is	installed	by	default	in	the	system.	On
Windows	it	is	typical	to	have	several	SSH	clients	installed;	in	particular
they	are	included	with	Cygwin,	Git,	TortoiseGit.

It	is	highly	recommended	to	use	the	tools	that	come	with	the	chosen	Git
client	for	generation	of	SSH	keys.	Using	incompatible	tools	(e.g.	ssh-
keygen.exe	from	Cygwin	for	code	generation,	and	TortoiseGit	GUI	with	a
default	Putty	client	for	connection	to	server)	may	lead	to	authentication
problems.

How	to	generate	a	key

Generating	key	with	Putty

Use	this	option	if	you	have	installed	TortoiseGit	(or	other	GUI	Git	client	on
Windows)	and	have	chosen	“TortoisePLink”	(or	other	Putty	client)	as	SSH
client	during	installation.

To	generate	the	key	with	this	client,	run	Puttygen	(e.g.	from	Start	menu	-
>	TortoiseGit	->	Puttygen),	then	click	Generate	and	move	mouse	cursor
over	the	blank	area	until	the	key	is	generated.

Putty	key	generator

After	the	key	is	generated,	you	will	see	GUI	controls	to	define	the	public
key	comment	and	/	or	specify	the	password	for	the	private	key	protection.
When	done,	save	both	the	public	and	the	private	key	to	the	files	of	your
choice	(make	sure	to	store	your	private	key	in	a	secure	place!).

Copy	the	public	key	as	shown	by	Puttygen	to	the	clipboard	to	add	it	in

your	account.	Do	not	copy	the	Putty	public	key	file	content	–	it	is
formatted	in	a	way	not	suitable	for	the	web	site.

Generating	key	with	command-line	tools

Use	this	option	if	you	work	on	Linux	or	if	you	have	chosen	“OpenSSH”	as
SSH	client	during	installation	of	TortoiseGit	(or	other	Windows	tool).

Make	sure	that	you	have	ssh	and	ssh-keygen	commands	in	the	path.	On
Windows,	you	might	need	to	start	Git	Bash	command	prompt	window.

Use	the	following	command	to	generate	SSH	keys:

>	ssh-keygen	-t	rsa	-C	"your@mail.address"

The	last	argument	is	an	optional	comment,	which	can	be	included	with
the	public	key	and	used	to	distinguish	between	different	keys	(if	you	have
many).	The	common	practice	is	to	put	here	your	mail	address	or
workstation	name.

The	command	will	ask	you	where	to	store	the	keys.	It	is	recommended	to
accept	the	default	path	$HOME/.ssh/id_rsa.	Just	press	Enter	for	that.
You	will	be	warned	if	a	key	is	already	present	in	the	specified	file;	you	can
either	overwrite	it	by	the	new	one,	or	stop	generation	and	use	the	old	key.

If	you	want	to	be	on	the	safe	side,	enter	password	to	encrypt	the	private
key.	You	will	be	asked	to	enter	this	password	each	time	you	use	that	key
(e.g.	access	a	remote	Git	repository),	unless	you	use	the	tool	that	caches
the	key	(like	TortoiseGit).	If	you	do	not	want	to	bother,	enter	an	empty
string.

On	Windows,	make	sure	to	note	the	complete	path	to	the	generated	files
(the	location	of	your	$HOME	might	be	not	obvious).	Two	key	files	will	be
created	in	the	specified	location	(by	default	in	$HOME/.ssh/):

id_rsa	–	private	key
id_rsa.pub	–	public	key

The	content	of	the	public	key	file	(one	text	line)	is	the	key	to	be	added	to
the	user	account	on	the	site	(see	below).

Generating	key	with	Git	GUI

GitGUI	(standard	GUI	interface	included	with	Git)	provides	the	option	to
either	generate	the	SSH	key	(if	not	present	yet)	or	show	the	existing	one.
Click	Help/Show	SSH	key	and	copy	the	public	key	content	for	adding	to
the	user	account	page	(see	below).

Adding	public	key	in	your	account
Log	in	on	the	portal	http://dev.opencascade.org	and	click	on	My	account
link	to	the	right.	If	you	have	a	Contributor	status,	you	will	see	SSH	keys
tab	to	the	right.

Click	on	that	tab,	then	click	Add	a	public	key,	and	paste	the	text	of	the
public	key	(see	above	sections	on	how	to	generate	the	key)	into	the	text
box.

Click	Save	to	input	the	key	to	the	system.

Note	that	a	user	can	have	several	SSH	keys.	You	can	distinguish
between	these	keys	by	the	Title	field	ID;	by	default	it	is	taken	from	SSH
key	comment.	It	is	typical	to	use	your	e-mail	address	or	workstation	name
for	this	field;	no	restrictions	are	set	by	the	portal.

Please	note	that	some	time	(5-10	min)	is	needed	for	the	system	to
update	the	configuration	after	the	new	key	is	added.	After	that	time,	you
can	try	accessing	Git.

http://dev.opencascade.org

Work	with	repository:	developer
operations
General	workflow

To	start	working	with	OCCT	source	repository,	you	need	to	create	its
clone	in	your	local	system.	This	cloned	repository	will	manage	your
working	copy	of	the	sources	and	provide	you	the	means	to	exchange
code	between	your	clone	and	the	origin.

In	most	cases	it	is	sufficient	to	have	one	clone	of	the	repository;	your
working	copy	will	be	updated	automatically	by	Git	when	you	switch
branches.

The	typical	development	cycle	for	an	issue	is	as	follows:

Create	a	new	branch	for	your	development,	basing	on	the	selected
version	of	the	sources	(usually	the	current	master)	and	switch	your
working	copy	to	it
Develop	and	test	your	change.
Do	as	many	commits	in	your	branch	as	you	feel	convenient;	the
general	recommendation	is	to	commit	every	stable	state	(even
incomplete),	to	record	the	history	of	your	development.
Push	your	branch	to	the	repository	when	your	development	is
complete	or	when	you	need	to	share	it	with	other	people	(e.g.	for
review)
Before	the	first	push,	rebase	your	local	branch	on	the	latest	master;
consider	collapsing	the	history	in	one	commit	unless	you	think	the
history	of	your	commits	is	interesting	for	others.	Make	sure	to
provide	a	good	commit	message.
Do	not	amend	the	commits	that	have	been	already	pushed	in	the
remote	repository,	If	you	need	to	rebase	your	branch,	commit	the
rebased	branch	under	a	different	name,	and	remove	the	old	branch.

You	can	switch	to	another	branch	at	any	moment	(unless	you	have	some
uncommitted	changes	in	the	working	copy)	and	return	back	to	the	branch
when	necessary	(e.g.	to	take	into	account	review	remarks).	Note	that

only	the	sources	that	are	different	between	the	switched	branches	will	be
modified,	thus	required	recompilation	should	be	reasonably	small	in	most
cases.

Cloning	official	repository
Clone	the	official	OCCT	repository	in	one	of	following	ways:

From	command	line	by	command:

>	git	clone	gitolite@git.dev.opencascade.org:occt	

<path>

where	<path>	is	the	path	to	the	new	folder	which	will	be	created	for	the
repository.

In	TortoiseGit:	create	a	new	folder,	open	it	and	right-click	in	the
Explorer	window,	then	choose	Git	Clone	in	the	context	menu:

If	you	have	chosen	Putty	as	SSH	client	during	TortoiseGit	installation,
check	the	Load	Putty	Key	option	and	specify	the	location	of	the	private
key	file	saved	by	PuttyGen	(see	3.2.1).	This	shall	be	done	for	the	first
time	only.

Note	that	on	the	first	connection	to	the	repository	server	you	may	be
requested	to	enter	a	password	for	your	private	SSH	key;	further	you	can
get	a	message	that	the	authenticity	of	the	host	cannot	be	established	and
will	be	asked	if	you	want	to	continue	connecting	or	not.	Choose	Yes	to
continue.	The	host’s	key	will	be	stored	in	$HOME/.ssh/known_hosts	file.

Branch	creation
You	need	to	create	a	branch	when	you	are	going	to	start	development	of
a	new	change,	apply	a	patch,	etc.	It	is	recommended	to	fetch	updates
from	the	remote	repository	before	this	operation,	to	make	sure	you	work
with	the	up-to-date	version.

Create	a	branch	from	the	current	master	branch	unless	you	need	to	base
your	development	on	a	particular	version	or	revision.

In	the	console:

>	git	checkout	-b	CR12345	origin/master

In	TortoiseGit:

Go	to	the	local	copy	of	the	repository.
Right-click	in	the	Explorer	window,	then	choose	Git	Create	Branch.
Select	Base	On	Branch	remotes/origin/master.

Check	option	Switch	to	new	branch	if	you	are	going	to	start	working
with	the	newly	created	branch	immediately.

Branch	switching
If	you	need	to	switch	to	another	branch,	use	Git	command	checkout	for
that.	In	the	console:

>	git	checkout	CR12345

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the	context
menu	TortoiseGit	->	Switch/Checkout.

Note	that	in	order	to	work	with	the	branch	locally	you	need	to	set	option
Create	new	branch	when	you	checkout	the	branch	from	the	remote
repository	for	the	first	time.	Option	Track	stores	association	between	the
local	branch	and	the	original	branch	in	a	remote	repository.

Committing	branch	changes
Commit	your	changes	locally	as	soon	as	a	stable	status	of	the	work	is
reached.	Make	sure	to	review	carefully	the	committed	changes
beforehand	to	avoid	unintentional	commit	of	a	wrong	code.

In	the	console:

>	git	diff

…

>	git	commit	-a	-m	"Write	meaningful	commit	message	

here"

Option	-a	tells	the	command	to	automatically	include	(stage)	files	that
have	been	modified	or	deleted,	but	it	will	omit	the	new	files	that	might
have	been	added	by	you.	To	commit	such	new	files,	you	must	add
(stage)	them	before	commit	command.

To	find	new	unstaged	files	and	them	to	commit,	use	commands:

>	git	status	-s

		??	file1.hxx	

		??	file2.cxx

>	git	add	file1.hxx	file2.cxx

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the
context	menu	Git	Commit	->	CR…:

Unstaged	files	will	be	shown	if	you	check	the	option	‘Show	Unversioned
Files’.	Double-click	on	each	modified	file	to	see	the	changes	to	be
committed	(as	a	difference	vs.	the	base	version).

Pushing	branch	to	the	remote	repository
When	the	code	developed	in	your	local	branch	is	ready	for	review,	or	you
need	to	share	it	with	others,	push	your	local	changes	to	the	remote
repository.

In	the	console:

>	git	push	"origin"	CR12345:CR12345

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the
context	menu,	TortoiseGit	->	Push

Note	that	Git	forbids	pushing	a	branch	if	the	corresponding	remote
branch	already	exists	and	has	some	changes,	which	are	not	in	the	history
of	your	local	branch.	This	may	happen	in	different	situations:

You	have	amended	the	last	commit	which	is	already	in	the	remote

repository.	If	you	are	sure	that	nobody	else	uses	your	branch,	push
again	with	Force	option.
You	have	rebased	your	branch,	so	that	now	it	is	completely	different
from	the	branch	in	the	remote	repository.	In	this	case,	push	it	under	a
different	name	(add	a	suffix):

Then	remove	the	original	remote	branch	so	that	other	people	recognize
that	it	has	been	replaced	by	the	new	one.	For	that,	select	TortoiseGit	->
Push	again,	select	an	empty	line	for	your	local	branch	name,	and	enter
the	name	of	the	branch	to	be	removed	in	Remote	field:

The	other	developer	has	committed	some	changes	in	the	remote
branch.	In	this	case,	Pull	changes	from	the	remote	repository	to
have	them	merged	with	your	version,	and	push	your	branch	after	it	is
successfully	merged.

Synchronizing	with	remote	repository
Maintain	your	repository	synchronized	with	the	remote	one	and	clean
unnecessary	stuff	regularly.

Use	Git	command	fetch	with	option	prune	to	get	the	update	of	all
branches	from	the	remote	repository	and	to	clean	your	local	repository
from	the	remote	branches	that	have	been	deleted.

In	the	console:
>	git	fetch	--prune	

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the
context	menu	TortoiseGit	->	Fetch.	Check	in	Prune	check-box.

If	the	branch	you	are	working	with	has	been	changed	in	the	remote
repository,	use	Git	command	pull	to	get	the	remote	changes	and	merge
them	with	your	local	branch.

This	operation	is	required	in	particular	to	update	your	local	master	branch
when	the	remote	master	changes.

In	console:

>	git	pull

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the
context	menu	TortoiseGit	->	Pull.

Note	that	the	local	branches	of	your	repository	are	the	primary	place,
where	your	changes	are	stored	until	they	get	integrated	to	the	official
version	of	OCCT	(master	branch).	The	branches	submitted	to	official
repository	are	for	collaborative	work,	review,	and	integration	–	that
repository	should	not	be	used	for	long-term	storage	of	incomplete
changes.

Remove	the	local	branches	that	you	do	not	need	any	more.	Note	that	you
cannot	delete	the	current	branch.	It	means	that	you	need	to	switch	to
another	one	(e.g.	master)	if	the	branch	you	are	going	to	delete	is	the
current	one.

In	the	console:
>	git	branch	-d	CR12345

In	TortoiseGit:	right-click	in	the	explorer	window	and	select	in	the
context	menu	TortoiseGit	->	Git	Show	Log.

Select	All	branches	check-box	to	view	all	branches.	Right-click	on	the
branch	you	want	to	delete	and	select	Delete	item	in	the	context	menu.

Note	that	many	functions	described	above	can	be	accessed	from	the	Log
View,	which	is	a	very	convenient	tool	to	visualize	and	manage	branches.

Applying	a	fix	made	on	older	version	of	OCCT
If	you	have	a	fix	made	on	a	previous	version	of	OCCT,	perform	the
following	sequence	of	operations	to	prepare	it	for	testing	and	integration
to	the	current	development	version:

Identify	the	version	of	OCCT	on	which	the	fix	has	been	made.	In
most	cases,	this	will	be	an	OCCT	release,	e.g.	OCCT	6.7.0.
Find	a	tag	or	a	commit	corresponding	to	this	version	in	the	Git	history
log	of	the	master	branch.
Create	a	branch	basing	on	this	tag	or	commit.	In	TortoiseGit	history
log:	right-click	on	the	base	commit,	then	select	Create	branch	at
this	version.

Check	option	Switch	to	the	new	branch	to	start	working	within	the
new	branch	immediately,	or	switch	to	it	separately	afterwards.
Put	your	fix	in	the	working	copy,	build	and	check	that	it	works,	then
commit	to	the	branch.
Rebase	the	branch	on	the	current	master.	In	TortoiseGit:	right-click
on	the	working	directory,	choose	TortoiseGit	->	Rebase,	select
remotes/origin/master	as	UpStream	revision,	and	click	Start:

Note	that	you	can	get	some	conflicts	during	rebase.	To	resolve	them,
double-click	on	each	conflicted	file	(highlighted	by	red	in	the	file	list)	to
open	visual	merge	tool.	Switch	between	conflicting	fragments	by	red
arrows,	and	for	each	one	decide	if	the	code	of	one	or	both	conflicting
versions	is	to	be	taken.

Rebasing	with	history	clean-up
At	some	moments	you	might	need	to	rebase	your	branch	on	the	latest
version	of	the	master.

We	recommend	rebasing	before	the	first	submission	of	the	branch	for
review	or	when	the	master	has	diverged	substantially	from	your	branch.

Rebasing	is	a	good	occasion	to	clean-up	the	history	of	commits	in	the
branch.	Consider	collapsing	(squashing,	in	terms	of	Git)	the	history	of
your	branch	into	a	single	commit	unless	you	deem	that	having	separate
commits	is	important	for	your	future	work	with	the	branch	or	its	code
reviewing.	Git	also	allows	changing	the	order	of	commits,	edit	commit
contents	and	messages,	etc.

To	rebase	your	branch	into	a	single	commit,	you	need	to	do	the	following:

Switch	to	your	branch	(e.g.	“CR12345”)
In	TortoiseGit	history	log,	select	a	branch	to	rebase	on
(remotes/origin/master)	and	in	the	context	menu	choose	Rebase
“CR12345”	onto	this.
In	the	Rebase	dialog,	check	Squash	All.	You	can	also	change	the
order	of	commits	and	define	for	each	commit	whether	it	should	be
kept	(Pick),	edited,	or	just	skipped.

Click	Start.
The	process	will	stop	if	a	conflict	is	detected.	In	that	case,	find	files
with	status	Conflicted	in	the	list	(marked	by	red),	and	double-click
on	them	to	resolve	the	conflict.	When	all	conflicts	are	resolved,	click
Continue.

At	the	end	of	the	process,	edit	the	final	commit	message	(it	should
start	from	the	issue	ID	and	a	description	from	Mantis	in	the	first	line,
followed	by	a	summary	of	actual	changes),	and	click	Commit.

Work	with	repository:	Reviewer
operations
Review	branch	changes	using	GitWeb

The	changes	made	in	the	branch	can	be	reviewed	without	direct	access
to	Git,	using	GitWeb	interface:

Open	GitWeb	in	your	web	browser:
http://git.dev.opencascade.org/gitweb/?p=occt.git
Locate	the	branch	you	want	to	review	among	heads	(click	‘…’	at	the
bottom	of	the	page	to	see	the	full	list).
Click	log	(or	shortlog)	to	see	the	history	of	the	branch.

Note	that	the	branch	can	contain	more	than	one	commit,	and	you	need	to
distinguish	commits	that	belong	to	that	branch	(those	to	be	reviewed)
from	the	commits	corresponding	to	the	previous	state	of	the	master
branch.	Normally	the	first	commit	in	the	list	that	starts	from	the	ID	of	the
other	issue	indicates	the	branching	point;	commits	above	it	are	the	ones
to	be	reviewed.

Click	commitdiff	on	each	log	entry	to	review	the	changes
(highlighted	with	color	format).

http://git.dev.opencascade.org/gitweb/?p=occt.git

Review	branch	changes	with	TortoiseGit
Use	of	TortoiseGit	is	recommended	for	convenient	code	review:

Fetch	the	changes	from	the	remote	repository	as	described	in
Synchronizing	with	remote	repository	section.
Right-click	on	the	repository,	choose	TortoiseGit	->	Show	log;
Locate	the	remote	branch	you	need	to	review;
To	review	commits	one-by-one,	select	each	commit	in	the	log.	The
list	of	changed	files	is	shown	at	the	bottom	of	the	window;	double-
click	on	the	file	will	open	visual	compare	tool.
To	review	all	changes	made	in	the	branch	at	once,	or	to	compare	two
arbitrary	revisions,	select	the	corresponding	commits	in	the	log	(e.g.
the	last	commit	in	the	branch	and	the	branching	point),	ight-click	for
the	context	menu,	and	choose	Compare	revisions.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Basic	Information
Intended	Use	of
Automatic	Tests
Quick	Start

Setup
Running	Tests
Running	a
Single	Test
Creating	a	New
Test

Organization	of	Test
Scripts
General	Layout
Test	Groups

Group	Names
File	"grids.list"
File	"begin"
File	"end"
File
"parse.rules"
Directory	"data"

Test	Grids
Grid	Names
File	"begin"
File	"end"
File	"cases.list"
Directory	"data"

Open	CASCADE
Technology		7.2.0

Automated	Testing	System

Test	Cases
Creation	And
Modification	Of	Tests
Choosing	Group,
Grid,	and	Test	Case
Name
Adding	Data	Files
Required	for	a	Test
Adding	new	DRAW
commands
Script
Implementation
Interpretation	of	test
results
Marking	BAD	cases
Marking	required
output

Advanced	Use
Running	Tests	on
Older	Versions	of
OCCT
Adding	custom	tests
Parallel	execution	of
tests
Checking	non-
regression	of
performance,
memory,	and
visualization

APPENDIX
Test	groups

3rdparty
blend
boolean
bugs
caf
chamfer
demo
draft
feat

heal
mesh
mkface
nproject
offset
pipe
prism
sewing
thrusection
xcaf

Mapping	of	OCCT
functionality	to	grid
names	in	group
bugs
Recommended
approaches	to
checking	test	results

Shape	validity
Shape	tolerance
Shape	volume,
area,	or	length
Memory	leaks
Visualization
Number	of	free
edges
Compare
numbers
Check	number
of	sub-shapes
Check	pixel
color
Compute
length,	area	and
volume	of	input
shape
Parse	output
dump	and
compare	it	with
reference
values

Compute	length
of	input	curve
Check
maximum
deflection,
number	of
triangles	and
nodes	in	mesh

Introduction
This	document	provides	OCCT	developers	and	contributors	with	an
overview	and	practical	guidelines	for	work	with	OCCT	automatic	testing
system.

Reading	the	Introduction	should	be	sufficient	for	developers	to	use	the
test	system	to	control	non-regression	of	the	modifications	they	implement
in	OCCT.	Other	sections	provide	a	more	in-depth	description	of	the	test
system,	required	for	modifying	the	tests	and	adding	new	test	cases.

Basic	Information
OCCT	automatic	testing	system	is	organized	around	DRAW	Test
Harness,	a	console	application	based	on	Tcl	(a	scripting	language)
interpreter	extended	by	OCCT-related	commands.

Standard	OCCT	tests	are	included	with	OCCT	sources	and	are	located	in
subdirectory	tests	of	the	OCCT	root	folder.	Other	test	folders	can	be
included	in	the	test	system,	e.g.	for	testing	applications	based	on	OCCT.

The	tests	are	organized	in	three	levels:

Group:	a	group	of	related	test	grids,	usually	testing	a	particular
OCCT	functionality	(e.g.	blend);
Grid:	a	set	of	test	cases	within	a	group,	usually	aimed	at	testing
some	particular	aspect	or	mode	of	execution	of	the	relevant
functionality	(e.g.	buildevol);
Test	case:	a	script	implementing	an	individual	test	(e.g.	K4).

See	Test	Groups	chapter	for	the	current	list	of	available	test	groups	and
grids.

Note
Many	tests	involve	data	files	(typically	CAD	models)	which	are
located	separately	and	(except	a	few)	are	not	included	with	OCCT
code.	These	tests	will	be	skipped	if	data	files	are	not	available.

Intended	Use	of	Automatic	Tests
Each	modification	made	in	OCCT	code	must	be	checked	for	non-
regression	by	running	the	whole	set	of	tests.	The	developer	who	makes
the	modification	is	responsible	for	running	and	ensuring	non-regression
for	the	tests	available	to	him.

Note	that	many	tests	are	based	on	data	files	that	are	confidential	and
thus	available	only	at	OPEN	CASCADE.	The	official	certification	testing
of	each	change	before	its	integration	to	master	branch	of	official	OCCT
Git	repository	(and	finally	to	the	official	release)	is	performed	by	OPEN
CASCADE	to	ensure	non-regression	on	all	existing	test	cases	and
supported	platforms.

Each	new	non-trivial	modification	(improvement,	bug	fix,	new	feature)	in
OCCT	should	be	accompanied	by	a	relevant	test	case	suitable	for
verifying	that	modification.	This	test	case	is	to	be	added	by	the	developer
who	provides	the	modification.

If	a	modification	affects	the	result	of	an	existing	test	case,	either	the
modification	should	be	corrected	(if	it	causes	regression)	or	the	affected
test	cases	should	be	updated	to	account	for	the	modification.

The	modifications	made	in	the	OCCT	code	and	related	test	scripts	should
be	included	in	the	same	integration	to	the	master	branch.

Quick	Start

Setup

Before	running	tests,	make	sure	to	define	environment	variable
CSF_TestDataPath	pointing	to	the	directory	containing	test	data	files.

For	this	it	is	recommended	to	add	a	file	DrawAppliInit	in	the	directory
which	is	current	at	the	moment	of	starting	DRAWEXE	(normally	it	is
OCCT	root	directory,	$CASROOT).	This	file	is	evaluated	automatically	at
the	DRAW	start.

Example	(Windows)

				1 	set	env(CSF_TestDataPath)	

$env(CSF_TestDataPath)\;d:/occt/test-data

Note	that	variable	CSF_TestDataPath	is	set	to	default	value	at	DRAW
start,	pointing	at	the	folder	$CASROOT/data.	In	this	example,
subdirectory	d:/occt/test-data	is	added	to	this	path.	Similar	code	could	be
used	on	Linux	and	Mac	OS	X	except	that	on	non-Windows	platforms
colon	":"	should	be	used	as	path	separator	instead	of	semicolon	";".

All	tests	are	run	from	DRAW	command	prompt	(run	draw.bat	or	draw.sh
to	start	it).

Running	Tests

To	run	all	tests,	type	command	testgrid

Example:

Draw[]>	testgrid

To	run	only	a	subset	of	test	cases,	give	masks	for	group,	grid,	and	test
case	names	to	be	executed.	Each	argument	is	a	list	of	file	masks
separated	with	commas	or	spaces;	by	default	"*"	is	assumed.

Example:

Draw[]>	testgrid	bugs	caf,moddata*,xde

As	the	tests	progress,	the	result	of	each	test	case	is	reported.	At	the	end
of	the	log	a	summary	of	test	cases	is	output,	including	the	list	of	detected
regressions	and	improvements,	if	any.

Example:

				1 	Tests	summary

				2 	

				3 	CASE	3rdparty	export	A1:	OK	

				4 	...

				5 	CASE	pipe	standard	B1:	BAD	(known	problem)

				6 	CASE	pipe	standard	C1:	OK

				7 	No	regressions	

				8 	Total	cases:	208	BAD,	31	SKIPPED,	3	

IMPROVEMENT,	1791	OK

				9 	Elapsed	time:	1	Hours	14	Minutes	33.7384512019	

Seconds

			10 	Detailed	logs	are	saved	in	

D:/occt/results_2012-06-04T0919

The	tests	are	considered	as	non-regressive	if	only	OK,	BAD	(i.e.	known
problem),	and	SKIPPED	(i.e.	not	executed,	typically	because	of	lack	of	a
data	file)	statuses	are	reported.	See	Interpretation	of	test	results	for
details.

The	results	and	detailed	logs	of	the	tests	are	saved	by	default	to	a	new
subdirectory	of	the	subdirectory	results	in	the	current	folder,	whose	name
is	generated	automatically	using	the	current	date	and	time,	prefixed	by
Git	branch	name	(if	Git	is	available	and	current	sources	are	managed	by
Git).	If	necessary,	a	non-default	output	directory	can	be	specified	using
option	-outdir	followed	by	a	path	to	the	directory.	This	directory	should	be
new	or	empty;	use	option	-overwrite	to	allow	writing	results	in	the	existing
non-empty	directory.

Example:

Draw[]>	testgrid	-outdir	d:/occt/last_results	-

overwrite

In	the	output	directory,	a	cumulative	HTML	report	summary.html	provides
links	to	reports	on	each	test	case.	An	additional	report	in	JUnit-style	XML
format	can	be	output	for	use	in	Jenkins	or	other	continuous	integration
system.

To	re-run	the	test	cases,	which	were	detected	as	regressions	on	the
previous	run,	option	-regress	dirname	should	be	used.	dirname	is	a	path
to	the	directory	containing	the	results	of	the	previous	run.	Only	the	test
cases	with	FAILED	and	IMPROVEMENT	statuses	will	be	tested.

Example:

Draw[]>	testgrid	-regress	d:/occt/last_results

Type	help	testgrid	in	DRAW	prompt	to	get	help	on	options	supported	by
testgrid	command:

Draw[3]>	help	testgrid

testgrid:	Run	all	tests,	or	specified	group,	or	one	

grid

				Use:	testgrid	[groupmask	[gridmask	[casemask]]]	

[options...]

				Allowed	options	are:

				-parallel	N:	run	N	parallel	processes	(default	is	

number	of	CPUs,	0	to	disable)

				-refresh	N:	save	summary	logs	every	N	seconds	

(default	60,	minimal	1,	0	to	disable)

				-outdir	dirname:	set	log	directory	(should	be	

empty	or	non-existing)

				-overwrite:	force	writing	logs	in	existing	non-

empty	directory

				-xml	filename:	write	XML	report	for	Jenkins	(in	

JUnit-like	format)

				-beep:	play	sound	signal	at	the	end	of	the	tests

				-regress	dirname:	re-run	only	a	set	of	tests	that	

have	been	detected	as	regressions	on	the	

previous	run.

																						Here	"dirname"	is	a	path	to	the	

directory	containing	the	results	of	the	previous	

run.

				Groups,	grids,	and	test	cases	to	be	executed	can	

be	specified	by	the	list	of	file	

				masks	separated	by	spaces	or	commas;	default	is	

all	(*).

Running	a	Single	Test

To	run	a	single	test,	type	command	test	followed	by	names	of	group,	grid,
and	test	case.

Example:

				1 	Draw[1]>	test	blend	simple	A1

				2 	CASE	blend	simple	A1:	OK

				3 	Draw[2]>

Note	that	normally	an	intermediate	output	of	the	script	is	not	shown.	The
detailed	log	of	the	test	can	be	obtained	after	the	test	execution	by	running
command	"dlog	get".

To	see	intermediate	commands	and	their	output	during	the	test
execution,	add	one	more	argument	"echo"	at	the	end	of	the	command
line.	Note	that	with	this	option	the	log	is	not	collected	and	summary	is	not
produced.

Type	help	test	in	DRAW	prompt	to	get	help	on	options	supported	by	test
command:

Draw[3]>	help	test

test:	Run	specified	test	case

	Use:	test	group	grid	casename	[options...]

	Allowed	options	are:

	-echo:	all	commands	and	results	are	echoed	

immediately,

								but	log	is	not	saved	and	summary	is	not	

produced

								It	is	also	possible	to	use	"1"	instead	of	"-

echo"

								If	echo	is	OFF,	log	is	stored	in	memory	and	

only	summary

								is	output	(the	log	can	be	obtained	with	

command	"dlog	get")

	-outfile	filename:	set	log	file	(should	be	non-

existing),

								it	is	possible	to	save	log	file	in	text	file	

or

								in	html	file(with	snapshot),	for	that	

"filename"

								should	have	".html"	extension

	-overwrite:	force	writing	log	in	existing	file

	-beep:	play	sound	signal	at	the	end	of	the	test

	-errors:	show	all	lines	from	the	log	report	that	are	

recognized	as	errors

								This	key	will	be	ignored	if	the	"-echo"	key	

is	already	set.

Creating	a	New	Test

The	detailed	rules	of	creation	of	new	tests	are	given	in	Creation	and
modification	of	tests	chapter.	The	following	short	description	covers	the
most	typical	situations:

Use	prefix	bug	followed	by	Mantis	issue	ID	and,	if	necessary,	additional
suffixes,	for	naming	the	test	script,	data	files,	and	DRAW	commands
specific	for	this	test	case.

1.	 If	the	test	requires	C++	code,	add	it	as	new	DRAW	command(s)	in
one	of	files	in	QABugs	package.

2.	 Add	script(s)	for	the	test	case	in	the	subfolder	corresponding	to	the
relevant	OCCT	module	of	the	group	bugs	($CASROOT/tests/bugs).
See	the	correspondence	map.

3.	 In	the	test	script:
Load	all	necessary	DRAW	modules	by	command	pload.
Use	command	locate_data_file	to	get	a	path	to	data	files	used
by	test	script.	(Make	sure	to	have	this	command	not	inside	catch

statement	if	it	is	used.)
Use	DRAW	commands	to	reproduce	the	tested	situation.
Make	sure	that	in	case	of	failure	the	test	produces	a	message
containing	word	"Error"	or	other	recognized	by	the	test	system
as	error	(add	new	error	patterns	in	file	parse.rules	if	necessary).
If	the	test	case	reports	error	due	to	an	existing	problem	and	the
fix	is	not	available,	add	TODO	statement	for	each	error	to	mark
it	as	a	known	problem.	The	TODO	statements	must	be	specific
so	as	to	match	the	actually	generated	messages	but	not	all
similar	errors.
To	check	expected	output	which	should	be	obtained	as	the	test
result,	add	REQUIRED	statement	for	each	line	of	output	to	mark
it	as	required.
If	the	test	case	produces	error	messages	(contained	in
parse.rules),	which	are	expected	in	that	test	and	should	not	be
considered	as	its	failure	(e.g.	test	for	checkshape	command),
add	REQUIRED	statement	for	each	error	to	mark	it	as	required
output.

4.	 If	the	test	uses	data	file(s)	that	are	not	yet	present	in	the	test
database,	it	is	possible	to	put	them	to	(sub)directory	pointed	out	by
CSF_TestDataPath	variable	for	running	test.	The	files	should	be
attached	to	the	Mantis	issue	corresponding	to	the	tested
modification.

5.	 Check	that	the	test	case	runs	as	expected	(test	for	fix:	OK	with	the
fix,	FAILED	without	the	fix;	test	for	existing	problem:	BAD),	and
integrate	it	to	the	Git	branch	created	for	the	issue.

Example:

Added	files:

git	status	-short

A	tests/bugs/heal/data/bug210_a.brep

A	tests/bugs/heal/data/bug210_b.brep

A	tests/bugs/heal/bug210_1

A	tests/bugs/heal/bug210_2

Test	script

				1 	puts	"OCC210	(case	1):	Improve	FixShape	for	

touching	wires"

				2 	

				3 	restore	[locate_data_file	bug210_a.brep]	a	

				4 	

				5 	fixshape	result	a	0.01	0.01

				6 	checkshape	result

Organization	of	Test	Scripts
General	Layout

Standard	OCCT	tests	are	located	in	subdirectory	tests	of	the	OCCT	root
folder	($CASROOT).

Additional	test	folders	can	be	added	to	the	test	system	by	defining
environment	variable	CSF_TestScriptsPath.	This	should	be	list	of	paths
separated	by	semicolons	(*;*)	on	Windows	or	colons	(*:*)	on	Linux	or
Mac.	Upon	DRAW	launch,	path	to	tests	subfolder	of	OCCT	is	added	at
the	end	of	this	variable	automatically.

Each	test	folder	is	expected	to	contain:

Optional	file	parse.rules	defining	patterns	for	interpretation	of	test
results,	common	for	all	groups	in	this	folder
One	or	several	test	group	directories.

Each	group	directory	contains:

File	grids.list	that	identifies	this	test	group	and	defines	list	of	test
grids	in	it.
Test	grids	(sub-directories),	each	containing	set	of	scripts	for	test
cases,	and	optional	files	cases.list,	parse.rules,	begin	and	end.
Optional	sub-directory	data

By	convention,	names	of	test	groups,	grids,	and	cases	should	contain	no
spaces	and	be	lower-case.	The	names	begin,	end,	data,	parse.rules,
grids.list	and	cases.list	are	reserved.

General	layout	of	test	scripts	is	shown	in	Figure	1.

Layout	of	tests	folder

Test	Groups

Group	Names

The	names	of	directories	of	test	groups	containing	systematic	test	grids
correspond	to	the	functionality	tested	by	each	group.

Example:

caf

mesh

offset

Test	group	bugs	is	used	to	collect	the	tests	coming	from	bug	reports.
Group	demo	collects	tests	of	the	test	system,	DRAW,	samples,	etc.

File	"grids.list"

This	test	group	contains	file	grids.list,	which	defines	an	ordered	list	of
grids	in	this	group	in	the	following	format:

001	gridname1

002	gridname2

...

NNN	gridnameN

Example:

001	basic

002	advanced

File	"begin"

This	file	is	a	Tcl	script.	It	is	executed	before	every	test	in	the	current
group.	Usually	it	loads	necessary	Draw	commands,	sets	common
parameters	and	defines	additional	Tcl	functions	used	in	test	scripts.

Example:

				1 	pload	TOPTEST	;#	load	topological	command

				2 	set	cpulimit	300	;#	set	maximum	time	allowed	

for	script	execution

File	"end"

This	file	is	a	TCL	script.	It	is	executed	after	every	test	in	the	current
group.	Usually	it	checks	the	results	of	script	work,	makes	a	snap-shot	of
the	viewer	and	writes	TEST	COMPLETED	to	the	output.

Note:	TEST	COMPLETED	string	should	be	present	in	the	output	to
indicate	that	the	test	is	finished	without	crash.

See	Creation	and	modification	of	tests	chapter	for	more	information.

Example:

if	{	[isdraw	result]	}	{

				checkshape	result

}	else	{

				puts	"Error:	The	result	shape	can	not	be	built"

}

puts	"TEST	COMPLETED"

File	"parse.rules"

The	test	group	may	contain	parse.rules	file.	This	file	defines	patterns
used	for	analysis	of	the	test	execution	log	and	deciding	the	status	of	the
test	run.

Each	line	in	the	file	should	specify	a	status	(single	word),	followed	by	a
regular	expression	delimited	by	slashes	(*/*)	that	will	be	matched	against
lines	in	the	test	output	log	to	check	if	it	corresponds	to	this	status.

The	regular	expressions	should	follow	Tcl	syntax,	with	a	special
exception	that	"\b"	is	considered	as	word	limit	(Perl-style),	in	addition	to
"\y"	used	in	Tcl.

The	rest	of	the	line	can	contain	a	comment	message,	which	will	be	added
to	the	test	report	when	this	status	is	detected.

http://www.tcl.tk/man/tcl/TclCmd/re_syntax.htm

Example:

FAILED	/\b[Ee]xception\b/	exception

FAILED	/\bError\b/	error

SKIPPED	/Cannot	open	file	for	reading/	data	file	is	

missing

SKIPPED	/Could	not	read	file	.*,	abandon/	data	file	

is	missing

Lines	starting	with	a	*#*	character	and	blank	lines	are	ignored	to	allow
comments	and	spacing.

See	Interpretation	of	test	results	chapter	for	details.

If	a	line	matches	several	rules,	the	first	one	applies.	Rules	defined	in	the
grid	are	checked	first,	then	rules	in	the	group,	then	rules	in	the	test	root
directory.	This	allows	defining	some	rules	on	the	grid	level	with	status
IGNORE	to	ignore	messages	that	would	otherwise	be	treated	as	errors
due	to	the	group	level	rules.

Example:

				1 	FAILED	/\\bFaulty\\b/	bad	shape

				2 	IGNORE	/^Error	[23]d	=	[\d.-]+/	debug	output	

of	blend	command

				3 	IGNORE	/^Tcl	Exception:	tolerance	ang	:	[\d.-

]+/	blend	failure

Directory	"data"

The	test	group	may	contain	subdirectory	data,	where	test	scripts	shared
by	different	test	grids	can	be	put.	See	also	Directory	data.

Test	Grids

Grid	Names

The	folder	of	a	test	group	can	have	several	sub-directories	(Grid	1…	Grid
N)	defining	test	grids.	Each	directory	contains	a	set	of	related	test	cases.
The	name	of	a	directory	should	correspond	to	its	contents.

Example:

caf

			basic

			bugs

			presentation

Here	caf	is	the	name	of	the	test	group	and	basic,	bugs,	presentation,	etc.
are	the	names	of	grids.

File	"begin"

This	file	is	a	TCL	script	executed	before	every	test	in	the	current	grid.

Usually	it	sets	variables	specific	for	the	current	grid.

Example:

				1 	set	command	bopfuse	;#	command	tested	in	this	

grid

File	"end"

This	file	is	a	TCL	script	executed	after	every	test	in	current	grid.

Usually	it	executes	a	specific	sequence	of	commands	common	for	all
tests	in	the	grid.

Example:

				1 	vdump	$imagedir/${casename}.png	;#	makes	a	

snap-shot	of	AIS	viewer

File	"cases.list"

The	grid	directory	can	contain	an	optional	file	cases.list	defining	an
alternative	location	of	the	test	cases.	This	file	should	contain	a	single	line
defining	the	relative	path	to	the	collection	of	test	cases.

Example:

../data/simple

This	option	is	used	for	creation	of	several	grids	of	tests	with	the	same
data	files	and	operations	but	performed	with	differing	parameters.	The
common	scripts	are	usually	located	place	in	the	common	subdirectory	of
the	test	group,	data/simple	for	example.

If	file	cases.list	exists,	the	grid	directory	should	not	contain	any	test
cases.	The	specific	parameters	and	pre-	and	post-processing	commands
for	test	execution	in	this	grid	should	be	defined	in	the	files	begin	and	end.

Directory	"data"

The	test	grid	may	contain	subdirectory	data,	containing	data	files	used	in
tests	(BREP,	IGES,	STEP,	etc.)	of	this	grid.

Test	Cases
The	test	case	is	a	TCL	script,	which	performs	some	operations	using
DRAW	commands	and	produces	meaningful	messages	that	can	be	used
to	check	the	validity	of	the	result.

Example:

				1 	pcylinder	c1	10	20	;#	create	first	cylinder

				2 	pcylinder	c2	5	20	;#	create	second	cylinder

				3 	ttranslate	c2	5	0	10	;#	translate	second	

cylinder	to	x,y,z

				4 	bsection	result	c1	c2	;#	create	a	section	of	

two	cylinders

				5 	checksection	result	;#	will	output	error	

message	if	result	is	bad

The	test	case	can	have	any	name	(except	for	the	reserved	names	begin,
end,	data,	cases.list	and	parse.rules).	For	systematic	grids	it	is	usually	a
capital	English	letter	followed	by	a	number.

Example:

A1

A2

B1

B2

Such	naming	facilitates	compact	representation	of	tests	execution	results
in	tabular	format	within	HTML	reports.

Creation	And	Modification	Of	Tests
This	section	describes	how	to	add	new	tests	and	update	existing	ones.

Choosing	Group,	Grid,	and	Test	Case	Name
The	new	tests	are	usually	added	in	the	frame	of	processing	issues	in
OCCT	Mantis	tracker.	Such	tests	in	general	should	be	added	to	group
bugs,	in	the	grid	corresponding	to	the	affected	OCCT	functionality.	See
Mapping	of	OCCT	functionality	to	grid	names	in	group	bugs.

New	grids	can	be	added	as	necessary	to	contain	tests	for	the
functionality	not	yet	covered	by	existing	test	grids.	The	test	case	name	in
the	bugs	group	should	be	prefixed	by	the	ID	of	the	corresponding	issue	in
Mantis	(without	leading	zeroes)	with	prefix	bug.	It	is	recommended	to	add
a	suffix	providing	a	hint	on	the	tested	situation.	If	more	than	one	test	is
added	for	a	bug,	they	should	be	distinguished	by	suffixes;	either
meaningful	or	just	ordinal	numbers.

Example:

				1 	bug12345_coaxial

				2 	bug12345_orthogonal_1

				3 	bug12345_orthogonal_2

If	the	new	test	corresponds	to	a	functionality	already	covered	by	the
existing	systematic	test	grid	(e.g.	group	mesh	for	BRepMesh	issues),	this
test	can	be	added	(or	moved	later	by	OCC	team)	to	that	grid.

Adding	Data	Files	Required	for	a	Test
It	is	advisable	to	make	self-contained	test	scripts	whenever	possible,	so
as	they	could	be	used	in	the	environments	where	data	files	are	not
available.	For	that	simple	geometric	objects	and	shapes	can	be	created
using	DRAW	commands	in	the	test	script	itself.

If	the	test	requires	a	data	file,	it	should	be	put	to	the	directory	listed	in
environment	variable	CSF_TestDataPath.	Alternatively,	it	can	be	put	to
subdirectory	data	of	the	test	grid.	It	is	recommended	to	prefix	the	data	file
with	the	corresponding	issue	id	prefixed	by	bug,	e.g.
bug12345_face1.brep,	to	avoid	possible	conflicts	with	names	of	existing
data	files.

Note	that	when	the	test	is	integrated	to	the	master	branch,	OCC	team	will
move	the	data	file	to	the	data	files	repository,	to	keep	OCCT	sources
repository	clean	from	data	files.

When	you	prepare	a	test	script,	try	to	minimize	the	size	of	involved	data
model.	For	instance,	if	the	problem	detected	on	a	big	shape	can	be
reproduced	on	a	single	face	extracted	from	that	shape,	use	only	that	face
in	the	test.

Adding	new	DRAW	commands
If	the	test	cannot	be	implemented	using	available	DRAW	commands,
consider	the	following	possibilities:

If	the	existing	DRAW	command	can	be	extended	to	enable
possibility	required	for	a	test	in	a	natural	way	(e.g.	by	adding	an
option	to	activate	a	specific	mode	of	the	algorithm),	this	way	is
recommended.	This	change	should	be	appropriately	documented	in
a	relevant	Mantis	issue.
If	the	new	command	is	needed	to	access	OCCT	functionality	not
exposed	to	DRAW	previously,	and	this	command	can	be	potentially
reused	(for	other	tests),	it	should	be	added	to	the	package	where
similar	commands	are	implemented	(use	getsource	DRAW
command	to	get	the	package	name).	The	name	and	arguments	of
the	new	command	should	be	chosen	to	keep	similarity	with	the
existing	commands.	This	change	should	be	documented	in	a
relevant	Mantis	issue.
Otherwise	the	new	command	implementing	the	actions	needed	for
this	particular	test	should	be	added	in	QABugs	package.	The
command	name	should	be	formed	by	the	Mantis	issue	ID	prefixed	by
bug,	e.g.	bug12345.

Note	that	a	DRAW	command	is	expected	to	return	0	in	case	of	a	normal
completion,	and	1	(Tcl	exception)	if	it	is	incorrectly	used	(e.g.	a	wrong
number	of	input	arguments).	Thus	if	the	new	command	needs	to	report	a
test	error,	this	should	be	done	by	outputting	an	appropriate	error
message	rather	than	by	returning	a	non-zero	value.	File	names	must	be
encoded	in	the	script	rather	than	in	the	DRAW	command	and	passed	to
the	DRAW	command	as	an	argument.

Script	Implementation
The	test	should	run	commands	necessary	to	perform	the	tested
operations,	in	general	assuming	a	clean	DRAW	session.	The	required
DRAW	modules	should	be	loaded	by	pload	command,	if	it	is	not	done	by
begin	script.	The	messages	produced	by	commands	in	a	standard	output
should	include	identifiable	messages	on	the	discovered	problems	if	any.

Usually	the	script	represents	a	set	of	commands	that	a	person	would	run
interactively	to	perform	the	operation	and	see	its	results,	with	additional
comments	to	explain	what	happens.

Example:

#	Simple	test	of	fusing	box	and	sphere

box	b	10	10	10	

sphere	s	5

bfuse	result	b	s

checkshape	result

Make	sure	that	file	parse.rules	in	the	grid	or	group	directory	contains	a
regular	expression	to	catch	possible	messages	indicating	the	failure	of
the	test.

For	instance,	for	catching	errors	reported	by	checkshape	command
relevant	grids	define	a	rule	to	recognize	its	report	by	the	word	Faulty:

FAILED	/\bFaulty\b/	bad	shape

For	the	messages	generated	in	the	script	it	is	recommended	to	use	the
word	'Error'	in	the	error	message.

Example:

set	expected_length	11

if	{	[expr	$actual_length	-	$expected_length]	>	0.001	

}	{

				puts	"Error:	The	length	of	the	edge	should	be	

$expected_length"

}

At	the	end,	the	test	script	should	output	TEST	COMPLETED	string	to
mark	a	successful	completion	of	the	script.	This	is	often	done	by	the	end
script	in	the	grid.

When	the	test	script	requires	a	data	file,	use	Tcl	procedure
locate_data_file	to	get	a	path	to	it,	instead	of	putting	the	path	explicitly.
This	will	allow	easy	move	of	the	data	file	from	OCCT	sources	repository
to	the	data	files	repository	without	the	need	to	update	the	test	script.

Example:

stepread	[locate_data_file	CAROSKI_COUPELLE.step]	a	*

When	the	test	needs	to	produce	some	snapshots	or	other	artefacts,	use
Tcl	variable	imagedir	as	the	location	where	such	files	should	be	put.

Command	testgrid	sets	this	variable	to	the	subdirectory	of	the	results
folder	corresponding	to	the	grid.
Command	test	by	default	creates	a	dedicated	temporary	directory	in
the	system	temporary	folder	(normally	the	one	specified	by
environment	variable	TempDir,	TEMP,	or	TMP)	for	each	execution,
and	sets	imagedir	to	that	location.

However	if	variable	imagedir	is	defined	on	the	top	level	of	Tcl	interpretor,
command	test	will	use	it	instead	of	creating	a	new	directory.

Use	Tcl	variable	casename	to	prefix	all	files	produced	by	the	test.	This
variable	is	set	to	the	name	of	the	test	case.

The	test	system	can	recognize	an	image	file	(snapshot)	and	include	it	in
HTML	log	and	differences	if	its	name	starts	with	the	name	of	the	test	case
(use	variable	casename),	optionally	followed	by	underscore	or	dash	and
arbitrary	suffix.

The	image	format	(defined	by	extension)	should	be	png.

Example:

xwd	$imagedir/${casename}.png

vdisplay	result;	vfit

vdump	$imagedir/${casename}-axo.png

vfront;	vfit

vdump	$imagedir/${casename}-front.png

would	produce:

A1.png

A1-axo.png

A1-front.png

Note	that	OCCT	must	be	built	with	FreeImage	support	to	be	able	to
produce	usable	images.

Other	Tcl	variables	defined	during	the	test	execution	are:

groupname:	name	of	the	test	group;
gridname:	name	of	the	test	grid;
dirname:	path	to	the	root	directory	of	the	current	set	of	test	scripts.

In	order	to	ensure	that	the	test	works	as	expected	in	different
environments,	observe	the	following	additional	rules:

Avoid	using	external	commands	such	as	grep,	rm,	etc.,	as	these
commands	can	be	absent	on	another	system	(e.g.	on	Windows);	use
facilities	provided	by	Tcl	instead.
Do	not	put	call	to	locate_data_file	in	catch	statement	–	this	can
prevent	correct	interpretation	of	the	missing	data	file	by	the	test
system.
Do	not	use	commands	decho	and	dlog	in	the	test	script,	to	avoid
interference	with	use	of	these	commands	by	the	test	system.

Interpretation	of	test	results
The	result	of	the	test	is	evaluated	by	checking	its	output	against	patterns
defined	in	the	files	parse.rules	of	the	grid	and	group.

The	OCCT	test	system	recognizes	five	statuses	of	the	test	execution:

SKIPPED:	reported	if	a	line	matching	SKIPPED	pattern	is	found
(prior	to	any	FAILED	pattern).	This	indicates	that	the	test	cannot	be
run	in	the	current	environment;	the	most	typical	case	is	the	absence
of	the	required	data	file.
FAILED:	reported	if	a	line	matching	pattern	with	status	FAILED	is
found	(unless	it	is	masked	by	the	preceding	IGNORE	pattern	or	a
TODO	or	REQUIRED	statement),	or	if	message	TEST	COMPLETED
or	at	least	one	of	REQUIRED	patterns	is	not	found.	This	indicates
that	the	test	has	produced	a	bad	or	unexpected	result,	and	usually
means	a	regression.
BAD:	reported	if	the	test	script	output	contains	one	or	several	TODO
statements	and	the	corresponding	number	of	matching	lines	in	the
log.	This	indicates	a	known	problem.	The	lines	matching	TODO
statements	are	not	checked	against	other	patterns	and	thus	will	not
cause	a	FAILED	status.
IMPROVEMENT:	reported	if	the	test	script	output	contains	a	TODO
statement	for	which	no	corresponding	line	is	found.	This	is	a	possible
indication	of	improvement	(a	known	problem	has	disappeared).
OK:	reported	if	none	of	the	above	statuses	have	been	assigned.	This
means	that	the	test	has	passed	without	problems.

Other	statuses	can	be	specified	in	parse.rules	files,	these	will	be
classified	as	FAILED.

For	integration	of	the	change	to	OCCT	repository,	all	tests	should	return
either	OK	or	BAD	status.	The	new	test	created	for	an	unsolved	problem
should	return	BAD.	The	new	test	created	for	a	fixed	problem	should
return	FAILED	without	the	fix,	and	OK	with	the	fix.

Marking	BAD	cases
If	the	test	produces	an	invalid	result	at	a	certain	moment	then	the
corresponding	bug	should	be	created	in	the	OCCT	issue	tracker	located
at	http://tracker.dev.opencascade.org,	and	the	problem	should	be	marked
as	TODO	in	the	test	script.

The	following	statement	should	be	added	to	such	a	test	script:

puts	"TODO	BugNumber	ListOfPlatforms:	

RegularExpression"

Here:

BugNumber	is	the	bug	ID	in	the	tracker.	For	example:	#12345.
ListOfPlatforms	is	a	list	of	platforms,	at	which	the	bug	is	reproduced
(Linux,	Windows,	MacOS,	or	All).	Note	that	the	platform	name	is
custom	for	the	OCCT	test	system;	Use	procedure	checkplatform	to
get	the	platform	name.

Example:

Draw[2]>	checkplatform

Windows

RegularExpression	is	a	regular	expression,	which	should	be
matched	against	the	line	indicating	the	problem	in	the	script	output.

Example:

puts	"TODO	#22622	Mandriva2008:	Abort	.*	an	exception	

was	raised"

The	parser	checks	the	test	output	and	if	an	output	line	matches	the
RegularExpression	then	it	will	be	assigned	a	BAD	status	instead	of
FAILED.

A	separate	TODO	line	must	be	added	for	each	output	line	matching	an
error	expression	to	mark	the	test	as	BAD.	If	not	all	TODO	messages	are

http://tracker.dev.opencascade.org,

found	in	the	test	log,	the	test	will	be	considered	as	possible	improvement.

To	mark	the	test	as	BAD	for	an	incomplete	case	(when	the	final	TEST
COMPLETE	message	is	missing)	the	expression	TEST	INCOMPLETE
should	be	used	instead	of	the	regular	expression.

Example:

puts	"TODO	OCC22817	All:	exception.+There	are	no	

suitable	edges"

puts	"TODO	OCC22817	All:	**	Exception	**"

puts	"TODO	OCC22817	All:	TEST	INCOMPLETE"

Marking	required	output
To	check	the	obtained	test	output	matches	the	expected	results
considered	correct,	add	REQUIRED	statement	for	each	specific
message.	For	that,	the	following	statement	should	be	added	to	the
corresponding	test	script:

puts	"REQUIRED	ListOfPlatforms:	RegularExpression"

Here	ListOfPlatforms	and	RegularExpression	have	the	same	meaning	as
in	TODO	statements	described	above.

The	REQUIRED	statement	can	also	be	used	to	mask	the	message	that
would	normally	be	interpreted	as	error	(according	to	the	rules	defined	in
parse.rules)	but	should	not	be	considered	as	such	within	the	current	test.

Example:

puts	"REQUIRED	Linux:	Faulty	shapes	in	variables	

faulty_1	to	faulty_5"

This	statement	notifies	test	system	that	errors	reported	by	checkshape
command	are	expected	in	that	test	case,	and	test	should	be	considered
as	OK	if	this	message	appears,	despite	of	presence	of	general	rule
stating	that	'Faulty'	signals	failure.

If	output	does	not	contain	required	statement,	test	case	will	be	marked	as
FAILED.

Advanced	Use
Running	Tests	on	Older	Versions	of	OCCT

Sometimes	it	might	be	necessary	to	run	tests	on	the	previous	versions	of
OCCT	(<=	6.5.4)	that	do	not	include	this	test	system.	This	can	be	done
by	adding	DRAW	configuration	file	DrawAppliInit	in	the	directory,	which	is
current	by	the	moment	of	DRAW	start-up,	to	load	test	commands	and	to
define	the	necessary	environment.

Note:	in	OCCT	6.5.3,	file	DrawAppliInit	already	exists	in
$CASROOT/src/DrawResources,	new	commands	should	be	added	to
this	file	instead	of	a	new	one	in	the	current	directory.

For	example,	let	us	assume	that	d:/occt	contains	an	up-to-date	version	of
OCCT	sources	with	tests,	and	the	test	data	archive	is	unpacked	to
d:/test-data):

set	env(CASROOT)	d:/occt

set	env(CSF_TestScriptsPath)	$env(CASROOT)/tests

source	

$env(CASROOT)/src/DrawResources/TestCommands.tcl

set	env(CSF_TestDataPath)	$env(CASROOT)/data;d:/test-

data

return

Note	that	on	older	versions	of	OCCT	the	tests	are	run	in	compatibility
mode	and	thus	not	all	output	of	the	test	command	can	be	captured;	this
can	lead	to	absence	of	some	error	messages	(can	be	reported	as	either
a	failure	or	an	improvement).

Adding	custom	tests
You	can	extend	the	test	system	by	adding	your	own	tests.	For	that	it	is
necessary	to	add	paths	to	the	directory	where	these	tests	are	located,
and	one	or	more	additional	data	directories,	to	the	environment	variables
CSF_TestScriptsPath	and	CSF_TestDataPath.	The	recommended	way
for	doing	this	is	using	DRAW	configuration	file	DrawAppliInit	located	in
the	directory	which	is	current	by	the	moment	of	DRAW	start-up.

Use	Tcl	command	_path_separator	to	insert	a	platform-dependent
separator	to	the	path	list.

For	example:

set	env(CSF_TestScriptsPath)	\

		$env(TestScriptsPath)

[_path_separator]d:/MyOCCTProject/tests

set	env(CSF_TestDataPath)	\

		d:/occt/test-

data[_path_separator]d:/MyOCCTProject/data

return	;#	this	is	to	avoid	an	echo	of	the	last	

command	above	in	cout

Parallel	execution	of	tests
For	better	efficiency,	on	computers	with	multiple	CPUs	the	tests	can	be
run	in	parallel	mode.	This	is	default	behavior	for	command	testgrid	:	the
tests	are	executed	in	parallel	processes	(their	number	is	equal	to	the
number	of	CPUs	available	on	the	system).	In	order	to	change	this
behavior,	use	option	parallel	followed	by	the	number	of	processes	to	be
used	(1	or	0	to	run	sequentially).

Note	that	the	parallel	execution	is	only	possible	if	Tcl	extension	package
Thread	is	installed.	If	this	package	is	not	available,	testgrid	command	will
output	a	warning	message.

Checking	non-regression	of	performance,
memory,	and	visualization
Some	test	results	are	very	dependent	on	the	characteristics	of	the
workstation,	where	they	are	performed,	and	thus	cannot	be	checked	by
comparison	with	some	predefined	values.	These	results	can	be	checked
for	non-regression	(after	a	change	in	OCCT	code)	by	comparing	them
with	the	results	produced	by	the	version	without	this	change.	The	most
typical	case	is	comparing	the	result	obtained	in	a	branch	created	for
integration	of	a	fix	(CR***)	with	the	results	obtained	on	the	master	branch
before	that	change	is	made.

OCCT	test	system	provides	a	dedicated	command	testdiff	for	comparing
CPU	time	of	execution,	memory	usage,	and	images	produced	by	the
tests.

testdiff	dir1	dir2	[groupname	[gridname]]	

[options...]

Here	dir1	and	dir2	are	directories	containing	logs	of	two	test	runs.

Possible	options	are:

-save	<filename>	–	saves	the	resulting	log	in	a	specified	file
($dir1/diff-$dir2.log	by	default).	HTML	log	is	saved	with	the	same
name	and	extension	.html;
-status	{same|ok|all}	–	allows	filtering	compared	cases	by	their
status:

same	–	only	cases	with	same	status	are	compared	(default);
ok	–	only	cases	with	OK	status	in	both	logs	are	compared;
all	–	results	are	compared	regardless	of	status;

-verbose	<level>	–	defines	the	scope	of	output	data:
1	–	outputs	only	differences;
2	–	additionally	outputs	the	list	of	logs	and	directories	present	in
one	of	directories	only;
3	–	(by	default)	additionally	outputs	progress	messages;

-image	[filename]	-	compare	images	and	save	the	resulting	log	in
specified	file	($dir1/diffimage-$dir2.log	by	default)

-cpu	[filename]	-	compare	overall	CPU	and	save	the	resulting	log	in
specified	file	($dir1/diffcpu-$dir2.log	by	default)
-memory	[filename]	-	compare	memory	delta	and	save	the	resulting
log	in	specified	file	($dir1/diffmemory-$dir2.log	by	default)
-highlight_percent	<value>	-	highlight	considerable	(>value	in	%)
deviations	of	CPU	and	memory	(default	value	is	5%)

Example:

Draw[]>	testdiff	results/CR12345-2012-10-10T08:00	

results/master-2012-10-09T21:20	

Particular	tests	can	generate	additional	data	that	need	to	be	compared	by
testdiff	command.	For	that,	for	each	parameter	to	be	controlled,	the	test
should	produce	the	line	containing	keyword	"COUNTER*	followed	by
arbitrary	name	of	the	parameter,	then	colon	and	numeric	value	of	the
parameter.

Example	of	test	code:

puts	"COUNTER	Memory	heap	usage	at	step	5:	[meminfo	

h]"

APPENDIX
Test	groups

3rdparty

This	group	allows	testing	the	interaction	of	OCCT	and	3rdparty	products.

DRAW	module:	VISUALIZATION.

Grid Commands Functionality

export vexport export	of	images	to	different
formats

fonts vtrihedron,	vcolorscale,
vdrawtext display	of	fonts

blend

This	group	allows	testing	blends	(fillets)	and	related	operations.

DRAW	module:	MODELING.

Grid Commands Functionality
simple blend fillets	on	simple	shapes

complex blend fillets	on	complex	shapes,	non-
trivial	geometry

tolblend_simple tolblend,	blend
buildevol buildevol

tolblend_buildvol tolblend,
buildevol

use	of	additional	command
tolblend

bfuseblend bfuseblend
encoderegularity encoderegularity

boolean

This	group	allows	testing	Boolean	operations.

DRAW	module:	MODELING	(packages	BOPTest	and	BRepTest).

Grids	names	are	based	on	name	of	the	command	used,	with	suffixes:

_2d	–	for	tests	operating	with	2d	objects	(wires,	wires,	3d	objects,
etc.);
_simple	–	for	tests	operating	on	simple	shapes	(boxes,	cylinders,
toruses,	etc.);
_complex	–	for	tests	dealing	with	complex	shapes.

Grid Commands Functionality

bcommon_2d bcommon Common	operation	(old
algorithm),	2d

bcommon_complex bcommon Common	operation	(old
algorithm),	complex	shapes

bcommon_simple bcommon Common	operation	(old
algorithm),	simple	shapes

bcut_2d bcut Cut	operation	(old	algorithm),
2d

bcut_complex bcut Cut	operation	(old	algorithm),
complex	shapes

bcut_simple bcut Cut	operation	(old	algorithm),
simple	shapes

bcutblend bcutblend

bfuse_2d bfuse Fuse	operation	(old	algorithm),
2d

bfuse_complex bfuse Fuse	operation	(old	algorithm),
complex	shapes

bfuse_simple bfuse Fuse	operation	(old	algorithm),
simple	shapes

bopcommon_2d bopcommon Common	operation,	2d

bopcommon_complex bopcommon Common	operation,	complex
shapes

bopcommon_simple bopcommon Common	operation,	simple
shapes

bopcut_2d bopcut Cut	operation,	2d
bopcut_complex bopcut Cut	operation,	complex	shapes
bopcut_simple bopcut Cut	operation,	simple	shapes
bopfuse_2d bopfuse Fuse	operation,	2d

bopfuse_complex bopfuse Fuse	operation,	complex
shapes

bopfuse_simple bopfuse Fuse	operation,	simple	shapes
bopsection bopsection Section
boptuc_2d boptuc
boptuc_complex boptuc
boptuc_simple boptuc
bsection bsection Section	(old	algorithm)

bugs

This	group	allows	testing	cases	coming	from	Mantis	issues.

The	grids	are	organized	following	OCCT	module	and	category	set	for	the
issue	in	the	Mantis	tracker.	See	Mapping	of	OCCT	functionality	to	grid
names	in	group	bugs	chapter	for	details.

caf

This	group	allows	testing	OCAF	functionality.

DRAW	module:	OCAFKERNEL.

Grid Commands Functionality
basic Basic	attributes
bugs Saving	and	restoring	of	document
driver OCAF	drivers
named_shape TNaming_NamedShape	attribute
presentation AISPresentation	attributes

tree Tree	construction	attributes
xlink XLink	attributes

chamfer

This	group	allows	testing	chamfer	operations.

DRAW	module:	MODELING.

The	test	grid	name	is	constructed	depending	on	the	type	of	the	tested
chamfers.	Additional	suffix	_complex	is	used	for	test	cases	involving
complex	geometry	(e.g.	intersections	of	edges	forming	a	chamfer);	suffix
_sequence	is	used	for	grids	where	chamfers	are	computed	sequentially.

Grid Commands Functionality
equal_dist Equal	distances	from	edge

equal_dist_complex Equal	distances	from	edge,
complex	shapes

equal_dist_sequence Equal	distances	from	edge,
sequential	operations

dist_dist Two	distances	from	edge

dist_dist_complex Two	distances	from	edge,
complex	shapes

dist_dist_sequence Two	distances	from	edge,
sequential	operations

dist_angle Distance	from	edge	and	given
angle

dist_angle_complex Distance	from	edge	and	given
angle

dist_angle_sequence Distance	from	edge	and	given
angle

demo

This	group	allows	demonstrating	how	testing	cases	are	created,	and
testing	DRAW	commands	and	the	test	system	as	a	whole.

Grid Commands Functionality
draw getsource,	restore Basic	DRAW	commands
testsystem Testing	system
samples OCCT	samples

draft

This	group	allows	testing	draft	operations.

DRAW	module:	MODELING.

Grid Commands Functionality
Angle depouille Drafts	with	angle	(inclined	walls)

feat

This	group	allows	testing	creation	of	features	on	a	shape.

DRAW	module:	MODELING	(package	BRepTest).

Grid Commands Functionality
featdprism
featlf
featprism
featrevol
featrf

heal

This	group	allows	testing	the	functionality	provided	by	ShapeHealing
toolkit.

DRAW	module:	XSDRAW

Grid Commands Functionality

fix_shape fixshape Shape	healing

fix_gaps fixwgaps
Fixing	gaps
between	edges
on	a	wire

same_parameter sameparameter
Fixing	non-
sameparameter
edges

same_parameter_locked sameparameter
Fixing	non-
sameparameter
edges

fix_face_size DT_ApplySeq Removal	of
small	faces

elementary_to_revolution DT_ApplySeq

Conversion	of
elementary
surfaces	to
revolution

direct_faces directfaces

Correction	of
axis	of
elementary
surfaces

drop_small_edges fixsmall Removal	of
small	edges

split_angle DT_SplitAngle

Splitting
periodic
surfaces	by
angle

split_angle_advanced DT_SplitAngle

Splitting
periodic
surfaces	by
angle

split_angle_standard DT_SplitAngle

Splitting
periodic
surfaces	by
angle

split_closed_faces DT_ClosedSplit Splitting	of
closed	faces
Conversion	of

surface_to_bspline DT_ToBspl surfaces	to	b-
splines

surface_to_bezier DT_ShapeConvert
Conversion	of
surfaces	to
bezier

split_continuity DT_ShapeDivide
Split	surfaces
by	continuity
criterion

split_continuity_advanced DT_ShapeDivide
Split	surfaces
by	continuity
criterion

split_continuity_standard DT_ShapeDivide
Split	surfaces
by	continuity
criterion

surface_to_revolution_advanced DT_ShapeConvertRev

Convert
elementary
surfaces	to
revolutions,
complex	cases

surface_to_revolution_standard DT_ShapeConvertRev

Convert
elementary
surfaces	to
revolutions,
simple	cases

update_tolerance_locked updatetolerance

Update	the
tolerance	of
shape	so	that	it
satisfy	the	rule:
toler(face)
<=toler(edge)
<=toler(vertex)

mesh

This	group	allows	testing	shape	tessellation	(BRepMesh)	and	shading.

DRAW	modules:	MODELING	(package	MeshTest),	VISUALIZATION
(package	ViewerTest)

Grid Commands Functionality
advanced_shading vdisplay Shading,	complex	shapes
standard_shading vdisplay Shading,	simple	shapes

advanced_mesh mesh Meshing	of	complex
shapes

standard_mesh mesh Meshing	of	simple
shapes

advanced_incmesh incmesh Meshing	of	complex
shapes

standard_incmesh incmesh Meshing	of	simple
shapes

advanced_incmesh_parallel incmesh Meshing	of	complex
shapes,	parallel	mode

standard_incmesh_parallel incmesh Meshing	of	simple
shapes,	parallel	mode

mkface

This	group	allows	testing	creation	of	simple	surfaces.

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality
after_trim mkface
after_offset mkface
after_extsurf_and_offset mkface
after_extsurf_and_trim mkface
after_revsurf_and_offset mkface
mkplane mkplane

nproject

This	group	allows	testing	normal	projection	of	edges	and	wires	onto	a
face.

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality
Base nproject

offset

This	group	allows	testing	offset	functionality	for	curves	and	surfaces.

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality

compshape offsetcompshape

Offset	of
shapes	with
removal	of
some	faces

faces_type_a
offsetparameter,
offsetload,
offsetperform

Offset	on	a
subset	of	faces
with	a	fillet

faces_type_i
offsetparameter,
offsetload,
offsetperform

Offset	on	a
subset	of	faces
with	a	sharp
edge

shape_type_a
offsetparameter,
offsetload,
offsetperform

Offset	on	a
whole	shape
with	a	fillet

shape_type_i
offsetparameter,
offsetload,
offsetperform

Offset	on	a
whole	shape
with	a	fillet

shape offsetshape
wire_closed_outside_0_005,
wire_closed_outside_0_025,
wire_closed_outside_0_075,
wire_closed_inside_0_005,
wire_closed_inside_0_025,
wire_closed_inside_0_075,
wire_unclosed_outside_0_005,

mkoffset

2d	offset	of
closed	and
unclosed	planar
wires	with
different	offset
step	and
directions	of

wire_unclosed_outside_0_025,
wire_unclosed_outside_0_075

offset	(inside	/
outside)

pipe

This	group	allows	testing	construction	of	pipes	(sweeping	of	a	contour
along	profile).

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality
Standard pipe

prism

This	group	allows	testing	construction	of	prisms.

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality
seminf prism

sewing

This	group	allows	testing	sewing	of	faces	by	connecting	edges.

DRAW	module:	MODELING	(package	BRepTest)

Grid Commands Functionality
tol_0_01 sewing Sewing	faces	with	tolerance	0.01
tol_1 sewing Sewing	faces	with	tolerance	1
tol_100 sewing Sewing	faces	with	tolerance	100

thrusection

This	group	allows	testing	construction	of	shell	or	a	solid	passing	through

a	set	of	sections	in	a	given	sequence	(loft).

Grid Commands Functionality
solids thrusection Lofting	with	resulting	solid
not_solids thrusection Lofting	with	resulting	shell	or	face

xcaf

This	group	allows	testing	extended	data	exchange	packages.

Grid Commands Functionality

dxc,	dxc_add_ACL,
dxc_add_CL,
igs_to_dxc,
igs_add_ACL,
brep_to_igs_add_CL,
stp_to_dxc,
stp_add_ACL,
brep_to_stp_add_CL,
brep_to_dxc,
add_ACL_brep,
brep_add_CL

Subgroups	are	divided	by
format	of	source	file,	by	format
of	result	file	and	by	type	of
document	modification.	For
example,	brep_to_igs	means
that	the	source	shape	in	brep
format	was	added	to	the
document,	which	was	saved
into	igs	format	after	that.	The
postfix	add_CL	means	that
colors	and	layers	were
initialized	in	the	document
before	saving	and	the	postfix
add_ACL	corresponds	to	the
creation	of	assembly	and
initialization	of	colors	and	layers
in	a	document	before	saving.

Mapping	of	OCCT	functionality	to	grid	names	in
group	*bugs*

OCCT	Module	/
Mantis	category Toolkits

Test
grid	in
group
bugs

Application
Framework

PTKernel,	TKPShape,	TKCDF,
TKLCAF,	TKCAF,	TKBinL,	TKXmlL,
TKShapeSchema,	TKPLCAF,	TKBin,
TKXml,	TKPCAF,	FWOSPlugin,
TKStdLSchema,	TKStdSchema,
TKTObj,	TKBinTObj,	TKXmlTObj

caf

Draw

TKDraw,	TKTopTest,	TKViewerTest,
TKXSDRAW,	TKDCAF,
TKXDEDRAW,	TKTObjDRAW,
TKQADraw,	DRAWEXE,	Problems	of
testing	system

draw

Shape	Healing TKShHealing heal
Mesh TKMesh,	TKXMesh mesh
Data	Exchange TKIGES iges

Data	Exchange TKSTEPBase,	TKSTEPAttr,
TKSTEP209,	TKSTEP step

Data	Exchange TKSTL,	TKVRML stlvrml

Data	Exchange

TKXSBase,	TKXCAF,
TKXCAFSchema,	TKXDEIGES,
TKXDESTEP,	TKXmlXCAF,
TKBinXCAF

xde

Foundation	Classes TKernel,	TKMath fclasses

Modeling_algorithms
TKGeomAlgo,	TKTopAlgo,	TKPrim,
TKBO,	TKBool,	TKHLR,	TKFillet,
TKOffset,	TKFeat,	TKXMesh

modalg

Modeling	Data TKG2d,	TKG3d,	TKGeomBase,
TKBRep moddata

Visualization TKService,	TKV2d,	TKV3d,
TKOpenGl,	TKMeshVS,	TKNIS

vis

Recommended	approaches	to	checking	test
results

Shape	validity

Run	command	checkshape	on	the	result	(or	intermediate)	shape	and
make	sure	that	parse.rules	of	the	test	grid	or	group	reports	bad	shapes
(usually	recognized	by	word	"Faulty")	as	error.

Example

checkshape	result

To	check	the	number	of	faults	in	the	shape	command	checkfaults	can	be
used.

Use:	checkfaults	shape	source_shape	[ref_value=0]

The	default	syntax	of	checkfaults	command:

checkfaults	results	a_1

The	command	will	check	the	number	of	faults	in	the	source	shape	(a_1)
and	compare	it	with	number	of	faults	in	the	resulting	shape	(result).	If
shape	result	contains	more	faults,	you	will	get	an	error:

checkfaults	results	a_1

Error	:	Number	of	faults	is	5

It	is	possible	to	set	the	reference	value	for	comparison	(reference	value	is
4):

checkfaults	results	a_1	4

If	number	of	faults	in	the	resulting	shape	is	unstable,	reference	value
should	be	set	to	"-1".	As	a	result	command	checkfaults	will	return	the
following	error:

checkfaults	results	a_1	-1

Error	:	Number	of	faults	is	UNSTABLE

Shape	tolerance

The	maximal	tolerance	of	sub-shapes	of	each	kind	of	the	resulting	shape
can	be	extracted	from	output	of	tolerance	command	as	follows:

set	tolerance	[tolerance	result]

regexp	{	*FACE	+:	+MAX=([-0-9.+eE]+)}	$tolerance	

dummy	max_face

regexp	{	*EDGE	+:	+MAX=([-0-9.+eE]+)}	$tolerance	

dummy	max_edgee

regexp	{	*VERTEX	+:	+MAX=([-0-9.+eE]+)}	$tolerance	

dummy	max_vertex

It	is	possible	to	use	command	checkmaxtol	to	check	maximal	tolerance	of
shape	and	compare	it	with	reference	value.

Use:	checkmaxtol	shape	[options...]

Allowed	options	are:

-ref	–	reference	value	of	maximum	tolerance;
-source	–	list	of	shapes	to	compare	with;
-min_tol	–	minimum	tolerance	for	comparison;
-multi_tol	–	tolerance	multiplier.

The	default	syntax	of	checkmaxtol	command	for	comparison	with	the
reference	value:

checkmaxtol	result	-ref	0.00001

There	is	an	opportunity	to	compare	max	tolerance	of	resulting	shape	with
max	tolerance	of	source	shape.	In	the	following	example	command
checkmaxtol	gets	max	tolerance	among	objects	a_1	and	a_2.	Then	it
chooses	the	maximum	value	between	founded	tolerance	and	value	-
min_tol	(0.000001)	and	multiply	it	on	the	coefficient	-multi_tol	(i.e.	2):

checkmaxtol	result	-source	{a_1	a_2}	-min_tol	

0.000001	-multi_tol	2

If	the	value	of	maximum	tolerance	more	than	founded	tolerance	for
comparison,	the	command	will	return	an	error.

Also,	command	checkmaxtol	can	be	used	to	get	max	tolerance	of	the
shape:

set	maxtol	[checkmaxtol	result]

Shape	volume,	area,	or	length

Use	command	vprops,	sprops,	or	lprops	to	correspondingly	measure
volume,	area,	or	length	of	the	shape	produced	by	the	test.	The	value	can
be	extracted	from	the	result	of	the	command	by	regexp.

Example:

#	check	area	of	shape	result	with	1%	tolerance

regexp	{Mass	+:	+([-0-9.+eE]+)}	[sprops	result]	dummy	

area

if	{	abs($area	-	$expected)	>	0.1	+	0.01	*	abs	

($area)	}	{

				puts	"Error:	The	area	of	result	shape	is	$area,	

while	expected	$expected"

}

Memory	leaks

The	test	system	measures	the	amount	of	memory	used	by	each	test
case.	Considerable	deviations	(as	well	as	the	overall	difference)	in
comparison	with	reference	results	can	be	reported	by	command	testdiff
(see	Checking	non-regression	of	performance,	memory,	and
visualization).

To	check	memory	leak	on	a	particular	operation,	run	it	in	a	cycle,
measure	the	memory	consumption	at	each	step	and	compare	it	with	a
threshold	value.	The	command	checktrend	(defined	in	tests/bugs/begin)
can	be	used	to	analyze	a	sequence	of	memory	measurements	and	to	get

a	statistically	based	evaluation	of	the	leak	presence.

Example:

set	listmem	{}

for	{set	i	1}	{$i	<	100}	{incr	i}	{

				#	run	suspect	operation	

				…

				#	check	memory	usage	(with	tolerance	equal	to	

half	page	size)

				lappend	listmem	[expr	[meminfo	w]	/	1024]

				if	{	[checktrend	$listmem	0	256	"Memory	leak	

detected"]	}	{

								puts	"No	memory	leak,	$i	iterations"

								break

				}

}

Visualization

The	following	command	sequence	allows	you	to	take	a	snapshot	of	the
viewer,	give	it	the	name	of	the	test	case,	and	save	in	the	directory
indicated	by	Tcl	variable	imagedir.

vinit

vclear

vdisplay	result

vsetdispmode	1

vfit

vzfit

vdump	$imagedir/${casename}_shading.png

This	image	will	be	included	in	the	HTML	log	produced	by	testgrid
command	and	will	be	checked	for	non-regression	through	comparison	of
images	by	command	testdiff.

Also	it	is	possible	to	use	command	checkview	to	make	a	snapshot	of	the
viewer.

Use:	checkview	[options...]	Allowed	options	are:

-display	shapename	–	displays	shape	with	name	shapename;
-3d	–	displays	shape	in	3d	viewer;
-2d	[v2d	/	smallview]	-	displays	shape	in	2d	viewer	(the	default
viewer	is	smallview);
-path	PATH	–	sets	the	location	of	the	saved	viewer	screenshot;
-vdispmode	N	–	sets	vdispmode	for	3d	viewer	(default	value	is	1)
-screenshot	–	makes	a	screenshot	of	already	created	viewer
The	procedure	can	check	a	property	of	shape	(length,	area	or
volume)	and	compare	it	with	value	N:

-l	[N]
-s	[N]
-v	[N]
If	the	current	property	is	equal	to	value	N,	the	shape	is	marked
as	valid	in	the	procedure.
If	value	N	is	not	given,	the	procedure	will	mark	the	shape	as
valid	if	the	current	property	is	non-zero.

-with	{a	b	c}	–	displays	shapes	a,	b	and	c	together	with	the	shape	(if
the	shape	is	valid)
-otherwise	{d	e	f}	–	displays	shapes	d,	e	and	f	instead	of	the	shape
(if	the	shape	is	NOT	valid)

Note	that	is	required	to	use	either	option	-2d	or	option	-3d.

Examples:

checkview	-display	result	-2d	-path	

${imagedir}/${test_image}.png

checkview	-display	result	-3d	-path	

${imagedir}/${test_image}.png

checkview	-display	result_2d	-2d	v2d	-path	

${imagedir}/${test_image}.png

box	a	10	10	10

box	b	5	5	5	10	10	10

bcut	result	b	a

set	result_vertices	[explode	result	v]

checkview	-display	result	-2d	-with	

${result_vertices}	-otherwise	{	a	b	}	-l	-path	

${imagedir}/${test_image}.png

box	a	10	10	10

box	b	5	5	5	10	10	10

bcut	result	b	a

vinit

vdisplay	a	b

vfit

checkview	-screenshot	-3d	-path	

${imagedir}/${test_image}.png

Number	of	free	edges

Procedure	checkfreebounds	compares	the	number	of	free	edges	with	a
reference	value.

Use:	checkfreebounds	shape	ref_value	[options...]

Allowed	options	are:

-tol	N	–	used	tolerance	(default	-0.01);
-type	N	–	used	type,	possible	values	are	"closed"	and	"opened"
(default	"closed").

checkfreebounds	result	13

Option	-tol	N	defines	tolerance	for	command	freebounds,	which	is	used
within	command	checkfreebounds.

Option	-type	N	is	used	to	select	the	type	of	counted	free	edges:	closed	or
open.

If	the	number	of	free	edges	in	the	resulting	shape	is	unstable,	the
reference	value	should	be	set	to	"-1".	As	a	result	command
checkfreebounds	will	return	the	following	error:

checkfreebounds	result	-1

Error	:	Number	of	free	edges	is	UNSTABLE

Compare	numbers

Procedure	checkreal	checks	the	equality	of	two	reals	with	a	tolerance
(relative	and	absolute).

Use:	checkreal	name	value	expected	tol_abs	tol_rel

checkreal	"Some	important	value"	$value	5	0.0001	0.01

Check	number	of	sub-shapes

Procedure	checknbshapes	compares	the	number	of	sub-shapes	in
"shape"	with	the	given	reference	data.

Use:	checknbshapes	shape	[options...]

Allowed	options	are:

-vertex	N
-edge	N
-wire	N
-face	N
-shell	N
-solid	N
-compsolid	N
-compound	N
-shape	N
-t	–	compares	the	number	of	sub-shapes	in	"shape"	counting	the
same	sub-shapes	with	different	location	as	different	sub-shapes.
-m	msg	–	prints	"msg"	in	case	of	error

checknbshapes	result	-vertex	8	-edge	4

Check	pixel	color

Command	checkcolor	can	be	used	to	check	pixel	color.

Use:	checkcolor	x	y	red	green	blue

where:

x,	y	–	pixel	coordinates;

red	green	blue	–	expected	pixel	color	(values	from	0	to	1).

This	procedure	checks	color	with	tolerance	(5x5	area).

Next	example	will	compare	color	of	point	with	coordinates	x=100	y=100
with	RGB	color	R=1	G=0	B=0.	If	colors	are	not	equal,	procedure	will
check	the	nearest	ones	points	(5x5	area)

checkcolor	100	100	1	0	0

Compute	length,	area	and	volume	of	input	shape

Procedure	checkprops	computes	length,	area	and	volume	of	the	input
shape.

Use:	checkprops	shapename	[options...]

Allowed	options	are:

-l	LENGTH	–	command	lprops,	computes	the	mass	properties	of	all
edges	in	the	shape	with	a	linear	density	of	1;
-s	AREA	–	command	sprops,	computes	the	mass	properties	of	all
faces	with	a	surface	density	of	1;
-v	VOLUME	–	command	vprops,	computes	the	mass	properties	of	all
solids	with	a	density	of	1;
-eps	EPSILON	–	the	epsilon	defines	relative	precision	of
computation;
-deps	DEPSILON	–	the	epsilon	defines	relative	precision	to	compare
corresponding	values;
-equal	SHAPE	–	compares	area,	volume	and	length	of	input	shapes.
Puts	error	if	they	are	not	equal;
-notequal	SHAPE	–	compares	area,	volume	and	length	of	input
shapes.	Puts	error	if	they	are	equal.

Options	-l,	-s	and	-v	are	independent	and	can	be	used	in	any	order.
Tolerance	epsilon	is	the	same	for	all	options.

checkprops	result	-s	6265.68	

checkprops	result	-s	-equal	FaceBrep

Parse	output	dump	and	compare	it	with	reference	values

Procedure	checkdump	is	used	to	parse	output	dump	and	compare	it	with
reference	values.

Use:	checkdump	shapename	[options...]

Allowed	options	are:

-name	NAME	–	list	of	parsing	parameters	(e.g.	Center,	Axis,	etc.);
-ref	VALUE	–	list	of	reference	values	for	each	parameter	in	NAME;
-eps	EPSILON	–	the	epsilon	defines	relative	precision	of
computation.

checkdump	result	-name	{Center	Axis	XAxis	YAxis	

Radii}	-ref	{{-70	0}	{-1	-0}	{-1	-0}	{0	-1}	{20	

10}}	-eps	0.01

Compute	length	of	input	curve

Procedure	checklength	computes	length	of	the	input	curve.

Use:	checklength	curvename	[options...]

Allowed	options	are:

-l	LENGTH	–	command	length,	computes	the	length	of	the	input
curve	with	precision	of	computation;
-eps	EPSILON	–	the	epsilon	defines	a	relative	precision	of
computation;
-equal	CURVE	–	compares	the	length	of	input	curves.	Puts	error	if
they	are	not	equal;
-notequal	CURVE	–	compares	the	length	of	input	curves.	Puts	error
if	they	are	equal.

checklength	cp1	-l	7.278

checklength	res	-l	-equal	ext_1

Check	maximum	deflection,	number	of	triangles	and
nodes	in	mesh

Command	checktrinfo	can	be	used	to	to	check	the	maximum	deflection,
as	well	as	the	number	of	nodes	and	triangles	in	mesh.

Use:	checktrinfo	shapename	[options...]

Allowed	options	are:

-tri	[N]	–	compares	the	current	number	of	triangles	in	shapename
mesh	with	the	given	reference	data.	If	reference	value	N	is	not	given
and	the	current	number	of	triangles	is	equal	to	0,	procedure
checktrinfo	will	print	an	error.
-nod	[N]	–	compares	the	current	number	of	nodes	in	shapename
mesh	with	the	given	reference	data.	If	reference	value	N	is	not	given
and	the	current	number	of	nodes	is	equal	to	0,	procedure	checktrinfo
will	print	an	error.
-defl	[N]	–	compares	the	current	value	of	maximum	deflection	in
shapename	mesh	with	the	given	reference	data.	If	reference	value	N
is	not	given	and	current	maximum	deflection	is	equal	to	0,	procedure
checktrinfo	will	print	an	error.
-max_defl	N	–	compares	the	current	value	of	maximum	deflection	in
shapename	mesh	with	the	max	possible	value.
-tol_abs_tri	N	–	absolute	tolerance	for	comparison	of	number	of
triangles	(default	value	0).
-tol_rel_tri	N	–	relative	tolerance	for	comparison	of	number	of
triangles	(default	value	0).
-tol_abs_nod	N	–	absolute	tolerance	for	comparison	of	number	of
nodes	(default	value	0).
-tol_rel_nod	N	–	relative	tolerance	for	comparison	of	number	of
nodes	(default	value	0).
-tol_abs_defl	N	–	absolute	tolerance	for	deflection	comparison
(default	value	0).
-tol_rel_defl	N	–	relative	tolerance	for	deflection	comparison	(default
value	0).
-ref	[trinfo	a]	–	compares	deflection,	number	of	triangles	and	nodes
in	shapename	and	a.

Note	that	options	-tri,	-nod	and	-defl	do	not	work	together	with	option	-ref.

Examples:

Comparison	with	some	reference	values:

checktrinfo	result	-tri	129	-nod	131	-defl	0.01

Comparison	with	another	mesh:

checktrinfo	result	-ref	[tringo	a]

Comparison	of	deflection	with	the	max	possible	value:

checktrinfo	result	-max_defl	1

Check	that	the	current	values	are	not	equal	to	zero:

checktrinfo	result	-tri	-nod	-defl

Check	that	the	number	of	triangles	and	the	number	of	nodes	are	not
equal	to	some	specific	values:

checktrinfo	result	-tri	!10	-nod	!8

It	is	possible	to	compare	current	values	with	reference	values	with	some
tolerances.	Use	options	-tol_*	for	that.

checktrinfo	result	-defl	1	-tol_abs_defl	0.001

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Compiler	macro	to
enable	extended	debug
messages
Calling	JIT	debugger	on
exception
Self-diagnostics	in
Boolean	operations
algorithm
Functions	for	calling
from	debugger
Interacting	with
DRAW
Saving	and	dumping
shapes	and
geometric	objects

Using	Visual	Studio
debugger
Command	window
Customized	display
of	variables	content

Performance
measurement	tools

Open	CASCADE
Technology		7.2.0

Debugging	tools	and	hints

Introduction
This	manual	describes	facilities	included	in	OCCT	to	support	debugging,
and	provides	some	hints	for	more	efficient	debug.

Compiler	macro	to	enable	extended
debug	messages
Many	OCCT	algorithms	can	produce	extended	debug	messages,	usually
printed	to	cout.	These	include	messages	on	internal	errors	and	special
cases	encountered,	timing	etc.	In	OCCT	versions	prior	to	6.8.0	most	of
these	messages	were	activated	by	compiler	macro	DEB,	enabled	by
default	in	debug	builds.	Since	version	6.8.0	this	is	disabled	by	default	but
can	be	enabled	by	defining	compiler	macro	OCCT_DEBUG.

To	enable	this	macro	on	Windows	when	building	with	Visual	Studio
projects,	edit	file	custom.bat	and	add	the	line:

set	CSF_DEFINES=OCCT_DEBUG

Some	algorithms	use	specific	macros	for	yet	more	verbose	messages,
usually	started	with	OCCT_DEBUG_.	These	messages	can	be	enabled
in	the	same	way,	by	defining	corresponding	macro.

Note	that	some	header	files	are	modified	when	OCCT_DEBUG	is
enabled,	hence	binaries	built	with	it	enabled	are	not	compatible	with
client	code	built	without	this	option;	this	is	not	intended	for	production
use.

Calling	JIT	debugger	on	exception
On	Windows	platform	when	using	Visual	Studio	compiler	there	is	a
possibility	to	start	the	debugger	automatically	if	an	exception	is	caught	in
a	program	running	OCCT.	For	this,	set	environment	variable
CSF_DEBUG	to	any	value.	Note	that	this	feature	works	only	if	you
enable	OCCT	exception	handler	in	your	application	by	calling
OSD::SetSignal().

Self-diagnostics	in	Boolean
operations	algorithm
In	real-world	applications	modeling	operations	are	often	performed	in	a
long	sequence,	while	the	user	sees	only	the	final	result	of	the	whole
sequence.	If	the	final	result	is	wrong,	the	first	debug	step	is	to	identify	the
offending	operation	to	be	debugged	further.	Boolean	operation	algorithm
in	OCCT	provides	a	self-diagnostic	feature	which	can	help	to	do	that
step.

This	feature	can	be	activated	by	defining	environment	variable
CSF_DEBUG_BOP,	which	should	specify	an	existing	writeable	directory.

The	diagnostic	code	checks	validity	of	the	input	arguments	and	the	result
of	each	Boolean	operation.	When	an	invalid	situation	is	detected,	the
report	consisting	of	argument	shapes	and	a	DRAW	script	to	reproduce
the	problematic	operation	is	saved	to	the	directory	pointed	by
CSF_DEBUG_BOP.

Note	that	this	feature	does	not	applicable	for	UWP	build.

Functions	for	calling	from	debugger
Modern	interactive	debuggers	provide	the	possibility	to	execute
application	code	at	a	program	break	point.	This	feature	can	be	used	to
analyse	the	temporary	objects	available	only	in	the	context	of	the
debugged	code.	OCCT	provides	several	global	functions	that	can	be
used	in	this	way.

Note	that	all	these	functions	accept	pointer	to	variable	as	void*	to	allow
calling	the	function	even	when	debugger	does	not	recognize	type
equivalence	or	can	not	perform	necessary	type	cast	automatically.	It	is
responsibility	of	the	developer	to	provide	the	correct	pointer.	In	general
these	functions	are	not	guaranteed	to	work,	thus	use	them	with	caution
and	at	your	own	risk.

Interacting	with	DRAW
Open	CASCADE	Test	Harness	or	DRAW	provides	an	extensive	set	of
tools	for	inspection	and	analysis	of	OCCT	shapes	and	geometric	objects
and	is	mostly	used	as	environment	for	prototyping	and	debugging	OCCT-
based	algorithms.

In	some	cases	the	objects	to	be	inspected	are	available	in	DRAW	as
results	of	DRAW	commands.	In	other	cases,	however,	it	is	necessary	to
inspect	intermediate	objects	created	by	the	debugged	algorithm.	To
support	this,	DRAW	provides	a	set	of	commands	allowing	the	developer
to	store	intermediate	objects	directly	from	the	debugger	stopped	at	some
point	during	the	program	execution	(usually	at	a	breakpoint).

const	char*	Draw_Eval	(const	char	*theCommandStr)

Evaluates	a	DRAW	command	or	script.	A	command	is	passed	as	a	string
parameter.

const	char*	DBRep_Set	(const	char*	theNameStr,	void*	

theShapePtr)

Sets	the	specified	shape	as	a	value	of	DRAW	interpreter	variable	with	the
given	name.

theNameStr	–	the	DRAW	interpreter	variable	name	to	set.
theShapePtr	–	a	pointer	to	TopoDS_Shape	variable.

const	char*	DBRep_SetComp	(const	char*	theNameStr,	

void*	theListPtr)

Makes	a	compound	from	the	specified	list	of	shapes	and	sets	it	as	a
value	of	DRAW	interpreter	variable	with	the	given	name.

theNameStr	–	the	DRAW	interpreter	variable	name	to	set.
theListPtr	–	a	pointer	to	TopTools_ListOfShape	variable.

const	char*	DrawTrSurf_Set	(const	char*	theNameStr,	

void*	theHandlePtr)

const	char*	DrawTrSurf_SetPnt	(const	char*	

theNameStr,	void*	thePntPtr)

const	char*	DrawTrSurf_SetPnt2d	(const	char*	

theNameStr,	void*	thePnt2dPtr)

Sets	the	specified	geometric	object	as	a	value	of	DRAW	interpreter
variable	with	the	given	name.

theNameStr	–	the	DRAW	interpreter	variable	name	to	set.
theHandlePtr	–	a	pointer	to	the	geometric	variable	(Handle	to
Geom_Geometry	or	Geom2d_Curve	or	descendant)	to	be	set.
thePntPtr	–	a	pointer	to	the	variable	of	type	gp_Pnt	to	be	set.
thePnt2dPtr	–	a	pointer	to	the	variable	of	type	gp_Pnt2d	to	be	set.

All	these	functions	are	defined	in	TKDraw	toolkit	and	return	a	string
indicating	the	result	of	execution.

Saving	and	dumping	shapes	and	geometric
objects
The	following	functions	are	provided	by	TKBRep	toolkit	and	can	be	used
from	debugger	prompt:

const	char*	BRepTools_Write	(const	char*	

theFileNameStr,	void*	theShapePtr)

Saves	the	specified	shape	to	a	file	with	the	given	name.

theFileNameStr	–	the	name	of	the	file	where	the	shape	is	saved.
theShapePtr	–	a	pointer	to	TopoDS_Shape	variable.

const	char*	BRepTools_Dump	(void*	theShapePtr)

const	char*	BRepTools_DumpLoc	(void*	theShapePtr)

Dumps	shape	or	its	location	to	cout.

theShapePtr	–	a	pointer	to	TopoDS_Shape	variable.

The	following	function	is	provided	by	TKMesh	toolkit:

const	char*	BRepMesh_Dump	(void*	theMeshHandlePtr,	

const	char*	theFileNameStr)

Stores	mesh	produced	in	parametric	space	to	BREP	file.

theMeshHandlePtr	–	a	pointer	to
Handle(BRepMesh_DataStructureOfDelaun)	variable.
theFileNameStr	–	the	name	of	the	file	where	the	mesh	is	stored.

The	following	functions	are	provided	by	TKTopTest	toolkit:

const	char*	MeshTest_DrawLinks(const	char*	

theNameStr,	void*	theFaceAttr)

const	char*	MeshTest_DrawTriangles(const	char*	

theNameStr,	void*	theFaceAttr)

Sets	the	edges	or	triangles	from	mesh	data	structure	of	type
Handle(BRepMesh_FaceAttribute)	as	DRAW	interpreter	variables,
assigning	a	unique	name	in	the	form	"<theNameStr>_<index>"	to	each
object.

theNameStr	–	the	prefix	to	use	in	names	of	objects.
theFaceAttr	–	a	pointer	to	Handle(BRepMesh_FaceAttribute)
variable.

The	following	additional	function	is	provided	by	TKGeomBase	toolkit:

const	char*	GeomTools_Dump	(void*	theHandlePtr)

Dump	geometric	object	to	cout.

theHandlePtr	–	a	pointer	to	the	geometric	variable	(Handle	to
Geom_Geometry	or	Geom2d_Curve	or	descendant)	to	be	set.

Using	Visual	Studio	debugger
Command	window

Visual	Studio	debugger	provides	the	Command	Window	(can	be
activated	from	menu	View	/	Other	Windows	/	Command	Window),
which	can	be	used	to	evaluate	variables	and	expressions	interactively	in
a	debug	session	(see	http://msdn.microsoft.com/en-
us/library/c785s0kz.aspx).	Note	that	the	Immediate	Window	can	also	be
used	but	it	has	some	limitations,	e.g.	does	not	support	aliases.

When	the	execution	is	interrupted	by	a	breakpoint,	you	can	use	this
window	to	call	the	above	described	functions	in	context	of	the	currently
debugged	function.	Note	that	in	most	cases	you	will	need	to	specify
explicitly	context	of	the	function	by	indicating	the	name	of	the	DLL	where
it	is	defined.

For	example,	assume	that	you	are	debugging	a	function,	where	local
variable	TopoDS_Edge	anEdge1	is	of	interest.	The	following	set	of
commands	in	the	Command	window	will	save	this	edge	to	file
edge1.brep,	then	put	it	to	DRAW	variable	e1	and	show	it	maximized	in
the	axonometric	DRAW	view:

>?	({,,TKBRep.dll}BRepTools_Write)("d:/edge1.brep",

(void*)&anEdge1)

0x04a2f234	"d:/edge1.brep"

>?	({,,TKDraw.dll}DBRep_Set)("e1",(void*)&anEdge1)

0x0369eba8	"e1"

>?	({,,TKDraw.dll}Draw_Eval)("donly	e1;	axo;	fit")

0x029a48f0	""

For	convenience	it	is	possible	to	define	aliases	to	commands	in	this
window,	for	instance	(here	">"	is	prompt	provided	by	the	command
window;	in	the	Immediate	window	this	symbol	should	be	entered
manually):

>alias	deval						?	({,,TKDraw}Draw_Eval)

http://msdn.microsoft.com/en-us/library/c785s0kz.aspx

>alias	dsetshape		?	({,,TKDraw}DBRep_Set)

>alias	dsetcomp			?	({,,TKDraw}DBRep_SetComp)

>alias	dsetgeom			?	({,,TKDraw}DrawTrSurf_Set)

>alias	dsetpnt				?	({,,TKDraw}DrawTrSurf_SetPnt)

>alias	dsetpnt2d		?	({,,TKDraw}DrawTrSurf_SetPnt2d)

>alias	saveshape		?	({,,TKBRep}BRepTools_Write)

>alias	dumpshape		?	({,,TKBRep}BRepTools_Dump)

>alias	dumploc				?	({,,TKBRep}BRepTools_DumpLoc)

>alias	dumpmesh			?	({,,TKMesh}BRepMesh_Dump)

>alias	dumpgeom			?	({,,TKGeomBase}GeomTools_Dump)

Note	that	aliases	are	stored	in	the	Visual	Studio	user's	preferences	and	it
is	sufficient	to	define	them	once	on	a	workstation.	With	these	aliases,	the
above	example	can	be	reproduced	easier	(note	the	space	symbol	after
alias	name!):

>saveshape	("d:/edge1.brep",(void*)&anEdge1)

0x04a2f234	"d:/edge1.brep"

>dsetshape	("e1",(void*)&anEdge1)

0x0369eba8	"e1"

>deval	("donly	e1;	axo;	fit")

0x029a48f0	""

Note	that	there	is	no	guarantee	that	the	call	will	succeed	and	will	not
affect	the	program	execution,	thus	use	this	feature	at	your	own	risk.	In
particular,	the	commands	interacting	with	window	system	(such	as	axo,
vinit,	etc.)	are	known	to	cause	application	crash	when	the	program	is	built
in	64-bit	mode.	To	avoid	this,	it	is	recommended	to	prepare	all	necessary
view	windows	in	advance,	and	arrange	these	windows	to	avoid
overlapping	with	the	Visual	Studio	window,	to	ensure	that	they	are	visible
during	debug.

Customized	display	of	variables	content
Visual	Studio	provides	a	way	to	customize	display	of	variables	of	different
types	in	debugger	windows	(Watch,	Autos,	Locals,	etc.).

In	Visual	Studio	2005-2010	the	rules	for	this	display	are	defined	in	file
autoexp.dat	located	in	subfolder	Common7\Packages\Debugger	of	the
Visual	Studio	installation	folder	(hint:	the	path	to	that	folder	is	given	in	the
corresponding	environment	variable,	e.g.	VS100COMNTOOLS	for	vc10).
This	file	contains	two	sections:	AutoExpand	and	Visualizer.	The	following
rules	can	be	added	to	these	sections	to	provide	more	convenient	display
of	some	OCCT	data	types.

[AutoExpand]	section

;	Open	CASCADE	classes

Standard_Transient=<,t>	count=<count,d>

Handle_Standard_Transient=<entity,x>	count=<entity-

>count,d>	<,t>

TCollection_AsciiString=<mylength,d>	<mystring,s>

TCollection_HAsciiString=<myString.mylength,d>	

<myString.mystring,s>

TCollection_ExtendedString=<mylength,d>	<mystring,su>

TCollection_HExtendedString=<myString.mylength,d>	

<myString.mystring,su>

TCollection_BaseSequence=size=<Size,d>	curr=

<CurrentIndex,d>

TCollection_BasicMap=size=<mySize,d>

NCollection_BaseSequence=size=<mySize,d>	curr=

<myCurrentIndex,d>

NCollection_BaseList=length=<myLength,d>

NCollection_BaseMap=size=<mySize,d>	buckets=

<myNbBuckets>

NCollection_BaseVector=length=<myLength,d>

TDF_Label=<myLabelNode,x>	tag=<myLabelNode->myTag>

TDF_LabelNode=tag=<myTag,d>

TDocStd_Document=format=<myStorageFormat.mystring,su>	

count=<count,d>	<,t>

TopoDS_Shape=<myTShape.entity,x>	<myOrient>

gp_XYZ=<x,g>,	<y,g>,	<z,g>

gp_Pnt=<coord.x,g>,	<coord.y,g>,	<coord.z,g>

gp_Vec=<coord.x,g>,	<coord.y,g>,	<coord.z,g>

gp_Dir=<coord.x,g>,	<coord.y,g>,	<coord.z,g>

gp_XY=<x,g>,	<y,g>

gp_Pnt2d=<coord.x,g>,	<coord.y,g>

gp_Dir2d=<coord.x,g>,	<coord.y,g>

gp_Vec2d=<coord.x,g>,	<coord.y,g>

gp_Mat2d={<matrix[0][0],g>,<matrix[0][1],g>},	

{<matrix[1][0],g>,<matrix[1][1],g>}

gp_Ax1=loc={<loc.coord.x,g>,	<loc.coord.y,g>,	

<loc.coord.z,g>}	vdir={<vdir.coord.x,g>,	

<vdir.coord.y,g>,	<vdir.coord.z,g>}

[Visualizer]	section

;	Open	CASCADE	classes

NCollection_Handle<*>	{

		preview	(*((($T0::Ptr*)$e.entity)->myPtr))

		children	((($T0::Ptr*)$e.entity)->myPtr)

}

NCollection_List<*>	{

		preview	(#("NCollection_List	[",	$e.myLength,	"]"	

))

		children	(#list(head:	$c.myFirst,	next:	myNext)	

:	#(*($T1*)(&$e+1)))

}

NCollection_Array1<*>	{

		preview	(#("NCollection_Array1	[",	

$e.myLowerBound,	"..",	$e.myUpperBound,	"]"))

		children	(#array(expr:	$c.myData[$i],	size:	

1+$c.myUpperBound))

}

math_Vector	{

		preview	(#("math_Vector	[",	$e.LowerIndex,	"..",	

$e.UpperIndex,	"]"))

		children	(#array	(expr:	((double*)

($c.Array.Addr))[$i],	size:	1+$c.UpperIndex))

}

TColStd_Array1OfReal	{

		preview	(#("Array1OfReal	[",	$e.myLowerBound,	

"..",	$e.myUpperBound,	"]"))

		children	(#array	(expr:	((double*)($c.myStart))

[$i],	size:	1+$c.myUpperBound))

}

Handle_TColStd_HArray1OfReal	{

		preview	(#("HArray1OfReal	[",

															((TColStd_HArray1OfReal*)$e.entity)-

>myArray.myLowerBound,	"..",	

															((TColStd_HArray1OfReal*)$e.entity)-

>myArray.myUpperBound,	"]	",

															[$e.entity,x],	"	count=",	$e.entity-

>count))

		children	(#array	(expr:	((double*)

(((TColStd_HArray1OfReal*)$e.entity)-

>myArray.myStart))[$i],

																						size:	1+

((TColStd_HArray1OfReal*)$e.entity)-

>myArray.myUpperBound))

}

TColStd_Array1OfInteger	{

		preview	(#("Array1OfInteger	[",	$e.myLowerBound,	

"..",	$e.myUpperBound,	"]"))

		children	(#array	(expr:	((int*)($c.myStart))[$i],	

size:	1+$c.myUpperBound))

}

Handle_TColStd_HArray1OfInteger	{

		preview	(#("HArray1OfInteger	[",

															

((TColStd_HArray1OfInteger*)$e.entity)-

>myArray.myLowerBound,	"..",	

															

((TColStd_HArray1OfInteger*)$e.entity)-

>myArray.myUpperBound,	"]	",

															[$e.entity,x],	"	count=",	$e.entity-

>count))

		children	(#array	(expr:	((int*)

(((TColStd_HArray1OfInteger*)$e.entity)-

>myArray.myStart))[$i],

																						size:	1+

((TColStd_HArray1OfInteger*)$e.entity)-

>myArray.myUpperBound))

}

Handle_TCollection_HExtendedString	{

		preview	(#("HExtendedString	",	[$e.entity,x],	"	

count=",	$e.entity->count,	

															"	",	

((TCollection_HExtendedString*)$e.entity)-

>myString))

		children	(#([actual	members]:	[$e,!]))

}

Handle_TCollection_HAsciiString	{

		preview	(#("HAsciiString	",	[$e.entity,x],	"	

count=",	$e.entity->count,	

															"	",	

((TCollection_HAsciiString*)$e.entity)->myString	

))

		children	(#([actual	members]:	[$e,!],	

													#array(expr:	

((TCollection_HAsciiString*)$e.entity)-

>myString.mystring[$i],	

																					size:	

((TCollection_HAsciiString*)$e.entity)-

>myString.mylength)))

}

In	Visual	Studio	2012	and	later,	visualizers	can	be	put	in	a	separate	file	in
subdirectory	Visualizers.	See	file	occt.natvis	for	example.

Performance	measurement	tools
It	is	recommended	to	use	specialized	performance	analysis	tools	to
profile	OCCT	and	application	code.	However,	when	such	tools	are	not
available	or	cannot	be	used	for	some	reason,	tools	provided	by	OSD
package	can	be	used:	low-level	C	functions	and	macros	defined	in
OSD_PerfMeter.h	and	OSD_PerfMeter	class.

This	tool	maintains	an	array	of	100	global	performance	counters	that	can
be	started	and	stopped	independently.	Adding	a	performance	counter	to
a	function	of	interest	allows	to	get	statistics	on	the	number	of	calls	and
the	total	execution	time	of	the	function.

In	C++	code,	this	can	be	achieved	by	creating	local	variable
OSD_PerfMeter	in	each	block	of	code	to	be	measured.
In	C	or	Fortran	code,	use	functions	perf_start_meter	and
perf_stop_meter	to	start	and	stop	the	counter.

Note	that	this	instrumentation	is	intended	to	be	removed	when	the
profiling	is	completed.

Macros	provided	in	OSD_PerfMeter.h	can	be	used	to	keep
instrumentation	code	permanently	but	enable	it	only	when	macro
PERF_ENABLE_METERS	is	defined.	Each	counter	has	its	name	shown
when	the	collected	statistics	are	printed.

In	DRAW,	use	command	dperf	to	print	all	performance	statistics.

Note	that	performance	counters	are	not	thread-safe.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Table	of	Contents

Introduction
Precautions
Disclaimer

Upgrade	to	OCCT	6.5.0
Upgrade	to	OCCT	6.5.1
Upgrade	to	OCCT	6.5.2
Upgrade	to	OCCT	6.5.3
Upgrade	to	OCCT	6.5.4
Upgrade	to	OCCT	6.6.0
Upgrade	to	OCCT	6.7.0
Object-level	clipping
and	capping
algorithm.
Redesign	of	markers
presentation
Default	views	are	not
created	automatically
Improved	dimensions
implementation
NCollection_Set
replaced	by	List
collection

Upgrade	to	OCCT	6.8.0
Changes	in
NCollection	classes
3D	View	Camera
Redesign	of
Connected
Interactive	Objects

Open	CASCADE
Technology		7.2.0

Upgrade	from	older	OCCT	versions

Support	of	UNICODE
Characters
Elimination	of
Projection	Shift
Concept

Upgrade	to	OCCT	6.9.0
3D	Viewer
initialization
Changes	in	Selection
Changes	in
Adaptor3d_Curve
class
Changes	in	V3d_View
class

Upgrade	to	OCCT	7.0.0
Removal	of	legacy
persistence
Removal	of	CDL	and
WOK

Automatic
upgrade
Possible
compiler	errors
Possible	runtime
problems
Option	to	avoid
cast	of	handle
to	reference	to
base	type
Preserving
compatibility
with	OCCT	6.x
Applications
based	on	CDL
and	WOK

Separation	of	BSpline
cache
Structural	result	of
Boolean	operations
BRepExtrema_ExtCC
finds	one	solution
only

Removal	of	SortTools
package
On-screen	objects
and	ColorScale
UserDraw	and
Visual3d
Deprecation	of	Local
Context
Separation	of
visualization	part
from	TKCAF
Correction	of
interpretation	of
Euler	angles	in
gp_Quaternion
Zoom	Persistent
Selection
Texture	mapping	of
objects
Shape	presentation
builders

Upgrade	to	OCCT	7.1.0
Presentation
attributes
Typedefs
Programmable
Pipeline
Transformation
persistence
Dynamic	highlight
and	selection
properties
Correction	in
TObj_Model	class
Redundant
environment
variables
Removed	features
Other	changes

Upgrade	to	OCCT	7.2.0
Removed	features

Corrections	in
BRepOffset	API
Corrections	in
BRepOffset	API
Highlight	style
Elimination	of	implicit
3D	Viewer	updates
Elimination	of
Quantity_NameOfColor
from	TKV3d	interface
classes
Result	of	Boolean
operations	on
containers
Other	changes
BOP	-	Pairs	of
interfering	indices
Removal	of	the	Draw
commands	based	on
old	Boolean
operations
Change	of	Face/Face
intersection	in
Boolean	operations
Restore	OCCT	6.9.1
persistence
Change	in
BRepLib_MakeFace
algorithm
Change	in
BRepFill_OffsetWire
algorithm
Change	in
Geom(2d)Adaptor_Curve::IsPeriodic
Change	in	algorithm
ShapeUpgrade_UnifySameDomain
Changes	in	STL
Reader	/	Writer
Refactoring	of	the
Error/Warning
reporting	system	in
Boolean	Component

Introduction
This	document	provides	technical	details	on	changes	made	in	particular
versions	of	OCCT.	It	can	help	to	upgrade	user	applications	based	on
previous	versions	of	OCCT	to	newer	ones.

Precautions
Back-up	your	code	before	the	upgrade.	We	strongly	recommend	using
version	control	system	during	the	upgrade	process	and	saving	one	or
several	commits	at	each	step	of	upgrade,	until	the	overall	result	is
verified.	This	will	facilitate	identification	and	correction	of	possible
problems	that	can	occur	at	the	intermediate	steps	of	upgrade.	It	is
advisable	to	document	each	step	carefully	to	be	able	to	repeat	it	if
necessary.

Disclaimer
This	document	describes	known	issues	that	have	been	encountered
during	porting	of	OCCT	and	some	applications	and	approaches	that	have
helped	to	resolve	these	issues	in	known	cases.	It	does	not	pretend	to
cover	all	possible	migration	issues	that	can	appear	in	your	application.
Take	this	document	with	discretion;	apply	your	expertise	and	knowledge
of	your	application	to	ensure	the	correct	result.

The	automatic	upgrade	tool	is	provided	as	is,	without	warranty	of	any
kind,	and	we	explicitly	disclaim	any	liability	for	possible	errors	that	may
appear	due	to	use	of	this	tool.	It	is	your	responsibility	to	ensure	that	the
changes	you	made	in	your	code	are	correct.	When	you	upgrade	the	code
by	an	automatic	script,	make	sure	to	carefully	review	the	introduced
changes	at	each	step	before	committing	them.

Upgrade	to	OCCT	6.5.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.5
requires	taking	into	account	the	following	major	changes:

If	you	are	not	comfortable	with	dependence	on	Intel	TBB,
FreeImage,	or	Gl2Ps	libraries,	you	will	need	to	(re)build	OCCT	with
these	dependencies	disabled.
The	low-level	format	version	of	OCAF	binary	and	XML	persistence
has	been	incremented.	Hence,	the	files	saved	by	OCCT	6.5	to
OCAF	binary	or	XML	format	will	not	be	readable	by	previous
versions	of	OCCT.
The	BRepMesh	triangulation	algorithm	has	been	seriously	revised
and	now	tries	hard	to	fulfill	the	requested	deflection	and	angular
tolerance	parameters.	If	you	experience	any	problems	with
performance	or	triangulation	quality	(in	particular,	display	of	shapes
in	shading	mode),	consider	revising	the	values	of	these	parameters
used	in	your	application.
If	you	were	using	method	ToPixMap()	of	class	V3d_View	to	get	a
buffer	for	passing	to	Windows	API	functions	(e.g.	BitBlt),	this	will	not
work	anymore.	You	will	need	to	use	method
Image_PixMap::AccessBuffer()	to	get	the	raw	buffer	data	that	can	be
further	passed	to	WinAPI	functions.
As	the	processing	of	message	gravity	parameter	in	Message
package	has	been	improved,	some	application	messages	(especially
the	ones	generated	by	IGES	or	STEP	translators)	can	be
suppressed	or	new	messages	appear	in	the	application.	Use
relevant	message	level	parameter	to	tune	this	behavior.

Upgrade	to	OCCT	6.5.1
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.5.1
requires	taking	into	account	the	following	major	changes:

Method	Graphic3d_Structure::Groups()	now	returns
Graphic3d_SequenceOfGroup.	If	this	method	has	been	used,	the
application	code	should	be	updated	to	iterate	another	collection	type
or,	if	Graphic3d_HSetOfGroup	is	required,	to	fill	its	own	collection:
const	Graphic3d_SequenceOfGroup&	aGroupsSeq	=	

theStructure.Groups();

Handle(Graphic3d_HSetOfGroup)	aGroupSet	=	new	

Graphic3d_HSetOfGroup();

Standard_Integer	aLen	=	aGroupsSeq.Length();

for	(Standard_Integer	aGr	=	1;	aGr	<=	aLen;	

++aGr)

{

	aGroupSet->Add	(aGroupsSeq.Value	(aGr));

}

All	occurrences	of	Select3D_Projector	in	the	application	code	(if	any)
should	be	replaced	with	Handle(Select3D_Projector).
The	code	of	inheritors	of	Select3D_SensitiveEntity	should	be
updated	if	they	override	Matches()	(this	is	probable,	if	clipping	planes
are	used).
Constructor	for	V3d_Plane	has	been	changed,	so	the	extra
argument	should	be	removed	if	used	in	the	application.	It	is
necessary	to	add	a	new	plane	using	method
V3d_Viewer::AddPlane()	if	V3d_Viewer	has	been	used	to	manage
clipping	planes	list	(this	does	not	affect	clipping	planes
representation).	Please,	have	a	look	at	the	source	code	for	new
DRAWEXE	vclipplane	command	in
ViewerTest_ObjectsCommands.cxx,	VClipPlane	to	see	how	clipping
planes	can	be	managed	in	the	application.

Upgrade	to	OCCT	6.5.2
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.5.2
requires	taking	into	account	the	following	major	changes:

Any	code	that	has	been	generated	by	WOK	from	CDL	generic
classes	Tcollection_DataMap	and	Tcollection_IndexedDataMap
needs	to	be	regenerated	by	WOK	to	take	into	account	the	change	in
the	interface	of	these	classes.
The	enumerations	CDF_StoreStatus	and	CDF_RetrievableStatus
have	been	replaced	by	the	enumerations	PCDM_StoreStatus	and
PCDM_ReaderStatus.	Correspondingly,	the	methods	Open,	Save
and	SaveAs	of	the	class	TDocStd_Application	have	changed	their
return	value.	Any	code,	which	uses	these	enumerations,	needs	to	be
updated.
BRepLib_MakeFace	has	been	modified	to	receive	tolerance	value
for	resolution	of	degenerated	edges.	This	tolerance	parameter	has
no	default	value	to	ensure	that	the	client	code	takes	care	of	passing
a	meaningful	value,	not	just	Precision::Confusion,	so	some	porting
overheads	are	expected.
If	the	callback	mechanism	in	call_togl_redraw	function	was	used	in
the	application	code,	it	is	necessary	to	revise	it	to	take	into	account
the	new	callback	execution	and	provide	a	check	of	reason	value	of
Aspect_GraphicCallbackStruct	in	callback	methods	to	confirm	that
the	callback	code	is	executed	at	the	right	moment.	Now	the
callbacks	are	executed	before	redrawing	the	underlayer,	before
redrawing	the	overlayer	and	at	the	end	of	redrawing.	The	information
about	the	moment	when	the	callback	is	invoked	is	provided	with	the
reason	value	in	form	of	an	additional	bit	flag	(OCC_PRE_REDRAW,
OCC_PRE_OVERLAY).	The	state	of	OpenGl	changed	in	callback
methods	will	not	be	restored	automatically,	which	might	lead	to
unwanted	behavior	in	redrawing	procedure.
The	print	method	used	in	the	application	code	might	need	to	be
revised	to	take	into	account	the	ability	to	choose	between	print
algorithms:	tile	and	stretch.	The	stretch	algorithm	will	be	selected	by
default	during	porting.
It	is	recommended	to	BRepMesh_DiscretFactory	users,	to	check
BRepMesh_DiscretFactory::SetDefault()	return	value	to	determine

plugin	availability	/	validity.	BRepMesh_DiscretFactory::Discret()
method	now	returns	handle	instead	of	pointer.	The	code	should	be
updated	in	the	following	manner:
Handle(BRepMesh_DiscretRoot)	aMeshAlgo	=	

BRepMesh_DiscretFactory::Get().Discret	

(theShape,	theDeflection,	theAngularToler);

	if	(!aMeshAlgo.IsNull())		{}

The	default	state	of	BRepMesh	parallelization	has	been	turned	off.
The	user	should	switch	this	flag	explicitly:

by	using	methods
BRepMesh_IncrementalMesh::SetParallel(Standard_True)	for
each	BRepMesh_IncrementalMesh	instance	before	Perform();
by	calling
BRepMesh_IncrementalMesh::SetParallelDefault(Standard_True)
when	BRepMesh_DiscretFactory	is	used	to	retrieve	the	meshing
tool	(this	also	affects	auto-triangulation	in	AIS).

Upgrade	to	OCCT	6.5.3
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.5.3
requires	taking	into	account	the	following	major	changes:

As	a	result	of	code	clean-up	and	redesign	of	TKOpenGl	driver,	some
obsolete	functions	and	rendering	primitives	(TriangleMesh,
TriangleSet,	Bezier,	Polyline,	Polygon,	PolygonHoles,
QuadrangleMesh	and	QuadrangleSet)	have	been	removed.	Instead,
the	application	developers	should	use	primitive	arrays	that	provide
the	same	functionality	but	are	hardware-accelerated.	The	details	can
be	found	in	OCCT	Visualization	User's	Guide,	“Primitive	Arrays”
chapter.
Applications	should	not	call
AIS_InteractiveObject::SetPolygonOffsets()	method	for	an	instance
of	AIS_TexturedShape	class	after	it	has	been	added	to
AIS_InteractiveContext.	More	generally,	modification	of
Graphic3d_AspectFillArea3d	parameters	for	the	computed	groups	of
any	AIS_InteractiveObject	subclass	that	uses	texture	mapping
should	be	avoided,	because	this	results	in	broken	texture	mapping
(see	issue	23118).	It	is	still	possible	to	apply	non-default	polygon
offsets	to	AIS_TexturedShape	by	calling	SetPolygonOffsets()	before
displaying	the	shape.
The	applications	that	might	have	used	internal	functions	provided	by
TKOpenGl	or	removed	primitives	will	need	to	be	updated.
In	connection	with	the	implementation	of	Z-layers	it	might	be
necessary	to	revise	the	application	code	or	revise	the	custom	direct
descendant	classes	of	Graphic3d_GraphicDriver	and
Graphic3d_StructureManager	to	use	the	Z-layer	feature.
Global	variables	Standard_PI	and	PI	have	been	eliminated	(use
macro	M_PI	instead).
Method	HashCode()	has	been	removed	from	class
Standard_Transient.	It	is	advisable	to	use	global	function
HashCode()	for	Handle	objects	instead.
Declaration	of	operators	new/delete	for	classes	has	become
consistent	and	is	encapsulated	in	macros.
Memory	management	has	been	changed	to	use	standard	heap
(MMGT_OPT=0)	and	reentrant	mode	(MMGT_REENTRANT=1)	by

default.
Map	classes	in	NCollection	package	now	receive	one	more
argument	defining	a	hash	tool.

Upgrade	to	OCCT	6.5.4
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.5.4
requires	taking	into	account	the	following	major	changes:

The	code	using	obsolete	classes	Aspect_PixMap,	Xw_PixMap	and
WNT_PixMap	should	be	rewritten	implementing	class
Image_PixMap,	which	is	now	retrieved	by	ToPixMap	methods	as
argument.	A	sample	code	using	ToPixMap	is	given	below:
#include	<Image_AlienPixMap.hxx>

void	dump	(Handle(V3d_View)&	theView3D)

{

		Standard_Integer	aWndSizeX	=	0;

		Standard_Integer	aWndSizeY	=	0;

		theView3D->Window()->Size	(aWndSizeX,	

aWndSizeY);

		Image_AlienPixMap	aPixMap;

		theView3D->ToPixMap	(aPixMap,	aWndSizeX,	

aWndSizeY);

		aPixMap.Save	("c:\\image.png");

}

Now	OpenGL	resources	related	to	Interactive	Objects	are
automatically	freed	when	the	last	view	(window)	is	removed	from
graphical	driver.	To	avoid	presentation	data	loss,	the	application
should	replace	an	old	view	with	a	new	one	in	the	proper	order:	first
the	new	view	is	created	and	activated	and	only	then	the	old	one	is
detached	and	removed.
It	is	recommended	to	use	NCollection	containers	with	hasher
parameter	(introduced	in	6.5.3)	instead	of	global	definition
IsEqual()/HashCode()	as	well	as	to	use	explicit	namespaces	to	avoid
name	collision.

Upgrade	to	OCCT	6.6.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.6.0
requires	taking	into	account	the	following	major	changes:

Due	to	the	changes	in	the	implementation	of	Boolean	Operations,
the	order	of	sub-shapes	resulting	from	the	same	operation
performed	with	OCCT	6.5.x	and	OCCT	6.6.0	can	be	different.	It	is
necessary	to	introduce	the	corresponding	changes	in	the
applications	for	which	the	order	of	sub-shapes	resulting	from	a
Boolean	operation	is	important.	It	is	strongly	recommended	to	use
identification	methods	not	relying	on	the	order	of	sub-shapes	(e.g.
OCAF	naming).
If	you	need	to	use	OCCT	on	Mac	OS	X	with	X11	(without	Cocoa),
build	OCCT	with	defined	pre-processor	macro
CSF_MAC_USE_GLX11.	XLib	front-end	(previously	the	only	way	for
unofficial	OCCT	builds	on	Mac	OS	X)	is	now	disabled	by	default	on
this	platform.	If	your	application	has	no	support	for	Cocoa	framework
you	may	build	OCCT	with	XLib	front-end	adding
MACOSX_USE_GLX	macro	to	compiler	options	(you	may	check	the
appropriate	option	in	WOK	configuration	GUI	and	in	CMake
configuration).	Notice	that	XQuartz	(XLib	implementation	for	Mac	OS
X)	now	is	an	optional	component	and	does	not	provide	a	sufficient
level	of	integrity	with	native	(Cocoa-based)	applications	in	the
system.	It	is	not	possible	to	build	OCCT	with	both	XLib	and	Cocoa	at
the	same	time	due	to	symbols	conflict	in	OpenGL	functions.
Animation	mode	and	degeneration	presentation	mode	(simplified
presentation	for	animation)	and	associated	methods	have	been
removed	from	3D	viewer	functionality.	Correspondingly,	the	code
using	methods	SetAnimationModeOn(),	SetAnimationModeOff(),
AnimationModeIsOn(),	AnimationMode(),	Tumble(),
SetDegenerateModeOn(),	SetDegenerateModeOff()	and
DegenerateModeIsOn()	of	classes	V3d_View	and	Visual3d_View	will
need	to	be	removed	or	redesigned.	Please,	notice	that	Hidden	Line
Removal	presentation	was	not	affected;	however,	the	old	code	that
used	methods	V3d_View::SetDegenerateModeOn	or
V3d_View::SetDegenerateModeOff	to	control	HLR	presentation
should	be	updated	to	use	V3d_View::SetComputedMode	method

instead.
Calls	of	Graphic3d_Group::BeginPrimitives()	and
Graphic3d_Group::EndPrimitives()	should	be	removed	from	the
application	code.
Application	functionality	for	drawing	2D	graphics	that	was	formerly
based	on	TKV2d	API	should	be	migrated	to	TKV3d	API.	The
following	changes	are	recommended	for	this	migration:

A	2D	view	can	be	implemented	as	a	V3d_View	instance
belonging	to	V3d_Viewer	managed	by	AIS_InteractiveContext
instance.	To	turn	V3d_View	into	a	2D	view,	the	necessary	view
orientation	should	be	set	up	at	the	view	initialization	stage	using
V3d_View::SetProj()	method,	and	view	rotation	methods	simply
should	not	be	called.
Any	2D	graphic	entity	(formerly	represented	with
AIS2D_InteractiveObject)	should	become	a	class	derived	from
AIS_InteractiveObject	base.	These	entities	should	be
manipulated	in	a	view	using	AIS_InteractiveContext	class	API.
All	drawing	code	should	be	put	into	Compute()	virtual	method	of
a	custom	interactive	object	class	and	use	API	of	Graphic3d
package.	In	particular,	all	geometry	should	be	drawn	using	class
hierarchy	derived	from	Graphic3d_ArrayOfPrimitives.	Normally,
the	Z	coordinate	for	2D	geometry	should	be	constant,	unless	the
application	implements	some	advanced	2D	drawing	techniques
like	e.g.	multiple	"Z	layers"	of	drawings.
Interactive	selection	of	2D	presentations	should	be	set	up	inside
ComputeSelection()	virtual	method	of	a	custom	interactive
object	class,	using	standard	sensitive	entities	from	Select3D
package	and	standard	or	custom	entity	owners	derived	from
SelectMgr_EntityOwner	base.	Please	refer	to	the	Visualization
User's	Guide	for	further	details	concerning	OCCT	3D
visualization	and	selection	classes.	See	also	Viewer2D	OCCT
sample	application,	which	shows	how	2D	drawing	can	be
implemented	using	TKV3d	API.

Run-time	graphic	driver	library	loading	mechanism	based	on
CSF_GraphicShr	environment	variable	usage	has	been	replaced	by
explicit	linking	against	TKOpenGl	library.	The	code	sample	below
shows	how	the	graphic	driver	should	be	created	and	initialized	in	the
application	code:
//	initialize	a	new	viewer	with	OpenGl	graphic	

driver

Handle(Graphic3d_GraphicDriver)	aGraphicDriver	=	

new	OpenGl_GraphicDriver	("TKOpenGl");

		aGraphicDriver->Begin	(new	

Aspect_DisplayConnection());

		TCollection_ExtendedString	aNameOfViewer	

("Visu3D");

		Handle(V3d_Viewer)	aViewer	

=	new	V3d_Viewer	(aGraphicDriver,	

aNameOfViewer.ToExtString());

		aViewer->Init();

//	create	a	new	window	or	a	wrapper	over	the	

existing	window,	

//	provided	by	a	3rd-party	framework	(Qt,	MFC,	C#	

or	Cocoa)

#if	defined(_WIN32)	||	defined(__WIN32__)

		Aspect_Handle	aWindowHandle	=	(Aspect_Handle	

)winId();

		Handle(WNT_Window)	aWindow	=	new	WNT_Window	

(winId());

#elif	defined(__APPLE__)	&&	

!defined(MACOSX_USE_GLX)

		NSView*	aViewHandle	=	(NSView*)winId();

		Handle(Cocoa_Window)	aWindow	=	new	Cocoa_Window	

(aViewHandle);

#else

	Aspect_Handle	aWindowHandle	=	(Aspect_Handle	

)winId();

		Handle(Xw_Window)	aWindow	=	

					new	Xw_Window	(aGraphicDriver-

>GetDisplayConnection(),	aWindowHandle);

#endif	//	WNT

//	setup	the	window	for	a	new	view

		Handle(V3d_View)	aView	=	aViewer->CreateView();

		aView->SetWindow	(aWindow);

The	following	changes	should	be	made	in	the	application-specific

implementations	of	texture	aspect:
Graphic3d_TextureRoot	inheritors	now	should	return	texture
image	by	overloading	of	Graphic3d_TextureRoot::GetImage()
method	instead	of	the	old	logic.
Now	you	can	decide	if	the	application	should	store	the	image
copy	as	a	field	of	property	or	reload	it	dynamically	each	time	(to
optimize	the	memory	usage).	The	default	implementation	(which
loads	the	image	content	from	the	provided	file	path)	does	not
hold	an	extra	copy	since	it	will	be	uploaded	to	the	graphic
memory	when	first	used.
Notice	that	the	image	itself	should	be	created	within
Image_PixMap	class	from	AlienImage	package,	while
Image_Image	class	is	no	more	supported	and	will	be	removed
in	the	next	OCCT	release.

Upgrade	to	OCCT	6.7.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.7.0
requires	taking	into	account	the	following	major	changes.

Object-level	clipping	and	capping	algorithm.
It	might	be	necessary	to	revise	and	port	code	related	to	management
of	view-level	clipping	to	use	Graphic3d_ClipPlane	instead	of
V3d_Plane	instances.	Please	note	that	V3d_Plane	class	has	been
preserved	–	as	previously,	it	can	be	used	as	plane	representation.
Another	approach	to	represent	Graphic3d_ClipPlane	in	a	view	is	to
use	custom	presentable	object.
The	list	of	arguments	of	Select3D_SensitiveEntity::Matches()	method
for	picking	detection	has	changed.	Since	now,	for	correct	selection
clipping,	the	implementations	should	perform	a	depth	clipping	check
and	return	(as	output	argument)	minimum	depth	value	found	at	the
detected	part	of	sensitive.	Please	refer	to	CDL	/	Doxygen
documentation	to	find	descriptive	hints	and	snippets.
Select3D_SensitiveEntity::ComputeDepth()	abstract	method	has
been	removed.	Custom	implementations	should	provide	depth
checks	by	method	Matches()	instead	–	all	data	required	for	it	is
available	within	a	scope	of	single	method.
It	might	be	necessary	to	revise	the	code	of	custom	sensitive	entities
and	port	Matches()	and	ComputeDepth()	methods	to	ensure	proper
selection	clipping.	Please	note	that	obsolete	signature	of	Matches	is
not	used	anymore	by	the	selector.	If	your	class	inheriting
Select3D_SensitiveEntity	redefines	the	method	with	old	signature
the	code	should	not	compile	as	the	return	type	has	been	changed.
This	is	done	to	prevent	override	of	removed	methods.

Redesign	of	markers	presentation
Due	to	the	redesign	of	Graphic3d_AspectMarker3d	class	the	code	of
custom	markers	initialization	should	be	updated.	Notice	that	you	can
reuse	old	markers	definition	code	as	TColStd_HArray1OfByte;
however,	Image_PixMap	is	now	the	preferred	way	(and	supports	full-
color	images	on	modern	hardware).
Logics	and	arguments	of	methods	AIS_InteractiveContext::Erase()
and	AIS_InteractiveContext::EraseAll()	have	been	changed.	Now
these	methods	do	not	remove	resources	from	Graphic3d_Structure;
they	simply	change	the	visibility	flag	in	it.	Therefore,	the	code	that
deletes	and	reсomputes	resources	should	be	revised.
Graphic3d_Group::MarkerSet()	has	been	removed.
Graphic3d_Group::AddPrimitiveArray()	should	be	used	instead	to
specify	marker(s)	array.

Default	views	are	not	created	automatically
As	the	obsolete	methods	Init(),	DefaultOrthographicView()	and
DefaultPerspectiveView()	have	been	removed	from	V3d_Viewer	class,
the	two	default	views	are	no	longer	created	automatically.	It	is	obligatory
to	create	V3d_View	instances	explicitly,	either	directly	by	operator	new	or
by	calling	V3d_Viewer::CreateView().

The	call	V3d_Viewer::SetDefaultLights()	should	also	be	done	explicitly	at
the	application	level,	if	the	application	prefers	to	use	the	default	light
source	configuration.	Otherwise,	the	application	itself	should	set	up	the
light	sources	to	obtain	a	correct	3D	scene.

Improved	dimensions	implementation
It	might	be	necessary	to	revise	and	port	code	related	to	management
of	AIS_LengthDimension,	AIS_AngleDimension	and
AIS_DiameterDimension	presentations.	There	is	no	more	need	to
compute	value	of	dimension	and	pass	it	as	string	to	constructor
argument.	The	value	is	computed	internally.	The	custom	value	can
be	set	with	SetCustomValue()	method.
The	definition	of	units	and	general	aspect	properties	is	now	provided
by	Prs3d_DimensionUnits	and	Prs3d_DimensionApsect	classes.
It	might	be	also	necessary	to	revise	code	of	your	application	related
to	usage	of	AIS_DimensionDisplayMode	enumeration.	If	it	used	for
specifying	the	selection	mode,	then	it	should	be	replaced	by	a	more
appropriate	enumeration	AIS_DimensionSelectionMode.

NCollection_Set	replaced	by	List	collection
It	might	be	necessary	to	revise	your	application	code,	which	uses	non-
ordered	Graphic3d_SetOfHClipPlane	collection	type	and	replace	its
occurrences	by	ordered	Graphic3d_SequenceOfHClipPlane	collection
type.

Upgrade	to	OCCT	6.8.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.8.0
requires	taking	into	account	the	following	major	changes.

Changes	in	NCollection	classes
Method	Assign()	in	NCollection	classes	does	not	allow	any	more	copying
between	different	collection	types.	Such	copying	should	be	done
manually.

List	and	map	classes	in	NCollection	package	now	require	that	their	items
be	copy-constructible,	but	do	not	require	items	to	have	default
constructor.	Thus	the	code	using	NCollection	classes	for	non-copy-
constructible	objects	needs	be	updated.	One	option	is	to	provide	copy
constructor;	another	possibility	is	to	use	Handle	or	other	smart	pointer.

3D	View	Camera
If	ViewMapping	and	ViewOrientation	were	used	directly,	this	functionality
has	to	be	ported	to	the	new	camera	model.	The	following	methods	should
be	considered	as	an	alternative	to	the	obsolete	Visual3d	services	(all
points	and	directions	are	supposed	to	be	in	world	coordinates):

Graphic3d_Camera::ViewDimensions()	or	V3d_View::Size()/ZSize()
–	returns	view	width,	height	and	depth	(or	"Z	size").	Since	the	view	is
symmetric	now,	you	can	easily	compute	top,	bottom,	left	and	right
limits.	Graphic3d_Camera::ZNear()/ZFar()	can	be	used	to	obtain	the
near	and	far	clipping	distances	with	respect	to	the	eye.
Graphic3d_Camera::Up()	or	V3d_View::Up()	–	returns	Y	direction	of
the	view.
Graphic3d_Camera::Direction()	returns	the	reverse	view	normal
directed	from	the	eye,	V3d_View::Proj()	returns	the	old-style	view
normal.
Graphic3d_Camera::Eye()	or	V3d_View::Eye()	–	returns	the	camera
position	(same	as	projection	reference	point	in	old	implementation).
Graphic3d_Camera::Center()	or	V3d_View::At()	–	returns	the	point
the	camera	looks	at	(or	view	reference	point	according	to	old
terminology).

The	current	perspective	model	is	not	fully	backward	compatible,	so	the
old	perspective-related	functionality	needs	to	be	reviewed.

Please	revise	application-specific	custom	presentations	to	provide	proper
bounding	box.	Otherwise	object	might	become	erroneously	clipped	by
automatic	ZFit	or	frustum	culling	algorithms	enabled	by	default.

Redesign	of	Connected	Interactive	Objects
The	new	implementation	of	connected	Interactive	Objects	makes	it
necessary	to	take	the	following	steps	if	you	use	connected	Interactive
Objects	in	your	application.

Use	new	PrsMgr_PresentableObject	transformation	API.
Call	RemoveChild()	from	the	original	object	after	connect	if	you	need
the	original	object	and	AIS_ConnectedInteractive	to	move
independently.
Access	instances	of	objects	connected	to
AIS_MultiplyConnectedInteractive	with	Children()	method.
For	PrsMgr_PresentableObject	transformation:

SetLocation	(TopLoc_Location)	->	SetLocalTransformation
(gp_Trsf)
Location	->	LocalTransformation
HasLocation	->	HasTransformation
ResetLocation	->	ResetTransformation

Support	of	UNICODE	Characters
Support	of	UNICODE	characters	introduced	in	OCCT	breaks	backward
compatibility	with	applications,	which	currently	use	filenames	in	extended
ASCII	encoding	bound	to	the	current	locale.	Such	applications	should	be
updated	to	convert	such	strings	to	UTF-8	format.

The	conversion	from	UTF-8	to	wchar_t	is	made	using	little-endian
approach.	Thus,	this	code	will	not	work	correctly	on	big-endian	platforms.
It	is	needed	to	complete	this	in	the	way	similar	as	it	is	done	for	binary
persistence	(see	the	macro	DO_INVERSE	in	FSD_FileHeader.hxx).

Elimination	of	Projection	Shift	Concept
It	might	be	necessary	to	revise	the	application	code,	which	deals	with
Center()	method	of	V3d_View.

This	method	was	used	to	pan	a	V3d	view	by	virtually	moving	the	screen
center	with	respect	to	the	projection	ray	passed	through	Eye	and	At
points.	There	is	no	more	need	to	derive	the	panning	from	the	Center
parameter	to	get	a	camera-like	eye	position	and	look	at	the	coordinates.
Eye()	and	At()	now	return	these	coordinates	directly.	When	porting	code
dealing	with	Center(),	the	parameters	Eye()	and	At()	can	be	adjusted
instead.	Also	V3d_View::SetCenter(Xpix,	Ypix)	method	can	be	used
instead	of	V3d_View::Center(X,	Y)	to	center	the	view	at	the	given	point.
However,	if	the	center	coordinates	X	and	Y	come	from	older	OCCT
releases,	calling	V3d_View::Panning(-X,	-Y)	can	be	recommended	to
compensate	missing	projection	shift	effect.

There	are	several	changes	introduced	to	Graphic3d_Camera.	The
internal	data	structure	of	the	camera	is	based	on	Standard_Real	data
types	to	avoid	redundant	application-level	conversions	and	precision
errors.	The	transformation	matrices	now	can	be	evaluated	both	for
Standard_Real	and	Standard_ShortReal	value	types.	ZNear	and	ZFar
planes	can	be	either	negative	or	positive	for	orthographic	camera
projection,	providing	a	trade-off	between	the	camera	distance	and	the
range	of	ZNear	or	ZFar	to	reduce	difference	of	exponents	of	values
composing	the	orientation	matrix	-	to	avoid	calculation	errors.	The
negative	values	can	be	specified	to	avoid	Z-clipping	if	the	reference
system	of	camera	goes	inside	of	the	model	when	decreasing	camera
distance.

The	auto	z	fit	mode,	since	now,	has	a	parameter	defining	Z-range	margin
(the	one	which	is	usually	passed	as	argument	to	ZFitAll()	method).	The
methods	SetAutoZFitMode(),	AutoZFitScaleFactor()	and	ZFitAll()	from
class	V3d_View	deal	with	the	new	parameter.

The	class	Select3D_Projector	now	supports	both	orientation	and
projection	transformation	matrices,	which	can	be	naturally	set	for	the
projector.	The	definition	of	projector	was	revised	in
StdSelect_ViewerSelector3d:	perspective	and	orthographic	projection

parameters	are	handled	properly.	Orthographic	projector	is	based	only	on
direction	of	projection	-	no	more	Center	property.	This	makes	it	possible
to	avoid	unnecessary	re-projection	of	sensitive	while	panning,	zooming	or
moving	along	the	projection	ray	of	the	view.	These	operations	do	not
affect	the	orthographic	projection.

Upgrade	to	OCCT	6.9.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	6.9.0
requires	taking	into	account	the	following	major	changes.

3D	Viewer	initialization
3D	Viewer	now	uses	GLSL	programs	for	managing	frame	buffer	and
stereoscopic	output.	For	proper	initialization,	application	should	configure
CSF_ShadersDirectory	environment	variable	pointing	to	a	folder	with
GLSL	resources	-	files	from	folder	CASROOT/src/Shaders.	Note	that
CSF_ShadersDirectory	become	optional	since	OCCT	7.1.0	release.

Changes	in	Selection
Selection	mechanism	of	3D	Viewer	has	been	redesigned	to	use	3-level
BVH	tree	traverse	directly	in	3D	space	instead	of	projection	onto	2D
screen	space	(updated	on	each	rotation).	This	architectural	redesign	may
require	appropriate	changes	at	application	level	in	case	if	custom
Interactive	Objects	are	used.

Standard	selection

Usage	of	standard	OCCT	selection	entities	would	require	only	minor
updates.

Custom	Interactive	Objects	should	implement	new	virtual	method
SelectMgr_SelectableObject::BoundingBox().

Now	the	method	SelectMgr_Selection::Sensitive()	does	not	return
SelectBasics_SensitiveEntity.	It	returns	an	instance	of
SelectMgr_SensitiveEntity,	which	belongs	to	a	different	class	hierarchy
(thus	DownCast()	will	fail).	To	access	base	sensitive	it	is	necessary	to
use	method	SelectMgr_SensitiveEntity::BaseSensitive().	For	example:

Handle(SelectMgr_Selection)	aSelection	=	

anInteractiveObject->Selection	(aMode);

for	(aSelection->Init();	aSelection->More();	

aSelection->Next())

{

			Handle(SelectBasics_SensitiveEntity)	anEntity	=	

aSelection->Sensitive()->BaseSensitive();

}

Custom	sensitive	entities

Custom	sensitive	entities	require	more	complex	changes,	since	the
selection	algorithm	has	been	redesigned	and	requires	different	output
from	the	entities.

The	method	SelectBasics_SensitiveEntity::Matches()	of	the	base	class
should	be	overridden	following	the	new	signature:

Standard_Boolean	Matches	(SelectBasics_SelectingVolumeManager&
theMgr,	SelectBasics_PickResult&	thePickResult),	where	theMgr
contains	information	about	the	currently	selected	frustum	or	set	of
frustums	(see	SelectMgr_RectangularFrustum,
SelectMgr_TrangularFrustum,	SelectMgr_TriangularFrustumSet)	and
SelectBasics_PickResult	is	an	output	parameter,	containing	information
about	the	depth	of	the	detected	entity	and	distance	to	its	center	of
geometry.

In	the	overridden	method	it	is	necessary	to	implement	an	algorithm	of
overlap	and	inclusion	detection	(the	active	mode	is	returned	by
theMgr.IsOverlapAllowed())	with	triangular	and	rectangular	frustums.

The	depth	and	distance	to	the	center	of	geometry	must	be	calculated	for
the	3D	projection	of	user-picked	screen	point	in	the	world	space.	You
may	use	already	implemented	overlap	and	inclusion	detection	methods
for	different	primitives	from	SelectMgr_RectangularFrustum	and
SelectMgr_TriangularFrustum,	including	triangle,	point,	axis-aligned	box,
line	segment	and	planar	polygon.

Here	is	an	example	of	overlap/inclusion	test	for	a	box:

if	(!theMgr.IsOverlapAllowed())	//	check	for	

inclusion

{

		Standard_Boolean	isInside	=	Standard_True;

		return	theMgr.Overlaps	(myBox.CornerMin(),	

myBox.CornerMax(),	&isInside)	&&	isInside;

}

Standard_Real	aDepth;

if	(!theMgr.Overlaps	(myBox,	aDepth))	//	check	for	

overlap

{

		return	Standard_False;

}

thePickResult	=

SelectBasics_PickResult	(aDepth,	

theMgr.DistToGeometryCenter	(myCenter3d));

The	interface	of	SelectBasics_SensitiveEntity	now	contains	four	new
pure	virtual	functions	that	should	be	implemented	by	each	custom
sensitive:

BoundingBox()	–	returns	a	bounding	box	of	the	entity;
Clear()	–	clears	up	all	the	resources	and	memory	allocated	for
complex	sensitive	entities;
BVH()	–	builds	a	BVH	tree	for	complex	sensitive	entities,	if	it	is
needed;
NbSubElements()	–	returns	atomic	sub-entities	of	a	complex
sensitive	entity,	which	will	be	used	as	primitives	for	BVH	building.	If
the	entity	is	simple	and	no	BVH	is	required,	this	method	returns	1.

Each	sensitive	entity	now	has	its	own	tolerance,	which	can	be	overridden
by	method	SelectBasics_SensitiveEntity::SetSensitivityFactor()	called
from	constructor.

Changes	in	Adaptor3d_Curve	class
All	classes	inheriting	Adaptor3d_Curve	(directly	or	indirectly)	must	be
updated	in	application	code	to	use	new	signature	of	methods	Intervals()
and	NbIntervals().	Note	that	no	compiler	warning	will	be	generated	if	this
is	not	done.

Changes	in	V3d_View	class
The	methods	V3d_View::Convert	and	V3d_View::ConvertWithProj()	have
ceased	to	return	point	on	the	active	grid.	It	might	be	necessary	to	revise
the	code	of	your	application	so	that	V3d_View::ConvertToGrid()	was
called	explicitly	for	the	values	returned	by	V3d_View::Convert	to	get
analogous	coordinates	on	the	grid.	The	methods	V3d_View::Convert	and
V3d_View::ConvertWithProj	convert	point	into	reference	plane	of	the	view
corresponding	to	the	intersection	with	the	projection	plane	of	the	eye/view
point	vector.

Upgrade	to	OCCT	7.0.0
Porting	of	user	applications	from	an	earlier	OCCT	version	to	version	7.0.0
requires	taking	into	account	the	following	major	changes.

Building	OCCT	now	requires	compiler	supporting	some	C++11	features.
The	supported	compilers	are:

MSVC:	version	10	(Visual	Studio	2010)	or	later
GCC:	version	4.3	or	later
CLang:	version	3.6	or	later
ICC:	version	XE	2013	SP	1	or	later

When	compiling	code	that	uses	OCCT	with	GCC	and	CLang	compilers,	it
is	necessary	to	use	compiler	option	-std=c++0x	(or	its	siblings)	to	enable
C++11	features.

Removal	of	legacy	persistence
Legacy	persistence	for	shapes	and	OCAF	data	based	on
Storage_Schema	(toolkits	TKPShape,	TKPLCAF,	TKPCAF,
TKShapeShcema,	TLStdLSchema,	TKStdSchema,	and
TKXCAFSchema)	has	been	removed	in	OCCT	7.0.0.	The	applications
that	used	these	data	persistence	tools	need	to	be	updated	to	use	other
persistence	mechanisms.

Note
For	compatibility	with	previous	versions,	the	possibility	to	read
standard	OCAF	data	(TKLCAF	and	TKCAF)	from	files	stored	in	the
old	format	is	preserved	(toolkits	TKStdL	and	TKStd).

The	existing	data	files	in	standard	formats	can	be	converted	using	OCCT
6.9.1	or	a	previous	version,	as	follows.

Note
Reading	/	writing	custom	files	capability	from	OCCT	6.9.1	is	restored
in	OCCT	7.2.0.	See	details	in	Restore	OCCT	6.9.1	persistence
section.

CSFDB	files

Files	in	CSFDB	format	(usually	with	extension	.csfdb)	contain	OCCT
shape	data	that	can	be	converted	to	BRep	format.	The	easiest	way	to	do
that	is	to	use	ImportExport	sample	provided	with	OCCT	6.9.0	(or	earlier):

Start	ImportExport	sample;
Select	File	/	New;
Select	File	/	Import	/	CSFDB...	and	specify	the	file	to	be	converted;
Drag	the	mouse	with	the	right	button	pressed	across	the	view	to
select	all	shapes	by	the	rectangle;
Select	File	/	Export	/	BREP...	and	specify	the	location	and	name	for
the	resulting	file

OCAF	and	XCAF	documents

Files	containing	OCAF	data	saved	in	the	old	format	usually	have
extensions	.std,	.sgd	or	.dxc	(XDE	documents).	These	files	can	be
converted	to	XML	or	binary	OCAF	formats	using	DRAW	Test	Harness
commands.	Note	that	if	the	file	contains	only	attributes	defined	in
TKLCAF	and	TKCAF,	this	action	can	be	performed	in	OCCT	7.0;
otherwise	OCCT	6.9.1	or	earlier	should	be	used.

For	that,	start	DRAWEXE	and	perform	the	following	commands:

To	convert	*.std	and	*.sgd	file	formats	to	binary	format	*.cbf	(The
created	document	should	be	in	BinOcaf	format	instead	of	MDTV-
Standard):

Draw[]>	pload	ALL

Draw[]>	Open	[path	to	*.std	or	*.sgd	file]	Doc

Draw[]>	Format	Doc	BinOcaf

Draw[]>	SaveAs	Doc	[path	to	the	new	file]

To	convert	*.dxc	file	format	to	binary	format	*.xbf	(The	created
document	should	be	in	BinXCAF	format	instead	of	MDTV-XCAF):

Draw[]>	pload	ALL

Draw[]>	XOpen	[path	to	*.dxc	file]	Doc

Draw[]>	Format	Doc	BinXCAF

Draw[]>	XSave	Doc	[path	to	the	new	file]

On	Windows,	it	is	necessary	to	replace	back	slashes	in	the	file	path	by
direct	slashes	or	pairs	of	back	slashes.

Use	XmlOcaf	or	XmlXCAF	instead	of	BinOcaf	and	BinXCAF,
respectively,	to	save	in	XML	format	instead	of	binary	one.

Removal	of	CDL	and	WOK
OCCT	code	has	been	completely	refactored	in	version	7.0	to	get	rid	of
obsolete	technologies	used	since	its	inception:	CDL	(Cas.Cade	Definition
Language)	and	WOK	(Workshop	Organization	Kit).

C++	code	previously	generated	by	WOK	from	CDL	declarations	is	now
included	directly	in	OCCT	sources.

This	modification	did	not	change	names,	API,	and	behavior	of	existing
OCCT	classes,	thus	in	general	the	code	based	on	OCCT	6.x	should
compile	and	work	fine	with	OCCT	7.0.	However,	due	to	redesign	of	basic
mechanisms	(CDL	generic	classes,	Handles	and	RTTI)	using	C++
templates,	some	changes	may	be	necessary	in	the	code	when	porting	to
OCCT	7.0,	as	described	below.

WOK	is	not	necessary	anymore	for	building	OCCT	from	sources,	though
it	still	can	be	used	in	a	traditional	way	–	auxiliary	files	required	for	that	are
preserved.	The	recommended	method	for	building	OCCT	7.x	is	CMake,
see	Building	with	CMake.	The	alternative	solution	is	to	use	project	files
generated	by	OCCT	legacy	tool	genproj,	see	Building	with	MS	Visual
C++,	Building	with	Code::Blocks,	and	Building	with	Xcode.

Automatic	upgrade

Most	of	typical	changes	required	for	upgrading	code	for	OCCT	7.0	can	be
done	automatically	using	the	upgrade	tool	included	in	OCCT	7.0.	This
tool	is	a	Tcl	script,	thus	Tcl	should	be	available	on	your	workstation	to	run
it.

Example:

$	tclsh

%	source	<path_to_occt>/adm/upgrade.tcl

%	upgrade	-recurse	-all	-src=<path_to_your_sources>

On	Windows,	the	helper	batch	script	upgrade.bat	can	be	used,	provided
that	Tcl	is	either	available	in	PATH,	or	configured	via	custom.bat	script
(for	instance,	if	you	use	OCCT	installed	from	Windows	installer	package).

Start	it	from	the	command	prompt:

cmd>	<path_to_occt>\upgrade.bat	-recurse	-all	-inc=

<path_to_occt>\inc	-src=<path_to_your_sources>	

[options]

Run	the	upgrade	tool	without	arguments	to	see	the	list	of	available
options.

The	upgrade	tool	performs	the	following	changes	in	the	code.

1.	 Replaces	macro	DEFINE_STANDARD_RTTI	by
DEFINE_STANDARD_RTTIEXT,	with	second	argument	indicating
base	class	for	the	main	argument	class	(if	inheritance	is	recognized
by	the	script):

DEFINE_STANDARD_RTTI(Class)	->	

DEFINE_STANDARD_RTTIEXT(Class,	Base)

Note
If	macro	DEFINE_STANDARD_RTTI	with	two	arguments	(used
in	intermediate	development	versions	of	OCCT	7.0)	is	found,	the
script	will	convert	it	to	either	DEFINE_STANDARD_RTTIEXT	or
DEFINE_STANDARD_RTTI_INLINE.	The	former	case	is	used	if
current	file	is	header	and	source	file	with	the	same	name	is
found	in	the	same	folder.	In	this	case,	macro
IMPLEMENT_STANDARD_RTTI	is	injected	in	the
corresponding	source	file.	The	latter	variant	defines	all	methods
for	RTTI	as	inline,	and	does	not	require
IMPLEMENT_STANDARD_RTTIEXT	macro.

2.	 Replaces	forward	declarations	of	collection	classes	previously
generated	from	CDL	generics	(defined	in	TCollection	package)	by
inclusion	of	the	corresponding	header:
class	TColStd_Array1OfReal;	->	#include	

<TColStd_Array1OfReal.hxx>

3.	 Replaces	underscored	names	of	Handle	classes	by	usage	of	a
macro:
Handle_Class	->	Handle(Class)

This	change	is	not	applied	if	the	source	or	header	file	is	recognized
as	containing	the	definition	of	Qt	class	with	signals	or	slots,	to	avoid

possible	compilation	errors	of	MOC	files	caused	by	inability	of	MOC
to	recognize	macros	(see	http://doc.qt.io/qt-4.8/signalsandslots.html).
The	file	is	considered	as	defining	a	Qt	object	if	it	contains	strings
Q_OBJECT	and	either	slots:	or	signals:.

4.	 Removes	forward	declarations	of	classes	with	names	Handle(C)	or
Handle_C,	replacing	them	either	by	forward	declaration	of	its
argument	class,	or	(for	files	defining	Qt	objects)	#include	statement
for	a	header	with	the	name	of	the	argument	class	and	extension
.hxx:
class	Handle(TColStd_HArray1OfReal);	->	#include	

<TColStd_HArray1OfReal.hxx>

5.	 Removes	#includes	of	files	Handle_...hxx	that	have	disappeared	in
OCCT	7.0:
#include	<Handle_Geom_Curve.hxx>	->

6.	 Removes	typedef	statements	that	use	Handle	macro	to	generate	the
name:
typedef	NCollection_Handle<Message_Msg>	

Handle(Message_Msg);	->

7.	 Converts	C-style	casts	applied	to	Handles	into	calls	to	DownCast()
method:
((Handle(A)&)b)					->	Handle(A)::DownCast(b)

(Handle(A)&)b							->	Handle(A)::DownCast(b)

(*((Handle(A)*)&b))	->	Handle(A)::DownCast(b)

((Handle(A))&b)			->	Handle(A)::DownCast(b)

(*(Handle(A)*)&b)			->	Handle(A)::DownCast(b)

8.	 Moves	Handle()	macro	out	of	namespace	scope:
Namespace::Handle(Class)	->	

Handle(Namespace::Class)

9.	 Converts	local	variables	of	reference	type,	which	are	initialized	by	a
temporary	object	returned	by	call	to	DownCast(),	to	the	variables	of
non-reference	type	(to	avoid	using	references	to	destroyed	memory):
const	Handle(A)&	a	=	Handle(B)::DownCast	(b);	->	

Handle(A)	a	(Handle(B)::DownCast	(b));

10.	 Adds	#include	for	all	classes	used	as	argument	to	macro
STANDARD_TYPE(),	except	for	already	included	ones;

11.	 Removes	uses	of	obsolete	macros	IMPLEMENT_DOWNCAST	and

http://doc.qt.io/qt-4.8/signalsandslots.html

IMPLEMENT_STANDARD_...,	except
IMPLEMENT_STANDARD_RTTIEXT.

Note
If	you	plan	to	keep	compatibility	of	your	code	with	older	versions
of	OCCT,	add	option	-compat	to	avoid	this	change.	See	also
Preserving	compatibility	with	OCCT	6.x.

As	long	as	the	upgrade	routine	runs,	some	information	messages	are
sent	to	the	standard	output.	In	some	cases	the	warnings	or	errors	like	the
following	may	appear:

Error	in	{HEADER_FILE}:	Macro	DEFINE_STANDARD_RTTI	

used	for	class	{CLASS_NAME}	whose	declaration	is	

not	found	in	this	file,	cannot	fix

Be	sure	to	check	carefully	all	reported	errors	and	warnings,	as	the
corresponding	code	will	likely	require	manual	corrections.	In	some	cases
these	messages	may	help	you	to	detect	errors	in	your	code,	for	instance,
cases	where	DEFINE_STANDARD_RTTI	macro	is	used	with	incorrect
class	name	as	an	argument.

Possible	compiler	errors

Some	situations	requiring	upgrade	cannot	be	detected	and	/	or	handled
by	the	automatic	procedure.	If	you	get	compiler	errors	or	warnings	when
trying	to	build	the	upgraded	code,	you	will	need	to	fix	them	manually.	The
following	paragraphs	list	known	situations	of	this	kind.

Missing	header	files

The	use	of	handle	objects	(construction,	comparison	using	operators	==
or	!=,	use	of	function	STANDRAD_TYPE()	and	method	DownCast())	now
requires	the	type	of	the	object	pointed	by	Handle	to	be	completely	known
at	compile	time.	Thus	it	may	be	necessary	to	include	header	of	the
corresponding	class	to	make	the	code	compilable.

For	example,	the	following	lines	will	fail	to	compile	if	Geom_Line.hxx	is
not	included:

Handle(Geom_Line)	aLine	=	0;

if	(aLine	!=	aCurve)	{...}	

if	(aCurve->IsKind(STANDARD_TYPE(Geom_Line))	{...}

aLine	=	Handle(Geom_Line)::DownCast	(aCurve);

Note	that	it	is	not	necessary	to	include	header	of	the	class	to	declare
Handle	to	it.	However,	if	you	define	a	class	B	that	uses	Handle(A)	in	its
fields,	or	contains	a	method	returning	Handle(A),	it	is	advisable	to	have
header	defining	A	included	in	the	header	of	B.	This	will	eliminate	the
need	to	include	the	header	A	in	each	source	file	where	class	B	is	used.

Ambiguity	of	calls	to	overloaded	functions

This	issue	appears	in	the	compilers	that	do	not	support	default
arguments	in	template	functions	(known	cases	are	Visual	C++	10	and
11):	the	compiler	reports	an	ambiguity	error	if	a	handle	is	used	in	the
argument	of	a	call	to	the	function	that	has	two	or	more	overloaded
versions,	receiving	handles	to	different	types.	The	problem	is	that
operator	const	handle<T2>&	is	defined	for	any	type	T2,	thus	the	compiler
cannot	make	the	right	choice.

Example:

void	func	(const	Handle(Geom_Curve)&);

void	func	(const	Handle(Geom_Surface)&);

Handle(Geom_TrimmedCurve)	aCurve	=	new	

Geom_TrimmedCurve	(...);

func	(aCurve);	//	ambiguity	error	in	VC++	10

Note	that	this	problem	can	be	avoided	in	many	cases	if	macro
OCCT_HANDLE_NOCAST	is	used,	see	below.

To	resolve	this	ambiguity,	change	your	code	so	that	argument	type
should	correspond	exactly	to	the	function	signature.	In	some	cases	this
can	be	done	by	using	the	relevant	type	for	the	corresponding	variable,
like	in	the	example	above:

Handle(Geom_Curve)	aCurve	=	new	Geom_TrimmedCurve	

(...);		

Other	variants	consist	in	assigning	the	argument	to	a	local	variable	of	the
correct	type	and	using	the	direct	cast	or	constructor:

const	Handle(Geom_Curve)&	aGCurve	(aTrimmedCurve);

func	(aGCurve);	//	OK	-	argument	has	exact	type

func	(static_cast(aCurve));	//	OK	-	direct	cast	

func	(Handle(Geom_Curve)(aCurve));	//	OK	-	temporary	

handle	is	constructed

Another	possibility	consists	in	defining	additional	template	variant	of	the
overloaded	function	causing	ambiguity,	and	using	SFINAE	to	resolve	the
ambiguity.	This	technique	can	be	illustrated	by	the	definition	of	the
template	variant	of	method	IGESData_IGESWriter::Send().

Lack	of	implicit	cast	to	base	type

As	the	cast	of	a	handle	to	the	reference	to	another	handle	to	the	base
type	has	become	a	user-defined	operation,	the	conversions	that	require
this	cast	together	with	another	user-defined	cast	will	not	be	resolved
automatically	by	the	compiler.

For	example:

Handle(Geom_Geometry)	aC	=	GC_MakeLine	(p,	v);	//	

compiler	error

The	problem	is	that	the	class	GC_MakeLine	has	a	user-defined
conversion	to	const	Handle(Geom_TrimmedCurve)&,	which	is	not	the
same	as	the	type	of	the	local	variable	aC.

To	resolve	this,	use	method	Value():

Handle(Geom_Geometry)	aC	=	GC_MakeLine	(p,	

v).Value();	//	ok

or	use	variable	of	the	appropriate	type:

Handle(Geom_TrimmedCurve)	aC	=	GC_MakeLine	(p,	v);	//	

ok

A	similar	problem	appears	with	GCC	compiler,	when	const	handle	to
derived	type	is	used	to	construct	handle	to	base	type	via	assignment
(and	in	some	cases	in	return	statement),	for	instance:

const	Handle(Geom_Line)	aLine;

Handle(Geom_Curve)	c1	=	aLine;	//	GCC	error	

Handle(Geom_Curve)	c2	(aLine);	//	ok

This	problem	is	specific	to	GCC	and	it	does	not	appear	if	macro
OCCT_HANDLE_NOCAST	is	used,	see	below.

Incorrect	use	of	STANDARD_TYPE	and	Handle	macros

You	might	need	to	clean	your	code	from	incorrect	use	of	macros
STANDARD_TYPE()	and	Handle().

1.	 Explicit	definitions	of	static	functions	with	names	generated	by	macro
STANDARD_TYPE(),	which	are	artifacts	of	old	implementation	of
RTTI,	should	be	removed.

Example:

const	Handle(Standard_Type)&	

STANDARD_TYPE(math_GlobOptMin)

{

		static	Handle(Standard_Type)	_atype	=	new	

Standard_Type	("math_GlobOptMin",	sizeof	

(math_GlobOptMin));

		return	_atype;

}

2.	 Incorrect	location	of	closing	parenthesis	of	Handle()	macro	that	was
not	detectable	in	OCCT	6.x	will	cause	a	compiler	error	and	must	be
corrected.

Example	(note	misplaced	closing	parenthesis):

aBSpline	=	Handle(

Geom2d_BSplineCurve::DownCast(BS->Copy()));

Use	of	class	Standard_AncestorIterator

Class	Standard_AncestorIterator	has	been	removed;	use	method
Parent()	of	Standard_Type	class	to	parse	the	inheritance	chain.

Absence	of	cast	to	Standard_Transient*

Handles	in	OCCT	7.0	do	not	have	the	operator	of	conversion	to
Standard_Transient*,	which	was	present	in	earlier	versions.	This	is	done
to	prevent	possible	unintended	errors	like	this:

Handle(Geom_Line)	aLine	=	...;

Handle(Geom_Surface)	aSurf	=	...;

...

if	(aLine	==	aSurf)	{...}	//	will	cause	a	compiler	

error	in	OCCT	7.0,	but	not	OCCT	6.x

The	places	where	this	implicit	cast	has	been	used	should	be	corrected
manually.	The	typical	situation	is	when	Handle	is	passed	to	stream:

Handle(Geom_Line)	aLine	=	...;

os	<<	aLine;	//	in	OCCT	6.9.0,	resolves	to	operator	

<<	(void*)	

Call	method	get()	explicitly	to	output	the	address	of	the	Handle.

Method	DownCast	for	non-base	types

Method	DownCast()	in	OCCT	7.0	is	made	templated;	if	its	argument	is
not	a	base	class,	"deprecated"	compiler	warning	is	generated.	This	is
done	to	prevent	possible	unintended	errors	like	this:

Handle(Geom_Surface)	aSurf	=	;

Handle(Geom_Line)	aLine	=	

		Handle(Geom_Line)::DownCast	(aSurf);	//	will	cause	

a	compiler	warning	in	OCCT	7.0,	but	not	OCCT	6.x

The	places	where	this	cast	has	been	used	should	be	corrected	manually.

If	down	casting	is	used	in	a	template	context	where	the	argument	can
have	the	same	or	unrelated	type	so	that	DownCast()	may	be	not
available	in	all	cases,	use	C++	dynamic_cast<>	instead,	e.g.:

template	<class	T>

bool	CheckLine	(const	Handle(T)	theArg)

{

		Handle(Geom_Line)	aLine	=	dynamic_cast<Geom_Line>	

(theArg.get());

		...

}

Possible	runtime	problems

Here	is	the	list	of	known	possible	problems	at	run	time	after	the	upgrade
to	OCCT	7.0.

References	to	temporary	objects

In	previous	versions,	the	compiler	was	able	to	detect	the	situation	when	a
local	variable	of	a	"reference	to	a	Handle"	type	is	initialized	by	temporary
object,	and	ensured	that	lifetime	of	that	object	is	longer	than	that	of	the
variable.	In	OCCT	7.0	with	default	options,	it	will	not	work	if	types	of	the
temporary	object	and	variable	are	different	(due	to	involvement	of	user-
defined	type	cast),	thus	such	temporary	object	will	be	destroyed
immediately.

This	problem	does	not	appear	if	macro	OCCT_HANDLE_NOCAST	is
used	during	compilation,	see	below.

Example:

//	note	that	DownCast()	returns	new	temporary	object!

const	Handle(Geom_BoundedCurve)&	aBC	=

Handle(Geom_TrimmedCurve)::DownCast(aCurve);

aBC->Transform	(T);	//	access	violation	in	OCCT	7.0

Option	to	avoid	cast	of	handle	to	reference	to	base	type

In	OCCT	6.x	and	earlier	versions	the	handle	classes	formed	a	hierarchy
echoing	the	hierarchy	of	the	corresponding	object	classes	.	This
automatically	enabled	the	possibility	to	use	the	handle	to	a	derived	class
in	all	contexts	where	the	handle	to	a	base	class	was	needed,	e.g.	to	pass
it	in	a	function	by	reference	without	copying:

Standard_Boolean	GetCurve	(Handle(Geom_Curve)&	

theCurve);

....

Handle(Geom_Line)	aLine;

if	(GetCurve	(aLine))	{

		//	use	aLine,	unsafe

}

This	feature	was	used	in	multiple	places	in	OCCT	and	dependent
projects.	However	it	is	potentially	unsafe:	in	the	above	example	no
checks	are	done	at	compile	time	or	at	run	time	to	ensure	that	the	type
assigned	to	the	argument	handle	is	compatible	with	the	type	of	the
handle	passed	as	argument.	If	an	object	of	incompatible	type	(e.g.
Geom_Circle)	is	assigned	to	theCurve,	the	behavior	will	be
unpredictable.

For	compatibility	with	the	existing	code,	OCCT	7.0	keeps	this	possibility
by	default,	providing	operators	of	type	cast	to	the	handle	to	a	base	type.
However,	this	feature	is	unsafe	and	in	specific	situations	it	may	cause
compile-time	or	run-time	errors	as	described	above.

To	provide	a	safer	behavior,	this	feature	can	be	disabled	by	a	compile-
time	macro	OCCT_HANDLE_NOCAST.	When	it	is	used,	constructors
and	assignment	operators	are	defined	(instead	of	type	cast	operators)	to
convert	handles	to	a	derived	type	into	handles	to	a	base	type.	This
implies	creation	of	temporary	objects	and	hence	may	be	more	expensive
at	run	time	in	some	circumstances,	however	this	way	is	more	standard,
safer,	and	in	general	recommended.

The	code	that	relies	on	the	possibility	of	casting	to	base	should	be
amended	to	always	use	the	handle	of	argument	type	in	function	call	and
to	use	DownCast()	to	safely	convert	the	result	to	the	desired	type.	For

instance,	the	code	from	the	example	below	can	be	changed	as	follows:

Handle(Geom_Line)	aLine;

Handle(Geom_Curve)	aCurve;

if	(GetCurve	(aCure)	&&	!(aLine	=	

Handle(Geom_Line)::DownCast	(aCurve)).IsNull())	

{

		//	use	aLine	safely

}

Preserving	compatibility	with	OCCT	6.x

If	you	like	to	preserve	the	compatibility	of	your	application	code	with
OCCT	versions	6.x	even	after	the	upgrade	to	7.0,	consider	the	following
suggestions:

1.	 If	your	code	used	sequences	of	macros
IMPLEMENT_STANDARD_...	generated	by	WOK,	replace	them	by
single	macro	IMPLEMENT_STANDARD_RTTIEXT

2.	 When	running	automatic	upgrade	tool,	add	option	-compat.
3.	 Define	macros	DEFINE_STANDARD_RTTIEXT	and

DEFINE_STANDARD_RTTI_INLINE	when	building	with	previous
versions	of	OCCT,	resolving	to	DEFINE_STANDARD_RTTI	with
single	argument

Example:

#if	OCC_VERSION_HEX	<	0x070000

		#define	DEFINE_STANDARD_RTTIEXT(C1,C2)	

DEFINE_STANDARD_RTTI(C1)

		#define	DEFINE_STANDARD_RTTI_INLINE(C1,C2)	

DEFINE_STANDARD_RTTI(C1)

#endif

Applications	based	on	CDL	and	WOK

If	your	application	is	essentially	based	on	CDL,	and	you	need	to	upgrade
it	to	OCCT	7.0,	you	will	very	likely	need	to	convert	your	application	code
to	non-CDL	form.	This	is	a	non-trivial	effort;	the	required	actions	would

depend	strongly	on	the	structure	of	the	code	and	used	CDL	features.

The	upgrade	script	and	sources	of	a	specialized	WOK	version	used	for
OCCT	code	upgrade	can	be	found	in	WOK	Git	repository	in	branch
CR0_700_2.

Contact	us	if	you	need	more	help.

http://git.dev.opencascade.org/gitweb/?p=occt-wok.git;a=log;h=refs/heads/CR0_700_2
http://www.opencascade.com/contact/

Separation	of	BSpline	cache
Implementation	of	NURBS	curves	and	surfaces	has	been	revised:	the
cache	of	polynomial	coefficients,	which	is	used	to	accelerate	the
calculation	of	values	of	a	B-spline,	has	been	separated	from	data	objects
Geom2d_BSplineCurve,	Geom_BSplineCurve	and
Geom_BSplineSurface	into	the	dedicated	classes	BSplCLib_Cache	and
BSplSLib_Cache.

The	benefits	of	this	change	are:

Reduced	memory	footprint	of	OCCT	shapes	(up	to	20%	on	some
cases)
Possibility	to	evaluate	the	same	B-Spline	concurrently	in	parallel
threads	without	data	races	and	mutex	locks

The	drawback	is	that	direct	evaluation	of	B-Splines	using	methods	of
curves	and	surfaces	becomes	slower	due	to	the	absence	of	cache.	The
slow-down	can	be	avoided	by	using	adaptor	classes
Geom2dAdaptor_Curve,	GeomAdaptor_Curve	and
GeomAdaptor_Surface,	which	now	use	cache	when	the	curve	or	surface
is	a	B-spline.

OCCT	algorithms	have	been	changed	to	use	adaptors	for	B-spline
calculations	instead	of	direct	methods	for	curves	and	surfaces.	The	same
changes	(use	of	adaptors	instead	of	direct	call	to	curve	and	surface
methods)	should	be	implemented	in	relevant	places	in	the	applications
based	on	OCCT	to	get	the	maximum	performance.

Structural	result	of	Boolean	operations
The	result	of	Boolean	operations	became	structured	according	to	the
structure	of	the	input	shapes.	Therefore	it	may	impact	old	applications
that	always	iterate	on	direct	children	of	the	result	compound	assuming	to
obtain	solids	as	iteration	items,	regardless	of	the	structure	of	the	input
shapes.	In	order	to	get	always	solids	as	iteration	items	it	is	recommended
to	use	TopExp_Explorer	instead	of	TopoDS_Iterator.

BRepExtrema_ExtCC	finds	one	solution	only
Extrema	computation	between	non-analytical	curves	in	shape-shape
distance	calculation	algorithm	has	been	changed	in	order	to	return	only
one	solution.	So,	if	e.g.	two	edges	are	created	on	parallel	b-spline	curves
the	algorithm	BRepExtrema_DistShapeShape	will	return	only	one
solution	instead	of	enormous	number	of	solutions.	There	is	no	way	to	get
algorithm	working	in	old	manner.

Removal	of	SortTools	package
Package	SortTools	has	been	removed.	The	code	that	used	the	tools
provided	by	that	package	should	be	corrected	manually.	The
recommended	approach	is	to	use	sorting	algorithms	provided	by	STL.

For	instance:

#include	<SortTools_StraightInsertionSortOfReal.hxx>

#include	<SortTools_ShellSortOfReal.hxx>

#include	<TCollection_CompareOfReal.hxx>

...

TCollection_Array1OfReal	aValues	=	...;

...

TCollection_CompareOfReal	aCompReal;

SortTools_StraightInsertionSortOfReal::Sort(aValues,	

aCompReal);

can	be	replaced	by:

#include	<algorithm>

...

TCollection_Array1OfReal	aValues	=	...;

...

std::stable_sort	(aValues.begin(),	aValues.end());

On-screen	objects	and	ColorScale
The	old	mechanism	for	rendering	Underlay	and	Overlay	on-screen	2D
objects	based	on	Visual3d_Layer	and	immediate	drawing	model
(uncached	and	thus	slow)	has	been	removed.	Classes	Aspect_Clayer2d,
OpenGl_GraphicDriver_Layer,	Visual3d_Layer,	Visual3d_LayerItem,
V3d_LayerMgr	and	V3d_LayerMgrPointer	have	been	deleted.

General	AIS	interactive	objects	with	transformation	persistence	flag
Graphic3d_TMF_2d	can	be	used	as	a	replacement	of
Visual3d_LayerItem.	The	anchor	point	specified	for	transformation
persistence	defines	the	window	corner	of	(or	center	in	case	of	(0,	0)
point).	To	keep	on-screen	2D	objects	on	top	of	the	main	screen,	they	can
be	assigned	to	the	appropriate	Z-layer.	Predefined	Z-layers
Graphic3d_ZLayerId_TopOSD	and	Graphic3d_ZLayerId_BotOSD	are
intended	to	replace	Underlay	and	Overlay	layers	within	the	old	API.

ColorScale	object	previously	implemented	using	Visual3d_LayerItem	has
been	moved	to	a	new	class	AIS_ColorScale,	with	width	and	height
specified	explicitly.	The	property	of	V3d_View	storing	the	global
ColorScale	object	has	been	removed	with	associated	methods
V3d_View::ColorScaleDisplay(),	V3d_View::ColorScaleErase(),
V3d_View::ColorScaleIsDisplayed()	and	V3d_View::ColorScale()	as	well
as	the	classes	V3d_ColorScale,	V3d_ColorScaleLayerItem	and
Aspect_ColorScale.	Here	is	an	example	of	creating	ColorScale	using	the
updated	API:

Handle(AIS_ColorScale)	aCS	=	new	AIS_ColorScale();

//	configuring

Standard_Integer	aWidth,	aHeight;

aView->Window()->Size	(aWidth,	aHeight);

aCS->SetSize														(aWidth,	aHeight);

aCS->SetRange													(0.0,	10.0);

aCS->SetNumberOfIntervals	(10);

//	displaying

aCS->SetZLayer	(Graphic3d_ZLayerId_TopOSD);

aCS->SetTransformPersistence	(Graphic3d_TMF_2d,	

gp_Pnt	(-1,-1,0));

aCS->SetToUpdate();

theContextAIS->Display	(aCS);

To	see	how	2d	objects	are	implemented	in	OCCT	you	can	call	Draw
commands	vcolorscale,	vlayerline	or	vdrawtext	(with	-2d	option).	Draw
command	vcolorscale	now	requires	the	name	of	ColorScale	object	as
argument.	To	display	this	object	use	command	vdisplay.	For	example:

pload	VISUALIZATION

vinit

vcolorscale	cs	-demo

pload	MODELING

box	b	100	100	100

vdisplay	b

vsetdispmode	1

vfit

vlayerline	0	300	300	300	10

vdrawtext	t	"2D-TEXT"	-2d	-pos	0	150	0	-color	red

Here	is	a	small	example	in	C++	illustrating	how	to	display	a	custom	AIS
object	in	2d:

Handle(AIS_InteractiveContext)	aContext	=	...;

Handle(AIS_InteractiveObject)	anObj	=...;	//	create	

an	AIS	object

anObj->SetZLayer(Graphic3d_ZLayerId_TopOSD);	//	

display	object	in	overlay

anObj->SetTransformPersistence	(Graphic3d_TMF_2d,	

gp_Pnt	(-1,-1,0));	//	set	2d	flag,	coordinate	

origin	is	set	to	down-left	corner

aContext->Display	(anObj);	//	display	the	object

UserDraw	and	Visual3d

Visual3d	package

Package	Visual3d	implementing	the	intermediate	layer	between	high-
level	V3d	classes	and	low-level	OpenGl	classes	for	views	and	graphic
structures	management	has	been	dropped.

The	OpenGl_View	inherits	from	the	new	class	Graphic3d_CView.
Graphic3d_CView	is	an	interface	class	that	declares	abstract	methods	for
managing	displayed	structures,	display	properties	and	a	base	layer	code
that	implements	computation	and	management	of	HLR	(or	more	broadly
speaking	view-depended)	structures.

In	the	new	implementation	it	takes	place	of	the	eliminated	Visual3d_View.
As	before	the	instance	of	Graphic3d_CView	is	still	completely	managed
by	V3d_View	classes.	It	can	be	accessed	through	V3d_View	interface
but	normally	it	should	not	be	required	as	all	its	methods	are	completely
wrapped.

In	more	details,	a	concrete	specialization	of	Graphic3d_CView	is	created
and	returned	by	the	graphical	driver	on	request.	Right	after	the	creation
the	views	are	directly	used	for	setting	rendering	properties	and	adding
graphical	structures	to	be	displayed.

The	rendering	of	graphics	is	possible	after	mapping	a	window	and
activating	the	view.	The	direct	setting	of	properties	obsoletes	the	use	of
intermediate	structures	with	display	parameter	like
Visual3d_ContextView,	etc.	This	means	that	the	whole	package	Visual3d
becomes	redundant.

The	functionality	previously	provided	by	Visual3d	package	has	been
redesigned	in	the	following	way	:

The	management	of	display	of	structures	has	been	moved	from
Visual3d_ViewManager	into	Graphic3d_StructureManager.
The	class	Visual3d_View	has	been	removed.	The	management	of
computed	structures	has	been	moved	into	the	base	layer	of
Graphi3d_CView.

All	intermediate	structures	for	storing	view	parameters,	e.g.
Visual3d_ContextView,	have	been	removed.	The	settings	are	now
kept	by	instances	of	Graphic3d_CView.
The	intermediate	class	Visual3d_Light	has	been	removed.	All	light
properties	are	stored	in	Graphic3d_CLight	structure,	which	is	directly
accessed	by	instances	of	V3d_Light	classes.
All	necessary	enumerations	have	been	moved	into	Graphic3d
package.

Custom	OpenGL	rendering	and	UserDraw

Old	APIs	based	on	global	callback	functions	for	creating	UserDraw
objects	and	for	performing	custom	OpenGL	rendering	within	the	view
have	been	dropped.	UserDraw	callbacks	are	no	more	required	since
OpenGl_Group	now	inherits	Graphic3d_Group	and	thus	can	be	accessed
directly	from	AIS_InteractiveObject:

//!	Class	implementing	custom	OpenGL	element.

class	UserDrawElement	:	public	OpenGl_Element	{};

//!	Implementation	of	virtual	method	

AIS_InteractiveObject::Compute().

void	UserDrawObject::Compute	(const	

Handle(PrsMgr_PresentationManager3d)&	thePrsMgr,

																														const	

Handle(Prs3d_Presentation)&	thePrs,

																														const	Standard_Integer	

theMode)

{

		Graphic3d_Vec4	aBndMin	(myCoords[0],	myCoords[1],	

myCoords[2],	1.0f);

		Graphic3d_Vec4	aBndMax	(myCoords[3],	myCoords[4],	

myCoords[5],	1.0f);

		//	casting	to	OpenGl_Group	should	be	always	true	as	

far	as	application	uses	OpenGl_GraphicDriver	for	

rendering

		Handle(OpenGl_Group)	aGroup	=	

Handle(OpenGl_Group)::DownCast	(thePrs-

>NewGroup());

		aGroup->SetMinMaxValues	(aBndMin.x(),	aBndMin.y(),	

aBndMin.z(),

																											aBndMax.x(),	aBndMax.y(),	

aBndMax.z());

		UserDrawElement*	anElem	=	new	UserDrawElement	

(this);

		aGroup->AddElement(anElem);

		//	invalidate	bounding	box	of	the	scene

		thePrsMgr->StructureManager()->Update();

}

To	perform	a	custom	OpenGL	code	within	the	view,	it	is	necessary	to
inherit	from	class	OpenGl_View.	See	the	following	code	sample:

//!	Custom	view.

class	UserView	:	public	OpenGl_View

{

public:

		//!	Override	rendering	into	the	view.

		virtual	void	render	(Graphic3d_Camera::Projection	

theProjection,

																							OpenGl_FrameBuffer*										

theReadDrawFbo,

																							const	Standard_Boolean							

theToDrawImmediate)

		{

				OpenGl_View::render	(theProjection,	

theReadDrawFbo,	theToDrawImmediate);

				if	(theToDrawImmediate)

				{

						return;

				}

				//	perform	custom	drawing

				const	Handle(OpenGl_Context)&	aCtx	=	myWorkspace-

>GetGlContext();

				GLfloat	aVerts[3]	=	{	0.0f,	0,0f,	0,0f	};

				aCtx->core20-

>glEnableClientState(GL_VERTEX_ARRAY);

				aCtx->core20->glVertexPointer(3,	GL_FLOAT,	0,	

aVerts);

				aCtx->core20->glDrawArrays(GL_POINTS,	0,	1);

				aCtx->core20-

>glDisableClientState(GL_VERTEX_ARRAY);

		}

};

//!	Custom	driver	for	creating	UserView.

class	UserDriver	:	public	OpenGl_GraphicDriver

{

public:

		//!	Create	instance	of	own	view.

		virtual	Handle(Graphic3d_CView)	CreateView	(const	

Handle(Graphic3d_StructureManager)&	theMgr)	

Standard_OVERRIDE

		{

				Handle(UserView)	aView	=	new	UserView	(theMgr,	

this,	myCaps,	myDeviceLostFlag,	

&myStateCounter);

				myMapOfView.Add	(aView);

				for	(TColStd_SequenceOfInteger::Iterator	aLayerIt	

(myLayerSeq);	aLayerIt.More();	aLayerIt.Next())

				{

						const	Graphic3d_ZLayerId								aLayerID		=	

aLayerIt.Value();

						const	Graphic3d_ZLayerSettings&	aSettings	=	

myMapOfZLayerSettings.Find	(aLayerID);

						aView->AddZLayer									(aLayerID);

						aView->SetZLayerSettings	(aLayerID,	aSettings);

				}

				return	aView;

		}

};

Deprecation	of	Local	Context
The	conception	of	Local	Context	has	been	deprecated.	The	related
classes,	e.g.	AIS_LocalContext,	and	methods	(
AIS_InteractiveContext::OpenLocalContext()	and	others)	will	be	removed
in	a	future	OCCT	release.

The	main	functionality	provided	by	Local	Context	-	selection	of	object
subparts	-	can	be	now	used	within	Neutral	Point	without	opening	any
Local	Context.

The	property	SelectionMode()	has	been	removed	from	the	class
AIS_InteractiveObject.	This	property	contradicts	to	selection	logic,	since	it
is	allowed	to	activate	several	Selection	modes	at	once.	Therefore
keeping	one	selection	mode	as	object	field	makes	no	sense.	Applications
that	used	this	method	should	implement	selection	mode	caching	at
application	level,	if	it	is	necessary	for	some	reason.

Separation	of	visualization	part	from	TKCAF
Visualization	CAF	attributes	have	been	moved	into	a	new	toolkit
TKVCAF.	If	your	application	uses	the	classes	from	TPrsStd	package	then
add	link	to	TKVCAF	library.

Version	numbers	of	BinOCAF	and	XmlOCAF	formats	are	incremented;
new	files	cannot	be	read	by	earlier	versions	of	OCCT.

Before	loading	the	OCAF	files	saved	by	previous	versions	and	containing
TPrsStd_AISPresentation	attribute	it	is	necessary	to	define	the
environment	variable	CSF_MIGRATION_TYPES,	pointing	to	file
src/StdResources/MigrationSheet.txt.	When	using	documents	loaded
from	a	file,	make	sure	to	call	method	TPrsStd_AISViewer::New()	prior	to
accessing	TPrsStd_AISPresentation	attributes	in	this	document	as	that
method	creates	them.

Correction	of	interpretation	of	Euler	angles	in
gp_Quaternion
Conversion	of	gp_Quaternion	to	and	from	intrinsic	Tait-Bryan	angles
(including	gp_YawPitchRoll)	is	fixed.

Before	that	fix	the	sequence	of	rotation	axes	was	opposite	to	the
intended;	e.g.	gp_YawPitchRoll	(equivalent	to	gp_Intrinsic_ZYX)	actually
defined	intrinsic	rotations	around	X,	then	Y,	then	Z.	Now	the	rotations	are
made	in	the	correct	order.

The	applications	that	use	gp_Quaternion	to	convert	Yaw-Pitch-Roll
angles	(or	other	intrinsic	Tait-Bryan	sequences)	may	need	to	be	updated
to	take	this	change	into	account.

Zoom	Persistent	Selection
Zoom	persistent	selection	introduces	a	new	structure
Graphic3d_TransformPers	to	transform	persistence	methods	and
parameters	and	a	new	class	Graphic3d_WorldViewProjState	to	refer	to
the	camera	transformation	state.	You	might	need	to	update	your	code	to
deal	with	the	new	classes	if	you	were	using	the	related	features.	Please,
keep	in	mind	the	following:

Graphic3d_Camera::ModelViewState	has	been	renamed	to
Graphic3d_Camera::WorldViewState.
Transformation	matrix	utilities	from	OpenGl_Utils	namespace	have
been	moved	to	Graphic3d_TransformUtils	and
Graphic3d_TransformUtils.hxx	header	respectively.
Matrix	stack	utilities	from	OpenGl_Utils	namespace	have	been
moved	to	OpenGl_MatrixStack	class	and	OpenGl_MatrixStack.hxx
header	respectively.
OpenGl_View	methods	Begin/EndTransformPersistence	have	been
removed.	Please,	use	Graphic3d_TransformPers::Apply()	instead	to
apply	persistence	to	perspective	and	world-view	projection	matrices.

Texture	mapping	of	objects
Textured	objects	now	have	the	priority	over	the	environment	mapping.

Redundant	enumerations	V3d_TypeOfSurface	and
Graphic3d_TypeOfSurface,	class	OpenGl_SurfaceDetailState,	the
corresponding	methods	from	Graphic3d_CView,
OpenGl_ShaderManager,	OpenGl_View,	V3d_View	and	V3d_Viewer
have	been	deleted.	Draw	command	VSetTextureMode	has	been	deleted.

Shape	presentation	builders
Presentation	tools	for	building	Wireframe	presentation	have	been
refactored	to	eliminate	duplicated	code	and	interfaces.	Therefore,	the
following	classes	have	been	modified:

StdPrs_WFDeflectionShape	and	Prs3d_WFShape	have	been
removed.	StdPrs_WFShape	should	be	used	instead.
StdPrs_ToolShadedShape	has	been	renamed	to
StdPrs_ToolTriangulatedShape.

Upgrade	to	OCCT	7.1.0
Presentation	attributes

This	section	should	be	considered	if	application	defines	custom
presentations,	i.e.	inherited	from	AIS_InteractiveObject.	The	previous
versions	of	OCCT	have	three	levels	for	defining	presentation	properties
(e.g.	colors,	materials,	etc.):

1.	 For	the	entire	structure	-	Graphic3d_Structure	/	Prs3d_Presentation.
2.	 For	a	specific	group	of	primitives	-

Graphic3d_Group::SetGroupPrimitivesAspect()	overriding	structure
aspects.

3.	 For	a	specific	primitive	array	within	the	graphic	group	-
Graphic3d_Group::SetPrimitivesAspect().

The	structure	level	has	de	facto	not	been	used	for	a	long	time	since
OCCT	presentations	always	define	aspects	at	the	graphic	group	level
(overriding	any	structure	aspects).	Within	this	OCCT	release,	structure
level	of	aspects	has	been	completely	removed.	In	most	cases	the
application	code	should	just	remove	missing	methods.	In	those	rare
cases,	when	this	functionality	was	intentionally	used,	the	application
should	explicitly	define	aspects	to	the	appropriate	graphic	groups.

Note	that	defining	several	different	aspects	within	the	same	graphic
group	should	also	be	avoided	in	the	application	code	since	it	is	a
deprecated	functionality	which	can	be	removed	in	further	releases.
Graphic3d_Group::SetGroupPrimitivesAspect()	should	be	the	main
method	defining	presentation	attributes.

The	implementation	of	Graphic3d_Group::SetGroupPrimitivesAspect()
has	been	changed	from	copying	aspect	values	to	keeping	the	passed
object.	Although	it	was	not	documented,	previously	it	was	possible	to
modify	a	single	aspect	instance,	like	Graphic3d_AspectFillArea3d	and	set
it	to	multiple	groups.	Now	such	code	would	produce	an	unexpected	result
and	therefore	should	be	updated	to	create	the	dedicated	aspect	instance.

Typedefs
The	following	type	definitions	in	OCCT	has	been	modified	to	use	C++11
types:

Standard_Boolean	is	now	bool	(previously	unsigned	int).
Standard_ExtCharacter	is	now	char16_t	(previously	short).
Standard_ExtString;	is	now	const	char16_t	(previously	const	short).
Standard_Utf16Char	is	now	char16_t	(previously	uint16_t	for
compatibility	with	old	compilers).
Standard_Utf32Char	is	now	char32_t	(previously	uint32_t	for
compatibility	with	old	compilers).

For	most	applications	this	change	should	be	transparent	on	the	level	of
source	code.	Binary	compatibility	is	not	maintained,	as	bool	has	a
different	size	in	comparison	with	unsigned	int.

Programmable	Pipeline
Fixed-function	pipeline	has	been	already	deprecated	since	OCCT	7.0.0.
Release	7.1.0	disables	this	functionality	by	default	in	favor	of
Programmable	Pipeline	(based	on	GLSL	programs).

Method	V3d_View::Export(),	based	on	gl2ps	library,	requires	fixed
pipeline	and	will	return	error	if	used	with	default	settings.	Applications
should	explicitly	enable	fixed	pipeline	by	setting	OpenGl_Caps::ffpEnable
flag	to	TRUE	within	OpenGl_GraphicDriver::ChangeOptions()	before
creating	the	viewer	to	use	V3d_View::Export().	This	method	is	declared
as	deprecated	and	will	be	removed	in	one	of	the	the	next	OCCT
releases.	The	recommended	way	to	generate	a	vector	image	of	a	3D
model	or	scene	is	to	use	an	application-level	solution	independent	from
OpenGL.

Transformation	persistence
The	behavior	of	transformation	persistence	flags
Graphic3d_TMF_ZoomPers	and	Graphic3d_TMF_TriedronPers	has	been
changed	for	consistency	with	a	textured	fixed-size	2D	text.	An	object	with
these	flags	is	considered	as	defined	in	pixel	units,	and	the	presentation	is
no	more	scaled	depending	on	the	view	height.	The	applications	that	need
to	scale	such	objects	depending	on	viewport	size	should	update	them
manually.

Flags	Graphic3d_TMF_PanPers	and	Graphic3d_TMF_FullPers	have
been	removed.	Graphic3d_TMF_TriedronPers	or	Graphic3d_TMF_2d
can	be	used	instead	depending	on	the	context.

Graphic3d_TransModeFlags	is	not	an	integer	bitmask	anymore	-
enumeration	values	should	be	specified	instead.	Several	transformation
persistence	methods	in	PrsMgr_PresentableObject	have	been	marked
deprecated.	Transformation	persistence	should	be	defined	using
Graphic3d_TransformPers	constructor	directly	and	passed	by	a	handle,
not	value.

Dynamic	highlight	and	selection	properties
Release	7.1.0	introduces	Graphic3d_HighlightStyle	-	an	entity	that	allows
flexible	customization	of	highlighting	parameters	(such	as	highlighting
method,	color,	and	transparency).	Therefore,	the	signatures	of	the
following	methods	related	to	highlighting:

AIS_InteractiveContext::Hilight();
AIS_InteractiveContext::HilightWithColor();
PrsMgr_PresentationManager::Color();
SelectMgr_EntityOwner::HilightWithColor();	have	been	changed	to
receive	Graphic3d_HighlightStyle	instead	of	Quantity_Color.

Method	AIS_InteractiveContext::Hilight	is	now	deprecated	and	highlights
the	interactive	object	with	selection	style.

A	group	of	methods	AIS_InteractiveContext::IsHilighted	has	changed	its
behavior	-	now	they	only	check	highlight	flags	of	the	object	or	the	owner
in	the	global	status.	If	the	highlight	color	is	required	on	the	application
level,	it	is	necessary	to	use	overloaded	methods
AIS_InteractiveContext::HighlightStyle	for	the	owner	and	the	object.

The	following	methods	have	been	replaced	in	AIS_InteractiveContext
class:

HilightColor	and	SetHilightColor	by	HighlightStyle	and
SetHighlightStyle;
SelectionColor	setter	and	getter	by	SelectionStyle	and
SetSelectionStyle.

The	API	of	Prs3d_Drawer	has	been	extended	to	allow	setting	up	styles
for	both	dynamic	selection	and	highlighting.	Therefore,	it	is	possible	to
change	the	highlight	style	of	a	particular	object	on	the	application	level
via	SelectMgr_SelectableObject::HilightAttributes()	and	process	it	in	the
entity	owner.

Correction	in	TObj_Model	class
Methods	TObj_Model::SaveAs	and	TObj_Model::Load	now	receive
TCollection_ExtendedString	filename	arguments	instead	of	char*.	UTF-
16	encoding	can	be	used	to	pass	file	names	containing	Unicode	symbols.

Redundant	environment	variables
The	following	environment	variables	have	become	redundant:

CSF_UnitsLexicon	and	CSF_UnitsDefinition	are	no	more	used.	Units
definition	(UnitsAPI/Lexi_Expr.dat	and	UnitsAPI/Units.dat)	is	now
embedded	into	source	code.
CSF_XSMessage	and	CSF_XHMessage	are	now	optional.	English
messages	(XSMessage/*XSTEP.us*	and	SHMessage/*SHAPE.us*)
are	now	embedded	into	source	code	and	automatically	loaded	when
environment	variables	are	not	set.
CSF_ShadersDirectory	is	not	required	any	more,	though	it	still	can
be	used	to	load	custom	shaders.	Mandatory	GLSL	resources	are
now	embedded	into	source	code.
CSF_PluginDefaults	and	other	variables	pointing	to	OCAF	plugin
resources	(CSF_StandardDefaults,	CSF_XCAFDefaults,
CSF_StandardLiteDefaults	and	CSF_XmlOcafResource)	are	not
necessary	if	method	TDocStd_Application::DefineFormat()	is	used	to
enable	persistence	of	OCAF	documents.

Other	environment	variables	still	can	be	used	to	customize	behavior	of
relevant	algorithms	but	are	not	necessary	any	more	(all	required
resources	are	embedded).

Removed	features
The	following	obsolete	features	have	been	removed:

Anti-aliasing	API	V3d_View::SetAntialiasingOn().	This	method	was
intended	to	activate	deprecated	OpenGL	functionality
GL_POLYGON_SMOOTH,	GL_LINE_SMOOTH	and
GL_POINT_SMOOTH.	Instead	of	the	old	API,	the	application	should
request	MSAA	buffers	for	anti-aliasing	by	assigning
Graphic3d_RenderingParams::NbMsaaSamples	property	of	the
structure	returned	by	V3d_View::ChangeRenderingParams().
Prs3d_Drawer::ShadingAspectGlobal()	flag	has	been	removed	as
not	used.	The	corresponding	calls	can	be	removed	safely	from	the
application	code.
The	methods	managing	ZClipping	planes	and	ZCueing:
V3d_View::SetZClippingType(),	V3d_View::SetZCueingOn(),	etc.
have	been	removed.	ZClipping	planes	can	be	replaced	by	general-
purpose	clipping	planes	(the	application	should	update	plane
definition	manually).
The	3D	viewer	printing	API	V3d_View::Print()	has	been	removed.
This	functionality	was	available	on	Windows	platforms	only.	The
applications	should	use	the	general	image	dump	API
V3d_View::ToPixMap()	and	manage	printing	using	a	platform-
specific	API	at	the	application	level.	Text	resolution	can	be	managed
by	rendering	parameter	Graphic3d_RenderingParams::Resolution,
returned	by	V3d_View::ChangeRenderingParams().
Methods	PrsMgr_PresentationManager::BoundBox,
PrsMgr_PresentationManager::Hilight	and
SelectMgr_EntityOwner::Hilight	have	been	removed	as	not	used.
The	corresponding	method	in	custom	implementations	of
SelectMgr_EntityOwner	can	be	removed	safely.
PrsMgr_PresentationManager::Color	with	the	corresponding	style
must	be	used	instead.
Class	NCollection_QuickSort	has	been	removed.	The	code	that	used
the	tools	provided	by	that	class	should	be	corrected	manually.	The
recommended	approach	is	to	use	sorting	algorithms	provided	by
STL	(std::sort).	See	also	Removal	of	SortTools	package	above.
Package	Dico.	The	code	that	used	the	tools	provided	by	that
package	should	be	corrected	manually.	The	recommended	approach

is	to	use	NCollection_DataMap	and	NCollection_IndexedDataMap
classes.

Other	changes
The	following	classes	have	been	changed:

BVH_Sorter	class	has	become	abstract.	The	list	of	arguments	of
both	Perform	methods	has	been	changed	and	the	methods	became
pure	virtual.
Extrema_FuncExtPS	has	been	renamed	to	Extrema_FuncPSNorm.
The	default	constructor	and	the	constructor	taking	a	point	and	a
surface	have	been	removed	from	class	Extrema_GenLocateExtPS.
Now	the	only	constructor	takes	the	surface	and	optional	tolerances
in	U	and	V	directions.	The	new	method	Perform	takes	the	point	with
the	start	solution	and	processes	it.	The	class	has	become	not
assignable	and	not	copy-constructable.
Constructors	with	arguments	*(const	gp_Ax22d&	D,	const
gp_Pnt2d&	F)*	have	been	removed	from	GCE2d_MakeParabola,
gce_MakeParab2d	and	gp_Parab2d.	The	objects	created	with	some
constructors	of	class	gp_Parab2d	may	differ	from	the	previous
version	(see	the	comments	in	gp_Parab2d.hxx).	The	result	returned
by	gp_Parab2d::Directrix()	method	has	an	opposite	direction	in
comparison	with	the	previous	OCCT	versions.
BRepTools_Modifier	class	now	has	two	modes	of	work.	They	are
defined	by	the	boolean	parameter	MutableInput,	which	is	turned	off
by	default.	This	means	that	the	algorithm	always	makes	a	copy	of	a
sub-shape	(e.g.	vertex)	if	its	tolerance	is	to	be	increased	in	the
output	shape.	The	old	mode	corresponds	to	MutableInput	turned	on.
This	change	may	impact	an	application	if	it	implements	a	class
derived	from	BRepTools_Modifier.
The	second	parameter	theIsOuterWire	of	method
ShapeAnalysis_Wire::CheckSmallArea	has	been	removed.
In	class	GeomPlate_CurveConstraint,	two	constructors	taking
boundary	curves	of	different	types	have	been	replaced	with	one
constructor	taking	the	curve	of	an	abstract	type.
The	last	optional	argument	RemoveInvalidFaces	has	been	removed
from	the	constructor	of	class	BRepOffset_MakeOffset	and	method
Initialize.
The	public	method	BOPDS_DS::VerticesOnIn	has	been	renamed
into	SubShapesOnIn	and	the	new	output	parameter	theCommonPB
has	been	added.

Upgrade	to	OCCT	7.2.0
Removed	features

The	following	obsolete	features	have	been	removed:

AIS_InteractiveContext::PreSelectionColor(),	DefaultColor(),
WasCurrentTouched(),	ZDetection().	These	properties	were	unused,
and	therefore	application	should	remove	occurrences	of	these
methods.
AIS_InteractiveObject::SelectionPriority().	These	property	was	not
implemented.
The	class	LocOpe_HBuilder	has	been	removed	as	obsolete.
The	package	TestTopOpe	has	been	removed;
The	package	TestTopOpeDraw	has	been	removed;
The	package	TestTopOpeTools	has	been	removed.
The	packages	QANewModTopOpe,	QANewBRepNaming	and
QANewDBRepNaming	have	been	removed	as	containing	obsolete
features.
The	following	methods	of	the	IntPolyh_Triangle	class	have	been
removed	as	unused:

CheckCommonEdge
SetEdgeandOrientation
MultipleMiddleRefinement2.

The	method	IntPolyh_Triangle::TriangleDeflection	has	been	renamed
to	IntPolyh_Triangle::ComputeDeflection.
The	following	methods	of	the	IntPolyh_MaillageAffinage	class	have
been	removed	as	unused:

LinkEdges2Triangles;
TriangleEdgeContact2;
StartingPointsResearch2;
NextStartingPointsResearch2;
TriangleComparePSP;
StartPointsCalcul.

The	method	PerformAdvanced	of	the
ShapeConstruct_ProjectCurveOnSurface	class	has	been	removed
as	unused.
The	method	Perform	of	the	ShapeConstruct_ProjectCurveOnSurface

class	is	modified:
input	arguments	continuity,	maxdeg,	nbinterval	have	been
removed	as	unused;
input	arguments	TolFirst,	TolLast	have	been	added	at	the	end	of
arguments'	list.

Typedefs	Quantity_Factor,	Quantity_Parameter,	Quantity_Ratio,
Quantity_Coefficient,	Quantity_PlaneAngle,	Quantity_Length,
V3d_Parameter	and	V3d_Coordinate	have	been	removed;
Standard_Real	should	be	used	instead.

Corrections	in	BRepOffset	API
In	classes	BRepTools_ReShape	and	ShapeBuild_ReShape,	the
possibility	to	process	shapes	different	only	by	orientation	in	different	ways
has	been	removed.	Thus	methods	Remove()	and	Replace()	do	not	have
any	more	the	last	argument	'oriented';	they	work	always	as	if
Standard_False	was	passed	before	(default	behavior).	Methods
ModeConsiderLo()	and	Apply()	with	three	arguments	have	been
removed.

Corrections	in	BRepOffset	API
Class	BRepOffsetAPI_MakeOffsetShape:

BRepOffsetAPI_MakeOffsetShape::BRepOffsetAPI_MakeOffsetShape()
-	constructor	with	parameters	has	been	deleted.
BRepOffsetAPI_MakeOffsetShape::PerformByJoin()	-	method	has
been	added.	This	method	is	old	algorithm	behaviour.

The	code	below	shows	new	calling	procedure:

BRepOffsetAPI_MakeOffsetShape	OffsetMaker;

OffsetMaker.PerformByJoin(Shape,	OffsetValue,	

Tolerance);

NewShape	=	OffsetMaker.Shape();

Class	BRepOffsetAPI_MakeThickSolid:

BRepOffsetAPI_MakeThickSolid::BRepOffsetAPI_MakeThickSolid()
-	constructor	with	parameters	has	been	deleted.
BRepOffsetAPI_MakeThickSolid::MakeThickSolidByJoin()	-	method
has	been	added.	This	method	is	old	algorithm	behaviour.

The	code	below	shows	new	calling	procedure:

BRepOffsetAPI_MakeThickSolid	BodyMaker;

BodyMaker.MakeThickSolidByJoin(myBody,	facesToRemove,	

-myThickness	/	50,	1.e-3);

myBody	=	BodyMaker.Shape();

Highlight	style
Management	of	highlight	attributes	has	been	revised	and	might	require
modifications	from	application	side:

New	class	Graphic3d_PresentationAttributes	defining	basic
presentation	attributes	has	been	introduced.	It's	definition	includes
properties	previously	defined	by	class	Graphic3d_HighlightStyle
(Color,	Transparency),	and	new	properties	(Display	mode,	ZLayer,
optional	FillArea	aspect).
Class	Prs3d_Drawer	now	inherits	class
Graphic3d_PresentationAttributes.	So	that	overall	presentation
attributes	are	now	split	into	two	parts	-	Basic	attributes	and	Detailed
attributes.
Class	Graphic3d_HighlightStyle	has	been	dropped.	It	is	now	defined
as	a	typedef	to	Prs3d_Drawer.	Therefore,	highlight	style	now	also
includes	not	only	Basic	presentation	attributes,	but	also	Detailed
attributes	which	can	be	used	by	custom	presentation	builders.
Highlighting	style	defined	by	class	Graphic3d_PresentationAttributes
now	provides	more	options:

Graphic3d_PresentationAttributes::BasicFillAreaAspect()
property	providing	complete	Material	definition.	This	option,
when	defined,	can	be	used	instead	of	the	pair	Object	Material	+
Highlight	Color.
Graphic3d_PresentationAttributes::ZLayer()	property	specifying
the	Layer	where	highlighted	presentation	should	be	shown.	This
property	can	be	set	to	Graphic3d_ZLayerId_UNKNOWN,	which
means	that	ZLayer	of	main	presentation	should	be	used	instead.
Graphic3d_PresentationAttributes::DisplayMode()	property
specifying	Display	Mode	for	highlight	presentation.

Since	Highlight	and	Selection	styles	within	AIS_InteractiveContext
are	now	defined	by	Prs3d_Drawer	inheriting	from
Graphic3d_PresentationAttributes,	it	is	now	possible	to	customize
default	highlight	attributes	like	Display	Mode	and	ZLayer,	which
previously	could	be	defined	only	on	Object	level.
Properties	Prs3d_Drawer::HighlightStyle()	and
Prs3d_Drawer::SelectionStyle()	have	been	removed.	Instead,
AIS_InteractiveObject	now	defines	DynamicHilightAttributes()	for
dynamic	highlighting	in	addition	to	HilightAttributes()	used	for

highlighting	in	selected	state.	Note	that
AIS_InteractiveObject::HilightAttributes()	and
AIS_InteractiveObject::DynamicHilightAttributes()	override
highlighting	properties	for	both	-	entire	object	and	for	part	coming
from	decomposition.	This	includes	Z-layer	settings,	which	will	be	the
same	when	overriding	properties	through	AIS_InteractiveObject,
while	AIS_InteractiveContext::HighlightStyle()	allows	customizing
properties	for	local	and	global	selection	independently	(with
Graphic3d_ZLayerId_Top	used	for	dynamic	highlighting	of	entire
object	and	Graphic3d_ZLayerId_Topmost	for	dynamic	highlighting	of
object	part	by	default).
The	following	protected	fields	have	been	removed	from	class
AIS_InteractiveObject:

myOwnColor,	replaced	by	myDrawer->Color()
myTransparency,	replaced	by	myDrawer->Transparency()
myZLayer,	replaced	by	myDrawer->ZLayer()

The	method	PrsMgr_PresentationManager::Unhighlight()	taking
Display	Mode	as	an	argument	has	been	marked	deprecated.
Implementation	now	performs	unhighlighting	of	all	highlighted
presentation	mode.
The	methods	taking/returning	Quantity_NameOfColor	(predefined	list
of	colors)	and	duplicating	methods	operating	with	Quantity_Color
(definition	of	arbitrary	RGB	color)	in	AIS	have	been	removed.
Quantity_Color	should	be	now	used	instead.

Elimination	of	implicit	3D	Viewer	updates
Most	AIS_InteractiveContext	methods	are	defined	with	a	flag	to	update
viewer	immediatly	or	not.	Within	previous	version	of	OCCT,	this	argument
had	default	value	TRUE.	While	immediate	viewer	updates	are	useful	for
beginners	(the	result	is	displayed	as	soon	as	possible),	this	approach	is
inefficent	for	batch	viewer	updates,	and	having	default	value	as	TRUE
leaded	to	non-intended	accidential	updates	which	are	difficult	to	find.

To	avoid	such	issues,	the	interface	has	been	modified	and	default	value
has	been	removed.	Therefore,	old	application	code	should	be	updated	to
set	the	flag	theToUpdateViewer	explicitly	to	desired	value	(TRUE	to
preserve	old	previous	behavior),	if	it	was	not	already	set.

The	following	AIS_InteractiveContext	methods	have	been	changed:
Display,	Erase,	EraseAll,	DisplayAll,	EraseSelected,	DisplaySelected,
ClearPrs,	Remove,	RemoveAll,	Hilight,	HilightWithColor,	Unhilight,
Redisplay,	RecomputePrsOnly,	Update,	SetDisplayMode,
UnsetDisplayMode,	SetColor,	UnsetColor,	SetWidth,	UnsetWidth,
SetMaterial,	UnsetMaterial,	SetTransparency,	UnsetTransparency,
SetLocalAttributes,	UnsetLocalAttributes,	SetPolygonOffsets,
SetTrihedronSize,	SetPlaneSize,	SetPlaneSize,	SetDeviationCoefficient,
SetDeviationAngle,	SetAngleAndDeviation,	SetHLRDeviationCoefficient,
SetHLRDeviationAngle,	SetHLRAngleAndDeviation,	SetSelectedAspect,
MoveTo,	Select,	ShiftSelect,	SetSelected,	UpdateSelected,
AddOrRemoveSelected,	HilightSelected,	UnhilightSelected,
ClearSelected,	ResetOriginalState,	SubIntensityOn,	SubIntensityOff,
FitSelected,	EraseGlobal,	ClearGlobal,	ClearGlobalPrs.

In	addition,	the	API	for	immediate	viewer	update	has	been	removed	from
V3d_View	and	Graphic3d_StructureManager	classes	(enumerations
Aspect_TypeOfUpdate	and	V3d_TypeOfUpdate):	V3d::SetUpdateMode(),
V3d::UpdateMode(),	Graphic3d_StructureManager::SetUpdateMode(),
Graphic3d_StructureManager::UpdateMode().

The	argument	theUpdateMode	has	been	removed	from	methods
Graphic3d_CView::Display(),	Erase(),	Update().	Method
Graphic3d_CView::Update()	does	not	redraw	the	view	and	does	not	re-
compute	structures	anymore.

The	following	Grid	management	methods	within	class	V3d_Viewer	do	not
implicitly	redraw	the	viewer:	ActivateGrid,	DeactivateGrid,
SetRectangularGridValues,	SetCircularGridValues,
RectangularGridGraphicValues,	CircularGridGraphicValues,
SetPrivilegedPlane,	DisplayPrivilegedPlane.

Elimination	of	Quantity_NameOfColor	from
TKV3d	interface	classes
The	duplicating	interface	methods	accepting	Quantity_NameOfColor	(in
addition	to	methods	accepting	Quantity_Color)	of	TKV3d	toolkit	have
been	removed.	In	most	cases	this	change	should	be	transparent,
however	applications	implementing	such	interface	methods	should	also
remove	them	(compiler	will	automatically	highlight	this	issue	for	methods
marked	with	Standard_OVERRIDE	keyword).

Result	of	Boolean	operations	on	containers
The	result	of	Boolean	operations	on	arguments	of	collection	types
(WIRE/SHELL/COMPSOLID)	is	now	filtered	from	duplicating
containers.

Other	changes
MMgt_TShared	class	definition	has	been	removed	-
Standard_Transient	should	be	used	instead	(MMgt_TShared	is
marked	as	deprecated	typedef	of	Standard_Transient	for	smooth
migration).
Class	GeomPlate_BuildPlateSurface	accepts	base	class
Adaptor3d_HCurve	(instead	of	inherited
Adaptor3d_HCurveOnSurface	accepted	earlier).
Types	GeomPlate_Array1OfHCurveOnSurface	and
GeomPlate_HArray1OfHCurveOnSurface	have	been	replaced	with
GeomPlate_Array1OfHCurve	and	GeomPlate_HArray1OfHCurve
correspondingly	(accept	base	class	Adaptor3d_HCurve	instead	of
Adaptor3d_HCurveOnSurface).
Enumeration	Image_PixMap::ImgFormat,	previously	declared	as
nested	enumeration	within	class	Image_PixMap,	has	been	moved	to
global	namespace	as	Image_Format	following	OCCT	coding	rules.
The	enumeration	values	have	suffix	Image_Format_	and	preserve
previous	name	scheme	for	easy	renaming	of	old	values	-	e.g.
Image_PixMap::ImgGray	become	Image_Format_Gray.	Old
definitions	are	preserved	as	depreacated	aliases	to	the	new	ones;
Methods	Image_PixMap::PixelColor()	and
Image_PixMap::SetPixelColor()	now	take/return
Quantity_ColorRGBA	instead	of	Quantity_Color/NCollection_Vec4.
The	method	BOPAlgo_Builder::Origins()	returns
BOPCol_DataMapOfShapeListOfShape	instead	of
BOPCol_DataMapOfShapeShape.
The	methods	BOPDS_DS::IsToSort(const
Handle(BOPDS_CommonBlock)&,	Standard_Integer&)	and
BOPDS_DS::SortPaveBlocks(const
Handle(BOPDS_CommonBlock)&)	have	been	removed.	The	sorting
is	now	performed	during	the	addition	of	the	Pave	Blocks	into
Common	Block.
The	methods	BOPAlgo_Tools::MakeBlocks()	and
BOPAlgo_Tools::MakeBlocksCnx()	have	been	replaced	with	the
single	template	method	BOPAlgo_Tools::MakeBlocks().	The	chains
of	connected	elements	are	now	stored	into	the	list	of	list	instead	of
data	map.
The	methods	BOPAlgo_Tools::FillMap()	have	been	replaced	with	the

single	template	method	BOPAlgo_Tools::FillMap().
Package	BVH	now	uses	opencascade::handle	instead	of
NCollection_Handle	(for	classes	BVH_Properties,	BVH_Builder,
BVH_Tree,	BVH_Object).	Application	code	using	BVH	package
directly	should	be	updated	accordingly.
AIS_Shape	now	computes	UV	texture	coordinates	for	AIS_Shaded
presentation	in	case	if	texture	mapping	is	enabled	within	Shaded
Attributes.	Therefore,	redundant	class	AIS_TexturedShape	is	now
deprecated	-	applications	can	use	AIS_Shape	directly	(texture
mapping	should	be	defined	through	AIS_Shape::Attributes()).
Methods	for	managing	active	texture	within	OpenGl_Workspace
class	(ActiveTexture(),	DisableTexture(),	EnableTexture())	have	been
moved	to	OpenGl_Context::BindTextures().

BOP	-	Pairs	of	interfering	indices
The	classes	BOPDS_PassKey	and	BOPDS_PassKeyBoolean	are
too	excessive	and	not	used	any	more	in	Boolean	Operations.	To
replace	them	the	new	BOPDS_Pair	class	has	been	implemented.
Thus:

The	method	BOPDS_DS::Interferences()	now	returns	the
BOPDS_MapOfPair;
The	method	BOPDS_Iterator::Value()	takes	now	only	two
parameters	-	the	indices	of	interfering	sub-shapes.

Removal	of	the	Draw	commands	based	on	old
Boolean	operations

The	commands	fubl	and	cubl	have	been	removed.	The	alternative
for	these	commands	are	the	commands	bfuseblend	and	bcutblend
respectively.
The	command	ksection	has	been	removed.	The	alternative	for	this
command	is	the	command	bsection.

Change	of	Face/Face	intersection	in	Boolean
operations

Previously,	the	intersection	tolerance	for	all	section	curves	between
pair	of	faces	has	been	calculated	as	the	maximal	tolerance	among
all	curves.	Now,	each	curve	has	its	own	valid	tolerance	calculated	as
the	maximal	deviation	of	the	3D	curve	from	its	2D	curves	or	surfaces
in	case	there	are	no	2D	curves.
The	methods	IntTools_FaceFace::TolReached3d(),
IntTools_FaceFace::TolReal()	and
IntTools_FaceFace::TolReached2d()	have	been	removed.
Intersection	tolerances	of	the	curve	can	be	obtained	from	the	curve
itself:

IntTools_Curve::Tolerance()	-	returns	the	valid	tolerance	for	the
curve;
IntTools_Curve::TangentialTolerance()	-	returns	the	tangential
tolerance,	which	reflects	the	size	of	the	common	between	faces.

2d	tolerance	(IntTools_FaceFace::TolReached2d())	has	been
completely	removed	from	the	algorithm	as	unused.

Restore	OCCT	6.9.1	persistence
The	capability	of	reading	/	writing	files	in	old	format	using
Storage_ShapeSchema	functionality	from	OCCT	6.9.1	has	been	restored
in	OCCT	7.2.0.

One	can	use	this	functionality	in	two	ways:

invoke	DRAW	Test	Harness	commands	fsdread	/	fsdwrite	for
shapes;
call	StdStorage	class	Read	/	Write	functions	in	custom	code.

The	code	example	below	demonstrates	how	to	read	shapes	from	a
storage	driver	using	StdStorage	class.

//	aDriver	should	be	created	and	opened	for	reading

Handle(StdStorage_Data)	aData;

//	Read	data	from	the	driver

//	StdStorage::Read	creates	aData	instance	

automatically	if	it	is	null

Storage_Error	anError	=	StdStorage::Read(*aDriver,	

aData);

if	(anError	!=	Storage_VSOk)

{

		//	Error	processing

}

//	Get	root	objects

Handle(StdStorage_RootData)	aRootData	=	aData-

>RootData();

Handle(StdStorage_HSequenceOfRoots)	aRoots	=	

aRootData->Roots();

if	(!aRoots.IsNull())

{

		//	Iterator	over	the	sequence	of	root	objects

		for	(StdStorage_HSequenceOfRoots::Iterator	

anIt(*aRoots);	anIt.More();	anIt.Next())

		{

				Handle(StdStorage_Root)&	aRoot	=	

anIt.ChangeValue();

				//	Get	a	persistent	root's	object

				Handle(StdObjMgt_Persistent)	aPObject	=	aRoot-

>Object();

				if	(!aPObject.IsNull())

				{

						Handle(ShapePersistent_TopoDS::HShape)	aHShape	

=	

Handle(ShapePersistent_TopoDS::HShape)::DownCast

(aPObject);

						if	(aHShape)	//	Downcast	to	an	expected	type	to	

import	transient	data

						{

								TopoDS_Shape	aShape	=	aHShape->Import();

								shapes.Append(aShape);

						}

				}

		}

}

The	following	code	demonstrates	how	to	write	shapes	in	OCCT	7.2.0
using	StdStorage	class.

//	Create	a	file	driver

NCollection_Handle<Storage_BaseDriver>	

aFileDriver(new	FSD_File());

//	Try	to	open	the	file	driver	for	writing

try

{

		OCC_CATCH_SIGNALS

		PCDM_ReadWriter::Open	(*aFileDriver,	

TCollection_ExtendedString(theFilename),	

Storage_VSWrite);

}

catch	(Standard_Failure&	e)

{

		//	Error	processing

}

//	Create	a	storage	data	instance

Handle(StdStorage_Data)	aData	=	new	

StdStorage_Data();

//	Set	an	axiliary	application	name	(optional)

aData->HeaderData()-

>SetApplicationName(TCollection_ExtendedString("

Application"));

//	Provide	a	map	to	track	sharing

StdObjMgt_TransientPersistentMap	aMap;

//	Iterator	over	a	collection	of	shapes

for	(Standard_Integer	i	=	1;	i	<=	shapes.Length();	

++i)

{

		TopoDS_Shape	aShape	=	shapes.Value(i);

		//	Translate	a	shape	to	a	persistent	object

		Handle(ShapePersistent_TopoDS::HShape)	aPShape	=

				ShapePersistent_TopoDS::Translate(aShape,	aMap,	

ShapePersistent_WithTriangle);

		if	(aPShape.IsNull())

		{

				//	Error	processing

		}

		//	Construct	a	root	name

		TCollection_AsciiString	aName	=	

TCollection_AsciiString("Shape_")	+	i;

		//	Add	a	root	to	storage	data

		Handle(StdStorage_Root)	aRoot	=	new	

StdStorage_Root(aName,	aPShape);

		aData->RootData()->AddRoot(aRoot);

}

//	Write	storage	data	to	the	driver

Storage_Error	anError	=	

StdStorage::Write(*aFileDriver,	aData);

if	(anError	!=	Storage_VSOk)

{

		//	Error	processing

}

Change	in	BRepLib_MakeFace	algorithm
Previously,	BRepLib_MakeFace	algorithm	changed	orientation	of	the
source	wire	in	order	to	avoid	creation	of	face	as	a	hole	(i.e.	it	is
impossible	to	create	the	entire	face	as	a	hole;	the	hole	can	be	created	in
context	of	another	face	only).	New	algorithm	does	not	reverse	the	wire	if
it	is	open.	Material	of	the	face	for	the	open	wire	will	be	located	on	the	left
side	from	the	source	wire.

Change	in	BRepFill_OffsetWire	algorithm
From	now	on,	the	offset	will	always	be	directed	to	the	outer	region	in
case	of	positive	offset	value	and	to	the	inner	region	in	case	of	negative
offset	value.	Inner/Outer	region	for	an	open	wire	is	defined	by	the
following	rule:	when	we	go	along	the	wire	(taking	into	account	edges
orientation)	the	outer	region	will	be	on	the	right	side,	the	inner	region	will
be	on	the	left	side.	In	case	of	a	closed	wire,	the	inner	region	will	always
be	inside	the	wire	(at	that,	the	edges	orientation	is	not	taken	into
account).

Change	in	Geom(2d)Adaptor_Curve::IsPeriodic
Since	7.2.0	version,	method	IsPeriodic()	returns	the	corresponding	status
of	periodicity	of	the	basis	curve	regardless	of	closure	status	of	the
adaptor	curve	(see	method	IsClosed()).	Method	IsClosed()	for	adaptor
can	return	false	even	on	periodic	curve,	in	the	case	if	its	parametric	range
is	not	full	period,	e.g.	for	adaptor	on	circle	in	range	[0,	\(\pi	\)].	In	previous
versions,	IsPeriodic()	always	returned	false	if	IsClosed()	returned	false.

Change	in	algorithm
ShapeUpgrade_UnifySameDomain
The	history	of	the	changing	of	the	initial	shape	was	corrected:

all	shapes	created	by	the	algorithm	are	considered	as	modified
shapes	instead	of	generated	ones;
method	Generated	was	removed	and	its	calls	should	be	replaced	by
calls	of	method	History()->Modified.

Changes	in	STL	Reader	/	Writer
Class	RWStl	now	uses	class	Poly_Triangulation	for	storing	triangular
mesh	instead	of	StlMesh	data	classes;	the	latter	have	been	removed.

Refactoring	of	the	Error/Warning	reporting
system	in	Boolean	Component
The	Error/Warning	reporting	system	of	the	algorithms	in	Boolean
Component	(in	all	BOPAlgo_*	and	BRepAlgoAPI_*	algorithms)	has	been
refactored.	The	methods	returning	the	status	of	errors	and	warnings	of
the	algorithms	(ErrorStatus()	and	WarningStatus())	have	been	removed.
Instead	use	methods	HasErrors()	and	HasWarnings()	to	check	for
presence	of	errors	and	warnings,	respectively.	The	full	list	of	errors	and
warnings,	with	associated	data	such	as	problematic	sub-shapes,	can	be
obtained	by	method	GetReport().

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

Open	CASCADE
Technology		7.2.0

License

Open	CASCADE	Technology	is	available	under	GNU	Lesser	General
Public	License	(LGPL)	version	2.1	with	additional	exception.

GNU	LESSER	GENERAL	PUBLIC
LICENSE
Version	2.1,	February	1999

Copyright	(C)	1991,	1999	Free	Software	Foundation,	I

nc.

51	Franklin	Street,	Fifth	Floor,	Boston,	MA		02110-1

301		USA

Everyone	is	permitted	to	copy	and	distribute	verbati

m	copies

of	this	license	document,	but	changing	it	is	not	all

owed.

[This	is	the	first	released	version	of	the	Lesser	GP

L.		It	also	counts

as	the	successor	of	the	GNU	Library	Public	License,	

version	2,	hence

the	version	number	2.1.]

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom
to	share	and	change	it.	By	contrast,	the	GNU	General	Public	Licenses
are	intended	to	guarantee	your	freedom	to	share	and	change	free
software–to	make	sure	the	software	is	free	for	all	its	users.

This	license,	the	Lesser	General	Public	License,	applies	to	some
specially	designated	software	packages–typically	libraries–of	the	Free
Software	Foundation	and	other	authors	who	decide	to	use	it.	You	can	use
it	too,	but	we	suggest	you	first	think	carefully	about	whether	this	license
or	the	ordinary	General	Public	License	is	the	better	strategy	to	use	in	any
particular	case,	based	on	the	explanations	below.

When	we	speak	of	free	software,	we	are	referring	to	freedom	of	use,	not

price.	Our	General	Public	Licenses	are	designed	to	make	sure	that	you
have	the	freedom	to	distribute	copies	of	free	software	(and	charge	for	this
service	if	you	wish);	that	you	receive	source	code	or	can	get	it	if	you	want
it;	that	you	can	change	the	software	and	use	pieces	of	it	in	new	free
programs;	and	that	you	are	informed	that	you	can	do	these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	distributors
to	deny	you	these	rights	or	to	ask	you	to	surrender	these	rights.	These
restrictions	translate	to	certain	responsibilities	for	you	if	you	distribute
copies	of	the	library	or	if	you	modify	it.

For	example,	if	you	distribute	copies	of	the	library,	whether	gratis	or	for	a
fee,	you	must	give	the	recipients	all	the	rights	that	we	gave	you.	You
must	make	sure	that	they,	too,	receive	or	can	get	the	source	code.	If	you
link	other	code	with	the	library,	you	must	provide	complete	object	files	to
the	recipients,	so	that	they	can	relink	them	with	the	library	after	making
changes	to	the	library	and	recompiling	it.	And	you	must	show	them	these
terms	so	they	know	their	rights.

We	protect	your	rights	with	a	two-step	method:	(1)	we	copyright	the
library,	and	(2)	we	offer	you	this	license,	which	gives	you	legal	permission
to	copy,	distribute	and/or	modify	the	library.

To	protect	each	distributor,	we	want	to	make	it	very	clear	that	there	is	no
warranty	for	the	free	library.	Also,	if	the	library	is	modified	by	someone
else	and	passed	on,	the	recipients	should	know	that	what	they	have	is
not	the	original	version,	so	that	the	original	author's	reputation	will	not	be
affected	by	problems	that	might	be	introduced	by	others.

Finally,	software	patents	pose	a	constant	threat	to	the	existence	of	any
free	program.	We	wish	to	make	sure	that	a	company	cannot	effectively
restrict	the	users	of	a	free	program	by	obtaining	a	restrictive	license	from
a	patent	holder.	Therefore,	we	insist	that	any	patent	license	obtained	for
a	version	of	the	library	must	be	consistent	with	the	full	freedom	of	use
specified	in	this	license.

Most	GNU	software,	including	some	libraries,	is	covered	by	the	ordinary
GNU	General	Public	License.	This	license,	the	GNU	Lesser	General
Public	License,	applies	to	certain	designated	libraries,	and	is	quite
different	from	the	ordinary	General	Public	License.	We	use	this	license
for	certain	libraries	in	order	to	permit	linking	those	libraries	into	non-free

programs.

When	a	program	is	linked	with	a	library,	whether	statically	or	using	a
shared	library,	the	combination	of	the	two	is	legally	speaking	a	combined
work,	a	derivative	of	the	original	library.	The	ordinary	General	Public
License	therefore	permits	such	linking	only	if	the	entire	combination	fits
its	criteria	of	freedom.	The	Lesser	General	Public	License	permits	more
lax	criteria	for	linking	other	code	with	the	library.

We	call	this	license	the	"Lesser"	General	Public	License	because	it	does
Less	to	protect	the	user's	freedom	than	the	ordinary	General	Public
License.	It	also	provides	other	free	software	developers	Less	of	an
advantage	over	competing	non-free	programs.	These	disadvantages	are
the	reason	we	use	the	ordinary	General	Public	License	for	many	libraries.
However,	the	Lesser	license	provides	advantages	in	certain	special
circumstances.

For	example,	on	rare	occasions,	there	may	be	a	special	need	to
encourage	the	widest	possible	use	of	a	certain	library,	so	that	it	becomes
a	de-facto	standard.	To	achieve	this,	non-free	programs	must	be	allowed
to	use	the	library.	A	more	frequent	case	is	that	a	free	library	does	the
same	job	as	widely	used	non-free	libraries.	In	this	case,	there	is	little	to
gain	by	limiting	the	free	library	to	free	software	only,	so	we	use	the	Lesser
General	Public	License.

In	other	cases,	permission	to	use	a	particular	library	in	non-free	programs
enables	a	greater	number	of	people	to	use	a	large	body	of	free	software.
For	example,	permission	to	use	the	GNU	C	Library	in	non-free	programs
enables	many	more	people	to	use	the	whole	GNU	operating	system,	as
well	as	its	variant,	the	GNU/Linux	operating	system.

Although	the	Lesser	General	Public	License	is	Less	protective	of	the
users'	freedom,	it	does	ensure	that	the	user	of	a	program	that	is	linked
with	the	Library	has	the	freedom	and	the	wherewithal	to	run	that	program
using	a	modified	version	of	the	Library.

The	precise	terms	and	conditions	for	copying,	distribution	and
modification	follow.	Pay	close	attention	to	the	difference	between	a	"work
based	on	the	library"	and	a	"work	that	uses	the	library".	The	former
contains	code	derived	from	the	library,	whereas	the	latter	must	be
combined	with	the	library	in	order	to	run.

TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION
AND	MODIFICATION

0.	This	License	Agreement	applies	to	any	software	library	or	other
program	which	contains	a	notice	placed	by	the	copyright	holder	or
other	authorized	party	saying	it	may	be	distributed	under	the	terms	of
this	Lesser	General	Public	License	(also	called	"this	License").	Each
licensee	is	addressed	as	"you".

A	"library"	means	a	collection	of	software	functions	and/or	data
prepared	so	as	to	be	conveniently	linked	with	application	programs
(which	use	some	of	those	functions	and	data)	to	form	executables.

The	"Library",	below,	refers	to	any	such	software	library	or	work
which	has	been	distributed	under	these	terms.	A	"work	based	on	the
Library"	means	either	the	Library	or	any	derivative	work	under
copyright	law:	that	is	to	say,	a	work	containing	the	Library	or	a
portion	of	it,	either	verbatim	or	with	modifications	and/or	translated
straightforwardly	into	another	language.	(Hereinafter,	translation	is
included	without	limitation	in	the	term	"modification".)

"Source	code"	for	a	work	means	the	preferred	form	of	the	work	for
making	modifications	to	it.	For	a	library,	complete	source	code
means	all	the	source	code	for	all	modules	it	contains,	plus	any
associated	interface	definition	files,	plus	the	scripts	used	to	control
compilation	and	installation	of	the	library.

Activities	other	than	copying,	distribution	and	modification	are	not
covered	by	this	License;	they	are	outside	its	scope.	The	act	of
running	a	program	using	the	Library	is	not	restricted,	and	output	from
such	a	program	is	covered	only	if	its	contents	constitute	a	work
based	on	the	Library	(independent	of	the	use	of	the	Library	in	a	tool
for	writing	it).	Whether	that	is	true	depends	on	what	the	Library	does
and	what	the	program	that	uses	the	Library	does.

1.	 You	may	copy	and	distribute	verbatim	copies	of	the	Library's
complete	source	code	as	you	receive	it,	in	any	medium,	provided
that	you	conspicuously	and	appropriately	publish	on	each	copy	an
appropriate	copyright	notice	and	disclaimer	of	warranty;	keep	intact
all	the	notices	that	refer	to	this	License	and	to	the	absence	of	any

warranty;	and	distribute	a	copy	of	this	License	along	with	the	Library.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and
you	may	at	your	option	offer	warranty	protection	in	exchange	for	a
fee.

2.	 You	may	modify	your	copy	or	copies	of	the	Library	or	any	portion	of
it,	thus	forming	a	work	based	on	the	Library,	and	copy	and	distribute
such	modifications	or	work	under	the	terms	of	Section	1	above,
provided	that	you	also	meet	all	of	these	conditions:

1.	 The	modified	work	must	itself	be	a	software	library.
2.	 You	must	cause	the	files	modified	to	carry	prominent	notices

stating	that	you	changed	the	files	and	the	date	of	any	change.
3.	 You	must	cause	the	whole	of	the	work	to	be	licensed	at	no

charge	to	all	third	parties	under	the	terms	of	this	License.
4.	 If	a	facility	in	the	modified	Library	refers	to	a	function	or	a	table

of	data	to	be	supplied	by	an	application	program	that	uses	the
facility,	other	than	as	an	argument	passed	when	the	facility	is
invoked,	then	you	must	make	a	good	faith	effort	to	ensure	that,
in	the	event	an	application	does	not	supply	such	function	or
table,	the	facility	still	operates,	and	performs	whatever	part	of	its
purpose	remains	meaningful.

(For	example,	a	function	in	a	library	to	compute	square	roots
has	a	purpose	that	is	entirely	well-defined	independent	of	the
application.	Therefore,	Subsection	2d	requires	that	any
application-supplied	function	or	table	used	by	this	function	must
be	optional:	if	the	application	does	not	supply	it,	the	square	root
function	must	still	compute	square	roots.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If
identifiable	sections	of	that	work	are	not	derived	from	the	Library,
and	can	be	reasonably	considered	independent	and	separate	works
in	themselves,	then	this	License,	and	its	terms,	do	not	apply	to	those
sections	when	you	distribute	them	as	separate	works.	But	when	you
distribute	the	same	sections	as	part	of	a	whole	which	is	a	work
based	on	the	Library,	the	distribution	of	the	whole	must	be	on	the
terms	of	this	License,	whose	permissions	for	other	licensees	extend
to	the	entire	whole,	and	thus	to	each	and	every	part	regardless	of
who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your
rights	to	work	written	entirely	by	you;	rather,	the	intent	is	to	exercise
the	right	to	control	the	distribution	of	derivative	or	collective	works
based	on	the	Library.

In	addition,	mere	aggregation	of	another	work	not	based	on	the
Library	with	the	Library	(or	with	a	work	based	on	the	Library)	on	a
volume	of	a	storage	or	distribution	medium	does	not	bring	the	other
work	under	the	scope	of	this	License.

3.	 You	may	opt	to	apply	the	terms	of	the	ordinary	GNU	General	Public
License	instead	of	this	License	to	a	given	copy	of	the	Library.	To	do
this,	you	must	alter	all	the	notices	that	refer	to	this	License,	so	that
they	refer	to	the	ordinary	GNU	General	Public	License,	version	2,
instead	of	to	this	License.	(If	a	newer	version	than	version	2	of	the
ordinary	GNU	General	Public	License	has	appeared,	then	you	can
specify	that	version	instead	if	you	wish.)	Do	not	make	any	other
change	in	these	notices.

Once	this	change	is	made	in	a	given	copy,	it	is	irreversible	for	that
copy,	so	the	ordinary	GNU	General	Public	License	applies	to	all
subsequent	copies	and	derivative	works	made	from	that	copy.

This	option	is	useful	when	you	wish	to	copy	part	of	the	code	of	the
Library	into	a	program	that	is	not	a	library.

4.	 You	may	copy	and	distribute	the	Library	(or	a	portion	or	derivative	of
it,	under	Section	2)	in	object	code	or	executable	form	under	the
terms	of	Sections	1	and	2	above	provided	that	you	accompany	it	with
the	complete	corresponding	machine-readable	source	code,	which
must	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a
medium	customarily	used	for	software	interchange.

If	distribution	of	object	code	is	made	by	offering	access	to	copy	from
a	designated	place,	then	offering	equivalent	access	to	copy	the
source	code	from	the	same	place	satisfies	the	requirement	to
distribute	the	source	code,	even	though	third	parties	are	not
compelled	to	copy	the	source	along	with	the	object	code.

5.	 A	program	that	contains	no	derivative	of	any	portion	of	the	Library,
but	is	designed	to	work	with	the	Library	by	being	compiled	or	linked

with	it,	is	called	a	"work	that	uses	the	Library".	Such	a	work,	in
isolation,	is	not	a	derivative	work	of	the	Library,	and	therefore	falls
outside	the	scope	of	this	License.

However,	linking	a	"work	that	uses	the	Library"	with	the	Library
creates	an	executable	that	is	a	derivative	of	the	Library	(because	it
contains	portions	of	the	Library),	rather	than	a	"work	that	uses	the
library".	The	executable	is	therefore	covered	by	this	License.	Section
6	states	terms	for	distribution	of	such	executables.

When	a	"work	that	uses	the	Library"	uses	material	from	a	header	file
that	is	part	of	the	Library,	the	object	code	for	the	work	may	be	a
derivative	work	of	the	Library	even	though	the	source	code	is	not.
Whether	this	is	true	is	especially	significant	if	the	work	can	be	linked
without	the	Library,	or	if	the	work	is	itself	a	library.	The	threshold	for
this	to	be	true	is	not	precisely	defined	by	law.

If	such	an	object	file	uses	only	numerical	parameters,	data	structure
layouts	and	accessors,	and	small	macros	and	small	inline	functions
(ten	lines	or	less	in	length),	then	the	use	of	the	object	file	is
unrestricted,	regardless	of	whether	it	is	legally	a	derivative	work.
(Executables	containing	this	object	code	plus	portions	of	the	Library
will	still	fall	under	Section	6.)

Otherwise,	if	the	work	is	a	derivative	of	the	Library,	you	may
distribute	the	object	code	for	the	work	under	the	terms	of	Section	6.
Any	executables	containing	that	work	also	fall	under	Section	6,
whether	or	not	they	are	linked	directly	with	the	Library	itself.

6.	 As	an	exception	to	the	Sections	above,	you	may	also	combine	or	link
a	"work	that	uses	the	Library"	with	the	Library	to	produce	a	work
containing	portions	of	the	Library,	and	distribute	that	work	under
terms	of	your	choice,	provided	that	the	terms	permit	modification	of
the	work	for	the	customer's	own	use	and	reverse	engineering	for
debugging	such	modifications.

You	must	give	prominent	notice	with	each	copy	of	the	work	that	the
Library	is	used	in	it	and	that	the	Library	and	its	use	are	covered	by
this	License.	You	must	supply	a	copy	of	this	License.	If	the	work
during	execution	displays	copyright	notices,	you	must	include	the
copyright	notice	for	the	Library	among	them,	as	well	as	a	reference

directing	the	user	to	the	copy	of	this	License.	Also,	you	must	do	one
of	these	things:

1.	 Accompany	the	work	with	the	complete	corresponding	machine-
readable	source	code	for	the	Library	including	whatever
changes	were	used	in	the	work	(which	must	be	distributed	under
Sections	1	and	2	above);	and,	if	the	work	is	an	executable	linked
with	the	Library,	with	the	complete	machine-readable	"work	that
uses	the	Library",	as	object	code	and/or	source	code,	so	that
the	user	can	modify	the	Library	and	then	relink	to	produce	a
modified	executable	containing	the	modified	Library.	(It	is
understood	that	the	user	who	changes	the	contents	of
definitions	files	in	the	Library	will	not	necessarily	be	able	to
recompile	the	application	to	use	the	modified	definitions.)

2.	 Use	a	suitable	shared	library	mechanism	for	linking	with	the
Library.	A	suitable	mechanism	is	one	that	(1)	uses	at	run	time	a
copy	of	the	library	already	present	on	the	user's	computer
system,	rather	than	copying	library	functions	into	the	executable,
and	(2)	will	operate	properly	with	a	modified	version	of	the
library,	if	the	user	installs	one,	as	long	as	the	modified	version	is
interface-compatible	with	the	version	that	the	work	was	made
with.

3.	 Accompany	the	work	with	a	written	offer,	valid	for	at	least	three
years,	to	give	the	same	user	the	materials	specified	in
Subsection	6a,	above,	for	a	charge	no	more	than	the	cost	of
performing	this	distribution.

4.	 If	distribution	of	the	work	is	made	by	offering	access	to	copy
from	a	designated	place,	offer	equivalent	access	to	copy	the
above	specified	materials	from	the	same	place.

5.	 Verify	that	the	user	has	already	received	a	copy	of	these
materials	or	that	you	have	already	sent	this	user	a	copy.

For	an	executable,	the	required	form	of	the	"work	that	uses	the
Library"	must	include	any	data	and	utility	programs	needed	for
reproducing	the	executable	from	it.	However,	as	a	special	exception,
the	materials	to	be	distributed	need	not	include	anything	that	is
normally	distributed	(in	either	source	or	binary	form)	with	the	major
components	(compiler,	kernel,	and	so	on)	of	the	operating	system	on
which	the	executable	runs,	unless	that	component	itself
accompanies	the	executable.

It	may	happen	that	this	requirement	contradicts	the	license

restrictions	of	other	proprietary	libraries	that	do	not	normally
accompany	the	operating	system.	Such	a	contradiction	means	you
cannot	use	both	them	and	the	Library	together	in	an	executable	that
you	distribute.

7.	 You	may	place	library	facilities	that	are	a	work	based	on	the	Library
side-by-side	in	a	single	library	together	with	other	library	facilities	not
covered	by	this	License,	and	distribute	such	a	combined	library,
provided	that	the	separate	distribution	of	the	work	based	on	the
Library	and	of	the	other	library	facilities	is	otherwise	permitted,	and
provided	that	you	do	these	two	things:
1.	 Accompany	the	combined	library	with	a	copy	of	the	same	work

based	on	the	Library,	uncombined	with	any	other	library
facilities.	This	must	be	distributed	under	the	terms	of	the
Sections	above.

2.	 Give	prominent	notice	with	the	combined	library	of	the	fact	that
part	of	it	is	a	work	based	on	the	Library,	and	explaining	where	to
find	the	accompanying	uncombined	form	of	the	same	work.

8.	 You	may	not	copy,	modify,	sublicense,	link	with,	or	distribute	the
Library	except	as	expressly	provided	under	this	License.	Any	attempt
otherwise	to	copy,	modify,	sublicense,	link	with,	or	distribute	the
Library	is	void,	and	will	automatically	terminate	your	rights	under	this
License.	However,	parties	who	have	received	copies,	or	rights,	from
you	under	this	License	will	not	have	their	licenses	terminated	so	long
as	such	parties	remain	in	full	compliance.

9.	 You	are	not	required	to	accept	this	License,	since	you	have	not
signed	it.	However,	nothing	else	grants	you	permission	to	modify	or
distribute	the	Library	or	its	derivative	works.	These	actions	are
prohibited	by	law	if	you	do	not	accept	this	License.	Therefore,	by
modifying	or	distributing	the	Library	(or	any	work	based	on	the
Library),	you	indicate	your	acceptance	of	this	License	to	do	so,	and
all	its	terms	and	conditions	for	copying,	distributing	or	modifying	the
Library	or	works	based	on	it.

10.	 Each	time	you	redistribute	the	Library	(or	any	work	based	on	the
Library),	the	recipient	automatically	receives	a	license	from	the
original	licensor	to	copy,	distribute,	link	with	or	modify	the	Library
subject	to	these	terms	and	conditions.	You	may	not	impose	any
further	restrictions	on	the	recipients'	exercise	of	the	rights	granted
herein.	You	are	not	responsible	for	enforcing	compliance	by	third
parties	with	this	License.

11.	 If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),
conditions	are	imposed	on	you	(whether	by	court	order,	agreement
or	otherwise)	that	contradict	the	conditions	of	this	License,	they	do
not	excuse	you	from	the	conditions	of	this	License.	If	you	cannot
distribute	so	as	to	satisfy	simultaneously	your	obligations	under	this
License	and	any	other	pertinent	obligations,	then	as	a	consequence
you	may	not	distribute	the	Library	at	all.	For	example,	if	a	patent
license	would	not	permit	royalty-free	redistribution	of	the	Library	by
all	those	who	receive	copies	directly	or	indirectly	through	you,	then
the	only	way	you	could	satisfy	both	it	and	this	License	would	be	to
refrain	entirely	from	distribution	of	the	Library.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under
any	particular	circumstance,	the	balance	of	the	section	is	intended	to
apply,	and	the	section	as	a	whole	is	intended	to	apply	in	other
circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any
patents	or	other	property	right	claims	or	to	contest	validity	of	any
such	claims;	this	section	has	the	sole	purpose	of	protecting	the
integrity	of	the	free	software	distribution	system	which	is
implemented	by	public	license	practices.	Many	people	have	made
generous	contributions	to	the	wide	range	of	software	distributed
through	that	system	in	reliance	on	consistent	application	of	that
system;	it	is	up	to	the	author/donor	to	decide	if	he	or	she	is	willing	to
distribute	software	through	any	other	system	and	a	licensee	cannot
impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to
be	a	consequence	of	the	rest	of	this	License.

12.	 If	the	distribution	and/or	use	of	the	Library	is	restricted	in	certain
countries	either	by	patents	or	by	copyrighted	interfaces,	the	original
copyright	holder	who	places	the	Library	under	this	License	may	add
an	explicit	geographical	distribution	limitation	excluding	those
countries,	so	that	distribution	is	permitted	only	in	or	among	countries
not	thus	excluded.	In	such	case,	this	License	incorporates	the
limitation	as	if	written	in	the	body	of	this	License.

13.	 The	Free	Software	Foundation	may	publish	revised	and/or	new
versions	of	the	Lesser	General	Public	License	from	time	to	time.

Such	new	versions	will	be	similar	in	spirit	to	the	present	version,	but
may	differ	in	detail	to	address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Library
specifies	a	version	number	of	this	License	which	applies	to	it	and
"any	later	version",	you	have	the	option	of	following	the	terms	and
conditions	either	of	that	version	or	of	any	later	version	published	by
the	Free	Software	Foundation.	If	the	Library	does	not	specify	a
license	version	number,	you	may	choose	any	version	ever	published
by	the	Free	Software	Foundation.

14.	 If	you	wish	to	incorporate	parts	of	the	Library	into	other	free
programs	whose	distribution	conditions	are	incompatible	with	these,
write	to	the	author	to	ask	for	permission.	For	software	which	is
copyrighted	by	the	Free	Software	Foundation,	write	to	the	Free
Software	Foundation;	we	sometimes	make	exceptions	for	this.	Our
decision	will	be	guided	by	the	two	goals	of	preserving	the	free	status
of	all	derivatives	of	our	free	software	and	of	promoting	the	sharing
and	reuse	of	software	generally.

NO	WARRANTY

15.	 BECAUSE	THE	LIBRARY	IS	LICENSED	FREE	OF	CHARGE,
THERE	IS	NO	WARRANTY	FOR	THE	LIBRARY,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE
STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR
OTHER	PARTIES	PROVIDE	THE	LIBRARY	"AS	IS"	WITHOUT
WARRANTY	OF	ANY	KIND,	EITHER	EXPRESSED	OR	IMPLIED,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES
OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE.	THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND
PERFORMANCE	OF	THE	LIBRARY	IS	WITH	YOU.	SHOULD	THE
LIBRARY	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

16.	 IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR
ANY	OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE
THE	LIBRARY	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL
OR	CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	LIBRARY	(INCLUDING	BUT	NOT	LIMITED

TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE
OR	LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A
FAILURE	OF	THE	LIBRARY	TO	OPERATE	WITH	ANY	OTHER
SOFTWARE),	EVEN	IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS
BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Libraries

If	you	develop	a	new	library,	and	you	want	it	to	be	of	the	greatest	possible
use	to	the	public,	we	recommend	making	it	free	software	that	everyone
can	redistribute	and	change.	You	can	do	so	by	permitting	redistribution
under	these	terms	(or,	alternatively,	under	the	terms	of	the	ordinary
General	Public	License).

To	apply	these	terms,	attach	the	following	notices	to	the	library.	It	is
safest	to	attach	them	to	the	start	of	each	source	file	to	most	effectively
convey	the	exclusion	of	warranty;	and	each	file	should	have	at	least	the
"copyright"	line	and	a	pointer	to	where	the	full	notice	is	found.

<one	line	to	give	the	library's	name	and	a	brief	ide

a	of	what	it	does.>

Copyright	(C)	<year>		<name	of	author>

This	library	is	free	software;	you	can	redistribute	

it	and/or

modify	it	under	the	terms	of	the	GNU	Lesser	General	

Public

License	as	published	by	the	Free	Software	Foundation

;	either

version	2.1	of	the	License,	or	(at	your	option)	any	

later	version.

This	library	is	distributed	in	the	hope	that	it	will

	be	useful,

but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	w

arranty	of

MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.

		See	the	GNU

Lesser	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	Lesser	Ge

neral	Public

License	along	with	this	library;	if	not,	write	to	th

e	Free	Software

Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	B

oston,	MA		02110-1301		USA

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your
school,	if	any,	to	sign	a	"copyright	disclaimer"	for	the	library,	if	necessary.
Here	is	a	sample;	alter	the	names:

Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	inter

est	in	the

library	`Frob'	(a	library	for	tweaking	knobs)	writte

n	by	James	Random	Hacker.

<signature	of	Ty	Coon>,	1	April	1990

Ty	Coon,	President	of	Vice

That's	all	there	is	to	it!

OPEN	CASCADE	EXCEPTION
Open	CASCADE	Exception	(version	1.0)	to	GNU	LGPL
version	2.1.

The	object	code	(i.e.	not	a	source)	form	of	a	"work	that	uses	the	Library"
can	incorporate	material	from	a	header	file	that	is	part	of	the	Library.	As	a
special	exception	to	the	GNU	Lesser	General	Public	License	version	2.1,
you	may	distribute	such	object	code	incorporating	material	from	header
files	provided	with	the	Open	CASCADE	Technology	libraries	(including
code	of	CDL	generic	classes)	under	terms	of	your	choice,	provided	that
you	give	prominent	notice	in	supporting	documentation	to	this	code	that	it
makes	use	of	or	is	based	on	facilities	provided	by	the	Open	CASCADE
Technology	software.

Generated	on	Wed	Aug	30	2017	17:04:22	for	Open	CASCADE	Technology	by			

1.8.13

http://www.doxygen.org/index.html

	Tutorial
	Technical Overview
	User Guides
	Foundation Classes
	Modeling Data
	BRep Format
	Modeling Algorithms
	Boolean Operations
	Shape Healing
	Visualization
	VTK Integration Services (VIS)
	IGES Support
	STEP processor
	Extended Data Exchange (XDE)
	OCAF
	TObj Package
	Draw Test Harness
	Inspector

	Developer Guides
	Building OCCT from sources
	Building 3rd-party libraries on Windows
	Building 3rd-party libraries on Linux
	Building 3rd-party libraries on MacOS X
	Building with CMake
	Building with CMake for Android
	Building with MS Visual C++
	Building with Code::Blocks
	Building with Xcode

	Documentation System
	Coding Rules
	Contribution Workflow
	Guide to installing and using Git for OCCT development
	Automated Testing System
	Debugging tools and hints
	Upgrade from older OCCT versions

	License

