
nextAPEX	1.3	Release	Notes	»



NVIDIA(R)	APEX(TM)	SDK	Release	Notes
(APEX	SDK	has	been	deprecated)Note:	APEX	SDK	has	been	deprecated

Contents:

APEX	1.4.1	-	Release	Notes	(APEX	has	been	deprecated)
Installing	APEX
New	in	1.4
New	in	1.3.3
New	in	1.3.2
New	in	1.3.1
New	in	1.3
New	in	1.2.4
New	in	1.2.3
New	in	1.2.2
New	in	1.2.1
New	in	1.2
New	in	1.1
New	in	1.0

APEX	Clothing	Release	Notes
APEX	Clothing	1.3.3
APEX	Clothing	1.3.2
APEX	Clothing	1.3.1
APEX	Clothing	1.3
APEX	Clothing	1.2.4
APEX	Clothing	1.2.3
APEX	Clothing	1.2.2
APEX	Clothing	1.2.1
APEX	Clothing	1.2
APEX	Clothing	1.1
APEX	Clothing	1.0	Beta

APEX	Particles	Release	Notes
APEX	Particles	1.4
APEX	Particles	1.3.3



APEX	Particles	1.3.2
APEX	Particles	1.3.1
APEX	Particles	1.3
APEX	Particles	1.2.4
APEX	Particles	1.2.3
APEX	Particles	1.2.2
APEX	Particles	1.2.1
APEX	Particles	1.2

APEX	Destruction	Release	Notes
APEX	Destruction	1.3.4
APEX	Destruction	1.3.3
APEX	Destruction	1.3.2
APEX	Destruction	1.3.1
APEX	Destruction	1.3
APEX	Destruction	1.2.4
APEX	Destruction	1.2.3
APEX	Destruction	1.2.2
APEX	Destruction	1.2.1
APEX	Destruction	1.2
APEX	Destruction	1.1
APEX	Destruction	1.0	Beta

nextAPEX	1.3	Release	Notes	»
©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/


nextprevious	|APEX	1.3	Release	Notes	»



APEX	1.4.1	-	Release	Notes	(APEX	has
been	deprecated)Note:	APEX	SDK	has	been	deprecated



Installing	APEX

Windows	Requirements:

1.	 Visual	Studio	2010,	2012,	2013	or	2015.

2.	 Microsoft	 DirectX	 SDK	 June	 2010	 or	 later	 (to	 build	 the	 Windows
APEX	samples)

1.	 The	DirectX	 include	path	 should	be	set	 in	Visual	Studio	 in
VC++	Directories	to	build	the	Windows	samples

2.	 The	 DirectX	 End-User	 Runtime	 Web	 Installer
(dxwebsetup.exe)	can	be	downloaded	from	Microsoft	 if	 the
prebuilt	APEX	samples	do	not	run	because	they	cannot	find
the	June	2010	DX	runtimes.

3.	 Graphics	renderer	must	support	at	least	OpenGL	version	1.5	to	run	the
Windows	APEX	samples	in	OpenGL	mode

APEX	for	PhysX	3.4	Requirements

1.	 PhysX	 SDK	 for	 3.4	 for	 Windows	 (the	 APEX	 source	 distribution
requires	the	PhysX	source	distribution)

SDK	Zip	Distributions:

The	source	and	binary	distributions	come	 in	compressed	zip	distributions.
The	source	distribution	does	not	contain	samples,	just	the	core	APEX	SDK.

Note: 	To	build	the	APEX	projects,	the	PhysX	SDK	path	in	the
nxpath.vsprops	files	must	be	modified.	The	UpdatePhysXPaths.vbs	script
is	provided	for	this	purpose.	It	will	modify	the	nxpath.vsprops	files	under
the	compiler	folders.	Similar	Android	distribution	setup	is	done	by	setting



up	Makefile	without	using	this	script.	The	3.x	PhysX	path	should	contain
the	folder	location	(absolute	or	relative)	that	contains	the	“Include”
directory.

Note: 	The	APEX	SDK	source	build	requires	the	PhysX	3.4	source
distribution.



New	in	1.4

General

Refactored	public	API	naming	convensions
Removed	global	LOD	support
Refactored	APEX	samples	and	added	APEX	snippets
Removed	 PhysX	 2.8.4	 support.	 Added	 build	 configuration	 without
PhysX	linking	for	Clothing	module

Optimizations

Fixes

Known	Issues



New	in	1.3.3

General

The	 APEX	 release	 build	 configurations	 for	 x86	 and	 x64	 now	 also
contain	authoring	code.	On	other	platforms	authoring	is	still	removed
for	release	builds.
Windows	APEX	samples	now	render	using	D3D11	by	default.	Use	the
-d3d9	command	line	option	to	render	using	D3D9	instead.

Optimizations

Fixes

Known	Issues

PVD	support	may	not	be	working	on	Android.



New	in	1.3.2

General

Added	NVTX	profiling	support	for	non-release	builds.	Traces	can	be
captured	 using	 Parallel	 Nsight	 Analysis	 Tools.	 NVTX	 is	 supported
only	for	Windows	and	Android.

Optimizations

Added	 ability	 to	 change	 render	 resource	 lock	 behavior	 or	 disable
locking	altogether,	to	improve	performance.	The	setting	is	per	module.
See	NxModule::setRenderLockMode	and	NxApexRenderLockMode.
Added	ability	to	disable	potentially	expensive	stat	collection	if	it’s	not
needed.	See	NxApexSDK::setEnableApexStats.

Fixes

Fixed	crash	if	application	creates	APEX	SDK	after	already	connecting
to	PVD.

Known	Issues

PVD	support	may	not	be	working	on	Android.



New	in	1.3.1

General

Added	VS2012	support	for	source	distributions	with	PhysX	3.x.
Assertions	are	now	enabled	in	the	checked	configuration.
Added	 NxApexActor::setEnableDebugVisualization	 to	 selectively
disable	debug	visualization	on	particular	actors.
The	 NxUserRenderResourceManager’s	 surface	 buffer	 create	 and
release	 virtual	 methods	 must	 be	 implemented	 by	 the	 user.	 They	 are
only	used	by	particular	turbulence	features,	so	if	turbulence	isn’t	being
used	the	implementation	can	be	empty.
Starting	with	NVIDIA	R302	drivers,	application	developers	can	direct
the	Optimus	driver	at	runtime	to	use	the	High	Performance	Graphics	to
render	any	application	-	even	those	applications	for	which	there	is	no
existing	application	profile.	The	APEX	samples	now	makes	use	of	this
“NvOptimusEnablement”	 feature	 to	 enable	 High	 Performance
Graphics	by	default.
Debug	info	added	to	all	PS4	builds	except	release	builds.
Android	 sample	 builds	 now	 generate	 an	 APK.	 This	 requires	 some
extra	defines	 for	 Java	and	Ant.	See	 the	Android	examples	 section	of
the	sample	documentation	for	details.

Fixes

Fixed	rare	Named	Resource	Provider	failure	to	find	resource.
Using	 allocViewMatrix(ViewMatrixType::USER_CUSTOMIZED)
now	works.
Cleaned	up	several	PS4	compiler	warnings.

Known	Issues

PVD	support	may	not	be	working	on	Android.



New	in	1.3

General

The	legacy	modules	are	all	combined	in	one	module,	APEX_Legacy.
The	particle	modules	are	all	combined	in	one	module,	APEX_Particles
(with	the	exception	of	Turbulence).
The	Wind	module	was	removed.
The	 NxUserRenderBoneBufferDesc::maxBones	 member	 will	 now
reflect	 the	 actual	 max	 bones	 specified	 in
NxUserRenderResourceManager::getMaxBonesForMaterial().	 The
actual	 number	 of	 bones	 used	 will	 be	 sent	 in	 the
NxUserRenderBoneBuffer::writeBuffer()	 numBones	 parameter.	 In
previous	 APEX	 versions,	 NxUserRenderBoneBufferDesc::maxBones
reflected	the	minimum(numBones,	maxBones).
APEX’s	 output	 stream	 will	 automatically	 be	 sent	 to	 PVD	when	 the
application	is	connected	to	PVD.
The	outputStream	member	of	the	NxApexSDKDesc	has	been	removed
when	using	PhysX	3.x.	APEX	will	automatically	use	the	same	output
stream	as	PhysX.

Known	Issues

PVD	support	may	not	be	working	on	Android.



New	in	1.2.4

General

EditorWidgets	header	files	added	to	binary	distributions.
Added	more	asset	previews	for	consistency.
PS3	gcc	support	has	been	deprecated	in	APEX	1.2.4	in	favor	of	SNC.
The	gcc	version	is	still	included	but	not	supported.
Fixed	some	allocations	that	were	not	going	through	the	user-supplied
allocator.

Known	Issues

There	 are	 shadow	 and	 flickering	 issues	 when	 running	 the	 APEX
samples	using	the	DirectX	11	renderer	(–d3d11).
Some	key	and	button	mappings	in	the	APEX	samples	are	incomplete
on	PS3	and	Xbox360.
There	may	be	issues	connecting	to	PVD	from	consoles	with	the	PhysX
2.8.4	build	of	APEX.



New	in	1.2.3

General

NxResourceProvider	is	now	case-insensitive	by	default.	To	get	the	old
case-sensitive	 behavior,	 set	 resourceProviderIsCaseSensitive	 true	 in
the	NxApexSDKDesc.
Fixed	issues	with	re-entrant	read	locks	described	below.
GPU	rigid	bodies	are	no	longer	supported	on	pre-Fermi	hardware.

Known	Issues

There	 are	 shadow	 and	 flickering	 issues	 when	 running	 the	 APEX
samples	using	the	DirectX	11	renderer	(–d3d11).
Some	key	and	button	mappings	in	the	APEX	samples	are	incomplete
on	PS3	and	Xbox360.
There	may	be	issues	connecting	to	PVD	from	consoles	with	the	PhysX
2.8.4	build	of	APEX.



New	in	1.2.2

General

APEX	requires	the	use	of	the	PhysX	3.x	scene	multiple-reader-single-
writer	lock	to	access	both	APEX	and	PhysX	scene	objects	when	using
the	 PxSceneFlag::eREQUIRE_RW_LOCK	 flag.	 This	 allows	 the
application	 using	 APEX	 to	 access	 PhysX	 objects	 from	 multiple
threads.	For	more	information,	see	the	“Scene	Locking”	section	of	the
“Data	Access	and	Buffering”	PhysX	3.x	documentation.	(See	Known
Issues	for	limitations	when	using	this	lock)

Known	Issues

There	 are	 shadow	 and	 flickering	 issues	 when	 running	 the	 APEX
samples	using	the	DirectX	11	renderer	(–d3d11).
As	 of	 PhysX	 3.2.2	 the	 lock	 offered	 by	 the	 PhysX	 scene	 does	 not
support	 re-entrant	 read	 locks.	 This	 is	 currently	 a	 problem	 if	 the
application	attempts	to	use	the	APEX	actor	or	asset	APIs	while	APEX
and	PhysX	are	 simulating	 (for	 instance,	 raycasting	 against	 an	APEX
Destructible	 actor	 using	 NxDestructibleActor::raycast).	 This	 will	 be
addressed	in	a	future	version	of	APEX.
Some	key	and	button	mappings	in	the	APEX	samples	are	incomplete
on	PS3	and	Xbox360.
There	may	be	issues	connecting	to	PVD	from	consoles	with	the	PhysX
2.8.4	build	of	APEX.



New	in	1.2.1

General

NxApexSphereShape	 getRadius/setRadius	 use	 PxF32	 instead	 of
PxVec3	to	represent	the	radius.

Known	Issues

Some	key	and	button	mappings	in	the	APEX	samples	are	incomplete
on	PS3	and	Xbox360.
There	may	be	issues	connecting	to	PVD	from	consoles	with	the	PhysX
2.8.4	build	of	APEX.



New	in	1.2

Visual	Studio	2010	Support

Both	the	APEX	SDK	source	and	sample	projects	are	distributed	solely
as	Visual	Studio	2010	solutions

NxParameterized

Added	AndroidARM	target.
Better	error	checking	in	xml	serializer.
Unified	behaviour	of	initParamRef()	and	setParamRef().

Render	Mesh	Asset

Tangent	 support	 the	 float4	 format	 now	 (making	 bitangents
unnecessary)

APEX	Force	Field

Existing	force	field	module	renamed	to	field	boundary.
New	force	field	module	which	works	with	APEX	Particles	and	PhysX
3.x	objects.

General

Added	 an	 optional	 completionTask	 to	 NxApexScene::simulate	 that
will	be	called	when	fetchResults	is	ready	to	be	called.
The	‘pxtask_cuda’	DLL,	which	contains	the	CUDA	Context	Manager
and	 associated	 CUDA	 PxTask	 functionality,	 was	 renamed
‘PhysX3Gpu’.
APEX	no	longer	supports	using	apexuser.dll	to	override	the	file	stream
returned	from	NxApexSDK::createStream.



APEX	stats	are	reported	in	milliseconds	instead	of	seconds.	This	was	a
change	 done	 very	 late	 in	 the	 1.1	 product	 cycle,	 so	 when	 upgrading
from	an	early	1.1	this	is	still	new	in	1.2.
NxApexScene::acquirePhysXLock()	 is	 now	 available	 so	 that	 both
APEX	 and	 the	 application	 may	 access	 the	 PhysX	 3.2	 scene	 during
simulation	without	performing	concurrent	write	operations.	PhysX	3.2
allows	“multiple	reader/single	writer”	access,	but	this	has	not	yet	been
implemented	within	APEX.
NxApexScene::simulate()	 has	 a	 new	 parameter	 called
‘scratchMemBlock’,	which	may	be	used	by	PhysX	3.2	for	 temporary
data	during	simulation.
The	Wind	and	Explosion	modules	are	deprecated	and	may	be	removed
from	a	future	APEX	release.	They	do	not	support	PhysX	3.2.
PS3	gcc	support	is	deprecated	in	APEX	PS3	source	distributions.	All
PS3	gcc	support	may	be	removed	from	a	future	APEX	release	in	favor
of	SNC.

Known	Issues

Some	key	and	button	mappings	in	the	APEX	samples	are	incomplete
on	PS3	and	Xbox360.
There	may	be	issues	connecting	to	PVD	from	consoles	with	the	PhysX
2.8.4	build	of	APEX.



New	in	1.1

NxParameterized

New	method	Interface::clone.
Handles	which	are	constructed	 from	const	 Interfaces	do	not	 allow	 to
change	those	Interfaces	via	setParamXxx.
Generic	reference	visitor	NxParameterized::getReferences
Streamed	non-inplace	binary	deserialization
Fixed	handling	of	defaultValue	in	structs
Fixed	detection	of	hint	types
Automated	versioning	of	legacy	classes
Customizable	order	of	legacy	objects	upgrade	instead	of	fixed	bottom-
up
Custom	alignments	of	struct	fields
ParamTool	can	now	print	summary	of	file	contents

Serialization

ParamTool	does	not	support	legacy	asset	formats	anymore
Changed	some	error	codes

Render	Mesh	Asset

setOverrideMaterial	was	added	to	allow	switching	of	material	directly
at	runtime.
Debug	rendering	vor	vertex	normals	and	tangents.

Use	of	Cuda	4.2

Necessary	for	supporting	latest	hardware.



New	in	1.0

Use	of	Cuda	3.0

This	allows	using	interop

Use	of	a	new	Foundation	(Px	prefix)

No	more	3x4	matrix,	replaced	by	a	true	4x4	column	wise	matrix.

Serialization

Apex	 0.9	 binary	 serialization	 (.aca,	 .pda,	 .arm	 files)	 are	 deprecated.
Code	to	serialize	assets	to	these	old	formats	has	been	removed.	Code
to	 read	 these	 old	 formats	 is	 still	 in	 place	 but	 also	 deprecated.	 It	will
likely	be	removed	for	1.1.
As	 a	 replacement	we	 are	 using	NxParameterized	 objects	 that	 can	 be
serialized	to	either	xml	(.apx)	or	binary	(.apb)	files,	where	binary	files
can	be	optimized	for	specific	platforms.
Renamed	 NxParameterized::NxSerialiser	 to
NxParameterized::Serializer

Render	mesh	asset

The	authoring	pipeline	was	revised.
Each	 vertex	 buffer	 semantic	 can	 now	 use	 a	 wide	 range	 of	 possible
formats.
Added	compressed	render	data	formats	like	BYTE_UNORM4	etc.
Changes	to	instance	buffer	semantics	and	formats:	removed	old	POSE
format	which	used	Mat34,	and	now	use	ROTATION_SCALE	(Mat33)
and	POSITION	 (Vec3)	 in	 its	 place.	Removed	unused	 instance	buffer
semantics.
Opaque	meshes	can	replace	render	mesh	assets.	An	Opaque	mesh	is	a



void	pointer	 to	a	user	 implemented	 render	mesh	 that	APEX	does	not
know	 or	 understand	 about.	 It	 will	 still	 issue	 render	 calls	 using	 the
(opaque)	void	pointer.

NxModule

Generic	 module	 generation:	 Get	 rid	 of	 the	 various	 descriptors	 for
Modules	and	unifiy	them	as	parameterized	objects.

NxApexAsset

added	 releaseAndReturnNxParameterizedInterface()	 which	 allows
reuse	of	the	parameterized	object	after	object	destruction.

NxApexRenderable

removed	 lod	 parameter	 from	 dispatchRenderResource	 method.	 All
modules	that	support

NxApexScene

added	 finalstep	 to	 NxApexScene::simulate()	 indicating	 that	 manual
substepping	is	used	and	this	is	the	last	substep.

Debug	Rendering

Removed	all	debug	rendering	from	NxApexSDK	object.
Added	parameterized	objects	to	handle	debug	rendering	configuration
for	the	framework	and	each	module	separately.
Changed	code	to	set	up	the	view	and	projection	matrix.
Parameterized	interface	to	customize	debug	rendering	colors.

nextprevious	|APEX	1.3	Release	Notes	»



©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/


nextprevious	|APEX	1.3	Release	Notes	»



APEX	Clothing	Release	Notes



APEX	Clothing	1.3.3

New	Features

Removed

Optimizations

Fixes

Known	issues

If	asyncFetchResults	is	false,	the	application	must	have	more	than	one
worker	thread	to	avoid	the	possiblity	of	deadlock.
The	RecomputeSubmeshes	visualization	flag	is	not	functional.
It	is	not	deterministic	whether	the	new	or	the	old	result	is	returned	in
acquireRenderProxy	 on	 NxClothingActor,	 if	 it	 is	 called	 between
simulate	and	fetchResults,	when	running	with	PhysX	3.x.



APEX	Clothing	1.3.2

New	Features

It	 is	 now	 safe	 to	 call	 updateRenderResources	on	 the	 render	proxy	 in
parallel,	for	example	in	the	render	thread,	if	the	APEX	SDK	parameter
‘renderMeshActorLoadMaterialsLazily’	is	set	to	false.
Added	support	of	partial	custom	physical	meshes.

Removed

Physical	LOD	is	deprecated.	Will	be	removed	next	version.

Optimizations

Reduce	the	amount	of	data	sent	to	PVD	when	clothing	is	in	a	scene.

Fixes

Fixed	friction	for	GPU	clothing.
Fix	a	race	condition	when	running	several	clothing	scenes	in	parallel.
Fixed	clothing	render	proxy:	now	always	return	old	result	before	fetch
has	been	called.
Fixed	self-collision	jittering	on	scaled	down	actors:	scale	restpositions.
Fixed	debug	rendering	when	scaled.
Fixed	crash	in	cloth	cooker.
Fixed	 initialization	 pose	 of	 clothing	 collisions	 when	 clothing	 actor
uses	local	space	simulation.
Fixed	 crash	 when	 a	 clothing	 actor	 with	 a	 NxClothingTriangleMesh
switches	LoD.
Fixed	scaling	of	cloth	collision	planes.

Known	issues



If	asyncFetchResults	is	false,	the	application	must	have	more	than	one
worker	thread	to	avoid	the	possiblity	of	deadlock.
The	RecomputeSubmeshes	visualization	flag	is	not	functional.
It	is	not	deterministic	whether	the	new	or	the	old	result	is	returned	in
acquireRenderProxy	 on	 NxClothingActor,	 if	 it	 is	 called	 between
simulate	and	fetchResults,	when	running	with	PhysX	3.x.



APEX	Clothing	1.3.1

New	Features

Added	NxClothingActor::getSimulationVelocities()
ClothingTool:	 Some	 names	 were	 changed	 to	 match	 DCC	 plugin
naming	conventions.
Clothing	 triangle	 collision	 debug	 rendering:	 render	 ignored	 triangles
red.
Clamp	 to	 500	 collision	 triangles	 on	 GPU	 to	 avoid	 hitting	 shared
memory	limit.
Added	 API	 to	 add	 and	 remove	 triangles	 from	 an
NxClothingTriangleMesh	at	runtime.
Added	friction	to	convex	collisions	against	cloth.
No	 longer	 deprecated:	 updateMaxDistanceScale,	 getPose,	 setWind,
setMaxDistanceBlendTime,	 getMaxDistanceBlendTime,
setLODWeights

Removed

Removed	unused	API	NxClothingUserRecompute.
Unused	zeroStretchStiffness	parameter	has	been	removed.

Fixes

Fixed	 incorrect	 scaling	 in
NxClothingAssetAuthoring::applyTransformation.
Fixed	 infinities	 generated	 in
NxClothingAssetAuthoring::applyTransformation.
Fixed	bug	that	could	cause	clothing	material	to	be	set	every	frame.
Fixed	race	condition	when	creating/deleting	cloths	in	parallel.
NxClothingActor	 methods	 getSimulationPositions	 and
getSimulationNormals	 now	 block	 when	 asyncFetchResults	 is	 set	 to



true.
Fixed	 crash	 when	 calling	 releaseGraphicalData	 on	 a	 clothing	 asset
(applies	if	application	does	its	own	skinning)
Fixed	a	3x	clothing	cooker	crash.
Fixed	a	bug	where	APEX	could	wake	frozen	cloth,	causing	APEX	to
output	a	“Cloth	has	not	stayed	static”	message.
Fixed	 an	 issue	 when	 using	 multiple	 GPU	 dispatchers	 with	 GPU
clothing.

Known	issues

If	asyncFetchResults	is	false,	the	application	must	have	more	than	one
worker	thread	to	avoid	the	possiblity	of	deadlock.
The	RecomputeSubmeshes	and	RecomputeVertices	visualization	flags
are	not	functional.
It	is	not	deterministic	whether	the	new	or	the	old	result	is	returned	in
acquireRenderProxy	 on	 NxClothingActor,	 if	 it	 is	 called	 between
simulate	and	fetchResults,	when	running	with	PhysX	3.x.



APEX	Clothing	1.3

New	Features

New	 render	 API:	 NxClothingRenderProxy	 to	 allow	 easier	 rendering
with	render	thread	(buffered	render	data)
Added	PVD	object	debugging	support	for	clothing.
Visualization	 of	 clothing	 in	 PVD	 is	 possible	 by	 connecting	 to	 PVD
with	 object	 debugging	 enabled,	 and	 then	 enabling	 “Constraints”
visualization	in	the	PVD	Preferences.

Fixes

Clothing	GPU	memory	usage	now	included	with	 the	rest	of	 the	heap
stats	from	the	CudaMemoryManager.
Changed	asyncFetchResults	to	true	by	default	to	improve	performance
in	many	cases	and	avoid	deadlock.
Fixed	 debug	 visualization	 of	 the	 PhysX	 3x	 clothing	 material
parameters.	 Added	 visualization	 of	 compressionRange	 and
stretchRange	parameters	and	length	and	cross-section	fibers.

Known	issues

If	asyncFetchResults	is	false,	the	application	must	have	more	than	one
worker	thread	to	avoid	the	possiblity	of	deadlock.
The	RecomputeSubmeshes	and	RecomputeVertices	visualization	flags
are	not	functional.



APEX	Clothing	1.2.4

Fixes

Fixed	issues	with	teleport	and	reset.
Fixed	a	crash	in	tangent	computations.
Fixed	 an	 issue	 where	 tangent	 results	 were	 different	 for	 skinned
tangents.

Known	Issues

Summer	dress	sample	(SimpleClothing	scene	3)	behaves	differently	on
the	GPU	compared	to	the	CPU.



APEX	Clothing	1.2.3

New	Features

Added	 solver	 iteration	 count	 to
VISUALIZE_CLOTHING_SOLVER_MODE	debug	rendering.

Fixes

Fixed	an	issue	with	clothing	simulation	when	simulate(0)	is	called.
Fixed	a	bug	with	normals	for	the	case	where	assets	have	a	significant
amount	of	mesh-mesh	skinned	vertices
Fixed	a	simulation	bug	where	collision	failed	for	vertices	close	to	the
cloth	bounds
Fixed	 a	 race	 condition	 when	 a	 lot	 of	 actors	 of	 the	 same	 asset	 are
switched	on	and	off	(manually	or	by	lod)

Removed

Removed	 support	 for	 the	 embedded	 3x	 clothing	 solver	 on	 pre-Fermi
GPUs.



APEX	Clothing	1.2.2

New	Features

New	 ClothingMeshSkinningMap	 API	 to	 get	 mesh	 skinning
information,	so	it	can	be	done	in	the	application.
New	API	to	add	collision	objects	to	a	clothing	actor.	This	can	be	used
to	implement	collision	with	world	objects.



APEX	Clothing	1.2.1

New	Features

Support	for	convex	collision	added	to	3x	clothing	solver.
Limitation:	 only	 a	 total	 of	 32	 planes	 per	 clothing	 actor	 is
supported.

Self	 collision	 parameters	 moved	 to	 the	 ClothingMaterialLibrary
NxParameterized	 interface.	 Removed
NxClothingAssetAuthoring::setSimulationSelfcollision()	 and
NxClothingAssetAuthoring::setSimulationSelfcollisionThickness().

Fixes

Fixed	 a	 Clothing	 Tool	 issue	 where	 the	 “Generate	 Tangent	 Space”
button	 could	 generate	 several	 warning	 dialogs	 for	 certain	 older
clothing	assets.

Known	Issues

Running	 multiple	 NxApexScenes	 simultaneously	 is	 only	 supported
with	 the	 3x	 solver.	 The	 2.8	 solver	 can	 generate	 writelock	 NxScene
access	failures.
The	 new	 3x	 cloth	 solver	 does	 not	 send	 debug	 visualization	 data	 to
PhysX	Visual	Debugger.
GPU	memory	allocated	by	the	3x	clothing	solver	is	not	reported	in	the
heap	stats	from	the	CudaMemoryManager.



APEX	Clothing	1.2

New	Features

Support	for	PhysX	3x	cloth	solver.	Even	builds	with	PhysX	2.8.x	will
be	able	to	run	the	new	solver	if	the	ClothingPhysX3	module	is	present
(will	be	autoloaded).
Removed	bitangent	semantic	for	rendering.	All	rendered	data	now	uses
float4	 for	 the	 tangent	semantic,	 tangent.w	being	 the	sign	of	 the	cross
product	of	normal	and	tangent.
Local	 space	 simulation.	 The	 user	 can	 either	 chose	 a	 local	 space	 or
specify	a	bone	 in	 the	hierarchy	 to	which	 the	 simulation	will	be	done
locally.
Tapered	 capsules	 as	 collision	 volumes.	 This	 will	 only	 work	 with
PhysX	3x	solver.
Velocity	 shader	 can	 take	positions	 and	velocities	 now.	Velocities	 can
be	modified	by	the	shader.
Added	 several	 PhysX	 3x	 exclusive	 clothing	 material	 parameters:
Compression	&	streching	stiffness	for	stretching,	bending	and	shearing
constraints,	 inertia	 scale	&	 drag	 (for	 localspace	 sim),	mass	 scale	 for
better	collision	handling.
Turned	‘parallelize	fetch	results’	on	by	default	(in	module	descriptor)
and	 added	 functionality	 to	 run	 the	 additional	 fetch	 results	 work
delayed	until	the	first	actor	gets	rendered.

Known	Issues

Running	 multiple	 NxApexScenes	 simultaneously	 is	 only	 supported
with	 the	 3x	 solver.	 The	 2.8	 solver	 can	 generate	 writelock	 NxScene
access	failures.
The	 new	 3x	 cloth	 solver	 does	 not	 send	 debug	 visualization	 data	 to
PhysX	Visual	Debugger.
The	 “Generate	Tangent	Space”	 button	 in	Clothing	Tool	 can	generate



several	 warning	 dialogs	 for	 certain	 older	 clothing	 assets.	 (Fixed	 in
1.2.1)



APEX	Clothing	1.1

New	Features

Per-Actor	 scaling.	 Each	 actor	 can	 have	 an	 individual	 scale	 and
simulates	properly.
Asynchronous	 cooking.	When	 several	 actors	 with	 different	 per-actor
scale	 are	 created,	 cooking	 will	 be	 delayed	 if	 another	 actor	 already
started	cooking.	While	waiting,	actors	will	not	be	simulated.
Manual	substepping:	A	PhysX	scene	that	will	run	multiple	substeps	is
now	handled	properly	by	clothing.	Interpolated	simulation	meshes	will
be	generated	for	each	individual	substep	to	remove	simulation	artifacts
caused	by	substepping.	Caution:	This	feature	causes	problems	if	used
together	 with	 2.8.x	 physX	 particles.	 When	 enabled,	 APEX	 calls
simulate/fetchResults	on	the	corresponding	physX	scene	several	times.
PhysX	particles	have	buffers	that	need	to	be	read	from	the	application
after	each	fetchResults	(deleted	particle	IDs),	which	is	not	possible	in
this	case.	Use	allowApexWorkBetweenSubsteps	 to	enable/disable	 the
feature.
Teleport	without	reset:	Clothing	Actors	can	now	be	teleported	without
all	 the	 vertices	 being	 reset	 to	 the	 animated	 positions.	 This	will	 only
lead	to	good	results	if	only	the	pose	of	the	actor	and	not	the	state	of	the
animation	is	changed.
Frozen	 state:	 Clothing	 can	 be	 frozen	 in	 a	 given	 state	 and	will	 cease
simulation.	It	can	then	be	woken	again	in	the	same	state.	This	contrasts
the	 regular	 way	 where	 re-enabled	 clothing	 starts	 from	 the	 animated
state	instead.
Velocity	Callback:	A	 user	 callback	 that	 allows	 to	 read	 and	write	 the
velocity	values	of	every	simulated	vertex.	Can	be	used	to	play	sound
depending	on	certain	changes	 in	velocity	or	 to	 implement	 i.e.	a	wind
effect.
Support	 for	 morph	 targets	 (also	 known	 as	 blendshapes):	 At	 actor
creation	a	set	of	vertex	displacements	can	be	used	to	modify	the	mesh.



Platform	Tags:	Each	graphical	LOD	can	have	a	list	of	strings	attached.
When	 converting	 the	 .apx/.apb	 files	 to	 a	 given	 platform,	 LODs	 that
don’t	 match	 a	 certain	 pattern	 can	 be	 removed	 based	 on	 this.	 This
allows	for	reducing	asset	size	by	removing	LODs	that	are	unsuited	for
a	particular	platform.
Correct	 Simulation	 Normals:	 Vertices	 that	 are	 on	 the	 border	 of	 the
simulated	 and	 non-simulated	 part	 of	 the	 physical	 mesh	 can	 have
wrongly	calculated	normals.	This	setting	will	try	to	correct	for	that.
Adaptive	Target	Frequency:	Reduces	 the	high	frequency	jittering	that
happens	due	to	slightly	varying	timesteps.
Pressure:	Closed	cloth	meshes	can	be	filled	with	pressure.
Vertex	Velocity	Clamp:	Adds	a	maximum	velocity	in	all	6	major	axis
and	clamps	all	velocities	to	those.

Improvements

Switching	of	graphical	LoDs	has	been	improved	in	respect	to	copying
position	and	velocity	from	the	old	to	the	new	simulation	mesh.

Removed

Legacy	 serialization	 is	 gone.	 Any	 old	 .aca	 file	 cannot	 be	 loaded
anymore.	 They	 need	 to	 be	 converted	 to	 .apx/.apb	 using	 the	 1.0
ParamTool	instead.
Some	 API	 marked	 as	 deprecated	 has	 been	 deleted	 such	 as
NxClothingActor::setFlags().
Removed	separate	NxClothingMaterialLibrary	(.acml	files)	as	an	asset
type.	Materials	are	now	integrated	into	the	Clothing	Asset	file	directly.
Parallel	physics	mesh	skinning	and	parallel	mesh-mesh	skinning.	The
frame	delay	that	was	introduced	by	this	feature	made	it	useless	to	most
applications.



APEX	Clothing	1.0	Beta

New	Features

New	Mesh-Mesh	skinning	algorithm	that	is	faster	and	produces	more
reliable	results.
Max	 Distance	 can	 be	 scaled	 per	 clothing	 actor	 on	 top	 of	 all	 the
physical	lod	features.

Improvements

Using	per-actor	Tasks	to	allow	more	fine	grained	parallelization.
NxClothingActor	 visibility	 can	 be	 toggled	 to	 save	 unnecessary
computations	in	case	where	the	actor	is	not	visible.

Removed

Replaced	 NxClothingActorDesc	 and	 NxClothingPreviewDesc	 with
parameterized	objects.
Clothing	Material	Library	has	been	deprecated.	The	 separate	 asset	 is
gone	and	has	been	merged	with	the	clothing	asset.	The	classes	are	still
in	 place	 to	 load	 the	 .acml	 files,	 which	 get	 merged	 into	 the	 clothing
asset	immerdiately	after	the	.aca	has	been	loaded.	After	that	both	files
can	be	replaced	by	a	single	clothing	asset	.apx/.apb

Known	Issues

Clothing	 does	 not	 support	 running	 substeps.	 When	 doing	 so	 it	 will
emit	a	warning	and	then	just	run	as	good	as	possible.	This	can	lead	to
artifacts	where	vertex	velocities	can	sometimes	behave	erratically.
NxClothingAssetAuthoring::setExportScale	is	not	working	anymore	as
it	was	 designed	 to	work	with	 the	 removed	 binary	 serialization.	As	 a
replacement,	 NxClothingAssetAuthoring::applyTransformation()	 can



be	called	before	serialization,	it	apply	a	transformation	and/or	a	scale
to	the	asset,	which	can	then	be	serialized	with	the	new	serialization.

nextprevious	|APEX	1.3	Release	Notes	»
©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/


nextprevious	|APEX	1.3	Release	Notes	»



APEX	Particles	Release	Notes



APEX	Particles	1.4

New	Features

Refactored	render	interface	for	Particles	and	TurbulenceFS



APEX	Particles	1.3.3

New	Features

Removed

Improvements

Fixes

Fixed	 issue	 where	 PhysX	 monitor	 could	 keep	 dynamic	 rigid	 bodies
awake.

Known	Issues

CUDA/D3D9	interop	is	unsupported.
Added	 experimental	 velocity	 sources	 to	 turbulence	 simulation,	 but
there	are	known	issues.	It’s	not	recommended	to	use	this	feature.



APEX	Particles	1.3.2

New	Features

Weighted	 field	 sampler	 collision	 filtering	 was	 added	 (see	 migration
guide).
Added	RateVsEmitterDuration	curve	to	APEX	emitters.
Added	minSamplingFPS	parameter	 to	APEX	emitter	assets	 to	reduce
discontinuities	of	fast	moving	emitters.
Added	a	pose	matrix	semantic	to	NxUserRenderInstanceBufferDesc.
Added	topSphericalForce	and	bottomSphericalForce	to	VortexFS.
Added	 scaling	 of	 APEX	 emitters	 and	 field	 samplers.	 See
setCurrentScale/getCurrentScale	 methods	 for	 attractor,	 vortex,
windFS,	 emitter,	 effect	 package,	 heat	 source,	 substance	 source,	 and
turbulence	actors.
Added	collision	 filtering	 for	heat	 sources	 and	 substance	 sources.	See
fieldSamplerFilterDataName	parameter.
Added	OrientScaleAlongScreenVelocity	IOFX	modifier.

Removed

Removed	 ‘collisionFilterDataName’	 from	 Turbulence,	 ParticleIOS,
and	 BasicIOS,	 since	 it	 is	 redundant	 under	 PhysX	 3.x.	 Now	 just	 use
‘fieldSamplerFilterDataName’
Removed	 ‘fieldBoundaryFilterDataName’	 from	 various	 field	 sampler
assets	since	it	is	now	considered	deprecated.
Removed	 obsolete	 semanticFormats[]	 from
NxUserRenderInstanceBufferDesc.
Removed	support	for	GPU	acceleration	on	pre-Fermi	GPUs.

Improvements

HeatSourceActor/SubstanceSourceActor	 NxParameterized	 parameter



for	 initial	 position	 was	 renamed	 to	 ‘initialPose’	 and	 its	 type	 was
changed	to	MAT34.
HeatSourceActor/SubstanceSourceActor	 NxParameterized	 parameter
for	initial	scale	was	renamed	to	‘initialScale’.

Fixes

Under	 PhysX	 3.x	 all	 collision	 filtering	 related	 to	 both	 particles	 and
field	 samplers	 now	 uses	 the	 standard	 PxFilterData	 and
SimulationFilterShader	callback.
Resolved	several	issues	where	it	was	possible	to	exhaust	GPU	constant
memory	under	certain	heavy	loads.	APEX	will	now	continue	to	work
under	these	conditions,	although	performance	may	be	slightly	affected.
Fixed	 crash	 that	 could	 occur	 when	 using	 turbulence	 debug
visualization.
Fixed	particle	time	stats	when	using	CPU	particles.
Fixed	 uninitialized	 render	 volume	 in	 EffectPackages.	 Could	 lead	 to
particles	not	getting	rendered.
Fixed	 possible	 turbulence	 crash	 when	 using	 the
updatePerFramesRange	feature.
When	using	opaque	mesh	rendering,	userRenderData	is	now	correctly
passed	to	the	application	through	the	NxUserRenderResourceDesc.
Fixed	bad	reference	counting	of	opaque	meshes.
Fixed	 rare	 race	 condition	 that	 could	 cause	 some	 particles	 not	 to	 be
rendered.
Fixed	synchronization	issues	with	PhysX	when	using	ParticleIOS.
Fixed	error	in	particle	benefit	calculation	that	could	inject	NANs	into
code.
Fixed	bad	LOD	calculation	with	updatePerFramesRange	feature.
Fixed	race	condition	in	turbulence.
Fixed	 improper	 render	mesh	 release	when	using	 IOFX	mesh	particle
rendering.
Fixed	issues	with	the	turbulence	dissipation	time	feature.



Known	Issues

CUDA/D3D9	interop	is	unsupported.
Added	 experimental	 velocity	 sources	 to	 turbulence	 simulation,	 but
there	are	known	issues.	It’s	not	recommended	to	use	this	feature.



APEX	Particles	1.3.1

New	Features

New	WindFS	field	sampler	for	wind	effects.
Add	 ‘fieldDragCoeff’	 &	 ‘fieldWeight’	 parameters	 to	 all	 assets	 in
BasicFS
Turbulence	dissipation	time,	allows	to	remove	turbulence	vortices	in	a
predetermined	time.	But	see	known	issues.
Added	ability	 to	 sample	a	TurbulenceFS’s	velocity	 field	directly	 to	a
surface	buffer.
The	 NxUserRenderSurfaceBuffer::writeBuffer	 parameters	 have
changed	to	support	writing	to	offsets	in	any	of	three	dimensions.
Object	scale	for	emitter	actors.	(need	details)
More	efficient	use	of	CUDA	constant	memory	in	IOFX

Removed

Removed	 useless	 fuctions	 (addFilterData,	 removeFilterData,
getFilterData)	from	NxForceFieldActor.	PxFilterData	can	be	specified
in	NxForceFieldActorDesc.

Fixes

Fixed	crash	when	a	turbulence	asset	had	maxCollidingObjects	set	to	0.
Fixed	BasicIOS	and	TurbulenceFS	not	honoring	all	collision	filtering
with	 PhysX	 3.x.	 Note:	 now	 that	 the	 collision	 filtering	 is	 correctly
handled,	 the	 behavior	 could	 change	 if	 you	 were	 using	 non-default
collision	filtering.
Fixed	 an	 issue	 with	 VortexFS	 not	 working	 due	 to	 an	 uninitialized
variable.
Fixed	 a	 bad	 interaction	 between	 a	 rotating	 capsule	 and	 a	 turbulence
grid.



Optimized	multigrid/diffusion	in	Turbulence
More	 robust	 handling	 of	 CUDA	 out	 of	 memory	 for	 TurbulenceFS
actor.
Fix	a	ParticleIOS	crash	when	an	emitter	is	deleted.
Various	EditorWidgets	fixes.
Fix	for	incorrect	EffectPackage	duration	calculation.
Fixed	incorrect	capsule	orientation	when	colliding	with	BasicIOS	and
TurbulenceFS.
APEX	now	correctly	takes	into	account	total	elapsed	time,	which	fixes
time-dependent	behavior	of	emitters.
Fix	for	NULL	pointer	access	in	EffectPackageActor.
Re-enabling	 a	 disabled	 effect	 in	 an	 EffectPackageActor	 using
setEffectEnabled=true	now	workes.
Fixed	issues	with	turbulence	debug	visualization.

Known	Issues

CUDA/D3D9	interop	is	unsupported.
When	 using	 the	 new	 turbulence	 dissipation	 time	 feature,	 some	 other
field	 samplers	may	 appear	 to	 start	 late.	 Also	 cleaning	 time	may	 not
work.	These	issues	will	be	fixed	in	a	future	release	of	APEX.



APEX	Particles	1.3

New	Features

Particle	 and	 field	 sampler	 modules	 including	 IOFX,	 Emitter,
BasicIOS,	 ParticleIOS,	 and	 BasicFS	 have	 been	 merged	 into	 one
“Particles”	module.	TurbulenceFS	is	still	a	separate	module.
APEX	now	 supports	Effect	 Packages,	 a	 collection	 of	 particle-related
assets	 that	 can	 be	 instantiated	 together	 in	 an	 applications.	 APEX
provides	the	Particle	Effect	Tool	for	authoring.
APEX	 now	 requires	 Sprite	 and	 Instance	 Buffers	 implementations	 to
specify	 their	 layout	 (NxRenderSpriteLayoutElement	 and
NxRenderInstanceLayoutElement)	 by	 using	 semantic/format
specification	defined	in	corresponding	enumerations.
Added	 2	 counters	 to	 APEX	 IOFX	 Stats	 -
SimulatedSpriteParticlesCount,	SimulatedMeshParticlesCount
Added	Noise	and	Vortex	Field	Samplers	in	the	BasicFS	module	(now
in	Particles	module).
APEX	Emitter	Actor	 now	 provides	 an	 optional	 user	 emitter	 position
validation	 callback
(NxApexEmitterActor::setApexEmitterValidateCallback)	 used	 to
allow	the	application	to	prevent	particles	from	being	emitted	in	invalid
locations	(for	instance,	on	the	other	side	of	a	wall).
APEX	 Sphere	 and	 Sphere	 Shell	 Emitter	 now	 supports	 ‘hemisphere’
property	(allows	using	only	specified	sphere	cap	as	emitter).
APEX	 requires	minimal	GPU	Compute	 Capability	 1.1	 now	 (G92	 or
better	GPU).
Changed	 ‘min’	 ‘max’	 hints	 for	 APEX	 Particle	 IOS	Asset	 to	 ‘uimin’
and	 ‘uimax’	 so	 they	 are	 treated	 as	 hints	 only	 for	 the	 user-interface
code;	but	will	not	‘invalidate’	assets.

Removed



Removed	 fluidVelocityMultiplier	 and	 fluidVelocityClamp	 parameters
from	TurbulenceFS	asset.
Removed	redundant	parameter	‘position’	from	APEX	Heat	Source

Fixes

APEX	Turbulence	moving	grid	behaviour	is	fixed.
CUDA/D3D11	 interop	 is	 now	 working.	 Note	 that	 CUDA/D3D9
interop	still	has	known	issues	and	is	not	supported	or	recommended.

Known	Issues

CUDA/D3D9	interop	is	unsupported.
Mixing	 interop	 and	 non-interop	 IOFX	 rendering	 at	 the	 same	 time	 is
unsupported.



APEX	Particles	1.2.4

Fixes

Fixed	a	race	condition	issue	due	to	improper	scene	locking	with	PhysX
3.2.x	in	turbulence.
Fixed	GPU	memory	leak	with	turbulence/convex	collision.
Fixed	an	LOD	issue	with	ParticleIOS	that	could	cause	a	crash.

Known	Issues

(PhysX	 3.2.4	 only)	 You	may	 see	 the	 nuisance	 error	 stream	warning
“Adding	 particles	 before	 the	 first	 simulation	 step	 is	 not	 supported”
when	using	ParticleIOS.	This	warning	may	be	ignored.



APEX	Particles	1.2.3

New	Features

IOFX	sprite	rendering	was	reworked	to	allow	writing	sprite	rendering
data	 more	 efficiently.	 See	 the	 new
NxUserRenderResourceManager::getSpriteTextureData()	 and
NxUserRenderSpriteBuffer::writeTexture()	 callbacks	 and	 the	 new
NxUserRenderSpriteTextureDesc.
Added	 NxApexEmitterActor::getSimParticlesCount()	 to	 get	 the
number	of	simulated	particles.	Works	with	BasicIOS	and	ParticleIOS.
Added	NxApexEmitterActor::getRateRange().
Added	ColorByVelocity	IOFX	modifier.
Added	 includeVerticalDirection	 rotation	 modifier	 to	 control	 whether
vertical	speed	affects	rotation.
Added	getPose()	and	setPose()	methods	for	NxHeatSourceActor.



APEX	Particles	1.2.2

New	Features

Added	Turbulence	Heat	Source	assets	and	actors	instead	of	them	being
only	part	of	the	Turbulence	module	C++	API
Added	 setEnabled	API	 to	 JetFS	 and	AttractorFS	 to	 enable/disable	 a
field	sampler	actor	at	runtime
BasicIOS:	 Added	 NxParameterized	 collisionWithConvexMesh	 and
collisionWithTriangleMesh	 to	 BasicOS	 to	 enable/disable	 different
shape	collision
Added	fluidViscosity	to	TurbulenceFS.

Fixes

Added	 64bit	 collision	 filtering	 between	 the	 ParticleIOS	 (PhysX	 3.x
particles)	 and	 APEX	 Field	 Samplers	 (in	 the	 fieldSamplerFilterData
member	of	ParticleIosAssetParam)
Changed	grid	 resolution	 type	 to	an	enum.	Before	 it	was	a	 float,	 so	 it
was	possible	to	set	invalid	values	that	would	cause	errors.

Improvements

Particle	 rendering	 is	 now	 done	 with	 a	 single	 render	 buffer	 for	 non-
interop	and	a	double	render	buffer	for	D3D-CUDA	interop.	Previously
it	was	always	double	buffered	and	possibly	triple	buffered	for	interop.
Note	 that	 the	 placement	 of	 the
NxApexScene::prepareRenderResourceContexts()	 changes	 from	 just
before	 calling	 the	UpdateRenderResources	methods	 to	 outside	of	 the
simulation	(after	FetchResults).
EditorWidgets:	 Flipped	 “Life	Remaining”	 axes	 to	 show	 “Life	 Time”
instead,	based	on	user	feedback.



APEX	Particles	1.2.1

New	Features

Added	noise	feature	to	turbulence	grid	simulation.
Added	drag	coefficient	parameter	to	turbulence	grids.
Attractor	field	sampler	works	inside	of	turbulence	grids.
New	FieldVelocityWeight	parameter,	which	controls	how	strongly	the
field	velocity	affects	particles.
Support	convex	mesh	collision	with	turbulence	grids.
Support	convex	mesh	collision	with	basic	IOS.
Clearer	emitter	debug	visualization	hints.
New	semantics	 for	particle	 rendering:	COLOR_FLOAT4	and	generic
32-bit	USER_DATA.
All	turbulence	grid	parameters	now	exposed	through	NxParameterized
interface.
Temperature	 visualization	 now	 shows	 different	 colors	 for
temperatures.

Fixes

Fixed	 collision	 issues	 with	 turbulence	 grids	 which	 used	 to	 cause
unrealistic	rigid	body	interaction.
Turbulence	 actor	 LOD	 is	 now	 properly	 disabled	 when	 the	module’s
LOD	is	disabled.
Fixed	crash	issue	in	turbulence	simulation.



APEX	Particles	1.2

Removed

Particles	are	only	supported	on	Windows.
maxObjectCount	is	no	longer	an	IOFX	property
Most	NxFluidIOSActor	methods	have	been	removed,	this	class	is	not
exposed	at	runtime.
NxModuleIofx::createRenderableIterator()	 removed.	 IOFX	Actors	are
now	only	reachable	via	NxApexRenderVolumes.
NxModuleIofx::getIofxTypeName()	 removed.	 Use
NX_IOFX_AUTHORING_TYPE_NAME	from	NxIofxAsset.h

New	Features

NxApexRenderVolume	 -	 this	 new	 class	 adds	 the	 ability	 to	 partition
particle	 world	 space	 in	 many	 practical	 ways.	 See	 the	 IOFX
programmers	guide	for	details.

Improvements

Render	 resource	 optimizations.	 Only	 one	 writeBuffer()	 call	 is	 made
per	fluid	simulation	(IOS	actor)	per	frame,	no	matter	how	many	IOFX
assets	or	volumes	in	use.
Deferred	 IOFX	 actor	 creation	 keeps	 render	 resource	 churn	 and
renderable	counts	to	reasonable	levels.
IOFX	CUDA	 and	CPU	 performance	 should	 be	 roughly	 linear	 to	 the
number	of	particles	in	simulation.	The	number	of	IOFX	assets	should
have	a	limited	effect.
More	 robust	 CUDA	 interop	 with	 writeBuffer()	 fallbacks	 for	 frames
where	mapped	buffers	are	not	available.
Interop	can	be	restricted	 to	double	buffering	 if	certain	guarantees	are
met	by	the	game	rendering	thread.



Improved	level	of	detail	particle	culling.

nextprevious	|APEX	1.3	Release	Notes	»
©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/


previousAPEX	1.3	Release	Notes	»



APEX	Destruction	Release	Notes



APEX	Destruction	1.3.4

New	Features

DestructibleActor::acquirePhysXActorBuffer	 uses	 a	 new	 flag	 in
DestructiblePhysXActorQueryFlags.	 ‘AllowActorsNotInScenes’
(default	 cleared)	will	 return	 actors	 that	 have	not	yet	 been	 added	 to	 a
PhysX	scene.
DestructiblePhysXActorQueryFlags::All	 has	 changed	 to
DestructiblePhysXActorQueryFlags::AllStates,	 since	other	 (non-state)
values	are	now	in	the	enum.

Removed

Optimizations

Fixes

Miscellaneous	API	changes

DestructibleActor::acquirePhysXActorBuffer	 has	 a	 new	 function
signature.	 The	 ‘eliminateRedundantActors’	 bool	 is	 removed,	 and	 the
flag	 ‘AllowRedundancy’	 added	 to
DestructiblePhysXActorQueryFlags.	 These	 have	 opposite	 meanings,
and	their	default	values	are	accordingly	opposite.

Known	Issues



APEX	Destruction	1.3.3

New	Features

Destructible	 assets	 authored	 with	 imported	 multiple-mesh	 fbx	 files
now	 clip	 their	 collision	 hulls	 to	 prevent	 initial	 penetration	 when
chunks	are	created.
New	 NxPhysX3DescTemplate	 interface	 to	 replace	 the	 undefined
PhysX3DescTemplate	 used	 in	 public	 functions
NxApexActorSource::setPhysX3Template	 and	 ::getPhysX3Template.
To	 use,	 create	 an	 instance	 using
NxApexActorSource::createPhysX3DescTemplate(),	 and	 use
NxPhysX3DescTemplate::release()	when	done.

Removed

Deprecated	 functions	 createTwoWayRb,	 addTwoWayRb,	 and
releaseTwoWayRb	have	been	removed.

Optimizations

Fixes

Fixed	a	bug	where	destructibles	 fractured	when	 touching	kinematics,
even	if	impact	damage	was	disabled.
Fixed	 a	 bug	 which	 may	 have	 led	 to	 errors	 when	 disabling	 detailed
overlap	tests	with	performDetailedOverlapTestForExtendedStructures.

Miscellaneous	API	changes

Known	Issues



Known	 issue	 with	 improper	 reference	 counting	 when	 using
setSkinnedOverrideMaterial,	 which	 could	 lead	 to	 APEX	 trying	 to
release	a	resource	that	hasn’t	been	requested.	Use	setResource	on	the
material	to	manually	increment	its	reference	count	as	a	workaround.
Destructible	 scatter	 meshes	 may	 create	 render	 resources	 outside	 of
updateRenderResources.	If	you	use	scatter	meshes	your	callback	must
be	thread	safe.
Potential	 threading	 issue	 when	 using	 instanced	 rendering	 with
destructibles.	A	destructible	could	be	rendered	twice	as	a	result.



APEX	Destruction	1.3.2

New	Features

NxDestructibleParameters	 now	 has	 two	 new	 fields:
legacyChunkBoundsTestSetting	 and
legacyDamageRadiusSpreadSetting.	These	control	whether	or	not	 the
legacy	settings	are	used	per-actor,	with	per-asset	defaults	since	it	 is	a
part	 of	 NxDestructibleParameters.	 These	 correspond	 to	 the
NxModuleDestructible	 functions	 setUseLegacyChunkBoundsTesting
and	 setUseLegacyDamageRadiusSpread.	 The	 per-actor	 values	 may
override	the	module	values.	If	the	per-actor	values	are	negative	(their
defaults	are	-1),	then	the	module	values	are	used.	If	a	per-actor	value	is
0,	then	the	corresponding	setting	is	“false”	(legacy	setting	is	not	used).
Otherwise,	the	legacy	setting	is	used.
NxUserChunkReport	 has	 a	 new	 virtual	 callback	 function
onStateChangeNotify	 that	 needs	 to	 be	 added	 to	 any	 user
implementations.	It	gets	called	when	chunk	visibility	changes	occur,	if
the	 user	 has	 enabled	 it	 via
NxModuleDestructible::scheduleChunkStateEventCallback.
Destructible	 authoring	 API	 has	 new	 functionality	 that	 allows	 it	 to
import	 full	 destruction	 hierarchies.	 One	 does	 this	 by	 passing	 in	 an
array	 of	 chunk	 parent	 indices	 to
NxFractureTools::buildExplicitHierarchicalMesh	 or
NxDestructibleAssetAuthoring::setRootMesh.	 PhysXLab	 uses	 this
when	 importing	 a	 multi-mesh	 FBX	 file.	 If	 the	 chunk	 hierarchy	 will
reflect	the	parent/child	relationship	given	by	the	FBX	scene	graph.
NxUserChunkReport	 has	 a	 new	 virtual	 callback	 function
releaseOnNoChunksVisible.	 When	 the	 last	 chunk	 of	 an
NxDestructibleActor	 disappears,	 this	 callback	 is	 called.	 If	 the	 user
returns	 true,	 APEX	 will	 release	 the	 destructible	 actor.	 If	 the	 user
chooses	 to	 release	 the	 actor	 themselves,	 they	 must	 wait	 until	 after
fetchResults()	completes.



Voronoi	 fracture	 distributes	 its	 N	 sites	 across	 all	 pieces	 of	 a	 multi-
mesh.
Added	new	FractureVoronoi	type	to	RT	fracturing.
Added	maxDepentrationVelocity	to	behavior	groups.
Fracture	 event	 callback	 runs	 before	 PhysX	 simulate	 step,	 so	 the
application	has	a	chance	to	modify	PhysX	state	before	simulation.
Enabled	alpha	channel	for	scatter	meshes.
Added	user-defined	deletion	bounding	boxes	 for	destructible	 chunks.
See	 NxApexScene::addBoundingBox	 and	 the
deleteChunksLeavingUserDefinedBB	 and
deleteChunksEnteringUserDefinedBB	 parameters	 of	 destructible
actors.
Added	 customizable	 velocityIterationCount	 parameter	 to	 destructible
actors.
Better	 conversion	 of	 legacy	 damage	 spread	 parameters	 to	 the	 new
behavior.	 See
NxDestructibleParameters::legacyChunkBoundsTestSetting	 and
NxDestructibleParameters::legacyDamageRadiusSpreadSetting.
User-defined	support	graphs:

NxDestructibleAssetCookingDesc::supportGraphEdges
NxDestructibleAssetCookingDesc::supportGraphEdgeCount
NxDestructibleAssetAuthoring::cacheChunkOverlapsUpToDepth
NxDestructibleAssetAuthoring::clearChunkOverlaps
NxDestructibleAssetAuthoring::addChunkOverlaps
NxDestructibleAssetAuthoring::removeChunkOverlaps
NxDestructibleAssetAuthoring::getCachedOverlapCountAtDepth
NxDestructibleAssetAuthoring::getCachedOverlapsAtDepth.

Removed

Support	for	GPU	rigid	bodies	has	been	removed.
Functions	 createTwoWayRb,	 addTwoWayRb,	 and	 releaseTwoWayRb
have	been	deprecated.
Removed	 ‘enabled’	 parameter	 from



NxDestructibleAssetAuthoring::setChunkOverlapsCacheDepth(bool
enabled,	physx::PxI32	depth	=	 -1),	 it	 is	now	a	 function	parameter	of
cookChunks

Optimizations

By	 default,	 NxDestructibleActor::applyDamage()	 will	 only	 raycast
against	static	chunks.	To	match	the	behavior	of	previous	releases,	pass
NxDestructibleActorRaycastFlags::AllChunks	 to
NxModuleDestructible::setDamageApplicationRaycastFlags().	 You
can	also	have	it	raycast	against	no	chunks.
Multiple	optimizations	to	destructible	actor	creation.
Faster	applyDamage.
Disabled	 internal	 benefit	 calculations	 when	 not	 using	 the	 sort	 by
benefit	feature.
Improved	damage	event	report	performance.
Improved	support	graph	rebuild/update	performance.
Store	 only	 a	 single	 cooking	 scale	 in	 the	 destructible	module	 cached
data,	and	use	PhysX	3.x’s	scaling	feature	instead.	Reduces	size	of	data
needed	for	an	application	when	using	destructibles	at	multiple	scales.
Note	 that	 using	 a	 scale	 of	 (1,1,1)	 may	 still	 give	 better	 PhysX
performance.
Improved	render	update	processing	which	was	previously	running	on
some	actors	that	were	sleeping.
Added	 ability	 to	 disable	 detailed	 overlap	 testing	 for	 creation	 of
extended	 structures.	 See
performDetailedOverlapTestForExtendedStructures	 destructible	 actor
parameter.

Fixes

No	 more	 render	 resource	 allocation	 in	 fetchResults	 when	 instanced
chunks	are	used.
Chunks	 with	 shapes	 that	 had	 their	 simulation	 flags	 reset



(eSIMULATION_SHAPE)	could	get	 their	 inertia	 tensors	 re-calulated
incorrectly,	leading	to	bizarre	physical	behavior.
Render	 resource	 creation	 for	 scatter	 meshes	 is	 now	 happening	 in
updateRenderResources	 of	 the	 DestructibleRenderable,	 not	 at	 Asset
creation	anymore.
Fixed	 case	 in	 extended	 structures	where	 some	 shapes	 on	 broken	 off
islands	did	not	get	the	correct	shape	template	(including	userData).
Fixed	 crash	 in
NxDestructibleAsset::releaseAndReturnNxParameterizedInterface
when	it	is	called	on	an	asset	with	existing	actors.
Fixed	bug	 that	caused	 the	 last	chunks’	graphics	 to	 remain	when	 they
were	destroyed	due	to	a	debris	setting.
Fixed	behavior	when	“keepVisibleBonesPacked”	is	false.
Fixed	NxDestructibleActorJoint	not	working	correctly	when	jointed	to
a	PxActor.
When	 using	 RT	 fracture,	 the	 renderable	 bounds	 now	 take	 the	 RT-
fracture	chunks	into	account.
Fixed	various	small	issues	with	destructible	graphics	updates.
Correctly	set	applied	damage	user	data	in	damage	event	reports.
Fixed	a	possible	crash	when	a	destructible	asset	name	is	NULL.
Added	scene	locks	to	protect	potentially	unsafe	asynchronous	sweeps.
Fixed	 possible	 nuisance	 assertions	 on	 destructible	 actor	 release	 and
when	creating	kinematic	non-static	destructibles.
Fixed	damage	event	assertion.
APEX	 was	 intercepting	 onTrigger	 callbacks	 from	 PhysX	 and	 not
passing	them	along	to	the	application.
Apply	impact	forces	to	newly	created	actors	in	the	scene.
Fixed	a	memory	leak	on	PS4.
Fixed	improperly	inflated	convexes	when	skinWidth	is	0,	causing	bad
collision	geometry.
Fixed	issue	where	destructible	bounds	kept	growing.
Fixed	other	miscellaneous	crash	issues.

Miscellaneous	API	changes



Moved	rebuildCollisionGeometry	from	NxDestructibleAssetAuthoring
to	NxDestructibleAsset.
Renamed	 “getInstancedChunkCount”	 to	 more	 accurate	 name
“getInstancedChunkMeshCount”
API	cleanup:

ExplicitHierarchicalMesh.h	 renamed	 to
NxExplicitHierarchicalMesh.h
FractureTools.h	renamed	to	NxFractureToolsStructs.h
Added	NxFractureTools.h	 to	 expose	 helper	 functions	 that	 so	 far
were	only	accessible	through	NxDestructibleAssetAuthoring
Access	 NxFractureTools	 through
NxModuleDestructible::getFractureTools()
Renamed	classes	and	structs	 in	NxExplicitHierarchicalMesh	and
NxFractureToolsStructs.h	to	have	an	Nx	prefix

IDisplacementMapVolume	->	NxDisplacementMapVolume
IExplicitHierarchicalMesh	->	NxExplicitHierarchicalMesh
IEmbedding	->	NxEmbedding
IConvexHull	->	NxConvexHull
MeshProcessingParameters	 ->
NxMeshProcessingParameters
NoiseParameters	->	NxNoiseParameters
SliceParameters	->	NxSliceParameters
FractureSliceDesc	->	NxFractureSliceDesc
CutoutParameters	->	NxCutoutParameters
FractureCutoutDesc	->	NxFractureCutoutDesc
FractureVoronoiDesc	->	NxFractureVoronoiDesc

Removed	 “m”	 prefix	 of	 public	 members	 of
NxMeshProcessingParameters

mIslandGeneration	->	islandGeneration
mRemoveTJunctions	->	removeTJunctions
mMicrogridSize	->	microgridSize
mVerbosity	->	verbosity

Known	Issues



Known	 issue	 with	 improper	 reference	 counting	 when	 using
setSkinnedOverrideMaterial,	 which	 could	 lead	 to	 APEX	 trying	 to
release	a	resource	that	hasn’t	been	requested.	Use	setResource	on	the
material	to	manually	increment	its	reference	count	as	a	workaround.
Destructible	 scatter	 meshes	 may	 create	 render	 resources	 outside	 of
updateRenderResources.	If	you	use	scatter	meshes	your	callback	must
be	thread	safe.
Potential	 threading	 issue	 when	 using	 instanced	 rendering	 with
destructibles.	A	destructible	could	be	rendered	twice	as	a	result.



APEX	Destruction	1.3.1

New	Features

Fracturing	now	handles	open	meshes.	No	API	change.
Performance	 improvement	 in	 fetchResults:	 Only	 update	 poses	 of
awake	actors.
Added	 doNotCreateRenderable	 parameter	 to	 destructible	 actors.
Optimization	if	the	APEX	rendering	API	is	being	bypassed.
Added	access	to	scatter	meshes	from	NxDestructibleAsset.
NxRenderMeshActor::setMaxInstanceCount:	Change	the	max	instance
count	in	the	case	that	the	instance	buffer	was	changed.
Improvement	 to	 acquirePhysXActorBuffer:	 Before,	 if
“eliminateRedundantActors”	 was	 true,	 this	 function	 could	 return
multiple	copies	of	a	PhysX	actor	per	NxDestructibleActor.	In	1.3.1,	it
will	 only	 return	 one	 PhysX	 actor	 per	 NxDestructibleActor,	 at	 most.
Also,	this	query	has	been	made	more	efficient.

Fixes

Fixed	 crash	 when	 two	 or	 more	 structures	 are	 joined	 at
DestructibleActor	creation.
Fix	for	assertion	in	destructible	stress	solver	sample.
Fixed	destructible	module	cached	data	in	release	builds.
Properly	 take	 into	 account	 the	 bias	 field	 on	 weights	 in	 destructible
benefit	calculation.
Fixed	a	bad	pointer	dereference	crash.
Fixed	real-time	fracturing	thread-safety	issues.
Fixed	real-time	fracturing	override	of	the	PxSimulationEventCallback.
Fixed	applyTransformation	to	also	transform	scatter	meshes.
Fixed	NxDestructibleActorJoint	not	working	correctly	when	jointed	to
the	world	(one	actor	NULL).
Fixed	potential	crash	when	PhysX	3.x	shape	creation	fails.



Fixed	bad	destructible	actor	deletion/creation	accounting,	which	could
potentially	have	led	to	bad	reference	counts	on	destructibles.
Fixed	crash:	APEX	could	access	deleted	actors	if	actor	creation	rate	or
fractureBufferProcessRates	are	exceeded.
Fixed	an	unsafe	destructible	scene	release	when	using	GRB.
Fixed	incorrect	rendering	when	a	destructible	actor	is	removed	from	a
structure.
Fixed	an	 issue	where	 the	number	of	dynamic	chunks,	 reported	 in	 the
DynamicDestructibleChunkIslandCount	stat,	could	exceed	the	limit	set
by	calling	setMaxDynamicChunkIslandCount.
In	 some	 cases	 when	 using	 instanced	 mesh	 rendering,	 creating	 a
destructible	 actor	 could	 lead	 to	 a	 releaseRenderResources	 callback.
That	no	longer	happens.
FractureTool	now	handles	multi-fbx	import
FractureTool	-x	option	now	works	correctly

Known	Issues

Known	 issue	 with	 improper	 reference	 counting	 when	 using
setSkinnedOverrideMaterial,	 which	 could	 lead	 to	 APEX	 trying	 to
release	a	resource	that	hasn’t	been	requested.	Use	setResource	on	the
material	to	manually	increment	its	reference	count	as	a	workaround.
Destructible	 scatter	 meshes	 may	 create	 render	 resources	 outside	 of
updateRenderResources.	If	you	use	scatter	meshes	your	callback	must
be	thread	safe.
Potential	 threading	 issue	 when	 using	 instanced	 rendering	 with
destructibles.	A	destructible	could	be	rendered	twice	as	a	result.



APEX	Destruction	1.3

New	Features

Behavior	groups
Some	 common	 parameters,	 such	 as	 damage	 threshold,	 damage
spread,	 density,	 etc.,	 are	 now	 contained	 in	 “Behavior	 Groups.”
Every	chunk	references	a	behavior	group	by	index,	allowing	the
user	to	customize	behaviors	for	different	chunks.

Render	 proxies	 for	 destructibles.	 The	 rendering	 of	 destructibles	 is
managed	by	a	new	object	that	is	independent	of	the	destructible	actor.
By	default	you	will	not	see	a	change,	but	you	may	detach	this	object
from	the	destructible,	meaning	that	the	render	data	will	not	get	deleted
when	the	destructible	is	deleted.	You	may	delete	the	renderable	when
you’re	done	with	it.	This	is	useful	for	multi-threaded	renderers	which
may	 have	 the	 render	 data	 queued	 up	 even	 after	 the	 destructible	 is
deleted	in	the	main	thread.
New	damage	detection	(can	be	reverted	to	legacy	behavior):

Exact	 chunk	 collision	 volumes	 used	 for	 hit	 testing	 (point	 and
radius	 damage).	 This	 gives	 better	 consistency	 when	 applying
damage	to	destructibles	at	different	LODs.

New	damage	spread
damageToRadius	is	no	longer	used	for	point	and	radius	damage.
Instead,	behavior	groups	contain	a	DamageSpreadFunction	struct,
which	 contains	 a	 minimumRadius,	 radiusMultiplier,	 and
falloffExponent.	It	works	as	follows.	When	damage	is	applied,	it
comes	with	 a	 radius.	That	 radius	 is	 zero	 for	 a	 point	 damage.	 In
any	case,	we	multiply	that	damage	radius	by	radiusMultiplier,	and
then	 add	 minimumRadius.	 This	 value	 becomes	 what	 we	 call
“maximumRadius.”	 Then,	 when	 applying	 the	 damage,	 every
chunk	up	to	minumumRadius	takes	the	full	damage,	and	chunks
past	 the	 maximumRadius	 take	 zero	 damage.	 How	 the	 damage
falls	 off	 between	 the	 minimumRadius	 and	 maximumRadius	 is



determined	by	falloffExponent.	Basically,	a	linear	function	which
goes	 from	1.0	down	 to	0.0	between	min	 to	max	 is	 raised	 to	 the
power	falloffExponent,	and	the	result	at	a	given	chunk’s	radius	is
multiplied	by	the	damage,	to	get	the	applied	damage.
damageToRadius	 is	 still	 used	 for	 impact	 damage,	 but	 it	 is	 no
longer	 scaled	by	 the	 size	 of	 the	destructible.	To	 recover	 the	 old
behavior,	 multiply	 the	 damageToRadius	 by	 the	 approximate
radius	of	the	destructible

Damage	vertex	coloring
The	 behavior	 groups	 now	 contain	 a	DamageSpreadFunction	 for
damage	 coloring,	 as	 well	 as	 a	 damageColorChange	 parameter
(Vec4).	 If	 damageColorChange	 !=	 (0,0,0,0),	 a	 per-actor	 color
channel	is	created	for	the	destructible.	The	initial	(asset-supplied)
color	 channel	 is	 used	 to	 initialize	 it,	 or	 all	 zeros	 if	 none	 exists.
Then,	 using	 a	 similar	 radial	 behavior	 to	 that	 used	 for	 damage
spread	 (above),	 the	 color	 channel	 is	 modified	 by	 the
damageColorChange	 vector.	 This	 allows	 for	 some	 nice	 effects
using	 multiple-texture	 shaders.	 One	 difference	 in	 the	 radial
function:	 the	 falloff	 is	 calculated	 between	 0	 and	 max	 radius,
instead	of	min	radius	and	max	radius.

Ability	 to	 specify	 collision	 volume	 properties	 per	 chunk	 depth	 in
PhysXLab
Damage	depth	limit:	You	can	specify	how	many	hierarchy	depths	deep
fracturing	may	occur,	relative	to	the	chunk	that	takes	the	damage.
More	robust	fracturing	in	PhysXLab.	BSPs	are	stored	and	fractured	at
a	 normalized	 scale,	 with	 the	 output	 mesh	 scaled	 back	 to	 the
appropriate	 world	 coordinates.	 The	 result	 is	 that	 many	 inexplicable
errors	 (BSPs	 which	 looked	 perfect	 were	 generating	 holes	 and	 extra
triangles)	are	now	gone.
Better	 chunk	 deletion	 probability	 behavior.	 Debris	 chunks	 may	 be
deleted	 with	 a	 user-supplied	 probability.	 Now	 the	 probability
distribution	 is	 scaled	 by	 the	 damage	 taken	 by	 each	 chunk,	 and
normalized.	The	result	is	that	more	chunks	disappear	near	the	damage
point.



Limited	real-time	fracturing.	Chunks	with	no	child	chunks	can	be	real-
time	fractured	now.	This	means	that	a	fracture	pattern	is	applied	to	the
chunk	 at	 a	 position	 specified	 at	 runtime.	 This	 may	 be	 applied
recursively.	In	1.3,	only	a	glass	fracture	pattern	is	available.
A	physical	 stress	 solver	 is	 available	when	using	PhysX	3.3.	 Stresses
are	 updated	 as	 a	 destructible	 structure	 is	 fractured,	 and	 when	 they
exceed	a	user-specified	limit,	fracturing	will	occur	at	the	highest	stress
points	automatically.
Scatter	meshes

Ability	to	author	instanced	meshes,	randomly	scattered	about	the
surface	of	fractured	chunks,	rotated	and	scaled	with	respect	to	the
surface	 normal	 within	 a	 range	 specified	 by	 the	 user.	 Authoring
with	preview	available	in	PhysXLab.

Graphical	noise	on	chunk	faces	with	Voronoi	fracturing.
Faster	queries	(rayCast	and	obbSweep)	for	static	chunks,	if	static-only
query	flags	are	selected.
Exposed	several	functions	to	get	per-chunk	state.

Known	Issues

Known	 issue	 with	 improper	 reference	 counting	 when	 using
setSkinnedOverrideMaterial,	 which	 could	 lead	 to	 APEX	 trying	 to
release	a	resource	that	hasn’t	been	requested.	Use	setResource	on	the
material	to	manually	increment	its	reference	count	as	a	workaround.



APEX	Destruction	1.2.4

Fixes

Fixed	 contacts	 not	 getting	 detected	 between	 PhysX	 bodies	 and
destructibles	when	using	GRB.



APEX	Destruction	1.2.3

New	Features

Added	 actor	 synchronization	 filtering	 by	 damage	 event	 depth	 and
fracture	event	depth.
Added	 NxDestructibleActor::setDeleteFracturedChunks()	 to	 tell	 a
destructible	 actor	 to	 delete	 its	 fractured	 chunks	 instead	of	 simulating
them.
Added	 NxUserDestructibleSyncHandler::onPreProcessReadBegin()
and	 NxUserDestructibleSyncHandler::onPreProcessReadDone()
callbacks.
Edited	NxUserDestructibleSyncHandler::onReadBegin()	callback.
Removed	 NxUserDestructibleSyncHandler::onSwizzleDone()
callback.
Added	NxDestructibleActorSyncState	struct.
Edited	NxDestructibleActor::setSyncParams()	method.
Edited	NxDestructibleActor::setHitChunkTrackingParams()	method.
Added	 new	 NxDestructibleAssetStats:	 maxHullVertexCount,
maxHullFaceCount,	chunkWithMaxEdgeCount.
NxDestructibleAsset::createDestructibleActor()	 renamed	 to
NxDestructibleAsset::createDestructibleActorFromDeserializedState().
NxDestructibleActor::getPartTM()	 renamed	 to
NxDestructibleActor::getChunkTM().
IExplicitHierarchicalMesh::IConvexHull::reduceHull	 function
removes	vertices	from	a	convex	hull	until	the	given	limits	are	reached
(after	cooking).
Added	both	 the	destructible	actor	pointer	 and	 the	chunk	 index	 to	 the
NxApexPhysX3Interface::setContactReportFlags()	 callback	 when
PhysX	3.x	shapes	are	created.



APEX	Destruction	1.2.2

New	Features

Option	to	include	use	of	stress	solver	in	destructibles.	The	stress	solver
attempts	to	detect	and	break	off	chunks	deemed	to	be	overly-strained.
Introduced	 a	 new	 parameter	 struct	 “StrutureSettings”	 in	 the
destructible	actor.	Parameters	 that	make	up	“StructureSettings”	affect
all	actors’	settings	structure-wide.

New	parameters	“useStressSolver”,	“stressSolverTimeDelay”	and
“stressSolverMassThreshold”	introduced	for	the	stress	solver.

Authoring	Improvements

Option	 to	 remove	all	T-junctions	 from	a	 fractured	mesh.	This	allows
post-processing	 such	 as	 deformation	 to	 be	 applied	 (for	 example	 in	 a
DCC	tool).
Ability	to	control	 the	interior	materials	used	when	fracturing	selected
chunks.
Ability	to	add	noise	to	the	perimeter	faces	of	cutout	chunks.

Bug	Fixes

ApexHelloWorld	sample	destruction	scene	on	PS3	crash	was	fixed



APEX	Destruction	1.2.1

New	Features

Enabled	GRB	support	with	PhysX	3.2.1.
Support	multiple	interior	materials.
Added	 hard	 sleeping	 option,	 which	 turns	 chunk	 islands	 kinematic
when	they	sleep.	They	may	be	turned	dynamic	again	if	enough	damage
is	applied.
New	 sleepVelocityFrameDecayConstant	 parameter	 replaces
sleepVelocitySmoothingFactor.

Removed

Removed	surface	trace	functionality	(was	used	for	old	dust	system).

Authoring	Improvements

Edge	face	noise	in	cutout.

Known	Issues

Known	 crash	 in	 ApexHelloWorld	 sample	 destruction	 scene	 on	 PS3
with	heavy	destruction	load.



APEX	Destruction	1.2

New	Features

FractureTool	FractureTool	is	a	new	command-line	utility	for	fracturing
and	 exporting	meshes.	 It	 provides	 a	 subset	 of	 the	 fracturing	 features
exposed	 by	 PhysXLab,	 and	 serves	 as	 a	 convenient	 way	 of	 batch
processing	meshes	and	testing	new	features.
NxDestructibleActor

Serialization	 support	 for	 actor	 state	 provided	 via	 the	 actor’s
NxParameterized	interface
Deserialization	 support	 for	 actor	 state	 provided	 via
NxParameterized	constructor	argument

Added	setGlobalPose/getGlobalPose	 to	NxDestructibleActor	 (sets	 the
pose	of	static	chunks	only).
Added	 impactDamageDefaultDepth	 to	 NxDestructibleParameters.
Chunks	up	 to	 this	depth	will	 take	 impact	damage,	unless	an	override
flag	is	set	(see	below).
TAKE_IMPACT_DAMAGE	 flag	 has	 been	 changed	 to
OVERRIDE_IMPACT_DAMAGE/OVERRIDE_IMPACT_DAMAGE_VALUE.
At	 the	 given	 depth,	 the	 OVERRIDE_IMPACT_DAMAGE	 flag	 tells
APEX	 to	 use	 OVERRIDE_IMPACT_DAMAGE_VALUE	 (true	 or
false)	 instead	 of	 the	 behavior	 it	 would	 get	 from
impactDamageDefaultDepth	(see	above).
New	dust	and	crumble	callbacks,	using	NxUserChunkParticleReport.
Visibility	 event	 buffer	 for	 NxDestructibleActors	 using
acquireChunkEventBuffer	/	releaseChunkEventBuffer.
Option	 for	 second	 bone	 buffer	 for	 frame-delayed	 chunk	 transforms,
using	keepPreviousFrameBoneBuffer.

Improvements

LOD	performance	improvements.



Better	instancing	of	cutout	chunks,	allows	for	UV	offset	instancing	so
that	texture	maps	don’t	need	to	tile	with	the	chunk	instance	tiling.	This
requires	 a	 renderer	 which	 uses	 the	 new
NxRenderInstanceSemantic::UV_OFFSET	 semantic	 for	 the
ApexRenderMesh	instance	buffer.

Authoring	Improvements

Voronoi	 fracturing	 mode	 using
NxDestructibleAssetAuthoring::createVoronoiSitesInsideMesh	 and
::createVoronoiSplitMesh.
Voronoi	 cell	 visualization	 utility	 using
NxDestructibleAssetAuthoring::visualizeVoronoiCells.
Several	performance	optimizations.
Ability	 to	 fracture	 a	 single	 chunk	 using
NxDestructibleAssetAuthoring::hierarchicallySplitChunk.
Ability	 to	 re-calculate	 a	 collision	 hull	 for	 a	 chunk	 using	 different
settings,	or	a	custom-made	hull,	and	trim	the	hulls	against	neighbors	to
eliminate	 initial	 overlap:
NxDestructibleAssetAuthoring::rebuildCollisionGeometry	 and
NxDestructibleAssetAuthoring::trimCollisionGeometry.
Ability	to	control	interior	UV	mapping	direction	and	offset	in	slice	and
cutout	mode.	See	FractureTools::FractureMaterialDesc.
Utility	 to	 deliver	 a	 render	mesh	which	 displays	 a	 typical	 noisy	 slice
surface	 for	 the	 current	 settings,	 using
NxDestructibleAssetAuthoring::buildSliceMesh.

Removed

Deprecated	 damageToPercentDeformation	 and
deformationPercentLimit	in	NxDestructibleParameters.

Known	Issues



Known	 crash	 in	 ApexHelloWorld	 sample	 destruction	 scene	 on	 PS3
with	heavy	destruction	load.

Bug	Fixes

Better	 fracture	 behavior	 (fewer	 errors	 such	 as	 missing	 or	 extra
polygons).

Misc.

chunkCount()/depthCount()	 renamed	 to
getChunkCount()/getDepthCount(),	for	consistency	with	the	rest	of	the
API.
Destructibe	actors	that	contain	GRBs	do	not	send	debug	visualization
data	to	PhysX	Visual	Debugger.



APEX	Destruction	1.1

New	Features

GPU	Rigid	Bodies	 The	NxModuleDestructibe	 has	 settings	 to	 enable
GPU	 Rigid	 Bodies	 for	 destruction.	 If	 your	 hardware	 supports	 this
feature,	large	numbers	of	chunks	(in	the	1000’s)	can	be	simulated	in	a
fraction	of	the	time	taken	by	a	CPU.	GRB	Rigid	Body	support	requires
NVIDIA	driver	270.81	or	later,	PhysX	2.8.4	RC6	or	later	and	a	CUDA
capable	GPU.
Chunk	 instancing	 (When	 authored	 to	 instance)	 correponding	 chunks
between	different	destructible	actors	will	be	rendered	using	an	instance
buffer.	 This	 is	 advantageous	 if	 there	 are	 many	 destructible	 actors
which	reference	the	same	asset.
Chunk	 tiling	 (When	 authored	 to	 tile)	matching	 chunks	 created	 from
cutout	 fracturing	will	 be	 instanced	within	 the	 same	 actor,	 as	well	 as
other	 destructible	 actors	 which	 reference	 the	 same	 asset.	 This	 can
drastically	reduce	the	memory	size	of	the	asset.
NxDestructibleActor:

LOD	 setting	 sets	 the	 maximum	 chunk	 depth	 which	 can	 be
fractured,	implementing	forcePhysicalLOD	interface
getChunkLinearVelocity	 and	 getChunkAngularVelocity	 API	 in
the	actor
Per-actor	materials	in	the	actor	descriptor
Can	specify	a	separate	render	mesh	for	static	chunks	which	gets
drawn	 in	 a	 single	 draw	 call,	 using	 the
renderStaticChunksSeparately	field	in	the	actor	descriptor
can	set	a	separate	set	of	static	materials	used	by	the	static	mesh	if
renderStaticChunksSeparately	is	set
minimumFractureDepth	added	to	destructible	parameters,	to	limit
the	size	of	the	pieces	that	can	be	broken	free



NxDestructibleActor:

Implements	 applyTransformation	 interface	 to	 geometrically
transform	an	asset

Fracture	event	callback	now	consolidates	chunk	information	to	reduce
the	number	of	fracture	events	reported
NxActor	 (chunk	 island)	FIFO	can	now	be	 sorted	by	 “benefit”	 (takes
into	account	screen	size	and	age	of	the	chunk),	so	that	less-beneficial
chunks	are	removed	first.
NxShape	count	limit	can	be	set	in	addition	to	NxActor	count

Improvements

Chunk	creation	can	be	amortized	over	many	frames
Fracture	processing	can	be	amortized	over	many	frames
Conforms	to	new	LOD	system
Removed	 the	 per-chunk	 thread	 locks,	 for	 better	 performance	 and
resource	usage
SimpleDestruction	has	multiple	sample	scenes,	 loaded	using	the	keys
1-7

Bug	Fixes

Damage	 reports	 are	 no	 longer	 issued	when	 a	 destructible	 is	 set	 free
using	setDynamic()
Several	crash	bugs	fixed

Authoring	Improvements

Ability	to	have	multiple	collision	hulls	per	chunk.
Can	cancel	the	fracture	operation
“Trim	face	hulls”	option	in	cutout	fracturing
Ability	 to	 use	 multiple	 UV	 channels	 and	 color	 channels	 from	 FBX



meshes
cookChunks	 does	 not	 use	 the	 internal	 ExplicitHierarchicalMesh	 any
longer,	only	information	passed	in	from	the	descriptor

Removed

Known	Issues

Sensitivity	of	 instancing.	 Instanced	cutout	 fracturing	 is	very	sensitive
to	the	scale	of	the	cutout	map.	It	must	tile	perfectly	in	order	to	instance
all	 chunks	 across	 a	 mesh.	 Similiarly,	 if	 there	 is	 backface	 noise	 in
cutout	 fracturing,	 the	 grid	 size	must	 be	 a	multiple	 of	 the	 number	 of
fracture	 map	 tiles.	 If	 not,	 the	 chunk	 meshes	 won’t	 be	 exactly
duplicated	from	tile	to	tile,	so	they	will	not	instance.
UV	instancing	not	supported.	Therefore	the	texture	maps	on	the	asset
must	tile	with	the	fracture	map	if	instancing	is	used.	Othterwise	 there
will	be	a	graphical	pop	when	fracturing	first	occurs	on	a	cutout	face.
Chunk	island	separation	bug.	When	a	chunk	does	not	physically	touch
any	 of	 its	 neighbors,	 it	 forms	 a	 chunk	 support	 island.	 When
supportDepth	 is	 set	 to	 that	 chunk’s	depth,	 and	 fracturing	occurs,	 that
chunk	will	always	break	free	from	the	rest	of	the	destructible,	and	the
rest	of	the	destructible	breaks	free	as	well.	This	is	very	common	when
there	 is	 noise	 in	 the	 slicing	 surface,	 and	 so	 chunk	 collision	 hull
trimming	is	performed	in	order	to	prevent	hull	overlaps.



APEX	Destruction	1.0	Beta

New	Features

Ability	for	objects	to	pass	through	destructibles	when	damage	is	taken.
This	uses	the	new	materialStrength	parameter.
Chunk	neighbor	 padding	 value	 is	 exposed,	 allowing	 the	 user	 to	 tune
how	 near	 chunk	 collision	 volumes	 need	 to	 be	 for	 chunks	 to	 be
considered	neighbors	for	support	calculations.
Tiling	 feature	 for	 SimpleDestruction	 (-tile	 command	 line	 argument),
allows	 destructibles	 to	 be	 tiled	 in	 the	 scene.	 This	 allows	 you	 to	 see
how	they	form	extended	structures.

Improvements

Destructible	 structures	 can	 now	 contain	 up	 to	 4	 billion	 chunks
(increased	from	64k	chunks).
Dynamic	 chunk	 islands	 can	 contain	 chunks	 from	 more	 than	 one
destructible,	 so	 there	 is	 no	 artificial	 fracturing	 at	 destructible
boundaries.
More	robust	impact	damage.
Better	behavior	when	LOD	budget	limit	is	reached.
New	 flags	 for	 NxDestructibleActor::rayCast	 and
DestuctibleActor::obbSweep,	 which	 allow	 you	 to	 override	 the
ACCURATE_RAYCASTS	setting	in	the	asset.

Authoring	Improvements

Better	chunk	mesh	island	generation
Improved	cutout	fracturing.	More	robust,	no	more	triangles	inside	non-
convex	and	better	normal/tangent	generation	on	edges	of	chunks.
Threshold	angle	for	normal	smoothing	on	cutout	fracturing.
Better	spacing	calculation	of	grid	used	for	noisy	surface	fracturing.



Better	 fractured	 mesh	 cleaning.	 Can	 reduce	 fractured	 mesh	 size
significantly	(on	the	order	of	50%	in	some	cases).
Option	for	periodic	backface	noise,	so	that	tiled	chippable	destructibles
have	no	discontinuities	between	them.
Option	to	choose	if	a	core	mesh	is	exported	with	a	destructible	or	not.
Option	 to	 “transfer”	 texture	 map	 from	 core	 mesh	 to	 neighboring
chunks	or	not.
Slicing	parameters	may	be	set	at	each	depth	in	the	fracture	hierarchy.
Multiple-part	 meshes	 may	 be	 fractured.	 These	 will	 become	 the	 first
stage	of	fracturing.
Core	meshes	may	also	be	made	from	multiple-part	meshes.

Removed

Replaced	 NxDestructibleActorDesc	 and	 NxDestructiblePreviewDesc
with	parameterized	objects.

Known	Issues

Cutout-fractured	 tiles	 (closely	 packed	 collision	 bounds)	 jitter	 when
fractured.
Errors	 in	 destructible	 structure	 calculations	 -	 when	 chunk	 neighbors
initially	form	an	island,	the	whole	destructible	may	be	dislodged	when
any	part	of	the	structure	it	is	in	gets	damaged.
Chunk	 mesh	 island	 generation	 can	 sometimes	 produce	 spurious
triangles.
Open	 meshes	 can	 produce	 spurious	 triangles	 when	 fractured.	 Small
openings	are	usually	OK.
Destruction	API	is	not	fully	buffered.
PhysXLab	 can	 easily	 runs	 out	 of	 memory	 on	 a	 32-bit	 OS,	 with
complex	fracturing.
Support	 structures	 don’t	 perform	 stress	 calculations,	 leading	 to
configurations	“hanging	by	a	thread”
When	testing	collision	of	chunks	with	the	static	geometry	in	the	PhysX



scene	 (for	 support	 determination),	 only	 the	 AABB	 of	 the	 chunk	 is
used.

previousAPEX	1.3	Release	Notes	»
©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/


nextAPEX	1.3	Release	Notes	»



NVIDIA(R)	APEX(TM)	SDK	Release	Notes
(APEX	SDK	has	been	deprecated)Note:	APEX	SDK	has	been	deprecated

Contents:

APEX	1.4.1	-	Release	Notes	(APEX	has	been	deprecated)
Installing	APEX
New	in	1.4
New	in	1.3.3
New	in	1.3.2
New	in	1.3.1
New	in	1.3
New	in	1.2.4
New	in	1.2.3
New	in	1.2.2
New	in	1.2.1
New	in	1.2
New	in	1.1
New	in	1.0

APEX	Clothing	Release	Notes
APEX	Clothing	1.3.3
APEX	Clothing	1.3.2
APEX	Clothing	1.3.1
APEX	Clothing	1.3
APEX	Clothing	1.2.4
APEX	Clothing	1.2.3
APEX	Clothing	1.2.2
APEX	Clothing	1.2.1
APEX	Clothing	1.2
APEX	Clothing	1.1
APEX	Clothing	1.0	Beta

APEX	Particles	Release	Notes
APEX	Particles	1.4
APEX	Particles	1.3.3



APEX	Particles	1.3.2
APEX	Particles	1.3.1
APEX	Particles	1.3
APEX	Particles	1.2.4
APEX	Particles	1.2.3
APEX	Particles	1.2.2
APEX	Particles	1.2.1
APEX	Particles	1.2

APEX	Destruction	Release	Notes
APEX	Destruction	1.3.4
APEX	Destruction	1.3.3
APEX	Destruction	1.3.2
APEX	Destruction	1.3.1
APEX	Destruction	1.3
APEX	Destruction	1.2.4
APEX	Destruction	1.2.3
APEX	Destruction	1.2.2
APEX	Destruction	1.2.1
APEX	Destruction	1.2
APEX	Destruction	1.1
APEX	Destruction	1.0	Beta

nextAPEX	1.3	Release	Notes	»
©	Copyright	2012-2017,	NVIDIA	Corporation,	All	Rights	Reserved.	Created	using	Sphinx	1.0.2.

http://sphinx.pocoo.org/

	APEX 1.3 Release Notes
	APEX 1.4.1 - Release Notes (APEX has been deprecated)
	APEX Clothing Release Notes
	APEX Particles Release Notes
	APEX Destruction Release Notes

