
NSIS	Users	Manual
Check	http://nsis.sf.net	for	news,	information,	support,	examples,	tutorials
and	more.

Quick	links:
FAQ	-	A	list	of	frequently	asked	questions
NSIS	Wiki	-	Examples,	functions,	tutorials,	plug-ins,	software	and	more
Forum	-	Post	questions	or	discuss	NSIS	features

Copyright	(C)	1999-2017	Contributors

Chapter	1:	Introduction	to	NSIS
About	NSIS
Main	Features
Feature	List
Unicode	installers

Chapter	2:	Tutorial:	The	Basics
Introduction
Script	Files
Scripting	structure

Installer	Attributes
Pages
Sections
Functions
Working	with	Scripts

Logical	Code	Structures
Variables
Debugging	Scripts

Script	Execution
Compiler	Commands

Compiler
Modern	UI
Plug-ins
More

Chapter	3:	Command	Line	Usage
MakeNSIS	Usage

Options

http://nsis.sourceforge.net/
http://nsis.sourceforge.net/support/faq/
http://nsis.sourceforge.net/wiki/
http://forums.winamp.com/forumdisplay.php?forumid=65

Notes
Environment	variables
Examples

Installer	Usage
Common	Options
Uninstaller	Specific	Options
Examples

Chapter	4:	Scripting	Reference
Script	File	Format
Variables

User	Variables
Var

Other	Writable	Variables
Constants
Constants	Used	in	Strings

Labels
Relative	Jumps
Pages

Ordering
Page	Options
Callbacks
Page
UninstPage
PageEx
PageExEnd
PageCallbacks

Sections
Section	Commands

AddSize
Section
SectionEnd
SectionIn
SectionGroup
SectionGroupEnd

Uninstall	Section
Functions

Function	Commands
Function
FunctionEnd

Callback	Functions
Install	Callbacks

.onGUIInit

.onInit

.onInstFailed

.onInstSuccess

.onGUIEnd

.onMouseOverSection

.onRebootFailed

.onSelChange

.onUserAbort

.onVerifyInstDir
Uninstall	Callbacks

un.onGUIInit
un.onInit
un.onUninstFailed
un.onUninstSuccess
un.onGUIEnd
un.onRebootFailed
un.onSelChange
un.onUserAbort

Installer	Attributes
General	Attributes

AddBrandingImage
AllowRootDirInstall
AutoCloseWindow
BGFont
BGGradient
BrandingText
Caption
ChangeUI
CheckBitmap
CompletedText
ComponentText
CRCCheck
DetailsButtonText
DirText
DirVar
DirVerify

FileErrorText
Icon
InstallButtonText
InstallColors
InstallDir
InstallDirRegKey
InstProgressFlags
InstType
LicenseBkColor
LicenseData
LicenseForceSelection
LicenseText
ManifestDPIAware
ManifestSupportedOS
MiscButtonText
Name
OutFile
RequestExecutionLevel
SetFont
ShowInstDetails
ShowUninstDetails
SilentInstall
SilentUnInstall
SpaceTexts
SubCaption
UninstallButtonText
UninstallCaption
UninstallIcon
UninstallSubCaption
UninstallText
WindowIcon
XPStyle

Compiler	Flags
AllowSkipFiles
FileBufSize
SetCompress
SetCompressor
SetCompressorDictSize
SetDatablockOptimize

SetDateSave
SetOverwrite
Unicode

Version	Information
VIAddVersionKey
VIProductVersion
VIFileVersion

Instructions
Basic	Instructions

Delete
Exec
ExecShell
ExecShellWait
ExecWait
File
Rename
ReserveFile
RMDir
SetOutPath

Registry,	INI,	File	Instructions
DeleteINISec
DeleteINIStr
DeleteRegKey
DeleteRegValue
EnumRegKey
EnumRegValue
ExpandEnvStrings
FlushINI
ReadEnvStr
ReadINIStr
ReadRegDWORD
ReadRegStr
WriteINIStr
WriteRegBin
WriteRegDWORD
WriteRegStr
WriteRegExpandStr
WriteRegMultiStr
SetRegView

General	Purpose	Instructions
CallInstDLL
CopyFiles
CreateDirectory
CreateShortcut
GetDLLVersion
GetDLLVersionLocal
GetFileTime
GetFileTimeLocal
GetFullPathName
GetTempFileName
SearchPath
SetFileAttributes
RegDLL
UnRegDLL

Flow	Control	Instructions
Abort
Call
ClearErrors
GetCurrentAddress
GetFunctionAddress
GetLabelAddress
Goto
IfAbort
IfErrors
IfFileExists
IfRebootFlag
IfSilent
IntCmp
IntCmpU
MessageBox
Return
Quit
SetErrors
StrCmp
StrCmpS

File	Instructions
FileClose
FileOpen

FileRead
FileReadUTF16LE
FileReadByte
FileReadWord
FileSeek
FileWrite
FileWriteUTF16LE
FileWriteByte
FileWriteWord
FindClose
FindFirst
FindNext

Uninstaller	Instructions
WriteUninstaller

Miscellaneous	Instructions
GetErrorLevel
GetInstDirError
InitPluginsDir
Nop
SetErrorLevel
SetShellVarContext
Sleep

String	Manipulation	Instructions
StrCpy
StrLen

Stack	Support
Exch
Pop
Push

Integer	Support
IntFmt
IntOp

Reboot	Instructions
Reboot
SetRebootFlag

Install	Logging	Instructions
LogSet
LogText

Section	Management

SectionSetFlags
SectionGetFlags
SectionSetText
SectionGetText
SectionSetInstTypes
SectionGetInstTypes
SectionSetSize
SectionGetSize
SetCurInstType
GetCurInstType
InstTypeSetText
InstTypeGetText

User	Interface	Instructions
BringToFront
CreateFont
DetailPrint
EnableWindow
FindWindow
GetDlgItem
HideWindow
IsWindow
LockWindow
SendMessage
SetAutoClose
SetBrandingImage
SetDetailsView
SetDetailsPrint
SetCtlColors
SetSilent
ShowWindow

Multiple	Languages	Instructions
LoadLanguageFile
LangString
LicenseLangString

Multiple	Languages
Language	Selection
LangDLL	Plug-in
RTL	Languages

Plug-in	DLLs

Using	Plug-in	Commands
Calling	plug-ins	manually

Silent	Installers/Uninstallers
Chapter	5:	Compile	Time	Commands

Compiler	Utility	Commands
!include
!addincludedir
!addplugindir
!appendfile
!cd
!delfile
!echo
!error
!execute
!makensis
!packhdr
!finalize
!system
!tempfile
!getdllversion
!warning
!pragma
!verbose

Predefines
${__COUNTER__}
${__FILE__}
${__FILEDIR__}
${__LINE__}
${__DATE__}
${__TIME__}
${__TIMESTAMP__}
${NSIS_VERSION}
${NSIS_PACKEDVERSION}
${NSIS_CHAR_SIZE}
${NSIS_PTR_SIZE}
${U+1}...${U+10FFFF}
Scope	Predefines

${__GLOBAL__}
${__SECTION__}

${__FUNCTION__}
${__PAGEEX__}
${__UNINSTALL__}
${__MACRO__}

Read	environment	variables
$%envVarName%

Conditional	Compilation
!define
!undef
!ifdef
!ifndef
!if
!ifmacrodef
!ifmacrondef
!else
!endif
!insertmacro
!macro
!macroend
!macroundef
!searchparse
!searchreplace

Appendix	A:	Modern	User	Interface
Appendix	B:	DLL/TLB	Library	Setup

Introduction
Library	Installation

Introduction
Parameters
Options

LIBRARY_X64
LIBRARY_SHELL_EXTENSION
LIBRARY_COM
LIBRARY_IGNORE_VERSION

Notes
Example

Unshared	DLL
Shared	DLL

Library	Uninstallation
Introduction

Parameters
Options

LIBRARY_X64
LIBRARY_SHELL_EXTENSION
LIBRARY_COM

Example
Visual	Basic	6	Run-Time	Files

Appendix	C:	Useful	Scripts
Get	Internet	Explorer	version
Is	.NET	Framework	installed?
Is	Macromedia	Flash	Player	installed?
Connect	to	the	Internet
Get	Installer	Filename
Prevent	Multiple	Instances
More

Appendix	D:	Useful	Information
Error	Levels
Add	uninstall	information	to	Add/Remove	Programs
Calling	an	external	DLL	using	the	System.dll	plug-in
Dump	Content	of	Log	Window	to	File
How	to	Read	REG_MULTI_SZ	Values
Predefined	Macros	for	Unicode	support

Appendix	E:	Useful	Headers
File	Functions	Header

Introduction
Locate
GetSize
DriveSpace
GetDrives
GetTime
GetFileAttributes
GetFileVersion
GetExeName
GetExePath
GetParameters
GetOptions
GetOptionsS
GetRoot
GetParent

GetFileName
GetBaseName
GetFileExt
BannerTrimPath
DirState
RefreshShellIcons

Text	Functions	Header
Introduction
LineFind
LineRead
FileReadFromEnd
LineSum
FileJoin
TextCompare
TextCompareS
ConfigRead
ConfigReadS
ConfigWrite
ConfigWriteS
FileRecode
TrimNewLines

Word	Functions	Header
Introduction
WordFind
WordFindS
WordFind2X
WordFind2XS
WordFind3X
WordFind3XS
WordReplace
WordReplaceS
WordAdd
WordAddS
WordInsert
WordInsertS
StrFilter
StrFilterS
VersionCompare
VersionConvert

Appendix	F:	Changelog	and	Release	Notes
3.02

Changelog
Major	Changes
Minor	Changes
Translations

3.01
Changelog

Major	Changes
Minor	Changes
Translations

3.0
Release	Notes
Changelog

Minor	Changes
Translations

3.0	Release	Candidate	2
Changelog

Major	Changes
Minor	Changes
Translations

3.0	Release	Candidate	1
Changelog

Major	Changes
Minor	Changes
Translations

3.0	Beta	3
Changelog

Major	Changes
Minor	Changes
Translations

3.0	Beta	2
Changelog

Major	Changes
Minor	Changes
Build	System

3.0	Beta	1
Release	Notes
Changelog

Major	Changes
Minor	Changes
Translations

3.0	Beta	0
Release	Notes
Changelog

Major	Changes
Minor	Changes

3.0	Alpha	2
Release	Notes

Known	Issues
Changelog

Major	Changes
Minor	Changes

3.0	Alpha	1
Release	Notes

Known	Issues
Changelog

Major	Changes
Minor	Changes

3.0	Alpha	0
Release	Notes

Known	Issues
Changelog

Major	Changes
Minor	Changes
Translations

2.51
Changelog

Minor	Changes
Translations

2.50
Changelog

Major	Changes
Minor	Changes

2.49
Changelog

2.48
Changelog

2.47
Release	Notes
Changelog

Major	Changes
Minor	Changes

2.46
Changelog

Minor	Changes
Translations
Build	System

2.45
Release	Notes
Changelog

Major	Changes
Minor	Changes
Modern	UI
Translations
Build	System

2.44
Changelog

Major	Changes
Minor	Changes

2.43
Release	Notes
Changelog

Minor	Changes
Utilities	and	Plug-ins
Translations
Plug-in	API
Build	System

2.42
Release	Notes
Changelog

Major	Changes
Minor	Changes
Translations
Build	System

2.41
Changelog

Minor	Changes
Translations
Build	System

2.40
Changelog

Major	Changes
Minor	Changes
Translations

2.39
Changelog

Major	Changes
Minor	Changes

2.38
Changelog

Major	Changes
Minor	Changes
Modern	UI
Translations

2.37
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translation
Build	System

2.36
Release	Notes
Changelog

Major	Changes
Modern	UI
nsDialogs
Minor	Changes
Utilities	and	Plug-ins
Translation
Build	System

2.35
Changelog

Major	Changes
Minor	Changes

Utilities	and	Plug-ins
2.34

Release	Notes
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.33
Release	Notes
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.32
Release	Notes
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.31
Release	Notes
Changelog

Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.30
Release	Notes
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations

Build	System
2.29

Release	Notes
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.28
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.27
Release	Notes
Changelog

Major	Changes
Minor	Changes
Build	System

2.26
Release	Notes
Changelog

Major	Changes
Minor	Changes
New/Changed	Commands
Utilities	and	Plug-ins
Translations
Build	System

2.25
Changelog

Major	Changes
Minor	Changes
New/Changed	Commands
Utilities	and	Plug-ins
Translations
Build	System

2.24
Changelog

Major	Changes
Minor	Changes
New/Changed	Commands
Utilities	and	Plug-ins
Translations
Build	System

2.23
Changelog

Minor	Changes
Utilities	and	Plug-ins
Build	System

2.22
Release	Notes
Changelog

Minor	Changes
New/Changed	Commands
Translations
Build	System

2.21
Changelog

Major	Changes
Minor	Changes
New/Changed	Commands
Translations
Build	System

2.20
Changelog

Minor	Changes
Translations
Build	System

2.19
Changelog

Minor	Changes
New/Changed	Commands
Plug-ins
Translations

2.18

Changelog
Minor	Changes
Translations

2.17
Changelog

Minor	Changes
Translations

2.16
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Translations
Build	System

2.15
Changelog

New/Changed	Commands
Minor	Changes
Translations
Build	System

2.14
Release	Notes
Changelog

Major	Changes
Minor	Changes

2.13
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.12
Changelog

Major	Changes
New/Changed	Commands

Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.11
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins
Translations
Build	System

2.10
Changelog

Major	Changes
Minor	Changes
Translations
Build	System

2.09
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Translations
Build	System

2.08
Release	Notes
Changelog

Major	Changes
Minor	Changes
Build	System

2.07
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Include	Files

Utilities	and	Plug-ins
Translations

2.06
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins

2.05
Release	Notes
Changelog

New/Changed	Commands
Minor	Changes

2.04
Changelog

Major	Changes
Minor	Changes

2.03
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes

2.02
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins

2.01
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins

2.0
Release	Notes
Changelog

Changes	from	1.98
Changes	from	RC4

2.0	Release	Candidate	4
Changelog

Major	Changes
Minor	Changes
Utilities	and	Plug-ins

2.0	Release	Candidate	3
Changelog

Minor	Changes
Utilities	and	Plug-ins

2.0	Release	Candidate	2
Changelog

Minor	Changes
Utilities	and	Plug-ins

2.0	Release	Candidate	1
Release	Notes
Changelog

Major	Changes
Utilities	and	Plug-ins

2.0	Beta	4
Release	Notes
Changelog

Major	Changes
New/Changed	Commands
Minor	Changes
Utilities	and	Plug-ins

2.0	Beta	3
2.0	Beta	2
2.0	Beta	1
2.0	Beta	0
2.0	Alpha	7
2.0	Alpha	6
2.0	Alpha	5
2.0	Alpha	4
2.0	Alpha	3
2.0	Alpha	2
2.0	Alpha	1
2.0	Alpha	0

Older	Versions
Appendix	G:	Building	NSIS

Building	in	General
Building	on	Windows
Building	on	POSIX
Nightly	Builds

Appendix	H:	Credits
Programmers
Testers
Designers
Translators
Writers

Appendix	I:	License
Copyright
Applicable	licenses
zlib/libpng	license
bzip2	license
Common	Public	License	version	1.0
Special	exception	for	LZMA	compression	module

Previous	|	Contents	|	Next

Chapter	1:	Introduction	to	NSIS
About	NSIS
Main	Features
Feature	List
Unicode	installers

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Chapter	2:	Tutorial:	The	Basics
Introduction
Script	Files
Scripting	structure

Installer	Attributes
Pages
Sections
Functions
Working	with	Scripts
Script	Execution
Compiler	Commands

Compiler
Modern	UI
Plug-ins
More

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Chapter	3:	Command	Line	Usage
MakeNSIS	Usage

Options
Notes
Environment	variables
Examples

Installer	Usage
Common	Options
Uninstaller	Specific	Options
Examples

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Chapter	4:	Scripting	Reference
Script	File	Format
Variables

User	Variables
Other	Writable	Variables
Constants
Constants	Used	in	Strings

Labels
Relative	Jumps
Pages

Ordering
Page	Options
Callbacks
Page
UninstPage
PageEx
PageExEnd
PageCallbacks

Sections
Section	Commands
Uninstall	Section

Functions
Function	Commands
Callback	Functions

Installer	Attributes
General	Attributes
Compiler	Flags
Version	Information

Instructions
Basic	Instructions
Registry,	INI,	File	Instructions
General	Purpose	Instructions
Flow	Control	Instructions
File	Instructions
Uninstaller	Instructions
Miscellaneous	Instructions
String	Manipulation	Instructions

Stack	Support
Integer	Support
Reboot	Instructions
Install	Logging	Instructions
Section	Management
User	Interface	Instructions
Multiple	Languages	Instructions

Multiple	Languages
Language	Selection
LangDLL	Plug-in
RTL	Languages

Plug-in	DLLs
Using	Plug-in	Commands
Calling	plug-ins	manually

Silent	Installers/Uninstallers

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Chapter	5:	Compile	Time	Commands
Compiler	Utility	Commands

!include
!addincludedir
!addplugindir
!appendfile
!cd
!delfile
!echo
!error
!execute
!makensis
!packhdr
!finalize
!system
!tempfile
!getdllversion
!warning
!pragma
!verbose

Predefines
${__COUNTER__}
${__FILE__}
${__FILEDIR__}
${__LINE__}
${__DATE__}
${__TIME__}
${__TIMESTAMP__}
${NSIS_VERSION}
${NSIS_PACKEDVERSION}
${NSIS_CHAR_SIZE}
${NSIS_PTR_SIZE}
${U+1}...${U+10FFFF}
Scope	Predefines

Read	environment	variables
$%envVarName%

Conditional	Compilation

!define
!undef
!ifdef
!ifndef
!if
!ifmacrodef
!ifmacrondef
!else
!endif
!insertmacro
!macro
!macroend
!macroundef
!searchparse
!searchreplace

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

1.1	About	NSIS
The	installer	is	your	application's	first	impression.	Slow	or	unsuccessful
software	installations	is	one	of	the	most	irritating	computer	problems.	A
quick	and	user	friendly	installer	is	therefore	an	essential	part	of	your
software	product.	NSIS	(Nullsoft	Scriptable	Install	System)	is	a	tool	that
allows	programmers	to	create	such	installers	for	Windows.	It	is	released
under	an	open	source	license	and	is	completely	free	for	any	use.

NSIS	creates	installers	that	are	capable	of	installing,	uninstalling,	setting
system	settings,	extracting	files,	etc.	Because	it's	based	on	script	files
you	can	fully	control	every	part	of	your	installer.	The	scripting	language
supports	variables,	functions	and	string	manipulation,	just	like	a	normal
programming	language	-	but	designed	for	the	creation	of	installers.	Even
with	all	these	features,	NSIS	is	still	the	smallest	installer	system
available.	With	the	default	options,	it	has	an	overhead	of	only	34	KB.

With	NSIS	3	you	can	also	create	Unicode	installers,	targeting	all	the
languages	supported	by	the	OS	without	display	issues.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

1.2	Main	Features
Small	overhead	size

NSIS	has	been	designed	to	be	small,	fast	and	efficient.	While	other
installers	often	add	hundreds	of	kilobytes	or	several	megabytes	to	your
installer	data,	a	fully	featured	NSIS	installer	has	a	overhead	of	only	34
KB.

Compatible	with	all	major	Windows	versions

You	can	create	a	single	installer	that	is	compatible	with	Windows	95,	98,
ME,	NT4,	2000,	XP,	2003,	Vista,	Server	2008,	7,	Server	2008R2,	8,
Server	2012,	8.1,	Server	2012R2	and	Windows	10.

Unique	compression	methods

You	can	choose	between	three	different	integrated	compression	methods
(ZLib,	BZip2,	LZMA).	LZMA	compression	gives	better	results	than	any
other	common	compression	method.	You	don't	have	to	use	large	self-
extracting	archive	modules	or	other	applications,	the	compression
support	is	included	in	the	34	KB	overhead.

Script	based

Unlike	other	systems	that	can	only	generate	installers	based	on	a	list	of
files	and	registry	keys,	NSIS	has	a	powerful	scripting	language.	This
script	language	is	designed	for	installers	and	has	commands	that	help
you	to	perform	many	installation	tasks.	You	can	easily	add	custom	logic
and	handle	different	upgrades,	version	checks	and	more.	On	the	NSIS
Wiki	you	can	find	a	lot	more.

Multiple	languages	in	one	installer

One	installer	can	support	multiple	interface	languages.	More	than	60
translations	are	already	included	and	you	can	also	create	your	own
language	files.	RTL	(right-to-left)	languages	such	as	Arabic	and	Hebrew
are	fully	supported.	Creating	a	Unicode	native	installer	is	also	possible	for

http://nsis.sourceforge.net/wiki/

even	more	supported	languages.

Many	features	and	checks	for	the	target	system

The	script	language	provides	commands	you	can	use	on	the	target
system.	From	simple	features	like	folder	creation	and	registry	editing	to
text/binary	file	modification,	modification	of	environment	variables	and
system	reboots.	By	using	one	of	the	provided	plug-ins	you	can	even	call
the	Windows	API	directly.

Custom	dialogs	and	interfaces

You	can	create	custom	wizard	pages	to	get	user	input	or	integrate
configuration	options.	NSIS	includes	a	classic	and	modern	wizard
interface,	but	it	is	even	possible	to	create	your	own	custom	interface.

Plug-in	system

NSIS	can	be	extended	with	plug-ins	that	can	communicate	with	the
installer.	They	can	be	written	in	C,	C++,	Delphi	or	another	language	and
can	be	used	to	perform	installation	tasks	or	extend	the	installer	interface.
You	can	use	the	plug-in	with	a	single	line	of	script	code.	Plug-ins	are	also
be	compressed	like	other	installation	data	and	will	only	be	included	when
you	are	using	their	features.

Support	for	web	installation,	file	patching

The	NSIS	distribution	includes	a	set	of	plug-ins	that	allow	you	to
download	files	from	the	internet,	make	internet	connections,	patch
existing	files	and	more.

Project	integration,	different	releases	and	automatic	builds

The	NSIS	compiler	features	a	powerful	preprocessor.	This	allows	you	to
easily	integrate	multiple	projects	into	a	single	installer	or	automatically
generate	installer	builds.	You	can	also	generate	different	releases	such
as	lite	and	full	versions.

Easy	and	human	readable	file	formats

The	NSIS	script	format	and	the	format	used	for	interface	dialogs	are
easy,	documented	and	humanly	readable,	so	you	can	edit	your	files	with
your	favorite	editor.	This	also	makes	automatic	script	generation	possible.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

1.3	Feature	List
Generates	self	contained	executable	installers
Support	for	ZLIB,	BZIP2	and	LZMA	data	compression	(files	can	be
compressed	individually	or	together)
Uninstall	support	(installer	can	generate	an	uninstaller)
Customizable	user	interface	(dialogs,	fonts,	backgrounds,	icons,	text,
checkmarks,	images	etc.)
Classic	and	Modern	wizard	interface
Fully	multilingual,	support	for	multiple	languages	in	one	installer.
More	than	60	translations	are	available,	but	you	can	also	create	your
own.	Unicode	support	allowing	even	more	languages.
Page	system:	You	can	add	standard	wizard	pages	or	custom	pages
User	selection	of	installation	components,	tree	for	component
selection
Multiple	install	configurations	(usually	Minimal,	Typical,	Full),	and
custom	configuration
Installer	self-verification	using	a	CRC32	checksum
Small	overhead	over	compressed	data	size	(34	KB	with	default
options)
Ability	to	display	a	license	agreement	in	text	or	RTF	format
Ability	to	detect	destination	directory	from	the	registry
Easy	to	use	plug-in	system	(lots	of	plug-ins	for	creation	of	custom
dialogs,	internet	connections,	HTTP	downloading,	file	patching,
Win32	API	calls	etc.	are	included)
Installers	can	be	as	large	as	2GB
Optional	silent	mode	for	automated	installations
A	preprocessor	with	support	for	defined	symbols,	macro's,
conditional	compilation,	standard	predefines
A	lovely	coding	experience	with	elements	of	PHP	and	assembly
(includes	user	variables,	a	stack,	real	flow	control,	etc.)
Installers	have	their	own	VMs	that	let	you	write	code	that	can
support:

File	extraction	(with	configurable	overwrite	parameters)
File/directory	copying,	renaming,	deletion,	searching
Plug-in	DLL	calling

DLL/ActiveX	control	registration/deregistration
Executable	execution	(shell	execute	and	wait	options)
Shortcut	creation
Registry	key	reading/setting/enumerating/deleting
INI	file	reading/writing
Generic	text	file	reading/writing
Powerful	string	and	integer	manipulation
Window	finding	based	on	class	name	or	title
User	interface	manipulation	(font/text	setting)
Window	message	sending
User	interaction	with	message	boxes	or	custom	pages
Branching,	comparisons,	etc.
Error	checking
Reboot	support,	including	delete	or	rename	on	reboot
Installer	behaviour	commands	(such	as	show/hide/wait/etc)
User	functions	in	script
Callback	functions	for	user	actions

Completely	free	for	any	use.	See	license.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

1.4	Unicode	installers
Starting	with	NSIS	v3.0	you	can	choose	to	create	Unicode	installers	by
setting	the	Unicode	attribute.	These	installers	will	not	work	on	Windows
95/98/ME	but	they	will	allow	you	to	display	your	installer	in	any	Unicode
language	supported	by	the	OS.

When	building	a	Unicode	installer	NSIS	variables	can	hold	Unicode
characters	(0001-FFFF).	There	should	be	no	need	to	modify	your	existing
scripts.	If	you	want	to	read/write	Unicode	files,	specific	instructions	have
been	added	to	read/write	UTF-16LE	strings	from/to	disk.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.1	Introduction
Most	software	packages	you	download	or	buy	come	with	an	installer.	The
installer	copies	and/or	updates	files,	writes	registry	keys,	writes
configuration,	creates	shortcuts,	etc.	All	of	this	is	done	automatically	for
the	user.	All	the	user	needs	to	do	is	supply	some	information	and	the
installer	will	do	the	rest.	The	user	goes	through	a	wizard,	makes	the
appropriate	choices	and	waits	until	the	installer	finishes.	After	the	installer
has	finished	the	user	is	left	only	with	the	simple	task	of	starting	the
program.	The	user	doesn't	have	to	worry	about	things	he	might	have
forgotten	because	all	of	the	necessary	steps	were	done	by	the	installer.

NSIS	is	a	tool	for	developers	to	create	such	installers.	NSIS	allows	you	to
create	everything	from	basic	installers	that	just	copies	files	to	very
complex	installers	that	handle	a	lot	of	advanced	tasks	such	as	writing
registry	keys,	settings	environment	variables,	downloading	the	latest	files
from	the	internet,	customizing	configuration	files	and	more.	NSIS	is	very
flexible	and	its	scripting	language	is	easy	to	learn.

NSIS	compiles	all	of	the	files	and	the	installation	script	into	one
executable	file	so	your	application	will	be	easy	to	distribute.	NSIS	adds
only	about	34KB	of	code	of	its	own	(for	the	default	configuration)	to	the
data.	NSIS	boasts	the	smallest	overhead	available	while	still	providing	a
lot	of	options	thanks	to	its	powerful	scripting	language	and	support	of
external	plug-ins.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.2	Script	Files
To	create	a	NSIS	installer	you	first	have	to	write	a	NSIS	script.	A	NSIS
script	is	just	a	regular	text	file	with	a	special	syntax.	You	can	edit	scripts
with	any	text	editor.	It's	recommended	to	use	a	text	editor	that	shows	line
numbers	because	NSIS	uses	line	numbers	to	indicate	where	errors	lie,
and	to	warn	you	about	where	errors	might	lie.	An	editor	that	supports
syntax	highlighting	is	also	recommended.	You	can	download	editors
made	especially	for	NSIS	and	files	for	syntax	highlighting	from	the	NSIS
Wiki.

In	a	NSIS	script	every	line	is	treated	as	a	command.	If	your	command	is
too	long	for	one	line	you	can	use	a	back-slash	-	'\'	-	at	the	end	of	the	line.
The	compiler	will	treat	the	new	line	as	an	addition	to	the	previous	line	and
will	not	expect	a	new	command.	For	example:

Messagebox	MB_OK|MB_ICONINFORMATION	\
"This	is	a	sample	that	shows	how	to	use	line	breaks	for	larger	commands	in	NSIS	scripts"

If	you	want	to	use	a	double-quote	in	a	string	you	can	either	use	$\"	to
escape	the	quote	or	quote	the	string	with	a	different	type	of	quote	such
as	`	or	'.

For	more	details	about	the	script	format,	see	Script	File	Format.

The	default	extension	for	a	script	file	is	.nsi.	Header	files	have	the	.nsh
extension.	Header	files	can	help	you	arrange	your	script	by	dividing	it	to
more	than	one	block	of	code,	you	can	also	put	functions	or	macros	in
header	files	and	include	the	header	files	in	multiple	installers.	This	makes
updating	easier	and	it	also	makes	your	scripts	easier	to	read.	To	include
a	header	file	in	your	script	use	!include.	Header	files	that	reside	in	the
Include	directory	under	your	NSIS	directory	can	be	included	just	by	their
name.	For	example:

!include	Sections.nsh

Previous	|	Contents	|	Next

http://nsis.sf.net/

Previous	|	Contents	|	Next

2.3	Scripting	structure
A	NSIS	script	contains	Installer	Attributes,	Pages	and	Sections/Functions.
You	can	also	use	Compiler	Commands	for	compile-time	operations.	The
OutFile	instruction	is	required	and	tells	NSIS	where	to	write	the	installer,
you	also	need	at	least	one	section.

2.3.1	Installer	Attributes

Installer	Attributes	determine	the	behavior	and	the	look	and	feel	of	your
installer.	With	these	attributes	you	can	change	texts	that	will	be	shown
during	the	installation,	the	number	of	installation	types	etc.	Most	of	these
commands	can	only	be	set	and	are	not	changeable	during	runtime.

Other	basic	instructions	are	Name	and	InstallDir.

For	more	information	about	installer	attributes,	have	a	look	at	Installer
Attributes.

2.3.2	Pages

A	non-silent	installer	has	a	set	of	wizard	pages	to	let	the	user	configure
the	installer.	You	can	set	which	pages	to	display	using	the	Page
command	(or	PageEx	for	more	advanced	settings).	A	typical	set	of	pages
looks	like	this:

Page	license
Page	components
Page	directory
Page	instfiles
UninstPage	uninstConfirm
UninstPage	instfiles

For	the	installer,	this	typical	set	of	pages	will	display	a	license	agreement,
allow	selection	of	components	to	install,	allow	selection	of	an	installation
directory,	and	finally	install	the	selected	components	in	the	instfiles	page.
For	the	uninstaller,	it	will	display	a	confirmation	page,	and	uninstall	in	the

instfiles	page.

2.3.3	Sections

It's	common	for	installers	to	have	several	things	the	user	can	install.	For
example	in	the	NSIS	distribution	installer	you	can	choose	to	install
additional	tools,	plug-ins,	examples	and	more.	Each	of	these	components
has	its	own	piece	of	code.	If	the	user	selects	to	install	this	component
then	the	installer	will	execute	that	code.	In	the	script,	that	code	is	defined
in	sections.	Each	section	corresponds	to	one	component	on	the
components	page.	The	section's	name	is	the	displayed	component	name
and	the	section	code	will	be	executed	if	that	component	is	selected.	It	is
possible	to	build	your	installer	with	only	one	section	but	if	you	want	to	use
the	components	page	and	let	the	user	choose	what	to	install,	you'll	have
to	use	more	than	one	section.

Uninstallers	can	also	have	multiple	sections.	Uninstaller	section	names
are	prefixed	with	'un.'.	For	example:

Section	"Installer	Section"
SectionEnd

Section	"un.Uninstaller	Section"
SectionEnd

The	instructions	that	can	be	used	in	sections	are	very	different	from	the
installer	attributes	instructions,	they	are	executed	at	runtime	on	the	user's
computer.	Those	instructions	can	extract	files,	read	from	and	write	to	the
registry,	INI	files	or	normal	files,	create	directories,	create	shortcuts	and	a
lot	more.	You	can	find	out	more	in	Instructions.

The	most	basic	instructions	are	SetOutPath	which	tells	the	installer
where	to	extract	files	and	File	which	extracts	files.

Example:

Section	"My	Program"
		SetOutPath	$INSTDIR
		File	"My	Program.exe"

		File	"Readme.txt"
SectionEnd

For	more	information	about	sections	see	Sections.

2.3.4	Functions

Functions	can	contain	script	code,	just	like	sections.	The	difference
between	sections	and	functions	is	the	way	they	are	called.	There	are	two
types	of	functions,	user	functions	and	callback	functions.

User	functions	are	called	by	the	user	from	within	sections	or	other
functions	using	the	Call	instruction.	User	functions	will	not	execute	unless
you	call	them.	After	the	code	in	the	function	has	executed	the	installer	will
continue	executing	the	instructions	that	came	after	the	Call	instruction,
unless	you	have	aborted	the	installation	inside	the	function.	User
functions	are	very	useful	if	you	have	a	set	of	instructions	that	need	to	be
executed	at	several	locations	in	the	installers.	If	you	put	the	code	into	a
function	you	can	save	the	copying	time	and	you	can	maintain	the	code
more	easily.

Callback	functions	are	called	by	the	installer	upon	certain	defined	events
such	as	when	the	installer	starts.	Callbacks	are	optional.	If	for	example
you	want	to	welcome	the	user	to	your	installer	you	can	define	a	function
called	.onInit.	The	NSIS	compiler	will	recognize	this	function	as	a	callback
function	by	the	name	and	will	call	it	when	the	installer	starts.

Function	.onInit
		MessageBox	MB_YESNO	"This	will	install	My	Program.	Do	you	wish	to	continue?"	IDYES	gogogo
				Abort
		gogogo:
FunctionEnd

Abort	has	a	special	meaning	in	callback	functions.	Each	callback	function
has	its	own	meaning	for	it,	have	a	look	at	Callback	Functions	for	more
information.	In	the	above	example	Abort	tells	the	installer	to	stop
initializing	the	installer	and	quit	immediately.

For	more	information	about	functions	see	Functions.

2.3.5	Working	with	Scripts

2.3.5.1	Logical	Code	Structures

Conditionally	executing	code,	or	executing	code	in	a	loop	can	be	done
using	StrCmp,	IntCmp,	IfErrors,	Goto	and	more.	However,	there's	a	much
easier	way	do	this.	The	LogicLib	provides	some	very	simple	macros	that
allow	easy	construction	of	complex	logical	structures.	Its	syntax,
explained	in	LogicLib.nsh,	is	similar	to	other	programming	languages	and
can	prove	to	be	simpler	for	beginners	and	advanced	users	alike.

For	example,	checking	a	value	of	a	variable	without	the	LogicLib	can	be
done	as	follows.

StrCmp	$0	'some	value'	0	+3
		MessageBox	MB_OK	'$$0	is	some	value'
		Goto	done
StrCmp	$0	'some	other	value'	0	+3
		MessageBox	MB_OK	'$$0	is	some	other	value'
		Goto	done
#	else
		MessageBox	MB_OK	'$$0	is	"$0"'
done:

However,	with	the	LogicLib	the	code	is	much	more	readable	and	easy	to
understand,	as	can	be	seen	in	the	following	example.

${If}	$0	==	'some	value'
		MessageBox	MB_OK	'$$0	is	some	value'
${ElseIf}	$0	==	'some	other	value'
		MessageBox	MB_OK	'$$0	is	some	other	value'
${Else}
		MessageBox	MB_OK	'$$0	is	"$0"'
${EndIf}

The	same	can	also	be	done	using	a	switch,	as	shown	in	the	following
example.

${Switch}	$0
		${Case}	'some	value'
				MessageBox	MB_OK	'$$0	is	some	value'
				${Break}
		${Case}	'some	other	value'
				MessageBox	MB_OK	'$$0	is	some	other	value'
				${Break}
		${Default}
				MessageBox	MB_OK	'$$0	is	"$0"'
				${Break}
${EndSwitch}

Multiple	conditions	are	also	supported.	The	following	example	will	notify
the	user,	if	both	$0	and	$1	are	empty.

${If}	$0	==	''
${AndIf}	$1	==	''
		MessageBox	MB_OK|MB_ICONSTOP	'both	are	empty!'
${EndIf}

The	LogicLib	removes	the	need	for	labels	and	relative	jumps,	thus
prevents	label	name	conflicts,	and	removes	the	need	to	manually	adjust
relative	jump	offsets	every	time	the	script	is	changed.

It	also	simplifies	looping	by	supporting	the	common	while,	do	and	for
loops.	All	of	the	following	examples	count	to	five	using	the	LogicLib.

StrCpy	$R1	0
${While}	$R1	<	5
		IntOp	$R1	$R1	+	1
		DetailPrint	$R1
${EndWhile}

${For}	$R1	1	5
		DetailPrint	$R1
${Next}

StrCpy	$R1	0

${Do}
		IntOp	$R1	$R1	+	1
		DetailPrint	$R1
${LoopUntil}	$R1	>=	5

To	use	the	LogicLib	the	following	line	needs	to	be	added	near	the	top	of
the	script.

!include	LogicLib.nsh

More	examples	can	be	found	in	LogicLib.nsi.

2.3.5.2	Variables

You	can	declare	your	own	variables	($VARNAME)	with	the	Var
command.	Variables	are	global	and	can	be	used	in	any	Section	or
Function.

Declaring	and	using	a	user	variable:

Var	BLA	;Declare	the	variable

Section	bla

		StrCpy	$BLA	"123"	;Now	you	can	use	the	variable	$BLA

SectionEnd

In	addition	there	is	a	stack,	which	can	also	be	used	for	temporary
storage.	To	access	the	stack	use	the	commands	Push	and	Pop.	Push
adds	a	value	to	the	stack,	Pop	removes	one	and	sets	the	variable.

For	shared	code,	there	are	20	registers	available	(like	$0	and	$R0).
These	static	variables	don't	have	to	be	declared	and	you	won't	get	any
name	conflicts.	If	you	want	to	use	these	variables	in	shared	code,	store
the	original	values	on	the	stack	and	restore	the	original	values
afterwards.

After	calling	the	function,	the	variables	contain	the	same	value	as	before.
Note	the	order	when	using	multiple	variables	(last-in	first-out):

Function	bla

		Push	$R0
		Push	$R1

				...code...

		Pop	$R1
		Pop	$R0

FunctionEnd

2.3.5.3	Debugging	Scripts

The	more	you	work	with	NSIS	the	more	complex	the	scripts	will	become.
This	will	increase	the	potential	of	mistakes,	especially	when	dealing	with
lots	of	variables.	There	are	a	few	possibilities	to	help	you	debugging	the
code.	To	display	the	contents	of	variables	you	should	use	MessageBoxes
or	DetailPrint.	To	get	a	brief	overview	about	all	variables	you	should	use
the	plug-in	DumpState.	By	default	all	actions	of	the	Installer	are	printed
out	in	the	Log	Window.	You	can	access	the	log	if	you	right-click	in	the	Log
Window	and	select	"Copy	Details	To	Clipboard".	There	is	also	a	way	to
write	it	directly	to	a	file,	see	here.

2.3.6	Script	Execution

When	a	user	runs	an	installer	or	uninstaller,	pages	are	displayed	in	the
order	they	were	defined	in	the	script.	When	the	instfiles	page	is	reached,
sections,	corresponding	to	the	selected	components,	are	executed	in	the
order	they	were	defined	in	the	script.	If	the	components	page	is	not
displayed,	all	sections	are	executed,	assuming	they	were	not	unselected
or	somehow	disabled	by	the	script.

Beside	code	in	sections,	there's	also	code	in	callback	functions.	If

http://nsis.sourceforge.net/DumpState

defined,	they	might	be	executed	before	the	sections	code.	For	example,
the	.onInit	callback	function	is	executed	before	anything	else	in	the	script.
There	are	also	page	callback	functions	which	are	executed	at	certain
points	of	the	page	display	process.

2.3.7	Compiler	Commands

Compiler	commands	will	be	executed	at	compile	time	on	your	computer.
They	can	be	used	for	conditional	compilation,	to	include	header	files,	to
execute	applications,	to	change	the	working	directory	and	more.	The
most	common	usage	is	defines.	Defines	are	compile	time	constants.	You
can	define	your	product's	version	number	and	use	it	in	your	script.	For
example:

!define	VERSION	"1.0.3"
Name	"My	Program	${VERSION}"
OutFile	"My	Program	Installer	-	${VERSION}.exe"

For	more	information	about	defines	see	Conditional	Compilation.

Another	common	use	is	macros.	Macros	are	used	to	insert	code	at
compile	time,	depending	on	defines	and	using	the	values	of	the	defines.
The	macro's	commands	are	inserted	at	compile	time.	This	allows	you	to
write	a	general	code	only	once	and	use	it	a	lot	of	times	but	with	a	few
changes.	For	example:

!macro	MyFunc	UN
Function	${UN}MyFunc
		Call	${UN}DoRegStuff
		ReadRegStr	$0	HKLM	Software\MyProgram	key
		DetailPrint	$0
FunctionEnd
!macroend

!insertmacro	MyFunc	""
!insertmacro	MyFunc	"un."

This	macro	helps	you	avoid	writing	the	same	code	for	both	the	installer

and	the	uninstaller.	The	two	!insertmacros	insert	two	functions,	one	for
the	installer	called	MyFunc	and	one	for	the	uninstaller	called	un.MyFunc
and	both	do	exactly	the	same	thing.

For	more	information	see	Compile	Time	Commands.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.4	Compiler
The	second	thing	you	need	to	do	in	order	to	create	your	installer	after	you
have	created	your	script	is	to	compile	your	script.	MakeNSIS.exe	is	the
NSIS	compiler.	It	reads	your	script,	parses	it	and	creates	an	installer	for
you.

To	compile	you	can	right-click	your	.nsi	file	and	select	Compile	NSIS
Script.	This	will	cause	MakeNSISW,	the	NSIS	Compiler	Interface,	to
launch	and	call	MakeNSIS	to	compile	your	script.	MakeNSISW	receives
the	output	of	MakeNSIS	and	presents	it	to	you	in	a	window	where	you
can	see	it,	copy	it,	test	the	installer	and	more.	Using	makensis.exe	from
the	command	prompt	is	also	possible.

The	compiler	will	check	your	script	and	give	you	warnings	or	an	error.	If
an	error	occurs	(i.e.	2	parameters	required	but	only	1	given)	the	compiler
will	abort	and	a	short	error	message	including	the	line	number	will	be
displayed.	For	non-critical	errors	the	compiler	will	give	a	warning	(i.e.	two
DirText	commands	in	one	script).	If	your	script	has	no	errors	the	compiler
will	output	an	installer	for	you	to	distribute.

NSIS	supports	different	compression	methods,	as	explained	here.	ZLIB	is
the	default	compression	method,	which	is	fast	and	uses	only	a	little	bit	of
memory.	LZMA	is	a	good	method	for	the	creation	of	small	installers	for
internet	distribution.	BZIP2	usually	compresses	better	than	ZLIB	but	not
as	good	as	LZMA,	it	is	useful	if	you	need	lower	memory	usage	or	fast
script	compilation.

It	is	also	possible	to	compile	Windows	installers	on	Linux,	BSD	or	Mac
OS	X	servers.	See	Building	NSIS	for	details.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.5	Modern	UI
A	popular	user	interface	for	NSIS	is	the	Modern	User	Interface.	It	has	an
interface	like	the	wizards	of	recent	Windows	versions.	The	Modern	UI	is
not	only	a	customized	resource	file,	it	has	a	lots	of	new	interface
elements.	It	features	a	white	header	to	describe	the	current	step,	a
description	area	on	the	component	page,	a	welcome	page,	a	finish	page
that	allows	the	user	to	run	the	application	or	reboot	the	system	and	more.

For	more	information,	see	the	Modern	UI	2	Readme	and	the	Modern	UI
Examples.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.6	Plug-ins
NSIS	support	plug-ins	that	can	be	called	from	the	script.	Plug-ins	are	DLL
files	written	in	C,	C++,	Delphi	or	another	programming	language	and
therefore	provide	a	more	powerful	code	base	to	NSIS.

A	plug-in	call	looks	like	this:

DLLName::FunctionName	"parameter	number	1"	"parameter	number	2"	"parameter	number	3"

Every	plug-in's	function	has	its	own	requirements	when	it	comes	to
parameters,	some	will	require	none,	some	will	accept	as	many
parameters	as	you	want	to	send.	Examples:

nsExec::ExecToLog	'"${NSISDIR}\makensis.exe"	/CMDHELP'
Pop	$0	;	Process	exit	code	or	"error"
InstallOptions::dialog	"$PLUGINSDIR\test.ini"
Pop	$0	;	success/back/cancel/error
NSISdl::download	http://download.nullsoft.com/winamp/client/winamp291_lite.exe	$R0
Pop	$0	;	"success"	or	a	error	code

The	plug-ins	that	NSIS	knows	of	are	listed	at	the	top	of	the	compiler
output	(verbose	level	4).	NSIS	searches	for	plug-ins	in	the	Plugins	folder
under	your	NSIS	directory	and	lists	all	of	their	available	functions.	You
can	use	!addplugindir	to	tell	NSIS	to	search	in	other	directories	too.

The	NSIS	distribution	already	includes	many	plug-ins.	InstallOptions	is	a
popular	plug-in	that	allows	you	to	create	custom	pages,	in	combination
with	the	NSIS	Page	commands	(See	Pages).	The	Startmenu	plug-in
provides	a	page	that	allows	the	user	to	choose	a	Start	Menu	folder.	There
are	a	lot	of	plug-ins	for	different	purposes,	take	a	look	in	the	Docs	folder
for	help	files	and	examples.	You	can	find	additional	plug-ins	online:	NSIS
Wiki.

You	can	also	create	a	plug-in	yourself.	C/C++	and	Delphi	header	files	are
already	available,	see	the	example	plugin	for	how	to	do	this.	Source	code
of	included	plug-ins	can	also	be	found	in	the	source	code	package.

http://nsis.sf.net/

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

2.7	More
This	tutorial	has	described	the	basic	NSIS	features,	to	learn	more	about
everything	NSIS	can	do,	take	some	time	to	read	the	rest	of	this	manual.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

3.1	MakeNSIS	Usage
NSIS	installers	are	generated	by	using	the	'MakeNSIS'	program	to
compile	a	NSIS	script	(.NSI)	into	an	installer	executable.	The	NSIS
development	kit	installer	sets	up	your	computer	so	that	you	can	compile	a
.nsi	file	by	simply	right-clicking	on	it	in	Explorer	and	selecting	'compile'.

If	you	want	to	use	MakeNSIS	on	the	command	line,	the	syntax	of
makensis	is:

makensis	[option	|	script.nsi	|	-]	[...]

3.1.1	Options

/LICENSE	displays	license	information.
The	/V	switch	followed	by	a	number	between	0	and	4	will	set	the
verbosity	of	output	accordingly.	0=no	output,	1=errors	only,
2=warnings	and	errors,	3=info,	warnings,	and	errors,	4=all	output.
The	/P	switch	followed	by	a	number	between	0	and	5	will	set	the
priority	of	the	compiler	process	accordingly.	0=idle,	1=below	normal,
2=normal	(default),	3=above	normal,	4=high,	5=realtime.
The	/O	switch	followed	by	a	filename	tells	the	compiler	to	print	its	log
to	that	file	(instead	of	the	screen)
/PAUSE	makes	makensis	pause	before	quitting,	which	is	useful
when	executing	directly	from	Windows.
/NOCONFIG	disables	inclusion	of	nsisconf.nsh.	Without	this
parameter,	installer	defaults	are	set	from	nsisconf.nsh.
/CMDHELP	prints	basic	usage	information	for	command	(if
specified),	or	all	commands	(if	command	is	not	specified).
/HDRINFO	prints	information	about	which	options	were	used	to
compile	makensis.
/NOCD	disables	the	current	directory	change	to	that	of	the	.nsi	file
/INPUTCHARSET	allows	you	to	specify	a	specific	codepage	for	files
without	a	BOM.	(ACP|OEM|CP#|UTF8|UTF16<LE|BE>)
/OUTPUTCHARSET	allows	you	to	specify	the	codepage	used	by
stdout	when	the	output	is	redirected.
(ACP|OEM|CP#|UTF8[SIG]|UTF16<LE|BE>[BOM])

/PPO	or	/SAFEPPO	will	only	run	the	preprocessor	and	print	the
result	to	stdout.	The	safe	version	will	not	execute	instructions	like
!appendfile	or	!system.	!packhdr	and	!finalize	are	never	executed.
/WX	treats	warnings	as	errors
Using	the	/D	switch	one	or	more	times	will	add	to	symbols	to	the
globally	defined	list	(See	!define).
Using	the	/X	switch	one	or	more	times	will	execute	the	code	you
specify	following	it.	Example:	"/XAutoCloseWindow	false"
Specifying	a	dash	(-)	for	the	script	name	will	tell	makensis	to	use	the
standard	input	as	a	source.

3.1.2	Notes

Parameters	are	processed	in	order.	makensis	/Ddef	script.nsi	is
not	the	same	as	makensis	script.nsi	/Ddef.
If	multiple	scripts	are	specified,	they	are	treated	as	one	concatenated
script.

3.1.3	Environment	variables

makensis	checks	a	number	of	environment	variables	that	tell	it	where	to
locate	the	things	it	needs	in	order	to	create	installers.	These	variables
include:

NSISDIR,	NSISCONFDIR	-	Places	where	nsis	data	and	config	files
are	installed.	NSISDIR	alters	the	script	variable	${NSISDIR}.	See
section	4.2.3	for	more	info.
APPDATA	(on	Windows)	or	HOME	(on	other	platforms)	-	Location	of
the	per-user	configuration	file.

3.1.4	Examples

Basic	usage:

makensis.exe	myscript.nsi

Quiet	mode:

makensis.exe	/V1	myscript.nsi

Force	compressor:

makensis.exe	/X"SetCompressor	/FINAL	lzma"	myscript.nsi

Change	script	behavior:

makensis.exe	/DUSE_UPX	/DVERSION=1.337	/DNO_IMAGES	myscript.nsi

Parameters	order:

makensis	/XSection	sectioncontents.nsi	/XSectionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

3.2	Installer	Usage
Generated	installers	and	uninstallers	accept	a	few	options	on	the
command	line.	These	options	give	the	user	a	bit	more	control	over	the
installation	process.

3.2.1	Common	Options

/NCRC	disables	the	CRC	check,	unless	CRCCheck	force	was	used	in
the	script.
/S	runs	the	installer	or	uninstaller	silently.	See	section	4.12	for	more
information.
/D	sets	the	default	installation	directory	($INSTDIR),	overriding
InstallDir	and	InstallDirRegKey.	It	must	be	the	last	parameter	used	in
the	command	line	and	must	not	contain	any	quotes,	even	if	the	path
contains	spaces.	Only	absolute	paths	are	supported.

3.2.2	Uninstaller	Specific	Options

_?=	sets	$INSTDIR.	It	also	stops	the	uninstaller	from	copying	itself	to
the	temporary	directory	and	running	from	there.	It	can	be	used	along
with	ExecWait	to	wait	for	the	uninstaller	to	finish.	It	must	be	the	last
parameter	used	in	the	command	line	and	must	not	contain	any
quotes,	even	if	the	path	contains	spaces.

3.2.3	Examples

installer.exe	/NCRC

installer.exe	/S

installer.exe	/D=C:\Program	Files\NSIS

installer.exe	/NCRC	/S	/D=C:\Program	Files\NSIS

uninstaller.exe	/S	_?=C:\Program	Files\NSIS

#	uninstall	old	version
ExecWait	'"$INSTDIR\uninstaller.exe"	/S	_?=$INSTDIR'

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.1	Script	File	Format
A	NSIS	Script	File	(.nsi)	is	just	a	text	file	with	script	code.

Commands

Commands	lines	are	in	the	format	'command	[parameters]'

File	"myfile"

Comments

Lines	beginning	with	;	or	#	are	comments.	You	can	put	comments	after
commands.	You	can	also	use	C-style	comments	to	comment	one	or	more
lines.

;	Comment
#	Comment

#	Comment	\
				Another	comment	line	(see	`Long	commands`	section	below)

/*
Comment
Comment
*/

Name	/*	comment	*/	mysetup

File	"myfile"	;	Comment

If	you	want	a	parameter	to	start	with	;	or	#	put	it	in	quotes.

Plug-ins

To	call	a	plug-in,	use	'plugin::command	[parameters]'.	For	more	info	see
Plug-in	DLLs.

nsExec::Exec	"myfile"

Numbers

For	parameters	that	are	treated	as	numbers,	use	decimal	(the	number)	or
hexadecimal	(with	0x	prepended	to	it,	i.e.	0x12345AB),	or	octal	(numbers
beginning	with	a	0	and	no	x).

Colors	should	be	set	in	hexadecimal	RGB	format,	like	HTML	but	without
the	#.

IntCmp	1	0x1	lbl_equal

SetCtlColors	$HWND	CCCCCC

Strings

To	represent	strings	that	have	spaces,	use	quotes:

MessageBox	MB_OK	"Hi	there!"

Quotes	only	have	the	property	of	containing	a	parameter	if	they	surround
the	rest	of	the	parameter.	They	can	be	either	single	quotes,	double
quotes,	or	the	backward	single	quote.

You	can	escape	quotes	using	$\:

MessageBox	MB_OK	"I'll	be	happy"	;	this	one	puts	a	'	inside	a	string
MessageBox	MB_OK	'And	he	said	to	me	"Hi	there!"'	;	this	one	puts	a	"	inside	a	string
MessageBox	MB_OK	`And	he	said	to	me	"I'll	be	happy!"`	;	this	one	puts	both	'	and	"s	inside	a	string
MessageBox	MB_OK	"$\"A	quote	from	a	wise	man$\"	said	the	wise	man"	;	this	one	shows	escaping	of	quotes

It	is	also	possible	to	put	newlines,	tabs	etc.	in	a	string	using	$\r,	$\n,	$\t
etc.	More	information...

Variables

Variables	start	with	$.	User	variables	must	be	declared.

Var	MYVAR

StrCpy	$MYVAR	"myvalue"

More	information...

Long	commands

To	extend	a	command	over	multiple	lines,	use	a	backslash	(\)	at	the	end
of	the	line.	The	next	line	will	effectively	be	concatenated	to	the	end	of	it.
For	example:

CreateShortcut	"$SMPROGRAMS\NSIS\ZIP2EXE	project	workspace.lnk"	\
				"$INSTDIR\source\zip2exe\zip2exe.dsw"

MessageBox	MB_YESNO|MB_ICONQUESTION	\
				"Do	you	want	to	remove	all	files	in	the	folder?	\
				(If	you	have	anything	you	created	that	you	want	\
					to	keep,	click	No)"	\
				IDNO	NoRemoveLabel

Line	extension	for	long	commands	works	for	comments	as	well.	It	can	be
a	bit	confusing,	so	it	should	be	avoided.

#	A	comment	\
				still	a	comment	here...

Configuration	file

If	a	file	named	"nsisconf.nsh"	in	the	config	directory	exists,	it	will	be
included	by	default	before	any	scripts	(unless	the	/NOCONFIG	command
line	parameter	is	used).	The	config	directory	on	Windows	is	the	same
directory	as	makensis.exe	is	in.	On	other	platforms	this	is	set	at	install
time	and	defaults	to	$PREFIX/etc/.	You	can	alter	this	at	runtime,	see
section	3.1.3	for	more	information.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.2	Variables
All	variables	are	global	and	can	be	used	in	Sections	or	Functions.	Note
that	by	default,	variables	are	limited	to	1024	characters.	To	extend	this
limit,	build	NSIS	with	a	bigger	value	of	the	NSIS_MAX_STRLEN	build
setting	or	use	the	special	build.

4.2.1	User	Variables

$VARNAME

User	variables	must	be	declared	with	the	Var	command.	You	can	use
these	variables	to	store	values,	work	with	string	manipulation	etc.

4.2.1.1	Var

[/GLOBAL]	var_name

Declare	a	user	variable.	Allowed	characters	for	variables	names:	[a-z][A-
Z][0-9]	and	'_'.	All	defined	variables	are	global,	even	if	defined	in	a
section	or	a	function.	To	make	this	clear,	variables	defined	in	a	section	or
a	function	must	use	the	/GLOBAL	flag.	The	/GLOBAL	flag	is	not	required
outside	of	sections	and	functions.

Var	example

Function	testVar
		Var	/GLOBAL	example2

		StrCpy	$example	"example	value"
		StrCpy	$example2	"another	example	value"
FunctionEnd

4.2.2	Other	Writable	Variables

$0,	$1,	$2,	$3,	$4,	$5,	$6,	$7,	$8,	$9,	$R0,	$R1,	$R2,	$R3,	$R4,	$R5,

http://nsis.sourceforge.net/download/specialbuilds/

$R6,	$R7,	$R8,	$R9

Registers.	These	variables	can	be	used	just	like	user	variables,	but	are
usually	used	in	shared	functions	or	macros.	You	don't	have	to	declare
these	variables	so	you	won't	get	any	name	conflicts	when	using	them	in
shared	code.	When	using	these	variables	in	shared	code	it's
recommended	that	you	use	the	stack	to	save	and	restore	their	original
values.	These	variables	can	also	be	used	for	communication	with	plug-
ins	because	they	can	be	read	and	written	by	the	plug-in	DLLs.

$INSTDIR

The	installation	directory	($INSTDIR	is	modifiable	using	StrCpy,
ReadRegStr,	ReadINIStr,	etc.	-	This	could	be	used,	for	example,	in	the
.onInit	function	to	do	a	more	advanced	detection	of	install	location).

Note	that	in	uninstaller	code,	$INSTDIR	contains	the	directory	where	the
uninstaller	lies.	It	does	not	necessarily	contain	the	same	value	it
contained	in	the	installer.	For	example,	if	you	write	the	uninstaller	to
$WINDIR	and	the	user	doesn't	move	it,	$INSTDIR	will	be	$WINDIR	in	the
uninstaller.	If	you	write	the	uninstaller	to	another	location,	you	should
keep	the	installer's	$INSTDIR	in	the	registry	or	an	alternative	storing
facility	and	read	it	in	the	uninstaller.

$OUTDIR

The	current	output	directory	(set	implicitly	via	SetOutPath	or	explicitly	via
StrCpy,	ReadRegStr,	ReadINIStr,	etc)

$CMDLINE

The	command	line	of	the	installer.	The	format	of	the	command	line	can
be	one	of	the	following:

"full\path	to\installer.exe"	PARAMETER	PARAMETER	PARAMETER
installer.exe	PARAMETER	PARAMETER	PARAMETER
For	parsing	out	the	PARAMETER	portion,	see	GetParameters.	If	/D=
is	specified	on	the	command	line	(to	override	the	install	directory)	it
won't	show	up	in	$CMDLINE.

$LANGUAGE

The	identifier	of	the	language	that	is	currently	used.	For	example,	English
is	1033.	You	can	only	change	this	variable	in	.onInit.

4.2.3	Constants

Constants	can	also	be	used	in	the	InstallDir	attribute.

Note	that	some	of	the	new	constants	will	not	work	on	every	OS.	For
example,	$CDBURN_AREA	will	only	work	on	Windows	XP	and	above.	If
it's	used	on	Windows	98,	it'll	be	empty.	Unless	mentioned	otherwise,	a
constant	should	be	available	on	every	OS.

$PROGRAMFILES,	$PROGRAMFILES32,	$PROGRAMFILES64

The	program	files	directory	(usually	C:\Program	Files	but	detected	at
runtime).	On	Windows	x64,	$PROGRAMFILES	and
$PROGRAMFILES32	point	to	C:\Program	Files	(x86)	while
$PROGRAMFILES64	points	to	C:\Program	Files.	Use
$PROGRAMFILES64	when	installing	x64	applications.

$COMMONFILES,	$COMMONFILES32,	$COMMONFILES64

The	common	files	directory.	This	is	a	directory	for	components	that	are
shared	across	applications	(usually	C:\Program	Files\Common	Files	but
detected	at	runtime).	On	Windows	x64,	$COMMONFILES	and
$COMMONFILES32	point	to	C:\Program	Files	(x86)\Common	Files	while
$COMMONFILES64	points	to	C:\Program	Files\Common	Files.	Use
$COMMONFILES64	when	installing	x64	applications.

$DESKTOP

The	Windows	desktop	directory.	The	context	of	this	constant	(All	Users	or
Current	user)	depends	on	the	SetShellVarContext	setting.	The	default	is
the	current	user.

$EXEDIR

The	directory	containing	the	installer	executable	(technically	this	is	a

variable	and	you	can	modify	it,	but	it	is	probably	not	a	good	idea).

$EXEFILE

The	base	name	of	the	installer	executable.

$EXEPATH

The	full	path	of	the	installer	executable.

${NSISDIR}

A	symbol	that	contains	the	path	where	NSIS	is	installed.	Useful	if	you
want	to	reference	resources	that	are	in	NSIS	directory	e.g.	Icons,	UIs	etc.

When	compiled	with	support	for	keeping	makensis	and	the	data	in	the
same	place	(the	default	on	Windows),	it	is	in	the	same	place	as
makensis,	on	other	platforms	it	is	set	at	compile	time	(See	the	INSTALL
file	for	info).	In	both	instances	you	can	modify	it	at	runtime	by	setting	the
NSISDIR	environment	variable.	See	section	3.1.3	for	more	info.

$WINDIR

The	Windows	directory	(usually	C:\Windows	or	C:\WinNT	but	detected	at
runtime).

$SYSDIR

The	Windows	system	directory	(usually	C:\Windows\System	or
C:\WinNT\System32	but	detected	at	runtime).

$TEMP

The	temporary	directory.

$STARTMENU

The	start	menu	folder	(useful	for	adding	start	menu	items	using
CreateShortcut).	The	context	of	this	constant	(All	Users	or	Current	user)
depends	on	the	SetShellVarContext	setting.	The	default	is	the	current
user.

$SMPROGRAMS

The	start	menu	programs	folder	(use	this	whenever	you	want
$STARTMENU\Programs).	The	context	of	this	constant	(All	Users	or
Current	user)	depends	on	the	SetShellVarContext	setting.	The	default	is
the	current	user.

$SMSTARTUP

The	start	menu	programs	/	startup	folder.	The	context	of	this	constant	(All
Users	or	Current	user)	depends	on	the	SetShellVarContext	setting.	The
default	is	the	current	user.

$QUICKLAUNCH

The	quick	launch	folder	for	IE4	active	desktop	and	above.	If	quick	launch
is	not	available	it	simply	returns	the	same	as	$TEMP.

$DOCUMENTS

The	documents	directory.	A	typical	path	for	the	current	user	is
C:\Documents	and	Settings\Foo\My	Documents.	The	context	of	this
constant	(All	Users	or	Current	user)	depends	on	the	SetShellVarContext
setting.	The	default	is	the	current	user.

This	constant	is	not	available	on	Windows	95	unless	Internet	Explorer	4
is	installed.

$SENDTO

The	directory	that	contains	Send	To	menu	shortcut	items.

$RECENT

The	directory	that	contains	shortcuts	to	the	user's	recently	used
documents.

$FAVORITES

The	directory	that	contains	shortcuts	to	the	user's	favorite	websites,

documents,	etc.	The	context	of	this	constant	(All	Users	or	Current	user)
depends	on	the	SetShellVarContext	setting.	The	default	is	the	current
user.

This	constant	is	not	available	on	Windows	95	unless	Internet	Explorer	4
is	installed.

$MUSIC

The	user's	music	files	directory.	The	context	of	this	constant	(All	Users	or
Current	user)	depends	on	the	SetShellVarContext	setting.	The	default	is
the	current	user.

This	constant	is	available	on	Windows	XP,	ME	and	above.

$PICTURES

The	user's	picture	files	directory.	The	context	of	this	constant	(All	Users
or	Current	user)	depends	on	the	SetShellVarContext	setting.	The	default
is	the	current	user.

This	constant	is	available	on	Windows	2000,	XP,	ME	and	above.

$VIDEOS

The	user's	video	files	directory.	The	context	of	this	constant	(All	Users	or
Current	user)	depends	on	the	SetShellVarContext	setting.	The	default	is
the	current	user.

This	constant	is	available	on	Windows	XP,	ME	and	above.

$NETHOOD

The	directory	that	contains	link	objects	that	may	exist	in	the	My	Network
Places/Network	Neighborhood	folder.

This	constant	is	not	available	on	Windows	95	unless	Internet	Explorer	4
with	Active	Desktop	is	installed.

$FONTS

The	system's	fonts	directory.

$TEMPLATES

The	document	templates	directory.	The	context	of	this	constant	(All	Users
or	Current	user)	depends	on	the	SetShellVarContext	setting.	The	default
is	the	current	user.

$APPDATA

The	application	data	directory.	Detection	of	the	current	user	path	requires
Internet	Explorer	4	and	above.	Detection	of	the	all	users	path	requires
Internet	Explorer	5	and	above.	The	context	of	this	constant	(All	Users	or
Current	user)	depends	on	the	SetShellVarContext	setting.	The	default	is
the	current	user.

This	constant	is	not	available	on	Windows	95	unless	Internet	Explorer	4
with	Active	Desktop	is	installed.

$LOCALAPPDATA

The	local	(non-roaming)	application	data	directory.	The	context	of	this
constant	(All	Users	or	Current	user)	depends	on	the	SetShellVarContext
setting.	The	default	is	the	current	user.

This	constant	is	available	on	Windows	ME,	2000	and	above.

$PRINTHOOD

The	directory	that	contains	link	objects	that	may	exist	in	the	Printers
folder.

This	constant	is	not	available	on	Windows	95	and	Windows	98.

$INTERNET_CACHE

Internet	Explorer's	temporary	internet	files	directory.

This	constant	is	not	available	on	Windows	95	nor	Windows	NT	4	unless
Internet	Explorer	4	with	Active	Desktop	is	installed.

$COOKIES

Internet	Explorer's	cookies	directory.

This	constant	is	not	available	on	Windows	95	nor	Windows	NT	4	unless
Internet	Explorer	4	with	Active	Desktop	is	installed.

$HISTORY

Internet	Explorer's	history	directory.

This	constant	is	not	available	on	Windows	95	nor	Windows	NT	4	unless
Internet	Explorer	4	with	Active	Desktop	is	installed.

$PROFILE

The	user's	profile	directory.	A	typical	path	is	C:\Documents	and
Settings\Foo.

This	constant	is	available	on	Windows	2000	and	above.

$ADMINTOOLS

A	directory	where	administrative	tools	are	kept.	The	context	of	this
constant	(All	Users	or	Current	user)	depends	on	the	SetShellVarContext
setting.	The	default	is	the	current	user.

This	constant	is	available	on	Windows	2000,	ME	and	above.

$RESOURCES

The	resources	directory	that	stores	themes	and	other	Windows	resources
(usually	$WINDIR\Resources	but	detected	at	runtime).

This	constant	is	available	on	Windows	XP	and	above.

$RESOURCES_LOCALIZED

The	localized	resources	directory	that	stores	themes	and	other	Windows
resources	(usually	$WINDIR\Resources\1033	but	detected	at	runtime).

This	constant	is	available	on	Windows	XP	and	above.

$CDBURN_AREA

A	directory	where	files	awaiting	to	be	burned	to	CD	are	stored.

This	constant	is	available	on	Windows	XP	and	above.

$HWNDPARENT

HWND	of	the	main	window	(in	decimal).

$PLUGINSDIR

The	path	to	a	temporary	folder	created	upon	the	first	usage	of	a	plug-in	or
a	call	to	InitPluginsDir.	This	folder	is	automatically	deleted	when	the
installer	exits.	This	makes	this	folder	the	ideal	folder	to	hold	INI	files	for
InstallOptions,	bitmaps	for	the	splash	plug-in,	or	any	other	file	that	a	plug-
in	needs	to	work.

4.2.4	Constants	Used	in	Strings

$$

Use	to	represent	$.

$\r

Use	to	represent	a	carriage	return	(\r).

$\n

Use	to	represent	a	newline	(\n).

$\t

Use	to	represent	a	tab	(\t).

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.3	Labels
Labels	are	the	targets	of	Goto	instructions	and	the	various	branching
instructions	(such	as	IfErrors,	MessageBox,	IfFileExists,	and	StrCmp).
Labels	must	be	within	a	Section	or	a	Function.	Labels	are	local	in	scope,
meaning	they	are	only	accessible	from	within	the	Section	or	Function	that
they	reside	in.	To	declare	a	label,	simply	use:

MyLabel:

Labels	cannot	begin	with	a	-,	+,	!,	$,	or	0-9.	When	specifying	labels	for
the	various	instructions	that	require	them,	remember	that	both	an	empty
string	("")	and	0	both	represent	the	next	instruction	(meaning	no	Goto	will
occur).	Labels	beginning	with	a	period	(.)	are	global,	meaning	you	can
jump	to	them	from	any	function	or	section	(though	you	cannot	jump	to	an
uninstall	global	label	from	the	installer,	and	vice	versa).

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.4	Relative	Jumps
Unlike	labels,	relative	jumps	are,	as	the	name	suggests,	relative	to	the
place	they	are	called	from.	You	can	use	relative	jumps	wherever	you	can
use	labels.	Relative	jumps	are	marked	by	numbers.	+1	jumps	to	the	next
instruction	(the	default	advancement),	+2	will	skip	one	instruction	and	go
to	the	second	instruction	from	the	current	instruction,	-2	will	jump	two
instructions	backward,	and	+10	will	skip	9	instructions,	jumping	to	the
tenth	instruction	from	the	current	instruction.

A	instruction	is	every	command	that	is	executed	at	run-time,	when	the
installer	is	running.	MessageBox,	Goto,	GetDLLVersion,	FileRead,
SetShellVarContext	are	all	instructions.	AddSize,	Section,	SectionGroup,
SectionEnd,	SetOverwrite	(and	everything	under	Compiler	Flags),	Name,
SetFont,	LangString,	are	not	instructions	because	they	are	executed	at
compile	time.

Examples:

	Goto	+2
			MessageBox	MB_OK	"You	will	never	ever	see	this	message	box"
	MessageBox	MB_OK	"The	last	message	was	skipped,	this	one	should	be	shown"

	Goto	+4
	MessageBox	MB_OK	"The	following	message	will	be	skipped"
	Goto	+3
	MessageBox	MB_OK	"You	will	never	ever	see	this	message	box"
	Goto	-3
	MessageBox	MB_OK	"Done"

Note	that	macro	insertion	is	not	considered	as	one	instruction	when	it
comes	to	relative	jumps.	The	macro	is	expanded	before	relative	jumps
are	applied,	and	so	relative	jumps	can	jump	into	code	inside	an	inserted
macro.	The	following	code,	for	example,	will	not	skip	the	macro.	It	will
show	a	message	box.

!macro	relative_jump_test

		MessageBox	MB_OK	"first	macro	line"
		MessageBox	MB_OK	"second	macro	line"
!macroend

Goto	+2
!insertmacro	relative_jump_test

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.5	Pages
Each	(non-silent)	NSIS	installer	has	a	set	of	pages.	Each	page	can	be	a
NSIS	built-in	page	or	a	custom	page	created	by	a	user's	function	(with
nsDialogs	or	InstallOptions	for	example).

The	script	controls	the	page	order,	appearance,	and	behavior.	You	can
skip	pages,	paint	them	white,	force	the	user	to	stay	in	a	certain	page	until
a	certain	condition	is	met,	show	a	readme	page,	show	custom	designed
pages	for	input	and	more.	In	this	section	you	will	learn	how	to	do	all	of	the
above.

There	are	two	basic	commands	regarding	pages,	Page	and	UninstPage.
The	first	adds	a	page	to	the	installer,	the	second	adds	a	page	to	the
uninstaller.	On	top	of	those	two	there	is	the	PageEx	command	which
allows	you	to	add	a	page	to	either	one	and	with	greater	amount	of
options.	PageEx	allows	you	to	set	options	to	the	specific	page	you	are
adding	instead	of	using	the	default	that's	set	outside	of	PageEx.

4.5.1	Ordering

The	page	order	is	set	simply	by	the	order	Page,	UninstPage	and	PageEx
appear	in	the	script.	For	example:

	Page	license
	Page	components
	Page	directory
	Page	instfiles
	UninstPage	uninstConfirm
	UninstPage	instfiles

This	code	will	tell	NSIS	to	first	show	the	license	page,	then	the
components	selection	page,	then	the	directory	selection	page	and	finally
the	install	log	where	sections	are	executed.	The	uninstaller	will	first	show
the	uninstall	confirmation	page	and	then	the	uninstallation	log.

You	can	specify	the	same	page	type	more	than	once.

For	backwards	compatibility	with	old	NSIS	scripts,	the	following	installer
pages	will	be	added	if	no	installer	page	commands	are	used:	license	(if
LicenseText	and	LicenseData	were	specified),	components	(if
ComponentText	was	specified	and	there	is	more	than	one	visible
section),	directory	(if	DirText	was	specified)	and	instfiles.	When	there	are
no	uninstaller	page	commands	the	following	uninstaller	pages	will	be
added:	uninstall	confirmation	page	(if	UninstallText	was	specified)	and
instfiles.	This	method	is	deprecated,	converting	scripts	to	use	page
commands	is	highly	recommended	because	you	can	use	the	new
standard	language	strings.

4.5.2	Page	Options

Each	page	has	its	unique	set	of	data	that	defines	how	it	will	look	and	act.
This	section	describes	what	data	each	type	of	page	uses	and	how	you
can	set	it.	Callback	functions	are	described	below	and	are	not	dealt	with
in	this	section.

The	list	below	lists	the	commands	that	affect	a	certain	page	type.	Unless
otherwise	mentioned,	these	commands	can	be	used	both	inside	and
outside	of	a	PageEx	block.	If	used	inside	a	PageEx	block	they	will	only
affect	the	current	page	being	set	by	PageEx,	otherwise	they	will	set	the
default	for	all	other	pages.

License	page

LicenseText
LicenseData
LicenseForceSelection

Components	selection	page

ComponentText

Directory	selection	page

DirText
DirVar	(can	only	be	used	in	PageEx)
DirVerify

Un/Installation	log	page

DetailsButtonText
CompletedText

Uninstall	confirmation	page

DirVar	(can	only	be	used	in	PageEx)
UninstallText

Use	Caption	to	set	the	page	caption.

4.5.3	Callbacks

Each	built-in	page	has	three	callback	functions:	the	pre-function,	the
show	function	and	the	leave-function.	The	pre-function	is	called	right
before	the	page	is	created,	the	show-function	is	called	right	after	it	has
been	created	but	before	it	is	shown	and	the	leave-function	is	called	right
after	the	user	has	pressed	the	next	button	(before	actually	leaving	the
page).

The	pre-function	allows	you	to	skip	the	page	using	Abort.
The	show-function	allows	you	to	tweak	the	page's	user	interface	with
CreateFont,	SetCtlColors,	SendMessage	etc.
The	leave-function	allows	you	to	force	the	user	to	stay	on	the	current
page	using	Abort.

A	custom	page	only	has	two	callback	functions,	one	that	creates	it	which
is	mandatory,	and	one	leave-function	that	acts	just	like	the	leave-function
for	built-in	pages.

Examples:

	Page	license	skipLicense	""	stayInLicense
	Page	custom	customPage	""	":	custom	page"
	Page	instfiles

	Function	skipLicense
			MessageBox	MB_YESNO	"Do	you	want	to	skip	the	license	page?"	IDNO	no

					Abort
			no:
	FunctionEnd

	Function	stayInLicense
			MessageBox	MB_YESNO	"Do	you	want	to	stay	in	the	license	page?"	IDNO	no
					Abort
			no:
	FunctionEnd

	Function	customPage
			GetTempFileName	$R0
			File	/oname=$R0	customPage.ini
			InstallOptions::dialog	$R0
			Pop	$R1
			StrCmp	$R1	"cancel"	done
			StrCmp	$R1	"back"	done
			StrCmp	$R1	"success"	done
			error:	MessageBox	MB_OK|MB_ICONSTOP	"InstallOptions	error:\r\n$R1"
			done:
	FunctionEnd

4.5.4	Page

custom	[creator_function]	[leave_function]	[caption]	[/ENABLECANCEL]
		OR
internal_page_type	[pre_function]	[show_function]	[leave_function]	[/ENABLECANCEL]

Adds	an	installer	page.	See	the	above	sections	for	more	information
about	built-in	versus	custom	pages	and	about	callback	functions.

internal_page_type	can	be:

license	-	license	page
components	-	components	selection	page
directory	-	installation	directory	selection	page
instfiles	-	installation	page	where	the	sections	are	executed
uninstConfirm	-	uninstall	confirmation	page

The	last	page	of	the	installer	has	its	cancel	button	disabled	to	prevent
confusion.	To	enable	it	anyway,	use	/ENABLECANCEL.

4.5.5	UninstPage

custom	[creator_function]	[leave_function]	[caption]	[/ENABLECANCEL]
		OR
internal_page_type	[pre_function]	[show_function]	[leave_function]	[/ENABLECANCEL]

Adds	an	uninstaller	page.	See	the	above	sections	for	more	information
about	built-in	versus	custom	pages	and	about	callback	functions.

See	Page	for	possible	values	of	internal_page_type.

4.5.6	PageEx

[un.](custom|uninstConfirm|license|components|directory|instfiles)

Adds	an	installer	page	or	an	uninstaller	page	if	the	un.	prefix	was	used.
Every	PageEx	must	have	a	matching	PageExEnd.	In	a	PageEx	block	you
can	set	options	that	are	specific	to	this	page	and	will	not	be	used	for
other	pages.	Options	that	are	not	set	will	revert	to	what	was	set	outside
the	PageEx	block	or	the	default	if	nothing	was	set.	To	set	the	sub-caption
for	a	page	use	Caption	or	SubCaption	to	set	the	default.	To	set	the
callback	functions	for	a	page	set	with	PageEx	use	PageCallbacks.	See
the	above	sections	for	more	information	about	built-in	versus	custom
pages.

Example	usage:

	PageEx	license
			LicenseText	"Readme"
			LicenseData	readme.rtf
	PageExEnd

	PageEx	license
			LicenseData	license.txt
			LicenseForceSelection	checkbox

	PageExEnd

4.5.7	PageExEnd

Ends	a	PageEx	block.

4.5.8	PageCallbacks

([creator_function]	[leave_function])	|	([pre_function]	[show_function]	[leave_function])

Sets	the	callback	functions	for	a	page	defined	using	PageEx.	Can	only	be
used	inside	a	PageEx	block.	See	the	above	sections	for	more	information
about	callback	functions.

PageEx	license
		PageCallbacks	licensePre	licenseShow	licenseLeave
PageExEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.6	Sections
Each	NSIS	installer	contains	one	or	more	sections.	Each	of	these
sections	are	created,	modified,	and	ended	with	the	following	commands.

Each	section	contains	zero	or	more	instructions.
Sections	are	executed	in	order	by	the	resulting	installer,	and	if	a
component	page	is	used,	the	user	will	have	the	option	of
disabling/enabling	each	visible	section.
If	a	section's	name	is	'Uninstall'	or	is	prefixed	with	'un.',	it's	an
uninstaller	section.

4.6.1	Section	Commands

4.6.1.1	AddSize

size_kb

Tells	the	installer	that	the	current	section	needs	an	additional	"size_kb"
kilobytes	of	disk	space.	Only	valid	within	a	section	(will	have	no	effect
outside	of	a	section	or	in	a	function).

Section
AddSize	500
SectionEnd

4.6.1.2	Section

[/o]	[([!]|[-])section_name]	[section_index_output]

Begins	and	opens	a	new	section.	If	section_name	is	empty,	omitted,	or
begins	with	a	-,	then	it	is	a	hidden	section	and	the	user	will	not	have	the
option	of	disabling	it.	If	the	section	name	is	'Uninstall'	or	is	prefixed	with
'un.',	then	it	is	a	an	uninstaller	section.	If	section_index_output	is
specified,	the	parameter	will	be	!defined	with	the	section	index	(can	be

used	with	SectionSetText	etc).	If	the	section	name	begins	with	a	!,	the
section	will	be	displayed	as	bold.	If	the	/o	switch	is	specified,	the	section
will	be	unselected	by	default.

Section	"-hidden	section"
SectionEnd

Section	#	hidden	section
SectionEnd

Section	"!bold	section"
SectionEnd

Section	/o	"optional"
SectionEnd

Section	"install	something"	SEC_IDX
SectionEnd

To	access	the	section	index,	curly	brackets	must	be	used	and	the	code
must	be	located	below	the	section	in	the	script.

Section	test1	sec1_id
SectionEnd

Section	test2	sec2_id
SectionEnd

Function	.onInit
		SectionGetText	${sec2_id}	$0
		MessageBox	MB_OK	"name	of	${sec2_id}:$\n$0"	#	will	correctly	display	'name	of	1:	test2'
FunctionEnd

Function	.onInit
		SectionGetText	${sec2_id}	$0
		MessageBox	MB_OK	"name	of	${sec2_id}:$\n$0"	#	will	incorrectly	display	'name	of	${sec2_id}:	test1'
				#	plus	a	warning	stating:
				#			unknown	variable/constant	"{sec2_id}"	detected,	ignoring

FunctionEnd

Section	test1	sec1_id
SectionEnd

Section	test2	sec2_id
SectionEnd

4.6.1.3	SectionEnd

This	command	closes	the	current	open	section.

4.6.1.4	SectionIn

insttype_index	[insttype_index]	[RO]

This	command	specifies	which	install	types	(see	InstType)	the	current
section	defaults	to	the	enabled	state	in.	Multiple	SectionIn	commands
can	be	specified	(they	are	combined).	If	you	specify	RO	as	a	parameter,
then	the	section	will	be	read-only,	meaning	the	user	won't	be	able	to
change	its	state.	The	first	install	type	defined	using	InstType	is	indexed	1,
the	next	2	and	so	on.

InstType	"full"
InstType	"minimal"

Section	"a	section"
SectionIn	1	2
SectionEnd

Section	"another	section"
SectionIn	1
SectionEnd

4.6.1.5	SectionGroup

[/e]	section_group_name	[index_output]

This	command	inserts	a	section	group.	The	section	group	must	be	closed
with	SectionGroupEnd,	and	should	contain	1	or	more	sections.	If	the
section	group	name	begins	with	a	!,	its	name	will	be	displayed	with	a	bold
font.	If	/e	is	present,	the	section	group	will	be	expanded	by	default.	If
index_output	is	specified,	the	parameter	will	be	!defined	with	the	section
index	(can	be	used	with	SectionSetText	etc).	If	the	name	is	prefixed	with
'un.'	the	section	group	is	an	uninstaller	section	group.

SectionGroup	"some	stuff"
Section	"a	section"
SectionEnd
Section	"another	section"
SectionEnd
SectionGroupEnd

4.6.1.6	SectionGroupEnd

Closes	a	section	group	opened	with	SectionGroup.

4.6.2	Uninstall	Section

A	special	Section	named	'Uninstall'	must	be	created	in	order	to	generate
an	uninstaller.	This	section	should	remove	all	files,	registry	keys	etc	etc
that	were	installed	by	the	installer,	from	the	system.	Here	is	an	example
of	a	simple	uninstall	section:

Section	"Uninstall"
		Delete	$INSTDIR\Uninst.exe	;	delete	self	(see	explanation	below	why	this	works)
		Delete	$INSTDIR\myApp.exe
		RMDir	$INSTDIR
		DeleteRegKey	HKLM	SOFTWARE\myApp
SectionEnd

The	first	Delete	instruction	works	(deleting	the	uninstaller),	because	the
uninstaller	is	transparently	copied	to	the	system	temporary	directory	for

the	uninstall.

Note	that	in	uninstaller	code,	$INSTDIR	contains	the	directory	where	the
uninstaller	lies.	It	does	not	necessarily	contain	the	same	value	it
contained	in	the	installer.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.7	Functions
Functions	are	similar	to	Sections	in	that	they	contain	zero	or	more
instructions.	User	functions	are	not	called	by	the	installer	directly,	instead
they	are	called	from	Sections	using	the	Call	instruction.	Callback
functions	will	be	called	by	the	installer	when	a	certain	event	occurs.

Functions	must	be	declared	outside	of	Sections	or	other	Functions.

4.7.1	Function	Commands

4.7.1.1	Function

[function_name]

Begins	and	opens	a	new	function.	Function	names	beginning	with	"."
(e.g.	".Whatever")	are	generally	reserved	for	callback	functions.	Function
names	beginning	with	"un."	are	functions	that	will	be	generated	in	the
Uninstaller.	Hence,	normal	install	Sections	and	functions	cannot	call
uninstall	functions,	and	the	Uninstall	Section	and	uninstall	functions
cannot	call	normal	functions.

Function	func
		#	some	commands
FunctionEnd

Section
		Call	func
SectionEnd

4.7.1.2	FunctionEnd

This	command	closes	the	current	open	function.

4.7.2	Callback	Functions

You	can	create	callback	functions	(which	have	special	names),	that	will
be	called	by	the	installer	at	certain	points	in	the	install.	Below	is	a	list	of
available	callbacks:

4.7.2.1	Install	Callbacks

4.7.2.1.1	.onGUIInit

This	callback	will	be	called	just	before	the	first	page	is	loaded	and	the
installer	dialog	is	shown,	allowing	you	to	tweak	the	user	interface.

Example:

	!include	"WinMessages.nsh"

	Function	.onGUIInit
			#	1028	is	the	id	of	the	branding	text	control
			GetDlgItem	$R0	$HWNDPARENT	1028
			CreateFont	$R1	"Tahoma"	10	700
			SendMessage	$R0	${WM_SETFONT}	$R1	0
			#	set	background	color	to	white	and	text	color	to	red
			SetCtlColors	$R0	FFFFFF	FF0000
	FunctionEnd

4.7.2.1.2	.onInit

This	callback	will	be	called	when	the	installer	is	nearly	finished	initializing.
If	the	'.onInit'	function	calls	Abort,	the	installer	will	quit	instantly.

Here	are	two	examples	of	how	this	might	be	used:

	Function	.onInit
			MessageBox	MB_YESNO	"This	will	install.	Continue?"	IDYES	NoAbort
					Abort	;	causes	installer	to	quit.
			NoAbort:
	FunctionEnd

or:

	Function	.onInit
			ReadINIStr	$INSTDIR	$WINDIR\wincmd.ini	Configuration	InstallDir
			StrCmp	$INSTDIR	""	0	NoAbort
					MessageBox	MB_OK	"Windows	Commander	not	found.	Unable	to	get	install	path."
					Abort	;	causes	installer	to	quit.
			NoAbort:
	FunctionEnd

4.7.2.1.3	.onInstFailed

This	callback	is	called	when	the	user	hits	the	'cancel'	button	after	the
install	has	failed	(if	it	could	not	extract	a	file,	or	the	install	script	used	the
Abort	command).

Example:

		Function	.onInstFailed
				MessageBox	MB_OK	"Better	luck	next	time."
		FunctionEnd

4.7.2.1.4	.onInstSuccess

This	callback	is	called	when	the	install	was	successful,	right	before	the
install	window	closes	(which	may	be	after	the	user	clicks	'Close'	if
AutoCloseWindow	or	SetAutoClose	is	set	to	false).

Example:

		Function	.onInstSuccess
				MessageBox	MB_YESNO	"Congrats,	it	worked.	View	readme?"	IDNO	NoReadme
						Exec	notepad.exe	;	view	readme	or	whatever,	if	you	want.
				NoReadme:
		FunctionEnd

4.7.2.1.5	.onGUIEnd

This	callback	is	called	right	after	the	installer	window	closes.	Use	it	to	free
any	user	interface	related	plug-ins	if	needed.

4.7.2.1.6	.onMouseOverSection

This	callback	is	called	whenever	the	mouse	position	over	the	sections
tree	has	changed.	This	allows	you	to	set	a	description	for	each	section
for	example.	The	section	id	on	which	the	mouse	is	over	currently	is
stored,	temporarily,	in	$0.

Example:

		Function	.onMouseOverSection
				FindWindow	$R0	"#32770"	""	$HWNDPARENT
				GetDlgItem	$R0	$R0	1043	;	description	item	(must	be	added	to	the	UI)

				StrCmp	$0	0	""	+2
						SendMessage	$R0	${WM_SETTEXT}	0	"STR:first	section	description"

				StrCmp	$0	1	""	+2
						SendMessage	$R0	${WM_SETTEXT}	0	"STR:second	section	description"
		FunctionEnd

4.7.2.1.7	.onRebootFailed

This	callback	is	called	if	Reboot	fails.	WriteUninstaller,	plug-ins,	File	and
WriteRegBin	should	not	be	used	in	this	callback.

Example:

	Function	.onRebootFailed
			MessageBox	MB_OK|MB_ICONSTOP	"Reboot	failed.	Please	reboot	manually."	/SD	IDOK
	FunctionEnd

4.7.2.1.8	.onSelChange

Called	when	the	selection	changes	on	the	component	page.	Useful	for
using	with	SectionSetFlags	and	SectionGetFlags.

Selection	changes	include	both	section	selection	and	installation	type
changes.	The	section	id	of	the	changed	section	is	stored	in	$0.	$0	is	-1	if
the	installation	type	changed.	You	only	get	notifications	for	changes

initiated	by	the	user	and	only	one	notification	per	action	even	if	the	action
also	affected	child	sections	and/or	parent	groups.

4.7.2.1.9	.onUserAbort

This	callback	is	called	when	the	user	hits	the	'cancel'	button,	and	the
install	hasn't	already	failed.	If	this	function	calls	Abort,	the	install	will	not
be	aborted.

Example:

	Function	.onUserAbort
			MessageBox	MB_YESNO	"Abort	install?"	IDYES	NoCancelAbort
					Abort	;	causes	installer	to	not	quit.
			NoCancelAbort:
	FunctionEnd

4.7.2.1.10	.onVerifyInstDir

This	callback	enables	control	over	whether	or	not	an	installation	path	is
valid	for	your	installer.	This	code	will	be	called	every	time	the	user
changes	the	install	directory,	so	it	shouldn't	do	anything	crazy	with
MessageBox	or	the	like.	If	this	function	calls	Abort,	the	installation	path	in
$INSTDIR	is	deemed	invalid.

Example:

		Function	.onVerifyInstDir
				IfFileExists	$INSTDIR\Winamp.exe	PathGood
						Abort	;	if	$INSTDIR	is	not	a	winamp	directory,	don't	let	us	install	there
				PathGood:
		FunctionEnd

4.7.2.2	Uninstall	Callbacks

4.7.2.2.1	un.onGUIInit

This	callback	will	be	called	just	before	the	first	page	is	loaded	and	the

installer	dialog	is	shown,	allowing	you	to	tweak	the	user	interface.

Have	a	look	at	.onGUIInit	for	an	example.

4.7.2.2.2	un.onInit

This	callback	will	be	called	when	the	uninstaller	is	nearly	finished
initializing.	If	the	'	un.onInit'	function	calls	Abort,	the	uninstaller	will	quit
instantly.	Note	that	this	function	can	verify	and/or	modify	$INSTDIR	if
necessary.

Here	are	two	examples	of	how	this	might	be	used:

		Function	un.onInit
				MessageBox	MB_YESNO	"This	will	uninstall.	Continue?"	IDYES	NoAbort
						Abort	;	causes	uninstaller	to	quit.
				NoAbort:
		FunctionEnd

or:

		Function	un.onInit
				IfFileExists	$INSTDIR\myfile.exe	found
						Messagebox	MB_OK	"Uninstall	path	incorrect"
						Abort
				found:
		FunctionEnd

4.7.2.2.3	un.onUninstFailed

This	callback	is	called	when	the	user	hits	the	'cancel'	button	after	the
uninstall	has	failed	(if	it	used	the	Abort	command	or	otherwise	failed).

Example:

		Function	un.onUninstFailed
				MessageBox	MB_OK	"Better	luck	next	time."
		FunctionEnd

4.7.2.2.4	un.onUninstSuccess

This	callback	is	called	when	the	uninstall	was	successful,	right	before	the
install	window	closes	(which	may	be	after	the	user	clicks	'Close'	if
SetAutoClose	is	set	to	false)..

Example:

		Function	un.onUninstSuccess
				MessageBox	MB_OK	"Congrats,	it's	gone."
		FunctionEnd

4.7.2.2.5	un.onGUIEnd

This	callback	is	called	right	after	the	uninstaller	window	closes.	Use	it	to
free	any	user	interface	related	plug-ins	if	needed.

4.7.2.2.6	un.onRebootFailed

This	callback	is	called	if	Reboot	fails.	WriteUninstaller,	plug-ins,	File	and
WriteRegBin	should	not	be	used	in	this	callback.

Example:

	Function	un.onRebootFailed
			MessageBox	MB_OK|MB_ICONSTOP	"Reboot	failed.	Please	reboot	manually."	/SD	IDOK
	FunctionEnd

4.7.2.2.7	un.onSelChange

Called	when	the	selection	changes	on	the	component	page.	Useful	for
using	with	SectionSetFlags	and	SectionGetFlags.

Selection	changes	include	both	section	selection	and	installation	type
changes.	The	section	id	of	the	changed	section	is	stored	in	$0.	$0	is	-1	if
the	installation	type	changed.	You	only	get	notifications	for	changes
initiated	by	the	user	and	only	one	notification	per	action	even	if	the	action
also	affected	child	sections	and/or	parent	groups.

4.7.2.2.8	un.onUserAbort

This	callback	is	called	when	the	user	hits	the	'cancel'	button	and	the
uninstall	hasn't	already	failed.	If	this	function	calls	Abort,	the	install	will
not	be	aborted.

Example:

		Function	un.onUserAbort
				MessageBox	MB_YESNO	"Abort	uninstall?"	IDYES	NoCancelAbort
						Abort	;	causes	uninstaller	to	not	quit.
				NoCancelAbort:
		FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.8	Installer	Attributes

4.8.1	General	Attributes

The	commands	below	all	adjust	attributes	of	the	installer.	These
attributes	control	how	the	installer	looks	and	functions,	including	which
pages	are	present	in	the	installer,	which	text	is	displayed	in	each	part	of
each	page,	the	name	of	the	installer,	the	icon	the	installer	uses,	the
default	installation	directory	and	more.	Note	that	these	attributes	can	be
set	anywhere	in	the	file	except	in	a	Section	or	Function.

Defaults	are	bold	and	underlined

4.8.1.1	AddBrandingImage

(left|right|top|bottom)	(width|height)	[padding]

Adds	a	branding	image	on	the	top,	bottom,	left,	or	right	of	the	installer.	Its
size	will	be	set	according	to	the	width/height	specified,	the	installer
width/height	and	the	installers	font.	The	final	size	will	not	always	be	what
you	requested;	have	a	look	at	the	output	of	the	command	for	the	actual
size.	Because	this	depends	on	the	installers	font,	you	should	use	SetFont
before	AddBrandingImage.	The	default	padding	value	is	2.

AddBrandingImage	only	adds	a	placeholder	for	an	image.	To	set	the
image	itself	at	runtime,	use	SetBrandingImage.

AddBrandingImage	left	100
AddBrandingImage	right	50
AddBrandingImage	top	20
AddBrandingImage	bottom	35
AddBrandingImage	left	100	5

4.8.1.2	AllowRootDirInstall

true|false

Controls	whether	or	not	installs	are	allowed	in	the	root	directory	of	a
drive,	or	directly	into	a	network	share.	Set	to	'true'	to	change	the	safe
behavior,	which	prevents	users	from	selecting	C:\	or	\\Server\Share	as	an
install	(and	later	on,	uninstall)	directory.	For	additional	directory	selection
page	customizability,	see	.onVerifyInstDir.

4.8.1.3	AutoCloseWindow

true|false

Sets	whether	or	not	the	install	window	automatically	closes	when
completed.	This	is	overrideable	from	a	section	using	SetAutoClose.

4.8.1.4	BGFont

[font_face	[height	[weight]	[/ITALIC]	[/UNDERLINE]	[/STRIKE]]]

Specifies	the	font	used	to	show	the	text	on	the	background	gradient.	To
set	the	color	use	BGGradient.	The	default	font	will	be	used	if	no
parameters	are	specified.	The	default	font	is	bold	and	italic	Times	New
Roman.

4.8.1.5	BGGradient

[off|(topc	botc	[textcolor|notext])]

Specifies	whether	or	not	to	use	a	gradient	background	window.	If	'off',	the
installer	will	not	show	a	background	window,	if	no	parameters	are
specified,	the	default	black	to	blue	gradient	is	used,	and	otherwise	the
top_color	or	bottom_color	are	used	to	make	a	gradient.	Top_color	and
bottom_color	are	specified	using	the	form	RRGGBB	(in	hexadecimal,	as
in	HTML,	only	minus	the	leading	'#',	since	#	can	be	used	for	comments).
'textcolor'	can	be	specified	as	well,	or	'notext'	can	be	specified	to	turn	the
big	background	text	off.

4.8.1.6	BrandingText

/TRIM(LEFT|RIGHT|CENTER)	text

Sets	the	text	that	is	shown	at	the	bottom	of	the	install	window	(by	default
it	is	'Nullsoft	Install	System	vX.XX').	Setting	this	to	an	empty	string	("")
uses	the	default;	to	set	the	string	to	blank,	use	"	"	(a	space).	If	it	doesn't
matter	to	you,	leave	it	the	default	so	that	everybody	can	know	why	the
installer	didn't	suck	:).	Use	/TRIMLEFT,	/TRIMRIGHT	or	/TRIMCENTER
to	trim	down	the	size	of	the	control	to	the	size	of	the	string.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	on
.onInit.

4.8.1.7	Caption

caption

When	used	outside	a	PageEx	block:	Sets	the	text	for	the	titlebar	of	the
installer.	By	default	it	is	'$(^Name)	Setup',	where	Name	is	specified	by	the
Name	instruction.	You	can	however	override	it	with	'MyApp	Installer'	or
whatever.	If	you	specify	an	empty	string	(""),	the	default	will	be	used	(you
can	specify	"	"	to	simulate	a	empty	string).

When	used	inside	a	PageEx	block:	Sets	the	subcaption	of	the	current
page.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	on	.onInit
or	.onGUIInit.

4.8.1.8	ChangeUI

dialog	ui_file.exe

Replaces	dialog	(IDD_LICENSE,	IDD_DIR,	IDD_SELCOM,	IDD_INST,
IDD_INSTFILES,	IDD_UNINST	or	IDD_VERIFY)	with	a	dialog	from
ui_file.exe	with	the	same	resource	ID.	You	can	also	specify	'all'	as	the

dialog	if	you	wish	to	replace	all	7	of	the	dialogs	at	once	from	the	same	UI
file.	For	some	example	UIs	look	at	Contrib\UIs	under	your	NSIS	directory.

IDD_LICENSE	must	contain	IDC_EDIT1	(RICHEDIT	control).
IDD_DIR	must	contain	IDC_DIR	(edit	box),	IDC_BROWSE	(button)
and	IDC_CHECK1	(checkbox).
IDD_SELCOM	must	contain	IDC_TREE1	(SysTreeView32	control),
and	IDC_COMBO1	(combo	box).
IDD_INST	must	contain	IDC_BACK	(button),	IDC_CHILDRECT
(static	control	the	size	of	all	other	dialogs),	IDC_VERSTR	(static),
IDOK	(button),	and	IDCANCEL	(button).	If	an	image	control	(static
with	SS_BITMAP	style)	will	be	found	in	this	dialog	it	will	be	used	as
the	default	for	SetBrandingImage.
IDD_INSTFILES	must	contain	IDC_LIST1	(SysListView32	control),
IDC_PROGRESS	(msctls_progress32	control),	and
IDC_SHOWDETAILS	(button).
IDD_UNINST	must	contain	IDC_EDIT1	(edit	box).
IDD_VERIFY	must	contain	IDC_STR	(static).

ChangeUI	all	"${NSISDIR}\Contrib\UIs\sdbarker_tiny.exe"

4.8.1.9	CheckBitmap

bitmap.bmp

Specifies	the	bitmap	with	the	checkbox	images	used	in	the	component-
selection	page	treeview.

This	bitmap	should	have	a	size	of	96x16	pixels,	no	more	than	8bpp	(256
colors)	and	contain	six	16x16	images	for	the	different	states	(in	order:
selection	mask,	not	checked,	checked,	greyed	out,	unchecked	&	read-
only,	checked	&	read-only).	Use	magenta	as	mask	color	(this	area	will	be
transparent).

4.8.1.10	CompletedText

text

Replaces	the	default	text	("Completed")	that	is	printed	at	the	end	of	the
install	if	parameter	is	specified.	Otherwise,	the	default	is	used.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	message	is	printed.

4.8.1.11	ComponentText

[text	[subtext]	[subtext2]]

Used	to	change	the	default	text	on	the	component	page.

text:	Text	above	the	controls,	to	the	right	of	the	installation	icon.

subtext:	Text	next	to	the	installation	type	selection.

subtext2:	Text	to	the	left	of	the	components	list	and	below	the	installation
type.

The	default	string	will	be	used	if	a	string	is	empty	("").

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	components	page	is	created.

4.8.1.12	CRCCheck

on|off|force

Specifies	whether	or	not	the	installer	will	perform	a	CRC	on	itself	before
allowing	an	install.	Note	that	if	the	user	uses	/NCRC	on	the	command	line
when	executing	the	installer,	and	you	didn't	specify	'force',	the	CRC	will
not	occur,	and	the	user	will	be	allowed	to	install	a	(potentially)	corrupted
installer.

4.8.1.13	DetailsButtonText

show_details_text

Replaces	the	default	details	button	text	of	"Show	details",	if	parameter	is
specified	(otherwise	the	default	is	used).

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	install	log	(instfiles)	page	is	created.

4.8.1.14	DirText

[text]	[subtext]	[browse_button_text]	[browse_dlg_text]

Used	to	change	the	default	text	on	the	directory	page.

text:	Text	above	the	controls,	to	the	right	of	the	installation	icon.

subtext:	Text	on	the	directory	selection	frame.

browse_button_text:	Text	on	the	Browse	button.

browse_dlg_text:	Text	on	the	"Browse	For	Folder"	dialog,	appears	after
clicking	on	"Browse"	button.

The	default	string	will	be	used	if	a	string	is	empty	("").

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	directory	page	is	created.

4.8.1.15	DirVar

user_var(dir	input/output)

Specifies	which	variable	is	to	be	used	to	contain	the	directory	selected.
This	variable	should	be	initialized	with	a	default	value.	This	allows	you	to
easily	create	two	different	directory	pages	that	will	not	require	you	to
move	values	in	and	out	of	$INSTDIR.	The	default	variable	is	$INSTDIR.
This	can	only	be	used	in	PageEx	for	directory	and	uninstConfirm	pages.

Var	ANOTHER_DIR
PageEx	directory

		DirVar	$ANOTHER_DIR
PageExEnd

Section
		SetOutPath	$INSTDIR
		File	"a	file.dat"
		SetOutPath	$ANOTHER_DIR
		File	"another	file.dat"
SectionEnd

4.8.1.16	DirVerify

auto|leave

If	`DirVerify	leave'	is	used,	the	Next	button	will	not	be	disabled	if	the
installation	directory	is	not	valid	or	there	is	not	enough	space.	A	flag	that
you	can	read	in	the	leave	function	using	GetInstDirError	will	be	set
instead.

PageEx	directory
		DirVerify	leave
		PageCallbacks	""	""	dirLeave
PageExEnd

4.8.1.17	FileErrorText

file_error_text	[noignore_file_error_text]

Replaces	the	default	text	that	comes	up	when	a	file	cannot	be	written	to.
This	string	can	contain	a	reference	to	$0,	which	is	the	filename	($0	is
temporarily	changed	to	this	value).	Example:	"Can	not	write	to	file
\r\n0\r$\ngood	luck.".

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
File	is	used.

4.8.1.18	Icon

[path\]icon.ico

Sets	the	icon	of	the	installer.	Every	image	in	the	icon	file	will	be	included
in	the	installer.	Use	UninstallIcon	to	set	the	uninstaller	icon.

4.8.1.19	InstallButtonText

install_button_text

If	parameter	is	specified,	overrides	the	default	install	button	text	(of
"Install")	with	the	specified	text.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	install	button	shows.

4.8.1.20	InstallColors

/windows	|	(foreground_color	background_color)

Sets	the	colors	to	use	for	the	install	info	screen	(the	default	is	00FF00
000000.	Use	the	form	RRGGBB	(in	hexadecimal,	as	in	HTML,	only	minus
the	leading	'#',	since	#	can	be	used	for	comments).	Note	that	if
"/windows"	is	specified	as	the	only	parameter,	the	default	windows	colors
will	be	used.

4.8.1.21	InstallDir

definstdir

Sets	the	default	installation	directory.	See	the	variables	section	for
variables	that	can	be	used	to	make	this	string	(especially
$PROGRAMFILES).	Note	that	the	part	of	this	string	following	the	last	\
will	be	used	if	the	user	selects	'browse',	and	may	be	appended	back	on
to	the	string	at	install	time	(to	disable	this,	end	the	directory	with	a	\

(which	will	require	the	entire	parameter	to	be	enclosed	with	quotes).	If
this	doesn't	make	any	sense,	play	around	with	the	browse	button	a	bit.

4.8.1.22	InstallDirRegKey

root_key	subkey	key_name

This	attribute	tells	the	installer	to	check	a	string	in	the	registry	and	use	it
as	the	install	dir	if	that	string	is	valid.	If	this	attribute	is	present,	it	will
override	the	InstallDir	attribute	if	the	registry	key	is	valid,	otherwise	it	will
fall	back	to	the	InstallDir	value.	When	querying	the	registry,	this	command
will	automatically	remove	any	quotes.	If	the	string	ends	in	".exe",	it	will
automatically	remove	the	filename	component	of	the	string	(i.e.	if	the
string	is	"C:\Program	Files\Foo\app.exe",	it	will	know	to	use	"C:\Program
Files\Foo").	For	more	advanced	install	directory	configuration,	set
$INSTDIR	in	.onInit.

Language	strings	and	variables	cannot	be	used	with	InstallDirRegKey.

InstallDirRegKey	HKLM	Software\NSIS	""
InstallDirRegKey	HKLM	Software\ACME\Thingy	InstallLocation

4.8.1.23	InstProgressFlags

[flag	[...]]

Valid	values	for	flag	are	"smooth"	(smooth	the	progress	bar)	or	"colored"
(color	the	progress	bar	with	the	colors	set	by	InstallColors.	Examples:
"InstProgressFlags"	(default	old-school	windows	look),
"InstProgressFlags	smooth"	(new	smooth	look),	"InstProgressFlags
smooth	colored"	(colored	smooth	look	whee).	Note:	neither	"smooth"	or
"colored"	work	with	XPStyle	on	when	the	installer	runs	on	Windows	XP
with	a	modern	theme.

4.8.1.24	InstType

install_type_name	|	/NOCUSTOM	|	/CUSTOMSTRING=str	|	/COMPONENTSONLYONCUSTOM

Adds	an	install	type	to	the	install	type	list,	or	disables	the	custom	install
type.	There	can	be	as	many	as	32	types,	each	one	specifying	the	name
of	the	install	type.	If	the	name	is	prefixed	with	'un.'	it	is	an	uninstaller
install	type.	The	name	can	contain	variables	which	will	be	processed	at
runtime	before	the	components	page	shows.	Another	way	of	changing
the	InstType	name	during	runtime	is	the	InstTypeSetText	command.	The
difference	is	that	with	InstTypeSetText	you	are	saving	your	precious	user
variables.	The	first	type	is	the	default	(generally	'Typical').	If	the
/NOCUSTOM	switch	is	specified,	then	the	"custom"	install	type	is
disabled,	and	the	user	has	to	choose	one	of	the	pre-defined	install	types.
Alternatively,	if	the	/CUSTOMSTRING	switch	is	specified,	the	parameter
will	override	the	"Custom"	install	type	text.	Alternatively,	if	the
/COMPONENTSONLYONCUSTOM	flag	is	specified,	the	component	list
will	only	be	shown	if	the	"Custom"	install	type	is	selected.

Accepts	variables	for	type	names.	If	variables	are	used,	they	must	be
initialized	before	the	components	page	is	created.

4.8.1.25	LicenseBkColor

color	|	/gray	|	/windows

Sets	the	background	color	of	the	license	data.	Color	is	specified	using	the
form	RRGGBB	(in	hexadecimal,	as	in	HTML,	only	minus	the	leading	'#',
since	#	can	be	used	for	comments).	Default	is	'/gray'.	You	can	also	use
the	Windows	OS	defined	color	by	using	'/windows'.

4.8.1.26	LicenseData

licdata.(txt|rtf)

Specifies	a	text	file	or	a	RTF	file	to	use	for	the	license	that	the	user	can
read.	Omit	this	to	not	have	a	license	displayed.	Note	that	the	file	must	be
in	DOS	text	format	(\r\n).	To	define	a	multilingual	license	data	use
LicenseLangString.

If	you	are	using	a	RTF	file	it	is	recommended	that	you	edit	it	with
WordPad	and	not	MS	Word.	Using	WordPad	will	result	in	a	much	smaller
file.

Use	LicenseLangString	to	show	a	different	license	for	every	language.

4.8.1.27	LicenseForceSelection

(checkbox	[accept_text]	|	radiobuttons	[accept_text]	[decline_text]	|	

Specifies	if	the	displayed	license	must	be	explicitly	accepted	or	not.	This
can	be	done	either	by	a	checkbox	or	by	radiobuttons.	By	default	the	"next
button"	is	disabled	and	will	only	be	enabled	if	the	checkbox	is	enabled	or
the	correct	radio	button	is	selected.	If	off	is	specified	the	"next	button"	is
enabled	by	default.

LicenseForceSelection	checkbox
LicenseForceSelection	checkbox	"i	accept"
LicenseForceSelection	radiobuttons
LicenseForceSelection	radiobuttons	"i	accept"
LicenseForceSelection	radiobuttons	"i	accept"	"i	decline"
LicenseForceSelection	radiobuttons	""	"i	decline"
LicenseForceSelection	off

4.8.1.28	LicenseText

[text	[button_text]]

Used	to	change	the	default	text	on	the	license	page.

text:	Text	above	the	controls,	to	the	right	of	the	installation	icon.

button_text:	Text	on	the	"I	Agree"	button.

The	default	string	will	be	used	if	a	string	is	empty	("").

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before

the	license	page	is	created.

4.8.1.29	ManifestDPIAware

notset|true|false

Declare	that	the	installer	is	DPI-aware.	A	DPI-aware	application	is	not
scaled	by	the	DWM	(DPI	virtualization)	so	the	text	is	never	blurry.	NSIS
does	not	scale	the	bitmap	used	by	the	tree	control	on	the	component
page	and	some	plugins	might	have	compatibility	issues	so	make	sure
that	you	test	your	installer	at	different	DPI	settings	if	you	select	true.

See	MSDN	for	more	information	about	DPI-aware	applications.

4.8.1.30	ManifestSupportedOS

none|all|WinVista|Win7|Win8|Win8.1|Win10|{GUID}	[...]

Declare	that	the	installer	is	compatible	with	the	specified	Windows
version(s).	This	adds	a	SupportedOS	entry	in	the	compatibility	section	of
the	application	manifest.	The	default	is	Win7+8+8.1+10.	none	is	the
default	if	RequestExecutionLevel	is	set	to	none	for	compatibility	reasons.

Windows	8.1	and	later	will	fake	its	version	number	if	you	don't	declare
support	for	that	particular	version.	You	can	read	more	about	the	other
changes	in	behavior	on	MSDN.

4.8.1.31	MiscButtonText

[back_button_text	[next_button_text]	[cancel_button_text]	[close_button_text]]

Replaces	the	default	text	strings	for	the	four	buttons	(<	Back,	Next	>,
Cancel	and	Close).	If	parameters	are	omitted,	the	defaults	are	used.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	in	.onInit.

http://msdn.microsoft.com/en-us/library/dd464660
http://msdn.microsoft.com/en-us/library/windows/desktop/hh848036

4.8.1.32	Name

name	[name_doubled_ampersands]

Sets	the	name	of	the	installer.	The	name	is	usually	simply	the	product
name	such	as	'MyApp'	or	'CrapSoft	MyApp'.	If	you	have	one	or	more
ampersands	(&)	in	the	name,	set	the	second	parameter	to	the	same
name,	only	with	doubled	ampersands.	For	example,	if	your	product's
name	is	"Foo	&	Bar",	use:

	Name	"Foo	&	Bar"	"Foo	&&	Bar"

If	you	have	ampersands	in	the	name	and	use	a	LangString	for	the	name,
you	will	have	to	create	another	one	with	doubled	ampersands	to	use	as
the	second	parameter.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	in	.onInit.

4.8.1.33	OutFile

[path\]install.exe

Specifies	the	output	file	that	the	MakeNSIS	should	write	the	installer	to.
This	is	just	the	file	that	MakeNSIS	writes,	it	doesn't	affect	the	contents	of
the	installer.

4.8.1.34	RequestExecutionLevel

none|user|highest|admin

Specifies	the	requested	execution	level	for	Windows	Vista	and	higher.
The	value	is	embedded	in	the	installer	and	uninstaller's	XML	manifest
and	tells	Windows	which	privilege	level	the	installer	requires.	user
requests	the	user's	normal	level	with	no	administrative	privileges.	highest
will	request	the	highest	execution	level	available	for	the	current	user	and
will	cause	Windows	to	prompt	the	user	to	verify	privilege	escalation	if
they	are	a	member	of	the	administrators	group.	The	prompt	might

request	for	the	user's	password.	admin,	which	is	also	the	default,
requests	administrator	level	and	will	cause	Windows	to	prompt	the	user
as	well.	Specifying	none	will	keep	the	manifest	empty	and	let	Windows
decide	which	execution	level	is	required.	Windows	automatically
identifies	NSIS	installers	and	decides	administrator	privileges	are
required.	Because	of	this,	none	and	admin	have	virtually	the	same	effect.

It's	recommended	that	every	application	is	marked	with	a	required
execution	level.	Unmarked	installers	are	subject	to	compatibility	mode.
Workarounds	of	this	mode	include	automatically	moving	any	shortcuts
created	in	the	user's	start	menu	to	all	users'	start	menu.	Installers	that
don't	install	anything	into	system	folders	nor	write	to	the	local	machine
registry	(HKLM)	should	specify	user	execution	level.

More	information	about	this	topic	can	be	found	on	MSDN.

4.8.1.35	SetFont

[/LANG=lang_id]	font_face_name	font_size

Sets	the	installer	font.	Please	remember	that	the	font	you	choose	must
be	present	on	the	user's	machine	as	well.	Don't	use	rare	fonts	that	only
you	have.

Use	the	/LANG	switch	if	you	wish	to	set	a	different	font	for	each
language.	For	example:

	SetFont	/LANG=${LANG_ENGLISH}	"English	Font"	9
	SetFont	/LANG=${LANG_FRENCH}	"French	Font"	10

There	are	two	LangStrings	named	^Font	and	^FontSize	which	contain	the
font	and	font	size	for	every	language.

4.8.1.36	ShowInstDetails

hide|show|nevershow

Sets	whether	or	not	the	details	of	the	install	are	shown.	Can	be	'hide'	to

http://msdn.microsoft.com/en-us/library/bb756929

hide	the	details	by	default,	allowing	the	user	to	view	them,	or	'show'	to
show	them	by	default,	or	'nevershow',	to	prevent	the	user	from	ever
seeing	them.	Note	that	sections	can	override	this	using	SetDetailsView.

4.8.1.37	ShowUninstDetails

hide|show|nevershow

Sets	whether	or	not	the	details	of	the	uninstall	are	shown.	Can	be	'hide'
to	hide	the	details	by	default,	allowing	the	user	to	view	them,	or	'show'	to
show	them	by	default,	or	'nevershow',	to	prevent	the	user	from	ever
seeing	them.	Note	that	sections	can	override	this	using	SetDetailsView.

4.8.1.38	SilentInstall

normal|silent|silentlog

Specifies	whether	or	not	the	installer	should	be	silent.	If	it	is	'silent'	or
'silentlog',	all	sections	that	have	the	SF_SELECTED	flag	are	installed
quietly	(you	can	set	this	flag	using	SectionSetFlags),	with	no	screen
output	from	the	installer	itself	(the	script	can	still	display	whatever	it
wants,	use	MessageBox's	/SD	to	specify	a	default	for	silent	installers).
Note	that	if	this	is	set	to	'normal'	and	the	user	runs	the	installer	with	/S
(case	sensitive)	on	the	command	line,	it	will	behave	as	if	SilentInstall
'silent'	was	used.	Note:	see	also	LogSet.

See	section	4.12	for	more	information.

4.8.1.39	SilentUnInstall

normal|silent

Specifies	whether	or	not	the	uninstaller	should	be	silent.	If	it	is	'silent'	the
uninstall	sections	will	run	quietly,	with	no	screen	output	from	the
uninstaller	itself	(the	script	can	still	display	whatever	it	wants,	use
MessageBox's	/SD	to	specify	a	default	for	silent	uninstallers).	Note	that	if

this	is	set	to	'normal'	and	the	user	runs	the	uninstaller	with	/S	on	the
command	line,	it	will	behave	as	if	SilentUnInstall	'silent'	was	used.

See	section	4.12	for	more	information.

4.8.1.40	SpaceTexts

[req_text	[avail_text]]

If	parameters	are	specified,	overrides	the	space	required	and	space
available	text	("Space	required:	"	and	"Space	available:	"	by	default).	If
'none'	is	specified	as	the	required	text	no	space	texts	will	be	shown.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	components	page	is	created.

4.8.1.41	SubCaption

[page_number	subcaption]

Overrides	the	subcaptions	for	each	of	the	installer	pages	(0=":	License
Agreement",1=":	Installation	Options",2=":	Installation	Directory",	3=":
Installing	Files",	4=":	Completed").	If	you	specify	an	empty	string	(""),	the
default	will	be	used	(you	can	however	specify	"	"	to	achieve	a	blank
string).

You	can	also	set	a	subcaption	(or	override	the	default)	using	Caption
inside	a	PageEx	block.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	relevant	page	is	created.

4.8.1.42	UninstallButtonText

text

Changes	the	text	of	the	button	that	by	default	says	"Uninstall"	in	the

uninstaller.	If	no	parameter	is	specified,	the	default	text	is	used.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	uninstall	button	shows.

4.8.1.43	UninstallCaption

caption

Sets	what	the	titlebars	of	the	uninstaller	will	display.	By	default	it	is
'$(^Name)	Uninstall',	where	Name	is	specified	with	the	Name	command.
You	can,	however,	override	it	with	'MyApp	uninstaller'	or	whatever.	If	you
specify	an	empty	string	(""),	the	default	will	be	used	(you	can	specify	"	"	to
simulate	a	empty	string).

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	in
un.onInit.

4.8.1.44	UninstallIcon

[path\]icon.ico

Sets	the	icon	of	the	uninstaller.

4.8.1.45	UninstallSubCaption

page_number	subcaption

Sets	the	default	subcaptions	for	the	uninstaller	pages	(0=":
Confirmation",1=":	Uninstalling	Files",2=":	Completed").	If	you	specify	an
empty	string	(""),	the	default	will	be	used	(you	can	specify	"	"	to	simulate
a	empty	string).

You	can	also	set	a	subcaption	(or	override	the	default)	using	Caption
inside	a	PageEx	block.

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before

the	relevant	page	is	created.

4.8.1.46	UninstallText

text	[subtext]

Specifies	the	texts	on	the	uninstaller	confirm	page.

text:	Text	above	the	controls

subtext:	Text	next	to	the	uninstall	location

Accepts	variables.	If	variables	are	used,	they	must	be	initialized	before
the	uninstaller	confirm	page	is	created.

4.8.1.47	WindowIcon

on|off

Sets	whether	or	not	the	installer's	icon	is	displayed	on	certain	pages.

4.8.1.48	XPStyle

on|off

Sets	whether	or	not	a	XP	visual	style	manifest	will	be	added	to	the
installer.	This	manifest	makes	the	installers	controls	use	the	new	visual
styles	when	running	on	Windows	XP	and	later.	This	affects	the	uninstaller
too.

4.8.2	Compiler	Flags

The	following	commands	affect	how	the	compiler	generates	code	and
compresses	data.	Unless	otherwise	noted,	these	commands	are	valid
anywhere	in	the	script	and	affect	every	line	below	where	each	one	is
placed	(until	overridden	by	another	command).	They	cannot	be	jumped
over	using	flow	control	instructions.

For	example,	in	the	following	script,	blah.dat	will	never	be	overwritten.

${If}	$0	==	0
		SetOverwrite	on
${Else}
		SetOverwrite	off
${EndIf}
File	blah.dat	#	overwrite	is	always	off	here!

Instead,	the	following	should	be	used.

${If}	$0	==	0
		SetOverwrite	on
		File	blah.dat
${Else}
		SetOverwrite	off
		File	blah.dat
${EndIf}

4.8.2.1	AllowSkipFiles

on|off

This	command	specifies	whether	the	user	should	be	able	to	skip	a	file	or
not.	A	user	has	an	option	to	skip	a	file	if	SetOverwrite	is	set	to	on	(default)
and	the	installer	fails	to	open	a	file	for	writing	when	trying	to	extract	a	file.
If	off	is	used	the	ignore	button	which	allows	the	user	to	skip	the	file	will
not	be	shown	and	the	user	will	only	have	an	option	to	abort	the
installation	(Cancel	button)	or	retry	opening	the	file	for	writing	(Retry
button).	If	on	is	used	the	user	will	have	an	option	to	skip	the	file	(error	flag
will	be	set	-	see	SetOverwrite).

4.8.2.2	FileBufSize

buffer_size_in_mb

This	command	sets	the	size	of	the	compiler's	internal	file	buffers.	This

command	allows	you	to	control	the	compiler's	memory	usage	by	limiting
how	much	of	a	given	file	it	will	load	into	memory	at	once.	Since	the
compiler	needs	both	input	and	output,	twice	the	memory	size	specified
could	be	used	at	any	given	time	for	file	buffers.	This	command	does	not
limit	the	compression	buffers	which	could	take	another	couple	of	MB,
neither	does	it	limit	the	compiler's	other	internal	buffers,	but	those
shouldn't	normally	top	1MB	anyway.	Specifying	a	very	small	number
could	decrease	performance.	Specifying	a	very	large	number	could
exhaust	system	resources	and	force	the	compiler	to	cancel	the
compilation	process.	The	default	value	is	32MB.

4.8.2.3	SetCompress

auto|force|off

This	command	sets	the	compress	flag	which	is	used	by	the	installer	to
determine	whether	or	not	data	should	be	compressed.	Typically	the
SetCompress	flag	will	affect	the	commands	after	it,	and	the	last
SetCompress	command	in	the	file	also	determines	whether	or	not	the
install	info	section	and	uninstall	data	of	the	installer	is	compressed.	If
compressflag	is	'auto',	then	files	are	compressed	if	the	compressed	size
is	smaller	than	the	uncompressed	size.	If	compressflag	is	set	to	'force',
then	the	compressed	version	is	always	used.	If	compressflag	is	'off'	then
compression	is	not	used	(which	can	be	faster).

Note	that	this	option	has	no	effect	when	solid	compression	is	used.

4.8.2.4	SetCompressor

[/SOLID]	[/FINAL]	zlib|bzip2|lzma

This	command	sets	the	compression	algorithm	used	to	compress
files/data	in	the	installer.	It	can	only	be	used	outside	of	sections	and
functions	and	before	any	data	is	compressed.	Different	compression
methods	can	not	be	used	for	different	files	in	the	same	installer.	It	is
recommended	to	use	it	at	the	very	top	of	the	script	to	avoid	compilation
errors.

Three	compression	methods	are	supported:	ZLIB,	BZIP2	and	LZMA.

ZLIB	(the	default)	uses	the	deflate	algorithm,	it	is	a	quick	and	simple
method.	With	the	default	compression	level	it	uses	about	300	KB	of
memory.

BZIP2	usually	gives	better	compression	ratios	than	ZLIB,	but	it	is	a	bit
slower	and	uses	more	memory.	With	the	default	compression	level	it
uses	about	4	MB	of	memory.

LZMA	is	a	new	compression	method	that	gives	very	good	compression
ratios.	The	decompression	speed	is	high	(10-20	MB/s	on	a	2	GHz	CPU),
the	compression	speed	is	lower.	The	memory	size	that	will	be	used	for
decompression	is	the	dictionary	size	plus	a	few	KBs,	the	default	is	8	MB.

If	/FINAL	is	used,	subsequent	calls	to	SetCompressor	will	be	ignored.

If	/SOLID	is	used,	all	of	the	installer	data	is	compressed	in	one	block.
This	results	in	greater	compression	ratios.

4.8.2.5	SetCompressorDictSize

dict_size_mb

Sets	the	dictionary	size	in	megabytes	(MB)	used	by	the	LZMA
compressor	(default	is	8	MB).

4.8.2.6	SetDatablockOptimize

on|off

This	command	tells	the	compiler	whether	or	not	to	do	datablock
optimizations.	Datablock	optimizations	causes	the	compiler	to	check	to
see	if	any	data	being	added	to	the	data	block	is	already	in	the	data	block,
and	if	so,	it	is	simply	referenced	as	opposed	to	added	(can	save	a	little	bit
of	size).	It	is	highly	recommended	to	leave	this	option	on.

4.8.2.7	SetDateSave

on|off

This	command	sets	the	file	date/time	saving	flag	which	is	used	by	the	File
command	to	determine	whether	or	not	to	save	the	last	write	date	and
time	of	the	file,	so	that	it	can	be	restored	on	installation.	Valid	flags	are
'on'	and	'off'.	'on'	is	the	default.

4.8.2.8	SetOverwrite

on|off|try|ifnewer|ifdiff|lastused

This	command	sets	the	overwrite	flag	which	is	used	by	the	File	command
to	determine	whether	or	not	the	file	should	overwrite	any	existing	files
that	are	present.	If	overwriteflag	is	'on',	files	are	overwritten	(this	is	the
default).	If	overwriteflag	is	'off',	files	that	are	already	present	are	not
overwritten.	If	overwriteflag	is	'try',	files	are	overwritten	if	possible
(meaning	that	if	the	file	is	not	able	to	be	written	to,	it	is	skipped	without
any	user	interaction).	If	overwriteflag	is	'ifnewer',	then	files	are	only
overwritten	if	the	existing	file	is	older	than	the	new	file.	If	overwriteflag	is
'ifdiff',	then	files	are	only	overwritten	if	the	existing	file	is	older	or	newer
than	the	new	file.	Note	that	when	in	'ifnewer'	or	'ifdiff'	mode,	the
destination	file's	date	is	set,	regardless	of	what	SetDateSave	is	set	to.

SetOverwrite	off
File	program.cfg	#	config	file	we	don't	want	to	overwrite
SetOverwrite	on

4.8.2.9	Unicode

true|false

Generate	a	Unicode	installer.	It	can	only	be	used	outside	of	sections	and
functions	and	before	any	data	is	compressed.

4.8.3	Version	Information

4.8.3.1	VIAddVersionKey

	[/LANG=lang_id]	keyname	value

Adds	a	string	entry	to	the	version	information	stored	in	the	installer	and
uninstaller.	These	can	be	viewed	in	the	File	Properties	Version	or	Details
tab.	keyname	can	either	be	a	special	name	known	by	Windows	or	a	user
defined	name.	/LANG=0	can	be	used	to	indicate	a	language	neutral
language	id.	The	following	names	are	known	by	Windows:

ProductName
Comments
CompanyName
LegalCopyright
FileDescription
FileVersion
ProductVersion
InternalName
LegalTrademarks
OriginalFilename
PrivateBuild
SpecialBuild

The	displayed	name	of	these	special	entries	are	translated	on	the	target
system,	whereas	user	defined	keynames	remain	untranslated.

VIAddVersionKey	/LANG=${LANG_ENGLISH}	"ProductName"	"Test	Application"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"Comments"	"A	test	comment"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"CompanyName"	"Fake	company"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"LegalTrademarks"	"Test	Application	is	a	trademark	of	Fake	company"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"LegalCopyright"	"©	Fake	company"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"FileDescription"	"Test	Application"
VIAddVersionKey	/LANG=${LANG_ENGLISH}	"FileVersion"	"1.2.3"

4.8.3.2	VIProductVersion

version_string_X.X.X.X

Sets	the	Product	Version	in	the	VS_FIXEDFILEINFO	version	information
block.

VIProductVersion	1.2.3.4

4.8.3.3	VIFileVersion

version_string_X.X.X.X

Sets	the	File	Version	in	the	VS_FIXEDFILEINFO	version	information
block	(You	should	also	set	the	FileVersion	string	with	VIAddVersionKey
so	the	information	is	displayed	at	the	top	of	the	Version	Tab	in	the
Properties	of	the	file).	If	you	don't	provide	a	File	Version	the	Product
Version	is	used	in	the	VS_FIXEDFILEINFO	block.

VIFileVersion	1.2.3.4

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.9	Instructions

4.9.1	Basic	Instructions

The	instructions	that	NSIS	uses	for	scripting	are	sort	of	a	cross	between
PHP	and	assembly.	There	are	no	real	high	level	language	constructs	but
the	instructions	themselves	are	(for	the	most	part)	high	level,	and	you
have	handy	string	capability	(i.e.	you	don't	have	to	worry	about
concatenating	strings,	etc).	You	essentially	have	25	registers	(20	general
purpose,	5	special	purpose),	and	a	stack.

4.9.1.1	Delete

[/REBOOTOK]	file

Delete	file	(which	can	be	a	file	or	wildcard,	but	should	be	specified	with	a
full	path)	from	the	target	system.	If	/REBOOTOK	is	specified	and	the	file
cannot	be	deleted	then	the	file	is	deleted	when	the	system	reboots	--	if
the	file	will	be	deleted	on	a	reboot,	the	reboot	flag	will	be	set.	The	error
flag	is	set	if	files	are	found	and	cannot	be	deleted.	The	error	flag	is	not
set	when	trying	to	delete	a	file	that	does	not	exist.

Delete	$INSTDIR\somefile.dat

Warning:	The	/REBOOTOK	switch	requires	administrator	rights	on
Windows	NT	and	later.

4.9.1.2	Exec

command

Execute	the	specified	program	and	continue	immediately.	Note	that	the
file	specified	must	exist	on	the	target	system,	not	the	compiling	system.
$OUTDIR	is	used	as	the	working	directory.	The	error	flag	is	set	if	the
process	could	not	be	launched.	Note,	if	the	command	could	have	spaces,

you	should	put	it	in	quotes	to	delimit	it	from	parameters.	e.g.:	Exec
'"$INSTDIR\command.exe"	parameters'.	If	you	don't	put	it	in	quotes	it	will
not	work	on	Windows	9x	with	or	without	parameters.

Exec	'"$INSTDIR\someprogram.exe"'
Exec	'"$INSTDIR\someprogram.exe"	some	parameters'

4.9.1.3	ExecShell

[/INVOKEIDLIST]	action	command	[parameters]	[SW_SHOWDEFAULT	|	SW_SHOWNORMAL	|	SW_SHOWMAXIMIZED	|	SW_SHOWMINIMIZED	|	SW_HIDE]

Execute	the	specified	program	using	ShellExecuteEx.	Note	that	action	is
usually	"open",	"print",	etc,	but	can	be	an	empty	string	to	use	the	default
action.	Parameters	and	the	show	type	are	optional.	$OUTDIR	is	used	as
the	working	directory.	The	error	flag	is	set	if	the	process	could	not	be
launched.

ExecShell	"open"	"http://nsis.sf.net/"
ExecShell	"open"	"$INSTDIR\readme.txt"
ExecShell	"print"	"$INSTDIR\readme.txt"
ExecShell	/INVOKEIDLIST	"properties"	"$TEMP"

4.9.1.4	ExecShellWait

[/INVOKEIDLIST]	action	command	[parameters]	[SW_SHOWDEFAULT	|	SW_SHOWNORMAL	|	SW_SHOWMAXIMIZED	|	SW_SHOWMINIMIZED	|	SW_HIDE]

Execute	the	specified	program	using	ExecShell	and	wait	for	executed
process	to	quit.	It	will	only	wait	for	executable	files	and	not	other	file	types
nor	URLs.

4.9.1.5	ExecWait

command	[user_var(exit	code)]

Execute	the	specified	program	and	wait	for	the	executed	process	to	quit.
See	Exec	for	more	information.	If	no	output	variable	is	specified	ExecWait

sets	the	error	flag	if	the	program	executed	returns	a	nonzero	error	code,
or	if	there	is	an	error.	If	an	output	variable	is	specified,	ExecWait	sets	the
variable	with	the	exit	code	(and	only	sets	the	error	flag	if	an	error	occurs;
if	an	error	occurs	the	contents	of	the	user	variable	are	undefined).	Note,	if
the	command	could	have	spaces,	you	should	put	it	in	quotes	to	delimit	it
from	parameters.	e.g.:	ExecWait	'"$INSTDIR\command.exe"	parameters'.
If	you	don't	put	it	in	quotes	it	will	not	work	on	Windows	9x	with	or	without
parameters.

ExecWait	'"$INSTDIR\someprogram.exe"'
ExecWait	'"$INSTDIR\someprogram.exe"'	$0
DetailPrint	"some	program	returned	$0"

4.9.1.6	File

[/nonfatal]	[/a]	([/r]	[/x	file|wildcard	[...]]	(file|wildcard)	[...]	|	/oname=file.dat	infile.dat)

Adds	file(s)	to	be	extracted	to	the	current	output	path	($OUTDIR).

Note	that	the	output	file	name	is	$OUTDIR\filename_portion_of_file.
Use	/oname=X	switch	to	change	the	output	name.	X	may	contain
variables	and	can	be	a	fully	qualified	path	or	a	relative	path	in	which
case	it	will	be	appended	to	$OUTDIR	set	by	SetOutPath.	When
using	this	switch,	only	one	file	can	be	specified.	If	the	output	name
contains	spaces,	quote	the	entire	parameter,	including	/oname,	as
shown	in	the	examples	below.
Wildcards	are	supported.
If	the	/r	switch	is	used,	matching	files	and	directories	are	recursively
searched	for	in	subdirectories.	If	just	one	path	segment	is	specified
(e.g.	File	/r	something),	the	current	directory	will	be	recursively
searched.	If	more	than	one	segment	is	specified	(e.g.	File	/r
something*.*),	the	last	path	segment	will	be	used	as	the	matching
condition	and	anything	before	it	specifies	which	directory	to	search
recursively.	If	a	directory	name	matches,	all	of	its	contents	is	added
recursively.	Directory	structure	is	preserved.
Use	the	/x	switch	to	exclude	files	and	directories.
If	the	/a	switch	is	used,	the	attributes	of	the	file(s)	added	will	be
preserved.

The	File	command	sets	the	error	flag	if	overwrite	mode	is	set	to	'try'
and	the	file	could	not	be	overwritten,	or	if	the	overwrite	mode	is	set	to
'on'	and	the	file	could	not	be	overwritten	and	the	user	selects	ignore.
If	the	/nonfatal	switch	is	used	and	no	files	are	found,	a	warning	will
be	issued	instead	of	an	error.

File	something.exe
File	/a	something.exe
File	*.exe
File	/r	*.dat
File	/r	data
File	/oname=temp.dat	somefile.ext
File	/oname=$TEMP\temp.dat	somefile.ext
File	"/oname=$TEMP\name	with	spaces.dat"	somefile.ext
File	/nonfatal	"a	file	that	might	not	exist"
File	/r	/x	CVS	myproject*.*
File	/r	/x	*.res	/x	*.obj	/x	*.pch	source*.*

Note:	when	using	the	/r	switch,	both	matching	directories	and	files	will	be
searched.	This	is	always	done	with	or	without	the	use	of	wildcards,	even
if	the	given	path	perfectly	matches	one	directory.	That	means,	the
following	directory	structure:

<DIR>	something
		file.dat
		another.dat
<DIR>	dir
		something
		<DIR>	dir2
				file2.dat
<DIR>	another
		<DIR>	something
				readme.txt

with	the	following	File	usage:

File	/r	something

will	match	the	directory	named	something	in	the	root	directory,	the	file
named	something	in	the	directory	named	dir	and	the	directory	named
something	in	the	directory	named	another.	To	match	only	the	directory
named	something	in	the	root	directory,	use	the	following:

File	/r	something*.*

When	adding	*.*,	it	will	be	used	as	the	matching	condition	and	something
will	be	used	as	the	directory	to	search.	When	only	something	is	specified,
the	current	directory	will	be	recursively	searched	for	every	file	and
directory	named	something	and	another\something	will	be	matched.

4.9.1.7	Rename

[/REBOOTOK]	source_file	dest_file

Rename	source_file	to	dest_file.	You	can	use	it	to	move	a	file	from
anywhere	on	the	system	to	anywhere	else	and	you	can	move	a	directory
to	somewhere	else	on	the	same	drive.	The	destination	file	must	not	exist
or	the	move	will	fail	(unless	you	are	using	/REBOOTOK).	If	/REBOOTOK
is	specified,	and	the	file	cannot	be	moved	(if,	for	example,	the	destination
exists),	then	the	file	is	moved	when	the	system	reboots.	If	the	file	will	be
moved	on	a	reboot,	the	reboot	flag	will	be	set.	The	error	flag	is	set	if	the
file	cannot	be	renamed	(and	/REBOOTOK	is	not	used)	or	if	the	source
file	does	not	exist.

If	no	absolute	path	is	specified	the	current	folder	will	be	used.	The	current
folder	is	the	folder	set	using	the	last	SetOutPath	instruction.	If	you	have
not	used	SetOutPath	the	current	folder	is	$EXEDIR.

Rename	$INSTDIR\file.ext	$INSTDIR\file.dat

Warning:	The	/REBOOTOK	switch	requires	administrator	rights	on
Windows	NT	and	later.

4.9.1.8	ReserveFile

[/nonfatal]	[/r]	[/x	file|wildcard	[...]]	file	[file...]	|	[/nonfatal]	/plugin	file.dll

Reserves	a	file	in	the	data	block	for	later	use.	Files	are	added	to	the
compressed	data	block	in	the	order	they	appear	in	the	script.	Functions,
however,	are	not	necessarily	called	in	the	order	they	appear	in	the	script.
Therefore,	if	you	add	a	file	in	a	function	called	early	but	put	the	function	at
the	end	of	the	script,	all	of	the	files	added	earlier	will	have	to	be
decompressed	to	get	to	the	required	file.	This	process	can	take	a	long
time	if	there	a	lot	of	files.	.onInit	is	one	such	function.	It	is	called	at	the
very	beginning,	before	anything	else	appears.	If	you	put	it	at	the	very	end
of	the	script,	extract	some	files	in	it	and	have	lots	of	files	added	before	it,
the	installer	might	take	a	very	long	time	to	load.	This	is	where	this
command	comes	useful,	allowing	you	to	speed	up	the	loading	process	by
including	the	file	at	the	top	of	the	data	block	instead	of	letting	NSIS	seek
all	the	way	down	to	the	bottom	of	the	compressed	data	block.

Use	/plugin	to	reserve	a	plugin	in	${NSISDIR}\Plugins*.

See	File	for	more	information	about	the	parameters.

4.9.1.9	RMDir

[/r]	[/REBOOTOK]	directory_name

Remove	the	specified	directory	(fully	qualified	path	with	no	wildcards).
Without	/r,	the	directory	will	only	be	removed	if	it	is	completely	empty.	If	/r
is	specified	the	directory	will	be	removed	recursively,	so	all	directories
and	files	in	the	specified	directory	will	be	removed.	If	/REBOOTOK	is
specified,	any	file	or	directory	which	could	not	be	removed	during	the
process	will	be	removed	on	reboot	--	if	any	file	or	directory	will	be
removed	on	a	reboot,	the	reboot	flag	will	be	set.	The	error	flag	is	set	if
any	file	or	directory	cannot	be	removed.

RMDir	$INSTDIR
RMDir	$INSTDIR\data
RMDir	/r	/REBOOTOK	$INSTDIR
RMDir	/REBOOTOK	$INSTDIR\DLLs

Note	that	the	current	working	directory	can	not	be	deleted.	The	current
working	directory	is	set	by	SetOutPath.	For	example,	the	following
example	will	not	delete	the	directory.

SetOutPath	$TEMP\dir
RMDir	$TEMP\dir

The	next	example	will	succeed	in	deleting	the	directory.

SetOutPath	$TEMP\dir
SetOutPath	$TEMP
RMDir	$TEMP\dir

Warning:	Using	RMDir	/r	$INSTDIR	in	the	uninstaller	is	not	safe.
Though	it	is	unlikely,	the	user	might	select	to	install	to	the	root	of	the
Program	Files	folder	and	this	command	would	wipe	out	the	entire
Program	Files	folder,	including	all	other	installed	programs!	The	user
can	also	put	other	files	in	the	installation	folder	and	wouldn't	expect
them	to	get	deleted	along	with	the	program.	Solutions	are	available	for
easily	uninstalling	only	files	which	were	installed	by	the	installer.

Warning:	The	/REBOOTOK	switch	requires	administrator	rights	on
Windows	NT	and	later.

4.9.1.10	SetOutPath

outpath

Sets	the	output	path	($OUTDIR)	and	creates	it	(recursively	if	necessary),
if	it	does	not	exist.	Must	be	a	full	pathname,	usually	is	just	$INSTDIR	(you
can	specify	$INSTDIR	with	a	single	"-"	if	you	are	lazy).

SetOutPath	$INSTDIR
File	program.exe

4.9.2	Registry,	INI,	File	Instructions

http://nsis.sourceforge.net/Uninstall_only_installed_files

In	all	of	the	below	registry	instructions	use	an	empty	string	(just	two
quotes	with	nothing	between	them	-	"")	as	the	key	name	to	specify	the
default	key	which	is	shown	as	(Default)	in	regedit.exe.

Use	SetRegView	on	64-bit	Windows	to	choose	which	registry	view	is
used.

If	a	full	path	is	not	specified	for	any	of	the	INI	handling	instructions,	the
Windows	directory	will	be	used.

4.9.2.1	DeleteINISec

ini_filename	section_name

Deletes	the	entire	section	[section_name]	from	ini_filename.	If	the	section
could	not	be	removed	from	the	ini	file,	the	error	flag	is	set.	It	does	not	set
the	error	flag	if	the	section	could	not	be	found.

WriteINIStr	$TEMP\something.ini	section1	something	123
WriteINIStr	$TEMP\something.ini	section1	somethingelse	1234
WriteINIStr	$TEMP\something.ini	section2	nsis	true
DeleteINISec	$TEMP\something.ini	section1

4.9.2.2	DeleteINIStr

ini_filename	section_name	str_name

Deletes	the	string	str_name	from	section	[section_name]	from
ini_filename.	If	the	string	could	not	be	removed	from	the	ini	file,	the	error
flag	is	set.	It	does	not	set	the	error	flag	if	the	string	could	not	be	found.

WriteINIStr	$TEMP\something.ini	section1	something	123
WriteINIStr	$TEMP\something.ini	section1	somethingelse	1234
DeleteINIStr	$TEMP\something.ini	section1	somethingelse

4.9.2.3	DeleteRegKey

[/ifempty]	root_key	subkey

Deletes	a	registry	key.	If	/ifempty	is	specified,	the	registry	key	will	only	be
deleted	if	it	has	no	subkeys	(otherwise,	the	whole	registry	tree	will	be
removed).	Valid	values	for	root_key	are	listed	under	WriteRegStr.	The
error	flag	is	set	if	the	key	could	not	be	removed	from	the	registry	(or	if	it
didn't	exist	to	begin	with).

DeleteRegKey	HKLM	"Software\My	Company\My	Software"
DeleteRegKey	/ifempty	HKLM	"Software\A	key	that	might	have	subkeys"

4.9.2.4	DeleteRegValue

root_key	subkey	key_name

Deletes	a	registry	value.	Valid	values	for	root_key	are	listed	under
WriteRegStr.	The	error	flag	is	set	if	the	value	could	not	be	removed	from
the	registry	(or	if	it	didn't	exist	to	begin	with).

DeleteRegValue	HKLM	"Software\My	Company\My	Software"	"some	value"

4.9.2.5	EnumRegKey

user_var(output)	root_key	subkey	index

Set	user	variable	$x	with	the	name	of	the	'index'th	registry	key	in
root_key\Subkey.	Valid	values	for	root_key	are	listed	under	WriteRegStr.
Returns	an	empty	string	if	there	are	no	more	keys,	and	returns	an	empty
string	and	sets	the	error	flag	if	there	is	an	error.

StrCpy	$0	0
loop:
		EnumRegKey	$1	HKLM	Software	$0
		StrCmp	$1	""	done
		IntOp	$0	$0	+	1
		MessageBox	MB_YESNO|MB_ICONQUESTION	"1\n$\nMore?"	IDYES	loop
done:

4.9.2.6	EnumRegValue

user_var(output)	root_key	subkey	index

Set	user	variable	$x	with	the	name	of	the	'index'th	registry	value	in
root_key\Subkey.	Valid	values	for	root_key	are	listed	under	WriteRegStr.
Returns	an	empty	string	and	sets	the	error	flag	if	there	are	no	more
values	or	if	there	is	an	error.

StrCpy	$0	0
loop:
		ClearErrors
		EnumRegValue	$1	HKLM	Software\Microsoft\Windows\CurrentVersion	$0
		IfErrors	done
		IntOp	$0	$0	+	1
		ReadRegStr	$2	HKLM	Software\Microsoft\Windows\CurrentVersion	$1
		MessageBox	MB_YESNO|MB_ICONQUESTION	"$1	=	2\n$\nMore?"	IDYES	loop
done:

4.9.2.7	ExpandEnvStrings

user_var(output)	string

Expands	environment	variables	in	string	into	the	user	variable	$x.	If	an
environment	variable	doesn't	exist,	it	will	not	be	replaced.	For	example,	if
you	use	"%var%"	and	var	doesn't	exists,	the	result	will	be	"%var%".	If
there	is	an	error,	the	variable	is	set	to	empty,	and	the	error	flag	is	set.

ExpandEnvStrings	$0	"WINDIR=%WINDIR%$\nTEMP=%TEMP%"

4.9.2.8	FlushINI

ini_filename

Flushes	the	INI	file's	buffers.	Windows	9x	keeps	all	changes	to	the	INI	file
in	memory.	This	command	causes	the	changes	to	be	written	to	the	disk

immediately.	Use	it	if	you	edit	the	INI	manually,	delete	it,	move	it	or	copy	it
right	after	you	change	it	with	WriteINIStr,	DeleteINISec	or	DeleteINStr.

WriteINIStr	$TEMP\something.ini	test	test	test
FlushINI	$TEMP\something.ini
Delete	$TEMP\something.ini

4.9.2.9	ReadEnvStr

user_var(output)	name

Reads	from	the	environment	string	"name"	and	sets	the	value	into	the
user	variable	$x.	If	there	is	an	error	reading	the	string,	the	user	variable	is
set	to	empty,	and	the	error	flag	is	set.

ReadEnvStr	$0	WINDIR
ReadEnvStr	$1	TEMP

4.9.2.10	ReadINIStr

user_var(output)	ini_filename	section_name	entry_name

Reads	from	entry_name	in	[section_name]	of	ini_filename	and	stores	the
value	into	user	variable	$x.	The	error	flag	will	be	set	and	$x	will	be
assigned	to	an	empty	string	if	the	entry	is	not	found.

ReadINIStr	$0	$INSTDIR\winamp.ini	winamp	outname

4.9.2.11	ReadRegDWORD

user_var(output)	root_key	sub_key	name

Reads	a	32-bit	DWORD	from	the	registry	into	the	user	variable	$x.	Valid
values	for	root_key	are	listed	under	WriteRegStr.	The	error	flag	will	be
set	and	$x	will	be	set	to	an	empty	string	(""	which	is	interpreted	as	0	in
math	operations)	if	the	DWORD	is	not	present.	If	the	value	is	present,	but

is	not	a	DWORD,	it	will	be	read	as	a	string	and	the	error	flag	will	be	set.

ReadRegDWORD	$0	HKLM	Software\NSIS	VersionBuild

4.9.2.12	ReadRegStr

user_var(output)	root_key	sub_key	name

Reads	from	the	registry	into	the	user	variable	$x.	Valid	values	for
root_key	are	listed	under	WriteRegStr.	The	error	flag	will	be	set	and	$x
will	be	set	to	an	empty	string	("")	if	the	string	is	not	present.	If	the	value	is
present,	but	is	of	type	REG_DWORD,	it	will	be	read	and	converted	to	a
string	and	the	error	flag	will	be	set.

ReadRegStr	$0	HKLM	Software\NSIS	""
DetailPrint	"NSIS	is	installed	at:	$0"

4.9.2.13	WriteINIStr

ini_filename	section_name	entry_name	value

Writes	entry_name=value	into	[section_name]	of	ini_filename.	The	error
flag	is	set	if	the	string	could	not	be	written	to	the	ini	file.

WriteINIStr	$TEMP\something.ini	section1	something	123
WriteINIStr	$TEMP\something.ini	section1	somethingelse	1234
WriteINIStr	$TEMP\something.ini	section2	nsis	true

4.9.2.14	WriteRegBin

root_key	subkey	key_name	valuedata

This	command	writes	a	block	of	binary	data	to	the	registry.	Valid	values
for	root_key	are	listed	under	WriteRegStr.	Valuedata	is	in	hexadecimal
(e.g.	DEADBEEF01223211151).	The	error	flag	is	set	if	the	binary	data
could	not	be	written	to	the	registry.	If	the	registry	key	doesn't	exist	it	will

be	created.

WriteRegBin	HKLM	"Software\My	Company\My	Software"	"Binary	Value"	DEADBEEF01223211151

4.9.2.15	WriteRegDWORD

root_key	subkey	key_name	value

This	command	writes	a	DWORD	(32-bit	integer)	to	the	registry	(a	user
variable	can	be	specified).	Valid	values	for	root_key	are	listed	under
WriteRegStr.	The	error	flag	is	set	if	the	dword	could	not	be	written	to	the
registry.	If	the	registry	key	doesn't	exist	it	will	be	created.

WriteRegDWORD	HKLM	"Software\My	Company\My	Software"	"DWORD	Value"	0xDEADBEEF

4.9.2.16	WriteRegStr

root_key	subkey	key_name	value

Write	a	string	to	the	registry.	See	WriteRegExpandStr	for	more	details.

WriteRegStr	HKLM	"Software\My	Company\My	Software"	"String	Value"	"dead	beef"

4.9.2.17	WriteRegExpandStr

root_key	subkey	key_name	value

Write	a	string	to	the	registry.	root_key	must	be	one	of:

HKCR	or	HKEY_CLASSES_ROOT
HKLM	or	HKEY_LOCAL_MACHINE
HKCU	or	HKEY_CURRENT_USER
HKU	or	HKEY_USERS
HKCC	or	HKEY_CURRENT_CONFIG
HKDD	or	HKEY_DYN_DATA
HKPD	or	HKEY_PERFORMANCE_DATA

SHCTX	or	SHELL_CONTEXT
HKCR32	or	HKCR64
HKCU32	or	HKCU64
HKLM32	or	HKLM64

If	root_key	is	SHCTX	or	SHELL_CONTEXT,	it	will	be	replaced	with
HKLM	if	SetShellVarContext	is	set	to	all	and	with	HKCU	if
SetShellVarContext	is	set	to	current.

The	error	flag	is	set	if	the	string	could	not	be	written	to	the	registry.	The
type	of	the	string	will	be	REG_SZ	for	WriteRegStr,	or
REG_EXPAND_STR	for	WriteRegExpandStr.	If	the	registry	key	doesn't
exist	it	will	be	created.

WriteRegExpandStr	HKLM	"Software\My	Company\My	Software"	"Expand	String	Value"	"%WINDIR%\notepad.exe"

4.9.2.18	WriteRegMultiStr

/REGEDIT5	root_key	subkey	key_name	value

Writes	a	multi-string	value.	The	/REGEDIT5	switch	must	be	used	and
specifies	that	the	data	is	in	the	hex	format	used	by	.reg	files	on	Windows
2000	and	later.

WriteRegMultiStr	/REGEDIT5	HKCU	"Software\NSIS\Test"	"Multi	Value"	66,00,6f,00,6f,00,00,00,62,00,61,00,72,00,00,00,00,00

4.9.2.19	SetRegView

32|64|default|lastused

Sets	the	registry	view	affected	by	registry	commands	(root	keys	with	a
32/64	suffix	are	not	affected).	On	64-bit	versions	of	Windows	there	are
two	views;	one	for	32-bit	applications	and	one	for	64-bit	applications.	By
default,	32-bit	applications	running	on	64-bit	systems	(WOW64)	only
have	access	to	the	32-bit	view.	Using	SetRegView	64	allows	the	installer	to
access	keys	in	the	64-bit	view	of	the	registry.	Registry	operations	will	fail
if	the	selected	view	is	not	supported	by	Windows.

Affects	DeleteRegKey,	DeleteRegValue,	EnumRegKey,	EnumRegValue,
ReadRegDWORD,	ReadRegStr,	WriteRegBin,	WriteRegDWORD,
WriteRegStr	and	WriteRegExpandStr.

Does	not	affect	InstallDirRegKey.	Instead,	the	registry	must	be	read
using	ReadRegStr	in	.onInit.

SetRegView	32
ReadRegStr	$0	HKLM	Software\Microsoft\Windows\CurrentVersion	ProgramFilesDir
DetailPrint	$0	#	prints	C:\Program	Files	(x86)
!include	x64.nsh
${If}	${RunningX64}
		SetRegView	64
		ReadRegStr	$0	HKLM	Software\Microsoft\Windows\CurrentVersion	ProgramFilesDir
		DetailPrint	$0	#	prints	C:\Program	Files
${EndIf}

Function	.onInit
		${If}	${RunningX64}
				SetRegView	64
				ReadRegStr	$INSTDIR	HKLM	Software\NSIS	""
				SetRegView	Default
		${EndIf}
FunctionEnd

4.9.3	General	Purpose	Instructions

4.9.3.1	CallInstDLL

dllfile	function_name

Calls	a	function	named	function_name	inside	a	NSIS	extension	DLL,	a
plug-in.	See	the	example	plugin	for	how	to	make	one.	Extension	DLLs
can	access	the	stack	and	variables.	Note:	To	automatically	extract	and
call	plug-in	DLLs,	use	a	plug-in	command	instead	of	CallInstDLL.

Push	"a	parameter"

Push	"another	parameter"
CallInstDLL	$INSTDIR\somedll.dll	somefunction

For	easier	plug-in	handling,	use	the	new	plug-in	call	syntax.

4.9.3.2	CopyFiles

[/SILENT]	[/FILESONLY]	filespec_on_destsys	destination_path	[size_of_files_in_kb]

Copies	files	from	the	source	to	the	destination	on	the	installing	system.
Useful	with	$EXEDIR	if	you	want	to	copy	from	installation	media,	or	to
copy	from	one	place	to	another	on	the	system.	You	might	see	a	Windows
status	window	of	the	copy	operation	if	the	operation	takes	a	lot	of	time	(to
disable	this,	use	/SILENT).	The	last	parameter	can	be	used	to	specify	the
size	of	the	files	that	will	be	copied	(in	kilobytes),	so	that	the	installer	can
approximate	the	disk	space	requirements.	On	error,	or	if	the	user	cancels
the	copy	(only	possible	when	/SILENT	was	omitted),	the	error	flag	is	set.
If	/FILESONLY	is	specified,	only	files	are	copied.

Fully-qualified	path	names	should	always	be	used	with	this	instruction.
Using	relative	paths	will	have	unpredictable	results.

CreateDirectory	$INSTDIR\backup
CopyFiles	$INSTDIR*.dat	$INSTDIR\backup

4.9.3.3	CreateDirectory

path_to_create

Creates	(recursively	if	necessary)	the	specified	directory.	The	error	flag	is
set	if	the	directory	couldn't	be	created.

You	should	always	specify	an	absolute	path.

CreateDirectory	$INSTDIR\some\directory

4.9.3.4	CreateShortcut

[/NoWorkingDir]	link.lnk	target.file	[parameters	[icon.file	[icon_index_number	[start_options	[keyboard_shortcut	[description]]]]]]

Creates	a	shortcut	'link.lnk'	that	links	to	'target.file',	with	optional
parameters	'parameters'.	The	icon	used	for	the	shortcut	is
'icon.file,icon_index_number';	for	default	icon	settings	use	empty	strings
for	both	icon.file	and	icon_index_number.	start_options	should	be	one	of:
SW_SHOWNORMAL,	SW_SHOWMAXIMIZED,	SW_SHOWMINIMIZED,
or	an	empty	string.	keyboard_shortcut	should	be	in	the	form	of	'flag|c'
where	flag	can	be	a	combination	(using	|)	of:	ALT,	CONTROL,	EXT,	or
SHIFT.	c	is	the	character	to	use	(a-z,	A-Z,	0-9,	F1-F24,	etc).	Note	that	no
spaces	are	allowed	in	this	string.	A	good	example	is	"ALT|CONTROL|F8".
$OUTDIR	is	used	as	the	working	directory.	You	can	change	it	by	using
SetOutPath	before	creating	the	Shortcut	or	use	/NoWorkingDir	if	you
don't	need	to	set	the	working	directory.	description	should	be	the
description	of	the	shortcut,	or	comment	as	it	is	called	under	XP.	The	error
flag	is	set	if	the	shortcut	cannot	be	created	(i.e.	either	of	the	paths	(link	or
target)	does	not	exist,	or	some	other	error).

CreateDirectory	"$SMPROGRAMS\My	Company"
CreateShortcut	"$SMPROGRAMS\My	Company\My	Program.lnk"	"$INSTDIR\My	Program.exe"	\
		"some	command	line	parameters"	"$INSTDIR\My	Program.exe"	2	SW_SHOWNORMAL	\
		ALT|CONTROL|SHIFT|F5	"a	description"

4.9.3.5	GetDLLVersion

filename	user_var(high	dword	output)	user_var(low	dword	output)

Gets	the	version	information	from	the	DLL	(or	any	other	executable
containing	version	information)	in	"filename".	Sets	the	user	output
variables	with	the	high	and	low	dwords	of	version	information	on	success;
on	failure	the	outputs	are	empty	and	the	error	flag	is	set.	The	following
example	reads	the	DLL	version	and	copies	a	human	readable	version	of
it	into	$0:

GetDllVersion	"$INSTDIR\MyDLL.dll"	$R0	$R1
IntOp	$R2	$R0	/	0x00010000
IntOp	$R3	$R0	&	0x0000FFFF
IntOp	$R4	$R1	/	0x00010000

IntOp	$R5	$R1	&	0x0000FFFF
StrCpy	$0	"$R2.$R3.$R4.$R5"

4.9.3.6	GetDLLVersionLocal

localfilename	user_var(high	dword	output)	user_var(low	dword	output)

This	is	similar	to	GetDLLVersion,	only	it	acts	on	the	system	building	the
installer	(it	actually	compiles	into	two	StrCpy	commands).	Sets	the	two
output	variables	with	the	DLL	version	information	of	the	DLL	on	the	build
system.	Use	!getdllversion	if	you	need	to	use	the	values	with
VIProductVersion.

4.9.3.7	GetFileTime

filename	user_var(high	dword	output)	user_var(low	dword	output)

Gets	the	last	write	time	of	"filename".	Sets	the	user	output	variables	with
the	high	and	low	dwords	of	the	FILETIME	timestamp	on	success;	on
failure	the	outputs	are	empty	and	the	error	flag	is	set.

4.9.3.8	GetFileTimeLocal

localfilename	user_var(high	dword	output)	user_var(low	dword	output)

This	is	similar	to	GetFileTime,	only	it	acts	on	the	system	building	the
installer	(it	actually	compiles	into	two	StrCpy	commands).	Sets	the	two
output	variables	with	the	file	timestamp	of	the	file	on	the	build	system.

4.9.3.9	GetFullPathName

[/SHORT]	user_var(output)	path_or_file

Assign	the	full	path	of	the	file	specified	to	user	variable	$x.	If	the	path
portion	of	the	parameter	is	not	found,	the	error	flag	will	be	set	and	$x	will

be	empty.	If	/SHORT	is	specified,	the	path	is	converted	to	the	short
filename	form.	However,	if	/SHORT	is	not	specified,	the	path	isn't
converted	to	its	long	filename	form.	To	get	the	long	filename,	call
GetLongPathName	using	the	System	plug-in.	Note	that
GetLongPathName	is	only	available	on	Windows	98,	Windows	2000	and
above.

StrCpy	$INSTDIR	$PROGRAMFILES\NSIS
SetOutPath	$INSTDIR
GetFullPathName	$0	..
DetailPrint	$0	#	will	print	C:\Program	Files
GetFullPathName	/SHORT	$0	$INSTDIR
DetailPrint	$0	#	will	print	C:\Progra~1\NSIS

StrCpy	$0	C:\Progra~1\NSIS
System::Call	'kernel32::GetLongPathName(t	r0,	t	.r1,	i	${NSIS_MAX_STRLEN})	i	.r2'
StrCmp	$2	error	+2
StrCpy	$0	$1
DetailPrint	$0	#	will	print	C:\Program	Files\NSIS,	where	supported

4.9.3.10	GetTempFileName

user_var(output)	[base_dir]

Assign	to	the	user	variable	$x,	the	name	of	a	temporary	file.	The	file	will
be	created	for	you	and	it	will	be	empty.	The	name	of	the	temporary	file	is
guaranteed	to	be	unique.	If	to	want	the	temporary	file	to	be	created	in
another	directory	other	than	the	Windows	temp	directory,	specify	a
base_dir.	You	should	Delete	the	file	when	you	are	done	with	it.

GetTempFileName	$0
File	/oname=$0	something.dat
#	do	something	with	something.dat
Delete	$0

4.9.3.11	SearchPath

user_var(output)	filename

Assign	to	the	user	variable	$x,	the	full	path	of	the	file	named	by	the
second	parameter.	The	error	flag	will	be	set	and	$x	will	be	empty	if	the
file	cannot	be	found.	Uses	SearchPath()	to	search	the	system	paths	for
the	file.

4.9.3.12	SetFileAttributes

filename	attribute1|attribute2|...

Sets	the	file	attributes	of	'filename'.	Valid	attributes	can	be	combined	with
|	and	are:

NORMAL	or	FILE_ATTRIBUTE_NORMAL	(you	can	use	0	to
abbreviate	this)
ARCHIVE	or	FILE_ATTRIBUTE_ARCHIVE
HIDDEN	or	FILE_ATTRIBUTE_HIDDEN
OFFLINE	or	FILE_ATTRIBUTE_OFFLINE
READONLY	or	FILE_ATTRIBUTE_READONLY
SYSTEM	or	FILE_ATTRIBUTE_SYSTEM
TEMPORARY	or	FILE_ATTRIBUTE_TEMPORARY

The	error	flag	will	be	set	if	the	file's	attributes	cannot	be	set	(i.e.	the	file
doesn't	exist,	or	you	don't	have	the	right	permissions).	You	can	only	set
attributes.	It's	not	possible	to	unset	them.	If	you	want	to	remove	an
attribute	use	NORMAL.	This	way	all	attributes	are	erased.	This	command
doesn't	support	wildcards.

4.9.3.13	RegDLL

dllfile	[entrypoint_name]

Loads	the	specified	DLL	and	calls	DllRegisterServer	(or	entrypoint_name
if	specified).	The	error	flag	is	set	if	an	error	occurs	(i.e.	it	can't	load	the
DLL,	initialize	OLE,	find	the	entry	point,	or	the	function	returned	anything
other	than	ERROR_SUCCESS	(=0)).

http://msdn.microsoft.com/en-us/library/aa365527

Use	SetOutPath	to	set	the	current	directory	for	DLLs	that	depend	on
other	DLLs	that	are	now	in	the	path	or	in	the	Windows	directory.	For
example,	if	foo.dll	depends	on	bar.dll	which	is	located	in	$INSTDIR	use:

	SetOutPath	$INSTDIR
	RegDLL	$INSTDIR\foo.dll

4.9.3.14	UnRegDLL

dllfile

Loads	the	specified	DLL	and	calls	DllUnregisterServer.	The	error	flag	is
set	if	an	error	occurs	(i.e.	it	can't	load	the	DLL,	initialize	OLE,	find	the
entry	point,	or	the	function	returned	anything	other	than
ERROR_SUCCESS	(=0)).

4.9.4	Flow	Control	Instructions

4.9.4.1	Abort

[user_message]

Cancels	the	install,	stops	execution	of	script,	and	displays	user_message
in	the	status	display.	Note:	you	can	use	this	from	Callback	functions	to	do
special	things.	Page	callbacks	also	uses	Abort	for	special	purposes.

Abort
Abort	"can't	install"

4.9.4.2	Call

function_name	|	:label_name	|	user_var(input)

Calls	the	function	named	function_name,	the	label	named	label_name,	or
a	variable	that	specifies	an	address.	An	address	is	returned	by
GetCurrentAddress,	GetFunctionAddress	or	GetLabelAddress.	A	call

returns	when	it	encounters	a	Return	instruction.	Sections	and	functions
are	automatically	ended	with	a	Return	instruction.	Uninstall	functions
cannot	be	called	from	installer	functions	and	sections,	and	vice-versa.

Function	func
		Call	:label
		DetailPrint	"#1:	This	will	only	appear	1	time."
label:
		DetailPrint	"#2:	This	will	appear	before	and	after	message	#1."
		Call	:.global_label
FunctionEnd

Section
		Call	func
		Return

.global_label:
		DetailPrint	"#3:	The	global	label	was	called"
SectionEnd

4.9.4.3	ClearErrors

Clears	the	error	flag.

ClearErrors
IfErrors	0	+2
		MessageBox	MB_OK	"this	message	box	will	never	show"

4.9.4.4	GetCurrentAddress

user_var(output)

Gets	the	address	of	the	current	instruction	(the	GetCurrentAddress)	and
stores	it	in	the	output	user	variable.	This	user	variable	then	can	be
passed	to	Call	or	Goto.

Function	func
		DetailPrint	"function"
		IntOp	$0	$0	+	2	;	Calculate	the	address	after	of	the	instruction	after	"Goto	callFunc"	in	the	Section
		Call	$0
		DetailPrint	"function	end"
FunctionEnd

Section
		DetailPrint	"section"
		GetCurrentAddress	$0
		Goto	callFunc

		DetailPrint	"back	in	section"
		Return

callFunc:
		Call	func
		DetailPrint	"section	end"
SectionEnd

4.9.4.5	GetFunctionAddress

user_var(output)	function_name

Gets	the	address	of	the	function	and	stores	it	in	the	output	user	variable.
This	user	variable	then	can	be	passed	to	Call	or	Goto.	Note	that	if	you
Goto	an	address	which	is	the	output	of	GetFunctionAddress,	your
function	will	never	be	returned	to	(when	the	function	you	Goto'd	to
returns,	you	return	instantly).

Function	func
		DetailPrint	"function"
FunctionEnd

Section
		GetFunctionAddress	$0	func
		Call	$0

SectionEnd

4.9.4.6	GetLabelAddress

user_var(output)	label

Gets	the	address	of	the	label	and	stores	it	in	the	output	user	variable.
This	user	variable	then	can	be	passed	to	Call	or	Goto.	Note	that	you	may
only	call	this	with	labels	accessible	from	your	function,	but	you	can	call	it
from	anywhere	(which	is	potentially	dangerous).	Note	that	if	you	Call	the
output	of	GetLabelAddress,	code	will	be	executed	until	it	Return's
(explicitly	or	implicitly	at	the	end	of	a	function),	and	then	you	will	be
returned	to	the	statement	after	the	Call.

label:
DetailPrint	"label"
GetLabelAddress	$0	label
IntOp	$0	$0	+	4
Goto	$0
DetailPrint	"done"

4.9.4.7	Goto

label_to_jump_to	|	+offset|	-offset|	user_var(target)

If	label	is	specified,	goto	the	label	'label_to_jump_to:'.

If	+offset	or	-offset	is	specified,	jump	is	relative	by	offset	instructions.
Goto	+1	goes	to	the	next	instruction,	Goto	-1	goes	to	the	previous
instruction,	etc.

If	a	user	variable	is	specified,	jumps	to	absolute	address	(generally	you
will	want	to	get	this	value	from	a	function	like	GetLabelAddress).
Compiler	flag	commands	and	SectionIn	aren't	instructions	so	jumping
over	them	has	no	effect.

Goto	label

Goto	+2
Goto	-2
Goto	$0

4.9.4.8	IfAbort

label_to_goto_if_abort	[label_to_goto_if_no_abort]

Will	"return"	true	if	the	installation	has	been	aborted.	This	can	happen	if
the	user	chose	abort	on	a	file	that	failed	to	create	(or	overwrite)	or	if	the
user	aborted	by	hand.	This	function	can	only	be	called	from	the	leave
function	of	the	instfiles	page.

Page	instfiles	""	""	instfilesLeave

Function	instfilesLeave
		IfAbort	0	+2
				MessageBox	MB_OK	"user	aborted"
FunctionEnd

4.9.4.9	IfErrors

jumpto_iferror	[jumpto_ifnoerror]

Checks	and	clears	the	error	flag,	and	if	it	is	set,	it	will	goto	jumpto_iferror,
otherwise	it	will	goto	jumpto_ifnoerror.	The	error	flag	is	set	by	other
instructions	when	a	recoverable	error	(such	as	trying	to	delete	a	file	that
is	in	use)	occurs.

ClearErrors
File	file.dat
IfErrors	0	+2
		Call	ErrorHandler

4.9.4.10	IfFileExists

file_to_check_for	jump_if_present	[jump_otherwise]

Checks	for	existence	of	file(s)	file_to_check_for	(which	can	be	a	wildcard,
or	a	directory),	and	Gotos	jump_if_present	if	the	file	exists,	otherwise
Gotos	jump_otherwise.	If	you	want	to	check	to	see	if	a	file	is	a	directory,
use	IfFileExists	DIRECTORY*.*

IfFileExists	$WINDIR\notepad.exe	0	+2
		MessageBox	MB_OK	"notepad	is	installed"

4.9.4.11	IfRebootFlag

jump_if_set	[jump_if_not_set]

Checks	the	reboot	flag,	and	jumps	to	jump_if_set	if	the	reboot	flag	is	set,
otherwise	jumps	to	jump_if_not_set.	The	reboot	flag	can	be	set	by	Delete
and	Rename,	or	manually	with	SetRebootFlag.

IfRebootFlag	0	noreboot
		MessageBox	MB_YESNO	"A	reboot	is	required	to	finish	the	installation.	Do	you	wish	to	reboot	now?"	IDNO	noreboot
				Reboot
noreboot:

4.9.4.12	IfSilent

jump_if_silent	[jump_if_not]

Checks	the	silent	flag,	and	jumps	to	jump_if_silent	if	the	installer	is	silent,
otherwise	jumps	to	jump_if_not.	The	silent	flag	can	be	set	by	SilentInstall,
SilentUninstall,	SetSilent	and	by	the	user	passing	/S	on	the	command
line.

IfSilent	+2
		ExecWait	'"$INSTDIR\nonsilentprogram.exe"'

4.9.4.13	IntCmp

val1	val2	jump_if_equal	[jump_if_val1_less]	[jump_if_val1_more]

Compares	two	integers	val1	and	val2.	If	val1	and	val2	are	equal,	Gotos
jump_if_equal,	otherwise	if	val1	<	val2,	Gotos	jump_if_val1_less,
otherwise	if	val1	>	val2,	Gotos	jump_if_val1_more.

IntCmp	$0	5	is5	lessthan5	morethan5
is5:
		DetailPrint	"$$0	==	5"
		Goto	done
lessthan5:
		DetailPrint	"$$0	<	5"
		Goto	done
morethan5:
		DetailPrint	"$$0	>	5"
		Goto	done
done:

4.9.4.14	IntCmpU

val1	val2	jump_if_equal	[jump_if_val1_less]	[jump_if_val1_more]

Same	as	IntCmp,	but	treats	the	values	as	unsigned	integers.

4.9.4.15	MessageBox

mb_option_list	messagebox_text	[/SD	return]	[return_check	jumpto	[return_check_2	jumpto_2]]

Displays	a	MessageBox	containing	the	text	"messagebox_text".
mb_option_list	must	be	one	or	more	of	the	following,	delimited	by	|s	(e.g.
MB_YESNO|MB_ICONSTOP).

MB_OK	-	Display	with	an	OK	button
MB_OKCANCEL	-	Display	with	an	OK	and	a	cancel	button
MB_ABORTRETRYIGNORE	-	Display	with	abort,	retry,	ignore
buttons
MB_RETRYCANCEL	-	Display	with	retry	and	cancel	buttons

MB_YESNO	-	Display	with	yes	and	no	buttons
MB_YESNOCANCEL	-	Display	with	yes,	no,	cancel	buttons
MB_ICONEXCLAMATION	-	Display	with	exclamation	icon
MB_ICONINFORMATION	-	Display	with	information	icon
MB_ICONQUESTION	-	Display	with	question	mark	icon
MB_ICONSTOP	-	Display	with	stop	icon
MB_USERICON	-	Display	with	installer's	icon
MB_TOPMOST	-	Make	messagebox	topmost
MB_SETFOREGROUND	-	Set	foreground
MB_RIGHT	-	Right	align	text
MB_RTLREADING	-	RTL	reading	order
MB_DEFBUTTON1	-	Button	1	is	default
MB_DEFBUTTON2	-	Button	2	is	default
MB_DEFBUTTON3	-	Button	3	is	default
MB_DEFBUTTON4	-	Button	4	is	default

Return_check	can	be	0	(or	empty,	or	left	off),	or	one	of	the	following:

IDABORT	-	Abort	button
IDCANCEL	-	Cancel	button
IDIGNORE	-	Ignore	button
IDNO	-	No	button
IDOK	-	OK	button
IDRETRY	-	Retry	button
IDYES	-	Yes	button

If	the	return	value	of	the	MessageBox	is	return_check,	the	installer	will
Goto	jumpto.

Use	the	/SD	parameter	with	one	of	the	return_check	values	above	to
specify	the	option	that	will	be	used	when	the	installer	is	silent.	See
section	4.12	for	more	information.

MessageBox	MB_OK	"simple	message	box"
MessageBox	MB_YESNO	"is	it	true?"	IDYES	true	IDNO	false
true:
		DetailPrint	"it's	true!"
		Goto	next
false:

		DetailPrint	"it's	false"
next:
MessageBox	MB_YESNO	"is	it	true?	(defaults	to	yes	on	silent	installations)"	/SD	IDYES	IDNO	false2
		DetailPrint	"it's	true	(or	silent)!"
		Goto	next2
false2:
		DetailPrint	"it's	false"
next2:

4.9.4.16	Return

Returns	from	a	function	or	section.

Function	func
		StrCmp	$0	"return	now"	0	+2
				Return
		#	do	stuff
FunctionEnd

Section
		Call	func
		;"Return"	will	return	here
SectionEnd

4.9.4.17	Quit

Causes	the	installer	to	exit	as	soon	as	possible.	After	Quit	is	called,	the
installer	will	exit	(no	callback	functions	will	get	a	chance	to	run).

4.9.4.18	SetErrors

Sets	the	error	flag.

SetErrors
IfErrors	0	+2

		MessageBox	MB_OK	"this	message	box	will	always	show"

4.9.4.19	StrCmp

str1	str2	jump_if_equal	[jump_if_not_equal]

Compares	(case	insensitively)	str1	to	str2.	If	str1	and	str2	are	equal,
Gotos	jump_if_equal,	otherwise	Gotos	jump_if_not_equal.

StrCmp	$0	"a	string"	0	+3
		DetailPrint	'$$0	==	"a	string"'
		Goto	+2
		DetailPrint	'$$0	!=	"a	string"'

4.9.4.20	StrCmpS

str1	str2	jump_if_equal	[jump_if_not_equal]

Same	as	StrCmp,	but	case	sensitive.

4.9.5	File	Instructions

4.9.5.1	FileClose

handle

Closes	a	file	handle	opened	with	FileOpen.

4.9.5.2	FileOpen

user_var(handle	output)	filename	openmode

Opens	a	file	named	"filename"	and	sets	the	handle	output	variable	with
the	handle.	The	openmode	should	be	one	of	"r"	(read)	"w"	(write,	all
contents	of	file	are	destroyed)	or	"a"	(append,	meaning	opened	for	both

read	and	write,	contents	preserved).	In	all	open	modes,	the	file	pointer	is
placed	at	the	beginning	of	the	file.	If	the	file	cannot	be	opened	the	handle
output	is	set	to	empty	and	the	error	flag	is	set.

If	no	absolute	path	is	specified	the	current	folder	will	be	used.	The	current
folder	is	the	folder	set	using	the	last	SetOutPath	instruction.	If	you	have
not	used	SetOutPath	the	current	folder	is	$EXEDIR.

FileOpen	$0	$INSTDIR\file.dat	r
FileClose	$0

4.9.5.3	FileRead

handle	user_var(output)	[maxlen]

Reads	a	string	(ANSI	characters)	from	a	file	opened	with	FileOpen.	The
string	is	read	until	either	a	newline	(or	carriage	return	newline	pair)
occurs,	or	until	a	null	byte	is	read,	or	until	maxlen	is	met	(if	specified).	By
default,	strings	are	limited	to	1024	characters	(a	special	build	with	larger
NSIS_MAX_STRLEN	can	be	compiled	or	downloaded).	If	the	end	of	file
is	reached	and	no	more	data	is	available,	the	output	string	will	be	empty
and	the	error	flag	will	be	set.

Unicode:	DBCS	text	is	supported	but	conversion	output	is	limited	to
UCS-2/BMP,	surrogate	pairs	are	not	supported.	The	system	default
ANSI	codepage	(ACP)	is	used	during	the	conversion.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	r
IfErrors	done
FileRead	$0	$1
DetailPrint	$1
FileClose	$0
done:

4.9.5.4	FileReadUTF16LE

handle	user_var(output)	[maxlen]

This	function	is	only	available	when	building	a	Unicode	installer.

Reads	a	string	(UTF-16LE	characters)	from	a	file	opened	with	FileOpen.
The	string	is	read	until	either	a	newline	(or	carriage	return	newline	pair)
occurs,	or	until	a	null	wide-character	is	read,	or	until	maxlen	is	met	(if
specified).	By	default,	strings	are	limited	to	1024	characters	(a	special
build	with	larger	NSIS_MAX_STRLEN	can	be	compiled	or	downloaded).
If	the	end	of	file	is	reached	and	no	more	data	is	available,	the	output
string	will	be	empty	and	the	error	flag	will	be	set.	If	present,	the	BOM	at
the	start	of	the	file	is	skipped.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	r
IfErrors	done
FileReadUTF16LE	$0	$1
DetailPrint	$1
FileClose	$0
done:

4.9.5.5	FileReadByte

handle	user_var(output)

Reads	a	byte	from	a	file	opened	with	FileOpen.	The	byte	is	stored	in	the
output	as	an	integer	(0-255).	If	the	end	of	file	is	reached	and	no	more
data	is	available,	the	output	will	be	empty	and	the	error	flag	will	be	set.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	r
IfErrors	done
FileReadByte	$0	$1
FileReadByte	$0	$2
DetailPrint	"$1	$2"
FileClose	$0
done:

4.9.5.6	FileReadWord

handle	user_var(output)

This	function	is	only	available	when	building	a	Unicode	installer.

Reads	a	word	(2-bytes)	from	a	file	opened	with	FileOpen.	The	word	is
stored	in	the	output	as	an	integer	(0-65535).	If	the	end	of	file	is	reached
and	no	more	data	is	available,	the	output	will	be	empty	and	the	error	flag
will	be	set.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	r
IfErrors	done
FileReadWord	$0	$1
FileReadWord	$0	$2
DetailPrint	"$1	$2"
FileClose	$0
done:

4.9.5.7	FileSeek

handle	offset	[mode]	[user_var(new	position)]

Seeks	a	file	opened	with	FileOpen.	If	mode	is	omitted	or	specified	as
SET,	the	file	is	positioned	to	"offset",	relative	to	the	beginning	of	the	file.	If
mode	is	specified	as	CUR,	then	the	file	is	positioned	to	"offset",	relative	to
the	current	file	position.	If	mode	is	specified	as	END,	then	the	file	is
positioned	to	"offset",	relative	to	the	end	of	the	file.	If	the	final	parameter
"new	position"	is	specified,	the	new	file	position	will	be	stored	in	that
variable.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	r
IfErrors	done
FileSeek	$0	-5	END
FileRead	$0	$1

DetailPrint	$1
FileClose	$0
done:

4.9.5.8	FileWrite

handle	string

Writes	an	ANSI	string	to	a	file	opened	with	FileOpen.	If	an	error	occurs
writing,	the	error	flag	will	be	set.

(If	you	are	building	a	Unicode	installer,	the	function	converts	the	string	to
ANSI/MBCS.	The	system	default	ANSI	codepage	(ACP)	is	used	during
the	conversion)

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	w
IfErrors	done
FileWrite	$0	"some	text"
FileClose	$0
done:

4.9.5.9	FileWriteUTF16LE

[/BOM]	handle	string

This	function	is	only	available	when	building	a	Unicode	installer.

Writes	a	Unicode	(UTF-16LE)	string	to	a	file	opened	with	FileOpen.	If	an
error	occurs,	the	error	flag	will	be	set.	A	BOM	can	be	added	to	empty	files
with	/BOM.

ClearErrors
FileOpen	$0	$INSTDIR\file.dat	w
IfErrors	done
FileWriteUTF16LE	$0	"some	text"
FileClose	$0

done:

4.9.5.10	FileWriteByte

handle	string

Writes	the	integer	interpretation	of	'string'	to	a	file	opened	with	FileOpen.
The	error	flag	is	set	if	an	error	occurs	while	writing.	The	following	code
writes	a	"Carriage	Return	/	Line	Feed"	pair	to	the	file.

FileWriteByte	file_handle	"13"
FileWriteByte	file_handle	"10"

Note	that	only	the	low	byte	of	the	integer	is	used,	i.e.	writing	256	is	the
same	as	writing	0,	etc.

4.9.5.11	FileWriteWord

handle	string

This	function	is	only	available	when	building	a	Unicode	installer.

Writes	the	integer	interpretation	of	'string'	as	a	WORD	(2-bytes,	range:	0-
65535)	to	a	file	opened	with	FileOpen.	The	error	flag	is	set	if	an	error
occurs	while	writing.	The	following	code	writes	a	"Carriage	Return	/	Line
Feed"	pair	to	the	file.

FileWriteWord	file_handle	"13"
FileWriteWord	file_handle	"10"

Note	that	only	the	low	WORD	of	the	integer	is	used,	i.e.	writing	65536	is
the	same	as	writing	0,	etc.

4.9.5.12	FindClose

handle

Closes	a	search	opened	with	FindFirst.

4.9.5.13	FindFirst

user_var(handle	output)	user_var(filename	output)	filespec

Performs	a	search	for	'filespec',	placing	the	first	file	found	in
filename_output	(a	user	variable).	It	also	puts	the	handle	of	the	search
into	handle_output	(also	a	user	variable).	If	no	files	are	found,	both
outputs	are	set	to	empty	and	the	error	flag	is	set.	FindClose	must	be
used	to	close	the	handle.	Note	that	the	filename	output	is	without	path.

FindFirst	$0	$1	$INSTDIR*.txt
loop:
		StrCmp	$1	""	done
		DetailPrint	$1
		FindNext	$0	$1
		Goto	loop
done:
FindClose	$0

4.9.5.14	FindNext

handle	user_var(filename_output)

Continues	a	search	began	with	FindFirst.	handle	should	be	the
handle_output_variable	returned	by	FindFirst.	If	the	search	is	completed
(there	are	no	more	files),	filename_output	is	set	to	empty	and	the	error
flag	is	set.	Note	that	the	filename	output	is	without	path.

4.9.6	Uninstaller	Instructions

4.9.6.1	WriteUninstaller

[Path\]exename.exe

Writes	the	uninstaller	to	the	filename	(and	optionally	path)	specified.	Only
valid	from	within	an	install	section	or	function	and	requires	that	you	have
an	uninstall	section	in	your	script.	You	can	call	this	one	or	more	times	to
write	out	one	or	more	copies	of	the	uninstaller.

WriteUninstaller	$INSTDIR\uninstaller.exe

4.9.7	Miscellaneous	Instructions

4.9.7.1	GetErrorLevel

user_var(error	level	output)

Returns	the	last	error	level	set	by	SetErrorLevel	or	-1	if	it	has	never	been
set.

GetErrorLevel	$0
IntOp	$0	$0	+	1
SetErrorLevel	$0

4.9.7.2	GetInstDirError

user_var(error	output)

Use	in	the	leave	function	of	a	directory	page.	Reads	the	flag	set	if
'DirVerify	leave'	is	used.	Possible	values:

0:	No	error

1:	Invalid	installation	directory

2:	Not	enough	space	on	installation	drive

!include	LogicLib.nsh
PageEx	directory
		DirVerify	leave
		PageCallbacks	""	""	dirLeave

PageExEnd

Function	dirLeave
		GetInstDirError	$0
		${Switch}	$0
				${Case}	0
						MessageBox	MB_OK	"valid	installation	directory"
						${Break}
				${Case}	1
						MessageBox	MB_OK	"invalid	installation	directory!"
						Abort
						${Break}
				${Case}	2
						MessageBox	MB_OK	"not	enough	free	space!"
						Abort
						${Break}
		${EndSwitch}
FunctionEnd

4.9.7.3	InitPluginsDir

Initializes	the	plug-ins	dir	($PLUGINSDIR)	if	not	already	initialized.

InitPluginsDir
File	/oname=$PLUGINSDIR\image.bmp	image.bmp

4.9.7.4	Nop

Does	nothing.

4.9.7.5	SetErrorLevel

error_level

Sets	the	error	level	of	the	installer	or	uninstaller	to	error_level.	See	Error

Levels	for	more	information.

IfRebootFlag	0	+2
		SetErrorLevel	4

4.9.7.6	SetShellVarContext

current|all

Sets	the	context	of	$SMPROGRAMS	and	other	shell	folders.	If	set	to
'current'	(the	default),	the	current	user's	shell	folders	are	used.	If	set	to
'all',	the	'all	users'	shell	folder	is	used.	The	all	users	folder	may	not	be
supported	on	all	OSes.	If	the	all	users	folder	is	not	found,	the	current	user
folder	will	be	used.	Please	take	into	consideration	that	a	"normal	user"
has	no	rights	to	write	in	the	all	users	area.	Only	admins	have	full	access
rights	to	the	all	users	area.	You	can	check	this	by	using	the	UserInfo
plug-in.	See	Contrib\UserInfo\UserInfo.nsi	for	an	example.

Note	that,	if	used	in	installer	code,	this	will	only	affect	the	installer,	and	if
used	in	uninstaller	code,	this	will	only	affect	the	uninstaller.	To	affect	both,
it	needs	to	be	used	in	both.

SetShellVarContext	current
StrCpy	$0	$DESKTOP
SetShellVarContext	all
StrCpy	$1	$DESKTOP
MessageBox	MB_OK	0\n$1

4.9.7.7	Sleep

sleeptime_in_ms

Pauses	execution	in	the	installer	for	sleeptime_in_ms	milliseconds.
sleeptime_in_ms	can	be	a	variable,	e.g.	"$0"	or	a	number,	i.e.	"666".

DetailPrint	"sleeping..."
Sleep	3000

DetailPrint	"back	to	work"

4.9.8	String	Manipulation	Instructions

4.9.8.1	StrCpy

user_var(destination)	str	[maxlen]	[start_offset]

Sets	the	user	variable	$x	with	str.	str	can	contain	variables	(including	the
user	variable	being	set	(concatenating	strings	this	way	is	possible,	etc)).
If	maxlen	is	specified,	the	string	will	be	a	maximum	of	maxlen	characters
(if	maxlen	is	negative,	the	string	will	be	truncated	abs(maxlen)	characters
from	the	end).	If	start_offset	is	specified,	the	source	is	offset	by	it	(if
start_offset	is	negative,	it	will	start	abs(start_offset)	from	the	end	of	the
string).

StrCpy	$0	"a	string"	#	=	"a	string"
StrCpy	$0	"a	string"	3	#	=	"a	s"
StrCpy	$0	"a	string"	-1	#	=	"a	strin"
StrCpy	$0	"a	string"	""	2	#	=	"string"
StrCpy	$0	"a	string"	""	-3	#	=	"ing"
StrCpy	$0	"a	string"	3	-4	#	=	"rin"
StrCpy	$0	"$0$0"	#	=	"rinrin"

4.9.8.2	StrLen

user_var(length	output)	str

Sets	user	variable	$x	to	the	length	of	str.

StrLen	$0	"123456"	#	=	6

4.9.9	Stack	Support

4.9.9.1	Exch

[user_var	|	stack_index]

When	no	parameter	is	specified,	exchanges	the	top	two	elements	of	the
stack.	When	a	parameter	is	specified	and	is	a	user	variable,	exchanges
the	top	element	of	the	stack	with	the	parameter.	When	a	parameter	is
specified	and	is	a	positive	integer,	Exch	will	swap	the	item	on	the	top	of
the	stack	with	the	item	that	is	specified	by	the	offset	from	the	top	of	the
stack	in	the	parameter.	If	there	are	not	enough	items	on	the	stack	to
accomplish	the	exchange,	a	fatal	error	will	occur	(to	help	you	debug	your
code	:).

Push	1
Push	2
Exch
Pop	$0	#	=	1

Push	1
Push	2
Push	3
Exch	2
Pop	$0	#	=	1

StrCpy	$0	1
Push	2
Exch	$0	#	=	2
Pop	$1	#	=	1

4.9.9.2	Pop

user_var(out)

Pops	a	string	off	of	the	stack	into	user	variable	$x.	If	the	stack	is	empty,
the	error	flag	will	be	set.

Push	1
Pop	$0	#	=	1

4.9.9.3	Push

string

Pushes	a	string	onto	the	stack.	The	string	can	then	be	Pop'ed	off	of	the
stack.

Push	"a	string"

4.9.10	Integer	Support

4.9.10.1	IntFmt

user_var(output)	format	numberstring

Formats	the	number	in	"numberstring"	using	the	format	"format",	and	sets
the	output	to	user	variable	$x.	Example	format	strings	include	"%08X"
"%u"

IntFmt	$0	"0x%08X"	195948557
IntFmt	$0	"%c"	0x41

4.9.10.2	IntOp

user_var(output)	value1	OP	[value2]

Combines	value1	and	(depending	on	OP)	value2	into	the	specified	user
variable	(user_var).	OP	is	defined	as	one	of	the	following:

+	ADDs	value1	and	value2
-	SUBTRACTs	value2	from	value1
*	MULTIPLIEs	value1	and	value2
/	DIVIDEs	value1	by	value2
%	MODULUSs	value1	by	value2
|	BINARY	ORs	value1	and	value2
&	BINARY	ANDs	value1	and	value2
^	BINARY	XORs	value1	and	value2

>>	RIGHT	SHIFTs	value1	by	value2
<<	LEFT	SHIFTs	value1	by	value2
~	BITWISE	NEGATEs	value1	(i.e.	7	becomes	4294967288)
!	LOGICALLY	NEGATEs	value1	(i.e.	7	becomes	0)
||	LOGICALLY	ORs	value1	and	value2
&&	LOGICALLY	ANDs	value1	and	value2

IntOp	$0	1	+	1
IntOp	$0	$0	+	1
IntOp	$0	$0	<<	2
IntOp	$0	$0	~
IntOp	$0	$0	&	0xF

4.9.11	Reboot	Instructions

4.9.11.1	Reboot

Reboots	the	computer.	Be	careful	with	this	one.	If	it	fails,	.onRebootFailed
is	called.	In	any	case,	this	instruction	never	returns,	just	like	Quit.

MessageBox	MB_YESNO|MB_ICONQUESTION	"Do	you	wish	to	reboot	the	system?"	IDNO	+2
		Reboot

4.9.11.2	SetRebootFlag

true|false

Sets	the	reboot	flag	to	either	true	or	false.	The	flag's	value	can	be	read
using	IfRebootFlag.

SetRebootFlag	true
IfRebootFlag	0	+2
		MessageBox	MB_OK	"this	message	box	will	always	show"

4.9.12	Install	Logging	Instructions

4.9.12.1	LogSet

on|off

Sets	whether	install	logging	to	$INSTDIR\install.log	will	happen.
$INSTDIR	must	have	a	value	before	you	call	this	function	or	it	will	not
work.	Note	that	the	NSIS_CONFIG_LOG	build	setting	must	be	set	(scons
NSIS_CONFIG_LOG=yes)	when	building	(it	is	not	set	by	default)	to	support
this.	See	Building	NSIS	for	more	information	about	recompiling	NSIS.

4.9.12.2	LogText

text

If	installer	logging	is	enabled,	inserts	text	"text"	into	the	log	file.

IfFileExists	$WINDIR\notepad.exe	0	+2
		LogText	"$$WINDIR\notepad.exe	exists"

4.9.13	Section	Management

4.9.13.1	SectionSetFlags

section_index	section_flags

Sets	the	section's	flags.	The	flag	is	a	32-bit	integer.	The	first	bit	(lowest)
represents	whether	the	section	is	currently	selected,	the	second	bit
represents	whether	the	section	is	a	section	group	(don't	modify	this
unless	you	really	know	what	you	are	doing),	the	third	bit	represents
whether	the	section	is	a	section	group	end	(again,	don't	modify),	the
fourth	bit	represents	whether	the	section	is	shown	in	bold	or	not,	the	fifth
bit	represents	whether	the	section	is	read-only,	the	sixth	bit	represents
whether	the	section	group	is	to	be	automatically	expanded,	the	seventh
bit	is	set	for	section	groups	which	are	partially	selected,	the	eighth	bit	is
internally	used	for	partially	selected	section	group	toggling	and	the	ninth
bit	is	used	for	reflecting	section	name	changes.	The	error	flag	will	be	set

if	an	out	of	range	section	is	specified.

Each	flag	has	a	name,	prefixed	with	`SF_`:

!define	SF_SELECTED			1
!define	SF_SECGRP					2
!define	SF_SECGRPEND		4
!define	SF_BOLD							8
!define	SF_RO									16
!define	SF_EXPAND					32
!define	SF_PSELECTED		64

For	an	example	of	usage	please	see	the	one-section.nsi	example.

For	more	useful	macros	and	definitions,	see	Include\Sections.nsh.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	set	section	'test'	as	selected	and	read-only
		IntOp	$0	${SF_SELECTED}	|	${SF_RO}
		SectionSetFlags	${test_section_id}	$0
FunctionEnd

4.9.13.2	SectionGetFlags

section_index	user_var(output)

Retrieves	the	section's	flags.	See	SectionSetFlags	for	a	description	of	the
flags.	The	error	flag	will	be	set	if	an	out	of	range	section	is	specified.

Section	test	test_section_id
SectionEnd

Function	.onSelChange
		#	keep	section	'test'	selected
		SectionGetFlags	${test_section_id}	$0

		IntOp	$0	$0	|	${SF_SELECTED}
		SectionSetFlags	${test_section_id}	$0
FunctionEnd

4.9.13.3	SectionSetText

section_index	section_text

Sets	the	description	for	the	section	section_index.	If	the	text	is	set	to	""
then	the	section	will	be	hidden.	The	error	flag	will	be	set	if	an	out	of	range
section	is	specified.

Section	""	test_section_id
SectionEnd

Function	.onInit
		#	change	section's	name	to	$WINDIR
		SectionSetText	${test_section_id}	$WINDIR
FunctionEnd

4.9.13.4	SectionGetText

section_index	user_var(output)

Stores	the	text	description	of	the	section	section_index	into	the	output.	If
the	section	is	hidden,	stores	an	empty	string.	The	error	flag	will	be	set	if
an	out	of	range	section	is	specified.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	append	$WINDIR	to	section's	name
		SectionGetText	${test_section_id}	$0
		StrCpy	$0	"$0	-	$WINDIR"
		SectionSetText	${test_section_id}	$0

FunctionEnd

4.9.13.5	SectionSetInstTypes

section_index	inst_types

Sets	the	install	types	the	section	specified	by	section_index	defaults	to
the	enabled	state	in.	Note	that	the	section	index	starts	with	zero.	Every
bit	of	inst_types	is	a	flag	that	tells	if	the	section	is	in	that	install	type	or
not.	For	example,	if	you	have	3	install	types	and	you	want	the	first	section
to	be	included	in	install	types	1	and	3,	then	the	command	should	look	like
this:

SectionSetInstTypes	0	5

because	the	binary	value	for	5	is	"...00101".	The	error	flag	will	be	set	if
the	section	index	specified	is	out	of	range.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	associate	section	'test'	with	installation	types	3	and	4
		SectionSetInstTypes	${test_section_id}	12
FunctionEnd

4.9.13.6	SectionGetInstTypes

section_index	user_var(output)

Retrieves	the	install	types	flags	array	of	a	section.	See	above	explanation
about	SectionSetInstTypes	for	a	description	of	how	to	deal	with	the
output.	The	error	flag	will	be	set	if	the	section	index	is	out	of	range.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	associate	section	'test'	with	installation	types	5,	on	top	of	its	existing	associations
		SectionGetInstTypes	${test_section_id}	$0
		IntOp	$0	$0	|	16
		SectionSetInstTypes	${test_section_id}	$0
FunctionEnd

4.9.13.7	SectionSetSize

section_index	new_size

Sets	the	size	of	the	section	specified	by	section_index.	Note	that	the
index	starts	with	zero.	The	Value	for	Size	must	be	entered	in	KiloByte
and	supports	only	whole	numbers.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	set	required	size	of	section	'test'	to	100	bytes
		SectionSetSize	${test_section_id}	100
FunctionEnd

4.9.13.8	SectionGetSize

section_index	user_var

Gets	the	size	of	the	section	specified	by	section_index	and	stores	the
value	in	the	given	user	variable.	Note	that	the	index	starts	with	zero.	The
error	flag	will	be	set	if	the	section	index	is	out	of	range.

Section	test	test_section_id
SectionEnd

Function	.onInit
		#	increase	required	size	of	section	'test'	by	100	KiB

		SectionGetSize	${test_section_id}	$0
		IntOp	$0	$0	+	100
		SectionSetSize	${test_section_id}	$0
FunctionEnd

4.9.13.9	SetCurInstType

inst_type_idx

Sets	the	current	InstType.	inst_type_idx	should	be	between	0	and	31.
The	error	flag	is	not	set	if	an	out	of	range	InstType	was	used.

4.9.13.10	GetCurInstType

user_var

Get	the	current	InstType	and	stores	it	in	user_var.	If	the	first	install	type	is
selected,	0	will	be	put	in	user_var.	If	the	second	install	type	is	selected,	1
will	be	put	in	user_var,	and	so	on.	The	value	of
${NSIS_MAX_INST_TYPES}	(32	by	default)	means	that	the	user
selected	a	custom	set	of	sections	(Simply	selecting	"Custom"	in	the	drop-
down	menu	is	not	enough	to	trigger	this,	the	value	is	calculated	by	the
sections	actually	selected).

4.9.13.11	InstTypeSetText

inst_type_idx	text

Sets	the	text	of	the	specified	InstType.	If	the	text	is	empty	then	the
InstType	is	removed.	By	using	a	previously	unused	inst_type_idx	number
you	can	create	new	InstTypes.	To	add/remove	Sections	to	this	new
InstType	see	SectionSetInstTypes.	Unlike	SectionIn	the	index	is	zero
based,	which	means	the	first	install	type's	index	is	0.

InstType	a
InstType	b

Function	.onInit
		#	set	first	installation	type's	name	to	$WINDIR
		InstTypeSetText	0	$WINDIR
		#	set	second	installation	type's	name	to	$TEMP
		InstTypeSetText	1	$TEMP
FunctionEnd

4.9.13.12	InstTypeGetText

inst_type_idx	user_var

Gets	the	text	of	the	specified	InstType.

InstType	a
InstType	b

Function	.onInit
		InstTypeGetText	0	$0
		DetailPrint	$0	#	prints	'a'
		InstTypeGetText	1	$0
		DetailPrint	$0	#	prints	'b'
FunctionEnd

4.9.14	User	Interface	Instructions

4.9.14.1	BringToFront

Makes	the	installer	window	visible	and	brings	it	to	the	top	of	the	window
list.	If	an	application	was	executed	that	shows	itself	in	front	of	the
installer,	BringToFront	would	bring	the	installer	back	in	focus.

Recent	Windows	versions	restrict	the	setting	of	foreground	windows.	If
the	user	is	working	with	another	application	during	installation,	the	user
may	be	notified	using	a	different	method.

4.9.14.2	CreateFont

user_var(handle	output)	face_name	[height]	[weight]	[/ITALIC]	[/UNDERLINE]	[/STRIKE]

Creates	a	font	and	puts	its	handle	into	user_var.	For	more	information
about	the	different	parameters	have	a	look	at	MSDN's	page	about	the
Win32	API	function	CreateFont().

You	can	get	the	current	font	used	by	NSIS	using	the	^Font	and	^FontSize
LangStrings.

!include	WinMessages.nsh
GetDlgItem	$0	$HWNDPARENT	1
CreateFont	$1	"Times	New	Roman"	"7"	"700"	/UNDERLINE
SendMessage	$0	${WM_SETFONT}	$1	1

4.9.14.3	DetailPrint

user_message

Adds	the	string	"user_message"	to	the	details	view	of	the	installer.

DetailPrint	"this	message	will	be	shown	in	the	installation	window"

4.9.14.4	EnableWindow

hwnd	state(1|0)

Enables	or	disables	mouse	and	keyboard	input	to	the	specified	window
or	control.	Possible	states	are	0	(disabled)	or	1	(enabled).

GetDlgItem	$0	$HWNDPARENT	1
EnableWindow	$0	0
Sleep	1000
EnableWindow	$0	1

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdi/fontext_8fp0.asp

4.9.14.5	FindWindow

user_var(hwnd	output)	windowclass	[windowtitle]	[windowparent]	[childafter]

Searches	for	a	window.	Behaves	like	Win32's	FindWindowEx().	Searches
by	windowclass	(and/or	windowtitle	if	specified).	If	windowparent	or
childafter	are	specified,	the	search	will	be	restricted	as	such.	If
windowclass	or	windowtitle	is	specified	as	"",	they	will	not	be	used	for	the
search.	If	the	window	is	not	found	the	user	variable	is	set	to	0.

FindWindow	$1	"#32770"	""	$HWNDPARENT	#	Finds	the	inner	dialog
FindWindow	$2	"EDIT"	""	$1	#	Finds	the	first	edit	control	in	the	inner	dialog

4.9.14.6	GetDlgItem

user_var(output)	dialog	item_id

Retrieves	the	handle	of	a	control	identified	by	item_id	in	the	specified
dialog	box	dialog.	If	you	want	to	get	the	handle	of	a	control	in	the	inner
dialog,	first	use	FindWindow	to	get	the	handle	of	the	inner	dialog.

GetDlgItem	$0	$HWNDPARENT	1	#	next/install	button

4.9.14.7	HideWindow

Hides	the	installer	window.

4.9.14.8	IsWindow

HWND	jump_if_window	[jump_if_not_window]

If	HWND	is	a	window,	Gotos	jump_if_window,	otherwise,	Gotos
jump_if_not_window	(if	specified).

GetDlgItem	$0	$HWNDPARENT	1
IsWindow	$0	0	+3

		MessageBox	MB_OK	"found	a	window"
		Goto	+2
		MessageBox	MB_OK	"no	window"

4.9.14.9	LockWindow

on|off

LockWindow	on	prevents	the	main	window	from	redrawing	itself	upon
changes.	When	LockWindow	off	is	used,	all	controls	that	weren't	redrawn
since	LockWindow	on	will	be	redrawn.	This	makes	the	pages	flickering
look	nicer	because	now	it	flickers	a	group	of	controls	at	the	same	time,
instead	of	one	control	at	a	time.	The	individual	control	flickering	is	more
noticeable	on	old	computers.

4.9.14.10	SendMessage

HWND	msg	wparam	lparam	[user_var(return	value)]	[/TIMEOUT=time_in_ms]

Sends	a	message	to	HWND.	If	a	user	variable	$x	is	specified	as	the	last
parameter	(or	one	before	the	last	if	you	use	/TIMEOUT),	the	return	value
from	SendMessage	will	be	stored	in	it.	Note	that	when	specifying	'msg'
you	must	just	use	the	integer	value	of	the	message.	Include
WinMessages.nsh	to	have	all	Windows	messages	defined	in	your	script.
If	you	wish	to	send	strings	use	"STR:a	string"	as	wParam	or	lParam
where	needed.	Use	/TIMEOUT=time_in_ms	to	specify	the	duration,	in
milliseconds,	of	the	time-out	period.

!include	WinMessages.nsh
FindWindow	$0	"Winamp	v1.x"
SendMessage	$0	${WM_CLOSE}	0	0

GetDlgItem	$1	$HWNDPARENT	2
SendMessage	$1	${WM_SETTEXT}	0	"STR:Goodbye"

4.9.14.11	SetAutoClose

true|false

Overrides	the	default	auto	window-closing	flag	(specified	for	the	installer
using	AutoCloseWindow,	and	false	for	the	uninstaller).	Specify	'true'	to
have	the	install	window	immediately	disappear	after	the	install	has
completed,	or	'false'	to	make	it	require	a	manual	close.

4.9.14.12	SetBrandingImage

[/IMGID=item_id_in_dialog]	[/RESIZETOFIT]	path_to_bitmap_file.bmp

Sets	the	current	bitmap	file	displayed	as	the	branding	image.	If	no	IMGID
is	specified,	the	first	image	control	found	will	be	used,	or	the	image
control	created	by	AddBrandingImage.	Note	that	this	bitmap	must	be
present	on	the	user's	machine.	Use	File	first	to	put	it	there.	If
/RESIZETOFIT	is	specified	the	image	will	be	automatically	resized	(very
poorly)	to	the	image	control	size.	If	you	used	AddBrandingImage	you	can
get	this	size	by	compiling	your	script	and	watching	for	AddBrandingImage
output,	it	will	tell	you	the	size.	SetBrandingImage	will	not	work	when
called	from	.onInit!

4.9.14.13	SetDetailsView

show|hide

Shows	or	hides	the	details,	depending	on	which	parameter	you	pass.
Overrides	the	default	details	view,	which	is	set	via	ShowInstDetails.

4.9.14.14	SetDetailsPrint

none|listonly|textonly|both|lastused

Sets	mode	at	which	commands	print	their	status.	None	has	commands
be	quiet,	listonly	has	status	text	only	added	to	the	listbox,	textonly	has
status	text	only	printed	to	the	status	bar,	and	both	enables	both	(the
default).	For	extracting	many	small	files,	textonly	is	recommended

(especially	on	win9x	with	smooth	scrolling	enabled).

SetDetailsPrint	none
File	"secret	file.dat"
SetDetailsPrint	both

4.9.14.15	SetCtlColors

hwnd	[/BRANDING]	[text_color|SYSCLR:text_color_id]	[transparent|bg_color|SYSCLR:bg_color_id]

Sets	the	text	and	background	color	of	a	static	control,	edit	control,	button
or	a	dialog.	text_color	and	bg_color	don't	accept	variables.	Use
GetDlgItem	to	get	the	handle	(HWND)	of	the	control.	To	make	the	control
transparent	specify	transparent	as	the	background	color	value.	Prefix	the
color	value	with	SYSCLR:	to	specify	a	Windows	COLOR_*	constant.	You	can
also	specify	/BRANDING	with	or	without	text	color	and	background	color	to
make	the	control	completely	gray	(or	any	other	color	you	choose).	This	is
used	by	the	branding	text	control	in	the	MUI.

Page	Components	""	CmpntPageShow
Function	CmpntPageShow
FindWindow	$1	"#32770"	""	$HWNDPARENT
GetDlgItem	$0	$1	1006
SetCtlColors	$0	0xFF0000	0x00FF00	;	Red	on	Green
GetDlgItem	$0	$1	1022
SetCtlColors	$0	SYSCLR:23	SYSCLR:24	;	COLOR_INFOTEXT	on	COLOR_INFOBK
FunctionEnd

Warning:	Setting	the	background	color	of	check	boxes	to	transparent
may	not	function	properly	when	using	XPStyle	on.	The	background	may
be	completely	black	instead	of	transparent	when	using	certain	Windows
themes.

4.9.14.16	SetSilent

silent	|	normal

Sets	the	installer	to	silent	mode	or	normal	mode.	See	SilentInstall	for
more	information	about	silent	installations.	Can	only	be	used	in	.onInit.

4.9.14.17	ShowWindow

hwnd	show_state

Sets	the	visibility	of	a	window.	Possible	show_states	are	the	same	as	the
Windows	ShowWindow	function.	SW_*	constants	are	defined	in
Include\WinMessages.nsh.

!include	WinMessages.nsh
GetDlgItem	$0	$HWNDPARENT	1
ShowWindow	$0	${SW_HIDE}
Sleep	1000
ShowWindow	$0	${SW_SHOW}

4.9.15	Multiple	Languages	Instructions

4.9.15.1	LoadLanguageFile

language_file.nlf

Loads	a	language	file	for	the	construction	of	a	language	table.	All	of	the
language	files	that	ship	with	NSIS	are	in	Contrib\Language	Files

After	you	have	inserted	the	language	file	${LANG_langfile}	will	be	defined
as	the	language	id	(for	example,	${LANG_ENGLISH}	will	be	defined	as
1033).	Use	it	with	LangString,	LicenseLangString,	LangDLL	and
VIAddVersionKey.

4.9.15.2	LangString

name	language_id|0	string

Defines	a	multilingual	string.	This	means	its	value	may	be	different	(or

http://msdn2.microsoft.com/en-us/library/ms633548

not,	it's	up	to	you)	for	every	language.	It	allows	you	to	easily	make	your
installer	multilingual	without	the	need	to	add	massive	switches	to	the
script.

Each	language	string	has	a	name	that	identifies	it	and	a	value	for	each
language	used	by	the	installer.	They	can	be	used	in	any	runtime	string	in
the	script.	To	use	a	language	string	all	you	need	to	add	to	the	string	is
$(LangString_name_here)	where	you	want	the	LangString	to	be	inserted.

Notes:

Unlike	defines	that	use	curly	braces	-	{},	language	strings	use
parenthesis	-	().
If	you	change	the	language	in	the	.onInit	function,	note	that	language
strings	in	.onInit	will	still	use	the	detected	language	based	on	the
user's	default	Windows	language	because	the	language	is	initialized
after	.onInit.
Always	set	language	strings	for	every	language	in	your	script.
If	you	set	the	language	ID	to	0	the	last	used	language	by	LangString
or	LoadLanguageFile	will	be	used.

Example	of	usage:

	LangString	message	${LANG_ENGLISH}	"English	message"
	LangString	message	${LANG_FRENCH}	"French	message"
	LangString	message	${LANG_KOREAN}	"Korean	message"

	MessageBox	MB_OK	"A	translated	message:	$(message)"

4.9.15.3	LicenseLangString

name	language_id|0	license_path

Does	the	same	as	LangString	only	it	loads	the	string	from	a	text/RTF	file
and	defines	a	special	LangString	that	can	only	be	used	by	LicenseData.

LicenseLangString	license	${LANG_ENGLISH}	license-english.txt
LicenseLangString	license	${LANG_FRENCH}	license-french.txt

LicenseLangString	license	${LANG_GERMAN}	license-german.txt

LicenseData	$(license)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.10	Multiple	Languages
As	of	version	2	NSIS	fully	supports	multiple	languages.	The	interface	of
one	installer	can	support	multiple	languages.

Use	LoadLanguageFile	for	every	language	to	load	the	default	interface
texts	and	language	properties.	Visit	the	NSIS	translations	forum	for	more
information	about	creating	new	language	files.

The	default	interface	texts	can	easily	be	changed	using	instructions	like
ComponentText	etc.

You	can	also	use	the	contents	of	the	standard	language	strings	in	your
own	strings	(for	example,	$(^Name)	contains	the	installer's	name	set
using	the	Name	instruction).	The	names	of	all	standard	language	strings
are	listed	as	comments	just	above	the	strings	in	the	language	files.	The
language	files	are	located	in	Contrib\Language	Files.

To	create	your	own	language	strings,	use	LangString.

For	an	example	of	an	installer	with	multiple	languages,	see
languages.nsi.

4.10.1	Language	Selection

When	the	installer	starts	up	it	goes	through	these	steps	to	select	the
interface	language:

1.	 Get	user's	default	Windows	UI	language
2.	 Find	a	perfect	match	for	the	language
3.	 If	there	is	no	perfect	match,	find	a	primary	language	match
4.	 If	there	is	no	match,	use	the	first	language	defined	in	the	script

(make	sure	your	first	language	is	a	common	one	like	English)
5.	 If	the	language	variable	$LANGUAGE	has	changed	during	.onInit,

NSIS	goes	through	steps	2	to	4	again.

4.10.2	LangDLL	Plug-in

http://forums.winamp.com/showthread.php?t=157119

The	LangDLL	plug-in	allows	you	to	give	the	user	an	option	to	choose	the
language	of	the	installer.	Just	push	the	language	id	(${LANG_langfile})
and	its	name	for	every	language	in	your	installer,	then	the	number	of
languages	pushed,	the	caption,	and	the	text	that	tells	the	user	to	select
the	language,	call	the	plug-in	function	named	LangDialog,	pop	the
returned	value	into	$LANGUAGE	and	you're	good	to	go.	If	the	user	clicks
on	the	cancel	button	the	return	value	will	be	"cancel".

For	an	example	of	usage	see	languages.nsi.

4.10.3	RTL	Languages

RTL	languages	are	languages	that	are	written	from	right	to	left	(e.g.
Arabic	and	Hebrew).	NSIS	fully	supports	RTL	languages.	In	the	language
file	there	is	a	place	to	specify	if	the	language	is	RTL	or	not.	To	find	out	at
runtime	if	the	current	language	is	RTL	or	not,	check	the	value	of	the
$(^RTL)	language	string.	It	will	be	1	if	the	language	is	RTL	and	0
otherwise.	This	can	be	useful	when	using	plug-ins	that	create	dialogs,
they	usually	have	RTL	settings	too.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.11	Plug-in	DLLs
The	abilities	of	the	NSIS	scripting	language	can	be	extended	by	utilising
functionality	provided	in	a	DLL	file.	Probably	the	best	known	example	of
this	is	the	InstallOptions.dll	bundled	with	every	NSIS	release.

When	the	NSIS	compiler	starts	it	scans	the	plug-ins	directory	for	DLLs
and	makes	a	list	of	the	plug-ins	found	and	their	exported	functions.
During	compilation,	if	a	sequence	such	as	fred::flintstone	is	encountered
where	the	compiler	expected	to	find	a	language	keyword	the	compiler	will
look	through	this	list.	If	a	list	entry	specifies	that	fred.dll	exports	function
flintstone	NSIS	will	pack	the	fred.dll	file	into	the	created	installer	binary.

During	execution	of	a	plug-in	command	NSIS	will	unpack	the	necessary
DLL	to	a	temporary	folder	($PLUGINSDIR),	push	all	of	the	arguments
specified	(right-to-left	order),	and	then	execute	the	DLL	function.

4.11.1	Using	Plug-in	Commands

A	plug-in	call	looks	like	this:

InstallOptions::dialog	"ini_file_location.ini"

All	parameters	are	pushed	onto	the	stack	(in	this	case,	the	plug-in
function	only	needs	one	parameter).	Some	plug-in	commands	may	not
need	any	parameters	on	the	stack,	others	might	require	more	of	them.	To
use	a	plug-in	command	you	will	need	to	read	the	documentation	for	the
plug-in	so	that	you	know	what	parameters	its	functions	require.

4.11.2	Calling	plug-ins	manually

If	you	want	to	call	a	plug-in	that	is	stored	on	user's	hard	drive	or
somewhere	else,	use	CallInstDLL.	Almost	all	plug-ins	provide	installer
functionality,	so	using	plug-in	commands	is	way	easier.	Using	CallInstDLL
can	be	useful	when	you	have	created	plug-ins	that	are	linked	to	a	certain
version	of	your	application	and	are	being	copied	to	the	installation	folder.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

4.12	Silent	Installers/Uninstallers
Silent	installers	are	installers	which	require	no	user	intervention	and	have
no	user	interface.	The	user	doesn't	see	any	dialog	and	isn't	asked	any
questions.	This	is	useful	for	network	administrators	who	wish	to	install	or
uninstall	something	without	user	intervention	so	they	can	perform	the
operation	quickly	over	any	number	of	computers.	It	is	also	useful	for	other
developers	who	wish	to	embed	another	installer	in	their	own	and	collect
all	of	the	required	information	on	their	installer	instead	of	showing	two
installers.

NSIS	installers	and	uninstallers	can	be	both	silent	and	not	silent.	When
an	installer	or	an	uninstaller	is	silent,	not	all	callback	functions	are	called.
.onGUIInit,	.onGUIEnd,	their	uninstaller	equivalents	and	any	callback
related	to	a	specific	page	or	page	type	will	not	be	called.

There	are	several	methods	to	make	an	installer	or	an	uninstaller	silent:

1.	 SilentInstall	and	SilentUninstall
2.	 SetSilent
3.	 Passing	/S	on	the	command	line	(case	sensitive)

To	check	if	the	installer/uninstaller	is	silent	use	IfSilent.

To	make	sure	your	installer	will	be	silent	when	it	needs	to,	you	should
check	with	IfSilent	before	each	command	that	might	require	user
intervention	or	create	a	window.	The	MessageBox	command,	which	is
the	most	common	culprit	in	silent	installers,	has	the	/SD	switch	to	set	a
default	answer	for	silent	installers.	If	you	want	your	installer/uninstaller	to
be	able	to	be	completely	silent	you	should	use	this	switch.	All	internal
NSIS	message	boxes	have	defaults	for	silent	installers.	The	silent.nsi
example	demonstrates	all	aspects	of	this	topic.

Since	the	directory	page	is	not	shown	in	silent	installers	the	user	has	an
option	to	specify	the	installation	directory	on	the	command	line	(this	also
works	on	non-silent	installers/uninstallers).	To	do	that,	the	user	uses	the
/D	switch	as	in	the	following	example:

foo.exe	/S	/D=C:\Program	Files\Foo

If	your	installer/uninstaller	requires	some	more	information	that	can	not
be	gathered	when	silent,	you	can	allow	the	user	to	specify	that
information	on	the	command	line	and	process	it	in	.onInit.	You	can	use
GetOptions.

!include	FileFunc.nsh
!insertmacro	GetParameters
!insertmacro	GetOptions

Function	.onInit
		${GetParameters}	$R0
		ClearErrors
		${GetOptions}	$R0	/USERNAME=	$0
FunctionEnd

The	above	example	will	copy	the	value	the	user	passes	on	after
/USERNAME=	into	$0.	This	allows	the	user	to	specify	the	required
information	on	the	command	line	instead	of	using	the	interactive	user
interface.	The	user	can	use:

foo.exe	/S	/USERNAME=Bar	/D=C:\Program	Files\Foo

or:

foo.exe	/S	/USERNAME=string	with	spaces	/D=C:\Program	Files\Foo

or:

foo.exe	/S	/USERNAME="string	with	spaces"	/D=C:\Program	Files\Foo

If	your	installer/uninstaller	requires	a	lot	of	information	and	you	want	it	to
be	able	to	be	silent,	you	should	allow	the	user	to	pass	on	a	path	to	an
answers	file.	This	would	be	much	more	comfortable	than	writing	all	of	the
information	on	the	command	line.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

5.1	Compiler	Utility	Commands
These	commands	are	similar	to	the	C	preprocessor	in	terms	of	purpose
and	functionality.	They	allow	file	inclusion,	conditional	compilation,
executable	header	packing	and	process	execution	during	the	build
process.	Note:	None	of	these	commands	allow	the	use	of	variables.

Number	literals	support	the	0b,	0o,	0n	and	0x	radix	prefixes	(base	2,	8,	10
and	16	respectively).	Note:	The	deprecated	plain	0	octal	prefix	is	also
supported	in	some	places	but	its	usage	is	discouraged.

5.1.1	!include

[/NONFATAL]	[/CHARSET=ACP|OEM|CP#|UTF8|UTF16LE|UTF16BE]	file

This	command	will	include	'file'	as	if	it	was	part	of	the	original	script.	Note
that	if	a	file	is	included	in	another	directory,	the	current	directory	is	still
where	the	script	was	compiled	from	(not	where	the	included	file	resides).
If	the	compiler	can't	find	the	file	it	will	look	for	it	in	every	include	directory.
See	!addincludedir	for	more	information.	If	the	/nonfatal	switch	is	used
and	no	files	are	found,	a	warning	will	be	issued	instead	of	an	error.
/charset	can	be	used	to	specify	a	codepage	for	plain	text	files	without	a
BOM.

!include	WinMessages.nsh
!include	Library.nsh
!include	/CHARSET=CP1252	C:\MyConfig.nsi
!include	..\MyConfig.nsh
!include	/NONFATAL	file_that_may_exist_or_not.nsh

5.1.2	!addincludedir

directory

Adds	another	include	directory	to	the	include	directories	list.	This	list	is
searched	when	!include	is	used.	This	list's	initial	value	is
${NSISDIR}\Include.

!addincludedir	..\include
!include	something.nsh

5.1.3	!addplugindir

[/x86-ansi	|	/x86-unicode]	directory

Causes	the	NSIS	compiler	to	scan	the	given	directory	for	plug-in	DLLs.	If
you	don't	specify	the	plug-in	architecture	it	is	assumed	to	match	the
current	target	architecture.	If	the	architecture	does	not	match	the	installer
will	probably	crash!

!addplugindir	..\myplugin
MyPlugin::SomeFunction

5.1.4	!appendfile

[/CHARSET=ACP|OEM|CP#|UTF8[SIG]|UTF16<LE|BE>[BOM]]	[/RawNL]	file	text

Appends	text	to	file.	The	text	is	written	as	ANSI	(ACP)	unless	the	file
already	has	a	BOM.	Using	/CHARSET	will	force	a	specific	character
encoding.	$\n	will	be	translated	to	\r\n	on	Windows	unless	you	specify
/RawNL.

!tempfile	FILE
!appendfile	"${FILE}"	"XPStyle	on$\n"
!appendfile	"${FILE}"	"Name	'test'$\n"
!include	"${FILE}"
!delfile	"${FILE}"
!undef	FILE

5.1.5	!cd

new_path

This	command	will	change	the	compiler	to	the	new	directory,	new_path.
new_path	can	be	relative	or	absolute.

!cd	..\more-scripts\new

5.1.6	!delfile

[/nonfatal]	file

This	command	deletes	a	file.

!tempfile	FILE
!delfile	"${FILE}"
!undef	FILE

5.1.7	!echo

message

This	command	will	echo	a	message	to	the	user	compiling	the	script.

!echo	"hello	world"

5.1.8	!error

[message]

This	command	will	issue	an	error	to	the	script	compiler	and	will	stop
execution	of	the	script.	You	can	also	add	a	message	to	this	error.

!ifdef	VERSION	&	NOVERSION
		!error	"both	VERSION	and	NOVERSION	are	defined"
!endif

5.1.9	!execute

command	[compare	comparevalue	|	symbol]

This	command	will	execute	'command'	using	a	call	to	CreateProcess().
Unlike	!system,	it	does	not	use	the	command	line	processor,	so
input/output	redirection	and	commands	like	'cd',	'dir'	and	'type'	can	not	be

used.	Currently,	the	only	known	advantage	of	!execute	over	!system	is
that	it	does	not	give	trouble	when	the	current	working	directory	is
specified	using	UNC.

On	POSIX	platforms,	!execute	will	use	system()	just	like	!system.

!execute	'"$%WINDIR%\notepad.exe"	/P	"${NSISDIR}\COPYING"'

5.1.10	!makensis

parameters	[compare	comparevalue	|	symbol]

This	command	will	!execute	a	new	instance	of	MakeNSIS	with	the
parameters	you	specify.

!makensis	'-DGENERATEUNINST	"${__FILE__}"'	=	0
!system	'"signtool"	sign	...'	=	0

5.1.11	!packhdr

tempfile	command

This	option	makes	the	compiler	use	an	external	EXE	packer	(such	as
Petite	or	UPX)	to	compress	the	executable	header.	Specify	a	temporary
file	name	(such	as	"temp.dat")	and	a	command	line	(such	as	"C:\program
files\upx\upx	-9	temp.dat")	to	compress	the	header.

!packhdr	"$%TEMP%\exehead.tmp"	'"C:\Program	Files\UPX\upx.exe"	"$%TEMP%\exehead.tmp"'

5.1.12	!finalize

command	[compare	comparevalue]

This	option	will	execute	'command'	using	a	call	to	system()	after	the
output	EXE	has	been	generated.	You	can	typically	use	it	to	sign
(Authenticode)	your	installer.	If	'command'	contains	a	'%1'	it	will	be
replaced	by	the	executables	filename.

http://www.un4seen.com/petite/
http://upx.sourceforge.net/

!finalize	'sign.bat	"%1"	"Product	Installer"	http://example.com'

5.1.13	!system

command	[compare	comparevalue	|	symbol]

This	command	will	execute	'command'	using	a	call	to	system().	You	can
store	the	return	value	in	a	define	('symbol')	or	halt	execution	if	the	return
value	compared	(using	'compare')	to	'comparevalue'	is	false.	'compare'
can	be	'<'	or	'>'	or	'<>'	or	'='.

!system	'"%WINDIR%\notepad.exe"	"${NSISDIR}\COPYING"'
!system	'echo	!define	something	>	newinclude.nsh'
!include	newinclude.nsh
!ifdef	something
		!echo	"something	is	defined"
!endif

5.1.14	!tempfile

symbol

This	command	creates	a	temporary	file.	It	puts	its	path	into	a	define,
named	symbol.

!tempfile	PACKHDRTEMP
!packhdr	"${PACKHDRTEMP}"	'"C:\Program	Files\UPX\upx.exe"	"${PACKHDRTEMP}"'

!tempfile	FILE
!define	/date	DATE	"%H:%M:%S	%d	%b,	%Y"
!system	'echo	built	on	${DATE}	>	"${FILE}"'
!undef	DATE
File	/oname=build.txt	"${FILE}"
!delfile	"${FILE}"
!undef	FILE

5.1.15	!getdllversion

localfilename	define_basename

This	is	similar	to	GetDLLVersionLocal,	only	it	stores	the	version	number
in	defines	and	can	therefore	be	used	anywhere,	not	just	inside	functions
and	sections.

!getdllversion	"$%WINDIR%\Explorer.exe"	expv_
!echo	"Explorer.exe	version	is	${expv_1}.${expv_2}.${expv_3}.${expv_4}"

5.1.16	!warning

[message]

This	command	will	issue	a	warning	to	the	script	compiler.	You	can	also
add	a	message	to	this	warning.

!ifdef	USE_DANGEROUS_STUFF
		!warning	"using	dangerous	stuff"
!endif

5.1.17	!pragma

warning	<enable|disable|default>	code
warning	<push|pop>

The	pragma	commands	allows	you	to	change	compiler	features	and
behavior.

!pragma	warning	disable	9000	;	Disable	warning	about	using	"Setup.exe"	as	the	name
OutFile	"Setup.exe"

5.1.18	!verbose

level	|	push	|	pop

This	command	will	set	the	level	of	verbosity.	4=all,	3=no	script,	2=no	info,
1=no	warnings,	0=none.

Passing	push	will	cause	!verbose	to	push	the	current	verbosity	level	on	a
special	stack.	Passing	pop	will	cause	!verbose	to	pop	the	current
verbosity	level	from	the	same	stack	and	use	it.

!verbose	push
!verbose	1
!include	WinMessages.nsh
!verbose	pop

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

5.2	Predefines
You	can	use	these	standard	predefines	to	automatically	add	the	build
time	to	the	title	of	development	versions,	add	the	date	to	the	version
number,	etc.

5.2.1	${__COUNTER__}

Expands	to	a	number	(Starting	at	0	and	incrementing	by	1	every	time	it	is
used)

5.2.2	${__FILE__}

Current	script	name.

5.2.3	${__FILEDIR__}

Current	script	directory.

5.2.4	${__LINE__}

Current	line	number.

5.2.5	${__DATE__}

Date	when	the	script	started	compiling	according	to	the	current	locale.

5.2.6	${__TIME__}

Time	when	the	script	started	compiling	according	to	the	current	locale.

5.2.7	${__TIMESTAMP__}

Date	&	time	of	the	last	modification	to	the	script	file	according	to	the
current	locale.

5.2.8	${NSIS_VERSION}

NSIS	version	used	to	build	the	script.

5.2.9	${NSIS_PACKEDVERSION}

NSIS	version	as	a	32-bit	number.

!if	0x3014000	>=	"${NSIS_PACKEDVERSION}"
		!error	"NSIS	3.15	or	higher	is	required	to	build	this	installer!"
!endif

5.2.10	${NSIS_CHAR_SIZE}

The	size	of	a	character	code	unit	(in	bytes).	1	in	ANSI	installers	and	2	in
Unicode	installers.

A	grapheme	cluster	consists	of	a	base	character	plus	optional	combining
characters	and	diacritics	and	is	defined	as	one	or	more	code	points.	One
or	more	code	units	is	required	to	encode	a	single	code	point.

5.2.11	${NSIS_PTR_SIZE}

The	size	of	a	pointer	(in	bytes)	in	the	generated	installer.

5.2.12	${U+1}...${U+10FFFF}

A	Unicode	(UCS-4)	character.

DetailPrint	"${U+2115}SIS"	#	DOUBLE-STRUCK	CAPITAL	N	+	"SIS"

5.2.13	Scope	Predefines

Standard	predefines	that	contain	information	about	the	current	code
scope.

5.2.13.1	${__GLOBAL__}

http://unicode.org/glossary/#grapheme

Defined	in	the	global	scope.

Section	test
		!ifdef	${__GLOBAL__}
				!error	"this	shouldn't	be	here!"
		!endif
SectionEnd

PageEx	instfiles
		!ifdef	${__GLOBAL__}
				!error	"this	shouldn't	be	here!"
		!endif
PageExEnd

5.2.13.2	${__SECTION__}

Defined	as	the	section	name,	without	any	prefixes,	in	section	scope.

!ifdef	__SECTION__
		!error	"this	shouldn't	be	here!"
!endif

Section	test
		!ifndef	__SECTION__
				!error	"missing	predefine!"
		!endif

		!if	${__SECTION__}	!=	test
				!error	"wrong	predefine	value!"
		!endif
SectionEnd

Section	!test
		!if	${__SECTION__}	!=	test
				!error	"wrong	predefine	value!"
		!endif
SectionEnd

Section	un.test
		!if	${__SECTION__}	!=	test
				!error	"wrong	predefine	value!"
		!endif
SectionEnd

5.2.13.3	${__FUNCTION__}

Defined	as	the	function	name,	without	any	prefixes,	in	function	scope.

!ifdef	__FUNCTION__
		!error	"this	shouldn't	be	here!"
!endif

Function	test
		!ifndef	__FUNCTION__
				!error	"missing	predefine!"
		!endif

		!if	${__FUNCTION__}	!=	test
				!error	"wrong	predefine	value!"
		!endif
FunctionEnd

Function	un.test
		!if	${__FUNCTION__}	!=	test
				!error	"wrong	predefine	value!"
		!endif
FunctionEnd

5.2.13.4	${__PAGEEX__}

Defined	as	the	page	type	in	PageEx	scope.

!ifdef	__PAGEEX__

		!error	"this	shouldn't	be	here!"
!endif

PageEx	instfiles
		!ifndef	__PAGEEX__
				!error	"missing	predefine!"
		!endif

		!if	${__PAGEEX__}	!=	instfiles
				!error	"wrong	page	type"
		!endif
PageExEnd

5.2.13.5	${__UNINSTALL__}

Defined	in	section,	function	or	PageEx	scopes	of	the	uninstaller.

!ifdef	__UNINSTALL__
		!error	"this	shouldn't	be	here!"
!endif

Function	test
		!ifdef	__UNINSTALL__
				!error	"this	shouldn't	be	here!"
		!endif
FunctionEnd

Function	un.test
		!ifndef	__UNINSTALL__
				!error	"missing	predefine!"
		!endif
FunctionEnd

5.2.13.6	${__MACRO__}

Defined	as	the	name	of	the	current	macro.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

5.3	Read	environment	variables

5.3.1	$%envVarName%

$%envVarName%	will	be	replaced	at	compile	time	by	the	environment
variable	envVarName.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

5.4	Conditional	Compilation
The	compiler	maintains	a	list	of	defined	symbols,	which	can	be	defined
using	!define	or	the	/D	command	line	switch.	These	defined	symbols	can
be	used	for	conditional	compilation	(using	!ifdef)	or	for	symbol
replacement	(a	simple	form	of	macros).	To	replace	a	symbol	with	its
value,	use	${SYMBOL}	(if	SYMBOL	is	not	defined,	no	translation	will
occur).	The	translation	is	first-come-first-served,	meaning	if	you	do:

!define	symbol_one	${symbol_two}

If	symbol_two	is	defined	when	that	line	occurs,	it	will	be	replaced.
Otherwise,	any	replacing	will	occur	when	${symbol_one}	is	referenced.

Define/conditional	compilation	related	commands:

5.4.1	!define

[/ifndef	|	/redef]	([/date|/utcdate]	gflag	[value])	|	(/math	gflag	val1	OP	val2)	|	(/file	gflag	filename.txt)

This	command	will	add	gflag	to	the	global	define	list.	This	will	have	a
similar	effect	as	using	the	/D	switch	on	the	command	line	(the	define	only
becomes	effective	after	the	!define	command).

If	/date	or	/utcdate	are	used,	value	will	be	passed	to	strftime()	and	the
result	will	be	used	as	the	value	of	gflag.	strftime	converts	special	symbols
into	certain	parts	of	the	current	time	or	date.	For	example,	%H	will	be
converted	into	the	current	hour	in	24-hour	format.	For	a	complete	list	of
available	symbols,	search	for	strftime	on	MSDN.	On	POSIX,	you	can	get
the	list	by	using	man	strftime.

If	/math	is	used,	the	result	of	'val1	OP	val2',	where	OP	may	be	+,-
,*,&,|,^,/,<<,>>,>>>	or	%	,	will	be	used	as	the	value	of	gflag.	Note	that
val1	AND	val2	MUST	be	integer	values!

If	/file	is	used,	the	entire	text	file	specified	(including	whitespace	and
newlines)	will	be	read	and	stuffed	into	gflag.

http://msdn.microsoft.com/

!define	USE_SOMETHING
!define	VERSION	1.2
!define	/date	NOW	"%H:%M:%S	%d	%b,	%Y"
!define	/math	RESULT	3	+	10
!define	/math	REST	15	%	${RESULT}
!define	/file	BunchaStuff	somesourcefile.cpp
!define	/redef	USE_SOMETHING	${RESULT}	;redefine	USE_SOMETHING

5.4.2	!undef

gflag

Removes	an	item	from	the	global	define	list.	Note	that	${SYMBOL}	where
SYMBOL	is	undefined	will	be	translated	to	"${SYMBOL}".

!define	SOMETHING
!undef	SOMETHING

5.4.3	!ifdef

gflag	[bcheck	gflag	[...]]

This	command,	when	paired	with	an	!endif	command,	will	tell	the
compiler	whether	or	not	to	compile	the	lines	in	between	the	two	lines.	If
gflag	is	globally	defined	(using	!define	or	the	/D	switch),	then	the
contained	lines	will	be	compiled.	Otherwise,	they	will	be	skipped.	'bcheck'
can	be	specified	as	&	(boolean	and)	or	|	(boolean	or)	along	with	more
gflags	--	precedence	is	simple,	left	to	right.

!define	SOMETHING
!ifdef	SOMETHING
		!echo	"SOMETHING	is	defined"
!endif
!undef	SOMETHING
!ifdef	SOMETHING
		!echo	"SOMETHING	is	defined"	#	will	never	be	printed
!endif

5.4.4	!ifndef

gflag	[bcheck	gflag	[...]]]

The	opposite	of	!ifdef.	The	lines	will	be	compiled	when	the	gflag	has	not
been	defined.

5.4.5	!if

[!]	value	[op	value2]
[!]	/FileExists	"c:\path\file.exe"

This	command,	when	paired	with	an	!endif	command,	will	tell	the
compiler	whether	or	not	to	compile	the	lines	in	between	the	two	lines.	If
value	is	non-zero,	or	the	comparison	of	value	and	value2	depending	on
the	operator	results	in	true,	the	contained	lines	will	be	compiled.
Otherwise,	they	will	be	skipped.	op	can	be	either	==	or	!=	(case-
insensitive	string	comparison),	S==	or	S!=	(case-sensitive	string
comparison),	=,	<>,	<=,	<,	>	or	>=	(int/hex/float	comparison),	&	(bitwise
AND	comparison),	&&	or	||	(boolean	comparison).	If	[!]	is	set,	the	result
will	be	flipped	from	true	to	false	and	vice	versa.

!if	1	<	0x2
		!echo	"1	is	smaller	than	2!!"
!else	if	!	3.1	>	1.99
		!error	"this	line	should	never	appear"
!else
		!error	"neither	should	this"
!endif

!if	/FileExists	".\cert.pfx"
		!finalize	'".\sign.bat"	"%1"'
!endif

5.4.6	!ifmacrodef

gflag	[bcheck	gflag	[...]]]

This	command,	when	paired	with	an	!endif	command,	will	tell	the
compiler	whether	or	not	to	compile	the	lines	in	between	the	two	lines.	If
the	macro	gflag	exists,	then	the	contained	lines	will	be	compiled.
Otherwise,	they	will	be	skipped.	'bcheck'	can	be	specified	as	&	(boolean
and)	or	|	(boolean	or)	along	with	more	gflags	--	precedence	is	simple,	left
to	right.

!macro	SomeMacro
!macroend
!ifmacrodef	SomeMacro
		!echo	"SomeMacro	is	defined"
!endif

5.4.7	!ifmacrondef

gflag	[bcheck	gflag	[...]]]

The	opposite	of	!ifmacrodef.	The	lines	will	be	compiled	when	the	macro
gflag	does	not	exist.

5.4.8	!else

[if|ifdef|ifndef|ifmacrodef|ifmacrondef	[...]]

This	command	allows	to	easily	insert	different	code	when	different
defines	or	macros	are	set.	You	can	create	blocks	like	!ifdef/!else/!endif,
!ifdef/!else	ifdef/!else/!endif	etc.

!ifdef	VERSION
OutFile	installer-${VERSION}.exe
!else
OutFile	installer.exe
!endif

5.4.9	!endif

This	command	closes	a	block	started	with	!if,	!ifdef,	!ifndef,	!ifmacrodef	or
!ifmacrondef.

5.4.10	!insertmacro

macro_name	[parameter]	[...]

Inserts	the	contents	of	a	macro	that	was	created	with	!macro.	If	the
macro	was	created	with	parameters,	then	you	must	pass	as	many
parameters	to	the	macro	as	it	requires.

!macro	Print	text
		DetailPrint	"${text}"
!macroend
!insertmacro	Print	"some	text"
!insertmacro	Print	"some	more	text"

5.4.11	!macro

macro_name	[parameter][...]

Creates	a	macro	named	'macro_name'.	All	lines	between	the	!macro	and
the	!macroend	will	be	saved.	To	insert	the	macro	later	on,	use
!insertmacro.	!macro	definitions	can	have	one	or	more	parameters
defined.	The	parameters	may	be	accessed	the	same	way	a	!define	would
(e.g.	${PARMNAME})	from	inside	the	macro.

!macro	SomeMacro	parm1	parm2	parm3
		DetailPrint	"${parm1}"
		MessageBox	MB_OK	"${parm2}"
		File	"${parm3}"
!macroend

5.4.12	!macroend

Ends	a	macro	that	was	started	with	!macro.

5.4.13	!macroundef

macro_name

Deletes	a	macro.

5.4.14	!searchparse

[/ignorecase]	[/noerrors]	[/file]	source_string_or_file	substring_start	OUTPUTSYMBOL1	[substring	[OUTPUTSYMBOL2	[substring	...]]]

Parses	source_string_or_file	(which	is	treated	as	a	string,	or	as	a
filename	if	/file	is	set),	looking	for	substring_start.	If	substring_start	is
found,	then	OUTPUTSYMBOL1	is	defined	to	the	rest	of	the	string	(minus
any	other	substring	that	may	be	found).	Any	number	of
OUTPUTSYMBOLx	may	be	specified,	and	the	final	substring	is	optional.

If	/noerrors	is	specified,	matching	less	than	the	full	number	of	strings	is
allowed	(all	OUTPUTSYMBOLx	after	the	not-found	substring	will	be
ignored).

If	/file	is	specified,	the	file	is	treated	as	a	series	of	lines.	The	file	is
searched	until	all	substrings	are	matched.	If	/noerrors	is	specified	and	not
all	strings	are	matched,	the	first	line	with	the	most	symbols	matched	is
used.

#	search	filename.cpp	for	a	line	'#define	APP_VERSION	"2.5"'	and	set	${VER_MAJOR}	to	2,	${VER_MINOR}	to	5.
!searchparse	/file	filename.cpp	`#define	APP_VERSION	"`	VER_MAJOR	`.`	VER_MINOR	`"`

5.4.15	!searchreplace

[/ignorecase]	symbol_out	source_string	searchfor	replacewith

Searches	source_string,	looking	for	searchfor	and	replacing	all	instances
of	it	with	replacewith.	Unlike	!define,	!searchreplace	allows	you	to
redefine	symbol_out	without	warning	or	error.

#	defines	${blah}	to	"i	like	ponies"
!searchreplace	blah	"i	love	ponies"	"love"	"like"

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	A:	Modern	User	Interface
NSIS	2	makes	it	is	possible	to	create	installers	with	a	custom	user
interface.	The	Modern	UI	is	a	interface	with	a	style	like	the	wizards	of
recent	Windows	versions.	This	new	interface	also	features	new	pages
(Welcome,	Finish,	Start	Menu)	and	a	description	area	on	the	components
page.	The	interface	and	the	graphics	can	be	customized	using	the
provided	settings.	Using	the	Modern	UI	macros	and	language	files,
writing	scripts	with	a	modern	interface	is	easy.

For	more	information	and	documentation	see	the	Modern	UI	2	Readme.

NSIS	2.34	brought	with	it	a	new	version	of	Modern	UI	-	version	2.	It	is
faster	and	more	extendible.	It	allows	plug-ins	to	add	new	types	of	pages
and	even	change	existing	pages	using	a	simple	NSH	file.	It	also	uses
nsDialogs	which	faster	than	its	elder	sibling	-	InstallOptions.

For	more	information	and	documentation	of	the	old	version	see	the
Modern	UI	Readme.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	B:	DLL/TLB	Library	Setup
Introduction
Library	Installation

Introduction
Parameters
Options
Notes
Example

Library	Uninstallation
Introduction
Parameters
Options
Example

Visual	Basic	6	Run-Time	Files

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

B.1	Introduction
The	Library	header	file	can	be	used	to	setup	dynamic	link	libraries	(DLL)
and	type	libraries	(TLB).	If	necessary,	the	following	actions	will	be
performed:

File	copying
File	copying	on	reboot
Version	checks
Registration	and	unregistration
Registration	and	unregistration	on	reboot
Shared	DLL	counting
Windows	File	Protection	checks

The	macros	are	stored	in	the	header	file	Library.nsh,	which	should	be
included	in	scripts	using	this	system:

!include	Library.nsh

Note	that	the	library	macros	are	limited	on	non-Windows	platforms.	DLL
version	information	is	required	when	compiling	on	non-Windows
platforms.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

B.2	Library	Installation

B.2.1	Introduction

The	InstallLib	macro	allows	you	to	install	a	library.	It	sets	the	error	flag	if
something	went	wrong	during	library	setup.

To	ask	the	user	for	a	reboot,	if	required,	use	the	Modern	UI	with	a	Finish
page	or	use	IfRebootFlag	and	make	your	own	page	or	message	box.

B.2.2	Parameters

libtype	shared	install	localfile	destfile	tempbasedir

libtype

The	type	of	the	library

DLL	-	Dynamic	link	library	(DLL)
REGDLL	-	DLL	that	has	to	be	registered
REGEXE	-	EXE	COM	server	that	has	to	be	registered	using	/regserver
TLB	-	Type	library	or	DLL	that	contains	a	type	library
REGDLLTLB	-	DLL	that	has	to	be	registered	and	contains	a	type	library

shared

Specify	whether	the	library	is	shared	with	other	applications

NOTSHARED	-	The	library	is	not	shared
$VARNAME	-	Variable	that	is	empty	when	the	application	is	installed	for
the	first	time,	which	is	when	the	shared	library	count	will	be	increased.

install

Specify	the	installation	method

REBOOT_PROTECTED

Upgrade	the	library	on	reboot	when	in	use	(required	for	system	files).
Upgrade	the	library	if	the	file	is	not	protected	by	Windows	File
Protection.

NOREBOOT_PROTECTED

Warns	the	user	when	the	library	is	in	use.	The	user	will	have	to	close
applications	using	the	library.
Upgrade	the	library	if	the	file	is	not	protected	by	Windows	File
Protection.

REBOOT_NOTPROTECTED

Upgrade	the	library	on	reboot	when	in	use	(required	for	system	files).
Upgrade	the	library	without	checking	for	Windows	File	Protection.

NOREBOOT_NOTPROTECTED

Warns	the	user	when	the	library	is	in	use.	The	user	will	have	to	close
applications	using	the	library.
Upgrade	the	library	without	checking	for	Windows	File	Protection.

localfile

Location	of	the	library	on	the	compiler	system

destfile

Location	to	store	the	library	on	the	user's	system

tempbasedir

Directory	on	the	user's	system	to	store	a	temporary	file	when	the	system
has	to	be	rebooted.

For	Windows	9x/ME	support,	this	directory	should	be	on	the	same
volume	as	the	destination	file	(destfile).	The	Windows	temp	directory
could	be	located	on	any	volume,	so	you	cannot	use	this	directory.

B.2.3	Options

Define	any	of	the	following	before	inserting	a	InstallLib	macro	to	modify
its	behavior	as	specified.

B.2.3.1	LIBRARY_X64

Installs	a	DLL	built	for	Windows	x64.
Warning:	This	resets	file	system	redirection.

B.2.3.2	LIBRARY_SHELL_EXTENSION

Define	this	before	inserting	InstallLib	macro	to	call	SHChangeNotify
with	SHCNE_ASSOCCHANGED	after	registration.
Use	this	to	refresh	the	shell	when	installing	a	shell	extension	or	when
changing	file	associations.

B.2.3.3	LIBRARY_COM

Define	this	before	inserting	InstallLib	macro	to	call
CoFreeUnusedLibraries	after	registration.
Use	this	for	unloading	all	unnecessary	libraries	from	memory	when
installing	COM	libraries.

B.2.3.4	LIBRARY_IGNORE_VERSION

Define	this	before	inserting	InstallLib	macro	to	ignore	version
information	in	the	file	and	always	install	it,	even	if	it	already	exists.
Use	this	when	an	older	or	specific	version	is	required.
Not	recommended	for	DLLs	installed	to	$SYSDIR.

B.2.4	Notes

If	you	need	to	support	Windows	9x/ME,	you	can	only	use	short
filenames	(8.3).
Warning:	Always	use	redistributable	files	when	deploying	DLLs,
never	copy	files	from	your	system	directory!

B.2.5	Example

B.2.5.1	Unshared	DLL

	!insertmacro	InstallLib	REGDLL	NOTSHARED	REBOOT_NOTPROTECTED	dllname.dll	$SYSDIR\dllname.dll	$SYSDIR

B.2.5.2	Shared	DLL

	;Add	code	here	that	sets	$ALREADY_INSTALLED	to	a	non-zero	value	if	the	application	is
	;already	installed.	For	example:

	IfFileExists	"$INSTDIR\MyApp.exe"	0	new_installation	;Replace	MyApp.exe	with	your	application	filename
			StrCpy	$ALREADY_INSTALLED	1
	new_installation:

	!insertmacro	InstallLib	REGDLL	$ALREADY_INSTALLED	REBOOT_NOTPROTECTED	dllname.dll	$SYSDIR\dllname.dll	$SYSDIR

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

B.3	Library	Uninstallation

B.3.1	Introduction

The	UnInstallLib	macro	allows	you	to	uninstall	a	library.	It	sets	the	error
flag	if	something	went	wrong	during	library	removal.

B.3.2	Parameters

libtype	shared	uninstall	file

libtype

The	type	of	the	library

DLL	-	Dynamic	link	library	(DLL)
REGDLL	-	DLL	that	has	to	be	unregistered
REGEXE	-	EXE	COM	server	that	has	to	be	unregistered	using
/unregserver
TLB	-	Type	library	or	DLL	that	contains	a	type	library
REGDLLTLB	-	DLL	that	has	to	be	unregistered	and	contains	a	type
library

shared

Specify	whether	the	library	is	shared	with	other	applications

NOTSHARED	-	The	library	is	not	shared
SHARED	-	The	library	is	shared	and	should	be	removed	if	the	shared
library	count	indicates	that	the	file	is	not	in	use	anymore..

uninstall

Specify	the	uninstallation	method

NOREMOVE

The	library	should	not	be	removed.	You	should	use	this	option	for

common	or	important	system	files	such	as	the	Visual
Basic/C++/MFC	runtimes.

REBOOT_PROTECTED

Remove	the	library	on	reboot	when	in	use	(required	for	system	files).
Remove	the	library	if	the	file	is	not	protected	by	Windows	File
Protection.

NOREBOOT_PROTECTED

Warns	the	user	when	the	library	is	in	use.	The	user	will	have	to	close
applications	using	the	library.
Remove	the	library	if	the	file	is	not	protected	by	Windows	File
Protection.

REBOOT_NOTPROTECTED

Remove	the	library	on	reboot	when	in	use	(required	for	system	files).
Remove	the	library	without	checking	for	Windows	File	Protection.

NOREBOOT_NOTPROTECTED

Warns	the	user	when	the	library	is	in	use.	The	user	will	have	to	close
applications	using	the	library.
Remove	the	library	without	checking	for	Windows	File	Protection.

file

Location	of	the	library

B.3.3	Options

Define	any	of	the	following	before	inserting	a	UnInstallLib	macro	to
modify	its	behavior	as	specified.

B.3.3.1	LIBRARY_X64

Uninstalls	a	DLL	built	for	Windows	x64.

Warning:	This	resets	SetRegView	and	file	system	redirection.

B.3.3.2	LIBRARY_SHELL_EXTENSION

Define	this	before	inserting	UninstallLib	macro	to	call
SHChangeNotify	with	SHCNE_ASSOCCHANGED	after
unregistration.	Use	this	to	refresh	the	shell	when	uninstalling	a	shell
extension	or	when	changing	file	associations.

B.3.3.3	LIBRARY_COM

Define	this	before	inserting	UninstallLib	macro	to	call
CoFreeUnusedLibraries	after	unregistration.	Use	this	for	unloading
all	unnecessary	libraries	from	memory	when	uninstalling	COM
libraries.

B.3.4	Example

	!insertmacro	UnInstallLib	REGDLL	SHARED	REBOOT_NOTPROTECTED	$SYSDIR\dllname.dll

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

B.4	Visual	Basic	6	Run-Time	Files
A	new	VB6RunTime.nsh	header	file	is	available	for	the	setup	of	the	VB6
run-time	files.	To	obtain	the	latest	run-time	files,	download	vb6runtime.zip
and	extract	this	file.

	!include	VB6RunTime.nsh

	Var	AlreadyInstalled

	Section	"-Install	VB6	run-time	files"

			;Add	code	here	that	sets	$AlreadyInstalled	to	a	non-zero	value	if	the	application	is	already	installed.	For	example:
			IfFileExists	"$INSTDIR\MyApp.exe"	0	new_installation	;Replace	MyApp.exe	with	your	application	filename
					StrCpy	$AlreadyInstalled	1
			new_installation:

			!insertmacro	VB6RunTimeInstall	C:\vb6runtimes	$AlreadyInstalled	;Replace	C:\vb6runtimes	with	the	location	of	the	files

	SectionEnd

	Section	"-un.Uninstall	VB6	run-time	files"

			!insertmacro	VB6RunTimeUnInstall

	SectionEnd

Remarks:

You	may	have	to	install	additional	files	for	such	Visual	Basic
application	to	work,	such	as	OCX	files	for	user	interface	controls.
Installation	of	the	run-time	files	requires	Administrator	or	Power	User
privileges.	Use	the	Multi-User	header	file	to	verify	whether	these
privileges	are	available.
Add	a	Modern	UI	finish	page	or	another	check	(see	IfRebootFlag)	to
allow	the	user	to	restart	the	computer	when	necessary.

http://nsis.sourceforge.net/vb6runtime.zip

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	C:	Useful	Scripts
Get	Internet	Explorer	version
Is	.NET	Framework	installed?
Is	Macromedia	Flash	Player	installed?
Connect	to	the	Internet
Get	Installer	Filename
Prevent	Multiple	Instances
More

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.1	Get	Internet	Explorer	version

	;	GetIEVersion
	;
	;	Based	on	Yazno's	function,	http://yazno.tripod.com/powerpimpit/
	;	Returns	1-6	(IE	Version)	or	''	(IE	is	not	installed)	on	top	of	the	stack
	;
	;	Usage:
	;			Call	GetIEVersion
	;			Pop	$R0	;	at	this	point	$R0	is	"5"	or	whatnot

	Function	GetIEVersion
	Push	$R0
			ClearErrors
			ReadRegStr	$R0	HKLM	"Software\Microsoft\Internet	Explorer"	"Version"
			IfErrors	lbl_123	lbl_456

			lbl_456:	;	ie	4+
					Strcpy	$R0	$R0	1
			Goto	lbl_done

			lbl_123:	;	older	ie	version
					ClearErrors
					ReadRegStr	$R0	HKLM	"Software\Microsoft\Internet	Explorer"	"IVer"
					IfErrors	lbl_error

							StrCpy	$R0	$R0	3
							StrCmp	$R0	'100'	lbl_ie1
							StrCmp	$R0	'101'	lbl_ie2
							StrCmp	$R0	'102'	lbl_ie2

							StrCpy	$R0	'3'	;	default	to	ie3	if	not	100,	101,	or	102.
							Goto	lbl_done
									lbl_ie1:
											StrCpy	$R0	'1'
									Goto	lbl_done

									lbl_ie2:
											StrCpy	$R0	'2'
									Goto	lbl_done
					lbl_error:
							StrCpy	$R0	''
			lbl_done:
			Exch	$R0
	FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.2	Is	.NET	Framework	installed?

	;	IsDotNETInstalled
	;
	;	Based	on	GetDotNETVersion
	;			http://nsis.sourceforge.net/Get_.NET_Version
	;
	;	Usage:
	;			Call	IsDotNETInstalled
	;			Pop	$0
	;			StrCmp	$0	1	found_dotNETFramework	no_dotNETFramework

	Function	IsDotNETInstalled
			Push	$0
			Push	$1

			StrCpy	$0	1
			System::Call	"mscoree::GetCORVersion(w,	i	${NSIS_MAX_STRLEN},	*i)	i	.r1"
			StrCmp	$1	0	+2
					StrCpy	$0	0

			Pop	$1
			Exch	$0
	FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.3	Is	Macromedia	Flash	Player	installed?

	;	IsFlashInstalled
	;
	;	By	Yazno,	http://yazno.tripod.com/powerpimpit/
	;	Returns	the	result	on	top	of	the	stack
	;
	;	Usage:
	;			Call	IsFlashInstalled
	;			Pop	$R0	;	$R0	is	"1"	or	"0"	at	this	point	

	Function	IsFlashInstalled
		Push	$R0
		ClearErrors
		ReadRegStr	$R0	HKCR	"CLSID\{D27CDB6E-AE6D-11cf-96B8-444553540000}"	""
		IfErrors	lbl_na
				StrCpy	$R0	1
		Goto	lbl_end
		lbl_na:
				StrCpy	$R0	0
		lbl_end:
		Exch	$R0
	FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.4	Connect	to	the	Internet

	;	ConnectInternet	(uses	Dialer	plug-in)
	;	Written	by	Joost	Verburg	
	;
	;	This	function	attempts	to	make	a	connection	to	the	internet	if	there	is	no
	;	connection	available.	If	you	are	not	sure	that	a	system	using	the	installer
	;	has	an	active	internet	connection,	call	this	function	before	downloading
	;	files	with	NSISdl.
	;	
	;	The	function	requires	Internet	Explorer	3,	but	asks	to	connect	manually	if
	;	IE3	is	not	installed.
	
	Function	ConnectInternet
	
			Push	$R0
					
					ClearErrors
					Dialer::AttemptConnect
					IfErrors	noie3
					
					Pop	$R0
					StrCmp	$R0	"online"	connected
							MessageBox	MB_OK|MB_ICONSTOP	"Cannot	connect	to	the	internet."
							Quit	;This	will	quit	the	installer.	You	might	want	to	add	your	own	error	handling.
					
					noie3:
			
					;	IE3	not	installed
					MessageBox	MB_OK|MB_ICONINFORMATION	"Please	connect	to	the	internet	now."
					
					connected:
			
			Pop	$R0
			
	FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.5	Get	Installer	Filename

	System::Call	'kernel32::GetModuleFileName(p	0,	t	.R0,	i	${NSIS_MAX_STRLEN})	i.r1'
	;$R0	will	contain	the	installer	filename

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.6	Prevent	Multiple	Instances
Put	the	following	code	in	your	.onInit	function:

	System::Call	'kernel32::CreateMutex(p	0,	i	0,	t	"myMutex")	p	.r1	?e'
	Pop	$R0
	
	StrCmp	$R0	0	+3
			MessageBox	MB_OK|MB_ICONEXCLAMATION	"The	installer	is	already	running."
			Abort

'myMutex'	must	be	replaced	by	a	unique	value!

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

C.7	More
You	can	find	more	useful	scripts	on	the	NSIS	Wiki,	the	NSIS	forum	and
the	NSIS	development	page.

Previous	|	Contents	|	Next

http://nsis.sourceforge.net/wiki/
http://forums.winamp.com/forumdisplay.php?s=&forumid=65
http://nsis.sourceforge.net/

Previous	|	Contents	|	Next

Appendix	D:	Useful	Information
Error	Levels
Add	uninstall	information	to	Add/Remove	Programs
Calling	an	external	DLL	using	the	System.dll	plug-in
Dump	Content	of	Log	Window	to	File
How	to	Read	REG_MULTI_SZ	Values
Predefined	Macros	for	Unicode	support

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

D.1	Error	Levels
Like	other	applications,	installers	made	by	NSIS	return	error	levels	as	a
result	of	their	execution.	Checking	the	error	level	can	be	useful	if	you	call
an	NSIS	installer	from	another	application	or	installer.

0	-	Normal	execution	(no	error)
1	-	Installation	aborted	by	user	(cancel	button)
2	-	Installation	aborted	by	script

You	can	set	the	error	level	to	other	values	using	SetErrorLevel.

Note	that	uninstallers	copy	themselves	to	the	temporary	directory	and
execute	from	there	so	the	original	uninstaller	can	be	deleted.	This	means
the	error	level	the	uninstaller	sets	is	not	available	to	the	executing
process,	unless	it	simulates	this	copy	process	and	executes	the	copied
uninstaller.	To	simulate	this	process,	use:

InitPluginsDir
CopyFiles	$INSTDIR\uninstaller.exe	$PLUGINSDIR
ExecWait	'"$PLUGINSDIR\uninstaller.exe"	_?=$INSTDIR'	$0
DetailPrint	"uninstaller	set	error	level	$0"

If	you	don't	do	this,	you'll	only	be	able	to	know	if	the	uninstaller	failed
copying	itself	to	the	temporary	directory.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

D.2	Add	uninstall	information	to	Add/Remove
Programs
Create	a	key	with	your	product	name	under
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall	to	add
entries	to	the	"Add/Remove	Programs"	section	in	the	Control	Panel.	For
Windows	NT	(NT4/2000/XP),	it's	also	possible	to	create	the	key	in	the
HKCU	hive,	so	it	will	only	appear	for	the	current	user.	There	are	several
values	you	can	write	to	key	to	give	information	about	your	application	and
the	uninstaller.	Write	a	value	using	the	WriteRegStr	command	(for
strings)	or	WriteRegDWORD	command	(for	DWORD	values).

Example:

WriteRegStr	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyProduct"	"DisplayName"	"Application	Name"
WriteRegStr	HKLM	"Software\Microsoft\Windows\CurrentVersion\Uninstall\MyProduct"	"UninstallString"	'"$INSTDIR\uninst.exe"'

Required	values

DisplayName	(string)	-	Name	of	the	application	
UninstallString	(string)	-	Path	and	filename	of	the	uninstaller.	You	should
always	quote	the	path.

Optional	values

Some	of	the	following	values	will	not	be	used	by	older	Windows	versions.

InstallLocation	(string)	-	Installation	directory	($INSTDIR)	
DisplayIcon	(string)	-	Path,	filename	and	index	of	the	icon	that	will	be
displayed	next	to	your	application	name

Publisher	(string)	-	(Company)	name	of	the	publisher

ModifyPath	(string)	-	Path	and	filename	of	the	application	modify	program
InstallSource	(string)	-	Location	where	the	application	was	installed	from

ProductID	(string)	-	Product	ID	of	the	application	
RegOwner	(string)	-	Registered	owner	of	the	application	

RegCompany	(string)	-	Registered	company	of	the	application

HelpLink	(string)	-	Link	to	the	support	website	
HelpTelephone	(string)	-	Telephone	number	for	support

URLUpdateInfo	(string)	-	Link	to	the	website	for	application	updates	
URLInfoAbout	(string)	-	Link	to	the	application	home	page

DisplayVersion	(string)	-	Displayed	version	of	the	application	
VersionMajor	(DWORD)	-	Major	version	number	of	the	application	
VersionMinor	(DWORD)	-	Minor	version	number	of	the	application

NoModify	(DWORD)	-	1	if	uninstaller	has	no	option	to	modify	the	installed
application	
NoRepair	(DWORD)	-	1	if	the	uninstaller	has	no	option	to	repair	the
installation

If	both	NoModify	and	NoRepair	are	set	to	1,	the	button	displays
"Remove"	instead	of	"Modify/Remove".

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

D.3	Calling	an	external	DLL	using	the	System.dll
plug-in
Some	installers	need	to	call	functions	in	third-party	DLLs.	A	prime
example	of	this	is	when	installing	a	Palm(TM)	conduit.

Some	background	about	System.dll	The	System.dll	plug-in	enables
calling	of	external	DLLs	by	using	its	'Call'	function.	There	are	a	number	of
other	functions	provided	by	System.dll	but	they	will	not	be	covered	here.
For	more	details	about	the	other	functions,	lock	the	doors,	take	the	phone
off	the	hook,	screw	your	head	on	*real*	tight	and	head	on	over	to	the
System	readme.

Data	Types	
System.dll	recognises	the	following	data	types:

v	-	void	(generally	for	return)
p	-	pointer	(includes	void*,	HANDLE,	HWND,	UINT_PTR	and	so	on)
i	-	int	(a	32bit	integer)
l	-	large	integer	(also	known	as	int64)
t	-	text,	string	(LPTSTR,	pointer	to	first	character)
k	-	callback.	See	Callback	section	in	system.html.
*	-	pointer	specifier	->	the	proc	needs	the	pointer	to	type,	affects	next
char	(parameter)	[ex:	'*i'	-	pointer	to	int]

Mapping	System.dll	variables	to	NSIS	script	variables	
There's	not	much	point	in	being	able	to	call	an	external	function	if	you
can't	get	any	data	back.	System.dll	maps	function	variables	to	NSIS
script	variables	in	the	following	way:

NSIS	$0..$9	becomes	System.dll	r0..r9	NSIS	$R0..$R9	becomes
System.dll	r10..r19

Each	parameter	is	specified	by	type,	input	and	output.	To	skip	input	or
output	use	a	dot.	Examples:

String	(pointer	to	a	character	array),	input	is	'happy	calling':

t	'happy	calling'

String	(pointer	to	a	character	array),	input	is	taken	from	$5	and	changes
to	the	array	made	by	the	callee	are	saved	into	$R8:

t	r5R8

Pointer	to	an	integer,	value	taken	from	$1	and	put	into	$2:

*i	r1r2

Pointer	to	a	64-bit	integer,	output	pushed	on	stack,	no	input:

*l	.s

Using	System.dll::Call	To	call	a	function	in	a	third	party	DLL,	the	Call
function	is	used	like	this:

System::Call	'YourDllName::YourDllFunction(i,	*i,	t)	i(r0,	.r1,	r2)	.r3'

The	'(r0,	.r1,	r2)	.r3'	section	at	the	end	are	the	parameters	that	are
passed	between	your	DLL	and	your	NSIS	script.	As	can	be	seen	in	this
parameters	list,	type	and	input/output	can	be	separated.	Each	block	of	"
(parms	list)	return	value"	overrides	and/or	adds	to	the	last	one.	In	this
case,	the	first	block	specifies	the	types	and	the	second	specifies	input
and	output.

Before	starting	to	code	the	NSIS	script	
Before	you	start	to	code	any	NSIS	code	you	need	to	know	the	full
prototype	of	the	function	you	are	going	to	call.	For	the	purposes	of	this
example,	we	will	use	the	'CmGetHotSyncExecPath'	function	from	the
Palm	'CondMgr.dll'.	This	function	is	used	to	return	the	full	path	of
'HotSync.exe'.

Function	Definition	

int	__stdcall	CmGetHotSyncExecPath(TCHAR	*pPath,	int	*piSize);

where

pPath	is	a	pointer	to	a	character	buffer.	Upon	return,	this	is	the	path
&	file	name	of	the	installed	HotSync	manager.
piSize	is	a	pointer	to	an	integer	that	specifies	the	size	(in	TCHAR's),
of	the	buffer	referenced	by	the	pPath	parameter.

return	values:

0:	No	error
-1:	A	non-specific	error	occurred
ERR_REGISTRY_ACCESS(-1006):Unable	to	access	the	Palm
configuration	entries
ERR_BUFFER_TOO_SMALL(-1010):	The	buffer	is	too	small	to	hold
the	requested	information
ERR_INVALID_POINTER(-1013):The	specified	pointer	is	not	a	valid
pointer

Also,	if	the	buffer	is	too	small	the	value	in	*int	is	the	size	(in	TCHARs)	that
the	buffer	should	be.

This	function	definition	maps	to	the	following	System.dll	definition:

CmGetHotSyncExecPath(t,	*i)	i

i.e.	It	takes	a	text	variable,	a	pointer	to	int,	and	returns	an	int	value.

Using	the	external	dll	function	
Now	that	we've	sorted	out	what	the	function	does	and	how	it	maps	to	the
System.dll	format	we	can	use	the	function	in	a	NSIS	script.

First	you	have	to	change	the	output	directory	to	that	where	the	DLL	you
want	to	use	is.	It	may	also	work	if	the	DLL	is	in	the	system	path	but	this
hasn't	been	tested.

The	following	code	fragment	will	install	'condmgr.dll'	to	a	temporary
directory,	execute	the	CmGetHotSyncExecPath	function	and	display
returned	data.	Save	this	script

;	****	snip	****
Function	loadDll

		SetOutPath	$TEMP\eInspect													;	create	temp	directory
		File	bin\CondMgr.dll																		;	copy	dll	there
		StrCpy	$1	${NSIS_MAX_STRLEN}										;	assign	memory	to	$0
		System::Call	'CondMgr::CmGetHotSyncExecPath(t,	*i)	i(.r0,	r1r1).r2'
		DetailPrint	'Path:	"$0"'
		DetailPrint	"Path	length:	$1"
		DetailPrint	"Return	value:	$2"

FunctionEnd
;	****	snip	****

and	this	function	produces	the	following	output	in	the	'details'	page:

Output	folder:	c:\windows\TEMP\eInspect	
Extract:	CondMgr.dll	
Path:	"C:\Dave\palm\Hotsync.exe"	
Path	length:	24	
Return	value:	0

Written	by	djc

Acknowledgements	&	Thanks	
Lots	of	thanks	go	to	kichik	and	Sunjammer	for	spending	a	lot	of	time
assisting	in	solving	this	problem.	Also	to	brainsucker	for	creating	the
System.dll	plug-in	in	the	first	place.	Good	Luck!

Previous	|	Contents	|	Next

http://nsis.sourceforge.net/archive/profile.php?userid=78

Previous	|	Contents	|	Next

D.4	Dump	Content	of	Log	Window	to	File
This	function	will	dump	the	log	of	the	installer	(installer	details)	to	a	file	of
your	choice.

To	use	it,	push	a	file	name	and	call	it.	It	will	dump	the	log	to	the	file
specified.	For	example:

GetTempFileName	$0
Push	$0
Call	DumpLog

Here	is	the	function:

!define	LVM_GETITEMCOUNT	0x1004
!define	LVM_GETITEMTEXTA	0x102D

Function	DumpLog	#	Written	by	KiCHiK
		Exch	$5
		Push	$0
		Push	$1
		Push	$2
		Push	$3
		Push	$4
		Push	$6

		FindWindow	$0	"#32770"	""	$HWNDPARENT
		GetDlgItem	$0	$0	1016
		StrCmp	$0	0	error
		FileOpen	$5	$5	"w"
		StrCmp	$5	0	error
				SendMessage	$0	${LVM_GETITEMCOUNT}	0	0	$6
				System::StrAlloc	${NSIS_MAX_STRLEN}
				Pop	$3
				StrCpy	$2	0
				System::Call	"*(i,	i,	i,	i,	i,	i,	i,	i,	i)	p	\

						(0,	0,	0,	0,	0,	r3,	${NSIS_MAX_STRLEN})	.r1"
				loop:	StrCmp	$2	$6	done
						System::Call	"User32::SendMessageA(p,	i,	p,	p)	i	\
								($0,	${LVM_GETITEMTEXTA},	$2,	r1)"
						System::Call	"*$3(&t${NSIS_MAX_STRLEN}	.r4)"
						FileWrite	$5	"4\r$\n"
						IntOp	$2	$2	+	1
						Goto	loop
				done:
						FileClose	$5
						System::Free	$1
						System::Free	$3
						Goto	exit
		error:
				MessageBox	MB_OK	error
		exit:
				Pop	$6
				Pop	$4
				Pop	$3
				Pop	$2
				Pop	$1
				Pop	$0
				Exch	$5
FunctionEnd

Here's	the	function	to	generate	a	UTF-16LE	file	if	you're	building	a
Unicode	installer.

!define	LVM_GETITEMCOUNT	0x1004
!define	LVM_GETITEMTEXTW	0x1073

Function	DumpLog	#	Written	by	KiCHiK,	modified	by	Jim	Park
		Exch	$5
		Push	$0
		Push	$1
		Push	$2
		Push	$3

		Push	$4
		Push	$6

		FindWindow	$0	"#32770"	""	$HWNDPARENT
		GetDlgItem	$0	$0	1016
		StrCmp	$0	0	error
		FileOpen	$5	$5	"w"
		FileWriteWord	$5	0xfeff	;	Write	the	BOM
		StrCmp	$5	0	error
				SendMessage	$0	${LVM_GETITEMCOUNT}	0	0	$6
				System::StrAlloc	${NSIS_MAX_STRLEN}
				Pop	$3
				StrCpy	$2	0
				System::Call	"*(i,	i,	i,	i,	i,	i,	i,	i,	i)	p	\
						(0,	0,	0,	0,	0,	r3,	${NSIS_MAX_STRLEN})	.r1"
				loop:	StrCmp	$2	$6	done
						System::Call	"User32::SendMessageW(p,	i,	p,	p)	i	\
								($0,	${LVM_GETITEMTEXTW},	$2,	r1)"
						System::Call	"*$3(&t${NSIS_MAX_STRLEN}	.r4)"
						FileWriteUTF16LE	$5	"4\r$\n"
						IntOp	$2	$2	+	1
						Goto	loop
				done:
						FileClose	$5
						System::Free	$1
						System::Free	$3
						Goto	exit
		error:
				MessageBox	MB_OK	error
		exit:
				Pop	$6
				Pop	$4
				Pop	$3
				Pop	$2
				Pop	$1
				Pop	$0
				Exch	$5

FunctionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

D.5	How	to	Read	REG_MULTI_SZ	Values
KiCHiK	wrote	this	script	to	help	rpetges	in	this	forum	thread.	It	reads	a
registry	value	of	the	type	REG_MULTI_SZ	and	prints	it	out.	Don't	forget
to	edit	where	it	says	"Edit	this!"	when	you	test	this	script.	The	values	must
point	to	a	REG_MULTI_SZ	value	or	the	example	will	spit	out	an	error.

OutFile	"REG_MULTI_SZ	Reader.exe"
Name	"REG_MULTI_SZ	Reader"
ShowInstDetails	show

!define	HKEY_CLASSES_ROOT								0x80000000
!define	HKEY_CURRENT_USER								0x80000001
!define	HKEY_LOCAL_MACHINE							0x80000002
!define	HKEY_USERS															0x80000003
!define	HKEY_PERFORMANCE_DATA				0x80000004
!define	HKEY_PERFORMANCE_TEXT				0x80000050
!define	HKEY_PERFORMANCE_NLSTEXT	0x80000060
!define	HKEY_CURRENT_CONFIG						0x80000005
!define	HKEY_DYN_DATA												0x80000006
!define	KEY_QUERY_VALUE										0x0001
!define	KEY_ENUMERATE_SUB_KEYS			0x0008
!define	REG_NONE																	0
!define	REG_SZ																			1
!define	REG_EXPAND_SZ												2
!define	REG_BINARY															3
!define	REG_DWORD																4
!define	REG_DWORD_LITTLE_ENDIAN		4
!define	REG_DWORD_BIG_ENDIAN					5
!define	REG_LINK																	6
!define	REG_MULTI_SZ													7

!define	RegOpenKeyEx					"Advapi32::RegOpenKeyExA(i,	t,	i,	i,	*i)	i"
!define	RegQueryValueEx		"Advapi32::RegQueryValueExA(i,	t,	i,	*i,	i,	*i)	i"
!define	RegCloseKey						"Advapi32::RegCloseKeyA(i)	i"

http://forums.winamp.com/showthread.php?s=&threadid=131154

#######	Edit	this!

!define	ROOT_KEY									${HKEY_CURRENT_USER}
!define	SUB_KEY										"Software\Joe	Software"
!define	VALUE												"Strings"

#######	Stop	editing

Section	"Read"
		StrCpy	$0	""
		StrCpy	$1	""
		StrCpy	$2	""
		StrCpy	$3	""
		System::Call	"${RegOpenKeyEx}(${ROOT_KEY},	'${SUB_KEY}',	\
				0,	${KEY_QUERY_VALUE}|${KEY_ENUMERATE_SUB_KEYS},	.r0)	.r3"
	
		StrCmp	$3	0	goon
				MessageBox	MB_OK|MB_ICONSTOP	"Can't	open	registry	key!	($3)"
				Goto	done
goon:

		System::Call	"${RegQueryValueEx}(r0,	'${VALUE}',	0,	.r1,	0,	.r2)	.r3"
	
		StrCmp	$3	0	read
				MessageBox	MB_OK|MB_ICONSTOP	"Can't	query	registry	value	size!	($3)"
				Goto	done
	
read:
	
		StrCmp	$1	${REG_MULTI_SZ}	multisz
				MessageBox	MB_OK|MB_ICONSTOP	"Registry	value	no	REG_MULTI_SZ!	($3)"
				Goto	done
	
multisz:
	
		StrCmp	$2	0	0	multiszalloc
				MessageBox	MB_OK|MB_ICONSTOP	"Registry	value	empty!	($3)"

				Goto	done
	
multiszalloc:

		System::Alloc	$2
		Pop	$1
	
		StrCmp	$1	0	0	multiszget
				MessageBox	MB_OK|MB_ICONSTOP	"Can't	allocate	enough	memory!	($3)"
				Goto	done
	
multiszget:
	
		System::Call	"${RegQueryValueEx}(r0,	'${VALUE}',	0,	n,	r1,	r2)	.r3"
	
		StrCmp	$3	0	multiszprocess
				MessageBox	MB_OK|MB_ICONSTOP	"Can't	query	registry	value	data!	($3)"
				Goto	done
	
multiszprocess:
	
		StrCpy	$4	$1
	
		loop:
	
				System::Call	"*$4(&t${NSIS_MAX_STRLEN}	.r3)"
				StrCmp	$3	""	done
				DetailPrint	$3
				StrLen	$5	$3
				IntOp	$4	$4	+	$5
				IntOp	$4	$4	+	1
				Goto	loop
	
done:
	
		System::Free	$1
	

		StrCmp	$0	0	noClose
				System::Call	"${RegCloseKey}(r0)"
	
noClose:

SectionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

D.6	Predefined	Macros	for	Unicode	support
There	are	two	macros	that	can	help	you	write	scripts	that	work	for	both
Unicode	and	ANSI	installers.	To	figure	out	if	the	script	is	being	compiled
to	generate	a	Unicode	installer,	use	!ifdef	to	check	for
${NSIS_UNICODE}.	To	see	what	the	size	of	a	character	is,	use
${NSIS_CHAR_SIZE}.	It	will	be	1	for	ANSI	and	2	for	Unicode	installers.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	E:	Useful	Headers
File	Functions	Header

Introduction
Locate
GetSize
DriveSpace
GetDrives
GetTime
GetFileAttributes
GetFileVersion
GetExeName
GetExePath
GetParameters
GetOptions
GetOptionsS
GetRoot
GetParent
GetFileName
GetBaseName
GetFileExt
BannerTrimPath
DirState
RefreshShellIcons

Text	Functions	Header
Introduction
LineFind
LineRead
FileReadFromEnd
LineSum
FileJoin
TextCompare
TextCompareS
ConfigRead
ConfigReadS
ConfigWrite
ConfigWriteS
FileRecode

TrimNewLines
Word	Functions	Header

Introduction
WordFind
WordFindS
WordFind2X
WordFind2XS
WordFind3X
WordFind3XS
WordReplace
WordReplaceS
WordAdd
WordAddS
WordInsert
WordInsertS
StrFilter
StrFilterS
VersionCompare
VersionConvert

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

E.1	File	Functions	Header

E.1.1	Introduction

Include	header:

!include	"FileFunc.nsh"

Call	functions:

Section	Install
					${GetFileExt}	"C:\My	Downloads\Index.html"	$R0
					;	$R0="html"
SectionEnd

Section	un.Install
					${GetParent}	"C:\My	Downloads\Index.html"	$R0
					;	$R0="C:\My	Downloads"
SectionEnd

E.1.2	Locate

Find	files,	directories	and	empty	directories	with	mask	and	size
options.

Syntax:

${Locate}	"[Path]"	"[Options]"	"Function"

"[Path]"						;	Disk	or	Directory
														;
"[Options]"			;	/L=[FD|F|D|DE|FDE]
														;					/L=FD				-	Locate	Files	and	Directories	(default)
														;					/L=F					-	Locate	Files	only
														;					/L=D					-	Locate	Directories	only
														;					/L=DE				-	Locate	Empty	Directories	only
														;					/L=FDE			-	Locate	Files	and	Empty	Directories

														;	/M=[mask]
														;					/M=*.*									-	Locate	all	(default)
														;					/M=*.doc							-	Locate	Work.doc,	1.doc	...
														;					/M=Pho*								-	Locate	PHOTOS,	phone.txt	...
														;					/M=win???.exe		-	Locate	winamp.exe,	winver.exe	...
														;					/M=winamp.exe		-	Locate	winamp.exe	only
														;	/S=No:No[B|K|M|G]
														;					/S=						-	Don't	locate	file	size	(faster)	(default)
														;					/S=0:0B		-	Locate	only	files	of	0	Bytes	exactly
														;					/S=5:9K		-	Locate	only	files	of	5	to	9	Kilobytes
														;					/S=:10M		-	Locate	only	files	of	10	Megabyte	or	less
														;					/S=1G				-	Locate	only	files	of	1	Gigabyte	or	more
														;	/G=[1|0]
														;					/G=1					-	Locate	with	subdirectories	(default)
														;					/G=0					-	Locate	without	subdirectories
														;	/B=[0|1]
														;					/B=0					-	Banner	isn't	used	(default)
														;					/B=1					-	Banner	is	used.	Callback	when	function
														;																start	to	search	in	new	directory
"Function"				;	Callback	function	when	found

Function	"Function"
	 ;	$R9				"path\name"
	 ;	$R8				"path"
	 ;	$R7				"name"
	 ;	$R6				"size"		($R6=""	if	directory,	$R6="0"	if	file	with	/S=)

	 ;	$R0-$R5		are	not	used	(save	data	in	them).
	 ;	...

	 Push	$var				;	If	$var="StopLocate"	Then	exit	from	function
FunctionEnd

Note:	-	Error	flag	if	disk	or	directory	isn't	exist	
-	Error	flag	if	syntax	error	
-	See	also:	Locate	plugin

http://nsis.sf.net/Locate_plugin

Example	(Find	one	file):

Section
	 ${Locate}	"C:\ftp"	"/L=F	/M=RPC	DCOM.rar	/S=1K"	"Example1"
	 ;	'RPC	DCOM.rar'	file	in	'C:\ftp'	with	size	1	Kb	or	more

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 MessageBox	MB_OK	"$$R0=$R0"
SectionEnd

Function	Example1
	 StrCpy	$R0	$R9
	 ;	$R0="C:\ftp\files\RPC	DCOM.rar"

	 MessageBox	MB_YESNO	'$R0$\n$\nFind	next?'	IDYES	+2
	 StrCpy	$0	StopLocate

	 Push	$0
FunctionEnd

Example	(Write	results	to	a	text	file):

Section
	 GetTempFileName	$R0
	 FileOpen	$R1	$R0	w
	 ${Locate}	"C:\ftp"	"/S=:2M	/G=0"	"Example2"
	 ;	folders	and	all	files	with	size	2	Mb	or	less
	 ;	don't	scan	subdirectories
	 FileClose	$R1

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 Exec	'"notepad.exe"	"$R0"'
SectionEnd

Function	Example2

	 StrCmp	$R6	''	0	+3
	 FileWrite	$R1	"Directory=$R9$\r$\n"
	 goto	+2
	 FileWrite	$R1	"File=$R9		Size=$R6	Mb\r\n"

	 Push	$0
FunctionEnd

Example	(Write	results	to	an	INI	file):

Section
	 GetTempFileName	$R0
	 ${Locate}	"C:\ftp"	"/L=F	/S=0K"	"Example3"
	 ;	all	files	in	'C:\ftp'	with	size	detect	in	Kb

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 Exec	'"notepad.exe"	"$R0"'
SectionEnd

Function	Example3
	 WriteINIStr	$R0	"$R8"	"$R7"	"$R6	Kb"

	 Push	$0
FunctionEnd

Example	(Delete	empty	directories):

Section
	 StrCpy	$R2	0
	 StrCpy	$R3	0

	 loop:
	 StrCpy	$R1	0
	 ${Locate}	"C:\ftp"	"/L=DE"	"Example4"
	 IntOp	$R3	$R3	+	1
	 IntOp	$R2	$R2	+	$R1
	 StrCmp	$R0	StopLocate	+2

	 StrCmp	$R1	0	0	loop

	 IfErrors	0	+2
	 MessageBox	MB_OK	'error'	IDOK	+2
	 MessageBox	MB_OK	'$R2	directories	were	removed\nR3	loops'
SectionEnd

Function	Example4
	 MessageBox	MB_YESNOCANCEL	'Delete	empty	"$R9"?'	IDNO	end	IDCANCEL	cancel
	 RMDir	$R9
	 IntOp	$R1	$R1	+	1
	 goto	end

	 cancel:
	 StrCpy	$R0	StopLocate

	 end:
	 Push	$R0
FunctionEnd

Example	(Move	all	files	into	one	folder):

Section
	 StrCpy	$R0	"C:\ftp"			;Directory	move	from
	 StrCpy	$R1	"C:\ftp2"		;Directory	move	into

	 StrCpy	$R2	0
	 StrCpy	$R3	0
	 ${Locate}	"$R0"	"/L=F"	"Example5"

	 IfErrors	0	+2
	 MessageBox	MB_OK	'error'	IDOK	+4
	 StrCmp	$R3	0	0	+2
	 MessageBox	MB_OK	'$R2	files	were	moved'	IDOK	+2
	 MessageBox	MB_OK	'$R2	files	were	moved\nR3	files	were	NOT	moved'
SectionEnd

Function	Example5
	 StrCmp	$R8	$R1	+6
	 IfFileExists	'$R1\$R7'	+4
	 Rename	$R9	'$R1\$R7'
	 IntOp	$R2	$R2	+	1
	 goto	+2
	 IntOp	$R3	$R3	+	1

	 Push	$0
FunctionEnd

Example	(Copy	files	with	log):

Section
	 StrCpy	$R0	"C:\ftp"			;Directory	copy	from
	 StrCpy	$R1	"C:\ftp2"		;Directory	copy	into
	 StrLen	$R2	$R0

	 GetTempFileName	$0
	 FileOpen	$R3	$0	w
	 ${Locate}	"$R0"	"/L=FDE"	"Example6"
	 FileClose	$R3

	 IfErrors	0	+2
	 MessageBox	MB_OK	'error'

	 Exec	'"notepad.exe"	"$0"'					;view	log
SectionEnd

Function	Example6
	 StrCpy	$1	$R8	''	$R2

	 StrCmp	$R6	''	0	+3
	 CreateDirectory	'$R1$1\$R7'
	 goto	end
	 CreateDirectory	'$R1$1'
	 CopyFiles	/SILENT	$R9	'$R1$1'

	 IfFileExists	'$R1$1\$R7'	0	+3
	 FileWrite	$R3	"-old:$R9		-new:$R1$1\$R7		-success\r\n"
	 goto	+2
	 FileWrite	$R3	"-old:$R9		-new:$R1$1\$R7		-failed\r\n"

	 end:
	 Push	$0
FunctionEnd

Example	(Recreate	directory	structure):

Section
	 StrCpy	$R0	"C:\ftp"					;Directory	structure	from
	 StrCpy	$R1	"C:\ftp2"				;Directory	structure	into
	 StrLen	$R2	$R0

	 ${Locate}	"$R0"	"/L=D"	"Example7"

	 IfErrors	0	+2
	 MessageBox	MB_OK	'error'
SectionEnd

Function	Example7
	 StrCpy	$1	$R9	''	$R2
	 CreateDirectory	'$R1$1'

	 Push	$0
FunctionEnd

Example	(Locate	with	banner	-	NxS	plugin	required):

Section
	 nxs::Show	/NOUNLOAD	`$(^Name)	Setup`	/top	\
	 	 `Setup	searching	something\r\nPlease	wait...	If	you	can..`	\
	 	 /h	1	/can	1	/end
	 ${Locate}	"C:\WINDOWS"	"/L=F	/M=*.inf	/B=1"	"Example8"
	 nxs::Destroy

http://nsis.sourceforge.net/Nxs_plug-in

SectionEnd

Function	Example8
	 StrCmp	$R0	$R8	abortcheck
	 StrCpy	$R0	$R8
	 nxs::Update	/NOUNLOAD	/sub	"$R8"	/pos	78	/end

	 abortcheck:
	 nxs::HasUserAborted	/NOUNLOAD
	 Pop	$0
	 StrCmp	$0	1	0	+2
	 StrCpy	$0	StopLocate

	 StrCmp	$R9	''	end
	 ;...

	 end:
	 Push	$0
FunctionEnd

E.1.3	GetSize

Find	the	size	of	a	file,	files	mask	or	directory.
Find	the	sum	of	the	files,	directories	and	subdirectories.

Syntax:

${GetSize}	"[Path]"	"[Options]"	$var1	$var2	$var3

"[Path]"						;	Disk	or	Directory
														;
"[Options]"			;	/M=[mask]
														;					/M=*.*									-	Find	all	(default)
														;					/M=*.doc							-	Find	Work.doc,	1.doc	...
														;					/M=Pho*								-	Find	PHOTOS,	phone.txt	...
														;					/M=win???.exe		-	Find	winamp.exe,	winver.exe	...
														;					/M=winamp.exe		-	Find	winamp.exe	only

														;	/S=No:No[B|K|M|G]
														;					/S=						-	Don't	find	file	size	(faster)	(default)
														;					/S=0:0B		-	Find	only	files	of	0	Bytes	exactly
														;					/S=5:9K		-	Find	only	files	of	5	to	9	Kilobytes
														;					/S=:10M		-	Find	only	files	of	10	Megabyte	or	less
														;					/S=1G				-	Find	only	files	of	1	Gigabyte	or	more
														;	/G=[1|0]
														;					/G=1					-	Find	with	subdirectories	(default)
														;					/G=0					-	Find	without	subdirectories
														;
$var1									;	Result1:	Size
$var2									;	Result2:	Sum	of	files
$var3									;	Result3:	Sum	of	directories

Note:	
-	Error	flag	if	disk	or	directory	isn't	exist	
-	Error	flag	if	syntax	error	
-	See	also:	Locate	plugin

Examples:

Section	'Find	file	size	of	"$WINDIR\Explorer.exe"	in	KiB'

	 ${GetSize}	"$WINDIR"	"/M=Explorer.exe	/S=0K	/G=0"	$0	$1	$2
	 ;	$0="220"	KiB
	 ;	$1="1"			files
	 ;	$2=""				directories

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Section	'Find	folder	size	of	"C:\Installs\Drivers"	in	MiB'

	 ${GetSize}	"C:\Installs\Drivers"	"/S=0M"	$0	$1	$2
	 ;	$0="132"	MiB
	 ;	$1="555"	files
	 ;	$2="55"		directories

http://nsis.sf.net/Locate_plugin

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Section	'Find	sum	of	files	and	folders	in	"$WINDIR"	(no	subfolders)'

	 ${GetSize}	"$WINDIR"	"/G=0"	$0	$1	$2
	 ;	$0=""				size
	 ;	$1="253"	files
	 ;	$2="46"		directories

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

E.1.4	DriveSpace

Get	total,	occupied	or	free	space	of	the	drive.

Syntax:

${DriveSpace}	"[Drive]"	"[Options]"	$var

"[Drive]"					;	Disk	to	check
														;					
"[Options]"			;	/D=[T|O|F]
														;					/D=T		-	Total	space	(default)
														;					/D=O		-	Occupied	space
														;					/D=F		-	Free	space
														;	/S=[B|K|M|G]
														;					/S=B		-	size	in	Bytes	(default)
														;					/S=K		-	size	in	Kilobytes
														;					/S=M		-	size	in	Megabytes
														;					/S=G		-	size	in	Gigabytes
														;
$var										;	Result:	Size

Note:	
-	Error	flag	if	disk	isn't	exist	or	not	ready	
-	Error	flag	if	syntax	error

Example:

Section
	 ${DriveSpace}	"C:\"	"/D=F	/S=M"	$R0
	 ;	$R0="2530"			megabytes	free	on	drive	C:
SectionEnd

E.1.5	GetDrives

Find	all	available	drives	in	the	system.

Syntax:

${GetDrives}	"[Option]"	"Function"

"[Option]"						;	[FDD+HDD+CDROM+NET+RAM]
																;			FDD				Floppy	Disk	Drives
																;			HDD				Hard	Disk	Drives	
																;			CDROM		CD-ROM	Drives
																;			NET				Network	Drives
																;			RAM				RAM	Disk	Drives
																;
																;	[ALL]
																;			Find	all	drives	by	letter	(default)
																;
"Function"						;	Callback	function	when	found

Function	"Function"
	 ;	$9				"drive	letter"		(a:\	c:\	...)
	 ;	$8				"drive	type"				(FDD	HDD	...)

	 ;	$R0-$R9		are	not	used	(save	data	in	them).
	 ;	...

	 Push	$var				;	If	$var="StopGetDrives"	Then	exit	from	function
FunctionEnd

Example1:

Section
	 ${GetDrives}	"FDD+CDROM"	"Example1"
SectionEnd

Function	Example1
	 MessageBox	MB_OK	"$9		($8	Drive)"

	 Push	$0
FunctionEnd

Example2:

Section
	 ${GetDrives}	"ALL"	"Example2"
SectionEnd

Function	Example2
	 MessageBox	MB_OK	"$9		($8	Drive)"

	 Push	$0
FunctionEnd

Example3	(Get	type	of	drive):

Section
	 StrCpy	$R0	"D:\"						;Drive	letter
	 StrCpy	$R1	"invalid"

	 ${GetDrives}	"ALL"	"Example3"

	 MessageBox	MB_OK	"Type	of	drive	$R0	is	$R1"
SectionEnd

Function	Example3
	 StrCmp	$9	$R0	0	+3
	 StrCpy	$R1	$8
	 StrCpy	$0	StopGetDrives

	 Push	$0
FunctionEnd

E.1.6	GetTime

Get	local	or	system	time.
Get	file	time	(access,	creation	and	modification).

Syntax:

${GetTime}	"[File]"	"[Option]"	$var1	$var2	$var3	$var4	$var5	$var6	$var7

"[File]"								;	Ignored	if	"L"	or	"LS"
																;
"[Option]"						;	[Options]
																;			L			Local	time
																;			A			last	Access	file	time
																;			C			Creation	file	time
																;			M			Modification	file	time
																;			LS		System	time	(UTC)
																;			AS		last	Access	file	time	(UTC)
																;			CS		Creation	file	time	(UTC)
																;			MS		Modification	file	time	(UTC)
																;
$var1											;	Result1:	day
$var2											;	Result2:	month
$var3											;	Result3:	year
$var4											;	Result4:	day	of	week	name
$var5											;	Result5:	hour
$var6											;	Result6:	minute
$var7											;	Result7:	seconds

Note:	

-	Error	flag	if	file	isn't	exist	
-	Error	flag	if	syntax	error	
-	See	also:	Time	plugin

Examples:

Section	'Get	local	time'
	 ${GetTime}	""	"L"	$0	$1	$2	$3	$4	$5	$6
	 ;	$0="01"						day
	 ;	$1="04"						month
	 ;	$2="2005"				year
	 ;	$3="Friday"		day	of	week	name
	 ;	$4="16"						hour
	 ;	$5="05"						minute
	 ;	$6="50"						seconds

	 MessageBox	MB_OK	'Date=$0/$1/$2	($3)$\nTime=$4:$5:$6'
SectionEnd

Section	'Get	file	time'
	 ${GetTime}	"$WINDIR\Explorer.exe"	"C"	$0	$1	$2	$3	$4	$5	$6
	 ;	$0="12"							day
	 ;	$1="10"							month
	 ;	$2="2004"					year
	 ;	$3="Tuesday"		day	of	week	name
	 ;	$4="2"								hour
	 ;	$5="32"							minute
	 ;	$6="03"							seconds

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 MessageBox	MB_OK	'Date=$0/$1/$2	($3)$\nTime=$4:$5:$6'
SectionEnd

Section	'Get	system	time'
	 ${GetTime}	""	"LS"	$0	$1	$2	$3	$4	$5	$6
	 ;	$0="01"						day
	 ;	$1="04"						month

http://nsis.sf.net/Time_plugin

	 ;	$2="2005"				year
	 ;	$3="Friday"		day	of	week	name
	 ;	$4="11"						hour
	 ;	$5="05"						minute
	 ;	$6="50"						seconds

	 MessageBox	MB_OK	'Date=$0/$1/$2	($3)$\nTime=$4:$5:$6'
SectionEnd

Section	'Convert	time	to	12-hour	format	AM/PM'
	 ${GetTime}	""	"L"	$0	$1	$2	$3	$4	$5	$6

	 StrCmp	$4	0	0	+3
	 StrCpy	$4	12
	 goto	+3
	 StrCmp	$4	12	+5
	 IntCmp	$4	12	0	0	+3
	 StrCpy	$7	AM
	 goto	+3
	 IntOp	$4	$4	-	12
	 StrCpy	$7	PM

	 MessageBox	MB_OK	'Date=$0/$1/$2	($3)$\nTime=$4:$5:$6	$7'
SectionEnd

E.1.7	GetFileAttributes

Get	attributes	of	file	or	directory.

Syntax:

${GetFileAttributes}	"[File]"	"[Attributes]"	$var

"[File]"										;	File	or	directory
																		;
"[Attributes]"				;	"ALL"		(default)
																		;		-all	attributes	of	file	combined	with	"|"	to	output
																		;

																		;	"READONLY|HIDDEN|SYSTEM|DIRECTORY|ARCHIVE|
																		;	DEVICE|NORMAL|TEMPORARY|SPARSE_FILE|REPARSE_POINT|
																		;	COMPRESSED|OFFLINE|NOT_CONTENT_INDEXED|ENCRYPTED"
																		;		-file	must	have	specified	attributes
																		;
$var														;	Result:
																		;				$var=attr1|attr2|...	(if	used	"ALL")
																		;				$var=1			file	has	specified	attributes
																		;				$var=0			file	has	no	specified	attributes

Note:	
-	Error	flag	is	set	if	file	doesn't	exist

Example:

Section
	 ${GetFileAttributes}	"C:\MSDOS.SYS"	"ALL"	$R0
	 ;	$R0=READONLY|HIDDEN|SYSTEM|ARCHIVE

	 ${GetFileAttributes}	"C:\MSDOS.SYS"	"SYSTEM|HIDDEN"	$R0
	 ;	$R0=1

	 ${GetFileAttributes}	"C:\MSDOS.SYS"	"NORMAL"	$R0
	 ;	$R0=0
SectionEnd

E.1.8	GetFileVersion

Get	version	information	from	executable	file.

Syntax:

${GetFileVersion}	"[Executable]"	$var

"[Executable]"						;	Executable	file	(*.exe	*.dll	...)
$var																;	Result:	Version	number

Note:	

-	Error	flag	if	file	doesn't	exist	
-	Error	flag	if	file	doesn't	contain	version	information

Example:

${GetFileVersion}	"C:\ftp\program.exe"	$R0	;	$R0="1.1.0.12"

E.1.9	GetExeName

Get	installer	filename	(with	valid	case	for	Windows	98/Me).

Syntax:

${GetExeName}	$var

Example:

${GetExeName}	$R0	;	$R0="C:\ftp\program.exe"

E.1.10	GetExePath

Get	installer	pathname	($EXEDIR	with	valid	case	for	Windows
98/Me).

Syntax:

${GetExePath}	$var

Example:

${GetExePath}	$R0	;	$R0="C:\ftp"

E.1.11	GetParameters

Get	command	line	parameters.

Syntax:

${GetParameters}	$var

Example:

${GetParameters}	$R0	;	$R0="[parameters]"

E.1.12	GetOptions

Get	options	from	command	line	parameters.

Syntax:

${GetOptions}	"[Parameters]"	"[Option]"	$var

"[Parameters]"					;	command	line	parameters
																			;
"[Option]"									;	option	name
																			;
$var															;	Result:	option	string

Note:	
-	The	error	flag	is	set	if	the	option	is	not	found	
-	The	first	character	in	the	option	string	is	treated	as	a	parameter
delimiter

Example1:

Section
	 ${GetOptions}	"/S	/T"	"/T"		$R0

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Not	found"	IDOK	+2
	 MessageBox	MB_OK	"Found"
SectionEnd

Example2:

Section
	 ${GetOptions}	"-INSTDIR=C:\Program	Files\Common	Files	-SILENT=yes"	"-INSTDIR="		$R0
	 ;$R0=C:\Program	Files\Common	Files
SectionEnd

Example3:

Section
	 ${GetOptions}	'/SILENT=yes	/INSTDIR="C:/Program	Files/Common	Files"	/ADMIN=password'	"/INSTDIR="		$R0
	 ;$R0=C:/Program	Files/Common	Files
SectionEnd

Example4:

Section
	 ${GetOptions}	`-SILENT=yes	-INSTDIR='"C:/Program	Files/Common	Files"'	-ADMIN=password`	"-INSTDIR="		$R0
	 ;$R0="C:/Program	Files/Common	Files"
SectionEnd

E.1.13	GetOptionsS

Same	as	GetOptions,	but	case	sensitive.

E.1.14	GetRoot

Get	root	directory.

Syntax:

${GetRoot}	"[FullPath]"	$var

Examples:

${GetRoot}	"C:\Program	Files\NSIS"	$R0	;	$R0="C:"
${GetRoot}	"\\SuperPimp\NSIS\Source\exehead\Ui.c"	$R0	;	$R0="\\SuperPimp\NSIS"

E.1.15	GetParent

Get	parent	directory.

Syntax:

${GetParent}	"[PathString]"	$var

Example:

${GetParent}	"C:\Program	Files\Winamp\uninstwa.exe"	$R0	;	$R0="C:\Program	Files\Winamp"

E.1.16	GetFileName

Get	last	part	from	directory	path.

Syntax:

${GetFileName}	"[PathString]"	$var

Example:

${GetFileName}	"C:\Program	Files\Winamp\uninstwa.exe"	$R0	;	$R0="uninstwa.exe"

E.1.17	GetBaseName

Get	file	name	without	extension.

Syntax:

${GetBaseName}	"[FileString]"	$var

Example:

${GetBaseName}	"C:\ftp\program.exe"	$R0	;	$R0="program"

E.1.18	GetFileExt

Get	extension	of	file.

Syntax:

${GetFileExt}	"[FileString]"	$var

Example:

${GetFileExt}	"C:\ftp\program.exe"	$R0	;	$R0="exe"

E.1.19	BannerTrimPath

Trim	string	path	for	banner.

Syntax:

${BannerTrimPath}	"[PathString]"	"[Option]"	$var

"[PathString]"				;
																		;
"[Option]"								;	[Length][A|B|C|D]
																		;
																		;	Length		-Maximum	string	length
																		;			A					-Trim	center	path	(default)
																		;											(C:\root\...\third	path)	
																		;											If	A	mode	not	possible	Then	will	be	used	B	mode
																		;			B					-Trim	right	path
																		;											(C:\root\second	path\...)
																		;											If	B	mode	not	possible	Then	will	be	used	C	mode
																		;			C					-Trim	right	string
																		;											(C:\root\second	path\third	p...)
																		;			D					-Trim	right	string	+	filename
																		;											(C:\root\second	p...\third	path)
																		;											If	D	mode	not	possible	Then	will	be	used	C	mode
																		;
$var														;	Result:		Trimmed	path

Example:

Section
	 ${BannerTrimPath}	"C:\Server\Documents\Terminal\license.htm"	"35A"	$R0
	 ;$R0=C:\Server\...\Terminal\license.htm
SectionEnd

Example	(Banner	plugin):

!include	"WinMessages.nsh"
!include	"FileFunc.nsh"

Section
	 Banner::show	"Starting..."
	 Banner::getWindow
	 Pop	$R1
	 ${Locate}	"$WINDIR"	"/L=F	/M=*.*	/B=1"	"LocateCallback"
	 Banner::destroy
SectionEnd

Function	LocateCallback
	 StrCmp	$R0	$R8	code
	 StrCpy	$R0	$R8
	 ${BannerTrimPath}	"$R8"	"38B"	$R8
	 GetDlgItem	$1	$R1	1030
	 SendMessage	$1	${WM_SETTEXT}	0	"STR:$R8"

	 code:
	 StrCmp	$R9	''	end
	 ;...

	 end:
	 Push	$0
FunctionEnd

Example	(NxS	plugin):

!include	"FileFunc.nsh"

Section
	 nxs::Show	/NOUNLOAD	`$(^Name)	Setup`\
	 		/top	`Setup	searching	something$\nPlease	wait$\nIf	you	can...`\
	 		/h	1	/can	1	/end
	 ${Locate}	"$WINDIR"	"/L=F	/M=*.*	/B=1"	"LocateCallback"
	 nxs::Destroy
SectionEnd

Function	LocateCallback

http://nsis.sourceforge.net/Nxs_plug-in

	 StrCmp	$R0	$R8	abortcheck
	 StrCpy	$R0	$R8
	 ${BannerTrimPath}	"$R8"	"55A"	$R8
	 nxs::Update	/NOUNLOAD	/sub	"$R8"	/pos	78	/end

	 abortcheck:
	 nxs::HasUserAborted	/NOUNLOAD
	 Pop	$0
	 StrCmp	$0	1	0	+2
	 StrCpy	$0	StopLocate

	 StrCmp	$R9	''	end
	 ;...

	 end:
	 Push	$0
FunctionEnd

E.1.20	DirState

Check	directory	full,	empty	or	not	exist.

Syntax:

${DirState}	"[path]"	$var

"[path]"						;	Directory
$var										;	Result:
														;				$var=0		(empty)
														;				$var=1		(full)
														;				$var=-1	(directory	not	found)

Example:

${DirState}	"$TEMP"	$R0	;	$R0="1"	(directory	is	full)

E.1.21	RefreshShellIcons

After	changing	file	associations,	you	can	call	this	function	to	refresh
the	shell	immediately.

Syntax:

${RefreshShellIcons}

Example:

Section
	 WriteRegStr	HKCR	"Winamp.File\DefaultIcon"	""	"$INSTDIR\WINAMP.EXE,2"
	 ${RefreshShellIcons}
SectionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

E.2	Text	Functions	Header

E.2.1	Introduction

Include	header:

!include	"TextFunc.nsh"

Call	functions:

Section	Install
	 ${LineRead}	"C:\a.log"	"-1"	$R0
	 ;	$R0="Last	line\r\n"
SectionEnd

Section	un.Install
	 ${TrimNewLines}	"Last	line\r\n"	$R0
	 ;	$R0="Last	line"
SectionEnd

E.2.2	LineFind

Find	specified	lines	in	text	file,	and	edit	or	view	these	lines	in
callback	function.

Syntax:

${LineFind}	"[File1]"	"[File2|/NUL]"	"[LineNumbers]"	"Function"

"[File1]"									;	Input	text	file
																		;
"[File2|/NUL]"				;	[File2]
																		;			Output	text	file
																		;			If	empty	then	File2=File1
																		;	[/NUL]
																		;			No	output	text	file	(only	read	File1)
																		;

"[LineNumbers]"			;	[No|-No|No:No|{No}|{-No}|{No:No}]
																		;			1:-1					all	lines	to	change	(default)
																		;			2								second	line	from	start
																		;			-3							third	line	from	end
																		;			5:9						range	of	lines	from	5	to	9
																		;			{2}						only	second	line	from	start	to	output
																		;			{-3}					only	third	line	from	end	to	output
																		;			{5:9}				only	range	of	lines	from	5	to	9	to	output
																		;
"Function"								;	Callback	function	for	specified	lines

Function	"Function"
	 ;	$R9							current	line
	 ;	$R8							current	line	number
	 ;	$R7							current	line	negative	number
	 ;	$R6							current	range	of	lines
	 ;	$R5							handle	of	a	file	opened	to	read
	 ;	$R4							handle	of	a	file	opened	to	write	($R4=""	if	"/NUL")

	 ;	you	can	use	any	string	functions
	 ;	$R0-$R3		are	not	used	(save	data	in	them).
	 ;	...

	 Push	$var						;	If	$var="StopLineFind"		Then	exit	from	function
	 															;	If	$var="SkipWrite"					Then	skip	current	line	(ignored	if	"/NUL")
FunctionEnd

Note:	-	Error	flag	if	input	file	doesn't	exist	
-	Error	flag	if	output	file	path	doesn't	exist	
-	Ranges	must	be	specified	on	growth	(2	4:5	9:-8	-5:-4	-2:-1)	
-	Output	file	will	not	be	updated	if	no	changes	made.

Example1	(delete	first	two	symbols):

Section
	 ${LineFind}	"C:\a.log"	"C:\a-edited.log"	"3:-1"	"Example1"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"

SectionEnd

Function	Example1
	 ${TrimNewLines}	'$R9'	$R9
	 StrCpy	$R9	$R9	''	2
	 StrCpy	$R9	'$R9$\r$\n'
	 ;start	from	3	line	and	delete	first	two	symbols

	 Push	$0
FunctionEnd

Example2	(show	changed	lines):

Section
	 ${LineFind}	"C:\a.log"	"a.log"	"{5:12	15	-6:-5	-1}"	"Example2"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example2
	 ${TrimNewLines}	'$R9'	$R9
	 StrCpy	$R9	"$R9			~Changed	line	($R8)~$\r$\n"

	 Push	$0
FunctionEnd

Example3	(delete	lines):

Section
	 ${LineFind}	"C:\a.log"	"\logs\a.log"	"2:3	10:-5	-3:-2"	"Example3"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example3
	 StrCpy	$0	SkipWrite

	 Push	$0

FunctionEnd

Example4	(insert	lines):

Section
	 ${LineFind}	"C:\a.log"	""	"10"	"Example4
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example4
	 FileWrite	$R4	"---First	Line---\r\n"
	 FileWrite	$R4	"---Second	Line	...---\r\n"

	 Push	$0
FunctionEnd

Example5	(replace	in	file	with	count	of	changes	-	"WordFunc.nsh"
required):

!include	"WordFunc.nsh"

Section
	 StrCpy	$R0	0
	 ${LineFind}	"C:\a.log"	"C:\logs\a.log"	"1:-1"	"Example5"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 MessageBox	MB_OK	"Changed	lines=$R0"
SectionEnd

Function	Example5
	 StrCpy	$1	$R9

	 ${WordReplace}	'$R9'	'	'	'_'	'+*'	$R9

	 StrCmp	$1	$R9	+2
	 IntOp	$R0	$R0	+	1
	 ;$R0			count	of	changed	lines

	 Push	$0
FunctionEnd

Example6	(line	string	to	cut	or	delete):

Section
	 ${LineFind}	"\a.log"	"C:\logs\a.log"	""	"Example6"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 MessageBox	MB_OK	"Processed	lines=$R1:$R2"
SectionEnd

Function	Example6
	 ;(Cut	lines	from	a	line	to	another	line	(also	including	that	line))
	 StrCmp	$R0	finish	stop
	 StrCmp	$R0	start	finish
	 StrCmp	$R9	'Start	Line\r\n'	0	skip
	 StrCpy	$R0	start
	 StrCpy	$R1	$R8
	 goto	code
	 finish:
	 StrCmp	$R9	'Finish	Line\r\n'	0	code
	 StrCpy	$R0	finish
	 StrCpy	$R2	$R8
	 goto	code
	 skip:
	 StrCpy	$0	SkipWrite
	 goto	output
	 stop:
	 StrCpy	$0	StopLineFind
	 goto	output

	 ;;(Delete	lines	from	a	line	to	another	line	(also	including	that	line))
	 ;	StrCmp	$R0	finish	code
	 ;	StrCmp	$R0	start	finish
	 ;	StrCmp	$R9	'Start	Line\r\n'	0	code

	 ;	StrCpy	$R0	start
	 ;	StrCpy	$R1	$R8
	 ;	goto	skip
	 ;	finish:
	 ;	StrCmp	$R9	'Finish	Line\r\n'	0	skip
	 ;	StrCpy	$R0	finish
	 ;	StrCpy	$R2	$R8
	 ;	skip:
	 ;	StrCpy	$0	SkipWrite
	 ;	goto	output

	 code:
	 ;...

	 output:
	 Push	$0
FunctionEnd

Example7	(read	lines):

Section
	 ${LineFind}	"C:\a.log"	"/NUL"	"1:-1"	"Example7"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example7
	 MessageBox	MB_OKCANCEL	'$$R9		"Line"=[$R9]$\n$$R8					"#"	=[$R8]'	IDOK	+2
	 StrCpy	$0	StopLineFind

	 Push	$0
FunctionEnd

E.2.3	LineRead

Get	line	in	file	specified	with	number.

Syntax:

${LineRead}	"[File]"	"[LineNumber]"	$var

"[File]"									;	Input	text	file
																	;
"[LineNumber]"			;	[No|-No]
																	;			3				line	number	from	start
																	;			-5			line	number	from	end
																	;
$var													;	Result:	Line

Note:	
-	Error	flag	if	input	file	doesn't	exist	
-	Error	flag	if	line	number	not	found

Example:

Section
	 ${LineRead}	"C:\a.log"	"-1"	$R0
	 ;	$R0="Last	line\r\n"
SectionEnd

E.2.4	FileReadFromEnd

Read	text	file	from	end	line	by	line.

Syntax:

${FileReadFromEnd}	"[File]"	"Function"

"[File]"						;	Input	text	file
"Function"				;	Callback	function

Function	"Function"
	 ;	$9							current	line
	 ;	$8							current	line	number
	 ;	$7							current	line	negative	number

	 ;	$R0-$R9		are	not	used	(save	data	in	them).
	 ;	...

	 Push	$var						;	If	$var="StopFileReadFromEnd"		Then	exit	from	function
FunctionEnd

Note:	
-	Error	flag	if	input	file	doesn't	exist

Example1:

Section
	 ${FileReadFromEnd}	"C:\a.log"	"Example1"

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example1
	 MessageBox	MB_OKCANCEL	'"Line"=[$9]$\n			"#"=[$8]$\n		"-#"=[$7]'	IDOK	+2
	 StrCpy	$0	StopFileReadFromEnd

	 Push	$0
FunctionEnd

Example2	(Reverse	text	file):

Section
	 GetTempFileName	$R0
	 FileOpen	$R1	$R0	w
	 ${FileReadFromEnd}	"C:\a.log"	"Example2"
	 FileClose	$R1

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2
	 Exec	'"notepad.exe"	"$R0"'
SectionEnd

Function	Example2
	 StrCmp	$7	-1	0	+5
	 StrCpy	$1	$9	1	-1
	 StrCmp	$1	'$\n'	+3
	 StrCmp	$1	'$\r'	+2
	 StrCpy	$9	'9\r$\n'

	 FileWrite	$R1	"$9"

	 Push	$0
FunctionEnd

E.2.5	LineSum

Get	sum	of	lines	in	text	file.

Syntax:

${LineSum}	"[File]"	$var

"[File]"						;	Input	file
$var										;	Result:	Sum	of	lines

Note:	
-	Error	flag	if	input	file	doesn't	exist

Example:

Section
	 ${LineSum}	"C:\a.log"	$R0
	 ;	$R0="54"
SectionEnd

E.2.6	FileJoin

Join	two	files	in	one	(File1	+	File2	=	File3).

Syntax:

${FileJoin}	"[File1]"	"[File2]"	"[File3]"

"[File1]"					;	Input	File1
"[File2]"					;	Input	File2
"[File3]"					;	Output	File3
														;		If	[File3]=""	Then	add	[File2]	to	[File1]

Note:	
-	Error	flag	if	input	files	don't	exist	
-	Error	flag	if	output	file	path	doesn't	exist

Example1	(Join:	a.log	+	b.log	=	Z.log):

Section
	 ${FileJoin}	"C:\a.log"	"C:\logs\b.log"	"C:\Z.log"
SectionEnd

Example2	(Add:	a.log	+	b.log	=	a.log):

Section
	 ${FileJoin}	"C:\a.log"	"C:\logs\b.log"	"C:\a.log"
SectionEnd

E.2.7	TextCompare

Compare	two	text	files.

Syntax:

${TextCompare}	"[File1]"	"[File2]"	"[Option]"	"Function"

"[File1]"					;	File1						Compare	these	lines
"[File2]"					;	File2						Compare	with	these	lines
"[Options]"			;	(line-by-line):
														;	FastDiff			Compare	line	N	(File1)	with	line	N	(File2)
														;												Call	function	if	Different	lines	found
														;	FastEqual		Compare	line	N	(File1)	with	line	N	(File2)
														;												Call	function	if	Equal	lines	found

														;	(line	number	independent):
														;	SlowDiff			Compare	line	N	(File1)	with	all	lines	(File2)
														;												Call	function	if	line	N	(File1)	Different
														;	SlowEqual		Compare	line	N	(File1)	with	all	lines	(File2)
														;												Call	function	if	line	N	(File1)	Equal
"Function"				;	Callback	function

Function	"Function"
	 ;	$9				"Line	File1"
	 ;	$8				"Line	number"
	 ;	$7				"Line	File2"		(empty	if	SlowDiff)
	 ;	$6				"Line	number"	(empty	if	SlowDiff)

	 ;	$R0-$R9		are	not	used	(save	data	in	them).
	 ;	...

	 Push	$var				;	If	$var="StopTextCompare"		Then	exit	from	function
FunctionEnd

Note:	
-	Error	flag	if	File1	or	File2	doesn't	exist	
-	Error	flag	if	syntax	error

Example	(Different	or	Equal):

Section
	 StrCpy	$R0	''
	 ${TextCompare}	"C:\1.txt"	"C:\2.txt"	"FastDiff"	"Example1"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+4

	 StrCmp	$R0	NotEqual	0	+2
	 MessageBox	MB_OK	"Files	differ"	IDOK	+2
	 MessageBox	MB_OK	"Files	identical"
SectionEnd

Function	Example1
	 StrCpy	$R0	NotEqual

	 StrCpy	$0	StopTextCompare

	 Push	$0
FunctionEnd

Example	(Compare	line-by-line	-	Different):

Section
	 StrCpy	$R0	'Text1.txt'
	 StrCpy	$R1	'Text2.txt'

	 GetTempFileName	$R2
	 FileOpen	$R3	$R2	w
	 FileWrite	$R3	"$R0	|	$R1$\r$\n"
	 ${TextCompare}	"$R0"	"$R1"	"FastDiff"	"Example2"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2

	 Exec	"notepad.exe	$R2"
FunctionEnd

Function	Example2
	 FileWrite	$R3	'$8=$9'
	 FileWrite	$R3	'$6=$7\r\n'

	 Push	$0
FunctionEnd

Example	(Compare	line-by-line	-	Equal):

Section
	 StrCpy	$R0	'Text1.txt'
	 StrCpy	$R1	'Text2.txt'

	 GetTempFileName	$R2
	 FileOpen	$R3	$R2	w
	 FileWrite	$R3	"$R0	|	$R1$\r$\n"
	 ${TextCompare}	"$R0"	"$R1"	"FastEqual"	"Example3"

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2

	 Exec	"notepad.exe	$R2"
FunctionEnd

Function	Example3
	 FileWrite	$R3	'$8|$6=$9'

	 Push	$0
FunctionEnd

Example	(Compare	all	lines	-	Different):

Section
	 StrCpy	$R0	'Text1.txt'
	 StrCpy	$R1	'Text2.txt'

	 GetTempFileName	$R2
	 FileOpen	$R3	$R2	w
	 FileWrite	$R3	"$R0	|	$R1$\r$\n"
	 ${TextCompare}	"$R0"	"$R1"	"SlowDiff"	"Example4"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	end

	 FileWrite	$R3	"\r\n$R1	|	$R0$\r$\n"
	 ${TextCompare}	"$R1"	"$R0"	"SlowDiff"	"Example4"
	 FileClose	$R3
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	end

	 Exec	"notepad.exe	$R2"

	 end:
FunctionEnd

Function	Example4

	 FileWrite	$R3	'$8=$9'

	 Push	$0
FunctionEnd

Example	(Compare	all	lines	-	Equal):

Section
	 StrCpy	$R0	'Text1.txt'
	 StrCpy	$R1	'Text2.txt'

	 GetTempFileName	$R2
	 FileOpen	$R3	$R2	w
	 FileWrite	$R3	"$R0	|	$R1$\r$\n"
	 ${TextCompare}	"$R0"	"$R1"	"SlowEqual"	"Example5"
	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"	IDOK	+2

	 Exec	"notepad.exe	$R2"
FunctionEnd

Function	Example5
	 FileWrite	$R3	'$8|$6=$9'

	 Push	$0
FunctionEnd

Example	(Show	variables):

Section
	 ${TextCompare}	"C:\1.txt"	"C:\2.txt"	"FastDiff"	"Example6"

	 IfErrors	0	+2
	 MessageBox	MB_OK	"Error"
SectionEnd

Function	Example6
	 MessageBox	MB_OKCANCEL	'\

	 	 $$9				"Line	File1"	=[$9]$\n\
	 	 $$8				"Line	#"						=[$8]$\n\
	 	 $$7				"Line	File2"	=[$7]$\n\
	 	 $$6				"Line	#"						=[$6]'\
	 	 IDOK	+2
	 StrCpy	$0	StopTextCompare

	 Push	$0
FunctionEnd

E.2.8	TextCompareS

Same	as	TextCompare,	but	case	sensitive.

E.2.9	ConfigRead

Read	value	from	entry	name	in	config	file.

Syntax:

${ConfigRead}	"[File]"	"[Entry]"	$var

"[File]"						;	config	file
														;
"[Entry]"					;	entry	name
														;
$var										;	Result:		Value

Note:	
-	Error	flag	if	entry	not	found	
-	Error	flag	if	file	doesn't	exist

Example1:

Section
	 ${ConfigRead}	"C:\AUTOEXEC.BAT"	"SET	winbootdir="	$R0
	 ;$R0=C:\WINDOWS
SectionEnd

Example2:

Section
	 ${ConfigRead}	"C:\apache\conf\httpd.conf"	"Timeout	"	$R0
	 ;$R0=30
SectionEnd

E.2.10	ConfigReadS

Same	as	ConfigRead,	but	case	sensitive.

E.2.11	ConfigWrite

Write	value	from	entry	name	in	config	file.

Syntax:

${ConfigWrite}	"[File]"	"[Entry]"	"[Value]"	$var

"[File]"						;	config	file
														;
"[Entry]"					;	entry	name
														;
"[Value]"					;	value	name
														;		if	""	then	delete	Entry
														;
$var										;	Result:
														;				$var=CHANGED		Value	is	written
														;				$var=DELETED		Entry	is	deleted
														;				$var=ADDED				Entry	and	Value	are	added
														;				$var=SAME					Entry	and	Value	already	exist

Note:	
-	Error	flag	if	file	doesn't	exist	
-	Error	flag	if	file	can't	be	opened

Example1:

Section
	 ${ConfigWrite}	"C:\AUTOEXEC.BAT"	"SET	winbootdir="	"D:\WINDOWS"	$R0
	 ;$R0=CHANGED
SectionEnd

Example2:

Section
	 ${ConfigWrite}	"C:\apache\conf\httpd.conf"	"Timeout	"	"30"	$R0
	 ;$R0=SAME
SectionEnd

Example3:

Section
	 ${ConfigWrite}	"C:\apache\conf\httpd.conf"	"Timeout	"	""	$R0
	 ;$R0=DELETED
SectionEnd

E.2.12	ConfigWriteS

Same	as	ConfigWrite,	but	case	sensitive.

E.2.13	FileRecode

Recode	text	file	from	DOS	to	Windows	format	and	vice-versa.

Syntax:

${FileRecode}	"[File]"	"[Format]"

"[File]"								;
																;
"[Format]"						;	OemToChar			-from	DOS	to	Windows
																;	CharToOem			-from	Windows	to	DOS

Note:	
-	Error	flag	if	file	doesn't	exist	

-	Error	flag	if	syntax	error

Example:

Section
	 ${FileRecode}	"C:\SCANDISK.LOG"	"CharToOem"
SectionEnd

E.2.14	TrimNewLines

Trim	newlines	in	a	string.

Syntax:

${TrimNewLines}	"[string]"	$var

"[string]"				;	Input	string
$var										;	Result:	String	without	'$\r'	and	'$\n'	at	the	end

Example:

Section
	 ${TrimNewLines}	"Text	line\r\n"	$R0
	 ;	$R0="Text	line"
SectionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

E.3	Word	Functions	Header

E.3.1	Introduction

Include	header:

!include	"WordFunc.nsh"

Call	functions:

Section	Install
	 ${WordFind}	"A--H---S"	"-"	"+2"	$R0
	 ;	$R0="H"
SectionEnd

Section	un.Install
	 ${WordReplace}	"A--H---S"	"-"	"x"	"+3*"	$R0
	 ;	$R0="A--HxS"
SectionEnd

E.3.2	WordFind

Multi-features	string	function.

Strings:
"[word+1][delimiter][word+2][delimiter][word+3]..."
"[delimiter][word+1][delimiter][word+2][delimiter]..."
"[delimiter][delimiter][word+1][delimiter][delimiter][delimiter]..."
"...[word-3][delimiter][word-2][delimiter][word-1]"
"...[delimiter][word-2][delimiter][word-1][delimiter]"
"...[delimiter][delimiter][word-1][delimiter][delimiter][delimiter]"

Syntax:

${WordFind}	"[string]"	"[delimiter]"	"[E][options]"	$var

"[string]"									;[string]

																			;		input	string
"[delimiter]"						;[delimiter]
																			;		one	or	several	symbols
"[E][options]"					;[options]
																			;		+number			:	word	number	from	start
																			;		-number			:	word	number	from	end
																			;		+number}		:	delimiter	number	from	start
																			;														all	space	after	this
																			;														delimiter	to	output
																			;		+number{		:	delimiter	number	from	start
																			;														all	space	before	this
																			;														delimiter	to	output
																			;		+number}}	:	word	number	from	start
																			;														all	space	after	this	word
																			;														to	output
																			;		+number{{	:	word	number	from	start
																			;														all	space	before	this	word
																			;														to	output
																			;		+number{}	:	word	number	from	start
																			;														all	space	before	and	after
																			;														this	word	(word	exclude)
																			;		+number*}	:	word	number	from	start
																			;														all	space	after	this
																			;														word	to	output	with	word
																			;		+number{*	:	word	number	from	start
																			;														all	space	before	this
																			;														word	to	output	with	word
																			;		#									:	sum	of	words	to	output
																			;		*									:	sum	of	delimiters	to	output
																			;		/word					:	number	of	word	to	output
																			;
																			;[E]
																			;		with	errorlevel	output
																			;		IfErrors:
																			;					$var=1		delimiter	not	found
																			;					$var=2		no	such	word	number
																			;					$var=3		syntax	error	(Use:	+1,-1},#,*,/word,...)

																			;[]
																			;		no	errorlevel	output	(default)
																			;		If	some	errors	found	then	(result=input	string)
																			;
$var															;output	(result)

Note:	-	Accepted	numbers	1,01,001,...

Example	(Find	word	by	number):

Section
	 ${WordFind}	"C:\io.sys	C:\Program	Files	C:\WINDOWS"	"	C:\"	"-02"	$R0
	 ;	$R0="Program	Files"
SectionEnd

Example	(Delimiter	exclude):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"sys"	"-2}"	$R0
	 ;	$R0="	C:\logo.sys	C:\WINDOWS"
SectionEnd

Example	(Sum	of	words):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	C:\"	"#"	$R0
	 ;	$R0="3"
SectionEnd

Example	(Sum	of	delimiters):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"sys"	"*"	$R0
	 ;	$R0="2"
SectionEnd

Example	(Find	word	number):

Section

	 ${WordFind}	"C:\io.sys	C:\Program	Files	C:\WINDOWS"	"	"	"/Files"	$R0
	 ;	$R0="3"
SectionEnd

Example	(}}):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	"	"+2}}"	$R0
	 ;	$R0="	C:\WINDOWS"
SectionEnd

Example	({}):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	"	"+2{}"	$R0
	 ;	$R0="C:\io.sys	C:\WINDOWS"
SectionEnd

Example	(*}):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	"	"+2*}"	$R0
	 ;	$R0="C:\logo.sys	C:\WINDOWS"
SectionEnd

Example	(Get	parent	directory):

Section
	 StrCpy	$R0	"C:\Program	Files\NSIS\NSIS.chm"
;	 											"C:\Program	Files\NSIS\Include\"
;	 											"C:\\Program	Files\\NSIS\\NSIS.chm"

	 ${WordFind}	"$R0"	"\"	"-2{*"	$R0
	 ;	$R0="C:\Program	Files\NSIS"
	 ;					"C:\\Program	Files\\NSIS"
SectionEnd

Example	(Coordinates):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	":\lo"	"E+1{"	$R0
	 ;	$R0="C:\io.sys	C"
	 IfErrors	end

	 StrLen	$0	$R0													;	$0	=	Start	position	of	word	(11)
	 StrLen	$1	':\lo'										;	$1	=	Word	length	(4)
	 ;	StrCpy	$R0	$R1	$1	$0				;	$R0	=	:\lo

	 end:
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordFind}	"[string]"	"[delimiter]"	"E[options]"	$R0

	 IfErrors	0	end
	 StrCmp	$R0	1	0	+2							;	errorlevel	1?
	 MessageBox	MB_OK	'delimiter	not	found'	IDOK	end
	 StrCmp	$R0	2	0	+2							;	errorlevel	2?
	 MessageBox	MB_OK	'no	such	word	number'	IDOK	end
	 StrCmp	$R0	3	0	+2							;	errorlevel	3?
	 MessageBox	MB_OK	'syntax	error'

	 end:
SectionEnd

Example	(Without	errorlevel	output):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys"	"_"	"+1"	$R0

	 ;	$R0="C:\io.sys	C:\logo.sys"	(error:	delimiter	"_"	not	found)
SectionEnd

Example	(If	found):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys"	":\lo"	"E+1{"	$R0

	 IfErrors	notfound	found
	 found:
	 MessageBox	MB_OK	'Found'	IDOK	end
	 notfound:
	 MessageBox	MB_OK	'Not	found'

	 end:
SectionEnd

Example	(If	found	2):

Section
	 ${WordFind}	"C:\io.sys	C:\logo.sys"	":\lo"	"+1{"	$R0

	 StrCmp	$R0	"C:\io.sys	C:\logo.sys"	notfound	found								;	error?
	 found:
	 MessageBox	MB_OK	'Found'	IDOK	end
	 notfound:
	 MessageBox	MB_OK	'Not	found'

	 end:
SectionEnd

Example	(To	accept	one	word	in	string	if	delimiter	not	found):

Section
	 StrCpy	$0	'OneWord'
	 StrCpy	$1	1

	 loop:
	 ${WordFind}	"$0"	"	"	"E+$1"	$R0
	 IfErrors	0	code
	 StrCmp	1R0	11	0	error
	 StrCpy	$R0	$0
	 goto	end

	 code:
	 ;	...
	 IntOp	$1	$1	+	1
	 goto	loop

	 error:
	 StrCpy	$1	''
	 StrCpy	$R0	''

	 end:
	 ;	$R0="OneWord"
SectionEnd

E.3.3	WordFindS

Same	as	WordFind,	but	case	sensitive.

E.3.4	WordFind2X

Find	word	between	two	delimiters.

Strings:
"[delimiter1][word+1][delimiter2][delimiter1][word+2][delimiter2]..."
"[text][delimiter1][text][delimiter1][word+1][delimiter2][text]..."
"...[delimiter1][word-2][delimiter2][delimiter1][word-1][delimiter2]"
"...[text][delimiter1][text][delimiter1][word-1][delimiter2][text]"

Syntax:

${WordFind2X}	"[string]"	"[delimiter1]"	"[delimiter2]"	"[E][options]"	$var

"[string]"									;[string]
																			;		input	string
"[delimiter1]"					;[delimiter1]
																			;		first	delimiter
"[delimiter2]"					;[delimiter2]
																			;		second	delimiter

"[E][options]"					;[options]
																			;		+number			:	word	number	from	start
																			;		-number			:	word	number	from	end
																			;		+number}}	:	word	number	from	start	all	space
																			;														after	this	word	to	output
																			;		+number{{	:	word	number	from	end	all	space
																			;														before	this	word	to	output
																			;		+number{}	:	word	number	from	start
																			;														all	space	before	and	after
																			;														this	word	(word	exclude)
																			;		+number*}	:	word	number	from	start
																			;														all	space	after	this
																			;														word	to	output	with	word
																			;		+number{*	:	word	number	from	start
																			;														all	space	before	this
																			;														word	to	output	with	word
																			;		#									:	sum	of	words	to	output
																			;		/word					:	number	of	word	to	output
																			;
																			;[E]
																			;		with	errorlevel	output
																			;		IfErrors:
																			;					$var=1		no	words	found
																			;					$var=2		no	such	word	number
																			;					$var=3		syntax	error	(Use:	+1,-1,#)
																			;[]
																			;		no	errorlevel	output	(default)
																			;		If	some	errors	found	then	(result=input	string)
																			;
$var															;output	(result)

Example	(1):

Section
	 ${WordFind2X}	"[C:\io.sys];[C:\logo.sys];[C:\WINDOWS]"	"[C:\"	"];"	"+2"	$R0
	 ;	$R0="logo.sys"
SectionEnd

Example	(2):

Section
	 ${WordFind2X}	"C:\WINDOWS	C:\io.sys	C:\logo.sys"	"\"	"."	"-1"	$R0
	 ;	$R0="logo"
SectionEnd

Example	(3):

Section
	 ${WordFind2X}	"C:\WINDOWS	C:\io.sys	C:\logo.sys"	"\"	"."	"-1{{"	$R0
	 ;	$R0="C:\WINDOWS	C:\io.sys	C:"
SectionEnd

Example	(4):

Section
	 ${WordFind2X}	"C:\WINDOWS	C:\io.sys	C:\logo.sys"	"\"	"."	"-1{}"	$R0
	 ;	$R0="C:\WINDOWS	C:\io.sys	C:sys"
SectionEnd

Example	(5):

Section
	 ${WordFind2X}	"C:\WINDOWS	C:\io.sys	C:\logo.sys"	"\"	"."	"-1{*"	$R0
	 ;	$R0="C:\WINDOWS	C:\io.sys	C:\logo."
SectionEnd

Example	(6):

Section
	 ${WordFind2X}	"C:\WINDOWS	C:\io.sys	C:\logo.sys"	"\"	"."	"/logo"	$R0
	 ;	$R0="2"
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordFind2X}	"[io.sys];[C:\logo.sys]"	"\"	"];"	"E+1"	$R0

	 ;	$R0="1"	("\...];"	not	found)

	 IfErrors	0	noerrors
	 MessageBox	MB_OK	'Errorlevel=$R0'	IDOK	end

	 noerrors:
	 MessageBox	MB_OK	'No	errors'

	 end:
SectionEnd

E.3.5	WordFind2XS

Same	as	WordFind2X,	but	case	sensitive.

E.3.6	WordFind3X

Find	a	word	that	contains	a	string,	between	two	delimiters.

Syntax:

${WordFind3X}	"[string]"	"[delimiter1]"	"[center]"	"[delimiter2]"	"[E][options]"	$var

"[string]"									;[string]
																			;		input	string
"[delimiter1]"					;[delimiter1]
																			;		first	delimiter
"[center]"									;[center]
																			;		center	string
"[delimiter2]"					;[delimiter2]
																			;		second	delimiter
"[E][options]"					;[options]
																			;		+number			:	word	number	from	start
																			;		-number			:	word	number	from	end
																			;		+number}}	:	word	number	from	start	all	space
																			;														after	this	word	to	output
																			;		+number{{	:	word	number	from	end	all	space

																			;														before	this	word	to	output
																			;		+number{}	:	word	number	from	start
																			;														all	space	before	and	after
																			;														this	word	(word	exclude)
																			;		+number*}	:	word	number	from	start
																			;														all	space	after	this
																			;														word	to	output	with	word
																			;		+number{*	:	word	number	from	start
																			;														all	space	before	this
																			;														word	to	output	with	word
																			;		#									:	sum	of	words	to	output
																			;		/word					:	number	of	word	to	output
																			;
																			;[E]
																			;		with	errorlevel	output
																			;		IfErrors:
																			;					$var=1		no	words	found
																			;					$var=2		no	such	word	number
																			;					$var=3		syntax	error	(Use:	+1,-1,#)
																			;[]
																			;		no	errorlevel	output	(default)
																			;		If	some	errors	found	then	(result=input	string)
																			;
$var															;output	(result)

Example	(1):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"+1"	$R0
	 ;	$R0="1.AAB"
SectionEnd

Example	(2):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"-1"	$R0
	 ;	$R0="2.BAA"
SectionEnd

Example	(3):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"-1{{"	$R0
	 ;	$R0="[1.AAB];"
SectionEnd

Example	(4):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"-1{}"	$R0
	 ;	$R0="[1.AAB];[3.BBB];"
SectionEnd

Example	(5):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"-1{*"	$R0
	 ;	$R0="[1.AAB];[2.BAA];"
SectionEnd

Example	(6):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"AA"	"];"	"/2.BAA"	$R0
	 ;	$R0="2"
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordFind3X}	"[1.AAB];[2.BAA];[3.BBB];"	"["	"XX"	"];"	"E+1"	$R0
	 ;	$R0="1"	("[...XX...];"	not	found)

	 IfErrors	0	noerrors
	 MessageBox	MB_OK	'Errorlevel=$R0'	IDOK	end

	 noerrors:

	 MessageBox	MB_OK	'No	errors'

	 end:
SectionEnd

E.3.7	WordFind3XS

Same	as	WordFind3X,	but	case	sensitive.

E.3.8	WordReplace

Replace	or	delete	word	from	string.

Syntax:

${WordReplace}	"[string]"	"[word1]"	"[word2]"	"[E][options]"	$var

"[string]"									;[string]
																			;		input	string
"[word1]"										;[word1]
																			;		word	to	replace	or	delete
"[word2]"										;[word2]
																			;		replace	with	(if	empty	delete)
"[E][options]"					;[options]
																			;		+number		:	word	number	from	start
																			;		-number		:	word	number	from	end
																			;		+number*	:	word	number	from	start	multiple-replace
																			;		-number*	:	word	number	from	end	multiple-replace
																			;		+								:	replace	all	results
																			;		+*							:	multiple-replace	all	results
																			;		{								:	if	exists	replace	all	delimiters
																			;															from	left	edge
																			;		}								:	if	exists	replace	all	delimiters
																			;															from	right	edge
																			;		{}							:	if	exists	replace	all	delimiters
																			;															from	edges
																			;		{*							:	if	exists	multiple-replace	all

																			;															delimiters	from	left	edge
																			;		}*							:	if	exists	multiple-replace	all
																			;															delimiters	from	right	edge
																			;		{}*						:	if	exists	multiple-replace	all
																			;															delimiters	from	edges
																			;
																			;[E]
																			;		with	errorlevel	output
																			;		IfErrors:
																			;					$var=1		word	to	replace	not	found
																			;					$var=2		no	such	word	number
																			;					$var=3		syntax	error	(Use:	+1,-1,+1*,-1*,+,+*,{},{}*)
																			;[]
																			;		no	errorlevel	output	(default)
																			;		If	some	errors	found	then	(result=input	string)
																			;
$var															;output	(result)

Example	(replace):

Section
	 ${WordReplace}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"SYS"	"bmp"	"+2"	$R0
	 ;	$R0="C:\io.sys	C:\logo.bmp	C:\WINDOWS"
SectionEnd

Example	(delete):

Section
	 ${WordReplace}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"SYS"	""	"+"	$R0
	 ;	$R0="C:\io.	C:\logo.	C:\WINDOWS"
SectionEnd

Example	(multiple-replace	1):

Section
	 ${WordReplace}	"C:\io.sys						C:\logo.sys			C:\WINDOWS"	"	"	"	"	"+1*"	$R0
	 ;	+1*	or	+2*	or	+3*	or	+4*	or	+5*	or	+6*
	 ;	$R0="C:\io.sys	C:\logo.sys			C:\WINDOWS"

SectionEnd

Example	(multiple-replace	2):

Section
	 ${WordReplace}	"C:\io.sys	C:\logo.sysSYSsys	C:\WINDOWS"	"sys"	"bmp"	"+*"	$R0
	 ;	$R0="C:\io.bmp	C:\logo.bmp	C:\WINDOWS"
SectionEnd

Example	(multiple-replace	3):

Section
	 ${WordReplace}	"sysSYSsysC:\io.sys	C:\logo.sys	C:\WINDOWSsysSYSsys"	"sys"	"|"	"{}*"	$R0
	 ;	$R0="|C:\io.sys	C:\logo.sys	C:\WINDOWS|"
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordReplace}	"C:\io.sys	C:\logo.sys"	"sys"	"bmp"	"E+3"	$R0
	 ;	$R0="2"	(no	such	word	number	"+3")

	 IfErrors	0	noerrors
	 MessageBox	MB_OK	'Errorlevel=$R0'	IDOK	end

	 noerrors:
	 MessageBox	MB_OK	'No	errors'

	 end:
SectionEnd

E.3.9	WordReplaceS

Same	as	WordReplace,	but	case	sensitive.

E.3.10	WordAdd

Add	words	to	string1	from	string2	if	not	exist	or	delete	words	if	exist.

Syntax:

${WordAdd}	"[string1]"	"[delimiter]"	"[E][options]"	$var

"[string1]"										;[string1]
																					;		string	for	addition	or	removing
"[delimiter]"								;[delimiter]
																					;		one	or	several	symbols
"[E][options]"							;[options]
																					;		+string2	:	words	to	add
																					;		-string2	:	words	to	delete
																					;
																					;[E]
																					;		with	errorlevel	output
																					;		IfErrors:
																					;					$var=1		delimiter	is	empty
																					;					$var=3		syntax	error	(use:	+text,-text)
																					;[]
																					;		no	errorlevel	output	(default)
																					;		If	some	errors	found	then	(result=input	string)
																					;
$var																	;output	(result)

Example	(add):

Section
	 ${WordAdd}	"C:\io.sys	C:\WINDOWS"	"	"	"+C:\WINDOWS	C:\config.sys"	$R0
	 ;	$R0="C:\io.sys	C:\WINDOWS	C:\config.sys"
SectionEnd

Example	(delete):

Section
	 ${WordAdd}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	"	"-C:\WINDOWS	C:\config.sys	C:\IO.SYS"	$R0
	 ;	$R0="C:\logo.sys"
SectionEnd

Example	(add	to	one):

Section
	 ${WordAdd}	"C:\io.sys"	"	"	"+C:\WINDOWS	C:\config.sys	C:\IO.SYS"	$R0
	 ;	$R0="C:\io.sys	C:\WINDOWS	C:\config.sys"
SectionEnd

Example	(delete	one):

Section
	 ${WordAdd}	"C:\io.sys	C:\logo.sys	C:\WINDOWS"	"	"	"-C:\WINDOWS"	$R0
	 ;	$R0="C:\io.sys	C:\logo.sys"
SectionEnd

Example	(No	new	words	found):

Section
	 ${WordAdd}	"C:\io.sys	C:\logo.sys"	"	"	"+C:\logo.sys"	$R0
	 StrCmp	$R0	"C:\io.sys	C:\logo.sys"	0	+2
	 MessageBox	MB_OK	"No	new	words	found	to	add"
SectionEnd

Example	(No	words	deleted):

Section
	 ${WordAdd}	"C:\io.sys	C:\logo.sys"	"	"	"-C:\config.sys"	$R0
	 StrCmp	$R0	"C:\io.sys	C:\logo.sys"	0	+2
	 MessageBox	MB_OK	"No	words	found	to	delete"
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordAdd}	"C:\io.sys	C:\logo.sys"	""	"E-C:\logo.sys"	$R0
	 ;	$R0="1"	(delimiter	is	empty	"")

	 IfErrors	0	noerrors
	 MessageBox	MB_OK	'Errorlevel=$R0'	IDOK	end

	 noerrors:

	 MessageBox	MB_OK	'No	errors'

	 end:
SectionEnd

E.3.11	WordAddS

Same	as	WordAdd,	but	case	sensitive.

E.3.12	WordInsert

Insert	word	in	string.

Syntax:

${WordInsert}	"[string]"	"[delimiter]"	"[word]"	"[E][options]"	$var

"[string]"										;[string]
																				;		input	string
"[delimiter]"							;[delimiter]
																				;		one	or	several	symbols
"[word]"												;[word]
																				;		word	to	insert
"[E][options]"						;[options]
																				;		+number		:	word	number	from	start
																				;		-number		:	word	number	from	end
																				;
																				;[E]
																				;		with	errorlevel	output
																				;		IfErrors:
																				;					$var=1		delimiter	is	empty
																				;					$var=2		wrong	word	number
																				;					$var=3		syntax	error	(Use:	+1,-1)
																				;[]
																				;		no	errorlevel	output	(default)
																				;		If	some	errors	found	then	(result=input	string)
																				;

$var																;output	(result)

Example	(1):

Section
	 ${WordInsert}	"C:\io.sys	C:\WINDOWS"	"	"	"C:\logo.sys"	"-2"	$R0
	 ;	$R0="C:\io.sys	C:\logo.sys	C:\WINDOWS"
SectionEnd

Example	(2):

Section
	 ${WordInsert}	"C:\io.sys"	"	"	"C:\WINDOWS"	"+2"	$R0
	 ;	$R0="C:\io.sys	C:\WINDOWS"
SectionEnd

Example	(3):

Section
	 ${WordInsert}	""	"	"	"C:\WINDOWS"	"+1"	$R0
	 ;	$R0="C:\WINDOWS	"
SectionEnd

Example	(With	errorlevel	output):

Section
	 ${WordInsert}	"C:\io.sys	C:\logo.sys"	"	"	"C:\logo.sys"	"E+4"	$R0
	 ;	$R0="2"	(wrong	word	number	"+4")

	 IfErrors	0	noerrors
	 MessageBox	MB_OK	'Errorlevel=$R0'	IDOK	end

	 noerrors:
	 MessageBox	MB_OK	'No	errors'

	 end:
SectionEnd

E.3.13	WordInsertS

Same	as	WordInsert,	but	case	sensitive.

E.3.14	StrFilter

Convert	string	to	uppercase	or	lowercase.
Set	symbol	filter.

Syntax:

${StrFilter}	"[string]"	"[options]"	"[symbols1]"	"[symbols2]"	$var

"[string]"							;[string]
																	;		input	string
																	;
"[options]"						;[+|-][1|2|3|12|23|31][eng|rus]
																	;		+			:	convert	string	to	uppercase
																	;		-			:	convert	string	to	lowercase
																	;		1			:	only	Digits
																	;		2			:	only	Letters
																	;		3			:	only	Special
																	;		12		:	only	Digits		+	Letters
																	;		23		:	only	Letters	+	Special
																	;		31		:	only	Special	+	Digits
																	;		eng	:	English	symbols	(default)
																	;		rus	:	Russian	symbols
																	;
"[symbols1]"					;[symbols1]
																	;		symbols	include	(not	changeable)
																	;
"[symbols2]"					;[symbols2]
																	;		symbols	exclude
																	;
$var													;output	(result)

Note:	
-	Error	flag	if	syntax	error	

-	Same	symbol	to	include	&	to	exclude	=	to	exclude

Example	(UpperCase):

Section
	 ${StrFilter}	"123abc	456DEF	7890|%#"	"+"	""	""	$R0
	 ;	$R0="123ABC	456DEF	7890|%#"
SectionEnd

Example	(LowerCase):

Section
	 ${StrFilter}	"123abc	456DEF	7890|%#"	"-"	"ef"	""	$R0
	 ;	$R0="123abc	456dEF	7890|%#"
SectionEnd

Example	(Filter1):

Section
	 ${StrFilter}	"123abc	456DEF	7890|%#"	"2"	"|%"	""	$R0
	 ;	$R0="abcDEF|%"							;only	Letters	+	|%
SectionEnd

Example	(Filter2):

Section
	 ${StrFilter}	"123abc	456DEF	7890|%#"	"13"	"af"	"4590"	$R0
	 ;	$R0="123a	6F	78|%#"		;only	Digits	+	Special	+	af	-	4590
SectionEnd

Example	(Filter3):

Section
	 ${StrFilter}	"123abc	456DEF	7890|%#"	"+12"	"b"	"def"	$R0
	 ;	$R0="123AbC4567890"		;only	Digits	+	Letters	+	b	-	def
SectionEnd

Example	(Filter4):

Section
	 ${StrFilter}	"123abcÀÁÂ	456DEFãäå	7890|%#"	"+12rus"	"ä"	"ãå"	$R0
	 ;	$R0="123ÀÁÂ456ä7890"		;only	Digits	+	Letters	+	ä	-	ãå
SectionEnd

Example	(English	+	Russian	Letters):

Section
	 ${StrFilter}	"123abcÀÁÂ	456DEFãäå	7890|%#"	"2rus"	""	""	$R0
	 ;	$R0="ÀÁÂãäå"								;only	Russian	Letters
	 ${StrFilter}	"123abcÀÁÂ	456DEFãäå	7890|%#"	"2"	"$R0"	""	$R0
	 ;	$R0="abcÀÁÂDEFãäå"		;only	English	+	Russian	Letters
SectionEnd

Example	(Word	Capitalize):

Section
	 Push	"_01-PERPETUOUS_DREAMER__-__THE_SOUND_OF_GOODBYE_(ORIG._MIX).MP3_"
	 Call	Capitalize
	 Pop	$R0
	 ;	$R0="_01-Perpetuous_Dreamer__-__The_Sound_Of_Goodbye_(Orig._Mix).mp3_"

	 ${WordReplace}	"$R0"	"_"	"	"	"+*"	$R0
	 ;	$R0="	01-Perpetuous	Dreamer	-	The	Sound	Of	Goodbye	(Orig.	Mix).mp3	"

	 ${WordReplace}	"$R0"	"	"	""	"{}"	$R0
	 ;	$R0="01-Perpetuous	Dreamer	-	The	Sound	Of	Goodbye	(Orig.	Mix).mp3"
SectionEnd

Function	Capitalize
	 Exch	$R0
	 Push	$0
	 Push	$1
	 Push	$2

	 ${StrFilter}	'$R0'	'-eng'	''	''	$R0
	 ${StrFilter}	'$R0'	'-rus'	''	''	$R0

	 StrCpy	$0	0

	 loop:
	 IntOp	$0	$0	+	1
	 StrCpy	$1	$R0	1	$0
	 StrCmp	$1	''	end
	 StrCmp	$1	'	'	+5
	 StrCmp	$1	'_'	+4
	 StrCmp	$1	'-'	+3
	 StrCmp	$1	'('	+2
	 StrCmp	$1	'['	0	loop
	 IntOp	$0	$0	+	1
	 StrCpy	$1	$R0	1	$0
	 StrCmp	$1	''	end

	 ${StrFilter}	'$1'	'+eng'	''	''	$1
	 ${StrFilter}	'$1'	'+rus'	''	''	$1

	 StrCpy	$2	$R0	$0
	 IntOp	$0	$0	+	1
	 StrCpy	$R0	$R0	''	$0
	 IntOp	$0	$0	-	2
	 StrCpy	$R0	'$2$1$R0'
	 goto	loop

	 end:
	 Pop	$2
	 Pop	$1
	 Pop	$0
	 Exch	$R0
FunctionEnd

E.3.15	StrFilterS

Same	as	StrFilter,	but	case	sensitive.

E.3.16	VersionCompare

Compare	version	numbers.

Syntax:

${VersionCompare}	"[Version1]"	"[Version2]"	$var

"[Version1]"								;	First	version
"[Version2]"								;	Second	version
$var																;	Result:
																				;				$var=0		Versions	are	equal
																				;				$var=1		Version1	is	newer
																				;				$var=2		Version2	is	newer

Example:

Section
	 ${VersionCompare}	"1.1.1.9"	"1.1.1.01"	$R0
	 ;	$R0="1"
SectionEnd

E.3.17	VersionConvert

Convert	version	in	the	numerical	format	which	can	be	compared.

Syntax:

${VersionConvert}	"[Version]"	"[CharList]"	$var

"[Version]"									;	Version
																				;
"[CharList]"								;	List	of	characters,	which	will	be	replaced	by	numbers
																				;	"abcdefghijklmnopqrstuvwxyz"	(default)
																				;
$var																;	Result:	converted	version

Note:	
-	Converted	letters	are	separated	with	dot	
-	If	character	is	non-digit	and	not	in	list	then	it	will	be	converted	to	dot

Example1:

Section
	 ${VersionConvert}	"9.0a"	""	$R0
	 ;	$R0="9.0.01"

	 ${VersionConvert}	"9.0c"	""	$R1
	 ;	$R1="9.0.03"

	 ${VersionCompare}	"$R0"	"$R1"	$R2
	 ;	$R2="2"			version2	is	newer
SectionEnd

Example2:

Section
	 ${VersionConvert}	"0.15c-9m"	""	$R0
	 ;	$R0="0.15.03.9.13"

	 ${VersionConvert}	"0.15c-1n"	""	$R1
	 ;	$R1="0.15.03.1.14"

	 ${VersionCompare}	"$R0"	"$R1"	$R2
	 ;	$R2="1"			version1	is	newer
SectionEnd

Example3:

Section
	 ${VersionConvert}	"0.15c+"	"abcdefghijklmnopqrstuvwxyz+"	$R0
	 ;	$R0="0.15.0327"

	 ${VersionConvert}	"0.15c"	"abcdefghijklmnopqrstuvwxyz+"	$R1
	 ;	$R1="0.15.03"

	 ${VersionCompare}	"$R0"	"$R1"	$R2
	 ;	$R2="1"			version1	is	newer
SectionEnd

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	F:	Changelog	and	Release	Notes
3.02

Changelog
3.01

Changelog
3.0

Release	Notes
Changelog

3.0	Release	Candidate	2
Changelog

3.0	Release	Candidate	1
Changelog

3.0	Beta	3
Changelog

3.0	Beta	2
Changelog

3.0	Beta	1
Release	Notes
Changelog

3.0	Beta	0
Release	Notes
Changelog

3.0	Alpha	2
Release	Notes
Changelog

3.0	Alpha	1
Release	Notes
Changelog

3.0	Alpha	0
Release	Notes
Changelog

2.51
Changelog

2.50
Changelog

2.49
Changelog

2.48
Changelog

2.47
Release	Notes
Changelog

2.46
Changelog

2.45
Release	Notes
Changelog

2.44
Changelog

2.43
Release	Notes
Changelog

2.42
Release	Notes
Changelog

2.41
Changelog

2.40
Changelog

2.39
Changelog

2.38
Changelog

2.37
Changelog

2.36
Release	Notes
Changelog

2.35
Changelog

2.34
Release	Notes
Changelog

2.33
Release	Notes
Changelog

2.32
Release	Notes
Changelog

2.31
Release	Notes
Changelog

2.30
Release	Notes
Changelog

2.29
Release	Notes
Changelog

2.28
Changelog

2.27
Release	Notes
Changelog

2.26
Release	Notes
Changelog

2.25
Changelog

2.24
Changelog

2.23
Changelog

2.22
Release	Notes
Changelog

2.21
Changelog

2.20
Changelog

2.19
Changelog

2.18
Changelog

2.17
Changelog

2.16
Release	Notes
Changelog

2.15
Changelog

2.14
Release	Notes
Changelog

2.13
Release	Notes
Changelog

2.12
Changelog

2.11
Release	Notes
Changelog

2.10
Changelog

2.09
Changelog

2.08
Release	Notes
Changelog

2.07
Release	Notes
Changelog

2.06
Changelog

2.05
Release	Notes
Changelog

2.04
Changelog

2.03
Release	Notes
Changelog

2.02
Changelog

2.01

Release	Notes
Changelog

2.0
Release	Notes
Changelog

2.0	Release	Candidate	4
Changelog

2.0	Release	Candidate	3
Changelog

2.0	Release	Candidate	2
Changelog

2.0	Release	Candidate	1
Release	Notes
Changelog

2.0	Beta	4
Release	Notes
Changelog

2.0	Beta	3
2.0	Beta	2
2.0	Beta	1
2.0	Beta	0
2.0	Alpha	7
2.0	Alpha	6
2.0	Alpha	5
2.0	Alpha	4
2.0	Alpha	3
2.0	Alpha	2
2.0	Alpha	1
2.0	Alpha	0
Older	Versions

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.1	3.02
Released	on	July	23rd,	2017

F.1.1	Changelog

F.1.1.1	Major	Changes

Fixed	NSIS3	RegTool	Win9x	bug
Added	the	HKCR32,	HKCR64,	HKCU32,	HKCU64,	HKLM32	and
HKLM64	root	keys
Unsupported	SetRegView	mode	now	fails	all	registry	operations
Added	ExecShellWait
Added	WriteRegMultiStr	(RFE	#382,	patch	#219)	and	WriteRegNone
Added	!pragma	warning	(patch	#267)
$LocalAppData	now	resolves	to	the	ProgramData	folder	in	the
SetShellVarContext	all	context

F.1.1.2	Minor	Changes

Variables	used	in	Caption	can	now	be	set	in	.onGUIInit	(RFE	#539)
MultiUser	now	supports	$ProgramFiles64	(bug	#843)
Added	support	for	MUI_UNCONFIRMPAGE_VARIABLE	(RFE	#511)
and	MUI_PAGE_CUSTOMFUNCTION_DESTROYED
Unicode	nsExec	now	supports	the	/OEM	switch	(bug	#1171)

F.1.1.3	Translations

Chinese	(Traditional)	updates	by	Walter	Cheuk
Minor	French	improvements	(patch	#221)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/feature-requests/382
http://sf.net/p/nsis/patches/219
http://sf.net/p/nsis/patches/267
http://sf.net/p/nsis/feature-requests/539
http://sf.net/p/nsis/bugs/843
http://sf.net/p/nsis/feature-requests/511
http://sf.net/p/nsis/bugs/1171
http://sf.net/p/nsis/patches/221

Previous	|	Contents	|	Next

F.2	3.01
Released	on	December	11th,	2016

F.2.1	Changelog

F.2.1.1	Major	Changes

Error	messages	are	now	written	to	stderr	by	default
New	icons	by	Jan	T.	Sott

F.2.1.2	Minor	Changes

SetCtlColors	now	supports	Windows	color	constant	values
StrCpy	""	maxlen	handling	(bug	#1122)
Fixed	buffer	size	bug	in	winchar.cpp	(patch	#271)

F.2.1.3	Translations

Added	Corsican	(patch	#268)
PortugueseBR	fixes	(patch	#276)
Updated	Danish	translation	(bug	#1164)
Arabic,	Norwegian,	Portuguese,	Ukrainian	and	Swedish	MultiUser
fixes	(patch	#278,	patch	#279,	patch	#274,	patch	#275	&	patch
#277)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1122
http://sf.net/p/nsis/patches/271
http://sf.net/p/nsis/patches/268
http://sf.net/p/nsis/patches/276
http://sf.net/p/nsis/bugs/1164
http://sf.net/p/nsis/patches/278
http://sf.net/p/nsis/patches/279
http://sf.net/p/nsis/patches/274
http://sf.net/p/nsis/patches/275
http://sf.net/p/nsis/patches/277

Previous	|	Contents	|	Next

F.3	3.0
Released	on	July	24th,	2016

F.3.1	Release	Notes

Long-awaited	version	3	of	NSIS	is	finally	ready.	It	comes	with	optional
Unicode	support,	still	works	on	all	the	same	versions	of	Windows,
supports	Windows	10,	and	adds	a	lot	of	other	small	features	and	fixes.
Huge	thanks	goes	out	to	Anders	and	Wizou	for	making	this	happen	and
Jim	Park	for	the	original	patch.

F.3.2	Changelog

F.3.2.1	Minor	Changes

!finalize	command	now	supports	the	same	compare	operators	as
!system	(bug	#1148)

F.3.2.2	Translations

PortugueseBR	fixes	(bug	#1149)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1148
http://sf.net/p/nsis/bugs/1149

Previous	|	Contents	|	Next

F.4	3.0	Release	Candidate	2
Released	on	July	8th,	2016

F.4.1	Changelog

F.4.1.1	Major	Changes

Fixed	LogicLib	nested	${Select}	bug
!makensis	command	must	force	Unicode	output	to	be	UTF-8	(bug
#1147)

F.4.1.2	Minor	Changes

Zip2Exe	aborts	if	the	zip	file	is	encrypted	(bug	#1141)
Added	LogicLib	&	operator
NSIS	Menu	POSIX	fixes	(bug	#1144)

F.4.1.3	Translations

PortugueseBR	fixes	(deguix)
Minor	tweaks	to	Danish.nlf	(scootergrisen)	(bug	#1140)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1147
http://sf.net/p/nsis/bugs/1141
http://sf.net/p/nsis/bugs/1144
http://sf.net/p/nsis/bugs/1140

Previous	|	Contents	|	Next

F.5	3.0	Release	Candidate	1
Released	on	April	3nd,	2016

F.5.1	Changelog

F.5.1.1	Major	Changes

Fixed	!appendfile	on	POSIX	and	LogicLib	${Switch}
More	security	hardening	to	prevent	dll	hijacking

F.5.1.2	Minor	Changes

Documentation	improvements
The	name	of	the	uninstaller	created	in	%TEMP%\~nsu.tmp	has
changed	from	%UNIQUE%u_.exe	to	Un_%UNIQUE%.exe
Various	warning	and	error	improvments

F.5.1.3	Translations

Added	missing	MULTIUSER_*	entries	to	Japanese.nsh	(patch	#266)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/patches/266

Previous	|	Contents	|	Next

F.6	3.0	Beta	3
Released	on	December	26th,	2015

F.6.1	Changelog

F.6.1.1	Major	Changes

RequestExecutionLevel	now	defaults	to	admin
LoadLibrary	security	hardening	to	prevent	dll	hijacking	(bug	#1125)
FileReadUTF16LE	now	skips	the	optional	BOM	at	the	start	of	a	file

F.6.1.2	Minor	Changes

Fixed	System	plugin	GUID	type	output	bug	on	Win98
FileWriteUTF16LE	can	add	a	BOM	with	the	/BOM	switch
CreateShortcut	icon	index	can	now	be	larger	than	255	(bug	#1123)
!system	and	!execute	now	provide	an	empty	StdIn	pipe	to	work
around	bugs	in	some	Windows	utilities
Added	support	for	0o	octal	radix	prefix	on	number	literals	in	the
preprocessor
The	single	parameter	version	of	!if	now	also	supports	floats
Preprocessor	now	warns	when	invalid	floating	point	numbers	are
used	in	math	operations
MakeNSISW	now	uses	WinInet	when	checking	for	updates

F.6.1.3	Translations

Brazilian	Portuguese	updated	(Felipe)	(patch	#263)
Polish	updated	(Paweł	Porwisz)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1125
http://sf.net/p/nsis/bugs/1123/
http://sf.net/p/nsis/patches/263/

Previous	|	Contents	|	Next

F.7	3.0	Beta	2
Released	on	August	4th,	2015

F.7.1	Changelog

F.7.1.1	Major	Changes

Preliminary	Windows	10	support

F.7.1.2	Minor	Changes

Added	!appendfile	/RawNL	switch
Added	PESubsysVer	attribute
Exec[Wait]	sets	the	CREATE_DEFAULT_ERROR_MODE	flag	when
creating	a	process
Fixed	4+	TiB	freespace	calculation	bug	(bug	#1115)
Fixed	CreateShortcut	/NoWorkingDir	parsing	bug	(bug	#1110)
Fixed	minor	issues	in	the	Pascal	NSIS	plug-in	SDK	and	removed	the
extrap	global	variable
nsDialogs	and	InstallOptions	now	use	the	system	link	color

F.7.1.3	Build	System

Linux	stdcall	warning	fix	(patch	#261)
Linux	test-scripts	fix	(patch	#260)
Win64	fixes	(including	patch	#258,	bug	#1105)
Visual	C	2012	fixes

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1115/
http://sf.net/p/nsis/bugs/1110/
http://sf.net/p/nsis/patches/261
http://sf.net/p/nsis/patches/260
http://sf.net/p/nsis/patches/258
http://sf.net/p/nsis/bugs/1105/

Previous	|	Contents	|	Next

F.8	3.0	Beta	1
Released	on	October	6th,	2014

F.8.1	Release	Notes

This	release	addresses	a	lot	of	build	issues,	reintroduces	the	nightly
builds	and	adds	automatic	nightly	test	execution

F.8.2	Changelog

F.8.2.1	Major	Changes

!insertmacro	allows	macro	recursion	(RFE	#497)
Added	!makensis	command
Added	new	MUI2	bitmap	stretch	modes,	*_NOSTRETCH	is	now
deprecated	(RFE	#521)
InitiateShutdown()	is	used	to	reboot	the	machine	if	available	(patch
#247)
Added	PPO	and	SafePPO	preprocess-only	compiler	switches
MakeNSIS	WM_COPYDATA	messages	now	use	the
QH_OUTPUTCHARSET	encoding	with	CP_ACP	as	the	default	for
compatibility	with	old	IDEs.

F.8.2.2	Minor	Changes

Added	IsWow64	to	x64.nsh
Added	PEDllCharacteristics	attribute
Added	System::Call	direct	register	memory	access	type.	(patch
#249)
Added	WX	compiler	switch
Allow	skipping	ExDLL	build	with	SKIPPLUGINS	((patch	#254))
Changed	default	DllCharacteristics	to
TS_AWARE+NO_SEH+NX_COMPAT+DYNAMIC_BASE
Fixed	Mac	OS	X	builds	(patch	#253	and	bug	#1085)

https://drone.io/github.com/kichik/nsis
http://sf.net/p/nsis/feature-requests/497
http://sf.net/p/nsis/feature-requests/521
http://sf.net/p/nsis/patches/247
http://sf.net/p/nsis/patches/249
http://sf.net/p/nsis/patches/254
http://sf.net/p/nsis/patches/253
http://sf.net/p/nsis/bugs/1085

Fixed	POSIX	!searchparse	bug	(patch	#251)
Fixed	!macroundef
Fixed	test-code	build	target	on	POSIX	and	enabled	it	in	nightly	builds
(bug	#1098)
Fixed	Visual	Studio	2012	builds

F.8.2.3	Translations

Added	Armenian	(Hrant	Ohanyan)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/patches/251
http://sf.net/p/nsis/bugs/1088/

Previous	|	Contents	|	Next

F.9	3.0	Beta	0
Released	on	May	11th,	2014

F.9.1	Release	Notes

POSIX	builds	work	again!	Please	let	us	know	if	your	favorite	platform
is	still	having	build	issues.	We	mainly	test	on	Linux.

F.9.2	Changelog

F.9.2.1	Major	Changes

Basic	AMD64	System::Call	support
Fixed	POSIX	builds

F.9.2.2	Minor	Changes

Added	CreateShortcut	/NoWorkingDir	parameter
Added	Int<32|64|Ptr><Op|Cmp[U]>	helper	macros	to	Util.nsh
Added	P<,	P<=,	P=,	P<>,	P>=	and	P>	LogicLib	ptrdiff_t	tests
Try	harder	to	find	duplicate	strings	in	string	block	(bug	#1088)
!system	will	decode	child	output	as	OEMCP	if
GetConsoleOutputCP()	==	GetOEMCP()
!system	and	!execute	can	store	the	exit	code	in	a	define
!execute	supports	comparing	the	exit	code	with	the	same	syntax	as
!system
Preprocessor	supports	0n	and	0b	radix	prefix	on	number	literals

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1088/

Previous	|	Contents	|	Next

F.10	3.0	Alpha	2
Released	on	December	24th,	2013

F.10.1	Release	Notes

It's	the	holiday	gift	you've	been	waiting	for!

F.10.1.1	Known	Issues

The	POSIX	build	is	getting	much	closer,	but	still	currently	broken
LangDLL	doesn't	display	localized	language	name	with	Unicode
false

F.10.2	Changelog

F.10.2.1	Major	Changes

!include	defaults	to	UTF-8	after	Unicode	True
Preprocessor	does	not	parse	all	branches	and	will	not	validate	code
that	is	never	executed	(bug	#1086)

F.10.2.2	Minor	Changes

FileRead	in	Unicode	installers	can	handle	DBCS,	conversion	output
is	limited	to	UCS-2.
FileRead	in	Unicode	installers	now	uses	the	Unicode	replacement
character	(U+FFFD)	for	invalid	characters	and	not	'?'.
FileReadByte	no	longer	performs	a	Unicode	conversion	on	non-
ASCII	characters
Windows	8.1	&	2012R2	support	in	WinVer.nsh
Fixed	!define	Unicode	null	terminator	bug	(bug	#1079)
Unicode	stubs	create	WCHAR	richedit	controls	(bug	#1080)
Fixed	MakeNSISW	default	pushbutton	and	tab	order
Fixed	incorrect	page	count	in	compiler	statistics

http://sf.net/p/nsis/bugs/1086/
http://sf.net/p/nsis/bugs/1079/
http://sf.net/p/nsis/bugs/1080/

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.11	3.0	Alpha	1
Released	on	July	14th,	2013

F.11.1	Release	Notes

F.11.1.1	Known	Issues

The	POSIX	build	is	currently	broken
LangDLL	doesn't	display	localized	language	name	with	Unicode
false
FileRead	may	return	'?'	for	MBCS	letters	with	Unicode	true

F.11.2	Changelog

F.11.2.1	Major	Changes

Default	verbosity	is	/V3	without	logo,	MakeNSISW	still	uses	/V4.
ManifestSupportedOS	added	support	for	the	Windows	8.1	GUID	and
it	is	set	by	default	to	avoid	GetVersionEx	compatibility	behavior.

F.11.2.2	Minor	Changes

Fixed	!finalize	%1
Fixed	!searchparse	(bug	#1073)
Made	installers	always	respect	/S	on	command	line,	even	when
installer	file	can't	be	read	(bug	#1076)
Minor	MakeNSISW	fixes	and	tweaks
Added	Zip2Exe	Unicode	checkbox

Previous	|	Contents	|	Next

https://sourceforge.net/p/nsis/bugs/1073/
https://sourceforge.net/p/nsis/bugs/1076/

Previous	|	Contents	|	Next

F.12	3.0	Alpha	0
Released	on	May	19th,	2013

F.12.1	Release	Notes

MakeNSIS	can	now	generate	ANSI	and	Unicode	installers.	Source
files	can	be	UTF8SIG,	UTF16BOM	or	traditional	MBCS	text	files
(which	are	converted	to	Unicode	with	ACP	unless	you	specify	a
different	codepage).	The	default	plugins	are	now	stored	in	sub-
folders	based	on	their	CPU	target	and	character	set	encoding.

F.12.1.1	Known	Issues

The	POSIX	build	is	currently	broken
LangDLL	doesn't	display	localized	language	name	with	Unicode
false
FileRead	may	return	'?'	for	MBCS	letters	with	Unicode	true

F.12.2	Changelog

F.12.2.1	Major	Changes

Added	the	Unicode	attribute	(RFE	#1238132,	patch	#1795257)
Added	support	for	Windows	8	and	Windows	Server	2012
MakeNSIS	can	read	UTF8SIG	and	UTF16BOM	script	files	(RFE
#2026892)
All	NLF	and	NSH	language	files	are	stored	as	UTF-16LE	(RFE
#1879642)
Scripts	can	control	the	SupportedOS	list	in	the	application	manifest
using	ManifestSupportedOS	(bug	#2725883,	RFE	#3020103)
Installers	can	claim	DPI-awareness	with	ManifestDPIAware	(bug
#2897169)
The	index	of	the	changed	section	is	stored	in	$0	during
.onSelChange	callbacks	(RFE	#1634936)

http://sourceforge.net/support/tracker.php?aid=1238132
http://sourceforge.net/support/tracker.php?aid=1795257
http://sourceforge.net/support/tracker.php?aid=2026892
http://sourceforge.net/support/tracker.php?aid=1879642
http://sourceforge.net/support/tracker.php?aid=2725883
http://sourceforge.net/support/tracker.php?aid=3020103
http://sourceforge.net/support/tracker.php?aid=2897169
http://sourceforge.net/support/tracker.php?aid=1634936

${U+1}...${U+10FFFF}	are	treated	as	a	Unicode	character	unless
there	is	already	a	define	with	that	name	(RFE	#2084797)

F.12.2.2	Minor	Changes

Added	!getdllversion	(bug	#2809308)
Added	!appendfile	/CHARSET	parameter
Added	!if	support	for	/fileexists,	case	sensitive	comparisons,	hex	and
float
Added	more	definitions	to	WinMessages.nsh
%temp%\Low	will	be	used	if	the	installer	cannot	write	to	%temp%
nor	%windir%\Temp	(bug	#2909242,	patch	#2912824)
Added	${NSIS_PACKEDVERSION},	the	NSIS	version	packed	as	a
hex	number	(patch	#2680832)
Added	${__MACRO__}	and	${__COUNTER__}	predefines
Added	UnsafeStrCpy	instruction,	it	can	write	to	special	variables	like
$PLUGINSDIR
Added	VIFileVersion
Added	!finalize	for	post-build	commands	(like	signing	the	installer)
Plugins	in	${NSISDIR}\Plugins	have	to	be	reserved	with	ReserveFile
/plugin

MakeNSIS	/NOTIFYHWND	uses	a	(optional)	new	event	name	to
abort	compilation,	see	build.cpp/h	for	details.
Reduced	!include/!insertmacro	recursion	stack	usage	(bug
#3067954)
Fixed	minor	MakeNSIS	leaks	(bug	#3474662)
Fixed	MUI_FINISHPAGE_TITLE_3LINES	padding	when	reboot	is
required	(bug	#3400067,	bug	#3408407)
Fixed	removal	of	read	only	attribute	even	if	Delete	or	RMDir	fails
(bug	#3072159)
Fixed	${__SECTION__}	in	hidden	sections	(RFE	#1787648)
Various	documentation	fixes	(bug	#3063566,	bug	#3567313,	patch
#3307144)
Lots	of	other	small	fixes...

F.12.2.3	Translations

http://sourceforge.net/support/tracker.php?aid=2084797
http://sourceforge.net/support/tracker.php?aid=2809308
http://sourceforge.net/support/tracker.php?aid=2909242
http://sourceforge.net/support/tracker.php?aid=2912824
http://sourceforge.net/support/tracker.php?aid=2680832
http://sourceforge.net/support/tracker.php?aid=3067954
http://sourceforge.net/support/tracker.php?aid=3474662
http://sourceforge.net/support/tracker.php?aid=3400067
http://sourceforge.net/support/tracker.php?aid=3408407
http://sourceforge.net/support/tracker.php?aid=3072159
http://sourceforge.net/support/tracker.php?aid=1787648
http://sourceforge.net/support/tracker.php?aid=3063566
http://sourceforge.net/support/tracker.php?aid=3567313
http://sourceforge.net/support/tracker.php?aid=3307144

Changed	LANGFILE	macro	in	LangFile.nsh
Warnings	are	now	displayed	for	missing	strings
(LANGFILE_INCLUDE_WITHDEFAULT)
Added	Georgian	(David	Huriev)
Added	Pashto	(Pakhtosoft)
Added	Scottish	Gaelic	(GunChleoc)
Fixed	Korean	MUI_[UN]TEXT_FINISH_INFO_*	(bug	#3541515)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=3541515

Previous	|	Contents	|	Next

F.13	2.51
Released	on	April	1st,	2016

F.13.1	Changelog

F.13.1.1	Minor	Changes

More	security	hardening	to	prevent	dll	hijacking
Backported	support	for	system	'p'	type	and	logiclib	P	and	Z	tests

F.13.1.2	Translations

Added	missing	MULTIUSER_*	entries	to	Japanese.nsh	(patch	#266)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/patches/266

Previous	|	Contents	|	Next

F.14	2.50
Released	on	December	26th,	2015

F.14.1	Changelog

F.14.1.1	Major	Changes

RequestExecutionLevel	now	defaults	to	admin

F.14.1.2	Minor	Changes

Preload	certain	system	libraries	to	prevent	dll	hijacking	(bug	#1125)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1125

Previous	|	Contents	|	Next

F.15	2.49
Released	on	December	16th,	2015

F.15.1	Changelog

Fixed	CreateShortcut	failure	on	Vista	caused	by	security	changes	in
2.47

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.16	2.48
Released	on	December	10th,	2015

F.16.1	Changelog

Fixed	CHM	(bug	#1129)

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1129/

Previous	|	Contents	|	Next

F.17	2.47
Released	on	December	8th,	2015

F.17.1	Release	Notes

This	is	a	maintenance	and	security	release

F.17.2	Changelog

F.17.2.1	Major	Changes

LoadLibrary	security	hardening	to	prevent	dll	hijacking	(bug	#1125)
InitiateShutdown()	is	used	to	reboot	the	machine	if	available	(patch
#247)

F.17.2.2	Minor	Changes

Fixed	4+	TiB	freespace	calculation	bug	(bug	#1115)
Windows	8	&	2012	support	in	WinVer.nsh

Previous	|	Contents	|	Next

http://sf.net/p/nsis/bugs/1125
http://sf.net/p/nsis/patches/247
http://sf.net/p/nsis/bugs/1115/

Previous	|	Contents	|	Next

F.18	2.46
Released	on	December	6th,	2009

F.18.1	Changelog

F.18.1.1	Minor	Changes

Fixed	!searchparse	(bug	#2803622)
Fixed	Vista	error	message	when	canceling	uninstaller	(bug
#2803097)
Resolve	warning	for	LogicLib's	endless	Do..Loop	(bug	#2849872)
StartMenu:	fixed	random	number	prefixes	when	clicking	on	an	empty
spot	(bug	#2810188)
Updates	to	NSIS.pas	for	plug-in	development	(patch	#2802794)

F.18.1.2	Translations

PortugueseBR	typo	(patch	#2826598)
Removed	double	spaces	in	Italian	(bug	#2873598)

F.18.1.3	Build	System

Fixed	mingw	builds	of	Math	plug-in	(patch	#2835731)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2803622
http://sourceforge.net/support/tracker.php?aid=2803097
http://sourceforge.net/support/tracker.php?aid=2849872
http://sourceforge.net/support/tracker.php?aid=2810188
http://sourceforge.net/support/tracker.php?aid=2802794
http://sourceforge.net/support/tracker.php?aid=2826598
http://sourceforge.net/support/tracker.php?aid=2873598
http://sourceforge.net/support/tracker.php?aid=2835731

Previous	|	Contents	|	Next

F.19	2.45
Released	on	June	6th,	2009

F.19.1	Release	Notes

Support	for	Microsoft's	upcoming	release	of	Windows	7	has	been
added	based	on	RC1	testing	and	documentation.	Please	report	any
related	issues	and	don't	forget	to	use	RequestExecutionLevel.

F.19.2	Changelog

F.19.2.1	Major	Changes

Added	support	for	Windows	7	installers	-	use
RequestExecutionLevel,	just	like	with	Vista	(bug	#2725883)
Added	WinVer.nsh	Windows	7	and	Windows	2008	R2	support
Installers	now	identify	as	Terminal	Services	aware
(IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE)
so	$WINDIR	will	no	longer	be	under	the	user's	profile	when	installing
on	Terminal	Services
Less	UAC	annoyance	in	Add/Remove	control	panel	(bug	#2697027)

F.19.2.2	Minor	Changes

Added	wildcard	and	/nonfatal	support	for	!delfile	(RFE	#1505425)
Fixed	!searchparse	(bug	#2680110)
Fixed	input	validation	for	CreateFont	(bug	#2801024)
Fixed	NSIS	Menu	handling	of	working	directory	(bug	#2781948)
Fixed	Vista	issues	with	shell	folders	($DOCUMENTS,	$PROFILE,
etc.)	on	root	directories	(bug	#2138075)
Minor	documentation	improvements	(including	bug	#2705878,	bug
#2606525)
Use	SW_SHOWDEFAULT	for	ExecShell	by	default	(bug	#2796189)

http://sourceforge.net/support/tracker.php?aid=2725883
http://sourceforge.net/support/tracker.php?aid=2697027
http://sourceforge.net/support/tracker.php?aid=1505425
http://sourceforge.net/support/tracker.php?aid=2680110
http://sourceforge.net/support/tracker.php?aid=2801024
http://sourceforge.net/support/tracker.php?aid=2781948
http://sourceforge.net/support/tracker.php?aid=2138075
http://sourceforge.net/support/tracker.php?aid=2705878
http://sourceforge.net/support/tracker.php?aid=2606525
http://sourceforge.net/support/tracker.php?aid=2796189

F.19.2.3	Modern	UI

Call	finish	page	show	function	only	after	the	page	is	fully	initialized
(bug	#2720968)
Fixed	translation	of	uninstaller	directory	page	(bug	#2690112)
Fixed	installation	type	text	position	in	components	page	(patch
#2801317)
Fixed	missing
MUI_INNERTEXT_COMPONENTS_DESCRIPTION_TITLE	(bug
#2788620)

F.19.2.4	Translations

Updated	Indonesian	(patch	#2790571)
Updated	Portuguese	BR	(patch	#2642542)

F.19.2.5	Build	System

Fixed	some	GCC	warnings

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2720968
http://sourceforge.net/support/tracker.php?aid=2690112
http://sourceforge.net/support/tracker.php?aid=2801317
http://sourceforge.net/support/tracker.php?aid=2788620
http://sourceforge.net/support/tracker.php?aid=2790571
http://sourceforge.net/support/tracker.php?aid=2642542

Previous	|	Contents	|	Next

F.20	2.44
Released	on	February	21st,	2009

F.20.1	Changelog

F.20.1.1	Major	Changes

Fixed	a	bug	introduced	in	2.43	causing	script	build	issues	with	some
icons	(bug	#2572035)

F.20.1.2	Minor	Changes

Fixed	nsDialogs	CreateTimer	documentation	(bug	#2595565)
Global	labels	didn't	work	when	declared	in	unused	functions	(bug
#2593369)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2572035
http://sourceforge.net/support/tracker.php?aid=2595565
http://sourceforge.net/support/tracker.php?aid=2593369

Previous	|	Contents	|	Next

F.21	2.43
Released	on	February	5th,	2009

F.21.1	Release	Notes

A	few	minor	changes	were	made	to	the	new	plug-in	API	that	break
backward	compatibility.	Header	and	library	paths	were	changed	and
RegisterPluginCallback	has	changed	its	return	value.

F.21.2	Changelog

F.21.2.1	Minor	Changes

Added	WinCore.nsh,	WinDef.nsh,	WinError.nsh,	WinNT.nsh	and
WinUser.nsh	for	more	useful	Windows	definitions
Fixed	a	crash	caused	by	!packhdr	compressing	resources	(bug
#2533431)
Minor	documentation	improvements	(including	bug	#2564005)
Modern	UI	2:	Fixed	MUI_DIRECTORYPAGE_BGCOLOR	(bug
#2494528)

F.21.2.2	Utilities	and	Plug-ins

Banner:	Fixed	installer	showing	on	the	background	when	Banner
was	used	in	.onInit
MakeNSISW:	Added	Ctrl+K	hotkey	for	build	cancelation	(RFE
#2557392)
nsDialogs:	Added	NSD_SetIcon	(patch	#2500960)

F.21.2.3	Translations

Added	Esperanto
Bulgarian	fixes

http://sourceforge.net/support/tracker.php?aid=2533431
http://sourceforge.net/support/tracker.php?aid=2564005
http://sourceforge.net/support/tracker.php?aid=2494528
http://sourceforge.net/support/tracker.php?aid=2557392
http://sourceforge.net/support/tracker.php?aid=2500960

F.21.2.4	Plug-in	API

Added	VS2008	project	files
Better	installation	of	header	and	library	files	under	POSIX	-	see
INSTALL	file	for	more	information
Header	and	library	files	were	moved	to	a	subdirectory	named	nsis	to
prevent	collisions
RegisterPluginCallback	now	returns	int	instead	of	BOOL	for	a	wider
range	of	error	reporting

F.21.2.5	Build	System

Added	fink's	mingw	prefixes	(bug	#2495138)
Fixed	BOOL	build	issue	on	OS	X	(bug	#2497290)
Fixed	iconv	dependency	detection	on	OS	X	(bug	#2494539)
Fixed	Solaris	builds	(patch	#2497172)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2495138
http://sourceforge.net/support/tracker.php?aid=2497290
http://sourceforge.net/support/tracker.php?aid=2494539
http://sourceforge.net/support/tracker.php?aid=2497172

Previous	|	Contents	|	Next

F.22	2.42
Released	on	December	20th,	2008

F.22.1	Release	Notes

Merry	Christmas	and	a	happy	Hanukkah!
Plug-in	developers	should	check	out	the	new	plug-in	API	in
Examples\Plugin	and	convert	their	plug-ins,	especially	in	case	they
require	staying	loaded.

F.22.2	Changelog

F.22.2.1	Major	Changes

Deprecated	/NOUNLOAD	and	SetPluginsUnload	to	make	scripts
simpler	and	safer	(patch	#1912699)
Useful	header	functions	no	longer	require	usage	declaration	and
different	syntax	for	uninstaller	functions
Revamped	plug-in	API	now	comes	in	the	form	of	pluginapi.lib,	API
version	information	and	more	common	functions	(patch	#2359978)

F.22.2.2	Minor	Changes

Added	!searchreplace	preprocessor	command	for	compiletime	text
search/replaces
Added	support	for	registration	of	EXE	COM	servers	(RFE	#2315740)
Minor	documentation	improvements	(including	bug	#2386821)
nsDialogs:	Added	timer	support	(patch	#2135855)
nsDialogs:	Added	progress	bar	support
WinVer.nsh:	Added	IsServer,	IsWin2003R2,	IsStarterEdition,
OSHasMediaCenter	and	OSHasTabletSupport
WinVer.nsh:	Fixed	95/NT4	ambiguity	(bug	#2053642)
WinVer.nsh:	Proper	Windows	XP	x64	detection	(bug	#2053700)
WinVer.nsh:	Windows	2008	detection	support	(RFE	#1949260)

http://sourceforge.net/support/tracker.php?aid=1912699
http://sourceforge.net/support/tracker.php?aid=2359978
http://sourceforge.net/support/tracker.php?aid=2315740
http://sourceforge.net/support/tracker.php?aid=2386821
http://sourceforge.net/support/tracker.php?aid=2135855
http://sourceforge.net/support/tracker.php?aid=2053642
http://sourceforge.net/support/tracker.php?aid=2053700
http://sourceforge.net/support/tracker.php?aid=1949260

F.22.2.3	Translations

Minor	English	grammar	improvements	(bug	#2323452)

F.22.2.4	Build	System

Full	System	compatibility	with	GCC	(patch	#2193442)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2323452
http://sourceforge.net/support/tracker.php?aid=2193442

Previous	|	Contents	|	Next

F.23	2.41
Released	on	November	20th,	2008

F.23.1	Changelog

F.23.1.1	Minor	Changes

Fixed	LangDLL	memory	leaks	for	invalid	input	(bug	#1939573)
Fixed	uninstaller	generation	on	big-endian	systems	(bug	#2166401,
bug	#2167958)

F.23.1.2	Translations

Brazilian	Portuguese	corrections
Consistency	fixes	for	Simple	Chinese	(patch	#2189117)

F.23.1.3	Build	System

Added	support	for	SCons	1.1.0
Fixed	directory	and	components	page	text	issues	on	VC8	builds
(patch	#1982084)
System's	Resource.dll	now	built	from	source

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1939573
http://sourceforge.net/support/tracker.php?aid=2166401
http://sourceforge.net/support/tracker.php?aid=2167958
http://sourceforge.net/support/tracker.php?aid=2189117
http://sourceforge.net/support/tracker.php?aid=1982084

Previous	|	Contents	|	Next

F.24	2.40
Released	on	October	10th,	2008

F.24.1	Changelog

F.24.1.1	Major	Changes

Service	pack	macros	added	to	WinVer	in	version	2.39	now	work	(bug
#2070708,	patch	#2095363)

F.24.1.2	Minor	Changes

Added	initial	folder	selection	option	for	nsDialogs::SelectFileDialog
(patch	#2016003)
Fixed	GetParameters	handling	of	MBCS	characters	(bug	#2067946)
Fixed	incorrect	${NSD_OnBack}	documentation	(bug	#2059651)
Modern	UI	2:	Set	focus	to	checkboxes	on	the	finish	page	(bug
#2110357)

F.24.1.3	Translations

Portuguese	corrections	(bug	#2086988)
Simplified	Chinese	corrections	(patch	#2056906)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2070708
http://sourceforge.net/support/tracker.php?aid=2095363
http://sourceforge.net/support/tracker.php?aid=2016003
http://sourceforge.net/support/tracker.php?aid=2067946
http://sourceforge.net/support/tracker.php?aid=2059651
http://sourceforge.net/support/tracker.php?aid=2110357
http://sourceforge.net/support/tracker.php?aid=2086988
http://sourceforge.net/support/tracker.php?aid=2056906

Previous	|	Contents	|	Next

F.25	2.39
Released	on	August	16th,	2008

F.25.1	Changelog

F.25.1.1	Major	Changes

Added	!define	/file	and	!searchparse	(patch	#2016254)
Added	service	pack	macros	(AtLeastServicePack,	IsServicePack,
AtMostServicePack)	to	WinVer.nsh	(patch	#2036802)

F.25.1.2	Minor	Changes

Added	more	nsDialogs	list	box	handling	macros	(patch	#2041919)
Added	Unicode	version	compatible	System	string	type	(patch
#2025721,	RFE	#1961307)
Fixed	nsDialogs	atom	leak	(bug	#2053522)
Minor	documentation	improvements
Show	hand	cursor	for	nsDialogs	links	(patch	#2004129)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=2016254
http://sourceforge.net/support/tracker.php?aid=2036802
http://sourceforge.net/support/tracker.php?aid=2041919
http://sourceforge.net/support/tracker.php?aid=2025721
http://sourceforge.net/support/tracker.php?aid=1961307
http://sourceforge.net/support/tracker.php?aid=2053522
http://sourceforge.net/support/tracker.php?aid=2004129

Previous	|	Contents	|	Next

F.26	2.38
Released	on	July	12th,	2008

F.26.1	Changelog

F.26.1.1	Major	Changes

Fixed	a	bug	in	nsDialogs	that	caused	it	to	pollute	the	stack	if
callbacks	are	not	set	for	each	control	(bug	#2013317)

F.26.1.2	Minor	Changes

Added	IfNotThen	support	for	LogicLib	(patch	#1990761)
Added	support	for	NTFS	mounts	points	on	the	directory	page	(bug
#1946112)
Fixed	branding	image	control	detection	on	Debian,	due	to	improper
identification	of	static	controls	(bug	#1951417)
Log	actual	creation	of	directories	and	not	just	failures	and	final
directory	(patch	#1992325)
Made	log	close	when	LogSet	off	is	used	(patch	#1986692)
Minor	documentation	improvements	(including	bug	#1990955)
MultiUser:	Fixed	MULTIUSER_INSTALLMODE_INSTDIR	handling
for	the	uninstaller

F.26.1.3	Modern	UI

Document	page	leave	callback	function	(bug	#1964719)
Fixed	MUI_FINISHPAGE_CANCEL_ENABLED
Fixed	wasted	variable	warnings	(bug	#1995024)

F.26.1.4	Translations

Fixed	French	translation	of	MUI_UNTEXT_FINISH_INFO_REBOOT

http://sourceforge.net/support/tracker.php?aid=2013317
http://sourceforge.net/support/tracker.php?aid=1990761
http://sourceforge.net/support/tracker.php?aid=1946112
http://sourceforge.net/support/tracker.php?aid=1951417
http://sourceforge.net/support/tracker.php?aid=1992325
http://sourceforge.net/support/tracker.php?aid=1986692
http://sourceforge.net/support/tracker.php?aid=1990955
http://sourceforge.net/support/tracker.php?aid=1964719
http://sourceforge.net/support/tracker.php?aid=1995024

(patch	#1967032)
Removed	non-ANSI	characters	from	French	display	name	(bug
#1979491)
Updated	Slovenian	(patch	#2014106)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1967032
http://sourceforge.net/support/tracker.php?aid=1979491
http://sourceforge.net/support/tracker.php?aid=2014106

Previous	|	Contents	|	Next

F.27	2.37
Released	on	May	3rd,	2008

F.27.1	Changelog

F.27.1.1	Major	Changes

Fixed	a	bug	introduced	in	2.32	that	caused	blurry	icons	on	Windows
versions	prior	to	XP	(bug	#1956350)
Use	$PROGRAMFILES	as	a	default	for	$PROGRAMFILES64
instead	of	"C:\Program	Files"	(bug	#1947702)

F.27.1.2	Minor	Changes

Automatically	select	language	in	case	there	is	only	one	available
choice	(bug	#1939571)
MultiUser:	Fixed	build	errors	with	manual	inclusion	of	StrFunc.nsh
Support	for	compression	of	files	up	to	2GB	(patch	#1948700)

F.27.1.3	Utilities	and	Plug-ins

Fixed	${NSD_OnBack}	(bug	#1947388)
Fixed	nsDialogs::SelectFileDialog	return	value	for	user	cancelation
(bug	#1955803)
Fixed	possible	BgImage	crash	when	calling	BgImage::Destroy	more
than	once	(patch	#1951248)
Minor	documentation	improvements

F.27.1.4	Translation

Brazilian	Portuguese	updates
Polish	updates	(patch	#1927421)
Slovak	updates	(patch	#1939669)

http://sourceforge.net/support/tracker.php?aid=1956350
http://sourceforge.net/support/tracker.php?aid=1947702
http://sourceforge.net/support/tracker.php?aid=1939571
http://sourceforge.net/support/tracker.php?aid=1948700
http://sourceforge.net/support/tracker.php?aid=1947388
http://sourceforge.net/support/tracker.php?aid=1955803
http://sourceforge.net/support/tracker.php?aid=1951248
http://sourceforge.net/support/tracker.php?aid=1927421
http://sourceforge.net/support/tracker.php?aid=1939669

Spanish	updates

F.27.1.5	Build	System

SCons	requirement	upgraded	to	0.98

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.28	2.36
Released	on	March	29th,	2008

F.28.1	Release	Notes

nsDialogs	is	picking	up	its	pace	and	offers	lots	of	new	macros	in	this
release.	Keep	the	patches	and	requests	coming!

F.28.2	Changelog

F.28.2.1	Major	Changes

nsExec:	Support	for	x64	disabled	redirection	(RFE	#1778973,	bug
#1889317)

F.28.2.2	Modern	UI

Added	missing	MUI_UNFUNCTION_DESCRIPTION_BEGIN	and
MUI_UNFUNCTION_DESCRIPTION_END
Fixed	start	menu	page	setting	the	error	flag	(bug	#1891106)

F.28.2.3	nsDialogs

NSD_AddStyle	and	NSD_AddExStyle	for	easy	customization	(patch
#1900588)
NSD_CB_AddString,	NSD_CB_SelectString,	NSD_LB_AddString
and	NSD_LB_SelectString	for	easier	handling	of	combo	and	list
boxes
NSD_CreateNumber	and	NSD_SetTextLimit	for	limited	input	fields
NSD_SetImage,	NSD_SetStretchedImage,	NSD_ClearImage	and
NSD_FreeImage	for	image	handling
NSD_SetState,	NSD_GetState,	NSD_Check	and	NSD_Uncheck	for
handling	of	check	boxes	and	radio	buttons	(patch	#1900588)
NSD_SetText	for	easily	setting	control's	text

http://sourceforge.net/support/tracker.php?aid=1778973
http://sourceforge.net/support/tracker.php?aid=1889317
http://sourceforge.net/support/tracker.php?aid=1891106
http://sourceforge.net/support/tracker.php?aid=1900588
http://sourceforge.net/support/tracker.php?aid=1900588

OnClick	support	for	labels	(bug	#1908732)
Support	for	edit	box	change	notification	in	combo	box

F.28.2.4	Minor	Changes

Fixed	exception	handling	of	UPX	compressed	icons	(bug	#1896500)
Fixed	InstallDirRegKey	example	in	bigtest.nsi
Fixed	Memento's	documentation	to	include	${MementoSectionDone}
Fixed	rare	decompression	error	with	0x4001	bytes	of	compressed
data	(bug	#1874297)
LangFile.nsh:	Added	LANGFILE_INCLUDE_WITHDEFAULT	to	load
language	file	with	defaults	being	obtained	from	a	default	file.	This
replaces	the	LANGFILE_DEFAULT	setting	and	makes	it	easier	to
use	LangFile.nsh	for	multiple	sets	of	languages	file	without	having	to
care	about	the	different	LANGFILE_DEFAULT	settings.
Minor	documentation	improvements	(including	bug	#1891266,	bug
#1894033,	bug	#1896803)
MultiUser:	Fixed	error	when	a	custom	installation	mode	initialization
function	is	used	only	for	the	installer
MultiUser:	Fixed	default	installation	mode	based	on	registry	key	(bug
#1913029)
MultiUser:	Fixed	no	uninstaller	handling
(MULTIUSER_NOUNINSTALL)

F.28.2.5	Utilities	and	Plug-ins

MakeNSISW:	Avoid	opening	executables	with	identical	folder	names
when	opening	script's	folder	(bug	#1891066)
nsExec:	Fixed	return	code	handling	so	259	won't	cause	an	infinite
loop	(bug	#1909458)
VPatch:	Added	MD5	functions	(RFE	#1900226)

F.28.2.6	Translation

Albanian	updates	(patch	#1919360)
French	fixes	(patch	#1916564)

http://sourceforge.net/support/tracker.php?aid=1908732
http://sourceforge.net/support/tracker.php?aid=1896500
http://sourceforge.net/support/tracker.php?aid=1874297
http://sourceforge.net/support/tracker.php?aid=1891266
http://sourceforge.net/support/tracker.php?aid=1894033
http://sourceforge.net/support/tracker.php?aid=1896803
http://sourceforge.net/support/tracker.php?aid=1913029
http://sourceforge.net/support/tracker.php?aid=1891066
http://sourceforge.net/support/tracker.php?aid=1909458
http://sourceforge.net/support/tracker.php?aid=1900226
http://sourceforge.net/support/tracker.php?aid=1919360
http://sourceforge.net/support/tracker.php?aid=1916564

Polish	updates	(patch	#1894983)

F.28.2.7	Build	System

Fixed	build	of	NSIS	Menu	with	wxGTK	(bug	#1900233)
Use	CRLF	for	DSW	and	DSP	files	to	avoid	corruption	messages
Various	build	fixes	for	GCC	4.3,	amd64	and	Linux	in	general

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1894983
http://sourceforge.net/support/tracker.php?aid=1900233

Previous	|	Contents	|	Next

F.29	2.35
Released	on	February	8th,	2008

F.29.1	Changelog

F.29.1.1	Major	Changes

Added	MultiUser	-	installer	configuration	for	multi-user	Windows
environments
More	user	friendly	corrupted	installer	message	(RFE	#1795426)
Switched	all	examples	to	Modern	UI	2

F.29.1.2	Minor	Changes

Fixed	uninitialized	memory	leaking	into	resources	(bug	#1874297)
Minor	documentation	improvements	(including	bug	#1861941,	bug
#1883917)
Modern	UI	2:	Fit	images	in	welcome/finish	page	by	default	and	fix
support	for
MUI_(UN)WELCOMEFINISHPAGE_BITMAP_NOSTRETCH	(bug
#1875945)
Modern	UI	2:	Fixed	default	finish	page	reboot	selection	(bug
#1864690)
Modern	UI	2:	Fixed	MUI_STARTMENU_GETFOLDER	(bug
#1864507)
Modern	UI	2:	Fixed	unreferenced	mui.StartMenuPage.Create
warning	(bug	#1861944)
New	simplified	code	for	installation	of	VisualBasic	6	runtime
Simplified	NSIS	Menu	providing	easier	access	to	all	documentation

F.29.1.3	Utilities	and	Plug-ins

Added	keyboard	cues	support	for	LINK	controls	in	nsDialogs	(patch
#1871856)

http://sourceforge.net/support/tracker.php?aid=1795426
http://sourceforge.net/support/tracker.php?aid=1874297
http://sourceforge.net/support/tracker.php?aid=1861941
http://sourceforge.net/support/tracker.php?aid=1883917
http://sourceforge.net/support/tracker.php?aid=1875945
http://sourceforge.net/support/tracker.php?aid=1864690
http://sourceforge.net/support/tracker.php?aid=1864507
http://sourceforge.net/support/tracker.php?aid=1861944
http://sourceforge.net/support/tracker.php?aid=1871856

Fixed	a	rare	nsDialogs	crash	on	Windows	98	with	non-standard
builds	of	nsDialogs	(bug	#1889720)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1889720

Previous	|	Contents	|	Next

F.30	2.34
Released	on	December	24th,	2007

F.30.1	Release	Notes

Thanks	to	user	input	on	Modern	UI	2,	it	is	now	ready	for	mass
consumption	at	no	better	time	than	the	holiday	season.	The	installer
for	NSIS	itself	now	exploits	the	wonders	of	MUI2	and	nsDialogs	and
so	should	you.

F.30.2	Changelog

F.30.2.1	Major	Changes

Modern	UI	2:	Simpler	code,	easier	to	extend	and	makes	use	of	the
faster	nsDialogs

F.30.2.2	Minor	Changes

Added	IfNot	support	for	LogicLib	(patch	#1846785)
Added	some	deprecation	messages	in	MUI2	(bug	#1784470)
Allow	overwrite	of	LANGFILE_*_NAME	defines	in	new	LangFile.nsh
(bug	#1848952)
Better	RTL	support	in	instfiles	and	components	page	(bug
#1841573)
Don't	warn	of	comments	containing	line-continuation	character	when
it	has	no	effect	(bug	#1701051,	RFE	#1686589)
Fixed	deletion	of	files	with	relative	paths,	a.k.a	the	EVE	bug	(bug
#1851273)
Fixed	input	verification	of	GetCurInstType	and	GetFullPathName
Fixed	WordFind	handling	of	MBCS	characters	(bug	#1852141)
Minor	documentation	improvements	(including	bug	#1842326)
Use	CRLF	in	examples	(bug	#1835866)

http://sourceforge.net/support/tracker.php?aid=1846785
http://sourceforge.net/support/tracker.php?aid=1784470
http://sourceforge.net/support/tracker.php?aid=1848952
http://sourceforge.net/support/tracker.php?aid=1841573
http://sourceforge.net/support/tracker.php?aid=1701051
http://sourceforge.net/support/tracker.php?aid=1686589
http://sourceforge.net/support/tracker.php?aid=1851273
http://sourceforge.net/support/tracker.php?aid=1852141
http://sourceforge.net/support/tracker.php?aid=1842326
http://sourceforge.net/support/tracker.php?aid=1835866

F.30.2.3	Utilities	and	Plug-ins

Added	missing	stack	handling	in	nsDialogs	examples
Added	NSD_GetState	for	checkboxes	and	radio	buttons,
NSD_SetFocus,	NSD_CreatePassword	and	NSD_CreateDropList
(patch	#1848940)
Fixed	documentation	of	nsDialogs::SelectFolderDialog	(bug
#1841120)
Fixed	NSD_CreateComboBox	so	it'd	work	like	InstallOptions	(bug
#1851136)

F.30.2.4	Translations

Bulgarian	updates
German	fixes

F.30.2.5	Build	System

Fixed	build	issues	on	Mac	OS	(bug	#1851365)
Fixed	endianity	issues	introduced	in	version	2.32	(bug	#1851365)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1848940
http://sourceforge.net/support/tracker.php?aid=1841120
http://sourceforge.net/support/tracker.php?aid=1851136
http://sourceforge.net/support/tracker.php?aid=1851365
http://sourceforge.net/support/tracker.php?aid=1851365

Previous	|	Contents	|	Next

F.31	2.33
Released	on	November	17th,	2007

F.31.1	Release	Notes

This	is	a	quick	fix	release	for	a	bug,	introduced	in	2.32,	that
prevented	the	welcome	page	to	display	properly	on	Windows	9x.
The	problem	was	caused	by	the	move	from	CVS	to	Subversion	that
messed	with	the	line-breaks	format	of	the	INI	files.

F.31.2	Changelog

F.31.2.1	Major	Changes

Modern	UI:	Fixed	a	bug,	introduced	in	2.32,	that	caused	display
problems	for	the	welcome	and	finish	pages	on	Windows	9x	(bug
#1831677)

F.31.2.2	Minor	Changes

Modern	UI:	Allow	MUI_LANGDLL_ALLLANGUAGES	to	be	defined
after	insertion	of	MUI_LANGUAGE	macro

F.31.2.3	Utilities	and	Plug-ins

Made	nsExec's	internal	process	always	exit	cleanly	to	avoid	false
return	values	and	delays	(reported	in	the	forum)
nsDialogs:	Added	OnClick	support	for	static	controls
VPatch:	Fixed	VPatchFile	macro	path	handling	(bug	#1829540)

F.31.2.4	Translations

Spanish	updates

http://sourceforge.net/support/tracker.php?aid=1831677
http://forums.winamp.com/showthread.php?threadid=279683
http://sourceforge.net/support/tracker.php?aid=1829540

F.31.2.5	Build	System

Separate	strip	options	for	win32	and	cross-platform	binaries

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.32	2.32
Released	on	November	9th,	2007

F.32.1	Release	Notes

Vista	PNG	icons	are	now	supported	without	the	need	for	any	special
tricks.

F.32.2	Changelog

F.32.2.1	Major	Changes

Added	support	for	mismatching	installer	and	uninstaller	icons
NSIS	source	code	is	now	hosted	on	Subversion	instead	of	CVS

F.32.2.2	Minor	Changes

Fixed	synchronization	that	could	allow	the	user	to	cause	extraction
errors	in	rare	cases	(reported	in	the	forum)
Fixed	syntax	validation	of	Var
Minor	documentation	improvements	(including	bug	#1811876,	bug
#1819946)
Modern	UI	2	beta:	Fixed	3-line	title	on	welcome/finish	page
Modern	UI	2	beta:	Fixed	components	page	description	and	lock
Modern	UI	2	beta:	Fixed	default	language	selection	from	registry
Modern	UI	2	beta:	Fixed	MUI_DIRECTORYPAGE_BGCOLOR

F.32.2.3	Utilities	and	Plug-ins

nsDialogs:	Added	link	support

F.32.2.4	Translations

http://forums.winamp.com/showthread.php?s=&threadid=274333
http://sourceforge.net/support/tracker.php?aid=1811876
http://sourceforge.net/support/tracker.php?aid=1819946

Bulgarian	corrections
Fixed	Japanese	and	Norwegian	Nynorsk	MUI	line	breaks	(bug
#1817289)

F.32.2.5	Build	System

Check	compiler's	-m32	flag	before	the	linker's	to	avoid	gcc	segfault

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1817289

Previous	|	Contents	|	Next

F.33	2.31
Released	on	September	29th,	2007

F.33.1	Release	Notes

Please	continue	to	report	any	issues	and	suggestions	regarding
Modern	UI	2.	Input	for	the	previous	version	was	very	helpful	in
improving	MUI2.

F.33.2	Changelog

F.33.2.1	Minor	Changes

Added	BST_*	definitions	to	WinMessages.nsh	(bug	#1792422)
Added	SetRegView	lastused
Minor	documentation	improvements
Library	will	now	revert	registry	view	settings	(SetRegView)	after	it's
finished
Modern	UI:	Fixed	empty	welcome	page	with	Chinese	(bug
#1786899)
Modern	UI:	Fixed	finish	button	text	(bug	#1789492)
Modern	UI:	Fixed	uninstaller	comportments	page	text	(bug
#1793811)
Modern	UI:	Fixed	unused	function	warnings
Modern	UI	2	beta:	Fixed	header	bitmap	issues,	including
NOSTRETCH	and	compilation	errors
Modern	UI	2	beta:	Fixed	language	selection	dialog
Modern	UI	2	beta:	Fixed	reboot	finish	page
Modern	UI	2	beta:	Fixed	unloading	of	nsDialogs	on	finish	page
Modern	UI	2	beta:	Fixed	unused	variable	warnings

F.33.2.2	Utilities	and	Plug-ins

MakeNSISW:	Fixed	command	line	parsing	error	(bug	#1796053)

http://sourceforge.net/support/tracker.php?aid=1792422
http://sourceforge.net/support/tracker.php?aid=1786899
http://sourceforge.net/support/tracker.php?aid=1789492
http://sourceforge.net/support/tracker.php?aid=1793811
http://sourceforge.net/support/tracker.php?aid=1796053

F.33.2.3	Translations

Korean	corrections
Persian	improvements	(patch	#1776386)
Romanian	improvements	(patch	#1783853)

F.33.2.4	Build	System

Fixed	build	failures	with	MinGW's	GCC	4	(bug	#1800834)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1776386
http://sourceforge.net/support/tracker.php?aid=1783853
http://sourceforge.net/support/tracker.php?aid=1800834

Previous	|	Contents	|	Next

F.34	2.30
Released	on	August	25th,	2007

F.34.1	Release	Notes

This	release	includes	a	beta	of	Modern	UI	2.	Please	report	any
issues	and	suggestions.
The	format	of	Modern	UI	language	files	has	been	modified	to	better
support	external	strings.	Private	language	files	should	be	converted
(and	submitted	as	a	patch	in	the	spirit	of	open	source).

F.34.2	Changelog

F.34.2.1	Major	Changes

Fixed	a	bug	introduced	in	version	2.29	that	caused	invalid
$SMPROGRAMS	value	on	Windows	98	(bug	#1766268)
Modern	UI	2	beta:	Simpler	code,	easier	to	extend	and	makes	use	of
nsDialogs

F.34.2.2	Minor	Changes

Added	InstallOptions.nsh	with	relevant	usage	macros,	based	on	the
old	Modern	UI	macros
Added	LangFile.nsh	allowing	creation	of	langauge	files	that	can	be
included	with	a	single	command	with	defaults	for	missing	strings
(when	LANGFILE_DEFAULT	is	set)
Added	LB_ERR	and	CB_ERR	to	WinMessages.nsh	(bug	#1771644)
Fixed	CreateDirectory	logging	(patch	#1768584)
Fixed	escaping	of	quotes	with	$\	in	macros	(bug	#1713708)
Minor	documentation	improvements
Modern	UI	1.80:	New	language	files	structure	based	on	LangFile.nsh
Modern	UI	1.80:	MUI_LANGDLL_DISPLAY	now	reads	previous
settings	on	silent	installations	as	well

http://sourceforge.net/tracker/?group_id=22049&atid=373087
http://sourceforge.net/support/tracker.php?aid=1766268
http://sourceforge.net/support/tracker.php?aid=1771644
http://sourceforge.net/support/tracker.php?aid=1768584
http://sourceforge.net/support/tracker.php?aid=1713708

Modern	UI	1.80:	Added
MUI_CUSTOMFUNCTION_MOUSEOVERSECTION	(patch
#1762003)

F.34.2.3	Utilities	and	Plug-ins

Various	nsDialogs	improvements	including	RTL	support,	more
macros	in	nsDialogs.nsh	and	initial	documentation

F.34.2.4	Translations

Catalan	returns
Danish	corrections
Slovak	corrections	(patch	#1762627)

F.34.2.5	Build	System

More	HPUX	fixes	(bug	#1755148,	bug	#1753063,	bug	#1758873,
patch	#1758863)
Ignore	known	failing	tests	by	default	on	POSIX

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1762003
http://sourceforge.net/support/tracker.php?aid=1762627
http://sourceforge.net/support/tracker.php?aid=1755148
http://sourceforge.net/support/tracker.php?aid=1753063
http://sourceforge.net/support/tracker.php?aid=1758873
http://sourceforge.net/support/tracker.php?aid=1758863

Previous	|	Contents	|	Next

F.35	2.29
Released	on	July	14th,	2007

F.35.1	Release	Notes

The	most	notable	addition	in	this	release	is	nsDialogs	-	a	faster	and
far	more	capable	replacement	for	InstallOptions.	It	allows	creating
controls	of	any	type	directly	from	the	script	and	removes	the	need	to
mess	with	slow	INI	files.	It	integrates	directly	into	the	script	by	calling
functions	for	notification,	including	change	notification	for	edit	boxes.
Speak	up	if	you	have	any	suggestions/comments/patches	for	it.

F.35.2	Changelog

F.35.2.1	Major	Changes

Added	nsDialogs	-	a	replacement	for	InstallOptions

F.35.2.2	Minor	Changes

Disable	Windows	error	messages	for	the	entire	installer	and	not	just
for	an	incomplete	list	of	fail-points	(bug	#1741061)
Fixed	incorrect	large	version	handling	of	GetFileVersion	(bug
#1742255,	patch	#1742562)
Fixed	the	ReverseSection	macro	in	Sections.nsh	(bug	#1742793)
Minor	documentation	improvements
Simplified	REG_MULTI_SZ	reader
Use	SHGetFolderPath	where	available	to	better	support	all	users'
folders

F.35.2.3	Utilities	and	Plug-ins

Banner:	Avoid	possible	hangs	when	called	from	page	callbacks	(bug
#1743801)

http://nsis.sourceforge.net/Community
http://sourceforge.net/support/tracker.php?aid=1741061
http://sourceforge.net/support/tracker.php?aid=1742255
http://sourceforge.net/support/tracker.php?aid=1742562
http://sourceforge.net/support/tracker.php?aid=1742793
http://sourceforge.net/support/tracker.php?aid=1743801

NSISdl:	added	/TRANSLATE2	for	more	"translator-friendly"	strings
(patch	#1656076)
NSISdl:	support	downloads	over	2gb	(patch	#1723131)

F.35.2.4	Translations

Added	International	Spanish

F.35.2.5	Build	System

Added	support	for	HPUX	(patch	#1714416)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1656076
http://sourceforge.net/support/tracker.php?aid=1723131
http://sourceforge.net/support/tracker.php?aid=1714416

Previous	|	Contents	|	Next

F.36	2.28
Released	on	June	8th,	2007

F.36.1	Changelog

F.36.1.1	Major	Changes

Added	a	workaround	for	a	Windows	2000	bug	that	caused	infinite
loops	when	hitting	a	key	on	the	instfiles	page	(bug	#1733692)

F.36.1.2	Minor	Changes

Improved	compiler	error	strings	(patch	#1722147)
Modern	UI:	added	MUI_STARTMENUPAGE_BGCOLOR	and
MUI_DIRECTORYPAGE_BGCOLOR	(patch	#1706187)
Modern	UI:	added	MUI_LANGDLL_ALLLANGUAGES	that	forces	the
language	selection	dialog	to	display	all	languages	(patch	#1724876)

F.36.1.3	Utilities	and	Plug-ins

InstallOptions:	corrected	documentation	of	TxtColor	(bug	#1716614)
NSISdl:	added	compatibility	with	some	buggy	servers	that	don't
close	the	connection	(bug	#1713562)
NSISdl:	fixed	100%	CPU	usage	during	domain	resolution	(bug
#1713560)

F.36.1.4	Translations

Valencian	and	Catalan	are	no	longer	installed	(patch	#1558822)

F.36.1.5	Build	System

http://sourceforge.net/support/tracker.php?aid=1733692
http://sourceforge.net/support/tracker.php?aid=1722147
http://sourceforge.net/support/tracker.php?aid=1706187
http://sourceforge.net/support/tracker.php?aid=1724876
http://sourceforge.net/support/tracker.php?aid=1716614
http://sourceforge.net/support/tracker.php?aid=1713562
http://sourceforge.net/support/tracker.php?aid=1713560
http://sourceforge.net/support/tracker.php?aid=1558822

Added	IGNORETESTS	for	ignoring	certain	test	files
Added	wxWidgets	to	the	requirement	list
System	now	builds	with	GCC,	but	without	System::Get	and
System::Call	(patch	#1711089)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1711089

Previous	|	Contents	|	Next

F.37	2.27
Released	on	May	5th,	2007

F.37.1	Release	Notes

This	is	a	quick-fix	release	that	addresses	a	bug	introduced	in	the	last
version,	2.26,	that	caused	$PROGRAMFILES	and	$COMMONFILES
to	translate	into	random	strings	in	the	uninstaller.

F.37.2	Changelog

F.37.2.1	Major	Changes

Fixed	a	bug	introduced	in	2.26	that	made	$PROGRAMFILES	and
$COMMONFILES	unavailable	in	the	uninstaller

F.37.2.2	Minor	Changes

Disable	the	X	button	on	InstallOptions	pages	when	CancelEnabled	is
0
Fixed	incomplete	MessageBox	usage	line	(bug	#1709460)

F.37.2.3	Build	System

Added	TOOLSET	option	to	allow	selection	of	specific	build	tools	(e.g.
scons	TOOLSET=mingw)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1709460

Previous	|	Contents	|	Next

F.38	2.26
Released	on	April	27th,	2007

F.38.1	Release	Notes

Installation	on	x64	systems	is	now	fully	supported	with
$PROGRAMFILES64,	SetRegView	and	Library's	LIBRARY_X64
option.

F.38.2	Changelog

F.38.2.1	Major	Changes

Added	LIBRARY_X64	option	for	InstallLib	and	UnInstallLib	for
installing	and	uninstalling	x64	libraries
Added	$PROGRAMFILES32,	$PROGRAMFILES64,
$COMMONFILES32	and	$COMMONFILES64

F.38.2.2	Minor	Changes

Added	$EXEPATH	and	$EXEFILE
Added	$(^Language)	language	string	which	holds	the	language
name	(RFE	#1235616)
Added	LIBRARY_IGNORE_VERSION	option	for	InstallLib	(patch
#1699435)
Added	VXD	support	for	GetDLLVersionLocal	on	Windows
NT4/2000/XP/Vista	(patch	#1706624)
Avoid	Library	warning	when	UnInstallLib	is	unused	(bug	#1692761)
Fixed	error	handling	of	CopyFiles	on	Windows	NT4	(bug	#774966)
Fixed	font	name	encoding	broken	since	2.24
Fixed	LogicLib	duplicate	labels	across	included	files
Fixed	preservation	of	folder	attributes	with	File	/a	(bug	#1699474)
Improved	unused	variable	warning	(bug	#1701050)
Library	macros	no	longer	require	version	information	for	DLL	files	on

http://sourceforge.net/support/tracker.php?aid=1235616
http://sourceforge.net/support/tracker.php?aid=1699435
http://sourceforge.net/support/tracker.php?aid=1706624
http://sourceforge.net/support/tracker.php?aid=1692761
http://sourceforge.net/support/tracker.php?aid=774966
http://sourceforge.net/support/tracker.php?aid=1699474
http://sourceforge.net/support/tracker.php?aid=1701050

POSIX
Minor	documentation	improvements	(including	RFE	#971467)
Modern	UI:	added	MUI_FINISHPAGE_CANCEL_ENABLED
Modern	UI:	added	MUI_FINISHPAGE_REBOOTLATER_DEFAULT
(RFE	#1143843)
Modern	UI:	block	unsupported	languages	in	the	language	selection
dialog	(RFE	#1564986)
Modern	UI:	disable	Cancel	button	on	the	finish	page	(bug	#1267491)
Modern	UI:	reduce	flicker	caused	by
MUI_HEADER_TRANSPARENT_TEXT	(patch	#1696610)
Support	Quit	in	show	page	functions

F.38.2.3	New/Changed	Commands

Added	SetRegView	to	allow	access	to	the	x64	registry	view
Installer	icon	support	for	MessageBox	using	MB_USERICON	(patch
#1682748,	RFE	#1530388)

F.38.2.4	Utilities	and	Plug-ins

InstallOptions	2.47:	line	breaks	support	in	Link	controls	(patch
#1683186,	RFE	#1495949),	added	HLine	and	VLine	controls	(patch
#1683189)
MakeNSISW:	fixed	broken	command	line	parameter	handling
introduced	in	the	last	version	(bug	#1696534)
UserInfo:	return	effective	user	group	on	Vista,	added
GetOriginalAccountType	(patch	#1687456,	bug	#1684777)

F.38.2.5	Translations

Added	Afrikaans	translation	(patch	#1699558)
French	corrections	(patch	#1676101)
German	corrections

F.38.2.6	Build	System

http://sourceforge.net/support/tracker.php?aid=971467
http://sourceforge.net/support/tracker.php?aid=1143843
http://sourceforge.net/support/tracker.php?aid=1564986
http://sourceforge.net/support/tracker.php?aid=1267491
http://sourceforge.net/support/tracker.php?aid=1696610
http://sourceforge.net/support/tracker.php?aid=1682748
http://sourceforge.net/support/tracker.php?aid=1530388
http://sourceforge.net/support/tracker.php?aid=1683186
http://sourceforge.net/support/tracker.php?aid=1495949
http://sourceforge.net/support/tracker.php?aid=1683189
http://sourceforge.net/support/tracker.php?aid=1696534
http://sourceforge.net/support/tracker.php?aid=1687456
http://sourceforge.net/support/tracker.php?aid=1684777
http://sourceforge.net/support/tracker.php?aid=1699558
http://sourceforge.net/support/tracker.php?aid=1676101

Added	SKIPTESTS	option
Avoid	a	lot	of	code	warnings	(bug	#1676243)
Detect	wxWidgets	instead	of	assuming	its	existence	on	POSIX	(bug
#1672315)
Fixed	big-endian	platform	support	broken	since	2.24

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1676243
http://sourceforge.net/support/tracker.php?aid=1672315

Previous	|	Contents	|	Next

F.39	2.25
Released	on	March	31st,	2007

F.39.1	Changelog

F.39.1.1	Major	Changes

Added	Memento.nsh	for	easy	persistency	of	user	selections	across
different	runs	of	the	installer	(RFE	#1677624)
Fixed	a	bug	introduced	in	2.24	that	allowed	the	license	page	to	be
skipped	even	with	agreement	check	box	or	radio	buttons	(bug
#1664428)

F.39.1.2	Minor	Changes

Added	Vista	manifest	to	StartMenu.nsi	example	to	avoid	backward
compatibility	mode	that	moves	shortcuts	(bug	#1664957)
Both	dashes	and	slashes	are	supported	as	switch	prefixes	on
makensis.exe	(bug	#1661503)
Delete	uninstaller	temporary	directory	on	reboot	(patch	#1660626)
Distribute	Plug-in	example	with	the	NSIS	package	and	not	only	with
the	source	code
Fixed	lossy	Unicode	conversion	of	dialog	template	strings	(bug
#1662190)
Fixed	Sections.nsh	macros	support	for	$0	as	input	(bug	#1664648)
Fixed	uninstallers	support	for	the	/D=	command	line	switch
Improved	logging	of	WriteReg	commands
Minor	documentation	updates	and	fixes	(including	patch	#1662419)

F.39.1.3	New/Changed	Commands

Added	bitwise	operators	support	for	!define	/math	(RFE	#1669513)
__PAGEEX__	contains	the	page	type	(patch	#1644712)

http://sourceforge.net/support/tracker.php?aid=1677624
http://sourceforge.net/support/tracker.php?aid=1664428
http://sourceforge.net/support/tracker.php?aid=1664957
http://sourceforge.net/support/tracker.php?aid=1661503
http://sourceforge.net/support/tracker.php?aid=1660626
http://sourceforge.net/support/tracker.php?aid=1662190
http://sourceforge.net/support/tracker.php?aid=1664648
http://sourceforge.net/support/tracker.php?aid=1662419
http://sourceforge.net/support/tracker.php?aid=1669513
http://sourceforge.net/support/tracker.php?aid=1644712

F.39.1.4	Utilities	and	Plug-ins

InstallOptions	2.46:	Use	installer's	name	for	message	boxes	(bug
#1661677)
MakeNSISW:	Use	Escape	button	to	close	(RFE	#1666501)
Math:	Removed	mathcrt.lib
StartMenu:	Refuse	empty	paths	(bug	#1684751)

F.39.1.5	Translations

Fixed	Galician	language	files	(bug	#1663795)

F.39.1.6	Build	System

Added	APPEND_LIBPATH	and	APPEND_CPPATH	instead	of	the
malfunctioning	CPPPATH	and	LIBPATH
Added	ChangeLog	to	source	code	package	(patch	#1680508)
Avoid	some	warnings	on	VS2005	(patch	#1667950)
Fixed	lzma	test	segfault	on	POSIX	(bug	#1666873)
More	strict-aliasing	compatibility	(bug	#1635841)
NSIS	Menu	finally	built	from	source

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1661677
http://sourceforge.net/support/tracker.php?aid=1666501
http://sourceforge.net/support/tracker.php?aid=1684751
http://sourceforge.net/support/tracker.php?aid=1663795
http://sourceforge.net/support/tracker.php?aid=1680508
http://sourceforge.net/support/tracker.php?aid=1667950
http://sourceforge.net/support/tracker.php?aid=1666873
http://sourceforge.net/support/tracker.php?aid=1635841

Previous	|	Contents	|	Next

F.40	2.24
Released	on	February	17th,	2007

F.40.1	Changelog

F.40.1.1	Major	Changes

Library	uninstall-reinstall-reboot	problems	workaround	(bug
#1097642)
Minimized	number	of	cases	where	an	error	message	appears	in
silent	mode
New	compiler	predefines	for	code	scope	(patch	#1644712)

F.40.1.2	Minor	Changes

Added	/P	command	line	option	for	setting	process	priority	of
makensis	(patch	#1638974)
Added	support	for	64-bit	PE	on	POSIX	to	GetDLLVersionLocal
(patch	#1643633)
Append	last	part	of	InstallDir	only	to	$INSTDIR	on	directory	pages
(bug	#1174184)
Avoid	permissions	change	of	output	files	for	LineFind	and	FileJoin
(bug	#1631773)
Fixed	erroneous	warnings	on	uninstall	sections	(bug	#1631889)
Fixed	lossy	Unicode	conversion	in	resource	editor	(bug	#1083492)
Ignore	invalid	preprocessor	commands	in	ignored	block	or
comments
Made	VIAddVersionKey	only	query	language	tables	instead	of
creating	them	and	generating	warnings	(bug	#1626504)
Minor	documentation	updates	and	fixes	(including	bug	#1642107,
patch	#1649187)
Warn	when	continuing	a	comment	line	using	backslash	(bug
#1554178)

http://sourceforge.net/support/tracker.php?aid=1097642
http://sourceforge.net/support/tracker.php?aid=1644712
http://sourceforge.net/support/tracker.php?aid=1638974
http://sourceforge.net/support/tracker.php?aid=1643633
http://sourceforge.net/support/tracker.php?aid=1174184
http://sourceforge.net/support/tracker.php?aid=1631773
http://sourceforge.net/support/tracker.php?aid=1631889
http://sourceforge.net/support/tracker.php?aid=1083492
http://sourceforge.net/support/tracker.php?aid=1626504
http://sourceforge.net/support/tracker.php?aid=1642107
http://sourceforge.net/support/tracker.php?aid=1649187
http://sourceforge.net/support/tracker.php?aid=1554178

F.40.1.3	New/Changed	Commands

RegDLL	and	UnregDLL	now	use
LOAD_WITH_ALTERED_SEARCH_PATH,	so	there's	no	need	to	use
SetOutPath	to	set	the	working	directory	(bug	#1638191)

F.40.1.4	Utilities	and	Plug-ins

InstallOptions	2.45:	Added	FOCUS	flag	(patch	#1634704)	and	fixed
paste	with	ONLY_NUMBERS	flag	(bug	#1652075)
MakeNSISW:	settings	in	HKCU	instead	of	HKLM	(bug	#1411970)
and	MRU	menu	accelerators

F.40.1.5	Translations

Added	Galician	translation	(patch	#1631765)

F.40.1.6	Build	System

Added	a	workaround	for	building	on	x64	POSIX	platforms	(bug
#1646170)
Added	a	workaround	for	strict-aliasing	compatibility	(bug	#1635841)
Added	compression	tests
Added	STRIP,	APPEND_CCFLAGS	and	APPEND_LINKFLAGS
build	options
Fixed	SCons	0.96.94	compatibility

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1638191
http://sourceforge.net/support/tracker.php?aid=1634704
http://sourceforge.net/support/tracker.php?aid=1652075
http://sourceforge.net/support/tracker.php?aid=1411970
http://sourceforge.net/support/tracker.php?aid=1631765
http://sourceforge.net/support/tracker.php?aid=1646170
http://sourceforge.net/support/tracker.php?aid=1635841

Previous	|	Contents	|	Next

F.41	2.23
Released	on	January	13th,	2007

F.41.1	Changelog

F.41.1.1	Minor	Changes

Fixed	compiler	crash	on	Mac	OS	X	(patch	#1611866)
Fixed	deletion	of	start	menu	icons	in	NSIS	installer	on	Vista	(bug
#1611251)

F.41.1.2	Utilities	and	Plug-ins

Fixed	incorrect	nsExec	message	handling	in	silent	mode	(bug
#1605581)
Fixed	System	crash	when	System::Store	is	called	on	an	empty
private	stack	(bug	#1620178)
Fixed	System	crash	with	parenthesis	in	filename	(bug	#1616267)
Minor	VPatch	documentation	enhancements	(patch	#1624292)

F.41.1.3	Build	System

Fixed	build	failures	on	mingw32	(bug	#1610773)
Fixed	build	problems	with	MSTOOLKIT=yes

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1611866
http://sourceforge.net/support/tracker.php?aid=1611251
http://sourceforge.net/support/tracker.php?aid=1605581
http://sourceforge.net/support/tracker.php?aid=1620178
http://sourceforge.net/support/tracker.php?aid=1616267
http://sourceforge.net/support/tracker.php?aid=1624292
http://sourceforge.net/support/tracker.php?aid=1610773

Previous	|	Contents	|	Next

F.42	2.22
Released	on	November	27th,	2006

F.42.1	Release	Notes

Some	changes	have	been	made	to	the	credit	and	license	files	in
order	to	avoid	copyrights	and	license	related	confusions.	This	does
not	change	in	any	way	how	NSIS	should	or	could	be	used.	NSIS
itself	is	still	licensed	with	the	permissive	BSD-like	zlib	license.
Upgrade	is	recommended	for	early	adopters	of	WinVer.nsh,	due	to	a
bug	in	Windows	98	and	ME	detection.

F.42.2	Changelog

F.42.2.1	Minor	Changes

Fixed	context	menu	not	disappearing	when	moving	from	instfiles
page	(bug	#1115825)
Fixed	WinVer.nsh's	detection	of	Windows	98	and	ME	(reported	on
the	forum)
Fixed	WriteUninstaller	failure	to	overwrite	read-only	uninstallers	(bug
#1542530)
Licensed	lzma	under	CPL	with	a	special	exception,	instead	of	LGPL
Minor	documentation	updates	and	fixes	(including	bug	#1584618,
bug	#1589877)
Updated	comments	in	MUI	examples	(bug	#1595500)

F.42.2.2	New/Changed	Commands

Added	`highest`	option	for	RequestExecutionLevel

F.42.2.3	Translations

Added	Uzbek	translation

http://nsis.sourceforge.net/License
http://sourceforge.net/support/tracker.php?aid=1115825
http://forums.winamp.com/showthread.php?s=&threadid=257994&highlight=winver.nsh
http://sourceforge.net/support/tracker.php?aid=1542530
http://sourceforge.net/support/tracker.php?aid=1584618
http://sourceforge.net/support/tracker.php?aid=1589877
http://sourceforge.net/support/tracker.php?aid=1595500

Fixed	corruption	in	Lithuanian	(bug	#1602673)
Minor	Breton	fixes
Slovenian	corrections	(patch	#1590108)

F.42.2.4	Build	System

Added	Microsoft	Visual	C++	2005	Express	support
SCons	requirement	upgraded	to	0.96.93

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1602673
http://sourceforge.net/support/tracker.php?aid=1590108
http://msdn.microsoft.com/vstudio/express/visualc/

Previous	|	Contents	|	Next

F.43	2.21
Released	on	October	20th,	2006

F.43.1	Changelog

F.43.1.1	Major	Changes

Added	WinVer.nsh	for	easy	Windows	version	comparisons
Upgraded	to	lzma	sdk	4.43	for	faster	compression

F.43.1.2	Minor	Changes

Added	Vista	support	to	GetWindowsVersion
Added	x64.nsh	including	a	few	simple	macros	for	handling	x64
installations
Fixed	a	handle	leak	in	Locate
Minor	documentation	updates	and	fixes
Modern	UI	1.76:	Added
MUI_ABORTWARNING_CANCEL_DEFAULT	(RFE	#1547844)

F.43.1.3	New/Changed	Commands

Added	RequestExecutionLevel	(RFE	#1524709)

F.43.1.4	Translations

Added	Valencian	translation	(patch	#1558822)
Bulgarian	corrections
Slovenian	corrections

F.43.1.5	Build	System

http://sourceforge.net/support/tracker.php?aid=1547844
http://sourceforge.net/support/tracker.php?aid=1524709
http://sourceforge.net/support/tracker.php?aid=1558822

SCons	requirement	upgraded	to	0.96.92

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.44	2.20
Released	on	September	9th,	2006

F.44.1	Changelog

F.44.1.1	Minor	Changes

Better	LogicLib	errors	(bug	#1537976)
Fixed	incomplete	plug-in	call	error	messages	(bug	#1535995)
Fixed	incorrect	file	timestamp	querying	on	big-endian	platforms	(bug
#1536377)
Minor	documentation	updates	and	fixes

F.44.1.2	Translations

Danish	corrections	(bug	#1548190)
Fixed	incorrectly	encoded	Turkish	translation	(bug	#1542765)
French	corrections
Italian	corrections	(bug	#1546183)
Spanish	corrections
Swedish	corrections	(bug	#1542680)
Ukrainian	corrections

F.44.1.3	Build	System

Fixed	NSIS_CONFIG_CONST_DATA_PATH	being	ignored	on
POSIX	platforms	(bug	#1515592)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1537976
http://sourceforge.net/support/tracker.php?aid=1535995
http://sourceforge.net/support/tracker.php?aid=1536377
http://sourceforge.net/support/tracker.php?aid=1548190
http://sourceforge.net/support/tracker.php?aid=1542765
http://sourceforge.net/support/tracker.php?aid=1546183
http://sourceforge.net/support/tracker.php?aid=1542680
http://sourceforge.net/support/tracker.php?aid=1515592

Previous	|	Contents	|	Next

F.45	2.19
Released	on	August	6th,	2006

F.45.1	Changelog

F.45.1.1	Minor	Changes

Fixed	!system	and	!packhdr	failure	with	quoted	long	file	names	(bug
#1509909)
Fixed	build	problems	on	64bit	platforms	(bug	#1504772)
Fixed	negative	total	size	for	data	larger	than	2GB	in	script
compilation	summary	(bug	#1468852)
Minor	documentation	updates	and	fixes
Replaced	IsDotNETInstalled	with	a	simpler	and	better	version

F.45.1.2	New/Changed	Commands

Made	!if	compare	strings	case	insensitively,	like	StrCmp	and	!ifdef

F.45.1.3	Plug-ins

NSISdl:	fixed	random	DNS	errors	(reported	in	the	forums)
System:	fixed	a	bug	that	caused	stack	corruption	and	stopped	the
installer	from	deleting	System.dll	when	a	function	with	no	arguments
was	called	(bug	#1535005)
System:	fixed	wrong	return	values	for	functions	that	return	short	or
char	(bug	#1535007)

F.45.1.4	Translations

Added	Norwegian	Nynorsk	translation	(patch	#1503208)
Fixed	typos	in	the	French	translation	(bug	#1531874)

http://sourceforge.net/support/tracker.php?aid=1509909
http://sourceforge.net/support/tracker.php?aid=1504772
http://sourceforge.net/support/tracker.php?aid=1468852
http://forums.winamp.com/showthread.php?s=&threadid=247723
http://sourceforge.net/support/tracker.php?aid=1535005
http://sourceforge.net/support/tracker.php?aid=1535007
http://sourceforge.net/support/tracker.php?aid=1503208
http://sourceforge.net/support/tracker.php?aid=1531874

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.46	2.18
Released	on	July	1st,	2006

F.46.1	Changelog

F.46.1.1	Minor	Changes

CRC32	implementation	used	potentially	non-32bit	types	(bug
#1504758)
Fixed	errors	on	multiple	inclusion	of	useful	headers
Fixed	GetFileAttributes
Fixed	incorrect	text	on	browse	dialog	with	.onVerifyInstDir	(bug
#1504297)
Fixed	Library's	implementation	on	POSIX
Minor	documentation	updates	and	fixes

F.46.1.2	Translations

Added	Irish	translation	(patch	#1503639)
Catalan	corrections	(bug	#1504104)
Dutch	corrections
Finnish	corrections	(Mozilla	bug	#341643)
Fixed	Serbian	grammar	and	typos
Italian	corrections	(Mozilla	bug	#340450)
Polish	corrections	(Mozilla	bug	#224532)
Portuguese	(Brazil)	corrections	(Mozilla	bug	#340885)
Romanian	corrections	(Mozilla	bug	#340645)
Thai	corrections
Turkish	corrections	(Mozilla	bug	#340511)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1504758
http://sourceforge.net/support/tracker.php?aid=1504297
http://sourceforge.net/support/tracker.php?aid=1503639
http://sourceforge.net/support/tracker.php?aid=1504104

Previous	|	Contents	|	Next

F.47	2.17
Released	on	May	19th,	2006

F.47.1	Changelog

F.47.1.1	Minor	Changes

Fixed	build	failures	and	segfaults	on	PowerPC	Mac	OS	X	(bug
#1474597,	bug	#1481044)
Fixed	Library's	TLB	version	interpretation	(bug	#1471341)
Fixed	possible	stack	corruption	when	using	TypeLib.dll	on	an	invalid
TLB
Fixed	RMDir	deletion	failure	of	read-only	folders	(bug	#1481664)
MakeNSISW:	Fixed	toolbar	compressor	selection	menu,	broken	in
the	previous	version	(bug	#1466486)
Minor	documentation	improvements	and	fixes	(including	bug
#1469306,	bug	#1491616)

F.47.1.2	Translations

Added	missing	Basque	and	Welsh	files	(bug	#1469471)
Brazilian	Portuguese	updates
Bulgarian	fixes
Fixed	a	typo	in	Hebrew	translation	(bug	#1474587)
Icelandic	fixes	and	improvements

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1474597
http://sourceforge.net/support/tracker.php?aid=1481044
http://sourceforge.net/support/tracker.php?aid=1471341
http://sourceforge.net/support/tracker.php?aid=1481664
http://sourceforge.net/support/tracker.php?aid=1466486
http://sourceforge.net/support/tracker.php?aid=1469306
http://sourceforge.net/support/tracker.php?aid=1491616
http://sourceforge.net/support/tracker.php?aid=1469471
http://sourceforge.net/support/tracker.php?aid=1474587

Previous	|	Contents	|	Next

F.48	2.16
Released	on	April	7th,	2006

F.48.1	Release	Notes

The	script	compiler,	makensis,	builds	and	works	on	big-endian
platforms.	This	change	enlarges	the	portability	range	of	NSIS	to
theoretically	every	POSIX	platform.	Please	report	any	incompatibility
with	specific	platforms	or	build-tools.
The	internal	changes	made	to	support	big-endian	platforms	also
pave	the	road	to	x64	installers.	There	is	now	a	central	function	which
writes	data	to	disk.	This	function	currently	only	converts	the	endianity
of	integers,	but	it	can	be	changed	to	selectively	write	64-bit	integers.
Hopefully,	there'll	soon	be	a	simple	method	of	compiling	a	script	to
both	x86	and	x64	installers.
Changing	Source/exehead/fileform.h	to	alter	the	internal	structure	of
installers	is	no	longer	enough.	The	compiler	has	its	own	definitions	of
the	structures	which	must	also	be	changed	in	Source/fileform.cpp.	In
the	future,	fileform.cpp	should	be	automatically	generated	from
fileform.h,	but	for	now,	the	synchronization	must	be	done	manually.

F.48.2	Changelog

F.48.2.1	Major	Changes

Big-endian	platforms	are	now	fully	supported	by	makensis
Library	now	available	on	non-Windows	platforms	as	well,	although	it
requires	the	installed	DLL	to	have	version	information
MakeNSISW	2.1:	added	"Cancel	compilation"	menu	item

F.48.2.2	New/Changed	Commands

Added	/utcdate	switch	to	!define	for	UTC	dates	(RFE	#1459210)

http://sourceforge.net/tracker/?group_id=22049&atid=373085
http://sourceforge.net/support/tracker.php?aid=1459210

F.48.2.3	Minor	Changes

Added	an	optional	timestamp	in	the	log	-
NSIS_CONFIG_LOG_TIMESTAMP	build	setting	(RFE	#1460586)
Added	NSIS_WIN32_MAKENSIS	define,	defined	only	when
compiling	on	Windows
Exported	validate_filename	to	plug-ins
Fixed	a	crash	in	CResourceEditor	when	adding	resources	to	a	PE
that	already	contains	named	resources
Fixed	a	small	resource	leak	in	the	TypeLib::GetLibVersion	plug-in
function
Fixed	CResourceEditor	input	sanity	checks
Fixed	incorrect	FileOpen	input	validation	(bug	#1459789)
Fixed	Library	failure	with	DLLs	marked	as	read-only
Fixed	lzma's	POSIX	implemention	thread	synchronization	issues	and
resource	leaks
Fixed	makensis	self-path	detection	on	non-Windows	platforms
(NSIS_CONFIG_CONST_DATA_PATH=no)
Fixed	replace_icon	and	generate_uninstall_icon_data	icon	validation
Made	external	CHM	links	safer	to	script	exceptions	(bug	#1449879)
Minor	documentation	improvements	and	fixes	(including	bug
#1077439,	bug	#1448374,	RFE	#1464446)
Modern	UI	1.75:	added	show	function	for	the	start	menu	page	(RFE
#1448176),	added	MUI_HEADER_TRANSPARENT_TEXT	for
transparent	header	texts	(RFE	#1447766)
NSISdl:	better	header	detection	for	better	compatibility	with	proxies
like	WinProxy	(bug	#1445735),	fail	if	no	headers	are	sent,	faster
downloads	(patch	#1465378)
StartMenu:	validate	user	input	(bug	#1440636)

F.48.2.4	Translations

Added	Basque	translation
Minor	Slovenian	fixes

F.48.2.5	Build	System

http://sourceforge.net/support/tracker.php?aid=1460586
http://sourceforge.net/support/tracker.php?aid=1459789
http://sourceforge.net/support/tracker.php?aid=1449879
http://sourceforge.net/support/tracker.php?aid=1077439
http://sourceforge.net/support/tracker.php?aid=1448374
http://sourceforge.net/support/tracker.php?aid=1464446
http://sourceforge.net/support/tracker.php?aid=1448176
http://sourceforge.net/support/tracker.php?aid=1447766
http://sourceforge.net/support/tracker.php?aid=1445735
http://sourceforge.net/support/tracker.php?aid=1465378
http://sourceforge.net/support/tracker.php?aid=1440636

Added	code	tests	for	CResourceEditor	and	CDialogTemplate
Automatically	pass	build	settings	to	script,	eliminating	the	need	to
edit	build.cpp	for	new	settings
Fixed	$PREFIX	expansion	during	installation	on	POSIX	platforms
(bug	#1456943)
Fixed	CHM	dependencies
Fixed	compatibility	issue	with	EclipseNSIS	(version	wasn't	prefixed
with	'v')
Fixed	GCC	4.1	compatibility	(patch	#1456861)
Test	for	-Wl,-Map	availability

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1456943
http://sourceforge.net/support/tracker.php?aid=1456861

Previous	|	Contents	|	Next

F.49	2.15
Released	on	March	4th,	2006

F.49.1	Changelog

F.49.1.1	New/Changed	Commands

Added	!if	for	more	complex	compile-time	flow	control	(patch
#1412982)
Added	/math	switch	to	!define	for	simple	compile-time	mathematical
operations	(patch	#1372561)

F.49.1.2	Minor	Changes

Added	more	replacement	options	to	WordReplace
Added	NSIS_CONFIG_LOG_STDOUT	configuration	option	for
logging	to	stdout
Added	path	translation	for	!addincludedir	(bug	#1431958)
ConfigRead	now	sets	the	error	flag,	if	the	entry	wasn't	found
Documented	Nop
Edit	box	in	the	installation	directory	selection	page	is	now	always
LTR,	even	for	RTL	languages
Fixed	improper	iterator	usage	in	dir_reader	(bug	#1431593)
Fixed	MessageBox	MB_TOPMOST	not	showing	up,	if	used	as	the	first
sections'	instruction	(bug	#1400995)
Fixed	RMDir	skipping	files	with	names	starting	with	two	dots	(bug
#1420657)
GetOptions	now	sets	the	error	flag,	if	the	option	wasn't	found
Made	!include	stop	searching	the	include	directories	after	a	match	is
found	(bug	#1441877)
Made	header	functions	use	/NOUNLOAD	for	faster	plug-in	calls
Minor	documentation	improvements	and	fixes	(including	bug
#1420352,	bug	#1432423)
More	informative	Icon	error	messages	(bug	#1174742)

http://sourceforge.net/support/tracker.php?aid=1412982
http://sourceforge.net/support/tracker.php?aid=1372561
http://sourceforge.net/support/tracker.php?aid=1431958
http://sourceforge.net/support/tracker.php?aid=1431593
http://sourceforge.net/support/tracker.php?aid=1400995
http://sourceforge.net/support/tracker.php?aid=1420657
http://sourceforge.net/support/tracker.php?aid=1441877
http://sourceforge.net/support/tracker.php?aid=1420352
http://sourceforge.net/support/tracker.php?aid=1432423
http://sourceforge.net/support/tracker.php?aid=1174742

New	case-sensitive	functions	in	headers:	WordFindS,	WordFind2XS,
WordFind3XS,	WordReplaceS,	WordAddS,	WordInsertS,	StrFilterS,
TextCompareS,	ConfigReadS,	ConfigWriteS,	GetOptionsS

F.49.1.3	Translations

Added	proper	language	identifier	for	Breton
Breton	translation	improvements
Bulgarian	translation	improvements
Fixed	Czech	grammar	mistakes	(patch	#1427189)
Fixed	Italian	typo	(patch	#1416988)
Updated	Mongolian

F.49.1.4	Build	System

Fixed	__BIG_ENDIAN__	definition
Fixed	improper	handling	of	paths	passed	to	the	compiler	(bug
#1434215)
Improved	GCC	4.2	compatibility	(patch	#1434174)
Moved	NSIS_VARS_SECTION	from	config.h	to	scons
Write	all	configuration	to	sconf.h	instead	of	passing	it	on	the
command	line

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1427189
http://sourceforge.net/support/tracker.php?aid=1416988
http://sourceforge.net/support/tracker.php?aid=1434215
http://sourceforge.net/support/tracker.php?aid=1434174

Previous	|	Contents	|	Next

F.50	2.14
Released	on	January	24th,	2006

F.50.1	Release	Notes

This	release	fixes	a	critical	bug	that	caused	installers	using	plug-ins
to	fail	loading	on	Windows	9x	and	NT.	Upgrading	from	2.13	is	highly
recommended.

F.50.2	Changelog

F.50.2.1	Major	Changes

Fixed	a	bug	that	corrupted	$TEMP	under	Windows	9x	and	NT	and
caused	InitPluginsDir	to	fail	(bug	#1412159)

F.50.2.2	Minor	Changes

Fixed	a	possible	buffer	overflow	caused	by	long	values	of	$0,	when
using	large	NSIS_MAX_STRLEN	builds	(above	4096)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1412159

Previous	|	Contents	|	Next

F.51	2.13
Released	on	January	21st,	2006

F.51.1	Release	Notes

Language	detection	has	changed.	The	default	language	is	now	set
to	the	user's	user-interface	language	instead	of	the	locale	language,
as	suggested	by	MSDN.	To	restore	the	old	behavior,	use
System::Call	"kernel32::GetUserDefaultLangID()i.a"	in	.onInit.

F.51.2	Changelog

F.51.2.1	Major	Changes

Default	$LANGUAGE	value	is	now	based	on	user's	UI	language
instead	of	locale	(bug	#1324734)

F.51.2.2	New/Changed	Commands

Added	StrCmpS	for	case	sensitive	string	comparison	(patch
#1381929)

F.51.2.3	Minor	Changes

Added	system	time	support	to	GetTime
Fixed	components	page	checkbox	redraw	problem	under	Windows
95	(bug	#1397031)
Fixed	constant	maximum	string	length	in	FileRead	(changed	from
1024	to	NSIS_MAX_STRLEN)
Fixed	empty	$INSTDIR	value	in	directory	page	show	callback
function	(bug	#1209843)
Fixed	relative	jumps	ignoring	File	/nonfatal	(bug	#1299100)
Fixed	typo	in	NSIS	Menu	(bug	#1387748)
Issue	a	warning	when	BrandingText	/TRIM*	actually	expands	the

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_0xrn.asp
http://sourceforge.net/support/tracker.php?aid=1324734
http://sourceforge.net/support/tracker.php?aid=1381929
http://sourceforge.net/support/tracker.php?aid=1397031
http://sourceforge.net/support/tracker.php?aid=1209843
http://sourceforge.net/support/tracker.php?aid=1299100
http://sourceforge.net/support/tracker.php?aid=1387748

label	(bug	#1362443)
Made	RMDir	/r	remove	Unicode	paths	as	well	using	short	names
(bug	#1378785)
Minor	documentation	improvements	and	fixes

F.51.2.4	Utilities	and	Plug-ins

Fixed	System	plug-in	documentation	of	callback	functions	(bug
#1403608)
Fixed	System	plug-in	heap	corruption	(bug	#1403601)

F.51.2.5	Translations

Mongolian	translation	improvements

F.51.2.6	Build	System

Better	installation	under	POSIX	with	proper	${NSISDIR}	detection
and	appropriate	directory	paths	(/usr/bin,	/usr/share/doc,	etc.)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1362443
http://sourceforge.net/support/tracker.php?aid=1378785
http://sourceforge.net/support/tracker.php?aid=1403608
http://sourceforge.net/support/tracker.php?aid=1403601

Previous	|	Contents	|	Next

F.52	2.12
Released	on	December	17th,	2005

F.52.1	Changelog

F.52.1.1	Major	Changes

Fixed	compile-time	assertion	failure	for	big	uninstallers	(bug
#1380447)
Tutorial	enhancements	(including	bug	#1366431)

F.52.1.2	New/Changed	Commands

Added	/NONFATAL	switch	to	!include	(patch	#1372048)

F.52.1.3	Minor	Changes

Clearer	error	message	for	double	label	definition	(patch	#1374675)
Fixed	browsed	network	root	directory	not	being	accepted	(bug
#1331292)
Fixed	incorrect	CompletedText	parsing	(bug	#1349810)
Fixed	sdbarker_tiny.exe's	compatibility	with	NSIS_CONFIG_LOG
(bug	#1365869)
Implemented	nicer	registry	commands	log	(patch	#1340255)
Minor	documentation	improvements	and	fixes	(including	patch
#1355653,	bug	#1349810)
Multi-line	comments	are	no	longer	ignored	inside	!ifdef'd	block

F.52.1.4	Utilities	and	Plug-ins

Added	drag	&	drop	support	for	zip2exe
Better	drag	&	drop	error	handling	in	MakeNSISw
Fixed	Math	plug-in	array	issues	(bug	#1235875)

http://sourceforge.net/support/tracker.php?aid=1380447
http://sourceforge.net/support/tracker.php?aid=1366431
http://sourceforge.net/support/tracker.php?aid=1372048
http://sourceforge.net/support/tracker.php?aid=1374675
http://sourceforge.net/support/tracker.php?aid=1331292
http://sourceforge.net/support/tracker.php?aid=1349810
http://sourceforge.net/support/tracker.php?aid=1365869
http://sourceforge.net/support/tracker.php?aid=1340255
http://sourceforge.net/support/tracker.php?aid=1355653
http://sourceforge.net/support/tracker.php?aid=1349810
http://sourceforge.net/support/tracker.php?aid=1235875

F.52.1.5	Translations

Added	browse	button	Danish	translation
Breton	translation	fixes	and	improvements
Fixed	finish	button	Swedish	translation

F.52.1.6	Build	System

Fixed	endianess	detection	problem	on	POSIX	platforms	(bug
#1370179)
Generated	installers	use	nsis-VERSION-setup.exe	template

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1370179

Previous	|	Contents	|	Next

F.53	2.11
Released	on	November	12th,	2005

F.53.1	Release	Notes

Rebuilding	existing	installers	that	use	SetOverwrite	ifdiff,	might
falsely	overwrite	files	once

F.53.2	Changelog

F.53.2.1	Major	Changes

Added	a	workaround	for	a	bug	that	prevented	detection	of	some
special	folders	(e.g.	$DESKTOP	for	all	users)	on	Windows	9x	(bug
#1008632)
Fixed	a	crash	caused	by	copying	very	long	details	to	clipboard	in	the
installation	log	page	(bug	#1314004)

F.53.2.2	New/Changed	Commands

Added	!tempfile,	!delfile	and	!appendfile	for	cross-platform	handling
of	text	files	during	compilation
Fixed	ChangeUI	input	handling	(patch	#1348473)
SectionIn	RO	is	no	longer	case	sensitive

F.53.2.3	Minor	Changes

Added	support	URL	to	the	NSIS	package	entry	in	the	Add/Remove
control	panel	(RFE	#1349867)
Fixed	comment	handling	(patch	#1324898)
Fixed	duplicate	RegTool	test	in	Library
Fixed	invalid	language	selection	according	to	$LANGUAGE	in	.onInit
when	only	primary	language	match	is	found	(bug	#1328629)
Fixed	missing	RegTool	error	after	install-reboot-install-reboot

http://sourceforge.net/support/tracker.php?aid=1008632
http://sourceforge.net/support/tracker.php?aid=1314004
http://sourceforge.net/support/tracker.php?aid=1348473
http://sourceforge.net/support/tracker.php?aid=1349867
http://sourceforge.net/support/tracker.php?aid=1324898
http://sourceforge.net/support/tracker.php?aid=1328629

sequence	with	Library
Fixed	portability	issues	with	LogicLib	(bug	#1320297,	patch
#1248336)
Fixed	SetOverwrite	ifdiff	always	overwriting	on	FAT	file	system
(bug	#1338423)
Fixed	wrong	size	of	red.bmp	check	box	image
Larger	browse	button	for	localized	texts	(bug	#1314682)
Minor	documentation	improvements	and	fixes	(including	bug
#1349810)
Sort	language	names	in	language	selection	dialog
Use	the	temporary	directory	for	Library	temporary	files,	instead	of	the
possibly	write-protected	installation	directory

F.53.2.4	Utilities	and	Plug-ins

Added	/OEM	switch	for	OEM	to	ANSI	conversion	in	nsExec	(patch
#1346737)
Added	/PROXY	switch	for	manual	proxy	configuration	in	NSISdl
(patch	#1334166)
Added	solid	compression	check	box	to	zip2exe	(patch	#1334155)
Added	stdin	in	MakeNSISw	to	allow	xcopy	to	run
Added	timestamp	handling	to	zip2exe	(bug	#1349853)
Fixed	input	validation	of	nsExec
InstallOptions	2.44:	Added	HWND	and	HWND2	entries	to	the	INI	file
to	avoid	messy	calculations	of	the	correct	control	id

F.53.2.5	Translations

Slovenian	translation	fixes	and	improvements

F.53.2.6	Build	System

Added	a	workaround	for	linking	errors	caused	by	a	bad	library
included	in	recent	Platform	SDK	versions
Check	for	and	use	-pthread	linker	flag
Improved	FreeBSD	portability

http://sourceforge.net/support/tracker.php?aid=1320297
http://sourceforge.net/support/tracker.php?aid=1248336
http://sourceforge.net/support/tracker.php?aid=1338423
http://sourceforge.net/support/tracker.php?aid=1314682
http://sourceforge.net/support/tracker.php?aid=1349810
http://sourceforge.net/support/tracker.php?aid=1346737
http://sourceforge.net/support/tracker.php?aid=1334166
http://sourceforge.net/support/tracker.php?aid=1334155
http://sourceforge.net/support/tracker.php?aid=1349853

Nicer	error	message	for	SCons	version	older	than	0.96.90

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.54	2.10
Released	on	October	4th,	2005

F.54.1	Changelog

F.54.1.1	Major	Changes

Added	auto	completion	to	the	directory	page
Fixed	a	bug,	introduced	in	2.09,	that	caused	AllowRootDirInstall	to
fail
Fixed	a	thread	leak	in	the	POSIX	implementation	of	LZMA
VPatch	3.1:	MD5	checksums,	better	performance,	and	some	bug
fixes	(including	bug	#1219806)

F.54.1.2	Minor	Changes

Added	rounding	of	required	and	available	size	on	the	directory	page
(1.59	=>	1.6	instead	of	1.5)
Added	WS_EX_LEFTSCROLLBAR	style	in	RTL	mode	(bug
#1283528)
Fixed	alteration	of	the	working	directory	by	FileRequest	in
InstallOptions	(bug	#1287731)
Fixed	bad	mnemonic	key	in	MakeNSISw	menu	(bug	#1288159)
Fixed	negative	size	values	showing	up	after	the	decimal	point	in	the
directory	page	for	very	big	sizes
Minor	documentation	improvements	and	fixes
Modern	UI	1.74:	Fixed	compile	error	when	checkboxes	are	used	on
multiple	finish	pages

F.54.1.3	Translations

Fixed	a	bug	in	Slovenian	translation	that	caused	lots	of	missing
language	string	warnings
Fixed	typos	in	Serbian	translation

http://sourceforge.net/support/tracker.php?aid=1219806
http://sourceforge.net/support/tracker.php?aid=1283528
http://sourceforge.net/support/tracker.php?aid=1287731
http://sourceforge.net/support/tracker.php?aid=1288159

Fixed	typos	in	Thai	translation
Updated	Simple	Chinese	translation

F.54.1.4	Build	System

Automatic	fix	for	VC6	SP6	compile	error
Moved	most	of	the	configuration	from	config.h	to	the	build	system
Removed	all	optimizations	and	symbol	stripping	in	debug	mode
SCons	requirement	updated	to	0.96.91
VPatch	can	be	built	on	POSIX	as	well

Previous	|	Contents	|	Next

http://forums.winamp.com/showthread.php?s=&threadid=179848

Previous	|	Contents	|	Next

F.55	2.09
Released	on	August	26th,	2005

F.55.1	Changelog

F.55.1.1	Major	Changes

Fixed	a	bug	introduced	in	2.08,	that	prevented	uninstallers	from
deleting	$INSTDIR
Fixed	a	bug	that	caused	"C:\	"	to	be	considered	a	valid	installation
directory,	even	without	AllowRootDirInstall

F.55.1.2	New/Changed	Commands

Var	can	now	be	used	in	sections	and	functions,	but	only	with	the
/GLOBAL	flag

F.55.1.3	Minor	Changes

Applied	patch	#1248335	for	greater	portability	of	examples
FileFunc:	workaround	for	GetLongPathName	which	is	not	available
on	Windows	95	(Instructor)
Fixed	an	unused	label	warning	in	Library
Fixed	duplicate	label	errors	in	LogicLib	and	Library	when	used	in
different	files	(bug	#1243865)
Modern	UI	1.73:	fixed	checkboxes	on	uninstaller	finish	page	or
multiple	finish	pages
WordFunc:	fixed	incorrect	replacement	of	first	word	in	WordReplace,
under	some	conditions	(Instructor)

F.55.1.4	Translations

Renamed	Malaysian	to	Malay

http://sourceforge.net/support/tracker.php?aid=1248335
http://sourceforge.net/support/tracker.php?aid=1243865

Update	Thai	translation	to	the	latest	version
Updated	Kurdish	MUI	translation	to	the	latest	version

F.55.1.5	Build	System

Fixed	a	number	of	build	problems	on	POSIX	platforms	which	caused
plug-ins	to	malfunction	and	installers	to	crash

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.56	2.08
Released	on	July	23rd,	2005

F.56.1	Release	Notes

The	Archive	has	been	replaced	with	a	Wiki.	The	new	Wiki	allows
everyone	to	edit	all	pages	so	there's	no	longer	need	to	hunt	for	the
original	author.	It	also	allows	everyone	to	upload	plug-ins	and	not
just	administrators.	And	as	if	that's	not	enough,	it	looks	better	and
provides	easier	and	more	feature-rich	syntax.

F.56.2	Changelog

F.56.2.1	Major	Changes

Added	Instructor's	header	files	of	useful	functions
Library	improvements:	ordered	registration	after	reboot,	smaller
RegTool	and	separate	process	for	each	registration	to	avoid	conflicts
(thanks	stb)

F.56.2.2	Minor	Changes

Added	Bosnian	and	Kurdish	translations
Added	per-user	nsisconf.nsh	file	in	%APPDATA%	or	$HOME,
depending	on	the	platform	(patch	#1223041)
Documentation	improvements	and	fixes	(including	bug	#1202495,
bug	#1227610,	bug	#1238686,	patch	#1225167,	RFE	#1240601)
Fixed	_?=	being	ignored,	if	the	uninstaller	path	is	not	quoted	and	is
separated	with	only	space	from	_?=
Fixed	Library	failing	on	paths	with	spaces	(bug	#1234283)
Fixed	UpgradeDLL	compilation	error	(bug	#1230336)
Improved	French,	Ukrainian	and	Luxembourgish	translation
Made	RMDir	set	the	error	flag,	if	passed	an	invalid	directory	path
(bug	#1227553)

http://nsis.sourceforge.net/wiki/
http://sourceforge.net/support/tracker.php?aid=1223041
http://sourceforge.net/support/tracker.php?aid=1202495
http://sourceforge.net/support/tracker.php?aid=1227610
http://sourceforge.net/support/tracker.php?aid=1238686
http://sourceforge.net/support/tracker.php?aid=1225167
http://sourceforge.net/support/tracker.php?aid=1240601
http://sourceforge.net/support/tracker.php?aid=1234283
http://sourceforge.net/support/tracker.php?aid=1230336
http://sourceforge.net/support/tracker.php?aid=1227553

Made	uninstallers	copy	themselves	into	a	subdirectory	of	the
temporary	directory	to	avoid	DLLs	left	in	the	temporary	directory	from
being	loaded	by	the	uninstaller	(patch	#1214319)
Missing	LangString	warning	now	uses	the	language	name,	if
possible
zip2exe:	fixed	restriction	of	extraction	path	length	and	updated	to	zlib
1.2.3	(bug	#1226381)

F.56.2.3	Build	System

Added	linker	script	to	assure	correct	order	of	sections	when	building
using	GNU	tools
Added	test	target
UIs	are	now	built	from	source

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1214319
http://www.zlib.net/
http://sourceforge.net/support/tracker.php?aid=1226381

Previous	|	Contents	|	Next

F.57	2.07
Released	on	June	20th,	2005

F.57.1	Release	Notes

NSIS	Update	was	removed	and	the	update	check	was	moved	back
to	MakeNSISw	(Help	->	NSIS	Update).	Use	the	nightly	builds	to	get
the	latest	compiled	binaries	from	CVS.
Solid	compression	is	no	longer	the	default	for	bzip2	and	lzma,	use
SetCompressor	/SOLID	bzip2	or	SetCompressor	/SOLID	lzma	for	solid
compression.
Source	code	is	no	longer	supplied	with	the	installer	package.	Source
code	can	be	downloaded	from	CVS	or	from	the	download	page.
The	directory	structure	of	the	installation	has	been	changed.	All
documentation	is	now	in	the	Docs	folder	and	all	examples	are	in	the
Examples	folder.

F.57.2	Changelog

F.57.2.1	Major	Changes

Added	/SOLID	switch	for	SetCompressor
New	build	system	(see	appendix	G)
Stubs	(exeheads)	are	no	longer	compiled	into	makensis.exe,	but
kept	in	the	Stubs	folder

F.57.2.2	New/Changed	Commands

EnumRegValue	sets	the	error	flag,	if	the	enumeration	index	is	out	of
range	(bug	#1178756)
ExpandEnvStrings	now	sets	the	error	flag	as	the	documentation
states
Made	File	/oname	throw	an	error	if	the	first	character	is	a	quote

http://nsis.sourceforge.net/download/
http://sourceforge.net/support/tracker.php?aid=1178756

F.57.2.3	Minor	Changes

Added	$LOCALAPPDATA	(RFE	#1172123)
Changed	MUI	dialogs	charset	from	ANSI_CHARSET	to
DEFAULT_CHARSET	(bug	#1193736,	bug	#1201712)
Fixed	$INSTDIR	changing,	even	if	user	clicked	Cancel	in	browse
dialog
Fixed	a	crash	in	makensis	when	using	WindowIcon	off	(bug
#1123353)
Fixed	Call	:label	in	uninstall	code
Fixed	compilation	error	without	NSIS_CONFIG_COMPONENTPAGE
Fixed	compilation	errors	on	various	platforms	(including	patch
#1179116,	patch	#1193692)
Fixed	CreateDirectory	setting	the	error	flag	for	directories	with	two
consecutive	backslashes	(bug	#1119442)
Fixed	InstallLib	setting	the	error	flag	for	new	shared	libraries	(bug
#1181951)
Fixed	letters	case	in	examples	(patch	#1184571)
Fixed	logging	state	being	reset	after	the	directory	page	(bug
#1168711)
Fixed	overlapping	icon	in	welcome	page	(bug	#1221772)
Fixed	RMDir	/REBOOTOK	setting	the	reboot	flag	when	trying	to
delete	non-existent	directory	(bug	#1073792)
Minor	documentation	fixes	and	improvements	(including	bug
#1220940)
Removed	NSIS	Update,	MakeNSISw	checks	for	new	versions	again

F.57.2.4	Include	Files

More	messages	in	WinMessages.nsh	(Shengalts	Aleksander)
Some	more	useful	macros	in	Colors.nsh	(Joel)

F.57.2.5	Utilities	and	Plug-ins

Fixed	halibut	segfaults	on	PowerPC	(patch	#1180886)
Math:	Fixed	memory	leak	(brainsucker)
zip2exe:	upgraded	to	zlib	1.2.2

http://sourceforge.net/support/tracker.php?aid=1172123
http://sourceforge.net/support/tracker.php?aid=1193736
http://sourceforge.net/support/tracker.php?aid=1201712
http://sourceforge.net/support/tracker.php?aid=1123353
http://sourceforge.net/support/tracker.php?aid=1179116
http://sourceforge.net/support/tracker.php?aid=1193692
http://sourceforge.net/support/tracker.php?aid=1119442
http://sourceforge.net/support/tracker.php?aid=1181951
http://sourceforge.net/support/tracker.php?aid=1184571
http://sourceforge.net/support/tracker.php?aid=1168711
http://sourceforge.net/support/tracker.php?aid=1221772
http://sourceforge.net/support/tracker.php?aid=1073792
http://sourceforge.net/support/tracker.php?aid=1220940
http://sourceforge.net/support/tracker.php?aid=1180886

F.57.2.6	Translations

Added	Malaysian	translation	(Azwa)
Added	Welsh	translation	(Rhoslyn	Prys)
Fixed	Breton	NLF	file	(credits	weren't	commented)
Fixed	duplicate	accelerator	in	French	translation	(bug	#1168652)
Improved	French	translation	(bug	#1220277)
Updated	Russian	translation	(Dmitry)
Updated	translation	credits	(patch	#1223362)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1168652
http://sourceforge.net/support/tracker.php?aid=1220277
http://sourceforge.net/support/tracker.php?aid=1223362

Previous	|	Contents	|	Next

F.58	2.06
Released	on	March	19th,	2005

F.58.1	Changelog

F.58.1.1	Major	Changes

Fixed	a	bug,	introduced	in	2.05,	that	made	components	selection	not
function	properly	if	the	first	section	in	the	script	was	a	section	group
Fixed	a	bug,	introduced	in	2.05,	that	corrupted	the	state	of	section
groups	inside	section	groups	(bug	#1155836)

F.58.1.2	New/Changed	Commands

Added	MB_RTLREADING	style	to	MessageBox	(RFE	#1159701)
All	registry	instructions	now	accept	SHCTX	which	is	replaced	with
HKLM	or	HKCU	at	runtime	according	to	SetShellVarContext	(RFE
#1124901)

F.58.1.3	Minor	Changes

Added	Belarusian	and	Icelandic	language	files
Added	components.c	to	the	Makefile	(patch	#1123154)
Added	missing	ClearErrors	in	GetWindowsVersion	(bug	#1155588)
Fixed	a	bug	in	install.sh	that	made	it	try	to	install	a	non	existing
directory
Fixed	a	bug	in	the	Russian	language	file	distributed	with	2.05
Fixed	a	bug	that	caused	SetFont	to	not	function	properly	with	RTL
languages	on	Windows	9x	(bug	#1159700)
Fixed	a	bug,	introduced	in	2.05,	that	caused	problems	with	InstType
/COMPONENTSONLYONCUSTOM	(bug	#1155060)
Fixed	a	crash	caused	by	compiling	large	uninstallers	(bug	#1144763)
Fixed	compile	error	without	NSIS_CONFIG_CRC_SUPPORT
Fixed	compile	errors	of	MinGW	on	POSIX	for	source	code	under

http://sourceforge.net/support/tracker.php?aid=1155836
http://sourceforge.net/support/tracker.php?aid=1159701
http://sourceforge.net/support/tracker.php?aid=1124901
http://sourceforge.net/support/tracker.php?aid=1123154
http://sourceforge.net/support/tracker.php?aid=1155588
http://sourceforge.net/support/tracker.php?aid=1159700
http://sourceforge.net/support/tracker.php?aid=1155060
http://sourceforge.net/support/tracker.php?aid=1144763

Contrib	(patch	#1164307)
Fixed	plug-ins	directory	initialization	for	extremely	restricted	guest
users	with	no	directory	listing	access	to	the	temporary	directory
Made	install.sh	not	use	$(tempfile)	and	install	files	under	/usr/share
instead	of	/lib	(patch	#1120399)
Minor	documentation	updates	and	fixes
Updated	Slovenian,	Serbian	and	Serbian	Latin	language	files

F.58.1.4	Utilities	and	Plug-ins

AdvSplash:	Fixed	a	small	memory	leak	(Thanks	Takhir)
StartMenu:	Added	support	for	SetCtlColors	(RFE	#711900)

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1164307
http://sourceforge.net/support/tracker.php?aid=1120399
http://sourceforge.net/support/tracker.php?aid=711900

Previous	|	Contents	|	Next

F.59	2.05
Released	on	February	4th,	2005

F.59.1	Release	Notes

A	lot	of	changes	were	made	to	the	behavior	of	sections/components
and	related	instructions.	The	changes	were	thoroughly	tested,	but
may	still	cause	minor	incompatibilities	with	old	scripts.	Please	let	us
know	if	your	script	no	longer	functions	as	expected	with	these
changes.

F.59.2	Changelog

F.59.2.1	New/Changed	Commands

Renamed	SubSection	and	SubSectionEnd	to	SectionGroup	and
SectionGroupEnd
SectionSetFlags,	when	used	on	a	section	group,	toggles	its	children
too
SectionSetText	works	better	with	variables	(parses	immediately	and
treats	an	empty	variable	as	an	empty	string)
SetCurInstType	works	without	the	components	page

F.59.2.2	Minor	Changes

Added	Breton	translation
AdvSplash:	Fixed	double	delay	time	in	some	cases
Documentation	fixes	and	enhancements	(including	patch	#1098454)
Fixed	case	sensitive	name	comparison	with	File	/x,	when	not	using
wildcards
Fixed	extraction	status	ending	prior	to	100%
Fixed	negative	values	of	available	space	in	the	directory	page	(bug
#1114876)
Fixed	system.nsi	example	crash	(bug	#1102255)

http://sourceforge.net/support/tracker.php?aid=1098454
http://sourceforge.net/support/tracker.php?aid=1114876
http://sourceforge.net/support/tracker.php?aid=1102255

Fixed	unused	label	warnings	with	Library	macros
Improved	some	error	messages
InstallOptions	2.42:	Added	an	image	displaying	example,	added
TRANSPARENT	flag	for	BITMAP	fields	(RFE	#1079715	-	funded	by
Chris	Morgan)
Invisible	sections	weren't	always	affected	by	a	change	of	the
installation	type	(bug	#1045722)
Language	file	fixes
Made	pages	refresh	after	an	aborted	leave	function
Partially	selected	section	groups	can	now	be	toggled

Previous	|	Contents	|	Next

http://sourceforge.net/support/tracker.php?aid=1079715
http://sourceforge.net/support/tracker.php?aid=1045722

Previous	|	Contents	|	Next

F.60	2.04
Released	on	January	7th,	2005

F.60.1	Changelog

F.60.1.1	Major	Changes

Fixed	$0	changed	by	File	/r
Fixed	empty	directory	not	included	by	File	/r
Fixed	invalid	directory	creation	by	File	/r	on	POSIX
Fixed	Unicode	conversion	problems	on	POSIX

F.60.1.2	Minor	Changes

Added	new	test	for	dir_reader::matches
Fixed	LibraryLocal	failure	with	UNC	paths
Fixed	VC	7.1	and	GCC	3.4	compile	errors
Language	file	fixes

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.61	2.03
Released	on	December	3rd,	2004

F.61.1	Release	Notes

If	you're	using	File	/r	folder	in	your	script,	it's	recommended	you
replace	it	with	File	/r	folder*	for	faster	compilation	and	so	no
other	folders	named	folder	will	be	included
Command	line	switches	prefix	on	POSIX	has	changed	to	a	dash
The	plug-in	API	change	is	backward	compatible

F.61.2	Changelog

F.61.2.1	Major	Changes

Added	another	parameter	to	plug-in	functions	with	a	pointer	to
exec_flags	and	ExecuteCodeSegment
Fixed	handling	of	absolute	paths	on	POSIX
Made	RegDLL	load	and	unload	a	DLL	exactly	once	to	fix	crashes
with	COM	DLLs	registration

F.61.2.2	New/Changed	Commands

Added	/date	switch	to	!define	for	definition	of	date	and	time
constants
Added	/x	switch	for	File	and	ReserveFile	to	exclude	files	and
directories
Made	File's	/r	switch	always	search	in	subdirectories,	even	if	the
given	path	points	to	an	existing	directory

F.61.2.3	Minor	Changes

Added	LIBRARY_SHELL_EXTENSION	and	LIBRARY_COM	to
Library

Added	missing	#include
Added	NSIS_LZMA_COMPRESS_WHOLE	to	the	script	define	list
Documentation	fixes	and	improvements
Fixed	an	access	violation	in	case	of	a	script	jump	beyond	the	last
entry
Fixed	keyboard	navigation	in	the	instfiles	page	while	installing
Fixed	unpacking	window	not	showing	when	BGGradient	is	used
Fixed	unused	label	warning	in	Library.nsh
Language	file	fixes
Modern	UI	1.72:	Fixed	state	of	Cancel	button	on	Finish	page	when
used	in	installer	and	uninstaller,	added	a	string	for
NSIS_CONFIG_COMPONENTPAGE_ALTERNATIVE
nsisconf.nsh	was	not	always	parsed	when	compiling	using
MakeNSISw

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.62	2.02
Released	on	October	23rd,	2004

F.62.1	Changelog

F.62.1.1	Major	Changes

Added	lots	of	small	usage	examples	to	the	documentation
Made	relative	jumps	work	with	instructions	that	add	multiple	entries
Made	the	datablock	optimizer	much	faster
Made	the	installer	deny	reboots	while	running
(WM_QUERYENDSESSION)
Made	the	Reboot	command	first	quit	and	then	reboot	so	everything
is	always	cleaned-up

F.62.1.2	New/Changed	Commands

Added	<<	and	>>	to	IntOp
Added	GetErrorLevel	and	SetErrorLevel
Fixed	CopyFiles	usage	checking	problem
Made	Reboot	call	.onRebootFailed	and	quit	on	failure	instead	of
setting	the	error	flag

F.62.1.3	Minor	Changes

Added	Albanian	language	files
Added	NSIS_CONFIG_COMPONENTPAGE_ALTERNATIVE
configuration	option	which	makes	components	only	be	toggled	when
the	user	clicks	on	the	checkbox	and	makes	.onMouseOverSection
only	be	called	when	the	user	selects	a	component
Added	some	CppUnit	tests
Both	_?=	and	/D=	now	require	a	space	before	them	so	they	can
safely	remove	the	space	from	$CMDLINE
Fixed	a	bug	that	caused	the	uninstaller	CRC-check	to	fail	if	!packhdr

http://msdn.microsoft.com/library/en-us/sysinfo/base/wm_queryendsession.asp

created	a	non-512-bytes-aligned	exehead
Fixed	a	compiler	crash	caused	by	using	GetCurrentAddress
Fixed	errors	when	using	'File	/r	.'	on	Windows
Fixed	gcc	3.4	compile	errors
Fixed	inconsistencies	between	error	levels	and	the	documentation
Fixed	some	minor	memory	leaks
Language	file	fixes
Makefile	improvements
Modern	UI	1.71:	Made	the	selected	language	only	be	saved	if	the
installation	was	successful
Some	code	refactoring
StrFunc:	Rewrote	StrSort	and	fixed	StrStrAdv.	See	the	readme	for	a
complete	changelog

F.62.1.4	Utilities	and	Plug-ins

Banner:	Fixed	some	cases	where	the	banner	would	not	show	on	the
foreground

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.63	2.01
Released	on	September	24th,	2004

F.63.1	Release	Notes

See	Compiling	NSIS	Sources	for	information	about	compiling
makensis	on	POSIX	platforms
NSIS	doesn't	create	installers	for	Linux/Mac	OS	X	etc.,	but	you	can
compile	Windows	installers	on	these	platforms
UpgradeDLL	is	still	provided	in	UpgradeDLL.nsh	for	backwards
compatibility

F.63.2	Changelog

F.63.2.1	Major	Changes

Compiler	(makensis)	supports	POSIX	platforms	(Linux,	*BSD,	Mac
OS	X,	etc.)
New	system	for	DLL/TLB	library	setup

F.63.2.2	New/Changed	Commands

Added	BGFont	that	allows	setting	the	background	text	font
Added	SW_HIDE	to	ExecShell's	accepted	show	modes
RMDir	can	now	be	used	with	both	/r	and	/REBOOTOK	at	the	same
time
Extended	maximum	binary	data	for	WriteRegBin	to	3	*
NSIS_MAX_STRLEN
Added	!execute

F.63.2.3	Minor	Changes

LZMA	exehead	is	now	34KB	and	should	also	decompress	faster
Windows	95	(OSR2)/98/ME	no	longer	see	drive	free	space	capped

to	2GB
Modern	User	Interface:	New	orange	theme	by	MoNKi
Speedup	background	gradient	painting
LogicLib	2.5:	Added	AndIf,	AndUnless,	OrIf,	OrUnless.	Avoids
unused	variable	warnings	by	requiring	!defines	before	using	certain
features.
StrFunc:	Added	support	for	uninstaller,	some	fixes	and
improvements.	See	the	readme	for	a	complete	changelog
The	plug-ins	folder	is	properly	removed	when	the	system	is	rebooted
SetOutPath	"-"	works	again
Fixed	a	bug	which	made	plug-ins	that	didn't	have	lower	case
extension	not	be	found
Fixed	a	bug	that	caused	directories	with	drives	that	had	their	current
directory	set	to	an	invalid	directory	to	not	be	accepted	in	the	directory
selection	page
Fixed	a	crash	in	makensis	caused	by	defining	a	macro	in	a	file
included	by	another	macro
makensis	shows	meaningful	errors	for	compression	errors	instead	of
just	magic	numbers
Fixed	a	bug	with	AllowRootDirInstall	used	along	with
InstallDirRegKey	that	caused	the	directory	in	the	registry	to	be
ignored
Fixed	FileRead	setting	the	error	flag	when	a	null	character	is	the	first
character	it	reads
Fixed	a	bug	which	caused	the	background	gradient	to	paint	slowly
File	paths	relative	to	the	root	folder	work	again
Added	Colors.nsh
Made	Times	New	Roman	default	font	for	the	background	text
because	it	should	always	have	support	for	the	locale's	language
Fixed	compilation	of	NSISdl	under	VS.NET
SetCtlColors	/BRANDING	wasn't	working	right,	if	just	one	of	the
background	or	text	color	were	specified
Language	file	fixes	and	improvements

F.63.2.4	Utilities	and	Plug-ins

System:	New,	hopefully	more	informative,	documentation;	fixed
some	bugs

Banner:	Added	getWindow	to	allow	greater	control	over	the	banner
window
InstallOptions	2.41:	Bitmaps	are	now	automatically	centered,	fixed	a
bug	which	prevented	enabling	the	next	button	from	the	leave
function	of	InstallOptions	pages,	fixed	a	rare	freeze
Zip2Exe	0.32:	Fixed	codepage	problems
nsExec:	Always	create	a	valid	input	handle,	fixed	a	problem	when
called	from	a	path	with	spaces
VPatch:	Close	all	open	file	handles	when	one	of	them	fail	to	open
NSISdl:	Added	/NOIEPROXY	(based	on	memph's	code)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.64	2.0
Released	on	February	7th,	2004

F.64.1	Release	Notes

Finnish,	Bulgarian	and	Thai	language	files	are	outdated	and	do	not
contain	all	needed	translations

F.64.2	Changelog

F.64.2.1	Changes	from	1.98

Multiple	languages	in	one	installer	support	(with	RTL	support)
Easier	plug-in	system
Modern	User	Interface	(optional)
LZMA	compression	which	provides	installers	20%	smaller	than	bzip2
Easier	paging	system	(no	more	.onNextPage,	.onPrevPage)
Components	are	presented	as	a	tree	which	allows	sub	components
User	variables	($VARNAME)
Icon	and	UninstallIcon	support	any	color	depth	and	sizes,	not	just
32x32x16
CheckBitmap	supports	any	color	depth
Improved	large	files	handling
License	data	can	be	RTF
CHM	documentation	for	easy	browsing
Better	silent	support
New	include	files	for	easier	scripting:	LogicLib,	StrFunc	and	Sections
Improved	plug-ins:	InstallOptions,	NSISdl	and	Splash
New	plug-ins:	AdvSplash,	Banner,	BgImage,	Dialer,	LangDLL,	Math,
nsExec,	StartMenu,	System,	UserInfo	and	VPatch
New	and	improved	utilities:	MakeNSISw,	NSIS	Menu	(NSIS.exe),
NSIS	Update	(Bin\NSIS	Update.exe)	and	zip2exe	(Bin\zip2exe.exe)
New	commands:	!addplugindir,	!echo,	!ifmacrodef,	!ifmacrondef,
!verbose,	AddBrandingImage,	AllowSkipFiles,	ChangeUI,
CheckBitmap,	CreateFont,	DirVar,	DirVerify,	EnableWindow,

http://www.7-zip.org/

FileBufSize,	FlushINI,	GetCurInstType,	GetDlgItem,	GetInstDirError,
IfAbort,	IfSilent,	InitPluginsDir,	InstTypeGetText,	InstTypeSetText,
LangString,	LicenseBkColor,	LicenseForceSelection,
LicenseLangString,	LoadLanguageFile,	LockWindow,	Page,
PageEx,	ReserveFile,	SectionGetInstTypes,	SectionGetSize,
SectionSetInstTypes,	SectionSetSize,	SetBrandingImage,
SetCompressionLevel,	SetCompressor,	SetCompressorDictSize,
SetCtlColors,	SetCurInstType,	SetPluginUnload,	SetSilent,
ShowWindow,	SubSection	(replaced	by	SectionGroup),
SubSectionEnd	(replaced	by	SectionGroupEnd),	Var,
VIAddVersionKey,	VIProductVersion	and	XPStyle
Removed	commands:	DirShow,	DisabledBitmap,	EnabledBitmap
and	SectionDivider
All	this	and	a	smaller	overhead!	=)
A	lot	more...	See	below	for	more	information

F.64.2.2	Changes	from	RC4

Command	line	parser	ignored	any	switches	after	tokens	that	are	not
switches
Last	part	of	the	path	specified	in	InstallDir	was	appended	even	if
selected	folder	name	was	the	same
Modern	UI	1.70:	Improved	documentation,	new	Init	custom	function
for	Welcome	and	Finish	page
Added	StrFunc	by	deguix
Updated	and	fixed	language	files
Updated,	fixed	and	improved	documentation

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.65	2.0	Release	Candidate	4
Released	on	February	2nd,	2004

F.65.1	Changelog

F.65.1.1	Major	Changes

Fixed	MBCS	mishandling	in	exehead,	InstallOptions	and	nsExec

F.65.1.2	Minor	Changes

Language	files	updates	and	fixes
Fixed	logging	(NSIS_CONFIG_LOG)
Fixed	compile	errors	caused	by	removing	some	config.h	options
NSIS	compiles	without	PSDK	again
Documentation	fixes

F.65.1.3	Utilities	and	Plug-ins

NSISdl:	All	potential	and	rare	crashes	should	be	completely	fixed
now
InstallOptions:	Fixed	a	rare	crash	related	to	ListItems	and	a	small
memory	leak	when	using	ValidateText

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.66	2.0	Release	Candidate	3
Released	on	January	26th,	2004

F.66.1	Changelog

F.66.1.1	Minor	Changes

Fixed	some	bugs	with	LZMA/bzip2	and	non-solid	compression
Fixed	a	bug	that	caused	escaping	not	to	be	ignored	on	extended
!define	lines
Language	files	updates	and	fixes
Fixed	installer	crash	when	certain	language	strings	were	not
referenced	in	all	languages
Some	new	and	improved	graphics
Made	CreateShortcut	case	insensitive	when	parsing	hot	key
Some	documentation	improvements	and	fix-ups
Modern	UI	1.69:	Made	all	uninstaller	pages	work	without	installer
pages	and	fixed	top	text	on	uninstaller	license	page

F.66.1.2	Utilities	and	Plug-ins

MakeNSISW:	Fixed	resize	bug,	fixed	some	UI	issues	in	the	settings
dialog
NSIS	Update:	Improved	UI
InstallOptions:	Fixed	minor	problems	with	the	new	NOTIFY	flag

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.67	2.0	Release	Candidate	2
Released	on	January	5th,	2004

F.67.1	Changelog

F.67.1.1	Minor	Changes

Set	focus	to	the	main	control	in	each	page	to	ease	keyboard	control
(plug-ins	too)
LangStrings	and	user	variables	limit	is	now	16383	and	is	enforced
Fixed	control	colors	set	using	SetCtlColors	not	changing	when	the
system	colors	were	changed
Log	window	now	responds	to	the	context	menu	key
Fixed	a	bug	which	caused	beeping	when	the	space	key	is	hit	on	the
components	tree
Added	code	to	prevent	weird	usage	of	WM_COMMAND	which	can
cause	weird	behavior
Fixed	compile	errors	when	NSIS_CONFIG_COMPONENTPAGE,
NSIS_CONFIG_PLUGIN_SUPPORT	or	NSIS_SUPPORT_HWNDS
are	not	defined
More	language	files	updated	to	the	latest	version
Fixed	CHM's	script	errors
Documentation	improvements

F.67.1.2	Utilities	and	Plug-ins

InstallOptions	2.4:	NOTIFY	for	link,	drop	list	and	list	box;	UI	fixes	and
improvements.	See	IO's	change	log	for	a	complete	list
MakeNSISW:	Improved	user	interface,	added	support	for	named
symbol	sets	and	fixed	best	compressor	selector

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.68	2.0	Release	Candidate	1
Released	on	December	27th,	2003

F.68.1	Release	Notes

Trying	the	LZMA	compression	method	for	your	installer	is
recommended.	It	often	gives	a	20%	better	compression	ratio.
Modern	UI	1.68:	The	setting	to	change	the	title	size	on	the	Welcome
page	and	Finish	page	has	been	changed

F.68.2	Changelog

F.68.2.1	Major	Changes

LZMA	compression	support.	Added	SetCompresssorDictSize.
Modern	UI	1.68:	New	settings	for	extra	space	for	title	and	text	on
Welcome	page	and	Finish	page,	improved	handling	of	verbose
settings,	language	file	string	for	uninstaller	reboot	information,	more
Shell	folders	are	now	detected	using	shell	API	functions	and	not	the
registry.	This	is	the	recommended	method	by	Microsoft.	New
constants	have	been	added	in	the	process	($FONTS,	$SENDTO
and	more...).	See	section	4.2.3	for	more	details.
Added	LogicLib	to	distribution	(easier	conditional	execution	etc.)
Added	DirVerify	and	GetInstDirError	to	allow	custom	error	checking
when	the	installation	directory	is	invalid	or	the	drive	does	not	have
enough	space
Support	for	reading	environmental	variables	at	compile	time:
$%envVarName%
Added	/SD	parameter	for	MessageBox.	Allows	to	set	default	for
silent	installers.
New	conditional	compilation	options:	!ifmacrodef	and	!ifmacrondef.
New	sections	macros	for	mutually	exclusive	section	selection
Improved	RTL	support	by	adding	WS_EX_RTLREADING	wherever
possible

F.68.2.2	Utilities	and	Plug-ins

InstallOptions	2.3:	Added	new	control	type	"Button",	added	new	flag
"NOTIFY",	added	new	flag	"NOWORDWRAP"	for	multi-line	text
boxes,	reduced	size	down	to	12K
MakeNSISW:	More	options	to	set	the	compression	method
Zip2Exe	0.31:	Fixed	compression	setting,	LZMA	compression
support
VPatch	2.1:	Better	error	handling	and	exit	code	for	GenPat

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.69	2.0	Beta	4
Released	on	November	19th,	2003

F.69.1	Release	Notes

The	/LANG	parameter	is	no	longer	available	for	any	text	setting
instructions.	You	must	use	a	LangString	if	you	want	to	make	a
certain	text	multilingual.	This	means	you	can	also	set	one	text	for	all
languages.	To	make	the	license	data	multilingual	you	should	use
LicenseLangString.
Modern	UI	1.67:	Because	of	the	new	syntax	for	pages,	renaming	of
settings	and	variable	names	etc.,	you	have	to	make	some	changes
to	your	scripts,	see	the	Modern	UI	Readme	for	details.
Custom	Pages	now	have	a	leave	function.	As	this	parameter	is
placed	before	the	caption	you	have	to	add	another	""	empty	string	for
the	title	to	work.
.onSelChange	is	no	longer	called	when	the	components	page	is
created.
The	icons	folder	has	been	renamed	to	Graphics	and	was
reorganized.	If	you	were	using	any	files	from	Contrib\Icons	in	your
script,	you	should	update	it	to	point	to	the	new	image	or	icon	path.
UpgradeDLL	has	been	changed,	it's	highly	recommend	that	you
include	the	new	version	in	your	script	using	!include
"UpgradeDLL.nsh"	instead	of	the	old	one.

F.69.2	Changelog

F.69.2.1	Major	Changes

CHM	documentation	-	searchable	and	comes	with	an	index
User	variables	($VARNAME)	that	can	be	declared	with	the	Var
command
Support	for	all	pages	in	both	installer	and	uninstaller.	Components,
directory	and	license	pages	can	be	used	for	the	uninstaller
Improved	large	files	handling	(way	lower	requirements	to	compile	a

2GB	installer	now)
Full	support	for	RTL	languages,	including	support	for	LTR	and	RTL
languages	in	one	installer
Modern	UI	1.67:	New	system	&	syntax	for	pages,	settings	(support
for	multiple	pages	of	the	same	type,	page	specific	settings,	more
customization	options	etc.),	Welcome/Finish	pages	for	uninstaller,
LicenseForceSelection	support,	new	options	for	Finish	page	/
language	selection	dialog,	fixes,	more
Extraction	progress
No	more	unprocessed	strings,	variables	can	be	used	everywhere
Leave	function	for	custom	pages:	Input	on	InstallOptions	pages	can
be	validated	using	script	code
Interface	improvements:	Better	ClearType	support,	no	more
flickering
OnMouseOver	text	is	only	displayed	when	mouse	over	section
NLF	language	files	(v6):	language	specific	fonts,	RTL	and	more
strings
Inner	LangStrings	can	be	used	in	the	script
No	more	/LANG,	only	LangStrings	-	easier	to	set	one	string	to	all
languages
LangStrings	are	no	longer	installer/uninstaller	specific	(no	un.)

F.69.2.2	New/Changed	Commands

Added	PageEx,	PageCallbacks	and	DirVar	-	it's	now	a	lot	easier	to
add	the	same	page	type	twice
Added	FileBufSize
Added	VIAddVersionKey:	add	version	information	resource	to	the
installer
Added	AllowSkipFiles:	set	whether	the	user	should	be	able	to	skip	a
file	when	overwriting	failed
Added	LicenseForceSelection:	checkbox	or	radio	buttons	on	license
page	to	let	user	agree	with	license	or	not
Added	SectionSetSize,	SectionGetSize,	SetCurInstType	and
GetCurInstType
Replaced	SetBkColor	with	SetCtlColors	which	can	set	text	color	too
Added	IfSilent	and	SetSilent	to	allow	better	/S	interaction
Added	support	for	standard	predefines:	${__DATE__},	${__TIME__},

${__TIMESTAMP__},	${__FILE__},	${__LINE__}
Added	ifdiff	and	lastusd	for	SetOverwrite
/o	Switch	for	Section	provides	ability	to	unselect	the	section	by
default
New	parameter	for	DirText	to	set	the	browse	dialog	text
Added	RMDir	/REBOOTOK:	remove	folders	on	reboot
InstType	/NOCUSTOM	and	/COMPONENTSONLYONCUSTOM
work	together
Added	base_dir	for	GetTempFileName

F.69.2.3	Minor	Changes

RO	sections	can	now	be	in	InstTypes	too	(defaults	to	old	behavior)
Increased	limit	of	InstTypes	to	32
Improved	macros	&	functions:	UpgradeDLL,	GetParent,
GetParameters.	Using	the	new	versions	is	recommended.
Fixed	SetOutPath	not	setting	current	directory	if	the	directory	didn't
exist	before
Components	tree:	fixed	problems	with	sub-sections	with	RO	sections
as	children,	SF_EXPAND	now	refreshes	the	components	tree	and
added	SF_PSELECTED	for	partially	selected	sub-sections
Improved	AddBrandingImage:	doesn't	depend	on	the	UI,	can	set
image	on	the	bottom	and	on	the	right,	support	for	custom	padding
value
Better	installation	directory	verification
Fixed	all	known	problems	with	temporary	files	and	directories
Documentation	fixes
Minor	bug	fixes
Code	clean-ups	and	some	more	comments
More...

F.69.2.4	Utilities	and	Plug-ins

MakeNSISW	2.0:	UI	to	define	symbols,	easy	access	to	recent
scripts,	toolbar	and	more
Zip2Exe	0.3:	based	on	header	files,	improved	interface,	Modern	UI
support,	new	script	code,	improved	folder	detection

InstallOptions	2.2:	added	LINK	control,	added	EXTENDEDSELECT
flag	for	list	boxes	which	replaces	MULTISELECT	that	now	acts
exactly	as	the	real	style	flag	([double]	click	turns	on	or	off	selection),
fixes
BgImage	plug-in	stability	fixes
Added	vPatch:	patch	generator	and	plug-in	that	applies	the	patches
Banner	plug-in	improvements:	responds	to	messages	and	some	new
/set	tricks	by	brainsucker
AdvSpalsh	plug-in	improvements:	smaller,	better	transparency
support	and	a	possible	bug	fix
System	plug-in	improvements:	Unicode,	GUID	and	COM	support
nsExec	plug-in	improvments:	ability	to	run	16	bit	code	and	tabs	to
spaces	conversion
Math	plug-in
Delphi	unit	for	NSIS	plug-ins

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.70	2.0	Beta	3
Released	on	March	16th,	2003

Modern	UI	1.63:	Header	bitmap	support,	new	defines	to	change	the
description	area,	single	macro	for	language	selection	dialog,	more!
New	tutorial	in	the	documentation
define_if_last	in	Page	command	also	works	when	a	define	has	not
been	specified	for	all	Page	commands.
This	fixes	the	problem	with	the	Modern	UI	"Click	Next"	/	"Click
Install"	texts.
Added	SectionSetInstTypes	and	SectionGetInstTypes
Reboot	command	does	not	force	a	reboot	anymore	(allows	the	user
to	save	work)
!if[n]def/!else	fixes
LogSet	on	now	really	starts	logging
Cancel	button	available	on	all	pages	after	the	instfiles	page	but	the
last	page	unless	/ENABLECANCEL	was	used	in	its	Page	command
License	page:	No	more	limit	on	RTF	size
LangDLL:	Option	to	auto-count	number	of	languages,	shell	font
support
Page	and	UninstPage	can	not	be	used	inside	sections/functions
CreateDirectory	now	uses	the	error	flag
EnumRegKey/Value	output_var	check	fixed
Updated	translations
Dreaded	BSOD	after	plug-ins	enumeration	finally	banished
Minimize	button	and	BGGradient	and	BGImage	compatibility	fixes
WriteINIStr	with	empty	value	works	again
Added	FlushINI

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.71	2.0	Beta	2
Released	on	February	26th,	2003

NSIS	Menu:	links	to	all	NSIS	utilities,	documentation	and	websites
NSIS	Update:	check	for	new	releases,	download	latest	development
files
Dialer	plugin	to	connect	to	the	internet
Improved	filename	validation
VC7	compiler	compatibility	issues	fixed
CreateDirectory	sets	error	flag
InstallOptions:	INI	File	State	value	fixed
Updated	translations
Minor	fixes

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.72	2.0	Beta	1
Released	on	February	9th,	2003

User	interface	improvements:	better	order/grouping	of	controls,
button	selection	problems	fixed,	added	minimize	box,	transparent
BrandingText
LangString	improvements:	can	be	used	before	they	have	been
defined,	warning	if	not	present	in	all	language	tables
New	version	of	the	Modern	User	Interface	with	UI	improvements,
bugfixes	and	some	small	new	features
InstallOptions	2.0	with	support	for	custom	font	and	DPI	settings,
groupboxes,	grouped	controls,	lots	of	bugfixes	etc.
No	more	random	compression	ratios
SetOutPath	now	sets	the	working	directory
File	names	are	validated,	directory	given	by	the	user	will	now	always
work
$QUICKLAUNCH	now	works	with	SetShellVarContext	all
Automatically	appended	directory	name	in	the	directory	selection
dialog	will	no	longer	contain	squares	if	not	all	characters	are	ASCII.
Fixed	a	bug	with	remote	drives	and	available	space	(\\remote\drive)
Plug-in	function's	names	are	now	case	insensitive
Fixed	a	bug	with	specifying	Icon	twice
Include	dirs	(!addincludedir)
On	leave	function	for	pages
Installers	can	now	really	contain	more	than	one	branding	image
All	!if/!else/!endif	problems	should	be	solved	now
SetFont	"MS	Shell	Dlg"	adds	the	DS_SHELLFONT	style
Win9x	rename	on	reboot	now	also	works	when	the	destination	file
does	not	exist
DeleteRegKey	works	on	default	value
nsExec	can	be	called	from	an	installer	executed	by	CreateProcess
WriteUninstaller	sets	error	code
Banner.dll	compatible	with	Modern	UI
Fixed	focus	problems	in	MakeNSISw
Updated	and	new	translations
Some	new	bitmaps	for	the	MUI	by	Virtlink

Faster	and	better	MakeNSISw	integration
New	.NET	Framework	detection	function
Minor	bugfixes
Code	clean-ups	(compiles	on	VC7)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.73	2.0	Beta	0
Released	on	December	6th,	2002

New	paging	system
Added	Page	and	UninstPage
Removed	.onNextPage,	.onPrevPage,	.onInitDialog
New	easier	version	of	the	Modern	User	Interface	with	better
multilanguage	support,	InstallOptions	integration,	welcome	and	finish
page	etc.
Custom	pages	no	longer	flicker	when	created
Added	accelerator	keys
Added	LangString	and	LangStringUP	for	user	defined	multilingual
strings
Added	support	for	transparent	check	marks
Added	InitPluginsDir
Renamed	nsisconf.nsi	to	nsisconf.nsh
Added	CreateShortcut	comment/description	parameter
Splash.exe	is	now	a	plugin	(splash.dll)
Added	new	plugins:	System,	AdvSplash,	nsExec,	UserInfo,
BgImage,	Banner	and	StartMenu
!ifdef	and	friends	can	now	be	used	in	macros
SendMessage	can	send	strings	(put	STR:	before	a	param)	and
supports	timeouts
Right	mouse	button	"Copy	to	clipboard"	context	menu	for	the	Details
window
Plugin	syntax	now	requires	dll	name,	e.g.	dll::func	not	just	func
Licence	text	receives	initial	focus	(page	up	&	down	work
immediately,	return	key	still	works)
Made	win9x	move/delete	on	reboot	support	proper	and	function	like
on	win2k
Now	always	loads	RichEdit	v2	if	present	(links	work	on	Win9x)
DeleteRegKey	now	complains	if	given	a	third	parameter	(other	than
/ifempty)
RegDLL	now	works	with	DLLs	dependent	on	DLLs	from	the	same
directory
${LANG_langName}	defined	as	the	language	id	when	loading	a	NLF

Fixed	a	few	bugs	that	caused	the	installer	to	load	slower	than	before
Uninstall	can	now	get	command	line	parameters	too
Added	ReserveFile
Added	ExDLL.h
Included	makensisw	1.9	(lots	of	changes)
Updated	InstallOptions
Updated	ZIP2EXE
Updated	HTTP	download	plugin,	NSIS-dl	(timeout	added,	better
proxy	detection)
A	lot	of	new	language	files
A	lot	of	new	icons	and	check	marks
Changed	section	flags	values
SectionSetFlags	can	now	set	bold	too
SectionSetFlags	now	works	in	silent	installers	too
SectionSetName	for	sub	sections	doesn't	need	'-'	in	front	of	the
name
Added	SetPluginUnload
Hidden	section	can	now	use	SectionIn	too
File	/nonfatal	switch	added
Plugins	no	longer	add	size	to	their	containing	section
Defines	can	now	be	used	inside	define	names	(${bla${blo}})
New	docs	format	(WOOHA!)
EXE	header	size	a	lot	smaller,	33.5KB	for	bzip2	and	34KB	for	zlib
Lots	of	other	bugs	fixed...

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.74	2.0	Alpha	7
Released	on	August	29th,	2002

Can	now	select	the	language	from	.onInit	($LANGUAGE	is	a
variable)
Added	CreateFont
Added	.onMouseOverSection
Added	.onInitDialog	and	un.onInitDialog
Added	SetStaticBkColor
Disabled	UseOuterUIItem
SendMessage	WM_SETTEXT	treats	lParam	as	a	string	and	not	a
number
CopyFiles	script	message	no	longer	always	prints	(silent)
Custom	install	type	text	can	now	be	changed
ChangeUI	can	now	change	IDD_VERIFY
Default	license	color	now	fits	the	user	system
Summary	reports	the	right	number	of	required	sections
Checkbox	is	only	required	in	IDD_DIR	if	logging	is	enabled
Not	using	/LANG	now	really	causes	the	script	compiler	to	use	the
last	used	language
Fixed	a	bug	with	MBCS	and	the	uninstaller	text
MBCS	to	Unicode	and	Unicode	to	MBCS	conversion	bugs	fixed
Fixed	a	bug	that	caused	RTF	not	to	show	on	Windows	9x
Added	a	dialog	that	shows	up	if	compress	whole	is	used	and	initial
decompressing	lasts	longer	than	a	second
Updated	to	InstallOptions	1.3
MakeNSISw	1.7	included
Added	modern	UI	by	Joost	Verburg	(Examples\Modern	UI)
Added	new	full	color	icons	by	adni18
Added	Dutch,	Korean,	Russian,	Swedish	and	Traditional	Chinese
language	files
Updated	Spanish	language	file	version	(thanks	to	LsMoNKi)
Added	/TRIM(LEFT|RIGHT|CENTER)	for	BrandingText
EXE	header	size	down	to	36.5KB
Added	yi-pixel.ico	and	yi-pixel-uninstall.ico	by	Jan	T.	Sott
Fixed	a	bug	with	macros	at	the	end	of	the	file

Sub-sections	can	now	have	defined	names	too
Added	LangDLL.dll	plugin
CallInstDLL	/NOUNLOAD	added	(works	on	plugin	calls	too)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.75	2.0	Alpha	6
Released	on	August	10th,	2002

Fixed	two	bugs	with	the	plug-in	mechanism
Fixed	infinite	loop	bug

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.76	2.0	Alpha	5
Released	on	August	9th,	2002

Added	UseOuterUIItem
Enhanced	ChangeUI
Enhanced	SetDlgItemText
Added	one-section.nsi	example	file
Optimized	Ximon's	code	for	plug-in	DLLs	(back	to	37KB)
If	default	user	language	doesn't	fit	exactly,	will	try	to	find	primary
language	match
Fixed	some	strings	that	got	replaced	(space	available	and	required
etc.)
Compiles	without	MS	Platform	SDK
Included	Spanish.nlf
Included	MagicLime.exe	by	snowchyld

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.77	2.0	Alpha	4
Released	on	August	5th,	2002

Added	automatic	detection,	packing,	unpacking	and	deletion	of
plugin	dlls
Added	simplified	calling	syntax	for	plugin	dlls
Added	PluginDir

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.78	2.0	Alpha	3
Released	on	August	4th,	2002

Added	LoadLanguageFile
Added	$LANGUAGE
Added	/LANG	option	to	string	setters	(Name,	Caption,	etc.)
'LogSet	on'	now	builds	a	log	file	if	not	already	created

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.79	2.0	Alpha	2
Released	on	July	31st,	2002

Added	${NSISDIR}
Added	XPStyle
Added	SetFont
Added	ChangeUI
Added	AddBrandingImage,	and	SetBrandingImage
Added	SetCompressor	(no	more	makensis-bz2.exe)
Added	LicenseBkColor
'SpaceTexts	none'	now	causes	no	space	texts	to	appear
Icon	and	UninstallIcon	now	support	icons	of	any	type
CheckBitmap	now	support	bitmaps	with	any	color	table/depth
Unused	resources	are	removed	before	writing	out	the	installer
Documented	!error	and	!warning
Added	!echo	and	!verbose
Added	force	option	for	CRCCheck
Updated	to	Makensisw	1.6
Updated	to	InstallOptions	1.2
Installer	can	now	be	compressed	using	UPX
A	hint	is	shown	if	a	line	is	longer	than	the	detail	window
Modern	style	folder	select	dialog
License	data	can	now	be	RTF
WindowIcon	is	now	handled	in	the	compiler
Removed	debug	version	(it	never	worked	anyway)
Faster	compile	time	(WIN32_LEAN_AND_MEAN)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.80	2.0	Alpha	1
Released	on	July	9th,	2002

Added	expand	node	option	to	Section	and	SubSection
Added	preserve	file	attribute	option	to	File	command
Copy-All	bug	fix	in	Makensisw
Added	NSISDIR	to	the	define	list
Reorganized	NSIS	directory	structure

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.81	2.0	Alpha	0
Released	on	May	22nd,	2002

TreeView	component	list	(care	of	Jeff	Doozan)
No	more	SectionDivider,	but	SubSection	and	SubSectionEnd.
No	more	EnabledBitmap/DisabledBitmap,	just	CheckBitmap.	(with
tons	of	button	states)
Bugfixes	of	brokenness.
Added	!	for	Section/SubSection	to	make	bold.
Made	config.h	have	hacks	for	easier	building	for	me.	:)

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

F.82	Older	Versions
NSIS	1.x	version	history

Previous	|	Contents	|	Next

http://wayback.archive.org/web/20100820151646/http://www.nullsoft.com/free/nsis/version-history.html

Previous	|	Contents	|	Next

Appendix	G:	Building	NSIS
NSIS	version	2.07	introduced	a	new	build	system,	based	on	SCons.	The
build	system	can	build	the	entire	NSIS	package	so	you	no	longer	need	to
build	it	project	by	project.	It	allows	building	using	several	simultaneous
jobs,	installation	without	an	installer	on	both	Windows	and	POSIX	and
easy	compilation	with	debugging	symbols.

The	official	release	is	built	with	MSVC6	Service	Pack	5	(Mirror)	with	the
Processor	Pack	and	the	February	2003	Platform	SDK	(5.2.3790.0).

Building	in	General
Building	on	Windows
Building	on	POSIX
Nightly	Builds

Previous	|	Contents	|	Next

http://www.scons.org/
http://web.archive.org/web/20060509123628/http://msdn2.microsoft.com/en-us/vstudio/aa718363.aspx
http://dl.dropbox.com/u/20029891/vs6sp5.exe
http://wayback.archive.org/web/20100923113933/http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx

Previous	|	Contents	|	Next

G.1	Building	in	General
Source	code	is	available	in	SVN	and	as	a	separate	package	with	every
NSIS	distribution.

To	build	NSIS,	Python	and	SCons	must	be	installed.	Currently,	the
supported	version	of	SCons	is	version	1.2.0	and	above.	Any	version	of
Python	above	1.6	is	supported.

NSIS	uses	the	zlib	compression	library.	As	a	consequence	the	header
and	library	files	of	zlib	must	be	installed.

In	case	these	zlib	development	files	aren't	present	then	they	could	be
installed	via	a	package	manager	(apt-get,	aptitude,	rpm,	yum)	on	POSIX
platforms.	Another	option	is	to	build	zlib	from	scratch	and	install	it.

For	Windows	it	is	recommended	to	download	zlib	from
http://nsis.sf.net/Zlib.	Extract	the	contents	of	this	zip	archive	to	a	folder	of
your	choice,	e.g.	C:\dev\zlib-1.2.7	and	set	an	environment	variable
named	ZLIB_W32	containing	this	path.

C:\>set	ZLIB_W32=C:\dev\zlib-1.2.7

Alternatively	the	command	line	option	ZLIB_W32	specifying	the	path	can
be	passed	to	scons	instead	of	the	environment	variable.

C:\dev\nsis>scons	ZLIB_W32=C:\dev\zlib-1.2.7

The	header	and	library	files	are	assumed	to	be	in	%ZLIB_W32%.	In
addition	scons	checks	for	zlib	header	files	in	%ZLIB_W32%\include,	the
import	library	zdll.lib	in	%ZLIB_W32%\lib	and	the	dynamic	link	library
zlib1.dll	in	%ZLIB_W32%	respectively	%ZLIB_W32%\lib.

To	build,	open	a	console,	change	the	working	directory	to	the	root
directory	of	NSIS	and	type	scons.	That's	it.	For	example:

C:\>cd	dev\nsis
C:\dev\nsis>scons

http://nsis.svn.sourceforge.net/viewvc/nsis/
http://sourceforge.net/project/showfiles.php?group_id=22049
http://www.python.org/
http://www.scons.org/
http://zlib.net
http://zlib.net
http://nsis.sf.net/Zlib

scons:	Reading	SConscript	files	...
Using	Microsoft	tools	configuration
Checking	for	main()	in	C	library	gdi32...	(cached)	yes
Checking	for	main()	in	C	library	user32...	(cached)	yes
Checking	for	main()	in	C	library	version...	(cached)	yes
Checking	for	main()	in	C	library	pthread...	(cached)	no
Checking	for	main()	in	C	library	stdc++...	(cached)	no
Checking	for	main()	in	C	library	iconv...	(cached)	no
Checking	for	main()	in	C	library	libiconv...	(cached)	no
scons:	done	reading	SConscript	files.
scons:	Building	targets	...
...

To	install	the	built	files,	type:

scons	PREFIX="C:\Program	Files\NSIS"	install

To	create	an	installer	(only	on	Windows),	type:

scons	dist-installer

To	create	a	distribution	zip	file,	type:

scons	dist-zip

To	create	both,	type:

scons	dist

To	get	a	complete	list	of	options	that	the	build	system	has	to	offer,	type:

scons	-h

To	get	a	complete	list	of	options	SCons	has	to	offer,	type:

scons	-H

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

G.2	Building	on	Windows
SCons	will	automatically	detect	Microsoft	Visual	C++.	If	you	are	looking
for	a	free	compiler	to	compile	NSIS,	we	recommend	Microsoft	Visual	C++
2005	Express	Edition.

When	using	the	Microsoft	Visual	C++	Toolkit	2003,	add	MSTOOLKIT=yes
to	the	build	command	line:

scons	MSTOOLKIT=yes

In	case	of	errors	about	the	compiler	or	the	Platform	SDK	not	being	found,
use:

set	MSSDK=C:\Path\To\Platform	SDK
set	VCToolkitInstallDir=C:\Path\To\VCToolkit
scons	MSTOOLKIT=yes

The	open-source	MinGW	can	also	be	used	to	for	building	but	this	results
in	noticeably	larger	installers.	Borland	C++	or	Open	Watcom	C/C++	might
also	work,	but	haven't	been	tested.

To	compile	the	documentation	as	a	CHM	file,	hhc.exe	must	be	in	the
PATH.	It	is	available	as	part	of	HTML	Help	Workshop.

To	build	NSIS	Menu,	install	wxWidgets	2.8,	create	an	environment
variable	named	WXWIN	containing	the	path	to	the	installation	directory	of
wxWidgets,	run	Contrib\NSIS	Menu\wx\wxbuild.bat	and	build	NSIS	as
usual.

Important	notes	for	Microsoft	Visual	C++	6.0	users:	The	2003
Platform	SDK	must	be	installed	before	building,	you	can	download	it	here
or	order	it	on	CD.	Because	of	flaws	in	the	libraries	distributed	with
Microsoft	Visual	C++	6.0,	not	installing	the	Platform	SDK	will	result	in
crashes	when	using	the	CopyFiles	command.	See	this	forum	topic	for
more	information.	Installing	the	Processor	Pack	is	highly	recommended
to	decrease	the	size	of	the	installer	overhead.

http://wayback.archive.org/web/20080409141506/http://www.microsoft.com/express/2005/download/offline.aspx
http://www.mingw.org/
http://wayback.archive.org/web/20121021033631/http://msdn.microsoft.com/en-us/library/ms669985
http://www.wxwidgets.org/
http://groups.google.com/group/microsoft.public.platformsdk.sdk_install/msg/087b0178f5d8159e
http://go.microsoft.com/fwlink/?LinkId=48615
http://forums.winamp.com/showthread.php?s=&threadid=131964
http://wayback.archive.org/web/20100923113933/http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx

Important	note	for	Microsoft	Visual	C++	2012	users:	Installers
generated	using	this	release	and	beyond	will	not	be	able	to	run	on
Windows	9x	or	Windows	2000.	The	minimum	requirement	for	2012	is
Windows	XP.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

G.3	Building	on	POSIX
As	of	NSIS	2.01,	the	compiler,	makensis,	also	compiles	on	POSIX
platforms.	POSIX	platforms	include	Linux,	*BSD,	Mac	OS	X	and	others.
Since	the	generated	installer	will	eventually	run	on	Windows,	a	cross-
compiler	is	needed	in	order	to	compile	them.

The	command	line	option	XGCC_W32_PREFIX	could	be	used	to
explicitly	select	a	specific	win32	targeted	cross	compiler.	The	value	of
XGCC_W32_PREFIX	has	to	be	the	prefix	of	the	toolchain.	For	example
XGCC_W32_PREFIX=i686-w64-mingw32-	would	deploy	the	win32
targeted	MinGW-w64	cross	compiler	if	it	is	available	on	the	build	system.

If	no	cross-compiler	is	available,	use	the	following:

scons	SKIPSTUBS=all	SKIPPLUGINS=all	SKIPUTILS=all	SKIPMISC=all
						NSIS_CONFIG_CONST_DATA_PATH=no	PREFIX=/path/to/extracted/zip
						install-compiler

scons	NSIS_CONFIG_CONST_DATA_PATH=no	PREFIX=/path/to/extracted/zip
						/path/to/extracted/zip/LibraryLocal

This	should	only	build	makensis	and	install	it	to	the	directory	where	a
precompiled	package,	such	as	the	nightly	build	or	a	zipped	release
version	(nsis-x.xx.zip),	is	extracted.	Note	that	the	in	order	for	this	to	work,
the	precompiled	package	must	be	compiled	using	the	exact	same
sources	as	makensis.	In	particular,	Source\exehead\config.h,	the	options
passed	to	scons	and	Source\exehead\fileform.h	must	be	identical.
Nightly	builds	and	zipped	release	versions	are	built	with	the	default
options.

To	build	a	native	version	of	NSIS	Menu,	install	wxWidgets	2.8	and	build
as	usual.	wx-config	must	be	in	the	path.

Previous	|	Contents	|	Next

http://www.libsdl.org/extras/win32/cross/README.txt
http://sourceforge.net/project/showfiles.php?group_id=22049
http://www.wxwidgets.org/

Previous	|	Contents	|	Next

G.4	Nightly	Builds
There	is	no	need	to	manually	build	the	latest	SVN	version	for	Windows.	A
nightly	build	is	available.	The	nightly	build	is	automatically	generated
every	night,	using	the	latest	version	of	the	source	code	from	SVN.	There
is	no	official	nightly	build	for	other	platforms.

Previous	|	Contents	|	Next

http://nsis.sourceforge.net/nightly/nsis.zip

Previous	|	Contents	|	Next

Appendix	H:	Credits
Programmers
Testers
Designers
Translators
Writers

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

H.1	Programmers
Justin	Frankel	aka	0xDEADBEEF

Creating	the	all	mighty	NSIS

Amir	"make	me	stop"	Szekely	aka	KiCHiK

Multilingual	NSIS
RTF	license	text
The	new	paging	system
Full	color	support	for	icons	and	bitmaps
Branding	image
Customizable	UI
One	makensis.exe	for	both	zlib	and	bzip2

Joost	Verburg

Modern	User	Interface
NSIS	website
NSIS	Menu
System	for	DLL/TLB	library	setup
NSIS	Update	for	NSIS	distribution	(original	version	by	Nathan
Purciful)

Robert	Rainwater

MakeNSISW
New	documentation	format
Enhancing	the	TreeView
Reorganizing	NSIS	directory	structure

Dave	"bit-by-bit"	Laundon	aka	eccles

Massive	optimizing

Ximon	Eighteen	aka	Sunjammer

The	new	plug-ins	system

"Copy	to	clipboard"	context	menu	for	the	Details	window
License	text	initial	focus

Ramon	aka	Ramon18

Version	information	resource	commands
Named	user	variables
Lots	of	UI	fixes
InstallOptions	improvements

Jim	Park

Unicode	support

Olivier	Marcoux	aka	Wizou

Unicode	merge

nnop@newmail.ru

Ryan	Geiss

Andras	Varga

Drew	Davidson

Peter	Windridge

Yaroslav	Faybishenko

Jeff	Doozan

NSIS	2's	new	TreeView

Nike	(nike@sendmail.ru)

HTML	Help	support	for	Halibut

Diego	Pedroso	aka	deguix

New	NSIS	Wiki

Shengalts	Aleksander	aka	Instructor

Stuart	Welch	aka	Afrow	UK

David	Weiss	aka	Comm@nder21

Anders	Kjersem

NSIS	3	patron	saint
64-bit	support
Unicode	merge	&	support
NSIS	3	POSIX	support

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

H.2	Testers
Jason	Ross	aka	JasonFriday13

NSIS	3	POSIX	support

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

H.3	Designers
Nikos	Adamamas

The	new	modern	icons

Jan	T.	Sott	/	whyEye.org

Lots	of	icons	and	check	marks

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

H.4	Translators
Albanian	-	Besnik	Bleta

Afrikaans	-	Friedel	Wolff

Arabic	-	asdfuae,	Rami	Kattan

Armenian	-	Hrant	Ohanyan

Asturian	-	Marcos	(marcoscostales@gmail.com)

Basque	-	Iñaki	San	Vicente

Belarusian	-	Sitnikov	Vjacheslav

Bosnian	-	Salih	CAVKIC

Breton	-	Korvigelloù	An	Drouizig

Bulgarian	-	Asparouh	Kalyandjiev,	Plamen	Penkov

Catalan	-	falanko

Chinese	(Simplified)	-	Kii	Ali

Chinese	(Traditional)	-	Kii	Ali,	Walter	Cheuk

Corsican	-	Patriccollu	di	Santa	Maria	è	Sichè

Croatian	-	Igor	Ostriz,	Vedran	"RIV@NVX"	Miletic

Czech	-	T.V.	Zuggy,	SELiCE

Danish	-	Christopher,	Casper	Bergenstoff,	Claus	Futtrup

Dutch	-	Hendri	Adriaens,	Joost	Verburg

Esperanto	-	Felipe	Castro

Estonian	-	izzo

Farsi	-	Masoud	Alinaqian,	FzerorubigD,	Elnaz	Sarbar

Finnish	-	AKX,	Eclipser

French	-	veekee,	Sebastien	Delahaye,	Jerome	Charaoui

Galician	-	Ramon	Flores

Georgian	-	David	Huriev

German	-	L.King,	K.	Windszus,	R.	Bisswanger,	M.	Simmack,	Tim	Kosse

Greek	-	Makidis	N.	Michael

Hebrew	-	Amir	Szekely	(aka	KiCHiK),	Yaron	Shahrabani

Hungarian	-	Soft-Trans	Bt.,	Jozsef	Tamas	Herczeg,	Lajos	Molnar
(Orfanik)

Icelandic	-	Gretar	Orri	Kristinsson

Indonesian	-	ariel825010106

Italian	-	Orfanik,	sanface,	Alessandro	Staltari,	Lorenzo	Bevilacqua

Japanese	-	Dnanako,	Takahiro	Yoshimura

Khmer	-	yi	sophally

Korean	-	dTomoyo,	linak,	koder

Kurdish	-	Erdal	Ronahi

Latvian	-	Valdis	Griíis,	Kristaps	Meòìelis

Lithuanian	-	NorCis,	Vytautas	Krivickas,	Danielius	Scepanskis

Luxembourgish	-	Jo	Hoeser

Macedonian	-	Sasko	Zdravkin

Mongolian	-	Bayarsaikhan	Enkhtaivan

Norwegian	-	Jonas	Christoffer	Lindstrom,	Jan	Ivar	Beddari

Norwegian	Nynorsk	-	Vebjørn	Sture

Pashto	-	Pakhtosoft

Polish	-	Piotr	Murawski,	Rafał	Lampe,	cube,	SYSTEMsoft	Group,	Marek
Stępień,	Mateusz	Gola,	Paweł	Porwisz

Portuguese	-	DragonSoull,	Dre',	Ramon

Portuguese	Brasil	-	Layout	do	Brasil,	deguix

Romanian	-	Sorin	Sbarnea,	Cristian	Pirvu,	George	Radu,	Vlad	Rusu

Russian	-	Sergey	`Timon`	Kusnetsov,	Nik	Medved,	Scam,	THRaSH,
Dmitry	Yerokhin

Serbian	-	Srdjan	Obucina

Serbian	Latin	-	Srdjan	Obucina,	Vladan	Obradovic

Slovak	-	trace,	Kypec,	Marián	Hikaník

Slovenian	-	Janez	Dolinar,	Martin	Sebotnjak

Spanish	-	MoNKi,	Lobo	Lunar,	Darwin	Rodrigo	Toledo	Cáceres

Swedish	-	Peter	Gustafsson,	Magnus	Bonnevier,	Rickard	Angbratt

Thai	-	SoKoOLz,	TuW@nNu	(asdfuae)

Turkish	-	Bertan	Kodamanoglu,	Cagatay	Dilsiz,	Fatih	BOY

Ukrainian	-	Yuri	Holubow,	Nash-Soft

Uzbek	-	Emil	Garipov	(emil.garipov@gmail.com)

Valencian	-	Bernardo	Arlandis	Mañó

Vietnamese	-	Clytie	Siddall

Welsh	-	Rhoslyn	Prys,	Meddal.com

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

H.5	Writers
Sebastian	Armbrust	aka	flizebogen

Tutorial

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Appendix	I:	License
Copyright
Applicable	licenses
zlib/libpng	license
bzip2	license
Common	Public	License	version	1.0
Special	exception	for	LZMA	compression	module

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

I.1	Copyright
Copyright	(C)	1999-2017	Contributors

More	detailed	copyright	information	can	be	found	in	the	individual	source
code	files.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

I.2	Applicable	licenses
All	NSIS	source	code,	plug-ins,	documentation,	examples,	header
files	and	graphics,	with	the	exception	of	the	compression	modules
and	where	otherwise	noted,	are	licensed	under	the	zlib/libpng
license.
The	zlib	compression	module	for	NSIS	is	licensed	under	the
zlib/libpng	license.
The	bzip2	compression	module	for	NSIS	is	licensed	under	the	bzip2
license.
The	lzma	compression	module	for	NSIS	is	licensed	under	the
Common	Public	License	version	1.0.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

I.3	zlib/libpng	license
This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.
In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from
the	use	of	this	software.

Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,
including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,
subject	to	the	following	restrictions:

1.	 The	origin	of	this	software	must	not	be	misrepresented;	you	must	not
claim	that	you	wrote	the	original	software.	If	you	use	this	software	in
a	product,	an	acknowledgment	in	the	product	documentation	would
be	appreciated	but	is	not	required.

2.	 Altered	source	versions	must	be	plainly	marked	as	such,	and	must
not	be	misrepresented	as	being	the	original	software.

3.	 This	notice	may	not	be	removed	or	altered	from	any	source
distribution.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

I.4	bzip2	license
Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright
notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	 The	origin	of	this	software	must	not	be	misrepresented;	you	must	not
claim	that	you	wrote	the	original	software.	If	you	use	this	software	in
a	product,	an	acknowledgment	in	the	product	documentation	would
be	appreciated	but	is	not	required.

3.	 Altered	source	versions	must	be	plainly	marked	as	such,	and	must
not	be	misrepresented	as	being	the	original	software.

4.	 The	name	of	the	author	may	not	be	used	to	endorse	or	promote
products	derived	from	this	software	without	specific	prior	written
permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	``AS	IS''	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY
AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN
NO	EVENT	SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF
USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER
IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
OF	SUCH	DAMAGE.

Julian	Seward,	Cambridge,	UK.

jseward@acm.org

Previous	|	Contents	|	Next

mailto:jseward@acm.org

Previous	|	Contents	|	Next

I.5	Common	Public	License	version	1.0
THE	ACCOMPANYING	PROGRAM	IS	PROVIDED	UNDER	THE	TERMS
OF	THIS	COMMON	PUBLIC	LICENSE	("AGREEMENT").	ANY	USE,
REPRODUCTION	OR	DISTRIBUTION	OF	THE	PROGRAM
CONSTITUTES	RECIPIENT'S	ACCEPTANCE	OF	THIS	AGREEMENT.

1.	DEFINITIONS

"Contribution"	means:

a)	in	the	case	of	the	initial	Contributor,	the	initial	code	and	documentation
distributed	under	this	Agreement,	and	b)	in	the	case	of	each	subsequent
Contributor:

i)	changes	to	the	Program,	and

ii)	additions	to	the	Program;

where	such	changes	and/or	additions	to	the	Program	originate	from	and
are	distributed	by	that	particular	Contributor.	A	Contribution	'originates'
from	a	Contributor	if	it	was	added	to	the	Program	by	such	Contributor
itself	or	anyone	acting	on	such	Contributor's	behalf.	Contributions	do	not
include	additions	to	the	Program	which:	(i)	are	separate	modules	of
software	distributed	in	conjunction	with	the	Program	under	their	own
license	agreement,	and	(ii)	are	not	derivative	works	of	the	Program.

"Contributor"	means	any	person	or	entity	that	distributes	the	Program.

"Licensed	Patents	"	mean	patent	claims	licensable	by	a	Contributor
which	are	necessarily	infringed	by	the	use	or	sale	of	its	Contribution
alone	or	when	combined	with	the	Program.

"Program"	means	the	Contributions	distributed	in	accordance	with	this
Agreement.

"Recipient"	means	anyone	who	receives	the	Program	under	this
Agreement,	including	all	Contributors.

2.	GRANT	OF	RIGHTS

a)	Subject	to	the	terms	of	this	Agreement,	each	Contributor	hereby	grants
Recipient	a	non-exclusive,	worldwide,	royalty-free	copyright	license	to
reproduce,	prepare	derivative	works	of,	publicly	display,	publicly	perform,
distribute	and	sublicense	the	Contribution	of	such	Contributor,	if	any,	and
such	derivative	works,	in	source	code	and	object	code	form.

b)	Subject	to	the	terms	of	this	Agreement,	each	Contributor	hereby	grants
Recipient	a	non-exclusive,	worldwide,	royalty-free	patent	license	under
Licensed	Patents	to	make,	use,	sell,	offer	to	sell,	import	and	otherwise
transfer	the	Contribution	of	such	Contributor,	if	any,	in	source	code	and
object	code	form.	This	patent	license	shall	apply	to	the	combination	of	the
Contribution	and	the	Program	if,	at	the	time	the	Contribution	is	added	by
the	Contributor,	such	addition	of	the	Contribution	causes	such
combination	to	be	covered	by	the	Licensed	Patents.	The	patent	license
shall	not	apply	to	any	other	combinations	which	include	the	Contribution.
No	hardware	per	se	is	licensed	hereunder.

c)	Recipient	understands	that	although	each	Contributor	grants	the
licenses	to	its	Contributions	set	forth	herein,	no	assurances	are	provided
by	any	Contributor	that	the	Program	does	not	infringe	the	patent	or	other
intellectual	property	rights	of	any	other	entity.	Each	Contributor	disclaims
any	liability	to	Recipient	for	claims	brought	by	any	other	entity	based	on
infringement	of	intellectual	property	rights	or	otherwise.	As	a	condition	to
exercising	the	rights	and	licenses	granted	hereunder,	each	Recipient
hereby	assumes	sole	responsibility	to	secure	any	other	intellectual
property	rights	needed,	if	any.	For	example,	if	a	third	party	patent	license
is	required	to	allow	Recipient	to	distribute	the	Program,	it	is	Recipient's
responsibility	to	acquire	that	license	before	distributing	the	Program.

d)	Each	Contributor	represents	that	to	its	knowledge	it	has	sufficient
copyright	rights	in	its	Contribution,	if	any,	to	grant	the	copyright	license
set	forth	in	this	Agreement.

3.	REQUIREMENTS

A	Contributor	may	choose	to	distribute	the	Program	in	object	code	form
under	its	own	license	agreement,	provided	that:

a)	it	complies	with	the	terms	and	conditions	of	this	Agreement;	and

b)	its	license	agreement:

i)	effectively	disclaims	on	behalf	of	all	Contributors	all	warranties	and
conditions,	express	and	implied,	including	warranties	or	conditions	of	title
and	non-infringement,	and	implied	warranties	or	conditions	of
merchantability	and	fitness	for	a	particular	purpose;

ii)	effectively	excludes	on	behalf	of	all	Contributors	all	liability	for
damages,	including	direct,	indirect,	special,	incidental	and	consequential
damages,	such	as	lost	profits;

iii)	states	that	any	provisions	which	differ	from	this	Agreement	are	offered
by	that	Contributor	alone	and	not	by	any	other	party;	and

iv)	states	that	source	code	for	the	Program	is	available	from	such
Contributor,	and	informs	licensees	how	to	obtain	it	in	a	reasonable
manner	on	or	through	a	medium	customarily	used	for	software	exchange.

When	the	Program	is	made	available	in	source	code	form:

a)	it	must	be	made	available	under	this	Agreement;	and

b)	a	copy	of	this	Agreement	must	be	included	with	each	copy	of	the
Program.

Contributors	may	not	remove	or	alter	any	copyright	notices	contained
within	the	Program.

Each	Contributor	must	identify	itself	as	the	originator	of	its	Contribution,	if
any,	in	a	manner	that	reasonably	allows	subsequent	Recipients	to	identify
the	originator	of	the	Contribution.

4.	COMMERCIAL	DISTRIBUTION

Commercial	distributors	of	software	may	accept	certain	responsibilities
with	respect	to	end	users,	business	partners	and	the	like.	While	this
license	is	intended	to	facilitate	the	commercial	use	of	the	Program,	the
Contributor	who	includes	the	Program	in	a	commercial	product	offering

should	do	so	in	a	manner	which	does	not	create	potential	liability	for
other	Contributors.	Therefore,	if	a	Contributor	includes	the	Program	in	a
commercial	product	offering,	such	Contributor	("Commercial	Contributor")
hereby	agrees	to	defend	and	indemnify	every	other	Contributor
("Indemnified	Contributor")	against	any	losses,	damages	and	costs
(collectively	"Losses")	arising	from	claims,	lawsuits	and	other	legal
actions	brought	by	a	third	party	against	the	Indemnified	Contributor	to	the
extent	caused	by	the	acts	or	omissions	of	such	Commercial	Contributor
in	connection	with	its	distribution	of	the	Program	in	a	commercial	product
offering.	The	obligations	in	this	section	do	not	apply	to	any	claims	or
Losses	relating	to	any	actual	or	alleged	intellectual	property	infringement.
In	order	to	qualify,	an	Indemnified	Contributor	must:	a)	promptly	notify	the
Commercial	Contributor	in	writing	of	such	claim,	and	b)	allow	the
Commercial	Contributor	to	control,	and	cooperate	with	the	Commercial
Contributor	in,	the	defense	and	any	related	settlement	negotiations.	The
Indemnified	Contributor	may	participate	in	any	such	claim	at	its	own
expense.

For	example,	a	Contributor	might	include	the	Program	in	a	commercial
product	offering,	Product	X.	That	Contributor	is	then	a	Commercial
Contributor.	If	that	Commercial	Contributor	then	makes	performance
claims,	or	offers	warranties	related	to	Product	X,	those	performance
claims	and	warranties	are	such	Commercial	Contributor's	responsibility
alone.	Under	this	section,	the	Commercial	Contributor	would	have	to
defend	claims	against	the	other	Contributors	related	to	those
performance	claims	and	warranties,	and	if	a	court	requires	any	other
Contributor	to	pay	any	damages	as	a	result,	the	Commercial	Contributor
must	pay	those	damages.

5.	NO	WARRANTY

EXCEPT	AS	EXPRESSLY	SET	FORTH	IN	THIS	AGREEMENT,	THE
PROGRAM	IS	PROVIDED	ON	AN	"AS	IS"	BASIS,	WITHOUT
WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	EITHER	EXPRESS
OR	IMPLIED	INCLUDING,	WITHOUT	LIMITATION,	ANY	WARRANTIES
OR	CONDITIONS	OF	TITLE,	NON-INFRINGEMENT,
MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.
Each	Recipient	is	solely	responsible	for	determining	the	appropriateness
of	using	and	distributing	the	Program	and	assumes	all	risks	associated

with	its	exercise	of	rights	under	this	Agreement,	including	but	not	limited
to	the	risks	and	costs	of	program	errors,	compliance	with	applicable	laws,
damage	to	or	loss	of	data,	programs	or	equipment,	and	unavailability	or
interruption	of	operations.

6.	DISCLAIMER	OF	LIABILITY

EXCEPT	AS	EXPRESSLY	SET	FORTH	IN	THIS	AGREEMENT,
NEITHER	RECIPIENT	NOR	ANY	CONTRIBUTORS	SHALL	HAVE	ANY
LIABILITY	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,
EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING
WITHOUT	LIMITATION	LOST	PROFITS),	HOWEVER	CAUSED	AND
ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT
LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)
ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OR	DISTRIBUTION	OF	THE
PROGRAM	OR	THE	EXERCISE	OF	ANY	RIGHTS	GRANTED
HEREUNDER,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGES.

7.	GENERAL

If	any	provision	of	this	Agreement	is	invalid	or	unenforceable	under
applicable	law,	it	shall	not	affect	the	validity	or	enforceability	of	the
remainder	of	the	terms	of	this	Agreement,	and	without	further	action	by
the	parties	hereto,	such	provision	shall	be	reformed	to	the	minimum
extent	necessary	to	make	such	provision	valid	and	enforceable.

If	Recipient	institutes	patent	litigation	against	a	Contributor	with	respect	to
a	patent	applicable	to	software	(including	a	cross-claim	or	counterclaim	in
a	lawsuit),	then	any	patent	licenses	granted	by	that	Contributor	to	such
Recipient	under	this	Agreement	shall	terminate	as	of	the	date	such
litigation	is	filed.	In	addition,	if	Recipient	institutes	patent	litigation	against
any	entity	(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging
that	the	Program	itself	(excluding	combinations	of	the	Program	with	other
software	or	hardware)	infringes	such	Recipient's	patent(s),	then	such
Recipient's	rights	granted	under	Section	2(b)	shall	terminate	as	of	the
date	such	litigation	is	filed.

All	Recipient's	rights	under	this	Agreement	shall	terminate	if	it	fails	to

comply	with	any	of	the	material	terms	or	conditions	of	this	Agreement	and
does	not	cure	such	failure	in	a	reasonable	period	of	time	after	becoming
aware	of	such	noncompliance.	If	all	Recipient's	rights	under	this
Agreement	terminate,	Recipient	agrees	to	cease	use	and	distribution	of
the	Program	as	soon	as	reasonably	practicable.	However,	Recipient's
obligations	under	this	Agreement	and	any	licenses	granted	by	Recipient
relating	to	the	Program	shall	continue	and	survive.

Everyone	is	permitted	to	copy	and	distribute	copies	of	this	Agreement,
but	in	order	to	avoid	inconsistency	the	Agreement	is	copyrighted	and	may
only	be	modified	in	the	following	manner.	The	Agreement	Steward
reserves	the	right	to	publish	new	versions	(including	revisions)	of	this
Agreement	from	time	to	time.	No	one	other	than	the	Agreement	Steward
has	the	right	to	modify	this	Agreement.	IBM	is	the	initial	Agreement
Steward.	IBM	may	assign	the	responsibility	to	serve	as	the	Agreement
Steward	to	a	suitable	separate	entity.	Each	new	version	of	the	Agreement
will	be	given	a	distinguishing	version	number.	The	Program	(including
Contributions)	may	always	be	distributed	subject	to	the	version	of	the
Agreement	under	which	it	was	received.	In	addition,	after	a	new	version
of	the	Agreement	is	published,	Contributor	may	elect	to	distribute	the
Program	(including	its	Contributions)	under	the	new	version.	Except	as
expressly	stated	in	Sections	2(a)	and	2(b)	above,	Recipient	receives	no
rights	or	licenses	to	the	intellectual	property	of	any	Contributor	under	this
Agreement,	whether	expressly,	by	implication,	estoppel	or	otherwise.	All
rights	in	the	Program	not	expressly	granted	under	this	Agreement	are
reserved.

This	Agreement	is	governed	by	the	laws	of	the	State	of	New	York	and	the
intellectual	property	laws	of	the	United	States	of	America.	No	party	to	this
Agreement	will	bring	a	legal	action	under	this	Agreement	more	than	one
year	after	the	cause	of	action	arose.	Each	party	waives	its	rights	to	a	jury
trial	in	any	resulting	litigation.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

I.6	Special	exception	for	LZMA	compression
module
Igor	Pavlov	and	Amir	Szekely,	the	authors	of	the	LZMA	compression
module	for	NSIS,	expressly	permit	you	to	statically	or	dynamically	link
your	code	(or	bind	by	name)	to	the	files	from	the	LZMA	compression
module	for	NSIS	without	subjecting	your	linked	code	to	the	terms	of	the
Common	Public	license	version	1.0.	Any	modifications	or	additions	to
files	from	the	LZMA	compression	module	for	NSIS,	however,	are	subject
to	the	terms	of	the	Common	Public	License	version	1.0.

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

Previous	|	Contents	|	Next

	NSIS Users Manual
	Chapter 1: Introduction to NSIS
	Chapter 2: Tutorial: The Basics
	Chapter 3: Command Line Usage
	Chapter 4: Scripting Reference
	Chapter 5: Compile Time Commands

