
OllyDbg	Plugin	API	v1.10

License	Agreement	(very	official)

General	principles	-	read	it	first!

Compilation	-	read	it	second!

Alphabetical	list	of	all	Plugin	API	elements

Information	functions

Data	formatting	functions

Data	input	functions

Data	conversion	functions

Sorted	data	functions

Name	functions

Search	functions

Disassembly	functions

Assembly	functions

Procedure	functions

Watch	and	expression	functions

Breakpoint	functions

Execution	and	stepping	functions

Trace	and	profiling	functions

CPU-specific	functions

Source	code	support	functions

Window	functions

Thread	functions

Memory	functions

Module	functions

Plugin	functions

Plugin	callback	functions

Structures

Function	prototypes

Custom	messages

Sample	program

OllyDbg	©	2000-2004	Oleh	Yuschuk,	All	Rights	Reserved.

OllyDbg	Plugin	API	©	2001-2004	Oleh	Yuschuk,	All	Rights	Reserved.	Feel	free
to	quote	any	parts	of	this	document.

All	brand	names	and	product	names	used	in	OllyDbg,	accompanying	files	or	in
this	help	are	trademarks,	registered	trademarks,	or	trade	names	of	their
respective	holders.

Registration

OllyDbg	1.10	is	Copyright	(C)	2000-2004	Oleh	Yuschuk.	To	use	this	program	on
a	permanent	basis	or	for	commercial	purposes,	you	should	register	it.	The
registration	is	free	of	charge	and	assumes	no	financial	or	other	obligations
from	your	side	-	just	be	fair	and	let	me	know	that	you	like	this	software.	Any
personal	data	in	the	registration	form	is	optional	(use	your	nickname	or
pseudonym	if	you	want).

If	you	use	OllyDbg	together	with	Randall	Hyde's	HLA	(High	Level
Assembly),	you	don't	need	(but	still	allowed)	to	register.

When	registering,	you	can	subscribe	for	information	(email)	on	the	new	release
versions	of	this	program.	In	this	case	you	agree	not	to	treat	this	information	as	a
spam	as	long	as	number	of	letters	does	not	exceed	4	each	calendar	year	and	they
contain	no	advertisements	from	the	third	parties.	If	you	no	longer	want	to	receive
this	information	-	well,	just	let	me	know,	and	I	will	immediately	delete	your
address	from	my	database.

If	you	are	already	a	registered	OllyDbg	user,	you	don't	need	to	re-register
this	version.	If	you	are	new,	please	read	license	argeement,	fill	the	registartion
form	(register.txt)	or	copy	and	fill	the	following	section	from	the	help	and	email
it	to	Ollydbg@t-online.de.	I	will	keep	your	information	confidential	and	will	not
give	it	to	third	persons,	unless	forced	by	a	law.

Registration	form	for	OllyDbg	v1.10

To	use	OllyDbg,	you	must	agree	with	all	of	the	terms	and

conditions	of	the	accompanying	License	Agreement.	All	other

answers	are	optional.

Name	___

Title	___

Company	___

City,state___

Country	___

Where	did	you	find	OllyDbg	__________________________________

Are	you	going	to	write	your	own	plugins

(____)	Yes	(____)	No	(____)	Don't	know

I	agree	with	all	the	terms	and	condition	of	the	accompanying

License	Agreement	(Very	important!	Please	mark!)

(____)	Yes	(____)	No

Date	of	registration	__

If	you	want	to	receive	notifications	when	OllyDbg	2.00	and

subsequent	versions	will	be	ready,	please	enter	your	email

address	here:

Thank	you.	If	you	have	ideas	how	to	improve	OllyDbg	and	make

it	easier	in	use,	or	want	to	have	some	new	features,	please

let	me	know.	Your	opinion	helps	me	a	lot!

Your	first	idea:	__

Your	second	idea:	___

Your	third	idea:	__

License	Agreement

Trademark	information

All	brand	names	and	product	names	used	in	OllyDbg,	accompanying	files	or	in
this	help	are	trademarks,	registered	trademarks,	or	trade	names	of	their
respective	holders.	They	are	used	for	identification	purposes	only.

License	Agreement

This	License	Agreement	("Agreement")	accompanies	the	OllyDbg	version	1.10,
OllyDbg	Plugin	Development	Kit	version	1.10	and	related	files	("Software").	By
using	the	Software,	you	agree	to	be	bound	by	all	of	the	terms	and	conditions	of
the	Agreement.

The	Software	is	distributed	"as	is",	without	warranty	of	any	kind,	expressed	or
implied,	including,	but	not	limited	to	warranty	of	fitness	for	any	particular
purpose.	In	no	event	will	the	Author	be	liable	to	you	for	any	special,	incidental,
indirect,	consequential	or	any	other	damages	caused	by	the	use,	misuse,	or	the
inability	to	use	of	the	Software,	including	any	lost	profits	or	lost	savings,	even	if
Author	has	been	advised	of	the	possibility	of	such	damages.

The	Software	is	owned	by	Oleh	Yuschuk	("Author")	and	is	Copyright	(c)	2000-
2004	Oleh	Yuschuk.	To	use	this	Software	on	a	permanent	basis	or	for
commercial	purposes,	you	must	register	it	by	filling	the	supplied	registration
form	and	sending	it	to	the	Author.	You	don't	need	to	register	Software	if	you	use
it	exclusively	with	Randall	Hyde's	High	Level	Assembly.	If	you	are	already	a
registered	OllyDbg	user,	you	don't	need	to	re-register	the	Software	again.	If	the
Software	is	registered	to	a	company	or	organization,	any	person	within	the
company	or	organization	has	the	right	to	use	it	at	work.	You	may	install	the
registered	Software	on	any	number	of	storage	devices,	like	hard	disks,	floppy
disks	etc.	and	are	allowed	to	make	any	number	of	backup	copies	of	this
Software.

You	are	not	allowed	to	modify,	decompile,	disassemble	or	reverse	engineer	the
Software	except	and	only	to	the	extent	that	such	activity	is	expressly	permitted
by	applicable	law.	You	are	not	allowed	to	distribute	or	use	any	parts	of	the
Software	separately.	You	may	make	and	distribute	copies	of	this	Software
provided	that	a)	the	copy	contains	all	files	from	the	original	distribution	and

these	files	remain	unchanged;	b)	if	you	distribute	any	other	files	(for	example,
plugins)	together	with	the	Software,	they	must	be	clearly	marked	as	such	and	the
conditions	of	their	use	cannot	be	more	restrictive	than	conditions	of	this
Agreement;	and	c)	you	collect	no	fee	(except	for	transport	media,	like	CD	or
diskette),	even	if	your	distribution	contains	additional	files.

You	are	allowed	to	develop	and	distribute	your	own	plugins	--	Dynamic	Link
Libraries	that	connect	to	the	Software	and	make	use	of	the	functions
implemented	in	the	Software	--	free	of	charge	provided	that	a)	your	plugins
contain	no	features	that	persuade	or	force	user	to	register	them,	or	limit
functionality	of	unregistered	plugins;	b)	you	allow	free	distribution	of	your
plugins	on	the	conditions	similar	to	that	of	the	Software;	and	c)	you	collect	no
fee	(except	for	transport	media,	like	CD	or	diskette).	If	you	want	to	develop
commercial	plugin,	please	contact	Author	for	a	special	Agreement.

The	distribution	includes	files	PSAPI.DLL	and	DBGHELP.DLL	that	are	the
Microsoft(R)	Redistributable	files.	These	files	should	be	installed	only	in	the
directory	where	the	Software	resides.	You	should	use	supplied	PSAPI.DLL	only
on	Windows	NT(R)	4.0.	You	are	not	allowed	to	distribute	PSAPI.DLL	and/or
DBGHELP.DLL	separately	from	the	Software.

This	Agreement	covers	only	the	actual	version	1.10	of	the	OllyDbg	and	version
1.10	of	the	OllyDbg	Plugin	Development	Kit.	All	other	versions	are	covered	by
separate	License	Agreements.

Fair	use

Many	software	manufacturers	explicitly	disallow	you	any	attempts	of
disassembling,	decompilation,	reverse	engineering	or	modification	of	their
programs.	This	restriction	also	covers	all	third-party	dynamic-link	libraries	your
application	may	use,	including	system	libraries.	If	you	have	any	doubts,	contact
the	owner	of	copyright.	The	so	called	„fair	use"	clause	can	be	misleading.	You
may	want	to	discuss	whether	it	applies	in	your	case	with	competent	lawyer.
Please	don't	use	OllyDbg	for	illegal	purposes!

General	principles

Welcome.	OllyDbg	v1.10	is	the	final	version.	I	decided	to	stop	its	development.
This	does	not	mean	that	OllyDbg	is	dead	-	currently	I'm	preparing	v2.0	-	but	new
version	will	be	incompatible	with	v1.xx,	at	least	what	concerns	plugins.	Sorry,
but	this	is	the	only	possible	solution.

This	documents	describes	OllyDbg	Plugin	API	v1.10.	There	are	no	significant
changes	in	interfaces	or	in	structures,	so	plugins	compiled	for	OllyDbg	1.06	or
1.08	will	usually	work	with	OllyDbg	1.10.	The	only	changes	that	may	be	not
100%	backward-compatible	are	limited	to:

-Structures	t_reg	and	t_bpoint	are	extended;

-New	option	"Always	on	top"	requires	special	support	from	plugin	windows;

-Function	Browsefilename	supports	Save	File	dialog;

Plugin	is	a	DLL	that	resides	in	OllyDbg	directory	and	adds	functionality	to
OllyDbg.	You	are	free	to	write	and	distribute	your	own	plugins,	provided	that
they	are	free,	too.	(See	License	Agreement	for	details).	On	your	request,	I	am
ready	to	place	such	plugins	for	download	on	my	home	page.	Commercial
plugins	are	also	allowed,	but	in	this	case	you	need	special	license.

To	co-operate,	different	plugins	require	unique	names,	.udd	tags,	nametypes	and
so	on.	If	you	need	some	of	these	resources,	please	contact	me.	This	service	is
absolutely	free	for	you!

During	startup,	OllyDbg	loads	all	available	DLLs	one	by	one	and	looks	for	entry
points	named	_ODBG_Plugindata	and	_ODBG_Plugininit.	If	these	entries	are
present	and	plugin	reports	compatible	interface	version,	OllyDbg	registers	plugin
and	adds	entry	or	submenu	to	Plugins	popup	in	the	main	OllyDbg	menu.

Plugins	can	add	menu	items	to	Disassembler,	Dump,	Stack,	Registers,	Memory,
Modules,	Threads,	Breakpoints,	Watches,	References,	Windows	and	Run	trace
windows.	They	can	intercept	both	global	shortcuts	and	shortcuts	from	one	of	the
listed	windows.	They	also	can	create	own	MDI	windows.	Plugins	can	write
plugin-specific	data	to	.udd	files	with	module-dependent	information	and
ollydbg.ini	and	access	different	data	structures	that	describe	debugged

application.	There	are	several	(in	general,	optional)	callback	functions	that	allow
easy	but	close	interaction	with	OllyDbg.	Additionally,	plugins	may	call	more
than	170	plugin	API	functions.

Plugin	interface	is	not	object-oriented.	Perharps	this	will	come	as	surprise	to
you,	but	all	my	experience	tells	me	that	OOP	is	not	as	good	as	main	software
vendors	try	to	sell.	It	is	really	good	if	you	write	small	application	performing
standard	functions.	For	a	big	weird	project	(and	OllyDbg	is	a	big	weird	project)
OOP	gives	no	real	improvements	in	development	time,	errors	in	components	are
very	hard	to	locate	and	even	harder	to	correct.	And	-	contrary	to	what	vendors
tell	us	-	OO	programs	are	usually	slow.	Stop	crying,	this	is	only	my	opinion,
albeit	proved	by	all	my	experience	in	the	last	15	years	or	so.	Anyway,	try	to
swallow	that	you	will	get	no	ready-to-use	objects	here	and	are	doomed	to	free
memory	by	yourself	when	plugin	terminates.

Plugin	API	is	not	re-entrant	and	does	not	implement	critical	sections.	If	your
plugin	creates	new	thread,	don't	call	API	functions	from	this	thread,	otherwise
you	risk	to	corrupt	internal	data	structures	and	crash	both	program	and	OllyDbg!

Some	exported	API	functions	are	not	described	here.	Their	direct	use	may	bring
OllyDbg	in	unstable	state.	I	have	added	them	for	better	compatibility	with	future
versions	of	plugin	interface.

See	also:	Compilation

Always	on	top

OllyDbg	now	supports	"always	on	top"	option	for	its	MDI	winsows	(called	from
the	Appearance	menu).	This	option	means	that	selected	MDI	window	remains
visible	on	the	top	of	other	windows.

Adding	this	useful	option	to	a	plugin	is	a	matter	of	minutes.	Plugins	create	MDI
windows	by	calling	Newtablewindow	or	Quicktablewindow.	In	the	structure
t_table,	passed	as	a	first	parameter,	you	must	specify	flag	TABLE_ONTOP,	as	in
the	sample	program.	To	support	this	option,	plugin	must	pass	message
WM_WINDOWPOSCHANGED	to	default	plugin	function	(see	here).

That's	all!	Easy,	isn't	it?

Compilation

Compilation

To	compile	your	own	plugin,	you	need	some	C	or	C++	compiler	(together	with
linker	and	run-time	libraries).	Plugin	interface	(file	plugin.h)	is	compatible	at
least	with	following	compilers:

·Borland's	C++	5.5	-	command	line	compiler,	available	for	free	from
www.borland.com	(requires	registration);

·Borland's	C++	Builder	5	-	based	on	the	same	C++	5.5;

·Microsoft's	Visual	C++	5.0	-	rather	old	but	solid	and	stable.

I	haven't	tried	any	other	compilers.	Please	let	me	know	if	you	find	any
incompatibilities	and,	if	possible,	send	me	corrected	version	of	file	plugin.h.

Plugin	Development	Kit	includes	source	code	for	two	fully	functional	sample
plugins:	bookmark,	that	allows	to	set	up	to	10	bookmarks	in	debugged
application,	and	command	line,	that	implements	command	line	interface.
Plugins	are	well	documented.	You	can	use	them	as	a	template	for	your	own
plugins.	They	are	freeware,	i.e.	your	rights	to	modify	and	re-use	their	source
code	are	not	limited	in	any	way.

Following	compiler	settings	are	required	for	correct	communication	between
plugin	and	OllyDbg.	For	compilers	listed	above,	plugin.h	forces	or	checks	some
of	these	rules:

·Export	all	callback	functions	by	name,	NOT	by	ordinal;

·If	you	use	C++	compiler,	disable	name	mangling	on	all	callback	functions
(declare	them	as	extern	"C");

·Force	standard	C-style	passing	of	parameters	to	all	API	and	callback	functions
(declare	them	as	cdecl);

·Force	BYTE	alignment	of	all	structures	declared	in	plugin.h;

·Set	default	character	type	to	UNSIGNED.

Keep	in	mind	that	all	pointers	you	get	from	OllyDbg	may	be	NULL.	This	is	a
very	common	error	to	assume	opposite.

Use	static	run-time	libraries	linked	directly	into	your	plugin,	otherwise
differences	between	versions	of	run-time	DLLs	will	make	OllyDbg	unstable.	Do
not	split	your	plugin	unnecessarily	into	several	DLLs.	If	you	need	data	files	that
are	not	modifiable	by	user,	try	to	place	this	data	directly	into	your	plugin	as	a
resource.

To	link	your	plugin	to	OllyDbg,	you	also	need	import	library	ollydbg.lib.	Some
compilers	(Borland)	include	utility	called	implib	that	scans	executable	file	(in
our	case,	ollydbg.exe)	and	produces	a	special	kind	of	library	with	a	list	of	all
exported	functions.	Some	other	products,	like	MSVC,	can	generate	import
library	from	the	definition	file	(ollydbg.def).	Similar	products	from	other	vendors
are	also	available.	For	details,	please	consult	documentation.

And,	last	but	not	least,	don't	waste	resources!	Don't	export	unused	callback
functions	and	make	your	program	fast!	OllyDbg	in	current	version	supports	up
to	32	plugins.	If	each	of	them	will	take	only	50	ms	to	reject	a	global	shortcut,
then	50	ms	for	window-specific	shortcut...	you	DO	understand	what	I	mean,
don't	you?

Contents	of	plug110.zip

Plugin	kit	archive	contains	following	files:

Root	directory:

bookmark.c	-	source	of	bookmark	plugin

cmdexec.c	-	source	of	command	line	plugin

command.c	-	source	of	command	line	plugin

cmdline.rtf	-	RTF	source	of	help	(.hlp)	file	for	command	line	plugin

ollydbg.def	-	OllyDbg	definition	file,	some	compilers	need	it	to	produce	import
library	ollydbg.lib

plugin.h	-	header	with	definitions	of	plugin	interface

plugins.hlp	-	this	help	file

Directory	BC55:

sample.bpr	-	project	file	for	BCB	5,	produces	sample.dll	(same	as
bookmark.dll)

sample.cpp	-	main	file	for	sample.bpr

bookmark.mak	-	make	file	for	BC	5.5,	produces	bookmark.dll

cmdline.bpr	-	project	file	for	BCB	5,	produces	cmdline.dll

cmdline.cpp	-	main	file	for	cmdline.bpr

cmdline.mak	-	make	file	for	BC	5.5,	produces	cmdline.dll

ollydbg.lib	-	OllyDbg	import	library	in	OMF	format

Directory	VC50:

bookmark.dsp	-	project	file	for	Visual	Studio	97,	produces	bookmark.dll

bookmark.dsw	-	project	file	for	Visual	Studio	97,	produces	bookmark.dll

bookmark.mak	-	make	file	for	VC	5.0,	produces	bookmark.dll

cmdline.dsp	-	project	file	for	Visual	Studio	97,	produces	cmdline.dll

cmdline.dsw	-	project	file	for	Visual	Studio	97,	produces	cmdline.dll

cmdline.mak	-	make	file	for	VC	5.0,	produces	cmdline.dll

ollydbg.lib	-	OllyDbg	import	library	in	COFF	format

Making	sample	plugins	with	BC5.5

To	build	sample	DLLs	with	BC	5.5,	please	do	the	following:

1.	Copy	files	bookmark.c,	cmdexec.c,	command.c,	plugin.h,
bc55\bookmark.mak,	bc55\cmdline.mak,	bc55\ollydbg.lib	to	same	directory;

2.	Assuming	that	your	BC	5.5	compiler	is	installed	to	c:\bc55,	issue	following
commands:

c:\bc55\bin\make	-f	bookmark.mak

c:\bc55\bin\make	-f	cmdline.mak

3.	Suppose	that	you	write	your	own	plugin,	myplug,	consisting	of	source	files
a.c,	b.c	and	resource	c.rc.	All	you	need	is	to	rename	bookmark.mak	to
myplug.mak	and	modify	three	lines	near	the	top	of	the	file	in	a	following	way:

PROJECT	=	myplug.dll

OBJFILES	=	a.obj	b.obj

RESFILES	=	c.rc

and	then	command

c:\bc55\bin\make	-f	myplug.mak

Making	sample	plugins	with	BCB	5

BCB	projects	must	contain	main	C++	program	with	the	same	name	as	project
and	extention	.cpp.	For	this	reason,	bookmark	plugin	created	with	Builder	is
called	sample.dll.	Of	course,	this	has	no	influence	on	its	functionality.

To	build	sample.dll,	please	do	the	following:

1.	Copy	files	bookmark.c,	plugin.h,	bc55\sample.bpr,	bc55\sample.cpp	and
bc55\ollydbg.lib	to	the	same	directory;

2.	Open	sample.bpr	in	Builder	and	make	project.

To	build	cmdline.dll,	please	do	the	following:

1.	Copy	files	cmdexec.c,	command.c,	plugin.h,	bc55\cmdline.bpr,
bc55\cmdline.cpp	and	bc55\ollydbg.lib	to	the	same	directory;

2.	Open	cmdline.bpr	in	Builder	and	make	project.

Making	sample	plugins	with	VC	5.0	from	the	command	line

To	build	sample	DLLs	with	VC	5.0,	please	do	the	following:

1.	Copy	files	bookmark.c,	cmdexec.c,	command.c,	plugin.h,
vc50\bookmark.mak,	vc50\cmdline.mak	and	vc50\ollydbg.lib	to	the	same
directory;

2.	In	.mak	files,	edit	lines

INCLUDE=c:\vc\include

LIBPATH=c:\vc\lib

so	that	they	point	to	your	include	and	library	directories;

3.	Assuming	that	your	VC	compiler,	cl.exe,	and	make	utility,	nmake.exe,	reside
in	c:\vc\bin,	execute	following	commands:

c:\vc\bin\nmake	-f	bookmark.mak

c:\vc\bin\nmake	-f	cmdline.mak

Making	sample	plugins	from	the	Visual	Studio

To	build	bookmark.dll:

1.	Copy	files	bookmark.c,	plugin.h,	vc50\bookmark.dsp,
vc50\bookmark.dsw	and	vc50\ollydbg.lib	to	the	same	directory;

2.	Open	project	bookmark	in	Visual	Studio	and	make	it.

To	build	cmdline.dll:

1.	Copy	files	cmdexec.c,	command.c,	plugin.h,	vc50\cmdline.dsp,
vc50\cmdline.dsw	and	vc50\ollydbg.lib	to	the	same	directory;

2.	Open	project	cmdline	in	Visual	Studio	and	make	it.

Plugin	API	-	alphabetical	list

API	functions

This	list	contains	all	functions	exported	by	OllyDbg.	Some	of	them	are	reserved
for	the	future	use	and	are	not	described	here.	Direct	calls	to	some	undescribed
functions	may	impair	OllyDbg's	stability.	If	you	need	some	undescribed
function,	please	contact	Oleh	Yuschuk.	Functions	that	were	added	or	changed
since	version	1.08	are	marked	with	an	asterisk	(*).

Addsorteddata

Addtolist

Analysecode

Animate

Assemble

Attachtoactiveprocess	*

Broadcast

Browsefilename	*

Checkcondition

Compress

Createdumpwindow

Createlistwindow

Createpatchwindow	*

Createprofilewindow

Creatertracewindow

Createsorteddata

Createthreadwindow

Createwatchwindow

Createwinwindow

Decodeaddress

Decodeascii

Decodecharacter

Decodefullvarname

Decodeknownargument

Decodename

Decoderange

Decoderelativeoffset

Decodethreadname

Decodeunicode

Decompress

Defaultbar

Deletebreakpoints

Deletehardwarebreakbyaddr

Deletehardwarebreakpoint

Deletenamerange

Deletenonconfirmedsorteddata

Deleteruntrace

Deletesorteddata

Deletesorteddatarange

Deletewatch

Demanglename

Destroysorteddata

Disasm

Disassembleback

Disassembleforward

Discardquicknames

Dumpbackup

Error

Expression

Findallcommands

Findalldllcalls

Findallsequences

Finddecode

Findfileoffset

Findfixup

Findhittrace

Findimportbyname

Findknownfunction

Findlabel

Findlabelbyname

Findmemory

Findmodule

Findname

Findnextname

Findnextproc

Findnextruntraceip

Findprevproc

Findprevruntraceip

Findprocbegin

Findprocend

Findreferences

Findsorteddata

Findsorteddataindex

Findsorteddatarange

Findstrings

Findsymbolicname

Findthread

Findunknownfunction

Flash

Followcall

Get3dnow

Get3dnowxy

Getaddressfromline

Getasmfindmodel

Getasmfindmodelxy

Getbprelname

Getbreakpointtype

Getbreakpointtypecount	*

Getcputhreadid

Getdisassemblerrange

Getfloat

Getfloatxy

Getfloat10

Getfloat10xy

Gethexstring

Gethexstringxy

Getline

Getlinexy

Getlinefromaddress

Getlong

Getlongxy

Getmmx

Getmmxxy

Getnextbreakpoint

Getoriginaldatasize

Getproclimits

Getregxy

Getresourcestring

Getruntraceregisters

Getruntraceprofile

Getsortedbyselection

Getsourcefilelimits

Getstatus

Gettableselectionxy

Gettext

Gettextxy

Getwatch

Go

Guardmemory

Hardbreakpoints

Havecopyofmemory

Infoline

Injectcode

Insertname

Insertwatch

Isfilling

Isprefix

Isretaddr

Issuspicious

IstextA

IstextW

Listmemory	*

Manualbreakpoint

Mergequicknames

Message

Modifyhittrace

Newtablewindow

OpenEXEfile

Painttable

Plugingetvalue

Pluginreadintfromini

Pluginreadstringfromini

Pluginsaverecord

Pluginwriteinttoini

Pluginwritestringtoini

Print3dnow

Printfloat10

Printfloat4

Printfloat8

Printsse

Progress

Quickinsertname

Quicktablewindow

Readcommand

Readmemory

Redrawdisassembler

Registerpluginclass

Restoreallthreads

Runsinglethread

Runtracesize

Scrollruntracewindow

Selectandscroll

Sendshortcut

Setbreakpoint	*

Setbreakpointext	*

Setcpu

Setdisasm

Setdumptype

Sethardwarebreakpoint

Setmembreakpoint

Settracecondition

Settracecount	*

Showsourcefromaddress

Sortsorteddata

Startruntrace

Stringtotext

Suspendprocess

Tablefunction

Tempbreakpoint

Unregisterpluginclass

Updatelist

Walkreference

Walkreferenceex

Writememory

Callback	functions

ODBG_Paused	*

ODBG_Pausedex	*

ODBG_Pluginaction

ODBG_Pluginclose

ODBG_Plugincmd	*

ODBG_Plugindata

ODBG_Plugindestroy

ODBG_Plugininit

ODBG_Pluginmainloop

ODBG_Pluginmenu

ODBG_Pluginreset

ODBG_Pluginsaveudd

ODBG_Pluginshortcut

ODBG_Pluginuddrecord

Structures

t_asmmodel

t_bpoint	*

t_disasm

t_dump

t_extmodel

t_hexstr

t_memory

t_module

t_operand

t_ref

t_reg	*

t_result

t_sorted

t_sortheader

t_table

t_thread

t_window

Function	prototypes

SORTFUNC

DESTFUNC

DRAWFUNC

Custom	messages

WM_USER_BAR

WM_USER_CHALL

WM_USER_CHGS

WM_USER_CHMEM

WM_USER_CHREG

WM_USER_CNTS

WM_USER_DBLCLK

WM_USER_MENU

WM_USER_SCR

WM_USER_STS

WM_USER_VABS

WM_USER_VBYTE

WM_USER_VREL

Information	functions

This	group	of	functions	displays	error	and	information	messages,	adds	messages
to	log	window,	shows	scrollbar	and	flash:

void	Addtolist	(long	addr,int	highlight,char	*format,...);

void	Updatelist(void);

HWND	Createlistwindow(void);

void	Error(char	*format,...);

void	Message(ulong	addr,char	*format,...);

void	Infoline(char	*format,...);

void	Progress(int	promille,char	*format,...);

void	Flash(char	*format,...);

Addtolist

The	Addtolist	function	adds	single	line	of	ASCII	text,	up	to	TEXTLEN
characters	long,	to	the	log	window.

void	Addtolist(long	addr,int	highlight,char	*format,...);

Parameters:

addr	-	memory	address	associated	with	log	line.	By	doubleclicking	the	line	in	log
window,	one	can	instantly	jump	to	the	corresponding	code	or	data	in	CPU;

highlight	-	color	of	text:

0 standard	color	(black	in	black	on	white	color	scheme);
1 highlighted	(red);
-1 grayed	(gray);

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Updatelist,	Createlistwindow,	Message

Updatelist

If	log	window	is	present,	call	to	this	function	forces	immediate	update	of	the	log
window.	Call	it	if	some	operation	takes	plenty	of	time	and	you	want	to	make
new	messages	immediately	available	for	user.

void	Updatelist(void);

See	also:	Addtolist,	Createlistwindow,	Message

Createlistwindow

Creates	or	restores	log	window	(window	that	displays	contents	of	log	buffer)	on
the	screen.	Note	that	writing	to	buffer	doesn't	depend	on	whether	log	window	is
present;	closing	log	window	doesn't	destroy	the	contents	of	buffer.

HWND	Createlistwindow(void);

See	also:	Addtolist,	Updatelist,	Message

Error

Displays	message	box	with	information	about	error.	To	continue,	user	must	click
OK	button,	press	Enter	or	Esc.	Use	this	call	for	critical	errors	only;	if	error	is	not
very	important,	Flash,	Message	or	Infoline	are	better	alternatives.

void	Error(char	*format,...);

Parameters:

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Flash,	Message,	Infoline

Message

Displays	message	on	the	bottom	of	main	OllyDbg	window	and	adds	it	to	the	log
window.	If	format	is	NULL,	message	will	be	removed	from	the	bottom	line	but
not	added	to	the	log.	Formatted	message	may	contain	dollar	sign	'$'.	This	symbol
is	replaced	by	dash	'-'	on	the	bottom	line	and	terminates	line	added	to	the	log.
For	example,	if	you	call	Message(0,"Critical	error	$	press	SPACE	to	continue"),
bottom	line	will	display	"Critical	error	-	press	SPACE	to	continue"	and	log
window	"Critical	error".	Call	to	this	function	removes	flash	and	progress	bar
from	the	bottom	line.

void	Message(ulong	addr,char	*format,...);

Parameters:

addr	-	memory	address	associated	with	log	line.	By	doubleclicking	the	line	in	log
window,	one	can	instantly	jump	to	the	corresponding	code	or	data	in	CPU.	addr
is	not	displayed	in	the	bottom	line;

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Addtolist,	Updatelist,	Createlistwindow,	Infoline,	Progress,	Flash

Infoline

Displays	message	on	the	bottom	of	main	OllyDbg	window.	If	format	is	NULL,
currently	displayed	message	will	be	removed.	Call	to	Infoline	removes	flash	and
progress	bar	from	the	bottom	line.

void	Infoline(char	*format,...);

Parameters:

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Addtolist,	Updatelist,	Createlistwindow,	Message,	Progress,	Flash

Progress

Displays	progress	bar	on	the	bottom	of	main	OllyDbg	window.	Bar	will	contain
formatted	text	with	attached	percent	of	execution.	Formatted	text	may	contain
dollar	sign	'$',	in	this	case	persent	of	execution,	enclosed	in	dashes,	is	inserted
instead	of	dollra	sign.	If	promille	is	0,	function	closes	progress	bar	restores
previously	displayed	message.	Calls	to	Message,	Infoline	and	Flash	also	will
close	progress	bar.

void	Progress(int	promille,char	*format,...);

Parameters:

promille	-	progress,	in	1/1000th;

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Message,	Infoline,	Flash

Flash

Displays	highlighted	message	on	the	bottom	of	main	OllyDbg	window.	This
message	automatically	disappears	in	500	milliseconds.

void	Flash(char	*format,...);

Parameters:

format	-	format	string	(as	in	call	to	printf),	followed	by	optional	arguments.

See	also:	Message,	Infoline,	Progress

Data	formatting	functions

This	group	of	functions	converts	binary	data,	like	address,	floating	number	or
character	to	ASCII	text.	Functions	IstextA	and	IstextW	check	whether	ASCII	or
UNICODE	character	can	be	a	part	of	string.	Isretaddr	checks	whether	address	is
a	possible	return	address.

int	Decodeaddress(ulong	addr,ulong	base,int	addrmode,char	*symb,int
nsymb,char	*comment);

int	Decoderelativeoffset(ulong	addr,int	addrmode,char	*symb,int	nsymb);

int	Decoderange(ulong	addr,ulong	size,char	*s);

int	Decodecharacter(char	*s,uint	c);

int	Decodeascii(ulong	addr,char	*s,int	len,int	mode);

int	Decodeunicode(ulong	addr,char	*s,int	len);

int	Printfloat4(char	*s,float	f);

int	Printfloat8(char	*s,double	d);

int	Printfloat10(char	*s,long	double	ext);

int	Printsse(char	*s,char	*f);

int	Print3dnow(char	*s,char	*f);

int	IstextA(char	c);

int	IstextW(wchar_t	w);

ulong	Isretaddr(ulong	retaddr,ulong	*procaddr);

int	Stringtotext(char	*data,int	ndata,char	*text,int	ntext);

Decodeaddress

Decodes	memory	address	to	text	string	and	optionally	comments	it.	Returns
length	of	decoded	string	(not	including	terminal	0),	or	0	on	error.	The	decoding
is	strongly	influenced	by	addrmode	and	may	vary	from	simple	01234567	to
constructs	like	<JMP.&USER32.GetSystemMetrics>.	If	address	has	both
module-	and	user-defined	names,	user-defined	name	has	priority	and	module-
defined	name	is	placed	in	comment.

int	Decodeaddress(ulong	addr,ulong	base,int	addrmode,char	*symb,int
nsymb,char	*comment);

Parameters:

addr	-	address	to	decode	in	address	space	of	debugged	program;

base	-	address	belonging	to	the	module	selected	as	current	or	0	if	there	is	no
current	module.	Necessary	if	you	set	bits	ADC_SAMEMOD	or
ADC_DIFFMOD;

addrmode	-	combination	of	ADC_xxx	bits	listed	below,	determines	how	to
decode	addr.	Note	that	Decodeaddress	does	not	support	some	of	ADC_xxx
declared	in	plugin.h:

ADC_VALID decode	address	only	if	it	points	to	allocated
memory	or	has	associated	symbolic	name;

ADC_INMODULE

decode	address	only	if	it	points	to	some	module
or	has	associated	symbolic	name.	If	you	want	to
avoid	cases	when	some	address	points	to	gap
between	two	memory	blocks	belonging	to	a
module,	specify	both	ADC_VALID	and
ADC_INMODULE	flags;

ADC_SAMEMOD

decode	address	only	if	it	points	to	module
defined	by	parameter	base	or	has	associated
symbolic	name	(constant	or	name	belonging	to
different	mnodule).	Condition
ADC_INMODULE	is	automatically	true	and	flag
need	not	to	be	explicitely	specified.

ADC_SYMBOL decode	address	only	if	it	has	symbolic	name	or	if
ADC_JUMP	bit	is	set	and	address	points	to	JMP
to	symbolic	name;

ADC_JUMP
check	whether	addr	points	to	JMP	to	address
placed	on	some	import	address	and	decode	it	as
<JMP.&MODULE.ImportName>;

ADC_DIFFMOD
display	module	name	only	if	addr	belongs	to
module	which	differs	from	the	current	(specified
by	base);

ADC_NOMODNAME

never	display	module	name.	If	neither
ADC_DIFFMOD	nor	ADC_NOMODNAME
bits	specified,	module	name	is	displayed	when
address	belongs	to	some	module;

ADC_OFFSET
if	address	has	a	symbolic	name	and	points	to	data
section,	add	word	OFFSET	before	this	name	(for
ex.,	OFFSET	MODULE.DataName);

ADC_STRING decode	to	comment	the	case	when	address	points
to	ASCII	or	UNICODE	string;

ADC_ENTRY
decode	to	comment	the	case	when	address	is	an
entry	point	of	some	subroutine	without	symbolic
name;

symb	-	pointer	to	buffer	of	length	at	least	nsymb	bytes	where	Decodeaddress
places	decoded	string;

nsymb	-	length,	in	characters,	of	buffer	symb;

comment	-	pointer	to	string	of	length	at	least	TEXTLEN	bytes	or	NULL,
receives	comment	asociated	with	addr.

See	also:	Decoderelativeoffset,	Disasm,	Decodeascii,	Decodeunicode

Decoderelativeoffset

If	address	points	to	a	valid	command	within	the	named	procedure,	decodes
address	in	form	"module.procedure+offset"	or	"procedure+offset".	Returns
length	of	decoded	string	or	0	on	error	or	when	procedure	is	not	named.

int	Decoderelativeoffset(ulong	addr,int	addrmode,char	*symb,int	nsymb);

Parameters:

addr	-	absolute	address	to	decode;

addrmode	-	combination	of	ADC_xxx	bits	listed	below,	determines	how	to
decode	addr.	Note	that	Decodeaddress	does	not	support	some	of	ADC_xxx
declared	in	plugin.h:

ADC_NOMODNAME if	bit	is	cleared,	prepend	name	of	procedure	withmodule	name,	otherwise	module	name	is	omitted
ADC_NONTRIVIAL if	offset	is	0,	do	not	decode	relative	offset

symb	-	pointer	to	buffer	of	length	at	least	nsymb	bytes	where
Decoderelativeoffset	places	decoded	string;

nsymb	-	length,	in	characters,	of	buffer	symb.

See	also:	Decodeaddress,	Decoderange

Decoderange

Decodes	address	range,	either	in	form	"module:section"	or	"firstaddr..lastaddr".
Returns	length	of	resulting	string.

int	Decoderange(ulong	addr,ulong	size,char	*s);

Parameters:

addr	-	start	of	address	range;

size	-	size	of	address	range;

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	that	receives	resulting
string.

See	also:	Decodeaddress,	Decoderelativeoffset

Decodecharacter

Decodes	ASCII	character	c	to	string	s	and	comments	some	characters	with
special	meaning,	like	TAB,	CR	or	LF.	Returns	length	of	decoded	string	or	0	on
error.

int	Decodecharacter(char	*s,uint	c);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Decodecharacter
places	decoded	string;

c	-	character	to	decode.

See	also:	IstextA,	IstextW

Decodeascii

Decodes	ASCII	string	that	starts	at	address	addr	in	the	memory	of	debugged
process	into	string	s	of	length	len.	If	mode	is	DASC_TEST	or	DASC_NOHEX,
checks	whether	this	really	looks	like	a	string,	if	DASC_ASCII	-	decodes	as
ASCII	string,	if	DASC_PASCAL	-	decodes	as	Pascal	string	(not	zero-
terminated,	preceded	with	byte	length).	If	mode	is	DASC_NOHEX	and	value
points	to	a	string,	precedes	decoded	string	with	"ASCII".	Returns	length	of
resulting	text,	not	including	terminal	'\0'.

int	Decodeascii(ulong	addr,char	*s,int	len,int	mode);

Parameters:

addr	-	address	in	the	memory	of	debugged	process	where	ASCII	string	starts;

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Decodeascii	places
decoded	string;

len	-	length	of	string	s	in	bytes;

mode	-	decoding	mode,	one	of	the	following:

DASC_TEST Test	whether	pointed	data	really	looks	like	an	ASCII
string.	If	not,	print	hexadecimal	address	instead	of	string

DASC_NOHEX Test	whether	pointed	data	really	looks	like	an	ASCII
string.	If	not,	return	0.

DASC_ASCII Force	ASCII	string
DASC_PASCAL Force	Pascal	string

See	also:	Decodeunicode,	Decodeaddress,	Decodecharacter

Decodeunicode

//	Decodes	UNICODE	string	that	starts	at	address	addr	in	the	memory	of
debugged	process	into	ASCII	string	s	of	length	len.	Returns	length	of	resulting
text,	not	including	terminal	'\0'.

int	Decodeunicode(ulong	addr,char	*s,int	len);

Parameters:

addr	-	address	in	the	memory	of	debugged	process	where	UNICODE	string
starts;

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Decodeunicode
places	decoded	string;

len	-	length	of	string	s	in	bytes.

See	also:	Decodeascii,	Decodeaddress,	Decodecharacter

Printfloat4

Decodes	32-bit	(4-byte)	floating	point	number	to	ASCII	string.	If	number	is	INF
or	NAN,	adds	hexadecimal	dump.	Returns	length	of	decoded	string.

int	Printfloat4(char	*s,float	f);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Printfloat4	places
decoded	string;

f	-	32-bit	floating	number	to	decode.

See	also:	Printfloat8,	Printfloat10,	Print3dnow,	Printsse

Printfloat8

Decodes	64-bit	(8-byte,	double)	floating	point	number	to	ASCII	string.	If
number	is	INF	or	NAN,	adds	hexadecimal	dump.	Returns	length	of	decoded
string.	Note	that	this	procedure	is	safer	than	printf,	because	some	printf
implementations	generate	exception	when	processing	INF	or	NAN.

int	Printfloat8(char	*s,double	d);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Printfloat8	places
decoded	string;

d	-	64-bit	(double)	floating	number	to	decode.

See	also:	Printfloat4,	Printfloat10,	Print3dnow,	Printsse

Printfloat10

Decodes	80-bit	(10-byte,	long	double)	floating	point	number	to	ASCII	string.	If
number	is	INF	or	NAN,	adds	hexadecimal	dump.	Returns	length	of	decoded
string.	Note	that	this	procedure	is	safer	than	printf,	because	some	printf
implementations	generate	exception	when	processing	INF	or	NAN.

int	Printfloat10(char	*s,long	double	ext);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Printfloat10	places
decoded	string;

ext	-	80-bit	(long	double)	floating	number	to	decode.

See	also:	Printfloat4,	Printfloat8,	Print3dnow,	Printsse

Printsse

Decodes	128-bit	SSE	consisting	of	4	32-bit	floating	point	numbers	to	ASCII
string.	If	any	component	is	INF	or	NAN,	displays	it	as	a	hexadecimal	dump.
Returns	length	of	decoded	string.	Note	that	this	procedure	is	safer	than	printf,
because	some	printf	implementations	generate	exception	when	processing	INF
or	NAN.

int	Printsse(char	*s,char	*f);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Printfsse	places
decoded	string;

f	-	pointer	to	16-byte	array	containing	SSE	to	decode.

See	also:	Printfloat4,	Printfloat8,	Print3dnow

Print3dnow

Decodes	64-bit	3Dnow!	number	(consisting	of	two	32-bit	floating	numbers)	to
ASCII	string.	Returns	length	of	decoded	string.

int	Print3dnow(char	*s,char	*f);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	where	Print3dnow	places
decoded	string;

f	-	pointer	to	8-byte	buffer	containing	3Dnow!	number.

See	also:	Printfloat4,	Printfloat8,	Printfloat10,	Printsse

IstextA

Returns	PLAINASCII,	DIACRITICAL	or	their	combination	if	symbol	can	be
part	of	valid	ASCII	text,	and	0	otherwise.	Result	is	influenced	by	option	"Allow
diacritical	symbols	in	strings".

int	IstextA(char	c);

Parameters:

c	-	character	to	analyze.

See	also:	IstextW,	Decodecharacter

IstextW

Returns	non-zero	if	wide	(UNICODE)	character	can	be	part	of	valid	(from	the
OllyDbg's	point	of	view)	UNICODE	string	and	0	otherwise.	Result	is	influenced
by	option	"Allow	diacritical	symbols	in	strings".

int	IstextW(wchar_t	w);

Parameters:

w	-	wide	character	to	analyze.

See	also:	IstextA,	Decodecharacter

Isretaddr

Function	checks	whether	retaddr	is	a	possible	return	address,	that	is,	points	to	the
command	that	immediately	follows	CALL	command.	If	procaddr	is	not	NULL,
sets	procaddr	to	destination	of	CALL	or	to	0	if	destination	is	not	constant.
Returns	address	of	CALL	command	if	retaddr	is	a	possible	return	address	and	0
otherwise.

ulong	cdecl	Isretaddr(ulong	retaddr,ulong	*procaddr);

Parameters:

retaddr	-	questioned	address	in	memory	space	of	debugged	application;

procaddr	-	pointer	to	variable	that	receives	start	address	of	called	function	or
NULL.

Stringtotext

Decodes	ASCII	data	of	length	ndata	(not	necessarily	NULL-terminated)	into	the
string	of	length	at	least	ntext	bytes	according	to	the	mode	of	string	decoding	set
in	String	options.	Decoding	stops	either	when	ndata	symbols	are	processed,	or
character	'\0'	is	emcountered,	or	when	output	string	is	full.	Returns	length	of
resulting	string	or	0	on	error.

Note:	There	are	three	decoding	modes	currently	supported	by	OllyDbg:

plain "abcdef"
Assembler "abc",LF,"def"
C "abc\ndef"

int	Stringtotext(char	*data,int	ndata,char	*text,int	ntext);

Parameters:

data	-	pointer	to	input	ASCII	data	of	length	ndata;

ndata	-	length	of	input	data	in	bytes;

text	-	pointer	to	the	buffer	of	length	at	least	ntext	that	receives	formated	text;

ntext	-	size	of	output	buffer	in	bytes.

Data	input	functions

These	functions	invoke	dialog	window	allowing	user	to	enter	number	or	string
and	specify	related	options:

int	Getlong(char	*title,ulong	*data,int	datasize,char	letter,int	mode);

int	Getline(char	*title,ulong	*data);

int	Getfloat10(char	*title,long	double	*fdata,char	*tag,char	letter,int	mode);

int	Getfloat(char	*title,void	*fdata,int	size,char	letter,int	mode);

void	Getasmfindmodel(t_asmmodel	model[NMODELS],char	letter,int
searchall);

int	Gettext(char	*title,char	*text,char	letter,int	type,int	fontindex);

int	Gethexstring(char	*title,t_hexstr	*hs,int	mode,int	fontindex,char	letter);

int	Getmmx(char	*title,char	*data,int	mode);

int	Get3dnow(char	*title,char	*data,int	mode);

int	Browsefilename(char	*title,char	*name,char	*defext,int	getarguments);

Most	of	the	data	input	functions	have	...xy	counterpart	allowing	to	specify	the
position	of	the	dialog	on	the	screen.	Internally,	non-xy	functions	just	call	xy-
enabled	functions	with	x=-1	and	y=-1.	Function	Getregxy	exists	only	in	...xy
form:

int	Getlongxy(char	*title,ulong	*data,int	datasize,char	letter,int	mode,int	x,int	y);

int	Getlinexy(char	*title,ulong	*data,int	x,int	y);

int	Getfloat10xy(char	*title,long	double	*fdata,char	*tag,char	letter,int	mode,int
x,int	y);

int	Getfloatxy(char	*title,void	*fdata,int	size,char	letter,int	mode,int	x,int	y);

void	Getasmfindmodelxy(t_asmmodel	model[NMODELS],char	letter,int
searchall,int	x,int	y);

int	Gettextxy(char	*title,char	*text,char	letter,int	type,int	fontindex,int	x,int	y);

int	Gethexstringxy(char	*title,t_hexstr	*hs,int	mode,int	fontindex,char	letter,int
x,int	y);

int	Getregxy(char	*title,ulong	*data,char	letter,int	x,int	y);

int	Getmmxxy(char	*title,char	*data,int	mode,int	x,int	y);

int	Get3dnowxy(char	*title,char	*data,int	mode,int	x,int	y);

Function	Gettableselectionxy	allows	to	calculate	screen	X-Y	coordinates	for
standard	(not	user-drawn)	table	windows:

int	Gettableselectionxy(t_table	*pt,int	column,int	*px,int	*py);

Getlong,	Getlongxy

Functions	display	dialog	allowing	user	to	enter	8-,	16-	or	32-bit	integer	number
in	any	of	3	formats:	hexadecimal,	decimal	unsigned	or	decimal	signed,	or	(if	bit
DIA_HEXONLY	is	set)	in	hexadecimal	format	only.	Optional	checkboxes
"Entire	block"	and	"Aligned	search"	are	controlled	by	bits	DIA_ASKGLOBAL
and	DIA_ALIGNED	and	control	global	flags	globalsearch	and	alignedsearch.
Return	0	on	success	and	-1	if	error	occured	or	user	cancelled	action.	Function
Getlongxy	additionally	contains	the	preferred	screen	coordinates	of	the	bottom
left	point	of	the	dialog	window.

int	Getlong(char	*title,ulong	*data,int	datasize,char	letter,int	mode);

int	Getlongxy(char	*title,ulong	*data,int	datasize,char	letter,int	mode,int
x,int	y);

Parameters:

title	-	title	of	dialog	box;

data	-	pointer	to	32-bit	buffer	containing	initial	value	of	integer	number.	On
return,	buffer	contains	entered	value.	If	user	cancels	action,	value	remains
unchanged;

datasize	-	size	of	integer	number	in	bytes	(1,	2	or	4).	Note	that	dependless	on
datasize,	buffer	pointed	to	by	data	nust	be	32	bits	(4	bytes)	long;

letter	-	first	character	to	be	entered	in	default	control,	or	0	if	there	is	no	character.
Useful	if	function	is	called	as	a	reaction	on	a	character	entered	by	user;

mode	-	combination	of	DIA_xxx	bits	specifying	additional	Getlong	features:

DIA_HEXONLY hide	decimal	input	windows

DIA_ASKGLOBAL
display	checkbox	"Entire	block"	that	controls	global
search	flag.	Actual	state	of	this	flag	is	returned	by
call	to	Plugingetvalue(VAL_GLOBALSEARCH)

DIA_ALIGNED

display	checkbox	"Aligned	search"	that	controls
aligned	search	flag.	Actual	state	of	this	flag	is
returned	by	call	to

Plugingetvalue(VAL_ALIGNEDSEARCH)

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getregxy,	Getline,	Getfloat,	Getfloat10,	Getmmx,	Get3dnow,
Gettableselectionxy

Getline,	Getlinexy

Functions	display	dialog	asking	user	to	enter	source	line	number	in	unsigned
decimal	format.	Return	0	on	success	and	-1	if	error	occured	or	user	cancelled
action.	Function	Getlinexy	additionally	contains	the	preferred	screen	coordinates
of	the	bottom	left	point	of	the	dialog	window.

int	Getline(char	*title,ulong	*data);

int	Getlinexy(char	*title,ulong	*data,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

data	-	pointer	to	32-bit	buffer	containing	initial	value	of	line	number.	On	return,
buffer	contains	entered	value.	If	user	cancels	action,	value	remains	unchanged;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getlong,	Getregxy,	Getfloat,	Getfloat10,	Getmmx,	Get3dnow,
Gettableselectionxy

Getfloat10,	Getfloat10xy

Display	dialog	asking	user	to	enter	80-bit	floating	point	number,	either	as	float	or
as	hexadecimal	code.	Primarily	oriented	on	editing	of	contents	of	FPU	stack.	If
tag	is	not	NULL,	functions	ask	whether	to	change	the	associated	FPU	tag.	If	tag
is	NULL	and	bit	DIA_ASKGLOBAL	is	set,	ask	whether	to	use	global	search.
Bit	DIA_ALIGNED	enables	boxes	"Aligned	search"	and	"Allow	0.1%	error
margin".	Function	Getfloat10	additionally	contains	the	preferred	screen
coordinates	of	the	bottom	left	point	of	the	dialog	window.

int	Getfloat10(char	*title,long	double	*fdata,char	*tag,char	letter,int	mode);

int	Getfloat10xy(char	*title,long	double	*fdata,char	*tag,char	letter,int
mode,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

fdata	-	pointer	to	80-bit	floating	point	number.	On	return,	buffer	contains	entered
value.	If	user	cancels	action,	value	remains	unchanged;

tag	-	pointer	to	tag	associated	with	FPU	register.	If	user	requested	change	of
associated	tag,	Getfloat10	will	set	this	tag	to	valid,	zero	or	bad	depending	on	the
contents	of	*fdata;

letter	-	first	character	to	be	entered	in	edit	control,	or	0	if	there	is	no	character.
Useful	if	function	is	called	as	a	reaction	on	a	numeric	key	pressed	by	user;

mode	-	combination	of	DIA_xxx	bits	specifying	additional	Getfloat10	features:

DIA_ASKGLOBAL
display	checkbox	"Entire	block"	that	controls	global
search	flag.	Actual	state	of	this	flag	is	returned	by
call	to	Plugingetvalue(VAL_GLOBALSEARCH)

DIA_ALIGNED

display	checkboxes	"Aligned	search"	and	"Allow
0.1%	error	margin"	that	control	aligned	search	and
inexact	search	flags.	Actual	state	of	these	flags	is
returned	by	calls	to
Plugingetvalue(VAL_ALIGNEDSEARCH)	and

Plugingetvalue(VAL_SEARCHMARGIN)

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getlong,	Getregxy,	Getline,	Getfloat,	Getmmx,	Get3dnow,
Gettableselectionxy

Getfloat,	Getfloatxy

Display	dialog	asking	user	to	enter	floating	point	number	of	specified	precision
(4,	8	or	10	bytes),	either	as	float	or	as	hexadecimal	code.	If	bit
DIA_ASKGLOBAL	is	set,	ask	whether	to	use	global	search.	Bit
DIA_ALIGNED	enables	boxes	"Aligned	search"	and	"Allow	0.1%	error
margin".	Function	Getfloatxy	additionally	contains	the	preferred	screen
coordinates	of	the	bottom	left	point	of	the	dialog	window.

int	Getfloat(char	*title,void	*fdata,int	size,char	letter,int	mode);

int	Getfloatxy(char	*title,void	*fdata,int	size,char	letter,int	mode,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

fdata	-	pointer	to	floating	point	number.	On	return,	buffer	contains	entered	value.
If	user	cancels	action,	value	remains	unchanged;

size	-	size	of	floating	point	number	in	bytes	(4,8	or	10);

letter	-	first	character	to	be	entered	in	edit	control,	or	0	if	there	is	no	character.
Useful	if	function	is	called	as	a	reaction	on	a	key	pressed	by	user;

mode	-	combination	of	DIA_xxx	bits	specifying	additional	Getfloat	features:

DIA_ASKGLOBAL
display	checkbox	"Entire	block"	that	controls	global
search	flag.	Actual	state	of	this	flag	is	returned	by
call	to	Plugingetvalue(VAL_GLOBALSEARCH)

DIA_ALIGNED

display	checkboxes	"Aligned	search"	and	"Allow
0.1%	error	margin"	that	control	aligned	search	and
inexact	search	flags.	Actual	state	of	these	flags	is
returned	by	calls	to
Plugingetvalue(VAL_ALIGNEDSEARCH)	and
Plugingetvalue(VAL_SEARCHMARGIN)

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it

remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getfloat10,	Getlong,	Getregxy,	Getline,	Getmmx,	Get3dnow,
Gettableselectionxy

Getasmfindmodel,	Getasmfindmodelxy

Display	dialog	box	allowing	user	to	enter	assembler	command	(imprecise
commands	are	also	accepted)	and	create	set	of	search	models.	If	user	cancels
input,	model[0].length	is	0.	Function	Getasmfindmodelxy	additionally	contains
the	preferred	screen	coordinates	of	the	bottom	left	point	of	the	dialog	window.

void	Getasmfindmodel(t_asmmodel	model[NMODELS],char	letter,int
searchall);

void	Getasmfindmodelxy(t_asmmodel	model[NMODELS],char	letter,int
searchall,int	x,int	y);

Parameters:

model	-	pointer	of	array	of	NMODELS	t_asmmodel	structures	that	receives	set
of	models	created	by	Getasmfindmodel	on	success;

letter	-	first	character	to	be	entered	in	edit	control,	or	0	if	there	is	no	character.
Useful	if	function	is	called	as	a	reaction	on	a	key	pressed	by	user;

searchall	-	if	nonzero,	hides	checkbox	"Entire	block"	that	controls	global	search
flag.	Actual	state	of	this	flag	is	returned	by	call	to
Plugingetvalue(VAL_GLOBALSEARCH);

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Gettext,	Gethexstring,	Getlong,	t_asmmodel,	Gettableselectionxy

MAXCMDSIZE

Constant	that	determines	maximal	possible	length	of	the	valid	80x86	command
(16	bytes).	You	may	argue	that	maximal	allowed	length	is	15;	that's	correct,	but
16	is	a	power	of	2	and	so	seems	more	preferrable	in	a	computer	program.

#define	MAXCMDSIZE	16	//	Maximal	length	of	80x86	command

TEXTLEN

Constant	that	determines	maximal	possible	length	of	names,	text	strings	and
messages	in	OllyDbg.	As	a	general	rule,	if	function	returns	string	and	does	not
contain	its	maximal	length	as	an	input	parameter,	the	size	of	string	buffer	must
be	at	least	TEXTLEN	characters	(or	2*TEXTLEN	bytes	for	UNICODE	strings).
File	names	are	an	exception,	they	are	always	MAXPATH	bytes	long.	All	other
exceptions	from	this	rule	are	clearly	documented	here.

#define	TEXTLEN	256	//	Maximal	length	of	text	string

t_asmmodel

Type	of	structure	that	keeps	assembler	search	model.

typedef	struct	t_asmmodel	{	//	Model	to	search	for	assembler	command

char	code[MAXCMDSIZE];	//	Binary	code

char	mask[MAXCMDSIZE];	//	Mask	for	binary	code	(0:	bit	ignored)

int	length;	//	Length	of	code,	bytes	(0:	empty)

int	jmpsize;	//	Offset	size	if	relative	jump

int	jmpoffset;	//	Offset	relative	to	IP

int	jmppos;	//	Position	of	jump	offset	in	command

}	t_asmmodel;

Members:

code	-	binary	code	of	the	command.	Only	bits	that	have	1's	set	in	corresponding
mask	bits	are	significant;

mask	-	comparison	mask.	Search	routine	ignores	all	code	bits	where	mask	is	set
to	0;

length	-	length	of	code	and	mask,	bytes.	If	length	is	0,	search	model	is	empty	or
invalid;

jmpsize	-	if	nonzero,	command	is	a	relative	jump	and	jmpsize	is	a	size	of	offset
in	bytes;

jmpoffset	-	if	jmpsize	is	nonzero,	jump	offset	relative	to	address	of	the	following
command,	otherwise	undefined;

jmppos	-	if	jmpsize	is	nonzero,	position	of	the	first	byte	of	the	offset	in	code,
otherwise	undefined.

See	also:	Getasmfindmodel

Gettext,	Gettextxy

Display	dialog	box	allowing	user	to	enter	or	edit	ASCII	text	string.	This	dialog
contains	combobox	with	several	last	entered	strings	of	specified	type.	For	some
predefined	string	types,	these	strings	are	saved	to	the	.udd	file.	Return	length	of
entered	string	or	-1	on	error	or	when	user	cancelled	input.	Function	Gettextxy
additionally	contains	the	preferred	screen	coordinates	of	the	bottom	left	point	of
the	dialog	window.

int	Gettext(char	*title,char	*text,char	letter,int	type,int	fontindex);

int	Gettextxy(char	*title,char	*text,char	letter,int	type,int	fontindex,int	x,int
y);

Parameters:

title	-	title	of	dialog	box;

text	-	pointer	to	buffer	at	least	TEXTLEN	bytes	long	that	receives	entered	string;

letter	-	first	character	to	be	entered	in	edit	control,	or	0	if	there	is	no	character.
Useful	if	function	is	called	as	a	reaction	on	a	key	pressed	by	user;

type	-	type	of	saved	strings	(0..255).	Some	string	types	(NM_xxx	or
NM_xxx|NMHISTORY)	are	predefined.	In	general,	it	is	safe	to	use	types	in
range	192..254,	of	course,	if	they	are	not	used	by	other	plugins.	Contact	me	if
you	need	unique	type	that	is	automatically	saved	to	.udd	file;

fontindex	-	index	of	OllyDbg	font	used	in	edit	control	and	combobox.	Use	either
FIXEDFONT	or,	if	Plugingetvalue(VAL_WINDOWFONT)	returns	non-zero,
index	of	font	used	in	parent	window;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Plugingetvalue,	Gethexstring,	Browsefilename,	Gettableselectionxy

Gethexstring,	Gethexstringxy

Display	dialog	box	allowing	user	to	enter	or	edit	masked	ASCII,	UNICODE	or
hexadecimal	string.	Return	0	on	success	and	-1	on	error	or	when	user	cancelled
input.	Function	Gethextsringxy	additionally	contains	the	preferred	screen
coordinates	of	the	bottom	left	point	of	the	dialog	window.

int	Gethexstring(char	*title,t_hexstr	*hs,int	mode,int	fontindex,char	letter);

int	Gethexstringxy(char	*title,t_hexstr	*hs,int	mode,int	fontindex,char
letter,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

hs	-	pointer	to	string	descriptor	that	contains	initial	data	to	be	displayed	in	the
dialog	and	on	exit	contains	masked	string	entered	by	user;

mode	-	combination	of	DIA_xxx	bits	specifying	additional	options.	Options
DIA_DEFHEX,	DIA_DEFASCII	and	DIA_DEFUNICODE	are	mutually
exclusive:

DIA_ASKGLOBAL

if	this	bit	is	cleared,	dialog	contains	"Keep	size"
checkbox;	if	bit	is	set,	dialog	contains	checkboxes
"Entire	block"	that	controls	global	search	flag	and
"Case	sensitive"	that	controls	case	ignoring	flag.
Actual	state	of	these	three	flags	is	returned	by	calls
to	Plugingetvalue(VAL_KEEPSELSIZE),
Plugingetvalue(VAL_GLOBALSEARCH)	and
Plugingetvalue(VAL_IGNORECASE)

DIA_DEFHEX default	data	type	is	hexadecimal
DIA_DEFASCII default	data	type	is	ASCII
DIA_DEFUNICODE default	data	type	is	UNICODE

fontindex	-	index	of	OllyDbg	font	used	in	edit	controls	and	comboboxes.	Use
either	FIXEDFONT	or,	if	Plugingetvalue(VAL_WINDOWFONT)	returns	non-
zero,	index	of	font	used	in	parent	window;

letter	-	first	character	to	be	entered	in	active	edit	control,	or	0	if	there	is	no
character.	Useful	if	function	is	called	as	a	reaction	on	a	key	pressed	by	user;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Plugingetvalue,	Gettext,	Browsefilename,	t_hexstr,	Gettableselectionxy

t_hexstr

Type	of	structure	that	keeps	masked	binary	string.

typedef	struct	t_hexstr	{	//	String	used	for	hex/text	search

int	n;	//	String	length

char	data[TEXTLEN];	//	Data

char	mask[TEXTLEN];	//	Mask,	0	bits	are	masked

}	t_hexstr;

Members:

n	-	length	of	the	string	in	bytes;

data	-	array	with	string	data.	Only	those	data	bits	are	significant	which	has	1	in
corresponding	bits	of	mask;

mask	-	array	with	mask	data.

See	also:	Gethexstring

Getregxy

Similar	to	Getlongxy,	display	dialog	allowing	user	to	enter	32-bit	integer	number
in	any	of	4	formats:	hexadecimal,	decimal	unsigned,	decimal	signed	or	as	a	set
of	4	characters.	Intended	primarily	to	edit	contents	of	general-purpose	registers
EAX,	EBX,	CX	and	EDX.	Returns	0	on	success	and	-1	if	error	occured	or	user
cancelled	action.

int	Getregxy(char	*title,ulong	*data,char	letter,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

data	-	pointer	to	32-bit	buffer	containing	initial	value	of	integer	number.	On
return,	buffer	contains	entered	value.	If	user	cancels	action,	value	remains
unchanged;

letter	-	first	hexadecimal	character	to	be	entered	in	hex	control,	or	0	if	there	is	no
character.	Useful	if	function	is	called	as	a	reaction	on	a	character	entered	by	user;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getlongxy,	Getline,	Getfloat,	Getfloat10,	Getmmx,	Get3dnow,
Gettableselectionxy

Getmmx,	Getmmxxy

Display	dialog	box	allowing	user	to	enter	or	edit	64-bit	MMX	number	as	a
combination	of	8-,	16-	or	32-bit	integers	in	signed	decimal,	unsigned	decimal	or
hexadecimal	formats.	Return	0	on	success	and	-1	on	error	or	when	user	cancelled
input.	Function	Getmmxxy	additionally	contains	the	preferred	screen
coordinates	of	the	bottom	left	point	of	the	dialog	window.

int	Getmmx(char	*title,char	*data,int	mode);

int	Getmmxxy(char	*title,char	*data,int	mode,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

data	-	pointer	to	64-bit	(8-byte)	memory	area	containing	initial	value	of	MMX
number.	On	exit,	contains	number	modified	by	user;

mode	-	reserved,	must	be	0;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getlong,	Getregxy,	Getfloat,	Getfloat10,	Get3dnow,
Gettableselectionxy

Get3dnow,	Get3dnowxy

Display	dialog	box	allowing	user	to	enter	or	edit	64-bit	3DNow!	number	as	a
combination	of	two	floating-point	or	hexadecimal	32-bit	numbers.	Return	0	on
success	and	-1	on	error	or	when	user	cancelled	input.	Function	Get3dnowxy
additionally	contains	the	preferred	screen	coordinates	of	the	bottom	left	point	of
the	dialog	window.

int	Get3dnow(char	*title,char	*data,int	mode);

int	Get3dnowxy(char	*title,char	*data,int	mode,int	x,int	y);

Parameters:

title	-	title	of	dialog	box;

data	-	pointer	to	64-bit	(8-byte)	memory	area	containing	initial	value	of	3DNow!
number.	On	exit,	contains	number	modified	by	user;

mode	-	reserved,	must	be	0;

x	-	absolute	X	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.	If	necessary,	dialog	will	automatically	adjust	its	position	so	that	it
remains	visible;

y	-	absolute	Y	screen	coordinate,	in	pixels,	of	the	bottom	left	corner	of	the	dialog
window.

See	also:	Getlong,	Getregxy,	Getfloat,	Getfloat10,	Getmmx,	Gettableselectionxy

Gettableselectionxy

Calculates	screen	coordinates	of	the	left	top	corner	of	the	first	visible	selected
line	in	the	specified	column	of	table	window.	Returns	0	on	success	and	-1	if
coordinates	cannot	be	computed	or	table	is	user-defined.

Note:	this	function	fails	if	table	is	user-defined!

int	Gettableselectionxy(t_table	*pt,int	column,int	*px,int	*py);

Parameters:

pt	-	pointer	to	descriptor	of	table	window;

column	-	column	in	table;

px	-	pointer	to	variable	that	receives	X	coordinate	(in	pixels	of	the	screen).
Either	px	or	py	(but	not	both)	can	be	NULL;

py	-	pointer	to	variable	that	receives	Y	coordinate	(in	pixels	of	the	screen).

See	also:	Data	input	functions

Browsefilename

Opens	dialog	box	allowing	user	to	select	file	name	and	additional	file-related
options,	according	to	specified	mode.	In	modes	0,	1	and	2	returns	TRUE	if	valid
file	was	selected	and	FALSE	in	any	other	case.

int	Browsefilename(char	*title,char	*name,char	*defext,int	mode);

Parameters:

title	-	title	of	dialog	box;

name	-	pointer	to	buffer	containing	initial	file	name,	at	least	MAXPATH	bytes
long.	On	exit,	contains	name	of	file	selected	by	user;

defext	-	pointer	to	string	containing	set	of	one	or	several	default	extentions.	First
extention	must	start	with	point	('.').	To	specify	several	extentions,	separate	them
with	vertical	line	('|').	To	specify	several	extentions	as	a	single	selection,	separate
them	with	";*"	(like	".exe;*.dll").	Browsefilename	knows	several	types	of
extentions	and	their	combinations	and	automatically	comments	them;

mode	-	mode	of	operation.	Modes	3	to	8	are	not	intended	for	use	in	plugins	and
are	not	described	here:

0 standard	dialog	without	additional	elements
1 dialog	with	combobox	"Arguments"
2 dialog	with	checkbox	"Append	to	existing	file"

New	in	version	1.10:	if	mode	is	ORed	with	0x80,	Browsefilename	opens	Save
File	dialog	instead	of	Open	File.

Sorted	data	functions

Many	kinds	of	internal	OllyDbg	data	consist	of	homogenous	elements	that	has
start	and	final	address	and	do	not	overlap	with	each	other.	Good	example	is	the
table	of	memory	blocks.	Breakpoints	may	be	treated	as	elements	occupying	1
byte	in	memory	space	of	debugged	program.	Threads	exist	in	the	address	space
of	thread	identifiers	and	also	occupy	1	address	of	this	space.	Elements	usually
can	be	displayed	in	some	window	and	sorted	using	some	criterium.	Set	of	such
elements	is	called	sorted	data.

OllyDbg	implements	a	powerful	set	of	functions	that	allow	easy	operations	with
sorted	data,	like	initilaization,	adding	or	replacing	of	elements,	removing	of
elements	or	address	ranges,	sorting,	search	and	so	on.	OllyDbg	automatically
allocates	new	memory	for	sorted	data	if	necessary.

Elements	of	sorted	data	are	always	kept	sorted	by	address	in	a	contiguous	buffer.
This	allows	for	simple	and	extremely	fast	binary	search.	Adding	new	data	is,	of
course,	not	so	easy	and	can	take	significant	time.	Weighted	binary	trees	may
look	as	a	better	solution,	but	in	our	case	data	is	read	much	more	frequently	than
added	to	the	table.	If	you	sort	data	by	method	other	than	increasing	addresses,
OllyDbg	simply	creates	additional	array	of	indexes	pointing	to	data	elements.

All	elements	of	sorted	data	begin	with	a	standard	12-byte	header:

typedef	struct	t_sortheader	{	//	Header	of	sorted	data	field

ulong	addr;	//	Base	address	of	the	element

ulong	size;	//	Size	occupied	by	element	in	address	space

ulong	type;	//	Type	of	data	element,	TY_xxx

}	t_sortheader;

Please	don't	mix	the	size	specified	in	this	header	and	physical	size	of	the
element.	They	belong	to	different	address	spaces!	Size	in	header	is	the	size	of
piece	of	virtual	address	space	described	by	sorted	data	and	usually	belongs	to
debugged	program.	Physical	size	of	element	is	the	size	of	memory	ocuppied	by
element	in	the	OllyDbg's	memory.	All	elements	have	same	physical	size

necessary	to	fit	all	the	characteristics	and	descriptions	of	the	described	object;
size	in	header	is	simply	one	(albeit	most	important)	of	the	object's	characteristics
and	may	be	different	for	each	object.

In	most	cases	sorted	data	functions	ignore	type	and	you	may	use	it	as	you	want.
Only	Deletenonconfirmedsorteddata	checks	for	bit	TY_CONFIRMED	and
removes	at	once	all	elements	where	this	bit	is	not	set	(a	very	fast	way	to	get	rid
of	unnecessary	elements).	Standard	header	can	be	followed	by	any	additional
fields.	OllyDbg	does	not	aligns	data	elements;	to	assure	effective	memory
access,	make	physical	size	of	element	a	multiple	of	4	bytes.

There	is	a	special	kind	of	sorted	data	called	autoarrangeable.	Autoarrangeable
data	assumes	that	address	of	the	element	is	simply	its	0-based	ordinal	number	in
the	data	array	and	size	occupied	by	element	in	address	space	is	always	1.	Even	in
this	case,	elements	must	begin	with	valid	header.	Addsorteddata	always	inserts
new	items	to	autoarrangeable	data	and	never	replaces	existing.

To	create	your	own	table	of	sorted	data,	first	of	all	you	must	allocate	table
descriptor	(structure	of	type	t_sorted)	and	initialize	all	its	fields	to	0.	Then	you
call	Createsorteddata	to	initialize	table	and	allocate	data	buffers.	After
initialization,	you	can	use	all	sorted	data	functions	to	change	or	retrieve	data.	Do
not	modify	items	of	table	descriptor	directly,	this	may	lead	to	severe	data
integrity	problems!

Index	array	is	allocated	only	if	valid	sortfunc	is	specified.	To	assure	that	sorted
data	is	valid	and	correctly	initialized,	check	that	data	pointer	is	not	NULL.	If	n	is
0,	table	is	empty	(but	is	not	necessarily	initialized).

Table	version	increments	by	1	each	time	table	of	sorted	data	changes.	This
allows	for	easy	implementation	of	small	cache:	if	version	is	not	changed,
previously	fetched	data	is	still	valid.	In	any	imaginable	application,	wraparound
of	32-bit	variable	is	impossible.	Createsorteddata	initializes	version	to	1,	so	set
cache	version	to	0	to	indicate	that	cache	is	invalid.

If	sorted	is	0,	index	table	was	not	updated	after	last	modification	of	the	data.	To
force	sorting,	call	Sortsorteddata.	If	data	is	already	sorted,	Sortsorteddata	returns
immediately.

int	Createsorteddata(t_sorted	*sd,char	*name,int	itemsize,int	nmax,SORTFUNC
*sortfunc,DESTFUNC	*destfunc);

void	Destroysorteddata(t_sorted	*sd);

void	*Addsorteddata	(t_sorted	*sd,void	*item);

void	Deletesorteddata(t_sorted	*sd,ulong	addr);

void	Deletesorteddatarange(t_sorted	*sd,ulong	addr0,ulong	addr1);

int	Deletenonconfirmedsorteddata(t_sorted	*sd);

void*	Findsorteddata(t_sorted	*sd,ulong	addr);

void*	Findsorteddatarange(t_sorted	*sd,ulong	addr0,ulong	addr1);

int	Findsorteddataindex(t_sorted	*sd,ulong	addr0,ulong	addr1);

int	Sortsorteddata(t_sorted	*sd,int	sort);

void*	Getsortedbyselection(t_sorted	*sd,int	index);

t_sorted

Type	of	descriptor	of	sorted	data.

typedef	struct	t_sorted	{	//	Descriptor	of	sorted	table

char	name[MAXPATH];	//	Name	of	table,	as	appears	in	error	messages

int	n;	//	Actual	number	of	entries

int	nmax;	//	Maximal	number	of	entries

int	selected;	//	Index	of	selected	entry	or	-1

ulong	seladdr;	//	Base	address	of	selected	entry

int	itemsize;	//	Size	of	single	entry

ulong	version;	//	Unique	version	of	table

void	*data;	//	Elements,	sorted	by	address

SORTFUNC	*sortfunc;	//	Function	which	sorts	data	or	NULL

DESTFUNC	*destfunc;	//	Destructor	function	or	NULL

int	sort;	//	Sorting	criterium	(column)

int	sorted;	//	Whether	indexes	are	sorted

int	*index;	//	Indexes,	sorted	by	criterium

int	suppresserr;	//	Suppress	multiple	overflow	errors

}	t_sorted;

Members:

name	-	name	of	the	sorted	data,	of	no	real	importance.	You	can	set	it	to	empty
string	or	use	for	your	own	purposes;

n	-	actual	number	of	elements	in	sorted	data;

nmax	-	maximal	number	of	elements	that	fit	in	allocated	memory.	If	necessary,
sorted	data	functions	allocate	additional	memory	to	fit	new	elements;

selected	-	index	of	selected	entry	in	data	sorted	by	specified	criterium.	Only
when	t_sorted.sorted	is	NULL	or	data	is	sorted	by	address,	this	index	coincides
with	index	in	t_sorted.data;

seladdr	-	base	address	of	selected	element;

itemsize	-	size	of	element	of	sorted	data	in	bytes	;

version	-	variable	that	increments	by	1	each	time	the	contents	of	sorted	data	is
changed.	One	can	use	version	to	avoid	unnecessary	searches	in	sorted	data:	as
long	as	version	remains	unchanged,	pointers	to	elements	of	sorted	data	are	valid.
Createsorteddata	initializes	version	to	1;

data	-	pointer	to	contiguous	buffer	that	contains	elements	of	sorted	data	sorted	by
address.	If	data	is	NULL,	sorted	data	is	not	initialized;

sortfunc	-	pointer	to	function	that	sorts	data	by	given	criterium,	or	NULL	if	data
is	not	sortable.	See	SORTFUNC;

destfunc	-	pointer	to	destructor	function	that	frees	resources	allocated	by	element
of	sorted	data,	can	be	NULL	if	element	doesn't	allocate	resources.	See
DESTFUNC;

sort	-	actual	sorting	criterium.	OllyDbg	passes	this	parameter	to	sortfunc;

sorted	-	flag	indicating	whether	index	array	is	actual;

index	-	array	containing	indexes	of	elements	sorted	by	specified	criterium.
NULL	if	data	is	not	initialized	or	sortfunc	is	NULL;

suppresserr	-	flag	preventing	from	multiple	error	reports.

See	also:	Sorted	data	functions

Createsorteddata

Initializes	descriptor	of	sorted	data	(structure	t_sorted).	If	descriptor	alseady
contains	data,	this	data	is	destroyed.	Returns	0	on	success	and	-1	on	error.

int	Createsorteddata(t_sorted	*sd,char	*name,int	itemsize,int
nmax,SORTFUNC	*sortfunc,DESTFUNC	*destfunc);

Parameters:

sd	-	pointer	to	descriptor	of	sorted	data;

name	-	optional	name	of	sorted	data,	can	be	NULL.	OllyDbg	uses	this	name	only
in	some	rare	cases;

itemsize	-	size,	in	bytes,	of	the	element	of	sorted	data	(including	standard
header);

nmax	-	initial	number	of	data	elements	that	allocated	buffer	can	keep.	If
necessary,	OllyDbg	will	automatically	allocate	additional	memory;

sortfunc	-	pointer	to	function	that	compares	two	data	elements	according	to
sorting	criterium,	or	NULL	if	data	cannot	be	sorted.	This	criterium	is	usually	the
index	of	column	in	table	window.	If	you	specify	AUTOARRANGE,	data	is
autoarrangeable,	that	is,	assumes	that	address	of	the	element	is	simply	its	(0-
based)	ordinal	number	in	the	data	and	size	of	element	is	always	1.	Even	in	this
case,	element	must	begin	with	valid	header.	Addsorteddata	always	inserts	new
items	to	autoarrangeable	data	and	never	replaces	existing;

destfunc	-	pointer	to	function	that	is	called	for	each	element	being	removed	from
the	table,	or	NULL	if	destructor	is	not	necessary.	You	need	destfunc,	for
example,	if	elements	of	sorted	data	allocate	additional	memory	that	must	be
freed	before	element	is	deleted.

See	also:	Destroysorteddata,	SORTFUNC,	DESTFUNC

SORTFUNC

Type	of	optional	callback	function	used	by	OllyDbg	to	sort	elements	of	sorted
data	according	to	some	criterium.	This	function	receives	two	pointers	to
elements	of	sorted	data	and	sort	criterium	(which	is	usually	the	index	of	column
in	the	window	displaying	sorted	data).	Function	must	return	0	if	elements	are
equal,	1	if	first	element	is	greater	(comes	later)	and	-1	if	first	element	is	less	than
the	second	(comes	earlier).

A	special	predefined	sort	pseudofunction	AUTOARRANGE	makes	sorted	data
autoarrangeable.	See	Createsorteddata	for	details.

typedef	int	SORTFUNC(const	t_sortheader	*p1,const	t_sortheader
*p2,const	int	sort);

Parameters:

p1	-	pointer	to	the	first	element;

p2	-	pointer	to	the	second	element;

sort	-	sort	criterium.	I	recommend	that	you	use	0	to	sort	data	by	address.

See	also:	Createsorteddata,	Sortsorteddata

DESTFUNC

Type	of	optional	callback	function	used	by	OllyDbg	to	free	resources	allocated
by	element	of	sorted	data	when	element	is	removed.	Corresponds	to	destructor	in
C++	objects.

typedef	void	DESTFUNC(t_sortheader	*pe);

Parameters:

pe	-	pointer	to	the	element	of	sorted	data	to	be	removed.

See	also:	Createsorteddata

Destroysorteddata

Removes	all	elements	from	the	sorted	data	and	deallocates	data	memory.	If
sorted	data	has	destructor	function,	this	destructor	will	be	called	for	each	deleted
element.

void	Destroysorteddata(t_sorted	*sd);

Parameters:

sd	-	pointer	to	descriptor	of	sorted	data.

See	also:	Createsorteddata

Addsorteddata

Adds	or	replaces	element	in	initialized	sorted	data.	Returns	pointer	to	item	in	the
data	if	item	is	correctly	added	or	replaced	and	NULL	if	either	input	parameters
are	invalid,	data	buffer	is	full	and	OllyDbg	is	unable	to	allocate	more	memory,
new	element	cannot	replace	old	because	it	is	neither	subset	nor	superset	of	the
old	item,	or	it	overlaps	with	two	or	more	existing	elements.	This	pointer	is	valid
till	the	next	operation	that	adds	or	removes	data.	Do	not	change	address	or	size
of	element	after	it	is	added	to	sorted	data,	this	may	lead	to	severe	data	integrity
problems.

void	*Addsorteddata(t_sorted	*sd,void	*item);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data;

item	-	pointer	to	new	element.

See	also:	Deletesorteddata,	Deletesorteddatarange,	Findsorteddata,
Findsorteddatarange,	Findsorteddataindex

Deletesorteddata

Deletes	element	which	begins	exactly	at	specified	address	from	sorted	data.

void	Deletesorteddata(t_sorted	*sd,ulong	addr);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data;

addr	-	address	of	element.

See	also:	Deletesorteddatarange,	Addsorteddata,	Findsorteddata,
Findsorteddatarange,	Findsorteddataindex

Deletesorteddatarange

Deletes	all	elements	which	contain	at	least	1	address	within	the	specified	range
from	the	table	of	sorted	data.

void	Deletesorteddatarange(t_sorted	*sd,ulong	addr0,ulong	addr1);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data;

addr0	-	start	of	address	range	(included);

addr1	-	end	of	address	range	(not	included).

See	also:	Deletesorteddata,	Addsorteddata,	Findsorteddata,	Findsorteddatarange,
Findsorteddataindex

Deletenonconfirmedsorteddata

Deletes	all	elements	with	type	bit	TY_CONFIRMED	reset	to	0	from	sorted	data
and	resets	this	bit	in	all	remaining	elements.	Returns	number	of	deleted	items.
This	is	usually	the	fastest	way	to	delete	multiple	non-adjacent	elements	from	the
sorted	data.	Autoarrangeable	data	cannot	be	deleted	in	this	way.

int	Deletenonconfirmedsorteddata(t_sorted	*sd);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data.

See	also:	Deletesorteddata,	Deletesorteddatarange

Findsorteddata

Searches	for	element	containing	specified	address	in	sorted	data.	Returns	pointer
to	found	item	on	success	and	NULL	on	error	or	when	there	is	no	such	item.
Returned	pointer	is	valid	till	the	next	operation	that	adds	or	removes	data.	Do	not
change	address	or	size	of	element,	this	may	lead	to	severe	data	integrity
problems.

void	*Findsorteddata(t_sorted	*sd,ulong	addr);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data;

addr	-	address	in	the	address	space	of	specified	sorted	data.

See	also:	Findsorteddatarange,	Findsorteddataindex,	Getsortedbyselection

Findsorteddatarange

Searches	for	the	first	element	of	sorted	data	containing	address	within	the
specified	range.	Returns	pointer	to	found	item	on	success	and	NULL	on	error	or
when	there	is	no	such	item.	Returned	pointer	is	valid	till	the	next	operation	that
adds	or	removes	data.	Do	not	change	address	or	size	of	element,	this	may	lead	to
severe	data	integrity	problems.

void*	Findsorteddatarange(t_sorted	*sd,ulong	addr0,ulong	addr1);

Parameters:

sd	-	pointer	to	initialized	descriptor	of	sorted	data;

addr0	-	start	of	address	range	in	the	address	space	of	specified	sorted	data
(included);

addr1	-	end	of	address	range	in	the	address	space	of	specified	sorted	data	(not
included).

See	also:	Findsorteddata,	Findsorteddataindex,	Getsortedbyselection

Findsorteddataindex

Searches	for	the	first	element	of	sorted	data	containing	address	within	the
specified	range.	Returns	index	of	found	item	on	success	and	-1	on	error	or	when
there	is	no	such	item.	Index	is	valid	till	the	next	operation	that	adds	or	removes
data.

int	Findsorteddataindex(t_sorted	*sd,ulong	addr0,ulong	addr1);

Parameters:

sd	-	pointer	to	descriptor	of	sorted	data;

addr0	-	start	of	address	range	in	the	address	space	of	specified	sorted	data
(included);

addr1	-	end	of	address	range	in	the	address	space	of	specified	sorted	data	(not
included).

See	also:	Findsorteddata,	Findsorteddatarange,	Getsortedbyselection

Sortsorteddata

Sorts	sorted	data	according	to	the	specified	sort	criterium	and	saves	results	to	the
index	array	associated	with	sorted	data.	Returns	1	if	data	was	updated	and	0
otherwise.

int	Sortsorteddata(t_sorted	*sd,int	sort);

Parameters:

sd	-	pointer	to	descriptor	of	sorted	data;

sort	-	sort	criterium.

See	also:	Createsorteddata,	Getsortedbyselection,	SORTFUNC

Getsortedbyselection

Returns	pointer	to	element	with	specified	index	in	sorted	data	sorted	by	actual
criterium,	or	NULL	on	error.	If	necessary,	function	actualizes	associated	index
table,	so	preliminary	call	to	Sortsorteddata	is	not	necessary.	Function	is	very
useful	for	extraction	of	selected	element	in	table	windows.

void*	Getsortedbyselection(t_sorted	*sd,int	selection);

Parameters:

sd	-	pointer	to	descriptor	of	sorted	data;

selection	-	zero-based	index	in	data	sorted	by	selected	sort	criterium.

See	also:	Sortsorteddata,	Findsorteddata,	Findsorteddatarange

Window	functions

All	MDI	windows	in	OllyDbg	are	the	so	called	table	windows.	They	have	up	to
17	resizable	columns,	unlimited	number	of	rows	and	hideable	bar	which	can	act
as	a	string	of	buttons.	OllyDbg	supports	resizing	of	columns	and	scrolling	of
table	windows.	For	simple	table	windows,	it	automatically	adds	possibility	to
copy	whole	table,	row	or	single	element	to	clipboard	without	extra	code.	Table
windows	support	UNICODE,	highlighting	and	selection	and	several
pseudographical	symbols.	User	can	select	font	and	colour	scheme,	and	so	on.

Ordinary	table	windows	display	contents	of	sorted	data.	OllyDbg	makes	it
especially	easy	for	the	programmer,	one	only	needs	to	supply	several	relatively
simple	functions.	For	example,	function	that	implements	WM_PAINT
functionality	simply	returns	text	to	be	drawn	in	specified	cell,	and	function	that
allows	to	sort	contents	of	window	just	compares	two	elements	of	sorted	data.

Custom	(user-defined)	table	windows	may	display	any	data.	Disassembler	and
Dump	are	good	examples	of	custom	windows.	They	also	obtain	plenty	of
support	from	OllyDbg,	but	require	significantly	more	programming.

Table	windows	are	described	by	structure	t_table.	It	is	on	the	responsibility	of
the	programmer	to	maintain	data	in	custom	windows.	Registerpluginclass
allocates	8	additional	longwords	accessible	by	SetWindowLong	and
GetWindowLong.	First	two	longwords	(with	offsets	0	and	4)	are	reserved	for
internal	use.	You	can	freely	use	remaining	offsets	8,	12,	...,	28.

typedef	int	DRAWFUNC(char	*s,char	*mask,int	*select,t_sortheader	*ps,int
column);

void	Defaultbar(t_bar	*pb);

int	Tablefunction(t_table	*pt,HWND	hw,UINT	msg,WPARAM	wp,LPARAM
lp);

void	Painttable(HWND	hw,t_table	*pt,DRAWFUNC	getline);

void	Selectandscroll(t_table	*pt,int	index,int	mode);

void	Sendshortcut(int	where,ulong	addr,int	msg,int	ctrl,int	shift,int	vkcode);

HWND	Newtablewindow(t_table	*pt,int	nlines,int	maxcolumns,char
*winclass,char	*wintitle);

HWND	Quicktablewindow(t_table	*pt,int	nlines,int	maxcolumns,char
*winclass,char	*wintitle);

int	Broadcast	(UINT	msg,WPARAM	wp,LPARAM	lp);

HWND	Createdumpwindow(char	*name,ulong	base,ulong	size,ulong	addr,int
type,SPECFUNC	*specdump);

void	Setdumptype(t_dump	*pd,int	type);

void	Dumpbackup(t_dump	*pd,int	action);

HWND	Createwatchwindow(void);

HWND	Createwinwindow(void);

HWND	Creatertracewindow(void);

HWND	Createthreadwindow(void);

HWND	Createpatchwindow(void);

Createwatchwindow

Creates	new	or	brings	to	top	existing	window	that	contains	watches.	Only	one
such	window	may	exist	at	a	time.	Returns	handle	of	the	window	or	NULL	on
error.

HWND	Createwatchwindow(void);

Createwinwindow

Creates	new	or	brings	to	top	existing	window	that	lists	all	windows	(including
childs)	created	by	debugged	application.	Only	one	such	window	may	exist	at	a
time.	Returns	handle	of	the	window	or	NULL	on	error.

HWND	Createwinwindow(void);

Createthreadwindow

Creates	new	or	brings	to	top	existing	window	that	lists	all	threads	of	debugged
application.	Only	one	such	window	may	exist	at	a	time.	Returns	handle	of	the
window	or	NULL	on	error.

HWND	Createthreadwindow(void);

Createpatchwindow

Creates	new	or	brings	to	top	existing	window	that	lists	patches	applied	to
debugged	application	in	current	and	previous	sessions.	Only	one	such	window
may	exist	at	a	time.	Returns	handle	of	the	window	or	NULL	on	error.

HWND	Createpatchwindow(void);

t_table

Type	of	descriptor	of	table	of	sorted	data.	Starting	from	the	version	1.08,	this
structure	contains	two	new	elements:	colsel	and	hilite.	To	keep	it	backward
compatible	with	previous	versions,	I	have	splitted	hscroll	and	scheme	into	two
short	16-bit	variables	each.

typedef	struct	t_table	{	//	Window	with	sorted	data	and	bar

HWND	hw;	//	Handle	of	window	or	NULL

t_sorted	data;	//	Sorted	data

t_bar	bar;	//	Bar

int	showbar;	//	Bar:	1-displayed,	0-hidden,	-1-absent

short	hscroll;	//	Horiz.	scroll:	1-displayed,	0-hidden

short	colsel;	//	Active	column	in	TABLE_COLSEL	window

int	mode;	//	Combination	of	bits	TABLE_xxx

int	font;	//	Font	used	by	window

short	scheme;	//	Colour	scheme	used	by	window

short	hilite;	//	Code	highlighting	scheme	used	by	window

int	offset;	//	First	displayed	row

int	xshift;	//	Shift	in	X	direction,	pixels

DRAWFUNC	*drawfunc;	//	Function	which	decodes	table	fields

}	t_table;

Members:

hw	-	handle	of	window	that	displays	contents	of	the	table,	or	NULL	if	there	is	no

associated	window;

data	-	descriptor	of	sorted	data;

bar	-	descriptor	of	columns	and	bar	buttons	in	the	window;

showbar	-	status	of	the	bar	in	window:	1	-	bar	visible,	0	-	hidden,	-1	-	bar	is
permanently	hidden;

hscroll	-	flag	indicating	presence	of	the	horizontal	scroll	in	the	window;

colsel	-	column	with	selection	in	TABLE_COLSEL	window.	Ordinary	sorted
data	windows	select	complete	row;	TABLE_COLSEL	windows	select	single	cell
in	the	table;

mode	-	combination	of	bits	TABLE_xxx	describing	additional	table	properties.
Plugins	can	use	following	bits:

TABLE_DIR
Bottom-to-top	table	with	reversed
order	of	lines.	Log	window	is	an
example	of	the	bottom-to-top	table

TABLE_COPYMENUAttach	copy	menu	item
TABLE_SORTMENU Attach	sort	menu
TABLE_APPMENU Attach	appearance	menu
TABLE_WIDECOL Attach	wide	columns	menu	item
TABLE_USERDEF User-drawn	table
TABLE_NOHSCR Table	contains	no	horizontal	scroll

TABLE_SAVEPOS Save	position	of	window	to	the	.ini
file

TABLE_FASTSEL Update	whel	selection	changes
TABLE_HILMENU Attach	highlighting	menu
TABLE_ONTOP Attach	Always	on	top	menu

font	-	index	of	font	used	to	paint	window;

scheme	-	colour	scheme	used	to	paint	window;

hilite	-	code	highlighting	scheme	used	to	display	disassembled	code,	or	0	if

highlighting	is	disabled	or	not	applicable;

offset	-	index	of	first	row	visible	in	the	window;

xshift	-	horizontal	shift	in	pixels;

drawfunc	-	function	that	prepares	data	used	to	paint	window,	see	DRAWFUNC.

DRAWFUNC

Type	of	pointer	to	callback	function	that	prepares	data	for	painting	in	table
windows.	Given	line	and	column,	function	must	prepare	ASCII	or	UNICODE
string	that	will	be	displayed	on	their	intersection.	If	string	contains	graphical
symbols,	or	when	it	uses	different	colors,	function	must	fill	mask	with	individual
graphical	attributes	for	each	character.	Function	returns	number	of	characters
(UNICODE:	wide	characters)	in	prepared	string.	String	is	not	necessarily	null-
terminated.

For	standard	table	windows	(bit	TABLE_USERDEF	in	t_table.mode	is	cleared),
parameter	ps	points	directly	to	the	element	of	sorted	data.

For	user-defined	table	window	(TABLE_USERDEF	is	set),	ps	is	a	pointer	to	the
structure	t_table	that	describes	this	window.	Before	OllyDbg	calls	DRAWFUNC,
it	sets	t_table.offset	to	the	index	of	currently	processed	line	in	table	window
(topmost	displayed	line	has	index	0)	and	sets	table.data.n	to	the	total	number	of
completely	or	partially	visible	lines.	Drawing	function	is	called	once	for	every
crossing	of	visible	row	with	visible	column.	Individual	decoding	of	each	item
may	impose	severe	overhead	and	make	drawing	slow.	So	OllyDbg	sets
table.data.net	only	once	at	the	beginning	of	the	sequence.	Drawing	function	may
use	it	as	a	command	to	prepare	the	entire	block	of	requested	data	in	some	static
buffer	and	then	reset	n	to	0.	It	is	guaranteed	that	sequence	of	calls	to
DRAWFUNC	will	not	be	interrupted	by	call	with	different	t_table.

To	implement	scrolling	in	custom	window,	its	window	procedure	must	process
several	custom	messages.

typedef	int	DRAWFUNC(char	*s,char	*mask,int	*select,t_sortheader
*ps,int	column);

Parameters:

s	-	pointer	to	buffer	for	output	string	of	size	at	least	2*TEXTLEN	characters.
Length	of	returned	string	must	not	exceed	TEXTLEN	ASCII	or	UNICODE
characters.	If	function	returns	UNICODE	string,	it	must	set	bit
DRAW_UNICODE	in	*select.	String	is	not	necessarily	null-terminated;

mask	-	array	of	individual	graphical	attributes	for	every	character	in	output

string.	OllyDbg	uses	mask	only	if	DRAWFUNC	sets	bit	DRAW_MASK	in
*select.	Each	byte	of	the	mask	is	a	combination	of	bits	DRAW_xxx,	see	detailed
description	below;

select	-	pointer	to	graphical	attributes	common	to	all	characters	in	output	string.
*select	is	a	combination	of	bits	DRAW_xxx,	see	detailed	description	below;

ps	-	for	standard	table	windows	(without	attribute	TABLE_USERDEF),	pointer
to	the	element	of	sorted	data	to	be	decoded.	For	custom	(user-defined)	windows,
cast	ps	to	pointer	to	structure	t_table	that	describes	custom	window,	see	detailed
description	above;

column	-	zero-based	index	of	the	processed	column.	Note	that	if	column	is	not
visible	at	all,	OllyDbg	does	not	call	DRAWFUNC.

Meaning	of	bits	DRAW_xxx

Mask	and	select	consist	of	combination	of	bits	DRAW_xxx.	They	are
summarized	in	the	table	below.	Note	that	bits	which	are	not	allowed	in	the	mask
may	have	values	that	don't	fit	into	byte:

Bit	allowed	in: select mask 	
DRAW_NORMAL * * normal	plain	text
DRAW_GRAY * * grayed	text
DRAW_HILITE * * highlighted	text
DRAW_UL 	 * underlined	text
DRAW_SELECT * * selected	background
DRAW_EIP * * inverted	normal	text/background
DRAW_BREAK * * breakpoint	background
DRAW_GRAPH 	 * graphical	symbol,	see	below

DRAW_DIRECT 	 * direct	text	and	background	colour
indices

DRAW_MASK * 	 use	individual	mask	attributes	for
each	symbol

DRAW_EXTSEL * 	 extend	selection	from	last	mask	till
end	of	column

DRAW_UNICODE * 	 text	is	in	UNICODE

DRAW_TOP * 	 draw	top	half	of	the	text	shifted	1/2
row	down

DRAW_BOTTOM * 	 draw	bottom	half	of	the	text	shifted
1/2	row	up

If	entire	string	has	same	highlight	and	selection	attributes,	don't	set
DRAW_MASK.	OllyDbg	ignores	mask	and	uses	only	attributes	from	*select.
Attributes	DRAW_NORMAL,	DRAW_GRAY	and	DRAW_HILITE	are
mutually	exclusive.	You	cannot	set	DRAW_EIP	together	with	either
DRAW_SELECT	or	DRAW_BREAK.	If	bits	DRAW_BREAK	and
DRAW_SELECT	are	set	simultaneously,	background	corresponds	to	that	of
conditional	breakpoint.

To	highlight	and	select	each	character	individually,	set	DRAW_MASK	in	*select
and	fill	in	the	mask	with	combination	of	bits	describing	corresponding	character
in	output	string.	Bit	DRAW_HILITE	in	the	mask	has	priority	over	*select.	Bits
DRAW_GRAY,	DRAW_SELECT,	DRAW_EIP	and	DRAW_BREAK	in	*select
have	priority	over	remaining	bits	in	mask.	Mask	also	allows	to	draw
pseudographical	characters.	If	DRAW_GRAPH	bit	is	set,	character	is	decoded	in
a	special	way:

Symbol Char Meaning
D_SPACE 'N' space
D_SEP '	' thin	vertical	separating	line
D_POINT '.' point
D_BEGIN 'B' begin	of	procedure,	loop	or	stack	scope
D_BODY 'I' body	of	procedure,	loop	or	stack	scope
D_ENTRY 'J' loop	entry	point
D_LEAF 'K' Intermediate	leaf	on	a	tree
D_END 'E' end	of	procedure,	loop	or	stack	scope
D_SINGLE 'S' scope	consisting	of	single	line
D_ENDBEG 'T' begin	and	end	of	stack	scope
D_JMPUP 'U' small	thin	arrow	upstairs	(jump	upstairs)
D_JMPOUT '<' short	dash	(jump	to	different	module)

D_JMPDN 'D' small	thin	arrow	downstairs	(jump
downstairs)

D_PATHUP 'u' start	of	highlighted	jump	path	upstairs
D_GRAYUP 'v' start	of	grayed	jump	path	upstairs
D_PATHDN 'd' start	of	highlighted	jump	path	downstairs
D_GRAYDN 'e' start	of	grayed	jump	path	downstairs
D_PATH 'i' body	of	highlighted	jump	path
D_GRAYPATH 'j' body	of	grayed	jump	path
D_PATHUPEND 'r' end	of	highlighted	jump	path	upstairs
D_GRAYUPEND 's' end	of	grayed	jump	path	upstairs
D_PATHDNEND 'f' end	of	highlighted	jump	path	downstairs
D_GRAYDNEND 'g' end	of	grayed	jump	path	downstairs
D_PATHPTUP 'a' jump	entry	upstairs	(highlighted)
D_PATHPTDN 'h' jump	entry	downstairs	(highlighted)
D_PATHEND 'z' two-sided	end	of	jump	(highlighted)
D_SWTOP 't' start	of	switch
D_SWBODY 'b' switch	body
D_CASE 'c' intermediate	switch	case
D_LASTCASE 'l' last	switch	case

Any	other	character	is	displayed	as	space.

OllyDbg	allows	direct	setting	of	foreground	and	background	colour	for	each
character	in	the	string.	To	use	this	feature,	allow	mask	in	*select	and	fill
corresponding	mask	bytes	with	the	following	data:

DRAW_DIRECT	ORed	with	background	colour	ORed	with	foreground
colour,

where	backgrond	colour	is	one	of	BKxxx	constants	defined	in	plugin.h
(BKTRANSP	for	default	background),	and	foreground	colour	is	any	colour	in
range	0..15.	Colours	16	to	19	are	not	supported.	You	can't	combine
DRAW_DIRECT	with	any	other	DRAW_xxx	flags	in	the	mask.

If	bit	BAR_SHIFTSEL	is	set	for	the	actual	column,	background	will	be	shifted
1/2	character	to	the	left.	This	is	a	nice	trick	allowing	better	highlighting.	In	this
case	assure	that	last	highlighted	character	is	a	space.

OllyDbg's	Register	window	is	also	a	custom	table	window.	Please	have	a	close
look	on	EIP	and	EFL:	they	are	shifted	down	by	1/2	line!	How	is	it	possible?
Well,	here	I	use	another	trick:	I	draw	these	lines	twice,	first	time	with	bit
DRAW_TOP	and	second	time	with	bit	DRAW_BOTTOM.	However,	this	trick	is
relatively	time-consuming,	and	mouse	will	select	within	each	complete	line.	I	do
not	recommended	it	for	the	future.

Defaultbar

Sets	default	widths	of	the	columns	in	table	window	in	accordance	with	currently
selected	font.	You	must	redraw	window	to	make	effect	of	this	function	visible.

void	Defaultbar(t_bar	*pb);

Parameters:

pb	-	pointer	to	bar	descriptor.

Tablefunction

Default	window	function	for	all	table	windows,	implements	most	of	their
functionality.	Call	it	only	as	a	reaction	on	received	WM_xxx	message.	Return
value	depends	on	the	message,	it	is	safe	to	pass	this	value	to	the	operating
system.	For	standard	table	windows,	always	pass	following	messages	to
Tablefunction:

WM_DESTROY

WM_MOUSEMOVE

WM_LBUTTONDOWN

WM_LBUTTONDBLCLK

WM_LBUTTONUP

WM_RBUTTONDOWN

WM_RBUTTONDBLCLK

WM_HSCROLL

WM_VSCROLL

WM_TIMER	(unprocessed	messages	only)

WM_KEYDOWN	(unprocessed	messages	only)

WM_SYSKEYDOWN	(unprocessed	messages	only)

WM_WINDOWPOSCHANGED	(to	support	Always	on	top	option)

Tablefunction	also	processes	most	of	custom	OllyDbg	messages	from	standard
table	windows.	Custom	windows	usually	must	process	these	messages	by	itself.

int	Tablefunction(t_table	*pt,HWND	hw,UINT	msg,WPARAM
wParam,LPARAM	lParam);

Parameters:

pt	-	pointer	to	descriptor	of	table	window;

hw,	msg,	wParam,	lParam	-	message	parameters	as	received	from	Windows.

See	also:	Custom	messages

Custom	messages

OllyDbg	defines	following	custom	messages	that	must	be	processed	by	table
windows:

WM_USER_MENU 	 activate	context-sensitive	menu
WM_USER_SCR (*) redraw	scroll(s)
WM_USER_VABS (*) scroll	contents	of	window	by	lines

WM_USER_VREL (*) scroll	contents	of	window	by
percent

WM_USER_VBYTE (*) scroll	contents	of	window	by	bytes
WM_USER_STS (*) start	selection	in	window
WM_USER_CNTS (*) continue	selection	in	window
WM_USER_CHGS (*) move	single-line	selection

WM_USER_BAR 	 message	from	bar	segment	acting	as
button

WM_USER_DBLCLK 	 doubleclick	in	column
WM_USER_CHALL 	 redraw	(almost)	everything

WM_USER_CHMEM 	 range	of	debuggee's	memory
changed

WM_USER_CHREG 	 debuggee's	register(s)	changed

Standard	table	windows	usually	redirect	messages	marked	with	asterisk	(*)	to
Tablefunction.

See	also:	Tablefunction

WM_USER_MENU

Custom	message	sent	to	table	window	when	user	presses	right	mouse	button	or
shortcut	Alt+F10.	Window	should	create	and	fill	pop-up	menu	and	pass	this
message	to	Tablefunction	with	menu	handle	in	parameter	lp.	Window	can	use
identifiers	from	1	to	MENU_SORT-1	(0x27F)	and	from	MENU_APPMAX+1
(0x300)	to	MENU_PLUGIN-1.	It	can	pass	NULL	if	only	standard	menus	are
required.

Tablefunction	checks	for	attributes	listed	in	t_table.mode	and	performs	following
actions:

Attribute Action

TABLE_COPYMENU

If	some	line	is	selected,	adds	menu
item	"Copy".	This	attribute	also	adds
processing	of	keyboard	shortcuts
Ctrl+C	and	Ctrl+Ins

TABLE_SORTMENU

Adds	submenu	"Sort	by"	with	a	list
of	all	bar	segments	without
BAR_NOSORT.	To	hide	part	of	the
segment	title	in	menu,	separate	it
with	'$'

TABLE_APPMENU
Adds	submenu	"Appearance"	that
includes	bar,	column,	font	and
colour	options

TABLE_WIDECOL

When	set	simultaneously	with
TABLE_APPMENU,	adds	menu
item	"Wide	columns",	allowing	to
double	default	widths

TABLE_HILMENU

When	set	simultaneously	with
TABLE_APPMENU,	adds	menu
item	"Highlighting",	allowing	to
select	one	of	code	highlighting
schemes

TABLE_ONTOP
Adds	menu	item	"Always	on	top"
that	allows	to	keep	one	MDI	window
always	visible

On	return	from	Tablefunction,	window	gets	id	of	selected	item.	If	selection	is
processed	internally	by	Tablefunction,	or	when	there	is	no	selection,	it	gets	0.
Window	then	must	destroy	all	newly	created	menus,	process	selection	and	return
to	caller.

See	also:	Tablefunction

WM_USER_SCR

Asks	window	to	update	horizontal	and	vertical	scrollbars.	Simply	pass	this
message	to	Tablefunction.

WM_USER_VABS

This	message	requests	table	window	to	scroll	vertically	by	(signed)	number	of
lines	specified	in	lParam.	Positive	lParam	means	scrolling	forward	in	data
(contents	of	window	moves	up),	negative	-	backward.	wParam	contains	number
of	data	lines	completely	visible	in	the	window	(1	if	data	area	is	smaller	than	1
line).	If	lParam	is	0,	message	requests	to	calculate	new	position	of	vertical
scrollbar.

Standard	table	window	should	simply	pass	this	message	to	Tablefunction.

Owner-drawn	window	must	modify	table	data	but	neither	redraw	nor	invalidate
the	window.	If	window's	appearance	remains	unchanged	and	lParam	is	not	0,
window	function	must	return	-1.	If	window	supports	byte	scrolling,	it	must
return	(index	of	topmost	line)*MAXTRACK/(total	number	of	lines).	If	total
number	of	lines	is	less	than	or	equal	to	wParam,	it	returns	0.	Otherwise,	it	must
return	(index	of	topmost	line)*MAXTRACK/(total	number	of	lines-wParam).
As	constant	MAXTRACK	is	relatively	big,	use	MulDiv	to	calculate	return
value.

WM_USER_VREL

This	message	requests	vertical	scrolling	to	the	position	relative	to	the	total	size
of	the	table.	wParam	contains	number	of	completely	visible	lines	in	the	window
(1	if	data	area	is	smaller	than	1	line).	lParam	contains	new	scrolling	position	in
1.0/MAXTRACK	parts	of	the	total	height	of	the	table.

Standard	table	window	should	simply	pass	this	message	to	Tablefunction.

If	custom	table	window	supports	byte	scrolling,	it	must	make	line	with	index
(total	number	of	lines)*lParam/MAXTRACK	topmost	visible	in	the	window.	If
byte	scrolling	is	not	supported,	it	must	be	line	(total	number	of	lines-
wParam)*lParam/MAXTRACK.	Window	is	not	allowed	to	either	redraw	or
invalidate	the	window.	If	window's	appearance	remains	unchanged,	window
function	must	return	-1.	If	window	supports	byte	scrolling,	it	must	return
(topmost	line)*MAXTRACK/(total	number	of	lines).	If	total	number	of	lines	is
less	than	or	equal	to	wParam,	it	returns	0.	Otherwise,	it	must	return	(topmost
line)*MAXTRACK/(total	number	of	lines-wParam).	As	constant	MAXTRACK
is	relatively	big,	use	MulDiv	to	calculate	return	value.

WM_USER_VBYTE

This	message	requests	table	window	to	scroll	up	or	down	lParam	bytes.	wParam
contains	number	of	completely	visible	lines	in	the	window	(1	if	data	area	is
smaller	than	1	line).

Standard	table	window	should	simply	pass	this	message	to	Tablefunction	where
it	is	interpreted	as	WM_USER_VABS.

Custom	table	window	must	modify	data	but	neither	redraw	nor	invalidate	the
window.	If	position	of	data	remains	unchanged,	window's	function	must	return
-1.	If	window	supports	byte	scrolling,	it	must	return	(topmost
line)*MAXTRACK/(total	number	of	lines).	If	total	number	of	lines	is	less	than
or	equal	to	wParam,	it	returns	0.	Otherwise,	it	must	return	(topmost
line)*MAXTRACK/(total	number	of	lines-wParam).	As	constant	MAXTRACK
is	relatively	big,	use	MulDiv	to	calculate	return	value.

WM_USER_STS

Message	requests	table	window	to	start	selection.	HIWORD(wParam)	contains
column	where	selection	begins,	LOWORD(wParam)	-	X	offset	within	the
column	in	character	widths,	lParam	-	Y	offset	within	the	window	in	character
heigths.

Standard	table	window	should	simply	pass	this	message	to	Tablefunction.

Custom	table	window	must	modify	data	to	reflect	start	of	selection	but	neither
redraw	nor	invalidate	the	window.	It	must	return	1	if	screen	appearance	is
changed,	0	if	not	and	-1	if	start	of	selection	at	this	point	is	not	possible.

WM_USER_CNTS

Message	is	sent	to	table	window	to	continue	selection	started	by
WM_USER_STS.	HIWORD(wParam)	contains	column	with	current	end	of
selection,	LOWORD(wParam)	-	X	offset	within	the	column	in	character	widths,
lParam	-	Y	offset	within	the	window	in	character	heigths.

Standard	table	window	should	simply	pass	this	message	to	Tablefunction.

Custom	table	window	must	modify	data	to	reflect	change	of	selection	but	must
neither	redraw	nor	invalidate	the	window.	It	returns	1	if	screen	appearance	is
changed	and	0	if	not.

WM_USER_CHGS

Message	requests	table	window	to	change	selection	to	single-line,	move
selection	up	or	down	by	lParam	lines	and	scroll	window	so	that	selection	is	still
visible.	Special	lParam	values	of	MOVETOP	and	MOVEBOTTOM	move
selection	directly	to	first	or	last	line	in	the	table.	wParam	contains	number	of
completely	visible	lines	in	the	window	(1	if	data	area	is	smaller	than	1	line).

If	window	does	not	support	single-line	selection,	it	must	scroll	by	specified
number	of	lines.

Standard	table	window	(which	anyway	does	not	allow	multiline	selection)
should	simply	pass	this	message	to	Tablefunction.

Custom	table	window	must	modify	data	but	neither	redraw	nor	invalidate	the
window.	If	position	of	data	remains	unchanged,	window's	function	must	return
-1.	If	window	supports	byte	scrolling,	it	must	return	(topmost
line)*MAXTRACK/(total	number	of	lines).	If	total	number	of	lines	is	less	than
or	equal	to	wParam,	it	returns	0.	Otherwise,	it	must	return	(topmost
line)*MAXTRACK/(total	number	of	lines-wParam).	As	constant	MAXTRACK
is	relatively	big,	use	MulDiv	to	calculate	return	value.

WM_USER_BAR

Bar	segment	with	mode	bit	BAR_BUTTON	works	as	a	button	and,	when
pressed,	sends	this	message	to	the	window	which	owns	bar.	wParam	contains
column,	lParam	is	0.	OllyDbg	ignores	value	returned	by	this	message.

WM_USER_DBLCLK

When	user	doubleclicks	left	mouse	button	within	the	data	area	(but	neither	in	bar
nor	over	the	dividing	line),	table	window	receives	this	message.
HIWORD(wParam)	contains	column,	LOWORD(wParam)	-	X	offset	within	the
column	in	character	widths,	lParam	-	Y	offset	within	the	window	in	rows.	If
window	processes	this	message,	it	must	return	1,	otherwise	doubleclick	is	treated
as	simple	click.

WM_USER_CHALL

Due	to	changes	in	debugged	application	or	display	options,	window	must	be
updated.	Window's	procedure	is	expected	to	postpone	redrawing	using	actual
data	and	return	CONT_BROADCAST.

WM_USER_CHMEM

Memory	of	debugged	process	in	range	from	wParam	(included)	to	lParam	(not
included)	is	possibly	changed.	Update	window	if	necessary	and	return
CONT_BROADCAST.

WM_USER_CHREG

Some	registers	of	debugged	process	(general-purpose,	FPU,	MMX	etc.)	are
changed.	Update	window	if	necessary	and	return	CONT_BROADCAST.

Painttable

Implements	processing	of	WM_PAINT	message	for	all	table	windows.	Call	this
function	only	when	processing	WM_PAINT.

void	Painttable(HWND	hw,t_table	*pt,DRAWFUNC	getline);

Parameters:

hw	-	handle	of	window	to	be	redrawn;

pt	-	pointer	to	descriptor	of	table	window;

getline	-	pointer	to	custom	function	that	prepares	data	to	be	drawn	in	specified
cell	of	table	window.

See	also:	DRAWFUNC

Selectandscroll

Selects	element	of	sorted	data	with	specified	index	according	to	current	sort
mode	and	scrolls	window	so	that	selection	is	visible.	This	function	neither
redraws	nor	invalidates	nor	creates	window	and	has	no	effect	on	owner-drawn
table	windows.

void	Selectandscroll(t_table	*pt,int	index,int	mode);

Parameters:

pt	-	pointer	to	descriptor	of	table	window;

index	-	index	of	element	of	sorted	data	according	to	current	sort	mode;

mode	-	request	for	position	of	selected	line	in	window.	If	mode	is	0,	this	is
always	the	topmost	line,	if	1	-	line	in	the	middle	of	the	data	area,	2	-	selected
automatically	(recommended	when	calling	function	walks	through	all	table
entries).

Sendshortcut

Emulates	either	global	keyboard	shortcut	or	shortcut	in	some	CPU	subwindow.
Designed	primarily	for	use	in	command	line	plugin.

void	Sendshortcut(int	where,ulong	addr,int	msg,int	ctrl,int	shift,int	vkcode);

Parameters:

where	-	addressee	of	the	emulated	keyboard	shortcut:

PM_MAIN Main	window	(global
shortcut)

PM_DISASM CPU	Disassembler
PM_CPUDUMP CPU	Dump
PM_CPUSTACK CPU	Stack
PM_CPUREGS CPU	Registers

addr	-	for	all	CPU	subwindows	except	PM_CPUREGS,	address	to	which
shortcut	is	applied.	Ignored	if	where	is	PM_CPUREGS	or	PM_MAIN;

msg	-	keyboard	message	to	emulate:	WM_KEYDOWN,	WM_SYSKEYDOWN
or	WM_CHAR;

ctrl	-	emulated	state	of	Control	key	on	the	keyboard	(0	-	released,	1	-	pressed);

shift	-	emulated	state	of	Shift	key	on	the	keyboard	(0	-	released,	1	-	pressed);

vkcode	-	key	to	emulate,	character	or	one	of	VK_xxx	(for	example,	VK_F1	to
emulate	F1	key).

Quicktablewindow

If	window	already	exists,	restores	it	and	brings	to	the	top.	Otherwise,	sets	default
appearance	parameters	and	creates	new	window.	If	record	with	window's	title
already	exists	in	ollydbg.ini,	table	has	TABLE_SAVEPOS	attribute	and	option
"Restore	windows	position	and	appearance"	is	selected,	restores	old	position,
size	and	appearance.	Returns	pointer	to	window	or	NULL	on	error.	Note	that
alternative	function,	Newtablewindow,	neither	restores	window	nor	changes	its
appearance.

HWND	Quicktablewindow(t_table	*pt,int	nlines,int	maxcolumns,char
*winclass,char	*wintitle);

Parameters:

pt	-	pointer	to	descriptor	of	table	window;

nlines	-	preferred	number	of	visible	lines;

maxcolumns	-	preferred	number	of	visible	columns;

winclass	-	name	of	registered	window	class	(for	example,	obtained	from	call	to
Registerpluginclass);

wintitle	-	window's	title.	If	table	has	TABLE_SAVEPOS	attribute,	OllyDbg	uses
title	to	save	and	restore	window's	position	and	appearance.

See	also:	Registerpluginclass,	Newtablewindow

Newtablewindow

Creates	new	table	window.	If	record	with	window's	title	already	exists	in
ollydbg.ini,	table	has	TABLE_SAVEPOS	attribute	and	option	"Restore	windows
position	and	appearance"	is	selected,	restores	old	position,	size	and	appearance
of	the	table	window.	Returns	pointer	to	window	or	NULL	on	error.	Note	that
alternative	function,	Quicktablewindow,	restores	window	if	it	already	exists	and
sets	default	appearance	parameters.

HWND	Newtablewindow(t_table	*pt,int	nlines,int	maxcolumns,char
*winclass,char	*wintitle);

Parameters:

pt	-	pointer	to	descriptor	of	table	window;

nlines	-	preferred	number	of	visible	lines;

maxcolumns	-	preferred	number	of	visible	columns;

winclass	-	name	of	registered	window	class	(for	example,	obtained	from	call	to
Registerpluginclass);

wintitle	-	window's	title.	If	table	has	TABLE_SAVEPOS	attribute,	OllyDbg	uses
title	to	save	and	restore	window's	position	and	appearance.

See	also:	Registerpluginclass,	Quicktablewindow

Createdumpwindow

Creates	new	dump	window	that	can	show	either	context	of	file	or	memory	range
of	debugged	program	in	one	of	predefined	dump	formats.	Returns	handle	of
created	window	or	NULL	on	error.	Number	of	simultaneously	displayed	dump
windows	is	(theoretically)	unlimited.

HWND	Createdumpwindow(char	*name,ulong	base,ulong	size,ulong
addr,int	type,SPECFUNC	*specdump);

Parameters:

name	-	if	parameter	size	is	0,	name	of	file	to	display,	otherwise	window's	title	or
NULL,	in	this	last	case	OllyDbg	generates	title	automatically;

base	-	if	size	is	0,	base	is	ignored,	otherwise	this	is	the	base	address	of	displayed
memory	range;

size	-	0	if	window	should	dump	contents	of	file,	or	size	of	displayed	memory
range	otherwise;

addr	-	address	or	offset	of	the	first	element	displayed	after	window	is	created;

type	-	combination	of	dump	type	(one	of	DU_xxx),	number	of	items	per	line
((n<<8)	&	DU_COUNT)	and	size	of	single	item	(l	&	DU_SIZE).	For	variable-
length	types	size	is	1.	See	table	below	for	a	list	of	commonly	used	dump	types;

specdump	-	function	that	performs	special	data	decoding,	set	to	NULL.

Commonly	used	dump	types:

0x01101 Hex/ASCII	(16	bytes)
0x01081 Hex/ASCII	(8	bytes)
0x0A101 Hex/UNICODE	(16	bytes)
0x0A081 Hex/UNICODE	(8	bytes)
0x02401 ASCII	(64	chars)
0x02201 ASCII	(32	chars)
0x03402 UNICODE	(64	chars)

0x03202 UNICODE	(32	chars)
0x04082 Signed	short	decimal
0x05082 Unsigned	short	decimal
0x06082 Short	hex
0x04044 Signed	long	decimal
0x05044 Unsigned	long	decimal
0x06044 Long	hex
0x08014 Address
0x0B041 Address	with	ASCII	dump
0x0C041 Address	with	UNICODE	dump
0x07044 32-bit	float
0x07028 64-bit	double
0x0701A 80-bit	long	double
0x09011 Disassemble
0x0D001 PE	header

See	also:	Setdumptype,	Dumpbackup

Setdumptype

Sets	or	changes	type	of	information	displayed	in	dump	window.	Window
associated	with	pd	is	not	updated,	you	must	invalidate	it	to	visualize	this	change.

void	Setdumptype(t_dump	*pd,int	type);

Parameters:

pd	-	pointer	to	dump	descriptor;

type	-	combination	of	dump	type	(one	of	DU_xxx),	number	of	items	per	line
((n<<8)	&	DU_COUNT)	and	size	of	single	item	(l	&	DU_SIZE).	For	variable-
length	types	size	is	1.	See	table	here	for	a	list	of	commonly	used	dump	types.

See	also:	Createdumpwindow,	Dumpbackup

Dumpbackup

Function	performs	specified	backup	action	(like	creating	or	updating	backup,
reading	backup	from	file,	destroying	backup	etc.)	on	the	dump.	If	action
involves	file	operations	(read	data	from	file,	save	data	or	backup	to	file),	user	is
prompted	to	select	file	name.	Function	neither	redraws	nor	invalidates	backup
window.

void	Dumpbackup(t_dump	*pd,int	action);

Parameters:

pd	-	pointer	to	dump	descriptor;

action	-	constant	that	specifies	requested	backup	action:

BKUP_CREATE Create	or	update	backup	copy
BKUP_VIEWDATA View	original	data
BKUP_VIEWCOPY View	backup	copy
BKUP_LOADCOPY Read	backup	copy	from	file
BKUP_SAVEDATA Save	original	data	to	file
BKUP_SAVECOPY Save	backup	copy	to	file
BKUP_DELETE Delete	backup	copy

See	also:	Createdumpwindow,	Setdumptype

Broadcast

Function	sends	message	to	all	open	MDI	windows.	Stops	either	after	message	is
sent	to	all	windows	or	when	some	window	returns	STOP_BROADCAST.
Usually	used	to	broadcast	custom	messages	WM_USER_CHALL,
WM_USER_CHMEM	and	WM_USER_CHREG.	Note	that	you	don't	need	to
broadcast	WM_USER_CHMEM	after	call	to	Writememory	with	mode	flag
MM_RESTORE.

int	Broadcast(UINT	msg,WPARAM	wParam,LPARAM	lParam);

Parameters:

msg	-	message	to	be	broadcasted;

wParam	-	first	message	parameter;

lParam	-	second	message	parameter.

See	also:	Writememory,	WM_USER_CHALL,	WM_USER_CHMEM,
WM_USER_CHREG

Name	functions

Any	zero-terminated	ASCII	string	that	is	shorter	than	TEXTLEN	characters	can
be	a	name	from	the	OllyDbg's	point	of	view.	Every	name	has	associated	32-bit
address	and	8-bit	type.	OllyDbg	stores	all	names	in	a	huge	centralized	dynamical
buffer	that	can	keep	up	to	10,000,000	names,	provided	of	course	that	you	have
enough	memory.	When	used	correctly,	name	functions	are	very	fast.

Several	name	types	are	predefined:

NM_NONAME Undefined	name
NM_ANYNAME Name	of	any	type

Names	that	are	stored	in	the	.udd	file	of	module	where	they	appear:

NM_LABEL User-defined	label
NM_EXPORT Exported	(global)	name
NM_IMPORT Imported	name

NM_LIBRARY Name	extracted	from	library,	object	file
or	debug	data

NM_CONST User-defined	constant	(currently	not
implemented)

NM_COMMENT User-defined	comment

NM_LIBCOMM Automatically	generated	comment	from
library	or	object	file

NM_BREAK Condition	related	with	breakpoint
NM_ARG Arguments	decoded	by	analyser
NM_ANALYSE Comment	added	by	analyser
NM_BREAKEXPR Expression	related	with	breakpoint
NM_BREAKEXPL Explanation	related	with	breakpoint
NM_ASSUME Assume	function	with	known	arguments
NM_STRUCT Code	structure	decoded	by	analyzer
NM_CASE Case	description	decoded	by	analyzer

NM_PLUGCMD Plugin	commands	to	execute	at
breakpoint

Names	that	are	stored	in	the	.udd	file	of	main	module:

NM_INSPECT Several	last	entered	inspect
expressions

NM_WATCH Watch	expressions

NM_ASM Several	last	entered
assembled	strings

NM_FINDASM Several	last	entered
assembler	search	strings

NM_LASTWATCH Several	last	entered	watch
expressions

NM_SOURCE Several	last	entered	source
search	strings

NM_REFTXT Several	last	entered	reference
text	search	strings

NM_GOTO Several	last	expressions	to
follow	in	Disassembler

NM_GOTODUMP Several	last	expressions	to
follow	in	Dump

NM_TRPAUSE Several	last	expresions	to
pause	run	trace

NM_LABEL|NMHISTORY Several	last	entered	user-
defined	labels

NM_COMMENT|NMHISTORY Several	last	entered	user-
defined	comments

NM_BREAK|NMHISTORY Several	last	entered
breakpoint	conditions

NM_BREAKEXPR|NMHISTORY Several	last	entered
breakpoint	expressions

NM_BREAKEXPL|NMHISTORY Several	last	entered
breakpoint	explanations

If	you	need	unique	name	type	for	your	plugin,	please	contact	the	author	of

OllyDbg.

To	find	name	by	its	address,	OllyDbg	uses	binary	search	on	contiguous	sorted
index	array.	For	this	reason,	search	is	extermely	fast,	but	adding	new	names	to
the	table	may	take	significant	time.	If	you	need	to	add	multiple	names	at	once,
use	Quickinsertname.	Names	added	in	this	way	are	unaccessible	until	you	call
Mergequicknames.	As	a	rule	of	thumb,	this	method	is	preferrable	if	number	of
names	exceeds	10-15.

int	Insertname(ulong	addr,int	type,char	*name);

int	Quickinsertname(ulong	addr,int	type,char	*name);

void	Mergequicknames(void);

void	Discardquicknames(void);

int	Findname(ulong	addr,int	type,char	*name);

int	Decodename(ulong	addr,int	type,char	*name);

ulong	Findnextname(char	*name);

int	Findlabel(ulong	addr,char	*name);

void	Deletenamerange(ulong	addr0,ulong	addr1,int	type);

int	Findlabelbyname(char	*name,ulong	*addr,ulong	addr0,ulong	addr1);

ulong	Findimportbyname(char	*name,ulong	addr0,ulong	addr1);

int	Demanglename(char	*name,int	type,char	*undecorated);

int	Findsymbolicname(ulong	addr,char	*fname);

Insertname

Inserts	new	or	replaces	existing	name	of	given	type	in	the	name	table.	If	name	is
NULL	or	empty,	entry	is	deleted.	Returns	0	on	success	and	-1	on	error.	Note:	do
not	call	this	function	between	calls	to	Quickinsertname	and	Mergequicknames!

int	Insertname(ulong	addr,int	type,char	*name);

Parameters:

addr	-	name	address;

type	-	name	type	(NM_xxx	for	predefined	types);

name	-	name	to	insert.	If	name	is	NULL	or	empty,	entry	is	removed	from	the
name	table.

See	also:	Quickinsertname,	Mergequicknames,	Discardquicknames,	Findname,
Deletenamerange

Quickinsertname

Inserts	new	or	replaces	existing	name	of	given	type	in	the	name	table.	NULL	or
empty	names	are	not	allowed.	Returns	0	on	success	and	-1	on	error.	Names
added	by	this	function	are	unavailable	until	you	call	Mergequicknames.	If	you
add	multiple	names,	Quickinsertname	is	much	faster	than	Insertname.	Note:	do
not	call	Insertname	between	calls	to	Quickinsertname	and	Mergequicknames!

int	Quickinsertname(ulong	addr,int	type,char	*name);

Parameters:

addr	-	name	address;

type	-	name	type	(NM_xxx	for	predefined	types);

name	-	name	to	insert.	If	name	is	NULL	or	empty,	entry	is	removed	from	the
name	table.

See	also:	Insertname,	Mergequicknames,	Discardquicknames,	Findname,
Deletenamerange

Mergequicknames

Function	adds	names	posted	by	Quickinsertname	to	the	name	table.	Note	that
posted	names	are	not	available	until	you	call	Mergequicknames.

void	Mergequicknames(void);

See	also:	Quickinsertname,	Insertname,	Discardquicknames

Discardquicknames

Discards	all	names	posted	by	Quickinsertname	after	last	call	to
Mergequicknames.

void	Discardquicknames(void);

See	also:	Quickinsertname,	Mergequicknames

Findname

Searches	for	name	with	given	address	and	type.	Returns	length	of	the	name	or	0
if	name	is	absent.	As	a	side	effect,	sets	global	arguments	for	Findnextname.

int	Findname(ulong	addr,int	type,char	*name);

Parameters:

addr	-	name	address;

type	-	name	type	(NM_xxx	for	predefined	types);

name	-	pointer	to	buffer	of	length	at	least	TEXTLEN	characters	or	NULL.	If
name	is	found,	function	copies	it	to	this	buffer.

Se	also:	Findnextname,	Decodename,	Findlabel,	Findlabelbyname,
Findimportbyname

Decodename

Searches	for	name	with	given	address	and	type.	If	name	is	found,	scans	it	for
combinations	<+XXXXXXXX>,	where	XXXXXXXX	is	a	hexadecimal	number,
and	substitutes	them	by	sum	of	base	and	XXXXXXXX	in	hexadecimal	format.
Returns	length	of	resulting	string	or	0	if	name	is	absent.	OllyDbg	uses	this
function	to	correct	automatically	generated	comments	in	relocatable	modules.

int	Decodename(ulong	addr,int	type,char	*name);

Parameters:

addr	-	name	address;

type	-	name	type	(NM_xxx	for	predefined	types);

name	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters.

See	also:	Findname,	Findlabel,	Findlabelbyname,	Findimportbyname

Findnextname

Searches	for	name	with	type	specified	in	last	call	to	Findname	and	address
exceeding	that	in	Findname	or	returned	by	last	call	to	Findnextname.	Returns
address	or	0	if	there	are	no	more	compatible	entries.	If	name	is	NULL,	name
itself	is	not	fetched.

ulong	Findnextname(char	*name);

Parameters:

name	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters.

See	also:	Findname,	Findlabel,	Findlabelbyname,	Findimportbyname

Findlabel

Searches	for	name	of	types	NM_LABEL,	NM_EXPORT,	NM_IMPORT,
NM_LIBRARY,	NM_CONST	(in	the	listed	order).	If	some	name	is	found,	gets
name	and	returns	its	type,	otherwise	returns	NM_NONAME.

int	Findlabel(ulong	addr,char	*name);

Parameters:

addr	-	name	address;

name	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters	or
NULL.

See	also:	Findname,	Findlabelbyname,	Findimportbyname

Deletenamerange

Deletes	all	names	of	specified	type	(or	all	names	if	type	is	NM_ANYNAME)	in
the	specified	range.

void	Deletenamerange(ulong	addr0,ulong	addr1,int	type);

Parameters:

addr0	-	start	of	address	range	(included);

addr1	-	end	of	address	range	(not	included);

type	-	type	of	names	to	delete	(NM_ANYNAME	to	delete	all	names	in	the
range).

See	also:	Insertname,	Quickinsertname

Findlabelbyname

Searches	for	name	of	types	NM_LABEL,	NM_EXPORT,	NM_IMPORT,
NM_LIBRARY	or	NM_CONST	in	the	specified	range.	If	name	is	found,	copies
its	address	to	*addr	and	returns	type	of	label,	otherwise	returns	NM_NONAME.
Attention,	this	function	is	very	slow,	it	searches	name	table	sequentially!

int	Findlabelbyname(char	*name,ulong	*addr,ulong	addr0,ulong	addr1);

Parameters:

name	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters;

addr	-	pointer	to	variable	that	receives	address	of	found	name;

addr0	-	start	of	address	range	(included);

addr1	-	end	of	address	range	(not	included).

See	also:	Findname,	Findlabel,	Findimportbyname

Findimportbyname

Searches	for	name	of	type	NM_IMPORT	in	the	specified	range.	If	name	is
found,	returns	its	address,	otherwise	returns	0.	If	name	contains	no	module
prefix,	routine	searches	for	import	name	with	any	module	prefix.	Attention,	this
function	is	very	slow,	it	searches	name	table	sequentially!

ulong	Findimportbyname(char	*name,ulong	addr0,ulong	addr1);

Parameters:

name	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters;

addr0	-	start	of	address	range	(included);

addr1	-	end	of	address	range	(not	included).

See	also:	Findname,	Findlabel,	Findlabelbyname

Findsymbolicname

Checks	that	there	is	a	symbolic	name	associated	with	address.	Returns	0	if	there
is	no	symbolic	name.	Returns	1	if	name	exists	buf	fname	is	NULL.	Extracts
name	to	fname	and	returns	its	size	otherwise.

int	Findsymbolicname(ulong	addr,char	*fname);

Parameters:

addr	-	address;

fname	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters	that
receives	found	name.

See	also:	Findname,	Findlabel,	Findlabelbyname

Disassembly	functions

Disasm	is	the	most	important	OllyDbg	function,	and	one	of	the	most
complicated.	In	version	1.06,	its	C	code	together	with	declarations,	service
subroutines	and	tables	is	4291	lines	(210	K	bytes)	long!	Almost	every	part	of
OllyDbg	calls	Disasm,	directly	or	indirectly.

Disasm	requires	that	you	supply	binary	code	of	the	command	to	disassemble.
Readcommand	allows	you	to	easily	read	command	from	the	memory	of
debugged	process.

Two	other	disassembly	functions,	Disassembleforward	and	Disassembleback,
allow	walking	through	the	binary	code,	command	by	command.	Note	that	80x86
commands	have	variable	length.	Disassembleback	use	heuristical	methods	to
separate	commands	and	in	some	(astoundingly	rare!)	cases	may	return	invalid
answer.	To	avoid	risks	of	invaling	backward	walking,	use	analysis	data.

Functions	Issuspicious	and	Isfilling	can	determine	whether	command	is
potentially	invalid	or	equivalent	to	NOP.

ulong	Disasm(char	*src,ulong	srcsize,ulong	srcip,char	*srcdec,t_disasm
*disasm,int	disasmmode,ulong	threadid);

ulong	Readcommand(ulong	ip,char	*cmd);

ulong	Disassembleback(char	*block,ulong	base,ulong	size,ulong	ip,int	n,int
usedec);

ulong	Disassembleforward(char	*block,ulong	base,ulong	size,ulong	ip,int	n,int
usedec);

ulong	Followcall(ulong	addr);

int	Issuspicious(char	*cmd,ulong	size,ulong	ip,ulong	threadid,t_reg	*preg,char
*s);

int	Isfilling(ulong	offset,char	*data,ulong	size,ulong	align);

int	Isprefix(int	c);

t_disasm

Disasm	uses	this	structure	to	report	disassembly	results.	Which	fields	of	the
structure	are	filled	depends	on	the	disassembling	mode:

DISASM_SIZE Only	error	is	valid

DISASM_DATA Only	members	of	t_disasm	marked	with
asterisk	(*)	are	valid

DISASM_TRACE Only	members	marked	with	asterisk	(*)	and
minus	(-)	are	valid

DISASM_FILE

Complete	disassembly,	but	Disasm	assumes
that	registers	are	undefined	and	does	not
decode	symbolic	names.	Members	marked
with	minus	(-)	are	invalid

DISASM_CODE
Complete	disassembly,	but	Disasm	assumes
that	registers	are	undefined.	Members
marked	with	minus	(-)	are	invalid

DISASM_ALL Complete	disassembly.	Members	marked
with	minus	(-)	are	invalid

typedef	struct	t_disasm	{	//	Results	of	disassembling

ulong	ip;	//	(*)	Instrucion	pointer

char	dump[TEXTLEN];	//	Hexadecimal	dump	of	the	command

char	result[TEXTLEN];	//	Disassembled	command

char	comment[TEXTLEN];	//	Brief	comment

char	opinfo[3][TEXTLEN];	//	Comments	to	command's	operands

int	cmdtype;	//	(*)	One	of	C_xxx

int	memtype;	//	(*)	Type	of	addressed	variable	in	memory

int	nprefix;	//	(*)	Number	of	prefixes

int	indexed;	//	Address	contains	register(s)

ulong	jmpconst;	//	(*)	Constant	jump	address

ulong	jmptable;	//	(*)	Possible	address	of	switch	table

ulong	adrconst;	//	(*)	Constant	part	of	address

ulong	immconst;	//	(*)	Immediate	constant

int	zeroconst;	//	(*)	Whether	contains	zero	constant

int	fixupoffset;	//	(*)	Possible	offset	of	32-bit	fixups

int	fixupsize;	//	(*)	Possible	total	size	of	fixups	or	0

ulong	jmpaddr;	//	Destination	of	jump/call/return

int	condition;	//	0xFF:unconditional,	0:false,	1:true

int	error;	//	(*)	Error	while	disassembling	command

int	warnings;	//	(*)	Combination	of	DAW_xxx

int	optype[3];	//	Type	of	operand	(extended	set	DEC_xxx)

int	opsize[3];	//	Size	of	operand,	bytes

int	opgood[3];	//	Whether	address	and	data	valid

ulong	opaddr[3];	//	Address	if	memory,	index	if	register

ulong	opdata[3];	//	Actual	value	(only	integer	operands)

t_operand	op[3];	//	Full	description	of	operand

ulong	regdata[8];	//	Registers	after	command	is	executed

int	regstatus[8];	//	Status	of	registers,	one	of	RST_xxx

ulong	addrdata;	//	Traced	memory	address

int	addrstatus;	//	Status	of	addrdata,	one	of	RST_xxx

ulong	regstack[NREGSTACK];	//	Stack	tracing	buffer

int	rststatus[NREGSTACK];	//	Status	of	stack	items

int	nregstack;	//	Number	of	items	in	stack	trace	buffer

ulong	reserved[29];	//	Reserved	for	plugin	compatibility

}	t_disasm;

Members:

ip	-	address	of	the	disassembled	command;

dump	-	ASCII	string,	formatted	hexadecimal	dump	of	the	command;

result	-	ASCII	string,	disassembled	command	itself;

comment	-	ASCII	string,	brief	comment	that	applies	to	the	whole	command;

opinfo	-	array	of	ASCII	strings,	comments	to	individual	operands	(explicit	or
implicit,	like	ESP,	EBP	and	ECX	in	MOVSB);

cmdtype	-	type	of	the	disassembled	command,	one	of	C_xxx	possibly	ORed	with
C_RARE	to	indicate	that	command	is	seldom	in	ordinary	Win32	applications.
Commands	of	type	C_MMX	additionally	contain	size	of	MMX	data	in	the	3
least	significant	bits	(0	means	8-byte	operands).	Non-MMX	commands	may
have	C_EXPL	bit	set	which	means	that	some	memory	operand	has	size	which	is
not	conform	with	standard	80x86	rules;

memtype	-	type	of	memory	operand,	one	of	DEC_xxx,	or	DEC_UNKNOWN	if
operand	is	non-standard	or	command	does	not	access	memory;

nprefix	-	number	of	prefixes	that	this	command	contains;

indexed	-	if	memory	address	contains	index	register,	set	to	scale,	otherwise	0;

jmpconst	-	address	of	jump	destination	if	this	address	is	a	constant,	and	0
otherwise;

jmptable	-	if	indirect	jump	can	be	interpreted	as	switch,	base	address	of	switch
table	and	0	otherwise;

adrconst	-	constant	part	of	memory	address;

immconst	-	immediate	constant	or	0	if	command	contains	no	immediate
constant.	The	only	command	that	contains	two	immediate	constants	is	ENTER.
Disasm	ignores	second	constant	which	is	anyway	0	in	most	cases;

zeroconst	-	nonzero	if	command	contains	immediate	zero	constant;

fixupoffset	-	possible	start	of	32-bit	fixup	within	the	command,	or	0	if	command
can't	contain	fixups;

fixupsize	-	possible	total	size	of	fixups	(0,	4	or	8).	If	command	contains	both
immediate	constant	and	immediate	address,	they	are	always	adjacent	on	80x86
processors;

jmpaddr	-	destination	of	jump,	call	or	return.	If	jump	address	contains	undefined
register,	jmpaddr	is	0;

condition	-	whether	condition	in	command	is	met:	0	-	condition	is	false,	1	-	true,
-1	-	command	is	unconditional	or	EFL	is	undefined;

error	-	Disasm	was	unable	to	disassemble	command	(for	example,	command
does	not	exist	or	crosses	end	of	memory	block),	one	of	DAE_xxx;

warnings	-	command	is	suspicious	or	meaningless	(for	example,	far	jump	or
MOV	EAX,EAX	preceded	with	segment	prefix),	combination	of	DAW_xxx	bits;

optype	-	array	of	operand	types,	DEC_xxx	or	DECR_xxx;

opsize	-	array	of	operand	sizes	in	bytes;

opgood	-	array	of	flags	indicating	opaddr	and	opdata	are	valid;

opaddr	-	array	containing	memory	addresses	of	memory	operands	and	register
indexes	for	register	operands.	Valid	only	if	corresponding	opgood	is	set;

opdata	-	array	of	actual	operand's	values	(integer	operands	only),	valid	only	if

corresponding	opgood	is	set;

op	-	full	descriptions	of	operands.

Register	tracing	is	still	relatively	raw	and	is	not	described.

Disasm

Disassembles	command,	determines	its	size	and	decodes	operands.	Returns	size
of	the	command.	Disasm	functionality	depends	on	the	selected	mode	and	global
disassembling/analysis	options.	See	description	of	t_disasm	for	more	details:

Mode Actions
DISASM_SIZE Fastest	mode,	only	calculates	command	size
DISASM_DATA Extracts	most	important	data,	no	textual	information

DISASM_TRACE Extracts	most	important	data	and	traces	contents	of
integer	registers,	no	textual	information

DISASM_FILE
Disassembles	command	in	assumption	that	registers
are	undefined	and	symbolic	names	are	invalid.
Usually	used	to	disassemble	contents	of	file

DISASM_CODE Disassembles	command	assuming	that	registers	are
undefined

DISASM_ALL Complete	and	relatively	slow	disassembly

ulong	Disasm(char	*src,ulong	srcsize,ulong	srcip,char	*srcdec,t_disasm
*disasm,int	disasmmode,ulong	threadid);

Parameters:

src	-	pointer	to	binary	command	that	must	be	disassembled;

srcsize	-	size	of	src.	Length	of	80x86	commands	is	limited	to	MAXCMDSIZE
bytes;

srcip	-	address	of	the	command;

srcdec	-	pointer	to	decoding	data	produced	by	Analyzer	or	NULL	if	decoding
data	is	absent.	You	must	supply	srcdec	if	you	want	to	decode	switch	tables,
constants	and	strings;

disasm	-	pointer	to	t_disasm	structure	that	receives	results	of	disassembling;

disasmmode	-	disassembly	mode,	one	of	DISASM_xxx.	See	desctiption	of
t_disasm	and	table	above;

threadid	-	identifier	of	thread	containing	registers,	or	NULL	if	registers	are
undefined.

See	also:	Readmemory,	Finddecode,	t_disasm,	MAXCMDSIZE

Disassembleback

Calculates	address	of	assembler	instruction	which	is	n	instructions	(maximally
127)	back	from	instruction	at	specified	address.	Returns	address	of	found
instruction.	In	case	of	error,	it	may	be	less	than	n	instructions	apart.

80x86	commands	have	variable	length.	Disassembleback	use	heuristical
methods	to	separate	commands	and	in	some	(astoundingly	rare!)	cases	may
return	invalid	answer.	To	avoid	risks	of	invaling	backward	walking,	or	correctly
walk	through	constants	and	strings,	use	results	of	code	analysis.

ulong	Disassembleback(char	*block,ulong	base,ulong	size,ulong	ip,int	n,int
usedec);

Parameters:

block	-	pointer	to	copy	of	code.	If	block	is	NULL,	Disassembleback	assumes
memory	of	debugged	process	and	if	necessary	reads	it;

base	-	address	of	first	byte	of	code	block;

size	-	size	of	code	block;

ip	-	address	of	current	instruction;

n	-	number	of	instructions	to	walk	back;

usedec	-	flag	indicating	whether	Disassembleback	should	try	to	use	decoding
data.

See	also:	Disassembleforward,	Followcall,	Findmemory,	Readmemory

Disassembleforward

Calculates	address	of	assembler	instruction	which	is	n	instructions	forward	from
instruction	at	specified	address.	If	copy	of	code	is	not	supplied,
Disassembleforward	guarantees	correct	results	up	to	n=127	(typically	300).
Returns	address	of	found	instruction.	In	case	of	error,	it	may	be	less	than	n
instructions	apart.

If	you	want	to	correctly	walk	through	constants	and	strings,	use	results	of	code
analysis.

ulong	Disassembleforward(char	*block,ulong	base,ulong	size,ulong	ip,int
n,int	usedec);

Parameters:

block	-	pointer	to	copy	of	code.	If	block	is	NULL,	Disassembleforward	assumes
memory	of	debugged	process	and	if	necessary	reads	it;

base	-	address	of	first	byte	of	code	block;

size	-	size	of	code	block;

ip	-	address	of	current	instruction;

n	-	number	of	instructions	to	walk	forward;

usedec	-	flag	indicating	whether	Disassembleforward	should	try	to	use	decoding
data.

See	also:	Disassembleback,	Followcall,	Findmemory,	Readmemory

Followcall

Follows	sequence	of	jumps	(direct	or	indirect)	and	Win95	thunks	that	starts	at
specified	address.	Stops	if:

-next	command	is	neither	jump	nor	thunk,	or

-next	command	is	exported	entry	in	difefrent	module,	or

-length	of	sequence	exceeds	10	jumps.

Returns	address	of	final	destination,	or	0	on	error.	Parameter	addr	is	usually	the
destination	of	CALL	command,	hence	the	name.	As	any	access	to	the	debuggee's
memory	takes	significant	time,	this	function	may	be	slow.

ulong	Followcall(ulong	addr);

Parameters:

addr	-	address	of	first	command	in	jump	chain.

See	also:	Disassembleforward,	Disassembleback,	Disasm

Issuspicious

Checks	whether	command	is	somehow	suspicious.	Returns	-1	on	error,	0	if
command	is	not	suspicious	and	1	if	command	is	suspicious.	Use	only	with
program	in	memory,	do	not	apply	to	file!	Command	is	considered	suspicious
when:

·this	command	is	erroneous	or	unknown,	or

·it	is	potentially	invalid	according	to	active	analysis	options,	or

·it	sets	single-step	trap,	or

·it	accesses	memory	operand	in	unused	part	of	stack	(i.e.	addr>ESP),	or

·it	is	command	CLI,	or

·memory	operand	contains	INT3	breakpoint	set	by	OllyDbg.

int	Issuspicious(char	*cmd,ulong	size,ulong	ip,ulong	threadid,t_reg
*preg,char	*comment);

Parameters:

cmd	-	pointer	to	the	binary	command	code;

size	-	size	of	cmd	in	bytes;

ip	-	address	of	the	command	in	the	memory	of	debugged	process;

threadid	-	identifier	of	the	thread	in	which	context	this	command	will	be
executed;

preg	-	pointer	to	registers	at	the	moment	of	execution;

comment	-	buffer,	at	least	TEXTLEN	bytes	long,	that	receives	explanation	why
this	command	is	suspicious,	or	NULL.

See	also:	Disasm,	Isfilling,	Isprefix,	Readcommand

Isfilling

Function	checks	whether	command	which	binary	code	starts	at	data[offset]	is	a
valid	filling	command	(usually	some	kind	of	NOP)	used	to	align	code	to	a
specified	border.	Returns	length	of	command	if	this	is	recognized	as	filling	and	0
otherwise.	Checks	include:

·NOP

·INT3

·XCHG	RA,RA

·MOV	RA,RA

·LEA	RA,[RA]	(with	or	without	SIB	byte)

·LEA	RA,[RA+00000000]

This	list	is	far	from	completeness	but	includes	commands	most	frequently	used
as	filling	by	actual	compilers.

int	Isfilling(ulong	offset,char	*data,ulong	size,ulong	align);

Parameters:

offset	-	offset	of	binary	command	in	data;

data	-	buffer	containing	copy	of	executable	code;

size	-	size	of	valid	code	in	data	(if	size<offset+size	of	tested	command,	function
returns	0);

align	-	expected	code	alignment,	must	be	either	power	of	2	(1,2,4,8...)	or	0	that
means	no	alignment.

See	also:	Disasm,	Issuspicious,	Isprefix,	Readcommand

Isprefix

Very	quick	and	straightforward	function,	returns	1	if	byte	c	is	a	80x86	command
prefix	(ES:,	CS:,	SS:,	DS:,	FS:,	GS:,	DATASIZE,	ADDRSIZE,	LOCK,
REPNE,	REP)	and	0	otherwise.	Attention,	it	doesn't	distinguish	the	cases	when
byte	is	part	of	the	SSE/SSE2	command!

int	Isprefix(int	c);

Parameters:

c	-	byte	to	verify.

See	also:	Issuspicious,	Isfilling

Readcommand

Reads	command	from	the	memory	of	debugged	process	and	restored
breakpoints.	Returns	length	of	the	read	code	(at	most	MAXCMDSIZE	bytes)	or
0	if	memory	can't	be	read.

Note:	Any	access	to	the	memory	in	different	process	is	extremely	time-
expensive.	As	in	many	cases	different	parts	of	OllyDbg	access	same	command
several	times,	Readcommand	maintains	small	1-command	cache	significantly
improves	the	wholesave	productivity	of	OllyDbg.	If	you	need	to	access	several
compactly	placed	commands,	Readmemory	is	usually	much	faster.

ulong	Readcommand(ulong	ip,char	*cmd);

Parameters:

ip	-	address	of	the	command	in	the	memory	space	of	debugged	process.	If	ip	is	0,
function	invalidates	cache	and	returns	0;

cmd	-	buffer	of	length	at	least	MAXCMDSIZE	bytes	that	receives	command.

See	also:	Disasm,	Readmemory

Assembly	functions

int	Assemble(char	*cmd,ulong	ip,t_asmmodel	*model,int	attempt,int
constsize,char	*errtext);

int	Checkcondition(int	code,ulong	flags);

Assemble

Function	Assemble,	as	expected,	converts	command	in	ASCII	form	to	binary	32-
bit	code.	It	shares	command	table	with	Disasm,	so	if	some	command	can	be
disassembled,	it	can	be	assembled	back	too,	with	one	exception:	Assemble
doesn't	support	16-bit	addresses.	Some	commands	have	more	than	one	encoding.
By	calling	Assemble	with	parameter	attempt=0,1...	and	constsize=0,1,2,3	one
can	get	alternative	variants	and	then	select	the	shortest	possible	form	(this	is	how
OllyDbg	implements	assembling).	However,	only	one	address	form	is	generated
in	each	case	([EAX*2]	but	not	[EAX+EAX];	[EBX+EAX]	but	not	[EAX+EBX];
[EAX]	will	not	use	SIB	byte;	no	DS:	prefix	and	so	on).

Assemble	compiles	imprecise	commands	(where,	for	example,	R32	replaces	any
general-purpose	32-bit	register).	This	allows	to	generate	imprecise	search
patterns,	where	mask	contains	zeros	at	the	position	occupied	in	code	by	register).
Returns	number	of	bytes	in	assembled	code	or	non-positive	number	in	case	of
detected	error	or	when	variant	selected	by	combination	of	attempt	and	constsize
doesn't	exist.	This	number	is	the	negative	position	of	error	in	the	input
command.

int	Assemble(char	*cmd,ulong	ip,t_asmmodel	*model,int	attempt,int
constsize,char	*errtext);

Parameters:

cmd	-	pointer	to	zero-terminated	ASCII	command;

ip	-	address	of	the	generated	binary	code	in	memory;

model	-	pointer	to	structure	that	receives	machine	code	and	mask;

attempt	-	index	of	alternative	verison	of	the	command.	Call	Assemble	with
attempt=0,1,2...	to	obtain	all	possible	versions	of	the	command.	Stop	this
sequence	when	Assemble	reports	error;

constsize	-	requested	size	of	address	constant	and	immediate	data.	Call	Assemble
with	constsize=0,1,2,3	to	obtain	all	possible	variants	of	the	version	selected	by
attempt;

errtext	-	pointer	to	text	buffer	of	length	at	least	TEXTLEN	that	receives
description	of	detected	error.

See	also:	Disasm

Checkcondition

Checks	whether	80x86	flags	meet	condition	set	in	the	command.	Returns	1	if
condition	is	met	and	0	if	not.

int	Checkcondition(int	code,ulong	flags);

Parameters:

code	-	first	byte	of	conditional	command;

flags	-	contents	of	register	EFL.

Watch	and	expression	functions

For	some	obscure	reasons,	watches	in	OllyDbg	are	1-based.	That	means	that	to
access	the	first	available	watch,	you	must	set	index	in	watch	functions	to	1.
Internally,	OllyDbg	keeps	watch	expressions	as	names	of	type	NM_WATCH,
where	first	watch	has	address	1,	next	-	address	2	and	so	on.	Access	to	watch
expressions	using	name	functions	is	not	recommended,	direct	deletion	or
insertion	of	new	watches	will	bring	watch	window	out	of	synchronization.
Instead,	use	functions	listed	below.

int	Insertwatch(int	indexone,char	*text);

int	Deletewatch(int	indexone);

int	Getwatch(int	indexone,char	*text);

int	Expression(t_result	*result,char	*expression,int	a,int	b,	char	*data,ulong
database,ulong	datasize,ulong	threadid);

Insertwatch

Inserts	new	watch	before	the	watch	with	specified	1-based	index	and	updates
watch	window.	Returns	number	of	watches	after	new	watch	is	inserted,	or	-1	on
error.

int	Insertwatch(int	indexone,char	*text);

Parameters:

indexone	-	1-based	index	of	existing	watch.	If	this	index	exceeds	total	number	of
existing	watches,	new	watch	will	be	added	to	the	end	of	the	watch	table;

text	-	new	watch	expression	to	insert.

See	also:	Deletewatch,	Getwatch

Deletewatch

Deletes	watch	with	specified	1-based	index	and	updates	watch	window.	Returns
number	of	remaining	watches,	or	-1	on	error.

int	Deletewatch(int	indexone);

Parameters:

indexone	-	1-based	index	of	existing	watch.

See	also:	Insertwatch,	Getwatch

Getwatch

Gets	current	expression	of	watch	with	given	1-based	index.	Returns	length	of
expression	or	0	in	case	of	error.

int	Getwatch(int	indexone,char	*text);

Parameters:

indexone	-	1-based	index	of	existing	watch	to	retrieve;

text	-	buffer	of	length	at	least	TEXTLEN	bytes	that	receives	watch	expression.

See	also:	Insertwatch,	Deletewatch

Expression

Expression	calculates	value	and,	if	available,	address	of	arithmetical	expression.
Expression	can	include	constants,	registers,	memory	addresses	and	to	some
limited	extent	symbolic	names,	all	standard	arithmetical	operations,	parentheses
and	two	parameters	%A	and	%B.	You	can	find	both	intuitive	and	formal
descriptions	of	allowed	expressions	in	file	ollydbg.hlp.	On	success,	Expression
fills	in	structure	t_result	and	returns	length	of	valid	expression.	On	error	(result-
>type==DEC_UNKNOWN)	it	returns	position	of	error	in	expression	string	and
error	message	in	result->value.

Notice	that	starting	from	version	1.08,	Expression()	doesn't	report	error	"Extra
characters	on	line".	Unrecognized	symbols	remain	unprocessed.

int	Expression(t_result	*result,char	*expression,int	a,int	b,	char	*data,ulong
database,ulong	datasize,ulong	threadid);

Parameters:

result	-	pointer	to	structure	t_result	that	receives	results	of	evaluation;

expression	-	input	string	containing	expression	to	evaluate;

a	-	value	of	parameter	%A;

b	-	value	of	parameter	%B;

data	-	optional	pointer	to	the	copy	of	memory	of	debugged	process.	If	data	is	not
NULL	and	expression	accesses	variable	in	memory	in	range	from	database	to
database+datasize,	Expression	takes	contents	of	memory	from	data,	otherwise	it
reads	memory	of	debugged	process.	This	spares	time,	especially	if	you	estimates
multiple	expressions.

database	-	address	of	data	in	memory	space	of	debugged	process;

datasize	-	size	of	data;

threadid	-	identifier	of	thread	whose	registers	will	be	used	in	evaluation	of
expression.	If	threadid	is	0	and	expression	includes	register,	Expression	reports

erorr.

See	also:	Checkcondition,	t_result

t_result

Type	of	structure	that	contains	result	of	expression	evaluation.

typedef	struct	t_result	{	//	Result	of	expression's	evaluation

int	type;	//	Type	of	expression,	DEC(R)_xxx

int	dtype;	//	Type	of	data,	DEC_xxx

union	{

char	data[10];	//	Binary	form	of	expression's	value

ulong	u;	//	Value	as	unsigned	integer

long	l;	//	Value	as	signed	integer

long	double	f;	};	//	Value	as	80-bit	float

union	{

char	value[TEXTLEN];	//	ASCII	form	of	expression's	value

wchar_t	wvalue[TEXTLEN/2];	};//	UNICODE	form	of	expression's	value

ulong	lvaddr;	//	Address	or	index	of	lvalue	or	NULL

}	t_result;

Members:

type	-	exact	type	of	expression,	one	of	DEC_xxx	or	DECR_xxx	possibly	ORed
with	DEC_SIGNED	if	result	should	be	interpreted	as	signed	number.	type	is
DEC_UNKNOWN	if	expression	is	invalid.	Expression	is	lvalue	(can	be
assigned	to)	if	either	type	is	DEC_xxx	and	lvaddr	is	not	0,	or	if	type	is	one	of
DECR_xxx.	All	possible	types	are	listed	in	the	table	below:

type	&
DECR_TYPEMASK Meaning

DEC_UNKNOWN Error	in	expression
DEC_BYTE Byte
DEC_WORD Short	integer
DEC_DWORD Long	integer
DEC_FLOAT4 32-bit	float
DEC_FWORD 48-bit	descriptor	or	long	pointer
DEC_FLOAT8 64-bit	double
DEC_QWORD Quadword
DEC_FLOAT10 80-bit	long	double
DEC_STRING Zero-terminated	ASCII	string
DEC_UNICODE Zero-terminated	UNICODE	string
DECR_BYTE Byte	register
DECR_WORD Short	integer	register
DECR_DWORD Long	integer	register
DECR_QWORD MMX	register
DECR_FLOAT10 Floating-point	register
DECR_SEG Segment	register

dtype	-	simplified	type	of	data,	possibly	ORed	with	DEC_SIGNED,	describes
value	stored	in	t_result.data.	If	bit	DEC_SIGNED	is	set,	result	must	be
interpreted	as	signed,	otherwise	as	unsigned:

dtype Interpretation	of	t_result.data

DEC_UNKNOWN Error	in	expression	or	result
doesn't	fit	into	data

DEC_DWORD 32-bit	unsigned	integer	in
t_result.u

DEC_DWORD|DEC_SIGNED 32-bit	signed	integer	stored	in
t_result.l

DEC_QWORD 64-bit	integer	in	data[0..7]

DEC_FLOAT10 80-bit	long	double	stored	in
t_result.f

data,	u,	l,	f	-	result	of	expression	if	this	can	be	represented	as	integer	or	float.

Which	field	to	select	depends	on	dtype;

value	-	result	of	expression	of	type	DEC_STRING	(truncated	to	TEXTLEN
characters)	or	error	message	if	type	is	DEC_UNKNOWN;

wvalue	-	result	of	expression	of	type	DEC_UNICODE	(truncated	to
TEXTLEN/2	characters);

lvaddr	-	address	of	expression	if	type	is	one	of	DEC_xxx,	or	index	of	register	if
type	is	DECR_xxx.

See	also:	Expression

Thread	functions

OllyDbg	keeps	list	of	active	thread	in	a	sorted	data	consisting	of	elements	of
type	t_thread.	You	can	receive	pointer	to	table	of	threads	by	calling
Plugingetvalue(VAL_THREADS)	and	casting	result	to	(t_table	*).	If	you	know
thread's	identifier,	Findthread	will	return	pointer	to	thread	descriptor.
Plugingetvalue(VAL_MAINTHREADID)	gives	identifier	of	main	thread	of
debugged	process.

OllyDbg	functions	use	thread	identifiers,	but	some	Windows	functions	require
handles.	Following	code	converts	identifier	to	handle:

t_thread	*pthread;

HANDLE	hthread;

pthread=Findthread(threadid);

if	(pthread!=NULL)

hthread=pthread->handle;

else

hthread=NULL;

Note	that	after	application	started	and	before	OllyDbg	received
CREATE_PROCESS_DEBUG_EVENT	event,	thread's	handle	is	unknown.

t_thread*	Findthread(ulong	threadid);

int	Decodethreadname(char	*s,ulong	threadid,int	mode);

ulong	Getcputhreadid(void);

HWND	Createthreadwindow(void);

t_thread

Type	of	thread	descriptor.

typedef	struct	t_thread	{	//	Information	about	active	threads

ulong	threadid;	//	Thread	identifier

ulong	dummy;	//	Always	1

ulong	type;	//	Service	information,	TY_xxx

HANDLE	thread;	//	Thread	handle

ulong	datablock;	//	Per-thread	data	block

ulong	entry;	//	Thread	entry	point

ulong	stacktop;	//	Working	variable	of	Listmemory()

ulong	stackbottom;	//	Working	variable	of	Listmemory()

CONTEXT	context;	//	Actual	context	of	the	thread

t_reg	reg;	//	Actual	contents	of	registers

int	regvalid;	//	Whether	reg	is	valid

t_reg	oldreg;	//	Previous	contents	of	registers

int	oldregvalid;	//	Whether	oldreg	is	valid

int	suspendcount;	//	Suspension	count	(may	be	negative)

long	usertime;	//	Time	in	user	mode,	1/10th	ms,	or	-1

long	systime;	//	Time	in	system	mode,	1/10th	ms,	or	-1

ulong	reserved[16];	//	Reserved	for	future	compatibility

}	t_thread;

Members:

threadid	-	thread	identifier;

dummy	-	size	of	thread	in	space	of	thread	identifiers,	must	be	1.	See	Sorted	data
functions	for	explanation;

type	-	type	of	thread,	combination	of	bits	TY_xxx.	If	bit	TY_MAIN	is	set,	this	is
the	main	thread;

thread	-	thread	handle.	After	application	started	and	before	OllyDbg	received
CREATE_PROCESS_DEBUG_EVENT	event,	thread's	handle	is	unavailable;

datablock	-	base	address	of	per-thread	data	block;

entry	-	address	of	thread	entry	point;

context	-	actual	context	of	the	thread.	Do	not	modify	context	directly,	or	you	risk
to	crash	debugged	application!

reg	-	excerpt	from	context	that	contains	CPU	registers	sorted	in	a	natural	way.
Valid	only	when	regvalid	is	non-zero.	If	you	need	to	modify	register,	stop
application	if	necessary,	check	that	regvalid	is	non-zero,	apply	your	changes	and
set	reg.modified	to	1.	Do	not	change	single	step	flag	or	debugging	register	DR6;

regvalid	-	flag	indicating	that	reg	contains	actual	contents	of	thread's	registers;

oldreg	-	previous	contents	of	registers,	don't	modify.	If	reg.modifiedbyuser	is	0,
this	is	a	copy	of	registers	on	a	previous	step,	otherwise	copy	of	original	registers;

oldregvalid	-	flag	indicating	that	contents	of	oldreg	is	valid;

suspendcount	-	number	of	times	this	thread	was	suspended	by	OllyDbg.	May	be
negative	in	case	when	thread	was	suspended	by	user	or	program	and	resumed	by
OllyDbg.	Do	not	modify	directly!

usertime	-	time	the	thread	spent	in	user	mode,	in	100-microsecond	units,	or	-1	if
unavailable;

systime	-	time	the	thread	spent	in	system	mode,	in	100-microsecond	units,	or	-1
if	unavailable;

reserved	-	reserved	for	future	use	exclusively	by	OllyDbg.

See	also:	Findthread,	Plugingetvalue

Findthread

Given	thread's	identifier,	returns	pointer	to	descriptor	of	specified	thread,	or
NULL	if	thread	does	not	exist.

t_thread*	Findthread(ulong	threadid);

Parameters:

threadid	-	identifier	(not	handle!)	of	the	requested	thread.

See	also:	Getcputhreadid,	t_thread

Decodethreadname

Decodes	name	of	thread	with	specified	thread	identifier	to	ASCII	string,	like
"Main	thread"	or	"thread	12345678".	Returns	length	of	name	or	0	on	error.

int	Decodethreadname(char	*s,ulong	threadid,int	mode);

Parameters:

s	-	pointer	to	buffer	of	length	at	least	TEXTLEN	bytes	that	receives	decoded
name;

threadid	-	thread	identifier;

mode	-	combination	of	bits	ADC_xxx	that	tell	how	to	decode	name	of	thread:

ADC_VALID decode	name	of	thread	only	if	threadid
is	a	valid	thread	identifier

ADC_SYMBOL decode	name	of	thread	only	if	it	has
symbolic	name

ADC_UPPERCASE force	first	character	of	name	to	be	inuppercase

ADC_WIDEFORM include	word	"thread"	into	decoded
name

Getcputhreadid

Returns	identifier	of	thread	that	is	currently	selected	in	CPU	window.

ulong	Getcputhreadid(void);

Memory	functions

OllyDbg	keeps	list	of	memory	blocks	allocated	by	debugged	application	in	a
table	of	sorted	data	consisting	of	elements	of	type	t_memory.	You	can	receive
pointer	to	memory	table	by	calling	Plugingetvalue(VAL_MEMORY)	and	casting
result	to	(t_table	*).

t_memory*	Findmemory(ulong	addr);

void	Havecopyofmemory(char	*copy,ulong	base,ulong	size);

ulong	Readmemory(void	*buf,ulong	addr,ulong	size,int	mode);

ulong	Writememory(void	*buf,ulong	addr,ulong	size,int	mode);

int	Listmemory(void);

t_memory

Type	of	memory	descriptor,	do	not	modify	directly!

typedef	struct	t_memory	{	//	Memory	block	descriptor

ulong	base;	//	Base	address	of	memory	block

ulong	size;	//	Size	of	block

ulong	type;	//	Service	information,	TY_xxx

ulong	owner;	//	Address	of	owner	of	the	memory

ulong	initaccess;	//	Initial	read/write	access

ulong	access;	//	Actual	status	and	read/write	access

ulong	threadid;	//	Block	belongs	to	this	thread	or	0

char	sect[SHORTLEN];	//	Name	of	module	section

char	*copy;	//	Copy	used	in	CPU	window	or	NULL

ulong	reserved[8];	//	Reserved	for	plugin	compatibility

}	t_memory;

Members:

base	-	base	address	of	memory	block	in	the	memory	space	of	debugged	process;

size	-	size	of	memory	block;

type	-	memory	characteristics,	combination	of	bits	TY_xxx:

TY_CODE Memory	block	contains	image	of	code
section

TY_DATA Contains	image	of	data	section
TY_IMPDATA Includes	import	data

TY_EXPDATA Includes	export	data
TY_RSRC Contains	resources
TY_RELOC Includes	relocation	data

TY_STACK Contains	stack	of	thread	with	identifier
threadid

TY_THREAD Contains	data	block	of	thread	with
identifier	threadid

TY_HEADER Contains	COFF	header
TY_DEFHEAP Contains	default	heap
TY_HEAP Contains	non-default	heap
TY_SFX Contains	self-extractor
TY_GUARDED NT	only:	guarded	memory	block

owner	-	address	of	memory	block	that	owns	this	block;

initaccess	-	type	of	allowed	memory	access	when	block	was	allocated,	one	of
PAGE_xxx	(see	description	of	Windows	function	VirtualQueryEx	for	details);

access	-	actual	type	of	allowed	memory	access,	one	of	PAGE_xxx

threadid	-	if	memory	contains	stack	of	thread	data	block,	identifier	of	owning
thread,	otherwise	undefined;

sect	-	name	of	section	(not	necessarily	null-terinated!)	if	block	is	an	image	of
section	in	executable	file,	otherwise	empty	string;

copy	-	if	memory	block	was	backuped	in	CPU	window,	pointer	to	backup	copy,
or	NULL	otherwise;

reserved	-	reserved	for	future	use	exclusively	by	OllyDbg.

See	also:	Findmemory

Findmemory

Given	address	of	memory,	returns	pointer	to	descriptor	of	memory	block	that	this
address	belongs	to,	or	NULL	if	there	is	no	allocated	memory.

t_memory*	Findmemory(ulong	addr);

Parameters:

addr	-	address	of	memory	in	the	memory	space	of	debugged	application.

See	also:	t_memory

Havecopyofmemory

Optimizes	access	to	memory	of	debugged	process.	Function	Readmemory	is
slow.	If	you	expect	multiple	reads	from	the	same	block,	read	requested	piece	of
memory	to	some	internal	buffer	and	report	it	to	OllyDbg.	All	subsequent	calls	to
Readmemory	will,	whenever	possible,	use	this	copy.	Don't	forget	to	call
Havecopyofmemory(NULL,0,0)	when	you	no	longer	need	this	copy,	or	OllyDbg
will	crash!	Note	that	Writememory	will	not	update	this	copy.

void	Havecopyofmemory(char	*copy,ulong	base,ulong	size);

Parameters:

copy	-	pointer	to	copy	of	memory	of	debugged	process;

base	-	base	address	of	memory;

size	-	size	of	memory.

See	also:	Readmemory

Readmemory

Reads	memory	of	debugged	process	optionally	removing	INT3	breakpoints.	You
can	read	memory	"on	the	fly":	if	necessary,	Readmemory	temporaily	pauses
debugged	application	and	enables	read	access.	Returns	size	of	memory	actually
read.	Currently,	this	is	either	size	or	0	if	memory	cannot	be	read	at	once.

Important	note:	Any	access	to	the	memory	of	debugged	application	is	time-
consuming.	To	optimize	access,	consider	use	of	Havecopyofmemory.

ulong	Readmemory(void	*buf,ulong	addr,ulong	size,int	mode);

Parameters:

buf	-	pointer	to	buffer	of	size	at	least	size	that	receives	copy	of	memory;

addr	-	address	of	memory	in	the	memory	space	of	debugged	application;

size	-	size	of	requested	memory	block;

mode	-	mode	of	operation,	combination	of	following	bits:

MM_RESTORE Restore	INT3	breakpoints
MM_SILENT On	error,	don't	display	error	message	box

Note	that	header	declares	MM_RESILENT	as	a	combination	of
(MM_RESTORE|MM_SILENT).

See	also:	Writememory,	Havecopyofmemory

Writememory

Modifies	memory	of	debugged	process,	optionally	removing	INT3	breakpoints,
broadcasting	memory	changes	and	removing	analysis	data.	Returns	size	of
actually	modified	memory.	Currently,	this	is	either	size	or	0	if	memory	cannot	be
written	at	once.

ulong	Writememory(void	*buf,ulong	addr,ulong	size,int	mode);

Parameters:

buf	-	pointer	to	buffer	with	new	contents	of	memory;

addr	-	address	of	memory	in	the	memory	space	of	debugged	application;

size	-	size	of	new	contents;

mode	-	mode	of	operation,	combination	of	following	bits:

MM_RESTORE Remove	INT3	breakpoints	in	the	modified
area	and	broadcast	memory	changes

MM_DELANALWipe	off	analysis	in	the	modified	area
MM_SILENT On	error,	don't	display	error	message	box

See	also:	Readmemory

Listmemory

Function	actualizes	list	of	memory	blocks	and	(in	case	if	Windows	95)	list	of
heaps	allocated	by	Debuggee.	If	memory	and/or	heap	windows	are	open,	also
updates	windows.	Returns	0	if	tables	are	actualized	and	-1	if	some	or	all	of
entries	may	be	invalid.

As	this	operation	is	time-consuming,	OllyDbg	usually	updates	memory	tables
only	if	application	is	paused.	If	plugin	accesses	memory	tables	"on	the	fly",	it
may	need	to	call	this	function.	Note	that	reading	or	writing	to	the	memory	does
not	require	actualization	of	memory	tables.

int	Listmemory(void);

Module	functions

Module	is	an	executable	file	(ususlly	EXE	or	DLL)	loaded	into	memory.
OllyDbg	keeps	list	of	loaded	modules	in	a	table	of	sorted	data	consisting	of
elements	of	type	t_module.	You	can	receive	pointer	to	table	of	modules	by
calling	Plugingetvalue(VAL_MODULES)	and	casting	result	to	(t_table	*).

t_module	*Findmodule(ulong	addr);

t_fixup	*Findfixup(t_module	*pmod,ulong	addr);

char	*Finddecode(ulong	addr,ulong	*psize);

ulong	Findfileoffset(t_module	*pmod,ulong	addr);

int	Analysecode(t_module	*pmod);

t_module

Type	of	module	descriptor.	This	is	a	very	sensitive	structure,	do	not	modify
directly!

typedef	struct	t_module	{	//	Executable	module	descriptor

ulong	base;	//	Base	address	of	module

ulong	size;	//	Size	occupied	by	module

ulong	type;	//	Service	information,	TY_xxx

ulong	codebase;	//	Base	address	of	module	code	block

ulong	codesize;	//	Size	of	module	code	block

ulong	resbase;	//	Base	address	of	resources

ulong	ressize;	//	Size	of	resources

t_stringtable	*stringtable;	//	Pointers	to	string	resources	or	NULL

int	nstringtable;	//	Actual	number	of	used	stringtable

int	maxstringtable;	//	Actual	number	of	allocated	stringtable

ulong	entry;	//	Address	of	<ModuleEntryPoint>	or	NULL

ulong	database;	//	Base	address	of	module	data	block

ulong	idatatable;	//	Base	address	of	import	data	table

ulong	idatabase;	//	Base	address	of	import	data	block

ulong	edatatable;	//	Base	address	of	export	data	table

ulong	edatasize;	//	Size	of	export	data	table

ulong	reloctable;	//	Base	address	of	relocation	table

ulong	relocsize;	//	Size	of	relocation	table

char	name[SHORTLEN];	//	Short	name	of	the	module

char	path[MAXPATH];	//	Full	name	of	the	module

int	nsect;	//	Number	of	sections	in	the	module

IMAGE_SECTION_HEADER	*sect;	//	Copy	of	section	headers	from	file

ulong	headersize;	//	Total	size	of	headers	in	executable

ulong	fixupbase;	//	Base	of	image	in	executable	file

int	nfixup;	//	Number	of	fixups	in	executable

t_fixup	*fixup;	//	Extracted	fixups	or	NULL

char	*codedec;	//	Decoded	code	features	or	NULL

ulong	codecrc;	//	Code	CRC	for	actual	decoding

char	*hittrace;	//	Hit	tracing	data	or	NULL

char	*hittracecopy;	//	Copy	of	INT3-substituted	code

char	*datadec;	//	Decoded	data	features	or	NULL

t_table	namelist;	//	List	of	module	names

t_symvar	*symvar;	//	Descriptions	of	symbolic	variables

int	nsymvar;	//	Actual	number	of	elements	in	symvar

int	maxsymvar;	//	Maximal	number	of	elements	in	symvar

char	*globaltypes;	//	Global	types	from	debug	info

ulong	mainentry;	//	Address	of	WinMain()	etc.	in	dbg	data

ulong	realsfxentry;	//	Entry	of	packed	code	or	NULL

int	updatenamelist;	//	Request	to	update	namelist

ulong	origcodesize;	//	Original	size	of	module	code	block

ulong	sfxbase;	//	Base	of	memory	block	with	SFX

ulong	sfxsize;	//	Size	of	memory	block	with	SFX

int	issystemdll;	//	Whether	system	DLL

int	processed;	//	0:	not	processed,	1:	good,	-1:	bad

int	dbghelpsym;	//	1:	symbols	loaded	by	dbghelp.dll

char	version[NVERS];	//	Version	of	executable	file

t_jdest	*jddata;	//	Recognized	jumps	within	the	module

int	njddata;	//	Number	of	recognized	jumps

ulong	reserved[15];	//	Reserved	for	plugin	compatibility

}	t_module;

Members	(members	that	intended	stricly	for	internal	use	are	not	explained):

base	-	base	address	of	module	in	the	memory	space	of	debugged	process;

size	-	total	size	occupied	by	module,	not	necessarily	contiguous	memory;

type	-	service	information,	combination	of	bits	TY_xxx;

codebase	-	base	address	of	executable	code,	as	stays	in	COFF	header.	In	some
cases,	OllyDbg	may	correct	definitely	invalid	code	base;

codesize	-	size	of	executable	code,	as	stays	in	COFF	header.	In	some	cases,
OllyDbg	may	correct	definitely	invalid	code	size;

resbase	-	base	address	of	resources;

ressize	-	size	of	resources;

entry	-	address	of	module's	entry	point,	as	stays	in	COFF	header;

database	-	base	address	of	module's	data	block.	OllyDbg	uses	heuristics	to	locate
data;

idatatable	-	base	address	of	import	data	table,	as	stays	in	COFF	header;

idatabase	-	base	address	of	import	data	block,	as	stays	in	COFF	header;

edatatable	-	base	address	of	export	data	table,	as	stays	in	COFF	header;

edatasize	-	size	of	export	data	table,	as	stays	in	COFF	header;

reloctable	-	base	address	of	relocation	table,	as	stays	in	COFF	header;

relocsize	-	size	of	relocation	table,	as	stays	in	COFF	header;

name	-	short	name	of	the	module,	not	necessarily	NULL-terminated;

path	-	full	name	of	executable	file;

nsect	-	number	of	sections	in	the	module;

sect	-	pointer	to	copy	of	section	headers	from	the	COFF	header;

headersize	-	total	size	of	headers	in	executable	file;

fixupbase	-	base	of	image	in	executable	file;

nfixup	-	number	of	fixups	in	executable	file;

fixup	-	pointer	to	list	of	extracted	fixups	or	NULL;

mainentry	-	address	of	WinMain	or	DllEntryPoint	from	debugging	data	or	0;

realsfxentry	-	real	entry	of	unpacked	SFX	code	or	0;

updatenamelist	-	request	to	update	namelist;

issystemdll	-	1	if	module	is	system	DLL	(i.e.	DLL	residing	in	Windows'	system
directory)	and	0	otherwise;

dbghelpsym	-	1	if	debugging	information	in	one	of	Microsoft	formats	is
available	and	0	otherwise;

version	-	zero-terminated	ASCII	string	containing	version	of	executable	file,
NVERS-1	bytes	long;

reserved	-	reserved	for	future	use	exclusively	by	OllyDbg.

See	also:	Findmodule,	Findfileoffset

Findmodule

Given	address	of	memory	in	debugged	application,	returns	pointer	to	module
descriptor	that	this	address	belongs	to,	or	NULL	if	address	is	outside	any
module.

t_module*	Findmodule(ulong	addr);

Parameters:

addr	-	address	of	memory	in	the	memory	space	of	debugged	application.

See	also:	Findfixup,	Finddecode,	Findfileoffset,	t_module

Findfixup

If	supplied	address	belongs	to	some	module,	function	checks	whether	there	are
fixups	including	or	exceeding	this	address	and	returns	pointer	to	first	such	fixup.
Otherwise,	it	returns	NULL.	Fixups	are	sorted	in	ascending	order	and	terminated
by	element	(0,0),	so	calling	procedure	may	use	returned	pointer	to	walk	through
all	subsequent	fixups.

t_fixup	*Findfixup(t_module	*pmod,ulong	addr);

Parameters:

pmod	-	optional	pointer	to	module	descriptor.	If	pmod	is	NULL,	Findfixup	looks
for	module	descriptor	by	itself;

addr	-	address	in	memory	space	of	debugged	application	where	search	for	fixups
will	start.

See	also:	Findmodule,	Finddecode,	Findfileoffset,	t_module

Analysecode

Analyzes	executable	code	of	specified	module.	Among	other	tasks,	analysis
includes:

·Recognition	of	commands	and	embedded	data;

·Recognition	of	1-	and	2-stage	switches;

·Recognition	of	procedures	and	loops;

·Decoding	of	arguments	of	known	functions;

·Prediction	of	contents	of	registers;

·Forming	of	call	tree.

One	very	important	assumption:	code	is	valid	and	is	not	counterfeit:	knowing
how	this	analysis	works,	one	may	write	a	program	that	will	be	analyzed	totally
incorrectly.	Function	is	highly	heuristical,	so	never	assume	that	results	are	100%
reliable.	Returns	0	on	success	and	-1	on	error.

int	Analysecode(t_module	*pmod);

Parameters:

pmod	-	pointer	to	module	descriptor.

Finddecode

Searches	for	decoding	data	that	starts	on	specified	address.	On	success,	sets
*psize	to	size	of	located	data	and	returns	pointer	to	decoding	information.	If
there	is	no	decoding	information,	sets	*psize	to	0	and	returns	NULL.	For	each
byte	of	analysed	code,	corresponding	byte	of	decoding	data	contains
combination	of	type,	procedure	and	analysis	fields:

Type	field,	use	DEC_TYPEMASK	to	extract	it	from	decoding	data:

DEC_UNKNOWN Unknown	type
DEC_BYTE Byte
DEC_WORD First	byte	of	16-bit	integer
DEC_NEXTDATA Subsequent	byte	of	data
DEC_DWORD First	byte	of	32-bit	integer
DEC_FLOAT4 First	byte	of	32-bit	float
DEC_FWORD First	byte	of	descriptor	or	long	pointer
DEC_FLOAT8 First	byte	of	64-bit	double
DEC_QWORD First	byte	of	64-bit	integer
DEC_FLOAT10 First	byte	of	80-bit	long	double
DEC_TBYTE First	byte	of	10-byte	BCD	integer
DEC_STRING First	byte	of	ASCII	string
DEC_UNICODE First	byte	of	UNICODE	string
DEC_3DNOW First	byte	of	3DNow!	operand
DEC_SSE First	byte	of	SSE	operand
DEC_BYTESW Byte	which	is	a	second-level	switch	index
DEC_NEXTCODE Subsequent	byte	of	command
DEC_COMMAND First	byte	of	command

DEC_JMPDEST First	byte	of	command	that	is	jump
destination

DEC_CALLDEST First	byte	of	command	that	is	call	(and
maybe	jump)	destination

Procedure	field,	use	DEC_PROCMASK	to	extract	it	from	decoding	data:

DEC_PROC Start	of	procedure
DEC_PBODY Body	of	procedure
DEC_PEND End	of	procedure

Bit	DEC_CHECKED,	if	set,	reports	that	byte	was	analyzed.

char	*Finddecode(ulong	addr,ulong	*psize);

Parameters:

addr	-	address	of	the	first	byte	in	the	memory	space	of	debugged	process	for
which	decoding	information	is	requested;

psize	-	pointer	to	variable	that	will	receive	size	of	found	decoding	data	or	NULL.

See	also:	Findmodule,	Findfixup,	Findfileoffset

Findfileoffset

Converts	address	belonging	to	some	module	into	offset	in	executable	file.
Returns	offset	or	0	if	offset	cannot	be	calculated	(for	example,	address	belongs	to
the	gap	between	two	sections).

ulong	Findfileoffset(t_module	*pmod,ulong	addr);

Parameters:

mod	-	optional	pointer	to	module	descriptor.	If	pmod	is	NULL,	Findfileoffset
looks	for	module	descriptor	by	itself;

addr	-	address	in	memory	space	of	debugged	application	where	search	for	fixups
will	start.

See	also:	Findmodule,	Findfixup,	Finddecode,	t_module

Data	conversion	functions

ulong	Compress(char	*bufin,ulong	nbufin,char	*bufout,ulong	nbufout);

ulong	Decompress(char	*bufin,ulong	nbufin,char	*bufout,ulong	nbufout);

ulong	Getoriginaldatasize(char	*bufin,ulong	nbufin);

Compress

Compresses	binary	data.	This	function	uses	patent-free	form	of	Lempel-Ziv
compression	algorithm.	Returns	length	of	compressed	data	or	0	if	some	error
was	detected	during	compression.	First	longword	in	the	output	buffer	is	the
identifier	of	compressed	data	and	second	is	the	length	of	original	data.

ulong	Compress(char	*bufin,ulong	nbufin,char	*bufout,ulong	nbufout);

Parameters:

bufin	-	pointer	to	uncompressed	data;

nbufin	-	size	of	uncompressed	data;

bufout	-	pointer	to	buffer	that	will	receive	compressed	data;

nbufout	-	size	of	bufout.

See	also:	Decompress

Decompress

Unpacks	data	compressed	by	Compress.	Returns	length	of	unpacked	data	or	0	if
some	error	was	detected	during	decompression.

ulong	Decompress(char	*bufin,ulong	nbufin,char	*bufout,ulong	nbufout);

Parameters:

bufin	-	pointer	to	compressed	data;

nbufin	-	size	of	compressed	data;

bufout	-	pointer	to	buffer	that	will	receive	unpacked	data;

nbufout	-	size	of	bufout.

See	also:	Compress,	Getoriginaldatasize

Getoriginaldatasize

For	the	data	compressed	by	Compress,	returns	size	of	the	original	data.	Returns
0	on	error.

ulong	Getoriginaldatasize(char	*bufin,ulong	nbufin);

Parameters:

bufin	-	pointer	to	compressed	data;

nbufin	-	size	of	compressed	data;

See	also:	Decompress

Plugin	functions

int	Registerpluginclass(char	*classname,char	*iconname,HINSTANCE
dllinst,WNDPROC	classproc);

void	Unregisterpluginclass(char	*classname);

int	Pluginwriteinttoini(HINSTANCE	dllinst,char	*key,int	value);

int	Pluginwritestringtoini(HINSTANCE	dllinst,char	*key,char	*s);

int	Pluginreadintfromini(HINSTANCE	dllinst,char	*key,int	def);

int	Pluginreadstringfromini(HINSTANCE	dllinst,char	*key,char	*s,char	*def);

int	Pluginsaverecord(ulong	tag,ulong	size,void	*data);

int	Plugingetvalue(int	type);

t_status	Getstatus(void);

Registerpluginclass

Generates	unique	class	name	and	registers	new	class	of	plugin	windows.	If
iconname	is	NULL,	uses	standard	plugin	icon	(letter	'P').	On	success,	returns	0
and	fills	classname	(at	least	32	bytes	long)	with	unique	class	name.	If
registration	failed,	returns	-1.	Windows	belonging	to	registered	class	has	8
longwords	of	extra	memory,	plugin	is	free	to	use	longwords	2..7	(offsets	8..28	in
calls	to	GetWindowLong	and	SetWindowLong).	ODBG_Plugininit	is	the	best
place	to	call	this	function.

int	Registerpluginclass(char	*classname,char	*iconname,HINSTANCE
dllinst,WNDPROC	classproc);

Parameters:

classname	-	pointer	to	buffer	of	length	at	least	32	characters	that	will	receive
unique	class	name;

iconname	-	name	of	icon	resource	in	plugin	DLL;

dllinst	-	plugin's	instance;

classproc	-	pointer	to	window	procedure	of	new	class.

See	also:	Unregisterpluginclass

Unregisterpluginclass

Unregisters	window	class	previously	registered	by	Registerpluginclass.	Call	this
function	for	each	registered	class	from	ODBG_Plugindestroy.

void	Unregisterpluginclass(char	*classname);

Parameters:

classname	-	class	name	returned	by	call	to	Registerpluginclass.

See	also:	Registerpluginclass

Pluginwriteinttoini

Stores	an	integer	associated	with	a	key	in	the	plugin's	personal	section	of	the
ollydbg.ini.	Returns	1	on	success	and	0	on	error.

int	Pluginwriteinttoini(HINSTANCE	dllinst,char	*key,int	value);

Parameters:

dllinst	-	plugin's	instance;

key	-	name	of	the	key	to	be	associated	with	an	integer;

value	-	integer	to	be	written	to	ollydbg.ini.

See	also:	Pluginreadintfromini,	Pluginwritestringtoini,	Pluginreadstringfromini

Pluginreadintfromini

Reads	integer	associated	with	a	key	from	the	plugin's	personal	section	of	the
ollydbg.ini.	On	success,	returns	integer	from	the	initializations	file.	On	error,
returns	specified	default	value.

int	Pluginreadintfromini(HINSTANCE	dllinst,char	*key,int	def);

Parameters:

dllinst	-	plugin's	instance;

key	-	name	of	the	key	associated	with	an	integer;

def	-	default	value.

See	also:	Pluginwriteinttoini,	Pluginwritestringtoini,	Pluginreadstringfromini

Pluginwritestringtoini

Stores	ASCII	string	associated	with	a	key	in	the	plugin's	personal	section	of	the
ollydbg.ini.	Returns	1	on	success	and	0	on	error.

int	Pluginwritestringtoini(HINSTANCE	dllinst,char	*key,char	*s);

Parameters:

dllinst	-	plugin's	instance;

key	-	name	of	the	key	to	be	associated	with	a	string;

s	-	string	to	be	stored	in	ollydbg.ini.

See	also:	Pluginreadstringfromini,	Pluginwriteinttoini,	Pluginreadintfromini

Pluginreadstringfromini

Reads	string	associated	with	a	key	from	the	plugin's	personal	section	of	the
ollydbg.ini.	On	success,	returns	string	from	the	initializations	file.	On	error,
returns	specified	default	string.

int	Pluginreadstringfromini(HINSTANCE	dllinst,char	*key,char	*s,char
*def);

Parameters:

dllinst	-	plugin's	instance;

key	-	name	of	the	key	associated	with	the	string;

s	-	pointer	to	buffer	that	receives	string;

def	-	pointer	to	a	null-terminated	default	string.

See	also:	Pluginwritestringtoini,	Pluginwriteinttoini,	Pluginreadintfromini,

Pluginsaverecord

Writes	single	record	to	.udd	file.	Returns	1	on	success	and	0	on	error.	Call	this
function	only	from	ODBG_Pluginsaveudd,	any	other	call	will	fail.

int	Pluginsaverecord(ulong	tag,ulong	size,void	*data);

Parameters:

tag	-	unique	plugin-specific	tag;

size	-	size	of	data	to	be	written	to	.udd	file,	maximally	USERLEN;

data	-	pointer	to	data	of	specified	size	to	be	written	to	.udd	file.

See	also:	ODBG_Pluginsaveudd,	ODBG_Pluginuddrecord

Plugingetvalue

Retrieves	various	OllyDbg	settings	and	variables.

int	Plugingetvalue(int	type);

Parameters:

type	-	setting	or	variable	to	retrieve:

type Cast	to Explanation
VAL_HINST (HINST) Current	OllyDbg	instance

VAL_HWMAIN (HWND) Handle	of	the	main
OllyDbg	window

VAL_HWCLIENT (HWND) Handle	of	the	MDI	client
window

VAL_NCOLORS 	 Number	of	common	colors

VAL_COLORS (COLORREF
*)

RGB	values	of	common
colors

VAL_BRUSHES (HBRUSH	*) Handles	of	common	colorbrushes

VAL_PENS (PEN	*) Handles	of	common	color
pens

VAL_NFONTS 	 Number	of	common	fonts
VAL_FONTS (HFONT	*) Handles	of	common	fonts
VAL_FONTNAMES (char	**) Internal	font	names

VAL_FONTWIDTHS (int	*) Average	widths	of	common
fonts

VAL_FONTHEIGHTS (int	*) Average	heigths	of
common	fonts

VAL_NFIXFONTS 	 Actual	number	of	fixed-
pitch	fonts

VAL_DEFFONT 	 Index	of	default	font
VAL_NSCHEMES 	 Number	of	color	schemes
VAL_SCHEMES (t_scheme	*) Colour	schemes

VAL_DEFSCHEME 	 Index	of	default	colour
scheme

VAL_DEFHSCROLL 	 Default	horizontal	scroll

VAL_RESTOREWINDOWPOS Restore	window	positions
from	.ini

VAL_HPROCESS (HANDLE) Handle	of	debugged
process

VAL_PROCESSID 	 Process	ID	of	debugged
process

VAL_HMAINTHREAD (HANDLE) Handle	of	main	thread	of
debugged	process

VAL_MAINTHREADID 	 Thread	ID	of	main	thread
of	debugged	process

VAL_MAINBASE 	 Base	of	main	module	in	the
debugged	process

VAL_PROCESSNAME (char	*) Name	of	the	debugged
process

VAL_EXEFILENAME (char	*) Name	of	the	main
debugged	file

VAL_CURRENTDIR (char	*) Current	directory	for
debugged	process

VAL_SYSTEMDIR (char	*) Windows	system	directory

VAL_DECODEANYIP 	 Decode	registers
dependless	on	EIP

VAL_PASCALSTRINGS 	 Decode	Pascal-style	string
constants

VAL_ONLYASCII 	 Only	printable	ASCII	chars
in	dump

VAL_DIACRITICALS 	 Allow	diacritical	symbols
in	strings

VAL_GLOBALSEARCH 	 Search	from	the	beginning
of	block

VAL_ALIGNEDSEARCH 	 Search	aligned	to	item's
size

VAL_SEARCHMARGIN 	 Floating	search	allows
error	margin

VAL_KEEPSELSIZE 	 Keep	size	of	hex	edit
selection

VAL_MMXDISPLAY 	
MMX	display	mode	in
dialog	(0:hex,	1:signed,
2:unsigned	MMX)

VAL_WINDOWFONT 	 Use	calling	window's	font
in	dialog

VAL_TABSTOPS 	 Distance	between	tab	stops

VAL_MODULES (t_table	*) Table	of	modules	(.EXE
and	.DLL)

VAL_MEMORY (t_table	*) Table	of	allocated	memory
blocks

VAL_THREADS (t_table	*) Table	of	active	threads
VAL_BREAKPOINTS (t_table	*) Table	of	active	breakpoints

VAL_REFERENCES (t_table	*) Table	with	found
references

VAL_SOURCELIST (t_table	*) Table	of	source	files
VAL_WATCHES (t_table	*) Table	of	watches

VAL_CPUFEATURES 	 CPU	feature	bits	as
returned	by	CPUID

VAL_TRACEFILE (FILE	*) Handle	of	run	trace	log	file
VAL_ALIGNDIALOGS 	 Align	dialogs

VAL_CPUDASM (t_dump	*) Dump	descriptor	of	CPU
Disassembler	pane

VAL_CPUDDUMP (t_dump	*) Dump	descriptor	of	CPU
Dump	pane

VAL_CPUDSTACK (t_dump	*) Dump	descriptor	of	CPU
Stack	pane

VAL_APIHELP (char	*) Name	of	selected	API	help
file

VAL_HARDBP 	 Whether	hardware
breakpoints	are	enabled

VAL_PATCHES (t_table	*) Table	of	patches

VAL_HINTS (t_sorted	*) Sorted	data	with	analysis
hints

Getstatus

Returns	current	status	of	debugged	process	(one	of	STAT_xxx):

STAT_NONE No	process	to	debug
STAT_STOPPED Process	suspended
STAT_EVENT Processing	debug	event,	process	temporarily	paused
STAT_RUNNING Process	is	running
STAT_FINISHED Process	terminated
STAT_CLOSING TerminateProcess()	called,	waiting	for	confirmation

t_status	Getstatus(void);

See	also:	Plugingetvalue

Source	code	support	functions

Source	debugging	is	still	in	development	phase.	I	decided	not	to	describe	it	in
actual	version	of	Plugin	API.

CPU-specific	functions

void	Setcpu(ulong	threadid,ulong	asmaddr,ulong	dumpaddr,ulong	stackaddr,int
mode);

void	Setdisasm(ulong	asmaddr,ulong	selsize,int	mode);

void	Redrawdisassembler(void);

void	Getdisassemblerrange(ulong	*pbase,ulong	*psize);

ulong	Getcputhreadid(void);

Setcpu

Updates	state	of	panes	in	CPU	window.	If	necessary,	creates	or	restores	CPU
window	and	moves	it	to	top.

void	Setcpu(ulong	threadid,ulong	asmaddr,ulong	dumpaddr,ulong
stackaddr,int	mode);

Parameters:

threadid	-	identified	of	thread	to	display	in	CPU,	or	0	if	thread	remains
unchanged.	If	threadid	id	non-zero,	parameters	asmaddr	and	stackaddr	are
ignored	and	set	to	contents	of	EIP	and	ESP	of	the	specified	thread.	If	threadid	is
0	and	actual	thread	is	invalid,	Setcpu	automatically	reswitches	to	main	thread;

asmaddr	-	address	to	display	in	Disassembler,	or	0	if	this	address	remains
unchanged.	Ignored	if	threadid	is	not	0;

dumpaddr	-	address	to	display	in	CPU	Dump,	or	0	if	this	address	remains
unchanged;

stackaddr	-	address	to	display	in	Stack,	or	0	if	this	address	remains	unchanged.
Ignored	if	threadid	is	not	0;

mode	-	combination	of	CPU_xxx	flags	that	select	update	mode:

CPU_ASMHIST Add	change	to	Disassembler	history

CPU_ASMCENTER Position	address	in	the	middle	of
Disassembler	window

CPU_ASMFOCUS Move	focus	to	Disassembler

CPU_DUMPHIST Add	change	to	Dump	history	(currently	not
available)

CPU_DUMPFIRST Make	dumpaddr	the	first	byte	in	CPU	Dump
CPU_DUMPFOCUS Move	focus	to	CPU	Dump

CPU_REGAUTO Automatically	change	Registers	mode	to
FPU/MMX/3DNow!

CPU_RUNTRACE Show	run	trace	data	at	offset	asmaddr

CPU_NOCREATE Don't	create	CPU	window	if	absent
CPU_REDRAW Redraw	CPU	window	immediately
CPU_NOFOCUS Don't	force	focus	to	main	window

See	also:	Setdisasm,	Redrawdisassembler,	Getcputhreadid

Setdisasm

Presets	CPU	Disassembler	so	that	it	displays	code	at	address	asmaddr.	If	selsize
is	greater	than	1,	selects	selsize	bytes,	otherwise	1	assembler	command.	Then	it
creates	CPU	window	(if	absent),	restores	and	moves	window	to	the	top.

void	Setdisasm(ulong	asmaddr,ulong	selsize,int	mode);

Parameters:

asmaddr	-	address	to	display	in	Disassembler,	or	0	if	this	address	remains
unchanged.	Ignored	if	threadid	is	not	0;

selsize	-	if	greater	than	1,	size	of	selection	in	bytes,	otherwise	Setdisasm	selects
1	command;

mode	-	combination	of	CPU_xxx	flags	that	select	update	mode:

CPU_ASMHIST Add	change	to	Disassembler	history

CPU_ASMCENTER Position	address	in	the	middle	of
Disassembler	window

CPU_ASMFOCUS Move	focus	to	Disassembler

CPU_REGAUTO Automatically	change	Registers	mode	to
FPU/MMX/3DNow!

See	also:	Setcpu,	Redrawdisassembler,	Getcputhreadid

Redrawdisassembler

Redraws	Disassembler	by	calling	UpdateWindow,	so	that	all	modifications	are
immediately	visible.

void	Redrawdisassembler(void);

See	also:	Setcpu

Getdisassemblerrange

Gets	address	range	of	memory	block	that	is	currently	displayed	in	Disassembler
window.

void	Getdisassemblerrange(ulong	*pbase,ulong	*psize);

Parameters:

pbase	-	pointer	to	variable	that	receives	base	address	of	memory	block	in	address
space	of	debugged	application;

psize	-	pointer	to	variable	that	receives	size	of	memory	block.

See	also:	Getcputhreadid

t_dump

Type	of	dump	descriptor.

typedef	struct	t_dump	{	//	Current	status	of	dump	window

t_table	table;	//	Treat	dump	window	as	custom	table

int	dimmed;	//	Draw	in	lowcolor	if	nonzero

ulong	threadid;	//	Use	decoding	and	registers	if	not	0

int	dumptype;	//	Current	dump	type,	DU_xxx+count+size

SPECFUNC	*specdump;	//	Decoder	of	DU_SPEC	dump	types

int	menutype;	//	Standard	menus,	MT_xxx

int	itemwidth;	//	Length	of	displayed	item,	characters

int	showstackframes;	//	Show	stack	frames	in	address	dump

int	showstacklocals;	//	Show	names	of	locals	in	stack

int	showsource;	//	Show	source	as	comment	in	disassembler

char	filename[MAXPATH];	//	Name	of	displayed	or	backup	file

ulong	base;	//	Start	of	memory	block	or	file

ulong	size;	//	Size	of	memory	block	or	file

ulong	addr;	//	Address	of	first	displayed	byte

ulong	lastaddr;	//	Address	of	last	displayed	byte	+	1

ulong	sel0;	//	Address	of	first	selected	byte

ulong	sel1;	//	Last	selected	byte	(not	included!)

ulong	startsel;	//	Start	of	last	selection

int	captured;	//	Mouse	is	captured	by	dump

ulong	reladdr;	//	Addresses	relative	to	this

char	relname[SHORTLEN];	//	Symbol	for	relative	zero	address	base

char	*filecopy;	//	Copy	of	the	file	or	NULL

char	*backup;	//	Old	backup	of	memory/file	or	NULL

int	runtraceoffset;	//	Offset	back	in	run	trace

ulong	reserved[8];	//	Reserved	for	the	future	extentions

}	t_dump;

Members:

table	-	structure	that	describes	dump	window	as	a	custom	table;

threadid	-	if	non-zero,	window	belongs	to	CPU	and	shuld	use	thread's	registers
when	disassembling	data;

dumptype	-	current	dump	type,	combination	of	dump	type	(one	of	DU_xxx),
number	of	items	per	line	((n<<8)	&	DU_COUNT)	and	size	of	single	item	(l	&
DU_SIZE).	Additionally	can	be	ORed	with	onbe	of	the	following	bits:

DU_ESCAPABLE Dump	window	will	close	onESC	key

DU_BACKUP Dump	window	displays	backup
data

For	variable-length	types	the	size	is	1.	See	description	of	Createdumpwindow	for
a	list	of	commonly	used	dump	types;

base	-	base	address	of	displayed	memory	in	the	memory	size	of	debugged
process,	usually	0	for	file	dump;

size	-	size	of	displayed	file	or	memory	area;

addr	-	address	or	offset	of	the	first	displayed	byte;

sel0	-	address	or	offset	of	the	first	selected	byte	(included);

sel1	-	address	or	offset	of	the	last	selected	byte	(not	included);

filecopy	-	pointer	to	copy	of	displayed	file,	or	NULL	if	this	is	memory	dump;

backup	-	pointer	to	local	backup	of	dump	data,	or	NULL	if	backup	is	absent;

runtraceoffset	-	step	back	in	run	trace,	or	0	if	inactive.

See	also:	Createdumpwindow,	ODBG_Pluginuddrecord,	ODBG_Pluginmenu,
ODBG_Pluginaction

t_window

Type	of	window	descriptor	-	structure	describing	window	or	control	created	by
debugged	application.

typedef	struct	t_window	{	//	Description	of	window

ulong	hwnd;	//	Window's	handle

ulong	dummy;	//	Must	be	1

ulong	type;	//	Type	of	window,	TY_xxx

ulong	parenthw;	//	Handle	of	parent	or	0

ulong	winproc;	//	Address	of	WinProc	or	0

ulong	threadid;	//	ID	of	the	owning	thread

ulong	exstyle;	//	Extended	window	style

ulong	style;	//	Window	style

ulong	id;	//	Identifier	or	menu	handle

ulong	classproc;	//	Address	of	default	(class)	WinProc

int	child;	//	Index	of	next	child

int	level;	//	Level	in	genealogy	(0:	topmost)

int	sibling;	//	Index	of	next	sibling

int	byparent;	//	Index	when	sorted	by	parent

char	title[TEXTLEN];	//	Window's	title

char	classname[TEXTLEN];	//	Class	name

char	tree[MAXNEST];	//	For	internal	use	by	OllyDbg

}	t_window;

Members:

hwnd	-	handle	of	window	(control)	created	by	debugged	application,	cast	to
HWND	to	use	as	a	handle	in	calls	to	Windows	API	routines;

dummy	-	ust	be	1	to	obey	the	rules	of	sorted	data;

type	-	type	of	window.	The	only	important	flag	here	is	TY_NEW;

parenthw	-	handle	of	parent	window	or	NULL.	In	some	case	this	may	be	the
handle	of	desktop	(obtainable	by	call	to	GetDesktopWindow();

winproc	-	address	of	window	procedure	associated	with	window	in	memory
context	of	debugged	application.	On	NT-based	systems,
GetWindowLong(hwnd,GWL_WNDPROC)	returns	0	and	OllyDbg	uses	code
injection	to	obtain	this	address;

threadid	-	identifier	of	thread	that	owns	window;

exstyle	-	extended	style	of	window,	set	of	WS_EX_xxx	and	similar	flags;

style	-	style	of	window,	set	of	WS_xxx	and	similar	flags;

id	-	control's	identifier;

classproc	-	address	of	window's	class	procedure.	If	classproc	differs	from
winproc,	window	is	subclassed;

title	-	ASCII	string	with	window's	title	or	text;

classname	-	ASCII	string	with	window's	class	name.

t_ref

Type	of	reference	descriptor.

typedef	struct	t_ref	{	//	Description	of	reference

ulong	addr;	//	Address	of	reference

ulong	size;	//	1:	single	command,	otherwise	size

ulong	type;	//	Type	of	reference,	TY_xxx

ulong	dest;	//	Destination	of	call

}	t_ref;

Members:

addr	-	address	of	referencing	command	or	data;

size	-	1	if	single	command	is	referenced,	or	total	size,	bytes,	of	selected
commands	otherwise;

type	-	type	of	reference,	combination	of	TY_xxx	flags:

TY_REFERENCE Item	is	a	real	reference
TY_ORIGIN Item	is	a	search	origin

dest	-	destination	of	intermodular	call,	0	for	any	other	reference.

Plugin	callback	functions

Plugin	interface	includes	several	callback	functions.	OllyDbg	calls	them	to
install	or	remove	plugin	and	on	important	events,	like	selected	menu	item	or
pressed	shortcut	key.	Only	two	callback	are	mandatory:	ODBG_Plugindata	and
ODBG_Plugininit,	all	other	are	optional.	Don't	forget	to	export	your	callbacks!

int	ODBG_Plugindata(char	*shortname);

int	ODBG_Plugininit(int	ollydbgversion,HWND	hw,ulong	*features);

void	ODBG_Pluginmainloop(DEBUG_EVENT	*debugevent);

void	ODBG_Pluginsaveudd(t_module	*pmod,int	ismainmodule);

int	ODBG_Pluginuddrecord(t_module	*pmod,int	ismainmodule,ulong	tag,ulong
size,void	*data);

int	ODBG_Pluginmenu(int	origin,char	data[4096],void	*item);

void	ODBG_Pluginaction(int	origin,int	action,void	*item);

int	ODBG_Pluginshortcut(int	origin,int	ctrl,int	alt,int	shift,int	key,void	*item);

void	ODBG_Pluginreset(void);

void	ODBG_Pluginclose(void);

void	ODBG_Plugindestroy(void);

int	ODBG_Paused(int	reason,	t_reg	*reg);

int	ODBG_Pausedex(int	reason,int	extdata,t_reg	*reg,DEBUG_EVENT
*debugevent);

int	ODBG_Plugincmd(int	reason,t_reg	*reg,char	*cmd);

ODBG_Paused

Optional	callback	function.	If	present,	OllyDbg	will	call	it	each	time	the
debugged	application	is	paused	and	after	all	internal	processing	is	finished.
Plugin	may,	for	example,	make	some	modifications	and	immediately	continue
execution	by	caling	Go.	In	this	case	it	may	return	1,	disabling	time-consuming
redrawing	of	windows.	In	any	other	case	it	must	return	0.

Note	that	if	plugin	exports	both	ODBG_Paused	and	ODBG_Pausedex,	only	the
second	function	will	be	called.

int	ODBG_Paused(int	reason,	t_reg	*reg);

Parameters:

reason	-	reason	why	application	was	paused:

PP_EVENT Paused	on	debugging	event
PP_PAUSE Paused	on	user's	request
PP_TERMINATEDApplication	terminated

reg	-	pointer	to	registers	of	thread	that	caused	application	to	pause,	may	be
NULL.

See	also:	ODBG_Pausedex

ODBG_Pausedex

Optional	callback	function.	If	present,	OllyDbg	will	call	it	each	time	the
debugged	application	is	paused	and	after	all	internal	processing	is	finished.
Plugin	may,	for	example,	make	some	modifications	and	immediately	continue
execution	by	caling	Go.	In	this	case	it	may	return	1,	disabling	time-consuming
redrawing	of	windows.	In	any	other	case	it	must	return	0.

Note	that	if	plugin	exports	both	ODBG_Pausedex	and	ODBG_Paused,	the
second	function	will	not	be	called.

int	ODBG_Pausedex(int	reason,	int	extdata,	t_reg	*reg,	DEBUG_EVENT
*debugevent);

Parameters:

reason	-	reason	why	application	was	paused,	use	PP_MAIN	to	extract:

PP_EVENT Paused	on	debugging	event
PP_PAUSE Paused	on	user's	request
PP_TERMINATEDApplication	terminated

The	reason	may	be	ORed	with	one	or	several	of	the	following	clarifiers:

PP_BYPROGRAMDebugging	event	caused	by
program

PP_INT3BREAK INT3	breakpoint
PP_MEMBREAK Memory	breakpoint
PP_HWBREAK Hardware	breakpoint
PP_SINGLESTEP Single-step	trap
PP_EXCEPTION Exception,	like	division	by	0

PP_ACCESS Access	violation,	like	writing	to
NULL	pointer

PP_GUARDED Guarded	page

extdata	-	reserved,	currently	always	0;

reg	-	pointer	to	registers	of	thread	that	caused	application	to	pause,	may	be
NULL;

debugevent	-	pointer	to	debug	event	that	caused	pause,	or	NULL	if	there	was	no
event.

See	also:	ODBG_Paused

ODBG_Plugincmd

Optional	callback	function.	If	present,	OllyDbg	will	call	it	each	time	the
debugged	application	pauses	on	conditional	logging	breakpoint	that	specifies
commands	to	be	passed	to	plugins.	Each	command	is	passed	to	every	plugin	that
exports	ODBG_Plugincmd,	so	plugin	must	decide	by	itself	whether	it	should
execute	command	or	not.	For	example,	sample	command	line	plugin	accepts	all
commands	that	begin	with	a	point.	If	plugin	recognizes	command,	it	must	return
1	to	stop	OllyDbg	from	passing	it	to	remaining	plugins.	Otherwise,	it	must	return
0.

int	ODBG_Plugincmd(int	reason,t_reg	*reg,char	*cmd);

Parameters:

reason	-	reason	why	program	was	paused,	currently	always	PP_EVENT;

reg	-	pointer	to	registers	of	thread	that	caused	application	to	pause,	may	be
NULL;

cmd	-	null-terminated	command	to	plugin.

ODBG_Plugindata

Mandatory	callback	function	that	must	be	present	in	any	valid	OllyDbg	plugin.	It
must	fill	in	plugin	name	and	return	version	of	plugin	interface	(constant
PLUGIN_VERSION).	If	function	is	absent,	or	version	is	not	compatible,	plugin
will	be	not	installed.	Short	name	identifies	plugin	in	OllyDbg.	This	name	is
limited	to	31	alphanumerical	characters	or	spaces	followed	by	terminating	null
character.	To	keep	life	easy	for	users,	name	should	be	descriptive	and	correlate
with	the	name	of	DLL.

int	ODBG_Plugindata(char	*shortname);

Parameters:

shortname	-	pointer	to	buffer	of	length	at	least	32	characters	that	receives	name
of	plugin.	This	name	may	include	spaces	and	punctuators	but	no	special
symbols.

ODBG_Plugininit

Mandatory	callback	function	that	must	be	present	in	any	valid	OllyDbg	plugin.
Here	you	can	place	all	startup	initializations	and	allocate	resources.	If	startup
was	successfull,	function	must	return	0.	On	error,	it	must	free	allocated	resources
and	return	-1,	in	this	case	plugin	will	be	removed.	Parameter	ollydbgversion	is
the	version	of	OllyDbg,	use	it	to	assure	that	OllyDbg	is	compatible	with	your
plugin.

int	ODBG_Plugininit(int	ollydbgversion,HWND	hw,ulong	*features);

Parameters:

ollydbgversion	-	version	of	OllyDbg.	Check	that	your	plugin	is	compatible	with
this	version.	I	will	try	to	avoid	incompatible	changes	in	the	future	versions	of
OllyDbg;

hw	-	handle	of	main	OllyDbg	window,	keep	it	if	necessary;

features	-	reserved	for	future	extentions.

See	also:	ODBG_Pluginreset,	ODBG_Pluginclose,	ODBG_Plugindestroy

ODBG_Pluginmainloop

Optional	callback	function.	If	present,	OllyDbg	will	call	it	on	each	pass	of	main
loop.	Here	you	can	do	all	your	periodical	tasks.	Don't	assume	that	calls	are
equidistant;	they	aren't.	Do	not	export	this	function	unnecessarily,	as	this	may
negatively	influence	the	overall	speed!

void	ODBG_Pluginmainloop(DEBUG_EVENT	*debugevent);

Parameters:

debugevent	-	pointer	to	debug	event	received	by	call	to	Windows	API	function
WaitForDebugEvent,	or	NULL	if	there	was	no	event.

ODBG_Pluginsaveudd

Optional	callback	function.	If	present,	OllyDbg	calls	it	when	some	module
requests	to	save	module-	or	application-related	data	to	.udd	file.	To	save	data	to
.udd	file,	call	Pluginsaverecord	for	each	data	item	that	must	be	saved.	Global,
appliction-oriented	data	must	be	saved	in	teh	main	.udd	file;	module-relevant
data	must	be	saved	in	module	.udd	files.	Save	all	addresses	relative	to	the	base	of
module	so	that	data	will	be	restored	correctly	even	when	module	is	relocated.

void	ODBG_Pluginsaveudd(t_module	*pmod,int	ismainmodule);

Parameters:

pmod	-	pointer	to	module	descriptor;

ismainmodule	-	flag	indicating	whether	this	is	main	module	of	debugged
application	(.exe).

See	also:	Pluginsaverecord,	t_module

ODBG_Pluginuddrecord

Optional	callback	function.	If	present,	OllyDbg	calls	ODBG_Pluginuddrecord
when	it	reads	.udd	file	and	encounters	unrecognized	record.	If	record	belongs	to
plugin,	it	must	process	record	and	return	1,	otherwise	it	must	return	0	to	pass
record	to	other	plugins.	Note	that	module	descriptor	pointed	to	by	pmod	can	be
incomplete,	i.e.	does	not	necessarily	contain	information	stored	in	processed
.udd	file,	like	decoding	data	or	hit	trace	bufer.

int	ODBG_Pluginuddrecord(t_module	*pmod,int	ismainmodule,ulong
tag,ulong	size,void	*data);

Parameters:

pmod	-	pointer	to	module	descriptor;

ismainmodule	-	flag	indicating	whether	this	is	main	module	of	debugged
application	(.exe);

tag	-	tag	that	identifies	record;

size	-	size	of	data;

data	-	pointer	to	binary	record	data.

See	also:	Pluginsaverecord,	t_module

ODBG_Pluginmenu

Optional	callback	function.	If	present,	OllyDbg	calls	it	to	give	plugin	the
possibility	to	add	menu	items	either	to	main	OllyDbg	menu	(origin=PM_MAIN)
or	to	popup	menu	in	one	of	standard	OllyDbg	windows.	To	add	menu	items,
plugin	must	prepare	string	that	describes	menu	structure	and	return	1,	otherwise
it	must	return	0.	As	a	general	OllyDbg	rule,	do	not	add	inactive	items	to	menu.

int	ODBG_Pluginmenu(int	origin,char	data[4096],void	*item);

Parameters:

origin	-	code	of	window	that	calls	ODBG_Pluginmenu.	OllyDbg	supports
following	codes:

Code Cast	item	to Who	calls
ODBG_Pluginmenu

PM_MAIN
item	is
always
NULL

Main	window

PM_DUMP (t_dump	*) Any	Dump	window
PM_MODULES (t_module	*) Modules	window
PM_MEMORY (t_memory	*) Memory	window
PM_THREADS (t_thread	*) Threads	window
PM_BREAKPOINTS (t_bpoint	*) Breakpoints	window
PM_REFERENCES (t_ref	*) References	window
PM_RTRACE (int	*) Run	trace	window

PM_WATCHES (1-based
index) Watches	window

PM_WINDOWS (t_window	*) Windows	window
PM_DISASM (t_dump	*) CPU	Disassembler
PM_CPUDUMP (t_dump	*) CPU	Dump
PM_CPUSTACK (t_dump	*) CPU	Stack
PM_CPUREGS (t_reg	*) CPU	Registers

data	-	pointer	to	buffer	4K	bytes	long	that	receives	description	of	menu	structure.

Ordinary	menu	item	consists	of	decimal	identificator	(0	to	63)	followed	by
name.	When	user	selects	some	menu	item,	Pluginaction	receives	identifier	of
this	item.	Duplicated	identifiers	are	allowed.	Use	comma	(,)	to	separate	menu
items.	Vertical	line	(|)	places	horizontal	dividing	line	in	menu.	To	create
submenu,	add	its	name	followed	by	contents	of	submenu	enclosed	into	braces.
OllyDbg	automatically	removes	unnecessary	or	duplicated	separators	and	empty
submenus.	To	force	horizontal	dividing	line,	use	#	symbol.	Some	examples:

0	&Aaa,2	&Bbb|3	&Ccc|,,

Linear	menu	with	3	items:	Aaa,	Bbb	and	Ccc,
relative	IDs	0,	2	and	3,	menu	shortcuts	A,	B
and	C.	Separator	between	second	and	third
item,	last	separator	and	commas	are	ignored

#A{0Aaa,B{1Bbb|2Ccc}}

Unconditional	separator,	followed	by	popup
menu	A	with	two	elements,	second	of	them	is
popup	B	with	two	elements	and	separator
inbetween

item	-	pointer	either	to	selected	element	of	sorted	data	displayed	in	window	or,	in
case	of	dump	windows,	pointer	to	dump	descriptor.	Can	be	NULL.	You	may
need	this	element	to	find	out	which	menu	items	apply	to	selecetd	item.

See	also:	ODBG_Pluginaction,	Pluginaction,	Plugingetvalue

ODBG_Pluginaction

Optional	callback	function.	If	present,	OllyDbg	calls	it	each	time	the	user
selected	menu	item	added	to	menu	by	ODBG_Pluginmenu.

void	ODBG_Pluginaction(int	origin,int	action,void	*item);

Parameters:

origin	-	code	of	window	that	calls	ODBG_Pluginaction.	OllyDbg	supports
following	codes:

Code Cast	item	to Who	calls
ODBG_Pluginmenu

PM_MAIN
item	is
always
NULL

Main	window

PM_DUMP (t_dump	*) Any	Dump	window
PM_MODULES (t_module	*) Modules	window
PM_MEMORY (t_memory	*) Memory	window
PM_THREADS (t_thread	*) Threads	window
PM_BREAKPOINTS (t_bpoint	*) Breakpoints	window
PM_REFERENCES (t_ref	*) References	window
PM_RTRACE (int	*) Run	trace	window

PM_WATCHES (1-based
index) Watches	window

PM_WINDOWS (t_window	*) Windows	window
PM_DISASM (t_dump	*) CPU	Disassembler
PM_CPUDUMP (t_dump	*) CPU	Dump
PM_CPUSTACK (t_dump	*) CPU	Stack
PM_CPUREGS (t_reg	*) CPU	Registers

action	-	identifier	of	menu	item	(0..63),	as	set	by	ODBG_Pluginmenu;

item	-	pointer	either	to	selected	element	of	sorted	data	displayed	in	window	or,	in
case	of	dump	windows,	pointer	to	dump	descriptor,	or	NULL.	You	may	need	this

element	to	carry	out	requested	action.

See	also:	ODBG_Pluginmenu,	Pluginaction,	Plugingetvalue,	Custom	messages

ODBG_Pluginshortcut

Optional	callback	function.	If	present,	OllyDbg	calls	it	each	time	when	user
presses	combination	of	keys	that	is	not	recognized	by	standard	OllyDbg	window.
This	function	is	usually	called	twice:	first	time	with	origin=PM_MAIN
indicating	global	shortcut,	and	second	time	with	origin	identifier	of	window	that
has	keyboard	focus.	Shortcuts	are	scarce	resource	and	I	will	constantly	add	new
to	OllyDbg,	so	use	this	feature	with	care	and	always	implement	alternative
possibilities.

int	ODBG_Pluginshortcut(int	origin,int	ctrl,int	alt,int	shift,int	key,void
*item);

Parameters:

origin	-	code	of	window	that	calls	ODBG_Pluginshortcut.	OllyDbg	supports
following	codes:

Code Cast	item	to Who	calls
ODBG_Pluginmenu

PM_MAIN
item	is
always
NULL

Main	window

PM_DUMP (t_dump	*) Any	Dump	window
PM_MODULES (t_module	*) Modules	window
PM_MEMORY (t_memory	*) Memory	window
PM_THREADS (t_thread	*) Threads	window
PM_BREAKPOINTS (t_bpoint	*) Breakpoints	window
PM_REFERENCES (t_ref	*) References	window
PM_RTRACE (int	*) Run	trace	window

PM_WATCHES (1-based
index) Watches	window

PM_WINDOWS (t_window	*) Windows	window
PM_DISASM (t_dump	*) CPU	Disassembler
PM_CPUDUMP (t_dump	*) CPU	Dump
PM_CPUSTACK (t_dump	*) CPU	Stack

PM_CPUREGS (t_reg	*) CPU	Registers

ctrl	-	state	of	Ctrl	key:	0	-	released,	1	-	pressed;

alt	-	state	of	Alt	key:	0	-	released,	1	-	pressed;

shift	-	state	of	Shift	key:	0	-	released,	1	-	pressed;

key	-	code	of	pressed	virtual	key	(VK_xxx).	See	"Virtual	Key	Codes"	in
Windows	API	help	for	a	complete	list	of	virtual	key	codes;

item	-	pointer	either	to	selected	element	of	sorted	data	displayed	in	window	or,	in
case	of	dump	windows,	pointer	to	dump	descriptor,	or	NULL.	You	may	need	this
element	to	carry	out	requested	action.

ODBG_Pluginreset

Optional	callback	function.	If	present,	OllyDbg	calls	ODBG_Pluginreset	when
user	opens	new	or	restarts	current	application.	Plugin	should	reset	internal
variables	and	data	structures	to	initial	state.

void	ODBG_Pluginreset(void);

ODBG_Pluginclose

OllyDbg	calls	this	optional	function	when	user	wants	to	terminate	OllyDbg.	All
MDI	windows	created	by	plugin	still	exist.	This	is	the	best	possibility	to	save
plugin	parameters	to	.ini	file.	Function	must	return	0	if	it	is	safe	to	terminate
OllyDbg.	Any	non-zero	return	will	stop	closing	sequence.	Do	not	misuse	this
possibility!	Always	inform	user	about	the	reasons	why	termination	is	not	good
and	ask	for	his	decision!

void	ODBG_Pluginclose(void);

See	also:	ODBG_Plugindestroy,	Pluginwriteinttoini,	Pluginwritestringtoini

ODBG_Plugindestroy

OllyDbg	calls	this	optional	function	once	on	exit.	At	this	moment,	all	MDI
windows	created	by	plugin	are	already	destroyed	(received	WM_DESTROY
messages).	Function	must	free	all	internally	allocated	resources,	like	window
classes,	files,	memory	and	so	on.

void	ODBG_Plugindestroy(void);

Breakpoint	functions

INT3	breakpoints	are	briefly	explained	here.

int	Manualbreakpoint(ulong	addr,int	key,int	shiftkey,ulong	nametype,int	font);

void	Tempbreakpoint(ulong	addr,int	mode);

int	Setbreakpoint(ulong	addr,ulong	type,uchar	cmd);

int	Setbreakpointext(ulong	addr,ulong	type,uchar	cmd,ulong	passcount);

ulong	Getbreakpointtypecount(ulong	addr,ulong	*passcount);

int	Setmembreakpoint(int	type,ulong	addr,ulong	size);

Note	that	hardware	breakpoints	are	not	supported	by	Windows	95	and	Windows
98.	To	assure	that	you	can	use	functions	listed	below,	call
Plugingetvalue(VAL_HARDBP):

int	Sethardwarebreakpoint(ulong	addr,int	size,int	type);

int	Hardbreakpoints(int	closeondelete);

int	Deletehardwarebreakpoint(int	index);

int	Deletehardwarebreakbyaddr(ulong	addr);

Setbreakpoint

Simplified	(old)	version	of	Setbreakpointext,	kept	for	compatibility	reasons.
Equivalent	to	call	Setbreakpointext(addr,type,cmd,0).

int	Setbreakpoint(ulong	addr,ulong	type,uchar	cmd);

Parameters:

addr	-	address	of	breakpoint.	If	address	points	to	data	or	in	the	middle	of	the
command,	OllyDbg	will	ask	you	for	confirmation;

type	-	combination	of	bits	TY_xxx	that	specify	requested	actions	and	type	of
breakpoint,	see	description	of	Setbreakpointext;

cmd	-	original	command	that	will	be	saved	to	descriptor	if	bit	TY_KEEPCODE
is	set.	Otherwise,	this	parameter	is	ignored	and	command	is	read	from	the
memory.

Setbreakpointext

Sets	new	INT3	breakpoint	or	changes	type	of	existing	breakpoint	at	specified
address.	Returns	0	on	success	and	-1	on	error	(i.e.	breakpoint	was	neither	set	nor
restored).	If	bit	TY_KEEPCOND	in	type	is	set,	condition,	explanation	and
expression	associated	with	breakpoint	(explained	here)	remain	unchanged,
otherwise	they	are	removed.	If	bit	TY_SETCOUNT	is	set	or	breakpoint	is
absent,	sets	specified	pass	count,	otherwise	pass	count	remains	unchanged.

int	Setbreakpointext(ulong	addr,ulong	type,uchar	cmd,ulong	passcount);

Parameters:

addr	-	address	of	breakpoint.	If	address	points	to	data	or	in	the	middle	of	the
command,	OllyDbg	will	ask	you	for	confirmation;

type	-	combination	of	bits	TY_xxx	that	specify	requested	actions	and	type	of
breakpoint:

Flag Meaning

TY_ACTIVE Set	permanent	(user)	breakpoint	or	restore
disabled

TY_DISABLED
Temporarily	deactivate	permanent	breakpoint.
If	TY_ACTIVE	and	TY_DISABLED	are	set
simultaneously,	TY_DISABLED	is	ignored

TY_ONESHOT
Set	one-shot	breakpoint	that	will	be
automatically	removed	when	hit.	Doesn't
interfere	with	active	breakpoint

TY_TEMP

Set	temporary	breakpoint	that	will	be
automatically	removed	when	hit.	Execution
continues	automatically.	TY_TEMP	does	not
interfere	with	active	breakpoint

TY_STOPAN Stop	animation	if	breakpoint	is	hit
TY_KEEPCODE Force	original	command	(parameter	cmd)

TY_SETCOUNT Force	pass	count	even	if	breakpoint	already
exists
Leave	associated	names	of	types	NM_BREAK,

TY_KEEPCOND NM_BREAKEXPR,	NM_BREAKEXPL	and
NM_PLUGCMD	unchanged.	If	this	bit	is	not
set,	breakpoints	of	types	TY_ACTIVE	and
TY_DISABLED	clear	these	names

cmd	-	original	command	that	will	be	saved	to	descriptor	if	bit	TY_KEEPCODE
is	set.	Otherwise,	this	parameter	is	ignored	and	command	is	read	from	the
memory;

passcount	-	pass	count,	i.e.	the	number	of	times	this	breakpoint	should	be
skipped.	If	breakpoint	already	exists	and	flag	TY_SETCOUNT	is	not	set,	this
parameter	is	ignored	and	pass	count	remains	unchanged.

To	set	conditional	breakpoint,	consider	use	of	Manualbreakpoint.	If	breakpoint
must	be	set	automatically	(i.e.	without	user's	interference),	please	do	the
following:

·If	debugged	program	is	still	running,	call	Suspendprocess	to	make	following
operations	atomic;

·Call	Setbreakpointext(addr,TY_ACTIVE,0,passcount),	thus	setting	INT3
breakpoint	and	related	pass	count.	This	is	enough	for	ordinary	(unconditional)
breakpoint;

·If	necessary,	set	condition	by	call	to	Insertname(addr,NM_BREAK,condition).
This	is	enough	for	conditional	breakpoint;

·To	set	conditional	logging	breakpoint,	you	must	additionally	prepare	control
byte,	expression	and	explanation	and	set	them	calling
Insertname(NM_BREAKEXPR)	and	Insertname(NM_BREAKEXPL);

·If	necessary,	resume	execution	(Go).

See	also:	Breakpoint	functions,	Manualbreakpoint,	Setbreakpoint,
Getbreakpointtypecount.

How	breakpoint	works

OllyDbg	supports	many	kinds	of	INT3	breakpoints:	ordinary,	conditional	and
conditional	logging.	Of	course,	internally	this	is	the	same	breakpoint	with
different	options	activated.	At	the	first	glance,	it	looks	overcomplicated	and
illogical;	but	it	is	really	so.	Version	2.0	should	make	breakpoints	better,	but	now
you	must	live	with	what	you	have.

Breakpoint	consists	of	single-byte	command	INT3	that	replaces	first	byte	of	the
breakpointed	command,	descriptor	of	type	t_bpoint	in	table	of	active	breakpoints
and	several	names	associated	with	the	same	address	that	specify	expressions	and
necessary	actions:

Name	type Meaning

NM_BREAK
Condition	associated	with	breakpoint.
If	condition	is	absent	or	invalid,
OllyDbg	assumes	that	it	is	true;

NM_BREAKEXPL

Explanation	-	any	text	that	identifies
breakpoint	to	user.	Usually	has	no
special	meaning.	Message	breakpoints
use	special	name	"<WinProc>";

NM_BREAKEXPR

Expression	that	should	be	estimated
and	logged.	First	byte	of	expression
contains	flags	(set	of	COND_xxx,
explained	below)	that	control	behaviour
of	breakpoint;

NM_PLUGCMD

Commands	that	will	be	passed,	one	by
one,	to	plugins	if	breakpoint	is	taken.
Command	are	separated	by	CR,	LF	or
CRLF.

Ordinary	breakpoint	(toggled	if	you	press	F2)	has	no	associated	names	and	zero
pass	count.	Program	pauses	whenever	this	breakpoint	is	hit.

Conditional	breakpoint	(shortcut	Shift+F2)	has	associated	name	of	type
NM_BREAK.	If	breakpoint	is	hit,	OllyDbg	estimates	value	of	expression.	If
result	is	not	0,	or	expression	is	invalid,	program	pauses.	Otherwise,	OllyDbg

continues	execution.

Conditional	logging	breakpoint	(Shift+F4)	has	at	least	associated	name	of	type
NM_BREAKEXPR.	First	byte	of	this	name	is	a	set	of	flags	COND_xxx	that
specify	additional	options.	Strange	settings	of	bits	COND_NOBREAK	and
COND_BRKALWAYS	are	for	backward	compatibility	with	version	1.00.	As
you	see,	so	deep	compatibility	is	not	always	good:

Bit Meaning Equivalent	in
dialog

COND_NOBREAK

Don't	pause	execution	if
breakpoint	is	hit.	Has	higher
priority	than
COND_BRKALWAYS

Pause	program:
Never

COND_BRKALWAYS

Always	pause	if	breakpoint	is	hit.
If	both	COND_NOBREAK	and
COND_BRKALWAYS	are	zero,
pause	on	condition

Pause	program:
Always

COND_LOGTRUE

Estimate	value	of	expression
NM_BREAKEXPR	and	log	it
together	with	NM_BREAKEXPL
if	condition	is	true

Log	value:	On
condition

COND_LOGALWAYS Always	log	value	of	expression Log	value:
Always

COND_ARGTRUE
Decode	and	log	arguments	of
known	function	if	expression	is
true

Log	arguments:
On	condition

COND_ARGALWAYS Always	log	arguments	of	knownfunction
Log	arguments:
Always

COND_FILLING Always	set	to	assure	that	resulting
byte	is	not	0 	

Descriptor	of	breakpoint	contains	pass	count.	This	feature	is	new	to	OllyDbg
1.10.	If	breakpoint	is	hit	and	conditions	(or	their	absence)	indicate	that	program
should	be	paused,	OllyDbg	compares	pass	count	with	0.	If	count	is	0,	program
pauses.	Otherwise,	OllyDbg	decrements	counter	and	continues	execution.	Pass
count	does	not	restore	automatically,	that	is,	after	it	is	decremented	to	zero,	it

remains	zero	until	user	or	plugin	will	set	it	again.

See	also:	Breakpoint	functions,	Manualbreakpoint,	Setbreakpoint,
Setbreakpointext,	Getbreakpointtypecount.

Getbreakpointtypecount

Returns	type	(combination	of	bits	TY_xxx)	and	associated	pass	count	of	INT3
breakpoint	at	specified	address.	If	breakpoint	doesn't	exist,	returns
TY_INVALID.

ulong	Getbreakpointtypecount(ulong	addr,ulong	*passcount);

Parameters:

addr	-	address	of	breakpoint;

passcount	-	pointer	to	variable	that	will	receive	pass	count,	can	be	NULL.

See	also:	Breakpoint	functions,	How	breakpoint	works,	Manualbreakpoint,
Setbreakpoint,	Setbreakpointext.

t_bpoint

Type	of	INT3	breakpoint	descriptor:

typedef	struct	t_bpoint	{	//	Description	of	INT3	breakpoint

ulong	addr;	//	Address	of	breakpoint

ulong	dummy;	//	Always	1

ulong	type;	//	Type	of	breakpoint,	TY_xxx

char	cmd;	//	Old	value	of	command

ulong	passcount;	//	Actual	pass	count

}	t_bpoint;

Members	(members	that	intended	stricly	for	internal	use	are	not	explained):

addr	-	address	of	breakpoint;

dummy	-	length	of	breakpoint,	must	be	1;

type	-	type	of	breakpoint,	combination	of	bits	TY_xxx.	Avoid	direct
modification.	Please	do	not	change	flags	that	are	not	described	here:

Flag Meaning
TY_SET Code	INT3	is	in	memory.	Never	change!
TY_ACTIVE Permanent	(user)	breakpoint
TY_DISABLED Temporarily	deactivated	permanent	breakpoint

TY_ONESHOT One-shot	breakpoint	set	by	OllyDbg,
automatically	removed	if	breakpoint	is	hit

TY_TEMP

Temporary	breakpoint,	used	internally	by
OllyDbg,	for	example	to	step	over	permanent
breakpoint.	Automatically	removed	when	hit,
execution	continues

cmd	-	original	command	at	specified	address.	If	breakpoint	is	active,	this
command	is	replaced	in	memory	by	INT3;

passcount	-	counter	that	indicates	how	many	times	this	breakpoint	must	be
skipped.	If	OllyDbg	decides	that	program	should	pause	at	breakpoint	and
passcount	is	not	0,	it	decrements	passcount	and	continues	execution.	Note	that
this	item	is	new	to	OllyDbg	1.10.

To	get	breakpoint	descriptor,	you	may	use	the	following	code:

t_table	*bptable;

t_bpoint	*bpoint;

bptable=(t_table	*)Plugingetvalue(VAL_BREAKPOINTS);

if	(bptable!=NULL)	{

bpoint=(t_bpoint	*)Findsorteddata(&(bptable->data),addr);

if	(bpoint!=NULL)	{

.....	any	necessary	actions

}

}

See	also:	Breakpoint	functions,	Setbreakpoint,	Setbreakpointext,
Tempbreakpoint

Manualbreakpoint

Facilitates	manual	INT3	breakpoint	setting,	either	from	menu	or	keyboard
shortcut.	Supports	standard	OllyDbg	"look	and	feel".	Returns	0	if	some	action
took	place	and	-1	otherwise.	Following	combinations	are	supported:

key shiftkey Action
VK_F2 0 Toggle	unconditional	breakpoint

VK_F2 Pressed	(not
0) Set	conditional	breakpoint

VK_F4 Pressed	(not
0) Set	logging	breakpoint

int	Manualbreakpoint(ulong	addr,int	key,int	shiftkey,ulong	nametype,int
font);

Parameters:

addr	-	memory	address	in	the	address	space	of	debugged	application	where	INT3
breakpoint	must	be	set;

key	-	VK_F2	or	VK_F4	(see	above);

shiftkey	-	state	of	shift	key	(see	above);

nametype	-	set	to	0	when	calling	Manualbreakpoint	from	plugin;

font	-	index	of	predefined	font	to	be	used	in	invoked	dialogs.	If	not	sure,	use
FIXEDFONT.

Tempbreakpoint

Sets	temporary	or	one-shot	breakpoint	on	execution.	If	possible,	sets	hardware
breakpoint,	otherwise	INT3.	OllyDbg	automatically	removes	temporary	and	one-
shot	breakpoints.

void	Tempbreakpoint(ulong	addr,int	mode);

Parameters:

addr	-	code	address	where	temporary	breakpoint	should	be	set;

mode	-	type	of	breakpoint	to	set:

TY_ONESHOT|TY_KEEPCOND

Set	one-shot
breakpoint.
OllyDbg
automatically
removes	one-shot
breakpoint	when
hit	and	pauses
debugged
application

TY_ONESHOT|TY_KEEPCOND|TY_STOPAN

Same	as	above,
additionally	stops
any	kind	of	trace
or	animation
when	hit

TY_TEMP|TY_KEEPCOND

Set	temporary
breakpoint.
OllyDbg
automatically
removes
temporary
breakpoint	when
hit	and
immediately
continues

execution

Any	other	combination
Sets	INT3
breakpoint	of
specified	type

Setmembreakpoint

Modifies	or	removes	memory	breakpoint.	OllyDbg	supports	only	one	memory
breakpoint	at	a	time.	Returns	0	on	success	and	-1	on	error.	Call
Setmembreakpoint(0,0,0)	to	disable	memory	breakpoint.

int	Setmembreakpoint(int	type,ulong	addr,ulong	size);

Parameters:

type	-	type	of	memory	breakpoint.	Use	either	MEMBP_READ	or
MEMBP_READ|MEMBP_WRITE;

addr	-	start	of	memory	breakpoint	in	the	address	space	of	debugged	application;

size	-	size	of	memory	breakpoint,	bytes.

Sethardwarebreakpoint

Sets	hardware	breakpoint	and	activates	it.	80x86	compatible	processors	support
4	hardware	breakpoints.	If	all	available	slots	are	in	use,	function	asks	user	to
delete	one	of	active	breakpoints.	Returns	0	on	success	and	-1	on	error	or	if	user
cancelled	action.	It	is	allowed	to	call	Sethardwarebreakpoint	"on	the	fly",	i.e.
when	debugged	application	is	running.

Note	that	hardware	breakpoints	are	not	supported	by	Windows	95	and	Windows
98.	To	assure	that	you	can	use	this	function,	call
Plugingetvalue(VAL_HARDBP).

int	Sethardwarebreakpoint(ulong	addr,int	size,int	type);

Parameters:

addr	-	address	of	breakpoint;

size	-	size	of	memory	covered	by	hardware	breakpoint	(1,	2	or	4	bytes).	addr
must	be	aligned	on	the	corresponding	boundary.	This	parameter	must	be	1	in
case	of	breakpoint	on	execution;

type	-	type	of	hardware	breakpoint:

HB_CODE Active	on	command	execution
HB_ACCESS Active	on	read/write	access
HB_WRITE Active	on	write	access

See	also:	Hardbreakpoints,	Deletehardwarebreakpoint,
Deletehardwarebreakbyaddr

Hardbreakpoints

Creates	dialog	enabling	user	to	view,	follow	and	delete	existing	hardware
breakpoints.	If	closeondelete	is	1,	dialog	closes	after	some	breakpoint	is	deleted.
Returns	-1	on	error	or	if	user	cancelled	action	and	0	otherwise.

Note	that	hardware	breakpoints	are	not	supported	by	Windows	95	and	Windows
98.	To	assure	that	you	can	use	this	function,	call
Plugingetvalue(VAL_HARDBP).

int	Hardbreakpoints(int	closeondelete);

Parameters:

closeondelete	-	if	1,	asks	user	to	delete	some	existing	breakpoint	and	closes
dialog	window	after	some	hardware	breakpoint	is	deleted.

See	also:	Sethardwarebreakpoint,	Deletehardwarebreakpoint,
Deletehardwarebreakbyaddr

Deletehardwarebreakpoint

80x86	processors	support	up	to	4	hardware	breakpoints.	This	function	removes
hardware	breakpoint	with	specified	index	previously	set	by	OllyDbg.	Returns	0
on	success	and	-1	on	error.	OllyDbg	may	use	hardware	breakpoints	to	bypass
actual	command,	so	use	this	function	with	care!	Function
Deletehardwarebreakbyaddr	is	easier	to	use.

Note	that	hardware	breakpoints	are	not	supported	by	Windows	95	and	Windows
98.	To	assure	that	you	can	use	this	function,	call
Plugingetvalue(VAL_HARDBP).

int	Deletehardwarebreakpoint(int	index);

Parameters:

index	-	index	of	hardware	breakpoint	to	delete	(0..3).

See	also:	Sethardwarebreakpoint,	Hardbreakpoints,	Deletehardwarebreakbyaddr

Deletehardwarebreakbyaddr

Deletes	hardware	breakpoint	by	address.	If	there	are	several	breakpoints
embracing	same	addres,	deletes	all	such	breakpoints.	Returns	number	of	deleted
breakpoints	or	0	on	error.

Note	that	hardware	breakpoints	are	not	supported	by	Windows	95	and	Windows
98.	To	assure	that	you	can	use	this	function,	call
Plugingetvalue(VAL_HARDBP).

int	Deletehardwarebreakbyaddr(ulong	addr);

Parameters:

addr	-	address	of	hardware	breakpoint.	Every	hardware	breakpoint	that	covers
this	address	will	be	removed.	For	example,	if	hardware	breakpoint	has	address
0x00123450	and	size	4,	it	covers	address	range	from	0x00123450	to
0x00123453	inclusive.

See	also:	Sethardwarebreakpoint,	Hardbreakpoints,	Deletehardwarebreakpoint

Execution	and	stepping	functions

Execution	and	stepping	functions	listed	in	this	section	check	for	rough	errors
but,	when	improperly	used,	may	bring	OllyDbg	in	unstable	state.	Please	use
them	with	care!	For	simple	tasks,	consider	use	of	Sendshortcut.

int	OpenEXEfile(char	*path,int	dropped);

int	Attachtoactiveprocess(int	processid);

int	Go(ulong	threadid,ulong	tilladdr,int	stepmode,int	givechance,int	backupregs);

void	Animate(int	animation);

int	Suspendprocess(int	processevents);

ulong	Runsinglethread(ulong	threadid);

void	Restoreallthreads(void);

Go

Continues	execution	of	the	debugged	program.	Returns	-1	if	continuation	is
impossible	and	0	on	success.	Improper	use	of	this	function	may	bring	OllyDbg
in	unstable	or	undefined	state.	For	simple	tasks,	consider	use	of	Sendshortcut.

int	Go(ulong	threadid,ulong	tilladdr,int	stepmode,int	givechance,int
backupregs);

Parameters:

threadid	-	thread	ID	to	continue.	If	threadid	is	0,	function	assumes	thread	where
last	debugging	event	occured;

tilladdr	-	if	stepmode	is	STEP_SKIP,	function	requests	skipping	of	all	commands
up	to	tilladdr	at	once.	Calling	routine	must	guarantee	that	tilladdr	is	the	first	byte
of	some	command	and	that	sequence	inbetween	has	no	jumps/returns	to	outside.
Otherwise,	sets	temporary	breakpoint	on	tilladdr	so	that	program	will	pause	at
this	point	(like	"Run	tol	selection"	in	Disassembler).

stepmode	-	stepping	mode,	one	of	the	following:

STEP_SAME Same	action	as	on	previous	call	to	Go
STEP_RUN Run	program
STEP_OVER Step	over	(execute	calls	at	once)
STEP_IN Step	in	(enter	subroutines)
STEP_SKIP Skip	sequence	till	specified	address

givechance	-	if	debugged	application	was	paused	on	exception	and	this
parameter	is	not	0,	passes	exception	to	exception	handler	installed	by
application;

backupregs	-	if	not	0,	updates	old	thread	registers	(element	oldreg	of	structure
t_thread).	Disassembler	uses	backup	to	highlight	modified	registers.

See	also:	OpenEXEfile,	Animate,	Suspendprocess,	Runsinglethread,
Restoreallthreads

Animate

Sets	animation	mode	and,	if	requested	in	debug	options,	sets	higher	priority	to
debugged	process.	Notice	that	this	function	doesn't	start	stepping	or	animation,
you	must	explicitely	call	Go	afterwards.	Improper	use	of	Animate	may	bring
OllyDbg	in	unstable	state.	For	simple	tasks,	consider	use	of	Sendshortcut.

void	Animate(int	animation);

Parameters:

animation	-	animation	mode:

ANIMATE_OFF No	animation
ANIMATE_IN Animate	into
ANIMATE_OVER Animate	over
ANIMATE_RET Execute	till	RET

ANIMATE_SKPRET Execute	till	RET,	then	skip	RET
instruction

ANIMATE_USER Execute	till	user	code
ANIMATE_TRIN Run	trace	in
ANIMATE_TROVER Run	trace	over
ANIMATE_STOP Gracefully	stop	animation

See	also:	OpenEXEfile,	Go,	Suspendprocess,	Runsinglethread,	Restoreallthreads

Suspendprocess

Suspends	all	threads	of	the	process	being	debugged.	It	may	happen	(especially
when	logging	breakpoints	are	set	or	hit	trace	is	active)	that	threads	will	be
suspended	after	some	breakpoint	is	executed	but	corresponding	debug	event	is
not	processed.	If	you	want	OllyDbg	to	process	events	before	returning	from
Suspendprocess,	call	it	with	processevents=1.	Returns	0	on	success	and	-1	in
case	of	any	error.	To	resume	execution,	call	Go.	This	function	is	slow	on	Win95-
bases	systems.

int	Suspendprocess(int	processevents);

Parameters:

processevents	-	process	pending	debugging	events	before	return.

See	also:	OpenEXEfile,	Go,	Animate,	Runsinglethread,	Restoreallthreads

Runsinglethread

Suspends	all	threads	except	for	specified,	and	resumes	specified	thread	even	if	it
was	suspended.	If	threadid	is	0	or	invalid,	suspends	all	threads.	Returns	thread
ID	of	the	thread	that	was	the	only	one	running,	thread	ID	of	the	main	thread	if
there	were	none/more	than	1	active	threads,	and	0	on	error.	To	reverse	effect	of
this	function,	call	Restoreallthreads.	Improper	use	of	this	function	may	bring
OllyDbg	in	unstable	or	undefined	state.

ulong	Runsinglethread(ulong	threadid);

Parameters:

threadid	-	identifier	(not	handle!)	of	thread	to	run,	or	0	to	suspend	all	threads.

See	also:	OpenEXEfile,	Go,	Animate,	Suspendprocess,	Restoreallthreads

OpenEXEfile

Closes	actuall	process	and	starts	new	executable	or	link	specified	in	path.
Returns	0	if	executable	file	is	successfully	started.	Displays	error	message	and
returns	-1	if	file	is	not	a	32-bit	Portable	Executable	or	OllyDbg	was	unable	to
create	new	process.

int	OpenEXEfile(char	*path,int	dropped);

Parameters:

path	-	pointer	to	ASCII	string	with	name	of	executable	file	(.exe)	or	Explorer
link	file	(.lnk);

dropped	-	set	to	1	if	executable	file	was	drag-and-dropped	to	OllyDbg	or	plugin,
otherwise	set	it	to	0.	Currently,	the	only	action	of	this	flag	is	to	clear	command
line.

See	also:	Go,	Animate,	Suspendprocess,	Runsinglethread,	Restoreallthreads

Restoreallthreads

Restores	original	thread	states	(as	before	the	sequence	of	calls	to
Runsinglethread).	Warns	if	all	threads	are	suspended.

void	Restoreallthreads(void);

See	also:	OpenEXEfile,	Go,	Animate,	Suspendprocess,	Runsinglethread

Trace	and	profiling	functions

char	*Findhittrace(ulong	addr,char	**ptracecopy,ulong	*psize);

int	Modifyhittrace(ulong	addr0,ulong	addr1,int	mode);

int	Runtracesize(void);

int	Findprevruntraceip(ulong	ip,int	startback);

int	Findnextruntraceip(ulong	ip,int	startback);

int	Startruntrace(t_reg	*preg);

void	Deleteruntrace(void);

void	Settracecondition(char	*cond,int	onsuspicious,ulong	in0,ulong	in1,ulong
out0,ulong	out1);

void	Settracecount(ulong	count);

int	Getruntraceregisters(int	nback,t_reg	*preg,t_reg	*pold,char	*cmd,char
*comment);

int	Getruntraceprofile(ulong	addr,ulong	size,ulong	*profile);

HWND	Creatertracewindow(void);

void	Scrollruntracewindow(int	back);

HWND	Createprofilewindow(ulong	base,ulong	size);

Settracecount

Sets	number	of	commands	to	trace.	After	specified	number	of	commands	is
logged	to	trace	buffer,	trace	pauses.	Usually	you	may	call	this	function	after
Settracecondition.

void	Settracecount(ulong	count);

Parameters:

count	-	number	of	commands	to	execute	before	run	trace	pauses.

See	also:	Settracecondition

Findhittrace

Looks	whether	hit	trace	information	is	available	starting	from	specified	address.
Returns	pointer	to	hit	trace	information	corresponding	to	given	address	and
optionally	sets	*ptracecopy	to	copy	of	original	code	and	*psize	to	size	of
remaining	data.	Returns	NULL	and	sets	*psize	to	0	if	there	is	no	decoding
information.	Hit	trace	information	is	an	array	of	bytes	that	are	the	combination
of	bits	TR_xxx.

char	*Findhittrace(ulong	addr,char	**ptracecopy,ulong	*psize);

Parameters:

addr	-	address	of	first	byte	of	the	code	in	the	address	space	of	debugged
application;

ptracecopy	-	pointer	to	variable	that	receives	pointer	to	statical	copy	of	original
code,	may	be	NULL;

psize	-	pointer	to	variable	that	receives	size	of	hit	trace	and	copy	data,	may	be
NULL.

See	also:	Modifyhittrace,	Runtracesize

Modifyhittrace

Function	adds,	resets,	removes	or	restores	specified	range	in	the	combined
hit/run	trace	data	buffer.	This	buffer	contains	flags	specifying	which	actions
should	be	undertaken	when	corresponding	command	is	reached,	don't	mix	it	with
the	run	trace	log	buffer	that	contains	results	of	run	trace.	If	necessary,	buffer	is
created.	Returns	0	on	success	(even	partial)	and	-1	on	error.

Warning:	Setting	hit	trace	or	forced	run	trace	on	data	may	have	disastrous
effects	on	your	program!

int	Modifyhittrace(ulong	addr0,ulong	addr1,int	mode);

Parameters:

addr0	-	address	of	the	first	byte	of	the	code	range	in	the	address	space	of
debugged	application;

addr1	-	address	of	the	last	byte	of	the	code	range	in	the	address	space	of
debugged	application	(not	included);

mode	-	action	to	perform,	one	of	the	following:

ATR_ADD Hit	trace	specified	range

ATR_ADDPROC Hit	trace	only	recognized	procedures	in	the
range

ATR_RESET Mark	range	as	not	traced
ATR_REMOVE Remove	range	and	breakpoints
ATR_REMOVEALLDestroy	range	and	breakpoints
ATR_RESTORE Restore	breakpoints	in	memory
ATR_RTRADD Hit	trace	range	and	force	run	trace
ATR_RTRJUMPS Hit	trace	and	run	trace	jumps	only
ATR_RTRENTRY Hit	trace	and	run	trace	entries	only
ATR_RTREMOVE Remove	trace	from	range
ATR_RTSKIP Skip	range	from	run	trace

See	also:	Findhittrace,	Runtracesize

Runtracesize

Returns	number	of	records	in	run	trace	data,	including	record	added	during
initialization,	or	0	if	run	trace	data	is	absent.	This	function	is	very	fast.

int	Runtracesize(void);

Findprevruntraceip

Searches	for	the	previous	(older)	appearance	of	command	with	specified	EIP	in
the	run	trace	buffer,	starting	from	the	specified	backward	step	(not	included	in
search).	Returns	backward	step	or	-1	if	command	is	not	in	trace	or	if	run	trace	is
inactive.

int	Findprevruntraceip(ulong	ip,int	startback);

Parameters:

ip	-	address	of	the	command	to	search;

startback	-	backward	step	where	the	search	starts.	This	step	is	not	included	in
search.	Use	startback=0	to	search	for	the	youngest	appearance.

See	also:	Findhittrace,	Runtracesize,	Findnextruntraceip,	Getruntraceregisters

Findnextruntraceip

Searches	for	the	next	(younger)	appearance	of	command	with	specified	EIP	in
the	run	trace	buffer,	starting	from	the	specified	backward	step	(not	included	in
search).	Returns	backward	step	or	-1	if	command	is	not	in	trace	or	if	run	trace	is
inactive.

int	Findnextruntraceip(ulong	ip,int	startback);

ip	-	address	of	the	command	to	search;

startback	-	backward	step	where	the	search	starts.	This	step	is	not	included	in
search.

See	also:	Findhittrace,	Runtracesize,	Findprevruntraceip,	Getruntraceregisters

Getruntraceregisters

Extracts	registers	that	are	nback	steps	back	in	the	run	trace	data	(nback=0	means
actual	registers)	and	optionally	registers	on	the	previous	step	(so	one	can	check
for	modifications).	Optionally	extracts	original	command	and	comment.	Returns
-1	of	error,	length	of	command	if	cmd!=NULL	and	original	command	is
available	and	0	if	original	command	is	absent.	If	record	contains	skipped
sequence,	returns	0	and	sets	cmd[0]	to	0x01.

int	Getruntraceregisters(int	nback,t_reg	*preg,t_reg	*pold,char	*cmd,char
*comment);

Parameters:

nback	-	backward	step	in	run	trace	buffer,	0	means	actual	step;

preg	-	pointer	to	t_reg	structure	that	receives	registers	restored	to	the	state	after
this	command	was	executed;

pold	-	pointer	to	t_reg	structure	that	receives	registers	restored	to	the	state	before
this	command	was	executed,	can	be	NULL;

cmd	-	buffer	at	least	MAXCMDSIZE	bytes	long	that	receives	original	command,
or	NULL.	If	record	contains	skipped	sequence	and	cmd	is	not	NULL,	function
sets	cmd[0]	to	0x01	and	returns	0;

comment	-	buffer	at	least	TEXTLEN	bytes	long	that	receives	comment	from	the
run	trace	buffer,	can	be	NULL.

See	also:	Runtracesize,	Findprevruntraceip,	Findnextruntraceip

Getruntraceprofile

Calculates	number	of	times	that	each	address	in	range	from	addr	to	addr+size
(not	included)	appears	in	the	run	trace	data.	Parameter	profile	points	to	array	of
size	elements	that	receives	profile	data.	Returns	0	on	success	or	when	run	trace
data	is	unavailable,	and	-1	on	error.	Function	can	be	rather	slow	if	run	trace	data
is	long.

int	Getruntraceprofile(ulong	addr,ulong	size,ulong	*profile);

Parameters:

addr	-	base	address	of	the	profiled	code;

size	-	size	of	the	profiled	code;

profile	-	pointer	to	array	of	size	doublewords	that	receives	profile	data.

See	also:	Findhittrace,	Runtracesize,	Findprevruntraceip,	Findnextruntraceip,
Getruntraceregisters

Scrollruntracewindow

Selects	specified	line	and	scrolls	run	trace	window	so	that	selection	is	visible.	If
option	"Synchronize	CPU	and	Run	trace"	is	active,	Disassembler	also	scrolls	to
this	command.

void	Scrollruntracewindow(int	back);

Parameters:

back	-	backward	step	in	run	trace	buffer,	0	means	actual	step.

See	also:	Runtracesize,	Findprevruntraceip,	Findnextruntraceip,
Getruntraceregisters

Startruntrace

Reinitializes	trace	data	and	reallocates	trace	buffer.	Previous	trace	is	deleted.
Returns	0	on	success	and	-1	on	error.

int	Startruntrace(t_reg	*preg);

Parameters:

preg	-	pointer	to	actual	registers	that	will	be	used	as	the	oldest	record	in	the	run
trace	buffer.	Function	fails	if	preg	is	NULL.

See	also:	Runtracesize,	Findprevruntraceip,	Findnextruntraceip,
Getruntraceregisters,	Settracecondition

Deleteruntrace

Closes	run	trace	and	destroys	trace	data.

void	Deleteruntrace(void);

See	also:	Startruntrace,	Runtracesize,	Findprevruntraceip,	Findnextruntraceip,
Getruntraceregisters

Settracecondition

OllyDbg	can	pause	run	trace	on	a	set	of	conditions.	This	function	quickly	sets
pause	on	expression,	on	suspicious	command	and/or	on	EIP	range	and
deactivates	pause	on	command.

void	Settracecondition(char	*cond,int	onsuspicious,ulong	in0,ulong
in1,ulong	out0,ulong	out1);

Parameters:

cond	-	pointer	to	character	string	containing	expression.	Run	trace	will	pause	if
expression	is	invalid	or	estimates	to	non-zero	value;

onsuspicious	-	activates	(1)	or	deactivates	(0)	pause	on	suspicious	command;

in0,	in1	-	'in	range'	request.	Run	trace	will	pause	if	EIP	is	in	this	range	(in1	not
included).	To	disable	pause	on	'in	range',	set	both	in0	and	in1	to	0;

out0,	out1	-	'out	of	range'	request.	Run	trace	will	pause	if	EIP	is	outside	this
range	or	equals	to	out1.	To	disable	pause	on	'out	of	range',	set	both	out0	and	out1
to	0.

See	also:	Startruntrace,	Issuspicious

Createprofilewindow

Creates	new	or	brings	to	top	existing	profile	window	and	displays	actual	profile
for	the	specified	piece	of	code.	Only	one	profile	window	may	exist	at	a	time.
Returns	handle	of	the	window	or	NULL	on	error.	Note	that	in	order	to	actualize
profile,	this	function	attempts	to	allocate	temporary	buffer	of	size	4*size	bytes,
and	will	fail	if	you	specify	too	large	or	non-contiguous	code	block.

HWND	Createprofilewindow(ulong	base,ulong	size);

base	-	base	address	of	the	profiled	code;

size	-	size	of	the	profiled	code.

See	also:	Startruntrace,	Getruntraceprofile

t_reg

Structure	that	keeps	the	values	of	all	relevant	80x86	registers.	Note	that	length	of
this	structure	in	version	1.10	is	increased	by	4	bytes.	This	may	lead	to
incompatibilities	with	previous	versions.

typedef	struct	t_reg	{	//	Excerpt	from	context

int	modified;	//	Some	regs	modified,	update	context

int	modifiedbyuser;	//	Among	modified,	some	modified	by	user

int	singlestep;	//	Type	of	single	step,	SS_xxx

ulong	r[8];	//	EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI

ulong	ip;	//	Instruction	pointer	(EIP)

ulong	flags;	//	Flags

int	top;	//	Index	of	top-of-stack

long	double	f[8];	//	Float	registers,	f[top]	-	top	of	stack

uchar	tag[8];	//	Float	tags	(0x3	-	empty	register)

ulong	fst;	//	FPU	status	word

ulong	fcw;	//	FPU	control	word

ulong	s[6];	//	Segment	registers	ES,CS,SS,DS,FS,GS

ulong	base[6];	//	Segment	bases

ulong	limit[6];	//	Segment	limits

uchar	big[6];	//	Default	size	(0-16,	1-32	bit)

ulong	dr6;	//	Debug	register	DR6

ulong	threadid;	//	ID	of	thread	that	owns	registers

ulong	lasterror;	//	Last	thread	error	or	0xFFFFFFFF

int	ssevalid;	//	Whether	SSE	registers	valid

int	ssemodified;	//	Whether	SSE	registers	modified

char	ssereg[8][16];	//	SSE	registers

ulong	mxcsr;	//	SSE	control	and	status	register

int	selected;	//	Reports	selected	register	to	plugin

ulong	drlin[4];	//	Debug	registers	DR0..DR3

ulong	dr7;	//	Debug	register	DR7

}	t_reg;

Members:

modified	-	non-zero	value	indicates	that	some	registers	were	modified	and
OllyDbg	should	update	CONTEXT	structure	of	the	corresponding	thread	before
continuing	execution;

modifiedbyuser	-	among	modified	registers,	some	registers	were	modified	by
user;

singlestep	-	used	internally	by	OllyDbg,	do	not	modify	directly!

r	-	32-bit	general-purpose	registers	EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI	(in
the	listed	order,	use	constants	REG_xxx	to	access);

ip	-	32-bit	Instruction	Pointer	(EIP	register);

flags	-	32-bit	EFLAGS	register,	do	not	modify	single-step	trap	bit!

top	-	index	of	the	register	that	is	the	top	of	the	FPU	stack;

f	-	80-bit	floating-point/MMX/3DNow!	registers;

tag	-	two-bit	tags	associated	with	floating	point	registers;

fst	-	16-bit	FPU	status	word;

fcw	-	16-bit	FPU	control	word;

s	-	segment	registers	ES,CS,SS,DS,FS,GS	(in	the	listed	order,	use	constants
SEG_xxx	to	access);

base	-	base	addresses	of	segment	descroptors;

limit	-	limits	of	segment	descriptors;

big	-	default	segment	size	(0	-	16-bit	segment,	seldom	in	flat	mode;	1	-	32-bit
segment);

dr6	-	debug	register	dr6,	please	do	not	modify!

threadid	-	identifier	of	the	thread	that	owns	registers;

lasterror	-	last	error	in	the	thread	as	returned	by	call	to	GetlastError,	or	-1
(0xFFFFFFFF)	if	exact	value	of	the	error	is	unknown;

ssevalid	-	non-zero	if	ssereg	contain	valid	data;

ssereg	-	16-byte	SSE	registers;

mxcsr	-	SSE	control	and	status	register;

selected	-	currently	selected	register,	defined	only	if	t_reg	is	passed	to	one	of
ODBG_Plugin...	callback	functions,	otherwise	undefined.	AND	this	value	with
RS_GROUP	to	obtain	the	group	of	registers	RS_xxx;	to	get	index	of	register
within	the	group,	AND	it	with	RS_INDEX.	For	example,	code	0013	is	a	general-
purpose	register	EBX	(0013	&	RS_GROUP	=	RS_INT,	0013	&	RS_INDEX	=
REG_EBX);

drlin	-	debug	registers	dr0..dr3,	please	do	not	modify!

dr7	-	debug	register	dr7,	please	do	not	modify!

Procedure	functions

Group	of	functions	that	facilitate	handling	of	procedures	recognized	by
Analyzer.

ulong	Findprocbegin(ulong	addr);

ulong	Findprocend(ulong	addr);

ulong	Findprevproc(ulong	addr);

ulong	Findnextproc(ulong	addr);

int	Getproclimits(ulong	addr,ulong	*start,ulong	*end);

Findprocbegin

Returns	start	address	of	the	procedure	that	encloses	addr,	or	0	on	error,	for
example,	when	module	is	not	analyzed	or	address	points	to	no	procedure.

ulong	Findprocbegin(ulong	addr);

Parameters:

addr	-	address	of	any	command	within	the	procedure.

See	also:	Findprocend,	Findprevproc,	Findnextproc,	Getproclimits

Findprocend

Returns	address	of	the	last	command	of	the	procedure	that	encloses	addr,	or	0	on
error,	for	example,	when	module	is	not	analyzed	or	address	points	to	no
procedure.

ulong	Findprocend(ulong	addr);

Parameters:

addr	-	address	of	any	command	within	the	procedure.

See	also:	Findprocbegin,	Findprevproc,	Findnextproc,	Getproclimits

Findprevproc

Returns	start	address	of	the	procedure	that	precedes	or	encloses	addr,	or	0	on
error,	for	example,	when	module	is	not	analyzed	or	address	doesn't	point	to
executable	code.

ulong	Findprevproc(ulong	addr);

Parameters:

addr	-	address	of	reference	command.

See	also:	Findprocbegin,	Findprocend,	Findnextproc,	Getproclimits

Findnextproc

Returns	start	address	of	the	procedure	that	is	next	to	addr,	or	0	on	error,	for
example,	when	module	is	not	analyzed	or	address	doesn't	point	to	executable
code.

ulong	Findnextproc(ulong	addr);

Parameters:

addr	-	address	of	reference	command.

See	also:	Findprocbegin,	Findprocend,	Findprevproc,	Getproclimits

Getproclimits

Calculates	limits	of	the	procedure	that	includes	specified	address.	Returns	0	on
success	and	-1	on	error,	for	example,	when	module	is	not	analyzed	or	address
points	to	no	procedure.

int	Getproclimits(ulong	addr,ulong	*start,ulong	*end);

Parameters:

addr	-	address	of	any	command	within	the	procedure;

start	-	pointer	to	variable	that	receives	start	address	of	the	procedure;

end	-	pointer	to	variable	that	receives	address	of	the	last	command	in	the
procedure.

See	also:	Findprocbegin,	Findprocend,	Findprevproc,	Findnextproc

Search	functions

The	functions	described	in	this	section	have	little	value	for	plugin	developer	and
exported	mainly	for	use	in	command	line	plugin.	They	search	for	specified	sort
of	data	and	display	results	in	the	reference	window.

int	Findallcommands(t_dump	*pd,t_asmmodel	*model,ulong	origin,char	*title);

int	Findalldllcalls(t_dump	*pd,ulong	origin,char	*title);

int	Findallsequences(t_dump	*pd,t_extmodel	model[NSEQ][NMODELS],ulong
origin,char	*title);

int	Findreferences(ulong	base,ulong	size,ulong	addr0,ulong	addr1,ulong
origin,int	recurseonjump,char	*title);

int	Findstrings(ulong	base,ulong	size,ulong	origin,char	*title);

Findalldllcalls

Searches	for	all	calls	(including	indirect)	to	different	modules	from	the	code
section	described	by	dump	structure,	places	them	into	the	reference	table	as	a	set
of	t_ref	records	and	displays	in	reference	window.	Address	of	origin,	if	not	0,	is
also	included	into	the	table	(marked	as	TY_ORIGIN).	Returns	number	of	found
references	or	-1	on	error.	Notice	that	this	function	doesn't	work	on	file	dump.

int	Findalldllcalls(t_dump	*pd,ulong	origin,char	*title);

Parameters:

pd	-	pointer	to	dump	descriptor	of	code	section;

origin	-	address	of	search	origin	or	0	if	none.	Search	origin	gives	easy	way	to
return	to	initial	point	after	browsing	through	the	found	items;

title	-	title	of	reference	window.

Note	concerning	functions	that	access	.ini	file

I	hate	registry!	Many	times	I	was	forced	to	reinstall	software	that	was	still	on	my
hard	disk	only	because	registry	crashed	after	some	hazardous	experiments	with
hardware,	or	because	I	reinstalled	Windows	to	get	rid	of	trash	from	removed
installations.	Do	YOU	know	which	of	your	personal	data	resides	in	registry?
Can	you	check	it?	Can	you	easily	backup	settings	of	some	program	and	easily
restore	them?	Or	edit?	In	my	opinion,	the	overcomplication	of	the	software	in
the	last	time	either	comes	from	the	fact	that	programmers	first	write	and	then
think,	or	is	a	(rather	successfull)	way	to	make	product	inaccessible	for	a
concurrent.	Dixi.

Sample	program

This	is	the	annotated	code	of	sample	bookmark	plugin.	I	place	it	here	so	that	you
can	get	quick	help	on	all	referenced	functions.

//

//	//

//	SAMPLE	PLUGIN	FOR	OLLYDBG	//

//	//

//	This	plugin	allows	to	set	up	to	10	code	bookmarks	using	keyboard	shortcuts	//

//	or	popup	menus	in	Disassembler	and	then	quickly	return	to	one	of	the	//

//	bookmarks	using	shortcuts,	popup	menu	or	Bookmark	window.	Bookmarks	//

//	are	kept	between	sessions	in	.udd	file.	//

//	//

//

//	VERY	IMPORTANT	NOTICE:	COMPILE	THIS	DLL	WITH	BYTE
ALIGNMENT	OF	STRUCTURES

//	AND	UNSIGNED	CHAR!

#include	<windows.h>

#include	<stdio.h>

#include	<string.h>

#include	<dir.h>

#include	"plugin.h"

HINSTANCE	hinst;	//	DLL	instance

HWND	hwmain;	//	Handle	of	main	OllyDbg	window

char	bookmarkwinclass[32];	//	Name	of	bookmark	window	class

//	OllyDbg	supports	and	makes	extensive	use	of	special	kind	of	data	collections

//	called	sorted	tables.	A	table	consists	of	descriptor	(t_table)	and	data.	All

//	data	elements	has	same	size	and	begin	with	a	3-dword	header:	address,	size

//	and	type.	Table	automatically	sorts	items	by	address,	overlapping	is	not

//	allowed.	Our	bookmark	table	consists	of	elements	of	type	t_bookmark.

typedef	struct	t_bookmark	{

ulong	index;	//	Bookmark	index	(0..9)

ulong	size;	//	Size	of	index,	always	1	in	our	case

ulong	type;	//	Type	of	entry,	always	0

ulong	addr;	//	Address	of	bookmark

}	t_bookmark;

t_table	bookmark;	//	Bookmark	table

//	Functions	in	this	file	are	placed	in	more	or	less	"chronological"	order,

//	i.e.	order	in	which	they	will	be	called	by	OllyDbg.	This	requires	forward

//	referencing.

int	Bookmarksortfunc(t_bookmark	*b1,t_bookmark	*b2,int	sort);

LRESULT	CALLBACK	Bookmarkwinproc(HWND	hw,UINT	msg,WPARAM
wp,LPARAM	lp);

int	Bookmarkgettext(char	*s,char	*mask,int	*select,t_sortheader	*ph,int
column);

void	Createbookmarkwindow(void);

//	Entry	point	into	a	plugin	DLL.	Many	system	calls	require	DLL	instance

//	which	is	passed	to	DllEntryPoint()	as	one	of	parameters.	Remember	it.

//	Preferrable	way	is	to	place	initializations	into	ODBG_Plugininit()	and

//	cleanup	in	ODBG_Plugindestroy().

BOOL	WINAPI	DllEntryPoint(HINSTANCE	hi,DWORD	reason,LPVOID
reserved)	{

if	(reason==DLL_PROCESS_ATTACH)

hinst=hi;	//	Mark	plugin	instance

return	1;	//	Report	success

};

//	ODBG_Plugindata()	is	a	"must"	for	valid	OllyDbg	plugin.	It	must	fill	in

//	plugin	name	and	return	version	of	plugin	interface.	If	function	is	absent,

//	or	version	is	not	compatible,	plugin	will	be	not	installed.	Short	name

//	identifies	it	in	the	Plugins	menu.	This	name	is	max.	31	alphanumerical

//	characters	or	spaces	+	terminating	'\0'	long.	To	keep	life	easy	for	users,

//	this	name	should	be	descriptive	and	correlate	with	the	name	of	DLL.

extc	int	_export	cdecl	ODBG_Plugindata(char	shortname[32])	{

strcpy(shortname,"Bookmarks");	//	Name	of	plugin

return	PLUGIN_VERSION;

};

//	OllyDbg	calls	this	obligatory	function	once	during	startup.	Place	all

//	one-time	initializations	here.	If	all	resources	are	successfully	allocated,

//	function	must	return	0.	On	error,	it	must	free	partially	allocated	resources

//	and	return	-1,	in	this	case	plugin	will	be	removed.	Parameter	ollydbgversion

//	is	the	version	of	OllyDbg,	use	it	to	assure	that	it	is	compatible	with	your

//	plugin;	hw	is	the	handle	of	main	OllyDbg	window,	keep	it	if	necessary.

//	Parameter	features	is	reserved	for	future	extentions,	do	not	use	it.

extc	int	_export	cdecl	ODBG_Plugininit(

int	ollydbgversion,HWND	hw,ulong	*features)	{

//	Check	that	version	of	OllyDbg	is	correct.

if	(ollydbgversion<PLUGIN_VERSION)

return	-1;

//	Keep	handle	of	main	OllyDbg	window.	This	handle	is	necessary,	for	example,

//	to	display	message	box.

hwmain=hw;

//	Initialize	bookmark	data.	Data	consists	of	elements	of	type	t_bookmark,

//	we	reserve	space	for	10	elements.	If	necessary,	table	will	allocate	more

//	space,	but	in	our	case	maximal	number	of	bookmarks	is	10.	Elements	do	not

//	allocate	memory	or	other	resources,	so	destructor	is	not	necessary.

if	(Createsorteddata(&(bookmark.data),"Bookmarks",

sizeof(t_bookmark),10,(SORTFUNC	*)Bookmarksortfunc,NULL)!=0)

return	-1;	//	Unable	to	allocate	bookmark	data

//	Register	window	class	for	MDI	window	that	will	display	plugins.	Please

//	note	that	formally	this	class	belongs	to	instance	of	main	OllyDbg	program,

//	not	a	plugin	DLL.	String	bookmarkwinclass	gets	unique	name	of	new	class.

//	Keep	it	to	create	window	and	unregister	on	shutdown.

if	(Registerpluginclass(bookmarkwinclass,NULL,hinst,Bookmarkwinproc)<0)	{

//	Failure!	Destroy	sorted	data	and	exit.

Destroysorteddata(&(bookmark.data));

return	-1;	};

//	Plugin	successfully	initialized.	Now	is	the	best	time	to	report	this	fact

//	to	the	log	window.	To	conform	OllyDbg	look	and	feel,	please	use	two	lines.

//	The	first,	in	black,	should	describe	plugin,	the	second,	gray	and	indented

//	by	two	characters,	bears	copyright	notice.

Addtolist(0,0,"Bookmarks	sample	plugin	v1.10	(plugin	demo)");

Addtolist(0,-1,"	Copyright	(C)	2001-2004	Oleh	Yuschuk");

//	OllyDbg	saves	positions	of	plugin	windows	with	attribute	TABLE_SAVEPOS
to

//	the	.ini	file	but	does	not	automatically	restore	them.	Let	us	add	this

//	functionality	here.	I	keep	information	whether	window	was	open	when

//	OllyDbg	terminated	also	in	ollydbg.ini.	This	information	is	saved	in

//	ODBG_Pluginclose.	To	conform	to	OllyDbg	norms,	window	is	restored	only

//	if	corresponding	option	is	enabled.

if	(Plugingetvalue(VAL_RESTOREWINDOWPOS)!=0	&&

Pluginreadintfromini(hinst,"Restore	bookmarks	window",0)!=0)

Createbookmarkwindow();

return	0;

};

//	To	sort	sorted	data	by	some	criterium,	one	must	supply	sort	function	that

//	returns	-1	if	first	element	is	less	than	second,	1	if	first	element	is

//	greater	and	0	if	elements	are	equal	according	to	criterium	sort.	Usually

//	this	criterium	is	the	zero-based	index	of	the	column	in	window.

int	Bookmarksortfunc(t_bookmark	*b1,t_bookmark	*b2,int	sort)	{

int	i=0;

if	(sort==1)	{	//	Sort	by	address	of	bookmark

if	(b1->addr<b2->addr)	i=-1;

else	if	(b1->addr>b2->addr)	i=1;	};

//	If	elements	are	equal	or	sorting	is	by	the	first	column,	sort	by	index.

if	(i==0)	{

if	(b1->index<b2->index)	i=-1;

else	if	(b1->index>b2->index)	i=1;	};

return	i;

};

//	Each	window	class	needs	its	own	window	procedure.	Both	standard	and
custom

//	OllyDbg	windows	must	pass	some	system	and	OllyDbg-defined	messages	to

//	Tablefunction().	See	description	of	Tablefunction()	for	more	details.

LRESULT	CALLBACK	Bookmarkwinproc(HWND	hw,UINT	msg,WPARAM
wp,LPARAM	lp)	{

int	i,shiftkey,controlkey;

HMENU	menu;

t_bookmark	*pb;

switch	(msg)	{

//	Standard	messages.	You	can	process	them,	but	-	unless	absolutely	sure	-

//	always	pass	them	to	Tablefunction().

case	WM_DESTROY:

case	WM_MOUSEMOVE:

case	WM_LBUTTONDOWN:

case	WM_LBUTTONDBLCLK:

case	WM_LBUTTONUP:

case	WM_RBUTTONDOWN:

case	WM_RBUTTONDBLCLK:

case	WM_HSCROLL:

case	WM_VSCROLL:

case	WM_TIMER:

case	WM_SYSKEYDOWN:

Tablefunction(&bookmark,hw,msg,wp,lp);

break;	//	Pass	message	to	DefMDIChildProc()

//	Custom	messages	responsible	for	scrolling	and	selection.	User-drawn

//	windows	must	process	them,	standard	OllyDbg	windows	without	extra

//	functionality	pass	them	to	Tablefunction().

case	WM_USER_SCR:

case	WM_USER_VABS:

case	WM_USER_VREL:

case	WM_USER_VBYTE:

case	WM_USER_STS:

case	WM_USER_CNTS:

case	WM_USER_CHGS:

return	Tablefunction(&bookmark,hw,msg,wp,lp);

//	If	window	should	support	TABLE_ONTOP	("Always	on	top"	mode),	it	must
pass

//	WM_WINDOWPOSCHANGED	to	Tablefunction().

case	WM_WINDOWPOSCHANGED:

return	Tablefunction(&bookmark,hw,msg,wp,lp);

case	WM_USER_MENU:

menu=CreatePopupMenu();

//	Find	selected	bookmark.	Any	operations	with	bookmarks	make	sense	only

//	if	at	least	one	bookmark	exists	and	is	selected.	Note	that	sorted	data

//	has	special	sort	index	table	which	is	updated	only	when	necessary.

//	Getsortedbyselection()	does	this;	some	other	sorted	data	functions

//	don't	and	you	must	call	Sortsorteddata().	Read	documentation!

pb=(t_bookmark	*)Getsortedbyselection(

&(bookmark.data),bookmark.data.selected);

if	(menu!=NULL	&&	pb!=NULL)	{

AppendMenu(menu,MF_STRING,1,"&Follow\tEnter");

AppendMenu(menu,MF_STRING,2,"&Delete\tDel");	};

//	Even	when	menu	is	NULL,	call	to	Tablefunction	is	still	meaningful.

i=Tablefunction(&bookmark,hw,WM_USER_MENU,0,(LPARAM)menu);

if	(menu!=NULL)	DestroyMenu(menu);

if	(i==1)	//	Follow	bookmark	in	Disassembler

Setcpu(0,pb-
>addr,0,0,CPU_ASMHIST|CPU_ASMCENTER|CPU_ASMFOCUS);

else	if	(i==2)	{	//	Delete	bookmark

Deletesorteddata(&(bookmark.data),pb->index);

//	There	is	no	automatical	window	update,	do	it	yourself.

InvalidateRect(hw,NULL,FALSE);	};

return	0;

case	WM_KEYDOWN:

//	Processing	of	WM_KEYDOWN	messages	is	-	surprise,	surprise	-	very

//	similar	to	that	of	corresponding	menu	entries.

shiftkey=GetKeyState(VK_SHIFT)	&	0x8000;

controlkey=GetKeyState(VK_CONTROL)	&	0x8000;

if	(wp==VK_RETURN	&&	shiftkey==0	&&	controlkey==0)	{

//	Return	key	follows	bookmark	in	Disassembler.

pb=(t_bookmark	*)Getsortedbyselection(

&(bookmark.data),bookmark.data.selected);

if	(pb!=NULL)

Setcpu(0,pb-
>addr,0,0,CPU_ASMHIST|CPU_ASMCENTER|CPU_ASMFOCUS);

;	}

else	if	(wp==VK_DELETE	&&	shiftkey==0	&&	controlkey==0)	{

//	DEL	key	deletes	bookmark.

pb=(t_bookmark	*)Getsortedbyselection(

&(bookmark.data),bookmark.data.selected);

if	(pb!=NULL)	{

Deletesorteddata(&(bookmark.data),pb->index);

InvalidateRect(hw,NULL,FALSE);

};	}

else

//	Add	all	this	arrow,	home	and	pageup	functionality.

Tablefunction(&bookmark,hw,msg,wp,lp);

break;

case	WM_USER_DBLCLK:

//	Doubleclicking	row	follows	bookmark	in	Disassembler.

pb=(t_bookmark	*)Getsortedbyselection(

&(bookmark.data),bookmark.data.selected);

if	(pb!=NULL)

Setcpu(0,pb-
>addr,0,0,CPU_ASMHIST|CPU_ASMCENTER|CPU_ASMFOCUS);

return	1;	//	Doubleclick	processed

case	WM_USER_CHALL:

case	WM_USER_CHMEM:

//	Something	is	changed,	redraw	window.

InvalidateRect(hw,NULL,FALSE);

return	0;

case	WM_PAINT:

//	Painting	of	all	OllyDbg	windows	is	done	by	Painttable().	Make	custom

//	drawing	only	if	you	have	important	reasons	to	do	this.

Painttable(hw,&bookmark,Bookmarkgettext);

return	0;

default:	break;

};

return	DefMDIChildProc(hw,msg,wp,lp);

};

//	If	you	define	ODBG_Pluginmainloop,	this	function	will	be	called	each	time

//	from	the	main	Windows	loop	in	OllyDbg.	If	there	is	some	debug	event	from

//	the	debugged	application,	debugevent	points	to	it,	otherwise	it	is	NULL.	Do

//	not	declare	this	function	unnecessarily,	as	this	may	negatively	influence

//	the	overall	speed!

extc	void	_export	cdecl	ODBG_Pluginmainloop(DEBUG_EVENT
*debugevent)	{

};

//	Record	types	must	be	unique	among	OllyDbg	and	all	plugins.	The	best	way	to

//	assure	this	is	to	register	record	type	by	OllDbg	(Oleh	Yuschuk).	Registration

//	is	absolutely	free	of	charge,	except	for	email	costs	:)

#define	TAG_BOOKMARK	0x236D420AL	//	Bookmark	record	type	in	.udd	file

//	Time	to	save	data	to	.udd	file!	This	is	done	by	calling	Pluginsaverecord()

//	for	each	data	item	that	must	be	saved.	Global,	process-oriented	data	must

//	be	saved	in	main	.udd	file	(named	by	.exe);	module-relevant	data	must	be

//	saved	in	module	files.	Don't	forget	to	save	all	addresses	relative	to

//	module's	base,	so	that	data	will	be	restored	correctly	even	when	module	is

//	relocated.

extc	void	_export	cdecl	ODBG_Pluginsaveudd(t_module	*pmod,int
ismainmodule)	{

int	i;

ulong	data[2];

t_bookmark	*pb;

if	(ismainmodule==0)

return;	//	Save	bookmarks	to	main	file	only

pb=(t_bookmark	*)bookmark.data.data;

for	(i=0;	i<bookmark.data.n;	i++,pb++)	{

data[0]=pb->index;

data[1]=pb->addr;

Pluginsaverecord(TAG_BOOKMARK,2*sizeof(ulong),data);

};

};

//	OllyDbg	restores	data	from	.udd	file.	If	record	belongs	to	plugin,	it	must

//	process	record	and	return	1,	otherwise	it	must	return	0	to	pass	record	to

//	other	plugins.	Note	that	module	descriptor	pointed	to	by	pmod	can	be

//	incomplete,	i.e.	does	not	necessarily	contain	all	informations,	especially

//	that	from	.udd	file.

extc	int	_export	cdecl	ODBG_Pluginuddrecord(t_module	*pmod,int
ismainmodule,

ulong	tag,ulong	size,void	*data)	{

t_bookmark	mark;

if	(ismainmodule==0)

return	0;	//	Bookmarks	saved	in	main	file	only

if	(tag!=TAG_BOOKMARK)

return	0;	//	Tag	is	not	recognized

mark.index=((ulong	*)data)[0];

mark.size=1;

mark.type=0;

mark.addr=((ulong	*)data)[1];

Addsorteddata(&(bookmark.data),&mark);

return	1;	//	Record	processed

};

//	Function	adds	items	either	to	main	OllyDbg	menu	(origin=PM_MAIN)	or	to
popup

//	menu	in	one	of	standard	OllyDbg	windows.	When	plugin	wants	to	add	own
menu

//	items,	it	gathers	menu	pattern	in	data	and	returns	1,	otherwise	it	must

//	return	0.	Except	for	static	main	menu,	plugin	must	not	add	inactive	items.

//	Item	indices	must	range	in	0..63.	Duplicated	indices	are	explicitly	allowed.

extc	int	_export	cdecl	ODBG_Pluginmenu(int	origin,char	data[4096],void
*item)	{

int	i,n;

t_bookmark	*pb;

t_dump	*pd;

switch	(origin)	{

//	Menu	creation	is	very	simple.	You	just	fill	in	data	with	menu	pattern.

//	Some	examples:

//	0	Aaa,2	Bbb|3	Ccc|,,	-	linear	menu	with	3	items,	relative	IDs	0,	2	and

//	3,	separator	between	second	and	third	item,	last

//	separator	and	commas	are	ignored;

//	#A{0Aaa,B{1Bbb|2Ccc}}	-	unconditional	separator,	followed	by	popup	menu

//	A	with	two	elements,	second	is	popup	with	two

//	elements	and	separator	inbetween.

case	PM_MAIN:	//	Plugin	menu	in	main	window

strcpy(data,"0	&Bookmarks|1	&About");

//	If	your	plugin	is	more	than	trivial,	I	also	recommend	to	include	Help.

return	1;

case	PM_DISASM:	//	Popup	menu	in	Disassembler

//	First	check	that	menu	applies.

pd=(t_dump	*)item;

if	(pd==NULL	||	pd->size==0)

return	0;	//	Window	empty,	don't	add

//	Start	second-level	popup	menu.

n=sprintf(data,"Bookmark{");

//	Add	item	"Insert	bookmark	n"	if	there	are	free	bookmarks	and	some	part

//	of	Disassembler	is	selected.	Note	that	OllyDbg	correctly	interpretes

//	superfluos	commas,	separators	and,	to	some	extent,	missed	braces.

pb=(t_bookmark	*)bookmark.data.data;

for	(i=0;	i<bookmark.data.n;	i++)

if	(pb[i].index!=(ulong)i)	break;

if	(i<10	&&	pd->sel1>pd->sel0)

n+=sprintf(data+n,"%i	&Insert	bookmark	%i\tAlt+Shift+%i,",i,i,i);

//	Add	item	"Delete	bookmark	n"	for	each	available	bookmark.	Menu

//	identifiers	are	not	necessarily	consecutive.

for	(i=0;	i<bookmark.data.n;	i++)	{

n+=sprintf(data+n,"%i	Delete	bookmark	%i,",pb[i].index+10,pb[i].index);

};

//	Add	separator	to	menu.

data[n++]='|';

//	Add	item	"Go	to	bookmark	n"	for	each	available	bookmark.	Bookmarks

//	set	at	selected	command	are	not	shown.

for	(i=0;	i<bookmark.data.n;	i++)	{

if	(pb[i].addr==pd->sel0)	continue;

n+=sprintf(data+n,"%i	Go	to	bookmark	%i\tAlt+%i,",

pb[i].index+20,pb[i].index,pb[i].index);

;

};

//	Close	popup.	If	you	forget	to	do	this,	OllyDbg	will	try	to	correct

//	your	error.

sprintf(data+n,"}");

return	1;

default:	break;	//	Any	other	window

};

return	0;	//	Window	not	supported	by	plugin

};

//	This	optional	function	receives	commands	from	plugin	menu	in	window	of
type

//	origin.	Argument	action	is	menu	identifier	from	ODBG_Pluginmenu().	If	user

//	activates	automatically	created	entry	in	main	menu,	action	is	0.

extc	void	_export	cdecl	ODBG_Pluginaction(int	origin,int	action,void	*item)	{

t_bookmark	mark,*pb;

t_dump	*pd;

if	(origin==PM_MAIN)	{

switch	(action)	{

case	0:

//	Menu	item	"Bookmarks",	creates	bookmark	window.

Createbookmarkwindow();

break;

case	1:

//	Menu	item	"About",	displays	plugin	info.

MessageBox(hwmain,

"Bookmark	plugin	v1.10\n"

"(demonstration	of	plugin	capabilities)\n"

"Copyright	(C)	2001-2004	Oleh	Yuschuk",

"Bookmark	plugin",MB_OK|MB_ICONINFORMATION);

break;

default:	break;

};	}

else	if	(origin==PM_DISASM)	{

pd=(t_dump	*)item;

if	(action>=0	&&	action<10)	{	//	Insert	bookmark

mark.index=action;

mark.size=1;

mark.type=0;

mark.addr=pd->sel0;

Addsorteddata(&(bookmark.data),&mark);

if	(bookmark.hw!=NULL)	InvalidateRect(bookmark.hw,NULL,FALSE);	}

else	if	(action>=10	&&	action<20)	{//	Delete	bookmark

pb=(t_bookmark	*)Findsorteddata(&(bookmark.data),action-10);

if	(pb!=NULL)	{

Deletesorteddata(&(bookmark.data),action-10);

if	(bookmark.hw!=NULL)	InvalidateRect(bookmark.hw,NULL,FALSE);

};	}

else	if	(action>=20	&&	action<30)	{//Go	to	bookmark

pb=(t_bookmark	*)Findsorteddata(&(bookmark.data),action-20);

if	(pb!=NULL)	{

Setcpu(0,pb-
>addr,0,0,CPU_ASMHIST|CPU_ASMCENTER|CPU_ASMFOCUS);

};

};

};

};

//	Standard	function	Painttable()	makes	most	of	OllyDbg	windows	redrawing.
You

//	only	need	to	supply	another	function	that	prepares	text	strings	and

//	optionally	colours	them.	Case	of	custom	windows	is	a	bit	more	complicated,

//	please	read	documentation.

int	Bookmarkgettext(char	*s,char	*mask,int	*select,

t_sortheader	*ph,int	column)	{

int	n;

ulong	cmdsize,decodesize;

char	cmd[MAXCMDSIZE],*pdecode;

t_memory	*pmem;

t_disasm	da;

t_bookmark	*pb=(t_bookmark	*)ph;

if	(column==0)	{	//	Name	of	bookmark

//	Column	0	contains	name	of	bookmark	in	form	"Alt+n",	where	n	is	the

//	digit	from	0	to	9.	Mainly	for	demonstration	purposes,	I	display	prefix

//	"Alt+"	in	grayed	and	digit	in	normal	text.	Standard	table	windows	do

//	not	need	to	bother	about	selection.

n=sprintf(s,"Alt+%i",pb->index);

*select=DRAW_MASK;

memset(mask,DRAW_GRAY,4);

mask[4]=DRAW_NORMAL;	}

else	if	(column==1)	//	Address	of	bookmark

n=sprintf(s,"%08X",pb->addr);

else	if	(column==2)	{	//	Disassembled	command

//	Function	Disasm()	requires	that	calling	routine	supplies	code	to	be

//	disassembled.	Read	this	code	from	memory.	First	determine	possible

//	code	size.

pmem=Findmemory(pb->addr);	//	Find	memory	block	containing	code

if	(pmem==NULL)	{

*select=DRAW_GRAY;	return	sprintf(s,"???");	};

cmdsize=pmem->base+pmem->size-pb->addr;

if	(cmdsize>MAXCMDSIZE)

cmdsize=MAXCMDSIZE;

if	(Readmemory(cmd,pb-
>addr,cmdsize,MM_RESTORE|MM_SILENT)!=cmdsize)	{

*select=DRAW_GRAY;	return	sprintf(s,"???");	};

pdecode=Finddecode(pb->addr,&decodesize);

if	(decodesize<cmdsize)	pdecode=NULL;

Disasm(cmd,cmdsize,pb->addr,pdecode,&da,DISASM_CODE,0);

strcpy(s,da.result);

n=strlen(s);	}

else	if	(column==3)	//	Comment

//	Only	user-defined	comments	are	displayed	here.

n=Findname(pb->addr,NM_COMMENT,s);

else	n=0;	//	s	is	not	necessarily	0-terminated

return	n;

};

//	OllyDbg	makes	most	of	work	when	creating	standard	MDI	window.	Plugin
must

//	only	describe	number	of	columns,	their	properties	and	properties	of	window

//	as	a	whole.

void	Createbookmarkwindow(void)	{

//	Describe	table	columns.	Note	that	column	names	are	pointers,	so	strings

//	must	exist	as	long	as	table	itself.

if	(bookmark.bar.nbar==0)	{

//	Bar	still	uninitialized.

bookmark.bar.name[0]="Bookmark";	//	Name	of	bookmark

bookmark.bar.defdx[0]=9;

bookmark.bar.mode[0]=0;

bookmark.bar.name[1]="Address";	//	Bookmark	address

bookmark.bar.defdx[1]=9;

bookmark.bar.mode[1]=0;

bookmark.bar.name[2]="Disassembly";//	Disassembled	command

bookmark.bar.defdx[2]=32;

bookmark.bar.mode[2]=BAR_NOSORT;

bookmark.bar.name[3]="Comment";	//	Comment

bookmark.bar.defdx[3]=256;

bookmark.bar.mode[3]=BAR_NOSORT;

bookmark.bar.nbar=4;

bookmark.mode=	//	Note:	new	option	TABLE_ONTOP

TABLE_COPYMENU|TABLE_SORTMENU|TABLE_APPMENU|TABLE_SAVEPOS|TABLE_ONTOP;

bookmark.drawfunc=Bookmarkgettext;	};

//	If	window	already	exists,	Quicktablewindow()	does	not	create	new	window,

//	but	restores	and	brings	to	top	existing.	This	is	the	simplest	way,

//	Newtablewindow()	is	more	flexible	but	more	complicated.	I	do	not
recommend

//	custom	(plugin-drawn)	windows	without	very	important	reasons	to	do	this.

Quicktablewindow(&bookmark,15,4,bookmarkwinclass,"Bookmarks");

};

//	This	function	receives	possible	keyboard	shortcuts	from	standard	OllyDbg

//	windows.	If	it	recognizes	shortcut,	it	must	process	it	and	return	1,

//	otherwise	it	returns	0.

extc	int	_export	cdecl	ODBG_Pluginshortcut(

int	origin,int	ctrl,int	alt,int	shift,int	key,void	*item)	{

t_dump	*pd;

t_bookmark	mark,*pm;

//	Plugin	accepts	shortcuts	in	form	Alt+x	or	Shift+Alt+x,	where	x	is	a	key

//	'0'..'9'.	Shifted	shortcut	sets	bookmark	(only	in	Disassembler),

//	non-shifted	jumps	to	bookmark	from	everywhere.

if	(ctrl==0	&&	alt!=0	&&	key>='0'	&&	key<='9')	{

if	(shift!=0	&&	origin==PM_DISASM	&&	item!=NULL)	{

//	Set	new	or	replace	existing	bookmark.

pd=(t_dump	*)item;

mark.index=key-'0';

mark.size=1;

mark.type=0;

mark.addr=pd->sel0;

Addsorteddata(&(bookmark.data),&mark);

if	(bookmark.hw!=NULL)	InvalidateRect(bookmark.hw,NULL,FALSE);

return	1;	}	//	Shortcut	recognized

else	if	(shift==0)	{

//	Jump	to	existing	bookmark	(from	any	window).

pm=Findsorteddata(&(bookmark.data),key-'0');

if	(pm==NULL)

Flash("Undefined	bookmark");

else

Setcpu(0,pm-
>addr,0,0,CPU_ASMHIST|CPU_ASMCENTER|CPU_ASMFOCUS);

return	1;	//	Shortcut	recognized

};

};

return	0;	//	Shortcut	not	recognized

};

//	Function	is	called	when	user	opens	new	or	restarts	current	application.

//	Plugin	should	reset	internal	variables	and	data	structures	to	initial	state.

extc	void	_export	cdecl	ODBG_Pluginreset(void)	{

Deletesorteddatarange(&(bookmark.data),0,0xFFFFFFFF);

};

//	OllyDbg	calls	this	optional	function	when	user	wants	to	terminate	OllyDbg.

//	All	MDI	windows	created	by	plugins	still	exist.	Function	must	return	0	if

//	it	is	safe	to	terminate.	Any	non-zero	return	will	stop	closing	sequence.	Do

//	not	misuse	this	possibility!	Always	inform	user	about	the	reasons	why

//	termination	is	not	good	and	ask	for	his	decision!

extc	int	_export	cdecl	ODBG_Pluginclose(void)	{

//	For	automatical	restoring	of	open	windows,	mark	in	.ini	file	whether

//	Bookmarks	window	is	still	open.

Pluginwriteinttoini(hinst,"Restore	bookmarks	window",bookmark.hw!=NULL);

return	0;

};

//	OllyDbg	calls	this	optional	function	once	on	exit.	At	this	moment,	all	MDI

//	windows	created	by	plugin	are	already	destroyed	(and	received
WM_DESTROY

//	messages).	Function	must	free	all	internally	allocated	resources,	like

//	window	classes,	files,	memory	and	so	on.

extc	void	_export	cdecl	ODBG_Plugindestroy(void)	{

Unregisterpluginclass(bookmarkwinclass);

Destroysorteddata(&(bookmark.data));

};

Attachtoactiveprocess

Attaches	OllyDbg	to	active	(running)	process	with	known	process	identifier.	If
another	process	is	debugged,	asks	for	permission	to	close	it.	Returns	0	on
success	and	-1	on	error.

int	Attachtoactiveprocess(int	processid);

Parameters:

processid	-	identifier	of	running	process.

See	also:	OpenEXEfile

Creatertracewindow

Creates	new	or	brings	to	top	existing	window	displaying	run	trace	history.	Only
one	such	window	may	exist	at	a	time.	Returns	handle	of	the	window	or	NULL
on	error.

HWND	Creatertracewindow(void);

Demanglename

Demangles	or	undecorates	name.	Currently	supports	Borland	and	Microsoft
mangling	schemes.	Returns	0	if	name	is	not	mangled	(in	this	case	buffer	pointed
to	by	undecorated	is	invalid	and	probably	modified)	and	length	of	unmangled
name	on	success.	Attention,	no	guarantee	that	demangled	name	is	unique!

int	Demanglename(char	*name,int	type,char	*undecorated);

Parameters:

name	-	pointer	to	mangled	name;

type	-	type	of	name.	Function	treats	names	of	types	NM_IMPORT	and
NM_IMPNAME	in	a	special	way;

undecorated	-	pointer	to	output	buffer	of	length	at	least	TEXTLEN	characters.

	OllyDbg plugin API
	Registration
	License Agreement
	General principles
	Always on top
	Compilation
	Plugin API - alphabetical listing
	Information functions
	Addtolist
	Updatelist
	Createlistwindow
	Error
	Message
	Infoline
	Progress
	Flash
	Data formatting functions
	Decodeaddress
	Decoderelativeoffset
	Decoderange
	Decodecharacter
	Decodeascii
	Decodeunicode
	Printfloat4
	Printfloat8
	Printfloat10
	Printsse
	Print3dnow
	IstextA
	IstextW
	Isretaddr
	Stringtotext
	Data input functions
	Getlong, Getlongxy
	Getline, Getlinexy
	Getfloat10, Getfloat10xy
	Getfloat, Getfloatxy
	Getasmfindmodel, Getasmfindmodelxy
	MAXCMDSIZE
	TEXTLEN
	t_asmmodel
	Gettext, Gettextxy
	Gethexstring, Gethexstringxy
	t_hexstr
	Getregxy
	Getmmx, Getmmxxy
	Get3dnow, Get3dnowxy
	Gettableselectionxy
	Browsefilename
	Sorted data functions
	t_sorted
	Createsorteddata
	SORTFUNC
	DESTFUNC
	Destroysorteddata
	Addsorteddata
	Deletesorteddata
	Deletesorteddatarange
	Deletenonconfirmedsorteddata
	Findsorteddata
	Findsorteddatarange
	Findsorteddataindex
	Sortsorteddata
	Getsortedbyselection
	Window functions
	Createwatchwindow
	Createwinwindow
	Createthreadwindow
	Createpatchwindow
	t_table
	DRAWFUNC
	Defaultbar
	Tablefunction
	Custom messages
	WM_USER_MENU
	WM_USER_SCR
	WM_USER_VABS
	WM_USER_VREL
	WM_USER_VBYTE
	WM_USER_STS
	WM_USER_CNTS
	WM_USER_CHGS
	WM_USER_BAR
	WM_USER_DBLCLK
	WM_USER_CHALL
	WM_USER_CHMEM
	WM_USER_CHREG
	Painttable
	Selectandscroll
	Sendshortcut
	Quicktablewindow
	Newtablewindow
	Createdumpwindow
	Setdumptype
	Dumpbackup
	Broadcast
	Name functions
	Insertname
	Quickinsertname
	Mergequicknames
	Discardquicknames
	Findname
	Decodename
	Findnextname
	Findlabel
	Deletenamerange
	Findlabelbyname
	Findimportbyname
	Findsymbolicname
	Disassembly functions
	t_disasm
	Disasm
	Disassembleback
	Disassembleforward
	Followcall
	Issuspicious
	Isfilling
	Isprefix
	Readcommand
	Assembly functions
	Assemble
	Checkcondition
	Watch and expression functions
	Insertwatch
	Deletewatch
	Getwatch
	Expression
	t_result
	Thread functions
	t_thread
	Findthread
	Decodethreadname
	Getcputhreadid
	Memory functions
	t_memory
	Findmemory
	Havecopyofmemory
	Readmemory
	Writememory
	Listmemory
	Module functions
	t_module
	Findmodule
	Findfixup
	Analysecode
	Finddecode
	Findfileoffset
	Data conversion functions
	Compress
	Decompress
	Getoriginaldatasize
	Plugin functions
	Registerpluginclass
	Unregisterpluginclass
	Pluginwriteinttoini
	Pluginreadintfromini
	Pluginwritestringtoini
	Pluginreadstringfromini
	Pluginsaverecord
	Plugingetvalue
	Getstatus
	Source code support functions
	CPU-specific functions
	Setcpu
	Setdisasm
	Redrawdisassembler
	Getdisassemblerrange
	t_dump
	t_window
	t_ref
	Plugin callback functions
	ODBG_Paused
	ODBG_Pausedex
	ODBG_Plugincmd
	ODBG_Plugindata
	ODBG_Plugininit
	ODBG_Pluginmainloop
	ODBG_Pluginsaveudd
	ODBG_Pluginuddrecord
	ODBG_Pluginmenu
	ODBG_Pluginaction
	ODBG_Pluginshortcut
	ODBG_Pluginreset
	ODBG_Pluginclose
	ODBG_Plugindestroy
	Breakpoint functions
	Setbreakpoint
	Setbreakpointext
	How breakpoint works
	Getbreakpointtypecount
	t_bpoint
	Manualbreakpoint
	Tempbreakpoint
	Setmembreakpoint
	Sethardwarebreakpoint
	Hardbreakpoints
	Deletehardwarebreakpoint
	Deletehardwarebreakbyaddr
	Execution and stepping functions
	Go
	Animate
	Suspendprocess
	Runsinglethread
	OpenEXEfile
	Restoreallthreads
	Trace and profiling functions
	Settracecount
	Findhittrace
	Modifyhittrace
	Runtracesize
	Findprevruntraceip
	Findnextruntraceip
	Getruntraceregisters
	Getruntraceprofile
	Scrollruntracewindow
	Startruntrace
	Deleteruntrace
	Settracecondition
	Createprofilewindow
	t_reg
	Procedure functions
	Findprocbegin
	Findprocend
	Findprevproc
	Findnextproc
	Getproclimits
	Search functions
	Findalldllcalls
	Note concerning functions that access .ini file
	Sample program
	Attachtoactiveprocess

