NSIS Users Manual

Check http://nsis.sf.net for news, information, support, examples, tutorials
and more.

Quick links:

FAQ - Alist of frequently asked questions

NSIS Wiki - Examples, functions, tutorials, plug-ins, software and more
Forum - Post questions or discuss NSIS features

Copyright (C) 1999-2017 Contributors

e Chapter 1: Introduction to NSIS
o About NSIS
o Main Features
o Feature List
o Unicode installers
e Chapter 2: Tutorial: The Basics
o Introduction
o Script Files
o Scripting structure
Installer Attributes
Pages
Sections
Functions
Working with Scripts
= Logical Code Structures
m Variables
= Debugging Scripts
= Script Execution
s Compiler Commands
Compiler
Modern Ul
Plug-ins
o More
e Chapter 3: Command Line Usage
o MakeNSIS Usage
= Options

0O O O



= Notes
= Environment variables
= Examples
o Installer Usage
= Common Options
m Uninstaller Specific Options
= Examples
Chapter 4: Scripting Reference
o Script File Format
o Variables
= User Variables
m \ar
= Other Writable Variables
m Constants
m Constants Used in Strings
Labels
Relative Jumps
Pages
Ordering
Page Options
Callbacks
Page
UninstPage
PageEx
PageExEnd
PageCallbacks
Sections
m Section Commands
AddSize
Section
SectionEnd
SectionlIn
SectionGroup
SectionGroupEnd
= Uninstall Section
Functions
= Function Commands
= Function
= FunctionEnd

o O

(¢] (¢]
H H HE E B E B B®
H HE E E B =

o



m Callback Functions
= |nstall Callbacks
= .onGUIInit
.onlnit
.onlnstFailed
.onlnstSuccess
.onGUIEnd
.onMouseOverSection
.onRebootFailed
.onSelChange
.onUserAbort
.onVerifylnstDir
s Uninstall Callbacks
un.onGUIInit
un.oninit
un.onUninstFailed
un.onUninstSuccess
un.onGUIENd
un.onRebootFailed
un.onSelChange
= un.onUserAbort
o |nstaller Attributes
s General Attributes
= AddBrandinglmage
AllowRootDirlnstall
AutoCloseWindow
BGFont
BGGradient
BrandingText
Caption
ChangeUl
CheckBitmap
CompletedText
ComponentText
CRCCheck
DetailsButtonText
DirText
DirVar
DirVerify



FileErrorText

Icon
InstallButtonText
InstallColors
InstallDir
InstallDirRegKey
InstProgressFlags
InstType
LicenseBkColor
LicenseData
LicenseForceSelection
LicenseText
ManifestDPIAware
ManifestSupportedOS
MiscButtonText
Name

OutFile
RequestExecutionLevel
SetFont
ShowlnstDetails
ShowUninstDetails
Silentinstall
SilentUnlInstall
SpaceTexts
SubCaption
UninstallButtonText
UninstallCaption
Uninstalllcon
UninstallSubCaption
UninstallText
Windowlcon
XPStyle

s Compiler Flags

AllowSkipFiles
FileBufSize
SetCompress
SetCompressor
SetCompressorDictSize
SetDatablockOptimize



s SetDateSave
m SetOverwrite
= Unicode
= Version Information
= VIAddVersionKey
m VIProductVersion
= VIFileVersion
o |nstructions
m Basic Instructions
Delete
Exec
ExecShell
ExecShellWait
ExecWait
File
Rename
ReserveFile
RMDir
s SetOutPath
= Registry, INI, File Instructions
m DeletelNISec
DeleteINIStr
DeleteRegKey
DeleteRegValue
EnumRegKey
EnumRegValue
ExpandEnvStrings
FlushINI
ReadEnvStr
ReadINIStr
ReadRegDWORD
ReadRegStr
WriteINIStr
WriteRegBin
WriteRegDWORD
WriteRegStr
WriteRegExpandStr
WriteRegMultiStr
SetRegView



= General Purpose Instructions
s CallinstDLL
CopyFiles
CreateDirectory
CreateShortcut
GetDLLVersion
GetDLLVersionLocal
GetFileTime
GetFileTimeLocal
GetFullPathName
GetTempFileName
SearchPath
SetFileAttributes
RegDLL
s UnRegDLL
s Flow Control Instructions
s Abort
Call
ClearErrors
GetCurrentAddress
GetFunctionAddress
GetlLabelAddress
Goto
IfAbort
IfErrors
IfFileExists
IfRebootFlag
IfSilent
INtCmp
INtCmpU
MessageBox
Return
Quit
SetErrors
StrCmp
m StrCmpS
m File Instructions
m FileClose
= FileOpen



FileRead
FileReadUTF16LE
FileReadByte
FileReadWord
FileSeek

FileWrite
FileWriteUTF16LE
FileWriteByte
FileWriteWord
FindClose
FindFirst

FindNext

Uninstaller Instructions
= WriteUninstaller
Miscellaneous Instructions

GetErrorLevel
GetlnstDirError
InitPluginsDir

Nop

SetErrorLevel
SetShellvVarContext
Sleep

String Manipulation Instructions

StrCpy
StrLen

Stack Support

Exch
Pop
Push

Integer Support

IntFmt
INtOp

Reboot Instructions

Reboot
SetRebootFlag

Install Logging Instructions

LogSet
LogText

Section Management



SectionSetFlags
SectionGetFlags
SectionSetText
SectionGetText
SectionSetinstTypes
SectionGetlnstTypes
SectionSetSize
SectionGetSize
SetCurlnstType
GetCurlnstType
InstTypeSetText
InstTypeGetText
= User Interface Instructions
BringToFront
CreateFont
DetailPrint
EnableWindow
FindWindow
GetDlIgltem
HideWindow
IsWindow
LockWindow
SendMessage
SetAutoClose
SetBrandinglmage
SetDetailsView
SetDetailsPrint
SetCtlColors
SetSilent
= ShowWindow
= Multiple Languages Instructions
= L oadLanguageFile
= LangString
m LicenselLangString
o Multiple Languages
= Language Selection
= LangDLL Plug-in
= RTL Languages
o Plug-in DLLs



Using Plug-in Commands
Calling plug-ins manually

o Silent Installers/Uninstallers
e Chapter 5: Compile Time Commands
o Compiler Utility Commands

linclude
laddincludedir
laddplugindir
lappendfile
lcd

Idelfile

lecho

lerror
lexecute
Imakensis
Ipackhdr
Ifinalize
Isystem
Itempfile
Igetdllversion
lwarning
Ipragma
lverbose

o Predefines

${ COUNTER_}
${ FILE_}
${ FILEDIR_}
${ LINE_}
${ DATE_}

${ TIME_}
${ TIMESTAMP_}

${NSIS VERSION}
${NSIS PACKEDVERSION}
${NSIS CHAR_SIZE}
${NSIS PTR_SIZE}
${U+1}...${U+10FFFF}
Scope Predefines

= ${ GLOBAL_}

m ${ SECTION_}



${ FUNCTION_}
${ PAGEEX_ }
${ UNINSTALL_}
${ MACRO_}
o Read environment variables
m $%envVarName%
o Conditional Compilation
Idefine
lundef
lifdef
lifndef
lif
lifmacrodef
lifmacrondef
lelse
lendif
linsertmacro
Imacro
Imacroend
Imacroundef
Isearchparse
= Isearchreplace
e Appendix A: Modern User Interface
e Appendix B: DLL/TLB Library Setup
o Introduction
o Library Installation
= |ntroduction
= Parameters
= Options
m LIBRARY_ X64
= LIBRARY _SHELL EXTENSION
= LIBRARY_COM
= LIBRARY_IGNORE_VERSION
= Notes
= Example
m Unshared DLL
s Shared DLL
o Library Uninstallation
= |ntroduction



m Parameters
= Options
= LIBRARY_X64
» LIBRARY_SHELL EXTENSION
= LIBRARY_COM
= Example
o Visual Basic 6 Run-Time Files
o Appendix C: Useful Scripts
Get Internet Explorer version
Is .NET Framework installed?
Is Macromedia Flash Player installed?
Connect to the Internet
Get Installer Filename
Prevent Multiple Instances
More
e Appendix D: Useful Information
Error Levels
Add uninstall information to Add/Remove Programs
Calling an external DLL using the System.dll plug-in
Dump Content of Log Window to File
How to Read REG_MULTI_SZ Values
Predefined Macros for Unicode support
e Appendix E: Useful Headers
o File Functions Header
= |ntroduction
Locate
GetSize
DriveSpace
GetDrives
GetTime
GetFileAttributes
GetFileVersion
GetExeName
GetExePath
GetParameters
GetOptions
GetOptionsS
GetRoot
GetParent

o O O O O o o

O O O O O o



GetFileName
GetBaseName
GetFileExt
BannerTrimPath
DirState

m RefreshShelllcons
o Text Functions Header

m |ntroduction
LineFind
LineRead
FileReadFromEnd
LineSum
FileJoin
TextCompare
TextCompareS
ConfigRead
ConfigReadS
ConfigWrite
ConfigWriteS
FileRecode

= TrimNewLines
o Word Functions Header

m |ntroduction
WordFind
WordFindS
WordFind2X
WordFind2XS
WordFind3X
WordFind3XS
WordReplace
WordReplaceS
WordAdd
WordAddS
WordInsert
WordlnsertS
StrFilter
StrFilterS
VersionCompare
VersionConvert



Appendix F: Changelog and Release Notes
o 3.02
= Changelog
= Major Changes
= Minor Changes
= Translations
o 3.01
= Changelog
= Major Changes
= Minor Changes
= Translations
o 3.0
= Release Notes
= Changelog
= Minor Changes
= Translations
o 3.0 Release Candidate 2
= Changelog
= Major Changes
= Minor Changes
= Translations
o 3.0 Release Candidate 1
= Changelog
= Major Changes
= Minor Changes
= Translations
o 3.0 Beta 3
= Changelog
= Major Changes
= Minor Changes
= Translations
o 3.0 Beta 2
= Changelog
= Major Changes
= Minor Changes
= Build System
o 3.0 Betal
= Release Notes
= Changelog



o

o

(@)

(¢]

(¢]

o

o

(¢]

= Major Changes
= Minor Changes
= Translations
3.0Beta 0
= Release Notes
= Changelog
= Major Changes
= Minor Changes
3.0 Alpha 2
= Release Notes
= Known Issues
= Changelog
= Major Changes
= Minor Changes
3.0 Alpha 1
= Release Notes
= Known Issues
= Changelog
= Major Changes
= Minor Changes
3.0 Alpha 0
= Release Notes
= Known Issues
= Changelog
= Major Changes
= Minor Changes
= Translations
2.51
= Changelog
= Minor Changes
= Translations
2.50
= Changelog
= Major Changes
= Minor Changes
2.49
= Changelog
2.48
= Changelog



(¢]

o

o

o

(¢]

o

(¢]

2.47
= Release Notes
= Changelog
= Major Changes
= Minor Changes
2.46
= Changelog
= Minor Changes
= Translations
= Build System

2.45
= Release Notes
= Changelog
= Major Changes
= Minor Changes
= Modern Ul
= Translations
= Build System
2.44
= Changelog

= Major Changes
= Minor Changes
2.43
= Release Notes
= Changelog
= Minor Changes
= Utilities and Plug-ins
= Translations

= Plug-in API
= Build System
2.42
m Release Notes
= Changelog
= Major Changes
= Minor Changes
= Translations
= Build System
2.41

= Changelog



= Minor Changes
= Translations
= Build System
2.40
= Changelog
= Major Changes
= Minor Changes
= Translations
2.39
= Changelog
= Major Changes
= Minor Changes
2.38
= Changelog
= Major Changes
= Minor Changes
= Modern Ul
= Translations
2.37
= Changelog
Major Changes
Minor Changes
Utilities and Plug-ins
Translation
Build System

o o

o

o

2.36

= Release Notes

= Changelog
Major Changes
Modern Ul
nsDialogs
Minor Changes
Utilities and Plug-ins
Translation
Build System

(¢]

o 2.35
= Changelog
= Major Changes
= Minor Changes



(0]

o

(¢]

(¢]

(¢]

= Utilities and Plug-ins

2.34

m Release Notes

= Changelog
Major Changes
Minor Changes
Utilities and Plug-ins
Translations
Build System

2.33

= Release Notes

= Changelog
Major Changes
Minor Changes
Utilities and Plug-ins
Translations
Build System

2.32

= Release Notes

= Changelog
Major Changes
Minor Changes
Utilities and Plug-ins
Translations
Build System

2.31

= Release Notes

= Changelog
Minor Changes
Utilities and Plug-ins
Translations
Build System

2.30

m Release Notes

= Changelog
Major Changes
Minor Changes
Utilities and Plug-ins
Translations



(0]

o

(¢]

(¢]

o

Build System

2.29
m Release Notes
= Changelog
= Major Changes
= Minor Changes
= Utilities and Plug-ins
= Translations
= Build System
2.28
= Changelog
= Major Changes
= Minor Changes
= Utilities and Plug-ins
= Translations
= Build System
2.27

m Release Notes
= Changelog

2.26

Major Changes
Minor Changes
Build System

m Release Notes
= Changelog

2.25

Major Changes

Minor Changes
New/Changed Commands
Utilities and Plug-ins
Translations

Build System

= Changelog

Major Changes

Minor Changes
New/Changed Commands
Utilities and Plug-ins
Translations

Build System



(¢]

o

o

(¢]

(¢]

(¢]

2.24
= Changelog

= Major Changes
Minor Changes
New/Changed Commands
Utilities and Plug-ins
Translations
Build System

2.23
= Changelog
= Minor Changes
= Utilities and Plug-ins
= Build System
2.22
= Release Notes
= Changelog
= Minor Changes
= New/Changed Commands
= Translations
= Build System
2.21
= Changelog
= Major Changes
Minor Changes

» New/Changed Commands
= Translations
= Build System
2.20
= Changelog

= Minor Changes
= Translations
= Build System

2.19

= Changelog

= Minor Changes
= New/Changed Commands
= Plug-ins
= Translations

2.18



o

o

(¢]

(¢]

(¢]

o

= Changelog
= Minor Changes
= Translations
2.17
= Changelog
= Minor Changes
= Translations

2.16
= Release Notes
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= Translations
= Build System
2.15
= Changelog

= New/Changed Commands
= Minor Changes
= Translations
= Build System
2.14

= Release Notes

= Changelog
= Major Changes
= Minor Changes

2.13
m Release Notes
= Changelog
= Major Changes
= New/Changed Commands
= Minor Changes
= Utilities and Plug-ins
= Translations
= Build System
2.12
= Changelog

= Major Changes
= New/Changed Commands



o

o

o

(¢]

(¢]

Minor Changes
Utilities and Plug-ins
Translations

Build System

2.11

= Release Notes

= Changelog
Major Changes
New/Changed Commands
Minor Changes
Utilities and Plug-ins
Translations
Build System

2.10
= Changelog
= Major Changes
= Minor Changes
= Translations
= Build System
2.09
= Changelog
Major Changes
New/Changed Commands
Minor Changes
Translations
Build System

2.08
m Release Notes
= Changelog
= Major Changes
= Minor Changes
= Build System
2.07
= Release Notes
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= |nclude Files



(0]

o

o

(¢]

o

(@)

(¢]

= Utilities and Plug-ins
= Translations
2.06
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= Utilities and Plug-ins
2.05
= Release Notes
= Changelog
» New/Changed Commands
= Minor Changes
2.04
= Changelog
= Major Changes
= Minor Changes
2.03
= Release Notes
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
2.02
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= Utilities and Plug-ins
2.01
= Release Notes
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= Utilities and Plug-ins
2.0
= Release Notes
= Changelog



(0]

o o

(¢]

(¢]

0O O 0O O O O o 0O o o o o

= Changes from 1.98
= Changes from RC4
2.0 Release Candidate 4
= Changelog
= Major Changes
= Minor Changes
= Utilities and Plug-ins
2.0 Release Candidate 3
= Changelog
= Minor Changes
= Utilities and Plug-ins
2.0 Release Candidate 2
= Changelog
= Minor Changes
= Utilities and Plug-ins
2.0 Release Candidate 1
= Release Notes
= Changelog
= Major Changes
= Utilities and Plug-ins
2.0 Beta4
= Release Notes
= Changelog
= Major Changes
» New/Changed Commands
= Minor Changes
= Utilities and Plug-ins
2.0 Beta 3
2.0 Beta 2
2.0Betal
2.0Beta 0
2.0 Alpha 7
2.0 Alpha 6
2.0 Alpha 5
2.0 Alpha 4
2.0 Alpha 3
2.0 Alpha 2
2.0 Alpha 1
2.0 Alpha O



o Older Versions
e Appendix G: Building NSIS
o Building in General
o Building on Windows
o Building on POSIX
o Nightly Builds
e Appendix H: Credits
Programmers
Testers
Designers
Translators
Writers
e Appendix I: License
Copyright
Applicable licenses
zlib/libpng license
bzip2 license
Common Public License version 1.0
Special exception for LZMA compression module

O O O O O

O O O O O o




Previous | Contents | Next



Chapter 1: Introduction to NSIS

e About NSIS

e Main Features

e [eature List

e Unicode installers

Previous | Contents | Next




Previous | Contents | Next



Chapter 2: Tutorial: The Basics

e [ntroduction

e Script Files

e Scripting structure
Installer Attributes
Pages

Sections

Functions

Working with Scripts
Script Execution
Compiler Commands
Compiler

Modern Ul

Plug-ins

More

O O O 0O O O ©o

Previous | Contents | Next




Previous | Contents | Next



Chapter 3: Command Line Usage

e MakeNSIS Usage
o Options
o Notes
o Environment variables
o Examples
¢ Installer Usage
o Common Options
o Uninstaller Specific Options
o Examples

Previous | Contents | Next




Previous | Contents | Next



Chapter 4: Scripting Reference

e Script File Format
e Variables

o User Variables

o Other Writable Variables

o Constants

o Constants Used in Strings
e Labels
¢ Relative Jumps
e Pages
Ordering
Page Options
Callbacks
Page
UninstPage
PageEx
PageExEnd
PageCallbacks
e Sections

o Section Commands

o Uninstall Section
e Functions

o Function Commands

o Callback Functions
e |nstaller Attributes

o General Attributes

o Compiler Flags

o Version Information
e |nstructions

o Basic Instructions
Registry, INI, File Instructions
General Purpose Instructions
Flow Control Instructions
File Instructions
Uninstaller Instructions
Miscellaneous Instructions
String Manipulation Instructions

0O O O O O O O o

O O 0O O O O O



O O O O O o

(e}

Stack Support

Integer Support

Reboot Instructions

Install Logging Instructions
Section Management

User Interface Instructions
Multiple Languages Instructions

e Multiple Languages

(e}

(e}

(e}

Language Selection
LangDLL Plug-in
RTL Languages

e Plug-in DLLs

(e}

o

Using Plug-in Commands
Calling plug-ins manually

e Silent Installers/Uninstallers

Previous | Contents | Next




Previous | Contents | Next



Chapter 5: Compile Time Commands

o Compiler Utility Commands
linclude
laddincludedir
laddplugindir
lappendfile
lcd
Idelfile
lecho
lerror
lexecute
Imakensis
Ipackhdr
Ifinalize
Isystem
Itempfile
Igetdllversion
lwarning
Ipragma

o lverbose
e Predefines

o ${ COUNTER__}
${ FILE_ }
${ FILEDIR_}
${ LINE_}
${ DATE_}

${ TIME_}
${ TIMESTAMP_}

${NSIS VERSION}
${NSIS PACKEDVERSION}
${NSIS CHAR_SIZE}
${NSIS PTR_SIZE}
${U+1}..${U+10FFFF}
Scope Predefines
e Read environment variables

o $%envVarName%
e Conditional Compilation

0 0O 0O 0O O 0o 0o 0o 0O 0O OO0 0O O o o

O 0O 0 O O O 0O 0O 0O 0o o0 o



Idefine
lundef

lifdef

lifndef

lif
lifmacrodef
lifmacrondef
lelse

lendif
linsertmacro
Imacro
Imacroend
Imacroundef
Isearchparse
Isearchreplace

O 0O 0O O 0O O O O O 0O o o o o o

Previous | Contents | Next




Previous | Contents | Next



1.1 About NSIS

The installer is your application's first impression. Slow or unsuccessful
software installations is one of the most irritating computer problems. A
quick and user friendly installer is therefore an essential part of your
software product. NSIS (Nullsoft Scriptable Install System) is a tool that
allows programmers to create such installers for Windows. It is released
under an open source license and is completely free for any use.

NSIS creates installers that are capable of installing, uninstalling, setting
system settings, extracting files, etc. Because it's based on script files
you can fully control every part of your installer. The scripting language
supports variables, functions and string manipulation, just like a normal
programming language - but designed for the creation of installers. Even
with all these features, NSIS is still the smallest installer system
available. With the default options, it has an overhead of only 34 KB.

With NSIS 3 you can also create Unicode installers, targeting all the
languages supported by the OS without display issues.

Previous | Contents | Next




Previous | Contents | Next



1.2 Main Features

Small overhead size

NSIS has been designed to be small, fast and efficient. While other
installers often add hundreds of kilobytes or several megabytes to your
installer data, a fully featured NSIS installer has a overhead of only 34
KB.

Compatible with all major Windows versions

You can create a single installer that is compatible with Windows 95, 98,
ME, NT4, 2000, XP, 2003, Vista, Server 2008, 7, Server 2008R2, 8,
Server 2012, 8.1, Server 2012R2 and Windows 10.

Unique compression methods

You can choose between three different integrated compression methods
(ZLib, BZip2, LZMA). LZMA compression gives better results than any
other common compression method. You don't have to use large self-
extracting archive modules or other applications, the compression
support is included in the 34 KB overhead.

Script based

Unlike other systems that can only generate installers based on a list of
files and registry keys, NSIS has a powerful scripting language. This
script language is designed for installers and has commands that help
you to perform many installation tasks. You can easily add custom logic
and handle different upgrades, version checks and more. On the NSIS
Wiki you can find a lot more.

Multiple languages in one installer

One installer can support multiple interface languages. More than 60
translations are already included and you can also create your own
language files. RTL (right-to-left) languages such as Arabic and Hebrew
are fully supported. Creating a Unicode native installer is also possible for



even more supported languages.
Many features and checks for the target system

The script language provides commands you can use on the target
system. From simple features like folder creation and registry editing to
text/binary file modification, modification of environment variables and
system reboots. By using one of the provided plug-ins you can even call
the Windows API directly.

Custom dialogs and interfaces

You can create custom wizard pages to get user input or integrate
configuration options. NSIS includes a classic and modern wizard
interface, but it is even possible to create your own custom interface.

Plug-in system

NSIS can be extended with plug-ins that can communicate with the
installer. They can be written in C, C++, Delphi or another language and
can be used to perform installation tasks or extend the installer interface.
You can use the plug-in with a single line of script code. Plug-ins are also
be compressed like other installation data and will only be included when
you are using their features.

Support for web installation, file patching

The NSIS distribution includes a set of plug-ins that allow you to
download files from the internet, make internet connections, patch
existing files and more.

Project integration, different releases and automatic builds

The NSIS compiler features a powerful preprocessor. This allows you to
easily integrate multiple projects into a single installer or automatically
generate installer builds. You can also generate different releases such
as lite and full versions.

Easy and human readable file formats



The NSIS script format and the format used for interface dialogs are
easy, documented and humanly readable, so you can edit your files with
your favorite editor. This also makes automatic script generation possible.

Previous | Contents | Next




Previous | Contents | Next



1.3 Feature List

o Generates self contained executable installers

e Support for ZLIB, BZIP2 and LZMA data compression (files can be
compressed individually or together)

e Uninstall support (installer can generate an uninstaller)

e Customizable user interface (dialogs, fonts, backgrounds, icons, text,
checkmarks, images etc.)

¢ Classic and Modern wizard interface

o Fully multilingual, support for multiple languages in one installer.
More than 60 translations are available, but you can also create your
own. Unicode support allowing even more languages.

e Page system: You can add standard wizard pages or custom pages

e User selection of installation components, tree for component
selection

e Multiple install configurations (usually Minimal, Typical, Full), and
custom configuration

¢ |nstaller self-verification using a CRC32 checksum

o Small overhead over compressed data size (34 KB with default
options)

¢ Ability to display a license agreement in text or RTF format

e Ability to detect destination directory from the registry

e Easy to use plug-in system (lots of plug-ins for creation of custom
dialogs, internet connections, HTTP downloading, file patching,
Win32 API calls etc. are included)

e Installers can be as large as 2GB

e Optional silent mode for automated installations

o A preprocessor with support for defined symbols, macro's,
conditional compilation, standard predefines

e Alovely coding experience with elements of PHP and assembly
(includes user variables, a stack, real flow control, etc.)

¢ |nstallers have their own VMs that let you write code that can
support:

¢ File extraction (with configurable overwrite parameters)
e File/directory copying, renaming, deletion, searching
e Plug-in DLL calling



DLL/ActiveX control registration/deregistration
Executable execution (shell execute and wait options)
Shortcut creation

Registry key reading/setting/enumerating/deleting

INI file reading/writing

Generic text file reading/writing

Powerful string and integer manipulation

Window finding based on class name or title

User interface manipulation (font/text setting)

Window message sending

User interaction with message boxes or custom pages
Branching, comparisons, etc.

Error checking

Reboot support, including delete or rename on reboot
Installer behaviour commands (such as show/hide/wait/etc)
User functions in script

Callback functions for user actions

Completely free for any use. See license.

Previous | Contents | Next




Previous | Contents | Next



1.4 Unicode installers

Starting with NSIS v3.0 you can choose to create Unicode installers by
setting the Unicode attribute. These installers will not work on Windows
95/98/ME but they will allow you to display your installer in any Unicode
language supported by the OS.

When building a Unicode installer NSIS variables can hold Unicode
characters (0001-FFFF). There should be no need to modify your existing
scripts. If you want to read/write Unicode files, specific instructions have
been added to read/write UTF-16LE strings from/to disk.

Previous | Contents | Next




Previous | Contents | Next



2.1 Introduction

Most software packages you download or buy come with an installer. The
installer copies and/or updates files, writes registry keys, writes
configuration, creates shortcuts, etc. All of this is done automatically for
the user. All the user needs to do is supply some information and the
installer will do the rest. The user goes through a wizard, makes the
appropriate choices and waits until the installer finishes. After the installer
has finished the user is left only with the simple task of starting the
program. The user doesn't have to worry about things he might have
forgotten because all of the necessary steps were done by the installer.

NSIS is a tool for developers to create such installers. NSIS allows you to
create everything from basic installers that just copies files to very
complex installers that handle a lot of advanced tasks such as writing
registry keys, settings environment variables, downloading the latest files
from the internet, customizing configuration files and more. NSIS is very
flexible and its scripting language is easy to learn.

NSIS compiles all of the files and the installation script into one
executable file so your application will be easy to distribute. NSIS adds
only about 34KB of code of its own (for the default configuration) to the
data. NSIS boasts the smallest overhead available while still providing a
lot of options thanks to its powerful scripting language and support of
external plug-ins.

Previous | Contents | Next




Previous | Contents | Next



2.2 Script Files

To create a NSIS installer you first have to write a NSIS script. ANSIS
script is just a regular text file with a special syntax. You can edit scripts
with any text editor. It's recommended to use a text editor that shows line
numbers because NSIS uses line numbers to indicate where errors lie,
and to warn you about where errors might lie. An editor that supports
syntax highlighting is also recommended. You can download editors
made especially for NSIS and files for syntax highlighting from the NSIS
Wiki.

In a NSIS script every line is treated as a command. If your command is
too long for one line you can use a back-slash - '\' - at the end of the line.
The compiler will treat the new line as an addition to the previous line and
will not expect a new command. For example:

Messagebox MB_OK| MB_| CONI NFORMATI ON \
"This is a sanple that shows how to use |line breaks fo

If you want to use a double-quote in a string you can either use $\" to
escape the quote or quote the string with a different type of quote such
as or'.

For more details about the script format, see Script File Format.

The default extension for a script file is .nsi. Header files have the .nsh
extension. Header files can help you arrange your script by dividing it to
more than one block of code, you can also put functions or macros in
header files and include the header files in multiple installers. This makes
updating easier and it also makes your scripts easier to read. To include
a header file in your script use !include. Header files that reside in the
Include directory under your NSIS directory can be included just by their
name. For example:

l'i ncl ude Secti ons. nsh

Previous | Contents | Next




Previous | Contents | Next



2.3 Scripting structure

A NSIS script contains Installer Attributes, Pages and Sections/Functions.
You can also use Compiler Commands for compile-time operations. The
OutFile instruction is required and tells NSIS where to write the installer,
you also need at least one section.

2.3.1 Installer Attributes

Installer Attributes determine the behavior and the look and feel of your
installer. With these attributes you can change texts that will be shown
during the installation, the number of installation types etc. Most of these
commands can only be set and are not changeable during runtime.

Other basic instructions are Name and InstallDir.

For more information about installer attributes, have a look at Installer
Attributes.

2.3.2 Pages

A non-silent installer has a set of wizard pages to let the user configure
the installer. You can set which pages to display using the Page
command (or PageEx for more advanced settings). A typical set of pages
looks like this:

Page |icense

Page conponents

Page directory

Page instfiles
Uni nst Page uni nst Confirm
Uni nst Page instfiles

For the installer, this typical set of pages will display a license agreement,
allow selection of components to install, allow selection of an installation

directory, and finally install the selected components in the instfiles page.
For the uninstaller, it will display a confirmation page, and uninstall in the



instfiles page.
2.3.3 Sections

It's common for installers to have several things the user can install. For
example in the NSIS distribution installer you can choose to install
additional tools, plug-ins, examples and more. Each of these components
has its own piece of code. If the user selects to install this component
then the installer will execute that code. In the script, that code is defined
in sections. Each section corresponds to one component on the
components page. The section's name is the displayed component name
and the section code will be executed if that component is selected. It is
possible to build your installer with only one section but if you want to use
the components page and let the user choose what to install, you'll have
to use more than one section.

Uninstallers can also have multiple sections. Uninstaller section names
are prefixed with 'un.". For example:

Section "Installer Section"
Secti onEnd

Section "un.Uninstaller Section"
Sect i onEnd

The instructions that can be used in sections are very different from the
installer attributes instructions, they are executed at runtime on the user's
computer. Those instructions can extract files, read from and write to the
registry, INI files or normal files, create directories, create shortcuts and a
lot more. You can find out more in Instructions.

The most basic instructions are SetOutPath which tells the installer
where to extract files and File which extracts files.

Example:

Section "My Progrant
Set Qut Pat h $I NSTDI R
File "My Program exe"



File "Readne. t xt"
Secti onEnd

For more information about sections see Sections.

2.3.4 Functions

Functions can contain script code, just like sections. The difference
between sections and functions is the way they are called. There are two
types of functions, user functions and callback functions.

User functions are called by the user from within sections or other
functions using the Call instruction. User functions will not execute unless
you call them. After the code in the function has executed the installer will
continue executing the instructions that came after the Call instruction,
unless you have aborted the installation inside the function. User
functions are very useful if you have a set of instructions that need to be
executed at several locations in the installers. If you put the code into a
function you can save the copying time and you can maintain the code
more easily.

Callback functions are called by the installer upon certain defined events
such as when the installer starts. Callbacks are optional. If for example
you want to welcome the user to your installer you can define a function
called .onlInit. The NSIS compiler will recognize this function as a callback
function by the name and will call it when the installer starts.

Function .onlnit
MessageBox MB_YESNO "This will install My Program C
Abor t
gogogo:
Funct i onEnd

Abort has a special meaning in callback functions. Each callback function
has its own meaning for it, have a look at Callback Functions for more
information. In the above example Abort tells the installer to stop
initializing the installer and quit immediately.

For more information about functions see Functions.



2.3.5 Working with Scripts

2.3.5.1 Logical Code Structures

Conditionally executing code, or executing code in a loop can be done
using StrCmp, IntCmp, IfErrors, Goto and more. However, there's a much
easier way do this. The LogicLib provides some very simple macros that
allow easy construction of complex logical structures. Its syntax,
explained in LogicLib.nsh, is similar to other programming languages and
can prove to be simpler for beginners and advanced users alike.

For example, checking a value of a variable without the LogicLib can be
done as follows.

StrCmp $0 'sone value' 0 +3
MessageBox MB_OK ' $$0 is sone val ue'
Got o done

StrCnp $0 'sone other value' 0 +3
MessageBox MB_OK ' $$0 i s sone ot her val ue’
Got o done

# el se
MessageBox MB OK ' $$0 is "$0"'

done:

However, with the LogicLib the code is much more readable and easy to
understand, as can be seen in the following example.

${1f} $0 == 'sone val ue'
MessageBox MB_OK ' $$0 is sone val ue'
${El self} $0 == 'sone ot her val ue'
MessageBox MB_OK ' $$0 is sone ot her val ue’
${ El se}
MessageBox MB OK ' $$0 is "$0"'
${ EndlI f}

The same can also be done using a switch, as shown in the following
example.



${Swi tch} $0
${ Case} 'sone val ue'
MessageBox MB OK ' $3$0 is sone val ue'
${ Br eak}
${Case} 'sone other val ue'
MessageBox MB OK ' $3$0 is sone ot her val ue'
${ Br eak}
${Def aul t}
MessageBox MB OK ' $$0 is "$0"'
${ Br eak}
${ EndSwi t ch}

Multiple conditions are also supported. The following example will notify
the user, if both $0 and $1 are empty.

${If} $0 == "'
${Andlf} $1 == "'

MessageBox MB_OK| MB_| CONSTOP ' both are enpty!’
${ EndlI f}

The LogicLib removes the need for labels and relative jumps, thus
prevents label name conflicts, and removes the need to manually adjust
relative jump offsets every time the script is changed.

It also simplifies looping by supporting the common while, do and for
loops. All of the following examples count to five using the LogicLib.

StrCpy $RL 0
${While} $R1 < 5
IntOp $R1 $R1 + 1
Detail Print $R1
${ EndWhi | e}

${For} $R1 1 5
Detail Print $R1
${ Next }

StrCpy $RL 0



${ Do}
IntOp $R1 $R1 + 1
Detail Print $R1
${LoopUntil} $R1 >= 5

To use the LogicLib the following line needs to be added near the top of
the script.

l'i ncl ude Logi cLi b. nsh

More examples can be found in LogicLib.nsi.

2.3.5.2 Variables

You can declare your own variables ($VARNAME) with the Var
command. Variables are global and can be used in any Section or
Function.

Declaring and using a user variable:

Var BLA ; Declare the variable
Section bl a
StrCpy $BLA "123" ; Now you can use the vari abl e $BLA

Secti onEnd

In addition there is a stack, which can also be used for temporary
storage. To access the stack use the commands Push and Pop. Push
adds a value to the stack, Pop removes one and sets the variable.

For shared code, there are 20 registers available (like $0 and $R0).
These static variables don't have to be declared and you won't get any
name conflicts. If you want to use these variables in shared code, store
the original values on the stack and restore the original values
afterwards.



After calling the function, the variables contain the same value as before.
Note the order when using multiple variables (last-in first-out):

Function bl a

Push $RO
Push $R1

...code...

Pop $R1
Pop $RO

Functi onEnd

2.3.5.3 Debugging Scripts

The more you work with NSIS the more complex the scripts will become.
This will increase the potential of mistakes, especially when dealing with
lots of variables. There are a few possibilities to help you debugging the
code. To display the contents of variables you should use MessageBoxes
or DetailPrint. To get a brief overview about all variables you should use
the plug-in DumpState. By default all actions of the Installer are printed
out in the Log Window. You can access the log if you right-click in the Log
Window and select "Copy Details To Clipboard". There is also a way to
write it directly to a file, see here.

2.3.6 Script Execution

When a user runs an installer or uninstaller, pages are displayed in the
order they were defined in the script. When the instfiles page is reached,
sections, corresponding to the selected components, are executed in the
order they were defined in the script. If the components page is not
displayed, all sections are executed, assuming they were not unselected
or somehow disabled by the script.

Beside code in sections, there's also code in callback functions. If



defined, they might be executed before the sections code. For example,
the .oninit callback function is executed before anything else in the script.
There are also page callback functions which are executed at certain
points of the page display process.

2.3.7 Compiler Commands

Compiler commands will be executed at compile time on your computer.
They can be used for conditional compilation, to include header files, to
execute applications, to change the working directory and more. The
most common usage is defines. Defines are compile time constants. You
can define your product's version number and use it in your script. For
example:

'define VERSION "1.0. 3"
Name "My Program ${VERSI O\} "
QutFile "My Program lInstaller - ${VERSI O\}.exe"

For more information about defines see Conditional Compilation.

Another common use is macros. Macros are used to insert code at
compile time, depending on defines and using the values of the defines.
The macro's commands are inserted at compile time. This allows you to
write a general code only once and use it a lot of times but with a few
changes. For example:

'macro MyFunc UN

Functi on ${UN} MyFunc
Cal | ${UN} DoRegSt uf f
ReadRegStr $0 HKLM Sof t war e\ MyPr ogr am key
Detail Print $0

Functi onEnd

' macr oend

l'insertmacro MyFunc ""
l'insertmacro MyFunc "un."

This macro helps you avoid writing the same code for both the installer



and the uninstaller. The two !insertmacros insert two functions, one for
the installer called MyFunc and one for the uninstaller called un.MyFunc
and both do exactly the same thing.

For more information see Compile Time Commands.

Previous | Contents | Next




Previous | Contents | Next



2.4 Compiler

The second thing you need to do in order to create your installer after you
have created your script is to compile your script. MakeNSIS.exe is the
NSIS compiler. It reads your script, parses it and creates an installer for
you.

To compile you can right-click your .nsi file and select Compile NSIS
Script. This will cause MakeNSISW, the NSIS Compiler Interface, to
launch and call MakeNSIS to compile your script. MakeNSISW receives
the output of MakeNSIS and presents it to you in a window where you
can see it, copy it, test the installer and more. Using makensis.exe from
the command prompt is also possible.

The compiler will check your script and give you warnings or an error. If
an error occurs (i.e. 2 parameters required but only 1 given) the compiler
will abort and a short error message including the line number will be
displayed. For non-critical errors the compiler will give a warning (i.e. two
DirText commands in one script). If your script has no errors the compiler
will output an installer for you to distribute.

NSIS supports different compression methods, as explained here. ZLIB is
the default compression method, which is fast and uses only a little bit of
memory. LZMA is a good method for the creation of small installers for
internet distribution. BZIP2 usually compresses better than ZLIB but not
as good as LZMA, it is useful if you need lower memory usage or fast
script compilation.

It is also possible to compile Windows installers on Linux, BSD or Mac
OS X servers. See Building NSIS for details.

Previous | Contents | Next




Previous | Contents | Next



2.5 Modern Ul

A popular user interface for NSIS is the Modern User Interface. It has an
interface like the wizards of recent Windows versions. The Modern Ul is
not only a customized resource file, it has a lots of new interface
elements. It features a white header to describe the current step, a
description area on the component page, a welcome page, a finish page
that allows the user to run the application or reboot the system and more.

For more information, see the Modern Ul 2 Readme and the Modern Ul
Examples.

Previous | Contents | Next




Previous | Contents | Next



2.6 Plug-ins

NSIS support plug-ins that can be called from the script. Plug-ins are DLL
files written in C, C++, Delphi or another programming language and
therefore provide a more powerful code base to NSIS.

A plug-in call looks like this:
DLLNane: : Functi onNane "paraneter nunber 1" "paraneter

Every plug-in's function has its own requirements when it comes to
parameters, some will require none, some will accept as many
parameters as you want to send. Examples:

nsExec: : ExecToLog ' "${NSI SDI R} \ nrakensi s. exe" / CVDHELP
Pop $0 ; Process exit code or "error"”

Install Options::dialog "$PLUG NSDI R\test.ini"

Pop $0 ; success/ back/ cancel /error

NSI Sdl : : downl oad http://downl oad. nul | soft. coni w nanp/ c
Pop $0 ; "success" or a error code

The plug-ins that NSIS knows of are listed at the top of the compiler
output (verbose level 4). NSIS searches for plug-ins in the Plugins folder
under your NSIS directory and lists all of their available functions. You
can use !addplugindir to tell NSIS to search in other directories too.

The NSIS distribution already includes many plug-ins. InstallOptions is a
popular plug-in that allows you to create custom pages, in combination
with the NSIS Page commands (See Pages). The Startmenu plug-in
provides a page that allows the user to choose a Start Menu folder. There
are a lot of plug-ins for different purposes, take a look in the Docs folder
for help files and examples. You can find additional plug-ins online: NSIS
Wiki.

You can also create a plug-in yourself. C/C++ and Delphi header files are
already available, see the example plugin for how to do this. Source code
of included plug-ins can also be found in the source code package.



Previous | Contents | Next




Previous | Contents | Next



2.7 More

This tutorial has described the basic NSIS features, to learn more about
everything NSIS can do, take some time to read the rest of this manual.

Previous | Contents | Next




Previous | Contents | Next



3.1 MakeNSIS Usage

NSIS installers are generated by using the 'MakeNSIS' program to
compile a NSIS script (.NSI) into an installer executable. The NSIS
development kit installer sets up your computer so that you can compile a
.nsi file by simply right-clicking on it in Explorer and selecting ‘compile’.

If you want to use MakeNSIS on the command line, the syntax of
makensis is:

makensis [ option | script.nsi | -] [...]
3.1.1 Options

e /LICENSE displays license information.

e The /V switch followed by a number between 0 and 4 will set the
verbosity of output accordingly. 0=no output, 1=errors only,
2=warnings and errors, 3=info, warnings, and errors, 4=all output.

e The /P switch followed by a number between 0 and 5 will set the
priority of the compiler process accordingly. O=idle, 1=below normal,
2=normal (default), 3=above normal, 4=high, 5=realtime.

e The /O switch followed by a filename tells the compiler to print its log
to that file (instead of the screen)

e /PAUSE makes makensis pause before quitting, which is useful
when executing directly from Windows.

¢ /NOCONFIG disables inclusion of nsisconf.nsh. Without this
parameter, installer defaults are set from nsisconf.nsh.

o /CMDHELP prints basic usage information for command (if
specified), or all commands (if command is not specified).

e /HDRINFO prints information about which options were used to
compile makensis.

e /NOCD disables the current directory change to that of the .nsi file

e /INPUTCHARSET allows you to specify a specific codepage for files
without a BOM. (ACP|OEM|CP#|UTF8|UTF16<LE|BE>)

e /OUTPUTCHARSET allows you to specify the codepage used by
stdout when the output is redirected.
(ACP|OEM|CP#|UTF8[SIG]|UTF16<LE|BE>[BOM])



e /PPO or /SAFEPPO will only run the preprocessor and print the
result to stdout. The safe version will not execute instructions like
lappendfile or Isystem. !packhdr and !finalize are never executed.

e /WX treats warnings as errors

e Using the /D switch one or more times will add to symbols to the
globally defined list (See !define).

e Using the /X switch one or more times will execute the code you
specify following it. Example: "/XAutoCloseWindow false"

e Specifying a dash (-) for the script name will tell makensis to use the
standard input as a source.

3.1.2 Notes

e Parameters are processed in order. makensi s / Ddef script.nsi IS
not the same as naekensi s script.nsi /Ddef.

o If multiple scripts are specified, they are treated as one concatenated
script.

3.1.3 Environment variables

makensis checks a number of environment variables that tell it where to
locate the things it needs in order to create installers. These variables
include:

¢ NSISDIR, NSISCONFDIR - Places where nsis data and config files
are installed. NSISDIR alters the script variable ${NSISDIR}. See
section 4.2.3 for more info.

o APPDATA (on Windows) or HOME (on other platforms) - Location of
the per-user configuration file.

3.1.4 Examples

Basic usage:

makensi s. exe myscri pt. nsi
Quiet mode:

makensi s. exe /V1 nyscript.nsi



Force compressor:

makensi s. exe / X" Set Conpressor /FINAL | zma" nyscript.ns
Change script behavior:

makensi s. exe / DUSE_UPX / DVERSI ON=1. 337 / DNO | MAGES nys
Parameters order:

makensi s / XSecti on sectioncontents.nsi /XSectionEnd

Previous | Contents | Next




Previous | Contents | Next



3.2 Installer Usage

Generated installers and uninstallers accept a few options on the
command line. These options give the user a bit more control over the
installation process.

3.2.1 Common Options

e /NCRC disables the CRC check, unless crccheck force was used in
the script.

¢ /S runs the installer or uninstaller silently. See section 4.12 for more
information.

e /D sets the default installation directory ($INSTDIR), overriding
InstallDir and InstallDirRegKey. It must be the last parameter used in
the command line and must not contain any quotes, even if the path
contains spaces. Only absolute paths are supported.

3.2.2 Uninstaller Specific Options
o 7?=sets $SINSTDIR. It also stops the uninstaller from copying itself to
the temporary directory and running from there. It can be used along
with ExecWait to wait for the uninstaller to finish. It must be the last

parameter used in the command line and must not contain any
guotes, even if the path contains spaces.

3.2.3 Examples

i nstall er.exe /NCRC

installer.exe /'S

installer.exe /D=C:\Program Fil es\NSI S
installer.exe /NCRC /S /D=C.\Program Fi | es\NSI S

uninstaller.exe /'S ?=C.\Program Fil es\NSI S



# uninstall old version
ExecWait '"$I NSTDI Riuni nstaller.exe" /S ?=%$I NSTDI R

Previous | Contents | Next




Previous | Contents | Next



4.1 Script File Format

A NSIS Script File (.nsi) is just a text file with script code.
Commands

Commands lines are in the format ‘command [parameters]'
File "nyfile"

Comments

Lines beginning with ; or # are comments. You can put comments after
commands. You can also use C-style comments to comment one or more
lines.

- Conment
# Conment

# Comment \
Anot her comment |ine (see "Long commands  section

/*
Comment
Comment
*/

Name /* comment */ nysetup

File "nyfile" ; Comrent

If you want a parameter to start with ; or # put it in quotes.
Plug-ins

To call a plug-in, use 'plugin::command [parameters]'. For more info see
Plug-in DLLs.



nsExec: : Exec "nyfil e"
Numbers

For parameters that are treated as numbers, use decimal (the number) or
hexadecimal (with Ox prepended to it, i.e. 0xX12345AB), or octal (numbers
beginning with a 0 and no x).

Colors should be set in hexadecimal RGB format, like HTML but without
the #.

IntCnp 1 Ox1 | bl _equal

Set Ct| Col ors $HWND CCCCCC

Strings

To represent strings that have spaces, use quotes:
MessageBox MB OK "Hi there!”

Quotes only have the property of containing a parameter if they surround
the rest of the parameter. They can be either single quotes, double
guotes, or the backward single quote.

You can escape quotes using $\:

MessageBox MB OK "I'|I| be happy"” ; this one puts a ' i
MessageBox MB OK ' And he said to ne "H there!™" ; thi
MessageBox MB_OK "And he said to ne "I'Il be happy!""

MessageBox MB OK "$\"A quote froma wise man$\" said t

It is also possible to put newlines, tabs etc. in a string using $\r, $\n, $\t
etc. More information...

Variables

Variables start with $. User variables must be declared.

Var MYVAR



StrCpy $MYVAR "nyval ue"
More information...
Long commands

To extend a command over multiple lines, use a backslash (\) at the end
of the line. The next line will effectively be concatenated to the end of it.
For example:

Creat eShort cut " $SMPROGRANE\ NSI S\ ZI P2EXE proj ect wor ks
"$I NSTDI R\ sour ce\ zi p2exe\ zi p2exe. dsw'

MessageBox MB_YESNQ MB | CONQUESTI ON \
"Do you want to renove all files in the folder? \
(If you have anything you created that you want \
to keep, click No)" \
| DNO NoRenpvelabel

Line extension for long commands works for comments as well. It can be
a bit confusing, so it should be avoided.

# A comrent \
still a comment here...

Configuration file

If a file named "nsisconf.nsh" in the config directory exists, it will be
included by default before any scripts (unless the /NOCONFIG command
line parameter is used). The config directory on Windows is the same
directory as makensis.exe is in. On other platforms this is set at install
time and defaults to $PREFIX/etc/. You can alter this at runtime, see
section 3.1.3 for more information.

Previous | Contents | Next




Previous | Contents | Next



4.2 Variables

All variables are global and can be used in Sections or Functions. Note
that by default, variables are limited to 1024 characters. To extend this
limit, build NSIS with a bigger value of the NSIS_ MAX_STRLEN build
setting or use the special build,

4.2.1 User Variables

$VARNAME

User variables must be declared with the VVar command. You can use
these variables to store values, work with string manipulation etc.

4.2.1.1 Var

[/ GLOBAL] var _nane

Declare a user variable. Allowed characters for variables names: [a-z][A-
Z][0-9] and '_". All defined variables are global, even if defined in a
section or a function. To make this clear, variables defined in a section or
a function must use the /GLOBAL flag. The /GLOBAL flag is not required
outside of sections and functions.

Var exanpl e

Functi on test Var
Var [ GLOBAL exanpl e2

StrCpy $exanpl e "exanpl e val ue"
StrCpy $exanpl e2 "anot her exanpl e val ue"
Functi onEnd

4.2.2 Other Writable Variables

$0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $RO, $R1, $R2, $R3, $R4, $R5,



$R6, $R7, $R8, $R9

Registers. These variables can be used just like user variables, but are
usually used in shared functions or macros. You don't have to declare
these variables so you won't get any name conflicts when using them in
shared code. When using these variables in shared code it's
recommended that you use the stack to save and restore their original
values. These variables can also be used for communication with plug-
ins because they can be read and written by the plug-in DLLSs.

$INSTDIR

The installation directory ($INSTDIR is modifiable using StrCpy,
ReadRegStr, ReadINIStr, etc. - This could be used, for example, in the
.onInit function to do a more advanced detection of install location).

Note that in uninstaller code, $SINSTDIR contains the directory where the
uninstaller lies. It does not necessarily contain the same value it
contained in the installer. For example, if you write the uninstaller to
$WINDIR and the user doesn't move it, $INSTDIR will be $WINDIR in the
uninstaller. If you write the uninstaller to another location, you should
keep the installer's $INSTDIR in the registry or an alternative storing
facility and read it in the uninstaller.

$OUTDIR

The current output directory (set implicitly via SetOutPath or explicitly via
StrCpy, ReadRegStr, ReadINIStr, etc)

$CMDLINE

The command line of the installer. The format of the command line can
be one of the following:

o "full\path to\installer.exe" PARAMETER PARAMETER PARAMETER

e installer.,exe PARAMETER PARAMETER PARAMETER

e For parsing out the PARAMETER portion, see GetParameters. If /D=
is specified on the command line (to override the install directory) it
won't show up in $CMDLINE.



$LANGUAGE

The identifier of the language that is currently used. For example, English
is 1033. You can only change this variable in .oninit.

4.2.3 Constants

Constants can also be used in the InstallDir attribute.

Note that some of the new constants will not work on every OS. For
example, $CDBURN_AREA will only work on Windows XP and above. If
it's used on Windows 98, it'll be empty. Unless mentioned otherwise, a
constant should be available on every OS.

$PROGRAMFILES, $PROGRAMFILES32, $PROGRAMFILES64

The program files directory (usually C:\ Program Fi | es but detected at
runtime). On Windows x64, $SPROGRAMFILES and
$PROGRAMFILES32 point to C:\ Program Fil es (x86) While
$PROGRAMFILES64 points to C:\ Program Fi | es. Use
$PROGRAMFILES64 when installing x64 applications.

$COMMONFILES, $COMMONFILES32, $COMMONFILES64

The common files directory. This is a directory for components that are
shared across applications (usually C:\ Program Fi | es\ Common Fi | es but
detected at runtime). On Windows x64, $COMMONFILES and
$COMMONFILES32 point to C:\ Program Fi |l es (x86)\ Cormon Fi | es While
$COMMONFILES64 points to C:\ Program Fi | es\ Cormon Fi | es. Use
$COMMONFILES64 when installing x64 applications.

$DESKTOP

The Windows desktop directory. The context of this constant (All Users or
Current user) depends on the SetShellVarContext setting. The default is
the current user.

$EXEDIR

The directory containing the installer executable (technically this is a



variable and you can modify it, but it is probably not a good idea).
SEXEFILE

The base name of the installer executable.

SEXEPATH

The full path of the installer executable.

${NSISDIR}

A symbol that contains the path where NSIS is installed. Useful if you
want to reference resources that are in NSIS directory e.g. Icons, Uls etc.

When compiled with support for keeping makensis and the data in the
same place (the default on Windows), it is in the same place as
makensis, on other platforms it is set at compile time (See the INSTALL
file for info). In both instances you can modify it at runtime by setting the
NSISDIR environment variable. See section 3.1.3 for more info.

$WINDIR

The Windows directory (usually C:\ W ndows or C:\ W nNT but detected at
runtime).

$SYSDIR

The Windows system directory (usually C:\ W ndows\ Syst emor
C:\ W nNT\ Syst en82 but detected at runtime).

$TEMP
The temporary directory.
$STARTMENU

The start menu folder (useful for adding start menu items using
CreateShortcut). The context of this constant (All Users or Current user)
depends on the SetShellVarContext setting. The default is the current
user.



$SMPROGRAMS

The start menu programs folder (use this whenever you want
$STARTMENU\Programs). The context of this constant (All Users or
Current user) depends on the SetShellVarContext setting. The default is
the current user.

$SMSTARTUP

The start menu programs / startup folder. The context of this constant (All
Users or Current user) depends on the SetShellVVarContext setting. The
default is the current user.

$QUICKLAUNCH

The quick launch folder for IE4 active desktop and above. If quick launch
is not available it simply returns the same as $TEMP.

$DOCUMENTS

The documents directory. A typical path for the current user is

C:\ Docurents and Settings\Foo\ M Docurments. The context of this
constant (All Users or Current user) depends on the SetShellVarContext
setting. The default is the current user.

This constant is not available on Windows 95 unless Internet Explorer 4
is installed.

$SENDTO
The directory that contains Send To menu shortcut items.
$RECENT

The directory that contains shortcuts to the user's recently used
documents.

$FAVORITES

The directory that contains shortcuts to the user's favorite websites,



documents, etc. The context of this constant (All Users or Current user)
depends on the SetShellVarContext setting. The default is the current
user.

This constant is not available on Windows 95 unless Internet Explorer 4
Is installed.

$MUSIC

The user's music files directory. The context of this constant (All Users or
Current user) depends on the SetShellVarContext setting. The default is
the current user.

This constant is available on Windows XP, ME and above.
$PICTURES

The user's picture files directory. The context of this constant (All Users
or Current user) depends on the SetShellVarContext setting. The default
is the current user.

This constant is available on Windows 2000, XP, ME and above.
$VIDEOS

The user's video files directory. The context of this constant (All Users or
Current user) depends on the SetShellVarContext setting. The default is
the current user.

This constant is available on Windows XP, ME and above.
$NETHOOD

The directory that contains link objects that may exist in the My Network
Places/Network Neighborhood folder.

This constant is not available on Windows 95 unless Internet Explorer 4
with Active Desktop is installed.

$FONTS



The system's fonts directory.
$STEMPLATES

The document templates directory. The context of this constant (All Users
or Current user) depends on the SetShellVarContext setting. The default
is the current user.

$APPDATA

The application data directory. Detection of the current user path requires
Internet Explorer 4 and above. Detection of the all users path requires
Internet Explorer 5 and above. The context of this constant (All Users or
Current user) depends on the SetShellVarContext setting. The default is
the current user.

This constant is not available on Windows 95 unless Internet Explorer 4
with Active Desktop is installed.

$LOCALAPPDATA

The local (non-roaming) application data directory. The context of this
constant (All Users or Current user) depends on the SetShellVarContext
setting. The default is the current user.

This constant is available on Windows ME, 2000 and above.
$PRINTHOOD

The directory that contains link objects that may exist in the Printers
folder.

This constant is not available on Windows 95 and Windows 98.
SINTERNET_CACHE
Internet Explorer's temporary internet files directory.

This constant is not available on Windows 95 nor Windows NT 4 unless
Internet Explorer 4 with Active Desktop is installed.



$COOKIES
Internet Explorer's cookies directory.

This constant is not available on Windows 95 nor Windows NT 4 unless
Internet Explorer 4 with Active Desktop is installed.

$HISTORY
Internet Explorer's history directory.

This constant is not available on Windows 95 nor Windows NT 4 unless
Internet Explorer 4 with Active Desktop is installed.

$PROFILE

The user's profile directory. A typical path is C:\ Docunents and
Set ti ngs\ Foo.

This constant is available on Windows 2000 and above.
$ADMINTOOLS

A directory where administrative tools are kept. The context of this
constant (All Users or Current user) depends on the SetShellVarContext
setting. The default is the current user.

This constant is available on Windows 2000, ME and above.
$RESOURCES

The resources directory that stores themes and other Windows resources
(usually $wW NDI R\ Resour ces but detected at runtime).

This constant is available on Windows XP and above.
$RESOURCES_LOCALIZED

The localized resources directory that stores themes and other Windows
resources (usually $w NDI R\ Resour ces\ 1033 but detected at runtime).



This constant is available on Windows XP and above.
$CDBURN_AREA

A directory where files awaiting to be burned to CD are stored.
This constant is available on Windows XP and above.
$SHWNDPARENT

HWND of the main window (in decimal).

$PLUGINSDIR

The path to a temporary folder created upon the first usage of a plug-in or
a call to InitPluginsDir. This folder is automatically deleted when the
installer exits. This makes this folder the ideal folder to hold INI files for
InstallOptions, bitmaps for the splash plug-in, or any other file that a plug-
in needs to work.

4.2.4 Constants Used in Strings
$$

Use to represent $.

$\r

Use to represent a carriage return (\r).
$\n

Use to represent a newline (\n).

Pt

Use to represent a tab (\t).

Previous | Contents | Next




Previous | Contents | Next



4.3 Labels

Labels are the targets of Goto instructions and the various branching
instructions (such as IfErrors, MessageBox, IfFileExists, and StrCmp).
Labels must be within a Section or a Function. Labels are local in scope,
meaning they are only accessible from within the Section or Function that
they reside in. To declare a label, simply use:

MyLabel:

Labels cannot begin with a -, +, I, $, or 0-9. When specifying labels for
the various instructions that require them, remember that both an empty
string (") and O both represent the next instruction (meaning no Goto will
occur). Labels beginning with a period (.) are global, meaning you can
jump to them from any function or section (though you cannot jump to an
uninstall global label from the installer, and vice versa).

Previous | Contents | Next




Previous | Contents | Next



4.4 Relative Jumps

Unlike labels, relative jumps are, as the name suggests, relative to the
place they are called from. You can use relative jumps wherever you can
use labels. Relative jumps are marked by numbers. +1 jumps to the next
instruction (the default advancement), +2 will skip one instruction and go
to the second instruction from the current instruction, -2 will jump two
instructions backward, and +10 will skip 9 instructions, jumping to the
tenth instruction from the current instruction.

A instruction is every command that is executed at run-time, when the
installer is running. MessageBox, Goto, GetDLLVersion, FileRead,
SetShellVarContext are all instructions. AddSize, Section, SectionGroup,
SectionEnd, SetOverwrite (and everything under Compiler Flags), Name,
SetFont, LangString, are not instructions because they are executed at
compile time.

Examples:

Goto +2
MessageBox MB OK "You will never ever see this ness
MessageBox MB OK "The | ast nessage was skipped, this

Goto +4

MessageBox MB_OK "The foll owi ng nessage will be skipp
Goto +3

MessageBox MB_OK "You will never ever see this nessag
Goto -3

MessageBox MB_OK " Done"

Note that macro insertion is not considered as one instruction when it
comes to relative jumps. The macro is expanded before relative jumps
are applied, and so relative jumps can jump into code inside an inserted
macro. The following code, for example, will not skip the macro. It will
show a message box.

'macro rel ative_ junp_test



MessageBox MB OK "first macro |ine"
MessageBox MB_OK "second macro |ine
' macr oend

Goto +2
linsertmacro relative_junp_test

Previous | Contents | Next




Previous | Contents | Next



4.5 Pages

Each (non-silent) NSIS installer has a set of pages. Each page can be a
NSIS built-in page or a custom page created by a user's function (with
nsDialogs or InstallOptions for example).

The script controls the page order, appearance, and behavior. You can
skip pages, paint them white, force the user to stay in a certain page until
a certain condition is met, show a readme page, show custom designed
pages for input and more. In this section you will learn how to do all of the
above.

There are two basic commands regarding pages, Page and UninstPage.
The first adds a page to the installer, the second adds a page to the
uninstaller. On top of those two there is the PageEx command which
allows you to add a page to either one and with greater amount of
options. PageEx allows you to set options to the specific page you are
adding instead of using the default that's set outside of PageEx.

4.5.1 Ordering

The page order is set simply by the order Page, UninstPage and PageEx
appear in the script. For example:

Page |icense

Page conponents

Page directory

Page instfiles
Uni nst Page uni nst Confirm
Uni nst Page instfiles

This code will tell NSIS to first show the license page, then the
components selection page, then the directory selection page and finally
the install log where sections are executed. The uninstaller will first show
the uninstall confirmation page and then the uninstallation log.

You can specify the same page type more than once.



For backwards compatibility with old NSIS scripts, the following installer
pages will be added if no installer page commands are used: license (if
LicenseText and LicenseData were specified), components (if
ComponentText was specified and there is more than one visible
section), directory (if DirText was specified) and instfiles. When there are
no uninstaller page commands the following uninstaller pages will be
added: uninstall confirmation page (if UninstallText was specified) and
instfiles. This method is deprecated, converting scripts to use page
commands is highly recommended because you can use the new
standard language strings.

4.5.2 Page Options

Each page has its unique set of data that defines how it will look and act.
This section describes what data each type of page uses and how you
can set it. Callback functions are described below and are not dealt with
in this section.

The list below lists the commands that affect a certain page type. Unless
otherwise mentioned, these commands can be used both inside and
outside of a PageEx block. If used inside a PageEx block they will only
affect the current page being set by PageEXx, otherwise they will set the
default for all other pages.

License page

e LicenseText
e LicenseData
e LicenseForceSelection

Components selection page
e ComponentText
Directory selection page

e DirText
e DirVar (can only be used in PageEx)
e DirVerify



Un/Installation log page

e DetailsButtonText
e CompletedText

Uninstall confirmation page

e DirVar (can only be used in PageEx)
e UninstallText

Use Caption to set the page caption.

4.5.3 Callbacks

Each built-in page has three callback functions: the pre-function, the
show function and the leave-function. The pre-function is called right
before the page is created, the show-function is called right after it has
been created but before it is shown and the leave-function is called right
after the user has pressed the next button (before actually leaving the

page).

e The pre-function allows you to skip the page using Abort.

e The show-function allows you to tweak the page's user interface with
CreateFont, SetCtlColors, SendMessage etc.

e The leave-function allows you to force the user to stay on the current
page using Abort.

A custom page only has two callback functions, one that creates it which
is mandatory, and one leave-function that acts just like the leave-function
for built-in pages.

Examples:

stayl nLi cense
cust om page”

Page |icense skipLicense
Page custom custonPage "" ":
Page instfiles

Functi on ski pLi cense
MessageBox MB_YESNO "Do you want to skip the licens



Abor t
no:

Functi onEnd

Function stayl nLi cense

MessageBox MB_YESNO "Do you want to stay in the lic
Abor t
no:

Functi onEnd

Functi on custonPage

Get TenpFi | eNanme $RO

File /oname=$R0O cust onPage. i ni

| nstal | Options: :dial og $RO

Pop $R1

StrCmp $R1 "cancel " done

StrCmp $R1 "back" done

StrCmp $R1 "success" done

error: MessageBox MB _OK| MB | CONSTOP "I nstal |l Opti ons
done:

Functi onEnd

4.5.4 Page

custom [creator _function] [l eave_function] [caption] |
OR
i nternal _page type [pre_function] [show function] [l ea

Adds an installer page. See the above sections for more information
about built-in versus custom pages and about callback functions.

internal_page_type can be:

license - license page

components - components selection page

directory - installation directory selection page

instfiles - installation page where the sections are executed
uninstConfirm - uninstall confirmation page



The last page of the installer has its cancel button disabled to prevent
confusion. To enable it anyway, use /ENABLECANCEL.

4.5.5 UninstPage

custom [creator_function] [l eave_function] [caption] |
OR
i nternal _page type [pre_function] [show function] [l ea

Adds an uninstaller page. See the above sections for more information
about built-in versus custom pages and about callback functions.

See Page for possible values of internal_page_type.
4.5.6 PageEx

[un.] (custon] uni nst Confirnilicense| conponents|director

Adds an installer page or an uninstaller page if the un. prefix was used.
Every PageEx must have a matching PageExEnd. In a PageEx block you
can set options that are specific to this page and will not be used for
other pages. Options that are not set will revert to what was set outside
the PageEx block or the default if nothing was set. To set the sub-caption
for a page use Caption or SubCaption to set the default. To set the
callback functions for a page set with PageEx use PageCallbacks. See
the above sections for more information about built-in versus custom
pages.

Example usage:

PageEx |icense
Li censeText " Readne"
Li censeData readne. rtf
PageExEnd

PageEx |icense
Li censeData |icense. t xt
Li censeFor ceSel ecti on checkbox



PageExEnd

4.5.7 PageExXEnd

Ends a PageEx block.
4.5.8 PageCallbacks

([creator _function] [leave function]) | ([pre_function

Sets the callback functions for a page defined using PageEx. Can only be
used inside a PageEx block. See the above sections for more information
about callback functions.

PageEx |icense

PageCal | backs |icensePre |icenseShow |icenselLeave
PageExEnd

Previous | Contents | Next




Previous | Contents | Next



4.6 Sections

Each NSIS installer contains one or more sections. Each of these
sections are created, modified, and ended with the following commands.

e Each section contains zero or more instructions.

e Sections are executed in order by the resulting installer, and if a
component page is used, the user will have the option of
disabling/enabling each visible section.

e |f a section's name is 'Uninstall’ or is prefixed with 'un.’, it's an
uninstaller section.

4.6.1 Section Commands

4.6.1.1 AddSize

si ze_kb

Tells the installer that the current section needs an additional "size _kb"
kilobytes of disk space. Only valid within a section (will have no effect
outside of a section or in a function).

Secti on
AddSi ze 500
Secti onEnd

4.6.1.2 Section

[/o] [([']|[-])section_nane] [section_index output]

Begins and opens a new section. If section_name is empty, omitted, or
begins with a -, then it is a hidden section and the user will not have the
option of disabling it. If the section name is 'Uninstall’ or is prefixed with
‘'un.’, then it is a an uninstaller section. If section_index_output is
specified, the parameter will be !defined with the section index (can be



used with SectionSetText etc). If the section name begins with a !, the
section will be displayed as bold. If the /o switch is specified, the section
will be unselected by default.

Section "-hidden section"
Secti onEnd

Section # hidden section
Sect i onEnd

Section "!bold section”
Sect i onEnd

Section /o "optional"”
Secti onEnd

Section "install sonething" SEC | DX
Secti onEnd

To access the section index, curly brackets must be used and the code
must be located below the section in the script.

Section testl secl id
Sect i onEnd

Section test2 sec2 id
Sect i onEnd

Function .onlnit

SectionGet Text ${sec2_id} $0

MessageBox MB_OK "nane of ${sec2_id}:$\n$0" # wll c
Functi onEnd

Function .onlnit
Secti onGet Text ${sec2_id} $0
MessageBox MB_OK "nane of ${sec2_id}:$\n$0" # w ||
# plus a warning stating:
# unknown vari abl e/ constant "{sec2 id}" detected



Functi onEnd

Section testl secl id
Sect i onEnd

Section test2 sec2 id
Sect i onEnd

4.6.1.3 SectionEnd

This command closes the current open section.
4.6.1.4 Sectionlin

I nsttype_index [insttype index] [RQ

This command specifies which install types (see InstType) the current
section defaults to the enabled state in. Multiple Sectionin commands
can be specified (they are combined). If you specify RO as a parameter,
then the section will be read-only, meaning the user won't be able to
change its state. The first install type defined using InstType is indexed 1,
the next 2 and so on.

| nst Type "full"
| nst Type "m ni mal "

Section "a section”
Sectionln 1 2
Secti onEnd

Section "anot her section"

Sectionln 1
Secti onEnd

4.6.1.5 SectionGroup



[/e] section_group_nane [index_out put]

This command inserts a section group. The section group must be closed
with SectionGroupEnd, and should contain 1 or more sections. If the
section group name begins with a !, its name will be displayed with a bold
font. If /e is present, the section group will be expanded by default. If
index_output is specified, the parameter will be !defined with the section
index (can be used with SectionSetText etc). If the name is prefixed with
‘un.’ the section group is an uninstaller section group.

SectionG oup "sone stuff"
Section "a section"

Sect i onEnd

Section "anot her section"
Sect i onEnd

Secti onG oupEnd

4.6.1.6 SectionGroupEnd

Closes a section group opened with SectionGroup.
4.6.2 Uninstall Section

A special Section named 'Uninstall' must be created in order to generate
an uninstaller. This section should remove all files, registry keys etc etc

that were installed by the installer, from the system. Here is an example
of a simple uninstall section:

Section "Uninstall™
Del et e $I NSTDI R\ Uni nst.exe ; delete self (see explan
Del et e $I NSTDI R\ myApp. exe
RVDi r $1 NSTDI R
Del et eRegKey HKLM SCOFTWARE\ ny App
Secti onEnd

The first Delete instruction works (deleting the uninstaller), because the
uninstaller is transparently copied to the system temporary directory for



the uninstall.

Note that in uninstaller code, $INSTDIR contains the directory where the

uninstaller lies. It does not necessarily contain the same value it
contained in the installer.

Previous | Contents | Next




Previous | Contents | Next



4.7 Functions

Functions are similar to Sections in that they contain zero or more
instructions. User functions are not called by the installer directly, instead
they are called from Sections using the Call instruction. Callback
functions will be called by the installer when a certain event occurs.

Functions must be declared outside of Sections or other Functions.

4.7.1 Function Commands
4.7.1.1 Function

[ functi on_nane]

Begins and opens a new function. Function names beginning with ".
(e.g. ".Whatever") are generally reserved for callback functions. Function
names beginning with "un." are functions that will be generated in the
Uninstaller. Hence, normal install Sections and functions cannot call
uninstall functions, and the Uninstall Section and uninstall functions
cannot call normal functions.

Functi on func
# sone conmmands
Functi onEnd

Section

Call func
Sect i onEnd

4.7.1.2 FunctionEnd

This command closes the current open function.

4.7.2 Callback Functions



You can create callback functions (which have special names), that will
be called by the installer at certain points in the install. Below is a list of
available callbacks:

4.7.2.1 Install Callbacks

4.7.2.1.1 .onGUIInit

This callback will be called just before the first page is loaded and the
installer dialog is shown, allowing you to tweak the user interface.

Example:
I'i ncl ude "W nMessages. nsh"

Function .onGUJ Init
# 1028 is the id of the brandi ng text control
Get Dl gl t em $RO $HVWNDPARENT 1028
Creat eFont $R1 "Tahoma" 10 700
SendMessage $RO ${WM SETFONT} $R1 O
# set background color to white and text color tor
Set Ct| Col ors $RO FFFFFF FFO000
Functi onEnd

4.7.2.1.2 .onlnit

This callback will be called when the installer is nearly finished initializing.
If the ".onlInit' function calls Abort, the installer will quit instantly.

Here are two examples of how this might be used:

Function .onlnit

MessageBox MB_YESNO "This will install. Continue?"
Abort ; causes installer to quit.
NoAbort :

Functi onEnd

or:



Function .onlnit
Readl NI Str $I NSTDIR $W NDI Riwi ncnd. i ni Configuratio
StrCnp $INSTDIR "" O NoAbort
MessageBox MB OK "W ndows Commander not found. Un
Abort ; causes installer to quit.
NoAbort :
Functi onEnd

4.7.2.1.3 .onInstFailed

This callback is called when the user hits the ‘cancel' button after the
install has failed (if it could not extract a file, or the install script used the
Abort command).

Example:

Function .onl nstFail ed
MessageBox MB OK "Better luck next tine."
Functi onEnd

4.7.2.1.4 .onInstSuccess

This callback is called when the install was successful, right before the
install window closes (which may be after the user clicks 'Close’ if
AutoCloseWindow or SetAutoClose is set to false).

Example:

Function .onl nst Success
MessageBox MB_YESNO "Congrats, it worked. View rea
Exec not epad. exe ; view readne or whatever, if vy
NoReadne:
Functi onEnd

4.7.2.1.5 .onGUIENnd

This callback is called right after the installer window closes. Use it to free
any user interface related plug-ins if needed.



4.7.2.1.6 .onMouseOverSection

This callback is called whenever the mouse position over the sections
tree has changed. This allows you to set a description for each section
for example. The section id on which the mouse is over currently is
stored, temporarily, in $0.

Example:

Function . onMuseOver Secti on
Fi ndW ndow $RO "#32770" "" $HWNDPARENT
GetDl gltem $RO $RO 1043 ; description item (nust b

StrCnp $0 0 "" +2
SendMessage $RO ${WM SETTEXT} 0 "STR first secti

StrCnp $0 1 "" +2
SendMessage $RO ${WM SETTEXT} 0 " STR second sect
Functi onEnd

4.7.2.1.7 .onRebootFailed

This callback is called if Reboot fails. WriteUninstaller, plug-ins, File and
WriteRegBin should not be used in this callback.

Example:

Functi on .onReboot Fai | ed
MessageBox MB_OK| MB | CONSTOP " Reboot failed. Please
Functi onEnd

4.7.2.1.8 .onSelChange

Called when the selection changes on the component page. Useful for
using with SectionSetFlags and SectionGetFlags.

Selection changes include both section selection and installation type
changes. The section id of the changed section is stored in $0. $0 is -1 if
the installation type changed. You only get notifications for changes



initiated by the user and only one notification per action even if the action
also affected child sections and/or parent groups.

4.7.2.1.9 .onUserAbort

This callback is called when the user hits the 'cancel’ button, and the
install hasn't already failed. If this function calls Abort, the install will not
be aborted.

Example:

Function .onUser Abort
MessageBox MB_YESNO "Abort install?" | DYES NoCancel
Abort ; causes installer to not quit.
NoCancel Abort :
Functi onEnd

4.7.2.1.10 .onVerifyInstDir

This callback enables control over whether or not an installation path is
valid for your installer. This code will be called every time the user
changes the install directory, so it shouldn't do anything crazy with
MessageBox or the like. If this function calls Abort, the installation path in
SINSTDIR is deemed invalid.

Example:

Function .onVerifylnstDir
| f Fi |l eExi sts $I NSTDI R\ W nanp. exe Pat hGood
Abort ; if $INSTDIR is not a winanp directory, d
Pat hGood:
Funct i onEnd

4.7.2.2 Uninstall Callbacks

4.7.2.2.1 un.onGUIInit

This callback will be called just before the first page is loaded and the



installer dialog is shown, allowing you to tweak the user interface.
Have a look at .onGUIInit for an example.

4.7.2.2.2 un.onlnit

This callback will be called when the uninstaller is nearly finished
initializing. If the ' un.onlnit' function calls Abort, the uninstaller will quit
instantly. Note that this function can verify and/or modify $SINSTDIR if
necessary.

Here are two examples of how this might be used:

Function un.onlnit
MessageBox MB_YESNO "This will uninstall. Continue
Abort ; causes uninstaller to quit.
NoAbort :
Functi onEnd

or:

Function un.onlnit
| fFil eExi sts $I NSTDI R\ nyfil e. exe found
Messagebox MB K "Uninstall path incorrect”
Abor t
f ound:
Functi onEnd

4.7.2.2.3 un.onUninstFailed

This callback is called when the user hits the ‘cancel' button after the
uninstall has failed (if it used the Abort command or otherwise failed).

Example:

Functi on un. onUni nst Fai | ed
MessageBox MB OK "Better luck next tine."
Functi onEnd



4.7.2.2.4 un.onUninstSuccess

This callback is called when the uninstall was successful, right before the
install window closes (which may be after the user clicks 'Close’ if
SetAutoClose is set to false)..

Example:

Function un. onUni nst Success
MessageBox MB K "Congrats, it's gone."
Functi onEnd

4.7.2.2.5un.onGUIENnd

This callback is called right after the uninstaller window closes. Use it to
free any user interface related plug-ins if needed.

4.7.2.2.6 un.onRebootFailed

This callback is called if Reboot fails. WriteUninstaller, plug-ins, File and
WriteRegBin should not be used in this callback.

Example:

Functi on un. onReboot Fai | ed
MessageBox MB_OK| MB | CONSTOP " Reboot failed. Please
Functi onEnd

4.7.2.2.7 un.onSelChange

Called when the selection changes on the component page. Useful for
using with SectionSetFlags and SectionGetFlags.

Selection changes include both section selection and installation type
changes. The section id of the changed section is stored in $0. $0 is -1 if
the installation type changed. You only get notifications for changes
initiated by the user and only one notification per action even if the action
also affected child sections and/or parent groups.



4.7.2.2.8 un.onUserAbort

This callback is called when the user hits the '‘cancel' button and the

uninstall hasn't already failed. If this function calls Abort, the install will
not be aborted.

Example:

Functi on un. onUser Abor t
MessageBox MB_YESNO "Abort uninstall ?" | DYES NoCan

Abort ; causes uninstaller to not quit.
NoCancel Abort :
Funct i onEnd

Previous | Contents | Next




Previous | Contents | Next



4.8 Installer Attributes

4.8.1 General Attributes

The commands below all adjust attributes of the installer. These
attributes control how the installer looks and functions, including which
pages are present in the installer, which text is displayed in each part of
each page, the name of the installer, the icon the installer uses, the
default installation directory and more. Note that these attributes can be
set anywhere in the file except in a Section or Function.

Defaults are bold and underlined

4.8.1.1 AddBrandinglmage

(left|right|top|botton) (w dth|height) [ padding]

Adds a branding image on the top, bottom, left, or right of the installer. Its
size will be set according to the width/height specified, the installer
width/height and the installers font. The final size will not always be what
you requested; have a look at the output of the command for the actual
size. Because this depends on the installers font, you should use SetFont
before AddBrandinglmage. The default padding value is 2.

AddBrandinglmage only adds a placeholder for an image. To set the
image itself at runtime, use SetBrandinglmage.

AddBr andi ngl mage | eft 100
AddBr andi ngl mage ri ght 50
AddBr andi ngl mage top 20
AddBr andi ngl mage bottom 35
AddBr andi ngl mage | eft 100 5

4.8.1.2 AllowRootDirlnstall



true| fal se

Controls whether or not installs are allowed in the root directory of a
drive, or directly into a network share. Set to 'true' to change the safe
behavior, which prevents users from selecting C:\ or \\Server\Share as an
install (and later on, uninstall) directory. For additional directory selection
page customizability, see .onVerifylnstDir.

4.8.1.3 AutoCloseWindow

true| fal se

Sets whether or not the install window automatically closes when
completed. This is overrideable from a section using SetAutoClose.

4.8.1.4 BGFont

[font face [height [weight] [/1TALIC] [/UNDERLINE] [/S

Specifies the font used to show the text on the background gradient. To
set the color use BGGradient. The default font will be used if no
parameters are specified. The default font is bold and italic Times New
Roman.

4.8.1.5 BGGradient

[of f| (topc botc [textcol or|notext])]

Specifies whether or not to use a gradient background window. If 'off', the
installer will not show a background window, if no parameters are
specified, the default black to blue gradient is used, and otherwise the
top_color or bottom_color are used to make a gradient. Top_color and
bottom_color are specified using the form RRGGBB (in hexadecimal, as
in HTML, only minus the leading '#', since # can be used for comments).
'textcolor' can be specified as well, or 'notext' can be specified to turn the
big background text off.



4.8.1.6 BrandingText

/ TRI M LEFT| RI GHT| CENTER) t ext

Sets the text that is shown at the bottom of the install window (by default
it is 'Nullsoft Install System vX.XX"). Setting this to an empty string (")
uses the default; to set the string to blank, use " " (a space). If it doesn't
matter to you, leave it the default so that everybody can know why the
installer didn't suck :). Use /TRIMLEFT, /TRIMRIGHT or /TRIMCENTER
to trim down the size of the control to the size of the string.

Accepts variables. If variables are used, they must be initialized on
.onlnit.

4.8.1.7 Caption

caption

When used outside a PageEx block: Sets the text for the titlebar of the
installer. By default it is '$(*Name) Setup’, where Name is specified by the
Name instruction. You can however override it with ‘MyApp Installer' or
whatever. If you specify an empty string ("), the default will be used (you
can specify " " to simulate a empty string).

When used inside a PageEx block: Sets the subcaption of the current
page.

Accepts variables. If variables are used, they must be initialized on .onlInit
or .onGUIInit.

4.8.1.8 ChangeUl

dialog ui _file.exe

Replaces dialog (IDD_LICENSE, IDD_DIR, IDD_SELCOM, IDD_INST,
IDD_INSTFILES, IDD_UNINST or IDD_VERIFY) with a dialog from
ui_file.exe with the same resource ID. You can also specify ‘all' as the



dialog if you wish to replace all 7 of the dialogs at once from the same Ul
file. For some example Uls look at Contrib\UIs under your NSIS directory.

e IDD_LICENSE must contain IDC_EDIT1 (RICHEDIT control).

e |IDD_DIR must contain IDC_DIR (edit box), IDC_BROWSE (button)
and IDC_CHECKZ1 (checkbox).

e IDD_SELCOM must contain IDC_TREEL1 (SysTreeView32 control),
and IDC_COMBO1 (combo box).

e IDD_INST must contain IDC_BACK (button), IDC_CHILDRECT
(static control the size of all other dialogs), IDC_VERSTR (static),
IDOK (button), and IDCANCEL (button). If an image control (static
with SS_BITMAP style) will be found in this dialog it will be used as
the default for SetBrandinglmage.

e IDD _INSTFILES must contain IDC_LIST1 (SysListView32 control),
IDC_PROGRESS (msctls_progress32 control), and
IDC_SHOWDETAILS (button).

e IDD_UNINST must contain IDC_EDIT1 (edit box).

e |IDD_VERIFY must contain IDC_STR (static).

ChangeUl all "${NSI SDI R}\ Contri b\ Ul s\ sdbar ker _tiny. exe
4.8.1.9 CheckBitmap

bi t map. bnp

Specifies the bitmap with the checkbox images used in the component-
selection page treeview.

This bitmap should have a size of 96x16 pixels, no more than 8bpp (256
colors) and contain six 16x16 images for the different states (in order:
selection mask, not checked, checked, greyed out, unchecked & read-
only, checked & read-only). Use magenta as mask color (this area will be
transparent).

4.8.1.10 CompletedText

t ext



Replaces the default text ("Completed"”) that is printed at the end of the
install if parameter is specified. Otherwise, the default is used.

Accepts variables. If variables are used, they must be initialized before
the message is printed.

4.8.1.11 ComponentText

[text [subtext] [subtext?2]]

Used to change the default text on the component page.

text: Text above the controls, to the right of the installation icon.
subtext: Text next to the installation type selection.

subtext2: Text to the left of the components list and below the installation
type.

The default string will be used if a string is empty ().

Accepts variables. If variables are used, they must be initialized before
the components page is created.

4.8.1.12 CRCCheck

on| of f|force

Specifies whether or not the installer will perform a CRC on itself before
allowing an install. Note that if the user uses /NCRC on the command line
when executing the installer, and you didn't specify ‘force’, the CRC will
not occur, and the user will be allowed to install a (potentially) corrupted
installer.

4.8.1.13 DetailsButtonText

show det ai | s_t ext



Replaces the default details button text of "Show details", if parameter is
specified (otherwise the default is used).

Accepts variables. If variables are used, they must be initialized before
the install log (instfiles) page is created.

4.8.1.14 DirText

[text] [subtext] [browse button text] [browse dl g text
Used to change the default text on the directory page.

text: Text above the controls, to the right of the installation icon.

subtext: Text on the directory selection frame.

browse_button_text: Text on the Browse button.

browse_dlg_text: Text on the "Browse For Folder" dialog, appears after
clicking on "Browse" button.

The default string will be used if a string is empty ().

Accepts variables. If variables are used, they must be initialized before
the directory page is created.

4.8.1.15 DirVar

user _var (dir input/output)

Specifies which variable is to be used to contain the directory selected.
This variable should be initialized with a default value. This allows you to
easily create two different directory pages that will not require you to
move values in and out of $INSTDIR. The default variable is $INSTDIR.
This can only be used in PageEx for directory and uninstConfirm pages.

Var ANOTHER DI R
PageEx directory



Di r Var $ANOTHER DI R
PageExEnd

Secti on
Set Qut Pat h $I NSTDI R
File "a file.dat"
Set Qut Pat h $ANOTHER DI R
File "another file.dat"
Sect i onEnd

4.8.1.16 DirVerify

aut o| | eave

If "DirVerify leave' is used, the Next button will not be disabled if the
installation directory is not valid or there is not enough space. A flag that
you can read in the leave function using GetinstDirError will be set
instead.

PageEx directory
DirVerify | eave
PageCal | backs "" "" dirLeave
PageExEnd

4.8.1.17 FileErrorText

file error_text [noignore file_ error_text]

Replaces the default text that comes up when a file cannot be written to.
This string can contain a reference to $0, which is the filename ($0 is
temporarily changed to this value). Example: "Can not write to file
S\r$\n$0$\rS\ngood luck.".

Accepts variables. If variables are used, they must be initialized before
File is used.



4.8.1.18 Icon

[ path\]icon.ico

Sets the icon of the installer. Every image in the icon file will be included
in the installer. Use Uninstalllcon to set the uninstaller icon.

4.8.1.19 InstallButtonText

i nstall button_text

If parameter is specified, overrides the default install button text (of
"Install") with the specified text.

Accepts variables. If variables are used, they must be initialized before
the install button shows.

4.8.1.20 InstallColors

/ W ndows | (foreground _col or background col or)

Sets the colors to use for the install info screen (the default is 00FF00
000000. Use the form RRGGBB (in hexadecimal, as in HTML, only minus
the leading '#', since # can be used for comments). Note that if
"/windows" is specified as the only parameter, the default windows colors
will be used.

4.8.1.21 InstallDir

definstdir

Sets the default installation directory. See the variables section for
variables that can be used to make this string (especially
$PROGRAMFILES). Note that the part of this string following the last \
will be used if the user selects 'browse’, and may be appended back on
to the string at install time (to disable this, end the directory with a \



(which will require the entire parameter to be enclosed with quotes). If
this doesn't make any sense, play around with the browse button a bit.

4.8.1.22 InstallDirRegKey

root key subkey key nane

This attribute tells the installer to check a string in the registry and use it
as the install dir if that string is valid. If this attribute is present, it will
override the InstallDir attribute if the registry key is valid, otherwise it will
fall back to the InstallDir value. When querying the registry, this command
will automatically remove any quotes. If the string ends in ".exe", it will
automatically remove the filename component of the string (i.e. if the
string is "C:\Program Files\Foo\app.exe", it will know to use "C:\Program
Files\Foo"). For more advanced install directory configuration, set
$INSTDIR in .onlnit.

Language strings and variables cannot be used with InstallDirRegKey.

I nstal | Di r RegKkey HKLM Sof tware\NSI S ""
I nstal | Di r RegKey HKLM Sof t war e\ ACME\ Thi ngy Install Loca

4.8.1.23 InstProgressFlags

[flag [...]]

Valid values for flag are "smooth" (smooth the progress bar) or "colored"
(color the progress bar with the colors set by InstallColors. Examples:
"InstProgressFlags" (default old-school windows look),
"InstProgressFlags smooth" (new smooth look), "InstProgressFlags
smooth colored" (colored smooth look whee). Note: neither "smooth" or
"colored" work with XPStyle on when the installer runs on Windows XP
with a modern theme.

4.8.1.24 InstType



install _type nane | /NOCUSTOM | /CUSTOMSTRI NG=str | /C

Adds an install type to the install type list, or disables the custom install
type. There can be as many as 32 types, each one specifying the name
of the install type. If the name is prefixed with 'un.' it is an uninstaller
install type. The name can contain variables which will be processed at
runtime before the components page shows. Another way of changing
the InstType name during runtime is the InstTypeSetText command. The
difference is that with InstTypeSetText you are saving your precious user
variables. The first type is the default (generally 'Typical'). If the
INOCUSTOM switch is specified, then the "custom" install type is
disabled, and the user has to choose one of the pre-defined install types.
Alternatively, if the /CUSTOMSTRING switch is specified, the parameter
will override the "Custom" install type text. Alternatively, if the
/COMPONENTSONLYONCUSTOM flag is specified, the component list
will only be shown if the "Custom" install type is selected.

Accepts variables for type names. If variables are used, they must be
initialized before the components page is created.

4.8.1.25 LicenseBkColor

color | /[gray | /w ndows

Sets the background color of the license data. Color is specified using the
form RRGGBB (in hexadecimal, as in HTML, only minus the leading '#,
since # can be used for comments). Default is '/gray’. You can also use
the Windows OS defined color by using '/windows'.

4.8.1.26 LicenseData

| icdata. (txt|rtf)

Specifies a text file or a RTF file to use for the license that the user can
read. Omit this to not have a license displayed. Note that the file must be
in DOS text format (\r\n). To define a multilingual license data use
LicenseLangString.



If you are using a RTF file it is recommended that you edit it with
WordPad and not MS Word. Using WordPad will result in a much smaller
file.

Use LicenselLangString to show a different license for every language.
4.8.1.27 LicenseForceSelection

(checkbox [accept text] | radi obuttons [accept text] [

Specifies if the displayed license must be explicitly accepted or not. This
can be done either by a checkbox or by radiobuttons. By default the "next
button" is disabled and will only be enabled if the checkbox is enabled or
the correct radio button is selected. If off is specified the "next button" is
enabled by default.

Li censeFor ceSel ecti on checkbox

Li censeForceSel ecti on checkbox "i accept™

Li censeForceSel ecti on radi obuttons

Li censeForceSel ection radi obuttons "i accept”

Li censeForceSel ection radi obuttons "i accept” "i decli

Li censeForceSel ecti on radi obuttons "" "i decline"

Li censeFor ceSel ecti on off

4.8.1.28 LicenseText

[text [button_text]]

Used to change the default text on the license page.

text: Text above the controls, to the right of the installation icon.
button_text: Text on the "I Agree" button.

The default string will be used if a string is empty ().

Accepts variables. If variables are used, they must be initialized before



the license page is created.
4.8.1.29 ManifestDPIAware

not set | true| fal se

Declare that the installer is DPl-aware. A DPl-aware application is not
scaled by the DWM (DPI virtualization) so the text is never blurry. NSIS
does not scale the bitmap used by the tree control on the component
page and some plugins might have compatibility issues so make sure
that you test your installer at different DPI settings if you select true.

See MSDN for more information about DPl-aware applications.

4.8.1.30 ManifestSupportedOS

none|all | WnVi sta| Wn7| Wn8| Wn8. 1| Wnl10|{GUID} [...]

Declare that the installer is compatible with the specified Windows
version(s). This adds a SupportedOS entry in the compatibility section of
the application manifest. The default is Win7+8+8.1+10. none is the
default if RequestExecutionLevel is set to none for compatibility reasons.

Windows 8.1 and later will fake its version number if you don't declare
support for that particular version. You can read more about the other
changes in behavior on MSDN.

4.8.1.31 MiscButtonText

[ back _button_text [next _button text] [cancel button_te

Replaces the default text strings for the four buttons (< Back, Next >,
Cancel and Close). If parameters are omitted, the defaults are used.

Accepts variables. If variables are used, they must be initialized in .onlinit.



4.8.1.32 Name

nanme [ nanme_doubl ed _anper sands]

Sets the name of the installer. The name is usually simply the product
name such as 'MyApp' or 'CrapSoft MyApp'. If you have one or more
ampersands (&) in the name, set the second parameter to the same
name, only with doubled ampersands. For example, if your product's
name is "Foo & Bar", use:

Nane "Foo & Bar" "Foo && Bar"

If you have ampersands in the name and use a LangString for the name,
you will have to create another one with doubled ampersands to use as
the second parameter.

Accepts variables. If variables are used, they must be initialized in .onlinit.
4.8.1.33 OutFile

[ path\]install.exe

Specifies the output file that the MakeNSIS should write the installer to.
This is just the file that MakeNSIS writes, it doesn't affect the contents of
the installer.

4.8.1.34 RequestExecutionlLevel

none| user | hi ghest | adm n

Specifies the requested execution level for Windows Vista and higher.
The value is embedded in the installer and uninstaller's XML manifest
and tells Windows which privilege level the installer requires. user
requests the user's normal level with no administrative privileges. highest
will request the highest execution level available for the current user and
will cause Windows to prompt the user to verify privilege escalation if
they are a member of the administrators group. The prompt might



request for the user's password. admin, which is also the default,
requests administrator level and will cause Windows to prompt the user
as well. Specifying none will keep the manifest empty and let Windows
decide which execution level is required. Windows automatically
identifies NSIS installers and decides administrator privileges are
required. Because of this, none and admin have virtually the same effect.

It's recommended that every application is marked with a required
execution level. Unmarked installers are subject to compatibility mode.
Workarounds of this mode include automatically moving any shortcuts
created in the user's start menu to all users' start menu. Installers that
don't install anything into system folders nor write to the local machine
registry (HKLM) should specify user execution level.

More information about this topic can be found on MSDN.
4.8.1.35 SetFont

[/ LANG=l ang_i d] font _face nanme font_size

Sets the installer font. Please remember that the font you choose must
be present on the user's machine as well. Don't use rare fonts that only
you have.

Use the /LANG switch if you wish to set a different font for each
language. For example:

Set Font / LANG=${ LANG ENGL.I SH} "English Font" 9
Set Font / LANG=${ LANG FRENCH} "French Font" 10

There are two LangStrings named ~Font and “FontSize which contain the
font and font size for every language.

4.8.1.36 ShowlnstDetails

hi de| show never show

Sets whether or not the details of the install are shown. Can be 'hide' to



hide the details by default, allowing the user to view them, or 'show' to
show them by default, or 'nevershow’, to prevent the user from ever
seeing them. Note that sections can override this using SetDetailsView.

4.8.1.37 ShowUninstDetails

hi de| show never show

Sets whether or not the details of the uninstall are shown. Can be ‘hide'
to hide the details by default, allowing the user to view them, or 'show' to
show them by default, or 'nevershow’, to prevent the user from ever
seeing them. Note that sections can override this using SetDetailsView.

4.8.1.38 Silentinstall

normal | silent|silentlog

Specifies whether or not the installer should be silent. If it is 'silent’ or
'silentlog’, all sections that have the SF_SELECTED flag are installed
guietly (you can set this flag using SectionSetFlags), with no screen
output from the installer itself (the script can still display whatever it
wants, use MessageBox's /SD to specify a default for silent installers).
Note that if this is set to 'normal’ and the user runs the installer with /S
(case sensitive) on the command line, it will behave as if Silentinstall
'silent’ was used. Note: see also LogSet.

See section 4.12 for more information.
4.8.1.39 SilentUnInstall

nor mal | si | ent

Specifies whether or not the uninstaller should be silent. If it is 'silent’ the
uninstall sections will run quietly, with no screen output from the
uninstaller itself (the script can still display whatever it wants, use
MessageBox's /SD to specify a default for silent uninstallers). Note that if



this is set to 'normal’ and the user runs the uninstaller with /S on the
command line, it will behave as if SilentUnInstall 'silent' was used.

See section 4.12 for more information.
4.8.1.40 SpaceTexts

[reg _text [avail text]]

If parameters are specified, overrides the space required and space
available text ("Space required: " and "Space available: " by default). If
'none’ is specified as the required text no space texts will be shown.

Accepts variables. If variables are used, they must be initialized before
the components page is created.

4.8.1.41 SubCaption

[ page_nunber subcapti on]

Overrides the subcaptions for each of the installer pages (0=": License
Agreement”,1=": Installation Options",2=": Installation Directory", 3=":
Installing Files", 4=": Completed"). If you specify an empty string (""), the
default will be used (you can however specify " " to achieve a blank
string).

You can also set a subcaption (or override the default) using Caption
inside a PageEx block.

Accepts variables. If variables are used, they must be initialized before
the relevant page is created.

4.8.1.42 UninstallButtonText

t ext

Changes the text of the button that by default says "Uninstall”" in the



uninstaller. If no parameter is specified, the default text is used.

Accepts variables. If variables are used, they must be initialized before
the uninstall button shows.

4.8.1.43 UninstallCaption

caption

Sets what the titlebars of the uninstaller will display. By default it is
'$("Name) Uninstall', where Name is specified with the Name command.
You can, however, override it with '"MyApp uninstaller' or whatever. If you
specify an empty string ("), the default will be used (you can specify " " to
simulate a empty string).

Accepts variables. If variables are used, they must be initialized in
un.onlnit.

4.8.1.44 Uninstalllcon

[ path\]icon.ico

Sets the icon of the uninstaller.
4.8.1.45 UninstallSubCaption

page_nunber subcaption

Sets the default subcaptions for the uninstaller pages (0=":
Confirmation”,1=": Uninstalling Files",2=": Completed"). If you specify an
empty string ("), the default will be used (you can specify " " to simulate
a empty string).

You can also set a subcaption (or override the default) using Caption
inside a PageEx block.

Accepts variables. If variables are used, they must be initialized before



the relevant page is created.
4.8.1.46 UninstallText

text [subtext]

Specifies the texts on the uninstaller confirm page.
text: Text above the controls

subtext: Text next to the uninstall location

Accepts variables. If variables are used, they must be initialized before
the uninstaller confirm page is created.

4.8.1.47 Windowlcon

on| of f

Sets whether or not the installer's icon is displayed on certain pages.
4.8.1.48 XPStyle

on| of f

Sets whether or not a XP visual style manifest will be added to the
installer. This manifest makes the installers controls use the new visual
styles when running on Windows XP and later. This affects the uninstaller
too.

4.8.2 Compiler Flags

The following commands affect how the compiler generates code and
compresses data. Unless otherwise noted, these commands are valid
anywhere in the script and affect every line below where each one is
placed (until overridden by another command). They cannot be jumped
over using flow control instructions.



For example, in the following script, blah.dat will never be overwritten.

${1f} $0 ==
Set Overwrite on
${ El se}
Set Overwrite off
${EndlI f}
File blah.dat # overwite is always off here!

Instead, the following should be used.

${If} $0 ==
SetOverwite on
Fil e bl ah. dat

${ El se}
SetOverwite off
Fil e bl ah. dat

${ EndlI f}

4.8.2.1 AllowSkipFiles

on| of f

This command specifies whether the user should be able to skip a file or
not. A user has an option to skip a file if SetOverwrite is set to on (default)
and the installer fails to open a file for writing when trying to extract a file.
If off is used the ignore button which allows the user to skip the file will
not be shown and the user will only have an option to abort the
installation (Cancel button) or retry opening the file for writing (Retry
button). If on is used the user will have an option to skip the file (error flag
will be set - see SetOverwrite).

4.8.2.2 FileBufSize

buffer_size_ in_nb

This command sets the size of the compiler's internal file buffers. This



command allows you to control the compiler's memory usage by limiting
how much of a given file it will load into memory at once. Since the
compiler needs both input and output, twice the memory size specified
could be used at any given time for file buffers. This command does not
limit the compression buffers which could take another couple of MB,
neither does it limit the compiler's other internal buffers, but those
shouldn't normally top 1MB anyway. Specifying a very small number
could decrease performance. Specifying a very large number could
exhaust system resources and force the compiler to cancel the
compilation process. The default value is 32MB.

4.8.2.3 SetCompress

aut o| force| of f

This command sets the compress flag which is used by the installer to
determine whether or not data should be compressed. Typically the
SetCompress flag will affect the commands after it, and the last
SetCompress command in the file also determines whether or not the
install info section and uninstall data of the installer is compressed. If
compressflag is ‘auto’, then files are compressed if the compressed size
is smaller than the uncompressed size. If compressflag is set to ‘force’,
then the compressed version is always used. If compressflag is 'off' then
compression is not used (which can be faster).

Note that this option has no effect when solid compression is used.
4.8.2.4 SetCompressor

[/SOLID] [/FINAL] zlib]|bzip2|lzm

This command sets the compression algorithm used to compress
files/data in the installer. It can only be used outside of sections and
functions and before any data is compressed. Different compression
methods can not be used for different files in the same installer. It is
recommended to use it at the very top of the script to avoid compilation
errors.



Three compression methods are supported: ZLIB, BZIP2 and LZMA.

ZLIB (the default) uses the deflate algorithm, it is a quick and simple
method. With the default compression level it uses about 300 KB of
memory.

BZIP2 usually gives better compression ratios than ZLIB, but it is a bit
slower and uses more memory. With the default compression level it
uses about 4 MB of memory.

LZMA is a new compression method that gives very good compression
ratios. The decompression speed is high (10-20 MB/s on a 2 GHz CPU),
the compression speed is lower. The memory size that will be used for
decompression is the dictionary size plus a few KBs, the default is 8 MB.

If /[FINAL is used, subsequent calls to SetCompressor will be ignored.

If /SOLID is used, all of the installer data is compressed in one block.
This results in greater compression ratios.

4.8.2.5 SetCompressorDictSize

dict_size nb

Sets the dictionary size in megabytes (MB) used by the LZMA
compressor (default is 8 MB).

4.8.2.6 SetDatablockOptimize

on| of f

This command tells the compiler whether or not to do datablock
optimizations. Datablock optimizations causes the compiler to check to
see if any data being added to the data block is already in the data block,
and if so, it is simply referenced as opposed to added (can save a little bit
of size). It is highly recommended to leave this option on.



4.8.2.7 SetDateSave

on| of f

This command sets the file date/time saving flag which is used by the File
command to determine whether or not to save the last write date and
time of the file, so that it can be restored on installation. Valid flags are
‘on' and 'off'. 'on' is the default.

4.8.2.8 SetOverwrite

on|off|try|ifnewer|ifdiff]|lastused

This command sets the overwrite flag which is used by the File command
to determine whether or not the file should overwrite any existing files
that are present. If overwriteflag is 'on’, files are overwritten (this is the
default). If overwriteflag is 'off', files that are already present are not
overwritten. If overwriteflag is 'try', files are overwritten if possible
(meaning that if the file is not able to be written to, it is skipped without
any user interaction). If overwriteflag is 'ifnewer’, then files are only
overwritten if the existing file is older than the new file. If overwriteflag is
'ifdiff', then files are only overwritten if the existing file is older or newer
than the new file. Note that when in ‘ifnewer’ or 'ifdiff mode, the
destination file's date is set, regardless of what SetDateSave is set to.

Set Overwrite off
File programcfg # config file we don't want to overw
Set Overwrite on

4.8.2.9 Unicode

true| fal se

Generate a Unicode installer. It can only be used outside of sections and
functions and before any data is compressed.



4.8.3 Version Information
4.8.3.1 VIAddVersionKey

[/ LANG=I ang_i d] keynane val ue

Adds a string entry to the version information stored in the installer and
uninstaller. These can be viewed in the File Properties Version or Details
tab. keyname can either be a special name known by Windows or a user
defined name. /[LANG=0 can be used to indicate a language neutral
language id. The following names are known by Windows:

ProductName
Comments
CompanyName
LegalCopyright
FileDescription
FileVersion
ProductVersion
InternalName
LegalTrademarks
OriginalFilename
PrivateBuild
SpecialBuild

The displayed name of these special entries are translated on the target
system, whereas user defined keynames remain untranslated.

VI AddVer si
VI AddVer si
VI AddVer si
VI AddVer si
VI AddVer si
VI AddVer si
VI AddVer si

onKey
onKey
onKey
onKey
onKey
onKey
onKey

/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}
/ LANG=${ LANG_ENGLI SH}

4.8.3.2 VIProductVersion

"Product Nane" "T
"Comments" "Ate
"ConpanyNanme" "F

"Legal Trademar ks
"Legal Copyright"
“Fil eDescri ption
"FileVersion" "1



version_string X X X X

Sets the Product Version in the VS_FIXEDFILEINFO version information
block.

VI Product Version 1.2.3. 4
4.8.3.3 VIFileVersion

version_string X X X X

Sets the File Version in the VS_FIXEDFILEINFO version information
block (You should also set the FileVersion string with VIAddVersionKey
so the information is displayed at the top of the Version Tab in the
Properties of the file). If you don't provide a File Version the Product
Version is used in the VS_FIXEDFILEINFO block.

VIFileVersion 1.2.3.4

Previous | Contents | Next




Previous | Contents | Next



4.9 Instructions

4.9.1 Basic Instructions

The instructions that NSIS uses for scripting are sort of a cross between
PHP and assembly. There are no real high level language constructs but
the instructions themselves are (for the most part) high level, and you
have handy string capability (i.e. you don't have to worry about
concatenating strings, etc). You essentially have 25 registers (20 general
purpose, 5 special purpose), and a stack.

4.9.1.1 Delete

[/ REBOOTOK] file

Delete file (which can be a file or wildcard, but should be specified with a
full path) from the target system. If /REBOOTOK is specified and the file
cannot be deleted then the file is deleted when the system reboots -- if
the file will be deleted on a reboot, the reboot flag will be set. The error
flag is set if files are found and cannot be deleted. The error flag is not
set when trying to delete a file that does not exist.

Del ete $I NSTD R\ sonefi |l e. dat

Warning: The /REBOOTOK switch requires administrator rights on
Windows NT and later.

4.9.1.2 Exec

command

Execute the specified program and continue immediately. Note that the
file specified must exist on the target system, not the compiling system.
$OUTDIR is used as the working directory. The error flag is set if the
process could not be launched. Note, if the command could have spaces,



you should put it in quotes to delimit it from parameters. e.g.: Exec
"$INSTDIR\command.exe" parameters'. If you don't put it in quotes it will
not work on Windows 9x with or without parameters.

Exec ' "$I NSTDI R\ sonepr ogram exe
Exec ' "$I NSTDI R\ sonepr ogram exe" sone paraneters’

4.9.1.3 ExecShell

[/ 1 NVOKEI DLI ST] action comrand [ paraneters] [SW SHOANDE

Execute the specified program using ShellExecuteEx. Note that action is
usually "open”, "print", etc, but can be an empty string to use the default
action. Parameters and the show type are optional. SOUTDIR is used as
the working directory. The error flag is set if the process could not be

launched.

ExecShel | "open" "http://nsis.sf.net/"
ExecShel | "open" "$I NSTDI R readne. t xt"
ExecShel | "print" "$INSTD R\ readne. t xt"
ExecShel | /1 NVOKEI DLI ST "properties" "S$TEW"

4.9.1.4 ExecShellWait

[/ 1 NVOKEI DLI ST] action comrand [ paraneters] [SW SHOADE
Execute the specified program using ExecShell and wait for executed

process to quit. It will only wait for executable files and not other file types
nor URLSs.

4.9.1.5 ExecWait

command [user _var(exit code)]

Execute the specified program and wait for the executed process to quit.
See Exec for more information. If no output variable is specified Exec\Wait



sets the error flag if the program executed returns a nonzero error code,
or if there is an error. If an output variable is specified, Exec\Walit sets the
variable with the exit code (and only sets the error flag if an error occurs;
if an error occurs the contents of the user variable are undefined). Note, if
the command could have spaces, you should put it in quotes to delimit it
from parameters. e.g.: ExecWait "$INSTDIR\command.exe" parameters'.
If you don't put it in quotes it will not work on Windows 9x with or without
parameters.

ExecWait ' "$I NSTDI R\ sonepr ogr am exe"'
ExecWait ' "3$I NSTDI R\ sonmepr ogram exe"' $0
Detail Print "sonme programreturned $0"

4.9.1.6 File

[/nonfatal] [/a] ([/r] [/x file|wildcard [...]] (file]
Adds file(s) to be extracted to the current output path ($OUTDIR).

¢ Note that the output file name is $SOUTDIR\filename_portion_of file.

e Use /oname=X switch to change the output name. X may contain
variables and can be a fully qualified path or a relative path in which
case it will be appended to $OUTDIR set by SetOutPath. When
using this switch, only one file can be specified. If the output name
contains spaces, quote the entire parameter, including /oname, as
shown in the examples below.

e Wildcards are supported.

e If the /r switch is used, matching files and directories are recursively
searched for in subdirectories. If just one path segment is specified
(e.g. File /r sonething), the current directory will be recursively
searched. If more than one segment is specified (e.g. File /r
sonet hi ng\ *. *), the last path segment will be used as the matching
condition and anything before it specifies which directory to search
recursively. If a directory name matches, all of its contents is added
recursively. Directory structure is preserved.

e Use the /x switch to exclude files and directories.

¢ [f the /a switch is used, the attributes of the file(s) added will be
preserved.



e The File command sets the error flag if overwrite mode is set to 'try’
and the file could not be overwritten, or if the overwrite mode is set to
‘on' and the file could not be overwritten and the user selects ignore.

e If the /nonfatal switch is used and no files are found, a warning will
be issued instead of an error.

File
File
File
File
File
File
File
File
File
File
File

Note:

sonet hi ng. exe

/ a somet hi ng. exe

*.exe

[r *.dat

/r data

/ oname=t enp. dat sonefil e. ext

[ oname=3$TEMP\ t enp. dat sonefil e. ext

"/ oname=$TEMP\ nane with spaces.dat" sonefil e. ext
/nonfatal "a file that m ght not exist”
Ir Ix CVS nmyproject\*. *

Ir Ix *.res /x *.obj /x *.pch source\*.*

when using the /r switch, both matching directories and files will be

searched. This is always done with or without the use of wildcards, even

if the

given path perfectly matches one directory. That means, the

following directory structure:

<Dl R> sonet hi ng

fi
an

| e. dat
ot her . dat

<DIR> dir

SO

nmet hi ng

<DIR> dir2

file2. dat

<Dl R> anot her
<Dl R> sonet hi ng

readne. t xt

with the following File usage:

File

/r somet hi ng



will match the directory named something in the root directory, the file

named something in the directory named dir and the directory named

something in the directory named another. To match only the directory
named something in the root directory, use the following:

File /r something\*.*

When adding \*.*, it will be used as the matching condition and something
will be used as the directory to search. When only something is specified,
the current directory will be recursively searched for every file and
directory named something and another\something will be matched.

4.9.1.7 Rename

[/ REBOOTOK] source file dest file

Rename source_file to dest_file. You can use it to move a file from
anywhere on the system to anywhere else and you can move a directory
to somewhere else on the same drive. The destination file must not exist
or the move will fail (unless you are using /REBOOTOK). If REBOOTOK
Is specified, and the file cannot be moved (if, for example, the destination
exists), then the file is moved when the system reboots. If the file will be
moved on a reboot, the reboot flag will be set. The error flag is set if the
file cannot be renamed (and /REBOOTOK is not used) or if the source
file does not exist.

If no absolute path is specified the current folder will be used. The current
folder is the folder set using the last SetOutPath instruction. If you have
not used SetOutPath the current folder is $SEXEDIR.

Renanme $INSTDI R file.ext $INSTD Rfil e.dat

Warning: The /REBOOTOK switch requires administrator rights on
Windows NT and later.

4.9.1.8 ReserveFile



[/nonfatal] [/r] [/x filelwildcard [...]] file [file..

Reserves a file in the data block for later use. Files are added to the
compressed data block in the order they appear in the script. Functions,
however, are not necessarily called in the order they appear in the script.
Therefore, if you add a file in a function called early but put the function at
the end of the script, all of the files added earlier will have to be
decompressed to get to the required file. This process can take a long
time if there a lot of files. .onlnit is one such function. It is called at the
very beginning, before anything else appears. If you put it at the very end
of the script, extract some files in it and have lots of files added before it,
the installer might take a very long time to load. This is where this
command comes useful, allowing you to speed up the loading process by
including the file at the top of the data block instead of letting NSIS seek
all the way down to the bottom of the compressed data block.

Use /plugin to reserve a plugin in ${NSISDIR}\Plugins\*.

See File for more information about the parameters.

4.9.1.9 RMDir

[/r] [/REBOOTCK] directory nane

Remove the specified directory (fully qualified path with no wildcards).
Without /r, the directory will only be removed if it is completely empty. If /r
is specified the directory will be removed recursively, so all directories
and files in the specified directory will be removed. If REBOOTOK is
specified, any file or directory which could not be removed during the
process will be removed on reboot -- if any file or directory will be
removed on a reboot, the reboot flag will be set. The error flag is set if
any file or directory cannot be removed.

RVDi r $I NSTDI R

RVDIi r $I NSTDI R\ dat a

RVDir /r [/ REBOOTOK $I NSTDI R
RVDI r / REBOOTOK $1 NSTDI R\ DLLsS



Note that the current working directory can not be deleted. The current
working directory is set by SetOutPath. For example, the following
example will not delete the directory.

Set Qut Pat h $TEMP\ di r
RVDi r $TEMP\ di r

The next example will succeed in deleting the directory.

Set Qut Pat h $TEMP\ di r
Set Qut Pat h $TEMP
RVDi r $TEMP\ di r

Warning: Using RMDir /r $INSTDIR in the uninstaller is not safe.
Though it is unlikely, the user might select to install to the root of the
Program Files folder and this command would wipe out the entire
Program Files folder, including all other installed programs! The user
can also put other files in the installation folder and wouldn't expect
them to get deleted along with the program. Solutions are available for
easily uninstalling only files which were installed by the installer.

Warning: The /REBOOTOK switch requires administrator rights on
Windows NT and later.

4.9.1.10 SetOutPath

out pat h

Sets the output path (JOUTDIR) and creates it (recursively if necessary),
if it does not exist. Must be a full pathname, usually is just SINSTDIR (you
can specify SINSTDIR with a single "-" if you are lazy).

Set Qut Pat h $I NSTDI R
Fil e program exe

4.9.2 Regqistry, INI, File Instructions




In all of the below registry instructions use an empty string (just two
guotes with nothing between them - ") as the key name to specify the
default key which is shown as (Default) in regedit.exe.

Use SetRegView on 64-bit Windows to choose which registry view is
used.

If a full path is not specified for any of the INI handling instructions, the
Windows directory will be used.

4.9.2.1 DeletelNISec

i ni _filenanme section_nane

Deletes the entire section [section_name] from ini_filename. If the section
could not be removed from the ini file, the error flag is set. It does not set
the error flag if the section could not be found.

Witel NI Str $TEMP\ sonet hing.ini sectionl sonething 123
Witel Nl Str $TEMP\ sonet hi ng.ini sectionl sonethingel se
Witel NI Str $TEMP\ sonet hing.ini section2 nsis true

Del et el Nl Sec $TEMP\ sonet hi ng.ini sectionl

4.9.2.2 DeletelNIStr

ini _filename section_nane str_nane

Deletes the string str_name from section [section_name] from
ini_filename. If the string could not be removed from the ini file, the error
flag is set. It does not set the error flag if the string could not be found.

Witel NI Str $TEMP\ sonet hing.ini sectionl sonething 123
Witel NI Str $TEMP\ sonet hi ng.ini sectionl sonethingel se
Del etel NI Str $TEMP\ sonet hi ng. i ni sectionl sonethi ngel s

4.9.2.3 DeleteRegKey



[/ifenmpty] root key subkey

Deletes a registry key. If /ifempty is specified, the registry key will only be
deleted if it has no subkeys (otherwise, the whole registry tree will be
removed). Valid values for root_key are listed under WriteRegStr. The
error flag is set if the key could not be removed from the registry (or if it
didn't exist to begin with).

Del et eRegKey HKLM " Sof t war e\ My Conpany\ My Sof t war e"
Del et eRegKey /ifenpty HKLM " Software\ A key that m ght

4.9.2.4 DeleteRegValue

root key subkey key nane

Deletes a registry value. Valid values for root_key are listed under
WriteRegStr. The error flag is set if the value could not be removed from
the registry (or if it didn't exist to begin with).

Del et eRegVal ue HKLM " Sof t war e\ My Conpany\ My Sof t war e"
4.9.2.5 EnumRegKey

user var (output) root_ key subkey index

Set user variable $x with the name of the 'index'th registry key in
root_key\Subkey. Valid values for root_key are listed under WriteRegStr.
Returns an empty string if there are no more keys, and returns an empty
string and sets the error flag if there is an error.

StrCpy $0 O
| oop:

EnunRegKey $1 HKLM Software $0

StrCmp $1 "" done

IntCp $0 $0 + 1

MessageBox MB_YESNQ MB | CONQUESTI ON " $1$\ n$\ nMor e?"
done:



4.9.2.6 EnumRegValue

user var (output) root_ key subkey index

Set user variable $x with the name of the 'index'th registry value in
root_key\Subkey. Valid values for root_key are listed under WriteRegStr.
Returns an empty string and sets the error flag if there are no more
values or if there is an error.

StrCpy $0 O
| oop:
ClearErrors
EnunRegVal ue $1 HKLM Sof t war e\ M cr osof t \ W ndows\ Cur r
| f Errors done
IntCp $0 $0 + 1
ReadRegStr $2 HKLM Sof t war e\ M cr osof t \ W ndows\ Curr en
MessageBox MB_YESNQ MB | CONQUESTI ON "$1 = $23%\ n$\ nMb
done:

4.9.2.7 ExpandEnvStrings

user var (output) string

Expands environment variables in string into the user variable $x. If an
environment variable doesn't exist, it will not be replaced. For example, if
you use "%var%" and var doesn't exists, the result will be "%var%". If
there is an error, the variable is set to empty, and the error flag is set.

ExpandEnvStri ngs $0 "W NDI R=9%N NDI R¥&$\ nTEMP=%I EMP%
4.9.2.8 FlushINI

ini_filenane

Flushes the INI file's buffers. Windows 9x keeps all changes to the INI file
in memory. This command causes the changes to be written to the disk



immediately. Use it if you edit the INI manually, delete it, move it or copy it
right after you change it with WriteINIStr, DeletelNISec or DeletelNStr.

Witel NI Str $TEMP\ sonething.ini test test test
Fl ushl NI $TEMP\ sonet hi ng. i ni
Del et e $TEMP\ sonet hi ng. i ni

4.9.2.9 ReadEnvStr

user var (output) nane

Reads from the environment string "name" and sets the value into the
user variable $x. If there is an error reading the string, the user variable is
set to empty, and the error flag is set.

ReadEnvStr $0 W NDI R
ReadEnvStr $1 TEMP

4.9.2.10 ReadINIStr

user _var(output) ini _filenane section_nane entry_ nane

Reads from entry_name in [section_name] of ini_filename and stores the
value into user variable $x. The error flag will be set and $x will be
assigned to an empty string if the entry is not found.

Readl NI Str $0 $I NSTDI R\ wi nanp. i ni w nanp out nanme
4.9.2.11 ReadRegDWORD

user var (output) root_key sub_key nane

Reads a 32-bit DWORD from the registry into the user variable $x. Valid
values for root_key are listed under WriteRegStr. The error flag will be
set and $x will be set to an empty string (" which is interpreted as 0 in
math operations) if the DWORD is not present. If the value is present, but



is not a DWORD, it will be read as a string and the error flag will be set.

ReadRegDWORD $0 HKLM Sof t war e\ NSI S Ver si onBui | d
4.9.2.12 ReadRegStr

user var (output) root_key sub_key nane

Reads from the registry into the user variable $x. Valid values for
root_key are listed under WriteRegStr. The error flag will be set and $x
will be set to an empty string (") if the string is not present. If the value is
present, but is of type REG_DWORD, it will be read and converted to a
string and the error flag will be set.

ReadRegStr $0 HKLM Software\NSI S ""
Detail Print "NSIS is installed at: $0"

4.9.2.13 WritelNIStr

ini_filenanme section_nanme entry_nane val ue

Writes entry_name=value into [section_name] of ini_filename. The error
flag is set if the string could not be written to the ini file.

Witel NI Str $TEMP\ sonet hi ng.ini sectionl sonething 123
Witel Nl Str $TEMP\ sonet hi ng.ini sectionl sonethingel se
Witel NI Str $TEMP\ sonet hing.ini section2 nsis true

4.9.2.14 WriteRegBin

root key subkey key nane val uedat a

This command writes a block of binary data to the registry. Valid values
for root_key are listed under WriteRegStr. Valuedata is in hexadecimal
(e.g. DEADBEEF01223211151). The error flag is set if the binary data

could not be written to the registry. If the registry key doesn't exist it will



be created.

WiteRegBin HKLM " Sof t war e\ My Conpany\ My Sof t war e" " Bi
4.9.2.15 WriteRegDWORD

root _key subkey key nane val ue

This command writes a DWORD (32-bit integer) to the registry (a user
variable can be specified). Valid values for root_key are listed under
WriteRegStr. The error flag is set if the dword could not be written to the
registry. If the registry key doesn't exist it will be created.

Wit eRegDWORD HKLM " Sof t war e\ My Conpany\ My Sof t war e"
4.9.2.16 WriteReg Str

root key subkey key nane val ue
Write a string to the registry. See WriteRegExpandStr for more details.

WiteRegStr HKLM " Sof t war e\ My Conpany\ My Sof t ware" " St
4.9.2.17 WriteRegExpandStr

root key subkey key nane val ue
Write a string to the registry. root_key must be one of:

HKCR or HKEY_CLASSES_ROOT
HKLM or HKEY_LOCAL_MACHINE
HKCU or HKEY_CURRENT_USER

HKU or HKEY_USERS

HKCC or HKEY_CURRENT_CONFIG
HKDD or HKEY_DYN_DATA

HKPD or HKEY_PERFORMANCE_DATA



SHCTX or SHELL_CONTEXT
HKCR32 or HKCR64
HKCU32 or HKCUG64
HKLM32 or HKLM64

If root_key is SHCTX or SHELL_CONTEXT, it will be replaced with
HKLM if SetShellVarContext is set to all and with HKCU if
SetShellvVarContext is set to current.

The error flag is set if the string could not be written to the registry. The
type of the string will be REG_SZ for WriteRegStr, or
REG_EXPAND_STR for WriteRegExpandStr. If the registry key doesn't
exist it will be created.

Wit eRegExpandStr HKLM " Sof t war e\ My Conpany\ My Sof t war
4.9.2.18 WriteRegMultiStr

/| REGEDI T5 root key subkey key nane val ue

Writes a multi-string value. The /REGEDIT5 switch must be used and
specifies that the data is in the hex format used by .reg files on Windows
2000 and later.

WiteRegMul ti Str /REGEDI TS5 HKCU " Sof t war e\ NSI S\ Test" "
4.9.2.19 SetRegView

32| 64| default |l astused

Sets the registry view affected by registry commands (root keys with a
32/64 suffix are not affected). On 64-bit versions of Windows there are
two views; one for 32-bit applications and one for 64-bit applications. By
default, 32-bit applications running on 64-bit systems (WOWG64) only
have access to the 32-bit view. Using Set RegVi ew 64 allows the installer to
access keys in the 64-bit view of the registry. Registry operations will fail
if the selected view is not supported by Windows.



Affects DeleteRegKey, DeleteRegValue, EnumRegKey, EnumRegValue,
ReadRegDWORD, ReadRegStr, WriteRegBin, WriteRegDWORD,
WriteRegStr and WriteRegExpandStr.

Does not affect InstallDirRegKey. Instead, the registry must be read
using ReadRegStr in .onlnit.

Set RegVi ew 32
ReadRegStr $0 HKLM Sof t war e\ M cr osof t \ W ndows\ Current V
Detail Print $0 # prints C\Program Fil es (x86)
l'i ncl ude x64. nsh
${1f} ${Runni ngX64}
Set RegVi ew 64
ReadRegStr $0 HKLM Sof t war e\ M cr osof t \ W ndows\ Curr en
Detail Print $0 # prints C \Program Fil es
${ EndlI f}

Function .onlnit
${1f} ${Runni ngX64}
Set RegVi ew 64
ReadRegStr $I NSTDI R HKLM Software\NSI S "
Set RegVi ew Def aul t
${ EndlI f}
Functi onEnd

4.9.3 General Purpose Instructions
4.9.3.1 CalllnstDLL

dilfile function_nane

Calls a function named function_name inside a NSIS extension DLL, a
plug-in. See the example plugin for how to make one. Extension DLLs
can access the stack and variables. Note: To automatically extract and
call plug-in DLLs, use a plug-in command instead of CalllnstDLL.

Push "a paraneter™



Push "anot her paraneter”
Cal l I nst DLL $I NSTDI R\ sonedl | . dl | sonefuncti on

For easier plug-in handling, use the new plug-in call syntax.

4.9.3.2 CopyFiles

[/ SILENT] [/FILESONLY] filespec_on _destsys destination

Copies files from the source to the destination on the installing system.
Useful with $SEXEDIR if you want to copy from installation media, or to
copy from one place to another on the system. You might see a Windows
status window of the copy operation if the operation takes a lot of time (to
disable this, use /SILENT). The last parameter can be used to specify the
size of the files that will be copied (in kilobytes), so that the installer can
approximate the disk space requirements. On error, or if the user cancels
the copy (only possible when /SILENT was omitted), the error flag is set.
If [FILESONLY is specified, only files are copied.

Fully-qualified path names should always be used with this instruction.
Using relative paths will have unpredictable results.

CreateDirectory $I NSTDI R\ backup
CopyFi | es $I NSTDI R\ *. dat $I NSTDI R\ backup

4.9.3.3 CreateDirectory

path to create

Creates (recursively if necessary) the specified directory. The error flag is
set if the directory couldn't be created.

You should always specify an absolute path.

CreateDirectory $I NSTDI R\ sone\di rectory

4.9.3.4 CreateShortcut



[/ NoWworkingDir] link.lnk target.file [paranmeters [icon

Creates a shortcut 'link.Ink’ that links to 'target.file', with optional
parameters ‘parameters'. The icon used for the shortcut is
'icon.file,icon_index_number’; for default icon settings use empty strings
for both icon.file and icon_index_number. start_options should be one of:
SW_SHOWNORMAL, SW_SHOWMAXIMIZED, SW_SHOWMINIMIZED,
or an empty string. keyboard_shortcut should be in the form of 'flag|c’
where flag can be a combination (using |) of: ALT, CONTROL, EXT, or
SHIFT. c is the character to use (a-z, A-Z, 0-9, F1-F24, etc). Note that no
spaces are allowed in this string. A good example is "ALT|[CONTROL|F8".
$OUTDIR is used as the working directory. You can change it by using
SetOutPath before creating the Shortcut or use /NoWorkingDir if you
don't need to set the working directory. description should be the
description of the shortcut, or comment as it is called under XP. The error
flag is set if the shortcut cannot be created (i.e. either of the paths (link or
target) does not exist, or some other error).

CreateDirectory "$SMPROGRAMS\ My Conpany"

Creat eShort cut " $SMPROGRAMS\ My Conpany\ My Program | nk"
"some command |ine paraneters" "$I NSTDI R My Program
ALT| CONTROL| SHI FT| F5 "a descri ption”

4.9.3.5 GetDLLVersion

filenanme user _var (high dword out put) user_var (|l ow dwor

Gets the version information from the DLL (or any other executable
containing version information) in "filename". Sets the user output
variables with the high and low dwords of version information on success;
on failure the outputs are empty and the error flag is set. The following
example reads the DLL version and copies a human readable version of
it into $0:

Get DI | Version "$I NSTDI R MyDLL. dI | $RO $R1L
IntOp $R2 $RO / 0x00010000
IntOp $R3 $RO & OXO000FFFF
IntOp $R4 $R1 / 0x00010000



IntOp $R5 $RL & OX0000FFFF
StrCpy $0 "$R2. $R3. $R4. $R5"

4.9.3.6 GetDLLVersionLocal

| ocal fil ename user _var (hi gh dword out put) user var (Il ow
This is similar to GetDLLVersion, only it acts on the system building the
installer (it actually compiles into two StrCpy commands). Sets the two
output variables with the DLL version information of the DLL on the build

system. Use !getdllversion if you need to use the values with
VIProductVersion.

4.9.3.7 GetFileTime

filenanme user _var (high dword out put) user_var (|l ow dwor

Gets the last write time of "filename”. Sets the user output variables with
the high and low dwords of the FILETIME timestamp on success; on
failure the outputs are empty and the error flag is set.

4.9.3.8 GetFileTimeLocal

| ocal fil ename user _var (hi gh dword out put) user var (Il ow
This is similar to GetFileTime, only it acts on the system building the

installer (it actually compiles into two StrCpy commands). Sets the two
output variables with the file timestamp of the file on the build system.

4.9.3.9 GetFullPathName

[/ SHORT] user var(output) path_or file

Assign the full path of the file specified to user variable $x. If the path
portion of the parameter is not found, the error flag will be set and $x will



be empty. If/SHORT is specified, the path is converted to the short
filename form. However, if 'SHORT is not specified, the path isn't
converted to its long filename form. To get the long filename, call
GetLongPathName using the System plug-in. Note that
GetLongPathName is only available on Windows 98, Windows 2000 and
above.

StrCpy $I NSTDI R $PROGRAMFI LES\ NSI S

Set Qut Pat h $I NSTDI R

Get Ful | Pat hNane $0 ..

DetailPrint $0 # will print C\ProgramFiles
Get Ful | Pat hNanme / SHORT $0 $I NSTDI R
DetailPrint $0 # will print C\Progra~1\NSI S

StrCpy $0 C. \Progra~1\NSI S

System : Call 'kernel 32:: Get LongPat hNanme(t r0O, t .rl, |
StrCnmp $2 error +2

StrCpy $0 $1

Detail Print $0 # will print C\Program Files\NSI'S, whe

4.9.3.10 GetTempFileName

user var (output) [base dir]

Assign to the user variable $x, the name of a temporary file. The file will
be created for you and it will be empty. The name of the temporary file is
guaranteed to be unique. If to want the temporary file to be created in
another directory other than the Windows temp directory, specify a
base_dir. You should Delete the file when you are done with it.

Get TenpFi | eNane $0

File /onane=$0 sonet hi ng. dat

# do sonething wth sonethi ng. dat
Del ete $0

4.9.3.11 SearchPath



user _var (output) filename

Assign to the user variable $x, the full path of the file named by the
second parameter. The error flag will be set and $x will be empty if the
file cannot be found. Uses SearchPath() to search the system paths for
the file.

4.9.3.12 SetFileAttributes

filenanme attributel|attribute2|...

Sets the file attributes of 'filename’'. Valid attributes can be combined with
| and are:

e NORMAL or FILE_ATTRIBUTE_NORMAL (you can use 0 to
abbreviate this)

ARCHIVE or FILE_ATTRIBUTE_ARCHIVE

HIDDEN or FILE_ATTRIBUTE_HIDDEN

OFFLINE or FILE_ATTRIBUTE_OFFLINE

READONLY or FILE_ATTRIBUTE_READONLY

SYSTEM or FILE_ATTRIBUTE_SYSTEM

TEMPORARY or FILE_ATTRIBUTE_TEMPORARY

The error flag will be set if the file's attributes cannot be set (i.e. the file
doesn't exist, or you don't have the right permissions). You can only set
attributes. It's not possible to unset them. If you want to remove an
attribute use NORMAL. This way all attributes are erased. This command
doesn't support wildcards.

4.9.3.13 RegDLL

dilfile [entrypoint_nane]

Loads the specified DLL and calls DIIRegisterServer (or entrypoint_name
if specified). The error flag is set if an error occurs (i.e. it can't load the
DLL, initialize OLE, find the entry point, or the function returned anything
other than ERROR_SUCCESS (=0)).



Use SetOutPath to set the current directory for DLLs that depend on
other DLLs that are now in the path or in the Windows directory. For
example, if foo.dll depends on bar.dll which is located in $INSTDIR use:

Set Qut Pat h $I NSTDI R
RegDLL $I NSTDI R\ f o0o. dl |

4.9.3.14 UnRegDLL

diifile
Loads the specified DLL and calls DllUnregisterServer. The error flag is
set if an error occurs (i.e. it can't load the DLL, initialize OLE, find the

entry point, or the function returned anything other than
ERROR_SUCCESS (=0)).

4.9.4 Flow Control Instructions
4.9.4.1 Abort

[ user nessage]

Cancels the install, stops execution of script, and displays user_message
in the status display. Note: you can use this from Callback functions to do
special things. Page callbacks also uses Abort for special purposes.

Abor t
Abort "can't install"

4.9.4.2 Call

function_nane | :|abel _nane | user_var (i nput)

Calls the function named function_name, the label named label _name, or
a variable that specifies an address. An address is returned by
GetCurrentAddress, GetFunctionAddress or GetLabelAddress. A call



returns when it encounters a Return instruction. Sections and functions
are automatically ended with a Return instruction. Uninstall functions
cannot be called from installer functions and sections, and vice-versa.

Function func
Call :1abel
Detail Print "#1: This will only appear 1 tine."
| abel :
Detail Print "#2: This wl| appear before and after n
Call :.global _| abel
Functi onEnd

Section
Call func
Ret urn

. gl obal I abel:
Detail Print "#3: The gl obal |abel was call ed"
Sect i onEnd

4.9.4.3 ClearErrors

Clears the error flag.

ClearErrors
[fErrors 0 +2
MessageBox MB_OK "this nessage box will never show'

4.9.4.4 GetCurrentAddress

user _var (out put)

Gets the address of the current instruction (the GetCurrentAddress) and
stores it in the output user variable. This user variable then can be
passed to Call or Goto.



Function func
Detail Print "function"
IntOp $0 $0 + 2 ; Calculate the address after of the
Call $0
Detail Print "function end"
Functi onEnd

Section
Detail Print "section"
Get Curr ent Addr ess $0
Got o cal | Func

Detail Print "back in section”
Ret urn

cal | Func:

Call func

Detail Print "section end"
Sect i onEnd

4.9.4.5 GetFunctionAddress

user var (output) function_nane

Gets the address of the function and stores it in the output user variable.
This user variable then can be passed to Call or Goto. Note that if you
Goto an address which is the output of GetFunctionAddress, your
function will never be returned to (when the function you Goto'd to
returns, you return instantly).

Functi on func
Detail Print "function"
Functi onEnd

Section
Get Funct i onAddress $0 func
Call $0



Sect i onEnd
4.9.4.6 GetLabelAddress

user var (output) [ abel

Gets the address of the label and stores it in the output user variable.
This user variable then can be passed to Call or Goto. Note that you may
only call this with labels accessible from your function, but you can call it
from anywhere (which is potentially dangerous). Note that if you Call the
output of GetLabelAddress, code will be executed until it Return's
(explicitly or implicitly at the end of a function), and then you will be
returned to the statement after the Call.

| abel :

Detail Print "Il abel"

CGet Label Addr ess $0 | abel
IntOCp $0 $0 + 4

Goto $0

Detail Print "done"

4.9.4.7 Goto

| abel to junp to | +offset| -offset| user_ var(target)
If label is specified, goto the label 'label_to jump_to:'.

If +offset or -offset is specified, jump is relative by offset instructions.
Goto +1 goes to the next instruction, Goto -1 goes to the previous
instruction, etc.

If a user variable is specified, jumps to absolute address (generally you
will want to get this value from a function like GetLabelAddress).
Compiler flag commands and Sectionin aren't instructions so jumping
over them has no effect.

CGot o | abel



Goto +2
Goto -2
Got o $0

4.9.4.8 IfAbort

| abel to goto if _abort [l abel to goto if _no _abort]

Will "return” true if the installation has been aborted. This can happen if
the user chose abort on a file that failed to create (or overwrite) or if the
user aborted by hand. This function can only be called from the leave
function of the instfiles page.

Page instfiles i nstfil esLeave
Function instfil esLeave
| f Abort O +2
MessageBox MB _OK "user aborted"
Functi onEnd

4.9.4.9 IfErrors

junpto_iferror [junpto_ifnoerror]

Checks and clears the error flag, and if it is set, it will goto jumpto_iferror,
otherwise it will goto jumpto_ifnoerror. The error flag is set by other
instructions when a recoverable error (such as trying to delete a file that
IS in use) occurs.

ClearErrors
File file.dat
|[fErrors 0 +2

Cal | ErrorHandl er

4.9.4.10 IfFileExists



file to check for junp_if _present [junp_otherw se]

Checks for existence of file(s) file_to_check_for (which can be a wildcard,
or a directory), and Gotos jump_if _present if the file exists, otherwise
Gotos jump_otherwise. If you want to check to see if a file is a directory,
use IfFileExists DIRECTORY\*.*

I fFileExists $W NDI R\ not epad. exe 0 +2
MessageBox MB OK "notepad is installed”

4.9.4.11 IfRebootFlag

junp_if_set [junp_if_not_ set]

Checks the reboot flag, and jumps to jump_if_set if the reboot flag is set,
otherwise jumps to jump_if not_set. The reboot flag can be set by Delete
and Rename, or manually with SetRebootFlag.

| f Reboot Fl ag O nor eboot
MessageBox MB_YESNO "A reboot is required to finish
Reboot
nor eboot :

4.9.4.12 IfSilent

junp_if_silent [junp_if_not]

Checks the silent flag, and jumps to jump_if_silent if the installer is silent,
otherwise jumps to jump_if _not. The silent flag can be set by Silentinstall,
SilentUninstall, SetSilent and by the user passing /S on the command
line.

IfSilent +2
ExecWait ' "$I NSTDI R\ nonsi | ent program exe"'

4.9.4.13 IntCmp



vall val 2 junp_if_equal [junp_if_vall less] [junp_if_v

Compares two integers vall and val2. If vall and val2 are equal, Gotos
jump_if_equal, otherwise if vall < val2, Gotos jump_if vall less,
otherwise if vall > val2, Gotos jump_if vall _more.

IntCnp $0 5 is5 | essthan5 noret han5
| S5:
Detail Print "$$0 == 5"
Got o done
| esst hanb:
Detail Print "$$0 < 5"
Got o done
nor et hanb:
Detail Print "$$0 > 5"
Got o done
done:

4.9.4.14 IntCmpU

vall val 2 junp_if_equal [junp_if_vall less] [junp_if_v

Same as IntCmp, but treats the values as unsigned integers.
4.9.4.15 MessageBox

nb_option_|ist nessagebox text [/SD return] [return_ch

Displays a MessageBox containing the text "messagebox_text".
mb_option_list must be one or more of the following, delimited by |s (e.g.
MB_YESNO|MB_ICONSTOP).

MB_OK - Display with an OK button

MB_OKCANCEL - Display with an OK and a cancel button
MB_ABORTRETRYIGNORE - Display with abort, retry, ignore
buttons

MB_RETRYCANCEL - Display with retry and cancel buttons



MB_YESNO - Display with yes and no buttons
MB_YESNOCANCEL - Display with yes, no, cancel buttons
MB_ICONEXCLAMATION - Display with exclamation icon
MB_ICONINFORMATION - Display with information icon
MB_ICONQUESTION - Display with question mark icon
MB_ICONSTOP - Display with stop icon

MB_USERICON - Display with installer's icon
MB_TOPMOST - Make messagebox topmost
MB_SETFOREGROUND - Set foreground

MB_RIGHT - Right align text

MB_RTLREADING - RTL reading order
MB_DEFBUTTONLI - Button 1 is default
MB_DEFBUTTON2 - Button 2 is default
MB_DEFBUTTONS - Button 3 is default
MB_DEFBUTTON4 - Button 4 is default

Return_check can be 0 (or empty, or left off), or one of the following:

IDABORT - Abort button
IDCANCEL - Cancel button
IDIGNORE - Ignore button
IDNO - No button
IDOK - OK button
IDRETRY - Retry button
IDYES - Yes button

If the return value of the MessageBox is return_check, the installer will
Goto jumpto.

Use the /SD parameter with one of the return_check values above to
specify the option that will be used when the installer is silent. See
section 4.12 for more information.

MessageBox MB K "sinple nessage box"
MessageBox MB_YESNO "is it true?" IDYES true IDNO fals
true:
DetailPrint "it's true!"
Got 0 next
fal se:



DetailPrint "it's fal se"

next :

MessageBox MB _YESNO "is it true? (defaults to yes on s
DetailPrint "it's true (or silent)!"

Got 0 next 2
fal se2:

DetailPrint "it's fal se"
next 2:

4.9.4.16 Return

Returns from a function or section.

Function func
StrCnp $0 "return now' 0 +2
Ret ur n
# do stuff
Functi onEnd

Secti on
Call func

"Return" will return here
Secti onEnd

4.9.4.17 Quit

Causes the installer to exit as soon as possible. After Quit is called, the
installer will exit (no callback functions will get a chance to run).

4.9.4.18 SetErrors

Sets the error flag.

SetErrors
| fEBrrors O +2



MessageBox MB K "this nessage box will always show'
4.9.4.19 StrCmp

strl str2 junp_if_equal [junp_if_not_ equal]

Compares (case insensitively) strl to str2. If strl and str2 are equal,
Gotos jump_if_equal, otherwise Gotos jump_if not_equal.

StrCmp $0 "a string" 0 +3

Detail Print '$$0 == "a string"'
Goto +2
DetailPrint '$$0 != "a string"'

4.9.4.20 StrCmpS
strl str2 junp_if_equal [junp_if_not_ equal]
Same as StrCmp, but case sensitive.

4.9.5 File Instructions
4.9.5.1 FileClose

handl e

Closes a file handle opened with FileOpen.
4.9.5.2 FileOpen

user _var (handl e output) fil enane opennode

Opens a file named "filename" and sets the handle output variable with
the handle. The openmode should be one of "r" (read) "w" (write, all
contents of file are destroyed) or "a" (append, meaning opened for both



read and write, contents preserved). In all open modes, the file pointer is
placed at the beginning of the file. If the file cannot be opened the handle
output is set to empty and the error flag is set.

If no absolute path is specified the current folder will be used. The current
folder is the folder set using the last SetOutPath instruction. If you have
not used SetOutPath the current folder is $SEXEDIR.

Fil eOpen $0 $INSTDI R file.dat r
Fil eCl ose $0

4.9.5.3 FileRead

handl e user var (out put) [ maxl en]

Reads a string (ANSI characters) from a file opened with FileOpen. The
string is read until either a newline (or carriage return newline pair)
occurs, or until a null byte is read, or until maxlen is met (if specified). By
default, strings are limited to 1024 characters (a special build with larger
NSIS _MAX_ STRLEN can be compiled or downloaded). If the end of file
is reached and no more data is available, the output string will be empty
and the error flag will be set.

Unicode: DBCS text is supported but conversion output is limited to
UCS-2/BMP, surrogate pairs are not supported. The system default
ANSI codepage (ACP) is used during the conversion.

ClearErrors

Fil eOpen $0 $INSTDI R file.dat r
|fErrors done

Fil eRead $0 $1

Detail Print $1

Fil eCl ose $0

done:

4.9.5.4 FileReadUTF16LE



handl e user var (out put) [ maxl en]
This function is only available when building a Unicode installer.

Reads a string (UTF-16LE characters) from a file opened with FileOpen.
The string is read until either a newline (or carriage return newline pair)
occurs, or until a null wide-character is read, or until maxlen is met (if
specified). By default, strings are limited to 1024 characters (a special
build with larger NSIS_MAX_STRLEN can be compiled or downloaded).
If the end of file is reached and no more data is available, the output
string will be empty and the error flag will be set. If present, the BOM at
the start of the file is skipped.

ClearErrors

Fil eOpen $0 $INSTDI R file.dat r
| fErrors done

Fi | eReadUTF16LE $0 $1

Detail Print $1

Fil eCl ose $0

done:

4.9.5.5 FileReadByte

handl e user var (out put)

Reads a byte from a file opened with FileOpen. The byte is stored in the
output as an integer (0-255). If the end of file is reached and no more
data is available, the output will be empty and the error flag will be set.

ClearErrors

Fil eOpen $0 $INSTDI R file.dat r
|fErrors done

Fi | eReadByte $0 $1

Fi | eReadByte $0 $2

Detail Print "$1 $2"

Fil eCl ose $0

done:



4.9.5.6 FileReadWord

handl e user var (out put)
This function is only available when building a Unicode installer.

Reads a word (2-bytes) from a file opened with FileOpen. The word is
stored in the output as an integer (0-65535). If the end of file is reached
and no more data is available, the output will be empty and the error flag
will be set.

ClearErrors

Fil eOpen $0 $INSTDI R file.dat r
| fErrors done

Fi |l eReadWord $0 $1

Fi | eReadWord $0 $2

Detail Print "$1 $2"

Fil eCl ose $0

done:

4.9.5.7 FileSeek

handl e of fset [nobde] [user _var(new position)]

Seeks a file opened with FileOpen. If mode is omitted or specified as
SET, the file is positioned to "offset”, relative to the beginning of the file. If
mode is specified as CUR, then the file is positioned to "offset", relative to
the current file position. If mode is specified as END, then the file is
positioned to "offset”, relative to the end of the file. If the final parameter
"new position" is specified, the new file position will be stored in that
variable.

Cl earErrors

Fil eOpen $0 $INSTDI R file.dat r
|fErrors done

Fil eSeek $0 -5 END

Fil eRead $0 $1



Detail Print $1
Fil ed ose $0
done:

4.9.5.8 FileWrite

handl e string

Writes an ANSI string to a file opened with FileOpen. If an error occurs
writing, the error flag will be set.

(If you are building a Unicode installer, the function converts the string to
ANSI/MBCS. The system default ANSI codepage (ACP) is used during
the conversion)

ClearErrors

Fil eOpen $0 $I NSTDI R\ file.dat w
| fErrors done

FileWite $0 "sone text"

Fil eCl ose $0

done:

4.9.5.9 FileWriteUTF16LE

[/ BOM handl e string
This function is only available when building a Unicode installer.

Writes a Unicode (UTF-16LE) string to a file opened with FileOpen. If an
error occurs, the error flag will be set. ABOM can be added to empty files
with /BOM.

ClearErrors

Fil eOpen $0 $I NSTDI R\ file.dat w
| fErrors done

FileWiteUTF16LE $0 "sone text"
Fil eCl ose $0



done:
4.9.5.10 FileWriteByte

handl e string

Writes the integer interpretation of 'string’ to a file opened with FileOpen.
The error flag is set if an error occurs while writing. The following code
writes a "Carriage Return / Line Feed" pair to the file.

FileWiteByte file_handle "13"
FileWiteByte file_handle "10"

Note that only the low byte of the integer is used, i.e. writing 256 is the
same as writing O, etc.

4.9.5.11 FileWriteWord

handl e string
This function is only available when building a Unicode installer.

Writes the integer interpretation of 'string’ as a WORD (2-bytes, range: O-
65535) to a file opened with FileOpen. The error flag is set if an error
occurs while writing. The following code writes a "Carriage Return / Line
Feed" pair to the file.

FileWitewrd file handle "13"
FileWitewrd file handle "10"

Note that only the low WORD of the integer is used, i.e. writing 65536 is
the same as writing O, etc.

4.9.5.12 FindClose

handl e



Closes a search opened with FindFirst.
4.9.5.13 FindFirst

user var (handl e out put) user _var(filenane output) file

Performs a search for ‘filespec’, placing the first file found in
filename_output (a user variable). It also puts the handle of the search
into handle_output (also a user variable). If no files are found, both
outputs are set to empty and the error flag is set. FindClose must be
used to close the handle. Note that the filename output is without path.

Fi ndFi rst $0 $1 $I NSTDI R\ *. t xt
| oop:

StrCmp $1 "" done

Detail Print $1

Fi ndNext $0 $1

Goto | oop
done:
Fi ndCl ose $0

4.9.5.14 FindNext

handl e user var (fil enanme_out put)
Continues a search began with FindFirst. handle should be the
handle_output_variable returned by FindFirst. If the search is completed

(there are no more files), filename_output is set to empty and the error
flag is set. Note that the filename output is without path.

4.9.6 Uninstaller Instructions
4.9.6.1 WriteUninstaller

[ Pat h\ ] exenane. exe



Writes the uninstaller to the filename (and optionally path) specified. Only
valid from within an install section or function and requires that you have
an uninstall section in your script. You can call this one or more times to
write out one or more copies of the uninstaller.

WiteUninstaller $INSTDI R uni nstall er. exe

4.9.7 Miscellaneous Instructions

4.9.7.1 GetErrorLevel

user _var(error |evel output)

Returns the last error level set by SetErrorLevel or -1 if it has never been
set.

Get Error Level $0
IntCp $0 $0 + 1
Set Error Level $0

4.9.7.2 GetinstDirError

user var(error output)

Use in the leave function of a directory page. Reads the flag set if
‘DirVerify leave' is used. Possible values:

0: No error
1: Invalid installation directory
2: Not enough space on installation drive

l'i ncl ude Logi cLi b. nsh

PageEx directory
DirVerify | eave
PageCal | backs "" "" dirLeave



PageExEnd

Function dirLeave
GetlnstDirError $0
${Swi tch} $0
${Case} O
MessageBox MB OK "valid installation directory”
${ Br eak}
${Case} 1
MessageBox MB OK "invalid installation directory
Abor t
${ Br eak}
${ Case} 2
MessageBox MB_OK "not enough free space!”
Abor t
${ Br eak}
${ EndSwi t ch}
Functi onEnd

4.9.7.3 InitPluginsDir

Initializes the plug-ins dir (SPLUGINSDIR) if not already initialized.

I nitPluginsDr
File /oname=$PLUG NSDI R\ i mage. bnp i mage. bnp

4.9.7.4 Nop
Does nothing.

4.9.7.5 SetErrorLevel

error | evel

Sets the error level of the installer or uninstaller to error_level. See Error



Levels for more information.

| f Reboot Flag 0 +2
Set Error Level 4

4.9.7.6 SetShellvVarContext

current| all

Sets the context of $SSMPROGRAMS and other shell folders. If set to
‘current’ (the default), the current user's shell folders are used. If set to
‘all', the "all users' shell folder is used. The all users folder may not be
supported on all OSes. If the all users folder is not found, the current user
folder will be used. Please take into consideration that a "normal user"
has no rights to write in the all users area. Only admins have full access
rights to the all users area. You can check this by using the Userinfo
plug-in. See Contrib\UserInfo\UserInfo.nsi for an example.

Note that, if used in installer code, this will only affect the installer, and if
used in uninstaller code, this will only affect the uninstaller. To affect both,
it needs to be used in both.

Set Shel | Var Cont ext current
StrCpy $0 $DESKTOP

Set Shel | Var Cont ext al |
StrCpy $1 $DESKTOP
MessageBox MB_OK $0$\ n$1l

4.9.7.7 Sleep

sl eeptine_in_ns

Pauses execution in the installer for sleeptime_in_ms milliseconds.
sleeptime_in_ms can be a variable, e.g. "$0" or a number, i.e. "666".

Detail Print "sleeping..."
Sl eep 3000



Detail Print "back to work"

4.9.8 String Manipulation Instructions
4.9.8.1 StrCpy

user var(destination) str [nmaxlen] [start_offset]

Sets the user variable $x with str. str can contain variables (including the
user variable being set (concatenating strings this way is possible, etc)).
If maxlen is specified, the string will be a maximum of maxlen characters
(if maxlen is negative, the string will be truncated abs(maxlen) characters
from the end). If start_offset is specified, the source is offset by it (if
start_offset is negative, it will start abs(start_offset) from the end of the
string).

StrCpy $0 "a string" # = "a string
StrCpy $0 "a string" 3 # = "a s"
StrCpy $0 "a string" -1 # = "a strin
StrCpy $0 "a string" "" 2 # = "string"
StrCpy $0 "a string" "" -3 # = "ing"
StrCpy $0 "a string" 3 -4 # = "rin
StrCpy $0 "$0%$0" # = "rinrin"

4.9.8.2 StrLen

user _var (|l ength output) str
Sets user variable $x to the length of str.

StrLen $0 "123456" # = 6

4.9.9 Stack Support

4.9.9.1 Exch



[user _var | stack_index]

When no parameter is specified, exchanges the top two elements of the
stack. When a parameter is specified and is a user variable, exchanges
the top element of the stack with the parameter. When a parameter is
specified and is a positive integer, Exch will swap the item on the top of
the stack with the item that is specified by the offset from the top of the
stack in the parameter. If there are not enough items on the stack to
accomplish the exchange, a fatal error will occur (to help you debug your
code :).

Push 1

Push 2

Exch

Pop $0 # =1

Push 1
Push 2
Push 3
Exch 2
Pop $0 # =1

StrCpy $0 1
Push 2

Exch $0 # = 2
Pop $1 # = 1

4.9.9.2 Pop

user var (out)

Pops a string off of the stack into user variable $x. If the stack is empty,
the error flag will be set.

Push 1
Pop $0 # = 1



4.9.9.3 Push

string

Pushes a string onto the stack. The string can then be Pop'ed off of the
stack.

Push "a string"

4.9.10 Integer Support
4.9.10.1 IntFmt

user var (output) format nunberstring

Formats the number in "numberstring” using the format "format”, and sets
the output to user variable $x. Example format strings include "%08X"
ll%ull

Int Fmt $0 " Ox%©8X" 195948557
IntFmt $0 "%" O0x41

4.9.10.2 IntOp

user var (output) valuel OP [val ue2]

Combines valuel and (depending on OP) value2 into the specified user
variable (user _var). OP is defined as one of the following:

+ ADDs valuel and value2

- SUBTRACTSs value2 from valuel

* MULTIPLIEs valuel and value2

/ DIVIDEs valuel by value2

% MODULUSSs valuel by value2

| BINARY ORs valuel and value2

& BINARY ANDs valuel and value2
N BINARY XORs valuel and value2



>> RIGHT SHIFTs valuel by value2

<< LEFT SHIFTs valuel by value2

~ BITWISE NEGATES valuel (i.e. 7 becomes 4294967288)
I LOGICALLY NEGATES valuel (i.e. 7 becomes 0)

|| LOGICALLY ORs valuel and value?2

&& LOGICALLY ANDs valuel and value2

IntCp $0 1 + 1
IntCp $0 $0 + 1
IntOp $0 $0 << 2
IntOp $0 $0 ~
IntOp $0 $0 & OxF

4.9.11 Reboot Instructions

4.9.11.1 Reboot

Reboots the computer. Be careful with this one. If it fails, .onRebootFailed
is called. In any case, this instruction never returns, just like Quit.

MessageBox MB_YESNQ MB | CONQUESTION "Do you wish to re
Reboot

4.9.11.2 SetRebootFlag

true| fal se

Sets the reboot flag to either true or false. The flag's value can be read
using IfRebootFlag.

Set Reboot Fl ag true
| f Reboot Flag 0 +2
MessageBox MB OK "this nessage box will always show'

4.9.12 Install Logging Instructions



4.9.12.1 LogSet

on| of f

Sets whether install logging to $INSTDIR\install.log will happen.
SINSTDIR must have a value before you call this function or it will not
work. Note that the NSIS _CONFIG_LOG build setting must be set (scons
NSI S_CONFI G_LOG=yes) when building (it is not set by default) to support
this. See Building NSIS for more information about recompiling NSIS.

4.9.12.2 LogText

t ext
If installer logging is enabled, inserts text "text" into the log file.

| fFileExists $W NDI R\ not epad. exe 0 +2
LogText "$$W NDI R\ not epad. exe exi sts"

4.9.13 Section Management
4.9.13.1 SectionSetFlags

section_index section_flags

Sets the section’'s flags. The flag is a 32-bit integer. The first bit (lowest)
represents whether the section is currently selected, the second bit
represents whether the section is a section group (don't modify this
unless you really know what you are doing), the third bit represents
whether the section is a section group end (again, don't modify), the
fourth bit represents whether the section is shown in bold or not, the fifth
bit represents whether the section is read-only, the sixth bit represents
whether the section group is to be automatically expanded, the seventh
bit is set for section groups which are partially selected, the eighth bit is
internally used for partially selected section group toggling and the ninth
bit is used for reflecting section name changes. The error flag will be set



if an out of range section is specified.
Each flag has a name, prefixed with "SF_":

ldefine SF_SELECTED 1

' defi ne SF_SECGRP 2
'defi ne SF_SECGRPEND 4
'define SF_BOLD 8
'define SF_RO 16
' defi ne SF_EXPAND 32

'defi ne SF_PSELECTED 64
For an example of usage please see the one-section.nsi example.

For more useful macros and definitions, see Include\Sections.nsh.

Section test test _section_id
Sect i onEnd

Function .onlnit
# set section 'test' as selected and read-only
Int Op $0 ${SF_SELECTED} | ${SF RO
SectionSet Fl ags ${test_section_id} $0

Functi onEnd

4.9.13.2 SectionGetFlags

section_i ndex user _var (out put)

Retrieves the section's flags. See SectionSetFlags for a description of the
flags. The error flag will be set if an out of range section is specified.

Section test test _section_id
Sect i onEnd

Functi on .onSel Change
# keep section 'test' selected
SectionGet Fl ags ${test_section_id} $0



Int Op $0 $0 | ${ SF_SELECTED}
SectionSet Fl ags ${test_section_id} $0
Functi onEnd

4.9.13.3 SectionSetText

section_index section_text

Sets the description for the section section_index. If the text is set to ™
then the section will be hidden. The error flag will be set if an out of range
section is specified.

Section "" test _section_id
Secti onEnd

Function .onlnit
# change section's nanme to $W NDI R
SectionSet Text ${test section_id} $WND R
Functi onEnd

4.9.13.4 SectionGetText

section_index user _var (out put)

Stores the text description of the section section_index into the output. If
the section is hidden, stores an empty string. The error flag will be set if
an out of range section is specified.

Section test test _section_id
Secti onEnd

Function .onlnit
# append $WNDIR to section's nane
SectionGet Text ${test_section_id} $0
StrCpy $0 "$0 - $W NDI R
SectionSet Text ${test_section_id} $0



Functi onEnd
4.9.13.5 SectionSetInstTypes

section_index inst_types

Sets the install types the section specified by section_index defaults to
the enabled state in. Note that the section index starts with zero. Every
bit of inst_types is a flag that tells if the section is in that install type or
not. For example, if you have 3 install types and you want the first section
to be included in install types 1 and 3, then the command should look like
this:

SectionSetl|nst Types 0 5

because the binary value for 5 is "...00101". The error flag will be set if
the section index specified is out of range.

Section test test _section_id
Secti onEnd

Function .onlnit
# associ ate section 'test' with installation types 3
SectionSet | nst Types ${test_section_id} 12

Functi onEnd

4.9.13.6 SectionGetlnstTypes

section_index user _var (out put)

Retrieves the install types flags array of a section. See above explanation
about SectionSetinstTypes for a description of how to deal with the
output. The error flag will be set if the section index is out of range.

Section test test _section_id
Sect i onEnd



Function .onlnit
# associ ate section 'test’' with installation types
SectionGet | nst Types ${test_section_id} $0
IntCp $0 $0 | 16
SectionSet | nst Types ${test_section_id} $0
Functi onEnd

4.9.13.7 SectionSetSize

section_i ndex new si ze

Sets the size of the section specified by section_index. Note that the
index starts with zero. The Value for Size must be entered in KiloByte
and supports only whole numbers.

Section test test _section_id
Sect i onEnd

Function .onlnit
# set required size of section "test' to 100 bytes
SectionSet Si ze ${test_section_id} 100

Functi onEnd

4.9.13.8 SectionGetSize

section_index user_var

Gets the size of the section specified by section_index and stores the
value in the given user variable. Note that the index starts with zero. The
error flag will be set if the section index is out of range.

Section test test _section_id
Secti onEnd

Function .onlnit
# increase required size of section '"test' by 100 Ki



SectionGet Si ze ${test_section_id} $0

IntCp $0 $0 + 100

SectionSet Si ze ${test_section_id} $0
Functi onEnd

4.9.13.9 SetCurinstType

I nst_type_idx

Sets the current InstType. inst_type_idx should be between 0 and 31.
The error flag is not set if an out of range InstType was used.

4.9.13.10 GetCurinstType

user _var

Get the current InstType and stores it in user_var. If the first install type is
selected, O will be put in user_var. If the second install type is selected, 1
will be put in user_var, and so on. The value of
${NSIS_MAX_INST_TYPES} (32 by default) means that the user
selected a custom set of sections (Simply selecting "Custom” in the drop-
down menu is not enough to trigger this, the value is calculated by the
sections actually selected).

4.9.13.11 InstTypeSetText

I nst_type_idx text

Sets the text of the specified InstType. If the text is empty then the
InstType is removed. By using a previously unused inst_type_idx number
you can create new InstTypes. To add/remove Sections to this new
InstType see SectionSetinstTypes. Unlike Sectionin the index is zero
based, which means the first install type's index is 0.

| nst Type a
| nst Type b



Function .onlnit
# set first installation type's name to $W ND R
| nst TypeSet Text 0 $W NDI R
# set second installation type's nanme to $TEMP
| nst TypeSet Text 1 $TEMP

Functi onEnd

4.9.13.12 InstTypeGetText

I nst_type_idx user_var
Gets the text of the specified InstType.

| nst Type a
| nst Type b

Function .onlnit
| nst TypeGet Text 0 $0
Detail Print $0 # prints 'a'
| nst TypeGet Text 1 $0
Detail Print $0 # prints 'Db’
Functi onEnd

4.9.14 User Interface Instructions

4.9.14.1 BringToFront

Makes the installer window visible and brings it to the top of the window
list. If an application was executed that shows itself in front of the
installer, BringToFront would bring the installer back in focus.

Recent Windows versions restrict the setting of foreground windows. If
the user is working with another application during installation, the user
may be notified using a different method.



4.9.14.2 CreateFont

user _var (handl e out put) face_nanme [height] [weight] [/
Creates a font and puts its handle into user_var. For more information
about the different parameters have a look at MSDN's page about the
Win32 API function CreateFont().

You can get the current font used by NSIS using the "Font and *FontSize
LangStrings.

I'i ncl ude W nMessages. nsh

Get Dl gl tem $0 $HWNDPARENT 1

CreateFont $1 "Ti nes New Roman" "7" "700" /UNDERLI NE
SendMessage $0 ${WM SETFONT} $1 1

4.9.14.3 DetailPrint

user _nessage
Adds the string "user_message" to the details view of the installer.

Detail Print "this nessage will be shown in the install

4.9.14.4 EnableWindow

hwnd st ate(1]|0)

Enables or disables mouse and keyboard input to the specified window
or control. Possible states are 0 (disabled) or 1 (enabled).

Get Dl gl tem $0 $HWNDPARENT 1
Enabl eW ndow $0 O

Sl eep 1000

Enabl eW ndow $0 1



4.9.14.5 FindWindow

user _var (hwnd out put) w ndowcl ass [wi ndowmitle] [w ndo

Searches for a window. Behaves like Win32's FindWindowEXx(). Searches
by windowclass (and/or windowtitle if specified). If windowparent or
childafter are specified, the search will be restricted as such. If
windowclass or windowtitle is specified as ", they will not be used for the
search. If the window is not found the user variable is set to O.

Fi ndW ndow $1 "#32770" "" $HWDPARENT # Fi nds the | nne
Fi ndW ndow $2 "EDIT" "" $1 # Finds the first edit cont

4.9.14.6 GetDlgltem

user var(output) dialog itemid

Retrieves the handle of a control identified by item_id in the specified
dialog box dialog. If you want to get the handle of a control in the inner
dialog, first use FindWindow to get the handle of the inner dialog.

Get Dl gltem $0 $HWNDPARENT 1 # next/install button

4.9.14.7 HideWindow

Hides the installer window.
4.9.14.8 IsWindow

HWND junp_if_w ndow [junp_if_not_ w ndow

If HWND is a window, Gotos jump_if window, otherwise, Gotos
jump_if_not_window (if specified).

Get Dl gl tem $0 $HWNDPARENT 1
| SW ndow $0 0 +3



MessageBox MB OK "found a wi ndow!
Goto +2
MessageBox MB_OK "no wi ndow"

4.9.14.9 LockWindow

on| of f

LockWindow on prevents the main window from redrawing itself upon
changes. When LockWindow off is used, all controls that weren't redrawn
since LockWindow on will be redrawn. This makes the pages flickering
look nicer because now it flickers a group of controls at the same time,
instead of one control at a time. The individual control flickering is more
noticeable on old computers.

4.9.14.10 SendMessage

HWND nsg wparam | param [user _var(return value)] [/TIME

Sends a message to HWND. If a user variable $x is specified as the last
parameter (or one before the last if you use /TIMEOUT), the return value
from SendMessage will be stored in it. Note that when specifying ‘'msg’
you must just use the integer value of the message. Include
WinMessages.nsh to have all Windows messages defined in your script.
If you wish to send strings use "STR:a string" as wParam or IParam
where needed. Use /TIMEOUT=time_in_ms to specify the duration, in
milliseconds, of the time-out period.

I'i ncl ude W nMessages. nsh
Fi ndW ndow $0 "W nanp v1.x"
SendMessage $0 ${WM CLOSE} 0 O

Get Dl gltem $1 $HWNDPARENT 2
SendMessage $1 ${WM SETTEXT} 0 " STR: Goodbye"

4.9.14.11 SetAutoClose



true| fal se

Overrides the default auto window-closing flag (specified for the installer
using AutoCloseWindow, and false for the uninstaller). Specify ‘true’ to
have the install window immediately disappear after the install has
completed, or ‘false’ to make it require a manual close.

4.9.14.12 SetBrandinglmage

[/IMAdD=item.id_in_dialog] [/RESIZETOFIT] path_to_bitn

Sets the current bitmap file displayed as the branding image. If no IMGID
is specified, the first image control found will be used, or the image
control created by AddBrandinglmage. Note that this bitmap must be
present on the user's machine. Use File first to put it there. If
/IRESIZETOFIT is specified the image will be automatically resized (very
poorly) to the image control size. If you used AddBrandinglmage you can
get this size by compiling your script and watching for AddBrandinglmage
output, it will tell you the size. SetBrandinglmage will not work when
called from .onlnit!

4.9.14.13 SetDetailsView

show hi de

Shows or hides the details, depending on which parameter you pass.
Overrides the default details view, which is set via ShowlnstDetalls.

4.9.14.14 SetDetailsPrint

none| |l i stonl y| textonly| both| | astused

Sets mode at which commands print their status. None has commands
be quiet, listonly has status text only added to the listbox, textonly has
status text only printed to the status bar, and both enables both (the
default). For extracting many small files, textonly is recommended



(especially on win9x with smooth scrolling enabled).

Set Detai |l sPrint none
File "secret file.dat"
SetDetail sPrint both

4.9.14.15 SetCtlColors

hwnd [/ BRANDI NG [text_col or| SYSCLR text _color_id] [tr

Sets the text and background color of a static control, edit control, button
or a dialog. text_color and bg_color don't accept variables. Use
GetDlgltem to get the handle (HWND) of the control. To make the control
transparent specify transpar ent as the background color value. Prefix the
color value with syscLrR to specify a Windows coLOrR * constant. You can
also specify / BRANDI NG with or without text color and background color to
make the control completely gray (or any other color you choose). This is
used by the branding text control in the MUI.

Page Conponents "" Cnpnt PageShow

Functi on Cnpnt PageShow

Fi ndW ndow $1 "#32770" "" S$HWDPARENT

GetDli gltem $0 $1 1006

Set Ct | Col ors $0 OxFFOO00 OxOOFFOO0 ; Red on Green

GetDli gltem $0 $1 1022

Set Ct| Col ors $0 SYSCLR 23 SYSCLR: 24 ; COLOR | NFOTEXT o
Functi onEnd

Warning: Setting the background color of check boxes to t r anspar ent
may not function properly when using xpstyl e on. The background may
be completely black instead of transparent when using certain Windows
themes.

4.9.14.16 SetSilent

silent | nornal



Sets the installer to silent mode or normal mode. See Silentinstall for
more information about silent installations. Can only be used in .oninit.

4.9.14.17 ShowWindow

hwnd show state

Sets the visibility of a window. Possible show_states are the same as the
Windows ShowWindow function. SW_* constants are defined in
Include\WinMessages.nsh.

I'i ncl ude W nMessages. nsh
Get Dl gl tem $0 $HWNDPARENT 1
Showw ndow $0 ${ SW HI DE}

Sl eep 1000

ShowW ndow $0 ${ SW SHOW

4.9.15 Multiple Languages Instructions
4.9.15.1 LoadLanguagekFile

| anguage file.nlf

Loads a language file for the construction of a language table. All of the
language files that ship with NSIS are in Contrib\Language Files

After you have inserted the language file ${LANG _langfile} will be defined
as the language id (for example, ${LANG_ENGLISH} will be defined as

1033). Use it with LangString, LicenseLangString, LangDLL and
VIAddVersionKey.

4.9.15.2 LangString

nane | anguage id| 0 string

Defines a multilingual string. This means its value may be different (or



not, it's up to you) for every language. It allows you to easily make your
installer multilingual without the need to add massive switches to the
script.

Each language string has a name that identifies it and a value for each
language used by the installer. They can be used in any runtime string in
the script. To use a language string all you need to add to the string is
$(LangString_name_here) where you want the LangString to be inserted.

Notes:

e Unlike defines that use curly braces - {}, language strings use
parenthesis - ().

¢ If you change the language in the .onlnit function, note that language
strings in .onlnit will still use the detected language based on the
user's default Windows language because the language is initialized
after .onlnit.

e Always set language strings for every language in your script.

¢ |f you set the language ID to O the last used language by LangString
or LoadLanguageFile will be used.

Example of usage:

LangStri ng nessage ${LANG ENGLI SH} "English nessage"
LangStri ng nessage ${LANG FRENCH} "French nessage"
LangStri ng nessage ${LANG KOREAN} "Korean nessage"

MessageBox MB_ OK "A transl ated nessage: $(nessage)”
4.9.15.3 LicenselLangString

nanme | anguage id| O |icense_path

Does the same as LangString only it loads the string from a text/RTF file
and defines a special LangString that can only be used by LicenseData.

Li censeLangString |icense ${LANG ENGLI SH} |i cense-engl
Li censeLangString |icense ${LANG FRENCH} |icense-frenc



Li censeLangString |icense ${LANG GERVAN} | i cense-gerna

Li censeData $(|icense)

Previous | Contents | Next




Previous | Contents | Next



4.10 Multiple Languages

As of version 2 NSIS fully supports multiple languages. The interface of
one installer can support multiple languages.

Use LoadlLanguageFile for every language to load the default interface
texts and language properties. Visit the NSIS translations forum for more
information about creating new language files.

The default interface texts can easily be changed using instructions like
ComponentText etc.

You can also use the contents of the standard language strings in your
own strings (for example, $(*"Name) contains the installer's name set
using the Name instruction). The names of all standard language strings
are listed as comments just above the strings in the language files. The
language files are located in Contrib\Language Files.

To create your own language strings, use LangString.

For an example of an installer with multiple languages, see
languages.nsi.

4.10.1 Language Selection

When the installer starts up it goes through these steps to select the
interface language:

Get user's default Windows Ul language

Find a perfect match for the language

If there is no perfect match, find a primary language match

If there is no match, use the first language defined in the script
(make sure your first language is a common one like English)

If the language variable SLANGUAGE has changed during .onlnit,
NSIS goes through steps 2 to 4 again.

roONPE

o

4.10.2 LangDLL Plug-in



The LangDLL plug-in allows you to give the user an option to choose the
language of the installer. Just push the language id (${LANG _langfile})
and its name for every language in your installer, then the number of
languages pushed, the caption, and the text that tells the user to select
the language, call the plug-in function named LangDialog, pop the
returned value into SLANGUAGE and you're good to go. If the user clicks
on the cancel button the return value will be "cancel".

For an example of usage see languages.nsi.

4.10.3 RTL Languages

RTL languages are languages that are written from right to left (e.qg.
Arabic and Hebrew). NSIS fully supports RTL languages. In the language
file there is a place to specify if the language is RTL or not. To find out at
runtime if the current language is RTL or not, check the value of the
$("RTL) language string. It will be 1 if the language is RTL and O
otherwise. This can be useful when using plug-ins that create dialogs,
they usually have RTL settings too.

Previous | Contents | Next




Previous | Contents | Next



4.11 Plug-in DLLs

The abilities of the NSIS scripting language can be extended by utilising
functionality provided in a DLL file. Probably the best known example of
this is the InstallOptions.dll bundled with every NSIS release.

When the NSIS compiler starts it scans the plug-ins directory for DLLs
and makes a list of the plug-ins found and their exported functions.
During compilation, if a sequence such as fred::flintstone is encountered
where the compiler expected to find a language keyword the compiler will
look through this list. If a list entry specifies that fred.dll exports function
flintstone NSIS will pack the fred.dll file into the created installer binary.

During execution of a plug-in command NSIS will unpack the necessary
DLL to a temporary folder ($PLUGINSDIR), push all of the arguments
specified (right-to-left order), and then execute the DLL function.

4.11.1 Using Plug-in Commands

A plug-in call looks like this:

Install Options::dialog "ini_file_ |location.ini"

All parameters are pushed onto the stack (in this case, the plug-in
function only needs one parameter). Some plug-in commands may not
need any parameters on the stack, others might require more of them. To
use a plug-in command you will need to read the documentation for the
plug-in so that you know what parameters its functions require.

4.11.2 Calling plug-ins manually

If you want to call a plug-in that is stored on user's hard drive or
somewhere else, use CallinstDLL. Almost all plug-ins provide installer
functionality, so using plug-in commands is way easier. Using CallinstDLL
can be useful when you have created plug-ins that are linked to a certain
version of your application and are being copied to the installation folder.



Previous | Contents | Next




Previous | Contents | Next



4.12 Silent Installers/Uninstallers

Silent installers are installers which require no user intervention and have
no user interface. The user doesn't see any dialog and isn't asked any
guestions. This is useful for network administrators who wish to install or
uninstall something without user intervention so they can perform the
operation quickly over any number of computers. It is also useful for other
developers who wish to embed another installer in their own and collect
all of the required information on their installer instead of showing two
installers.

NSIS installers and uninstallers can be both silent and not silent. When
an installer or an uninstaller is silent, not all callback functions are called.
.onGUIInit, .onGUIENd, their uninstaller equivalents and any callback
related to a specific page or page type will not be called.

There are several methods to make an installer or an uninstaller silent:

1. Silentinstall and SilentUninstall
2. SetSilent
3. Passing /S on the command line (case sensitive)

To check if the installer/uninstaller is silent use |fSilent.

To make sure your installer will be silent when it needs to, you should
check with IfSilent before each command that might require user
intervention or create a window. The MessageBox command, which is
the most common culprit in silent installers, has the /SD switch to set a
default answer for silent installers. If you want your installer/uninstaller to
be able to be completely silent you should use this switch. All internal
NSIS message boxes have defaults for silent installers. The silent.nsi
example demonstrates all aspects of this topic.

Since the directory page is not shown in silent installers the user has an
option to specify the installation directory on the command line (this also
works on non-silent installers/uninstallers). To do that, the user uses the
/D switch as in the following example:



foo.exe /'S /D=C.\ Program Fi | es\ Foo

If your installer/uninstaller requires some more information that can not
be gathered when silent, you can allow the user to specify that
information on the command line and process it in .onlnit. You can use
GetOptions.

l'i nclude Fil eFunc. nsh
linsertmacro Get Par anet ers
l'insertmacro CGet Options

Function .onlnit
${ Get Par anet er s} $RO
ClearErrors
${ Get Opti ons} $RO / USERNAME= $0
Functi onEnd

The above example will copy the value the user passes on after
/JUSERNAME-= into $0. This allows the user to specify the required
information on the command line instead of using the interactive user
interface. The user can use:

f 0o. exe /'S / USERNAME=Bar / D=C:.\ Program Fi | es\ Foo

or:

foo.exe /'S /USERNAME=string with spaces /D=C.\ Program
or:

foo.exe /'S /USERNAME="string wth spaces" /D=C.\Progra

If your installer/uninstaller requires a lot of information and you want it to
be able to be silent, you should allow the user to pass on a path to an
answers file. This would be much more comfortable than writing all of the
information on the command line.

Previous | Contents | Next




Previous | Contents | Next



5.1 Compiler Utility Commands

These commands are similar to the C preprocessor in terms of purpose
and functionality. They allow file inclusion, conditional compilation,
executable header packing and process execution during the build
process. Note: None of these commands allow the use of variables.

Number literals support the ob, 0o, on and ox radix prefixes (base 2, 8, 10
and 16 respectively). Note: The deprecated plain 0 octal prefix is also
supported in some places but its usage is discouraged.

5.1.1!include

[ / NONFATAL] [/ CHARSET=ACP| OEM CP#| UTF8| UTF16LE| UTF16BE

This command will include ‘file' as if it was part of the original script. Note
that if a file is included in another directory, the current directory is still
where the script was compiled from (not where the included file resides).
If the compiler can't find the file it will look for it in every include directory.
See !addincludedir for more information. If the /nonfatal switch is used
and no files are found, a warning will be issued instead of an error.
/charset can be used to specify a codepage for plain text files without a
BOM.

I'i ncl ude W nMessages. nsh

l'include Library. nsh

I'i ncl ude / CHARSET=CP1252 C:.\ MyConfi g. nsi

l'i ncl ude ..\ M/Config.nsh

l'include / NONFATAL file_that _nay_ exist_or_not.nsh

5.1.2 laddincludedir

directory

Adds another include directory to the include directories list. This list is
searched when !include is used. This list's initial value is
${NSISDIRNInclude.



' addi ncl udedir ..\include
I'i ncl ude sonet hi ng. nsh

5.1.3 laddplugindir

[/ x86-ansi | /x86-unicode] directory

Causes the NSIS compiler to scan the given directory for plug-in DLLs. If
you don't specify the plug-in architecture it is assumed to match the
current target architecture. If the architecture does not match the installer
will probably crash!

l'addpl ugi ndir ..\ myplugin
MyPl ugi n: : SomeFuncti on

5.1.4 'appendfile

[/ CHARSET=ACP| CEM CP#| UTF8[ SI G | UTF16<LE| BE>[ BOM ] [/R

Appends text to file. The text is written as ANSI (ACP) unless the file
already has a BOM. Using /CHARSET will force a specific character
encoding. $\ n will be translated to $\ r $\ n on Windows unless you specify
/RawNL.

'tenpfile FILE

lappendfile "${FILE}" "XPStyle on$\n"
lappendfile "${FILE}" "Name 'test'$\n"
l'include "${FI LE}"

ldel file "${FILE}"

lundef FILE

5.1.5 Icd

new_pat h

This command will change the compiler to the new directory, new_path.
new_path can be relative or absolute.



l'ced ..\ nore-scripts\new
5.1.6 !delfile

[/nonfatal] file
This command deletes a file.
'tenpfile FILE

ldelfile "${FILE}"
l undef FILE

5.1.7 'echo

message
This command will echo a message to the user compiling the script.

lecho "hello worl d"
5.1.8 lerror

[ message]

This command will issue an error to the script compiler and will stop
execution of the script. You can also add a message to this error.

i fdef VERSI ON & NOVERSI| ON
lerror "both VERSI ON and NOVERSI ON are defi ned"
lendi f

5.1.9 lexecute

command [ conpare conpareval ue | synbol ]

This command will execute 'command' using a call to CreateProcess().
Unlike !system, it does not use the command line processor, so
input/output redirection and commands like 'cd’, 'dir' and 'type' can not be



used. Currently, the only known advantage of !execute over !system is
that it does not give trouble when the current working directory is
specified using UNC.

On POSIX platforms, !execute will use system() just like !system.

l'execut e ' "$%N NDI R% not epad. exe" /P "${NSI SDI R} \ COPYI
5.1.10 'makensis

paranmeters [conpare conpareval ue | synbol]

This command will lexecute a new instance of MakeNSIS with the
parameters you specify.

I'makensi s ' - DGENERATEUNINST "${_ FILE }"'" =0
Isystem "

signtool” sign ..." =0
5.1.11 !'packhdr

tenpfil e command

This option makes the compiler use an external EXE packer (such as
Petite or UPX) to compress the executable header. Specify a temporary
file name (such as "temp.dat") and a command line (such as "C:\program
files\upx\upx -9 temp.dat") to compress the header.

I packhdr "$Y%TEMP% exehead. t np" '"C.\ Program Fil es\ UPX\
5.1.12 'finalize

command [ conpar e conpareval uej

This option will execute ‘command’ using a call to system() after the
output EXE has been generated. You can typically use it to sign
(Authenticode) your installer. If 'command' contains a '%1" it will be
replaced by the executables filename.



I'finalize "sign.bat "%" "Product Installer” http://ex
5.1.13 Isystem

command [ conpare conpareval ue | synbol ]

This command will execute ‘command' using a call to system(). You can
store the return value in a define ('symbol’) or halt execution if the return
value compared (using ‘compare’) to ‘comparevalue' is false. ‘compare’
can be '<'or >' or '<>' or '=",

I'system ' " %N NDI R not epad. exe" "${NSI SDI R} \ COPYI NG"*
Isystem ' echo !define sonething > new ncl ude. nsh’
I'i ncl ude new ncl ude. nsh
l'i fdef sonet hing
lecho "sonmething is defined"
lendi f

5.1.14 'tempfile

synbol

This command creates a temporary file. It puts its path into a define,
named symbol.

'tenpfil e PACKHDRTEMP
I packhdr " ${ PACKHDRTEMP}" ' " C:\ Program Fil es\ UPX\ upx. e

'tenpfile FILE

I define /date DATE "% %Vt %6 % %b, %"
I'system ' echo built on ${DATE} > "${FILE}""
lundef DATE

File /onane=build.txt "${FILE}"

ldelfile "${FILE}"

lundef FILE

5.1.15 !getdllversion



| ocal fil ename defi ne_basenane

This is similar to GetDLLVersionLocal, only it stores the version number
in defines and can therefore be used anywhere, not just inside functions
and sections.

I'getdl | versi on "$%N NDI R% Expl orer. exe" expv_
lecho "Expl orer.exe version is ${expv_1}.${expv_2}.%{e

5.1.16 !'warning
[ message]

This command will issue a warning to the script compiler. You can also
add a message to this warning.

l'i f def USE_DANGEROUS STUFF
I'war ni ng "usi ng dangerous stuff"
lendi f

5.1.17 'pragma

war ni ng <enabl e| di sabl e| def aul t > code
war ni ng <push| pop>

The pragma commands allows you to change compiler features and
behavior.

' pragma war ni ng di sabl e 9000 ; D sabl e warni ng about u
QutFile "Setup. exe"

5.1.18 lverbose

| evel | push | pop

This command will set the level of verbosity. 4=all, 3=no script, 2=no info,
1=no warnings, O=none.



Passing push will cause !verbose to push the current verbosity level on a
special stack. Passing pop will cause !verbose to pop the current
verbosity level from the same stack and use it.

I'ver bose push

l'verbose 1

I'i ncl ude W nMessages. nsh
'ver bose pop

Previous | Contents | Next




Previous | Contents | Next



5.2 Predefines

You can use these standard predefines to automatically add the build
time to the title of development versions, add the date to the version
number, etc.

5.2.1${ COUNTER_}

Expands to a number (Starting at 0 and incrementing by 1 every time it is
used)

522 %{_FILE_}

Current script name.

523 %{ FILEDIR_}

Current script directory.

5.2.4 ${__LINE_ }

Current line number.

525 %{_ DATE_ }

Date when the script started compiling according to the current locale.
52.6 ${__TIME__}

Time when the script started compiling according to the current locale.
5.2.7 % _ TIMESTAMP__}

Date & time of the last modification to the script file according to the
current locale.



5.2.8 ${NSIS_VERSION}

NSIS version used to build the script.

5.2.9 ${NSIS_PACKEDVERSION}

NSIS version as a 32-bit number.

'i f 0x3014000 >= "${NSI S_PACKEDVERSI ON} "

!e!ngir;or "NSI'S 3.15 or higher is required to build thi

5.2.10 ${NSIS_CHAR_SIZE}

The size of a character code unit (in bytes). 1 in ANSI installers and 2 in
Unicode installers.

A grapheme cluster consists of a base character plus optional combining
characters and diacritics and is defined as one or more code points. One
or more code units is required to encode a single code point.

5.2.11 ${NSIS_PTR_SIZE}

The size of a pointer (in bytes) in the generated installer.

5.2.12 ${U+1}...${U+10FFFF}

A Unicode (UCS-4) character.

Detail Print "${W+2115}SI S" # DOUBLE- STRUCK CAPI TAL N +
5.2.13 Scope Predefines

Standard predefines that contain information about the current code
scope.

5.2.13.1 ${__GLOBAL_ }



Defined in the global scope.

Section test
lifdef ${  G.OBAL_}
lerror "this shouldn't be here!"
lendi f
Secti onEnd

PageEx instfiles
lifdef ${__G.OBAL_ }
lerror "this shouldn't be here!"
lendi f
PageEXEnd

5.2.13.2 ${__SECTION__}

Defined as the section name, without any prefixes, in section scope.

lifdef _ SECTION
lerror "this shouldn't be herel!l"
I endi f

Section test
l'i fndef _ SECTION
lerror "m ssing predefinel!"
lendi f

lif ${ SECTION_ } !'= test
lerror "wrong predefine val ue!"
lendi f
Sect i onEnd

Section !test
lif ${ SECTION_ } !'= test
lerror "wrong predefine val ue!"
lendi f
Sect i onEnd



Section un.test
lif ${ SECTION_ } !'= test
lerror "wrong predefine val ue!"
lendi f
Sect i onEnd

5.2.13.3${ _FUNCTION_ }

Defined as the function name, without any prefixes, in function scope.

i fdef _ FUNCTION
lerror "this shouldn't be herel!l"”
I endi f

Function test
l'i fndef _ FUNCTI ON__
lerror "m ssing predefine!"
lendi f

Lif ${  FUNCTION } != test
lerror "wrong predefine val ue!"
lendi f
Functi onEnd

Function un.test
Lif ${_  FUNCTION } != test
lerror "wrong predefine val ue!"
lendi f
Functi onEnd

5.2.13.4 ${_ PAGEEX_ }

Defined as the page type in PageEx scope.

lifdef _ PAGEEX_



lerror "this shouldn't be here!”
lendi f

PageEx instfiles
l'i f ndef _ PAGEEX
lerror "m ssing predefine!"

lendi f
lif ${  PAGEEX } !'=instfiles
lerror "wrong page type"
lendi f
PageExEnd

5.2.13.5 ${__ UNINSTALL_ }

Defined in section, function or PageEx scopes of the uninstaller.

i fdef _ UNINSTALL
lerror "this shouldn't be herel!l”
I endi f

Function test
i fdef _ UNINSTALL
lerror "this shouldn't be here!"
lendi f
Functi onEnd

Function un.test
l'i fndef _ UNI NSTALL__
lerror "m ssing predefine!"
lendi f
Functi onEnd

5.2.13.6 ${__MACRO__}

Defined as the name of the current macro.



Previous | Contents | Next




Previous | Contents | Next



5.3 Read environment variables

5.3.1 $%envVarName%

$%envVarName% will be replaced at compile time by the environment
variable envVarName.

Previous | Contents | Next




Previous | Contents | Next



5.4 Conditional Compilation

The compiler maintains a list of defined symbols, which can be defined
using !define or the /D command line switch. These defined symbols can
be used for conditional compilation (using !ifdef) or for symbol
replacement (a simple form of macros). To replace a symbol with its
value, use ${SYMBOL} (if SYMBOL is not defined, no translation will
occur). The translation is first-come-first-served, meaning if you do:

' defi ne synbol one ${synbol two}

If symbol_two is defined when that line occurs, it will be replaced.
Otherwise, any replacing will occur when ${symbol_one} is referenced.

Define/conditional compilation related commands:

5.4.1 'define

[/ifndef | /redef] ([/date|/utcdate] gflag [value]) |

This command will add gflag to the global define list. This will have a
similar effect as using the /D switch on the command line (the define only
becomes effective after the !define command).

If /date or /utcdate are used, value will be passed to strftime() and the
result will be used as the value of gflag. stritime converts special symbols
into certain parts of the current time or date. For example, %H will be
converted into the current hour in 24-hour format. For a complete list of
available symbols, search for strftime on MSDN. On POSIX, you can get
the list by using man strftine.

If /math is used, the result of 'vall OP val2', where OP may be +,-
*,&,|,N,<<,>>>>> or % , will be used as the value of gflag. Note that
vall AND val2 MUST be integer values!

If /file is used, the entire text file specified (including whitespace and
newlines) will be read and stuffed into gflag.



| defi ne USE_SOVETH NG

'define VERSION 1.2

I define /date NOW "% %t 96 % %b, %"

ldefine /math RESULT 3 + 10

ldefine /math REST 15 % ${ RESULT}

ldefine /file BunchaStuff sonmesourcefile.cpp

Idefine /redef USE SOVETHI NG ${ RESULT} ;redefine USE S

5.4.2 lundef

gf | ag

Removes an item from the global define list. Note that ${SYMBOL} where
SYMBOL is undefined will be translated to "${SYMBOL}".

I defi ne SOVETHI NG
l undef SOVETHI NG

5.4.3 lifdef

gfl ag [bcheck gflag [...]]

This command, when paired with an !endif command, will tell the
compiler whether or not to compile the lines in between the two lines. If
gflag is globally defined (using !define or the /D switch), then the
contained lines will be compiled. Otherwise, they will be skipped. 'bcheck’
can be specified as & (boolean and) or | (boolean or) along with more
gflags -- precedence is simple, left to right.

I defi ne SOVETHI NG
I'i fdef SOVETH NG
lecho "SOVETHI NG i s defi ned"
lendi f
l'undef SQOVETHI NG
I'i fdef SOVETH NG
lecho "SOVETHI NG i s defined" # will never be printed
lendi f



5.4.4 lifndef

gflag [bcheck gflag [...]]]

The opposite of lifdef. The lines will be compiled when the gflag has not
been defined.

5.4.5 lif

['] val ue [op val ue?]
['] /FileExists "c:\path\file.exe"

This command, when paired with an 'endif command, will tell the
compiler whether or not to compile the lines in between the two lines. If
value is non-zero, or the comparison of value and value2 depending on
the operator results in true, the contained lines will be compiled.
Otherwise, they will be skipped. op can be either == or != (case-
insensitive string comparison), S== or S!= (case-sensitive string
comparison), =, <>, <=, <, > or >= (int/hex/float comparison), & (bitwise
AND comparison), && or || (boolean comparison). If ['] is set, the result
will be flipped from true to false and vice versa.

I'if 1 < Ox2
lecho "1 is smaller than 2!!"
lelse i1f I 3.1 > 1.99
lerror "this line should never appear™
lel se
lerror "neither should this"
l'endi f

'if /FileExists ".\cert.pfx"
Ifinalize "".\sign.bat" "o%d"'
l'endi f

5.4.6 lifmacrodef

gflag [bcheck gflag [...]]]



This command, when paired with an 'endif command, will tell the
compiler whether or not to compile the lines in between the two lines. If
the macro gflag exists, then the contained lines will be compiled.
Otherwise, they will be skipped. 'bcheck’ can be specified as & (boolean
and) or | (boolean or) along with more gflags -- precedence is simple, left
to right.

' macro SoneMacr o
I macr oend
I'i f macr odef SoneMacr o
lecho "SoneMacro is defined"
I endi f

5.4.7 lifmacrondef

gflag [bcheck gflag [...]]]

The opposite of lifmacrodef. The lines will be compiled when the macro
gflag does not exist.

5.4.8 lelse

[if|ifdef|ifndef|ifrmacrodef|ifmacrondef [...]]

This command allows to easily insert different code when different
defines or macros are set. You can create blocks like lifdef/lelse/!endif,
lifdef/lelse ifdef/lelse/lendif etc.

l'i fdef VERSI ON
QutFil e installer-${VERSI O\}. exe

l el se

QutFile install er. exe
I endi f

5.4.9 lendif

This command closes a block started with lif, lifdef, lifndef, lifmacrodef or
lifmacrondef.



5.4.10 linsertmacro

macro_nanme [paraneter] [...]

Inserts the contents of a macro that was created with 'macro. If the
macro was created with parameters, then you must pass as many
parameters to the macro as it requires.

I'macro Print text
Detail Print "${text}"
I macr oend
linsertnmacro Print "sone text"
linsertnacro Print "sonme nore text"

5.4.11 'macro

macro_nane [paraneter][...]

Creates a macro named 'macro_name'. All lines between the !macro and
the !macroend will be saved. To insert the macro later on, use
linsertmacro. !macro definitions can have one or more parameters
defined. The parameters may be accessed the same way a !define would
(e.g. ${PARMNAME}) from inside the macro.

'macro SonmeMacro parml parn® parnf
Detail Print "${parml}"
MessageBox MB_OK " ${ par nk}"

File "${parnB}"
I macr oend

5.4.12 'macroend
Ends a macro that was started with !macro.
5.4.13 'macroundef

Macr o_nane



Deletes a macro.
5.4.14 'searchparse

[/ignorecase] [/noerrors] [/file] source_string_ or fil

Parses source_string_or_file (which is treated as a string, or as a
filename if /file is set), looking for substring_start. If substring_start is
found, then OUTPUTSYMBOL1 is defined to the rest of the string (minus
any other substring that may be found). Any number of
OUTPUTSYMBOLX may be specified, and the final substring is optional.

If /noerrors is specified, matching less than the full number of strings is
allowed (all OUTPUTSYMBOLX after the not-found substring will be
ignored).

If /file is specified, the file is treated as a series of lines. The file is
searched until all substrings are matched. If /noerrors is specified and not
all strings are matched, the first line with the most symbols matched is
used.

# search filenane.cpp for a line '#define APP_VERSI ON
I'searchparse /file filenane.cpp #defi ne APP_VERSI ON "

5.4.15 !'searchreplace

[/ignorecase] synbol out source_string searchfor repla

Searches source_string, looking for searchfor and replacing all instances
of it with replacewith. Unlike !define, !searchreplace allows you to
redefine symbol_out without warning or error.

# defines ${blah} to "i |ike ponies"
I'searchrepl ace blah "i |ove ponies" "love" "like"

Previous | Contents | Next




Previous | Contents | Next



Appendix A: Modern User Interface

NSIS 2 makes it is possible to create installers with a custom user
interface. The Modern Ul is a interface with a style like the wizards of
recent Windows versions. This new interface also features new pages
(Welcome, Finish, Start Menu) and a description area on the components
page. The interface and the graphics can be customized using the
provided settings. Using the Modern Ul macros and language files,
writing scripts with a modern interface is easy.

For more information and documentation see the Modern Ul 2 Readme.

NSIS 2.34 brought with it a new version of Modern Ul - version 2. It is
faster and more extendible. It allows plug-ins to add new types of pages
and even change existing pages using a simple NSH file. It also uses
nsDialogs which faster than its elder sibling - InstallOptions.

For more information and documentation of the old version see the
Modern Ul Readme.

Previous | Contents | Next




Previous | Contents | Next



Appendix B: DLL/TLB Library Setup

e [ntroduction
e Library Installation
Introduction
Parameters
Options
o Notes
Example
e Library Uninstallation
o [ntroduction
o Parameters
o Options
o Example
¢ Visual Basic 6 Run-Time Files

(0]

(0]

O

O

Previous | Contents | Next




Previous | Contents | Next



B.1 Introduction

The Library header file can be used to setup dynamic link libraries (DLL)
and type libraries (TLB). If necessary, the following actions will be
performed:

e File copying

File copying on reboot

Version checks

Registration and unregistration
Registration and unregistration on reboot
Shared DLL counting

Windows File Protection checks

The macros are stored in the header file Library.nsh, which should be
included in scripts using this system:

l'incl ude Library. nsh

Note that the library macros are limited on non-Windows platforms. DLL
version information is required when compiling on non-Windows
platforms.

Previous | Contents | Next




Previous | Contents | Next



B.2 Library Installation

B.2.1 Introduction

The InstallLib macro allows you to install a library. It sets the error flag if
something went wrong during library setup.

To ask the user for a reboot, if required, use the Modern Ul with a Finish
page or use IfRebootFlag and make your own page or message box.

B.2.2 Parameters

| i bt ype shared install localfile destfile tenpbasedir
libtype
The type of the library

DLL - Dynamic link library (DLL)

REGDLL - DLL that has to be registered

REGEXE - EXE COM server that has to be registered using /regserver
TLB - Type library or DLL that contains a type library

REGDLLTLB - DLL that has to be registered and contains a type library

shared
Specify whether the library is shared with other applications

NOTSHARED - The library is not shared
$VARNAME - Variable that is empty when the application is installed for
the first time, which is when the shared library count will be increased.

install
Specify the installation method

REBOOT_PROTECTED



e Upgrade the library on reboot when in use (required for system files).
e Upgrade the library if the file is not protected by Windows File
Protection.

NOREBOOT_PROTECTED

e Warns the user when the library is in use. The user will have to close
applications using the library.

e Upgrade the library if the file is not protected by Windows File
Protection.

REBOOT_NOTPROTECTED

e Upgrade the library on reboot when in use (required for system files).
e Upgrade the library without checking for Windows File Protection.

NOREBOOT_NOTPROTECTED

e Warns the user when the library is in use. The user will have to close
applications using the library.
e Upgrade the library without checking for Windows File Protection.

localfile

Location of the library on the compiler system
destfile

Location to store the library on the user's system
tempbasedir

Directory on the user's system to store a temporary file when the system
has to be rebooted.

For Windows 9x/ME support, this directory should be on the same
volume as the destination file (destfile). The Windows temp directory
could be located on any volume, so you cannot use this directory.

B.2.3 Options



Define any of the following before inserting a InstallLib macro to modify
its behavior as specified.

B.2.3.1 LIBRARY_X64

e Installs a DLL built for Windows x64.
e Warning: This resets file system redirection.

B.2.3.2 LIBRARY_SHELL_EXTENSION

¢ Define this before inserting InstallLib macro to call SHChangeNotify
with SHCNE_ASSOCCHANGED after registration.

e Use this to refresh the shell when installing a shell extension or when
changing file associations.

B.2.3.3 LIBRARY_COM

o Define this before inserting InstallLib macro to call
CoFreeUnusedLibraries after registration.

e Use this for unloading all unnecessary libraries from memory when
installing COM libraries.

B.2.3.4 LIBRARY_IGNORE_VERSION

o Define this before inserting InstallLib macro to ignore version
information in the file and always install it, even if it already exists.

e Use this when an older or specific version is required.

e Not recommended for DLLs installed to $SYSDIR.

B.2.4 Notes

e If you need to support Windows 9x/ME, you can only use short
filenames (8.3).

e Warning: Always use redistributable files when deploying DLLSs,
never copy files from your system directory!



B.2.5 Example
B.2.5.1 Unshared DLL

linsertmacro InstallLib REGDLL NOTSHARED REBOOT NOTPR
B.2.5.2 Shared DLL

; Add code here that sets $ALREADY | NSTALLED to a non-
;already installed. For exanple:

| fFil eExi sts "$I NSTDI R\ MyApp. exe" 0 new_installation
Str Cpy $ALREADY | NSTALLED 1
new_ i nstal |l ati on:

linsertmacro InstallLib REGDLL $ALREADY | NSTALLED REB

Previous | Contents | Next




Previous | Contents | Next



B.3 Library Uninstallation

B.3.1 Introduction

The UnlnstallLib macro allows you to uninstall a library. It sets the error
flag if something went wrong during library removal.

B.3.2 Parameters

| i bt ype shared uninstall file
libtype
The type of the library

DLL - Dynamic link library (DLL)

REGDLL - DLL that has to be unregistered

REGEXE - EXE COM server that has to be unregistered using
/unregserver

TLB - Type library or DLL that contains a type library

REGDLLTLB - DLL that has to be unregistered and contains a type
library

shared
Specify whether the library is shared with other applications

NOTSHARED - The library is not shared
SHARED - The library is shared and should be removed if the shared
library count indicates that the file is not in use anymore..

uninstall
Specify the uninstallation method
NOREMOVE

e The library should not be removed. You should use this option for



common or important system files such as the Visual
Basic/C++/MFC runtimes.

REBOOT_PROTECTED

e Remove the library on reboot when in use (required for system files).
e Remove the library if the file is not protected by Windows File
Protection.

NOREBOOT_PROTECTED

e Warns the user when the library is in use. The user will have to close
applications using the library.

e Remove the library if the file is not protected by Windows File
Protection.

REBOOT_NOTPROTECTED

e Remove the library on reboot when in use (required for system files).
e Remove the library without checking for Windows File Protection.

NOREBOOT_NOTPROTECTED

e Warns the user when the library is in use. The user will have to close
applications using the library.
e Remove the library without checking for Windows File Protection.

file
Location of the library

B.3.3 Options

Define any of the following before inserting a UninstallLib macro to
modify its behavior as specified.

B.3.3.1 LIBRARY_X64

e Uninstalls a DLL built for Windows x64.



e Warning: This resets SetRegView and file system redirection.
B.3.3.2 LIBRARY_SHELL EXTENSION

e Define this before inserting UninstallLib macro to call
SHChangeNotify with SHCNE_ASSOCCHANGED after
unregistration. Use this to refresh the shell when uninstalling a shell
extension or when changing file associations.

B.3.3.3 LIBRARY_COM

o Define this before inserting UninstallLib macro to call
CoFreeUnusedLibraries after unregistration. Use this for unloading
all unnecessary libraries from memory when uninstalling COM
libraries.

B.3.4 Example

linsertmacro Unlnstall Lib REGDLL SHARED REBOOT NOTPRC

Previous | Contents | Next




Previous | Contents | Next



B.4 Visual Basic 6 Run-Time Files

A new VB6RunTime.nsh header file is available for the setup of the VB6
run-time files. To obtain the latest run-time files, download vb6runtime.zip
and extract this file.

l'i ncl ude VB6RunTi ne. nsh

Var Al readylnstalled

Section "-Install VB6 run-tine files"

; Add code here that sets $Alreadylnstalled to a non

| fFil eExi sts "$I NSTDI R\ MyApp. exe" O new_installatio
StrCpy $Alreadylnstalled 1

new i nstall ati on:

li nsertmacro VB6RunTi nelnstall C \vb6runti nes $A re

Sect i onEnd

Section "-un.Uninstall VB6 run-tine fil es"

l'i nsert macro VB6RunTi neUnl nst al |

Sect i onEnd
Remarks:

e You may have to install additional files for such Visual Basic
application to work, such as OCX files for user interface controls.

e Installation of the run-time files requires Administrator or Power User
privileges. Use the Multi-User header file to verify whether these
privileges are available.

e Add a Modern Ul finish page or another check (see IfRebootFlag) to
allow the user to restart the computer when necessary.



Previous | Contents | Next




Previous | Contents | Next



Appendix C: Useful Scripts

Get Internet Explorer version

Is .NET Framework installed?

Is Macromedia Flash Player installed?
Connect to the Internet

Get Installer Filename

Prevent Multiple Instances

More

Previous | Contents | Next




Previous | Contents | Next



C.1 Get Internet Explorer version
; Cet| EVersion

; Based on Yazno's function, http://yazno.tripod.com
; Returns 1-6 (IE Version) or '" (IEis not installed

; Usage:
; Cal | Getl EVersion
; Pop $RO ; at this point $RO is "5" or what not

Function Getl EVersion

Push $RO
ClearErrors
ReadRegStr $RO HKLM " Sof t war e\ M crosoft\ I nt ernet EXx
|fErrors I bl 123 | bl 456

| bl _456: ; ie 4+
Strcpy $RO $RO 1
Goto | bl _done

| bl _123: ; older ie version
ClearErrors
ReadRegStr $RO HKLM " Sof t war e\ M cr osoft\ | nt er net
|fErrors | bl _error

StrCpy $RO $RO 3

StrCnp $RO ' 100' Ibl _jel
StrCmp $RO ' 101' |bl _ie2
StrCmp $RO ' 102' |bl _ie2

StrCpy $RO '3" ; default to ie3 if not 100, 101
Goto | bl _done
| bl _iel:
StrCpy $RO ' 1
Goto | bl _done



| bl _ie2:
StrCpy $RO ' 2
Goto | bl _done
| bl _error:
StrCpy $RO '
| bl _done:
Exch $RO
Functi onEnd

Previous | Contents | Next




Previous | Contents | Next



C.2Is .NET Framework installed?

- | sDot NETI nst al | ed

; Based on Get Dot NETVer si on

; http://nsis.sourceforge. net/ Get . NET Version

; Usage:

: Cal |l | sDot NETI nst al | ed

: Pop $0

; StrCnp $0 1 found _dot NETFranmewor k no_dot NETFr amew

Functi on | sDot NETI nstal | ed
Push $0
Push $1

StrCpy $0 1
System : Call "nscoree:: Gt CORVersion(w, i ${NSIS MA
StrCnp $1 0 +2

StrCpy $0 O

Pop $1
Exch $0
Functi onEnd

Previous | Contents | Next




Previous | Contents | Next



C.3 Is Macromedia Flash Player installed?

. | sFl ashl nstall ed

; By Yazno, http://yazno.tripod. cont power pi npit/
; Returns the result on top of the stack

; Usage:
; Call IsFl ashlinstalled
; Pop $RO ; $RO is "1" or "0" at this point

Function | sFl ashl nstal | ed

Push $RO

ClearErrors

ReadRegStr $R0O HKCR " CLSI D\ { D27CDB6E- AE6D- 11cf - 96B8-

|fErrors I bl _na
StrCpy $RO 1

Goto | bl _end

| bl _na:
StrCpy $RO O

| bl _end:

Exch $RO

Functi onEnd

Previous | Contents | Next




Previous | Contents | Next



C.4 Connect to the Internet

Connectlnternet (uses Dialer plug-in)
Witten by Joost Verburg

This function attenpts to make a connection to the
connection available. If you are not sure that a sy
has an active internet connection, call this functi
files with NSISdl.

The function requires Internet Explorer 3, but asks
| E3 is not install ed.

Functi on Connect | nt er net

Push $RO

ClearErrors
Di al er:: Att enpt Connect
| fErrors noie3

Pop $RO

StrCmp $RO "online" connected
MessageBox MB _OK| MB_ | CONSTOP "Cannot connect to
Quit ;This will quit the installer. You m ght w

noi e3:

- IE3 not installed
MessageBox MB_OK| MB_| CONI NFORMATI ON " Pl ease conne

connect ed:

Pop $RO

Functi onEnd



Previous | Contents | Next




Previous | Contents | Next



C.5 Get Installer Filename

System : Call 'kernel 32:: Get Modul eFi | eNane(p 0, t . RO,
;3RO will contain the installer filenane

Previous | Contents | Next




Previous | Contents | Next



C.6 Prevent Multiple Instances

Put the following code in your .oninit function:

System : Call 'kernel 32::CreateMutex(p O, i O, t "nmyM
Pop $RO

StrCnp $RO 0 +3
MessageBox MB_OK| MB_| CONEXCLAMATI ON "The installer
Abort

'myMutex’ must be replaced by a unique value!

Previous | Contents | Next




Previous | Contents | Next



C.7 More

You can find more useful scripts on the NSIS Wiki, the NSIS forum and
the NSIS development page.

Previous | Contents | Next




Previous | Contents | Next



Appendix D: Useful Information

Error Levels

Add uninstall information to Add/Remove Programs
Calling an external DLL using the System.dll plug-in
Dump Content of Log Window to File

How to Read REG_MULTI_SZ Values

Predefined Macros for Unicode support

Previous | Contents | Next




Previous | Contents | Next



D.1 Error Levels

Like other applications, installers made by NSIS return error levels as a
result of their execution. Checking the error level can be useful if you call
an NSIS installer from another application or installer.

e 0 - Normal execution (no error)
e 1 - Installation aborted by user (cancel button)
e 2 - Installation aborted by script

You can set the error level to other values using SetErrorLevel.

Note that uninstallers copy themselves to the temporary directory and
execute from there so the original uninstaller can be deleted. This means
the error level the uninstaller sets is not available to the executing
process, unless it simulates this copy process and executes the copied
uninstaller. To simulate this process, use:

I nitPluginsDr

CopyFi | es $I NSTDI R\ uni nstal | er. exe $PLUG NSDI R
ExecWait ' "$PLUGA NSDI R\ uni nstal l er.exe" ?=$INSTDIR $
Detail Print "uninstaller set error |evel $0"

If you don't do this, you'll only be able to know if the uninstaller failed
copying itself to the temporary directory.

Previous | Contents | Next




Previous | Contents | Next



D.2 Add uninstall information to Add/Remove
Programs

Create a key with your product name under
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall to add
entries to the "Add/Remove Programs" section in the Control Panel. For
Windows NT (NT4/2000/XP), it's also possible to create the key in the
HKCU hive, so it will only appear for the current user. There are several
values you can write to key to give information about your application and
the uninstaller. Write a value using the WriteRegStr command (for
strings) or WriteRegDWORD command (for DWORD values).

Example:

WiteRegStr HKLM " Sof t war e\ M cr osof t\ W ndows\ Cur r ent Ve
WiteRegStr HKLM " Sof t war e\ M cr osof t\ W ndows\ Cur r ent Ve

Required values

DisplayName (string) - Name of the application
UninstallString (string) - Path and filename of the uninstaller. You should
always quote the path.

Optional values
Some of the following values will not be used by older Windows versions.

InstallLocation (string) - Installation directory ($INSTDIR)
Displaylcon (string) - Path, flename and index of the icon that will be
displayed next to your application name

Publisher (string) - (Company) name of the publisher

ModifyPath (string) - Path and filename of the application modify program
InstallSource (string) - Location where the application was installed from

ProductID (string) - Product ID of the application
RegOwner (string) - Registered owner of the application



RegCompany (string) - Registered company of the application

HelpLink (string) - Link to the support website
HelpTelephone (string) - Telephone number for support

URLUpdatelnfo (string) - Link to the website for application updates
URLInfoAbout (string) - Link to the application home page

DisplayVersion (string) - Displayed version of the application
VersionMajor (DWORD) - Major version number of the application
VersionMinor (DWORD) - Minor version number of the application

NoModify (DWORD) - 1 if uninstaller has no option to modify the installed
application

NoRepair (DWORD) - 1 if the uninstaller has no option to repair the
installation

If both NoModify and NoRepair are set to 1, the button displays
"Remove" instead of "Modify/Remove".

Previous | Contents | Next




Previous | Contents | Next



D.3 Calling an external DLL using the System.dll
plug-in

Some installers need to call functions in third-party DLLs. A prime
example of this is when installing a Palm(TM) conduit.

Some background about System.dll The System.dll plug-in enables
calling of external DLLs by using its 'Call' function. There are a number of
other functions provided by System.dll but they will not be covered here.
For more details about the other functions, lock the doors, take the phone
off the hook, screw your head on *real* tight and head on over to the
System readme.

Data Types
System.dll recognises the following data types:

v - void (generally for return)

p - pointer (includes void*, HANDLE, HWND, UINT_PTR and so on)
| - int (a 32bit integer)

| - large integer (also known as int64)

t - text, string (LPTSTR, pointer to first character)

k - callback. See Callback section in system.html.

* - pointer specifier -> the proc needs the pointer to type, affects next
char (parameter) [ex: *i' - pointer to int]

Mapping System.dll variables to NSIS script variables

There's not much point in being able to call an external function if you
can't get any data back. System.dll maps function variables to NSIS
script variables in the following way:

NSIS $0..$9 becomes System.dll r0..r9 NSIS $R0..$R9 becomes
System.dll r10..r19

Each parameter is specified by type, input and output. To skip input or
output use a dot. Examples:

String (pointer to a character array), input is ‘happy calling':



t ' happy calling'

String (pointer to a character array), input is taken from $5 and changes
to the array made by the callee are saved into $R8:

t r5R8

Pointer to an integer, value taken from $1 and put into $2:
*I rlr2

Pointer to a 64-bit integer, output pushed on stack, no input:
*I .s

Using System.dll::Call To call a function in a third party DLL, the Call
function is used like this:

System :Call 'YourD | Nane:: YourD | Function(i, *i, t) i

The '(r0, .r1, r2) .r3 section at the end are the parameters that are
passed between your DLL and your NSIS script. As can be seen in this
parameters list, type and input/output can be separated. Each block of "
(parms list) return value" overrides and/or adds to the last one. In this
case, the first block specifies the types and the second specifies input
and output.

Before starting to code the NSIS script

Before you start to code any NSIS code you need to know the full
prototype of the function you are going to call. For the purposes of this
example, we will use the 'CmGetHotSyncExecPath' function from the
Palm 'CondMagr.dll'. This function is used to return the full path of
'‘HotSync.exe".

Function Definition

int__ stdcall CmGetHotSyncExecPath(TCHAR *pPath, int *piSize);

where



e pPath is a pointer to a character buffer. Upon return, this is the path
& file name of the installed HotSync manager.

¢ piSize is a pointer to an integer that specifies the size (in TCHAR'S),
of the buffer referenced by the pPath parameter.

return values:

0: No error

e -1: A non-specific error occurred

e ERR_REGISTRY_ACCESS(-1006):Unable to access the Palm
configuration entries

e ERR_BUFFER_TOO_SMALL(-1010): The buffer is too small to hold
the requested information

e ERR_INVALID POINTER(-1013):The specified pointer is not a valid

pointer

Also, if the buffer is too small the value in *int is the size (in TCHARS) that
the buffer should be.

This function definition maps to the following System.dll definition:
CmGetHotSyncExecPath(t, *i) i
l.e. It takes a text variable, a pointer to int, and returns an int value.

Using the external dll function
Now that we've sorted out what the function does and how it maps to the
System.dll format we can use the function in a NSIS script.

First you have to change the output directory to that where the DLL you
want to use is. It may also work if the DLL is in the system path but this
hasn't been tested.

The following code fragment will install ‘condmagr.dll' to a temporary
directory, execute the CmGetHotSyncExecPath function and display
returned data. Save this script

: * k k% Snlp * k k%

Functi on | oadD |



Set Qut Pat h $TEMP\ el nspect ; Create tenp

Fil e bi n\ CondMyr. dl | ; copy dll the
StrCpy $1 ${NSI S MAX STRLEN} ; assign nenor
System : Call ' CondMyr: : CnGet Hot SyncExecPat h(t, *i) i
Detail Print 'Path: "$0"'

Detail Print "Path | ength: $1"

Detail Print "Return val ue: $2"

Functi onEnd
* % % % Snl p * % % %

and this function produces the following output in the 'details' page:

Output folder: c:\windows\TEMP\elnspect
Extract: CondMgr.dll

Path: "C:\Dave\palm\Hotsync.exe"

Path length: 24

Return value: O

Written by djc

Acknowledgements & Thanks

Lots of thanks go to kichik and Sunjammer for spending a lot of time
assisting in solving this problem. Also to brainsucker for creating the
System.dll plug-in in the first place. Good Luck!

Previous | Contents | Next




Previous | Contents | Next



D.4 Dump Content of Log Window to File

This function will dump the log of the installer (installer details) to a file of
your choice.

To use it, push a file name and call it. It will dump the log to the file
specified. For example:

Get TenpFi | eNane $0
Push $0
Cal | DunpLog

Here is the function:

'defi ne LVM GETI TEMCOUNT 0x1004
'defi ne LVM GETI TEMIEXTA 0x102D

Functi on DunpLog # Witten by Ki CH K
Exch $5
Push $0
Push $1
Push $2
Push $3
Push $4
Push $6

Fi ndW ndow $0 "#32770" "" $HWNDPARENT
GetDli gltem $0 $0 1016
StrCmp $0 O error
FileOpen $5 $5 "w'
StrCmp $5 0 error
SendMessage $0 ${LVM GETI TEMCOUNT} 0 O $6
System : StrAloc ${NSI S_MAX STRLEN}
Pop $3
StrCpy $2 0O
System:Call "*(i, i, i, i, i, i, i, i, i) p\



(0, 0, 0, O, 0, r3, ${NSIS MAX STRLEN}) .r1"

| oop: StrCmp $2 $6 done
System : Call "User32::SendMessageA(p, i, p, p) |

($0, ${LVM GETI TEMIEXTA}, $2, r1)"

System:Call "*$3(& ${NSI' S _MAX_STRLEN} .r4)"
FileWite $5 "$4$\r$\ n"
IntOp $2 $2 + 1
Goto | oop

done:
Fil eCl ose $5
System : Free $1
System : Free $3
Goto exit

error:
MessageBox MB_ (K error
exit:

Pop $6

Pop $4

Pop $3

Pop $2

Pop $1

Pop $0

Exch $5

Functi onEnd

Here's the function to generate a UTF-16LE file if you're building a
Unicode installer.

I'defi ne LVM GETI TEMCOUNT 0x1004
'defi ne LVM GETI TEMIEXTW 0x1073

Function DunpLog # Witten by KiCH K, nodified by Jim
Exch $5
Push $0
Push $1
Push $2
Push $3



Push $4
Push $6

Fi ndW ndow $0 "#32770" "" $HWNDPARENT
GetDli gltem $0 $0 1016
StrCmp $0 O error
FileOpen $5 $5 "w'
FileWitewrd $5 Oxfeff ; Wite the BOM
StrCmp $5 0 error
SendMessage $0 ${LVM GETI TEMCOUNT} 0 O $6
System : StrAloc ${NSI S_MAX STRLEN}
Pop $3
StrCpy $2 0O
System:Call "*(i, i, i, i, i, i, i, i, i) p\
(0, 0, 0, O, 0, r3, ${NSIS MAX STRLEN}) .r1"
| oop: StrCmp $2 $6 done
System :Call "User32::SendMessageWp, i, p, p) |
($0, ${LVM GETI TEMIEXTW, $2, r1)"
System:Call "*$3(& ${NSI' S _MAX_STRLEN} .r4)"
FileWiteUTF16LE $5 "$4%\r $\ n"
IntOp $2 $2 + 1
Goto | oop
done:
Fil eCl ose $5
System : Free $1
System : Free $3
Goto exit
error:
MessageBox MB_ (K error
exit:
Pop $6
Pop $4
Pop $3
Pop $2
Pop $1
Pop $0
Exch $5



Functi onEnd

Previous | Contents | Next




Previous | Contents | Next



D.5 How to Read REG_MULTI_SZ Values

KiCHIK wrote this script to help rpetges in this forum thread. It reads a
registry value of the type REG_MULTI_SZ and prints it out. Don't forget
to edit where it says "Edit this!" when you test this script. The values must
point to a REG_MULTI_SZ value or the example will spit out an error.

QutFile "REG MILTI _SZ Reader . exe"
Nanme "REG MJULTI _SZ Reader™
Showl nst Det ai | s show

| defi ne HKEY_CLASSES ROOT 0x80000000
| defi ne HKEY_ CURRENT USER 0x80000001
| defi ne HKEY LOCAL_MACHI NE 0x80000002
| defi ne HKEY_USERS 0x80000003

' def i ne HKEY_PERFORVANCE_DATA 0x80000004
'def i ne HKEY_PERFORVANCE_TEXT 0x80000050
'def i ne HKEY_PERFORVMANCE_NLSTEXT 0x80000060

I'defi ne HKEY_CURRENT_CONFI G 0x80000005
' defi ne HKEY_DYN_DATA 0x80000006
I'defi ne KEY_QUERY_VALUE 0x0001
I'defi ne KEY_ENUMERATE _SUB_KEYS  0x0008
I'defi ne REG_NONE 0

I'defi ne REG SZ 1

I'defi ne REG_ EXPAND _SZ 2

' defi ne REG _BI NARY 3

I defi ne REG_DWORD 4

I'defi ne REG DWORD LI TTLE_ENDI AN 4

I'defi ne REG_DWORD Bl G_ENDI AN 5

I'defi ne REG LI NK 6

I'define REG MULTI _SZ 7

I'defi ne RegOpenKeyEx " Advapi 32: : RegOpenKeyExA(i, t

I'defi ne RegQueryVal ueEx "Advapi 32:: RegQuer yVal ueExA(i
I'defi ne RegCl oseKey " Advapi 32: : RegCl oseKeyA(i) i"



#Hit#H#H# EAit this!

| def i ne ROOT_KEY ${ HKEY_CURRENT USER}
' defi ne SUB_KEY " Sof t war e\ Joe Sof t war e”
'defi ne VALUE "Strings"”

#Hit#H#H# Stop editing

Section "Read"
StrCpy $0 "
StrCpy $1 "*"
StrCpy $2 ""
StrCpy $3 ""
System : Call "${RegOpenKeyEx} (${ROOT_KEY}, '${SUB KE
0, ${KEY_QUERY_VALUE}| ${ KEY_ENUMERATE_ SUB_KEYS},

StrCnmp $3 0 goon
MessageBox MB_OK| MB | CONSTOP "Can't open registry
Got o done
goon:

System: Call "${RegQueryVal ueex}(r0, '${VALUE}',6 O,
StrCmp $3 0 read

MessageBox MB_OK| MB_| CONSTOP "Can't query registry
Got o done

read:
StrCnp $1 ${REG MULTI _SZ} nultisz
MessageBox MB_OK| MB | CONSTOP "Regi stry val ue no RE
Got o done

mul ti sz:

StrCnp $2 0 0 nultiszall oc
MessageBox MB_OK| MB_| CONSTOP "Regi stry val ue enpty



Got o done
mul ti szal | oc:

System : All oc $2
Pop $1

StrCnp $1 0 0 nul ti szget

MessageBox MB _OK| MB | CONSTOP "Can't al |l ocate enoug
Got o done

mul ti szget:

System: Call "${RegQueryVal ueex}(r0, '${VALUE}',6 O,

StrCnp $3 0 nmultiszprocess
MessageBox MB_OK| MB_| CONSTOP "Can't query registry
Got o done

mul ti szprocess:

StrCpy $4 $1

| oop:
System:Call "*$4(& ${NSI S_ MAX_STRLEN} .r3)"
StrCnmp $3 "" done
Detail Print $3
StrLen $5 $3
IntOp $4 $4 + $5
IntOp $4 $4 + 1
Goto | oop

done:

System : Free $1



StrCmp $0 0 noCl ose
System : Call "${RegC oseKey}(r0)"

noC ose:

Secti onEnd

Previous | Contents | Next




Previous | Contents | Next



D.6 Predefined Macros for Unicode support

There are two macros that can help you write scripts that work for both
Unicode and ANSI installers. To figure out if the script is being compiled
to generate a Unicode installer, use !ifdef to check for
${NSIS_UNICODE}. To see what the size of a character is, use
${NSIS_CHAR_SIZE}. It will be 1 for ANSI and 2 for Unicode installers.

Previous | Contents | Next




Previous | Contents | Next



Appendix E: Useful Headers

¢ File Functions Header

o |Introduction
Locate
GetSize
DriveSpace
GetDrives
GetTime
GetFileAttributes
GetFileVersion
GetExeName
GetExePath
GetParameters
GetOptions
GetOptionsS
GetRoot
GetParent
GetFileName
GetBaseName
GetFileExt
BannerTrimPath
DirState

o RefreshShelllcons
e Text Functions Header

o |Introduction
LineFind
LineRead
FileReadFromEnd
LineSum
FileJoin
TextCompare
TextCompareS
ConfigRead
ConfigReadS
ConfigWrite
ConfigWriteS
FileRecode

0O 0O 0O 0O O 0O 0O 0o 0O OO OOO O O O o o

O 0O 0 0O 0O 0O 0O 0O 0o o o



o TrimNewLines
e Word Functions Header

o |Introduction
WordFind
WordFindS
WordFind2X
WordFind2XS
WordFind3X
WordFind3XS
WordReplace
WordReplaceS
WordAdd
WordAddS
WordlInsert
WordInsertS
StrFilter
StrFilterS
VersionCompare
VersionConvert

0O 0O 0O O 0O O O 0O 0O 0O 0O 0o 0o o o o

Previous | Contents | Next




Previous | Contents | Next



E.1 File Functions Header

E.1.1 Introduction

Include header:
l'i ncl ude "Fil eFunc. nsh"
Call functions:

Section Install
${CetFileExt} "C \My Downl oads\ I ndex. html " $RO
- $RO="htm "

Secti onEnd

Section un.Install
${GetParent} "C \ My Downl oads\ | ndex. htnl " $RO
; $RO="C.\ My Downl oads"

Secti onEnd

E.1.2 Locate

¢ Find files, directories and empty directories with mask and size
options.

Syntax:

${Locate} "[Path]" "[Options]" "Function"

"[ Pat h] " ; Disk or Directory

"[Options]" ; /L=[FD| F| D| DE| FDE]
; | L=FD - Locate Files and Direct
; | L=F - Locate Files only
; / L=D - Locate Directories only
; | L=DE - Locate Enpty Directorie

; /| L=FDE - Locate Files and Enpty



