
Show	All



Design	Outlook	Workgroup	Solutions
With	Microsoft	Outlook,	you	can	create	a	variety	of	workgroup	solutions
and	forms.	You	can	create	workgroup	solutions	by	using	custom	views	in
a	public	folder,.	You	can	also	create	simple	forms	with	no	programming
involved	or	create	advanced	forms	by	using	custom	controls,	properties,
and	VBScript.	You	can	also	use	another	Office	program	to	create	a	form.

There	are	four	basic	approaches	to	creating	Outlook	solutions.	You	can
use	existing	items,	such	as	tasks	or	appointment	items,	put	the	items	in	a
public	folder,	and	assign	a	view	to	the	folder.	This	method	gives	you	an
instant	workgroup	solution	without	writing	any	code.	Another	method	is	to
modify	an	existing	item,	such	as	a	contact	or	mail	message,	by	adding
additional	pages	and	fields.	With	this	method,	you	can	extend	the	use	of
the	item	by	adding	the	fields	and	pages	you	need	without	writing	any
code.	To	create	advanced	forms,	you	can	use	the	Control	Toolbox	and
VBScript	to	access	properties,	events,	methods,	and	objects	within
Outlook.	You	can	also	use	Office	document	forms,	such	as	using
Microsoft	Excel	to	create	an	expense	report.



What	method	do	you	want	to	use?
Create	an	instant	workgroup	solution	using	public	folders

Create	custom	forms	by	using	VBScript



Overview	of	a	Typical	Folder-based	Solution

When	used	with	Microsoft	Exchange	Server,	Microsoft	Outlook	provides
groupware	capabilities	that	allow	more	than	one	person	to	work	on	the
same	data.	Even	without	using	these	capabilities,	however,	you	can	still
customize	Outlook	folders	for	your	personal	use	or	to	create	a	solution
that	other	people	in	your	organization	can	use.

If	you’re	planning	to	build	a	groupware	solution,	you	should	consider	first
working	with	Outlook	to	develop	a	single-user	solution.	Since	a
groupware	solution	is	often	as	simple	as	placing	a	custom	form	in	a
Microsoft	Exchange	public	folder,	learning	the	basics	of	building	a	folder-
based	personal	forms	solutions	will	be	fully	applicable	to	developing
solutions	in	public	folders.

Whether	it’s	in	one	of	your	personal	folders	or	in	a	Microsoft	Exchange
public	folder,	putting	together	an	Outlook	solution	typically	involves	the
following	steps:

1.	 Decide	which	type	of	folder	and/or	form	to	customize.

2.	 Open	a	new	form	and	customize	it	to	suit	your	needs.

3.	 Publish	the	form	to	the	folder	so	that	it’s	available	only	for	use	in
that	folder.

4.	 Set	the	custom	form	as	the	default	form	for	the	folder.	This	will
ensure	that	when	you	create	new	items	for	use	in	this	folder
they’ll	be	based	on	the	custom	form	you	created.

5.	 If	you	have	any	existing	items	in	the	folder,	update	these	items
so	they	will	use	the	new	form	when	they’re	opened.

Note			If	you	plan	to	use	a	custom	form	in	a	folder,	you	should	create	the



custom	form	before	creating	any	items	based	on	the	form.	This	will
ensure	that	all	the	items	in	the	folder	use	the	same	set	of	fields.

If	you	need	to	update	the	form	after	having	created	some	items	in	the
folder,	follow	these	steps:

1.	 Open	a	new,	blank	item	based	on	your	custom	form.

2.	 Update	the	form	to	suit	your	needs.

3.	 Republish	the	form	to	the	folder	using	the	same	name.



Using	views	to	create	a	solution

Although	custom	forms	provide	a	powerful	way	to	work	with	data	in	a
folder,	you	can	also	customize	Microsoft	Outlook	to	a	great	extent	simply
by	creating	a	view	that	suits	your	needs.	In	some	cases,	depending	on
how	you	want	to	work	with	Outlook,	you	can	use	a	custom	view	instead
of	a	custom	form	to	enter	and	modify	data.

Entering	data	in	a	view	is	usually	done	be	selecting	one	of	the	Outlook
table	views,	wherein	each	row	contains	one	item	in	the	folder	and	each
column	represents	a	field	associated	with	an	item.	You	can	select	the
fields	that	Outlook	displays,	and	you	can	also	enter	or	change	the
contents	of	fields	directly	in	the	table	view.	This	allows	you	to	quickly
modify	items,	even	those	that	contain	custom	fields.

To	allow	field	editing	in	a	view

1.	 Click	View,	point	to	Current	View,	then	click	Customize
Current	View.

2.	 Click	Other	Settings.

3.	 Select	Allow	in-cell	editing.

Editing	items	in	a	table	view	lets	you	keep	track	of	custom	data,	view
multiple	items	at	the	same	time,	enter	data	into	an	item	without	having	to
open	the	item,	and	avoid	having	to	create	a	custom	form.



Change	the	form	used	by	existing	items	in	a	folder

In	some	cases	you	may	need	to	change	the	form	associated	with	items
that	are	already	in	a	folder.	This	is	often	necessary	after	importing	items,
or	if	you	create	a	custom	form	after	you	have	already	created	items
based	on	a	standard	Microsoft	Outlook	form.

The	Message	Class	field	cannot	be	directly	changed	using	the	Outlook
user	interface,	but	you	can	use	VBScript,	Visual	Basic,	or	Visual	Basic	for
Applications	to	change	the	Message	Class	field.

The	following	Automation	code	can	be	used	as	a	basis	for	developing
your	own	solution.	This	code	assumes	that	the	name	of	the	new	form	is
MyForm.	It	will	change	all	contacts	in	your	default	contacts	folder	so	that
they	will	use	MyForm.

Sub	ChangeMessageClass()
Set	olApp	=	New	Outlook.Application
Set	olNS	=	olApp.GetNameSpace("MAPI")
Set	ContactsFolder	=	_
				olNS.GetDefaultFolder(olFolderContacts)
Set	ContactItems	=	ContactsFolder.Items
For	Each	Itm	in	ContactItems
			If	Itm.MessageClass	<>	"IPM.Contact.MyForm"	Then
						Itm.MessageClass	=	"IPM.Contact.MyForm"
						Itm.Save
			End	If
Next
End	Sub



Note			If	you	want	to	use	a	folder	other	than	a	default	folder,	use	the
Folders	collection	object	to	refer	to	any	folder	that	is	available	in	your
Folder	List.



Show	All



Using	contact	item	selector	fields

You	can	customize	a	contact	form	using	specially	bound	controls	that
display	dialog	boxes	that	let	users	change	fields	in	the	item.

Most	of	these	controls	are	available	directly	from	the	Field	Chooser.	The
following	lists	these	controls.

Address	Selector Address	Selected
E-mail	Selector E-mail	Selected
Phone	x	Selector Phone	x	Selected

To	use	these	fields	on	a	contact	form	page,	open	the	form	in	design
mode	and	then	use	the	Field	Chooser	to	drag	the	field	onto	the	page.
This	will	automatically	create	the	appropriate	controls	and	labels	on	the
page.

You	can	also	bind	a	standard	control	button	to	one	of	three	special
contact	dialog	boxes:

Categories

Check	Address

Check	Name

To	bind	a	contact-item	dialog	box	to	a	button

1.	 In	design	mode,	drag	a	command	button	from	the	Control
Toolbox	to	a	page	on	the	form.

2.	 Right-click	the	command	button,	click	Properties,	and	then	click
Value.



3.	 Click	Choose	Field,	point	to	All	Contact	fields,	and	then	click
the	name	of	the	dialog	box	you	want	to	bind	the	button	to.

Note			You	can	also	use	the	same	method	to	bind	the	Categories	dialog
box	to	a	button	on	the	form	of	any	item	except	a	mail	message.	However,
the	Categories	dialog	box	is	listed	only	under	All	contact	fields,
regardless	of	the	type	of	form	being	designed.



Outlook	fields	and	equivalent	properties

Name	of	field	in	Outlook	Field
Chooser

Name	of	equivalent	Outlook	object
model	property

%	Complete PercentComplete
Account Account
Actual	Work ActualWork
Address	Selected N/A
Address	Selector N/A
All	Day	Event AllDayEvent
Anniversary Anniversary
Assigned DelegationState
Assistant's	Name AssistantName
Assistant's	Phone AssistantTelephoneNumber
Attachment Attachments
Bcc BCC
Billing	Information BillingInformation
Birthday Birthday
Business	Address BusinessAddress
Business	Address	City BusinessAddressCity
Business	Address	Country BusinessAddressCountry
Business	Address	PO	Box BusinessAddressPostOfficeBox
Business	Address	Postal	Code BusinessAddressPostalCode
Business	Address	State BusinessAddressState
Business	Address	Street BusinessAddressStreet
Business	Fax BusinessFaxNumber
Business	Home	Page BusinessHomePage
Business	Phone BusinessTelephoneNumber
Business	Phone	2 Business2TelephoneNumber



Callback CallbackTelephoneNumber
Car	Phone CarTelephoneNumber
Categories Categories
Cc CC
Changed	By N/A
Children Children
City HomeAddressCity
Color Color
Company Companies
Company CompanyName
Company	Main	Phone CompanyMainTelephoneNumber
Complete Complete
Computer	Network	Name ComputerNetworkName
Contact FormDescription	.ContactName
Contacts Links
Content Body
Conversation ConversationTopic
Country HomeAddressCountry
Created CreationTime
Customer	ID CustomerID
Date	Completed DateCompleted
Defer	until DeferredDeliveryTime
Department Department
Distribution	List	Name DLName
Do	Not	AutoArchive NoAging
Download	State N/A
Due	By FlagDueBy
Due	Date DueDate
Duration Duration



E-mail Email1Address

E-mail	2 Email2Address
E-mail	3 Email3Address
E-mail	Selected N/A
E-mail	Selector N/A
End End
Entry	Type Type
Expires ExpiryTime
File	As FileAs
First	Name FirstName
Flag	Status FlagStatus
Follow-up	Flag FlagRequest
From SentOnBehalfOfName
FTP	Site FTPSite
Full	Name FullName
Gender Gender
Government	ID	Number GovernmentIDNumber
Have	Replies	Sent	To ReplyRecipientNames
Hobbies Hobby
Home	Address HomeAddress
Home	Address	City HomeAddressCity
Home	Address	Country HomeAddressCountry
Home	Address	PO	Box HomeAddressPostOfficeBox
Home	Address	Postal	Code HomeAddressPostalCode
Home	Address	State HomeAddressState
Home	Address	Street HomeAddressStreet
Home	Fax HomeFaxNumber
Home	Phone HomeTelephoneNumber



Home	Phone	2 Home2TelephoneNumber
Icon FormDescription	.Icon

Importance Importance
In	Folder Parent
Initials Initials
Internet	Free	Busy	Address InternetFreeBusyAddress
ISDN ISDNNumber
Job	Title JobTitle
Journal Journal
Junk	E-Mail	Type N/A
Language Language
Last	Name LastName
Last	Saved	Time N/A
Location Location
Mailing	Address MailingAddress
Mailing	Address	Indicator N/A
Manager's	Name ManagerName
Meeting	Status MeetingStatus
Message Body
Message	Class MessageClass
Message	Flag FlagStatus
Middle	Name MiddleName
Mileage Mileage
Mobile	Phone MobileTelephoneNumber
Modified LastModificationTime
Nickname NickName
Notes Body
Office	Location OfficeLocation



Optional	Attendees OptionalAttendees
Organizational	ID	Number OrganizationalIDNumber
Organizer Organizer

Other	Address OtherAddress
Other	Address	City OtherAddressCity
Other	Address	Country OtherAddressCountry
Other	Address	PO	Box OtherAddressPostOfficeBox
Other	Address	Postal	Code OtherAddressPostalCode
Other	Address	State OtherAddressState
Other	Address	Street OtherAddressStreet
Other	Fax OtherFaxNumber
Other	Phone OtherTelephoneNumber
Outlook	Internal	Version OutlookInternalVersion
Outlook	Version OutlookVersion
Owner Owner
Pager PagerNumber
Personal	Home	Page PersonalHomePage
Phone	n	Selected N/A
Phone	n	Selector N/A
PO	Box HomeAddressPostOfficeBox
Primary	Phone PrimaryTelephoneNumber
Priority Importance
Private Sensitivity
Profession Profession
Radio	Phone RadioTelephoneNumber
Read UnRead
Received ReceivedTime
Recurrence RecurrencePattern



.RecurrenceType
Recurrence	Pattern N/A
Recurrence	Range	End RecurrencePattern

.PatternEndDate
Recurrence	Range	Start RecurrencePattern

.PatternStartDate
Recurring IsRecurring
Referred	By ReferredBy
Remind	Beforehand ReminderMinutesBeforeStart
Reminder ReminderSet
Reminder	Override	Default ReminderOverrideDefault
Reminder	Sound ReminderPlaySound
Reminder	Sound	File ReminderSoundFile
Reminder	Time ReminderTime
Reminder	Topic N/A
Remote	Status RemoteStatus
RequestStatus N/A
Requested	By N/A
Required	Attendess RequiredAttendees
Resources Resources
Response	Requested ResponseRequested
Retrieval	Time N/A
Role Role
Schedule+	Priority SchedulePlusPriority
Send	Plain	Text	Only N/A
Sensitivity Sensitivity
Sent SentOn
Show	Time	As BusyStatus
Size Size



Spouse Spouse
Start Start
Start	Date StartDate
State HomeAddressState
Status Status

Street	Address HomeAddressStreet
Subject Subject
Suffix Suffix
Team	Task TeamTask
Telex TelexNumber
Title Title
To To
Total	Work TotalWork
Tracking	Status TrackingStatus
TTY/TTDD	Phone TTYTDDTelephoneNumber
User	Field	1 User1
User	Field	2 User2
User	Field	3 User3
User	Field	4 User4
Web	Page WebPage
ZIP/Postal	Code HomeAddressPostalCode



Show	All



Using	Visual	Basic	with	Outlook
You	can	use	Visual	Basic	to	customize	and	extend	Microsoft	Outlook.
Outlook	allows	you	to	control	Outlook	by	using	Visual	Basic,	Visual	Basic
for	Applications	and	VBScript.	Which	you	use	depends	on	what	you	want
your	program	to	do.

Visual	Basic	is	a	full-featured	programming	language	you	can	use	to
create	stand-alone	applications	or	dynamic-link	libraries	(DLLs)	that
extend	other	applications.	Visual	Basic	for	Applications	is	a	subset	of
Visual	Basic	that	is	run	within	an	application	to	extend	its	capabilities.
VBScript	is	a	simplified	version	of	Visual	Basic	for	Applications	and	is	run
within	an	Outlook	item.	In	all	cases,	these	programming	languages
control	Outlook	through	its	object	model.

Learn	about	the	Outlook	object	model.

If	you	want	to	create	a	separate	application	that	accesses	data	stored	by
Outlook	and	uses	Outlook	to	send	and	receive	messages,	use	Visual
Basic	to	create	the	application	(you	can	also	use	other	programming
languages,	such	as	C++,	to	control	Outlook	through	its	object	model).
You	can	also	use	Visual	Basic	to	create	a	DLL	that	can	extend	Outlook
as	a	COM	add-in.

You	use	Visual	Basic	for	Applications	in	one	of	two	ways:	You	can	use
Visual	Basic	for	Applications	in	other	applications	(such	as	Microsoft
Excel	or	Microsoft	Word)	to	automate	Outlook,	or	you	can	use	Visual
Basic	for	Applications	within	Outlook	to	control	Outlook.	If	you	expect
your	users	to	be	using	another	application	most	of	the	time,	and	you	want
to	give	them	the	ability	to	send	a	message	using	Outlook	or	to	access
information	stored	by	Outlook,	write	Visual	Basic	for	Applications
programs	in	that	application	that	control	Outlook	through	the	Outlook
object	model.	If,	on	the	other	hand,	you	want	to	write	Visual	Basic	code
that	customizes	how	Outlook	works	(like	a	macro),	use	Visual	Basic	for
Applications	within	Outlook.

You	can	extend	the	functionality	of	Outlook	forms	by	using	VBScript.
VBScript	programs	are	stored	within	a	form.	Because	the	program	code
is	contained	within	the	form,	it	can	be	sent	with	an	item	to	another	user.
An	important	consideration	in	choosing	which	kind	of	the	Visual	Basic



programming	language	you	will	use	is	the	type	of	events	you	want	your
program	to	respond	to.	Because	VBScript	code	is	associated	with	a
particular	item,	code	that	responds	to	events	in	specific	items	(such	as
when	a	particular	item	is	opened	or	a	value	in	a	field	is	changed)	is
easiest	to	write	using	VBScript.	If,	on	the	other	hand,	you	want	your
program	to	respond	to	events	that	occur	in	the	application,	in	Windows
Explorer,	in	folders,	or	in	all	items,	then	you	should	write	your	program
using	Visual	Basic	or	Visual	Basic	for	Applications.

Code	written	for	Visual	Basic	or	Visual	Basic	for	Applications	often	does
not	work	in	VBScript	without	modification.	For	example,	you	must	replace
all	built-in	constants	written	in	Visual	Basic	for	Applications	with	the	literal
numeric	values	of	those	constants	in	VBScript.	And	VBScript	uses	only
the	Variant	data	type.

Learn	about	constants	and	variables	in	VBScript.

In	Outlook	Visual	Basic	for	Applications	and	VBScript,	when	you
reference	the	Application	object	to	use	CreateObject	or	GetObject,	you
simply	use	Application.	For	example,	the	following	code	displays	the
Tasks	folder:

Set	olMAPI	=	Application.GetNameSpace("MAPI")
olMAPI.GetDefaultFolder(13).Display

In	Visual	Basic	or	Visual	Basic	for	Applications	in	other	applications,	you
must	explicitly	create	the	Application	object:

Set	myOlApp	=	CreateObject("Outlook.Application")
Set	olMAPI	=	myOlApp.GetNameSpace("MAPI")
olMAPI.GetDefaultFolder(olFolderTasks).Display



About	using	VBScript	in	Outlook
Microsoft	VBScript	is	a	powerful	scripting	language	based	on	Microsoft
Visual	Basic	that	enables	you	to	control	objects,	folders,	forms,	items,
and	controls	within	a	form.	For	example,	you	can	change	properties	and
values	of	controls	on	a	page,	modify	the	default	Microsoft	Outlook	item
events,	and	even	create	automated	procedures,	such	as	mailing	a	notice
to	all	the	contacts	in	a	Contacts	folder.

You	add	VBScript	code	to	an	Outlook	form	to	respond	to	Click	events
that	are	fired	by	controls	on	the	form,	or	to	respond	to	events	fired	by	the
items	that	have	the	same	message	class	as	the	form.	VBScript	makes	it
especially	easy	to	respond	to	item	events	because	the	VBScript	code
executes	in	the	context	of	the	item,	so	you	don’t	have	to	set	an	object
variable	to	point	to	the	item.	In	addition,	VBScript	code	is	compact	and
can	be	contained	within	a	form	sent	to	other	users.

With	VBScript,	you	have	full	access	to	the	Microsoft	Outlook	object
model,	except	for	two	areas:	VBScript	code	cannot	respond	to	events
other	than	item	and	form	events,	and	you	cannot	use	named	constants
defined	in	the	Outlook	object	type	library.

You	can	also	use	Visual	Basic	for	Applications	in	Outlook	to	respond	to
Outlook	events	and	to	create	macros	that	automate	procedures.	Unlike
VBScript	code,	however,	Visual	Basic	for	Applications	code	cannot	be
contained	in	a	form	and	so	cannot	accompany	an	item	that	is	sent	to
other	users.

For	more	information	about	using	VBScript,	see	Create	custom	forms	by
using	VBScript.



Show	All



How	can	I	prevent	the	VBScript	code	from	running?
To	prevent	any	VBScript	code	from	running,	hold	down	the	SHIFT	key.
For	example,	hold	down	SHIFT	while	you	open	an	item	to	prevent	the
VBScript	code	for	the	Open	event	from	running.



Variants	supported	in	VBScript
Microsoft	VBScript	in	Outlook	uses	only	the	Variant	data	type.

A	Variant	is	a	special	kind	of	data	type	that	can	contain	different	kinds	of
information,	depending	on	how	it's	used.	Because	Variant	is	the	only
data	type	in	VBScript,	it's	also	the	data	type	returned	by	all	functions	in
VBScript.

At	its	simplest,	a	Variant	can	contain	either	numeric	or	string	information.
A	Variant	behaves	as	a	number	when	you	use	it	in	a	numeric	context	and
as	a	string	when	you	use	it	in	a	string	context.	That	is,	if	you're	working
with	data	that	looks	like	numbers,	VBScript	assumes	that	it	is	numbers
and	does	the	thing	that	is	most	appropriate	for	numbers.	Similarly,	if
you're	working	with	data	that	can	only	be	string	data,	VBScript	treats	it	as
string	data.	Of	course,	you	can	always	make	numbers	behave	as	strings
by	enclosing	them	in	quotation	marks	("	").



Show	All



Using	the	Script	Editor
The	Microsoft	Script	Editor	allows	you	to	add	VBScript	procedures	that
respond	to	events	generated	by	items	or	form	controls.

To	open	the	Script	Editor

1.	 Open	an	item	of	the	type	to	which	you	want	to	add	code.

2.	 On	the	Tools	menu,	point	to	Forms	and	then	click	Design	This
Form.

3.	 On	the	Form	menu,	click	View	Code.

The	Script	Editor	makes	it	easy	to	insert	the	template	for	an	item	event
handler.

To	insert	a	blank	item	event	handler

1.	 On	the	Script	menu,	click	Event	Handler.

2.	 Select	the	event	you	want	to	respond	to,	and	then	click	OK.

The	Script	Editor	can	move	the	insertion	point	to	a	specific	line	of	code.
This	makes	it	easy	to	debug	the	script	when	Microsoft	Outlook	reports	an
error	at	a	specific	location.

To	move	to	a	specific	line

1.	 On	the	Edit	menu,	click	Go	To.

2.	 In	the	Line	Number	box,	type	in	the	number	of	the	line	of	code
to	which	you	want	to	go.

Learn	about	the	Script	Debugger.

Learn	about	the	Outlook	object	browser.



Show	All



About	the	Outlook	object	browser
The	Microsoft	Outlook	object	browser	displays	the	classes,	properties,
methods,	and	events	available	from	the	Outlook	object	library.	The	object
browser	lets	you	view	and	insert	these	objects	into	the	Script	Editor	and
obtain	information	about	the	syntax	for	using	the	object.

Learn	about	viewing	and	using	the	object	browser.



Show	All



About	the	Outlook	script	debugger
The	Microsoft	Script	Debugger	provides	you	with	a	comprehensive
debugging	environment	for	testing	and	correcting	errors	in	the	VBScript
code	that	you	created	for	your	Microsoft	Outlook	forms.	The	Script
Debugger	is	a	shared	component	that	can	also	be	used	to	track	down
errors	in	any	Microsoft	ActiveX-enabled	scripting	language	and	to	debug
Java	applets,	beans,	and	ActiveX	components.

The	Microsoft	Script	Debugger	lets	you	debug	both	client	scripts	and
server	scripts.

The	Microsoft	Script	Debugger	works	the	way	many	debuggers	do,	by
allowing	you	to:

View	the	source	code	of	the	script	that	you	are	debugging.

Control	the	pace	of	the	script	execution.

View	and	change	variable	and	property	values.

View	and	control	script	flow.

The	script	debugger	is	only	available	in	Outlook	at	run	time.

Learn	about	using	the	Script	Debugger	in	Outlook.



Set	global	variables	for	a	form
A	global	variable	is	available	to	any	procedure	in	a	form	while	the	script	is
running.	To	set	a	global	variable,	assign	the	value	to	the	variables	before
any	procedures.



Show	All



Referencing	controls	on	an	Outlook	form

If	you	need	to	refer	to	a	control	on	an	Outlook	form	within	a	procedure,
you	must	also	reference	the	inspector,	page,	and	controls	collection	that
contains	the	control,	even	if	you	are	referencing	the	control	with	its	own
event	procedure.	The	following	example	shows	how	to	change	the
caption	of	a	command	button	when	it’s	clicked.	To	test	this	example,	in
design	mode	create	a	command	button	with	the	default	name
CommandButton1	on	the	page	P.2.

Sub	CommandButton1_Click
				Set	myButton	=	Item.GetInspector.ModifiedFormPages("P.2")_
							.Controls("CommandButton1")
				myButton.Caption	=	"New	Caption"
End	Sub



Form	Events
Form	events	occur	when	something	happens	to	an	item	displayed	in	a
form,	such	as	when	it's	saved	or	opened	or	when	a	user-defined	action	is
started.

Most	often,	form	events	are	handled	by	VBScript	code	within	the	form
itself.

Some	events	can	be	cancelled.	That	is,	your	event	handler	can	prevent
Microsoft	Outlook	from	performing	the	default	action	associated	with	the
event.	For	example,	you	can	write	an	event	handler	for	the	Forward
event	to	prevent	an	item	from	being	sent	to	recipients	who	are	not	on	a
list	of	approved	recipients.	Learn	about	canceling	an	event.

The	following	table	lists	the	form	events	supported	by	Outlook.

Event Cancelable? Description
AttachmentAdd No Occurs	when	an	attachment	has

been	added	to	the	item
AttachmentRead No Occurs	when	an	attachment	has

been	opened	for	reading
BeforeAttachmentSave Yes Occurs	before	an	attachment	is

saved
BeforeCheckNames Yes Occurs	before	Outlook	starts

resolving	names	in	the
recipients	collection	of	the	item

Close Yes Occurs	before	Outlook	closes
the	inspector	displaying	the	item

CustomAction Yes Occurs	before	Outlook	executes
a	custom	action	of	an	item

CustomPropertyChangeNo Occurs	when	a	custom	item
property	has	changed

Forward Yes Occurs	before	Outlook	executes
the	Forward	action	of	an	item



Open Yes Occurs	before	Outlook	opens	an
inspector	to	display	the	item

PropertyChange No Occurs	when	an	item	property
has	changed

Read No Occurs	when	an	item	is	opened
for	editing	by	a	user

Reply Yes Occurs	before	Outlook	executes
the	Reply	action	of	an	item

ReplyAll Yes Occurs	before	Outlook	executes
the	Reply	to	All	action	of	an
item

Send Yes Occurs	before	Outlook	sends
the	item

Write Yes Occurs	before	Outlook	saves
the	item	in	a	folder



Control	Events
Outlook	form	controls	support	only	one	event,	the	Click	event.

A	control	bound	to	a	field	does	not	fire	the	Click	event.	You	must	handle
the	appropriate	field	event	to	detect	a	user’s	interaction	with	a	control
bound	to	a	field.

The	following	controls	fire	the	Click	event	whenever	a	user	clicks
anywhere	in	the	control.

CheckBox

CommandButton

Frame

Image

Label

OptionButton

ToggleButton

The	following	controls	fire	the	Click	event	when	the	user	selects	an	item
in	the	list.

ComboBox

ListBox

The	following	controls	do	not	support	the	Click	event.

MultiPage

ScrollBar

SpinButton

TabStrip

TextBox

While	the	MultiPage	control	itself	does	not	support	the	Click	event,	an
individual	Page	on	a	MultiPage	control	will	fire	the	Click	event	if	the	user
clicks	inside	the	client	area	of	the	page,	but	not	if	the	user	clicks	the	tab



associated	with	the	page.

To	detect	a	change	in	a	TextBox	control,	bind	the	control	to	a	field	and
then	handle	the	appropriate	field	event.



Field	Events
Microsoft	Outlook	provides	two	events	to	notify	your	program	that	a	field
(property)	in	an	item	has	changed.	The	PropertyChange	event	is	fired
whenever	a	standard	Outlook	field	in	an	item	has	changed.	Outlook	fires
the	CustomPropertyChange	event	whenever	a	user-defined	field
changes.

A	control	that	is	bound	to	a	field	does	not	fire	the	Click	event,	whether
the	control	was	selected	from	the	Control	Toolbox	and	subsequently
bound	to	a	field,	or	was	selected	from	the	Field	Chooser.	Consequently,
you	must	use	the	PropertyChange	or	CustomPropertyChange	event	to
detect	user	interaction	with	a	bound	control.



Canceling	an	event

Microsoft	Outlook	calls	event	handlers	in	your	program	to	allow	your
program	to	respond	to	such	events	as	actions	that	the	user	takes	or
changes	in	the	message	store.	Each	event	is	accompanied	by	a	default
action	that	Outlook	performs	as	a	result	of	the	event.	For	example,	when
the	Open	event	occurs	for	an	item,	by	default	Outlook	displays	the	item
in	an	inspector	window.

Some	events	only	notify	your	program	that	a	particular	event	has
occurred.	For	these	events,	your	event	handler	simply	responds	to	the
event.	With	other	events,	Outlook	allows	your	event	handler	to	cancel	the
event,	that	is,	to	instruct	Outlook	not	to	perform	the	default	action
associated	with	the	event.	In	the	case	of	the	Open	event,	for	example,
your	program	can	prevent	Outlook	from	displaying	the	item	in	an
inspector.	If	an	event	can	be	cancelled,	the	reference	topic	describing	the
event	indicates	how	to	cancel	the	event.

If	an	event	can	be	cancelled,	an	event	handler	written	in	Microsoft	Visual
Basic	or	Microsoft	Visual	Basic	for	Applications	receives	a	parameter	that
it	sets	before	returning	to	indicate	whether	the	event	should	be	cancelled.
For	example,	an	event	handler	for	the	Open	event	written	in	Visual	Basic
for	Applications	might	look	like	this.	This	example	assumes	that	the	value
of	OpenOK	is	set	elsewhere.

Sub	myItem_Open(byRef	Cancel	as	Boolean)
				If	OpenOK	Then
								Cancel	=	False	'	Outlook	performs	default	action
				Else
								Cancel	=	True		'	Outlook	does	not	perform	default	action
				EndIf



End	Sub

Because	of	limitations	in	VBScript,	however,	this	syntax	cannot	be	used.
An	event	handler	for	the	Open	event	in	the	script	of	an	item	must	be
written	as	a	function.	To	cancel	the	event,	the	value	of	the	function	is	set
to	False	before	returning,	as	in	the	following	example.

Function	Item_Open()
				If	OpenOK	Then
								Item_Open	=	True		'	Outlook	performs	default	action
				Else
								Item_Open	=	False	'	Outlook	does	not	perform	default	action
				End	If
End	Function



Show	All



About	the	order	of	events
The	following	events	occur	in	the	order	specified	when	a	user	completes
an	action.

Events When
Open A	form	is	opened	to	compose	an	item.
Send,	Write,	Close An	item	is	sent.
Write,	Close An	item	is	posted.
Write An	item	is	saved.
Close An	item	is	closed.
Read,	Open An	item	is	opened	in	a	folder.
Reply A	user	replies	to	an	item's	sender.
ReplyAll A	user	replies	to	an	item's	sender	and	all

recipients.
Forward The	newly-created	item	is	passed	to	the

procedure	after	the	user	selects	the	Forward
action	for	an	item.

PropertyChange One	of	the	item's	standard	properties	is
changed.

CustomPropertyChangeOne	of	the	item's	custom	properties	is
changed.

CustomAction A	user-defined	action	is	initiated.

The	Click	event	occurs	only	when	you	have	defined	it	for	a	control	in	the
Script	Editor.



Constants	and	variables	in	VBScript
In	VBScript,	constants	must	be	referenced	by	their	numeric	values.	The
constant	string	does	not	work	and	returns	a	value	of	0,	which	gives
unpredictable	results.

There	are	two	types	of	variables.	Procedure-level	variables	that	are	used
only	within	a	procedure	and	script-level	variables	that	are	available	to	all
the	procedures	within	your	script.	Declare	script-level	variables	at	the	top
of	your	script.	Declare	procedure-level	variables	inside	procedures.	You
can	use	procedure-level	variables	with	the	same	name	in	different
procedures	because	each	variable	is	recognized	only	by	the	procedure	in
which	it's	declared.	When	the	procedure	exits,	the	variable	ends.
Variables	that	refer	to	Outlook	objects	can	be	either	procedure-level	or
script-level	variables.	However,	the	value	of	the	variable	must	be	set
within	a	procedure.	Do	not	attempt	to	access	Outlook	objects	outside	of	a
procedure.



Rules	about	variables:
Must	begin	with	an	alphanumeric	character.

Cannot	contain	an	embedded	period.

Cannot	exceed	255	characters.

Cannot	use	more	than	127	procedure-level	variables	(arrays	count	as	a
single	variable).

Cannot	use	more	than	127	script-level	variables.



Referencing	fields

When	you	need	to	access	the	fields	in	an	item,	the	method	you	use
depends	on	whether	the	field	is	a	standard,	built-in	Microsoft	Outlook
field,	or	a	custom	field.

In	either	case,	you	do	not	access	the	field	directly.	Instead,	you	refer	to
the	field	as	a	property	of	the	item	you’	re	working	with.

For	example,	to	retrieve	the	text	from	the	Subject	field	of	a	mail	message,
you	use	the	Subject	property	of	the	item,	as	shown	in	the	following
VBScript	example.

mySubject	=	Item.Subject

If	the	field	is	a	custom	(user-defined)	field,	you	access	it	using	the
UserProperties	property	of	the	item,	as	shown	in	the	following	VBScript
example.	This	example	assumes	that	the	item	already	contains	a	custom
field	named	ReferredBy.

MyReferral	=	Item.UserProperties("ReferredBy")



Reference	a	folder
To	reference	a	folder	by	the	name	of	the	folder,	use	the	following	code.

Application.GetNameSpace("MAPI").Folders("Personal	Folders").Folders("Product	Ideas")

To	reference	a	folder	by	a	number,	use	the	following	code.	In	this
example,	the	first	folder	in	the	folder	collection	Personal	Folders	is
referenced.

Application.GetNameSpace("MAPI").Folders("Personal	Folders").Folders(1)

To	reference	any	of	the	default	Outlook	folders,	use	the
GetDefaultFolder	method.	Use	the	value	from	the	table	below	to	specify
the	folder	you	want	to	create.

Application.GetNameSpace("MAPI").GetDefaultFolder(6)

Default	folder Has	the	value
Deleted	Items 3
Outbox 4
Sent	Items 5
Inbox 6
Calendar 9
Contacts 10
Journal 11
Notes 12
Tasks 13



Creating	a	new	item

To	create	a	new	item,	use	the	CreateItem	method	of	the	Application
object.	This	method	returns	an	object	that	you	can	then	use	to	work	with
the	item.

The	following	Microsoft	Visual	Basic	for	Applications	example	shows	how
to	create	a	mail	message,	add	text	to	its	subject	and	body,	and	display	it.
To	use	this	sample,	create	a	command	button	named	Command1	on	a
form.

Private	Sub	Command1_Click()
				Dim	myOLApp	As	New	Outlook.Application
				Dim	myOLItem	As	Outlook.MailItem
				Set	myOLItem	=	myOLApp.CreateItem(olMailItem)
				With	myOLItem
								.Subject	=	"Sample	item"
								.Body	=	"This	is	a	sample	message."
				End	With
				myOLItem.Display
End	Sub

The	following	example	shows	how	to	perform	the	same	task	using
VBScript	in	a	form.

Sub	CommandButton1_Click()
				Set	myOLItem	=	Application.CreateItem(0)
				myOLItem.Subject	=	"Sample	item"
				myOLItem.Body	=	"This	is	a	sample	message."



				myOLItem.Display
End	Sub



Referencing	existing	items	in	a	folder

There	are	a	number	of	ways	you	can	reference	existing	items	in	a	folder
using	Microsoft	Visual	Basic.	This	topic	provides	information	about:

Using	a	For	…	Next	or	For	Each	…	Next	loop

Using	the	Items	collection

Using	the	Find	method

Using	the	Restrict	method

Using	a	For…Next	or	For	Each...Next	Loop

Typically	these	statements	are	used	to	loop	through	all	of	the	items	in	a
folder.	The	Items	collection	contains	all	the	items	in	a	particular	folder,
and	you	can	specify	which	item	to	reference	by	using	an	index	with	the
Items	collection.	This	is	typically	used	with	the	For	I	=	1	to	n
programming	construct.

You	can	use	For	Each...Next	to	loop	through	the	items	in	the	collection
without	specifying	an	index.	Both	approaches	achieve	the	same	result.

The	following	examples	use	For…Next	to	loop	through	all	the	contacts
in	the	Contacts	folder	and	display	the	Full	Name	field	in	a	dialog	box.

'	Visual	Basic/Visual	Basic	for	Applications	code	example.
Set	ol	=	New	Outlook.Application
Set	olns	=	ol.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	contacts	folder.
Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)
'	Get	the	number	of	items	in	the	folder.



NumItems	=	MyFolder.Items.Count
'	Set	MyItem	to	the	collection	of	items	in	the	folder.
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
'	Loop	through	all	of	the	items	in	the	folder.
For	I	=	1	to	NumItems
			MsgBox	MyItems(I).FullName
Next

'	VBScript	code	example.
Set	olns	=	Item.Application.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	contacts	folder.
Set	MyFolder	=	olns.GetDefaultFolder(10)
'	Get	the	number	of	items	in	the	folder.
NumItems	=	MyFolder.Items.Count
'	Set	MyItem	to	the	collection	of	items	in	the	folder.
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
'	Loop	through	all	of	the	items	in	the	folder.
For	I	=	1	to	NumItems
			MsgBox	MyItems(I).FullName
Next

The	following	examples	use	For	Each...Next	to	achieve	the	same	result
as	the	preceding	examples:

'	Visual	Basic/Visual	Basic	for	Applications	code	example.
Set	ol	=	New	Outlook.Application
Set	olns	=	ol.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	contacts	folder.
Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)
'	Set	MyItems	to	the	collection	of	items	in	the	folder.
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
For	Each	SpecificItem	in	MyItems
			MsgBox	SpecificItem.FullName



Next

'	VBScript	code	example.
Set	olns	=	Item.Application.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	contacts	folder.
Set	MyFolder	=	olns.GetDefaultFolder(10)
'	Set	MyItem	to	the	collection	of	items	in	the	folder.
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
For	Each	SpecificItem	in	MyItems
			MsgBox	SpecificItem.FullName
Next

Using	the	Items	Collection

You	can	also	use	the	Items	collection	and	specify	a	text	string	that
matches	the	Subject	field	of	an	item.	The	following	examples	display	an
item	in	the	Inbox	whose	subject	contains	"Please	help	on	Friday!"

'	Visual	Basic/Visual	Basic	for	Applications	code	example.
Set	ol	=	New	Outlook.Application
Set	olns	=	ol.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	Inbox.
Set	MyFolder	=	olns.GetDefaultFolder(olFolderInbox)
Set	MyItem	=	MyFolder.Items("Please	help	on	Friday!")
MyItem.Display

'	VBScript	code	example.
Set	olns	=	Item.Application.GetNameSpace("MAPI")
'	Set	MyFolder	to	the	default	Inbox.
Set	MyFolder	=	olns.GetDefaultFolder(6)
Set	MyItem	=	MyFolder.Items("Please	help	on	Friday!")
MyItem.Display

Using	the	Find	Method



Use	the	Find	method	to	search	for	an	item	in	a	folder	based	on	the	value
of	one	of	its	fields.	If	the	search	is	successful,	you	can	then	use	the
FindNext	method	to	check	for	additional	items	that	meet	the	same
search	criteria.

The	following	examples	search	to	see	if	you	have	any	high	priority	tasks.

'	Visual	Basic/Visual	Basic	for	Applications	code	example.
Set	ol	=	New	Outlook.Application
Set	olns	=	ol.GetNamespace("MAPI")
Set	myFolder	=	olns.GetDefaultFolder(olFolderTasks)
Set	MyTasks	=	myFolder.Items
'	Importance	corresponds	to	Priority	on	the	task	form.
Set	MyTask	=	MyTasks.Find("[Importance]	=	""High""")
If	MyTask	Is	Nothing	Then	'	the	Find	failed
			MsgBox	"Nothing	important.	Go	party!"
Else
			MsgBox	"You	have	something	important	to	do!"
End	If

'	VBScript	code	example.
Set	olns	=	Item.Application.GetNamespace("MAPI")
Set	myFolder	=	olns.GetDefaultFolder(13)
Set	MyTasks	=	myFolder.Items
'	Importance	corresponds	to	Priority	on	the	task	form.
Set	MyTask	=	MyTasks.Find("[Importance]	=	""High""")
If	MyTask	Is	Nothing	Then	'	the	Find	failed
			MsgBox	"Nothing	important.	Go	party!"
Else
			MsgBox	"You	have	something	important	to	do!"
End	If

Using	the	Restrict	Method

The	Restrict	method	is	similar	to	the	Find	method,	but	instead	of



returning	a	single	item,	it	returns	a	collection	of	items	that	meet	the
search	criteria.	For	example,	you	could	use	this	method	to	find	all
contacts	that	work	at	the	same	company.

The	following	examples	display	all	of	the	contacts	that	work	atProseWare
Corporation:

'	Automation	code	example.
Set	ol	=	New	Outlook.Application
Set	olns	=	ol.GetNameSpace("MAPI")
Set	MyFolder	=	olns.GetDefaultFolder(olFolderContacts)
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
MyClause	=	"[CompanyName]	=	""ProseWare"""
Set	MyPWItems	=	MyItems.Restrict(MyClause)
For	Each	MyItem	in	MyPWItems
			MyItem.Display
Next

'	VBScript	code	example.
Set	olns	=	Item.Application.GetNameSpace("MAPI")
Set	MyFolder	=	olns.GetDefaultFolder(10)
Set	myItems	=	myFolder.Items.Restrict("[MessageClass]	=	'IPM.Contact'")
MyClause	=	"[CompanyName]	=	""ProseWare"""
Set	MyPWItems	=	MyItems.Restrict(MyClause)
For	Each	MyItem	in	MyPWItems
			MyItem.Display
Next



Filtering	items	in	a	collection

You	can	use	the	Microsoft	Outlook	object	model	to	return	information
about	all	items	in	a	folder.	Often,	however,	the	desired	objective	is	to
search	for	a	specific	item	or	to	retrieve	a	subset	of	the	items	in	the	folder.
Consider	the	following	examples:

You	are	developing	a	Microsoft	Access	database.	When	the	user	enters
a	new	contact	record,	you	want	to	give	the	user	the	ability	to	click	a
button	to	check	whether	a	contact	with	the	same	name	already	exists	in
Outlook.	If	a	match	is	found,	you	can	retrieve	all	the	fields	for	the	contact
and	automatically	fill	in	the	Access	database	record.	In	this	situation,	if
the	user	filled	in	the	first	and	last	name	fields	on	the	Access	form,	you
can	use	the	Find	method	in	the	Outlook	object	model	to	search	for	a
match	against	the	Outlook	Full	Name	field.	If	you	want	to	make	sure
there	are	no	additional	contacts	in	Outlook	with	the	same	name,	you	can
then	use	the	FindNext	method	to	conduct	the	same	search	again.

You	are	writing	a	Microsoft	Visual	Basic	program	to	automatically
schedule	appointments	in	users’	calendars.	In	order	to	do	this,	you	need
to	retrieve	a	user’s	appointments	for	a	given	day.	In	this	case,	you	would
use	the	Restrict	method	to	retrieve	all	appointments	that	fall	on	a
particular	day.

While	the	Find	and	Restrict	methods	perform	different	functions,	the
syntax	for	both	is	similar.	Following	are	some	tips	for	using	these
methods:

The	filters	used	with	Find	and	Restrict	are	not	case-sensitive.

It	is	not	possible	to	use	these	methods	if	you	need	to	search	for	a	string
that’s	contained	within	an	Outlook	field,	commonly	called	a	"Contains"



operation.	If	you	need	to	perform	a	Contains	operation,	you	can	iterate
through	all	of	the	items	in	the	folder	and	use	the	Visual	Basic	InStr
function	to	see	if	your	search	string	is	contained	within	an	Outlook	field.

To	create	a	filter	that	performs	a	"begins	with"	operation,	use	the	>,	<	,
>=,	and	<=	operators.	For	example,	to	search	for	all	contacts	whose	last
names	begin	with	"Mc",	use	this	filter:	""[LastName]	>=	""Mc""	and
[LastName]	<	""Md"""

You	can	use	the	contents	of	a	variable	as	part	of	the	filter.



	 	

Working	with	command	bars

In	Microsoft	Outlook	2000,	toolbars,	menu	bars,	and	shortcut	menus	are
all	controlled	programmatically	as	one	type	of	object:	command	bars.	All
the	following	items	are	represented	in	Microsoft	Visual	Basic	by
CommandBar	objects:

Menu	bars,	toolbars,	and	shortcut	menus

Menus	on	menu	bars	and	toolbars

Submenus	on	menus,	submenus,	and	shortcut	menus

You	can	modify	any	built-in	menu	bar	or	toolbar,	and	you	can	create	and
modify	custom	toolbars,	menu	bars,	and	shortcut	menus	to	deliver	with
your	Visual	Basic	application.	You	can	present	the	features	of	your
application	as	buttons	on	toolbars	or	as	groups	of	command	names	on
menus.	Because	toolbars	and	menus	are	both	command	bars,	you	use
the	same	kind	of	controls	on	both	of	them.	Menu	bars	and	toolbars	can



both	contain	menus.

In	Visual	Basic,	buttons	and	menu	items	are	represented	by
CommandBarButton	objects.	The	pop-up	controls	that	display	menus
and	submenus	are	represented	by	CommandBarPopup	objects.

You	can	also	add	text	boxes,	drop-down	list	boxes,	and	combo	boxes	to
any	command	bar.	These	three	types	of	controls	are	all	represented	in
Visual	Basic	by	CommandBarComboBox	objects.

Note			Although	they	share	similar	appearances	and	behaviors,
command	bar	controls	and	ActiveX	controls	are	not	the	same.	You
cannot	add	ActiveX	controls	to	command	bars,	and	you	cannot	add
command	bar	controls	to	documents	or	forms.

The	built-in	command	bar	controls	in	Outlook	are	also	represented	by
CommandBarButton,	CommandBarPopup,	and
CommandBarComboBox	objects,	but	their	appearances	and	behaviors
may	be	different	from	those	you	can	add	yourself.	You	can	modify	the
location	and	appearance	of	built-in	controls,	you	cannot	modify	their	built-
in	behavior.



Show	All



CheckBox	control

									

									 									

									

									

Displays	the	selection	state	of	an	item.

Remarks

Use	a	CheckBox	to	give	the	user	a	choice	between	two	values	such	as
Yes/No,	True/False,	or	On/Off.	When	the	user	selects	a	CheckBox,	it
displays	a	special	mark	(such	as	an	X)	and	its	current	setting	is	Yes,
True,	or	On.	If	the	user	does	not	select	the	CheckBox,	it	is	empty	and	its
setting	is	No,	False,	or	Off.	Depending	on	the	value	of	the	TripleState
property,	a	CheckBox	can	also	have	a	null	value.



If	a	CheckBox	is	bound	to	a	data	source,	changing	the	setting	changes
the	value	of	that	source.	A	disabled	CheckBox	shows	the	current	value,
but	is	dimmed	and	does	not	allow	changes	to	the	value	from	the	user
interface.

You	can	also	use	check	boxes	inside	a	group	box	to	select	one	or	more
of	a	group	of	related	items.	For	example,	you	can	create	an	order	form
that	contains	a	list	of	available	items,	with	a	CheckBox	preceding	each
item.	The	user	can	select	a	particular	item	or	items	by	checking	the
corresponding	CheckBox.

The	default	property	of	a	CheckBox	is	the	Value	property.

Note	The	ListBox	also	lets	you	put	a	check	mark	by	selected	options.
Depending	on	your	application,	you	can	use	the	ListBox	instead	of	using
a	group	of	CheckBox	controls.



Show	All



ComboBox	control

									

									 									

									

									

Combines	the	features	of	a	ListBox	and	a	TextBox.	The	user	can	enter
a	new	value,	as	with	a	TextBox,	or	the	user	can	select	an	existing	value
as	with	a	ListBox.

Remarks

If	a	ComboBox	is	bound	to	a	data	source,	the	ComboBox	inserts	the
value	entered	or	selected	by	the	user	into	that	data	source.	If	a
multicolumn	combo	box	is	bound,	then	the	BoundColumn	property
determines	which	value	is	stored	in	the	bound	data	source.



The	list	in	a	ComboBox	consists	of	rows	of	data.	Each	row	can	have	one
or	more	columns,	which	can	appear	with	or	without	headings.	Some
applications	do	not	support	column	headings,	others	provide	only	limited
support.

The	default	property	of	a	ComboBox	is	the	Value	property.

Note	If	you	want	more	than	a	single	line	of	the	list	to	appear	at	all	times,
you	might	want	to	use	a	ListBox	instead	of	a	ComboBox.	If	you	want	to
use	a	ComboBox	and	limit	values	to	those	in	the	list,	you	can	set	the
Style	property	of	the	ComboBox	so	the	control	looks	like	a	drop-down
list	box.



CommandButton	control

									

									 									

									

									

Starts,	ends,	or	interrupts	an	action	or	series	of	actions.

Remarks

Requires	VBScript.

Syntax

Sub	CommandButton_Click(	)

'write	event	code	here



End	Sub

The	macro	or	event	procedure	assigned	to	the	CommandButton's	Click
event	determines	what	the	CommandButton	does.	For	example,	you
can	create	a	CommandButton	that	opens	another	form.	You	can	also
display	text,	a	picture,	or	both	on	a	CommandButton.

The	default	property	of	a	CommandButton	is	the	Value	property.

The	only	event	for	a	CommandButton	is	the	Click	event.



Font	Object

									

									 									

									

Defines	the	characteristics	of	the	text	used	by	a	control.

Each	control	has	its	own	Font	object	to	let	you	set	its	text	characteristics
independently	of	the	characteristics	defined	for	other	controls.	Use	font
properties	to	specify	the	font	name,	to	set	bold,	italic,	or	underlined	text,
or	to	adjust	the	size	of	the	text.

The	default	property	for	the	Font	object	is	the	Name	property.



Show	All



Frame	control

									

									 									

									

									

Creates	a	functional	and	visual	control	group.

Remarks

All	option	buttons	in	a	Frame	are	mutually	exclusive,	so	you	can	use	the
Frame	to	create	an	option	group.	You	can	also	use	a	Frame	to	group
controls	with	closely	related	contents.For	example,	in	an	application	that
processes	customer	orders,	you	might	use	a	Frame	to	group	the	name,
address,	and	account	number	of	customers.



You	can	also	use	a	Frame	to	create	a	group	of	ToggleButtons,	but	the
toggle	buttons	are	not	mutually	exclusive.

To	create	a	group	of	mutually	exclusive	OptionButton	controls,	you	can
put	the	buttons	in	a	Frameon	your	form,	or	you	can	use	the	GroupName
property.



Show	All



Image	control

									

									 									

									

									

Displays	a	picture	on	a	form.

Remarks

The	Image	control	lets	you	display	a	picture	as	part	of	the	data	in	a	form.
For	example,	you	might	use	an	Image	to	display	employee	photographs
in	a	personnel	form.

The	Image	lets	you	crop,	size,	or	zoom	a	picture,	but	does	not	allow	you
to	edit	the	contents	of	the	picture.	For	example,	you	cannot	use	the



Image	to	change	the	colors	in	the	picture,	to	make	the	picture
transparent,	or	to	refine	the	image	of	the	picture.	You	must	use	image
editing	software	for	these	purposes.

The	Image	supports	the	following	file	formats:

*.bmp

*.cur

*.gif

*.ico

*.jpg

*.wmf

Note	You	can	also	display	a	picture	on	a	Label.	However,	a	Label	does
not	let	you	crop,	size,	or	zoom	the	picture.<P>



Label	control

									

									 									

									

									

Displays	descriptive	text.

Remarks

A	Label	control	on	a	form	displays	descriptive	text	such	as	titles,
captions,	pictures,	or	brief	instructions.	For	example,	labels	for	an
address	book	might	include	a	Label	for	a	name,	street,	or	city.

The	default	property	for	a	Label	is	the	Caption	property.

Note	You	can	also	display	a	picture	on	a	Label.	However,	a	Label	does



not	let	you	crop,	size,	or	zoom	the	picture.



Show	All



ListBox	control

									

									 									

									

									

Displays	a	list	of	values	and	lets	you	select	one	or	more.

Remarks

If	the	ListBox	is	bound	to	a	data	source,	the	ListBox	stores	the	selected
value	in	that	data	source.

The	ListBox	can	either	appear	as	a	list	or	as	a	group	of	OptionButton
controls	or	CheckBox	controls.

The	default	property	for	a	ListBox	is	the	Value	property.



The	default	event	for	a	ListBox	is	the	Click	event.

Note			You	can't	drop	text	into	a	drop-down	ListBox.

ListBox	styles

You	can	choose	between	two	presentation	styles	for	a	ListBox.	Each
style	provides	different	ways	for	users	to	select	items	in	the	list.

If	the	style	is	Plain,	each	item	is	on	a	separate	row;	the	user	selects	an
item	by	highlighting	one	or	more	rows.

If	the	style	is	Option,	an	OptionButton	or	CheckBox	appears	at	the
beginning	of	each	row.	With	this	style,	the	user	selects	an	item	by	clicking
the	option	button	or	check	box.	Check	boxes	appear	only	when	the
MultiSelect	property	is	True.



Show	All



MultiPage	control

									

									 									

									

									

Presents	multiple	screens	of	information	as	a	single	set.

Remarks

A	MultiPage	is	useful	when	you	work	with	a	large	amount	of	information
that	can	be	sorted	into	several	categories.	For	example,	use	a	MultiPage
to	display	information	from	an	employment	application.	One	page	might
contain	personal	information	such	as	name	and	address;	another	page
might	list	previous	employers;	a	third	page	might	list	references.	The
MultiPage	lets	you	visually	combine	related	information,	while	keeping



the	entire	record	readily	accessible.

New	pages	are	added	to	the	right	of	the	currently	selected	page	rather
than	adjacent	to	it.

A	MultiPage	is	a	control	that	contains	a	collection	of	one	or	more	pages.

Each	Page	of	a	MultiPage	is	a	form	that	contains	its	own	controls,	and
as	such,	can	have	a	unique	layout.	Typically,	the	pages	in	a	MultiPage
have	tabs	so	the	user	can	select	the	individual	pages.

By	default,	a	MultiPage	includes	two	pages,	called	Page1	and	Page2.
Each	of	these	is	a	Page	object,	and	together	they	represent	the	Pages
collection	of	the	MultiPage.	If	you	add	more	pages,	they	become	part	of
the	same	Pages	collection.

The	default	property	for	a	MultiPage	is	the	Value	property,	which	returns
the	index	of	the	currently	active	Page	in	the	Pages	collection	of	the
MultiPage.

Note	The	MultiPage	control	does	not	support	the	Click	event.



Show	All



OptionButton	control

									

									 									

									

									

Shows	the	selection	status	of	one	item	in	a	group	of	choices.

Remarks

Use	an	OptionButton	to	show	whether	a	single	item	in	a	group	is
selected.	Note	that	each	OptionButton	in	a	Frame	is	mutually	exclusive.

If	an	OptionButton	is	bound	to	a	data	source,	the	OptionButton	can
show	the	value	of	that	data	source	as	either	Yes/No,	True/False,	or
On/Off.	If	the	user	selects	the	OptionButton,	the	current	setting	is	Yes,



True,	or	On.	If	the	user	does	not	select	the	OptionButton,	the	setting	is
No,	False,	or	Off.	For	example,	an	OptionButton	in	an	inventory-tracking
application	might	show	whether	an	item	is	discontinued.	If	the
OptionButton	is	bound	to	a	data	source,	then	changing	the	setting
changes	the	value	of	that	data	source.	A	disabled	OptionButton	is
dimmed	and	does	not	show	a	value.

Depending	on	the	value	of	the	TripleState	property,	an	OptionButton
can	also	have	a	null	value.

You	can	also	use	an	OptionButton	inside	a	group	box	to	select	one	or
more	of	a	group	of	related	items.	For	example,	you	can	create	an	order
form	with	a	list	of	available	items,	with	an	OptionButton	preceding	each
item.	The	user	can	select	a	particular	item	by	checking	the	corresponding
OptionButton.

The	default	property	for	an	OptionButton	is	the	Value	property.



Page	Object

									

									 									

									

									

One	page	of	a	MultiPage	or	a	single	member	of	a	Pages	collection.

Remarks

Each	Page	object	contains	its	own	set	of	controls	and	does	not
necessarily	rely	on	other	pages	in	the	collection	for	information.	A	Page
inherits	some	properties	from	its	container;	the	value	of	each	inherited
property	is	set	by	the	container.

You	can	reference	a	Page	by	its	index	value.	The	index	value	reflects	the



ordinal	position	of	the	Page	within	the	collection.	The	index	of	the	first
Page	in	a	collection	is	0;	the	index	of	the	second	Page	is	1;	and	so	on.

The	default	name	for	the	first	Page	is	Page1.	The	default	name	for	the
second	Page	is	Page2.



ScrollBar	control

									

									 									

									

									

Returns	or	sets	the	value	of	another	control	based	on	the	position	of	the
scroll	box.

Remarks

Requires	VBScript.

A	ScrollBar	is	a	stand-alone	control	you	can	place	on	a	form.	It	is
visually	like	the	scroll	bar	you	see	in	certain	objects	such	as	a	ListBox	or
the	drop-down	portion	of	a	ComboBox.	However,	unlike	the	scroll	bars	in



these	controls,	the	stand-alone	ScrollBar	is	not	an	integral	part	of	any
other	control.

To	use	the	ScrollBar	to	set	or	read	the	value	of	another	control,	you	must
write	code	that	uses	the	ScrollBar's	Value	property.	For	example,	to	use
the	ScrollBar	to	update	the	value	of	a	TextBox,	you	can	write	code	that
reads	the	Value	property	of	the	ScrollBar	and	then	sets	the	Value
property	of	the	TextBox.

The	default	property	for	a	ScrollBar	is	the	Value	property.

Note	To	create	a	horizontal	or	vertical	ScrollBar,	drag	the	sizing	handles
of	the	ScrollBar	horizontally	or	vertically	on	the	form.



SpinButton	control

									

									 									

									

									

Increments	and	decrements	numbers.

Remarks

Requires	VBScript.

Clicking	a	SpinButton	changes	only	the	value	of	the	SpinButton.	You
can	write	code	that	uses	the	SpinButton	to	update	the	displayed	value	of
another	control.	For	example,	you	can	use	a	SpinButton	to	change	the
month,	the	day,	or	the	year	shown	on	a	date.	You	can	also	use	a



SpinButton	to	scroll	through	a	range	of	values	or	a	list	of	items,	or	to
change	the	value	displayed	in	a	text	box.

To	display	a	value	updated	by	a	SpinButton,	you	must	assign	the	value
of	the	SpinButton	to	the	displayed	portion	of	a	control,	such	as	the
Caption	property	of	a	Label	or	the	Text	property	of	a	TextBox.	To	create
a	horizontal	or	vertical	SpinButton,	drag	the	sizing	handles	of	the
SpinButton	horizontally	or	vertically	on	the	form.

The	default	property	for	a	SpinButton	is	the	Value	property.



Tab	Object

									

									 									

									

									

A	Tab	is	an	individual	member	of	a	Tabs	collection.

Remarks

Visually,	a	Tab	object	appears	as	a	rectangle	protruding	from	a	larger
rectangular	area,	or	as	a	button	adjacent	to	a	rectangular	area.

In	contrast	to	a	Page,	a	Tab	does	not	contain	any	controls.	Controls	that
appear	within	the	region	bounded	by	a	TabStrip	are	contained	on	the
form,	as	is	the	TabStrip.



You	can	reference	a	Tab	by	its	index	value.	The	index	value	reflects	the
ordinal	position	of	the	Tab	within	the	collection.	The	index	of	the	first	Tab
in	a	collection	is	0;	the	index	of	the	second	Tab	is	1;	and	so	on.



Show	All



TabStrip	control

									

									 									

									

									

Presents	a	set	of	related	controls	as	a	visual	group.

Remarks

You	can	use	a	TabStrip	to	view	different	sets	of	information	for	related
controls.

A	TabStrip	is	a	control	that	contains	a	collection	of	one	or	more	tabs.

Each	Tab	of	a	TabStrip	is	a	separate	object	that	users	can	select.
Visually,	a	TabStrip	also	includes	a	client	area	that	all	the	tabs	in	the



TabStrip	share.

By	default,	a	TabStrip	includes	two	pages,	called	Tab1	and	Tab2.	Each
of	these	is	a	Tab	object,	and	together	they	represent	the	Tabs	collection
of	the	TabStrip.	If	you	add	more	pages,	they	become	part	of	the	same
Tabs	collection.

For	example,	the	controls	might	represent	information	about	a	daily
schedule	for	a	group	of	individuals,	with	each	set	of	information
corresponding	to	a	different	individual	in	the	group.	Set	the	title	of	each
tab	to	show	one	individual's	name.	Then,	you	can	write	code	that,	after
you	click	a	tab,	updates	the	controls	to	show	information	about	the
person	identified	on	the	tab.

Note	The	TabStrip	is	implemented	as	a	container	of	a	Tabs	collection,
which	in	turn	contains	a	group	of	Tab	objects.	The	TabStrip	control	does
not	support	the	Click	event.

The	default	property	for	a	TabStrip	is	the	SelectedItem	property.



Show	All



TextBox	control

									

									 									

									

									

Displays	information	from	a	user	or	from	an	organized	set	of	data.

Remarks

A	TextBox	is	the	control	most	commonly	used	to	display	information
entered	by	a	user.	Also,	it	can	display	a	set	of	data,	such	as	a	table,
query,	worksheet,	or	a	calculation	result.	If	a	TextBox	is	bound	to	a	data
source,	then	changing	the	contents	of	the	TextBox	also	changes	the
value	of	the	bound	data	source.



Formatting	applied	to	any	piece	of	text	in	a	TextBox	will	affect	all	text	in
the	control.	For	example,	if	you	change	the	font	or	point	size	of	any
character	in	the	control,	the	change	will	affect	all	characters	in	the
control.

The	default	property	for	a	TextBox	is	the	Value	property.

Tips	on	using	text	boxes

The	TextBox	is	a	flexible	control	governed	by	the	following	properties:
Text,	MultiLine,	WordWrap,	and	AutoSize.

Text	contains	the	text	that's	displayed	in	the	text	box.

MultiLine	controls	whether	the	TextBox	can	display	text	as	a	single	line
or	as	multiple	lines.	Newline	characters	identify	where	one	line	ends	and
another	begins.	If	MultiLine	is	False	(the	default	value),	the	text	is
truncated	instead	of	wrapped.

WordWrap	allows	the	TextBox	to	wrap	lines	of	text	that	are	longer	than
the	width	of	the	TextBox	into	shorter	lines	that	fit.	The	default	value	is
True.

If	you	do	not	use	WordWrap,	the	TextBox	starts	a	new	line	of	text	when
it	encounters	a	newline	character	in	the	text.	If	WordWrap	is	turned	off,
you	can	have	text	lines	that	do	not	fit	completely	in	the	TextBox.	The
TextBox	displays	the	portions	of	text	that	fit	inside	its	width	and	truncates
the	portions	of	text	that	do	not	fit.	WordWrap	is	not	applicable	unless
MultiLine	is	True.

AutoSize	controls	whether	the	TextBox	adjusts	to	display	all	of	the	text.
When	using	AutoSize	with	a	TextBox,	the	width	of	the	TextBox	shrinks
or	expands	according	to	the	amount	of	text	in	the	TextBox	and	the	font
size	used	to	display	the	text.	The	default	value	is	False.

AutoSize	works	well	in	the	following	situations:

Displaying	a	caption	of	one	or	more	lines.

Displaying	the	contents	of	a	single-line	TextBox.

Displaying	the	contents	of	a	multiline	TextBox	that	is	read-only	to	the
user.



Note			Avoid	using	AutoSize	with	an	empty	TextBox	that	also	uses	the
MultiLine	and	WordWrap	properties.	When	the	user	enters	text	into	a
TextBox	with	these	properties,	the	TextBox	automatically	sizes	to	a	long
narrow	box	one	character	wide	and	as	long	as	the	line	of	text.



Show	All



ToggleButton	control

									

									 									

									

									

Shows	the	selection	state	of	an	item.

Remarks

Use	a	ToggleButton	to	show	whether	an	item	is	selected.	If	a
ToggleButton	is	bound	to	a	data	source,	the	ToggleButton	shows	the
current	value	of	that	data	source	as	either	Yes/No,	True/False,	On/Off,	or
some	other	choice	of	two	settings.	If	the	user	selects	the	ToggleButton,
the	current	setting	is	Yes,	True,	or	On.	If	the	user	does	not	select	the
ToggleButton,	the	setting	is	No,	False,	or	Off.	If	the	ToggleButton	is



bound	to	a	data	source,	changing	the	setting	changes	the	value	of	that
data	source.	A	disabled	ToggleButton	shows	a	value,	but	is	dimmed	and
does	not	allow	changes	from	the	user	interface.

You	can	also	use	a	ToggleButton	inside	a	Frame	to	select	one	or	more
of	a	group	of	related	items.	For	example,	you	can	create	an	order	form
with	a	list	of	available	items,	with	a	ToggleButton	preceding	each	item.
The	user	can	select	a	particular	item	by	selecting	the	appropriate
ToggleButton.

The	default	property	of	a	ToggleButton	is	the	Value	property.

The	only	event	for	a	ToggleButton	is	the	Click	event.



ActiveControl	Property

									

									 									

Identifies	and	allows	manipulation	of	the	control	that	has	the	focus.

Syntax

object.ActiveControl

The	ActiveControl	property	syntax	has	these	parts:

Part Description
object Required.	A	valid

object.

Remarks

The	ActiveControl	property	is	read-only	and	is	set	when	you	select	a
control	in	the	interface.	You	can	use	ActiveControl	as	a	substitute	for	the
control	name	when	setting	properties	or	calling	methods.



CanPaste	Property

									

									 									

Specifies	whether	the	Clipboard	contains	data	that	the	object	supports.

Syntax

object.CanPaste

The	CanPaste	property	syntax	has	these	parts:

Part Description
object Required.	A	valid

object.

Return	Values

The	CanPaste	property	return	values	are:

Value Description



True The	object	can	receive	information	pasted	from
the	Clipboard.

False The	object	cannot	receive	information	pasted
from	the	Clipboard.

Remarks

CanPaste	is	read-only.

If	the	Clipboard	data	is	in	a	format	that	the	object	does	not	support,	the
CanPaste	property	is	False.	For	example,	if	you	try	to	paste	a	bitmap
into	an	object	that	only	supports	text,	CanPaste	will	be	False.



CanRedo	Property

									

									 									

Indicates	whether	the	most	recent	Undo	can	be	reversed.

Syntax

object.CanRedo

The	CanRedo	property	syntax	has	these	parts:

Part Description
object Required.	A	valid

object.

Return	Values

The	CanRedo	property	syntax	return	values	are:

Value Description



True The	most	recent	Undo	can	be
reversed.

False The	most	recent	Undo	is	irreversible.

Remarks

CanRedo	is	read-only.

To	Redo	an	action	means	to	reverse	an	Undo;	it	does	not	necessrily
mean	to	repeat	the	last	user	action.



CanUndo	Property

									

									 									

Indicates	whether	the	last	user	action	can	be	undone.

Syntax

object.CanUndo

The	CanUndo	property	syntax	has	these	parts:

Part Description
object Required.	A	valid

object.

Return	Values

The	CanUndo	property	syntax	return	values	are:

Value Description



True The	most	recent	user	action	can	be	undone.
False The	most	recent	user	action	cannot	be

undone.

Remarks

CanUndo	is	read-only.

Many	user	actions	can	be	undone	with	the	Undo	command.	The
CanUndo	property	indicates	whether	the	most	recent	action	can	be
undone.



CurLine	Property

									

									 									

Specifies	the	current	line	of	a	control.

Syntax

object.CurLine	[=	Long]

The	CurLine	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	Specifies	the	current	line	of	a

control.

Remarks

The	current	line	of	a	control	is	the	line	that	contains	the	insertion	point.
The	number	of	the	first	line	is	0.



The	CurLine	property	is	valid	when	the	control	has	focus.



Show	All



IMEMode	Property

									

									 									

This	feature	is	available	in	the	Simplified	Chinese,	Traditional	Chinese,
Korean,	and	Japanese	language	versions	of	Microsoft	Office.

Specifies	the	default	run-time	mode	of	the	Input	Method	Editor	(IME)	for	a
control.	This	property	applies	only	to	applications	written	for	Asian
languages	and	is	ignored	in	other	applications.

Syntax

object.IMEMode	[=	fmIMEMode]

The	IMEMode	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
fmIMEMode Optional.	The	mode	of	the	Input	Method	Editor

(IME).



Settings

The	settings	for	fmIMEMode	are:

Value Description
0 Does	not	control	IME	(default).
1 IME	on.
2 IME	off.	English	mode.
3 IME	off.	User	can’t	turn	on	IME	by

keyboard.
4 IME	on	with	Full-width	Hiragana	mode.
5 IME	on	with	Full-width	Katakana	mode.
6 IME	on	with	Half-width	Katakana	mode.
7 IME	on	with	Full-width	Alphanumeric	mode.
8 IME	on	with	Half-width	Alphanumeric	mode.
9 IME	on	with	Full-width	Hangul	mode.
10 IME	on	with	Half-width	Hangul	mode.

A	setting	of	0	indicates	that	the	mode	of	the	IME	does	not	change	when
the	control	receives	focus	at	run	time.	For	any	other	value,	the	mode	of
the	IME	is	set	to	the	value	specified	by	the	IMEMode	property	when	the
control	receives	focus	at	run	time.



ListRows	Property

									

									 									

Specifies	the	maximum	number	of	rows	to	display	in	the	list.

Syntax

object.ListRows	[=	Long]

The	ListRows	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	An	integer	indicating	the	maximum

number	of	rows.	The	default	value	is	8.

Remarks

If	the	number	of	items	in	the	list	exceeds	the	value	of	the	ListRows
property,	a	scroll	bar	appears	at	the	right	edge	of	the	list-box	portion	of



the	combo	box.



VerticalScrollBarSide	Property

									

									 									

Specifies	whether	a	vertical	scroll	bar	appears	on	the	right	or	left	side	of	a
frame.

Syntax

object.VerticalScrollBarSide	[=	VerticalScrollBarSide]

The	VerticalScrollBarSide	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
VerticalScrollBarSideOptional.	Where	the	scroll	bar	should	appear.

Settings

Value Description
0 Puts	the	scroll	bar	on	the	right	side



(default).
1 Puts	the	scroll	bar	on	the	left	side.



Zoom	Property

									

									 									

Specifies	how	much	to	change	the	size	of	a	displayed	object.

Syntax

object.Zoom	[=	Integer]

The	Zoom	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Integer The	percentage	to	increase	or	decrease	the

displayed	image.

Remarks

The	value	of	the	Zoom	property	specifies	a	percentage	of	image
enlargement	or	reduction	by	which	an	image	display	should	change.



Values	from	10	to	400	are	valid.	The	value	specified	is	a	percentage	of
the	object’s	original	size;	thus,	a	setting	of	400	means	you	want	to
enlarge	the	image	to	four	times	its	original	size	(or	400	percent),	while	a
setting	of	10	means	you	want	to	reduce	the	image	to	one-tenth	of	its
original	size	(or	10	percent).



Show	All



Create	an	instant	workgroup	solution	using	public	folders
By	using	custom	views	in	a	public	folder,	you	can	take	an	existing	item,
such	as	a	contact,	and	turn	it	into	a	workgroup	form	from	which	any	user
of	the	public	folder	can	get	information	or	to	which	they	can	add	data.
With	this	method,	you	create	an	appointment,	task,	or	contact	in	a	public
folder,	create	a	custom	view	for	the	information	in	the	folder,	and	then
give	permission	to	those	who	you	want	to	use	the	folder.



Click	a	step	below	to	begin:
Step	1:	Create	a	public	folder

Step	2:	Create	an	Outlook	item	in	a	public	folder

Step	3:	Create	and	use	a	custom	view	in	a	public	folder



Show	All



Create	custom	forms	by	using	VBScript
Microsoft	VBScript	is	a	subset	of	Visual	Basic	for	Applications.	You	can
use	VBScript	to	create	procedures	that	control	Microsoft	Outlook	folders,
objects,	items,	and	properties.	VBScript	in	Outlook	requires	a	special
object	syntax	that	has	some	differences	from	referencing	objects	in
Visual	Basic	for	Applications.

Learn	about	the	Outlook	object	model.

You	can	choose	the	Outlook	item	on	which	to	base	your	custom	form.

You	can	extend	Outlook	forms	by	using	custom	controls	from	the	Control
Toolbox.	Outlook	forms	can	use	most	of	the	properties	and	methods	that
come	with	the	controls.	Since	controls	cannot	store	values,	to	store	the
value	you	need	to	bind	the	control	to	an	Outlook	field.

The	Outlook	object	browser	displays	the	classes,	properties,	methods,
events,	and	constants	available	from	the	Outlook	object	library.	The
object	browser	lets	you	view	and	use	objects	in	the	Microsoft	Script
Editor	and	obtain	information	about	the	syntax	for	using	the	object.

Learn	about	viewing	and	using	the	object	browser.

The	Microsoft	Script	Debugger	provides	you	with	a	comprehensive
debugging	environment	for	testing	and	correcting	errors	in	the	VBScript
code	for	your	forms.

Learn	about	the	Script	Debugger.



About	the	object	environment
There	are	two	ways	to	write	code	for	Outlook:

From	outside	the	application,	such	as	by	using	Microsoft	Visual	Basic	or
Microsoft	Visual	Basic	for	Applications	in	Microsoft	Excel	or	another
application.

From	inside	the	application,	such	as	by	using	Visual	Basic	for
Applications	or	by	using	VBScript	with	an	Outlook	form.

Learn	more	about	the	differences	between	using	Visual	Basic	for
Applications	and	VBScript



The	major	components	of	the	Outlook	object	model	are:

Application The	top	of	the	object	hierarchy	that	represents	the	entire	application.	Enables	you	to	reference	other	objects
in	the	application	and	create	items	and	objects.	For	example,	this	code	creates	an	appointment	in	Outlook
Visual	Basic	for	Applications	or	VBScript:

Application.CreateItem(1).Display

NameSpace Represents	the	MAPI	message	store	where	all	the	Outlook	items	are	stored.	Provides	methods	for	logging
on	and	off	Outlook	and	for	referencing	the	default	folders	such	as	Mailbox,	Inbox,	Contacts,	and	others.	For
example,	this	code	references	the	active	user	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.GetNameSpace("MAPI").CurrentUser

Explorer Represents	the	Outlook	window.	Enables	you	to	show,	return,	and	close	the	active	window.	For	example,	this
code	shows	the	active	Outlook	window	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.ActiveExplorer.Display

Folders There	are	two	folder	objects,	the	Folders	collection	object	that	enables	you	to	work	with	collections	of	folders
and	the	MAPIFolder	object	that	enables	you	to	work	with	a	single	folder.	For	example,	this	code	shows	the
collection	of	folders	named	Personal	Folders	in	Outlook	Visual	Basic	for	Applications	or	VBScript:

Application.GetNameSpace("MAPI").Folders("Personal	Folders")

Outlook	items There	are	two	item	objects,	the	Items	collection	object	that	enables	you	to	work	with	items	within	a	folder	and
the	item	objects	that	represents	the	standard	item	types	in	Outlook,	such	as	
message.	In	VBScript,	the	active	item	is	assumed,	so	you	do	not	need	to	enter	the	object	model	to	reference
it.	For	example,	this	code	sets	the	Subject	field	of	the	active	message	in	VBScript:

Item.Subject	=	"New	Subject"

Inspector References	forms.	Use	to	show	forms	and	pages.	For	example,	this	code	shows	the	
in	Outlook	Visual	Basic	for	Applications	or	VBScript:



Application.ActiveInspector.SetCurrentFormPage("Options")

AddressEntry Each	AddressEntry	object	in	the	AddressEntries	collection	holds	information	that	represents	a	person	or
process	to	which	the	messaging	system	can	deliver	messages.

AddressList The	AddressList	object	is	an	address	book	that	contains	a	set	of	
hierarchy	is	available	through	the	parent	AddressLists	collection.

Exception The	Exception	object	holds	information	about	one	instance	of	an	
exception	to	a	recurring	series.	Unlike	most	of	the	other	Outlook	objects,	the	
object.

Control There	are	two	control	objects,	the	Controls	collection	object	that	enables	you	to	work	with	all	the	controls	on
a	page	and	the	specific	control	object	that	enables	you	to	work	with	a	control.	For	example,	this	code	sets	the
Caption	of	a	CommandButton	control	named	"CommandButton1"	on	a	page	named	"Test"	in	VBScript:

Item.GetInspector.ModifiedFormPages("Test").Controls("CommandButton1").Caption	=	"New	Caption"



Show	All



Click	Event

									

									 									

The	Click	event	occurs	only	if	it	has	been	defined	for	a	control	in	the
Script	Editor.

The	TabStrip	and	MultiPage	controls	do	not	support	the	Click	event.
However,	individual	the	Page	objects	of	the	MultiPage	control	do	support
the	click	event.

ScrollBars	and	SpinButtons	do	not	support	the	Click	event	but	you	can
bind	them	to	fields	and	use	the	CustomPropertyChange	event.

The	Click	event	occurs	in	one	of	two	cases:

The	user	clicks	a	control	with	the	mouse.

The	user	definitively	selects	a	value	for	a	control	with	more	than	one
possible	value.

Syntax



Sub	object_Click(	)

The	Click	event	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.

Example:

Sub	CommandButton1_Click()
				MsgBox	"You	just	clicked	my	button!	"
End	Sub

Remarks

Of	the	two	cases	where	the	Click	event	occurs,	the	first	case	applies	to
the	CommandButton,	Frame,	Image,	Label,	and	Page.

The	second	case	applies	to	the	CheckBox,	ComboBox,	ListBox,	and
ToggleButton.	It	also	applies	to	an	OptionButton	when	the	value
changes	to	True.

The	following	are	examples	of	actions	that	initiate	the	Click	event:

Clicking	a	blank	area	of	a	form	or	a	disabled	control	(other	than	a	list	box)
on	the	form.

Clicking	a	CommandButton.

Pressing	the	SPACEBAR	when	a	CommandButton	has	the	focus.

Clicking	a	control	with	the	left	mouse	button	(left-clicking).

Pressing	ENTER	on	a	form	that	has	a	command	button	whose	Default
property	is	set	to	True,	as	long	as	no	other	command	button	has	the
focus.

Pressing	ESC	on	a	form	that	has	a	command	button	whose	Cancel
property	is	set	to	True,	as	long	as	no	other	command	button	has	the
focus.

Pressing	a	control's	accelerator	key.



For	some	controls,	the	Click	event	occurs	when	the	Value	property
changes.	However,	using	the	PropertyChange	or
CustomPropertyChange	event	is	the	preferred	technique	for	detecting	a
new	value	for	a	property.	The	following	are	examples	of	actions	that
initiate	the	Click	event	due	to	assigning	a	new	value	to	a	control:

Clicking	a	CheckBox	or	ToggleButton,	pressing	the	SPACEBAR	when
one	of	these	controls	has	the	focus,	pressing	the	accelerator	key	for	one
of	these	controls,	or	changing	the	value	of	the	control	in	code.

Changing	the	value	of	an	OptionButton	to	True.	Setting	one
OptionButton	in	a	group	to	True	sets	all	other	buttons	in	the	group	to
False,	but	the	Click	event	occurs	only	for	the	button	whose	value
changes	to	True.

Selecting	a	value	for	a	ComboBox	or	ListBox	so	that	it	unquestionably
matches	an	item	in	the	control's	drop-down	list.	For	example,	if	a	list	is
not	sorted,	the	first	match	for	characters	typed	in	the	edit	region	may	not
be	the	only	match	in	the	list,	so	choosing	such	a	value	does	not	initiate
the	Click	event.	In	a	sorted	list,	you	can	use	entry-matching	to	ensure
that	a	selected	value	is	a	unique	match	for	text	the	user	types.

The	Click	event	is	not	initiated	when	Value	is	set	to	Null.

Note	Left-clicking	changes	the	value	of	a	control,	thus	it	initiates	the
Click	event.	Right-clicking	does	not	change	the	value	of	the	control,	so	it
does	not	initiate	the	Click	event.

Also	Note	If	you	bind	a	ListBox,	ComboBox,	OptionButton,	or
CheckBox	to	a	field,	then	the	Click	event	does	not	fire.	You	need	to	use
the	PropertyChange	or	CustomPropertyChange	event	to	detect	the
change	via	code.

Example:

Sub	Item_PropertyChange(ByVal	Name)
Set	MyListBox	=	Item.GetInspector.ModifiedFormPages("Message").Controls("ListBox1")
Select	Case	Name
				Case	"Mileage"
								Item.CC	=	MyListBox.Value



								Item.Subject	=	MyListBox.Value
				Case	Else
End	Select
End	Sub



Show	All



How	to	use	the	Outlook	object	browser
To	view	the	Outlook	object	browser:

1	Open	a	form	in	design	mode.

2	In	the	Form	menu,	click	View	Code	to	view	the	Script	Editor.

3	In	the	Script	Editor,	click	Object	Browser	on	the	Script	menu	or	press
F2.

All	of	the	available	Outlook	objects	are	listed	in	the	Classes	pane	of	the
object	browser	in	alphabetical	order.

To	view	the	members	of	an	object,	select	the	object	in	the	Classes	pane.
The	members	of	this	object	appear	in	alphabetical	order	in	the	Members
of	pane.	The	heading	at	the	top	of	this	pane	will	reflect	the	name	of	the
object	that	you	select.	For	example,	if	you	select	the	AppointmentItem
object	in	the	Classes	pane,	the	heading	of	the	Members	of	pane	will
appear	as	Members	of	AppointmentItem.

The	details	pane	shows	the	definition	of	the	selected	member.	This	text	is
read-only	and	cannot	be	copied	and	pasted	into	the	Script	Editor.

To	insert	an	item	from	the	object	browser	into	the	Script	Editor:

1	In	the	Script	Editor,	position	your	cursor	at	the	location	for	insertion.

2	Select	the	desired	object	in	the	Classes	pane.

3	Select	the	desired	member	of	this	object	in	the	Members	of	pane.

4	Click	the	Insert	button.

Note	The	Insert	button	remains	unavailable	until	a	member	of	the	object
is	selected.



Show	All



How	to	use	the	Outlook	script	debugger
To	use	the	script	debugger,	open	a	form	in	design	mode.

To	add	VBScript	to	the	form,	on	the	Form	menu,	click	on	View	Code.	In
the	Script	Editor	window,	add	the	necessary	VBScript	for	your	form.

For	more	information	about	adding	VBScript	to	the	form,	click	here	

On	the	Form	menu,	click	Run	This	Form.

While	your	form	is	in	run	mode,	on	the	Tools	menu,	select	Forms	and
click	Script	Debugger.

You	can	also	use	the	Stop	statement	in	code	to	launch	the	debugger.

Note	If	there	is	no	VBScript	for	this	form,	the	Script	Debugger	menu
item	will	be	unavailable.

The	VBScript	for	this	form	will	appear	in	a	read-only	window.	You	cannot
change	text	in	this	window.

On	the	Help	menu	of	the	Microsoft	Script	Debugger,	select	Help	Topics
for	more	detailed	information	about:

Debugging	scripts

Viewing	source	code

Controlling	program	execution

Viewing	and	changing	values

Viewing	and	controlling	program	flow



Show	All



TripleState	Property

									

									 									

Determines	whether	a	user	can	specify,	from	the	user	interface,	the	Null
state	for	a	CheckBox	or	ToggleButton.

Syntax

object.TripleState	[=	Boolean]

The	TripleState	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	supports	the	Null

state.

Settings

The	settings	for	Boolean	are:



Value Description
True The	button	clicks	through	three	states.
False The	button	only	supports	True	and	False

(default).

Remarks

Although	the	TripleState	property	exists	on	the	OptionButton,	the
property	does	not	affect	the	action	of	the	control.	Regardless	of	the	value
of	TripleState,	you	cannot	set	the	control	to	Null	through	the	user
interface.

When	the	TripleState	property	is	True,	a	user	can	choose	from	the
values	of	Null,	True,	and	False.	The	null	value	is	displayed	as	a	shaded
button.

When	TripleState	is	False,	the	user	can	choose	either	True	or	False.

A	control	set	to	Null	does	not	initiate	the	Click	event.

Regardless	of	the	property	setting,	the	Null	value	can	always	be
assigned	programmatically	to	an	OptionButton,	CheckBox	or
ToggleButton,	causing	that	control	to	appear	shaded.



Show	All



Value	Property

									

									 									

Specifies	the	state	or	content	of	a	given	control.

Syntax

object.Value	[=	Variant]

The	Value	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Variant Optional.	The	state	or	content	of	the

control.

Settings

Control Description
CheckBox An	integer	value	indicating	whether	the	item



is	selected:
	 Null			Indicates	the	item	is	in	a	null	state,

neither	selected	nor	cleared.
	 –1			True.	Indicates	the	item	is	selected.
	 0			False.	Indicates	the	item	is	cleared.
OptionButton Same	as	CheckBox.
ToggleButton Same	as	CheckBox.
ScrollBar An	integer	between	the	values	specified	for

the	Max	and	Min	properties.
SpinButton Same	as	ScrollBar.
ComboBox,	ListBox The	value	in	the	BoundColumn	of	the

currently	selected	rows.
CommandButton Always	False.
MultiPage An	integer	indicating	the	currently	active

page.
	 Zero	(0)	indicates	the	first	page.	The

maximum	value	is	one	less	than	the
number	of	pages.

TextBox The	text	in	the	edit	region.

Remarks

For	a	CommandButton,	setting	the	Value	property	to	True	in	a	macro	or
procedure	initiates	the	button's	Click	event.

For	a	ComboBox,	changing	the	contents	of	Value	does	not	change	the
value	of	BoundColumn.	To	add	or	delete	entries	in	a	ComboBox,	you
can	use	the	AddItem	or	RemoveItem	method.

For	a	TextBox,	any	value	you	assign	to	the	Text	property	is	also
assigned	to	the	Value	property.

Value	cannot	be	used	with	a	multi-select	ListBox.



Show	All



BoundColumn	Property

									

									 									

Identifies	the	source	of	data	in	a	multicolumn	ComboBox	or	ListBox.

Syntax

object.BoundColumn	[=	Variant]

The	BoundColumn	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Variant Optional.	Indicates	how	the	BoundColumn	value	is

selected.

Settings

The	settings	for	Variant	are:



Value Description
0 Assigns	the	value	of	the	ListIndex	property	to	the

control.
1	or	greater Assigns	the	value	from	the	specified	column	to	the

control.	Columns	are	numbered	from	1	when	using
this	property	(default).

Remarks

When	the	user	chooses	a	row	in	a	multicolumn	ListBox	or	ComboBox,
the	BoundColumn	property	identifies	which	item	from	that	row	to	store
as	the	value	of	the	control.	For	example,	if	each	row	contains	8	items	and
BoundColumn	is	3,	the	system	stores	the	information	in	the	third	column
of	the	currently-selected	row	as	the	value	of	the	object.

You	can	display	one	set	of	data	to	users	but	store	different,	associated
values	for	the	object	by	using	the	BoundColumn	and	the	TextColumn
properties.	TextColumn	identifies	the	column	of	data	displayed	in	a
ComboBox	or	ListBox;	BoundColumn	identifies	the	column	of
associated	data	values	stored	for	the	control.	For	example,	you	could	set
up	a	multicolumn	ListBox	that	contains	the	names	of	holidays	in	one
column	and	dates	for	the	holidays	in	a	second	column.	To	present	the
holiday	names	to	users,	specify	the	first	column	as	the	TextColumn.	To
store	the	dates	of	the	holidays,	specify	the	second	column	as	the
BoundColumn.

If	the	control	is	bound	to	a	data	source,	the	value	in	the	column	specified
by	BoundColumn	is	stored	in	the	data	source	named	in	the
ControlSource	property.

The	ListIndex	value	retrieves	the	number	of	the	selected	row.	For
example,	if	you	want	to	know	the	row	of	the	selected	item,	set
BoundColumn	to	0	to	assign	the	number	of	the	selected	row	as	the
value	of	the	control.	Be	sure	to	retrieve	a	current	value,	rather	than
relying	on	a	previously	saved	value,	if	you	are	referencing	a	list	whose
contents	might	change.

The	Column,	List,	and	ListIndex	properties	all	use	zero-based



numbering.	That	is,	the	value	of	the	first	item	(column	or	row)	is	zero;	the
value	of	the	second	item	is	one,	and	so	on.	This	means	that	if
BoundColumn	is	set	to	3,	you	could	access	the	value	stored	in	that
column	using	the	expression	Column(2).



Style	Property

									

									 									

For	ComboBox,	specifies	how	the	user	can	choose	or	set	the	control's
value.	For	MultiPage	and	TabStrip,	identifies	the	style	of	the	tabs	on	the
control.

Syntax

object.Style	[=Style]

The	Style	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Style Optional.	Specifies	how	a	user	sets	the	value	of	a

ComboBox.

Settings



The	settings	for	ComboBox	are:

Value Description
0 The	ComboBox	behaves	as	a	drop-down	combo

box.	The	user	can	type	a	value	in	the	edit	region	or
select	a	value	from	the	drop-down	list	(default).

2 The	ComboBox	behaves	as	a	list	box.	The	user
must	choose	a	value	from	the	list.

The	settings	for	MultiPage	and	TabStrip	are::

Value Description
0 Displays	tabs	on	the	tab	bar

(default).
1 Displays	buttons	on	the	tab	bar.
2 Does	not	display	the	tab	bar.



Show	All



GroupName	Property

									

									 									

Creates	a	group	of	mutually	exclusive	OptionButton	controls.

Syntax

object.GroupName	[=	String]

The	GroupName	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	OptionButton.
String Optional.	The	name	of	the	group	that	includes	the

OptionButton.	Use	the	same	setting	for	all	buttons
in	the	group.	The	default	setting	is	an	empty	string.

Remarks

To	create	a	group	of	mutually	exclusive	OptionButton	controls,	you	can



put	the	buttons	in	a	Frame	on	your	form,	or	you	can	use	the	GroupName
property.	GroupName	is	more	efficient	for	the	following	reasons:

You	do	not	have	to	include	a	Frame	for	each	group.	By	not	using	a
Frame,	you	reduce	the	number	of	controls	on	the	form,	and	in	turn,
improve	performance	and	reduce	the	size	of	the	form.

You	have	more	design	flexibility.	If	you	use	a	Frame	to	create	the	group,
all	the	buttons	must	be	inside	the	Frame.	If	you	want	more	than	one
group,	you	must	have	one	Frame	for	each	group.	However,	if	you	use
GroupName	to	create	the	group,	the	group	can	include	option	buttons
anywhere	on	the	form.	If	you	want	more	than	one	group,	specify	a	unique
name	for	each	group;	you	can	still	place	the	individual	controls	anywhere
on	the	form.

You	can	create	buttons	with	transparent	backgrounds,	which	can	improve
the	visual	appearance	of	your	form.	The	Frame	is	not	a	transparent
control.

Regardless	of	which	method	you	use	to	create	the	group	of	buttons,
clicking	one	button	in	a	group	sets	all	other	buttons	in	the	same	group	to
False.	All	option	buttons	with	the	same	GroupName	within	a	single
container	are	mutually	exclusive.	You	can	use	the	same	group	name	in
two	containers,	but	doing	so	creates	two	groups	(one	in	each	container)
rather	than	one	group	that	includes	both	containers.

For	example,	assume	your	form	includes	some	option	buttons	and	a
MultiPage	that	also	includes	option	buttons.	The	option	buttons	on	the
MultiPage	are	one	group	and	the	buttons	on	the	form	are	another	group.
The	two	groups	do	not	affect	each	other.	Changing	the	setting	of	a	button
on	the	MultiPage	does	not	affect	the	buttons	on	the	form.



Caption	Property

									

									 									

Descriptive	text	that	appears	on	an	object	to	identify	or	describe	it.

Syntax

object.Caption	[=	String]

The	Caption	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
String Optional.	A	string	expression	that	evaluates	to	the

text	displayed	as	the	caption.

Settings

The	default	setting	for	a	control	is	a	unique	name	based	on	the	type	of
control.	For	example,	CommandButton1	is	the	default	caption	for	the	first



command	button	in	a	form.

Remarks

The	text	identifies	or	describes	the	object	with	which	it	is	associated.	For
buttons	and	labels,	the	Caption	property	specifies	the	text	that	appears
in	the	control.	For	Page	and	Tab	objects,	it	specifies	the	text	that	appears
on	the	tab.	For	the	Explorer	object,	it	specifies	the	text	that	appears	in
the	explorer’s	title	bar.

If	a	control's	caption	is	too	long,	the	caption	is	truncated.	If	a	form's
caption	is	too	long	for	the	title	bar,	the	title	is	displayed	with	an	ellipsis.

The	ForeColor	property	of	the	control	determines	the	color	of	the	text	in
the	caption.

Tip	If	a	control	has	both	the	Caption	and	AutoSize	properties,	setting
AutoSize	to	True	automatically	adjusts	the	size	of	the	control	to	frame
the	entire	caption.



Show	All



MultiSelect	Property

									

									 									

Indicates	whether	the	object	permits	multiple	selections.

Syntax

object.MultiSelect	[=MultiSelect]

The	MultiSelect	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
MultiSelect Optional.	The	selection	mode	that	the	control

uses.

Settings

The	settings	for	MultiSelect	are:



Value Description
0 Only	one	item	can	be	selected	(default).
1 Pressing	the	SPACEBAR	or	clicking	selects	or

deselects	an	item	in	the	list.
2 Pressing	SHIFT	and	clicking	the	mouse,	or

pressing	SHIFT	and	one	of	the	arrow	keys,	extends
the	selection	from	the	previously	selected	item	to
the	current	item.	Pressing	CTRL	and	clicking	the
mouse	selects	or	deselects	an	item.

Remarks

When	the	MultiSelect	property	is	set	to	Extended	or	Simple,	you	must
use	the	list	box's	Selected	property	to	determine	the	selected	items.
Also,	the	Value	property	of	the	control	is	always	Null.

The	ListIndex	property	returns	the	index	of	the	row	with	the	keyboard
focus.<P>



Pages	Collection

									

									 									

									

									

A	Pages	collection	includes	all	the	pages	of	a	MultiPage.

Remarks

Each	Pages	collection	provides	the	features	to	manage	the	number	of
pages	in	the	collection	and	to	identify	the	page	that	is	currently	in	use.

The	default	value	of	the	Pages	collection	identifies	the	current	Page	of	a
collection.

You	can	reference	a	Page	by	its	index	value.	The	index	value	reflects	the



ordinal	position	of	the	Page	within	the	collection.	The	index	of	the	first
Page	in	a	collection	is	0;	the	index	of	the	second	Page	is	1;	and	so	on.



Text	Property

									

									 									

Returns	or	sets	the	text	in	a	TextBox.	Changes	the	selected	row	in	a
ComboBox	or	ListBox.

Syntax

object.Text	[=	String]

The	Text	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
String Optional.	A	string	expression	specifying	text.	The

default	value	is	a	zero-length	string	("").

Remarks

For	a	TextBox,	any	value	you	assign	to	the	Text	property	is	also



assigned	to	the	Value	property.

For	a	ComboBox,	you	can	use	Text	to	update	the	value	of	the	control.	If
the	value	of	Text	matches	an	existing	list	entry,	the	value	of	the	ListIndex
property	(the	index	of	the	current	row)	is	set	to	the	row	that	matches
Text.	If	the	value	of	Text	does	not	match	a	row,	ListIndex	is	set	to	–1.

For	a	ListBox,	the	value	of	Text	must	match	an	existing	list	entry.
Specifying	a	value	that	does	not	match	an	existing	list	entry	causes	an
error.

When	the	Text	property	of	a	ComboBox	changes	(such	as	when	a	user
types	an	entry	into	the	control),	the	new	text	is	compared	to	the	column	of
data	specified	by	TextColumn.

You	cannot	use	Text	to	change	the	value	of	an	entry	in	a	ComboBox	or
ListBox;	use	the	Column	or	List	property	for	this	purpose.

The	ForeColor	property	determines	the	color	of	the	text.



Tabs	Collection

									

									 									

									

									

A	Tabs	collection	includes	all	Tabs	of	a	TabStrip.

Remarks

Each	Tabs	collection	provides	the	features	to	manage	the	number	of	tabs
in	the	collection	and	to	identify	the	tab	that	is	currently	in	use.

The	default	value	of	the	Tabs	collection	identifies	the	current	Tab	of	a
collection.

You	can	reference	a	Tab	by	its	index	value.	The	index	value	reflects	the



ordinal	position	of	the	Tab	within	the	collection.	The	index	of	the	first	Tab
in	a	collection	is	0;	the	index	of	the	second	Tab	is	1;	and	so	on.



SelectedItem	Property

									

									 									

Returns	the	currently	selected	Tab	or	Page	object.

Syntax

object.SelectedItem

The	SelectedItem	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	TabStrip	or

MultiPage.

Remarks

The	SelectedItem	property	is	read-only.	Use	SelectedItem	to
programmatically	control	the	currently	selected	Tab	or	Page	object.	For
example,	you	can	use	SelectedItem	to	assign	values	to	properties	of	a



Tab	or	Page	object.



Show	All



MultiLine	Property

									

									 									

Specifies	whether	a	control	can	accept	and	display	multiple	lines	of	text.

Syntax

object.MultiLine	[=	Boolean]

The	MultiLine	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	supports	more	than

one	line	of	text.

Settings

The	settings	for	Boolean	are:



Value Description
True The	text	is	displayed	across	multiple	lines

(default).
False The	text	is	not	displayed	across	multiple	lines.

Remarks

A	multiline	TextBox	allows	absolute	line	breaks	and	adjusts	its	quantity	of
lines	to	accommodate	the	amount	of	text	it	holds.	If	needed,	a	multiline
control	can	have	vertical	scroll	bars.

A	single-line	TextBox	doesn't	allow	absolute	line	breaks	and	doesn't	use
vertical	scroll	bars.

For	controls	that	support	the	MultiLine	property	as	well	as	the
WordWrap	property,	WordWrap	is	ignored	when	MultiLine	is	False.

Single-line	controls	ignore	the	value	of	the	WordWrap	property.

Note			If	you	change	MultiLine	to	False	in	a	multiline	TextBox,	all	the
characters	in	the	TextBox	will	be	combined	into	one	line,	including	non-
printing	characters	(such	as	carriage	returns	and	new-lines).

The	EnterKeyBehavior	and	MultiLine	properties	are	closely	related.
The	EnterKeyBehavior	values	of	True	and	False	only	apply	if	MultiLine
is	True.	If	MultiLine	is	False,	pressing	ENTER	always	moves	the	focus
to	the	next	control	in	the	tab	order	regardless	of	the	value	of
EnterKeyBehavior.

The	effect	of	pressing	CTRL+ENTER	also	depends	on	the	value	of
MultiLine.	If	MultiLine	is	True,	pressing	CTRL+ENTER	creates	a	new
line	regardless	of	the	value	of	EnterKeyBehavior.	If	MultiLine	is	False,
pressing	CTRL+ENTER	has	no	effect.

The	TabKeyBehavior	and	MultiLine	properties	are	closely	related.	The
values	described	above	only	apply	if	MultiLine	is	True.	If	MultiLine	is
False,	pressing	TAB	always	moves	the	focus	to	the	next	control	in	the
tab	order	regardless	of	the	value	of	TabKeyBehavior.

The	effect	of	pressing	CTRL+TAB	also	depends	on	the	value	of



MultiLine.	If	MultiLine	is	True,	pressing	CTRL+TAB	creates	a	new	line
regardless	of	the	value	of	TabKeyBehavior.	If	MultiLine	is	False,
pressing	CTRL+TAB	has	no	effect.



WordWrap	Property

									

									 									

Indicates	whether	the	contents	of	a	control	automatically	wrap	at	the	end
of	a	line.

Syntax

object.WordWrap	[=	Boolean]

The	WordWrap	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	expands	to	fit	the

text.

Settings

The	settings	for	Boolean	are:



Value Description
True The	text	wraps

(default).
False The	text	does	not	wrap.

Remarks

For	controls	that	support	the	MultiLine	property	as	well	as	the
WordWrap	property,	WordWrap	is	ignored	when	MultiLine	is	False.



AutoSize	Property

									

									 									

Specifies	whether	an	object	automatically	resizes	to	display	its	entire
contents.

Syntax

object.AutoSize	[=	Boolean]

The	AutoSize	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Whether	the	control	is

resized.

Settings

The	settings	for	Boolean	are:



Value Description
True Automatically	resizes	the	control	to	display	its	entire

contents.
False Keeps	the	size	of	the	control	constant.	Contents	are

clipped	when	they	exceed	the	area	of	the	control
(default).

Remarks

For	controls	with	captions,	the	AutoSize	property	specifies	whether	the
control	automatically	adjusts	to	display	the	entire	caption.

For	controls	without	captions,	this	property	specifies	whether	the	control
automatically	adjusts	to	display	the	information	stored	in	the	control.	In	a
ComboBox,	for	example,	setting	AutoSize	to	True	automatically	sets
the	width	of	the	display	area	to	match	the	length	of	the	current	text.

For	a	single-line	TextBox,	setting	AutoSize	to	True	automatically	sets
the	width	of	the	display	area	to	the	length	of	the	text	in	the	text	box.

For	a	multiline	TextBox	that	contains	no	text,	setting	AutoSize	to	True
automatically	displays	the	text	as	a	column.	The	width	of	the	text	column
is	set	to	accommodate	the	widest	letter	of	that	font	size.	The	height	of	the
text	column	is	set	to	display	the	entire	text	of	the	TextBox.

For	a	multiline	TextBox	that	contains	text,	setting	AutoSize	to	True
automatically	enlarges	the	TextBox	vertically	to	display	the	entire	text.
The	width	of	the	TextBox	does	not	change.

Note			If	you	manually	change	the	size	of	a	control	while	AutoSize	is
True,	the	manual	change	overrides	the	size	previously	set	by	AutoSize.



Show	All



Step	1:	Create	a	public	folder
To	create	a	public	folder,	you	must	have	permission	to	create	folders	in
an	existing	public	folder.	For	information	about	how	to	obtain	permission,
see	your	administrator.

1.	 On	the	File	menu,	select	New,	and	then	click	Folder.
(CTRL+SHIFT+E)

2.	 In	the	Name	box,	enter	a	name	for	the	folder.

3.	 In	the	Folder	contains	box,	click	the	type	of	item	that	you	want
the	folder	to	contain.	A	folder	can	only	contain	one	type	of	item.

4.	 Click	the	Select	Folder	button,	and	then	click	the	public	folder	in
which	you	want	your	new	public	folder	to	appear.

5.	 If	you	do	not	want	to	add	a	Shortcut	for	the	public	folder	to	your
Outlook	Bar,	click	No	in	the	Add	shortcut	to	Outlook	Bar?
box.

Note			You	can	copy	a	private	folder	to	a	public	folder	for	quick	creation	of
a	public	folder	with	existing	items.

To	go	on	to	Step	2,	click	



Show	All



Step	2:	Create	an	Outlook	item	in	a	public	folder
1.	 If	the	public	folder,	that	you	want	to	use	does	not	exist,	you	can

create	it.

How?

2.	 In	the	Folder	List	or	on	the	Outlook	Bar,	select	the	public	folder
in	which	you	want	to	add	the	new	item.

3.	 On	the	File	menu,	point	to	New,	and	then	click	the	item	that	you
want	to	create.

Tip			To	quickly	let	others	add	the	public	folder	to	their	Public	Folders
folder,	you	can	send	a	shortcut	in	a	mail	message.

To	go	on	to	Step	3,	click	 .



Show	All



Step	3:	Create	and	use	a	custom	view	in	a	public	folder
With	custom	views,	you	can	arrange	information	in	a	public	folder,	exactly
how	you	want	it.	You	can	set	which	view	is	initially	shown	when	a	user
opens	the	public	folder,	and	you	can	remove	all	the	standard	views	from
a	public	folder	and	only	show	the	custom	views	you	create.	By	setting	the
permission	for	a	public	folder,	you	can	determine	who	has	access	to	the
folder.



Show	All



AddItem	Method

									

									 									

For	a	single-column	ListBox	or	ComboBox,	the	AddItem	method	adds
an	item	to	the	list.	For	a	multicolumn	ListBox	or	ComboBox,	this	method
adds	a	row	to	the	list.

Syntax

Variant	=	object.AddItem(	[	item	[,	varIndex]])

The	AddItem	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Item Optional.	Specifies	the	item	or	row	to	add.	The

number	of	the	first	item	or	row	is	0;	the	number	of
the	second	item	or	row	is	1,	and	so	on.

varIndex Optional.	Integer	specifying	the	position	within	the



object	where	the	new	item	or	row	is	placed.

Remarks

If	you	supply	a	valid	value	for	varIndex,	the	AddItem	method	places	the
item	or	row	at	that	position	within	the	list.	If	you	omit	varIndex,	the
method	adds	the	item	or	row	at	the	end	of	the	list.

The	value	of	varIndex	must	not	be	greater	than	the	value	of	the
ListCount	property.

For	a	multicolumn	ListBox	or	ComboBox,	AddItem	inserts	an	entire
row,	that	is,	it	inserts	an	item	for	each	column	of	the	control.	To	assign
values	to	an	item	beyond	the	first	column,	use	the	List	or	Column
property	and	specify	the	row	and	column	of	the	item.

If	the	control	is	bound	to	data,	the	AddItem	method	fails.

Note			You	can	add	more	than	one	row	at	a	time	to	a	ComboBox	or
ListBox	by	using	List.



Show	All



RemoveItem	Method

									

									 									

Removes	a	row	from	the	list	in	a	list	box	or	combo	box.

Syntax

Boolean	=	object.RemoveItem(	index)

The	RemoveItem	method	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
index Required.	Specifies	the	row	to	delete.	The	number

of	the	first	row	is	0;	the	number	of	the	second	row
is	1,	and	so	on.

This	method	will	not	remove	a	row	from	the	list	if	the	ListBox	is	data
bound	(that	is,	when	the	RowSource	property	specifies	a	data	source	for
the	ListBox).



Show	All



ListIndex	Property

									

									 									

Identifies	the	currently	selected	item	in	a	ListBox	or	ComboBox.

Syntax

object.ListIndex	[=	Variant]

The	ListIndex	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Variant Optional.	The	currently	selected	item	in	the

control.

Remarks

The	ListIndex	property	contains	an	index	of	the	selected	row	in	a	list.
Values	of	ListIndex	range	from	–1	to	one	less	than	the	total	number	of



rows	in	a	list	(that	is,	ListCount	–	1).	When	no	rows	are	selected,
ListIndex	returns	–1.	When	the	user	selects	a	row	in	a	ListBox	or
ComboBox,	the	system	sets	the	ListIndex	value.	The	ListIndex	value
of	the	first	row	in	a	list	is	0,	the	value	of	the	second	row	is	1,	and	so	on.

Note	If	you	use	the	MultiSelect	property	to	create	a	ListBox	that	allows
multiple	selections,	the	Selected	property	of	the	ListBox	(rather	than	the
ListIndex	property)	identifies	the	selected	rows.	The	Selected	property
is	an	array	with	the	same	number	of	values	as	the	number	of	rows	in	the
ListBox.	For	each	row	in	the	list	box,	Selected	is	True	if	the	row	is
selected	and	False	if	it	is	not.	In	a	ListBox	that	allows	multiple
selections,	ListIndex	returns	the	index	of	the	row	that	has	focus,
regardless	of	whether	that	row	is	currently	selected.

The	ListIndex	value	is	also	available	by	setting	the	BoundColumn
property	to	0	for	a	combo	box	or	list	box.	If	BoundColumn	is	0,	the
underlying	data	source	to	which	the	combo	box	or	list	box	is	bound
contains	the	same	list	index	value	as	ListIndex.



TextColumn	Property

									

									 									

Identifies	the	column	in	a	ComboBox	or	ListBox	to	display	to	the	user.

Syntax

object.TextColumn	[=	Variant]

The	TextColumn	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Variant Optional.	The	column	to	be

displayed.

Settings

Values	for	the	TextColumn	property	range	from	–1	to	the	number	of
columns	in	the	list.	The	TextColumn	value	for	the	first	column	is	1,	the



value	of	the	second	column	is	2,	and	so	on.	Setting	TextColumn	to	0
displays	the	ListIndex	values.	Setting	TextColumn	to	–1	displays	the
first	column	that	has	a	ColumnWidths	value	greater	than	0.

Remarks

When	the	user	selects	a	row	from	a	ComboBox	or	ListBox,	the	column
referenced	by	TextColumn	is	stored	in	the	Text	property.For	example,
you	could	set	up	a	multicolumn	ListBox	that	contains	the	names	of
holidays	in	one	column	and	dates	for	the	holidays	in	a	second	column.	To
present	the	holiday	names	to	users,	specify	the	first	column	as	the
TextColumn.	To	store	the	dates	of	the	holidays,	specify	the	second
column	as	the	BoundColumn.

When	the	Text	property	of	a	ComboBox	changes	(such	as	when	a	user
types	an	entry	into	the	control),	the	new	text	is	compared	to	the	column	of
data	specified	by	TextColumn.



Show	All



ForeColor	Property

									

									 									

Specifies	the	foreground	color	of	an	object.

Syntax

object.ForeColor	[=	Long]

The	ForeColor	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Long Optional.	A	value	or	constant	that	determines	the

foreground	color	of	an	object.

Settings

You	can	use	any	integer	that	represents	a	valid	color.	You	can	also
specify	a	color	by	using	the	RGB	function	with	red,	green,	and	blue	color



components.	The	value	of	each	color	component	is	an	integer	that
ranges	from	zero	to	255.	For	example,	you	can	specify	teal	blue	as	the
integer	value	4966415	or	as	red,	green,	and	blue	color	components	15,
200,	75,	as	shown	in	the	following	example.

RGB(15,200,75)

Remarks

Use	the	ForeColor	property	for	controls	on	forms	to	make	them	easy	to
read	or	to	convey	a	special	meaning.	For	example,	if	a	text	box	reports
the	number	of	units	in	stock,	you	can	change	the	color	of	the	text	when
the	value	falls	below	the	reorder	level.

For	a	ScrollBar	or	SpinButton,	ForeColor	sets	the	color	of	the	arrows.
For	a	Frame,	ForeColor	changes	the	color	of	the	caption.	For	a	Font
object,	ForeColor	determines	the	color	of	the	text.



Show	All



Selected	Property

									

									 									

Returns	or	sets	the	selection	state	of	items	in	a	ListBox.

Syntax

object.Selected(	index	)	[=	Boolean]

The	Selected	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
index Required.	An	integer	with	a	range	from	0	to	one

less	than	the	number	of	items	in	the	list.
Boolean Optional.	Whether	an	item	is	selected.

Settings

The	settings	for	Boolean	are:



Value Description
True The	item	is	selected.
False The	item	is	not

selected.

Remarks

The	Selected	property	is	useful	when	users	can	make	multiple
selections.	You	can	use	this	property	to	determine	the	selected	rows	in	a
multi-select	list	box.	You	can	also	use	this	property	to	select	or	deselect
rows	in	a	list	from	code.

The	default	value	of	this	property	is	based	on	the	current	selection	state
of	the	ListBox.

For	single-selection	list	boxes,	the	Value	or	ListIndex	properties	are
recommended	for	getting	and	setting	the	selection.	In	this	case,
ListIndex	returns	the	index	of	the	selected	item.	However,	in	a	multiple
selection,	ListIndex	returns	the	index	of	the	row	contained	within	the
focus	rectangle,	regardless	of	whether	the	row	is	actually	selected.

When	a	list	box	control's	MultiSelect	property	is	set	to	None,	only	one
row	can	have	its	Selected	property	set	to	True.

Entering	a	value	that	is	out	of	range	for	the	index	does	not	generate	an
error	message,	but	does	not	set	a	property	for	any	item	in	the	list.



Show	All



EnterKeyBehavior	Property

									

									 									

Defines	the	effect	of	pressing	ENTER	in	a	TextBox.

Syntax

object.EnterKeyBehavior	[=	Boolean]

The	EnterKeyBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	Specifies	the	effect	of	pressing

ENTER.

Settings

The	settings	for	Boolean	are:



Value Description
True Pressing	ENTER	creates	a	new	line.
False Pressing	ENTER	moves	the	focus	to	the	next

object	in	the	tab	order	(default).

Remarks

The	EnterKeyBehavior	and	MultiLine	properties	are	closely	related.
The	values	described	above	only	apply	if	MultiLine	is	True.	If	MultiLine
is	False,	pressing	ENTER	always	moves	the	focus	to	the	next	control	in
the	tab	order	regardless	of	the	value	of	EnterKeyBehavior.

The	effect	of	pressing	CTRL+ENTER	also	depends	on	the	value	of
MultiLine.	If	MultiLine	is	True,	pressing	CTRL+ENTER	creates	a	new
line	regardless	of	the	value	of	EnterKeyBehavior.	If	MultiLine	is	False,
pressing	CTRL+ENTER	has	no	effect.



Show	All



TabKeyBehavior	Property

									

									 									

Determines	whether	tabs	are	allowed	in	the	edit	region.

Syntax

object.TabKeyBehavior	[=	Boolean]

The	TabKeyBehavior	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
Boolean Optional.	The	effect	of	pressing

TAB.

Settings

The	settings	for	Boolean	are:



Value Description
True Pressing	TAB	inserts	a	tab	character	in	the	edit

region.
False Pressing	TAB	moves	the	focus	to	the	next	object	in

the	tab	order	(default).

Remarks

The	TabKeyBehavior	and	MultiLine	properties	are	closely	related.	The
values	described	above	only	apply	if	MultiLine	is	True.	If	MultiLine	is
False,	pressing	TAB	always	moves	the	focus	to	the	next	control	in	the
tab	order	regardless	of	the	value	of	TabKeyBehavior.

The	effect	of	pressing	CTRL+TAB	also	depends	on	the	value	of
MultiLine.	If	MultiLine	is	True,	pressing	CTRL+TAB	creates	a	new	line
regardless	of	the	value	of	TabKeyBehavior.	If	MultiLine	is	False,
pressing	CTRL+TAB	has	no	effect.



ListCount	Property

									

									 									

Returns	the	number	of	list	entries	in	a	control.

Syntax

object.ListCount

The	ListCount	property	syntax	has	these	parts:

Part Description
object Required.	A	valid

object.

Remarks

The	ListCount	property	is	read-only.	ListCount	is	the	number	of	rows
over	which	you	can	scroll.	ListCount	is	always	one	greater	than	the
largest	value	for	the	ListIndex	property,	because	index	numbers	begin



with	0	and	the	count	of	items	begins	with	1.	If	no	item	is	selected,
ListCount	is	0	and	ListIndex	is	–1.



Show	All



List	Property

									

									 									

Returns	or	sets	the	list	entries	of	a	ListBox	or	ComboBox.

Syntax

object.List(	row,	column	)	[=	Variant]

The	List	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
row Required.	An	integer	with	a	range	from	0	to	one

less	than	the	number	of	entries	in	the	list.
column Required.	An	integer	with	a	range	from	0	to	one

less	than	the	number	of	columns.
Variant Optional.	The	contents	of	the	specified	entry	in	the

ListBox	or	ComboBox.



Settings

Row	and	column	numbering	begins	with	zero.	That	is,	the	row	number	of
the	first	row	in	the	list	is	zero;	the	column	number	of	the	first	column	is
zero.	The	number	of	the	second	row	or	column	is	1,	and	so	on.

Remarks

The	List	property	works	with	the	ListCount	and	ListIndex	properties.
Use	List	to	access	list	items.	A	list	is	a	variant	array;	each	item	in	the	list
has	a	row	number	and	a	column	number.

Initially,	ComboBox	and	ListBox	contain	empty	lists.

Note	To	specify	items	you	want	to	display	in	a	ComboBox	or	ListBox,
use	the	AddItem	method.	To	remove	items,	use	the	RemoveItem
method.

Use	List	to	copy	an	entire	two-dimensional	array	of	values	to	a	control.
Use	AddItem	to	load	a	one-dimensional	array	or	to	load	an	individual
element.



Show	All



Column	Property

									

									 									

Specifies	one	or	more	items	in	a	ListBox	or	ComboBox.

Syntax

object.Column(	column,	row	)	[=	Variant]

The	Column	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
column Optional.	An	integer	with	a	range	from	0	to	one	less

than	the	total	number	of	columns.
row Optional.	An	integer	with	a	range	from	0	to	one	less

than	the	total	number	of	rows.
Variant Optional.	Specifies	a	single	value,	a	column	of

values,	or	a	two-dimensional	array	to	load	into	a



ListBox	or	ComboBox.

Settings

If	you	specify	both	the	column	and	row	values,	Column	reads	or	writes	a
specific	item.

If	you	specify	only	the	column	value,	the	Column	property	reads	or	writes
the	specified	column	in	the	current	row	of	the	object.	For	example,
MyListBox.Column	(3)	reads	or	writes	the	third	column	in	MyListBox.

Column	returns	a	Variant	from	the	cursor.	When	a	built-in	cursor
provides	the	value	for	Variant	(such	as	when	using	the	AddItem
method),	the	value	is	a	string.	When	an	external	cursor	provides	the
value	for	Variant,	formatting	associated	with	the	data	is	not	included	in
the	Variant.

Remarks

You	can	use	Column	to	assign	the	contents	of	a	combo	box	or	list	box	to
another	control,	such	as	a	text	box.	For	example,	you	can	set	the
ControlSource	property	of	a	text	box	to	the	value	in	the	second	column
of	a	list	box.

If	the	user	makes	no	selection	when	you	refer	to	a	column	in	a	combo
box	or	list	box,	the	Column	setting	is	Null.	You	can	check	for	this
condition	by	using	the	IsNull	function.

You	can	also	use	Column	to	copy	an	entire	two-dimensional	array	of
values	to	a	control.	This	syntax	lets	you	quickly	load	a	list	of	choices
rather	than	individually	loading	each	element	of	the	list	using	AddItem.

Note	When	copying	data	from	a	two-dimensional	array,	Column
transposes	the	contents	of	the	array	in	the	control	so	that	the	contents	of
ListBox1.Column(X,	Y)	is	the	same	as	MyArray(Y,	X).	You	can	also	use
List	to	copy	an	array	without	transposing	it.



RowSource	Property

									

									 									

Specifies	the	source	providing	a	list	for	a	ComboBox	or	ListBox.

Syntax

object.RowSource	[=	String]

The	RowSource	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
String Optional.	The	source	of	the	list	for	the	ComboBox

or	ListBox.

Remarks

The	RowSource	property	accepts	worksheet	ranges	from	Microsoft
Excel.



Show	All



ColumnWidths	Property

									

									 									

Specifies	the	width	of	each	column	in	a	multicolumn	ComboBox	or
ListBox.

Syntax

object.ColumnWidths	[=	String]

The	ColumnWidths	property	syntax	has	these	parts:

Part Description
object Required.	A	valid	object.
String Optional.	Sets	the	column	width	in	points.	A	setting

of	–1	or	blank	results	in	a	calculated	width.	A	width
of	0	hides	a	column.	To	specify	a	different	unit	of
measurement,	include	the	unit	of	measure.	A	value
greater	than	0	explicitly	specifies	the	width	of	the



column.

Settings

To	separate	column	entries,	use	semicolons	(;)	as	list	separators.	Or	use
the	list	separator	specified	in	the	Regional	Settings	section	of	the
Windows	Control	Panel.

Any	or	all	of	the	ColumnWidths	property	settings	can	be	blank.	You
create	a	blank	setting	by	typing	a	list	separator	without	a	preceding	value.

If	you	specify	a	–1	in	the	property	page,	the	displayed	value	in	the
property	page	is	a	blank.

To	calculate	column	widths	when	ColumnWidths	is	blank	or	–1,	the
width	of	the	control	is	divided	equally	among	all	columns	of	the	list.	If	the
sum	of	the	specified	column	widths	exceeds	the	width	of	the	control,	the
list	is	left-aligned	within	the	control	and	one	or	more	of	the	rightmost
columns	are	not	displayed.	Users	can	scroll	the	list	using	the	horizontal
scroll	bar	to	display	the	rightmost	columns.

The	minimum	calculated	column	width	is	72	points	(1	inch).	To	produce
columns	narrower	than	this,	you	must	specify	the	width	explicitly.

Unless	specified	otherwise,	column	widths	are	measured	in	points.	To
specify	another	unit	of	measure,	include	the	units	as	part	of	the	values.
The	following	examples	specify	column	widths	in	several	units	of
measure	and	describe	how	the	various	settings	would	fit	in	a	three-
column	list	box	that	is	4	inches	wide.

Setting Effect
90;72;90 The	first	column	is	90	points	(1.25	inch);	the

second	column	is	72	points	(1	inch);	the	third
column	is	90	points.

6	cm;0;6	cm The	first	column	is	6	centimeters;	the	second
column	is	hidden;	the	third	column	is	6	centimeters.
Because	part	of	the	third	column	is	visible,	a
horizontal	scroll	bar	appears.

1.5	in;0;2.5	in The	first	column	is	1.5	inches,	the	second	column
is	hidden,	and	the	third	column	is	2.5	inches.



2	in;;2	in The	first	column	is	2	inches,	the	second	column	is
1	inch	(default),	and	the	third	column	is	2	inches.
Because	only	half	of	the	third	column	is	visible,	a
horizontal	scroll	bar	appears.

(Blank) All	three	columns	are	the	same	width	(1.33	inches).

Remarks

In	a	ComboBox,	the	system	displays	the	column	designated	by	the
TextColumn	property	in	the	text	box	portion	of	the	control.	Setting
TextColumn	to	–1	displays	the	first	column	that	has	a	ColumnWidths
value	greater	than	0.


