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Welcome	to	PhysX
Welcome	to	 the	NVIDIA®	PhysX®	SDK	version	3!	With	 this	second	major	 rewrite	of	 the
SDK,	we	are	excited	to	bring	you	a	great	number	of	enhancements,	 including	numerous
API	 improvements.	 Because	 so	 much	 has	 changed	 in	 the	 API,	 we	 recommend	 even
experienced	PhysX	users	to	read	through	this	guide	to	familiarize	themselves	with	the	new
programming	interface.



About	this	User	Guide

This	Guide	will	help	the	reader	to	understand	the	PhysX-3	SDK	and	its	applications.	The
Guide	presents	an	overview	of	the	features	and	implementation	of	the	PhysX	SDK,	and	its
performance	in	general	use	as	well	as	in	specific	cases.

That	is,	this	Guide	covers:
what	PhysX	does;
how	PhysX	works;
how	well	PhysX	is	expected	to	perform;
how	to	use	PhysX	by	example,	and	performance	in	those	use	cases.

The	Guide	does	not	attempt	 to	explain	 the	details	of	 the	API,	and	 the	 interested	 reader
should	 refer	 to	 the	 PhysX	 API	 Reference	 Documentation.	 (	 See	 PhysXAPI.chm,	 in	 the
Documentation	 directory	 under	 the	 main	 directory	 where	 the	 PhysX	 SDK	 distro	 was
unpacked.)	Users	migrating	from	PhysX-2	will	find	the	Migrating	From	PhysX	SDK	2.x	to
3.x	chapter	of	particular	interest.



Physics	vs.	PhysX

Physics	is	a	rich	and	broad	scientific	pursuit,	an	attempt	to	explain	with	mathematics	the
behavior	 of	 all	matter,	 everything	 in	 the	 entire	 universe,	 using	 concepts	 such	as	 space,
time,	 energy,	 inertia,	 momentum	 and	 force.	 In	 physics,	 space	 is	 assumed	 to	 extend
infinitely	 in	 three	dimensions,	and	can	be	divided	 into	 infinitely	small	units	with	arbitrarily
fine	precision.	In	other	words,	positions	in	physics	space	are	described	by	vectors	of	real
numbers	in	a	3-dimensional	Cartesian	coordinate	system.	In	contrast,	positions	in	PhysX
simulation	space	are	vectors	of	single-precision	floating	point	numbers.

Like	 the	dimensions	of	space,	 time	 in	physics	 is	described	by	a	 real	number,	
duration	 divisible	 into	 arbitrarily	 small	 intervals.	 Physics	 promises	 that	 if	 the	 forces
imposed	on	a	system	are	known	throughout	some	period	of	 time,	and	 if	 the	state	of	 the
system	 is	 known	 precisely	 at	 some	 instant	 of	 time	 in	 that	 period,	 then	 the	 state	 of	 the
system	can	be	determined	precisely	for	any	other	instant	throughout	the	time	period.	
example,	if	one	observes	a	ball	falling	towards	the	ground,	and	measures	its	position	and
velocity,	one	can	calculate	what	the	position	and	velocity	of	the	ball	must	have	been	at	an
earlier	time,	as	well	as	what	they	must	become	at	a	later	time.	In	contrast,	
simulation	is	discrete,	not	continuous,	and	it	runs	only	'forwards'.	That	is,	the	state	of	the
simulated	system	is	known	only	at	specific	instants	in	time,	usually	referred	to	as	'steps',
and	the	simulation	may	only	step	forwards	in	time,	never	backwards.	The	state	of	a	PhysX
system	in	between	time	steps	is	not	precisely	determined.

Because	of	such	approximations	a	PhysX	simulation	is	subject	to	 limitations	that	are	not
seen	 in	 ordinary	 physics,	 and	 later	 sections	 in	 this	Guide	will	 highlight	 these	 limitations
wherever	 they	 are	 likely	 to	 concern	 the	 user.	 PhysX	 is	 best	 suited	 for	 quasi-real	 time
interactive	 3D	 applications	 where	 performance	 and	 scalability	 are	 more	 important	 than
precision.	Here	 "quasi-real	 time"	means	 that	 advancing	 a	 PhysX	 simulation	 by	 a	 given
time	step,	say	1/60	second,	will	take	less	than	that	amount	of	time	on	an	observer's	clock
if	 the	 performance	 of	 the	 hardware	 platform	 is	 sufficient	 for	 the	 complexity	 of	 the
simulation.	That	the	PhysX	SDK	is	more	widely	used	in	computer	and	video	games	than	in
scientific	 or	 engineering	 applications	 is	 both	 a	 cause	 and	 an	 effect	 of	 these	 design
choices.	Consequently	 this	Guide	 usually	 refers	 to	PhysX	 in	 the	 context	 of	 games,	 e.g.
'the	game	world',	'rigid	body	game	objects',	'the	character',	etc.



World	and	Objects

The	basic	concepts	of	the	world	within	a	PhysX	simulation	are	easy	to	visualize:
The	PhysX	world	comprises	a	collection	of	Scenes,	each	containing	objects	called
Actors;
Each	Scene	defines	its	own	reference	frame	encompassing	all	of	space	and	time;
Actors	in	different	Scenes	do	not	interact	with	each	other;
The	three	major	types	of	Actors	are	rigid	bodies,	particles	and	cloth;
Characters	and	vehicles	are	complex	specialized	objects	made	from	Actors;
Actors	 have	 physical	 state	 :	 position	 and	 orientation;	 velocity	 or	 momentum;
energy;	etc,
Actor	physical	state	may	evolve	over	time	due	to	applied	forces,	constraints	such
as	joints	or	contacts,	and	interactions	between	Actors.

Games	 are	 a	 very	 visual	medium	 and	 audible	 and	 games	 usually	 place	 very	 particular
requirements	 on	 their	 graphics	 and	 sound.	 Production	 quality	 graphics	 and	 audio	 are
outside	 the	 scope	 of	 PhysX,	 but	 it	 is	 enormously	 valuable	 to	 be	 able	 to	 visualize	 this
otherwise	 hidden	world.	 Some	of	 our	 example	 programs	 come	with	 rudimentary	 built-in
visualization,	 and	 we	 also	 provide	 a	 stand-alone	 debugging	 tool	 called	 PhysX	 Visual
Debugger	(PVD).	PVD	provides	a	graphical	view	of	the	PhysX	scene	together	with	various
tools	 to	 inspect	 and	 visualize	 variables	 of	 every	 PhysX	 object.	 Additionally	 it	 can	 also
record	 and	 visualize	 memory	 and	 timing	 data.	 See	 PhysX	 Visual	 Debugger	 (PVD)
details.
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Snippets



What	are	PhysX	Snippets?

In	the	context	of	the	PhysX	SDK,	a	'Snippet'	is	a	simple,	minimalistic	code	sample.	PhysX-
SDK	version	3.3.0	offers	a	collection	of	Snippets	to	illustrate	usage	of	the	PhysX	API	in	a
concise	 format,	 free	 from	 the	 complexity	 of	 a	 sample	 framework	 or	 game	 engine.	 The
Snippets	 folder	 is	 in	 the	 top-level	 directory	 of	 the	PhysX	SDK,	 alongside	 directories	 for
Documentation,	Include,	Samples,	etc.

The	folder	{SDK	Root}/Snippets/compiler/{platform}	contains	the	Snippets	solution	file,	e.g.
Snippets/compiler/vc14win64/Snippets.sln

Although	a	few	of	the	Snippets	support	rendering,	(	Win32,	Win64,	OSX	and	Linux	only	)
most	Snippets	do	not	provide	rendering,	require	no	input,	and	provide	only	limited	output
through	messages.	Although	Snippets	can	be	run	from	a	command	prompt	or	by	double-
clicking	the	executable	icon,	the	best	way	to	explore	Snippets	is	by	viewing	the	code	in	the
Visual	Studio	IDE,	and	running	the	program	in	the	debugger.



HelloWorld:	PhysX	Basics

SnippetHelloWorld	 illustrates	 basic	 use	 of	 PhysX,	 from	 startup	 to	 shutdown	 of	 a	 simple
scene,	 and	 is	 a	 good	 place	 to	 start	 learning	 the	 PhysX	 API.	 The	 simplest	 Snippets
comprise	 a	 single	 source	 file,	 but	 SnippetHelloWorld,	 among	 others,	 supports	 optional
rendering	 through	 a	 second	 source	 file.	 SnippetHelloWorld	 creates	 a	 number	 of	 box
stacks	on	a	plane,	and	if	rendering	is	enabled,	allows	the	user	to	create	new	stacks	and
fire	a	ball	from	the	camera	position.

The	 primary	 code	 for	 SnippetHelloWorld	 is	 found	 in	 {SDK
Root}/Snippets/SnippetHelloWorld/SnippetHelloWorld.cpp.



Using	PhysX	Visual	Debugger	with	SnippetHelloWorld

As	 is	 the	 case	 with	 any	 Snippet	 built	 against	 PROFILE,	 CHECKED	 or	 DEBUG
configurations	of	 the	PhysX	 runtime,	HelloWorld	will	automatically	connect	 to	 the	PhysX
Visual	 Debugger	 if	 that	 application	 is	 already	 running	 when	 the	 Snippet	 executable	 is
launched.	 For	 Snippets	 without	 rendering,	 PVD	 provides	 an	 easy	 way	 to	 visualize	 the
contents	 of	 the	PhysX	 scene	presented	 in	 the	Snippet.	 In	 the	 screenshot	 image	 below,
PhysX	Visual	Debugger	appears	on	the	right	hand	side,	while	Visual	Studio	and	Snippet
Hello	World	are	on	the	left.
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Building	with	PhysX
On	Windows,	PhysX	requires	Visual	Studio	2013	or	later	versions.



Build	Settings

The	PhysX	headers	should	compile	cleanly	at	the	highest	typical	warning	levels	(/W4	for
Visual	 Studio,	 -Wall	 -Wextra	 -pedantic	 for	 gcc-	 and	 clang-based	 compilers.)	 Stricter
warning	settings	may	result	in	a	small	number	of	benign	informational	warnins.

The	 PhysX	 source	 projects	 and	 snippets	 will	 compile	 cleanly	 using	 the	 project	 files	 or
makefiles	supplied.



Build	Configurations

The	 SDK	 has	 four	 build	 configurations	 available,	 designed	 for	 different	 stages	 of
development	and	deployment.

the	debug	build	can	be	useful	 for	error	analysis,	but	contains	asserts	used	 for	SDK
development	 which	 some	 customers	 may	 find	 too	 intrusive	 for	 daily	 use.
Optimizations	are	turned	off	for	this	configuration.
the	checked	 build	 contains	 code	 to	 detect	 invalid	 parameters,	 API	 race	 conditions,
and	other	incorrect	uses	of	the	API	which	might	otherwise	cause	mysterious	crashes
or	failures	in	simulation.
the	profile	build	omits	the	checks,	but	still	has	PVD	and	memory	instrumentation.
the	 release	 build	 is	 built	 for	 minimal	 footprint	 and	 maximum	 speed.	 It	 omits	 most
checks	and	instrumentation.

Simulation	works	the	same	way	in	all	of	them,	and	all	are	compiled	with	high	optimization
levels	(except	debug	configuration).

Note: 	We	strongly	recommend	that	you	use	the	checked	build	as	the	primary
configuration	for	day-to-day	development	and	QA.

Note: 	PhysX	libraries	of	different	build	configurations	(e.g.	the	DEBUG	version	of
PhysXVehicle	and	the	CHECKED	version	of	PhysXVisualDebuggerSDK)	should	never
be	mixed	in	an	application	because	this	will	result	a	CRT	conflict.



Header	Files

To	build	your	own	PhysX	app,	you	will	 need	 to	add	some	 include	paths	and	 libraries	 to
your	project	makefile	or	IDE.

Users	 should	 specify	 the	 root	 "Include"	 and	 "Lib"	 folders	 in	 the	 additional	 include,	 and
library	directories	respectively.	There	is	a	combined	include	header	available	as:

#include	"PxPhysicsAPI.h"

This	will	 include	 the	entire	PhysX	API	 including	core,	extensions,	vehicles,	etc.	 It	 is	also
possible	to	include	subsets	of	the	SDK	if	preferred,	for	example:

#include	"vehicle/PxVehicleSDK.h"



Libraries

At	a	minimum,	applications	need	to	link	against	the	following	libraries	with	the	appropriate
platform	extension	(e.g.	".lib"	or	".a")	and	with	*	being	a	x86	or	x64	for	Windows	platforms:

PhysX3_*.lib
PhysX3Common_*.lib
PxFoundation_*.lib

Note: 	The	static	libraries	we	provide	with	the	Windows	binary	distribution	are	linked
against	the	Multi-Threaded	static	C	Run-Time	(CRT)	libraries.	This	means	that	your
application	must	also	use	the	same	CRT	flavor.	If	you	need	to	use	a	different	CRT
version,	you	must	upgrade	to	our	source	license.	The	source	distribution	can	simply	be
recompiled	using	different	CRT	settings.



Redistribution

On	the	Windows	platform,	you	need	to	redistribute	some	of	our	DLLs	to	end	users	as	part
of	your	application:

PhysX3Common_*.dll	-	will	always	be	needed.
PhysX3_*.dll	-	will	always	be	needed.
PxFoundation_*.dll	-	will	always	be	needed.
PhysX3Cooking_*.dll	 -	 you	 only	 need	 to	 bundle	 if	 your	 application	 cooks	 geometry
data	on	the	fly.
PhysX3GPU_*.dll	 -	 is	 only	 needed	 if	 your	 application	 runs	 some	 simulation	 on	 the
GPU.
PhysX3CharacterKinematic_*.dll	 -	 is	 only	 needed	 if	 your	 application	 uses	 the
character	controller.
PxPvdSDK_*.dll	-	is	only	needed	if	your	application	uses	PVD.

Where	 *	 is	 a	 platform	 specific	 suffix,	 e.g.	 x86	 or	 x64.	 You	 will	 need	 one	 or	 the	 other
depending	on	whether	your	application	is	built	in	64	bit	mode.
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The	PhysX	API



Introduction

This	 chapter	 covers	 the	 basic	 patterns	 common	 to	 the	 PhysX	 application	 programming
interface	 (API.)	We	are	committed	 to	keeping	 this	API	stable	and	backwards-compatible
from	one	minor	release	to	the	next,	to	protect	the	investment	you	make	in	your	integration
code.

The	 PhysX	 API	 is	 composed	 primarily	 of	 abstract	 interface	 classes.	 Classes,
enumerations	and	functions	defined	by	the	API	have	the	prefix	Px.

Note: 	There	is	currently	one	section	of	the	public	API	which	does	not	have	the	Px
prefix:	the	PhysX	Visual	Debugger	connection	library	which	has	the	prefix	Pvd.

The	PhysX	libraries	also	expose	some	classes	and	functions	that	are	not	part	of	the	public
API.	These	are	primarily	containers	and	platform	abstractions	that	are	required	to	build	the
PhysX	libraries	which	are	distributed	as	source,	and	are	also	used	in	the	samples.	They
can	 be	 recognized	 because	 they	 do	 not	 have	 the	 Px	 prefix.	 Even	 though	 they	 are	 in
principle	 accessible	 to	 users,	 they	 are	 largely	 undocumented	 and	 we	 do	 not	 maintain
compatibility	 of	 this	 code	 between	 PhysX	 versions.	 For	 that	 reason	 we	 recommend
strongly	against	their	use	in	applications.



Memory	Management

PhysX	performs	all	allocations	via	the	PxAllocatorCallback	interface.	You	must	implement
this	interface	in	order	to	initialize	PhysX:

class	PxAllocatorCallback

{

public:

				virtual	~PxAllocatorCallback()	{}

				virtual	void*	allocate(size_t	size,	const	char*	typeName,	const

								int	line)	=	0;

				virtual	void	deallocate(void*	ptr)	=	0;

};

The	size	of	the	request	is	specified	in	bytes,	and	PhysX	requires	that	the	memory	that	is
returned	be	16-byte	aligned.	On	many	platforms	malloc()	returns	memory	that	 is	16-byte
aligned,	and	on	Windows	 the	system	 function	_aligned_malloc()	provides	 this	capability.
The	other	parameters	to	allocate()	are	a	string	which	identifies	the	type	of	allocation,	and
the	__FILE__	and	__LINE__	location	inside	PhysX	code	where	the	allocation	was	made.
Refer	to	PxAllocatorCallback::allocate()	to	find	out	more	about	them.

A	 simple	 implementation	 of	 the	 allocator	 callback	 class	 can	 be	 found	 in	 the	 PhysX
Extensions	library,	see	class	PxDefaultAllocatorCallback.

Note: 	On	some	platforms	PhysX	uses	system	library	calls	to	determine	the	correct	type
name,	and	the	system	function	that	returns	the	type	name	may	call	the	system	memory
allocator.	If	you	are	instrumenting	system	memory	allocations,	you	may	observe	this
behavior.	To	prevent	PhysX	requesting	type	names,	disable	allocation	names	using	the
method	PxFoundation::setReportAllocationNames().

You	 can	 place	PhysX	objects	 in	memory	 owned	by	 the	 application	 using	PhysX'	 binary
deserialization	mechanism.	See	Serialization	for	details.

As	an	alternative	to	instrumenting	the	allocator,	you	can	obtain	detailed	information	about
memory	allocation	in	the	PhysX	Visual	Debugger	(see:	PhysX	Visual	Debugger	(PVD)



Error	Reporting

PhysX	logs	all	error	messages	through	the	PxErrorCallback	interface.	You	must	implement
this	interface	in	order	to	initialize	PhysX:

class	UserErrorCallback	:	public	PxErrorCallback

{

public:

				virtual	void	reportError(PxErrorCode::Enum	code,	const	char*	message

								int	line)

				{

								//	error	processing	implementation

								...

				}

};

There	 is	 only	 a	 single	 function	 to	 implement,	 reportError.	 This	 function	 should	 log	 the
passed	message,	or	print	it	on	the	application's	output	console.	For	the	more	serious	error
codes	 eABORT,	 eINVALID_PARAMETER,	 eINVALID_OPERATION
eINTERNAL_ERROR	 and	 eOUT_OF_MEMORY,	 breaking	 into	 the	 debugger	 may	 be	 a
more	appropriate	choice.	Whatever	you	do,	do	not	just	ignore	the	messages.

A	simple	implementation	of	the	error	callback	class	can	be	found	in	the	PhysX	Extensions
library,	see	class	PxDefaultErrorCallback.



Math	Classes

The	 common	 math	 classes	 used	 in	 PhysX	 are	 PxVec2,	 PxVec3,	 PxVec4,	 PxMat33,
PxMat44,	 PxTransform,	 PxPlane	 and	PxQuat,	 which	 are	 are	 defined	 in	 their	 respective
header	 files,	 e.g.	 (SDKRoot)/Include/foundation/PxVec3.h.	 The	 types	 support	 standard
operator	 overloads	 and	 typical	 math	 operations.	 Zero	 and	 identity	 objects	 where
appropriate	 can	 be	 constructed	 by	 passing	 the	 arguments	 PxZero	 and	 PxIdentity
respectively.

Some	points	to	note	are:

PxTransform	is	a	representation	of	a	rigid	body	transform	as	a	rotation	quaternion	and
a	position	vector,	and	PhysX	functions	which	take	transforms	all	use	this	type.
PxPlane	 is	 a	 homogeneous	 plane	 equation:	 that	 is,	 the	 constructor	 PxPlane(n,	 d)
represents	the	equation	n.x	+	d	=	0.

PxMat33	 and	 PxMat44	 matrices	 represent	 transformations	 with	 basis	 vectors	 in	 the
columns	 (pre-multiply	with	matrix	on	 the	 left	 hand	side)	and	are	stored	 in	 column-major
order.	This	 format	 is	 layout	compatible	with	popular	graphics	APIs	such	as	OpenGL	and
Direct3D.	For	example,	to	set	the	model	transformation	for	a	rigid	body	in	OpenGL:

//	retrieve	world	space	transform	of	rigid	body

PxTransform	t	=	rigidActor.getGlobalPose();

//	convert	to	matrix	form

PxMat44	m	=	PxMat44(t);

//	set	to	OpenGL

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

//	PxMat44::front()	returns	a	pointer	to	the	first	matrix	element

glMultMatrixf(m.front());

//	draw	model

glPopMatrix()



DirectX	 uses	 row-major	 storage	 for	 matrices	 by	 default	 (D3DMATRIX),	 but	 also	 stores
basis	 vectors	 in	 rows	 (post-multiply	 on	 the	 right),	 so	PxMat44	may	 be	 used	 in	 place	 of
D3DXMATRIX	types	directly.



Connecting	PhysX	Objects	with	User	Application	Objects

Often	an	application	needs	to	associate	PhysX	objects	with	application	objects	for	game
logic	or	rendering	purposes.	An	easy	way	to	connect	a	single	user	application	object	with
a	PhysX	 object	 is	 to	 use	 the	userData	member	 provided	 by	 the	most	 important	 PhysX
classes	(PxActor::userData,	PxShape::userData,	PxMaterial::userData,	 ...).	The	
member	is	a	void*	pointer	which	is	reserved	for	application	use.	Each	class	only	has	one
userData	field,	so	to	manage	multiple	associations	another	mechanism	must	be	used.



Type	Casting

PhysX	 API	 interface	 classes	 inherit	 from	 a	 top-level	 interface	 called	 PxBase,	 which
provides	mechanisms	for	type-safe	down-casting	between	interface	types.	For	example,	to
cast	from	a	PxActor	to	a	PxRigidDynamic,	use	the	following	idiom:

PxActor*	actor	=	<...>

PxRigidDynamic*	myActor	=	actor->is<PxRigidDynamic>();

const	PxActor*	actor	=	<...>

const	PxRigidDynamic*	myActor	=	actor->is<PxRigidDynamic>();

This	 pattern	 can	 be	 used	 to	 cast	 to	 intermediate	 types	 in	 the	 hierarchy	 such	 as
PxRigidActor,	 but	 this	 is	 somewhat	 slower	 than	 casting	 to	 concrete	 types.	 In	 addition,
PxBase	provides	the	following	capabilities:

getConcreteType()	provides	an	integer	value	which	corresponds	to	the	concrete	type
of	an	object
getConcreteTypeName()	provides	a	string	name	of	the	concrete	type
isKindOf()	provides	string-based	testing	of	inheritance



Reference	Counting

Some	PhysX	objects	are	designed	to	be	shared	and	referenced	multiple	times	in	a	PhysX
scene	 graph.	 For	 example,	 a	 PxConvexMesh	may	 be	 referenced	 by	multiple	 PxShape
objects,	each	sharing	the	same	geometry	but	associated	with	different	actors.	The	specific
types	 are	 PxTriangleMesh,	 PxHeightField,	 PxConvexMesh,	 PxMaterial,	 PxClothFabric,
and	PxShape.	Each	object	of	these	types	has	a	reference	count.	The	rules	for	reference
counting	are	as	follows:

when	an	object	is	created	from	PxPhysics,	it	has	a	reference	count	of	1.
when	an	object's	reference	count	reaches	0,	the	object	is	destroyed.
when	 a	 new	 counted	 reference	 is	 created,	 the	 reference	 count	 is	 incremented.
Counted	references	are	as	follows:

when	 a	 PxShape	 references	 a	 PxConvexMesh,	 PxHeightfield,	 or
PxTriangleMesh.
when	a	PxShape	references	a	PxMaterial.
when	a	PxRigidActor	references	a	PxShape.
when	a	PxCloth	references	a	PxClothFabric.

when	a	counted	reference	is	destroyed,	or	the	object's	release()	method	is	called,	the
reference	count	is	decremented.
when	an	object	 is	 created	 through	deserialization,	 its	 reference	count	 is	1,	plus	 the
number	of	counted	references	that	exist	to	the	object.

The	 initial	 reference	 count	 of	 1	 ensures	 the	object	 is	 not	 destroyed	until	 the	application
allows	 it	by	calling	 release()	 -	 thereafter	 it	will	be	destroyed	when	no	 remaining	counted
references	to	it	exist.

For	 example,	 if	 you	 create	 a	 shape	 using	PxPhysics::createShape()	 and	 attach	 it	 to	 an
actor	with	PxRigidActor::attachShape(),	 it	has	a	reference	count	of	2.	If	you	then	call	 the
shape's	release()	method,	 it	has	a	reference	count	of	1.	When	the	actor	 is	destroyed,	or
the	shape	is	detached	from	the	actor,	the	reference	count	is	decremented,	and	since	it	is
now	0,	the	shape	is	destroyed.



The	 acquireReference()	 method	 increments	 the	 reference	 count	 of	 an	 object.	 For
example,	when	a	spatial	query	returns	a	reference	to	a	mesh	shape,	and	you	want	to	pass
that	result	to	another	thread	for	deferred	processing,	incrementing	the	reference	count	will
ensure	 that	 even	 if	 the	 shape	 referencing	 the	mesh	 is	 released,	 the	mesh	 continues	 to
exist.

Note: 	subtypes	of	PxGeometry	do	not	have	counted	references	to	the	meshes	to	which
they	point,	e.g.	when	PxConvexMeshGeometry	points	to	a	PxConvexMesh.	A	counted
reference	exists	only	when	the	geometry	is	within	a	PxShape.

Note: 	shapes	are	often	created	using	the	utility	method
PxRigidActorExt::createExclusiveShape().	Take	special	care	when	deserializing	such
actors	(see	Shapes	and	Reference	Counting	of	Deserialized	Objects)



Using	Different	Units

PhysX	is	designed	to	produce	correct	results	regardless	of	the	units	of	length	or	mass,	so
long	as	inputs	use	those	units	consistently.	However,	there	are	certain	tolerances	values
whose	defaults	need	to	be	adjusted	depending	on	the	units.	In	order	to	ensure	that	these
tolerances	 default	 to	 reasonable	 values,	 adjust	 the	 values	 in	 PxTolerancesScale	 when
creating	 the	 PxPhysics	 and	 PxCooking	 interfaces.	 Tolerances	 for	 objects	 are	 set	 at
creation	time,	and	may	then	be	overridden	by	the	application.

You	 should	 set	 tolerances	 based	 on	 the	 typical	 size	 of	 objects	 in	 your	 simulation.	 For
example,	 if	you	are	working	with	objects	of	size	approximately	one	meter,	but	 in	units	of
centimeters,	you	should	set	the	scale	as	follows:

PxFoundation*	foundation	=	...;

PxTolerancesScale	scale;

scale.length	=	100;								//	typical	length	of	an	object

scale.speed	=	981;									//	typical	speed	of	an	object,	gravity*1s	is	a	reasonable	choice

PxPhysics	*p	=	PxCreatePhysics(PX_PHYSICS_VERSION,	*foundation,	scale

This	 will	 result	 in	 the	 defaults	 for	 values	 like	 PxShape::contactDistance	 being	 scaled
appropriately	for	your	objects.

You	can	also	set	the	typical	object	mass	in	PxTolerancesScale.

It	 is	 important	 to	 use	 the	 same	 PxTolerances	 value	 for	 initialization	 of	 PxCooking	 and
PxPhysics,	and	also	when	creating	PxSceneDesc	objects.



Assertions

PhysX	uses	the	PX_DEBUG	macro	to	enable	or	disable	assertions.	This	macro	is	not	set
in	 the	PhysXCore	and	PhysXCommon	libraries,	and	so	by	default	 these	 libraries	will	not
trigger	assertions,	however	you	may	configure	the	libraries	provided	as	source	to	enable
them.	When	an	assert	 is	 triggered,	PhysX	calls	an	assert	handler.	By	default	 the	assert
handler	 will	 trigger	 a	 debug	 breakpoint.	 However,	 you	 may	 call	 the	 function
PxSetAssertHandler()	to	customize	the	assert	handler.



Determinism

PhysX	 is	 deterministic	 in	 the	 sense	 it	 will	 produce	 identical	 simulation	 results	 from	 the
same	 sequence	 of	 API	 calls	 applied	 from	 the	 point	where	 a	 scene	 is	 originally	 created
(and	 the	 same	 responses	 from	 simulation	 callbacks	 which	 modify	 data).	 Note	 that
removing	all	 the	objects	 from	a	scene	 is	not	 in	general	 sufficient	 to	 reinitialize	 it	 for	 this
purpose.

PhysX	simulation	behavior	is	not	sensitive	to	the	number	of	CPU	worker	threads	used.

An	 important	 caveat	 to	 determinism	 is	 the	 state	 of	 the	 x87	 FPU	 on	 32-bit	 Intel/AMD
platforms.	Some	compilers	produce	x87	 floating	point	 instructions	even	when	configured
to	prefer	SSE	instructions,	and	the	results	of	those	operations	may	depend	on	the	state	of
the	x87	control	word.	Since	it	is	too	expensive	to	modify	the	x87	FPU	state	at	every	PhysX
entry	point,	this	is	delegated	to	the	application	if	necessary.	PhysX	operations	do	not	result
in	 changes	 to	 the	 x87	 control	 word,	 but	 certain	 other	 libraries	 (including	 DirectX)	 may
modify	it.

Configurations	 in	 which	 this	 is	 known	 to	 be	 a	 issue	 are	 all	 32-bit	 MSVC	 debug
configurations,	 and	 all	MSVC	32-bit	 checked,	 release	 and	 profile	 configurations	 prior	 to
Visual	Studio	2012.
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Startup	and	Shutdown



Introduction

The	 first	 step	 in	 using	 the	 PhysX	SDK	 in	 a	 program	 is	 the	 initialization	 of	 some	 global
objects.	 These	 objects	 can	 be	 released	 when	 PhysX	 is	 no	 longer	 needed	 to	 free
resources.	This	chapter	describes	how	to	do	this.



Foundation	and	Physics

First,	in	some	startup	code,	create	a	PxFoundation	object:

static	PxDefaultErrorCallback	gDefaultErrorCallback;

static	PxDefaultAllocator	gDefaultAllocatorCallback;

mFoundation	=	PxCreateFoundation(PX_FOUNDATION_VERSION,	gDefaultAllocatorCallback

				gDefaultErrorCallback);

if(!mFoundation)

				fatalError("PxCreateFoundation	failed!");

Every	 PhysX	 module	 requires	 a	 PxFoundation	 instance	 to	 be	 available.	 The	 required
parameters	 are	 a	 version	 ID,	 an	 allocator	 callback	 and	 an	 error	 callback.
PX_PHYSICS_VERSION,	is	a	macro	predefined	in	our	headers	to	enable	PhysX	to	check
for	a	version	mismatch	between	the	headers	and	the	corresponding	SDK	DLLs.

Usually,	the	allocator	callback	and	error	callback	are	specific	to	the	application,	but	PhysX
provides	 default	 implementations	 that	 make	 it	 easy	 to	 get	 started.	 See	
Management	and	Error	Reporting	for	more	details	of	these	callbacks.	(The	actual	sample
code	supports	an	advanced	memory	allocator	that	tracks	allocations	instead	of	the	default,
but	we	have	omitted	that	detail	here.)

Now	create	the	top-level	PxPhysics	object:

bool	recordMemoryAllocations	=	true;

mPvd	=	PxCreatePvd(*gFoundation);

PxPvdTransport*	transport	=	PxDefaultPvdSocketTransportCreate(PVD_HOST

mPvd->connect(*transport,PxPvdInstrumentationFlag::eALL);

mPhysics	=	PxCreatePhysics(PX_PHYSICS_VERSION,	*mFoundation,

				PxTolerancesScale(),	recordMemoryAllocations,	mPvd);

if(!mPhysics)

				fatalError("PxCreatePhysics	failed!");

Again,	 the	 version	 ID	 has	 to	 be	 passed	 in.	 The	PxTolerancesScale	 parameter	makes	 it



easier	to	author	content	at	different	scales	and	still	have	PhysX	work	as	expected,	but	to
get	 started	 simply	 pass	 a	 default	 object	 of	 this	 type.	 The	 recordMemoryAllocations
parameter	 specifies	 whether	 to	 perform	 memory	 profiling.	 The	 optional	 PVD	 instance
enables	the	debugging	and	profiling	with	the	PhysX	Visual	Debugger.



Cooking

The	PhysX	cooking	 library	provides	utilities	 for	 creating,	 converting,	 and	 serializing	bulk
data.	Depending	on	your	application,	you	may	wish	to	link	to	the	cooking	library	in	order	to
process	such	data	at	 runtime.	Alternatively	you	may	be	able	 to	process	all	such	data	 in
advance	and	just	load	it	into	memory	as	required.	Initialize	the	cooking	library	as	follows:

mCooking	=	PxCreateCooking(PX_PHYSICS_VERSION,	*mFoundation,	PxCookingParams

if	(!mCooking)

				fatalError("PxCreateCooking	failed!");

The	PxCookingParams	struct	 configures	 the	cooking	 library	 to	 target	different	platforms,
use	non-default	 tolerances	or	produce	optional	outputs.	 It	 is	 important	 to	use	consistent
PxTolerancesScale	 values	 everywhere	 in	 your	 application	 (see	Using	Different	Units
more	details).

The	 cooking	 library	 generates	 data	 through	 a	 streaming	 interface.	 In	 the	 samples,
implementations	 of	 streams	 are	 provided	 in	 the	PxToolkit	 library	 to	 read	 and	write	 from
files	 and	 memory	 buffers.	 Heightfield	 or	 Trianglemesh	 cooked	 meshes	 can	 be	 directly
inserted	 into	 PxPhysics	 without	 serialization	 using	 the	 PxPhysicsInsertionCallback.	 The
default	 callback	 must	 be	 used	 and	 can	 be	 obtained	 using	 the
PxPhysics::getPhysicsInsertionCallback().



Extensions

The	 extensions	 library	 contains	 many	 functions	 that	 may	 be	 useful	 to	 a	 large	 class	 of
users,	but	which	some	users	may	prefer	to	omit	from	their	application	either	for	code	size
reasons	or	 to	avoid	use	of	 certain	 subsystems,	 such	as	 those	pertaining	 to	networking.
Initializing	the	extensions	library	requires	the	PxPhysics	object:

if	(!PxInitExtensions(*mPhysics,	mPvd))

				fatalError("PxInitExtensions	failed!");



Optional	SDK	Components

When	linking	PhysX	as	a	static	library	on	memory	constrained	platforms,	it	 is	possible	to
avoid	linking	the	code	of	some	PhysX	features	that	are	not	always	used	in	order	to	save
memory.	Currently	the	optional	features	are:

Articulations
Height	Fields
Cloth
Particles

If	your	application	requires	a	subset	of	 this	 functionality,	 it	 is	 recommended	that	you	call
PxCreateBasePhysics	 as	 opposed	 to	 PxCreatePhysics	 and	 then	 manually	 register	 the
components	you	require.	Below	is	an	example	that	registers	some	of	the	options:

physx::PxPhysics*	customCreatePhysics(physx::PxU32	version,

				physx::PxFoundation&	foundation,

				const	physx::PxTolerancesScale&	scale,

				bool	trackOutstandingAllocations

				physx::PxPvd*	pvd)

{

				physx::PxPhysics*	physics	=	PxCreateBasePhysics(version,	foundation

								trackOutstandingAllocations,	pvd);

				if(!physics)

								return	NULL;

				PxRegisterArticulations(*physics);

				PxRegisterHeightFields(*physics);

				return	physics;

}

Note	that	this	will	only	save	memory	when	linking	PhysX	as	a	static	library,	as	we	rely	on
the	linker	to	strip	out	the	unused	code.



Delay-Loading	DLLs

The	PhysXCommon	DLL,	PxFoundation	DLL	and	PxPvdSDK	DLL	are	marked	as	delay-
loaded	inside	of	the	PhysX,	PhysXCooking,	PhysXCommon	and	PxPvdSDK	projects.	So	it
is	possible	 to	have	delay-loaded	PxFoundation,	PxPvdSDK,	PhysXCommon,	PhysX	and
PhysXCooking	DLLs.

PhysXCommon	DLL	and	PsFoundation	DLL	load

The	application	links	against	PhysXCommon	DLL,	and	will	usually	load	PxFoundation.dll,
PxPvdSDK	and	PhysXCommon.dll	before	any	other	PhysX	DLL.	The	DLL	loaded	by	the
application	 must	 be	 the	 same	 one	 that	 will	 be	 used	 by	 the	 PhysX	 and	 PhysXCooking
DLLs.	 In	 the	 PhysX	 and	 PhysXCooking	 DLLs,	 the	 choice	 of	 PhysXCommon,
PxFoundation	and	PxPvdSDK	is	made	as	follows:

If	 delay	 load	 hook	 is	 specified	 the	 PhysXCommon	 name,	 PxFoundation	 or
PxPvdSDK	name	provided	by	user	is	used
If	 delay	 load	 hook	 is	 not	 specified,	 the	 corresponding	 PhysXCommon	 DLL,
PsFoundation	DLL	or	PxPvdSDK	DLL	is	used

PxDelayLoadHook

The	 PxDelayLoadHook	 class	 supports	 loading	 of	 different	 versions	 of	 PhysXCommon
DLL,	PxFoundation	DLL	or	PxPvdSDK	DLL.	This	can	be	achieved	by	providing	different
DLL	names	to	the	PhysX	SDK	through	a	custom	subclass	of	PxDelayLoadHook,	see	the
following	example:

class	SampleDelayLoadHook:	public	PxDelayLoadHook

{

				virtual	const	char*	getPhysXCommonDEBUGDllName()	const

								{	return	"PhysX3CommonDEBUG_x64_Test.dll";	}

				virtual	const	char*	getPhysXCommonCHECKEDDllName()	const

								{	return	"PhysX3CommonCHECKED_x64_Test.dll";	}

				virtual	const	char*	getPhysXCommonPROFILEDllName()	const

								{	return	"PhysX3CommonPROFILE_x64_Test.dll";	}



				virtual	const	char*	getPhysXCommonDllName()	const

								{	return	"PhysX3Common_x64_Test.dll";	}

				virtual	const	char*	getPxFoundationDEBUGDllName()	const

								{	return	"PxFoundationDEBUG_x64_Test.dll";	}

				virtual	const	char*	getPxFoundationCHECKEDDllName()	const

								{	return	"PxFoundationCHECKED_x64_Test.dll";	}

				virtual	const	char*	getPxFoundationPROFILEDllName()	const

								{	return	"PxFoundationPROFILE_x64_Test.dll";	}

				virtual	const	char*	getPxFoundationDllName()	const

								{	return	"PxFoundation_x64_Test.dll";	}

				virtual	const	char*	getPxPvdSDKDEBUGDllName()	const

								{	return	"PxPvdSDKDEBUG_x64_Test.dll";	}

				virtual	const	char*	getPxPvdSDKCHECKEDDllName()	const

								{	return	"PxPvdSDKCHECKED_x64_Test.dll";	}

				virtual	const	char*	getPxPvdSDKPROFILEDllName()	const

								{	return	"PxPvdSDKPROFILE_x64_Test.dll";	}

				virtual	const	char*	getPxPvdSDKDllName()	const

								{	return	"PxPvdSDK_x64_Test.dll";	}

}	gDelayLoadHook;

Now	 the	 hook	 must	 be	 set	 for	 PhysX,	 PhysXCooking,	 PhysXGpu,	 PhysXCommon,
PxPvdSDK:

PxSetPhysXDelayLoadHook(&gDelayLoadHook);

PxSetPhysXCookingDelayLoadHook(&gDelayLoadHook);

PxSetPhysXGpuDelayLoadHook(&gDelayLoadHook);

PxSetPhysXCommonDelayLoadHook(&gDelayLoadHook);

PxPvdSetFoundationDelayLoadHook(&gDelayLoadHook);

PxGpuLoadHook

The	PxGpuLoadHook	class	supports	loading	of	different	versions	of	PhysXGpu	DLL.	This
can	be	achieved	by	providing	different	DLL	names	 to	 the	PhysX	SDK	through	a	custom
subclass	of	PxGpuLoadHook,	see	the	following	example:

class	SampleGpuLoadHook:	public	PxGpuLoadHook

{

				virtual	const	char*	getPhysXGpuDEBUGDllName()	const

								{	return	"PhysX3GpuDEBUG_x64_Test.dll";	}

				virtual	const	char*	getPhysXGpuCHECKEDDllName()	const

								{	return	"PhysX3GpuCHECKED_x64_Test.dll";	}

				virtual	const	char*	getPhysXGpuPROFILEDllName()	const



								{	return	"PhysX3GpuPROFILE_x64_Test.dll";	}

				virtual	const	char*	getPhysXGpuDllName()	const

								{	return	"PhysX3Gpu_x64_Test.dll";	}

}	gGpuLoadHook;

Now	the	hook	must	be	set	for	PhysX:

PxSetPhysXGpuLoadHook(&gGpuLoadHook);

PhysXCommon	Secure	Load

All	PhysX	DLLs	distributed	by	NVIDIA	are	signed.	The	PhysXCommon	DLL	signature	 is
checked,	 when	 it	 is	 loaded	 by	 PhysX	 or	 PhysXCooking.	 If	 signature	 test	 fails	 the
application	is	terminated.



Shutting	Down

To	dispose	of	any	PhysX	object,	call	its	release()	method.	This	will	destroy	the	object,	and
all	contained	objects.	The	precise	behavior	depends	on	the	object	type	being	released,	so
refer	 to	 the	 reference	 guide	 for	 details.	 To	 shut	 down	 the	 extensions	 library,	 call	 the
function	 PxCloseExtensions().	 To	 shut	 down	 physics,	 call	 release()	 on	 the	 PxPhysics
object,	and	this	will	clean	up	all	of	the	physics	objects:

mPhysics->release();

Do	 not	 forget	 to	 release	 the	 foundation	 object	 as	 well,	 but	 only	 after	 all	 other	 PhysX
modules	have	been	released:

mFoundation->release();
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Threading



Introduction

This	 chapter	 explains	 how	 to	 use	PhysX	 in	multithreaded	 applications.	 There	 are	 three
main	aspects	to	using	PhysX	with	multiple	threads:

how	 to	make	 read	and	write	calls	 into	 the	PhysX	API	 from	multiple	 threads	without
causing	race	conditions.
how	to	use	multiple	threads	to	accelerate	simulation	processing.
how	 to	 perform	 asynchronous	 simulation,	 and	 read	 and	 write	 to	 the	 API	 while
simulation	is	being	processed.



Data	Access	from	Multiple	Threads

For	efficiency	reasons,	PhysX	does	not	internally	lock	access	to	its	data	structures	by	the
application,	so	be	careful	when	calling	the	API	from	multiple	application	threads.	The	rules
are	as	follows:

API	interface	methods	marked	'const'	are	read	calls,	other	API	interface	methods	are
write	calls.
API	read	calls	may	be	made	simultaneously	from	multiple	threads.
Objects	in	different	scenes	may	be	safely	accessed	by	different	threads.
Different	objects	outside	a	scene	may	be	safely	accessed	from	different	threads.	Be
aware	 that	accessing	an	object	may	 indirectly	cause	access	 to	another	object	via	a
persistent	 reference	 (such	 as	 joints	 and	 actors	 referencing	 one	 another,	 an	 actor
referencing	a	shape,	or	a	shape	referencing	a	mesh.)

Access	patterns	which	do	not	conform	 to	 the	above	 rules	may	 result	 in	data	corruption,
deadlocks,	or	crashes.	Note	in	particular	that	it	is	not	legal	to	perform	a	write	operation	on
an	object	 in	a	scene	concurrently	with	a	read	operation	 to	an	object	 in	 the	same	scene.
The	 checked	build	 contains	 code	which	 tracks	access	by	 application	 threads	 to	 objects
within	a	scene,	to	try	and	detect	problems	at	the	point	when	the	illegal	API	call	is	made.

Scene	Locking

Each	PxScene	object	 provides	 a	multiple	 reader,	 single	writer	 lock	 that	 can	 be	 used	 to
control	 access	 to	 the	 scene	 by	multiple	 threads.	 This	 is	 useful	 for	 situations	where	 the
PhysX	scene	 is	shared	between	more	than	one	system,	for	example	APEX	and	a	game
engine's	 physics	 code.	The	 scene	 lock	 provides	 a	way	 for	 these	 systems	 to	 coordinate
with	each	other.

It	is	not	mandatory	to	use	the	lock.	If	all	access	to	the	scene	is	from	a	single	thread,	using
the	lock	adds	unnecessary	overhead.	Even	if	you	are	accessing	the	scene	from	multiple
threads,	 you	may	 be	 able	 to	 synchronize	 the	 threads	 using	 a	 simpler	 or	more	 efficient
application-specific	 mechanism	 that	 guarantees	 your	 application	 meets	 the	 above



conditions.	However,	using	the	scene	lock	has	two	potential	benefits:

If	 the	 PxSceneFlag::eREQUIRE_RW_LOCK	 is	 set,	 the	 checked	 build	 will	 issue	 a
warning	for	any	API	call	made	without	first	acquiring	the	lock,	or	if	a	write	call	is	made
when	the	lock	has	only	been	acquired	for	read,
The	APEX	SDK	uses	 the	scene	 lock	 to	ensure	 that	 it	 shares	 the	scene	safely	with
your	application.

There	are	four	methods	for	for	acquiring	/	releasing	the	lock:

void	PxScene::lockRead(const	char*	file=NULL,	PxU32	line=0);

void	PxScene::unlockRead();

void	PxScene::lockWrite(const	char*	file=NULL,	PxU32	line=0);

void	PxScene::unlockWrite();

Additionally	there	is	an	RAII	helper	class	to	manage	these	locks,	see	PxSceneLock.h.

Locking	Semantics

There	are	precise	rules	regarding	the	usage	of	the	scene	lock:

Multiple	threads	may	read	at	the	same	time.
Only	one	thread	may	write	at	a	time,	no	thread	may	write	if	any	threads	are	reading.
If	a	thread	holds	a	write	lock	then	it	may	call	both	read	and	write	API	methods.
Re-entrant	 read	 locks	 are	 supported,	 meaning	 a	 lockRead()	 on	 a	 thread	 that	 has
already	 acquired	 a	 read	 lock	 is	 permitted.	 Each	 lockRead()	 must	 have	 a	 paired
unlockRead().
Re-entrant	 write	 locks	 are	 supported,	 meaning	 a	 lockWrite()	 on	 a	 thread	 that	 has
already	 acquired	 a	 write	 lock	 is	 permitted.	 Each	 lockWrite()	 must	 have	 a	 paired
unlockWrite().
Calling	 lockRead()	by	a	 thread	 that	has	already	acquired	 the	write	 lock	 is	permitted
and	the	thread	will	continue	to	have	read	and	write	access.	Each	lock*()	must	have	an
associated	unlock*()	that	occurs	in	reverse	order.



Lock	upgrading	is	not	supported	-	a	lockWrite()	by	a	thread	that	has	already	acquired
a	read	lock	is	not	permitted.	Attempting	this	in	checked	builds	will	result	in	an	error,	in
release	builds	it	will	lead	to	deadlock.
Writers	are	favored	-	if	a	thread	attempts	a	lockWrite()	while	the	read	lock	is	acquired
it	will	be	blocked	until	all	readers	leave.	If	new	readers	arrive	while	the	writer	thread	is
blocked	 they	will	be	put	 to	sleep	and	 the	writer	will	have	 first	chance	 to	access	 the
scene.	This	prevents	writers	being	starved	in	the	presence	of	multiple	readers.
If	 multiple	 writers	 are	 queued	 then	 the	 first	 writer	 will	 receive	 priority,	 subsequent
writers	will	be	granted	access	according	to	OS	scheduling.

Note:	 PxScene::release()	 automatically	 attempts	 to	 acquire	 the	 write	 lock,	 it	 is	 not
necessary	to	acquire	it	manually	before	calling	release().

Locking	Best	Practices

It	 is	often	useful	 to	arrange	your	application	 to	acquire	 the	 lock	a	single	 time	 to	perform
multiple	operations.	This	minimizes	the	overhead	of	the	lock,	and	in	addition	can	prevent
cases	such	as	a	sweep	 test	 in	one	 thread	seeing	a	 rag	doll	 that	has	been	only	partially
inserted	by	another	thread.

Clustering	writes	 can	also	help	 reduce	 contention	 for	 the	 lock,	 as	acquiring	 the	 lock	 for
write	will	stall	any	other	thread	trying	to	perform	a	read	access.



Asynchronous	Simulation

PhysX	simulation	is	asynchronous	by	default.	Start	simulation	by	calling:

scene->simulate(dt);

When	 this	 call	 returns,	 the	 simulation	 step	 has	 begun	 in	 a	 separate	 thread.	 While
simulation	 is	 running,	 you	 can	 still	 make	 calls	 into	 the	 API.	 Where	 those	 calls	 affect
simulation	 state,	 the	 results	 will	 be	 buffered	 and	 reconciled	 with	 the	 simulation	 results
when	the	simulation	step	completes.

To	wait	until	simulation	completes,	call:

scene->fetchResults(true);

The	boolean	parameter	to	fetchResults	denotes	whether	the	call	should	wait	for	simulation
to	 complete,	 or	 return	 immediately	 with	 the	 current	 completion	 status.	 See	 the	 API
documentation	for	more	detail.

It	is	important	to	distinguish	two	time	slots	for	data	access:

1.	 After	 the	 call	 to	 PxScene::fetchResults()	 has	 returned	 and	 before	 the	 next
PxScene::simulate()	call	(see	figure	below,	blue	area	"1").

2.	 After	 the	 call	 to	 PxScene::simulate()	 has	 returned	 and	 before	 the	 corresponding
PxScene::fetchResults()	call	(see	figure	below,	green	area	"2").

In	the	first	time	slot,	the	simulation	is	not	running	and	there	are	no	restrictions	for	reading
or	writing	object	properties.	Changes	to	the	position	of	an	object,	for	example,	are	applied
instantaneously	and	 the	next	scene	query	or	simulation	step	will	 take	 the	new	state	 into
account.

In	the	second	time	slot	the	simulation	is	running	and	in	the	process,	reading	and	changing



the	state	of	objects.	Concurrent	access	from	the	user	might	corrupt	the	state	of	the	objects
or	 lead	 to	data	 races	or	 inconsistent	views	 in	 the	simulation	code.	Hence	 the	simulation
code's	view	of	the	objects	is	protected	from	API	writes,	and	any	attributes	the	simulation
updates	are	buffered	to	allow	API	reads.	The	consequences	will	be	discussed	in	detail	in
the	next	section.

Note	 that	 simulate()	 and	 fetchResults()	 are	 write	 calls	 on	 the	 scene,	 and	 as	 such	 it	 is
illegal	to	access	any	object	in	the	scene	while	these	functions	are	running.

Double	Buffering

While	 a	 simulation	 is	 running,	 PhysX	 supports	 read	 and	 write	 access	 to	 objects	 in	 the
scene	 (with	 some	 exceptions,	 see	 further	 below).	 This	 includes	 adding/removing	 them
to/from	a	scene.

From	 the	 user	 perspective,	 API	 changes	 are	 reflected	 immediately.	 For	 example,	 if	 the
velocity	of	a	rigid	body	is	set	and	then	queried,	the	new	velocity	will	be	returned.	Similarly,
if	an	object	is	created	while	the	simulation	is	running,	it	can	be	accessed/modified	as	any
other	object.	However,	 these	changes	are	buffered	so	 that	 the	simulation	code	sees	 the
object	state	as	it	was	when	PxScene::simulate()	was	called.	For	instance,	changes	to	the
filter	 data	 of	 an	 object	 while	 the	 simulation	 is	 running	 are	 ignored	 for	 collision	 pair
generation	of	the	running	step,	and	will	only	affect	for	the	next	simulation	step.

When	PxScene::fetchResults()	is	called,	any	buffered	changes	are	flushed:	changes	made
by	 the	 simulation	 are	 reflected	 in	 API	 view	 of	 the	 objects,	 and	 API	 changes	 are	made
visible	 to	 the	 simulation	 code	 for	 the	 next	 step.	 User	 changes	 take	 precedence:	 for
example,	 a	 user	 change	 to	 the	position	of	 an	object	while	 the	 simulation	 is	 running	will
overwrite	the	position	which	resulted	from	the	simulation.

The	delayed	application	of	updates	does	not	affect	scene	queries,	which	always	take	into
account	the	latest	changes.

Events	involving	removed	objects

Deleting	objects	or	 removing	 them	from	the	scene	while	 the	simulation	 is	 in	process	will



affect	 the	 simulation	 events	 sent	 out	 at	 PxScene::fetchResults().	 The	 behavior	 is	 as
follows:

PxSimulationEventCallback::onWake(),	 ::onSleep()	 events	 will	 not	 get	 fired	 if	 an
object	is	involved	which	got	deleted/removed	during	the	running	simulation.
PxSimulationEventCallback::onContact(),	::onTrigger()	events	will	get	fired	if	an	object
is	 involved	 which	 got	 deleted/removed	 during	 the	 running	 simulation.	 The
deleted/removed	 object	 will	 be	 marked	 as	 such	 (see
PxContactPairHeaderFlag::eREMOVED_ACTOR_0,
PxContactPairFlag::eREMOVED_SHAPE_0,
PxTriggerPairFlag::eREMOVED_SHAPE_TRIGGER).	 Furthermore,	 if
PxPairFlag::eNOTIFY_TOUCH_LOST,	 ::eNOTIFY_THRESHOLD_FORCE_LOST
events	were	requested	for	the	pair	containing	the	deleted/removed	object,	then	these
events	will	be	created.

Support

Not	all	PhysX	objects	have	full	buffering	support.	Operations	which	can	not	run	while	the
simulation	is	in	process	are	mentioned	in	the	API	documentation	and	the	SDK	aborts	such
operations	and	reports	an	error.	The	most	important	exceptions	are	as	follows:

Particles:	The	particle	bulk	data	can	not	be	 read	or	modified	while	 the	simulation	 is
running,	 this	 includes	 operations	 like	 reading/writing	 particle	 positions/velocities,
creating/deleting	particles,	adding	forces,	etc.
Cloth:	 The	 only	 allowed	 double	 buffered	 operation	 is	 to	 create/delete	 a	 cloth	 and
add/remove	it	to/from	the	scene.

Memory	Considerations

The	 buffers	 to	 store	 the	 object	 changes	while	 the	 simulation	 is	 running	 are	 created	 on
demand.	If	memory	usage	concerns	outweigh	the	advantage	of	reading/writing	objects	in
parallel	with	simulation,	do	not	write	to	objects	while	the	simulation	is	running.



Multithreaded	Simulation

PhysX	includes	a	task	system	for	managing	CPU	and	GPU	compute	resources.	Tasks	are
created	with	dependencies	so	that	they	are	resolved	in	a	given	order,	when	ready	they	are
then	submitted	to	a	user-implemented	dispatcher	for	execution.

Middleware	products	typically	do	not	want	to	create	CPU	threads	for	their	own	use.	
especially	true	on	consoles	where	execution	threads	can	have	significant	overhead.	In	the
task	model,	 the	computational	work	 is	broken	 into	 jobs	 that	are	submitted	 to	 the	game's
thread	pool	as	they	become	ready	to	run.

The	following	classes	comprise	the	CPU	task	management.

TaskManager

A	 TaskManager	 manages	 inter-task	 dependencies	 and	 dispatches	 ready	 tasks	 to	 their
respective	dispatcher.	There	is	a	dispatcher	for	CPU	tasks	and	GPU	tasks	assigned	to	the
TaskManager.

TaskManagers	are	owned	and	created	by	 the	SDK.	Each	PxScene	will	 allocate	 its	 own
TaskManager	 instance	 which	 users	 can	 configure	 with	 dispatchers	 through	 either	 the
PxSceneDesc	or	directly	through	the	TaskManager	interface.

CpuDispatcher

The	CpuDispatcher	is	an	abstract	class	the	SDK	uses	for	interfacing	with	the	application's
thread	 pool.	 Typically,	 there	will	 be	 one	 single	CpuDispatcher	 for	 the	 entire	 application,
since	there	is	rarely	a	need	for	more	than	one	thread	pool.	A	CpuDispatcher	instance	may
be	shared	by	more	than	one	TaskManager,	for	example	if	multiple	scenes	are	being	used.

PhysX	 includes	 a	 default	 CpuDispatcher	 implementation,	 but	 we	 prefer	 applications	 to
implement	this	class	themselves	so	PhysX	and	APEX	can	efficiently	share	CPU	resources
with	the	application.



Note: 	The	TaskManager	will	call	CpuDispatcher::submitTask()	from	either	the	context	of
API	calls	(aka:	scene::simulate())	or	from	other	running	tasks,	so	the	function	must	be
thread-safe.

An	implementation	of	the	CpuDispatcher	interface	must	call	the	following	two	methods	on
each	submitted	task	for	it	to	be	run	correctly:

baseTask->run();				//	optionally	call	runProfiled()	to	wrap	with	PVD	profiling	events

baseTask->release();

The	 PxExtensions	 library	 has	 default	 implementations	 for	 all	 dispatcher	 types,	 the
following	code	snippets	are	taken	from	SampleParticles	and	SampleBase	and	show	how
the	 default	 dispatchers	 are	 created.	 mNbThreads	 which	 is	 passed	 to
PxDefaultCpuDispatcherCreate	defines	how	many	worker	threads	the	CPU	dispatcher	will
have.:

				PxSceneDesc	sceneDesc(mPhysics->getTolerancesScale());

				[...]

				//	create	CPU	dispatcher	which	mNbThreads	worker	threads

				mCpuDispatcher	=	PxDefaultCpuDispatcherCreate(mNbThreads);

				if(!mCpuDispatcher)

								fatalError("PxDefaultCpuDispatcherCreate	failed!");

				sceneDesc.cpuDispatcher	=	mCpuDispatcher;

#if	PX_WINDOWS

				//	create	GPU	dispatcher

				PxCudaContextManagerDesc	cudaContextManagerDesc;

				mCudaContextManager	=	PxCreateCudaContextManager(cudaContextManagerDesc

				sceneDesc.gpuDispatcher	=	mCudaContextManager->getGpuDispatcher

#endif

				[...]

				mScene	=	mPhysics->createScene(sceneDesc);

Note: 	Best	performance	is	usually	achieved	if	the	number	of	threads	is	less	than	or
equal	to	the	available	hardware	threads	of	the	platform	you	are	running	on,	creating
more	worker	threads	than	hardware	threads	will	often	lead	to	worse	performance.	For
platforms	with	a	single	execution	core,	the	CPU	dispatcher	can	be	created	with	zero
worker	threads	(PxDefaultCpuDispatcherCreate(0)).	In	this	case	all	work	will	be
executed	on	the	thread	that	calls	PxScene::simulate(),	which	can	be	more	efficient	than



using	multiple	threads.

Note: 	CudaContextManagerDesc	support	appGUID	now.	It	only	works	on	release
build.	If	your	application	employs	PhysX	modules	that	use	CUDA	you	need	to	use	a
GUID	so	that	patches	for	new	architectures	can	be	released	for	your	game.	You	can
obtain	a	GUID	for	your	application	from	NVIDIA.	The	application	should	log	the	failure
into	a	file	which	can	be	sent	to	NVIDIA	for	support.

CpuDispatcher	Implementation	Guidelines

After	 the	 scene's	 TaskManager	 has	 found	 a	 ready-to-run	 task	 and	 submitted	 it	 to	 the
appropriate	dispatcher	it	 is	up	to	the	dispatcher	implementation	to	decide	how	and	when
the	task	will	be	run.

Often	in	game	scenarios	the	rigid	body	simulation	is	time	critical	and	the	goal	is	to	reduce
the	latency	from	simulate()	to	the	completion	of	fetchResults().	The	lowest	possible	latency
will	be	achieved	when	 the	PhysX	 tasks	have	exclusive	access	 to	CPU	resources	during
the	update.	In	reality,	PhysX	will	have	to	share	compute	resources	with	other	game	tasks.
Below	 are	 some	 guidelines	 to	 help	 ensure	 a	 balance	 between	 throughput	 and	 latency
when	mixing	the	PhysX	update	with	other	work.

Avoid	interleaving	long	running	tasks	with	PhysX	tasks,	this	will	help	reduce	latency.
Avoid	assigning	worker	threads	to	the	same	execution	core	as	higher	priority	threads.
If	a	PhysX	task	is	context	switched	during	execution	the	rest	of	the	rigid	body	pipeline
may	be	stalled,	increasing	latency.
PhysX	occasionally	submits	tasks	and	then	 immediately	waits	 for	 them	to	complete,
because	of	this,	executing	tasks	in	LIFO	(stack)	order	may	perform	better	than	FIFO
(queue)	order.
PhysX	 is	 not	 a	 perfectly	 parallel	 SDK,	 so	 interleaving	 small	 to	 medium	 granularity
tasks	will	generally	result	in	higher	overall	throughput.
If	your	thread	pool	has	per-thread	job-queues	then	queuing	tasks	on	the	thread	they
were	submitted	may	result	in	more	optimal	CPU	cache	coherence,	however	this	is	not



required.

For	more	details	see	the	default	CpuDispatcher	implementation	that	comes	as	part	of	the
PxExtensions	package.	It	uses	worker	threads	that	each	have	their	own	task	queue	and
steal	 tasks	 from	 the	 back	 of	 other	 worker's	 queues	 (LIFO	 order)	 to	 improve	 workload
distribution.

BaseTask

BaseTask	 is	 the	 abstract	 base	 class	 for	 all	 task	 types.	 All	 task	 run()	 functions	 will	 be
executed	on	application	threads,	so	they	need	to	be	careful	with	their	stack	usage,	use	a
little	stack	as	possible,	and	they	should	never	block	for	any	reason.

Task

The	Task	class	 is	 the	standard	 task	 type.	Tasks	must	be	submitted	 to	 the	TaskManager
each	simulation	step	for	them	to	be	executed.	Tasks	may	be	named	at	submission	time,
this	allows	them	to	be	discoverable.	Tasks	will	be	given	a	reference	count	of	1	when	they
are	submitted,	and	the	TaskManager::startSimulation()	function	decrements	the	reference
count	of	all	 tasks	and	dispatches	all	Tasks	whose	 reference	count	 reaches	zero.	Before
TaskManager::startSimulation()	 is	 called,	 Tasks	 can	 set	 dependencies	 on	 each	 other	 to
control	 the	 order	 in	 which	 they	 are	 dispatched.	 Once	 simulation	 has	 started,	 it	 is	 still
possible	 to	 submit	 new	 tasks	 and	add	dependencies,	 but	 it	 is	 up	 to	 the	 programmer	 to
avoid	 race	 hazards.	 You	 cannot	 add	 dependencies	 to	 tasks	 that	 have	 already	 been
dispatched,	 and	 newly	 submitted	 Tasks	 must	 have	 their	 reference	 count	 decremented
before	that	Task	will	be	allowed	to	execute.

Synchronization	 points	 can	 also	 be	 defined	 using	 Task	 names.	 The	 TaskManager	 will
assign	the	name	a	TaskID	with	no	Task	implementation.	When	all	of	the	named	TaskID's
dependencies	are	met,	it	will	decrement	the	reference	count	of	all	Tasks	with	that	name.

APEX	uses	the	Task	class	almost	exclusively	to	manage	CPU	resources.	The	ApexScene
defines	a	number	of	named	Tasks	that	the	modules	use	to	schedule	their	own	Tasks	(ex:
start	after	LOD	calculations	are	complete,	finish	before	the	PhysX	scene	is	stepped).



LightCpuTask

LightCpuTask	 is	 another	 subclass	 of	 BaseTask	 that	 is	 explicitly	 scheduled	 by	 the
programmer.	LightCpuTasks	have	a	reference	count	of	1	when	they	are	initialized,	so	their
reference	 count	 must	 be	 decremented	 before	 they	 are	 dispatched.	 LightCpuTasks
increment	their	continuation	task	reference	count	when	they	are	initialized,	and	decrement
the	reference	count	when	they	are	released	(after	completing	their	run()	function)

PhysX	 3.x	 uses	 LightCpuTasks	 almost	 exclusively	 to	 manage	 CPU	 resources.	 For
example,	each	stage	of	the	simulation	update	may	consist	of	multiple	parallel	tasks,	when
each	of	 these	 tasks	has	 finished	execution	 it	will	 decrement	 the	 reference	count	on	 the
next	 task	 in	 the	 update	 chain.	 This	 will	 then	 be	 automatically	 dispatched	 for	 execution
when	its	reference	count	reaches	zero.

Note: 	Even	when	using	LightCpuTasks	exclusively	to	manage	CPU	resources,	the
TaskManager	startSimulation()	and	stopSimulation()	calls	must	be	made	each	simulation
step	to	keep	the	GpuDispatcher	synchronized.

The	 following	 code	 snippets	 show	 how	 the	 crabs'	 A.I.	 in	 SampleSubmarine	 is	 run	 as	 a
CPU	 Task.	 By	 doing	 so	 the	 Crab	 A.I.	 is	 run	 as	 a	 background	 Task	 in	 parallel	 with	 the
PhysX	simulation	update.

For	a	CPU	task	that	does	not	need	handling	of	multiple	continuations	
be	subclassed.	A	LightCpuTask	subclass	requires	that	the	getName	and	a	run	method	be
defined:

class	Crab:	public	ClassType,	public	physx::PxLightCpuTask,	public

{

public:

				Crab(SampleSubmarine&	sample,	const	PxVec3&	crabPos,	RenderMaterial

				~Crab();

				[...]

				//	Implements	LightCpuTask

				virtual		const	char*				getName()	const	{	return	"Crab	AI	Task"

				virtual		void											run();

				[...]



}

After	PxScene::simulate()	has	been	called,	and	the	simulation	started,	the	application	calls
removeReference()	 on	 each	 Crab	 task,	 this	 in	 turn	 causes	 it	 to	 be	 submitted	 to	 the
CpuDispatcher	 for	update.	Note	 that	 it	 is	also	possible	 to	submit	 tasks	 to	 the	dispatcher
directly	(without	manipulating	reference	counts)	as	follows:

PxLightCpuTask&	task	=	&mCrab;

mCpuDispatcher->submitTask(task);

Once	queued	for	execution	by	the	CpuDispatcher,	one	of	the	thread	pool's	worker	threads
will	 eventually	 call	 the	 task's	 run	 method.	 In	 this	 example	 the	 Crab	 task	 will	 perform
raycasts	against	the	scene	and	update	its	internal	state	machine:

void	Crab::run()

{

				//	run	as	a	separate	task/thread

				scanForObstacles();

				updateState();

}

It	 is	 safe	 to	perform	API	 read	 calls,	 such	as	 scene	queries,	 from	multiple	 threads	while
simulate()	is	running.	However,	care	must	be	taken	not	to	overlap	API	read	and	write	calls
from	multiple	 threads.	 In	 this	 case	 the	SDK	will	 issue	an	error,	 see	Threading
information.

An	example	for	explicit	reference	count	modification	and	task	dependency	setup:

//	assume	all	tasks	have	a	refcount	of	1	and	are	submitted	to	the	task	manager

//	3	task	chains	a0-a2,	b0-b2,	c0-c2

//	b0	shall	start	after	a1

//	the	a	and	c	chain	have	no	dependencies	and	shall	run	in	parallel

//

//	a0-a1-a2

//						\

//							b0-b1-b2

//	c0-c1-c2

//	setup	the	3	chains



for(PxU32	i	=	0;	i	<	2;	i++)

{

				a[i].setContinuation(&a[i+1]);

				b[i].setContinuation(&b[i+1]);

				c[i].setContinuation(&c[i+1]);

}

//	b0	shall	start	after	a1

b[0].startAfter(a[1].getTaskID());

//	setup	is	done,	now	start	all	task	by	decrementing	their	refcount	by	1

//	tasks	with	refcount	==	0	will	be	submitted	to	the	dispatcher	(a0	&	c0	will	start).

for(PxU32	i	=	0;	i	<	3;	i++)

{

				a[i].removeReference();

				b[i].removeReference();

				c[i].removeReference();

}
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Geometry



Introduction

This	section	discusses	the	PhysX	geometry	classes.	Geometries	are	used	to	build	shapes
for	 rigid	 bodies,	 as	 collision	 triggers,	 and	 as	 volumes	 in	 PhysX'	 scene	 query	 system.
PhysX	 also	 provides	 standalone	 functions	 for	 testing	 intersection	 between	 geometries,
raycasting	against	them,	and	sweeping	one	geometry	against	another.

Geometries	are	value	 types,	and	 inherit	 from	a	common	base	class,	PxGeometry.	Each
geometry	 class	 defines	 a	 volume	 or	 surface	 with	 a	 fixed	 position	 and	 orientation.	 A
transform	specifies	the	frame	in	which	the	geometry	is	interpreted.	For	plane	and	capsule
geometry	 types	 PhysX	 provides	 helper	 functions	 to	 construct	 these	 transforms	 from
common	alternative	representations.

Geometries	fall	into	two	classes:

primitives	 (PxBoxGeometry,	 PxSphereGeometry,	 PxCapsuleGeometry,
PxPlaneGeometry)	where	the	geometry	object	contains	all	of	the	data
meshes	 or	 height	 fields	 (PxConvexMeshGeometry,	 PxTriangleMeshGeometry,
PxHeightFieldGeometry),	 where	 the	 geometry	 object	 contains	 a	 pointer	 to	 a	 much
larger	object	(PxConvexMesh,	PxTriangleMesh,	PxHeightField	respectively)	You	can
use	 these	 objects	 with	 different	 scales	 in	 each	 PxGeometry	 type	which	 references
them.	The	larger	objects	must	be	created	using	a	cooking	process,	described	for	each
type	below.

When	passed	 into	and	out	 of	 the	SDK	 for	 use	as	 simulation	geometry,	 the	geometry	 is
copied	 into	 and	out	 of	 a	PxShape	 class.	 It	 can	 be	 awkward	 in	 this	 case	 to	 retrieve	 the
geometry	 without	 knowing	 its	 type,	 so	 PhysX	 provides	 a	 union-like	 wrapper	 class
(PxGeometryHolder)	that	can	be	used	to	pass	any	geometry	type	by	value.	Each	mesh	(or
height	field)	has	a	reference	count	that	tracks	the	number	of	PxShapes	whose	geometries
reference	the	mesh.



Geometry	Types

Spheres

A	PxSphereGeometry	is	specified	by	one	attribute,	its	radius,	and	is	centered	at	the	origin.

Capsules

A	PxCapsuleGeometry	is	centered	at	the	origin.	It	is	specified	by	a	radius	and	a	half-height
value	by	which	its	axis	extends	along	the	positive	and	negative	X-axis.

To	create	a	dynamic	actor	whose	geometry	is	a	capsule	standing	upright,	the	shape	needs
a	relative	transform	that	rotates	it	around	the	Z-axis	by	a	quarter-circle.	By	doing	this,	the
capsule	 will	 extend	 along	 the	 Y-axis	 of	 the	 actor	 instead	 of	 the	 X-axis.	 Setting	 up	 the
shape	and	actor	is	otherwise	the	same	as	for	the	sphere:



PxRigidDynamic*	aCapsuleActor	=	thePhysics->createRigidDynamic(PxTransform

PxTransform	relativePose(PxQuat(PxHalfPi,	PxVec(0,0,1)));

PxShape*	aCapsuleShape	=	PxRigidActorExt::createExclusiveShape(*aCapsuleActor

				PxCapsuleGeometry(radius,	halfHeight),	aMaterial);

aCapsuleShape->setLocalPose(relativePose);

PxRigidBodyExt::updateMassAndInertia(*aCapsuleActor,	capsuleDensity

aScene->addActor(aCapsuleActor);

The	 function	 PxTransformFromSegment()	 converts	 from	 a	 line	 segment	 defining	 the
capsule	axis	to	a	transform	and	halfheight.

Boxes

A	PxBoxGeometry	has	three	attributes,	the	three	extents	halved:

PxShape*	aBoxShape	=	PxRigidActorExt::createExclusiveShape(*aBoxActor

				PxBoxGeometry(a/2,	b/2,	c/2),	aMaterial);

Where	a,	b	and	c	are	the	side	lengths	of	the	resulting	box.

Planes



Planes	 divide	 space	 into	 "above"	 and	 "below"	 them.	 Everything	 "below"	 the	 plane	 will
collide	with	it.

The	Plane	lies	on	the	YZ	plane	with	"above"	pointing	towards	positive	X.	To	convert	from	a
plane	 equation	 to	 an	 equivalent	 transform,	 use	 the	 function
PxTransformFromPlaneEquation().	 PxPlaneEquationFromTransform()	 performs	 the
reverse	conversion.

A	PxPlaneGeometry	has	no	attributes,	since	the	shape's	pose	entirely	defines	the	plane's
collision	volume.

Shapes	with	a	PxPlaneGeometry	may	only	be	created	for	static	actors.

Convex	Meshes



A	shape	 is	convex	 if,	given	any	two	points	within	 the	shape,	 the	shape	contains	 the	 line
between	them.	A	PxConvexMesh	is	a	convex	polyhedron	represented	as	a	set	of	vertices
and	 polygonal	 faces.	 The	 number	 of	 vertices	 and	 faces	 of	 a	 convex	mesh	 in	 PhysX	 is
limited	to	255.

Creating	a	PxConvexMesh	 requires	cooking.	 It	 is	assumed	here	 that	 the	cooking	 library
has	already	been	initialized	(see	Startup	and	Shutdown.)	The	following	steps	explain	how
to	create	a	simple	square	pyramid.

First,	define	the	vertices	of	the	convex	object:

static	const	PxVec3	convexVerts[]	=	{PxVec3(0,1,0),PxVec3(1,0,0),PxVec3

				PxVec3(0,0,-1)};

Then	construct	a	description	of	the	convex	data	layout:

PxConvexMeshDesc	convexDesc;

convexDesc.points.count					=	5;

convexDesc.points.stride				=	sizeof(PxVec3);

convexDesc.points.data						=	convexVerts;

convexDesc.flags												=	PxConvexFlag::eCOMPUTE_CONVEX;

Now	use	the	cooking	library	to	construct	a	PxConvexMesh:

PxDefaultMemoryOutputStream	buf;

PxConvexMeshCookingResult::Enum	result;

if(!cooking.cookConvexMesh(convexDesc,	buf,	&result))



				return	NULL;

PxDefaultMemoryInputData	input(buf.getData(),	buf.getSize());

PxConvexMesh*	convexMesh	=	physics->createConvexMesh(input);

Finally,	create	a	shape	using	a	PxConvexMeshGeometry	which	instances	the	mesh:

PxShape*	aConvexShape	=	PxRigidActorExt::createExclusiveShape(*aConvexActor

				PxConvexMeshGeometry(convexMesh),	aMaterial);

Alternatively	 the	 PxConvexMesh	 can	 be	 cooked	 and	 directly	 inserted	 into	 PxPhysics
without	 stream	 serialization.	 This	 is	 useful	 if	 real-time	 cooking	 is	 required.	 It	 is	 strongly
recommended	 to	 use	offline	 cooking	and	 streams.	Here	 is	 an	example	 showing	how	 to
improve	cooking	speed	if	needed:

PxConvexMeshDesc	convexDesc;

convexDesc.points.count					=	5;

convexDesc.points.stride				=	sizeof(PxVec3);

convexDesc.points.data						=	convexVerts;

convexDesc.flags												=	PxConvexFlag::eCOMPUTE_CONVEX	|	PxConvexFlag

#ifdef	_DEBUG

				//	mesh	should	be	validated	before	cooking	without	the	mesh	cleaning

				bool	res	=	theCooking->validateConvexMesh(convexDesc);

				PX_ASSERT(res);

#endif

PxConvexMesh*	aConvexMesh	=	theCooking->createConvexMesh(convexDesc

				thePhysics->getPhysicsInsertionCallback());

Please	note	 that	mesh	 validation	 is	 required	 for	 debug	and	 checked	builds,	 as	 creating
meshes	 from	 unvalidated	 input	 descriptors	 may	 result	 in	 undefined	 behavior.	 Providing
PxConvexFlag::eFAST_INERTIA_COMPUTATION	 flag	 the	 volume	 integration	 will	 use
SIMD	code	path	which	does	faster	computation	but	with	lesser	precision.

The	 user	 can	 optionally	 provide	 a	 per-instance	 PxMeshScale	 in	 the
PxConvexMeshGeometry.	The	scale	defaults	 to	 identity.	Negative	scale	 is	not	supported
for	convex	meshes.

PxConvexMeshGeometry	also	contains	flags	to	tweak	some	aspects	of	the	convex	object.



By	 default	 the	 system	 computes	 approximate	 (loose)	 bounds	 around	 convex	 objects.
Using	 PxConvexMeshGeometryFlag::eTIGHT_BOUNDS	 enables	 smaller/tighter	 bounds,
which	are	more	expensive	to	compute	but	could	result	in	improved	simulation	performance
when	a	lot	of	convex	objects	are	interacting	with	each	other.

PxConvexMeshGeometry	also	contains	a	variable	called	maxMargin.	By	default,	it	is	set	to
be	3.4e38f.	If	the	maxMargin	is	smaller	than	the	margin	amount	calculcated	by	the	PCM
contact	gen,	it	will	choose	the	smallest	margin	for	the	shrunk	shape	to	perform	incremental
update	using	GJK	algorithm.	In	this	case,	application	might	notice	some	artefacts	around
the	 vertex	 collision.	 If	 the	 maxMargin	 is	 set	 to	 be	 a	 small	 value,	 this	 can	 reduce	 the
visibility	of	these	artefacts.	If	maxMargin	is	set	to	zero,	PCM	will	use	the	original	shape	for
the	GJK	algorithm.	This	will	 result	 in	no	artefacts	 for	 this	approach.	However,	 there	 is	a
trade	off	between	performance	and	accuracy.

Convex	Mesh	cooking

Convex	Mesh	 cooking	 transforms	 the	mesh	 data	 into	 a	 form	 which	 allows	 the	 SDK	 to
perform	 efficient	 collision	 detection.	 The	 input	 to	 cooking	 is	 defined	 using	 the	 input
PxConvexMeshDesc.

There	are	different	ways	to	fill	in	this	structure,	depending	on	whether	you	want	to	produce
a	convex	mesh	starting	from	just	a	cloud	of	vertices,	or	whether	you	have	the	vertices	and
faces	of	a	polyhedron	already.

If	Only	Vertex	Points	are	Provided

When	 providing	 only	 vertices,	 set	 the	 PxConvexFlag::eCOMPUTE_CONVEX	 flag	 to
compute	the	mesh:

PxConvexMeshDesc	convexDesc;

convexDesc.points.count					=	20;

convexDesc.points.stride				=	sizeof(PxVec3);

convexDesc.points.data						=	convexVerts;

convexDesc.flags												=	PxConvexFlag::eCOMPUTE_CONVEX;

convexDesc.maxVerts									=	10;

PxDefaultMemoryOutputStream	buf;



if(!cooking.cookConvexMesh(convexDesc,	buf))

				return	NULL;

The	 algorithm	 tries	 to	 create	 a	 convex	 mesh	 from	 the	 source	 vertices.	 The	 field
convexDesc.vertexLimit	 specifies	 the	 limit	 for	 the	 maximum	 number	 of	 vertices	 in	 the
resulting	hull.

This	 routine	 can	 sometimes	 fail	 when	 the	 source	 data	 is	 geometrically	 challenging,	 for
example	 if	 it	 contains	 a	 lot	 of	 vertices	 close	 to	 each-other.	 If	 cooking	 fails,	 an	 error	 is
reported	to	the	error	stream	and	the	routine	returns	false.

If	 PxConvexFlag::eCHECK_ZERO_AREA_TRIANGLES	 is	 used,	 the	 algorithm	 does	 not
include	 triangles	 with	 an	 area	 less	 than	 PxCookingParams::areaTestEpsilon.	 If	 the
algorithm	 cannot	 find	 4	 initial	 vertices	 without	 a	 small	 triangle,
PxConvexMeshCookingResult::eZERO_AREA_TEST_FAILED	 is	 returned.	 This	 means
that	 the	provided	vertices	were	 in	a	very	small	area	and	the	cooker	could	not	produce	a
valid	hull.	The	toolkit	helper	function	PxToolkit::createConvexMeshSafe	illustrates	the	most
robust	strategy	for	convex	mesh	cooking.	First	it	tries	to	create	the	hull	without	inflation.	If
that	fails	it	tries	inflation,	and	if	that	also	fails,	uses	an	AABB	or	OBB.

It	 is	 recommended	 to	provide	vertices	around	origin	and	put	 transformation	 in	PxShape,
otherwise	addional	PxConvexFlag::eSHIFT_VERTICES	flag	for	the	mesh	computation.

If	 huge	 amount	 of	 input	 vertices	 are	 provided,	 it	 might	 be	 useful	 to	 quantize	 the	 input
vertices,	 in	 this	 case	 use	 PxConvexFlag::eQUANTIZE_INPUT	 and	 set	 the	 required
PxConvexMeshDesc::quantizedCount.

Convex	cooking	supports	two	different	algorithms:

Quickhull	Algorithm

This	 algorithm	 does	 not	 use	 inflation.	 It	 creates	 a	 convex	 mesh	 whose	 vertices	 are	 a
subset	of	 the	original	 vertices,	and	 the	number	of	 vertices	 is	guaranteed	 to	be	no	more
than	the	specified	maximum.

The	Quickhull	algorithm	performs	these	steps:



Cleans	the	vertices	-	removes	duplicates	etc.
Finds	a	subset	of	vertices,	no	more	than	vertexLimit,	that	enclose	the	input	set.
If	 the	 vertexLimit	 is	 reached,	 expand	 the	 limited	 hull	 around	 the	 input	 vertices	 to
ensure	we	encapsulate	all	the	input	vertices.
Compute	a	vertex	map	table.	(Requires	at	least	3	neighbor	polygons	for	each	vertex.)
Checks	the	polygon	data	-	verifies	that	all	vertices	are	on	or	inside	the	hull,	etc.
Computes	mass	and	inertia	tensor	assuming	density	is	1.
Saves	data	to	stream.

When	 the	 hull	 is	 constructed	 each	 new	 vertex	 added	 must	 be	 further	 than
PxCookingParams::planeTolerance	from	the	hull,	if	not	that	vertex	is	dropped.

Inflation	Based	Incremental	Algorithm

This	algorithm	always	uses	the	PxConvexFlag::eINFLATE_CONVEX	flag	and	inflates	the
hull	planes	by	PxCookingParams::skinWidth.

The	Inflation	Incremental	Algorithm	performs	these	steps:

Cleans	the	vertices	-	removes	duplicates	etc.
Finds	a	subset	of	vertices,	no	more	than	vertexLimit,	that	enclose	the	input	set.
Creates	planes	from	the	produced	enclosed	hull.
Inflates	planes	by	defined	PxCookingParams::skinWidth.
Crops	the	AABB	by	the	inflated	planes	and	produces	a	new	hull.
Computes	vertex	map	table.	(Requires	at	least	3	neighbor	polygons	for	each	vertex.)
Checks	polygon	data	-	verifies	all	vertices	are	on	or	inside	the	hull,	etc.
Computes	mass	and	inertia	tensor	assuming	density	is	1.
Saves	data	to	stream.

Note	 that	 the	 inflation	 based	 algorithm	 can	 produce	 hulls	with	more	 input	 vertices.	 The
algorithm	 is	 significantly	 slower	 than	 the	quickhull	 and	produces	significantly	 less	stable
results.	It	is	recommended	to	use	the	quickhull	algorithm.



Vertex	Limit	Algorithms

If	a	vertex	limit	has	been	provided,	there	are	two	algorithms	that	handle	vertex	limitation.

The	default	algorithm	computes	the	full	hull,	and	an	OBB	around	the	 input	vertices.	This
OBB	 is	 then	 sliced	 with	 the	 hull	 planes	 until	 the	 vertex	 limit	 is	 reached.	 The	 default
algorithm	requires	the	vertex	limit	to	be	set	to	at	least	8,	and	typically	produces	results	that
are	much	better	quality	than	are	produced	by	plane	shifting.

When	 plane	 shifting	 is	 enabled	 (PxConvexFlag::ePLANE_SHIFTING),	 the	 hull
computation	stops	when	vertex	limit	is	reached.	The	hull	planes	are	then	shifted	to	contain
all	input	vertices,	and	the	new	plane	intersection	points	are	then	used	to	generate	the	final
hull	with	the	given	vertex	limit.	Plane	shifting	may	produce	sharp	edges	to	vertices	very	far
away	 from	 the	 input	cloud,	and	does	not	guarantee	 that	all	 input	vertices	are	 inside	 the
resulting	hull.	However,	 it	can	be	used	with	a	vertex	 limit	as	 low	as	4,	and	so	may	be	a
better	choice	for	cases	such	as	small	pieces	of	debris	with	very	low	vertex	counts.

Vertex	Points,	Indices	and	Polygons	are	Provided

To	 create	 a	 PxConvexMesh	 given	 a	 set	 of	 input	 vertices	 (convexVerts)	 and	 polygons
(hullPolygons):

PxConvexMeshDesc	convexDesc;

convexDesc.points.count													=	12;

convexDesc.points.stride												=	sizeof(PxVec3);

convexDesc.points.data														=	convexVerts;

convexDescPolygons.polygons.count			=	20;

convexDescPolygons.polygons.stride		=	sizeof(PxHullPolygon);

convexDescPolygons.polygons.data				=	hullPolygons;

convexDesc.flags																				=	0;

PxDefaultMemoryOutputStream	buf;

if(!cooking.cookConvexMesh(convexDesc,	buf))

				return	NULL;

When	 points	 and	 polygons	 are	 provided,	 the	 SDK	 validates	 the	mesh	 and	 creates	 the
PxConvexmesh	directly.	This	 is	 the	 fastest	way	 to	create	a	convex	mesh.	Note	 that	 the
SDK	 requires	 at	 least	 3	 neighbor	 polygons	 for	 each	 vertex.	 Otherwise	 acceleration



structure	 for	 PCM	 is	 not	 created	 and	 it	 does	 result	 in	 performance	 penalty	 if	 PCM	 is
enabled.

(NOTE:	the	SDK	should	reject	such	a	mesh	as	invalid)

Internal	steps	during	convex	cooking:

Compute	vertex	map	table,	requires	at	least	3	neighbor	polygons	for	each	vertex.
Check	polygons	data	-	check	if	all	vertices	are	on	or	inside	the	hull,	etc.
Compute	mass	and	inertia	tensor	assuming	density	1.
Save	data	to	stream.

Triangle	Meshes

Like	graphical	triangle	meshes,	a	collision	triangle	mesh	consists	of	a	collection	of	vertices
and	 the	 triangle	 indices.	Triangle	mesh	creation	 requires	use	of	 the	cooking	 library.	 It	 is
assumed	 here	 that	 the	 cooking	 library	 has	 already	 been	 initialized	 (see	
Shutdown.):

PxTriangleMeshDesc	meshDesc;

meshDesc.points.count											=	nbVerts;

meshDesc.points.stride										=	sizeof(PxVec3);



meshDesc.points.data												=	verts;

meshDesc.triangles.count								=	triCount;

meshDesc.triangles.stride							=	3*sizeof(PxU32);

meshDesc.triangles.data									=	indices32;

PxDefaultMemoryOutputStream	writeBuffer;

PxTriangleMeshCookingResult::Enum	result;

bool	status	=	cooking.cookTriangleMesh(meshDesc,	writeBuffer,result

if(!status)

				return	NULL;

PxDefaultMemoryInputData	readBuffer(writeBuffer.getData(),	writeBuffer

return	physics.createTriangleMesh(readBuffer);

Alternatively	PxTriangleMesh	can	be	cooked	and	directly	 inserted	 into	
stream	 serialization.	 This	 is	 useful	 if	 real-time	 cooking	 is	 required.	 It	 is	 strongly
recommended	 to	 use	 offline	 cooking	 and	 streams.	 Example	 how	 to	 improve	 cooking
speed	if	needed:

PxTolerancesScale	scale;

PxCookingParams	params(scale);

//	disable	mesh	cleaning	-	perform	mesh	validation	on	development	configurations

params.meshPreprocessParams	|=	PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH

//	disable	edge	precompute,	edges	are	set	for	each	triangle,	slows	contact	generation

params.meshPreprocessParams	|=	PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE

//	lower	hierarchy	for	internal	mesh

params.meshCookingHint	=	PxMeshCookingHint::eCOOKING_PERFORMANCE;

theCooking->setParams(params);

PxTriangleMeshDesc	meshDesc;

meshDesc.points.count											=	nbVerts;

meshDesc.points.stride										=	sizeof(PxVec3);

meshDesc.points.data												=	verts;

meshDesc.triangles.count								=	triCount;

meshDesc.triangles.stride							=	3*sizeof(PxU32);

meshDesc.triangles.data									=	indices32;

#ifdef	_DEBUG

				//	mesh	should	be	validated	before	cooked	without	the	mesh	cleaning

				bool	res	=	theCooking->validateTriangleMesh(meshDesc);

				PX_ASSERT(res);

#endif



PxTriangleMesh*	aTriangleMesh	=	theCooking->createTriangleMesh(meshDesc

				thePhysics->getPhysicsInsertionCallback());

Indices	can	be	16	or	32	bit.	The	strides	used	here	assume	that	vertices	and	 indices	are
arrays	of	PxVec3s	and	32bit	integers	respectively	with	no	gaps	in	the	data	layout.

Returned	 result	 enum	 PxTriangleMeshCookingResult::eLARGE_TRIANGLE
the	user	if	the	mesh	contains	large	triangles,	which	should	be	tessellated	to	ensure	better
simulation	and	CCT	stability.

Like	 height	 fields,	 triangle	 meshes	 support	 per-triangle	 material	 indices.	 To	 use	 per-
triangle	 materials	 for	 a	 mesh,	 provide	 per-triangle	 indices	 to	 the	 cooking	 library	 in	 the
mesh	 descriptor.	 Later,	 when	 creating	 the	 PxShape,	 supply	 a	 table	 mapping	 the	 index
values	in	the	mesh	to	material	instances.

Triangle	Mesh	cooking

Triangle	mesh	cooking	proceeds	as	follows:

Check	validity	of	input	vertices.
Weld	vertices	and	check	triangle	sizes.
create	acceleration	structure	for	queries.
Compute	edge	convexity	information	and	adjacencies.
Save	data	to	stream.

Note	 that	mesh	cleaning	may	 result	 in	 the	set	of	 triangles	produced	by	cooking	being	a
subset	 different	 from	 the	 original	 input	 set.	 Mesh	 cleaning	 removes	 invalid	 triangles
(containing	 out-of-range	 vertex	 references),	 duplicate	 triangles,	 and	 zero-area	 triangles.
When	 this	 happens,	 PhysX	 optionally	 outputs	 a	 mesh	 remapping	 table	 that	 links	 each
internal	triangle	to	its	source	triangle	in	the	user's	data.

There	are	multiple	parameters	to	control	mesh	creation.

In	PxTriangleMeshDesc:



materialIndices	 defines	 per	 triangle	 materials.	 When	 a	 triangle	 mesh	 collides	 with
another	object,	a	material	is	required	at	the	collision	point.	If	materialIndices	is	NULL,
then	the	material	of	the	PxShape	instance	is	used.

In	PxCookingParams:

scale	defines	Tolerance	scale	 is	used	to	check	 if	cooked	triangles	are	not	 too	huge.
This	check	will	help	with	simulation	stability.

suppressTriangleMeshRemapTable	specifies	whether	the	face	remap	table	is	created.
If	 not,	 this	 saves	 a	 significant	 amount	 of	memory,	 but	 the	 SDK	will	 not	 be	 able	 to
provide	 information	about	which	original	mesh	 triangle	 is	hit	 in	collisions,	sweeps	or
raycasts	hits.

buildTriangleAdjacencies	 specifies	 if	 the	 triangle	 adjacency	 information	 is	 created.
The	adjacent	triangles	can	be	retrieved	for	a	given	triangle	using	the	getTriangle.

meshPreprocessParams	specifies	mesh	pre-processing	parameters.

PxMeshPreprocessingFlag::eWELD_VERTICES	 enables	 vertex	 welding
during	triangle	mesh	cooking.
PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH	 disables	 mesh	 clean
process.	Vertices	duplicities	are	not	searched,	huge	triangles	test	is	not	done.
Vertices	welding	is	not	done.	Does	speed	up	the	cooking.
PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE
disables	 vertex	 edge	 precomputation.	 Makes	 cooking	 faster	 but	 slow	 up
contact	generation.

meshWeldTolerance	-	If	mesh	welding	is	enabled,	this	controls	the	distance	at	which
vertices	are	welded.	If	mesh	welding	is	not	enabled,	this	value	defines	the	acceptance
distance	 for	mesh	 validation.	 Provided	 no	 two	 vertices	 are	within	 this	 distance,	 the
mesh	is	considered	to	be	clean.	If	not,	a	warning	will	be	emitted.	Having	a	clean	mesh
is	required	to	achieve	the	best	possible	performance.



midphaseDesc	specifies	the	desired	midphase	acceleration	structure	descriptor.

PxBVH33MidphaseDesc	 -	 PxMeshMidPhase::eBVH33	 is	 the	 default
structure.	 It	was	 the	one	used	 in	 recent	PhysX	versions	up	 to	PhysX	3.3.	 It
has	great	performance	and	is	supported	on	all	platforms.
PxBVH34MidphaseDesc	 -	 PxMeshMidPhase::eBVH34	 is	 a	 revisited
implementation	introduced	in	PhysX	3.4.	It	can	be	significantly	faster	both	 in
terms	 of	 cooking	 performance	 and	 runtime	 performance,	 but	 it	 is	 currently
only	available	on	platforms	supporting	the	SSE2	instuction	set.

PxBVH33MidphaseDesc	params:

meshCookingHint	specifies	mesh	hierarchy	construction	preferences.	Enables	better
cooking	 performance	 over	 collision	 performance,	 for	 applications	 where	 cooking
performance	is	more	important	than	best	quality	mesh	creation.
meshSizePerformanceTradeOff	 specifies	 the	 trade-off	 between	 mesh	 size	 and
runtime	performance.

PxBVH34MidphaseDesc	params:

numTrisPerLeaf	 specifies	 the	 number	 of	 triangles	 per	 leaf.	 Less	 triangles	 per	 leaf
produces	larger	meshes	with	general	better	runtime	performance	and	worse	cooking
performance.

Height	Fields



Local	space	axes	for	the	height	fields	are:
Row	-	X	axis
Column	-	Z	axis
Height	-	Y	axis

As	the	name	suggests,	 terrains	can	be	described	by	 just	 the	height	values	on	a	regular,
rectangular	sampling	grid:

PxHeightFieldSample*	samples	=	(PxHeightFieldSample*)alloc(sizeof(

				(numRows*numCols));

Each	sample	consists	of	a	16	bit	integer	height	value,	two	materials	(for	the	two	triangles
in	the	samples	rectangle)	and	a	tessellation	flag.

The	 flag	 and	materials	 refer	 to	 the	 cell	 below	and	 to	 the	 right	 of	 the	 sample	 point,	 and
indicate	along	which	diagonal	to	split	it	into	triangles,	and	the	materials	of	those	triangles.
A	special	predefined	material	PxHeightFieldMaterial::eHOLE	specifies	a	hole	in	the	height
field.	See	the	reference	documentation	for	PxHeightFieldSample	for	more	details.

Tesselation	flag	set Tesselation	flag	not	set



Examples:

Tesselation	flags Result

0,0,0
0,0,0
0,0,0

1,1,1
1,1,1
1,1,1



0,1,0
1,0,1
0,1,0

To	 tell	 the	system	 the	number	of	 sampled	heights	 in	each	direction,	use	a	descriptor	 to
instantiate	a	PxHeightField	object:

PxHeightFieldDesc	hfDesc;

hfDesc.format													=	PxHeightFieldFormat::eS16_TM;

hfDesc.nbColumns										=	numCols;

hfDesc.nbRows													=	numRows;

hfDesc.samples.data							=	samples;

hfDesc.samples.stride					=	sizeof(PxHeightFieldSample);

PxHeightField*	aHeightField	=	theCooking->createHeightField(hfDesc

				thePhysics->getPhysicsInsertionCallback());

Now	create	a	PxHeightFieldGeometry	and	a	shape:

PxHeightFieldGeometry	hfGeom(aHeightField,	PxMeshGeometryFlags(),	

				colScale);

PxShape*	aHeightFieldShape	=	PxRigidActorExt::createExclusiveShape

				hfGeom,	aMaterialArray,	nbMaterials);

The	 row	 and	 column	 scales	 tell	 the	 system	how	 far	 apart	 the	 sampled	 points	 lie	 in	 the
associated	direction.	The	height	scale	scales	the	integer	height	values	to	a	floating	point
range.

The	variant	of	createExclusiveShape()	 used	here	 specifies	an	array	of	materials	 for	 the
height	field,	which	will	be	indexed	by	the	material	indices	of	each	cell	to	resolve	collisions
with	that	cell.	The	single-material	variant	may	be	used	instead,	but	the	height	field	material



indices	must	all	be	a	single	value	or	the	special	value	eHOLE.

Contact	generation	with	triangle	edges	at	the	terrain's	borders	can	be	disabled	using	the
PxHeightFieldFlag::eNO_BOUNDARY_EDGES	 flag,	 allowing	 more	 efficient	 contact
generation	when	there	are	multiple	heightfield	shapes	arranged	so	that	their	edges	touch.

Heightfield	cooking

Heightfield	data	can	be	cooked	in	offline	and	then	used	to	createHeightField.	The	cooking
does	precompute	and	store	 the	edge	 information.	This	allows	much	 faster	create	of	 the
heightfield,	 since	 the	 edges	 are	 already	 precomputed.	 It	 is	 very	 useful	 if	 you	 need	 to
create	 heightfields	 in	 the	 runtime,	 since	 it	 does	 improve	 the	 speed	of	 createHeightField
significantly.

Heightfield	cooking	proceeds	as	follows:

Load	heightfield	samples	into	internal	memory.
Precompute	edge	collision	information.
Save	data	to	stream.

Unified	Heightfields

PhysX	provides	two	contact	generation	approaches	for	heightfields.	These	are:

Default	unified	heightfield	contact	generation.
Legacy	heightfield	contact	generation.

The	 default	 unified	 heightfield	 contact	 generation	 approach	 extracts	 triangles	 from	 the
heightfield	and	utilizes	the	same	low-level	contact	generation	code	that	is	used	for	contact
generation	 against	 triangle	 meshes.	 This	 approach	 ensures	 equivalent	 behavior	 and
performance	 if	 triangle	meshes	 or	 heightfields	 are	 used	 interchangeably.	However,	with
this	approach,	the	heightfield	surface	has	no	thickness	so	fast-moving	objects	may	tunnel
if	CCD	is	not	enabled.

The	 legacy	 heightfield	 collision	 code,	which	was	 default	 in	 previous	 versions	 of	 PhysX,



works	differently	from	triangle	mesh	contact	generation.	In	addition	to	generating	contacts
with	shapes	touching	the	surface	of	the	heightfield,	it	generates	contacts	with	shapes	that
are	beneath	the	surface.	The	heightfield's	"thickness"	 is	used	to	control	how	far	beneath
the	surface	contacts	are	generated.	This	works	by	extruding	the	AABB	of	the	heightfield	in
the	broad	phase	by	the	"thickness"	along	the	vertical	axis.	Contacts	are	generated	for	any
shape	below	the	surface	whose	bounds	intersects	the	heightfields	extruded	bounds.

Unified	heightfield	contact	generation	is	enabled	by	calling:

PxRegisterHeightFields(PxPhysics&	physics);

Legacy	heightfield	contact	generation	is	enabled	by	calling:

PxRegisterLegacyHeightFields(PxPhysics&	physics);

These	calls	must	be	made	before	and	scenes	have	been	created,	otherwise	warnings	will
be	issued.	The	heightfield	collision	setting	is	a	global	setting,	and	it	applies	to	all	scenes.

If	PxCreatePhysics(...)	 is	 called,	 this	will	 automatically	 call	PxRegisterHeightFields(...)	 to
register	 the	 default,	 unified	 heightfield	 collision	 approach.	 If	 PxCreateBasePhysics(...)	 is
called,	no	heightfield	contact	generation	 is	registered	by	default.	 If	heightfields	are	used,
the	application	must	call	the	appropriate	heightfield	registration	function.



Mesh	Scaling

A	shared	PxTriangleMesh	or	PxConvexMesh	may	be	stretched	or	compressed	when	it	is
instanced	by	a	geometry.	This	allows	multiple	instancing	of	the	same	mesh	with	different
scale	 factors	 applied.	 Scaling	 is	 specified	 with	 the	 PxMeshScale	 class,	 which	 defines
scale	 factors	 to	be	applied	along	3	orthogonal	axes.	A	 factor	greater	 than	1.0	 results	 in
stretching,	while	a	factor	less	than	1.0	results	in	compression.	The	directions	of	the	axes
are	governed	by	a	quaternion,	and	specified	in	the	local	frame	of	the	shape.

Negative	mesh	scale	is	supported,	with	negative	values	producing	a	reflection	along	each
corresponding	 axis.	 In	 addition	 PhysX	 will	 flip	 the	 normals	 for	 mesh	 triangles	 when
scale.x*scale.y*scale.z	<	0.

The	following	code	creates	a	shape	with	a	PxTriangleMesh	scaled	by	a	factor	of	x	along
the	x-axis,	y	along	the	y-axis,	and	z	along	the	z-axis:

//	created	earlier

PxRigidActor*	myActor;

PxTriangleMesh*	myTriMesh;

PxMaterial*	myMaterial;

//	create	a	shape	instancing	a	triangle	mesh	at	the	given	scale

PxMeshScale	scale(PxVec3(x,y,z),	PxQuat(PxIdentity));

PxTriangleMeshGeometry	geom(myTriMesh,scale);

PxShape*	myTriMeshShape	=	PxRigidActorExt::createExclusiveShape(*myActor

Convex	 meshes	 are	 scaled	 using	 the	 PxMeshScale	 class	 in	 a	 similar	 manner.	
following	 code	 creates	 a	 shape	 with	 a	 PxConvexMesh	 scaled	 by	 a	 factor	 of	 x	 along
(sqrt(1/2),	 1.0,	 -sqrt(1/2)),	 by	 a	 factor	 of	 y	 along	 (0,1,0)	 and	 a	 by	 a	 factor	 of	 z	 along
(sqrt(1/2),	1.0,	sqrt(1/2)):

PxMeshScale	scale(PxVec3(x,y,z),	PxQuat	quat(PxPi*0.25f,	PxVec3(0,

PxConvexMeshGeometry	geom(myTriMesh,scale);

PxShape*	myConvexMeshShape	=	PxRigidActorExt::createExclusiveShape

Height	fields	can	also	be	scaled,	using	scale	factors	stored	in	PxHeightFieldGeometry.	In



this	 case	 the	 scale	 is	 assumed	 to	 be	 along	 the	 axes	 of	 the	 rows,	 columns	 and	 height
directions	 of	 the	 height	 field.	 The	 scaling	 of	 is	 demonstrated	 in	 SampleNorthPole	 in
SampleNorthPoleBuilder.cpp:

PxHeightFieldGeometry	hfGeom(heightField,	PxMeshGeometryFlags(),	heightScale

PxShape*	hfShape	=	PxRigidActorExt::createExclusiveShape(*hfActor,

In	this	example,	the	coordinates	along	the	x	and	z	axes	are	scaled	by	hfScale,	while	the
sample	heights	are	scaled	by	heightScale.



PxGeometryHolder

When	 a	 geometry	 is	 provided	 for	 a	 shape,	 either	 on	 creation	 or	 with
PxShape::setGeometry(),	the	geometry	is	copied	into	the	SDK's	internal	structures.	If	you
know	the	type	of	a	shape's	geometry	you	may	retrieve	it	directly:

PxBoxGeometry	boxGeom;

bool	status	=	shape->getBoxGeometry(geometry);

The	status	return	code	is	set	to	false	if	the	shape's	geometry	is	not	of	the	expected	type.

However,	 it	 is	 often	 convenient	 to	 retrieve	 a	 geometry	 object	 from	a	 shape	without	 first
knowing	its	type	-	for	example,	to	call	a	function	which	takes	a	PxGeometry	reference	as
an	argument.

PxGeometryHolder	is	a	union-like	class	that	allows	the	return	of	a	PxGeometry	object	by
value,	 regardless	 of	 type.	 Its	 use	 is	 illustrated	 in	 the	 createRenderObjectFromShape()
function	in	PhysXSample.cpp:

PxGeometryHolder	geom	=	shape->getGeometry();

switch(geom.getType())

{

case	PxGeometryType::eSPHERE:

				shapeRenderActor	=	SAMPLE_NEW(RenderSphereActor)(renderer,	geom

				break;

case	PxGeometryType::eCAPSULE:

				shapeRenderActor	=	SAMPLE_NEW(RenderCapsuleActor)(renderer,	geom

								geom.capsule().halfHeight);

				break;

...

}

The	 function	PxGeometryHolder::any()	 returns	 a	 reference	 to	 a	PxGeometry	 object.	 For
example,	to	compare	two	shapes	in	a	scene	for	overlap:

bool	testForOverlap(const	PxShape&	s0,	const	PxShape&	s1)

{



				return	PxGeometryQuery::overlap(s0.getGeometry().any(),	PxShapeExt

																																				s1.getGeometry().any(),	PxShapeExt

}



Vertex	and	Face	Data

Convex	meshes,	triangle	meshes,	and	height	fields	can	all	be	queried	for	vertex	and	face
data.	 This	 is	 particularly	 useful,	 for	 example,	 when	 rendering	 the	 mesh	 of	 the	 convex
shape.	The	function:

RenderBaseActor*	PhysXSample::createRenderObjectFromShape(PxShape*

				RenderMaterial*	material)

in	 PhysXSample.cpp	 contains	 a	 switch	 statement	 with	 a	 case	 for	 each	 shape	 type,
illustrating	the	steps	required	to	query	the	vertices	and	faces.

It	 is	possible	 to	get	 information	about	 triangle	 from	a	 triangle	mesh	or	height	 field	using
PxMeshQuery::getTriangle	function.	You	can	also	retrieve	adjacent	triangle	indices	for	the
given	 triangle	 (triangle	 triangleNeighbour[i]	shares	 the	edge	vertex[i]-vertex[(i+1)%3]	with
triangle	indexed	as	'triangleIndex',	where	vertex	is	in	the	range	from	0	to	2).	To	enable	this
feature	the	triangle	mesh	is	cooked	with	buildTriangleAdjacencies	parameter	set	to	true.

Convex	Meshes

A	convex	mesh	contains	an	array	of	vertices,	an	array	of	faces,	and	an	index	buffer	which
concatenates	the	vertex	indices	for	each	face.	To	unpack	a	convex	mesh,	the	first	step	is
to	extract	the	shared	convex	mesh:

PxConvexMesh*	convexMesh	=	geom.convexMesh().convexMesh;

Then	obtain	references	to	the	vertex	and	index	buffers:

PxU32	nbVerts	=	convexMesh->getNbVertices();

const	PxVec3*	convexVerts	=	convexMesh->getVertices();

const	PxU8*	indexBuffer	=	convexMesh->getIndexBuffer();

Now	iterate	over	the	array	of	faces	to	triangulate	them:

PxU32	offset	=	0;



for(PxU32	i=0;i<nbPolygons;i++)

{

				PxHullPolygon	face;

				bool	status	=	convexMesh->getPolygonData(i,	face);

				PX_ASSERT(status);

				const	PxU8*	faceIndices	=	indexBuffer	+	face.mIndexBase;

				for(PxU32	j=0;j<face.mNbVerts;j++)

				{

								vertices[offset+j]	=	convexVerts[faceIndices[j]];

								normals[offset+j]	=	PxVec3(face.mPlane[0],	face.mPlane[1],

				}

				for(PxU32	j=2;j<face.mNbVerts;j++)

				{

								*triangles++	=	PxU16(offset);

								*triangles++	=	PxU16(offset+j);

								*triangles++	=	PxU16(offset+j-1);

				}

				offset	+=	face.mNbVerts;

}

Observe	that	the	vertex	indices	of	the	polygon	begin	at	indexBuffer[face.mIndexBase],	and
the	count	of	vertices	is	given	by	face.mNbVerts.

Triangle	Meshes

Triangle	meshes	contain	arrays	of	vertices	and	index	triplets	which	define	the	triangles	by
indexing	 into	 the	 vertex	 buffer.	 The	 arrays	 can	 be	 accessed	 directly	 from	 the	 shared
triangle	mesh:

PxTriangleMesh*	tm	=	geom.triangleMesh().triangleMesh;

const	PxU32	nbVerts	=	tm->getNbVertices();

const	PxVec3*	verts	=	tm->getVertices();

const	PxU32	nbTris	=	tm->getNbTriangles();

const	void*	tris	=	tm->getTriangles();

The	 indices	may	be	 stored	with	 either	 16-bit	 or	 32-bit	 values,	 specified	when	 the	mesh
was	originally	cooked.	To	determine	the	storage	format	at	runtime,	use	the	API	call:



const	bool	has16bitIndices	=	tm->has16BitTriangleIndices();

Assuming	that	the	triangle	indices	are	stored	in	16-bit	format,	find	the	jth	vertex	of	the	ith
triangle	by:

const	PxU16*	triIndices	=	(const	PxU16*)tris;

const	PxU16	index	=	triIndices[3*i	+j];

The	corresponding	vertex	is:

const	PxVec3&	vertex	=	verts[index];

Height	Fields

The	storage	of	height	field	data	is	platform-dependent,	and	therefore	direct	access	to	the
height	field	samples	is	not	provided.	Instead,	calls	are	provided	to	render	the	samples	to	a
user-supplied	buffer.

Again,	the	first	step	is	to	retrieve	the	geometry	for	the	height	field:

const	PxHeightFieldGeometry&	geometry	=	geom.heightField();

The	height	field	has	three	scaling	parameters:

const	PxReal				rs	=	geometry.rowScale;

const	PxReal				hs	=	geometry.heightScale;

const	PxReal				cs	=	geometry.columnScale;

And	a	shared	data	structure,	which	stores	the	row	and	column	count:

PxHeightField*		hf	=	geometry.heightField;

const	PxU32					nbCols	=	hf->getNbColumns();

const	PxU32					nbRows	=	hf->getNbRows();

To	render	the	height	field,	first	extract	the	samples	to	an	array:

const	PxU32	nbVerts	=	nbRows	*	nbCols;



PxHeightFieldSample*	sampleBuffer	=	new	PxHeightFieldSample[nbVerts

hf->saveCells(sampleBuffer,	nbVerts	*	sizeof(PxHeightFieldSample));

The	samples	are	stored	in	row-major	order;	that	is,	row0	is	stored	first,	followed	by	row1,
then	row2,	and	so	on.	Thus	the	sample	corresponding	to	the	ith	row	and	the	jth	column	is
i*nbCols	+	j.

Evaluate	the	scaled	vertices	of	the	height	field	as	follows:

PxVec3*	vertices	=	new	PxVec3[nbVerts];

for(PxU32	i	=	0;	i	<	nbRows;	i++)

{

				for(PxU32	j	=	0;	j	<	nbCols;	j++)

				{

								vertices[i	*	nbCols	+	j]	=	PxVec3(PxReal(i)	*	rs,	PxReal(sampleBuffer

												(i*nbCols)].height)	*	hs,	PxReal(j)	*	cs);

				}

}

Then	tessellate	the	field	from	the	samples	as	required.

Heightfield	Modification

Heightfield	samples	can	be	modified	at	runtime	in	rectangular	blocks.	In	the	following	code
snippet	we	create	a	HF	and	modify	it's	samples:

//	create	a	5x5	HF	with	height	100	and	materials	2,3

PxHeightFieldSample	samples1[25];

for	(PxU32	i	=	0;	i	<	25;	i	++)

{

				samples1[i].height	=	100;

				samples1[i].materialIndex0	=	2;

				samples1[i].materialIndex1	=	3;

}

PxHeightFieldDesc	heightFieldDesc;

heightFieldDesc.nbColumns	=	5;

heightFieldDesc.nbRows	=	5;

heightFieldDesc.thickness	=	-10;

heightFieldDesc.convexEdgeThreshold	=	3;

heightFieldDesc.samples.data	=	samples1;

heightFieldDesc.samples.stride	=	sizeof(PxHeightFieldSample);



PxPhysics*	physics	=	getPhysics();

PxHeightField*	pHeightField	=	cooking->createHeightField(heightFieldDesc

//	create	modified	HF	samples,	this	10-sample	strip	will	be	used	as	a	modified	row

//	Source	samples	that	are	out	of	range	of	target	heightfield	will	be	clipped	with	no	error.

PxHeightFieldSample	samplesM[10];

for	(PxU32	i	=	0;	i	<	10;	i	++)

{

				samplesM[i].height	=	1000;

				samplesM[i].materialIndex0	=	1;

				samplesM[i].materialIndex1	=	127;

}

PxHeightFieldDesc	desc10Rows;

desc10Rows.nbColumns	=	1;

desc10Rows.nbRows	=	10;

desc10Rows.samples.data	=	samplesM;

desc10Rows.samples.stride	=	sizeof(PxHeightFieldSample);

pHeightField->modifySamples(1,	0,	desc10Rows);	//	modify	row	1	with	new	sample	data

PhysX	does	not	keep	a	mapping	from	the	heightfield	to	heightfield	shapes	that	reference
it.	Call	PxShape::setGeometry	on	each	shape	which	references	the	height	field,	to	ensure
that	internal	data	structures	are	updated	to	reflect	the	new	geometry:

PxShape	*hfShape	=	userGetHfShape();	//	the	user	is	responsible	for	keeping	track	of

																																					//	shapes	associated	with	modified	HF

hfShape->setGeometry(PxHeightFieldGeometry(pHeightField,	...));

Please	 also	 note	 that	 PxShape::setGeometry()	 does	 not	 guarantee	 correct/continuous
behavior	when	objects	are	resting	on	top	of	old	or	new	geometry.

The	method	PxHeightField::getTimestamp()	returns	the	number	of	times	a	heightfield	has
been	modified.

nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



©	Copyright	2008-2017	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA
95050	U.S.A.	All	rights	reserved.



nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



Rigid	Body	Overview



Introduction

This	chapter	will	 introduce	the	fundamentals	of	simulating	rigid	body	dynamics	using	the
NVIDIA	PhysX	engine.



Rigid	Body	Object	Model

PhysX	uses	a	hierarchical	rigid	body	object/actor	model,	which	looks	like	this:

Class Extends Functionality
PxBase N/A Reflection/querying	object	types.

PxActor PxBase Actor	name,	actor	flags,	dominance,	clients,
aggregates,	query	world	bounds.

PxRigidActor PxActor Shapes	and	transforms.
PxRigidBody PxRigidActor Mass,	inertia,	velocities,	body	flags.

PxRigidStatic PxRigidActor Interface	for	static	body	in	the	scene.	This	kind	of
body	has	implicit	infinite	mass/inertia.

PxRigidDynamic PxRigidBody
Interface	for	dynamic	rigid	body	in	the	scene.
Introduces	support	for	kinematic	targets	and	object



sleeping.

PxArticulationLink PxRigidBody
Interface	for	a	dynamic	rigid	body	link	in	a
PxArticulation.	Introduces	support	for	querying	the
articulation	and	adjacent	links.

PxArticulation PxBase
Defines	interface	for	a	PxArticulation.	Effectively	a
contained	referencing	multiple	PxArticualtionLink	rigid
bodies.

The	following	diagram	shows	the	relationship	between	the	main	types	involved	in	the	rigid
body	pipeline:



The	Simulation	Loop

Now	use	 the	method	PxScene::simulate()	 to	advance	 the	world	 forward	 in	 time.	Here	 is
simplified	code	from	the	samples'	fixed	stepper	class:

mAccumulator	=	0.0f;

mStepSize	=	1.0f	/	60.0f;

virtual	bool	advance(PxReal	dt)

{

				mAccumulator		+=	dt;

				if(mAccumulator	<	mStepSize)

								return	false;

				mAccumulator	-=	mStepSize;

				mScene->simulate(mStepSize);

				return	true;

}

This	 is	 called	 from	 the	 sample	 framework	 whenever	 the	 app	 is	 done	 with	 processing
events	 and	 is	 starting	 to	 idle.	 It	 accumulates	 elapsed	 real	 time	 until	 it	 is	 greater	 than	 a
sixtieth	 of	 a	 second,	 and	 then	 calls	 simulate(),	 which	 moves	 all	 objects	 in	 the	 scene
forward	by	that	interval.	This	is	probably	the	simplest	of	very	many	different	ways	to	deal
with	time	when	stepping	the	simulation	forward.

To	allow	the	simulation	to	finish	and	return	the	results,	simply	call:

mScene->fetchResults(true);

True	 indicates	 that	 the	 simulation	 should	 block	 until	 it	 is	 finished,	 so	 that	 on	 return	 the
results	 are	 guaranteed	 to	 be	 available.	 When	 fetchResults	 completes,	 any	 simulation
event	 callback	 functions	 that	 you	 defined	 will	 also	 be	 called.	 See	 the	 chapter	
Sequence.

It	 is	 possible	 to	 read	 and	 write	 from	 the	 scene	 during	 simulation.	 The	 samples	 take
advantage	of	 this	 to	perform	 rendering	work	 in	parallel	with	physics.	Until	 fetchResults()
returns,	the	results	of	the	current	simulation	step	are	not	available.	So	running	rendering	in



parallel	with	simulation	renders	the	actors	as	they	were	when	simulate()	was	called.	After
fetchResults()	returns,	all	these	functions	will	return	the	new,	post-simulate	state.	See	the
chapter	 Threading	 for	 more	 details	 about	 reading	 and	 writing	 while	 the	 simulation	 is
running.

For	the	human	eye	to	perceive	animated	motion	as	smooth,	use	at	 least	twenty	discrete
frames	 per	 second,	 with	 each	 frame	 corresponding	 to	 a	 physics	 time	 step.	
smooth,	realistic	simulation	of	more	complex	physical	scenes,	use	at	least	fifty	frames	per
second.

Note: 	If	you	are	making	a	real-time	interactive	simulation,	you	may	be	tempted	to	take
different	sized	time	steps	which	correspond	to	the	amount	of	real	time	that	has	elapsed
since	the	last	simulation	frame.	Be	very	careful	if	you	do	this,	rather	than	taking
constant-sized	time	steps:	The	simulation	code	is	sensitive	to	both	very	small	and	large
time	steps,	and	also	to	too	much	variation	between	time	steps.	In	these	cases	it	will
likely	produce	jittery	simulation.

See	Simulation	memory	for	details	of	how	memory	is	used	in	simulation.
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Rigid	Body	Collision



Introduction

This	section	will	introduce	the	fundamentals	of	rigid	body	collision.



Shapes

Shapes	describe	 the	spatial	 extent	and	collision	properties	of	actors.	They	are	used	 for
three	purposes	within	PhysX:	 intersection	tests	 that	determine	the	contacting	features	of
rigid	 objects,	 scene	 query	 tests	 such	 as	 raycasts,	 and	 defining	 trigger	 volumes	 that
generate	notifications	when	other	shapes	intersect	with	them.

Shapes	are	reference	counted,	see	Reference	Counting.

Each	shape	contains	a	PxGeometry	object	and	a	reference	 to	a	PxMaterial,	which	must
both	 be	 specified	 upon	 creation.	 The	 following	 code	 creates	 a	 shape	 with	 a	 sphere
geometry	and	a	specific	material:

PxShape*	shape	=	physics.createShape(PxSphereGeometry(1.0f),	myMaterial

myActor.attachShape(*shape);

shape->release();

The	 method	 PxRigidActorExt::createExclusiveShape()	 is	 equivalent	 to	 the	 three	 lines
above.

Note: 	for	reference	counting	behavior	of	deserialized	shapes	refer	to	
Counting	of	Deserialized	Objects.

The	parameter	'true'	to	createShape()	informs	the	SDK	that	the	shape	will	not	be	shared
with	 other	 actors.	 You	 can	 use	 shape	 sharing	 to	 reduce	 the	 memory	 costs	 of	 your
simulation	when	you	have	many	actors	with	identical	geometry,	but	shared	shapes	have	a
very	 strong	 restriction:	 you	 cannot	 update	 the	 attributes	 of	 a	 shared	 shape	 while	 it	 is
attached	to	an	actor.

Optionally	you	may	configure	a	shape	by	specifying	shape	flags	of	type	PxShapeFlags.	By
default	a	shape	is	configured	as

a	simulation	shape	(enabled	for	contact	generation	during	simulation)
a	scene	query	shape	(enabled	for	scene	queries)



being	visualized	if	debug	rendering	is	enabled

When	a	geometry	object	 is	specified	 for	a	shape,	 the	geometry	object	 is	copied	 into	 the
shape.	There	are	 some	 restrictions	on	which	geometries	may	be	specified	 for	 a	 shape,
depending	on	the	shape	flags	and	the	type	of	the	parent	actors.

TriangleMesh,	 HeightField	 and	 Plane	 geometries	 are	 not	 supported	 for	 simulation
shapes	that	are	attached	to	dynamic	actors,	unless	the	dynamic	actors	are	configured
to	be	kinematic.
TriangleMesh	and	HeightField	geometries	are	not	supported	for	trigger	shapes.

See	the	following	sections	for	more	details.

Detach	the	shape	from	the	actor	as	follows:

myActor.detachShape(*shape);

Note: 	in	previous	versions	of	PhysX,	release()	was	used	to	detach	a	shape	from	its
actor	and	destroy	it.	This	use	of	release()	is	deprecated	in	PhysX	3.3	and	will	not	be
supported	in	futures	version	of	PhysX.



Simulation	Shapes	and	Scene	Query	Shapes

Shapes	may	be	independently	configured	to	participate	in	either	or	both	of	scene	queries
and	contact	tests.	By	default,	a	shape	will	participate	in	both.

The	following	pseudo-code	configures	a	PxShape	instance	so	that	it	no	longer	participates
in	shape	pair	intersection	tests:

void	disableShapeInContactTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,false);

}

A	PxShape	 instance	can	be	configured	 to	participate	 in	 shape	pair	 intersection	 tests	as
follows:

void	enableShapeInContactTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,true);

}

To	disable	a	PxShape	instance	from	scene	query	tests:

void	disableShapeInSceneQueryTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSCENE_QUERY_SHAPE,false);

}

Finally,	a	PxShape	instance	can	be	re-enabled	in	scene	query	tests:

void	enableShapeInSceneQueryTests(PxShape*	shape)

{

				shape->setFlag(PxShapeFlag::eSCENE_QUERY_SHAPE,true);

}

Note: 	If	the	movement	of	the	shape's	actor	does	not	need	to	be	controlled	by	the
simulation	at	all,	i.e.,	the	shape	is	used	for	scene	queries	only	and	gets	moved	manually



if	necessary,	then	memory	can	be	saved	by	additionally	disabling	simulation	on	the	actor
(see	the	API	documentation	on	PxActorFlag::eDISABLE_SIMULATION).



Kinematic	Triangle	Meshes	(Planes,	Heighfields)

It	 is	 possible	 to	 create	 a	 kinematic	 PxRigidDynamic	 which	 can	 have	 a	 triangle	 mesh
(plane,	heighfield)	shape.	 If	 this	shape	has	a	simulation	shape	 flag,	 this	actor	must	stay
kinematic.	If	you	change	the	flag	to	not	simulated,	you	can	switch	even	the	kinematic	flag.

To	setup	kinematic	triangle	mesh	see	following	code:

PxRigidDynamic*	meshActor	=	getPhysics().createRigidDynamic(PxTransform

PxShape*	meshShape;

if(meshActor)

{

				meshActor->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC,

				PxTriangleMeshGeometry	triGeom;

				triGeom.triangleMesh	=	triangleMesh;

				meshShape	=	PxRigidActorExt::createExclusiveShape(*meshActor,triGeom

								defaultMaterial);

				getScene().addActor(*meshActor);

}

To	switch	a	kinematic	triangle	mesh	actor	to	a	dynamic	actor:

PxRigidDynamic*	meshActor	=	getPhysics().createRigidDynamic(PxTransform

PxShape*	meshShape;

if(meshActor)

{

				meshActor->setRigidDynamicFlag(PxRigidDynamicFlag::eKINEMATIC,

				PxTriangleMeshGeometry	triGeom;

				triGeom.triangleMesh	=	triangleMesh;

				meshShape	=	PxRigidActorExt::createExclusiveShape(*meshActor,	

								defaultMaterial);

				getScene().addActor(*meshActor);

				PxConvexMeshGeometry	convexGeom	=	PxConvexMeshGeometry(convexBox

				convexShape	=	PxRigidActorExt::createExclusiveShape(*meshActor

								defaultMaterial);



Broad-phase	Algorithms

PhysX	supports	several	broad-phase	algorithms:

sweep-and-prune	(SAP)
multi	box	pruning	(MBP)

PxBroadPhaseType::eSAP	 was	 the	 default	 algorithm	 used	 until	 PhysX	 3.2.	 It	 is	 a	 good
generic	choice	with	great	performance	when	many	objects	are	sleeping.	Performance	can
degrade	 significantly	 though,	 when	 all	 objects	 are	 moving,	 or	 when	 large	 numbers	 of
objects	 are	 added	 to	 or	 removed	 from	 the	 broad-phase.	 This	 algorithm	 does	 not	 need
world	bounds	to	be	defined	in	order	to	work.

PxBroadPhaseType::eMBP	is	a	new	algorithm	introduced	in	PhysX	3.3.	It	is	an	alternative
broad-phase	algorithm	 that	does	not	suffer	 from	 the	same	performance	 issues	as	eSAP
when	 all	 objects	 are	 moving	 or	 when	 inserting	 large	 numbers	 of	 objects.	 However	 its
generic	 performance	when	many	 objects	 are	 sleeping	might	 be	 inferior	 to	 eSAP,	 and	 it
requires	users	to	define	world	bounds	in	order	to	work.

The	desired	broad-phase	algorithm	is	controlled	by	the	PxBroadPhaseType
the	PxSceneDesc	structure.



Regions	of	Interest

A	 region	of	 interest	 is	a	world-space	AABB	around	a	volume	of	space	controlled	by	 the
broad-phase.	Objects	contained	 inside	those	regions	are	properly	handled	by	the	broad-
phase.	Objects	 falling	 outside	 of	 those	 regions	 lose	 all	 collision	 detection.	 Ideally	 those
regions	should	cover	the	whole	game	space,	while	limiting	the	amount	of	covered	empty
space.

Regions	can	overlap,	although	for	maximum	efficiency	it	is	recommended	to	minimize	the
amount	 of	 overlap	 between	 regions	 as	much	 as	 possible.	Note	 that	 two	 regions	whose
AABBs	 just	 touch	 are	 not	 considered	 overlapping.	 For	 example	 the
PxBroadPhaseExt::createRegionsFromWorldBounds	helper	function	creates	a	number	of
non-overlapping	region	bounds	by	simply	subdividing	a	given	world	AABB	 into	a	regular
2D	grid.

Regions	 can	 be	 defined	 by	 the	PxBroadPhaseRegion	 structure,	 along	 with	 a	 user-data
assigned	 to	 them.	 They	 can	 be	 defined	 at	 scene	 creation	 time	 or	 at	 runtime	 using	 the
PxScene::addBroadPhaseRegion	 function.	 The	 SDK	 returns	 handles	 assigned	 to	 the
newly	 created	 regions,	 that	 can	 be	 used	 later	 to	 remove	 regions	 using	 the
PxScene::removeBroadPhaseRegion	function.

A	newly	added	 region	may	overlap	already	existing	objects.	The	SDK	can	automatically
add	 those	 objects	 to	 the	 new	 region,	 if	 the	 populateRegion	 parameter	 from	 the
PxScene::addBroadPhaseRegion	 call	 is	 set.	 However	 this	 operation	 is	 not	 cheap	 and
might	have	a	high	impact	on	performance,	especially	when	several	regions	are	added	in
the	 same	 frame.	 Thus,	 it	 is	 recommended	 to	 disable	 it	 whenever	 possible.	 The	 region
would	then	be	created	empty,	and	it	would	only	be	populated	either	with	objects	added	to
the	scene	after	the	region	has	been	created,	or	with	previously	existing	objects	when	they
are	updated	(i.e.	when	they	move).

Note	 that	 only	 PxBroadPhaseType::eMBP	 requires	 regions	 to	 be	 defined.	 The
PxBroadPhaseType::eSAP	 algorithm	 does	 not.	 This	 information	 is	 captured	 within	 the
PxBroadPhaseCaps	 structure,	 which	 lists	 information	 and	 capabilities	 of	 each	 broad-
phase	 algorithm.	 This	 structure	 can	 be	 retrieved	 by	 the	PxScene::getBroadPhaseCaps



function.

Runtime	 information	 about	 current	 regions	 can	 be	 retrieved	 using	 the
PxScene::getNbBroadPhaseRegions	and	PxScene::getBroadPhaseRegions

The	maximum	number	of	regions	is	currently	limited	to	256.



Broad-phase	Callback

A	 callback	 for	 broad-phase-related	 events	 can	 be	 defined	 within	 the	
structure.	This	PxBroadPhaseCallback	object	will	be	called	when	objects	are	found	out	of
the	specified	regions	of	interest,	i.e.	"out	of	bounds".	The	SDK	disables	collision	detection
for	 those	 objects.	 It	 is	 re-enabled	 automatically	 as	 soon	 as	 the	 objects	 re-enter	 a	 valid
region.

It	is	up	to	users	to	decide	what	to	do	with	out-of-bounds	objects.	Typical	options	are:

delete	the	objects
let	them	continue	their	motion	without	collisions	until	they	re-enter	a	valid	region
artificially	teleport	them	back	to	a	valid	place



Collision	Filtering

In	 almost	 all	 applications	 beyond	 the	 trivial,	 the	 need	 arises	 to	 exempt	 certain	 pairs	 of
objects	from	interacting,	or	to	configure	the	SDK	collision	detection	behavior	in	a	particular
way	for	an	interacting	pair.	In	the	submarine	sample,	like	indicated	above,	we	need	to	be
notified	when	the	submarine	touched	a	mine,	or	the	chain	of	a	mine,	so	that	we	can	have
them	blow	up.	The	crab's	AI	also	needs	to	know	when	crabs	touch	the	heightfield.

Before	we	can	understand	what	the	sample	does	to	achieve	this,	we	need	to	understand
the	possibilities	of	 the	SDK	filtering	system.	Because	filtering	potentially	 interacting	pairs
happens	in	the	deepest	parts	of	the	simulation	engine,	and	needs	to	be	applied	to	all	pairs
of	objects	that	come	near	each	other,	it	is	particularly	performance	sensitive.	
way	 to	 implement	 it	 would	 be	 to	 always	 call	 a	 callback	 function	 to	 each	 potentially
interacting	pair,	where	the	application,	based	on	the	two	object	pointers	could	determine,
using	some	custom	logic	--	 like	consulting	its	game	data	base	--	whether	the	pair	should
interact.	Unfortunately	this	quickly	becomes	too	slow	if	done	for	a	very	large	game	world,
especially	 if	 the	 collision	 detection	 processing	 happens	 on	 a	 remote	 processor	 like	 the
GPU	or	an	other	kind	of	vector	processor	with	local	memory,	which	would	have	to	suspend
its	parallel	computations,	 interrupt	 the	main	processor	 that	 runs	game	code,	and	have	 it
execute	 the	callback	before	 it	can	continue.	Even	 if	 it	were	 to	be	executed	on	a	CPU,	 it
would	likely	be	done	so	simultaneously	on	multiple	cores	or	hyperthreads,	and	thread	safe
code	would	have	to	be	put	in	place	to	make	sure	that	concurrent	access	to	shared	data	is
safe.	Far	better	is	to	use	some	kind	of	fixed	function	logic	that	can	execute	on	the	remote
processor.	 This	 is	 what	 we	 did	 in	 PhysX	 2.x	 --	 unfortunately	 the	 simple	 group	 based
filtering	 rules	we	provided	were	not	 flexible	 enough	 to	 cover	 all	 applications.	
introduce	both	a	shader	system,	which	lets	the	developer	implement	an	arbitrary	system	of
rules	using	code	that	runs	on	the	vector	processor	(and	is	therefore	not	able	to	access	any
eventual	game	data	base	in	main	memory),	which	is	more	flexible	than	2.x	fixed	function
filtering,	 but	 just	 as	 efficient,	 and	 a	 totally	 flexible	 callback	 mechanism	 where	 the	 filter
shader	 calls	a	CPU	callback	 function	 that	 is	able	 to	access	any	application	data,	at	 the
cost	of	performance	--	see	PxSimulationFilterCallback	for	details.	The	best	part	is	that	an
application	can	decide	on	a	per-pair	basis	to	make	this	speed	vs.	flexibility	trade-off.

Let	 us	 look	 at	 the	 shader	 system	 first:	 Here	 is	 the	 filter	 shader	 implemented	 by



SampleSubmarine:

PxFilterFlags	SampleSubmarineFilterShader(

				PxFilterObjectAttributes	attributes0,	PxFilterData	filterData0

				PxFilterObjectAttributes	attributes1,	PxFilterData	filterData1

				PxPairFlags&	pairFlags,	const	void*	constantBlock,	PxU32	constantBlockSize

{

				//	let	triggers	through

				if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

				{

								pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT;

								return	PxFilterFlag::eDEFAULT;

				}

				//	generate	contacts	for	all	that	were	not	filtered	above

				pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

				//	trigger	the	contact	callback	for	pairs	(A,B)	where

				//	the	filtermask	of	A	contains	the	ID	of	B	and	vice	versa.

				if((filterData0.word0	&	filterData1.word1)	&&	(filterData1.word0

								pairFlags	|=	PxPairFlag::eNOTIFY_TOUCH_FOUND;

				return	PxFilterFlag::eDEFAULT;

}

SampleSubmarineFilterShader	is	a	simple	shader	function	that	is	an	implementation	of	the
PxSimulationFilterShader	 prototype	 declared	 in	 PxFiltering.h.	 The	 shader	 filter	 function
(called	SampleSubmarineFilterShader	above)	may	not	reference	any	memory	other	 than
arguments	of	the	function	and	its	own	local	stack	variables	--	because	the	function	may	be
compiled	and	executed	on	a	remote	processor.

SampleSubmarineFilterShader()	will	be	called	for	all	pairs	of	shapes	that	come	near	each
other	--	more	precisely:	for	all	pairs	of	shapes	whose	axis	aligned	bounding	boxes	in	world
space	are	 found	 to	 intersect	 for	 the	 first	 time.	All	behavior	beyond	 that	 is	determined	by
what	SampleSubmarineFilterShader()	returns.

The	 arguments	 of	 SampleSubmarineFilterShader()	 include	 PxFilterObjectAttributes	 and
PxFilterData	for	the	two	objects,	and	a	constant	block	of	memory.	Note	that	the	pointers	to
the	 two	 objects	 are	NOT	 passed,	 because	 those	 pointers	 refer	 to	 the	 computer's	main
memory,	and	that	may,	as	we	said,	not	be	available	to	the	shader,	so	the	pointers	would
not	 be	 very	 useful,	 as	 dereferencing	 them	 would	 likely	 cause	 a	 crash.



PxFilterObjectAttributes	and	PxFilterData	are	intended	to	contain	all	the	useful	information
that	one	could	quickly	glean	from	the	pointers.	PxFilterObjectAttributes	are	32	bits	of	data,
that	 encode	 the	 type	 of	 object:	 For	 example	 PxFilterObjectType::eRIGID_STATIC,
::eRIGID_DYNAMIC,	 or	 even	 ::ePARTICLE_SYSTEM.	Additionally,	 it	 lets	 you	 find	 out	 if
the	object	is	kinematic,	or	a	trigger.

Each	 PxShape	 and	 PxParticleBase	 object	 in	 PhysX	 has	 a	 member	 variable	 of	 type
PxFilterData.	This	 is	128	bits	of	user	defined	data	 that	can	be	used	 to	store	application
specific	information	related	to	collision	filtering.	This	is	the	other	variable	that	is	passed	to
SampleSubmarineFilterShader()	for	each	object.

There	is	also	the	constant	block.	This	is	a	chunk	of	per-scene	global	information	that	the
application	can	give	to	the	shader	to	operate	on.	You	will	want	to	use	this	to	encode	rules
about	what	to	filter	and	what	not.

Finally,	 SampleSubmarineFilterShader()	 also	 has	 a	 PxPairFlags	 parameter.	
output,	 like	 the	 return	 value	PxFilterFlags,	 though	 used	 slightly	 differently.	
tells	 the	 SDK	 if	 it	 should	 ignore	 the	 pair	 for	 good	 (eKILL),	 ignore	 the	 pair	 while	 it	 is
overlapping,	 but	 ask	 again,	 when	 filtering	 related	 data	 changes	 for	 one	 of	 the	 objects
(eSUPPRESS),	or	call	the	low	performance	but	more	flexible	CPU	callback	if	the	shader
cannot	decide	(eCALLBACK).

PxPairFlags	specifies	additional	flags	that	stand	for	actions	that	the	simulation	should	take
in	the	future	for	this	pair.	For	example,	eNOTIFY_TOUCH_FOUND	means	notify	the	user
when	the	pair	really	starts	to	touch,	not	just	potentially.

Let	us	look	at	what	the	above	shader	does:

//	let	triggers	through

if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

{

				pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT;

				return	PxFilterFlag::eDEFAULT;

}

This	means	that	if	either	object	is	a	trigger,	then	perform	default	trigger	behavior	(notify	the
application	 about	 start	 and	 end	 of	 touch),	 and	 otherwise	 perform	 'default'	 collision



detection	between	them.

//	generate	contacts	for	all	that	were	not	filtered	above

pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

//	trigger	the	contact	callback	for	pairs	(A,B)	where

//	the	filtermask	of	A	contains	the	ID	of	B	and	vice	versa.

if((filterData0.word0	&	filterData1.word1)	&&	(filterData1.word0	&

				pairFlags	|=	PxPairFlag::eNOTIFY_TOUCH_FOUND;

return	PxFilterFlag::eDEFAULT;

This	says	that	for	all	other	objects,	perform	'default'	collision	handling.	In	addition,	there	is
a	 rule	 based	 on	 the	 filterDatas	 that	 determines	 particular	 pairs	where	we	 ask	 for	 touch
notifications.	To	understand	what	this	means,	we	need	to	know	the	special	meaning	that
the	sample	gives	to	the	filterDatas.

The	needs	of	the	sample	are	very	basic,	so	we	will	use	a	very	simple	scheme	to	take	care
of	 it.	 The	 sample	 first	 gives	 named	 codes	 to	 the	 different	 object	 types	 using	 a	 custom
enumeration:

struct	FilterGroup

{

				enum	Enum

				{

								eSUBMARINE					=	(1	<<	0),

								eMINE_HEAD					=	(1	<<	1),

								eMINE_LINK					=	(1	<<	2),

								eCRAB										=	(1	<<	3),

								eHEIGHTFIELD			=	(1	<<	4),

				};

};

The	 sample	 identifies	 each	 shape's	 type	 by	 assigning	 its	 PxFilterData::word0	 to	 this
FilterGroup	 type.	Then,	 it	 puts	a	bit	mask	 that	 specifies	each	 type	of	 object	 that	 should
generate	a	report	when	touched	by	an	object	of	type	word0	into	word1.	
in	 the	 samples	 whenever	 a	 shape	 is	 created,	 but	 because	 shape	 creation	 is	 a	 bit
encapsulated	in	SampleBase,	it	is	done	after	the	fact,	using	this	function:



void	setupFiltering(PxRigidActor*	actor,	PxU32	filterGroup,	PxU32	

{

				PxFilterData	filterData;

				filterData.word0	=	filterGroup;	//	word0	=	own	ID

				filterData.word1	=	filterMask;		//	word1	=	ID	mask	to	filter	pairs	that	trigger	a

																																				//	contact	callback;

				const	PxU32	numShapes	=	actor->getNbShapes();

				PxShape**	shapes	=	(PxShape**)SAMPLE_ALLOC(sizeof(PxShape*)*numShapes

				actor->getShapes(shapes,	numShapes);

				for(PxU32	i	=	0;	i	<	numShapes;	i++)

				{

								PxShape*	shape	=	shapes[i];

								shape->setSimulationFilterData(filterData);

				}

				SAMPLE_FREE(shapes);

}

This	 sets	 up	 the	 PxFilterDatas	 of	 each	 shape	 belonging	 to	 the	 passed	 actor.	
some	examples	how	this	is	used	in	SampleSubmarine:

setupFiltering(mSubmarineActor,	FilterGroup::eSUBMARINE,	FilterGroup

				FilterGroup::eMINE_LINK);

setupFiltering(link,	FilterGroup::eMINE_LINK,	FilterGroup::eSUBMARINE

setupFiltering(mineHead,	FilterGroup::eMINE_HEAD,	FilterGroup::eSUBMARINE

setupFiltering(heightField,	FilterGroup::eHEIGHTFIELD,	FilterGroup

setupFiltering(mCrabBody,	FilterGroup::eCRAB,	FilterGroup::eHEIGHTFIELD

This	scheme	is	probably	too	simplistic	to	use	in	a	real	game,	but	it	shows	the	basic	usage
of	the	filter	shader,	and	it	will	ensure	that	SampleSubmarine::onContact()	 is	called	for	all
interesting	pairs.

An	alternative	group	based	filtering	mechanism	is	provided	with	source	in	the	extensions
function	PxDefaultSimulationFilterShader.	And,	again,	 if	 this	shader	based	system	 is	 too
inflexible,	consider	using	the	callback	approach	provided	with	PxSimulationFilterCallback.



Aggregates

An	aggregate	is	a	collection	of	actors.	Aggregates	do	not	provide	extra	simulation	or	query
features,	but	allow	you	to	tell	the	SDK	that	a	set	of	actors	will	be	clustered	together,	which
in	 turn	 allows	 the	 SDK	 to	 optimize	 its	 spatial	 data	 operations.	 A	 typical	 use	 case	 is	 a
ragdoll,	made	of	multiple	different	actors.	Without	aggregates,	 this	gives	rise	to	as	many
broad-phase	 entries	 as	 there	 are	 shapes	 in	 the	 ragdoll.	 It	 is	 typically	 more	 efficient	 to
represent	 the	 ragdoll	 in	 the	broad-phase	as	a	single	entity,	and	perform	 internal	overlap
tests	 in	a	second	pass	 if	 necessary.	Another	potential	use	case	 is	a	single	actor	with	a
large	number	of	attached	shapes.



Creating	an	Aggregate

Create	an	aggregate	from	the	PxPhysics	object:

PxPhysics*	physics;	//	The	physics	SDK	object

PxU32	nbActors;					//	Max	number	of	actors	expected	in	the	aggregate

bool	selfCollisions	=	true;

PxAggregate*	aggregate	=	physics->createAggregate(nbActors,	selfCollisions

The	maximum	number	of	actors	is	currently	limited	to	128,	and	for	efficiency	should	be	set
as	low	as	possible.

If	 you	 will	 never	 need	 collisions	 between	 the	 actors	 of	 the	 aggregate,	 disable	 them	 at
creation	time.	This	is	much	more	efficient	than	using	the	scene	filtering	mechanism,	as	it
bypasses	all	 internal	filtering	logic.	A	typical	use	case	would	be	an	aggregate	of	static	or
kinematic	actors.

Note	 that	 both	 the	 maximum	 number	 of	 actors	 and	 the	 self-collision	 attribute	 are
immutable.



Populating	an	Aggregate

Adds	an	actor	to	an	aggregate	as	follows:

PxActor&	actor;				//	Some	actor,	previously	created

aggregate->addActor(actor);

Note	that	if	the	actor	already	belongs	to	a	scene,	the	call	is	ignored.	Either	add	the	actors
to	an	aggregate	and	 then	add	 the	aggregate	 to	 the	scene,	or	add	 the	aggregate	 to	 the
scene	and	then	the	actors	to	the	aggregate.

To	add	the	aggregate	to	a	scene	(before	or	after	populating	it):

scene->addAggregate(*aggregate);

Similarly,	to	remove	the	aggregate	from	the	scene:

scene->removeAggregate(*aggregate);



Releasing	an	Aggregate

To	release	an	aggregate:

PxAggregate*	aggregate;				//	The	aggregate	we	previously	created

aggregate->release();

Releasing	 the	PxAggregate	does	not	 release	 the	aggregated	actors.	 If	 the	PxAggregate
belongs	to	a	scene,	the	actors	are	automatically	re-inserted	in	that	scene.	If	you	intend	to
delete	both	the	PxAggregate	and	its	actors,	 it	 is	most	efficient	 to	release	the	actors	first,
then	release	the	PxAggregate	when	it	is	empty.



Amortizing	Insertion

Adding	many	objects	to	a	scene	in	one	frame	can	be	a	costly	operation.	This	can	be	the
case	for	a	ragdoll,	which	as	discussed	is	a	good	candidate	for	PxAggregate.	Another	case
is	 localized	 debris,	 for	 which	 self-collisions	 are	 often	 disabled.	 To	 amortize	 the	 cost	 of
object	 insertion	 into	 the	 broad-phase	 structure	 over	 several,	 spawn	 the	 debris	 in	 a
PxAggregate,	 then	 remove	 each	 actor	 from	 the	 aggregate	 and	 and	 re-insert	 it	 into	 the
scene	over	those	frames.



Trigger	Shapes

Trigger	shapes	play	no	part	in	the	simulation	of	the	scene	(though	they	can	be	configured
to	 participate	 in	 scene	 queries).	 Instead,	 their	 role	 is	 to	 report	 that	 there	 has	 been	 an
overlap	 with	 another	 shape.	 Contacts	 are	 not	 generated	 for	 the	 intersection,	 and	 as	 a
result	contact	reports	are	not	available	 for	 trigger	shapes.	Further,	because	triggers	play
no	 part	 in	 the	 simulation,	 the	 SDK	 will	 not	 allow	 the	 the	 eSIMULATION_SHAPE
eTRIGGER_SHAPE	 flags	 to	 be	 raised	 simultaneously;	 that	 is,	 if	 one	 flag	 is	 raised	 then
attempts	to	raise	the	other	will	be	rejected,	and	an	error	will	be	passed	to	the	error	stream.

Trigger	shapes	have	been	used	 in	SampleSubmarine	 to	determine	 if	 the	submarine	has
reached	the	treasure.	In	the	following	code	the	PxActor	representing	the	treasure	has	its
solitary	shape	configured	as	a	trigger	shapes:

PxShape*	treasureShape;

gTreasureActor->getShapes(&treasureShape,	1);

treasureShape->setFlag(PxShapeFlag::eSIMULATION_SHAPE,	false);

treasureShape->setFlag(PxShapeFlag::eTRIGGER_SHAPE,	true);

The	 overlaps	 with	 trigger	 shapes	 are	 reported	 in	 SampleSubmarine	 through	 the
implementation	 of	 PxSimulationEventCallback::onTrigger	 in	 the	 PxSampleSubmarine
class,	a	sub-class	of	PxSimulationEventCallback:

void	SampleSubmarine::onTrigger(PxTriggerPair*	pairs,	PxU32	count)

{

				for(PxU32	i=0;	i	<	count;	i++)

				{

								//	ignore	pairs	when	shapes	have	been	deleted

								if	(pairs[i].flags	&	(PxTriggerPairFlag::eREMOVED_SHAPE_TRIGGER

												PxTriggerPairFlag::eREMOVED_SHAPE_OTHER))

												continue;

								if	((&pairs[i].otherShape->getActor()	==	mSubmarineActor)	

												(&pairs[i].triggerShape->getActor()	==	gTreasureActor))

								{

												gTreasureFound	=	true;

								}

				}

}



The	 code	 above	 iterates	 through	 all	 pairs	 of	 overlapping	 shapes	 that	 involve	 a	 trigger
shape.	 If	 it	 is	 found	 that	 the	 treasure	has	been	 touched	by	 the	submarine	 then	 the	 flag
gTreasureFound	is	set	true.



Interactions

The	SDK	internally	creates	an	interaction	object	for	each	overlapping	pair	reported	by	the
broad-phase.	These	objects	are	not	only	created	for	pairs	of	colliding	rigid	bodies,	but	also
for	 pairs	 of	 overlapping	 triggers.	 Generally	 speaking	 users	 should	 assume	 that	 such
objects	are	created	regardless	of	the	involved	objects'	types	(rigid	body,	trigger,	cloth,	etc)
and	regardless	of	involved	PxFilterFlag	flags.

There	 is	 currently	 a	 limit	 of	 65535	 such	 interaction	 objects	 for	 each	 actor.	 If	more	 than
65535	 interactions	 involve	 the	same	actor,	 then	 the	SDK	outputs	an	error	message	and
the	extra	interactions	are	ignored.
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Rigid	Body	Dynamics
In	this	chapter	we	cover	a	number	of	topics	that	are	also	important	to	understand	once	you
are	comfortable	with	setting	up	a	basic	rigid	body	simulation	world.



Velocity

A	 rigid	 body's	motion	 is	 separated	 into	 linear	 and	 angular	 velocity	 components.	 During
simulation,	PhysX	will	modify	 the	 velocity	 of	 an	 object	 in	 accordance	with	 gravity,	 other
applied	 forces	 and	 torques	 and	 as	 a	 result	 of	 various	 constraints,	 such	 as	 collisions	 or
joints.

A	body's	linear	and	angular	velocities	can	be	read	using	the	following	methods:

PxVec3	PxRigidBody::getLinearVelocity();

PxVec3	PxRigidBody::getAngularVelocity();

A	body's	linear	and	angular	velocities	can	be	set	using	the	following	methods:

void	PxRigidBody::setLinearVelocity(const	PxVec3&	linVel,	bool	autowake

void	PxRigidBody::setAngularVelocity(const	PxVec3&	angVel,	bool	autowake



Mass	Properties

A	dynamic	actor	needs	mass	properties:	 the	mass,	moment	of	 inertia,	and	 the	center	of
mass	 frame	which	 specifies	 the	 position	 of	 the	 actor's	 center	 of	mass	 and	 its	 principal
inertia	 axes.	 The	 easiest	 way	 to	 calculate	 mass	 properties	 is	 to	 use	 the
PxRigidBodyExt::updateMassAndInertia()	 helper	 function,	 which	 will	 set	 all	 three
properties	 based	 on	 the	 actor's	 shapes	 and	 a	 uniform	 density	 value.	 Variants	 of	 this
function	 allow	 combinations	 of	 per-shape	 densities	 and	 manual	 specification	 of	 some
mass	properties.	See	the	reference	for	PxRigidBodyExt	for	more	details.

The	 Wobbly	 Snowmen	 in	 the	 North	 Pole	 Sample	 illustrate	 the	 use	 of	 different	 mass
properties.	The	snowmen	act	like	roly-poly	toys,	which	are	usually	just	an	empty	shell	with
the	bottom	filled	with	some	heavy	material.	The	low	centers	of	mass	cause	them	to	move
back	 to	 an	 upright	 position	 after	 they	 have	 been	 tilted.	 They	 come	 in	 different	 flavors,
depending	on	how	the	mass	properties	are	set:

The	first	 is	basically	massless.	There	 is	 just	a	 little	sphere	with	a	relatively	high	mass	at
the	bottom	of	the	Actor.	This	results	in	a	quite	rapid	movement	due	to	the	small	resulting
moments	of	inertia.	The	snowman	feels	light.

The	second	uses	the	mass	of	the	bottom	snowball	only,	resulting	in	a	bigger	inertia.	Later
on,	 the	center	of	mass	 is	moved	 to	 the	bottom	of	 the	actor.	This	approximation	 is	by	no
means	physically	correct,	but	the	resulting	snowman	feels	a	bit	more	filled.

The	 third	and	 fourth	snowman	use	shapes	 to	calculate	 the	mass.	The	difference	 is	 that
one	 calculates	 the	moments	 of	 inertia	 first	 (from	 the	 real	 center	 of	mass)	 and	 then	 the
center	of	mass	is	moved	to	the	bottom.	The	other	calculates	the	moments	of	inertia	about
the	low	center	of	mass	that	we	pass	to	the	calculation	routine.	Note	how	much	slower	the
wobbling	is	for	the	second	case	although	both	have	the	same	mass.	This	is	because	the
head	accounts	 for	much	more	 in	 the	moment	of	 inertia	 (the	distance	 from	 the	center	of
mass	squared).

The	last	snowman's	mass	properties	are	set	up	manually.	The	sample	uses	rough	values
for	the	moment	of	inertia	to	create	a	specific	desired	behavior.	The	diagonal	tensor	has	a



low	value	in	X,	and	high	values	in	Y	and	Z,	producing	a	low	resistance	to	rotation	around
the	 X-axis	 and	 high	 resistance	 around	 Y	 and	 Z.	 As	 a	 consequence,	 the	 snowman	 will
wobble	back	and	forth	only	around	the	X	axis.

If	 you	have	a	 3x3	 inertia	matrix	 (for	 example,	 you	have	 real-life	 inertia	 tensors	 for	 your
objects)	 use	 the	 PxDiagonalize()	 function	 to	 obtain	 principal	 axes	 and	 diagonal	 inertia
tensors	to	initialize	PxRigidDynamic	actors.

When	manually	setting	the	mass/inertia	tensor	of	bodies,	PhysX	requires	positive	values
for	the	mass	and	each	principal	axis	of	inertia.	However,	it	 is	legal	to	provide	0s	in	these
values.	 When	 provided	 with	 a	 0	 mass	 or	 inertia	 value,	 PhysX	 interprets	 this	 to	 mean
infinite	mass	or	 inertia	around	that	principal	axis.	This	can	be	used	to	create	bodies	that
resist	all	 linear	motion	or	 that	 resist	all	or	some	angular	motion.	Examples	of	 the	effects
that	could	be	achieved	using	this	approach	are:

Bodies	that	behave	as	if	they	were	kinematic.
Bodies	whose	translation	behaves	kinematically	but	whose	rotation	is	dynamic.
Bodies	whose	translation	is	dynamic	but	whose	rotation	is	kinematic.
Bodies	which	can	only	rotate	around	a	specific	axis.

Some	examples	of	what	could	be	achieved	are	detailed	below.	First,	let's	assume	that	we
are	creating	a	common	structure	-	a	windmill.	The	code	to	construct	the	bodies	that	would
be	part	of	the	windmill	are	provided	below:

PxRigidDynamic*	dyn	=	physics.createRigidDynamic(PxTransform(PxVec3

PxRigidActorExt::createExclusiveShape(*dyn,	PxBoxGeometry(2.f,	0.2f

PxRigidActorExt::createExclusiveShape(*dyn,	PxBoxGeometry(0.2f,	2.f

dyn->setActorFlag(PxActorFlag::eDISABLE_GRAVITY,	true);

dyn->setAngularVelocity(PxVec3(0.f,	0.f,	5.f));

dyn->setAngularDamping(0.f);

PxRigidStatic*	st	=	mPhysics.createRigidStatic(PxTransform(PxVec3(

PxRigidActorExt::createExclusiveShape(*t,	PxBoxGeometry(0.5f,	1.5f

scene.addActor(dyn);

scene.addActor(st);

The	above	code	creates	a	static	box	frame	for	the	windmill	and	a	cross	to	represent	the
blades	of	the	turbine.	We	turn	off	gravity	and	angular	damping	on	the	windmill	blade	and



give	 it	 an	 initial	 angular	 velocity.	As	 a	 result,	 this	 turbine	 blade	will	 rotate	 at	 a	 constant
angular	 velocity	 indefinitely.	 However,	 if	 another	 object	 collided	 with	 the	 turbine,	 our
windmill	would	 cease	 to	 function	 correctly	because	 the	 turbine	blade	would	be	knocked
out	 of	 place.	 There	 are	 several	 options	 to	 make	 the	 turbine	 blade	 stay	 in	 the	 correct
position	 when	 other	 bodies	 interact	 with	 it.	 One	 such	 approach	 might	 be	 to	 make	 the
turbine	have	infinite	mass	and	inertia.	In	this	case,	any	interactions	with	bodies	would	not
affect	the	turbine	at	all:

dyn->setMass(0.f);

dyn->setMassSpaceInertiaTensor(PxVec3(0.f));

This	example	retains	the	previous	behavior	of	 the	turbine	spinning	at	a	constant	angular
velocity	 indefinitely.	 However,	 now	 the	 body's	 velocities	 cannot	 be	 affected	 by	 any
constraints	 because	 the	 body	 has	 infinite	 mass	 and	 inertia.	 If	 a	 body	 collided	 with	 the
turbine	blade,	the	collision	would	behave	as	if	the	turbine	blade	was	a	kinematic	body.

Another	alternative	would	be	to	make	the	turbine	have	infinite	mass	and	limit	its	rotation	to
just	 around	 the	 body's	 local	 z-axis.	 This	 would	 provide	 the	 same	 effect	 as	 applying	 a
revolute	joint	between	the	turbine	and	the	static	windmill	frame:

dyn->setMass(0.f);

dyn->setMassSpaceInertiaTensor(PxVec3(0.f,	0.f,	10.f));

In	both	examples,	the	body's	mass	was	set	to	0,	indicating	that	the	body	has	infinite	mass
so	its	linear	velocity	cannot	be	changed	by	any	constraints.	However,	in	this	example,	the
body's	 inertia	 is	 configured	 to	 permit	 the	 body's	 angular	 velocity	 to	 be	 affected	 by
constraints	around	one	principal	axis	or	inertia.	This	provides	a	similar	effect	to	introducing
a	revolute	joint.	The	value	of	the	inertia	around	the	z-axis	can	be	increased	or	decreased
to	make	the	turbines	more/less	resistive	to	motion.



Applying	Forces	and	Torques

The	most	physics-friendly	way	to	interact	with	a	body	is	to	apply	a	force	to	it.	In	classical
mechanics,	 most	 interactions	 between	 bodies	 are	 typically	 solved	 by	 using	 forces.
Because	of	the	law:

f	=	m*a	(force	=	mass	*	acceleration)

Forces	directly	 control	a	body's	acceleration,	but	 its	 velocity	and	position	only	 indirectly.
For	this	reason	control	by	force	may	be	inconvenient	if	you	need	immediate	response.	The
advantage	of	forces	is	that	regardless	of	what	forces	you	apply	to	the	bodies	in	the	scene,
the	simulation	will	be	able	to	keep	all	the	defined	constraints	(joints	and	contacts)	satisfied.
For	example	gravity	works	by	applying	a	force	to	bodies.

Unfortunately	 applying	 large	 forces	 to	 articulated	 bodies	 at	 the	 resonant	 frequency	 of	 a
system	may	lead	to	ever	increasing	velocities,	and	eventually	to	the	failure	of	the	solver	to
maintain	the	joint	constraints.	This	is	not	unlike	a	real	world	system,	where	the	joints	would
ultimately	break.

The	forces	acting	on	a	body	are	accumulated	before	each	simulation	frame,	applied	to	the
simulation,	and	then	reset	to	zero	in	preparation	for	the	next	frame.	The	relevant	methods
of	PxRigidBody	and	PxRigidBodyExt	are	listed	below.	Please	refer	to	the	API	reference	for
more	detail:

void	PxRigidBody::addForce(const	PxVec3&	force,	PxForceMode::Enum	

void	PxRigidBody::addTorque(const	PxVec3&	torque,	PxForceMode::Enum

void	PxRigidBodyExt::addForceAtPos(PxRigidBody&	body,	const	PxVec3

				const	PxVec3&	pos,	PxForceMode::Enum	mode,	bool	wakeup);

void	PxRigidBodyExt::addForceAtLocalPos(PxRigidBody&	body,	const	PxVec3

				const	PxVec3&	pos,	PxForceMode::Enum	mode,	bool	wakeup);

void	PxRigidBodyExt::addLocalForceAtPos(PxRigidBody&	body,	const	PxVec3

				const	PxVec3&	pos,	PxForceMode::Enum	mode,	bool	wakeup);

void	PxRigidBodyExt::addLocalForceAtLocalPos(PxRigidBody&	body,	const

				const	PxVec3&	pos,	PxForceMode::Enum	mode,	bool	wakeup);



The	 PxForceMode	member	 defaults	 to	 PxForceMode::eFORCE	 to	 apply	 simple	 forces.
There	 are	 other	 possibilities.	 For	 example	 PxForceMode::eIMPULSE	 will	 apply	 an
impulsive	 force.	PxForceMode::eVELOCITY_CHANGE	will	do	 the	same,	but	also	 ignore
the	mass	of	the	body,	effectively	leading	to	an	instantaneous	velocity	change.	See	the	API
documentation	of	PxForceMode	for	the	other	possibilities.

Note: 	The	methods	in	PxRigidBodyExt	support	only	the	force	modes	eFORCE	and
eIMPULSE.

There	are	further	extension	functions	that	compute	the	linear	and	angular	velocity	changes
that	would	arise	in	the	next	simulation	frame	if	an	impulsive	force	or	impulsive	torque	were
to	be	applied:

void	PxRigidBodyExt::computeVelocityDeltaFromImpulse(const	PxRigidBody

				const	PxVec3&	impulsiveForce,	const	PxVec3&	impulsiveTorque,	PxVec3

				PxVec3&	deltaAngularVelocity);

A	use	case	for	this	function	might	be	to	predict	an	updated	velocity	for	a	game	object	so
that	asset	loading	may	be	initiated	in	advance	of	the	simulation	frame	if	the	body	is	likely
to	exceed	a	threshold	velocity	at	the	end	of	the	frame.	The	impulsive	force	and	torque	are
simply	the	force	and	torque	that	are	to	be	applied	to	the	body	multiplied	by	the	timestep	of
the	simulation	frame.	Neglecting	the	effect	of	constraint	and	contact	forces,	the	change	in
linear	 and	 angular	 velocity	 that	 are	 expected	 to	 arise	 in	 the	 next	 simulation	 frame	 are
returned	in	deltaLinearVelocity	and	deltaAngularVelocity.	The	predicted	linear	velocity	can
then	be	computed	with	body.getLinearVelocity()	+	deltaLinearVelocity,	while	the	predicted
angular	velocity	can	be	computed	with	body.getAngularVelocity()	+	deltaAngularVelocity.	
required,	 it	 is	 possible	 to	 immediately	 update	 the	 velocity	 of	 the	 body	 using
body.setLinearVelocity(body.getLinearVelocity()	 +	 deltaLinearVelocity)	 and
body.setAngularVelocity(body.getAngularVelocity()	+	deltaAngularVelocity).



Gravity

Gravity	is	such	a	common	force	in	simulations	that	PhysX	makes	it	particularly	simple	to
apply.	For	a	scene-wide	gravity	effect,	or	any	other	uniform	 force	 field,	set	 the	PxScene
class'	gravity	vector	using	PxScene::setGravity().

The	parameter	is	the	acceleration	due	to	gravity.	In	meters	and	seconds,	this	works	out	to
have	a	magnitude	of	about	9.8	on	earth,	and	should	point	downwards.	The	force	that	will
be	 applied	 at	 the	 center	 of	mass	 of	 each	 body	 in	 the	 scene	 is	 this	 acceleration	 vector
times	the	actor's	mass.

Certain	special	effects	can	require	that	some	dynamic	actors	are	not	influenced	by	gravity.
To	specify	this	set	the	flag:

PxActor::setActorFlag(PxActorFlag::eDISABLE_GRAVITY,	true);

Note: 	Be	careful	when	changing	gravity	(or	enabling/disabling	it)	during	the	simulation.
For	performance	reasons	the	change	will	not	wake	up	sleeping	actors	automatically.
Thus	it	may	be	necessary	to	iterate	through	all	actors	and	call
PxRigidDynamic::wakeUp()	manually.

An	alternative	to	PxActorFlag::eDISABLE_GRAVITY	is	to	use	a	zero	gravity	vector	for	the
whole	scene,	 then	apply	your	own	gravity	 force	to	rigid	bodies,	each	frame.	This	can	be
used	to	create	radial	gravity	fields,	as	demonstrated	in	SampleCustomGravity.



Friction	and	Restitution

All	 physical	 objects	have	at	 least	 one	material,	which	defines	 the	 friction	and	 restitution
properties	used	to	resolve	a	collision	with	the	objects.

To	create	a	material,	call	PxPhysics::createMaterial():

PxMaterial*	mMaterial;

mMaterial	=	mPhysics->createMaterial(0.5f,	0.5f,	0.1f);	//	static	friction,	dynamic	friction,

																																																								//	restitution

if(!mMaterial)

				fatalError("createMaterial	failed!");

Materials	 are	 owned	 by	 the	 PxPhysics	 object,	 and	 can	 be	 shared	 among	 objects	 in
multiple	 scenes.	 The	 material	 properties	 of	 two	 objects	 involved	 in	 a	 collision	 may	 be
combined	 in	 various	 ways.	 See	 the	 reference	 documentation	 for	 PxMaterial	 for	 more
details.

PhysX	objects	whose	collision	geometry	is	a	triangle	mesh	or	a	heightfield	(see	
can	have	a	material	per	triangle.

Friction	 uses	 the	 coulomb	 friction	 model,	 which	 is	 based	 around	 the	 concepts	 of	 2
coefficients:	 the	 static	 friction	 coefficient	 and	 the	 dynamic	 friction	 coefficient	 (sometimes
called	 kinetic	 friction).	 Friction	 resists	 relative	 lateral	 motion	 of	 two	 solid	 surfaces	 in
contact.	These	two	coefficients	define	a	relationship	between	the	normal	force	exerted	by
each	surface	on	the	other	and	the	amount	of	friction	force	that	 is	applied	to	resist	 lateral
motion.	Static	friction	defines	the	amount	of	friction	that	 is	applied	between	surfaces	that
are	not	moving	lateral	to	each-other.	Dynamic	friction	defines	the	amount	of	friction	applied
between	surfaces	that	are	moving	relative	to	each-other.

The	coefficient	of	restitution	of	 two	colliding	objects	 is	a	fractional	value	representing	the
ratio	of	speeds	after	and	before	an	impact,	taken	along	the	line	of	impact.	A	coefficient	of
restitution	of	1	is	said	to	collide	elastically,	while	a	coefficient	of	restitution	<	1	is	said	to	be
inelastic.



Sleeping

When	an	actor	does	not	move	for	a	period	of	time,	it	is	assumed	that	it	will	not	move	in	the
future	either	until	some	external	force	acts	on	it	that	throws	it	out	of	equilibrium.	Until	then
it	is	no	longer	simulated	in	order	to	save	resources.	This	state	is	called	sleeping.	You	can
query	an	actor's	sleep	state	with	the	following	method:

bool	PxRigidDynamic::isSleeping()	const;

It	 is	however	often	more	convenient	to	listen	for	events	that	the	SDK	sends	when	actors
fall	 asleep	 or	 wake	 up.	 To	 receive	 the	 following	 events,
PxActorFlag::eSEND_SLEEP_NOTIFIES	must	be	set	for	the	actor:

void	PxSimulationEventCallback::onWake(PxActor**	actors,	PxU32	count

void	PxSimulationEventCallback::onSleep(PxActor**	actors,	PxU32	count

See	 the	 section	Callback	Sequence	 and	 the	 subsection	Sleep	 state	 change	 events
more	information.

An	 actor	 goes	 to	 sleep	when	 its	 kinetic	 energy	 is	 below	a	 given	 threshold	 for	 a	 certain
time.	Basically,	every	dynamic	rigid	actor	has	a	wake	counter	which	gets	decremented	by
the	 simulation	 time	 step	 when	 the	 kinetic	 energy	 of	 the	 actor	 is	 below	 the	 specified
threshold.	 However,	 if	 the	 energy	 is	 above	 the	 threshold	 after	 a	 simulation	 step,	 the
counter	gets	reset	to	a	minimum	default	value	and	the	whole	process	starts	anew.	Once
the	wake	counter	reaches	zero,	it	does	not	get	decremented	any	further	and	the	actor	is
ready	to	go	to	sleep.	Please	note	that	a	zero	wake	counter	does	not	mean	that	the	actor
has	to	be	asleep,	 it	only	 indicates	 that	 it	 is	 ready	to	go	to	sleep.	There	are	other	 factors
that	might	keep	an	actor	awake	for	a	while	longer.

The	energy	threshold	as	well	as	the	minimum	amount	of	time	an	actor	will	stay	awake	can
be	manipulated	using	the	following	methods:

void	PxRigidDynamic::setSleepThreshold(PxReal	threshold);

PxReal	PxRigidDynamic::getSleepThreshold()	const;



void	PxRigidDynamic::setWakeCounter(PxReal	wakeCounterValue);

PxReal	PxRigidDynamic::getWakeCounter()	const;

Note: 	For	kinematic	actors,	special	sleep	rules	apply.	A	kinematic	actor	is	asleep
unless	a	target	pose	has	been	set	(in	which	case	it	will	stay	awake	until	the	end	of	the
next	simulation	step	where	no	target	pose	has	been	set	anymore).	As	a	consequence,	it
is	not	allowed	to	use	setWakeCounter()	for	kinematic	actors.	The	wake	counter	of	a
kinematic	actor	is	solely	defined	based	on	whether	a	target	pose	has	been	set.

If	a	dynamic	rigid	actor	is	sleeping,	the	following	state	is	guaranteed:

The	wake	counter	is	zero.
The	linear	and	angular	velocity	is	zero.
There	is	no	force	update	pending.

When	 an	 actor	 gets	 inserted	 into	 a	 scene,	 it	 will	 be	 considered	 asleep	 if	 all	 the	 points
above	hold,	else	it	will	be	treated	as	awake.

In	general,	a	dynamic	rigid	actor	is	guaranteed	to	be	awake	if	at	least	one	of	the	following
holds:

The	wake	counter	is	positive.
The	linear	or	angular	velocity	is	non-zero.
A	non-zero	force	or	torque	has	been	applied.

As	a	consequence,	the	following	calls	will	wake	the	actor	up	automatically:

PxRigidDynamic::setWakeCounter(),	if	the	wake	counter	value	is	larger	than	zero.
PxRigidBody::setLinearVelocity(),	::setAngularVelocity(),	if	the	velocity	is	non-zero.
PxRigidBody::addForce(),	::addTorque(),	if	the	torque	is	non-zero.

In	addition,	the	following	calls	and	events	wake	an	actor	up:

PxRigidDynamic::setKinematicTarget()	in	the	case	of	a	kinematic	actor	(because	this
also	sets	the	wake	counter	to	a	positive	value).



PxRigidActor::setGlobalPose(),	if	the	autowake	parameter	is	set	to	true	(default).
Simulation	 gets	 disabled	 for	 a	 PxRigidActor	 by	 raising
PxActorFlag::eDISABLE_SIMULATION.
PxScene::resetFiltering().
PxShape::setSimulationFilterData(),	 if	 the	 subsequent	 re-filtering	 causes	 the	 type	of
the	shape	pair	to	transition	between	suppressed,	trigger	and	contact.
Touch	with	an	actor	that	is	awake.
A	touching	rigid	actor	gets	removed	from	the	scene	(this	is	the	default	behavior	but	it
can	be	specified	by	the	user,	see	note	further	below).
Contact	with	a	static	rigid	actor	is	lost.
Contact	with	a	dynamic	rigid	actor	is	lost	and	this	actor	is	awake	in	the	next	simulation
step.
The	actor	gets	hit	by	a	two-way	interaction	particle.

Note: 	When	removing	a	rigid	actor	from	the	scene	or	a	shape	from	an	actor,	it	is
possible	to	specify	whether	to	wake	up	the	objects	that	were	touching	the	removed
object	in	the	previous	simulation	step.	See	the	API	comments	in
PxScene::removeActor()	and	PxRigidActor::detachShape()	for	details.

To	explicitly	wake	up	a	sleeping	object,	or	force	an	object	to	sleep,	use:

void	PxRigidDynamic::wakeUp();

void	PxRigidDynamic::putToSleep();

Note: 	It	is	not	allowed	to	use	these	methods	for	kinematic	actors.	The	sleep	state	of	a
kinematic	actor	is	solely	defined	based	on	whether	a	target	pose	has	been	set.

The	API	reference	documents	exactly	which	methods	cause	an	actor	to	be	woken	up.

Sleep	state	change	events

As	mentioned	above,	PhysX	provides	an	event	system	that	reports	changes	to	the	sleep



state	of	dynamic	rigid	bodies	during	PxScene::fetchResults():

void	PxSimulationEventCallback::onWake(PxActor**	actors,	PxU32	count

void	PxSimulationEventCallback::onSleep(PxActor**	actors,	PxU32	count

It	is	important	to	understand	the	correct	usage	of	these	events,	and	their	limitations:

A	 body	 added	 since	 the	 previous	 fetchResults()	 or	 flushSimulation()
generate	an	event,	even	if	no	sleep	state	transition	occured.
If	 there	 have	 been	 multiple	 changes	 in	 a	 body's	 sleep	 state	 since	 the	 previous
fetchResults()	or	flushSimulation(),	PhysX	will	report	only	the	most	recent.

Sometimes	 it	 is	 desirable	 to	 detect	 transitions	 between	 awake	 and	 asleep,	 e.g.	 when
keeping	track	of	the	number	of	awake	bodies.	Suppose	a	sleeping	body	
application,	 the	 counter	 is	 incremented,	 and	 during	 the	 next	 simulation	 step	
awake.	 Even	 though	B's	 sleep	 state	 did	 not	 change	 during	 simulation,	 it	 has	 changed
since	the	previous	fetchResults(),	and	so	an	onWake()	event	will	be	generated	for	it.	If	the
counter	is	incremented	again	in	response	to	this	event,	its	value	will	be	incorrect.

To	use	sleep	state	events	 to	detect	 transitions,	a	record	of	 the	sleep	state	 for	objects	of
interest	has	to	be	kept,	for	example	in	a	hash.	When	processing	an	event,	this	record	can
be	used	to	check	whether	there	has	been	a	transition.



Kinematic	Actors

Sometimes	 controlling	 an	 actor	 using	 forces	 or	 constraints	 is	 not	 sufficiently	 robust,
precise	or	 flexible.	For	example	moving	platforms	or	 character	 controllers	often	need	 to
manipulate	 an	 actor's	 position	 or	 have	 it	 exactly	 follow	 a	 specific	 path.	 Such	 a	 control
scheme	is	provided	by	kinematic	actors.

A	kinematic	actor	 is	 controlled	using	 the	PxRigidDynamic::setKinematicTarget()	 function.
Each	simulation	step	PhysX	moves	the	actor	to	its	target	position,	regardless	of	external
forces,	 gravity,	 collision,	 etc.	 Thus	 one	must	 continually	 call	 setKinematicTarget(),	 every
time	 step,	 for	 each	 kinematic	 actor,	 to	make	 them	move	along	 their	 desired	 paths.	 The
movement	of	a	kinematic	actor	affects	dynamic	actors	with	which	it	collides	or	to	which	it	is
constrained	with	a	joint.	The	actor	will	appear	to	have	infinite	mass	and	will	push	regular
dynamic	actors	out	of	the	way.

To	create	a	kinematic	actor,	simply	create	a	regular	dynamic	actor	 then	set	 its	kinematic
flag:

PxRigidBody::setRigidBodyFlag(PxRigidBodyFlag::eKINEMATIC,	true);

Use	 the	 same	 function	 to	 transform	 a	 kinematic	 actor	 back	 to	 a	 regular	 dynamic	 actor.
While	you	do	need	to	provide	a	mass	for	the	kinematic	actor	as	for	all	dynamic	actors,	this
mass	will	not	actually	be	used	for	anything	while	the	actor	is	in	kinematic	mode.

Caveats:

It	 is	 important	 to	 understand	 the	 difference	 between
PxRigidDynamic::setKinematicTarget()	 and	 PxRigidActor::setGlobalPose()	 here.
While	setGlobalPose()	would	also	move	the	actor	to	the	desired	position,	it	would	not
make	that	actor	properly	interact	with	other	objects.	In	particular,	with	setGlobalPose()
the	kinematic	actor	would	not	push	away	other	dynamic	actors	 in	 its	path,	 instead	 it
would	go	right	through	them.	The	setGlobalPose()	function	can	still	be	used	though,	if
one	simply	wants	to	teleport	a	kinematic	actor	to	a	new	position.



A	kinematic	actor	can	push	away	dynamic	objects,	but	nothing	pushes	it	back.	As	a
result,	a	kinematic	can	easily	squish	a	dynamic	actor	against	a	static	actor,	or	against
another	 kinematic	 actor.	 As	 a	 result,	 the	 squished	 dynamic	 object	 can	 deeply
penetrate	the	geometry	it	has	been	pushed	into.
There	 is	 no	 interaction	 or	 collision	 between	 kinematic	 actors	 and	 static	 actors.
However,	 it	 is	 possible	 to	 request	 contact	 information	 for	 these	 cases	 if
PxSceneFlag::eENABLE_KINEMATIC_PAIRS	 or
::eENABLE_KINEMATIC_STATIC_PAIRS	gets	set.



Active	Transforms

Note: 	the	active	transforms	are	currently	deprecated.	See	next	paragraph	about	Active
Actors	for	its	replacement.

The	active	transforms	API	provides	an	efficient	way	to	reflect	actor	transform	changes	in	a
PhysX	scene	to	an	associated	external	object	such	as	a	render	mesh.

When	a	scene's	fetchResults()	method	is	called	an	array	of	PxActiveTransform
generated,	each	entry	in	the	array	contains	a	pointer	to	the	actor	that	moved,	its	user	data
and	its	new	transform.	Because	only	actors	that	have	moved	will	be	included	in	the	list	this
approach	is	potentially	much	more	efficient	than,	for	example,	analyzing	each	actor	in	the
scene	individually.

The	example	below	shows	how	to	use	active	transforms	to	update	a	render	object:

//	update	scene

scene.simulate(dt);

scene.fetchResults();

//	retrieve	array	of	actors	that	moved

PxU32	nbActiveTransforms;

PxActiveTransform*	activeTransforms	=	scene.getActiveTransforms(nbActiveTransforms

//	update	each	render	object	with	the	new	transform

for	(PxU32	i=0;	i	<	nbActiveTransforms;	++i)

{

				MyRenderObject*	renderObject	=	static_cast<MyRenderObject*>(activeTransforms

				renderObject->setTransform(activeTransforms[i].actor2World);

}

Note: 	PxSceneFlag::eENABLE_ACTIVETRANSFORMS	must	be	set	on	the	scene	for
the	active	transforms	array	to	be	generated.

Note: 	Since	the	target	transform	for	kinematic	rigid	bodies	is	set	by	the	user,	kinematics
can	be	excluded	from	the	list	by	setting	the	flag
PxSceneFlag::eEXCLUDE_KINEMATICS_FROM_ACTIVE_ACTORS.





Active	Actors

The	 active	 actors	 API	 provides	 an	 efficient	 way	 to	 reflect	 actor	 transform	 changes	 in	 a
PhysX	scene	to	an	associated	external	object	such	as	a	render	mesh.

When	a	scene's	fetchResults()	method	is	called	an	array	of	active	PxActor
Because	only	actors	that	have	moved	will	be	included	in	the	list	this	approach	is	potentially
much	more	efficient	than,	for	example,	analyzing	each	actor	in	the	scene	individually.

The	example	below	shows	how	to	use	active	actors	to	update	a	render	object:

//	update	scene

scene.simulate(dt);

scene.fetchResults();

//	retrieve	array	of	actors	that	moved

PxU32	nbActiveActors;

PxActor**	activeActors	=	scene.getActiveActors(nbActiveActors);

//	update	each	render	object	with	the	new	transform

for	(PxU32	i=0;	i	<	nbActiveActors;	++i)

{

				MyRenderObject*	renderObject	=	static_cast<MyRenderObject*>(activeActors

				renderObject->setTransform(activeActors[i]->getGlobalPose());

}

Note: 	PxSceneFlag::eENABLE_ACTIVE_ACTORS	must	be	set	on	the	scene	for	the
active	actors	array	to	be	generated.

Note: 	Since	the	target	transform	for	kinematic	rigid	bodies	is	set	by	the	user,	kinematics
can	be	excluded	from	the	list	by	setting	the	flag
PxSceneFlag::eEXCLUDE_KINEMATICS_FROM_ACTIVE_ACTORS.



Dominance

Dominance	is	a	mechanism	to	enable	dynamic	bodies	to	dominate	each-other.	Dominance
effectively	 imbues	 the	dominant	body	 in	a	pair	with	 infinite	mass.	This	 is	a	 form	of	 local
mass	modification	within	the	constraint	solver	and,	as	such,	can	override	the	mass	of	one
of	the	bodies	in	a	pair.	Similar	effects	can	be	achieved	through	local	mass	modification	in
contact	 modification	 but	 dominance	 has	 the	 advantage	 of	 being	 handled	 automatically
within	 the	SDK	 so	 does	 not	 incur	 the	 additional	memory	 and	 performance	 overhead	 of
contact	modification.

Each	actor	must	be	assigned	a	dominance	group	ID.	This	is	a	5-bit	value	in	the	range	[0,
31].	As	such,	you	are	restricted	to	at-most	32	dominance	groups.	By	default,	all	bodies	are
placed	in	dominance	group	0.	An	actor	can	be	assigned	to	a	dominance	group	using	the
following	method	on	PxActor:

virtual	void	setDominanceGroup(PxDominanceGroup	dominanceGroup)	=	

Dominance	is	defined	by	2	real	numbers	in	the	following	struct:

struct	PxDominanceGroupPair

{

				PxDominanceGroupPair(PxReal	a,	PxReal	b)

								:	dominance0(a),	dominance1(b)	{}

				PxReal	dominance0;

				PxReal	dominance1;

};

And	 dominance	 between	 two	 dominance	 groups	 can	 be	 configured	 using	 the	 following
method	on	PxScene:

virtual	void	setDominanceGroupPair(PxDominanceGroup	group1,	PxDominanceGroup

				const	PxDominanceGroupPair&	dominance)	=	0;

The	user	can	define	3	different	 states	 for	a	given	PxDominanceGroupPair:	 *	1	 :	1.	This
indicates	that	both	bodies	have	equal	dominance.	This	is	the	default	behavior.	*	1	:	0.	This



indicates	that	body	B	dominates	body	A.	*	0	:	1.	This	indicates	that	body	A	dominates	body
B.

Any	values	other	than	0	and	1	are	not	valid	in	a	PxDominanceGroupPair.	Assigning	0	to
both	sides	of	the	PxDominanceGroupPair	is	also	invalid.	These	values	can	be	considered
to	 be	 scales	 applied	 to	 the	 bodies'	 respective	 inverse	 mass	 and	 inverse	 inertia.	 A
dominance	value	of	0	would	therefore	equate	to	an	infinite	mass	body.

The	following	example	sets	two	actors,	actorA	and	actorB,	into	different	dominance	groups
and	configures	the	dominance	group	to	make	actorA	dominate	actorB:

PxRigidDynamic*	actorA	=	mPhysics->createRigidDynamic(PxTransform(

PxRigidDynamic*	actorB	=	mPhysics->createRigidDynamic(PxTransform(

actorA->setDominanceGroup(1);

actorB->setDominanceGroup(2);

mScene->setDominanceGroupPair(1,	2,	PxDominanceGroupPair(0.f,	1.f));

Dominance	 values	 will	 not	 affect	 joints.	 Local	 mass	 modification	 on	 joints	 must	 be
performed	using	the	following	methods	on	PxJoint:

virtual	void	setInvMassScale0(PxReal	invMassScale)	=	0;

virtual	void	setInvMassScale1(PxReal	invMassScale)	=	0;

virtual	void	setInvInertiaScale0(PxReal	invInertiaScale)	=	0;

virtual	void	setInvInertiaScale1(PxReal	invInertiaScale)	=	0;

As	previously	mentioned,	 dominance	does	not	 permit	 values	other	 than	0	or	 1	and	any
dominance	 values	 are	 applied	 uniformly	 to	 both	 the	 inverse	 mass	 and	 inverse	 inertia.
Joints	 and	 contacts	 through	 contact	modification	 permit	 defining	 separate	 inverse	mass
and	inverse	inertia	scales,	which	accept	any	values	within	the	range	[0,	PX_MAX_REAL]
so	can	be	used	to	achieve	a	wider	range	of	effects	than	dominance	can.

Dominance	can	produce	some	very	peculiar	results	if	misused.	For	example,	given	bodies
A,	B	and	C	configured	in	the	following	way:

Body	A	dominates	body	B
Body	B	dominance	body	C



Body	C	dominates	body	A

In	 this	 situation,	 body	A	 cannot	 push	body	C	directly.	However,	 it	 can	push	body	C	 if	 it
pushes	body	B	into	body	C.



Solver	Iterations

When	the	motion	of	a	rigid	body	is	constrained	either	by	contacts	or	joints,	the	constraint
solver	comes	into	play.	The	solver	satisfies	the	constraints	on	the	bodies	by	iterating	over
all	the	constraints	restricting	the	motion	of	the	body	a	certain	number	of	times.	The	more
iterations,	the	more	accurate	the	results	become.	The	solver	iteration	count	defaults	to	4
position	 iterations	and	1	velocity	 iteration.	Those	counts	may	be	set	 individually	for	each
body	using	the	following	function:

void	PxRigidDynamic::setSolverIterationCounts(PxU32	minPositionIters

Typically	it	is	only	necessary	to	significantly	increase	these	values	for	objects	with	lots	of
joints	and	a	small	tolerance	for	joint	error.	If	you	find	a	need	to	use	a	setting	higher	than
30,	you	may	wish	to	reconsider	the	configuration	of	your	simulation.

The	 solver	 groups	 contacts	 into	 friction	patches;	 friction	patches	are	groups	of	 contacts
which	 share	 the	 same	materials	 and	have	 similar	 contact	 normals.	However,	 the	 solver
permits	a	maximum	of	32	 friction	patches	per	contact	manager	(pair	of	shapes).	 If	more
than	 32	 friction	 patches	 are	 produced,	 which	 may	 be	 due	 to	 very	 complex	 collision
geometry	or	very	large	contact	offsets,	the	solver	will	ignore	the	remaining	friction	patches.
A	warning	will	be	issues	in	checked/debug	builds	when	this	happens.



Immediate	Mode

In	addition	to	simulation	using	a	PxScene,	PhysX	offers	a	low-level	simulation	API	called
"immediate	mode".	This	provides	an	API	 to	access	 the	 low-level	contact	generation	and
constraint	 solver.	 This	 approach	 currently	 supports	 only	CPU	 rigid	 bodies	 and	does	not
support	articulations,	clothing	or	particles.

The	 immediate	 mode	 API	 is	 defined	 in	 PxImmediateMode.h	 and	 there	 is	 a	 Snippet
demonstrating	its	usage	in	"SnippetImmediateMode".

The	API	provides	a	function	to	perform	contact	generation:

PX_C_EXPORT	PX_PHYSX_CORE_API	bool	PxGenerateContacts(const	PxGeometry

								const	PxReal	contactDistance,	const	PxReal	meshContactMargin

This	 function	 takes	 a	 set	 of	 pairs	 of	 PxGeometry	 objects	 located	 at	 specific	 poses	 and
performs	collision	detection	between	 the	pairs.	 If	 the	pair	of	geometries	collide,	contacts
are	 generated,	 which	 are	 reported	 to	 contactRecorder.	 In	 addition,	 information	 may	 be
cached	 in	contactCache	to	accelerate	 future	queries	between	these	pairs	of	geometries.
Any	memory	required	for	this	cached	information	will	be	allocated	using	"allocator".

In	 addition,	 the	 immediate	mode	 provides	 APIs	 for	 the	 constraint	 solver.	 These	 include
functions	to	create	bodies	used	by	the	solver:

PX_C_EXPORT	PX_PHYSX_CORE_API	void	PxConstructSolverBodies(const	PxRigidBodyData

PX_C_EXPORT	PX_PHYSX_CORE_API	void	PxConstructStaticSolverBody(const

In	 addition	 to	 constructing	 the	 bodies,	 PxConstraintSolverBodies	 also	 integrates	 the
provided	gravitational	acceleration	into	the	bodies	velocities.

The	following	function	is	optional	and	is	used	to	batch	constraints:

PX_C_EXPORT	PX_PHYSX_CORE_API	PxU32	PxBatchConstraints(PxSolverConstraintDesc

								PxSolverConstraintDesc*	outOrderedConstraintDescs);



Batching	constraints	reorders	the	provided	constraints	and	produces	batchHeaders,	which
can	 be	 used	 by	 the	 solver	 to	 accelerate	 constraint	 solving	 by	 grouping	 together
independent	 constraints	 and	 solving	 them	 in	 parallel	 using	 multiple	 lanes	 in	 SIMD
registers.	This	process	is	entirely	optional	and	can	bypassed	if	not	desired.	Note	that	this
will	change	the	order	in	which	constraints	are	processed,	which	can	change	the	outcome
of	the	solver.

The	following	methods	is	provided	to	create	contact	constraints:

PX_C_EXPORT	PX_PHYSX_CORE_API	bool	PxCreateContactConstraints(PxConstraintBatchHeader

								PxConstraintAllocator&	allocator,	PxReal	invDt,	PxReal	bounceThreshold

This	method	can	be	provided	with	 the	contacts	produced	by	PxGenerateContacts	or	by
contacts	produced	by	application-specific	contact	generation	approaches.

The	following	methods	are	provided	to	create	joint	constraints:

PX_C_EXPORT	PX_PHYSX_CORE_API	bool	PxCreateJointConstraints(PxConstraintBatchHeader

PX_C_EXPORT	PX_PHYSX_CORE_API	bool	PxCreateJointConstraintsWithShaders

The	 methods	 provide	 a	 mechanism	 for	 the	 application	 to	 define	 joint	 rows	 or	 for	 the
application	to	make	use	of	PhysX	PxConstraint	objects,	which	create	the	constraint	rows.

The	following	method	solves	the	constraints:

PX_C_EXPORT	PX_PHYSX_CORE_API	void	PxSolveConstraints(PxConstraintBatchHeader

								PxVec3*	linearMotionVelocity,	PxVec3*	angularMotionVelocity

This	method	performs	all	required	position	and	velocity	iterations	and	updates	the	objects'
delta	 velocities	 and	 motion	 velocities,	 which	 are	 stored	 in	 PxSolverBody	 and
linear/angularMotionVelocity	respectively.

The	 following	 method	 is	 provided	 to	 integrate	 the	 bodies'	 final	 poses	 and	 update	 the



bodies'	velocities	to	reflect	the	motion	produced	by	the	constraint	solver.

An	 example	 of	 how	 the	 immediate	 mode	 can	 be	 used	 is	 provided	 in
SnippetImmediateMode.



Enhanced	Determinism

PhysX	provides	 limited	deterministic	simulation.	Specifically,	 the	results	of	 the	simulation
will	be	identical	between	runs	if	simulating	the	exact	same	scene	(same	actors	inserted	in
the	same	order)	using	the	same	time-stepping	scheme	and	same	PhysX	release	running
on	the	same	platform.	The	simulation	behavior	is	not	influenced	by	the	number	of	worker
threads	that	are	used.

However,	the	results	of	the	simulation	can	change	if	actors	are	inserted	in	a	different	order.
In	addition,	the	overall	behavior	of	the	simulation	can	change	if	additional	actors	are	added
or	 if	 some	 actors	 are	 removed	 from	 the	 scene.	 This	 means	 that	 the	 simulation	 of	 a
particular	collection	of	actors	can	change	depending	on	whether	other	actors	are	present
in	the	scene	or	not,	irrespective	of	whether	these	actors	actually	interact	with	the	collection
of	 actors.	 This	 behavioral	 property	 is	 usually	 tolerable	 but	 there	 are	 circumstances	 in
which	it	is	not	acceptable.

To	 overcome	 this	 issue,	 PhysX	 provides	 a	 flag:
PxSceneFlag::eENABLE_ENHANCED_DETERMINISM,	 which	 provides	 additional	 levels
of	determinism.	Specifically,	provided	 the	application	 inserts	 the	actors	 in	a	deterministic
order,	with	 this	 flag	raised,	 the	simulation	of	an	 island	will	be	 identical	 regardless	of	any
other	islands	in	the	scene.	However,	this	mode	sacrifices	some	performance	to	ensure	this
additional	determinism.



Axis	locking

It	is	possible	to	restrict	motion	along	or	around	specific	world-space	axes	in	PhysX	using
PxRigidDynamicLockFlag.	 For	 example,	 the	 below	 code	 snippet	 demonstrates	 how	 to
restrict	 a	 PxRigidDynamic	 to	 two	 dimensional	 simulation.	 In	 this	 case,	 we	 permit	 the
PxRigidDynamic	to	rotate	only	around	the	Z-axis	and	to	translate	only	along	the	X-	and	Y-
axes:

PxRigidDynamic*	dyn	=	physics.createRigidDynamic(PxTransform(PxVec3

...

//Lock	the	motion

dyn->setRigidDynamicLockFlags(PxRigidDynamicLockFlag::eLOCK_LINEAR_Z

It	 is	 legal	 to	 restrict	movement	 or	 rotation	 around	 any	 combination	 of	 the	 6	 degrees	 of
freedom.
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Simulation



Callback	Sequence

The	simplest	type	of	simulation	callbacks	are	the	events.	Using	callbacks	the	application
can	simply	 listen	 for	events	and	 react	as	 required,	provided	 the	callbacks	obey	 the	 rule
that	SDK	state	changes	are	forbidden.	This	restriction	may	be	a	bit	surprising	given	that
the	SDK	permits	writes	 to	an	 inactive	back-buffer	while	 the	simulation	 is	 running.	Event
callbacks,	however,	are	not	called	from	within	the	simulation	thread,	but	rather	from	inside
fetchResults().	 The	 key	 point	 here	 is	 that	 fetchResults()	 processes	 the	 buffered	 writes,
meaning	that	writing	to	the	SDK	from	an	event	callback	can	be	a	particularly	fragile	affair.
To	avoid	 this	 fragility	 it	 is	necessary	 to	 impose	 the	 rule	 that	SDK	state	changes	are	not
permitted	from	an	event	callback.

Inside	fetchResults(),	among	other	things,	the	buffers	are	swapped.	More	specifically,	this
means	 that	 properties	 of	 each	 object's	 internal	 simulation	 state	 are	 copied	 to	 the	 API-
visible	state.	Some	event	callbacks	happen	before	this	swap,	and	some	after.	
that	happen	before	are:

onTrigger
onContact
onConstraintBreak

When	these	events	are	received	in	the	callback,	the	shapes,	actors,	etc.	will	still	be	in	the
state	they	were	 in	 immediately	before	the	simulation	started.	This	is	preferable,	because
these	events	were	detected	early	on	during	the	simulation,	before	objects	were	integrated
(moved)	forward.	For	example,	a	pair	of	shapes	that	get	an	onContact()	to	report	that	they
are	 in	contact	will	still	be	 in	contact	when	 the	call	 is	made,	even	 though	 they	may	have
bounced	apart	again	after	fetchResults()	returns.

On	the	other	hand,	these	events	are	sent	after	the	swap:

onSleep
onWake

Sleep	 information	 is	 updated	 after	 objects	 have	 been	 integrated,	 so	 it	 makes	 sense	 to



send	these	events	after	the	swap.

To	 'listen'	 to	 any	 of	 these	 events	 it	 is	 necessary	 to	 first	 subclass
PxSimulationEventCallback	so	 that	 the	various	virtual	 functions	may	be	 implemented	as
desired.	 An	 instance	 of	 this	 subclass	 can	 then	 be	 registered	 per	 scene	 with	 either
PxScene::setSimulationEventCallback	 or	 PxSceneDesc::simulationEventCallback.
Following	 these	 steps	 alone	 will	 ensure	 that	 constraint	 break	 events	 are	 successfully
reported.	 One	 further	 step	 is	 required	 to	 report	 sleep	 and	 wake	 events:	 to	 avoid	 the
expense	of	reporting	all	sleep	and	wake	events,	actors	identified	as	worthy	of	sleep/wake
notification	require	the	flag	PxActorFlag::eSEND_SLEEP_NOTIFIES	to	be	raised.	
to	receive	onContact	and	onTrigger	events	it	is	necessary	to	set	a	flag	in	the	filter	shader
callback	 for	all	pairs	of	 interacting	objects	 for	which	events	are	 required.	
the	filter	shader	callback	can	be	found	in	Section	Collision	Filtering.



Simulation	memory

PhysX	relies	on	the	application	for	all	memory	allocation.	The	primary	interface	is	via	the
PxAllocatorCallback	interface	required	to	initialize	the	SDK:

class	PxAllocatorCallback

{

public:

				virtual	~PxAllocatorCallback()	{}

				virtual	void*	allocate(size_t	size,	const	char*	typeName,	const

								int	line)	=	0;

				virtual	void	deallocate(void*	ptr)	=	0;

};

After	the	self-explanatory	function	argument	describing	the	size	of	the	allocation,	the	next
three	function	arguments	are	an	identifier	name,	which	identifies	the	type	of	allocation,	and
the	__FILE__	and	__LINE__	location	inside	the	SDK	code	where	the	allocation	was	made.
More	details	of	these	function	arguments	can	be	found	in	the	PhysXAPI	documentation.

Note: 	An	important	change	since	2.x:	The	SDK	now	requires	that	the	memory	that	is
returned	be	16-byte	aligned.	On	many	platforms	malloc()	returns	memory	that	is	16-byte
aligned,	but	on	Windows	the	system	function	_aligned_malloc()	provides	this	capability.

Note: 	On	some	platforms	PhysX	uses	system	library	calls	to	determine	the	correct	type
name,	and	the	system	function	that	returns	the	type	name	may	call	the	system	memory
allocator.	If	you	are	instrumenting	system	memory	allocations,	you	may	observe	this
behavior.	To	prevent	PhysX	requesting	type	names,	disable	allocation	names	using	the
method	PxFoundation::setReportAllocationNames().

Minimizing	 dynamic	 allocation	 is	 an	 important	 aspect	 of	 performance	 tuning.	
provides	 several	 mechanisms	 to	 control	 and	 analyze	 memory	 usage.	
discussed	in	turn.

Scene	Limits



The	 number	 of	 allocations	 for	 tracking	 objects	 can	 be	 minimized	 by	 presizing	 the
capacities	of	scene	data	structures,	using	either	PxSceneDesc::limits	before	creating	the
scene	 or	 the	 function	 PxScene::setLimits().	 It	 is	 useful	 to	 note	 that	 these	 limits	 do	 not
represent	hard	limits,	meaning	that	PhysX	will	automatically	perform	further	allocations	if
the	number	of	objects	exceeds	the	scene	limits.

16K	Data	Blocks

Much	of	 the	memory	PhysX	uses	 for	simulation	 is	held	 in	a	pool	of	blocks,	each	16K	 in
size.	 The	 initial	 number	 of	 blocks	 allocated	 to	 the	 pool	 can	 be	 controlled	 by	 setting
PxSceneDesc::nbContactDataBlocks,	while	the	maximum	number	of	blocks	that	can	ever
be	 in	 the	 pool	 is	 governed	 by	 PxSceneDesc::maxNbContactDataBlocks.	 If	 PhysX
internally	needs	more	blocks	than	nbContactDataBlocks	then	it	will	automatically	allocate
further	blocks	to	the	pool	until	the	number	of	blocks	reaches	maxNbContactDataBlocks.	
PhysX	subsequently	needs	more	blocks	than	the	maximum	number	of	blocks	then	it	will
simply	 start	 dropping	 contacts	 and	 joint	 constraints.	 When	 this	 happens	 warnings	 are
passed	to	the	error	stream	in	the	PX_CHECKED	configuration.

To	 help	 tune	 nbContactDataBlocks	 and	 maxNbContactDataBlocks	 it	 can	 be	 useful	 to
query	 the	 number	 of	 blocks	 currently	 allocated	 to	 the	 pool	 using	 the	 function
PxScene::getNbContactDataBlocksUsed().	 It	 can	 also	 be	 useful	 to	 query	 the	 maximum
number	 of	 blocks	 that	 can	 ever	 be	 allocated	 to	 the	 pool	 with
PxScene::getMaxNbContactDataBlocksUsed.

Unused	blocks	can	be	reclaimed	using	PxScene::flushSimulation().	When	this	 function	 is
called	any	allocated	blocks	not	required	by	the	current	scene	state	will	be	deleted	so	that
they	may	be	reused	by	the	application.	Additionally,	a	number	of	other	memory	resources
are	freed	by	shrinking	them	to	the	minimum	size	required	by	the	scene	configuration.

Scratch	Buffer

A	 scratch	 memory	 block	 may	 be	 passed	 as	 a	 function	 argument	 to	 the	 function
PxScene::simulate.	 As	 far	 as	 possible,	 PhysX	 will	 internally	 allocate	 temporary	 buffers
from	 the	 scratch	 memory	 block,	 thereby	 reducing	 the	 need	 to	 perform	 temporary
allocations	from	PxAllocatorCallback.	The	block	may	be	reused	by	the	application	after	the



PxScene::fetchResults()	 call,	 which	marks	 the	 end	 of	 simulation.	One	 restriction	 on	 the
scratch	memory	block	is	that	it	must	be	a	multiple	of	16K,	and	it	must	be	16-byte	aligned.

In-place	Serialization

PhysX	 objects	 cab	 be	 stored	 in	memory	 owned	 by	 the	 application	 using	 PhysX'	 binary
deserialization	mechanism.	See	Serialization	for	details.

PVD	Integration

Detailed	information	about	memory	allocation	can	be	recorded	and	displayed	in	the	PhysX
Visual	 Debugger.	 This	 memory	 profiling	 feature	 can	 be	 configured	 by	 setting	 the
trackOutstandingAllocations	 flag	 when	 calling	 PxCreatePhysics(),	 and	 raising	 the	 flag
PxVisualDebuggerConnectionFlag::eMEMORY	 when	 connecting	 to	 the	 debugger	 with
PxVisualDebuggerExt::createConnection().



Completion	Tasks

A	completion	task	is	a	task	that	executes	immediately	after	PxScene::simulate	has	exited.
If	 PhysX	 has	 been	 configured	 to	 use	 worker	 threads	 then	 PxScene::simulate	 will	 start
simulation	tasks	on	the	worker	threads	and	will	likely	exit	before	the	worker	threads	have
completed	the	work	necessary	to	complete	the	scene	update.	As	a	consequence,	a	typical
completion	 task	 would	 first	 need	 to	 call	 PxScene::fetchResults(true)	 to	 ensure	 that
fetchResults	blocks	until	all	worker	threads	started	during	simulate()	have	completed	their
work.	 After	 calling	 fetchResults(true),	 the	 completion	 task	 can	 perform	 any	 other	 post-
physics	work	deemed	necessary	by	the	application:

scene.fetchResults(true);	game.updateA();	game.updateB();	...	game.updateZ();

The	 completion	 task	 is	 specified	 as	 a	 function	 argument	 in	 PxScene::simulate.	
details	can	be	found	in	the	PhysAPI	documentation.



Synchronizing	with	Other	Threads

An	 important	 consideration	 for	 substepping	 is	 that	 simulate()	 and	 fetchResults()	 are
classed	as	write	 calls	on	 the	scene,	and	 it	 is	 therefore	 illegal	 to	 read	 from	or	write	 to	a
scene	while	those	functions	are	running.	For	the	simulate()	function	it	is	important	to	make
the	distinction	between	running	and	ongoing.	In	this	context,	it	is	illegal	to	read	or	write	to
a	scene	before	simulate()	exits.	 It	 is	perfectly	 legal,	however,	 to	read	or	write	to	a	scene
after	simulate()	has	exited	but	before	the	worker	threads	that	started	during	the	simulate()
call	have	completed	their	work.

Note: 	PhysX	does	not	lock	its	scene	graph,	but	it	will	report	an	error	in	checked	build	if
it	detects	that	multiple	threads	make	concurrent	calls	to	the	same	scene,	unless	they	are
all	read	calls.



Substepping

For	 reasons	of	 fidelity	 simulation	or	better	 stability	 it	 is	often	desired	 that	 the	simulation
frequency	of	PhysX	be	higher	than	the	update	rate	of	the	application.	The	simplest	way	to
do	this	is	just	to	call	simulate()	and	fetchResults()	multiple	times:

for(PxU32	i=0;	i<substepCount;	i++)

{

				...	pre-simulation	work	(update	controllers,	etc)	...

				scene->simulate(substepSize);

				scene->fetchResults(true);

				...	post	simulation	work	(process	physics	events,	etc)	...

}

Sub-stepping	 can	 also	 be	 integrated	 with	 the	 completion	 task	 feature	 of	 the	 simulate()
function.	 To	 illustrate	 this,	 consider	 the	 situation	where	 the	 scene	 is	 simulated	 until	 the
graphics	component	signals	that	it	has	completed	updating	the	render	state	of	the	scene.
Here,	the	completion	task	will	naturally	run	after	simulate()	has	exited.	Its	first	job	will	be	to
block	with	fetchResults(true)	to	ensure	that	it	waits	until	both	simulate()	and	fetchResults()
have	 completed	 their	 sequential	work.	When	 the	 completion	 task	 is	 able	 to	 proceed	 its
next	work	 item	will	be	 to	query	 the	graphics	component	 to	check	 if	another	simulate()	 is
required	or	if	 it	can	exit.	In	the	case	that	another	simulate()	step	is	required	it	will	clearly
need	to	pass	a	completion	task	to	simulate().	A	tricky	point	here	is	that	a	completion	task
cannot	 submit	 itself	 as	 the	 next	 completion	 task	 because	 it	 would	 cause	 an	 illegal
recursion.	A	solution	to	this	problem	might	to	be	to	have	two	completion	tasks	where	each
stores	 a	 reference	 to	 the	 other.	 Each	 completion	 task	 can	 then	 pass	 its	 partner	 to
simulate():

scene.fetchResults(true);

if(!graphics.isComplete())

{

				scene.simulate(otherCompletionTask);

}



Split	sim

As	 an	 alternative	 to	 simulate(),	 you	 can	 split	 the	 simulation	 into	 two	 different	 phases,
collide()	 and	 advance().	 For	 some	 properties,	 called	 write-through	 properties,
modifications	 during	 the	 collide()	 phase	 will	 be	 seen	 immediately	 by	 the	 subsequent
advance()	phase.	This	allows	collide()	 to	begin	before	 the	data	 required	by	advance()	 is
available	and	to	run	in	parallel	with	game	logic	that	generates	inputs	to	advance().	This	is
particularly	 useful	 for	 animation	 logic	 generating	 kinematic	 targets,	 and	 for	 controllers
applying	forces	to	bodies.	The	write-through	properties	are	listed	below:

addForce()/addTorque()/clearForce()/clearTorque()

setAngularVelocity()/setLinearVelocity()

setKinematicTarget()

wakeUp()

setWakeCounter()

When	using	the	split	sim,	a	physics	simulation	loop	would	look	like	this:

scene.collide(dt)

scene.fetchCollision()

scene.advance()

scene.fetchResults()

Any	other	sequence	of	API	calls	is	illegal.	The	SDK	will	issue	error	messages.	The	users
can	interleave	the	physics-dependent	game	logic	between	collide()	and	fetchCollision:

scene.collide(dt)

physics-dependent	game	logic(anmimation,	rendering)

scene.fetchCollision()

fetchCollision()	 will	 wait	 until	 collide()	 has	 finished	 before	 it	 updates	 the	 write-through
properties	 in	 the	 SDK.	 Once	 fetchCollision()	 has	 completed,	 any	 state	 modification
performed	on	the	objects	in	the	executing	scene	will	be	buffered	and	will	not	be	reflected
until	 the	 simulation	 and	 a	 call	 to	 fetchResults()	 has	 completed.	 The	 solver	will	 take	 the
write-through	 properties	 into	 account	 when	 computing	 the	 new	 sets	 of	 velocities	 and
poses	for	the	actors	being	simulated.



Split	fetchResults

The	fetchResults()	method	is	available	in	both	a	standard	and	split	format.	The	split	format
offers	 some	 advantages	 over	 the	 standard	 fetchResult()	method	 because	 it	 permits	 the
user	to	parallelize	processing	of	contact	reports,	which	can	be	expensive	when	simulating
complex	scenes.

A	simplistic	way	to	use	split	fetchResults	would	look	something	like	this:

gSharedIndex	=	0;

gScene->simulate(1.0f	/	60.0f);

//Call	fetchResultsStart.	Get	the	set	of	pair	headers

const	PxContactPairHeader*	pairHeader;

PxU32	nbContactPairs;

gScene->fetchResultsStart(pairHeader,	nbContactPairs,	true);

//Set	up	continuation	task	to	be	run	after	callbacks	have	been	processed	in	parallel

callbackFinishTask.setContinuation(*gScene->getTaskManager(),	NULL

callbackFinishTask.reset();

//process	the	callbacks

gScene->processCallbacks(&callbackFinishTask);

callbackFinishTask.removeReference();

callbackFinishTask.wait();

gScene->fetchResultsFinish();

The	user	is	free	to	use	their	own	task/threading	system	to	process	the	callbacks.	However,
the	 PhysX	 scene	 provides	 a	 utility	 function	 that	 processes	 the	 callbacks	 using	multiple
threads,	which	is	used	in	this	code	snippet.	This	method	takes	a	continuation	task	that	will
be	 run	 when	 the	 tasks	 processing	 callbacks	 have	 completed.	 In	 this	 example,	 the
completion	 task	 raises	 an	event	 that	 can	be	waited	 upon	 to	 notify	 the	main	 thread	 that
callback	processing	has	completed.

This	 feature	 is	 demonstrated	 in	 SnippetSplitFetchResults.	 In	 order	 to	make	 use	 of	 this



approach,	 contact	 notification	 callbacks	 must	 be	 thread-safe.	 Furthermore,	 for	 this
approach	 to	 be	 beneficial,	 contact	 notification	 callbacks	 need	 to	 be	 doing	 a	 significant
amount	of	work	to	benefit	from	multi-threading	them
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Advanced	Collision	Detection



Tuning	Shape	Collision	Behavior

Shapes	used	for	contact	generation	influence	the	motion	of	the	dynamic	rigid	bodies	they
are	attached	to	through	contact	points.	The	constraint	solver	generates	impulsive	forces	at
the	 contact	 points	 to	 keep	 the	 shapes	 resting	 or	moving	 without	 passing	 through	 each
other.	 Shapes	 have	 two	 important	 parameters	 that	 control	 how	 collision	 detection
generates	contact	points	between	them,	which	in	turn	are	central	for	their	behavior	when
colliding	 or	 stacking:	 contactOffset	 and	 restOffset.	 They	 are	 set	 using
PxShape::setContactOffset()	and	PxShape::setRestOffset()	 respectively.	
values	is	used	directly.	Collision	detection	always	operates	on	a	pair	of	potentially	colliding
shapes,	and	it	always	considers	the	sum	of	the	offsets	of	the	two	shapes.	
the	contactDistance	and	restDistance	respectively.

Collision	detection	is	able	to	generate	contact	points	between	two	shapes	when	they	are
still	a	distance	apart,	when	they	are	exactly	touching,	or	when	they	are	inter-penetrating.
To	make	the	discussion	simpler,	we	treat	 interpenetration	as	a	negative	distance.	
distance	between	two	shapes	can	be	positive,	zero,	or	negative.	SeparationDistance	is	the
distance	at	which	 collision	detection	will	 start	 to	 generate	 contacts.	 It	 has	 to	 be	 greater
than	 zero,	 meaning	 that	 PhysX	 will	 always	 generate	 contacts	 when	 two	 shapes	 are
penetrating	(unless	collision	detection	between	the	two	shapes	is	in	some	way	completely
disabled,	such	as	with	filtering).	By	default,	when	using	metric	units	and	default	scaling	in
PxTolerancesScale,	contactOffset	is	0.02,	which	means	contactDistance	will	work	out	to	4
centimeters.	So	when	two	shapes	approach	each	other	within	4	centimeters,	contacts	will
be	generated	until	they	are	again	moved	further	apart	than	4	centimeters.

The	 generation	 of	 contact	 points	 does	 not	 however	 mean	 that	 a	 large	 impulse	 will
immediately	 be	 applied	 at	 these	 locations	 to	 separate	 the	 shapes,	 or	 to	 even	 prevent
further	motion	in	the	direction	of	penetration.	This	would	make	the	simulation	jitter	unless
the	 simulation	 time	 step	 is	 selected	 to	 be	 tiny,	 which	 is	 not	 desirable	 for	 real	 time
performance.	 Instead,	 we	 want	 the	 force	 at	 the	 contact	 to	 smoothly	 increase	 as
penetration	 increases	 until	 it	 reaches	 a	 value	 sufficiently	 high	 to	 stop	 any	 further
penetrating	 motion.	 The	 distance	 at	 which	 this	 maximum	 force	 is	 reached	 is	 the
restDistance,	because	at	this	distance	two	shapes	stacked	on	each	other	will	reach	static
equilibrium	and	come	to	rest.	When	the	shapes	are	for	some	reason	pushed	together	so



much	that	they	have	a	distance	below	restDistacnce,	an	even	greater	force	is	applied	to
push	them	apart	until	they	are	at	restDistance	again.	The	variation	of	force	applied	as	the
distance	changes	is	not	necessarily	linear,	but	it	is	smooth	and	continuous	which	results	in
a	pleasing	simulation	even	at	large	time	steps.

There	are	a	 few	different	 things	 to	consider	when	choosing	contactOffset	and	 restOffset
for	shapes.	Typically	the	same	values	can	be	used	for	all	shapes	in	a	simulation.	
sense	 to	 determine	 restOffset	 first.	 The	 goal	 is	 typically	 to	 have	 the	 graphics	 shapes
appear	 to	 stack	 such	 that	 they	 are	 exactly	 touching,	 like	 bodies	 do	 in	 real	 life.	
collision	shapes	are	sized	to	be	the	exact	same	size	as	the	graphics	shapes,	a	restOffset
of	zero	is	needed.	If	the	collision	shapes	are	an	epsilon	bigger	than	the	graphics	shapes,	a
restOffset	of	negative	epsilon	 is	correct.	This	will	 let	 the	 larger	collision	shapes	sink	 into
each	 other	 until	 the	 smaller	 graphics	 shapes	 touch	 too.	 restOffsets	 that	 are	 larger	 than
zero	 are	 practical	 for	 example	 if	 there	 are	 problems	 with	 sliding	 on	 triangle	 geometry
where	 the	 penetration	 based	 contact	 generation	 has	 more	 trouble	 producing	 smooth
contact	points	than	a	separation	one,	resulting	in	a	smoother	slide.

Once	 the	 restOffset	 is	 determined,	 the	 contactOffset	 should	 be	 chosen	 to	 be	 a	 value	 a
slightly	 larger.	The	 rule	of	 thumb	 is	 to	make	 the	difference	between	 the	 two	as	small	as
possible	that	still	effectively	avoids	jitter	at	the	time	step	size	the	simulation	uses.	
time	step	will	need	the	difference	to	be	larger.	The	drawback	of	setting	it	too	large	is	that
contacts	 will	 be	 generated	 sooner	 as	 two	 shapes	 approach,	 which	 drives	 up	 the	 total
number	 of	 contacts	 that	 the	 simulation	 has	 to	 worry	 about.	 This	 will	 decrease	 in
performance.	Also,	 the	 simulation	 code	often	makes	 the	 assumption	 that	 contact	 points
are	close	to	the	convex	shapes'	surface.	If	the	contact	offset	is	very	large	this	assumption
breaks	down	which	could	lead	to	behavior	artefacts.



Contact	Modification

Under	 certain	 circumstances,	 it	 may	 be	 necessary	 to	 specialize	 contact	 behavior.	 For
example	 to	 implement	 sticky	 contacts,	 give	 objects	 the	 appearance	 of	 floating	 or
swimming	 inside	 each	 other,	 or	 making	 objects	 go	 through	 apparent	 holes	 in	 walls.	
simple	 approach	 to	 achieve	 such	 effects	 is	 to	 let	 the	 user	 change	 the	 properties	 of
contacts	 after	 they	 have	 been	 generated	 by	 collision	 detection,	 but	 before	 the	 contact
solver.	Because	both	of	these	steps	occur	within	the	scene	simulate()	function,	a	callback
must	be	used.

The	callback	occurs	 for	all	pairs	of	colliding	shapes	 for	which	 the	user	has	specified	 the
pair	flag	PxPairFlag::eMODIFY_CONTACTS	in	the	filter	shader.

To	listen	to	these	modify	callbacks,	derive	from	the	class	PxContactModifyCallback:

class	MyContactModification	:	public	PxContactModifyCallback

{

				...

				void	onContactModify(PxContactModifyPair*	const	pairs,	PxU32	count

};

And	then	implement	the	function	onContactModify	of	PxContactModifyCallback:

void	MyContactModification::onContactModify(PxContactModifyPair	*const

{

				for(PxU32	i=0;	i<count;	i++)

				{

								...

				}

}

Every	 pair	 of	 shapes	 comes	 with	 an	 array	 of	 contact	 points,	 that	 have	 a	 number	 of
properties	that	can	be	modified,	such	as	position,	contact	normal,	and	separation.	For	the
time	 being,	 restitution	 and	 friction	 properties	 of	 the	 contacts	 cannot	 be	 modified.	 See
PxModifiableContact	and	PxContactSet	for	properties	that	can	be	modified.



In	addition	to	modifying	contact	properties,	it	is	possible	to:
Set	target	velocities	for	each	contact
Limit	the	maximum	impulse	applied	at	each	contact
Adjust	inverse	mass	and	inverse	inertia	scales	separately	for	each	body

Conveyor	 belt-like	 effects	 can	 be	 achieved	 by	 setting	 target	 velocities.	 Best	 results	 are
achieved	by	having	target	velocities	running	in	tangential	directions	to	the	contact	normal
but	the	solver	does	also	support	target	velocities	in	the	direction	of	the	contact	normal.

The	user	can	 limit	 the	 impulse	applied	at	each	contact	by	 limiting	 the	maximum	impulse
applied	at	each	contact.	This	can	be	useful	to	produce	"soft"	contact	effects,	e.g.	to	give
the	impression	of	energy	dissipation	due	to	compression	or	to	limit	the	impulse	applied	on
a	dynamic	body	due	to	a	kinematic	collision.	Note	that	limiting	the	maximum	impulse	can
potentially	lead	to	additional	penetration	and	bodies	passing	through	each-other.

Adjusting	mass	and	 inertia	 scales	 can	be	used	 to	 tune	how	contacts	between	a	pair	 of
bodies	 affect	 the	 bodies'	 linear	 and	 angular	 velocities	 respectively.	 Each	 body	 in	 the
contact	 pair	 has	 a	 separate	 inverse	 mass	 and	 inverse	 inertia	 scale.	 These	 scales	 are
initialized	to	1	and	can	be	adjusted	as	part	of	the	callback.	Note	that	these	values	perform
local	mass	modification	within	the	contact	pair	and	affect	all	contacts	within	the	pair.

Uniformly	scaling	a	body's	inverse	mass	and	inverse	inertia	by	the	same	value	results	in
the	 body	behaving	 like	 a	 body	 that	 is	 either	 heavier	 or	 lighter	 depending	 on	 the	 values
used.	 Providing	 inverse	 mass/inverse	 inertia	 scales	 <	 1	 results	 in	 the	 body	 appearing
heavier;	 providing	 scales	>	 1	 result	 in	 the	 body	appearing	 lighter.	 For	 example,	 inverse
mass/inertia	scales	of	0.5	result	in	the	body	appearing	to	have	double	the	mass.	Providing
inverse	mass/inertia	scales	of	4	would	result	in	the	body	appearing	to	have	a	quarter	of	its
original	mass.	Providing	inverse	mass/inertia	scale	of	0	results	in	the	body	behaving	as	if	it
has	infinite	mass.

However,	it	is	also	possible	to	non-uniform	scale	a	body's	inverse	mass	and	inverse	inertia
by	 providing	 different	 values	 to	 a	 body's	 inverse	 mass	 and	 inverse	 inertia	 scale.	 For
example,	it	 is	possible	to	reduce	or	increase	the	amount	of	angular	velocity	change	as	a
result	of	contacts	by	adjusting	just	the	inverse	inertia	scale.	The	use-cases	for	this	kind	of
modification	 are	 extremely	 game-dependent	 but	 may	 involve,	 for	 example,	 tuning



interactions	 between	 a	 player's	 vehicle	 and	 traffic	 vehicles	 in	 an	 arcade-style	 driving
game,	where	 the	player's	 car	 is	 expected	 to	 be	bumped	by	 traffic	 vehicles	but	where	 it
would	be	extremely	 frustrating	 to	 the	player	 if	 the	car	was	 to	spin-out	as	a	 result	of	 the
collision.	This	could	also	be	achieved	by	making	the	traffic	vehicles	much	lighter	than	the
player's	 vehicle	 but	 this	 may	 make	 the	 traffic	 vehicles	 appear	 "too	 light"	 and	 therefore
damage	the	player's	immersion.

When	 performing	 local	 mass	 modification,	 the	 impulse	 reported	 in
PxSimulationEventCallback::onContact()	 will	 be	 relative	 to	 the	 locally	 scaled	masses	 of
the	 bodies	 involved	 in	 that	 contact.	 Therefore,	 this	 reported	 impulse	 may	 no	 longer
accurately	reflect	the	change	in	momentum	caused	by	a	given	contact.	In	order	to	resolve
this	issue,	we	have	provided	the	following	methods	in	the	rigid	body	extensions	to	extract
the	linear	and	angular	impulse	and	velocity	change	caused	by	a	contact	using	local	mass
modification:

static	void	computeLinearAngularImpulse(const	PxRigidBody&	body,	const

				const	PxVec3&	point,	const	PxVec3&	impulse,	const	PxReal	invMassScale

				const	PxReal	invInertiaScale,	PxVec3&	linearImpulse,	PxVec3&	angularImpulse

static	void	computeVelocityDeltaFromImpulse(const	PxRigidBody&	body

				const	PxTransform&	globalPose,	const	PxVec3&	point,	const	PxVec3

				const	PxReal	invMassScale,	const	PxReal	invInertiaScale,	PxVec3

				PxVec3&	deltaAngularVelocity);

These	methods	return	separate	linear	and	angular	impulse	and	velocity	change	values	to
reflect	the	fact	that	the	mass	and	inertia	may	have	been	non-uniformly	scaled.	When	local
mass	 modification	 has	 been	 used,	 it	 may	 be	 necessary	 to	 extract	 separate	 linear	 and
angular	impulses	for	each	contact	point,	for	each	body	in	the	pair.	Please	note	that	these
helper	functions	are	provided	to	provide	users	with	accurate	impulse	values	and	are	by	no
means	 mandatory.	 For	 simple	 use-cases,	 e.g.	 triggering	 effects	 or	 damage	 based	 on
impulse	 thresholds,	 the	 single	 impulse	 value	 reported	 by	 the	 contact	 report	 should	 be
perfectly	acceptable	even	when	local	mass	modification	has	been	used.	However,	if	local
mass	 modification	 has	 been	 used	 and	 the	 impulse	 values	 are	 being	 used	 for	 more
complex	 behaviors,	 e.g.	 balance	 control	 for	 a	 ragdoll,	 then	 these	 helper	 functions	 will
most-likely	 be	 required	 to	 achieve	 correct	 behavior.	 Please	 note	 that,	 in	 the	 case	 of
articulations,	 computeLinearAngularImpulse	 will	 return	 the	 correct	 impulse	 applied	 on



respective	articulation	link.	However,	computeVelocityDeltaFromImpulse	will	not	return	the
correct	velocity	changes	for	an	articulation	link	because	it	does	not	take	the	effect	of	any
other	links	of	the	articulation	into	account.

In	addition,	the	following	considerations	must	be	made	when	using	local	mass
modification:

Force	 thresholding	 for	 callbacks	 will	 be	 based	 on	 the	 scalar	 impulse	 value	 in
contact	reports.	This	was	calculated	using	the	scaled	mass/inertias	of	the	bodies
so	using	mass	scaling	may	require	these	thresholds	to	be	re-tuned.
Maximum	impulse	clamping	occurs	in	the	solver	on	an	impulse	value	operating	on
the	 scaled	 masses/inertias.	 As	 a	 result,	 the	 magnitude	 of	 applied	 impulses
calculated	from	computeLinearAngularImpulse(...)	may	exceed	the	maxImpulse	in
situations	where	mass	scaling	was	used.	In	situations	where	uniform	mass	scaling
was	 used,	 the	 magnitude	 of	 the	 magnitude	 of	 linear	 impulse	 will	 not	 exceed
massScale	 *	 maxImpulse	 and	 angular	 impulse	 will	 not	 exceed	 inertiaScale	 *
maxImpulse.

There	are	a	couple	of	special	requirements	for	the	callback	due	to	the	fact	that	it	is	coming
from	deep	inside	the	SDK.	In	particular,	the	callback	should	be	thread	safe	and	reentrant.
In	other	words,	the	SDK	may	call	onContactModify()	from	any	thread	and	it	may	be	called
concurrently	(i.e.,	asked	to	process	sets	of	contact	modification	pairs	simultaneously).

The	contact	modification	callback	can	be	set	using	the	contactModifyCallback	member	of
PxSceneDesc	or	the	setContactModifyCallback()	method	of	PxScene.



Contact	reporting

Here	is	an	example	for	a	contact	event	function	from	SampleSubmarine:

void	SampleSubmarine::onContact(const	PxContactPairHeader&	pairHeader

				const	PxContactPair*	pairs,	PxU32	nbPairs)

{

				for(PxU32	i=0;	i	<	nbPairs;	i++)

				{

								const	PxContactPair&	cp	=	pairs[i];

								if(cp.events	&	PxPairFlag::eNOTIFY_TOUCH_FOUND)

								{

												if((pairHeader.actors[0]	==	mSubmarineActor)	||

																(pairHeader.actors[1]	==	mSubmarineActor))

												{

																PxActor*	otherActor	=	(mSubmarineActor	==	pairHeader

																				pairHeader.actors[1]	:	pairHeader.actors[0];

																Seamine*	mine	=		reinterpret_cast<Seamine*>(otherActor

																//	insert	only	once

																if(std::find(mMinesToExplode.begin(),	mMinesToExplode

																				mMinesToExplode.end())

																				mMinesToExplode.push_back(mine);

																break;

												}

								}

				}

}

SampleSubmarine	 is	 a	 subclass	 of	 PxSimulationEventCallback.	 onContact	 receives	 the
pair	 for	which	 the	 requested	contact	events	have	been	 triggered.	The	above	 function	 is
only	 interested	 in	 eNOTIFY_TOUCH_FOUND	 events,	 which	 are	 raised	 whenever	 two
shapes	start	to	touch.	In	fact	it	is	only	interested	in	touch	events	of	the	submarine	--	which
is	checked	in	the	second	if-statement.	It	then	goes	on	to	assume	that	the	second	actor	is	a
mine	(which	works	 in	 this	example	because	the	sample	 is	configured	such	that	no	other
contact	 reports	will	 get	 sent	when	a	submarine	actor	 is	 involved).	After	 that,	 it	adds	 the
mine	to	a	set	of	mines	that	should	explode	during	the	next	update.



Note: 	By	default	collisions	between	kinematic	rigid	bodies	and	kinematic	and	static
rigid	bodies	will	not	get	reported.	To	enable	these	reports	raise	the
PxSceneFlag::eENABLE_KINEMATIC_PAIRS	or
::eENABLE_KINEMATIC_STATIC_PAIRS	flag	respectively	by	calling
PxScene::setFlag().

Frequently,	users	are	only	interested	in	contact	reports,	if	the	force	of	impact	is	larger	than
a	certain	threshold.	This	allows	to	reduce	the	amount	of	reported	pairs	which	need	to	get
processed.	 To	 take	 advantage	 of	 this	 option	 the	 following	 additional	 configurations	 are
necessary:

Use	 PxPairFlag::eNOTIFY_THRESHOLD_FORCE_FOUND,
::eNOTIFY_THRESHOLD_FORCE_PERSISTS,
::eNOTIFY_THRESHOLD_FORCE_LOST	 instead	 of
::eNOTIFY_TOUCH_FOUND	etc.
Specify	 the	 threshold	 force	 for	 a	 dynamic	 rigid	 body	 through
PxRigidDynamic::setContactReportThreshold().	If	the	body	collides	with	an	other
object	 and	 the	 contact	 force	 is	 above	 the	 threshold,	 a	 report	 will	 get	 sent	 (if
enabled	according	to	the	PxPairFlag	setting	of	the	pair).	If	two	colliding	dynamic
bodies	 both	 have	 a	 force	 threshold	 specified	 then	 the	 lower	 threshold	 will	 be
used.

Note: 	If	a	dynamic	rigid	body	collides	with	multiple	static	objects,	then	the	impact	force
of	all	those	contacts	will	get	summed	up	and	used	to	compare	against	the	force
threshold.	In	other	words,	even	if	the	impact	force	against	each	individual	static	object	is
below	the	threshold,	the	contact	reports	will	still	get	sent	for	each	pair	if	the	sum	of	those
forces	exceeds	the	threshold.

Contact	Reports	and	CCD

If	continuous	collision	detection	(CCD)	with	multiple	passes	is	enabled,	then	a	fast	moving
object	might	bounce	on	and	off	the	same	object	multiple	times	during	a	single	simulation



step.	By	 default,	 only	 the	 first	 impact	will	 get	 reported	 as	 a	eNOTIFY_TOUCH_FOUND
event	 in	 this	 case.	 To	 get	 events	 for	 the	 other	 impacts	 too,	 the	
eNOTIFY_TOUCH_CCD	 has	 to	 be	 raised	 for	 the	 collision	 pair.	 This	 will	 trigger
eNOTIFY_TOUCH_CCD	 events	 for	 the	 non	primary	 impacts.	 For	 performance	 reasons,
the	system	can	not	always	tell	whether	the	contact	pair	 lost	touch	in	one	of	the	previous
CCD	 passes	 and	 thus	 can	 also	 not	 always	 tell	 whether	 the	 contact	 is	 new	 or	 has
persisted.	 eNOTIFY_TOUCH_CCD	 just	 reports	 when	 the	 two	 collision	 objects	 were
detected	as	being	in	contact	during	a	CCD	pass.



Extracting	Contact	information

The	onContact	simulation	event	permits	read-only	access	to	all	contact	points	for	a	given
PxContactPair.	 In	 previous	 releases,	 these	 were	 available	 as	 a	 flattened	 array	 of
PxContactPoint	 objects.	However,	PhysX	3.3	 introduces	a	 new	 format	 for	 this	 data:	 the
compressed	 contact	 stream.	 The	 contact	 information	 is	 now	 compressed	 into	 an
appropriate	 format	 for	 a	 given	 PxContactPair	 depending	 on	 certain	 properties,	 e.g.
depending	on	the	shapes	involved,	the	properties	of	the	contacts,	materials	and	whether
the	contacts	are	modifiable.

As	there	are	a	large	number	of	combinations	of	different	formats,	the	user	is	provided	with
two	 built-in	 mechanisms	 to	 access	 the	 contact	 data.	 The	 first	 approach	 provides	 a
mechanism	to	extract	contacts	from	a	user	buffer	and	can	be	used	as	below:

void	MySimulationCallback::onContact(const	PxContactPairHeader&	pairHeader

				const	PxContactPair*	pairs,	PxU32	nbPairs)

{

				const	PxU32	bufferSize	=	64;

				PxContactPairPoint	contacts[bufferSize];

				for(PxU32	i=0;	i	<	nbPairs;	i++)

				{

								const	PxContactPair&	cp	=	pairs[i];

								PxU32	nbContacts	=	pairs[i].extractContacts(contacts,	bufferSize

								for(PxU32	j=0;	j	<	nbContacts;	j++)

								{

												PxVec3	point	=	contacts[j].position;

												PxVec3	impulse	=	contacts[j].impulse;

												PxU32	internalFaceIndex0	=	contacts[j].internalFaceIndex0

												PxU32	internalFaceIndex1	=	contacts[j].internalFaceIndex1

												//...

								}

				}

}

This	 approach	 requires	 copying	 data	 to	 a	 temporary	 buffer	 in	 order	 to	 access	 it.	 The
second	approach	allows	the	user	to	iterate	over	the	contact	information	without	extracting
their	own	copy:



void	MySimulationCallback::onContact(const	PxContactPairHeader&	pairHeader

				const	PxContactPair*	pairs,	PxU32	nbPairs)

{

				for(PxU32	i=0;	i	<	nbPairs;	i++)

				{

								const	PxContactPair&	cp	=	pairs[i];

																				PxContactStreamIterator	iter(cp.contactPatches

								const	PxReal*	impulses	=	cp.contactImpulses;

								PxU32	flippedContacts	=	(cp.flags	&	PxContactPairFlag::eINTERNAL_CONTACTS_ARE_FLIPPED

								PxU32	hasImpulses	=	(cp.flags	&	PxContactPairFlag::eINTERNAL_HAS_IMPULSES

								PxU32	nbContacts	=	0;

								while(iter.hasNextPatch())

								{

												iter.nextPatch();

												while(iter.hasNextContact())

												{

																iter.nextContact();

																PxVec3	point	=	iter.getContactPoint();

																PxVec3	impulse	=	hasImpulses	?	dst.normal	*	impulses

																PxU32	internalFaceIndex0	=	flippedContacts	?

																				iter.getFaceIndex1()	:	iter.getFaceIndex0();

																PxU32	internalFaceIndex1	=	flippedContacts	?

																				iter.getFaceIndex0()	:	iter.getFaceIndex1();

																//...

																nbContacts++;

												}

								}

				}

}

This	approach	is	slightly	more	involved	because	it	requires	the	user	to	not	only	iterate	over
all	 of	 the	 data	 but	 also	 consider	 conditions	 like	 whether	 the	 pair	 has	 been	 flipped	 or
whether	 impulses	have	been	 reported	with	 the	pair.	However,	 this	 approach	of	 iterating
over	the	data	in-place	may	be	more	efficient	because	it	doesn't	require	copying	data.

Extra	Contact	Data



Since	 pointers	 to	 the	 actors	 of	 a	 contact	 pair	 are	 provided	 in	 contact	 reports,	 actor
properties	can	be	read	directly	within	the	callback.	However,	the	pose	and	the	velocity	of
an	actor	usually	refer	to	the	time	of	impact.	If	for	some	reasons	the	velocity	after	collision
response	is	of	 interest,	then	the	actor	can	not	provide	that	 information.	Similarly,	 it	 is	not
possible	to	get	the	actor	velocity	or	the	pose	at	impact	if	those	properties	were	changed	by
the	user	while	 the	simulation	was	running	(in	such	a	case	the	newly	set	property	values
will	be	 returned).	Last	but	not	 least,	 if	CCD	with	multiple	passes	 is	enabled,	 then	a	 fast
moving	object	might	bounce	on	and	off	the	same	object	multiple	times.	The	object	poses
and	velocities	 for	each	such	 impact	can	not	get	extracted	 from	 the	actor	pointers	 in	 the
callback.	For	these	scenarios,	the	PhysX	SDK	provides	an	additional	contact	stream	that
can	hold	all	sorts	of	extra	information	related	to	the	contact	pair.	This	extra	information	is
requested	 per	 pair	 through	 the	 pair	 flags	 PxPairFlags	 (see	 the	 API	 documentation	 of
PxPairFlag::ePRE_SOLVER_VELOCITY,	 ::ePOST_SOLVER_VELOCITY
::eCONTACT_EVENT_POSE	 for	 details).	 If	 requested,	 the	 extra	 data	 stream	 will	 be
available	 as	 a	member	 of	 the	PxContactPairHeader	 structure.	 The	 stream	 can	 then	 be
parsed	 by	 using	 the	 predefined	 iterator	 PxContactPairExtraDataIterator
custom	 parsing	 code	 (see	 the	 implementation	 of	 PxContactPairExtraDataIterator
details	about	the	format	of	the	stream).

Example	code:

void	MySimulationCallback::onContact(const	PxContactPairHeader&	pairHeader

				const	PxContactPair*	pairs,	PxU32	nbPairs)

{

				PxContactPairExtraDataIterator	iter(pairHeader.extraDataStream

								pairHeader.extraDataStreamSize);

				while(iter.nextItemSet())

				{

								if	(iter.postSolverVelocity)

								{

												PxVec3	linearVelocityActor0	=	iter.postSolverVelocity->

												PxVec3	linearVelocityActor1	=	iter.postSolverVelocity->

												...

								}

				}

}



Continuous	Collision	Detection

When	continuous	collision	detection	 (or	CCD)	 is	 turned	on,	 the	affected	 rigid	bodies	will
not	go	 through	other	objects	at	high	velocities	 (a	problem	also	known	as	 tunnelling).	To
enable	CCD,	three	things	need	to	be	happen:

1.	 CCD	needs	to	be	turned	on	at	scene	level:

PxPhysics*	physx;

...

PxSceneDesc	desc;

desc.flags	|=	PxSceneFlag::eENABLE_CCD;

...

2.	 Pairwise	CCD	needs	to	be	enabled	in	the	pair	filter:

static	PxFilterFlags	filterShader(

				PxFilterObjectAttributes	attributes0,

				PxFilterData	filterData0,

				PxFilterObjectAttributes	attributes1,

				PxFilterData	filterData1,

				PxPairFlags&	pairFlags,

				const	void*	constantBlock,

				PxU32	constantBlockSize)

{

				pairFlags	=	PxPairFlag::eSOLVE_CONTACT;

				pairFlags	|=	PxPairFlag::eDETECT_DISCRETE_CONTACT;

				pairFlags	|=	PxPairFlag::eDETECT_CCD_CONTACT;

				return	PxFilterFlags();

}

...

desc.filterShader				=	testCCDFilterShader;

physx->createScene(desc);

3.	 CCD	need	to	be	enabled	for	each	PxRigidBody	that	requires	CCD:

PxRigidBody*	body;

...



body->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD,	true);

Once	enabled,	CCD	only	activates	between	shapes	whose	relative	speeds	are	above	the
sum	 of	 their	 respective	 CCD	 velocity	 thresholds.	 These	 velocity	 thresholds	 are
automatically	calculated	based	on	the	shape's	properties	and	support	non-uniform	scales.

Contact	Notification	and	Modification

CCD	supports	the	full	set	of	contact	notification	events	that	are	supported	with	the	discrete
collision	 detection.	 For	 details	 on	 contact	 notification,	 see	 the	 documentation	 for
Callbacks.

CCD	supports	 contact	modification.	To	 listen	 to	 these	modify	 callbacks,	 derive	 from	 the
class	PxCCDContactModifyCallback:

class	MyCCDContactModification	:	public	PxCCDContactModifyCallback

{

				...

				void	onCCDContactModify(PxContactModifyPair*	const	pairs,	PxU32

};

And	then	implement	the	function	onContactModify	of	PxContactModifyCallback:

void	MyContactModification::onContactModify(PxContactModifyPair	*const

{

				for(PxU32	i=0;	i<count;	i++)

				{

								...

				}

}

This	 onContactModify	 callback	 operates	 using	 the	 same	 semantics	 as	 the	 discrete
collision	 detection	 contact	modification	 callbacks.	 For	 further	 details,	 please	 refer	 to	 the
documentation	on	Callbacks.

As	with	discrete	collision	detection,	CCD	will	only	emit	contact	modification	events	 for	a
given	pair	if	the	user	has	specified	the	pair	flag	PxPairFlag::eMODIFY_CONTACTS	in	the



filter	shader.

Triggers

Currently,	shapes	 flagged	with	PxShapeFlag::eTRIGGER_SHAPE	will	not	be	 included	 in
CCD.	However,	it	is	possible	to	get	trigger	events	from	CCD	by	not	flagging	trigger	shapes
as	PxShapeFlag::eTRIGGER_SHAPE	and	instead	configuring	the	filter	shaders	to	return
the	following	state	for	pairs	involving	trigger	shapes:

pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT	|
PxPairFlag::eDETECT_CCD_CONTACT;	return	PxFilterFlag::eDEFAULT;

It	 should	 be	 noted	 that	 not	 flagging	 shapes	 as	 PxShapeFlag::eTRIGGER_SHAPE	 can
result	 in	 the	 triggers	 being	 more	 expensive.	 Therefore,	 this	 workaround	 should	 be
reserved	 for	use	only	 in	situations	where	 important	 trigger	events	will	be	missed	without
CCD.

Tuning	CCD

The	CCD	should	generally	work	without	any	tuning.	However,	there	are	4	properties	that
can	be	adjusted:

1.	 PxSceneDesc.ccdMaxPasses:	This	variable	controls	the	number	of	CCD	passes	we
perform.	This	is	defaulted	to	1,	meaning	that	all	objects	are	attempted	to	be	updated
to	the	TOI	of	their	first	contact.	Any	remaining	time	after	the	TOI	of	their	first	contact
will	be	dropped.	 Increasing	 this	value	permits	 the	CCD	 to	 run	multiple	passes.	This
reduces	the	likelihood	of	time	being	dropped	but	can	increase	the	cost	of	the	CCD.

2.	 PxRigidBody::setMinCCDAdvanceCoefficient(PxReal	 advanceCoefficient):	 This
method	 allows	 you	 to	 adjust	 the	 amount	 by	which	 the	CCD	 advances	 objects	 in	 a
given	pass.	By	default,	this	value	is	0.15,	meaning	that	CCD	will	advance	an	object	by
the	 0.15	 *	 ccdThreshold,	 where	 ccdThreshold	 is	 a	 value	 computed	 per-shape	 that
acts	as	a	lower-bound	of	the	maximum	amount	of	time	that	could	be	consumed	that
before	 there	 is	 a	 chance	 that	 the	object	 could	have	 tunnelled.	The	default	 value	of



0.15	 improves	 the	 fluidity	 of	motion	without	 risking	missed	 collisions.	Reducing	 this
value	can	negatively	impact	fluidity	but	will	reduce	the	likelihood	of	objects	clipping	at
the	 end	 of	 a	 frame.	 Increasing	 this	 value	 may	 increase	 the	 likelihood	 of	 objects
tunnelling.	This	value	should	only	be	set	in	the	range	[0,1].

3.	 Enabling	 the	 flag	 PxSceneFlag::eDISABLE_CCD_RESWEEP	 on	 the
PxSceneDesc.flags:	 Enabling	 this	 flag	 disables	 CCD	 resweeps.	 This	 can	 result	 in
missed	 collisions	 as	 the	 result	 of	 ricochets	 but	 has	 the	 potential	 to	 reduce	 the
overhead	of	 the	CCD.	 In	general,	enabling	 this	advancement	mode	still	 guarantees
that	objects	will	not	pass	through	the	static	environment	but	no	longer	guarantees	that
dynamic	objects	with	CCD	enabled	will	not	pass	through	each-other.

4.	 PxRigidBody::setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD_FRICTION,
true):	Enabling	this	 flag	enables	the	application	of	 friction	forces	 in	 the	CCD.	This	 is
disabled	by	default.	As	 the	CCD	operates	using	only	 linear	motion,	enabling	 friction
inside	CCD	can	cause	visual	artefacts.

Performance	Implications

Enabling	CCD	on	a	scene/all	bodies	in	a	scene	should	be	relatively	efficient	but	it	will	have
some	performance	 impact	 even	when	all	 the	 objects	 in	 the	 scene	are	moving	 relatively
slowly.	A	great	deal	of	effort	has	been	put	 into	optimizing	 the	CCD	and	as	a	 result,	 this
additional	 overhead	should	only	 constitute	a	 very	 small	 portion	of	 the	overall	 simulation
time	 when	 the	 objects	 are	moving	 slowly.	 As	 the	 objects'	 velocities	 increase,	 the	 CCD
overhead	will	increase,	especially	if	there	are	a	lot	of	high-speed	objects	in	close	proximity.
Increasing	the	number	of	CCD	passes	can	make	the	CCD	more	expensive	although	the
CCD	will	terminate	early	if	the	additional	passes	aren't	required.

Limitations

The	 CCD	 system	 is	 a	 best-effort	 conservative	 advancement	 scheme.	 It	 runs	 a	 finite
number	of	CCD	substeps	(defaulted	to	1)	and	drops	any	remaining	time.	Usually,	time	is
only	 dropped	 on	 high-speed	 objects	 at	 the	 moment	 of	 impact	 so	 it	 is	 not	 noticeable.
However,	this	artefact	can	become	noticeable	if	you	simulate	an	object	that	is	sufficiently



small/thin	 relative	 to	 the	 simulation	 time-step	 that	 the	 object	 could	 tunnel	 if	 it	 was
accelerated	by	gravity	 from	rest	 for	1	 frame,	 i.e.	a	paper-thin	 rigid	body.	Such	an	object
would	always	be	moving	at	above	 its	CCD	velocity	 threshold	and	could	 result	 in	a	 large
proportion	of	simulation	 time	being	dropped	 for	 that	object	and	any	objects	 in	 the	same
island	 as	 it	 (any	 objects	 whose	 bounds	 overlap	 the	 bounds	 of	 that	 object).	 This	 could
cause	 a	 noticeable	 slow-down/stuttering	 effect	 caused	 by	 the	 objects	 in	 that	 island
becoming	 noticeably	 out-of-sync	 with	 the	 rest	 of	 the	 simulation.	 It	 is	 therefore
recommended	that	paper-thin/tiny	objects	should	be	avoided	if	possible.

It	 is	 also	 recommended	 that	 you	 filter	 away	 CCD	 interactions	 between	 bodies	 that	 are
constrained	 together,	e.g.	 limbs	 in	 the	same	ragdoll.	Allowing	CCD	 interactions	between
limbs	of	the	same	ragdoll	could	increase	the	cost	of	CCD	and	also	potentially	cause	time
to	be	dropped	unnecessarily.	CCD	interactions	are	automatically	disabled	between	links	in
an	articulation.



Raycast	CCD

The	PhysX	SDK	supports	an	alternative	CCD	implementation	based	on	simple	raycasts.
This	"raycast	CCD"	algorithm	is	available	in	PhysX	Extensions,	and	it	is	demonstrated	in	a
snippet	 ("SnippetRaycastCCD").	 Contrary	 to	 the	 built-in	 CCD	 algorithm	 implemented
within	 the	PhysX	SDK,	 this	cheaper	and	simpler	alternative	version	 is	 fully	 implemented
outside	of	the	SDK	itself.

After	 the	 traditional	 simulate/fetchResults	 calls,	 the	 system	 performs	 raycasts	 from	 the
shapes'	center	positions	to	double-check	that	they	did	not	tunnel.	If	tunnelling	is	detected
for	an	object,	it	is	moved	back	to	a	previous	position	along	the	ray,	in	an	overlap	position.
Then	 next	 frame,	 the	SDK's	 contact	 generation	 takes	 over	 and	 generates	 a	 convincing
motion.	 There	 are	 some	 subtle	 details	 not	 described	here,	 but	 this	 is	 how	 it	works	 in	 a
nutshell.

Since	 it	 is	 raycast-based,	 the	solution	 is	not	perfect.	 In	particular,	small	dynamic	objects
can	still	go	through	the	static	world	 if	 the	ray	goes	through	a	crack	between	edges,	or	a
small	hole	 in	the	world	(like	the	keyhole	from	a	door).	Also,	dynamic-vs-dynamic	CCD	is
very	 approximate.	 It	 only	 works	 well	 for	 fast-moving	 dynamic	 objects	 colliding	 against
slow-moving	 dynamic	 objects.	 Other	 known	 limitations	 are	 that	 it	 is	 currently	 only
implemented	 for	 PxRigidDynamic	 objects	 (not	 for	 PxArticulationLink),	 and	 for	 simple
actors	with	one	shape	(not	for	"compounds").

However	the	implementation	should	be	able	to	prevent	important	objects	from	leaving	the
game	world,	 provided	 the	world	 is	watertight.	 The	 code	 is	 very	 small,	 easy	 to	 follow	or
modify,	and	its	performance	is	often	better	overall	than	for	the	built-in	CCD.	So	it	can	be	a
valuable	alternative	if	the	default	CCD	becomes	too	expensive.



Speculative	CCD

In	addition	to	sweep-based	CCD,	PhysX	also	provides	a	cheaper	but	less	robust	approach
called	speculative	CCD.	This	approach	 functions	differently	 to	 the	sweep-based	CCD	 in
that	it	operates	entirely	as	part	of	the	discrete	simulation	by	inflating	contact	offsets	based
on	 object	motion	 and	 depending	 on	 the	 constraint	 solver	 to	 ensure	 that	 objects	 do	 not
tunnel	through	each-other.

This	approach	generally	works	well	and,	unlike	the	sweep-based	CCD,	it	is	legal	to	enable
speculative	CCD	on	kinematic	actors.	However,	there	are	cases	where	it	can	fail	to	ensure
objects	 do	 not	 pass	 through	 each-other.	 As	 an	 example,	 if	 the	 constraint	 solver
accelerates	an	actor	(as	a	result	of	a	collision	or	joint)	such	that	the	actor	passes	entirely
through	objects	during	that	time-step,	speculative	CCD	can	result	in	tunneling.

To	 enable	 this	 feature,	 raise	 PxRigidBodyFlag::eENABLE_SPECULATIVE_CCD	 on	 the
rigid	body	that	requires	CCD:

				PxRigidBody*	body;

...

body->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_SPECULATIVE_CCD,	true

Unlike	the	sweep-based	CCD,	this	form	of	CCD	does	not	require	settings	to	be	raised	on
either	the	scene	or	on	the	pair	in	the	filter	shader.

Note	 that	 this	approach	works	best	with	PCM	collision	detection.	 It	may	not	 function	as
well	if	the	legacy	SAT-based	collision	detection	approach	is	used.

This	 feature	 can	 work	 in	 conjunction	 with	 the	 sweep-based	 CCD,	 e.g.	 if	 a	 fast-moving
kinematic	has	speculative	CCD	enabled	but	dynamic	rigid	bodies	use	sweep-based	CCD.
However,	if	speculative	CCD	is	used	on	kinematics	in	conjunction	with	sweep-based	CCD,
it	 is	 important	 to	ensure	 that	 interactions	between	 the	kinematic	actor	using	speculative
contacts	 and	 the	 CCD-enabled	 dynamic	 actors	 do	 not	 also	 enable	 sweep-based	 CCD
interactions	otherwise	the	sweep-based	CCD	may	overrule	the	speculative	CCD,	leading
to	poor	behavior.



Persistent	Contact	Manifold	(PCM)

The	PhysX	SDK	provides	two	types	of	collision	detection:

1.	 Default	collision	detection

The	default	collision	detection	system	uses	a	mixture	of	SAT	(Separating	Axis	Theorem)
and	distance-based	collision	detection	to	generate	full	contact	manifolds.	 It	generates	all
the	 potential	 contacts	 in	 one	 frame,	 so	 it	 lends	 itself	 better	 to	 stable	 stacking.	 This
approach	 is	 stable	 for	 small	 contact	 offsets	 and	 rest	 offsets	 but	 may	 not	 generate	 the
correct	 contact	 points	when	 large	offsets	 are	 used	because	 it	 approximates	 the	 contact
points	in	these	situations	by	plane	shifting.

2.	 Persistent	Contact	Manifold	(PCM)

PCM	is	a	fully	distance-based	collision	detection	system.	PCM	generates	a	full	manifold	of
contacts	when	 two	 shapes	 first	 come	 into	 contact.	 It	 recycles	 and	 updates	 the	 existing
contacts	 from	the	previous	frame	 in	 the	manifold	and	then	 it	generates	a	new	contact	 in
the	 subsequent	 frame	 if	 the	 shapes	move	 relative	 to	 each-other	more	 than	 a	 threshold
amount	or	if	a	contact	was	dropped	from	the	manifold.	If	too	many	contacts	are	dropped
from	the	manifold	due	to	a	 large	amount	of	relative	motion	 in	a	frame,	 then	full	manifold
generation	is	re-run.	This	approach	is	quite	efficient	in	terms	of	performance	and	memory.
However,	 because	 PCM	 potentially	 generates	 fewer	 contacts	 than	 the	 default	 collision
detection,	 it	 might	 reduce	 stacking	 stability	 when	 simulating	 tall	 stacks	 with	 insufficient
solver	 iterations.	As	 this	approach	 is	distance-based,	 it	will	 generate	 the	correct	contact
points	for	arbitrary	contact	offsets/rest	offsets.

To	enable	PCM,	set	the	flag	in	the	PxSceneDesc::flags:

PxSceneDesc	sceneDesc;

sceneDesc.flags	|=	PxSceneFlag::eENABLE_PCM;
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Joint	Basics

A	joint	constrains	the	way	two	actors	move	relative	to	one	another.	A	typical	use	for	a	joint
would	be	to	model	a	door	hinge	or	the	shoulder	of	a	character.	Joints	are	implemented	in
the	 PhysX	 extensions	 library	 and	 cover	 many	 common	 scenarios,	 but	 if	 you	 have	 use
cases	that	are	not	met	by	the	joints	packaged	with	PhysX,	you	can	implement	your	own.
Since	 joints	 are	 implemented	 as	 extensions,	 the	 pattern	 for	 creating	 them	 is	 slightly
different	from	other	PhysX	objects.

Creation	of	simple	joints	and	limits	is	demonstrated	in	the	SnippetJoint	snippet.

To	create	a	joint,	call	the	joint's	creation	function:

PxRevoluteJointCreate(PxPhysics&	physics,

																						PxRigidActor*	actor0,	const	PxTransform&	localFrame0

																						PxRigidActor*	actor1,	const	PxTransform&	localFrame1

This	has	the	same	pattern	for	all	joints:	two	actors,	and	for	each	actor	a	constraint	frame.

One	of	the	actors	must	be	movable,	either	a	PxRigidDynamic	or	a	PxArticulationLink
other	 may	 be	 of	 one	 of	 those	 types,	 or	 a	 PxRigidStatic.	 Use	 a	 NULL	 pointer	 here	 to
indicate	an	implicit	actor	representing	the	immovable	global	reference	frame.

Each	localFrame	argument	specifies	a	constraint	frame	relative	to	the	actor's	global	pose.
Each	joint	defines	a	relationship	between	the	global	positions	and	origins	of	the	constraint
frames	that	will	be	enforced	by	the	PhysX	constraint	solver.	In	this	example,	the	revolute
joint	 constrains	 the	 origin	 points	 of	 the	 two	 frames	 to	 be	 coincident	 and	 their	 x-axes	 to
coincide,	 but	 allows	 the	 two	 actors	 to	 rotate	 freely	 relative	 to	 one	 another	 around	 this
common	axis.

PhysX	supports	six	different	joint	types:

a	fixed	joint	locks	the	orientations	and	origins	rigidly	together
a	distance	joint	keeps	the	origins	within	a	certain	distance	range
a	spherical	joint	(also	called	a	ball-and-socket)	keeps	the	origins	together,	but	allows



the	orientations	to	vary	freely.
a	 revolute	 joint	 (also	 called	 a	 hinge)	 keeps	 the	 origins	 and	 x-axes	 of	 the	 frames
together,	and	allows	free	rotation	around	this	common	axis.
a	prismatic	joint	(also	called	a	slider)	keeps	the	orientations	identical,	but	allows	the
origin	of	each	frame	to	slide	freely	along	the	common	x-axis.
a	D6	 joint	is	a	highly	configurable	joint	that	allows	specification	of	individual	degrees
of	freedom	either	to	move	freely	or	be	locked	together.	It	can	be	used	to	implement	a
wide	 variety	 of	mechanical	 and	 anatomical	 joints,	 but	 is	 somewhat	 less	 intuitive	 to
configure	than	the	other	joint	types.	This	joint	is	covered	in	detail	below.

All	 joints	 are	 implemented	 as	 plugins	 to	 the	 SDK	 through	 the	 PxConstraint	 class.	 A
number	 of	 the	 properties	 for	 each	 joint	 are	 configured	 using	 the	 PxConstraintFlag
enumeration.

Note: 	As	in	the	rest	of	the	PhysX	API,	all	joint	angles	for	limits	and	drive	targets	are
specified	in	radians.

Visualization

All	standard	PhysX	joints	support	debug	visualization.	You	can	visualize	the	joint	frames	of
each	actor,	and	also	any	limits	the	joint	may	have.

By	default,	joints	are	not	visualized.	To	visualize	a	joint,	set	its	visualization	constraint	flag
and	the	appropriate	scene-level	visualization	parameters:

scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_FRAMES

scene->setVisualizationParameter(PxVisualizationParameter::eJOINT_LIMITS

...

joint->setConstraintFlag(PxConstraintFlag::eVISUALIZATION)

Force	Reporting



The	force	applied	at	a	joint	may	be	retrieved	after	simulation	with	a	call	to	getForce():

scene->fetchResults(...)

joint->getConstraint().getForce(force,	torque);

The	force	is	resolved	at	the	origin	of	actor1's	joint	frame.

Note	that	this	force	is	only	updated	while	the	joint's	actors	are	awake.

Breakage

All	of	the	standard	PhysX	joints	can	be	made	breakable.	A	maximum	breaking	force	and
torque	may	be	specified,	and	if	the	force	or	torque	required	to	maintain	the	joint	constraint
exceeds	this	threshold,	the	joint	will	break.	Breaking	a	joint	generates	a	simulation	event
(see	 PxSimulationEventCallback::onJointBreak),	 and	 the	 joint	 no	 longer	 partakes	 in
simulation,	although	it	remains	attached	to	its	actors	until	it	is	deleted.

By	default	 the	 threshold	 force	and	 torque	are	set	 to	FLT_MAX,	making	 joints	effectively
unbreakable.	To	make	a	joint	breakable,	specify	the	force	and	torque	thresholds.

joint->setBreakForce(100.0f,	100.0f);

A	constraint	flag	records	whether	a	joint	is	currently	broken:

bool	broken	=	(joint->getConstraintFlags()	&	PxConstraintFlag::eBROKEN)	!=	0;

Breaking	a	joint	causes	a	callback	via	PxSimulationEventCallback::onConstraintBreak.	In
this	callback,	a	pointer	to	the	joint	and	its	type	are	specified	in	the	externalReference	and
type	field	of	the	PxConstraintInfo	struct.	If	you	have	implemented	your	own	joint	types,	use
the	PxConstraintInfo::type	 field	 to	 determine	 the	 dynamic	 type	 of	 the	 broken	 constraint.
Otherwise,	simply	cast	the	externalReference	to	a	PxJoint:

class	MySimulationEventCallback

{

				void	onConstraintBreak(PxConstraintInfo*	constraints,	PxU32	count

				{

								for(PxU32	i=0;	i<count;	i++)

								{



												PxJoint*	joint	=	reinterpret_cast<PxJoint*>(constraints

												...

								}

				}

}

Projection

Under	stressful	conditions,	PhysX'	dynamics	solver	may	not	be	able	to	accurately	enforce
the	constraints	specified	by	 the	 joint.	PhysX	provides	kinematic	projection
bring	violated	constraints	back	into	alignment	even	when	the	solver	fails.	Projection	is	not
a	physical	process	and	does	not	preserve	momentum	or	respect	collision	geometry.	 It	 is
best	 avoided	 if	 practical,	 but	 can	 be	 useful	 in	 improving	 simulation	 quality	 where	 joint
separation	results	in	unacceptable	artifacts.

By	default	projection	is	disabled.	To	enable	projection,	set	the	linear	and	angular	tolerance
values	beyond	which	a	joint	will	be	projected,	and	set	the	constraint	projection	flag:

joint->setProjectionLinearTolerance(0.1f);

joint->setConstraintFlag(PxConstraintFlag::ePROJECTION,	true);

Very	small	tolerance	values	for	projection	may	result	in	jittering	around	the	joint.

A	constraint	with	projection	enabled	can	be	part	of	a	graph	of	 rigid	bodies	connected	by
constraints.	 If	 this	 graph	 is	 acyclic,	 the	 algorithm	 will	 choose	 a	 root	 node	 among	 the
connected	rigid	bodies,	traverse	the	graph,	and	project	the	bodies	towards	the	root.	If	the
constraint	 graph	 has	 cycles,	 the	 algorithm	 will	 split	 the	 graph	 into	 multiple	 acyclic
subgraphs,	dropping	edges	that	create	cycles,	and	do	the	projection	separately	for	each.
Please	 note	 that	 having	more	 than	 one	 constraint	 attached	 to	 a	 fixed	 anchor	 (world	 or
static/kinematic	rigid	body)	in	a	graph	does	count	as	a	cycle	(for	example,	a	chain	of	rigid
bodies	connected	with	constraints	and	both	ends	attached	 to	world	anchors).	 If	multiple
constraints	fight	over	the	same	body	or	conflicting	projection	directions	are	specified,	the
projection	direction	will	be	chosen	based	on	the	following	priorities	(highest	first):

world	attachment	or	a	rigid	static	actor	with	a	projecting	constraint
kinematic	actor	with	a	projecting	constraint



all	 dominant	dynamic	actor	 (has	projecting	constraints	and	all	 of	 them	are	one-way
projecting	towards	this	dynamic)
dominant	dynamic	actor	(same	as	above	but	there	is	at	least	one	two-way	projecting
constraint	as	well)
partially	 dominant	 dynamic	 actor	 (has	 at	 least	 one	 one-way	 projecting	 constraint
towards	this	dynamic	and	at	least	one	one-way	projecting	constraint	towards	an	other
actor)
world	attachment	or	a	rigid	static	actor	without	any	projecting	constraints
kinematic	actor	without	any	projecting	constraints
dynamic	 actor	 with	 or	 without	 two-way	 projecting	 constraints	 to	 other	 dynamics
(among	these,	the	one	with	the	highest	constraint	count	wins)

Limits

Some	PhysX	joints	constrain	not	just	relative	rotation	or	translation,	but	can	also	enforce
limits	on	the	range	of	that	motion.	For	example,	in	its	initial	configuration	the	revolute	joint
allows	free	rotation	around	its	axis,	but	by	specifying	and	enabling	a	limit,	lower	and	upper
bounds	may	be	placed	upon	the	angle	of	rotation.

Limits	are	a	form	of	collision,	and	like	collision	of	rigid	body	shapes,	stable	limit	behavior
requires	 a	 contactDistance	 tolerance	 specifying	 how	 far	 from	 the	 limit	 the	 joint
configuration	may	be	before	 the	solver	 tries	 to	enforce	 it.	Note	 that	enforcement	always
starts	 before	 the	 limit	 is	 violated,	 so	 the	 role	 played	 by	 contactDistance	 for	 limits	 is
analogous	to	the	role	a	positive	contactDistance	value	plays	in	collision	detection.	A	larger
contact	makes	 the	 limit	 less	 likely	 to	be	violated	even	at	high	 relative	velocity.	However,
because	the	limit	is	active	more	of	the	time,	the	joint	is	more	expensive	to	simulate.

Limit	 configuration	 is	 specific	 to	 each	 type	 of	 joint.	 To	 set	 a	 limit,	 configure	 the	 limit
geometry	and	set	the	joint-specific	flag	indicating	that	the	limit	is	enabled:

revolute->setLimit(PxJointAngularLimitPair(-PxPi/4,	PxPi/4,	0.1f));

revolute->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED



Limits	may	be	either	hard	or	soft.	When	a	hard	limit	is	reached,	relative	motion	will	simply
stop	dead	if	the	limit	is	configured	with	zero	restitution,	or	bounce	if	the	restitution	is	non-
zero.	When	a	soft	limit	is	violated,	the	solver	will	pull	the	joint	back	towards	the	limit	using
a	spring	specified	by	the	limit's	spring	and	damping	parameters.	By	default,	limits	are	hard
and	without	restitution,	so	when	the	joint	reaches	a	limit	motion	will	simply	stop.	To	specify
softness	for	a	limit,	declare	the	limit	structure	and	set	the	spring	and	damping	parameters
directly:

PxJointAngularLimitPair	limitPair(-PxPi/4,	PxPi/4,	0.1f));

limitPair.spring	=	100.0f;

limitPair.damping	=	20.0f;

revolute->setRevoluteJointLimit(limitPair);

revolute->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED

Note: 	Limits	are	not	projected.

When	using	spring	limits,	 the	eACCELERATION	flag	is	strongly	recommended.	This	flag
will	automatically	scale	the	strength	of	the	spring	according	to	the	masses	and	inertias	of
objects	 that	 the	 limit	 is	 acting	 upon,	 and	 can	 substantially	 reduce	 the	 amount	 of	 tuning
required	for	good,	stable	behavior.

Actuation

Some	PhysX	 joints	may	be	actuated	by	 a	motor	 or	 a	 spring	 implicitly	 integrated	by	 the
PhysX	solver.	While	driving	simulations	with	actuated	joints	is	more	expensive	than	simply
applying	 forces,	 it	 can	 provide	 much	 more	 stable	 control	 of	 simulation.	 See	
Prismatic	Joint,	and	Revolute	Joint	for	details

Note: 	The	force	generated	by	actuation	is	not	included	in	the	force	reported	by	the
solver,	nor	does	it	contribute	towards	exceeding	the	joint's	breakage	force	threshold.

Note: 	Changing	the	drive	parameters	for	a	joint,	or	activating	or	deactivating	the	drive,
does	not	wake	sleeping	bodies	attached	to	the	joint.	If	required,	wake	these	bodies
manually.



When	using	spring	drives	(in	particular,	drives	on	the	D6	joint),	the	eACCELERATION	flag
is	 strongly	 recommended.	 This	 flag	 will	 automatically	 scale	 the	 strength	 of	 the	 spring
according	 to	 the	 masses	 and	 inertias	 of	 objects	 that	 the	 limit	 is	 acting	 upon,	 and	 can
substantially	reduce	the	amount	of	tuning	required	for	good,	stable	behavior.

Mass	Scaling

PhysX	 joints	may	apply	 scale	 to	 the	mass	and	moment	 of	 inertia	 of	 the	 two	 connected
bodies	 for	 the	 purposes	 of	 resolving	 a	 joint.	 For	 example,	 if	 you	 have	 two	 objects	 in	 a
ragdoll	of	masses	1	and	10,	PhysX	will	typically	resolve	the	joint	by	changing	the	velocity
of	the	lighter	body	much	more	than	the	heavier	one.	You	can	apply	a	mass	scale	of	10	to
the	first	body	to	make	PhysX	change	the	velocity	of	both	bodies	by	an	equal	amount.	To
ensure	the	same	property	holds	for	both	linear	and	angular	velocity,	you	should	adjust	the
inertia	scales	in	accordance	with	the	bodies'	 inertias	as	well.	Applying	mass	scales	such
that	the	joint	sees	similar	effective	masses	and	inertias	makes	the	solver	converge	faster,
which	 can	 make	 individual	 joints	 seem	 less	 rubbery	 or	 separated,	 and	 sets	 of	 jointed
bodies	appear	less	twitchy

Many	 applications	 that	 prioritize	 visual	 behavior	 over	 adherence	 to	 physical	 laws	 can
benefit	from	tuning	these	scale	values.	But	if	you	use	this	feature,	bear	in	mind	that	mass
and	 inertia	 scaling	 is	 fundamentally	 nonphysical.	 In	 general	 momentum	 will	 not	 be
conserved,	the	energy	of	the	system	may	increase,	the	force	reported	for	the	joint	may	be
incorrect,	 and	 non-physical	 tuning	 of	 breakage	 thresholds	 and	 force	 limits	 may	 be
required.



Fixed	Joint

The	 fixed	 joint	 constrains	 two	 objects	 so	 that	 the	 positions	 and	 orientations	 of	 their
constraint	frames	are	the	same.

Note: 	All	joints	are	enforced	by	the	dynamics	solver,	so	although	under	ideal	conditions
the	objects	will	maintain	their	spatial	relationship,	there	may	be	some	drift.	A	common
alternative,	which	is	cheaper	to	simulate	and	does	not	suffer	from	drift,	is	to	construct	a
single	actor	with	multiple	shapes.	However	fixed	joints	are	useful,	for	example,	when	a
joint	must	be	breakable	or	report	its	constraint	force.



Spherical	Joint

A	spherical	joint	constrains	the	origins	of	the	actor's	constraint	frames	to	be	coincident.

The	spherical	joint	supports	a	cone	limit,	which	constrains	the	angle	between	the	X-axes
of	the	two	constraint	frames.	Actor1's	X-axis	is	constrained	by	a	limit	cone	whose	axis	is
the	x-axis	of	actor0's	constraint	frame.	The	allowed	limit	values	are	the	maximum	rotation
around	 the	y-	and	z-	axes	of	 that	 frame.	Different	values	 for	 the	y-	and	z-	axes	may	be
specified,	in	which	case	the	limit	takes	the	form	of	an	elliptical	angular	cone:

joint->setLimitCone(PxJointLimitCone(PxPi/2,	PxPi/6,	0.01f);

joint->setSphericalJointFlag(PxSphericalJointFlag::eLIMIT_ENABLED,

Note	that	very	small	or	highly	elliptical	limit	cones	may	result	in	solver	jitter.

Note: 	Visualization	of	the	limit	surface	can	help	considerably	in	understanding	its
shape.



Revolute	Joint

A	revolute	joint	removes	all	but	a	single	rotational	degree	of	freedom	from	two	objects.	The
axis	along	which	the	two	bodies	may	rotate	is	specified	by	the	common	origin	of	the	joint
frames	and	their	common	x-axis.	In	theory,	all	origin	points	along	the	axis	of	rotation	are
equivalent,	 but	 simulation	 stability	 is	 best	 in	 practice	 when	 the	 point	 is	 near	 where	 the
bodies	are	closest.

The	joint	supports	a	rotational	limit	with	upper	and	lower	extents.	The	angle	is	zero	where
the	y-	and	z-	axes	of	the	joint	frames	are	coincident,	and	increases	moving	from	the	y-axis
towards	the	z-axis:

joint->setLimit(PxJointLimitPair(-PxPi/4,	PxPi/4,	0.01f);

joint->setRevoluteJointFlag(PxRevoluteJointFlag::eLIMIT_ENABLED,	true

The	joint	also	supports	a	motor	which	drives	the	relative	angular	velocity	of	the	two	actors
towards	a	user-specified	target	velocity.	The	magnitude	of	the	force	applied	by	the	motor
may	be	limited	to	a	specified	maximum:

joint->setDriveVelocity(10.0f);

joint->setRevoluteJointFlag(PxRevoluteJointFlag::eDRIVE_ENABLED,	true



By	default,	when	the	angular	velocity	at	the	joint	exceeds	the	target	velocity	the	motor	acts
as	a	brake;	a	freespin	flag	disables	this	braking	behavior.

The	drive	force	limit	for	a	revolute	joint	may	be	interpreted	either	as	a	force	or	an	impulse,
depending	on	the	value	of	PxConstraintFlag::eDRIVE_LIMITS_ARE_FORCES



Prismatic	Joint

A	prismatic	joint	prevents	all	rotational	motion,	but	allows	the	origin	of	actor1's	constraint
frame	 to	 move	 freely	 along	 the	 x-axis	 of	 actor0's	 constraint	 frame.	 The	 prismatic	 joint
supports	 a	 single	 limit	 with	 upper	 and	 lower	 bounds	 on	 the	 distance	 between	 the	 two
constraint	frames'	origin	points:

joint->setLimit(PxJointLimitPair(-10.0f,	20.0f,	0.01f);

joint->setPrismaticJointFlag(PxPrismaticJointFlag::eLIMIT_ENABLED,



Distance	Joint

The	 distance	 joint	 keeps	 the	 origins	 of	 the	 constraint	 frames	 within	 a	 certain	 range	 of
distance.	 The	 range	 may	 have	 both	 upper	 and	 lower	 bounds,	 which	 are	 enabled
separately	by	flags:

joint->setMaxDistance(10.0f);

joint->setDistanceJointFlag(eMAX_DISTANCE_ENABLED,	true);

In	addition,	when	the	joint	reaches	the	limits	of	its	range	motion	beyond	this	distance	may
either	 be	 entirely	 prevented	 by	 the	 solver,	 or	 pushed	 back	 towards	 its	 range	 with	 an
implicit	spring,	for	which	spring	and	damping	parameters	may	be	specified.



D6	Joint

The	D6	joint	is	by	far	the	most	complex	of	the	standard	PhysX	joints.	In	its	default	state	it
behaves	 like	a	 fixed	 joint	 -	 that	 is,	 it	 rigidly	 fixes	 the	constraint	 frames	of	 its	 two	actors.
However,	 individual	 degrees	 of	 freedom	may	be	 unlocked	 to	 permit	 any	 combination	 of
rotation	around	the	x-,	y-	and	z-	axes,	and	translation	along	these	axes.

Locking	and	Unlocking	Axes

To	unlock	and	lock	degrees	of	freedom,	use	the	joint's	setMotion	function:

d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

Unlocking	 translational	 degrees	 of	 freedom	allows	 the	 origin	 point	 of	 actor1's	 constraint
frame	 to	 move	 along	 a	 subset	 of	 the	 axes	 defined	 by	 actor0's	 constraint	 frame.	 For
example,	unlocking	just	the	X-axis	creates	the	equivalent	of	a	prismatic	joint.

Rotational	 degrees	 of	 freedom	 are	 partitioned	 as	 twist	 (around	 the	 X-axis	 of	 actor0's
constraint	frame)	and	swing	(around	the	Y-	and	Z-	axes).	Different	effects	are	achieved	by
unlocking	various	combinations	of	twist	and	swing.

if	just	a	single	degree	of	angular	freedom	is	unlocked,	the	result	is	always	equivalent
to	a	revolute	joint.	It	 is	recommended	that	if	 just	one	angular	freedom	is	unlocked,	it
should	be	 the	 twist	degree,	because	 the	 joint	has	various	configuration	options	and
optimizations	that	are	designed	for	this	case.

if	both	swing	degrees	of	 freedom	are	unlocked	but	the	twist	degree	remains	 locked,
the	result	is	a	zero-twist	joint.	The	x-axis	of	actor1	swings	freely	away	from	the	x-axis
of	 actor0	 but	 twists	 to	minimize	 the	 rotation	 required	 to	 align	 the	 two	 frames.	 This
creates	 a	 kind	 of	 isotropic	 universal	 joint	 which	 avoids	 the	 problems	 of	 the	 usual
'engineering	style'	universal	joint	(see	below)	that	is	sometimes	used	as	a	kind	of	twist
constraint.	There	is	a	nasty	singularity	at	π	radians	(180	degrees)	swing,	so	a	swing



limit	should	be	used	to	avoid	the	singularity.

if	one	swing	and	one	twist	degree	of	freedom	are	unlocked	but	the	remaining	swing	is
kept	 locked,	 a	 zero-swing	 joint	 results	 (often	 also	 called	 a	 universal
example	the	SWING1	(y-axis	rotation)	is	unlocked,	the	x-axis	of	actor1	is	constrained
to	remain	orthogonal	to	the	z-axis	of	actor0.	In	character	applications,	this	joint	can	be
used	to	model	an	elbow	swing	joint	incorporating	the	twist	freedom	of	the	lower	arm
or	 a	 knee	 swing	 joint	 incorporating	 the	 twist	 freedom	 of	 the	 lower	 leg.	 In	 vehicle
applications,	these	joints	can	be	used	as	'steered	wheel'	joints	in	which	the	child	actor
is	the	wheel,	free	to	rotate	about	its	twist	axis,	while	the	free	swing	axis	in	the	parent
acts	 as	 the	 steering	 axis.	 Care	 must	 be	 taken	 with	 this	 combination	 because	 of
anisotropic	behavior	and	singularities	(beware	the	dreaded	gimbal	 lock)	at	angles	of
π/2	radians	(90	degrees),	making	the	zero-twist	joint	a	better	behaved	alternative	for
most	use	cases.

if	all	three	angular	degrees	are	unlocked,	the	result	is	equivalent	to	a	spherical	joint.

Three	 of	 the	 joints	 from	 PhysX	 2	 that	 have	 been	 removed	 from	 PhysX	 3	 can	 be
implemented	as	follows:

The	cylindrical	joint	(with	axis	along	the	common	x-axis	of	the	two	constraint	frames)
is	given	by	the	combination:

d6joint->setMotion(PxD6Axis::eX,					PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,	PxD6Motion::eFREE);

the	point-on-plane	joint	(with	plane	axis	along	the	x-axis	of	actor0's	constraint	frame)
is	given	by	the	combination:

d6joint->setMotion(PxD6Axis::eY,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eZ,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,		PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING1,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING2,	PxD6Motion::eFREE);



the	point-on-line	joint	(with	axis	along	the	x-axis	of	actor0's	constraint	frame)	is	given
by	the	combination:

d6joint->setMotion(PxD6Axis::eX,						PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eTWIST,		PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING1,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eSWING2,	PxD6Motion::eFREE);

Note: 	Angular	projection	is	implemented	only	for	the	cases	when	two	or	three	angular
degrees	of	freedom	are	locked.

Limits

Instead	of	specifying	that	an	axis	is	free	or	locked,	it	may	also	be	specified	as	limited.	The
D6	supports	three	different	limits	which	may	be	used	in	any	combination.

A	single	linear	limit	with	only	an	upper	bound	is	used	to	constrain	any	of	the	translational
degrees	of	freedom.	The	limit	constrains	the	distance	between	the	origins	of	the	constraint
frames	when	projected	onto	these	axes.	For	example,	the	combination:

d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eY,	PxD6Motion::eLIMITED);

d6joint->setMotion(PxD6Axis::eZ,	PxD6Motion::eLIMITED);

d6joint->setLinearLimit(PxJointLinearLimit(1.0f,	0.1f));

constrains	the	y-	and	z-	coordinates	of	actor1's	constraint	frame	to	lie	within	the	unit	disc.
Since	the	x-axis	is	unconstrained,	the	effect	is	to	constrain	the	origin	of	actor1's	constraint
frame	to	 lie	within	a	cylinder	of	radius	1	extending	along	the	x-axis	of	actor0's	constraint
frame.

The	 twist	 degree	 of	 freedom	 is	 limited	 by	 a	 pair	 limit	 with	 upper	 and	 lower	 bounds,
identical	to	the	limit	of	the	revolute	joint.

If	both	swing	degrees	of	freedom	are	limited,	a	limit	cone	is	generated,	identical	to	the	limit
of	the	spherical	 joint.	As	with	the	spherical	 joint,	very	small	or	highly	elliptical	 limit	cones
may	result	in	solver	jitter.



If	only	one	swing	degree	of	freedom	is	limited,	the	corresponding	angle	from	the	cone	limit
is	used	to	limit	rotation.	If	the	other	swing	degree	is	locked,	the	maximum	value	of	the	limit
is	π	radians	(180	degrees).	 If	 the	other	swing	degree	 is	 free,	 the	maximum	value	of	 the
limit	is	π/2	radians	(90	degrees).

Drives

The	D6	has	a	 linear	drive	model,	and	 two	possible	angular	drive	models.	The	drive	 is	a
proportional	derivative	drive,	which	applies	a	force	as	follows:

force	=	spring	*	(targetPosition	-	position)	+	damping	*	(targetVelocity	-	velocity)

The	drive	model	may	also	be	configured	to	generate	a	proportional	acceleration	instead	of
a	force,	 factoring	 in	 the	masses	of	 the	actors	to	which	the	 joint	 is	attached.	Acceleration
drive	is	often	easier	to	tune	than	force	drive.

The	linear	drive	model	for	the	D6	has	the	following	parameters:
target	position,	specified	in	actor0's	constraint	frame
target	velocity,	specified	in	actor0's	constraint	frame
spring
damping
forceLimit	 -	 the	 maximum	 force	 the	 drive	 can	 apply	 (note	 that	 this	 can	 be	 an
impulse,	depending	on	PxConstraintFlag::eDRIVE_LIMITS_ARE_FORCES)
acceleration	drive	flag

The	drive	 attempts	 to	 follow	 the	desired	 position	 input	with	 the	 configured	 stiffness	 and
damping	properties.	A	physical	lag	due	to	the	inertia	of	the	driven	body	acting	through	the
drive	spring	will	occur;	 therefore,	sudden	step	changes	will	 result	over	a	number	of	 time
steps.	Physical	lag	can	be	reduced	by	stiffening	the	spring	or	supplying	a	velocity	target.

With	a	fixed	position	input	and	a	zero	target	velocity,	a	position	drive	will	spring	about	that
drive	position	with	the	specified	springing/damping	characteristics:

//	set	all	translational	degrees	free



d6joint->setMotion(PxD6Axis::eX,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eY,	PxD6Motion::eFREE);

d6joint->setMotion(PxD6Axis::eZ,	PxD6Motion::eFREE);

//	set	all	translation	degrees	driven:

PxD6Drive	drive(10.0f,	-20.0f,	PX_MAX_F32,	true);

d6joint->setDrive(PxD6JointDrive::eX,	drive);

d6joint->setDrive(PxD6JointDrive::eY,	drive);

d6joint->setDrive(PxD6JointDrive::eZ,	drive);

//	Drive	the	joint	to	the	local(actor[0])	origin	-	since	no	angular

//	dofs	are	free,	the	angular	part	of	the	transform	is	ignored

d6joint->setDrivePosition(PxTransform(1.0f));

d6joint->setDriveVelocity(PxVec3(PxZero));

Angular	drive	differs	from	linear	drive	in	a	fundamental	way:	it	does	not	have	a	simple	and
intuitive	 representation	 free	 from	singularities.	For	 this	 reason,	 the	D6	 joint	provides	 two
angular	drive	models	-	twist	and	swing	and	SLERP	(Spherical	Linear	Interpolation).

The	two	models	differ	in	the	way	they	estimate	the	path	in	quaternion	space	between	the
current	 orientation	 and	 the	 target	 orientation.	 In	 a	SLERP	drive,	 the	 quaternion	 is	 used
directly.	 In	 a	 twist	 and	 swing	 drive,	 it	 is	 decomposed	 into	 separate	 twist	 and	 swing
components	and	each	component	is	interpolated	separately.	Twist	and	swing	is	intuitive	in
many	 situations;	 however,	 there	 is	 a	 singularity	 when	 driven	 to	 180	 degrees	 swing.	 In
addition,	 the	drive	will	not	 follow	the	shortest	arc	between	two	orientations.	On	the	other
hand,	SLERP	drive	will	 follow	 the	shortest	arc	between	a	pair	of	angular	configurations,
but	may	cause	unintuitive	changes	in	the	joint's	twist	and	swing.

The	angular	drive	model	has	the	following	parameters:

An	angular	velocity	target	specified	relative	to	actor0's	constraint	frame
An	orientation	target	specified	relative	to	actor0's	constraint	frame
drive	 specifications	 for	 SLERP	 (slerpDrive),	 swing	 (swingDrive)	 and	 twist
(twistDrive):
spring	 -	 amount	 of	 torque	 needed	 to	 move	 the	 joint	 to	 its	 target	 orientation
proportional	to	the	angle	from	the	target	(not	used	for	a	velocity	drive).



damping	-	applied	to	the	drive	spring	(used	to	smooth	out	oscillations	about	the
drive	target).
forceLimit	 -	 the	maximum	 torque	 the	 drive	 can	apply	 (note	 that	 this	 can	be	an
impulsive	 torque,	 depending	 on	 the	 value
PxConstraintFlag::eDRIVE_LIMITS_ARE_FORCES)
acceleration	drive	 flag.	 If	 this	 flag	 is	set	 the	acceleration	 (rather	 than	 the	 force)
applied	by	the	drive	is	proportional	to	the	angle	from	the	target.

Best	 results	 will	 be	 achieved	 when	 the	 drive	 target	 inputs	 are	 consistent	 with	 the	 joint
freedom	and	limit	constraints.

Note: 	if	any	angular	degrees	of	freedom	are	locked,	the	SLERP	drive	parameters	are
ignored.	If	all	angular	degrees	of	freedom	are	unlocked,	and	parameters	are	set	for
multiple	angular	drives,	the	SLERP	parameters	will	be	used.

Configuring	Joints	for	Best	Behavior

The	behavior	quality	of	joints	in	PhysX	is	largely	determined	by	the	ability	of	the	iterative
solver	 to	 converge.	 Better	 convergence	 can	 be	 achieved	 simply	 by	 increasing	 the
attributes	of	the	PxRigidDynamic	which	controls	the	solver	iteration	count.	However,	joints
can	also	be	configured	to	produce	better	convergence.

the	 solver	 can	 have	 difficulty	 converging	 well	 when	 a	 light	 object	 is	 constrained
between	two	heavy	objects.	Mass	ratios	of	higher	 than	10	are	best	avoided	 in	such
scenarios.
when	 one	 body	 is	 significantly	 heavier	 than	 the	 other,	 make	 the	 lighter	 body	 the
second	actor	 in	the	joint.	Similarly,	when	one	of	the	objects	is	static	or	kinematic	(or
the	actor	pointer	is	NULL)	make	the	dynamic	body	the	second	actor.

A	common	use	for	joints	is	to	move	objects	around	in	the	world.	Best	results	are	obtained
when	the	solver	has	access	to	the	velocity	of	motion	as	well	as	the	change	in	position.



if	you	want	a	very	stiff	controller	that	moves	the	object	to	specific	position	each	frame,
consider	 jointing	 the	 object	 to	 a	 kinematic	 actor	 and	 use	 the	 setKinematicTarget
function	to	move	the	actor.
if	 you	want	 a	more	 springy	 controller,	 use	 a	D6	 joint	 with	 a	 drive	 target	 to	 set	 the
desired	 position	 and	 orientation,	 and	 control	 the	 spring	 parameters	 to	 increase
stiffness	and	damping.	In	general,	acceleration	drive	is	much	easier	to	tune	than	force
drive.

When	 using	 mass	 scaling	 or	 when	 constraining	 bodies	 with	 infinite	 inertia	 along	 some
axes,	 the	 reduction	 in	 degrees	 of	 freedom	 of	 the	 rigid	 bodies	 combined	 with	 small
inaccuracies	 in	floating	point	calculation	can	produce	arbitrarily	stiff	constraint	responses
trying	to	correct	unnoticeably	small	errors.	This	can	appear,	for	example,	when	attempting
to	 perform	 2D-simulation	 using	 infinite	 inertia	 to	 suppress	 velocity	 out	 of	 the	 plane	 of
simulation.	In	these	cases,	set	the	flag	PxConstraintFlag::eDISABLE_PREPROCESSING,
and	set	the	minResponseThreshold	on	the	constraint	to	a	small	value,	e.g.	1e-8.	This	will
result	in	such	stiff	constraint	rows	being	ignored	when	encountered,	and	can	considerably
improve	simulation	quality.



Custom	Constraints

It	 is	 also	 possible	 to	 add	 new	 joint	 types	 to	 PhysX.	 Use	 the	 existing	 joints	 in	 the
PhysXExtensions	 library	 as	 a	 reference,	 and	 also	 the	 source	 for	 SnippetCustomJoint,
which	shows	how	to	implement	a	Pulley	Joint.	Serializing	custom	objects	is	discussed	in
the	chapter	Serialization,	so	 the	discussion	here	 is	 limited	to	how	to	achieve	the	desired
behavior	 in	 simulation.	 This	 is	 an	 advanced	 topic,	 and	 assumes	 familiarity	 with	 the
mathematics	 underlying	 rigid	 body	 simulation.	 The	 presentation	 here	 assumes	 that	 the
joint	constrains	two	bodies;	the	case	for	a	static	body	is	equivalent	to	a	dynamic	body	of
infinite	mass	whose	transform	is	the	identity.

The	functions	which	 implement	dynamic	behavior	of	 joints	are	PhysX	
nature	 to	 the	 PxFilterShader	 (see	 Collision	 Filtering).	 In	 particular,	 the	 functions	 may
execute	 in	 parallel	 and	 asynchronously,	 and	 should	 not	 access	 any	 state	 except	 that
passed	in	as	parameters.

To	create	a	custom	joint	class,	define	the	following:

the	functions	which	implement	the	behavior	of	the	constraint.	The	functions	must	be
stateless,	 because	 they	may	be	 called	 simultaneously	 from	multiple	 threads.	When
each	 function	 is	called,	PhysX	passes	a	constant	block	which	can	be	used	 to	store
the	joint	configuration	parameters	(offsets,	axes,	limits	etc).
a	static	instance	of	PxConstraintShaderTable	containing	pointers	to	the	functions
a	class	implementing	the	PxConstraintConnector	interface,	that	connects	the	custom
joint	to	PhysX.

Defining	Constraint	Behavior

There	 are	 two	 functions	 that	 define	 the	 joint	 behavior:	 the	 solver	 preparation
which	 generates	 inputs	 to	 PhysX'	 velocity-based	 constraint	 solver,	 and	 the	
function,	which	allows	direct	correction	of	position	error.

The	processing	sequence	during	simulation	is	as	follows:



in	 the	 simulate()	 function,	 before	 starting	 simulation	 the	 scene	 updates	 an	 internal
copy	 of	 the	 joint's	 constant	 block	 (so	 that	 the	 joint's	 copy	may	 be	modified	 during
simulation	without	causing	races).
collision	detection	 runs,	and	may	wake	bodies.	 If	 the	 joint	connects	 two	bodies,	 the
simulation	will	ensure	that	either	both	bodies	are	awake,	or	neither	is.
for	every	joint	connected	to	an	awake	body,	the	simulation	calls	the	solver	preparation
function.
the	solver	updates	body	velocities	and	positions.
if	 the	constraint's	ePROJECTION	flag	 is	set,	 the	simulation	calls	 the	 joint	projection
function.

The	Solver	Preparation	Function

The	solver	preparation	function	for	a	joint	has	the	following	signature:

PxU32	prepare(Px1DConstraint*	constraints,

														PxVec3&	bodyAWorldOffset,

														PxU32	maxConstraints,

														PxConstraintInvMassScale	&invMassScale,

														const	void*	constantBlock,

														const	PxTransform&	bA2w,

														const	PxTransform&	bB2w);

The	parameters	are	as	follows:

constraints	is	the	output	buffer	of	constraint	rows.
bodyAWorldOffset	is	the	point,	specified	in	world	space	as	an	offset	from	the	origin	of
bodyA,	at	which	 the	constraint	 forces	act	 to	enforce	 the	 joint.	The	constraint	 solver
ignores	 this	value	as	 the	 information	 is	already	encoded	 in	 the	constraint	array,	but
when	 reporting	 forces	 it	 is	 necessary	 to	 choose	 a	 point	 at	 which	 the	 force	 is
considered	 to	 act.	 For	PhysX	 joints,	 the	 attachment	 point	 of	 the	 joint	 on	 body	B	 is
used.
maxConstraints	 is	 the	size	of	 the	buffer,	which	 limits	 the	number	of	 constraint	 rows



that	may	be	generated.
invMassScale	 is	 the	 inverse	mass	scales	which	should	be	applied	 to	 the	bodies	 for
the	purpose	of	resolving	the	joint.	In	the	standard	joints,	these	are	just	the	joint's	mass
scaling	parameters	(see	Mass	Scaling).
constantBlock	is	the	simulation's	copy	of	the	joint	constant	block.
bA2w	is	the	transform	of	the	first	body.	It	is	the	identity	transform	if	the	actor	is	static,
or	a	NULL	pointer	was	supplied	in	constraint	creation.
bB2w	 is	 the	 transform	of	 the	second	body.	 It	 is	 the	 identity	 transform	 if	 the	actor	 is
static,	or	a	NULL	pointer	was	supplied	in	constraint	creation.

The	 role	of	 the	solver	preparation	 function	 is	 to	populate	 the	buffer	of	Px1DConstraints,
provide	 the	 point	 of	 application	 for	 force	 reporting,	 and	 provide	 the	 mass	 scaling
properties.	 The	 return	 value	 is	 the	 number	 of	 Px1DConstraints	 generated	 in	 the	 output
buffer.

Notice	that	although	the	joint	parameters	(relative	pose	etc)	are	typically	specified	relative
to	 an	 actor,	 the	 solver	 preparation	 function	works	with	 the	 transforms	 of	 the	 underlying
rigid	 bodies.	 The	 constraint	 infrastructure	 (see	 Data	 Management)	 assists	 joints	 in
maintaining	consistency	when,	for	example,	the	application	modifies	the	center	of	mass	of
an	actor.

Each	 Px1D	 constraint	 constrains	 one	 degree	 of	 freedom	 between	 the	 two	 bodies.	 The
structure	looks	like	this:

struct	Px1DConstraint

{

				PxVec3																linear0;

				PxReal																geometricError;

				PxVec3																angular0;

				PxReal																velocityTarget;

				PxVec3																linear1;

				PxReal																minImpulse;

				PxVec3																angular1;

				PxReal																maxImpulse;

				union



				{

								struct	SpringModifiers

								{

												PxReal								stiffness;

												PxReal								damping;

								}	spring;

								struct	RestitutionModifiers

								{

												PxReal								restitution;

												PxReal								velocityThreshold;

								}	bounce;

				}	mods;

				PxReal															forInternalUse;

				PxU16																flags;

				PxU16																solveHint;

}

Each	Px1DConstraint	is	either	a	hard	constraint	(for	example,	one	axis	of	a	fixed	joint)	or	a
soft	 constraint	 (for	 example,	 a	 spring).	 A	 joint	 may	 have	 a	 mixture	 of	 hard	 and	 soft
constraint	rows	-	for	example,	the	actuated	joint	at	a	rag	doll	shoulder	often	has:

3	hard	1D-constraints	which	prevent	the	shoulder	from	separating.
3	hard	1D-constraints	constraining	the	angular	degrees	of	freedom	within	some	limits.
3	soft	constraints	simulating	resistance	to	angular	motion	from	muscles.

The	constraint	is	treated	as	hard	unless	the	Px1DConstraintFlag::eSPRING	flag	is	set.

For	both	soft	and	hard	constraints,	the	solver	velocity	for	each	row	is	the	quantity:

v	=	body0vel.dot(lin0,	ang0)	-	body1vel.dot(lin1,	ang1)

Hard	Constraints

For	a	hard	constraint,	the	solver	attempts	to	generate:

a	set	of	motion	solver	velocities	vMotion	for	objects	which,	when	integrated,	respect
the	constraint	errors,	represented	by	the	equation:



vMotion	+	(geometricError	/	timestep)	=	velocityTarget

a	 set	 of	 post-simulation	 solver	 velocities	 vNext	 for	 the	 objects	 which	 respect	 the
constraints:

vNext	=	velocityTarget

The	motion	 velocities	 are	 used	 for	 integration	 and	 then	 discarded.	 The	 post-simulation
velocities	are	the	values	that	getLinearVelocity()	and	getAngularVelocity()	return.

There	 are	 two	 special	 options	 for	 hard	 constraints,	 both	most	 often	 used	 to	 implement
limits:	restitution	and	velocity	biasing.	They	are	set	by	the	constraint	flags	eRESTITUTION
and	eKEEPBIAS,	are	mutually	exclusive,	and	restitution	takes	priority	(in	the	sense	that	if
restitution	is	set,	biasing	is	ignored).

Restitution	 simulates	 bouncing	 (off	 a	 limit,	 for	 example).	 If	 the	 impact	 solver	 velocity
vCurrent	 at	 the	 start	 of	 simulation	 exceeds	 the	 restitution	 velocity	 threshold,	 the	 target
velocity	of	the	constraint	will	be	set	to:

restitution	*	-vCurrent

and	 the	 input	 velocityTarget	 field	 will	 be	 ignored.	 To	 use	 restitution,	 set
Px1DConstraintFlag::eRESTITUTION.

Velocity	biasing	generates	post-simulation	velocities	to	satisfy	the	same	constraints	as	for
the	motion	velocities:

vNext	+	(geometricError	/	timestep)	=	velocityTarget

This	can	be	useful	if,	for	example,	the	joint	is	approaching	a	limit	but	has	not	yet	reached
it.	If	the	target	velocity	is	0	and	the	geometric	error	is	the	distance	remaining	to	the	limit,
the	solver	will	constrain	the	velocity	below	that	required	to	violate	the	limit	after	integration.
The	joint	should	then	converge	smoothly	to	the	limit.

Soft	Constraints



Alternatively,	the	solver	can	attempt	to	resolve	the	velocity	constraint	as	an	implicit	spring.
In	this	case,	the	motion	velocity	vMotion	and	post-simulation	velocity	vNext	are	the	same.
The	solver	solves	the	equation:

F	=	stiffness	*	-geometricError	+	damping	*	(velocityTarget	-	v)

where	F	is	the	constraint	force.

Springs	are	fully	implicit:	that	is,	the	force	or	acceleration	is	a	function	of	the	position	and
velocity	after	 the	solve.	There	 is	one	special	option	 that	applies	only	 to	soft	 constraints:
acceleration	springs	(PxConstraintFlag::eACCELERATION).	With	this	option	the	solver	will
scale	 the	 magnitude	 of	 the	 force	 in	 accordance	 with	 the	 response	 of	 the	 two	 bodies;
effectively	it	implicitly	solves	the	equation:

acceleration	=	stiffness	*	-geometricError	+	damping	*	(velocityTarget

Force	Limits	and	Reporting

All	constraints	support	 limits	on	the	minimum	or	maximum	impulse	applied	for	each	row.
There	is	a	special	flag	for	force	limits:	eHAS_DRIVE_FORCE_LIMIT.	If	this	flag	is	set,	the
force	 limits	 will	 be	 scaled	 by	 the	 timestep	 unless
PxConstraintFlag::eLIMITS_ARE_FORCES	is	set	for	the	constraint.

The	flag	eOUTPUT_FORCE	flag	on	a	1D	constraint	determines	whether	the	force	applied
for	 this	row	should	be	 included	 in	 the	constraint	 force	output.	The	reporting	 force	 is	also
used	internally	to	determine	joint	breakage.	For	example,	if	creating	a	spherical	joint	with
angular	drive	that	breaks	when	the	stress	on	the	linear	part	exceeds	a	threshold,	set	the
flag	for	the	linear	equality	rows	but	not	the	angular	drive	rows.

Solver	Preprocessing

The	 joint	 solver	 attempts	 to	 preprocess	 hard	 constraints	 to	 improve	 convergence.	 The
solveHint	value	controls	preprocessing	for	each	row:

if	 the	constraint	 is	a	hard	equality	constraint	with	unbounded	 impulse	 limits	 (i.e.	 the



impulse	 limits	 are	 -PX_MAX_FLT	 and	 PX_MAX_FLT),	 set	 this	 to
PxConstraintSolveHint::eEQUALITY.
If	 one	 of	 the	 force	 limits	 is	 zero	 and	 the	 other	 unbounded,	 set	 it	 to
PxConstraintSolveHint::eINEQUALITY.
for	all	soft	constraints,	and	hard	constraints	with	impulse	limits	other	than	the	above,
set	it	to	PxConstraintSolveHint::eNONE.

The	 solver	 does	 not	 check	 that	 the	 hint	 value	 is	 consistent	 with	 the	 values	 in	 the
Px1DConstraint.	Using	inconsistent	values	may	result	in	undefined	behavior.

The	Projection	Function

The	 other	 behavior	 that	 joints	may	 specify	 for	 simulation	 is	 projection
positional	correction	designed	 to	act	when	the	velocity-based	solver	 fails.	The	projection
function	has	the	following	signature:

typedef	void	(*PxConstraintProject)(const	void*	constantBlock,

																																				PxTransform&	bodyAToWorld,

																																				PxTransform&	bodyBToWorld,

																																				bool	projectToA);

It	 receives	 the	 constant	 block	 and	 the	 two	 body	 transforms.	 It	 should	 update	 the
bodyBToWorld	 transform	 if	 the	 projectToA	 flag	 is	 set,	 and	 otherwise	 the	 bodyBToWorld
transform.	See	the	implementations	in	the	extensions	library	for	examples	of	how	to	define
projection	functions.

The	Constraint	Shader	Table

After	coding	 the	behavior	 functions,	define	a	structure	of	 type	PxConstraintShaderTable,
which	holds	 the	pointers	 to	 the	constraint	 functions.	This	structure	will	be	passed	as	an
argument	to	PxPhysics::createConstraint,	and	is	shared	by	all	instances	of	the	joint:

struct	PxConstraintShaderTable

{

				PxConstraintSolverPrep										solverPrep;

				PxConstraintProject													project;



				PxConstraintVisualize											visualize;

};

The	 constraint	 visualizer	 allows	 the	 joint	 to	 generate	 visualization	 information	 using	 the
PxConstraintVisualizer	 interface.	 The	 functionality	 of	 this	 interface	 is	 somewhat	 biased
towards	the	standard	joints;	examples	of	its	use	can	be	found	in	the	extensions	library.

Data	Management

Next,	define	 the	class	which	 lets	PhysX	manage	the	 joint.	This	class	should	 inherit	 from
the	PxConstraintConnector	interface.

To	create	a	joint,	call	PxPhysics::createConstraint.	The	arguments	to	this	function	are	the
constrained	 actors,	 the	 connector	 object,	 the	 shader	 table,	 and	 the	 size	 of	 the	 joint's
constant	block.	The	return	value	is	a	pointer	to	PxConstraint	object.

PxConstraintConnector	has	a	number	of	data	management	callbacks:

virtual	void*											prepareData();

virtual	void												onConstraintRelease();

virtual	void												onComShift(PxU32	actor);

virtual	void												onOriginShift(const	PxVec3&	shift);

virtual	void*											getExternalReference(PxU32&	typeID);

These	 functions	 are	 usually	 boilerplate;	 sample	 implementations	 can	 be	 found	 for	 the
joints	in	the	extensions	library:

The	prepareData()	function	requests	a	pointer	to	the	joint	constant	block,	and	allows
the	joint	to	update	any	state	caches	etc.	When	the	function	returns,	the	scene	makes
an	 internal	 copy	 of	 this	 data,	 so	 that	 the	 joint	 may	 be	 modified	 during	 simulation
without	race	conditions.	The	function	is	called	at	the	start	of	the	simulation	step	after
the	 joint	 is	 inserted	 into	the	scene,	and	on	a	subsequent	simulation	step	 if	PhysX	is
informed	that	 the	 joint's	state	has	changed.	To	 inform	PhysX	that	 the	 joint	state	has
changed,	call	PxConstraint::markDirty().
onConstraintRelease()	 is	 associated	 with	 joint	 deletion.	 To	 delete	 a	 joint,	 call



PxConstraint::release()	on	the	constraint.	When	it	is	safe	to	destroy	the	joint	(because
no	 internal	 references	are	being	held	by	currently	executing	simulation	 threads)	 the
constraint	code	will	call	PxConstraint::onConstraintRelease().	This	function	can	safely
run	the	destructor	and	release	the	joint's	memory	etc.
onComShift()	is	called	when	the	application	calls	setCMassLocalPose()	on	one	of	the
actors	 connected	 by	 the	 joint.	 This	 is	 provided	 because	 the	 solver	 preparation	 and
projection	functions	are	defined	using	the	frame	of	the	underlying	rigid	body,	but	the
joint	configuration	is	typically	defined	in	terms	of	the	actors.
onOriginShift()	 is	 called	 when	 the	 application	 shifts	 the	 origin	 of	 a	 scene.	 This	 is
necessary	 because	 some	 joints	 may	 have	 a	 NULL	 actor,	 signifying	 that	 they	 are
attached	to	the	world	frame.
getExternalReference()	 is	 used	 by	 PhysX	 to	 report	 simulation	 events	 involving
constraints,	 particularly	 breakage.	 The	 returned	 pointer	 is	 passed	 directly	 to	 the
application	in	the	event	callback,	along	with	the	typeID	which	the	application	can	use
in	order	to	cast	the	pointer	to	the	appropriate	type.	The	typeID	should	be	distinct	for
each	custom	joint	type,	and	different	from	any	of	the	values	in	PxJointConcreteType.
If	 the	 joint	also	 implements	 the	PxBase	 interface,	use	 the	concrete	 type	value	 from
PxBase	for	the	typeID.
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Articulations
An	articulation	 is	a	 single	actor	 comprising	a	set	of	 links	 (each	of	which	behaves	 like	a
rigid	 body)	 connected	 together	 with	 special	 joints.	 Every	 articulation	 has	 a	 tree-like
structure	-	so	there	can	be	no	loops	or	breaks.	Their	primary	use	is	modelling	physically
actuated	characters.	They	support	higher	mass	ratios,	more	accurate	drive	models,	have
better	dynamic	 stability	and	a	more	 robust	 recovery	 from	 joint	 separation	 than	standard
PhysX	joints.	However,	they	are	considerably	more	expensive	to	simulate.

Although	 articulations	 do	 not	 directly	 build	 on	 joints,	 they	 use	 very	 similar	 configuration
mechanisms.	In	this	section	we	assume	familiarity	with	PhysX	joints.



Creating	an	Articulation

To	create	an	articulation,	first	create	the	articulation	actor	without	links:

PxArticulation*	articulation	=	physics.createArticulation();

Then	add	links	one	by	one,	each	time	specifying	a	parent	link	(NULL	for	the	parent	of	the
initial	link),	and	the	pose	of	the	new	link:

PxArticulationLink*	link	=	articulation->createLink(parent,	linkPose

PxRigidActorExt::createExclusiveShape(*link,	linkGeometry,	material

PxRigidBodyExt::updateMassAndInertia(*link,	1.0f);

Articulation	links	have	a	restricted	subset	of	the	functionality	of	rigid	bodies.	They	may	not
be	 kinematic,	 and	 they	 do	 not	 support	 damping,	 velocity	 clamping,	 or	 contact	 force
thresholds.	Sleep	state	and	solver	iteration	counts	are	properties	of	the	entire	articulation
rather	than	the	individual	links.

Each	time	a	link	is	created	beyond	the	first,	a	PxArticulationJoint	is	created	between	it	and
its	parent.	Specify	the	joint	frames	for	each	joint,	in	exactly	the	same	way	as	for	a	PxJoint:

PxArticulationJoint*	joint	=	link->getInboundJoint();

joint->setParentPose(parentAttachment);

joint->setChildPose(childAttachment);

Finally,	add	the	articulation	to	the	scene:

scene.addArticulation(articulation);



Articulation	Joints

The	 only	 form	 of	 articulation	 joint	 currently	 supported	 is	 an	 anatomical	 joint,	 whose
properties	 are	 similar	 to	 D6	 joint	 configured	 for	 a	 typical	 rag	 doll	 (see	
Specifically,	 the	 joint	 is	a	spherical	 joint,	with	angular	drive,	a	 twist	 limit	around	the	child
joint	frame's	x-axis,	and	an	elliptical	swing	cone	limit	around	the	parent	joint	frame's	x-axis.
The	 configuration	 of	 these	 properties	 is	 very	 similar	 to	 a	 D6	 or	 spherical	 joint,	 but	 the
options	provided	are	slightly	different.

The	swing	 limit	 is	a	hard	elliptical	cone	 limit	which	does	not	support	spring	or	 restitution
from	movement	perpendicular	 to	 the	 limit	surface.	You	can	set	 the	 limit	ellipse	angle	as
follows:

joint->setSwingLimit(yAngle,	zAngle);

for	 the	 limit	 angles	 around	 y	 and	 z.	 Unlike	 the	 PxJoint	 cone	 limit	 the	 limit	 provides	 a
tangential	spring	 to	 limit	movement	of	 the	axis	along	 the	 limit	surface.	Once	configured,
enable	the	swing	limit:

joint->setSwingLimitEnabled(true);

The	twist	limit	allows	configuration	of	upper	and	lower	angles:

joint->setTwistLimit(lower,	upper);

and	again	you	must	explicitly	enable	it:

joint->setTwistLimitEnabled(true);

As	usual	with	joint	limits,	it	is	good	practice	to	use	a	sufficient	limit	contactDistance	value
that	the	solver	will	start	to	enforce	the	limit	before	the	limit	threshold	is	exceeded.

Articulation	 joints	are	not	breakable,	and	it	 is	not	possible	to	retrieve	the	constraint	 force
applied	at	the	joint.



Driving	an	Articulation

Articulations	 are	 driven	 through	 joint	 acceleration	 springs.	 You	 can	 set	 an	 orientation
target,	 an	 angular	 velocity	 target,	 and	 spring	 and	 damping	 parameters	 that	 control	 how
strongly	the	joint	drives	towards	the	target.	You	can	also	set	compliance	values,	indicating
how	 strongly	 a	 joint	 resists	 acceleration.	 A	 compliance	 near	 zero	 indicates	 very	 strong
resistance,	and	a	compliance	of	1	indicates	no	resistance.

Articulations	are	driven	in	two	phases.	First	the	joint	spring	forces	are	applied	(we	use	the
term	 internal	 forces	 for	 these)	and	 then	any	external	 forces	such	as	gravity	and	contact
forces.	You	may	supply	different	compliance	values	at	each	joint	for	each	phase.

Note	 that	with	 joint	acceleration	springs,	 the	 required	strength	of	 the	spring	 is	estimated
using	just	the	mass	of	the	two	bodies	connected	by	the	joint.	By	contrast,	articulation	drive
springs	account	for	the	masses	of	all	the	bodies	in	the	articulation,	and	any	stiffness	from
actuation	 at	 other	 joints.	 This	 estimation	 is	 an	 iterative	 process,	 controlled	 using	 the
externalDriveIterations	and	internalDriveIterations	properties	of	the	PxArticulation	class.

Instead	 of	 setting	 the	 target	 quaternion	 for	 the	 joint	 drive,	 it	 is	 possible	 to	 set	 the
orientation	error	term	directly	as	a	rotation	vector.	The	value	is	set	as	the	imaginary	part	of
the	target	quaternion,	with	the	real	part	set	to	0.

joint->setDriveType(PxArticulationJointDriveType::eERROR);	joint-
>setTargetOrientation(PxQuat(error.x,	error.y,	error.z,	0));

This	allows	the	spring	to	be	driven	with	a	larger	positional	error	than	can	be	generated
by	 the	 difference	 between	 2	 quaternions.	Obtain	 the	 same	 behavior	 as	 with	 target
quaternions	by	computing	the	error	from	the	target	quaternion,	link	frames,	and	joint
frames	as	follows:

PxTransform	cA2w	=	parentPose.transform(joint.parentPose);										

PxTransform	cB2w	=	childPose.transform(joint.childPose);												

transforms.cB2cA	=	transforms.cA2w.transformInv(transforms.cB2w

if(transforms.cB2cA.q.w<0)																																										

				transforms.cB2cA.q	=	-transforms.cB2cA.q;



//	rotation	vector	from	relative	transform	to	drive	pose

PxVec3	error	=	log(j.targetPosition	*	cB2cA.q.getConjugate());



Articulation	Projection

When	 any	 of	 the	 joints	 in	 an	 articulation	 separate	 beyond	 a	 specified	 threshold,	 the
articulation	is	projected	back	together	automatically.	Projection	is	an	iterative	process,	and
the	 PxArticulation	 functions	 PxArticulation::setSeparationTolerance()
PxArticulation::setMaxProjectionIterations()	control	when	projection	occurs	and	trade	cost
for	robustness.



Articulations	and	Sleeping

Like	rigid	dynamic	objects,	articulations	are	also	put	into	a	sleep	state	if	their	energy	falls
below	 a	 certain	 threshold	 for	 a	 period	 of	 time.	 In	 general,	 all	 the	 points	 in	 the	 section
Sleeping	apply	to	articulations	as	well.	The	main	difference	is	that	articulations	can	only	go
to	sleep	if	each	individual	articulation	link	fulfills	the	sleep	criteria.
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Scene	Origin
The	further	away	objects	move	from	the	origin,	the	larger	the	chance	to	suffer	from	floating
point	 precision	 issues.	 This	 can	 cause	 troubles	 especially	 in	 scenarios	 with	 big	 game
worlds.	To	avoid	 these	problems,	a	straightforward	solution	seems	 to	 teleport	all	objects
towards	the	origin	in	certain	intervals.	However,	this	is	not	only	cumbersome	but	can	also
be	pretty	expensive	due	to	the	invalidation	of	cached	data	and	persistent	state.	To	address
some	of	these	issues,	PhysX	offers	an	API	to	shift	the	origin	of	a	scene.



Shifting	The	Scene	Origin

The	following	method	will	shift	the	origin	of	a	scene	by	a	translation	vector:

PxScene::shiftOrigin(const	PxVec3&	shift)

The	 positions	 of	 all	 objects	 in	 the	 scene	 and	 the	 corresponding	 data	 structures	will	 get
adjusted	 to	 reflect	 the	 new	 origin	 location	 (basically,	 the	 shift	 vector	 will	 get	 subtracted
from	all	object	positions).	The	intended	use	pattern	for	this	API	 is	to	shift	 the	origin	such
that	 object	 positions	 move	 closer	 towards	 zero.	 Please	 note	 that	 it	 is	 the	 user's
responsibility	 to	 keep	 track	 of	 the	 summed	 total	 origin	 shift	 and	 adjust	 all	 input/output
to/from	 PhysX	 accordingly.	 Even	 though	 this	 method	 preserves	 some	 of	 the	 internally
cached	data,	it	is	still	an	expensive	operation	and	we	recommend	to	use	it	only	in	the	case
where	distance	related	precision	issues	may	arise	in	areas	far	from	the	origin.	If	extension
modules	of	PhysX	are	used	 like	 the	character	controller	or	vehicle	 library,	 then	 it	will	be
necessary	to	propagate	the	scene	shift	to	those	modules	as	well.	Please	refer	to	the	API
documentation	of	these	modules	for	details.
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GPU	Rigid	Bodies



Introduction

GPU	Rigid	Bodies	 is	a	new	 feature	 introduced	 in	PhysX	3.4.	 It	 supports	 the	entire	 rigid
body	pipeline	 feature-set	but	currently	does	not	support	articulations.	The	state	of	GPU-
accelerated	rigid	bodies	can	be	modified	and	queried	using	the	exact	same	API	as	used	to
modify	 and	 query	 CPU	 rigid	 bodies.	 GPU	 rigid	 bodies	 can	 interact	 with	 clothing	 and
particles	in	the	same	way	that	CPU	rigid	bodies	can	and	can	easily	be	used	in	conjunction
with	character	controllers	(CCTs)	and	vehicles.



Using	GPU	Rigid	Bodies

GPU	rigid	bodies	are	no	more	difficult	to	use	than	CPU	rigid	bodies.	GPU	rigid	bodies	use
the	exact	same	API	and	same	classes	as	CPU	rigid	bodies.	GPU	rigid	body	acceleration
is	enabled	on	a	per-scene	basis.	 If	enabled,	all	 rigid	bodies	occupying	 the	scene	will	be
processed	by	the	GPU.	This	feature	is	implemented	in	CUDA	and	requires	SM3.0	(Kepler)
or	later	compatible	GPU.	If	no	compatible	device	is	found,	simulation	will	fall	back	onto	the
CPU	and	corresponding	error	messages	will	be	provided.

This	feature	is	split	into	two	components:	rigid	body	dynamics	and	broad	phase.	These	are
enabled	 using	 PxSceneFlag::eENABLE_GPU_DYNAMICS	 and	 by	 setting
PxSceneDesc::broadphaseType	 to	 PxBroadPhaseType::eGPU	 respectively.	
properties	are	immutable	properties	of	the	scene.	In	addition,	you	must	initialize	the	CUDA
context	 manager	 and	 set	 the	 GPU	 dispatcher	 on	 the	 PxSceneDesc.	 This	 is	 also	 a
requirement	 to	 make	 use	 of	 GPU-accelerated	 particles	 or	 clothing.	 A	 snippet
demonstrating	how	to	enable	GPU	rigid	body	simulation	is	provided	in	SnippetHelloGRB.
The	code	example	below	serves	as	a	brief	reference:

PxCudaContextManagerDesc	cudaContextManagerDesc;

gCudaContextManager	=	PxCreateCudaContextManager(*gFoundation,	cudaContextManagerDesc

PxSceneDesc	sceneDesc(gPhysics->getTolerancesScale());

sceneDesc.gravity	=	PxVec3(0.0f,	-9.81f,	0.0f);

gDispatcher	=	PxDefaultCpuDispatcherCreate(4);

sceneDesc.cpuDispatcher	=	gDispatcher;

sceneDesc.filterShader		=	PxDefaultSimulationFilterShader;

sceneDesc.gpuDispatcher	=	gCudaContextManager->getGpuDispatcher();

sceneDesc.flags	|=	PxSceneFlag::eENABLE_GPU_DYNAMICS;

sceneDesc.broadPhaseType	=	PxBroadPhaseType::eGPU;

gScene	=	gPhysics->createScene(sceneDesc);

Enabling	 GPU	 rigid	 body	 dynamics	 turns	 on	 GPU-accelerated	 contact	 generation,
shape/body	management	and	the	GPU-accelerated	constraint	solver.	This	accelerates	the
majority	of	the	discrete	rigid	body	pipeline.



Turning	 on	 GPU	 broad	 phase	 replaces	 the	 CPU	 broad	 phase	 with	 a	 GPU-accelerated
broad	phase.

Each	can	be	enabled	independently	so,	for	example,	you	may	enable	GPU	broad	phase
with	CPU	 rigid	body	dynamics	 ,	CPU	broad	phase	 (either	SAP	or	MBP)	with	GPU	 rigid
body	dynamics	or	combine	GPU	broad	phase	with	GPU	rigid	body	dynamics.



What	is	GPU	accelerated?

The	GPU	rigid	body	feature	provides	GPU-accelerated	implementations	of:

Broad	Phase
Contact	generation
Shape	and	body	management
Constraint	solver

All	other	features	are	performed	on	the	CPU.

There	are	several	caveats	to	GPU	contact	generation.	These	are	as	follows:

GPU	 contact	 generation	 supports	 only	 boxes,	 convex	 hulls,	 triangle	 meshes	 and
heightfields.	Any	spheres,	capsules	or	planes	will	have	contact	generation	 involving
those	shapes	processed	on	the	CPU,	rather	than	GPU.
Convex	hulls	require	PxCookingParam::buildGRBData	to	be	set	to	true	to	build	data
required	 to	 perform	 contact	 generation	 on	 the	 GPU.	 If	 a	 hull	 with	 more	 than	 64
vertices	or	more	than	32	vertices	per-face	is	used,	it	will	be	processed	on	the	CPU.	If
the	PxConvexFlag::eGPU_COMPATIBLE	flag	is	used	when	the	convex	hull	is	created
the	limits	are	applied	to	ensure	the	resulting	hull	can	be	used	on	GPU.
Triangle	meshes	 require	PxCookingParam::buildGRBData	 to	 be	 set	 to	 true	 to	 build
data	required	to	process	the	mesh	on	the	GPU.	If	this	flag	is	not	set	during	cooking,
the	GPU	data	 for	 the	mesh	will	be	absent	and	any	contact	generation	 involving	 this
mesh	will	be	processed	on	CPU.
Any	pairs	requesting	contact	modification	will	be	processed	on	the	CPU.
PxSceneFlag::eENABLE_PCM	must	 be	 enabled	 for	 GPU	 contact	 generation	 to	 be
performed.	This	 is	 the	only	 form	of	 contact	generation	 implemented	on	 the	GPU.	 If
eENABLE_PCM	 is	 not	 raised,	 contact	 generation	will	 be	 processed	 on	CPU	 for	 all
pairs	using	the	non	distance-based	legacy	contact	generation.



Irrespective	of	whether	contact	generation	for	a	given	pair	is	processed	on	CPU	or	GPU,
the	GPU	solver	will	process	all	pairs	with	contacts	that	request	collision	response	in	their
filter	shader.

As	 mentioned	 above,	 GPU	 rigid	 bodies	 currently	 do	 not	 support	 articulations.	 If
eENABLE_GPU_DYNAMICS	is	enabled	on	the	scene,	any	attempts	to	add	an	articulation
to	the	scene	will	result	in	an	error	message	being	displayed	and	the	articulation	will	not	be
added	to	the	scene.

The	GPU	 rigid	 body	 solver	 provides	 full	 support	 for	 joints	 and	 contacts.	 However,	 best
performance	is	achieved	using	D6	joints	because	D6	joints	are	natively	supported	on	the
GPU,	i.e.	the	full	solver	pipeline	from	prep	to	solve	is	implemented	on	the	GPU.	Other	joint
types	are	supported	by	 the	GPU	solver	but	 their	 joint	shaders	are	run	on	the	CPU.	This
will	incur	some	additional	host-side	performance	overhead	compared	to	D6	joints.



Tuning

Unlike	 CPU	 PhysX,	 the	 GPU	 rigid	 bodies	 feature	 is	 not	 able	 to	 dynamically	 grow	 all
buffers.	 Therefore,	 it	 is	 necessary	 to	 provide	 some	 fixed	 buffer	 sizes	 for	 the	GPU	 rigid
body	 feature.	 If	 insufficient	 memory	 is	 available,	 the	 system	 will	 issue	 warnings	 and
discard	contacts/constraints/pairs,	which	means	that	behavior	may	be	adversely	affected.
The	following	buffers	are	adjustable	in	PxSceneDesc::gpuDynamicsConfig:

struct	PxgDynamicsMemoryConfig

{

								PxU32	constraintBufferCapacity;	//!<	Capacity	of	constraint	buffer	allocated	in	GPU	global	memory

								PxU32	contactBufferCapacity;				//!<	Capacity	of	contact	buffer	allocated	in	GPU	global	memory

								PxU32	tempBufferCapacity;							//!<	Capacity	of	temp	buffer	allocated	in	pinned	host	memory.

								PxU32	contactStreamCapacity;				//!<	Capacity	of	contact	stream	buffer	allocated	in	pinned	host	memory.	This	is	double-buffered	so	total	allocation	size	=	2*	contactStreamCapacity.

								PxU32	patchStreamCapacity;						//!<	Capacity	of	the	contact	patch	stream	buffer	allocated	in	pinned	host	memory.	This	is	double-buffered	so	total	allocation	size	=	2	*	patchStreamCapacity.

								PxU32	forceStreamCapacity;						//!<	Capacity	of	force	buffer	allocated	in	pinned	host	memory.

								PxU32	heapCapacity;													//!<	Initial	capacity	of	the	GPU	and	pinned	host	memory	heaps.	Additional	memory	will	be	allocated	if	more	memory	is	required.

								PxU32	foundLostPairsCapacity;			//!<	Capacity	of	found	and	lost	buffers	allocated	in	GPU	global	memory.	This	is	used	for	the	found/lost	pair	reports	in	the	BP.

								PxgDynamicsMemoryConfig()	:

																constraintBufferCapacity(32	*	1024	*	1024),

																contactBufferCapacity(24	*	1024	*	1024),

																tempBufferCapacity(16	*	1024	*	1024),

																contactStreamCapacity(6	*	1024	*	1024),

																patchStreamCapacity(5	*	1024	*	1024),

																forceStreamCapacity(1	*	1024	*	1024),

																heapCapacity(64	*	1024	*	1024),

																foundLostPairsCapacity(256	*	1024)

								{

								}

};

The	 default	 values	 are	 generally	 sufficient	 for	 scenes	 simulating	 approximately	 10,000
rigid	bodies.

constraintBufferCapacity	defines	the	total	amount	of	memory	that	can	be	occupied	by
constraints	 in	 the	 solver.	 If	 more	 memory	 is	 required,	 a	 warning	 is	 issued	 and	 no
further	constraints	will	be	created.



contactBufferCapacity	 defines	 the	 size	 of	 a	 temporary	 contact	 buffer	 used	 in	 the
constraint	solver.	If	more	memory	is	required,	a	warning	is	issued	and	contacts	will	be
dropped.
tempBufferCapacity	 defines	 the	 size	 of	 a	 buffer	 used	 for	 miscellaneous	 transient
memory	allocations	used	in	the	constraint	solver.
contactStreamCapacity	 defines	 the	 size	 of	 a	 buffer	 used	 to	 store	 contacts	 in	 the
contact	stream.	This	data	is	allocated	in	pinned	host	memory	and	is	double-buffered.
If	 insufficient	 memory	 is	 allocated,	 a	 warning	 will	 be	 issued	 and	 contacts	 will	 be
dropped.
patchStreamCapacity	defines	the	size	of	a	buffer	used	to	store	contact	patches	in	the
contact	stream.	This	data	is	allocated	in	pinned	host	memory	and	is	double-buffered.
If	 insufficient	 memory	 is	 allocated,	 a	 warning	 will	 be	 issued	 and	 contacts	 will	 be
dropped.
forceStreamCapacity	defines	the	size	of	a	buffer	used	to	report	applied	contact	forces
to	 the	 user.	 This	 data	 is	 allocated	 in	 pinned	 host	memory.	 If	 insufficient	memory	 is
allocated,	a	warning	will	be	issued	and	contacts	will	be	dropped.
heapCapacity	 defines	 the	 initial	 size	 of	 the	 GPU	 and	 pinned	 host	 memory	 heaps.
Additional	memory	will	be	allocated	if	more	memory	is	required.	The	cost	of	physically
allocating	memory	can	be	relatively	high	so	a	custom	heap	allocator	is	used	to	reduce
these	costs.
foundLostPairsCapacity	defines	the	maximum	number	of	 found	or	 lost	pairs	 that	 the
GPU	broad	phase	can	produce	in	a	single	frame.	This	does	not	limit	the	total	number
of	pairs	but	only	limits	the	number	of	new	or	lost	pairs	that	can	be	detected	in	a	single
frame.	If	more	pairs	are	detected	or	lost	in	a	frame,	an	error	is	emitted	and	pairs	will
be	dropped	by	the	broad	phase.



Performance	Considerations

GPU	 rigid	 bodies	 can	 provide	 extremely	 large	 performance	 advantages	 over	CPU	 rigid
bodies	 in	 scenes	 with	 several	 thousand	 active	 rigid	 bodies.	 However,	 there	 are	 some
performance	considerations	to	be	taken	into	account.

GPU	rigid	bodies	currently	only	accelerate	contact	generation	involving	convex	hulls	and
boxes	(against	convex	hulls,	boxes,	triangle	meshes	and	heighfields).	If	you	make	heavy
use	of	other	shapes,	e.g.	capsules	or	spheres,	contact	generation	involving	these	shapes
will	only	be	processed	on	CPU.

D6	joints	will	provide	best	performance	when	used	with	GPU	rigid	bodies.	Other	joint	types
will	 be	 partially	GPU-accelerated	 but	 the	 performance	 advantages	will	 be	 less	 than	 the
performance	advantage	exhibited	by	D6	joints.

Convex	hulls	with	more	than	64	vertices	or	with	more	than	32	vertices	per-face	will	have
their	 contacts	 processed	 by	 the	CPU	 rather	 than	 the	GPU,	 so,	 if	 possible,	 keep	 vertex
counts	within	 these	 limits.	Vertex	 limits	can	be	defined	 in	cooking	 to	ensure	 that	cooked
convex	hulls	do	not	exceed	these	limits.

If	your	application	makes	heavy	use	of	contact	modification,	this	may	limit	the	number	of
pairs	that	have	contact	generation	performed	on	the	GPU.

Modifying	the	state	of	actors	forces	data	to	be	re-synced	to	the	GPU,	e.g.	transforms	for
actors	must	be	updated	if	the	application	adjusts	global	pose,	velocities	must	be	updated	if
the	application	modifies	the	bodies'	velocities	etc..	The	associated	cost	of	re-syncing	data
to	the	GPU	is	relatively	low	but	it	should	be	taken	into	consideration.

Features	such	as	joint	projection,	CCD	and	triggers	are	not	GPU	accelerated	and	are	still
processed	on	the	CPU.

nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



©	Copyright	2008-2017	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA
95050	U.S.A.	All	rights	reserved.



nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



Geometry	Queries



Introduction

This	chapter	describes	how	to	use	PhysX'	collision	 functionality	with	 individual	geometry
objects.	There	are	four	main	kinds	of	geometry	queries:

raycasts	("raycast	queries")	test	a	ray	against	a	geometry	object.
sweeps	("sweep	queries")	move	one	geometry	object	along	a	line	to	find	the	first	point
of	intersection	with	another	geometry	object.
overlaps	("overlap	queries")	determine	whether	two	geometry	objects	intersect.
penetration	depth	computations	("minimal	translational	distance	queries",	abbreviated
here	to	"MTD")	test	two	overlapping	geometry	objects	to	find	the	direction	along	which
they	can	be	separated	by	the	minimum	distance.

In	addition,	PhysX	provides	helpers	 to	 compute	 the	AABB	of	a	geometry	object,	 and	 to
compute	the	distance	between	a	point	and	a	geometry	object.

In	all	of	the	following	functions,	a	geometry	object	is	defined	by	its	shape	(a	
structure)	 and	 its	 pose	 (a	 PxTransform	 structure).	 All	 transforms	 and	 vectors	 are
interpreted	as	being	in	the	same	space,	and	the	results	are	also	returned	in	that	space.



Raycasts

A	raycast	query	traces	a	point	along	a	line	segment	until	it	hits	a	geometry	object.	PhysX
supports	raycasts	for	all	geometry	types.

The	following	code	illustrates	how	to	use	a	raycast	query:

PxRaycastHit	hitInfo;

PxU32	maxHits	=	1;

PxHitFlags	hitFlags	=	PxHitFlag::ePOSITION|PxHitFlag::eNORMAL|PxHitFlag

PxU32	hitCount	=	PxGeometryQuery::raycast(origin,	unitDir,

																																										geom,	pose,

																																										maxDist,

																																										hitFlags,

																																										maxHits,	&hitInfo);

The	arguments	are	interpreted	as	follows:

origin	is	the	start	point	of	the	ray.
unitDir	is	a	unit	vector	defining	the	direction	of	the	ray.
maxDist	 is	 the	maximum	distance	 to	search	along	 the	 ray.	 It	must	be	 in	 the	 [0,	 inf)
range.	If	the	maximum	distance	is	0,	a	hit	will	only	be	returned	if	the	ray	starts	inside	a
shape,	as	detailed	below	for	each	geometry.



geom	is	the	geometry	to	test	against.
pose	is	the	pose	of	the	geometry.
hitFlags	 specifies	 the	 values	 that	 should	 be	 returned	 by	 the	 query,	 and	 options	 for
processing	the	query.
maxHits	is	the	maximum	number	of	hits	to	return.
hitInfo	 specifies	 the	PxRaycastHit	 structure(s)	 into	which	 the	 raycast	 results	will	 be
stored.
The	 anyHit	 parameter	 is	 deprecated.	 It	 is	 equivalent	 to	 PxHitFlag::eMESH_ANY
which	should	be	used	instead.

The	 returned	 result	 is	 the	 number	 of	 intersections	 found.	 For	 each	 intersection,	 a
PxRaycastHit	is	populated.	The	fields	of	this	structure	are	as	follows:

PxRigidActor*			actor;

PxShape*								shape;

PxVec3										position;

PxVec3										normal;

PxF32											distance;

PxHitFlags						flags;

PxU32											faceIndex;

PxF32											u,	v;

Some	fields	are	optional,	and	the	flags	field	indicates	which	members	have	been	filled	with
result	values.	The	query	will	fill	fields	in	the	output	structure	if	the	corresponding	flags	were
set	in	the	input	-	for	example,	if	the	PxHitFlag::ePOSITION	is	set	in	the	input	hitFlags,	the
query	will	fill	in	the	PxRaycastHit::position	field,	and	set	the	PxHitFlag::ePOSITION
PxRaycastHit::flags.	 If	 the	 input	 flag	 is	not	set	 for	a	specific	member,	 the	result	structure
may	 or	 may	 not	 contain	 valid	 data	 for	 that	 member.	 Omitting	 the	
ePOSITION	flags	in	the	input	can	sometimes	result	in	faster	queries.

For	a	raycast	which	is	not	initially	intersecting	the	geometry	object,	the	fields	are	populated
as	follows	(optional	fields	are	listed	together	with	the	flag	that	controls	them):

actor	and	shape	are	not	filled	(these	fields	are	used	only	in	scene-level	raycasts,	see
Scene	Queries).



position	(PxHitFlag::ePOSITION)	is	the	position	of	the	intersection.
normal	(PxHitFlag::eNORMAL)	is	the	surface	normal	at	the	point	of	intersection.
distance	 (PxHitFlag::eDISTANCE)	 is	 the	 distance	 along	 the	 ray	 at	 which	 the
intersection	was	found.
flags	specifies	which	fields	of	the	structure	are	valid.
faceIndex	is	the	index	of	the	face	which	the	ray	hit.	For	triangle	mesh	and	height	field
intersections,	 it	 is	 a	 triangle	 index.	 For	 convex	 mesh	 intersections	 it	 is	 a	 polygon
index.	For	other	shapes	it	is	always	set	to	0xffffffff.
u	and	v	 (PxHitFlag::eUV)	 are	 the	barycentric	 coordinates	of	 the	 intersection.	These
fields	(and	the	flag)	are	supported	only	for	meshes	and	heightfields.

The	position	field	is	related	to	the	barycentric	coordinates	via	the	following	formula,	where
v0,	v1	and	v2	are	the	vertices	from	the	hit	triangle:

position	=	(1	-	u	-	v)*v0	+	u*v1	+	v*v2;

This	mapping	is	implemented	in	PxTriangle::pointFromUV().

See	Geometry	 for	details	of	how	 to	 retrieve	 face	and	vertex	data	 from	 triangle	meshes,
convex	meshes	and	height	fields	using	face	and	vertex	indices.

Exceptions	to	the	above	behavior	may	apply	if	a	ray	starts	inside	an	object,	in	which	case
PhysX	may	 not	 be	 able	 to	 compute	meaningful	 output	 values	 for	 some	 fields.	 In	 these
cases	the	field	will	remain	unmodified	and	the	corresponding	flag	will	not	be	set.	Specific
details	vary	by	geometry	type,	and	are	described	below.

The	exact	conditions	for	raycast	intersections	are	as	follows:

Raycasts	against	Spheres,	Capsules,	Boxes	and	Convex	Meshes

For	 solid	 objects	 (sphere,	 capsule,	 box,	 convex)	 at	most	 1	 result	 is	 returned.	 If	 the	 ray
origin	is	inside	a	solid	object:

the	reported	hit	distance	is	set	to	zero,	and	the	PxHitFlag::eDISTANCE



the	output.
the	 hit	 normal	 is	 set	 to	 be	 the	 opposite	 of	 the	 ray's	 direction,	 and	 the
PxHitFlag::eNORMAL	flag	is	set	in	the	output.
the	hit	impact	position	is	set	to	the	ray's	origin	and	the	PxHitFlag::ePOSITION
set	in	the	output.

If	the	start	or	end	point	of	a	ray	is	very	close	to	the	surface	of	the	object,	it	may	be	treated
as	being	on	either	side	of	the	surface.

Raycasts	against	Planes

For	raycasts,	a	plane	is	treated	as	an	infinite	single-sided	quad	that	includes	its	boundary
(note	that	this	is	not	the	same	as	for	overlaps).	At	most	one	result	 is	returned,	and	if	the
ray	 origin	 is	 behind	 the	 plane's	 surface,	 no	 hit	 will	 be	 reported	 even	 in	 case	 the	 ray
intersects	the	plane.

If	the	start	or	end	point	of	a	ray	is	very	close	to	the	plane,	it	may	be	treated	as	being	on
either	side	of	the	plane.

Raycasts	against	Triangle	Meshes

Triangle	meshes	are	treated	as	thin	triangle	surfaces	rather	than	solid	objects.	They	may
be	configured	to	return	either	an	arbitrary	hit,	the	closest	hit,	or	multiple	hits.

if	maxHits	is	1	and	PxHitFlag::eMESH_ANY	is	not	set,	the	query	will	return	the	closest
intersection.
if	maxHits	 is	1	and	PxHitFlag::eMESH_ANY	 is	set,	 the	query	will	 return	an	arbitrary
intersection.	Use	this	when	it	is	sufficient	to	know	whether	or	not	the	ray	hit	the	mesh,
e.g.	for	line-of-sight	queries	or	shadow	rays.
if	maxHits	is	greater	than	1,	the	query	will	return	multiple	intersections,	up	to	maxHits.
If	more	than	maxHits	 intersection	points	exist,	 there	 is	no	guarantee	that	 the	results
will	include	the	closest.	Use	this	for	e.g.	wall-piercing	bullets	that	hit	multiple	triangles,
or	where	 special	 filtering	 is	 required.	Note	 that	PxHitFlag::eMESH_MULTIPLE



be	used	in	this	case.

In	general	"any	hit"	queries	are	faster	than	"closest	hit"	queries,	and	"closest	hit"	queries
are	faster	than	"multiple	hits"	queries.

By	default,	back	 face	hits	 (where	 the	 triangle's	outward-facing	normal	has	a	positive	dot
product	with	 the	ray	direction)	are	culled,	and	so	for	any	triangle	hit	 the	reported	normal
will	have	a	negative	dot	product	with	the	ray	direction.	This	behavior	may	be	modified	by
the	 mesh	 instance's	 PxMeshGeometryFlag::eDOUBLE_SIDED	 flag	 and	 the	 query's
PxHitFlag::eMESH_BOTH_SIDES	flag:

if	 either	 PxMeshGeometryFlag::eDOUBLE_SIDED
PxHitFlag::eMESH_BOTH_SIDES	is	set,	culling	is	disabled.
if	PxMeshGeometryFlag::eDOUBLE_SIDED	 is	 set,	 the	 reported	 normal	 is	 reversed
for	a	back	face	hit.

For	example	a	 transparent	glass	window	could	be	modeled	as	a	double-sided	mesh,	so
that	 a	 ray	 would	 hit	 either	 side	 with	 the	 reported	 normal	 facing	 opposite	 to	 the	 ray
direction.	A	raycast	tracing	the	path	of	a	bullet	that	may	penetrate	the	front	side	of	a	mesh
and	emerge	from	the	back	could	use	eMESH_BOTH_SIDES	 to	 find	both	 front	and	back
facing	triangles	even	when	the	mesh	is	single-sided.

The	 following	 diagram	 shows	 what	 happens	 with	 different	 flags,	 for	 a	 single	 raycast
intersecting	a	mesh	in	several	places.



To	use	PxHitFlag::eMESH_BOTH_SIDES	for	selected	meshes	rather	than	all,	set	the	flag
inside	the	PxQueryFilterCallback.

If	the	start	or	end	point	of	a	ray	is	very	close	to	the	surface	of	a	triangle,	it	may	be	treated
as	being	on	either	side	of	the	triangle.

If	the	start	or	end	point	of	a	ray	is	very	close	to	the	surface	of	a	triangle,	it	may	be	treated
as	being	on	the	either	side	of	the	triangle.

Raycasts	against	Heightfields

Heightfields	are	 treated	 the	same	way	as	 triangle	meshes	with	normals	oriented	 (in
shape	space)	in	+y	direction	when	thickness	is	<=0	and	in	-y	direction	when	thickness
is	>0.
Double-sided	heightfields	are	treated	the	same	way	as	double	sided	triangle	meshes.





Overlaps

Overlap	 queries	 simply	 check	 whether	 two	 geometry	 objects	 overlap.	 One	 of	 the
geometries	must	be	a	box,	sphere,	capsule	or	convex,	and	the	other	may	be	of	any	type.

The	following	code	illustrates	how	to	use	an	overlap	query:

bool	isOverlapping	=	overlap(geom0,	pose0,	geom1,	pose1);

Overlaps	do	not	support	hit	flags	and	return	only	a	boolean	result.

A	 plane	 is	 treated	 as	 a	 solid	 half-space:	 that	 is,	 everything	 behind	 the	 plane	 is
considered	part	of	the	volume.
Triangle	meshes	are	treated	as	thin	triangle	surfaces	rather	than	solid	objects.
Heightfields	 are	 treated	 as	 triangle	 surface	 extruded	 by	 their	 thickness.	 Overlap
geometries	 that	 do	 not	 intersect	 with	 the	 heightfield	 surface	 but	 are	 within	 the
extruded	space	will	report	a	hit.

If	 more	 than	 a	 boolean	 result	 is	 needed	 for	 meshes	 and	 heightfields,	 use	 the
PxMeshQuery	API	instead	(see	PxMeshQuery).



Penetration	Depth

When	two	objects	are	intersecting,	PhysX	can	compute	the	minimal	distance	and	direction
by	 which	 the	 objects	 must	 be	 translated	 to	 separate	 them	 (this	 quantity	 is	 sometimes
referred	to	as	MTD,	for	minimum	translational	distance,	as	it	is	the	vector	of	minimal	length
by	 which	 translation	 will	 separate	 the	 shapes).	 One	 geometry	 object	 must	 be	 a	 box,
sphere,	capsule	or	convex	mesh,	and	the	other	may	be	of	any	type.

The	following	code	illustrates	how	to	use	a	penetration	depth	query:

bool	isPenetrating	=	PxGeometryQuery::computePenetration(direction

																																																									geom0,	pose0

																																																									geom1,	pose1

The	arguments	are	interpreted	as	follows:

direction	is	set	to	the	direction	in	which	the	first	object	should	be	translated	in	order	to
depenetrate	from	the	second.
distance	is	set	to	the	distance	by	which	the	first	object	should	be	translated	in	order	to
depenetrate	from	the	second.



geom0	is	the	first	geometry.
pose0	is	the	transform	of	the	first	geometry.
geom1	is	the	second	geometry.
pose2	is	the	transform	of	the	second	geometry.

The	function	returns	true	if	the	objects	are	penetrating,	in	which	case	it	sets	the	direction
and	depth	 fields.	 Translating	 the	 first	 object	 by	 the	 depenetration	 vector	D	=	 direction	 *
depth	 will	 separate	 the	 two	 objects.	 If	 the	 function	 returns	 true,	 the	 returned	 depth	 will
always	be	positive	or	 zero.	 If	 objects	do	not	overlap,	 the	 function	 returns	 false,	and	 the
values	of	the	direction	and	distance	fields	are	undefined.

For	simple	(convex)	shapes,	returned	results	are	accurate.

For	meshes	and	heightfields,	an	 iterative	algorithm	 is	used	and	dedicated	 functions	are
exposed	in	PxExtensions:

PxVec3	direction	=	PxComputeMeshPenetration(direction,	depth,

																																												geom,	geomPose,

																																												meshGeom,	meshPose,

																																												maxIter,	nb);

PxVec3	direction	=	PxComputeHeightFieldPenetration(direction,	depth

																																																			geom,	geomPose,

																																																			heightFieldGeom

																																																			maxIter,	nb);

Here,	maxIter	is	the	maximum	number	of	iterations	for	the	algorithm,	and	
output	argument	which	will	be	set	 to	 the	number	of	 iterations	performed.	 If	no	overlap	 is
detected,	nb	 is	set	to	zero.	The	code	will	attempt	at	most	maxIter	 iterations	but	may	exit
earlier	if	a	depenetration	vector	is	found.	Usually	maxIter	=	4	gives	good	results.

These	functions	only	compute	an	approximate	depenetration	vector,	and	work	best	when
the	amount	of	overlap	between	the	geometry	object	and	the	mesh/heightfield	is	small.	In
particular,	an	intersection	with	a	triangle	will	be	ignored	when	the	object's	center	is	behind
the	triangle,	and	if	this	holds	for	all	intersecting	triangles	then	no	overlap	is	detected,	and
the	functions	do	not	compute	an	MTD	vector.





Sweeps

A	sweep	query	 traces	one	geometry	object	 through	space	 to	 find	 the	 impact	point	on	a
second	 geometry	 object,	 and	 reports	 information	 concerning	 the	 impact	 point	 if	 one	 is
found.	PhysX	only	supports	sweep	queries	where	the	first	geometry	object	(the	one	that	is
traced	 through	 space)	 is	 a	 sphere,	 box,	 capsule	 or	 convex	 geometry.	 The	 second
geometry	object	may	be	of	any	type.

The	following	code	illustrates	how	to	use	a	sweep	query:

PxSweepHit	hitInfo;

PxHitFlags	hitFlags	=	PxHitFlag::ePOSITION|PxHitFlag::eNORMAL|PxHitFlag

PxReal	inflation	=	0.0f;

PxU32	hitCount	=	PxGeometryQuery::sweep(unitDir,	maxDist,

																																								geomToSweep,	poseToSweep,

																																								geomSweptAgainst,	poseSweptAgainst

																																								hitInfo,

																																								hitFlags,

																																								inflation);

The	arguments	are	interpreted	as	follows:



unitDir	is	a	unit	vector	defining	the	direction	of	the	sweep.
maxDist	is	the	maximum	distance	to	search	along	the	sweep.	It	must	be	in	the	[0,	inf)
range,	 and	 is	 clamped	 by	 SDK	 code	 to	 at	 most	PX_MAX_SWEEP_DISTANCE
sweep	of	length	0	is	equivalent	to	an	overlap	check.
geomToSweep	 is	 the	 geometry	 to	 sweep.	 Supported	 geometries	 are:	 box,	 sphere,
capsule	or	convex	mesh.
poseToSweep	is	the	initial	pose	of	the	geometry	to	sweep.
geomSweptAgainst	 is	 the	 geometry	 to	 sweep	 against	 (any	 geometry	 type	 can	 be
used	here).
poseSweptAgainst	is	the	pose	of	the	geometry	to	sweep	against.
hitInfo	is	the	returned	result.	A	sweep	will	return	at	most	one	hit.
hitFlags	 determines	 how	 the	 sweep	 is	 processed,	 and	which	 data	 is	 returned	 if	 an
impact	is	found.
inflation	 inflates	 the	 first	 geometry	 with	 a	 shell	 extending	 outward	 from	 the	 object
surface,	making	any	corners	rounded.	It	can	be	used	to	ensure	a	minimum	margin	of
space	is	kept	around	the	geometry	when	using	sweeps	to	test	whether	movement	is
possible.

As	with	raycasts,	fields	will	be	filled	in	the	output	structure	if	the	corresponding	flags	were
set	in	the	input	hitFlags.	The	fields	of	PxSweepHit	are	as	follows:

PxRigidActor*			actor;

PxShape*								shape;

PxVec3										position;

PxVec3										normal;

PxF32											distance;

PxHitFlags						flags;

PxU32											faceIndex;

actor	and	shape	are	not	filled	(these	fields	are	used	only	in	scene-level	sweeps,	see
Scene	Queries).
position	 (PxHitFlag::ePOSITION)	 is	 the	 position	 of	 the	 intersection.	When	 there	 are
multiple	impact	points,	such	as	two	boxes	meeting	face-to-face,	PhysX	will	select	one



point	arbitrarily.	More	detailed	information	for	meshes	or	height	fields	may	be	obtained
using	the	functions	in	PxMeshQuery.
normal	(PxHitFlag::eNORMAL)	is	the	surface	normal	at	the	point	of	impact.	It	is	a	unit
vector,	pointing	outwards	from	the	hit	object	and	backwards	along	the	sweep	direction
(in	the	sense	that	the	dot	product	between	the	sweep	direction	and	the	impact	normal
is	negative).
distance	 (PxHitFlag::eDISTANCE)	 is	 the	 distance	 along	 the	 ray	 at	 which	 the
intersection	was	found.
flags	specifies	which	fields	of	the	structure	are	valid.
faceIndex	is	the	index	of	the	face	hit	by	the	sweep.	This	is	a	face	from	the	hit	object,
not	 from	 the	 swept	 object.	 For	 triangle	 mesh	 and	 height	 field	 intersections,	 it	 is	 a
triangle	index.	For	convex	mesh	intersections	it	is	a	polygon	index.	For	other	shapes	it
is	 always	 set	 to	 0xffffffff.	 For	 convex	meshes	 the	 face	 index	 computation	 is	 rather
expensive.	The	 face	 index	computation	can	be	disabled	by	not	providing	 the	scene
query	 hit	 flag	 PxHitFlag::eFACE_INDEX.	 If	 needed	 the	 face	 index	 can	 also	 be
computed	externally	using	the	function	PxFindFaceIndex	which	 is	part	of	 the	PhysX
extensions	library.

Unlike	raycasts,	u,v	coordinates	are	not	supported	for	sweeps.

For	the	geometry	object	swept	against:

A	 plane	 is	 treated	 as	 a	 solid	 half-space:	 that	 is,	 everything	 behind	 the	 plane	 is
considered	part	of	the	volume	to	sweep	against.
The	same	backface-culling	 rules	as	 for	 raycasts	apply	 for	 sweeps,	with	 the	notable
difference	that	eMESH_MULTIPLE	is	not	supported.

Initial	Overlaps

Similarly	to	a	raycast	starting	inside	an	object,	a	sweep	may	start	with	the	two	geometries
initially	 intersecting.	 By	 default	 PhysX	 will	 detect	 and	 report	 the	 overlap.	 Use
PxSweepHit::hadInitialOverlap()	to	see	if	the	hit	was	generated	by	an	initial	overlap.



For	 triangle	 meshes	 and	 height	 fields,	 backface	 culling	 is	 performed	 before	 overlap
checks,	and	thus	no	initial	overlap	is	reported	if	a	triangle	is	culled.

Depending	 on	 the	 value	 of	 PxHitFlag::eMTD,	 PhysX	 may	 also	 calculate	 the	 MTD.	 If
PxHitFlag::eMTD	is	not	set:

the	 distance	 is	 set	 to	 zero,	 and	 the	 PxHitFlag::eDISTANCE	 flag	 is	 set	 in	 the
PxSweepHit	result	structure.
the	 normal	 is	 set	 to	 be	 the	 opposite	 of	 the	 sweep	 direction,	 and	 the
PxHitFlag::eNORMAL	flag	is	set	in	the	PxSweepHit	result	structure.
the	 position	 is	 undefined,	 and	 the	 PxHitFlag::ePOSITION	 flag	 is	
PxSweepHit	result	structure.
the	faceIndex	is	a	face	from	the	second	geometry	object.	For	a	heightfield	or	triangle
mesh,	it	is	the	index	of	the	first	overlapping	triangle	found.	For	other	geometry	types,
the	index	is	set	to	0xffffffff.

If	PxHitFlag::eMTD	is	set,	the	hit	results	are	defined	as	follows:

the	distance	is	set	to	the	penetration	depth,	and	the	PxHitFlag::eDISTANCE
in	the	PxSweepHit	result	structure.
the	normal	is	set	to	the	depenetration	direction,	and	the	PxHitFlag::eNORMAL
set	in	the	PxSweepHit	result	structure.
the	position	is	a	point	on	the	sweep	geometry	object	(i.e.	the	first	geometry	argument)
and	the	PxHitFlag::ePOSITION	flag	is	set	in	the	PxSweepHit	result	structure.
the	faceIndex	is	a	face	from	the	second	geometry	object:

For	triangle	meshes	and	heightfields	it	is	the	last	penetrated	triangle	found	during
the	last	iteration	of	the	depenetration	algorithm.
For	other	geometry	types,	the	index	is	set	to	0xffffffff.

This	 flag	 will	 incur	 additional	 processing	 overhead	 in	 the	 case	 of	 an	 initial	 overlap.	 In
addition,	the	following	restrictions	apply:



PxHitFlag::eMTD	 is	 incompatible	 with	 PxHitFlag::ePRECISE_SWEEP
PxHitFlag::eASSUME_NO_INITIAL_OVERLAP	 (see	 below).	Using	
in	conjunction	with	either	of	these	flags	will	result	 in	a	warning	being	issued	and	the
flag(s)	that	are	incompatible	with	PxHitFlag::eMTD	being	ignored.

Testing	 for	 initial	 overlaps	 sometimes	 uses	 a	 specialized	 code	 path	 and	 incurs	 a
performance	penalty.	 If	 is	 it	 possible	 to	guarantee	 that	 geometry	objects	are	not	 initially
overlapping,	 the	 check	 for	 overlaps	 can	 be	 suppressed	 with
PxHitFlag::eASSUME_NO_INITIAL_OVERLAP.	There	are	some	restrictions	on	the	use	of
this	flag	(also,	see	Pitfalls)

Using	 PxHitFlag::eASSUME_NO_INITIAL_OVERLAP	 flag	 when	 the	 geometries
initially	overlap	produces	undefined	behavior.
PxHitFlag::eASSUME_NO_INITIAL_OVERLAP	 in	 combination	 with	 zero	 sweep
distance	produces	a	warning	and	undefined	behavior.

Note: 	sweeps	with	PxHitFlag::eMTD	use	two	kinds	of	backface	culling	for	triangles.
First,	the	triangles	are	culled	based	on	sweep	direction	to	determine	whether	there	is	an
overlap.	If	an	overlap	is	detected,	they	are	further	culled	by	whether	the	centroid	is
behind	the	triangle,	and	if	no	triangles	are	found,	the	direction	will	be	set	opposite	to	the
sweep	direction	and	the	distance	to	0.

Note: 	in	most	cases,	translating	the	first	geometry	object	by	-normal*distance	will
separate	the	objects.	However,	an	iterative	depenetration	algorithm	is	used	to	find	the
MTD	for	triangle	meshes	and	height	fields,	and	the	MTD	result	may	not	provide
complete	depenetration	from	the	mesh	in	extreme	cases.	In	this	case	the	query	should
be	called	a	second	time	after	the	translation	has	been	applied.

Note: 	a	known	issue	in	PhysX	3.3	is	that	the	face	index	for	a	sweep	against	a	convex
mesh	is	undefined	when	the	eMTD	flag	is	not	set.

Precise	Sweeps



PxHitFlag::ePRECISE_SWEEP	 enables	 more	 accurate	 sweep	 code	 (by	 default	 a
potentially	 faster	but	 less	accurate	solution	 is	used).	The	ePRECISE_SWEEP
compatible	with	the	inflation	parameter,	or	with	the	flag	PxHitFlag::eMTD

Sweeps	against	Height	Fields

Height	fields	are	treated	as	thin	triangle	surfaces	rather	than	solid	objects.

Thickness	magnitude	has	no	effect	on	initial	overlap	detection	or	point	of	impact.

For	single-sided	height	fields	the	normal	of	the	hit	will	face	in	+y	local	space	direction
if	thickness	is	<	0	and	-y	when	thickness	is	>	0.

Height	 fields	 are	 treated	 as	 double	 sided	 if	 either	 one	 of	 eDOUBLE_SIDED	 or
eMESH_BOTH_SIDES	flags	are	used.

The	returned	hit	normal	will	always	face	the	sweep	direction.

eMESH_ANY	flag	has	no	effect.

ePRECISE_SWEEP	flag	has	no	effect.

Pitfalls

There	are	some	pitfalls	to	be	aware	of	when	using	sweeps:

Due	to	numerical	precision	issues,	incorrect	results	may	be	returned	when	the	objects
have	very	large	size	disparities.
Due	 to	 algorithmic	 differences,	 a	 sweep	query	may	detect	 a	 different	 set	 of	 initially
overlapping	shapes	than	an	overlap	query.	In	particular,	it	 is	not	sufficient	to	perform
an	 overlap	 check	 in	 order	 to	 determine	 the	 safety	 of	 the
PxHitFlag::eIGNORE_INITIAL_OVERLAP	 flag.	 Applications	 that	 need	 consistent
overlap/sweep/penetration	 depth	 information	 should	 use	 sweep	 checks	 with	 initial



overlap	testing	and	the	PxHitFlag::eMTD	flag.



Additional	PxGeometryQuery	functions

The	 following	 function	 computes	 the	 distance	 between	 a	 point	 and	 a	 geometry	 object.
Only	solid	objects	(box,	sphere,	capsule,	convex)	are	supported:

PxReal	dist	=	PxGeometryQuery::pointDistance(point,	geom,	pose,	closestPoint

closestPoint	is	an	optional	output	argument	which	returns	the	closest	point.

The	 following	 function	 computes	 the	 axis-aligned	 bounding	 box	 (AABB)	 enclosing	 a
geometry	object,	given	its	pose:



PxBounds3	bounds	=	PxGeometryQuery::getWorldBounds(geom,	pose,	inflation

The	bounding	box	 is	scaled	by	the	 inflation	value,	which	defaults	 to	1.01f	 if	not	explicitly
specified.



PxMeshQuery

PhysX	provides	additional	functionality	for	obtaining	multiple	results	for	triangle	mesh	and
height	 field	overlaps,	and	 for	 sweeping	against	arrays	of	 triangles.	Only	boxes,	 spheres
and	capsules	may	be	tested	against	meshes	or	heightfields	using	these	functions.

Mesh	Overlaps

The	 following	 code	 illustrates	 how	 to	 process	 the	 mesh	 triangles	 touching	 a	 given
spherical	volume:

PxU32	triangleIndexBuffer[bufferSize];

PxU32	startIndex	=	0;

bool	bufferOverflowOccured	=	false;

PxU32	nbTriangles	=	PxMeshQuery::findOverlapTriangleMesh(sphereGeom

																																																									meshGeom,

																																																									triangleIndexBuffer

																																																									startIndex

for(PxU32	i=0;	i	<	nbTriangles;	i++)

{

				PxTriangle	tri;

				PxU32	vertexIndices[3];

				PxMeshQuery::getTriangle(meshGeom,	meshPose,	triangleIndexBuffer

					...		//	process	triangle	info

}

The	findOverlapTriangleMesh	method	is	used	to	extract	the	indices	of	the	triangles:

sphereGeom	and	spherePose	specify	the	region	to	test	for	overlap.
meshGeom	and	meshPose	specify	the	mesh	and	its	pose.
triangleIndexBuffer	and	triangleSize	specify	the	output	buffer	and	its	size.
startIndex	 is	used	to	restart	 the	query	 if	 the	buffer	size	 is	exceeded.	 In	 this	case,	 to
query	for	more	triangles	set	this	parameter	to	the	number	retrieved	so	far.
bufferOverflowOccured	is	set	if	more	triangles	would	be	returned	from	the	query	than



would	fit	in	the	buffer.

Similar	query	functionality	exists	for	height	fields.

Sweeps	against	Triangles

Sometimes,	for	example,	when	using	the	mesh	overlap	API,	it	is	convenient	to	be	able	to
sweep	against	groups	of	triangles.	PhysX	provides	a	function	specifically	for	this	purpose,
with	the	following	signature:

bool	sweep(const	PxVec3&	unitDir,

											const	PxReal	distance,

											const	PxGeometry&	geom,

											const	PxTransform&	pose,

											PxU32	triangleCount,

											const	PxTriangle*	triangles,

											PxSweepHit&	sweepHit,

											PxHitFlags	hitFlags	=	PxHitFlag::eDEFAULT,

											const	PxU32*	cachedIndex	=	NULL,

											const	PxReal	inflation	=	0.0f,

											bool	doubleSided	=	false);

The	arguments	are	interpreted	as	follows:

unitDir,	distance,	geom	 and	pose	 function	 identically	 to	 the	 first	 four	 parameters	 of
PxGeometryQuery::sweep().	distance	is	clamped	to	PX_MAX_SWEEP_DISTANCE.
triangleCount	 is	 the	 number	 of	 triangles	 contained	 in	 the	 buffer	 against	 which	 to
sweep.
triangles	is	the	buffer	of	triangles.
hitFlags	specifies	the	required	information	in	the	output.
cachedIndex,	if	set,	specifies	the	index	of	a	triangle	to	test	first.	This	can	be	a	useful
optimization	when	repeatedly	sweeping	against	the	same	set	of	triangles.
inflation	functions	identically	to	the	inflation	parameter	of	PxGeometryQuery::sweep().
doubleSided	 indicates	 whether	 the	 input	 triangles	 are	 double-sided	 or	 not.	 This	 is
equivalent	 to	 the	 PxMeshGeometryFlag::eDOUBLE_SIDED	 flag	 -	 that	 is,	 it
suppresses	backface	culling,	and	for	any	hit	the	returned	normal	faces	opposite	to	the



sweep	direction	(see	Raycasts	against	Triangle	Meshes).

This	function	has	extra	limitations	compared	to	the	other	sweep	queries:

the	geometry	type	must	be	either	a	sphere,	a	capsule	or	a	box.	Convex	geometry	is
not	supported.
the	 function	 returns	 a	 single	 hit.	 Multiple	 hits	 (and	 in	 particular
PxHitFlag::eMESH_MULTIPLE)	are	not	supported.
The	function	always	returns	the	closest	hit.
The	 only	 supported	 flags	 are	 PxHitFlag::eDEFAULT,
PxHitFlag::eASSUME_NO_INITIAL_OVERLAP,	 PxHitFlag::ePRECISE_SWEEP,
PxHitFlag::eMESH_BOTH_SIDES	and	PxHitFlag::eMESH_ANY.

The	function	tests	each	input	triangle	in	the	order	they	are	given.	By	default,	the	function
will	 test	 all	 triangles	 and	 return	 the	 closest	 sweep	 hit	 (if	 a	 hit	 has	 been	 found).	 If
PxHitFlag::eMESH_ANY	is	used,	the	function	will	return	as	soon	as	a	hit	is	found	(skipping
the	 remaining	 untested	 triangles).	 This	 flag	 can	 also	 be	 used	 to	 emulate
PxHitFlag::eMESH_MULTIPLE,	 by	 calling	 the	 function	 repeatedly	 with
PxHitFlag::eMESH_ANY,	 using	 as	 a	 starting	 point	 the	 previously	 returned	 hit	 triangle
(whose	index,	between	0	and	'triangleCount',	is	available	in	sweepHit.faceIndex).
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Spatial	Queries
Applications	commonly	need	to	efficiently	query	volumes	in	space	or	trace	rays	or	moving
objects	 through	space	 to	determine	what	might	be	 there.	PhysX	supports	 two	 interfaces
for	this,	one	for	objects	already	in	a	scene,	and	one	for	querying	against	sets	of	arbitrary
AABBs.	The	scene	query	system	is	discussed	in	Scene	Queries.



PxSpatialIndex

PxSpatialIndex	is	a	BVH	data	structure	that	allows	spatial	queries	to	be	performed	without
the	 need	 to	 instantiate	 a	 PxScene.	 It	 supports	 insertion,	 removal	 and	 updating	 of	 any
objects	defining	a	bounding	box,	and	raycasts,	sweeps,	and	overlap	queries	against	those
bounds.

Spatial	 index	 has	 been	 marked	 as	 deprecated	 in	 3.4	 and	 will	 be	 removed	 in	 future
releases.

SnippetSpatialIndex	shows	an	example	of	how	to	use	this	class.

PxSpatialIndex	has	no	internal	locking,	and	there	are	special	considerations	when	using	it
from	multiple	threads.	Query	operations	(marked	const	in	the	interface)	must	not	be	issued
in	parallel	with	update	(non-const)	operations,	or	update	operations	 in	parallel	with	each
other.	 When	 issuing	 query	 operations	 in	 parallel,	 it	 is	 important	 to	 be	 aware	 that
PxSpatialIndex	defers	some	updates	to	its	internal	data	structures	until	a	query	is	issued.
In	a	single-threaded	context	this	does	not	affect	correctness	or	safety,	but	when	querying
from	 multiple	 threads	 simultaneously	 the	 internal	 updates	 may	 cause	 data	 hazards.	 In
order	 to	 avoid	 these,	 call	 the	 flush()	 method	 to	 force	 the	 updates	 to	 be	 processed
immediately.	 Between	 a	 call	 to	 flushUpdates()	 and	 any	 subsequent	 update	 operation,
queries	may	be	safely	issued	in	parallel.

A	query	against	a	PxSpatialIndex	structure	will	 result	 in	a	callback	for	each	AABB	hit	by
the	 query,	 allowing	 filtering	 or	 precise	 intersection	 as	 desired.	 The	 methods	 in	 the
PxGeometryQuery	 class	 can	 be	 used	 to	 perform	 these	 intersection	 tests.	 Results	 will
typically	 be	 in	 approximately	 sorted	 order,	 and	when	 looking	 for	 the	 closest	 object	 in	 a
raycast	or	sweep	query	against	PxSpatialIndex,	a	useful	optimization	is	to	clip	the	length
of	the	query	inside	the	callback.	For	example,	in	SnippetSpatialIndex:

PxAgain	onHit(PxSpatialIndexItem&	item,	PxReal	distance,	PxReal&	shrunkDistance

{

				PX_UNUSED(distance);

				Sphere&	s	=	static_cast<Sphere&>(item);

				PxRaycastHit	hitData;



				//	the	ray	hit	the	sphere's	AABB,	now	we	do	a	ray-sphere	intersection	test	to	find	out	if

				//	the	ray	hit	the	sphere

				PxU32	hit	=	PxGeometryQuery::raycast(position,	direction,

																																									PxSphereGeometry(s.radius

																																									1e6,	PxHitFlag::eDEFAULT,

																																									1,	&hitData);

				//	if	the	raycast	hit	and	it's	closer	than	what	we	had	before,	shrink	the	maximum	length

				//	of	the	raycast

				if(hit	&&	hitData.distance	<	closest)

				{

								closest	=	hitData.distance;

								hitSphere	=	&s;

								shrunkDistance	=	hitData.distance;

				}

				//	and	continue	the	query

				return	true;

}

Note: 	Methods	in	PxGeometryQuery	may	report	positive	results	when	shapes	are
within	a	numerical	tolerance	of	intersection	or	impact.	To	obtain	results	that	are	identical
when	using	PxSpatialIndex	and	when	not	using	a	culling	hierarchy,	the	bounding	boxes
must	be	slightly	padded.	PxGeometryQuery::getWorldBounds	adds	this	padding	by
default.

PxSpatialIndex	 has	 the	 same	 performance	 characteristics	 as	 the	 scene	 query	 system
using	 the	 PxPruningStructureType::eDYNAMIC_AABB_TREE	 option.	 If	 the	 AABBs
correspond	 to	moving	objects,	or	 there	are	many	 insertions	and	deletions,	 the	quality	of
the	tree	may	degrade	over	 time.	 In	order	 to	prevent	 this,	 the	tree	may	be	rebuilt	entirely
using	the	function	rebuildFull().	Alternatively,	a	second	tree	may	be	built	 incrementally	 in
the	background	over	many	small	 steps,	using	 the	 function	 rebuildStep()
same	 incremental	 rebuild	 step	 as	 performed	 by	 the	 scene's	 dynamic	 pruning	 structure
during	fetchResults().	See	PxPruningStructureType	for	details.
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Scene	Queries



Introduction

PhysX	 provides	 methods	 in	 PxScene	 to	 perform	 collision	 queries	 against	 actors	 and
attached	 shapes	 in	 the	 scene.	 There	 are	 three	 types	 of	 queries:	 raycasts,	 sweeps	 and
overlaps,	and	each	can	return	either	a	single	result,	or	multiple	results.	Broadly	speaking,
each	query	traverses	a	culling	structure	containing	the	scene	objects,	performs	a	precise
test	 using	 the	GeometryQuery	 functions	 (see	Geometry	Queries),	 and	 accumulates	 the
results.	Filtering	may	occur	before	or	after	precise	testing.

The	scene	uses	two	different	query	structures,	one	for	PxRigidStatic	actors,	and	the	other
for	PxRigidBody	actors	(PxRigidDynamic	and	PxArticulationLink.)	The	two	structures	may
be	 configured	 to	 use	 different	 culling	 implementations	 depending	 on	 the	 desired
speed/space	characteristics	(see	PxPruningStructureType.)



Basic	queries

Raycasts

A	 PxScene::raycast()	 query	 intersects	 a	 user-defined	 ray	 with	 the	 whole	 scene.	 The
simplest	 use	 case	 for	 a	 raycast()	 query	 is	 to	 find	 the	 closest	 hit	 along	 a	 given	 ray	 as
follows:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastBuffer	hit;																	//	[out]	Raycast	results

//	Raycast	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	is	the	closest	hit,	stored	in	the	'hit.block'	structure

bool	status	=	scene->raycast(origin,	unitDir,	maxDistance,	hit);

if	(status)

				applyDamage(hit.block.position,	hit.block.normal);

In	this	code	snippet	a	PxRaycastBuffer	object	 is	used	to	receive	results	from	the	raycast
query.	A	call	 to	raycast()	 returns	 true	 if	 there	was	a	hit.	hit.hadBlock	 is	also	set	 to	 true	 if
there	was	a	hit.	The	distance	for	raycasts	has	to	be	in	the	[0,	inf)	range.

Raycasts	results	include	position,	normal,	hit	distance,	shape	and	actor,	and	a	face	index
with	UV	coordinates	for	triangle	meshes	and	heightfields.	Before	using	query	results	check
PxHitFlag::ePOSITION,	eNORMAL,	eDISTANCE,	eUV	flags	 first,	as	 in	some	cases	 they
are	not	set.

Sweeps

A	PxScene::sweep()	query	is	geometrically	similar	to	a	raycast():	a	PxGeometry	shape	is
swept	from	a	specified	initial	pose	in	a	direction	unitDir	with	specified	maximum	length,	to
find	the	points	of	impacts	of	the	geometry	with	scene	objects.	The	maximum	distance	for
sweeps	 has	 to	 be	 in	 the	 [0,	 inf)	 range,	 and	 will	 be	 clamped	 by	 to



PX_MAX_SWEEP_DISTANCE,	defined	in	file	PxScene.h.

Allowed	shapes	are	box,	sphere,	capsule	and	convex.

A	PxSweepBuffer	object	is	used	to	receive	results	from	sweep()	queries:

PxSweepBuffer	hit;														//	[out]	Sweep	results

PxGeometry	sweepShape	=	...;				//	[in]	swept	shape

PxTransform	initialPose	=	...;		//	[in]	initial	shape	pose	(at	distance=0)

PxVec3	sweepDirection	=	...;				//	[in]	normalized	sweep	direction

bool	status	=	scene->sweep(sweepShape,	initialPose,	sweepDirection

Sweeps	results	 include	position,	normal,	hit	distance,	shape	and	actor,	and	a	face	 index
for	triangle	meshes	and	heightfields.

Overlaps

PxScene::overlap()	 query	 searches	 a	 region	 enclosed	 by	 a	 specified	 shape	 for	 any
overlapping	objects	 in	 the	scene.	The	 region	 is	specified	as	a	 transformed	box,	sphere,
capsule	or	convex	geometry.

A	PxOverlapBuffer	object	is	used	to	receive	results	from	overlap()	queries:

PxOverlapBuffer	hit;												//	[out]	Overlap	results

PxGeometry	overlapShape	=	...;		//	[in]	shape	to	test	for	overlaps

PxTransform	shapePose	=	...;				//	[in]	initial	shape	pose	(at	distance=0)

PxOverlapBuffer	hit;

bool	status	=	scene->overlap(overlapShape,	shapePose,	hit);

Overlaps	results	only	 include	actor/shape	and	faceIndex	since	there	is	no	single	point	of
intersection.



Touching	and	blocking	hits

For	queries	with	multiple	 results	we	distinguish	between	 touching	and	
choice	of	whether	a	hit	 is	touching	or	blocking	is	made	by	the	user-implemented	filtering
logic.	Intuitively	a	blocking	hit	prevents	further	progress	of	a	raycast	or	a	sweep	along	its
path,	and	a	touching	hit	is	recorded	but	allows	the	ray	or	sweep	to	continue.	So	a	multiple-
hit	query	will	 return	 the	closest	blocking	hit	 if	one	exists,	 together	with	any	 touching	hits
that	are	closer.	If	there	are	no	blocking	hits,	all	touching	hits	will	be	returned.

See	the	Filtering	section	for	details.



Query	modes

Closest	hit

The	default	mode	of	operation	for	all	three	query	types	is	"closest	hit".	The	query	looks	for
all	 blocking	 hits,	 picks	 the	 one	 with	 the	 minimum	 distance	 and	 reports	 it	 in	 the
PxHitBuffer::block	member.

For	overlap()	queries	an	arbitrary	blocking	hit	 is	chosen	as	 the	reported	blocking	hit
(distance	is	treated	as	zero	for	all	overlap()	hits).

Any	hit

All	 three	 query	 types	 can	 operate	 in	 "any	 hit"	 mode.	 This	 is	 a	 performance	 hint	 to	 the
query	 system	 indicating	 that	 there	 is	 no	 need	 to	 look	 for	 the	 closest	 hit	 -	 any	 hit
encountered	 will	 do.	 This	 mode	 is	 most	 often	 used	 for	 boolean	 blocking/non-blocking
queries.	Performance	improvement	may	be	a	factor	of	3	or	more,	depending	on	scenario.
To	 activate	 this	 mode	 use	 PxQueryFlag::eANY_HIT	 filter	 data	 flag	 and	 set	 it	 in
PxQueryFilterData	object,	for	instance:

PxQueryFilterData	fd;

fd.flags	|=	PxQueryFlag::eANY_HIT;	//	note	the	OR	with	the	default	value

bool	status	=	scene->raycast(origin,	unitDir,	maxDistance,	hit,

																													PxHitFlags(PxHitFlag::eDEFAULT),	fdAny

Multiple	hits

All	three	query	types	(raycast,	overlap,	sweep)	can	also	report	multiple	hits	with	objects	in
the	scene.

To	 activate	 this	 mode	 for	 raycasts	 use	 the	 PxRaycastBuffer	 constructor	 with	 user
provided	buffer	for	touching	hits.
In	 this	 mode	 all	 hits	 default	 to	 'touching'	 type	 and	 are	 recorded	 in	 the



PxRaycastBuffer::touches	array.

For	instance:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

const	PxU32	bufferSize	=	256;								//	[in]	size	of	'hitBuffer'

PxRaycastHit	hitBuffer[bufferSize];		//	[out]	User	provided	buffer	for	results

PxRaycastBuffer	buf(hitBuffer,	bufferSize);	//	[out]	Blocking	and	touching	hits	stored	here

//	Raycast	against	all	static	&	dynamic	objects	(no	filtering)

//	The	main	result	from	this	call	are	all	hits	along	the	ray,	stored	in	'hitBuffer'

scene->raycast(origin,	unitDir,	maxDistance,	buf);

for	(PxU32	i	=	0;	i	<	buf.nbTouches;	i++)

				animateLeaves(buf.touches[i]);

The	same	mechanism	is	used	for	overlaps	(use	PxOverlapBuffer	with	PxOverlapHit[])	and
sweeps	(PxSweepBuffer	with	PxSweepHit[]).

Multiple	hits	with	blocking	hit

In	the	snippet	for	multiple	hits	above	we	only	expected	touching	hits.	If	a	blocking	hit	was
encountered	along	with	touching	hits,	it	will	be	reported	in	PxHitBuffer::block	member,	and
the	touch	buffer	will	contain	only	touching	hits	which	are	closer.	This	combination	is	useful
in	scenarios	such	as	bullets	going	through	windows	(breaking	them	on	their	way)	or	leaves
of	a	tree	(making	them	rustle)	until	they	hit	a	blocking	object	(a	concrete	wall):

//	same	initialization	code	as	in	the	snippet	for	multiple	hits

bool	hadBlockingHit	=	scene->raycast(origin,	unitDir,	maxDistance,

if	(hadBlockingHit)

				drawWallDecal(buf.block);

for	(PxU32	i	=	0;	i	<	buf.nbTouches;	i++)

{

				assert(buf.touches[i].distance	<=	buf.block.distance);

				animateLeaves(buf.touches[i]);

}



By	default,	hits	are	assumed	to	be	touching	when	a	touch	buffer	is	provided,	and	the
filter	callback	should	return	PxQueryHitType::eBLOCK	to	denote	that	a	hit	is	blocking.
See	Filtering	for	details.
For	 overlap()	 queries	 all	 touching	 hits	 will	 be	 recorded	 even	 if	 a	 blocking	 hit	 was
encountered	and	PxQueryFlag::eNO_BLOCK	flag	is	set.



Filtering

Filtering	controls	how	shapes	are	excluded	from	scene	query	results	and	how	results	are
reported.	All	three	query	types	support	the	following	filtering	parameters:

a	PxQueryFilterData	structure,	containing	both	PxQueryFlags	and	PxFilterData
an	optional	PxQueryFilterCallback

PxQueryFlag::eSTATIC,	PxQueryFlag::eDYNAMIC

PxQueryFlag::eSTATIC	 and	 PxQueryFlag::eDYNAMIC	 flags	 control	 whether	 the	 query
should	 include	shapes	 from	 the	static	and/or	dynamic	query	structures.	This	 is	 the	most
efficient	way	 to	 filter	out	all	 static/dynamic	shapes.	For	example	an	explosion	effect	 that
applies	forces	to	all	dynamics	in	a	region	could	use	a	spherical	overlap	query,	and	only	the
PxQueryFlag::eDYNAMIC	 flag	 to	 exclude	 all	 statics	 since	 forces	 cannot	 be	 applied	 to
static	objects.	By	default	both	statics	and	dynamics	are	included	in	query	results.

For	instance:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastBuffer	hit;																	//	[out]	Raycast	results

//	[in]	Define	filter	for	static	objects	only

PxQueryFilterData	filterData(PxQueryFlag::eSTATIC);

//	Raycast	against	static	objects	only

//	The	main	result	from	this	call	is	the	boolean	'status'

bool	status	=	scene->raycast(origin,	unitDir,	maxDistance,	hit,	PxHitFlag

PxQueryFlag::ePREFILTER,	PxQueryFlag::ePOSTFILTER

Scene	queries	are	performed	in	three	phases:	broad	phase,	midphase	and	narrow	phase.



Broad	 phase	 traverses	 the	 global	 scene	 spatial	 partitioning	 structure	 to	 find	 the
candidates	for	mid	and	narrow	phases.
midphase	 traverses	 the	 triangle	 mesh	 and	 heightfield	 internal	 culling	 structures,	 to
find	a	smaller	subset	of	the	triangles	in	a	mesh	reported	by	the	broad	phase.
Narrow	 phase	 performs	 exact	 intersection	 tests	 (ray	 test	 for	 raycast()	 queries,	 and
exact	sweep	shape	tests	or	overlap	tests	for	sweep()	and	overlap()	queries).

To	 implement	 custom	 filtering	 in	 queries,	 set	 the	 PxQueryFlag::ePREFILTER
PxQueryFlag::ePOSTFILTER	flags	and	subclass	PxQueryFilterCallback
filtering	logic.

Pre-filtering	 happens	 before	midphase	 and	 narrow	 phase	 and	 allows	 shapes	 to	 be
efficiently	discarded	before	the	potentially	expensive	exact	collision	test.	These	tests
are	 more	 expensive	 for	 triangle	 meshes,	 heightfields,	 convexes	 and	 most	 sweeps
than	 raycast	 and	 overlap	 tests	 involving	 only	 simple	 shapes	 (such	 as	 spheres,
capsules	and	boxes.)
Post-filtering	happens	after	the	narrow	phase	test	and	can	therefore	use	the	results	of
the	 test	 (such	 as	 PxRaycastHit.position)	 to	 determine	 whether	 a	 hit	 should	 be
discarded	 or	 not.	 These	 results	 can	 be	 accessed	 via	 the	hit	 input	 argument	 to	 the
post-filtering	 callback	 (PxQueryFilterCallback::postFilter).	 Use	 e.g.
static_cast<PxRaycastHit&>(hit),	 access	 data	 specific	 to	 a	 raycast	 query,	 and
similarly	for	overlaps	(PxOverlapHit)	and	sweeps	(PxSweepHit.)

The	implementation	of	a	filtering	callback	returns	a	PxQueryHitType	result.

eNONE	indicates	that	the	hit	should	be	discarded.
eBLOCK	indicates	that	the	hit	is	blocking.
eTOUCH	indicates	that	the	hit	is	touching.

Whenever	 a	 raycast(),	 sweep()	 or	 overlap()	 query	 was	 called	 with	 non-zero
PxHitCallback::nbTouches	 and	 PxHitCallback::touches	 parameters,	 eTOUCH	 type	 hits
that	are	no	 further	 (touchDistance	<=	blockDistance)	 than	 the	closest	eBLOCK	 type	hit,



will	 be	 reported.	 For	 example,	 to	 record	 all	 hits	 from	 a	 raycast	 query,	 always	 return
eTOUCH.

Note: 	Returning	eTOUCH	from	a	filter	callback	requires	the	hit	buffer	query	parameter
to	have	a	non-zero	::touches	array,	otherwise	PhysX	will	generate	an	error	in	checked
builds	and	discard	any	touching	hits.

Note: 	eBLOCK	should	not	be	returned	from	user	filters	for	overlap().	Doing	so	will
result	in	undefined	behavior,	and	a	warning	will	be	issued.	If	the
PxQueryFlag::eNO_BLOCK	flag	is	set,	the	eBLOCK	will	instead	be	automatically
converted	to	an	eTOUCH	and	the	warning	suppressed.

PxQueryFlag::eANY_HIT

Use	this	 flag	to	 force	the	query	to	report	 the	first	encountered	hit	 (which	may	not	be	the
closest)	as	a	blocking	hit.	Performance	may	be	more	 than	 three	 times	 faster,	depending
on	 the	 scenario.	 Best	 gains	 can	 be	 expected	 for	 long	 raycasts/sweeps	 with	 a	 nearby
intersecting	object,	or	overlaps	with	multiple	intersecting	objects.

Also	see	PxHitFlag::eMESH_ANY

PxQueryFlag::eNO_BLOCK

Use	 this	 flag	 when	 you	 want	 to	 override	 the	 eBLOCK	 value	 returned	 from	 filters	 to
eTOUCH	or	in	cases	when	no	blocking	hits	are	expected	(in	this	case	this	flag	serves	as	a
performance	hint.)	All	hits	will	then	be	reported	as	touching	regardless	of	the	filter	callback
return	value.	The	hit	callback/buffer	object	provided	to	the	query	is	required	to	have	a	non-
zero	PxHitBuffer::touches	 buffer	 when	 this	 flag	 is	 used.	 Significant	 performance	 gains
should	only	be	expected	for	scenarios	where	the	touching	hit	buffer	overflows.

Note: 	this	flag	overrides	the	return	value	from	pre	and	post-filter	functions,	so	hits	that
were	previously	returned	as	blocking	will	instead	be	returned	as	touching.



PxFilterData	fixed	function	filtering

A	fast,	fixed-function	filter	is	provided	by	PxFilterData,	a	4*32-bit	bitmask	used	by	the	built-
in	 filtering	equation.	Each	shape	has	a	bitmask	 (set	 via	PxShape::setQueryFilterData()),
and	the	query	also	has	a	bitmask.

The	 query	 data	 is	 used	 differently	 by	 batched	 and	 unbatched	 queries	 (see	 below	 for
batched	queries).	For	unbatched	queries,	the	following	rules	are	applied:

If	 the	query's	bitmask	 is	all	zeroes,	custom	filtering	and	 intersection	 testing	proceed
as	normal.
Otherwise,	if	the	bitwise-AND	value	of	the	query's	bitmask	and	the	shape's	bitmask	is
zero,	the	shape	is	skipped

Or	in	other	words:

PxU32	keep	=	(query.word0	&	object.word0)

											|	(query.word1	&	object.word1)

											|	(query.word2	&	object.word2)

											|	(query.word3	&	object.word3);

This	 hardcoded	 equation	 can	 provide	 simple	 filtering	 while	 avoiding	 the	 function	 call
overhead	of	the	filtering	callback.	For	example,	to	emulate	the	behavior	of	PhysX	2	active
groups,	define	the	groups	as	follows:

enum	ActiveGroup

{

				GROUP1				=	(1<<0),

				GROUP2				=	(1<<1),

				GROUP3				=	(1<<2),

				GROUP4				=	(1<<3),

				...

};

When	shapes	are	created,	they	can	be	assigned	to	the	a	group,	for	example	GROUP1:

PxShape*	shape;																						//	Previously	created	shape



PxFilterData	filterData;

filterData.word0	=	GROUP1;

shape->setQueryFilterData(filterData);

Or	to	multiple	groups,	for	example	GROUP1	and	GROUP3:

PxShape*	shape;																						//	Previously	created	shape

PxFilterData	filterData;

filterData.word0	=	GROUP1|GROUP3;

shape->setQueryFilterData(filterData);

When	 performing	 a	 scene	 query,	 select	 which	 groups	 are	 active	 for	 the	 query	 -	 for
example	GROUP2	and	GROUP3	-	as	follows:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastBuffer	hit;																	//	[out]	Raycast	results

//	[in]	Define	what	parts	of	PxRaycastHit	we're	interested	in

const	PxHitFlags	outputFlags	=	PxHitFlag::eDISTANCE	|	PxHitFlag::ePOSITION

//	[in]	Raycast	against	GROUP2	and	GROUP3

PxQueryFilterData	filterData	=	PxQueryFilterData();

filterData.data.word0	=	GROUP2|GROUP3;

bool	status	=	scene->raycast(origin,	unitDir,	maxDistance,	hit,	outputFlags



User	defined	hit	callbacks	for	unbounded	results

Queries	can	sometimes	return	a	very	 large	number	of	 results	 (for	example,	queries	with
very	 large	 objects	 or	 in	 areas	 with	 high	 object	 density),	 and	 it	 can	 be	 prohibitively
expensive	to	reserve	a	sufficiently	large	memory	buffer.	The	classes	PxRaycastCallback,
PxSweepCallback	 and	 PxOverlapCallback	 provide	 efficient	 callback	 based	 solutions	 for
such	 scenarios.	 For	 instance	 a	 raycast	 query	 with	 a	 PxRaycastCallback	 callback	 will
return	all	touch	hits	via	multiple	virtual	PxHitCallback::processTouches()	callbacks:

struct	UserCallback	:	PxRaycastCallback

{

				UserData	data;

				virtual	PxAgain	processTouches(const	PxRaycastHit*	buffer,	PxU32

								//	This	callback	can	be	issued	multiple	times	and	can	be	used

								//	to	process	an	unbounded	number	of	touching	hits.

								//	Each	reported	touching	hit	in	buffer	is	guaranteed	to	be	closer	than

								//	the	final	block	hit	after	the	query	has	fully	executed.

				{

								for	(PxU32	i	=	0;	i	<	nbHits;	i++)

												animateLeaves(buffer[i],	data);

				}

				virtual	void	finalizeQuery()

				{

								drawWallDecal(this->block,	data);

				}

};

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

UserCallback	cb;	cb.data	=	...;

scene->raycast(origin,	unitDir,	maxDistance,	cb);	//	see	UserCallback::processTouches

In	 this	 code	 snippet	 the	 raycast()	 query	 will	 potentially	 invoke	 processTouches	multiple
times,	with	all	touching	hits	already	clipped	to	the	globally	nearest	blocking	hit.

Note	that	the	query	can	be	up	to	twice	as	expensive	in	case	all	eTOUCH	results	do



not	fit	in	the	provided	touches	buffer	and	a	blocking	hit	was	also	found.
Also	see	PxQueryFlag::eNO_BLOCK



Batched	queries

PhysX	supports	batching	of	scene	queries	via	the	PxBatchQuery	interface.	Using	this	API
may	simplify	multi-threaded	implementations.

The	batched	query	feature	has	been	deprecated	in	PhysX	version	3.4.

PxBatchQuery	 interface	 facilitates	 batching	 and	 execution	 of	 multiple	 queries
together.	 PxBatchQuery	 buffers	 raycast,	 overlap	 and	 sweep	 queries	 until
PxBatchQuery::execute()	is	called.
Use	 PxScene::createBatchQuery(const	 PxBatchQueryDesc&	 desc)	 to	 create	 a
PxBatchQuery	object.
The	hardcoded	filtering	equation	is	not	used	for	batched	queries.	Instead	it	is	replaced
with	 two	 filter	 shaders,	 respectively	 running	 before	 (PxBatchQueryPreFilterShader
and	 after	 (PxBatchQueryPostFilterShader)	 the	 exact	 per-shape	 collision	 test.	 See
PxBatchQueryDesc::preFilterShader	and	PxBatchQueryDesc::postFilterShader
BatchQueryFilterData::filterShaderData	will	be	copied	and	passed	to	the	filter	shader
via	the	constantBlock	parameter.
Results	 are	 written	 to	 user-defined	 buffers	 PxBatchQueryMemory
PxBatchQueryDesc,	 in	 the	 same	 order	 queries	 were	 queued	 in	 a	
object.
The	 results	and	hits	buffers	 for	 the	each	query	 type	used	 (raycast,	overlap,	sweep)
are	specified	separately.
These	buffers	can	be	changed	before	each	batch	query	execute	call.	The	SDK	will
produce	 a	 warning	 for	 batched	 queries	 with	 NULL	 results	 or	 hits	 buffers	 for	 the
corresponding	query	type	(raycast,	overlap	or	sweep).



Volume	Caching

PxVolumeCache	 provides	 a	 mechanism	 for	 accelerating	 scene	 queries.	 This	 class
implements	caching	 for	objects	within	a	specified	volume	and	provides	an	API	similar	 to
PxScene	 for	 executing	 raycasts,	 overlaps,	 and	 sweeps.	PxVolumeCache	 can	 provide	 a
performance	boost	when	objects	within	 the	 same	 localized	 region	of	 space	are	 queried
multiple	times,	either	within	the	same	simulation	frame	or	on	a	later	frame.

The	volume	cache	feature	has	been	deprecated	in	PhysX	version	3.4.

Some	expected	use	cases	for	PxVolumeCache	are:

A	 particle	 system	 with	 many	 raycasts	 performed	 for	 each	 particle	 from	 a	 spatially
localized	cloud.
Multiple	 short	 range	 character	 controller	 raycasts	 within	 the	 same	 area	 around	 the
character.
Caching	query	results	across	multiple	frames,	 the	cache	can	be	filled	using	a	 larger
volume	 on	 previous	 frame	 (possibly	 extruded	 in	 the	 anticipated	 direction	 of
movement)	and	then	queried	with	a	smaller	volume.

The	cache	has	a	maximum	capacity,	specified	separately	for	dynamic	and	static	objects,
in	PxScene::createVolumeCache().

For	purposes	of	multithreaded	access,	any	operation	on	the	cache	counts	as	a	read	call
on	the	scene.

Filling	the	Cache

To	 fill	 the	 cache,	 call	 PxVolumeCache::fill().	 This	 will	 query	 the	 scene	 for	 objects
overlapping	with	the	volume	defined	by	the	geometry	and	transform	and	store	the	results
in	 an	 internal	 buffer	 up	 to	 the	 maximum	 sizes	 for	 static	 and	 dynamic	 objects.	 Only
PxBoxGeometry,	 PxSphereGeometry	 and	 PxCapsuleGeometry	 are	 supported	 for
cacheVolume.	The	call	will	always	refill	both	the	static	and	dynamic	internal	caches,	even



if	the	new	volume	lies	entirely	within	the	previous	cached	volume.	It	returns	a	result	of	type
PxVolumeCache::FillStatus.

Subsequent	queries	against	the	cache	(raycasts,	overlaps,	sweeps,	forEach)	will	refill	the
cache	 automatically	 using	 the	 same	 volume	 if	 the	 scene	 query	 subsystem	 has	 been
updated	 since	 the	 last	 fill.	 The	 update	 status	 is	 tracked	 independently	 for	 statics	 and
dynamics,	so	a	query	might	only	refill	the	cache	for	dynamics	while	reusing	valid	cached
results	 for	 statics.	 If	 any	 attempt	 to	 fill	 or	 refill	 fails,	 the	 cache	 is	 invalid,	 and	 any
subsequent	query	will	attempt	to	fill	it.

Querying	the	Cache

PxVolumeCache	provides	an	API	for	raycasts,	sweeps	and	overlaps	that	is	similar	to	the
scene	query	API.	The	main	difference	 in	signatures	 is	 that	Single	Object	Caching
supported	 for	 PxVolumeCache	 queries.	 Query	 results	 are	 reported	 via	 the
PxVolumeCache::Iterator::shapes()	 callback,	 and	 the	 query	 may	 invoke	 the	 callback
multiple	times	to	deliver	multiple	batches	of	results.

Raycasts,	 overlaps	and	sweeps	against	 a	 valid	 cache	will	 return	only	 results	which
overlap	the	cache	volume,	but	is	guaranteed	to	return	all	such	volumes.
Raycasts,	 overlaps	 and	 sweeps	 against	 an	 invalid	 cache	 will	 fall	 back	 to	 scene
queries.	In	this	case	results	may	be	returned	which	do	not	overlap	the	cache	volume.

Since	 the	cache	 refills	automatically	on	any	query	where	 the	scene	has	changed,	 these
two	conditions	guarantee	that	a	query	against	the	cache	that	lies	entirely	within	the	cache
volume	will	 always	 return	 exactly	 the	 same	 shapes	as	 querying	 the	 scene.	 If	 the	 query
does	not	 lie	entirely	within	 the	cache	volume	(and	the	cache	 is	valid)	only	 those	shapes
which	overlap	the	cache	volume	will	be	returned.	If	a	query	is	issued	against	a	cache	on
which	fill()	has	never	been	called,	an	error	is	reported.

The	cache	also	provides	a	 low-level	 forEach()	mechanism	 that	 iterates	over	 the	cached
objects.	 If	 forEach()	 is	executed	on	a	cache	 for	which	 fill()	has	never	been	called,	 it	will
return	without	reporting	an	error.	If	the	cache	is	invalid,	forEach()	will	retrieve	the	shapes
that	 overlap	 the	 cached	 volume	 directly	 from	 the	 scene.	 This	 process	 involves	 the



allocation	 of	 a	 temporary	 buffer,	 and	 if	 the	 allocation	 fails,	 forEach()
message	and	return.

This	code	snippet	shows	how	to	use	PxVolumeCache:

PxScene*	scene;

PxVec3	poi	=	...;																				//	point	of	interest

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastBuffer	hit;																	//	[out]	Raycast	results

const	PxU32	maxStatics	=	32,	maxDynamics	=	8;

//	persistent	cache,	valid	until	invalidated	by	object	movement,

//	insertion	or	deletion

PxVolumeCache*	cache	=	scene->createVolumeCache(maxStatics,	maxDynamics

cache->setMaxNbStaticShapes(64);	cache->setMaxNbDynamicShapes(16);

//	fill	the	cache	using	a	box	geometry	centered	around	the	point	of	interest

cache->fill(PxBoxGeometry(PxVec3(1.0f)),	PxTransform(position));

...

//	Perform	multiple	raycast	queries	using	the	cache

PxRaycastBuffer	hit;

const	bool	status	=	cache->raycast(origin,	unitDir,	maxDistance,	hit

//	low	level	iterator	for	stored	actor/shape	pairs

struct	UserIterator	:	PxVolumeCache::Iterator

{

				UserData	userData;

				virtual	void	shapes(PxU32	count,	const	PxActorShape*	actorShapePairs

				{

								for	(PxU32	i	=	0;	i	<	count;	i++)

											doSomething(actorShapePairs[i].actor,	actorShapePairs[i

				}

}			iter;

//	invoke	UserIterator::shapes()	callback	for	all	actor/shape	pairs	in	the	cache

cache->forEach(iter);



Single	Object	Caching

Another	special	case	mechanism	for	accelerating	scene	queries	is	single-object	caching,
using	PxQueryCache.

This	 cache	 can	 provide	 additional	 speedups	 and	 memory	 savings	 for	
sweep	queries	in	any	operation	mode.
The	cache	object	defines	which	shape	should	be	 tested	 first.	For	queries	with	high
temporal	coherence,	this	can	provide	significant	performance	gains.	A	good	strategy
to	capture	that	coherence	 is	simply	 to	 fill	 the	cache	object	of	a	given	query	with	 the
eBLOCK	result	(last	blocking	shape)	from	the	previous	frame.
Note	that	it	is	likely	incorrect	to	use	a	past	touching	hit	(recorded	with	eTOUCH	flag)
for	caching	since	it	will	be	interpreted	as	blocking	and	override	any	filtering.

For	example	there	is	a	good	chance	that	an	AI	visibility	query	will	return	the	same	line-of-
sight	 blocking	 shape	 for	 several	 frames.	 Using	 a	 raycast	 query	 with	 a	 properly	 filled
PxQueryCache	 object	 will	 allow	 PhysX	 to	 test	 a	 single	 shape	 -	 before	 traversing	 the
internal	 spatial	 partitioning	 structures,	 and	 in	 case	 of	 a	 "cache	 hit"	 the	 traversal	 can	 be
bypassed	entirely.	For	instance:

PxScene*	scene;

PxVec3	origin	=	...;																	//	[in]	Ray	origin

PxVec3	unitDir	=	...;																//	[in]	Normalized	ray	direction

PxReal	maxDistance	=	...;												//	[in]	Raycast	max	distance

PxRaycastBuffer	hit;																	//	[out]	Raycast	results

//	Per-raycast	persistent	cache,	valid	from	one	frame	to	the	next

static	PxQueryCache	persistentCache;

//	Define	cache	for	current	frame:

//	-	if	there	was	a	hit	in	the	previous	frame,	use	the	cache.

//	-	otherwise	do	not	(PhysX	requires	given	cache	has	a	valid	shape	pointer)

const	PxQueryCache*	cache	=	persistentCache.shape	?	&persistentCache

//	Perform	a	raycast	query	using	the	cache

const	bool	status	=	scene->raycast(origin,	unitDir,	maxDistance,	hit

																																			PxHitFlags(PxHitFlag::eDEFAULT),



																																			PxQueryFilterData(),	NULL,	cache

if(status)

{

				//	We	hit	a	shape.	Cache	it	for	next	frame.

				persistentCache.shape	=	hit.block.shape;

				persistentCache.faceIndex	=	hit.block.faceIndex;

}

else

{

				//	We	did	not	hit	anything.	Reset	the	cache	for	next	frame.

				persistentCache	=	PxQueryCache();

}

Caching	can	also	be	useful	in	queries	looking	for	the	closest	blocking	hit	or	when	using	the
eANY_HIT	flag.	In	this	case,	testing	the	previously	closest	object	first	can	allow	PhysX	to
shorten	 the	query	distance	very	early,	 leading	 to	 fewer	 total	narrow	phase	collision	 tests
and	early	out	from	the	traversal.

Note: 	PhysX	does	not	detect	stale	pointers,	so	the	application	is	responsible	for
cached	object	validity	when	shapes	are	deleted.

Note: 	Overlaps	do	not	support	single	hit	blocking	caches.



PxPruningStructureType

PhysX	 SDK	 offers	 different	 pruning	 structures	 which	 are	 used	 to	 accelerate	 the	 scene
queries.	This	paragraph	describes	the	differences	between	them.

Generalities

The	 Scene	Query	 system	 uses	 two	 different	 acceleration	 structures,	 a	 hierarchical	 grid
and	an	AABB	tree.

The	grid	builds	quickly,	in	O(n)	time,	with	queries	executing	in	between	O(1)	and	O(N)	time
depending	on	how	uniformly	the	objects	are	distributed	 in	space,	with	pathological	worst
case	performance	of	O(N)	when	all	objects	are	clustered	in	the	same	grid	cell.

The	tree	builds	in	O(n	log(n))	time,	but	queries	with	a	single	result	typically	run	in	O(log(n))
time.	Queries	returning	multiple	results	will	traverse	more	of	the	tree,	the	worst	case	being
a	 query	 returning	 all	 of	 the	 objects	 in	 the	 scene	 in	O(n)	 time.	 The	 tree	 is	 vulnerable	 to
degeneration	when	the	same	topology	is	maintained	too	long	as	object	positions	change,
and	in	pathological	cases	query	performance	may	degrade	to	O(n)	time.

Acceleration	 structures	 must	 be	 continually	 modified	 in	 accordance	 with	 objects	 being
added	or	 removed,	or	object	AABB	updates	due	 to	changes	 in	position	or	geometry.	To
minimize	 the	 cost,	 modifications	 are	 deferred	 for	 as	 long	 as	 possible.	 Thus	 adding	 or
removing	objects	or	updating	AABBs	occurs	 in	amortized	constant	 time,	with	 the	cost	of
modifications	deferred	until	 the	changes	 'commit'.	This	happens	on	 the	next	subsequent
query	 or	 the	 next	 fetchResults().	 To	 force	 an	 immediate	 commit,	 call	 the
PxScene::flushQueryUpdates()	function.

The	 exact	 details	 of	 the	 commit	 process	 depend	 on	 the	 values	 of	 staticStructure	 and
dynamicStructure	specified	in	PxSceneDesc.

To	 avoid	 automatic	 resizing	 triggered	 by	 insertions	 into	 internal	 scene	 query	 data
structures,	 reserve	 the	 space	 in	 advance.	 See	PxSceneDesc::maxNbStaticShapes
PxSceneDesc::maxNbDynamicShapes.



PxPruningStructureType::eNONE

The	acceleration	structure	is	similar	to	a	hierarchical	grid.	Committing	changes	requires	a
full	rebuild.	This	is	a	good	choice	if	you	expect	to	rarely	or	never	update	the	objects	in	this
structure.

PxPruningStructureType::eSTATIC_AABB_TREE

The	acceleration	structure	 is	a	 tree.	Committing	changes	 requires	a	 full	 rebuild.	 It	 is	not
generally	recommended,	but	can	be	a	good	choice	for	staticStructure	if	the	static	actors	in
your	scene	are	created	on	initialization,	and	not	modified	thereafter.	If	you	frequently	add
or	remove	static	geometry,	the	default	eDYNAMIC_AABB_TREE	setting	is	usually	a	better
choice,	although	it	has	a	higher	memory	footprint	than	that	of	eSTATIC_AABB_TREE.

PxPruningStructureType::eDYNAMIC_AABB_TREE

In	this	case,	both	the	tree	and	the	grid	are	used,	and	each	query	searches	both	the	tree
and	the	grid.

The	 tree	 is	 initially	 built	 by	 the	 first	 commit.	 Once	 a	 tree	 is	 built,	 committing	 changes
proceeds	 as	 follows::	 *	 the	 tree	 is	 refitted	 in	 accordance	with	 updates	 and	 removals	 of
object	it	contains.	*	added	objects	are	inserted	into	the	grid.	Such	additions,	or	removals	of
objects	 currently	 in	 the	grid,	 or	 changes	 to	AABBs	of	objects	 in	 the	grid,	 cause	 it	 to	be
rebuilt.

In	 addition,	 a	 new	 tree	 is	 incrementally	 built	 during	 fetchResults(),	 over	 a	 number	 of
frames	 controlled	 by	 PxScene's	 dynamicTreeRebuildRateHint	 attribute.	 When	 the	 build
starts,	 it	 includes	 all	 of	 the	 objects	 in	 the	 current	 tree	 and	 grid.	When	 it	 finishes,	 some
frames	 later,	 the	new	tree	 is	 refitted	 in	accordance	with	any	AABB	changes	or	 removals
since	 the	build	started,	and	 then	replaces	 the	current	 tree.	Any	objects	 that	were	added
since	the	start	of	the	build	remain	in	the	grid.

To	 force	a	 full	 immediate	 rebuild,	call	PxScene::forceDynamicTreeRebuild().	This	can	be
useful	in	cases	such	as	the	following:



a	 slow	 rebuilt	 rate	 is	 typically	 desirable,	 but	 occasionally	 a	 large	 number	 of	 object
additions	creates	high	occupancy	in	the	grid,	especially	if	the	additions	are	localized
so	as	to	put	pressure	on	just	a	few	of	the	grid	cells.
you	are	moving	many	objects	across	large	distances,	since	refitting	may	significantly
degrade	the	quality	of	the	current	tree



PxPruningStructure

Provides	 access	 to	 precomputed	 pruning	 structure	 used	 to	 accelerate	 scene	 queries
against	newly	added	actors.

A	 pruning	 structure	 can	 be	 provided	 to	 PxScene::addActors.	 The	 actors	 scene	 query
shapes	will	 then	be	directly	merged	 into	 the	 scenes	AABB	 tree,	without	 the	need	of	 an
AABB	tree	recompute:

//	Create	pruning	structure	from	given	actors.

PxPruningStructure*	ps	=	PxPhysics::createPruningStructure(&actors

//	Add	actors	into	a	scene	together	with	the	precomputed	pruning	structure.

PxScene::addActors(*ps);

ps->release();

A	PxPruningStructure	object	can	be	serialized	into	a	collection	together	with	its	actors.

For	usage	of	PxPruningStructure	please	refer	to	the	snippet	SnippetPrunerSerialization.

A	typical	use	case	for	PxPruningStructure	is	a	large	world	scenario	where	blocks	of	closely
positioned	actors	get	streamed	in.

Merge	process

The	 merge	 process	 into	 the	 scene	 query	 acceleration	 structure	 differs	 based	 on
PxPruningStructureType:	 *	 eSTATIC_AABB_TREE	 -	 the	 pruning	 structure	 is	 merged
directly	 into	scene's	AABBtree.	This	might	unbalance	 the	 tree	and	 it	 is	 recommended	 to
recompute	 the	 static	 tree	 at	 some	 point.	 *	 eDYNAMIC_AABB_TREE	 -	 the	 pruning
structure	 is	merged	 into	a	 temporary	pruning	structures	until	 the	scene's	new	optimized
AABB	tree	is	computed.
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Vehicles



Introduction

PhysX	 support	 for	 vehicles	 has	 been	 significantly	 reworked	 in	 3.x.	
NxWheelShape	 class	 of	 2.8.x,	 a	 more	 optimal	 integration	 of	 the	 core	 PhysX	 SDK	 and
vehicle	 simulation	 code	has	been	developed.	More	 specifically,	 the	 vehicles	 component
now	 sits	 outside	 the	 core	 SDK	 in	 a	 manner	 similar	 to	 PhysXExtensions.	
allows	 vehicles	 to	 be	 updated	 in	 a	 single	 pass	 as	 well	 as	 promoting	 a	 more	 intuitive
approach	 to	 modeling	 vehicle	 data.	 Vehicles	 support	 has	 been	 extended	 from	 the
suspension/wheel/tire	modeling	of	2.8.x	 to	a	more	complete	model	 that	couples	modular
vehicle	 components	 including	 engine,	 clutch,	 gears,	 autobox,	 differential,	 wheels,	 tires,
suspensions,	 and	 chassis.	 A	 quick	 glance	 at	 the	 data	 structures	 in
PxVehicleComponents.h	 will	 provide	 a	 flavor	 of	 the	 behaviors	 supported	 by	 PhysX
vehicles.



Algorithm

The	PhysX	Vehicle	SDK	models	 vehicles	 as	 collections	of	 sprung	masses,	where	each
sprung	mass	 represents	 a	 suspension	 line	 with	 associated	 wheel	 and	 tire	 data.	
collections	of	sprung	masses	have	a	complementary	representation	as	a	rigid	body	actor
whose	mass,	 center	 of	 mass,	 and	moment	 of	 inertia	 matches	 exactly	 the	masses	 and
coordinates	of	the	sprung	masses.	This	is	illustrated	below.

Figure	1a:	Vehicle	representation	as	a	rigid	body	actor	with	shapes	for	the	chassis	and
wheels.	Note	that	the	wheel	rest	offsets	are	specified	relative	to	the	center	of	mass.



Figure	1b:	Vehicle	representation	as	a	collection	of	sprung	masses	of	mass	M1	and	M2.

The	relationship	between	the	sprung	mass	and	rigid	body	vehicle	representations	can	be
mathematically	formalized	with	the	rigid	body	center	of	mass	equations:

M	=	M1	+	M2

Xcm	=	(M1	x	X1	+	M2	x	X2)/(M1	+	M2)

where	M1	and	M2	are	the	sprung	masses;	X1	and	X2	are	the	sprung	mass	coordinates	in
actor	space;	M	is	the	rigid	body	mass;	and	Xcm	is	the	rigid	body	center	of	mass	offset.

The	purpose	of	the	PhysX	Vehicle	SDK	update	function	is	to	compute	suspension	and	tire
forces	using	 the	sprung	mass	model	and	 then	 to	apply	 the	aggregate	of	 these	 forces	 to
the	PhysX	SDK	rigid	body	 representation	 in	 the	 form	of	a	modified	velocity	and	angular
velocity.	 Interaction	 of	 the	 rigid	 body	 actor	 with	 other	 scene	 objects	 and	 global	 pose
update	is	then	managed	by	the	PhysX	SDK.

The	update	of	each	vehicle	begins	with	a	 raycast	 for	each	suspension	 line.	
starts	 just	above	 the	 the	 top	of	 the	 tire	at	maximum	compression	and	casts	downwards
along	 the	direction	of	suspension	 travel	 to	a	position	 just	below	the	bottom	of	 the	 tire	at
maximum	droop.	This	is	shown	in	the	diagram	below.



Figure	2:	Suspension	limits	and	suspension	raycasts.

The	suspension	force	from	each	elongated	or	compressed	spring	is	computed	and	added
to	the	aggregate	force	to	be	applied	to	the	rigid	body.	Additionally,	the	suspension	force	is
used	to	compute	the	load	that	is	bearing	down	on	the	tire.	This	load	is	used	to	determine
the	tire	forces	that	will	be	generated	in	the	contact	plane	and	then	added	to	the	aggregate
force	 to	 be	 applied	 to	 the	 rigid	 body.	 The	 tire	 force	 computation	 actually	 depends	 on	 a
number	of	factors	including	steer	angle,	camber	angle,	friction,	wheel	rotation	speed,	and
rigid	 body	 momentum.	 The	 aggregated	 force	 of	 all	 tire	 and	 suspension	 forces	 is	 then
applied	 to	 the	 rigid	body	actor	associated	with	 the	vehicle	so	 that	 the	 transform	may	be
modified	accordingly	in	the	next	PhysX	SDK	update.

In	addition	to	being	collections	of	sprung	masses,	PhysX	vehicles	also	support	a	variety	of
drive	models.	The	center	of	the	drive	model	is	a	torsion	clutch,	which	couples	together	the
wheels	and	the	engine	via	 forces	that	arise	from	differences	 in	rotational	speeds	at	both
sides	of	the	clutch.	At	one	side	of	the	clutch	is	the	engine,	which	is	powered	directly	from
the	 accelerator	 pedal.	 The	 engine	 is	 modeled	 as	 a	 rigid	 body	 whose	 motion	 is	 purely
rotational	 and	 limited	 to	 a	 single	 degree	 of	 rotational	 freedom.	 At	 the	 other	 side	 of	 the
clutch	 are	 the	 gearing	 system,	 the	 differential	 and	 the	 wheels.	 The	 effective	 rotational
speed	of	the	other	side	of	the	clutch	can	be	computed	directly	from	the	gearing	ratio	and
the	rotational	speed	of	 the	wheels	 that	are	coupled	 to	 the	clutch	 through	the	differential.



This	model	naturally	allows	engine	torques	to	propagate	to	the	wheels	and	wheel	torques
to	propagate	back	to	the	engine,	just	as	in	a	standard	car.

The	data	describing	each	component	of	the	PhysX	vehicle	can	be	found	in	Section	
Guide.



First	Code

Vehicle	SDK	Initialization

Before	 using	 the	 vehicle	 SDK	 it	must	 first	 be	 initialized	 in	 order	 to	 set	 up	 a	 number	 of
threshold	 values	 from	various	 tolerance	scales.	This	 is	 as	 straightforward	as	 calling	 the
following	function:

PX_C_EXPORT	bool	PX_CALL_CONV	PxInitVehicleSDK

				(PxPhysics&	physics,	PxSerializationRegistry*	serializationRegistry

This	function	should	be	called	after	setting	up	the	required	PxPhysics	and	PxFoundation
instances.	 If	 vehicle	serialization	 is	 required	a	PxSerializationRegistry	 instance	needs	 to
be	 specified.	 A	 PxSerializationRegistry	 instance	 can	 be	 created	 with
PxSerialization::createSerializationRegistry(),	see	Serialization.

The	basis	 vectors	of	 the	vehicle	 simulation	must	also	be	configured	so	 that	 longitudinal
and	lateral	tire	slips	may	be	unambiguously	computed:

void	PxVehicleSetBasisVectors(const	PxVec3&	up,	const	PxVec3&	forward

This	function	can	be	called	at	any	time	prior	to	the	first	execution	of	PxVehicleUpdates.

The	 rigid	 body	 actors	 associated	 with	 vehicles	 can	 be	 updated	 either	 immediately	 with
velocity	modifications	 or	 updated	with	 an	 acceleration	 that	 is	 applied	 in	 the	 next	PhysX
SDK	simulate	call.	The	following	function	can	be	used	to	select	the	required	update	mode:

void	PxVehicleSetUpdateMode(PxVehicleUpdateMode::Enum	vehicleUpdateMode

As	expected,	the	vehicle	SDK	also	has	a	shutdown	process	which	needs	to	be	invoked:

PX_C_EXPORT	void	PX_CALL_CONV	PxCloseVehicleSDK

				(PxSerializationRegistry*	serializationRegistry	=	NULL);

This	 needs	 to	 be	 called	 before	 the	 PxPhysics	 instance	 and	 PxFoundation	 instance	 are



released;	that	is,	the	order	of	shutdown	is	the	reverse	of	the	initialization	order.	
if	serialization	is	required	the	PxSerializationRegistry	specified	for	PxInitVehicleSDK	needs
to	 be	 passed	 to	 PxCloseVehicleSDK.	 If	 vehicle	 serialization	 is	 used	 then	 this	 must	 be
called	before	closing	the	PhysXExtensions.

As	 an	 illustration	 of	 the	 usage	 of	 these	 functions,	 SnippetVehicle4W	 has	 the	 following
initialization	code:

PxInitVehicleSDK(*gPhysics);

PxVehicleSetBasisVectors(PxVec3(0,1,0),	PxVec3(0,0,1));

PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE);

The	shutdown	code	in	SnippetVehicle4W	is	as	follows:

PxCloseVehicleSDK();

Introduction	To	Vehicle	Creation

The	following	pseudo-code	illustrates	the	basic	process	of	setting	up	a	PxVehicleDrive4W
instance:

const	PxU32	numWheels	=	4;

PxVehicleWheelsSimData*	wheelsSimData	=	PxVehicleWheelsSimData::allocate

setupWheelsSimulationData(wheelsSimData);

PxVehicleDriveSimData4W	driveSimData;

setupDriveSimData(driveSimData);

PxRigidDynamic*	vehActor	=	myPhysics.createRigidDynamic(startPose);

setupVehicleActor(vehActor);

myScene.addActor(*vehActor);

PxVehicleDrive4W*	vehDrive4W	=	PxVehicleDrive4W::allocate(numWheels

vehDrive4W->setup(physics,	veh4WActor,	*wheelsSimData,	driveSimData

wheelsSimData->free();

The	code	above	first	instantiates	a	PxVehicleWheelsSimData	instance	with	internal	buffers
that	are	 large	enough	to	store	configuration	data	for	four	wheels.	This	configuration	data



includes	fields	such	as	suspension	strength	and	damping	rate,	wheel	mass,	tire	stiffness
and	suspension	 travel	direction.	The	next	step	 is	 to	create	a	PxVehicleDriveSimData4W
instance.	This	structure	stores	the	configuration	of	the	drive	model	and	includes	data	fields
such	 as	 engine	 peak	 torque,	 clutch	 strength,	 gearing	 ratios,	 and	 Ackermann	 steering
correction.	 Following	 this,	 a	 PxRigidDynamicActor	 is	 instantiated	 and	 configured	 with
geometry	 for	 the	 wheels	 and	 chassis	 as	 well	 as	 dynamic	 properties	 such	 as	 mass,
moment	of	inertia,	and	center	of	mass.	The	final	step	is	to	instantiate	a	PxVehicleDrive4W
instance	and	associate	it	with	the	actor	and	the	vehicle	configuration	data.

The	functions	setupWheelsSimulationData,	setupDriveSimData	and	setupVehicleActor	are
actually	 quite	 involved	 and	 shall	 be	 discussed	 in	 future	 Sections
setupWheelsSimulationData,	setupDriveSimData	and	setupVehicleActor

Introduction	To	Vehicle	Update

The	 PhysX	 Vehicles	 SDK	 utilizes	 batched	 scene	 queries	 to	 query	 the	 geometry	 under
each	 tire.	A	more	 detailed	 discussion	 of	PhysX	batched	 scene	 queries	 can	 be	 found	 in
Section	Batched	queries.

The	following	pseudo-code	initializes	a	batched	scene	query	with	buffers	large	enough	for
a	single	vehicle	with	four	wheels:

PxRaycastQueryResult	sqResults[4];

PxRaycastHit	sqHitBuffer[4];

PxBatchQueryDesc	sqDesc(4,	0,	0);

sqDesc.queryMemory.userRaycastResultBuffer	=	sqResults;

sqDesc.queryMemory.userRaycastTouchBuffer	=	sqHitBuffer;

sqDesc.queryMemory.raycastTouchBufferSize	=	4;

sqDesc.preFilterShader	=	myFilterShader;

PxBatchQuery*	batchQuery	=	scene->createBatchQuery(sqDesc);

The	PxBatchQuery	instance	is	typically	instantiated	as	part	of	the	initialization	phase	and
then	 reused	 each	 frame.	 It	 is	 possible	 to	 instantiate	 a	PxBatchQuery	 instance	 for	 each
vehicle	or	to	 instantiate	a	single	PxBatchQuery	instance	with	buffers	 large	enough	for	all
wheels	of	a	batched	array	of	vehicles.	The	only	restriction	is	that	all	batched	vehicle	arrays
and	associated	buffers	configured	at	 the	start	of	a	vehicle	simulation	 frame	must	persist
until	the	end	of	the	vehicle	simulation	frame.



PhysX	vehicles	make	use	of	scene	query	filter	shaders	to	eliminate	intersections	with	the
vehicle	 issuing	 the	 raycast	 and	 with	 any	 geometry	 that	 is	 not	 to	 be	 considered	 as	 a
drivable	surface.	More	details	 for	how	to	set	up	"myFilterShader"	above	can	be	found	 in
Section	Filtering.

For	 a	 batch	 containing	 just	 a	 single	 4-wheeled	 vehicle	 the	 suspension	 raycasts	 can	 be
performed	with	the	following	pseudo-code:

PxVehicleWheels*	vehicles[1]	=	{myVehicle};

PxVehicleSuspensionRaycasts(batchQuery,	1,	vehicles,	4,	sqResults);

The	function	PxVehicleSuspensionRaycasts	performs	suspension	raycasts	for	all	vehicles
in	the	batched	array	of	vehicles.	Each	element	in	the	sqResults	array	corresponds	to	the
raycast	report	for	a	single	suspension.	Pointers	to	contiguous	blocks	within	sqResults	are
stored	by	each	vehicle	 in	 turn	as	 the	 function	 iterates	 through	 the	vehicles	array.	
memory	blocks	are	stored	by	each	vehicle	so	that	they	may	easily	query	the	suspension
raycast	results	in	PxVehicleUpdates.	As	a	consequence,	the	sqResults	array	must	persist
until	at	 least	the	end	of	PxVehicleUpdates	and	must	have	length	at	 least	as	large	as	the
total	number	of	wheels	in	the	vehicles	array.

The	vehicles	are	updated	with	the	following	function	call:

PxVehicleUpdates(timestep,	gravity,	frictionPairs,	1,	vehicles,	NULL

The	function	PxVehicleUpdates	updates	the	internal	dynamics	of	each	vehicle,	poses	the
wheel	shapes	of	the	vehicle's	actor	and	applies	either	velocity	or	acceleration	changes	to
the	 actor,	 depending	 on	 the	 update	mode	 chosen	with	PxVehicleSetUpdateMode.	
details	can	be	found	in	Section	Wheel	Pose	and	Section	Vehicle	Update
frictionPairs	 is	 basically	 a	 lookup	 table	 that	 associates	 unique	 friction	 values	 with
combinations	 of	 tire	 type	 and	PxMaterial.	 The	 idea	 here	 is	 to	 allow	 tire	 response	 to	 be
tuned	for	each	surface	type.	This	shall	be	discussed	in	more	depth	in	Section	
on	Drivable	Surfaces.



Snippets

Four	snippets	are	currently	implemented	to	illustrate	the	operation	of	the	PhysX	Vehicles
SDK.	These	are:

1.	SnippetVehicle4W

2.	SnippetVehicleTank

				3.	SnippetNoDrive

3.	SnippetVehicleScale

4.	SnippetVehicleMultiThreading

				5.	SnippetVehicleWheelContactMod

Code	snippets	from	each	of	these	is	used	throughout	the	guide.

SnippetVehicle4W

SnippetVehicle4W	 demonstrates	 how	 to	 instantiate	 and	 update	 vehicles	 of	 type
PxVehicleDrive4W.	It	creates	a	vehicle	on	a	plane	and	then	controls	the	vehicle	so	that	it
performs	 a	 number	 of	 choreographed	 maneuvers	 such	 as	 accelerate,	 reverse,	 brake,
handbrake,	and	turn.

SnippetVehicleTank

SnippetVehicleTank	 demonstrates	 how	 to	 instantiate	 and	 update	 vehicles	 of	 type
PxVehicleDriveTank.	 It	 creates	 a	 tank	 on	 a	 plane	 and	 then	 controls	 the	 tank	 so	 that	 it
performs	a	number	of	choreographed	maneuvers	such	as	accelerate,	reverse,	soft	turns,
and	hard	turns.

SnippetVehicleNoDrive

SnippetVehicleNoDrive	 demonstrates	 how	 to	 instantiate	 and	 update	 vehicles	 of	 type
PxVehicleNoDrive.	It	creates	a	vehicle	on	a	plane	and	then	controls	the	vehicle	so	that	it
performs	a	number	of	choreographed	manoeuvres	such	as	accelerate,	reverse,	soft	turns,
and	hard	turns.



SnippetVehicleScale

SnippetVehicleScale	demonstrates	how	to	configure	a	PhysX	vehicle	when	meters	are	not
the	chosen	length	scale.	The	snippet	sets	up	a	vehicle	with	meters	as	the	adopted	length
scale	and	 then	modifies	 the	vehicle	parameters	so	 that	 they	represent	 the	same	vehicle
but	with	centimeters	as	the	chosen	length	scale.

SnippetVehicleMultiThreading

SnippetVehicleMultiThreading	demonstrates	how	to	 implement	multi-threaded	vehicles.	
creates	 multiple	 vehicles	 on	 a	 plane	 and	 then	 concurrently	 simulates	 them	 in	 parallel
across	multiple	threads.



Advanced	Concepts

Vehicle	Creation

This	Section	discusses	the	configuration	of	vehicle	simulation	data	and	describes	how	to
set	up	an	actor	that	will	represent	the	vehicle	in	the	PhysX	SDK.	Section	
Vehicle	Creation	 identified	 three	distinct	phases	of	vehicle	configuration:	configuration	of
wheel	simulation	data,	configuration	of	drive	simulation	data	and	actor	configuration.	
of	these	phases	is	discussed	in	turn.

setupWheelsSimulationData

The	 following	 code,	 taken	 from	 SnippetVehicle4W,	 instantiates	 a
PxVehicleWheelsSimData:

void	setupWheelsSimulationData(const	PxF32	wheelMass,	const	PxF32	

				const	PxF32	wheelRadius,	const	PxF32	wheelWidth,	const	PxU32	numWheels

				const	PxVec3*	wheelCenterActorOffsets,	const	PxVec3&	chassisCMOffset

				const	PxF32	chassisMass,	PxVehicleWheelsSimData*	wheelsSimData

{

				//Set	up	the	wheels.

				PxVehicleWheelData	wheels[PX_MAX_NB_WHEELS];

				{

								//Set	up	the	wheel	data	structures	with	mass,	moi,	radius,	width.

								for(PxU32	i	=	0;	i	<	numWheels;	i++)

								{

												wheels[i].mMass	=	wheelMass;

												wheels[i].mMOI	=	wheelMOI;

												wheels[i].mRadius	=	wheelRadius;

												wheels[i].mWidth	=	wheelWidth;

								}

								//Enable	the	handbrake	for	the	rear	wheels	only.

								wheels[PxVehicleDrive4WWheelOrder::eREAR_LEFT].mMaxHandBrakeTorque

								wheels[PxVehicleDrive4WWheelOrder::eREAR_RIGHT].mMaxHandBrakeTorque

								//Enable	steering	for	the	front	wheels	only.

								wheels[PxVehicleDrive4WWheelOrder::eFRONT_LEFT].mMaxSteer=

								wheels[PxVehicleDrive4WWheelOrder::eFRONT_RIGHT].mMaxSteer

				}



				//Set	up	the	tires.

				PxVehicleTireData	tires[PX_MAX_NB_WHEELS];

				{

								//Set	up	the	tires.

								for(PxU32	i	=	0;	i	<	numWheels;	i++)

								{

												tires[i].mType	=	TIRE_TYPE_NORMAL;

								}

				}

				//Set	up	the	suspensions

				PxVehicleSuspensionData	suspensions[PX_MAX_NB_WHEELS];

				{

								//Compute	the	mass	supported	by	each	suspension	spring.

								PxF32	suspSprungMasses[PX_MAX_NB_WHEELS];

								PxVehicleComputeSprungMasses

												(numWheels,	wheelCenterActorOffsets,

													chassisCMOffset,	chassisMass,	1,	suspSprungMasses);

								//Set	the	suspension	data.

								for(PxU32	i	=	0;	i	<	numWheels;	i++)

								{

												suspensions[i].mMaxCompression	=	0.3f;

												suspensions[i].mMaxDroop	=	0.1f;

												suspensions[i].mSpringStrength	=	35000.0f;

												suspensions[i].mSpringDamperRate	=	4500.0f;

												suspensions[i].mSprungMass	=	suspSprungMasses[i];

								}

								//Set	the	camber	angles.

								const	PxF32	camberAngleAtRest=0.0;

								const	PxF32	camberAngleAtMaxDroop=0.01f;

								const	PxF32	camberAngleAtMaxCompression=-0.01f;

								for(PxU32	i	=	0;	i	<	numWheels;	i+=2)

								{

												suspensions[i	+	0].mCamberAtRest	=		camberAngleAtRest;

												suspensions[i	+	1].mCamberAtRest	=		-camberAngleAtRest

												suspensions[i	+	0].mCamberAtMaxDroop	=	camberAngleAtMaxDroop

												suspensions[i	+	1].mCamberAtMaxDroop	=	-camberAngleAtMaxDroop

												suspensions[i	+	0].mCamberAtMaxCompression	=	camberAngleAtMaxCompression

												suspensions[i	+	1].mCamberAtMaxCompression	=	-camberAngleAtMaxCompression

								}

				}

				//Set	up	the	wheel	geometry.

				PxVec3	suspTravelDirections[PX_MAX_NB_WHEELS];

				PxVec3	wheelCentreCMOffsets[PX_MAX_NB_WHEELS];



				PxVec3	suspForceAppCMOffsets[PX_MAX_NB_WHEELS];

				PxVec3	tireForceAppCMOffsets[PX_MAX_NB_WHEELS];

				{

								//Set	the	geometry	data.

								for(PxU32	i	=	0;	i	<	numWheels;	i++)

								{

												//Vertical	suspension	travel.

												suspTravelDirections[i]	=	PxVec3(0,-1,0);

												//Wheel	center	offset	is	offset	from	rigid	body	center	of	mass.

												wheelCentreCMOffsets[i]	=

																wheelCenterActorOffsets[i]	-	chassisCMOffset;

												//Suspension	force	application	point	0.3	metres	below

												//rigid	body	center	of	mass.

												suspForceAppCMOffsets[i]	=

																PxVec3(wheelCentreCMOffsets[i].x,-0.3f,wheelCentreCMOffsets

												//Tire	force	application	point	0.3	metres	below

												//rigid	body	center	of	mass.

												tireForceAppCMOffsets[i]	=

																PxVec3(wheelCentreCMOffsets[i].x,-0.3f,wheelCentreCMOffsets

								}

				}

				//Set	up	the	filter	data	of	the	raycast	that	will	be	issued	by	each	suspension.

				PxFilterData	qryFilterData;

				setupNonDrivableSurface(qryFilterData);

				//Set	the	wheel,	tire	and	suspension	data.

				//Set	the	geometry	data.

				//Set	the	query	filter	data

				for(PxU32	i	=	0;	i	<	numWheels;	i++)

				{

								wheelsSimData->setWheelData(i,	wheels[i]);

								wheelsSimData->setTireData(i,	tires[i]);

								wheelsSimData->setSuspensionData(i,	suspensions[i]);

								wheelsSimData->setSuspTravelDirection(i,	suspTravelDirections

								wheelsSimData->setWheelCentreOffset(i,	wheelCentreCMOffsets

								wheelsSimData->setSuspForceAppPointOffset(i,	suspForceAppCMOffsets

								wheelsSimData->setTireForceAppPointOffset(i,	tireForceAppCMOffsets

								wheelsSimData->setSceneQueryFilterData(i,	qryFilterData);

								wheelsSimData->setWheelShapeMapping(i,	i);

				}

}



The	 function	 PxVehicleComputeSprungMasses	 computes	 the	 sprung	 mass	 of	 each
suspension	so	that	they	collectively	match	the	rigid	body	center	of	mass.	
in	the	frame	of	the	actor.	It	makes	sense	to	perform	PxVehicleComputeSprungMasses	in
the	 frame	of	 the	actor	because	 the	 rigid	body	center	of	mass	 is	always	specified	 in	 the
actor's	frame.	The	vehicle	suspension	system,	on	the	other	hand,	is	specified	in	the	center
of	 mass	 frame.	 As	 a	 consequence,	 the	 functions	 setWheelCentreOffset,
setSuspForceAppPointOffset	and	setTireForceAppPointOffset	all	describe	offsets	from	the
rigid	body	center	of	mass.	The	directness	of	this	approach	can	make	changes	to	the	rigid
body	center	of	mass	a	bit	more	involved	than	might	be	expected.	To	solve	this	problem	the
function	PxVehicleUpdateCMassLocalPose	has	been	 introduced,	 though	not	used	 in	 the
code	 above.	 This	 function	 recomputes	 and	 sets	 all	 suspension	 offsets,	 recomputes	 the
sprung	masses	and	sets	them	in	a	way	that	preserves	the	natural	frequency	and	damping
ratio	of	each	spring.

Details	of	many	of	 the	parameters	and	 functions	above	can	be	 found	 in	Section	
Guide.	The	 function	 setupNonDrivableSurface,	which	 sets	up	scene	query	 filter	 data	 for
each	suspension	 raycast,	 shall	be	discussed	 in	more	detail	 in	Section	
the	 link	 between	TIRE_TYPE_NORMAL	and	 tire	 friction	 shall	 be	made	 clear	 in	Section
Tire	Friction	on	Drivable	Surfaces.	Finally,	the	use	of	the	function	setWheelShapeMapping
shall	be	clarified	in	Section	Wheel	Pose.

setupDriveSimData

The	 following	 code,	 taken	 from	 SnippetVehicle4W,	 instantiates	 a
PxVehicleDriveSimData4W:

PxVehicleDriveSimData4W	driveSimData;

{

				//Diff

				PxVehicleDifferential4WData	diff;

				diff.mType=PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD;

				driveSimData.setDiffData(diff);

				//Engine

				PxVehicleEngineData	engine;

				engine.mPeakTorque=500.0f;

				engine.mMaxOmega=600.0f;//approx	6000	rpm

				driveSimData.setEngineData(engine);



				//Gears

				PxVehicleGearsData	gears;

				gears.mSwitchTime=0.5f;

				driveSimData.setGearsData(gears);

				//Clutch

				PxVehicleClutchData	clutch;

				clutch.mStrength=10.0f;

				driveSimData.setClutchData(clutch);

				//Ackermann	steer	accuracy

				PxVehicleAckermannGeometryData	ackermann;

				ackermann.mAccuracy=1.0f;

				ackermann.mAxleSeparation=

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

				ackermann.mFrontWidth=

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

				ackermann.mRearWidth=

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

								wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder

				driveSimData.setAckermannGeometryData(ackermann);

}

Details	of	many	of	 the	parameters	and	 functions	above	can	be	 found	 in	Section	
Guide.

Configuring	PxVehicleDriveSimDataNW	and	PxVehicleDriveSimDataTank	instances	follow
a	 very	 similar	 procedure,	 albeit	 with	 slightly	 different	 components.	 More	 details	 can	 be
found,	for	example,	in	SnippetVehicleTank.

setupVehicleActor

The	 following	 code,	 common	 to	 all	 vehicle	 snippets,	 sets	 up	 a	 rigid	 dynamic	 actor	with
geometry,	filter	and	dynamics	data:

PxRigidDynamic*	createVehicleActor

(const	PxVehicleChassisData&	chassisData,

	PxMaterial**	wheelMaterials,	PxConvexMesh**	wheelConvexMeshes,	const

	PxMaterial**	chassisMaterials,	PxConvexMesh**	chassisConvexMeshes



	PxPhysics&	physics)

{

								//We	need	a	rigid	body	actor	for	the	vehicle.

								//Don't	forget	to	add	the	actor	to	the	scene	after	setting	up	the	associated	vehicle.

								PxRigidDynamic*	vehActor	=	physics.createRigidDynamic(PxTransform

								//Wheel	and	chassis	query	filter	data.

								//Optional:	cars	don't	drive	on	other	cars.

								PxFilterData	wheelQryFilterData;

								setupNonDrivableSurface(wheelQryFilterData);

								PxFilterData	chassisQryFilterData;

								setupNonDrivableSurface(chassisQryFilterData);

								//Add	all	the	wheel	shapes	to	the	actor.

								for(PxU32	i	=	0;	i	<	numWheels;	i++)

								{

																PxConvexMeshGeometry	geom(wheelConvexMeshes[i]);

																PxShape*	wheelShape=PxRigidActorExt::createExclusiveShape

																wheelShape->setQueryFilterData(wheelQryFilterData);

																wheelShape->setSimulationFilterData(wheelSimFilterData

																wheelShape->setLocalPose(PxTransform(PxIdentity));

								}

								//Add	the	chassis	shapes	to	the	actor.

								for(PxU32	i	=	0;	i	<	numChassisMeshes;	i++)

								{

																PxShape*	chassisShape=PxRigidActorExt::createExclusiveShape

																chassisShape->setQueryFilterData(chassisQryFilterData

																chassisShape->setSimulationFilterData(chassisSimFilterData

																chassisShape->setLocalPose(PxTransform(PxIdentity));

								}

								vehActor->setMass(chassisData.mMass);

								vehActor->setMassSpaceInertiaTensor(chassisData.mMOI);

								vehActor->setCMassLocalPose(PxTransform(chassisData.mCMOffset

								return	vehActor;

}

The	 significance	 of	 wheelSimFilterData,	 chassisSimFilterData,	 wheelQryFilterData	 and
chassisQryFilterData	shall	be	discussed	in	Section	Filtering.	Further,	the	link	between	the
ordering	 of	 the	 wheel	 shapes	 in	 the	 above	 code	 and	 the	 function
PxVehicleWheelsSimData::setWheelShapeMapping	is	clarified	in	Section	



Filtering

In	this	Section	the	concepts	behind	vehicle	query	and	vehicle	simulation	filtering	shall	be
described.

The	key	goal	of	scene	query	and	simulation	filtering	for	vehicles	is	to	ensure	that	vehicles
are	 supported	 by	 suspension	 spring	 forces	 without	 interference	 from	 wheel	 shape
intersection.	The	requirements	for	filtering	are	then	as	follows:

1.	wheel	shapes	must	not	hit	drivable	surfaces

2.	suspension	raycasts	can	hit	drivable	surfaces

3.	suspension	raycasts	must	not	hit	the	shapes	of	the	vehicle	issuing

Ensuring	 that	wheel	 shapes	 don't	 hit	 drivable	 surfaces	 can	 be	 achieved	with	 simulation
filtering.	This	is	discussed	in	more	detail	in	Section	Collision	Filtering.	The	vehicle	snippets
use	the	following	simulation	filter	shader:

PxFilterFlags	VehicleFilterShader

(PxFilterObjectAttributes	attributes0,	PxFilterData	filterData0,

	PxFilterObjectAttributes	attributes1,	PxFilterData	filterData1,

	PxPairFlags&	pairFlags,	const	void*	constantBlock,	PxU32	constantBlockSize

{

								PX_UNUSED(attributes0);

								PX_UNUSED(attributes1);

								PX_UNUSED(constantBlock);

								PX_UNUSED(constantBlockSize);

								if(	(0	==	(filterData0.word0	&	filterData1.word1))	&&	(0	==

																return	PxFilterFlag::eSUPPRESS;

								pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

								pairFlags	|=	PxPairFlags(PxU16(filterData0.word2	|	filterData1

								return	PxFilterFlags();

}

The	snippets	also	apply	simulation	filter	data	to	wheel	shapes	as	follows:

PxFilterData	wheelSimFilterData;

wheelSimFilterData.word0	=	COLLISION_FLAG_WHEEL;



wheelSimFilterData.word1	=	COLLISION_FLAG_WHEEL_AGAINST;

...

wheelShape->setSimulationFilterData(wheelSimFilterData);

Finally,	the	following	simulation	filter	data	is	applied	to	drivable	surfaces:

PxFilterData	simFilterData;

simFilterData.word0	=	COLLISION_FLAG_GROUND;

simFilterData.word1	=	COLLISION_FLAG_GROUND_AGAINST;

...

shapes[0]->setSimulationFilterData(simFilterData);

The	 combination	 of	 collision	 flags	 (COLLISION_FLAG_WHEEL,
COLLISION_FLAG_GROUND_AGAINST	etc)	and	filter	shader	ensures	that	wheel	shapes
don't	collide	with	drivable	surfaces.

A	 remarkably	 similar	 process	may	 be	 employed	 to	 configure	 the	 complementary	 scene
query	filters.	This	is	accomplished	in	the	vehicle	snippets	with	the	following	code:

void	setupDrivableSurface(PxFilterData&	filterData)

{

				filterData.word3	=	(PxU32)DRIVABLE_SURFACE;

}

void	setupNonDrivableSurface(PxFilterData&	filterData)

{

				filterData.word3	=	UNDRIVABLE_SURFACE;

}

PxQueryHitType::Enum	WheelRaycastPreFilter

(PxFilterData	filterData0,	PxFilterData	filterData1,

	const	void*	constantBlock,	PxU32	constantBlockSize,

	PxHitFlags&	queryFlags)

{

				//filterData0	is	the	vehicle	suspension	raycast.

				//filterData1	is	the	shape	potentially	hit	by	the	raycast.

				PX_UNUSED(constantBlockSize);

				PX_UNUSED(constantBlock);

				PX_UNUSED(filterData0);



				PX_UNUSED(queryFlags);

				return	((0	==	(filterData1.word3	&	DRIVABLE_SURFACE))	?

								PxQueryHitType::eNONE	:	PxQueryHitType::eBLOCK);

}

Each	 vehicle	 wheel	 is	 given	 filter	 data	 configured	 with	 setupNonDrivableSurface	 and
passed	to	the	vehicle	with:

wheelsSimData->setSceneQueryFilterData(i,	qryFilterData);

The	 parameter	 filterData0	 in	 WheelRaycastPreFilter	 corresponds	 to	 the	 parameter
qryFilterData	 passed	 to	 the	 vehicle	 with
PxVehiceWheelsSimData::setSceneQueryFilterData.	 The	 parameter	 filterData1,	 on	 the
other	hand,	corresponds	to	the	query	filter	data	of	a	shape	potentially	hit	by	the	raycast.	
the	 vehicle	 snippets	 the	 shape	of	 the	drivable	ground	plane	has	 scene	query	 filter	 data
configured	 with	 the	 function	 setupDrivableSurface.	 This	 satisfies	 the	 requirement	 that
suspension	 raycasts	 can	 hit	 drivable	 surfaces.	 Vehicle	 shapes,	 on	 the	 other	 hand,	 are
configured	 with	 setupNonDrivableSurface.	 This	 satisfies	 the	 restriction	 that	 suspension
raycasts	 must	 not	 hit	 the	 vehicle	 issuing	 the	 raycasts	 but	 also	 prevents	 vehicles	 from
driving	on	any	other	vehicles	that	might	be	added	to	the	scene.	This	extra	restriction	could
readily	be	avoided	by	employing	a	more	complex	filter	shader	that	perhaps	exploits	unique
IDs	 encoded	 in	 both	 the	 shape	 filter	 data	 and	 the	 filter	 data	 applied	 to	 the	 query	 itself.
Care	must	be	taken,	however,	to	configure	the	filters	to	ensure	that	suspension	raycasts
only	interact	with	the	shapes	of	other	vehicles.

Note: 	It	is	vital	that	WheelRaycastPreFilter	returns	PxQueryHitType::eBLOCK	if	a
raycast	hit	is	allowed	for	the	filter	data	pair.	Using	PxQueryHitType::eBLOCK	guarantees
that	each	raycast	returns	either	no	hits	or	just	the	hit	closest	to	the	start	point	of	the
raycast.	This	is	important	because	PxVehicleSuspensionRaycasts	and
PxVehicleUpdates	expect	a	one-to-one	correspondence	between	each	wheel	and	each
element	in	the	PxRaycastQueryResult	and	PxRaycastHit	arrays	passed	to	the	batch
query.

Tire	Friction	on	Drivable	Surfaces



In	 this	 Section	 setting	 up	 tire	 types,	 drivable	 surface	 types,	 and	 tire	 friction	 on
combinations	of	tire	and	surface	type	shall	be	discussed.

To	implement	a	unique	friction	value	for	each	combination	of	tire	type	and	surface	type	it	is
first	necessary	 to	assign	 tire	 types	 to	 tires.	 In	Section	setupWheelsSimulationData
type	was	assigned	to	each	tire:

//Set	up	the	tires.

PxVehicleTireData	tires[PX_MAX_NB_WHEELS];

{

				//Set	up	the	tires.

				for(PxU32	i	=	0;	i	<	numWheels;	i++)

				{

								tires[i].mType	=	TIRE_TYPE_NORMAL;

				}

}

Assigning	 a	 type	 to	 each	 surface	 is	 a	 little	more	 complex.	 The	 basic	 idea	 is	 that	 each
suspension	 raycast	 hit	 returns	 the	 PxMaterial	 of	 the	 shape	 hit	 by	 the	 raycast.	
knowledge	of	a	PxMaterial	array	it	is	possible	to	associate	the	type	of	a	hit	surface	with	the
index	of	 the	PxMaterial	array	element	 that	matches	 the	material	hit	by	 the	 raycast.	This
lookup	 and	 the	 table	 of	 friction	 values	 is	 managed	 by	 the	 class
PxVehicleDrivableSurfaceToTireFrictionPairs.	 To	 make	 the	 feature	 more	 general	 each
element	 of	 the	 PxMaterial	 array	 is	 actually	 associated	 with	 a
PxVehicleDrivableSurfaceType	 instance.	 This	 allows	 multiple	 PxMaterial	 instances	 to
share	the	same	surface	type.

In	the	vehicle	snippets	the	following	code	makes	the	association	between	PxMaterial	and
surface	type	and	then	associates	each	combination	of	tire	and	surface	type	with	a	friction
value:

PxVehicleDrivableSurfaceToTireFrictionPairs*	createFrictionPairs

				(const	PxMaterial*	defaultMaterial)

{

				PxVehicleDrivableSurfaceType	surfaceTypes[1];

				surfaceTypes[0].mType	=	SURFACE_TYPE_TARMAC;

				PxMaterial*	surfaceMaterials[1];

				surfaceMaterials[0]	=	defaultMaterial;



				PxVehicleDrivableSurfaceToTireFrictionPairs*	surfaceTirePairs	

								PxVehicleDrivableSurfaceToTireFrictionPairs::allocate(MAX_NUM_TIRE_TYPES

								MAX_NUM_SURFACE_TYPES);

				surfaceTirePairs->setup(MAX_NUM_TIRE_TYPES,	MAX_NUM_SURFACE_TYPES

								surfaceMaterials,	surfaceTypes);

				for(PxU32	i	=	0;	i	<	MAX_NUM_SURFACE_TYPES;	i++)

				{

								for(PxU32	j	=	0;	j	<	MAX_NUM_TIRE_TYPES;	j++)

								{

												surfaceTirePairs->setTypePairFriction(i,j,gTireFrictionMultipliers

								}

				}

				return	surfaceTirePairs;

}

Note: 	It	is	not	necessary	to	provide	an	exhaustive	array	of	all	materials.	
PxVehicleDrivableSurfaceToTireFrictionPairs	has	no	knowledge	of	the	hit	material	it
assumes	a	value	of	zero	for	the	surface	type.

There	is	no	upper	bound	on	the	friction	values	used	in	the	PhysX	vehicles	SDK.	
the	maximum	value	of	 friction	 that	obeys	 the	 laws	of	physics	 is	1.0,	 the	PhysX	vehicles
SDK	purposefully	does	not	enforce	this	rule.	One	reason	for	this	is	that	the	vehicle	model
is	far	from	a	complete	description	of	a	real	vehicle,	meaning	that	some	liberties	need	to	be
taken	with	friction	values	to	generate	the	desired	behavior.	A	more	complete	model	would
certainly	provide	greater	accuracy	given	a	specific	set	of	vehicle	parameters	but	it	is	not	at
all	 clear	 that	 it	 would	 provide	 a	 greater	 range	 of	 editable	 and	 controllable	 behaviors	 or
have	 the	performance	characteristics	 required	 for	games.	Another	 reason	 that	 friction	 is
not	 clamped	 at	 1.0	 is	 that	 games	 typically	 simulate	 the	 physics	 update	 at	 60Hz.	
comes	at	a	cost	 to	numerical	accuracy,	especially	when	there	are	a	number	of	 transient
tire	effects	that	require	KHz	update	frequencies.	One	source	of	numerical	accuracy	is	the
amplitude	of	oscillation	of	the	suspension,	which	is	governed	in	turn	by	the	distance	that
the	 vehicle	 falls	 under	 gravity	 between	 each	 update.	 At	 KHz	 update	 frequencies	 this
simulation	 artifact	 is	 acceptably	 small,	 but	 not	 at	 60Hz.	 The	 last	 reason	 is	 that	 there	 is
simply	no	need	to	 impose	the	strict	 rules	of	 friction	on	 the	vehicles	SDK.	
interesting	behaviors	to	be	generated	that	would	perhaps	be	impossible	when	constrained



by	the	laws	of	rigid	body	and	tire	dynamics.	Having	said	all	this,	however,	the	implemented
model	simulated	at	60Hz	ought	to	have	enough	integrity	that	only	small	tweaks	above	1.0
should	be	necessary.	If	very	large	friction	values	are	required,	say	greater	than	2.0,	then	it
is	likely	that	something	is	wrong	with	the	update	order	or	perhaps	very	unphysical	vehicle
data	has	been	used.

A	PxVehicleDrivableSurfaceToTireFrictionPairs	instance	is	passed	as	a	function	argument
for	 each	 call	 to	 PxVehicleUpdates.	 Each	 instance	 of
PxVehicleDrivableSurfaceToTireFrictionPairs	 need	 only	 persist	 for	 the	 duration	 of
PxVehicleUpdates.	It	is	perfectly	legal	to	edit	the	tire	types,	materials	and	friction	values	in-
between	calls	to	PxVehicleUpdates.	Editing	any	of	these	values	while	PxVehicleUpdates	is
still	executing	will	lead	to	undefined	behavior.

Vehicle	Controls

In	this	Section	setting	the	control	values	used	to	drive	a	vehicle	shall	be	discussed.

The	 simplest	 and	most	 direct	 way	 to	 set	 vehicle	 control	 values	 is	 to	 use	 the	 following
function:

void	PxVehicleDriveDynData::setAnalogInput(const	PxReal	analogVal,

One	 of	 the	 difficulties	 with	 vehicle	 dynamics	 in	 games	 is	 knowing	 how	 to	 filter	 the	 raw
controller	 data	 in	 a	 way	 that	 results	 in	 pleasing	 handling.	 Players,	 for	 example,	 often
accelerate	 by	 pressing	 very	 quickly	 on	 the	 accelerator	 trigger	 in	 a	 way	 would	 never
happen	in	a	real	car.	This	rapid	acceleration	can	have	a	counter-productive	effect	because
the	resulting	wheel	spin	reduces	the	lateral	and	longitudinal	forces	that	can	be	generated
by	 the	 tire.	 To	 help	 overcome	 some	 of	 these	 problems	 some	 optional	 code	 has	 been
provided	to	filter	the	control	data	from	keyboard	and	gamepad.

A	solution	to	the	problem	of	filtering	controller	input	data	is	to	assign	a	rise	and	fall	rate	to
each	button	or	pad.	For	analog	values	under	digital	control	it	is	possible	to	simply	increase
or	decrease	the	analog	value	at	a	specified	rate	depending	on	whether	the	digital	input	is
on	or	off.	For	analog	values	under	analog	control	it	makes	more	sense	to	blend	from	the



previous	 input	value	 to	 the	current	 input	at	a	specified	 rate.	A	slight	complication	 to	 this
simple	model	is	that	the	difficulty	of	achieving	a	large	steer	angle	at	large	speed	must	also
be	modeled.	One	 technique	 to	achieve	 this	would	be	 to	model	 the	 forces	 from	 the	 tires'
aligning	 moments	 and	 apply	 these	 to	 a	 steering	 linkage	 model.	 This	 sounds	 rather
complicated	 and	 quite	 difficult	 to	 tune.	 A	 simpler	 solution	might	 be	 to	 scale	 the	 filtered
steer	 value	 by	 another	 value	 in	 range	 (0,1)	 that	 decreases	 at	 high	 speed.	
method	has	been	implemented	in	the	helper	classes	and	functions.

Rise	 and	 fall	 rates	 for	 digital	 and	 analog	 control	 have	 been	 hard-coded	 in
SnippetVehicle4W:

PxVehicleKeySmoothingData	gKeySmoothingData=

{

				{

								3.0f,				//rise	rate	eANALOG_INPUT_ACCEL

								3.0f,				//rise	rate	eANALOG_INPUT_BRAKE

								10.0f,				//rise	rate	eANALOG_INPUT_HANDBRAKE

								2.5f,				//rise	rate	eANALOG_INPUT_STEER_LEFT

								2.5f,				//rise	rate	eANALOG_INPUT_STEER_RIGHT

				},

				{

								5.0f,				//fall	rate	eANALOG_INPUT__ACCEL

								5.0f,				//fall	rate	eANALOG_INPUT__BRAKE

								10.0f,				//fall	rate	eANALOG_INPUT__HANDBRAKE

								5.0f,				//fall	rate	eANALOG_INPUT_STEER_LEFT

								5.0f				//fall	rate	eANALOG_INPUT_STEER_RIGHT

				}

};

PxVehiclePadSmoothingData	gPadSmoothingData=

{

				{

								6.0f,				//rise	rate	eANALOG_INPUT_ACCEL

								6.0f,				//rise	rate	eANALOG_INPUT_BRAKE

								12.0f,				//rise	rate	eANALOG_INPUT_HANDBRAKE

								2.5f,				//rise	rate	eANALOG_INPUT_STEER_LEFT

								2.5f,				//rise	rate	eANALOG_INPUT_STEER_RIGHT

				},

				{

								10.0f,				//fall	rate	eANALOG_INPUT_ACCEL

								10.0f,				//fall	rate	eANALOG_INPUT_BRAKE

								12.0f,				//fall	rate	eANALOG_INPUT_HANDBRAKE

								5.0f,				//fall	rate	eANALOG_INPUT_STEER_LEFT



								5.0f				//fall	rate	eANALOG_INPUT_STEER_RIGHT

				}

};

A	 look-up	 table	has	also	been	specified	 to	describe	 the	maximum	steer	as	a	 function	of
speed:

PxF32	gSteerVsForwardSpeedData[2*8]=

{

				0.0f,								0.75f,

				5.0f,								0.75f,

				30.0f,								0.125f,

				120.0f,								0.1f,

				PX_MAX_F32,	PX_MAX_F32,

				PX_MAX_F32,	PX_MAX_F32,

				PX_MAX_F32,	PX_MAX_F32,

				PX_MAX_F32,	PX_MAX_F32

};

PxFixedSizeLookupTable<8>	gSteerVsForwardSpeedTable(gSteerVsForwardSpeedData

Using	a	PxVehicleDrive4WRawInputData	 instance	 it	 is	straightforward	to	record	 the	user
inputs	in	the	event	a	keyboard	is	used:

gVehicleInputData.setDigitalAccel(true);

gVehicleInputData.setDigitalBrake(true);

gVehicleInputData.setDigitalHandbrake(true);

gVehicleInputData.setDigitalSteerLeft(true);

gVehicleInputData.setDigitalSteerRight(true);

gVehicleInputData.setGearUp(true);

gVehicleInputData.setGearDown(true);

or	in	the	event	that	a	gamepad	is	used:

gVehicleInputData.setAnalogAccel(1.0f);

gVehicleInputData.setAnalogBrake(1.0f);

gVehicleInputData.setAnalogHandbrake(1.0f);

gVehicleInputData.setAnalogSteer(1.0f);

gVehicleInputData.setGearUp(1.0f);

gVehicleInputData.setGearDown(1.0f);

Here,	 gVehicleInputData	 is	 an	 instance	 of	 the	 vehicle	 SDK	 helper	 class
PxVehicleDrive4WRawInputData.



The	vehicle	SDK	offers	 two	optional	 functions	 to	smooth	 the	keyboard	or	gamepad	data
and	apply	the	smoothed	input	values	to	the	PhysX	vehicle.	If	the	vehicle	is	controlled	by
digital	inputs	then	the	following	function	is	used:

PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData

				gSteerVsForwardSpeedTable,	carRawInputs,timestep,isInAir,(PxVehicleDrive4W

while	gamepad	controllers	employ	the	following	code:

PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(gCarPadSmoothingData

				gSteerVsForwardSpeedTable,	carRawInputs,timestep,(PxVehicleDrive4W

The	code	above	smoothes	the	controller	inputs	and	applies	them	to	a	PxVehicleDrive4W
instance.	 For	 other	 vehicle	 types	 the	 process	 is	 remarkably	 similar,	 except	 with
complementary	classes	and	functions	designed	for	each	vehicle	type.

Vehicle	Update

It	has	already	been	mentioned	that	vehicles	are	updated	in	two	stages:

1.	 specific	 vehicle	 code	 that	 updates	 the	 vehicle	 internal	 dynamics	and	 computes
forces/torques	to	apply	to	the	vehicle's	rigid	body	representation

2.	 an	SDK	update	 that	accounts	 for	 the	applied	 forces/torques	as	well	as	collision
with	other	scene	bodies.

In	Section	 Introduction	To	Vehicle	Update	 the	 functions	used	 to	perform	the	raycast	and
vehicle	 updates	were	 introduced.	 In	 this	 Section	 these	 separate	 update	 phases	 will	 be
discussed	in	more	detail.

Raycast	and	Update	Ordering

Prior	to	the	first	time	that	a	vehicle	is	updated	in	PxVehicleUpdates,	it	must	have	already
performed	suspension	 line	raycasts	at	 least	once	with	PxVehicleSuspensionRaycasts.	
subsequent	 updates	 it	 is	 not	 strictly	 necessary	 to	 issue	 fresh	 raycasts	 because	 each



vehicle	caches	raycast	hit	planes	that	can	be	re-used.	It	 is	 recommended	that	 there	 is	a
one-to-one	 correspondence	 between	 raycast	 completion	 and	 updates	 for	 each	 vehicle
except	 for	 the	case	of	vehicles	 that	only	 require	a	 low	 level	of	detail.	
cars	 that	 are	 far	 from	 the	 camera	 or	 where	 it	 is	 known	 that	 the	 vehicle	 is	 driving	 on
geometry	with	high	spatial	coherence.	Support	for	vehicles	that	require	only	a	low	level	of
detail	is	discussed	in	Section	Level	of	Detail.

There	is	some	freedom	in	the	order	in	which	raycasts	can	be	issued	relative	to	the	vehicle
dynamics	update.	 In	 a	 real-world	 situation	 it	might	 be	 that	 raycasts	 can	be	 issued	on	a
separate	thread	at	the	end	of	the	update	loop	so	that	they	are	ready	for	the	beginning	of
the	next.	However,	this	really	all	depends	on	the	threading	environment	and	the	ordering
of	rigid	body	updates.

Wheel	Pose

PxVehicleUpdates	poses	the	wheels	shapes	of	 the	vehicle's	actor	to	take	account	of	 the
steer,	camber,	and	rotation	angles.	The	computed	pose	also	attempts	to	place	the	wheel
geometry	exactly	on	the	contact	plane	identified	by	the	raycast	that	was	issued	along	the
suspension	 line.	To	perform	 this	 function	 the	PhysX	Vehicles	SDK	needs	 to	know	which
shapes	 of	 the	 actor	 correspond	 to	 each	wheel	 of	 the	 vehicle.	 This	 is	 achieved	with	 the
function	PxVehicleWheelsSimData::setWheelShapeMapping.

Note: 	The	vehicle	SDK	has	a	default	mapping	for	each	wheel	that	is	equivalent	to
PxVehicleWheelsSimData::setWheelShapeMapping(i,i).	This	needs	corrected	if	the
layout	of	the	shapes	is	different	from	the	default	pattern.

Note: 	PxVehicleWheelsSimData::setWheelShapeMapping(i,-1)	can	be	called	to	disable
setting	the	local	wheel	pose.	This	is	particularly	useful	if	a	wheel	has	no	corresponding
actor	geometry.

The	 wheel	 pose	 is	 always	 within	 the	 limits	 imposed	 by
PxVehicleSuspensionData::mMaxDroop	 and
PxVehicleSuspensionData::mMaxCompression.	 If	 the	 suspension	 raycast	 hit	 plane
requires	the	wheel	to	be	placed	beyond	the	compression	limit	the	wheel	will	be	placed	at



the	compression	limit	and	a	rigid	body	constraint	will	handle	the	difference	in	the	next	SDK
simulate()	call.

Vehicle	State	Queries

Each	 vehicle	 stores	 persistent	 simulation	 data	 that	 is	 updated	 each	 time
PxVehicleUpdates	 is	 called.	Examples	 of	 persistent	 data	 include	wheel	 rotation	 speeds,
wheel	 rotation	 angle,	 and	 wheel	 rotation	 speed.	 Additionally,	 a	 large	 amount	 of	 non-
persistent	data	is	computed	during	each	update.	This	non-persistent	data	is	not	stored	in
the	vehicle's	own	data	structures.	 Instead,	a	data	buffer	 is	passed	 to	PxVehicleUpdates
and	queried	after	PxVehicleUpdates	completes.	Examples	of	non-persistent	data	 include
suspension	 jounce,	 tire	 force	 and	 raycast	 hit	 actor.	 The	 combination	 of	 these	 two	 data
types	allows	an	almost	complete	snapshot	of	the	state	of	the	vehicle	and	can	be	used	to
trigger	 secondary	 effects	 such	 as	 skid	 marks,	 engine	 and	 clutch	 audio,	 and	 smoke
particles.

Persistent	wheel	data	is	stored	in	PxVehicleWheelsDynData,	while	persistent	drive	model
data	is	stored	in	PxVehicleDriveDynData.	The	most	useful	functions	are	the	following:

PX_FORCE_INLINE	PxReal	PxVehicleDriveDynData::getEngineRotationSpeed

PxReal	PxVehicleWheelsDynData::getWheelRotationSpeed(const	PxU32	wheelIdx

PxReal	PxVehicleWheelsDynData::getWheelRotationAngle(const	PxU32	wheelIdx

To	 record	 non-persistent	 simulation	 data	 so	 that	 it	 may	 be	 later	 be	 queried	 an	 extra
function	 argument	 must	 be	 passed	 to	 PxVehicleUpdates.	 The	 following	 pseudo-code
records	non-persistent	data	for	a	single	4-wheeled	car:

PxWheelQueryResult	wheelQueryResults[4];

PxVehicleWheelQueryResult	vehicleWheelQueryResults[1]	=	{{wheelQueryResults

PxVehicleUpdates(timestep,	gravity,	frictionPairs,	1,	vehicles,	vehicleWheelQueryResults

Here,	 a	PxVehicleWheelQueryResult	 array,	whose	 length	 equals	 at	 least	 the	number	 of
vehicles	 in	 the	 batched	 vehicles	 array,	 is	 passed	 to	 PxVehicleUpdates.	
PxVehicleWheelQueryResult	 instance	 has	 a	 pointer	 to	 a	 PxWheelQueryResult	 buffer,
whose	length	equals	at	least	the	number	of	wheels	in	the	vehicle.	After	PxVehicleUpdates



is	complete	the	state	of	each	each	vehicle	wheel	may	be	inspected.

It	is	not	obligatory	to	record	non-persistent	data	for	later	query.	Indeed,	it	is	perfect	legal	to
associate	 a	 vehicle	with	 a	NULL	 data	 block	 to	 avoid	 storing	 non-persistent	wheel	 data.
This	feature	allows	memory	budgets	to	be	targeted	at	the	vehicles	of	highest	interest.



More	Advanced	Concepts

Vehicle	Telemetry

The	purpose	of	telemetry	data	is	to	expose	the	inner	dynamics	of	the	car	and	aid	handling
tuning	 through	 the	 use	 of	 telemetry	 graphs.	 In	 this	 Section	 initialization,	 collection,	 and
rendering	of	telemetry	data	shall	be	discussed.

Telemetry	data	is	recorded	by	calling	the	following	function:

void	PxVehicleUpdateSingleVehicleAndStoreTelemetryData

				(const	PxReal	timestep,	const	PxVec3&	gravity,

					const	PxVehicleDrivableSurfaceToTireFrictionPairs&	vehicleDrivableSurfaceToTireFrictionPairs

					PxVehicleWheels*	focusVehicle,	PxVehicleWheelQueryResult*	vehicleWheelQueryResults

					PxVehicleTelemetryData&	telemetryData);

The	 function	 above	 is	 identical	 to	 PxVehicleUpdates	with	 the	 exception	 that	 it	 can	 only
update	a	single	vehicle	at	a	time	and	takes	an	extra	function	argument	telemetryData.

Setting	 up	 the	 telemetry	 data	 is	 relatively	 straightforward.	 In	 addition	 to	 storing	 the
telemetry	data	streams,	the	PxVehicleTelemetryData	structure	also	stores	data	describing
the	 size,	 position,	 and	 color	 scheme	of	 the	graph.	The	 following	pseudo-code	 initializes
and	configures	telemetry	data	for	a	4-wheeled	vehicle:

PxVehicleTelemetryData*	myTelemetryData	=	PxVehicleTelemetryData::

const	PxF32	graphSizeX=0.25f;

const	PxF32	graphSizeY=0.25f;

const	PxF32	engineGraphPosX=0.5f;

const	PxF32	engineGraphPosY=0.5f;

const	PxF32	wheelGraphPosX[4]={0.75f,0.25f,0.75f,0.25f};

const	PxF32	wheelGraphPosY[4]={0.75f,0.75f,0.25f,0.25f};

const	PxVec3	backgroundColor(255,255,255);

const	PxVec3	lineColorHigh(255,0,0);

const	PxVec3	lineColorLow(0,0,0);

myTelemetryData->setup

					(graphSizeX,graphSizeY,

						engineGraphPosX,engineGraphPosY,



						wheelGraphPosX,wheelGraphPosY,

						backgroundColor,lineColorHigh,lineColorLow);

The	sizes,	positions,	and	colors	are	all	values	that	will	be	used	to	render	the	graphs.	
exact	values	of	these	fields	will	depend	on	the	coordinate	system	and	color	coding	used	to
visualize	the	telemetry	data.

In	the	above	example,	the	coordinates	have	been	configured	to	render	an	engine-related
graph	in	the	center	of	the	screen	under	the	assumption	that	(1,1)	is	the	top	left-hand	side
of	the	screen	and	(0,0)	the	bottom	right-hand	side	of	the	screen.	Screen	coordinates	have
also	been	specified	for	rendering	data	associated	with	each	of	the	four	wheels.

The	following	enumerated	lists	detail	the	telemetry	data	that	is	collected:

enum

{

				eCHANNEL_JOUNCE=0,

				eCHANNEL_SUSPFORCE,

				eCHANNEL_TIRELOAD,

				eCHANNEL_NORMALISED_TIRELOAD,

				eCHANNEL_WHEEL_OMEGA,

				eCHANNEL_TIRE_FRICTION,

				eCHANNEL_TIRE_LONG_SLIP,

				eCHANNEL_NORM_TIRE_LONG_FORCE,

				eCHANNEL_TIRE_LAT_SLIP,

				eCHANNEL_NORM_TIRE_LAT_FORCE,

				eCHANNEL_NORM_TIRE_ALIGNING_MOMENT,

				eMAX_NUM_WHEEL_CHANNELS

};

enum

{

				eCHANNEL_ENGINE_REVS=0,

				eCHANNEL_ENGINE_DRIVE_TORQUE,

				eCHANNEL_CLUTCH_SLIP,

				eCHANNEL_ACCEL_CONTROL,

				eCHANNEL_BRAKE_CONTROL,

				eCHANNEL_HANDBRAKE_CONTROL,

				eCHANNEL_STEER_CONTROL,

				eCHANNEL_GEAR_RATIO,

				eMAX_NUM_ENGINE_CHANNELS

};



Data	is	collected	for	suspension	jounce,	suspension	force,	tire	load,	normalized	tire	load,
wheel	 rotation	 speed,	 tire	 friction,	 tire	 longitudinal	 slip,	 tire	 longitudinal	 force,	 tire	 lateral
slip,	 tire	 lateral	 force,	 and	 tire	 aligning	 moment.	 Data	 is	 also	 collected	 separately	 for
engine	revs,	engine	drive	 torque,	clutch	slip,	applied	acceleration/brake/handbrake/steer,
and	gear	ratio.	For	each	graph	all	associated	data	is	collected	in	separate	graph	channels
that	can	be	accessed	after	the	update	is	complete.

Prior	to	rendering	the	graph	of	a	particular	wheel	and	channel	the	following	pseudo-code
is	required:

PxF32	xy[2*PxVehicleGraph::eMAX_NB_SAMPLES];

PxVec3	color[PxVehicleGraph::eMAX_NB_SAMPLES];

char	title[PxVehicleGraph::eMAX_NB_TITLE_CHARS];

myTelemetryData->getWheelGraph(wheel).computeGraphChannel(PxVehicleWheelGraphChannel

				xy,	color,	title);

This	 code	 computes	 a	 sequence	 of	 screen	 coordinates	 in	 the	 format
[x0,y0,x1,y1,x2,y2,....xn,yn]	that	represent	the	points	of	the	specified	graph	channel	of	the
engine's	 graph	 data.	 It	 also	 stores	 a	 color	 for	 each	 sample	 by	 choosing	 between
lineColorHigh	 and	 lineColorLow	 depending	 on	 the	 value	 of	 the	 sample.	 Each	 graph
channel	stores	the	last	256	samples	so	that	a	history	of	each	parameter	may	be	rendered
on	the	screen.

The	 PhysX	 Vehicles	 SDK	 does	 not	 render	 the	 graphs.	 This	 is	 an	 exercise	 left	 to	 the
application	because	each	has	its	own	system	for	rendering	debug	information.

Vehicle	Update	Multi-Threaded

The	PhysX	Vehicles	SDK	can	be	used	in	a	multi-threaded	environment	to	take	advantage
of	performance	improvements	arising	from	parallelism.	The	update	steps	proceed	almost
exactly	 as	 described	 in	 Section	Vehicle	Update	 but	 with	 an	 extra	 sequential	 call	 to	 the
function	PxVehiclePostUpdates	after	all	concurrent	calls	to	PxVehicleSuspensionRaycasts
and	 PxVehicleUpdates	 are	 complete.	 PxVehiclePostUpdates	 performs	 write	 operations
normally	executed	in	PxVehicleUpdates	but	which	are	not	possible	to	efficiently	or	safely
call	when	concurrency	is	employed.



PxVehicleSuspensionRaycasts	 is	 a	 thread-safe	 function	 and	 can	 be	 called	 concurrently
without	any	modifications	 to	 the	calling	code	with	 the	exception,	of	 course,	of	any	code
managing	the	tasks	and	threads	that	will	execute	the	raycasts	concurrently.	
hand,	 PxVehicleUpdates	 as	 used	 in	 Section	 Vehicle	 Update	 is	 not	 thread-safe	 and
requires	 an	 extra	 PxVehicleConcurrentUpdateData	 array	 to	 be	 specified	 for	 it	 to	 be
concurrently	 executed.	 When	 this	 extra	 data	 is	 specified	 PxVehicleUpdates	 defers	 a
number	of	writes	to	PhysX	actors	that	are	involved	in	the	vehicle	updates.	
writes	are	stored	in	the	PxVehicleConcurrentUpdateData	array	during	all	concurrent	calls
to	PxVehicleUpdates	and	then	executed	sequentially	in	PxVehiclePostUpdates.

Sample	code	can	be	found	in	SnippetVehicleMultiThreading.

Tire	Shaders

It	is	possible	to	replace	the	default	tire	model	used	by	PhysX	vehicles	with	custom	models.
This	 requires	 a	 shader	 function	 that	 can	be	 set	 per-vehicle	 along	with	 shader	 data	 that
must	be	set	per-wheel:

void	PxVehicleWheelsDynData::setTireForceShaderFunction

				(PxVehicleComputeTireForce	tireForceShaderFn)

void	PxVehicleWheelsDynData::setTireForceShaderData

				(const	PxU32	tireId,	const	void*	tireForceShaderData)

The	shader	function	must	implement	this	function	prototype:

typedef	void	(*PxVehicleComputeTireForce)

(const	void*	shaderData,

	const	PxF32	tireFriction,

	const	PxF32	longSlip,	const	PxF32	latSlip,	const	PxF32	camber,

	const	PxF32	wheelOmega,	const	PxF32	wheelRadius,	const	PxF32	recipWheelRadius

	const	PxF32	restTireLoad,	const	PxF32	normalisedTireLoad,	const	PxF32

	const	PxF32	gravity,	const	PxF32	recipGravity,

	PxF32&	wheelTorque,	PxF32&	tireLongForceMag,	PxF32&	tireLatForceMag

The	vehicle	update	code	will	call	the	shader	function	for	each	wheel	with	the	shader	data
for	that	wheel.



Vehicle	Types

The	 PhysX	 Vehicle	 SDK	 supports	 four	 types	 of	 vehicle:	
PxVehicleDriveNW,	 PxVehicleDriveTank	 and	 PxVehicleNoDrive.	
PxVehicleDrive4W	 will	 be	 the	 best	 choice	 for	 rally	 cars,	 street	 cars	 and	 racing	 cars.
PxVehicleDriveNW	is	very	similar	 to	PxVehicleDrive4W	except	 that	 it	has	 the	advantage
that	 it	 allows	all	wheels	 to	be	coupled	 to	 the	differential.	This	generality	means	 that	 the
differential	models	of	PxVehicleDriveNW	cannot	match	 the	 range	or	detail	 supported	by
PxVehicleDrive4W.	PxVehicleDriveTank	 implements	a	 simple	but	 efficient	 tank	model	 by
constraining	 the	 left	 and	 right	 wheel	 speeds	 to	 mimic	 the	 effect	 of	 tank	 tracks.	
PxVehicleNoDrive	implements	a	vehicle	that	 is	simply	a	rigid	body	with	suspensions	and
wheels	and	tires.	The	idea	here	is	to	allow	custom	drive	models	such	as	skateboards	and
hovercraft	to	be	implemented	using	PhysX	vehicles.

PxVehicleDrive4W

The	 class	 PxVehicleDrive4W	 has	 already	 been	 discussed	 in	 some	 detail	 but	 the
discussion	 so	 far	 has	 focused	 on	 4-wheeled	 vehicles.	 In	 the	 following	 Sections
PxVehicleDrive4W	shall	 be	discussed	with	 special	 reference	 to	 instances	with	 less	 than
and	more	than	4	wheels.

3-Wheeled	Cars

Utility	functions	have	been	provided	to	quickly	configure	3-wheeled	cars.	
to	start	with	a	4-wheeled	car	and	then	disable	one	of	the	wheels:

void	PxVehicle4WEnable3WTadpoleMode(PxVehicleWheelsSimData&	wheelsSimData

				PxVehicleWheelsDynData&	wheelsDynData,	PxVehicleDriveSimData4W

void	PxVehicle4WEnable3WDeltaMode(PxVehicleWheelsSimData&	wheelsSimData

				PxVehicleWheelsDynData&	wheelsDynData,	PxVehicleDriveSimData4W

These	 functions	 ensure	 that	 no	 raycast	 hits	 are	 returned	 for	 the	 disabled	 wheel	 and
additionally	 do	 some	 other	 work	 to	 decouple	 the	 disabled	 wheel	 from	 the	 differential,
disable	ackermann	correction,	 re-position	 the	opposite	 remaining	wheel	 to	 the	 center	 of
the	axle,	and	adjust	the	suspension	of	the	opposite	remaining	wheel	to	compensate	for	the



missing	suspension	of	the	disabled	wheel.	Further	wheels	could	in	theory	be	removed	with
custom	code	to	create	a	vehicle	with	1	or	2	effective	wheels.	At	that	point,	however,	extra
balancing	code	would	be	required	to	prevent	the	vehicle	falling	over.

Some	 care	 must	 be	 taken	 when	 removing	 a	 wheel	 because	 the	 PxVehicleUpdates
function	 has	 a	 number	 of	 requirements	 that	must	 be	 satisfied	 for	 all	 vehicles.	
requirement	 is	 that	 any	 wheel	 that	 has	 been	 disabled	 must	 not	 be	 associated	 with	 a
PxShape.	This	 is	a	 safety	 feature	 that	prevents	PxVehicleUpdates	attempting	 to	 set	 the
local	 pose	 of	 a	 PxShape	 that	 may	 no	 longer	 be	 valid.	
PxVehicleWheelsSimData::setWheelShapeMapping	 can	 be	 used	 to	 satisfy	 this
requirement.	The	second	requirement	is	that	any	wheel	that	has	been	disabled	must	have
zero	 wheel	 rotation	 speed.	 This	 can	 be	 satisfied	 by	 calling
PxVehicleWheelsDynData::setWheelRotationSpeed	 for	 the	 relevant	 wheel.	 The	 final
requirement	 is	 that	 disabled	 wheels	 must	 receive	 no	 drive	 torque.	
requirement	can	actually	be	ignored	because	it	is	automatically	enforced	with	custom	tank
code	called	by	the	PxVehicleUpdates	function.	For	vehicles	of	type	PxVehicleNoDrive	the
requirement	on	drive	torque	is	fulfilled	by	ensuring	that	PxVehicleNoDrive::setDriveTorque
is	never	called	with	a	non-zero	torque	value.	Further,	the	drive	torque	requirement	can	be
readily	 fulfilled	 for	vehicles	of	 type	PxVehicleDriveNW	by	ensuring	 that	 the	differential	 is
disconnected	 from	 the	 disabled	 wheel.	 This	 is	 achieved	 using	 the	 function
PxVehicleDifferentialNWData::setDrivenWheel.

Configuring	the	differential	of	a	PxVehicle4W	to	ensure	that	no	drive	torque	is	delivered	to
a	 disabled	 wheel	 is	 a	 little	 more	 complex	 because	 there	 are	 many	 different	 ways	 to
achieve	 this.	 If	 the	 wheel	 is	 not	 a	 driven	 wheel	 then	 disabling	 the	 wheel	 automatically
satisfies	the	drive	torque	requirement	because	such	wheels	can	never	be	connected	to	the
differential.	On	the	other	hand,	if	the	wheel	has	index	eFRONT_LEFT	or	eFRONT_RIGHT
or	 eREAR_LEFT	 or	 eREAR_RIGHT	 then	 the	 differential	 does	 need	 to	 be	 modified	 to
enforce	the	requirement.	One	way	to	do	this	is	to	set	up	the	differential	so	that	it	delivers
torque	to	only	the	rear(front)	wheels	if	a	front(rear)	wheel	has	been	disabled.	
readily	 implemented	 by	 selecting	 front-wheel	 drive	 mode	 or	 rear-wheel	 drive	 mode	 as
appropriate:

PxVehicleDifferential4WData	diff	=	myVehicle.getDiffData();

if(PxVehicleDrive4WWheelOrder::eFRONT_LEFT	==	wheelToDisable	||



				PxVehicleDrive4WWheelOrder::eFRONT_RIGHT	==	wheelToDisable)

{

				if(PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD	==	diff.mType

						PxVehicleDifferential4WData::eDIFF_TYPE_LS_FRONTWD	==	diff.mType

						PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_4WD	==	diff.mType

						PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_FRONTWD	==	diff

						{

										diff.mBias	=	1.3f;

										diff.mRearLeftRightSplit	=	0.5f;

										diff.mType	=	PxVehicleDifferential4WData::eDIFF_TYPE_LS_REARWD

										//could	also	be	PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_REARWD;

						}

}

else	if(PxVehicleDrive4WWheelOrder::eREAR_LEFT	==	wheelToDisable	||

				PxVehicleDrive4WWheelOrder::eREAR_RIGHT	==	wheelToDisable)

{

				if(PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD	==	diff.mType

							PxVehicleDifferential4WData::eDIFF_TYPE_LS_REARWD	==	diff.mType

							PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_4WD	==	diff.mType

							PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_REARWD	==	diff

							{

										diff.mBias	=	1.3f;

										diff.mFronteftRightSplit	=	0.5f;

										diff.mType	=	PxVehicleDifferential4WData::eDIFF_TYPE_LS_FRONTWD

										//could	also	be	PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_FRONTWD;

							}

}

myVehicle.setDiffData(diff);

In	some	situations	 limiting	 the	drove	 torque	 to	 just	 the	 front	or	 rear	wheels	might	not	be
acceptable.	If	only	a	single	wheel	has	been	disabled	then	it	is	possible	to	engage	a	drive
mode	where	3	wheels	 are	 driven.	This	 can	be	 achieved	by	modifying	 a	 differential	 that
delivers	torque	to	all	four	wheels	(eDIFF_TYPE_LS_4WD	or	eDIFF_TYPE_OPEN_4WD)
so	that	torque	is	only	delivered	to	3	wheels:

PxVehicleDifferential4WData	diff	=	myVehicle.getDiffData();

if(PxVehicleDrive4WWheelOrder::eFRONT_LEFT	==	wheelToDisable	||

				PxVehicleDrive4WWheelOrder::eFRONT_RIGHT	==	wheelToDisable)

{

				if(PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD	==	diff.mType

						PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_4WD	==	diff.mType

						{

										if(PxVehicleDrive4WWheelOrder::eFRONT_LEFT	==	wheelToDisable

										{



														diff.mFrontLeftRightSplit	=	0.0f;

										}

										else

										{

														diff.mFrontLeftRightSplit	=	1.0f;

										}

						}

}

else	if(PxVehicleDrive4WWheelOrder::eREAR_LEFT	==	wheelToDisable	||

				PxVehicleDrive4WWheelOrder::eREAR_RIGHT	==	wheelToDisable)

{

				if(PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD	==	diff.mType

							PxVehicleDifferential4WData::eDIFF_TYPE_OPEN_4WD	==	diff.mType

							{

										if(PxVehicleDrive4WWheelOrder::eREAR_LEFT	==	wheelToDisable

										{

														diff.mRearLeftRightSplit	=	0.0f;

										}

										else

										{

														diff.mRearLeftRightSplit	=	1.0f;

										}

							}

}

myVehicle.setDiffData(diff);

In	some	situations	it	will	make	sense	to	disable	Ackermann	steer	correction	if	the	disabled
wheel	was	able	to	steer.	In	particular,	if	the	remaining	wheel	of	the	front	or	rear	axle	is	re-
positioned	so	 that	 it	 is	at	 the	center	of	 the	axle	 then	 it	would	almost	certainly	 follow	 that
Ackermann	correction	would	be	disabled.	This	can	be	achieved	by	setting	the	accuracy	to
zero	 (PxVehicleAckermannGeometryData::mAccuracy).	 The	 role	 of	 Ackermann	 steer
correction,	however,	really	needs	to	be	determined	on	a	case	by	case	basis.

N-Wheeled	Cars

In	 addition	 to	 removing	 wheels	 from	 a	 vehicle,	 it	 is	 also	 possible	 to	 construct	 a
PxVehicleDrive4W	with	more	than	4	wheels	but	with	the	caveat	that	only	4	wheels	may	be
driven.	As	 a	 consequence	 of	 this	 caveat	 the	 functionality	 of	 the	 extra	wheels	 is	 slightly
limited	 compared	 to	 the	 first	 4	 wheels.	 More	 specifically,	 only	 the	 first	 4	 wheels	 are
connected	 to	 the	differential	or	 the	steering;	 that	 is,	only	 the	 first	block	of	4	wheels	can
experience	a	drive	torque	or	a	steer	angle	and	only	the	first	block	of	4	wheels	participate	in



the	Ackermann	steering	correction.	As	a	consequence,	the	extra	wheels	play	an	identical
role	to	the	rear	wheels	of	a	4-wheeled	car	that	has	front-wheel	drive	or	the	front	wheels	or
a	 4-wheeled	 car	 that	 has	 rear-wheel	 drive.	 Adding	 extra	 wheels	 does	 not	 preclude	 the
ability	 to	 call	PxVehicle4WEnable3WTadpoleMode	or	PxVehicle4WEnable3WDeltaMode.
These	 functions,	however,	 are	hard-coded	 to	disable	one	of	 the	4	wheels	 that	 could	be
connected	to	the	steering	and	driven	through	the	differential.

The	 following	 pseudo-code	 illustrates	 the	 key	 steps	 in	 the	 creation	 of	 a	 6-wheeled
PxVehicleDrive4W	vehicle:

PxVehicleWheelsSimData*	wheelsSimData=PxVehicleWheelsSimData::allocate

PxVehicleDriveSimData4W	driveSimData;

setupSimData(wheelsSimData,driveSimData);

PxVehicleDrive4W*	car	=	PxVehicleDrive4W::allocate(6);

PxRigidDynamic*	vehActor=createVehicleActor6W();

car->setup(&physics,vehActor,*wheelsSimData,driveSimData,2);

PxVehicleDriveNW

While	 the	PxVehicleDrive4W	allows	 cars	with	 any	 number	 of	wheels	 to	 be	 created	 and
simulated	 it	 only	 allows	 4	 of	 those	 wheels	 to	 be	 driven	 by	 engine	 torques	 via	 the
differential.	The	vehicle	type	PxVehicleDriveNW	has	been	introduced	to	solve	this	specific
limitation.	This	vehicle	class	makes	use	of	the	differential	type	PxVehicleDifferentialNW,	a
class	that	allows	any	or	all	of	the	vehicle's	wheels	to	be	coupled	to	the	differential	with	the
limitation	that	 the	torque	available	at	 the	differential	 is	always	divided	equally	among	the
wheels	 that	 are	 coupled	 to	 the	 differential.	 The	 generality	 of	 PxVehicleNW	 precludes
advanced	 features	 such	 as	 limited	 slip	 differentials	 and	 Ackermann	 steering	 correction,
meaning	that	only	a	simple	equal-split	differential	model	can	be	provided	at	present.

The	 following	 pseudo-code	 illustrates	 the	 key	 steps	 in	 the	 creation	 of	 a	 6-wheeled
PxVehicleDriveNW	vehicle:

PxVehicleWheelsSimData*	wheelsSimData=PxVehicleWheelsSimData::allocate

PxVehicleDriveSimDataNW	driveSimData;

setupSimData(wheelsSimData,driveSimData);

PxVehicleDriveNW*	car	=	PxVehicleDriveNW::allocate(6);

PxRigidDynamic*	vehActor=createVehicleActorNW();

car->setup(&physics,vehActor,*wheelsSimData,driveSimData,6);



PxVehicleDriveTank

The	PhysX	vehicle	SDK	also	supports	 tanks	 through	 the	use	of	 the	PxVehicleDriveTank
class.	 Tanks	 are	 different	 to	 multi-wheeled	 vehicles	 in	 that	 the	 wheels	 are	 all	 driven
through	the	differential	in	a	way	that	ensures	that	all	the	wheels	on	the	left-hand	side	have
the	same	speed,	and	all	 the	wheels	on	 the	 right-hand	have	 the	same	speed.	
constraint	 on	 wheel	 speed	 mimics	 the	 effect	 of	 the	 caterpillar	 tracks	 but	 avoids	 the
expense	of	 simulating	 the	 jointed	 track	 structure.	Adding	 the	geometry	 of	 the	 caterpillar
tracks	 is	as	easy	as	adding	an	actor	shape	down	each	side	and	setting	up	 the	collision
and	query	filters	as	appropriate	for	the	tracks.	The	motion	of	the	caterpillar	tracks	could	be
rendered	with	 a	 scrolling	 texture,	 safe	 in	 the	 knowledge	 that	 all	 wheels	 have	 the	 same
speed,	just	as	though	they	were	properly	constrained	by	the	track	rotation.

Creating	 a	 PxVehicleDriveTank	 instance	 is	 very	 similar	 to	 creating	 a	 PxVehicleDrive4W
instance	 with	 the	 exception	 that	 tanks	 have	 no	 concept	 of	 extra	 wheels	 that	 are	 not
connected	to	the	differential:	all	tank	wheels	are	driven.	The	following	code	illustrates	how
to	set	up	a	12-wheeled	tank:

PxVehicleWheelsSimData*	wheelsSimData	=	PxVehicleWheelsSimData::allocate

PxVehicleDriveSimData4W	driveSimData;

setupTankSimData(wheelsSimData,driveSimData);

PxVehicleDriveTank*	tank	=	PxVehicleDriveTank::allocate(12);

PxRigidDynamic*	vehActor=createVehicleActor12W();

tank->setup(&physics,vehActor,*wheelsSimData,tankDriveSimData,12);

Controlling	a	 tank	 is	quite	different	 to	controlling	a	car	because	tanks	have	a	completely
different	steering	mechanism:	the	turning	action	of	a	tank	arises	from	the	difference	in	left
and	right	wheel	speeds,	while	cars	 turn	by	 the	action	of	a	steering	wheel	 that	orientates
the	front	wheels	relative	to	the	forward	motion	of	the	vehicle.	This	requires	quite	a	different
set	of	helper	classes	and	functions	to	smooth	the	control	inputs:

1.	PxVehicleDriveTankRawInputData

2.	PxVehicleDriveTankSmoothDigitalRawInputsAndSetAnalogInputs

3.	PxVehicleDriveTankSmoothAnalogRawInputsAndSetAnalogInputs

PhysX	tanks	currently	support	two	drive	models:	eSTANDARD	and	eSPECIAL.	



model	 eSPECIAL	 allows	 the	 tank	 tracks	 to	 rotate	 in	 different	 directions,	 while
eSTANDARD	does	not.	These	 two	modes	 result	 in	 quite	 different	 turning	 actions.	
model	eSTANDARD	simulates	the	usual	turning	action	of	a	tank:	pushing	forward	on	the
left(right)	stick	drives	the	left(right)	wheels	forward,	while	pulling	back	on	the	right(left)	stick
applies	the	brake	to	the	right(left)	wheels.	eSPECIAL,	on	the	other	hand,	simulates	a	more
exotic	turning	action	where	pushing	back	on	the	right(left)	stick	drives	the	right(left)	wheels
backwards.	 This	 can	 result	 in	 a	 turning	 circle	 focused	 at	 the	 center	 of	 the	 tank.	
smallest	possible	turning	circle	of	a	tank	in	eSTANDARD	will	have	a	focus	at	a	point	along
one	of	the	caterpillar	tracks,	depending	on	whether	the	tank	is	turning	left	or	right.

PxVehicleNoDrive

The	 class	 PxVehicleNoDrive	 has	 been	 introduced	 to	 provide	 a	 close	 approximation	 to
backwards	 compatibility	 with	 the	 interface	 to	 the	 2.8.x	 NxWheelShape	 class.	
essentially	 a	 rigid	 body	 with	 N	 suspension/wheel/tire	 units	 attached.	
identical	 to	 that	of	a	PxVehicleDrive4W	which	 is	permanently	 in	neutral	gear	so	 that	 the
engine	 has	 no	 influence	 on	 the	 wheels	 and	 the	 wheels	 are	 coupled	 only	 through	 the
motion	 of	 the	 rigid	 body.	 This	 comes,	 of	 course,	 without	 the	 storage	 overhead	 of
Ackermann	steering	correction	data,	engine	torque	curve	data	etc.	The	idea	is	that	users
can	develop	their	own	drive	model	on	top	of	already	existing	vehicle	code	to	manage	the
suspension	raycasts,	tire	and	suspension	force	computation,	and	PhysX	SDK	integration.

The	key	functions	are	the	application	of	per	wheel	drive	and	brake	torques	and	per	wheel
steer	angles:

/**

\brief	Set	the	brake	torque	to	be	applied	to	a	specific	wheel

*/

void	setBrakeTorque(const	PxU32	id,	const	PxReal	brakeTorque);

/**

\brief	Set	the	drive	torque	to	be	applied	to	a	specific	wheel

*/

void	setDriveTorque(const	PxU32	id,	const	PxReal	driveTorque);

/**

\brief	Set	the	steer	angle	to	be	applied	to	a	specific	wheel

*/



void	setSteerAngle(const	PxU32	id,	const	PxReal	steerAngle);

SI	Units

The	 discussion	 so	 far	 has	 assumed	 that	 distance	 is	measured	 in	metres,	 that	mass	 is
measured	in	kilograms,	and	that	time	is	measured	in	seconds.	Further,	the	default	values
of	all	relevant	vehicle	components	have	been	set	under	the	assumption	that	SI	Units	will
be	adopted.	An	example	of	 such	a	a	default	 parameter	 is	 the	maximum	braking	 torque
value.	 Inspection	of	 the	constructor	 for	PxVehicleWheelData	 reveals	a	value	of	1500	 for
mMaxBrakeTorque.	This	 number	 actually	 represents	 a	 value	 of	 1500	 "Kilogram	Metres-
Squared	 Per	 Second-Squared"	 (an	 alternative	 way	 of	 expressing	 this	 is	 1500	 "Newton
Metres").	An	 important	 question	 is	 how	 to	 set	 up	 a	 vehicle	with	meaningful	 values	 if	 SI
units	 are	not	 adopted.	The	purpose	of	 this	Section	 is	 to	 illustrate	 the	 steps	 required.	
particular,	the	case	where	distance	is	measured	in	centimeters	rather	than	metres	will	be
used	as	an	example.	This	particular	deviation	from	the	adoption	of	SI	Units	is	probably	the
most	common	one	in	game	development,	arising	from	the	units	of	distance	in	the	chosen
3D	modeling	package.

Vehicle	parameters	whose	value	is	dependent	on	the	length	scale	fall	into	two	categories:
those	that	can	theoretically	be	measured	with	a	ruler	and	those	with	more	complex	units
involving	 combinations	 of	 other	 properties	 such	 as	 mass	 or	 time	 or	 even	 powers	 of
distance.	 The	 former	 category	 includes	 data	 fields	 such	 as	 wheel	 radius	 or	 maximum
suspension	droop,	while	the	latter	category	includes	data	fields	such	as	maximum	braking
torque	or	wheel	moment	of	inertia.

The	 following	 is	 an	 exhaustive	 list	 of	 vehicle	 parameters	 that	 can	 theoretically	 be
measured	solely	from	vehicle	geometry:

PxVehicleChassisData::mCMOffset

PxVehicleAckermannGeometryData::mFrontWidth

PxVehicleAckermannGeometryData::mRearWidth

PxVehicleAckermannGeometryData::mAxleSeparation

PxVehicleWheelData::mRadius



PxVehicleWheelData::mWidth

PxVehicleSuspensionData::mMaxCompression

PxVehicleSuspensionData::mMaxDroop

PxVehicleWheelsSimData::setSuspForceAppPointOffset

PxVehicleWheelsSimData::setTireForceAppPointOffset

PxVehicleWheelsSimData::setWheelCentreOffset

It	 is	 useful	 to	 note	 that	 all	 the	 above	 parameters	 have	 default	 value	 of	 zero;	 that	 is,
independent	 of	 length	 scale	 they	 must	 always	 be	 set	 with	 measured	 values	 in	 the
corresponding	length	scale	if	a	legal	vehicle	is	to	be	successfully	instantiated.

Setting	parameters	that	involve	more	complex	combinations	of	length	scale	require	slightly
more	 thought	 than	 those	 featured	 in	 the	 list	 above.	 A	 simple	 rule	 of	 thumb	 is	 that	 any
parameter	that	has	units	linear	with	distance	must	be	scaled	by	the	number	of	length	units
that	 is	equivalent	 to	1	meter,	while	any	parameter	 that	has	units	 involving	 the	square	of
distance	must	be	scaled	by	the	square	of	the	number	of	length	units	that	is	equivalent	to	1
meter.	A	wheel	braking	torque	of	1500	kilograms	metres-squared	per	second-squared,	for
example,	 is	 equivalent	 to	 1500*100*100	 kilograms	 centimeters-squared	 per	 second-
squared.	Consequently,	when	centimeters	is	used	as	the	length	scale	a	good	initial	guess
for	 wheel	 braking	 torque	 is	 15000000	 [kilograms	 centimeters-squared	 per	 second-
squared].	 If	 inches	are	used	as	 the	 length	scale	 then	a	good	 initial	guess	 for	 the	wheel
braking	torque	would	be	1500*39.37*39.37	(=	2324995.35)	[kilograms	inches-squared	per
second-squared].

Each	non-dimensionless	parameter	has	been	described	with	the	corresponding	SI	Units	in
PxVehicleComponents.h.	The	following	is	an	exhaustive	list	of	vehicle	parameters	that	are
indirect	expressions	of	distance	scale:

PxVehicleEngineData::mMOI	(kg	m^2)

PxVehicleEngineData::mPeakTorque	(kg	m^2	s^-2)

PxVehicleEngineData::mDampingRateFullThrottle	(kg	m^2	s^-1)



PxVehicleEngineData::mDampingRateZeroThrottleClutchEngaged	(kg	m^2

PxVehicleEngineData::mDampingRateZeroThrottleClutchDisengaged	(kg	

PxVehicleClutchData::mStrength	(kg	m^2	s^-1)

PxVehicleWheelData::mDampingRate	(kg	m^2	s^-1)

PxVehicleWheelData::mMaxBrakeTorque	(kg	m^2	s^-2)

PxVehicleWheelData::mMaxHandBrakeTorque	(kg	m^2	s^-2)

PxVehicleWheelData::mMOI	(kg	m^2)

PxVehicleChassisData::mMOI	(kg	m^2)

All	 but	 the	 last	 three	 of	 the	 above	 parameters	 have	 non-zero	 initial	 values	 in	 their
associated	constructors.	This	means	that	a	good	guess	for	their	initial	value	can	be	found
by	 multiplying	 the	 value	 expressed	 in	 SI	 Units	 with	 either	 the	 number	 of	 length	 units
equivalent	to	1	meter	or	the	square	of	the	number	of	length	units	that	are	equivalent	to	1
meter.

It	is	important	to	note	that	the	wheel	handbrake	torque	has	a	default	value	of	zero	because
not	all	wheels	respond	to	the	handbrake	torque.	A	good	guess	for	the	handbrake	torque	is
simply	the	value	of	the	wheel	braking	torque,	perhaps	multiplied	by	between	1.0	and	2.0	to
ensure	that	the	handbrake	is	stronger	than	the	brake.

The	wheel	moment	of	 inertia	and	chassis	moment	of	 inertia	are	 typically	computed	 from
the	wheel	radius	and	chassis	dimensions	so	naturally	reflect	the	length	scale	that	is	used
in	the	simulation.	If	values	are	taken	from	manufacturer	data	it	is	important	to	ensure	that
the	units	of	 the	manufacturer	data	are	 commensurate	with	 the	 remainder	of	 the	 vehicle
data	fields	or	to	perform	the	appropriate	unit	conversion.

A	 number	 of	 functions	 also	 have	 parameters	 that	 are	 functions	 of	 length	 scale.	
following	is	an	exhaustive	list	of	such	functions:

PxVehicleWheelsSimData::setSubStepCount

PxVehicleWheelsSimData::setMinLongSlipDenominator



PxVehicleSetMaxHitActorAcceleration

Some	care	is	required	to	set	the	threshold	speed	in	PxVehicleWheels::setSubStepCount.
Here,	 it	 is	 the	 case	 that	 the	 default	 threshold	 speed	 is	 5.0	 metres	 per	 second.	
centimeters	 the	chosen	 length	scale	a	value	of	500	 [centimeters	per	second]	should	be
passed	 to	achieve	 the	equivalent	behavior,	or	with	 inches	as	 the	chosen	 length	scale	a
value	of	5*39.37	(=	196.85)	[inches	per	second]	is	required.	The	same	process	must	also
be	applied	to	PxVehicleWheelsSimData::setMinLongSlipDenominator.	Here,	the	default	is
4.0	metres	per	second.	If	centimeters	is	the	adopted	scale	then	the	equivalent	value	is	400
[centimeters	per	second],	while	4*39.37	(=157.48)	[inches	per	second]	is	required	if	inches
is	 the	 chosen	 scale.	 PxVehicleSetMaxHitActorAcceleration	 takes	 a	 value	 that	 scales
linearly	 with	 the	 length	 scale.	 If	 the	 desired	 maximum	 acceleration	 is	 10	 metres	 per
second	 per	 second	 then	 that	 would	 be	 scaled	 to	 10*100	 centimetres	 per	 second	 per
second	in	centimetres	scale.	With	 inches	as	 the	 length	scale	 the	equivalent	value	would
be	10*39.37	inches	per	second	per	second.

The	 PhysX	 Vehicle	 SDK	 supports	 any	 system	 of	 units	 with	 the	 caveat	 that	 all	 data
supplied	must	conform	to	the	same	unit	system.	Further,	the	default	data	values,	although
strictly	 expressed	 in	 the	 SI	 unit	 system,	 can	 be	 used	 as	 a	 guide	 to	 estimate	 sensible
values	in	any	unit	system	for	almost	any	conceivable	vehicle.	A	quick	way	to	do	this	would
be	 to	 decide	 if,	 say,	 a	 truck	would	 have	a	 stronger	 handbrake	 than	 the	handbrake	of	 a
family	car.	Now,	the	default	data	approximates	that	of	a	standard	family	car	so	it	might	be
a	good	estimate	to	start	with	the	truck	having	a	handbrake	that	is	perhaps	25%	stronger;
that	is,	5000	kilograms	metres-squared	per	second-squared.	If	centimeters	are	the	chosen
length	scale	then	a	quick	conversion	can	be	performed	by	noting	that	1	meter	is	equal	to
100	 centimeters,	 leading	 to	 the	 brake	 torque	 being	 set	 as	 5000*100*100	 kilograms
centimeters-squared	 per	 second-squared.	 If	 the	 natural	 unit	 of	 mass	 is	 the	 gram	 then
noting	 that	 1	 kilogram	 is	 1000	grams	 leads	 to	 an	equivalent	 value	of	 5000*1000	grams
metres-squared	per	second-squared.	This	rule	can	be	repeated	for	all	vehicle	data	fields
by	simply	noting	 the	default	value	and	 the	SI	units	 in	 the	 relevant	class	constructor	and
then	performing	the	conversion	to	the	chosen	unit	system.

The	PhysX	Vehicle	SDK	depends	on	a	number	of	 threshold	values	 that	are	 functions	of
length	 scale.	 These	 are	 set	 with	 the	 function	 PxInitVehicleSDK	 and	 uses	 the



PxTolerancesScale	values	that	have	already	been	already	configured	for	the	PhysX	SDK.
If	PxInitVehicleSDK	is	not	called	prior	 to	 the	first	call	 to	PxVehicleUpdates	a	warning	will
be	passed	to	the	PhysX	error	stream.

Level	of	Detail

It	seems	sensible	to	attempt	to	save	valuable	clock	cycles	for	vehicles	that	are	either	not
visible	on	 the	screen	or	are	 sufficiently	 far	 from	 the	camera	 that	 it	 is	 hard	 to	 tell	 if	 their
motion	 is	 exactly	 in	 step	with	 the	world	 geometry.	 The	PhysX	vehicles	SDK	presents	 a
number	of	options	 for	 reducing	 the	computational	 load	 for	vehicles	 that	 require	only	 low
levels	of	detail.

Extrapolation

The	most	obvious	strategy	for	a	vehicle	that	requires	only	a	low	level	of	detail	is	simply	to
stop	 performing	 raycasts	 (PxVehicleSuspensionRaycasts)	 and	 updates
(PxVehicleUpdates)	 for	 that	 vehicle.	 Instead	 of	 computing	 the	 ground	 underneath	 the
vehicle's	tires	and	computing	the	suspension	and	tire	forces	each	and	every	frame	it	might
be	acceptable	 to	 avoid	 these	 steps	 completely	 and	 let	 the	PhysX	SDK	update	 the	 rigid
body	 with	 the	 legacy	 momentum	 of	 the	 rigid	 body.	 After	 several	 frames	 the	 vehicle's
wheels	will	likely	either	be	hovering	above	the	ground	or	intersecting	the	ground	so	there
needs	 to	 be	 a	 strategy	 to	 decide	 how	many	 PhysX	 SDK	 updates	 can	 pass	 before	 the
vehicle	 is	 once	 more	 updated	 properly	 by	 including	 it	 in	 the	 vehicles	 array	 passed	 to
PxVehicleSuspensionRaycasts/PxVehicleUpdates.	 The	 details	 of	 any	 such	 strategy	 are
left	 to	 users	 of	 the	 vehicles	 SDK	 because	 it	 depends	 on	 a	 number	 of	 factors	 such	 as
distance	from	the	camera;	the	spatial	coherence	of	the	world	geometry	near	the	vehicle;
the	 speed	 of	 the	 vehicle;	 and	whether	 the	 audio	 or	 graphics	 fx	 for	 the	 vehicle	 play	 an
important	role.

Disable	Wheels

If	 there	 exist	 vehicles	 with	 large	 wheel	 counts	 it	 might	 also	 be	 possible	 to	 reduce	 the
number	 of	 wheels	 that	 participate	 in	 the	 simulation	 by	 calling
PxVehicleWheelsSimData::disableWheel.	 An	 example	might	 be	 a	 truck	 with	 18	 wheels.



Now,	such	a	truck	will	clearly	need	to	perform	18	raycasts,	18	tire	force	calculations	and
18	updates	of	wheel	 rotation	speed	 in	order	 to	complete	 the	vehicle	update.	
can	be	reduced	 to	 just	4	enabled	wheels	 then	 it	 is	clear	 that	 less	computational	work	 is
required.	It	is	important	to	note	that	when	wheels	are	disabled	they	no	longer	participate	in
supporting	 the	mass	 of	 the	 vehicle's	 rigid	 body.	 In	 the	 extreme	 case	 of	 an	 18-wheeled
truck	reduced	to	just	4	active	wheels	this	will	mean	that	the	remaining	enabled	suspension
springs	are	only	configured	to	support	approximately	4/18	of	the	mass	of	the	vehicle's	rigid
body.	 To	 remedy	 this	 problem	 the	mass	 of	 the	 rigid	 body	will	 need	 to	 be	 re-distributed
among	 the	 enabled	 wheels	 and	 suspensions,	 perhaps	 using
PxVehicleComputeSprungMasses.	A	more	complete	description	of	the	issues	surrounding
disabled	wheels	can	be	found	in	Section	3-Wheeled	Cars.

Swapping	Multiple	Vehicle	Versions

Instead	 of	 disabling	wheels,	 perhaps	 a	 simpler	 and	more	 effective	way	 of	 reducing	 the
computational	cost	is	to	instantiate	two	versions	of	the	vehicle	with	different	wheel	counts.
The	 two	 vehicles	 can	 be	 easily	 swapped	 in	 the	 vehicles	 array	 passed	 to
PxVehicleSuspensionRaycasts/PxVehicleUpdates	as	the	required	level	of	detail	increases
and	decreases.	It	is	worth	considering	how	this	might	work	in	the	case	of	the	18-wheeled
truck	mentioned	earlier.	The	simplest	strategy	would	be	to	first	construct	the	required	rigid
body	and	attach	a	PxShape	instance	for	each	of	the	18	wheels	of	the	18-wheeled	truck.
Instantiating	 the	 required	 18-wheeled	 version	 of	 the	 truck	 with	 PxVehicleNW::create	 or
PxVehicleNW::setup	will	automatically	pose	the	shapes	of	all	18	wheels	in	the	rest	pose.
The	next	step	is	to	choose	4	of	the	18	wheels	to	form	the	4-wheeled	version	of	the	truck.
Many	 choices	 are	 available	 but	 the	 most	 obvious	 choice	 would	 be	 the	 front-left/front-
right/rear-left/rear-right	wheels	of	 the	18-wheeled	 truck.	The	4-wheeled	version	can	 then
be	instantiated	using	the	same	rigid	body	as	for	the	18-wheeled	version.	
of	the	PxShape	instances	to	the	rest	pose	of	the	4-wheeled	truck.	If	the	wheels	of	the	4-
wheeled	version	have	been	set	up	correctly	 the	 rest	poses	ought	 to	be	 identical	 to	 their
counterparts	 in	 the	18-wheeled	version.	A	 key	point	 to	 note	 is	 that	 both	 versions	of	 the
vehicle	apply	forces	to	the	same	rigid	body.	Another	key	point	to	note	is	that	when	the	4-
wheeled	 vehicle	 is	 chosen	 only	 4	 of	 the	 18	 PxShape	 instances	 will	 have	 their	 pose
updated,	 leaving	 14	 PxShape	 instances	 at	 either	 the	 rest	 local	 pose	 or	 the	 local	 pose
given	 to	 them	when	 the	18-wheeled	version	was	 last	used.	 In	 terms	of	visible	accuracy,



these	 unposed	 shapes	 are	 the	 main	 disadvantage	 of	 the	 lower	 LOD	 vehicle.	
differences	in	handling	are	much	harder	to	gauge.

A	number	of	useful	functions	are	available	to	make	it	easy	to	swap	between	two	or	more
versions	of	the	same	vehicle:

void	PxVehicleComputeSprungMasses(const	PxU32	nbSprungMasses,

				const	PxVec3*	sprungMassCoordinates,	const	PxVec3&	centreOfMass

				const	PxU32	gravityDirection,	PxReal*	sprungMasses);

void	PxVehicleWheelsSimData::copy(const	PxVehicleWheelsSimData&	src

				const	PxU32	trgWheel);

void	PxVehicleSuspensionData::setMassAndPreserveNaturalFrequency(const

void	PxVehicleCopyDynamicsData(const	PxVehicleCopyDynamicsMap&	wheelMap

				const	PxVehicleWheels&	src,	PxVehicleWheels*	trg);

The	following	pseudo-code	hopefully	makes	clear	how	to	apply	these	functions	in	order	to
first	construct	the	lower	LOD	vehicle	and	then	swap	between	the	different	versions:

PxVehicleDriveNW*	instantiate4WVersion(const	PxVehicleDriveNW&	vehicle18W

{

				//Compute	the	sprung	masses	of	the	4-wheeled	version.

				PxReal	sprungMasses[4];

				{

								const	PxReal	rigidBodyMass	=	vehicle18W.getRigidDynamicActor

								const	PxVec3	wheelCoords[4]	=

								{

												vehicle18W.mWheelsSimData.getWheelCentreOffset(0),

												vehicle18W.mWheelsSimData.getWheelCentreOffset(1),

												vehicle18W.mWheelsSimData.getWheelCentreOffset(2),

												vehicle18W.mWheelsSimData.getWheelCentreOffset(3)

								};

								const	PxU32	upDirection	=	1;

								PxVehicleComputeSprungMasses(4,	wheelCoords,	PxVec3(0,0,0),

												sprungMasses);

				}

				//Set	up	the	wheels	simulation	data.

				PxVehicleWheelsSimData*	wheelsSimData4W	=	PxVehicleWheelsSimData

				for(PxU32	i	=	0;	i	<	4;	i++)

				{

								wheelsSimData4W->copy(vehicle18W.mWheelsSimData,	i,	i);

								PxVehicleSuspensionData	suspData	=	wheelsSimData4W->getSuspensionData



								suspData.setMassAndPreserveNaturalFrequency(sprungMasses[i

								wheelsSimData4W->setSuspensionData(i,	suspData);

				}

				wheelsSimData4W->setTireLoadFilterData(vehicle18W.mWheelsSimData

				//Make	sure	the	correct	shapes	are	posed.

				wheelsSimData4W->setWheelShapeMapping(0,0);

				wheelsSimData4W->setWheelShapeMapping(1,1);

				wheelsSimData4W->setWheelShapeMapping(2,2);

				wheelsSimData4W->setWheelShapeMapping(3,3);

				//Set	up	the	drive	simulation	data.

				PxVehicleDriveSimDataNW	driveSimData4W	=	vehicle18W.mDriveSimData

				PxVehicleDifferentialNWData	diff4W;

				diff4W.setDrivenWheel(0,	true);

				diff4W.setDrivenWheel(1,	true);

				diff4W.setDrivenWheel(2,	true);

				diff4W.setDrivenWheel(3,	true);

				driveSimData4W.setDiffData(diff4W);

				//Instantiate	the	4-wheeled	version.

				PxRigidDynamic*	rigidDynamic	=

								const_cast<PxRigidDynamic*>(vehicle18W.getRigidDynamicActor

				PxVehicleDriveNW*	vehicle4W	=

								PxVehicleDriveNW::create(&physics,	rigidDynamic,	*wheelsSimData4W

				//Delete	the	wheels	simulation	data	now	that	we	have	copied	the	data	to	the	instantiated

				//vehicle.

				wheelsSimData4W->free();

				//Finished.

				return	vehicle4W;

}

void	swapToLowLodVersion(const	PxVehicleDriveNW&	vehicle18W,	PxVehicleDrive4W

				PxVehicleWheels**	vehicles,	PxU32	vehicleId)

{

				vehicles[vehicleId]	=	vehicle4W;

				PxVehicleCopyDynamicsMap	wheelMap;

				wheelMap.sourceWheelIds[0]=0;

				wheelMap.sourceWheelIds[1]=1;

				wheelMap.sourceWheelIds[2]=2;

				wheelMap.sourceWheelIds[3]=3;

				wheelMap.targetWheelIds[0]=0;

				wheelMap.targetWheelIds[1]=1;

				wheelMap.targetWheelIds[2]=2;



				wheelMap.targetWheelIds[3]=3;

				PxVehicleCopyDynamicsData(wheelMap,	vehicle18W,	vehicle4W);

}

void	swapToHighLowVersion(const	PxVehicleDriveNW&	vehicle4W,	PxVehicleDrive4W

				PxVehicleWheels**	vehicles,	PxU32	vehicleId)

{

				vehicles[vehicleId]	=	vehicle18W;

				PxVehicleCopyDynamicsMap	wheelMap;

				wheelMap.sourceWheelIds[0]=0;

				wheelMap.sourceWheelIds[1]=1;

				wheelMap.sourceWheelIds[2]=2;

				wheelMap.sourceWheelIds[3]=3;

				wheelMap.targetWheelIds[0]=0;

				wheelMap.targetWheelIds[1]=1;

				wheelMap.targetWheelIds[2]=2;

				wheelMap.targetWheelIds[3]=3;

				PxVehicleCopyDynamicsData(wheelMap,	vehicle4W,	vehicle18W);

}

Disable	Raycasts

In	some	scenes	 it	might	be	possible	not	 to	 issue	raycasts	 for	each	vehicle	prior	 to	each
update.	Depending	on	the	geometry,	this	can	lead	to	significant	gains.

The	PhysX	vehicles	SDK	provides	a	simple	mechanism	to	disable	or	enable	raycasts	per
update	 and	 per	 vehicle	 by	 specifying	 an	 array	 of	 booleans	 as	 a	 function	 argument	 in
PxVehicleSuspensionRaycasts.	 An	 alternative	 to	 disabling	 raycasts	 using	 the	 boolean
array	would	be	to	alter	the	array	of	vehicles	passed	to	PxVehicleSuspensionRaycasts	so
that	 some	 vehicles	 scheduled	 for	 update	 in	 PxVehicleUpdates	 do	 not	 participate	 in	 the
batched	raycast	prior	to	the	update.	It	is	anticipated	that	using	the	boolean	array	will	allow
the	 same	 vehicle	 array	 to	 be	 passed	 to	 both	 the	 raycast	 and	update	 functions,	 thereby
allowing	simpler	vehicle	management.

Vehicles	 that	 participate	 in	 the	 batched	 raycast	 automatically	 store	 raycast	 hit	 planes
which	are	re-used	each	subsequent	update	until	they	are	replaced	by	the	hit	planes	of	the
next	 raycast.	 This	 means	 that	 it	 is	 not	 necessary	 to	 perform	 raycasts	 each	 update,



especially	 if	 the	 vehicle	 is	 moving	 slowly	 or	 the	 vehicle	 is	 far	 from	 the	 camera	 or	 the
vehicle	 remains	 on	 the	 same	 plane	 for	 several	 updates	 in	 a	 row.	 As	 the	 frequency	 of
updates	 preceded	 by	 a	 raycast	 decreases,	 the	 accuracy	 of	 the	 cached	 hit	 planes	 also
decreases,	 meaning	 that	 the	 likelihood	 of	 visibly	 poor	 wheel	 placement	 increases.	
lack	of	accuracy	in	the	cached	hit	planes	means	that	some	wheels	might	end	up	hovering
or	 intersecting	 the	ground	 if	 raycasts	are	not	performed	prior	 to	each	update.	 It	 is	 left	 to
users	 of	 the	SDK	 to	 develop	 their	 own	 strategy	 to	 decide	whether	 a	 vehicle	 requires	 a
fresh	raycast	or	not.

If	a	raycast	is	not	performed	prior	to	an	update	then	the	vehicle	will	only	be	able	to	report	a
partial	 description	 of	 its	 interaction	 with	 the	 scene.	 For	 example,	 as	 a	 consequence	 of
deletion	 the	actor	or	shape	or	material	hit	by	 the	 last	suspension	raycast	may	no	 longer
exist	in	the	scene	several	updates	later.	For	this	reason,	the	vehicle	reports	NULL	pointers
for	 the	 shapes/actors/materials	 if	 a	 cached	 plane	 is	 used	 instead	 of	 the	 hit	 planes	 of	 a
fresh	raycast.	The	documentation	for	PxWheelQueryResult	describes	this	in	detail.

The	first	update	of	any	vehicle	requires	that	a	raycast	is	performed	prior	to	the	update.	
raycast	is	not	performed	prior	to	the	first	update	then	the	vehicle	will	not	have	been	given
an	opportunity	 to	cache	 its	 raycast	hit	planes.	Further,	after	each	call	 to	setToRestState
the	vehicle	also	needs	to	perform	a	raycast	prior	to	the	next	update.	The	reason	for	this	is
that	 setToRestState	 clears	 the	 cached	 hit	 planes,	 meaning	 that	 they	 need	 to	 be	 re-
computed	once	more.

Use	The	Clutch	in	Estimate	Mode

The	vehicle	SDK	 implements	a	mathematical	model	 for	 the	clutch	 that	has	 two	optional
modes	 of	 operational	 accuracy:	 eESTIMATE	 and	 eBEST_POSSIBLE.	
eBEST_POSSIBLE	 is	chosen	 the	SDK	attempts	 to	accurately	update	wheel	and	engine
rotation	 speeds	 from	 their	 coupling	 through	 the	 clutch.	 It	 is	 worth	 mentioning	 that	 the
clutch	model	in	PxVehicleDriveTank	reduces	to	a	particularly	simple	set	of	equations	that
have	 fast	 analytical	 solution.	 As	 a	 consequence,	 the	 vehicle	 SDK	 ignores	 the	 clutch
accuracy	model	for	tanks	and	instead	always	opts	to	compute	the	best	possible	solution.
In	 the	 case	 of	 PxVehicle4W	 only	 marginal	 performance	 gains	 can	 be	 produced	 by
switching	 to	 eESTIMATE	 because	 at	 most	 only	 4	 wheels	 can	 ever	 be	 coupled	 to	 the
clutch.	 The	 real	 performance	 gains	 from	 the	 estimated	 solution	 are	 to	 be	 had	 with



PxVehicleNW	instances	with	high	wheel	count.

If	 eESTIMATE	 is	 chosen	 the	 quality	 of	 the	 estimate	 can	 be	 tuned	 with
PxVehicleClutchData::mEstimateIterations.	 As	 the	 value	 of	 this	 variable	 increases	 the
computational	 cost	 also	 increases	 and	 the	 estimated	 solution	 approaches	 the	 best
possible	 solution.	 At	 particularly	 large	 values	 of	 mEstimateIterations	 the	 cost	 of	 the
estimated	solution	might	even	exceed	that	of	the	best	possible	solution	but	without	adding
any	precision.	On	the	other	hand,	particularly	low	values	such	as	1	might	result	in	weak	or
inaccurate	coupling	between	 the	engine	and	wheels.	This	 can	be	particularly	 noticeable
after	a	gear	change	or	at	standing	starts	or	when	the	brakes	are	aggressively	applied.	
such	situations	large	angular	velocity	differences	at	the	clutch	result	in	large	torques	that
require	 computational	 effort	 to	 resolve.	 A	 poor	 estimate	 might,	 for	 example,	 result	 in
oscillating	 engine	 rotation	 speeds	 after	 a	 gear	 change	 instead	 of	 the	 expected	 smooth
transitions.	The	magnitude	of	accuracy	loss	and	its	subsequent	effect	on	vehicle	behavior
are	very	difficult	to	quantify	and	really	need	tested	for	each	vehicle	and	scene.

It	is	recommended	that	eBEST_POSSIBLE	is	chosen	for	vehicles	that	require	a	high	level
of	detail	and	that	eESTIMATE	is	only	chosen	for	vehicles	that	require	lower	levels	of	detail.
Care	must	be	taken	when	tuning	PxVehicleClutchData::mEstimateIterations	to	ensure	that
the	loss	of	accuracy	is	acceptable	for	the	required	level	of	detail.	In	many	cases	the	lowest
possible	 value	 of	 1	will	 turn	 out	 to	 provide	 perfectly	 acceptable.	 Smooth	 and	 physically
believable	behavior,	however,	is	only	guaranteed	if	eBEST_POSSIBLE	is	adopted.

Wheel	Contact	Beyond	Raycasts

This	 Section	 describes	 the	 steps	 required	 to	 simulate	wheel	 volumes	with	 scene	 query
sweeps	 and	 contact	 modification.	 Sample	 code	 can	 be	 found	 in
SnippetVehicleContactMod.

Section	 Algorithm	 described	 how	 scene	 query	 raycasts	 are	 used	 to	 compute	 vehicle
suspension	forces.	Expanding	on	this	theme,	Section	Filtering	described	how	to	use	scene
query	and	simulation	filtering	to	categorise	scene	shapes	as	either	drivable	or	non-drivable
surfaces:	 drivable	 surfaces	 interact	 only	 with	 suspension	 raycasts,	 while	 non-drivable
surfaces	interact	with	wheels	only	through	rigid	body	contact.



A	variety	 of	 issues	arise	 from	 the	 the	 system	of	 raycasts	 and	 filtering	 described	above.
One	problem	 is	 that	 it	may	be	 impractical	 to	 author	 every	 shape	 in	 the	 scene	as	being
either	drivable	or	non-drivable:	 it	 is	easy	 to	 imagine	a	 landscape	modelled	with	a	single
mesh	that	is	partially	drivable	and	partially	non-drivable.	Another	problem	is	that	raycasts
ignore	the	extent	of	the	wheel	in	the	lateral	and	longitudinal	directions.	This	is	illustrated	in
Figures	2a	and	2b.

Figure	2a:	The	raycast	ignores	the	overlap	of	the	wheel's	volume	with	the	angled	ground
plane.



Figure	2b:	The	wheel	rolls	towards	a	wall	in	Frame	1	and	is	immediately	pushed	up	to	the
elevated	surface	in	Frame	2.

The	 problem	 illustrated	 in	 Figure	 2a	 can	 be	 solved	 by	 replacing	 raycasts	 with	 sweeps.
Instead	of	performing	a	raycast	along	the	suspension	direction	through	the	centre	of	 the
wheel,	 the	 shape	 representing	 the	 wheel	 is	 swept	 from	 its	 transform	 at	 maximum
compression	 to	 its	 transform	 at	 maximum	 elongation.	 Sweeping	 a	 volume	 through	 the
scene	means	that	all	possible	contact	planes	are	considered.	This	is	illustrated	in	Figure	3.



Figure	3:	Sweeps	pick	up	all	contact	planes	under	the	wheel.

In	Figure	3,	it	 is	easy	to	see	that	there	are	multiple	contact	points	under	the	wheel,	each
with	 a	 different	 normal.	 A	 decision	 needs	 to	 be	made	 about	which	 of	 these	 contacts	 to
accept	as	the	driving	surface	and	which	to	ignore.	In	some	scenarios	it	is	sufficient	just	to
take	the	first	contact	encountered	by	the	sweep	and	ignore	all	others.	For	such	cases	it	is
recommended	 to	 issue	 a	 blocking	 sweep.	 PhysX	 supports	 two	 types	 of	 scene	 query:
blocking	and	non-blocking.	A	detailed	description	of	blocking	and	non-blocking	queries	can
be	found	in	Section	Filtering.	In	summary,	however,	a	blocking	sweep	will	 return	 the	first
contact	encountered	by	the	swept	volume,	while	non-blocking	sweeps	return	all	contacts
encountered	by	the	sweep.	The	scenario	in	Figure	3	suggests	that	a	blocking	sweep	will
be	sufficient	because	it	will	return	the	inclined	plane	rather	than	the	horizontal	plane.	
consequence,	the	vehicle	will	start	to	drive	on	the	inclined	plane.	Some	scenarios,	such	as
those	depicted	in	Figure	2b,	are	more	complex	and	require	a	non-blocking	sweep.

Figure	4:	Judicious	selection	of	sweep	contacts	and	rigid	body	contacts	is	required	to
navigate	a	wheel	through	a	complex	scene.

Figure	 4	 shows	 a	 wheel	 rolling	 along	 a	 horizontal	 plane	 towards	 a	 vertical	 plane.	
expected	 behavior	 is	 that	 the	 wheel	 continues	 to	 drive	 on	 the	 horizontal	 plane	 and	 is
blocked	by	 the	vertical	plane.	 It	 turns	out	 that	 this	 can	be	 readily	 achieved	by	 judicious
choice	of	sweep	contacts	and	rigid	body	contacts.	The	first	thing	to	note	is	that	the	sweep



will	 return	 the	 three	contact	planes	 labelled	A,	B	and	C	 in	Figure	4.	 If	we	have	enabled
rigid	body	contact	between	 the	wheel	and	 the	environment	we	will	 simultaneously	have
contact	planes	B	and	C	as	rigid	body	contacts.	The	next	step	is	to	devise	a	strategy	that
accepts	contact	plane	B	 for	 the	sweep	and	contact	plane	C	 for	 rigid	body	contact.	
combination	 will	 ensure	 that	 the	 wheel	 bounces	 off	 the	 vertical	 plane	 and	 continues	 to
drive	 on	 the	 lower	 horizontal	 plane.	 The	 strategy	 adopted	 by	 PhysX	 vehicles	 is	 to
categorise	sweep	and	rigid	body	contacts	by	comparing	contact	normals	and	points	with
the	suspension	direction.	The	aim	 is	 to	divide	contact	with	 the	environment	 into	drivable
contact	 planes	 and	 non-drivable	 contact	 planes.	 This	 can	 be	 achieved	 by	 introducing
threshold	angles	to	categories	contact	points	and	normals.

Figure	5:	The	position	of	sweep	and	rigid	body	contact	points	relative	to	the	suspension
direction	is	used	to	filter	the	sweep	and	rigid	body	contacts.	Sweep	contacts	in	the	light
blue	zone	are	accepted	as	driving	planes,	while	rigid	body	contacts	in	the	pink	zone	are

accepted	as	rigid	body	contact	planes.



Figure	6:	The	angle	between	contact	normal	and	the	suspension	direction	is	used	to
categorised	contact	planes	as	either	rigid	body	contacts	or	sweep	contacts.	

normals	close	to	the	suspension	direction	are	accepted	as	driving	planes,	while	normals
far	from	the	suspension	direction	are	accepted	as	rigid	body	contact	planes.

Figures	5	and	6	introduced	two	threshold	angles	that	together	allow	sweep	and	rigid	body
contacts	 to	 be	 categorised	 using	 their	 position	 and	 normal.	Having	 a	 numerical	 test	 for
drivable	 and	 non-drivable	 contact	 points	 and	 normals	 allows	 a	 relaxation	 of	 the	 strict
filtering	rules	described	in	Section	Filtering.	The	idea	now	is	to	set	up	simulation	filter	data
so	that	wheel	shapes	sweep	against	and	collide	with	pretty	much	everything	in	the	scene.
The	 two	 threshold	 angles	 will	 filter	 and	 categorise	 sweep	 and	 rigid	 body	 contacts	 to
generate	the	desired	behavior.

The	 threshold	 angles	 shown	 in	 Figure	 5	 and	Figure	 6	 are	 configured	with	 the	 following
function	call:

void	PxVehicleSetSweepHitRejectionAngles(const	PxF32	pointRejectAngle

The	code	snippet	SnippetVehicleContactMod	demonstrates	how	to	configure	blocking	and
non-blocking	sweeps.	This	snippet	can	be	configured	to	run	with	either	type	of	sweep	by
modifying	 the	 BLOCKING_SWEEPS	 define.	 Running	 the	 snippet	 with



BLOCKING_SWEEPS	demonstates	 that	 the	situation	depicted	 in	Figure	4	 requires	non-
blocking	sweeps	to	ensure	that	the	elevated	horizontal	plane	is	not	chosen	as	the	driving
surface.

Suspension	sweeps	are	issued	with	the	following	code:

//Suspension	sweeps	(instead	of	raycasts).

//Sweeps	provide	more	information	about	the	geometry	under	the	wheel.

PxVehicleWheels*	vehicles[NUM_VEHICLES]	=	{gVehicle4W[0],	gVehicle4W

PxSweepQueryResult*	sweepResults	=	gVehicleSceneQueryData->getSweepQueryResultBuffer

const	PxU32	sweepResultsSize	=	gVehicleSceneQueryData->getQueryResultBufferSize

PxVehicleSuspensionSweeps(gBatchQuery,	NUM_VEHICLES,	vehicles,	sweepResultsSize

In	 the	event	 that	 non-blocking	 sweeps	are	 implemented,	 the	 function	PxVehicleUpdates
rejects	 and	 accepts	 sweep	 hits	 using	 the	 threshold	 angles	 set	 in
PxVehicleSetSweepHitRejectionAngles.	When	 blocking	 sweeps	 are	 implemented	 only	 a
single	 sweep	 contact	 is	 recorded.	 As	 a	 consequence,	 PxVehicleUpdates	 ignores	 the
threshold	 angles	 and	 automatically	 works	 with	 the	 blocking	 sweep	 hit.	
whether	 to	 use	 blocking	 or	 non-blocking	 sweeps	 is	 left	 to	 the	 developer	 because	 it
depends	 on	 knowledge	 about	 the	 kinds	 of	 geometry	 that	 will	 be	 encountered	 by	 the
vehicle.	 In	 some	 applications	 it	 will	 be	 sufficient	 to	 opt	 for	 the	 computationally	 cheaper
option	 of	 blocking	 sweeps,	 while	 other	 applications	may	 expect	 the	 vehicle	 to	 drive	 on
complex	geometry	and	are	prepared	to	accept	the	extra	cost	of	non-blocking	sweeps.

Categorisation	of	rigid	body	contacts	is	implemented	using	contact	modification	callbacks.
Contact	 modification	 is	 described	 in	 Section	Contact	 Modification.	 The	 PhysX	 Vehicles
SDK	 provides	 the	 function	 PxVehicleModifyWheelContacts	 to	 accept	 or	 reject	 contact
points	using	the	defined	threshold	angles.	This	function	should	be	called	from	the	contact
modification	 callback,	 which	 is	 owned	 by	 the	 application.	 Configuration	 of	 contact
modification	 callbacks	 involves	 a	 combination	 of	 simulation	 filter	 data	 and	 simulation
shader.	 The	 implementation	 details,	 therefore,	 are	 left	 to	 application	 developers.
SnippetVehicleContactMod	 illustrates	 one	 way	 to	 implement	 a	 contact	 modification
callback	 using	 simulation	 filter	 data	 and	 the	 userdata	 pointers	 of	 PxShape	 and
PxRigidDynamic.	Other	techniques	are	available	using	local	knowledge	in	the	application.
In	addition	to	adding	sweeps	and	contact	modification,	the	snippet	also	applies	continuous
collision	detection	(CCD)	to	the	wheel	shapes.	CCD	is	 introduced	 in	Section	



Collision	Detection.



Tuning	Guide

This	Sections	describes	the	effect	of	the	editable	vehicle	parameters	of	the	data	structures
in	PxVehicleComponents.h.

PxVehicleWheelData

mRadius:

This	is	the	distance	in	metres	between	the	center	of	the	wheel	and	the	outside	rim	of
the	tire.	It	is	important	that	the	value	of	the	radius	closely	matches	the	radius	of	the
render	mesh	of	the	wheel.	Any	mismatch	will	result	in	the	wheels	either	hovering
above	the	ground	or	intersecting	the	ground.	Ideally,	this	parameter	will	be	exported
from	the	3D	modeler.

mWidth:

This	is	the	full	width	of	the	wheel	in	metres.	This	parameter	has	no	bearing	on	the
handling	but	is	a	very	useful	parameter	to	have	when	trying	to	render	debug	data
relating	to	the	wheel/tire/suspension.	Without	this	parameter	it	would	be	difficult	to
compute	coordinates	for	render	points	and	lines	that	ensure	their	visibility.	Ideally,	this
parameter	will	be	exported	from	the	3D	modeler.

mMass:

This	is	the	combined	mass	of	the	wheel	and	the	tire	in	kg.	Typically,	a	wheel	has
mass	between	20Kg	and	80Kg	but	can	be	lower	and	higher	depending	on	the	vehicle.

mMOI:

This	is	the	component	of	the	wheel's	moment	of	inertia	about	the	rolling	axis.	
values	make	it	harder	for	the	wheel	to	rotate	about	this	axis,	while	lower	values	make
it	easier	for	the	wheel	to	rotate	about	the	rolling	axis.	Another	way	of	expressing	this
is	 that	 a	 high	MOI	will	 result	 in	 less	wheel	 spin	when	 stamping	 on	 the	 accelerator
because	 it	 is	 harder	 to	make	 the	wheel	 spin.	 Conversely,	 lower	 values	 of	MOI	will
result	in	more	wheel	spin	when	stamping	on	the	accelerator.



If	 the	 wheel	 is	 approximately	 cylindrical	 then	 a	 simple	 formula	 can	 be	 used	 to
compute	MOI:

MOI	=	0.5	*	Mass	*	Radius	*	Radius

There	 is	 no	 reason,	 however,	 to	 rely	 on	 equations	 to	 compute	 this	 value.	
strategy	 for	 tuning	 this	 number	might	 to	 be	 start	with	 the	 equation	 above	 and	 then
make	small	tweaks	to	the	value	until	the	handling	is	as	desired.

mDampingRate:

This	value	describes	how	quickly	a	freely	spinning	wheel	will	come	to	rest.	
damping	rate	describes	the	rate	at	which	a	freely	spinning	wheel	loses	rotational
speed.	Here,	a	freely	spinning	wheel	is	one	that	experiences	no	forces	except	for	the
damping	forces	arising	from	the	wheel's	internal	bearings.	Higher	damping	rates
result	in	the	wheel	coming	to	rest	in	shorter	times,	while	lower	damping	rates	result	in
the	wheel	maintaining	speed	for	longer.	Values	in	range	(0.25,	2)	seem	like	sensible
values.	Experimentation	is	always	a	good	idea,	even	outside	this	range.	
exercise	some	caution	with	very	small	damping	rates.	In	particular,	a	damping	rate	of
exactly	0	should	be	avoided.

mMaxBrakeTorque:

This	 is	 the	value	of	 the	 torque	applied	 to	 the	wheel	when	 the	brakes	are	maximally
applied.	Higher	torques	will	lock	the	wheel	quicker	when	braking,	while	lower	torques
will	 take	 longer	 to	 lock	 the	 wheel.	 This	 value	 is	 strongly	 related	 to	 the	 wheel	MOI
because	the	MOI	determines	how	quickly	the	wheel	will	react	to	applied	torques.

A	value	of	around	1500	is	a	good	starting	point	for	a	vanilla	wheel	but	a	web	search
will	reveal	typical	braking	torques.	One	difficulty	is	that	these	are	often	expressed	by
manufacturers	 as	 braking	 horsepower	 or	 in	 "pounds	 inches".	 The	 values	 required
here	are	in	"Newton	metres".

mMaxHandBrakeTorque:

This	is	the	same	as	the	max	brake	torque	except	for	the	handbrake	rather	than	the
brake.	Typically,	for	a	4-wheeled	car,	the	handbrake	is	stronger	than	the	brake	and	is



only	applied	to	the	rear	wheels.	A	value	of	4000	for	the	rear	wheels	is	a	good	starting
point,	while	a	value	of	0	is	necessary	for	the	front	wheels	to	make	sure	they	do	not
react	to	the	handbrake.

mMaxSteer:

This	is	the	value	of	the	steer	angle	of	the	wheel	(in	radians)	when	the	steering	wheel
is	at	full	lock.	Typically,	for	a	4-wheeled	car,	only	the	front	wheels	respond	to	steering.
In	this	case,	a	value	of	0	is	required	for	the	rear	wheels.	More	exotic	cars,	however,
might	wish	front	and	rear	wheels	to	respond	to	steering.	A	value	in	radians	equivalent
to	somewhere	between	30	degrees	and	90	degrees	seems	like	a	good	starting	point
but	it	really	depends	on	the	vehicle	being	simulated.	Larger	values	of	max	steer	will
result	in	tighter	turns,	while	smaller	values	will	result	in	wider	turns.	Be	aware,	though,
that	large	steer	angles	at	large	speeds	are	likely	to	result	in	the	car	losing	traction	and
spinning	out	of	control,	just	as	would	happen	with	a	real	car.	A	good	way	to	avoid	this
is	to	filter	the	steer	angles	passed	to	the	car	at	run-time	to	generate	smaller	steer
angles	at	larger	speeds.	This	strategy	will	simulate	the	difficulty	of	achieving	large
steer	angles	at	high	speeds	(at	high	speeds	the	wheels	resist	the	turning	forces
applied	by	the	steering	wheel).

mToeAngle:

This	is	the	angle	of	the	wheel	(in	radians)	that	occurs	with	no	steer	applied.	
angle	can	be	used	to	help	the	car	straighten	up	after	coming	out	of	a	turn.	
good	 number	 to	 experiment	 with	 but	 is	 best	 left	 at	 0	 unless	 detailed	 tweaks	 are
required.

To	help	the	car	straighten	up	apply	a	small	negative	angle	to	one	of	the	front	wheels
and	a	small	positive	angle	 to	 the	other	 front	wheel.	By	choosing	which	wheel	 takes
the	positive	angles,	and	which	the	negative,	 it	 is	straightforward	to	make	the	wheels
either	 "toe-in"	or	 "toe-out".	A	 "toe-in"	configuration,	 the	 front	wheels	pointing	slightly
towards	each	other,	should	help	the	car	straighten	up	after	a	turn	but	at	the	expense
of	making	it	a	little	harder	to	turn	in	the	first	place.	A	"toe-out"	configuration	can	have
the	opposite	effect.	Toe	angles	greater	than	a	few	degrees	are	best	avoided.

PxVehicleWheelsSimData



void	setSuspTravelDirection(const	PxU32	id,	const	PxVec3&	dir):

This	is	the	direction	of	the	suspension	in	the	downward	direction	in	the	rest
configuration	of	the	vehicle.	A	vector	that	points	straight	downwards	is	a	good	starting
point.

void	setSuspForceAppPointOffset(const	PxU32	id,	const	PxVec3&	offset):

This	 is	 the	application	point	 of	 the	 suspension	 force,	 expressed	as	an	offset	 vector
from	the	center	of	mass	of	the	vehicle's	rigid	body.	Another	way	of	expressing	this	is
to	start	at	the	center	of	mass	of	the	rigid	body,	then	move	along	the	offset	vector.	
point	at	 the	end	off	 the	offset	vector	 is	 the	point	at	which	suspension	 forces	will	be
applied.

In	 a	 real	 vehicle	 the	 suspension	 forces	are	mediated	 through	 the	 suspension	 strut.
These	 are	 often	 incredibly	 complex	 mechanical	 systems	 that	 are	 computationally
expensive	 to	 simulate.	 As	 a	 consequence,	 instead	 of	 modeling	 the	 details	 of	 the
suspension	strut,	it	makes	sense	to	assume	that	the	suspension	strut	has	an	effective
point	 at	 which	 it	 applies	 the	 force	 to	 the	 rigid	 body.	 Choosing	 that	 point,	 however,
needs	 careful	 consideration.	 At	 the	 same	 time,	 it	 opens	 up	 all	 sorts	 of	 tweaking
possibilities,	freed	from	the	constraints	of	the	real	world.

Deciding	 on	 the	 suspension	 force	 application	 point	 requires	 some	 thought.	 The
suspension	 is	 very	close	 to	 the	wheel	 so	 the	wheel	 center	 is	a	good	starting	point.
Consider	a	 line	 through	 the	wheel	center	and	along	 the	suspension	 travel	direction.
Somewhere	along	 this	 line	seems	 like	an	even	better	 idea	 for	 the	application	point,
albeit	not	completely	scientific.	For	a	standard	4-wheeled	car	it	makes	sense	that	the
application	point	is	somewhere	above	the	wheel	center	but	below	the	center	of	mass
of	 the	 rigid	body.	 It	 is	 probably	 above	 the	wheel	 center	 because	 the	 suspension	 is
mostly	above	this	point.	It	can	be	assumed	that	it	is	somewhere	below	the	rigid	body
center	of	mass	because	otherwise	vehicles	would	lean	out	of	the	turn	rather	than	in	to
the	turn.	This	narrows	down	the	application	point	 to	really	quite	a	small	section	of	a
known	line.

When	editing	the	suspension	force	application	point	it	is	important	to	bear	in	mind	that
lowering	the	app	point	 too	far	will	 result	 in	cars	 leaning	more	 into	the	turn.	



have	a	negative	effect	on	handling	because	the	 inner	wheel	can	take	so	much	 load
that	 the	 response	 saturates,	while	 the	 outer	wheel	 ends	 up	with	 reduced	 load	 and
reduced	turning	force.	The	result	is	poor	cornering.	Conversely,	setting	the	app	point
too	 high	will	 result	 in	 cornering	 that	 looks	 unnatural.	 The	 aim	 is	 to	 achieve	 a	 good
balance.

void	setTireForceAppPointOffset(const	PxU32	id,	const	PxVec3&	offset):

This	is	almost	the	same	as	the	suspension	force	app	point	except	for	the	lateral	and
longitudinal	forces	that	develop	on	the	tire.	A	good	starting	point	is	to	duplicate	the
suspension	force	application	point.	Only	for	really	detailed	editing	is	it	advised	to	start
tweaking	the	tire	force	app	offset	independently	of	the	suspension	force	app	offset.

void	setWheelCentreOffset(const	PxU32	id,	const	PxVec3&	offset):

This	is	the	center	of	the	wheel	at	rest	position,	expressed	as	an	offset	vector	from	the
vehicle's	center	of	mass.

PxVehicleSuspensionData

mSprungMass:

This	is	the	mass	in	kg	that	is	supported	by	the	suspension	spring.

A	 vehicle	 with	 rigid	 body	 center	 of	 mass	 at	 the	 center	 of	 the	 four	 wheels	 would
typically	 be	 equally	 supported	 by	 each	 of	 the	 suspension	 springs;	 that	 is,	 each
suspension	spring	supports	1/4	of	 the	 total	vehicle	mass.	 If	 the	center	of	mass	was
moved	forward	then	it	would	be	expected	that	the	front	wheels	would	need	to	support
more	mass	than	the	rear	wheels.	Conversely,	a	center	of	mass	nearer	the	rear	wheels
ought	to	result	in	the	rear	suspension	springs	supporting	more	mass	than	at	the	front.

Note: 	In	order	to	achieve	stability	at	the	desired	rest	pose	it	is	recommended
that	the	collection	of	sprung	masses	matches	the	mass	and	center	of	mass	of
the	rigid	body.	There	are	two	strategies	that	can	be	employed	to	achieve	this.
The	first	approach	is	to	decide	upon	values	for	the	individual	sprung	masses
and	work	forwards	to	compute	an	equivalent	value	for	the	rigid	body	mass	and



center	of	mass.	More	specifically,	the	rigid	body	mass	and	center	of	mass	can
be	computed	using	the	equations	presented	in	Section	Algorithm	and	then
applied	to	the	vehicle's	PxRigidDynamic	instance.	The	second	approach	starts
with	the	rigid	body	mass	and	center	of	mass	of	the	vehicle's	PxRigidDynamic
instance	and	works	backwards	to	compute	and	set	the	sprung	masses.	
makes	use	of	the	function	PxVehicleComputeSprungMasses	that	was
introduced	in	Section	setupWheelsSimulationData.

mMaxCompression:

mMaxDroop:

These	values	describe	the	maximum	compression	and	elongation	in	metres	that	the
spring	can	support.	The	total	travel	distance	along	the	spring	direction	that	is	allowed
is	the	sum	of	mMaxCompression	and	mMaxDroop.

A	simple	way	to	illustrate	the	maximum	droop	and	compression	values	is	to	consider
a	car	that	is	suspended	in	mid-air	so	that	none	of	the	wheels	are	touching	the	ground.
The	wheels	will	 naturally	 fall	 downwards	 from	 their	 rest	 position	 until	 the	maximum
droop	 is	 reached.	The	spring	cannot	be	elongated	beyond	 this	point.	
that	the	wheel	is	pushed	upward,	first	to	its	rest	position,	then	further	pushed	until	the
spring	can	no	longer	be	compressed.	The	displacement	from	the	rest	position	is	the
maximum	compression	of	the	spring.

It	is	important	to	choose	the	maximum	compression	value	so	that	the	wheel	is	never
placed	where	 the	 visual	mesh	of	 the	wheel	 intersects	 the	 visual	meshes	of	 the	 car
chassis.	Ideally,	these	values	will	be	exported	from	the	3d	modeler.

mSpringStrength:

This	value	describes	the	strength	of	the	suspension	spring.	The	spring	strength	has	a
profound	 influence	 on	 handling	 by	 modulating	 the	 time	 it	 takes	 for	 the	 vehicle	 to
respond	to	bumps	in	the	road	and	on	the	amount	of	load	experienced	by	the	tire.

Key	to	understanding	the	effect	of	spring	strength	is	the	concept	of	a	spring's	natural
frequency.	Consider	a	simple	spring	system,	such	as	a	pendulum	swinging	back	and



forth.	The	number	of	 trips	per	 second	 that	 the	pendulum	makes	 from	 full	 left	 to	 full
right	 and	 then	 back	 again	 is	 called	 the	 natural	 frequency	 of	 the	 pendulum.	
powerful	 pendulum	 spring	 will	 result	 in	 the	 pendulum	 swinging	 faster,	 thereby
increasing	 the	 natural	 frequency.	 Conversely,	 increasing	 the	 pendulum	 mass	 will
result	in	a	slower	oscillation,	thereby	reducing	the	natural	frequency.

In	the	context	of	a	suspension	spring	supporting	a	fixed	portion	of	vehicle	mass,	the
strength	of	 the	spring	will	affect	 the	natural	 frequency;	 that	 is,	 the	 rate	at	which	 the
spring	can	respond	to	changes	in	load	distribution.	Consider	a	car	taking	a	corner.	
the	car	corners	it	leans	in	to	the	turn,	putting	more	weight	on	the	suspensions	on	the
outside	 of	 the	 turn.	 The	 speed	 at	 which	 the	 spring	 reacts	 by	 applying	 forces	 to
redistribute	 the	 load	 is	 controlled	 by	 the	 natural	 frequency.	 Very	 high	 natural
frequencies,	 such	 as	 those	 on	 a	 racing	 car,	 will	 naturally	 produce	 twitchy	 handling
because	the	load	on	the	tires,	and	therefore	the	forces	they	can	generate,	is	varying
very	 rapidly.	 Very	 low	 natural	 frequencies,	 on	 the	 other	 hand,	 will	 result	 in	 the	 car
taking	a	long	time	to	straighten	up	even	after	the	turn	is	complete.	This	will	produce
sluggish	and	unresponsive	handling.

Another	 effect	 of	 strength	 and	 and	 natural	 frequency	 is	 the	 response	 of	 a	 car	 to	 a
bump	 in	 the	 road.	 High	 natural	 frequencies	 can	 result	 in	 the	 car	 responding	 very
strongly	and	quickly	to	the	bump,	with	the	wheel	possibly	even	leaving	the	road	for	a
short	while.	This	not	only	creates	a	bumpy	ride	but	also	periods	of	time	when	the	tire
is	generating	no	forces.	Weaker	springs	will	result	in	a	smoother	trip	over	the	bump,
with	weaker	but	more	constant	tire	forces.	A	balance	must	be	found	to	tune	the	car	for
the	expected	types	of	turn	and	terrain.

The	natural	 frequency	of	 the	spring	presents	a	challenge	for	computer	simulation.	
smooth	and	stable	simulation	requires	that	the	spring	is	updated	at	a	frequency	much
greater	than	the	spring's	natural	frequency.	An	alternative	way	of	expressing	this	is	to
consider	the	period	of	the	spring	relative	to	the	timestep	of	the	simulation.	
of	 the	 spring	 is	 the	 time	 the	 spring	 takes	 to	 complete	 a	 single	 oscillation,	 and	 is
mathematically	equal	to	the	reciprocal	of	the	natural	frequency.	In	order	to	achieve	a
stable	simulation	the	spring	must	be	sampled	at	several	points	during	each	oscillation.
A	 natural	 consequence	 of	 this	 observation	 is	 that	 the	 simulation	 timestep	must	 be
significantly	smaller	than	the	period	of	the	spring.	To	discuss	this	further	it	is	helpful	to



introduce	 a	 ratio	 that	 describes	 the	 number	 of	 simulation	 updates	 that	 will	 occur
during	 each	 spring	 oscillation.	 This	 ratio	 is	 simply	 the	 spring	 period	 divided	 by	 the
timestep

alpha	=	sqrt(mSprungMass/mSpringStrength)/timestep

where	 sqrt(mSprungMass/mSpringStrength)	 is	 the	 period	 of	 the	 spring.	
value	of	1.0	means	that	the	chosen	timestep	and	spring	properties	only	allow	a	single
sample	 of	 the	 spring	 during	 each	 oscillation.	 As	 described	 above,	 this	 is	 almost
guaranteed	 to	 produce	 unstable	 behavior.	 In	 fact,	 the	 argument	 presented	 so	 far
suggests	 a	 value	 of	 alpha	 significantly	 greater	 than	 1.0	 is	 essential	 to	 produce	 a
smooth	simulation.	The	exact	value	of	alpha	at	which	stability	emerges	is	very	difficult
to	 predict	 and	 depends	 on	 many	 other	 parameters.	 As	 a	 guide,	 however,	 it	 is
recommended	 that	 the	 timestep	 and	 spring	 properties	 are	 chosen	 so	 that	 they
produce	an	alpha	value	greater	than	5.0;	that	is,	a	minimum	of	five	simulation	updates
per	spring	cycle.

When	 tuning	a	suspension	spring	 it	can	be	very	useful	 to	use	manufacturer	data	 to
discover	typical	values	used	across	a	range	of	vehicle	types.	This	data	is	not	always
readily	 available.	 An	 alternative	 strategy	 would	 be	 to	 think	 in	 terms	 of	 the	 natural
frequency	of	the	spring	by	imagining	how	quickly	the	car	would	oscillate	up	and	down
if	it	was	dropped	onto	the	ground	from	a	height	of,	say,	0.5m.	The	springs	of	a	typical
family	car	have	natural	frequency	somewhere	between	5	and	10;	that	 is,	such	a	car
would	make	5-10	oscillations	per	second	if	gently	dropped	to	the	ground.	
supported	by	the	spring	is	already	known	then	the	spring	strength	can	be	calculated
from	the	following	equation

mSpringStrength	=	naturalFrequency	*	naturalFrequency	*	mSprungMass

Note: 	To	achieve	a	spring	that	is	theoretically	correct,	the	values	for
mSprungMass,	mSpringStrength	and	mMaxDroop	should	be	chosen	so	that
they	obey	the	equation	mSpringStrength*mMaxDroop	=
mSprungMass*gravitationalAcceleration.	When	this	equation	is	satisfied	the
spring	is	guaranteed	to	provide	exactly	zero	force	at	maximum	elongation	and
also	to	support	the	sprung	mass	at	the	rest	pose	(the	rest	pose	is	defined	by



PxVehicleWheelsSimDta::setWheelCentreOffset).	It	is	often	the	case,	however,
that	the	visual	requirements	of	the	car	are	in	conflict	with	its	handling
requirements.	An	example	might	be	a	visual	requirement,	imposed	by	an	artist,
on	both	the	rest	pose	and	the	suspension	travel	limits.	In	order	to	satisfy	this
visual	requirement	and	achieve	a	theoretically	correct	spring,	the	value	of
mSpringStrength	must	be	equivalent	to
mSprungMass*gravitationalAcceleration/mMaxDroop.	If	this	value	of
mSpringStrength	does	not	meet	the	handling	requirements	of	the	game	then
there	is	a	conflict	that	cannot	be	easily	resolved.	For	this	reason,	the	PhysX
Vehicles	module	does	not	require	the	spring	to	be	a	theoretically	perfect	spring.
The	consequences	of	an	imperfect	spring	are	that	the	spring	either	stops
providing	upward	force	before	it	hits	maximum	elongation	or	that	it	still	provides
a	non-zero	force	at	maximum	elongation.	The	effect	on	handling	or	on	the
visual	appearance	of	the	vehicle	is	often	quite	difficult	to	spot.	In	particular,	tire
load	filtering,	discussed	in	Section	PxVehicleTireLoadFilterData,	further
disguises	any	imperfection.

mSpringDamperRate:

This	describes	the	rate	at	which	the	spring	dissipates	the	energy	stored	in	the	spring.

Key	 to	 the	understanding	of	damper	 rate	are	 the	concepts	of	under-damping,	over-
damping,	 and	 critical	 damping.	 An	 over-damped	 pendulum	 displaced	 from	 rest	 is
unable	to	make	a	single	back-and-forth	trip	before	it	dissipates	all	its	energy,	while	an
under-damped	pendulum	would	be	able	to	make	at	least	a	single	back-and-forth	trip.
A	 critically	 damped	 pendulum	 makes	 exactly	 a	 single	 back-and-forth	 trip	 before
expending	all	its	energy.

For	vehicle	suspension	springs,	 it	 is	 typically	 important	 to	make	sure	that	 the	spring
has	a	damper	rate	that	produces	over-damping	but	not	by	too	much.	
for	example,	it	is	important	that	the	spring	doesn't	over-respond	by	shifting	the	weight
from	the	left	suspension	to	the	right	suspension	then	back	again.	If	this	happened	the
tire	 load,	and	the	forces	generated,	would	be	extremely	variable,	resulting	 in	twitchy
and	uncontrollable	handling.	A	very	heavily	over-damped	spring,	on	 the	other	hand,
will	feel	sluggish	and	unresponsive.



The	 concept	 of	 critical	 damping	 can	 be	 used	 to	 help	 tune	 the	 damping	 rate	 of	 the
spring.	 It	 is	helpful	 to	 introduce	a	value	known	as	 the	damping	ratio,	which	helps	 to
mathematically	 describe	 the	 under-damping,	 critical	 damping	 and	 over-damping
regimes.

dampingRatio	=	mSpringDamperRate/[2	*	sqrt(mSpringStrength	*
mSprungMass)]

A	 dampingRatio	 with	 value	 greater	 than	 1.0	 produces	 over-damping,	 a	 value	 of
exactly	1.0	generates	critical	damping,	and	a	value	less	than	1.0	is	under-damped.	
can	be	useful	 to	 first	 think	about	whether	 the	spring	will	 be	under-damped	or	over-
damped,	then	think	about	how	far	it	will	be	from	critical	damping.	This	process	allows
a	number	to	be	subjectively	applied	to	the	damping	ratio.	From	here	the	damping	rate
can	be	directly	computed	by	rearranging	the	equation	above

mSpringDamperRate	=	dampingRatio	*	2	*	sqrt(mSpringStrength	*
mSprungMass)

A	typical	family	car	is	probably	slightly	over-damped,	having	dampingRatio	with	value
perhaps	just	over	1.0.	A	guideline	would	be	that	values	very	far	from	critical	damping
are	 likely	 to	be	unrealistic	 and	will	 either	produce	sluggish	or	 twitchy	handling.	 It	 is
difficult	to	put	an	exact	figure	on	this	but	somewhere	between	0.8	and	1.2	seems	like
a	good	starting	point	for	the	damping	ratio.

mCamberAtRest:

mCamberAtMaxCompression:

mCamberAtMaxDroop:

These	values	describe	 the	camber	angle	of	 the	wheels	as	a	 function	of	suspension
spring	compression.	It	is	typical	for	the	wheels	of	extended	springs	to	camber	inward;
that	 is,	 the	 left	and	right	wheels	almost	seem	to	form	the	edges	of	a	V	shape	when
viewed	 from	 the	 front	 or	 rear	 along	 the	 forward	 axis	 of	 the	 vehicle.	
springs,	on	 the	other	hand,	 typically	camber	outwards;	 that	 is,	 they	almost	 form	 the
outer	edges	of	an	A	shape	when	when	viewed	from	the	front	or	rear	along	the	forward



axis	of	the	vehicle.

These	 three	values	allow	 the	camber	angle	 to	be	computed	 for	any	value	of	spring
compression	 using	 simple	 linear	 interpolation.	 At	 rest,	 when	 the	 spring	 is	 neither
elongated	or	compressed,	 the	camber	angle	 is	equal	 to	mCamberAtRest.	
spring	 is	 compressed	 the	 camber	 is	 computed	 as	 a	 linear	 interpolation	 between
mCamberAtRest	and	mCamberAtMaxCompression.	When	the	spring	is	elongated	the
camber	 is	 computed	 as	 a	 linear	 interpolation	 between	 mCamberAtRest	 and
mCamberAtMaxDroop.

The	 camber	 angle	 is	 used	 by	 the	 default	 tire	 model	 and	 is	 passed	 as	 a	 function
argument	to	the	tire	shader.	It	is	also	used	to	set	the	local	pose	of	the	PxShape	that
geometrically	represents	the	wheel.

PxVehicleAntiRollBar

When	a	vehicle	takes	a	corner	the	turning	force	causes	the	car	to	roll.	
suspension	springs	on	the	outside	of	 the	turn	are	compressed	while	the	suspension
springs	on	the	inside	of	the	turn	are	elongated.	If	the	roll	is	so	severe	that	the	inside
wheels	 completely	 leave	 the	ground	 then	 there	 is	 a	 danger	 that	 the	driver	will	 lose
control	of	the	vehicle.	In	such	cases,	there	is	even	a	danger	that	the	vehicle	will	rotate
onto	 its	side.	For	 less	severe	rolls	 there	still	 remains	a	handling	problem	that	arises
from	the	distribution	of	 load	between	 the	 inside	and	outside	 tires.	The	 issue	here	 is
that	the	imbalance	of	the	vehicle	can	lead	to	under-steer	or	over-steer.

Anti-roll	 bars	 are	 commonly	 used	 to	 reduce	 the	 roll	 that	 naturally	 occurs	 when
cornering.	 They	 typically	 work	 as	 a	 torsion	 spring	 that	 applies	 a	 torque	 in	 order	 to
minimise	the	difference	in	spring	displacement	for	a	pair	of	wheels.	A	standard	family
car	might	feature	a	front	and	rear	anti-roll	bar.	The	front	bar	applies	a	torque	to	reduce
the	 difference	 between	 the	 front-left	 and	 front-right	 wheels.	 Similarly,	 the	 rear	 bar
applies	a	torque	to	reduce	the	difference	between	the	rear-left	and	rear-right	wheels.

The	 magnitude	 of	 the	 anti-roll	 torque	 is	 proportional	 to	 the	 difference	 in	 spring
displacement	of	the	two	wheels	that	are	connected	by	the	bar.	The	magnitude	is	also
proportional	to	a	stiffness	parameter:	stiffer	bars	generate	more	anti-roll	torque.



As	a	general	rule,	under-steer	can	be	reduced	by	increasing	the	stiffness	of	the	rear
anti-roll	bar.	 Increasing	 the	 stiffness	 of	 the	 front	 anti-roll	 bar	 typically	 reduces	 over-
steer.

mWheel0:	mWheel1:

The	anti-roll	bar	connects	two	wheels	described	by	the	indices	mWheel0	and
mWheel1.

mStiffness:

This	parameter	describes	the	stiffness	of	the	anti-roll	bar.

PxVehicleTireData

The	tire	 force	computation	 is	performed	 in	 two	conceptual	stages.	The	 first	stage	of
the	computation	 independently	computes	 the	 lateral	and	 longitudinal	components	of
the	force	using	linear	equations.	These	independent	forces	are	computed	by	treating
the	 tire	 as	 a	 linear	 system	 so	 that	 the	 force	 in	 each	 direction	 can	 be	 theoretically
viewed	as	the	product	of	a	tire	strength	per	unit	slip	and	the	slippage	experienced	by
the	tire.	The	second	stage	of	the	computation	applies	the	rule	that	the	combined	tire
force	 is	 limited	by	 the	product	of	 the	 tire	 load	and	 friction.	Just	as	with	 rigid	bodies,
tires	are	able	to	resist	greater	horizontal	forces	when	they	experience	a	large	normal
load	on	a	surface	with	high	friction	value.	With	this	in	mind	the	maximum	resistance
force	for	a	tire	can	be	approximated	as	the	product	of	the	normal	load	and	the	friction
value.	The	default	PhysX	Vehicle	tire	model	employs	a	series	of	smoothing	functions
to	implement	the	normalization	of	the	combined	tire	forces.

In	addition	to	the	lateral	and	longitudinal	components	of	force	a	camber	thrust	force,
arising	 from	 the	 camber	angle	of	 the	 tire,	 is	 also	 computed.	Typically,	 this	 provides
only	a	small	correction	 to	 the	effect	of	 the	 lateral	and	 longitudinal	components.	
camber	force	participates	in	the	normalization	process.

The	following	tire	parameters	describe	the	computation	of	the	independent	lateral	and
longitudinal	and	camber	components;	 that	 is,	 the	 first	 conceptual	 stage	of	 the	 force
computation.	 Reference	 is	 made	 throughout	 to	 the	 handling	 consequences	 of	 the



normalization	process.

mLongitudinalStiffnessPerUnitGravity:

The	 longitudinal	 stiffness	 describes	 the	 longitudinal	 forces	 that	 develop	 per	 unit	 of
longitudinal	slip	(in	radians).	Here,	a	variable	that	represents	the	longitudinal	stiffness
per	unit	gravity	has	been	introduced	in	order	to	make	the	variable	robust	against	any
edits	 to	 the	 value	 of	 gravitational	 acceleration.	 The	 longitudinal	 tire	 force	 is
approximately	 the	 product	 of	 the	 longitudinal	 stiffness	 per	 unit	 gravity	 and	 the
longitudinal	slip	and	the	magnitude	of	gravitational	acceleration:

longitudinalTireForce	=	mLongitudinalStiffnessPerUnitGravity	*	longitudinalSlip	*
gravity;

Increasing	 this	 value	will	 result	 in	 the	 tire	 attempting	 to	 generate	more	 longitudinal
force	when	the	tire	is	slipping.	Typically,	increasing	longitudinal	stiffness	will	help	the
car	accelerate	and	brake.	The	total	tire	force	available	is	limited	by	the	load	on	the	tire
so	be	aware	 that	 increases	 in	 this	 value	might	have	no	effect	or	even	come	at	 the
expense	of	reduced	lateral	force.

mLatStiffX:

mLatStiffY:

These	values	together	describe	the	lateral	stiffness	per	unit	lateral	slip	(in	radians)	of
the	 tire.	 The	 lateral	 stiffness	 of	 a	 tire	 has	 a	 role	 similar	 to	 the	 longitudinal	 stiffness
(mLongitudinalStiffnessPerUnitGravity),	 except	 that	 it	 governs	 the	 development	 of
lateral	 tire	 forces,	and	 is	a	 function	of	 tire	 load.	Typically,	 increasing	 lateral	stiffness
will	help	the	car	turn	more	quickly.	The	total	tire	force	available	is	limited	by	the	load
on	the	tire	so	be	aware	that	increases	in	this	value	might	have	no	effect	or	even	come
at	the	expense	of	reduced	longitudinal	force.

Lateral	stiffness	 is	a	 little	more	complicated	 than	 longitudinal	stiffness	because	 tires
typically	provide	poor	 response	under	heavy	 load.	Typical	 for	car	 tires	 is	a	graph	of
lateral	force	against	load	that	has	linear	response	close	to	zero	load	but	saturates	at
greater	 loads.	 This	 means	 that	 at	 low	 tire	 loads	 the	 lateral	 stiffness	 has	 a	 linear



response	to	load;	that	is,	more	load	results	in	more	stiffness	and	more	lateral(turning)
force.	At	higher	tire	loads	the	tire	has	a	saturated	response	and	is	in	a	regime	where
applying	more	load	will	not	result	in	more	tire	stiffness.	In	this	latter	regime	it	would	be
expected	that	the	tire	would	start	slipping.

The	combination	of	two	values	mLatStiffX	and	mLatStiffY	describe	a	graph	of	 lateral
stiffness	per	unit	load	as	a	function	of	normalized	tire	load.	The	tire	force	computation
employs	a	smoothing	function	which	requires	knowledge	of	the	normalized	tire	load	at
which	the	tire	has	a	saturated	response	to	tire	load	along	with	the	lateral	stiffness	per
unit	load	that	occurs	at	this	saturation	point.	A	typical	curve	can	be	seen	in	the	graph
below.

The	parameter	mLatStiffX	describes	the	normalized	tire	load	above	which	the	tire	has
a	 saturated	 response	 to	 tire	 load.	 The	 normalized	 tire	 load	 is	 simply	 the	 tire	 load
divided	by	the	load	that	is	experienced	when	the	vehicle	is	perfectly	at	rest.	
2	 for	mLatStiffX,	 for	 example,	means	 that	 when	 the	 the	 tire	 has	 a	 load	more	 than
twice	 its	 rest	 load	 it	can	deliver	no	more	 lateral	stiffness	no	matter	how	much	extra
load	is	applied	to	the	tire.	In	the	graph	below	mLatStiffX	has	value	3.

The	parameter	mLatStiffY	describes	the	maximum	stiffness	per	unit	of	lateral	slip	(in
radians)	per	unit	rest	load.	The	maximum	stiffness	is	delivered	when	the	tire	is	in	the
saturated	load	regime,	governed	in	turn	by	mLatStiffX.	In	the	graph	below	mLatStiffY
has	value	18.

The	computation	of	the	lateral	stiffness	begins	by	computing	the	load	on	the	tire	and
then	 computing	 the	 normalized	 load	 in	 order	 to	 compute	 the	 number	 of	 rest	 loads
experienced	by	the	tire.	This	places	the	tire	somewhere	along	the	X-axis	of	the	graph
below.	 The	 corresponding	 value	 on	 the	 Y-axis	 of	 the	 curve	 parameterized	 by
mLatStiffX	and	mLatStiffY	is	queried	to	provide	the	lateral	stiffness	per	unit	rest	load.
The	 final	 value	 for	 the	 lateral	 stiffness	 is	 then	 computed	 by	multiplying	 the	 queried
graph	value	by	 the	 rest	 load.	This	 final	 value	describes	 the	 lateral	 stiffness	per	unit
lateral	slip.



A	good	starting	value	for	mLatStiffX	is	somewhere	between	2	and	3.	
value	for	mLatStiffY	is	around	18	or	so.

mFrictionVsSlipGraph:

These	 six	 values	 describe	 a	 graph	 of	 friction	 as	 a	 function	 of	 longitudinal	 slip.
Vehicle	 tires	 have	 a	 complicated	 response	 to	 longitudinal	 slip.	
attempts	to	approximate	this	relationship.

Typically,	 tires	have	a	 linear	 response	at	small	slips.	This	means	 that	when	 the
tire	is	only	slightly	slipping	it	 is	able	to	generate	a	response	force	that	grows	as
the	 slip	 increases.	 At	 greater	 values	 of	 slip,	 the	 force	 can	 actually	 start	 to
decrease	 from	 the	 peak	 value	 that	 occurs	 at	 the	 optimum	 slip.	
optimum	slip	the	tire	eventually	starts	behaving	less	and	less	efficiently	and	hits	a
plateau	of	inefficiency.

The	 friction	value	 for	 the	combination	of	surface	 type	and	 tire	 type	has	already
been	 discussed	 in	 Section	 Tire	 Friction	 on	 Drivable	 Surfaces.	
friction	versus	longitudinal	slip	is	used	as	a	correction	to	the	combination	friction
value.	 In	 particular,	 a	 final	 friction	 value	 is	 computed	 from	 the	 product	 of	 the
combination	friction	value	and	the	graph's	correction	value.	The	tire	model	 then
responds	to	the	final	friction	value.



The	first	two	values	describe	the	friction	at	zero	tire	slip:	mFrictionVsSlipGraph[0]
[0]	=	0,	and	mFrictionVsSlipGraph[0][1]	=	friction	at	zero	slip.

The	next	 two	values	describe	 the	optimum	slip	and	 the	 friction	at	 the	optimum
slip:	 mFrictionVsSlipGraph[1][0]	 =	 optimum	 slip,	 mFrictionVsSlipGraph[1][1]	 =
friction	at	optimum	slip.

The	 last	 two	values	describe	the	slip	at	which	the	plateau	of	 inefficiency	begins
and	 the	 value	 of	 the	 friction	 available	 at	 the	 plateau	 of	 inefficiency:
mFrictionVsSlipGraph[2][0]	 =	 slip	 at	 the	 start	 of	 the	 plateau	 of	 inefficiency,
mFrictionVsSlipGraph[2][1]	=	the	friction	available	at	the	plateau	of	inefficiency.

In	the	graph	below	the	following	values	have	been	used:

mFrictionVsSlipGraph[0][0]	=	0.0

mFrictionVsSlipGraph[0][1]	=	0.4

mFrictionVsSlipGraph[1][0]	=	0.5

mFrictionVsSlipGraph[1][1]	=	1.0

mFrictionVsSlipGraph[2][0]	=	0.75

mFrictionVsSlipGraph[2][1]	=	0.60



The	friction	values	described	here	are	used	to	scale	the	friction	of	the	ground	surface.
This	means	they	should	be	in	range	(0,1)	but	this	is	not	a	strict	requirement.	
the	friction	from	the	graph	would	be	close	to	1.0	in	order	to	provide	a	small	correction
to	the	ground	surface	friction.

A	good	starting	point	for	this	is	a	flat	graph	of	friction	vs	slip	with	these	values:

mFrictionVsSlipGraph[0][0]=0.0

mFrictionVsSlipGraph[0][1]=1.0

mFrictionVsSlipGraph[1][0]=0.5

mFrictionVsSlipGraph[1][1]=1.0

mFrictionVsSlipGraph[2][0]=1.0

mFrictionVsSlipGraph[2][1]=1.0

mCamberStiffnessPerUnitGravity:

The	camber	stiffness	is	analogous	to	the	longitudinal	and	lateral	stiffness,	except	that
it	describes	the	camber	thrust	force	arising	per	unit	camber	angle	(in	radians).	
to	the	longitudinal	stiffness,	a	camber	stiffness	per	unit	gravity	has	been	introduced	to



make	the	camber	stiffness	robust	across	different	values	of	gravitational	acceleration.
The	 independent	 camber	 force	 is	 computed	 as	 the	 camber	 angle	multiplied	 by	 the
camber	stiffness	multiplied	by	the	gravitational	acceleration:

camberTireForce	=	mCamberStiffnessPerUnitGravity	*	camberAngle	*	gravity;

mType:

This	parameter	has	been	explained	in	Section	Tire	Friction	on	Drivable	Surfaces

PxVehicleEngineData

mMOI:

This	the	moment	of	inertia	of	the	engine	around	the	axis	of	rotation.	Larger	values
make	it	harder	to	accelerate	the	engine,	while	lower	values	make	it	easier	to
accelerate	the	engine.	A	starting	value	of	1.0	is	a	good	choice.

mPeakTorque:

This	is	the	maximum	torque	that	is	ever	available	from	the	engine.	This	is	expressed
in	Newton	metres.	A	starting	value	might	be	around	600.

mMaxOmega:

This	is	the	maximum	rotational	speed	of	the	engine	expressed	in	radians	per	second.

mDampingRateFullThrottle:

mDampingRateZeroThrottleClutchEngaged:

mDampingRateZeroThrottleClutchDisengaged:

These	 three	 values	 are	 used	 to	 compute	 the	 damping	 rate	 that	 is	 applied	 to	 the
engine.	 If	 the	 clutch	 is	 engaged	 then	 the	 damping	 rate	 is	 an	 interpolation	 between
mDampingRateFullThrottle	 and	 mDampingRateZeroThrottleClutchEngaged,	 where
the	 interpolation	 is	 governed	 by	 the	 acceleration	 control	 value	 generated	 by	 the



gamepad	 or	 keyboard.	 At	 full	 throttle	 mDampingRateFullThrottle	 is	 applied,	 while
mDampingRateZeroThrottleClutchEngaged	is	applied	at	zero	throttle.	
the	 damping	 rate	 is	 an	 interpolation	 between	 mDampingRateFullThrottle	 and
mDampingRateZeroThrottleClutchDisengaged.

The	three	values	allow	a	range	of	effects	to	be	generated:	good	acceleration	that	isn't
hampered	 by	 strong	 damping	 forces,	 tunable	 damping	 forces	 when	 temporarily	 in
neutral	 gear	 during	 a	 gear	 change,	 and	 strong	 damping	 forces	 that	 will	 bring	 the
vehicle	quickly	to	rest	when	it	is	no	longer	being	driven	by	the	player.

Typical	values	 in	range	(0.25,3).	The	simulation	can	become	unstable	with	damping
rates	of	0.

mTorqueCurve:

This	is	a	graph	of	peak	torque	versus	engine	rotational	speed.	Cars	typically	have	a
range	of	engine	speeds	that	produce	good	drive	torques,	and	other	ranges	of	engine
speed	that	produce	poor	torques.	A	skilled	driver	will	make	good	use	of	the	gears	to
ensure	that	the	car	remains	in	the	"good"	range	where	the	engine	is	most	responsive.
Tuning	this	graph	can	have	profound	effects	on	gameplay.

The	 x-axis	 of	 the	 curve	 is	 the	 normalized	 engine	 speed;	 that	 is,	 the	 engine	 speed
divided	by	the	maximum	engine	speed.	The	y-axis	of	the	curve	is	a	multiplier	in	range
(0,1)	that	is	used	to	scale	the	peak	torque.

PxVehicleGearsData

mNumRatios:

This	is	the	number	of	the	gears	of	the	vehicle,	including	reverse	and	neutral.	
standard	car	with	5	forward	gears	would,	therefore,	have	a	value	of	7	after	accounting
for	reverse	and	neutral.

mRatios:

Each	gear	requires	a	gearing	ratio.	Higher	gear	ratios	result	in	more	torque	but	lower



top	speed	in	that	gear.	Typically,	the	higher	the	gear,	the	lower	the	gear	ratio.	Neutral
gear	must	always	be	given	a	value	of	0,	while	reverse	gear	must	have	a	negative
gear	ratio.	Typical	values	might	be	4	for	first	gear	and	1.1	for	fifth	gear.

mFinalRatio:

The	gear	ratio	used	in	the	simulator	is	the	gear	ratio	of	the	current	gear	multiplied	by
the	final	ratio.	The	final	ratio	is	a	quick	and	rough	way	of	changing	the	gearing	of	a	car
without	having	to	edit	each	individual	entry.	Further,	quoted	gearing	values	from
manufacturers	typically	mention	ratios	for	each	gear	along	with	a	final	ratio.	
value	might	be	around	4.

mSwitchTime:

The	 switch	 time	 describes	 how	 long	 it	 takes	 (in	 seconds)	 for	 a	 gear	 change	 to	 be
completed.	 It	 is	 impossible	 to	change	gear	 immediately	 in	a	 real	car.	
for	 example,	 require	 neutral	 to	 be	 engaged	 for	 a	 short	 time	 before	 engaging	 the
desired	 target	 gear.	 While	 the	 gear	 change	 is	 being	 completed	 the	 car	 will	 be	 in
neutral.	A	good	trick	might	be	to	penalize	players	that	use	an	automatic	gear	box	by
increasing	the	gear	switch	time.

If	 the	autobox	 is	 enabled	 it	 is	 a	 good	 idea	 to	 set	 this	 value	 significantly	 lower	 than
PxVehicleAutoBoxData::setLatency.	 If	 the	 autobox	 latency	 is	 smaller	 than	 the	 gear
switch	 time	 then	 the	 autobox	 might	 decide	 to	 initiate	 a	 downwards	 gear	 change
immediately	after	an	upward	gear	shift	has	been	completed.	This	situation	can	leave
the	car	cycling	between	neutral	and	first	gear	with	very	short	interludes	in	2nd	gear.

PxVehicleAutoBoxData

The	autobox	 initiates	gear	changes	up	or	down	based	on	 the	 rotation	speed	of	 the
engine.	 If	 the	 engine	 is	 rotating	 faster	 than	 a	 threshold	 value	 stored	 in
PxVehicleAutoBoxData	 then	a	gear	 increment	will	be	 initiated.	On	the	other	hand,	 if
the	 engine	 is	 rotating	 slower	 than	 a	 threshold	 value	 then	 the	 autobox	will	 initiate	 a
gear	 decrement.	 The	 autobox	 only	 initiates	 gear	 changes	 upward	 or	 downwards	 a
single	gear	at	a	time.



It	is	worth	noting	that	if	the	autobox	initiates	a	gear	change	then	the	accelerator	pedal
is	 automatically	 disconnected	 from	 the	 engine	 for	 the	 entire	 duration	 of	 the	 gear
change.	 Manual	 gear	 changes	 (PxVehicleDriveDynData::startGearChange	 /
PxVehicleDriveDynData::mGearUpPressed	 /
PxVehicleDriveDynData::mGearDownPressed)	are	not	subject	 to	 this	 limitation.	
is	in	keeping	with	typical	real-world	autobox	behavior.	The	idea	behind	this	is	to	stop
the	engine	wildly	accelerating	during	 the	neutral	phase	of	 the	gear	change,	 thereby
avoiding	 damaging	 clutch	 slip	 when	 the	 clutch	 re-engages	 at	 the	 end	 of	 the	 gear
change.

The	autobox	will	not	try	to	initiate	a	gear	change	while	an	automatic	or	manual	gear
change	is	still	active.

If	 the	 autobox	 is	 too	 simplistic	 for	 the	 application's	 requirements	 then
PxVehicleGearsData	can	be	readily	disabled.	The	choices	following	this	are	either	to
revert	to	a	manual	gear	model	or	to	implement	a	custom	autobox	in	the	application.	
transition	 to	 a	 specific	 gear	 can	 be	 initiated	 with
PxVehicleDriveDynData::startGearChange,	while	single	gear	changes	can	be	initiated
with	 PxVehicleDriveDynData::mGearUpPressed	 /
PxVehicleDriveDynData::mGearDownPressed.

The	 autobox	 can	 be	 enabled	 or	 disabled	 by	 toggling
PxVehicleDriveDynData::mUseAutoGears.

PxReal	mUpRatios[PxVehicleGearsData::eGEARSRATIO_COUNT]:

The	autobox	will	 initiate	a	gear	 increment	 if	 the	ratio	of	 the	engine	rotation	speed	to
the	maximum	allowed	engine	rotation	speed:

PxVehicleDriveDynData::getEngineRotationSpeed()	/
PxVehicleEngineData::mMaxOmega

is	 greater	 than	 the	 value	 stored	 in
mUpRatios[PxVehicleDriveDynData::getCurrentGear()]

PxReal	mDownRatios[PxVehicleGearsData::eGEARSRATIO_COUNT]:



The	autobox	will	initiate	a	gear	decrement	if	the	ratio	of	the	engine	rotation	speed	to
the	maximum	allowed	engine	rotation	speed:

PxVehicleDriveDynData::getEngineRotationSpeed()	/
PxVehicleEngineData::mMaxOmega

is	less	than	the	value	stored	in	mUpRatios[PxVehicleDriveDynData::getCurrentGear()]

void	setLatency(const	PxReal	latency):

After	the	autobox	has	initiated	a	gear	change	it	will	not	attempt	to	initiate	another	gear
change	until	the	latency	time	has	passed.	It	is	a	good	idea	to	set	this	value
significantly	higher	than	PxVehicleGearsData::mSwitchTime.	If	the	latency	is	smaller
than	the	gear	switch	time	then	the	autobox	might	decide	to	initiate	a	downwards	gear
change	immediately	after	an	upward	gear	shift	has	been	completed.	This	situation
can	leave	the	car	cycling	between	neutral	and	first	gear	with	very	short	interludes	in
2nd	gear.

PxVehicleClutchData

mStrength:

This	 describes	 how	 strongly	 the	 clutch	 couples	 the	 engine	 to	 the	 wheels	 and	 how
quickly	differences	 in	 speed	are	eliminated	by	distributing	 torque	 to	 the	engine	and
wheels.

Weaker	 values	 will	 result	 in	 more	 clutch	 slip,	 especially	 after	 changing	 gear	 or
stamping	 on	 the	 accelerator.	 Stronger	 values	will	 result	 in	 reduced	 clutch	 slip,	 and
more	engine	torque	delivered	to	the	wheels.

This	value	is	to	be	edited	only	for	very	fine	tweaking	of	the	vehicle.	
can	be	attributed	 to	 the	numerical	 issues	 in	 the	simulation	at	 large	 timesteps,	while
some	is	a	natural	consequence	of	driving	the	car	in	an	overly	aggressive	manner.	
value	of	10	is	a	good	starting	point.

PxVehicleAckermannGeometryData



mAccuracy:

Ackermann	correction	allows	better	cornering	by	steering	the	left	and	right	wheels
with	slightly	different	steer	angles,	as	computed	from	simple	trigonometry.	In	practice,
it	is	impossible	to	engineer	a	steering	linkage	that	will	achieve	the	perfect	Ackermann
steering	correction.	This	value	allows	the	accuracy	of	the	Ackermann	steering
correction	to	be	controlled.	Choosing	a	value	of	0	completely	disables	Ackermann
steer	correction.	A	value	of	1.0,	on	the	other	hand,	achieves	the	impossible	dream	of
perfect	Ackermann	correction.

mFrontWidth:

This	is	the	distance	in	metres	between	the	two	front	wheels.

mRearWidth:

This	is	the	distance	in	metres	between	the	two	rear	wheels.

mAxleSeparation:

This	is	the	distance	in	metres	between	the	center	of	the	front	axle	and	the	center	of
the	rear	axle.

PxVehicleTireLoadFilterData

This	is	for	very	fine	control	of	the	handling,	and	corrects	numerical	issues	inherent	in
simulations	at	large	timesteps.

At	 large	 simulation	 timesteps	 the	 amplitude	 of	motion	 of	 the	 suspension	 springs	 is
larger	 than	 it	 would	 be	 in	 real-life.	 This	 is	 unfortunately	 unavoidable.	 On	 a	 bumpy
surface	this	could	mean	that	the	simulation	lifts	the	car	further	from	the	ground	than
would	 really	 happen.	 This	 could	 be	 quickly	 followed	 by	 the	 spring	 being	 more
compressed	 than	would	 be	 experienced	with	 a	 real	 vehicle.	A	 consequence	 of	 this
oscillation	is	that	the	load	on	the	tire	is	more	variable	than	expected,	and	the	available
tire	 forces	 have	 more	 variability	 than	 expected.	 This	 filter	 aims	 to	 correct	 this
numerical	 problem	 by	 smoothing	 the	 tire	 load	with	 the	 aim	 of	making	 the	 handling
smoother	and	more	predictable.



A	key	concept	is	that	of	normalized	tire	loads.	A	normalized	tire	load	is	just	the	actual
load	divided	by	the	load	experienced	when	the	vehicle	is	in	its	rest	configuration.	
tire	 experiences	 more	 load	 than	 it	 does	 at	 rest	 then	 it	 has	 a	 normalized	 tire	 load
greater	 than	 1.0.	 Similarly,	 if	 a	 tire	 has	 less	 load	 than	 it	 does	 at	 rest	 then	 it	 has	 a
normalized	 tire	 load	 less	 than	1.0.	At	 rest,	all	 tires	obviously	have	a	normalized	 tire
load	of	exactly	1.0.	The	normalized	tire	load	can	never	be	less	than	zero.

The	values	here	describe	points	on	a	2d	graph	that	generates	filtered	tire	loads	from
raw	tire	loads.	The	x-axis	of	the	graph	is	"normalized	tire	load",	while	the	y-axis	of	the
graph	 is	 "filtered	 normalized	 tire	 load".	 Normalized	 loads	 less	 than
mMinNormalisedLoad	 produce	 a	 filtered	 normalized	 load	 of
mMinFilteredNormalisedLoad.	Normalized	 loads	 greater	 than	mMaxNormalisedLoad
produce	 a	 filtered	 normalized	 load	 of	 mMaxFilteredNormalisedLoad.	
between	 mMinNormalisedLoad	 and	 mMaxNormalisedLoad	 produce	 a	 filtered
normalized	 load	 in-between	 mMinFilteredNormalisedLoad	 and
mMaxFilteredNormalisedLoad,	as	computed	by	direct	interpolation.

Choosing	 mMaxNormalisedLoad	 and	 mMaxFilteredNormalisedLoad	 limits	 the
maximum	 load	 that	 will	 ever	 be	 used	 in	 the	 simulation.	 On	 the	 other	 hand,
choosing	mMinFilteredNormalisedLoad>0	and/or	mMinNormalisedLoad>0	allows
the	 tire	 to	 potentially	 generate	 a	 non-zero	 tire	 force	 even	when	 the	 tire	 is	 just
touching	the	ground	at	maximum	droop.



The	filtered	load	can	be	made	identical	to	the	computed	tire	load	by	setting:

mMinNormalisedLoad=mMaxFilteredNormalisedLoad=0
mMaxNormalisedLoad=mMaxFilteredNormalisedLoad=1000.

Note: 	Tires	may	only	generate	forces	if	the	tire	is	touching	the	ground:	if	the
tire	cannot	be	placed	on	the	ground	then	the	tire	force	is	always	of	zero
magnitude.	A	tire	touching	the	ground	at	maximum	suspension	droop,	on	the
other	hand,	has	zero	measured	load	because	the	spring	generates	zero	force
at	maximum	droop.	By	editing	PxVehicleTireLoadFilterData	it	is	possible	to
generate	tire	forces	even	when	there	is	very	little	load	actually	acting	on	the
tire.

PxVehicleDifferential4WData

mType:

A	number	of	differential	types	are	supported:	4-wheel	drive	with	open	differential,	4-
wheel	drive	with	limited	slip,	front-wheel	drive	with	open	differential,	front-wheel	drive
with	limited	slip,	rear-wheel	drive	with	open	differential,	rear-wheel	drive	with	limited
slip.

mFrontRearSplit:

If	a	4-wheel	drive	differential	is	chosen	(open	or	limited	slip)	this	option	allows	the
drive	torque	to	be	split	unevenly	between	the	front	and	rear	wheels.	Choosing	a	value
of	0.5	delivers	an	equal	split	of	the	torque	between	the	front	and	rear	wheels;	that	is,
the	total	torque	delivered	to	the	front	wheels	is	equal	to	the	total	torque	delivered	to
the	rear	wheels.	Choosing	a	value	greater	than	0.5	delivers	more	torque	to	the	front
wheels,	while	choosing	a	value	less	than	0.5	delivers	more	torque	to	the	rear	wheels.
This	value	is	ignored	for	front-wheel	drive	and	rear-wheel	drive	differentials.

mFrontLeftRightSplit:

This	is	similar	to	the	Front	Rear	Split	but	instead	splits	the	torque	that	is	available	for
the	front	wheels	between	the	front-left	and	front-right	wheels.	A	value	greater	than	0.5



delivers	more	torque	to	the	front-left	wheel,	while	a	value	less	than	0.5	delivers	more
torque	to	the	front-right	wheel.	This	parameter	can	be	used	to	prevent	any	torque
being	delivered	to	a	damaged	or	disabled	wheel.	This	value	is	ignored	for	rear-wheel
drive.

mRearLeftRightSplit:

This	is	similar	to	mFrontLeftRightSplit	except	that	it	applies	to	the	rear	wheels	instead
of	the	front	wheels.	This	value	is	ignored	for	front-wheel	drive.

mFrontBias:

Limited	slip	differentials	work	by	only	allowing	a	 certain	difference	 in	wheel	 rotation
speed	 to	 accumulate.	 This	 prevents	 the	 situation	 where	 one	 wheel	 is	 slipping	 but
ends	up	taking	all	the	available	power.	Further,	by	allowing	a	small	difference	in	wheel
rotation	 speed	 to	 accumulate	 it	 is	 possible	 for	 the	 vehicle	 to	 easily	 corner	 by
permitting	the	outside	wheel	to	rotate	quicker	than	the	inside	wheel.

This	 parameter	 describes	 the	 maximum	 difference	 in	 wheel	 rotation	 speed	 that	 is
allowed	to	accumulate.	The	front	bias	is	the	maximum	of	the	two	front-wheel	rotation
speeds	 divided	 by	 the	minimum	 of	 the	 two	 front-wheel	 rotation	 speeds.	
ratio	exceeds	the	value	of	the	front	bias	the	differential	diverts	torque	from	the	faster
wheel	 to	 the	 slower	 wheel	 in	 an	 attempt	 to	 preserve	 the	 maximum	 allowed	 wheel
rotation	speed	ratio.

This	value	is	ignored	except	for	front-wheel	drive	or	four	wheel	drive	with	limited	slip.

A	good	starting	value	is	around	1.3.

mRearBias:

This	is	similar	to	mFrontBias	except	that	it	refers	to	the	rear	wheels.

This	value	is	ignored	except	for	rear-wheel	drive	or	four	wheel	drive	with	limited	slip.

A	good	starting	value	is	around	1.3.



mCentreBias:

This	 value	 is	 similar	 to	 the	mFrontBias	 and	mRearBias,	 except	 that	 it	 refers	 to	 the
sum	of	the	front	wheel	rotation	speeds	and	the	sum	of	the	rear	wheel	rotation	speeds.

This	value	is	ignored	except	for	four	wheel	drive	with	limited	slip.

A	good	starting	value	is	around	1.3.

PxRigidDynamic

Moment	of	Inertia:

The	moment	 of	 inertia	 of	 the	 rigid	 body	 is	 an	 extremely	 important	 parameter	when
editing	vehicles	because	it	affects	the	turning	and	rolling	of	the	vehicle.

A	 good	 starting	 point	 for	 the	moment	 of	 inertia	 of	 the	 rigid	 body	 is	 to	work	 out	 the
moment	 of	 inertia	 of	 the	 cuboid	 that	 bounds	 the	 chassis	 geometry.	 If	 the	 bounding
cuboid	is	W	wide,	H	high,	and	L	long	then	the	moment	of	inertia	for	a	vehicle	of	mass
M	is:

((L*L+H*H)*M/12,	(W*W+L*L)*M/12,	(H*H+W*W)*M/12)

However,	 this	 is	 only	 a	 rough	 guide.	 Tweaking	 each	 value	 will	 modify	 the	 motion
around	 the	 corresponding	 axis,	 with	 higher	 values	 making	 it	 harder	 to	 induce
rotational	speed	from	tire	and	suspension	forces.

Providing	unphysical	values	for	the	moment	of	inertia	will	result	in	either	very	sluggish
behavior	or	extremely	 twitchy	and	perhaps	even	unstable	behavior.	
inertia	must	at	least	approximately	reflect	the	length	scales	of	the	suspension	and	tire
force	application	points.

This	parameter	should	be	viewed	as	one	of	the	first	go-to	editable	values.

Center	of	mass:

Along	with	the	moment	of	inertia,	the	center	of	mass	is	one	of	the	first	go-to	editable



values	and,	as	such,	has	a	profound	effect	on	handling.

To	discuss	the	center	of	mass	it	is	useful	to	consider	a	typical	4-wheeled	vehicle	with
a	 chassis	 mesh	 whose	 origin	 is	 at	 the	 center	 of	 the	 four	 wheels.	
requirement	on	the	origin	being	at	the	center	of	the	four	wheels	but	it	does	make	the
following	discussion	a	little	simpler.	It	might	be	expected	that	the	center	of	mass	lies
somewhere	near	this	origin	because	vehicles	are	designed	in	a	way	that	spreads	the
load	almost	evenly	between	the	four	wheels.	More	specifically,	 it	might	be	expected
that	the	center	of	mass	needs	to	be	a	little	above	the	base	of	the	chassis	rather	than
at	 the	 height	 of	 the	 wheels.	 After	 all,	 vehicles	 have	 higher	 mass	 density	 near	 the
bottom	of	the	chassis	due	to	density	of	the	engine	and	other	mechanical	systems.	
a	 consequence,	 it	 is	 expected	 that	 the	 center	 of	mass	 is	 nearer	 the	 bottom	 of	 the
chassis	 than	 the	 top,	but	definitely	above	 the	bottom.	Without	a	particularly	detailed
analysis	of	the	chassis	density	distribution	the	exact	location	along	the	vertical	axis	is
really	a	little	arbitrary	and	subjective.	Along	the	forward	direction	it	might	be	expected
that	the	center	of	mass	is	a	little	nearer	the	front	wheels	than	the	rear	wheels	because
of	the	mass	of	the	front-located	engine.	Thinking	about	these	factors	allows	the	center
of	mass	to	be	tweaked	along	the	vertical	and	forward	directions.

Tweaking	the	center	of	mass	is	really	all	about	making	incremental	changes	that	tune
the	handling	towards	a	desired	goal.	Moving	the	center	of	mass	forwards	should	help
cornering	because	more	load	is	distributed	to	the	front	tires.	However,	this	comes	at
the	expense	of	reduced	load	on	the	rear	tires,	meaning	that	the	car	might	turn	more
quickly	only	to	spin	out	because	the	rear	tires	lose	grip	more	quickly.	Small	changes
followed	by	tests	on	the	handling	are	required.

When	setting	 the	center	of	mass	 it	 is	 important	 to	bear	 in	mind	 that	 the	suspension
sprung	 mass	 values	 might	 require	 simultaneous	 updating.	 If	 the	 center	 of	 mass
moves	 nearer	 the	 front	 this	 means	 that	 more	 mass	 is	 supported	 by	 the	 front
suspensions	and	less	by	the	rear	suspensions.	This	change	needs	to	be	reflected	in	a
consistent	 way.	 It	 is	 possible	 to	 mathematically	 describe	 the	 relationship	 between
center	 of	mass	 and	 the	mass	 split	 between	 the	 suspensions.	 However,	 the	 editing
possibilities	afforded	by	breaking	this	rigid	link	should	allow	more	tweaking	options.

Mass:



A	typical	car	might	have	a	mass	of	around	1500kg.



Troubleshooting

This	Section	introduces	common	solutions	to	common	problems	with	vehicle	tuning.

Jittery	Vehicles

1.	 Have	 PxInitVehicleSDK	 and	 PxVehicleSetBasisVectors	 been	 called	 before	 the	 first
execution	of	PxVehicleUpdates?	Check	the	error	stream	for	warnings.

2.	 Does	the	length	scale	of	PxTolerancesScale	match	the	length	scale	of	the	vehicle	(eg.
100	if	centimeters	are	used)?	Update	PxTolerancesScale::length	as	appropriate.

3.	 Is	 the	 natural	 frequency	 of	 the	 spring	 too	 high/timestep	 of	 simulation	 too	 small	 for
reliable	 simulation?	 See	 Section	 PxVehicleSuspensionData	 for	 more	 details	 and
update	 the	 natural	 frequency	 or	 timestep	 accordingly.	 Remember	 that	 the	 timestep
can	be	updated	per	vehicle	with	PxVehicleWheelsSimData::setSubStepCount.

4.	 Are	the	maximum	suspension	droop	and	compression	set	to	values	that	allow	some
suspension	motion?

The	Engine	Rotation	Refuses	To	Spin	Quickly

1.	 Are	the	tires	resisting	the	engine	motion	through	excessive	friction	forces?	
car	very	high	above	 the	ground	and	accelerate	 the	engine	 to	see	 if	 the	engine	and
wheels	start	to	spin	round.

2.	 Do	the	engine's	moment	of	inertia,	peak	torque	and	damping	rates	reflect	the	length
scale?	Note	the	documented	SI	units	of	each	variable	and	recompute	the	values	as
appropriate.

3.	 Is	the	moment	of	inertia	too	large?	A	value	of	1	or	its	equivalent	in	the	relevant	length
scale	is	a	good	estimate	for	testing	purposes.

4.	 Is	the	peak	torque	too	small	to	drive	the	engine?	Scale	the	default	peak	torque	value
with	 the	mass	 of	 the	 vehicle	 with	 the	 knowledge	 that	 the	 default	 value	will	 drive	 a
standard	car	of	around	1500kg.



5.	 Does	the	torque	curve	contain	sensible	values?	Try	a	flat	curve	with	each	data	point
having	a	y-value	of	1.0.

6.	 Is	 the	 maximum	 engine	 angular	 speed	 a	 realistic	 value?	 Consult	 any	 available
manufacturer	data	for	typical	values	or	revert	to	the	default	value	for	testing	purposes.

7.	 Are	any	of	the	damping	rates	too	high?	Reduce	the	damping	rates	and	test.

The	Engine	Spins	But	the	Wheels	Refuse	To	Spin

1.	 Is	the	vehicle	in	neutral	gear?	Connect	the	engine	to	the	wheels	by	setting	the	vehicle
to	first	gear	and	disabling	the	autobox.

2.	 Does	 the	 differential	 deliver	 drive	 torque	 to	 the	 wheels	 (for	 PxVehicleNW	 vehicles
only)?	Make	sure	that	the	differential	is	properly	configured.

3.	 Is	the	brake	or	handbrake	engaged?	Ensure	that	 the	brake	and	handbrake	are	both
zero.

4.	 Do	the	wheels'	moment	of	inertia	and	damping	rates	reflect	the	length	scale?	
documented	SI	units	of	each	variable	and	recompute	the	values	as	appropriate.

5.	 Are	 the	 wheels'	 moments	 of	 inertia	 too	 high?	 Recompute	 the	 wheels'	 moments	 of
inertia.

6.	 Are	the	wheels'	damping	rates	too	high?	Reduce	the	wheels'	damping	rates.
7.	 Are	the	tires	resisting	the	engine	motion	through	excessive	friction	forces?	

car	very	high	above	 the	ground	and	accelerate	 the	engine	 to	see	 if	 the	engine	and
wheels	start	to	spin	round.

The	Wheels	Are	Spinning	But	The	Vehicle	Does	Not	Move	Forwards

1.	 Is	the	filtering	configured	so	that	the	vehicle	is	supported	only	by	suspension	forces?
Check	the	filtering	configuration	for	shapes	attached	to	the	vehicle's	rigid	body	actor,
search	for	contacts	involving	shapes	attached	to	the	vehicle's	actor	using	PVD.

2.	 Is	sufficient	friction	being	delivered	to	the	tire	contact	patch?	Query	the	friction	values
experienced	 by	 the	 tires	 during	 the	 execution	 of	 PxVehicleUpdates	 using



PxVehicleWheelsDynData::getTireFriction.
3.	 Do	 the	 suspension	 forces	 (and	 the	 loads	 on	 the	 tires)	 reflect	 the	mass	 of	 the	 rigid

body	 actor?	 Query	 the	 suspension	 forces	 using
PxVehicleWheelsDynData::getSuspensionForce.	 A	 4-wheeled	 vehicle	 should
generate	suspension	forces	of	approximately	actorMass*gravity/4.	
masses	 of	 the	 vehicle	 suspensions	 to	 ensure	 that	 the	 driven	 wheels	 experience
significant	tire	load.

4.	 Do	 the	 tires	 generate	 significant	 longitudinal	 tire	 forces?	
PxVehicleWheelsDynData::getTireLongSlip	 to	 check	 that	 the	 longitudinal	 slip	 of	 the
tire	 is	 non-zero	 and	 approaches	 1.0	 when	 the	 wheels	 are	 spinning	 quickly	 without
forward	 motion.	 Ensure	 that	 PxVehicleSetBasisVectors	 has	 been	 called	 with	 the
correct	forward	vector	if	the	longitudinal	slip	is	vanishingly	small.	Further	test	that	the
forward	 vector	 has	 been	 set	 correctly	 by	 using
PxVehicleWheelsDynData::getTireLongitudinalDir.

5.	 Is	the	tire	longitudinal	stiffness	too	small?	Adjust	the	longitudinal	stiffness	back	to	the
default	value	and	test.

6.	 Is	the	mass	of	the	vehicle's	rigid	body	actor	too	large	to	be	driven	by	the	engine	peak
torque?	Test	that	the	mass	of	the	actor	is	a	sensible	value	and	set	accordingly.

7.	 Is	the	rigid	body	actor	in	a	PhysX	scene	and	is	the	scene	being	updated?	
the	actor	is	not	asleep	and	participates	in	the	scene	update.

The	Vehicle	Does	Not	Steer/Turn

1.	 Is	 the	 moment	 of	 inertia	 of	 the	 vehicle	 too	 large	 so	 that	 it	 resists	 turning	 motion?
Check	that	the	moment	of	inertia	of	the	vehicle's	rigid	body	actor	is	a	sensible	value.
Use	the	moment	of	inertia	of	a	box	with	width/height/length	of	the	vehicle	as	a	starting
guess	for	the	moment	of	inertia	of	the	actor.

2.	 Are	 the	 steer	 wheels	 receiving	 a	 steer	 angle?	 Check	 the	 steer	 angle	 with
PxVehicleWheelsDynData::getSteer.	 If	 the	 steer	 angle	 is	 zero	 or	 smaller	 than
expected	 check	 that	 a	 steer	 angle	 is	 being	 passed	 to	 the	 vehicle	 and	 that	 the



maximum	steer	angles	of	the	steer	wheels	are	sensible	values.
3.	 Do	 the	 steer	 wheels	 have	 a	 sensible	 lateral	 slip	 angle?	 Use

PxVehicleWheelsDynData::getLatSlip	 to	 query	 the	 slip	 angles.	
PxVehicleSetBasisVectors	has	been	called	with	the	correct	forward	and	up	vectors	if
the	lateral	slips	are	vanishingly	small.	Further	test	that	the	basis	vector	have	been	set
correctly	by	using	PxVehicleWheelsDynData::getTireLateralDir.

4.	 Is	 the	 lateral	 stiffness	 of	 the	 tire	 configured	 properly?	 Reset	 the	 tires	 back	 to	 their
default	values	and	retest.

The	Acceleration	Feels	Sluggish

1.	 Are	 the	 damping	 rates	 of	 the	 engine	 and	 wheels	 too	 large?	 Reduce	 the	 engine
damping	rate,	then	the	wheel	damping	rates	and	retest	each	time.

2.	 Is	 the	vehicle	stuck	 in	 the	same	gear	all	 the	 time?	Disable	 the	autobox	and	change
gears	 manually	 to	 test	 if	 the	 autobox	 is	 failing	 to	 switch	 gear.	 Check	 the	 autobox
settings	 to	make	sure	 that	 it	will	 automatically	 increase	 the	gear	at	 sensible	engine
rotation	speeds.

3.	 Is	the	engine	powerful	enough	to	quickly	accelerate	the	car?	Increase	the	peak	torque
of	the	engine.

4.	 Do	the	wheels	have	high	moments	of	inertia	that	prevent	significant	longitudinal	slips
developing?	Reduce	the	moments	of	inertia	of	the	wheels.

The	Vehicle	Does	Not	Slow	Down	When	Not	Accelerating

1.	 Are	 the	 wheel	 and	 engine	 damping	 rates	 too	 small?	 First	 increase	 the	 engine
damping	rate,	then	the	wheel	damping	rates	and	retest	each	time.

2.	 Does	 the	 vehicle's	 rigid	 body	 actor	 have	 a	 velocity	 damping	 value?	 Increase	 as
appropriate.

The	Vehicle	Turns	Too	Quickly/Too	Slowly



1.	 Does	 the	 moment	 of	 inertia	 of	 the	 rigid	 body	 actor	 need	 tweaking?	
component	of	the	moment	of	 inertia	that	corresponds	to	motion	about	the	up	vector.
Increasing	 the	moment	 of	 inertia	will	 slow	 the	 turn	 rate,	 decreasing	 the	moment	 of
inertia	will	increase	the	turn	rate.

The	Wheels	Spin	Too	Much	Under	Acceleration

1.	 Is	the	accelerator	pedal	value	increasing	too	rapidly	from	0	to	1?	Slow	down	the	rate
of	 increase	 of	 the	 accelerator	 pedal	 value	 by	 filtering	 the	 controller	 or	 keyboard.
Remember	that	aggressively	pressing	the	accelerator	pedal	on	a	powerful	car	ought
to	lead	to	wheel	spin.

2.	 Are	the	wheel	moments	of	inertia	too	low?	Increase	the	wheel	moments	of	inertia.

The	Wheels	Spin	Too	Much	When	Cornering

1.	 Does	the	vehicle	have	a	limited	slip	differential?	If	applicable	set	the	differential	type
to	limited	slip	and	adjust	the	differential	biases	accordingly.

The	Vehicle	Never	Goes	Beyond	First	Gear

1.	 Does	the	vehicle	cycle	between	first	gear	and	neutral?	If	the	autobox	is	enabled	then
the	problem	is	probably	that	the	latency	of	the	autobox	is	shorter	than	the	time	spent
performing	a	gear	change.	The	autobox	latency	controls	the	minimum	time	spent	in-
between	automated	gear	 changes.	After	 an	 automated	 gear	 change	 is	 initiated	 the
autobox	 will	 not	 make	 another	 gear	 change	 decision	 until	 the	 latency	 time	 has
passed.	During	 a	 gear	 change	 the	 vehicle	 enters	 neutral	 gear	 and	 the	 accelerator
pedal	 is	uncoupled	 from	 the	engine,	meaning	 that	 the	engine	will	slow	down	during
the	 gear	 change.	When	 the	 vehicle	 enters	 the	 target	 gear	 at	 the	 end	 of	 the	 gear
change	 the	 autobox	 might	 decide	 immediately	 that	 the	 engine	 is	 too	 slow	 for	 the
target	gear	and	immediately	initiate	a	downwards	gear	change.	This	will	immediately
put	 the	car	back	 in	neutral,	meaning	that	 the	car	spends	a	very	 long	time	 in	neutral



and	 never	 reaches	 its	 target	 gear.	 This	 will	 not	 happen	 if	 the	 autobox	 latency
(PxVehicleAutoBoxData::setLatency)	 is	 set	 significantly	 larger	 than	 the	 gear	 switch
time	(PxVehicleGearsData::mSwitchTime).

The	Vehicle	Under-steers	Then	Over-steers

1.	 Is	the	vehicle	on	a	bumpy	surface?	Edit	the	values	in	PxVehicleTireLoadFilterData	so
that	 the	 filtered	 normalized	 tire	 load	 has	 a	 flatter	 response	 to	 suspension
compression.

The	Vehicle	Slows	Down	Unnaturally

1.	 Does	the	vehicle	not	slow	down	smoothly	to	rest?	Take	a	look	at	the	longitudinal	slip
values	to	see	if	they	are	oscillating	between	positive	and	negative.	
oscillation	then	two	options	are	available	that	can	be	used	separately	or	in	conjunction
with	 each	 other.	 The	 first	 option	 is	 to	 use
PxVehicleWheelsSimData::setSubStepCount	to	force	more	vehicle	update	sub-steps
as	 the	 forward	 speed	of	 the	 vehicle	 approaches	 zero.	The	 second	 option	 is	 to	 use
PxVehicleWheelsSimData::setMinLongSlipDenominator	 to	 ensure	 that	 the
denominator	of	the	longitudinal	slip	never	falls	below	a	specified	value.

The	Vehicle	Climbs	Too	Steep	Slopes

1.	 Are	the	front	wheels	slipping	badly?	Modify	PxVehicleTireData::mFrictionVsSlipGraph
to	reduce	the	available	friction	for	slipping	wheels.
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Character	Controllers



Introduction

The	character	controller	 (CCT)	SDK	 is	an	external	component	built	on	 top	of	 the	PhysX
SDK,	in	a	manner	similar	to	PhysXExtensions.

CCTs	can	be	 implemented	 in	a	number	of	ways:	 the	PhysX	 implementation	 in	 the	CCT
module	is	only	one	of	them.

By	 nature,	 CCTs	 are	 often	 very	 game-specific,	 and	 they	 can	 have	 a	 number	 of	 unique
features	in	each	game.	For	example	the	character's	bounding	volume	may	be	a	capsule	in
one	game,	and	an	inverted	pyramid	in	another.	The	CCT	SDK	does	not	attempt	to	provide
a	 one-size-fits-all	 solution	 that	 would	 work	 out-of-the-box	 for	 all	 possible	 games.	 But	 it
provides	 the	 basic	 features	 common	 to	 all	 CCTs:	 character	 control	 and	 character
interactions.	It	is	a	default	starting	point	for	users,	a	strong	base	that	one	can	build	on,	and
later	modify	or	customize	if	needed.



Kinematic	Character	Controller

The	PhysX	CCT	is	a	kinematic	controller.	Traditionally,	character	controllers	can	be	either
kinematic	or	dynamic.	A	kinematic	controller	directly	works	with	input	displacement	vectors
(1st	order	control).	A	dynamic	controller	works	with	input	velocities	(2nd	order	control)	or
forces	(3rd	order	control).

In	 the	past,	games	did	not	use	a	 'real'	physics	engine	 like	the	PhysX	SDK.	But	 they	still
used	a	character	controller	to	move	a	player	in	a	level.	These	games,	such	as	Quake	or
even	Doom,	had	a	dedicated,	customized	piece	of	code	to	 implement	collision	detection
and	response,	which	was	often	the	only	piece	of	physics	in	the	whole	game.	It	actually	had
little	 physics,	 but	 a	 lot	 of	 carefully	 tweaked	 values	 to	 provide	 a	 good	 feeling	 while
controlling	 the	 player.	 The	 particular	 behavior	 it	 implemented	 is	 often	 called	 the	 'collide
and	slide'	algorithm,	and	it	has	been	'tweaked	for	more	than	a	decade'.	The	PhysX	CCT
module	 is	 an	 implementation	 of	 such	 an	 algorithm,	 providing	 a	 robust	 and	 well-known
behavior	for	character	control.

The	main	advantage	of	kinematic	controllers	 is	 that	 they	do	not	suffer	 from	the	following
issues,	which	are	typical	for	dynamic	controllers:

(lack	of)	continuous	collision	detection:	typical	physics	engines	use	discrete	collision
checks,	 leading	 to	 the	 notorious	 'tunneling	 effect'	 that	 has	 plagued	 various
commercial	&	non-commercial	physics	packages	for	years.	This	 leads	to	three	main
problems:

the	 tunneling	 effect	 itself	 :	 if	 the	 character	 goes	 too	 fast	 it	 might	 tunnel
through	a	wall
as	 a	 consequence,	 the	 character's	maximum	velocity	 be	 limited	 (thus	also
limiting	the	game	play	possibilities)
even	if	it	does	not	tunnel,	the	character	might	jitter	when	pushed	forward	in	a
corner	 for	example,	because	 the	physics	engine	keeps	moving	 it	back	and
forth	to	slightly	different	positions.



No	 direct	 control:	 a	 rigid	 body	 is	 typically	 controlled	 with	 impulses	 or	 forces.	 It	 is
usually	not	possible	to	move	it	directly	to	 its	final	position:	 instead	one	must	convert
the	delta	position	vector	to	impulses/forces,	apply	them,	and	hope	that	the	character
will	end	up	at	the	desired	position.	This	does	not	always	work	well,	in	particular	when
the	physics	engine	uses	an	imperfect	linear	solver.

Trouble	with	friction:	when	the	character	is	standing	on	a	ramp,	it	should	not	slide.	So
infinite	 friction	 is	needed	here.	When	 the	character	 is	moving	 forward	on	 that	same
ramp,	it	should	not	slow	down.	One	does	not	need	any	friction	here.	Similarly,	when
the	character	is	sliding	against	a	wall,	it	should	not	slow	down	either.	Thus,	for	a	CCT,
friction	 is	 usually	 either	 0	 or	 infinite.	 Unfortunately	 the	 friction	 model	 in	 a	 physics
engine	might	not	be	perfect,	and	 it	 is	easy	 to	end	up	with	either	a	small	amount	of
friction	(the	character	slows	down	a	tiny	bit)	or	a	very-large-but-not-infinite	friction	(the
character	 slides	 very	 slowly	 on	 that	 ramp	 no	 matter	 how	 artificially	 big	 the	 friction
parameters	are).	The	conflicting	requirements	for	ramps	also	mean	that	usually	there
is	simply	no	way	to	perfectly	model	desired	behavior.

Trouble	with	 restitution:	 typically,	 restitution	 should	 be	 avoided	 for	CCTs.	When	 the
character	 moves	 fast	 and	 collides	 with	 a	 wall,	 it	 should	 not	 bounce	 away	 from	 it.
When	the	character	falls	from	a	height	and	lands	on	the	ground,	flexing	his	legs,	any
bounce	 should	 be	 prevented.	 But	 once	 again,	 even	 when	 the	 restitution	 is	 exactly
zero,	a	physics	engine	can	nonetheless	make	the	CCTs	bounce	a	bit.	This	is	not	only
related	to	the	imperfect	nature	of	the	linear	solver,	 it	also	has	to	do	with	how	typical
penetration-depth-based	engines	recover	from	overlap	situations,	sometimes	applying
excessive	forces	that	separate	the	objects	too	much.

Undesired	 jumps:	 characters	 must	 often	 stick	 to	 the	 ground,	 no	 matter	 what	 the
physical	behavior	should	be.	For	example	characters	 in	action	games	tend	 to	move
fast,	 at	 unrealistic	 speeds.	When	 they	 reach	 the	 top	of	 a	 ramp,	 the	physics	engine
often	makes	them	jump	a	bit,	in	the	same	way	a	fast	car	would	jump	in	the	streets	of
San	Francisco.	But	that	is	often	not	the	desired	behavior:	instead	the	character	should
often	 stick	 to	 the	 ground	 regardless	 of	 its	 current	 velocity.	 This	 is	 sometimes
implemented	 using	 fixed	 joints,	 but	 this	 is	 an	 unnecessarily	 complex	 solution	 to	 a
problem	that	is	easily	prevented	with	kinematic	controllers.



Undesired	 rotations:	 a	 typical	 character	 is	 always	 standing	 up	 and	 never	 rotating.
However	physics	engines	often	have	poor	support	 for	 that	sort	of	constraints,	and	a
great	deal	of	effort	 is	often	put	 into	preventing	a	capsule	around	 the	character	 from
falling	(it	should	always	stands	up	on	its	tip).	This	is	often	implemented	using	artificial
joints,	and	the	resulting	system	is	neither	very	robust	nor	very	fast.

To	summarize,	a	lot	of	effort	can	be	spent	on	tweaking	and	disabling	the	physics	engine's
features	simply	to	emulate	what	is	otherwise	a	much	less	complex	piece	of	custom	code.
It	is	natural	to	instead	keep	using	that	simple	piece	of	custom	code.



Creating	a	character	controller

First,	create	a	controller	manager	somewhere	in	your	application.	This	object	keeps	track
of	 all	 created	 controllers	 and	allows	 characters	 from	 the	 same	manager	 to	 interact	with
each	other.	Create	the	manager	using	the	PxCreateControllerManager	function:

PxScene*	scene;				//	Previously	created	scene

PxControllerManager*	manager	=	PxCreateControllerManager(*scene);

Then,	 create	 one	 controller	 for	 each	 character	 in	 the	 game.	 At	 the	 time	 of	 writing	 only
boxes	 (PxBoxController)	 and	 capsules	 (PxCapsuleController)	 are	 supported.	 A	 capsule
controller	for	example,	is	created	this	way:

PxCapsuleControllerDesc	desc;

...

<fill	the	descriptor	here>

...

PxController*	c	=	manager->createController(desc);

The	manager	class	will	keep	track	of	all	created	controllers.	They	can	be	retrieved	at	any
time	using	the	following	functions:

PxU32										PxControllerManager::getNbControllers()			const	=	0

PxController*		PxControllerManager::getController(PxU32	index)	=	0

To	release	a	character	controller,	simply	call	its	release	function:

void				PxController::release()	=	0;

To	 release	 all	 created	 character	 controllers	 at	 once,	 either	 release	 the	manager	 object
itself,	or	use	the	following	function	if	you	intend	to	keep	using	the	manager:

void				PxControllerManager::purgeControllers()	=	0;

The	 creation	 of	 a	 controller	 manager	 and	 its	 subsequent	 controllers	 is	 illustrated	 in
SampleBridges.



Overlap	Recovery	Module

Ideally,	 character	 should	 not	 be	 created	 in	 an	 initial	 overlap	 state,	 i.e.	 they	 should	 be
created	 in	 a	 position	where	 they	 do	 not	 overlap	 the	 surrounding	 geometry.	 The	 various
PxScene	overlap	 functions	can	be	used	 to	check	 the	desired	volume	of	space	 is	empty,
prior	 to	 creating	 the	 character.	By	default	 the	CCT	module	does	not	 check	 for	 overlaps
itself,	and	creating	a	character	that	initially	overlaps	the	world's	static	geometry	can	have
undesired	 and	 undefined	 behavior	 -	 like	 the	 character	 going	 through	 the	 ground	 for
example.

However,	 the	 overlap	 recovery	 module	 can	 be	 used	 to	 automatically	 correct	 the
character's	 initial	position.	As	 long	as	 the	amount	of	overlap	 is	 reasonable,	 the	recovery
module	should	be	able	to	relocate	the	character	to	a	proper,	collision-free	position.

The	overlap	 recovery	module	 can	be	useful	 in	 several	 other	 situations.	There	are	 three
main	cases:

when	the	CCT	is	directly	spawned	or	teleported	in	another	object
when	the	CCT	algorithm	fails	due	to	limited	FPU	accuracy
when	the	"up	vector"	is	modified,	making	the	rotated	CCT	shape	overlap	surrounding
objects

When	 activated,	 the	 CCT	 module	 will	 automatically	 try	 to	 resolve	 the	 penetration,	 and
move	the	CCT	to	a	safe	place	where	it	does	not	overlap	other	objects	anymore.	This	only
concerns	static	objects,	dynamic	objects	are	ignored	by	this	module.

Enable	or	disable	the	overlap	recovery	module	with	this	function:

void	PxControllerManager::setOverlapRecoveryModule(bool	flag);

By	default	 the	character	controllers	use	precise	sweep	 tests,	whose	accuracy	 is	usually
enough	to	avoid	all	penetration	-	provided	the	contact	offset	is	not	too	small.	Thus,	in	most
cases	the	overlap	recovery	module	is	not	needed.	When	it	is	used	though,	the	sweep	tests
can	 be	 switched	 to	 less	 accurate	 but	 potentially	 faster	 versions,	 using	 the	 following



function:

void	PxControllerManager::setPreciseSweeps(bool	flag);



Character	Volume

The	character	uses	a	bounding	volume	that	is	independent	from	already	existing	shapes
in	the	SDK.	We	currently	support	two	different	shapes	around	the	character:

An	AABB,	defined	by	a	 center	 position	and	an	extents	 vector.	 The	AABB	does	not
rotate.	It	always	has	a	fixed	rotation	even	when	the	player	is	(visually)	rotating.	This
avoids	getting	stuck	in	places	too	tight	to	let	the	AABB	rotate.
A	capsule,	defined	by	a	center	position,	a	vertical	height	and	a	radius.	The	height	is
the	distance	between	the	two	sphere	centers	at	the	end	of	the	capsule.	The	capsule
has	 a	 better	 behavior	 when	 climbing	 stairs,	 for	 example.	 It	 is	 the	 recommended
default	choice.

Note:	 versions	 prior	 to	 2.3	 also	 supported	 a	 sphere.	 This	 has	 been	 removed	 since	 the
PxCapsuleController	 is	 more	 robust	 and	 provides	 the	 same	 functionality	 (zero	 length
capsule).

A	small	skin	 is	maintained	around	the	character's	volume,	to	avoid	numerical	 issues	that
would	otherwise	happen	when	the	character	touches	other	shapes.	The	size	of	this	skin	is
user-defined.	When	 rendering	 the	 character's	 volume	 for	 debug	 purpose,	 remember	 to
expand	the	volume	by	the	size	of	this	skin	to	get	accurate	debug	visualization.	This	skin	is
defined	 in	 PxControllerDesc::contactOffset	 and	 later	 available	 through	 the
PxController::getContactOffset()	function.



Volume	Update

Sometimes	 it	 is	 useful	 to	 change	 the	 size	 of	 the	 character's	 volume	 at	 runtime.	 For
example	 if	 the	 character	 can	 crouch,	 it	 might	 be	 required	 to	 reduce	 the	 height	 of	 its
bounding	volume	so	that	it	can	then	move	to	places	he	could	not	reach	otherwise.

For	the	box	controller,	the	related	functions	are:

bool	PxBoxController::setHalfHeight(PxF32	halfHeight)															

bool	PxBoxController::setHalfSideExtent(PxF32	halfSideExtent)							

bool	PxBoxController::setHalfForwardExtent(PxF32	halfForwardExtent

And	for	the	capsule	controller:

bool	PxCapsuleController::setRadius(PxF32	radius)	=	0;

bool	PxCapsuleController::setHeight(PxF32	height)	=	0;

Changing	 the	size	of	a	controller	using	 the	above	 functions	does	not	actually	change	 its
position.	 So	 if	 the	 character	 is	 standing	 on	 the	 ground	 (touching	 it),	 and	 its	 height	 is
suddenly	reduced	without	updating	its	position,	the	character	will	end	up	levitating	above
the	ground	 for	a	 few	 frames	until	 gravity	makes	 it	 fall	and	 touch	 the	ground	again.	This
happens	because	the	controllers	positions	are	located	at	the	center	of	the	shapes,	rather
than	the	bottom.	Thus,	to	modify	a	controller's	height	and	preserve	its	bottom	position,	one
must	 change	 both	 the	 height	 and	 position	 of	 a	 controller.	 The	 following	 helper	 function
does	that	automatically:

void	PxController::resize(PxF32	height)	=	0;



It	is	important	to	note	that	volumes	are	directly	modified	without	any	extra	tests,	and	thus	it
might	 happen	 that	 the	 resulting	 volume	 overlaps	 some	 geometry	 nearby.	 For	 example
when	resizing	the	character	to	leave	a	crouch	pose,	i.e.	when	the	size	of	the	character	is
increased,	it	is	important	to	first	check	that	the	character	can	indeed	'stand	up':	the	volume
of	space	above	the	character	must	be	empty	(collision	free).	It	is	recommended	to	use	the
various	PxScene	overlap	queries	for	this	purpose:

bool	PxScene::overlap(...)	=	0;

Updating	the	character's	volume	at	runtime	to	implement	a	'crouch'	motion	is	illustrated	in
SampleNorthPole.	 Using	 overlap	 queries	 to	 leave	 the	 crouch	 pose	 is	 done	 in	 the
SampleNorthPole::tryStandup()	function.



Moving	a	Character	Controller

The	heart	of	the	CCT	algorithm	is	the	function	that	actually	moves	characters	around:

PxControllerCollisionFlags	collisionFlags	=

				PxController::move(const	PxVec3&	disp,	PxF32	minDist,	PxF32	elapsedTime

				const	PxControllerFilters&	filters,	const	PxObstacleContext*	obstacles

disp	 is	 the	displacement	vector	 for	current	 frame.	 It	 is	 typically	a	combination	of	vertical
motion	due	to	gravity	and	 lateral	motion	when	your	character	 is	moving.	Note	that	users
are	responsible	for	applying	gravity	to	characters	here.

minDist	is	a	minimal	length	used	to	stop	the	recursive	displacement	algorithm	early	when
remaining	distance	to	travel	goes	below	this	limit.

elapsedTime	is	the	amount	of	time	that	passed	since	the	last	call	to	the	move	function.

filters	are	 filtering	parameters	similar	 to	 the	ones	used	 in	 the	SDK.	Use	 these	 to	control
what	the	character	should	collide	with.

obstacles	are	optional	additional	obstacle	objects	with	which	the	character	should	collide.
Those	 objects	 are	 fully	 controlled	 by	 users	 and	 do	 not	 need	 to	 have	 counterpart	 SDK
objects.	 Note	 that	 touched	 obstacles	 are	 cached,	meaning	 that	 the	 cache	 needs	 to	 be
invalidated	if	the	collection	of	obstacles	changes.

collisionFlags	 is	 a	 bit	 mask	 returned	 to	 users	 to	 define	 collision	 events	 that	 happened
during	the	move.	This	is	a	combination	of	PxControllerCollisionFlag	flags.	It	can	be	used
to	trigger	various	character	animations.	For	example	your	character	might	be	falling	while
playing	 a	 falling	 idle	 animation,	 and	 you	 might	 start	 the	 land	 animation	 as	 soon	 as
PxControllerCollisionFlag::eCOLLISION_DOWN	is	returned.

It	 is	 important	 to	 understand	 the	 difference	 between	 PxController::move
PxController::setPosition.	The	PxController::move	function	is	the	core	of	the	CCT	module.
This	is	where	the	aforementioned	'collide-and-slide'	algorithm	takes	place.	So	the	function
will	start	from	the	CCT's	current	position,	and	use	sweep	tests	to	attempt	to	move	in	the



required	 direction.	 If	 obstacles	 are	 found,	 it	may	make	 the	CCT	 slide	 smoothly	 against
them.	Or	the	CCT	can	get	blocked	against	a	wall:	the	result	of	the	move	call	depends	on
the	surrounding	geometry.	On	the	contrary,	PxController::setPosition	is	a	simple	'teleport'
function	 that	will	move	 the	CCT	 to	desired	position	no	matter	what,	 regardless	of	where
the	CCT	starts	from,	regardless	of	surrounding	geometry,	and	even	if	the	required	position
is	in	the	middle	of	another	object.

Both	 PxController::move	 and	 PxController::setPosition	 are	 demonstrated	 in
SampleBridges.



Graphics	Update

Each	frame,	after	PxController::move	calls,	graphics	object	must	be	kept	in	sync	with	the
new	CCT	positions.	Controllers'	positions	can	be	accessed	using:

const	PxExtendedVec3&	PxController::getPosition()	const;

This	function	returns	the	position	from	the	center	of	the	collision	shape,	since	this	is	what
is	used	internally	both	within	the	PhysX	SDK	and	by	usual	graphics	APIs.	Retrieving	this
position	 and	 passing	 it	 to	 the	 renderer	 is	 illustrated	 in	 SampleBridges.	 Note	 that	 the
position	uses	double-precision,	to	make	the	CCT	module	work	well	with	large	worlds.	Also
note	that	a	controller	never	rotates	so	you	can	only	access	its	position.

Alternative	 helper	 functions	 are	 provided	 to	work	 using	 the	 character's	 bottom	 position,
a.k.a.	the	foot	position:

const	PxExtendedVec3&	PxController::getFootPosition()	const;

bool																		PxController::setFootPosition(const	PxExtendedVec3

Note	that	the	foot	position	takes	the	contact	offset	into	account.





Auto	Stepping

Without	auto-stepping	 it	 is	easy	 for	a	box-controlled	character	 to	get	stuck	against	slight
elevations	 of	 the	 ground	 mesh.	 In	 the	 following	 picture	 the	 small	 step	 would	 stop	 the
character	completely.	 It	 feels	unnatural	because	 in	 the	 real	world	a	character	would	 just
cross	this	small	obstacle	without	thinking	about	it.

This	is	what	auto-stepping	enables	us	to	do.	Without	any	intervention	from	the	player	(i.e.
without	them	thinking	about	it)	the	box	correctly	steps	above	the	minor	obstacle.



However,	if	the	obstacle	is	too	big,	i.e.	its	height	is	greater	than	the	stepOffset
the	controller	cannot	climb	automatically,	and	the	character	gets	stuck	(correctly	this	time):



'Climbing'	(over	this	bigger	obstacle,	for	example)	may	also	be	implemented	in	the	future,
as	 an	 extension	 of	 auto-stepping.	 The	 step	 offset	 is	 defined	 in
PxControllerDesc::stepOffset	and	later	available	through	the	PxController::getStepOffset()
function.

Generally	speaking,	the	step	offset	should	be	kept	as	small	as	possible.



Climbing	Mode

The	 auto-stepping	 feature	 was	 originally	 intended	 for	 box	 controllers,	 which	 are	 easily
blocked	by	 small	 obstacles	 on	 the	 ground.	Capsule	 controllers,	 thanks	 to	 their	 rounded
nature,	do	not	necessarily	need	the	feature.

Even	with	a	 step	offset	of	0.0,	 capsules	are	able	 to	go	over	 small	 obstacles	since	 their
rounded	bottom	produces	an	upward	motion	after	colliding	with	a	small	obstacle.

Capsules	with	a	non-zero	step-offset	 can	go	over	obstacles	higher	 than	 the	step	offset,
because	of	the	combined	effect	of	the	auto-stepping	feature	and	their	rounded	shape.	In
this	case	the	largest	altitude	a	capsule	can	climb	over	is	difficult	to	predict,	as	it	depends
on	the	auto-step	value,	the	capsule's	radius,	and	even	the	magnitude	of	the	displacement
vector.

This	is	why	there	are	two	different	climbing	modes	for	capsules:

PxCapsuleClimbingMode::eEASY:	 in	this	mode,	capsules	are	not	constrained	by	the
step	offset	value.	They	can	potentially	climb	over	obstacles	higher	than	this	value.
PxCapsuleClimbingMode::eCONSTRAINED:	 in	 this	 mode,	 an	 attempt	 is	 made	 to
make	sure	the	capsule	can	not	climb	over	obstacles	higher	than	the	step	offset.



Up	Vector

In	 order	 to	 implement	 the	auto-stepping	 feature,	 the	SDK	needs	 to	 know	about	 the	 'up'
vector.	 The	 up	 vector	 is	 defined	 in	 PxControllerDesc::upDirection	 and	 later	 available
through	the	PxController::getUpDirection()	function.

The	up	vector	does	not	need	to	be	axis-aligned.	It	can	be	arbitrary,	modified	each	frame
using	 the	PxController::setUpDirection()	 function,	 allowing	 the	 character	 to	 navigate	 on
spherical	worlds.	This	is	demonstrated	in	SampleCustomGravity.

Modifying	 the	 up	 vector	 changes	 the	way	 the	CCT	 library	 sees	 character	 volumes.	 For
example	a	capsule	is	defined	by	a	PxCapsuleControllerDesc::height,	which	is	the	'vertical
height'	along	 the	up	vector.	Thus,	changing	 the	up	vector	effectively	 rotates	 the	capsule
from	the	point	of	view	of	the	library.	The	modification	happens	immediately,	without	tests	to
validate	 that	 the	character	does	not	overlap	nearby	geometry.	 It	 is	 then	possible	 for	 the
character	to	be	penetrating	some	geometry	right	after	the	call.	Using	the	overlap	recovery
module	is	recommended	to	solve	these	issues.



In	the	above	picture	the	capsule	on	the	left	uses	a	vertical	up	vector	and	does	not	collide
with	the	surrounding	geometry.	On	the	right	the	up	vector	has	been	set	to	45	degrees,	and
the	capsule	now	penetrates	 the	wall	nearby.	For	most	applications	 the	up	vector	will	be
constant,	 and	 the	 same	 for	 all	 characters.	 These	 issues	will	 only	 appear	 for	 characters
navigating	in	spherical	worlds	(e.g.	planetoids,	etc).



Walkable	Parts	&	Invisible	Walls

By	default	the	characters	can	move	everywhere.	This	may	not	always	be	a	good	thing.	In
particular,	 it	 is	 often	 desired	 to	 prevent	walking	on	polygons	whose	 slope	 is	 steep.	The
SDK	can	 do	 this	 automatically	 thanks	 to	 a	 user-defined	 slope	 limit.	 All	 polygons	whose
slope	is	higher	than	the	limit	slope	will	be	marked	as	non	walk-able,	and	the	SDK	will	not
let	characters	go	there.

Two	modes	are	available	to	define	what	happens	when	touching	a	non	walk-able	part.	The
desired	mode	is	selected	with	the	PxControllerDesc::nonWalkableMode

PxControllerNonWalkableMode::ePREVENT_CLIMBING	prevents	the	character	from
moving	up	a	slope,	but	does	not	move	the	character	otherwise.	The	character	will	still
be	able	to	walk	laterally	on	these	polygons,	and	to	move	down	their	slope.
PxControllerNonWalkableMode::ePREVENT_CLIMBING_AND_FORCE_SLIDING
not	only	prevents	the	character	from	moving	up	non	walk-able	slopes	but	also	forces
it	to	slide	down	those	slopes.

The	slope	 limit	 is	defined	 in	PxControllerDesc::slopeLimit	and	 later	available	 through	the
PxController::getSlopeLimit()	function.	The	limit	is	expressed	as	the	cosine	of	desired	limit
angle.	For	example	this	uses	a	slope	limit	of	45	degrees:

slopeLimit	=	cosf(PxMath::degToRad(45.0f));

Using	 slopeLimit	 =	 0.0f	 automatically	 disables	 the	 feature	 (i.e.	 characters	 can	 go
everywhere).

This	feature	is	not	always	needed.	A	common	strategy	is	to	disable	it	and	place	invisible
walls	 in	 the	 level,	 to	 restrict	player's	movements.	The	character	module	can	also	create
those	walls	 for	you,	 if	PxControllerDesc::invisibleWallHeight	 is	non-zero.	 In	 this	case	 the
library	 creates	 those	 extra	 triangles	 on	 the	 fly,	 and	 that	 parameter	 controls	 their	 height
(extruded	in	the	user-defined	up	direction).	A	common	problem	is	that	those	invisible	walls
are	 only	 created	 when	 non-walkable	 triangles	 are	 found.	 It	 is	 possible	 for	 a	 jumping



character	to	go	over	them,	if	its	bounding	volume	is	too	small	and	does	not	collide	with	the
non-walkable	 triangles	 below	 him.	 The	 PxControllerDesc::maxJumpHeight
addresses	this	issue,	by	extending	the	size	of	the	bounding	volume	downward.	That	way
all	 potentially	 non-walkable	 triangles	 are	 properly	 returned	 by	 the	 collision	 queries,	 and
invisible	walls	are	properly	created	-	preventing	the	character	from	jumping	on	them.

A	known	limitation	is	that	the	slope	limit	mechanism	is	currently	only	enabled	against	static
objects.	 It	 is	 not	 enabled	 against	 dynamic	 objects,	 and	 in	 particular	 against	 kinematic
objects.	It	is	also	not	supported	for	static	spheres	or	static	capsules.



Obstacle	Objects

Sometimes	 it	 is	 convenient	 to	 create	 additional	 obstacles	 for	 the	 CCT	 to	 collide	 with,
without	 creating	 an	 actual	 SDK	 object.	 This	 is	 useful	 in	 a	 number	 of	 situations.	 For
example:

the	 obstacles	 might	 only	 exist	 for	 a	 couple	 of	 frames,	 in	 which	 case	 creating	 and
deleting	SDK	objects	is	not	always	efficient.
the	 obstacles	 might	 only	 exist	 for	 stopping	 the	 characters,	 not	 the	 SDK's	 dynamic
objects.	 This	 would	 be	 for	 example	 invisible	 walls	 around	 geometry,	 that	 only	 the
characters	should	collide	with.	 In	 this	case	 it	may	not	be	very	efficient	 to	create	 the
invisible	walls	as	SDK	objects,	since	their	interactions	would	then	have	to	be	filtered
out	for	everything	except	the	characters.	It	 is	probably	more	efficient	to	create	those
additional	invisible	walls	as	external	obstacles,	that	only	characters	can	interact	with.
the	obstacles	might	be	dynamic	and	updated	with	a	variable	timestep,	while	the	SDK
uses	 a	 fixed	 timestep.	 This	 could	 be	 for	 example	 a	moving	 platform	 on	 which	 the
characters	can	stand.

At	 the	 time	 of	 writing	 the	 character	 controller	 supports	 box	 and	 capsule	
objects,	 namely	PxBoxObstacle	 and	PxCapsuleObstacle.	 To	 create	 those,	 first	 create	 a
PxObstacleContext	object	using	the	following	function:

PxObstacleContext*	PxControllerManager::createObstacleContext()				

Then	manage	obstacles	with:

ObstacleHandle	PxObstacleContext::addObstacle(const	PxObstacle&	obstacle

bool	PxObstacleContext::removeObstacle(ObstacleHandle	handle)	=	0;

bool	PxObstacleContext::updateObstacle(ObstacleHandle	handle,	const

Typically	updateObstacle	is	called	right	before	the	controllers'	move	calls.

Using	 obstacles	 for	 moving	 platforms	 is	 illustrated	 in	 SampleBridges,	 when



PLATFORMS_AS_OBSTACLES	is	defined	in	SampleBridgesSettings.h.



Hit	Callback

The	 PxUserControllerHitReport	 object	 is	 used	 to	 retrieve	 some	 information	 about
controller's	 evolution.	 In	 particular,	 it	 is	 called	 when	 a	 character	 hits	 a	 shape,	 another
character,	or	a	user-defined	obstacle	object.

When	the	character	hits	a	shape,	 the	PxUserControllerHitReport::onShapeHit
invoked	-	for	both	static	and	dynamic	shapes.	Various	impact	parameters	are	sent	to	the
callback,	and	 they	can	 then	be	used	 to	do	various	 things	 like	playing	sounds,	 rendering
trails,	 applying	 forces,	 and	 so	 on.	 The	 use	 of	PxUserControllerHitReport::onShapeHit
illustrated	 in	SampleBridges.	Note	 that	 this	 callback	will	 only	be	called	 in	 response	 to	a
character	 moving	 against	 a	 shape.	 It	 will	 not	 be	 called	 if	 a	 (dynamic)	 shape	 collides
against	an	otherwise	non-moving	character.	In	other	words,	this	will	only	be	called	during	a
PxController::move	call.

When	 the	 character	 hits	 another	 character,	 i.e.	 another	 object	 controlled	by	a	 character
controller,	 the	 PxUserControllerHitReport::onControllerHit	 callback	 is	 invoked.	 This
happens	when	the	player	collides	with	an	NPC,	for	example.

Finally,	 when	 the	 character	 hits	 a	 user-defined	 obstacle	 the
PxUserControllerHitReport::onObstacleHit	callback	is	invoked.



Behavior	Callback

The	PxControllerBehaviorCallback	 object	 is	 used	 to	 customize	 the	 character's	 behavior
after	 touching	 a	 PxShape,	 a	 PxController,	 or	 a	 PxObstacle.	 This	 is	 done	 using	 the
following	functions:

PxControllerBehaviorFlags	PxControllerBehaviorCallback::getBehaviorFlags

				(const	PxShape&	shape,	const	PxActor&	actor)	=	0;

PxControllerBehaviorFlags	PxControllerBehaviorCallback::getBehaviorFlags

				(const	PxController&	controller)													=	0;

PxControllerBehaviorFlags	PxControllerBehaviorCallback::getBehaviorFlags

				(const	PxObstacle&	obstacle)																	=	0;

At	the	time	of	writing	the	following	returned	flags	are	supported:

PxControllerBehaviorFlag::eCCT_CAN_RIDE_ON_OBJECT	 defines	 if	 the	 character	 can
effectively	travel	with	the	object	 it	 is	standing	on.	For	example	a	character	standing	on	a
dynamic	 bridge	 should	 follow	 the	 motion	 of	 the	 PxShape	 it	 is	 standing	 on	 (e.g.	 in
SampleBridges).	But	it	should	not	be	the	case	if	the	character	stands	on,	say	a	PxShape
bottle	 rolling	on	 the	ground	 (e.g.	 the	snowballs	 in	SampleNorthPole).	Note	 that	 this	 flag
only	controls	 the	horizontal	displacement	communicated	 from	an	object	 to	 the	controller.
The	 vertical	 motion	 is	 something	 slightly	 different,	 as	 many	 factors	 contribute	 to	 this
displacement:	 the	step	 offset	 used	 to	 automatically	walk	 over	 small	 bumps,	 the	 vertical
motion	of	underlying	dynamic	actors	like	e.g.	the	bridges	in	SampleBridges,	which	should
probably	always	been	taken	into	account,	etc.

PxControllerBehaviorFlag::eCCT_SLIDE	defines	if	the	character	should	slide	or	not	when
standing	 on	 the	 object.	 This	 can	 be	 used	 as	 an	 alternative	 to	 the	 previously	 discussed
slope	limit	feature,	to	define	non	walk-able	objects	rather	than	non-walkable	parts.	It	can
also	be	used	to	make	a	capsule	character	fall	off	a	platform's	edge	automatically,	when	the
center	of	the	capsule	crosses	the	platform's	edge.

PxControllerBehaviorFlag::eCCT_USER_DEFINED_RIDE	simply	disables	all	built-in	code
related	to	controllers	riding	on	objects.	This	can	be	useful	to	get	the	legacy	behavior	back,
which	 can	 sometimes	 be	 necessary	 when	 porting	 to	 PhysX	 3.x	 a	 piece	 of	 code	 built



around	 the	PhysX	2.x	character	controller.	The	 flag	simply	skips	 the	new	codepath,	and
lets	 users	 deal	with	 this	 particular	 problem	 in	 their	 own	application,	 outside	 of	 the	CCT
library.

The	behavior	callback	is	demonstrated	in	SampleBridges.



Character	Interactions:	CCT-vs-dynamic	actors

It	is	tempting	to	let	the	physics	engine	push	dynamic	objects	by	applying	forces	at	contact
points.	However	it	is	often	not	a	very	convincing	solution.

The	bounding	volumes	around	characters	are	artificial	(boxes,	capsules,	etc)	and	invisible,
so	 the	 forces	 computed	 by	 the	 physics	 engine	 between	 a	 bounding	 volume	 and	 its
surrounding	 objects	 will	 not	 be	 realistic	 anyway.	 They	 will	 not	 properly	 model	 the
interaction	between	an	actual	character	and	these	objects.	If	the	bounding	volume	is	large
compared	to	the	visible	character,	maybe	to	make	sure	that	its	limbs	never	penetrate	the
static	 geometry	 around,	 the	 dynamic	 objects	 will	 start	 moving	 (pushed	 by	 a	 bounding
volume)	 before	 the	 actual	 character	 touches	 them	 -	making	 it	 look	 like	 the	 character	 is
surrounded	by	some	kind	of	force	field.

Additionally,	the	pushing	effect	should	not	change	when	switching	from	a	box	controller	to
a	capsule	controller.	It	should	ideally	be	independent	from	the	bounding	volume.

Pushing	effects	are	usually	dictated	by	gameplay,	and	sometimes	require	extra	code	like
inverse	kinematic	 solvers,	which	are	outside	of	 the	scope	of	 the	CCT	module.	Even	 for
simple	use	cases,	it	is	for	example	difficult	to	push	a	dynamic	box	forward	with	a	capsule
controller:	since	the	capsule	never	hits	the	box	exactly	in	the	middle,	applied	force	tends	to
rotate	the	box	-	even	if	gameplay	dictates	that	it	should	move	in	a	straight	line.

Thus,	 this	 is	 an	 area	where	 the	CCT	module	 should	 best	 be	 coupled	 to	 specific	 game
code,	 to	 implement	a	specific	solution	for	a	specific	game.	This	coupling	can	be	done	 in
many	 different	 ways.	 For	 simple	 use	 cases	 it	 is	 enough	 to	 use	 the
PxUserControllerHitReport::onShapeHit	 callback	 to	 apply	 artificial	 forces	 to	 surrounding
dynamic	objects.	Such	an	approach	is	illustrated	in	SampleBridges.

Note	that	the	character	controller	does	use	overlap	queries	to	determine	which	shapes	are
nearby.	Thus,	SDK	shapes	 that	should	 interact	with	 the	characters	 (e.g.	 the	objects	 that
the	character	should	push)	must	have	 the	PxShapeFlag::eSCENE_QUERY_SHAPE	flag
set	to	true,	otherwise	the	CCT	will	not	detect	them	and	characters	will	move	right	through
these	shapes.



Character	Interactions:	CCT-vs-CCT

The	interactions	between	CCTs	(i.e.	between	two	PxController	objects)	are	limited,	since
in	 this	 case	 both	 objects	 are	 effectively	 kinematic	 objects.	 In	 other	 words	 their	 motion
should	 be	 fully	 controlled	 by	 users,	 and	 neither	 the	 PhysX	 SDK	 nor	 the	 CCT	 module
should	be	allowed	to	move	them.

The	 PxControllerFilterCallback	 object	 is	 used	 to	 define	 basic	 interactions	 between
characters.	 Its	PxControllerFilterCallback::filter	 function	 can	 be	 used	 to	 determine	 if	 two
PxController	objects	should	collide	at	all	with	each	other:

bool	PxControllerFilterCallback::filter(const	PxController&	a,	const

To	make	CCTs	always	collide-and-slide	against	each	other,	simply	return	true.

To	make	CCTs	always	move	freely	through	each	other,	simply	return	false.

Otherwise,	customized	and	maybe	gameplay-driven	filtering	rules	can	be	implemented	in
this	 callback.	 Sometimes	 the	 filtering	 changes	 at	 runtime,	 and	 two	 characters	might	 be
allowed	to	go	through	each	other	only	for	a	limited	amount	of	time.	When	that	limited	time
expires,	the	characters	may	be	left	 in	an	overlapping	state	until	 they	separate	and	move
again	towards	each	other.	To	automatically	separate	overlapping	characters,	the	following
function	can	be	used:

void	PxControllerManager::computeInteractions(PxF32	elapsedTime,

				PxControllerFilterCallback*	cctFilterCb=NULL)	=	0;

This	 function	 is	 an	 optional	 helper	 to	 properly	 resolve	 overlaps	 between	 characters.	 It
should	be	called	once	per	frame,	before	the	PxController::move	calls.	The	function	will	not
move	the	characters	directly,	but	it	will	compute	overlap	information	for	each	character	that
will	be	used	in	the	next	PxController::move	call.



Hidden	Kinematic	Actors

The	CCT	library	creates	a	kinematic	actor	under	the	hood,	for	each	controlled	character.
When	invoking	the	PxController::move	 function,	 the	underlying	hidden	kinematic	
is	also	updated	to	reflect	the	CCT	position	in	the	physics	scene.

Users	 should	be	aware	of	 these	hidden	entities,	 since	 the	 total	 number	of	 actors	 in	 the
scene	will	be	higher	than	the	number	they	created	themselves.	Additionally	they	might	get
back	these	potentially	confusing	unknown	actors	from	scene-level	collision	queries.

One	 possible	 strategy	 is	 to	 retrieve	 the	 controllers'	 kinematic	 actors	 using	 the	 following
function:

PxRigidDynamic*	PxController::getActor()	const;

Then	mark	these	actors	with	a	special	tag,	using	the	PxRigidDynamic::userData
way	the	CCT	actors	can	easily	be	identified	(and	possibly	ignored)	in	collision	queries	or
contact	reports.



Time	Stepping

Actors	 used	 internally	 by	 the	 CCT	 library	 follow	 the	 same	 rules	 as	 any	 other	 PhysX
objects.	 In	 particular,	 they	 are	 updated	 using	 fixed	 or	 variable	 timesteps.	 This	 can	 be
troublesome	because	the	PxController	objects	are	otherwise	often	updated	using	variable
time	steps	(typically	using	the	elapsed	time	between	two	rendering	frames).

Thus	the	PxController	objects	(using	variable	time	steps)	may	not	always	be	perfectly	 in
sync	with	 their	 kinematic	 actors	 (using	 fixed	 time	 steps).	 This	 phenomenon	 is	 shown	 in
SampleBridges.



Invalidating	Internal	Geometry	Caches

The	 CCT	 library	 caches	 the	 geometry	 around	 each	 character,	 in	 order	 to	 speed	 up
collision	 queries.	 The	 temporal	 bounding	 box	 for	 a	 character	 is	 an	 AABB	 around	 the
character's	motion	(it	contains	 the	character's	volume	at	both	 its	start	and	end	position).
The	 cached	 volume	 of	 space	 is	 determined	 by	 the	 size	 of	 the	 character's	 temporal
bounding	 box,	 multiplied	 by	 a	 constant	 factor.	 This	 constant	 factor	 is	 defined	 for	 each
character	by	PxControllerDesc::volumeGrowth.	Each	time	a	character	moves,	its	temporal
bounding	box	is	tested	against	the	cached	volume	of	space.	If	the	motion	is	fully	contained
within	that	volume	of	space,	the	contents	of	the	cache	are	reused	instead	of	regenerated
through	PxScene-level	queries.

In	PhysX	3.3	and	above,	those	caches	should	be	automatically	invalidated	when	a	cached
object	 gets	 updated	 or	 removed.	 However	 it	 is	 also	 possible	 to	 manually	 flush	 those
caches	using	the	following	function:



void	PxController::invalidateCache();

Prior	to	deciding	if	a	character	will	travel	with	the	motion	of	an	object	that	is	touching	the
character,	a	number	of	tests	are	automatically	performed	to	decide	if	the	cached	touched
object	remains	valid.	These	automatic	validity	tests	mean	that	 in	the	following	cases	it	 is
not	strictly	necessary	to	invalidate	the	cache:

If	the	shapes	actor	is	released
If	the	shape	is	released
If	the	shape	is	removed	from	an	actor
If	an	actor	is	removed	from	scene	or	moved	to	another	one
If	the	shapes	scene	query	flag	changed
If	the	filtering	parameters	of	the	shape	or	the	scene	have	changed.

If	a	cached	 touched	object	 is	no	 longer	actually	 touching	 the	character	and	 it	 is	desired
that	 the	 character	 no	 longer	 travels	 with	 the	 motion	 of	 that	 cached	 object	 then	 it	 is
necessary	 to	 invalidate	 the	 cache.	 This	 holds	 true	 if	 the	 pair	 have	 separated	 as	 a
consequence	of	an	updated	global	pose	or	modified	geometry.



Runtime	Tessellation

The	CCT	library	is	quite	robust,	but	sometimes	suffers	from	FPU	accuracy	issues	when	a
character	collides	against	large	triangles.	This	can	lead	to	characters	not	smoothly	sliding
against	 those	 triangles,	 or	 even	 penetrating	 them.	 One	 way	 to	 effectively	 solve	 these
problems	 is	 to	 tessellate	 the	 large	 triangles	 at	 runtime,	 replacing	 them	on-the-fly	with	 a
collection	of	smaller	triangles.	The	library	supports	a	built-in	tessellation	feature,	enabled
with	this	function:

void	PxControllerManager::setTessellation(bool	flag,	float	maxEdgeLength

The	 first	 parameter	 enables	 or	 disables	 the	 feature.	 The	 second	 parameter	 defines	 the
maximum	 allowed	 edge	 length	 for	 a	 triangle,	 before	 it	 gets	 tessellated.	 Obviously,	 a
smaller	 edge	 length	 leads	 to	 more	 triangles	 being	 created	 at	 runtime,	 and	 the	 more
triangles	get	generated,	the	slower	it	is	to	collide	against	them.

It	 is	 thus	 recommended	 to	disable	 the	 feature	at	 first,	and	only	enable	 it	 if	 experiencing
collision	 problems.	 When	 enabling	 the	 feature,	 it	 is	 recommended	 to	 use	 the	 largest
possible	maxEdgeLength	that	does	fix	encountered	problems.



In	 the	 screenshot,	 the	 large	 magenta	 triangle	 on	 which	 the	 character	 is	 standing	 is
replaced	 with	 the	 smaller	 green	 triangles	 by	 the	 tessellation	 module.	 The	 internal
geometry	 cache	 is	 represented	 by	 the	 blue	 bounding	 box.	 Note	 that	 only	 the	 green
triangles	 touching	 this	 volume	 of	 space	 are	 kept.	 Thus,	 the	 exact	 number	 of	 triangles
produced	by	 the	 tessellation	code	depends	on	both	 the	maxEdgeLength
the	PxControllerDesc::volumeGrowth	parameter.



Troubleshooting

This	section	introduces	common	solutions	to	common	problems	with	the	CCT	library.

Character	goes	through	walls	in	rare	cases

1.	 Try	increasing	PxControllerDesc::contactOffset.
2.	 Try	enabling	runtime	tessellation	with	PxControllerManager::setTessellation

a	small	maxEdgeLength	first,	to	see	if	it	solves	the	problem.	Then	increase	that	value
as	much	as	possible.

3.	 Try	 enabling	 overlap	 recovery	 module	 with
PxControllerManager::setOverlapRecoveryModule.

Tessellation	performance	issue

1.	 Try	fine-tuning	the	maxEdgeLength	parameter.	Use	the	largest	possible	value	that	still
prevents	tunneling	issues.

2.	 Try	reducing	PxControllerDesc::volumeGrowth.

The	capsule	controller	manages	to	climb	over	obstacles	higher	than	the
step	offset	value

1.	 Try	using	PxCapsuleClimbingMode::eCONSTRAINED.
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Particles	(deprecated)



Introduction

The	 PhysX	 particle	 feature	 has	 been	 deprecated	 in	 PhysX	 version	 3.4.	 The
standalone	library	PhysX	FleX	is	an	alternative	with	a	richer	feature	set.

PhysX	 3	 offers	 two	 particle	 system	 types	 -	 a	 generic	 particle	 system	 and	 an	SPH	 fluid
particle	system.	The	generic	particle	system	provides	basic	particle	motion	and	collision
with	rigid	actors.	It	can	be	used	for	objects	that	require	collisions	against	the	environment,
but	 for	 which	 inter-particle	 interactions	 are	 not	 needed.	 Examples	 include	 small	 debris,
sparks	or	leaves.	The	SPH	fluid	particle	system	can	be	used	for	fluid	effects	that	require
approximate	 incompressibility	 and	 flowing	 behavior,	 such	 as	 liquids	 or	 fog	 and	 smoke
filling	up	a	volume.

PhysX	3	 takes	care	of	 collision	detection	and	particle	dynamics,	while	auxiliary	 facilities
such	as	emitters,	lifetime	maintenance	etc.	need	to	be	provided	by	the	application.



Creating	Particle	Systems

Both	 particle	 system	 classes	 PxParticleSystem	 and	 PxParticleFluid
PxParticleBase,	 which	 is	 the	 common	 interface	 providing	 particle	 manipulation	 and
collision	functionality.	Particle	systems	inherit	from	PxActor	and	can	be	added	to	a	scene.

Figure	1:	PxParticleSystem	inherits	all	properties	from	PxParticleBase,	PxParticleFluid
adds	fluid	specific	properties

The	following	section	shows	how	a	particle	system	is	created	and	added:

//	set	immutable	properties.

PxU32	maxParticles	=	100;

bool	perParticleRestOffset	=	false;

//	create	particle	system	in	PhysX	SDK

PxParticleSystem*	ps	=	mPhysics->createParticleSystem(maxParticles

//	add	particle	system	to	scene,	in	case	creation	was	successful

if	(ps)

				mScene->addActor(*ps);



Note: 	The	particle	module	has	to	be	registered	with	PxRegisterParticles
with	static	linking	(non	windows)	before	creating	particle	systems.	PxCreatePhysics
registers	all	modules	by	default	as	opposed	to	PxCreateBasePhysics.



Particle	Management

Particle	 systems	 reserve	 memory	 for	 a	 fixed	 number	 of	 particles	 -
PxParticleBase::getMaxParticles.	Each	of	 these	 particles	 can	 be	 addressed	with	 a	 fixed
index	 throughout	 it's	 lifetime.	 The	 given	 range	 of	 indices	 is	 [0,
PxParticleBase::getMaxParticles].	 In	 order	 to	 support	 a	 dynamic	 amount	 of	 particles,
particles	are	marked	as	being	valid	or	 invalid.	This	 is	achieved	by	two	means:	
particle	range	indicates	the	range	within	which	particles	may	be	valid.	
all	particles	are	defined	as	being	invalid.	Within	that	range	valid	particles	are	marked	with
the	flag	PxParticleFlag::eVALID.	Alternatively	PhysX	provides	a	bitmap	with	each	bit	 set
corresponding	to	a	valid	particle	within	the	valid	particle	range.	The	bitmap	consists	of	an
array	of	32-bit	unsigned	integers	with	enough	elements	to	cover	the	valid	particle	range.

Figure	2:	Scheme	showing	how	valid	particles	are	tracked

Creating	Particles

The	 application	 specifies	 an	 index	 for	 each	 new	particle	 at	 particle	 creation	 time.	 If	 the
application	maintains	its	own	representation	of	particles,	and	already	tracks	active	indices,
then	these	indices	may	be	re-used	by	PhysX.	If	the	application	does	not	have	appropriate
indices	at	its	disposal,	it	can	use	an	index	pool	provided	by	the	PhysX	extensions	library
PxParticleExt::IndexPool	as	explained	here:	Index	Pool	Extension.

PhysX	3	 itself	 has	no	built-in	 emitters.	 Instead,	 it	 simply	provides	an	 interface	 to	 create
particles	with	initial	properties.	When	creating	particles,	specifying	indices	and	positions	is



mandatory,	while	velocities	and	rest	offsets	may	be	specified	optionally.

The	PhysX	particle	API	uses	the	PxStrideIterator	template	class	to	pass	per	particle	data
between	 the	SDK	and	 the	application.	This	allows	 the	particle	data	 layout	 to	be	chosen
more	flexible	by	supporting	interleaved	arrays	or	padded	data	without	forcing	extra	copies
for	 reformatting.	The	stride	 iterator	 is	 configured	by	 setting	 the	 type	of	 the	 iterated	data
and	specifying	the	pointer	to	the	first	element.

Example	for	creating	a	few	particles:

//	declare	particle	descriptor	for	creating	new	particles

//	based	on	numNewAppParticles	count	and	newAppParticleIndices,

//	newAppParticlePositions	arrays	and	newAppParticleVelocity

PxParticleCreationData	particleCreationData;

particleCreationData.numParticles	=	numNewAppParticles;

particleCreationData.indexBuffer	=	PxStrideIterator<const	PxU32>(newAppParticleIndices

particleCreationData.positionBuffer	=	PxStrideIterator<const	PxVec3

particleCreationData.velocityBuffer	=	PxStrideIterator<const	PxVec3

//	create	particles	in	*PxParticleSystem*	ps

bool	success	=	ps->createParticles(particleCreationData);

The	 indices	 specified	 for	 particle	 creation	 need	 to	 be	 unique	 and	 within	 the	 limit	 of
PxParticleBase::getMaxParticles().

In	this	example	the	stride	iterator	is	used	to	set	the	same	velocity	for	all	new	particles.	This
is	achieved	by	setting	the	stride	to	zero.

Note: 	For	fluid	particles	it	is	necessary	to	spawn	particles	at	distances	close	to
PxParticleFluid::getRestParticleDistance()	in	order	to	achieve	a	regular	emission,
otherwise	particles	will	spread	immediately	in	all	directions.

Note: 	In	PhysX	3	all	particle	access	such	as	creating,	releasing,	updating	and	reading
particles	can	only	be	carried	out	while	the	simulation	of	the	scene	is	not	being	executed.

Releasing	Particles



Particles	can	be	released	by	providing	indices	to	the	particle	system.	As	opposed	to	older
versions	of	the	PhysX	SDK,	particles	get	immediately	released.

Example	for	releasing	a	few	particles:

//	declare	strided	iterator	for	providing	array	of	indices	corresponding	to

//	particles	that	should	be	removed

PxStrideIterator<const	PxU32>	indexBuffer(appParticleIndices);

//	release	particles	in	*PxParticleSystem*	ps

ps->releaseParticles(numAppParticleIndices,	indexBuffer);

It	 is	 a	 requirement	 that	 the	 indices	 passed	 to	 the	 release	 method	 are	 unique	 and
correspond	to	existing	particles.

All	particles	can	be	released	at	once	by	calling:

ps->releaseParticles();

Since	 only	 a	 limited	 number	 of	 particle	 slots	 (PxParticleBase::getMaxParticles())
available	 it	 might	 be	 appropriate	 to	 replace	 old	 particles	 with	 new	 ones.	 This	 can	 be
achieved	for	instance	by	maintaining	an	application-side	particle	lifetime.	There	are	other
reasons	to	release	particles:

Drains	 can	 be	 useful	 to	 remove	 particles	 that	 go	 to	 locations	 where	 they	 are	 not
needed	anymore.	See	Particle	Drains.
The	 spatial	 data	 structure	 used	 for	 particles	may	overflow.	Particles	 that	 cannot	 be
covered	are	marked	and	should	be	released.	See	Particle	Grid.

Index	Pool	Extension

Example	for	allocating	particle	indices	using	the	PhysX	extensions	library:

//	create	an	index	pool	for	a	particle	system	with	maximum	particle	count	of	maxParticles

PxParticleExt::IndexPool*	indexPool	=	PxParticleExt::createIndexPool

//	use	the	indexPool	for	allocating	numNewAppParticles	indices	that	can	be	used



//	for	particle	creation	throughout	the	particle	system	lifetime.	If	numAllocated

//	is	smaller	than	numNewAppParticles,	the	maxParticles	limit	was	exceeded

PxU32	numAllocated	=	indexPool->allocateIndices(numNewAppParticles

																																																PxStrideIterator<PxU32

//	in	order	to	reuse	particle	slots,	the	indices	should	be	handed	back	to	the

//	indexPool	after	the	particles	have	been	released

indexPool->freeIndices(numAppParticleIndices,	PxStrideIterator<PxU32

//	if	no	further	index	management	is	needed,	the	pool	should	be	released

indexPool->release();

Updating	Particles

The	following	per-particle	updates	are	carried	out	immediately:

Position	updates:	Teleporting	particles	from	one	location	to	another.
Velocity	updates:	Directly	altering	the	velocities	of	particles.
Rest	 offset	 updates:	 Changes	 particle	 rest	 offsets	 (only	 available	 with
PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET).

Particle	updates	that	are	carried	out	during	the	next	scene	simulation	step:

Force	 updates:	 Results	 in	 a	 velocity	 change	 update	 according	 to	 a	 vector	 unit
specified	by	PxForceMode.

Example	for	force	update:

//	specify	strided	iterator	to	provide	update	forces

PxStrideIterator<const	PxVec3>	forceBuffer(appParticleForces);

//	specify	strided	iterator	to	provide	indices	of	particles	that	need	to	be	updated

PxStrideIterator<const	PxU32>	indexBuffer(appParticleForceIndices);

//	specify	force	update	on	PxParticleSystem	ps	choosing	the	"force"	unit

ps->addForces(numAppParticleForces,	indexBuffer,	forceBuffer,	PxForceMode



Reading	Particles

The	 PhysX	 SDK	 does	 not	 provide	 to	 the	 user	 all	 simulated	 per-particle	 properties	 of	 a
particle	 system	by	 default.	 The	 application	 can	 specify	 the	 data	 it	 needs	 by	 configuring
PxParticleBase::particleReadDataFlags:

PxParticleReadDataFlag::ePOSITION_BUFFER:	On	by	default.
PxParticleReadDataFlag::eFLAGS_BUFFER:	On	by	default.
PxParticleReadDataFlag::eVELOCITY_BUFFER:	Off	by	default.
PxParticleReadDataFlag::eREST_OFFSET_BUFFER:	 Off	 by	 default.	 May	 only	 be
enabled	 if	 the	particle	system	was	created	with	per	particle	 rest	offset	support.	See
Creating	Particle	Systems.
PxParticleReadDataFlag::eCOLLISION_NORMAL_BUFFER:	Off	by	default.
PxParticleReadDataFlag::eDENSITY_BUFFER:	Only	available	 for	particle	 fluids	and
off	by	default.

Particle	flags	provide	more	information	on	individual	particles:

PxParticleFlag::eVALID:	 If	 set,	 the	 particle	 was	 created	 beforehand	 and	 not	 yet
released.	 If	 not	 set,	 the	 particle	 slot	 does	 not	 contain	 a	 valid	 particle.	 All	 other
properties	are	invalid	in	this	case	and	should	be	ignored.
PxParticleFlag::eCOLLISION_WITH_STATIC:	Shows	whether	a	particle	collided	with
a	rigid	static	during	the	last	simulation	step.
PxParticleFlag::eCOLLISION_WITH_DYNAMIC:	 Shows	 whether	 a	 particle	 collided
with	a	dynamic	rigid	body	during	the	last	simulation	step.
PxParticleFlag::eCOLLISION_WITH_DRAIN:	Shows	whether	a	particle	collided	with	a
rigid	actor	shape	that	was	marked	as	a	drain	(Particle	Drains).
PxParticleFlag::eSPATIAL_DATA_STRUCTURE_OVERFLOW:	 Shows	 whether	 a
particle	 had	 to	 be	 omitted	 when	 building	 the	 SDK	 internal	 spatial	 data	 structure
(Particle	Grid).

Particle	 collision	 normals	 represent	 contact	 normals	 between	 particles	 and	 rigid	 actor



surfaces.	A	non-colliding	particle	has	a	zero	collision	normal.	Collision	normals	are	useful
e.g.	for	orienting	the	particle	visualization	according	to	their	contact	with	rigid	actors.

Particle	densities	provided	by	particle	fluids	can	be	used	for	rendering.	A	particle	density
has	a	value	of	zero	 for	a	particle	 that	 is	completely	 isolated.	 It	has	a	value	of	one	 for	a
particle	 that	 has	 a	 particle	 neighborhood	 with	 a	 mean	 spacing	 corresponding	 to
PxParticleFluid::getRestParticleDistance().

Particle	data	can	only	be	read	while	the	scene	simulation	is	not	executing.	In	order	to	get
access	to	the	SDK	buffers	a	PxParticleReadData	instance	needs	to	be	acquired	from	the
SDK.	It	has	the	following	properties:

numValidParticles:	 Total	 number	 of	 valid	 particles	 for	 the	 corresponding	 particle
system.
validParticleRange:	The	index	range	of	valid	particles	in	the	particle	buffers.
validParticleBitmap:	Bitmap	of	valid	particle	locations.
positionBuffer,	 positionBuffer,	 velocityBuffer,	 restOffsetBuffer,	 flagsBuffer,
collisionNormalBuffer:	Strided	iterators	for	particle	properties.

Additionally	particle	fluids	provide	PxParticleFluidReadData	with

densityBuffer:	Strided	iterator	for	particle	densities.



Figure	3:	PxParticleReadData	and	PxParticleFluidReadData

Example	of	how	to	access	particle	data:

//	lock	SDK	buffers	of	*PxParticleSystem*	ps	for	reading

PxParticleReadData*	rd	=	ps->lockParticleReadData();

//	access	particle	data	from	PxParticleReadData

if	(rd)

{

				PxStrideIterator<const	PxParticleFlags>	flagsIt(rd->flagsBuffer

				PxStrideIterator<const	PxVec3>	positionIt(rd->positionBuffer);

				for	(unsigned	i	=	0;	i	<	rd->validParticleRange;	++i,	++flagsIt

				{

								if	(*flagsIt	&	PxParticleFlag::eVALID)

								{

												//	access	particle	position

												const	PxVec3&	position	=	*positionIt;

								}

				}

				//	return	ownership	of	the	buffers	back	to	the	SDK

				rd->unlock();



}

Example	of	how	to	use	the	valid	particle	bitmap	to	access	particle	data	(without	showing
the	locking	and	unlocking):

if	(rd->validParticleRange	>	0)

{

				//	iterate	over	valid	particle	bitmap

				for	(PxU32	w	=	0;	w	<=	(rd->validParticleRange-1)	>>	5;	w++)

				{

								for	(PxU32	b	=	rd->validParticleBitmap[w];	b;	b	&=	b-1)

								{

												PxU32	index	=	(w	<<	5	|	Ps::lowestSetBit(b));

												//	access	particle	position

												const	PxVec3&	position	=	rd->positionBuffer[index];

								}

				}

}



Parameter	Guide

There	are	three	types	of	particle	system	parameter.	Some	need	to	be	specified	when	the
particle	system	is	created	and	cannot	be	changed	afterwards.	Some	are	mutable	while	the
particle	 system	 is	 not	 part	 of	 a	 scene	 and	 others	 can	 be	 changed	 at	 any	 time.	
following	 description	 covers	 parameter	 that	 either	 cannot	 be	 set	 at	 any	 time,	 or	 may
induce	a	performance	overhead	when	changed.

maxParticles:

The	maximum	number	of	particles	that	can	be	added	to	a	particle	system.	The
smaller	the	value,	the	smaller	the	memory	footprint	of	the	particle	system	is	going	to
be.	Can	only	be	set	on	particle	system	creation.

PxParticleReadDataFlags:

Specifies	a	subset	of	simulation	properties	which	are	returned	to	the	application	after
simulation.	See	Reading	Particles.	As	few	read	data	flags	should	be	set	as	possible	in
order	to	save	memory	and	improve	performance	by	avoiding	unnecessary	particle
data	copying.	Parameter	can	only	be	changed	while	particle	system	is	not	part	of	a
scene.

gridSize:

A	hint	for	the	PhysX	SDK	to	choose	the	particle	grouping	granularity	for	proximity
tests	and	parallelization.	See	Particle	Grid.	Parameter	can	only	be	changed	while
particle	system	is	not	part	of	a	scene.

PxParticleBaseFlag::eENABLED:

Enables/disables	particle	simulation.

PxParticleBaseFlag::eGPU:

Enable/disable	GPU	acceleration.	Changing	this	parameter	while	the	particle	system
is	part	of	a	scene	induces	a	large	performance	overhead.



PxParticleBaseFlag::eCOLLISION_WITH_DYNAMIC_ACTORS:

Enable/disable	collision	with	dynamic	rigids.	Changing	this	parameter	while	the
particle	system	is	part	of	a	scene	induces	a	performance	overhead.

PxParticleBaseFlag::eCOLLISION_TWOWAY:

Enable/disable	twoway	interaction	between	particles	and	rigid	bodies.	Changing	this
parameter	while	the	particle	system	is	part	of	a	scene	induces	a	performance
overhead.

PxParticleBaseFlag::ePER_PARTICLE_COLLISION_CACHE_HINT:

Enable/disable	internal	collision	caches.	Changing	this	parameter	while	the	particle
system	is	part	of	a	scene	induces	a	performance	overhead.

Particle	Dynamics

externalAcceleration:

Acceleration	applied	to	each	particle	at	each	time	step.	The	scene	gravity	which	is
added	to	the	external	acceleration	by	default	can	be	disabled	using
PxActorFlag::eDISABLE_GRAVITY.

maxMotionDistance:

The	maximum	distance	a	particle	can	travel	during	one	simulation	step.	High	values
may	hurt	performance,	while	low	values	may	restrict	the	particle	velocity	too	much.	In
order	to	improve	performance	it's	advisable	to	set	this	to	a	low	value	and	then
increase	it	until	particles	can	move	fast	enough	to	achieve	the	target	effect.
Parameter	can	only	be	changed	while	particle	system	is	not	part	of	a	scene.

damping:

Velocity	damping	constant,	which	is	globally	applied	to	each	particle.	This	is
particularly	useful	when	using	particles	for	smoke	to	prevent	ballistic	behavior	of
individual	particles	which	can	look	odd.



particleMass:

Mass	used	for	two	way	interaction	with	rigid	bodies
(PxParticleBaseFlag::eCOLLISION_TWOWAY)	and	different	force	modes	in	the
context	of	PxParticleBase::addForces.	This	mass	property	doesn't	have	any	impact
on	the	fluid	dynamics	simulation.

PxParticleBaseFlag::ePROJECT_TO_PLANE,	 projectionPlaneNormal,
projectionPlaneDistance:

Parameter	to	configure	the	projection	mode	which	confines	particles	to	a	plane.	If
projection	is	enabled	particles	can	only	move	in	a	plane.	This	can	be	a	useful	option
in	the	context	of	a	2D-Game.

Collision	with	Rigid	Actors

restOffset:

Defines	the	minimum	distance	between	particles	and	the	surface	of	rigid	actors	that	is
maintained	by	the	collision	system.	Parameter	can	only	be	changed	while	particle
system	is	not	part	of	a	scene.

PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET:

Enables/disables	per-particle	rest	offsets.	Memory	can	be	saved	by	turning	per
particle	rest	offsets	off.	Per-particle	rest	offsets	should	only	be	enabled	if	the	particles
represent	objects	of	significantly	varying	size,	for	example	in	the	context	of	debris
effects.	See	Per-particle	Rest	Offsets.	Can	only	be	set	on	particle	system	creation.

contactOffset:

Defines	the	distance	at	which	contacts	between	particles	and	rigid	actors	are	created.
The	contacts	are	internally	used	to	avoid	jitter	and	sticking.	It	needs	to	be	larger	than
restOffset.	A	good	value	to	start	with	is	about	twice	the	size	of	the	rest	offset.
Parameter	can	only	be	changed	while	particle	system	is	not	part	of	a	scene.

restitution:



Restitution	used	for	particle	collision.	This	parameter	defines	how	strongly	particles
bounce	of	rigid	actors.

dynamicFriction:

Dynamic	friction	used	for	particle	collision.	This	parameter	defines	how	easily
particles	slide	over	rigid	actor	surfaces.	The	lower	the	value	is	to	0,	the	easier
particles	slide.	One	is	the	maximal	value	supported.

staticFriction:

Static	friction	used	for	particle	collision.	This	parameter	is	similar	to	dynamic	friction
but	defines	how	easily	particles	start	to	slide	over	a	surface.	Values	larger	than	one
are	supported.

simulationFilterData:

Filter	data	used	to	filter	collisions	between	particles	and	rigid	bodies.	See	
Filtering.

PxParticleBaseFlag::eCOLLISION_TWOWAY:

The	collision	two-way	flag	allows	enabling/disabling	two-way	interaction	between	rigid
bodies	and	particles.	The	particle	mass	parameter	defines	the	strength	of	the
interaction.	The	flag	can	only	be	changed	while	the	particle	system	is	not	part	of	a
scene.

Fluid	(PxParticleFluid)

The	SPH	simulation	can	be	tricky	to	tweak	for	good	results.	As	this	simulation	technique
(see	References)	uses	an	explicit	integration	scheme	it	only	provides	stable	results	within
a	certain	parameter	sub-space.	A	good	set	of	parameter	values	depend	on	the	time	step
size	 of	 the	 simulation	 and	 the	 external	 forces	 applied	 (such	 as	 gravity).	 The	 suggested
starting	points	for	parameter	values	below	assume	a	time	step	size	of	about	1/60	[s]	and	a
gravity	 around	 10	 [m/s^2].	 Using	 a	 damping	 value	 larger	 than	 zero	 allows	 for	 a	 larger
parameter	sub-space,	for	example	useful	when	implementing	a	smoke	effect.



restParticleDistance:

Defines	the	resolution	of	the	particle	fluid.	It	defines	the	approximate	distance	that
neighboring	particles	will	adopt	within	a	fluid	volume	at	rest.	For	the	parameter
tweaking	assumption	mentioned	above,	the	particle	rest	distance	should	not	be
smaller	than	0.05	[m].	Parameter	can	only	be	changed	while	particle	system	is	not
part	of	a	scene.

stiffness:

The	stiffness	(or	gas	constant)	influences	the	calculation	of	the	pressure	force	field.
Low	values	of	stiffness	make	the	fluid	more	compressible	(i.e.,	springy),	while	high
values	make	it	less	compressible.	The	stiffness	value	has	a	significant	impact	on	the
numerical	stability	of	the	simulation;	setting	very	high	values	will	result	in	instability.
Reasonable	values	are	usually	between	1	and	200.

viscosity:

Viscosity	controls	a	fluid's	thickness.	For	example,	a	fluid	with	a	high	viscosity	will
behave	like	treacle,	while	a	fluid	with	low	viscosity	will	be	more	like	water.	The
viscosity	value	scales	the	force	to	reduce	the	relative	velocity	of	particles	within	the
fluid.	Both,	too	high	and	too	low	values	will	typically	result	in	instabilities.	Reasonable
values	are	usually	between	5	and	300.



Collision	Handling

By	default,	particles	will	collide	with	any	shapes	 inside	 the	PxScene	that	 they	belong	 to.
They	 will	 attempt	 to	 maintain	 a	 fixed	 distance	 from	 these	 shapes	 as	 specified	 by
PxParticleBase::setRestOffset().

Collision	Filtering

Filtering	 particle	 versus	 rigid	 body	 collisions	 can	 be	 useful	 to	 avoid	 unnecessary
performance	overhead	or	simply	to	avoid	undesired	collisions.

For	the	following	examples	filtering	is	useful:

Avoid	 particles	 colliding	 with	 trigger	 shapes	 (this	 is	 already	 the	 behavior	 of
PxDefaultSimulationFilterShader)
Configure	a	drain	shape	to	exclusively	collide	with	particles
Have	particles	collide	with	a	proxy	shape	as	opposed	to	the	shape	used	for	rigid	body
collisions

Filter	 information	 for	 particles	 can	 be	 specified	 by	 calling
PxParticleBase::setSimulationFilterData().	Instructions	for	how	to	setup	filter	shaders	can
be	found	here:	Collision	Filtering.

Per-particle	Rest	Offsets

It	 is	also	possible	to	set	a	rest	offset	per-particle,	using	PxParticleBase::setRestOffsets()
In	 order	 to	 provide	 per-particle	 rest	 offsets
PxParticleBaseFlag::ePER_PARTICLE_REST_OFFSET	 needs	 to	 be	 set	 and	 the	 rest
offsets	 must	 be	 smaller	 than	 the	 per-system	 value	 given	 by
PxParticleBase.getRestOffset().

Particle	Drains



Using	drains	 is	a	good	method	 for	keeping	 the	particle	count	and	spread	under	control.
Placing	 drains	 around	 the	 area	 of	 interest	 in	 which	 a	 particle	 system	 is	 used	 helps	 to
maintain	 good	 performance	 of	 the	 particle	 simulation.	 The	 area	 of	 interest	 could,	 for
example,	also	be	moved	with	the	player.

Example	of	how	to	flag	a	PxShape	rbShape	as	a	drain:

rbShape->setFlag(PxShapeFlag::ePARTICLE_DRAIN,	true);

Particles	 that	 collide	 with	 a	 drain	 are	 marked	 with
PxParticleFlag::eCOLLISION_WITH_DRAIN	and	may	be	released.



Best	Practices	/	Troubleshooting

Particle	Grid	and	Spatial	Data	Structure	Overflow

The	PhysX	SDK	 uses	 a	 grid	 to	 subdivide	 the	 particles	 of	 a	 particle	 system	 into	 spatial
groups.	This	is	done	to	accelerate	proximity	queries	and	for	parallelization	purposes.	The
grid	 size	 parameter	 needs	 to	 be	 experimentally	 adjusted	 with
PxParticleBase::setGridSize()	 for	 best	 performance.	 When	 doing	 this	 it	 is	 helpful	 to
visualize	 the	 grid	 using	 PxVisualizationParameter::ePARTICLE_SYSTEM_GRID
grid	 size	values	might	 result	 in	 spatial	 data	 structure	overflow,	 since	 the	number	of	 grid
cells	is	limited	to	about	1000.	Large	grid	size	values	on	the	other	hand	might	result	in	poor
performance	due	to	ineffective	spatial	queries	or	lack	of	parallelization	opportunities.

In	case	of	overflow,	some	particles	will	stop	colliding	with	rigid	actors	in	the	scene.	These
particles	 are	 marked	 with	 PxParticleFlag::eSPATIAL_DATA_STRUCTURE_OVERFLOW
and	should	be	released.



GPU/CUDA	Acceleration

PhysX	 3	 supports	 GPU	 acceleration.	 This	 allows	 for	 larger	 and	 more	 detailed	 particle
effects	 while	 retaining	 good	 performance	 levels.	 To	 achieve	 this	 gain	 we	 must	 use	 a
physx::PxGpuDispatcher	for	the	scene	we	want	to	add	the	particle	system	to:

#if	PX_WINDOWS

				//	create	cuda	context	manager

				PxFoundation&	foundation	=	...

				physx::PxCudaContextManagerDesc	cudaContextManagerDesc;

				physx::PxCudaContextManager*	cudaContextManager	=

								PxCreateCudaContextManager(foundation,	cudaContextManagerDesc

#endif

				PxSceneDesc	sceneDesc(mPhysics->getTolerancesScale());

				//...

#if	PX_WINDOWS

				if	(cudaContextManager)

								sceneDesc.gpuDispatcher	=	cudaContextManager->getGpuDispatcher

#endif

				//...

				physicsSdk->createScene(sceneDesc);

A	 particle	 system	 can	 be	 configured	 for	 GPU	 simulation	 by	 setting
PxParticleBaseFlag::eGPU.	Toggling	GPU	acceleration	while	the	particle	system	is	part	of
a	scene	might	have	a	bad	impact	on	performance	since	its	state	needs	to	be	copied	to	or
from	 the	 GPU	 device	 memory.	 It	 is	 therefore	 better	 to	 set	 the	 flag	 with
PxParticleBase::setParticleBaseFlag()	before	adding	the	particle	system	to	the	scene.

Particle	 data	 can	 be	 read	 directly	 from	 the	 GPU	 device	 using
PxParticleBase::lockParticleReadData(PxDataAccessFlag::eDEVICE)	 and
PxParticleFluid::lockParticleFluidReadData(PxDataAccessFlag::eDEVICE)
used	to	render	particles	directly	with	CUDA	Graphics	Interop.

Convex,	Triangle	and	Height	field	meshes	are	automatically	mirrored	in	the	GPU	memory
when	 the	 corresponding	 shapes	 are	 within	 the	 proximity	 of	 a	GPU	 accelerated	 particle
system.	This	may	cause	some	undesired	performance	hiccups	which	can	be	prevented	by
mirroring	the	meshes	explicitly,	as	shown	in	this	example:



#if	PX_WINDOWS

				//	mirror	PxTriangleMesh	triangleMesh	providing	the	corresponding	cudaContextManager	of

				//	the	desired	scene.

				PxParticleGpu::createTriangleMeshMirror(triangleMesh,	*cudaContextManager

				//	later	release	the	obsolete	mirror

				PxParticleGpu::releaseTriangleMeshMirror(triangleMesh,	*cudaContextManager

#endif

On	 Kepler	 and	 above	 GPUs,	 the	 triangle	 meshes	 can	 be	 cached	 to	 achieve	 better
performance.	The	amount	of	memory	to	be	allocated	for	caching	can	be	set	using:

PxParticleGpu::setTriangleMeshCacheSizeHint(const	class	PxScene&	scene

The	 triangle	 mesh	 cache	 will	 be	 shared	 among	 all	 the	 particle	 systems	 created	 in	 the
scene.	 The	 optimal	 size	 depends	 on	 the	 scene	 (i.e.	 triangle	mesh	 density	 and	 particle
distribution).	 The	 cache	 usage	 statistics	 can	 be	 queried	 and	 analyzed	 to	 fine	 tune	 the
cache	size	hint.



Sample	Discussion

The	SampleParticles	shows	both	particle	system	 types	being	used:	PxParticleSystem
used	for	small	debris	and	smoke,	while	PxParticleFluid	is	used	for	a	waterfall.	The	sample
provides	example	implementations	of	various	aspects	described	in	this	guide:

SampleParticles::createParticleSystem,	 SampleParticles::createFluid
create	particle	systems.
ParticleSystem::createParticles	creates	particles	within	a	particle	system.
ParticleSystem::update	shows	how	to	read,	update,	release	particles	and	how	to	deal
with	spatial	data	structure	overflows.
SampleParticlesFilterShader	is	an	example	for	setting	up	collision	filtering.
SampleParticles::createDrain	 shows	 how	 to	 setup	 a	 rigid	 body	 shape	 as	 a	 particle
drain.
SampleBase::onInit	illustrates	how	to	setup	GPU/CUDA	acceleration.

The	sample	makes	use	of	various	helper	classes:

ParticleSystem:	 Encapsulates	 a	 PxParticleSystem	 or	 PxParticleFluid
manages	application	side	data	such	as	particle	lifetimes	and	orientations	for	debris.	It
facilitates	 creating	 and	 releasing	 particles	 and	 double	 buffers	 particle	 data	 for
asynchronous	rendering.
RenderParticleSystemActor:	 Owns	 a	 ParticleSystem	 and	 provides	 rendering
functionality.
ParticleEmitterRate:	Emits	particles	at	a	specified	rate	(#particles	per	second).
ParticleEmitterPressure:	Emits	particles	maintaining	a	certain	distance	between	them.
SampleParticles::Emitter:	 Connects	 an	 emitter	 as	 described	 above	 with	 a
RenderParticleSystemActor.
SampleParticles::Raygun:	 Provides	 functionality	 for	 the	 ray	 force	 field,	 rigid	 body
debris,	particle	debris	and	smoke	emission.



In	the	sample,	the	smoke	effect	is	achieved	by	using	a	PxParticleSystem
Each	particle	 is	 rendered	as	a	point	sprite	with	a	smoke	 texture.	The	sprites	 fade	away
when	the	particles	get	close	to	the	end	of	their	 lifespan.	The	smoke	particles	collide	with
the	 scene,	 which	 can	 be	 seen	 when	 roaming	 the	 smoke	 with	 the	 ray-gun.	
generated	 for	 the	craters,	as	well	as	 for	 the	 ray-gun	 impacts.	The	 realism	of	 the	smoke
effect	 could	 be	 increased	 by	 using	 a	 particle	 fluid	 in	 order	 to	 get	 the	 smoke	 volume	 to
expand.	 This	 is	 typically	 useful	 for	 indoor	 scenes	 or	 ground	 fog	 like	 effects	 where	 the
particles	get	into	pooling	situations.

Two	 kinds	 of	 debris	 are	 shown	 in	 the	 sample.	 Larger	 chunks	of	 debris	 are	 represented
using	convex-shaped	rigid	bodies.	Smaller	but	more	abundant	chunks	are	represented	by
particles,	which	helps	performance.	The	particle	based	debris	is	rendered	using	instanced
meshes.	It	is	spawned	in	the	craters	and	at	the	ray-gun	impact	location.

In	order	to	give	the	chunks	the	appearance	of	a	tumbling	motion	a	simple	trick	is	used.

1.	 Assign	an	initial	random	rotation	matrix	to	each	particle.
2.	 Change	this	rotation	matrix	proportional	to	the	linear	velocity	of	particle.

The	 implementation	 of	 this	 approach	 can	 be	 found	 in
ParticleSystem::initializeParticlesOrientations	and	ParticleSystem::modifyRotationMatrix
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Cloth



Introduction

The	PhysX	clothing	feature	has	been	deprecated	in	PhysX	version	3.4.1.	The	PhysX
and	APEX	clothing	features	are	replaced	by	the	standalone	NvCloth	library.

Realistic	 movement	 of	 character	 clothing	 greatly	 improves	 the	 player	 experience.	 The
PhysX	3	cloth	feature	is	a	complete	and	high-performance	solution	to	simulate	character
clothing.	It	provides	local	space	simulation	for	high	accuracy	and	stability,	new	techniques
to	reduce	stretching,	collision	against	a	variety	of	shapes,	as	well	as	particle	self-collision
and	 inter-collision	 to	 avoid	 the	 cloth	 penetrating	 itself	 or	 other	 cloth	 instances.	 The
simulation	 can	 be	 offloaded	 to	 CUDA	 capable	 GPUs	 for	 better	 performance	 or	 to	 run
assets	at	higher	resolutions	than	the	CPU	is	able	to	handle.

PhysX	 3	 cloth	 is	 a	 rewrite	 of	 the	 PhysX	 2	 deformables,	 tailored	 towards	 simulating
character	 cloth.	 Softbodies,	 tearing,	 and	 two-way	 interaction	 have	 been	 removed,	while
behavior	and	performance	for	cloth	simulation	have	been	improved.



Simulation	Algorithm

For	one	PhysX	simulation	frame,	the	cloth	solver	runs	for	multiple	iterations.	The	number
of	 iterations	 is	 determined	 by	 the	 solver	 frequency	 parameter	 and	 the	 simulation	 frame
time.	 Each	 iteration	 integrates	 particle	 positions,	 solves	 constraints,	 and	 performs
character	and	self-collision.	Cloth	inter-collision	is	performed	once	per-frame	after	all	cloth
instances	 in	 the	scene	have	been	stepped	 forward.	Local	 frame,	motion	constraints	and
collision	shapes	are	 interpolated	per	 iteration	from	the	per-frame	values	specified	by	 the
user.

Solver	Frequency

The	 size	 of	 the	 iteration	 time	 step	 is	 inversely	 proportional	 to	 the	 number	 of	 solver
iterations:

cloth.setSolverFrequency(240.0f);

The	solver	frequency	is	specified	as	iterations	per	second.	A	solver	frequency	value	of	240
corresponds	to	4	iterations	per	frame	at	60	frames	per	second.	In	general,	simulation	will
become	more	accurate	if	higher	solver	frequency	value	is	used.	However,	simulation	time
grows	roughly	linearly	with	solver	frequency.	Typically	this	value	is	between	120	and	300.

The	number	of	iterations	for	each	frame	is	derived	using	the	simulation	frequency	and	the
simulation	 time-step.	 PhysX	 tries	 to	 handle	 variable	 time-steps	 carefully,	 by	 taking
variations	 of	 the	 time-step	 into	 account	 during	 position	 integration	 and	 when	 applying
damping	 parameters	 like	 constraint	 stiffness.	 While	 this	 reduces	 the	 possible	 jittering
artifacts	 due	 to	 varying	 time	 step	 sizes,	 use	 of	 variable	 time	 step	 size	 is	 generally	 not
recommended.

Particle	Integration

The	 first	 step	 in	 a	 cloth	 iteration	 predicts	 the	 new	 particle	 position	 based	 on	 its	 current
position,	velocity	and	external	acceleration.	While	a	particle	state	consists	of	 the	current
position	and	the	position	before	the	last	iteration,	the	particle	velocity	in	local	space	can	be



computed	by	dividing	the	position	delta	by	the	delta	time	of	the	previous	iteration.

Local	Space	Simulation	and	Inertia	Scale

Each	PxCloth	actor	has	a	transformation	that	transforms	particles	from	its	 local	space	to
world	space	positions.	For	example:

cloth.setGlobalPose(PxTransform(PxVec3(1.0f,	0.0f,	0.0f));

will	change	the	cloth's	world	space	position	to	(1,0,0).	Now	compare	that	to	this	function:

cloth.setTargetPose(PxTransform(PxVec3(1.0f,	0.0f,	0.0f));

,	which	also	changes	the	cloth's	position	to	the	same	place.	So	what's	different?

PxCloth::setGlobalPose()	 only	 moves	 the	 cloth,	 but	 PxCloth::setTargetPose()
generates	acceleration	(inertia)	due	to	the	position	change.	The	amount	by	which	the	local
frame	acceleration	affects	 the	cloth	particles	can	be	controlled	using	an	 inertia	scale,	 for
example	to	impart	half	the	local	frame	acceleration	to	the	particles	use:

cloth.setInertiaScale(0.5f);

Scaling	inertia	effects	individually	per	translation	and	rotation	axis	is	also	possible	through
the	 family	 of	 PxCloth::set*InertiaScale()	 methods.	 Limiting	 the	 amount	 that	 local	 frame
accelerations	affect	particles	can	be	especially	useful	for	fast	moving	characters.

Note: 	Using	setGlobalPose()	is	equivalent	to	using	setTargetPos()	when	inertia	scale	is
0.	In	this	case,	the	cloth	does	not	receive	any	acceleration	due	to	frame	changes.

Constraints

After	the	particle	positions	have	been	integrated,	a	set	of	different	constraints	are	solved	to
simulate	stretch,	shear	and	bending	 forces,	as	well	as	 to	confine	 the	particle	movement
within	a	certain	region.



Distance	Constraints

Figure	1.	Typical	configuration	for	vertical	(left),	and	horizontal	(right)	stretching	constraints

Figure	2.	Typical	configuration	for	shearing	distance	constraints

Figure	3.	Typical	configuration	for	vertical	(left),	and	horizontal	(right)	bending	constraints,
note	bending	constraints	typically	span	more	than	one	edge	in	the	mesh

One	 of	 the	 most	 important	 roles	 for	 the	 cloth	 solver	 is	 to	 maintain	 distance	 between
particles	 so	 that	 the	 cloth	 does	 not	 stretch.	 This	 is	 achieved	 by	 applying	 distance
constraints	between	pairs	of	 particles.	The	way	particles	are	 connected	affects	how	 the
cloth	 stretches,	 compresses,	 shears,	 rotates,	 and	 bends.	 PhysX	 classifies	 distance
constraints	into	4	types	(see	PxClothFabricPhaseType),	each	of	which	can	be	configured
with	different	stiffness	parameters.

Below	is	an	example	of	stiffness	settings	for	each	constraint	type:



cloth.setStretchConfig(PxClothFabricPhaseType::eVERTICAL,	PxClothStretchConfig

cloth.setStretchConfig(PxClothFabricPhaseType::eHORIZONTAL,	PxClothStretchConfig

cloth.setStretchConfig(PxClothFabricPhaseType::eSHEARING,	PxClothStretchConfig

cloth.setStretchConfig(PxClothFabricPhaseType::eBENDING,	PxClothStretchConfig

Sometimes	 it	 is	 desirable	 that	 distance	 constraints	 are	 not	 enforced	 rigorously.	 The
stiffness	 parameter	 allows	 only	 correcting	 a	 portion	 of	 the	 edge	 length	 residual	 per
iteration,	 for	 example	 to	 reduce	 the	 strength	 of	 bending	 constraints.	 A	 separate,	 lower
stiffness	 can	be	used	 for	 edges	 that	 are	 only	moderately	 stretched	or	 compressed.	For
example,	a	dress	can	be	made	to	stretch	when	the	character	is	taking	large	steps,	but	still
behave	correctly	during	pirouettes.

The	following	code	sets	up	the	vertical	constraints	such	that	when	edges	are	compressed
more	than	60%	or	stretched	more	than	120%,	a	stiffness	of	0.8	will	be	used.	Otherwise	a
stiffness	of	0.4	=	0.8	*	0.5	will	be	used:

PxClothStretchConfig	stretchConfig;

stretchConfig.stiffness	=	0.8f;

stretchConfig.stiffnessMultiplier	=	0.5f;

stretchConfig.compressionLimit	=	0.6f;

stretchConfig.stretchLimit	=	1.2f;

cloth.setStretchConfig(PxClothFabricPhaseType::eVERTICAL,	stretchConfig

Note: 	Stretch	settings	for	horizontal	and	vertical	directions	are	specified	separately.
This	can	be	used	to	handle	stretching	along	the	gravity	(vertical)	direction	differently.

Tether	Constraints



Figure	4.	Example	tether	constraint	configuration

The	distance	constraints	are	solved	only	once	per	iteration	without	converging	completely.
The	 most	 visible	 artifact	 of	 this	 approximation	 is	 that	 the	 cloth	 becomes	 stretchy.
Increasing	 solver	 frequency	 reduces	 the	 stretching,	 but	 results	 in	 increased	 simulation
time.

PhysX	3.3	introduces	tether	constraints	as	a	solution	to	avoid	stretchiness	under	gravity	or
fast	motion.	 Tether	 constraints	 prevent	 stretching	 by	 limiting	 the	 distance	 a	 particle	 can
move	 away	 from	 their	 anchor	 particles.	 This	 constraint	 adds	 very	 small	 amount	 of
computation	to	the	solver,	so	it	is	more	effective	than	increasing	the	number	of	iterations.

The	 tether	 constraints	 are	 automatically	 generated	 by	 the	 cooker	 when	 some
PxClothMeshDesc::invMasses	 values	 are	 set	 to	 zero,	 telling	 the	 cooker	 that	 the
corresponding	particles	are	non-simulated	anchor	particles	whose	positions	are	provided
solely	 from	users.	Changing	 inverse	masses	after	 the	 fabric	has	been	created	does	not
affect	which	anchor	particles	are	used	for	the	tether	constraints.

Motion	Constraints



Figure	5.	Example	motion	constraint

One	can	fully	constrain	a	point	to	user	specified	position	with	zero	inverse	mass.	However,
it	is	sometimes	desirable	to	confine	a	point	within	small	region	around	the	animated	(user
specified)	 position.	 This	 allows	 small	 details	 to	 be	 generated	 by	 simulation,	 while
suppressing	any	excessive	deviation	from	the	desired	position.

Motion	constraints	 lock	 the	movement	of	each	particle	 inside	a	sphere.	For	example,	an
animation	system	can	sketch	the	overall	movement	of	a	cloth	while	the	fine	scale	details
are	handled	by	the	cloth	simulation.

PxClothParticleMotionConstraint	structure	holds	the	position	and	radius	of	the	sphere	for
each	particle,	and	motion	constraints	can	be	specified	as	follows:

PxClothParticleMotionConstraints	motionConstraints[]	=	{

				PxClothParticleMotionConstraints(PxVec3(0.0f,	0.0f,	0.0f),	0.0f

				PxClothParticleMotionConstraints(PxVec3(0.0f,	1.0f,	0.0f),	1.0f

				PxClothParticleMotionConstraints(PxVec3(1.0f,	0.0f,	0.0f),	1.0f

				PxClothParticleMotionConstraints(PxVec3(1.0f,	1.0f,	0.0f),	FLT_MAX

};

cloth.setMotionConstraints(motionConstraints);

If	the	sphere	radius	becomes	zero	or	negative,	the	corresponding	particle	is	locked	at	the
sphere	 center	 and	 the	 inverse	 particle	mass	 is	 set	 to	 zero	 for	 the	 next	 iteration.	 In	 the
above	example,	the	first	particle	will	fully	lock	to	the	constraint	position,	while	the	second
and	 third	 particle	 will	 remain	 within	 the	 sphere	 radius.	 The	 last	 particle	 will	 not	 be
constrained.



The	motion	 constraint	 sphere	 radius	 can	 be	 globally	 scaled	 and	 biased,	 for	 example	 to
transition	between	simulated	and	animated	states.	See	PxClothMotionConstraintConfig
details.

Separation	Constraints

Figure	6.	Example	separation	constraint

Separation	constraints	work	exactly	the	opposite	way	to	the	motion	constraints,	forcing	a
particle	to	stay	outside	of	a	sphere.	When	particle	movement	is	moderately	constrained	by
motion	 constraints	 (e.g.	 sleeves	around	an	arm),	 separation	 constraints	 can	be	used	 to
represent	the	character's	collision	shape	more	accurately	than	using	capsules	alone.	For
example,	separation	constraints	can	be	placed	slightly	inside	the	character	by	setting	the
radius	to	be	the	distance	from	the	sphere	center	to	the	surface	of	the	character.

See	PxClothParticleSeperationConstraint	and	PxCloth::setSeparationConstraints()

Collision	Detection

Each	cloth	object	supports	collision	with	spheres,	capsules,	planes,	convexes	(groups	of
planes)	 and	 triangles.	By	default	 these	 shapes	are	 all	 treated	 separately	 from	 the	main
PhysX	rigid	body	scene,	however	collision	against	other	PxScene	actors	can	be	enabled
using	the	PxClothFlag::eSCENE_COLLISION	flag.

Collision	shapes	are	specified	in	local	coordinates	for	the	next	frame	before	simulating	the
scene.	An	 independent	and	complete	collision	stage	 is	performed	as	part	of	each	solver
iteration,	using	shape	positions	interpolated	from	the	values	at	the	beginning	and	the	end



of	the	frame.	Sphere	and	capsule	collision	supports	continuous	collision	detection	and	use
an	acceleration	structure	to	cull	 far-away	particles	early	 in	the	collision	pipeline.	Spheres
and	 capsules	 are	 therefore	 the	 preferred	 choice	 to	 model	 the	 character	 shape,	 and
convexes	and	triangles	should	only	be	used	sparingly.

Spheres	are	defined	as	center	and	radius.	Note	 that	 the	radius	 is	specifically	allowed	 to
change	from	frame	to	frame.	The	total	number	of	spheres	is	limited	to	32	per	cloth.

Capsules	are	defined	by	a	 pair	 of	 indices	 into	 the	 spheres	array	and	each	 sphere	may
have	a	different	radius	thus	forming	a	tapered	capsule.	Spheres	can	be	shared	between
multiple	capsules,	which	can	be	useful	for	modeling	characters	(upper	and	lower	leg	made
up	from	capsules	can	share	the	sphere	at	the	knee).	Sharing	of	spheres	also	makes	the
simulation	more	efficient	and	robust,	so	is	highly	encouraged.

Figure	7.	A	tapered	capsule	collision	shape	formed	by	two	connected	spheres

Figure	8.	A	leg	shape	formed	by	using	two	tapered	capsules,	each	sharing	a	sphere	at	the
middle

Planes	are	defined	by	their	normal	and	distance	to	origin.	They	will	not	be	considered	for
collision	unless	they	are	referenced	by	a	convex	shape.	Convexes	reference	planes	using
a	mask,	where	each	bit	corresponds	to	an	entry	in	the	array	of	planes.	There	is	a	limit	of



32	planes	per	cloth.

Triangle	 colliders	 are	 defined	 as	 vertex	 triplets	 in	 counter-clockwise	 winding	 order.	 The
triangles	should	form	a	closed	patch	near	the	cloth	for	consistent	collision	handling	(each
particle	collides	against	its	closest	triangle	expanded	to	an	infinite	plane).

The	order	of	planes	and	 triangles	should	 remain	unchanged	 (apart	 from	 removing	 them
through	 the	 PxCloth::removeCollisionPlane/Triangle()	 method)	 as	 their	 positions	 are
interpolated	between	simulation	frames.

Continuous	Collision	Detection

Besides	 discrete	 collision	 which	 resolves	 particles	 inside	 shapes	 at	 the	 end	 of	 each
iteration,	continuous	collision	detection	is	supported	and	can	be	enabled	by	calling:

//	Enable	continuous	collision	detection

cloth.setClothFlag(PxClothFlag::eSWEPT_CONTACT,	true);

Continuous	collision	is	around	2x	more	computationally	expensive	than	discrete	collision,
but	 it	 is	 necessary	 to	 detect	 collision	between	 fast	moving	objects.	Continuous	 collision
analyzes	the	trajectory	of	particles	and	capsules	to	determine	when	a	contact	occurs.	After
the	first	time	of	contact,	the	particle	is	moved	with	the	shape	until	the	end	of	the	iteration.

Note: 	The	SIMD	collision	path	handles	sets	of	4	particles	in	parallel.	It	is	therefore
advantageous	to	spatially	group	cloth	particles	so	that	they	are	likely	to	collide	with	the
same	set	of	shapes.

Virtual	Particle	Collision

Virtual	 particles	 provide	 a	 way	 of	 improving	 cloth	 collision	 without	 increasing	 the	 cloth
resolution.	 They	 are	 called	 'virtual'	 particles	 because	 they	 only	 exist	 during	 the	 collision
processing	 stage	 and	 do	 not	 have	 their	 position,	 velocity	 or	 mass	 explicitly	 stored	 like
regular	particles,	 they	can	be	 thought	of	as	providing	additional	samples	on	 the	collision
surface.



During	 collision	 processing	 each	 virtual	 particle	 is	 created	 from	 three	 normal	 particles
using	barycentric	interpolation.	It	is	then	tested	for	discrete	collision	like	a	regular	particle
and	 the	 collision	 impulse	 is	 redistributed	 back	 to	 the	 original	 particles	 using	 reverse
interpolation.

Section	Adding	Virtual	Particles	explains	the	necessary	steps	to	use	this	feature.

Friction	and	Mass	Scaling

Coulomb	 friction	 can	 be	 enabled	 and	 will	 be	 applied	 for	 particle	 and	 virtual	 particle
collisions	by	setting	a	friction	coefficient	between	0	and	1:

cloth.setFrictionCoefficient(0.5f);

Additionally,	 there	 is	an	option	 to	artificially	 increase	 the	mass	of	 colliding	particles,	 this
temporary	increase	in	mass	can	help	reduce	stretching	along	edges	that	are	being	tightly
pulled	over	a	collision	shape.	The	effect	 is	determined	by	 the	 relative	normal	velocity	of
the	particle	and	collision	shape	and	a	user	defined	coefficient.	A	value	of	20	is	reasonable
starting	point	but	users	are	encouraged	to	experiment	with	this	value:

cloth.setCollisionMassScale(20.0f);

Self-Collision	of	a	Single	Cloth	Actor

The	particles	of	a	cloth	actor	can	collide	among	themselves.	To	enable	 this	self-collision
behavior,	one	should	set	both	self-collision	distance	and	self-collision	stiffness	to	non-zero
values:

cloth.setSelfCollisionDistance(0.1f);

cloth.setSelfCollisionStiffness(1.0f);

Self-collision	 distance	 defines	 the	 diameter	 of	 a	 sphere	 around	 each	 particle,	 and	 the
solver	 ensures	 that	 these	 spheres	 do	 not	 overlap	 during	 simulations.	 Self-collision
stiffness	defines	how	strong	the	separating	impulse	should	be.



Self-collision	distance	should	be	smaller	than	the	smallest	distance	between	two	particles
in	the	rest	configuration.	If	the	distance	is	larger,	self-collision	may	violate	some	distance
constraints	and	result	in	jittering.

When	such	a	configuration	cannot	be	avoided	 (e.g.	due	 to	 irregular	 input	meshes,	etc.),
one	can	assign	additional	rest	positions:

cloth.setRestPositions(restPositions);

Collision	 between	 two	 particles	 is	 ignored	 if	 their	 rest-positions	 are	 closer	 than	 the	 the
collision	 distance.	 However,	 a	 large	 collision	 distance	 and	 use	 of	 rest	 positions	 will
significantly	degrade	performance	of	self-collision,	so	should	be	used	sparingly.

Self-collision	performance	for	high-resolution	cloth	 instances	can	be	 improved	by	 limiting
self-collision	to	a	subset	of	all	particles	(see	PxCloth::setSelfCollisionIndices()

Inter-Collision	between	Multiple	Cloth	Actors

Different	 cloth	 actors	 can	 be	 made	 to	 interact	 with	 each	 other	 when	 inter-collision	 is
enabled.	The	parameters	for	inter-collision	are	set	for	all	cloth	instances	of	a	scene:

scene.setInterCollisionDistance(0.5f);

scene.setInterCollisionStiffness(1.0f);

The	 definition	 of	 distance	 and	 stiffness	 values	 are	 the	 same	 as	 self-collision.	 Cloth
instances	 that	 specify	 a	 particle	 subset	 for	 self-collision	 use	 the	 same	 subset	 for	 inter-
collision.



Best	Practices	/	Troubleshooting

Performance	Tips

The	runtime	of	the	cloth	simulation	scales	approximately	linearly	with	the	number	of	cloth
particles	and	the	solver	frequency:	Simulating	a	higher	resolution	mesh	with	more	particles
and	 increasing	 stretch	 stiffness	 and	 collision	 handling	 fidelity	 with	 higher	 solver
frequencies	 increase	 the	 time	 it	 takes	 to	 simulate	 one	 frame.	 Additionally,	 there	 is	 a
performance	drop	somewhere	below	3000	particles	for	the	GPU	solver	as	explained	in	the
next	section.	As	a	rough	guideline,	a	dozen	cloth	instances	with	2000	particles	each	and	a
solver	frequency	of	300Hz	can	be	simulated	in	real-time	as	part	of	a	game.

Convex	collision	and	 triangle	 collision	do	not	use	any	mid	phase	acceleration	 structure,
and	are	therefore	slower	than	sphere	and	capsule	collision.

Self-collision	 and	 inter-collision	 can	 take	 a	 significant	 amount	 of	 the	 overall	 simulation
time.	 Consider	 keeping	 the	 collision	 distance	 small	 and	 using	 self-collision	 indices	 to
reduce	the	number	of	particles	that	collide	with	each	other.

Using	GPU	Cloth

Cloth	can	be	simulated	on	a	CUDA	or	DirectCompute	enabled	GPU,	by	setting	one	of	the
corresponding	flags:

cloth.setClothFlag(PxClothFlag::eCUDA,	true);

cloth.setClothFlag(PxClothFlag::eDIRECT_COMPUTE,	true);

The	 entire	 cloth	 solver	 pipeline	 is	 run	 on	 the	GPU,	with	 the	 exception	 of	 inter-collision.
When	 no	 supported	 GPU	 is	 available	 PhysX	 will	 issue	 a	 warning,	 and	 subsequent
simulations	will	be	run	on	CPU.

When	the	cloth	is	simulated	using	CUDA,	the	GPU	simulation	results	can	interop	with	the
graphics	API	by	requesting	CUDA	device	pointers	to	the	particle	data:



cloth.lockParticleData(PxDataAccessFlag::eDEVICE);

To	 take	 full	 advantage	 of	 the	 GPU	 hardware	 there	 should	 be	 at	 least	 as	 many	 cloth
instances	 as	 streaming	 multiprocessors	 (SMs).	 This	 means	 it	 is	 generally	 better	 to
simulate	clothing	as	multiple	instances	(e.g.	shirts	and	skirt)	rather	than	grouped	into	one
instance.

GPU	 PhysX	 performance	 is	 better	 when	 the	 particle	 data	 of	 a	 cloth	 can	 fit	 in	 shared
memory.	The	number	of	particles	that	 fit	 into	shared	memory	depends	on	the	number	of
collision	shapes,	whether	continuous	collision	or	self-collisions	are	enabled,	and	also	on
the	GPU	version.	For	GPUs	supporting	SM	2.0	and	above,	about	2500-2900	particles	fit
into	 shared	 memory.	 If	 particles	 don't	 fit	 into	 shared	 memory	 the	 cloth	 solver	 will
automatically	 stream	 particles	 through	 global	 memory,	 which	 incurs	 some	 performance
cost.

Furthermore,	the	limited	size	of	shared	memory	requires	the	number	of	collision	triangles
to	be	clamped	to	500	when	GPU	simulation	is	enabled.

Fast-Moving	Characters

Consistent	collision	handling	for	 fast-moving	characters	can	be	difficult.	Fast	 translations
and	rotations	are	best	handled	by	 tying	 the	cloth	 local	simulation	 frame	 to	 the	character
transformation.	 The	 inertia	 effects	 of	 the	 local	 frame	 transformations	 can	 be	 fine-tuned
using	the	inertia	scale	settings.

If	 the	 cloth	 tunnels	 collision	 shapes	 during	 fast	 character	 animations,	 try	 increasing	 the
solver	frequency	or	enabling	swept	contacts	(see	PxClothFlag::eSWEPT_CONTACT

Avoiding	Stretching

Due	 to	 the	 iterative	 nature	 of	 the	 distance	 constraint	 solver,	 high	 resolution	 cloth	 can
stretch	 undesirably	 under	 strong	 gravity	 even	 if	 the	 stretch	 stiffness	 is	 set	 to	 one.
Increasing	the	solver	frequency	mitigates	the	stretching,	but	tether	constraints	are	usually
better	suited	to	eliminate	stretching	efficiently.



Avoiding	Jitter

Under	 certain	 configurations,	 different	 constraint	 types	 can	violate	each	other	 and	over-
constrain	 the	particle	 positions.	For	 example,	 a	motion	 constraint	 can	move	 the	particle
further	 from	 the	 anchor	 particle	 than	 the	 tether	 constraint	 permits,	 or	 particles	 can	 get
pinched	 between	 two	 overlapping	 collision	 shapes.	 Over-constraining	 particle	 positions
can	 result	 in	 jitter	 and	 should	 be	 avoided.	 In	 some	 situations	 jitter	 can	 be	 avoided	 by
increasing	the	solver	frequency	or	by	reducing	the	corresponding	constraint	stiffness.

PVD	Support

Cloth	particle	positions,	distance	constraints,	and	collision	shapes	are	rendered	as	points,
lines,	and	wireframes	respectively	 in	PVD.	The	SDK	does	not	have	access	 to	 the	mesh
used	to	create	 the	 fabric,	and	 this	mesh	can't	be	displayed	 in	PVD	either.	However,	you
can	display	individual	sets	of	distance	constraints	instead	of	all	at	once:	set	
Mode	to	Single	Phase	in	the	Preferences	dialog	and	use	the	Cloth	Phase
phase	to	display.	The	Particle	Scale	slider	in	the	same	dialog	affects	the	rendering	size	of
ordinary	and	virtual	cloth	particles	as	well.	All	properties	of	a	selected	cloth	object	can	be
viewed	in	the	Inspector	panel	of	PVD.



Snippet	Discussion

The	following	paragraph	describes	code	of	the	cloth	snippet	provided	with	the	PhysX	SDK.

The	 cloth	 constraint	 connectivity	 and	 rest	 values	 are	 stored	 in	 a	 fabric	 instance
(PxClothFabric),	separate	from	the	cloth	actor	(PxCloth).	The	separation	of	the	constraints
from	 particles	 allows	 the	 same	 fabric	 data	 to	 be	 reused	 for	 multiple	 cloth	 instances,
reducing	cooking	time	and	storage	requirements.	PxClothFabricCreate
library,	creates	a	fabric	from	a	triangle	or	quad	mesh	(see	PxClothMeshDesc
actor	itself	is	created	through	the	physics	instance	(PxPhysics)	and	needs	to	be	added	to
a	scene	(PxScene)	 in	order	 to	be	simulated.	Once	 the	cloth	actor	 is	 created,	users	can
assign	simulation	settings	such	as	collision	data,	constraint	stiffness,	solver	frequency	and
self-collision.	The	createCloth	function	in	the	cloth	snippet	performs	these	steps.

The	stepPhysics	function	advances	the	simulation	by	one	frame.	It	first	updates	the	cloth
local	frame,	which	rotates	around	the	y-axis.	The	collision	shapes	are	not	moving	in	scene
coordinates,	but	their	positions	are	specified	in	cloth	local	coordinates,	and	therefore	need
to	be	updated	every	frame.	The	following	sections	detail	some	of	the	available	parameters
and	show	how	to	configure	them.

Note: 	The	cloth	module	has	to	be	registered	with	PxRegisterCloth	on	platforms	with
static	linking	(non	windows)	before	creating	cloth	objects.	PxCreatePhysics
modules	by	default	as	opposed	to	PxCreateBasePhysics.

Filling	in	PxClothMeshDesc

The	 first	 task	 to	 create	 a	 cloth	 is	 to	 fill	 in	 the	PxClothMeshDesc	 structure.	 The	 snippet
programmatically	 creates	 a	 regular	 grid	 of	 cloth	 particles	 connected	 by	 a	 quad	 mesh.
Below	is	a	simpler	example	on	how	to	create	a	cloth	from	a	simple	mesh	consisting	of	a
single	quad.

PxClothParticle	vertices[]	=	{

				PxClothParticle(PxVec3(0.0f,	0.0f,	0.0f),	0.0f),

				PxClothParticle(PxVec3(0.0f,	1.0f,	0.0f),	1.0f),



				PxClothParticle(PxVec3(1.0f,	0.0f,	0.0f),	1.0f),

				PxClothParticle(PxVec3(1.0f,	1.0f,	0.0f),	1.0f)

};

PxU32	primitives[]	=	{	0,	1,	3,	2	};

PxClothMeshDesc	meshDesc;

meshDesc.points.data	=	vertices;

meshDesc.points.count	=	4;

meshDesc.points.stride	=	sizeof(PxClothParticle);

meshDesc.invMasses.data	=	&vertices->invWeight;

meshDesc.invMasses.count	=	4;

meshDesc.invMasses.stride	=	sizeof(PxClothParticle);

meshDesc.quads.data	=	primitives;

meshDesc.quads.count	=	1;

meshDesc.quads.stride	=	sizeof(PxU32)	*	4;

Each	particle	 is	defined	by	 its	position	 in	 local	coordinates	and	 its	 inverse	mass.	Setting
the	inverse	mass	to	zero	indicates	that	the	particle	is	not	simulated.	Instead,	the	particle	is
fixed	 in	 local	space	or	kinematically	constrained	 to	user	specified	positions.	The	 inverse
mass	of	simulated	particles	can	normally	be	set	to	any	fixed	positive	value.

The	PxClothMeshDesc	structure	allows	positions	and	inverse	masses	stored	 in	separate
arrays	or	interleaved	like	in	the	code	above.	The	mesh	can	consist	of	quads	or	triangles,
or	both.	The	cooker	prefers	quad	meshes	over	triangle	meshes	when	creating	constraints
and	 classifying	 constraint	 types.	 The	 extensions	 library	 therefore	 provides	 the
PxClothMeshQuadifier	helper	class	to	extract	quads	from	a	triangle	mesh.

Creating	Fabric

Given	the	mesh	descriptor,	a	call	 to	PxClothFabricCreate	 in	the	extensions	library	wraps
the	generation	of	constraints	and	the	creation	of	the	PxClothFabric	structure:

PxClothFabric*	fabric	=	PxClothFabricCreate(physics,	meshDesc,	PxVec3

The	third	parameter	indicates	the	direction	of	gravity,	which	is	used	as	a	hint	to	determine
the	direction	of	'horizontal'	or	'vertical'	constraints.



The	PxClothFabric	class	describes	internal	solver	data	for	a	cloth.	For	example,	distance
constraints	consisting	of	 two	particle	 indices	and	a	rest-length	are	created	by	the	cooker
and	stored	in	the	fabric	data.	Multiple	cloth	instances	of	the	same	mesh	can	share	a	single
fabric	instance.

Creating	Cloth

A	PxCloth	 object	 is	 created	 using	 a	 fabric	 instance	 and	 the	 initial	 particle	 configuration.
Like	all	actors,	the	cloth	instance	is	simulated	as	part	of	a	scene:

PxTransform	pose	=	PxTransform(PxIdentity);

PxCloth*	cloth	=	physics.createCloth(pose,	fabric,	vertices,	PxClothFlags

scene.addActor(cloth);

The	 first	 parameter	 specifies	 the	 initial	 pose.	 The	 second	 input	 is	 the	 fabric	 instance
created	 by	 the	 cooker.	 The	 third	 input	 provides	 initial	 particle	 positions	 and	 inverse
masses.	Typically	 this	 array	 is	 the	 same	as	 the	 one	 referenced	by	 the	mesh	descriptor
used	 to	 create	 the	 fabric.	Note	 that	 the	 rest	 configuration	 (such	as	 the	 rest-length	 for	 a
distance	constraint)	 is	 computed	 from	PxClothMeshDesc,	 so	 the	 initial	 particle	positions
do	 not	 affect	 rest	 configuration.	 The	 last	 parameter	 is	 a	 set	 of	 flags	 that	 allow	 GPU
simulation	and	continuous	collision	detection	to	be	enabled.	The	default	is	to	turn	off	both
options.

Specifying	Collision	Shapes

The	 following	 code	 illustrates	 how	 to	 add	 two	 spheres	 of	 different	 radius	 and	 create	 a
tapered	capsule	between	them:

//	Two	spheres	located	on	the	x-axis

PxClothCollisionSphere	spheres[2]	=

{

				PxClothCollisionSphere(	PxVec3(-1.0f,	0.0f,	0.0f),	0.5f		),

				PxClothCollisionSphere(	PxVec3(	1.0f,	0.0f,	0.0f),	0.25f	)

};

cloth.setCollisionSpheres(spheres,	2);

cloth.addCollisionCapsule(0,	1);



Planes	 can	 be	 added	 through	 PxCloth::addCollisionPlane()	 method	 but	 will	 not	 be
considered	for	collision	unless	they	are	referenced	by	a	convex	shape.	For	example,	the
following	 code	 shows	 how	 to	 setup	 a	 typical	 upward	 facing	 ground	 plane	 through	 the
origin:

cloth.addCollisionPlane(PxClothCollisionPlane(PxVec3(0.0f,	1.0f,	0.0f

cloth.addCollisionConvex(1	<<	0);	//	Convex	references	the	first	plane

Planes	 may	 be	 efficiently	 updated	 after	 construction	 using	 the
PxCloth::setCollisionPlanes()	function.

Finally,	 triangles	 are	 added	 using	 the	 PxCloth::setCollisionTriangles()
example,	the	following	code	adds	a	tetrahedron	made	of	four	triangles:

PxClothCollisionTriangle	triangles[4]	=	{

				PxClothCollisionTriangle(PxVec3(0.0f,	0.0f,	0.0f),

																													PxVec3(1.0f,	0.0f,	0.0f),

																													PxVec3(0.0f,	1.0f,	0.0f)),

				PxClothCollisionTriangle(PxVec3(1.0f,	0.0f,	0.0f),

																													PxVec3(0.0f,	0.0f,	1.0f),

																													PxVec3(0.0f,	1.0f,	0.0f)),

				PxClothCollisionTriangle(PxVec3(0.0f,	0.0f,	1.0f),

																													PxVec3(0.0f,	0.0f,	0.0f),

																													PxVec3(0.0f,	1.0f,	0.0f)),

				PxClothCollisionTriangle(PxVec3(0.0f,	0.0f,	0.0f),

																													PxVec3(0.0f,	0.0f,	1.0f),

																													PxVec3(1.0f,	0.0f,	0.0f)),

};

Note: 	The	snippet	adds	collision	convex	and	capsule	once	in	the	createCloth
and	then	updates	collision	spheres,	planes	and	triangles	every	frame	in	the	
function.

Adding	Virtual	Particles



Figure	9.	Four	virtual	particles	(green)	expressed	as	the	weighted	combination	of	a
triangle's	particles,	virtual	particles	provide	a	better	sampling	of	the	cloth	geometry	that

improves	collision	detection.

A	 virtual	 particle	 is	 defined	 by	 3	 particle	 indices	 and	 an	 index	 into	 a	weights	 table,	 the
weights	table	defines	the	barycentric	coordinates	used	to	create	a	virtual	particle	position
from	a	linear	combination	of	the	referenced	particles.	The	following	is	an	example	weights
table	that	can	be	used	to	create	a	distribution	of	4	virtual	particles	on	a	triangle:

static	PxVec3	weights[]	=

{

				PxVec3(1.0f	/	3,	1.0f	/	3,	1.0f	/	3),	//	center	point

				PxVec3(4.0f	/	6,	1.0f	/	6,	1.0f	/	6),	//	off-center	point

};

The	 code	 below	 shows	 an	 example	 of	 how	 to	 set	 up	 the	 virtual	 particles	 from	 a
PxClothMeshDesc:

PxU32	numFaces	=	meshDesc.triangles.count;

assert(meshDesc.flags	&	PxMeshFlag::e16_BIT_INDICES);

PxU8*	triangles	=	(PxU8*)meshDesc.triangles.data;

PxU32	indices[]	=	new	PxU32[4*4*numFaces];

for	(PxU32	i	=	0,	*it	=	indices;	i	<	numFaces;	i++)

{

				PxU16*	triangle	=	(PxU16*)triangles;

				PxU32	v0	=	triangle[0];

				PxU32	v1	=	triangle[1];

				PxU32	v2	=	triangle[2];

				//	center

				*it++	=	v0;	*it++	=	v1;	*it++	=	v2;	*it++	=	0;



				//	off	centers

				*it++	=	v0;	*it++	=	v1;	*it++	=	v2;	*it++	=	1;

				*it++	=	v1;	*it++	=	v2;	*it++	=	v0;	*it++	=	1;

				*it++	=	v2;	*it++	=	v0;	*it++	=	v1;	*it++	=	1;

				triangles	+=	meshDesc.triangles.stride;

}

cloth.setVirtualParticles(numFaces*4,	indices,	2,	weights);

delete[]	indices;

Accessing	Particle	Data

The	cloth	snippet	doesn't	 render	 the	 result	of	 the	simulation,	and	 therefore	doesn't	 read
back	any	particle	data.	The	lockParticleData()	provides	read	and	optionally	write	access	to
the	particle	positions	of	 the	current	and	previous	 iteration.	As	an	example,	 the	 following
code	 applies	 some	 external	 acceleration	 to	 each	 particle,	 similar	 to
setParticleAccelerations():

PxClothParticleData*	data	=	cloth.lockParticleData(PxDataAccessFlag

float	dt	=	cloth.getPreviousTimeStep();

for(PxU32	i	=	0,	n	=	cloth.getNbParticles();	i	<	n;	++i)

{

				data->previousParticles[i].pos	-=	particleAccelations[i]	*	dt;

}

data->unlock();



References

[1]	 Mueller,	 Matthias	 and	 Heidelberger,	 Bruno	 and	 Hennix,	 Marcus	 and	 Ratcliff,	 John.
Position	 based	 dynamics.	 Academic	 Press,	 Inc..	 p.	 109--118	 2007
http://dx.doi.org/10.1016/j.jvcir.2007.01.005

[2]	Kim,	Tae-Yong	and	Chentanez,	Nuttapong	and	Mueller-Fischer,	Matthias.	Long	range
attachments	 -	 a	 method	 to	 simulate	 inextensible	 clothing	 in	 computer	 games.
Eurographics	 Association.	 p.	 305--310	 2012	 http://dl.acm.org/citation.cfm?
id=2422356.2422399

nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»

©	Copyright	2008-2017	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA
95050	U.S.A.	All	rights	reserved.

http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://dl.acm.org/citation.cfm?id=2422356.2422399


nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



Debug	Visualization



Introduction

With	 the	PhysX	Visual	Debugger	 (see	PhysX	Visual	Debugger	 (PVD)
tool	to	record	information	about	simulated	PhysX	scenes	and	visualize	that	information	in
a	remote	viewer	application.	However,	sometimes	it	is	preferable	to	integrate	visual	debug
information	 directly	 into	 the	 application's	 view.	 For	 that	 purpose,	 PhysX	 provides	 an
interface	to	extract	visual	debug	information	as	a	set	of	basic	rendering	primitives,	that	is,
points,	lines,	triangles	and	text.	These	primitives	can	then	be	rendered	and	overlayed	with
the	application	render	objects.



Usage

To	enable	 debug	 visualization,	 the	 global	 visualization	 scale	 has	 to	 be	 set	 to	 a	 positive
value	first:

PxScene*	scene	=	...

scene->setVisualizationParameter(PxVisualizationParameter::eSCALE,

Then	 the	 individual	 properties	 that	 should	be	 visualized	can	be	enabled	using,	 again,	 a
positive	value:

scene->setVisualizationParameter(PxVisualizationParameter::eACTOR_AXES

In	the	example,	the	actor	world	axes	will	be	visualized.	The	scale	used	for	visualization	will
be	the	product	of	the	global	scale	(1.0	in	this	example)	and	the	property	scale	(2.0	in	this
example).	 Please	 note	 that	 for	 some	 properties	 the	 scale	 factor	 does	 not	 apply:	 shape
geometry,	for	example,	will	not	be	scaled	since	the	size	is	defined	by	the	user	application.
Furthermore,	 for	 some	 objects,	 visualization	 has	 to	 be	 enabled	 explicitly	 on	 the
corresponding	 object	 instances	 too	 (see	 PxActorFlag::eVISUALIZATION
PxShapeFlag::eVISUALIZATION,	...).

After	a	simulation	step,	the	visualization	primitives	can	then	be	extracted	as	follows:

const	PxRenderBuffer&	rb	=	scene->getRenderBuffer();

for(PxU32	i=0;	i	<	rb.getNbLines();	i++)

{

				const	PxDebugLine&	line	=	rb.getLines()[i];

				//	render	the	line

}

Note: 	Do	not	extract	render	primitives	while	the	simulation	is	running.

The	 amount	 of	 debug	 visualization	 data	might	 be	 too	 vast	 to	 create	 efficiently	 for	 large
scenes.	 In	cases	where	only	a	 localized	area	 is	of	 interest,	 there	 is	 the	option	 to	use	a
culling	box	for	debug	visualization	via	PxScene::setVisualizationCullingBox()



Note	 that	 simply	 enabling	 debug	 visualization	 (PxVisualizationParameter::eSCALE)	 can
have	 a	 significant	 performance	 impact,	 even	 when	 all	 the	 other	 individual	 visualization
flags	are	disabled.	Thus,	make	sure	debug	visualization	 is	disabled	 in	your	 final/release
builds.
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PhysX	Visual	Debugger	(PVD)



PVD

The	PhysX	Visual	 Debugger	 (PVD)	 provides	 a	 graphical	 view	 of	 the	 PhysX	 scene	 and
includes	 various	 tools	 to	 inspect	 and	 visualize	 variables	 of	 every	 PhysX	 object.
Additionally	it	can	also	record	and	visualize	memory	and	timing	data.

PVD	 can	 be	 downloaded	 from:	 http://supportcenteronline.com/ics/support/default.asp?
deptID=1949

Questions	regarding	the	usage	of	 the	GUI	should	all	be	answered	by	 its	detailed	built-in
help.

http://supportcenteronline.com/ics/support/default.asp?deptID=1949


Basic	Setup	(SDK	Side)

PVD	integration	is	enabled	in	the	debug,	checked	and	profiling	configurations	of	the	SDK.
In	 order	 to	 reduce	 memory	 footprint	 and	 code	 size,	 it	 is	 not	 enabled	 in	 the	 release
configuration.

The	SDK	outputs	the	PVD	debugging	data	in	form	of	a	stream.	PVD	supports	reading	the
stream	either	from	a	TCP/IP	network	socket	or	from	a	file.

Network	Setup

Streaming	 to	 TCP/IP	 is	 supported	 on	 almost	 all	 platforms,	 and	 is	 usually	 the	 most
convenient	way	to	collect	PVD	data.	In	this	mode	the	stream	can	be	watched	in	real-time,
depending	 on	 network	 speed	 and	 scene	 complexity.	 In	 network	 mode	 PVD	 acts	 as	 a
TCP/IP	server	and	must	therefore	be	launched	before	the	SDK	tries	to	connect	to	it.	The
default	listening	port	is	5425:

use	namespace	physx;

PxPvd*		pvd	=	PxCreatePvd(*foundation);

PxPvdTransport*	transport	=	PxDefaultPvdSocketTransportCreate(PVD_HOST

pvd->connect(*transport,PxPvdInstrumentationFlag::eALL);

PxPhysics*	physics	=	PxCreatePhysics(PX_PHYSICS_VERSION,	*gFoundation

//After	releasing	PxPhysics,	release	the	PVD

physics->release();

pvd->release();

transport->release();

File	Setup

Streaming	to	file	is	an	alternative	to	network	streams.	This	is	the	recommended	fall-back
in	case	your	platform	or	system	setup	does	not	support	a	network	connection	to	PVD.	File
streams	 are	 often	 faster	 than	 network	 sockets	 and	 therefore	 a	 good	 alternative	 if
performance	 is	 more	 important	 than	 real-time	 viewing.	 Streams	 stored	 as	 files	 can	 be



loaded	by	drag&drop	or	over	the	File->Load	menu	in	PVD:

use	namespace	physx;

PxPvd*		pvd	=	PxCreatePvd(*foundation);

PxPvdTransport*	transport	=	PxDefaultPvdFileTransportCreate(filename

pvd->connect(*transport,PxPvdInstrumentationFlag::eALL);

PxPhysics*	physics	=	PxCreatePhysics(PX_PHYSICS_VERSION,	*gFoundation

//After	releasing	PxPhysics,	release	the	PVD

physics->release();

pvd->release();

transport->release();



Advanced	Setup

Connection	Flags

To	optimize	 the	 stream	size	we	provide	 flags	 to	 enable	 specific	 features.	This	 has	both
influence	on	PVD's	and	the	SDK's	performance:

PxPvdInstrumentationFlag::eDEBUG:	 Transfer	 all	 debug	 data	 to	 visualize	 and
inspect	objects.	This	flag	has	usually	the	biggest	impact	on	the	stream's	size.
PxPvdInstrumentationFlag::ePROFILE:	 Transfer	 timing	 information	 of	 various
profiling	zones	in	our	SDK.
PxPvdInstrumentationFlag::eMEMORY:	Transfer	memory	usage	data	of	our	SDK.

Setup	to	transfer	only	profiling	data	over	network:

pvd->connect(*transport,	PxPvdInstrumentationFlag::ePROFILE);

Visualizing	Externals	and	Extended	Data

Joints	are	implemented	as	an	extension	to	the	SDK	constraints	and	therefore	need	special
handling	 to	get	 transmitted	 to	PVD.	Both	 joint	and	contact	data	can	 increase	 the	stream
size	significantly.	Visualizing	it	in	PVD	is	therefore	disabled	by	default.	To	enable	them	use
following	API	calls:

mScene->getScenePvdClient()->setScenePvdFlags(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS

or	set	the	flags	separately:

mScene->getScenePvdClient()->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS

Visualizing	SceneQuery



Visualizing	 SceneQuery	 in	 PVD	 is	 disabled	 by	 default	 since	 queries	 and	 hits	 data	 can
increase	the	stream	size	significantly.	To	enable	it	use	following	API	calls:

mScene->getScenePvdClient()->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES

Custom	PvdClient

Implement	 the	PvdClient	 interface	 if	 your	application	needs	 to	 react	upon	connection	or
disconnection	from	PVD,	or	if	you	plan	to	send	custom	PVD	events	from	your	application.
It	 is	 recommended	 to	 toggle	 the	 contact	 and	 constraint	 visualization	 in	 the
onPvdConnected/onPvdDisconnected	 callbacks	 to	 avoid	 potential	memory	 and	 compute
overhead	in	the	SDK:

//	derive	from	PvdClient

struct	MyPvdClient	:	public	physx::pvdsdk::PvdClient

{

				virtual	void	onPvdConnected()

				{

								//	1.	create	a	PvdDataStream

								//	2.	send	your	custom	PVD	class	descriptions	from	here

								//	this	then	allows	PVD	to	correctly	identify	and	represent

								//	custom	data	that	is	sent	from	your	application	to	a	PxVisualDebuggerConnection.

								//	example	in	JointConnectionHandler

								//	3.	do	something	when	successfully	connected

								//	e.g.	enable	contact	and	constraint	visualization

				}

				virtual	void	onPvdDisconnected()

				{

								//	handle	disconnection,	release	PvdDataStream

								//	e.g.	disable	contact	and	constraint	visualization

				}

				//impleament	other	methods

				...

};

//	register	custom	handler

MyPvdClient	myPvdClient;

pvd->addClient(myPvdClient);



PVD	Error	Stream

PhysX	SDK	sends	all	its	own	error	messages	to	PVD	if	PVD	is	connected.	In	addition,	you
can	 call	 Ps::Foundation::error()	 or	 Ps::Foundation::getErrorHandler()::reportError()	 to
report	 your	 error	 message.	 These	 functions	 will	 send	 error	 messages	 to	 PVD
automatically.

The	messages	will	be	listed	in	ErrorStream	view	of	PVD.

Custom	profiling

When	 using	 PxPvdInstrumentationFlag::ePROFILE,	 PVD	 internally	 calls
PxSetProfilerCallback()	 to	 set	 itself	 up	 as	 the	 current	 profiler.	 This	 happens	 during	 the
PxPvd::connect()	 call,	 and	 it	 overrides	 the	 potentially	 already	 existing	 profiler	 callback.
That	is,	if	users	call	PxSetProfilerCallback()	with	their	own	user	profiler	callback,	and	then
initialize	PVD	with	PxPvdInstrumentationFlag::ePROFILE,	then	the	user	profiler	callback	is
lost.	 Similarly,	 initializing	 PVD	 first	 then	 calling	 PxSetProfilerCallback()	 will	 make	 PVD's
profiling	results	vanish.

In	case	both	PVD's	internal	profiling	and	a	user's	custom	profiling	are	needed	at	the	same
time,	 it	 is	recommended	to	initialize	PVD	first,	 then	call	PxSetProfilerCallback()	with	your
own	profiler.	 In	your	 implementation,	call	 the	PVD	profiling	 functions	manually,	before	or
after	performing	your	own	profiling	operations:

struct	UserProfilerCallback	:	public	PxProfilerCallback

{

								PxPvd*	mPvd;

								virtual	void*	zoneStart(const	char*	eventName,	bool	detached

								{

																//	Do	custom	profiling	here

																//	Then	re-route	to	PVD	implementation

																return	mPvd->zoneStart(eventName,	detached,	contextId

								}

								virtual	void	zoneEnd(void*	profilerData,	const	char*	eventName

								{

																//	Do	custom	profiling	here



																//	Then	re-route	to	PVD	implementation

																mPvd->zoneEnd(profilerData,	eventName,	detached,	contextId

								}

};

This	is	illustrated	in	SnippetCustomProfiler.
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Simulation	Statistics



Interface

In	 this	chapter	we	will	have	a	quick	 look	at	 the	statistics	 information	 that	PhysX	collects
every	 simulation	 step.	 Usually,	 this	 information	 can	 be	 explored	 in	 the	 PhysX	 Visual
Debugger	but	we	do	offer	a	PhysX	API	method	as	well	to	allow	applications	to	access	the
data	directly.	After	a	simulation	step	and	a	call	to	PxScene::fetchResults()
statistics	 for	 the	 processed	 step	 can	 be	 retrieved	 through	 the
PxScene::getSimulationStatistics()	 interface.	 The	 method	 copies	 the	 data	 to	 a	 user
provided	PxSimulationStatistics	structure.	For	details	about	the	individual	members	please
refer	to	the	API	documentation.

Note: 	Do	not	fetch	the	simulation	statistics	while	the	simulation	is	running.



Usage

The	provided	simulation	statistics	is	mainly	meant	to	help	investigate	performance	issues.
It	 provides	 a	 quantitative	 summary	 of	 the	 work	 done,	 i.e.,	 the	 number	 of	 objects	 or
combination	 of	 objects	 which	 have	 been	 processed	 in	 the	 current	 simulation	 step.	 For
example,	 if	 you	 encounter	 performance	 spikes	 in	 certain	 frames,	 then	 the	 simulation
statistics	might	give	some	insight	into	possible	causes.	For	instance:

Has	a	large	amount	of	volumes	been	added	or	removed	from	the	broadphase	in	one
single	step?	You	could	try	to	distribute	the	addition/removal	of	objects	over	a	couple	of
simulation	steps	or	maybe	there	is	a	particle	system	in	the	scene	whose	grid	size	is
very	small.
Are	 there	suddenly	many	more	collision	pairs	processed	 than	expected?	This	could
be	caused	by	a	badly	configured	collision	pair	filter	or	maybe	some	
been	accidentally	raised.
etc.

Please	 keep	 in	mind	 that	 the	 simulation	 statistics	 are	 currently	 less	 a	measurement	 of
what	 the	 scene	contains	but	 rather	what	 got	 processed.	So	 it	 is	 only	partially	 helpful	 to
detect	whether	objects	have	been	configured	and	arranged	properly.
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Serialization



Introduction

PhysX	3	features	two	approaches	to	serialization:

API-level	serialization	to	RepX	(an	XML	format)
Binary	serialization

API-level	 serialization	 uses	 a	 human	 readable	 XML	 format	 -	 RepX	 -	 that	 directly
corresponds	 to	 the	 PhysX	 API.	 It	 is	 therefore	 suitable	 for	 manual	 inspection	 and
modification	for	debugging	purposes.	It	offers	platform	independence	and	further	supports
loading	data	that	was	serialized	with	a	previous	PhysX	SDK	version.	API-level	serialization
is	not	expected	to	be	used	in	performance	critical	situations.

The	 binary	 serialization	 approach	 on	 the	 other	 hand	 supports	 instantiation	 of	 PhysX
objects	directly	from	memory	without	copying	data.	This	in-place	deserialization	method	is
well	suited	for	performance	critical	real	time	situations.	However,	this	approach	is	also	less
flexible	as	the	binary	format	is	specific	to	a	given	platform	and	PhysX	SDK	version.	
provides	functionality	to	convert	binary	serialized	data	from	authoring	platforms	to	run-time
platforms	to	ease	the	asset	management.

Note: 	cooking	also	generates	a	binary	output	stream.	The	primary	purpose	of	cooking,
however,	is	to	translate	from	a	user	format	to	a	format	suitable	for	the	SDK	runtime,	and
so	it	is	not	considered	a	serialization	mechanism.	Loading	a	cooked	mesh	from	a	stream
involves	allocation	and	endian	conversion.	As	a	consequence,	it	is	much	less	efficient
than	PhysX'	binary	serialization	mechanism.	See	Shapes	for	more	details	about	cooking.

The	following	documentation	will	discuss	how	to	use	both	serialization	approaches.	
show	how	 to	build	collections	of	PhysX	objects	and	how	 these	collections	are	serialized
and	 deserialized.	 Further	 it	 will	 show	 how	 dependencies	 to	 other	 PhysX	 objects	 or
application	side	objects	can	be	re-established	when	deserializing.

PhysX	also	supports	extending	serialization	 to	custom	 types,	such	as	specialized	 joints.
This	is	described	in	more	detail	in	Section	Extending	Serialization.



First	Code

The	 following	 code	 creates	 and	 serializes	 a	 rigid	 dynamic	 using	 both	RepX	 and	 binary
formats:

//	Create	a	material,	a	shape	and	a	rigid	dynamic

PxSphereGeometry	geometry(1.0f);

PxMaterial*	material	=	PxGetPhysics().createMaterial(0.0f,	0.0f,	0.0f

PxShape*	shape	=	PxGetPhysics().createShape(geometry,	*material);

PxTransform	t	=	PxTransform(PxIdentity);

PxRigidDynamic*	dynamic	=	PxCreateDynamic(PxGetPhysics(),	t,	geometry

PxSerializationRegistry*	registry	=	PxSerialization::createSerializationRegistry

//	Create	a	collection	and	all	objects	for	serialization

PxCollection*	collection	=	PxCreateCollection();

collection->add(*dynamic);

PxSerialization::complete(*collection,	*registry);

//	Serialize	either	to	binary	or	RepX

PxDefaultFileOutputStream	outStream("serialized.dat");

//	Binary

				PxSerialization::serializeCollectionToBinary(outStream,	*collection

//~Binary

//	RepX

				PxSerialization::serializeCollectionToXml(outStream,	*collection

//~RepX

Most	 operations	 related	 to	 serialization	 require	 an	 instance	 of	 PxSerializationRegistry
which	provides	information	on	how	to	serialize	PhysX	types.	In	order	to	serialize	a	PhysX
object,	 it	 needs	 to	 be	 added	 to	 a	PxCollection.	 If	 an	 object	 has	 dependencies	 on	 other
PhysX	objects,	 they	need	to	be	serialized	as	well.	PxSerialization::complete
required	objects	to	the	collection.

The	following	code	deserializes	the	rigid	dynamic	and	adds	it	to	a	scene	for	simulation:

PxSerializationRegistry*	registry	=	PxSerialization::createSerializationRegistry



//	Binary

				//	Open	file	and	get	file	size

				FILE*	fp	=	fopen("serialized.dat",	"rb");

				fseek(fp,	0,	SEEK_END);

				unsigned	fileSize	=	ftell(fp);

				fseek(fp,	0,	SEEK_SET);

				//	Allocate	aligned	memory,	load	data	and	deserialize

				void*	memory	=	malloc(fileSize+PX_SERIAL_FILE_ALIGN);

				void*	memory128	=	(void*)((size_t(memory)	+	PX_SERIAL_FILE_ALIGN

				fread(memory128,	1,	fileSize,	fp);

				fclose(fp);

				PxCollection*	collection	=	PxSerialization::createCollectionFromBinary

//~Binary

//	RepX

				//	Load	file	and	deserialize	collection	-	needs	cooking	library

				PxDefaultFileInputData	inputData("serialized.dat");

				PxCollection*	collection	=	PxSerialization::createCollectionFromXml

																																																																								

//~RepX

scene->addCollection(*collection);

When	deserializing	 a	 binary	 serialized	 collection,	 the	 data	 first	 needs	 to	 be	 copied	 to	 a
memory	 block	 that	 is	 aligned	 to	 128	 bytes.	 The	memory	 block	may	 not	 be	 deallocated
before	 the	 objects	 have	 been	 released:	 it	 needs	 to	 persist	 for	 the	 entire	 lifetime	 of	 the
objects.	This	does	not	apply	to	RepX	deserialization,	as	the	memory	for	the	corresponding
PhysX	objects	is	allocated	within	PhysX.	Finally	the	objects	of	the	resulting	collection	can
be	added	to	the	scene	with	PxScene::addCollection.



In-depth	Discussion

Collections

The	serialization	system	makes	use	of	a	class	PxCollection,	which	manages	references	to
objects	 deriving	 from	PxBase.	 Each	 collection	 represents	 a	 set	 of	 objects.	 Collections
maintain	a	mapping	between	 IDs	of	 type	PxSerialObjectId	 and	objects	 in	 the	collection.
IDs	may	be	defined	by	 the	application.	One	caveat	here	 is	 that	 the	 IDs	must	be	unique
within	a	collection,	but	do	not	have	to	be	unique	across	different	collections.	If	the	latter	is
required	by	the	application,	it	is	the	application's	responsibility	to	ensure	it.

Here	 is	 an	 example	 of	 how	 to	 iterate	 over	 a	 collection,	 for	 instance	 to	 ensure	 that	 the
objects	 intended	 for	 serialization	 have	 all	 been	 added	 to	 the	 collection.	When	 doing	 so
PhysX'	dynamic	typing	mechanism	can	be	used	to	classify	the	objects:

PxCollection*	collection;

PxU32	size	=	collection->getNbObjects();

for(PxU32	i=0;	i<size;	i++)

{

				PxBase*	object	=	collection->getObject(i);

				if(!object->is<PxActor>())

								continue;

				switch((PxConcreteType)object->getConcreteType())

				{

				case	PxConcreteType::eRIGID_DYNAMIC:

				...

				}

}

Note: 	In	order	to	simplify	releasing	object	within	a	collection,	PhysXExtensions
contains	a	function	to	remove	and	release	all	objects	from	a	collection:
PxCollectionExt::releaseObjects.

Note: 	Releasing	an	object	within	a	collection	invalidates	the	mapping	from	indices	to
objects.



A	collection	is	said	to	be	complete	if	no	contained	objects	depend	on	an	object	outside	of
the	collection.	For	example,	an	actor,	a	shape	with	a	box	geometry,	and	the	material	of	the
shape	would	together	form	a	complete	collection.	The	same	collection	without	the	material
would	be	incomplete.

Figure	1:	Left:	Complete	Collection,	Right:	Incomplete	Collection

For	a	formal	definition	please	refer	to	Complete.

Both	 complete	 and	 incomplete	 collections	 can	 be	 serialized,	 but	 when	 deserializing	 an
incomplete	 collection,	 references	 to	 objects	 which	 were	 not	 serialized	 will	 need	 to	 be
resolved.	The	following	two	sections	describe	how	PhysX	collections	can	be	serialized	and
deserialized	 using	 the	 binary	 format	 or	RepX.	 The	 first	 section	 shows	 how	 to	 deal	with
complete	 collections,	 and	 the	 second	 section	 shows	 how	 to	 deal	 with	 incomplete
collections.

Serializing	Complete	Collections

This	 code	 snippet	 shows	 how	 to	 prepare	 a	 collection	 of	 PhysX	 objects	 for	 serialization
(e.g.	an	actor,	its	shapes,	and	the	materials	and	meshes	they	reference.):

PxPhysics*	physics;																																									//	The	physics	SDK	object

PxRigidDynamic*	dynamic	=	PxCreateDynamic(...);													//	Create	a	rigid	dynamic

																																																												//Create	a	serialization	registry

PxSerializationRegistry*	registry	=	PxSerialization::createSerializationRegistry

PxCollection*	collection	=	PxCreateCollection();												//	Create	a	collection

collection->add(*dynamic);																																		//	Add	it	to	the	collection



PxSerialization::complete(*collection,	*registry);										//	Adds	all	objects	required	to

																																																												//	recreate	the	dynamic	after

																																																												//	deserialization

Instead	 of	 using	 PxSerialization::complete	 it	 is	 possible	 to	 manually	 add	 the	 objects
required	 for	 serialization.	 All	 objects	 the	PxRigidDynamic	 references	 would	 need	 to	 be
added	and	then	all	objects	referenced	by	the	newly	added	objects	would	need	to	be	added
as	well	and	so	forth.	See	definitions:	Requires,	Complete.

By	default	PxSerialization::complete	follows	references	from	joints	to	their	actors,	but	not
from	actors	to	their	joints.	The	followJoint	parameter	can	be	used	to	change	the	behavior
of	PxSerialization::complete	to	add	the	joints	attached	to	each	actor.	This	will	cause	entire
actor-joint	chains	to	be	added	to	the	collection.

When	all	the	necessary	objects	have	been	added	to	a	collection,	create	an	implementation
of	the	PxOutputStream	interface,	then	serialize	the	collection:

PxColletion*	collection;																																		//	Complete	collection	without	orphans

PxSerializationRegistry*	registry;																								//	Registry	for	serializable	types

PxOutputStream&	outStream	=	...;																										//	Implemented	by	the	application

//	Serialize

//	Binary

				PxSerialization::serializeCollectionToBinary(outStream,	*collection

//~Binary

//	RepX

				PxSerialization::serializeCollectionToXml(outStream,	*collection

//~RepX

//	Collection	and	registry	can	be	released	if	they	are	no	longer	required.

//	Note	that	releasing	the	collection	will	not	release	the	contained	objects!

collection->release();

registry->release();

Note: 	Serialization	of	objects	in	a	scene	that	is	simultaneously	being	simulated	is	not
supported	and	leads	to	undefined	behavior.



The	following	code	shows	how	to	deserialize	a	collection	from	a	memory	block	or	XML:

PxSerializationRegistry*	registry;																								//	Registry	for	serializable	types

PxCooking*	cooking;																																							//	Cooking	library	needed	for

																																																										//	instantiating	objects	by	RepX

//	Deserialize

//	Binary

				void*	memory128	=	...;																																//	A	128-byte	aligned	buffer	previously

																																																										//	loaded	from	disk	by	the	user

				PxCollection*	collection	=	PxSerialization::createCollectionFromBinary

//~Binary

//	RepX

				PxInputData&	inputData	=	...;																									//	Implemented	by	the	application

				PxCollection*	collection	=	PxSerialization::createCollectionFromXml

																																																																								

//~RepX

To	add	all	the	objects	to	the	scene	and	release	the	collection	and	registry:

PxScene*	scene;																																											//	The	scene	object

scene->addCollection(*collection);

collection->release();

registry->release();

See	Serializable	 for	 the	 exact	 set	 of	 conditions	 a	 collection	must	 satisfy	 in	 order	 to	 be
serialized.	These	conditions	can	be	checked	with	PxSerialization::isSerializable(...)

Serializing	Incomplete	Collections

Another	common	use	case	is	where	a	collection	of	actors	and	joints	-	say,	a	rag	doll	-	will
be	 deserialized	 multiple	 times,	 with	 each	 instance	 sharing	 the	 same	 materials	 and
meshes.	To	achieve	this,	serialize	two	collections:

a	collection	A	of	the	materials	and	meshes	that	will	be	deserialized	just	once
a	collection	B	of	actors	and	joints	which	will	be	copied	and	deserialized	multiple	times



Collection	B	is	incomplete,	since	it	contains	references	to	objects	in	A.	When	serializing	B,
the	serialized	format	will	remember	each	reference	to	an	object	in	A	using	that	object's	ID
(if	 it	doesn't	have	an	ID,	then	serialization	will	fail.)	As	long	as	an	object	of	the	right	type
with	 a	 matching	 ID	 is	 supplied	 when	 deserializing	 collection	 B,	 the	 reference	 can	 be
resolved.	 Although	 collection	 B	 is	 incomplete,	 it	 is	 also	 said	 to	 be	 complete	 relative	 to
collection	A.	For	a	formal	definition	of	complete	please	refer	to	Complete

Figure	2:	Left:	Collection	A	with	Sharable	Objects,	Right:	Collection	B

Concretely,	to	serialize	and	deserialize	an	incomplete	collection:

At	serialization	time,	provide	IDs	for	all	objects	in	collection	A	that	are	referenced	by
objects	in	collection	B.
When	deserializing,	provide	a	collection	with	matching	IDs	for	all	the	objects	in	A	that
were	referenced	by	objects	in	B.

Here	 are	 examples	 of	 how	 the	 application	 can	 provide	 identities	 (PxSerialObjectId
express	 requirements	 of	 one	 collection	 to	 another.	 This	 can	 be	 done	 explicitly	 when
adding	the	object	with:

PxCollection*	collection;

PxTriangleMesh*	triMesh;

PxSerialObjectId	triMeshId	=	1;																																		//	PX_SERIAL_OBJECT_ID_INVALID

																																																																	//	is	a	reserved	value

collection->add(*triMesh,	triMeshId);

Or	set	the	ID	after	adding	the	object:



collection->add(*triMesh);

collection->addId(*triMesh,	triMeshId);

There	 is	a	helper	 function	to	generate	IDs	for	all	objects	 in	a	collection	that	do	not	have
IDs	yet:

PxSerialObjectId	baseId	=	1;																																					//	PX_SERIAL_OBJECT_ID_INVALID	is

																																																																	//	a	reserved	value

PxSerialization::createSerialObjectIds(*collection,	baseId);					//	Assigns	incremental	ID	values

																																																																	//	to	the	collection	objects

Already	used	 ID	values	will	be	skipped	by	createSerialObjectIds,	as	well	as	objects	 that
already	have	IDs.

After	providing	correct	 IDs,	all	 required	objects	have	been	added	 to	 the	collection	 to	be
serialized,	but	without	adding	the	objects	that	are	intended	to	be	referenced.	The	
function	in	PxSerialization	supports	completing	a	collection	relative	to	another	collection:

PxSerializationRegistry*	registry;																															//	Registry	for	serializable	types

PxCollection*	collectionB;																																							//	Collection	to	be	completed

PxCollection*	collectionA;																																							//	The	collection,	collectionB

																																																																	//	will	depend	on

PxSerialization::complete(*collectionB,	*registry,	collectionA);	//	Completes	collectionB,	but

																																																																	//	ignores	objects	in	collectionA

																																																																	//	(and	also	their	requirements)

Serialization	example:

PxConvexMesh**	convexes;													//	An	array	of	mNbConvexes	convexes

PxRigidDynamic**	actors;													//	An	array	of	mNbConvexes	actors	referencing	the	convexes

PxSerializationRegistry*	registry;			//	Registry	for	serializable	types

PxOutputStream&	convexStream;								//	Output	stream	for	the	convex	collection

PxOutputStream&	actorStream;									//	Output	stream	for	the	actor	collection

PxCollection*	convexCollection	=	PxCreateCollection();

PxCollection*	actorCollection	=	PxCreateCollection();



//	Add	convexes	to	collection

for(PxU32	i=0;i<mNbConvexes;i++)

				convexCollection->add(*convexes[i]);

//	Create	IDs	for	the	convexes,	starting	with	1

PxSerialization::createSerialObjectIds(*convexCollection,	PxSerialObjectId

//	Serialize	the	convexes	along	with	their	IDs

//	Binary

			PxSerialization::serializeCollectionToBinary(convexStream,	*convexCollection

//~Binary

//	RepX

			PxSerialization::serializeCollectionToXml(convexStream,	*convexCollection

//~RepX

//	Add	actors	to	other	collection

for(PxU32	i=0;i<mNbActors;i++)

				actorCollection->add(*actors[i]);

//	Add	all	required	objects	except	the	convexes

PxSerialization::complete(*actorCollection,	*registry,	convexCollection

//	Serialize	the	actors	with	references	to	convexCollection

//	Binary

				PxSerialization::serializeCollectionToBinary(actorStream,	*actorCollection

																																																	convexCollection);

//~Binary

//	RepX

				PxSerialization::serializeCollectionToXml(actorStream,	*actorCollection

																																														convexCollection);

//~RepX

//	Release	collections	and	registry

convexCollection->release();

actorCollection->release();

registry->release();

Deserialization	example:

PxPhysics*	physics;																									//	The	physics	SDK	object

PxSerializationRegistry*	registry											//	Registry	for	serializable	types



PxCooking*	cooking;																									//	Cooking	lib	needed	for	instantiating	objects	(RepX)

PxScene*	scene;																													//	The	scene	into	which	the	objects	will	be	inserted

//	Deserialize	convexes	along	with	their	IDs	(no	external	dependencies)

//	Binary

				void*	convexMemory128;																		//	Aligned	memory	containing	serialized	convexes

				PxCollection*	convexCollection	=

								PxSerialization::createCollectionFromBinary(convexMemory128

//~Binary

//	RepX

				PxInputData&	convexInputData	=	...;					//	Implemented	by	the	application

				PxCollection*	convexCollection	=

								PxSerialization::createCollectionFromXml(convexInputData,	

//~RepX

//	Deserialize	actors	referencing	the	convexCollection

//	Binary

				void*	actorMemory128;																			//	Aligned	memory	containing	serialized	actors

				PxCollection*	actorCollection	=

								PxSerialization::createCollectionFromBinary(actorMemory128

//~Binary

//	RepX

				PxInputData&	actorInputData	=	...;						//	Implemented	by	the	application

				PxCollection*	actorCollection	=

								PxSerialization::createCollectionFromXml(actorInputData,	*

																																																	convexCollection);

//~RepX

//	Release	convex	collection

convexCollection->release();

//	Add	actors	to	scene	and	release	collection	and	registry

scene->addCollection(*actorCollection);

actorCollection->release();

registry->release();

The	next	example	shows	how	to	deal	with	situations	where	the	serialized	objects	require
objects	that	are	not	serialized	and	deserialized	but	created	by	other	means:

PxSerializationRegistry*	registry;		//	Registry	for	serializable	types

PxMaterial**	materials;													//	Created	procedurally	by	application



PxRigidDynamic**	actors;												//	An	array	of	mNbConvexes	actors	referencing	the	convexes

PxOutputStream&	actorStream;								//	Output	stream	for	the	actor	collection

//	Add	materials	with	IDs	to	collection

PxCollection*	materialCollection	=	PxCreateCollection();

for(PxU32	i=0;i<mNbMaterials;i++)

				materialCollection->add(*materials[i],	PxSerialObjectId(i+1));

//	Create	actor	collection,	complete	and	serialize

PxCollection*	actorCollection	=	PxCreateCollection();

for(PxU32	i=0;i<mNbActors;i++)

				actorCollection->add(*actors[i]);

PxSerialization::complete(*actorCollection,	*registry,	materialCollection

//	Binary

				PxSerialization::serializeCollectionToBinary(actorStream,	*actorCollection

																																																	materialCollection

//~Binary

//	RepX

				PxSerialization::serializeCollectionToXml(actorStream,	*actorCollection

																																														materialCollection);

//~RepX

actorCollection->release();

materialCollection->release();										//	Note	that	materialCollection	was	not	serialized

registry->release();

Deserialization:

PxScene*	scene;																									//	The	scene	into	which	the	objects	will	be	inserted

PxSerializationRegistry*	registry;						//	Registry	for	serializable	types

PxCooking*	cooking;																					//	Cooking	library	needed	for	instantiating	objects(RepX)

PxMaterial**	materials;																	//	Created	procedurally	by	application

//	recreate	material	collection	with	consistent	IDs,	no	deserialization

PxCollection*	materialCollection	=	PxCreateCollection();

for(PxU32	i=0;i<mNbMaterials;i++)

				materialCollection->add(*materials[i],	PxSerialObjectId(i+1));

//	Deserialize	actors	with	reference	material	collection



//	Binary

				void*	actorMemory128;																//	aligned	memory	containing	serialized	actors

				PxCollection*	actorCollection	=

								PxSerialization::createCollectionFromBinary(actorMemory128

								materialCollection);

//~Binary

//	RepX

				PxInputData&	actorInputData	=	...;			//	Implemented	by	the	application

				PxCollection*	actorCollection	=

								PxSerialization::createCollectionFromXml(actorInputData,	*

																																																	materialCollection

//~RepX

materialCollection->release();

scene->addCollection(*actorCollection);

actorCollection->release();

registry->release();

Reference	Counting	of	Deserialized	Objects

This	section	assumes	the	background	in	Reference	Counting.

Objects	 that	are	created	by	deserialization	are	always	created	with	a	 reference	 that	 the
application	 needs	 to	 give	 up	 by	 explicitly	 calling	 release().	 The	 information	whether	 the
application	gave	up	a	reference	to	an	object	is	not	preserved	on	serialization.

See	 Shapes	 for	 a	 discussion	 of	 the	 method	 PxRigidActorExt::createExclusiveShape
which	 automatically	 releases	 the	 initial	 reference	 to	 the	 shape,	 leaving	 only	 the	 actor's
reference.	Again,	the	information	that	this	reference	has	been	released	is	not	preserved	by
serialization.

Example	for	shapes:

PxOutputStream&	outStream;										//	Output	stream	for	the	collection

PxSerializationRegistry*	registry;		//	Registry	for	serializable	types

PxRigidActor*	actor;																//	Any	actor

//	Creating	shapes	in	different	ways	implies	different	rules	for	releasing



//	Shape	is	automatically	released	when	actor	gets	released

PxShape*	shapeA	=	PxRigidActorExt::createExclusiveShape(*actor,	...);

//	Shape	is	either	created	as	"shared"	or	"exclusive"	and	needs	to	be	released	by

//	the	application

PxShape*	shapeB	=	PxGetPhysics().createShape(...);

actor->attachShape(*shapeB);

//	Create	collection	with	actor	and	shapes	and	serialize

PxCollection*	collection	=	PxCreateCollection();

collection->add(*actor);

collection->add(*shapeA);

collection->add(*shapeB);

PxSerialization::serializeCollectionToBinary(outStream,	*collection

collection->release();

//	Releasing	actors	and	shapes

actor->release();				//	Releases	actor	and	shapeA	(automatically)

shapeB->release();			//	Releases	shapeB	(necessary	since	shapeB	was	created	through	PxPhysics)

//	Deserialize	collection

...

void*	memory128	=	...;			//	Aligned	memory	for	serialized	data

collection	=	PxSerialization::createCollectionFromBinary(memory128

//	Release	actors	and	release	ALL	shapes	(necessary	since	shape	creation	history	is

//	not	preserved	across	serialization

for(PxU32	i	=	0;	i	<	collection->getNbObjects();	i++)

{

				switch	(	collection->getObject(i).getConcreteType()	)

				{

								case	PxConcreteType::eRIGID_DYNAMIC:

								case	PxConcreteType::eRIGID_STATIC:

												static_cast<PxActor&>(collection->getObject(i)).release

												break;																																																							

								case	PxConcreteType::eSHAPE:

												static_cast<PxShape&>(collection->getObject(i)).release

												break;																																																							

				}

}

Note: 	There	is	a	PhysXExtensions	function	to	release	all	objects	within	a	collection:
PxCollectionExt::releaseObjects.



Reconnecting	PhysX	and	Game-Objects

Here	is	an	example	of	how	to	fix	up	references	with	gameplay	objects	by	querying	the	IDs
of	a	collection:

PxPhysics*	physics;																					//	The	physics	SDK	object

PxCooking*	cooking;																					//	Cooking	library	needed	for	instantiating	objects(RepX)

PxSerializationRegistry*	registry;						//	Registry	for	serializable	types

//	Deserialize	objects	along	with	IDs

//	Binary

				void*	memory128;																				//	Aligned	memory	containing	serialized	objects

				PxCollection*	collection	=

								PxSerialization::createCollectionFromBinary(memory128,	*registry

//~Binary

//	RepX

				PxInputData&	inputData	=	...;								//	Implemented	by	the	application

				PxCollection*	collection	=

								PxSerialization::createCollectionFromXml(actorInputData,	*

																																																	materialCollection

//~RepX

//	Receive	a	list	of	all	deserialized	IDs

#define	MAX_IDS	100

PxSerialObjectId	idBuffer[MAX_IDS];

PxU32	numIds	=	collection->getIds(idBuffer,	MAX_IDS);

//	iterate	over	the	list	to	patch	up	gameplay	objects

for	(PxU32	i	=	0;	i	<	numIds;	i++)

{

				PxActor*	actor	=	collection->find(idBuffer[i])->is<PxActor>();

				if	(actor)

				{

								//	this	assumes	that	findGamePlayObjectFromId	is	able	to	locate

								//	the	corresponding	game	play	object	from	a	PxSerialObjectId

								actor->userData	=	findGamePlayObjectFromId(idBuffer[i]);

				}

}

Alternatively	PxCollection::getObjects(...)	and	PxCollection::getId(PxBase&	object)
used	to	achieve	the	same.



Serializing	Everything

PhysX	 provides	 two	 utility	 functions	 for	 serializing	 the	 entirety	 of	 the	 PhysX	 runtime:
PxCollectionExt::createCollection(PxPhysics&	 sdk)	 and
PxCollectionExt::createCollection(PxScene&	scene):

PxPhysics*	physics;																	//	The	physics	SDK	object

PxScene*	scene;																					//	The	physics	scene

PxSerializationRegistry*	registry;		//	Registry	for	serializable	types

PxOutputStream&	outStream;										//	The	user	stream	doing	the	actual	write	to	disk

//	1)	Create	a	collection	from	the	set	of	all	objects	in	the	physics	SDK	that	are	shareable	across

//				multiple	scenes.

PxCollection*	everythingCollection	=	PxCollectionExt::createCollection

//	2)	Create	a	collection	from	all	objects	in	the	scene	and	add	it

//				to	everythingCollection.

PxCollection*	collectionScene	=	PxCollectionExt::createCollection(

everythingCollection->add(collectionScene);

collectionScene->release();

//	3)	Complete	collection

PxSerialization::complete(*everythingCollection,	*registry);

//	4)	serialize	collection	and	release	it

//	Binary

				PxSerialization::serializeCollectionToBinary(outStream,	*everythingCollection

//~Binary

//	RepX

				PxSerialization::serializeCollectionToXml(outStream,	*everythingCollection

//~RepX

everythingCollection->release();

registry->release();

Deserialization	is	as	previously:

PxScene*	scene;																						//	The	physics	scene

PxCooking*	cooking;																		//	Cooking	library	needed	for	instantiating	objects	by	RepX

PxSerializationRegistry*	registry;			//	Registry	for	serializable	types



//	Binary

				void*	memory128	=	...;											//	a	128-byte	aligned	buffer	previously	loaded	from	disk

																																					//	by	the	user

				PxCollection*	everythingCollection	=

								PxSerialization::createCollectionFromBinary(memory128,	*registry

//~Binary

//	RepX

				PxInputData&	inputData	=	...;				//	Implemented	by	the	application

				PxCollection*	everythingCollection	=

								PxSerialization::createCollectionFromXml(inputData,	*cooking

//~RepX

scene->addCollection(*everythingCollection);

everythingCollection->release();

registry->release();

Serializability

This	section	contains	various	definitions	to	describe	serializability	of	a	collection.	Whether
a	collection	can	be	successfully	serialized	and	deserialized,	optionally	given	an	external
references	collection,	can	be	queried	by	calling	PxSerialization::isSerializable(...)

Requires

An	object	A	requires	another	object	B	if	A	maintains	a	reference	to	B	that	needs	to	be	re-
established	for	successfully	deserializing	A.	This	 implies	that	B	needs	to	be	deserialized
before	A.

Here	is	the	table	of	the	relationship	requires	of	all	PhysX	objects:

joints require	their	actors	and	constraint
rigid	actors require	their	shapes

shapes require	their	materials	and	mesh	(triangle	mesh,	convex	mesh	or	height
field),	if	any

articulations require	their	links	and	joints
aggregates require	their	actors
cloth	actors require	their	cloth	fabric



Subordinate

Subordinates	 are	 objects	 that	 cannot	 be	 instantiated	 without	 being	 owned	 by	 other
objects.	An	articulation	link,	for	example,	can	only	be	instantiated	as	part	of	its	articulation.

The	following	three	types	are	subordinates:

articulation	links
articulation	joint
constraints

Complete

Definition	of	a	complete	set:

A	set	of	objects	C	is	complete	if	every	object	required	by	C	is	in	C.

Definition	of	a	set	that	is	complete	relative	to	another	set:

A	set	of	objects	C	is	complete	relative	to	a	set	D	if	every	object	required
D.	This	means	that	C	can	be	deserialized	given	D.

Serializable

Here	is	the	complete	set	of	requirements	on	a	collection	C	with	dependencies	to	
that	C	can	be	serialized:

C	is	complete	relative	to	D.	("no	dangling	references")
Every	 object	 in	 D	 required	 by	 an	 object	 in	 C	 has	 a	 valid	 ID.	 ("no	 unnamed
references")
Every	subordinate	object	in	C	is	required	by	another	object	in	C.	("no	orphans")

Binary	Serialization	Specifics

The	following	sections	describe	specific	properties	of	the	binary	serialization	system.



Memory	Management

Management	 of	memory	 blocks	 containing	 deserialized	 objects	 is	 left	 to	 users.	 It	 is	 the
user's	responsibility	to:

allocate	 the	 memory	 block.	 Note	 that	 it	 must	 be	 properly	 aligned,	 to	 a
PX_SERIAL_FILE_ALIGN	(128)	bytes	boundary.
fill	the	block	with	serialized	data,	typically	by	loading	it	from	disk.
deallocate	the	memory	block	when	the	objects	within	have	been	released	by	PhysX.

Although	 the	 user	 owns	 the	 memory	 block,	 the	 PhysX	 runtime	 owns	 any	 deserialized
objects	 it	 contains.	 Concretely,	 calling	 release()	 on	 an	 object	 that	 was	 created	 by
deserialization	will	 cause	 its	 destructor	 to	 run,	 but	will	 not	 deallocate	 its	memory.	 If	 the
block	 is	 deallocated	 before	 the	 destructors	 have	 run	 for	 all	 the	 objects	 it	 contains,	 the
PhysX	runtime	will	likely	crash.	For	more	information	about	how	deserialized	objects	need
to	be	released	see	Reference	Counting	of	Deserialized	Objects.

Versioning

The	binary	serialized	data	 is	 typically	specific	 to	 the	version	of	 the	SDK	it	was	produced
with.	However,	a	SDK	version	can	load	the	data	of	older	SDK	versions	if	the	binary	format
didn't	change.	This	is	usually	the	case	with	bugfix	releases.	The	compatible	SDK	versions
are	 listed	 in	 the	 code	 documentation	 of	 PX_BINARY_SERIAL_VERSION
PxSerialization.h.

Retargeting	to	other	Platforms

Binary	 serialized	 data	 is	 platform-specific,	 and	 when	 serialized	 it	 always	 targets	 the
platform	on	which	it	was	created.	The	binary	converter	in	the	extensions	library	retargets
data	from	one	platform	to	another.	Typically	assets	are	serialized	on	an	authoring	platform
(Windows,	Mac	OS	X	and	Linux).	The	serialized	data	can	then	be	retargeted,	for	example,
to	a	console	or	any	other	runtime	platform.

The	 converter	 requires	 meta-data	 for	 the	 source	 and	 target	 platforms,	 which	 contains



information	about	 the	binary	 layout	of	objects	 for	 that	platform.	To	obtain	metadata,	use
the	function	provided	in	the	extensions	library	for	each	platform:

void	PxSerialization::dumpBinaryMetaData(PxOutputStream&	stream,	PxSerializationRegistry

On	each	target	platform,	run	it	once	and	keep	generated	data	around.	Alternatively	a	set
of	pre-built	binary	metadata	 is	 included	with	 the	PhysX	SDK	at	 [path	 to	 installed	PhysX
SDK]/Tools/BinaryMetaData.

Figure	3:	Schema	of	Retargeting

Assuming	 that	 the	 extensions	 library	 has	 been	 initialized,	 conversion	 takes	 place	 as
follows:

PxSerializationRegistry*	registry;						//	Registry	for	serializable	types

PxInputStream&	srcMetadata;													//	metadata	for	the	'from'	platform

																																								//	(e.g.	PxDefaultFileInputData)

PxInputStream&	dstMetadata;													//	metadata	for	the	'to'	platform

PxInputStream&	srcAsset;																//	stream	containing	source	asset

PxU32	srcAssetSize;																					//	size	of	the	source	asset

PxOutputStream&	dstAsset;															//	output	stream	for	retargeted	asset

PxBinaryConverter*	converter	=	PxSerialization::createBinaryConverter

converter->setMetaData(srcMetadata,	dstMetadata);

converter->convert(srcAsset,	srcAssetSize,	dstAsset);



The	Convert	Tool

The	convert	tool	is	at	[path	to	installed	PhysX	SDK]/Snippets/SnippetConvert.	It	illustrates
how	 to	 convert	 PhysX	 3	 serialized	 binary	 files	 from	 one	 platform	 to	 another.	 It	 only
compiles	and	runs	on	authoring	platforms	(Windows,	MacOs	and	Linux).

SnippetConvert	is	a	simple	command-line	tool	supporting	the	following	options:

--srcMetadata=<filename>												Defines	source	metadata	file

--dstMetadata=<filename>												Defines	target	metadata	file

--srcBinFile=<filename>													Source	binary	file	to	convert

--dstBinFile=<filename>													Outputs	target	binary	file

--generateExampleFile=<filename>				Generates	an	example	file

--verbose																											Enables	verbose	mode

Object	Names

Some	 SDK	 objects,	 such	 as	 shapes	 and	 actors,	 can	 be	 given	 names	 using	 the
PxShape::setName()	and	PxActor::setName()	 functions.	By	default	 these	names	are	not
serialized.	 The	 'exportNames'	 parameter	 of	 the
PxSerialization::serializeCollectionToBinary()	 can	 be	 set	 to	 true	 in	 order	 to	 serialize	 the
names	along	with	the	objects.

API-level	Serialization	(RepX)	Specifics

RepX	stands	for	Representation	X	and	is	the	ASCII-XML	serialization	format	for	PhysX	3.
As	opposed	to	binary	serialization,	the	RepX	XML	serialization	is	not	intended	to	be	used
in	performance	critical	or	memory	constrained	situations.	The	following	sections	describe
specifics	of	the	RepX	XML	serialization	system.

Upgrading	RepX	Data

Upgrading	RepX	data	 from	an	older	PhysX	version	 to	 a	 newer	 one	 is	 easy.	 It	 happens
implicitly	when	deserializing	old	RepX	data	with	a	newer	PhysX	SDK	and	re-serializing	the
resulting	PxCollection.



Example	for	upgrading	a	RepX	stream:

PxPhysics*	physics;																																							//	The	physics	SDK	object	(e.g.

																																																										//	PhxsX	3.3)

PxCooking*	cooking;																																							//	Cooking	library	needed	for

																																																										//	instantiating	objects

PxSerializationRegistry*	registry;																								//	Registry	for	serializable	types

PxDefaultFileInputData	inputData(pathTo30RepXFile);							//load	an	older	3.x	RepX	file

PxCollection*	collection	=

				PxSerialization::createCollectionFromXml(inputData,	*cooking,	

PxDefaultFileOutputStream	outStream(pathToNewRepXFile);

PxSerialization::serializeCollectionToXml(outStream,	*collection,	

Object	Names

As	 opposed	 to	 binary	 serialization,	 the	 object	 names	 that	 can	 be	 specified	 with	 the
PxShape::setName()	 and	 PxActor::setName()	 functions,	 are	 always	 included	 in	 the
serialized	format.	On	deserialization	with	PxSerialization::createCollectionFromXml(...)
names	can	be	recovered	by	setting	the	PxStringTable	parameter.

If	PxStringTable	parameter	is	set,	the	names	will	live	within	the	memory	which	is	allocated
by	the	string	table.	The	string	table	must	not	be	released	unless	it	can	be	guaranteed	that
the	names	will	not	be	accessed	any	more.

Caching	Cooked	Geometry	Data

In	order	 to	 facilitate	 faster	 instantiation	of	XML	data,	 it	 is	 possible	 to	 configure	 the	XML
serialization	to	store	the	cooked	triangle	and	convex	mesh	data	along	with	the	plain	data.
The	 cooked	 data	 caching	 can	 be	 enabled	 by	 passing	 a	 PxCooking
PxSerialization::serializeCollectionToXml(...).	The	cached	cooked	data	is	ignored	when	its
format	is	incompatible	with	the	current	SDK	version.



Common	Use	Cases

API-level	RepX	serialization	should	be	used	whenever	compatibility	and	human	readability
are	 important.	 The	 PhysX	 plug-ins	 for	 the	DCC	 tools	 3ds	Max	 and	Maya	 use	RepX	 to
export	PhysX	objects.	The	resulting	RepX	files	can	then	be	deserialized	and	loaded	into
the	 PhysX	 runtime.	 This	 is	 useful	 for	 rapid	 prototyping	 or	 for	 generally	 loading	 PhysX
assets	 if	 performance	 is	not	of	a	big	concern.	For	quick	 loading	of	assets	 it	 is	better	 to
convert	 RepX	 data	 into	 binary	 serialized	 data.	 RepX	 is	 also	 useful	 for	 reproducing
situations	with	unwanted	behavior	without	the	need	to	provide	the	whole	application.	
this,	 the	 application	 may	 be	 connected	 to	 the	 PhysX	 Visual	 Debugger	 (PVD),	 which
records	the	scene	of	 interest.	A	representative	 frame	can	then	be	saved	 in	RepX	format
from	within	PVD	(see	PVD).

Binary	 serialization	 should	 be	 used	 in	 performance	 and	memory	 constrained	 situations.
The	 main	 target	 use-case	 is	 streaming	 in	 chunks	 of	 a	 large	 game	 level	 that	 can't	 be
loaded	into	memory	at	once.	Creating	and	loading	save	games	is	another	application	that
could	be	optimized	by	using	binary	serialization.	PhysX	objects	in	binary	format	can	also
be	sent	over	the	network	to	enable	efficient	game	state	synchronization.



Snippet	Discussion

The	 following	 snippets	 illustrate	 common	 operations	 such	 as	 managing	 collections,
serialization,	deserialization	and	re-targeting	of	binary	data.

SnippetSerialization

SnippetSerialization	 shows	 binary	 and	 XML	 serialization	 of	 a	 scene	 with	 a	 number	 of
jointed	rigid	bodies	representing	a	chain.	This	is	done	in	a	way	that	allows	the	instantiation
of	multiple	chains	while	sharing	the	shape	and	the	material	across	all	chains.	The	snippet
shows	 how	 to	 create	 and	 populate	 collections,	 specify	 IDs	 to	 enable	 resolving
dependencies,	serialize	collections,	deserialize	collections	and	add	actors	to	the	scene	for
simulation.

The	 snippet	 also	 shows	 how	 to	 allocate	 a	 data	 block	 aligned	 to	 128	 bytes	 and
demonstrates	how	 to	 copy	binary	serialized	data	 into	 it.	 It	 further	demonstrates	 that	 the
data	 blocks	 containing	 the	 binary	 deserialized	 collections	 must	 be	 maintained	 until	 the
corresponding	objects	are	not	needed	anymore	and	have	been	released.



Figure	4:	SnippetSerialization

SnippetConvert

SnippetConvert	illustrates	how	binary	serialized	data	can	be	re-targeted	from	an	authoring
platform	to	a	runtime	platform	such	as	a	console.	The	snippet	 is	a	simple	command	 line
tool	 that	can	 load	a	binary	serialized	data	 file	along	with	meta	data	 files	 for	both	source
and	destination	platforms	and	then	output	a	converted	binary	data	file.	
source	documentation	for	more	details	on	usage.

SnippetLoadCollection

SnippetLoadCollection	shows	how	 to	deserialize	serialized	collections	 from	either	binary
or	XML	format.	The	snippet	is	a	command	line	tool	that	can	connect	to	the	PhysX	Visual
Debugger	 application	 and	 display	 the	 content	 of	 serialized	 collection	 files.	 See	 the
snippet's	source	documentation	for	more	details.



Best	practices	/	Troubleshooting

Concurrent	 simulation	 and	 serialization	 is	 not	 supported	 and	 leads	 to	 undefined
behavior.
If	releasing	PhysX	objects	leads	to	crashes	or	errors	it	is	possible	that	the	application
is	releasing	some	objects	twice.	The	following	two	reasons	should	be	considered:	
A	 potential	 source	 of	 error	 is	 to	 release	PhysX	objects	without	 updating	 collections
referencing	these	objects.	2.)	Shapes	that	where	created	through	an	actor	have	their
application	reference	automatically	released	on	creation.	If	such	a	shape	is	serialized
and	 deserialized	 the	 creation	 history	will	 be	 lost.	 It	might	 be	 convenient	 to	 use	 the
extension	function	PxCollectionExt::releaseObjects	because	it	deals	with	the	different
cases	as	required.	See	Reference	Counting	of	Deserialized	Objects
If	accessing	binary	deserialized	PhysX	objects,	including	accesses	during	simulation,
causes	crashes	 it	might	be	due	 to	 the	premature	 release	of	 the	memory	block	 that
holds	the	deserialized	objects.
If	binary	files	are	too	large	and/or	too	slow	to	load	it	might	be	that	shared	assets	have
been	serialized	multiple	times.	An	example	of	a	shared	asset	might	be	a	mesh	that	is
referenced	by	multiple	shapes.	The	solution	is	to	separate	shared	PhysX	objects	into
a	separate	collection.	See	Serializing	Incomplete	Collections.
If	loading	PhysX	objects	from	RepX	files	is	too	slow	two	things	should	be	considered:
1.)	 Could	 binary	 serialization	 be	 used	 instead?	 Even	 for	 debugging	 it	 might	 make
sense	to	convert	RepX	files	into	binary	serialized	data	by	re-serializing	them	with	the
binary	 approach.	 2.)	 Meshes	 tend	 to	 load	 very	 slowly	 from	 text	 files.	 RepX
serialization	offers	an	option	to	cache	cooked	mesh	data	by	in-lining	binary	data	into
the	 RepX	 file.	 If	 such	 a	 cache	 is	 present	 and	 valid,	 the	 loading	 can	 become
significantly	faster.	See	Caching	Cooked	Geometry	Data.



PVD

The	PhysX	Remote	Debugger	provides	the	functionality	to	export	single	frames	of	PhysX
scenes	as	RepX	files.	The	resulting	files	can	be	used	to	playback	a	snapshot	of	the	PhysX
state.	In	many	cases	this	 is	sufficient	to	 isolate	an	issue.	The	option	can	be	found	in	the
menu	of	PVD:	[Menu	>	File	>	Export	Current	Frame	To	RepX]

Figure	5:	RepX	Functionality	in	PVD
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Extending	Serialization



Introduction

The	 PhysX	 serialization	 system	 (Serialization)	 is	 extendable	 to	 custom	 types.	
application	were	to	require	a	new	joint	type,	for	example,	the	serialization	system	could	be
extended	to	add	support	for	serialization	of	that	new	joint	type.

The	following	document	contains	some	recipes	and	example	code	that	show	how	PhysX
serialization	 may	 be	 extended	 to	 custom	 types.	 It	 doesn't	 cover	 all	 aspects	 of	 the
extension	mechanisms.	It	 is	therefore	advisable	to	look	into	the	following	implementation
example	for	more	details:

PhysXVehicle	library	(PhysXVehicle/src)



Overview

Both	 binary	 and	 RepX	 serialization	 can	 be	 extended	 for	 custom	 types.	
custom	type	for	serialization	it	must	first	inherit	from	PxBase.	This	allows	instances	of	the
custom	type	to	be	added	to	a	PxCollection,	which	is	a	pre-requisite	for	serialization.	
core	 serialization	 functionality	 needs	 to	 be	 provided	 by	 implementing	 the	
interface.	The	template	PxSerializerDefaultAdapter	provides	a	default	implementation	and
can	be	specialized	for	the	custom	type	as	required.	In	order	to	support	RepX	serialization
an	 additional	PxRepXSerializer	 interface	 needs	 to	 be	 implemented.	 RepX	 serialization
relies	on	automatic	code	generation	using	clang.	Scripts	to	run	the	code	generation	for	the
examples	can	be	found	in	(Tools/PhysXMetaDataGenerator).



Binary	Serialization	of	Custom	Classes

Serialization	 and	 deserialization	 of	 a	 custom	 class	 can	 be	 achieved	 with	 the	 following
steps:

1.	 Define	a	PxConcreteType	and	type	info	for	the	custom	class.	Make	sure	its	type	value
is	unique.

2.	 The	custom	class	needs	to	inherit	from	PxBase	and	implement	it's	interface.
3.	 Instance	 PxSerializerDefaultAdapter<T>	 and	 implement	 specialized	methods	where

necessary.
4.	 If	retargeting	to	other	platforms	is	needed,	implement	getBinaryMetaData()
5.	 Register	 the	 adapter	 and	 metadata,	 see	 PX_NEW_SERIALIZER_ADAPTER

PxSerializationRegistry::registerSerializer	 and
PxSerializationRegistry::registerBinaryMetaDataCallback.	 Note	 that	 serializers	 also
need	 to	 be	 unregistered	 before	 PxSerializationRegistry::release
application	is	responsible	for	custom	type	serializer	allocation	and	deallocation.

For	pointer	members	 the	 following	needs	 to	be	done	 (Note	 that	 reference	members	are
currently	not	supported):

6.	 Implement	PxSerializer::requires.	 It	 should	enumerate	PxBase	objects	on	which	 the
object	depends	for	deserialization.	See	Requires.

7.	 For	 a	 member	 pointer	 to	 another	 PxBase	 object,	 register	 the	 reference	 in	 the
implementation	 of	 PxSerializer::registerReferences.	 The	 implementation	 of
PxSerializer::requires	may	be	used	to	help	with	this.

8.	 Resolve	 references	 in	 the	 implementation	 of	 PxSerializer::createObject
PxDeserializationContext::resolveReference,	translatePxBase.

9.	 Make	 sure	 that	PxSerializer::isSubordinate	 returns	 whether	 the	 object	 can	 only	 be
serialized	along	with	an	owner	object.	See	Subordinate.

10.	 Export	 non	 PxBase	 data	 by	 implementing	 PxSerializer::exportExtraData



PxSerializationContext::writeData,	alignData.
11.	 Import	 non	PxBase	 data	 in	 the	 implementation	 of	 PxSerializer::createObject

PxDeserializationContext::readExtraData,	alignExtraData.

Note: 	In	checked	builds	(PX_CHECKED	defined	as	1)	metadata	definitions	are	verified
against	serialized	data.	If	metadata	definitions	are	missing	warnings	are	output	on	the
error	stream	during	re-targeting	(PxBinaryConverter::convert).	To	avoid	false	warnings,
all	unused	memory	in	custom	serialized	class	instances	should	be	marked	with	a	0xcd
pattern.	This	can	be	done	with	Cm::markSerializedMem	from	CmUtils.h.

Note: 	The	memory	of	a	deserialized	class	instance	should	not	be	deallocated.	The
memory	is	embedded	in	the	memory	buffer	containing	the	serialized	data.	The	flag
PxBaseFlag::eOWNS_MEMORY	can	used	to	decide	whether	the	object	memory	needs
be	deallocated	or	not.

Example	for	a	custom	class:

#include	"extensions/PxSerialization.h"

#include	"common/PxTypeInfo.h"

#include	"common/PxMetaData.h"

#include	"common/PxSerializer.h"

#include	"common/PxSerialFramework.h

using	namespace	physx;

const	PxType	customClassType	=	PxConcreteType::eFIRST_USER_EXTENSION

PX_DEFINE_TYPEINFO(CustomClass,	customClassType);

class	CustomClass	:	public	PxBase

{

				friend	class	PxSerializerDefaultAdapter<CustomClass>;

public:

				//	constructor	setting	up	PxBase	object

				CustomClass()

				:	PxBase(customClassType,	PxBaseFlag::eOWNS_MEMORY	|	PxBaseFlag

				{}

				//	constructor	called	on	deserialization

				CustomClass(PxBaseFlags	baseFlags)	:	PxBase(baseFlags)	{}



				virtual	~CustomClass()	{}

				//PxBase

				virtual	const	char*	getConcreteTypeName()	const	{	return	"CustomClass"

				virtual	bool	isKindOf(const	char*	name)	const

				{

								return	!strcmp("CustomClass",	name)	||	PxBase::isKindOf(name

				}

				//~PxBase

				//PxSerializationRegistry::registerBinaryMetaDataCallback

				static	void	getBinaryMetaData(PxOutputStream&	stream)

				{

								PX_DEF_BIN_METADATA_VCLASS(stream,	CustomClass)

								PX_DEF_BIN_METADATA_BASE_CLASS(stream,	CustomClass,	PxBase

								PX_DEF_BIN_METADATA_ITEM(stream,	CustomClass,	PxRigidDynamic

												PxMetaDataFlag::ePTR)

								PX_DEF_BIN_METADATA_ITEM(stream,	CustomClass,	char,	mBuf,	

								PX_DEF_BIN_METADATA_ITEM(stream,	CustomClass,	PxU32,	mSize

								PX_DEF_BIN_METADATA_EXTRA_ITEMS(stream,	CustomClass,	char,

				}

				//~PxSerializationRegistry::registerBinaryMetaDataCallback

private:

				PxRigidDynamic*	mActor;				//add	in	requires

				char*	mBuf;																//extra	data

				PxU32	mSize;															//size	of	mBuf

};

//PxSerializerDefaultAdapter

template<>

void	PxSerializerDefaultAdapter<CustomClass>::requires(PxBase&	obj

																																																							PxProcessPxBaseCallback

{

				CustomClass*	custom	=	obj.is<CustomClass>();

				PX_ASSERT(custom);

				c.process(*custom->mActor);

}

template<>

void	PxSerializerDefaultAdapter<CustomClass>::registerReferences(PxBase

																																																																	PxSerializationContext



{

				CustomClass*	custom	=	obj.is<CustomClass>();

				PX_ASSERT(custom);

				s.registerReference(obj,	PX_SERIAL_REF_KIND_PXBASE,	size_t(&obj

				s.registerReference(*custom->mActor,	PX_SERIAL_REF_KIND_PXBASE

}

template<>

void	PxSerializerDefaultAdapter<CustomClass>::exportExtraData(PxBase

																																																														PxSerializationContext

{

				CustomClass*	custom	=	obj.is<CustomClass>();

				PX_ASSERT(custom);

				s.alignData(PX_SERIAL_ALIGN);

				s.writeData(custom->mBuf,	custom->mSize);

}

template<>

PxBase*	PxSerializerDefaultAdapter<CustomClass>::createObject(PxU8

																																																														PxDeserializationContext

																																																														const

{

				CustomClass*	custom	=	new	(address)	CustomClass(PxBaseFlag::eIS_RELEASABLE

				address	+=	sizeof(CustomClass);

				//	resolve	references

				context.translatePtr(custom->mActor);

				//	import	extra	data

				custom->mBuf	=	context.readExtraData<char*,	PX_SERIAL_ALIGN>();

				//	return	deserialized	object

				return	custom;

}

//~PxSerializerDefaultAdapter

void	registerCustomClassBinarySerializer(PxSerializationRegistry&	

{

				registry.registerSerializer(customClassType,	PX_NEW_SERIALIZER_ADAPTER

				registry.registerBinaryMetaDataCallback(CustomClass::getBinaryMetaData

}

void	unregisterCustomClassBinarySerializer(PxSerializationRegistry

{

				PX_DELETE_SERIALIZER_ADAPTER(registry.unregisterSerializer(customClassType

}





RepX	Serialization	of	Custom	Classes

Serialization	 and	 deserialization	 of	 a	 custom	 class	 can	 be	 achieved	 with	 the	 following
steps:

1.	 Perform	the	first	three	steps	from	Binary	Serialization	of	Custom	Classes
PxSerializer	 and	 PxSerializerDefaultAdapter<T>	 required	 exclusively	 for	 binary
serialization	may	be	left	empty.

2.	 Create	 a	 custom	 RepX	 serializer	 that	 implements	 the	 PxRepXSerializer
PxRepXSerializer	is	used	to	create	an	object	from	the	xml	file	and	write	an	object	to
the	 xml	 file.	 The	 class	 RepXSerializerImpl	 can	 be	 used	 to	 inherit	 default
implementations	of	some	methods.

3.	 Register	the	general	serializer	adapter	and	the	RepX	serializer.	Note	that	custom	type
serializers	also	need	to	be	unregistered	and	deallocated.

4.	 RepX	 supports	 automatic	 reading	 and	 writing	 of	 class	 properties.	 To	 achieve	 this,
clang	 has	 to	 be	 used	 to	 generate	 corresponding	 metadata:	 PhysX	 API	 Metadata
System.

Example	for	a	custom	class:

#include	"SnRepXSerializerImpl.h"

const	PxType	customClassType	=	PxConcreteType::eFIRST_USER_EXTENSION

PX_DEFINE_TYPEINFO(CustomClass,	customClassType);

struct	CustomClassRepXSerializer	:	public	RepXSerializerImpl<CustomClass

{

				CustomClassRepXSerializer(PxAllocatorCallback&	inCallback)

				:	RepXSerializerImpl<CustomClass>(inCallback)

				{}

				virtual	PxRepXObject	fileToObject(XmlReader&	inReader,	XmlMemoryAllocator

								PxRepXInstantiationArgs&	inArgs,	PxCollection*	inCollection

				{

								//	factory	for	CustomClass	instance	provided	by	application

								CustomClass*	object	=	createCustomClass();



								//	when	using	the	PhysX	API	metadata	system	readAllProperties(...)	can	be	used	to	read

								//	all	properties	automatically

								readAllProperties(inArgs,	inReader,	object,	inAllocator,	*

								return	PxCreateRepXObject(object);

				}

				virtual	void	objectToFileImpl(const	CustomClass*	obj,	PxCollection

																																		XmlWriter&	inWriter,	MemoryBuffer

																																		PxRepXInstantiationArgs&)

				{

								//	when	using	the	PhysX	API	metadata	system	writeAllProperties(...)	can	be	used	to	save

								//	all	properties	automatically

								writeAllProperties(obj,	inWriter,	inTempBuffer,	*inCollection

				}

				//	this	can	return	NULL	if	fileToObject(...)	is	overwritten	with	a	custom	implementation.

				virtual	CustomClass*	allocateObject(PxRepXInstantiationArgs&)	

};

void	registerCustomClassRepXSerializer(PxSerializationRegistry&	registry

{

				registry.registerSerializer(customClassType,

																																PX_NEW_SERIALIZER_ADAPTER(CustomClass

				registry.registerRepXSerializer(customClassType,

																																				PX_NEW_REPX_SERIALIZER<CustomClassRepXSerializer

}

void	unregisterCustomClassRepXSerializer(PxSerializationRegistry&	

{

				PX_DELETE_SERIALIZER_ADAPTER(registry.unregisterSerializer(customClassType

				PX_DELETE_REPX_SERIALIZER(registry.unregisterRepXSerializer(customClassType

}

Note: 	Implementing	a	PxRepXSerializer	is	currently	not	practical	without	including	the
internal	PhysXExtension	header	"SnRepXSerializerImpl.h".

PhysX	API	Metadata	System

This	 system	 produces	 a	 set	 of	 objects	 that	 are	 analogues	 of	 the	 interfaces	 and	 of



descriptors	 in	 the	 PhysX	 system,	 all	 based	 on	 the	 public	 interface.	 The	 generator
heuristically	finds	functions	that	start	with	get/set	and,	through	a	series	of	cascading	rules,
combines	those	into	several	types	of	properties.

Currently	the	generator	supports	the	following	property	types:

Basic	property
{ptype}	get{pname}()	const;
void	set{pname}(	const	ptype&	prop	);	//plus	variations
read-only,	write-only	variants	of	above.

Range	property
void	get{pname}(	{ptype}&	lowEnd,	{ptype}&	highEnd	);
void	set{pname}(	{ptype}	lowEnd,	{ptype}	highEnd	);

Indexed	property
{ptype}	get{pname}(	enumType	idx	);
void	set{pname}(	enumType	idx,	const	{ptype}&	prop	);

Dual	indexed	property	(like	above,	but	with	two	enumeration	indexes).
Collection

PxU32	getNb()	const;
PxU32	get(	{ptype}*	buffer,	PxU32	count	);
void	set({ptype}*	buffer,	PxU32	count);

In	 order	 to	 make	 use	 of	 the	 generator	 the	 following	 files	 need	 to	 be	 created	 with	 the
following	recipe:

CustomTypeExtensionAPI.h

Add	all	the	types	that	should	be	exported	to	gUserPhysXTypes	to	this	file.
Add	 the	 unnecessary	 types	 to	 gAvoidedPhysXTypes.	 It	 will	 not	 generate
metadata	information	for	these	types.
Be	sure	to	append	the	included	files	for	these	types.

runClang_[windows|osx|linux].[bat|sh]	(e.g.	runClang_windows.bat)



Set	definition	folder	for	these	autogenerated	files	and	set	the	source	file	in	here.

Specify	 the	 filename	 of	 autogenerated	 files.	 Then	 it	 will	 generate	 the	 following
files:

include/CustomTypeAutoGeneratedMetaDataObjectNames.h

include/CustomTypeAutoGeneratedMetaDataObjects.h

src/CustomTypeAutoGeneratedMetaDataObjects.cpp

CustomTypeMetaDataObjects.h

CustomTypePropertyInfoName	 has	 to	 be	 defined	 and
CustomTypeAutoGeneratedMetaDataObjects.h	 has	 to	 be	 included	 in	 this	 file.
The	file	will	 then	export	 the	properties	of	 the	custom	class	and	can	be	 included
for	implementing	the	custom	RepX	serializer.

CustomTypeMetaDataObjects.cpp

This	file	is	optional.	It	is	only	required	when	custom	properties	are	needed.

PxVehicle	serialization	is	a	useful	example.	With	Source/PhysXVehicle	as	 the	root	 folder
the	structure	of	the	files	is	as	follows:

src/PhysXMetaData/include/PxVehicleMetaDataObjects.h

src/PhysXMetaData/src/PxVehicleMetaDataObjects.cpp

../../Tools/PhysXMetaDataGenerator/PxVehicleExtensionAPI.h

../../Tools/PhysXMetaDataGenerator/generateMetaData.py

Running	the	script	will	auto-generate	the	following	files:

src/PhysXMetaData/include/PxVehicleAutoGeneratedMetaDataObjectNames

src/PhysXMetaData/include/PxVehicleAutoGeneratedMetaDataObjects.h

src/PhysXMetaData/src/PxVehicleAutoGeneratedMetaDataObjects.cpp

1.	 PxVehicleExtensionAPI.h:	The	type	DisabledPropertyEntry	is	used	to	mark	properties
which	 do	 not	 require	 export.	 CustomProperty	 is	 for	 properties	 that	 need	 to	 be
customized	and	gUserPhysXTypes	is	for	general	properties	that	need	to	be	exported.



2.	 runClang_[windows|osx|linux].[bat|sh]:	 The	 target	 directory	 is	 set	 to
src/PhysXMetaData,	and	the	target	name	is	PxVehicle.

3.	 PxVehicleMetaDataObjects.h:	 It	 defines	 the	 custom	 properties	 and	 includes
PxVehicleAutoGeneratedMetaDataObjects.h

4.	 PxVehicleMetaDataObjects.cpp:	It	implements	the	custom	properties.

Note: 	The	properties	defined	in	PxVehicleAutoGeneratedMetaDataObjects.h	are
written	to	the	RepX	file	automatically	if	PxVehicleMetaDataObjects.h	is	included	for	the
custom	RepX	serializer.

nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»

©	Copyright	2008-2017	NVIDIA	Corporation,	2701	San	Tomas	Expressway,	Santa	Clara,	CA
95050	U.S.A.	All	rights	reserved.



nextprevious	|NVIDIA	PhysX	SDK	3.4.1	Documentation	»
User's	Guide	»



Best	Practices	Guide



Introduction

This	chapter	covers	a	number	of	best	practices	for	the	PhysX	SDK	to	assist	in	diagnosing
and	fixing	frequently	encountered	issues.



Debugging

The	PhysX	SDK	contains	a	few	debugging	helpers.	They	can	be	used	to	make	sure	the
scenes	are	properly	set	up.

Use	checked	builds	and	the	error	stream

The	PhysX	SDK	has	different	build	configurations:	Debug,	Checked,	Release,	Profile.	To
make	 sure	 that	 the	 scene	 is	 properly	 set	 up	without	 warnings	 or	 errors,	 use	 either	 the
Debug	 or	 Checked	 builds,	 and	 monitor	 the	 error	 callback.	 Please	 refer	 to	 the	
Reporting	chapter	for	details.	Note	that	some	checks	can	be	expensive	and	thus	they	are
not	performed	 in	Release	or	Profile	builds.	 If	 the	SDK	silently	 fails	or	even	crashes	 in	a
Release	build,	please	switch	to	Debug	or	Checked	builds	to	ensure	this	is	not	caused	by
an	uncaught	error.

Visualizing	physics	data

Use	the	PhysX	Visual	Debugger	(PVD)	to	see	what	PhysX	is	seeing	and	make	sure	the
physics	data	is	what	you	expect	it	to	be.	Please	refer	to	the	PhysX	Visual	Debugger	(PVD)
chapter	for	details.	Note	that	this	is	only	available	in	Debug,	Checked	and	Profile	builds.

Visualizing	physics	data	(2)

An	alternative	to	PVD	is	the	built-in	debug	visualization	system.	Please	refer	to	the	
Visualization	chapter	for	details.	This	option	is	available	with	all	build	configurations.

Limiting	coordinates

Bugs	 in	 applications,	 or	 issues	 in	 content	 creation,	 can	 sometimes	 result	 in	 object
placement	 at	 unexpected	 coordinates.	 We	 recommend	 the	 use	 of
PxSceneDesc::sanityBounds,	 to	generate	 reports	when	objects	are	 inserted	at	positions
beyond	 what	 your	 application	 expects,	 or	 when	 application	 code	 moves	 them	 to	 such
unexpected	positions.	Note	 that	 these	bounds	only	apply	 to	application	updates	of	actor



coordinates,	not	updates	by	the	simulation	engine.



Performance	Issues

The	PhysX	SDK	has	been	optimized	a	 lot	 in	 the	past	 dot	 releases.	However,	 there	 still
exist	various	performance	pitfalls	that	the	user	should	be	aware	of.

Use	profile	builds	to	identify	performance	bottlenecks

The	PhysX	SDK	has	different	build	configurations:	Debug,	Checked,	Release,	Profile.	To
identify	 performance	 bottlenecks,	 please	 use	 Profile	 builds	 and	 PVD.	 Use	 the
PxPvdInstrumentationFlag::ePROFILE	 only,	 since	 enabling	 the	 other	 connection	 flags
might	 negatively	 affect	 performance.	Please	 refer	 to	 the	PhysX	Visual	Debugger	 (PVD)
chapter	for	details.

Use	release	builds	for	final	performance	tests

The	PhysX	SDK	has	different	build	configurations:	Debug,	Checked,	Release,	Profile.	The
Release	builds	 are	 the	most	 optimal.	 If	 you	encounter	 a	 performance	 issue	while	 using
other	builds,	please	switch	to	Release	builds	and	check	if	the	problem	is	still	there.

Disable	debug	visualization	in	final/release	builds

Debug	 visualization	 is	 great	 for	 debugging	 but	 it	 can	 have	 a	 significant	 performance
impact.	Make	 sure	 it	 is	 disabled	 in	 your	 final/release	 builds.	 Please	 refer	 to	 the	
Visualization	chapter	for	details.

Debug	visualization	is	very	slow

Debug	visualization	can	be	very	slow,	because	both	 the	code	gathering	 the	debug	data
and	the	code	rendering	 it	 is	usually	not	optimal.	Use	a	culling	box	to	 limit	 the	amount	of
data	the	SDK	gathers	and	sends	to	the	renderer.	Please	refer	to	the	Debug	Visualization
chapter	for	details.

Consider	using	tight	bounds	for	convex	meshes



By	 default	 PhysX	 computes	 approximate	 (loose)	 bounds	 around	 convex	 objects.	 Using
PxConvexMeshGeometryFlag::eTIGHT_BOUNDS	 enables	 smaller/tighter	 bounds,	 which
are	more	expensive	to	compute	but	can	result	in	improved	simulation	performance	when	a
lot	of	convex	objects	are	interacting	with	each	other.	Please	refer	to	the	
for	details.

Use	scratch	buffers

The	 PxScene::simulate	 function	 accepts	 optional	 scratch	 buffers	 that	 can	 be	 used	 to
reduce	 temporary	 allocations	 and	 improve	 simulation	 performance.	 Please	 refer	 to	 the
Simulation	chapter	for	details.

Use	the	proper	mid-phase	algorithm

PxCookingParams::midphaseDesc	can	be	used	to	select	the	desired	mid-phase	structure.
It	 is	 a	 good	 idea	 to	 try	 the	 different	 options	 and	 see	 which	 one	 works	 best	 for	 you.
Generally	 speaking	 the	 new	 PxMeshMidPhase::eBVH34	 introduced	 in	 PhysX	 3.4	 has
better	performance	 for	 scene	queries	against	 large	 triangle	meshes.	Please	 refer	 to	 the
Geometry	chapter	for	details.

Use	the	proper	narrow-phase	algorithm

PxSceneFlag::eENABLE_PCM	 enables	 an	 incremental	 "persistent	 contact	 manifold"
algorithm,	 which	 is	 often	 faster	 than	 the	 previous	 implementation.	 PCM	 should	 be	 the
default	algorithm	since	PhysX	3.4,	but	you	can	also	 try	 to	enable	 it	 in	previous	versions
like	3.3.

Use	the	proper	broad-phase	algorithm

PhysX	 also	 supports	 two	 different	 broad-phase	 implementations,	 selected	 with
PxSceneDesc::broadPhaseType.	The	different	implementations	have	various	performance
characteristics,	 and	 it	 is	a	good	 idea	 to	experiment	with	both	and	 find	which	one	works
best	for	you.	Please	refer	to	the	Rigid	Body	Collision	chapter	for	details	about	the	different
broad-phases.



Use	the	scene-query	and	simulation	flags

If	 a	shape	 is	only	used	 for	 scene-queries	 (raycasts,	etc),	disable	 its	 simulation	 flag.	 If	a
shape	 is	 only	 used	 for	 simulation	 (e.g.	 it	 will	 never	 be	 raycasted	 against),	 disable	 its
scene-query	flag.	This	 is	good	for	both	memory	usage	and	performance.	Please	refer	to
the	Rigid	Body	Collision	chapter	for	details.

Tweak	the	dynamic	tree	rebuild	rate

If	the	PxScene::fetchResults	call	takes	a	significant	amount	of	time	in	scenes	containing	a
lot	 of	 dynamic	 objects,	 try	 to	 increase	 the	 PxSceneDesc::dynamicTreeRebuildRateHint
parameter.	Please	refer	to	the	Scene	Queries	chapter	for	details.

Use	the	insertion	callback	when	cooking	at	runtime

Use	PxPhysicsInsertionCallback	for	objects	that	are	cooked	at	runtime.	This	is	faster	than
first	writing	the	data	to	a	file	or	a	memory	buffer,	and	then	passing	the	data	to	PhysX.

The	"Well	of	Despair"

One	 common	 use-case	 for	 a	 physics	 engine	 is	 to	 simulate	 fixed-size	 time-steps
independent	 of	 the	 frame	 rate	 that	 the	 application	 is	 rendered	 at.	 If	 the	 application	 is
capable	of	being	rendered	at	a	higher	 frequency	than	the	simulation	frequency,	 the	user
has	 the	 option	 to	 render	 the	 same	 simulation	 state,	 interpolate	 frames	 etc.	 However,
sometimes	 it	 is	 not	 possible	 to	 render	 the	 scene	 at	 a	 frequency	 higher-or-equal	 to	 the
simulation	frequency.	At	this	point,	the	options	are	to	either	run	the	physics	simulation	with
a	 larger	 time-step	 or	 to	 simulate	 multiple,	 smaller	 sub-steps.	 The	 latter	 is	 generally	 a
preferable	solution	because	changing	 the	size	of	 time-steps	 in	a	physics	simulation	can
significantly	change	perceived	behavior.	However,	when	using	a	sub-stepping	approach,
one	must	always	be	aware	of	the	potential	that	this	has	to	damage	performance.

As	an	example,	let's	imagine	a	game	that	is	running	using	v-sync	at	60FPS.	This	game	is
simulating	 a	 large	 number	 of	 physics	 bodies	 and,	 as	 a	 result,	 the	 physics	 is	 relatively
expensive.	In	order	to	meet	the	60FPS	requirement,	the	entire	frame	must	be	completed



within	 ~16ms.	 As	 already	 mentioned,	 the	 physics	 is	 reasonably	 expensive	 and,	 in	 this
scenario,	 takes	9ms	to	simulate	1/60th	of	a	second.	 If	 the	game	was	 to	suddenly	spike,
e.g.	as	a	result	of	some	OS	activity,	saving	a	check-point	or	loading	a	new	section	of	the
level,	we	may	miss	the	deadline	for	60FPS.	If	 this	happens,	we	must	run	additional	sub-
steps	 in	 the	 physics	 to	 catch	 up	 the	missed	 time	 in	 the	 next	 frame.	 Assuming	 that	 the
previous	frame	took	50ms	instead	of	16ms,	we	must	now	simulate	3	sub-steps	to	be	able
to	simulate	all	 the	elapsed	time.	However,	each	sub-step	takes	~9ms,	which	means	that
we	 will	 take	 ~27ms	 to	 simulate	 50ms.	 As	 a	 result,	 this	 frame	 also	 misses	 our	 16ms
deadline	 for	60FPS,	meaning	 that	 the	 frame	 including	v-sync	 took	33ms	(i.e.	30Hz).	We
must	now	simulate	2	sub-steps	in	the	next	frame,	which	takes	~18ms	and	also	misses	our
16ms	deadline.	As	a	result,	we	never	manage	to	recover	back	to	60FPS.	In	this	scenario,
our	decision	to	sub-step	as	a	result	of	a	spike	has	resulted	in	our	application	being	stuck	in
a	performance	trough	indefinitely.	The	application	 is	capable	of	simulating	and	rendering
at	 60FPS	 but	 becomes	 stuck	 in	 the	 so-called	 "physics	 well	 of	 despair"	 as	 a	 result	 of
substepping.

Problems	like	this	can	be	alleviated	in	several	ways:

Decouple	the	physics	simulation	from	the	game's	update/render	loop.	In	this	case,	the
physics	simulation	becomes	a	scheduled	event	that	occurs	at	a	fixed	frequency.	This
can	make	player	interaction	in	the	scene	more	difficult	and	may	introduce	latency	so
must	be	well-thought	through.	However,	using	multiple	scenes	(one	synchronous	for
"important"	objects,	one	asynchronous	for	"unimportant"	objects)	can	help.
Permit	 the	 game	 to	 "drop"	 time	 when	 faced	 with	 a	 short-term	 spike.	 This	 may
introduce	visible	motion	artifacts	if	spikes	occur	frequently.
Introduce	slight	variations	 in	time-step	(e.g.	 instead	of	simulating	at	1/60th,	consider
simulating	a	range	between	1/50th	and	1/60th).	This	can	 introduce	non-determinism
into	the	simulation	so	should	be	used	with	caution.	If	this	is	done,	additional	time	that
must	 be	 simulated	 can	 potentially	 be	 amortized	 over	 several	 frames	 by	 simulating
slightly	larger	time-steps.
Consider	simplifying	the	physics	scene,	e.g.	reducing	object	count,	shape	complexity,
adjusting	 iteration	 counts	 etc.	 Provided	 physics	 simulation	 is	 a	 small	 portion	 of	 the



total	frame	time,	the	application	should	find	it	easier	to	recover	from	spikes.

Pruner	Performance	for	Streamed	Environments

PhysX	provides	multiple	 types	of	 pruners,	 each	of	which	aimed	at	 specific	 applications.
These	are:

Static	AABB	tree
Dynamic	AABB	tree

By	default,	the	static	AABB	tree	is	used	for	the	static	objects	in	the	environment	and	the
dynamics	AABB	tree	is	used	for	the	dynamic	objects	in	the	environment.	In	general,	this
approach	works	well	but	 it	must	be	noted	that	creating	the	static	AABB	tree	can	be	very
expensive.	As	a	result,	adding,	removing	or	moving	any	static	objects	in	the	environment
will	result	 in	the	static	AABB	tree	being	fully	recomputed,	which	can	introduce	significant
performance	cost.	As	a	result,	we	recommend	the	use	of	dynamics	AABB	trees	for	both
static	and	dynamic	pruners	in	games	which	stream	in	the	static	environment.	Additionaly
scene	 query	 performance	 against	 newly	 added	 objects	 can	 be	 improved	 by	 using
PxPruningStructure,	 which	 can	 precompute	 the	 AABB	 structure	 of	 inserted	 objects	 in
offline.

Performance	Implications	for	Multi-Threading

The	 PhysX	 engine	 is	 designed	 from	 the	 ground-up	 to	 take	 advantage	 of	 multi-core
architectures	 to	 accelerate	 physics	 simulation.	 However,	 this	 does	 not	 mean	 that	 more
threads	 are	 always	 better.	 When	 simulating	 extremely	 simple	 scenes,	 introducing
additional	 worker	 threads	 can	 detrimentally	 affect	 performance.	 This	 is	 because,	 at	 its
core,	PhysX	operates	around	a	task	queue.	When	a	frame's	simulation	is	started,	PhysX
dispatches	a	chain	of	tasks	that	encapsulate	that	frame	of	physics	simulation.	At	various
stages	 of	 the	 physics	 pipeline,	 work	 can	 be	 performed	 in	 parallel	 on	 multiple	 worker
threads.	However,	if	there	is	insufficient	work,	there	will	be	little	or	no	parallel	execution.	In
this	 case,	 the	 use	 of	 additional	 worker	 threads	 may	 detrimentally	 affect	 performance
because	the	various	phases	of	the	pipeline	may	be	run	by	different	worker	threads,	which
may	 incur	 some	 additional	 overhead	 depending	 on	 the	 CPU	 architecture	 compared	 to



running	 on	 just	 a	 single	 worker	 thread.	 As	 a	 result,	 developers	 should	 measure	 the
performance	 of	 the	 engine	 with	 their	 expected	 physics	 loads	 with	 different	 numbers	 of
threads	 to	maximize	 their	performance	and	make	sure	 that	 they	are	making	 the	most	of
the	available	processing	resources	for	their	game.

Memory	allocation

Minimizing	dynamic	allocation	 is	an	 important	aspect	of	performance	 tuning,	and	PhysX
provides	several	mechanisms	to	control	memory	usage.

Reduce	 allocation	 used	 for	 tracking	 objects	 by	 presizing	 the	 capacities	 of	 scene	 data
structures,	 using	 either	 PxSceneDesc::limits	 before	 creating	 the	 scene	 or	 the	 function
PxScene::setLimits().	 When	 resizing,	 the	 new	 capacities	 will	 be	 at	 least	 as	 large	 as
required	 to	 deal	 with	 the	 objects	 currently	 in	 the	 scene.	 These	 values	 are	 only	 for
preallocation	and	do	not	 represent	 hard	 limits,	 so	 if	 you	add	more	objects	 to	 the	 scene
than	the	capacity	limits	you	have	set,	PhysX	will	allocate	more	space.

Much	of	 the	memory	PhysX	uses	 for	simulation	 is	held	 in	a	pool	of	blocks,	each	16K	 in
size.	 You	 can	 control	 the	 current	 and	 maximum	 size	 of	 the	 pool	 with	 the
nbContactDataBlocks	 and	maxNbContactDataBlocks	members	 of	 PxSceneDesc.	 PhysX
will	 never	 allocate	more	 than	 the	maximum	 number	 of	 blocks	 specified,	 and	 if	 there	 is
insufficient	memory	it	will	instead	simply	drop	contacts	or	joint	constraints.	You	can	find	out
how	many	 blocks	 are	 currently	 in	 use	with	 the	 getNbContactBlocksUsed()	method,	 and
find	 out	 the	 maximum	 number	 that	 have	 ever	 been	 used	 with	 the
getMaxNbContactDataBlocksUsed()	method.

Use	PxScene::flushSimulation()	to	reclaim	unused	blocks,	and	to	shrink	the	size	of	scene
data	structures	to	the	size	presently	required.

To	reduce	temporary	allocation	performed	during	simulation,	provide	physx	with	a	memory
block	 in	 the	 simulate()	 call.	 The	 block	 may	 be	 reused	 by	 the	 application	 after	 the
fetchResults()	 call	 which	marks	 the	 end	 of	 simulation.	 The	 size	 of	 the	 block	must	 be	 a
multiple	of	16K,	and	it	must	be	16-byte	aligned.



Character	Controller	Systems	using	Scene	Queries	and	Penetration	Depth
Computation

Implementing	a	Character	Controller	(CCT)	 is	a	common	use	case	for	 the	PhysX	Scene
Query	(SQ)	system.	A	popular	approach	is	to	use	sweeps	to	implement	movement	logic,
and	to	improve	robustness	by	using	Geometry	Queries	(GQ)	to	compute	and	resolve	any
penetrations	that	occur	due	to	object	movement	that	does	not	account	for	the	presence	of
the	controller,	or	due	to	numerical	precision	issues.

Basic	Algorithm:

1.	 Call	a	SQ-Sweep	from	the	current	position	of	the	CCT	shape	to	its	goal	position.
2.	 If	no	initial	overlap	is	detected,	move	the	CCT	shape	to	the	position	of	the	first	hit,	and

adjust	the	trajectory	of	the	CCT	by	removing	the	motion	relative	to	the	contact	normal
of	the	hit.

3.	 Repeat	 Steps	 1	 and	 2	 until	 the	 goal	 is	 reached,	 or	 until	 an	 SQ-Sweep	 in	 Step	 1
detects	an	initial	overlap.

4.	 If	an	SQ-Sweep	 in	Step	1	detects	an	 initial	overlap,	use	 the	GQ	Penetration	Depth
computation	function	to	generate	a	direction	for	depenetration.	Move	the	CCT	shape
out	of	penetration	and	begin	again	with	Step	1.

Limitations	and	Problems

Step	 4	 of	 the	 algorithm	 above	 can	 sometimes	 run	 into	 trouble	 due	 to	 implementation
differences	 in	 SQ-Sweep,	 SQ-Overlap	 and	 and	 GQ-Penetration	 Depth	 queries.	
certain	 initial	 conditions	 it	 is	 possible	 that	 the	 SQ	 system	 will	 determine	 that	 a	 pair	 of
objects	 is	 initially	 overlapping	 while	 the	 GQ	 -Penetration	 Depth	 computation	
them	 as	 disjoint	 (or	 vice-versa).	 Penetration	 depth	 calculations	 involving	 convex	 hulls
operate	 by	 shrinking	 the	 convex	 hull	 and	 performing	 distance	 calculations	 between	 a
shape	 and	 the	 shrunken	 convex	 hull.	 To	 understand	 the	 conditions	 under	 which	 this
occurs	 and	 how	 to	 resolve	 the	 artefacts,	 please	 refer	 to	 the	 diagrams	 and	 discussion
below.	 Each	 diagram	 represents	 the	 initial	 conditions	 of	 two	 shapes,	 a	 Character
Controller	shape	(red	boxes),	a	convex	obstacle	(black	boxes),	at	the	time	that	Step	1	of



the	algorithm	above	is	executed.	In	the	diagrams,	the	outermost	rectangular	black	box	is
the	 convex	 hull	 as	 seen	 by	 the	 SQ	 algorithms;	 the	 inner	 black	 box	 with	 a	 dashed	 line
represents	 the	 shrunken	 convex	 shape	 and	 the	 black	 box	 with	 rounded	 corners	 is	 the
shrunken	 convex	 shape	 inflated	by	 the	amount	 by	which	we	 shrunk.	These	 three	black
boxes	are	used	by	the	GQ-Penetration	Depth	computation.	Although	the	example	refers	to
convex	hull	obstacles,	the	issue	is	not	exclusive	to	the	convex	hull	shapes;	the	problem	is
similar	for	other	shape	types	as	well.

Diagram	1:	CCT	Shape	Barely	Touches	an	Obstacle

In	Diagram	1,	 the	red	box	of	 the	CCT	is	barely	 touching	the	outermost	black	box	of	 the
convex	obstacle.	 In	this	situation	the	SQ-Sweep	will	 report	an	 initial	overlap	but	 the	GQ-
Penetration	Depth	function	will	report	no	hit,	because	the	red	box	is	not	touching	the	black
box	with	rounded	corners.

To	resolve	this,	inflate	the	CCT	shape	for	the	GQ-Penetration	Depth	calculation	to	ensure
that	 it	 detects	 an	 overlap	 and	 returns	 a	 valid	 normal.	 Note	 that	 after	 inflating	 the	 CCT
shape,	the	GQ-Penetration	Depth	function	will	report	that	the	shapes	are	penetrated	more
deeply	 than	 they	 actually	 are,	 so	 take	 this	 additional	 penetration	 into	 account	 when
depenetrating	in	Step	4.	This	may	result	in	some	clipping	around	the	corners	and	edges	of
convex	objects	but	the	CCT's	motion	should	be	acceptable.	As	the	corners/edges	become
more	acute,	the	amount	of	clipping	will	increase.



Diagram	2:	CCT	Overlaps	an	Obstacle	Slightly

Diagram	2	shows	a	case	where	the	CCT	initially	overlaps	the	outer	black	box	seen	by	the
SQ	system,	but	does	not	overlap	the	shrunken	shape	seen	by	the	GQ-Penetration	Depth
calculator.	 The	GQ-Penetration	Depth	 system	will	 return	 the	penetration	 from	point	 c	 to
point	b	but	not	from	point	c	to	point	a.	Therefore	the	CCT	may	clip	through	the	corner	of
the	convex	hull	after	depenetration.	This	can	be	corrected	in	Step	4.

Diagram	3:	CCT	Overlaps	an	Obstacle	Significantly

As	can	been	seen	from	Diagram	3,	if	the	CCT	penetrates	sufficiently	that	it	overlaps	with
the	 shrunken	 shape	 seen	 by	 GQ,	 the	 GQ-Penetration	 Depth	 calculator	 will	 return	 the
penetration	from	point	c	to	point	a.	 In	this	case,	the	GQ-Penetration	Depth	value	can	be
used	 without	 modification	 in	 Step	 4.	 However,	 as	 this	 condition	 would	 be	 difficult	 to
categorize	 without	 additional	 computational	 cost,	 it	 is	 best	 to	 inflate	 the	 shape	 as
recommended	 in	 Step	 4	 and	 then	 subtract	 this	 inflation	 from	 the	 returned	 penetration
depth.

Unified	MTD	Sweep

A	 recent	 addition	 to	 the	 scene	 query	 sweeps	 is	 the	 flag	PxHitFlag::eMTD.	 This	 can	 be
used	 in	 conjunction	 with	 default	 sweeps	 to	 generate	 the	 MTD	 (Minimum	 Translation
Direction)	 when	 an	 initial	 overlap	 is	 detected	 by	 a	 sweep.	 This	 flag	 is	 guaranteed	 to
generate	an	appropriate	normal	under	all	circumstances,	including	cases	where	the	sweep
may	detect	an	initial	overlap	but	calling	a	stand-alone	MTD	function	may	report	no	hits.	It
still	may	 suffer	 from	 accuracy	 issues	with	 penetration	 depths	 but,	 in	 the	 cases	 outlined
above	around	corners/edges,	it	will	report	a	distance	of	0	and	the	correct	contact	normal.
This	can	be	used	 to	 remove	components	of	 the	sweep	moving	 into	 the	normal	direction
and	 then	 re-sweeping	 when	 attempting	 to	 implement	 a	 CCT.	 This	 also	 generates



compound	MTDs	 for	meshes/heightfields,	which	means	 that	 it	 reports	 an	MTD	 that	 de-
penetrates	the	shape	from	the	entire	mesh	rather	than	just	an	individual	triangle,	if	such	an
MTD	exists.



Quantizing	HeightField	Samples

Heightfield	samples	are	encoded	using	signed	16-bit	integers	for	the	y-height	that	are	then
converted	to	a	float	and	multiplied	by	PxHeightFieldGeometry::heightScale	to	obtain	local
space	scaled	coordinates.	Shape	transform	is	 then	applied	on	top	to	obtain	world	space
location.	The	transformation	is	performed	as	follows	(in	pseudo-code):

localScaledVertex	=	PxVec3(row	*	desc.rowScale,	PxF32(heightSample

				col	*	desc.columnScale)

worldVertex	=	shapeTransform(	localScaledVertex	)

The	 following	 code	 snippet	 shows	 one	 possible	 way	 to	 build	 quantized	 unscaled	 local
space	heightfield	coordinates	from	world	space	grid	heights	stored	in	terrainData.verts:

const	PxU32	ts	=	...;	//	user	heightfield	dimensions	(ts	=	terrain	samples)

//	create	the	actor	for	heightfield

PxRigidStatic*	actor	=	physics.createRigidStatic(PxTransform(PxIdentity

//	iterate	over	source	data	points	and	find	minimum	and	maximum	heights

PxReal	minHeight	=	PX_MAX_F32;

PxReal	maxHeight	=	-PX_MAX_F32;

for(PxU32	s=0;	s	<	ts	*	ts;	s++)

{

				minHeight	=	PxMin(minHeight,	terrainData.verts[s].y);

				maxHeight	=	PxMax(maxHeight,	terrainData.verts[s].y);

}

//	compute	maximum	height	difference

PxReal	deltaHeight	=	maxHeight	-	minHeight;

//	maximum	positive	value	that	can	be	represented	with	signed	16	bit	integer

PxReal	quantization	=	(PxReal)0x7fff;

//	compute	heightScale	such	that	the	forward	transform	will	generate	the	closest	point

//	to	the	source

//	clamp	to	at	least	PX_MIN_HEIGHTFIELD_Y_SCALE	to	respect	the	PhysX	API	specs

PxReal	heightScale	=	PxMax(deltaHeight	/	quantization,	PX_MIN_HEIGHTFIELD_Y_SCALE

PxU32*	hfSamples	=	new	PxU32[ts	*	ts];

PxU32	index	=	0;



for(PxU32	col=0;	col	<	ts;	col++)

{

				for(PxU32	row=0;	row	<	ts;	row++)

				{

								PxI16	height;

								height	=	PxI16(quantization	*	((terrainData.verts[(col*ts)

												deltaHeight));

								PxHeightFieldSample&	smp	=	(PxHeightFieldSample&)(hfSamples

								smp.height	=	height;

								smp.materialIndex0	=	userValue0;

								smp.materialIndex1	=	userValue1;

								if	(userFlipEdge)

												smp.setTessFlag();

				}

}

//	Build	PxHeightFieldDesc	from	samples

PxHeightFieldDesc	terrainDesc;

terrainDesc.format										=	PxHeightFieldFormat::eS16_TM;

terrainDesc.nbColumns							=	ts;

terrainDesc.nbRows										=	ts;

terrainDesc.samples.data				=	hfSamples;

terrainDesc.samples.stride		=	sizeof(PxU32);	//	2x	8-bit	material	indices	+	16-bit	height

terrainDesc.thickness							=	-10.0f;	//	user-specified	heightfield	thickness

terrainDesc.flags											=	PxHeightFieldFlags();

PxHeightFieldGeometry	hfGeom;

hfGeom.columnScale	=	terrainWidth	/	(ts-1);	//	compute	column	and	row	scale	from	input	terrain

																																												//	height	grid

hfGeom.rowScale				=	terrainWidth	/	(ts-1);

hfGeom.heightScale	=	deltaHeight!=0.0f	?	heightScale	:	1.0f;

hfGeom.heightField	=	cooking.createHeightField(terrainDesc,	physics

delete	[]	hfSamples;

PxTransform	localPose;

localPose.p	=	PxVec3(-(terrainWidth	*	0.5f),				//	make	it	so	that	the	center	of	the

				minHeight,	-(terrainWidth	*	0.5f));									//	heightfield	is	at	world	(0,minHeight,0)

localPose.q	=	PxQuat(PxIdentity);

PxShape*	shape	=	PxRigidActorExt::createExclusiveShape(*actor,	hfGeom

shape->setLocalPose(localPose);



Reducing	memory	usage

The	following	strategies	can	be	used	to	reduce	PhysX's	memory	usage.

Consider	using	tight	bounds	for	convex	meshes

See	 the	 above	 chapter	 about	 Performance	 Issues	 for	 details.	 Using	 tight	 bounds	 for
convex	meshes	 is	mainly	 useful	 for	 performance,	 but	 it	 can	 also	 reduce	 the	 amount	 of
pairs	coming	out	of	the	broad-phase,	which	decreases	the	amount	of	memory	needed	to
manage	these	pairs.

Use	scratch	buffers

See	 the	 above	 chapter	 about	 Performance	 Issues	 for	 details.	 Scratch	 buffers	 can	 be
shared	 between	 multiple	 sub-systems	 (e.g.	 physics	 and	 rendering),	 which	 can	 globally
improve	memory	usage.	PhysX	will	not	use	less	memory	per-se,	but	it	will	allocate	less	of
it.

Flush	simulation	buffers

Call	 the	 PxScene::flushSimulation	 function	 to	 free	 internal	 buffers	 used	 for	 temporary
computations.	But	be	aware	 that	 these	buffers	are	usually	allocated	once	and	reused	 in
subsequent	 frames,	so	releasing	the	memory	might	 trigger	new	re-allocations	during	the
next	 simulate	 call,	 which	 can	 decrease	 performance.	 Please	 refer	 to	 the	
memory	chapter	for	details.

Use	preallocation

Use	 PxSceneDesc::limits	 to	 preallocate	 various	 internal	 arrays.	 Preallocating	 the	 exact
necessary	 size	 for	 internal	 buffers	 may	 use	 less	 memory	 overall	 than	 the	 usual	 array
resizing	 strategy	 of	 dynamic	 arrays.	 Please	 refer	 to	 the	Simulation	memory
details.



Tweak	cooking	parameters

Some	 cooking	 parameters	 have	 a	 direct	 impact	 on	 memory	 usage.	 In	 particular,
PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE,
PxCookingParams::suppressTriangleMeshRemapTable,
PxBVH33MidphaseDesc::meshCookingHint,
PxBVH33MidphaseDesc::meshSizePerformanceTradeOff,
PxBVH34MidphaseDesc::numTrisPerLeaf,	 PxCookingParams::midphaseDesc,
PxCookingParams::gaussMapLimit	 and	PxCookingParams::buildTriangleAdjacencies	 can
be	modified	 to	 choose	 between	 runtime	 performance,	 cooking	 performance	 or	memory
usage.

Share	shape	and	mesh	data

Share	 the	 same	 PxConvexMesh	 and	 PxTriangleMesh	 objects	 between	 multiple	 shape
instances	 if	 possible.	 Use	 shared	 shapes	 if	 possible.	 Please	 refer	 to	 the	
Collision	chapter	for	details	about	shape	sharing.

Use	the	scene-query	and	simulation	flags

If	 a	shape	 is	only	used	 for	 scene-queries	 (raycasts,	etc),	disable	 its	 simulation	 flag.	 If	a
shape	 is	 only	 used	 for	 simulation	 (e.g.	 it	 will	 never	 be	 raycasted	 against),	 disable	 its
scene-query	flag.	This	 is	good	for	both	memory	usage	and	performance.	Please	refer	to
the	Rigid	Body	Collision	chapter	for	details.



Behavior	issues

Objects	do	not	spin	realistically

For	 historical	 reasons	 the	 default	maximum	angular	 velocity	 is	 set	 to	 a	 low	 value	 (7.0).
This	can	artificially	prevent	 the	objects	 from	spinning	quickly,	which	may	 look	unrealistic
and	 wrong	 in	 some	 cases.	 Please	 use	 PxRigidDynamic::setMaxAngularVelocity	 to
increase	the	maximum	allowed	angular	velocity.

Overlapping	objects	explode

Rigid	bodies	created	in	an	initially	overlapping	state	may	explode,	because	the	SDK	tries
to	resolve	the	penetrations	in	a	single	time-step,	which	can	lead	to	large	velocities.	Please
use	 PxRigidBody::setMaxDepenetrationVelocity	 to	 limit	 the	 de-penetration	 velocity	 to	 a
reasonable	value	(e.g.	3.0).

Rigid	bodies	are	jittering	on	the	ground

Visualize	the	contacts	with	the	visual	debugger.	 If	 the	 jittering	 is	caused	by	contacts	that
appear	 and	 disappear	 from	 one	 frame	 to	 another,	 try	 to	 increase	 the	 contact	 offset
(PxShape::setContactOffset).

Piles	or	stacks	of	objects	are	not	going	to	sleep

PxSceneFlag::eENABLE_STABILIZATION	might	help	here.	This	 is	not	recommended	for
jointed	 objects	 though,	 so	 use	 PxRigidDynamic::setStabilizationThreshold	 to
enable/disable	 this	 feature	on	a	per-object	basis.	 It	should	be	safe	 to	enable	 for	objects
like	debris.

Jointed	objects	are	unstable

There	are	multiple	things	to	try	here:



Increase	 the	 solver	 iteration	 counts,	 in	 particular	 the	 number	 of	 position	 iterations.
Please	refer	to	the	Rigid	Body	Dynamics	chapter	for	details.
Consider	creating	the	same	constraints	multiple	times.	This	is	similar	to	increasing	the
number	 of	 solver	 iterations,	 but	 the	 performance	 impact	 is	 localized	 to	 the	 jointed
object	 rather	 than	 the	 simulation	 island	 it	 is	 a	 part	 of.	 So	 it	 can	 be	 a	 better	 option
overall.	 Note	 that	 the	 order	 in	 which	 constraints	 are	 created	 is	 important.	 Say	 you
have	 4	 constraints	 named	A,	 B,	C,	D,	 and	 you	want	 to	 create	 them	4	 times	 each.
Creating	them	in	the	AAAABBBBCCCCDDDD	order	will	not	improve	the	behavior,	but
creating	them	in	the	ABCDABCDABCDABCD	order	will.
Consider	 using	 joint	 projection.	 This	might	 help	 for	 simple	 cases	where	 only	 a	 few
objects	are	connected.	Please	refer	to	the	Joints	chapter	for	details.
Use	 smaller	 time	 steps.	 This	 can	 be	 an	 effective	 way	 to	 improve	 joints'	 behavior,
although	 it	can	be	an	expensive	solution.	 Instead	of	 running	1	simulation	call	with	a
time-step	dt	and	N	solver	iterations,	consider	trying	N	simulation	calls	with	a	time-step
dt/N	and	1	solver	iteration.
Consider	tweaking	inertia	tensors.	In	particular,	for	ropes	or	chains	of	jointed	objects,
the	PxJoint::setInvMassScale	and	PxJoint::setInvInertiaScale	 functions	 can	be	quite
effective.	 An	 alternative	 is	 to	 compute	 the	 inertia	 tensor	 (e.g.	 using
PxRigidBodyExt::setMassAndUpdateInertia)	 with	 an	 artificially	 increased	mass,	 and
then	set	the	proper	mass	directly	afterwards	(using	PxRigidBody::setMass).
Consider	adding	extra	distance	constraints.	For	example	in	a	rope,	it	can	be	effective
to	create	an	extra	distance	constraint	between	 the	 two	ends	of	 the	 rope,	 to	 limit	 its
stretching.	Alternatively,	one	can	create	distance	constraints	between	elements	N	and
N+2	in	the	chain.
Use	spheres	instead	of	capsules.	A	rope	made	of	spheres	will	be	more	stable	than	a
rope	made	of	 capsules.	The	positions	of	pivots	can	also	affect	 stability.	Placing	 the
pivots	 at	 the	 spheres'	 centers	 is	 more	 stable	 than	 placing	 them	 on	 the	 spheres'
surfaces.
Use	articulations.	Perhaps	not	surprisingly,	articulations	are	much	better	at	simulating
articulated	 objects.	 They	 can	 be	 used	 to	 model	 better	 ropes,	 bridges,	 vehicles,	 or



ragdolls	out-of-the-box,	without	the	need	for	the	above	workarounds.	Please	refer	to
the	Articulations	 chapter	 for	 details.	 They	 are	 more	 expensive	 than	 regular	 joints
though.



GPU	Rigid	Bodies

Collision	 detection	 with	 PxSceneFlag::eENABLE_GPU_DYNAMICS	will	 be	 executed	 on
GPU	 for	 all	 convex-convex,	 convex-box,	 box-box,	 convex-mesh,	 box-mesh,	 convex-HF
anb	box-HF	pairs.	However,	such	pairs	will	not	be	processed	if	either	the	vertex	count	of
the	 convex	 hull	 exceeds	 64	 vertices	 (convex	 desc	 flag
PxConvexFlag::eGPU_COMPATIBLE	 can	 be	 used	 to	 create	 compatible	 hulls),	 the	 pair
requests	contact	modification,	the	triangle	mesh	was	not	cooked	with	GPU	data	requested
(PxCookingParams::buildGrbData)	 or	 if	 the	 triangle	 mesh	 makes	 use	 of	 per-triangle
materials.

Aggregates	are	used	to	lighten	the	load	on	broad	phases.	When	running	broad	phase	on
the	CPU,	 aggregates	 frequently	 improve	performance	by	 reducing	 the	 load	on	 the	 core
broad	phase	algorithm.	However,	 there	 is	 some	cost	when	aggregates	overlap	because
these	overlaps	must	be	processed	by	a	separate	module.	When	using	GPU	broad	phase,
the	use	of	aggregates	generally	result	in	performance	regressions	because	the	processing
of	 aggregate	 overlaps	 occurs	 on	 the	CPU	 and,	while	 using	 aggregates	 can	 reduce	 the
load	 on	 the	 GPU	 broad	 phase,	 the	 amount	 by	 which	 they	 improve	 GPU	 broad	 phase
performance	is	frequently	smaller	than	the	cost	of	processing	the	aggregate	overlaps.



Determinism

The	 PhysX	 SDK	 can	 be	 described	 as	 offering	 limited	 determinism.	 Results	 can	 vary
between	platforms	due	to	differences	in	hardware	maths	precision	and	differences	in	how
the	 compiler	 reoders	 instructions	 during	 optimization.	 This	means	 that	 behavior	 can	 be
different	between	different	platforms,	different	compilers	operating	on	the	same	platform	or
between	optimized	and	unoptimized	builds	using	the	same	compiler	on	the	same	platform.
However,	on	a	given	platform,	given	the	exact	same	sequence	of	events	operating	on	the
exact	 scene	 using	 a	 consistent	 time-stepping	 scheme,	 PhysX	 is	 expected	 to	 produce
deterministic	 results.	 In	order	 to	achieve	 this	determinism,	 the	application	must	 recreate
the	scene	 in	 the	exact	same	order	each	 time	and	 insert	 the	actors	 into	a	newly-created
PxScene.	There	are	several	other	factors	that	can	affect	determinism	so	if	an	inconsistent
(e.g.	 variable)	 time-stepping	 scheme	 is	 used	 or	 if	 the	 application	 does	 not	 perform	 the
same	sequence	of	API	calls	on	the	same	frames,	the	PhysX	simulation	can	diverge.

In	addition,	the	PhysX	simulation	can	produce	divergent	behavior	if	any	conditions	in	the
simulation	has	varied.	Even	 the	addition	of	a	single	actor	 that	 is	not	 interacting	with	 the
existing	set	of	actors	in	the	scene	can	produce	divergent	results.

PhysX	 provides	 a	 mechanism	 to	 overcome	 the	 issue	 of	 divergent	 behavior	 in	 existing
configurations	as	a	result	of	additional	actors	being	added	or	actors	being	removed	from
the	scene	that	do	not	interact	with	the	other	actors	in	the	scene.	This	mechanism	can	be
enabled	 by	 raising	 PxSceneFlag::eENABLE_ENHANCED_DETERMINISM	 on
PxSceneDesc::flags	 prior	 to	 creating	 the	 scene.	 Enabling	 this	 mode	 makes	 some
performance	 concessions	 to	 be	 able	 to	 offer	 an	 improved	 level	 of	 determinism.	 The
application	 must	 still	 follow	 all	 the	 requirements	 to	 achieve	 deterministic	 behavior
described	previously	in	order	for	this	mechanism	to	produce	consistent	results.
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Migrating	From	PhysX	SDK	2.x	to	3.x
This	guide	describes	how	to	upgrade	applications	that	have	an	integration	of	PhysX	2.x	to
using	PhysX	3.x.	As	the	changes	are	numerous	and	significant,	the	level	of	work	involved
in	 upgrading	 to	 PhysX	 3	 should	 be	 carefully	 assessed	 before	 starting	 to	 adapt	 an
application's	integration	code.



Removed	Features

This	section	lists	features	of	PhysX	2	that	do	not	have	a	PhysX	3	equivalent.	
that	 rely	 on	 these	 features	 may	 need	 fundamental	 changes,	 or	 should	 stay	 with	 using
PhysX	2.

Compartments

PhysX	 2	 scenes	 supported	 scene	 compartments.	 A	 separate	 compartment	 could	 be
assigned	 to	 simulating	 rigid	 bodies,	 deformables	 or	 fluids.	 The	 compartments	 could	 be
simulated	 in	 parallel	 and	 the	 scene	 code	 contained	 some	 extra	 logic	 for	 interaction
between	 compartments.	 Compartments	 were	 added	 as	 an	 afterthought	 to	 an	 SDK	 that
was	 not	 originally	 designed	 to	 support	 interaction	 between	 multiple	 simulation
technologies.	This	design	deficiency	was	addressed	from	the	ground	up	 in	PhysX	3	and
comparments	were	no	longer	needed.

One	missing	detail	is	separate	time	steps	are	no	longer	directly	supported	in	3.	A	possible
workaround	 is	 to	 create	 multiple	 PxScenes	 and	 step	 them	 at	 different	 rates.	 In	 this
scenario	 the	 force	 exchange	 implementation	 would	 be	 entirely	 up	 to	 the	 user.	 Another
possible	 approach	 is	 to	 simulate	 the	 entire	 scene	 using	 the	minimum	 timestep	 formerly
required	for	any	of	the	compartments.

Deformables

PhysX	 2	 supported	 a	 wide	 range	 of	 deformable	 mesh	 simulation	 features	 such	 as
environmental	cloth,	soft	bodies,	inflatable	balloons	and	plastic	deformation	of	rigid	metal.
For	performance	and	code	quality	 reasons,	3.3	 temporarily	 stopped	supporting	many	of
2.8	 deformable	 features	 in	 favor	 of	 a	 much	 simpler	 and	 higher	 performance	 cloth
simulation	engine.	In	PhysX	3	dot	releases,	we	will	be	incrementally	adding	back	features
such	 as	 environmental	 simulation.	 For	 the	 time	 being	 there	 is	 no	 substitute	 for	 many
applications	of	PhysX	2	deformables.

NxUtilLib



The	 assorted	 utility	 functions	 that	 were	 in	 this	 library	 was	 either	 moved	 elsewhere	 or
deleted.	Sweep,	overlap	and	ray	 tests	are	available	 in	PxGeometryQuery.	
diagonalization	 is	 in	 PxDiagonalize().	 Density	 computation	 from	mass	 is	 gone.	
point	unit	manipulation	routines	are	gone.	Geometrical	helpers	are	in	general	gone.

Anisotropic	Friction

Friction	on	a	surface	in	PhysX	2	could	be	configured	to	be	stronger	in	one	direction	than	in
another.	This	is	no	longer	supported	in	PhysX	3,	and	there	is	no	known	workaround	that
will	give	comparable	behavior.



Basics

SDK	Header

In	PhysX	2,	the	symbols	of	the	SDK	could	be	included	in	the	user's	relevant	source	files
through	the	following	header:

#include	"NxPhysics.h"

In	PhysX	3,	this	should	be	replaced	with:

#include	"PxPhysicsAPI.h"

SDK	Redistribution

Unlike	 versions	 of	 PhysX	 prior	 to	 2.8.4,	 PhysX	 3	 no	 longer	 needs	 a	 'system	 software'
installation	on	Windows.

API	Conventions

The	Nx	prefix	of	API	 classes	has	changed	 to	a	Px	prefix.	Descriptors	 for	many	classes
were	removed	and	replaced	with	creation	parameters	inline	in	the	creation	function.

For	example,	a	capsule	was	created	with	PhysX	2	like	this:

NxCapsuleShapeDesc	capsuleDesc;

capsuleDesc.height	=	height;

capsuleDesc.radius	=	radius;

capsuleDesc.materialIndex=	myMaterial->getMaterialIndex();

NxShape*	aCapsuleShape	=	aCapsuleActor->createShape(capsuleDesc);

In	PhysX	3	it	is	created	more	succinctly	like	this:

PxShape*	aCapsuleShape	=	PxRigidActorExt::createExclusiveShape(*aCapsuleActor

				PxCapsuleGeometry(radius,	halfHeight),	myMaterial);



Callback	Classes

PhysX	2	callback	classes	are	listed	below,	followed	by	the	corresponding	PhysX	3	class,	if
there	is	one:

NxUserAllocator PxAllocatorCallback
NxUserOutputStream PxErrorCallback
NxUserContactReport PxSimulationEventCallback
NxUserNotify PxSimulationEventCallback
NxUserTriggerReport PxSimulationEventCallback

The	following	PhysX	2	callback	classes	have	no	PhysX	3	direct	equivalent:

NxUserRaycastReport Ray	casting	Results.	Results	are	now	passed	to	the	user	using	a
PxHitBuffer	object.

NxUserEntityReport Sweep	and	Overlap	results.	Results	are	now	passed	to	the	user
using	a	PxHitBuffer	object.

NxStream Data	serialization.	Serialized	data	is	now	written	directly	to
binary	buffers.

Below	is	a	list	of	new	callback	classes	that	offer	functionality	that	did	not	exist	in	PhysX	2
yet:

PxBroadPhaseCallback Broad-phase	related	events.
PxSimulationFilterCallback Contact	filtering.
PxUserControllerHitReport Reports	character	controller	events.
PxControllerBehaviorCallback Customizes	behavior	of	character	controller	collisions.
PxContactModifyCallback Modification	of	contact	constraints.
PxCCDContactModifyCallback Modification	of	CCD	contact	constraints.
PxConstraintConnector Custom	constraints.
PxProcessPxBaseCallback Serialization.
PxQueryFilterCallback Scene	query	filtering.
PxSpatialLocationCallback Scene	Queries	against	PxSpatialIndex.
PxSpatialOverlapCallback Scene	Queries	against	PxSpatialIndex.



Memory	Management

NxUserAllocator	is	renamed	to	PxAllocatorCallback.	An	important	change	since	PhysX	2:
The	 SDK	 now	 requires	 that	 the	memory	 that	 is	 returned	 be	 16-byte	 aligned.	 On	many
platforms	malloc()	 returns	memory	 that	 is	 16-byte	 aligned,	 but	 on	Windows	 the	 system
function	_aligned_malloc()	provides	this	capability.

Debug	Rendering

Debug	visualization	formerly	provided	by	NxScene::getDebugRenderable()	is	now	handled
by	PxScene::getRenderBuffer()	and	related	functions.

Error	Reporting

NxUserOutputStream	is	now	called	PxErrorCallback,	but	works	the	same	way.	
separate	 reportAssertViolation()	 function.	Asserts	 are	 only	 contained	 in	 the	 debug	 build
which	only	ships	with	the	source	release	and	go	directly	to	platform	hooks.

Type	Casting

PhysX	2	style	downcasting:

NxSphereShape	*	sphere	=	shape->isSphere();

is	replaced	by	the	following	template	syntax:

const	PxRigidDynamic*	myActor	=	actor->is<PxRigidDynamic>();

Multithreading

Compared	to	PhysX	2,	there	are	now	more	situations	where	it	is	legal	to	call	the	SDK	from
multiple	threads.	See	the	section	on	Multithreading	for	details.

While	 PhysX	 2	 simulation	 threads	 were	 managed	 internally	 by	 the	 SDK,	 and	 the	 user



could	simply	specify	the	number	to	use,	PhysX	3	allows	the	application	to	take	over	all	of
the	simulation's	thread	scheduling.	It	 is	also	possible	for	the	application	to	define	its	own
tasks	 and	 submit	 them	 to	 the	 SDK's	 default	 scheduler.	 See	 the	 section	 on
TaskManagement	for	details.

Startup	and	Shutdown

PxCreatePhysicsSDK()	has	been	renamed	PxCreatePhysics(),	and	 the	parameters	have
slightly	 changed.	 A	 foundation	 instance	 must	 first	 be	 created	 explicitly	 using
PxCreateFoundation().

Extensions

A	lot	of	non-essential	utility	code	has	been	moved	to	the	extensions	library.	
NxActor::addForceAtPos()	 is	 now	 exposed	 as	 PxRigidBodyExt::addForceAtPos().	
former	 function	 appears	 to	 be	 missing,	 look	 there.	 It	 is	 available	 after	 calling
PxInitExtensions().

Heightfields

Heightfields	now	need	to	be	pre-cooked	like	convexes	and	meshes.	PhysX	3	heightfields
can	 be	 set	 to	 use	 the	 same	 internal	 collision	 logic	 as	 meshes	 so	 they	 have	 uniform
behavior.

Cooking

The	PhysX	2	cooking	library	was	created	by	calling:

NxCookingInterface	*gCooking	=	NxGetCookingLib(NX_PHYSICS_SDK_VERSION

gCooking->NxInitCooking();

It	can	now	be	accessed	through	a	single	PxCreateCooking()	call.	Cooking	function	names
are	 slightly	 changed,	 e.g.	 NxCookTriangleMesh()	 is	 now	 invoked	 as
cooking.cookTriangleMesh().



Serialization

PhysX	3	has	two	serialization	systems:	'RepX'	based	on	XML,	and	a	separate	system	for
fast	binary	data.	Neither	approach	is	similar	to	PhysX	2's	save-to-desc	and	load-from-desc
based	serialization	code,	 though	the	PhysX	3	 'RepX'	serialization	 is	similar	 to	PhysX	2's
NxUStream.



API	Design	Changes

Changed	Actor	Hierarchy

PhysX	 2	 only	 had	 a	 single	 actor	 class,	 and	 it	 was	 possible	 to	 call	 any	method	 on	 any
instance	of	this	class	even	if	it	wasn't	applicable	to	the	kind	of	actor	object	in	question.	
example,	isSleeping()	could	be	called	on	static	actors	which	did	not	have	any	sleep	logic.
In	PhysX	3,	we	decoupled	actor	into	a	hierarchy	of	specialized	sub-classes.	
PxCloth	and	PxParticleSystem	are	now	subclasses	of	PxActor.

Actor	Creation

In	PhysX	2,	the	objects	inside	each	scene	were	created	by	the	scene	class	itself.	
3,	 objects	 are	 created	 by	 PxPhysics,	 and	 need	 to	 be	 added	 to	 a	 scene	 as	 a	 separate
subsequent	step	by	calling:

mScene->addActor(actor);



Material	Indexes

PhysX	 2	 uses	 so-called	 material	 indexes	 for	 stored	 materials.	 Material	 indices	 are
supported	in	PhysX	3	only	to	specify	per-triangle	materials	in	meshes	and	heightfields.	In
other	cases	the	material	object	is	referenced	directly.



Continuous	Collision	Detection

PhysX	2	uses	CCD	skeleton	meshes	for	CCD.	PhysX	3	no	longer	needs	this	data	so	all
skeleton	related	code	can	simply	be	removed.



Pose	Description

In	 PhysX	 2	 pose	 is	 specified	 using	 a	 matrix.	 In	 PhysX	 3,	 pose	 is	 specified	 using	 a
PxTransform	 type	 that	 consists	 of	 a	 PxVec3	 for	 translation	 and	 a	 PxQuat	 for	 rotation.
Constructors	 are	 provided	 to	 convert	 4x4	 matrices	 to	 PxTransform	 objects	 and	 3x3
matrices	from	quaternions,	as	well	as	conversely.



Shape	Description

PhysX	 2	 has	 multiple	 subclasses	 of	 NxShape,	 one	 for	 each	 type	 of	 geometry,	 with
corresponding	NxShapeDesc	classes.	PhysX	3	has	only	a	single	PxShape	class,	to	which
a	PxGeometry	object	is	passed	on	creation.	To	determine	the	geometry	type	of	a	shape,
call	 PxShape::getGeometryType().	 To	 extract	 a	 PxGeometry	 object	 from	 a	 shape	 of
unknown	type,	use	PxShape::getGeometry().

Skin	Width

PhysX	 2's	 NX_SKIN_WIDTH	 and	 NxShapeDesc::skinWidth	 was	 replaced	 with
PxShape::setContactOffset()	and	setRestOffset().	See	Tuning	Shape	Collision	Behavior



Joints

The	D6	driveType	 in	PhysX	2	 no	 longer	 exists	 in	PhysX	3.	Now	drive	 for	D6	 is	 always
spring-like:	 if	 you	 want	 position	 drive	 you	 set	 the	 'spring'	 value	 non-zero,	 if	 you	 want
velocity	drive	you	set	 the	damping	field	non-zero,	and	 if	you	set	both	you	get	a	damped
spring.	 Some	 specialized	 joints	 like	 NxJointDriveDesc,	 NxJointLimitSoftDesc	 (PhysX	 2
names)	now	were	moved	to	Extensions	(see	the	extensions	folder	inside	PhysX	3	include
directory).

If	 you	 have	 used	 the	 deleted	NxSpringAndDamperEffector,	 you	 should	 now	 use	 a	 joint
with	a	spring	property.

All	 special	 axes	 for	 a	 joint	 (rotation	axis	 for	 revolute,	 translation	axis	 for	 prismatic,	 twist
axis	for	D6)	now	use	the	x-axis.

Joint	 limits	now	 require	a	contact	offset,	which	determines	 the	distance	 from	 the	 limit	at
which	 it	becomes	active.	 It	 functions	similarly	 to	 the	contactOffset	parameter	 for	collision
detection.



Time	Stepping

PhysX	2	had	two	different	time	stepping	modes:	NX_TIMESTEP_FIXED	(SDK	subdivided
into	fixes	steps)	and	NX_TIMESTEP_VARIABLE	(user	specified	steps).	
to	the	setTiming()	function.	This	controlled	SDK-internal	substepping	code	that	computed
the	 proper	 size	 of	 the	 next	 time	 step,	 and	 called	 an	 internal	 simulate	 function	with	 this
elapsed	time.

PhysX	 3	 discards	 with	 the	 substepping	 code	 altogether,	 and	 exposes	 only	 the	 internal
simulate	function	directly:

mScene->simulate(mStepSize);

In	PhysX	2	 it	was	 legal	 to	call	simulate	with	a	 timestep	of	zero	 to	 force	 the	execution	of
various	side-effects	of	simulation.	PhysX	3	neither	requires	nor	supports	this.

The	fetchResults	function	stayed	the	same,	however	there	is	no	more	flag	to	specify	which
simulation	to	fetch,	as	there	is	now	only	a	single	simulation.

Simulation	Parameters

The	 global	 speeds	 below	 which	 objects	 go	 to	 sleep,
NX_DEFAULT_SLEEP_LIN_VEL_SQUARED	 and
NX_DEFAULT_SLEEP_ANG_VEL_SQUARED	 are	 gone.	 PhysX	 3	 instead	 features	 per-
body	 function	 PxRigidDynamic::setSleepThreshold()	 which	 is	 an	 energy	 based	 setting,
more	similar	to	the	PhysX	2	NX_DEFAULT_SLEEP_ENERGY.

The	 global	 NX_BOUNCE_THRESHOLD	 is	 replaced	 by
PxSceneDesc::bounceThresholdVelocity.

The	 NX_DYN_FRICT_SCALING,	 NX_STA_FRICT_SCALING	 scaling	 factors	 have	 been
removed.	These	values	should	now	be	pre-baked	into	friction	coefficients.

The	NX_MAX_ANGULAR_VELOCITY	value	has	been	removed.



NX_ADAPTIVE_FORCE	has	been	renamed	PxScenFlag.ADAPTIVE_FORCE.



Collision	Filtering

PhysX	 2	 supported	 multiple	 fixed	 function	 mechanisms	 for	 filtering	 pairwise	 shape
collisions	 such	 as	 collision	 groups.	 In	 PhysX	 2	 multiple	 group	 tags	 could	 be	 created,
specified	as	collidable	with	each	other	and	assigned	to	shapes.

PhysX	 3,	 supports	 user	 callbacks	 for	 collision	 filtering	 with	 a	 restriction	 that	 arbitrary
memory	cannot	be	accessed	by	filtering	code	so	that	it	can	be	executed	on	PS3	SPUs	or
on	GPUs	with	 optimal	 performance.	 If	 performance	 is	 not	 a	 priority,	 similar	 functionality
can	be	achieved	via	conventional	callbacks	(PxSimulationFilterCallback).

When	 migrating	 PhysX	 2	 code,	 note	 that	 we	 provide	 the	 class
PxDefaultSimulationFilterShader	in	PhysX	3,	which	emulates	a	portion	of	PhysX	2	filtering
behavior.	 Start	 by	 checking	 if	 this	 class	 is	 sufficient.	 As	 this	 is	 an	 extension	 class,	 the
source	code	is	available	and	may	be	extended	or	customized.

To	migrate	your	fixed	function	PhysX	2	filtering	code	on	your	own,	you	need	to	be	aware	of
its	exact	behavior	and	implement	it	as	a	callback	or	shader.	Let	us	look	at	the	precise	2.8
mechanisms	and	make	some	recommendations	for	porting:

virtual	void	NxScene::setShapePairFlags(NxShape&	shapeA,

				NxShape&	shapeB,

				NxU32		nxContactPairFlag					//0	or	NX_IGNORE_PAIR

)

virtual	void	NxScene::setActorPairFlags(NxActor&	actorA,

				NxActor&	actorB,

				NxU32	nxContactPairFlag

)

The	 first	 function	 stored	 explicit	 shape	 pairs	 in	 a	 hash,	 and	 a	 lookup	 returned	 the	 bit
indicating	to	filter	or	not.	The	second	did	the	same	for	actor	pairs.	Because	of	the	arbitrary
size	 of	 the	 pair	 hash,	 implementing	 this	 mechanism	 as	 a	 shader	 with	 fixed	memory	 is
difficult	in	practice,	but	implementing	as	a	callback	should	be	trivial	using	a	data	structure
such	as	the	STL	hash_map	where	Key	is	a	struct	holding	the	two	pointers	and	Data	is	the
bit	flag.



Another	scheme	provided	by	PhysX	2	were	collision	groups:

virtual	void		NxShape::setGroup(NxCollisionGroup	collisionGroup)

virtual	void	NxScene::setGroupCollisionFlag(NxCollisionGroup	group1

				NxCollisionGroup	group2,

				bool	enable

)

This	approach	let	the	user	assign	shapes	to	one	of	32	collision	groups,	and	then	let	each
pair	 of	 groups	 be	 assigned	 a	 boolean	 pair	 flag.	 This	 approach	 lends	 itself	 better	 to	 a
shader	 based	 implementation.	 To	 do	 this,	 you	 should	 reserve	 a	 word	 of	 each	 shape's
filterData	 (say	word0)	 to	hold	 the	group	 index,	and	assign	 this	as	before.	Next,	define	a
matrix	to	hold	the	group	pair	bits,	and	a	function	to	set	it:

NxU32	groupCollisionFlags[32];

//init	all	group	pairs	to	true:

for	(unsigned	i	=	0;	i	<	32;	i	++)

				groupCollisionFlags[i]	=	0xffffffff;

void	setU32CollisionFlag(NxU32	groups1,	NxU32	groups2,	bool	enable

{

				NX_ASSERT(groups1	<	32	&&	groups2	<	32);

				if	(enable)

				{

								//be	symmetric:

								groupCollisionFlags[groups1]	|=	(1	<<	groups2);

								groupCollisionFlags[groups2]	|=	(1	<<	groups1);

				}

				else

				{

								groupCollisionFlags[groups1]	&=	~(1	<<	groups2);

								groupCollisionFlags[groups2]	&=	~(1	<<	groups1);

				}

}

Unfortunately	 it	 is	 not	 possible	 to	 change	 this	 state	 after	 the	 scene	 is	 created.	 This	 is
because	if	the	matrix	could	change	during	simulation,	it	would	force	an	arbitrary	amount	of
existing	contact	pairs	to	be	refiltered.	In	a	large	simulation,	this	could	be	an	unacceptable
amount	of	computation.	Therefore	the	matrix	must	be	initialized	to	its	final	state	before	the



scene	is	created,	like	this:

PxSceneDesc	desc;

...

desc.filterShaderData	=	groupCollisionFlags;

desc.filterShaderDataSize	=	32	*	sizeof(PxU32);

scene	=	sdk.createScene(desc);

Finally,	you	need	to	code	the	filter	shader	to	access	this	data:

PxFilterFlags	FilterShader(

				PxFilterObjectAttributes	attributes0,	PxFilterData	filterData0

				PxFilterObjectAttributes	attributes1,	PxFilterData	filterData1

				PxPairFlags&	pairFlags,	const	void*	constantBlock,	PxU32	constantBlockSize

{

				//	let	triggers	through,	and	do	any	other	prefiltering	you	need.

				if(PxFilterObjectIsTrigger(attributes0)	||	PxFilterObjectIsTrigger

				{

								pairFlags	=	PxPairFlag::eTRIGGER_DEFAULT;

								return	PxFilterFlag::eDEFAULT;

				}

				//	generate	contacts	for	all	that	were	not	filtered	above

				pairFlags	=	PxPairFlag::eCONTACT_DEFAULT;

				PxU32	ShapeGroup0	=	filterData0.word0	&	31;

				PxU32	ShapeGroup1	=	filterData1.word0	&	31;

				PxU32*	groupCollisionFlags	=	(PxU32*)constantBlock;

				if	((groupCollisionFlags[ShapeGroup0]	&	(1	<<	ShapeGroup1))	==

								return	PxFilterFlag::eSUPPRESS;

				else

								return	PxFilterFlag::eDEFAULT;

}



Scene	Queries

The	 API	 for	 scene	 query	 functions	 that	 return	 multiple	 intersections	 (e.g.
PxScene::raycast(...))	has	changed.	In	PhysX	3,	raycast/overlap/sweep	functions	expect	a
pre-allocated	 buffer	 or	 a	 callback	 class	 as	 a	 parameter	 in	 order	 to	 return	 multiple
intersections.	 If	 you	do	not	 know	 the	maximum	number	of	 intersections	 in	advance	you
can	inherit	from	PxHitCallback	and	override	processTouches	virtual	function	to	receive	an
arbitrary	 number	 of	 intersections	 via	 multiple	 callbacks	 using	 only	 a	 fixed	 size	 buffer.
Please	refer	to	the	Scene	Query	section	of	the	guide	for	more	details	and	examples.

Raycasts

The	 interface	 for	 making	 raycasts	 was	 changed	 in	 PhysX	 3.	 Now	 you	 should	 pass	 an
origin	(PxVec3)	and	a	direction	(PxVec3)	instead	of	a	NxRay	that	combined	these	fields	in
PhysX	2.

Overlaps

Routines	 like	 overlapSphereShapes,	 overlapAABBShapes,	 overlapOBBShapes,
overlapCapsuleShapes	 are	 now	 all	 covered	 with	 PxScene::overlap	 (passing	 in	 a
PxSphereGeometry,	PxBoxGeometry	or	PxCapsuleGeometry	as	a	first	parameter).

Sweep	Tests

PhysX	2	provides	a	linearCapsuleSweep	that	takes	two	points	to	define	the	capsule's	two
spherical	ends.	In	PhysX	3	we	have	a	general	sweep()	routine	that	takes	a	PxGeometry
and	an	initial	PxTransform	position.	Capsules	were	defined	in	PhysX	2	as	two	points.	
should	be	converted	to	an	initial	transformation	(PxTransform)	that	consists	of	PxVec3	for
position	and	PxQuat	for	rotation.	PxCapsuleGeometry's	length	is	along	the	x	axis	in	local
space.
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Migrating	From	PhysX	SDK	3.2	to	3.3
This	guide	highlights	all	significant	parts	of	the	API	that	have	changed	in	the	last	dot
release.	An	application	with	a	working	integration	of	the	older	version	of	PhysX	should
be	able	to	easily	migrate	to	the	newer	version	by	following	these	pointers.



Math	Classes

The	 static	 createIdentity()	 and	 createZero()	 methods	 are	 now	 deprecated,	 and	 will	 be
removed	 in	 a	 future	 release.	 The	 preferred	 method	 is	 to	 use	 the	 constructors
PxMat33(PxIdentity),	 PxMat44(PxIdentity),	 PxQuat(PxIdentity),	 PxTransform(PxIdentity)
for	identity	transforms,	and	PxMat33(PxZero)	and	PxMat44(PxZero)	for	zero	matrices.



Scene	Query	API

The	Scene	Query	API	underwent	significant	changes.	The	highlights	are:

Former	 raycastAny,	 raycastMultiple,	 raycastSingle	 API	 calls	 are	 now	 folded
into	a	single	PxScene::raycast	call

Same	for	overlaps	and	sweeps

Same	for	PxBatchQuery	and	PxVolumeCache

For	PxScene	queries	a	deprecated	backwards	compatibility	mapping
was	added	to	aid	the	transition

This	mapping	will	be	removed	in	the	next	dot	release

There	 are	 now	 dedicated	 callback	 and	 buffer	 classes	 for	 receiving	 query
results,	replacing	PxRaycastHit	array	and	count	parameters.

Same	for	sweeps	and	overlaps
See	 PxRaycastBuffer,	 PxSweepBuffer,	 PxOverlapBuffer,
PxRaycastCallback,	PxSweepCallback,	PxOverlapCallback

The	 way	 results	 are	 returned	 is	 now	 more	 robust	 and	 it	 is	 possible	 to
transparently	 handle	 unbounded	 number	 of	 results	 without	 dynamic
allocations.

Header	 PxSceneQueryFiltering.h	 was	 renamed	 to	 PxQueryFiltering.h,
PxSceneQueryReport.h	to	PxQueryReport.h

PxHitFlag::eIMPACT	changed	to	PxHitFlag::ePOSITION

PxRaycastHit.impact	 renamed	 to	 PxRaycastHit.position	 (same	 for
PxSweepHit.impact)

PxQueryFlag::eNO_BLOCK	and	PxQueryFlag::eANY_HIT	flags	were	added



The	following	classes	were	renamed

PxSceneQueryHit	->	PxQueryHit
PxSceneQueryFlags	->	PxHitFlags
PxSceneQueryHitType	->	PxQueryHitType
PxSceneQueryFilterData	->	PxQueryFilterData
PxSceneQueryFilterCallback	->	PxQueryFilterCallback
PxSceneQueryFilterFlags	->	PxQueryFlags
PxSceneQueryCache	->	PxQueryCache
PxCCTNonWalkableMode	->	PxControllerNonWalkableMode
PxControllerFlags	->	PxControllerCollisionFlags
PxCCTHit	->	PxControllerHit
PxConstraintDominance	->	PxDominanceGroupPair
PxActorTypeSelectionFlags	->	PxActorTypeFlags
PxFindOverlapTriangleMeshUtil	->	PxMeshOverlapUtil
Old	versions	are	#defined	to	new	versions	to	simplify	transition.	These
#defines	are	deprecated	and	will	be	phased	out.

queryClient	 parameter	 was	 removed	 from	 raycast/sweep/overlap	 parameter
list	and	added	to	PxQueryFilterData

The	 fix	 is	 to	 simply	 pass	 the	 same	 value	 via
PxQueryFilterData::clientId

PxBatchQueryDesc	now	 requires	3	parameters	at	 construction	 time,	PxU32
maxRaycastsPerExecute,	 PxU32	 maxSweepsPerExecute,	 PxU32
maxOverlapsPerExecute

Each	 of	 these	 numbers	 is	 an	 upper	 bound	 on	 the	 number	 of
PxBatchQuery::raycast(),	sweep()	and	overlap()	calls	before	a	call	 to
execute()
Previously	 there	was	 no	way	 to	 check	 for	 results	 buffer	 overflow	 in
batch	query	code	since	sizes	of	these	buffers	were	not	specified.



The	 fix	 is	 to	 specify	 the	batch	query	 result	 (different	 from	hit)	 buffer
sizes	at	construction.

PxBatchQueryDesc	no	longer	directly	holds	pointers	to	memory	for	queries,	in
3.3	these	are	moved	to	PxBatchQueryMemory.

It	is	now	possible	to	set	a	new	batch	query	memory	descriptor	before
each	execute
userRaycastHitBuffer	has	been	renamed	to	userRaycastTouchBuffer
raycastHitBufferSize	has	been	renamed	to	raycastTouchBufferSize
same	 for	 overlaps	 and	 sweeps	 (userSweepHitBuffer,
sweepHitBufferSize,	userOverlapHitBuffer,	overlapHitBufferSize)
A	code	snippet	below	illustrates	the	migration	for	these	code	changes

PxQueryFilterData	constructors	are	now	explicit.	This	means	that	previously	it
was	possible	to	write

scene->raycast(...,	 PxQueryFlag::eDYNAMIC	 |
PxQueryFlag::eSTATIC,	 ...),	 causing	 PxQueryFilterData	 to	 be
implicitly	constructed	by	the	compiler
now	 it	 is	 required	 to	 explicitly	 write:	 scene-
>raycast(...,PxQueryFilterData(PxQueryFlag::eDYNAMIC	 |
PxQueryFlag::eSTATIC),	...)
This	change	was	made	to	improve	type	safety	and	reduce	confusion
while	reading	the	code	employing	implicit	constructors

PxRaycastBufferN,	 PxOverlapBufferN	 and	 PxSweepBufferN	were	 added	 for
convenience

A	buffer	 object	with	 space	 for	 10	 touching	 hits	 and	 one	 blocking	 hit
can	now	be	conveniently	declared	as	PxRaycastBufferN<10>	hits;

PxRaycastHit	and	PxSweepHit	now	inherit	from	PxLocationHit	(formerly	from
PxSceneQueryImpactHit)



bool	PxLocationHit::hadInitialOverlap()	 function	was	added	 to	determine	 if	 a
swept	shape	was	overlapping	at	sweep	distance=0	or	if	a	raycast	hit	a	shape
at	distance=0.

Functionality	 of	 PxSceneQueryFlag::eINITIAL_OVERLAP	 and
PxSceneQueryFlag::eINITIAL_OVERLAP_KEEP	 was	 replaced	 with
PxHitFlag::eASSUME_NO_INITIAL_OVERLAP	 and
PxLocationHit::hadInitialOverlap().

Overlap	scene	queries	with	preFilter	or	postFilter	returning	multiple	eBLOCK
hits	would	previously	return	multiple	results	as	touching	hits.

eBLOCK	should	not	be	returned	from	user	filters	for	overlap().	Doing
so	will	result	in	undefined	behavior,	and	a	warning	will	be	issued.
If	the	PxQueryFlag::eNO_BLOCK	flag	is	set,	the	eBLOCK	will	instead
be	 automatically	 converted	 to	 an	 eTOUCH	 and	 the	 warning
suppressed.

Sweeps	 in	 3.3	 execute	 using	 a	 new	 faster	 code	 path,	 in	 some	 cases	 with
reduced	 precision.	 If	 you	 encounter	 precision	 issues	 not	 previously
experienced	 in	 earlier	 versions	 of	 PhysX,	 use	 ePRECISE_SWEEP	 flag	 to
enable	the	backwards	compatible	more	accurate	sweep	code.

Snippets	demonstrating	API	migration:

Former	raycastSingle	call:

PxRaycastHit	hit;

bool	hadHit	=	scene->raycastSingle(...,	hit,	...);

if	(hadHit)	doStuff(hit);

Is	now:

PxRaycastBuffer	buf;

Bool	hadHit	=	scene->raycast(...,	buf,	...);

if	(hadHit)	doStuff(buf.block);



Former	raycastAny	call:

PxSceneQueryHit	hit;

bool	hadHit	=	scene->raycastAny(hit);

if	(hadHit)	doStuff(hit);

Is	now:

PxRaycastBuffer	buf;	//	declare	a	hit	buffer	with	room	for	a	single	blocking	hit

PxFilterData	fdAny;	fdAny.flags	|=	PxQueryFlag::eANY_HIT;

bool	hadHit	=	scene->raycast(buf,	PxHitFlags(),	fdAny);

if	(hadHit)	doStuff(buf.block);

Former	Multiple	call:

PxRaycastHit	buffer[N];

bool	hasBlock;

PxI32	result	=	Scene->raycastMultiple(buffer,	N,	hasBlock);

if	(result	==	-1)

				handleOverflow();

else

{

				if	(hasBlock)

				{

								doBlocking(buffer[result-1]);

								doTouches(buffer,	result-1);

				}

				else

				{

								doTouches(buffer,	result);

				}

}

Is	now:

PxRaycastBufferN<N>	buf;

scene->raycast(buf);

if	(buf.hasBlock)

				doBlocking(buf.block);

doTouches(buf.touches,	buf.nbTouches);

or:



for	(PxU32	i	=	0;	i	<	buf.getNbAnyHits();	i++)	//	"any"	in	this	context	refers	to	blocking	or

																																															//	touching	hits

				doAnyHit(buf.getAnyHit(i));

Former	batch	query	memory	setup	code	in	3.2:

const	PxU32	maxRaycastHits	=	16,	maxRaycastQueries	=	8;

PxRaycastQueryResult*	resultBuffer	=	new	PxRaycastQueryResult[maxRaycastQueries

PxRaycastHitBuffer*	hitBuffer	=	new	PxRaycastHit[maxRaycastHits];

PxBatchQueryDesc	desc;	//	required	no	arguments,	there	was	no	safety	check	for	maximum	number

																							//	of	queries	per	batch	(not	hits	per	query)

desc.userRaycastResultBuffer	=	resultBuffer;

desc.userRaycastHitBuffer	=	hitBuffer;

desc.raycastHitBufferSize	=	maxRaycastHits;

PxBatchQuery*	bq	=	PxCreateBatchQuery(desc);

for	(PxU32	iQuery	=	0;	iQuery	<	maxRaycastQueries;	iQuery++)

				bq->raycastSingle(...);	//	up	to	8	raycast	queries	are	allowed	per	PxBatchQuery::execute()

																												//	call	but	there	was	no	overflow	check	in	3.2

bq->execute();

for	(PxU32	iResult	=	0;	iResult	<	nQueries;	iResult++)

{

				for	(PxU32	iHit	=	0;	iHit	<	resultBuffer[i].nbHits;	iHit++)

				{

								bool	isBlocking	=	(iHit	==	resultBuffer[i].nbHits	&&

												(resultBuffer[iResult].hits[iHit].flags	&	PxSceneQueryFlag

								processHit(resultBuffer[iResult].hits[iHit],	isBlocking);

				}

}

Batch	query	setup	code	in	3.3:

const	PxU32	maxRaycastHits	=	16,	maxRaycastQueries	=	8;

PxBatchQueryDesc	desc(maxQueries,	0,	0);	//	note	the	new	required	maximum	of	queries	per	batch

																																									//	(this	is	different	from	maximum	hits)

PxBatchQuery*	bq	=	scene->createBatchQuery(desc);

PxRaycastQueryResult*	resultBuffer	=	new	PxRaycastQueryResult[maxRaycastQueries

PxRaycastHitBuffer	hitBuffer	=	new	PxRaycastHit[maxRaycastHits];

PxBatchQueryMemory	mem(maxQueries,	0,	0);	//	maximum	number	of	queries	for	each	type

																																										//	(raycasts,	overlaps,	sweeps)

mem.userRaycastResultBuffer	=	resultBuffer;

mem.userRaycastTouchBuffer	=	hitBuffer;



mem.raycastTouchBufferSize		=	maxHits;

PxBatchQuery*	bq	=	PxCreateBatchQuery(desc);

bq->setUserMemory(mem);

for	(PxU32	iQuery	=	0;	iQuery	<	maxRaycastQueries;	iQuery++)

				bq->raycastSingle(...);	//	up	to	8	raycast	queries	are	allowed	per	PxBatchQuery::execute()

																												//	with	query	count	overflow	check	as	of	3.3

bq->execute();

for	(PxU32	iResult	=	0;	iResult	<	nQueries;	iResult++)

{

				//	note	that	the	blocking	hit	is	now	reported	in	resultBuffer[i].block	and	touching	hits	in

				//	resultBuffer[i].touches

				for	(PxU32	iHit	=	0;	iHit	<	resultBuffer[i].nbTouches;	iHit++)

								processTouchingHit(resultBuffer[iResult].touches[iHit]);

				processBlockingHit(resultBuffer[iResult].block);

}



SPU	batch	queries

In	3.2	the	number	of	SPUs	to	be	used	per	batch	query	was	controlled	by	a	global	setting
via	setSceneParamInt	call:

PxPS3Config::setSceneParamInt(getScene(),	PxPS3ConfigParam::eSPU_RAYCAST

In	3.3	PxBatchQuery	no	 longer	automatically	executes	on	multiple	SPUs	but	 requires	a
separate	PPU	 thread,	 this	design	allows	higher	 flexibility,	 such	as	executing	batches	on
multiple	 SPU	 and	 PPU	 threads	 simultaneously,	 better	 control	 of	 parallel	 execution	 and
allows	the	user	to	fine	tune	thread	load	balancing.	Here's	one	possible	way	to	run	batch
queries	on	multiple	SPUs	in	3.3:

struct	BQThread	:	shdfnd::Thread

{

				Ps::Sync	mBatchReady;

				Ps::Sync	mBatchCompleted;

				PxBatchQuery*	mBatch;

				PX_FORCE_INLINE	BQThread()	{	mBatch	=	NULL;	}

				PX_FORCE_INLINE	void	submitBatch(PxBatchQuery*	batch)	{	mBatch

				virtual	void	execute()

				{

								//	execute	submitted	batches	until	quit	is	signalled

								for(;;)

								{

												mBatchReady.wait();

												mBatchReady.reset();

												if	(quitIsSignalled())

																break;

												mBatch->execute();

												mBatch	=	NULL;

												mBatchCompleted.set();

								}	//	for	(;;)

								quit();	//	shutdown	thread

				}



};

//	main	thread	code:

//	pre-create	and	launch	batch	execute	threads

for	(PxU32	iThread	=	0;	iThread	<	nThreads;	iThread++)

{

				BQThread*	t	=	PX_NEW(BQThread);

				t->start();

				mThreads.pushBack(t);

}

//	submit	batches

for	(PxU32	iThread	=	0;	iThread	<	nThreads;	iThread++)

{

				//	create	batches

				PxBatchQuery*	threadBatch	=	createBatch(...);

				threadBatch->setRunOnSpu(true);

				mThreads[iThread]->submitBatch(threadBatch);

				mThreads[iThread]->mBatchReady.set();

}

//	execute	another	batch	on	PPU	in	the	meantime.

PxBatchQuery*	threadBatch	=	createBatch(...);

threadBatch->setRunOnSpu(false);

threadBatch->execute();

//	do	other	PPU	work...

//	wait	for	SPU	batches	to	complete:

for	(PxU32	i=0;	i<mThreads.size();	++i)

{

				mThreads[i]->mBatchCompleted.wait();

				mThreads[i]->mBatchCompleted.reset();

				releaseBatch(mThreads[i]->mBatch);

}

//	terminate	batch	threads

for	(PxU32	i=0;	i<mThreads.size();	++i)

{

				mThreads[i]->signalQuit();

				mThreads[i]->mBatchReady.set();

				mThreads[i]->waitForQuit();

				PX_DELETE(mThreads[i]);

}



Whether	 the	 batch	 is	 executed	 on	 SPU	 or	 PPU	 is	 determined	 by	 either	 bool
PxBatchQueryDesc::runOnSpu	 or	 PxBatchQuery::setRunOnSpu(bool),	 by	 default	 batch
query	is	executed	on	SPU:

PxBatchQueryDesc	desc;

...

desc.runOnSpu	=	true;

...



Core	PhysX

The	following	methods	require	that	the	corresponding	objects	have	been	added	to	a
scene.	 Calling	 these	 methods	 for	 objects	 which	 are	 not	 in	 a	 scene	 will	 result	 in
undefined	behavior.	 In	 the	CHECKED	build	 configuration	an	error	message	will	 get
sent.

addForce/addTorque/clearForce/clearTorque()	on	a	PxRigidBody
isSleeping/wakeUp/putToSleep()	 on	 a	 PxRigidDynamic,	 PxArticulation	 or
PxCloth
PxScene::resetFiltering()	and	the	deprecated	counterparts	on	PxShape	and
PxParticleBase

The	 sleep	 behavior	 of	 dynamic	 rigid	 bodies	 has	 changed	 significantly.	 Among	 the
changes	are:

The	 wakeUp()	 method	 of	 PxRigidDynamic	 and	 PxArticulation	 has	 lost	 the
wake	 counter	 parameter.	 Use	 the	 newly	 introduced	 method
setWakeCounter()	instead	to	set	a	specific	value.
Putting	a	dynamic	rigid	actor	to	sleep	will	clear	any	pending	force	updates.
Switching	 a	 dynamic	 actor	 to	 kinematic	 will	 put	 the	 actor	 to	 sleep
immediately.
Switching	a	kinematic	actor	back	 to	dynamic	will	 not	affect	 the	sleep	state
(previously	the	actor	was	woken	up).
Calling	wakeUp/putToSleep()	on	a	kinematically	controlled	dynamic	actor	 is
not	 valid	any	 longer.	The	sleep	state	of	a	kinematic	actor	 is	 solely	defined
based	 on	whether	 a	 target	 pose	 has	 been	 set	 (see	API	 documentation	 of
isSleeping()	for	details).
A	 call	 to	 PxRigidBody::setCMassLocalPose()	 does	 not	 wake	 up	 the	 actor
anymore.	Add	a	call	to	PxRigidBody::wakeUp()	to	get	the	old	behavior	back.



Note:	 this	 also	 affects	 related	 methods	 in	 PhysXExtensions	 like
PxRigidBodyExt::updateMassAndInertia()	etc.
Adding	 or	 removing	 a	 PxConstraint	 to/from	 the	 scene	 does	 not	 wake	 the
connected	actors	up	automatically	anymore	(note:	this	applies	to	PxJoint	 in
PhysX	Extensions	as	well).
If	 a	 non-zero	 velocity	 or	 force	 is	 set	 through
PxRigidBody::setLinearVelocity(),	 ::setAngularVelocity(),	 ::addForce()	 or
::addTorque(),	the	actor	will	get	woken	up	automatically	even	if	the	autowake
parameter	is	false.
PxRigidBody::clearForce()	 and	 ::clearTorque()	 do	 not	 have	 the	 autowake
parameter,	to	optionally	wake	the	actor	up,	anymore.	These	methods	will	not
change	the	sleep	state	any	 longer.	Call	 ::wakeUp()	subsequently	 to	get	 the
old	default	behavior.

Shapes	may	now	be	shared	between	actors.	This	change	has	several	ramifications:

PxShape::getActor()	 now	 returns	 a	 pointer	 rather	 than	 a	 reference.	 If	 the
shape	is	shareable,	the	pointer	is	NULL.
The	 following	methods	 of	 PxShape	 have	 been	 removed:	 getGlobalPose(),
raycast(),	 sweep(),	 overlap(),	 getWorldBounds().	 Replacements	 can	 be
found	in	PxShapeExt.
PxShape	now	has	 the	same	reference	counting	semantics	as	meshes	and
materials,	 so	 that	 release()	 releases	 the	user	 reference,	and	when	 the	 last
reference	is	released,	the	shape	is	destroyed.
Shapes	 created	 through	 PxRigidActor::createShape()	 are	 still	 destroyed
automatically	 when	 the	 actor	 is	 released.	 However,	 after	 serializing	 and
deserializing	such	a	shape,	the	regular	reference	counting	semantics	apply.
return	 results	 from	 scene	 queries	which	 previously	 specified	 a	 shape	 now
specify	an	actor	also.

Shape	local	 transforms	cannot	be	specified	on	shape	creation	anymore.	 Instead	set



the	local	transform	after	creation	with	PxShape::setLocalPose().

The	PxObserver/PxObservable	system	has	been	replaced	by	the	PxDeletionListener
API.	The	supported	object	types	have	been	extended	from	PxActor	to	all	core	objects
inheriting	 from	 PxBase.	 Furthermore,	 two	 kinds	 of	 deletion	 events	 are	 now
distinguished:	 user	 release	 and	 memory	 release.	 The	 following	 snippet	 shows
pseudocode	for	the	transition	from	the	previous	to	the	new	API:

old	API:

class	MyObserver	:	public	PxObserver

{

public:

				virtual	void	onRelease(const	PxObservable&	observable);

}

MyObserver	myObs;

PxRigidDynamic*	d	=	create...;

d->registerObserver(myObs);

new	API:

class	MyDelListener	:	public	PxDeletionListener

{

public:

				virtual	void	onRelease(const	PxBase*	observable,	void*	userData

								PxDeletionEventFlag::Enum	deletionEvent);

}

MyDelListener	myDelListener;

PxPhysics*	physics	=	create...;

PxRigidDynamic*	d	=	create...;

physics->registerDeletionListener(myDelListener,	PxDeletionEventFlag

PxBase*	b	=	d;

physics->registerDeletionListenerObjects(myDelListener,	&b,	1);

The	 contactStream	 in	 PxContactPair	 is	 now	 stored	 in	 a	 variable-size	 compressed
contact	stream.	This	is	used	to	save	memory.	As	such,	you	can	no	longer
it	 to	 a	 PxContactPoint*	 and	 access	 the	 data.	 Instead,	 you	 must	 either	 use
PxContactPair::extractContacts	or	us	a	PxContactStreamIterator	to	interpret	the	data.



Please	see	the	callbacks	section	of	the	user	guide	for	further	information.

The	friction	API	and	behavior	for	dynamic	rigid	bodies	has	changed	slightly:

Friction	 mode	 flags	 eENABLE_ONE_DIRECTIONAL_FRICTION	 and
eENABLE_TWO_DIRECTIONAL_FRICTION	 have	 been	 replaced	 by
PxFrictionType::Enum	PxSceneDesc::frictionType.
PxSceneDesc::contactCorrelationDistance	 has	 been	 deprecated,	 and	 it	 no
longer	has	an	influence	on	how	many	friction	anchors	are	created	in	a	single
frame,	 only	 on	when	 they	 are	 removed	 in	 later	 frames.	 This	may	 cause	 a
very	minor	change	in	friction	behavior.

PxShape::resetFiltering()	and	PxParticleBase::resetFiltering()	have	been	deprecated.
Please	use	one	of	the	new	overloaded	methods	PxScene::resetFiltering()	instead.

PxClientBehaviorBit	 and	 PxActorClientBehaviorBit	 have	 been	 renamed	 to
PxClientBehaviorFlag	and	PxActorClientBehaviorFlag	respectively.

PxActorTypeSelectionFlag	 and	 PxActorTypeSelectionFlags	 have	 been	 renamed	 to
PxActorTypeFlag	and	PxActorTypeFlags	respectively.

PxConstraintDominance	has	been	renamed	to	PxDominanceGroupPair

The	parameter	'spring'	on	articulation	joints	has	been	renamed	'stiffness'.

The	 parameter	 'tangentialSpring'	 on	 articulation	 joints	 has	 been	 renamed
'tangentialStiffness'.

PxConstraintFlag::Type	has	been	renamed	to	PxConstraintFlag::Enum

Discrete	 contact	 reports	 are	 no	 longer	 produced	 for	 pairs	 without
PxPairFlag::eDETECT_DISCRETE_CONTACT	raised	in	the	filter	shader.	Previously,
discrete	 contact	 generation	 would	 always	 have	 been	 performed	 regardless	 of	 the
presence	 of	 the	 PxPairFlag::eDETECT_DISCRETE_CONTACT	 flag.	 This	 change



potentially	improves	performance	when	using	specific	shapes	for	CCD-only	collision,
which	would	have	previously	generated	discrete	 contacts	and	 then	 ignored	 them	 in
the	solver.

Trigger	 reports	 are	 no	 longer	 produced	 for	 pairs	 without
PxPairFlag::eDETECT_DISCRETE_CONTACT	 raised	 in	 the	 filter	 shader.
PxPairFlag::eTRIGGER_DEFAULT	 has	 been	 modified	 to	 include	 the
PxPairFlag::eDETECT_DISCRETE_CONTACT	flag.



PhysX	Extensions

Joint	 limits	 have	 been	 more	 carefully	 separated	 into	 PxJointLinearLimit,
PxJointAngularLimitPair,	PxJointLinearLimitPair.
PxJoint::getType()	 is	 deprecated.	 Joints	 now	 inherit	 from	 PxBase,	 and
getConcreteType()	 replaces	 getType().	 Alternatively,	 to	 dynamically	 cast	 to	 a
particular	joint	type,	use	e.g.	joint->is<PxD6Joint>()	which	will	return	a	pointer	to	a	D6
joint	if	the	type	matches,	otherwise	NULL.
The	parameter	'spring'	in	joint	limits	and	drives	has	been	renamed	'stiffness'.
Dominance	 settings	 no	 longer	 apply	 to	 joints.	 To	 achieve	 this	 effect,	 use
setInvMassScale.	 For	 example	 if	 actor0	 in	 the	 joint	 is	 to	 affect	 actor1	 but	 not
conversely,	use	setInvMassScale0(0.0f),	setInverseInertiaScale0(0.0f).



PhysX	Character	Controller

When	creating	a	PxControllerManager,	a	reference	to	a	PxScene	has	to	be	provided.
As	 a	 consequence,	 creating	 a	 controller	 from	 a	 PxControllerManager	 now	 only
requires	the	controller	descriptor	as	an	argument.
On	PxControllerManager::release(),	 all	 associated	PxObstacleContext	 instances	will
get	deleted	automatically.	Make	sure	to	not	access	PxObstacleContext	instances	after
the	corresponding	manager	has	been	released.



PhysX	Vehicles

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleDrive4W::eFRONT_LEFT_WHEEL.	The	changes	are

PxVehicleDrive4W::eFRONT_LEFT_WHEEL	 ->
PxVehicleDrive4WWheelOrder::eFRONT_LEFT
PxVehicleDrive4W::eFRONT_RIGHT_WHEEL	 ->
PxVehicleDrive4WWheelOrder::eFRONT_RIGHT
PxVehicleDrive4W::eREAR_LEFT_WHEEL	 ->
PxVehicleDrive4WWheelOrder::eREAR_LEFT
PxVehicleDrive4W::eREAR_RIGHT_WHEEL	 ->
PxVehicleDrive4WWheelOrder::eREAR_RIGHT

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleDrive4WControl::eANALOG_INPUT_ACCEL.	The	changes	are

PxVehicleDrive4W::eANALOG_INPUT_ACCEL	 ->
PxVehicleDrive4WControl::eANALOG_INPUT_ACCEL
PxVehicleDrive4W::eANALOG_INPUT_BRAKE	 ->
PxVehicleDrive4WControl::eANALOG_INPUT_BRAKE
PxVehicleDrive4W::eANALOG_INPUT_HANDBRAKE	 ->
PxVehicleDrive4WControl::eANALOG_INPUT_HANDBRAKE
PxVehicleDrive4W::eANALOG_INPUT_STEER_LEFT	 ->
PxVehicleDrive4WControl::eANALOG_INPUT_STEER_LEFT
PxVehicleDrive4W::eANALOG_INPUT_STEER_RIGHT	 ->
PxVehicleDrive4WControl::eANALOG_INPUT_STEER_RIGHT
PxVehicleDrive4W::eMAX_NUM_DRIVE4W_ANALOG_INPUTS	 ->
PxVehicleDrive4WControl::eMAX_NB_DRIVE4W_ANALOG_INPUTS



A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleDrive4W::eFRONT_LEFT_WHEEL.	The	changes	are

PxVehicleDriveTank::eTANK_WHEEL_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::eFRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::eFRONT_RIGHT,
PxVehicleDriveTank::eTANK_WHEEL_1ST_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e1ST_FROM_FRONT_LEFT,
PxVehicleDriveTank::eTANK_WHEEL_1ST_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e1ST_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_2ND_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e2ND_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_2ND_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e2ND_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_3RD_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e3RD_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_3RD_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::	e3RD_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_4TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e4TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_4TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e4TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_5TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e5TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_5TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e5TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_6TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e6TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_6TH_FROM_FRONT_RIGHT	 ->



PxVehicleDriveTankWheelOrder::e6TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_7TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e7TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_7TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e7TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_8TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e8TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_8TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e8TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_9TH_FROM_FRONT_LEFT	 ->
PxVehicleDriveTankWheelOrder::e9TH_FROM_FRONT_LEFT
PxVehicleDriveTank::eTANK_WHEEL_9TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e9TH_FROM_FRONT_RIGHT
PxVehicleDriveTank::eTANK_WHEEL_9TH_FROM_FRONT_RIGHT	 ->
PxVehicleDriveTankWheelOrder::e9TH_FROM_FRONT_RIGHT

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleDriveTank::eANALOG_INPUT_ACCEL.	The	changes	are

PxVehicleDriveTank::eANALOG_INPUT_ACCEL	 ->
PxVehicleDriveTankControl::eANALOG_INPUT_ACCEL
PxVehicleDriveTank::eANALOG_INPUT_BRAKE_LEFT	 ->
PxVehicleDriveTankControl::eANALOG_INPUT_BRAKE_LEFT
PxVehicleDriveTank::eANALOG_INPUT_BRAKE_RIGHT	 ->
PxVehicleDriveTankControl::eANALOG_INPUT_BRAKE_RIGHT
PxVehicleDriveTank::eANALOG_INPUT_THRUST_LEFT	 ->
PxVehicleDriveTankControl::eANALOG_INPUT_THRUST_LEFT
PxVehicleDriveTank::eANALOG_INPUT_THRUST_RIGHT	 ->
PxVehicleDriveTankControl::eANALOG_INPUT_THRUST_RIGHT
PxVehicleDriveTank::eMAX_NUM_DRIVETANK_ANALOG_INPUTS	 ->



PxVehicleDriveTankControl::eMAX_NB_DRIVETANK_ANALOG_INPUTS

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleDriveTank::eDRIVE_MODEL_STANDARD.	The	changes	are

PxVehicleDriveTank::eDRIVE_MODEL_STANDARD	 ->
PxVehicleDriveTankControlModel::eSTANDARD
PxVehicleDriveTank::eDRIVE_MODEL_SPECIAL	 ->
PxVehicleDriveTankControlModel::eSPECIAL

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
eVEHICLE_TYPE_DRIVE4W.	The	changes	are

eVEHICLE_TYPE_DRIVE4W	->	PxVehicleTypes::eDRIVE4W
eVEHICLE_TYPE_DRIVETANK	->	PxVehicleTypes::eDRIVETANK
eVEHICLE_TYPE_NODRIVE	->	PxVehicleTypes::eNODRIVE
eMAX_NUM_VEHICLE_TYPES	 ->
PxVehicleTypes::eMAX_NB_VEHICLE_TYPES

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleGraph::eCHANNEL_JOUNCE.	The	changes	are

PxVehicleGraph::eCHANNEL_JOUNCE	 ->
PxVehicleWheelGraphChannel::eJOUNCE
PxVehicleGraph::eCHANNEL_SUSPFORCE	 ->
PxVehicleWheelGraphChannel::eSUSPFORCE
PxVehicleGraph::eCHANNEL_TIRELOAD	 ->
PxVehicleWheelGraphChannel::eTIRELOAD
PxVehicleGraph::eCHANNEL_NORMALIZED_TIRELOAD	 ->
PxVehicleWheelGraphChannel::eNORMALIZED_TIRELOAD
PxVehicleGraph::eCHANNEL_WHEEL_OMEGA	 ->
PxVehicleWheelGraphChannel::eWHEEL_OMEGA



PxVehicleGraph::eCHANNEL_TIRE_FRICTION	 ->
PxVehicleWheelGraphChannel::eTIRE_FRICTION
PxVehicleGraph::eCHANNEL_TIRE_LONG_SLIP	 ->
PxVehicleWheelGraphChannel::eTIRE_LONG_SLIP
PxVehicleGraph::eCHANNEL_NORM_TIRE_LONG_FORCE	 ->
PxVehicleWheelGraphChannel::eNORM_TIRE_LONG_FORCE
PxVehicleGraph::eCHANNEL_TIRE_LAT_SLIP	 ->
PxVehicleWheelGraphChannel::eTIRE_LAT_SLIP
PxVehicleGraph::eCHANNEL_NORM_TIRE_LAT_FORCE	 ->
PxVehicleWheelGraphChannel::eNORM_TIRE_LAT_FORCE
PxVehicleGraph::eCHANNEL_NORM_TIRE_ALIGNING_MOMENT	 ->
PxVehicleWheelGraphChannel::eNORM_TIRE_ALIGNING_MOMENT
PxVehicleGraph::eMAX_NUM_WHEEL_CHANNELS	 ->
PxVehicleWheelGraphChannel::eMAX_NB_WHEEL_CHANNELS

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleGraph::eCHANNEL_ENGINE_REVS.	The	changes	are

PxVehicleGraph::eCHANNEL_ENGINE_REVS	 ->
PxVehicleDriveGraphChannel::eENGINE_REVS
PxVehicleGraph::eCHANNEL_ENGINE_DRIVE_TORQUE	 ->
PxVehicleDriveGraphChannel::eENGINE_DRIVE_TORQUE
PxVehicleGraph::eCHANNEL_CLUTCH_SLIP	 ->
PxVehicleDriveGraphChannel::eCLUTCH_SLIP
PxVehicleGraph::eCHANNEL_ACCEL_CONTROL	 ->
PxVehicleDriveGraphChannel::eACCEL_CONTROL
PxVehicleGraph::eCHANNEL_BRAKE_CONTROL	 ->
PxVehicleDriveGraphChannel::eBRAKE_CONTROL
PxVehicleGraph::eCHANNEL_HANDBRAKE_CONTROL	 ->
PxVehicleDriveGraphChannel::eHANDBRAKE_CONTROL



PxVehicleGraph::eCHANNEL_STEER_LEFT_CONTROL	 ->
PxVehicleDriveGraphChannel::eSTEER_LEFT_CONTROL
PxVehicleGraph::eCHANNEL_STEER_RIGHT_CONTROL	 ->
PxVehicleDriveGraphChannel::eSTEER_RIGHT_CONTROL
PxVehicleGraph::eCHANNEL_GEAR_RATIO	 ->
PxVehicleDriveGraphChannel::eGEAR_RATIO
PxVehicleGraph::eMAX_NUM_ENGINE_CHANNELS	 ->
PxVehicleDriveGraphChannel::eMAX_NB_DRIVE_CHANNELS

A	 new	 struct	 has	 been	 introduced	 to	 hold	 the	 enumerated	 list	 that	 began	 with
PxVehicleGraph::eGRAPH_TYPE_WHEEL.	The	changes	are

PxVehicleGraph::eGRAPH_TYPE_WHEEL	 ->
PxVehicleGraphType::eWHEEL
PxVehicleGraph::eGRAPH_TYPE_ENGINE	 ->
PxVehicleGraphType::eDRIVE

Non-persistent	data	 is	no	 longer	stored	 in	the	vehicle.	 Instead	of	storing	this	data	 in
each	 vehicle	 it	 is	 stored	 in	 an	 array	 and	 passed	 to	 PxVehicleUpdates	 as	 an	 extra
function	argument.	A	simple	example	of	how	to	construct,	use,	and	read	this	data	is
given	below.	This	example	code	updates	an	array	of	vehicles	and	tests	if	they	are	in
the	air.	If	the	vehicles	are	not	in	the	air	then	the	actor	under	each	wheel	is	recorded
and	stored	in	an	array:

void	updateVehicles(const	PxF32	timestep,	const	PxVec3&	gravity

				const	PxVehicleDrivableSurfaceToTireFrictionPairs&	fricPairs

				PxVehicleWheels**	vehicles,	PxU32	numVehicles,	std::vector

{

				//Count	the	total	number	of	wheels.

				unsigned	int	numWheels	=	0;

				for(unsigned	int	i	=	0;	i	<	numVehicles;	i++)

				{

								numWheels	+=	vehicles[i]->mWheelsSimData.getNbWheels();

				}

				//Allocate	buffers	to	store	results	for	each	vehicle	and	each	wheel.



				PxVehicleWheelQueryResult*	vehicleWheelQueryResults	=

								new	PxVehicleWheelQueryResult[numVehicles];

				PxWheelQueryResult*	wheelQueryResults	=	new	PxWheelQueryResult

				PxU32	wheelCount	=	0;

				for(PxU32	i	=	0;	i	<	numVehicles;	i++)

				{

								vehicleWheelQueryResults[i].nbWheelQueryResults	=

												vehicles[i]->mWheelsSimData.getNbWheels();

								vehicleWheelQueryResults[i].wheelQueryResults	=	&wheelQueryResults

								wheelCount	+=		vehicles[i]->mWheelsSimData.getNbWheels

				}

				//Update	the	array	of	vehicles.

				PxVehicleUpdates(timestep,	gravity,	fricPairs,	numVehicles

								vehicleWheelQueryResults);

				//Test	if	each	vehicle	is	in	the	air.

				for(PxU32	i	=	0;	i	<	numVehicles;	i++)

				{

								if(!PxVehicleIsInAir(vehicleWheelQueryResults[i]))

								{

												for(PxU32	j	=	0;	j	<	vehicleWheelQueryResults[i].

												{

																if(vehicleWheelQueryResults[i].wheelQueryResults

																{

																				hitActors.push_back

																								(vehicleWheelQueryResults[i].wheelQueryResults

																}

												}

								}

				}

				delete[]	vehicleWheelQueryResults;

				delete[]	wheelQueryResults;

}

The	following	accessors	to	non-persistent	data	associated	with	each	wheel	have	been
replaced	as	follows

PxVehicleWheelsDynData::getSuspLineStart	 ->
PxWheelQueryResult::suspLineStart
PxVehicleWheelsDynData::getSuspLineDir	 ->
PxWheelQueryResult::suspLineDir



PxVehicleWheels::getSuspRaycast	 ->	 PxWheelQueryResult::suspLineStart,
PxWheelQueryResult::suspLineDir,	PxWheelQueryResult::suspLineLength
PxVehicleWheelsDynData::getTireDrivableSurfaceShape	 ->
PxWheelQueryResult::tireContactShape
PxVehicleWheelsDynData::getTireDrivableSurfaceMaterial	 ->
PxWheelQueryResult::tireSurfaceMaterial
PxVehicleWheelsDynData::getTireDrivableSurfaceType	 ->
PxWheelQueryResult::tireSurfaceType
PxVehicleWheelsDynData::getTireDrivableSurfaceContactPoint	 ->
PxWheelQueryResult::tireContactPoint
PxVehicleWheelsDynData::getTireDrivableSurfaceContactNormal	 ->
PxWheelQueryResult::tireContactNormal
PxVehicleWheelsDynData::getTireFriction	 ->
PxWheelQueryResult::tireFriction
PxVehicleWheelsDynData::getSuspJounce	 ->
PxWheelQueryResult::suspJounce
PxVehicleWheelsDynData::getSuspensionForce	 ->
PxWheelQueryResult::suspSpringForce
PxVehicleWheelsDynData::getTireLongitudinalDir	 ->
PxWheelQueryResult::tireLongitudinalDir
PxVehicleWheelsDynData::getTireLateralDir	 ->
PxWheelQueryResult::tireLateralDir
PxVehicleWheelsDynData::getTireLongSlip	 ->
PxWheelQueryResult::longitudinalSlip
PxVehicleWheelsDynData::getTireLatSlip	->PxWheelQueryResult::lateralSlip
PxVehicleWheelsDynData::getSteer	->	PxWheelQueryResult::steerAngle
PxVehicleWheels::isInAir	->	PxWheelQueryResult::isInAir

PxVehicleWheels::setWheelShapeMapping	 and
PxVehicleWheels::getWheelShapeMapping	 have	 been	 moved	 to



PxVehicleWheelsSimData::setWheelShapeMapping	 and
PxVehicleWheelsSimData::getWheelShapeMapping

PxVehicleWheels::setSceneQueryFilterData	 and
PxVehicleWheels::getSceneQueryFilterData	 have	 been	 moved	 to
PxVehicleWheelsSimData::setSceneQueryFilterData	 and
PxVehicleWheelsSimData::getSceneQueryFilterData

PxVehicle4WEnable3WTadpoleMode	 and	 PxVehicle4WEnable3WDeltaMode	 now
take	 an	 extra	 function	 argument:	 a	 non-const	 reference	 to	 a
PxVehicleWheelsDynData

PxVehicleWheels::isInAir()	 has	 been	 replaced	 with	 PxVehicleIsInAir(const
PxVehicleWheelQueryResult&	vehWheelQueryResults)

PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs	 now	 takes	 an	 extra
function	 argument	 "const	 bool	 isVehicleInAir".	 This	 can	 be	 calculated	 using	 the
function	PxVehicleIsInAir

To	 improve	 api	 consistency	 PxVehicleTelemetryData::getNumWheelGraphs	 is	 now
PxVehicleTelemetryData::getNbWheelGraphs

To	 improve	 api	 consistency	 PX_MAX_NUM_WHEELS	 is	 now
PX_MAX_NB_WHEELS

To	 improve	 api	 consistency	 PxVehicleGraph::eMAX_NUM_TITLE_CHARS	 is	 now
PxVehicleGraph::eMAX_NB_TITLE_CHARS

PxVehicleTireData::mCamberStiffness	 has	 been	 replaced	 with
PxVehicleTireData::mCamberStiffnessPerUnitGravity.
PxVehicleTireData::mCamberStiffnessPerUnitGravity	 should	 be	 set	 so	 that	 it	 is
equivalent	 to	 the	 old	 value	 of	 PxVehicleTireData::mCamberStiffness	 divided	 by	 the
magnitude	 of	 gravitational	 acceleration	 (PxScene::getGravity().magnitude()).	
advantage	 of	 using	 PxVehicleTireData::mCamberStiffnessPerUnitGravity	 is	 that	 it
independent	of	length	scale.



PxVehicleComputeTireForceDefault	 has	 been	 removed	 from	 the	 public	 vehicle	 api.
Custom	 tire	 shaders	 that	 call	 PxVehicleComputeTireForceDefault	 are	 best
implemented	by	taking	a	copy	of	PxVehicleComputeTireForceDefault	and	calling	the
copy	instead.



CCD

The	 mechanism	 to	 activate	 CCD	 per	 shape	 has	 changed	 in	 3.3.	
PxShapeFlag::eUSE_SWEPT_BOUNDS	that	was	used	in	3.2	to	active	swept	bounds
per	 shape	 has	 been	 removed.	 In	 its	 place	 is	 a	 new	 flag
PxRigidBodyFlag::eENABLE_CCD	 that	 is	 set	per	 rigid	actor.	Setting	 this	 flag	 for	 an
actor	 in	 3.3	 has	 approximately	 the	 same	 effect	 as	 setting
PxShapeFlag::eUSE_SWEPT_BOUNDS	on	all	the	actor's	shapes	in	3.2.

PxPairFlag::eSWEPT_INTEGRATION_LINEAR	 has	 been	 replaced	 with
PxPairFlag::eCCD_LINEAR	in	PhysX	3.3.

PxSceneFlag::eENABLE_SWEPT_INTEGRATION	flag	in	3.2	has	been	replaced	with
PxSceneFlag::eENABLE_CCD	in	PhysX	3.3.

A	 simple	 example	 of	 how	 to	 enable	CCD	 on	 a	 specific	 shape	 is	 given	 below.	 This
demonstrates	creating	a	body	consisting	of	a	large	box	and	a	smaller	sphere,	where
the	 box	 is	 only	 used	 in	 discrete	 collision	 detection	 and	 the	 sphere	 is	 only	 used	 in
CCD.	 The	 simulation	 filter	 shader	 shown	 here	 requires	 that	 the	 filter	 data	 of	 both
shapes	 be	 flagged	 with	 eCCD_RESPONSE	 to	 generate	 a	 CCD	 response
(PxPairFlag::eCCD_LINEAR).	Likewise,	the	filter	shader	shown	here	is	configured	so
that	the	filter	data	of	both	shapes	need	to	be	flagged	with	eDISCRETE_RESPONSE
in	 order	 to	 generate	 a	 collision	 response	 (PxPairFlag::eRESOLVE_CONTACTS).	
final	remark	is	that	the	following	shader	requires	that	shapes	of	static	actors	have	filter
data	with	flags	eDISCRETE_RESPONSE	|	eCCD_RESPONSE	in	order	to	ensure	ccd
and	 collision	 response	 from	 pairs	 that	 involve	 a	 static	 actor	 and	 a	 CCD-enabled
dynamic	actor:

struct	CCDFilterTest

{

				enum	FilterFlags

				{

								eDISCRETE_RESPONSE				=	1	<<	0

								eCCD_RESPONSE								=	1	<<	1

				};



				static	PxFilterFlags	filterShader(

								PxFilterObjectAttributes	attributes0,

								PxFilterData	filterData0,

								PxFilterObjectAttributes	attributes1,

								PxFilterData	filterData1,

								PxPairFlags&	pairFlags,

								const	void*	constantBlock,

								PxU32	constantBlockSize)

				{

								pairFlags	=	PxPairFlags(0);

								PxU32	combo	=	filterData0.word0	&	filterData1.word0;

								if(combo	&	eDISCRETE_RESPONSE)

								{

												pairFlags	|=	PxPairFlag::eRESOLVE_CONTACTS;

								}

								if(combo	&	eCCD_RESPONSE)

								{

												pairFlags	|=	PxPairFlag::eCCD_LINEAR;

								}

								return	PxFilterFlags();

				}

};

....

PxRigidDynamic*	dyn	=	getPhysics().createRigidDynamic(PxTransform

PxBoxGeometry	box;

box.halfExtents	=	PxVec3(1.f,	1.f,	1.f);

PxSphereGeometry	sphere;

sphere.radius	=	0.75f;

PxShape*	boxShape	=	dyn->createShape(box,	getDefaultMaterial());

PxShape*	sphereShape	=	dyn->createShape(sphere,	getDefaultMaterial

PxFilterData	data	=	boxShape->getSimulationFilterData();

data.word0	|=	CCDFilterTest::eDISCRETE_RESPONSE;

boxShape->setSimulationFilterData(data);

data	=	sphereShape->getSimulationFilterData();

data.word0	|=	CCDFilterTest::eCCD_RESPONSE;

sphereShape->setSimulationFilterData(data);

dyn->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD,	true);

getActiveScene().addActor(*dyn);



PhysX	Visual	Debugger

A	new	flag	has	been	introduced	to	configure	the	visualizing	of	constraints:
PxVisualDebuggerFlag::eTRANSMIT_CONSTRAINTS;

A	new	function	has	been	introduced	to	configure	PxVisualDebugger	flags:
PxVisualDebugger::setVisualDebuggerFlags(	PxVisualDebuggerFlags	flags);

A	new	funtion	has	been	introduced	to	send	error	stream	to	PVD:
PxVisualDebugger::sendErrorMessage((PxErrorCode::Enum	 code,	 const	 char*
message,	const	char*	file,	PxU32	line);

The	following	functions	were	renamed:
PxVisualDebugger::getPvdConnectionFactory()	 ->
PxVisualDebugger::getPvdConnection();	PxVisualDebugger::getPvdConnection()	-
>	PxVisualDebugger::getPvdDataStream();

The	PVD	connect	function	changed	to	the	same	method	as	previously	3.2	version:
PxVisualDebuggerExt::connect	->	PxVisualDebuggerExt::createConnection;

The	 constraint,	 contacts	 and	 scene	 queries	 visualizing	 can	 all	 be	 configed	 with
PxVisualDebuggerFlag	 in	3.3.	Here	 is	an	example	 for	how	to	enable	pvd	visualizing
the	contacts	:

mPhysics->getVisualDebugger()-
>setVisualDebuggerFlags(PxVisualDebuggerFlag::eTRANSMIT_CONTACTS	 |
PxVisualDebuggerFlag::eTRANSMIT_CONSTRAINTS);



PhysX	Cloth

There	 have	 been	 substantial	 changes	 to	 the	 PhysX	 3.3	 cloth	 solver	 that	 improve
performance	and	behavior.	This	 has	 resulted	 in	 a	 reorganization	of	 how	constraints	 are
stored	and	processed	in	the	cloth	fabric.	Prior	to	PhysX	3.3	the	cloth	solver	used	fibers	to
organize	edge	constraints	into	independent	groups.	In	PhysX	3.3	it	is	no	longer	necessary
to	decompose	constraints	 into	fibers,	 instead	edge	constraints	now	exist	 individually	and
are	solved	in	larger,	independent	sets.	Interface	changes	are	detailed	below:

Previously	 there	 were	 multiple	 solver	 types	 to	 choose	 from	 for	 each	 group	 of
constraints	 such	 as	 eFAST,	 eSTIFF,	 eBENDING,	 etc	 (previously
PxClothPhaseSolverConfig::SolverType).	There	is	now	one	type	of	solver	for	all	edge
constraints,	this	is	a	flexible	distance	constraint	with	controls	to	adjust	stiffness	within
certain	 ranges	 of	 compression	 and	 stretch	 (see	 PxClothStretchConfig).	 Behaviors
such	 as	 bending	 are	 now	 achieved	 by	 the	 way	 distance	 constraints	 are	 arranged
geometrically,	rather	than	through	a	specialized	bending	solver.

To	reduce	stretching	a	new	constraint	type	has	been	added	called	"tether"	constraints.
These	 constraints	 do	 not	 act	 along	 edges	 of	 the	 mesh,	 but	 act	 as	 long	 range
attachments	between	particles	that	enforce	a	maximum	distance	between	two	points.
See	PxClothFabric::getTetherAnchors().

Cloth	cooking	which	was	previously	part	of	the	PxCooking	library	has	been	moved	to
the	extension	library,	see	PxClothFabricCooker:

//	PhysX	3.2.x

cooking->cookClothFabric(meshDesc,	gravity,	outputStream);

//	PhysX	3.3

PxClothFabricCooker	cooker(meshDesc,	gravity,	useGeodesicTethers

cooker.save(outputStream,	false);

The	PxClothCollisionData	parameter	has	been	removed	from	PxPhysx::createCloth().
The	 collision	 shapes	 can	 now	 be	 added	 after	 cloth	 creation	 using
PxCloth::addCollisionSphere	and	PxCloth::addCollisionCapsule.



PxCloth::wakeUp()	 does	 not	 have	 a	 parameter	 anymore.	Use	 the	 newly	 introduced
method	setWakeCounter()	instead	to	set	a	specific	value.

PxCloth::setDampingCoefficient	now	 takes	a	PxVec3	 instead	of	a	PxReal	 to	specify
the	damping	per	axis.

PxCloth::setPhaseSolverConfig()	has	been	renamed	to	PxCloth::setStretchConfig()

PxCloth::lockClothReadData()	has	been	renamed	to	PxCloth::lockParticleData()

PxClothFabricTypes.h	 has	 been	 removed,	 this	 header	 has	 been	 merged	 with
PxClothFabric.h



RepX	Serialization

Substantial	 changes	 were	 made	 to	 the	 PhysX	 3.3	 serialization	 interface.	 Handling	 of
collections	 and	 references	 between	 collections	 have	 been	 unified	 for	 RepX	 and	 binary
serialization.

The	RepX	and	RepXUpgrader	libraries	have	been	removed.	RepX	functionality	is	now
provided	through	PhysXExtensions.

RepXCollection	has	been	replaced	with	PxCollection,	which	is	the	common	collection
class	for	both	RepX	and	binary	serialization	in	3.3.	Collections	are	now	instantiated	on
deserialization	with	PxSerialization::createCollectionFromXml().	Empty	collections	can
be	 created	 with	 PxCreateCollection().	 Serialization	 into	 RepX	 format	 is	 achieved
through	PxSerialization::serializeCollectionToXml().

TRepXId	has	been	replaced	with	PxSerialObjectId.

RepXIdToRepXObjectMap	 and	 RepXObject	 have	 been	 replaced	 with	 new
functionality	 in	 PxCollection,	 which	 now	 maps	 between	 serializable	 objects	 and
PxSerialObjectId	values.

RepXExtension	was	removed.	Serialization	and	deserialization	of	serializable	types	is
achieved	through	the	PxRepXSerializer	interface.

RepXUtility	 and	 PxToolkit	 functionality	 has	 been	 replaced	 with	 various	 functions	 in
PxSerialization,	PxCollection	and	PxScene.

A	PxCollection	with	 all	 PxPhysics-level	 objects	 such	 as	 shapes,	meshes	 or
materials	 (formally	 referred	 to	 as	 buffers)	 can	 be	 created	 using
PxCollectionExt::createCollection(PxPhysics&).
Similarly	PxCollectionExt::createCollection(PxScene&)	can	be	used	to	create
a	collection	of	PxScene-level	objects.
Dependencies	 between	 objects	 and	 collections	 can	 be	 handled	 with



PxSerialization::complete().
The	 objects	 of	 a	 collection	 can	 be	 added	 to	 a	 scene	 with
PxScene::addCollection().
Operations	 on	 files	 are	 generally	 handled	 with	 abstract	 interfaces:
PxOutputStream	and	PxInputData.	Default	 implementations	are	available	as
PxDefaultFileOutputStream	and	PxDefaultFileInputData.

RepXUpgrader::upgradeCollection	 was	 removed.	 RepX	 data	 can	 be	 converted	 to
newer	 PhysX	 versions	 by	 deserializing	 and	 re-serializing	 a	 collection:
PxSerialization::createCollectionFromXml(),
PxSerialization::serializeCollectionToXml().

Serialization	 functionality	 requires	 a	 PxSerializationRegistry	 instance	 which	 can	 be
created	with	PxSerialization::createSerializationRegistry().

XML	 serialization	 can	 be	 configured	 to	 store	 the	 cooked	 triangle	 and	 convex	mesh
data	along	with	the	plain	data	for	faster	loading.

PhysXVehicles	 supports	 RepX	 serialization.	 PxSerializationRegistry	 needs	 to	 be
provided	 to	 PxInitVehicleSDK()	 for	 vehicle	 serialization,	 PxCloseVehicleSDK()	 for
cleanup.

Custom	 class	RepX	 serialization	 is	 supported	 in	 3.3,	more	 information	 please	 read
Serialization.



Binary	Serialization

The	 binary	 serialization	 interface	 has	 been	 refactored	 and	 unified	 with	 the	 RepX
serialization	interface.

Most	 serialization	 functionality	 requires	 an	 instance	 of	 the	 new	 class
PxSerializationRegistry.	 It	 is	 application	 managed	 and	 can	 be	 created	 with
PxSerialization::createSerializationRegistry()	 and	 released	 with
PxSerializationRegistry::release().

The	 base	 class	 for	 serializable	 types	 has	 been	 renamed	 from	 PxSerializable	 to
PxBase.	Most	of	the	serialization	functionality	moved	to	a	separate	PxSerializer	class.
A	 PxSerializer	 instance	 per	 serializable	 type	 is	 registered	 in	 the
PxSerializationRegistry.	 All	 PhysX	 and	 PhysXExtension	 serializables	 are	 registered
by	default.

PxCollection	has	been	reworked.

PxCollection::serialize()	 and	 PxCollection::deserialize()	 were	 replaced	 with
PxSerialization::createCollectionFromBinary()
PxSerialization::serializeCollectionToBinary()	in	PhysXExtensions.
PxSerializable::collectForExport()	has	been	replaced	with	PxCollection::add().
PxSerialzation::complete()	 helps	 to	 add	 required	 objects	 for	 resolving
dependencies.	PxSerializable::isSerializable()	should	be	used	check	whether
a	collection	can	be	successfully	serialized.

PxUserReferences	was	removed:	PxCollection	instances	can	now	be	used	directly	to
resolve	 dependencies	 between	 collections	 on	 deserialization.
PxSerialization::complete()	 supports	 creating	 collections	with	 external	 dependencies
to	other	collections.

PxSerialObjectRef	has	been	replaced	with	PxSerialObjectId.

PxCollectForExportSDK()	 and	 PxCollectForExportScene()	 functions	 were	 replaced



with	 PxCollectionExt::createCollection(PxPhysics&	 physics)	 and
PxCollectionExt::createCollection(PxScene&	scene).

PxDumpMetaData()	was	replaced	with	PxSerialization::dumpBinaryMetaData().

The	 PxBinaryConverter	 moved	 from	 PhysXCooking	 to	 PhysXExtensions.
PxCooking::createBinaryConverter()	 was	 replaced	 with
PxSerialization::createBinaryConverter().

PhysXVehicles	 supports	 binary	 serialization.	 PxSerializationRegistry	 needs	 to	 be
provided	 to	 PxInitVehicleSDK()	 for	 vehicle	 serialization,	 PxCloseVehicleSDK()	 for
cleanup.

Custom	class	binary	 serialization	 is	 supported	 in	3.3,	more	 information	please	 read
Serialization.



PhysX	TaskManager

The	pxtask	namespace	has	been	removed	and	all	 it's	types	are	now	included	in	the
physx	 namespace	with	 a	 Px	 prefix,	 for	 example	 pxtask::LightCpuTask	 has	 become
physx::PxLightCpuTask
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Migrating	From	PhysX	SDK	3.3	to	3.4
This	guide	highlights	all	significant	parts	of	the	API	that	have	changed	in	the	last	dot
release.	An	application	with	a	working	integration	of	the	older	version	of	PhysX	should
be	able	to	easily	migrate	to	the	newer	version	by	following	these	pointers.
Functionality	 shared	 with	 the	 APEX	 SDK	 was	 moved	 into	 a	 separate	 "PxShared"
directory	outside	of	the	"PhysX"	directory.	Since	the	PxFoundation	object	is	part	of	the
PxShared	 library,	 it	 is	 versioned	 separately.	 PxCreateFoundation	 now	 takes
PX_FOUNDATION_VERSION	as	an	argument.



Deprecated	APIs

PxRigidActor::createShape

PxRigidActor::createShape()	 is	 deprecated,	 and	 will	 be	 removed	 in	 PhysX	 3.5.
PxRigidActorExt::createExclusiveShape()	replaces	this	method.

PxSceneFlag::eDEPRECATED_TRIGGER_TRIGGER_REPORTS

PxSceneFlag::eDEPRECATED_TRIGGER_TRIGGER_REPORTS	is	deprecated,	and	will
be	removed	in	PhysX	3.5.	More	details	are	mentioned	under	Core	PhysX

PhysX	particles

The	PhysX	particle	 feature	 has	been	deprecated	 in	PhysX	 version	3.4.	 The	 standalone
library	PhysX	FleX	is	an	alternative	with	a	richer	feature	set.

PhysX	cloth

The	PhysX	clothing	feature	has	been	deprecated	in	PhysX	version	3.4.1.	The	PhysX	and
APEX	clothing	features	are	replaced	by	the	standalone	NvCloth	library.



Core	PhysX

PxCreatePhysics	 now	 requires	 a	 PxFoundation	 object	 to	 be	 passed.	 Optionally	 it
receives	 a	 pointer	 to	 a	 PxPvd	 object,	 used	 for	 connecting	 PhysX	 with	 the	 visual
debugger.

PxActor::isRigidStatic,	 isRigidDynamic,	 isParticleSystem,	 isParticleFluid,
isArticulationLink,	 isCloth,	 isRigidActor,	 isRigidBody,	 isParticleBase	 have	 been
removed.	 Use	 corresponding	 PxBase::is()	 with	 class	 template	 parameter	 for	 down
casting.

PxContactPairFlag::eINTERNAL_HAS_FACE_INDICES	 is	 obsolete	 and	 has	 been
removed.

Trigger	shapes	will	no	longer	send	notification	events	for	interactions	with	other	trigger
shapes.	 For	 PhysX	 3.4	 there	 is	 the	 option	 to	 re-enable	 the	 reports	 by	 raising
PxSceneFlag::eDEPRECATED_TRIGGER_TRIGGER_REPORTS	but	 this	option	will
no	 longer	 be	 available	 in	 PhysX	 3.5.	 It	 is	 recommended	 to	 not	 make	 use	 of
eDEPRECATED_TRIGGER_TRIGGER_REPORTS	and	 instead	 use	 a	 trigger	 and	 a
non-trigger	 shape,	both	with	 the	same	geometry	and	 local	pose,	 to	emulate	getting
notifications	for	overlaps	between	trigger	shapes.

Implementations	 of	 PxSimulationEventCallback	 will	 have	 to	 provide	 an	 (empty)
implementation	of	the	newly	added	method	onAdvance()	to	avoid	compilation	errors.

The	 deprecated	 method	 PxPhysics::createHeightField(const	 PxHeightFieldDesc&)
has	 been	 removed.	 Please	 use	 PxCooking::createHeightField(const
PxHeightFieldDesc&,	 PxPhysicsInsertionCallback&)	 instead.	 The	 insertion	 callback
can	be	obtained	through	PxPhysics::getPhysicsInsertionCallback().

The	deprecated	flag	PxActorTypeSelectionFlag/PxActorTypeSelectionFlags	has	been
removed.	Please	use	PxActorTypeFlag/PxActorTypeFlags	instead.



The	deprecated	class	PxFindOverlapTriangleMeshUtil	has	been	removed.	Please	use
PxMeshOverlapUtil	instead.

The	 deprecated	 flag	 PxConstraintFlag::eREPORTING	 has	 been	 removed.	 Force
reports	are	now	always	generated.

The	 deprecated	 flag	 PxConstraintFlag::eDEPRECATED_32_COMPATIBILITY	 has
been	removed.

PxRegisterHeightFields()	 now	 registers	 unified	 heightfields.	 To	 register	 legacy
heightfields,	 call	 PxRegisterLegacyHeightFields().	 Legacy	 heightfield	 collision	 is
deprecated	and	will	be	removed	in	a	future	PhysX	release.

The	following	deprecated	simulation	event	flags	have	been	removed:

PxContactPairHeaderFlag::eDELETED_ACTOR_0,	::eDELETED_ACTOR_1

(use	 PxContactPairHeaderFlag::eREMOVED_ACTOR_0,
::eREMOVED_ACTOR_1	instead)

PxContactPairFlag::eDELETED_SHAPE_0,	::eDELETED_SHAPE_1

(use	 PxContactPairFlag::eREMOVED_SHAPE_0,	 ::eREMOVED_SHAPE_1
instead)

PxTriggerPairFlag::eDELETED_SHAPE_TRIGGER,
::eDELETED_SHAPE_OTHER

(use	 PxTriggerPairFlag::eREMOVED_SHAPE_TRIGGER,
::REMOVED_SHAPE_OTHER	instead)

PxContactPair	now	 reports	 separate	pointers	 for	 contactPatches,	 contactPoints	and
contactImpulses	 rather	 than	 reporting	 a	 single	 pointer	 that	 the
PxContactStreamIterator	parses.	The	interface	for	PxContactStreamIterator	has	been
modified	 accordingly.	 See	 the	 PxContactPair::extractContacts	 implementation	 for



further	guidance	on	how	to	iterate	over	this	contact	data	if	required.



Contact	Generation

PCM	 contact	 generation	 is	 now	 used	 by	 default.	 Legacy	 SAT-based	 contact
generation	 can	 be	 re-enabled	 by	 clearing	 the	 PxSceneFlag::eENABLE_PCM	 from
PxSceneDesc::flags.
Unified	heightfields	are	now	the	default	heightfield	collision	approach.	This	approach
mirrors	 the	 way	 in	 which	 mesh	 contact	 gen	 functions	 so	 permits	 meshes	 and
heightfields	 to	 be	 used	 interchangeably	 with	 negligible	 behavioral	 difference.	 The
legacy	 heightfield	 collision	 approach	 can	 be	 used	 by	 calling
PxRegisterLegacyHeightFields().
When	 unified	 heightfields	 are	 in	 use,	 the	 bounds	 of	 heightfield	 shapes	 will	 not	 be
extruded	by	"thickness".	If	legacy	heightfield	collision	is	used,	the	bounds	will	still	be
extruded	by	thickness.



PhysX	Cooking

The	 deprecated	 flags
PxMeshPreprocessingFlag::eREMOVE_UNREFERENCED_VERTICES	 and
::eREMOVE_DUPLICATED_TRIANGLES	have	 been	 removed.	Meshes	 get	 cleaned
up	by	default	unless	PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH	is	set.
PxCookingParams::meshSizePerformanceTradeOff	 and
PxCookingParams::meshCookingHint	have	been	moved	to	PxBVH33MidphaseDesc,
since	they	only	affect	the	BVH33.
The	 PxGaussMapLimit.h	 file	 has	 been	 removed.	 The
PxGetGaussMapVertexLimitForPlatform	 function	 has	 been	 moved	 to	 PxCooking.h,
but	the	function	is	now	deprecated,	along	with	the	PxPlatform	enum.	Instead	there	is
now	an	explicit	PxCookingParams::gaussMapLimit	parameter.	As	far	as	 transition	 to
PhysX	 3.4	 is	 concerned	 there	 is	 nothing	 to	 do	 other	 than	 removing	 includes	 of
PxGaussMapLimit.h,	and	perhaps	including	PxCooking.h	instead	if	needed.
Legacy	 convex	 hull	 generator
(PxConvexMeshCookingType::eINFLATION_INCREMENTAL_HULL)	uses	 inflation	 in
all	 cases.	 To	 cook	 a	 convex	 mesh	 without	 inflation	 new	 (default)
PxConvexMeshCookingType::eQUICKHULL	algorithm	must	 be	used.	This	 algorithm
does	not	support	inflation.



Reference	Counting

In	previous	releases,	 isReleasable()	 for	shareable	objects	(shapes,	 triangle	meshes,
convex	 meshes,	 cloth	 fabrics,	 materials	 and	 heightfields)	 would	 return	 false	 once
release()	 had	 been	 called	 on	 the	 object,	 which	 was	 only	 allowed	 once.	 In	 3.4,
reference	 counts	 can	 be	 manually	 incremented	 with	 acquireReference()	 and
decremented	with	 release(),	 and	so	 the	 fact	 that	 release()	 has	 called	once	 is	 not	 a
reliable	indicator	of	whether	it	can	be	called	again.
As	 a	 consequence	 of	 the	 above,	 applications	 must	 ensure	 they	 own	 at	 least	 one
counted	 reference	 to	 each	 shareable	 object	 in	 a	 collection	 before	 calling
PxCollectionExt::releaseObjects.	The	main	case	in	which	this	might	be	different	in	3.4
is	when	using	PxRigidActor::createShape(),	 since	 in	 that	 case	only	 the	 actor	 has	a
counted	 reference	 to	 the	 shape.	 In	 this	 specific	 case,	 the	 new	 parameter
releaseExclusiveShapes	to	PxCollectionExt::releaseObjects	may	be	helpful.
Since	 there	 is	 no	 unique	 user	 release	 for	 shareable	 objects,	 they	 do	 not	 generate
USER_RELEASE	events	when	release()	is	called.



PhysX	Visual	Debugger

PxVisualDebugger	is	deprecated,	and	new	PxPvd	has	been	introduced.	More	details
are	mentioned	in	PhysX	Visual	Debugger	(PVD).



Scene	queries

PxPruningStructure	enum	has	been	renamed	to	PxPruningStructureType
Deprecated	 type	 PxSceneQueryHit	 has	 been	 removed.	 Please	 use	 PxQueryHit
instead.
Deprecated	 type	 PxSceneQueryFilterData	 has	 been	 removed.	 Please	 use
PxQueryFilterData	instead.
Deprecated	 type	 PxSceneQueryFilterCallback	 has	 been	 removed.	 Please	 use
PxQueryFilterCallback	instead.
Deprecated	 type	 PxSceneQueryCache	 has	 been	 removed.	 Please	 use
PxQueryCache	instead.
Deprecated	types	PxSceneQueryFlag(s)	has	been	removed.	Please	use	PxHitFlag(s)
instead.
Deprecated	scene	query	functions	have	been	removed	(e.g.	PxScene::raycastAny(),
etc).	To	make	the	transition	easier	 they	are	still	available	 in	PxSceneQueryExt.h,	as
part	of	PhysXExtensions.	A	previous	PxScene::raycastAny(...)	call	should	now	either
use	PxSceneQueryExt::raycastAny(PxScene,	...),	or	PxScene::raycast(...).
PxHitFlag::eFACE_INDEX	 was	 introduced.	 In	 order	 to	 receive	 the	 face	 index	 in
sweeps	against	convex	geometry,	the	flag	needs	to	be	set.
PxHitFlag::eDISTANCE	has	 been	 deprecated,	 since	 the	 distance	 is	 always	 needed
and	its	computation	cannot	be	skipped.	Please	simply	avoid	using	that	flag	from	now
on.	The	flag	has	no	effect	and	it	will	be	removed	in	the	next	version.
The	 "anyHit"	 parameter	 of	 the	 PxGeometryQuery::raycast()	 and
PxShapeExt::raycast()	 functions	 has	 been	 removed.	 Please	 use
PxHitFlag::eMESH_ANY	instead.
PxMeshQuery::sweep()	 now	 respects	 PxHitFlag::eMESH_BOTH_SIDES.	 So	 if	 you
previously	used	that	flag	when	calling	that	function,	it	was	ignored,	and	the	upgrade	to
3.4	might	start	generating	different	 results	compared	 to	3.3.	 If	 keeping	 the	previous
behaviour	 is	 important,	 please	 disable	 PxHitFlag::eMESH_BOTH_SIDES	 in	 your



PxMeshQuery::sweep()	calls.
Batched	 scene	 queries	 are	 marked	 as	 deprecated	 and	 will	 be	 replaced	 by	 new
system	in	future	releases.
Volume	cache	feature	is	marked	as	deprecated,	it	will	be	removed	in	future	releases.
Spatial	index	feature	is	marked	as	deprecated,	it	will	be	removed	in	future	releases.



PxExtensions

The	 signatures	 for	 the	 PxComputeMeshPenetration	 and
PxComputeHeightFieldPenetration	functions	have	changed.	The	old	functions	are	still
available	 but	 they	 are	 now	 deprecated.	 It	 is	 recommended	 to	 transition	 to	 the	 new
functions	(with	the	same	names	but	a	different	signature).
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