
NTLua		Scripting	Windows	NT
Administration	and	Logon

Version	2

Overview

NTLua	is	a	console	application	to	create	Windows	NT	administration	and
logon	scripts.

It	can	be	used	as	a	Logon	scripting	tool.	Copy	the	"ntlua.exe"	file	to	the
NTLOGON	share,	edit	a	file	called	"ntlua.lua"	in	the	same	place,	and
configure	the	user	logon	script	to	"ntlua.exe".	The	"ntlua.lua"	script	will	be
automatically	loaded	at	logon	time.

NTLua	runs	only	in	Windows	NT	systems	(4.0,	2000	and	XP).	It	does	not
run	in	Windows	9x/Me.

The	NTLua	script	log	has	a	blue	background.	Normal	text	is	printed	in
white,	errors	are	printed	in	red,	and	warnings	are	printed	in	yellow.	If	the
text	is	greater	than	the	buffer	will	automatically	pause	(an	automatic
"more").

The	interactive	console	has	some	special	features	inherited	from	LuaCmd	(
http://www.tecgraf.puc-rio.br/luacmd	).

Usage

Usually	you	will	execute:

				ntlua	somescript.lua	arg1	arg2	arg3	...

Arguments	are	passed	to	the	Lua	environment	as	a	table	"arg[1]",	"arg[2]",
"arg[3]"	and	so	on,	"arg.c"	contains	the	number	of	arguments.	Also	the
script	file	name	can	be	used	inside	the	script	accessing	the	variables
SCRIPT_FILE_NAME,	SCRIPT_NAME,	SCRIPT_PATH	(filename	=	path	/
name).

http://www.tecgraf.puc-rio.br/luacmd


If	executed	without	a	script	it	will	try	to	load	a	script	called	"ntlua.lua"	if	it
fails	to	find	it	,	it	starts	the	console.

Samples

Logon	Script	-	ntlua.lua

Domain	User	Creation	-	mkuser.lua

Domain	User	Removal	-	rmuser.lua

History

26	Apr	2002	-	Version	2.1.2	-	Changed	the	behavior	of	the	functions:
version	and	os.	They	also	now	supports	XP.
19	Apr	2002	-	Version	2.1.1	-	New	funtions:	readinisection,	readinikeys,
readinisections.	(Thanks	to	Juan	Duarte	for	the	suggestion.)
05	Oct	2001	-	Version	2.1-	Now	only	invalid	parameter	errors	will	abort
scripts.	Some	startup	code	were	improved.	The	wait	param	in	start
function	is	now	optional.	df	now	returns	more	precise	values	and	accepts	a
unit	division.
25	Oct	2000	-	Version	2.0
22	Feb	1999	-	Version	1.0	(only	a	logon	script	tool,	this	version	runs	also
under	Windows	9x)

To	Do's

Windows	API	-	Services,	Process	(List	and	Kill),	Shell	DDE/Shell	Link,
Shell	Special	Folders

AppActivate	/	SendKeys	-	to	control	an	application.

LogToFile	-	log	output	to	a	file.

Support

If	you	interested	in	help,	send	comments,	critics,	suggestions,	etc	to	me.
Please,	specify	platform,	compiler,	version	you	are	using	in	your	message.



Looking	for	Lua?	http://www.tecgraf.puc-rio.br/lua.

This	program	is	free	for	every	usage.	The	source	code	is	public	available.
The	author	does	not	offer	any	guaranties,	nor	support,	etc...

Author

Antonio	E.	Scuri	(messages	to	scuri@tecgraf.puc-rio.br,	home	page	in
Portuguese	at	http://www.tecgraf.puc-rio.br/~scuri).

The	code	for	changing	access	control	lists	was	used	from	the	Platform	SDK
tool	cacls	developed	by	Dave	Mont	and	they	are	copyright	of	Microsoft.

Copyright

See	the	Copyright	Notice,	is	the	same	copyright	used	by	Lua.

Download

The	program	source	code,	HTML	pages,	samples,	and	pre-compiled
binaries:

ntlua212src.zip	(source	code,	html,	makefiles)	-	120Kb
ntlua212.zip	(binary	only)	-	80Kb

ntlua10.zip	(binary	only)	-	100Kb

About	NTLua	Online

This	user	guide	is	available	at	http://www.tecgraf.puc-rio.br/~scuri/ntlua.	

The	manual	is	also	available	in	Windows	HTML	Help	format
(NTLUA.CHM	20Kb).

This	manual	was	created	using	the	manual	creation	toolkit	WebBook,	which
can	be	found	at	http://www.tecgraf.puc-rio.br/webbook.

	

http://www.tecgraf.puc-rio.br/lua
mailto:(scuri@tecgraf.puc-rio.br
http://www.tecgraf.puc-rio.br/~scuri
http://www.tecgraf.puc-rio.br/~scuri/ntlua
http://www.tecgraf.puc-rio.br/webbook


..	"Make	it	Reusable,	Make	it	Simple,	Make	it	Small"	...



Functions

Interaction

echo/print(text)	-	Prints	the	text	string	on	the	console.	Always	include	a
line	break.

cls()	-	Clears	he	console	string.

beep()	-	Sounds	a	beep.

wait(time)	-	Delay	processing	for	time	milliseconds.

msgbox(text,	title,	type,	icon)	-	Displays	the	standard	message	box
dialog.	type	can	be	MB_OK,	MB_OKCANCEL,	MB_RETRYCANCEL,	MB_YESNO,
MB_YESNOCANCEL,	MB_ABORTRETRYIGNORE.	icon	can	be
MB_ICONEXCLAMATION,	MB_ICONINFORMATION,	MB_ICONQUESTION,

MB_ICONSTOP.

pause()	-	Displays	the	message	"Press	any	key	to	continue..."	and	stops	the
script	execution.

getkey()	-	Waits	until	the	user	press	a	key	and	returns	that	key	as	a	string.

getline()	-	Get	keys	until	the	user	press	Enter,	then	returns	the	keys	in	a
string.

ok()	-	Returns	a	non	nil	value	if	the	script	execution	is	ok.

System	Information

computername()	-	Returns	the	current	computer	name.

username/whoami()	-	Returns	the	current	user	name.

version()	-	Returns	a	detailed	Operating	System	string	description.	Ex:

Microsoft	Windows	2000	Workstation	[Version	5.0.2195]	Service	Pack	1



os()	-	Returns	the	same	informatio	above	but	in	a	Lua	table.

{

		system	=	"2000",

		type	=	"Workstation",

		major	=	5,

		minor	=	0,

		build	=	2195,

		service	=	"Service	Pack	1"

}

datetime()	-	Returns	a	string	describing	the	current	date	and	time	(ex.
"Thu	Oct	26	11:01:51	2000").

ipaddress()	-	Returns	the	computer	IP	address	if	any	configured.	Return
nil	if	not.

Environment

setenv(name,	value)	-	Sets	an	environment	variable	in	the	user
environment.

getsysenv(name)	-	Returns	an	environment	variable	if	its	set	in	the	system
environment.

getusrenv(name)	-	Returns	an	environment	variable	if	its	set	in	the	user
environment.

expandenv(name)	-	Expands	an	environment	variable	that	contains
references	to	other	environment	variables.	Returns	the	result.

Registry

writeregkey(bkey,	key_name,	value_name,	value)	-	Writes	a	string	in
the	registry.	key_name	is	the	path.	bkey	can	be:	KEY_CLASSES_ROOT,
KEY_CURRENT_USER,	KEY_LOCAL_MACHINE,	KEY_USERS.

readregkey(bkey,	key_name,	value_name)	-	Reads	a	string	from	the
registry	and	returns	it.	key_name	is	the	path.	bkey	can	be:
KEY_CLASSES_ROOT,	KEY_CURRENT_USER,	KEY_LOCAL_MACHINE,

KEY_USERS.



Utilities

writeinikey(filename,	section,	value_name,	value)	-	Writes	a	string
in	a	".INI"	file.

readinikey(filename,	section,	value_name)	-	Reads	a	string	from	a
".INI"	file	and	returns	it.

readinikeys(filename,	section)	-	Reads	all	the	keys	from	a	".INI"	file
section	and	returns	them	as	a	table.

readinisection(filename,	section)	-	Reads	all	the	keys	and	values
from	a	".INI"	file	section	and	returns	them	as	a	table	indexed	by	the	key
names.

readinisections(filename)	-	Reads	all	the	sections	names	from	a	".INI"
file	and	returns	them	as	a	table.

logevent(servername,	type,	msg,	datastr)	-	Sends	an	event	to	the
application	log	of	the	specified	computer.	If	servername	is	nil	it	uses	the
local	computer.	type	can	be:	EVENTLOG_ERROR_TYPE,
EVENTLOG_WARNING_TYPE,	EVENTLOG_INFORMATION_TYPE,

EVENTLOG_AUDIT_SUCCESS,	EVENTLOG_AUDIT_FAILURE.

netsend(servername,	dstname,	msg)	-	Sends	a	message	to	s	specified
user	or	computer.	If	servername	is	nil	it	uses	the	local	computer.

shutdown(servername,	message,	timeout,	force,	reboot)	-	Initiates	a
shutdown	and	optional	restart	of	the	specified	computer.	message	is
optional	and	timeout	is	in	seconds.	If	servername	is	nil	it	uses	the	local
computer.

winexit(flag,	force)	-	Either	logs	off	the	current	user,	shuts	down	the
system,	or	shuts	down	and	restarts	the	system..	flag	can	be	EWX_LOGOFF,
EWX_POWEROFF,	EWX_REBOOT,	EWX_SHUTDOWN.	force	will	force	processes	to
terminate.

Process

execute(command_line)	-	Starts	the	command	line	as	the	Explorer	"open"



command.	So	you	can	execute	folders,	documents	and	executables.

start(command_line,	wait)	-	Starts	the	command	line	creating	a	new
process.	wait	forces	the	execution	to	wait	for	the	process	to	terminate,	can
be	omitted,	default	is	no	wait.	

Net	Drive	Map

netuse(driveletter,	path)	-	Connects	a	drive	letter	to	a	network	path.

netdel(driveletter)	-	Disconnects	a	mapped	drive	letter.

Share

netshareadd(servername,	sharename,	path,	comment)	-	Adds	a	share
to	the	specified	computer.	comment	is	optional.		If	servername	is	nil	it
uses	the	local	computer.

netsharedel(servername,	sharename)	-		Removes	a	share	from	the
specified	computer.	If	servername	is	nil	it	uses	the	local	computer.

netshareenum(servername,	doshare_func)	-	Calls	the	specified	function
for	each	share	in	the	specified	computer.	If	servername	is	nil	it	uses	the
local	computer.	doshare_func	must	be	a	function	like:

function	do_share(sharename,	path,	type)

{

		if	(abort)	then

				return	0

		else

				return	1;

		end

}

type	can	be:	"FOLDER",	"PRINTER",	"DEVICE",	"IPC",	"SPECIAL".
If		shareenum_func	is	nil	it	will	print	all	the	shares.

User

For	all	the	functions:	servername	is	the	computer	where	the	function



actually	executes.	If	nil	executes	at	the	local	computer.	local	(1	or	0)
specifies	that	the	group	is	a	local	group.

netuseradd(servername,	username,	full_name,	comment,	password,

profile_path,	script_path,	home_dir_drive,	home_dir_path)	-
Creates	a	new	user.	full_name,	comment,	password,	profile_path,
script_path,	home_dir_drive,	home_dir_path	are	optional	and	can	be
nil.

netuserrename(servername,	oldusername,	newusername)	-	Renames	the
user.

netusersetinfo(servername,	username,	param_name,	param)	-
Changes	user	parameters.	param_name	can	be:	"full_name",	"comment",
"profile_path",	"script_path",	"home_dir_drive",	home_dir_path.

netusergetinfo(servername,	username)	-	Returns	the	user	full	name,
comment,	profile	path,		script	path,		home	dir	drive	and	home	dir	path.

netuserdel(servername,	username)	-	Removes	the	user.

netuserenum(servername,	douser_func)	-	Calls	the	specified	function	for
each	user.	douser_func	must	be	a	function	like:

function	do_user(username)

{

		if	(abort)	then

				return	0

		else

				return	1;

		end

}

netusergroupsenum(servername,	username,	local,

dousergroup_func)	-	Calls	the	specified	function	for	each	group	the	user
belongs	to.	dousergroup_func	must	be	a	function	like:

function	do_usergroup(groupname)

{

		if	(abort)	then

				return	0

		else

				return	1;



		end

}

ifmember(servername,	username,	local,	groupname)	-	Checks	if	the
user	belongs	to	a	group.	Returns	nil	otherwise.

netuserchangepassword(domainname,	username,	oldpassword,

newpassword)	-	Change	the	user	password.	domainname	can	be	nil	to
specify	the	current	domain.	username	can	be	nil	to	specify	the	current	user.

Groups

For	all	the	functions:	servername	is	the	computer	where	the	function
actually	executes.	If	nil	executes	at	the	local	computer.	local	(1	or	0)
specifies	that	the	group	is	a	local	group.

netgroupadduser(servername,	local,	groupname,	username)	-	Adds	a
user	to	a	group.

netgroupdeluser(servername,	local,	groupname,	username)	-
Removes	a	user	from	a	group.

netgroupadd(servername,	local,	groupname,	comment)	-	Creates	a	new
group.	comment	is	optional,	can	be	nil.

netgroupdel(servername,	local,	groupname)	-	Removes	a	group.

netgrouprename(servername,	local,	oldgroupname,	newgroupname)	-
Renames	a	group	(this	is	not	available	in	the	UserManager,	dont'	know
why).

netgroupsetinfo(servername,	local,	groupname,	param_name,

param)	-	Changes	group	comment.	param_name	can	only	be		"comment".

netgroupgetinfo(servername,	local,	groupname)	-	Returns	the	group
comment.

netgroupenum(servername,	local,	dogroup_func)	-	Calls	the	specified
function	for	each	group.	dogroup_func	must	be	a	function	like:

function	do_group(groupname)



{

		if	(abort)	then

				return	0

		else

				return	1;

		end

}

Domain

netgetdomain()	-	Returns	the	current	user	domain.

netgetpdc(servername,	domainname)	-	Returns	the	name	of	the	Primary
Domain	Controller	of	the	specified	domain.	If	servername	is	nil	it	uses	the
local	computer.

File

getdir(dir,	file_mask,	subdir)	-	Returns	a	table	with	all	the	folder
structure	of	the	specified	folder.	Subfolder	are	treated	as	new	sub	tables,
and	files	are	values.	file_mask	can	restrict	the	file	selection,	if	nil	the
default	is	"*.*".	subdir	allows	recursion	of	subfolders.

forfiles(dir,	file_mask,	subdir,	dofile_func)	-	Calls	the	specified
function	for	each	file	selected	by	the	file_mask	inside	the	dir	folder
structure.	subdir	allows	recursion	of	subfolders.	dofile_func	must	be	a
function	like:

function	do_file(filename,	status)

{

		if	(abort)	then

				return	0

		else

				return	1;

		end

}

status	is	1	when	entering	the	specified	folder,	-1	leaving	the	specified
folder,	0	is	a	file.

cacls(filefilter,	subdir,	continue,	clear,	grant,	replace,

revoke,	deny)	-	Changes	access	control	lists	of	the	specified	files.	subdir



allows	recurtion	of	subfolders.	the	function	stops	if	an	error	occurs,
continue	allows	to	ignore	errors.	clear	will	clear	all	the	actual	acls	before
doing	any	operations,	so	replace	and	deny	can	not	be	used,	and	must	be	nil.
grant	and	replace	are	tables	with	the	list	of	users	and	permissions	to	grant
or	replace	respectively	in	the	acls	(ex:	{"user1",	"F",	"test2",	"R"}).	revoke
and	deny	are	tables	with	the	list	of	users	to	revoke	from	the	list	or	deny
access	respectively.	Permissions	can	be:	"F",	"C",	"R",	"N"	(Full,	Change,
Read,	None).	The	table	can	also	be	nil,	but	not	all	of	them	at	the	same	time.

dumpacls(filefilter,	subdir)	-	Dumps	(print)	access	control	lists	of	the
specified	files.	subdir	allows	recurtion	of	subfolders.

exist(filename)	-	Returns	a	non	nil	value	if	the	file	exists.

windir()	-	Returns	the	Windows	folder.

sysdir()	-	Returns	the	Windows	System	folder.

getcwd/pwd()	-	Returns	the	current	folder.

mkdir/md(dirname)	-	Creates	a	folder.

rmdir/rd(dirname)	-	Removes	an	empty	folder.

chdir/cd(dirname)	-	Changes	the	current	folder.	If	dir	is	not	specified
returns	the	current	folder.

copy/cp(srcfilename,	dstfilename)	-	Copies	a	file.	Overwrite
destination	if	exists.

move/mv/rename(srcfilename,	dstfilename)	-	Moves	or	renames	a	file.
Overwrite	destination	if	exists.

copydir(srcdirname,	dstdirname)	-	Copies	the	contents	of	a	folder	to
another.

deltree/prune(dirname)	-	Removes	a	folder	and	all	its	contents	including
subfolders.

del/remove/rm/erase(filename)	-	Removes	the	file	specified.



access(filename,	mode)	-	Determine	file-access	permission.	mode	can
be:	"x",	"w",	"r",	"f"	(existence,	can	write,	can	read,	can	read	or	write).
Returns	a	non	nil	value	if	mode	is	allowed.

attrib(filename,	mask)	-	Changes	the	attributes	of	a	file.	mask	can	be	a
combination	of	the	following:	"a",	"h",	"o",	"r",	"s"	,"t"	(archive,	hidden,
offline,	read-only,	system,	temporary).	If	mask	is	nil	returns	the	current
attributes	mask.

filesize(filename)	-	Returns	the	size	of	the	file	in	bytes.

filetitle(filename)	-	Returns	the	name	of	the	file	without	any	path.
(filename	=	path	/	title)

filepath(filename)	-	Returns	the	path	of	the	file.

filefullpath()	-	Returns	the	complete	filename	of	a	file.	You	can	specify
just	the	title	and	you	get	the	current	folder	and	add	to	the	file	tile.

filetime(filename)	-	Returns	3	strings	regarding	to	file	time:
creationtime,	lastaccesstime,	lastwritetime.	Uses	the	same	format	as	the
datetime	function.

fileshortpath(filename)	-	Returns	the	short	name	of	the	file	(8.3
characters).

bintype(filename)	-	Returns	the	binary	type	of	the	executable.	It	can	be:
"Win32",	"DOS",	"OS216",	"PIF",	"POSIX",	"Win16"	or	nil	if	unknown.

where(filename)	-	Searches	for	the	file	in	the	PATH	and	returns	the
complete	file	name	if	found.	Returns	nil	otherwise.

df/diskfree(filename,	div)	-	Returns	3	values	regarding	to	disk	space:
available,	total	and	free.	If	per-user	quotas	are	in	use,	the	first	value	may	be
less	than	the	total	number	of	free	bytes	on	the	disk.	If	filename	is	nil	uses
the	current	folder.	div	can	be	"b",	"Mb",	"Kb"	and	"Gb".	div	is	optional,
and	the	default	is	"Mb".



LuaCmd	COPYRIGHT	NOTICE

LuaCmd	is	free	and	non-proprietary.	It	can	be	used	for	both	academic	and
commercial	purposes	at	absolutely	no	cost.	There	are	no	royalties	or	GNU-like
"copyleft"	restrictions.	LuaCmd	(probably)	qualifies	as	Open	Source	software.
Nevertheless,	LuaCmd	is	not	in	the	public	domain	and	TeCGraf	keeps	its
copyright.

If	you	use	LuaCmd,	please	give	us	credit	(a	nice	way	to	do	this	is	to	include	a
logo	in	a	web	page	for	your	product),	but	we	would	appreciate	*not*	receiving
lengthy	legal	documents	to	sign.

The	legal	details	are	below.

===============================================================================

Copyright	(c)	1994-1999	TeCGraf,	PUC-Rio.	All	rights	reserved.

Permission	is	hereby	granted,	without	written	agreement	and	without	license	or
royalty	fees,	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose,	including	commercial	applications,	subject	to
the	following	conditions:

*	The	above	copyright	notice	and	this	permission	notice	shall	appear	in	all
copies	or	substantial	portions	of	this	software.

*	The	origin	of	this	software	must	not	be	misrepresented;	you	must	not	claim
that	you	wrote	the	original	software.	If	you	use	this	software	in	a	product,	an
acknowledgment	in	the	product	documentation	would	be	greatly	appreciated
(but	it	is	not	required).

*	Altered	source	versions	must	be	plainly	marked	as	such,	and	must	not	be
misrepresented	as	being	the	original	software.

The	authors	specifically	disclaim	any	warranties,	including,	but	not	limited	to,
the	implied	warranties	of	merchantability	and	fitness	for	a	particular	purpose.
The	software	provided	hereunder	is	on	an	"as	is"	basis,	and	the	authors	have	no
obligation	to	provide	maintenance,	support,	updates,	enhancements,	or



modifications.	In	no	event	shall	TeCGraf,	PUC-Rio,	or	the	authors	be	held	liable
to	any	party	for	direct,	indirect,	special,	incidental,	or	consequential	damages
arising	out	of	the	use	of	this	software	and	its	documentation.

The	LuaCmd	implementation	have	been	entirely	designed	and	written	by
Antonio	Escaño	Scuri	at	TeCGraf,	PUC-Rio.

This	implementation	contains	no	third-party	code.

===============================================================================


	Product
	Functions

