
nextNVIDIA	PhysX	SDK	Documentation	»

NVIDIA	PhysX	SDK	Documentation
Contents:

User's	Guide
The	Basics
Startup	and	Shutdown
Scenes,	Materials,	and	Actors
Shapes	and	Geometries
Joints
Rigid	Body	Dynamics
Data	Access	and	Buffering
Task	Management
GPU	Resource	Management
Scene	Queries
Geometry	Queries
Callbacks	and	Customization
Aggregates
Serialization
Simulation	Statistics
Advanced	Rigid	Body	Topics
Persistent	Contact	Manifold
Coulomb	Friction
Particles
Cloth
Vehicles
Character	Controllers
PhysX	Visual	Debugger	(PVD)
Migration	Guide	From	PhysX	SDK	2.x	to	3.x
Migrating	from	PhysX	SDK	3.1	to	3.2

nextNVIDIA	PhysX	SDK	Documentation	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

The	Basics
Welcome	to	 the	PhysX	SDK	version	3!	With	this	second	major	rewrite	of
the	 SDK,	 we	 are	 excited	 to	 bring	 you	 a	 great	 number	 of	 enhancements,
including	numerous	API	 improvements.	Because	 so	much	has	 changed	 in
the	API,	we	recommend	even	experienced	PhysX	users	to	read	through	this
guide	to	familiarize	themselves	with	the	new	programming	interface.

Users	migrating	from	PhysX	2	will	find	the	Migration	Guide	From	PhysX
SDK	2.x	to	3.x	chapter	of	particular	interest.

Building	and	Running	the	Samples	on	Windows

This	guide	explains	the	code	from	a	series	of	samples:

The	Hello	World	Sample	shows	a	minimal	physx	setup.
The	North	Pole	Sample	 demonstrates	 basic	 functionality	 covered	 in
Startup	 and	 Shutdown,	 Scenes,	 Materials,	 and	 Actors,	 Shapes	 and
Geometries,	and	Rigid	Body	Dynamics.
The	Bridges	 Sample	 demonstrates	 joints,	 described	 in	 the	 chapter
Joints,	 as	 well	 as	 the	 character	 controller	 explained	 in	 Character
Controllers.
The	Vehicle	Sample	demonstrates	the	use	of	vehicles	described	in	the
chapter	Vehicles.
The	Particles	Sample	demonstrates	 the	use	of	particle	effects,	which
is	the	topic	of	Particles.
The	 Character	 Cloth	 Sample	 demonstrates	 clothing	 functionality,
described	in	the	chapter	Cloth.
The	 Custom	 Gravity	 Sample	 demonstrates	 using	 the	 character
controller	in	a	context	where	the	vertical	direction	is	not	fixed.
Finally,	 the	 Submarine	 Sample	 shows	 off	 a	 number	 of	 advanced
features,	 which	 receive	 a	 treatment	 in	 the	 chapters	 Scene	 Queries,
Callbacks	and	Customization,	Advanced	Rigid	Body	Topics,	and	Task
Management.

On	Windows,	PhysX	requires	either	Visual	Studio	2008	with	Service	Pack
1	or	higher,	or	Visual	Studio	2010.

To	 see	 the	 samples,	 open	 the	 Visual	 Studio	 solution	 called	 Samples.sln.
This	 includes	 the	 samples	 listed	 above	 within	 the	 project	 Samples,	 plus
some	additional	projects	which	implement	common	operations.

Build	Settings

While	 not	 particularly	 important	 for	 understanding	 the	 Sample	 code,	 to
build	your	own	PhysX	app,	you	will	need	 to	add	 some	 include	paths	and
libraries	to	your	project	makefile	or	IDE.	The	include	files	and	libraries	are
located	 in	 the	 root	 folders	 "Include"	 and	 "Lib"	 respectively.	A	 number	 of
these	 include	 directories	 and	 libraries	 are	 of	 course	 only	 needed	 if	 the
corresponding	component,	such	as	the	Vehicle	library,	is	used.	You	will	also
need	to	add	the	apropriate	platform	specific	extension	for	libs	(e.g.	".lib"	or
".a")	and	the	apropriate	relative	path	prefixes	(e.g.	"../../")	for	includes.

Note: 	The	static	libraries	we	provide	with	the	Windows	binary
distribution	are	linked	against	the	Multi-Threaded	static	C	Run-Time
(CRT)	libraries.	This	means	that	your	application	must	also	use	the	same
CRT	flavor.	If	you	need	to	use	a	different	CRT	version,	you	must	upgrade
to	our	source	license.	The	source	distribution	can	simply	be	recompiled
using	different	CRT	settings.

Library	Redistribution

On	 the	Windows	platform,	you	need	 to	 redistribute	 some	of	our	DLLs	 to
end	users	as	part	of	your	application:

PhysX3Common_*.dll	-	will	always	be	needed.
PhysX3_*.dll	-	will	always	be	needed.
PhysX3Cooking_*.dll	 -	 you	 only	 need	 to	 bundle	 if	 your	 application
cooks	geometry	data	on	the	fly.
PhysX3GPU_*.dll	 -	 is	 only	 needed	 if	 your	 application	 runs	 some
simulation	on	the	GPU.
PhysX3CharacterKinematic_*.dll-	 is	 only	 needed	 if	 your	 application
uses	the	character	controller.

Where	*	is	a	platform	specific	suffix,	e.g.	x86	or	x64.	You	will	need	one	or
the	other	depending	on	whether	your	application	is	built	in	64	bit	mode.

Build	Configurations

The	SDK	has	three	build	configurations	available	to	all	licensees,	designed
for	different	stages	of	development	and	deployment.

the	checked	build	contains	code	to	detect	invalid	parameters,	API	race
conditions,	and	other	incorrect	uses	of	the	API	which	might	otherwise
cause	mysterious	crashes	or	failures	in	simulation.
the	 profile	 build	 omits	 the	 checks,	 but	 still	 has	 PVD	 and	 memory
instrumentation.
the	release	build	is	built	for	minimal	footprint	and	maximum	speed.	It
omits	most	checks	and	instrumentation.

Simulation	works	 the	 same	way	 in	all	of	 them,	and	all	 are	compiled	with
high	optimization	 levels.	 In	addition,	you	can	build	components	of	PhysX
which	ship	with	source	in	a	debug	configuration,	which	is	compiled	without
optimizations.	The	debug	build	can	be	useful	for	error	analysis,	but	contains
asserts	 used	 for	 SDK	 development	 which	 some	 customers	 may	 find	 too
intrusive	for	daily	use.

Note: 	We	strongly	recommend	that	you	use	the	checked	build	as	the
primary	configuration	for	day-to-day	development	and	QA.

Note: 	PhysX	libraries	of	different	build	configurations	(e.g.	the	DEBUG
version	of	PhysXVehicle	and	the	CHECKED	version	of
PhysXVisualDebuggerSDK)	should	never	be	mixed	in	an	application
because	this	will	also	result	a	CRT	conflict.

The	API

The	 PhysX	 SDK	 exposes	 an	 application	 programming	 interface	 (API)
composed	 primarily	 of	 abstract	 interface	 classes.	 The	 header	 files	 that
belong	 to	 the	 public	 API	 are	 located	 in	 a	 top	 level	 directory	 named
"Include".	Classes,	 enumerations	 and	 functions	defined	by	 the	public	API
have	 the	 prefix	 Px.	 We	 are	 committed	 to	 keeping	 this	 API	 stable	 and
backwards-compatible	 from	 one	minor	 release	 to	 the	 next,	 to	 protect	 the
investment	you	make	in	your	integration	code.

Note: 	There	are	currently	two	sections	of	the	public	API	which	do	not
have	the	Px	prefix:	the	RepX	serialization	library	for	structured	data
which	has	the	prefix	RepX,	and	the	PhysX	Visual	Debugger	connection
library	which	has	the	prefix	Pvd.

The	PhysX	libraries	also	expose	some	classes	and	functions	that	are	not	part
of	the	public	API,	such	as	container	and	platform	abstractions	that	we	find
practical	to	reuse	in	our	samples.	These	are	largely	undocumented,	and	can
be	 recognized	 because	 they	 do	 not	 have	 the	 Px	 prefix	 of	 the	 public	API.
While	they	are	technically	available	to	users,	most	users	either	will	not	need
them	 or	 will	 have	 their	 own	 versions,	 and	 we	 are	 not	 committed	 to
backwards-compatibility	of	this	code	between	PhysX	versions.

Multithreading

PhysX	 provides	 efficient	multithreaded	 implementations	 of	 its	 simulation
and	raycasting	functionality.	See	Task	Management	for	details	of	integrating
PhysX	threading	into	an	application.

For	 efficiency	 reasons,	 PhysX	 does	 not	 internally	 lock	 access	 to	 its	 data
structures	 by	 the	 application,	 so	 be	 careful	 when	 calling	 the	 API	 from
multiple	application	threads.	The	rules	are	as	follows:

API	 interface	 methods	 marked	 'const'	 are	 read	 calls,	 other	 API
interface	methods	are	write	calls.
API	read	calls	may	be	made	simultaneously	from	multiple	threads.
Objects	in	different	scenes	may	be	safely	accessed	by	different	threads.
Different	objects	outside	a	scene	may	be	safely	accessed	from	different
threads.	Be	aware	that	accessing	an	object	may	indirectly	cause	access
to	another	object	via	a	persistent	 reference	 (such	as	 joints	 and	actors
referencing	 one	 another,	 an	 actor	 referencing	 a	 shape,	 or	 a	 shape
referencing	a	mesh.)

Access	patterns	which	do	not	conform	to	the	above	rules	may	result	in	data
corruption,	 deadlocks,	 or	 crashes.	Note	 in	 particular	 that	 it	 is	 not	 legal	 to
perform	a	write	operation	on	an	object	in	a	scene	concurrently	with	a	read
operation	to	an	object	in	the	same	scene.	The	checked	build	contains	code
which	tracks	access	by	application	threads	to	objects	within	a	scene,	to	try
and	detect	problems	at	the	point	when	the	illegal	API	call	is	made.

Read	 and	 write	 calls	 may	 be	 made	 to	 objects	 in	 a	 scene	 that	 is	 being
simulated.	See	Data	Access	and	Buffering	for	details.

PhysX	Visual	Debugger

The	PhysX	Visual	Debugger	(PVD)	provides	a	graphical	view	of	the	PhysX
scene	together	with	various	tools	to	inspect	and	visualize	variables	of	every
PhysX	 object.	 Additionally	 it	 can	 also	 record	 and	 visualize	 memory	 and
timing	data.	See	PhysX	Visual	Debugger	(PVD)	for	details.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Startup	and	Shutdown
Startup	functionality	 is	common	to	all	of	 the	samples	and	 is	shared	 in	 the
project	SampleBase.	Open	the	main	file	PhysXSample.cpp	and	navigate	to
the	function	onInit,	which	the	sample	calls	on	startup	to	initialize	PhysX.

Note	that	the	file	includes	the	entire	PhysX	API	in	a	single	header.	You	may
also	 selectively	 include	 just	 the	 headers	 you	 need,	 but	 PxPhysicsAPI.h
includes	everything	to	help	you	get	started	faster:

#include	"PxPhysicsAPI.h"

First,	create	a	PxFoundation	object:

static	PxDefaultErrorCallback	gDefaultErrorCallback;

static	PxDefaultAllocator	gDefaultAllocatorCallback;

mFoundation	=	PxCreateFoundation(PX_PHYSICS_VERSION,	gDefaultAllocatorCallback

if(!mFoundation)

				fatalError("PxCreateFoundation	failed!");

Every	PhysX	module	requires	a	PxFoundation	instance	to	be	available.	The
required	 parameters	 are	 a	 version	 ID,	 an	 allocator	 callback	 and	 an	 error
callback.	PX_PHYSICS_VERSION,	is	a	macro	predefined	in	our	headers	to
enable	PhysX	to	check	for	a	version	mismatch	between	the	headers	and	the
corresponding	 SDK	 DLLs.	 Usually,	 the	 allocator	 callback	 and	 error
callback	 are	 specific	 to	 the	 application,	 but	 PhysX	 provides	 default
implementations	 that	make	 it	 easy	 to	 get	 started.	The	 sections	 below	will
describe	 these	 two	 parameters	 in	 more	 detail.	 (The	 actual	 sample	 code
supports	 an	 advanced	memory	 allocator	 that	 tracks	 allocations	 instead	 of
the	default,	but	we	have	omitted	that	detail	here.)

Now	create	the	top-level	PxPhysics	object:

bool	recordMemoryAllocations	=	true;

mProfileZoneManager	=	&PxProfileZoneManager::createProfileZoneManager

if(!mProfileZoneManager)

				fatalError("PxProfileZoneManager::createProfileZoneManager	failed!"

mPhysics	=	PxCreatePhysics(PX_PHYSICS_VERSION,	*mFoundation,

												PxTolerancesScale(),	recordMemoryAllocations,	mProfileZoneManager

if(!mPhysics)

				fatalError("PxCreatePhysics	failed!");

Again,	the	version	ID	has	to	be	passed	in.	The	PxTolerancesScale	parameter
makes	 it	 easier	 to	 author	 content	 at	 different	 scales	 and	 still	 have	 PhysX
work	as	expected,	but	to	get	started	simply	pass	a	default	object	of	this	type.
The	 recordMemoryAllocations	 parameter	 specifies	 whether	 to	 perform
memory	 profiling.	 The	 optional	 profile	 zone	 manager,	 typically	 created
with	 PxProfileZoneManager::createProfileZoneManager(),	 enables	 the
performance	profiling	capabilities	of	the	PhysX	Visual	Debugger.

The	Allocator	Callback

In	 order	 to	 perform	 dynamic	 allocation,	 the	 SDK	 requires	 an
implementation	 of	 the	 PxAllocatorCallback	 interface.	 PhysX	 provides
default	 implementations	 for	 all	 supported	platforms.	Here	 is	 the	windows
version:

#include	<malloc.h>

class	PxDefaultAllocator	:	public	PxAllocatorCallback

{

				void*	allocate(size_t	size,	const	char*,	const	char*,	int)

				{

								return	_aligned_malloc(size,	16);

				}

				void	deallocate(void*	ptr)

				{

								_aligned_free(ptr);

				}

};

Note: 	an	important	change	since	2.x:	The	SDK	now	requires	that	the
memory	that	is	returned	be	16-byte	aligned.	On	many	platforms	malloc()
returns	memory	that	is	16-byte	aligned,	but	on	Windows	the	system
function	_aligned_malloc()	provides	this	capability.

The	three	unused	parameters	to	allocate()	are	an	identifier	which	identifies
the	type	of	allocation,	and	the	__FILE__	and	__LINE__	location	inside	the
SDK	 code	 where	 the	 allocation	 was	 made.	 Refer	 to
PxAllocatorCallback::allocate()	to	find	out	more	about	them.

The	Error	Callback

The	error	callback	PxErrorCallback	is	a	user-defined	class	which	the	SDK
requires	in	order	to	pass	error	messages	to	the	application.	There	is	only	a
single	 function	 to	 implement,	 reportError.	 This	 function	 should	 log	 the
passed	message,	or	print	it	on	the	application's	output	console.	For	the	more
serious	 error	 codes	 eABORT,	 eINVALID_PARAMETER,
eINVALID_OPERATION,	 and	 eOUT_OF_MEMORY,	 breaking	 into	 the
debugger	may	be	a	more	appropriate	choice.	Whatever	you	do,	do	not	just
ignore	the	messages.

Again	PhysX	provide	a	complete	default	implementation,	which	will	print
the	 error	 message.	 The	 error	 code	 PxErrorCode::eABORT	 represents	 an
unrecoverable	 error.	 In	 order	 that	 this	 error	 not	 be	 missed,	 the	 default
implementation	will	print	the	message	once	every	second.

Cooking

The	PhysX	cooking	 library	provides	utilities	 for	 creating,	 converting,	 and
serializing	bulk	data.	Depending	on	your	application,	you	may	wish	to	link
to	the	cooking	library	in	order	to	process	such	data	at	runtime.	Alternatively
you	may	be	 able	 to	process	 all	 such	data	 in	 advance	 and	 just	 load	 it	 into
memory	as	required.	Initialize	the	cooking	library	as	follows:

mCooking	=	PxCreateCooking(PX_PHYSICS_VERSION,	*mFoundation,	PxCookingParams

if	(!mCooking)

				fatalError("PxCreateCooking	failed!");

The	 PxCookingParams	 struct	 configures	 the	 cooking	 library	 to	 target
different	platforms,	use	non-default	tolerances	or	produce	optional	outputs.

The	 cooking	 library	 generates	 data	 though	 a	 streaming	 interface.	 In	 the
samples,	 implementations	of	streams	are	provided	in	 the	PxToolkit	 library
to	read	and	write	from	files	and	memory	buffers.

Extensions

The	 extensions	 library	 contains	 many	 functions	 that	 may	 be	 useful	 to	 a
large	 class	 of	 users,	 but	which	 some	 users	may	 prefer	 to	 omit	 from	 their
application	 either	 for	 code	 size	 reasons	 or	 to	 avoid	 use	 of	 certain
subsystems,	 such	 as	 those	 pertaining	 to	 networking.	 Initializing	 the
extensions	library	requires	the	PxPhysics	object:

if	(!PxInitExtensions(*mPhysics))

				fatalError("PxInitExtensions	failed!");

Optional	SDK	Components

When	linking	PhysX	as	a	static	library	on	memory	constrained	platforms,	it
is	possible	 to	 avoid	 linking	 the	 code	of	 some	PhysX	 features	 that	 are	not
always	used	in	order	to	save	memory.	Currently	the	optional	features	are:

Articulations
Height	Fields

If	your	application	requires	a	subset	of	this	functionality,	it	is	recommended
that	you	call	PxCreateBasePhysics	as	opposed	to	PxCreatePhysics	and	then
manually	 register	 the	 compoments	 you	 require.	Below	 is	 an	 example	 that
registers	all	of	the	options:

physx::PxPhysics*	customCreatePhysics(physx::PxU32	version,

								physx::PxFoundation&	foundation,

								const	physx::PxTolerancesScale&	scale,

								bool	trackOutstandingAllocations,

								physx::PxProfileZoneManager*	profileZoneManager)

{

								physx::PxPhysics*	physics	=	PxCreateBasePhysics(version,	foundation

																trackOutstandingAllocations,	profileZoneManager);

								if(!physics)

																return	NULL;

								PxRegisterArticulations(*physics);

								PxRegisterHeightFields(*physics);

								return	physics;

}

Note	that	this	will	only	save	memory	when	linking	PhysX	as	a	static	library,
as	we	rely	on	the	linker	to	strip	out	the	unused	code.

Windows	delay	load	dll

The	PhysXCommon	dll	is	marked	as	delay	loaded	inside	of	the	PhysX	and
PhysXCooking	 project.	 So	 it	 is	 possible	 to	 have	 a	 delay	 loaded
PhysXCommon,	 PhysX	 and	 PhysXCooking	 dlls.	 If	 you	 need	 to	 load	 a
diffent	dll,	it	is	possible	to	create	a	PxDelayLoadHook	and	define	the	name
of	 PhysXCommon	 dll	 that	 should	 be	 loaded	 by	 PhysX	 dll	 and
PhysXCooking	dll,please	see	example:

class	SampleDelayLoadHook:	public	PxDelayLoadHook

{

								virtual	const	char*	GetPhysXCommonDEBUGDllName()	const	{	return

								virtual	const	char*	GetPhysXCommonCHECKEDDllName()	const	{

								virtual	const	char*	GetPhysXCommonPROFILEDllName()	const	{

								virtual	const	char*	GetPhysXCommonDllName()	const	{	return

}	gDelayLoadHook;

Now	the	hook	must	be	set	to	PhysX	and	PhysXCooking:

PxDelayLoadHook::SetPhysXInstance(&gDelayLoadHook);

PxDelayLoadHook::SetPhysXCookingInstance(&gDelayLoadHook);

Shutting	Down

To	dispose	of	any	PhysX	object,	call	its	release()	method.	This	will	destroy
the	object,	and	all	contained	objects.	The	precise	behavior	depends	on	the
object	 type	 being	 released,	 so	 refer	 to	 the	 reference	 guide	 for	 details.	 To
shut	down	physics	 entirely,	 simply	 call	 release()	on	 the	PxPhysics	object,
and	this	will	clean	up	all	of	the	physics	objects:

mPhysics->release();

Do	 not	 forget	 to	 release	 the	 foundation	 object	 as	 well,	 but	 only	 after	 all
other	PhysX	modules	have	been	released:

mFoundation->release();

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Scenes,	Materials,	and	Actors
The	most	important	PhysX	objects	are	scenes	and	actors.	A	scene	is	PhysX'
representation	of	 the	world,	and	actors	are	 the	 individual	elements	of	 that
world.	 To	 simulate	 a	 physical	 world,	 create	 a	 scene	 and	 populate	 it	 with
actors.	 A	 scene	 also	 supports	 geometric	 queries,	 such	 as	 raycasts	 and
volume	overlap	checks,	against	the	actors	it	contains.	See	Scene	Queries	for
more	details.

The	 basic	 use	 of	 rigid	 actors	 is	 outlined	 below	 and	 discussed	 further	 in
Rigid	Body	Dynamics,	see	the	chapters	Cloth	and	Particles	for	other	types
of	actors.

The	Scene

The	PxScene	object	 is	 the	 representation	of	 the	world	 in	PhysX.	Creating
the	scene	requires	a	number	of	immutable	parameters	to	be	specified	in	the
PxSceneDesc	 struct.	 The	 values	 of	 these	 parameters	 may	 vary	 between
samples,	 so	 each	 sample	 has	 the	 opportunity	 to	 set	 values	 using	 the
customizeSceneDesc()	function:

static	PxDefaultSimulationFilterShader	gDefaultFilterShader;

PxScene*	mScene;

PxSceneDesc	sceneDesc(mPhysics->getTolerancesScale());

sceneDesc.gravity	=	PxVec3(0.0f,	-9.81f,	0.0f);

customizeSceneDesc(sceneDesc);

if(!sceneDesc.cpuDispatcher)

{

				mCpuDispatcher	=	PxDefaultCpuDispatcherCreate(mNbThreads);

				if(!mCpuDispatcher)

								fatalError("PxDefaultCpuDispatcherCreate	failed!");

				sceneDesc.cpuDispatcher				=	mCpuDispatcher;

}

if(!sceneDesc.filterShader)

				sceneDesc.filterShader				=	&gDefaultFilterShader;

#ifdef	PX_WINDOWS

if(!sceneDesc.gpuDispatcher	&&	mCudaContextManager)

{

				sceneDesc.gpuDispatcher	=	mCudaContextManager->getGpuDispatcher

}

#endif

mScene	=	mPhysics->createScene(sceneDesc);

if	(!mScene)

				fatalError("createScene	failed!");

For	 mandatory	 fields,	 default	 values	 are	 set	 if	 not	 supplied	 by	 the
application:

a	realistic	gravity	vector	to	act	along	the	-y	axis	of	the	world.
the	SDK's	default	implementation	of	the	CpuDispatcher	object,	which
maps	 simulation	 tasks	 to	 threads.	 mNbThreads	 is	 the	 number	 of
threads	that	it	should	use	--	in	this	sample	we	set	it	to	1.
on	windows,	a	GpuDispatcher	to	use	for	CUDA-accelerated	features.
the	SDK's	default	implementation	of	PxSimulationFilterShader,	a	user-
definable	collision	filtering	mechanism.

PxPhysics::createScene()	then	creates	the	scene	object.

The	Simulation	Loop

Now	use	the	method	PxScene::simulate()	 to	advance	the	world	forward	in
time.	Here	is	simplified	code	from	the	samples'	fixed	stepper	class:

mAccumulator	=	0.0f;

mStepSize	=	1.0f	/	60.0f;

virtual	bool	advance(PxReal	dt)

{

				mAccumulator		+=	dt;

				if(mAccumulator	<	mStepSize)

								return	false;

				mAccumulator	-=	mStepSize;

				mScene->simulate(mStepSize);

				return	true;

}

This	 is	 called	 from	 the	 sample	 framework	whenever	 the	app	 is	done	with
processing	 events	 and	 is	 starting	 to	 idle.	 It	 accumulates	 elapsed	 real	 time
until	it	is	greater	than	a	sixtieth	of	a	second,	and	then	calls	simulate(),	which
moves	all	objects	in	the	scene	forward	by	that	interval.	This	is	probably	the
simplest	of	very	many	different	ways	to	deal	with	time	when	stepping	the
simulation	forward.

To	allow	the	simulation	to	finish	and	return	the	results,	simply	call:

mScene->fetchResults(true);

True	indicates	that	the	simulation	should	block	until	it	is	finished,	so	that	on
return	 the	 results	 are	 guaranteed	 to	 be	 available.	 When	 fetchResults
completes,	 any	 simulation	 event	 callback	 functions	 that	 you	 defined	 will
also	be	called.	See	the	chapter	Callbacks	and	Customization.

It	 is	 possible	 to	 read	 and	 write	 from	 the	 scene	 during	 simulation.	 The
samples	 take	advantage	of	 this	 to	perform	rendering	work	 in	parallel	with

physics.	Until	 fetchResults()	 returns,	 the	 results	 of	 the	 current	 simulation
step	 are	 not	 available.	 So	 running	 rendering	 in	 parallel	 with	 simulation
renders	 the	 actors	 as	 they	 were	 when	 simulate()	 was	 called.	 After
fetchResults()	returns,	all	these	functions	will	return	the	new,	post-simulate
state.	 See	 the	 chapter	Data	 Access	 and	 Buffering	 for	 more	 details	 about
reading	and	writing	while	the	simulation	is	running.

For	 the	 human	 eye	 to	 perceive	 animated	 motion	 as	 smooth,	 use	 at	 least
twenty	 discrete	 frames	 per	 second,	 with	 each	 frame	 corresponding	 to	 a
physics	 time	 step.	 To	 have	 smooth,	 realistic	 simulation	 of	more	 complex
physical	scenes,	use	at	least	fifty	frames	per	second.

Note: 	If	you	are	making	a	real-time	interactive	simulation,	you	may	be
tempted	to	take	different	sized	time	steps	which	correspond	to	the	amount
of	real	time	that	has	elapsed	since	the	last	simulation	frame.	Be	very
careful	if	you	do	this,	rather	than	taking	constant-sized	time	steps:	The
simulation	code	is	sensitive	to	both	very	small	and	large	time	steps,	and
also	to	too	much	variation	between	time	steps.	In	these	cases	it	will	likely
produce	jittery	simulation.

Simulation	Memory

Much	of	the	memory	PhysX	uses	for	simulation	is	held	in	a	pool	of	blocks,
each	16K	in	size.	You	can	control	the	current	and	maximum	size	of	the	pool
with	the	nbContactDataBlocks	and	maxNbContactDataBlocks	members	of
PxSceneDesc.	PhysX	will	never	allocate	more	 than	 the	maximum	number
of	 blocks	 specified,	 and	 if	 there	 is	 insufficient	 memory	 it	 will	 instead
simply	 drop	 contact	 or	 joint	 constraints.	 You	 can	 reclaim	 unused	 blocks
with	the	scene's	flush()	method,	find	out	how	many	blocks	are	currently	in
use	with	the	getNbContactBlocksUsed()	method,	and	find	out	the	maximum
number	 that	 have	 ever	 been	 used	 with	 the
getMaxNbContactDataBlocksUsed()	method.

In	order	to	minimize	the	allocations	performed	during	simulation,	you	may
provide	physx	with	a	memory	block	in	the	simulate()	call.	This	block	will
be	used	for	allocation	of	temporary	data	during	simulation.	Its	size	must	be
a	multiple	of	16K,	and	it	must	be	16-byte	aligned.

Note	 that	 there	 are	 currently	 special	 restrictions	 for	 PS3,	 which	 are
discussed	in	the	platform-specific	section	of	this	guide.

Materials

All	 physical	 objects	 have	 at	 least	 one	material,	which	defines	 the	 friction
and	 restitution	 properties	 used	 to	 resolve	 a	 collision	with	 the	 objects.	 To
create	a	material,	call	PxPhysics::createMaterial():

PxMaterial*	mMaterial;

mMaterial	=	mPhysics->createMaterial(0.5f,	0.5f,	0.1f);				//static	friction,	dynamic	friction,	restitution

if(!mMaterial)

				fatalError("createMaterial	failed!");

Materials	 are	 owned	 by	 the	 PxPhysics	 object,	 and	 can	 be	 shared	 among
objects	in	multiple	scenes.	The	material	properties	of	two	objects	involved
in	 a	 collision	 may	 be	 combined	 in	 various	 ways.	 See	 the	 reference
documentation	for	PxMaterial	for	more	details.

PhysX	objects	whose	collision	geometry	is	a	triangle	mesh	or	a	heightfield
(see	Shapes	and	Geometries)	can	have	a	material	per	triangle.

Rigid	Actors

Rigid	actors	are	of	two	principal	kinds:	static	and	dynamic,	corresponding
to	the	PhysX	classes	PxRigidStatic	and	PxRigidDynamic.	Static	actors	are
immovable	by	the	simulation,	whereas	dynamic	actors	have	their	positions
updated	by	 the	 simulation	when	simulate()	 is	called.	Dynamic	actors	may
be	controlled	either	directly	by	the	application	updating	their	position	on	a
frame-by-frame	 basis	 (such	 actors	 are	 called	 kinematic),	 or	 by	 the
simulation	engine	according	to	Newton's	Laws	of	Motion.

PhysX	 provides	 helper	 methods	 in	 PxSimpleFactory.h	 to	 quickly	 create
simple	 actors.	 Actors	 may	 also	 be	 imported	 using	 a	 binary	 serialization
mechanism	 (see	 chapter	 Serialization)	 which	 bypasses	 much	 of	 the
processing	 involved	 in	actor	creation.	To	procedurally	create	and	simulate
more	complex	actors,	follow	these	steps:

1.	 create	 a	 PxRigidStatic	 or	 PxRigidDynamic	 object	 through	 the
PxPhysics	object,	specifying	its	pose	(orientation	and	position)	in	the
world

2.	 create	one	or	more	PxShapes	 to	define	 the	 collision	geometry	of	 the
actor

3.	 for	dynamics,	update	the	mass	and	inertia	properties	of	the	actor
4.	 customize	the	properties	of	the	actor	and	shapes	as	necessary
5.	 add	the	actor	to	the	scene

For	example,	to	throw	a	simulated	sphere	from	a	specific	position	with	an
initial	speed,	create	a	dynamic	actor	following	the	first	three	steps	above:

PxRigidDynamic*	aSphereActor	=	thePhysics->createRigidDynamic(PxTransform

PxShape*	aSphereShape	=	aSphereActor->createShape(PxSphereGeometry

PxRigidBodyExt::updateMassAndInertia(*aSphereActor,	sphereDensity);

or	equivalently:

PxRigidDynamic*	aSphereActor	=		PxCreateDynamic(*thePhysics,	PxTransform

												aMaterial,	sphereDensity);

Then	specify	an	initial	linear	velocity	vector:

aSphereActor->setLinearVelocity(velocity);

And	add	the	actor	to	a	scene:

aScene->addActor(*aSphereActor);

To	create	a	static	ground	plane	and	add	it	to	the	simulation:

PxRigidStatic*	plane	=	PxCreatePlane(*mPhysics,	PxPlane(PxVec3(0,1

if	(!plane)

				fatalError("create	shape	failed!");

mScene->addActor(*plane);

PxShape	 and	 PxGeometry	 classes	 are	 described	 in	more	 detail	 in	Shapes
and	Geometries.	For	more	about	specifying	mass	properties,	see	Rigid	Body
Dynamics.

Simulation	Clients

The	 so-called	 multi-client	 functionality	 of	 the	 SDK	 strives	 to	 solve
problems	that	can	arise	 if	 the	PhysX	SDK	is	used	in	an	environment	with
multiple	 distinct	 software	 components.	 It	 makes	 it	 possible	 to	 selectively
hide	simulated	objects	from	all	but	the	component	that	has	created	them,	to
avoid	confusing	and	 in	 the	worst	case	crashing	 the	other	components	 that
have	been	written	without	anticipating	the	presence	of	"foreign"	simulation
objects.

For	 example,	 imagine	 a	 game	 that	 is	written	with	 the	 convention	 that	 all
PxActors	 store	 an	 index	 into	 an	 array	 in	 their	 userData	 fields	 at	 creation
time,	that	is	then	used	to	look	up	the	game	entity	object	that	is	among	other
things	 responsible	 for	 rendering	 the	 physics	 actor.	 This	 game	 could	 have
code	that	queries	the	PxScene	for	all	the	actors	contained,	and	then	casts	the
userData	of	each	retrieved	actor	into	an	index,	which	it	uses	to	do	an	array
lookup.	Further,	imagine	that	the	author	of	the	game	decides	to	make	use	of
a	 third	 party	 library	 which	 provides	 some	 physical	 special	 effect.	 This
library	 also	 creates	PxActors	 in	 the	 same	 scene	 as	 the	game,	 so	 that	 they
will	automatically	interact	with	the	game's	actors.	Unfortunately	the	actors
belonging	 to	 the	 library	 do	 not	 use	 the	 convention	 of	 the	 game	 when	 it
comes	to	the	userData	field	--	in	fact	the	library	uses	the	userData	field	to
some	other	number.	One	 can	 easily	 imagine	 that	 unless	 the	 game	 code	 is
changed,	 this	 could	 lead	 to	 the	 game	 trying	 to	 index	 into	 its	 entity	 array
using	userData	values	that	it	did	not	create,	resulting	in	undefined	behavior.
The	solution	in	this	case	would	be	to	let	the	game	mark	its	own	actors	in	a
distinct	way	from	the	actors	of	the	library	so	that	the	foreign	actors	could	be
efficiently	 skipped	 when	 performing	 the	 userData	 lookups.	 Clearly	 one
needs	to	guard	against	this	problem	any	time	the	application	receives	actors
back	from	the	SDK,	including	for	example	notifications	and	scene	queries.
In	theory	the	game	could	achieve	this	without	dedicated	PhysX	support	by
doing	a	hash	table	lookup	of	any	PxActor	pointers	it	receives	back	from	the
SDK,	but	this	is	less	efficient	than	putting	a	little	bit	of	logic	into	the	PhysX

SDK.

Each	 middleware	 library	 or	 application	 component	 that	 uses	 the	 PhysX
SDK	for	simulation	is	referred	to	as	a	'client'.	Each	client	is	identified	with
a	PxClientID,	which	is	an	8	bit	scalar	value.	The	PhysX	SDK	supports	up	to
PX_MAX_CLIENTS	clients,	which	is	currently	defined	to	be	128,	though
we	only	foresee	needing	a	few	clients	at	most.	The	main	client	in	a	multi-
client	context,	or	the	sole	client	in	an	application	that	was	not	written	to	be
multi-client	 aware,	 is	 the	 default	 client	 with	 a	 PxClientID	 of
PX_DEFAULT_CLIENT.

Additional	clients	can	be	created	by	calling:

PxClientID	myClient	=	PxScene::createClient();

This	 generates	 a	 new	 client	 identifier.	 In	 the	 above	 example,	 the	 game
would	 implicitly	 be	 the	 default	 client,	 and	 the	 third	 party	 library	 would
generate	an	additional	clientID	for	 itself	 like	 this.	 If	multiple	scenes	exist,
this	client	creation	and	all	additional	book	keeping	described	below	must	be
performed	independently	for	each	scene.

Any	actor	that	is	created	can	now	be	assigned	to	a	client	right	after	creation
using:

PxActor::setOwnerClient(PxClientID	ownerClient);

If	 this	 is	 not	 done,	 the	 PX_DEFAULT_CLIENT	 is	 the	 owner	 by	 default.
Thus,	in	our	example	above,	the	third	party	library	would	need	to	mark	all
of	the	actors	it	creates	as	part	of	its	special	effect	in	this	way.	Actors	created
by	 the	game	are	 thus	marked	correctly	by	default,	no	change	 to	 the	game
code	is	needed.

Many	 object	 retrieval	 methods	 of	 the	 PhysX	 SDK	 employ	 a	 clientID
parameter	 so	 that	 the	actors	 retrieved	are	 limited	 to	 the	ones	belonging	 to
the	 PX_DEFAULT_CLIENT	 by	 default,	 so	 that	 foreign	 actors	 are
automatically	 omitted.	 For	 example,	 if	 the	 game	 had	 used	 the	 efficient

active	transforms	method	to	retrieve	updated	actors	for	rendering,	it	would
need	no	further	changes.	The	method:

virtual	PxActiveTransform*						PxScene::getActiveTransforms(PxU32

limits	the	returned	actor	scope	to	the	default	client	unless	another	client	is
specified	explicitly.	If	on	the	other	hand	the	game	used	the	simple	method
PxScene::getActors(),	 a	 simple	 change	 is	 needed	 because	 getActors	 does
not	filter	its	results	by	client:

void	retrieveGameActors()

{

								PxActorTypeSelectionFlags	desiredTypes	=	PxActorTypeSelectionFlag

																|	PxActorTypeSelectionFlag::eRIGID_DYNAMIC;

								PxU32	count	=	sharedScene->getNbActors(desiredTypes);

								PxActor**	buffer	=	new	PxActor*[count];

								sharedScene->getActors(desiredTypes,	buffer,	count);

								for(PxU32	i	=	0;	i	<	count;	i++)

								{

																if	(buffer[i]->getOwnerClient()	==	PX_DEFAULT_CLIENT

																{

																//	further	process	this	actor

																...

																}

								}

								delete	buffer;

}

A	further	key	method	by	which	components	using	the	PhysX	SDK	receive
objects	back	is	the	use	of	callbacks.	The	main	callback	class	of	the	SDK	is
PxSimulationEventCallback.	A	derived	class	can	be	 implemented	by	each
client	and	passed	to	the	SDK	using:

PxScene::setSimulationEventCallback(PxSimulationEventCallback*	callback

This	is	in	contrast	to	specifying	the	callback	using:

PxSimulationEventCallback*						PxSceneDesc::simulationEventCallback

which	does	not	permit	the	flexibility	to	specify	a	client	explicitly	and	is	thus
equivalent	 to	 calling	 setSimulationEventCallback()	with	 the	 default	 client
parameter.	 In	 our	 example,	 the	 game	 would	 set	 the	 callback	 for	 its	 own
event	listener	class	using	either	method,	and	the	third	party	library	could	set
an	additional	listener	with	its	own	client	ID	as	the	parameter.	Such	a	setup
would	 guarantee	 that	 each	 component	 only	 receives	 events	 related	 to	 its
own	actors.

In	 more	 complex	 scenarios,	 the	 need	 may	 arise	 to	 loosen	 this	 strict
segregation	of	events.	 It	 is	plausible	 for	example	 to	 imagine	 that	 the	 third
party	middleware	library	needs	to	receive	notification	that	its	special	effect
objects	got	in	contact	with	the	game's	collision	environment	because	in	this
case	it	wants	to	spawn	some	additional	graphical	or	audible	contact	effect.
To	do	this,	the	library	must	ask	the	SDK	to	send	foreign	contact	events	to
its	own	event	callback:

sharedScene->setClientBehaviorBits(libraryClient,	PxClientBehaviorBit

In	 addition,	 the	 game	must	 opt	 in	 all	 the	 actors	 that	 could	 be	 sent	 to	 the
libraryClient:

gameActor->setClientBehaviorBits(PxActorClientBehaviorBit::eREPORT_TO_FOREIGN_CLIENTS_CONTACT_NOTIFY

In	both	function	calls,	flags	for	multiple	event	types	can	of	course	be	OR-ed
together.	Besides	contacts,	flags	are	available	for	triggers,	scene	queries	and
constraint	 break	 events.	 Scene	 queries	 deserve	 special	 attention	 because
they	don't	reach	the	user	through	the	PxSimulationEventCallback.	Instead,
the	 owner	 of	 a	 synchronous	 scene	 query	 is	 defined	 by	 a	 parameter,	 for
example	 as	 in	 PxScene::raycastAny().	 For	 batched	 queries	 the	 owner	 is
specified	 in	 the	 batch	 query	 creation	 descriptor:
PxBatchQueryDesc::ownerClient.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Shapes	and	Geometries

Shapes

Shapes	 describe	 the	 spatial	 extent	 and	 collision	 properties	 of	 actors.	 A
PxShape	 is	 owned	 by	 the	 PxActor	 through	 which	 it	 was	 created,	 and	 is
released	along	with	the	actor.	Each	shape	contains	a	PxGeometry	object	and
a	reference	to	a	PxMaterial,	which	must	both	be	specified	upon	creation.	A
shape	may	 also	have	 a	 transform	 relative	 to	 its	 parent	 actor.	To	 create	 an
actor	with	several	shapes	(sometimes	referred	to	as	a	compound),	 just	call
PxRigidActor::createShape()	 several	 times.	 There	 are	 no	 persistence
requirements	 on	 the	 PxGeometry	 instance	 that	 is	 passed	 as	 a	 function
argument	in	PxRigidActor::createShape().	The	PhysX	SDK	takes	a	copy	of
the	PxGeometry	object	rather	than	maintaining	a	reference	to	it.

There	are	some	restrictions	on	the	geometry	types	that	may	be	specified	for
a	 shape,	 depending	 on	 the	 type	 of	 the	 parent	 actor.	 Actors	 of	 type
PxRigidStatic	 may	 have	 any	 kind	 of	 supported	 shape;	 that	 is,	 sphere,
capsule,	box,	convex	mesh,	triangle	mesh,	plane	or	heightfield.	The	shapes
permitted	for	actors	of	type	PxRigidDynamic	depends	on	whether	or	not	the
actor	 is	 kinematic.	 PxRigidDynamic	 actors	 that	 have	 been	 set	 up	 as
kinematic	 may	 be	 given	 any	 of	 the	 supported	 shapes,	 just	 as	 with
PxRigidStatic	 actors.	Dynamic	 actors,	 on	 the	 other	 hand,	 will	 not	 accept
heightfields	or	triangle	meshes	or	planes.	Actors	of	type	PxArticulationLink
have	 the	 same	 restrictions	as	non-kinematic	PxRigidDynamic	 instances	 in
that	they	are	also	forbidden	to	accept	heightfields	and	triangle	meshes	and
planes.	 To	 complete	 the	 discussion	 it	 is	 worth	 noting	 that	 actors	 of	 type
PxCloth,	PxParticleFluid	and	PxParticleSystem	do	not	accept	shapes	at	all
because	their	collison	is	handled	by	systems	special	to	these	actor	types.

The	 PhysX	 SDK	 supports	 contacts	 between	 all	 possible	 combinations	 of
shape	 pair	 except	 for	 combinations	 where	 both	 shapes	 are	 a	 plane	 or	 a
heightfield	or	a	triangle	mesh.	The	collision	of	two	meshes,	for	example,	is
not	 supported.	 Similarly,	 collision	 between	 a	 plane	 and	 a	 heightfield	 or
between	two	heightfields	remains	unsupported	by	the	sdk.

Simulation	Shapes	and	Scene	Query	Shapes

PxShape	 instances	 are	 configured	 by	 default	 to	 participate	 in	 the
intersection	tests	that	determine	the	contacting	features	of	shape	pairs.	They
are	 also	 configured	 by	 default	 to	 participate	 in	 scene	 query	 tests.	 It	 is
possible	to	configure	PxShape	instances	to	participate	or	not	in	both	types
of	test.	This	can	be	done	before	or	after	the	shape's	actor	has	been	added	to
the	scene.

The	 following	 pseudo-code	 configures	 a	 PxShape	 instance	 so	 that	 it	 no
longer	participates	in	shape	pair	intersection	tests:

void	disableShapeInShapePairIntersectionTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,false);

}

A	 PxShape	 instance	 can	 be	 configured	 to	 participate	 in	 shape	 pair
intersection	tests	as	follows:

void	enableShapeInShapePairIntersectionTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,true);

}

To	disable	a	PxShape	instance	from	scene	query	tests:

void	disableShapeInSceneQueryTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSCENE_QUERY_SHAPE,false);

}

Finally,	a	PxShape	instance	can	be	re-enabled	in	scene	query	tests:

void	enableShapeInSceneQueryTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSCENE_QUERY_SHAPE,true);

}

Trigger	Shapes

PxShape	instances	can	be	configured	as	trigger	shapes.	Trigger	shapes	play
no	 part	 in	 the	 simulation	 of	 the	 scene	 (though	 they	 can	 be	 configured	 to
participate	 in	 scene	queries).	 Instead,	 their	 role	 is	 to	 report	 that	 there	 has
been	an	overlap	with	 another	 shape.	This	does	not	 involve	generating	 the
contact	 features	 of	 the	 intersection.	 As	 a	 result,	 contact	 reports	 are	 not
available	 for	 trigger	shapes.	A	further	point	 to	note	 is	 that	because	 trigger
points	 play	 no	 part	 in	 the	 simulation	 it	 makes	 no	 sense	 for	 the
eSIMULATION_SHAPE	 and	 eTRIGGER_SHAPE	 flags	 to	 be
simultaneously	raised.	To	avoid	any	ambiguity	 the	sdk	will	act	 to	prevent
these	 flags	 being	 simultaneously	 raised;	 that	 is,	 if	 the
eSIMULATION_SHAPE(eTRIGGER_SHAPE)	flag	is	raised	then	attempts
to	 raise	 the	 eTRIGGER_SHAPE(eSIMULATION_SHAPE)	 flag	 will	 be
rejected.	When	this	occurs	an	error	is	passed	to	the	error	stream.

Trigger	 shapes	 have	 been	 used	 in	 SampleSubmarine	 to	 determine	 if	 the
submarine	 has	 reached	 the	 treasure.	 In	 the	 following	 code	 the	 PxActor
representing	 the	 treasure	 has	 its	 solitary	 shape	 configured	 as	 a	 trigger
shapes:

PxShape*	treasureShape;

gTreasureActor->getShapes(&treasureShape,	1);

treasureShape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,	false);

treasureShape->setFlag(PxShapeFlag::eTRIGGER_SHAPE,	true);

The	overlaps	with	trigger	shapes	are	reported	in	SampleSubmarine	through
the	 implementation	 of	 PxSimulationEventCallback::onTrigger	 in	 the
PxSampleSubmarine	class,	a	sub-class	of	PxSimulationEventCallback:

void	SampleSubmarine::onTrigger(PxTriggerPair*	pairs,	PxU32	count)

{

				for(PxU32	i=0;	i	<	count;	i++)

				{

								//	ignore	pairs	when	shapes	have	been	deleted

								if	(pairs[i].flags	&	(PxTriggerPairFlag::eDELETED_SHAPE_TRIGGER

												continue;

								if((&pairs[i].otherShape->getActor()	==	mSubmarineActor)	&&

								{

												gTreasureFound	=	true;

								}

				}

}

The	code	above	iterates	through	all	pairs	of	overlapping	shapes	that	involve
a	 trigger	 shape.	 If	 it	 is	 found	 that	 the	 treasure	 has	 been	 touched	 by	 the
submarine	then	the	flag	gTreasureFound	is	set	true.

Kinematic	triangle	meshes	(planes,	heighfields)

It	 is	 possible	 to	 create	 a	 kinematic	 PxRigidDynamic	 which	 can	 have	 a
triangle	mesh	(plane,	heighfield)	shape.	If	this	shape	has	a	simulation	shape
flag,	this	actor	must	stay	kinematic.	If	you	change	the	flag	to	not	simulated,
you	can	switch	even	the	kinematic	flag.

To	setup	kinematic	triangle	mesh	see	following	code:

PxRigidDynamic*	meshActor	=	getPhysics().createRigidDynamic(PxTransform

PxShape*	meshShape;

if(meshActor)

{

								meshActor->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC

								PxTriangleMeshGeometry	triGeom;

								triGeom.triangleMesh	=	triangleMesh;

								meshShape	=	meshActor->createShape(triGeom,	defaultMaterial

								getScene().addActor(*meshActor);

}

To	switch	a	kinematic	triangle	mesh	actor	to	a	dynamic	actor:

PxRigidDynamic*	meshActor	=	getPhysics().createRigidDynamic(PxTransform

PxShape*	meshShape;

if(meshActor)

{

								meshActor->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC

								PxTriangleMeshGeometry	triGeom;

								triGeom.triangleMesh	=	triangleMesh;

								meshShape	=	meshActor->createShape(triGeom,	defaultMaterial

								getScene().addActor(*meshActor);

								PxConvexMeshGeometry	convexGeom	=	PxConvexMeshGeometry(convexBox

								convexShape	=	meshActor->createShape(convexGeom,defaultMaterial

								convexShape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,	false

}

//	...	now	switch	to	dynamic

meshShape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,	false);

convexShape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,	true);

meshActor->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC,	false

Geometries

The	 PxGeometry	 class	 defines	 a	 volume	 or	 surface	with	 a	 fixed	 position
and	 orientation.	 Typically,	 as	 when	 used	 in	 a	 shape	 or	 scene	 query,	 a
transform	specifies	the	frame	in	which	the	geometry	is	interpreted.

For	 bulk	 objects,	 such	 as	 a	 convex	 mesh,	 triangle	 mesh	 or	 height	 field,
PhysX	 allows	 multiple	 PxGeometry	 objects	 to	 refer	 to	 a	 single	 mesh	 or
height	field,	and	supports	per-instance	scaling.

Note: 	Each	mesh	(or	height	field)	is	reference	counted,	and	the	reference
count	refers	to	the	number	of	PxShapes	whose	geometries	reference	the
mesh,	rather	than	the	number	of	PxGeometry	objects.

Spheres

A	 PxSphereGeometry	 is	 specified	 by	 one	 attribute,	 its	 radius,	 and	 is
centered	at	the	origin.

Capsules

A	PxCapsuleGeometry	 is	centered	at	 the	origin.	 It	 is	specified	by	a	radius
and	 a	 half-height	 value	 by	 which	 its	 axis	 extends	 along	 the	 positive	 and
negative	X-axis.

To	create	a	dynamic	actor	whose	geometry	is	a	capsule	standing	upright,	the
shape	 needs	 a	 relative	 transform	 that	 rotates	 it	 around	 the	 Z-axis	 by	 a
quarter-circle.	By	doing	this,	the	capsule	will	extend	along	the	Y-axis	of	the
actor	instead	of	the	X-axis.	Setting	up	the	shape	and	actor	is	otherwise	the
same	as	for	the	sphere:

PxRigidDynamic*	aCapsuleActor	=	thePhysics->createRigidDynamic(PxTransform

PxTransform	relativePose(PxQuat(PxHalfPi,	PxVec(0,0,1)));

PxShape*	aCapsuleShape	=	aCapsuleActor->createShape(PxCapsuleGeometry

PxRigidBodyExt::updateMassAndInertia(*aCapsuleActor,	capsuleDensity

aScene->addActor(aCapsuleActor);

The	 function	 PxTransformFromSegment()	 converts	 from	 a	 line	 segment
defining	the	capsule	axis	to	a	transform	and	halfheight.

Boxes

A	PxBoxGeometry	has	three	attributes,	the	three	extents	halved:

PxShape*	aBoxShape	=	aBoxActor->createShape(PxBoxGeometry(a/2,	b/2

Where	a,	b	and	c	are	the	side	lengths	of	the	resulting	box.

Planes

Planes	divide	space	into	"above"	and	"below"	them.	Everything	"below"	the
plane	will	collide	with	it.

The	Plane	lies	on	the	YZ	plane	with	"above"	pointing	towards	positive	X.
To	 convert	 from	 a	 plane	 equation	 to	 an	 equivalent	 transform,	 use	 the
function	 PxTransformFromPlaneEquation().
PxPlaneEquationFromTransform()	performs	the	reverse	conversion.

A	 PxPlaneGeometry	 has	 no	 attributes,	 since	 the	 shape's	 pose	 entirely
defines	the	plane's	collision	volume.

Shapes	with	a	PxPlaneGeometry	may	only	be	created	for	static	actors.

Convex	Meshes

Creating	 a	 PxConvexMesh	 requires	 cooking.	 It	 is	 assumed	 here	 that	 the
cooking	library	has	already	been	initialized	(see	Startup	and	Shutdown.)

The	following	steps	explain	how	to	create	a	simple	square	pyramid.

First,	define	the	vertices	of	the	convex	object:

static	const	PxVec3	convexVerts[]	=	{PxVec3(0,1,0),PxVec3(1,0,0),PxVec3

Then	construct	a	description	of	the	convex	data	layout:

PxConvexMeshDesc	convexDesc;

convexDesc.points.count					=	5;

convexDesc.points.stride				=	sizeof(PxVec3);

convexDesc.points.data						=	convexVerts;

convexDesc.flags												=	PxConvexFlag::eCOMPUTE_CONVEX;

Now	use	the	cooking	library	to	construct	a	PxConvexMesh:

PxToolkit::MemoryOutputStream	buf;

if(!cooking.cookConvexMesh(convexDesc,	buf))

				return	NULL;

PxToolkit::MemoryInputData	input(buf.getData(),	buf.getSize());

PxConvexMesh*	convexMesh	=	thePhysics->createConvexMesh(input);

Finally,	 create	 a	 shape	 using	 a	 PxConvexMeshGeometry	which	 instances
the	mesh:

PxShape*	aConvexShape	=	aConvexActor->createShape(PxConvexMeshGeometry

A	 user	 can	 optionally	 provide	 a	 per-instance	 PxMeshScale	 in	 the
PxConvexMeshGeometry.	The	default	scale	is	the	identity.

The	 default	 convex	 hull	 generation	 code	 is	 selected	 when	 using	 the
PxConvexFlag::eCOMPUTE_CONVEX	flag	alone.	The	algorithm	 tries	 to
create	 a	 convex	 hull	 as	 close	 to	 the	 source	 vertices	 as	 possible.	 This	 can
sometimes	 fail	 when	 the	 source	 data	 is	 geometrically	 challenging,	 for
example	if	it	contains	a	lot	of	vertices	close	to	each-other,	etc.	An	error	is
reported	 to	 the	 error	 stream	 in	 case	 of	 failure.	 If	 this	 happens,	 the	 best
option	 is	 to	 switch	 to	 an	 alternative	 hull	 generation	 routine	 using	 the

PxConvexFlag::eCOMPUTE_CONVEX|PxConvexFlag::eINFLATE_CONVEX
flags,	 both	 together.	 This	 allows	 the	 code	 to	 inflate	 the	 source	 data	 by	 a
margin	-	defined	by	PxCookingParams::skinWidth	-,	which	gives	the	code
more	 freedom	 to	 correct	 the	 problematic	 geometry.	 Alternatively	 it	 is
possible	 for	 users	 to	 provide	 an	 already	 created	 hull,	 by	 filling	 up	 both
PxConvexMeshDesc::points	 and	 PxConvexMeshDesc::triangles,	 and
omitting	 the	 PxConvexFlag::eCOMPUTE_CONVEX	 flag.	 Some	 checks
are	still	performed	to	make	sure	the	provided	hull	 is	valid,	so	the	cooking
call	can	still	fail	at	that	point.

In	any	case	the	number	of	vertices	and	the	number	of	convex	polygons	in
the	final	cooked	hull	are	both	limited	to	256.

Height	Fields

As	the	name	suggests,	terrains	can	be	described	by	just	the	height	values	on
a	regular,	rectangular	sampling	grid:

PxHeightFieldSample*	samples	=	(PxHeightFieldSample*)alloc(sizeof(

Each	sample	consists	of	a	16	bit	integer	height	value,	two	materials	(for	the
two	triangles	in	the	samples	rectangle)	and	a	tesselation	flag.	The	flag	and
materials	 refer	 to	 the	cell	below	and	 to	 the	 right	of	 the	 sample	point,	 and
indicate	along	which	diagonal	to	split	it	into	triangles,	and	the	materials	of
those	 triangles.	 A	 special	 predefined	 material
PxHeightFieldMaterial::eHOLE	 specifies	 a	 hole	 in	 the	 height	 field.	 See
the	reference	documentation	for	PxHeightFieldSample	for	more	details.

To	 tell	 the	system	 the	number	of	 sampled	heights	 in	each	direction,	use	a
descriptor	to	instantiate	a	PxHeightField	object:

PxHeightFieldDesc	hfDesc;

hfDesc.format													=	PxHeightFieldFormat::eS16_TM;

hfDesc.nbColumns										=	numCols;

hfDesc.nbRows													=	numRows;

hfDesc.samples.data							=	samples;

hfDesc.samples.stride					=	sizeof(PxHeightFieldSample);

PxHeightField*	aHeightField	=	thePhysics->createHeightField(hfDesc

Now	create	a	PxHeightFieldGeometry	and	a	shape:

PxHeightFieldGeometry	hfGeom(aHeightField,	PxMeshGeometryFlags(),	

PxShape*	aHeightFieldShape	=	aHeightFieldActor->createShape(hfGeom

The	row	and	column	scales	tell	the	system	how	far	apart	the	sampled	points
lie	 in	 the	 associated	 direction.	 The	 height	 scale	 scales	 the	 integer	 height
values	to	a	floating	point	range.

The	variant	 of	 createShape()	 used	here	 specifies	 an	 array	of	materials	 for
the	height	field,	which	will	be	indexed	by	the	material	indices	of	each	cell
to	 resolve	 collisions	 with	 that	 cell.	 The	 single-material	 variant	 of
createShape()	 may	 be	 used	 instead,	 but	 the	 height	 field	 material	 indices
must	all	be	a	single	value	or	the	special	value	eHOLE.

Triangle	Meshes

Creating	 a	 PxTriangleMesh	 requires	 cooking.	 It	 is	 assumed	 here	 that	 the
cooking	library	has	already	been	initialized	(see	Startup	and	Shutdown.)

Like	 graphical	 triangle	 meshes,	 a	 collision	 triangle	 mesh	 consists	 of	 a
collection	 of	 vertices	 and	 the	 triangle	 indices.	 Triangle	 mesh	 creation
requires	use	of	the	cooking	library:

PxTriangleMeshDesc	meshDesc;

meshDesc.points.count											=	nbVerts;

meshDesc.points.stride										=	sizeof(PxVec3);

meshDesc.points.data												=	verts;

meshDesc.triangles.count								=	triCount;

meshDesc.triangles.stride							=	3*sizeof(PxU32);

meshDesc.triangles.data									=	indices32;

PxToolkit::MemoryOutputStream	writeBuffer;

bool	status	=	cooking.cookTriangleMesh(meshDesc,	writeBuffer);

if(!status)

				return	NULL;

PxToolkit::MemoryInputData	readBuffer(writeBuffer.getData(),	writeBuffer

return	physics.createTriangleMesh(readBuffer);

Indices	can	be	16	or	32	bit.	The	strides	used	here	assume	that	vertices	and
indices	are	arrays	of	PxVec3s	and	32bit	integers	respectively	with	no	gaps
in	the	data	layout.

Shapes	with	 triangle	mesh	 geometries	may	 only	 be	 created	 for	 static	 and
kinematic	actors:

PxShape*	aTriMeshShape	=	aTriMeshActor->createShape(PxTriangleMeshGeometry

The	 user	 can	 optionally	 specify	 a	 per-instance	 PxMeshScale	 in	 the
PxTriangleMeshGeometry.	The	default	scale	is	the	identity.

Like	height	fields,	triangle	meshes	support	per-triangle	material	indices.	To
use	 per-triangle	materials	 for	 a	 mesh,	 provide	 the	 indices	 to	 the	 cooking
library	 in	 the	 mesh	 descriptor,	 and	 use	 the	 multi-material	 form	 of
createShape().

Mesh	Scaling

A	 shared	 PxTriangleMesh	 or	 PxConvexMesh	 may	 be	 stretched	 or
compressed	 when	 it	 is	 instanced	 by	 a	 geometry.	 This	 allows	 multiple
instancing	of	the	same	mesh	with	different	scale	factors	applied.	Scaling	 is
specified	 with	 the	 PxMeshScale	 class,	 which	 defines	 scale	 factors	 to	 be
applied	 along	 3	 orthogonal	 axes.	 A	 factor	 greater	 than	 1.0	 results	 in
stretching,	 while	 a	 factor	 less	 than	 1.0	 results	 in	 compression.	 The
directions	 of	 the	 axes	 are	 governed	 by	 a	 quaternion,	 and	 specified	 in	 the
local	frame	of	the	shape.

The	 following	 code	 creates	 a	 shape	 with	 a	 PxTriangleMesh	 scaled	 by	 a
factor	of	x	along	the	x-axis,	y	along	the	y-axis,	and	z	along	the	z-axis:

//	created	earlier

PxRigidActor*	myActor;

PxTriangleMesh*	myTriMesh;

PxMaterial*	myMaterial;

//	create	a	shape	instancing	a	triangle	mesh	at	the	given	scale

PxMeshScale	scale(PxVec3(x,y,z),	PxQuat::createIdentity());

PxTriangleMeshGeometry	geom(myTriMesh,scale);

PxShape*	myTriMeshShape	=	myActor->createShape(geom,*myMaterial);

Convex	meshes	are	scaled	using	the	PxMeshScale	class	in	a	similar	manner.
The	 following	 code	 creates	 a	 shape	 with	 a	 PxConvexMesh	 scaled	 by	 a
factor	of	x	along	 (sqrt(1/2),	1.0,	 -sqrt(1/2)),	by	a	 factor	of	y	along	 (0,1,0)
and	a	by	a	factor	of	z	along	(sqrt(1/2),	1.0,	sqrt(1/2)):

PxMeshScale	scale(PxVec3(x,y,z),	PxQuat	quat(PxPi*0.25f,	PxVec3(0,

PxConvexMeshGeometry	geom(myTriMesh,scale);

PxShape*	myConvexMeshShape	=	myActor->createShape(geom,*myMaterial

Height	 fields	 can	 also	 be	 scaled,	 using	 scale	 factors	 stored	 in
PxHeightFieldGeometry.	 In	 this	 case	 the	 scale	 is	 assumed	 to	be	along	 the

axes	 of	 the	 rows,	 columns	 and	 height	 directions	 of	 the	 height	 field.	 The
scaling	 of	 is	 demonstrated	 in	 SampleNorthPole	 in
SampleNorthPoleBuilder.cpp:

PxHeightFieldGeometry	hfGeom(heightField,	PxMeshGeometryFlags(),	heightScale

PxShape*	hfShape	=	hfActor->createShape(hfGeom,	getDefaultMaterial

In	 this	 example,	 the	 coordinates	 along	 the	 x	 and	 z	 axes	 are	 scaled	 by
hfScale,	while	the	sample	heights	are	scaled	by	heightScale.

PxGeometryHolder

When	 a	 geometry	 is	 provided	 for	 a	 shape,	 either	 on	 creation	 or	 with
PxShape::setGeometry(),	 the	 geometry	 is	 copied	 into	 the	 SDK's	 internal
structures.	If	you	know	the	type	of	a	shape's	geometry	you	may	retrieve	it
directly:

PxBoxGeometry	boxGeom;

bool	status	=	shape->getBoxGeometry(geometry);

The	 status	 return	code	 is	 set	 to	 false	 if	 the	 shape's	geometry	 is	not	of	 the
expected	type.

However,	it	is	often	convenient	to	retrieve	a	geometry	object	from	a	shape
without	first	knowing	its	type	-	for	example,	to	call	a	function	which	takes	a
PxGeometry	reference	as	an	argument.

PxGeometryHolder	 is	 a	 union-like	 class	 that	 allows	 the	 return	 of	 a
PxGeometry	object	by	value,	regardless	of	type.	Its	use	is	illustrated	in	the
createRenderObjectFromShape()	function	in	PhysXSample.cpp:

PxGeometryHolder	geom	=	shape->getGeometry();

switch(geom.getType())

{

case	PxGeometryType::eSPHERE:

				shapeRenderActor	=	SAMPLE_NEW(RenderSphereActor)(renderer,	geom

				break;

case	PxGeometryType::eCAPSULE:

				shapeRenderActor	=	SAMPLE_NEW(RenderCapsuleActor)(renderer,	geom

				break;

				...

}

The	 function	 PxGeometryHolder::any()	 returns	 a	 reference	 to	 a
PxGeometry	 object.	 For	 example,	 to	 compare	 two	 shapes	 in	 a	 scene	 for
overlap:

bool	testForOverlap(const	PxShape&	s0,	const	PxShape&	s1)

{

				return	PxGeometryQuery::overlap(s0.getGeometry().any(),	PxShapeExt

																																				s1.getGeometry().any(),	PxShapeExt

}

Detaching	Shapes

In	 the	 North	 Pole	 Sample,	 some	 of	 the	 shapes	 detach	 on	 contact	 with	 a
snowball.	To	request	notification	of	this	event,	the	sample	sets	a	flag	in	the
simulation	filter	function:

if	(needsContactReport(filterData0,	filterData1))

{

				pairFlags	|=	PxPairFlag::eNOTIFY_TOUCH_FOUND;

}

When	this	flag	is	set	for	a	pair,	the	initial	collision	of	that	pair	will	generate
a	 callback	 through	 PxSimulationEventCallback::onContact().	 The
implementation	 of	 this	 callback	 in	 the	 sample	 simply	 records	 which
detachable	shapes	were	touched	during	simulation.	needsContactReport()	is
a	helper	function	which	returns	true	if	one	of	the	shapes	is	detachable	and
the	other	is	marked	as	a	snowball.	It	determines	this	by	testing	the	flags	in
each	shape's	simulationFilterData,	which	were	set	on	shape	creation	using
the	 setDetachable()	 and	 setSnowball()	 functions.	 Collision	 filtering	 is
discussed	in	more	detail	in	the	Callbacks	and	Customization	section.

After	 simulation,	 the	 sample	 iterates	 over	 the	 list	 of	 touched	 detachable
shapes	and	detaches	each	one	from	its	owning	actor.	Since	a	PxShape	must
belong	to	a	PxActor,	the	sample	creates	a	new	actor,	whose	global	pose	is
that	of	the	original	shape.	The	geometry	and	material	for	the	new	shape	are
retrieved	from	the	original	shape:

PxRigidDynamic*	newActor	=	mPhysics->createRigidDynamic(pose);

PxMaterial*	mat;

shape->getMaterials(&mat,1);

PxGeometryHolder	geometry	=	shape->getGeometry();

PxTransform	newActorPose	=	PxShapeExt::getGlobalPose(*shape);

PxRigidDynamic*	newActor	=	PxCreateDynamic(*mPhysics,	newActorPose

shape->release();

Shape	Vertex	and	Triangle	Queries

Convex	meshes,	 triangle	meshes,	 and	 height	 fields	 can	 all	 be	 queried	 for
vertex	 and	 face	 data.	 This	 is	 particularly	 useful,	 for	 example,	 when
rendering	the	mesh	of	the	convex	shape.	The	function:

RenderBaseActor*	PhysXSample::createRenderObjectFromShape(PxShape*

in	PhysXSample.cpp	contains	a	switch	statement	with	a	case	for	each	shape
type,	illustrating	the	steps	required	to	query	the	vertices	and	faces.

It	 is	possible	 to	get	 information	about	 triangle	 from	a	 triangle	mesh	using
the	getTriangle	function,	You	may	also	get	the	information	about	adjacency
triangles	 for	 the	 triangle,	 for	 this	 you	 need	 to	 cook	 your	 triangle	meshes
with	cooking	parameter	buildTriangleAdjacencies,	otherwise	the	adjacency
information	is	not	created	and	stored.

Convex	Meshes

A	convex	mesh	contains	an	array	of	vertices,	an	array	of	faces,	and	an	index
buffer	 which	 concatenates	 the	 vertex	 indices	 for	 each	 face.	 To	 unpack	 a
convex	mesh,	the	first	step	is	to	extract	the	shared	convex	mesh:

PxConvexMesh*	convexMesh	=	geom.convexMesh().convexMesh;

Then	obtain	references	to	the	vertex	and	index	buffers:

PxU32	nbVerts	=	convexMesh->getNbVertices();

const	PxVec3*	convexVerts	=	convexMesh->getVertices();

const	PxU8*	indexBuffer	=	convexMesh->getIndexBuffer();

Now	iterate	over	the	array	of	faces	to	triangulate	them:

PxU32	offset	=	0;

for(PxU32	i=0;i<nbPolygons;i++)

{

				PxHullPolygon	face;

				bool	status	=	convexMesh->getPolygonData(i,	face);

				PX_ASSERT(status);

				const	PxU8*	faceIndices	=	indexBuffer	+	face.mIndexBase;

				for(PxU32	j=0;j<face.mNbVerts;j++)

				{

								vertices[offset+j]	=	convexVerts[faceIndices[j]];

								normals[offset+j]	=	PxVec3(face.mPlane[0],	face.mPlane[1],

				}

				for(PxU32	j=2;j<face.mNbVerts;j++)

				{

								*triangles++	=	PxU16(offset);

								*triangles++	=	PxU16(offset+j);

								*triangles++	=	PxU16(offset+j-1);

				}

				offset	+=	face.mNbVerts;

}

Observe	 that	 the	 vertex	 indices	 of	 the	 polygon	 begin	 at
indexBuffer[face.mIndexBase],	 and	 the	 count	 of	 vertices	 is	 given	 by
face.mNbVerts.

Triangle	Meshes

Triangle	meshes	contain	arrays	of	vertices	and	 index	 triplets	which	define
the	triangles	by	indexing	into	the	vertex	buffer.	The	arrays	can	be	accessed
directly	from	the	shared	triangle	mesh:

PxTriangleMesh*	tm	=	geom.triangleMesh().triangleMesh;

const	PxU32	nbVerts	=	tm->getNbVertices();

const	PxVec3*	verts	=	tm->getVertices();

const	PxU32	nbTris	=	tm->getNbTriangles();

const	void*	tris	=	tm->getTriangles();

The	 indices	 may	 be	 stored	 with	 either	 16-bit	 or	 32-bit	 values,	 specified
when	 the	mesh	was	originally	cooked.	To	determine	 the	storage	format	at

runtime,	use	the	API	call:

const	bool	has16bitIndices	=	tm->has16BitTriangleIndices();

Assuming	 that	 the	 triangle	 indices	are	stored	 in	16-bit	 format,	 find	 the	 jth
vertex	of	the	ith	triangle	by:

const	PxU16*	triIndices	=	(const	PxU16*)tris;

const	PxU16	index	=	triIndices[3*i	+j];

The	corresponding	vertex	is:

const	PxVec3&	vertex	=	verts[index];

Height	Fields

The	storage	of	height	field	data	is	platform-dependent,	and	therefore	direct
access	 to	 the	 height	 field	 samples	 is	 not	 provided.	 Instead,	 calls	 are
provided	to	render	the	samples	to	a	user-supplied	buffer.

Again,	the	first	step	is	to	retrieve	the	geometry	for	the	height	field:

const	PxHeightFieldGeometry&	geometry	=	geom.heightField();

The	height	field	has	three	scaling	parameters:

const	PxReal				rs	=	geometry.rowScale;

const	PxReal				hs	=	geometry.heightScale;

const	PxReal				cs	=	geometry.columnScale;

And	a	shared	data	structure,	which	stores	the	row	and	column	count:

PxHeightField*		hf	=	geometry.heightField;

const	PxU32					nbCols	=	hf->getNbColumns();

const	PxU32					nbRows	=	hf->getNbRows();

To	render	the	height	field,	first	extract	the	samples	to	an	array:

const	PxU32	nbVerts	=	nbRows	*	nbCols;

PxHeightFieldSample*	sampleBuffer	=	new	PxHeightFieldSample[nbVerts

hf->saveCells(sampleBuffer,	nbVerts	*	sizeof(PxHeightFieldSample));

The	 samples	 are	 stored	 in	 row-major	 order;	 that	 is,	 row0	 is	 stored	 first,
followed	by	row1,	then	row2,	and	so	on.	Thus	the	sample	corresponding	to
the	ith	row	and	the	jth	column	is	i*nbCols	+	j.

Evaluate	the	scaled	vertices	of	the	height	field	as	follows:

PxVec3*	vertices	=	new	PxVec3[nbVerts];

for(PxU32	i	=	0;	i	<	nbRows;	i++)

{

				for(PxU32	j	=	0;	j	<	nbCols;	j++)

				{

								vertices[i	*	nbCols	+	j]	=	PxVec3(PxReal(i)	*	rs,	PxReal(sampleBuffer

				}

}

Then	tessellate	the	field	from	the	samples	as	required.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Joints

Joint	Basics

A	 joint	 constrains	 the	 way	 two	 actors	 move	 relative	 to	 one	 another.	 A
typical	use	for	a	joint	would	be	to	model	a	door	hinge	or	the	shoulder	of	a
character.	Joints	are	implemented	in	the	PhysX	extensions	library	and	cover
many	common	scenarios,	but	if	you	have	use	cases	that	are	not	met	by	the
joints	packaged	with	PhysX,	you	can	implement	your	own.	Since	joints	are
implemented	as	extensions,	the	pattern	for	creating	them	is	slightly	different
from	other	PhysX	objects.

To	create	a	joint,	call	the	joint's	creation	function:

PxRevoluteJointCreate(PxPhysics&	physics,

																						PxRigidActor*	actor0,	const	PxTransform&	localFrame0

																						PxRigidActor*	actor1,	const	PxTransform&	localFrame1

This	 has	 the	 same	 pattern	 for	 all	 joints:	 two	 actors,	 and	 for	 each	 actor	 a
constraint	frame.

One	 of	 the	 actors	 must	 be	 movable,	 either	 a	 PxRigidDynamic	 or	 a
PxArticulationLink.	 The	 other	 may	 be	 of	 one	 of	 those	 types,	 or	 a
PxRigidStatic.	 Use	 a	 NULL	 pointer	 here	 to	 indicate	 an	 implicit	 actor
representing	the	immovable	global	reference	frame.

Each	 localFrame	 argument	 specifies	 a	 constraint	 frame	 relative	 to	 the
actor's	 global	 pose.	 Each	 joint	 defines	 a	 relationship	 between	 the	 global
positions	and	origins	of	 the	constraint	 frames	 that	will	be	enforced	by	 the
PhysX	constraint	 solver.	 In	 this	 example,	 the	 revolute	 joint	 constrains	 the
origin	 points	 of	 the	 two	 frames	 to	 be	 coincident	 and	 their	 x-axes	 to
coincide,	but	allows	 the	 two	actors	 to	 rotate	 freely	 relative	 to	one	another
around	this	common	axis.

PhysX	supports	six	different	joint	types:

a	fixed	joint	locks	the	orientations	and	origins	rigidly	together
a	distance	joint	keeps	the	origins	within	a	certain	distance	range
a	 spherical	 joint	 (also	 called	 a	 ball-and-socket)	 keeps	 the	 origins
together,	but	allows	the	orientations	to	vary	freely.
a	revolute	 joint	 (also	called	a	hinge)	keeps	 the	origins	and	x-axes	of
the	frames	together,	and	allows	free	rotation	around	this	common	axis.
a	prismatic	joint	(also	called	a	slider)	keeps	the	orientations	identical,
but	allows	the	origin	of	each	frame	to	slide	freely	along	the	common
x-axis.
a	D6	 joint	 is	 a	 highly	 configurable	 joint	 that	 allows	 specification	 of
individual	 degrees	 of	 freedom	 either	 to	 move	 freely	 or	 be	 locked
together.	It	can	be	used	to	implement	a	wide	variety	of	mechanical	and
anatomical	joints,	but	is	somewhat	less	intuitive	to	configure	than	the
other	joint	types.	This	joint	is	covered	in	detail	below.

All	joints	are	implemented	as	plugins	to	the	SDK	through	the	PxConstraint
class.	A	 number	 of	 the	 properties	 for	 each	 joint	 are	 configured	 using	 the
PxConstraintFlag	enumeration.

Note:	As	in	the	rest	of	the	PhysX	API,	all	joint	angles	for	limits	and	drive
targets	are	specified	in	radians

Visualization

All	 standard	 PhysX	 joints	 support	 debug	 visualization.	You	 can	 visualize
the	joint	frames	of	each	actor,	and	also	any	limits	the	joint	may	have.

By	default,	joints	are	not	visualized.	To	visualize	a	joint,	set	its	visualization
constraint	flag	and	the	appropriate	scene-level	visualization	parameters:

scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_FRAMES

scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LIMITS

...

joint->setConstraintFlag(PxConstraintFlag::eVISUALIZATION)

Force	Reporting

The	 joint	 may	 be	 configured	 to	 report	 each	 frame	 the	 force	 that	 was
required	to	hold	it	together.	To	enable	this	behavior,	set	the	joint's	reporting
flag.	 The	 force	 may	 then	 be	 retrieved	 after	 simulation	 with	 a	 call	 to
getForce():

joint->setConstraintFlag(PxConstraintFlag::eREPORTING)

...

scene->fetchResults(...)

joint->getgetConstraint().getForce(force,	torque);

The	force	is	resolved	at	the	origin	of	actor1's	joint	frame.

Note	that	this	force	is	only	updated	while	the	joint's	actors	are	awake.

Breakage

All	 of	 the	 standard	 PhysX	 joints	 can	 be	 made	 breakable.	 A	 maximum
breaking	 force	 and	 torque	 may	 be	 specified,	 and	 if	 the	 force	 or	 torque
required	 to	 maintain	 the	 joint	 constraint	 exceeds	 this	 threshold,	 the	 joint
will	 break.	 Breaking	 a	 joint	 generates	 a	 simulation	 event	 (see
PxSimulationEventCallback::onJointBreak),	 and	 the	 joint	 no	 longer
partakes	 in	simulation,	although	 it	 remains	attached	 to	 its	actors	until	 it	 is
deleted.

By	 default	 the	 threshold	 force	 and	 torque	 are	 set	 to	 FLT_MAX,	 making
joints	effectively	unbreakable.	To	make	a	joint	breakable,	specify	the	force
and	torque	thresholds.

joint->setBreakForce(100.0f,	100.0f);

A	constraint	flag	records	whether	a	joint	is	currently	broken:

bool	 broken	 =	 (joint->getConstraintFlags()	 &
PxConstraintFlag::eBROKEN)	!=	0;

Breaking	 a	 joint	 causes	 a	 callback	 via
PxSimulationEventCallback::onConstraintBreak.	In	this	callback,	a	pointer
to	the	joint	and	its	type	are	specified	in	the	externalReference	and	type	field
of	 the	 PxConstraintInfo	 struct.	 If	 you	 have	 implemented	 your	 own	 joint
types,	use	the	PxConstraintInfo::type	field	to	determine	the	dynamic	type	of
the	 broken	 constraint.	 Otherwise,	 simply	 cast	 the	 externalReference	 to	 a
PxJoint:

class	MySimulationEventCallback

{

				void	onConstraintBreak(PxConstraintInfo*	constraints,	PxU32	count

				{

								for(PxU32	i=0;	i<count;	i++)

								{

																								PxJoint*	joint	=	reinterpret_cast<PxJoint*>

																												...

								}

				}

}

Projection

Under	 stressful	 conditions,	 PhysX'	 dynamics	 solver	 may	 not	 be	 able	 to
accurately	 enforce	 the	 constraints	 specified	 by	 the	 joint.	 PhysX	 provides
kinematic	 projection	 which	 tries	 to	 bring	 violated	 constraints	 back	 into
alignment	even	when	 the	 solver	 fails.	Projection	 is	not	a	physical	process
and	does	not	preserve	momentum	or	 respect	 collision	geometry.	 It	 is	 best
avoided	 if	 practical,	 but	 can	 be	 useful	 in	 improving	 simulation	 quality
where	joint	separation	results	in	unacceptable	artifacts.

By	 default	 projection	 is	 disabled.	To	 enable	 projection,	 set	 the	 linear	 and
angular	tolerance	values	beyond	which	a	joint	will	be	projected,	and	set	the
constraint	projection	flag:

joint->setProjectionLinearTolerance(0.1f);

joint->setConstraintFlag(PxConstraintFlag::ePROJECTION,	true);

Very	small	tolerance	values	for	projection	may	result	in	jittering	around	the
joint.

Limits

Some	PhysX	joints	constrain	not	just	relative	rotation	or	translation,	but	can
also	enforce	 limits	 on	 the	 range	of	 that	motion.	For	example,	 in	 its	 initial
configuration	the	revolute	joint	allows	free	rotation	around	its	axis,	but	by
specifying	 and	 enabling	 a	 limit,	 lower	 and	 upper	 bounds	 may	 be	 placed
upon	the	angle	of	rotation.

Limits	are	a	form	of	collision,	and	like	collision	of	rigid	body	shapes,	stable
limit	behavior	requires	a	contactDistance	tolerance	specifying	how	close	to
the	limit	the	joint	configuration	may	be	before	the	solver	tries	to	enforce	it.
A	 high	 tolerance	 makes	 the	 limit	 less	 likely	 to	 be	 violated	 even	 at	 high
relative	velocity,	but	because	the	limit	is	active	more	of	the	time,	the	joint	is
more	expensive	to	simulate.

Limit	configuration	is	specific	to	each	type	of	joint.	To	set	a	limit,	configure
the	limit	geometry	and	set	the	joint-specific	flag	indicating	that	the	limit	is
enabled:

revolute->setLimit(PxJointLimitPair(-PxPi/4,	PxPi/4,	0.1f));	//	upper,	lower,	tolerance

revolute->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED

Limits	may	 be	 either	hard	 or	 soft.	When	 a	 hard	 limit	 is	 reached,	 relative
motion	will	simply	stop	dead	(or,	 if	you	configure	the	limit	with	non-zero
restitution,	it	will	bounce.)	When	a	soft	limit	is	violated,	the	solver	will	pull
the	joint	back	towards	the	limit	using	a	spring	specified	by	the	limit's	spring
and	damping	parameters.	By	default,	limits	are	hard	and	without	restitution,
so	 when	 the	 joint	 reaches	 a	 limit	 motion	 will	 simply	 stop.	 To	 specify
softness	 for	 a	 limit,	 declare	 the	 limit	 structure	 and	 set	 the	 spring	 and
damping	parameters	directly:

PxJointLimitPair	limitPair(-PxPi/4,	PxPi/4,	0.1f));

limitPair.spring	=	100.0f;

limitPair.damping	=	20.0f;

revolute->setRevoluteJointLimit(limitPair);

revolute->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED

Note:	Limits	are	not	projected.

Actuation

Some	 PhysX	 joints	 may	 be	 actuated	 by	 a	 motor	 or	 a	 spring	 implicitly
integrated	 by	 the	 PhysX	 solver.	While	 driving	 simulations	 with	 actuated
joints	is	more	expensive	than	simply	applying	forces,	 it	can	provide	much
more	stable	control	of	simulation.	See	the	specific	documentation	on	the	D6
and	revolute	joints	for	details

Note:	The	force	generated	by	actuation	is	not	included	in	the	force	reported
by	the	solver,	nor	does	it	contribute	towards	exceeding	the	joint's	breakage
force	threshold.

Fixed	Joint

The	fixed	joint	constrains	two	objects	so	that	the	positions	and	orientations
of	their	constraint	frames	are	the	same.

Note: 	All	joints	are	enforced	by	the	dynamics	solver,	so	although	under
ideal	conditions	the	objects	will	maintain	their	spatial	relationship,	there
may	be	some	drift.	A	common	alternative,	which	is	cheaper	to	simulate
and	does	not	suffer	from	drift,	is	to	construct	a	single	actor	with	multiple
shapes.	However	fixed	joints	are	useful,	for	example,	when	a	joint	must
be	breakable	or	report	its	constraint	force.

Spherical	Joint

A	spherical	joint	constrains	the	origins	of	the	actor's	constraint	frames	to	be
coincident.

The	 spherical	 joint	 supports	 a	 cone	 limit,	 which	 constrains	 the	 angle
between	 the	 X-axes	 of	 the	 two	 constraint	 frames.	 Actor1's	 X-axis	 is
constrained	by	a	limit	cone	whose	axis	is	is	the	x-axis	of	actor0's	constraint
frame.	The	allowed	limit	values	are	the	maximum	rotation	around	the	the	y-
and	z-	 axes	of	 that	 frame.	Different	values	 for	 the	y-	 and	z-	 axes	may	be
specified,	 in	 which	 case	 the	 limit	 takes	 the	 form	 of	 an	 elliptical	 angular
cone:

joint->setLimitCone(PxJointLimitCone(PxPi/2,	PxPi/6,	0.01f);

joint->setSphericalJointFlag(PxSphericalJointFlag::eLIMIT_ENABLED,

Note	 that	 very	 small	 or	 highly	 elliptical	 limit	 cones	may	 result	 in	 solver
jitter.

Note: 	Visualization	of	the	limit	surface	can	help	considerably	in

understanding	its	shape.

Revolute	Joint

A	revolute	joint	removes	all	but	a	single	rotational	degree	of	freedom	from
two	objects.	The	axis	along	which	the	two	bodies	may	rotate	is	specified	by
the	common	origin	of	the	joint	frames	and	their	common	x-axis.	In	theory,
all	 origin	 points	 along	 the	 axis	 of	 rotation	 are	 equivalent,	 but	 simulation
stability	 is	 best	 in	 practice	 when	 the	 point	 is	 near	 where	 the	 bodies	 are
closest.

The	 joint	 supports	 a	 rotational	 limit	 with	 upper	 and	 lower	 extents.	 The
angle	is	zero	where	the	y-	and	z-	axes	of	the	joint	frames	are	coincident,	and
increases	moving	from	the	y-axis	towards	the	z-axis:

joint->setLimit(PxJointLimitPair(-PxPi/4,	PxPi/4,	0.01f);

joint->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED,	true

The	joint	also	supports	a	motor	which	drives	the	relative	angular	velocity	of
the	 two	 actors	 towards	 a	 user-specified	 target	 velocity.	 The	magnitude	 of
the	force	applied	by	the	motor	may	be	limited	to	a	specified	maximum:

joint->setDriveVelocity(10.0f);

joint->setRevoluteJointFlag(PxRevoluteJointFlag::eDRIVE_ENABLED,	true

By	default,	when	the	angular	velocity	at	the	joint	exceeds	the	target	velocity
the	motor	acts	as	a	brake;	a	freespin	flag	disables	this	braking	behavior.

Prismatic	Joint

A	 prismatic	 joint	 prevents	 all	 rotational	 motion,	 but	 allows	 the	 origin	 of
actor1's	 constraint	 frame	 to	 move	 freely	 along	 the	 x-axis	 of	 actor0's
constraint	frame.	The	primatic	joint	supports	a	single	limit	with	upper	and
lower	 bounds	 on	 the	 distance	 between	 the	 two	 constraint	 frames'	 origin
points:

joint->setLimit(PxJointLimitPair(-10.0f,	20.0f,	0.01f);

joint->setPrismaticJointFlag(PxPrismaticJointFlag::eLIMIT_ENABLED,

Distance	Joint

The	distance	joint	keeps	the	origins	of	the	constraint	frames	within	a	certain
range	of	distance.	The	range	may	have	both	upper	and	lower	bounds,	which
are	enabled	separately	by	flags:

joint->setMaxDistance(10.0f);

joint->setDistanceJointFlag(eMAX_DISTANCE_ENABLED,	true);

In	 addition,	when	 the	 joint	 reaches	 the	 limits	 of	 its	 range	motion	 beyond
this	distance	may	either	be	entirely	prevented	by	the	solver,	or	pushed	back
towards	 its	 range	with	 an	 implicit	 spring,	 for	 which	 spring	 and	 damping
paramters	may	be	specified.

D6	Joint

The	D6	joint	is	by	far	the	most	complex	of	the	the	standard	PhysX	joints.	In
its	 default	 state	 it	 behaves	 like	 a	 fixed	 joint	 -	 that	 is,	 it	 rigidly	 fixes	 the
constraint	frames	of	its	two	actors.	However,	individual	degrees	of	freedom
may	be	unlocked	 to	permit	 any	 combination	of	 rotation	 around	 the	x-,	 y-
and	z-	axes,	and	translation	along	these	axes.

Locking	and	Unlocking	Axes

To	unlock	and	lock	degrees	of	freedom,	use	the	joint's	setMotion	function:

d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

Unlocking	 translational	 degrees	 of	 freedom	 allows	 the	 origin	 point	 of
actor1's	 constraint	 frame	 to	 move	 along	 a	 subset	 of	 the	 axes	 defined	 by
actor0's	constraint	frame.	For	example,	unlocking	just	the	X-axis	creates	the
equivalent	of	a	prismatic	joint.

Rotational	degrees	of	freedom	are	partitioned	as	twist	(around	the	X-axis	of
actor0's	constraint	frame)	and	swing	(around	the	Y-	and	Z-	axes.)	Different
effects	are	achieved	by	unlocking	various	combinations	of	twist	and	swing.

if	 just	 a	 single	 degree	 of	 angular	 freedom	 is	 unlocked,	 the	 result	 is
always	equivalent	to	a	revolute	joint.	It	is	recommended	that	if	just	one
angular	freedom	is	unlocked,	it	should	be	the	twist	degree,	because	the
joint	 has	 various	 configuration	 options	 and	 optimizations	 that	 are
designed	for	this	case.

if	 both	 swing	 degrees	 of	 freedom	 are	 unlocked	 but	 the	 twist	 degree
remains	 locked,	 the	 result	 is	 a	 zero-twist	 joint.	 The	 x-axis	 of	 actor1
swings	 freely	 away	 from	 the	 x-axis	 of	 actor0	 but	 twists	 to	minimize
the	 rotation	 required	 to	 align	 the	 two	 frames.	 This	 creates	 a	 kind	 of
isotropic	 universal	 joint	 which	 avoids	 the	 problems	 of	 the	 usual

'engineering	style'	universal	joint	(see	below)	that	is	sometimes	used	as
a	kind	of	twist	constraint.	There	is	a	nasty	singularity	at	π	radians	(180
degrees)	 swing,	 so	 a	 swing	 limit	 should	 be	 used	 to	 avoid	 the
singularity.

if	 one	 swing	 and	 one	 twist	 degree	 of	 freedom	 are	 unlocked	 but	 the
remaining	swing	 is	kept	 locked,	a	zero-swing	 joint	 results	 (often	also
called	a	universal	joint.)	If	for	example	the	SWING1	(y-axis	rotation)
is	unlocked,	the	x-axis	of	actor1	is	constrained	to	remain	orthogonal	to
the	z-axis	of	actor0.	In	character	applications,	this	joint	can	be	used	to
model	 an	 elbow	 swing	 joint	 incorporating	 the	 twist	 freedom	 of	 the
lower	arm	or	a	knee	swing	joint	incorporating	the	twist	freedom	of	the
lower	leg.	In	vehicle	applications,	these	joints	can	be	used	as	 'steered
wheel'	joints	in	which	the	child	actor	is	the	wheel,	free	to	rotate	about
its	 twist	 axis,	 while	 the	 free	 swing	 axis	 in	 the	 parent	 acts	 as	 the
steering	 axis.	 Care	 must	 be	 taken	 with	 this	 combination	 because	 of
anisotropic	 behavior	 and	 singularities	 (beware	 the	 dreaded	 gimbal
lock)	at	angles	of	π/2	radians	(90	degrees),	making	the	zero-twist	joint
a	better	behaved	alternative	for	most	use	cases.

if	all	 three	angular	degrees	are	unlocked,	 the	result	 is	equivalent	 to	a
spherical	joint.

Three	of	the	joints	from	PhysX	2	that	have	been	removed	from	PhysX	3	can
be	implemented	as	follows:

The	 cylindrical	 joint	 (with	 axis	 along	 the	 common	x-axis	 of	 the	 two
constraint	frames)	is	given	by	the	combination:

d6joint->setMotion(PxD6Axis::eX,					PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,	PxD6Motion::eFREE);

the	 point-on-plane	 joint	 (with	 plane	 axis	 along	 the	 x-axis	 of	 actor0's
constraint	frame)	is	given	by	the	combination:

d6joint->setMotion(PxD6Axis::eY,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eZ,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,		PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING1,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING2,	PxD6Motion::eFREE);

the	point-on-line	joint	(with	axis	along	the	x-axis	of	actor0's	constraint
frame)	is	given	by	the	combination:

d6joint->setMotion(PxD6Axis::eX,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,		PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING1,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING2,	PxD6Motion::eFREE);

Limits

Instead	of	specifying	that	an	axis	is	free	or	locked,	it	may	also	be	specified
as	limited.	The	D6	supports	three	different	limits	which	may	be	used	in	any
combination.

A	single	linear	limit	with	only	an	upper	bound	is	used	to	constrain	any	of
the	 translational	 degrees	 of	 freedom.	 The	 limit	 constrains	 the	 distance
between	 the	 origins	 of	 the	 constraint	 frames	 when	 projected	 onto	 these
axes.	For	example,	the	combination:

d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eY,	PxD6Motion::eLIMITED);

d6joint->setMotion(PxD6Axis::eZ,	PxD6Motion::eLIMITED);

d6joint->setLinearLimit(PxJointLimit(1.0f,	0.1f));

constrains	the	y-	and	z-	coordinates	of	actor1's	constraint	frame	to	lie	within
the	unit	disc.	Since	the	x-axis	is	unconstrained,	the	effect	is	to	constrain	the
origin	 of	 actor1's	 constraint	 frame	 to	 lie	 within	 a	 cylinder	 of	 radius	 1
extending	along	the	x-axis	of	actor0's	constraint	frame.

The	twist	degree	of	freedom	is	limited	by	a	pair	limit	with	upper	and	lower
bounds,	identical	to	the	limit	of	the	revolute	joint.

If	 both	 swing	 degrees	 of	 freedom	 are	 limited,	 a	 limit	 cone	 is	 generated,

identical	to	the	limit	of	the	spherical	joint.	As	with	the	spherical	joint,	very
small	or	highly	elliptical	limit	cones	may	result	in	solver	jitter.

If	 only	 one	 swing	 degree	 of	 freedom	 is	 limited,	 the	 corresponding	 angle
from	 the	 cone	 limit	 is	 used	 to	 limit	 rotation.	 If	 the	 other	 swing	 degree	 is
locked,	 the	maximum	value	of	 the	 limit	 is	π	 radians	 (180	degrees).	 If	 the
other	 swing	degree	 is	 free,	 the	maximum	value	of	 the	 limit	 is	π/2	 radians
(90	degrees.)

Drives

The	D6	has	 a	 linear	drive	model,	 and	 two	possible	 angular	drive	models.
The	 drive	 is	 a	 proportional	 derivative	 drive,	 which	 applies	 a	 force	 as
follows:

force	=	spring	*	 (targetPosition	 -	position)	+	damping	*	 (targetVelocity	 -
velocity)

The	 drive	 model	 may	 also	 be	 configured	 to	 generate	 a	 proportional
acceleration	 instead	 of	 a	 force,	 factoring	 in	 the	 masses	 of	 the	 actors	 to
which	 the	 joint	 is	attached.	Acceleration	drive	 is	often	easier	 to	 tune	 than
force	drive.

The	linear	drive	model	for	the	D6	has	the	following	parameters:
target	position,	specified	in	actor0's	constraint	frame
target	velocity,	specified	in	actor0's	constraint	frame
spring
damping
forceLimit	-	the	maximum	force	the	drive	can	apply
acceleration	drive	flag

The	drive	attempts	to	follow	the	desired	position	input	with	the	configured
stiffness	 and	 damping	 properties.	A	 physical	 lag	 due	 to	 the	 inertia	 of	 the
driven	 body	 acting	 through	 the	 drive	 spring	will	 occur;	 therefore,	 sudden
step	changes	will	 result	 over	 a	number	of	 time	 steps.	Physical	 lag	 can	be

reduced	by	stiffening	the	spring	or	supplying	a	velocity	target.

With	a	fixed	position	input	and	a	zero	target	velocity,	a	position	drive	will
spring	 about	 that	 drive	 position	 with	 the	 specified	 springing/damping
characteristics:

//	set	all	translational	degrees	free

d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eY,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eZ,	PxD6Motion::eFREE);

//	set	all	translation	degrees	driven:

PxD6Drive	drive(10.0f,	-20.0f,	PX_MAX_F32,	true);

d6joint->setDrive(PxD6JointDrive::eX,	drive);

d6joint->setDrive(PxD6JointDrive::eY,	drive);

d6joint->setDrive(PxD6JointDrive::eZ,	drive);

//Drive	the	joint	to	the	local(actor[0])	origin	-	since	no	angular	dofs	are	free,	the	angular	part	of	the	transform	is	ignored

d6joint->setDrivePosition(PxTransform::createIdentity());

d6joint->setDriveVelocity(PxVec3::createZero());

Angular	drive	differs	 from	 linear	drive	 in	 a	 fundamental	way:	 it	 does	not
have	a	 simple	and	 intuitive	 representation	 free	 from	singularities.	For	 this
reason,	 the	D6	 joint	provides	 two	angular	drive	models	 -	 twist	 and	 swing
and	SLERP	(Spherical	Linear	Interpolation).

The	two	models	differ	in	the	way	they	estimate	the	path	in	quaternion	space
between	 the	 current	 orientation	 and	 the	 target	 orientation.	 In	 a	 SLERP
drive,	 the	 quaternion	 is	 used	 directly.	 In	 a	 twist	 and	 swing	 drive,	 it	 is
decomposed	into	separate	twist	and	swing	components	and	each	component
is	 interpolated	 separately.	Twist	 and	 swing	 is	 intuitive	 in	many	 situations;
however,	 there	 is	 a	 singularity	 when	 driven	 to	 180	 degrees	 swing.	 In
addition,	the	drive	will	not	follow	the	shortest	arc	between	two	orientations.
On	the	other	hand,	SLERP	drive	will	follow	the	shortest	arc	between	a	pair
of	angular	configurations,	but	may	cause	unintuitive	changes	 in	 the	 joint's
twist	and	swing.

The	angular	drive	model	has	the	following	parameters:

An	angular	velocity	target	specified	relative	to	actor0's	constraint
frame
An	 orientation	 target	 specified	 relative	 to	 actor0's	 constraint
frame
drive	specifications	for	SLERP	(slerpDrive),	swing	(swingDrive)
and	twist	(twistDrive):
spring	 -	 amount	of	 torque	needed	 to	move	 the	 joint	 to	 its	 target
orientation	proportional	to	the	angle	from	the	target	(not	used	for
a	velocity	drive).
damping	 -	 applied	 to	 the	 drive	 spring	 (used	 to	 smooth	 out
oscillations	about	the	drive	target).
forceLimit	 -	 maximum	 torque	 applied	 when	 driving	 towards	 a
velocity	target	(not	used	for	an	orientation	drive)
acceleration	drive	 flag.	 If	 this	 flag	 is	 set	 the	acceleration	 (rather
than	 the	 force)	 applied	 by	 the	 drive	 is	 proportional	 to	 the	 angle
from	the	target.

Best	 results	 will	 be	 achieved	 when	 the	 drive	 target	 inputs	 are	 consistent
with	the	joint	freedom	and	limit	constraints.

Note: 	if	any	angular	degrees	of	freedom	are	locked,	the	SLERP	drive
parameters	are	ignored.	If	all	angular	degrees	of	freedom	are	unlocked,
and	parameters	are	set	for	multiple	angular	drives,	the	SLERP	parameters
will	be	used.

Configuring	Joints	for	Best	Behavior

The	behavior	quality	of	joints	in	PhysX	is	largely	determined	by	the	ability
of	 the	 iterative	 solver	 to	 converge.	 Better	 convergence	 can	 be	 achieved
simply	by	increasing	the	attributes	of	 the	PxRigidDynamic	which	controls
the	 solver	 iteration	 count.	 However,	 joints	 can	 also	 be	 configured	 to
produce	better	convergence.

the	 solver	 can	 have	 difficulty	 converging	 well	 when	 where	 a	 light
object	is	constrained	between	two	heavy	objects.	Mass	ratios	of	higher
than	10	are	best	avoided	in	such	scenarios.
when	one	body	is	significantly	heavier	than	the	other,	make	the	lighter
body	the	second	actor	in	the	joint.	Similarly,	when	one	of	the	objects	is
static	or	kinematic	 (or	 the	actor	pointer	 is	NULL)	make	 the	dynamic
bodythe	the	second	actor.

A	 common	 use	 for	 joints	 is	 to	 move	 objects	 around	 in	 the	 world.	 Best
results	are	obtained	when	the	solver	has	access	to	the	velocity	of	motion	as
well	as	the	change	in	position.

if	 you	 want	 a	 very	 stiff	 controller	 that	 moves	 the	 object	 to	 specific
position	each	frame,	consider	 jointing	 the	object	 to	a	kinematic	actor
and	use	the	setKinematicTarget	function	to	move	the	actor.
if	 you	 want	 a	 more	 springy	 controller,	 use	 a	 D6	 joint	 with	 a	 drive
target	to	set	the	desired	position	and	orientation,	and	control	the	spring
parameters	to	increase	stiffness	and	damping.	In	general,	acceleration
drive	is	much	easier	to	tune	than	force	drive.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Rigid	Body	Dynamics
In	 this	 chapter	 we	 cover	 a	 number	 of	 topics	 that	 are	 also	 important	 to
understand	 once	 you	 are	 comfortable	 with	 setting	 up	 a	 basic	 rigid	 body
simulation	world.

Applying	Forces	and	Torques

The	most	physics-friendly	way	to	interact	with	a	body	is	to	apply	a	force	to
it.	 In	 classical	mechanics,	 most	 interactions	 between	 bodies	 are	 typically
solved	by	using	forces.	Because	of	the	law:

f	=	m*a	(force	=	mass	*	acceleration)

Forces	 directly	 control	 a	 body's	 acceleration,	 but	 its	 velocity	 and	position
only	indirectly.	For	this	reason	control	by	force	may	be	inconvenient	if	you
need	immediate	response.	The	advantage	of	forces	is	that	regardless	of	what
forces	you	apply	 to	 the	bodies	 in	 the	scene,	 the	simulation	will	be	able	 to
keep	all	the	defined	constraints	(joints	and	contacts)	satisfied.	For	example
gravity	works	by	applying	a	force	to	bodies.

Unfortunately	 applying	 large	 forces	 to	 articulated	 bodies	 at	 the	 resonant
frequency	of	a	system	may	lead	to	ever	increasing	velocities,	and	eventually
to	 the	 failure	 of	 the	 solver	 to	 maintain	 the	 joint	 constraints.	 This	 is	 not
unlike	a	real	world	system,	where	the	joints	would	ultimately	break.

The	forces	acting	on	a	body	are	accumulated	before	each	simulation	frame,
applied	to	the	simulation,	and	then	reset	to	zero	in	preparation	for	the	next
frame.	 The	 relevant	 methods	 of	 PxRigidBody	 and	 PxRigidBodyExt	 are
listed	below.	Please	refer	to	the	API	reference	for	more	detail:

void	PxRigidBody::addForce(const	PxVec3&	force,	PxForceMode::Enum	

void	PxRigidBody::addTorque(const	PxVec3&	torque,	PxForceMode::Enum

void	PxRigidBodyExt::addForceAtPos(PxRigidBody&	body,	const	PxVec3

void	PxRigidBodyExt::addForceAtLocalPos(PxRigidBody&	body,	const	PxVec3

void	PxRigidBodyExt::addLocalForceAtPos(PxRigidBody&	body,	const	PxVec3

void	PxRigidBodyExt::addLocalForceAtLocalPos(PxRigidBody&	body,	const

The	 PxForceMode	 member	 defaults	 to	 PxForceMode::eFORCE	 to	 apply
simple	 forces.	 There	 are	 other	 possibilities.	 For	 example

PxForceMode::eIMPULSE	 will	 apply	 an	 impulsive	 force.
PxForceMode::eVELOCITY_CHANGE	will	 do	 the	 same,	 but	 also	 ignore
the	 mass	 of	 the	 body,	 effectively	 leading	 to	 an	 instantaneous	 velocity
change.	 See	 the	 API	 documentation	 of	 PxForceMode	 for	 the	 other
possibilities.

Note: 	The	methods	in	PxRigidBodyExt	support	only	the	force	modes
eFORCE	and	eIMPULSE.

Gravity

Gravity	 is	 such	 a	 common	 force	 in	 simulations	 that	 PhysX	 makes	 it
particularly	 simple	 to	apply.	For	a	 scene-wide	gravity	effect,	or	 any	other
uniform	 force	 field,	 set	 the	 PxScene	 class'	 gravity	 vector	 using
PxScene::setGravity().

The	parameter	is	the	acceleration	due	to	gravity.	In	meters	and	seconds,	this
works	 out	 to	 have	 a	 magnitude	 of	 about	 9.8	 on	 earth,	 and	 should	 point
downwards.	 The	 force	 that	will	 be	 applied	 at	 the	 center	 of	mass	 of	 each
body	in	the	scene	is	this	acceleration	vector	times	the	actor's	mass.

Certain	 special	 effects	 can	 require	 that	 some	 dynamic	 actors	 are	 not
influenced	by	gravity.	To	specify	this	set	the	flag:

PxActor::setActorFlag(PxActorFlag::eDISABLE_GRAVITY,	true);

Note: 	Be	careful	when	changing	gravity	(or	enabling/disabling	it)	during
the	simulation.	For	performance	reasons	the	change	will	not	wake	up
sleeping	actors	automatically.	Thus	it	may	be	necessary	to	iterate	through
all	actors	and	call	PxRigidDynamic::wakeUp()	manually.

Setting	the	Velocity

To	immediately	get	a	body	moving	in	a	certain	direction,	set	its	velocity:

void	PxRigidBody::setLinearVelocity(const	PxVec3&	linVel,	bool	autowake

void	PxRigidBody::setAngularVelocity(const	PxVec3&	angVel,	bool	autowake

During	 simulation,	 PhysX	 will	 modify	 the	 velocity	 of	 an	 object	 in
accordance	with	gravity	and	other	applied	forces,	and	override	the	velocity
if	it	is	in	conflict	with	a	joint	or	a	collision	constraint.	For	example,	if	a	ball
is	resting	on	a	table	and	has	a	downward	velocity,	this	will	be	clamped	to	0.
If	 you	 set	 the	 velocity	 of	 a	 chain	 link	 that	 is	 jointed	 to	 a	 bunch	 of	 other
chain	 links,	 that	 velocity	 will	 be	 diminished,	 and	 the	 other	 chain	 links'
velocity	will	be	increased,	to	permit	the	chain	to	stay	together.

Kinematic	Actors

Sometimes	 controlling	 an	 actor	 using	 forces	 or	 constraints	 is	 not
sufficiently	 robust,	 precise	 or	 flexible.	 For	 example	moving	 platforms	 or
character	controllers	often	need	to	manipulate	an	actor's	position	or	have	it
exactly	 follow	 a	 specific	 path.	 Such	 a	 control	 scheme	 is	 provided	 by
kinematic	actors.

A	 kinematic	 actor	 is	 controlled	 using	 the
PxRigidDynamic::setKinematicTarget()	 function.	 Each	 simulation	 step
PhysX	moves	the	actor	 to	 its	 target	position,	regardless	of	external	forces,
gravity,	collision,	etc.	Thus	one	must	continually	call	setKinematicTarget(),
every	 time	step,	 for	each	kinematic	actor,	 to	make	 them	move	along	 their
desired	paths.	The	movement	 of	 a	 kinematic	 actor	 affects	 dynamic	 actors
with	which	 it	collides	or	 to	which	 it	 is	constrained	with	a	 joint.	The	actor
will	appear	to	have	infinite	mass	and	will	push	regular	dynamic	actors	out
of	the	way.

To	create	a	kinematic	actor,	simply	create	a	regular	dynamic	actor	then	set
its	kinematic	flag:

PxRigidDynamic::setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC

Use	 the	 same	 function	 to	 transform	 a	 kinematic	 actor	 back	 to	 a	 regular
dynamic	actor.	While	you	do	need	to	provide	a	mass	for	the	kinematic	actor
as	for	all	dynamic	actors,	 this	mass	will	not	actually	be	used	for	anything
while	the	actor	is	in	kinematic	mode.

Caveats:

It	 is	 important	 to	 understand	 the	 difference	 between
PxRigidDynamic::setKinematicTarget()	 and
PxRigidActor::setGlobalPose()	 here.	 While	 setGlobalPose()	 would
also	 move	 the	 actor	 to	 the	 desired	 position,	 it	 would	 not	 make	 that

actor	 properly	 interact	 with	 other	 objects.	 In	 particular,	 with
setGlobalPose()	 the	 kinematic	 actor	 would	 not	 push	 away	 other
dynamic	actors	in	its	path,	instead	it	would	go	right	through	them.	The
setGlobalPose()	function	can	still	be	used	though,	if	one	simply	wants
to	teleport	a	kinematic	actor	to	a	new	position.
A	kinematic	actor	can	push	away	dynamic	objects,	but	nothing	pushes
it	 back.	 As	 a	 result,	 a	 kinematic	 can	 easily	 squish	 a	 dynamic	 actor
against	 a	 static	 actor,	 or	 against	 another	kinematic	 actor.	As	a	 result,
the	squished	dynamic	object	can	deeply	penetrate	the	geometry	it	has
been	pushed	into.
There	is	no	interaction	or	collision	between	kinematic	actors	and	static
actors.	However,	it	is	possible	to	request	contact	information	for	these
cases	 if	 PxSceneFlag::eENABLE_KINEMATIC_PAIRS	 or
::eENABLE_KINEMATIC_STATIC_PAIRS	gets	set.

Sleeping

When	an	actor	does	not	move	for	a	period	of	time,	it	is	assumed	that	it	will
not	move	in	the	future	either	until	some	external	force	acts	on	it	that	throws
it	out	of	equilibrium.	Until	 then	 it	 is	no	 longer	 simulated	 in	order	 to	 save
resources.	This	state	is	called	sleeping.	You	can	query	an	actor's	sleep	state
with	the	following	method:

bool	PxRigidDynamic::isSleeping()	const;

It	is	however	often	more	convenient	to	listen	for	events	that	the	SDK	sends
when	 actors	 fall	 asleep	 or	 wake	 up.	 To	 receive	 the	 following	 events,
PxActorFlag::eSEND_SLEEP_NOTIFIES	must	be	set	for	the	actor:

void	PxSimulationEventCallback::onWake(PxActor**	actors,	PxU32	count

void	PxSimulationEventCallback::onSleep(PxActor**	actors,	PxU32	count

See	 the	 section	 Callbacks	 and	 Customization	 for	 more	 information.	 An
actor	goes	to	sleep	when	its	kinematic	energy	is	below	a	given	threshold	for
a	 certain	 time.	 This	 threshold	 can	 be	 manipulated	 using	 the	 following
methods:

void	PxRigidDynamic::setSleepThreshold(PxReal	threshold);

PxReal	PxRigidDynamic::getSleepThreshold()	const;

Note: 	Kinematic	actors	go	to	sleep	immediately	if	no	target	pose	is	set
before	a	simulation	step.

Objects	 automatically	wake	 up	when	 touched	 by	 an	 awake	 object,	 or	 the
application	 changes	 the	 position	 or	 velocity.	 To	 explicitly	 wake	 up	 a
sleeping	object,	or	force	an	object	to	sleep,	use:

void	PxRigidDynamic::wakeUp(PxReal	wakeCounterValue=PX_SLEEP_INTERVAL

void	PxRigidDynamic::putToSleep();

The	API	reference	documents	exactly	which	methods	cause	an	actor	to	be
woken	up.

Solver	Accuracy

When	the	motion	of	a	rigid	body	is	constrained	either	by	contacts	or	joints,
the	constraint	solver	comes	into	play.	The	solver	satisfies	the	constraints	on
the	bodies	by	iterating	over	all	the	constraints	restricting	the	motion	of	the
body	a	certain	number	of	times.	The	more	iterations,	the	more	accurate	the
results	become.	The	solver	 iteration	count	defaults	 to	4	position	 iterations
and	1	velocity	iteration.	Those	counts	may	be	set	individually	for	each	body
using	the	following	function:

void	PxRigidDynamic::setSolverIterationCounts(PxU32	minPositionIters

Typically	 it	 is	 only	 necessary	 to	 significantly	 increase	 these	 values	 for
objects	with	lots	of	joints	and	a	small	tolerance	for	joint	error.	If	you	find	a
need	 to	 use	 a	 setting	 higher	 than	 30,	 you	 may	 wish	 to	 reconsider	 the
configuration	of	your	simulation.

Fast	Rotation

Objects	shaped	like	a	pencil	are	difficult	to	simulate	because	they	can	store
a	lot	of	energy	while	rotating	around	a	short	axis,	which	is	then	converted	to
a	 very	 high	 rotational	 velocity	 when	 they	 start	 to	 rotate	 around	 a	 longer
axis.	High	rotational	velocities	can	lead	to	problems	because	certain	linear
approximations	 of	 the	 rotational	 motion	 fail	 to	 hold.	 For	 this	 reason	 the
SDK	 automatically	 limits	 the	 rotational	 velocity	 of	 a	 body	 to	 a	 user
definable	 maximum	 value.	 Because	 this	 may	 prevent	 intentional	 fast
rotation	in	objects	such	as	wheels,	 the	user	can	override	it	on	an	per	body
basis:

void	PxRigidDynamic::setMaxAngularVelocity(PxReal	maxAngVel);

Mass	Properties

A	dynamic	actor	needs	mass	properties:	 the	mass,	moment	of	 inertia,	 and
the	center	of	mass	frame	which	specifies	the	position	of	the	actor's	center	of
mass	 and	 its	 principal	 inertia	 axes.	 The	 easiest	 way	 to	 calculate	 mass
properties	 is	 to	 use	 the	 PxRigidBodyExt::updateMassAndInertia()	 helper
function,	which	will	set	all	three	properties	based	on	the	actor's	shapes	and
a	 uniform	 density	 value.	 Variants	 of	 this	 function	 allow	 combinations	 of
per-shape	densites	and	manual	 specification	of	 some	mass	properties.	See
the	reference	for	PxRigidBodyExt	for	more	details.

The	 Wobbly	 Snowmen	 in	 the	 North	 Pole	 Sample	 illustrate	 the	 use	 of
different	mass	properties.	The	snowmen	act	 like	roly-poly	 toys,	which	are
usually	just	an	empty	shell	with	the	bottom	filled	with	some	heavy	material.
The	 low	centers	 of	mass	 cause	 them	 to	move	back	 to	 an	upright	 position
after	 they	 have	 been	 tilted.	They	 come	 in	 different	 flavors,	 depending	 on
how	the	mass	properties	are	set:

The	first	is	basically	massless.	There	is	just	a	little	sphere	with	a	relatively
high	mass	at	the	bottom	of	the	Actor.	This	results	in	a	quite	rapid	movement
due	to	the	small	resulting	moments	of	inertia.	The	snowman	feels	light.

The	second	uses	the	mass	of	the	bottom	snowball	only,	resulting	in	a	bigger
inertia.	Later	 on,	 the	 center	 of	mass	 is	moved	 to	 the	 bottom	of	 the	 actor.
This	 approximation	 is	 by	 no	 means	 physically	 correct,	 but	 the	 resulting
snowman	feels	a	bit	more	filled.

The	 third	 and	 fourth	 snowman	 use	 shapes	 to	 calculate	 the	 mass.	 The
difference	is	that	one	calculates	the	moments	of	inertia	first	(from	the	real
center	of	mass)	 and	 then	 the	 center	 of	mass	 is	moved	 to	 the	bottom.	The
other	calculates	the	moments	of	inertia	about	the	low	center	of	mass	that	we
pass	to	the	calculation	routine.	Note	how	much	slower	the	wobbling	is	for
the	second	case	although	both	have	the	same	mass.	This	is	because	the	head
accounts	 for	much	more	 in	 the	moment	 of	 inertia	 (the	 distance	 from	 the

center	of	mass	squared).

The	 last	snowman's	mass	properties	are	set	up	manually.	The	sample	uses
rough	values	for	the	moment	of	inertia	to	create	a	specific	desired	behavior.
The	 diagonal	 tensor	 has	 a	 low	 value	 in	 X,	 and	 high	 values	 in	 Y	 and	 Z,
producing	a	low	resistance	to	rotation	around	the	X-axis	and	high	resistance
around	Y	 and	 Z.	 As	 a	 consequence,	 the	 snowman	will	 wobble	 back	 and
forth	only	around	the	X	axis.

If	 you	 have	 a	 3x3	 inertia	 matrix	 (for	 example,	 you	 have	 real-life	 inertia
tensors	 for	 your	 objects)	 use	 the	 PxDiagonalize()	 function	 to	 obtain
principal	 axes	 and	 diagonal	 inertia	 tensors	 to	 initialize	 PxRigidDynamic
actors.

Damping

The	rates	at	which	rigid	bodies	dissipate	angular	and	linear	momentum	are
governed	by	damping	rates.	In	the	PhysX	SDK	two	damping	rates	may	be
specified	for	a	rigid	body:

void	PxRigidDynamic::setLinearDamping(PxReal	linDamp);

void	PxRigidDynamic::setAngularDamping(PxReal	angDamp);

With	 a	 linear	 damping	 value	 of	 linDamp	 a	 rigid	 body	 will	 experience	 a
damping	 force	 each	 update	 equal	 to	 -linDamp*velocity.	 Similarly,	 a	 rigid
body	 with	 damping	 rate	 angDamp	 will	 experience	 a	 damping	 torque	 -
angDamp*angularVelocity.	 The	 damping	 forces	 and	 torques	 always	 act
against	 the	 velocity	 and	 angular	 velocity	 and	 are	 applied	 in	 a	 way	 that
ensures	that	a	moving	and	rotating	rigid	body	will	asymptotically	approach
the	rest	state	in	the	absence	of	other	forces.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Data	Access	and	Buffering
This	chapter	will	discuss	read/write	access	to	PhysX	objects	which	are	in	a
scene,	 specifically	 the	 time	 frame	when	 access	 is	 allowed	 and	 how/when
the	 changes	 will	 take	 effect.	 For	 objects	 in	 different	 scenes	 or	 outside	 a
scene,	 the	 restrictions	 are	 given	 in	 the	 multithreading	 guidelines	 in	 The
Basics.

General	Data	Access	Rules

It	is	important	to	distinguish	two	time	slots	for	data	access:

1.	 After	 the	 call	 to	PxScene::fetchResults()	 has	 returned	 and	 before	 the
next	PxScene::simulate()	call	(see	figure	below,	blue	area	"1").

2.	 After	 the	 call	 to	 PxScene::simulate()	 has	 returned	 and	 before	 the
corresponding	 PxScene::fetchResults()	 call	 (see	 figure	 below,	 green
area	"2").

In	 the	 first	 time	 slot,	 the	 simulation	 is	 not	 running	 and	 there	 are	 no
restrictions	for	reading	or	writing	object	properties.	Changes	to	the	position
of	 an	 object,	 for	 example,	 are	 applied	 instantaneously	 and	 the	 next	 scene
query	or	simulation	step	will	take	the	new	state	into	account.

In	the	second	time	slot	the	simulation	is	running	and	in	the	process,	reading
and	 changing	 the	 state	 of	 objects.	Concurrent	 access	 from	 the	 user	might
corrupt	the	state	of	the	objects	or	lead	to	data	races	or	inconsistent	views	in
the	 simulation	 code.	 Hence	 the	 simulation	 code's	 view	 of	 the	 objects	 is
protected	 from	API	 writes,	 and	 any	 attributes	 the	 simulation	 updates	 are
buffered	to	allow	API	reads.	The	consequences	will	be	discussed	in	detail	in
the	next	section.

Note	that	simulate()	and	fetchResults()	are	write	calls	on	the	scene,	and	as
such	it	is	illegal	to	access	any	object	in	the	scene	while	these	functions	are
running.

Double	Buffering

While	 a	 simulation	 is	 running,	 PhysX	 supports	 read	 and	 write	 access	 to
objects	 in	 the	 scene	 (with	 some	 exceptions,	 see	 further	 below).	 This
includes	adding/removing	them	to/from	a	scene.

From	 the	 user	 perspective,	 API	 changes	 are	 reflected	 immediately.	 For
example,	 if	 the	 velocity	 of	 a	 rigid	 body	 is	 set	 and	 then	 queried,	 the	 new
velocity	 will	 be	 returned.	 Similarly,	 if	 an	 object	 is	 created	 while	 the
simulation	 is	 running,	 it	 can	 be	 accessed/modified	 as	 any	 other	 object.
However,	 these	 changes	 are	 buffered	 so	 that	 the	 simulation	 code	 sees	 the
object	 state	 as	 it	was	when	PxScene::simulate()	 was	 called.	 For	 instance,
changes	 to	 the	 filter	data	of	 an	object	while	 the	 simulation	 is	 running	are
ignored	for	collision	pair	generation	of	the	running	step,	and	will	only	affect
for	the	next	simulation	step.

When	PxScene::fetchResults()	 is	called,	any	buffered	changes	are	 flushed:
changes	made	by	 the	 simulation	 are	 reflected	 in	API	view	of	 the	objects,
and	API	changes	are	made	visible	to	the	simulation	code	for	the	next	step.
User	changes	take	precedence:	for	example,	a	user	change	to	the	position	of
an	object	while	the	simulation	is	running	will	overwrite	the	position	which
resulted	from	the	simulation.

The	 delayed	 application	 of	 updates	 does	 not	 affect	 scene	 queries,	 which
always	take	into	account	the	latest	changes.

Events	involving	removed	objects

Deleting	objects	or	removing	them	from	the	scene	while	the	simulation	is	in
process	will	affect	the	simulation	events	sent	out	at	PxScene::fetchResults().
The	behavior	is	as	follows:

PxSimulationEventCallback::onWake(),	::onSleep()	events	will	not	get
fired	 if	 an	 object	 is	 involved	 which	 got	 deleted/removed	 during	 the

running	simulation.
PxSimulationEventCallback::onContact(),	 ::onTrigger()	 events	 will
get	fired	if	an	object	is	involved	which	got	deleted/removed	during	the
running	 simulation.	 The	 deleted/removed	 object	 will	 be	 marked	 as
such	 (see	 PxContactPairHeaderFlag::eDELETED_ACTOR_0,
PxContactPairFlag::eDELETED_SHAPE_0,
PxTriggerPairFlag::eDELETED_SHAPE_TRIGGER).	Furthermore,	if
PxPairFlag::eNOTIFY_TOUCH_LOST,
::eNOTIFY_THRESHOLD_FORCE_LOST	 events	 were	 requested	 for
the	pair	containing	the	deleted/removed	object,	 then	these	events	will
be	created.

Support

Not	all	PhysX	objects	have	full	buffering	support.	Operations	which	can	not
run	 while	 the	 simulation	 is	 in	 process	 are	 mentioned	 in	 the	 API
documentation	 and	 the	 SDK	 aborts	 such	 operations	 and	 reports	 an	 error.
The	most	important	exceptions	are	as	follows:

Particles:	The	particle	bulk	data	can	not	be	read	or	modified	while	the
simulation	 is	 running,	 this	 includes	 operations	 like	 reading/writing
particle	positions/velocities,	creating/deleting	particles,	adding	forces,
etc.
Cloth:	The	only	allowed	double	buffered	operation	is	to	create/delete	a
cloth	and	add/remove	it	to/from	the	scene.

Memory	Considerations

The	buffers	to	store	the	object	changes	while	the	simulation	is	running	are
created	on	demand.	 If	memory	usage	concerns	outweigh	 the	advantage	of
reading/writing	objects	 in	parallel	with	simulation,	do	not	write	 to	objects
while	the	simulation	is	running.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Task	Management
PxTask	 is	 a	 subsystem	 for	 managing	 compute	 resources	 for	 PhysX	 and
APEX.	It	manages	CPU	and	GPU	compute	resources,	as	well	as	SPU	units
on	PlayStation3,	by	distributing	Tasks	to	a	user-implemented	dispatcher	and
resolving	Task	dependencies	such	that	Tasks	are	run	in	a	given	order.

Middleware	products	typically	do	not	want	to	create	CPU	threads	for	their
own	use.	This	 is	 especially	 true	 on	 consoles	where	 execution	 threads	 can
have	significant	overhead.	In	the	PxTask	model,	the	computational	work	is
broken	 into	 jobs	 that	 are	 submitted	 to	 the	 game's	 thread	 pool	 as	 they
become	ready	to	run.

The	following	classes	comprise	the	PxTask	CPU	resource	management.

TaskManager

A	 TaskManager	 manages	 inter-task	 dependencies	 and	 dispatches	 ready
tasks	 to	 their	 respective	 dispatcher.	 There	 is	 a	 dispatcher	 for	 CPU	 tasks,
GPU	tasks,	and	SPU	tasks	assigned	to	the	TaskManager.

TaskManagers	 are	 owned	 and	 created	 by	 the	 SDK.	 Each	 PxScene	 will
allocate	 its	 own	 TaskManager	 instance	 which	 users	 can	 configure	 with
dispatchers	 through	 either	 the	 PxSceneDesc	 or	 directly	 through	 the
TaskManager	interface.

CpuDispatcher

The	CpuDispatcher	 is	 an	 abstract	 class	 the	SDK	uses	 for	 interfacing	with
the	 application's	 thread	 pool.	 Typically,	 there	 will	 be	 one	 single
CpuDispatcher	 for	 the	 entire	 application,	 since	 there	 is	 rarely	 a	 need	 for
more	 than	 one	 thread	 pool.	 A	 CpuDispatcher	 instance	may	 be	 shared	 by
more	than	one	TaskManager,	for	example	if	multiple	scenes	are	being	used.

PxTask	 includes	 a	 default	 CpuDispatcher	 implementation,	 but	 we	 prefer
applications	 to	 implement	 this	 class	 themselves	 so	PhysX	and	APEX	can
efficiently	share	CPU	resources	with	the	application.

Note: 	The	TaskManager	will	call	CpuDispatcher::submitTask()	from
either	the	context	of	API	calls	(aka:	scene::simulate())	or	from	other
running	tasks,	so	the	function	must	be	thread-safe.

An	 implemention	 of	 the	 CpuDispatcher	 interface	must	 call	 the	 following
two	methods	on	each	submitted	task	for	it	to	be	run	correctly:

baseTask->run();								//	optionally	call	runProfiled()	to	wrap	with	PVD	profiling	events

baseTask->release();

The	 PxExtensions	 library	 has	 default	 implementations	 for	 all	 dispatcher
types,	 the	 following	 code	 snippets	 are	 taken	 from	 SampleParticles	 and
SampleBase	and	show	how	the	default	dispatchers	are	created.	mNbThreads
which	 is	 passed	 to	 PxDefaultCpuDispatcherCreate	 defines	 how	 many
worker	threads	the	CPU	dispatcher	will	have.

Best	performance	 is	usually	achieved	 if	 the	number	of	 threads	 is	 equal	 to
the	available	hardware	threads	of	the	platform	you	are	running	on:

				PxSceneDesc	sceneDesc(mPhysics->getTolerancesScale());

				[...]

				//	create	CPU	dispatcher	which	mNbThreads	worker	threads

				mCpuDispatcher	=	PxDefaultCpuDispatcherCreate(mNbThreads);

				if(!mCpuDispatcher)

								fatalError("PxDefaultCpuDispatcherCreate	failed!");

				sceneDesc.cpuDispatcher	=	mCpuDispatcher;

#ifdef	PX_WINDOWS

				//	create	GPU	dispatcher

				pxTask::CudaContextManagerDesc	cudaContextManagerDesc;

				mCudaContextManager	=	pxTask::createCudaContextManager(cudaContextManagerDesc

				sceneDesc.gpuDispatcher	=	mCudaContextManager->getGpuDispatcher

#endif

				[...]

				mScene	=	mPhysics->createScene(sceneDesc);

Note: 	CudaContextManagerDesc	support	appGUID	now.	It	only	works
on	release	build.	If	your	application	employs	PhysX	modules	that	use
CUDA	you	need	to	use	a	GUID	so	that	patches	for	new	architectures	can
be	released	for	your	game.	You	can	obtain	a	GUID	for	your	application
from	Nvidia.	The	application	should	log	the	failure	into	a	file	which	can
be	sent	to	NVIDIA	for	support.

CpuDispatcher	Implementation	Guidelines

After	the	scene's	TaskManager	has	found	a	ready-to-run	task	and	submitted
it	to	the	appropriate	dispatcher	it	is	up	to	the	dispatcher	implementation	to
decide	how	and	when	the	task	will	be	run.

Often	 in	game	scenarios	 the	 rigid	body	simulation	 is	 time	critical	 and	 the
goal	 is	 to	 reduce	 the	 latency	 from	 simulate()	 to	 the	 completion	 of
fetchResults().	 The	 lowest	 possible	 latency	 will	 be	 achieved	 when	 the
PhysX	tasks	have	exclusive	access	to	CPU	resources	during	the	update.	In
reality,	PhysX	will	have	to	share	compute	resources	with	other	game	tasks.
Below	 are	 some	 guidelines	 to	 help	 ensure	 a	 balance	 between	 throughput
and	latency	when	mixing	the	PhysX	update	with	other	work.

Avoid	interleaving	long	running	tasks	with	PhysX	tasks,	this	will	help
reduce	latency.
Avoid	assigning	worker	 threads	 to	 the	same	execution	core	as	higher
priority	threads.	If	a	PhysX	task	is	context	switched	during	execution
the	rest	of	the	rigid	body	pipeline	may	be	stalled,	increasing	latency.
PhysX	occasionally	submits	tasks	and	then	immediately	waits	for	them
to	 complete,	 because	 of	 this,	 executing	 tasks	 in	 LIFO	 (stack)	 order
may	perform	better	than	FIFO	(queue)	order.
PhysX	is	not	a	perfectly	parallel	SDK,	so	interleaving	small	to	medium
granularity	tasks	will	generally	result	in	higher	overall	throughput.
If	your	thread	pool	has	per-thread	job-queues	then	queuing	tasks	on	the
thread	 they	 were	 submitted	 may	 result	 in	 more	 optimal	 CPU	 cache
coherence,	however	this	is	not	required.

For	more	details	see	the	default	CpuDispatcher	implementation	that	comes
as	part	of	the	PxExtensions	package.	It	uses	worker	threads	that	each	have
their	own	task	queue	and	steal	tasks	from	the	back	of	other	worker's	queues
(LIFO	order)	to	improve	workload	distribution.

BaseTask

BaseTask	is	the	abstract	base	class	for	all	PxTask	task	types.	All	task	run()
functions	will	be	executed	on	application	threads,	so	they	need	to	be	careful
with	their	stack	usage,	use	a	little	stack	as	possible,	and	they	should	never
block	for	any	reason.

Task

The	Task	 class	 is	 the	 standard	 task	 type.	 Tasks	must	 be	 submitted	 to	 the
TaskManager	each	simulation	step	for	 them	to	be	executed.	Tasks	may	be
named	at	submission	time,	this	allows	them	to	be	discoverable.	Tasks	will
be	 given	 a	 reference	 count	 of	 1	 when	 they	 are	 submitted,	 and	 the
TaskManager::startSimulation()	function	decrements	the	reference	count	of
all	 tasks	 and	 dispatches	 all	 Tasks	 whose	 reference	 count	 reaches	 zero.
Before	 TaskManager::startSimulation()	 is	 called,	 Tasks	 can	 set
dependencies	 on	 each	 other	 to	 control	 the	 order	 in	 which	 they	 are
dispatched.	Once	 simulation	 has	 started,	 it	 is	 still	 possible	 to	 submit	 new
tasks	 and	 add	dependencies,	 but	 it	 is	 up	 to	 the	programmer	 to	 avoid	 race
hazards.	 You	 cannot	 add	 dependencies	 to	 tasks	 that	 have	 already	 been
dispatched,	 and	 newly	 submitted	 Tasks	 must	 have	 their	 reference	 count
decremented	before	that	Task	will	be	allowed	to	execute.

Synchronization	 points	 can	 also	 be	 defined	 using	 Task	 names.	 The
TaskManager	will	assign	the	name	a	TaskID	with	no	Task	implementation.
When	all	of	the	named	TaskID's	dependencies	are	met,	it	will	decrement	the
reference	count	of	all	Tasks	with	that	name.

APEX	 uses	 the	 Task	 class	 almost	 exclusively	 to	manage	 CPU	 resources.
The	ApexScene	defines	a	number	of	named	Tasks	that	the	modules	use	to
schedule	 their	 own	 Tasks	 (ex:	 start	 after	 LOD	 calculations	 are	 complete,
finish	before	the	PhysX	scene	is	stepped).

LightCpuTask

LightCpuTask	 is	another	subclass	of	BaseTask	 that	 is	explicitly	scheduled
by	the	programmer.	LightCpuTasks	have	a	reference	count	of	1	when	they
are	initialized,	so	their	reference	count	must	be	decremented	before	they	are
dispatched.	 LightCpuTasks	 increment	 their	 continuation	 task	 reference
count	when	 they	 are	 initialized,	 and	 decrement	 the	 reference	 count	when
they	are	released	(after	completing	their	run()	function)

PhysX	 3.0	 uses	 LightCpuTasks	 almost	 exclusively	 to	 manage	 CPU
resources.	For	example,	each	stage	of	the	simulation	update	may	consist	of
multiple	parallel	 tasks,	when	each	of	 these	 tasks	has	 finished	execution	 it
will	 decrement	 the	 reference	 count	 on	 the	 next	 task	 in	 the	 update	 chain.
This	will	then	be	automatically	dispatched	for	execution	when	its	reference
count	reaches	zero.

Note: 	Even	when	using	LightCpuTasks	exclusively	to	manage	CPU
resources,	the	TaskManager	startSimulation()	and	stopSimulation()	calls
must	be	made	each	simulation	step	to	keep	the	GpuDispatcher
synchronized.

The	following	code	snippets	show	how	the	crabs'	A.I.	in	SampleSubmarine
is	 run	 as	 a	CPU	Task.	By	 doing	 so	 the	Crab	A.I.	 is	 run	 as	 a	 background
Task	in	parallel	with	the	PhysX	simulation	update.

For	 a	 CPU	 task	 that	 does	 not	 need	 handling	 of	 multiple	 continuations
LightCpuTask	can	be	subclassed.	A	LightCpuTask	subclass	requires	that	the
getName	and	a	run	method	be	defined:

class	Crab:	public	ClassType,	public	physx::pxtask::LightCpuTask,	

{

public:

				Crab(SampleSubmarine&	sample,	const	PxVec3&	crabPos,	RenderMaterial

				~Crab();

				[...]

				//	Implements	LightCpuTask

				virtual		const	char*				getName()	const	{	return	"Crab	AI	Task"

				virtual		void											run();

				[...]

}

After	 PxScene::simulate()	 has	 been	 called,	 and	 the	 simulation	 started,	 the
application	calls	removeReference()	on	each	Crab	task,	this	in	turn	causes	it
to	 be	 submitted	 to	 the	 CpuDispatcher	 for	 update.	 Note	 that	 it	 is	 also
possible	 to	 submit	 tasks	 to	 the	 dispatcher	 directly	 (without	 manipulating
reference	counts)	as	follows:

pxtask::LightCpuTask&	task	=	&mCrab;

mCpuDispatcher->submitTask(task);

Once	queued	for	execution	by	the	CpuDispatcher,	one	of	the	thread	pool's
worker	 threads	will	 eventually	call	 the	 task's	 run	method.	 In	 this	example
the	Crab	task	will	perform	raycasts	against	the	scene	and	update	its	internal
state	machine:

void	Crab::run()

{

				//	run	as	a	separate	task/thread

				scanForObstacles();

				updateState();

}

It	 is	 safe	 to	 perform	API	 read	 calls,	 such	 as	 scene	queries,	 from	multiple
threads	 while	 simulate()	 is	 running.	 However,	 care	 must	 be	 taken	 not	 to
overlap	 API	 read	 and	 write	 calls	 from	 multiple	 threads.	 In	 this	 case	 the
SDK	 will	 issue	 an	 error,	 see	 Data	 Access	 and	 Buffering	 for	 more
information.

An	example	for	explicit	reference	count	modification	and	task	dependency
setup:

//	assume	all	tasks	have	a	refcount	of	1	and	are	submitted	to	the	task	manager

//	3	task	chains	a0-a2,	b0-b2,	c0-c2

//	b0	shall	start	after	a1

//	the	a	and	c	chain	have	no	dependencies	and	shall	run	in	parallel

//

//	a0-a1-a2

//						\

//							b0-b1-b2

//	c0-c1-c2

//	setup	the	3	chains

for(PxU32	i	=	0;	i	<	2;	i++)

{

				a[i].setContinuation(&a[i+1]);

				b[i].setContinuation(&b[i+1]);

				c[i].setContinuation(&c[i+1]);

}

//	b0	shall	start	after	a1

b[0].startAfter(a[1].getTaskID());

//	setup	is	done,	now	start	all	task	by	decrementing	their	refcount	by	1

//	tasks	with	refcount	==	0	will	be	submitted	to	the	dispatcher	(a0	&	c0	will	start).

for(PxU32	i	=	0;	i	<	3;	i++)

{

				a[i].removeReference();

				b[i].removeReference();

				c[i].removeReference();

}

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

GPU	Resource	Management
PxTask	provides	both	a	CUDA	heap	manager	and	an	execution	scheduler.
To	use	the	execution	scheduler	(GpuDispatcher),	you	need	to	break	up	your
CUDA	pipeline	into	GpuTasks.	Each	GpuTask	can	be	one	of	three	flavors:
Host-to-Device	 copies,	 CUDA	 kernels,	 or	 Device-to-Host	 copies.	 The
execution	 scheduler	will	 submit	 your	 tasks	 to	 the	 device	 in	 an	 order	 that
optimizes	the	device	throughput.

The	following	classes	comprise	the	PxTask	GPU	resource	management.

GpuTasks

GpuTask	derives	from	Task	(not	BaseTask),	so	they	must	be	submitted	to	a
TaskManager	 for	 scheduling.	 GpuTasks	 are	 dispatched	 to	 the
TaskManager's	given	GpuDispatcher	when	they	are	ready	to	run,	and	have	a
specialized	launchInstance()	method	rather	than	run().

GpuTasks	 come	 in	 three	 flavors.	 They	 are	 HostToDevice,	 Kernel,	 and
DeviceToHost.	Each	GpuTask	must	declare	their	flavor	by	returning	a	valid
value	 from	 getTaskHint().	 The	 GpuDispatcher	 must	 know	 the	 type	 of
operations	 each	 task	will	 perform	 in	 order	 to	 optimally	 combine	work	 of
multiple	 tasks,	 for	 example	 the	 dispatcher	 should	 run	 all	 available
HostToDevice	 tasks	 before	 running	 all	Kernel	 tasks,	 and	 all	Kernel	 tasks
before	 running	 any	 DeviceToHost	 tasks.	 This	 provides	 maximal	 kernel
overlap	and	the	least	number	of	CUDA	flushes.

CudaContextManager

The	application	should	allocate	one	CudaContextManager	for	each	CUDA
context	 it	 wishes	 PhysX/APEX	 to	 use.	 In	 most	 typical	 scenarios,	 only	 a
single	CUDA	context	 is	required,	as	 the	user	only	has	one	GPU,	or	 in	the
cases	 where	 two	 CUDA	 capable	 GPUs	 are	 present,	 only	 one	 is	 used	 for
game	physics.

If	 the	 application	 is	 using	 CUDA	 itself	 and	 wants	 to	 share	 its	 CUDA
context	with	PhysX,	it	can	provide	its	context	to	the	CudaContextManager
constructor.	 Otherwise	 the	 CudaContextManager	 will	 allocate	 its	 own
context.

Note: 	If	the	application	allocates	its	own	CUDA	context	and	gives	it	to	a
CudaContextManager,	the	context	must	be	detached	from	any	threads
when	the	CudaContextManager	takes	ownership.

Each	 CudaContextManager	 provides	 a	 heap	 for	 managing	 memory
allocated	within	the	CUDA	context	(both	device	and	host	memory),	and	a
GpuDispatcher	instance	for	scheduling	CUDA	work	on	the	device	managed
by	 the	context.	A	scene's	TaskManager	GpuDispatcher	pointer	determines
the	CUDA	context	used	by	that	scene.

The	CudaContextManager	 has	 ownership	of	 the	CUDA	context	 until	 it	 is
released.	 Any	 code	 which	 wishes	 to	 use	 CUDA	 APIs	 must	 acquire	 the
context	from	the	CudaContextManager	for	 the	duration	of	 the	CUDA	API
calls.

The	 CudaContextManager	 also	 provides	 functions	 which	 perform
Graphics/CUDA	Interop	mappings	 in	a	version	safe	manner.	The	 intent	 is
that	 application	 code	 can	 call	 these	 functions	 without	 needing	 to	 include
CUDA	headers.

Note: 	After	allocating	a	CudaContextManager,	it	is	required	that	you

check	the	return	value	of	contextIsValid()	and	to	discard	the	instance	if	it
returns	false.	The	CUDA	context	will	not	be	used	at	all	if	this	method
fails.	At	runtime,	the	application	should	also	poll	the	return	of
GpuDispatcher::failureDetected().	If	it	returns	True,	the	CUDA	context
has	encountered	a	non-recoverable	error	and	no	further	CUDA	work	is
possible.

GpuDispatcher

Every	 CudaContextManager	 instance	 creates	 and	 owns	 a	 GpuDispatcher
instance.	The	GpuDispatcher	is	responsible	for	scheduling	GpuTasks	for	the
given	context	in	the	most	efficient	means	possible.

On	 SM	 architectures	 1.0	 through	 1.3,	 this	 mostly	means	 overlapping	 the
kernels	 in	one	 task	with	copies	 (HostToDevice	or	DeviceToHost)	 in	other
tasks.	On	SM	2.0	 and	 higher	 architectures,	 the	GpuDispatcher	will	 try	 to
maximize	the	kernel	overlap	(out-of-order	completion).

These	types	of	overlap	optimizations	are	only	possible	when	more	than	one
GpuTask	 is	 ready	 to	 run	 at	 the	 same	 time,	 so	 if	 parts	 of	 your	 CUDA
pipeline	 are	 parallelizable	 with	 itself,	 you	 should	 break	 the	 work	 into
multiple	GpuTasks	and	set	dependencies	accordingly.

Dependencies	between	GpuTasks	determines	the	order	they	are	dispatched
through	 the	 GpuDispatcher,	 which	 enforces	 the	 order	 those	 tasks	 are
submitted	 to	 CUDA.	 Note	 however	 that	 independent	 tasks	 may	 be
rearranged	for	maximum	efficiency	(see	GpuTasks	section	for	details).

If	 you	 have	 a	 task	 which	 cannot	 start	 until	 actual	 CUDA	 results	 are
available	 (this	 almost	 always	 implies	 a	DeviceToHost	 copy),	 then	 one	 of
your	 GpuTasks	 must	 call	 the	 GpuDispatcher::addCompletionPrereq(
BaseTask&)	 method	 to	 register	 a	CUDA	 completion	 dependency	 on	 the
given	 task.	 The	 GpuDispatcher	 will	 immediately	 increment	 the	 reference
count	of	 the	given	Task	and	then	decrement	 it	again	when	all	of	 the	work
submitted	up	 to	CUDA	at	 the	 time	addCompletionPrereq()	was	called	has
been	completed.

Note: 	Since	addCompletionPrereq()	takes	a	BaseTask	reference,	CUDA
completion	tasks	may	be	GpuTasks,	LightCpuTasks	or	normal	Tasks.

Warning: 	CUDA	completion	dependencies	are	volatile	in	that	they	are

not	created	until	your	GpuTask	pipeline	is	essentially	finished	running.	In
order	to	prevent	your	completion	task	from	starting	before	the	CUDA
completion	dependency	can	be	added	to	its	reference	count,	it	is
recommended	practice	to	add	normal	startAfter	dependency	on	the
GpuTask	that	will	set	the	CUDA	completion	dependency.

The	 GpuTask	 "run"	 function,	 launchInstance()	 takes	 two	 parameters,	 a
CUDA	 stream	 and	 a	 kernel	 index.	 launchInstance()	will	 always	 be	 called
with	the	same	CUDA	stream	while	the	kernel	index	will	increment	from	0
until	the	GpuTask	is	finished.	Returning	false	from	launchInstance	tells	the
GpuDispatcher	 that	 your	 GpuTask	 is	 done	 launching	 CUDA	 work	 and
should	be	released.

The	 reason	 for	 the	 iterative	 kernel	 launching	 is	 that	 optimal	 kernel
scheduling	 on	 SM	 2.0	 GPUs	 requires	 kernels	 in	 different	 streams	 to	 be
launch	interleaved	to	minimize	the	blocking	that	occurs	when	kernels	have
to	wait	for	their	own	stream	to	become	idle.

Note: 	HostToDevice	and	DeviceToHost	GpuTasks	can	ignore	the
kernelIndex	and	simply	perform	all	of	their	copies,	then	return	false.
There	is	no	benefit	to	interleaving	copies	in	streams.

GpuTasks	 have	 three	 flavors	 to	 avoid	 serious	 performance	 pitfalls,
especially	 when	 multiple	 pipelines	 are	 sharing	 a	 single	 CUDA	 context.
When	GpuTasks	are	dispatched	 they	are	binned	by	 the	GpuDispatcher	by
flavor	and	the	dispatcher	itself	runs	in	a	three-phase	state	machine:	HtoD	->
Kernel	->	DtoH	->	HtoD,	etc.	At	each	phase,	the	GpuDispatcher	interleaves
launchInstance()	calls	to	all	running	GpuTasks	in	that	phase	until	there	are
no	more	tasks	remaining.

Note: 	All	of	the	work	submitted	to	CUDA	in	one	round	trip	of	the	state
machine	is	referred	to	as	a	GpuTaskBatch.	It	should	roughly	correlate	to	a
single	submission	of	work	to	the	GPU,	unless	you	submitted	more	work
than	could	fit	and	caused	an	implicit	flush.

Note: 	The	GpuDispatcher	has	a	utility	kernel	to	perform	memory	copies
as	part	of	the	Kernel	GpuTasks.	See	GpuDispatcher::launchCopyKernel()

When	 a	 GpuTask's	 launchInstance()	 function	 returns	 false,	 the
GpuDispatcher	 immediately	 releases	 the	 task	 and	 allows	 its	 dependency
resolutions	 to	 schedule	new	GpuTasks	of	 the	 same	 flavor	 so	 those	can	be
dispatched	 in	 the	 same	 pass	 through	 the	 state	 machine	 (if	 the	 newly
dispatched	GpuTasks	do	not	match	 the	current	GpuDispatcher	phase,	 they
are	binned).	In	short,	three	kernel	GpuTasks	that	each	launch	a	single	kernel
and	have	linear	dependencies	will	be	executed	in	exactly	the	same	way	as
one	kernel	GpuTask	which	launches	three	kernels	(one	per	launchInstance()
call).

Note: 	Now	that	the	concept	of	the	GpuDispatcher	state	machine	has
been	introduced,	it	is	worth	noting	that	CUDA	completions	are	queued
within	the	GpuDispatcher.	The	completion	tasks'	reference	counts	are
incremented	immediately,	but	the	CUDA	work	is	not	flushed	until	the
GpuDispather	transitions	from	the	DtoH	to	HtoD	phase.	This	is	an
optimization	tailored	for	multiple	pipeline	situations	where	we	want	to
minimize	the	number	of	CUDA	flushes	(aka,	maximize	the	amortization).

To	 make	 GpuTask	 scheduling	 flexible,	 the	 GpuDispatcher	 manages	 the
assignment	of	CUDA	streams	to	each	task.	It	does	this	by	managing	a	pool
of	free	CUDA	streams,	and	a	few	extra	flags	and	fields	on	each	GpuTask.
The	logic	works	like	this:

1.	If	a	GpuTask	has	no	GpuTask	predicate	dependencies	(essentially	means
it	 is	 the	first	GpuTask	in	 the	pipeline),	 it	 is	assigned	a	new	CUDA	stream
from	the	free	pool.	2.	When	a	GpuTask	completes	 launching	CUDA	work
and	is	released,	it	passes	its	CUDA	stream	to	its	first	dependent	GpuTask.	3.
If	 a	GpuTask	has	more	 than	one	dependent	 tasks,	 the	 remaining	 tasks	are
given	new	CUDA	streams	(from	the	free	pool)	and	have	a	flag	set	on	them
that	 informs	 the	GpuDispatcher	 it	must	 perform	 a	WFI	 (wait-for-idle)	 on
the	GPU	before	that	task's	CUDA	work	is	allowed	to	run.	4.	If	a	GpuTask

has	more	than	one	GpuTask	predicate	dependency	(a	joining	of	two	CUDA
streams),	it	takes	the	CUDA	stream	of	the	first	predicate	and	is	marked	as
requiring	a	WFI.

Note: 	The	GpuDispatcher	implements	the	WFI	by	issuing	a	non-
blocking	cuEventRecord	in	stream	0.	For	all	architectures	up	to	SM2.0,
this	causes	all	previously	launched	CUDA	work	to	complete	before	any
later	submitted	work	to	start	-	a	sync	point.

The	GpuDispatcher	does	not	 release	CUDA	streams	back	 to	 the	 free	pool
until	 it	 knows	 that	 all	 of	 the	 TaskManagers	 that	 are	 using	 the
GpuDispatcher	 have	 finished	 submitting	 GpuTasks.	 This	 is	 the	 primary
reason	 the	 TaskManager	 calls	 the	 startSimulation()	 and	 stopSimulation()
methods	of	the	GpuDispatcher	(the	other	is	to	initialize	profiling),	and	also
why	 the	 TaskManager	 itself	 needs	 to	 be	 notified	 of	 simulation	 start	 and
stop,	even	if	LightCpuTasks	are	being	used	for	all	non-Gpu	work.

BlockingWait

CUDA	 completion	 notifications	 are	 handled	 by	 a	 special	 BlockingWait
thread	 of	 the	GpuDispatcher.	 The	main	GpuDispatcher	 thread	 queues	 the
completion	 task	 references	 and	 the	 CUDA	EventRecord	 they	 are	waiting
for,	 and	 the	BlockingWait	 thread	waits	 for	 each	of	 them	 in	 turn	 and	 then
decrements	 the	 reference	 count	 of	 the	 provided	 task.	 The	 BlockingWait
thread	is	either	in	a	blocking	wait	for	completion	tasks	or	in	a	blocking	wait
for	a	CUDA	EventRecord.

Note: 	Profiling	events	for	the	blocking	wait	thread	are	prefixed	with
GDB,	while	profiling	events	for	the	GpuDispatcher	dispatch	thread	are
prefixed	with	GD.

Copy	Engine	Kernel

The	GpuDispatcher	has	a	utility	kernel	that	can	execute	an	arbitrary	number
of	memory	copies	or	memory	sets	in	parallel	on	the	GPU	itself.	This	is	the
recommended	 method	 for	 performing	 all	 host-to-device,	 device-to-host,
device-to-device	copies.

1.	 By	using	 the	utility	kernel	 from	a	Kernel	 flavor	GpuTask,	you	avoid
the	need	for	creating	DeviceToHost	or	HostToDevice	flavor	GpuTasks.

2.	 By	batching	together	many	copies	into	a	single	kernel	launch,	you	save
driver	overhead	and	save	space	inside	your	push	buffer.

3.	 By	 only	 using	 Kernel	 flavored	 GpuTasks,	 there	 is	 a	 much	 greater
opportunity	to	overlap	both	copies	and	kernels	on	SM2.0	architectures
and	greater.

4.	 By	using	a	copy	kernel,	the	copies	will	show	up	in	your	profile.

See	GpuDispatcher::launchCopyKernel()	for	the	details	on	using	the	utility
kernel.	The	primary	point	to	remember	is	that	the	copy	descriptors	are	read
from	 host	memory	 if	 you	 perform	more	 than	 one	 copy	 at	 a	 time,	 so	 the
descriptors	must	be	allocated	from	page	locked	memory.

CUDA	Profiling

PxTask,	more	specifically	the	GpuDispatcher,	supports	profiling	at	the	CTA
level.	This	requires	a	number	of	preparation	steps:

1.	 Your	 application	must	 register	 kernel	 names	with	 the	GpuDispatcher
using	 the	 registerKernelNames()	 method.	 It	 returns	 an	 index	 to	 the
start	 of	 an	 ID	 range,	 each	 kernel	 should	 use	 this	 index	 as	 an	 offset
when	constructing	IDs	for	use	with	fillKernelEvent().

2.	 Each	 kernel	 must	 call	 KERNEL_START_EVENT(profileBuffer,
kernelID)	 and	 KERNEL_STOP_EVENT(profileBuffer,	 kernelID)	 at
the	appropriate	 times	 (start	 and	 stop	of	 the	kernel).	This	 requires	 the
inclusion	of	PsPAGpuEventSrc.h

3.	 At	run-time,	the	kernel	ID	and	current	profiling	buffer	must	be	passed
to	 each	 kernel	 (see	 GpuDispatcher::getCurrentProfileBuffer()).	 Note
that	the	profile	buffer	will	be	NULL	unless	you	are	actively	collecting
events.

The	application	needs	to	tune	a	couple	of	parameters	for	their	needs,	both	in
PsPAGPUEventSrc.h.

ENABLE_CTA_PROFILING	 -	 this	flag	 toggles	CTA	level	event	collection
globally.	Turning	it	off	removes	the	code	(and	probably	register)	overhead
in	 each	 kernel,	 and	 disables	 the	 allocation	 of	 profile	 buffers	 and	 their
copying	overhead.

NUM_CTAS_PER_PROFILE_BUFFER	-	needs	to	be	larger	than	the	count
of	 CTAs	 launched	 in	 your	 largest	 batch	 of	 kernel	 launches.	 The
BlockingWait	 thread	will	 issue	a	warning	if	 it	 finds	 that	CTA	events	were
lost	because	the	buffer	was	too	small.

NUM_CTA_PROFILE_BUFFERS	-	the	number	of	profile	buffers	allocated.
This	 should	be	 the	number	of	GpuTaskBatches	you	 intend	 to	 launch	each
simulation	step.	If	it	is	too	small,	later	GpuTaskBatches	will	not	have	CTA

level	profiling.

Warning: 	After	changing	ENABLE_CTA_PROFILING	or
NUM_CTAS_PER_PROFILE_BUFFER,	you	must	rebuild	all	of	your
CUDA	source	files.

CTA	profiling	works	on	a	GpuTaskBatch	basis,	and	is	only	active	when	the
GpuDispatcher	notices	an	event	collector	is	attached	and	active.	At	the	start
of	 each	 batch	 the	GpuDispatcher	 allocates	 an	 idle	 profile	 buffer,	 issues	 a
small	memset	kernel	to	clear	the	8	word	header	of	the	buffer,	then	issues	a
saturation	kernel	in	order	to	record	the	clock	on	each	SM.	These	clocks	are
used	by	the	event	viewer	to	line	up	the	SM	events,	though	this	only	seems
to	work	well	 on	 SM	 2.0.	 The	GpuDispatcher	 then	 executes	GpuTasks	 as
normal	 until	 the	 state	 machine	 finishes	 all	 three	 phases	 (HtoD,	 Kernel,
DtoH).	 At	 the	 end	 the	 GpuDispatcher	 issues	 another	 Saturate	 kernel	 to
delineate	the	end	of	all	of	the	DtoH	copy	times,	then	issues	a	DtoH	copy	for
the	 profile	 buffer	 itself,	 then	 finally	 issues	 a	 blocking	 cuEventRecord	 to
flush	everything	to	the	GPU	for	execution.

The	 profile	 buffer	 ID	 is	 sent	 to	 the	 BlockingWait	 thread	 along	 with	 the
blocking	EventRecord,	and	once	the	event	has	completed	the	BlockingWait
thread	is	responsible	for	parsing	the	CTA	events	and	emitting	profiling	data
to	the	collector.

Note	that	much	effort	was	devoted	to	minimize	the	performance	impact	of
collecting	all	this	data,	but	some	penalties	are	unavoidable.	Also,	the	copy
back	 to	 the	host	 can	be	 substantial	 depending	on	 the	value	you	chose	 for
NUM_CTAS_PER_PROFILE_BUFFER.

Note: 	The	CTA	based	profiling	requires	global	memory	atomics,	and
thus	SM	architecture	1.1	or	above.	SM	1.0	cards	will	see	the
GpuTaskBatch	bar,	which	is	measured	via	non-blocking	cuEventRecords,
but	they	will	not	see	any	CTAs.

Note: 	By	default,	the	BlockingWait	thread	will	parse	the	CTA	events	in
the	profile	buffer	and	attempt	to	piece	together	the	run-times	of	each
kernel.	This	is	done	with	a	simplistic	heuristic	and	does	not	work	very
well	with	short	kernels	and	SM	clock	skews.	It	seems	to	work	best	with
SM	2.0	devices.	By	changing	EMIT_CTA_EVENTS	to	1,	near	the	top	of
BlockingWait.cpp,	the	BlockingWait	thread	will	instead	emit	one	profile
bar	for	each	CTA,	giving	you	a	more	truthfull	picture	of	how	the	SMs
were	used	by	each	kernel.	You	will	still	need	to	account	for	the	SM	clock
skew	in	your	analysis.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Scene	Queries
PhysX	 provides	methods	 in	 PxScene	 to	 perform	 collision	 queries	 against
the	actors	 in	 the	scene.	The	queries	come	 in	 three	 types:	 raycasts,	 sweeps
and	 overlaps.	 Moreover,	 each	 query	 type	 has	 several	 variants.	 The	 API
supports	 batching	 of	 queries	 via	 the	PxBatchQuery	 interface,	 which	may
provide	 significant	 speedups	 for	 some	 platforms	 and	 scenarios.	 In
particular,	on	PS3	only	batched	queries	are	SPU-accelerated.

Raycast	queries

A	 raycast	 intersects	 a	 user-defined	 ray	 with	 the	 whole	 scene.	 PhysX
supports	three	types	of	raycasts.

raycastAny
raycastSingle
raycastMultiple

raycastAny	 returns	a	single	boolean	result.	 It	 is	optimized	for	cases	where
the	hit	shape	and	impact	point	are	not	important.	A	typical	use	case	would
be	AI	line-of-sight	queries.

The	simplest	raycastAny	call	looks	like	this:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxSceneQueryHit	hit;																	//	[out]	Raycast	results

//	Raycast	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	boolean	'status'

bool	status	=	scene->raycastAny(origin,	unitDir,	maxDistance,	hit);

raycastSingle	 returns	 a	 single	 result:	 the	 closest	 touched	 shape	 along	 the
ray,	 if	 any,	 along	with	 the	 exact	 hit	 information.	 This	might	 be	 used	 for
simple	bullets,	for	example.

The	simplest	raycastSingle	call	looks	like	this:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastHit	hit;																				//	[out]	Raycast	results

//	[in]	Define	what	parts	of	PxRaycastHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

//	Raycast	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	closest	hit,	stored	in	the	'hit'	structure

bool	status	=	scene->raycastSingle(origin,	unitDir,	maxDistance,	outputFlags

raycastMultiple	 finds	all	 the	objects	touched	by	the	ray,	along	with	all	 the
corresponding	 hits.	 For	 example	 this	 could	 be	 used	 for	 armor-piercing
bullets.

The	simplest	raycastMultiple	call	looks	like	this:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

//	[in]	Define	what	parts	of	PxRaycastHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

bool	blockingHit;																				//	[out]	Tells	whether	hitBuffer	contains	a	blocking	hit

const	PxU32	bufferSize	=	256;								//	[in]	size	of	'hitBuffer'

PxRaycastHit	hitBuffer[bufferSize];		//	[out]	Results	will	be	stored	here

//	Raycast	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	are	all	hits	along	the	ray,	stored	in	'hitBuffer'

PxI32	nbHits	=	scene->raycastMultiple(origin,	unitDir,	maxDistance

																																						hitBuffer,	bufferSize,	blockingHit

Notes:

Solid	objects	(sphere,	capsule,	box,	convex)	are	defined	as	closed	(i.e.
they	include	their	boundaries.)
A	plane	is	a	closed	half-space
Heightfields	are	also	closed	and	solid

When	raycasting	against	solid	objects,	the	rays	include	their	endpoints.	Any
intersection	between	a	ray	and	a	solid	object	results	in	a	hit	report.

For	solid	objects	(sphere,	capsule,	box,	convex)	and	heightfields	PhysX	will
report	a	hit:

1.	 if	the	start	point	or	the	end	point	is	inside	a	solid	object	or	heightfield.
2.	 if	the	start	point	or	the	end	point	is	on	the	surface	of	a	solid	object	or

heightfield.

In	the	case	that	the	start	point	is	inside	a	solid	object	or	heightfield:

1.	 the	reported	hit	distance	is	set	to	zero.
2.	 the	hit	normal	is	in	the	opposite	direction	to	the	ray.
3.	 the	hit	impact	position	is	the	start	point	of	the	ray.

For	 Planes:	 If	 the	 start	 point	 is	 behind	 the	 plane's	 surface,	 no	 hit	will	 be
reported	even	in	the	case	that	the	ray	intersects	the	plane.	If	the	start	point	is
on	the	plane,	a	hit	with	zero	distance	will	be	reported.

There	 are	 two	 kinds	 of	 meshes:	 double-sided	 meshes	 and	 single-sided
meshes.	Backface	 culling	 is	 enabled	 for	 single-sided	meshes,	 disabled	 for
double-sided	 ones.	 A	 double-sided	 mesh	 is	 defined	 with	 the
PxMeshGeometryFlag::eDOUBLE_SIDED	flag.

If	 the	 start	 point	or	 end	point	 is	 on	 the	 surface	 for	both	kinds	of	meshes,
PhysX	will	report	a	hit.	If	the	start	point	is	on	the	back	of	a	mesh	triangle,
and	the	ray	intersects	the	triangle,	PhysX	will:

1.	 report	a	hit	for	the	double-sided	mesh.
2.	 report	no	hit	for	the	single-sided	mesh.

To	summarize,	here	are	the	tables	for	the	definition	of	raycast	behavior.

Solid	Shape	&	Heightfield

	 Start	Pt	Inside Start	Pt	On	the
Surface

Start	Pt
Outside

End	Pt	Inside HIT HIT HIT
End	Pt	On	the

Surface HIT HIT HIT
End	Pt	Outside HIT HIT MISS

Plane

	 Start	Pt	Behind Start	Pt	On	the
Plane

Start	Pt	in
Front

End	Pt	Behind MISS HIT HIT
End	Pt	On	the
Plane MISS HIT HIT

End	Pt	in	Front MISS HIT MISS

Double-Sided	Mesh

	 Start	Pt	Behind
Triangle

Start	Pt	On	the
Triangle

Start	Pt	in
Front	of
Triangle

End	Pt	Behind
Triangle MISS MISS HIT

End	Pt	On	the
Triangle HIT MISS HIT

End	Pt	in	Front
of	Triangle HIT MISS MISS

Single-Sided	Mesh

	 Start	Pt	Behind
Triangle

Start	Pt	On	the
Triangle

Start	Pt	in
Front	of
Triangle

End	Pt	Behind
Triangle MISS MISS HIT

End	Pt	On	the
Triangle MISS MISS HIT

End	Pt	in	Front
of	Triangle

MISS MISS MISS

Sweep	Queries

A	sweep	query	sweeps	a	shape	from	a	given	point	along	a	given	direction,
and	 collisions	 with	 scene	 objects	 are	 reported.	 As	 with	 raycasts,	 PhysX
supports	 three	 kinds	 of	 sweep	 tests	 with	 the	 same	 distinctions	 and
limitations:

sweepAny
sweepSingle
sweepMultiple

Each	 kind	 of	 sweep	 test	 has	 two	 versions:	 geometry	 sweeping	 and
compound	geometry	sweeping.	The	compound	version	sweeps	all	specified
geometry	objects	through	space	and	finds	all	rigid	actors	that	get	hit	along
the	sweep.	Each	result	contains	data	as	specified	by	the	outputFlags	field.	A
typical	use	case	would	be	character	sweeping	queries.

The	 distance	 of	 sweep	 must	 be	 larger	 than	 0.	 It	 will	 be	 clamped	 to
PX_MAX_SWEEP_DISTANCE	which	is	defined	in	file	PxScene.h.

sweepAny	 is	 optimized	 for	 cases	 in	 which	 a	 simple	 boolean	 result	 is
enough.	All	that	matters	is	that	there	was	a	hit,	and	the	exact	impact	point
or	which	shape	has	been	touched	is	not	important.

The	simplest	sweepAny	call	looks	like	this:

PxScene*	scene;

PxGeometry	geometry	=	...;											//	[in]	Geometry	of	object	to	check	for	sweep

PxTransform	pose	=	...;														//	[in]	Pose	of	the	object

PxVec3	unitDir	=	...;																//	[in]	Normalized	sweep	direction

PxReal	maxDistance	=	...;												//	[in]	Sweep	max	distance

PxSweepHit	hit;																						//	[out]	Sweep	results

//	[in]	Define	what	parts	of	PxSweepHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

//	Sweep	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	boolean	'status',	return	True	if	an	hit	was	found,	vice	versa.

bool	status	=	scene->sweepAny(geometry,	pose,	unitDir,	maxDistance

sweepSingle	 returns	 a	 single	 result:	 the	 closest	 touched	 shape	 along	 the
sweep	direction,	if	any,	along	with	the	exact	hit	information.

The	simplest	sweepSingle	call	looks	like	this:

PxScene*	scene;

PxGeometry	geometry	=	...;											//	[in]	Geometry	of	object	to	check	for	sweep

PxTransform	pose	=	...;														//	[in]	Pose	of	the	object

PxVec3	unitDir	=	...;																//	[in]	Normalized	sweep	direction

PxReal	maxDistance	=	...;												//	[in]	Sweep	max	distance

PxSweepHit	hit;																						//	[out]	Sweep	results

//	[in]	Define	what	parts	of	PxSweepHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

//	Sweep	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	boolean	'status',	return	True	if	an	hit	was	found,	vice	versa.

bool	status	=	scene->sweepSingle(geometry,	pose,	unitDir,	maxDistance

sweepMultiple	 finds	 all	 the	 objects	 touched	 by	 the	 sweep	 volume,	 along
with	all	the	corresponding	hits.

The	simplest	sweepMultiple	call	looks	like	this:

PxScene*	scene;

PxGeometry	geometry	=	...;											//	[in]	Geometry	of	object	to	check	for	sweep

PxTransform	pose	=	...;														//	[in]	Pose	of	the	object

PxVec3	unitDir	=	...;																//	[in]	Normalized	sweep	direction

PxReal	maxDistance	=	...;												//	[in]	Sweep	max	distance

PxSweepHit	hit;																						//	[out]	Sweep	results

//	[in]	Define	what	parts	of	PxSweepHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

bool	blockingHit;																				//	[out]	Tells	whether	hitBuffer	contains	a	blocking	hit

const	PxU32	bufferSize	=	256;								//	[in]	size	of	'hitBuffer'

PxSweepHit	hitBuffer[bufferSize];				//	[out]	Results	will	be	stored	here

//	Sweep	against	all	static	&	dynamic	objects	(no	filtering)

//	The	return	value	is	the	number	of	hits	in	the	buffer,	or	-1	if	the	buffer	overflowed.

PxI32	nbHits	=	scene->sweepMultiple((geometry,	pose,	unitDir,	maxDistance

The	 currently	 supported	 input	 shapes	 are	 boxes,	 spheres,	 capsules	 and
convex.

Notes:

Solid	objects	(sphere,	capsule,	box,	convex)	are	defined	as	closed	(i.e.
they	include	their	boundaries.)
A	plane	is	a	closed	half-space
Triangle	Mesh	is	defined	as	thin	triangle	surface.
Heightfield	 is	 defined	 as	 thin	 triangle	 surface,	 the	 thickness	 of
heightfield	is	ignored	for	sweeping	test.
Sweeping	 volumes	 are	 defined	 as	 closed	 (i.e.	 they	 include	 their
boundaries.)

PhysX	does	not	use	tolerance	when	sweeping.	Instead,	users	can	add	their
own	tolerance	to	the	sweeping	volume	by	using	a	larger	sweeping	geometry
or	 longer	 sweeping	 distance	 before	 filling	 the	 query	 for	 PhysX.	 For
example,	 use	 a	 large	 tolerance	 to	 get	 more	 broad	 results,	 use	 a	 small
tolerance	to	get	more	accurate	results.

Sweeps	with	Initial	Intersection

By	default	PhysX	sweeps	return	an	undefined	result	if	the	initial	position	of
the	 swept	 volume	 intersects	 another	 shape.	 Setting	 the
PxSceneQueryFlag::eINITIAL_OVERLAP	 flag	 specifies	 that	 additional
tests	will	be	performned	to	ensure	a	defined	result	 in	 this	case.	When	this
flag	 is	 set	 and	 an	 initial	 overlap	 is	 found,	 the
PxSceneQueryFlag::eINITIAL_OVERLAP_KEEP	 flag	 determines	 whether
the	overlap	generates	a	hit	result	or	 is	 ignored.	If	a	hit	result	 is	generated,
the	distance	is	set	to	zero,	and	the	returned	normal	is	set	to	the	opposite	of
the	sweep	direction.	If	none	of	the	flags	are	set	the	behaviour	is	undefined.

There	is	a	slight	performance	hit	for	initial	overlap	checks.

Overlap	Queries

In	overlap	queries,	a	shape	is	collided	against	the	objects	in	the	scene,	and
any	touching	object	is	reported.	PhysX	only	supports	two	kinds	of	overlap
tests:

overlapAny
overlapMultiple

overlapAny	returns	a	single	boolean,	and	is	optimized	for	testing	whether	a
given	volume	of	space	is	empty	or	not.

The	simplest	overlapAny	call	looks	like	this:

PxScene*	scene;

PxGeometry	geometry	=	...;											//	[in]	Geometry	of	object	to	check	for	overlap

PxTransform	pose	=	...;														//	[in]	Pose	of	the	object

PxShape*	hit;																								//	[out]	Overlap	results

//	Overlap	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	boolean	'status',	return	True	if	an	overlap	hit	was	found,	vice	versa.

bool	status	=	scene->overlapAny(geometry,	pose,	hit);

overlapMultiple	returns	the	set	of	all	overlapping	objects.

The	simplest	overlapMultiple	call	looks	like	this:

PxScene*	scene;

PxGeometry	geometry	=	...;											//	[in]	Geometry	of	object	to	check	for	overlap

PxTransform	pose	=	...;														//	[in]	Pose	of	the	object

const	PxU32	bufferSize	=	256;								//	[in]	size	of	'hitBuffer'

PxShape*	hitBuffer[bufferSize];						//	[out]	Results	will	be	stored	here

//	Overlap	against	all	static	&	dynamic	objects	(no	filtering)

//	The	return	value	is	the	number	of	hits	in	the	buffer,	or	-1	if	the	buffer	overflowed.

PxI32	hitNum	=	scene->overlapMultiple(geometry,	pose,	hitBuffer,	bufferSize

There	is	no	"overlapSingle"	case	here	because	overlap	queries	do	not	have	a
given	direction,	and	 thus	we	cannot	define	a	"closest"	or	"first"	hit	 in	 this
case.

The	 currently	 supported	 input	 shapes	 are	 boxes,	 spheres,	 capsules	 and
convex.

Notes:

Solid	objects	(sphere,	capsule,	box,	convex)	are	defined	as	closed	(i.e.
they	include	their	boundaries.)
A	plane	is	a	closed	half-space
Triangle	Mesh	is	defined	as	thin	triangle	surface.
Heightfield	 is	 defined	 as	 extruded	 triangle	 surface	 with	 thickness.
Overlap	geometries	who	do	not	 intersect	with	heightfield	surface	but
are	within	the	extruded	space	also	report	a	overlap	hit.
Overlapping	volumes	are	defined	as	closed.

PhysX	 does	 not	 use	 tolerance	 when	 overlapping.	 Instead,	 users	 can	 add
their	own	tolerance	to	the	overlapping	volume	by	using	a	larger	overlapping
geometry	 before	 fill	 the	 query	 for	 PhysX.	 For	 example,	 use	 a	 large
tolerance	 to	 get	 more	 broad	 results,	 use	 a	 small	 tolerance	 to	 get	 more
accurate	results.

Filtering

There	 are	 several	ways	 to	 filter	 out	 undesired	 shapes	 from	 scene	 queries.
Each	scene	query	accepts	the	following	filtering-related	parameters:

a	 PxSceneQueryFilterData	 structure,	 containing	 both
PxSceneQueryFilterFlags	and	PxFilterData
an	optional	PxSceneQueryFilterCallback

The	 first	 level	 of	 filtering	 is	 given	 by	 the
PxSceneQueryFilterFlag::eSTATIC	 and
PxSceneQueryFilterFlag::eDYNAMIC	 flags.	 These	 flags	 control	 whether
the	query	takes	static	and/or	dynamic	shapes	into	account.	This	is	the	most
efficient	way	to	filter	out	all	static	shapes.	For	example	an	explosion	effect
which	 applies	 forces	within	 a	 region	 could	use	 the	overlapMultiple	query
with	a	sphere	shape,	and	the	PxSceneQueryFilterFlag::eDYNAMIC	flag	to
only	consider	dynamic	objects,	 since	 it	 is	useless	 to	apply	 forces	 to	 static
objects.

Returning	 to	 the	 initial	 raycast	 code	 snippets,	 a	 raycastAny	 call	 against
static	shapes	only	would	be	written	like	this:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxSceneQueryHit	hit;																	//	[out]	Raycast	results

//	[in]	Define	filter	for	static	objects	only

PxSceneQueryFilterData	filterData(PxSceneQueryFilterFlag::eSTATIC);

//	Raycast	against	static	objects	only

//	The	main	result	from	this	call	is	the	boolean	'status'

bool	status	=	scene->raycastAny(origin,	unitDir,	maxDistance,	hit,

In	case	of	triangle	meshes	it	is	possible	to	receive	multiple	hits	per	mesh.	To

enable	 triangle	 mesh	 multiple	 hits	 set
PxSceneQueryFilterFlag::eMESH_MULTIPLE	flag.	This	flag	can	be	set	in
the	scene	query	filter	data	and	can	be	also	set/cleared	in	pre-filter	shader.

The	 second	 level	 of	 filtering	 is	 controlled	 by	 the	PxFilterData,	 a	 128-bit
bitmask	used	in	a	built-in	filtering	equation.	Each	shape	has	a	bitmask,	set
using	PxShape::setQueryFilterData(),	and	the	query	also	has	a	bitmask.

The	query	data	 is	 used	differently	by	batched	 and	unbatched	queries	 (see
below	for	batched	queries.)	For	unbatcher	queries,	 the	 following	rules	are
applied:

If	the	query's	bitmask	is	all	zero,	the	shape	is	kept
Otherwise,	 if	 the	 bitwise-AND	 value	 of	 the	 query's	 bitmask	 and	 the
shape's	bitmask	is	zero,	the	shape	is	skipped

Or	in	other	words:

PxU32	keep	=	(query.word0	&	object.word0)	|	(query.word1	&	object.

The	hardcoded	 filtering	 equation	 avoids	 the	 function	 call	 overhead	of	 the
filtering	callback,	while	still	providing	reasonable	filtering	capabilities.	This
is	 similar	 to	 the	 "active	 groups"	 from	 previous	 versions	 of	 PhysX.	 For
example,	one	can	simply	use	the	first	word	of	filterData	(word0)	to	emulate
the	 behavior	 of	 previous	 PhysX	 versions.	 The	 active	 groups	 could	 be
defined	like	this:

enum	ActiveGroup

{

				GROUP1				=	(1<<0),

				GROUP2				=	(1<<1),

				GROUP3				=	(1<<2),

				GROUP4				=	(1<<3),

				...

};

When	 shapes	 are	 created,	 they	 can	 be	 put	 in	 a	 single	 group,	 for	 example

GROUP1:

PxShape*	shape;																						//	Previously	created	shape

PxFilterData	filterData;

filterData.word0	=	GROUP1;

shape->setQueryFilterData(filterData);

Or	in	several	groups,	for	example	GROUP1	and	GROUP3:

PxShape*	shape;																						//	Previously	created	shape

PxFilterData	filterData;

filterData.word0	=	GROUP1|GROUP3;

shape->setQueryFilterData(filterData);

Then	when	performing	a	scene	query,	select	which	groups	are	active	for	the
query	-	for	example	GROUP2	and	GROUP3	here:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastHit	hit;																				//	[out]	Raycast	results

//	[in]	Define	what	parts	of	PxRaycastHit	we're	interested	in

const	PxSceneQueryFlags	outputFlags	=	PxSceneQueryFlag::eDISTANCE	

//	[in]	Raycast	against	GROUP2	and	GROUP3

PxSceneQueryFilterData	filterData	=	PxSceneQueryFilterData();

filterData.data.word0	=	GROUP2|GROUP3;

bool	status	=	scene->raycastSingle(origin,	unitDir,	maxDistance,	outputFlags

A	built-in	equation	is	never	flexible	enough,	so	the	last	level	of	filtering	is
provided	by	a	filtering	callback.	The	filtering	callback	must	be	passed	to	the
query	 as	 a	 PxSceneQueryFilterCallback.	 Set	 the
PxSceneQueryFilterFlag::ePREFILTER	 and
PxSceneQueryFilterFlag::ePOSTFILTER	 flags	 to	 determine	 whether	 to

filter	before	accurate	per-shape	collision,	afterward,	or	both.	Filtering	early
allows	 shapes	 to	 be	 efficiently	 discarded	 before	 the	 potentially	 expensive
collision	test.	On	the	other	hand,	the	results	of	that	test	may	be	required	in
order	to	determine	whether	a	shape	should	be	discarded	or	not.

The	 implementation	 of	 the	 filtering	 callback	 must	 return	 a
PxSceneQueryHitType.	These	types	define	three	different	kinds	of	behavior:

eNONE	 indicates	 that	 the	 shape	must	 simply	 be	 discarded	 from	 any
further	processing
eBLOCK	 indicates	 that	 the	 shape	 is	 a	 "blocking	hit",	 and	any	 shapes
located	further	away	can	be	ignored
eTOUCH	 indicates	 that	 the	 shape	 is	 a	 "touching	 hit",	 and	while	 this
shape	will	 be	 recorded	 and	 included	 in	 the	 query's	 report,	 the	 query
will	continue	to	seek	hits	further	away

The	eNONE	and	eBLOCK	 types	correspond	to	the	intuitive	definition	of	a
standard	 filtering	 mechanism:	 discard	 the	 shape	 (eNONE)	 or	 keep	 it
(eBLOCK).	eTOUCH	provides	support	for	scenarios	such	as	bullets	going
through	windows	(breaking	them	on	their	way),	or	through	the	leaves	of	a
tree	(making	them	rustle).	That	is,	cases	where	it	is	useful	to	apply	various
effects	 to	 touched	 objects,	without	 actually	 blocking	 the	 bullet.	Note	 that
eTOUCH	 is	 only	 useful	 for	 scene	 queries	 reporting	 multiple	 hits.	 For
queries	returning	a	single	result,	touching	hits	are	simply	ignored	(similar	to
eNONE).

To	use	filter-style	querying	in	unbatched	queries,	similar	to	that	performed
by	the	simulation	filter	shader	and	for	batched	queries,	add	a	filterData	field
to	the	query	callback	object	and	call	your	filter	function	there.

Caching

Scene	 queries	 can	 sometimes	 be	 accelerated	 using	 PxSceneQueryCache
objects.	 This	 is	 especially	 true	 for	 raycastAny,	 raycastSingle	 and
sweepSingle	queries.	The	cache	object	defines	which	shape	-	or	even,	in	the
case	of	triangle	meshes,	which	triangle	-	should	be	tested	first.	For	queries
with	 high	 temporal	 coherence,	 this	 can	 provide	 significant	 performance
gains.	A	good	strategy	to	capture	that	coherence	is	simply	to	fill	the	cache
object	 of	 a	 given	 query	with	 the	 results	 (last	 touched	 shape,	 last	 touched
triangle)	from	the	previous	frame.

For	 example	 there	 is	 a	 high	 probability	 that	 an	 AI	 visibility	 query	 will
return	the	same	vision-blocking	shape	for	several	frames.	Using	raycastAny
with	a	properly	filled	PxSceneQueryCache	object	will	allow	PhysX	to	test	a
single	 shape	 -	 or	 a	 single	 triangle!	 -	 before	 traversing	 internal	 pruning
structures,	 and	 in	 the	 case	 of	 a	 "cache	 hit"	 the	 pruning	 structures	 can	 be
bypassed	entirely.	Caching	in	such	a	scenario	works	like	this:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxSceneQueryHit	hit;																	//	[out]	Raycast	results

//	Per-raycast	persistent	cache,	valid	from	one	frame	to	the	next

static	PxSceneQueryCache	persistentCache;

//	Define	cache	for	current	frame:

//	-	if	there	was	a	hit	in	the	previous	frame,	use	the	cache.

//	-	otherwise	do	not	(PhysX	requires	given	cache	has	a	valid	shape	pointer)

const	PxSceneQueryCache*	cache	=	persistentCache.shape	?	&persistentCache

//	Perform	raycast	query	using	the	cache

PxSceneQueryHit	hit;

const	bool	status	=	scene->raycastAny(origin,	unitDir,	maxDistance

if(status)

{

				//	We	hit	a	shape.	Cache	it	for	next	frame.

				persistentCache.shape	=	hit.shape;

				persistentCache.faceIndex	=	hit.faceIndex;

}

else

{

				//	We	did	not	hit	anything.	Reset	the	cache	for	next	frame.

				persistentCache	=	PxSceneQueryCache();

}

Caching	 can	 also	 be	 useful	 in	 queries	 looking	 for	 the	 "closest"	 hit.	Here,
testing	 the	 previously	 closest	 object	 first	 can	 allow	 PhysX	 to	 shorten	 the
query	distance	very	early,	leading	to	fewer	collision	tests	overall.

PhysX	 cannot	 detect	 stale	 pointers,	 so	 the	 application	 is	 responsible	 for
updating	caches	when	shapes	are	deleted.

Batched	queries

Batched	queries	provide	an	interface,	PxBatchQuery,	where	queries	can	be
batched	 together	 and	 executed	 all	 at	 once.	 PxBatchQuery	 buffers	 the
raycast,	overlap	and	sweep	queries	until	PxBatchQuery::execute()	is	called.

Use	PxScene::createBatchQuery	to	create	PxBatchQuery	object.

The	hardcoded	filtering	equation	is	not	used	for	batched	queries.	Instead	it
is	 replaced	 with	 two	 filter	 shaders,	 respectively	 running	 before
(PxBatchQueryPreFilterShader)	 and	 after
(PxBatchQueryPostFilterShader)	 the	 accurate	 collision	 tests.	 Set	 the
preFilterShader	 and	 postFilterShader	 in	 PxBatchQueryDesc
correspondingly.

The	 filterShaderData	 will	 be	 copied	 into	 PhysX	 and	 passed	 to	 the	 filter
shader	by	the	constantBlock	parameter.

Results	are	written	to	the	user-defined	buffers	in	PxBatchQueryDesc,	in	the
same	order	the	queries	were	given	to	the	PxBatchQuery	object.	The	results
buffer	 and	 hits	 buffer	 for	 the	 needed	 query	 type	 must	 be	 set.	 The	 SDK
ignores	batched	queries	with	NULL	results	buffer	or	NULL	hits	buffer.

PS3	specific	limitations	and	how	to	write	an	SPU	Query	Filter	Shader	are
captured	in	the	User's	PS3	Guide	"SPU	Simulation	Restrictions"	and	"SPU
Query	Filter	Shaders"	chapters	respectively.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Geometry	Queries
The	chapter	Scene	Queries	shows	how	to	query	a	PhysX	scene	or	rather	its
objects	for	raycast,	sweep	and	overlap	hits.	However,	sometimes	the	objects
to	query	are	known	up	front	and	only	the	hit	location	on	the	object	surface,
for	 example,	 is	 of	 interest.	 Sometimes	 those	 objects	 might	 not	 even	 be
PhysX	 actors	 or	 shapes	 but	 simple	 geometric	 volumes	 like	 spheres	 or
boxes.	PhysX	exposes	an	API	for	such	basic	query	functionality	through	the
PxGeometryQuery	and	PxMeshQuery	interfaces.

Geometry	Objects

In	 the	 following	 sections,	 the	 mentioned	 simple	 geometry	 objects	 will
consist	of	two	parts.	One	is	a	descriptor	for	the	geometric	shape,	the	other	is
a	world	 transform	 to	 specify	 the	 position	 and	 rotation	 of	 the	 object.	 The
former	gets	 defined	by	 the	 same	class	which	 is	 used	 for	PxShape	 objects
already,	 that	 is,	 PxGeometry.	 See	 Shapes	 and	 Geometries	 for	 more
information	on	this	class.

PxGeometryQuery

Three	 types	 of	 tests	 are	 offered	 for	 simple	 geometric	 volumes:	 raycast,
sweep	and	overlap	tests.

As	an	example,	let	us	assume	we	are	interested	in	knowing	whether	a	given
box	hits	a	given	sphere	if	the	box	moves	a	certain	distance	along	a	specified
direction	 (and	 if	 the	 sphere	 does	 get	 hit,	we	would	 like	 to	 know	 the	 first
point	of	contact	on	 its	 surface).	With	 the	PxGeometryQuery	API	 the	code
would	look	like	this:

PxSweepHit	hitInfo;

bool	gotHit	=	PxGeometryQuery::sweep(unitDir,	distance,

																																					boxGeom,	boxPose,

																																					sphereGeom,	spherePose,

																																					hitInfo);

The	 first	 two	 parameters	 of	 the	 provided	 method	 are	 the	 normalized
direction	and	the	distance	of	the	movement.	The	third	and	fourth	parameter
describe	 the	 geometry	 object	 to	 sweep.	 In	 the	 example,	 this	 would	 be	 a
PxBoxGeometry	 object	 and	 its	 world	 transform.	 The	 fifth	 and	 sixth
parameter	 describe	 the	 geometry	 object	 to	 test	 against.	 This	 would	 be	 a
PxSphereGeometry	 object	 together	 with	 its	 global	 pose,	 in	 our	 example.
The	 last	parameter	 in	 the	code	snippet	will	hold	 the	hit	 information	 if	 the
method	returns	true,	i.e.,	if	the	box	does	hit	the	sphere	on	its	motion	path.

For	 limitations	 and	 detailed	 parameter	 descriptions	 please	 refer	 to	 the
corresponding	API	documentation.

PxMeshQuery

For	triangle	meshes	and	heightfields,	additional	functionality	is	provided	to
extract	 the	 triangles	 which	 lie	 inside	 a	 specified	 geometric	 volume.	 The
following	example	code	will	show	the	API	usage	for	a	scenario,	where	the
mesh	 triangles	 which	 lie	 within	 a	 given	 spherical	 volume	 should	 get
detected:

PxU32	triangleIndexBuffer[bufferSize];

PxU32	startIndex	=	0;

bool	bufferOverflowOccured	=	false;

PxU32	nbTriangles	=	PxMeshQuery::findOverlapTriangleMesh(sphereGeom

																																																									meshGeom,

																																																									triangleIndexBuffer

																																																									startIndex

for(PxU32	i=0;	i	<	nbTriangles;	i++)

{

								PxTriangle	tri;

								PxU32	vertexIndices[3];

								PxMeshQuery::getTriangle(meshGeom,	meshPose,	triangleIndexBuffer

								...		//	process	triangle	info

}

The	findOverlapTriangleMesh	method	 is	used	 to	extract	 the	 indices	of	 the
triangles.	 The	 first	 two	 parameters	 describe	 the	 geometry	 object	 which
defines	the	volume	to	look	for	triangles	in.	In	the	given	scenario,	this	would
be	 a	 PxSphereGeometry	 object	 and	 its	 world	 transform.	 The	 next	 two
parameters	 specify	 the	 mesh/heightfield	 to	 test	 against.	 This	 would	 be	 a
PxTriangleMeshGeometry	object	and	its	global	pose,	 in	 this	example.	The
fifth	parameter	is	a	user	buffer	to	store	the	indices	of	the	found	triangles	to,
followed	 by	 a	 parameter	 holding	 the	 maximum	 size	 of	 this	 buffer.	 The
second	 to	 last	 parameter	 can	 be	 used	 together	 with	 the	 last	 parameter	 to
handle	cases	where	the	provided	buffer	was	not	large	enough	to	store	all	the
found	triangle	indices.	The	last	parameter	is	a	boolean	which	gets	set	to	true
if	not	all	triangle	indices	could	get	stored.	In	that	case,	the	method	can	get

called	 once	 again	 setting	 the	 second	 to	 last	 parameter	 (startIndex)	 to	 the
number	 of	 triangle	 indices	 extracted	 so	 far	 such	 that	 the	 next	 block	 of
triangle	 indices	which	did	not	fit	 into	 the	user	buffer	can	get	 fetched.	The
following	 loop	 in	 the	 sample	 code	 then	 iterates	 over	 the	 found	 triangle
indices	and	uses	the	getTriangle	interface	to	translate	an	index	to	a	triangle
and	optionally	triangle	vertex	indices.

More	 in-depth	 information	 about	 the	 interface	 is	 provided	 in	 the	 API
documentation.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Callbacks	and	Customization
In	 this	 chapter	 we	 will	 look	 at	 a	 number	 of	 callback	 functions	 the	 SDK
provides	 that	 let	 the	 user	 listen	 to	 simulation	 events	 and	 even	 customize
some	 parts	 of	 the	 simulation.	 The	 callback	 functions	 are	 implemented	 as
member	 functions	 of	 classes	 which	 the	 user	 is	 expected	 to	 subclass,
providing	 custom	 implementations	 for	 the	 functions.	 This	 is	 the	 same
mechanism	that	we	already	explained	in	 the	chapter	The	Basics,	 to	 let	 the
user	provide	custom	allocators	and	error	notification.

Simulation	Events

The	 simplest	 type	 of	 simulation	 callbacks	 are	 the	 events.	The	 application
may	simply	listen	in	on	these	without	needing	to	react	in	any	way.	There	is
only	one	 restriction	on	 the	 code	you	may	put	 in	 the	 callbacks:	Any	 SDK
state	 change	 from	 them	 is	disallowed.	This	may	be	 a	 bit	 surprising	given
that	 normally	 the	 SDK	 is	 set	 up	 to	 be	 double	 buffered,	 and	 writes	 are
permitted	while	 the	 simulation	 is	 running	 in	 the	 background,	 as	 any	 new
state	 is	 written	 to	 an	 inactive	 state	 backbuffer.	 However,	 these	 event
callbacks	are	not	called	from	within	the	simulation	thread,	but	rather	from
inside	fetchResults().	At	 that	point	 some	buffered	operations	have	already
been	processed,	so	the	situation	is	more	fragile.	All	write	operations	to	the
scene	should	be	buffered	and	carried	out	after	fetchResults()	returns.

Inside	fetchResults()	among	other	things	we	'swap	the	buffers'.	This	means
that	we	copy	the	objects'	simulation	results	to	their	API-visible	state.	Some
event	 callbacks	 happen	 before	 this	 swap,	 and	 some	 after.	 The	 events	 that
happen	before	are:

onTrigger
onContact
onConstraintBreak

When	these	events	get	received,	 the	shapes,	actors,	etc.	will	still	be	 in	 the
state	 they	 were	 in	 before	 the	 simulation	 ran.	 This	 is	 preferable,	 because
these	 events	were	 detected	 early	 on	 during	 the	 simulation,	 before	 objects
were	integrated	(moved)	forward.	For	example,	a	pair	of	shapes	that	get	an
onContact()	 to	 report	 that	 they	are	 in	contact	will	 still	be	 in	contact	when
the	 call	 is	made,	 even	 though	 after	 fetchResults()	 returns,	 they	may	 have
bounced	apart	again.

On	the	other	hand,	these	events	are	sent	after	the	swap:

onSleep

onWake

Sleep	information	is	updated	after	objects	have	been	integrated,	so	it	makes
sense	to	send	these	events	after	the	swap.

You	 'listen'	 to	 any	 of	 these	 events	 by	 doing	 two	 things:	 First,	 define	 a
callback	function	by	subclassing	PxSimulationEventCallback.	Not	all	of	its
member	functions	have	to	be	implemented,	only	the	ones	to	be	overwritten.
For	constraint	break	events,	this	is	the	only	thing	that	needs	to	be	done.	For
sleep	 and	 wake	 events,	 you	 must	 raise	 the	 flag
PxActorFlag::eSEND_SLEEP_NOTIFIES	on	all	actors	from	which	notifies
are	 desired.	 To	 get	 onContact	 and	 onTrigger	 events,	 in	 the	 filter	 shader
callback,	set	a	flag	for	all	pairs	of	interacting	objects	for	which	you	wish	to
receive	these	events.	See	 the	section	on	using	collision	filtering	below	for
details.

Here	is	an	example	for	a	contact	event	function	from	SampleSubmarine:

void	SampleSubmarine::onContact(const	PxContactPairHeader&	pairHeader

{

								for(PxU32	i=0;	i	<	nbPairs;	i++)

								{

																const	PxContactPair&	cp	=	pairs[i];

																if(cp.events	&	PxPairFlag::eNOTIFY_TOUCH_FOUND)

																{

																								if((pairHeader.actors[0]	==	mSubmarineActor

																								{

																																PxActor*	otherActor	=	(mSubmarineActor

																																								pairHeader.actors[1]	:	pairHeader

																																Seamine*	mine	=		reinterpret_cast<

																																//	insert	only	once

																																if(std::find(mMinesToExplode.begin

																																								mMinesToExplode.push_back(

																																break;

																								}

																}

								}

}

SampleSubmarine	 is	 a	 subclass	of	PxSimulationEventCallback.	onContact
receives	 the	 pair	 for	 which	 the	 requested	 contact	 events	 have	 been
triggered.	 The	 above	 function	 is	 only	 interested	 in
eNOTIFY_TOUCH_FOUND	 events,	 which	 are	 raised	 whenever	 two
shapes	 start	 to	 touch.	 In	 fact	 it	 is	 only	 interested	 in	 touch	 events	 of	 the
submarine	--	which	is	checked	in	the	second	if-statement.	It	then	goes	on	to
assume	 that	 the	 second	 actor	 is	 a	 mine	 (which	 works	 in	 this	 example
because	the	sample	is	configured	such	that	no	other	contact	reports	will	get
sent	when	a	submarine	actor	is	involved).	After	that,	 it	adds	the	mine	to	a
set	of	mines	that	should	explode	during	the	next	update.

Note: 	By	default	collisions	between	kinematic	rigid	bodies	and
kinematic	and	static	rigid	bodies	will	not	get	reported.	To	enable	these
reports	raise	the	PxSceneFlag::eENABLE_KINEMATIC_PAIRS	or
::eENABLE_KINEMATIC_STATIC_PAIRS	flag	respectively	by	calling
PxScene::setFlag().

Frequently,	 users	 are	 only	 interested	 in	 contact	 reports,	 if	 the	 force	 of
impact	is	larger	than	a	certain	threshold.	This	allows	to	reduce	the	amount
of	 reported	 pairs	which	 need	 to	 get	 processed.	 To	 take	 advantage	 of	 this
option	the	following	additional	configurations	are	necessary:

Use	 PxPairFlag::eNOTIFY_THRESHOLD_FORCE_FOUND,
::eNOTIFY_THRESHOLD_FORCE_PERSISTS,
::eNOTIFY_THRESHOLD_FORCE_LOST	 instead	 of
::eNOTIFY_TOUCH_FOUND	etc.
Specify	 the	 threshold	 force	 for	 a	 dynamic	 rigid	 body	 through
PxRigidDynamic::setContactReportThreshold().	 If	 the	 body
collides	with	 an	 other	 object	 and	 the	 contact	 force	 is	 above	 the
threshold,	 a	 report	 will	 get	 sent	 (if	 enabled	 according	 to	 the
PxPairFlag	 setting	 of	 the	 pair).	 If	 two	 colliding	dynamic	 bodies
both	have	a	force	threshold	specified	then	the	lower	threshold	will
be	used.

Note: 	If	a	dynamic	rigid	body	collides	with	multiple	static	objects,	then
the	impact	force	of	all	those	contacts	will	get	summed	up	and	used	to
compare	against	the	force	threshold.	In	other	words,	even	if	the	impact
force	against	each	individual	static	object	is	below	the	threshold,	the
contact	reports	will	still	get	sent	for	each	pair	if	the	sum	of	those	forces
exceeds	the	threshold.

Collision	Filtering

In	 almost	 all	 applications	 beyond	 the	 trivial,	 the	 need	 arises	 to	 exempt
certain	pairs	of	objects	from	interacting,	or	to	configure	the	SDK	collision
detection	 behavior	 in	 a	 particular	 way	 for	 an	 interacting	 pair.	 In	 the
submarine	 sample,	 like	 indicated	 above,	we	need	 to	 be	 notified	when	 the
submarine	touched	a	mine,	or	the	chain	of	a	mine,	so	that	we	can	have	them
blow	 up.	 The	 crab's	 AI	 also	 needs	 to	 know	 when	 crabs	 touch	 the
heightfield.

Before	we	can	understand	what	the	sample	does	to	achieve	this,	we	need	to
understand	 the	possibilities	of	 the	SDK	filtering	 system.	Because	filtering
potentially	 interacting	pairs	happens	 in	 the	deepest	parts	of	 the	simulation
engine,	and	needs	to	be	applied	to	all	pairs	of	objects	that	come	near	each
other,	 it	 is	 particularly	 performance	 sensitive.	 The	 simplest	 way	 to
implement	it	would	be	to	always	call	a	callback	function	to	each	potentially
interacting	 pair,	 where	 the	 application,	 based	 on	 the	 two	 object	 pointers
could	determine,	using	some	custom	logic	--	 like	consulting	its	game	data
base	--	whether	the	pair	should	interact.	Unfortunately	this	quickly	becomes
too	 slow	 if	 done	 for	 a	 very	 large	 game	world,	 especially	 if	 the	 collision
detection	 processing	 happens	 on	 a	 remote	 processor	 like	 the	 GPU	 or	 an
other	 kind	 of	 vector	 processor	 with	 local	 memory,	 which	 would	 have	 to
suspend	 its	 parallel	 computations,	 interrupt	 the	 main	 processor	 that	 runs
game	code,	and	have	it	execute	the	callback	before	it	can	continue.	Even	if
it	were	to	be	executed	on	a	CPU,	it	would	likely	be	done	so	simultaneously
on	multiple	cores	or	hyperthreads,	and	 thread	safe	code	would	have	 to	be
put	in	place	to	make	sure	that	concurrent	access	to	shared	data	is	safe.	Far
better	 is	 to	use	 some	kind	of	 fixed	 function	 logic	 that	 can	execute	on	 the
remote	 processor.	 This	 is	 what	 we	 did	 in	 PhysX	 2.x	 --	 unfortunately	 the
simple	group	based	filtering	rules	we	provided	were	not	flexible	enough	to
cover	all	applications.	In	3.0,	we	introduce	both	a	shader	system,	which	lets
the	developer	 implement	an	arbitrary	system	of	 rules	using	code	 that	 runs
on	 the	 vector	 processor	 (and	 is	 therefore	 not	 able	 to	 access	 any	 eventual

game	 data	 base	 in	main	memory),	 which	 is	 more	 flexible	 than	 2.x	 fixed
function	 filtering,	 but	 just	 as	 efficient,	 and	 a	 totally	 flexible	 callback
mechanism	where	the	filter	shader	calls	a	CPU	callback	function	that	is	able
to	 access	 any	 application	 data,	 at	 the	 cost	 of	 performance	 --	 see
PxSimulationFilterCallback	for	details.	The	best	part	 is	 that	an	application
can	decide	on	a	per-pair	basis	to	make	this	speed	vs.	flexibility	tradeoff.

Let	us	look	at	the	shader	system	first:	Here	is	the	filter	shader	implemented
by	SampleSubmarine:

PxFilterFlags	SampleSubmarineFilterShader(

								PxFilterObjectAttributes	attributes0,	PxFilterData	filterData0

								PxFilterObjectAttributes	attributes1,	PxFilterData	filterData1

								PxPairFlags&	pairFlags,	const	void*	constantBlock,	PxU32	constantBlockSize

{

								//	let	triggers	through

								if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

								{

																pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT;

																return	PxFilterFlag::eDEFAULT;

								}

								//	generate	contacts	for	all	that	were	not	filtered	above

								pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

								//	trigger	the	contact	callback	for	pairs	(A,B)	where

								//	the	filtermask	of	A	contains	the	ID	of	B	and	vice	versa.

								if((filterData0.word0	&	filterData1.word1)	&&	(filterData1

																pairFlags	|=	PxPairFlag::eNOTIFY_TOUCH_FOUND;

								return	PxFilterFlag::eDEFAULT;

}

SampleSubmarineFilterShader	 is	 a	 simple	 shader	 function	 that	 is	 an
implementation	 of	 the	 PxSimulationFilterShader	 prototype	 declared	 in
PxFiltering.h.	 The	 shader	 filter	 function	 (called
SampleSubmarineFilterShader	above)	may	not	reference	any	memory	other
than	arguments	of	the	function	and	its	own	local	stack	variables	--	because
the	function	may	be	compiled	and	executed	on	a	remote	processor.

SampleSubmarineFilterShader()	will	 be	 called	 for	 all	 pairs	 of	 shapes	 that

come	near	each	other	--	more	precisely:	for	all	pairs	of	shapes	whose	axis
aligned	bounding	boxes	 in	world	 space	are	 found	 to	 intersect	 for	 the	 first
time.	 All	 behavior	 beyond	 that	 is	 determined	 by	 what
SampleSubmarineFilterShader()	returns.

The	 arguments	 of	 SampleSubmarineFilterShader()	 include
PxFilterObjectAttributes	 and	 PxFilterData	 for	 the	 two	 objects,	 and	 a
constant	 block	 of	 memory.	 Note	 that	 the	 pointers	 to	 the	 two	 objects	 are
NOT	passed,	because	those	pointers	refer	to	the	computer's	main	memory,
and	 that	 may,	 as	 we	 said,	 not	 be	 available	 to	 the	 shader,	 so	 the	 pointers
would	not	be	very	useful,	as	dereferencing	them	would	likely	cause	a	crash.
PxFilterObjectAttributes	 and	 PxFilterData	 are	 intended	 to	 contain	 all	 the
useful	 information	 that	 one	 could	 quickly	 glean	 from	 the	 pointers.
PxFilterObjectAttributes	are	32	bits	of	data,	that	encode	the	type	of	object:
For	 example	 PxFilterObjectType::eRIGID_STATIC,
::eRIGID_DYNAMIC,	 or	 even	 ::ePARTICLE_SYSTEM.	 Additionally,	 it
lets	you	find	out	if	the	object	is	kinematic,	or	a	trigger.

Each	PxShape	and	PxParticleBase	object	in	PhysX	has	a	member	variable
of	type	PxFilterData.	This	is	128	bits	of	user	defined	data	that	can	be	used
to	store	application	specific	information	related	to	collision	filtering.	This	is
the	other	variable	that	is	passed	to	SampleSubmarineFilterShader()	for	each
object.

There	 is	 also	 the	 constant	 block.	 This	 is	 a	 chunk	 of	 per-scene	 global
information	 that	 the	application	can	give	 to	 the	shader	 to	operate	on.	You
will	want	to	use	this	to	encode	rules	about	what	to	filter	and	what	not.

Finally,	SampleSubmarineFilterShader()	also	has	a	PxPairFlags	parameter.
This	 is	an	output,	 like	the	return	value	PxFilterFlags,	 though	used	slightly
differently.	PxFilterFlags	tells	the	SDK	if	it	should	ignore	the	pair	for	good
(eKILL),	 ignore	 the	 pair	 while	 it	 is	 overlapping,	 but	 ask	 again,	 when
filtering	related	data	changes	for	one	of	 the	objects	(eSUPPRESS),	or	call
the	 low	performance	but	more	 flexible	CPU	callback	 if	 the	 shader	cannot
decide	(eCALLBACK).

PxPairFlags	 specifies	 additional	 flags	 that	 stand	 for	 actions	 that	 the
simulation	 should	 take	 in	 the	 future	 for	 this	 pair.	 For	 example,
eNOTIFY_TOUCH_FOUND	means	 notify	 the	 user	 when	 the	 pair	 really
starts	to	touch,	not	just	potentially.

Let	us	look	at	what	the	above	shader	does:

//	let	triggers	through

if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

{

								pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT;

								return	PxFilterFlag::eDEFAULT;

}

This	means	 that	 if	 either	 object	 is	 a	 trigger,	 then	 perform	 default	 trigger
behavior	(notify	the	application	about	start	and	end	of	touch),	and	otherwise
perform	'default'	collision	detection	between	them.

//	generate	contacts	for	all	that	were	not	filtered	above

pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

//	trigger	the	contact	callback	for	pairs	(A,B)	where

//	the	filtermask	of	A	contains	the	ID	of	B	and	vice	versa.

if((filterData0.word0	&	filterData1.word1)	&&	(filterData1.word0	&

								pairFlags	|=	PxPairFlag::eNOTIFY_TOUCH_FOUND;

return	PxFilterFlag::eDEFAULT;

This	says	 that	 for	all	other	objects,	perform	 'default'	collision	handling.	 In
addition,	 there	 is	a	 rule	based	on	 the	filterDatas	 that	determines	particular
pairs	where	we	ask	for	touch	notifications.	To	understand	what	this	means,
we	 need	 to	 know	 the	 special	 meaning	 that	 the	 sample	 gives	 to	 the
filterDatas.

The	 needs	 of	 the	 sample	 are	 very	 basic,	 so	 we	 will	 use	 a	 very	 simple
scheme	 to	 take	 care	 of	 it.	 The	 sample	 first	 gives	 named	 codes	 to	 the
different	object	types	using	a	custom	enumeration:

struct	FilterGroup

{

								enum	Enum

								{

																eSUBMARINE					=	(1	<<	0),

																eMINE_HEAD					=	(1	<<	1),

																eMINE_LINK					=	(1	<<	2),

																eCRAB										=	(1	<<	3),

																eHEIGHTFIELD			=	(1	<<	4),

								};

};

The	 sample	 identifies	 each	 shape's	 type	 by	 assigning	 its
PxFilterData::word0	to	this	FilterGroup	type.	Then,	it	puts	a	bit	mask	that
specifies	each	type	of	object	that	should	generate	a	report	when	touched	by
an	 object	 of	 type	 word0	 into	 word1.	 This	 could	 be	 done	 in	 the	 samples
whenever	 a	 shape	 is	 created,	 but	 because	 shape	 creation	 is	 a	 bit
encapsulated	in	SampleBase,	it	is	done	after	the	fact,	using	this	function:

void	setupFiltering(PxRigidActor*	actor,	PxU32	filterGroup,	PxU32	

{

								PxFilterData	filterData;

								filterData.word0	=	filterGroup;	//	word0	=	own	ID

								filterData.word1	=	filterMask;		//	word1	=	ID	mask	to	filter	pairs	that	trigger	a	contact	callback;

								const	PxU32	numShapes	=	actor->getNbShapes();

								PxShape**	shapes	=	(PxShape**)SAMPLE_ALLOC(sizeof(PxShape*

								actor->getShapes(shapes,	numShapes);

								for(PxU32	i	=	0;	i	<	numShapes;	i++)

								{

																PxShape*	shape	=	shapes[i];

																shape->setSimulationFilterData(filterData);

								}

								SAMPLE_FREE(shapes);

}

This	sets	up	the	PxFilterDatas	of	each	shape	belonging	to	the	passed	actor.
Here	are	some	examples	how	this	is	used	in	SampleSubmarine:

setupFiltering(mSubmarineActor,	FilterGroup::eSUBMARINE,	FilterGroup

setupFiltering(link,	FilterGroup::eMINE_LINK,	FilterGroup::eSUBMARINE

setupFiltering(mineHead,	FilterGroup::eMINE_HEAD,	FilterGroup::eSUBMARINE

setupFiltering(heightField,	FilterGroup::eHEIGHTFIELD,	FilterGroup

setupFiltering(mCrabBody,	FilterGroup::eCRAB,	FilterGroup::eHEIGHTFIELD

This	scheme	is	probably	too	simplistic	 to	use	in	a	real	game,	but	 it	shows
the	 basic	 usage	 of	 the	 filter	 shader,	 and	 it	 will	 ensure	 that
SampleSubmarine::onContact()	is	called	for	all	interesting	pairs.

An	alternative	group	based	filtering	mechanism	is	provided	with	source	in
the	 extensions	 function	 PxDefaultSimulationFilterShader.	 And,	 again,	 if
this	 shader	 based	 system	 is	 too	 inflexible,	 consider	 using	 the	 callback
approach	provided	with	PxSimulationFilterCallback.

Contact	Modification

Sometimes	users	would	like	to	have	special	contact	behavior.	For	example
to	 implement	 sticky	 contacts,	 give	 objects	 the	 appearance	 of	 floating	 or
swimming	inside	each	other,	or	making	objects	go	 through	apparent	holes
in	walls.	A	simple	approach	to	achieve	such	effects	is	to	let	the	user	change
the	 properties	 of	 contacts	 after	 they	 have	 been	 generated	 by	 collision
detection,	but	before	 the	contact	solver.	Because	both	of	 these	steps	occur
within	the	scene	simulate()	function,	a	callback	must	be	used.

The	callback	occurs	for	all	pairs	of	colliding	shapes	for	which	the	user	has
specified	 the	 pair	 flag	 PxPairFlag::eMODIFY_CONTACTS	 in	 the	 filter
shader.

To	 listen	 to	 these	 modify	 callbacks,	 derive	 from	 the	 class
PxContactModifyCallback:

class	MyContactModification	:	public	PxContactModifyCallback

								{

								...

								void	onContactModify(PxContactModifyPair*	const	pairs,	PxU32

								};

And	 then	 implement	 the	 function	 onContactModify	 of
PxContactModifyCallback:

void	MyContactModification::onContactModify(PxContactModifyPair	*const

{

								for(PxU32	i=0;	i<count;	i++)

								{

																...

								}

}

Basically,	every	pair	of	shapes	comes	with	an	array	of	contact	points,	 that
have	a	number	of	properties	that	can	be	modified,	such	as	position,	contact

normal,	 and	 separation.	 For	 the	 time	 being,	 friction	 properties	 of	 the
contacts	cannot	be	modified.	See	PxContactPoint	 and	PxContactPointAux
for	properties	that	can	be	modified.

There	are	a	couple	of	special	requirements	for	the	callback	due	to	the	fact
that	 it	 is	 coming	 from	 deep	 inside	 the	 SDK.	 In	 particular,	 the	 callback
should	 be	 thread	 safe	 and	 reentrant.	 In	 other	 words,	 the	 SDK	 may	 call
onContactModify()	from	any	thread	and	it	may	be	called	concurrently	(i.e.,
asked	to	process	sets	of	contact	modification	pairs	simultaneously).

The	 contact	 modification	 callback	 can	 be	 set	 using	 the
contactModifyCallback	 member	 of	 PxSceneDesc	 or	 the
setContactModifyCallback()	method	of	PxScene.

Active	Transforms

The	 active	 transforms	 API	 provides	 an	 efficient	 way	 to	 reflect	 actor
transform	changes	in	a	PhysX	scene	to	an	associated	external	object	such	as
a	render	mesh.

When	 a	 scene's	 fetchResults()	 method	 is	 called	 an	 array	 of
PxActiveTransform	 structs	 is	generated,	 each	entry	 in	 the	array	contains	a
pointer	to	the	actor	that	moved,	its	user	data	and	its	new	transform.	Because
only	 actors	 that	 have	moved	will	 be	 included	 in	 the	 list	 this	 approach	 is
potentially	much	more	efficient	than,	for	example,	analyzing	each	actor	in
the	scene	individually.

The	example	below	shows	how	to	use	active	transforms	to	update	a	render
object:

//	update	scene

scene.simulate(dt);

scene.fetchResults();

//	retrieve	array	of	actors	that	moved

PxU32	nbActiveTransforms;

PxActiveTransform*	activeTransforms	=	scene.getActiveTransforms(nbActiveTransforms

//	update	each	render	object	with	the	new	transform

for	(PxU32	i=0;	i	<	nbActiveTransforms;	++i)

{

								MyRenderObject*	renderObject	=	static_cast<MyRenderObject*>

								renderObject->setTransform(activeTransforms[i].actor2World

}

Note: 	PxSceneFlag::eENABLE_ACTIVETRANSFORMS	must	be	set
on	the	scene	for	the	active	transforms	array	to	be	generated.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Aggregates

Introduction

An	 aggregate	 is	 a	 collection	 of	 actors.	 Aggregates	 do	 not	 provide	 extra
simulation	 or	 query	 features,	 but	 allow	 you	 to	 tell	 the	 SDK	 that	 a	 set	 of
actors	will	be	clustered	together,	which	in	turn	allows	the	SDK	to	optimize
its	 spatial	 data	 operations.	 A	 typical	 use	 case	 is	 a	 ragdoll,	 made	 of	 N
different	body	parts,	with	each	part	a	PhysX	actor.	Without	aggregates,	this
gives	 rise	 to	 N	 broad-phase	 entries	 for	 the	 ragdoll.	 It	 is	 typically	 more
efficient	to	represent	the	rag	doll	in	the	broad	phase	as	a	single	entity,	and
do	internal	collisions	in	a	second	pass	if	necessary.

Creating	an	Aggregate

Create	an	aggregate	from	the	PxPhysics	object:

PxPhysics*	physics;					//	The	physics	SDK	object

PxU32	nbActors;	//	Max	number	of	actors	expected	in	the	aggregate

bool	selfCollisions	=	true;

PxAggregate*	aggregate	=	physics->createAggregate(nbActors,	selfCollisions

The	 maximum	 number	 of	 actors	 is	 currently	 limited	 to	 128,	 and	 for
efficiency	should	be	set	as	low	as	possible.

If	 you	 will	 never	 need	 collisions	 between	 the	 actors	 of	 the	 aggregate,
disable	 them	at	 creation	 time.	This	 is	much	more	 efficient	 than	 using	 the
scene	 filtering	 mechanism,	 as	 it	 bypasses	 all	 internal	 filtering	 logic.	 A
typical	use	case	would	be	an	aggregate	of	static	or	kinematic	actors.

Note	 that	 both	 the	 maximum	 number	 of	 actors	 and	 the	 self-collision
attribute	are	immutable.

Populating	an	Aggregate

Adds	an	actor	to	an	aggregate	as	follows:

PxActor&	actor;	//	Some	actor,	previously	created

aggregate->addActor(actor);

Note	that	if	the	actor	already	belongs	to	a	scene,	the	call	is	ignored.	Either
add	the	actors	 to	an	aggregate	and	then	add	the	aggregate	 to	 the	scene,	or
add	the	aggregate	to	the	scene	and	then	the	actors	to	the	aggregate.

To	add	the	aggregate	to	a	scene	(before	or	after	populating	it):

scene->addAggregate(*aggregate);

Similarly,	to	remove	the	aggregate	from	the	scene:

scene->removeAggregate(*aggregate);

Releasing	an	Aggregate

To	release	an	aggregate:

PxAggregate*	aggregate;	//	The	aggregate	we	previously	created

aggregate->release();

Releasing	 the	 PxAggregate	 does	 not	 release	 the	 aggregated	 actors.	 If	 the
PxAggregate	belongs	to	a	scene,	the	actors	are	automatically	re-inserted	in
that	scene.	If	you	intend	to	delete	both	the	PxAggregate	and	its	actors,	it	is
most	efficient	to	release	the	actors	first,	then	release	the	PxAggregate	when
it	is	empty.

Amortizing	Insertion

Adding	many	 objects	 to	 a	 scene	 in	 one	 frame	 can	 be	 a	 costly	 operation.
This	can	be	the	case	for	a	ragdoll,	which	as	discussed	is	a	good	candidate
for	PxAggregate.	Another	case	is	localized	debris,	for	which	self-collisions
are	often	disabled.	To	amortize	 the	cost	of	object	 insertion	into	the	broad-
phase	 structure	 over	 several,	 spawn	 the	 debris	 in	 a	 PxAggregate,	 then
remove	 each	 actor	 from	 the	 aggregate	 and	 and	 re-insert	 it	 into	 the	 scene
over	those	frames.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Serialization
Serialization	is	the	process	by	which	a	collection	of	PhysX	objects	is	stored
in	 a	 persistent	 form	 outside	 the	 PhysX	 runtime,	 such	 as	 on	 disk.
Deserialization	is	the	reverse	process,	i.e.	the	loading	of	those	objects	into
another	 instance	of	 the	PhysX	runtime.	PhysX	3	features	two	serialization
APIs:

API-level	serialization	to	RepX,	a	versioned	XML	data	format.
Binary	 serialization,	which	serializes	objects	 into	a	block	of	memory
from	which	the	PhysX	runtime	can	later	load	them	without	allocation
or	copying.

Both	serialization	systems	use	their	own	meta	data	representation	of	PhysX
data	structures.	The	meta	data	used	by	RepX	captures	the	PhysX	objects	at
the	API-level.	It	allows	forward	conversions	of	serialized	data	from	earlier
PhysX	3	versions	to	later	ones.	The	binary	serialization	meta	data	captures
the	 internal	 data	 structures	 of	 PhysX	 objects	 and	 can	 be	 used	 to	 convert
binary	representations	between	different	platforms.

Note: 	cooking	also	generates	a	binary	output	stream.	However	the
primary	purpose	of	cooking	is	to	translate	from	a	user	format	to	a	format
suitable	for	the	SDK	runtime,	and	so	it	is	not	considered	a	serialization
mechanism.	Loading	a	cooked	mesh	from	a	stream	involves	allocation
and	endian	conversion,	so	is	much	less	efficient	than	PhysX'	binary
serialization	mechanism.	See	Shapes	and	Geometries	for	more	details
about	cooking.

Binary	Serialization

Binary	 Serialization	 allows	 the	 creation	 of	 memory	 blocks	 from	 which
PhysX	 can	 later	 construct	 objects.	 The	 PhysX	 runtime	 constructs	 the
objects	 in	 place,	making	 this	 an	 efficient	mechanism	 for	 loading	 objects.
You	may	instance	collections	of	objects	simply	by	making	multiple	copies
of	a	memory	block	and	deserializing	them.

The	data	 is	 specific	 to	a	platform	and	SDK	version.	When	exported	 from
the	 runtime	 it	 is	 always	 targeted	 at	 the	 platform	on	which	 it	was	 created,
although	PhysX	can	retarget	it	at	another	platform	in	a	post-processing	step.
This	 allows	 the	 conversion	 of	 binary	 assets	 from	 authoring	 platforms
(Windows,	MacOs	and	Linux)	to	other	platforms.

Framework	Classes

PxSerializable	is	the	base	class	for	the	objects	that	can	be	serialized.
PxCollection	is	a	collection	of	PxSerializable	objects.
PxSerialObjectRef	 is	 a	64	bit	 type,	which	 is	used	as	a	 reference	 to	a
serialized	object.
PxUserReferences	 is	 a	 map	 from	 object	 references	 to	 serializable
objects.

Serializing	Objects

The	simplest	scenario	 is	serializing	a	complete	object	graph	(for	example,
an	actor,	its	shapes,	and	the	materials	and	meshes	they	reference.)

To	serialize	objects,	add	them	to	a	collection:

PxRigidDynamic*	dynamic	=	PxCreateDynamic(...);																//	create	a	rigid	dynamic

...

PxCollection*	collection	=	physics->createCollection();

dynamic->collectForExport(*collection);																								//	add	it	to	the	collection

...

material->collectForExport(*collection);																							//	for	each	material	referenced	by	an	actor	in	the	collection

...

mesh->collectForExport(*collection);																											//	for	each	mesh	referenced	by	an	actor	in	the	collection

In	general,	you	need	to	manually	add	to	a	collection	all	of	the	objects	which
you	 want	 serialized.	 However,	 for	 certain	 objects	 collectForExport()
automatically	adds	other	objects	to	the	collection

Rigid	Actors shapes	owned	by	the	actor

Articulations links	and	joints	owned	by	the
articulation

Cloth the	cloth	fabric

When	 all	 the	 objects	 have	 been	 added,	 create	 an	 implementation	 of	 the
PxOutputStream	interface,	then	serialize	the	collection:

PxOutputStream&	s	=	...;																																							//	implemented	by	the	application

collection->serialize(s);

collection->release();

To	 deserialize,	 first	 create	 a	 collection,	 then	 populate	 it	 by	 deserializing
from	a	memory	block:

void*	memory128	=	...;																																									//	a	128-byte	aligned	buffer	previously	loaded	from	disk	by	the	user

PxCollection*	collection	=	physics->createCollection();

collection->deserialize(memory128,	NULL,	NULL);

To	add	all	the	objects	to	the	scene	and	release	the	collection:

physics->addCollection(*collection,	scene);

collection->release();

Memory	Management

Management	 of	 memory	 blocks	 containing	 deserialized	 objects	 is	 left	 to
users.	It	is	the	user's	responsibility	to:

allocate	the	memory	block.	Note	that	it	must	be	properly	aligned,	to	a
PX_SERIAL_FILE_ALIGN	(128)	bytes	boundary.
fill	the	block	with	serialized	data,	typically	by	loading	it	from	disk.
deallocate	 the	 memory	 block	 when	 the	 objects	 within	 have	 been
released	by	PhysX.

Although	 the	 user	 owns	 the	memory	block,	 the	PhysX	 runtime	owns	 any
deserialized	 objects	 it	 contains.	 Concretely,	 calling	 release()	 on	 an	 object
that	was	created	by	deserialization	will	cause	its	destructor	to	run,	but	will
not	deallocate	its	memory.	If	you	deallocate	the	block	before	the	destructors
have	run	for	all	the	objects	it	contains,	the	PhysX	runtime	will	likely	crash.

Traversing	Collections

You	 can	 iterate	 over	 a	 collection,	 for	 example	 to	 ensure	 the	 objects	 you
intend	to	serialize	have	all	been	added	by	collectForExport().	When	doing
so	you	can	use	PhysX'	dynamic	typing	mechanism	to	classify	the	objects:

PxCollection*	collection;

PxU32	size	=	collection->getNbObjects();

for(PxU32	i=0;	i<size;	i++)

{

				PxSerializable*	object	=	collection->getObject(i);

				if(!object->is<PxActor>())

							continue;

				switch((PxConcreteType)object->getConcreteType())

				{

				case	PxConcreteType::eRIGID_DYNAMIC:

				...

				}

}

Partial	Serialization

The	 above	 code	 in	 (serializingObjects)	 serializes	 complete	 object	 graphs.
Another	common	use	case	is	where	a	collection	of	actors	and	joints	-	say,	a
rag	doll	-	will	be	deserialized	multiple	times,	with	each	instance	sharing	the
same	materials	and	meshes.	To	achieve	this,	serialize	two	collections:

a	collection	of	 the	materials	and	meshes	 that	will	be	deserialized	 just
once
a	collection	of	actors	and	joints	which	will	be	copied	and	deserialized
multiple	times

The	 second	 of	 these	 will	 be	 a	 partial	 object	 graph:	 there	 will	 be	 some
objects	 which	 are	 not	 serialized	 with	 the	 collection,	 but	 to	 which	 the
collection	will	contain	references.

The	 application	 has	 to	 take	 two	 steps	 in	 order	 to	 deal	with	 partial	 object
graphs:

1.	 On	 serialization:	 Provide	 consistent	 reference	 identities
(PxSerialObjectRef)	 to	 serializable	 objects	 for	 the	 referencing	 and
referenced	collections.

2.	 On	 deserialization:	 Provide	 the	 referencing	 collections	 with
appropriate	information	to	reestablish	the	references	to	the	deserialized
objects	in	referenced	collections.

PxCollection	provides	two	functions	for	declaring	object	references	before
serializing:

PxCollection::setObjectRef	specifies	a	reference	to	an	object	that	is	in
the	 collection.	 The	 reference	 will	 be	 serialized	 along	 with	 the
collection	and	 recreated	when	 it	 is	deserialized	 to	support	 lookup	for
objects	within	the	collection.
PxCollection::addExternalRef	 specifies	 a	 reference	 for	 an	object	 that
will	not	be	serialized	with	the	collection,	but	is	referenced	by	an	object

the	collection	contains.	You	must	provide	a	 lookup	for	 this	 reference
when	deserializing	the	collection.

They	are	used	as	follows:

PxConvexMesh**	convexes;								//	An	array	of	mNbConvexes	convexes

PxRigidDynamic**	actors;								//	An	array	of	mNbConvexes	actors	referencing	the	convexes

PxPhysics*	physics;													//	The	physics	SDK	object

PxOutputStream&	convexStream;			//	Output	stream	for	the	convex	collection

PxOutputStream&	actorStream;				//	Output	stream	for	the	actor	collection

PxCollection*	convexCollection	=	physics->createCollection();

PxCollection*	actorCollection	=	physics->createCollection();

for(PxU32	i=0;i<mNbConvexes;i++)

{

				convexes[i]->collectForExport(*convexCollection);

				convexCollection->setObjectRef(convexes[i],	(PxSerialObjectRef

				actorCollection->addExternalRef(convexes[i],	(PxSerialObjectRef

}

//	serialize	the	convexes	and	the	references	in	their	collection

convexCollection->serialize(convexStream);

convexCollection->release();

//	Add	actors	to	collection

for(PxU32	i=0;i<mNbConvexes;i++)

				actors[i]->collectForExport(*actorCollection);

actorCollection->serialize(actorStream);

actorCollection->release();

PhysX	 3	 expects	 references	 (PxSerialObjectRef)	 to	 be	 unique	 per
collection.	 The	 application	 has	 to	 make	 sure	 they	 are	 consistent	 across
different	collections	 for	making	partial	object	graphs	deserialize	correctly.
On	 deserialization	 PxUserReferences	 container	 objects	 can	 be	 used	 to
handle	associations	between	references	and	deserialized	objects.	When	you
deserialize	a	collection	you	may	supply

a	PxUserReferences	object	to	the	deserializer	to	resolve	the	collection's
external	references.

a	PxUserReferences	 object	which	 the	 deserializer	 populates	with	 the
object	references	that	were	serialized	with	the	collection.

The	 two	 PxUserReferences	 objects	 are	 optional	 arguments	 to	 the
deserializer,	and	may	be	the	same.	To	deserialize	the	collections:

PxPhysics*	physics;													//	The	physics	SDK	object

PxScene*	scene;																	//	the	scene	into	which	the	objects	will	be	inserted

void*	convexMemory128;										//	aligned	memory	containing	serialized	convexes

void*	actorMemory128;											//	aligned	memory	containing	serialized	actors

PxCollection*	convexCollection	=	physics->createCollection();

PxCollection*	actorCollection	=	physics->createCollection();

PxUserReferences*	convexRefs	=	physics->createUserReferences();

//	deserialize	the	convexes,	populating	convexRefs	with	the	serialized	references

//	that	where	specified	with	PxCollection::setObjectRef

convexCollection->deserialize(convexMemory128,	convexRefs,	NULL);

physics->addCollection(*convexCollection,	scene);

convexCollection->release();

//	deserialize	the	actors,	using	convexRefs	to	resolve	references

//	that	where	specified	with	PxCollection::addExternalRef

actorCollection->deserialize(actorMemory128,	NULL,	convexRefs);

physics->addCollection(*actorCollection,	scene);

actorCollection->release();

convexRefs->release();

If	 there	 are	 references	 in	 the	collection	 to	objects	not	 contained	within	 it,
and	 they	 cannot	 be	 resolved	 using	 the	 PxUserReferences	 passed	 at
deserialization	time,	an	error	occurs	and	deserialization	is	aborted.

You	 can	 add	 references	 to	 a	 PxUserReferences	 object	 manually	 with
PxUserReferences::setObjectRef(...),	 as	 well	 as	 via	 deserialization.	 This
may	 be	 useful,	 for	 example,	 if	 you	 are	 using	 a	mixture	 of	 serialized	 and
procedurally	created	objects	-	for	example,	a	predefined	material	library	for
your	 application	 that	 is	 not	 itself	 serialized	 but	 which	 serialized	 objects

must	reference.

You	can	also	use	PxUserReferences	to	find	objects	in	a	collection	in	order
to	fix	up	references	with	gameplay	objects:

PxPhysics*	physics;													//	The	physics	SDK	object

void*	memory128;																//	aligned	memory	containing	serialized	objects

PxCollection*	collection	=	physics->createCollection();

PxUserReferences*	userRefs	=	physics->createUserReferences();

//	deserialize	objects	and	fill	userRefs	with	objects	for	which

//	PxCollection::setObjectRef	was	called	before	serialization

collection->deserialize(memory128,	userRefs,	NULL);

//	receive	a	list	of	all	deserialized	objects	which	have	user	references

#define	MAX_USER_REFS	100

PxSerialObjectAndRef	userRefBuffer[MAX_USER_REFS];

userRefs->getObjectRefs(userRefBuffer,	MAX_USER_REFS);

//	iterate	over	the	list	to	path	up	gameplay	objects

for	(PxU32	i	=	0;	i	<	userRefs->getNbObjectRefs();	i++)

{

				PxActor*	actor	=	userRefBuffer[i].serializable->is<PxActor>();

				if	(actor)

				{

								//	this	assumes	that	findGamePlayObjectFromRef	is	able	to	locate

								//	the	corresponding	game	play	object	from	a	PxSerialObjectRef

								actor->userData	=	findGamePlayObjectFromRef(userRefBuffer[

				}

}

In	 order	 to	 iterate	 over	 user	 references	 and	 external	 references	 of	 a
collection	the	following	two	methods	can	be	used:

PxCollection::getObjectRefs	 creates	 a	 PxUserReferences	 instance
containing	 all	 the	 user	 references	 that	 where	 set	 with
PxCollection::setObjectRef(...).
PxCollection::getExternalRefs	 creates	 a	 PxUserReferences	 instance
containing	 all	 the	 external	 references	 that	 where	 added	 with
PxCollection::addExternalRef(...).

Note	 that	 both	 methods	 don't	 provide	 the	 corresponding	 references	 for
deserialized	collections.	Serialized	user	references	can	only	be	obtained	by
the	 first	PxUserReferences	 argument	 to	PxCollection::deserialize(...).	 The
set	 of	 external	 references	 that	 are	 needed	 to	 deserialize	 a	 collection	 is
expected	to	be	managed	by	the	application.	There	is	currently	no	support	to
query	the	external	references	needed	to	deserialize	a	collection.

Serializing	Everything

PhysX	 provides	 two	 utility	 functions	 for	 serializing	 the	 entirety	 of	 the
PhysX	runtime:	PxCollectForExportSDK	and	PxCollectForExportScene:

PxPhysics*	physics;				//	The	physics	SDK	object

PxScene*	scene;								//	The	physics	scene

PxOutputStream&	s;					//	The	user-defined	stream	doing	the	actual	write	to	disk

//	1)	create	a	collection

PxCollection*	collection	=	physics->createCollection();

//	2)	collect	objects	to	serialize

PxCollectForExportSDK(*physics,	*collection);				//	Collects	all	objects	from	the	physics	SDK.

PxCollectForExportScene(*scene,	*collection);				//	Collects	all	objects	from	the	scene.

//	3)	serialize	collection	and	release	it

collection->serialize(s);

collection->release();

Deserialization	is	as	previously:

PxPhysics*	physics;								//	The	physics	SDK	object

PxScene*	scene;												//	The	physics	scene

void*	memory128	=	...;					//	a	128-byte	aligned	buffer	previously	loaded	from	disk	by	the	user

PxCollection*	collection	=	physics->createCollection();

collection->deserialize(memory128,	NULL,	NULL);

physics->addCollection(*collection,	scene);

collection->release();

Object	Names

Some	 objects,	 such	 as	 shapes	 and	 actors,	 can	 be	 given	 names	 using	 the
PxShape::setName()	and	PxActor::setName()	functions.	The	SDK	does	not
own	those	names,	i.e.	the	strings	remain	in	user	memory.	When	serializing
objects,	you	may	choose	whether	to	preserve	those	names	in	the	serialized
data,	or	to	discard	them	to	create	smaller	data.	If	you	choose	to	preserve	the
names,	 they	 will	 be	 serialized	 along	 with	 the	 objects	 themselves	 when
calling	 PxCollection::serialize().	 On	 deserialization,	 the	 names	 will	 live
within	the	user-provided	memory	block.

Use	 the	 'exportNames'	 parameter	 of	 the	PxCollection::serialize()	 function
to	control	this	behavior.

Retargeting

Binary	 serialized	 data	 is	 platform-specific,	 and	when	 serialized	 it	 always
targets	 the	 platform	on	which	 it	was	 created.	The	 binary	 converter	 in	 the
cooking	 library	 retargets	 data	 from	one	platform	 to	 another.	 So	 to	 deploy
data	 for	 PS3,	 XBox	 etc,	 typically	 you	will	 serialize	 on	 PC,	 then	 use	 the
converter	to	retarget	for	each	platform.

The	converter	requires	meta-data	for	the	source	and	target	platforms,	which
contains	information	about	the	binary	layout	of	objects	for	that	platform.	To
obtain	metadata,	use	the	function	provided	in	the	extensions	library	for	each
platform:

void	PxDumpMetaData(PxOutputStream&	stream,	const	PxPhysics&	physics

On	each	target	platform,	run	it	once	and	keep	generated	data	around.

Assuming	you	have	initialized	the	cooking	library,	convert	data	as	follows:

PxErrorCallback*	myErrorCallback;							//	an	error	callback	implemented	by	the	application

PxInputStream&	srcMetadata;													//	metadata	for	the	'from'	platform

PxInputStream&	dstMetadata;													//	metadata	for	the	'to'	platform

PxInputStream&	srcAsset;																//	stream	containing	source	asset

PxU32	srcAssetSize;																					//	size	of	the	source	asset

PxOutputStream&	dstAsset;															//	output	stream	for	retargeted	asset

PxBinaryConverter*	converter	=	cooking->createBinaryConverter(myErrorCallback

converter->setMetaData(srcMetadata,	dstMetadata);

converter->convert(srcAsset,	srcAssetSize,	dstAsset);

API-level	Serialization	with	RepX

RepX	stands	for	Representation	X	and	is	the	XML	serialization	format	for
PhysX	3.	This	format	is	intended	to	be	a	user-level	format	meaning	the	data
is	 in	 a	 format	 that	 matches	 the	 public	 API.	 It	 is	 also	 intended	 to	 be
backwards	compatible,	thus	assets	saved	in	RepX	for	version	3.0	of	PhysX
will	load	in	version	3.1,	3.2,	etc.	We	do	not	intend	for	RepX	to	be	used	in
performance	critical	or	memory	constrained	situations.

RepX	 itself	 consist	of	a	core	module	with	a	 set	of	extensions.	Extensions
are	 responsible	 for	 transforming	 objects	 coming	 from	 the	 outside	 world
(called	'live'	objects)	into	a	sort	of	key-value	pair	format.	The	library	takes
care	of	 serializing/deserializing	 this	 format.	A	RepX	collection	 is	 a	 set	 of
objects	that	are	transformed	into	the	key-value	pair	format	but	still	held	in
memory.

RepX	collections	may	depend	on	objects	in	other	collections	in	order	to	be
fully	realized	into	live	objects.	To	facilitate	this,	RepX,	similar	to	the	binary
serialization	 system,	has	an	 Id	assignment	 system	where	64	bit	 identifiers
are	 assigned	 to	 objects.	 This	 happens	 when	 a	 live	 object	 is	 added	 to	 a
collection	 and	 the	 id	 defaults	 to	 the	 memory	 address	 of	 the	 object.	 This
design	 was	 intended	 so	 that	 one	 would	 serialize	 various	 buffers	 (convex
mesh,	 triangle	 mesh,	 height	 field,	 etc.)	 into	 one	 collection	 file,	 and	 then
using	 the	 same	 id	map	 serialize	 a	 set	 of	 scene	objects	 into	 another	RepX
file.	Then	the	user	could	deserialize	the	buffer	collection	using	the	original
ids	 once,	 but	 deserialize	 the	 scene	 RepX	 collection	 multiple	 times
requesting	RepX	to	generate	new	ids	upon	deserialization	into	live	objects.

To	use	RepX,	there	are	two	headers	you	need.	The	first	is	RepX.h	and	this
is	 absolutely	 required	 as	 it	 describes	 the	 base	 types.	 The	 second	 is
RepXUtility.h	 and	 this	 makes	 using	 RepX	much	 easier,	 but	 requires	 the
PhysX	extensions	 to	be	 loaded	 to	work.	Even	 if	you	do	not	 intend	 to	use
RepXUtility.h	we	recommend	you	use	it	for	examples	on	how	to	do	things
like:

1.	 Create	a	collection	with	the	various	extensions	loaded.
2.	 Copy	objects	into	the	collection.
3.	 Instantiate	a	collection	into	a	scene.
4.	 Convert	a	RepX	collection	into	a	binary	collection.
5.	 Upgrade	a	RepX	collection	from	a	past	version	to	the	current	version

(requires	RepXUpgrader	project).

Here	is	an	example:

RepXCollection*	theCollection	=	createCollection(physics.getTolerancesScale

RepXIdToRepXObjectMap*	theIdMap	=		RepXIdToRepXObjectMap::create(PxGetFoundation

addToRepXCollectionNF(theCollection,	theIdMap,	thePhysicsObject);

addObjectsToScene(theCollection,	physics,	cooking,	scene,	mStringTable

theCollection->destroy();

theIdMap->destroy();

A	 RepX	 (Representation	 X)	 collection	 is	 PhysX's	 forward-compatible
storage	format.	Using	RepX	you	can	store	PhysX	assets	 in	a	way	 that	we
guarantee	support	for	them	in	future	versions	of	PhysX.	RepX	also	includes
facilities	for	instantiating	a	set	of	assets	multiple	times	into	a	scene	and	for
of	 course	 upgrading	 a	RepX	 collection	 from	 an	 older	 version	 to	 a	 newer
version	 as	 well	 as	 converting	 a	 RepX	 collection	 to	 a	 PhysX	 binary
collection.	Currently	RepX's	storage	format	is	ASCII-XML.

RepX.h	contains	the	base	collection	definitions	and	RepXUtility.h	contains
functionality	 that	 cannot	 be	 included	 in	 RepX	 because	 it	 relies	 on
PhysXExtensions.	 Users	 who	 have	 PhysXExtensions	 compiled	 into	 their
SDK	 should	 use	 RepXUtility	 wherever	 possible	 and	 users	 who	 do	 not
should	still	look	to	the	RepXUtility	header	for	examples	on	how	to	do	the
base	operations.

RepX	is	a	base	key-value	data	store	that	is	specialized	towards	the	various
PhysX	 datatypes	 via	 extensions.	 An	 extension	 needs	 to	 provide	 the
capability	 to	go	 from	a	 'live'	 object	 to	 a	RepX	data	 store	value	and	back.
Extensions	 are	 created	 and	 registered	 when	 the	 collection	 is	 created	 an
destroyed	when	 the	collection	 is	destroyed.	So,	 to	extend	RepX	to	store	a

different	datatype,	be	 it	a	custom	joint	or	 specific	game	 information	users
will	need	to	implement	a	RepX	extension.

RepX	identifies	 live	 types	via	a	 'fat	pointer'	combination	of	a	void*	and	a
const	char*	 type	name.	This	name	 is	used	 to	 link	 the	void*	pointer	 to	 the
appropriate	 extension	 necessary	 to	 serialize	 the	 pointer.	 RepX	 types	 also
have	a	user-supplied	id	that	is	used	to	link	dependent	types	to	other	objects
in	the	collection.	This	id	defaults	to	the	memory	address	of	the	object	if	not
supplied.	All	of	the	world-to-RepX	functions	along	with	the	RepX-to-world
functions	take	an	id	map.	One	constraint	that	RepX	has	is	that	a	base	object
needs	 to	 be	 added	 to	 the	 collection	 before	 any	 dependent	 object.	 Thus
PxConvexMesh	needs	to	be	added	before	the	PxConvexMeshGeometry	that
refers	to	it.

To	 create	 a	 RepX	 collection,	 we	 have	 provided	 a	 few	 createCollection
functions	in	RepXUtility.h.	These	functions	create	all	known	extensions	for
both	 the	 core	 RepX	 types	 and	 types	 that	 rely	 on	 PhysXExtensions.h	 and
then	 create	 a	 new	 collection.	 The	 various	 overloads	 are	 for	 passing	 in
custom	 allocators	 and	 for	 creating	 a	 collection	 and	 immediately
deserializing	a	data	source	back	to	a	RepX	collection.

Saving	 to	 RepX	 involves	 making	 a	 decision	 about	 whether	 to	 save	 the
PxPhysics	objects	(which	I	will	later	refer	to	as	'buffers')	separate	from	the
scene	 objects.	 Saving	 them	 separate	 adds	 complexity	 but	 gives	 you	 the
option	 of	 instantiating	 the	 scene	 objects,	 perhaps	 with	 different	 global
transforms	several	times	into	the	PhysX	scene.

In	 any	 case,	 we	 provide	 three	 functions	 in	 RepXUtility.h	 which	 allow
various	 combinations	 of	 use	 cases.	 These	 functions	 build	 the	 RepX
collection	using	the	object's	base	address	as	its	id.

1.	 addSDKItemsToRepX	 -	 add	 all	 the	 buffers	 present	 in	 the	 PxPhysics
object	 (PxConvexMesh,	 PxHeightField,	 PxTriangleMesh	 and
PxMaterial)	to	the	RepX	collection.

2.	 addSceneItemsToRepX	 -	 add	 all	 the	 objects	 in	 a	 given	 PxScene

(PxRigidDynamic,	 PxRigidStatic,	 PxArticulation,	 any	 PxJoints,	 etc.),
to	a	RepX	collection.

3.	 addItemsToRepX	 -	 calls	 addSDKItemsToRepX	 followed	 by
addSceneItemsToRepX.

When	RepX	instantiates	an	object	it	asks	the	appropriate	extension	to	create
a	 live	 object.	 This	 is	 achieved	 through	 use	 of	 the	 given	 key-value	 data
object.	 RepX	 then	 calls	 a	 callback	 passed	 into	 the	 instantiation	 function
with	the	newly	created	object.	It	is	then	the	responsibility	of	the	callback	to
add	 the	object	 to	a	PxScene	 if	desired.	We	have	wrapped	up	 the	common
case	of	this	operation	with	a	function	addObjectsToScene.

For	 the	 use	 case	 where	 you	 want	 to	 instantiate	 buffer	 and	 scene
RepXCollections	 separately,	 you	 would	 need	 to	 call	 a	 more	 low	 level
function	 (also	 available	 in	 RepXUtility.h),	 instantiateCollection	 for	 the
scene	objects	with	a	flag,	inAddOriginalIdsToObjectMap	set	to	false.	This
tells	RepX	 to	 just	 use	 the	 newly	 generated	 object's	 address	 as	 its	 id.	You
could	call	this	several	times	with	the	same	scene	RepX	collection	safely	but
you	need	 to	 share	 the	 id	map	between	all	 instantiations	 so	 that	RepX	can
find	the	buffers	instantiated	with	inAddOriginalIdsToObjectMap	set	to	true.

Upgrading	a	RepX	collection	from	an	older	version	to	a	newer	one	is	easy.
You	 need	 to	 link	 with	 the	 RepXUpgrader	 static	 library	 and	 call	 the
appropriate	physx::repx::RepXUpgrader::upgradeCollection	function.

Implementing	your	own	custom	extension	is	a	bit	more	involved.	You	need
to	 assign	 an	 ascii	 name	 to	 your	 extension	 and	 implement	 the
RepXExtension	 interface.	You	will	 then	need	 to	 add	 that	 extension	 to	 the
rest	of	the	extensions	when	a	RepX	collection	is	created.	When	your	target
objects	are	added	to	the	RepXCollection,	they	will	need	to	be	tagged	with
your	extension's	ascii	name.

Converting	between	RepX	and	Binary	Serializable
Collections

PhysX	 provides	 a	 couple	 of	 convenience	 functions	 in	 RepXUtility.h	 to
easen	the	conversion	between	binary	and	RepX	data.

addObjectsToPxCollection(...)	takes	a	RepXCollection	and	instantiates
the	objects	contained	in	the	physics	SDK.	In	the	process	it	creates	two
PxCollection	 instances,	 one	 for	 PxPhysics	 serializables	 and	 one	 for
PxScene	serializables.	Optionally	a	PxUserReferences	can	be	provided
that	 is	populated	with	RepX	ids	of	PxPhysics	 serializables.	Note	 that
unlike	 with	 PxCollection::deserialize(...)	 the	 resulting	 PxCollection
instances	 will	 also	 have	 the	 deserialized	 ids	 available	 with
PxCollection::getObjectRefs(...).	 Additionally,	 the	 PxCollection
containing	the	PxScene	serializables	will	have	the	external	references
added,	that	can	be	queried	with	PxCollection::getExternalRefs.
deserializeFromRepX(...)	 does	 the	 same	 as
addObjectsToPxCollection(...)	but	takes	a	repX	stream	as	input.
pxCollectionToRepXCollection(...)	 takes	 a	PxCollection	 and	 returns	 a
RepXCollection	 on	 success.	 The	 in/out	 parameter
inAnonymousNameStart	serves	as	the	first	value	used	for	64	bit	RepX
Ids	 assigned	 to	 the	 resulting	 RepX	 objects	 and	 is	 incremented	 as
needed.
serializeToRepX(...)	 does	 the	 same	 as
pxCollectionToRepXCollection(...)	 but	 additionally	 serializes	 the
collection	to	an	output	stream	in	RepX	format.

Example	for	serializing	a	PxCollection	to	a	RepX	stream:

PxCollection*	collection	=	physics.createCollection();

PxCollectForExportSDK(physics,	*collection);	//collect	buffer	objects	in	physics

PxCollectForExportScene(scene,	*collection);	//collect	scene	level	objects

PxDefaultFileOutputStream	outStream(pathToRepXFile);

PxU64	start	=	0x80000000;	//start	of	reference	ids	for	exported	collection	objects

serializeToRepX(outStream,	collection,	start);

collection->release();

Example	for	deserializing	a	PxCollection	from	a	RepX	stream:

PxDefaultFileInputData	data(pathToRepXFile);

PxCollection*	bufferCollection	=	physics.createCollection();

PxCollection*	sceneCollection	=	physics.createCollection();

PxStringTable*	stringTable	=	NULL;	//we	are	not	interested	in	object	names	here

PxUserReferences*	externalRefs	=	NULL;	//we	assume	there	are	no	external	references

PxUserReferences*	userRefs	=	NULL;	//would	be	used	to	receive	references	and	then	pass	to	dependent	deserialization	calls

deserializeFromRepX(data,	physics,	cooking,	stringTable,	externalRefs

physics.addCollection(*sceneCollection,	scene);	//add	the	scene	level	objects	to	the	PxScene	scene.

bufferCollection->release();

sceneCollection->release();

Example	for	upgrading	a	RepX	stream:

PxDefaultFileInputData	data(pathTo30RepXFile);	//load	an	older	3.x	repx	file

RepXCollection*	collection	=	createCollection(data,	foundation.getAllocatorCallback

RepXCollection*	upgraded	=	&RepXUpgrader::upgradeCollection(*collection

PxDefaultFileOutputStream	outStream(pathToNewRepXFile);

upgraded->save(outStream);	//save	the	result	to	file

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Simulation	Statistics

Interface

In	 this	chapter	we	will	have	a	quick	 look	at	 the	statistics	 information	 that
PhysX	 collects	 every	 simulation	 step.	 Usually,	 this	 information	 can	 be
explored	 in	 the	 PhysX	 Visual	 Debugger	 but	 we	 do	 offer	 a	 PhysX	 API
method	 as	 well	 to	 allow	 applications	 to	 access	 the	 data	 directly.	 After	 a
simulation	 step	 and	 a	 call	 to	 PxScene::fetchResults(),	 the	 simulation
statistics	 for	 the	 processed	 step	 can	 be	 retrieved	 through	 the
PxScene::getSimulationStatistics()	interface.	The	method	copies	the	data	to
a	 user	 provided	 PxSimulationStatistics	 structure.	 For	 details	 about	 the
individual	members	please	refer	to	the	API	documentation.

Note: 	Do	not	fetch	the	simulation	statistics	while	the	simulation	is
running.

Usage

The	 provided	 simulation	 statistics	 is	 mainly	 meant	 to	 help	 investigate
performance	 issues.	 It	provides	a	quantitative	summary	of	 the	work	done,
i.e.,	 the	 number	 of	 objects	 or	 combination	 of	 objects	 which	 have	 been
processed	 in	 the	 current	 simulation	 step.	 For	 example,	 if	 you	 encounter
performance	 spikes	 in	 certain	 frames,	 then	 the	 simulation	 statistics	might
give	some	insight	into	possible	causes.	For	instance:

Has	 a	 large	 amount	 of	 volumes	 been	 added	 or	 removed	 from	 the
broadphase	 in	 one	 single	 step?	 You	 could	 try	 to	 distribute	 the
addition/removal	of	objects	over	a	couple	of	simulation	steps	or	maybe
there	is	a	particle	system	in	the	scene	whose	grid	size	is	very	small.
Are	 there	 suddenly	 many	 more	 collision	 pairs	 processed	 than
expected?	This	 could	 be	 caused	 by	 a	 badly	 configured	 collision	 pair
filter	or	maybe	some	PxPairFlags	have	been	accidentally	raised.
etc.

Please	 keep	 in	 mind	 that	 the	 simulation	 statistics	 are	 currently	 less	 a
measurement	of	what	the	scene	contains	but	rather	what	got	processed.	So
it	 is	only	partially	helpful	 to	detect	whether	objects	have	been	configured
and	arranged	properly.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Advanced	Rigid	Body	Topics

Continuous	Collision	Detection

When	 continuous	 collision	 detection	 (or	 CCD)	 is	 turned	 on,	 the	 affected
rigid	bodies	will	not	go	through	other	objects	at	high	velocities	(a	problem
also	known	as	tunneling).	To	enable	CCD,	three	things	need	to	be	happen:

1.	 CCD	needs	to	be	turned	on	at	scene	level:

PxPhysics*	physx;

...

PxSceneDesc	desc;

desc.flags	|=	PxSceneFlag::eENABLE_SWEPT_INTEGRATION;

...

2.	 Pairwise	CCD	needs	to	be	enabled	in	the	pair	filter:

static	PxFilterFlags	filterShader(

								PxFilterObjectAttributes	attributes0,

								PxFilterData	filterData0,

								PxFilterObjectAttributes	attributes1,

								PxFilterData	filterData1,

								PxPairFlags&	pairFlags,

								const	void*	constantBlock,

								PxU32	constantBlockSize)

{

								pairFlags	=	PxPairFlag::eRESOLVE_CONTACTS;

								pairFlags	|=	PxPairFlag::eSWEPT_INTEGRATION_LINEAR;

								return	PxFilterFlags();

}

...

desc.filterShader							=	testCCDFilterShader;

physx->createScene(desc);

3.	 Swept	bounds	need	to	be	enabled	for	each	shape	that	requires	CCD:

PxShape*	shape;

...

shape->setFlag(PxShapeFlag::eUSE_SWEPT_BOUNDS,	true);

Once	enabled,	CCD	only	activates	at	above	a	certain	velocity	treshold.	This
treshold	 can	 be	 controlled	 using	 two	 PxSceneDesc	 parameters,
PxSceneDesc::sweptIntegrationLinearSpeedFactor	 and
PxSceneDesc::sweptIntegrationAngularSpeedFactor.

For	 a	 pair	 of	 objects	 with	 CCD	 enabled,	 swept	 integration	 will	 still	 be
skipped	if	for	both	objects	the	below	formula	evaluates	to	false:

bool	isMovingFast	=	smallest	<	((linearVelocity.magnitude()	*	a	+

Where:

smallest	=	bounds.halfDimensions().smallestDimension()

largest	=	bounds.halfDimensions().largestDimension()

a	=	sweptIntegrationLinearSpeedFactor

b	=	sweptIntegrationAngularSpeedFactor

a	and	b	default	to	2.0f	because	an	object	must	only	move	half	its	size	to	be
considered	fast,	and	this	accounts	for	it.

Articulations

An	articulation	 is	 a	 single	 actor	 comprising	 a	 set	 of	 links	 (each	 of	which
behaves	 like	 a	 rigid	 body)	 connected	 together	 with	 special	 joints.	 Every
articulation	has	a	tree-like	structure	-	so	there	can	be	no	loops	or	breaks.

Articulations	are	a	somewhat	experimental	feature	of	the	SDK,	under	active
research.	 Currently	 their	 primary	 use	 is	 modeling	 physically	 actuated
characters.	 They	 support	 higher	mass	 ratios,	more	 accurate	 drive	models,
have	 better	 dynamic	 stability	 and	 a	 more	 robust	 recovery	 from	 joint
separation	 than	 standard	 PhysX	 joints.	 However,	 they	 are	 considerably
more	 expensive	 -	 the	 CPU	 budget	 on	 XBox360	 for	 the	 collision	 and
dynamics	of	a	20-link	articulation	is	in	the	region	of	0.5	CPU-milliseconds.

Although	articulations	do	not	directly	build	on	joints,	they	use	very	similar
configuration	mechanisms.	We	assume	in	 this	section	 that	you	are	already
familiar	with	using	PhysX	joints.

Creating	an	Articulation

To	create	an	articulation,	first	create	the	articulation	actor	without	links:

PxArticulation	*articulation	=	physics.createArticulation();

Then	add	links	one	by	one,	each	 time	specifying	a	parent	 link	(NULL	for
the	parent	of	the	initial	link),	and	the	pose	of	the	new	link:

PxsArticulationLink*	link	=	articulation->createLink(parent,	linkPose

link->createShape(linkGeometry,	material);

PxRigidBodyExt::updateMassAndInertia(*link,	1.0f);

Articulation	 links	 have	 a	 restricted	 subset	 of	 the	 functionality	 of	 rigid
bodies.	 They	 may	 not	 be	 kinematic,	 and	 they	 do	 not	 support	 damping,
velocity	 clamping,	 or	 contact	 force	 thresholds.	 Sleep	 state	 and	 solver

iteration	 counts	 are	 properties	 of	 the	 entire	 articulation	 rather	 than	 the
individual	links.

Each	time	a	link	is	created	beyond	the	first,	a	PxArticulationJoint	is	created
between	it	and	its	parent.	Specify	the	joint	frames	for	each	joint,	in	exactly
the	same	way	as	for	a	PxJoint:

PxArticulationJoint	*joint	=	link->getInboundJoint();

joint->setParentPose(parentAttachment);

joint->setChildPose(childAttachment);

Finally,	add	the	articulation	to	the	scene:

scene.addArticulation(articulation);

Articulation	Joints

The	 only	 form	 of	 articulation	 joint	 currently	 supported	 is	 an	 anatomical
joint,	whose	properties	are	similar	 to	D6	joint	configured	for	a	 typical	rag
doll.	Specifically,	 the	 joint	 is	 a	 spherical	 joint,	with	 angular	drive,	 a	 twist
limit	around	the	child	joint	frame's	x-axis,	and	an	elliptical	swing	cone	limit
around	the	parent	joint	frame's	x-axis.	The	configuration	of	these	properties
is	 very	 similar	 to	 a	 D6	 or	 spherical	 joint,	 but	 the	 options	 provided	 are
slightly	different.

The	swing	limit	is	a	hard	elliptical	cone	limit	which	does	not	support	spring
or	restitution	from	movement	perpendicular	to	the	limit	surface.	You	can	set
the	limit	ellipse	angle	as	follows:

joint->setSwingLimit(yAngle,	zAngle);

fot	the	limit	angles	around	y	and	z.	Unlike	the	PxJoint	cone	limit	the	limit
provides	a	 tangential	 spring	 to	 limit	movement	of	 the	axis	along	 the	 limit
surface.	Once	configured,	enable	the	swing	limit:

joint->setSwingLimitEnabled(true);

The	twist	limit	allows	configuration	of	upper	and	lower	angles:

joint->setTwistLimit(lower,	upper);

and	again	you	must	explicitly	enable	it:

joint->setTwistLimitEnabled(true);

As	 usual	 with	 joint	 limits,	 it	 is	 good	 practice	 to	 use	 a	 sufficient	 limit
contactDistance	value	 that	 the	 solver	will	 start	 to	 enforce	 the	 limit	before
the	limit	threshold	is	exceeded.

Articulation	 joints	 are	 not	 breakable,	 and	 it	 is	 not	 possible	 to	 retrieve	 the
constraint	force	applied	at	the	joint.

Driving	an	Articulation

Articulations	 are	 driven	 through	 joint	 acceleration	 springs.	You	 can	 set	 a
position	 target,	 a	 velocity	 target,	 and	 spring	 and	 damping	 parameters	 that
control	 how	 strongly	 the	 joint	 drives	 towards	 the	 target.	You	 can	 also	 set
compliance	 values,	 indicating	 how	 strongly	 a	 joint	 resists	 acceleration.	A
compliance	near	zero	indicates	very	strong	resistance,	and	a	compliance	of
1	indicates	no	resistance.

Articulations	 are	 driven	 in	 two	 phases.	 First	 the	 joint	 spring	 forces	 are
applied	 (we	use	 the	 term	 internal	 forces	 for	 these)	 and	 then	 any	 external
forces	 such	 as	 gravity	 and	 contact	 forces.	 You	 may	 supply	 different
compliance	values	for	at	each	joint	for	each	phase.

Note	that	with	joint	acceleration	springs,	the	required	strength	of	the	spring
is	estimated	using	 just	 the	mass	of	 the	 two	bodies	connected	by	 the	 joint.
By	 contrast,	 articulation	 drive	 springs	 account	 for	 the	 masses	 of	 all	 the
bodies	 in	 the	articulation,	 and	any	 stiffness	 from	actuation	at	other	 joints.
This	 estimation	 is	 an	 iterative	 process,	 controlled	 using	 the
externalDriveIterations	 and	 internalDriveIterations	 properties	 of	 the

PxArticulation	class.

Articulation	Projection

When	 any	 of	 the	 joints	 in	 an	 articulation	 separate	 beyond	 a	 specified
threshold,	 the	 articulation	 is	 projected	 back	 together	 automatically.
Projection	 is	 an	 iterative	 process,	 and	 the	 PxArticulation	 attributes
separationThreshold	 and	 projectionIterations	 control	 when	 projection
occurs	and	trade	cost	for	robustness.

Substepping

You	 may	 want	 the	 simulation	 frequency	 of	 physx	 to	 be	 higher	 than	 the
frame	 rate	 of	 your	 application,	 to	 allow	 for	 higher	 fidelity	 simulation	 or
better	 stability.	 The	 simplest	way	 to	 do	 this	 is	 just	 to	 call	 simulate()	 and
fetchResults()	multiple	times:

for(PxU32	i=0;	i<substepCount;	i++)

{

								...	pre-simulation	work	(update	controllers,	etc)	...

								scene->simulate(substepSize);

								scene->fetchResults(true);

								...	post	simulation	work	(process	physics	events,	etc)	...

}

The	 code	 in	 Samples/SampleBase/SampleStepper.cpp	 in	 the	 sample
framework	demonstrates	a	different	approach	using	completion	tasks.

Using	Completion	Tasks

If	 you	 submit	 a	 completion	 task	 to	 the	 scene	 in	 the	 simulate()	 call,	 the
simulation	will	 decrement	 its	 reference	count	when	 simulation	completes,
which	(assuming	there	are	no	outstanding	references)	will	cause	the	task	to
run.	 The	 completion	 task	 first	 calls	 fetchResults	 and	 performs	 any	 per-
substep	work:

mScene->fetchResults(true);

mSample->onSubstep(mSubStepSize);

Since	 a	 task	 may	 not	 submit	 itself	 as	 a	 completion	 to	 simulate(),	 the
completion	tasks	are	double	buffered.	To	start	another	simulation	step,	the
completion	task	registers	the	other	task	with	the	task	manager	(which	also
sets	the	reference	count	to	1),	calls	simulate()	again	if	necessary:

StepperTask	&s	=	ownerTask	==	&mCompletion0	?	mCompletion1	:	mCompletion0

s.setContinuation(*mScene->getTaskManager(),	NULL);

mScene->simulate(mSubStepSize,	&s);

Finally,	 it	 releases	 the	 reference	which	 prevents	 the	 new	 completion	 task
from	executing:

s.removeReference();

Synchronizing	with	Other	Threads

An	 important	 consideration	 for	 substepping	 is	 that	 simulate()	 and
fetchResults()	 are	 classed	 as	 write	 calls	 on	 the	 scene,	 and	 it	 is	 therefore
illegal	 to	 read	 from	or	write	 to	a	scene	while	 those	 functions	are	 running.
PhysX	 does	 not	 lock	 its	 scene	 graph,	 but	 it	 will	 report	 an	 error	 in	 the
checked	build	if	it	detects	that	multiple	threads	make	concurrent	calls	to	the
same	scene,	unless	they	are	all	read	calls.

To	synchronize	with	the	rendering	thread	the	sample	stepper	holds	an	extra
reference	 to	 the	 first	 completion	 task	 until	 the	 renderDone()	 method	 is
invoked,	 so	 that	 the	 renderer	 can	 safely	 read	 the	 scene	 in	 parallel	 with
simulation.	 On	 completion	 of	 all	 substeps,	 the	 stepper	 signals	 a
synchronization	object	which	may	be	checked	with	a	wait()	method.

Custom	Constraints

Constraint	is	a	more	general	term	for	joints.	Constraints	use	shaders	for	the
same	 reason	 as	 contact	 filtering:	 There	 is	 a	 requirement	 to	 inject
performance	sensitive	custom	code	into	the	SDK.	While	joints	were	native
objects	 of	 the	 PhysX	 2.x	 API,	 PhysX	 3.0	 only	 supports	 a	 fully
customizeable	constraint	object	in	the	core	API,	and	all	2.x	joint	types	are
implemented	using	this	mechanism	as	extensions.	Let	us	take	a	short	 look
at	 how	 this	 works.	 Once	 the	 reader	 understands,	 he	 will	 be	 in	 a	 good
position	to	create	his	own	joint	types.	You	should	read	the	chapter	on	joints
before	you	try	to	understand	their	workings,	however.

When	 you	 call	 PxJointCreate(),	 the	 extensions	 library	 first	 fills	 out	 a
PxConstraintDesc	 object,	 which	 is	 a	 bunch	 of	 parameters	 for	 constraint
creation.	Here	is	the	code	for	a	spherical	joint:

PxConstraintDesc	nxDesc;

nxDesc.actor[0]																									=	desc.actor[0];

nxDesc.actor[1]																									=	desc.actor[1];

nxDesc.flags																												=	desc.constraintFlags;

nxDesc.linearBreakImpulse							=	desc.breakForce;

nxDesc.angularBreakImpulse						=	desc.breakTorque;

nxDesc.solverPrep																							=	SphericalJointSolverPrep

nxDesc.project																										=	SphericalJointProject;

nxDesc.visualize																								=	SphericalJointVisualize;

nxDesc.dataSize																									=	sizeof(SphericalJointData

nxDesc.connector																								=	joint->getConnector();

The	 first	 few	 settings	 are	 self	 explanatory	 ...	 like	 the	 actors	 to	 connect,
when	 the	 joint	 should	break,	 and	 so	on.	The	next	 three	are	 three	callback
functions	--	user	defined	shaders.	(See	the	section	on	filter	shaders	to	find
out	what	 shaders	 are,	 and	 the	 rules	 that	 apply	 to	 them.)	They	 contain	 the
code	that	mathematically	defines	 the	behavior	of	 the	 joint.	Every	 time	 the
joint	needs	to	be	solved,	the	simulation	will	call	these	functions.

Finally,	 the	 'connector'	 is	 a	 class	 of	 additional	 user	 defined	 joint	 specific
functionality	 that	 are	 not	 called	 from	 the	 solver	 directly,	 and	 are	 not
shaders.

Lastly,	the	filled	out	descriptor	is	used	to	create	the	constraint	object:

PxConstraint*	constraint	=	physics.createConstraint(nxDesc);

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Persistent	Contact	Manifold

Introduction

PhysX	SDK	3.2	provides	two	types	of	collision	detection:

1.	 Default	collision	detection

The	default	 collision	 detection	 system	uses	 a	mixture	 of	SAT	 (Separating
Axis	 Theorem)	 and	 distance-based	 collision	 detection	 to	 generate	 full
contact	manifolds.	It	generates	all	the	potential	contacts	in	one	frame,	so	it
lends	 itself	 better	 to	 stable	 stacking.	 This	 approach	 is	 stable	 for	 small
contact	 offsets	 and	 rest	 offsets	 but	 may	 not	 generate	 the	 correct	 contact
points	 when	 large	 offsets	 are	 used	 because	 it	 approximates	 the	 contact
points	in	these	situations	by	plane	shifting.

2.	 Persistent	Contact	Manifold	(PCM)

PCM	 is	 a	 fully	 distance-based	 collision	 detection	 system,	which	 uses	 the
Gilbert-Johnson-Keerthi	 algorithm	 (GJK)	 and	 the	 Expanding	 Polytope
Algorithm	 (EPA)	 to	 calculate	 one	 contact	 at	 the	 point	 of	 deepest
penetration.	 It	 then	 uses	 an	 incremental	 method	 to	 build	 up	 a	 contact
manifold	by	recycling	contacts	 from	past	 frames,	accumulating	up	 to	 four
contacts	per	frame.	This	approach	is	quite	efficient	in	terms	of	performance
and	 memory.	 However,	 it	 can	 reduce	 stacking	 stability	 when	 simulating
with	 large	 timesteps,	 tall	 stacks	 and	 small	 objects.	 As	 this	 approach	 is
distance-based,	 it	 will	 generate	 the	 correct	 contact	 points	 for	 arbitrary
contact	offsets/rest	offsets.

Note	that	PCM	is	under	active	development,	and	is	not	yet	as	mature	as	the
default	collision	system.

Enabling	the	Persistent	Contact	Manifold

To	enable	PCM,	set	the	flag	in	the	PxSceneDesc::flags:

PxSceneDesc	sceneDesc;

sceneDesc.flags	|=	PxSceneFlag::eENABLE_PCM;

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Coulomb	Friction

Introduction

PhysX	SDK	3.2	provides	two	different	types	of	friction	models:

1.	 Default	friction	model

The	default	friction	model	is	constraint-based	friction	model.	It	is	efficient
and	 leads	 to	 very	 stable	 friction	 behavior	 even	 at	 relatively	 low	 solver
iterations.	However,	as	it	is	constraint-based,	this	approach	can	lead	to	very
strong	static	friction,	which	can	diverge	from	the	analytical	results	expected
for	a	given	friction	coefficient.	This	makes	it	ideal	for	simulations	in	which
accuracy	can	be	traded	off	for	performance;	a	situation	common	in	games.

2.	 Coulomb	friction	model

The	Coulomb	friction	model	is	based	on	the	Coulomb	laws	of	friction.	It	is
less	efficient	than	the	default	friction	model	and	it	can	require	more	solver
iterations	 to	 achieve	 stable	 stacking	 behavior.	 However,	 its	 friction
behaviors	are	much	closer	to	the	analytical	results	than	the	default	friction
model	 so	 could	 be	 preferable	 for	 applications	 where	 accurate	 friction
behavior	 is	 important.	 The	 Coulomb	 model	 comes	 in	 two	 variants,	 one-
directional	and	 two-directional.	The	one-directional	approach	 is	 similar	 in
terms	of	workload	to	the	default	friction	model	and	can	be	stable	at	similar
solver	 iteration	 counts.	 Its	 behavior	 is	 closer	 to	 the	 analytical	 results	 but
diverges	slightly.	The	one-directional	approach	is	a	simplification	of	the	full
Coulomb	 model,	 in	 which	 the	 friction	 for	 a	 given	 point	 of	 contact	 is
reduced	to	a	one-directional	friction	model.	This	simplification	allows	us	to
reduce	 the	 number	 of	 iterations	 required	 for	 convergeance	 but	 is	 not	 as
accurate	as	 the	 full	 two-directional	model.	Therefore,	 in	order	 to	 simulate
stable	stacking,	we	need	 to	 increase	 the	number	of	solver	 iterations	 in	 the
two-directional	model.

Enabling	The	Coulomb	Friction	Model

To	 enable	 the	 Coulomb	 friction	 model,	 set	 one	 of	 the	 two	 flags	 in	 the
PxSceneDesc::flags:

PxSceneDesc	sceneDesc;

sceneDesc.flags	|=	PxSceneFlag::eENABLE_ONE_DIRECTIONAL_FRICTION;

or:

sceneDesc.flags	|=	PxSceneFlag::eENABLE_TWO_DIRECTIONAL_FRICTION;

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Particles

Introduction

PhysX	3	offers	two	particle	system	types	-	a	generic	particle	system	and	an
SPH	 fluid	 particle	 system.	 The	 generic	 particle	 system	 provides	 basic
particle	motion	 and	 collision	with	 rigid	 actors.	 It	 can	 be	 used	 for	 objects
that	require	collisions	against	the	environment,	but	for	which	inter-particle
interations	are	not	needed.	Examples	include	small	debris,	sparks	or	leaves.
The	 SPH	 fluid	 particle	 system	 can	 be	 used	 for	 fluid	 effects	 that	 require
approximate	incompressibility	and	flowing	behavior,	such	as	liquids	or	fog
and	smoke	filling	up	a	volume.

PhysX	 3	 takes	 care	 of	 collision	 detection	 and	 particle	 dynamics,	 while
auxiliary	 facilities	 such	 as	 emitters,	 lifetime	maintenance	 etc.	 need	 to	 be
provided	by	the	application.

SampleParticles	 shows	 both	 particle	 system	 types	 being	 used:
PxParticleSystem	 is	 used	 for	 small	 debris	 and	 smoke,	 while
PxParticleFluid	is	used	for	the	waterfall.

Creating	Particle	Systems

Sample	Reference:

PxParticleSystem*	SampleParticles::createParticleSystem(...)

PxParticleFluid*	SampleParticles::createFluid(...)

Both	particle	system	classes	PxParticleSystem	and	PxParticleFluid	 inherit
from	 PxParticleBase,	 which	 is	 the	 common	 interface	 providing	 particle
manipulation	 and	 collision	 functionality.	 Particle	 systems	 inherit	 from
PxActor	and	can	be	added	to	a	scene.

The	following	section	shows	how	a	particle	system	is	created	and	added:

//	set	immutable	properties.

PxU32	maxParticles	=	100;

bool	perParticleRestOffset	=	false;

//	create	particle	system	in	PhysX	SDK

PxParticleSystem*	ps	=	mPhysics->createParticleSystem(maxParticles

//	add	particle	system	to	scene,	in	case	creation	was	successful

if	(ps)

								mScene->addActor(*ps);

Particle	fluids	can	be	created	in	a	similar	fashion.

There	 are	 three	 types	 of	 particle	 system	 properties.	 Some	 need	 to	 be
specified	 when	 the	 particle	 system	 is	 created	 and	 can't	 be	 changed
afterwards.	 Some	 are	 mutable	 while	 the	 particle	 system	 is	 not	 part	 of	 a
scene.	Others	can	be	changed	at	any	time.

Immutable	 properties	 of	 PxParticleBase	 that	 need	 to	 be	 specified	 at
creation:

maxParticles:	The	maximum	number	of	particles	that	can	be	added	to
a	 particle	 system.	 The	 smaller	 the	 value,	 the	 smaller	 the	 memory

footprint	of	the	particle	system	is	going	to	be.
particleBaseFlags,
PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET:
Enables/disables	 per-particle	 rest	 offsets.	 Memory	 can	 be	 saved	 by
turning	per	particle	rest	offsets	off.

Properties	of	PxParticleBase	which	are	immutable	when	the	particle	system
is	part	of	a	scene:

maxMotionDistance:	 The	 maximum	 distance	 a	 particle	 can	 travel
during	one	simulation	step.	High	values	may	hurt	performance,	while
low	values	may	restrict	the	particle	velocity	too	much.
gridSize:	A	 hint	 for	 the	PhysX	SDK	 to	 choose	 the	 particle	 grouping
granularity	for	proximity	tests	and	parallelization.	See	particleGrid.
restOffset:	 Defines	 the	 minimum	 distance	 between	 particles	 and	 the
surface	of	rigid	actors	that	is	maintained	by	the	collision	system.
contactOffset:	Defines	the	distance	at	which	contacts	between	particles
and	rigid	actors	are	created.	The	contacts	are	internally	used	to	avoid
jitter	and	sticking.	It	needs	to	be	larger	than	restOffset.
particleReadDataFlags:	 Specifies	 a	 subset	 of	 simulation	 properties
which	 are	 returned	 to	 the	 application	 after	 simulation.	 See
readingParticles.
particleBaseFlags,	 PxParticleBaseFlag::eGPU:	 Enable/disable	 GPU
acceleration.
particleBaseFlags,	 PxParticleBaseFlag::eCOLLISION_TWOWAY:
Enable/disable	two-way	interaction	between	rigid	bodies	and	particles.

Properties	 of	 PxParticleFluid	 which	 are	 immutable	 when	 the	 particle
system	is	part	of	a	scene:

restParticleDistance:	Defines	the	resolution	of	the	particle	fluid.

Mutable	properties	of	PxParticleBase:

restitution:	Restitution	used	for	particle	collision.
dynamicFriction:	Dynamic	friction	used	for	particle	collision.

staticFriction:	Static	friction	used	for	particle	collision.
damping:	Velocity	damping	constant,	which	is	globally	applied	to	each
particle.
externalAcceleration:	 Acceleration	 applied	 to	 each	 particle	 at	 each
time	 step.	 The	 scene	 gravity	 which	 is	 added	 to	 the	 external
acceleration	 by	 default	 can	 be	 disabled	 using
PxActorFlag::eDISABLE_GRAVITY.
particleBaseFlags,	 PxParticleBaseFlag::eENABLED:
Enables/disables	particle	simulation.
particleBaseFlags,	 PxParticleBaseFlag::ePROJECT_TO_PLANE:
Enables/disables	projection	mode	which	confines	particles	to	a	plane.
projectionPlaneNormal,	 projectionPlaneDistance:	 Defines	 plane	 for
the	projection	mode.
particleMass:	Mass	used	for	two	way	interaction	with	rigid	bodies.
simulationFilterData:	 Filter	 data	 used	 to	 filter	 collisions	 between
particles	and	rigid	bodies.	See	collisionFiltering.

Mutable	properties	of	PxParticleFluid:

stiffness:	The	 stiffness	 (or	 gas	 constant)	 influences	 the	 calculation	of
the	pressure	 force	 field.	Low	values	of	 stiffness	make	 the	 fluid	more
compressible	 (i.e.,	 springy),	 while	 high	 values	 make	 it	 less
compressible.	 The	 stiffness	 value	 has	 a	 significant	 impact	 on	 the
numerical	 stability	 of	 the	 simulation;	 setting	 very	 high	 values	 will
result	in	instability.	Reasonable	values	are	usually	between	1	and	200.
viscosity:	Viscosity	 controls	 a	 fluid's	 thickness.	 For	 example,	 a	 fluid
with	a	high	viscosity	will	behave	 like	 treacle,	while	a	 fluid	with	 low
viscosity	will	be	more	like	water.	The	viscosity	value	scales	the	force
to	reduce	the	relative	velocity	of	particles	within	the	fluid.	Reasonable
values	are	usually	between	5	and	300.

Creating	Particles

Sample	Reference:

void	ParticleSystem::createParticles(...)

PhysX	 3	 itself	 has	 no	 built-in	 emitters.	 Instead,	 it	 simply	 provides	 an
interface	 to	 create	 particles	 with	 initial	 properties.	 Specifying	 particle
indices	and	positions	is	mandatory,	while	velocities	and	rest	offsets	may	be
specified	 optionally.	 In	 order	 to	 provide	 per-particle	 rest	 offsets
PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET	 needs	 to	 be	 set.
The	 rest	 offsets	 are	 not	 allowed	 to	 be	 larger	 than
PxParticleBase.getRestOffset().	 Per-particle	 flags	 can	 be	 provided	 but	 do
not	serve	any	purpose	in	PhysX	3,	since	all	particle	flags	are	read	only.

Particles	in	PhysX	3	can	be	accessed	with	constant	array	indices	throughout
their	 lifetime.	 The	 application	 specifies	 an	 index	 for	 each	 particle	 on
creation.	 Usually	 the	 application	 maintains	 its	 own	 representation	 of
particles	 which	 already	 have	 associated	 indices	 that	 can	 be	 reused	 for
PhysX.	If	the	application	does	not	have	appropriate	indices	at	its	disposal,	it
can	 use	 an	 index	 pool	 provided	 by	 the	 PhysX	 extensions	 library
PxParticleExt::IndexPool	as	explained	here:	indexPool.

Note:	 In	PhysX	3	 all	 particle	 access	 such	 as	 creating,	 releasing,	 updating
and	 reading	 particles	 can	 only	 be	 carried	 out	while	 the	 simulation	 of	 the
scene	is	not	being	executed.

Example	for	creating	a	few	particles:

//	declare	particle	descriptor	for	creating	new	particles

//	based	on	numNewAppParticles	count	and	newAppParticleIndices,	newAppParticlePositions	arrays.

PxParticleCreationData	particleCreationData;

particleCreationData.numParticles	=	numNewAppParticles;

particleCreationData.indexBuffer	=	PxStrideIterator<const	PxU32>(newAppParticleIndices

particleCreationData.positionBuffer	=	PxStrideIterator<const	PxVec3

//	create	particles	in	*PxParticleSystem*	ps

bool	success	=	ps->createParticles(particleCreationData);

The	indices	specified	for	particle	creation	need	to	be	unique	and	within	the
limit	of	PxParticleBase::getMaxParticles().

Note:	For	fluid	particles	it	is	necessary	to	spawn	particles	at	distances	close
to	PxParticleFluid::getRestParticleDistance()	in	order	to	achieve	a	regular
emission,	otherwise	particles	will	spread	immediately	in	all	directions.	The
sample	 implements	 two	 types	 of	 emitters	 -	 a	 constant	 rate	 emitter,	 and	 a
constant	pressure	emitter,	which	is	suitable	for	fluid	particles.

Releasing	Particles

Sample	reference:

void	ParticleSystem::update(...)

Particles	 can	 be	 released	 by	 providing	 indices	 to	 the	 particle	 system.	 As
opposed	 to	 older	 versions	 of	 the	 PhysX	 SDK,	 particles	 get	 immediately
released.

Example	for	releasing	a	few	particles:

//	declare	strided	iterator	for	providing	array	of	indices	corresponding	to

//	particles	that	should	be	removed

PxStrideIterator<const	PxU32>	indexBuffer(appParticleIndices);

//	release	particles	in	*PxParticleSystem*	ps

ps->releaseParticles(numAppParticleIndices,	indexBuffer);

It	is	a	requirement	that	the	indices	passed	to	the	release	method	are	unique
and	correspond	to	existing	particles.

All	particles	can	be	released	at	once	by	calling:

ps->releaseParticles();

Since	 only	 a	 limited	 number	 of	 particle	 slots
(PxParticleBase::getMaxParticles())	 are	 available	 it	 might	 be	 appropriate
to	replace	old	particles	with	new	ones.	This	can	be	achieved	for	instance	by
maintaining	an	application-side	particle	lifetime.	There	are	other	reasons	to
release	particles:

Drains	 can	 be	 useful	 to	 remove	 particles	 that	 go	 to	 locations	 where
they	are	not	needed	anymore.	See	particleDrains.
The	 spatial	 data	 structure	 used	 for	 particles	 may	 overflow.	 Particles

that	 cannot	 be	 covered	 are	 marked	 and	 should	 be	 released.	 See
particleGrid.

Index	Pool	Extension

Example	for	allocating	particle	indices	using	the	PhysX	extensions	library:

//	create	an	index	pool	for	a	particle	system	with	maximum	particle	count	of	maxParticles

PxParticleExt::IndexPool*	indexPool	=	PxParticleExt::createIndexPool

//	use	the	indexPool	for	allocating	numNewAppParticles	indices	that	can	be	used

//	for	particle	creation	throughout	the	particle	system	lifetime.	If	numAllocated

//	is	smaller	than	numNewAppParticles,	the	maxParticles	limit	was	exceeded

PxU32	numAllocated	=	indexPool->allocateIndices(numNewAppParticles

//	in	order	to	reuse	particle	slots,	the	indices	should	be	handed	back	to	the

//	indexPool	after	the	particles	have	been	released

indexPool->freeIndices(numAppParticleIndices,	PxStrideIterator<PxU32

//	if	no	further	index	management	is	needed,	the	pool	should	be	released

indexPool->release();

Updating	Particles

The	following	per-particle	updates	are	carried	out	immediately:

Position	updates:	Teleporting	particles	from	one	location	to	another.
Velocity	updates:	Directly	altering	the	velocities	of	particles.
Rest	offset	updates:	Changes	particle	rest	offsets	(only	available	with
PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET).

Particle	updates	that	are	carried	out	during	the	next	scene	simulation	step:

Force	 updates:	 Results	 in	 a	 velocity	 change	 update	 according	 to	 a
vector	unit	specified	by	PxForceMode.

Example	for	force	update:

//	specify	strided	iterator	to	provide	update	forces

PxStrideIterator<const	PxVec3>	forceBuffer(appParticleForces);

//	specify	strided	iterator	to	provide	indices	of	particles	that	need	to	be	updated

PxStrideIterator<const	PxU32>	indexBuffer(appParticleForceIndices);

//	specify	force	update	on	PxParticleSystem	ps	choosing	the	"force"	unit

ps->addForces(numAppParticleForces,	indexBuffer,	forceBuffer,	PxForceMode

Reading	Particles

Sample	reference:

void	ParticleSystem::update(...)

The	 PhysX	 SDK	 does	 not	 provide	 to	 the	 user	 all	 simulated	 per-particle
properties	of	a	particle	system	by	default.	The	application	can	specify	 the
data	it	needs	by	configuring	PxParticleBase::particleReadDataFlags:

PxParticleReadDataFlag::ePOSITION_BUFFER:	On	by	default.
PxParticleReadDataFlag::eFLAGS_BUFFER:	On	by	default.
PxParticleReadDataFlag::eVELOCITY_BUFFER:	Off	by	default.
PxParticleReadDataFlag::eREST_OFFSET_BUFFER:	Off	by	default.
PxParticleReadDataFlag::eCOLLISION_NORMAL_BUFFER:	Off	by
default.
PxParticleReadDataFlag::eDENSITY_BUFFER:	 Only	 available	 for
particle	fluids	and	off	by	default.

Particle	flags	provide	more	information	on	individual	particles:

PxParticleFlag::eVALID:	 If	 set,	 the	 particle	 was	 created	 beforehand
and	not	yet	released.	If	not	set,	the	particle	slot	does	not	contain	a	valid
particle.	 All	 other	 properties	 are	 invalid	 in	 this	 case	 and	 should	 be
ignored.
PxParticleFlag::eCOLLISION_WITH_STATIC:	 Shows	 whether	 a
particle	collided	with	a	rigid	static	during	the	last	simulation	step.
PxParticleFlag::eCOLLISION_WITH_DYNAMIC:	 Shows	 whether	 a
particle	collided	with	a	dynamic	rigid	body	during	the	last	simulation
step.
PxParticleFlag::eCOLLISION_WITH_DRAIN:	 Shows	 whether	 a
particle	 collided	with	 a	 rigid	 actor	 shape	 that	was	marked	 as	 a	 drain
(particleDrains).
PxParticleFlag::eSPATIAL_DATA_STRUCTURE_OVERFLOW:

Shows	whether	 a	 particle	 had	 to	 be	 omitted	when	 building	 the	SDK
internal	spatial	data	structure	(particleGrid).

Particle	collision	normals	 represent	contact	normals	between	particles	and
rigid	 actor	 surfaces.	A	 non-colliding	 particle	 has	 a	 zero	 collision	 normal.
Collision	 normals	 are	 useful	 e.g.	 for	 orienting	 the	 particle	 visualization
according	to	their	contact	with	rigid	actors.

Particle	densities	provided	by	particle	 fluids	can	be	used	 for	 rendering.	A
particle	density	has	a	value	of	zero	for	a	particle	that	is	completely	isolated.
It	has	a	value	of	one	for	a	particle	that	has	a	particle	neighborhood	with	a
mean	spacing	corresponding	to	PxParticleFluid::getRestParticleDistance().

Particle	data	can	only	be	read	while	the	scene	simulation	is	not	executing.
In	order	 to	 get	 access	 to	 the	SDK	buffers	 a	PxParticleReadData	 instance
needs	to	be	acquired	from	the	SDK.	It	has	the	following	properties:

numValidParticles:	 Total	 number	 of	 valid	 particles	 for	 the
corresponding	particle	system.
validParticleRange:	The	 index	range	of	valid	particles	 in	 the	particle
buffers.
validParticleBitmap:	Bitmap	of	valid	particle	locations.
positionBuffer,	 positionBuffer,	 velocityBuffer,	 restOffsetBuffer,
flagsBuffer,	 collisionNormalBuffer:	 Strided	 iterators	 for	 particle
properties.

Additionally	paticle	fluids	provide	PxParticleFluidReadData	with

densityBuffer:	Strided	iterator	for	particle	densities.

Example	of	how	to	access	particle	data:

//	lock	SDK	buffers	of	*PxParticleSystem*	ps	for	reading

PxParticleReadData*	rd	=	ps->lockParticleReadData();

//	access	particle	data	from	PxParticleReadData

if	(rd)

{

								PxStrideIterator<const	PxParticleFlags>	flagsIt(rd->flagsBuffer

								PxStrideIterator<const	PxVec3>	positionIt(rd->positionBuffer

								for	(unsigned	i	=	0;	i	<	rd->validParticleRange;	++i,	++flagsIt

								{

																if	(*flagsIt	&	PxParticleFlag::eVALID)

																{

																								//	access	particle	position

																								const	PxVec3&	position	=	*positionIt;

																}

								}

								//	return	ownership	of	the	buffers	back	to	the	SDK

								rd->unlock();

}

Example	 of	 how	 to	 use	 the	 valid	 particle	 bitmap	 to	 access	 particle	 data
(without	showing	the	locking	and	unlocking):

if	(rd->validParticleRange	>	0)

{

								//	iterate	over	valid	particle	bitmap

								for	(PxU32	w	=	0;	w	<=	(rd->validParticleRange-1)	>>	5;	w++

								{

																for	(PxU32	b	=	rd->validParticleBitmap[w];	b;	b	&=

																{

																								PxU32	index	=	(w	<<	5	|	Ps::lowestSetBit(b

																								//	access	particle	position

																								const	PxVec3&	position	=	rd->positionBuffer

																}

								}

}

Particle	Drains

Sample	reference:

void	SampleParticles::createDrain()

The	 sample	 uses	 a	PxShape	 plane,	marked	 as	 a	 drain,	 to	 delete	 particles.
The	drain	represents	a	lake	that	the	fluid	particles	flow	into,	and	is	used	as	a
general	safety	net	in	case	any	particles	escape	from	the	level.

Drains	 are	 generally	 a	 good	 method	 for	 keeping	 the	 particle	 count	 and
spread	under	control.	Placing	drains	around	the	area	of	interest	in	which	a
particle	system	is	used	helps	to	maintain	good	performance	of	the	particle
simulation.	The	area	of	interest	could,	for	example,	also	be	moved	with	the
player.

Example	of	how	to	flag	a	PxShape	rbShape	as	a	drain:

rbShape->setFlag(PxShapeFlag::ePARTICLE_DRAIN,	true);

Particles	 that	 collide	 with	 a	 drain	 are	 marked	 with
PxParticleFlag::eCOLLISION_WITH_DRAIN	and	may	be	released.

Particle	Grid	and	Spatial	Data	Structure	Overflow

Sample	reference:

void	ParticleSystem::update(...)

The	PhysX	SDK	uses	a	grid	to	subdivide	the	particles	of	a	particle	system
into	 spatial	 groups.	 This	 is	 done	 to	 accelerate	 proximity	 queries	 and	 for
parallelization	purposes.	The	grid	size	parameter	needs	to	be	experimentally
adjusted	 with	 PxParticleBase::setGridSize()	 for	 best	 performance.	 When
doing	 this	 it	 is	 helpful	 to	 visualize	 the	 grid	 using
PxVisualizationParameter::ePARTICLE_SYSTEM_GRID.	 Small	 grid	 size
values	might	 result	 in	spatial	data	structure	overflow,	since	 the	number	of
grid	cells	is	limited	to	about	1000.	Large	grid	size	values	on	the	other	hand
might	result	 in	poor	performance	due	 to	 ineffective	spatial	queries	or	 lack
of	parallelization	opportunities.

In	case	of	overflow,	some	particles	will	stop	colliding	with	rigid	actors	 in
the	 scene.	 These	 particles	 are	 marked	 with
PxParticleFlag::eSPATIAL_DATA_STRUCTURE_OVERFLOW	 and	 should
be	released.

Collision	Filtering

Sample	reference:

PxFilterFlags	SampleParticlesFilterShader(...)

Filtering	 particle	 versus	 rigid	 body	 collisions	 can	 be	 useful	 to	 avoid
unnecessary	performance	overhead	or	simply	to	avoid	undesired	collisions.
The	sample	filter	shader	is	setup	to

Avoid	 particles	 colliding	with	 trigger	 shapes	 (this	 is	 also	 the	 default
filter	shader	behavior)
Just	have	the	particles	collide	with	the	drain	shape
Have	two	capsules	with	different	radii	to	represent	a	force	field	around
the	laser.	Each	capsule	interacts	with	just	one	particle	system	instance,
smoke	or	water,	to	achieve	effects	of	different	strengths.

Filter	 information	 for	 particles	 can	 be	 specified	 by	 calling
PxParticleBase::setSimulationFilterData().

GPU/CUDA	Acceleration

Sample	reference:

void	SampleBase::onInit()

PhysX	 3	 supports	 GPU	 acceleration.	 This	 allows	 for	 larger	 and	 more
detailed	 particle	 effects	 while	 retaining	 good	 performance	 levels.	 To
achieve	 this	 gain	we	must	 use	 a	pxtask::GpuDispatcher	 for	 the	 scene	we
want	to	add	the	particle	system	to:

#ifdef	PX_WINDOWS

								//	create	cuda	context	manager

								pxtask::CudaContextManagerDesc	cudaContextManagerDesc;

								pxtask::CudaContextManager*	cudaContextManager	=	pxtask::createCudaContextManager

#endif

								PxSceneDesc	sceneDesc(mPhysics->getTolerancesScale());

								//...

#ifdef	PX_WINDOWS

								if	(cudaContextManager)

																sceneDesc.gpuDispatcher	=	cudaContextManager->getGpuDispatcher

#endif

								//...

								physicsSdk->createScene(sceneDesc);

A	 particle	 system	 can	 be	 configured	 for	 GPU	 simulation	 by	 setting
PxParticleBaseFlag::eGPU.	Toggling	GPU	acceleration	while	 the	particle
system	is	part	of	a	scene	might	have	a	bad	impact	on	performance	since	its
state	needs	to	be	copied	to	or	from	the	GPU	device	memory.	It	is	therefore
better	 to	 set	 the	 flag	 with	 PxParticleBase::setParticleBaseFlag()	 before
adding	the	particle	system	to	the	scene.

Convex,	Triangle	and	Height	field	meshes	are	automatically	mirrored	in	the
GPU	memory	when	the	corresponding	shapes	are	within	the	proximity	of	a
GPU	 accelerated	 particle	 system.	 This	 may	 cause	 some	 undesired
performance	 hiccups	 which	 can	 be	 prevented	 by	 mirroring	 the	 meshes

explicitly,	as	shown	in	this	example:

#ifdef	PX_WINDOWS

								//	mirror	PxTriangleMesh	triangleMesh	providing	the	corresponding	cudaContextManager	of	the	desired	scene.

								PxParticleGpu::createTriangleMeshMirror(triangleMesh,	*cudaContextManager

								//	later	release	the	obsolete	mirror

								PxParticleGpu::releaseTriangleMeshMirror(triangleMesh,	*cudaContextManager

#endif

Additional	SampleParticles	Information

The	performance	level	of	the	particle	sample	varies	by	platform.	Therefore
different	particle	loads	are	chosen	for	different	platforms,	as	can	be	seen	in:

void	SampleParticles::onInit()

The	sample	makes	use	of	various	helper	classes:

ParticleSystem:	 Encapsulates	 a	 PxParticleSystem	 or	PxParticleFluid
instance	 and	manages	 application	 side	 data	 such	 as	 particle	 lifetimes
and	orientations	for	debris.	It	facilitates	creating	and	releasing	particles
and	double	buffers	particle	data	for	asynchronous	rendering.
RenderParticleSystemActor:	 Owns	 a	 ParticleSystem	 and	 provides
rendering	functionality.
ParticleEmitterRate:	Emits	particles	at	a	specified	rate	(#particles	per
second).
ParticleEmitterPressure:	Emits	particles	maintaining	a	certain	distance
between	them.
SampleParticles::Emitter:	 Connects	 an	 emitter	 as	 described	 above
with	a	RenderParticleSystemActor.
SampleParticles::Raygun:	 Provides	 functionality	 for	 the	 ray	 force
field,	rigid	body	debris,	particle	debris	and	smoke	emission.

In	 the	 sample,	 the	 smoke	 effect	 is	 achieved	 by	 using	 a	PxParticleSystem
without	 gravity.	 Each	 particle	 is	 rendered	 as	 a	 point	 sprite	with	 a	 smoke
texture.	 The	 sprites	 fade	 away	when	 the	 particles	 get	 close	 to	 the	 end	 of
their	 lifespan.	 The	 smoke	 particles	 collide	 with	 the	 scene,	 which	 can	 be
seen	when	roaming	the	smoke	with	the	ray-gun.	Smoke	is	generated	for	the
craters,	as	well	as	for	the	ray-gun	impacts.

Two	kinds	of	debris	are	shown	in	the	sample.	Larger	chunks	of	debris	are
represented	using	convex-shaped	 rigid	bodies.	Smaller	but	more	abundant
chunks	are	represented	by	particles,	which	helps	performance.	The	particle

based	debris	is	rendered	using	instanced	meshes.	It	is	spawned	in	the	craters
and	at	the	ray-gun	impact	location.

In	order	 to	give	the	chunks	the	appearance	of	a	 tumbling	motion	a	simple
trick	is	used.

1.	 Assign	an	initial	random	rotation	matrix	to	each	particle.
2.	 Change	 this	 rotation	 matrix	 proportional	 to	 the	 linear	 velocity	 of

particle.

The	 implementation	 of	 this	 approach	 can	 be	 found	 in	 the	 following
functions:

void	ParticleSystem::initializeParticlesOrientations()

void	ParticleSystem::modifyRotationMatrix(...)

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Cloth

Introduction

PhysX	 3	 cloth	 is	 a	 rewrite	 of	 the	 PhysX	 2	 deformables,	 tailored	 towards
simulating	 character	 cloth.	 Softbodies,	 tearing,	 two-way	 interaction,	 and
world	 collision	 have	 been	 removed,	 while	 behavior	 and	 performance	 for
cloth	simulation	have	been	improved.

Creating	Cloth	Fabric

The	 PxClothFabric	 class	 describes	 the	 constraint	 structure	 for	 a	 cloth.
Constraints,	 for	 example	 a	 distance	 constraint,	 consist	 of	 two	 particle
indices	and	a	 rest-length.	These	constraints	are	chained	 together	as	 fibers,
where	two	consecutive	constraints	of	a	fiber	share	a	particle,	multiple	fibers
are	then	further	grouped	into	sets.	By	imposing	the	restriction	that	fibers	of
the	 same	 set	 do	not	 overlap	nor	 contain	 cycles,	 the	 fibers	 of	 a	 set	 can	be
solved	 in	 parallel.	 Each	 fabric	 may	 be	 shared	 between	 multiple	 cloth
objects.

The	cloth	solver	operates	on	one	set	of	fibers	at	a	time.	This	is	referred	as	a
solver	 phase,	 each	 phase	 has	 its	 own	 constraint	 type,	 such	 as	 stretching,
bending	or	shearing,	and	an	associated	stiffness	value.

The	simplest	way	to	create	a	fabric	is	to	use	the	cloth	cooking	API.	Given	a
PxClothMeshDesc,	 the	cooker	will	create	a	set	of	constraints	for	a	regular
manifold	triangle	or	quad	mesh.	The	cooker	will	assign	rest	lengths	and	rest
angles	 from	 the	 mesh	 automatically	 and	 it	 will	 organise	 constraints	 into
vertical	stretch,	horizontal	stretch,	bending,	or	shear	phases.

Below	is	an	example	 function	 that	creates	a	 fabric	using	 the	cooking	API
and	memory	streams:

PxClothFabric*	createFabric(PxPhysics	&physics,	PxCooking	&cooking

{

								//	In	this	example,	we	cook	the	fabric	on	the	fly	through	a	memory	stream

								//	Note	that	we	can	also	use	a	file	stream	and	pre-cook	the	mesh	to	save	the	cooking	time

								PxToolkit::MemoryOutputStream	wb;

								PX_ASSERT(desc.isValid());

								//	Cook	the	fabric	data	into	memory	buffer

								if	(!cooking.cookClothFabric(desc,	gravityDir,	wb))

																return	0;

								//	Read	fabric	from	memory	stream

								PxToolkit::MemoryInputData	rb(wb.getData(),	wb.getSize());

								return	physics.createClothFabric(rb);

}

Note:	The	direction	of	gravity	is	provided	as	a	hint	to	the	cooker,	'vertical'
constraints	will	be	placed	parallel	to	this	vector.

Creating	Cloth	Collision	Data

In	 contrast	 to	PhysX	2	 deformables,	 PhysX	3	 cloth	 does	 not	 collide	with
rigid	 bodies.	 Instead,	 each	 cloth	 object	 supports	 collision	 with	 spheres,
capsules,	planes	and	convex	shapes	(groups	of	planes),	these	shapes	are	all
treated	separately	to	the	main	PhysX	rigid	body	scene.

Capsules	 are	 defined	by	 a	 pair	 of	 indices	 into	 the	 spheres	 array	 and	 each
sphere	may	have	a	different	radius	thus	forming	a	tapered	capsule.	Sharing
a	sphere	between	two	capsules	is	supported	and	can	be	useful	for	modelling
characters	(upper	and	lower	leg	made	up	from	capsules	can	share	the	sphere
at	 the	 knee),	 this	 sharing	 is	 encouraged	 becaues	 it	 helps	 make	 the
simulation	more	efficient	and	robust.

Sphere	and	capsule	shapes	must	be	specified	at	cloth	construction	time.	The
following	 example	 shows	 how	 to	 set	 up	 the	PxClothCollisionData	 object
for	a	single	capsule	consisting	of	two	spheres	of	radius	0.5	and	0.25:

//	Two	spheres	located	on	the	x-axis

PxClothCollisionSphere	spheres[2]	=

{

								{PxVec3(-1.0f,	0.0f,	0.0f),	0.5f},

								{PxVec3(1.0f,	0.0f,	0.0f),	0.25f}

};

//	A	tapered	capsule

PxU32	capsulePairs[]	=	{	0,	1	};

PxClothCollisionData	collisionData;

collisionData.spheres	=	spheres;

collisionData.numSpheres	=	2;

collisionData.pairIndexBuffer	=	capsulePairs;

collisionData.numPairs	=	1;

Planes	can	be	added	through	PxCloth::addCollisionPlane()	method	at	any
time	after	creation,	but	will	not	be	considered	for	collision	unless	they	are
referenced	by	a	convex	shape.	For	example,	the	following	code	shows	how
to	setup	a	typical	upward	facing	ground	plane	through	the	origin:

PxClothCollisionPlane	p;

p.normal	=	PxVec3(0.0f,	1.0f,	0.0f);

p.distance	=	0.0f;

PxU32	convexMask	=	1;	//	Convex	references	the	first	plane	only

cloth.addCollisionPlane(p);

cloth.addCollisionConvex(convexMask);

Planes	 may	 be	 efficiently	 updated	 after	 construction	 using	 the
PxCloth::setCollisionPlanes()	function.

Continuous	Collision	Detection

Besides	discrete	collision	which	resolves	particles	inside	shapes	at	the	end
of	 each	 iteration,	 continuous	 collision	 detection	 is	 supported	 and	 can	 be
enabled	by	calling:

//	Enable	continuous	collision	detection

cloth.setClothFlag(PxClothFlag::eSWEPT_CONTACT,	true);

Continuous	 collision	 is	 around	 2x	 more	 computationally	 expensive	 than
discrete	collision,	but	it	is	necessary	to	detect	collision	between	fast	moving
objects.	 Continuous	 collision	 analyzes	 the	 trajectory	 of	 particles	 and
capsules	to	determine	when	a	contact	occurs.	After	the	first	time	of	contact,
the	particle	is	moved	with	the	capsule	until	the	end	of	the	iteration.

Note:	The	SIMD	collision	path	handles	sets	of	4	particles	 in	parallel.	 It	 is
therefore	 advantegous	 to	 spatially	 group	 cloth	 particles	 so	 that	 they	 are
likely	to	collide	with	the	same	set	of	shapes.

Creating	Cloth

With	the	fabric	and	collision	data	ready	the	PxCloth	object	can	be	created
and	added	to	the	scene	as	below:

//	Create	a	cloth	object	and	add	to	the	scene

PxCloth*	cloth	=	physics.createCloth(pose,	fabric,	particlePositions

scene.addActor(cloth);

The	particlePositions	 parameter	 is	 an	 array	 of	PxClothParticle	 structures
containing	 the	 initial	 particle	 position	 and	 the	 reciprocal	 of	 the	 particle
mass.	 The	 initial	 positions	 will	 typically	 be	 the	 same	 as	 those	 provided
during	cooking	and	the	mass	of	 the	particle	may	be	set	uniformly	or	non-
uniformly	 as	 appropriate.	 For	 fixed	 position	 particles	 the	 inverse	 mass
should	be	set	to	zero.

Simulation	Overview

For	 one	 PhysX	 simulation	 frame,	 the	 cloth	 solver	 runs	 for	 multiple
iterations.	The	number	of	 iterations	 is	determined	by	 the	solver	 frequency
parameter	and	the	simulation	frame	time.	Each	iteration	integrates	particle
positions	and	solves	distance	constraints,	motion	constraints,	and	character
collision.	 Local	 frame,	 motion	 constraints	 and	 collision	 shapes	 are
interpolated	per	iteration	from	the	per-frame	values	specified	by	the	user.

Particle	Integration

A	particle	state	consists	of	the	current	position	and	the	position	before	the
last	 iteration.	 The	 particle	 velocity	 can	 be	 computed	 by	 dividing	 the
position	delta	by	the	delta	time	of	the	previous	iteration.

Particle	positions	are	stored	in	local	space,	and	accelerating	the	local	frame
affects	 the	 particles.	 The	 amount	 by	 which	 the	 local	 frame	 acceleration
affects	 the	 cloth	 particles	 can	 be	 controlled	 using	 an	 inertia	 scale,	 for
example	to	impart	half	the	local	frame	acceleration	to	the	particles	use:

cloth.setInertiaScale(0.5f);

Limiting	 the	 amount	 that	 local	 frame	 changes	 affect	 particles	 can	 be
especially	useful	for	fast	moving	characters.

Even	 though	using	variable	 time-steps	 is	 generally	not	 recommended,	 the
simulation	tries	to	handle	variable	time-steps	carefully.	Change	in	time-step
is	 taken	 into	 account	 for	 position	 integration,	 and	 external	 forces	 are
integrated	using	a	smoothed	time-step	to	avoid	jittering.

Constraint	Solving

The	solver	is	run	for	a	fixed	number	of	iterations	per	simulation	frame	and
can	 only	 enforce	 the	 constraints	 approximately.	 Two	 solver	 modes	 are
provided	with	a	different	balance	of	 speed	and	convergence	 rate.	A	semi-
implicit	 solver,	 specified	 with	 PxClothPhaseSolverConfig::eSTIFF	 or	 a
Gauss-Seidel	 style	 solver,	 specified	 with
PxClothPhaseSolverConfig::eFAST.

If	 the	 distance	 constraints	 are	 not	 solved	 accurately	 enough,	 the	 cloth
becomes	stretchy.	Because	stretching	cloth	is	most	obvious	under	gravity,	it
is	wise	to	pick	the	more	accurate	but	about	2.5x	slower	semi-implict	solver
for	vertical	stretch	phases.	If	 the	built	 in	cooking	API	is	used	to	construct
the	 fabric	 then	 these	 vertical	 constraints	 will	 be	 placed	 in	 the
PxClothFabricPhaseType::eSTRETCHING	phase	according	to	the	direction
of	gravity	specified	at	cooking	time.

The	faster	solver	is	usually	good	enough	for	the	other	phase	types	because
approximate	 bending	 constraints	 for	 example	 are	 much	 less	 noticeable.
Below	is	an	example	setup	for	multiple	solver	phases:

PxClothPhaseSolverConfig	config;

//	Use	the	semi-implicit	solver	for	vertical	distance	constraints

config	=	cloth.getPhaseSolverConfig(PxClothFabricPhaseType::eSTRETCHING

config.solverType	=	PxClothPhaseSolverConfig::eSTIFF;

config.stiffness	=	1.0f;

cloth.setPhaseSolverConfig(PxClothFabricPhaseType::eSTRETCHING,	config

//	Use	Gauss-Seidel	solver	for	horizontal	constraints

config	=	cloth.getPhaseSolverConfig(PxClothFabricPhaseType::eSTRETCHING_HORIZONTAL

config.solverType	=	PxClothPhaseSolverConfig::eFAST;

config.stiffness	=	1.0f;

cloth.setPhaseSolverConfig(PxClothFabricPhaseType::eSTRETCHING_HORIZONTAL

//	Use	Gauss-Seidel	solver	for	shearing	constraints

config	=	cloth.getPhaseSolverConfig(PxClothFabricPhaseType::eSHEARING

config.solverType	=	PxClothPhaseSolverConfig::eFAST;

config.stiffness	=	1.0f;

cloth.setPhaseSolverConfig(PxClothFabricPhaseType::eSHEARING,	config

//	Use	bending	solver	for	angle	based	bending	constraints

config	=	cloth.getPhaseSolverConfig(PxClothFabricPhaseType::eBENDING_ANGLE

config.solverType	=	PxClothPhaseSolverConfig::eBENDING;

config.stiffness	=	0.5f;

cloth.setPhaseSolverConfig(PxClothFabricPhaseType::eBENDING,	config

Sometimes	 it	 is	 even	 desirable	 that	 distance	 constraints	 are	 not	 enforced
rigorously.	The	stiffness	parameter	allows	only	correcting	a	portion	of	 the
edge	 length	 residual	 per	 iteration,	 for	 example	 to	 reduce	 the	 strength	 of
bending	constraints.	A	separate,	 lower	stiffness	can	be	used	for	edges	 that
are	only	moderately	stretched	or	compressed.	For	example,	a	dress	can	be
made	 to	 stretch	when	 the	 character	 is	 taking	 large	 steps,	 but	 still	 behave
correctly	during	pirouettes.

The	following	code	shows	how	to	set	up	a	phase	such	that	when	edges	are
compressed	between	60%	and	100%	of	the	rest-length,	a	stiffness	of	0.4	=
0.8	*	0.5	will	be	used.	If	 the	edge	is	compressed	more	than	60%	or	if	 the
edge	is	stretched,	a	stiffness	of	0.8	will	be	used:

PxClothPhaseSolverConfig	config;

config.solverType	=	PxClothPhaseSolverConfig::eFAST;

config.stiffness	=	0.8f;

config.stretchStiffness	=	0.5f;

config.stretchLimit	=	0.6f;

Virtual	Particles

Virtual	 particles	 provide	 a	 way	 of	 improving	 cloth	 collision	 without
increasing	 the	 cloth	 resolution.	 They	 are	 called	 'virtual'	 particles	 because
they	only	exist	during	the	collision	processing	stage	and	do	not	have	their
position,	velocity	or	mass	explicitly	 stored	 like	 regular	particles,	 they	can
be	thought	of	as	providing	additional	samples	on	the	collision	surface.

A	virtual	particle	is	defined	by	3	particle	indices	and	an	index	into	a	weights
table,	the	weights	table	defines	the	barycentric	coordinates	used	to	create	a
virtual	 particle	 position	 from	 a	 linear	 combination	 of	 the	 referenced
particles.	 The	 following	 is	 an	 example	weights	 table	 that	 can	 be	 used	 to
create	a	distribution	of	4	virtual	particles	on	a	triangle:

static	PxVec3	weights[]	=

{

								//	Center	point

								PxVec3(1.0f	/	3,	1.0f	/	3,	1.0f	/	3),

								//	Center	of	sub	triangles

								PxVec3(2.0f	/	3,	1.0f	/	6,	1.0f	/	6),

								PxVec3(1.0f	/	6,	2.0f	/	3,	1.0f	/	6),

								PxVec3(1.0f	/	6,	1.0f	/	6,	2.0f	/	3),

};

During	collision	processing	each	virtual	particle	is	tested	for	collision	like	a
regular	 particle	 and	 the	 collision	 impulse	 is	 redistributed	 back	 to	 the
original	particles	using	reverse	interpolation.

The	code	below	shows	an	example	of	how	to	set	up	the	virtual	particles	for
a	PxClothMeshDesc:

bool	Test::ClothHelpers::createVirtualParticles(PxCloth&	cloth,	PxClothMeshDesc

{

								if(!numSamples)

																return	false;

								PxU32	numFaces	=	meshDesc.triangles.count;

								PxU8*	triangles	=	(PxU8*)meshDesc.triangles.data;

								PxU32	numParticles	=	numFaces	*	numSamples;

								SampleArray<PxU32>	virtualParticleIndices;

								virtualParticleIndices.reserve(4	*	numParticles);

								for	(PxU32	i	=	0;	i	<	numFaces;	i++)

								{

																for	(int	s	=	0;	s	<	numSamples;	++s)

																{

																								PxU32	v0,	v1,	v2;

																								if	(meshDesc.flags	&	PxMeshFlag::e16_BIT_INDICES

																								{

																																PxU16*	triangle	=	(PxU16*)triangles

																																v0	=	triangle[0];

																																v1	=	triangle[1];

																																v2	=	triangle[2];

																								}

																								else

																								{

																																PxU32*	triangle	=	(PxU32*)triangles

																																v0	=	triangle[0];

																																v1	=	triangle[1];

																																v2	=	triangle[2];

																								}

																								virtualParticleIndices.pushBack(v0);

																								virtualParticleIndices.pushBack(v1);

																								virtualParticleIndices.pushBack(v2);

																								virtualParticleIndices.pushBack(s);

																}

																triangles	+=	meshDesc.triangles.stride;

								}

								cloth.setVirtualParticles(numParticles,	virtualParticleIndices

								return	true;

}

Fricton	and	Mass	Scaling

Coloumb	friction	can	be	enabled	and	will	be	applied	for	particle	and	virtual
particle	collisions	by	setting	a	friction	coefficient	between	0	and	1:

cloth.setFrictionCoefficient(0.5f);

Additionally,	there	is	an	option	to	artificially	increase	the	mass	of	colliding
particles,	this	temporary	increase	in	mass	can	help	reduce	stretching	along
edges	 that	 are	 being	 tightly	 pulled	 over	 a	 collision	 shape.	 The	 effect	 is
determined	 by	 the	 relative	 normal	 velocity	 of	 the	 particle	 and	 collision
shape	 and	 a	 user	 defined	 coefficient.	A	value	 of	 20	 is	 reasonable	 starting
point	but	users	are	encouraged	to	experiment	with	this	value:

cloth.setCollisionMassScale(20.0f);

Motion	Constraints

Motion	constraints	lock	the	movement	of	each	particle	inside	a	sphere.	For
example,	an	animation	system	can	sketch	 the	global	movement	of	a	cloth
while	the	fine	scale	details	are	handled	by	the	cloth	simulation.

A	global	scale	and	bias	is	also	applied	to	each	sphere	radius.	If	the	sphere
radius	becomes	zero	or	negative,	the	corresponding	particle	is	locked	at	the
sphere	 center	 and	 the	 inverse	 particle	 mass	 is	 set	 to	 zero	 for	 the	 next
iteration.

Separation	 constraints	 work	 the	 opposite	 way,	 forcing	 a	 particle	 to	 stay
outside	of	a	sphere.	For	cloth	simulations	with	moderate	particle	movement,
this	 can	 be	 used	 to	 represent	 the	 character's	 shape	 more	 accurately	 than
using	capsules	alone.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Vehicles
PhysX	support	for	vehicles	has	been	significantly	reworked	in	3.x.	In	place
of	the	NxWheelShape	class	of	2.8.x,	a	more	optimal	integration	of	the	core
PhysX	 SDK	 and	 vehicle	 simulation	 code	 has	 been	 developed.	 More
specifically,	 the	 vehicles	 component	 now	 sits	 outside	 the	 core	 SDK	 in	 a
manner	 similar	 to	 PhysXExtensions.	 This	 change	 allows	 vehicles	 to	 be
updated	in	a	single	pass	as	well	as	promoting	a	more	intuitive	approach	to
vehicle	 modelling	 data.	 Vehicles	 support	 has	 been	 extended	 from	 the
suspension/wheel/tire	 modelling	 of	 2.8.x	 to	 a	 more	 complete	 model	 that
couples	 modular	 vehicle	 components	 including	 engine,	 clutch,	 gears,
autobox,	differential,	wheels,	tires,	suspensions,	and	chassis.	A	quick	glance
at	 the	data	 structures	 in	PxVehicleComponents.h	will	provide	a	 flavour	of
the	behaviors	supported	by	PhysX	vehicles.

The	vehicle	SDK	can	be	thought	of	as	having	two	separate	components:	the
core	vehicle	SDK	and	an	optional	 set	 of	utility	 classes	 and	 functions	 that
are	provided	as	a	reference	solution	to	common	problems	in	game	vehicle
dynamics.	 The	 utility	 classes	 and	 functions	 may	 be	 found	 in
PxVehicleUtilControl.h,	 PxVehicleUtilSetup.h,	 and
PxVehicleUtilTelemetry.h,	 while	 the	 remaining	 files	 make	 up	 the	 core
vehicle	SDK.	It	 is	 important	 to	note	 that	 these	utility	classes	are	provided
only	as	an	example	solution	to	common	game	vehicle	problems.	It	is	quite
possible	 that	 many	 developers	 will	 be	 able	 to	 use	 these	 utility	 classes
directly	without	modification.	However,	it	is	expected	that	many	developers
will	 use	 these	 classes	 as	 a	 starting	 point	 for	 integrating	 the	 physx	 core
vehicle	 SDK	 with	 gameplay	 code.	 An	 example	 might	 be	 the	 code	 that
filters	 the	 raw	 inputs	 from	 a	 gamepad	 controller	 in	 order	 to	 generate
meaningful	 acceleration,	 brake	 and	 steer	 values	 that	 can	 be	 passed	 to	 the
core	 SDK.	 The	 implementation	 provided	 might	 be	 unsuitable	 for	 some
developers	because	it	is	written	with	specific	assumptions	about	the	kind	of
smoothing	 required	 to	 generate	 enjoyable	 gameplay.	 It	 is	 perfectly
reasonable	 that	 some	 developers	will	 consider	 these	 assumptions	 to	 be	 at
odds	with	the	gameplay	requirements	of	their	project.	Developers	who	find

themselves	in	this	situation	are	invited	to	use	the	given	implementation	as	a
reference	 or	 even	 to	 independently	 develop	 an	 alternative	 if	 they	 wish.
Other	utility	classes	include	data	structures	that	record	telemetry	data	in	real
time	and	helper	functions	to	enable	3-wheeled	cars.

In	 the	following	Sections	 the	steps	 required	 to	create	and	update	a	PhysX
vehicle	 shall	 be	 discussed.	 The	 use	 of	 filter	 shaders	 to	 mark	 shapes	 as
drivable	and	non-drivable	shall	be	presented,	as	well	as	a	demonstration	of
how	to	set	up	the	friction	of	different	combinations	of	tire	type	and	drivable
surface	 type.	 Following	 this,	 the	 recording	 and	 visualization	 of	 vehicle
telemetry	data	is	introduced	with	reference	to	tuning	and	debugging	vehicle
behaviors.	Additionally,	 some	 of	 the	 key	 functions	 to	 query	 the	 internal
vehicle	state	shall	be	introduced.	The	last	Section	details	the	steps	required
to	set	up	3-wheeled	and	N-wheeled	cars	and	tanks.	References	to	example
code	in	SampleVehicle	is	made	throughout.

Vehicle	SDK	Initialization

Before	using	the	vehicle	sdk	it	must	first	be	initialized	in	order	to	set	up	a
number	 of	 threshold	 values	 from	 various	 tolerance	 scales.	 This	 is	 as
straightforward	as	calling	the	following	function:

PX_C_EXPORT	bool	PX_CALL_CONV	PxInitVehicleSDK(PxPhysics&	physics);

This	function	should	be	called	after	setting	up	the	required	PxPhysics	and
PxFoundation	instances.

As	expected,	the	vehicle	sdk	also	has	a	shutdown	process	which	needs	to	be
invoked:

PX_C_EXPORT	void	PX_CALL_CONV	PxCloseVehicleSDK();

This	 needs	 to	 be	 called	 before	 the	 PxPhysics	 instance	 and	 PxFoundation
instance	 are	 released;	 that	 is,	 the	 order	 of	 shutdown	 is	 the	 reverse	 of	 the
initialisation	order.

Vehicle	Creation

In	this	Section	the	process	of	vehicle	creation	shall	be	decomposed	into	an
intuitive	 sequence	of	 simple	procedures.	Each	of	 these	procedures	will	be
explained	in	turn.

The	 first	 step	 in	 the	 process	 is	 to	 configure	 the	 data	 structures	 that
completely	describe	the	vehicle	and	its	components:

PxVehicleWheelsSimData*	wheelsSimData=PxVehicleWheelsSimData::allocate

PxVehicleDriveSimData4W	driveSimData;

The	 above	 code	 instantiates	 the	 data	 structures	 for	 the	 wheels	 of	 a	 4-
wheeled	 car,	 as	 well	 as	 the	 data	 structures	 for	 non-wheel	 data	 such	 as
engine,	 clutch,	 gears	 etc.	 With	 the	 exception	 of	 geometry	 data,	 the	 data
structures	are	all	given	the	default	values	of	a	"typical"	car	at	construction.
Geometry	data	must	be	explicitly	set	to	successfully	complete	the	creation
of	 a	 PhysX	 vehicle,	 while	 the	 data	 fields	 with	 default	 values	 might	 be
inappropriate	 for	 the	 vehicle	 under	 consideration.	 Some	 code	 is	 therefore
required	to	configure	the	data	to	the	requirements	of	the	car	in	the	sample:

PxVehicleChassisData	chassisData;

createVehicle4WSimulationData

								(chassisMass,chassisConvexMesh,

									20.0f,wheelConvexMeshes4,wheelCentreOffsets4,

									*wheelsSimData,driveSimData,chassisData);

This	 code	 introduces	 the	 PxVehicleChassisData	 struct	 that	 is	 used	 to
configure	 the	PhysX	 actor	 that	 represents	 the	 vehicle	 in	 the	PhysX	SDK,
and	 then	 calls	 a	 function	 to	 configure	wheelsSimData,	 driveSimData	 and
chassisData	with	meaningful	data:

void	createVehicle4WSimulationData

(const	PxF32	chassisMass,	PxConvexMesh*	chassisConvexMesh,

	const	PxF32	wheelMass,	PxConvexMesh**	wheelConvexMeshes,	const	PxVec3

	PxVehicleWheelsSimData&	wheelsData,	PxVehicleDriveSimData4W&	driveData

{

								//Extract	the	chassis	AABB	dimensions	from	the	chassis	convex	mesh.

								const	PxVec3	chassisDims=computeChassisAABBDimensions(chassisConvexMesh

								//The	origin	is	at	the	center	of	the	chassis	mesh.

								//Set	the	center	of	mass	to	be	below	this	point	and	a	little	towards	the	front.

								const	PxVec3	chassisCMOffset=PxVec3(0.0f,-chassisDims.y*0.5f

								//Now	compute	the	chassis	mass	and	moment	of	inertia.

								//Use	the	moment	of	inertia	of	a	cuboid	as	an	approximate	value	for	the	chassis	moi.

								PxVec3	chassisMOI

																((chassisDims.y*chassisDims.y	+	chassisDims.z*chassisDims

																	(chassisDims.x*chassisDims.x	+	chassisDims.z*chassisDims

																	(chassisDims.x*chassisDims.x	+	chassisDims.y*chassisDims

								//A	bit	of	tweaking	here.		The	car	will	have	more	responsive	turning	if	we	reduce	the

								//y-component	of	the	chassis	moment	of	inertia.

								chassisMOI.y*=0.8f;

								//Let's	set	up	the	chassis	data	structure	now.

								chassisData.mMass=chassisMass;

								chassisData.mMOI=chassisMOI;

								chassisData.mCMOffset=chassisCMOffset;

								//Work	out	the	front/rear	mass	split	from	the	cm	offset.

								//This	is	a	very	approximate	calculation	with	lots	of	assumptions.

								//massRear*zRear	+	massFront*zFront	=	mass*cm											(1)

								//massRear							+	massFront								=	mass																						(2)

								//Rearrange	(2)

								//massFront	=	mass	-	massRear																																											(3)

								//Substitute	(3)	into	(1)

								//massRear(zRear	-	zFront)	+	mass*zFront	=	mass*cm						(4)

								//Solve	(4)	for	massRear

								//massRear	=	mass(cm	-	zFront)/(zRear-zFront)											(5)

								//Now	we	also	have

								//zFront	=	(z-cm)/2																																																																					(6a)

								//zRear	=	(-z-cm)/2																																																																					(6b)

								//Substituting	(6a-b)	into	(5)	gives

								//massRear	=	0.5*mass*(z-3cm)/z																																									(7)

								const	PxF32	massRear=0.5f*chassisMass*(chassisDims.z-3*chassisCMOffset

								const	PxF32	massFront=chassisMass-massRear;

								//Extract	the	wheel	radius	and	width	from	the	wheel	convex	meshes.

								PxF32	wheelWidths[4];

								PxF32	wheelRadii[4];

								computeWheelWidthsAndRadii(wheelConvexMeshes,wheelWidths,wheelRadii

								//Now	compute	the	wheel	masses	and	inertias	components	around	the	axle's	axis.

								//http://en.wikipedia.org/wiki/List_of_moments_of_inertia

								PxF32	wheelMOIs[4];

								for(PxU32	i=0;i<4;i++)

								{

																wheelMOIs[i]=0.5f*wheelMass*wheelRadii[i]*wheelRadii

								}

								//Let's	set	up	the	wheel	data	structures	now	with	radius,	mass,	and	moi.

								PxVehicleWheelData	wheels[4];

								for(PxU32	i=0;i<4;i++)

								{

																wheels[i].mRadius=wheelRadii[i];

																wheels[i].mMass=wheelMass;

																wheels[i].mMOI=wheelMOIs[i];

																wheels[i].mWidth=wheelWidths[i];

								}

								//Disable	the	handbrake	from	the	front	wheels	and	enable	for	the	rear	wheels

								wheels[PxVehicleDrive4W::eFRONT_LEFT_WHEEL].mMaxHandBrakeTorque

								wheels[PxVehicleDrive4W::eFRONT_RIGHT_WHEEL].mMaxHandBrakeTorque

								wheels[PxVehicleDrive4W::eREAR_LEFT_WHEEL].mMaxHandBrakeTorque

								wheels[PxVehicleDrive4W::eREAR_RIGHT_WHEEL].mMaxHandBrakeTorque

								//Enable	steering	for	the	front	wheels	and	disable	for	the	front	wheels.

								wheels[PxVehicleDrive4W::eFRONT_LEFT_WHEEL].mMaxSteer=PxPi

								wheels[PxVehicleDrive4W::eFRONT_RIGHT_WHEEL].mMaxSteer=PxPi

								wheels[PxVehicleDrive4W::eREAR_LEFT_WHEEL].mMaxSteer=0.0f;

								wheels[PxVehicleDrive4W::eREAR_RIGHT_WHEEL].mMaxSteer=0.0f

								//Let's	set	up	the	tire	data	structures	now.

								//Put	slicks	on	the	front	tires	and	wets	on	the	rear	tires.

								PxVehicleTireData	tires[4];

								tires[PxVehicleDrive4W::eFRONT_LEFT_WHEEL].mType=TIRE_TYPE_SLICKS

								tires[PxVehicleDrive4W::eFRONT_RIGHT_WHEEL].mType=TIRE_TYPE_SLICKS

								tires[PxVehicleDrive4W::eREAR_LEFT_WHEEL].mType=TIRE_TYPE_WETS

								tires[PxVehicleDrive4W::eREAR_RIGHT_WHEEL].mType=TIRE_TYPE_WETS

								//Let's	set	up	the	suspension	data	structures	now.

								PxVehicleSuspensionData	susps[4];

								for(PxU32	i=0;i<4;i++)

								{

																susps[i].mMaxCompression=0.3f;

																susps[i].mMaxDroop=0.1f;

																susps[i].mSpringStrength=35000.0f;

																susps[i].mSpringDamperRate=4500.0f;

								}

								susps[PxVehicleDrive4W::eFRONT_LEFT_WHEEL].mSprungMass=massFront

								susps[PxVehicleDrive4W::eFRONT_RIGHT_WHEEL].mSprungMass=massFront

								susps[PxVehicleDrive4W::eREAR_LEFT_WHEEL].mSprungMass=massRear

								susps[PxVehicleDrive4W::eREAR_RIGHT_WHEEL].mSprungMass=massRear

								//We	need	to	set	up	geometry	data	for	the	suspension,	wheels,	and	tires.

								//We	already	know	the	wheel	centers	described	as	offsets	from	the	rigid	body	centre	of	mass.

								//From	here	we	can	approximate	application	points	for	the	tire	and	suspension	forces.

								//Lets	assume	that	the	suspension	travel	directions	are	absolutely	vertical.

								//Also	assume	that	we	apply	the	tire	and	suspension	forces	30cm	below	the	centre	of	mass.

								PxVec3	suspTravelDirections[4]={PxVec3(0,-1,0),PxVec3(0,-1

								PxVec3	wheelCentreCMOffsets[4];

								PxVec3	suspForceAppCMOffsets[4];

								PxVec3	tireForceAppCMOffsets[4];

								for(PxU32	i=0;i<4;i++)

								{

																wheelCentreCMOffsets[i]=wheelCentreOffsets[i]-chassisCMOffset

																suspForceAppCMOffsets[i]=PxVec3(wheelCentreCMOffsets

																tireForceAppCMOffsets[i]=PxVec3(wheelCentreCMOffsets

								}

								//Now	add	the	wheel,	tire	and	suspension	data.

								for(PxU32	i=0;i<4;i++)

								{

																wheelsData.setWheelData(i,wheels[i]);

																wheelsData.setTireData(i,tires[i]);

																wheelsData.setSuspensionData(i,susps[i]);

																wheelsData.setSuspTravelDirection(i,suspTravelDirections

																wheelsData.setWheelCentreOffset(i,wheelCentreCMOffsets

																wheelsData.setSuspForceAppPointOffset(i,suspForceAppCMOffsets

																wheelsData.setTireForceAppPointOffset(i,tireForceAppCMOffsets

								}

								//Now	set	up	the	differential,	engine,	gears,	clutch,	and	ackermann	steering.

								//Diff

								PxVehicleDifferential4WData	diff;

								diff.mType=PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD;

								driveData.setDiffData(diff);

								//Engine

								PxVehicleEngineData	engine;

								engine.mPeakTorque=500.0f;

								engine.mMaxOmega=600.0f;//approx	6000	rpm

								driveData.setEngineData(engine);

								//Gears

								PxVehicleGearsData	gears;

								gears.mSwitchTime=0.5f;

								driveData.setGearsData(gears);

								//Clutch

								PxVehicleClutchData	clutch;

								clutch.mStrength=10.0f;

								driveData.setClutchData(clutch);

								//Ackermann	steer	accuracy

								PxVehicleAckermannGeometryData	ackermann;

								ackermann.mAccuracy=1.0f;

								ackermann.mAxleSeparation=wheelCentreOffsets[PxVehicleDrive4W

								ackermann.mFrontWidth=wheelCentreOffsets[PxVehicleDrive4W::

								ackermann.mRearWidth=wheelCentreOffsets[PxVehicleDrive4W::

								driveData.setAckermannGeometryData(ackermann);

}

In	 the	 above	 code,	 tire	 types	 have	 been	 specified	 for	 the	 front	 and	 rear
vehicles.	These	tire	types	have	an	influence	on	the	friction	that	the	tires	will
experience	on	different	surface	types.	This	will	be	discussed	in	more	detail
in	Section	Tire	Friction	On	Drivable	Surfaces.

The	next	step	 is	 to	create	a	PhysX	actor	 that	will	be	used	to	represent	 the
vehicle	and	its	collision	geometry	as	a	rigid	body	actor	in	the	PhysX	sdk:

PxRigidDynamic*	vehActor=createVehicleActor4W(chassisData,wheelConvexMeshes4

This	function	creates	a	PhysX	rigid	body	actor,	sets	up	all	the	shapes	for	the
wheels	 and	 chassis,	 configures	 the	 rigid	 body	 mass	 and	 inertia,	 and	 sets
collision	and	scene	query	filters	for	wheel	and	chassis	shapes.	The	filtering
shall	be	discussed	in	more	detail	in	Section	Filtering.	When	adding	shapes
to	the	vehicle	an	ordering	of	the	shapes	is	assumed	such	that	the	wheels	are
added	first	and	in	a	specific	order,	followed	by	the	chassis	shapes.	This	is
documented	in	the	vehicle	SDK,	along	with	a	description	of	further	vehicle
SDK	functions	that	open	up	the	possibility	of	having	any	shape	order.	This
is	discussed	in	more	detail	in	Section	Vehicle	Actor.

The	final	step	is	to	create	a	PhysX	vehicle:

PxVehicleDrive4W*	car	=	PxVehicleDrive4W::allocate(4);

car->setup(&physics,vehActor,*wheelsSimData,driveSimData,0);

This	code	creates	a	car	with	4	driven	wheels	and	no	non-driven	wheels,	as
described	 by	 wheelsSimData/driveSimData,	 and	 with	 a	 rigid	 body
rerpresented	 in	 the	 PhysX	 SDK	 by	 vehActor.	 Two	 representations	 of	 the
vehicle	 (PxVehicleDrive4W	 and	 PxRigidDynamic)	 are	 necessary	 because
vehicles	 are	 simulated	 in	 two	 distinct	 steps.	 In	 the	 first	 step	 the	 vehicle
simulation	code	runs	outside	of	the	core	PhysX	SDK.	This	code	computes
tire	 and	 suspension	 forces/torques	 that	 are	 applied	 to	 each	 vehicle's	 rigid
body	actor,	 in	addition	 to	simulating	 the	 internal	dynamics	of	 the	vehicle.
These	 rigid	body	actors	 are	 subsequently	updated	 inside	 the	PhysX	SDK,
taking	into	account	 the	applied	vehicle	dynamics	forces/torques	as	well	as
the	 collision	 shapes	of	 the	 actor	 that	 represent	 the	 combination	of	 chassis
and	wheels.	More	details	of	these	two	update	steps	are	discussed	in	Section
Vehicle	Update.

Vehicle	Actor

The	actor	representing	the	vehicle	in	the	PhysX	SDK	is	configured	with	this
function:

void	setupActor

(PxRigidDynamic*	vehActor,

	const	PxFilterData&	vehQryFilterData,

	const	PxGeometry**	wheelGeometries,	const	PxTransform*	wheelLocalPoses

	const	PxGeometry**	chassisGeometries,	const	PxTransform*	chassisLocalPoses

	const	PxVehicleChassisData&	chassisData,

	PxPhysics*	physics)

{

								//Add	all	the	wheel	shapes	to	the	actor.

								for(PxU32	i=0;i<numWheelGeometries;i++)

								{

																PxShape*	wheelShape=vehActor->createShape(*wheelGeometries

																wheelShape->setQueryFilterData(vehQryFilterData);

																wheelShape->setSimulationFilterData(wheelCollFilterData

																wheelShape->setLocalPose(wheelLocalPoses[i]);

								}

								//Add	the	chassis	shapes	to	the	actor.

								for(PxU32	i=0;i<numChassisGeometries;i++)

								{

																PxShape*	chassisShape=vehActor->createShape(*chassisGeometries

																chassisShape->setQueryFilterData(vehQryFilterData);

																chassisShape->setSimulationFilterData(chassisCollFilterData

																chassisShape->setLocalPose(chassisLocalPoses[i]);

								}

								vehActor->setMass(chassisData.mMass);

								vehActor->setMassSpaceInertiaTensor(chassisData.mMOI);

								vehActor->setCMassLocalPose(PxTransform(chassisData.mCMOffset

}

Each	 wheel	 and	 chassis	 shape	 is	 assigned	 a	 query	 filter	 data	 and	 a
simulation	 filter	 data.	Additionally,	 each	 shape	 is	 given	 a	 local	 pose.	 For
wheels	this	local	pose	is	just	the	rest	pose	of	the	wheel.	The	local	pose	of
each	wheel	is	subsequently	reset	after	each	vehicle	update	pass	to	reflect	the
wheel's	current	position	along	the	suspension	travel	direction.	See	Section

Vehicle	Update	for	more	details.

The	 above	 code	 adds	 the	 wheel	 shapes	 in	 the	 order	 specified	 in
PxVehicleDrive4W::eWheelOrdering,	 followed	 by	 the	 shapes	 of	 the
chassis.	This	 is	 the	default	 shape	ordering	expected	by	 the	PhysX	vehicle
SDK.	The	freedom	to	order	the	shapes	in	the	actor,	however,	might	not	be
available	in	all	games.	With	this	in	mind	it	is	possible	to	set	up	a	mapping
between	 each	 wheel	 and	 the	 position	 of	 the	 corresponding	 shape	 in	 the
actor's	shapes	array:

void	PxVehicleWheels::setWheelShapeMapping(const	PxU32	wheelId,	const

Tire	Friction	on	Drivable	Surfaces

In	this	Section	setting	up	tire	types,	drivable	surface	types,	and	tire	friction
on	combinations	of	tire	and	surface	type	shall	be	discussed.

In	Section	Vehicle	Creation	 tire	 types	were	 assigned	 to	 the	 front	 and	 rear
tires:

PxVehicleTireData	tires[4];

tires[PxVehicleDrive4W::eFRONT_LEFT_WHEEL].mType=TIRE_TYPE_SLICKS;

tires[PxVehicleDrive4W::eFRONT_RIGHT_WHEEL].mType=TIRE_TYPE_SLICKS

tires[PxVehicleDrive4W::eREAR_LEFT_WHEEL].mType=TIRE_TYPE_WETS;

tires[PxVehicleDrive4W::eREAR_RIGHT_WHEEL].mType=TIRE_TYPE_WETS;

In	 addition	 to	 tire	 types,	 drivable	 surface	 types	 can	 be	 associated	 with
PxMaterial	instances:

mSurfaceTirePairs=PxVehicleDrivableSurfaceToTireFrictionPairs::create

This	 code	 creates	 a	 mapping,	 stored	 in	 a
PxVehicleDrivableSurfaceToTireFrictionPairs	 instance,	 that	 associates	 the
nth	 PxMaterial	 pointer	 in	 the	 drivableSurfaceMaterials	 array	with	 the	 nth
PxVehicleDrivableSurfaceType	 in	 the	 drivableSurfaceTypes	 array.	 As	 a
consequence,	 PxVehicleDrivableSurfaceToTireFrictionPairs	 permits	 a
mapping	between	each	specified	PxMaterial	instance	and	the	integer	value
stored	 in	 PxVehicleDrivableSurfaceType.	 It	 is	 not	 necessary	 to	 store	 all
possible	 PxMaterial	 instances	 in	 the	 hash	 table:	 unrecognised	 PxMaterial
pointers	 are	 automatically	 associated	 with	 a	 surface	 type	 having	 integer
value	zero.

Each	 combination	 of	 surface	 type	 and	 tire	 type	 can	 be	 assigned	 a	 unique
friction	value.	This	allows	different	types	of	tires	to	react	differently	to	the
same	 surface	 conditions.	 Wet	 tires,	 for	 example,	 would	 be	 expected	 to
behave	very	differently	on	wet	 tarmac	 to	slick	 tires.	This	code	refines	 the

friction	for	each	possible	combination	in	SampleVehicle:

for(PxU32	i=0;i<MAX_NUM_SURFACE_TYPES;i++)

{

								for(PxU32	j=0;j<MAX_NUM_TIRE_TYPES;j++)

								{

																mSurfaceTirePairs->setTypePairFriction(i,j,gTireFrictionMultipliers

								}

}

Here,	a	table	of	friction	values	has	been	hard-coded:

//Tire	model	friction	for	each	combination	of	drivable	surface	type	and	tire	type.

static	PxF32	gTireFrictionMultipliers[MAX_NUM_SURFACE_TYPES][MAX_NUM_TIRE_TYPES

{

								//WETS		SLICKS		ICE													MUD

								{0.95f,	0.95f,		0.95f,		0.95f},									//MUD

								{1.10f,	1.15f,		1.10f,		1.10f},									//TARMAC

								{0.70f,	0.70f,		0.70f,		0.70f},									//ICE

								{0.80f,	0.80f,		0.80f,		0.80f}										//GRASS

};

In	this	table	the	friction	of	slick	tires	on	tarmac	has	been	assigned	a	value	of
1.15.	Slick	 tires	on	mud,	on	 the	other	hand,	have	been	assigned	a	 friction
value	 of	 1.10.	 By	 tuning	 this	 table,	 along	with	 the	 tire	 types	 assigned	 to
each	 vehicle	 and	 the	 surface	 types	 associated	 with	 each	 material,	 it	 is
possible	to	modify	the	tire	grip	to	the	specifications	of	any	game.

There	is	no	upper	bound	on	the	friction	values	used	in	the	PhysX	vehicles
SDK.	 Although	 the	 maximum	 value	 of	 friction	 that	 obeys	 the	 laws	 of
physics	is	1.0,	the	PhysX	vehicles	SDK	purposefully	does	not	enforce	this
rule.	One	 reason	 for	 this	 is	 that	 the	vehicle	model	 is	 far	 from	a	 complete
description	of	a	real	vehicle,	meaning	that	some	liberties	need	to	be	taken
with	 friction	 values	 to	 generate	 the	 desired	 behaviour.	 A	 more	 complete
model	 would	 certainly	 provide	 greater	 accuracy	 given	 a	 specific	 set	 of
vehicle	parameters	but	 it	 is	not	at	all	clear	 that	 it	would	provide	a	greater
range	 of	 editable	 and	 controllable	 behaviors	 or	 have	 the	 performance

characteristics	 required	 for	 games.	 Another	 reason	 that	 friction	 is	 not
clamped	at	1.0	is	that	games	typically	simulate	the	physics	update	at	60Hz.
This	 comes	 at	 a	 cost	 to	 numerical	 accuracy,	 especially	 when	 there	 are	 a
number	of	 transient	 tire	 effects	 that	 require	KHz	update	 frequencies.	One
source	 of	 numerical	 accuracy	 is	 the	 amplitude	 of	 oscillation	 of	 the
suspension,	which	is	governed	in	turn	by	the	distance	that	the	vehicle	falls
under	 gravity	 between	 each	 update.	 At	 KHz	 update	 frequencies	 this
simulation	artifact	 is	acceptably	small,	but	not	at	60Hz.	The	 last	 reason	 is
that	 there	 is	 simply	 no	 need	 to	 impose	 the	 strict	 rules	 of	 friction	 on	 the
vehicles	 SDK.	 This	 can	 allow	 interesting	 behaviors	 to	 be	 generated	 that
would	perhaps	be	 impossible	when	constrained	by	 the	 laws	of	 rigid	body
and	 tire	dynamics.	Having	 said	 all	 this,	 however,	 the	 implemented	model
simulated	 at	 60Hz	ought	 to	 have	 enough	 integrity	 that	 only	 small	 tweaks
above	1.0	should	be	necessary.	If	very	large	friction	values	are	required,	say
greater	 than	2.0,	 then	 it	 is	 likely	 that	 something	 is	wrong	with	 the	update
order	or	perhaps	very	unphysical	vehicle	data	has	been	used.

The	 PxMaterial	 instances	 discussed	 here	 are	 the	 results	 of	 per-wheel
raycasts.	 Raycast	 filtering	 shall	 be	 discussed	 in	 more	 detail	 in	 Section
Filtering.	 The	 relationship	 between	 raycast	 execution	 and	 vehicle	 updates
shall	be	introduced	in	Section	Vehicle	Update.

Filtering

In	 this	Section	 the	concepts	of	wheel	 raycast	 filtering	shall	be	 introduced.
Following	this,	the	steps	required	to	add	filter	data	to	a	drivable	surface	and
configure	the	filter	data	of	vehicle	shapes	will	be	described.

The	key	goal	of	filtering	for	vehicles	is	to	configure	raycasts	and	collisions
in	 such	a	way	 that	 raycasts	 along	 the	 suspension	 travel	directions	 interact
with	drivable	surfaces	while	also	ensuring	that	the	wheel	shapes	themselves
never	 collide	 with	 drivable	 surfaces.	 This	 allows	 vehicles	 on	 drivable
surfaces	to	be	supported	by	spring	forces	arising	from	raycast	intersections
without	interference	from	wheel	shape	intersection.

A	 simulation	 filter	 is	 required	 for	 the	wheel	 shapes	 to	 ensure	 they	do	not
collide	with	drivable	surfaces:

PxFilterData	wheelCollFilterData;

wheelCollFilterData.word0=COLLISION_FLAG_WHEEL;

wheelCollFilterData.word1=COLLISION_FLAG_WHEEL_AGAINST;

Similarly,	a	simulation	filter	is	required	for	the	chassis	shapes	but	this	time
it	is	desired	that	the	chassis	shapes	do	collide	with	drivable	surfaces:

PxFilterData	chassisCollFilterData;

chassisCollFilterData.word0=COLLISION_FLAG_CHASSIS;

chassisCollFilterData.word1=COLLISION_FLAG_CHASSIS_AGAINST;

The	combination	of	simulation	filter	shader:

if	((filterData0.word0	!=	0	||	filterData1.word0	!=	0)	&&

								!(filterData0.word0&filterData1.word1	||	filterData1.word0

								return	PxFilterFlag::eSUPPRESS;

with	 the	 definitions	 of	 the
COLLISION_FLAG_DRIVABLE_OBSTACLE_AGAINST	 and

COLLISION_FLAG_WHEEL_AGAINST	 flags	 enforces	 the	 rule	 that	 the
wheel	shapes	do	not	collide	with	the	drivable	surfaces,	while	also	allowing
the	chassis	shapes	to	collide	with	drivable	surfaces.

In	addition	to	simulation	filter	data,	it	is	necessary	to	configure	query	filter
data	 for	 the	vehicle	wheel	 raycasts.	Drivable	 surfaces,	 such	 as	 the	 terrain
and	ramp	obstacles,	are	assigned	query	filter	data	as	follows:

PxFilterData	qryFilterData;

SampleVehicleSetupDrivableShapeQueryFilterData(&qryFilterData);

Non-drivable	 surfaces,	 such	 as	 dynamic	 boxes	 and	 pendula	 in
SampleVehicle,	are	also	assigned	query	filter	data:

PxFilterData	qryFilterData;

SampleVehicleSetupNonDrivableShapeQueryFilterData(&qryFilterData);

In	SampleVehicle,	 the	vehicle	shapes	have	been	assigned	query	filter	data
that	forbids	vehicles	being	treated	as	drivable	surfaces:

PxFilterData	vehQryFilterData;

SampleVehicleSetupVehicleShapeQueryFilterData(&vehQryFilterData);

It	is	not	at	all	necessary	to	stop	cars	driving	on	other	cars.	In	SampleVehicle
this	 choice	 has	 been	 made	 for	 reasons	 of	 simplicity	 but	 it	 would	 be
straightforward	 to	 configure	 the	 scene	 queries	 to	 allow	 cars	 to	 drive	 on
other	cars.	Care	must	be	 taken,	however,	 to	configure	 the	filters	 to	ensure
that	 wheel	 raycasts	 only	 interact	 with	 the	 shapes	 of	 other	 vehicles.	 If	 a
raycast	was	to	intersect	the	geometry	of	the	vehicle	that	issued	the	raycasts
then	 there	 is	 a	 strong	 possibility	 that	 the	 intersection	 with	 the	 drivable
terrain	would	be	rejected	in	favour	of	a	deeper	intersection	with	the	vehicle
geometry.

Similar	to	the	filter	shader	described	above,	a	query	filter	shader	must	also

be	specified:

static	PxSceneQueryHitType::Enum	SampleVehicleWheelRaycastPreFilter

								PxFilterData	filterData0,

								PxFilterData	filterData1,

								const	void*	constantBlock,	PxU32	constantBlockSize,

								PxSceneQueryFilterFlags&	filterFlags)

{

								//filterData0	is	the	vehicle	suspension	raycast.

								//filterData1	is	the	shape	potentially	hit	by	the	raycast.

								PX_UNUSED(filterFlags);

								PX_UNUSED(constantBlockSize);

								PX_UNUSED(constantBlock);

								PX_ASSERT(filterData0.word3	&	SAMPLEVEHICLE_UNDRIVABLE_SURFACE

								return	((0	==	(filterData1.word3	&	SAMPLEVEHICLE_DRIVABLE_SURFACE

}

The	vehicle	SDK	ensures	 that	 filterData0	 in	 the	 above	 function	 is	 always
assigned	 the	query	 filter	data	of	 the	shape	of	 the	wheel	 that	 is	 issuing	 the
raycast.	 For	 the	 case	 of	 SampleVehicle	 this	 means	 that	 filterData0	 will
always	have	the	properties	of	a	non-drivable	surface	because	wheel	shapes
have	been	set	up	to	be	non-drivable	in	the	sample.

Deployment	 of	 the	 query	 filters	 will	 be	 discussed	 in	 Section	 Vehicle
Update.

Vehicle	Update

It	 has	 already	mentioned	 that	 vehicles	 are	updated	 in	 two	 stages:	 specific
vehicle	 code	 that	 updates	 the	 vehicle	 internal	 dynamics	 and	 computes
forces/torques	to	apply	to	the	vehicle's	rigid	body	representation,	followed
by	 an	SDK	update	 that	 accounts	 for	 the	 applied	 forces/torques	 as	well	 as
collision	 with	 other	 scene	 bodies.	 In	 this	 Section	 these	 separate	 update
phases	will	be	discussed	in	some	detail.

Beginning	with	the	vehicle	dynamics	update,	it	is	necessary	to	initialise	and
execute	 batched	 raycasts	 for	 suspension	 line	 intersection	 with	 drivable
shape	surfaces:

void	SampleVehicle_VehicleManager::suspensionRaycasts(PxScene*	scene

{

								//Create	a	scene	query	if	we	haven't	already	done	so.

								if(NULL==mSqWheelRaycastBatchQuery)

								{

																mSqWheelRaycastBatchQuery=mSqData->setUpBatchedSceneQuery

								}

								//Raycasts.

								PxVehicleSuspensionRaycasts(mSqWheelRaycastBatchQuery,mNumVehicles

}

Creating	a	batched	scene	query	is	discussed	elsewhere	in	the	guide	and	in
the	 api	 documentation.	 The	 key	 points	 to	 note	 here	 are	 that
SampleVehicleWheelRaycastPreFilter	 is	 used	 as	 the	 shader	 for	 the	 the
batched	 scene	 query,	 and	 that	 buffers	 have	 been	 pre-allocated	 to	 provide
enough	memory	for	a	single	raycast	hit	for	each	active	wheel.

Having	completed	setting	up	the	scene	queries,	 the	scene	queries	can	now
be	issued	for	all	vehicles:

PxVehicleSuspensionRaycasts(mSqWheelRaycastBatchQuery,mNumVehicles

There	is	some	freedom	in	the	order	in	which	raycasts	can	be	issued	relative
to	 the	 vehicle	 dynamics	 update.	 In	 a	 real-world	 situation	 it	might	 be	 that
raycasts	can	be	issued	on	a	separate	thread	at	the	end	of	the	update	loop	so
that	 they	 are	 ready	 for	 the	beginning	of	 the	next.	However,	 this	 really	 all
depends	 on	 the	 threading	 environment	 and	 the	 ordering	 of	 rigid	 body
updates.	As	always,	a	few	rules	must	be	observed.	The	first	rule	is	that	there
must	 be	 a	 one-to-one	 correspondence	 between	 raycast	 completion	 and
updates	 for	each	vehicle.	The	second	rule	 is	 that	a	 raycast	must	be	 issued
before	an	update	 is	allowed.	That	does	not	mean	 that	 the	 raycast	must	be
issued	 first	 in	 a	 game's	 update	 loop,	 only	 that	 the	 first	 raycasts	 must	 be
completed	before	the	first	update	and	then	each	must	be	done	in	turn.	The
last	rule	is	that	the	raycasts	and	updates	must	be	performed	sequentially	if
they	involve	the	same	vehicles.

With	 the	 raycasts	 complete	 the	 update	 of	 the	 vehicles	 can	 now	 be
performed:

void	SampleVehicle_VehicleManager::update(const	PxF32	timestep,	const

{

								//Update.

								PxVehicleUpdates(timestep,gravity,*mSurfaceTirePairs,mNumVehicles

}

In	Section	Tire	Friction	On	Drivable	Surfaces	 it	was	discussed	how	to	set
up	friction	for	different	combinations	of	drivable	surface	type	and	tire	type.
The	parameter	mSurfaceTirePairs	 in	the	above	code	shows	the	application
of	the	friction	values	and	of	the	mapping	of	PxMaterial	intances	to	integer
values	representing	surface	type.

A	 second	 code-path	 has	 been	 implemented	 to	 allow	 the	 update	 of	 each
vehicle	and	to	record	telemetry	data	for	a	single	specific	vehicle:

void	SampleVehicle_VehicleManager::updateAndRecordTelemetryData

(const	PxF32	timestep,	const	PxVec3&	gravity,	PxVehicleWheels*	focusVehicle

{

								PX_ASSERT(focusVehicle	&&	telemetryData);

								//Update	the	vehicle	for	which	we	want	to	record	debug	data.

								PxVehicleUpdateSingleVehicleAndStoreTelemetryData(timestep

								//Update	the	remaining	vehicles.

								PxVehicleWheels*	vehicles[MAX_NUM_4W_VEHICLES];

								PxU32	numVehicles=0;

								for(PxU32	i=0;i<mNumVehicles;i++)

								{

																if(focusVehicle!=mVehicles[i])

																{

																								vehicles[numVehicles]=mVehicles[i];

																								numVehicles++;

																}

								}

								PxVehicleUpdates(timestep,gravity,*mSurfaceTirePairs,numVehicles

}

The	function:

//Update	the	vehicle	for	which	we	want	to	record	debug	data.

PxVehicleUpdateSingleVehicleAndStoreTelemetryData(timestep,gravity

updates	 a	 single	 vehicle	 and	 collects	 telemetry	 data	 for	 that	 vehicle.	 The
remaining	 cars,	 those	 from	 whom	 telemetry	 data	 is	 not	 collected,	 are
updated	in	the	usual	way.	Telemetry	data	shall	be	discussed	in	more	detail
in	Section	Telemetry.

To	 ensure	 thread	 safety	with	 the	 telemetry	 data	 collection	 it	 is	 important
that	the	update	with	telemetry	data	and	the	regular	update	run	sequentially.
Telemetry	data	is	unlikely	to	be	collected	in	the	final	build	of	a	real	game	so
this	ought	to	have	no	significant	impact	on	release	performance.

The	code	discussed	so	far	in	this	Section	performs	raycasts	for	each	wheel
and	uses	the	results	to	compute	tire	and	suspension	forces	to	apply	to	each
rigid	 body	 actor.	 Simultaneous	 to	 the	 computation	 of	 tire	 and	 suspension
forces,	 wheel	 and	 engine	 rotation	 speeds	 are	 also	 updated.	 None	 of	 this
code,	 however,	 advances	 the	 vehicle	 through	 the	 game	 world.	 This
advancement	 is	performed	by	 the	PhysX	SDK	update,	where	vehicles	 are

represented	by	 rigid	body	actors.	There	 isn't	 too	much	 to	 say	here	 except
that	the	SDK	update	and	the	vehicle	dynamics	update	must	run	sequentially.
It	 ought	 not	 to	matter	 in	which	 order	 they	 are	 updated	 in	 a	 game	 update
loop	or	which	is	updated	first.	It	is	worth	bearing	in	mind,	though,	that	the
vehicle	dynamics	update	poses	the	wheel	shapes	along	the	suspension	travel
using	the	results	of	the	suspension	line	raycasts.	This	might	have	an	impact
on	the	desired	ordering	of	vehicle	update	and	vehicle	render.

Tire	Shaders

It	is	possible	to	replace	the	default	tire	model	used	by	PhysX	vehicles	with
custom	models.	This	requires	a	shader	function	that	can	be	set	per-vehicle
along	with	shader	data	that	must	be	set	per-wheel:

void	PxVehicleWheelsDynData::setTireForceShaderFunction(PxVehicleComputeTireForce

void	PxVehicleWheelsDynData::setTireForceShaderData(const	PxU32	tireId

The	shader	function	must	implement	this	function	prototype:

typedef	void	(*PxVehicleComputeTireForce)

(const	void*	shaderData,

	const	PxF32	tireFriction,

	const	PxF32	longSlip,	const	PxF32	latSlip,	const	PxF32	camber,

	const	PxF32	wheelOmega,	const	PxF32	wheelRadius,	const	PxF32	recipWheelRadius

	const	PxF32	restTireLoad,	const	PxF32	normalisedTireLoad,	const	PxF32

	const	PxF32	gravity,	const	PxF32	recipGravity,

	PxF32&	wheelTorque,	PxF32&	tireLongForceMag,	PxF32&	tireLatForceMag

The	vehicle	update	code	will	call	 the	shader	function	for	each	wheel	with
the	shader	data	for	that	wheel.

Telemetry

The	purpose	of	the	telemetry	data	is	to	expose	the	inner	dynamics	of	the	car
and	aid	handling	tuning	through	the	use	of	telemetry	graphs.	In	this	Section
initialisation,	collection,	and	rendering	of	telemetry	data	shall	be	discussed.

In	Section	Vehicle	Update	the	possibility	of	collecting	telemetry	data	for	a
single	vehicle	was	introduced	with	this	code:

//Update	the	vehicle	for	which	we	want	to	record	debug	data.

PxVehicleUpdateSingleVehicleAndStoreTelemetryData(timestep,gravity

Setting	up	the	telemetry	data	is	relatively	straightforward:

mTelemetryData4W	=	PxVehicleTelemetryData::allocate(4);

const	PxF32	graphSizeX=0.25f;

const	PxF32	graphSizeY=0.25f;

const	PxF32	engineGraphPosX=0.5f;

const	PxF32	engineGraphPosY=0.5f;

const	PxF32	wheelGraphPosX[4]={0.75f,0.25f,0.75f,0.25f};

const	PxF32	wheelGraphPosY[4]={0.75f,0.75f,0.25f,0.25f};

const	PxVec3	backgroundColor(255,255,255);

const	PxVec3	lineColorHigh(255,0,0);

const	PxVec3	lineColorLow(0,0,0);

mTelemetryData4W->setup

									(graphSizeX,graphSizeY,

										engineGraphPosX,engineGraphPosY,

										wheelGraphPosX,wheelGraphPosY,

										backgroundColor,lineColorHigh,lineColorLow);

The	 sizes,	 positions,	 and	 colors	 are	 all	 values	 that	 are	 used	 to	 render	 the
graphs.	 The	 exact	 values	 of	 these	 fields	 will	 depend	 on	 the	 coordinate
system	and	color	coding	being	used	 to	visualize	 the	 telemetry	data.	 In	 the
above	example,	the	coordinates	have	been	configured	to	render	an	engine-
related	graph	in	the	centre	of	the	screen.	Screen	coordinates	have	also	been
specified	 for	 rendering	 data	 associated	with	 each	 of	 the	 four	wheels.	The
coordinates	used	in	the	vehicle	sample	visualize	the	graph	data	of	the	front

left	wheel	at	the	top	left-hand	side	of	the	screen,	the	front	right	wheel	at	the
top	right-hand	side	of	the	screen,	and	the	rear	wheels	at	the	bottom	left	and
right.

The	following	enumerated	lists	detail	the	telemetry	data	that	is	collected:

enum

{

								eCHANNEL_JOUNCE=0,

								eCHANNEL_SUSPFORCE,

								eCHANNEL_TIRELOAD,

								eCHANNEL_NORMALISED_TIRELOAD,

								eCHANNEL_WHEEL_OMEGA,

								eCHANNEL_TIRE_FRICTION,

								eCHANNEL_TIRE_LONG_SLIP,

								eCHANNEL_NORM_TIRE_LONG_FORCE,

								eCHANNEL_TIRE_LAT_SLIP,

								eCHANNEL_NORM_TIRE_LAT_FORCE,

								eCHANNEL_NORM_TIRE_ALIGNING_MOMENT,

								eMAX_NUM_WHEEL_CHANNELS

};

enum

{

								eCHANNEL_ENGINE_REVS=0,

								eCHANNEL_ENGINE_DRIVE_TORQUE,

								eCHANNEL_CLUTCH_SLIP,

								eCHANNEL_ACCEL_CONTROL,

								eCHANNEL_BRAKE_CONTROL,

								eCHANNEL_HANDBRAKE_CONTROL,

								eCHANNEL_STEER_CONTROL,

								eCHANNEL_GEAR_RATIO,

								eMAX_NUM_ENGINE_CHANNELS

};

Data	 is	 collected	 for	 suspension	 jounce,	 suspension	 force,	 tire	 load,
normalised	 tire	 load,	 wheel	 rotation	 speed,	 tire	 friction,	 tire	 longitudinal
slip,	 tire	 longitudinal	 force,	 tire	 lateral	 slip,	 tire	 lateral	 force,	 and	 tire
aligning	moment.	Data	 is	also	collected	separately	for	engine	revs,	engine
drive	 torque,	 clutch	 slip,	 applied	 acceleration/brake/handbrake/steer,	 and
gear	ratio.	For	each	graph	all	associated	data	is	collected	in	separate	graph
channels	that	can	be	accessed	after	the	update	is	complete.

The	data	for	a	particular	graph	channel	is	computed	as	follows:

telemetryData.getWheelGraph(i).computeGraphChannel(activeWheelGraphChannel

This	 code	 computes	 a	 sequence	 of	 screen	 coords	 in	 the	 format
[x0,y0,x1,y1,x2,y2,....xn,yn]	that	represent	the	points	of	the	specified	graph
channel	 of	 the	 engine's	 graph	data.	 In	 SampleVehicle	 only	 a	 single	 graph
channel	 is	 rendered	 at	 a	 time	with	 the	 possibility	 of	 iterating	 through	 the
channels	from	the	keyboard	or	gamepad.	It	is	important	to	note	that	the	data
for	 all	 the	 channels	 (see	 the	 above	 enumerated	 lists)	 is	 available	 so	 it	 is
possible	 to	 visualize	 simultaneously	 many	 channels	 for	 each	 graph.	 The
above	function	also	stores	a	color	for	each	graph	point.	The	idea	here	is	that
each	graph	channel	is	assigned	a	value	that	separates	high	and	low	values,
along	with	a	color	 that	 is	assigned	 to	points	with	high	values,	and	a	color
that	is	assigned	to	points	with	low	values.	This	is	a	useful	feature	if	multiple
channnels	are	being	simultaneously	visualized.	In	SampleVehicle	the	value
that	separates	high	and	low	values	for	each	channel	is	hard-coded	within	the
optional	setup	function	PxVehicleTelemetryData::setup.	With	 this	 function
the	jounce	channel,	for	example,	uses	zero	as	the	demarcation	between	high
value	and	low	value.	This	allows	spring	compression	and	elongation	to	be
easily	 recognised	 from	 the	 different	 colors	 used	 to	 represent	 these	 two
states.	Users	 are	 free	 to	 set	 up	 graphs	 as	 required	 if	 the	 provided	 graph
setup	is	unsuited	to	their	needs.

The	 friction	 and	 surface	 type	 experienced	 by	 each	 tire	 is	 also	 printed	 to
screen.	The	surface	and	tire	types	are	retrieved	as	follows:

tireTypes[i]=focusVehicle.mWheelsSimData.getTireData(i).mType;

surfaceTypes[i]=focusVehicle.mWheelsDynData.getTireDrivableSurfaceType

In	 Section	 Vehicle	 State	 Queries	 there	 is	 further	 discussion	 of	 vehicle
internal	state	queries.

Vehicle	State	Queries

It	has	already	been	mentioned	that	a	PhysX	vehicle	 is	a	multi-shape	actor
with	a	 single	 shape	 for	each	wheel	and	multiple	 shapes	 for	 the	chassis.	 It
has	also	been	mentioned	that	the	local	poses	of	the	wheels	are	set	during	the
vehicle	 dynamics	 update	 to	 reflect	 the	 results	 of	 the	 suspension	 raycasts.
The	transforms	used	to	render	the	vehicle	can	readily	be	found	by	querying
the	shapes	of	the	vehicle:

PxShape*	carShapes[PX_MAX_NUM_WHEELS+1];

const	PxVehicleWheels&	vehicle=*mVehicleManager.getVehicle(carId);

const	PxU32	numShapes=vehicle.getRigidDynamicActor()->getNbShapes();

vehicle.getRigidDynamicActor()->getShapes(carShapes,numShapes);

Further	data	is	recorded	each	update	and	stored	in	the	vehicle.	Much	of	this
data	is	useful	for	triggering	audio	and	graphics	effects	based	on	the	state	of
the	vehicle.	For	example,	particles	with	a	specific	texture	might	be	emitted
from	a	wheel	if	the	wheel	is	found	to	be	spinning	at	high	speed	on	a	specific
surface	type.	The	following	functions	would	then	be	useful:

PxReal	PxVehicleWheelsDynData::getTireLongSlip(const	PxU32	tireIdx

PxReal	PxVehicleWheelsDynData::getTireLatSlip(const	PxU32	tireIdx)

PxU32	PxVehicleWheelsDynData::getTireDrivableSurfaceType(const	PxU32

Alternatively,	the	audio	system	could	be	fed	with	engine	revs	data	using	this
function:

PX_FORCE_INLINE	PxReal	PxVehicleDriveDynData::getEngineRotationSpeed

{

								return	mEnginespeed;

}

For	skidding	audio	and	particle	effects	the	following	functions	are	probably
worth	noting:

PxReal	PxVehicleWheels::computeForwardSpeed()	const;

PxReal	PxVehicleWheels::computeSidewaysSpeed()	const;

Vehicle	Controls

In	 this	 Section	 setting	 the	 control	 values	 used	 to	 drive	 a	 vehicle	 shall	 be
discussed.	 These	 are	 accelerate,	 brake,	 handbrake,	 steer,	 gear	 change	 up,
and	gear	change	down.	The	simplest	way	to	do	this	is	to	use	the	following
function:

void	PxVehicleDriveDynData::setAnalogInput(const	PxReal	analogVal,

One	of	the	difficulties	with	vehicle	dynamics	in	games	is	knowing	how	to
filter	 the	 raw	 controller	 data	 in	 a	 way	 that	 results	 in	 pleasing	 handling.
Players,	 for	 example,	 often	 demonstrate	 their	 eagerness	 to	 accelerate	 by
pressing	 very	 quickly	 on	 the	 accelerator	 trigger	 in	 a	 way	 would	 never
happen	in	a	real	car.	This	rapid	acceleration	can	have	a	counter-producive
effect	because	the	resulting	wheel	spin	reduces	the	lateral	and	longitudinal
forces	 that	 can	be	generated	by	 the	 tire.	To	help	overcome	 some	of	 these
problems	 some	 optional	 code	 has	 been	 provided	 to	 filter	 the	 control	 data
from	keyboard	and	gamepad.

A	solution	to	the	problem	of	filtering	controller	input	data	is	to	assign	a	rise
and	fall	rate	to	each	button	or	pad.	For	analog	values	under	digital	control	it
is	 possible	 to	 simply	 increase	 or	 decrease	 the	 analog	 value	 at	 a	 specified
rate	depending	on	whether	the	digital	input	is	on	or	off.	For	analog	values
under	analog	control	it	makes	more	sense	to	blend	from	the	previous	input
value	 to	 the	current	 input	at	a	specified	rate.	A	slight	complication	 to	 this
simple	model	is	that	the	difficulty	of	achieving	a	large	steer	angle	at	large
speed	must	 also	 be	modelled.	One	 technique	 to	 achieve	 this	would	 be	 to
model	 the	 forces	 from	 the	 tires'	 aligning	 moments	 and	 apply	 these	 to	 a
steering	 linkage	model.	This	 sounds	 rather	complicated	and	quite	difficult
to	 tune.	 A	 simpler	 solution	 might	 be	 to	 scale	 the	 filtered	 steer	 value	 by
another	 value	 in	 range	 (0,1)	 that	 decreases	 at	 high	 speed.	 This	 simpler
method	has	been	implemented	in	the	helper	classes	and	functions.

Rise	and	 fall	 rates	 for	digital	 and	analog	control	have	been	hard-coded	 in
SampleVehicle:

PxVehicleKeySmoothingData	gKeySmoothingData=

{

								{

																3.0f,			//rise	rate	eANALOG_INPUT_ACCEL

																3.0f,			//rise	rate	eANALOG_INPUT_BRAKE

																10.0f,		//rise	rate	eANALOG_INPUT_HANDBRAKE

																2.5f,			//rise	rate	eANALOG_INPUT_STEER_LEFT

																2.5f,			//rise	rate	eANALOG_INPUT_STEER_RIGHT

								},

								{

																5.0f,			//fall	rate	eANALOG_INPUT__ACCEL

																5.0f,			//fall	rate	eANALOG_INPUT__BRAKE

																10.0f,		//fall	rate	eANALOG_INPUT__HANDBRAKE

																5.0f,			//fall	rate	eANALOG_INPUT_STEER_LEFT

																5.0f				//fall	rate	eANALOG_INPUT_STEER_RIGHT

								}

};

PxVehiclePadSmoothingData	gCarPadSmoothingData=

{

								{

																6.0f,			//rise	rate	eANALOG_INPUT_ACCEL

																6.0f,			//rise	rate	eANALOG_INPUT_BRAKE

																12.0f,		//rise	rate	eANALOG_INPUT_HANDBRAKE

																2.5f,			//rise	rate	eANALOG_INPUT_STEER_LEFT

																2.5f,			//rise	rate	eANALOG_INPUT_STEER_RIGHT

								},

								{

																10.0f,		//fall	rate	eANALOG_INPUT_ACCEL

																10.0f,		//fall	rate	eANALOG_INPUT_BRAKE

																12.0f,		//fall	rate	eANALOG_INPUT_HANDBRAKE

																5.0f,			//fall	rate	eANALOG_INPUT_STEER_LEFT

																5.0f				//fall	rate	eANALOG_INPUT_STEER_RIGHT

								}

};

A	look-up	table	has	also	been	specified	to	describe	the	maximum	steer	as	a
function	of	speed:

PxF32	gSteerVsForwardSpeedData[2*8]=

{

								0.0f,											0.75f,

								5.0f,											0.75f,

								30.0f,										0.125f,

								120.0f,									0.1f,

								PX_MAX_F32,	PX_MAX_F32,

								PX_MAX_F32,	PX_MAX_F32,

								PX_MAX_F32,	PX_MAX_F32,

								PX_MAX_F32,	PX_MAX_F32

};

PxFixedSizeLookupTable<8>	gSteerVsForwardSpeedTable(gSteerVsForwardSpeedData

Using	a	PxVehicleDrive4WRawInputData	 instance	 it	 is	 straightforward	 to
record	the	user	inputs	in	the	event	a	keyboard	is	used:

rawInputData.setDigitalAccel(mAccelKeyPressed);

rawInputData.setDigitalBrake(mBrakeKeyPressed);

rawInputData.setDigitalHandbrake(mHandbrakeKeyPressed);

rawInputData.setDigitalSteerLeft(mSteerLeftKeyPressed);

rawInputData.setDigitalSteerRight(mSteerRightKeyPressed);

rawInputData.setGearUp(mGearUpKeyPressed);

rawInputData.setGearDown(mGearDownKeyPressed);

or	in	the	event	that	a	gamepad	is	used:

rawInputData.setAnalogAccel(mAccel);

rawInputData.setAnalogBrake(mBrake);

rawInputData.setAnalogHandbrake(mHandbrake	?	1.0f	:	0.0f);

rawInputData.setAnalogSteer(mSteer);

rawInputData.setGearUp(mGearup);

rawInputData.setGearDown(mGeardown);

Here,	 rawInput	 data	 is	 an	 instance	 of	 the	 vehicle	 SDK	 helper	 class
PxVehicleDrive4WRawInputData.

The	vehicle	SDK	offers	 two	optional	functions	to	smooth	the	keyboard	or
gamepad	data	and	apply	the	smoothed	input	values	to	the	PhysX	vehicle:

if(mUseKeyInputs)

{

								PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData

}

else

{

								PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(gCarPadSmoothingData

}

3-Wheeled,	N-Wheeled	Cars,	and	N-Wheeled	Tanks

The	primary	focus	until	now	has	been	on	how	to	create,	simulate	and	query
4-wheeled	 cars.	 This	 Section	 shall	 focus	 instead	 on	 cars	 that	 either	 have
only	 3	wheels	 or	more	 than	 4	wheels.	 To	 complete	 the	 discussion	many-
wheeled	tanks	shall	be	introduced.

Utility	 functions	have	been	provided	 to	quickly	configure	3-wheeled	cars.
The	basic	idea	is	to	start	with	a	4-wheeled	car	and	then	disable	one	of	the
wheels:

void	PxVehicle4WEnable3WTadpoleMode(PxVehicleWheelsSimData&	suspWheelTireData

void	PxVehicle4WEnable3WDeltaMode(PxVehicleWheelsSimData&	suspWheelTireData

These	functions	ensure	that	no	raycast	hits	are	returned	for	that	wheel	and
additionally	do	 some	other	work	 to	decouple	 the	disabled	wheel	 from	 the
differential,	 disable	 ackermann	 correction,	 re-position	 the	 opposite
remaining	wheel	to	the	centre	of	the	axle,	and	adjust	the	suspension	of	the
opposite	remaining	wheel	to	compensate	for	the	missing	suspension	of	the
disabled	 wheel.	 Further	 wheels	 could	 in	 theory	 be	 removed	 with	 custom
code	to	create	a	vehicle	with	1	or	2	effective	wheels.	At	that	point,	however,
extra	balancing	code	would	be	required	to	prevent	the	vehicle	falling	over.

In	 addition	 to	 removing	 wheels	 from	 a	 vehicle,	 it	 is	 also	 possible	 to
construct	a	PxVehicleDrive4W	with	more	than	4	wheels.	The	functionality
of	 the	 extra	 wheels,	 however,	 is	 slightly	 limited	 compared	 to	 the	 first	 4
wheels.	 More	 specifically,	 only	 the	 first	 4	 wheels	 are	 connected	 to	 the
differential	 or	 the	 steering;	 that	 is,	 only	 the	 first	 block	 of	 4	 wheels	 can
experience	 a	 drive	 torque	 or	 a	 steer	 angle.	 As	 a	 consequence,	 the	 extra
wheels	play	an	identical	role	to	the	rear	wheels	of	a	4-wheeled	car	that	has
front-wheel	drive	or	the	front	wheels	or	a	4-wheeled	car	that	has	rear-wheel
drive.	 Adding	 extra	 wheels	 does	 not	 preclude	 the	 ability	 to	 call
PxVehicle4WEnable3WTadpoleMode	 or

PxVehicle4WEnable3WDeltaMode.	 These	 functions,	 however,	 are	 hard-
coded	to	disable	one	of	the	4	wheels	that	could	be	connected	to	the	steering
and	driven	through	the	differential.

The	following	pseudo-code	illustrates	 the	key	steps	in	 the	creation	of	a	6-
wheeled	vehicle:

PxVehicleWheelsSimData*	wheelsSimData=PxVehicleWheelsSimData::allocate

PxVehicleDriveSimData4W	driveSimData;

setupSimData(wheelsSimData,driveSimData);

PxVehicleDrive4W*	car	=	PxVehicleDrive4W::allocate(6);

PxRigidDynamic*	vehActor=createVehicleActor6W();

car->setup(&physics,vehActor,*wheelsSimData,driveSimData,2);

The	 PhysX	 vehicle	 SDK	 also	 supports	 tanks	 through	 the	 use	 of	 the
PxVehicleDriveTank	class.	Tanks	are	different	to	multi-wheeled	vehicles	in
that	the	wheels	are	all	driven	through	the	differential	in	a	way	that	ensures
that	 all	 the	wheels	on	 the	 left-hand	 side	have	 the	 same	 speed,	 and	 all	 the
wheels	 on	 the	 right-hand	 have	 the	 same	 speed.	 This	 extra	 constraint	 on
wheel	 speed	 mimics	 the	 effect	 of	 the	 caterpillar	 tracks	 but	 avoids	 the
expense	of	 simulating	 the	 jointed	 track	 structure.	Adding	 the	geometry	of
the	caterpillar	tracks	is	as	easy	as	adding	an	actor	shape	down	each	side	and
setting	up	 the	collision	and	query	filters	as	appropriate	for	 the	 tracks.	The
motion	of	 the	caterpillar	 tracks	could	be	rendered	with	a	scrolling	texture,
safe	 in	 the	knowledge	that	all	wheels	have	the	same	speed,	 just	as	 though
they	were	properly	constrained	by	the	track	rotation.

Creating	 a	 PxVehicleDriveTank	 instance	 is	 very	 similar	 to	 creating	 a
PxVehicleDrive4W	instance	with	the	exception	that	tanks	have	no	concept
of	extra	wheels	that	are	not	connected	to	the	differential:	all	tank	wheels	are
driven.	The	following	code	illustrates	how	to	set	up	a	12-wheeled	tank:

PxVehicleWheelsSimData*	wheelsSimData	=	PxVehicleWheelsSimData::allocate

PxVehicleDriveSimData4W	driveSimData;

setupTankSimData(wheelsSimData,driveSimData);

PxVehicleDriveTank*	tank	=	PxVehicleDriveTank::allocate(12);

PxRigidDynamic*	vehActor=createVehicleActor12W();

tank->setup(&physics,vehActor,*wheelsSimData,tankDriveSimData,12);

Controlling	a	tank	is	quite	different	to	controlling	a	car	because	tanks	have
a	 completely	 different	 steering	 mechanism:	 the	 turning	 action	 of	 a	 tank
arises	from	the	difference	in	left	and	right	wheel	speeds,	while	cars	turn	by
the	action	of	a	steering	wheel	that	orientates	the	front	wheels	relative	to	the
forward	motion	of	the	vehicle.	This	requires	quite	a	different	set	of	helper
classes	 and	 functions	 to	 smooth	 the	 control	 inputs.	 Instead	 of	 a
PxVehicleDrive4WRawInputData	 for	 N-wheeled	 cars,
PxVehicleDriveTankRawInputData	 is	 used	 for	 N-wheeled	 tanks.	 Further,
instead	 of
PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs/PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs
for	 N-wheeled	 cars,
PxVehicleDriveTankSmoothDigitalRawInputsAndSetAnalogInputs	 and
PxVehicleDriveTankSmoothAnalogRawInputsAndSetAnalogInputs	 are
used	to	smooth	the	keyboard	and	gamepad	inputs	for	tanks.

PhysX	 tanks	 currently	 support	 two	 drive	 models:
eDRIVE_MODEL_STANDARD	 and	 eDRIVE_MODEL_SPECIAL.	 The
drive	model	eDRIVE_MODEL_SPECIAL	allows	 the	 tank	 tracks	 to	 rotate
in	 different	 directions,	 while	 eDRIVE_MODEL_STANDARD	 does	 not.
These	 two	 modes	 result	 in	 quite	 different	 turning	 actions.	 Drive	 model
eDRIVE_MODEL_STANDARD	 simulates	 the	 usual	 turning	 action	 of	 a
tank:	pushing	 forward	 on	 the	 left(right)	 stick	 drives	 the	 left(right)	wheels
forward,	while	pulling	back	on	the	right(left)	stick	applies	the	brake	to	the
right(left)	 wheels.	 eDRIVE_MODEL_SPECIAL,	 on	 the	 other	 hand,
simulates	a	more	exotic	turning	action	where	pushing	back	on	the	right(left)
stick	 drives	 the	 right(left)	wheels	 backwards.	This	 can	 result	 in	 a	 turning
circle	focused	at	the	centre	of	the	tank.	The	smallest	possible	turning	circle
of	a	 tank	 in	eDRIVE_MODEL_STANDARD	will	have	a	 focus	at	 a	point
along	one	of	the	caterpillar	tracks,	depending	on	whether	the	tank	is	turning
left	or	right.

Tuning	Guide

This	Sections	describes	the	effect	of	the	editable	vehicle	parameters	of	the
data	structures	in	PxVehicleComponents.h.

PxVehicleWheelData

mRadius:

This	is	the	distance	in	metres	between	the	centre	of	the	wheel	and	the
outside	rim	of	the	tire.	It	is	important	that	the	value	of	the	radius
closely	matches	the	radius	of	the	render	mesh	of	the	wheel.	Any
mismatch	will	result	in	the	wheels	either	hovering	above	the	ground	or
intersecting	the	ground.	Ideally,	this	parameter	will	be	exported	from
the	3D	modeller.

mWidth:

This	is	the	full	width	of	the	wheel	in	metres.	This	parameter	has	no
bearing	on	the	handling	but	is	a	very	useful	parameter	to	have	when
trying	to	render	debug	data	relating	to	the	wheel/tire/suspension.
Without	this	parameter	it	would	be	difficult	to	compute	coordinates	for
render	points	and	lines	that	ensure	their	visibility.	Ideally,	this
parameter	will	be	exported	from	the	3D	modeller.

mMass:

This	is	the	combined	mass	of	the	wheel	and	the	tire	in	kg.	Typically,	a
wheel	has	mass	between	20Kg	and	80Kg	but	can	be	lower	and	higher
depending	on	the	vehicle.

mMOI:

This	 is	 the	 component	 of	 the	 wheel's	 moment	 of	 inertia	 about	 the
rolling	axis.	Larger	values	make	it	harder	for	the	wheel	to	rotate	about
this	 axis,	 while	 easier	 values	 make	 it	 easier	 for	 the	 wheel	 to	 rotate

about	 the	 rolling	 axis.	Another	way	 of	 expressing	 this	 is	 that	 a	 high
MOI	will	 result	 in	 less	wheel	 spin	when	stamping	on	 the	accelerator
because	it	is	harder	to	make	the	wheel	spin.	Conversely,	lower	values
of	 MOI	 will	 result	 in	 more	 wheel	 spin	 when	 stamping	 on	 the
accelerator.

If	the	wheel	is	approximately	cylindrical	then	a	simple	formula	can	be
used	to	compute	MOI:

MOI	=	0.5	*	Mass	*	Radius	*	Radius

There	 is	 no	 reason,	 however,	 to	 rely	 on	 equations	 to	 compute	 this
value.	A	good	strategy	for	tuning	this	number	might	to	be	start	with	the
equation	 above	 and	 then	 make	 small	 tweaks	 to	 the	 value	 until	 the
handling	is	as	desired.

mDampingRate:

This	value	describes	how	quickly	a	freely	spinning	wheel	will	come	to
rest.	The	damping	rate	describes	the	rate	at	which	a	freely	spinning
wheel	loses	rotational	speed.	Here,	a	freely	spinning	wheel	is	one	that
experiences	no	forces	except	for	the	damping	forces	arising	from	the
wheel's	internal	bearings.	Higher	damping	rates	result	in	the	wheel
coming	to	rest	in	shorter	times,	while	lower	damping	rates	result	in	the
wheel	maintaining	speed	for	longer.	Values	in	range	(0.25,	2)	seem	like
sensible	values.	Experimentation	is	always	a	good	idea,	even	outside
this	range.	Always	exercise	some	caution	with	very	small	damping
rates.	In	particular,	a	damping	rate	of	exactly	0	should	be	avoided.

mMaxBrakeTorque:

This	is	the	value	of	the	torque	applied	to	the	wheel	when	the	brakes	are
maximally	applied.	Higher	 torques	will	 lock	 the	wheel	quicker	when
braking,	while	 lower	 torques	will	 take	 longer	 to	 lock	 the	wheel.	This
value	 is	 strongly	 related	 to	 the	 wheel	 MOI	 because	 the	 MOI
determines	how	quickly	the	wheel	will	react	to	applied	torques.

A	value	of	around	1500	is	a	good	starting	point	for	a	vanilla	wheel	but
a	 google	 search	will	 reveal	 typical	 braking	 torques.	One	difficulty	 is
that	these	are	often	expressed	by	manufacturers	as	braking	horsepower
or	 in	 "pounds	 inches".	 The	 values	 required	 here	 are	 in	 "Newton
metres".

mMaxHandBrakeTorque:

This	is	the	same	as	the	max	brake	torque	except	for	the	handbrake
rather	than	the	brake.	Typically,	for	a	4-wheeled	car,	the	handbrake	is
stronger	than	the	brake	and	is	only	applied	to	the	rear	wheels.	A	value
of	4000	for	the	rear	wheels	is	a	good	starting	point,	while	a	value	of	0
is	necessary	for	the	front	wheels	to	make	sure	they	do	not	react	to	the
handbrake.

mMaxSteer:

This	is	the	value	of	the	steer	angle	of	the	wheel	(in	radians)	when	the
steering	wheel	is	at	full	lock.	Typically,	for	a	4-wheeled	car,	only	the
front	wheels	respond	to	steering.	In	this	case,	a	value	of	0	is	required
for	the	rear	wheels.	More	exotic	cars,	however,	might	wish	front	and
rear	wheels	to	respond	to	steering.	A	value	in	radians	equivalent	to
somewhere	between	30	degrees	and	90	degrees	seems	like	a	good
starting	point	but	it	really	depends	on	the	vehicle	being	simulated.
Larger	values	of	max	steer	will	result	in	tighter	turns,	while	smaller
values	will	result	in	wider	turns.	Be	aware,	though,	that	large	steer
angles	at	large	speeds	are	likely	to	result	in	the	car	losing	traction	and
spinning	out	of	control,	just	as	would	happen	with	a	real	car.	A	good
way	to	avoid	this	is	to	filter	the	steer	angles	passed	to	the	car	at	run-
time	to	generate	smaller	steer	angles	at	larger	speeds.	This	strategy
will	simulate	the	difficulty	of	achieving	large	steer	angles	at	high
speeds	(at	high	speeds	the	wheels	resist	the	turning	forces	applied	by
the	steering	wheel).

mToeAngle:

This	 is	 the	 angle	 of	 the	wheel	 (in	 radians)	 that	 occurs	with	 no	 steer
applied.	The	 toe	angle	can	be	used	 to	help	 the	car	straighten	up	after

coming	out	of	a	turn.	This	is	a	good	number	to	experiment	with	but	is
best	left	at	0	unless	detailed	tweaks	are	required.

To	help	the	car	straighten	up	apply	a	small	negative	angle	to	one	of	the
front	wheels	 and	 a	 small	 positive	 angle	 to	 the	 other	 front	wheel.	By
choosing	 which	 wheel	 takes	 the	 positive	 angles,	 and	 which	 the
negative,	 it	 is	 straightforward	 to	 make	 the	 wheels	 either	 "toe'in"	 or
"toe'out".	A	 "toe-in"	 configuration,	 the	 front	wheels	 pointing	 slightly
towards	each	other,	should	help	the	car	straighten	up	after	a	turn	but	at
the	expense	of	making	it	a	little	harder	to	turn	in	the	first	place.	A	"toe-
out"	configuration	can	have	the	opposite	effect.	Toe	angles	greater	than
a	few	degrees	are	best	avoided.

PxVehicleWheelsSimData

void	setSuspTravelDirection(const	PxU32	id,	const	PxVec3&	dir):

This	is	the	direction	of	the	suspension	in	the	downward	direction	in	the
rest	configuration	of	the	vehicle.	A	vector	that	points	straight
downwards	is	a	good	starting	point.

void	setSuspForceAppPointOffset(const	PxU32	id,	const	PxVec3&	offset):

This	 is	 the	application	point	of	 the	suspension	force,	expressed	as	an
offset	 vector	 from	 the	 center	 of	 mass	 of	 the	 vehicle's	 rigid	 body.
Another	way	of	expressing	this	is	to	start	at	the	center	of	mass	of	the
rigid	body,	then	move	along	the	offset	vector.	The	point	at	the	end	off
the	 offset	 vector	 is	 the	 point	 at	 which	 suspension	 forces	 will	 be
applied.

In	 a	 real	 vehicle	 the	 suspension	 forces	 are	 mediated	 through	 the
suspension	 strut.	 These	 are	 often	 incredibly	 complex	 mechanical
systems	 that	 are	 computationally	 expensive	 to	 simulate.	 As	 a
consequence,	instead	of	modelling	the	details	of	the	suspension	strut,	it
makes	sense	to	assume	that	the	suspension	strut	has	an	effective	point
at	 which	 it	 applies	 the	 force	 to	 the	 rigid	 body.	 Choosing	 that	 point,

however,	needs	careful	consideration.	At	the	same	time,	it	opens	up	all
sorts	 of	 tweaking	 possibilities,	 freed	 from	 the	 constraints	 of	 the	 real
world.

Deciding	 on	 the	 suspension	 force	 application	 point	 requires	 some
thought.	The	suspension	is	very	close	to	the	wheel	so	the	wheel	center
is	a	good	starting	point.	Consider	a	line	through	the	wheel	center	and
along	the	suspension	travel	direction.	Somewhere	along	this	line	seems
like	an	even	better	idea	for	the	application	point,	albeit	not	completely
scientific.	 For	 a	 standard	 4-wheeled	 car	 it	 makes	 sense	 that	 the
application	point	 is	somewhere	above	the	wheel	center	but	below	the
centre	of	mass	of	the	rigid	body.	It	is	probably	above	the	wheel	centre
because	 the	suspension	is	mostly	above	this	point.	 It	can	be	assumed
that	 it	 is	 somewhere	 below	 the	 rigid	 body	 centre	 of	 mass	 because
otherwise	vehicles	would	lean	out	of	the	turn	rather	than	in	to	the	turn.
This	narrows	down	the	application	point	to	really	quite	a	small	section
of	a	known	line.

When	editing	the	suspension	force	application	point	it	is	important	to
bear	 in	 mind	 that	 lowering	 the	 app	 point	 too	 far	 will	 result	 in	 cars
leaning	more	into	the	turn.	This	can	have	a	negative	effect	on	handling
because	 the	 inner	 wheel	 can	 take	 so	 much	 load	 that	 the	 response
saturates,	while	the	outer	wheel	ends	up	with	reduced	load	and	reduced
turning	force.	The	result	is	poor	cornering.	Conversely,	setting	the	app
point	too	high	will	result	in	cornering	that	looks	unnatural.	The	aim	is
to	achieve	a	good	balance.

void	setTireForceAppPointOffset(const	PxU32	id,	const	PxVec3&	offset):

This	is	almost	the	same	as	the	suspension	force	app	point	except	for
the	lateral	and	longitudinal	forces	that	develop	on	the	tire.	A	good
starting	point	is	to	duplicate	the	suspension	force	application	point.
Only	for	really	detailed	editing	is	it	advised	to	start	tweaking	the	tire
force	app	offset	independently	of	the	suspension	force	app	offset.

void	setWheelCentreOffset(const	PxU32	id,	const	PxVec3&	offset):

This	is	the	centre	of	the	wheel	at	rest	position,	expressed	as	an	offset
vector	from	the	vehicle's	centre	of	mass.

PxVehicleSuspensionData

mSprungMass:

This	is	the	mass	in	kg	that	is	supported	by	the	suspension	spring.

A	 vehicle	 with	 rigid	 body	 centre	 of	 mass	 at	 the	 centre	 of	 the	 four
wheels	would	typically	be	equally	supported	by	each	of	the	suspension
springs;	that	is,	each	suspension	spring	supports	1/4	of	the	total	vehicle
mass.	 If	 the	 centre	 of	 mass	 was	 moved	 forward	 then	 it	 would	 be
expected	that	the	front	wheels	would	need	to	support	more	mass	than
the	 rear	wheels.	Conversely,	 a	 centre	 of	mass	 nearer	 the	 rear	wheels
ought	 to	 result	 in	 the	 rear	 suspension	 springs	 supporting	more	mass
than	at	the	front.

mMaxCompression:

mMaxDroop:

These	 values	 describe	 the	 maximum	 compression	 and	 elongation	 in
metres	that	the	spring	can	support.	The	total	 travel	distance	along	the
spring	direction	that	 is	allowed	is	 the	sum	of	mMaxCompression	and
mMaxDroop.

A	simple	way	to	illustrate	the	maximum	droop	and	compression	values
is	 to	 consider	 a	 car	 that	 is	 suspended	 in	mid-air	 so	 that	 none	 of	 the
wheels	 are	 touching	 the	 ground.	 The	 wheels	 will	 naturally	 fall
downwards	 from	 their	 rest	 position	 until	 the	 maximum	 droop	 is
reached.	 The	 spring	 cannot	 be	 elongated	 beyond	 this	 point.	 Now
consider	 that	 the	 wheel	 is	 pushed	 upwards,	 first	 to	 its	 rest	 position,
then	further	pushed	until	the	spring	can	no	longer	be	compressed.	The
displacement	 from	 the	 rest	 position	 is	 the	maximum	 compression	 of
the	spring.

It	is	important	to	choose	the	maximum	compression	value	so	that	the
wheel	is	never	placed	where	the	visual	mesh	of	the	wheel	intersects	the
visual	meshes	of	the	car	chassis.	Ideally,	these	values	will	be	exported
from	the	3d	modeller.

mSpringStrength:

This	 is	 the	 strength	 of	 the	 suspension	 spring	 in	 Newtons	 per	metre.
The	 spring	 strength	 has	 a	 profound	 influence	 on	 handling	 by
modulating	the	time	it	takes	for	the	vehicle	to	respond	to	bumps	in	the
road	and	on	the	amount	of	load	experienced	by	the	tire.

Key	to	the	understanding	the	effect	of	spring	strength	is	the	concept	of
a	spring's	natural	frequency.	Consider	a	simple	spring	system,	such	as
a	pendulum	swinging	back	and	forth.	The	number	of	trips	per	second
that	the	pendulum	makes	from	full	left	to	full	right	and	then	back	again
is	 called	 the	 natural	 frequency	 of	 the	 pendulum.	 A	 more	 powerful
pendulum	spring	will	 result	 in	 the	pendulum	swinging	faster,	 thereby
increasing	the	natural	frequency.	Conversely,	increasing	the	pendulum
mass	will	 result	 in	 a	 slower	 oscillation,	 thereby	 reducing	 the	 natural
frequency.

In	 the	 context	 of	 a	 suspension	 spring	 supporting	 a	 fixed	 portion	 of
vehicle	 mass,	 the	 strength	 of	 the	 spring	 will	 affect	 the	 natural
frequency;	that	is,	the	rate	at	which	the	spring	can	respond	to	changes
in	load	distribution.	Consider	a	car	taking	a	corner.	As	the	car	corners
it	 leans	in	to	the	turn,	putting	more	weight	on	the	suspensions	on	the
outside	of	 the	 turn.	The	speed	at	which	 the	spring	reacts	by	applying
forces	 to	 redistribute	 the	 load	 is	 controlled	 by	 the	 natural	 frequency.
Very	 high	 natural	 frequencies,	 such	 as	 those	 on	 a	 racing	 car,	 will
naturally	produce	 twitchy	handling	because	 the	 load	on	the	 tires,	and
therefore	 the	 forces	 they	 can	 generate,	 is	 varying	 very	 rapidly.	 Very
low	natural	frequencies,	on	the	other	hand,	will	result	in	the	car	taking
a	long	time	to	straighten	up	even	after	the	turn	is	complete.	This	will
produce	sluggish	and	unresponsive	handling.

Another	effect	of	strength	and	and	natural	frequency	is	the	response	of
a	car	to	a	bump	in	the	road.	High	natural	frequencies	can	result	in	the
car	responding	very	strongly	and	quickly	to	the	bump,	with	the	wheel
possibly	even	leaving	the	road	for	a	short	while.	This	not	only	creates
a	bumpy	ride	but	also	periods	of	 time	when	 the	 tire	 is	generating	no
forces.	Weaker	 springs	will	 result	 in	 a	 smoother	 trip	 over	 the	 bump,
with	weaker	but	more	constant	tire	forces.	A	balance	must	be	found	to
tune	the	car	for	the	expected	types	of	turn	and	terrain.

The	natural	frequency	of	the	spring	presents	a	challenge	for	computer
simulation.	A	smooth	and	stable	simulation	requires	that	the	spring	is
updated	 at	 a	 frequency	 much	 greater	 than	 the	 spring's	 natural
frequency.	 An	 alternative	 way	 of	 expressing	 this	 is	 to	 consider	 the
period	 of	 the	 spring	 relative	 to	 the	 timestep	 of	 the	 simulation.	 The
period	of	 the	spring	 is	 the	 time	 the	spring	 takes	 to	complete	a	 single
oscillation,	and	is	mathematically	equal	to	the	reciprocal	of	the	natural
frequency.	 In	order	 to	achieve	a	stable	simulation	 the	spring	must	be
sampled	 at	 several	 points	 during	 each	 oscillation.	 A	 natural
consequence	of	this	observation	is	that	the	simulation	timestep	must	be
significantly	 smaller	 than	 the	 period	 of	 the	 spring.	 To	 discuss	 this
further	 it	 is	 helpful	 to	 introduce	 a	 ratio	 that	 describes	 the	 number	 of
simulation	updates	that	will	occur	during	each	spring	oscillation.	This
ratio	is	simply	the	spring	period	divided	by	the	timestep

alpha	=	sqrt(mSprungMass/mSpringStrength)/timestep

where	sqrt(mSprungMass/mSpringStrength)	is	the	period	of	the	spring.
An	 alpha	 value	 of	 1.0	 means	 that	 the	 chosen	 timestep	 and	 spring
properties	 only	 allow	 a	 single	 sample	 of	 the	 spring	 during	 each
oscillation.	As	described	 above,	 this	 is	 almost	 guaranteed	 to	 produce
unstable	 behaviour.	 In	 fact,	 the	 argument	 presented	 so	 far	 suggests	 a
value	 of	 alpha	 signifcantly	 greater	 than	 1.0	 is	 essential	 to	 produce	 a
smooth	simulation.	The	exact	value	of	alpha	at	which	stability	emerges
is	very	difficult	to	predict	and	depends	on	many	other	parameters.	As	a
guide,	 however,	 it	 is	 recommended	 that	 the	 timestep	 and	 spring

properties	are	chosen	so	that	they	produce	an	alpha	value	greater	than
5.0;	that	is,	a	minimum	of	five	simulation	updates	per	spring	cycle.

When	 tuning	 a	 suspension	 spring	 it	 can	 be	 very	 useful	 to	 use
manafacturer	 data	 to	 discover	 typical	 values	 used	 across	 a	 range	 of
vehicle	types.	This	data	is	not	always	readily	available.	An	alternative
strategy	 would	 be	 to	 think	 in	 terms	 of	 the	 natural	 frequency	 of	 the
spring	by	imagining	how	quickly	the	car	would	oscillate	up	and	down
if	 it	 was	 dropped	 onto	 the	 ground	 from	 a	 height	 of,	 say,	 0.5m.	 The
springs	 of	 a	 typical	 family	 car	 have	 natural	 frequency	 somewhere
between	5	and	10;	that	is,	such	a	car	would	make	5-10	oscillations	per
second	 if	gently	dropped	 to	 the	ground.	 If	 the	mass	supported	by	 the
spring	 is	 already	 known	 then	 the	 spring	 strength	 can	 be	 calculated
from	the	following	equation

mSpringStrength	=	naturalFrequency	*	naturalFrequency	*
mSprungMass

mSpringDamperRate:

This	describes	the	rate	at	which	the	spring	dissipates	the	energy	stored
in	the	spring.

Key	 to	 the	 understanding	 of	 damper	 rate	 are	 the	 concepts	 of	 under-
damping,	 over-damping,	 and	 critical	 damping.	 An	 over-damped
pendulum	 displaced	 from	 rest	 is	 unable	 to	 make	 a	 single	 back-and-
forth	 trip	 before	 it	 dissipates	 all	 its	 energy,	 while	 an	 under-damped
pendulum	would	be	able	to	make	at	least	a	single	back-and-forth	trip.
A	critically	damped	pendulum	makes	exactly	a	 single	back-and-forth
trip	before	expending	all	its	energy.

For	 vehicle	 suspension	 springs,	 it	 is	 tpically	 important	 to	make	 sure
that	 the	spring	has	a	damper	rate	 that	produces	over-damping	but	not
by	 too	much.	When	 cornering,	 for	 example,	 it	 is	 important	 that	 the
spring	 doesn't	 over-respond	 by	 shifting	 the	 weight	 from	 the	 left
suspension	 to	 the	 right	 suspension	 then	 back	 again.	 If	 this	 happened

the	 tire	 load,	 and	 the	 forces	 generated,	would	 be	 extremely	 variable,
resulting	in	twitchy	and	uncontrollable	handling.	A	very	heavily	over-
damped	spring,	on	the	other	hand,	will	feel	sluggish	and	unresponsive.

The	concept	of	critical	damping	can	be	used	to	help	tune	the	damping
rate	 of	 the	 spring.	 It	 is	 helpful	 to	 introduce	 a	 value	 known	 as	 the
damping	 ratio,	 which	 helps	 to	 mathematically	 describe	 the	 under-
damping,	critical	damping	and	over-damping	regimes.

dampingRatio	=	mSpringDamperRate/[2	*	sqrt(mSpringStrength
*	mSprungMass)]

A	dampingRatio	with	value	greater	than	1.0	produces	over-damping,	a
value	of	exactly	1.0	generates	critical	damping,	and	a	value	less	 than
1.0	is	under-damped.	It	can	be	useful	 to	first	 think	about	whether	the
spring	will	be	under-damped	or	over-damped,	then	think	about	how	far
it	will	be	 from	critical	damping.	This	process	 allows	a	number	 to	be
subjectively	applied	to	the	damping	ratio.	From	here	the	damping	rate
can	be	directly	computed	by	rearranging	the	equation	above

mSpringDamperRate	=	dampingRatio	*	2	*	sqrt(mSpringStrength
*	mSprungMass)

A	 typical	 family	 car	 is	 probably	 slightly	 over-damped,	 having
dampingRatio	with	value	perhaps	just	over	1.0.	A	guideline	would	be
that	values	very	 far	 from	critical	damping	are	 likely	 to	be	unrealistic
and	will	either	produce	sluggish	or	 twitchy	handling.	 It	 is	difficult	 to
put	an	exact	figure	on	this	but	somewhere	between	0.8	and	1.2	seems
like	a	good	starting	point	for	the	damping	ratio.

PxVehicleTireData

mLongitudinalStiffnessPerUnitGravity:

The	 longitudinal	 tire	 force	 is	 approximately	 the	 product	 of	 the
longitudinal	 stiffness	 per	 unit	 longitudinal	 slip	 (in	 radians)	 per	 unit

gravity	 and	 the	 longitudinal	 slip	 and	 the	 magnitude	 of	 gravitational
acceleration.

Increasing	this	value	will	result	in	the	tire	attempting	to	generate	more
longitudinal	 force	 when	 the	 tire	 is	 slipping.	 Typically,	 increasing
longitudinal	stiffness	will	help	the	car	accelerate	and	brake.	The	 total
tire	force	available	 is	 limited	by	the	 load	on	the	 tire	so	be	aware	 that
increases	 in	 this	 value	 might	 have	 no	 effect	 or	 even	 come	 at	 the
expense	of	reduced	lateral	force.

mLatStiffX:

mLatStiffY:

These	values	together	describe	the	lateral	stiffness	per	unit	lateral	slip
(in	radians)	of	the	tire.	The	lateral	stiffness	of	a	tire	has	a	role	similar
to	the	longitudinal	stiffness,	except	that	it	governs	the	development	of
lateral	 tire	 forces,	and	 is	a	 function	of	 tire	 load.	Typically,	 increasing
lateral	stiffness	will	help	the	car	turn	more	quickly.	The	total	tire	force
available	is	limited	by	the	load	on	the	tire	so	be	aware	that	increases	in
this	value	might	have	no	effect	or	even	come	at	the	expense	of	reduced
longitudinal	force.

The	 combination	 of	 the	 two	 values	 mLatStiffX	 and	 mLatStiffY
describe	 a	 graph	 of	 lateral	 stiffness	 as	 a	 function	 of	 normalised	 tire
load.	Typical	 for	car	 tires	 is	a	graph	 that	has	 linear	 response	close	 to
zero	 load	 but	 saturates	 at	 greater	 loads.	 This	 means	 that	 at	 low	 tire
loads	 the	 lateral	 stiffness	 has	 a	 linear	 response	 to	 load;	 that	 is,	more
load	 results	 in	 more	 stiffness.	 At	 higher	 tire	 loads	 the	 tire	 has	 a
saturated	 response	and	 is	 in	a	 regime	where	applying	more	 load	will
not	 result	 in	 more	 tire	 stiffness.	 In	 this	 latter	 regime	 it	 would	 be
expected	that	the	tire	would	start	slipping.

The	 parameter	 mLatStiffX	 describes	 the	 normalised	 tire	 load	 above
which	the	tire	has	a	saturated	response	to	tire	load.	The	normalised	tire
load	is	simply	the	tire	load	divided	by	the	load	experienced	when	the

vehicle	 is	 perfectly	 at	 rest.	 A	 value	 of	 2	 for	mLatStiffX	means	 that
when	the	the	tire	has	a	load	more	than	twice	its	rest	load	it	can	deliver
no	more	lateral	stiffness	no	matter	how	much	extra	load	is	applied	to
the	tire.

The	parameter	mLatStiffY	describes	the	maximum	stiffness	per	unit	of
lateral	 slip	 (in	 radians)	 per	 unit	 rest	 load.	 The	maximum	 stiffness	 is
delivered	when	 the	 tire	 is	 in	 the	 saturated	 load	 regime,	 governed	 in
turn	by	mLatStiffX.

A	good	starting	value	for	mLatStiffX	is	somewhere	between	2	and	3.	A
good	starting	value	for	mLatStiffY	is	around	18	or	so.

mFrictionVsSlipGraph[0][0]:

mFrictionVsSlipGraph[0][1]:

mFrictionVsSlipGraph[1][0]:

mFrictionVsSlipGraph[1][1]:

mFrictionVsSlipGraph[2][0]:

mFrictionVsSlipGraph[2][1]:

These	 six	 values	 describe	 a	 graph	 of	 friction	 as	 a	 function	 of
longitudinal	 slip.	 Vehicle	 tires	 have	 a	 complicated	 response	 to
longitudinal	 slip	 and	 this	 graph	 attempts	 to	 quickly	 describe	 this
relationship.

Typically,	 tires	have	a	 linear	 response	at	 small	 slips.	This	means	 that
when	the	tire	is	only	slightly	slipping	it	is	able	to	generate	a	response
force	 that	 grows	 as	 the	 slip	 increases.	 At	 greater	 values	 of	 slip,	 the
force	can	actually	start	to	decrease	from	the	peak	value	that	occurs	at
the	optimum	slip.	Beyond	 the	 optimum	 slip	 the	 tire	 eventually	 stops
behaving	less	and	less	efficiently	and	hits	a	plateau	of	inefficiency.

The	 first	 two	 values	 describe	 the	 friction	 at	 zero	 tire	 slip:
mFrictionVsSlipGraph[0][0]	 =	 0,	 and	 mFrictionVsSlipGraph[0][1]	 =
friction	at	zero	slip.

The	next	two	values	describe	the	optimum	slip	and	the	friction	at	the
optimum	 slip:	 mFrictionVsSlipGraph[1][0]	 =	 optimum	 slip,
mFrictionVsSlipGraph[1][1]	=	friction	at	optimum	slip.

The	 last	 two	 values	 describe	 the	 slip	 at	 which	 the	 plateau	 of
inefficiency	begins	and	the	value	of	the	friction	available	at	the	plateau
of	 inefficiency:	mFrictionVsSlipGraph[2][0]	=	 slip	 at	 the	 start	 of	 the
plateau	 of	 inefficiency,	 mFrictionVsSlipGraph[2][1]	 =	 the	 friction
available	at	the	plateau	of	inefficiency.

The	friction	values	described	here	are	used	to	scale	the	friction	of	the
ground	surface.	This	means	they	should	be	in	range	(0,1)	but	this	is	not
a	 strict	 requirement.	Typically,	 the	 friction	 from	 the	 graph	would	 be
close	to	1.0	in	order	to	provide	a	small	correction	to	the	ground	surface
friction.

A	 good	 starting	 point	 for	 this	 is	 a	 flat	 graph	 of	 friction	 vs	 slip	with
these	values:

mFrictionVsSlipGraph[0][0]=0.0

mFrictionVsSlipGraph[0][1]=1.0

mFrictionVsSlipGraph[1][0]=0.5

mFrictionVsSlipGraph[1][1]=1.0

mFrictionVsSlipGraph[2][0]=1.0

mFrictionVsSlipGraph[2][1]=1.0

mCamberStiffness:

This	value	is	currently	unused.

mType:

This	parameter	has	been	explained	in	Section	Tire	Friction	on	Drivable
Surfaces.

PxVehicleEngineData

mPeakTorque:

This	is	the	maximum	torque	that	is	ever	available	from	the	engine.
This	is	expressed	in	Newton	metres.	A	starting	value	might	be	around
600.

mMaxOmega:

This	is	the	maximum	rotational	speed	of	the	engine	expressed	in
radians	per	second.

mDampingRateFullThrottle:

mDampingRateZeroThrottleClutchEngaged:

mDampingRateZeroThrottleClutchDisengaged:

These	 three	 values	 are	 used	 to	 compute	 the	 damping	 rate	 that	 is
applied	to	the	engine.	If	the	clutch	is	engaged	then	the	damping	rate	is
an	 interpolation	 between	 mDampingRateFullThrottle	 and
mDampingRateZeroThrottleClutchEngaged,	where	the	interpolation	is
governed	by	the	acceleration	control	value	generated	by	the	gamepad
or	 keyboard.	 At	 full	 throttle	 mDampingRateFullThrottle	 is	 applied,
while	 mDampingRateZeroThrottleClutchEngaged	 is	 applied	 at	 zero
throttle.	 In	 neutral	 gear	 the	 damping	 rate	 is	 an	 interpolation	between
mDampingRateFullThrottle	 and
mDampingRateZeroThrottleClutchDisengaged.

The	 three	 values	 allow	 a	 range	 of	 effects	 to	 be	 generated:	 good
accceleration	 that	 isn't	 hampered	 by	 strong	 damping	 forces,	 tunable

damping	forces	when	temporarily	in	neutral	gear	during	a	gear	change,
and	 strong	damping	 forces	 that	will	 bring	 the	vehicle	quickly	 to	 rest
when	it	is	no	longer	being	driven	by	the	player.

Typical	values	in	range	(0.25,3).	The	simulation	can	become	unstable
with	damping	rates	of	0.

mTorqueCurve:

This	 is	 a	 graph	 of	 peak	 torque	 versus	 engine	 rotational	 speed.	 Cars
typically	 have	 a	 range	 of	 engine	 speeds	 that	 produce	 good	 drive
torques,	and	other	ranges	of	engine	speed	that	produce	poor	torques.	A
skilled	 driver	will	make	good	use	 of	 the	 gears	 to	 ensure	 that	 the	 car
remains	 in	 the	 "good"	 range	 where	 the	 engine	 is	 most	 responsive.
Tuning	this	graph	can	have	profound	effects	on	gameplay.

The	 x-axis	 of	 the	 curve	 is	 the	 normalised	 engine	 speed;	 that	 is,	 the
engine	speed	divided	by	the	maximum	engine	speed.	The	y-axis	of	the
curve	is	a	multiplier	in	range	(0,1)	that	is	used	to	scale	the	peak	torque.

PxVehicleGearsData

mNumRatios:

This	is	the	number	of	the	gears	of	the	vehicle,	including	reverse	and
neutral.	A	standard	car	with	5	forward	gears	would,	therefore,	have	a
value	of	7	after	accounting	for	reverse	and	neutral.

mRatios:

Each	gear	requires	a	gearing	ratio.	Higher	gear	ratios	result	in	more
torque	but	lower	top	speed	in	that	gear.	Typically,	the	higher	the	gear,
the	lower	the	gear	ratio.	Neutral	gear	must	always	be	given	a	value	of
0,	while	reverse	gear	must	have	a	negative	gear	ratio.	Typical	values
might	be	4	for	first	gear	and	1.1	for	fifth	gear.

mFinalRatio:

The	gear	ratio	used	in	the	simulator	is	the	gear	ratio	of	the	current	gear
multiplied	by	the	final	ratio.	The	final	ratio	is	a	quick	and	rough	way
of	changing	the	gearing	of	a	car	without	having	to	edit	each	individual
entry.	Further,	quoted	gearing	values	from	manufacturers	typically
mention	ratios	for	each	gear	along	with	a	final	ratio.	A	typical	value
might	be	around	4.

mSwitchTime:

The	switch	time	describes	how	long	it	takes	(in	seconds)	for	a	gear
change	to	be	completed.	It	is	impossible	to	change	gear	immediately	in
a	real	car.	Manual	gears,	for	example,	require	neutral	to	be	engaged	for
a	short	time	before	engaging	the	desired	target	gear.	While	the	gear
change	is	being	completed	the	car	will	be	in	neutral.	A	good	trick
might	be	to	penalise	players	that	use	an	automatic	gear	box	by
increasing	the	gear	switch	time.

PxVehicleClutchData

mStrength:

This	 describes	 how	 strongly	 the	 clutch	 couples	 the	 engine	 to	 the
wheels	 and	 how	 quickly	 differences	 in	 speed	 are	 eliminated	 by
distributing	torque	to	the	engine	and	wheels.

Weaker	values	will	result	in	more	clutch	slip,	especially	after	changing
gear	 or	 stamping	 on	 the	 accelerator.	 Stronger	 values	 will	 result	 in
reduced	clutch	slip,	and	more	engine	torque	delivered	to	the	wheels.

This	value	 is	 to	be	edited	only	 for	very	 fine	 tweaking	of	 the	vehicle.
Some	 clutch	 slip	 can	 be	 attributed	 to	 the	 numerical	 issues	 in	 the
simulation	at	large	timesteps,	while	some	is	a	natural	consequence	of
driving	the	car	in	an	overly	aggressive	manner.	A	value	of	10	is	a	good
starting	point.

PxVehicleAckermannGeometryData

mAccuracy:

Ackermann	correction	allows	better	cornering	by	steering	the	left	and
right	wheels	with	slightly	different	steer	angles,	as	computed	from
simple	trigonometry.	In	practice,	it	is	impossible	to	engineer	a	steering
linkage	that	will	achieve	the	perfect	Ackermann	steering	correction.
This	value	allows	the	accuracy	of	the	Ackermann	steering	correction
to	be	controlled.	Choosing	a	value	of	0	completely	disables
Ackermann	steer	correction.	A	value	of	1.0,	on	the	other	hand,
achieves	the	impossible	dream	of	perfect	Ackermann	correction.

mFrontWidth:

This	is	the	distance	in	metres	between	the	two	front	wheels.

mRearWidth:

This	is	the	distance	in	metres	between	the	two	rear	wheels.

mAxleSeparation:

This	is	the	distance	in	metres	between	the	centre	of	the	front	axle	and
the	centre	of	the	rear	axle.

PxVehicleTireLoadFilterData

This	 is	 for	 very	 fine	 control	 of	 the	 handling,	 and	 corrects	 numerical
issues	inherent	in	simulations	at	large	timesteps.

At	 large	 simulation	 timesteps	 the	 amplitude	 of	 motion	 of	 the
suspension	 springs	 is	 larger	 than	 it	 would	 be	 in	 real-life.	 This	 is
unfortunately	unavoidable.	A	consequence	of	this	oscillation	is	that	the
load	on	 the	 tire	 is	more	variable	 than	expected,	and	 the	available	 tire
forces	have	more	variability	 than	expected.	On	 a	 bumpy	 surface	 this
could	mean	that	the	simulation	lifts	the	wheel	off	the	ground,	while	in
reality	it	should	have	stayed	on	the	ground	and	delivered	turning	force.
This	filter	aims	to	correct	this	numerical	problem	by	smoothing	the	tire

load,	 and	perhaps	 even	allowing	 turning	 force	when	 the	wheel	 is	off
the	ground.

A	key	concept	is	that	of	normalised	tire	loads.	A	normalised	tire	load	is
just	the	actual	load	divided	by	the	load	experienced	when	the	vehicle	is
in	its	rest	configuration.	If	a	tire	experiences	more	load	than	it	does	at
rest	 then	 it	has	a	normalised	 tire	 load	greater	 than	1.0.	Similarly,	 if	a
tire	has	less	load	than	it	does	at	rest	then	it	has	a	normalised	tire	load
less	than	1.0.	At	rest,	all	tires	obviously	have	a	normalised	tire	load	of
exactly	 1.0.	Another	 key	 idea	 is	 that	 when	 the	 wheel	 is	 just	 off	 the
ground	 it	 can	 have	 a	 small	 negative	 load.	Now,	negative	 loads	 are	 a
rather	 artificial	 result	 of	 the	 modelling	 mathematics	 and	 should	 be
neglected	 entirely,	 but	 as	 already	discussed,	 it	might	 be	beneficial	 to
produce	some	tire	force	even	when	the	tire	is	off	the	ground.

The	values	here	describe	points	on	a	2d	graph	 that	generates	 filtered
tire	loads	from	raw	tire	loads.	The	x-axis	of	 the	graph	is	"normalised
tire	 load",	 while	 the	 y-axis	 of	 the	 graph	 is	 "filtered	 normalised	 tire
load".	 Normalised	 loads	 less	 than	 mMinNormalisedLoad	 produce	 a
filtered	 normalised	 load	 of	 0.	 Normalised	 loads	 greater	 than
mMaxNormalisedLoad	 produce	 a	 filtered	 normalised	 load	 of
mMaxFilteredNormalisedLoad.	 Load	 in-between
mMinNormalisedLoad	 and	mMaxNormalisedLoad	 produce	 a	 filtered
normalised	 load	 in-between	 0	 and	 mMaxNormalisedLoad,	 as
computed	by	direct	interpolation.

Choosing	 negative	 values	 for	mMinNormalisedLoad	 results	 in	 small
turning	 forces	 even	 when	 the	 tire	 is	 slightly	 off	 the	 ground.
Additionally,	 choosing	 mMaxNormalisedLoad	 and
mMaxFilteredNormalisedLoad	limits	the	maximum	load	that	will	ever
be	used	in	the	simulation.	To	disable	the	correcting	effect	of	this	graph
choose	 mMinNormalisedLoad=0,	 mMaxNormalisedLoad=1000,	 and
mMaxFilteredNormalisedLoad=1000.

PxVehicleDifferential4WData

mType:

A	number	of	differential	types	are	supported:	4-wheel	drive	with	open
differential,	4-wheel	drive	with	limited	slip,	front-wheel	drive	with
open	differential,	front-wheel	drive	with	limited	slip,	rear-wheel	drive
with	open	differential,	rear-wheel	drive	with	limited	slip.

mFrontRearSplit:

If	a	4-wheel	drive	differential	is	chosen	(open	or	limited	slip)	this
option	allows	the	drive	torque	to	be	split	unevenly	between	the	front
and	rear	wheels.	Choosing	a	value	of	0.5	delivers	an	equal	split	of	the
torque	between	the	front	and	rear	wheels;	that	is,	the	total	torque
delivered	to	the	front	wheels	is	equal	to	the	total	torque	delivered	to

the	rear	wheels.	Choosing	a	value	greater	than	0.5	delivers	more
torque	to	the	front	wheels,	while	choosing	a	value	less	than	0.5
delivers	more	torque	to	the	rear	wheels.	This	value	is	ignored	for	front-
wheel	drive	and	rear-wheel	drive	differentials.

mFrontLeftRightSplit:

This	is	similar	to	the	Front	Rear	Split	but	instead	splits	the	torque	that
is	available	for	the	front	wheels	between	the	front-left	and	front-right
wheels.	A	value	greater	than	0.5	delivers	more	torque	to	the	front-left
wheel,	while	a	value	less	than	0.5	delivers	more	torque	to	the	front-
right	wheel.	This	parameter	can	be	used	to	prevent	any	torque	being
delivered	to	a	damaged	or	disabled	wheel.	This	value	is	ignored	for
rear-wheel	drive.

mRearLeftRightSplit:

This	is	similar	to	mFrontLeftRightSplit	except	that	it	applies	to	the
rear	wheels	instead	of	the	front	wheels.	This	value	is	ignored	for	front-
wheel	drive.

mFrontBias:

Limited	slip	differentials	work	by	only	allowing	a	certain	difference	in
wheel	rotation	speed	to	accumulate.	This	prevents	the	situation	where
one	 wheel	 is	 slipping	 but	 ends	 up	 taking	 all	 the	 available	 power.
Further,	 by	 allowing	 a	 small	 difference	 in	 wheel	 rotation	 speed	 to
accumulate	it	is	possible	for	the	vehicle	to	easily	corner	by	permitting
the	outside	wheel	to	rotate	quicker	than	the	inside	wheel.

This	 parameter	 describes	 the	 maximum	 difference	 in	 wheel	 rotation
speed	that	is	allowed	to	accumulate.	The	front	bias	is	the	maximum	of
the	 two	 front-wheel	 rotation	 speeds	 divided	 by	 the	minimum	 of	 the
two	front-wheel	rotation	speeds.	When	this	ratio	exceeds	the	value	of
the	front	bias	the	differential	diverts	torque	from	the	faster	wheel	to	the
slower	wheel	 in	 an	 attempt	 to	preserve	 the	maximum	allowed	wheel
rotation	speed	ratio.

This	value	is	ignored	except	for	front-wheel	drive	or	four	wheel	drive
with	limited	slip.

A	good	starting	value	is	around	1.3.

mRearBias:

This	is	similar	to	mFrontBias	except	that	it	refers	to	the	rear	wheels.

This	value	 is	 ignored	except	for	rear-wheel	drive	or	four	wheel	drive
with	limited	slip.

A	good	starting	value	is	around	1.3.

mCentreBias:

This	value	is	similar	to	the	mFrontBias	and	mRearBias,	except	that	it
refers	to	the	sum	of	the	front	wheel	rotation	speeds	and	the	sum	of	the
rear	wheel	rotation	speeds.

This	value	is	ignored	except	for	four	wheel	drive	with	limited	slip.

A	good	starting	value	is	around	1.3.

PxRigidDynamic

Moment	of	Inertia:

The	 moment	 of	 inertia	 of	 the	 rigid	 body	 is	 an	 extremely	 important
parameter	 when	 editing	 vehicles	 because	 it	 affects	 the	 turning	 and
rolling	of	the	vehicle.

A	good	starting	point	for	the	moment	of	inertia	of	the	rigid	body	is	to
work	out	the	moment	of	inertia	of	the	cuboid	that	bounds	the	chassis
geometry.	If	the	bounding	cuboid	is	W	wide,	H	high,	and	L	long	then
the	moment	of	inertia	for	a	vehicle	of	mass	M	is:

((L*L+H*H)*M/12,	(W*W+L*L)*M/12,	(H*H+W*W)*M/12)

However,	this	is	only	a	rough	guide.	Tweaking	each	value	will	modify
the	motion	around	the	corresponding	axis,	with	higher	values	making
it	harder	to	induce	rotational	speed	from	tire	and	suspension	forces.

Providing	 unphysical	 values	 for	 the	moment	 of	 inertia	 will	 result	 in
either	very	sluggish	behaviour	or	extremely	twitchy	and	perhaps	even
unstable	behaviour.	The	moment	of	inertia	must	at	least	approximately
reflect	 the	 length	 scales	 of	 the	 suspension	 and	 tire	 force	 application
points.

This	 parameter	 should	 be	 viewed	 as	 one	 of	 the	 first	 go-to	 editable
values.

Center	of	mass:

Along	with	the	moment	of	inertia,	the	center	of	mass	is	one	of	the	first
go-to	editable	values	and,	as	such,	has	a	profound	effect	on	handling.

To	 discuss	 the	 center	 of	 mass	 it	 is	 useful	 to	 consider	 a	 typical	 4-
wheeled	vehicle	with	a	chassis	mesh	whose	origin	 is	at	 the	centre	of
the	 four	wheels.	 There	 is	 no	 requirement	 on	 the	 origin	 being	 at	 the
center	of	the	four	wheels	but	it	does	make	the	following	discussion	a
little	 simpler.	 It	 might	 be	 expected	 that	 the	 center	 of	 mass	 lies
somewhere	near	this	origin	because	vehicles	are	designed	in	a	way	that
spreads	 the	 load	 almost	 evenly	 between	 the	 four	 wheels.	 More
specifically,	it	might	be	expected	that	the	center	of	mass	needs	to	be	a
little	 above	 the	 base	 of	 the	 chassis	 rather	 than	 at	 the	 height	 of	 the
wheels.	After	all,	vehicles	have	higher	mass	density	near	the	bottom	of
the	chassis	due	to	density	of	the	engine	and	other	mechanical	systems.
As	a	consequence,	 it	 is	expected	that	 the	center	of	mass	is	nearer	the
bottom	 of	 the	 chassis	 than	 the	 top,	 but	 definitely	 above	 the	 bottom.
Without	 a	 particularly	 detailed	 analysis	 of	 the	 chassis	 density
distribution	 the	 exact	 location	along	 the	vertical	 axis	 is	 really	 a	 little
arbitrary	 and	 subjective.	 Along	 the	 forward	 direction	 it	 might	 be

expected	that	the	center	of	mass	is	a	little	nearer	the	front	wheels	than
the	 rear	 wheels	 because	 of	 the	 mass	 of	 the	 front-located	 engine.
Thinking	about	these	factors	allows	the	center	of	mass	to	be	tweaked
along	the	vertical	and	forward	directions.

Tweaking	 the	 center	 of	 mass	 is	 really	 all	 about	 making	 incremental
changes	 that	 tune	 the	 handling	 towards	 a	 desired	 goal.	 Moving	 the
center	 of	mass	 forwards	 should	 help	 cornering	 because	more	 load	 is
distributed	 to	 the	 front	 tires.	However,	 this	 comes	 at	 the	 expense	 of
reduced	 load	on	 the	 rear	 tires,	meaning	 that	 the	 car	might	 turn	more
quickly	only	to	spin	out	because	the	rear	tires	lose	grip	more	quickly.
Small	changes	followed	by	tests	on	the	handling	are	required.

When	setting	the	center	of	mass	it	is	important	to	bear	in	mind	that	the
suspension	 sprung	mass	 values	might	 require	 simultaneous	 updating.
If	the	center	of	mass	moves	nearer	the	front	this	means	that	more	mass
is	supported	by	the	front	suspensions	and	less	by	the	rear	suspensions.
This	change	needs	to	be	reflected	in	a	consistent	way.	It	is	possible	to
mathematically	 describe	 the	 relationship	between	 center	 of	mass	 and
the	 mass	 split	 between	 the	 suspensions.	 However,	 the	 editing
possibilities	 afforded	 by	 breaking	 this	 rigid	 link	 should	 allow	 more
tweaking	options.

Mass:

A	typical	car	might	have	a	mass	of	around	1500kg.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Character	Controllers

Introduction

The	goal	of	the	character	controller	SDK	is	to	provide	users	with	a	default
character	controller	built	on	top	of	the	NVIDIA	PhysX	SDK.	Roughly	it	has
to	support	two	things:

Character	control
Character	interactions

This	covers	a	very	high	number	of	features,	which	can	be	implemented	in
numerous	ways.	The	goal	is	not	to	implement	all	of	them	(which	would	be
a	daunting	 task),	 the	 goal	 is	 to	 give	 a	 default/sample	 implementation	 that
people	 can	 use	 as	 a	 starting	 point.	 For	 example	 the	 character's	 bounding
volume	could	in	theory	be	anything,	from	a	box	to	an	inverted	pyramid.	We
will	 not	 implement	 all	 of	 them.	 In	 our	 initial	 implementation	we	 support
two	common	bounding	volumes:	an	AABB	and	a	capsule.

Kinematic	Character	Controller

One	 might	 wonder	 why	 we	 did	 not	 use	 the	 physics	 engine	 directly	 to
implement	the	character	controller.	Here	is	the	story.

In	the	past	games	did	not	use	'real'	physics	engines.	However	they	still	used
a	 character	 controller	 to	move	 a	 player	 in	 a	 level.	 These	 games,	 such	 as
Quake	 or	 even	 Doom,	 had	 a	 dedicated,	 customized	 piece	 of	 code	 to
implement	collision	detection	and	response,	which	was	often	the	only	piece
of	 physics	 in	 the	 whole	 game.	 It	 actually	 had	 little	 physics,	 but	 a	 lot	 of
carefully	 tweaked	 values	 to	 provide	 a	 good	 feeling	 while	 controlling	 the
player.	 The	 particular	 behavior	 it	 implemented	 is	 often	 called	 the	 'collide
and	slide'	algorithm,	and	it	has	been	'tweaked	for	more	than	a	decade'.	The
result	 is	 that	players	expect	 to	 find	 the	same	well-known	behavior	 in	new
games,	 and	providing	 them	with	anything	else	 is	often	dangerous.	This	 is
especially	 true	 if	 provided	 behavior	 is	 not	 as	 robust	 and	 stable	 as	 before.
And	 this	 is	 exactly	 what	 happens	 if	 you	 use	 a	 typical	 physics	 engine
directly,	to	control	players.

In	particular,	here	is	a	(non	exhaustive)	list	of	typical	problems	you	run	into
when	using	a	physics	engine	for	character	controllers:

(lack	 of)	 continuous	 collision	 detection:	 Typical	 physics	 engines	 use
discrete	collision	checks,	leading	to	the	notorious	'tunneling	effect'	that
has	plagued	various	commercial	&	non-commercial	physics	packages
for	years.	This	leads	to	three	main	problems:

the	tunneling	effect	 itself	 :	 if	your	character	goes	too	fast	 it
might	tunnel	through	a	wall
as	 a	 consequence,	 the	maximum	velocity	 of	 your	 character
might	 be	 limited	 (hence	 also	 limiting	 the	 game	 play
possibilities)
even	 if	 you	 do	 not	 tunnel,	 the	 character	 might	 jitter	 when
pushed	forward	in	a	corner	for	example,	because	the	engine

keeps	moving	it	back	and	forth	to	slightly	different	positions.

No	direct	control:	a	rigid	body	is	typically	controlled	with	impulses	or
forces.	It	is	usually	not	possible	to	move	it	directly	to	its	final	position,
you	first	have	 to	convert	 the	delta	position	vector	 to	 impulses/forces,
apply	them,	and	hope	that	the	character	will	be	where	you	wanted	it	to
be	as	a	result.	Usually	it	does	not	work	too	well,	in	particular	when	the
physics	engine	uses	an	imperfect	linear	solver.

Trouble	with	friction:	When	the	character	 is	standing	on	a	ramp,	you
do	 not	 want	 it	 to	 slide.	 You	 want	 infinite	 friction	 here.	 When	 the
character	is	moving	forward	on	that	same	ramp,	you	do	not	want	it	to
slow	down.	You	want	no	 friction	here.	When	 the	character	 is	 sliding
against	a	wall,	you	do	not	want	 it	 to	 slow	down	either.	You	want	no
friction	 here	 as	 well.	 Usually	 it	 is	 either	 0	 or	 infinite.	 However	 the
friction	model	might	not	be	perfect,	and	what	you	actually	get	is	very
little	friction	(you	can	still	feel	the	character	slowing	down)	or	a	very-
big-but-not-infinite	one	(the	character	slides	very	slowly	on	that	ramp
no	 matter	 how	 artificially	 big	 the	 friction	 parameters	 are).	 The
conflicting	 requirements	 for	 ramps	 also	 mean	 that	 usually	 there	 is
simply	no	way	to	perfectly	model	desired	behavior.

Trouble	 with	 restitution:	 You	 should	 avoid	 restitution.	 When	 the
character	moves	 fast	 and	 collides	with	 a	wall,	 you	 do	 not	want	 it	 to
bounce	away	from	it.	When	the	character	falls	from	a	height	and	lands
on	the	ground,	flexing	his	legs,	you	definitely	do	not	want	any	bounce
to	happen.	But	once	again,	even	when	 the	 restitution	 is	exactly	zero,
you	 can	 nonetheless	 sometimes	 get	 a	 small	 bump.	 This	 is	 not	 only
related	 to	 the	 imperfect	 nature	 of	 the	 linear	 solver,	 it	 also	 has	 to	 do
with	 how	 typical	 penetration-depth-based	 engines	 recover	 from
overlap	 situations,	 sometimes	 applying	 excessive	 forces	 that	 separate
the	objects	too	much.

Undesired	jumps:	You	often	want	a	character	to	stick	to	the	ground,	no
matter	what	 the	physical	behavior	 should	be.	For	example	characters

in	 action	 games	 tend	 to	move	 fast,	 at	 unrealistic	 speeds.	When	 they
reach	the	top	of	a	ramp,	the	physics	engine	often	makes	them	jump	a
bit,	 in	 the	 same	 way	 a	 fast	 car	 would	 jump	 in	 the	 streets	 of	 San
Francisco.	But	that	is	often	not	what	you	want:	you	want	the	character
to	 stick	 to	 the	 ground	 regardless	 of	 its	 current	 velocity.	 This	 is
sometimes	 implemented	 using	 fixed	 joints,	 which	 is	 an	 excessively
complex	 solution	 to	 a	 very	 simple	 problem	 that	 can	 been	 solved
without	the	complexity	of	a	physics	engine.

Undesired	 rotations:	 Finally,	 a	 character	 is	 always	 standing	 up	 and
never	 rotating.	However	physics	engines	often	have	poor	 support	 for
that	 sort	 of	 constraints,	 and	 a	 great	 deal	 of	 effort	 is	 often	 put	 into
preventing	 a	 capsule	 around	 the	 character	 from	 falling	 (it	 should
always	 stands	 up	 on	 its	 tip).	 This	 is	 again	 often	 implemented	 using
artificial	joints,	and	the	resulting	system	is	neither	very	robust	nor	very
fast.

To	 summarize,	 a	 lot	 of	 effort	 can	be	 spent	 on	 tweaking	 and	disabling	 the
physics	 engine's	 features	 simply	 to	 emulate	what's	 otherwise	 a	much	 less
complex	 piece	 of	 custom	 code.	 It	 is	 natural	 to	 instead	 keep	 using	 that
simple	piece	of	custom	code.

Creating	a	character	controller

You	 first	 have	 to	 decide	 what	 bounding	 volume	 you	 want	 around	 your
characters.	 At	 the	 time	 of	 writing,	 only	 boxes	 (PxBoxController)	 and
capsules	(PxCapsuleController)	are	supported.

Then	you	need	to	create	a	controller	manager	somewhere	in	your	app.	You
only	need	one	of	them;	it	will	keep	track	of	all	created	controllers	and	allow
your	 character	 to	 interact	 with	 other	 characters	 created	 by	 the	 same
manager.	 You	 can	 create	 this	 manager	 using	 the
PxCreateControllerManager	function:

PxFoundation*	foundation;							//	Previously	created	Foundation	object

PxControllerManager*	manager	=	PxCreateControllerManager(*foundation

Then	 you	 create	 one	 controller	 for	 each	 movable	 character	 in	 the	 game.
This	is	done	like	this,	for	a	capsule	controller:

PxPhysics&	sdk;	//	Previously	created	PxPhysics	object

PxScene*	scene;	//	Previously	created	scene

PxCapsuleControllerDesc	desc;

<fill	the	descriptor	here>

PxController*	c	=	manager->createController(sdk,	scene,	desc);

Updating	a	character	controller

Each	frame,	move	your	characters	using	the	following	function:

PxU32	collisionFlags	=	PxController::move(const	PxVec3&	disp,	PxF32

disp	 is	 the	 displacement	 vector	 for	 current	 frame.	 It	 is	 typically	 a
combination	of	vertical	motion	due	to	gravity	and	lateral	motion	when	your
character	is	moving.	Note	that	this	is	a	displacement	vector,	i.e.	a	first	order
control.	This	 is	 not	 an	 impulse	 vector	 (2nd	 order	 control)	 or	 a	 force	 (3rd
order	 control).	 Please	 also	 note	 that	 users	 are	 responsible	 for	 applying
gravity	to	characters	here.

minDist	 is	 a	 minimal	 length	 used	 to	 stop	 the	 recursive	 displacement
algorithm	early	when	remaining	distance	to	travel	goes	below	this	limit.

elapsedTime	is	the	amount	of	time	that	passed	since	the	last	call	to	the	move
function.

filters	are	 filtering	parameters	similar	 to	 the	ones	used	 in	 the	SDK.	These
allow	customization	of	filtering	and	control	what	the	character	is	colliding
with.

obstacles	are	optional,	additional	obstacles	that	the	character	should	collide
with.	Those	objects	are	 fully	controlled	by	users	and	do	not	need	 to	have
counterpart	SDK	objects.

collisionFlags	is	a	bit	mask	returned	to	users	to	define	collision	events	that
happened	during	the	move.	This	is	a	combination	of	PxControllerFlag	flags.
It	 can	 be	 used	 to	 trigger	 various	 character	 animations.	 For	 example	 your
character	might	be	 falling	while	playing	a	 falling	 idle	animation,	and	you
might	 start	 the	 land	 animation	 as	 soon	 as
PxControllerFlag::eCOLLISION_DOWN	is	returned.

Obstacle	objects

Sometimes	 it	 is	 convenient	 to	 create	 additional	 obstacles	 for	 the	 CCT	 to
collide	 with,	 without	 creating	 an	 actual	 SDK	 object.	 This	 is	 useful	 in	 a
number	of	situations.	For	example:

the	 obstacles	might	 only	 exist	 for	 a	 couple	 of	 frames,	 in	which	 case
creating	and	deleting	SDK	objects	is	not	always	efficient.
the	 obstacles	 might	 only	 exist	 for	 stopping	 the	 characters,	 not	 the
SDK's	 dynamic	 objects.	 This	 would	 be	 for	 example	 invisible	 walls
around	geometry,	 that	only	 the	characters	should	collide	with.	 In	 this
case	it	may	not	be	very	efficient	 to	create	the	invisible	walls	as	SDK
objects,	since	their	interactions	would	then	have	to	be	filtered	out	for
everything	except	the	characters.	It	is	probably	more	efficient	to	create
those	 additional	 invisible	 walls	 as	 external	 obstacles,	 that	 only
characters	can	interact	with.
the	obstacles	might	be	dynamic	and	updated	with	a	variable	timestep,
while	 the	 SDK	 uses	 a	 fixed	 timestep.	 This	 could	 be	 for	 example	 a
moving	platform	on	which	the	characters	can	stand.

At	 the	 time	 of	 writing	 the	 character	 controller	 supports	 box	 and	 capsule
PxObstacle	 objects,	 namely	 PxBoxObstacle	 and	 PxCapsuleObstacle.	 To
create	 those,	 first	 create	 a	PxObstacleContext	 object	 using	 the	 following
function:

PxObstacleContext*	PxControllerManager::createObstacleContext()	=	

Then	manage	obstacles	with:

ObstacleHandle	PxObstacleContext::addObstacle(const	PxObstacle&	obstacle

bool	PxObstacleContext::removeObstacle(ObstacleHandle	handle)																																			

bool	PxObstacleContext::updateObstacle(ObstacleHandle	handle,	const

Typically	updateObstacle	is	called	right	before	the	controllers'	move	calls.

Graphics	update

Each	frame,	you	need	to	keep	your	graphics	object	in	sync	with	the	position
of	the	character	controller.	You	can	access	a	controller's	position	using:

const	PxExtendedVec3&	PxController::getPosition()	const;

This	 function	 returns	 the	 position	 from	 the	 center	 of	 the	 collision	 shape,
since	 this	 is	 what	 is	 used	 internally	 both	 within	 the	 PhysX	 SDK	 and	 by
usual	graphics	APIs.	So	 if	you	 just	use	 this	position	 in	your	world	matrix
and	pass	this	to	the	renderer,	the	character	should	collide	and	slide	smoothly
against	 the	 world.	 This	 is	 illustrated	 in	 SampleBridges.	 Note	 that	 the
position	 uses	 double-accuracy,	 to	make	 the	 CCT	module	 work	well	 with
large	 worlds.	 Also	 note	 that	 a	 controller	 never	 rotates	 so	 you	 can	 only
access	its	position.

Alternative	 helper	 functions	 are	 provided	 if	 you	 need	 to	 work	 using	 the
character's	bottom	position,	a.k.a.	the	foot	position:

const	PxExtendedVec3&	PxController::getFootPosition()	const;

bool	PxController::setFootPosition(const	PxExtendedVec3&	position);

Character	Volume

The	 character	 uses	 a	 bounding	 volume	 that	 is	 independent	 from	 already
existing	shapes	in	the	SDK.	That	way	we	are	free	to	implement	a	dedicated
collision	volume	for	the	character	controller	(e.g.	an	ellipsoid),	even	if	the
corresponding	physics	shape	does	not	exist.

We	currently	support	two	different	shapes	around	the	character:

An	AABB,	 defined	 by	 a	 position	 and	 an	 extents	 vector.	 The	AABB
does	not	rotate.	It	always	has	a	fixed	rotation	even	when	the	player	is
(visually)	 rotating.	This	avoids	getting	stuck	 in	places	 too	 tight	 to	 let
the	AABB	rotate,	for	example.
A	capsule,	defined	by	a	position,	a	height	and	a	radius.	The	capsule	has
a	better	behavior	when	climbing	stairs	for	example.	However	it	might
be	slightly	more	expensive	in	terms	of	CPU	time.

Note:	 In	 versions	 prior	 to	 2.3	 there	 was	 an	 PxSphereController,	 this	 has
been	 removed	 since	 the	PxCapsuleController	 is	more	 robust	 and	provides
the	same	functionality	(zero	length	capsule).

A	 small	 skin	 is	 maintained	 around	 the	 character's	 volume,	 to	 avoid
numerical	 issues	 that	 would	 otherwise	 happen	 if	 we	 let	 it	 touch	 other
shapes.	The	 size	of	 this	 skin	 is	 user-defined.	 If	 you	 render	 the	 character's
volume	for	debug	purpose,	remember	to	expand	the	volume	by	the	size	of
this	 skin	 to	 get	 accurate	 debug	 visualization.	 This	 skin	 is	 defined	 in
PxControllerDesc::contactOffset	 and	 later	 available	 through	 the
PxController::getContactOffset()	function.

Auto	Stepping

Without	auto-stepping	it	is	easy	for	a	box-controlled	character	to	get	stuck
against	 slight	 elevations	 of	 the	 ground	mesh.	 In	 the	 following	 picture	 the
small	step	would	stop	the	character	completely.	It	feels	unnatural	because	in
the	 real	 world	 you	 would	 just	 cross	 this	 small	 obstacle	 without	 thinking
about	it.

This	is	what	auto-stepping	enables	us	to	do.	Without	any	intervention	from
the	player	(i.e.	without	him	thinking	about	it)	the	box	correctly	steps	above
the	minor	obstacle.

However	 if	 the	 obstacle	 is	 too	 big,	 i.e.	 its	 height	 is	 greater	 than	 the
stepOffset	 parameter,	 the	 controller	 can	 not	 climb	 automatically,	 and	 the
character	gets	stuck	(correctly	this	time):

'Climbing'	 (over	 this	 bigger	 obstacle,	 for	 example)	 may	 also	 be
implemented	in	the	future,	as	an	extension	of	auto-stepping.	The	step	offset
is	defined	 in	PxControllerDesc::stepOffset	 and	 later	 available	 through	 the
PxController::getStepOffset()	function.

In	 order	 to	 implement	 the	 auto-stepping	 feature,	 the	 SDK	needs	 to	 know
about	 your	 'up'	 vector.	 The	 up	 vector	 is	 defined	 in
PxControllerDesc::upDirection	 and	 later	 available	 through	 the
PxController::getUpDirection()	function.

Walkable	Parts

By	default	the	character	can	move	anywhere.	This	is	not	what	you	usually
want.	In	particular,	you	often	want	to	disallow	walking	on	polygons	whose
slope	is	high.	The	SDK	can	do	this	automatically	thanks	to	a	user-defined
slope	limit.	All	polygons	whose	slope	is	higher	than	the	limit	slope	will	be
marked	as	non	walk-able,	and	the	SDK	will	not	let	characters	go	there.

In	the	future	it	may	be	possible	to	tag	each	triangle	of	a	mesh	as	walk-able
or	not.	(This	is	not	implemented	yet)

Two	modes	are	available	to	select	what	happens	when	touching	a	non	walk-
able	 part.	 The	 desired	 mode	 is	 selected	 with	 the
PxControllerDesc::nonWalkableMode	 enum.
PxCCTNonWalkableMode::ePREVENT_CLIMBING	prevents	 the	character
from	 moving	 up	 a	 slope,	 but	 does	 not	 move	 the	 character	 otherwise.
PxCCTNonWalkableMode::eFORCE_SLIDING	 forces	 characters	 to	 slide
down	non	walk-able	slopes.

The	 slope	 limit	 is	 defined	 in	 PxControllerDesc::slopeLimit	 and	 later
available	through	the	PxController::getSlopeLimit()	function.

The	limit	is	expressed	as	the	cosine	of	desired	limit	angle.	For	example	this
uses	a	slope	limit	of	45	degrees:

slopeLimit	=	cosf(PxMath::degToRad(45.0f));

If	you	use	slopeLimit	=	0.0f,	the	feature	is	automatically	disabled	(i.e.	you
can	go	anywhere).

This	feature	 is	not	always	needed.	A	common	strategy	 is	 to	disable	 it	and
place	 invisible	 walls	 in	 the	 level,	 to	 restrict	 player's	 movements.	 The
character	 module	 can	 also	 create	 those	 walls	 for	 you,	 if
PxControllerDesc::invisibleWallHeight	is	non-zero.	In	this	case	the	library
creates	 those	 extra	 triangles	 on	 the	 fly,	 and	 that	 parameter	 controls	 their

height	 (extruded	 in	 the	 user-defined	 up	 direction).	A	 common	 problem	 is
that	those	invisible	walls	are	only	created	when	non-walkable	triangles	are
found.	It	is	possible	for	a	jumping	character	to	go	over	them,	if	its	bounding
volume	 is	 too	 small	 and	 does	 not	 collide	with	 the	 non-walkable	 triangles
below	 him.	 The	 PxControllerDesc::maxJumpHeight	 parameter	 addresses
this	 issue,	by	extending	 the	 size	of	 the	bounding	volume	downward.	That
way	 all	 potentially	 non-walkable	 triangles	 are	 properly	 returned	 by	 the
collision	queries,	 and	 invisible	walls	are	properly	created	 -	preventing	 the
character	from	jumping	on	them.

The	slope	limit	is	ignored	if	the	touched	shape	is	attached	to	a	dynamic	or
kinematic	rigid	body.	Further,	the	slope	limit	is	ignored	if	the	touched	shape
is	 a	 sphere	 or	 capsule	 attached	 to	 a	 static	 body.	 Extraction	 of	 a	 contact
normal	 from	 heightfields,	 triangle	 meshes,	 convex	 meshes	 and	 boxes	 is
more	readily	supported	than	with	spheres	and	capsules	so	these	shape	types
are	all	involved	in	the	slope	limit	calculations,	provided	they	are	attached	to
a	static	body.

Volume	Update

Sometimes	 it	 is	 useful	 to	 change	 the	 size	 of	 the	 character's	 volume	 at
runtime.	 For	 example	 if	 your	 character	 can	 crouch,	 you	 might	 want	 to
reduce	the	height	of	its	bounding	volume	so	that	it	can	then	move	to	places
he	could	not	reach	otherwise.

The	character	 library	supports	runtime	volume	updates.	However	volumes
are	 directly	modified	without	 any	 extra	 tests,	 so	 it	might	 happen	 that	 the
resulting	volume	overlaps	 some	geometry	nearby.	To	avoid	 this	you	must
first	use	the	already	existing	 'placement	API'	from	the	SDK,	to	check	that
the	volume	of	space	you	want	 to	occupy	is	actually	empty.	Only	then	can
you	increase	the	size	of	the	character's	volume.

Related	functions	for	the	AABB:

bool	PxBoxController::setHalfHeight(PxF32	halfHeight)																			

bool	PxBoxController::setHalfSideExtent(PxF32	halfSideExtent)											

bool	PxBoxController::setHalfForwardExtent(PxF32	halfForwardExtent

Related	functions	for	the	capsule:

bool	PxCapsuleController::setRadius(PxF32	radius)	=	0;

bool	PxCapsuleController::setHeight(PxF32	height)	=	0;

Related	'placement	API'	function:

bool	PxScene::overlapAny(...)	=	0;

It	is	important	to	keep	in	mind	that	changing	the	size	of	a	controller	using
those	functions	does	not	actually	change	its	position.	So	if	your	character	is
standing	 on	 the	 ground	 (touching	 it),	 and	 you	 suddenly	 reduce	 its	 height
without	updating	its	position,	the	character	will	end	up	levitating	above	the
ground	 for	 a	 few	 frames	 until	 gravity	makes	 it	 fall	 and	 touch	 the	 ground
again.	 This	 happens	 because	 the	 controllers	 positions	 are	 located	 at	 the

center	of	the	shapes,	rather	than	the	bottom.	Thus,	to	modify	a	controller's
height	 and	 preserve	 its	 bottom	position,	 one	must	 change	 both	 the	 height
and	 position	 of	 a	 controller.	 The	 following	 helper	 function	 does	 that
automatically:

void	PxController::resize(PxF32	height)	=	0;

Updating	the	character's	volume	at	runtime	to	implement	a	'crouch'	motion
is	illustrated	in	SampleNorthPole.

Hit	callback

You	 can	 define	 a	 PxUserControllerHitReport	 callback	 that	 will	 let	 you
retrieve	 some	 information	 about	 controller's	 evolution.	 In	 particular,	 it	 is
possible	to	get	called	when	the	character	hits	a	shape,	another	character,	or
a	user-defined	obstacle	object.

When	 the	 character	 hits	 a	 shape,	 the	 onShapeHit	 callback	 is	 called	 -	 for
both	static	and	dynamic	shapes.	Various	 impact	parameters	are	sent	 to	 the
callback,	and	they	can	then	be	used	in	your	application	to	do	various	things
like	playing	sounds,	rendering	trails,	applying	forces,	and	so	on.

When	the	character	hits	another	character,	i.e.	another	object	controlled	by	a
character	 controller,	 the	 onControllerHit	 callback	 is	 called.	 This	 happens
when	the	player	collides	with	an	NPC,	for	example.

When	the	character	hits	a	user-defined	obstacle,	the	onObstacleHit	callback
is	called.

Behavior	callback

You	can	define	a	PxControllerBehaviorCallback	callback	 that	will	 let	you
customize	 the	 character's	 behavior	 after	 touching	 a	 PxShape,	 a
PxController,	or	a	PxObstacle.	This	is	done	using	the	following	functions:

PxU32	PxControllerBehaviorCallback::getBehaviorFlags(const	PxShape

PxU32	PxControllerBehaviorCallback::getBehaviorFlags(const	PxController

PxU32	PxControllerBehaviorCallback::getBehaviorFlags(const	PxObstacle

Returned	PxU32	should	be	a	combination	of	PxControllerBehaviorFlag.	At
the	time	of	writing	the	following	flags	are	supported:

PxControllerBehaviorFlag::eCCT_CAN_RIDE_ON_OBJECT	defines	if	the
character	 can	 effectively	 travel	 with	 the	 object	 it	 is	 standing	 on.	 For
example	a	character	standing	on	a	dynamic	bridge	should	follow	the	motion
of	 the	 PxShape	 it	 is	 standing	 on.	 But	 it	 should	 not	 be	 the	 case	 if	 the
character	stands	on,	say	a	PxShape	bottle	rolling	on	the	ground.

PxControllerBehaviorFlag::eCCT_SLIDE	 defines	 if	 the	 character	 should
slide	or	not	when	standing	on	the	object.	This	can	be	used	as	an	alternative
to	 the	 previously	 discussed	 slope	 limit	 feature,	 to	 define	 non	 walk-able
objects	 rather	 than	 non-walkable	 parts.	 It	 can	 also	 be	 used	 to	 make	 a
capsule	character	 fall	off	a	platform's	edge	automatically,	when	 the	center
of	the	capsule	crosses	the	platform's	edge.

Character	interactions

It	 is	 tempting	 to	 let	 the	physics	engine	push	objects	by	applying	 forces	at
contact	points.	However	 it	 is	often	not	good	for	game	play.	The	bounding
volume	around	characters	are	artificial	(boxes,	spheres,	etc)	and	you	do	not
want	the	pushing	effect	to	change	when	you	switch	from	a	box	controller	to
a	 capsule	 controller.	You	 usually	want	 a	 pushing	 effect	 dictated	 by	 game
play.	So	it	might	actually	be	better	to	apply	artificial	forces	to	objects	in	the
onShapeHit	 callback.	 It	 is	 also	 difficult	 to	 push	 a	 box	 forward	 with	 a
capsule:	 since	 you	 never	 hit	 the	 box	 exactly	 in	 the	middle,	 applied	 force
tends	to	rotate	it	-	even	if	all	you	want	is	to	push	it	in	a	straight	line.	Thus
the	recommended	approach	so	far	is	to	use	custom	code	inside	the	callback
to	push	away	dynamic	objects.

Hidden	kinematic	Actors

The	 character	 controller	 library	 creates	 a	 kinematic	 actor	 under	 the	 hood,
for	 each	 controlled	 character.	The	 user	 should	 be	 aware	 of	 this,	 since	 the
total	 number	 of	 actors	 in	 the	 scene	 is	 more	 than	 they	 created,	 and	 they
might	receive	unknown	actors	from	the	scene	when	doing	collision	queries.

When	you	invoke	the	move	function	to	move	a	PxController,	the	underlying
hidden	 kinematic	 PxActor	 is	 also	 updated.	 The	 kinematic	 actors	 can	 be
retrieved	using	the	following	function:

PxRigidDynamic*	PxController::getActor()	const;

Time	Stepping

Actors	 used	 internally	 by	 the	 character	 controller	 library	 follow	 the	 same
rules	as	any	other	PhysX	objects.	In	particular,	they	are	updated	using	fixed
or	 variable	 timesteps.	 This	 can	 be	 troublesome	 because	 the	 PxController
objects	 are	 otherwise	 typically	 updated	 using	 variable	 time	 steps	 (usually
using	the	elapsed	time	between	two	rendering	frames).	So	the	PxController
objects	 are	not	 always	perfectly	 in	 sync	with	 their	 kinematic	 actors	when
using	fixed	time	steps.

Invalidating	internal	caches

The	character	controller	library	caches	the	geometry	around	each	character,
in	order	to	speed	up	collision	queries.	In	PhysX	3.3	and	above,	those	caches
should	 be	 automatically	 invalidated	 when	 a	 cached	 object	 gets	 updated.
However	 it	 is	 also	 possible	 to	 manually	 flush	 those	 caches	 using	 the
following	function:

void	PxController::invalidateCache();

It	 might	 be	 necessary	 do	 to	 so	 when	 changing	 the	 filtering	 parameters
between	calls	to	PxController::move().

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

PhysX	Visual	Debugger	(PVD)

PVD

The	PhysX	Visual	Debugger	(PVD)	provides	a	graphical	view	of	the	PhysX
scene	and	includes	various	tools	to	inspect	and	visualize	variables	of	every
PhysX	 object.	 Additionally	 it	 can	 also	 record	 and	 visualize	 memory	 and
timing	data.

PVD	 can	 be	 downloaded	 from:	 http://developer.nvidia.com/physx-visual-
debugger

Questions	 regarding	 the	 usage	 of	 the	 GUI	 should	 all	 be	 answered	 by	 its
detailed	built-in	help.

http://developer.nvidia.com/physx-visual-debugger

Basic	Setup	(SDK	Side)

PVD	 integration	 is	 enabled	 in	 the	 debug,	 checked	 and	 profiling
configurations	of	 the	SDK.	In	order	 to	 reduce	memory	footprint	and	code
size,	it	is	not	enabled	in	the	release	configuration.

The	 SDK	 outputs	 the	 PVD	 debugging	 data	 in	 form	 of	 a	 stream.	 PVD
supports	reading	the	stream	either	from	a	TCP/IP	network	socket	or	from	a
file.

Network	Setup

Streaming	to	TCP/IP	is	supported	on	almost	all	platforms,	and	is	usually	the
most	convenient	way	to	collect	PVD	data.	In	this	mode	the	stream	can	be
watched	 in	 real-time,	 depending	 only	 on	 network	 speed	 and	 scene
complexity.	 In	 network	 mode	 PVD	 acts	 as	 a	 TCP/IP	 server	 and	 must
therefore	 be	 launched	 before	 the	 SDK	 tries	 to	 connect	 to	 it.	 The	 default
listening	port	is	5425:

//	check	if	PvdConnection	manager	is	available	on	this	platform

if(mPhysics->getPvdConnectionManager()	==	NULL)

				return;

//	setup	connection	parameters

const	char*					pvd_host_ip	=	"127.0.0.1";		//	IP	of	the	PC	which	is	running	PVD

int													port								=	5425;									//	TCP	port	to	connect	to,	where	PVD	is	listening

unsigned	int				timeout					=	100;										//	timeout	in	milliseconds	to	wait	for	PVD	to	respond,

																																												//	consoles	and	remote	PCs	need	a	higher	timeout.

PxVisualDebuggerConnectionFlags	connectionFlags	=	PxVisualDebuggerExt

//	and	now	try	to	connect

PVD::PvdConnection*	theConnection	=	PxVisualDebuggerExt::createConnection

				pvd_host_ip,	port,	timeout,	connectionFlags));

//	remember	to	release	the	connection	by	manual	in	the	end

				if	(theConnection)

												theConnection->release();

File	Setup

Streaming	 to	 file	 is	 an	 alternative	 to	 network	 streams.	 This	 is	 the
recommended	 fall-back	 in	 case	 your	 platform	 or	 system	 setup	 does	 not
support	 a	 network	 connection	 to	 PVD.	 File	 streams	 are	 often	 faster	 than
network	 sockets	 and	 therefore	 a	 good	 alternative	 if	 performance	 is	 more
important	than	real-time	viewing.	Streams	stored	as	files	can	be	loaded	by
drag&drop	or	over	the	File->Load	menu	in	PVD:

//	check	if	PvdConnection	manager	is	available	on	this	platform

if(mPhysics->getPvdConnectionManager()	==	NULL)

				return;

//	setup	connection	parameters

const	char*					filename	=	"C:\\PvdCapture.pxd2";		//	filename	where	the	stream	will	be	written	to

PxVisualDebuggerConnectionFlags	connectionFlags	=	PxVisualDebuggerExt

//	and	now	try	to	connect

PVD::PvdConnection*	theConnection	=	PxVisualDebuggerExt::createConnection

				filename,	connectionFlags);

//	remember	to	release	the	connection	by	manual	in	the	end

				if	(theConnection)

												theConnection->release();

Advanced	Setup

Connection	Flags

To	 optimize	 the	 stream	 size	we	 provide	 flags	 to	 enable	 specific	 features.
This	has	both	influence	on	PVD's	and	the	SDK's	performance:

PxVisualDebuggerConnectionFlag::Debug:	 Transfer	 all	 debug	 data
to	 visualize	 and	 inspect	 objects.	 This	 flag	 has	 usually	 the	 biggest
impact	on	the	stream's	size.
PxVisualDebuggerConnectionFlag::Profile:	 Transfer	 timing
information	of	various	profiling	zones	in	our	SDK.
PxVisualDebuggerConnectionFlag::Memory:	 Transfer	 memory
usage	data	of	our	SDK.

Setup	to	transfer	only	profiling	data	over	network:

PVD::PvdConnection*	theConnection	=	PxVisualDebuggerExt::createConnection

				pvd_host_ip,	port,	timeout,	PxVisualDebuggerConnectionFlag::Profile

Visualizing	Externals	and	Extended	Data

Joints	 are	 implemented	 as	 an	 extension	 to	 the	 SDK	 constraints	 and
therefore	need	special	handling	 to	get	 transmitted	 to	PVD.	Both	 joint	and
contact	data	can	increase	the	stream	size	significantly.	Visualizing	it	in	PVD
is	therefore	disabled	by	default.	To	enable	them	use	following	API	calls:

mPhysics->getVisualDebugger()->setVisualizeConstraints(true);

mPhysics->getVisualDebugger()->setVisualDebuggerFlag(PxVisualDebuggerFlags

Connection	Handler

Implement	the	PvdConnectionHandler	interface	if	your	application	needs	to

react	upon	connection	or	disconnection	 from	PVD,	or	 if	you	plan	 to	 send
custom	PVD	events	from	your	application.	It	is	recommended	to	toggle	the
contact	 and	 constraint	 visualization	 in	 the
onPvdConnected/onPvdDisconnected	 callbacks	 to	 avoid	potential	memory
and	 compute	 overhead	 in	 the	 SDK.	The	 use	 of	 PvdConnectionHandler	 is
demonstrated	in	our	samples	and	the	external	joint	implementation:

//	derive	from	PvdConnectionHandler

struct	MyConnectionHandler	:	public	physx::debugger::comm::PvdConnectionHandler

{

				virtual	void	onPvdSendClassDescriptions(physx::debugger::comm

				{

								//	send	your	custom	PVD	class	descriptions	from	here

								//	this	then	allows	PVD	to	correctly	identify	and	represent

								//	custom	data	that	is	sent	from	your	application	to	a	PvdConnection.

								//	example	in	JointConnectionHandler

				}

				virtual	void	onPvdConnected(physx::debugger::comm::PvdConnection

				{

								//	do	something	when	successfully	connected

								//	e.g.	enable	contact	and	constraint	visualization

				}

				virtual	void	onPvdDisconnected(physx::debugger::comm::PvdConnection

				{

								//	handle	disconnection

								//	e.g.	disable	contact	and	constraint	visualization

				}

};

//	register	custom	handler

MyConnectionHandler	myConnectionHandler;

if(mPhysics->getPvdConnectionManager())

				mPhysics->getPvdConnectionManager()->addHandler(&myConnectionHandler

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Migration	Guide	From	PhysX	SDK	2.x	to
3.xThis	guide	describes	how	 to	upgrade	applications	 that	have	an	 integration
of	PhysX	2.x	to	using	PhysX	3.x.

Changed	Actor	Hierarchy

In	PhysX	2,	PhysX	provided	one	actor	class,	and	you	were	able	to	call	any
method	 on	 objects	 of	 this	 class	 even	 if	 that	 did	 not	 make	 sense.	 For
example,	 you	were	 able	 to	 call	 isSleeping()	on	 static	 actors	which	do	not
have	 any	 sleep	 logic.	 In	 PhysX	 3,	we	 have	 a	 hierarchy	 of	Actor	 classes,
with	each	subclass	only	providing	methods	that	 truly	apply	to	the	specific
subclass.	This	may	mean	that	you	have	to	change	your	code	so	that	it	either
holds	Actor	references	of	the	proper	subtype,	or	you	cast	to	the	proper	type
before	making	certain	calls.

Collision	Filtering

In	 PhysX	 2,	 we	 had	 multiple	 fixed	 function,	 custom	 mechanisms	 for
configuring	if	a	pair	of	shapes	desires	collisions	to	be	detected.	An	example
was	collision	groups.	You	were	able	to	assign	each	shape	to	a	fixed	number
of	groups,	and	then	set	if	a	particular	pair	of	groups	should	collide.

We	 found	 that	 for	 some	people	 this	 approach	was	not	 flexible	 enough.	 In
PhysX	 3,	 the	 user	 is	 able	 to	 write	 his	 own	 program	 code	 to	 implement
custom	filtering.	This	is	like	a	callback	function	from	the	engine,	with	the
limitation	 that	 arbitrary	 memory	 may	 not	 be	 accessed.	 We	 made	 this
restriction	 so	 that	 the	 filtering	 code	 can	 be	 executed	 on	 PS3	 SPUs	 or	 on
GPUs	with	 optimal	 performance.	 If	 performance	 is	 not	 a	 top	 concern	 for
users,	 they	 can	 also	 opt	 to	 use	 conventional	 callbacks	 (
PxSimulationFilterCallback).

When	 migrating	 PhysX	 2	 code,	 note	 that	 we	 provide	 the	 class
PxDefaultSimulationFilterShader	 in	PhysX	3,	which	emulates	a	portion	of
PhysX	2	filtering	behavior.	Start	by	checking	if	 this	class	 is	sufficient.	As
this	is	an	extension	class,	the	source	code	is	available	and	may	be	extended
or	customized.

To	migrate	 your	 fixed	 function	PhysX	2	 filtering	 code	 on	 your	 own,	 you
need	 to	 be	 aware	 of	 its	 exact	 behavior	 and	 implement	 it	 as	 a	 callback	 or
shader.	 Let	 us	 look	 at	 the	 precise	 2.8	 mechanisms	 and	 make	 some
recommendations	for	porting:

virtual	void	NxScene::setShapePairFlags		(NxShape	&		shapeA,

		NxShape	&		shapeB,

		NxU32		nxContactPairFlag						//0	or	NX_IGNORE_PAIR

)

virtual	void	NxScene::setActorPairFlags		(NxActor	&		actorA,

		NxActor	&		actorB,

		NxU32		nxContactPairFlag

)

The	 first	 function	 stored	 explicit	 shape	 pairs	 in	 a	 hash,	 and	 a	 lookup
returned	the	bit	indicating	to	filter	or	not.	The	second	did	the	same	for	actor
pairs.	 Because	 of	 the	 arbitrary	 size	 of	 the	 pair	 hash,	 implementing	 this
mechanism	 as	 a	 shader	 with	 fixed	 memory	 is	 difficult	 in	 practice,	 but
implementing	as	a	callback	should	be	trivial	using	a	data	structure	such	as
the	STL	hash_map	where	Key	is	a	struct	holding	the	two	pointers	and	Data
is	the	bit	flag.

Another	scheme	provided	by	PhysX	2	were	collision	groups:

virtual	void		NxShape::setGroup	(NxCollisionGroup	collisionGroup)

virtual	void	NxScene::setGroupCollisionFlag		(NxCollisionGroup		

		NxCollisionGroup		group2,

		bool		enable

)

This	approach	let	the	user	assign	shapes	to	one	of	32	collision	groups,	and
then	let	each	pair	of	groups	be	assigned	a	boolean	pair	flag.	This	approach
lends	itself	better	to	a	shader	based	implementation.	To	do	this,	you	should
reserve	 a	 word	 of	 each	 shape's	 filterData	 (say	 word0)	 to	 hold	 the	 group
index,	and	assign	this	as	before.	Next,	define	a	matrix	to	hold	the	group	pair
bits,	and	a	function	to	set	it:

NxU32	groupCollisionFlags[32];

//init	all	group	pairs	to	true:

for	(unsigned	i	=	0;	i	<	32;	i	++)

								groupCollisionFlags[i]	=	0xffffffff;

void	setU32CollisionFlag(NxU32	groups1,	NxU32	groups2,	bool	enable

								{

								NX_ASSERT(groups1	<	32	&&	groups2	<	32);

								if	(enable)

																{

																//be	symmetric:

																groupCollisionFlags[groups1]	|=	(1	<<	groups2);

																groupCollisionFlags[groups2]	|=	(1	<<	groups1);

																}

								else

																{

																groupCollisionFlags[groups1]	&=	~(1	<<	groups2);

																groupCollisionFlags[groups2]	&=	~(1	<<	groups1);

																}

								}

Unfortunately	 it	 is	 not	 possible	 to	 change	 this	 state	 after	 the	 scene	 is
created.	 This	 is	 because	 if	 the	 matrix	 could	 change	 during	 simulation,	 it
would	force	an	arbitrary	amount	of	existing	contact	pairs	to	be	refiltered.	In
a	 large	 simulation,	 this	 could	be	 an	unacceptable	 amount	 of	 computation.
Therefore	the	matrix	must	be	initialized	to	its	final	state	before	the	scene	is
created,	like	this:

PxSceneDesc	desc;

...

desc.filterShaderData	=	groupCollisionFlags;

desc.filterShaderDataSize	=	32	*	sizeof(PxU32);

scene	=	sdk.createScene(desc);

Finally,	you	need	to	code	the	filter	shader	to	access	this	data:

PxFilterFlags	FilterShader(

																PxFilterObjectAttributes	attributes0,	PxFilterData

																PxFilterObjectAttributes	attributes1,	PxFilterData

																PxPairFlags&	pairFlags,	const	void*	constantBlock,

{

																//	let	triggers	through,	and	do	any	other	prefiltering	you	need.

																if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

																{

																																pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT

																																return	PxFilterFlag::eDEFAULT;

																}

																//	generate	contacts	for	all	that	were	not	filtered	above

																pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

																PxU32	ShapeGroup0	=	filterData0.word0	&	31;

																PxU32	ShapeGroup1	=	filterData1.word0	&	31;

																PxU32*	groupCollisionFlags	=	(PxU32*)constantBlock

																if	((groupCollisionFlags[ShapeGroup0]	&	(1	<<	ShapeGroup1

																								return	PxFilterFlag::eSUPPRESS;

																else

																								return	PxFilterFlag::eDEFAULT;

}

Material	Indexes

PhysX	 2	 used	 so-called	 material	 indexes	 for	 stored	 materials.	 Material
indices	 are	 not	 supported	 in	 PhysX	 3.0,	 you'll	 have	 to	 use	 the	 object
directly.	This	should	be	a	rather	trivial	change,	unless	you	are	storing	a	lot
of	material	 indices	 and	you	want	 to	 avoid	 storing	a	 full	 reference.	 In	 this
case	you	should	create	your	own	index	array	data	structure	from	which	you
can	fetch	the	pointer	before	passing	it	into	the	API.

Continuous	Collision	Detection

PhysX	2	uses	CCD	skeleton	meshes	for	CCD.	PhysX	3	no	longer	needs	this
data	so	all	skeleton	related	code	can	simply	be	removed.

Pose	Description

In	PhysX	2	pose	was	described	using	a	simple	matrix.	Now	the	only	way	to
describe	 a	 pose	 is	 to	 prepare	 a	 PxTransform	 structure	 that	 contains	 a
PxVec3	 for	 translation	 and	 a	 PxQuat	 for	 rotation.	 If	 the	 user	 code	 uses
matrices	 natively,	 you	will	 need	 to	 convert	 the	matrices	 into	 a	 translation
and	 a	 rotation	 component,	 and	 then	 convert	 the	 rotation	 matrix	 into	 a
quaternion.	See	the	class	PxMat33	for	helpers	to	facilitate	this	conversion,
as	well	as	the	inverse.

Shape	Description

PhysX	 2	 uses	 special	 geometry	 descriptor	 to	 set	 some	 required	 shape
parameters	(one	descriptor	for	every	type	of	shape,	e.g.	NxBoxShapeDesc).
In	PhysX	3,	descriptors	are	no	 longer	used	-	you	should	create	a	 required
geometry	class	object	(e.g.	PxBoxGeometry)	and	pass	it	to	PxShape	using	a
setGeometry	method.	This	means	 that	 the	application	shape	creation	 logic
should	 be	 slightly	 modified.	 In	 most	 cases	 the	 new	 approach	 is	 more
flexible	and	needs	less	code	to	implement.

In	 PhysX	 2,	 objects	 that	 have	 different	 geometry	 (Box,	 Capsule,	 and
Sphere)	were	objects	of	different	classes	-	now	they	are	all	PxShape	objects.
That	means	 that	 if	 you	want	 to	 figure	 out	which	 geometry	 is	 assigned	 to
some	object	you	should	call	getGeometryType	method.	That	means	that	the
old	way	to	have	every	geometry	type	classes	inherited	from	different	shapes
classes	(e.g.	NxBoxShape)	will	not	work	now	-	you	will	have	all	geometry
type	 classes	 inherited	 from	 PxShape	 class	 and	 should	 find	 out	 which
geometry	type	it	actually	has	internally.

Joints

The	D6	driveType	in	PhysX	2	no	longer	exists	in	PhysX	3.	Now	drive	for
D6	 is	 always	 spring-like:	 if	 you	 want	 position	 drive	 you	 set	 the	 'spring'
value	non-zero,	 if	you	want	velocity	drive	you	set	 the	damping	field	non-
zero,	and	if	you	set	both	you	get	a	damped	spring.	Some	specialized	joints
like	NxJointDriveDesc,	NxJointLimitSoftDesc	(PhysX	2	names)	now	were
moved	 to	 Extensions	 (see	 the	 extensions	 folder	 inside	 PhysX	 3	 include
directory).

Also,	 if	 you	 have	 used	 the	 deleted	 NxSpringAndDamperEffector,	 you
should	now	use	a	joint	with	a	spring	property.

Time	Stepping

The	 PhysX	 2	 SDK	 supported	 substeps,	 such	 that	 the	 simulation	 would
automatically	 subdivide	 arbitrary	 elapsed	 time	 values	 into	 a	 variable
number	 of	 fixed	 size	 simulation	 steps.	 This	 functionality	 is	 no	 longer
provided	 in	 the	 SDK	 because	 many	 users	 found	 the	 precise	 logic	 too
opaque	and	had	difficulty	integrating	it	with	real	world	applications	to	get
the	behaviors	they	needed.	Instead,	we	only	provide	the	simulate	code	that
used	to	be	the	logic	for	each	substep.	It	is	now	the	responsibility	of	the	user
to	choose	a	stable	step	size,	and	to	subdivide	arbitrary	 'wall	clock'	elapsed
times	 into	 multiple	 such	 fixed	 size	 simulation	 steps,	 and	 then	 call
PxScene::simulate()	 one	 or	 more	 times	 each	 frame	 with	 this	 step	 size.
Because	the	user	now	owns	the	control	logic,	they	are	able	to	tweak	all	of
the	simulation	control	code,	such	as	force	application.

In	PhysX	2	it	was	legal	to	call	simulate	with	a	timestep	of	zero	to	force	the
execution	 of	 various	 side-effects	 of	 simulation.	 PhysX	 3	 neither	 requires
nor	supports	this.

Scene	Queries

Working	with	functions	that	return	a	buffer	of	objects	(e.g.	raycastMultiple)
has	changed.	In	PhysX	3,	functions	that	returns	multiple	objects	want	to	get
a	pre-allocated	buffer	and	buffer	size	as	a	parameter.	You	do	not	know	how
many	elements	should	be	needed	when	you	are	making	a	call,	so	you	will
need	to	make	a	guess.	If	the	number	of	elements	in	the	buffer	is	not	enough,
you	will	be	informed	about	it	and	should	re-allocate	your	buffer.

It	is	a	good	performance	optimization	idea	to	use	a	buffer	with	a	reasonable
size	first,	try	with	this	buffer	and	if	-1	is	returned,	resize	the	buffer	and	try
again.	But	most	of	the	time	the	initial	buffer	will	be	large	enough.	Choosing
a	reasonable	start	size	is	not	always	easy	...	here	are	some	ideas:	You	could
profile	the	app	and	see	the	sizes	that	come	up	in	practice.	Also,	whenever
space	runs	out,	you	could	reallocate	with	double	the	size,	and	then	keep	this
doubled	buffer	around	for	the	next	time	queries	are	performed.	Finally,	you
should	add	an	upper	bound	on	how	large	the	buffer	can	get	in	total,	and	do
some	error	reporting	if	this	size	is	exceeded.

Raycasts

The	 interface	 for	 making	 raycasts	 was	 changed	 in	 PhysX	 3.	 Now	 you
should	 pass	 an	 origin	 (PxVec3)	 and	 a	 direction	 (PxVec3)	 instead	 of	 a
NxRay	that	combined	these	fields	in	PhysX	2.

Overlaps

Routines	 like	 overlapSphereShapes,	 overlapAABBShapes,
overlapOBBShapes,	 overlapCapsuleShapes	 are	 now	 all	 covered	 with
PxScene::overlapMultiple	 (passing	 in	 a	 PxSphereGeometry,
PxBoxGeometry	or	PxCapsuleGeometry	as	a	first	parameter).

Sweep	Tests

The	only	migration	problem	that	we	have	met	is	with	capsule	sweeps	tests.
PhysX	2	provides	a	linearCapsuleSweep	that	takes	two	points	to	define	the
capsule's	 two	 spherical	 ends.	 In	 PhysX	 3	 we	 have	 a	 general
sweepMultiple()	routine	that	takes	a	PxGeometry	and	an	initial	position	as	a
PxTransform.	 The	 capsules	 defined	 as	 two	 points	 should	 be	 converted	 to
initial	 transformation	 (PxTransform)	 that	 consists	 of	 PxVec3	 for	 position
and	PxQuat	for	rotation.	The	capsule's	length	is	now	along	the	x	axis	of	this
local	frame.

Compartments

PhysX	 2	 scenes	 featured	 sub-scenes	 called	 compartments.	 Each
compartment	 simulated	 rigid	 bodies,	 deformables	 or	 fluids.	 The
compartments	could	be	simulated	in	parallel	and	the	scene	contained	some
extra	 logic	 to	permit	 objects	 from	different	 compartments	 to	 interact	with
each	other.	Compartments	were	an	afterthought	to	permit	an	SDK	that	was
not	 designed	 for	 native	 parallelism,	 and	 did	 not	 provide	 native
interoperability	 between	 separate	 simulation	 technologies.	 Both	 of	 these
deficits	 were	 addressed	 from	 the	 ground	 up	 in	 PhysX	 3,	 meaning	 that
PhysX	3	scenes	provide	support	for	 intra-scene	paralellism	and	full	object
interaction	across	different	simulation	objects	automatically	without	having
to	configure	this	manually.

There	 is	 one	 detail	 feature	 however	 which	 compartments	 provided	 for
which	 we	 currently	 do	 not	 have	 an	 answer:	 Because	 interaction	 between
objects	 in	 different	 compartments	 was	 relatively	 weak	 and	 done	 with
exchange	of	external	forces,	it	was	possible	to	step	each	compartment	with
a	different	time	step.	It	is	not	possible	to	step	parts	of	a	PhysX	3	scene	with
different	time	steps.	A	workaround	could	be	 to	create	multiple	scenes	and
step	 them	 at	 different	 rates.	 This	 however	 will	 completely	 lose	 the
interactions.	The	user	would	have	to	exchange	forces	between	the	scenes	to
mimic	 the	weak	 interactions	provided	between	compartments	 in	PhysX	2.
This	 however	 is	 not	 a	 reliable	 approach	 and	we	 do	 not	 recommend	 it.	A
better	 though	 eventually	 more	 costly	 approach	 is	 to	 simulate	 the	 entire
scene	 at	 the	 smallest	 time	 step	 size	 of	 all	 the	 former	 compartments.	 This
approach	is	not	as	unattractive	as	it	seems,	as	the	simulation	code	in	PhysX
3	often	has	far	better	performance	than	it	did	in	PhysX	2.

Deformables

PhysX	2	 featured	a	quite	 full	 featured	and	very	 flexible	deformable	mesh
simulation	component:	It	was	able	to	simulate	environmental	cloth	such	as
banners	 or	 flags,	 clothing,	 soft	 bodies,	 inflatable	 balloons,	 and	 plastic
deformation	 of	 rigid	metal.	Unfortunately	 this	 great	 flexibility	meant	 that
the	 implementation	 code	 was	 quite	 complex	 and	 the	 performance
optimization	 for	 low	 end	 consoles	 a	 daunting	 challenge.	We	 realized	 that
that	 the	 flexibility	 of	 the	 solution	 prevented	 us	 from	 delivering	 a	 truly
excellent	solution	in	performance	and	behavior	in	the	relatively	few	specific
areas	 of	 application	 that	 our	 users	 were	 typically	 using.	 In	 PhysX	 3	 we
decided	 to	 shelve	 the	 general	 deformable	 simulation	 code	 in	 favor	 of
focusing	only	on	a	clothing	solution	which	we	identified	as	the	number	one
application.	 PhysX	 3	 clothing	 differs	 primarily	 in	 that	 it	 sacrifices
environmental	interaction	in	favor	of	high	speed	simulation.	In	PhysX	3	dot
releases,	 we	 will	 be	 incrementally	 adding	 back	 more	 features	 such	 as
environmental	interactions	while	making	certain	that	performance	does	not
suffer.	For	 the	 time	being,	 for	many	applications	of	PhysX	2	deformables
there	simply	is	no	upgrade	path	in	PhysX	3.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

previousNVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

Migrating	from	PhysX	SDK	3.1	to	3.2
This	guide	highlights	all	significant	parts	of	the	API	that	have	changed
in	the	last	dot	release.	An	application	with	a	working	integration	of	the
older	version	of	PhysX	should	be	able	 to	easily	migrate	 to	 the	newer
version	by	following	these	pointers.

Foundation	and	Common

PxCreatePlane	used	to	take	an	(n,d)	pair,	now	it	takes	a	PxPlane.	The
first	three	elements	are	the	same,	but	the	d	parameter	must	be	negated.
PxStream	has	been	split	into	PxOutputStream	and	PxInputStream,	and
these	must	be	implemented	anew	by	the	user	if	APIs	are	used	that	need
them.
There	are	new	helpers	PxShortestRotation,	and	PxDiagonalize.
The	 serialization	API	 (PxCollection,	 PxSerializable)	 has	 seen	major
changed	with	work	still	ongoing.	As	 this	API	 is	not	yet	 finalized	we
cannot	provide	migration	information	yet.

Geometry

We	added	a	number	of	new	capabilities	to	the	geometry	library,	but	existing
code	should	not	need	to	be	adapted.	New	things	include:

PxTransformFromSegment
PxConvexMesh::getLocalBounds
PxTriangleMesh::getLocalBounds
PxHeightField::modifySamples,	getTriangleNormal
PxMeshQuery
PxTransformFromPlaneEquation,	PxPlaneEquationFromTransform
PxTriangle

Core	PhysX

The	way	to	create	the	Physics	SDK	has	changed.	The	PxCreatePhysics
call	now	should	be	preceeded	by	a	call	to	PxCreateFoundation,	which
takes	 the	allocator	and	error	callback	parameters	 that	used	 to	go	 into
createPhysics.	 Instead	 PxCreatePhysics	 now	 takes	 a	 profile	 zone
manager	 created	 using
PxProfileZoneManager::createProfileZoneManager.	 It	 is	 important	 to
create	and	pass	this	profile	zone	manager	in	order	to	set	up	the	Visual
Remote	Debugger	for	profiling.
Perhaps	the	most	fundamental	change	for	the	API	is	the	rewrite	of	the
type	casting	system.	The	PxActor::is(PxActorType)	style	functions	are
replaced	 with	 isKindOf(const	 char	 *	 typeName),	 const	 char*
getConcreteTypeName(),	 is<Class>()	 template	 functions	 (e.g.
is<PxCloth>()),	 and	 specially	 named	 inline	 functions	 (e.g.
PxActor::isCloth()).
PxAggregate::getMaxSize	has	been	renamed	to	getMaxNbActors,	and
getCurrentSize	has	been	renamed	getNbActors	for	clarity.
The	PxBatchQuery	raycast	parameters	have	been	reordered.
There	 is	 a	 new	 user	 implemented	 interface	 class
PxConstraintVisualizer,	 and	 the	 PxConstraintVisualize	 callback
function	now	takes	one	of	those	instead	of	a	PxRenderBuffer.
PxContactPoint::featureIndex0/1	 has	 been	 renamed
internalFaceIndex0/1,	and	PxContactSet::getFeatureIndex0/1	has	been
renamed	getInternalFaceIndex0/1.
The	class	PxContactStreamIterator	has	been	deleted,	and	replaced	by	a
completely	 rewritten	 contact	 query	mechanism.	 It	 is	 best	 if	 the	 user
reads	 up	 on	 the	 new	API	 and	 implements	 it	 from	 scratch,	 it	 is	 quite
dissimilar	 to	 the	 previous	 incarnation.	 See	 the	 class
PxSimulationEventCallback	 and	 in	 particular	 ::onContact	 to	 start	 to
refactor	code.
The	 empty	 default	 implementations	 of	 event	 callbacks	 have	 been
removed	 to	 prevent	 confusion.	 This	 means	 that	 users	 must	 provide

their	 own	 (blank)	 implementations	 of	 all	 events	 in	 a	 user	 class	 they
subclass,	even	ones	they	are	not	interested	in.	Providing	default	blank
implementations	 in	 the	SDK	exposed	 the	user	 to	hard	 to	 find	bugs	 if
we	changed	an	event	signature	from	one	release	to	another.
Users	 of	 continuous	 collision	 detection	 should	 note	 that
PxPairFlag::eSWEPT_CONTACT_GENERATION	 and
PxPairFlag::eSWEPT_INTEGRATION_FULL	 no	 longer	 exist.	 We
have	 rewritten	 the	CCD	algorithm	such	 that	 it	 no	 longer	has	 its	own
contact	 generation,	 and	 it	 no	 longer	 supports	 angular	 sweeps.	Hence
use	 of	 eSWEPT_CONTACT_GENERATION	 should	 simply	 be
removed,	 and	 eSWEPT_INTEGRATION_FULL	 should	 be	 replaced
with	eSWEPT_INTEGRATION_LINEAR.
RbPairStatsType::eSWEPT_CONTACT_PAIRS	 removed	 together
with	swept	contact	generation.
We	 also	 stopped	 supporting	 anisotropic	 friction,	 so	 PxMaterialFlag,
PxCombineMode,	 and	 all	 function	 calls	 of	 PxMaterial	 relating	 to
anisotropic	 friction	 have	 been	 removed.	 Users	 should	 remove	 the
corresponding	calls.
PxPhysics::getMetaData	 been	 changed	 into	 PxGetSDKMetaData	 to
make	it	be	an	optionally	linkable	component.
PxPhysics::releaseUserReferences,	 releaseCollection	 deprecated.
Users	should	simply	call	release()	on	the	appropriate	object.
PxPhysics::addCollection	now	takes	a	reference	parameter	instead	of	a
pointer	to	indicate	that	a	null	pointer	is	not	an	option.
The	functions	PxPhysics::createParticleSystem	and	createParticleFluid
take	parameters	directly	rather	than	descriptors.
The	 functions	 PxPhysics::createTriangleMesh,	 createConvexMesh,
and	the	stream	version	of	createClothFabric	now	take	a	PxInputStream
rather	than	a	general	PxStream,	which	has	been	removed.	To	migrate
these	function	calls,	 the	user	must	implement	the	new	PxInputStream
class.
The	 PxPhysics::createClothFabric	 creation	 parameters	 for	 the	 non-
stream	 version	 have	 changed	 a	 lot.	 The	 number	 nbFibers	 and
nbIndices	 parameters	 have	 been	 removed	 because	 it	 always	 equals

nbSets	 (which	 is	 new).	 particleIndices	 has	 been	 renamed	 indices.
restValues	and	nbRestValues	are	newly	added.	None	of	the	parameters
may	be	NULL.
PxPhysics::getProfileZoneManager	 returns	 a	 pointer	 instead	 of	 a
reference.
PxRigidDynamic::moveKinematic	 has	 been	 renamed	 to
setKinematicTarget.
The	prototype	of	PxGetFoundation	has	been	moved	from	the	Physics
API	to	the	Foundation	API.
PxScene::overlapAny	has	been	removed.	Use	instead	overlapMultiple
with	hitBufferSize	=	1.
The	 pruning	 structure	 options	 PxPruningStructure::eOCTREE	 and
eQUADTREE	 have	 been	 removed,	 because	 they	 are	 now	 in	 general
inferior	 in	 performance	 to	 the	 AABB_TREE	 options.	 The
PxSceneDesc::maxBounds,	 upAxis,	 and	 subdivisionLevel	 properties
were	 also	 removed	 as	 part	 of	 this	 because	 they	 were	 only	 used	 for
these	two	pruning	modes.
We	 removed	 PxScene::getNbAttachments,	 getAttachments,	 this	 was
part	of	the	removed	deformable	simulation	feature.
PxSweepCache	is	deprecated	in	this	release	and	will	be	removed	in	the
next.	We	found	that	it	provides	no	significant	benefit.

There	are	also	a	number	of	new	features:

There	 is	 a	 new	 API	 for	 optional	 components:
PxRegisterArticulations,	 PxRegisterPCM,
PxRegisterHeightFields,	 PxCreateBasePhysics,
PxGetSDKMetaData.	 This	 way	 some	 rarely	 used	 features	 can
avoid	getting	linked	into	the	executable	on	certain	platforms.
There	is	a	new	function	PxGetPhysics.
There	 are	 new	 functions	 PxScene::set/getTimestamp().	 Saving
and	 loading	 the	 time	 stamp	 makes	 the	 simulation	 be	 more
deterministic.
There	are	new	PxSceneDesc::contactReportStreamBufferSize	and
PxScene::get/setNbContactDataBlocks,

getMaxNbContactDataBlocksUsed	 functions	 (and
PxSceneDesc::nbContactDataBlocks,	maxNbContactDataBlocks)
for	some	advanced	memory	management	possibilities.
There	 are	 new	 flags	 PxSceneFlag::	 modes
eENABLE_ONE_DIRECTIONAL_FRICTION,
eENABLE_TWO_DIRECTIONAL_FRICTION,
eDISABLE_CONTACT_REPORT_BUFFER_RESIZE,
eENABLE_PCM,	 to	 enable	 a	 new	 friction	 model	 and	 a	 new
contact	generation	algorithm,	among	other	things.
The	 new	 flag	 PxSceneQueryFlag::eINITIAL_OVERLAP_KEEP
controls	whether	how	scene	query	should	behave	when	it	comes
to	initial	overlaps.
PxShape::getGeometry	 is	 a	 more	 general	 way	 to	 retrieve	 shape
geometry.

Cooking

The	 biggest	 change	 to	 cooking	 is	 that	 the	 functions
PxCooking::cookTriangleMesh,	 cookConvexMesh,	 and
cookClothFabric	now	take	the	new	class	PxOutputStream	not	and	not
a	 PxStream	 as	 before.	 Users	 must	 implement	 a	 subclass	 of
PxOutputStream.	Note	that	we	provide	a	default	implementation	in	the
form	of	PxDefaultFileOutputStream.
The	 ConvX	 tool	 has	 been	 replaced	 by	 the	 new	 class
PxBinaryConverter	 (see	 PxCooking::createBinaryConverter)	 function
which	works	 the	same	way	to	convert	binary	serialized	files	between
platforms.
The	 PxCreateCooking	 function	 now	 takes	 a	 foundation	 reference
instead	of	a	pointer	to	denote	that	a	null	pointer	value	is	not	valid.

Deformables

The	deformables	 feature	 that	has	appeared	as	deprecated	 in	 the	early
versions	 of	 PhysX	 3.x	 has	 been	 removed.	 We	 decided	 to	 reboot
deformables	as	the	more	streamlined	and	simplified	Cloth	feature.

Particles

The	 only	 significant	 change	 to	 the	 particles	API	 is	 that	 it	 no	 longer
uses	 descriptors	 for	 creation.	 The	 classes	 PxParticleBaseDesc,	 and
PxParticleFluidDesc	have	been	deleted,	 and	 the	create	 functions	 take
the	parameters	immediately.
There	 are	 also	 two	 new	 functions:
PxParticleBase::setParticleReadDataFlag	 and
PxParticleFluid::setRestParticleDistance.

Cloth

The	 function	 PxCloth::setParticles	 can	 now	 also	 update	 the	 previous
particle	 state.	 This	 lets	 the	 user	 easily	 define	 the	 velocity	 of	 the
particles	 as	 the	 difference	 between	 the	 two	 positions.	 The	 cloth
simulation	 really	 does	 not	 store	 velocities	 explicitly,	 but	 rather	 only
two	consecutive	positions,	hence	this	somewhat	odd	interface.

PxCloth::getCollisionData	 now	 also	 takes	 a	 planesBuffer,	 and	 a
convexMaskBuffer.	 These	 buffers	 retrieve	 additional	 collision
information,	 but	 passing	 NULL	 should	 make	 it	 possible	 to	 ignore
them.

PxClothFabric::scale/getRestlengths	 have	 been	 renamed	 to
scale/getRestvalues.

Aside	from	this,	there	are	a	number	of	new	features:

There	 is	 a	 new	 struct	 PxClothParticleSeparationConstraint
(see	 also	 PxCloth::get/setSeparationConstraints,
getNbSeparationConstraints).	 This	 is	 a	 new	 separations
constraints	feature	that	enforces	each	particle	to	stay	inside	a
sphere.
The	 new	 function	 PxCloth::clearInterpolation	 lets	 the	 user
easily	 set	 the	 effective	 velocity	 of	 particles	 to	 zero.	 This
should	 be	 called	 whenever	 the	 character	 animation	 is
discontinuous.
There	 are	 new	 PxCloth::get/setParticleAccelerations,
getNbParticleAccelerations	functions	 that	effectively	permit
the	user	to	apply	forces	to	individual	particles.
New	 PxCloth::getNb/set/remove/addCollisionPlane(s)	 and
PxCloth::getNb/remove/addCollisionConvex	 permit	 the
definition	of	convex	shapes	built	from	planes.
There	are	a	bunch	of	new	cloth	properties	to	experiment	with

such	 as	 PxCloth::get/setInertiaScale,
PxCloth::get/setFrictionCoefficient,
PxCloth::get/setDragCoefficient,
PxCloth::get/setCollisionMassScale.
The	PxClothFabric	 now	 exposed	 a	 number	 of	 new	 internal
arrays	with	getter	functions.
The	 new	 PxClothMeshVertFlag	 and
PxClothMeshDesc::vertFlags	 lets	 attached	 vertices	 be
defined	for	the	cooker	from	which	it	will	try	to	generate	zero
stretch	 constraint	 chains.	 This	 feature	 is	 still	 experimental
and	 these	 settings	 are	 not	 required	 for	 general	 vertex
attachment.

Extensions

We	 provide	 new	 default	 implementations	 for	 user	 implemented
functionality	 in	 the	 form	 of	 PxDefaultMemoryOutputStream,
PxDefaultMemoryInputData,	 PxDefaultFileOutputStream,
PxDefaultFileInputData.
The	class	PxDefaultSimulationFilterShader	was	significantly	extended
with	 set/PxGetGroupCollisionFlag,	 set/PxGetGroup,
set/PxGetFilterOps,	get/PxSetFilterBool,	get/PxsetFilterConstants,	and
set/PxGetGroupsMask,	this	should	implement	2.8	style	group	filtering
for	users	migrating	from	that	old	version.
PxDumpMetaData	now	dumps	to	a	stream,	not	to	a	file,	for	increased
flexibility.
New	 versions	 of	 PxRigidBodyExt::updateMassAndInertia,	 and
setMassAndUpdateInertia	 were	 added	 that	 permit	 specifying
individual	shape	densities,	not	just	a	uniform	density.	Old	versions	are
still	available	for	uniform	density.
The	 new	 helpers	 PxCloneStatic,	 PxCloneDynamic,	 and
PxScaleRigidActor	have	been	added.

Virtual	Remote	Debugger	Interface

The	 function	 PxVisualDebuggerExt::connect	 has	 been	 renamed
createConnection.
PxVisualDebugger::updateCamera	 now	 takes	 names	 for	 cameras
directly	 and	 it	 is	 not	 necessary	 to	 allocate	 cameras.	 Unseen	 names
passed	to	the	function	will	automatically	be	registered.
Added	 new	 functions	 PxVisualDebugger::setVisualizeConstraints,
isVisualizingConstraints	 to	 let	 user	 determine	 if	 joints	 should	 be
visualized	in	PVD.
The	 function	 PxVisualDebugger::setJointVisualizationScale	 has	 been
deleted.	 Joints	 can	 now	 be	 scaled	 in	 PVD	 using	 the	 Preferences	 ->
Gizmo	Scale	setting.

Character	Controller

PxBoxControllerDesc	 representation	 changed	 from	 an	 extents	 vector
to	 separate	 floats,	 which	 are	 hopefully	 more	 intuitive.	 Applicable
accessors	have	been	renamed.
The	 default	 mode	 of	 the	 capsule	 controller	 was	 changed	 from
PxCapsuleClimbingMode::eCONSTRAINED	 to
PxCapsuleClimbingMode::eEASY.	 This	 is	 to	 be	 consistent	 with	 the
default	 behavior	 of	 e.g.	 box	 controllers,	 which	 are	 blocked	 by
obstacles	greater	than	the	stepOffset.	Also,	stepOffsets	greater	than	the
capsule	controller's	entire	height	are	now	forbidden.
The	 PxControllerDesc::upDirection	 is	 now	 a	 vector	 rather	 than	 a	 3
value	enum.	PxCCTUpAxis	has	been	removed.	This	enables	arbitrary
up	vectors	for	character	controllers	--	they	no	longer	have	to	be	aligned
to	the	world	axes.	Applicable	accessors	have	been	updated.
The	various	functions	changing	the	height	or	radius	of	a	controller	do
not	automatically	update	the	controller's	position	anymore,	as	some	of
them	 did	 on	 the	 past.	 There	 is	 now	 a	 new	 helper	 function,
PxController::resize(),	to	do	this.
The	 function	 PxController::move	 now	 needs	 the	 user	 to	 pass	 an
elapsed	 time	 parameter.	 This	 is	 needed	 to	 get	 proper	 interactions
between	 the	 character	 (may	 be	 updated	with	 variable	 timesteps)	 and
kinematic	 platforms	 controlled	 by	 the	 SDK	 (updated	 with	 fixed
timesteps).	When	the	character	jumps	away	from	a	moving	kinematic
platform,	the	character	controller	code	needs	to	compute	its	velocity.	It
needs	 a	 correct	 elapsed	 time	value	 to	 do	 that.	 If	 the	controller	being
migrated	never	needs	to	jump	away	from	moving	kinematic	platforms,
this	parameter	is	not	used,	and	an	arbitrary	value	may	be	passed.
The	function	PxController::move	also	needs	a	a	PxControllerFilters,	a
new	 class.	 This	 stores	 all	 kinds	 of	 filtering	 information	 to	 filter	 out
collisions	with	potentially	colliding	objects,	including	a	filter	callback.
This	class	has	a	constructor	to	initialize	itself	to	defaults,	one	can	just
pass	a	default	object	to	get	default	behavior.

Finally	 the	 function	 PxController::move	 now	 also	 takes	 an	 optional
PxObstacleContext,	 which	 you	 can	 leave	 NULL	 to	 keep	 your	 prior
behavior.	This	object	 could	be	used	 to	define	obstacles	 like	 invisible
walls	 for	 the	 character	 controller	 that	 you	 do	 not	 need	 to	 add	 to	 the
simulation	for	efficiency	reasons.
Some	 versions	 of	 PhysX	 3.1	 still	 shipped	 with	 a	 dynamic	 character
controller	 which	 admittedly	 did	 not	 work	 as	 well	 as	 the	 kinematic
controller,	and	there	was	a	lot	of	overlap	between	the	functionality.	We
decided	 to	 stop	maintaining	 this	 code	path	 and	 it	was	 removed	 from
3.2.	 The	 great	 number	 of	 improvements	 to	 the	 kinematic	 character
controller	should	make	it	possible	for	applications	to	migrate	over	to	it.
There	 is	 a	 new	 function
PxControllerManager::computeInteractions(elapsedTime).	 This	 is
needed	to	properly	resolve	interactions	between	characters	when	they
overlap	 (which	 can	 happen	 from	 time	 to	 time,	 for	 various	 reasons).
One	can	call	 this	pretty	much	at	any	time,	once	per	frame.	It	needs	a
proper	elapsed	time	between	frames	value	here	so	that	interactions	are
resolved	 in	a	way	that	do	not	depend	on	 the	frame	rate.	Nothing	bad
would	happen	if	one	passed	a	fixed	time	value,	though.	If	there	is	only
one	character	 in	 the	 scene,	 it	 is	guaranteed	 that	characters	will	never
overlap,	then	this	function	need	not	be	called.

Meanwhile	 a	 great	 many	 new	 features	 have	 been	 added	 to	 the	 character
controller:

See	 the	 new	 PxCCTNonWalkableMode	 and
PxController::get/setNonWalkableMode()	 for	 two	 options	 for
how	to	handle	non-walkable	areas.
See	 the	 new	 PxControllerState,	 and
PxController::getState(PxControllerState)	 for	 basic	 state
information	like	the	currently	touching	shape,	what	the	controller
is	standing	on,	etcetera.
See	 the	 new	 PxControllerStats	 and
PxController::getStats(PxControllerStats)	for	simulation	statistics
like	the	number	of	collision	iterations	performed.

See	 the	new	new	PxControllerManager::createObstacleContext()
(and	 also	 PxControllerObstacleHit	 and
PxUserControllerHitReport::onObstacleHit)	 for	 a	way	 to	 collide
with	user	defined	obstacles	outside	of	the	simulation	scene.	This
is	covered	in	more	detail	on	the	character	controller	page	of	this
manual.
The	 class	 PxControllersHit	 now	 has	 contact	 point	 information
between	controllers	(position,	normal).
We	added	PxControllerDesc::density,	and	scaleCoeff	variables	to
let	 user	 have	 more	 control	 over	 kinematic	 actor	 that	 character
controller	creates.
The	 new	 PxControllerDesc::volumeGrowth	 lets	 the	 user	 control
caching	of	geometry	to	improve	performance.
The	 new	 PxControllerBehaviorCallback	 (see	 also
PxControllerDesc::behaviorCallback)	 lets	 the	 user	 set	 behavior
flags	 for	 object	 interaction	 to	 specify	 whether	 the	 controller
should	 ride	 along	 on	 the	 object	 it	 stands	 on	 or	 slide	 along	 its
surface.
There	 is	 a	 new	 PxControllerDesc::groupsBitmask	 (and
PxController::get/setGroupsBitmask())	 to	 control	 collision
filtering.
Convenience	functions	like	PxController::getScene()	and	the	new
PxController::getFootPosition()	 to	 retrieve	 foot	 position	 (bottom
point	of	shape)	are	now	available.
There	 is	 the	 new	 PxControllerDebugRenderFlags	 (see	 also
PxControllerManager::setDebugRenderingFlags())	 to	 control
what	 geometry	 to	 send	 to	 debug	 renderer,	 plus
PxControllerManager::getRenderBuffer()	 to	 get	 debug	 render
buffer.
There	is	a	new	PxExtendedVec3::toVec3()	to	convert	an	extended
precision	position	to	a	regular	PxVec3.

previousNVIDIA	PhysX	SDK	Documentation	»	User's	Guide	»

©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050
U.S.A.	All	rights	reserved.

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»

User's	Guide

Contents:

The	Basics
Building	and	Running	the	Samples	on	Windows
Build	Settings
Library	Redistribution
Build	Configurations
The	API
Multithreading
PhysX	Visual	Debugger

Startup	and	Shutdown
The	Allocator	Callback
The	Error	Callback
Cooking
Extensions
Optional	SDK	Components
Windows	delay	load	dll
Shutting	Down

Scenes,	Materials,	and	Actors
The	Scene
The	Simulation	Loop
Simulation	Memory
Materials
Rigid	Actors
Simulation	Clients

Shapes	and	Geometries
Shapes

Simulation	Shapes	and	Scene	Query	Shapes
Trigger	Shapes
Kinematic	triangle	meshes	(planes,	heighfields)
Geometries

Spheres
Capsules
Boxes
Planes
Convex	Meshes
Height	Fields
Triangle	Meshes

Mesh	Scaling
PxGeometryHolder
Detaching	Shapes
Shape	Vertex	and	Triangle	Queries

Convex	Meshes
Triangle	Meshes
Height	Fields

Joints
Joint	Basics

Visualization
Force	Reporting
Breakage
Projection
Limits
Actuation

Fixed	Joint
Spherical	Joint
Revolute	Joint
Prismatic	Joint
Distance	Joint
D6	Joint

Locking	and	Unlocking	Axes
Limits

Drives
Configuring	Joints	for	Best	Behavior

Rigid	Body	Dynamics
Applying	Forces	and	Torques
Gravity
Setting	the	Velocity
Kinematic	Actors
Sleeping
Solver	Accuracy
Fast	Rotation
Mass	Properties
Damping

Data	Access	and	Buffering
General	Data	Access	Rules
Double	Buffering

Events	involving	removed	objects
Support
Memory	Considerations

Task	Management
TaskManager
CpuDispatcher
CpuDispatcher	Implementation	Guidelines
BaseTask
Task
LightCpuTask

GPU	Resource	Management
GpuTasks
CudaContextManager
GpuDispatcher
BlockingWait
Copy	Engine	Kernel
CUDA	Profiling

Scene	Queries
Raycast	queries

Sweep	Queries
Sweeps	with	Initial	Intersection

Overlap	Queries
Filtering
Caching
Batched	queries

Geometry	Queries
Geometry	Objects
PxGeometryQuery
PxMeshQuery

Callbacks	and	Customization
Simulation	Events
Collision	Filtering
Contact	Modification
Active	Transforms

Aggregates
Introduction
Creating	an	Aggregate
Populating	an	Aggregate
Releasing	an	Aggregate
Amortizing	Insertion

Serialization
Binary	Serialization

Framework	Classes
Serializing	Objects
Memory	Management
Traversing	Collections
Partial	Serialization
Serializing	Everything
Object	Names
Retargeting

API-level	Serialization	with	RepX
Converting	 between	 RepX	 and	 Binary	 Serializable
Collections

Simulation	Statistics
Interface
Usage

Advanced	Rigid	Body	Topics
Continuous	Collision	Detection
Articulations

Creating	an	Articulation
Articulation	Joints
Driving	an	Articulation
Articulation	Projection

Substepping
Using	Completion	Tasks
Synchronizing	with	Other	Threads

Custom	Constraints
Persistent	Contact	Manifold

Introduction
Enabling	the	Persistent	Contact	Manifold

Coulomb	Friction
Introduction
Enabling	The	Coulomb	Friction	Model

Particles
Introduction
Creating	Particle	Systems
Creating	Particles
Releasing	Particles
Index	Pool	Extension
Updating	Particles
Reading	Particles
Particle	Drains
Particle	Grid	and	Spatial	Data	Structure	Overflow
Collision	Filtering
GPU/CUDA	Acceleration
Additional	SampleParticles	Information

Cloth

Introduction
Creating	Cloth	Fabric
Creating	Cloth	Collision	Data
Continuous	Collision	Detection
Creating	Cloth
Simulation	Overview
Particle	Integration
Constraint	Solving
Virtual	Particles
Fricton	and	Mass	Scaling
Motion	Constraints

Vehicles
Vehicle	SDK	Initialization
Vehicle	Creation
Vehicle	Actor
Tire	Friction	on	Drivable	Surfaces
Filtering
Vehicle	Update
Tire	Shaders
Telemetry
Vehicle	State	Queries
Vehicle	Controls
3-Wheeled,	N-Wheeled	Cars,	and	N-Wheeled	Tanks
Tuning	Guide

PxVehicleWheelData
PxVehicleWheelsSimData
PxVehicleSuspensionData
PxVehicleTireData
PxVehicleEngineData
PxVehicleGearsData
PxVehicleClutchData
PxVehicleAckermannGeometryData
PxVehicleTireLoadFilterData
PxVehicleDifferential4WData

PxRigidDynamic
Character	Controllers

Introduction
Kinematic	Character	Controller
Creating	a	character	controller
Updating	a	character	controller
Obstacle	objects
Graphics	update
Character	Volume
Auto	Stepping
Walkable	Parts
Volume	Update
Hit	callback
Behavior	callback
Character	interactions
Hidden	kinematic	Actors
Time	Stepping
Invalidating	internal	caches

PhysX	Visual	Debugger	(PVD)
PVD
Basic	Setup	(SDK	Side)

Network	Setup
File	Setup

Advanced	Setup
Connection	Flags
Visualizing	Externals	and	Extended	Data
Connection	Handler

Migration	Guide	From	PhysX	SDK	2.x	to	3.x
Changed	Actor	Hierarchy
Collision	Filtering
Material	Indexes
Continuous	Collision	Detection
Pose	Description
Shape	Description

Joints
Time	Stepping
Scene	Queries
Raycasts
Overlaps
Sweep	Tests
Compartments
Deformables

Migrating	from	PhysX	SDK	3.1	to	3.2
Foundation	and	Common
Geometry
Core	PhysX
Cooking
Deformables
Particles
Cloth
Extensions
Virtual	Remote	Debugger	Interface
Character	Controller

nextprevious	|NVIDIA	PhysX	SDK	Documentation	»
©	Copyright	2008-2012	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA	95050

U.S.A.	All	rights	reserved.

	User's Guide
	The Basics
	Startup and Shutdown
	Scenes, Materials, and Actors
	Shapes and Geometries
	Joints
	Rigid Body Dynamics
	Data Access and Buffering
	Task Management
	GPU Resource Management
	Scene Queries
	Geometry Queries
	Callbacks and Customization
	Aggregates
	Serialization
	Simulation Statistics
	Advanced Rigid Body Topics
	Persistent Contact Manifold
	Coulomb Friction
	Particles
	Cloth
	Vehicles
	Character Controllers
	PhysX Visual Debugger (PVD)
	Migration Guide From PhysX SDK 2.x to 3.x
	Migrating from PhysX SDK 3.1 to 3.2

