
NI-VISA™	Help
June	2008,	370131L-01
This	help	file	describes	how	to	use	NI-VISA,	the	National	Instruments
implementation	of	the	VISA	I/O	standard,	in	any	environment	using
LabWindows™/CVI™,	any	ANSI	C	compiler,	or	Microsoft	Visual	Basic.	It
also	describes	the	attributes,	events,	and	operations	that	comprise	the
VISA	Application	Programming	Interface	(API).
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	1996–2008	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Related	Documentation
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

ANSI/IEEE	Standard	488.1-1987,	IEEE	Standard	Digital	Interface
for	Programmable	Instrumentation
ANSI/IEEE	Standard	488.2-1992,	IEEE	Standard	Codes,
Formats,	Protocols,	and	Common	Commands
ANSI/IEEE	Standard	1014-1987,	IEEE	Standard	for	a	Versatile
Backplane	Bus:	VMEbus
ANSI/IEEE	Standard	1155-1992,	VMEbus	Extensions	for
Instrumentation:	VXIbus
ANSI/ISO	Standard	9899-1990,	Programming	Language	C
LXI,	LAN	eXtensions	for	Instrumentation,	LXI	Consortium
NI-488.2	Function	Reference	Manual	for	Windows,	National
Instruments	Corporation
NI-488.2	User	Manual	for	Windows,	National	Instruments
Corporation
NI-VXI	Help,	National	Instruments	Corporation
PXI	Specification:	PCI	eXtensions	for	Instrumentation,	National
Instruments	Corporation
VPP-1,	Charter	Document
VPP-2,	System	Frameworks	Specification
VPP-3.1,	Instrument	Drivers	Architecture	and	Design
Specification
VPP-3.2,	Instrument	Driver	Developers	Specification
VPP-3.3,	Instrument	Driver	Function	Panel	Specification
VPP-4.3,	The	VISA	Library
VPP-4.3.2,	VISA	Implementation	Specification	for	Textual
Languages
VPP-4.3.3,	VISA	Implementation	Specification	for	the	G
Language
VPP-5,	VXI	Component	Knowledge	Base	Specification
VPP-6,	Installation	and	Packaging	Specification
VPP-7,	Soft	Front	Panel	Specification

VPP-8,	VXI	Module/Mainframe	to	Receiver	Interconnection
VPP-9,	Instrument	Vendor	Abbreviations
VXI-11,	TCP/IP	Instrument	Protocol,	VXIbus	Consortium

Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics

Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

[] Square	brackets	enclose	optional	items—for	example,
[response].

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross–references,	or
an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This
font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.

Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents
tab,	allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the
Back	button.
Options—Displays	a	list	of	commands	and	viewing	options	for
the	help	file.

Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.

Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.

Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.

Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.
You	do	not	need	to	specify	this	operator	unless	you	are	using
nested	expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the
second	term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.

Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search
that	returned	too	many	topics.	You	must	remove	the	checkmark
from	this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.

Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.

Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.

What	You	Need	to	Get	Started
To	use	NI-VISA,	you	need	the	following:

Appropriate	hardware,	in	the	form	of	a	National	Instruments
GPIB,	GPIB-VXI,	MXI/VXI	or	serial	interface	board.	For	other
hardware	interfaces,	the	computer's	standard	ports	should	be
sufficient	for	most	applications.
For	GPIB	applications,	install	NI-488.2.	For	VXI	applications,
install	NI-VXI.	For	other	hardware	interfaces,	NI-VISA	uses	the
system's	standard	drivers.
NI-VISA	distribution	media
If	you	have	a	GPIB-VXI	command	module	from	another	vendor,
you	need	that	vendor's	GPIB-VXI	VISA	component.	It	will	be
installed	into	the	<VXIPNPPATH>\<Framework>\bin	directory.	For
example,	the	Hewlett-Packard	component	for	the	HPE1406
would	be:
C:\Program	Files\IVI	Foundation\VISA\WinNT\bin\HPGPVX32.dll

VXIplug&play	Overview
The	main	objective	of	the	VXIplug&play	Systems	Alliance	is	to	increase
ease	of	use	for	end	users	through	open,	multi-vendor	systems.	The
alliance	members	share	a	common	vision	for	multivendor	systems
architecture,	encompassing	both	hardware	and	software.	This	common
vision	enables	the	members	to	work	together	to	define	and	implement
standards	for	system-level	issues.
As	a	step	toward	industry-wide	software	compatibility,	the	alliance
developed	one	specification	for	I/O	software—the	Virtual	Instrument
System	Architecture,	or	VISA.	The	VISA	specification	defines	a	next-
generation	I/O	software	standard	not	only	for	VXI,	but	also	for	GPIB,
Serial,	and	other	interfaces.	With	the	VISA	standard	endorsed	by	more
than	35	of	the	largest	instrumentation	companies	in	the	industry	including
Tektronix,	Hewlett-Packard,	and	National	Instruments,	VISA	unifies	the
industry	to	make	software	interoperable,	reusable,	and	able	to	stand	the
test	of	time.	The	alliance	also	grouped	the	most	popular	operating
systems,	application	development	environments,	and	programming
languages	into	distinct	frameworks	and	defined	in-depth	specifications	to
guarantee	interoperability	of	components	within	each	framework.

Supported	Platforms
This	help	file	describes	how	to	use	NI-VISA,	the	National	Instruments
implementation	of	the	VISA	I/O	standard,	in	any	environment	using
LabWindows/CVI,	any	ANSI	C	compiler,	or	Microsoft	Visual	Basic.	NI-
VISA	currently	supports	the	frameworks	and	programming	languages
shown	in	the	following	table.	For	information	on	programming	VISA	from
LabVIEW,	refer	to	the	VISA	documentation	included	with	your	LabVIEW
software.	For	information	on	programming	VISA	from	Measurement
Studio,	refer	to	the	VISA	documentation	included	with	your	Measurement
Studio	software.

Windows	Vista	64/
Vista	32/XP/2000

LabVIEW	RT
(Phar	Lap
ETS)

LabVIEW	RT
(VxWorks) LabVIEW	PDA

GPIB
GPIB-
VXI
VXI
Serial
PXI/PCI
TCPIP
Remote
Client
Remote
Server
ENET
Serial
USB

FireWire

On	Windows	Vista/XP/2000,	NI-VISA	supports	the	WINNT	and	GWINNT
frameworks	defined	by	the	VXIplug&play	Systems	Alliance	and	the	IVI
Foundation.	There	are	no	defined	system	frameworks	on	the	other
platforms.
The	VXIplug&play	Systems	Alliance	developed	the	concept	of	a

framework	to	categorize	operating	systems,	programming	languages,
and	I/O	software	libraries	to	bring	the	most	useful	products	to	the	most
end-users.	A	framework	is	a	logical	grouping	of	the	choices	that	you	face
when	designing	a	VXI	system.	You	must	always	choose	an	operating
system	and	a	programming	language	along	with	an	application
development	environment	(ADE)	when	building	a	system.	There	are
trade-offs	associated	with	each	of	these	decisions;	many	configurations
are	possible.	The	VXIplug&play	Systems	Alliance	grouped	the	most
popular	operating	systems,	programming	languages,	and	ADEs	into
distinct	frameworks	and	defined	in-depth	specifications	to	guarantee
interoperability	of	the	components	within	each	framework.	To	claim
VXIplug&play	compliance,	a	component	must	be	compliant	within	a
given	framework.
With	this	version	of	NI-VISA,	you	can	perform	message-based	and
register-based	communication	with	instruments,	assert	triggers,	share
memory,	and	respond	to	interrupts	and	triggers.	For	VXI,	you	can	also
perform	register	accesses	at	the	interface	level	and	mainframe-specific
control	and	monitoring	of	utility	lines.	For	GPIB,	you	also	can	perform
board-level	commands	and	the	control	and	monitoring	of	bus	lines.	NI-
VISA	provides	all	the	I/O	functionality	that	you	need	for	your	test	and
measurement	applications.

How	to	Use	the	User	Reference	Help	Topics
The	User	Reference	help	topics	provide	a	sequential	introduction	to
setting	up	a	system	to	use	VISA	and	then	using	and	programming	the
environment.	Please	gather	all	the	components	described	in	What	You
Need	to	Get	Started.
Once	you	have	set	up	your	system,	you	can	use	the	Introductory
Programming	Examples	topic	to	guide	yourself	through	some	simple
examples.	Other	topics	contain	more	in-depth	information	about	the
different	elements	that	make	up	the	VISA	system.
For	GPIB	users	or	those	familiar	with	NI-488.2,	suggested	reading	is
Introductory	Programming	Examples,	Message-Based	Communication,
and	GPIB	Interface-Specific	Information.	For	VXI	users	or	those	familiar
with	NI-VXI,	suggested	reading	is	Introductory	Programming	Examples,
Register-Based	Communication,	and	VXI	Interface-Specific	Information.

Introductory	Programming	Examples
The	following	topics	introduce	some	examples	of	common
communication	with	instruments.
Example	of	Message-Based	Communication
Example	of	Register-Based	Communication
Example	of	Handling	Events
Example	of	Locking
To	help	you	become	comfortable	with	VISA,	the	examples	avoid	VISA
terminology.	VISA	Overview	looks	at	these	examples	again	but	using
VISA	terminology	and	focusing	more	on	how	they	explain	the	VISA
model.
These	examples	show	C	source	code	and	Visual	Basic	syntax.
For	Visual	C#	and	Visual	Basic	.NET	examples	on	Windows,	go	to	the
following	directory:	Program	Files\National
Instruments\MeasurementStudioVS2003\DotNET\Examples\Visa.

Example	of	Message-Based	Communication
Serial,	GPIB,	Ethernet,	and	VXI	systems	all	have	a	definition	of	message-
based	communication.	In	GPIB,	serial,	and	Ethernet,	the	messages	are
inherent	in	the	design	of	the	bus	itself.	For	VXI,	the	messages	actually
are	sent	via	a	protocol	known	as	word	serial,	which	is	based	on	register
communication.	In	either	case,	the	end	result	is	sending	or	receiving
strings.
The	following	example	shows	the	basic	steps	in	any	VISA	program.

Example
#include	"visa.h"

#define	MAX_CNT	200

int	main(void)
{

ViStatus
ViSession
ViUInt32
ViChar

status;
defaultRM,	instr;
retCount;
buffer[MAX_CNT];

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	Return	count	from	string	I/O	*/
/*	Buffer	for	string	I/O	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	GPIB	Device	at	Primary	Addr	1	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"GPIB0::1::INSTR",	VI_NULL,	VI_NULL,
&instr);

/*	Set	the	timeout	for	message-based	communication	*/
status	=	viSetAttribute(instr,	VI_ATTR_TMO_VALUE,	5000);

/*	Ask	the	device	for	identification	*/
status	=	viWrite(instr,	"*IDN?\n",	6,	&retCount);
status	=	viRead(instr,	buffer,	MAX_CNT,	&retCount);

/*	Your	code	should	process	the	data	*/

/*	Close	down	the	system	*/
status	=	viClose(instr);
status	=	viClose(defaultRM);
return	0;

}

Visual	Basic	Example
Example	Discussion

Message-Based	Communication	Example
(Visual	Basic)

Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()
Const	MAX_CNT	=	200
Dim	stat
Dim	dfltRM
Dim	sesn
Dim	retCount
Dim	buffer

As	ViStatus
As	ViSession
As	ViSession
As	Long
As	String	*	MAX_CNT

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	GPIB	Device	at	Primary	Addr	1
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"GPIB0::1::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Set	the	timeout	for	message-based	communication
stat	=	viSetAttribute(sesn,	VI_ATTR_TMO_VALUE,	5000)

Rem	Ask	the	device	for	identification
stat	=	viWrite(sesn,	"*IDN?",	5,	retCount)
stat	=	viRead(sesn,	buffer,	MAX_CNT,	retCount)

Rem	Your	code	should	process	the	data

Rem	Close	down	the	system
stat	=	viClose	(sesn)

stat	=	viClose	(dfltRM)
End	Sub

Message-Based	Communication	Example
Discussion
We	can	break	down	the	example	into	the	following	steps.

1.	 Begin	by	initializing	the	VISA	system.	For	this	task	you	use
viOpenDefaultRM(),	which	opens	a	communication	channel	with
VISA	itself.	This	channel	has	a	purpose	similar	to	a	telephone
line.	The	function	call	is	analogous	to	picking	up	the	phone	and
dialing	the	operator.	From	this	point	on,	the	phone	line,	or	the
value	output	from	viOpenDefaultRM(),	is	what	connects	you	to	the
VISA	driver.	Any	communication	on	the	line	is	between	you	and
the	VISA	driver	only.	VISA	Overview	has	more	details	about
viOpenDefaultRM(),	but	for	now	it	is	sufficient	for	you	to
understand	that	the	function	initializes	VISA	and	must	be	the	first
VISA	function	called	in	your	program.

2.	 Now	you	must	open	a	communication	channel	to	the	device	itself
using	viOpen().	Notice	that	this	function	uses	the	handle	returned
by	viOpenDefaultRM(),	which	is	the	variable	defaultRM	in	the
example,	to	identify	the	VISA	driver.	You	then	specify	the	address
of	the	device	you	want	to	talk	to.	Continuing	with	the	phone
analogy,	this	is	like	asking	the	operator	to	dial	a	number	for	you.
In	this	case,	you	want	to	address	a	GPIB	device	at	primary
address	1	on	the	GPIB0	bus.	The	value	for	x	in	the	GPIBx	token
(GPIB0	in	this	example)	indicates	the	GPIB	board	to	which	your
device	is	attached.	This	means	that	you	can	have	multiple	GPIB
boards	installed	in	the	computer,	each	controlling	independent
buses.	For	more	information	on	address	strings,	viOpen(),	and
viOpenDefaultRM(),	see	Initializing	Your	VISA	Application.
The	two	VI_NULL	values	following	the	address	string	are	not
important	at	this	time.	They	specify	that	the	session	should	be
initialized	using	VISA	defaults.	Finally,	viOpen()	returns	the
communication	channel	to	the	device	in	the	parameter	instr.	From
now	on,	whenever	you	want	to	talk	to	this	device,	you	use	the
instr	variable	to	identify	it.	Notice	that	you	do	not	use	the
defaultRM	handle	again.	The	main	use	of	defaultRM	is	to	tell	the
VISA	driver	to	open	communication	channels	to	devices.	You	do
not	use	this	handle	again	until	you	are	ready	to	end	the	program.

3.	 At	this	point,	set	a	timeout	value	for	message-based
communication.	A	timeout	value	is	important	in	message-based
communication	to	determine	what	should	happen	when	the
device	stops	communicating	for	a	certain	period	of	time.	VISA
has	a	common	function	to	set	values	such	as	these:
viSetAttribute().	This	function	sets	values	such	as	timeout	and	the
termination	character	for	the	communication	channel.	In	this
example,	notice	that	the	function	call	to	viSetAttribute()	sets	the
timeout	to	be	5	s	(5000	ms)	for	both	reading	and	writing	strings.

4.	 Now	that	you	have	the	communication	channel	set	up,	you	can
perform	string	I/O	using	the	viWrite()	and	viRead()	functions.
Notice	that	this	is	the	section	of	the	programming	code	that	is
unique	for	message-based	communication.	Opening
communication	channels,	as	described	in	steps	1	and	2,	and
closing	the	channels,	as	described	in	step	5,	are	the	same	for	all
VISA	programs.	The	parameters	that	these	calls	use	are
relatively	straightforward.

a.	 First	you	identify	which	device	you	are	talking	to	with	instr.
b.	 Next	you	give	the	string	to	send,	or	what	buffer	to	put	the

response	in.
c.	 Finally,	specify	the	number	of	characters	you	are

interested	in	transferring.
For	more	information	on	these	functions,	see	Message-Based
Communication.

5.	 When	you	are	finished	with	your	device	I/O,	you	can	close	the
communication	channel	to	the	device	with	the	viClose()	function.
Notice	that	the	program	shows	a	second	call	to	viClose().	When
you	are	ready	to	shut	down	the	program,	or	at	least	close	down
the	VISA	driver,	you	use	viClose()	to	close	the	communication
channel	that	was	opened	using	viOpenDefaultRM().

Example	of	Register-Based	Communication
Note		You	can	skip	over	this	section	if	you	are	exclusively	using
GPIB,	serial,	or	Ethernet	communication.	Register-based
programming	applies	only	to	VXI,	GPIB-VXI,	or	PXI.

VISA	has	two	standard	methods	for	accessing	registers.	The	first	method
uses	High-Level	Access	functions.	You	can	use	these	functions	to	specify
the	address	to	access;	the	functions	then	take	care	of	the	necessary
details	to	perform	the	access,	from	mapping	an	I/O	window	to	checking
for	failures.	The	drawback	to	using	these	functions	is	the	amount	of
software	overhead	associated	with	them.
To	reduce	the	overhead,	VISA	also	has	Low-Level	Access	functions.
These	functions	break	down	the	tasks	done	by	the	High-Level	Access
functions	and	let	the	program	perform	each	task	itself.	The	advantage	is
that	you	can	optimize	the	sequence	of	calls	based	on	the	style	of	register
I/O	you	are	about	to	perform.	However,	you	must	be	more	knowledgeable
about	how	register	accesses	work.	In	addition,	you	cannot	check	for
errors	easily.	The	following	example	shows	how	to	perform	register	I/O
using	the	High-Level	Access	functions,	which	is	the	method	we
recommend	for	new	users.	If	you	are	an	experienced	user	or	understand
register	I/O	concepts,	you	can	use	the	Low-Level	Access	Operations.

Example
Note		The	following	example	uses	bold	text	to	distinguish	lines	of
code	that	are	different	from	the	other	introductory	programming
examples.

#include	"visa.h"

int	main(void)
{

ViStatus
ViSession
ViUInt16

status;
defaultRM,	instr;
deviceID;

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	To	store	the	value	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	&t;	VI_SUCCESS)	{

/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	VXI	Device	at	Logical	Addr	16	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	&instr);

/*	Read	the	Device	ID,	and	write	to	memory	in	A24	space	*/
status	=	viIn16(instr,	VI_A16_SPACE,	0,	&deviceID);
status	=	viOut16(instr,	VI_A24_SPACE,	0,	0x1234);

/*	Close	down	the	system	*/
status	=	viClose(instr);
status	=	viClose(defaultRM);
return	0;

}

Visual	Basic	Example

Example	Discussion

Register-Based	Communication	Example	(Visual
Basic)

Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	sesn
Dim	deviceID

As	ViStatus
As	ViSession
As	ViSession
As	Integer

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	VXI	Device	at	Logical	Addr	16
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Read	the	Device	ID	and	write	to	memory	in	A24	space
stat	=	viIn16(sesn,	VI_A16_SPACE,	0,	deviceID)
stat	=	viOut16(sesn,	VI_A24_SPACE,	0,	&H1234)

Rem	Close	down	the	system
stat	=	viClose(sesn)
stat	=	viClose(dfltRM)

End	Sub

Register-Based	Communication	Example
Discussion
The	general	structure	of	this	example	is	very	similar	to	that	of	the
message-based	communication	example.	For	this	reason,	we	merely
point	out	the	basic	differences	as	denoted	in	bold	text:

A	different	address	string	is	used	for	the	VXI	device.
The	string	functions	from	the	message-based	communication
example	are	replaced	with	register	functions.

The	address	string	is	still	the	same	format	as	the	address	string	in	the
message-based	communication	example,	but	it	has	replaced	the	GPIB
with	VXI.	Again,	remember	that	the	difference	in	the	address	string	name
is	the	extent	to	which	the	specific	interface	bus	will	be	important.	Indeed,
since	this	is	a	simple	string,	it	is	possible	to	have	the	program	read	in	the
string	from	a	user	input	or	a	configuration	file.	Thus,	the	program	can	be
compiled	and	is	still	portable	to	different	platforms,	such	as	from	a	GPIB-
VXI	to	a	MXIbus	board.
As	you	can	see	from	the	programming	code,	you	use	different	functions
to	perform	I/O	with	a	register-based	device.	The	functions	viIn16()	and
viOut16()	read	and	write	16-bit	values	to	registers	in	either	the	A16,	A24,
or	A32	space	of	VXI.	As	with	the	message-based	functions,	you	start	by
specifying	which	device	you	want	to	talk	to	by	supplying	the	instr	variable.
You	then	identify	the	address	space	you	are	targeting,	such	as
VI_A16_SPACE.
The	next	parameter	warrants	close	examination.	Notice	that	we	want	to
read	in	the	value	of	the	Device	ID	register	for	the	device	at	logical
address	16.	Logical	addresses	start	at	offset	0xC000	in	A16	space,	and
each	logical	address	gets	0x40	bytes	of	address	space.	Because	the
Device	ID	register	is	the	first	address	within	that	0x40	bytes,	the	absolute
address	of	the	Device	ID	register	for	logical	address	16	is	calculated	as
follows:
0xC000	+	(0x40	*	16)	=	0xC400
However,	notice	that	the	offset	we	supplied	was	0.	The	reason	for	this	is
that	the	instr	parameter	identifies	which	device	you	are	talking	to,	and
therefore	the	VISA	driver	is	able	to	perform	the	address	calculation	itself.
The	0	indicates	the	first	register	in	the	0x40	bytes	of	address	space,	or

the	Device	ID	register.	The	same	holds	true	for	the	viOut16()	call.	Even	in
A24	or	A32	space,	although	it	is	possible	that	you	are	talking	to	a	device
whose	memory	starts	at	0x0,	it	is	more	likely	that	the	VXI	Resource
Manager	has	provided	some	other	offset,	such	as	0x200000	for	the
memory.	However,	because	instr	identifies	the	device,	and	the	Resource
Manager	has	told	the	driver	the	offset	address	of	the	device's	memory,
you	do	not	need	to	know	the	details	of	the	absolute	address.	Just	provide
the	offset	within	the	memory	space,	and	VISA	does	the	rest.	For	more
detailed	information	about	other	defined	VXI	registers,	refer	to	the	NI-VXI
Help.
Again,	when	you	are	done	with	the	register	I/O,	use	viClose()	to	shut
down	the	system.

Example	of	Handling	Events
When	dealing	with	instrument	communication,	it	is	very	common	for	the
instrument	to	require	service	from	the	controller	when	the	controller	is	not
actually	looking	at	the	device.	A	device	can	notify	the	controller	via	a
service	request	(SRQ),	interrupt,	or	a	signal.	Each	of	these	is	an
asynchronous	event,	or	simply	an	event.	In	VISA,	you	can	handle	these
and	other	events	through	either	callbacks	or	a	software	queue.

Callbacks
Using	callbacks,	you	can	have	sections	of	code	that	are	never	explicitly
called	by	the	program,	but	instead	are	called	by	the	VISA	driver
whenever	an	event	occurs.	Due	to	their	asynchronous	nature,	callbacks
can	be	difficult	to	incorporate	into	a	traditional,	sequential	flow	program.
Therefore,	we	recommend	the	queuing	method	of	handling	events	for
new	users.	If	you	are	an	experienced	user	or	understand	callback
concepts,	see	VISA	Events	Callbacks.

Queuing
When	using	a	software	queue,	the	VISA	driver	detects	the	asynchronous
event	but	does	not	alert	the	program	to	the	occurrence.	Instead,	the
driver	maintains	a	list	of	events	that	have	occurred	so	that	the	program
can	retrieve	the	information	later.	With	this	technique,	the	program	can
periodically	poll	the	driver	for	event	information	or	halt	the	program	until
the	event	has	occurred.	The	following	example	programs	an	oscilloscope
to	capture	a	waveform.	When	the	waveform	is	complete,	the	instrument
generates	a	VXI	interrupt,	so	the	program	must	wait	for	the	interrupt
before	trying	to	read	the	data.

Example
Note		The	following	example	uses	bold	text	to	distinguish	lines	of
code	that	are	different	from	the	other	introductory	programming
examples.

#include	"visa.h"

int	main(void)
{

ViStatus
ViSession
ViEvent
ViUInt16

status;
defaultRM,	instr;
eventData;
statID;

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	To	hold	event	info	*/
/*	Interrupt	Status	ID	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	VXI	Device	at	Logical	Address	16	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	&instr);

/*	Enable	the	driver	to	detect	the	interrupts	*/
status	=	viEnableEvent(instr,	VI_EVENT_VXI_SIGP,	VI_QUEUE,	VI_NULL);

/*	Send	the	commands	to	the	oscilloscope	to	capture	the	*/
/*	waveform	and	interrupt	when	done	*/

status	=	viWaitOnEvent(instr,	VI_EVENT_VXI_SIGP,	5000,	VI_NULL,
&eventData);
if	(status	<	VI_SUCCESS)	{
/*	No	interrupts	received	after	5000	ms	timeout	*/
viClose(defaultRM);
return	-1;

}

/*	Obtain	the	information	about	the	event	and	then	destroy	the	*/
/*	event.	In	this	case,	we	want	the	status	ID	from	the	interrupt.	*/
status	=	viGetAttribute(eventData,	VI_ATTR_SIGP_STATUS_ID,	&statID);
status	=	viClose(eventData);

/*	Your	code	should	read	data	from	the	instrument	and	process	it.*/

/*	Stop	listening	to	events	*/
status	=	viDisableEvent(instr,	VI_EVENT_VXI_SIGP,	VI_QUEUE);

/*	Close	down	the	system	*/
status	=	viClose(instr);
status	=	viClose(defaultRM);
return	0;	}

Visual	Basic	Example
Example	Discussion

Handling	Events	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	sesn
Dim	eType
Dim	eData
Dim	statID

As	ViStatus
As	ViSession
As	ViSession
As	ViEventType
As	ViEvent
As	Integer

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	VXI	Device	at	Logical	Address	16
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Enable	the	driver	to	detect	the	interrupts
stat	=	viEnableEvent(sesn,	VI_EVENT_VXI_SIGP,	VI_QUEUE,	VI_NULL)

Rem	Send	the	commands	to	the	oscilloscope	to	capture	the
Rem	waveform	and	interrupt	when	done

stat	=	viWaitOnEvent(sesn,	VI_EVENT_VXI_SIGP,	5000,	eType,	eData)
If	(stat	<	VI_SUCCESS)	Then
Rem	No	interrupts	received	after	5000	ms	timeout
stat	=	viClose	(dfltRM)
Exit	Sub

End	If

Rem	Obtain	the	information	about	the	event	and	then	destroy	the
Rem	event.	In	this	case,	we	want	the	status	ID	from	the	interrupt.
stat	=	viGetAttribute(eData,	VI_ATTR_SIGP_STATUS_ID,	statID)
stat	=	viClose(eData)

Rem	Your	code	should	read	data	from	the	instrument	and	process	it.

Rem	Stop	listening	to	events
stat	=	viDisableEvent(sesn,	VI_EVENT_VXI_SIGP,	VI_QUEUE)

Rem	Close	down	the	system
stat	=	viClose(sesn)
stat	=	viClose(dfltRM)

End	Sub

Handling	Events	Example	Discussion
Programming	with	events	presents	some	new	functions	to	use.	The	first
two	functions	you	notice	are	viEnableEvent()	and	viDisableEvent().	These
functions	tell	the	VISA	driver	which	events	to	listen	for—in	this	case
VI_EVENT_VXI_SIGP,	which	covers	both	VXI	interrupts	and	VXI	signals.
In	addition,	these	functions	tell	the	driver	how	to	handle	events	when	they
occur.	In	this	example,	the	driver	is	instructed	to	queue	(VI_QUEUE)	the
events	until	asked	for	them.	Notice	that	instr	is	also	supplied	to	the
functions,	since	VISA	performs	event	handling	on	a	per-communication-
channel	basis.
Once	the	driver	is	ready	to	handle	events,	you	are	free	to	write	code	that
will	result	in	an	event	being	generated.	In	the	example	above,	this	is
shown	as	a	comment	block	because	the	exact	code	depends	on	the
device.	After	you	have	set	the	device	up	to	interrupt,	the	program	must
wait	for	the	interrupt.	This	is	accomplished	by	the	viWaitOnEvent()
function.	Here	you	specify	what	events	you	are	waiting	for	and	how	long
you	want	to	wait.	The	program	then	blocks,	and	that	thread	performs	no
other	functions,	until	the	event	occurs.	Therefore,	after	the
viWaitOnEvent()	call	returns,	either	it	has	timed	out	(5	s	in	the	above
example)	or	it	has	caught	the	interrupt.	After	some	error	checking	to
determine	whether	it	was	successful,	you	can	obtain	information	from	the
event	through	viGetAttribute().	When	you	are	finished	with	the	event	data
structure	(eventData),	destroy	it	by	calling	viClose()	on	it.	You	can	now
continue	with	the	program	and	retrieve	the	data.	The	rest	of	the	program
is	the	same	as	the	previous	examples.
Notice	the	difference	in	the	way	you	can	shut	down	the	program	if	a
timeout	has	occurred.	You	do	not	need	to	close	the	communication
channel	with	the	device,	but	only	with	the	VISA	driver.	You	can	do	this
because	when	a	driver	channel	(defaultRM)	is	closed,	the	VISA	driver
closes	all	I/O	channels	opened	with	it.	So	when	you	need	to	shut	down	a
program	quickly,	as	in	the	case	of	an	error,	you	can	simply	close	the
channel	to	the	driver	and	VISA	handles	the	rest	for	you.	However,	VISA
does	not	clean	up	anything	not	associated	with	VISA,	such	as	memory
you	have	allocated.	You	are	still	responsible	for	those	items.

Example	of	Locking
Occasionally	you	may	need	to	prevent	other	applications	from	using	the
same	resource	that	you	are	using.	VISA	has	a	service	called	locking	that
you	can	use	to	gain	exclusive	access	to	a	resource.	VISA	also	has
another	locking	option	in	which	you	can	have	multiple	sessions	share	a
lock.	Because	lock	sharing	is	an	advanced	topic	that	may	involve	inter-
process	communication,	see	Lock	Sharing	for	more	information.	The
following	example	uses	the	simpler	form,	the	exclusive	lock,	to	prevent
other	VISA	applications	from	modifying	the	state	of	the	specified	serial
port.

Example
Note		The	following	example	uses	bold	text	to	distinguish	lines	of
code	that	are	different	from	the	other	introductory	programming
examples.

#include	"visa.h"

#define	MAX_CNT	200

int	main(void)
{

ViStatus
ViSession
ViUInt32
ViChar

status;
defaultRM,	instr;
retCount;
buffer[MAX_CNT];

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	Return	count	from	string	I/O	*/
/*	Buffer	for	string	I/O	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	Serial	Port	1	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"ASRL1::INSTR",	VI_NULL,	VI_NULL,	&instr);

/*	Set	the	timeout	for	message-based	communication	*/
status	=	viSetAttribute(instr,	VI_ATTR_TMO_VALUE,	5000);

/*	Lock	the	serial	port	so	that	nothing	else	can	use	it	*/
status	=	viLock(instr,	VI_EXCLUSIVE_LOCK,	5000,	VI_NULL,	VI_NULL);

/*	Set	serial	port	settings	as	needed	*/
/*	Defaults	=	9600	Baud,	no	parity,	8	data	bits,	1	stop	bit	*/
status	=	viSetAttribute(instr,	VI_ATTR_ASRL_BAUD,	2400);
status	=	viSetAttribute(instr,	VI_ATTR_ASRL_DATA_BITS,	7);

/*	Set	this	attribute	for	binary	transfers,	skip	it	for	this	text	example	*/

/*	status	=	viSetAttribute(instr,	VI_ATTR_ASRL_END_IN,	0);	*/

/*	Ask	the	device	for	identification	*/
status	=	viWrite(instr,	"*IDN?\n",	6,	&retCount);
status	=	viRead(instr,	buffer,	MAX_CNT,	&retCount);

/*	Unlock	the	serial	port	before	ending	the	program	*/
status	=	viUnlock(instr);

/*	Your	code	should	process	the	data	*/

/*	Close	down	the	system	*/
status	=	viClose(instr);
status	=	viClose(defaultRM);
return	0;

}

Visual	Basic	Example
Example	Discussion

Locking	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()
Const	MAX_CNT	=	200
Dim	stat
Dim	dfltRM
Dim	sesn
Dim	retCount
Dim	buffer

As	ViStatus
As	ViSession
As	ViSession
As	Long
As	String	*	MAX_CNT

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	Serial	Port	1
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"ASRL1::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Set	the	timeout	for	message-based	communication
stat	=	viSetAttribute(sesn,	VI_ATTR_TMO_VALUE,	5000)

Rem	Lock	the	serial	port	so	that	nothing	else	can	use	it
stat	=	viLock(sesn,	VI_EXCLUSIVE_LOCK,	5000,	"",	"")

Rem	Set	serial	port	settings	as	needed
Rem	Defaults	=	9600	Baud,	no	parity,	8	data	bits,	1	stop	bit
stat	=	viSetAttribute(sesn,	VI_ATTR_ASRL_BAUD,	2400)
stat	=	viSetAttribute(sesn,	VI_ATTR_ASRL_DATA_BITS,	7)

Rem	Ask	the	device	for	identification

stat	=	viWrite(sesn,	"*IDN?",	5,	retCount)
stat	=	viRead(sesn,	buffer,	MAX_CNT,	retCount)

Rem	Unlock	the	serial	port	before	ending	the	program
stat	=	viUnlock(sesn)

Rem	Your	code	should	process	the	data

Rem	Close	down	the	system
stat	=	viClose(sesn)
stat	=	viClose(dfltRM)

End	Sub

Locking	Example	Discussion
As	you	can	see,	the	program	does	not	differ	with	respect	to	controlling
the	instrument.	The	ability	to	lock	and	unlock	the	resource	simply
involves	inserting	the	viLock()	and	viUnlock()	operations	around	the	code
that	you	want	to	ensure	is	protected,	as	far	as	the	instrument	is
concerned.
To	lock	a	resource,	you	use	the	viLock()	operation	on	the	session	to	the
resource.	Notice	that	the	second	parameter	is	VI_EXCLUSIVE_LOCK.
This	parameter	tells	VISA	that	you	want	this	session	to	be	the	only
session	that	can	access	the	device.	The	next	parameter,	5000,	is	the	time
in	milliseconds	you	are	willing	to	wait	for	the	lock.	For	example,	another
program	may	have	locked	its	session	to	the	resource	before	you.	Using
this	timeout	feature,	you	can	tell	your	program	to	wait	until	either	the
other	program	has	unlocked	the	session,	or	5	s	have	passed,	whichever
comes	first.
The	final	two	parameters	are	used	in	the	lock	sharing	feature	of	viLock()
and	are	discussed	further	in	VISA	Locks.	For	most	applications,	however,
these	parameters	are	set	to	VI_NULL.	Notice	that	if	the	viLock()	call
succeeds,	you	then	have	exclusive	access	to	the	device.	Other	programs
do	not	have	access	to	the	device	at	all.	Therefore,	you	should	hold	a	lock
only	for	the	time	you	need	to	program	the	device,	especially	if	you	are
designing	an	instrument	driver.	Failure	to	do	so	may	cause	other
applications	to	block	or	terminate	with	a	failure.
When	using	a	VISA	lock	over	the	Ethernet,	the	lock	applies	to	any
machine	using	the	given	resource.	For	example,	calling	viLock()	when
using	a	National	Instruments	ENET	Serial	controller	prevents	other
machines	from	performing	I/O	on	the	given	serial	port.
To	end	the	example,	the	application	calls	viUnlock()	when	it	has	acquired
the	data	from	the	instrument.	At	this	point,	the	resource	is	accessible
from	any	other	session	in	any	application.

VISA	Overview
The	following	topics	give	an	overview	of	the	VISA	Library.
Background
Interactive	Control	of	VISA
VISA	Terminology
Beginning	Terminology
Communication	Channels:	Sessions
The	Resource	Manager

Examples	of	Interface	Independence

Background
The	history	of	instrumentation	reached	a	milestone	with	the	ability	to
communicate	with	an	instrument	from	a	computer.	Controlling
instruments	programmably	brought	a	great	deal	of	power	and	flexibility
with	the	capability	to	control	devices	faster	and	more	accurately	without
the	need	for	human	supervision.	Over	time,	application	development
environments	such	as	LabVIEW	and	LabWindows/CVI	eased	the	task	of
programming	and	increased	productivity,	but	instrumentation	system
developers	were	still	faced	with	the	details	of	programming	the
instrument	or	the	device	interface	bus.
Instrument	programmers	require	a	software	architecture	that	exports	the
capabilities	of	the	devices,	not	just	the	interface	bus.	In	addition,	the
architecture	needs	to	be	consistent	across	the	devices	and	interface
buses.	The	VISA	library	realizes	these	goals.	It	results	in	a	simpler	model
to	understand,	reduces	the	number	of	functions	the	user	needs	to	learn,
and	significantly	reduces	the	time	and	effort	involved	in	programming
different	interfaces.	Instead	of	using	a	different	Application	Programming
Interface	(API)	devoted	to	each	interface	bus,	you	can	use	the	VISA	API
whether	your	system	uses	an	Ethernet,	GPIB,	GPIB-VXI,	VXI,	PXI,	or
Serial	controller.
Finally,	most	instruments	export	a	specific	set	of	commands	to	which	they
will	respond.	These	commands	are	often	primitive	functions	of	the	device
and	require	several	commands	to	group	them	together	so	that	the	device
can	perform	common	tasks.	As	a	result,	communicating	directly	with	the
device	may	require	much	overhead	in	the	form	of	multiple	commands	to
do	task	A,	do	task	B,	and	so	on.	By	driving	the	formation	of	the
VXIplug&play	Systems	Alliance	and	the	IVI	Foundation,	National
Instruments	has	spearheaded	standards	for	higher-level	instrument
drivers	that	use	VISA.	This	makes	it	easier	for	the	vendors	of	instruments
to	create	the	instrument	drivers	themselves,	so	that	instrumentation
system	developers	do	not	have	to	learn	the	primitive	command	sets	of
each	device.

VISA	Terminology
Introductory	Programming	Examples	introduced	some	examples	of	how
to	write	code	for	the	VISA	driver.	However,	the	topic	deliberately	avoided
using	VISA	terminology	to	show	that	writing	programs	under	VISA	can	be
very	straightforward	and	similar	to	software	drivers	you	have	used	in	the
past.	The	following	topics	look	at	these	examples	again,	but	this	time
from	the	perspective	of	the	underlying	architecture.
Beginning	Terminology
Communication	Channels:	Sessions
The	Resource	Manager

Beginning	Terminology
Typical	device	capabilities	include	sending	and	receiving	messages,
responding	to	register	accesses,	requesting	service,	being	reset,	and	so
on.	One	of	the	underlying	premises	of	VISA,	as	defined	in	the	previous
section,	is	to	export	the	capabilities	of	the	devices—independent	of	the
interface	bus—to	the	user.	VISA	encapsulates	each	of	these	abilities	into
a	resource.
A	resource	is	simply	a	complete	description	of	a	particular	set	of
capabilities	of	a	device.	For	example,	to	be	able	to	write	to	a	device,	you
need	a	function	you	can	use	to	send	messages—viWrite().	In	addition,
there	are	certain	details	you	need	to	consider,	such	as	how	long	the
function	should	try	to	communicate	before	timing	out.	Those	of	you
familiar	with	this	methodology	might	recognize	this	approach	as	object-
oriented	(OO)	design.	Indeed,	VISA	is	based	on	OO	design.	In	keeping
with	the	terminology	of	OO,	we	call	the	functions	of	these	resources
operations	and	the	details,	such	as	the	timeout,	attributes.
An	important	VISA	resource	is	the	INSTR	Resource.	This	resource
encapsulates	all	of	the	basic	device	functions	together	so	that	you	can
communicate	with	the	device	through	a	single	resource.	The	INSTR
Resource	exports	the	most	commonly	used	features	of	these	resources
and	is	sufficient	for	most	instrument	drivers.
Other	resource	classes	currently	supported	include	MEMACC,	INTFC,
BACKPLANE,	SERVANT,	and	SOCKET.	Most	of	these	are	specific	to	a
given	hardware	interface	type,	and	are	intended	for	advanced
programmers.	You	can	read	more	about	these	classes	in	VISA	Resource
Types.
Returning	to	the	message-based	communication	example,	look	at	the
point	where	the	program	has	opened	a	communication	channel	with	a
message-based	device.	Because	of	interface	independence,	it	does	not
matter	whether	the	device	is	GPIB	or	VXI	or	of	any	other	interface	type.
You	want	to	send	the	identification	query,	*IDN?\n,	to	the	device.
Because	of	the	possibility	that	the	device	or	interface	could	fail,	you	want
to	ensure	that	the	computer	will	not	hang	in	the	event	that	the	device
does	not	receive	the	string.	Therefore,	the	first	step	is	to	tell	the	resource
to	time	out	after	5	s	(5000	ms):
status	=	viSetAttribute(instr,	VI_ATTR_TMO_VALUE,	5000);

This	sets	an	attribute	(VI_ATTR_TMO_VALUE)	of	the	resource.	From	this
point	on,	all	communication	to	this	resource	through	this	communication
channel	(instr)	will	have	a	timeout	of	5	s.	As	you	become	more
experienced	with	VISA,	you	will	see	more	of	the	benefits	of	this	OO
approach.	But	for	now,	you	can	see	that	you	can	set	the	timeout	with	an
operation	(function)	in	a	manner	similar	to	that	used	with	other	drivers.	In
addition,	the	operation	you	need	to	remember,	viSetAttribute(),	is	the
same	operation	you	use	to	set	any	feature	of	any	resource.	Now	you
send	the	string	to	the	device	and	read	the	result:
status	=	viWrite(instr,	"*IDN?\n",	6,	&retCount);
status	=	viRead(instr,	buffer,	MAX_CNT,	&retCount);
This	is	a	familiar	approach	to	programming.	You	use	a	write	operation	to
send	a	string	to	a	device,	and	read	the	response	with	a	read	operation.
See	Message-Based	Communication	for	more	information.

Communication	Channels:	Sessions
The	examples	from	Introductory	Programming	Examples	used	an
operation	called	viOpen()	to	open	communication	channels	with	the
instruments.	In	VISA	terminology,	this	channel	is	known	as	a	session.	A
session	connects	you	to	the	resource	you	addressed	in	the	viOpen()
operation	and	keeps	your	communication	and	attribute	settings	unique
from	other	sessions	to	the	same	resource.	In	VISA,	a	resource	can	have
multiple	sessions	to	it	from	the	same	program	and	for	interfaces	other
than	Serial,	even	from	other	programs	simultaneously.	Therefore,	you
must	consider	some	things	about	the	resource	to	be	local,	that	is,	unique
to	the	session,	and	other	things	to	be	global,	that	is,	common	for	all
sessions	to	the	resource.
If	you	look	at	the	descriptions	of	the	various	attributes	supported	by	the
VISA	resources,	you	will	see	that	some	are	marked	global	(such	as
VI_ATTR_INTF_TYPE)	and	others	are	marked	local	(such	as
VI_ATTR_TMO_VALUE).	For	example,	the	interface	bus	that	the
resource	is	using	to	communicate	with	the	device	(VI_ATTR_INTF_TYPE)
is	the	same	for	everyone	using	that	resource	and	is	therefore	a	global
attribute.	However,	different	programs	may	have	different	timeout
requirements,	so	the	communication	timeout	value
(VI_ATTR_TMO_VALUE)	is	a	local	attribute.
Again,	look	at	the	message-based	communication	example.	To	open
communication	with	the	instrument,	that	is,	to	create	a	session	to	the
INSTR	Resource,	you	use	the	viOpen()	operation	as	shown	below:
status	=	viOpen(defaultRM,	"GPIB0::1::INSTR",	VI_NULL,	VI_NULL,
&instr);
In	this	case,	the	interface	to	which	the	instrument	is	connected	is
important,	but	only	as	a	means	to	uniquely	identify	the	instrument.	The
code	above	references	a	GPIB	device	on	bus	number	0	with	primary
address	1.	The	access	mode	and	timeout	values	for	viOpen()	are	both
VI_NULL.	Other	values	are	defined,	but	VI_NULL	is	recommended	for
new	users	and	all	instrument	drivers.
However,	notice	the	statement	has	two	sessions	in	the	parameter	list	for
viOpen(),	defaultRM	and	instr.	Why	do	you	need	two	sessions?	As	you	will
see	in	a	moment,	viOpen()	is	an	operation	on	the	Resource	Manager,	so
you	must	have	a	communication	channel	to	this	resource.	However,	what

you	want	is	a	session	to	the	instrument;	this	is	what	is	returned	in	instr.
For	the	entire	duration	that	you	communicate	with	this	GPIB	instrument,
you	use	the	session	returned	in	instr	as	the	communication	channel.
When	you	are	finished	with	the	communication,	you	need	to	close	the
channel.	This	is	accomplished	through	the	viClose()	operation	as	shown
below:
status	=	viClose(instr);
At	this	point,	the	communication	channel	is	closed,	but	you	are	still	free	to
open	it	again	or	open	a	session	to	another	device.	Notice	that	you	do	not
need	to	close	a	session	to	open	another	session.	You	can	have	as	many
sessions	to	different	devices	as	you	want.

The	Resource	Manager
The	Communication	Channels:	Sessions	topic	briefly	mentioned	the	VISA
Resource	known	as	the	Resource	Manager.	What	exactly	is	a	Resource
Manager?	If	you	have	worked	with	VXI,	you	are	familiar	with	the	VXI
Resource	Manager.	Its	job	is	to	search	the	VXI	chassis	for	instruments,
configure	them,	and	then	return	its	findings	to	the	user.	The	VISA
Resource	Manager	has	a	similar	function.	It	scans	the	system	to	find	all
the	devices	connected	to	it	through	the	various	interface	buses	and	then
controls	the	access	to	them.	Notice	that	the	Resource	Manager	simply
keeps	track	of	the	resources	and	creates	sessions	to	them	as	requested.
You	do	not	go	through	the	Resource	Manager	with	every	operation
defined	on	a	resource.
Again	referring	to	the	message-based	communication	example,	notice
that	the	first	line	of	code	is	a	function	call	to	get	a	session	to	the	Default
Resource	Manager:
status	=	viOpenDefaultRM(&defaultRM);
The	viOpenDefaultRM()	function	returns	a	unique	session	to	the	Default
Resource	Manager,	but	does	not	require	some	other	session	to	operate.
Therefore,	this	function	is	not	a	part	of	any	resource—not	even	the
Resource	Manager	Resource.	It	is	provided	by	the	VISA	driver	itself	and
is	the	means	by	which	the	driver	is	initialized.
Now	that	you	have	a	communication	channel	(session)	to	the	Resource
Manager,	you	can	ask	it	to	create	sessions	to	instruments	for	you.	In
addition	to	this,	VISA	also	defines	operations	that	can	be	invoked	to
query	the	Resource	Manager	about	other	resources	it	knows	about.	You
can	use	the	viFindRsrc()	operation	to	give	the	Resource	Manager	a
search	string,	known	as	a	regular	expression,	for	instruments	in	the
system.	See	Initializing	Your	VISA	Application	for	more	information	about
viFindRsrc().

Examples	of	Interface	Independence
Now	that	you	are	more	familiar	with	the	architecture	of	the	VISA	driver,
we	will	cover	two	examples	of	how	VISA	provides	interface
independence.
First,	many	devices	available	today	have	both	a	Serial	port	and	a	GPIB
port.	If	you	do	not	use	VISA,	you	must	learn	and	use	two	APIs	to
communicate	with	this	device,	depending	on	how	you	have	it	connected.
With	VISA,	however,	you	can	use	a	single	API	to	communicate	with	this
device	regardless	of	the	connection.	Only	the	initialization	code	differs—
for	example,	the	resource	string	is	different,	and	you	may	have	to	set	the
serial	communication	port	parameters	if	they	are	different	from	the
specified	defaults.	But	all	communication	after	the	initialization	should	be
identical	for	either	bus	type.	Many	VISA-based	instrument	drivers	exist
for	these	types	of	devices.
The	existence	of	multi-interface	devices	is	a	trend	that	will	continue	and
likely	increase	with	the	proliferation	of	new	computer	buses.	This	trend	is
also	true	of	non-GPIB	devices.	Several	VXI	device	manufacturers,	for
example,	have	repackaged	their	boards	as	PXI	devices,	with	a	similarly
minimal	impact	on	their	VISA-based	instrument	drivers.
A	second	example	of	interface	independence	is	the	GPIB-VXI	controller.
This	lets	you	communicate	with	VXI	devices,	but	through	a	GPIB	cable.
In	other	words,	you	use	a	GPIB	interface	with	GPIB	software	to	send
messages	to	VXI	devices,	the	same	way	you	program	stand-alone	GPIB
instruments.	But	how	do	you	perform	register	accesses	to	the	VXI
devices?	Prior	to	VISA,	you	were	required	to	send	messages	to	the
GPIB-VXI	itself	and	ask	it	to	perform	the	register	access.	For	example,
when	talking	to	the	National	Instruments	GPIB-VXI/C	with	NI-488.2,	the
register	access	looks	like	the	following	when	using	NI-488.2	function
calls:
dev	=	ibdev(boardID,	PrimAddr,	SecAddr,	TMO,	EOT,	EOS);
status	=	ibwrt(dev,	"A24	#h200000,	#h1234",	cnt);
If	you	had	ever	planned	to	move	your	code	to	a	MXI	or	embedded	VXI
controller	solution,	you	would	spend	a	great	deal	of	time	changing	your
GPIB	calls	to	VXI	calls,	especially	when	considering	register	accesses.
VISA	has	been	designed	to	eliminate	problems	such	as	this	limitation.	If
you	are	talking	to	a	VXI	instrument,	you	can	perform	register	I/O

regardless	of	whether	you	are	connected	via	GPIB,	MXI,	or	an	embedded
VXI	computer.	In	addition,	the	code	is	exactly	the	same	for	all	three
cases.	Therefore,	the	code	for	writing	to	the	A24	register	through	a	GPIB-
VXI	is:
status	=	viOut16(instr,	VI_A24_SPACE,	0x0,	0x1234);
These	examples	show	how	VISA	removes	the	bus	details	from
instrument	communication.	The	VISA	library	takes	care	of	those	details
and	allows	you	to	program	your	instrument	based	on	its	capabilities.

Initializing	Your	VISA	Application
The	following	topics	describe	the	steps	required	to	prepare	your
application	for	communication	with	your	device.
Introduction
Opening	a	Session
Finding	Resources
Finding	VISA	Resources	Using	Regular	Expressions

Attribute-Based	Resource	Matching
Configuring	a	Session
Accessing	Attributes
Common	Considerations	for	Using	Attributes

Introduction
A	powerful	feature	of	VISA	is	the	concept	of	a	single	interface	for	finding
and	accessing	devices	on	various	platforms.	The	VISA	Resource
Manager	does	this	by	exporting	services	for	controlling	and	managing
resources.	These	services	include,	but	are	not	limited	to,	assigning
unique	resource	addresses	and	unique	resource	IDs,	locating	resources,
and	creating	sessions.
Each	session	contains	all	the	information	necessary	to	configure	the
communication	channel	with	a	device,	as	well	as	information	about	the
device	itself.	This	information	is	encapsulated	inside	a	generic	structure
called	an	attribute.	You	can	use	the	attributes	to	configure	a	session	or	to
find	a	particular	resource.

Opening	a	Session
When	trying	to	access	any	of	the	VISA	resources,	the	first	step	is	to	get	a
reference	to	the	default	Resource	Manager	by	calling	viOpenDefaultRM().
Your	application	can	then	use	the	session	returned	from	this	call	to	open
sessions	to	resources	controlled	by	that	Resource	Manager,	as	shown	in
the	following	example.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

int	main(void)
{

ViStatus
ViSession

status;
defaultRM,	instr;

/*	Open	Default	RM	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{

/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Access	other	resources	*/
status	=	viOpen(defaultRM,	"GPIB::1::INSTR",	VI_NULL,	VI_NULL,	&instr);

/*	Use	device	and	eventually	close	it.	*/
viClose(instr);
viClose(defaultRM);
return	0;

}

As	shown	in	this	example,	you	use	the	viOpen()	call	to	open	new
sessions.	In	this	call,	you	specify	which	resource	to	access	by	using	a
string	that	describes	the	resource.	Refer	to	VISA	Resource	Syntax	and
Examples	for	the	syntax	of	resource	strings	and	examples.
Refer	to	NI-VISA	Platform-Specific	and	Portability	Issues	for	help	in
determining	exactly	which	resource	you	may	be	accessing.	In	some
cases,	such	as	serial	(ASRL)	resources,	the	naming	conventions	with
other	serial	naming	conventions	may	be	confusing.	In	the	Windows
platform,	COM1	corresponds	to	ASRL1,	unlike	in	LabVIEW,	where	COM1

is	accessible	using	port	number	0.
The	tables	in	VISA	Resource	Syntax	and	Examples	show	the	canonical
resource	name	formats.	NI-VISA	also	supports	the	use	of	aliases	to	make
opening	devices	easier.	On	Windows,	run	Measurement	&	Automation
Explorer	(MAX)	and	choose	the	menu	option	Tools»NI-VISA»Alias
Editor	to	manage	all	your	aliases.	On	UNIX,	run	visaconf	and	double-click
any	resource	to	bring	up	a	dialog	box	for	managing	the	alias	for	that
resource.	NI-VISA	supports	alias	names	that	include	letters,	numbers,
and	underscores.	To	use	an	alias	in	your	program,	just	call	viOpen()	with
the	alias	name	instead	of	the	canonical	resource	name.

Opening	a	Session	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	sesn

As	ViStatus
As	ViSession
As	ViSession

Rem	Open	Default	RM
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Access	other	resources
stat	=	viOpen(dfltRM,	"GPIB::1::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Use	device	and	eventually	close	it.
stat	=	viClose	(sesn)
stat	=	viClose	(dfltRM)

End	Sub

Finding	Resources
As	shown	in	the	previous	section,	you	can	create	a	session	to	a	resource
using	the	viOpen()	call.	However,	before	you	use	this	call	you	need	to
know	the	exact	location	(address)	of	the	resource	you	want	to	open.	To
find	out	what	resources	are	currently	available	at	a	given	point	in	time,
you	can	use	the	search	services	provided	by	the	viFindRsrc()	operation,
as	shown	in	the	following	example.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

#define	MANF_ID
#define	MODEL_CODE

0xFF6
0x0FE

/*	12-bit	VXI	manufacturer	ID	of	device	*/
/*	12-bit	or	16-bit	model	code	of	device	*/

/*	Find	the	first	matching	device	and	return	a	session	to	it	*/
ViStatus	autoConnect(ViPSession	instrSesn)
{

ViStatus
ViSession
ViFindList
ViChar
ViUInt32
ViUInt16

status;
defaultRM,	instr;
fList;
desc[VI_FIND_BUFLEN];
numInstrs;
iManf,	iModel;

status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	initializing	VISA	...	exiting	*/
return	status;

}
/*	Find	all	VXI	instruments	in	the	system	*/
status	=	viFindRsrc(defaultRM,	"?*VXI?*INSTR",	&fList,	&numInstrs,	desc);
if	(status	<	VI_SUCCESS)	{
/*	Error	finding	resources	...	exiting	*/
viClose(defaultRM);
return	status;

}

/*	Open	a	session	to	each	and	determine	if	it	matches	*/
while	(numInstrs--)	{
status	=	viOpen(defaultRM,	desc,	VI_NULL,	VI_NULL,	&instr);
if	(status	<	VI_SUCCESS)	{
viFindNext(fList,	desc);

continue;
}
status	=	viGetAttribute(instr,	VI_ATTR_MANF_ID,	&iManf);
if	((status	<	VI_SUCCESS)	||	(iManf	!=	MANF_ID))	{
viClose(instr);
viFindNext(fList,	desc);
continue;

}
status	=	viGetAttribute(instr,	VI_ATTR_MODEL_CODE,	&iModel);
if	((status	<	VI_SUCCESS)	||	(iModel	!=	MODEL_CODE))	{
viClose(instr);
viFindNext(fList,	desc);
continue;

}

/*	We	have	a	match,	return	the	session	without	closing	it	*/
*instrSesn	=	instr;
viClose(fList);
/*	Do	not	close	defaultRM,	as	that	would	close	instr	too	*/
return	VI_SUCCESS;

}

/*	No	match	was	found,	return	an	error	*/
viClose(fList);
viClose(defaultRM);
return	VI_ERROR_RSRC_NFOUND;

}

As	this	example	shows,	you	can	use	viFindRsrc()	to	get	a	list	of	matching
resource	names,	which	you	can	then	further	examine	one	at	a	time	using
viFindNext().	Remember	to	free	the	space	allocated	by	the	system	by
invoking	viClose()	on	the	list	reference	fList.
Notice	that	while	this	sample	function	returns	a	session,	it	does	not	return
the	reference	to	the	resource	manager	session	that	was	also	opened
within	the	same	function.	In	other	words,	there	is	only	one	output
parameter,	the	session	to	the	instrument	itself,	instrSesn.	When	your

program	is	done	using	this	session,	it	also	needs	to	close	that
corresponding	resource	manager	session.	Therefore,	if	you	use	this	style
of	initialization	routine,	you	should	later	get	the	reference	to	the	resource
manager	session	by	querying	the	attribute	VI_ATTR_RM_SESSION	just
before	closing	the	INSTR	session.	You	can	then	close	the	resource
manager	session	with	viClose().

Finding	Resources	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Rem	Find	the	first	matching	device	and	return	a	session	to	it
Private	Function	AutoConnect(instrSesn	As	ViSession)	As	ViStatus
Const	MANF_ID	=	&HFF6	'12-bit	VXI	manufacturer	ID	of	a	device
Const	MODEL_CODE	=	&H0FE	'12-bit	or	16-bit	model	code	of	a	device
Dim	stat
Dim	dfltRM
Dim	sesn
Dim	fList
Dim	desc
Dim	nList
Dim	iManf
Dim	iModel

As	ViStatus
As	ViSession
As	ViSession
As	ViFindList
As	String	*	VI_FIND_BUFLEN
As	Long
As	Integer
As	Integer

stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA	...	exiting
AutoConnect	=	stat
Exit	Function

End	If

Rem	Find	all	VXI	instruments	in	the	system
stat	=	viFindRsrc(dfltRM,	"?*VXI?*INSTR",	fList,	nList,	desc)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	finding	resources	...	exiting
viClose	(dfltRM)
AutoConnect	=	stat
Exit	Function

End	If

Rem	Open	a	session	to	each	and	determine	if	it	matches

While	(nList)
stat	=	viOpen(dfltRM,	desc,	VI_NULL,	VI_NULL,	sesn)
If	(stat	>=	VI_SUCCESS)	Then
stat	=	viGetAttribute(sesn,	VI_ATTR_MANF_ID,	iManf)
If	((stat	>=	VI_SUCCESS)	And	(iManf	=	MANF_ID))	Then
stat	=	viGetAttribute(sesn,	VI_ATTR_MODEL_CODE,	iModel)
If	((stat	>=	VI_SUCCESS)	And	(iModel	=	MODEL_CODE))	Then
Rem	We	have	a	match,	return	session	without	closing
instrSesn	=	sesn
stat	=	viClose	(fList)
Rem	Do	not	close	dfltRM;	that	would	close	sesn	too
AutoConnect	=	VI_SUCCESS
Exit	Function

End	If
End	If
stat	=	viClose	(sesn)

End	If
stat	=	viFindNext(fList,	desc)
nList	=	nList	-	1

Wend

Rem	No	match	was	found,	return	an	error
stat	=	viClose	(fList)
stat	=	viClose	(dfltRM)
AutoConnect	=	VI_ERROR_RSRC_NFOUND

End	Function

Finding	VISA	Resources	Using	Regular
Expressions
Using	viFindRsrc()	to	locate	a	resource	in	a	VISA	system	requires	a	way
for	you	to	identify	which	resources	you	are	interested	in.	The	VISA
Resource	Manager	accomplishes	this	through	the	use	of	regular
expressions,	which	specify	a	match	for	certain	resources	in	the	system.
Regular	expressions	are	strings	consisting	of	ordinary	characters	as	well
as	certain	characters	with	special	meanings	that	you	can	use	to	search
for	patterns	instead	of	specific	text.	Regular	expressions	are	based	on
the	idea	of	matching,	where	a	given	string	is	tested	to	see	if	it	matches
the	regular	expression;	that	is,	to	determine	if	it	fits	the	pattern	of	the
regular	expression.	You	can	apply	this	same	concept	to	a	list	of	strings	to
return	a	subset	of	the	list	that	matches	the	expression.
The	following	table	defines	the	special	characters	and	syntax	rules	used
in	VISA	regular	expressions.

Special
Characters

and
Operators

Meaning

? Matches	any	one	character.
\ Makes	the	character	that	follows	it	an	ordinary	character

instead	of	special	character.	For	example,	when	a	question
mark	follows	a	backslash	(\?),	it	matches	the	?	character
instead	of	any	one	character.

[list] Matches	any	one	character	from	the	enclosed	list.	You	can
use	a	hyphen	to	match	a	range	of	characters.

[^list] Matches	any	character	not	in	the	enclosed	list.	You	can	use
a	hyphen	to	match	a	range	of	characters.

* Matches	0	or	more	occurrences	of	the	preceding	character
or	expression.

+ Matches	1	or	more	occurrences	of	the	preceding	character
or	expression.

exp|exp Matches	either	the	preceding	or	following	expression.	The
OR	operator	|	matches	the	entire	expression	that	precedes

or	follows	it	and	not	just	the	character	that	precedes	or
follows	it.	For	example,	VXI|GPIB	means	(VXI)|(GPIB),	not
VX(I|G)PIB.

(exp) Grouping	characters	or	expressions.

The	priority,	or	precedence	of	the	operators	in	regular	expressions	is	as
follows:

The	grouping	operator	()	in	a	regular	expression	has	the	highest
precedence.
The	+	and	*	operators	have	the	next	highest	precedence.
The	OR	operator	|	has	the	lowest	precedence.

Notice	that	in	VISA,	the	string	"GPIB?*INSTR"	applies	to	both	GPIB	and
GPIB-VXI	instruments.
The	following	table	lists	some	examples	of	valid	regular	expressions	that
you	can	use	with	viFindRsrc().

Regular	Expression Sample	Matches
?*INSTR Matches	all	INSTR	(device)	resources.
GPIB?*INSTR Matches	GPIB0::2::INSTR,	GPIB1::1::1::INSTR,

and	GPIB-VXI1::8::INSTR.
GPIB[0-9]*::?*INSTR Matches	GPIB0::2::INSTR	and

GPIB1::1::1::INSTR	but	not	GPIB-
VXI1::8::INSTR.

GPIB[^0]::?*INSTR Matches	GPIB1::1::1::INSTR	but	not
GPIB0::2::INSTR	or	GPIB12::8::INSTR.

VXI?*INSTR Matches	VXI0::1::INSTR	but	not	GPIB-
VXI0::1::INSTR.

GPIB-VXI?*INSTR Matches	GPIB-VXI0::1::INSTR	but	not
VXI0::1::INSTR.

?*VXI[0-9]*::?*INSTR Matches	VXI0::1::INSTR	and	GPIB-
VXI0::1::INSTR.

ASRL[0-9]*::?*INSTR Matches	ASRL1::INSTR	but	not	VXI0::5::INSTR.
ASRL1+::INSTR Matches	ASRL1::INSTR	and	ASRL11::INSTR

but	not	ASRL2::INSTR.
(GPIB|VXI)?*INSTR Matches	GPIB1::5::INSTR	and	VXI0::3::INSTR

but	not	ASRL2::INSTR.
(GPIB0|VXI0)::1::INSTR Matches	GPIB0::1::INSTR	and	VXI0::1::INSTR.
?*VXI[0-9]*::?
*MEMACC

Matches	VXI0::MEMACC	and	GPIB-
VXI1::MEMACC.

VXI0::?* Matches	VXI0::1::INSTR,	VXI0::2::INSTR,	and
VXI0::MEMACC.

?* Matches	all	resources.

Notice	that	in	VISA,	the	regular	expressions	used	for	resource	matching
are	not	case	sensitive.	For	example,	calling	viFindRsrc()	with	"VXI?
*INSTR"	would	return	the	same	resources	as	invoking	it	with	"vxi?*instr".

Attribute-Based	Resource	Matching
VISA	can	also	search	for	a	resource	based	on	the	values	of	the
resource's	attributes.	The	viFindRsrc()	search	expression	is	handled	in
two	parts:	the	regular	expression	for	the	resource	string	and	the
(optional)	logical	expression	for	the	attributes.	Assuming	that	a	given
resource	matches	the	given	regular	expression,	VISA	checks	the	attribute
expression	for	a	match.	The	resource	matches	the	overall	string	if	it
matches	both	parts.
Attribute	matching	works	by	using	familiar	constructs	of	logical	operations
such	as	AND	(&&),	OR	(||),	and	NOT	(!).	Equal	(==)	and	unequal	(!=)
apply	to	all	types	of	attributes,	and	you	can	additionally	compare
numerical	attributes	using	other	common	comparators	(>,	<,	>=,	and	<=).
You	are	free	to	make	attribute	matching	expressions	as	complex	as	you
like,	using	multiple	ANDs,	ORs,	and	NOTs.	Precedence	applies	as
follows:

The	grouping	operator	()	in	an	attribute	matching	expression	has
the	highest	precedence.
The	NOT	!	operator	has	the	next	highest	precedence.
The	AND	&&	operator	has	the	next	highest	precedence.
The	OR	operator	||	has	the	lowest	precedence.

The	following	table	shows	three	examples	of	matching	based	on
attributes.

Expression Meaning
GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR
>	0	&&
VI_ATTR_GPIB_SECONDARY_ADDR
<	10}

Find	all	GPIB	devices	that	have
secondary	addresses	from	1	to
9.

ASRL?
*INSTR{VI_ATTR_ASRL_BAUD	==
9600}

Find	all	serial	ports	configured	at
9600	baud.

?*VXI?INSTR{VI_ATTR_MANF_ID	==
0xFF6	&&	!(VI_ATTR_VXI_LA	==0	||
VI_ATTR_SLOT	<=	0)}

Find	all	VXI	instrument
resources	with	manufacturer	ID
of	FF6	and	which	are	not	logical

address	0,	slot	0,	or	external
controllers.

Notice	that	only	global	VISA	attributes	are	permitted	in	the	attribute
matching	expression.
The	following	example	is	similar	to	the	finding	resources	example,	except
that	it	uses	a	regular	expression	with	attribute	matching.	Notice	that
because	only	the	first	match	is	needed,	VI_NULL	is	passed	for	both	the
retCount	and	findList	parameters.	This	tells	VISA	to	automatically	close
the	find	list	rather	than	return	it	to	the	application.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	<stdio.h>
#include	"visa.h"

#define	MANF_ID
#define	MODEL_CODE

0xFF6
0x0FE

/*	12-bit	VXI	manufacturer	ID	of	device	*/
/*	12-bit	or	16-bit	model	code	of	device	*/

/*	Find	the	first	matching	device	and	return	a	session	to	it	*/
ViStatus	autoConnect2(ViPSession	instrSesn)
{

ViStatus
ViSession
ViChar

status;
defaultRM,	instr;
desc[VI_FIND_BUFLEN],	regExToUse[VI_FIND_BUFLEN];

status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	initializing	VISA	...	exiting	*/
return	status;

}

/*	Find	the	first	matching	VXI	instrument	*/
sprintf(regExToUse,	
"?*VXI?*INSTR{VI_ATTR_MANF_ID==0x%x	&&
VI_ATTR_MODEL_CODE==0x%x}",	MANF_ID,	MODEL_CODE);
status	=	viFindRsrc(defaultRM,	regExToUse,	VI_NULL,	VI_NULL,	desc);
if	(status	<	VI_SUCCESS)	{
/*	Error	finding	resources	...	exiting	*/
viClose(defaultRM);
return	status;

}

status	=	viOpen(defaultRM,	desc,	VI_NULL,	VI_NULL,	&instr);
if	(status	<	VI_SUCCESS)	{
viClose(defaultRM);

return	status;
}

*instrSesn	=	instr;
/*	Do	not	close	defaultRM,	as	that	would	close	instr	too	*/
return	VI_SUCCESS;

}

Attribute-Based	Resource	Matching	Example
(Visual	Basic)
This	example	uses	functionality	not	available	in	Visual	Basic.	Refer	to	the
finding	resources	example	for	sample	code	using	viFindRsrc().

Configuring	a	Session
After	the	Resource	Manager	opens	a	session,	communication	with	the
device	can	usually	begin	using	the	default	session	settings.	However,	in
some	cases	such	as	ASRL	(serial)	resources,	you	need	to	set	some
other	parameters	such	as	baud	rate,	parity,	and	flow	control	before
proper	communication	can	begin.	GPIB	and	VXI	sessions	may	have	still
other	configuration	parameters	to	set,	such	as	timeouts	and	end-of-
transmission	modes,	although	in	general	the	default	settings	should
suffice.
Accessing	Attributes
Common	Considerations	for	Using	Attributes

Accessing	Attributes
VISA	uses	two	operations	for	obtaining	and	setting	parameters
—viGetAttribute()	and	viSetAttribute().	Attributes	not	only	describe	the
state	of	the	device,	but	also	the	method	of	communication	with	the
device.
For	example,	you	could	use	the	following	code	to	obtain	the	logical
address	of	a	VXI	address:
status	=	viGetAttribute(instr,	VI_ATTR_VXI_LA,	&Laddr);
and	the	variable	Laddr	would	contain	the	device's	address.	If	you	want	to
set	an	attribute,	such	as	the	baud	rate	of	an	ASRL	session,	you	could
use:
status	=	viSetAttribute(instr,	VI_ATTR_ASRL_BAUD,	9600);
Notice	that	some	attributes	are	read-only,	such	as	logical	address,	while
others	are	read/write	attributes,	such	as	the	baud	rate.	Also,	some
attributes	apply	only	to	certain	types	of	sessions;	VI_ATTR_VXI_LA
would	not	exist	for	an	ASRL	session.	If	you	attempted	to	use	it,	the	status
parameter	would	return	with	the	code	VI_ERROR_NSUP_ATTR.	Finally,
the	data	types	of	some	attribute	values	are	different	from	each	other.
Using	the	above	examples,	the	logical	address	is	a	16-bit	value,	whereas
the	baud	rate	is	a	32-bit	value.	It	is	particularly	important	to	use	variables
of	the	correct	data	type	in	viGetAttribute().
Refer	to	Attributes	for	a	list	of	all	available	attributes	you	can	use	for	each
supported	interface.

Common	Considerations	for	Using	Attributes
As	you	set	up	your	sessions,	there	are	some	common	attributes	you	can
use	that	will	affect	how	the	sessions	handle	various	situations.	For
currently	supported	session	types,	all	support	the	setting	of	timeout
values	and	termination	methods:

VI_ATTR_TMO_VALUE	denotes	how	long	(in	milliseconds)	to
wait	for	accesses	to	the	device.	Defaults	to	two	seconds	(2000
ms).
VI_ATTR_TERMCHAR_EN	sets	whether	a	termination	character
specified	by	VI_ATTR_TERMCHAR	will	be	used	on	read
operations.	The	termchar	defaults	to	linefeed	(\n	or	LF)	but	the
termchar	enable	attribute	defaults	to	VI_FALSE.	Serial	users
should	also	see	Serial.
VI_ATTR_SEND_END_EN	determines	whether	to	use	an	END	bit
on	your	write	operations.	Defaults	to	VI_TRUE.

Various	interfaces	have	other	types	of	attributes	that	may	affect	channel
communication.	See	Interface-Specific	Information	for	attribute
information	relevant	to	each	support	hardware	interface	type.

Message-Based	Communication
The	following	topics	show	how	to	use	the	VISA	library	in	message-based
communication.
Introduction
Basic	I/O	Services
Synchronous	Read/Write	Services
Asynchronous	Read/Write	Services
Clear	Service
Trigger	Service
Status/Service	Request	Service
Example	VISA	Message-Based	Application

Formatted	I/O	Services
Formatted	I/O	Operations
I/O	Buffer	Operations
Variable	List	Operations
Manually	Flushing	the	Formatted	I/O	Buffers
Automatically	Flushing	the	Formatted	I/O	Buffers
Resizing	the	Formatted	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Recommendations	for	Using	the	VISA	Buffers

Formatted	I/O	Instrument	Driver	Examples
Integers
Floating	Point	Values
Strings
Data	Blocks

Introduction
Whether	you	are	using	RS-232,	GPIB,	Ethernet,	VXI,	or	USB,	message-
based	communication	is	a	standard	protocol	for	controlling	and	receiving
data	from	instruments.	Because	most	message-based	devices	have
similar	capabilities,	it	is	natural	that	the	driver	interface	should	be
consistent.	Under	VISA,	controlling	message-based	devices	is	the	same
regardless	of	what	hardware	interface(s)	those	devices	support	or	how
those	devices	are	connected	to	your	computer.
VISA	message-based	communication	includes	the	Basic	I/O	Services
and	the	Formatted	I/O	Services	from	within	the	VISA	Instrument	Control
Resource	(INSTR).	All	sessions	to	a	VISA	Instrument	Control	Resource
(INSTR)	opened	using	viOpen()	have	full	message-based	communication
capabilities.	Of	course,	if	the	device	is	a	register-based	VXI	device,	the
message-based	operations	return	an	error	code
(VI_ERROR_NSUP_OPER)	to	indicate	that	this	device	does	not	support
the	operations,	although	the	session	still	provides	access	to	them.	This
help	file	discusses	the	uses	of	the	Basic	I/O	Services	and	the	Formatted
I/O	Services	provided	by	the	INSTR	Resource	in	a	VISA	application.

Basic	I/O	Services
The	VISA	Instrument	Control	Resource	lets	a	controller	interact	with	the
device	that	it	is	associated	with	by	providing	the	controller	with	services
to	do	the	following:

Send	blocks	of	data	to	the	device
Request	blocks	of	data	from	the	device
Send	the	device	clear	command	to	the	device
Trigger	the	device
Find	information	about	the	status	of	the	device

Note		For	the	ASRL	INSTR	and	TCPIP	SOCKET	resources,	the
I/O	protocol	attribute	must	be	set	to	VI_PROT_4882_STRS	to	use
viReadSTB()	and	viAssertTrigger().

The	following	topics	describe	the	operations	provided	by	the	VISA
Instrument	Control	Resource	for	the	Basic	I/O	Services.
Synchronous	Read/Write	Services
Asynchronous	Read/Write	Services
Clear	Service
Trigger	Service
Status/Service	Request	Service
Example	VISA	Message-Based	Application

Synchronous	Read/Write	Services
The	most	straightforward	of	the	operations	are	viRead()	and	viWrite(),
which	perform	the	actual	receiving	and	sending	of	strings.	Notice	that
these	operations	look	upon	the	data	as	a	string	and	do	not	interpret	the
contents.	For	this	reason,	the	data	could	be	messages,	commands,	or
binary	encoded	data,	depending	on	how	the	device	has	been
programmed.	For	example,	the	IEEE	488.2	command	*IDN?	is	a
message	that	is	sent	in	ASCII	format.	However,	an	oscilloscope	returning
a	digitized	waveform	may	take	each	16-bit	data	point	and	put	it	end	to
end	as	a	series	of	8-bit	characters.	The	following	code	segment	shows	a
program	requesting	the	waveform	that	the	device	has	captured.
status	=	viWrite(instr,	"READ:WAVFM:CH1",	14,	&retCount);
status	=	viRead(instr,	buffer,	1024,	&retCount);
Now	the	character	array	buffer	contains	the	data	for	the	waveform,	but
you	still	do	not	know	how	the	data	is	formatted.	For	example,	if	the	data
points	were	1,	2,	3,	...the	buffer	might	be	formatted	as	"1,2,3,...".
However,	if	the	data	were	binary	encoded	8-bit	values,	the	first	byte	of
buffer	would	be	1—not	the	ASCII	character	1,	but	the	actual	value	1.	The
next	byte	would	be	neither	a	comma	nor	the	ASCII	character	2,	but	the
actual	value	2,	and	so	on.	Refer	to	the	documentation	that	came	with	the
device	for	information	on	how	to	program	the	device	and	interpret	the
responses.
The	various	ways	that	a	string	can	be	sent	is	the	next	issue	to	consider	in
message-based	communication.	For	example,	the	actual	mechanism	for
sending	a	byte	differs	drastically	between	GPIB	and	VXI;	however,	both
have	similar	mechanisms	to	indicate	when	the	last	byte	has	been
transferred.	Under	both	systems,	a	device	can	specify	an	actual
character,	such	as	linefeed,	to	indicate	that	no	more	data	will	be	sent.
This	is	known	as	the	End	Of	String	(EOS)	character	and	is	common	in
older	GPIB	devices.	The	obvious	drawback	to	this	mechanism	is	that	you
must	send	an	extra	character	to	terminate	the	communication,	and	you
cannot	use	this	character	in	your	messages.	However,	both	GPIB	and
VXI	can	specify	that	the	current	byte	is	the	last	byte.	GPIB	uses	the	EOI
line	on	the	bus,	and	VXI	uses	the	END	bit	in	the	Word	Serial	command
that	encapsulates	the	byte.
You	need	to	determine	how	to	inform	the	VISA	driver	which	mechanism

to	use.	As	was	discussed	in	VISA	Overview,	VISA	uses	a	technique
known	as	attributes	to	hold	this	information.	For	example,	to	tell	the	driver
to	use	the	EOI	line	or	END	bit,	you	set	the	VI_ATTR_SEND_END_EN
attribute	to	true.
status	=	viSetAttribute(instr,	VI_ATTR_SEND_END_EN,	VI_TRUE);
You	can	terminate	reads	on	a	carriage	return	by	using	the	following	code.
status	=	viSetAttribute(instr,	VI_ATTR_TERMCHAR,	0x0D);
status	=	viSetAttribute(instr,	VI_ATTR_TERMCHAR_EN,	VI_TRUE);
Refer	to	Common	Considerations	for	Using	Attributes	for	the	default
values	of	these	attributes.	Refer	to	Attributes	for	a	complete	list	and
description	of	the	available	attributes.

Asynchronous	Read/Write	Services
In	addition	to	the	synchronous	read	and	write	services,	VISA	has
operations	for	asynchronous	I/O.	The	functionality	of	these	operations	is
identical	to	that	of	the	synchronous	ones;	therefore,	the	topics	covered	in
the	previous	section	apply	to	asynchronous	read	and	write	operations	as
well.	The	main	difference	is	that	a	job	ID	is	returned	from	the
asynchronous	I/O	operations	instead	of	the	transfer	status	and	return
count.	You	then	wait	for	an	I/O	completion	event,	from	which	you	can	get
that	information.

Note		You	must	enable	the	session	for	the	I/O	completion	event
before	beginning	an	asynchronous	transfer.

One	other	difference	is	the	timeout	attribute,	VI_ATTR_TMO_VALUE.
This	attribute	may	or	may	not	apply	to	asynchronous	operations,
depending	on	the	implementation.	If	you	want	to	ensure	that
asynchronous	operations	never	time	out,	even	on	implementations	that
do	use	the	timeout	attribute,	set	the	attribute	value	to	VI_TMO_INFINITE.
If	you	want	to	ensure	that	asynchronous	operations	do	not	last	beyond	a
certain	period	of	time,	even	on	implementations	that	do	not	use	the
timeout	attribute,	you	should	abort	the	I/O	using	the	viTerminate()
operation	if	it	does	not	complete	within	the	expected	time,	as	shown	in
the	following	code.
status	=	viEnableEvent(instr,	VI_EVENT_IO_COMPLETION,	VI_QUEUE,
VI_NULL);
status	=	viWriteAsync(instr,	"READ:WAVFM:CH1"	,14,	&jobID);
status	=	viWaitOnEvent(instr,	VI_EVENT_IO_COMPLETION,	10000,	&etype,
&event);
if	(status	<	VI_SUCCESS)	{

status	=	viTerminate(instr,	VI_NULL,	jobID);
/*	now	the	I/O	completion	event	should	exist	in	the	queue*/
status	=	viWaitOnEvent(instr,	VI_EVENT_IO_COMPLETION,0,	&etype,
&event);

}
As	long	as	an	asynchronous	operation	is	successfully	posted	(if	the
return	value	from	the	asynchronous	operation	is	greater	than	or	equal	to
VI_SUCCESS),	there	will	always	be	exactly	one	I/O	completion	event

resulting	from	the	transfer.	However,	if	the	asynchronous	operation
(viReadAsync()	or	viWriteAsync())	returns	an	error	code,	there	will	not	be
an	I/O	completion	event.	In	the	above	example,	if	the	I/O	has	not
completed	in	10	seconds,	the	call	to	viTerminate()	aborts	the	I/O	and
results	in	the	I/O	completion	event	being	generated.
The	I/O	completion	event	has	attributes	containing	information	about	the
transfer	status,	return	count,	and	more.	For	a	more	complete	description
of	the	I/O	completion	event	and	its	attributes,	refer	to
VI_EVENT_IO_COMPLETION.	For	a	more	detailed	example	using
asynchronous	I/O,	see	the	queuing	and	callback	mechanism	example.

Note		The	asynchronous	I/O	services	are	not	available	when
programming	with	Visual	Basic.

Clear	Service
When	communicating	with	a	message-based	device,	particularly	when
you	are	first	developing	your	program,	you	may	need	to	tell	the	device	to
clear	its	I/O	buffers	so	that	you	can	start	again.	In	addition,	if	a	device	has
more	information	than	you	need,	you	may	want	to	read	until	you	have
everything	you	need	and	then	tell	the	device	to	throw	the	rest	away.	The
viClear()	operation	performs	these	tasks.
More	specifically,	the	clear	operation	lets	a	controller	send	the	device
clear	command	to	the	device	it	is	associated	with,	as	specified	by	the
interface	specification	and	the	type	of	device.	The	action	that	the	device
takes	depends	on	the	interface	to	which	it	is	connected.

For	a	GPIB	device,	the	controller	sends	the	IEEE	488.1	SDC
(04h)	command.
For	a	VXI	or	MXI	device,	the	controller	sends	the	Word	Serial
Clear	(FFFFh)	command.
For	the	ASRL	INSTR	or	TCPIP	SOCKET	resource,	the	controller
sends	the	string	"*CLS\n".	The	I/O	protocol	must	be	set	to
VI_PROT_4882_STRS	for	this	service	to	be	available	to	these
resources.

For	more	details	on	these	clear	commands,	refer	to	your	device
documentation,	the	IEEE	488.1	standard,	or	the	VXIbus	specification.

Trigger	Service
Most	instruments	can	be	instructed	to	wait	until	they	receive	a	trigger
before	they	start	performing	operations	such	as	generating	a	waveform,
reading	a	voltage,	and	so	on.	Under	GPIB,	this	trigger	is	a	software
command	sent	to	the	device.	Under	VXI,	this	could	either	be	a	software
trigger	or	a	hardware	trigger	on	one	of	the	multiple	TTL/ECL	trigger	lines
on	the	VXIbus	backplane.
VISA	uses	the	same	operation—viAssertTrigger()—to	perform	these
actions.	Which	trigger	method	(software	or	hardware)	you	use	is
dependent	on	a	combination	of	an	attribute	(VI_ATTR_TRIG_ID)	and	a
parameter	to	the	operation.	For	example,	to	send	a	software	trigger	by
default	under	either	interface,	you	use	the	following	code.
status	=	viSetAttribute(instr,	VI_ATTR_TRIG_ID,	VI_TRIG_SW);
status	=	viAssertTrigger(instr,	VI_TRIG_PROT_DEFAULT);
Of	course,	you	need	to	set	the	attribute	only	once	at	the	beginning	of	the
program,	not	every	time	you	assert	the	trigger.	If	you	want	to	assert	a	VXI
hardware	trigger,	such	as	a	SYNC	pulse,	you	can	use	the	following	code.
status	=	viSetAttribute(instr,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL3);
status	=	viAssertTrigger(instr,	VI_TRIG_PROT_SYNC);
Keep	in	mind	that	VISA	currently	uses	device	triggering.	That	is,	each	call
to	viAssertTrigger()	is	associated	with	a	specific	device	through	the
session	used	in	the	call.	However,	the	VXI	hardware	triggers	by	definition
have	interface-level	triggering.	In	other	words,	you	cannot	prevent	two
devices	from	receiving	a	SYNC	pulse	of	TTL3	if	both	devices	are
listening	to	the	line.	Therefore,	if	you	need	to	trigger	multiple	devices	off	a
single	VXI	trigger	line,	you	can	do	this	by	sending	the	trigger	to	any	one
of	the	devices	on	the	line.

Status/Service	Request	Service
It	is	fairly	common	for	a	device	to	need	to	communicate	with	a	controller
at	a	time	when	the	controller	is	not	planning	to	talk	with	the	device.	For
example,	if	the	device	detects	a	failure	or	has	completed	a	data
acquisition	sequence,	it	may	need	to	get	the	attention	of	the	controller.	In
both	GPIB	and	VXI,	this	is	accomplished	through	a	Service	Request
(SRQ).	Although	the	actual	technique	for	delivering	this	service	request
to	the	controller	differs	between	the	two	interfaces,	the	end	result	is	that
an	event	(VI_EVENT_SERVICE_REQ)	is	received	by	the	VISA	driver.	You
can	find	more	details	on	event	notification	and	handling	in	Introductory
Programming	Examples	and	VISA	Events.	At	this	time,	just	assume	that
the	program	has	received	the	event	and	has	a	handle	to	the	data	through
the	eventContext	parameter.
Under	VISA,	the	VI_EVENT_SERVICE_REQ	event	contains	no	additional
information	other	than	the	type	of	event.	Therefore,	by	using
viGetAttribute()	on	the	eventContext	parameter,	as	shown	in	the	following
code,	the	program	can	identify	the	event	as	a	service	request.
status	=	viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE,	&eventType);
You	can	retrieve	the	status	byte	of	the	device	by	issuing	a	viReadSTB()
operation.	This	is	especially	important	because	on	some	interfaces,	such
as	GPIB,	it	is	not	always	possible	to	know	which	device	has	asserted	the
service	request	until	a	viReadSTB()	is	performed.	This	means	that	all
sessions	to	devices	on	the	bus	with	the	service	request	may	receive	a
service	request	event.	Therefore,	you	should	always	check	the	status
byte	to	ensure	that	your	device	was	the	one	that	requested	service.	Even
if	you	have	only	one	device	asserting	a	service	request,	you	should	still
call	viReadSTB()	to	guarantee	delivery	of	future	service	request	events.
For	example,	the	following	code	checks	the	type	of	event,	performs	a
viReadSTB(),	and	then	checks	the	result.
status	=	viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE,	&eventType);

if	(eventType	==	VI_EVENT_SERVICE_REQ)	{
status	=	viReadSTB(instr,	&statusByte);
if	((status	>=	VI_SUCCESS)	&&	(statusByte	&	0x40))	{
/*	Perform	action	based	on	Service	Request	*/

}

/*	Otherwise	ignore	the	Service	Request	*/

}	/*	End	IF	SRQ	*/

Example	VISA	Message-Based	Application
The	following	is	an	example	VISA	application	using	message-based
communication.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

int	main(void)
{

ViSession
ViUInt32
ViChar
ViChar
ViStatus

defaultRM,	instr;
retCount;
idnResult[72];
resultBuffer[256];
status;

/*	Open	Default	Resource	Manager	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	GPIB	Device	at	Primary	Addr	1	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
viOpen(defaultRM,	"GPIB::1::INSTR",	VI_NULL,	VI_NULL,	&instr);
/*	Initialize	the	timeout	attribute	to	10	s	*/
viSetAttribute(instr,	VI_ATTR_TMO_VALUE,	10000);
/*	Set	termination	character	to	carriage	return	(\r=0x0D)	*/
viSetAttribute(instr,	VI_ATTR_TERMCHAR,	0x0D);
viSetAttribute(instr,	VI_ATTR_TERMCHAR_EN,	VI_TRUE);
/*	Don't	assert	END	on	the	last	byte	*/
viSetAttribute(instr,	VI_ATTR_SEND_END_EN,	VI_FALSE);
/*	Clear	the	device	*/
viClear(instr);
/*	Request	the	IEEE	488.2	identification	information	*/
viWrite(instr,	"*IDN?\n",	6,	&retCount);
viRead(instr,	idnResult,	72,	&retCount);

/*	Use	idnResult	and	retCount	to	parse	device	info	*/

/*	Trigger	the	device	for	an	instrument	reading	*/
viAssertTrigger(instr,	VI_TRIG_PROT_DEFAULT);
/*	Receive	results	*/
viRead(instr,	resultBuffer,	256,	&retCount);
/*	Close	sessions	*/
viClose(instr);
viClose(defaultRM);
return	0;

}

VISA	Message-Based	Application	Example
(Visual	Basic)

Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()
Dim	stat	As	ViStatus
Dim	dfltRM
Dim	sesn
Dim	retCount
Dim	idnResult
Dim	resultBuffer

As	ViSession
As	ViSession
As	Long
As	String	*	72
As	String	*	256

Rem	Open	Default	Resource	Manager
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	GPIB	Device	at	Primary	Addr	1
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"GPIB::1::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Initialize	the	timeout	attribute	to	10	s
stat	=	viSetAttribute(sesn,	VI_ATTR_TMO_VALUE,	10000)

Rem	Set	termination	character	to	carriage	return	(\r=0x0D)	
stat	=	viSetAttribute(sesn,	VI_ATTR_TERMCHAR,	&H0D)
stat	=	viSetAttribute(sesn,	VI_ATTR_TERMCHAR_EN,	VI_TRUE)

Rem	Don't	assert	END	on	the	last	byte
stat	=	viSetAttribute(sesn,	VI_ATTR_SEND_END_EN,	VI_FALSE)

Rem	Clear	the	device

stat	=	viClear(sesn)

Rem	Request	the	IEEE	488.2	identification	information
stat	=	viWrite(sesn,	"*IDN?",	5,	retCount)
stat	=	viRead(sesn,	idnResult,	72,	retCount)

Rem	Your	code	should	use	idnResult	and	retCount	to	parse	device	info

Rem	Trigger	the	device	for	an	instrument	reading
stat	=	viAssertTrigger(sesn,	VI_TRIG_PROT_DEFAULT)

Rem	Receive	results
stat	=	viRead(sesn,	resultBuffer,	256,	retCount)

Rem	Close	sessions
stat	=	viClose	(sesn)
stat	=	viClose	(dfltRM)

End	Sub

Formatted	I/O	Services
The	Formatted	I/O	Services	perform	formatted	and	buffered	I/O	for
devices.	A	formatted	write	operation	writes	to	a	buffer	inside	the	VISA
driver,	while	a	formatted	read	operation	reads	from	a	buffer	inside	the
driver.	Buffering	improves	system	performance	by	having	the	driver
perform	the	I/O	with	the	device	only	at	certain	times,	such	as	when	the
buffer	is	full.	The	driver	is	then	able	to	send	larger	blocks	of	information	to
the	device	at	a	time,	improving	overall	throughput.
The	buffer	operations	also	provide	control	over	the	low-level	serial	driver
buffers.	See	Controlling	the	Serial	I/O	Buffers	for	more	information	on	that
topic.

Formatted	I/O	Operations
The	main	two	operations	under	the	formatted	I/O	services	are	viPrintf()
and	viScanf().	Although	this	section	discusses	these	two	operations	only,
this	material	also	applies	to	other	formatted	I/O	routines	such	as
viVPrintf()	and	viVScanf().	These	operations	derive	their	names	from	the
standard	C	string	I/O	functions.	Like	printf()	and	scanf(),	these	operations
let	you	use	special	format	strings	to	dynamically	create	or	parse	the
string.	For	example,	a	common	command	for	instruments	is	the	"Fx"
command	for	function	X.	This	could	be	"F1"	for	volt	measurement,	"F2"
for	ohm	measurement,	and	so	on.	With	formatted	I/O,	you	can	select	the
type	of	measurement	and	use	only	a	single	operation	to	send	the	string.
Consider	the	following	code	segment.
/*	Retrieve	user's	selections.	Assume	the	variable	*/
/*	X	holds	the	choice	from	the	following	menu:	*/
/*	1)	VDC,	(2)	Ohms,	(3)	Amps	*/
status	=	viPrintf(instr,	"F%d",	X);
Here,	the	variable	X	corresponds	to	the	type	of	measurement	denoted	by
a	number	matching	the	function	number	for	the	instrument.	Without
formatted	I/O,	the	result	would	have	been	either:
sprintf(buffer,	"F%d",	X);
viWrite(instr,	buffer,	strlen(buffer),	&retCount);
or
switch(X)	{
case	1:
viWrite(instr,	"F1",	2,	&retCount);
break;

case	2:
viWrite(instr,	"F2",	2,	&retCount);	break;

.

.
}
In	addition,	there	is	an	operation	viQueryf()	that	combines	the
functionality	of	a	viPrintf()	followed	by	a	viScanf()	operation.	viQueryf()	is
used	to	query	the	device	for	information:

status	=	viQueryf(instr,"*IDN?\n","%s",buf);

I/O	Buffer	Operations
Another	method	for	communicating	with	your	instruments	using	formatted
I/O	functions	is	using	the	formatted	I/O	buffer	functions:	viSPrintf(),
viSScanf(),	viBufRead(),	and	viBufWrite().	You	can	use	these	functions	to
manipulate	a	buffer	that	you	will	send	or	receive	from	an	instrument.
For	example,	you	may	want	to	bring	information	from	a	device	into	a
buffer	and	then	manipulate	it	yourself.	To	do	this,	first	call	viBufRead(),
which	reads	the	string	from	the	instrument	into	a	user-specified	buffer.
Then	use	viSScanf()	to	extract	information	from	the	buffer.	Similarly,	you
can	format	a	buffer	with	viSPrintf()	and	then	use	viBufWrite()	to	send	it	to
an	instrument.
As	you	can	see,	the	formatted	I/O	approach	is	the	simplest	way	to	get	the
job	done.	Because	of	the	variety	of	modifiers	you	can	use	in	the	format
string,	this	topic	does	not	go	into	any	more	detail	on	these	operations.
Refer	to	Operations	for	more	information.

Variable	List	Operations
You	can	also	use	another	form	of	the	standard	formatted	I/O	operations
known	as	Variable	List	operations:	viVPrintf(),	viVSPrintf(),	viVScanf(),
viVSScanf(),	and	viVQueryf().	These	functions	are	identical	in	their
operation	to	the	ANSI	C	versions	of	variable	list	operations.	See	your	C
reference	guide	for	more	information.

Manually	Flushing	the	Formatted	I/O	Buffers
This	section	describes	flushing	issues	that	are	related	to	formatted	I/O
buffers.	The	descriptions	apply	to	all	buffered	read	and	buffered	write
operations.	For	example,	the	viPrintf()	description	applies	equally	to	other
buffered	write	operations	(viVPrintf()	and	viBufWrite()).	Similarly,	the
viScanf()	description	applies	to	other	buffered	read	operations	(viVScanf()
and	viBufRead()).
Flushing	a	write	buffer	immediately	sends	any	queued	data	to	the	device.
Flushing	a	read	buffer	discards	the	data	in	the	read	buffer.	An	empty	read
buffer	guarantees	that	the	next	call	to	viScanf(),	viBufRead(),	or	a	related
operation	reads	data	directly	from	the	device	rather	than	from	queued
data	residing	in	the	read	buffer.
The	easiest	way	to	flush	the	buffers	is	with	an	explicit	call	to	viFlush().
This	operation	can	actually	flush	the	buffers	in	two	ways.	The	simpler
way	uses	discard	flags.	These	flags	tell	the	driver	to	discard	the	contents
of	the	buffers	without	performing	any	I/O	to	the	device.	For	example,
status	=	viFlush(instr,	VI_READ_BUF_DISCARD);
However,	the	flush	operation	can	also	complete	the	current	I/O	before
flushing	the	buffer.	For	a	write	buffer,	this	simply	means	to	send	the	rest
of	the	buffer	to	the	device.	However,	for	a	read	buffer,	the	process	is
more	involved.	Because	you	could	be	in	the	middle	of	a	read	from	the
device	(that	is,	the	device	still	has	information	to	send),	it	is	possible	to
have	the	driver	check	the	buffer	for	an	EOS	or	END	bit/EOI	signal.	If	such
a	value	exists	in	the	buffer,	the	contents	of	the	buffer	are	discarded.
However,	if	the	driver	can	find	no	such	value,	it	begins	reading	from	the
device	until	it	detects	the	end	of	the	communication	and	then	discards	the
data.	This	process	keeps	the	program	and	device	in	synchronization	with
each	other.	See	viFlush()	for	more	information.
Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Recommendations	for	Using	the	VISA	Buffers

Automatically	Flushing	the	Formatted	I/O
Buffers
Although	you	can	explicitly	flush	the	buffers	by	making	a	call	to	viFlush(),
the	buffers	are	flushed	implicitly	under	some	conditions.	These	conditions
vary	for	the	viPrintf()	and	viScanf()	operations.	In	addition,	you	can	modify
the	conditions	through	attributes.
The	write	buffer	is	maintained	by	the	viPrintf(),	viVPrintf(),	viBufWrite(),
and	viVQueryf()	(write	side)	operations.	To	explicitly	flush	the	write	buffer,
you	can	make	a	call	to	the	viFlush()	operation	with	a	write	flag	set.
The	standard	conditions	for	automatically	flushing	the	buffer	are	as
follows.

Whenever	the	END	indicator	is	sent.	The	indicator	could	be	either
the	EOS	character	or	the	END	bit/EOI	line,	depending	on	the
current	state	of	the	attributes	which	select	these	modes.
When	the	write	buffer	is	full.
In	response	to	a	call	to	viSetBuf()	with	the	VI_WRITE_BUF	flag
set.

In	addition	to	these	rules,	the	VI_ATTR_WR_BUF_OPER_MODE	attribute
can	modify	the	flushing	of	the	buffer.	The	default	setting	for	this	attribute
is	VI_FLUSH_WHEN_FULL,	which	means	that	the	preceding	three	rules
apply.	However,	if	the	attribute	is	set	to	VI_FLUSH_ON_ACCESS,	the
buffer	is	flushed	with	every	call	to	viPrintf()	and	viVPrintf(),	essentially
disabling	the	buffering	mode.
The	read	buffer	is	maintained	by	the	viScanf(),	viVScanf(),	viBufRead(),
and	viVQueryf()	(read	side)	operations.	To	explicitly	flush	the	read	buffer,
you	can	make	a	call	to	the	viFlush()	operation	with	a	read	flag	set.	The
only	rule	for	automatically	flushing	the	read	buffer	is	in	response	to	the
viSetBuf()	operation.	However,	as	with	the	write	buffer,	you	can	use	an
attribute	to	control	how	to	flush	the	buffer:
VI_ATTR_RD_BUF_OPER_MODE.	If	the	attribute	is	set	to
VI_FLUSH_DISABLE,	the	buffer	is	flushed	only	when	an	explicit	call	to
viFlush()	is	made.	If	this	attribute	is	set	to	VI_FLUSH_ON_ACCESS,	the
buffer	is	flushed	at	the	end	of	every	call	to	viScanf().
In	addition	to	the	preceding	rules	and	attributes,	the	formatted	I/O	buffers
of	a	session	to	a	given	device	are	reset	whenever	that	device	is	cleared

through	the	viClear()	operation.	At	such	a	time,	the	read	and	write	buffer
must	be	flushed	and	any	ongoing	operation	through	the	read/write	port
must	be	aborted.
Related	Topics
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers

Resizing	the	Formatted	I/O	Buffers
The	read	and	write	buffers,	as	mentioned	previously,	can	be	dynamically
resized	using	the	viSetBuf()	operation.	Remember	that	this	operation
automatically	flushes	the	buffers,	so	it	is	best	to	set	the	size	of	the	buffers
before	beginning	the	actual	I/O	calls.	You	specify	which	buffer	you	want
to	modify	and	then	the	size	of	the	buffer	you	require.	It	is	important	to
check	the	return	code	of	this	operation	because	you	may	be	requesting	a
buffer	beyond	the	size	that	the	system	can	allocate	at	the	time.	If	this
occurs,	the	buffer	size	is	not	changed.
For	example,	to	set	both	the	read	and	write	buffers	to	8	KB,	use	the
following	code.
status	=	viSetBuf(instr,	VI_READ_BUF	|	VI_WRITE_BUF,	8192);

Formatted	I/O	Read	and	Low-Level	I/O	Receive
Buffers
VISA	uses	two	basic	input	buffers:	the	formatted	I/O	read	buffer	and	low-
level	I/O	receive	buffer.	The	formatted	I/O	read	buffer	eliminates	the	first-
byte	latency	overhead	that	would	exist	if	VISA	performed	its	formatting
algorithms	by	retrieving	data	from	the	device	one	byte	at	a	time.	Instead,
VISA	transfers	a	block	of	data	from	the	device	to	the	formatted	I/O	read
buffer.	VISA	then	performs	its	formatting	algorithms	on	the	raw	data	in	the
formatted	I/O	read	buffer	and	places	the	formatted	data	into	the	user
buffer,	as	shown	in	Figure	1.	viScanf	and	its	variants	(for	example,
viBufRead	and	viQueryf)	are	the	only	operations	that	use	the	formatted
I/O	read	buffer.
The	low-level	I/O	receive	buffer	avoids	data	loss	with	resources	that	push
or	stream	their	response	data	to	the	host	PC.	Serial	INSTR	and	TCPIP
Socket	are	two	examples	of	this	type	of	resource.	viRead	and	its	variants
(for	example,	viReadAsync)	transfer	data	from	the	low-level	I/O	receive
buffer	into	the	user	buffer	in	this	scenario,	as	shown	in	Figure	2.
In	contrast,	when	VISA	must	request	data	from	a	resource	(such	as	GPIB
INSTR),	a	call	to	viRead	(or	one	of	its	variants)	transfers	data	from	the
device	directly	into	the	user	buffer,	as	shown	in	Figure	3.
The	only	time	when	both	the	formatted	I/O	read	buffer	and	low-level	I/O
receive	buffer	are	used	is	when	viScanf	is	called	on	a	resource	that
pushes	data	to	the	host	PC	(such	as	Serial	INSTR	or	TCPIP	Socket),	as
shown	in	Figure	4.

Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers
Controlling	the	Serial	I/O	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_WR_BUF_OPER_MODE
viFlush
viScanf
viSetBuf

Formatted	I/O	Write	and	Low-Level	I/O	Transmit
Buffers
VISA	uses	two	basic	output	buffers:	the	formatted	I/O	write	buffer	and
low-level	I/O	transmit	buffer.	The	formatted	I/O	write	buffer	holds	the
converted	and	formatted	parameters	(as	the	format	string	specifies)
before	sending	the	formatted	data	to	the	device,	as	shown	in	Figure	1.
viPrintf	and	its	variants	(for	example,	viBufWrite	and	viQueryf)	are	the
only	operations	that	use	the	formatted	I/O	write	buffer.
The	advantage	of	using	formatted	I/O	buffers	for	data	to	be	written	to	a
device	is	that	if	you	are	sending	multiple	small	formatted	strings	in
several	programmatic	commands,	you	can	batch	them	and	have	VISA
send	them	in	a	single	transfer;	this	eliminates	repeating	the	first-byte
latency	overhead.	On	the	other	hand,	if	you	do	not	need	VISA	to	format
or	buffer	your	data,	you	can	send	it	directly	to	the	device	from	the	user's
data	buffer	using	viWrite	and	its	variants	(for	example,	viWriteAsync),	as
shown	in	Figure	2.
The	VISA	specification	defines	the	low-level	I/O	transmit	buffer,	but	it	is
rarely	used	in	practice.	Its	main	purpose	is	to	provide	logical	parallelism.
Therefore,	except	in	the	case	of	serial	resources,	the	low-level	I/O
transmit	buffer	is	not	needed,	and	data	is	sent	directly	to	the	device,	as
shown	in	Figure	2.	For	more	information	about	using	the	low-level	I/O
transmit	buffer	with	serial	resources,	refer	to	Controlling	the	Serial	I/O
Buffers.

Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers

Controlling	the	Serial	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_WR_BUF_OPER_MODE
viFlush
viPrintf
viSetBuf

Recommendations	for	Using	the	VISA	Buffers
Unless	you	are	dealing	with	large	buffers,	it	is	usually	unnecessary	to	call
viSetBuf	to	adjust	the	size	of	the	VISA	buffers.
Because	the	low-level	I/O	transmit	buffer	is	rarely	used,	there	is	seldom,
if	ever,	a	need	to	call	viSetBuf	with	the	VI_IO_OUT_BUF	flag.	Even	in	the
case	of	serial	resources,	changing	the	low-level	I/O	transmit	buffer	size
may	have	no	effect.
In	general,	calling	viFlush	with	the	VI_IO_OUT_BUF	or
VI_IO_OUT_BUF_DISCARD	flags	has	no	effect.
If	you	need	to	call	viFlush	on	the	low-level	I/O	receive	buffer,	the	data	is
always	discarded,	regardless	of	whether	you	specify	VI_IO_IN_BUF	or
VI_IO_IN_BUF_DISCARD.
When	using	formatted	I/O,	use	viClear	to	discard	the	formatted	I/O
buffers,	when	possible,	instead	of	viFlush.	This	ensures	that	both	the	read
and	write	formatted	I/O	buffers,	as	well	as	the	device's	internal	buffers,
are	cleared.	Calling	just	viFlush	to	discard	the	formatted	I/O	buffers	may
leave	unread	data	on	the	device,	which	leaves	the	device	in	an	unknown
state.	In	other	words,	further	calls	to	viPrintf	or	viScanf	may	return
unpredictable	results.
In	cases	when	you	need	to	push	the	remaining	formatted	I/O	write	buffer
contents	to	the	device,	call	viFlush	with	the	VI_WRITE_BUF	flag.	The
formatted	I/O	write	buffer	is	automatically	flushed	under	certain
conditions.	For	details	on	these	conditions,	refer	to	Automatically
Flushing	the	Formatted	I/O	Buffers.
Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Manually	Flushing	the	Formatted	I/O	Buffers
viFlush
viPrintf
viScanf
viSetBuf

Formatted	I/O	Instrument	Driver	Examples
The	following	topics	show	examples	of	VISA	formatted	I/O	usage	found	in
existing	instrument	drivers.
Integers
Floating	Point	Values
Strings
Data	Blocks
These	topics	show	how	to	perform	various	I/O	tasks	using	the	formatted
I/O	services	in	VISA.	They	assume	a	basic	knowledge	of	string	formatting
and	ANSI-C	format	specifiers.	For	more	information	on	VISA	format
specifiers,	refer	to	the	appropriate	topics	in	this	help	file.
The	VISA	formatting	capabilities	include	those	specified	by	ANSI-C	with
extensions	for	common	protocols	used	by	instrumentation	systems.	To
perform	I/O,	use	the	viPrintf(),	viScanf(),	and	viQueryf()	service	routines
with	the	appropriate	format	strings.
For	each	category	of	formatted	I/O,	we	give	a	description	and	a	list	of
short	examples.	The	focus	is	on	the	VISA	I/O	supported	format	specifiers
that	are	most	frequently	used	in	driver	development,	with	an	explanation
of	how	different	modifiers	work	with	the	format	codes.	To	eliminate
redundancy	and	make	the	examples	easier	to	understand,	we	have
omitted	error-checking	routines	on	I/O	operations	from	all	examples.

Integers
Integer	formatting	is	often	found	in	driver	development.	Besides
transferring	the	numeric	values	that	the	instrument	reads,	it	may	also
represent	the	status	codes	(Boolean	values)	or	error	codes	returned	by
the	instrument.	When	writing	integer	values	to	or	reading	them	from	the
instrument,	you	can	use	%d	format	code	with	length	modifiers	(h	and	l)
and	the	array	modifier	(,).

Short	Integer—"%hd"
Use	this	modifier	for	short	(16	bit)	integers.	These	are	typically	used	for
holding	test	results	and	status	codes.
Examples
This	example	shows	how	to	scan	a	self	test	result	(a	16	bit	integer)
returned	from	an	instrument	into	a	short	integer.
/*	Self	Test	*/
ViInt16	testResult;
viPrintf	(io,	"*TST?\n");
viScanf	(io,	"%hd",	testResult);
/*	read	test	result	into	short	integer	*/
This	example	shows	how	to	query	the	instrument	to	determine	whether	it
has	encountered	an	error.	The	error	status	is	returned	as	a	short	integer
(16	bits).
/*	Check	Error	Status	*/
ViInt16	esr;
viQueryf	(io,	"*ESR?\n",	"%hd",	&esr);
/*	read	status	into	short	integer	*/

Long	Integer—"%ld",	"%d"
Use	this	modifier	for	long	(32	bit)	integers.	These	are	typically	used	for
data	value	transfers	and	error	code	queries.
Examples
This	example	shows	how	to	scan	an	error	code	(a	32	bit	integer)	returned
from	an	instrument	into	a	32	bit	integer.
/*	Error	query	*/
ViInt32	errCode;
viPrintf	(io,	":STAT:ERR?\n");
viScanf	(io,	"%d",	&errCode);
/*	read	error	code	into	integer	*/
This	example	shows	how	to	format	the	sample	count	(a	32	bit	integer)
into	the	command	string	sent	to	an	instrument.
/*	Send	Sample	Count	*/
ViInt32	value	=	5000;
viPrintf	(io,	":SAMP:COUN	%d;",	value);

Floating	Point	Values
When	writing	floating	point	values	to	or	reading	them	from	the	instrument,
you	can	use	%f	or	%e	format	codes	with	length	modifiers	(l	and	L)	and
the	array	modifier	(,).	Floating	point	values	are	important	when
programming	a	numeric	value	transfer.

Note		%f	does	not	fully	represent	a	floating	point	value	in	the
extreme	cases.	Use	%e	for	a	floating	point	value	in	such	cases.

Double	Float—"%le"
Use	this	modifier	for	double	(64	bit)	floats.	These	are	typically	used	for
data	value	transfers.
Examples
This	example	shows	how	to	scan	the	vertical	range	(a	64	bit	floating	point
number).
/*	Query	Vertical	Range	*/
ViReal64	value;
viPrintf	(io,	":CH1:SCA?\n");
viScanf	(io,	"%le",	&value);
This	example	shows	how	to	format	a	trigger	delay	of	50.0	(specified	as	a
64	bit	floating	point	number)	into	the	command	string	sent	to	an
instrument.
/*	Send	Trigger	Delay	*/
ViReal64	value	=	50.0;
viPrintf	(io,	":TRIG:DEL	%le;",	value);

Precision	Specifier—"."
Use	the	precision	specifier	to	specify	the	number	of	precision	digits	when
doing	a	numeric	transfer.	This	modifier	sets	the	accuracy	of	the	values.
Example
This	example	shows	how	to	set	the	voltage	resolution.	The	resolution	is
represented	in	a	double	floating	point	(64	bits).	The	precision	modifier	.9
specifies	that	there	are	nine	digits	after	the	decimal	point.	In	this	case,
0.000000005	is	sent	to	the	instrument.
/*	Set	Resolution	*/
ViReal64	value	=	0.0000000051;
viPrintf	(io,	"VOLT:RES	%.9le",	value);

Array	of	Floating	Point	Values	Specifier—","
Use	this	modifier	when	transferring	an	array	of	floating	point	values	to	or
from	an	instrument.	The	count	of	the	number	of	elements	can	be
represented	by	a	constant,	asterisk	(*)	sign,	or	number	(#)	sign.	The
asterisk	(*)	sign	indicates	the	count	is	the	first	argument	on	viPrintf().	The
number	(#)	sign	indicates	that	the	count	is	the	first	argument	on	viScanf(),
and	the	count	is	passed	by	address.	You	can	use	the	constant	with	both
viPrintf()	and	viScanf().
Examples
This	example	shows	how	to	send	an	array	of	double	numbers	to	the
instrument.	The	comma	(,)	indicates	the	parameter	is	an	array	and	the
asterisk	(*)	specifies	the	array	size	to	be	passed	in	from	the	argument.
/*	Create	User	Defined	Mask	*/
ViInt32	maskSize	=	100;
ViReal64	interleaved[100];
/*	define	points	in	the	specified	mask	and	store	them	in	the	array	*/
viPrintf	(io,	":MASK:MASK1:POINTS	%*,le",	maskSize,	interleaved);
This	example	shows	how	to	take	multiple	readings	from	an	instrument.
The	comma	(,)	indicates	the	parameter	is	an	array	and	the	number	(#)
sign	specifies	the	actual	number	of	readings	returns	from	the	instrument.
/*	Read	Multi-Point	*/
ViInt32	readingCnt	=	50;
ViReal64	readingArray[50];
viQueryf	(io,	"READ?\n",	"%,#le",	&readingCnt,	readingArray);
This	example	shows	how	to	fetch	multiple	readings	from	an	instrument.
The	comma	(,)	indicates	the	parameter	is	an	array	while	the	constant
1000	specifies	the	number	of	readings.
/*	Fetch	Multi-Point	*/
ViReal64	readingArray[1000];
viScanf	(io,	"%,1000le",	readingArray);

Strings
When	transferring	string	values	to	or	from	the	instrument,	you	can	use
%s,	%t,	%T,	and	%[]	format	codes	with	a	field	width	modifier.	Because
this	is	a	message-based	communication	system,	string	formatting	is	the
most	common	routine.	With	string	formatting,	you	can	configure
instrument	settings	and	query	instrument	information.

White	Space	Termination—"%s"
Characters	are	read	from	an	instrument	into	the	string	until	a	white	space
character	is	read.
Example
This	example	queries	the	trigger	source.	This	instrument	returns	a	string.
The	maximum	length	of	the	string	is	specified	in	the	format	string	with	the
number	(#)	sign.	The	argument	rdBufferSize	contains	the	maximum	length
on	input,	and	it	contains	the	actual	number	of	bytes	read	on	output.
/*	Trigger	Source	Query	*/
ViChar	rdBuffer[BUFFER_SIZE];
ViInt32	rdBufferSize	=	sizeof(rdBuffer);
viPrintf	(io,	":TRIG:SOUR?\n");
viScanf	(io,	"%#s",	&rdBufferSize,	rdBuffer);

END	Termination—"%t"
Characters	are	read	from	an	instrument	into	the	string	until	the	first	END
indicator	is	received.	This	will	often	be	accompanied	by	the	linefeed
character	(\n),	but	that	is	not	always	the	case.	Use	%T	to	parse	up	to	a
linefeed	instead	of	an	END.
Example
This	example	queries	the	instrument	model	on	a	Tektronix	instrument.
The	model	number,	a	32-bit	integer,	is	the	part	of	the	string	between	the
first	two	characters	","	returned	from	the	instrument.	The	format	string	%t
specifies	that	the	string	reads	from	the	device	until	the	END	indicator	is
received.	For	instance,	if	the	instrument	returns	TEKTRONIX,TDS
210,0,CF:91.1CT	FV:v1.16	TDS2CM:CMV:v1.04\n,	the	model	number	is
210,	and	the	module	string	is	0,CF:91.1CT	FV:v1.16
TDS2CM:CMV:v1.04\n.
/*	Instrument	Model	Information	*/
ViChar	moduleStr[BUFFER_SIZE];
ViInt32	modelNumber;
viPrintf	(io,	"*IDN?\n");
viScanf	(io,	"TEKTRONIX,TDS	%d,%t",	&modelNumber,	moduleStr);

Other	Terminators—"%[^]",	"%*[^]"
Without	the	asterisk,	characters	are	read	from	an	instrument	into	the
string	until	the	character	specified	after	^	is	read.	With	the	asterisk,
characters	are	discarded	until	the	character	specified	after	^	is	read.
Examples
This	is	an	example	of	how	to	perform	a	self-test.	In	this	case,	the	format
string	%256[^\n]	specifies	the	maximum	field	width	of	the	string	as	256
and	terminates	with	a	line	feed	(LF)	character.
/*	Self	Test	*/
ViChar	testMessage[256];
viPrintf	(io,	"TST\n");
viScanf	(io,	"%256[^\n]",	testMessage);
This	example	shows	how	to	query	for	an	error.	The	instrument	returns	an
integer	(32	bits)	as	the	error	code	and	a	message	that	terminates	with	a
double-quote	(").	The	message	is	in	quotes.
/*	Error	Query	*/
ViInt32	errCode;
ViChar	errMessage[MAX_SIZE];
viPrintf	(io,	":STAT:ERR?\n");
viScanf	(io,	"%d,\"%[^\"]\"",	&errCode,	errMessage);
This	example	shows	how	to	query	for	the	instrument	manufacturer.	The
manufacturer	name	is	the	first	part	of	the	string,	up	to	the	character	",",
returned	from	the	instrument.	For	instance,	if	the	instrument	returns
ROHDE&SCHWARZ,NRVD,835430/066,V1.52	V1.40\n,	the	manufacturer
name	is	ROHDE&SCHWARZ.	The	rest	of	the	response	is	discarded.
/*	Instrument	Manufacturer	*/
ViChar	rdBuffer[256];
viQueryf	(io,	"*IDN?\n",	"%256[^,]%*T",	rdBuffer);
This	example	shows	how	to	query	for	the	instrument	model.	The	model
name	is	the	part	of	the	string	between	the	first	two	characters	","	returned
from	the	instrument.	For	instance,	if	the	instrument	returns
ROHDE&SCHWARZ,NRVD,	835430/066,V1.52	V1.40\n,	the	model	name	is
NRVD.	The	format	string	%*[^,]	discards	the	input	up	to	character	",".
The	final	part	of	the	response	is	also	discarded.

/*	Instrument	Model	Information	*/
ViChar	rdBuffer[256];
viQueryf	(io,	"*IDN?\n",	"%*[^,],%256[^,]%*T",	rdBuffer);
This	example	queries	the	instrument	firmware	revision.	The	firmware
revision	information	is	everything	up	to	the	carriage	return	(CR)	character.
/*	Instrument	Firmware	Revision	*/
ViChar	rdBuffer[256];
viQueryf	(io,	"ROM?",	"%256[^\r]",	rdBuffer);

Data	Blocks
Both	raw	data	and	binary	data	can	be	transferred	between	the	driver	and
the	instrument.	Data	block	transfer	is	a	simple	yet	powerful	formatting
technique	for	transferring	waveform	data	between	drivers	and
instruments.

IEEE	488.2	Binary	Data—"%b"
When	writing	binary	data	to	or	reading	it	from	the	instrument,	you	can	use
%b,	%B	format	codes	with	length	modifiers	(h,	l,	z,	and	Z).	ASCII	data	is
represented	by	signed	integer	values.	The	range	of	values	depends	on
the	byte	width	specified.	One-byte-wide	data	ranges	from	–128	to	+127.
Two-byte-wide	data	ranges	from	–32768	to	+32767.	An	example	of	an
ASCII	waveform	data	string	follows:
CURVE	-109,	-110,	-109,	-107,	-109,	-107,	-105,	-103,	-100,	-97,	-90,	-84,	-80
Examples
This	example	queries	a	waveform.	The	data	is	in	IEEE	488.2
<ARBITRARY	BLOCK	PROGRAM	DATA>	format.	The	number	(#)	sign
specifies	the	data	size.	In	the	absence	of	length	modifiers,	the	data	is
assumed	to	be	of	byte-size	elements.
/*	Waveform	Query	*/
ViInt32	totalPoints	=	MAX_DATA_PTS;
ViInt8	rdBuffer[MAX_DATA_PTS];
viQueryf	(io,	":CURV?\n",	"%#b",	&totalPoints,	rdBuffer);
This	example	shows	how	to	scan	the	preamble	of	waveform	data
returned	from	a	scope,	how	to	determine	the	number	of	data	points	in	the
waveform,	and	how	to	scan	the	array	of	raw	binary	data	returned.
/*	Waveform	Preamble	*/
ViByte	data[MAX_WAVEFORM_SIZE];
ViInt32	i,	tmpCount,	acqType;
ViReal64	xInc,	xOrg,	xRef,	yInc,	yOrg,	yRef;

viQueryf	(io,	"WAV:PRE?\n",
"%*[^,],	%ld,	%ld,	%*[^,],	%Lf,	%Lf,	%Lf,	%Lf,	%Lf,	%Lf",
&acqType,	&tmpCount,	&xInc,	&xOrg,	&xRef,	&yInc,	&yOrg,	&yRef);

tmpCount	=	(acqType	==	3)	?	2*tmpCount	:	tmpCount;
viQueryf	(io,	"WAV:DAT?\n",	"%#b",	&tmpCount,	data));

Raw	Binary	Data—"%y"
When	transferring	raw	binary	data	to	or	from	an	instrument,	use	the	%y
format	code	with	length	modifiers	(h	and	l)	and	byte	ordering	modifiers
(!ob	and	!ol).	Raw	binary	data	can	be	represented	by	signed	integer
values	or	positive	integer	values.	The	range	of	the	values	depends	on	the
specified	byte	width:

Byte	Width Signed	Integer	Range Positive	Integer	Range
1 –128	to	+127 0	to	255
2 –32768	to	+32767 0	to	65535

Examples
This	example	shows	how	to	send	a	block	of	unsigned	short	integer	(16
bits)	in	binary	form	to	the	instrument.	In	this	case,	the	binary	data	is	an
arbitrary	waveform.	The	asterisk	(*)	specifies	the	block	size	to	be	passed
in	from	the	argument.	Also,	!ob	specifies	data	is	sent	in	standard	(big
endian)	format.	Use	!ol	to	send	data	in	little	endian	format.
/*	Create	Arbitrary	Waveform	*/
ViInt32	wfmSize	=	WFM_SIZE;
ViUInt16	dataBuffer[WFM_SIZE];	/*	contains	waveform	data	*/
dataBuffer[WFM_SIZE-1]	|=	0x1000;
/*	Add	the	end	of	waveform	indicator	*/
viPrintf	(io,	"STARTBIN	0	%d;%*!obhy",	wfmSize,	wfmSize,	dataBuffer);
This	example	shows	how	to	send	a	block	of	signed	integers	(32	bits)	in
binary	form	to	the	instrument.	The	asterisk	(*)	specifies	the	block	size	to
be	passed	in	from	the	argument.	Without	the	presence	of	a	byte	order
modifier,	data	is	sent	in	standard	(big	endian)	format.
/*	Create	FM	Modulation	Waveform	*/
ViInt32	dataBuffer[WFM_SIZE];
/*contains	waveform	data	*/
viPrintf	(io,	"%*ly",	wfmSize,	dataBuffer);

Register-Based	Communication
The	following	topics	show	how	to	use	the	VISA	library	in	register-based
communication.
Introduction
High-Level	Access	Operations
High-Level	Block	Operations
Low-Level	Access	Operations
Overview	of	Register	Accesses	from	Computers
Using	VISA	to	Perform	Low-Level	Register	Accesses
Operations	versus	Pointer	Dereference
Manipulating	the	Pointer
Bus	Errors

Comparison	of	High-Level	and	Low-Level	Access
Speed
Ease	of	Use
Accessing	Multiple	Address	Spaces

Shared	Memory	Operations
Shared	Memory	Sample	Code

Note		You	can	skip	these	topics	if	you	are	using	GPIB,	Serial,
Ethernet,	or	USB	exclusively.	Register-based	programming	applies
only	to	PXI,	VXI,	and	GPIB-VXI.

Introduction
Register-based	devices	(RBDs)	are	a	class	of	devices	that	are	simple
and	relatively	inexpensive	to	manufacture.	Communication	with	such
devices	is	usually	accomplished	via	reads	and	writes	to	registers.	VISA
has	the	ability	to	read	from	and	write	to	individual	device	registers,	as
well	as	a	block	of	registers,	through	the	Memory	I/O	Services.
In	addition	to	accessing	RBDs,	VISA	also	provides	support	for	memory
management	of	the	memory	exported	by	a	device.	For	example,	both
local	controllers	and	remote	devices	can	have	general-purpose	memory
in	A24/A32	space.	With	VISA,	although	the	user	must	know	how	each
remote	device	accesses	its	own	memory,	the	memory	management
aspects	of	local	controllers	are	handled	through	the	Shared	Memory
operations—viMemAlloc()	and	viMemFree().	For	more	information	on	this
topic,	refer	to	Shared	Memory	Operations.
With	the	Memory	I/O	Services,	you	access	the	device	registers	based	on
the	session	to	the	device.	In	other	words,	if	a	session	communicates	with
a	device	at	VXI	logical	address	16,	you	cannot	use	Memory	I/O	Services
on	that	session	to	access	registers	on	a	device	at	any	other	logical
address.	The	range	of	address	locations	you	can	access	with	Memory
I/O	Services	on	a	session	is	the	range	of	address	locations	assigned	to
that	device.	This	is	true	for	both	High-Level	and	Low-Level	Access
operations.
To	facilitate	access	to	the	device	registers	for	multiple	VXI	devices,	VISA
allows	you	to	open	a	VXI	MEMACC	(memory	access)	session.	A	session
to	a	VXI	MEMACC	Resource	allows	an	application	to	access	the	entire
VXI	memory	range	for	a	specified	address	space.	The	MEMACC
Resource	supports	the	same	high-level	and	low-level	operations	as	the
INSTR	Resource.	Programmatically,	the	main	difference	between	a	VXI
INSTR	session	and	a	VXI	MEMACC	session	is	the	value	of	the	offset
parameter	you	pass	to	the	register	based	operations.	When	using	an
INSTR	Resource,	all	address	parameters	are	relative	to	the	device's
assigned	memory	base	in	the	given	address	space;	knowing	a	device's
base	address	is	neither	required	by	nor	relevant	to	the	user.	When	using
a	MEMACC	Resource,	all	address	parameters	are	absolute	within	the
given	address	space;	knowing	a	device's	base	address	is	both	required
by	and	relevant	to	the	user.

Note		A	session	to	a	MEMACC	Resource	supports	only	the	high-
level,	low-level,	and	resource	template	operations.	A	MEMACC
session	does	not	support	the	other	INSTR	operations.

In	VISA,	you	can	choose	between	two	styles	for	accessing	registers—
High-Level	Access	or	Low-Level	Access.	Both	styles	have	operations	to
read	the	value	of	a	device	register	and	write	to	a	device	register,	as
shown	in	the	following	table.	In	addition,	there	are	high-level	operations
designed	to	read	or	write	a	block	of	data.	The	block-move	operations	do
not	have	a	low-level	counterpart.

High-Level	Access High-Level	Block Low-Level	Access

Read
viIn8()
viIn16()
viIn32()

viMoveIn8()
viMoveIn16()
viMoveIn32()

viPeek8()
viPeek16()
viPeek32()

Write
viOut8()
viOut16()
viOut32()

viMoveOut8()
viMoveOut16()
viMoveOut32()

viPoke8()
viPoke16()
viPoke32()

Note		The	other	register-based	communication	topics	use	XX	in
the	names	of	some	operations	to	denote	that	the	information
applies	to	8-bit,	16-bit,	and	32-bit	reads	and	writes.	For	example,
viInXX()	refers	to	viIn8(),	viIn16(),	and	viIn32().

High-Level	Access	Operations
The	High-Level	Access	(HLA)	operations	viInXX()	and	viOutXX()	have	a
simple	and	easy-to-use	interface	for	performing	register-based
communication.	The	HLA	operations	in	VISA	are	wholly	self-contained,	in
that	all	the	information	necessary	to	carry	out	the	operation	is	contained
in	the	parameters	of	the	operation.	The	HLA	operations	also	perform	all
the	necessary	hardware	setup	as	well	as	the	error	detection	and
handling.	There	is	no	need	to	call	other	operations	to	do	any	other	activity
related	to	the	register	access.	For	this	reason,	you	should	use	HLA
operations	if	you	are	just	becoming	familiar	with	the	system.
To	use	viInXX()	or	viOutXX()	operations	to	access	a	register	on	a	device,
you	need	to	have	the	following	information	about	the	register:

The	address	space	where	the	register	is	located.	In	a	VXI
interface	bus,	for	example,	the	address	space	can	be	A16,	A24,
or	A32.	In	the	PXI	bus,	the	device's	address	space	can	be	the
PXI	configuration	registers	or	one	of	the	BAR	spaces	(BAR0-
BAR5).
The	offset	of	the	register	relative	to	the	device	for	the	specified
address	space.	You	do	not	need	to	know	the	actual	base	address
of	the	device,	just	the	offset.

Note		When	using	the	VXI	MEMACC	Resource,	you	need	to
provide	the	absolute	VXI	address	(base	+	offset)	for	the	register.

The	following	sample	code	reads	the	Device	Type	register	of	a	VXI
device	located	at	offset	0	from	the	base	address	in	A16	space,	and	writes
a	value	to	the	A24	shared	memory	space	at	offset	0x20	(this	offset	has
no	special	significance).
status	=	viIn16(instr,	VI_A16_SPACE,	0,	&retValue);
status	=	viOut16(instr,	VI_A24_SPACE,	0x20,	0x1234);
With	this	information,	the	HLA	operations	perform	the	necessary
hardware	setup,	perform	the	actual	register	I/O,	check	for	error
conditions,	and	restore	the	hardware	state.	To	learn	how	to	perform	these
steps	individually,	see	the	Low-Level	Access	operations.
The	HLA	operations	can	detect	and	handle	a	wide	range	of	possible
errors.	HLA	operations	perform	boundary	checks	and	return	an	error
code	(VI_ERROR_INV_OFFSET)	to	disallow	accesses	outside	the	valid

range	of	addresses	that	the	device	supports.	The	HLA	operations	also
trap	and	handle	any	bus	errors	appropriately	and	then	report	the	bus
error	as	VI_ERROR_BERR.
That	is	all	that	is	really	necessary	to	perform	register	I/O.	For	more
examples	of	HLA	register	I/O,	see	the	register-based	communication
example.

High-Level	Block	Operations
The	high-level	block	operations	viMoveInXX()	and	viMoveOutXX()	have	a
simple	and	easy-to-use	interface	for	reading	and	writing	blocks	of	data
residing	at	either	the	same	or	consecutive	(incrementing)	register
addresses.	Like	the	high-level	access	operations,	the	high-level	block
operations	can	detect	and	handle	many	errors	and	do	not	require	calls	to
the	low-level	mapping	operations.	Unlike	the	high-level	access
operations,	the	high-level	block	operations	do	not	have	a	direct	low-level
counterpart.	To	perform	block	operations	using	the	low-level	access
operations,	you	must	map	the	desired	region	of	memory	and	then
perform	multiple	viPeekXX()	or	viPokeXX()	operation	invocations,	instead
of	a	single	call	to	viMoveInXX()	or	viMoveOutXX().
To	use	the	block	operations	to	access	a	device,	you	need	to	have	the
following	information	about	the	registers:

The	address	space	where	the	registers	are	located.	In	a	VXI
interface,	for	example,	the	address	space	can	be	A16,	A24,	or
A32.	In	the	PXI	bus,	the	device's	address	space	can	be	the	PXI
configuration	registers	or	one	of	the	BAR	spaces	(BAR0-BAR5).
The	beginning	offset	of	the	registers	relative	to	the	device	for	the
specified	address	space.

Note		With	an	INSTR	Resource,	you	do	not	need	to	know
the	actual	base	address	of	the	device,	just	the	offset.

The	number	of	registers	or	register	values	to	access.
The	default	behavior	of	the	block	operations	is	to	access	consecutive
register	addresses.	However,	you	can	change	this	behavior	using	the
attributes	VI_ATTR_SRC_INCREMENT	(for	viMoveInXX())	and
VI_ATTR_DEST_INCREMENT	(for	viMoveOutXX()).	If	the	value	is
changed	from	1	(the	default	value,	indicating	consecutive	addresses)	to	0
(indicating	that	registers	are	to	be	treated	as	FIFOs),	then	the	block
operations	perform	the	specified	number	of	accesses	to	the	same
register	address.

Note		The	range	value	of	0	for	the	VI_ATTR_SRC_INCREMENT
and	VI_ATTR_DEST_INCREMENT	attributes	may	not	be
supported	on	all	VISA	implementations.	In	this	case,	you	may	need
to	perform	a	manual	FIFO	block	move	using	individual	calls	to	the

high-level	or	low-level	access	operations.

If	you	are	using	the	block	operations	in	the	default	mode	(consecutive
addresses),	the	number	of	elements	that	you	want	to	access	may	not	go
beyond	the	end	of	the	device's	memory	in	the	specified	address	space.
In	other	words,	the	following	code	sample	reads	the	VXI	device's	entire
register	set	in	A16	space:
status	=	viMoveIn16(instr,	VI_A16_SPACE,	0,	0x20,	regBuffer16);
Notice	that	although	the	device	has	0x40	bytes	of	registers	in	A16	space,
the	fourth	parameter	is	0x20.	Why	is	this?	Since	the	operation	accesses
16-bit	registers,	the	actual	range	of	registers	read	is	0x20	accesses	times
2	B,	or	all	0x40	bytes.	Similarly,	the	following	code	sample	reads	a	PXI
device's	entire	register	set	in	configuration	space:
status	=	viMoveIn32	(instr,	VI_PXI_CFG_SPACE,	0,	64,	regBuffer32);
When	using	the	block	operations	to	access	FIFO	registers,	the	number	of
elements	to	read	or	write	is	not	restricted,	because	all	accesses	are	to
the	same	register	and	never	go	beyond	the	end	of	the	device's	memory
region.	The	following	sample	code	writes	4	KB	of	data	to	a	device's	FIFO
register	in	A16	space	at	offset	0x10	(this	offset	has	no	special
significance):
status	=	viSetAttribute(instr,	VI_ATTR_DEST_INCREMENT,	0);
status	=	viMoveOut32(instr,	VI_A16_SPACE,	0x10,	1024,	regBuffer32);

Low-Level	Access	Operations
Low-Level	Access	(LLA)	operations	provide	a	very	efficient	way	to
perform	register-based	communication.	LLA	operations	incur	much	less
overhead	than	HLA	operations	for	certain	types	of	accesses.	LLA
operations	perform	the	same	steps	that	the	HLA	operations	do,	except
that	each	individual	task	performed	by	an	HLA	operation	is	an	individual
operation	under	LLA.

Overview	of	Register	Accesses	from	Computers
Before	learning	about	the	LLA	operations,	first	consider	how	a	computer
can	perform	a	register	access	to	an	external	device.	There	are	two
possible	ways	to	perform	this	access.	The	first	and	more	obvious,
although	primitive,	is	to	have	some	hardware	on	the	computer	that
communicates	with	the	external	device.
You	would	have	to	follow	these	steps:

1.	 Write	the	address	you	want.
2.	 Specify	the	data	to	send.
3.	 Send	the	command	to	perform	the	access.

As	you	can	see,	this	method	involves	a	great	deal	of	communication	with
the	local	hardware.
The	National	Instruments	MXI	plug-in	cards	and	embedded	VXI
computers	use	a	second,	much	more	efficient	method.	This	method
involves	taking	a	section	of	the	computer's	address	space	and	mapping
this	space	to	another	space,	such	as	the	VXI	A16	space.	Most	PXI
devices	also	have	registers	that	are	memory	mapped	into	your	computer.
To	understand	how	mapping	works,	you	must	first	remember	that
memory	and	address	space	are	two	different	things.	For	example,	most
32-bit	CPUs	have	4	GB	of	address	space,	but	have	memory	measured	in
megabytes.	This	means	that	the	CPU	can	put	out	over	232	possible
addresses	onto	the	local	bus,	but	only	a	small	portion	of	that	corresponds
to	memory.	In	most	cases,	the	memory	chips	in	the	computer	will
respond	to	these	addresses.	However,	because	there	is	less	memory	in
the	computer	than	address	space,	National	Instruments	can	add
hardware	that	responds	to	other	addresses.	This	hardware	can	then
modify	the	address,	according	to	the	mapping	that	it	has,	to	a	VXI
address	and	perform	the	access	on	the	VXIbus	automatically.	The	result
is	that	the	computer	acts	as	if	it	is	performing	a	local	access,	but	in	reality
the	access	has	been	mapped	out	of	the	computer	and	to	the	VXIbus.
You	may	wonder	what	the	difference	is	between	the	efficient	method	and
the	primitive	method.	They	seem	to	be	telling	the	hardware	the	same
information.	However,	there	are	two	important	differences.	In	the	primitive
method,	the	communication	described	must	take	place	for	each	access.
However,	the	efficient	method	requires	only	occasional	communication

with	the	hardware.	Only	when	you	want	a	different	address	space	or	an
address	outside	of	the	window	do	you	need	to	reprogram	the	hardware.
In	addition,	when	you	have	set	up	your	hardware,	you	can	use	standard
memory	access	methods,	such	as	pointer	dereferences	in	C,	to	access
the	registers.

Using	VISA	to	Perform	Low-Level	Register
Accesses
The	first	LLA	operation	you	need	to	call	to	access	a	device	register	is	the
viMapAddress()	operation,	which	sets	up	the	hardware	window	and
obtains	the	appropriate	pointer	to	access	the	specified	address	space.
The	viMapAddress()	operation	first	programs	the	hardware	to	map	local
CPU	addresses	to	hardware	addresses	as	described	in	the	previous
section.	In	addition,	it	returns	a	pointer	that	you	can	use	to	access	the
registers.
The	following	code	is	an	example	of	programming	the	VXI	hardware	to
access	A16	space.
status	=	viMapAddress(instr,	VI_A16_SPACE,	0,	0x40,	VI_FALSE,	VI_NULL,
&address);
This	sample	code	sets	up	the	hardware	to	map	A16	space,	starting	at
offset	0	for	0x40	bytes,	and	returns	the	pointer	to	the	window	in	address.
Remember	that	the	offset	is	relative	to	the	base	address	of	the	device	we
are	talking	to	through	the	instr	session,	not	from	the	base	of	A16	space
itself.	Therefore,	offset	0	does	not	mean	address	0	in	A16	space,	but
rather	the	starting	point	of	the	device's	A16	memory.	You	can	ignore	the
VI_FALSE	and	VI_NULL	parameters	for	the	most	part	because	they	are
reserved	for	definition	by	a	future	version	of	VISA.
If	you	call	viMap	Address()	on	an	INSTR	session	with	an	address	space
the	device	does	not	support,	or	an	offset	or	size	greater	than	the	device's
memory	range,	then	the	VISA	driver	will	not	map	the	memory	and	will
return	an	error.

Note		To	access	the	device	registers	through	a	VXI	MEMACC
session,	you	need	to	provide	the	absolute	VXIbus	addresses	(base
address	for	device	+	register	offset	in	device	address	space).

If	you	need	more	than	a	single	map	for	a	device,	you	must	open	a
second	session	to	the	device,	because	VISA	currently	supports	only	a
single	map	per	session.	There	is	very	low	overhead	in	having	two
sessions	because	sessions	themselves	do	not	take	much	memory.
However,	you	need	to	keep	track	of	two	session	handles.	Notice	that	this
is	different	from	the	maximum	number	of	windows	you	can	have	on	a
system.	The	hardware	for	the	controller	you	are	using	may	have	a	limit

on	the	number	of	unique	windows	it	can	support.
When	you	are	finished	with	the	window	or	need	to	change	the	mapping	to
another	address	or	address	space,	you	must	first	unmap	the	window
using	the	viUnmapAddress()	operation.	All	you	need	to	specify	is	which
session	you	used	to	perform	the	map.
status	=	viUnmapAddress(instr);

Operations	Versus	Pointer	Dereference
After	the	viMapAddress()	operation	returns	the	pointer,	you	can	use	it	to
read	or	write	registers.	VISA	provides	the	viPeekXX()	and	viPokeXX()
operations	to	perform	the	accesses.	On	many	systems,	the
viMapAddress()	operation	returns	a	pointer	that	you	can	also	dereference
directly,	rather	than	calling	the	LLA	operations.	The	performance	gain
achievable	by	using	pointer	dereferences	over	operation	invocations	is
extremely	system	dependent.	To	determine	whether	you	can	use	a
pointer	dereference	to	perform	register	accesses	on	a	given	mapped
session,	examine	the	value	of	the	VI_ATTR_WIN_ACCESS	attribute.	If
the	value	is	VI_DEREF_ADDR,	it	is	safe	to	perform	a	pointer	dereference.
To	make	your	code	portable	across	different	platforms,	we	recommend
that	you	always	use	the	accessor	operations—viPeekXX()	and
viPokeXX()—as	a	backup	method	to	perform	register	I/O.	In	this	way,	not
only	is	your	source	code	portable,	but	your	executable	can	also	have
binary	compatibility	across	different	hardware	platforms,	even	on	systems
that	do	not	support	direct	pointer	dereferences:
viGetAttribute(instr,	VI_ATTR_WIN_ACCESS,	&access);
if	(access	==	VI_DEREF_ADDR)
*address	=	0x1234;

else
viPoke16(instr,	address,	0x1234);

Manipulating	the	Pointer
Every	time	you	call	viMapAddress(),	the	pointer	you	get	back	is	valid	for
accessing	a	region	of	addresses.	Therefore,	if	you	call	viMapAddress()
with	mapBase	set	to	address	0	and	mapSize	to	0x40	(the	configuration
register	space	for	a	VXI	device),	you	can	access	not	only	the	register
located	at	address	0,	but	also	registers	in	the	same	vicinity	by
manipulating	the	pointer	returned	by	viMapAddress().	For	example,	if	you
want	to	access	another	register	at	address	0x2,	you	can	add	2	to	the
pointer.	You	can	add	up	to	and	including	0x3F	to	the	pointer	to	access
these	registers	in	this	example	because	we	have	specified	0x40	as	the
map	size.	However,	notice	that	you	cannot	subtract	any	value	from	the
address	variable	because	the	mapping	starts	at	that	location	and	cannot
go	backwards.	The	following	example	shows	how	you	can	access	other
registers	from	address.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

#define	ADD_OFFSET(addr,	offs)	(((ViPByte)addr)	+	(offs))

int	main(void)
{

ViStatus
ViAddr
ViUInt16
ViSession

status;
defaultRM,	instr;
address;
value;

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	User	pointer	*/
/*	To	store	register	value	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	VXI	Device	at	Logical	Address	16	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	&instr);

status	=	viMapAddress(instr,	VI_A16_SPACE,	0,	0x40,	VI_FALSE,	VI_NULL,
&address);

viPeek16(instr,	address,	&value);
/*	Access	a	different	register	by	manipulating	the	pointer.	*/
viPeek16(instr,	ADD_OFFSET(address,	2),	&value);

status	=	viUnmapAddress(instr);

/*	Close	down	the	system	*/
status	=	viClose(instr);
status	=	viClose(defaultRM);
return	0;

}

Manipulating	the	Pointer	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	sesn
Dim	addr
Dim	mSpace
Dim	Value

As	ViStatus
As	ViSession
As	ViSession
As	ViAddr
As	Integer
As	Integer

Rem	Open	Default	Resource	Manager
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	VXI	Device	at	Logical	Address	16
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	sesn)

mSpace	=	VI_A16_SPACE

stat	=	viMapAddress(sesn,	mSpace,	0,	&H40,	VI_FALSE,	VI_NULL,	addr)

viPeek16	sesn,	addr,	Value
Rem	Access	a	different	register	by	manipulating	the	pointer.
viPeek16	sesn,	addr	+	2,	Value

stat	=	viUnmapAddress(sesn)	

Rem	Close	down	the	system

stat	=	viClose(sesn)

stat	=	viClose(dfltRM)
End	Sub

Bus	Errors
The	LLA	operations	do	not	report	bus	errors.	In	fact,	viPeekXX()	and
viPokeXX()	do	not	report	any	error	conditions.	However,	the	HLA
operations	do	report	bus	errors.	When	using	the	LLA	operations,	you
must	ensure	that	the	addresses	you	are	accessing	are	valid.

Comparison	of	High-Level	and	Low-Level
Access
The	following	topics	compare	high-level	and	low-level	access.
Speed
Ease	of	Use
Accessing	Multiple	Address	Spaces

Speed
In	terms	of	the	speed	of	developing	your	application,	the	HLA	operations
are	much	faster	to	implement	and	debug	because	of	the	simpler	interface
and	the	status	information	received	after	each	access.	For	example,	HLA
operations	encapsulate	the	mapping	and	unmapping	of	hardware
windows,	which	means	that	you	do	not	need	to	call	viMapAddress()	and
viUnmapAddress()	separately.
For	speed	of	execution,	the	LLA	operations	perform	faster	when	used	for
several	random	register	I/O	accesses	in	a	single	window.	If	you	know	that
the	next	several	accesses	are	within	a	single	window,	you	can	perform
the	mapping	just	once	and	then	each	of	the	accesses	has	minimal
overhead.
The	HLA	operations	will	be	slower	because	they	must	perform	a	map,
access,	and	unmap	within	each	call.	Even	if	the	window	is	correctly
mapped	for	the	access,	the	HLA	call	at	the	very	least	needs	to	perform
some	sort	of	check	to	determine	if	it	needs	to	remap.	Furthermore,
because	HLA	operations	encapsulate	many	status-checking	capabilities
not	included	in	LLA	operations,	HLA	operations	have	higher	software
overhead.	For	these	reasons,	HLA	is	slower	than	LLA	in	many	cases.

Note		For	block	transfers,	the	high-level	viMoveXX()	operations
perform	the	fastest.

Ease	of	Use
HLA	operations	are	easier	to	use	because	they	encapsulate	many	status
checking	capabilities	not	included	in	LLA	operations,	which	explains	the
higher	software	overhead	and	lower	execution	speed	of	HLA	operations.
HLA	operations	also	encapsulate	the	mapping	and	unmapping	of
hardware	windows,	which	means	that	you	do	not	need	to	call
viMapAddress()	and	viUnmapAddress()	separately.

Accessing	Multiple	Address	Spaces
You	can	use	LLA	operations	to	access	only	the	address	space	currently
mapped.	To	access	a	different	address	space,	you	need	to	perform	a
remapping,	which	involves	calling	viUnmapAddress()	and	viMapAddress().
Therefore,	LLA	programming	becomes	more	complex,	without	much	of	a
performance	increase,	for	accessing	several	address	spaces
concurrently.	In	these	cases,	the	HLA	operations	are	superior.
In	addition,	if	you	have	several	sessions	to	the	same	or	different	devices
all	performing	register	I/O,	they	must	compete	for	the	finite	number	of
windows	available.	When	using	LLA	operations,	you	must	allocate	the
windows	and	always	ensure	that	the	program	does	not	ask	for	more
windows	than	are	available.	The	HLA	operations	avoid	this	problem	by
restoring	the	window	to	the	previous	setting	when	they	are	done.	Even	if
all	windows	are	currently	in	use	by	LLA	operations,	you	can	still	use	HLA
functions	because	they	will	save	the	state	of	the	window,	remap,	access,
and	then	restore	the	window.	As	a	result,	you	can	have	an	unlimited
number	of	HLA	windows.

Shared	Memory	Operations
Note		There	are	two	distinct	cases	for	using	shared	memory
operations.	In	the	first	case,	the	local	VXI	controller	exports
general-purpose	memory	to	the	A24/A32	space.	In	the	second
case,	remote	VXI	devices	export	memory	into	A24/A32	space.
Unlike	the	first	case,	the	memory	exported	to	A24/A32	space	may
not	be	general	purpose,	so	the	VISA	Shared	Memory	services	do
not	control	memory	on	remote	VXI	devices.

A	common	configuration	in	a	VXI	system	is	to	export	memory	to	either
the	A24	or	A32	space.	The	local	controller	usually	can	export	such
memory.	This	memory	can	then	be	used	to	buffer	the	data	going	to	or
from	the	instruments	in	the	system.	However,	a	common	problem	is
preventing	multiple	devices	from	using	the	same	memory.	In	other	words,
a	memory	manager	is	needed	on	this	memory	to	prevent	corruption	of
the	data.
The	VISA	Shared	Memory	operations—viMemAlloc()	and	viMemFree()—
provide	the	memory	management	for	a	specific	device,	namely,	the	local
controller.	Since	these	operations	are	part	of	the	INSTR	resource,	they
are	associated	with	a	single	VXI	device.	In	addition,	because	a	VXI
device	can	export	memory	in	either	A24	or	A32	space	(but	not	both),	the
memory	pool	available	to	these	operations	is	defined	at	startup.	You	can
determine	whether	the	memory	resides	in	A24	or	A32	space	by	querying
the	attribute	VI_ATTR_MEM_SPACE.

Shared	Memory	Sample	Code
The	following	example	shows	how	these	shared	memory	operations	work
by	incorporating	them	into	the	pointer	manipulation	example.	Their	main
purpose	is	to	allocate	a	block	of	memory	from	the	pool	that	can	then	be
accessed	through	the	standard	register-based	access	operations	(high
level	or	low	level).	The	INSTR	resource	for	this	device	ensures	that	no
two	sessions	requesting	memory	receive	overlapping	blocks.

Example
Note		This	example	uses	bold	text	to	distinguish	lines	of	code	that
are	different	from	those	in	the	pointer	manipulation	example.

Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

#define	ADD_OFFSET	(addr,	offs)	(((ViPByte)addr)	+	(offs))

int	main(void)
{

ViStatus
ViSession
ViAddr
ViBusAddress
ViUInt16
ViUInt16

status;
defaultRM,	self;
address;
offset;
addrSpace;
value;

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	User	pointer	*/
/*	Shared	memory	offset	*/
/*	Shared	memory	space	*/
/*	To	store	register	value	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	VXI	Device	at	Logical	Address	0	*/
/*	NOTE:	For	simplicity,	we	will	not	show	error	checking	*/
status	=	viOpen(defaultRM,	"VXI0::0::INSTR",	VI_NULL,	VI_NULL,	&self

/*	Allocate	a	portion	of	the	device's	memory	*/
status	=	viMemAlloc(self,	0x100,	&offset);

/*	Determine	where	the	shared	memory	resides	*/
status	=	viGetAttribute(self,	VI_ATTR_MEM_SPACE,	&addrSpace);

status	=	viMapAddress(self,	addrSpace,	offset,	0x100,	VI_FALSE,	VI_NULL,
&address);

viPeek16(self,	address,	&value);
/*	Access	a	different	register	by	manipulating	the	pointer.	*/
viPeek16(self,	ADD_OFFSET(address,	2),	&value);

status	=	viUnmapAddress(self);
status	=	viMemFree(self,	offset);

/*	Close	down	the	system	*/
status	=	viClose(self);
status	=	viClose(defaultRM);
return	0;

}

Shared	Memory	Sample	Code	Example	(Visual
Basic)

Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	self
Dim	addr
Dim	offs
Dim	mSpace
Dim	Value

As	ViStatus
As	ViSession
As	ViSession
As	ViAddr
As	Long
As	Integer
As	Integer

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	VXI	Device	at	Logical	Address	0
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpen(dfltRM,	"VXI0::0::INSTR",	VI_NULL,	VI_NULL,	self)

Rem	Allocate	a	portion	of	the	device's	memory
stat	=	viMemAlloc(self,	&H100,	offs)

Rem	Determine	where	the	shared	memory	resides
stat	=	viGetAttribute(self,	VI_ATTR_MEM_SPACE,	mSpace)
stat	=	viMapAddress(self,	mSpace,	offs,	&H100,	VI_FALSE,	VI_NULL,	addr)
viPeek16	self,	addr,	Value
Rem	Access	a	different	register	by	manipulating	the	pointer.
viPeek16	self,	addr	+	2,	Value

stat	=	viUnmapAddress(self)
stat	=	viMemFree(self,	offs)

Rem	Close	down	the	system
stat	=	viClose(self)
stat	=	viClose(dfltRM)

End	Sub

VISA	Events
The	following	topics	describe	the	VISA	event	model	and	how	to	use	it.
They	discuss	the	various	events	VISA	supports	and	the	event	handling
paradigm.
Introduction
Supported	Events
Enabling	and	Disabling	Events
Queuing
Callbacks
Callback	Modes
Independent	Queues
The	userHandle	Parameter

Queuing	and	Callback	Mechanism	Sample	Code
The	Life	of	the	Event	Context
Event	Context	with	the	Queuing	Mechanism
Event	Context	with	the	Callback	Mechanism

Exception	Handling

Introduction
VISA	defines	a	common	mechanism	to	notify	an	application	when	certain
conditions	occur.	These	conditions	or	occurrences	are	referred	to	as
events.	An	event	is	a	means	of	communication	between	a	VISA	resource
and	its	applications.	Typically,	events	occur	because	of	a	condition
requiring	the	attention	of	applications.
The	VISA	event	model	provides	the	following	two	different	ways	for	an
application	to	receive	event	notification:

The	first	method	uses	a	queuing	mechanism.	You	can	use	this
method	to	place	all	of	the	occurrences	of	a	specified	event	in	a
queue.	The	queuing	mechanism	is	generally	useful	for	noncritical
events	that	do	not	need	immediate	servicing.	Queuing	describes
this	mechanism	in	detail.
The	other	method	is	to	have	VISA	invoke	a	function	that	the
program	specifies	prior	to	enabling	the	event.	This	is	known	as	a
callback	handler	and	is	invoked	on	every	occurrence	of	the
specified	event.	The	callback	mechanism	is	useful	when	your
application	requires	an	immediate	response.	Callbacks	describes
this	mechanism	in	detail.

The	queuing	and	callback	mechanisms	are	suitable	for	different
programming	styles.	However,	because	these	mechanisms	work
independently	of	each	other,	you	can	have	them	both	enabled	at	the
same	time.

Supported	Events
VISA	defines	the	following	generic	and	INSTR-specific	event	types.
Generic	and	INSTR-Specific	Event	Types

Event	Type Description Resource	Class(es),
Other	Notes

VI_EVENT_IO_COMPLETION Notification
that	an
asynchronous
I/O	operation
has
completed.

The	I/O	Completion	event
applies	to	all
asynchronous	operations,
which	for	INSTR	includes
viReadAsync(),
viWriteAsync(),	and
viMoveAsync().	For
resource	classes	that	do
not	support	asynchronous
operations,	this	event	type
is	not	applicable.

VI_EVENT_EXCEPTION Notification
that	an	error
condition
(exception)
has	occurred
during	an
operation
invocation.

The	exception	event
supports	only	the	callback
model.	Refer	to	Exception
Handling	for	more
information	about	this
event	type.

VI_EVENT_SERVICE_REQ Notification	of
a	service
request
(SRQ)	from
the	device.

Supported	for	message
based	INSTR	classes,
including	GPIB,	VXI,
GPIB-VXI,	and	TCPIP.

VI_EVENT_VXI_SIGP Notification	of
a	VXIbus
signal	or
VXIbus
interrupt	from
the	device.

Supported	for	VXI	INSTR
only.

VI_EVENT_VXI_VME_INTR Notification	of
a	VXIbus
interrupt	from
the	device.

Supported	for	VXI	INSTR
only.	This	applies	to	both
VXI	and	VME	devices.

VI_EVENT_TRIG Notification	of
a	VXIbus
trigger.

Supported	for	VXI	INSTR
and	VXI	BACKPLANE
only.

VI_EVENT_PXI_INTR Notification	of
a	PCI/PXI
interrupt	from
the	device.

Supported	for	PXI	INSTR
only.	Not	supported	on	all
platforms.

VI_EVENT_ASRL_BREAK Notification
that	a	break
signal	was
received.

Supported	for	Serial
INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.

VI_EVENT_ASRL_CTS Notification
that	the	Clear
To	Send
(CTS)	line
changed
state.

Supported	for	Serial
INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.	If
the	CTS	line	changes
state	quickly	several	times
in	succession,	not	all	line
state	changes	will
necessarily	result	in	event
notifications.

VI_EVENT_ASRL_DCD Notification
that	the	Data

Supported	for	Serial
INSTR	only.	This	event	is

Carrier	Detect
(DCD)	line
changed
state.

supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.	If
the	DCD	line	changes
state	quickly	several	times
in	succession,	not	all	line
state	changes	will
necessarily	result	in	event
notifications.

VI_EVENT_ASRL_DSR Notification
that	the	Data
Set	Ready
(DSR)	line
changed
state.

Supported	for	Serial
INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.	If
the	DSR	line	changes
state	quickly	several	times
in	succession,	not	all	line
state	changes	will
necessarily	result	in	event
notifications.

VI_EVENT_ASRL_RI Notification
that	the	Ring
Indicator	(RI)
input	signal
was	asserted.

Supported	for	Serial
INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.

VI_EVENT_ASRL_CHAR Notification Supported	for	Serial

that	at	least
one	data	byte
has	been
received.

INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.
Each	data	character	will
not	necessarily	result	in	an
event	notification.

VI_EVENT_ASRL_TERMCHAR Notification
that	the
termination
character	has
been
received.

Supported	for	Serial
INSTR	only.	This	event	is
supported	for	all	serial
ports	on	Windows	and
LabVIEW	RT,	and	ENET-
Serial	on	all	platforms.
Except	for	ENET-Serial,	it
is	not	supported	for	serial
ports	on	Linux	or	Mac.	The
actual	termination
character	is	specified	by
setting
VI_ATTR_TERMCHAR
prior	to	enabling	this
event.	For	this	event,	the
setting	of
VI_ATTR_TERMCHAR_EN
is	ignored.

To	learn	about	other	event	types	defined	for	other	resource	classes,	refer
to	Interface-Specific	Information	or	the	appropriate	event	topics.
VISA	events	use	a	list	of	attributes	to	maintain	information	associated
with	the	event.	You	can	access	the	event	attributes	using	the
viGetAttribute()	operation,	just	as	for	the	session	and	resource	attributes.
Remember	to	use	the	eventContext	as	the	first	parameter,	rather	than	the
I/O	session.
All	VISA	events	support	the	generic	event	attribute

VI_ATTR_EVENT_TYPE.	This	attribute	returns	the	identifier	of	the	event
type.	In	addition	to	this	attribute,	individual	events	may	define	attributes	to
hold	additional	event	information.	The	events	listed	below	define	the
accompanying	additional	attributes;	the	other	event	types	do	not	define
any	additional	attributes.

VI_EVENT_IO_COMPLETION	defines,	among	other	attributes,
VI_ATTR_STATUS	and
VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
which	provide	information	about	how	the	asynchronous	I/O
operation	completed.
VI_EVENT_VXI_SIGP	defines	VI_ATTR_SIGP_STATUS_ID,	which
contains	the	16-bit	Status/ID	value	retrieved	during	the	interrupt
or	from	the	Signal	register.
VI_EVENT_VXI_VME_INTR	defines
VI_ATTR_RECV_INTR_LEVEL	and	VI_ATTR_INTR_STATUS_ID,
which	provide	the	interrupt	level	and	32-bit	interrupt	Status/ID
value,	respectively.
VI_EVENT_TRIG	defines	VI_ATTR_RECV_TRIG_ID,	which
provides	the	trigger	line	on	which	the	trigger	was	received.
VI_EVENT_EXCEPTION	defines	VI_ATTR_STATUS	and
VI_ATTR_OPER_NAME,	which	provide	information	about	what
error	was	generated	and	which	operation	generated	it,
respectively.

All	the	attributes	VISA	events	support	are	read-only	attributes;	a	user
application	cannot	modify	their	values.	Refer	to	the	appropriate	event
topics	for	detailed	information	on	the	specific	events.

Enabling	and	Disabling	Events
Before	a	session	can	use	either	the	VISA	callback	or	queuing
mechanism,	you	need	to	enable	the	session	to	sense	events.	You	use
the	viEnableEvent()	operation	to	enable	an	event	type	using	either	of	the
mechanisms.	For	example,	to	enable	the	VI_EVENT_SERVICE_REQ
event	for	queuing,	use	the	following	code:
status	=
viEnableEvent(instr,VI_EVENT_SERVICE_REQ,VI_QUEUE,VI_NULL);

Note		VISA	currently	allows	both	queuing	and	callbacks	to	be
enabled	for	the	same	event	type	on	the	same	session.	You	can	do
this	in	one	call	by	bitwise	ORing	the	mechanisms	together
(VI_QUEUE|VI_HNDLR),	or	you	can	do	this	in	two	separate	calls
to	viEnableEvent().	The	two	mechanisms	operate	independently	of
each	other.	However,	using	both	mechanisms	for	the	same	event
type	on	the	same	session	is	usually	unnecessary	and	is	difficult	to
debug.	Therefore,	this	is	highly	discouraged.

Use	viDisableEvent()	to	stop	a	session	from	receiving	events	of	a
specified	type.	You	can	specify	the	mechanism	for	which	you	are
disabling,	although	it	is	more	convenient	to	use	VI_ALL_MECH	to	disable
the	event	type	for	all	mechanisms.	For	example,	to	disable	the
VI_EVENT_SERVICE_REQ	event	regardless	of	the	mechanism	for	which
it	was	enabled,	use	the	following	code:
status	=	viDisableEvent(instr,VI_EVENT_SERVICE_REQ,VI_ALL_MECH);
The	viEnableEvent()	operation	also	automatically	enables	the	hardware,	if
necessary	for	detecting	the	event.	The	hardware	is	enabled	when	the	first
call	to	viEnableEvent()	for	the	event	is	made	from	any	of	the	sessions
currently	active.	Similarly,	viDisableEvent()	disables	the	hardware	when
the	last	enabled	session	disables	itself	for	the	event.

Queuing
The	queuing	mechanism	in	VISA	gives	an	application	the	flexibility	to
receive	events	only	when	it	requests	them.	An	application	uses	the
viWaitOnEvent()	operation	to	retrieve	the	event	information.	However,	in
addition	to	retrieving	events	from	the	queue,	you	can	also	use
viWaitOnEvent()	in	your	application	to	halt	the	current	execution	and	wait
for	the	event	to	arrive.	Both	of	these	cases	are	discussed	in	this	section.
The	event	queuing	process	requires	that	you	first	enable	the	session	to
sense	the	particular	event	type.	When	enabled,	the	session	can
automatically	queue	the	event	occurrences	as	they	happen.	A	session
can	later	dequeue	these	events	using	the	viWaitOnEvent()	operation.	You
can	set	the	timeout	to	VI_TMO_IMMEDIATE	if	you	want	your	application
to	check	if	any	event	of	the	specified	event	type	exists	in	the	queue.

Note		Each	session	has	a	queue	for	each	of	the	possible	events
that	can	occur.	This	means	that	each	queue	is	per	session	and	per
event	type.

An	application	can	also	use	viWaitOnEvent()	to	wait	for	events	if	none
currently	exists	in	the	queue.	When	you	select	a	non-zero	timeout	value
(something	other	than	VI_TMO_IMMEDIATE),	the	operation	retrieves	the
specified	event	if	it	exists	in	the	queue	and	returns	immediately.
Otherwise,	the	application	waits	until	the	specified	event	occurs	or	until
the	timeout	expires,	whichever	occurs	first.	When	an	event	arrives	and
causes	viWaitOnEvent()	to	return,	the	event	is	not	queued	for	the	session
on	which	the	wait	operation	was	invoked.	However,	if	any	other	session	is
currently	enabled	for	queuing,	the	event	is	placed	on	the	queue	for	that
session.
You	can	use	viDisableEvent()	to	disable	event	queuing	on	a	session,	as
discussed	in	the	previous	section.	After	calling	viDisableEvent(),	no	further
event	occurrences	are	queued	on	that	session,	but	event	occurrences
that	were	already	in	the	event	queue	are	retained.	Your	application	can
use	viWaitOnEvent()	to	dequeue	these	retained	events	in	the	same
manner	as	previously	described.	The	wait	operation	does	not	need	to
have	events	enabled	to	work;	however,	the	session	must	be	enabled	to
detect	new	events.	An	application	can	explicitly	clear	(flush)	the	event
queue	with	the	viDiscardEvents()	operation.
The	event	queues	in	VISA	do	not	dynamically	grow	as	new	events	arrive.

The	default	queue	length	is	50,	but	you	can	change	the	size	of	a	queue
by	using	the	VI_ATTR_MAX_QUEUE_LENGTH	template	attribute.	This
attribute	specifies	the	maximum	number	of	events	that	can	be	placed	in	a
queue.

Note		If	the	event	queue	is	full	and	a	new	event	arrives,	the	new
event	is	discarded.

VISA	does	not	let	you	dynamically	configure	queue	lengths.	That	is,	you
can	only	modify	the	queue	length	on	a	given	session	before	the	first
invocation	of	the	viEnableEvent()	operation,	as	shown	in	the	following
code	segment.
status	=	viSetAttribute(instr,	VI_ATTR_MAX_QUEUE_LENGTH,	10);
status	=	viEnableEvent(instr,	VI_EVENT_SERVICE_REQ,	VI_QUEUE,
VI_NULL);
See	the	handling	events	example	for	an	example	of	handling	events	via
the	queue	mechanism.

Callbacks
The	VISA	event	model	also	allows	applications	to	install	functions	that
can	be	called	back	when	a	particular	event	type	is	received.	You	need	to
install	a	handler	before	enabling	a	session	to	sense	events	through	the
callback	mechanism.	Refer	to	userHandle	Parameter	for	more
information.	The	procedure	works	as	follows:

1.	 Use	the	viInstallHandler()	operation	to	install	handlers	to	receive
events.

2.	 Use	the	viEnableEvent()	operation	to	enable	the	session	for	the
callback	mechanism	as	described	in	Enabling	and	Disabling
Events.

3.	 The	VISA	driver	invokes	the	handler	on	every	occurrence	of	the
specified	event.

4.	 VISA	provides	the	event	object	in	the	eventContext	parameter	of
viEventHandler().	The	event	context	is	like	a	data	structure,	and
contains	information	about	the	specific	occurrence	of	the	event.
Refer	to	The	Life	of	the	Event	Context	for	more	information	on
event	context.

You	can	now	have	multiple	handlers	per	session	in	the	current	revision	of
VISA.	If	you	have	multiple	handlers	installed	for	the	same	event	type	on
the	same	session,	each	handler	is	invoked	on	every	occurrence	of	that
event	type.	The	handlers	are	invoked	in	reverse	order	of	installation;	that
is,	in	Last	In	First	Out	(LIFO)	order.	For	a	given	handler	to	prevent	other
handlers	on	the	same	session	from	being	executed,	it	should	return	the
value	VI_SUCCESS_NCHAIN	rather	than	VI_SUCCESS.	This	does	not
affect	the	invocation	of	event	handlers	on	other	sessions	or	in	other
processes.

Callback	Modes
VISA	gives	you	the	choice	of	two	different	modes	for	using	the	callback
mechanism.	You	can	use	either	direct	callbacks	or	suspended	callbacks.
You	can	have	only	one	of	these	callback	modes	enabled	at	any	one	time.
To	use	the	direct	callback	mode,	specify	VI_HNDLR	in	the	mechanism
parameter.	In	this	mode,	VISA	invokes	the	callback	routine	at	the	time	the
event	occurs.
To	use	the	suspended	callback	mode,	specify	VI_SUSPEND_HNDLR	in
the	mechanism	parameter.	In	this	mode,	VISA	does	not	invoke	the
callback	routine	at	the	time	of	event	occurrence;	instead,	the	events	are
placed	on	a	suspended	handler	queue.	This	queue	is	similar	to	the	queue
used	by	the	queuing	mechanism	except	that	you	cannot	access	it
directly.	You	can	obtain	the	events	on	the	queue	only	by	re-enabling	the
session	for	callbacks.	You	can	flush	the	queue	with	viDiscardEvents().
For	example,	the	following	code	segment	shows	how	you	can	halt	the
arrival	of	events	while	you	perform	some	critical	operations	that	would
conflict	with	code	in	the	callback	handler.	Notice	that	no	events	are	lost
while	this	code	executes,	because	they	are	stored	on	a	queue.
status	=	viEnableEvent(instr,	VI_EVENT_SERVICE_REQ,VI_HNDLR,
VI_NULL);
.
.
.
status	=	viEnableEvent(instr,	VI_EVENT_SERVICE_REQ,
VI_SUSPEND_HNDLR,	VI_NULL);

/*Perform	code	that	must	not	be	interrupted	by	a	callback.	*/

status	=	viEnableEvent(instr,	VI_EVENT_SERVICE_REQ,	VI_HNDLR,
VI_NULL);
When	you	switch	the	event	mechanism	from	VI_HNDLR	to
VI_SUSPEND_HNDLR,	the	VISA	driver	can	still	detect	the	events.	For
example,	VXI	interrupts	still	generate	a	local	interrupt	on	the	controller
and	VISA	handles	these	interrupts.	However,	the	event	VISA	generates
for	the	VXI	interrupt	is	now	placed	on	the	handler	queue	rather	than
passed	to	the	application.	When	the	critical	section	completes,	switching

the	mechanism	from	VI_SUSPEND_HNDLR	back	to	VI_HNDLR	causes
VISA	to	call	the	application's	callback	functions	whenever	it	detects	a
new	event	as	well	as	for	every	event	waiting	on	the	handler	queue.

Independent	Queues
As	stated	previously,	the	callback	and	the	queuing	mechanisms	operate
totally	independently	of	each	other,	so	VISA	keeps	the	information	for
event	occurrences	separately	for	both	mechanisms.	Therefore,	VISA
maintains	the	suspended	handler	queue	separately	from	the	event	queue
used	for	the	queuing	mechanism.	The	VI_ATTR_MAX_QUEUE_LENGTH
attribute	mentioned	in	Queuing	applies	to	the	suspended	handler	queue
as	well	as	to	the	queue	for	the	queuing	mechanism.	However,	because
these	queues	are	separate,	if	one	of	the	queues	reaches	the	predefined
limit	for	storing	event	occurrences,	it	does	not	directly	affect	the	other
mechanism.

The	userHandle	Parameter
When	using	viInstallHandler()	to	install	handlers	for	the	callback
mechanism,	your	application	can	use	the	userHandle	parameter	to
supply	a	reference	to	any	application-defined	value.	This	reference	is
passed	back	to	the	application	as	the	userHandle	parameter	to	the
callback	routine	during	handler	invocation.	By	supplying	different	values
for	this	parameter,	applications	can	install	the	same	handler	with	different
application-defined	contexts.
For	example,	applications	often	need	information	that	was	received	in	the
callback	to	be	available	for	the	main	program.	In	the	past,	this	has	been
done	through	global	variables.	In	VISA,	userHandle	gives	the	application
more	modularity	than	is	possible	with	global	variables.	In	this	case,	the
application	can	allocate	a	data	structure	to	hold	information	locally.	When
it	installs	the	callback	handler,	it	can	pass	the	reference	to	this	data
structure	to	the	callback	handler	via	the	userHandle.	This	means	that	the
handler	can	store	the	information	in	the	local	data	structure	rather	than	a
global	data	structure.
For	another	example,	consider	an	application	that	installs	a	handler	with
a	fixed	value	of	0x1	for	the	userHandle	parameter.	It	can	install	the	same
handler	with	a	different	value	(for	example,	0x2)	for	the	same	event	type
on	another	session.	However,	installations	of	the	same	handler	are
different	from	one	another.	Both	handlers	are	invoked	when	the	event	of
the	given	type	occurs,	but	in	one	invocation	the	value	passed	to
userHandle	is	0x1,	and	in	the	other	it	is	0x2.	As	a	result,	you	can
uniquely	identify	VISA	event	handlers	by	a	combination	of	the	handler
address	and	user	context	pair.
This	structure	also	is	important	when	the	application	attempts	to	remove
the	handler.	The	operation	viUninstallHandler()	requires	not	only	the
handler's	address	but	also	the	userHandle	value	to	correctly	identify
which	handler	to	remove.

Queuing	and	Callback	Mechanism	Sample	Code
This	example	demonstrates	the	use	of	both	the	queuing	and	callback
mechanisms	in	event	handling.	In	the	program,	a	message	is	sent	to	a
GPIB	device	telling	it	to	read	some	data.	When	the	data	collection	is
complete,	the	device	asserts	SRQ,	informing	the	program	that	it	can	now
read	data.	After	reading	the	device's	status	byte,	the	handler	begins	to
read	asynchronously	using	a	buffer	of	information	that	the	main	program
passes	to	it.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"
#include	<stdlib.h>

#define	MAX_CNT	1024

/*	This	function	is	to	be	called	when	an	SRQ	event	occurs	*/
/*	Here,	an	SRQ	event	indicates	the	device	has	data	ready	*/
ViStatus	_VI_FUNCH	myCallback(ViSession	vi,	ViEventType	etype,	ViEvent
eventContext,	ViAddr	userHandle)
{

ViJobId
ViStatus
ViUInt16

jobID;
status;
stb;

status	=	viReadSTB(vi,	&stb);
status	=	viReadAsync(vi,(ViBuf)userHandle,MAX_CNT,&jobID);
return	VI_SUCCESS;

}

int	main(void)
{

ViStatus
ViSession
ViBuf
ViUInt32
ViEventType
ViEvent

status;
defaultRM,	gpibSesn;
bufferHandle;
retCount;
etype;
eventContext;

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	initializing	VISA...exiting	*/
return	-1;

}

/*	Open	communication	with	GPIB	device	at	primary	address	2	*/
status	=	viOpen(defaultRM,	"GPIB0::2::INSTR",	VI_NULL,	VI_NULL,
&gpibSesn);

/*	Allocate	memory	for	buffer	*/
/*	In	addition,	allocate	space	for	the	ASCII	NULL	character	*/
bufferHandle	=	(ViBuf)malloc(MAX_CNT+1);

/*	Tell	the	driver	what	function	to	call	on	an	event	*/
status	=	viInstallHandler(gpibSesn,	VI_EVENT_SERVICE_REQ,	myCallback,
bufferHandle);

/*	Enable	the	driver	to	detect	events	*/
status	=	viEnableEvent(gpibSesn,	VI_EVENT_SERVICE_REQ,	VI_HNDLR,
VI_NULL);
status	=	viEnableEvent(gpibSesn,	VI_EVENT_IO_COMPLETION,	VI_QUEUE,
VI_NULL);

/*	Tell	the	device	to	begin	acquiring	a	waveform	*/
status	=	viWrite(gpibSesn,	"E0x51;	W1",	9,	&retCount);

/*	The	device	asserts	SRQ	when	the	waveform	is	ready	*/
/*	The	callback	begins	reading	the	data	*/
/*	After	the	data	is	read,	an	I/O	completion	event	occurs	*/

status	=	viWaitOnEvent(gpibSesn,	VI_EVENT_IO_COMPLETION,	20000,
&etype,	&eventContext);
if	(status	<	VI_SUCCESS)	{
/*	Waveform	not	received...exiting	*/
free(bufferHandle);
viClose(defaultRM);
return	-1;

}
/*	Your	code	should	process	the	waveform	data	*/

/*	Close	the	event	context	*/
viClose(eventContext);

/*	Stop	listening	for	events	*/
status	=	viDisableEvent(gpibSesn,	VI_ALL_ENABLED_EVENTS,

VI_ALL_MECH);
status	=	viUninstallHandler(gpibSesn,	VI_EVENT_SERVICE_REQ,
myCallback,bufferHandle);

/*	Close	down	the	system	*/
free(bufferHandle);
status	=	viClose(gpibSesn);
status	=	viClose(defaultRM);
return	0;

}

Queuing	and	Callback	Mechanism	Sample	Code
Example	(Visual	Basic)

Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Visual	Basic	does	not	support	callback	handlers,	so	currently	the	only
way	to	handle	events	is	through	viWaitOnEvent().	Because	Visual	Basic
does	not	support	asynchronous	operations	either,	this	example	uses	the
viRead()	call	instead	of	the	viReadAsync()	call.

Private	Sub	vbMain()
Const	MAX_CNT	=	1024
Dim	stat
Dim	dfltRM
Dim	sesn
Dim	bufferHandle
Dim	retCount
Dim	etype
Dim	event
Dim	stb

As	ViStatus
As	ViSession
As	ViSession
As	String
As	Long
As	ViEventType
As	ViEvent
As	Integer

Rem	Begin	by	initializing	the	system
Rem	NOTE:	For	simplicity,	we	will	not	show	error	checking
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communication	with	GPIB	device	at	primary	address	2
stat	=	viOpen(dfltRM,	"GPIB0::2::INSTR",	VI_NULL,	VI_NULL,	sesn)

Rem	Allocate	memory	for	buffer
Rem	In	addition,	allocate	space	for	the	ASCII	NULL	character
bufferHandler	=	Space$(MAX_CNT	+	1)

Rem	Enable	the	driver	to	detect	events
stat	=	viEnableEvent(sesn,	VI_EVENT_SERVICE_REQ,	VI_QUEUE,	VI_NULL)

Rem	Tell	the	device	to	begin	acquiring	a	waveform
stat	=	viWrite(sesn,	"E0x51;	W1",	9,	retCount)

Rem	The	device	asserts	SRQ	when	the	waveform	is	ready
stat	=	viWaitOnEvent(sesn,	VI_EVENT_SERVICE_REQ,	20000,	etype,	event)
If	(stat	<	VI_SUCCESS)	Then
Rem	Waveform	not	received...exiting
stat	=	viClose	(dfltRM)
Exit	Sub

End	If
stat	=	viReadSTB	(sesn,	stb)

Rem	Read	the	data
stat	=	viRead(sesn,	bufferHandle,	MAX_CNT,	retCount)
Rem	Your	code	should	process	the	waveform	data

Rem	Close	the	event	context
stat	=	viClose	(event)

Rem	Stop	listening	for	events
stat	=	viDisableEvent(sesn,	VI_ALL_ENABLED_EVENTS,	VI_ALL_MECH)

Rem	Close	down	the	system
stat	=	viClose(sesn)
stat	=	viClose(dfltRM)

End	Sub

The	Life	of	the	Event	Context
The	event	context	that	the	VISA	driver	generates	when	an	event	occurs
is	a	data	object	that	contains	the	information	about	the	event.	Because	it
is	more	than	just	a	simple	variable,	memory	allocation	and	deallocation
becomes	important.

Event	Context	with	the	Queuing	Mechanism
When	you	use	the	queuing	mechanism,	the	event	context	is	returned
when	you	call	viWaitOnEvent().	The	VISA	driver	has	created	this	data
structure,	but	it	cannot	destroy	it	until	you	tell	it	to.	For	this	reason,	in
VISA	you	call	viClose()	on	the	event	context	so	the	driver	can	free	the
memory	for	you.	Always	remember	to	call	viClose()	when	you	are	done
with	the	event.
If	you	know	the	type	of	event	you	are	receiving,	and	the	event	does	not
provide	any	useful	information	to	your	application	other	than	whether	it
actually	occurred,	you	can	pass	VI_NULL	as	the	outEventType	and
eventContext	parameters	as	shown	in	the	following	example:
status	=	viWaitOnEvent(gpibSesn,	VI_EVENT_SERVICE_REQ,	5000,
VI_NULL,	VI_NULL);
In	this	case,	VISA	automatically	closes	the	event	data	structure	rather
than	returning	it	to	you.	Calling	viClose()	on	the	event	context	is	therefore
both	unnecessary	and	incorrect	because	VISA	would	not	have	returned
the	event	context	to	you.

Event	Context	with	the	Callback	Mechanism
In	the	case	of	callbacks,	the	event	is	passed	to	you	in	a	function,	so	the
VISA	driver	has	a	chance	to	destroy	it	when	the	function	ends.	This	has
two	important	repercussions.	First,	you	do	not	need	to	call	viClose()	on
the	event	inside	the	callback	function.	Indeed,	calling	this	operation	on
the	event	could	lead	to	serious	problems	because	VISA	will	access	the
event	(to	close	it)	when	your	callback	returns.	Secondly,	the	event	itself
has	a	life	only	as	long	as	the	callback	function	is	executing.	Therefore,	if
you	want	to	keep	any	information	about	the	event	after	the	callback
function,	you	should	use	viGetAttribute()	to	retrieve	the	information	for
storage.	Any	references	to	the	event	itself	becomes	invalid	when	the
callback	function	ends.

Exception	Handling
By	using	the	VISA	event	VI_EVENT_EXCEPTION,	you	can	have	one
point	in	your	code	that	traps	all	errors	and	handles	them	appropriately.
This	means	that	after	you	install	and	enable	your	VISA	exception	handler,
you	do	not	have	to	check	the	return	status	from	each	operation,	which
makes	the	code	easier	to	read	and	maintain.	How	an	application	handles
error	codes	is	specific	to	both	the	device	and	the	application.	For	one
application,	an	error	could	mean	different	things	from	different	devices,
and	might	even	be	ignored	under	certain	circumstances;	for	another,	any
error	could	always	be	fatal.
For	an	application	that	needs	to	treat	all	errors	as	fatal,	one	possible	use
for	this	event	type	would	be	to	print	out	a	debug	message	and	then	exit
the	application.	Because	the	method	of	installing	the	handler	and	then
enabling	the	event	has	already	been	covered,	the	following	code
segment	shows	only	the	handler	itself:
ViStatus	_VI_FUNCH	myEventHandler	(ViSession	vi,	ViEventType	etype,
ViEvent	eventContext,	ViAddr	uHandle)
{

ViChar	rsrcName[256],	operName[256];
ViStatus	stat;
ViSession	rm;

if	(etype	==	VI_EVENT_EXCEPTION)	{
viGetAttribute(vi,VI_ATTR_RSRC_NAME,rsrcName);
viGetAttribute(eventContext,VI_ATTR_OPER_NAME,operName);
viGetAttribute(eventContext,VI_ATTR_STATUS,&stat);
printf(
"Session	0x%08lX	to	resource	%s	caused	error	0x%08lX	in	operation
%s.\n",
vi,rsrcName,stat,operName);

/*	Use	this	code	only	if	you	will	not	return	control	to	VISA	*/
viGetAttribute(vi,VI_ATTR_RM_SESSION,&rm);
viClose(eventContext);
viClose(vi);
viClose(rm);
exit(-1);	/*	exit	the	application	immediately	*/

}
/*	code	for	other	event	types	*/
return	VI_SUCCESS;

}
If	you	wanted	just	to	print	a	message,	you	would	leave	out	the	code	that
closes	the	objects	and	exits.	Notice	that	in	this	code	segment,	the	event
object	is	closed	inside	of	the	callback,	even	though	we	just	recommended
in	the	previous	section	that	you	not	do	this!	The	reason	that	we	do	it	here
is	that	the	code	will	never	return	control	to	VISA—calling	exit()	will	return
control	to	the	operation	system	instead.	This	is	the	only	case	where	you
should	ever	invoke	viClose()	within	a	callback.
Another	(more	advanced)	use	of	this	event	type	is	for	throwing	C++
exceptions.	Because	VISA	exception	event	handlers	are	invoked	in	the
context	of	the	same	thread	in	which	the	error	condition	occurs,	you	can
safely	throw	a	C++	exception	from	the	VISA	handler.	Like	the	example
above,	you	would	invoke	viClose()	on	the	exception	event	(but	you	would
probably	not	close	the	actual	session	or	its	resource	manager	session).
You	would	also	need	to	include	the	information	about	the	VISA	exception
(for	example,	the	status	code)	in	your	own	exception	class	(of	the	type
that	you	throw),	since	this	will	not	be	available	once	the	VISA	event	is
closed.
Throwing	C++	exceptions	introduces	several	issues	to	consider.	First,	if
you	have	mixed	C	and	C++	code	in	your	application,	this	could	introduce
memory	leaks	in	cases	where	C	functions	allocate	local	memory	on	the
heap	rather	than	the	stack.	Second,	if	you	use	asynchronous	operations,
an	exception	is	thrown	only	if	the	error	occurs	before	the	operation	is
posted	(for	example,	if	the	error	generated	is
VI_ERROR_QUEUE_ERROR).	If	the	error	occurs	during	the	operation
itself,	the	status	is	returned	as	part	of	the	VI_EVENT_IO_COMPLETION
event.	This	is	important	because	that	event	may	occur	in	a	separate
thread,	due	to	the	nature	of	asynchronous	I/O.	Therefore,	you	should	not
use	asynchronous	operations	if	you	want	to	throw	C++	exceptions	from
your	handler.

VISA	Locks
The	following	topics	describe	how	to	use	locks	in	VISA.
Introduction
Lock	Types
Lock	Sharing
Acquiring	an	Exclusive	Lock	While	Owning	a	Shared	Lock
Nested	Locks

Locking	Sample	Code

Introduction
VISA	introduces	locks	for	access	control	of	resources.	In	VISA,
applications	can	open	multiple	sessions	to	a	resource	simultaneously	and
can	access	the	resource	through	these	different	sessions	concurrently.	In
some	cases,	applications	accessing	a	resource	must	restrict	other
sessions	from	accessing	that	resource.	For	example,	an	application	may
need	to	execute	a	write	and	a	read	operation	as	a	single	step	so	that	no
other	operations	intervene	between	the	write	and	read	operations.	The
application	can	lock	the	resource	before	invoking	the	write	operation	and
unlock	it	after	the	read	operation,	to	execute	them	as	a	single	step.	VISA
defines	a	locking	mechanism	to	restrict	accesses	to	resources	for	such
special	circumstances.
The	VISA	locking	mechanism	enforces	arbitration	of	accesses	to
resources	on	an	individual	basis.	If	a	session	locks	a	resource,
operations	invoked	by	other	sessions	are	serviced	or	returned	with	a
locking	error,	depending	on	the	operation	and	the	type	of	lock	used.

Lock	Types
VISA	defines	two	different	types,	or	modes,	of	locks:	exclusive	and
shared	locks,	which	are	denoted	by	VI_EXCLUSIVE_LOCK	and
VI_SHARED_LOCK,	respectively.	viLock()	is	used	to	acquire	a	lock	on	a
resource,	and	viUnlock()	is	used	to	release	the	lock.
If	a	session	has	an	exclusive	lock,	other	sessions	cannot	modify	global
attributes	or	invoke	operations,	but	can	still	get	attributes	and	set	local
attributes.	If	the	session	has	a	shared	lock,	other	sessions	that	have
shared	locks	can	also	modify	global	attributes	and	invoke	operations.
Regardless	of	which	type	of	lock	a	session	has,	if	the	session	is	closed
without	first	being	unlocked,	VISA	automatically	performs	a	viUnlock()	on
that	session.

Lock	Sharing
The	locking	mechanism	in	VISA	is	session	based,	not	thread	based.
Therefore,	if	multiple	threads	share	the	same	session,	they	have	the
same	privileges	for	accessing	the	resource.	VISA	locks	will	not	provide
mutual	exclusion	in	this	scenario.	However,	some	applications	might
have	separate	sessions	to	a	resource	for	these	multiple	threads,	and
might	require	that	all	the	sessions	in	the	application	have	the	same
privileges	as	the	session	that	locked	the	resource.	In	other	cases,	there
might	be	a	need	to	share	locks	among	sessions	in	different	applications.
Essentially,	sessions	that	have	a	lock	to	a	resource	may	share	the	lock
with	certain	sessions,	and	exclude	access	from	other	sessions.
This	section	discusses	the	mechanism	that	makes	it	possible	to	share
locks.	VISA	defines	a	lock	type—VI_SHARED_LOCK—that	gives
exclusive	access	privileges	to	a	session,	along	with	the	capability	to
share	these	exclusive	privileges	at	the	discretion	of	the	original	session.
When	locking	sessions	with	a	shared	lock,	the	locking	session	gains	an
access	key.	The	session	can	then	share	this	lock	with	any	other	session
by	passing	the	access	key.	VISA	allows	user	applications	to	specify	an
access	key	to	be	used	for	lock	sharing,	or	VISA	can	generate	the	access
key	for	an	application.
If	the	application	chooses	to	specify	the	accessKey,	other	sessions	that
want	access	to	the	resource	must	choose	the	same	unique	accessKey
for	locking	the	resource.	Otherwise,	when	VISA	generates	the
accessKey,	the	session	that	gained	the	shared	lock	should	make	the
accessKey	available	to	other	sessions	for	sharing	access	to	the	locked
resource.	Before	the	other	sessions	can	access	the	locked	resource,	they
must	acquire	the	lock	using	the	same	access	key	in	the	accessKey
parameter	of	the	viLock()	operation.	Invoking	viLock()	with	the	same
access	key	will	register	the	new	session	with	the	same	access	privileges
as	the	original	session.	All	sessions	that	share	a	resource	should
synchronize	their	accesses	to	maintain	a	consistent	state	of	the	resource.
The	following	code	is	an	example	of	obtaining	a	shared	lock	with	a
requested	name:
status	=	viLock(instr,	VI_SHARED_LOCK,	15000,	"MyLockName",
accessKey);
This	example	attempts	to	acquire	a	shared	lock	with	"MyLockName"	as

the	requestedKey	and	a	timeout	of	15	s.	If	the	call	is	successful,
accessKey	will	contain	"MyLockName".	If	you	want	to	have	VISA
generate	a	key,	simply	pass	VI_NULL	in	place	of	"MyLockName"	and
VISA	will	return	a	unique	key	in	accessKey	that	other	sessions	can	use
for	locking	the	resource.

Acquiring	an	Exclusive	Lock	While	Owning	a
Shared	Lock
When	multiple	sessions	have	acquired	a	shared	lock,	VISA	allows	one	of
the	sessions	to	acquire	an	exclusive	lock	as	well	as	the	shared	lock	it	is
holding.	That	is,	a	session	holding	a	shared	lock	can	also	acquire	an
exclusive	lock	using	the	viLock()	operation.	The	session	holding	both	the
exclusive	and	shared	lock	has	the	same	access	privileges	it	had	when	it
was	holding	only	the	shared	lock.	However,	the	exclusive	lock	precludes
other	sessions	holding	the	shared	lock	from	accessing	the	locked
resource.	When	the	session	holding	the	exclusive	lock	unlocks	the
resource	using	the	viUnlock()	operation,	all	the	sessions	(including	the
one	that	acquired	the	exclusive	lock)	again	have	all	the	access	privileges
associated	with	the	shared	lock.	This	circumstance	is	useful	when	you
need	to	synchronize	multiple	sessions	holding	a	shared	lock.	A	session
holding	an	exclusive	and	shared	lock	can	also	be	useful	when	one	of	the
sessions	needs	to	execute	in	a	critical	section.

Nested	Locks
VISA	supports	nested	locking.	That	is,	a	session	can	lock	the	same
resource	multiple	times	(for	the	same	lock	type).	Unlocking	the	resource
requires	an	equal	number	of	invocations	of	the	viUnlock()	operation.	Each
session	maintains	a	separate	lock	count	for	each	type	of	locks.	Repeated
invocations	of	the	viLock()	operation	for	the	same	session	increase	the
appropriate	lock	count,	depending	on	the	type	of	lock	requested.	In	the
case	of	shared	locks,	nesting	viLock()	calls	return	with	the	same
accessKey	every	time.	In	the	case	of	exclusive	locks,	viLock()	does	not
return	an	accessKey,	regardless	of	whether	it	is	nested.	For	each
invocation	of	viUnlock(),	the	lock	count	is	decremented.	VISA	unlocks	a
resource	only	when	the	lock	count	equals	0.

Locking	Sample	Code
This	example	uses	a	shared	lock	because	two	sessions	are	opened	for
performing	trigger	operations.	The	first	session	receives	triggers	and	the
second	session	sources	triggers.	A	shared	lock	is	needed	because	an
exclusive	lock	would	prohibit	the	other	session	from	accessing	the	same
resource.	If	viWaitOnEvent()	fails,	this	example	performs	a	viClose()	on	the
resource	manager	without	unlocking	or	closing	the	sessions.	When	the
resource	manager	session	closes,	all	sessions	that	were	opened	using	it
automatically	close	as	well.	Likewise,	remember	that	closing	a	session
that	has	any	lock	results	in	automatically	releasing	its	lock(s).

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"

#define	MAX_COUNT	128

int	main(void)
{

ViStatus
ViSession
ViSession
ViChar
ViByte
ViEventType
ViEvent
ViUInt32

status;
defaultRM;
instrIN,
instrOUT;
accKey[VI_FIND_BUFLEN];
buf[MAX_COUNT];
etype;
event;
retCount;

/*	For	checking	errors	*/
/*	Communication	channels	
/*	Communication	channels	*/
/*	Access	key	for	lock	*/
/*	To	store	device	data	*/
/*	To	identify	event	*/
/*	To	hold	event	info	*/
/*	To	hold	byte	count	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}
/*	Open	communications	with	VXI	Device	at	Logical	Addr	16	*/
status	=	viOpen(defaultRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	&instrIN);
status	=	viOpen(defaultRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	&instrOUT);

/*	We	open	two	sessions	to	the	same	device	*/
/*	One	session	is	used	to	assert	triggers	on	TTL	channel	4	*/
/*	The	second	is	used	to	receive	triggers	on	TTL	channel	5	*/

/*	Lock	first	session	as	shared,	have	VISA	generate	the	key	*/
/*	Then	lock	the	second	session	with	the	same	access	key	*/

status	=	viLock(instrIN,	VI_SHARED_LOCK,	5000,	VI_NULL,	accKey);

status	=	viLock(instrOUT,	VI_SHARED_LOCK,	VI_TMO_IMMEDIATE,	accKey,
accKey);

/*	Set	trigger	channel	for	sessions	*/
status	=	viSetAttribute(instrIN,	VI_ATTR_TRIG_ID,VI_TRIG_TTL5);
status	=	viSetAttribute(instrOUT,VI_ATTR_TRIG_ID,VI_TRIG_TTL4);

/*	Enable	input	session	for	trigger	events	*/
status	=	viEnableEvent(instrIN,	VI_EVENT_TRIG,	VI_QUEUE,	VI_NULL);

/*	Assert	trigger	to	tell	device	to	start	sampling	*/
status	=	viAssertTrigger(instrOUT,	VI_TRIG_PROT_DEFAULT);

/*	Device	will	respond	with	a	trigger	when	data	is	ready	*/
if	((status	=	viWaitOnEvent(instrIN,	VI_EVENT_TRIG,	20000,	&etype,	&event))	<
VI_SUCCESS)	{
viClose(defaultRM);
return	-1;

}

/*	Close	the	event	*/
status	=	viClose(event);

/*	Read	data	from	the	device	*/
status	=	viRead(instrIN,	buf,	MAX_COUNT,	&retCount);

/*	Your	code	should	process	the	data	*/

/*	Unlock	the	sessions	*/
status	=	viUnlock(instrIN);
status	=	viUnlock(instrOUT);

/*	Close	down	the	system	*/
status	=	viClose(instrIN);
status	=	viClose(instrOUT);
status	=	viClose(defaultRM);
return	0;

}

Locking	Sample	Code	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Sub	vbMain()
Const	MAX_COUNT	=	128
Dim	stat
Dim	dfltRM
Dim	sesnIN
Dim	sesnOUT
Dim	aKey
Dim	buf
Dim	etype
Dim	event
Dim	retCount

As	ViStatus
As	ViSession
As	ViSession
As	ViSession
As	String	*	VI_FIND_BUFLEN
As	String	*	MAX_COUNT
As	ViEventType
As	ViEvent
As	Long

'For	checking	errors
'Communication	channels
'Communication	channels
'Communication	channels
'Access	key	for	lock
'To	store	device	data
'To	identify	event
'To	hold	event	info
'To	hold	byte	count

Rem	Begin	by	initializing	the	system
stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA...exiting
Exit	Sub

End	If

Rem	Open	communications	with	VXI	Device	at	Logical	Addr	16
stat	=	viOpen(dfltRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	sesnIN)
stat	=	viOpen(dfltRM,	"VXI0::16::INSTR",	VI_NULL,	VI_NULL,	sesnOUT)

Rem	We	open	two	sessions	to	the	same	device
Rem	One	session	is	used	to	assert	triggers	on	TTL	channel	4
Rem	The	second	is	used	to	receive	triggers	on	TTL	channel	5

Rem	Lock	first	session	as	shared,	have	VISA	generate	the	key
Rem	Then	lock	the	second	session	with	the	same	access	key
stat	=	viLock(sesnIN,	VI_SHARED_LOCK,	5000,	"",	aKey)
stat	=	viLock(sesnOUT,	VI_SHARED_LOCK,	VI_TMO_IMMEDIATE,	aKey,	aKey)

Rem	Set	trigger	channel	for	sessions
stat	=	viSetAttribute(sesnIN,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL5)
stat	=	viSetAttribute(sesnOUT,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL4)

Rem	Enable	input	session	for	trigger	events
stat	=	viEnableEvent(sesnIN,	VI_EVENT_TRIG,	VI_QUEUE,	VI_NULL)

Rem	Assert	trigger	to	tell	device	to	start	sampling
stat	=	viAssertTrigger(sesnOUT,	VI_TRIG_PROT_DEFAULT)

Rem	Device	will	respond	with	a	trigger	when	data	is	ready
stat	=	viWaitOnEvent(sesnIN,	VI_EVENT_TRIG,	20000,	etype,	event)
If	(stat	<	VI_SUCCESS)	Then
stat	=	viClose	(dfltRM)
Exit	Sub

End	If

Rem	Close	the	event
stat	=	viClose(event)

Rem	Read	data	from	the	device
stat	=	viRead(sesnIN,	buf,	MAX_COUNT,	retCount)

Rem	Your	code	should	process	the	data

Rem	Unlock	the	sessions
stat	=	viUnlock(sesnIN)
stat	=	viUnlock(sesnOUT)

Rem	Close	down	the	system
stat	=	viClose(sesnIN)
stat	=	viClose(sesnOUT)
stat	=	viClose(dfltRM)

End	Sub

Creating	a	.NET	Application	without
Measurement	Studio
With	the	Microsoft	.NET	Framework	version	1.1	or	later,	you	can	use	NI-
VISA	to	create	applications	using	Visual	C#	and	Visual	Basic	.NET
without	Measurement	Studio.	You	need	Microsoft	Visual	Studio	.NET
2005	or	2003	for	the	API	documentation	to	be	installed.
The	installed	documentation	contains	the	NI-VISA	API	overview	and
function	reference.	This	help	is	fully	integrated	into	the	Visual	Studio
.NET	documentation.	To	view	the	VISA	.NET	documentation,	go	to
Start»Programs»National	Instruments»VISA»NI-VISA	.NET
Framework	1.1	Help.	Expand	NI	Measurement	Studio	Help»NI
Measurement	Studio	.NET	Class
Library»Reference»NationalInstruments.VisaNS	to	view	the	function
reference.	Expand	NI	Measurement	Studio	Help»NI	Measurement
Studio	.NET	Class	Library»Using	the	Measurement	Studio	.NET
Class	Libraries»Using	the	Measurement	Studio	VisaNS	.NET	Library
to	view	conceptual	topics	for	using	NI-VISA	with	Visual	C#	and	Visual
Basic	.NET.
To	get	to	the	same	help	topics	from	within	Visual	Studio	.NET	2003,	go	to
Help»Contents.	Select	Measurement	Studio	from	the	Filtered	By	drop-
down	list	and	follow	the	previous	instructions.

NI	Spy:	Debugging	Tool
NI	Spy	tracks	the	calls	your	application	makes	to	National	Instruments
test	and	measurement	(T&M)	drivers,	including	NI-VXI,	NI-VISA,	and	NI-
488.2.
NI	Spy	highlights	functions	that	return	errors,	so	you	can	quickly
determine	which	functions	failed	during	your	development.	NI	Spy	can
also	log	your	program's	calls	to	these	drivers	into	a	file	so	you	can	check
them	for	errors	at	your	convenience.

Interactive	Control	of	VISA
NI-VISA	comes	with	a	utility	called	VISA	Interactive	Control	(VISAIC)	on
all	platforms	that	support	VISA,	with	the	exception	of	Macintosh	and
VxWorks.	This	utility	gives	you	access	to	all	VISA	functionality
interactively,	in	an	easy-to-use	graphical	environment.	It	is	a	convenient
starting	point	for	program	development	and	learning	about	VISA.

Note		To	launch	VISAIC	on	Windows,	select	Start»National
Instruments»VISA»VISA	Interactive	Control.
Note		On	Linux,	VISAIC	is	called	NIvisaic.

When	VISAIC	runs,	it	automatically	finds	all	of	the	available	resources	in
the	system	and	lists	the	instrument	descriptors	for	each	of	these
resources	under	the	appropriate	resource	type.	This	information	is
displayed	on	the	VISA	I/O	tab.
The	following	figure	shows	the	VISAIC	opening	window.

VISAIC	Opening	Window
The	Soft	Front	Panels	tab	of	the	main	VISAIC	panel	gives	you	the
option	to	launch	the	soft	front	panels	of	any	VXIplug&play	instrument
drivers	that	have	been	installed	on	the	system.

The	NI	I/O	tab	gives	you	the	option	to	launch	the	NI-VXI	interactive	utility
or	the	NI-488.2	interactive	utility.	This	gives	you	convenient	links	into	the
interactive	utilities	for	the	drivers	VISA	calls	in	case	you	would	like	to	try
debugging	at	this	level.
The	Resources	to	Find	control	in	VISAIC	is	a	string	control	for	using
VISA	expressions	to	find	specific	instruments.	Refer	to	viFindRsrc	for
information	about	creating	custom	expressions.	You	also	can	click	the
drop	down	arrow	next	to	the	control	and	select	Create	Query	to	open	a
dialog	for	specifying	machines,	interfaces,	or	attributes	to	filter	on.	The
dialog	populates	the	Resources	to	Find	control	with	the	appropriate	text
to	limit	your	find	to	specific	filtering	conditions.
Double-clicking	on	any	of	the	instrument	descriptors	shown	in	the	VISAIC
window	opens	a	session	to	that	instrument.	Opening	a	session	to	the
instrument	produces	a	window	with	a	series	of	tabs	for	interactively
running	VISA	commands.	(This	is	the	same	as	clicking	the	Open	Test
Panel	button	in	Measurement	&	Automation	Explorer	(MAX).)	The	exact
appearance	of	these	tabs	depends	on	which	compatibility	mode	VISAIC
is	in.	To	access	the	compatibility	mode	and	other	VISAIC	preferences,
select	Edit»Preferences...	to	bring	up	the	following	window.

The	VISA	implementations	are	slightly	different	in	LabVIEW	and
LabWindows/CVI.	These	differences	are	reflected	in	the	operation	tabs
that	are	shown	when	you	open	a	session	to	a	resource.

Windows	users—VISAIC	detects	whether	you	have	LabVIEW

and/or	LabWindows/CVI	installed	on	your	system	and	sets	the
compatibility	mode	accordingly.
If	you	change	the	preferences,	the	new	preferences	take	effect
for	any	subsequent	session	you	open.
When	a	session	to	a	resource	is	opened	interactively,	a	window
similar	to	the	following	appears.	This	window	uses	the	LabVIEW
compatibility	mode.

By	default,	the	Show	All	VISA	Operations	checkbox	unchecked,	and
only	the	most	commonly	used	tabs	are	shown.	By	checking	the	Show	All
VISA	Operations	checkbox,	you	can	use	the	more	advanced	features
such	as	events	and	locks.	The	checkbox	is	checked	in	the	following
window.

Several	main	tabs	appear	in	the	window.	The	initial	tab	is	the	Template
tab,	which	contains	all	operations	dealing	with	events,	properties,	and
locks.	Notice	that	there	is	a	separate	tab	for	each	operation	contained
within	the	main	tab.	The	other	main	tabs	are	Basic	I/O,	Register	I/O,	and
Interface	I/O.	The	Basic	I/O	tab	contains	the	operations	for	message-
based	instruments,	while	the	Register	I/O	tab	contains	the	operations	for
register-based	instruments	and	the	Interface	I/O	tab	contains	other	bus-
specific	operations.	The	Register	I/O	tab	and	Interface	I/O	tab	are	not
displayed	if	they	do	not	apply	to	the	given	bus	or	instrument	type.

Measurement	&	Automation	Explorer
Measurement	&	Automation	Explorer	(MAX)	provides	access	to	all
National	Instruments	DAQ,	GPIB,	IMAQ,	IVI,	Motion,	VISA,	and	VXI
devices.	With	MAX,	you	can	configure	National	Instruments	hardware
and	software,	add	new	channels,	interfaces,	and	virtual	instruments,
execute	system	diagnostics,	and	view	the	devices	and	instruments
connected	to	your	system.	Installs	automatically	with	NI-VISA	version	2.5
or	later	or	NI-VXI	version	3.0	or	later.	Available	only	for	Win32-based
operating	systems.
For	more	information	about	using	MAX,	refer	to	the	following	topics:
NI-VISA	Platform-Specific	and	Portability	Issues
How	to	Configure	and	Use	Remote	NI-VISA
Additional	Programming	Issues
Default	vs.	Configured	Communication	Settings
Introduction	to	Programming	GPIB	Devices	in	VISA
Opening	a	Session
VME	Support
viFindRsrc

visaconf
visaconf	is	the	VISA	configuration	utility	for	Linux	and	Mac	OS	X.
For	more	information	about	using	visaconf,	refer	to	the	following	topics:
Additional	Programming	Issues
Default	vs.	Configured	Communication	Settings
How	to	Configure	and	Use	Remote	NI-VISA
NI-VISA	Platform-Specific	and	Portability	Issues
Opening	a	Session
viFindRsrc

NI-VISA	Driver	Wizard	Overview
To	make	your	PXI/PCI,	USB,	or	FireWire	device	visible	to	NI-VISA
applications,	the	operating	system	(OS)	must	know	to	associate	your
hardware	with	the	NI-VISA	driver.	This	association	is	accomplished	on
Microsoft	Windows	operating	systems	using	a	Setup	Information	file	(.inf
file).
The	NI-VISA	Driver	Wizard	generates	one	.inf	file	for	your	PXI/PCI	or
FireWire	device	for	use	on	all	supported	operating	systems.	For	a	USB
device,	the	wizard	generates	two	.inf	files,	one	for	Windows	XP/2000,	the
other	for	Windows	Vista.	Using	the	wizard	for	a	USB	device	is	not
necessary	for	use	on	Linux	or	Mac	OS	X.	At	this	time,	the	list	of
supported	operating	systems	includes	Windows	Vista/XP/2000,	LabVIEW
RT,	Linux,	and	Mac	OS	X.	The	.inf	file	created	by	the	wizard	can	then	be
distributed	with	an	instrument	driver	distribution	kit.

Hardware	Bus
This	dialog	allows	you	to	select	which	hardware	bus	is	used	by	the
device	you	want	to	make	visible	to	NI-VISA	applications.
This	wizard	is	not	designed	for	use	with	devices	that	already	have	an
installed	device	driver.

Basic	FireWire®	Device	Information
This	dialog	contains	basic	information	the	operating	system	needs	to
locate	and	to	associate	your	FireWire	device	with	the	NI-VISA	driver
software.	This	information	includes	essential	hardware	characteristics
that	uniquely	specify	the	device.
Unit	Specification	ID
Unit	Software	Version
Manufacturer	Name
Model	Name

Basic	PXI/PCI	Device	Information
This	dialog	contains	basic	information	the	operating	system	needs	to
locate	and	to	associate	your	PXI	device	with	the	NI-VISA	driver	software.
This	information	includes	essential	hardware	characteristics	that	uniquely
specify	the	device,	including	module	and	manufacturer	information.
Manufacturer	Code
Manufacturer	Name
Model	Code
Model	Name
Generates	Interrupts
Subsystem	Manufacturer	Code
Subsystem	Model	Code
Device	Uses	Subsystem
This	device	uses	PXI	Express
Load	Settings	from	Module	Description	File

More	about	Module	Description	Files

Basic	USB	Device	Information
This	dialog	contains	basic	information	the	operating	system	needs	to
locate	and	to	associate	your	USB	device	with	the	NI-VISA	driver
software.	This	information	includes	essential	hardware	characteristics
that	uniquely	specify	the	device,	including	module	and	manufacturer
information.

Note		Using	this	wizard	may	not	be	necessary.	NI-VISA	may
already	be	able	to	detect	your	USB	instrument	if	it	conforms	to	the
USB	Test	&	Measurement	Class	(USBTMC)	protocol.	If	this	is	the
case,	DO	NOT	use	this	wizard	to	create	an	additional	.inf	file.

Manufacturer	Code
Manufacturer	Name
Model	Code
Model	Name
Compound	Device

Interrupt	Detection	Information
Enabling	PXI/PCI	interrupt	handling	within	an	NI-VISA	application	is	a
two-step	process.	First,	you	must	specify	how	your	device	detects	a
pending	interrupt.	Second,	you	must	specify	how	to	acknowledge	a
pending	interrupt.	The	NI-VISA	Driver	Wizard	will	guide	you	through	the
process	of	enabling	NI-VISA	to	perform	these	two	steps.
Interrupt	Detection	Background
Add	a	step	before
Add	a	step	after
Edit	a	step
Remove	a	step
Select	sequence
Add	sequence
Remove	sequence

Interrupt	Removal	Information
In	addition	to	the	Interrupt	Detection	sequence,	NI-VISA	also	needs	to
know	the	sequence	of	register	operations	required	to	acknowledge	a
pending	interrupt	condition	for	your	device.	At	interrupt	time,	if	the	NI-
VISA	driver	determines	that	your	device	is	asserting	an	interrupt	(via	the
sequence	of	register	accesses	specified	in	the	Interrupt	Detection
sequence),	VISA	will	execute	this	Interrupt	Removal	sequence	to	quiet
the	pending	interrupt.
This	sequence	of	register	operations	is	constructed	using	the	same
Read,	Write,	and	Compare	operations	discussed	in	the	previous	step
(Interrupt	Detection).	Individual	register	operations	are	entered	in	an
identical	manner.
Interrupt	Removal	Background
Add	a	step	before
Add	a	step	after
Edit	a	step
Remove	a	step

NI-VISA	PXI	Interrupt	Information
The	Interrupt	Information	dialog	allows	you	to	describe	an	individual
register	access	for	the	Interrupt	Detection	sequence	or	the	Interrupt
Acknowledge	sequence.
Type	of	access
Address	space
Compare	mask
Width	of	access
Offset	within	space
Value	to	write	or	compare

Disarm	Interrupt	Information
NI-VISA	allows	you	to	specify	a	sequence	of	register	operations	to	disarm
interrupts	on	your	device	if	a	process	terminates	abnormally.	(When	a
process	terminates	abnormally,	it	does	not	disarm	interrupts.	This	leaves
the	system	vulnerable	to	receiving	an	errant	interrupt	from	a	device	that
no	longer	has	an	interrupt	handler,	which	could	cause	a	blue	screen	or
system	hang.)	NI-VISA	executes	the	specified	sequence	of	register
operations	only	if	the	crashing	process	is	the	last	process	using	the
device.

PXI	Express	Configuration	Information
For	PXI	Express	devices,	NI-VISA	must	know	the	correct	register
operation	sequence	to	obtain	the	slot	the	device	is	currently	plugged	into.
After	you	insert	a	device	into	a	PXI	Express	chassis	and	power	on	the
device,	the	device	reads	the	slot	number	from	pins	on	the	chassis	and
stores	the	number	in	a	memory	register.	To	configure	the	device	and
chassis	automatically,	this	information	must	be	read	from	the	device
memory.	Use	the	NI-VISA	Driver	Wizard	to	define	how	to	read	this
information.
The	register	operation	sequence	includes	register	reads,	reads	masked
with	a	set	value,	and	reads	shifted	a	set	number	of	times.	Enter	individual
register	operations	into	the	sequence	exactly	the	same	way	as	interrupt
detection,	removal,	and	disarm	sequences.

Output	Files	Information
The	Output	Files	dialog	gathers	the	remaining	information	the	NI-VISA
Driver	Wizard	needs	to	create	the	Setup	Information	(.inf)	files.	This
information	includes	the	instrument	driver	prefix	for	your	device	and	the
directory	where	the	files	should	be	saved.
Output	Files	Background
Instrument	Prefix
Output	File	Directory
What	do	I	do	with	the	Output	Files?

Installation	Options
The	Installation	Options	dialog	offers	the	following	choices	for	using	the
Setup	Information	(.inf)	files	after	they	are	generated:
Install	the	Setup	Information	file
FTP	to	LabVIEW	RT	system
Go	to	folder
Do	nothing	more

Using	the	NI-VISA	Driver	Wizard	and	NI-VISA	to
Register-Level	Program	a	PXI/PCI	Device	under
Windows
You	can	use	NI-VISA	to	program	PCI	and	PXI	devices	installed	in	a	PC
or	PXI	chassis.	By	writing	an	application	for	a	PCI	or	PXI	device	with	NI-
VISA,	you	gain	full	access	to	the	device	configuration,	including	I/O	and
memory-mapped	registers.	NI-VISA	programming	is	available	under
selected	Windows	OSs	and	the	LabVIEW	Real-Time	Module.
This	tutorial	explains	how	to	use	NI-VISA	and	the	NI-VISA	Driver	Wizard
to	develop	a	low-level	driver	for	a	PXI/PCI	device.	It	describes	the	NI-
VISA	features	you	can	use	to	register-level	program	PXI/PCI	devices.	To
demonstrate	how	to	use	the	VISA	API	for	this	purpose,	the	tutorial
includes	examples	using	a	National	Instruments	E	Series	PXI	data
acquisition	module,	the	NI	PXI-6070E.	This	module	is	included	as	a	tool
to	demonstrate	NI-VISA	features;	therefore,	there	is	no	additional
register-level	information	about	this	module.	The	only	recommended
methods	for	programming	a	PXI-6070E	are	to	use	the	NI-DAQmx	driver
or	the	NI	Measurement	Hardware	DDK	(driver	development	kit).
In	addition	to	register-level	communication,	this	tutorial	introduces	the	NI-
VISA	event-handling	model	for	handling	interrupts	from	a	PXI/PCI	device.
It	also	explains	how	to	use	LabWindows/CVI	to	install	the	Windows	setup
files	you	create	for	your	device	and	describes	the	NI-VISA	API	PXI
functionality.
This	tutorial	includes	the	following	topics:
PXI	and	VISA	Background
Configuring	NI-VISA	to	Recognize	a	PXI/PCI	Device
Using	NI-VISA	to	Communicate	with	a	PXI/PCI	Device
Using	NI-VISA	to	Handle	Events	from	a	PXI/PCI	Device
Using	LabWindows/CVI	to	Install	Your	Device	.inf	Files

USB	Instrument	Control	Tutorial
This	tutorial	is	a	starting	point	for	using	NI-VISA	to	communicate	with	a
USB	device.	It	is	not	intended	as	a	starting	point	for	learning	about	USB
architecture	or	the	various	protocols	used	in	USB	communication.	After
reading	this	tutorial,	you	should	be	able	to	install	a	USB	device	and	use
NI-VISA	to	communicate	with	that	device,	as	long	as	you	understand	the
device	communication	protocol.
This	tutorial	includes	the	following	sections:
USB	and	VISA	Background
Configuring	NI-VISA	to	Control	Your	USB	Device
Using	NI-VISA	to	Communicate	with	Your	USB	Device
USB	on	Linux	and	Mac

Interface-Specific	Information
Although	one	of	the	benefits	of	VISA	is	an	interface-independent	API,
there	are	times	when	you	must	understand	the	details	of	the	specific
interface	with	which	you	are	working.	The	following	topics	provide
additional	information	about	each	of	the	hardware	interface	types	that	NI-
VISA	currently	supports.
GPIB
Introduction	to	Programming	GPIB	Devices	in	VISA
Comparison	Between	NI-VISA	and	NI-488.2	APIs
Board-Level	Programming
GPIB	Summary

GPIB-VXI
Introduction	to	Programming	GPIB-VXI	Devices	in	VISA
Register-Based	Programming	with	the	GPIB-VXI
Additional	Programming	Issues
GPIB-VXI	Summary

VXI
Introduction	to	Programming	VXI	Devices	in	VISA
VXI/VME	Interrupts	and	Asynchronous	Events	in	VISA
Performing	Arbitrary	Access	to	VXI	Memory	with	VISA
Other	VXI	Resource	Classes	and	VISA
Comparison	Between	NI-VISA	and	NI-VXI	APIs
Summary	of	VXI	in	VISA

PXI
Introduction	to	Programming	PXI	Devices	in	NI-VISA
User-Level	Functionality
Configuring	NI-VISA	to	Recognize	a	PXI	Device
Using	LabWindows/CVI	to	Install	Your	Device	.inf	Files
Other	PXI	Resource	Classes	and	VISA

PXI	Summary
Serial
Introduction	to	Programming	Serial	Devices	in	VISA
Default	vs.	Configured	Communication	Settings
Controlling	the	Serial	I/O	Buffers
National	Instruments	ENET	Serial	Controllers
Serial	Summary

Ethernet
Introduction	to	Programming	Ethernet	Devices	in	VISA
VISA	Sockets	vs.	Other	Sockets	APIs
Ethernet	Summary

Remote	NI-VISA
Introduction	to	Programming	Remote	Devices	in	NI-VISA
How	to	Configure	and	Use	Remote	NI-VISA
Remote	NI-VISA	Summary

USB
Introduction	to	Programming	USB	Devices	in	VISA
Configuring	NI-VISA	to	Recognize	a	RAW	USB	Device
USB	Summary
USB	Instrument	Control	Tutorial

FireWire
Introduction	to	Programming	FireWire	Devices	in	VISA
Configuring	NI-VISA	to	Recognize	an	INSTR	FireWire	Device
FireWire	Summary

GPIB
VISA	supports	programming	IEEE	488.1	and	IEEE	488.2	devices,	and
includes	complete	device-level	and	board-level	functionality.
Introduction	to	Programming	GPIB	Devices	in	VISA
Comparison	Between	NI-VISA	and	NI-488.2	APIs
Board-Level	Programming
GPIB	Summary

Introduction	to	Programming	GPIB	Devices	in
VISA
For	novice	GPIB	users,	the	VISA	API	presents	a	simple	interface	for
device	communication.	Most	GPIB	devices	allow	you	to	set	a	primary
address	via	either	a	DIP	switch	or	via	front	panel	selectors.	This	primary
address	is	the	same	one	used	in	the	VISA	resource	string	to	viOpen().
The	simplest	and	most	common	GPIB	resource	string	is	"GPIB::<primary
address>::INSTR".	Recall	that	the	"INSTR"	resource	class	informs	VISA
that	you	are	doing	instrument	(device)	communication.	Most	GPIB
programs	perform	simple	message-based	transfers	(write	command,
read	response).	For	more	information	about	VISA	message-based
functionality,	see	Message-Based	Communication.
There	are	several	VISA	attributes	specific	to	the	GPIB	INSTR	resource.
The	VI_ATTR_GPIB_PRIMARY_ADDR	and
VI_ATTR_GPIB_SECONDARY_ADDR	attributes	are	read-only,	and	these
return	the	same	values	that	were	used	in	the	resource	string	passed	to
viOpen().	If	the	specified	device	does	not	have	a	secondary	address,	that
attribute	query	will	succeed	and	return	a	value	of	–1.	The	attribute
VI_ATTR_GPIB_READDR_EN	controls	whether	each	message	to	or	from
the	same	device	will	cause	the	driver	to	readdress	the	device.	This
attribute	is	true	(enabled)	by	default,	and	disabling	this	attribute	(setting	it
to	false)	may	provide	a	slight	performance	increase	by	removing
unnecessary	bus-level	readdressing	to	the	same	device.	The	attribute
VI_ATTR_GPIB_UNADDR_EN	controls	whether	the	driver	will	follow	each
message	to	or	from	the	specified	device	with	untalk	(UNT)	and	unlisten
(UNL)	commands.	This	attribute	is	false	(disabled)	by	default,	which	is
the	most	optimal	setting.	Changing	the	values	of	these	attributes	may	be
necessary	for	certain	older	non-IEEE	488.2-compliant	devices.
More	complex	GPIB	systems	often	include	multiple	GPIB	controllers	(or
boards)	and	devices	with	both	primary	and	secondary	addresses.	The
canonical	form	of	a	complex	GPIB	instrument	resource	string	is
"GPIB<controller>::<primary	address>::<secondary	address>::INSTR".	The
controller	number	is	the	same	as	used	in	the	GPIB	configuration	utility
(MAX	on	Windows,	the	GPIB	Control	Panel	applet	on	Macintosh,	or
ibconf	on	UNIX).	If	not	specified,	the	controller	number	defaults	to	0.

Comparison	Between	NI-VISA	and	NI-488.2	APIs
For	GPIB	users	who	are	familiar	with	NI-488.2,	the	following	table	shows
several	common,	but	not	all,	NI-488.2	device-level	function	calls	and	the
corresponding	VISA	operations.	As	you	can	see,	the	APIs	are	almost
identical.	The	difference	is	that	VISA	is	extensible	to	additional	hardware
interfaces.	Therefore,	if	you	are	programming	multiple	devices	that
communicate	over	more	than	one	bus	type,	it	might	be	easier	to	use
VISA	for	your	entire	system.
NI-VISA	and	NI-488.2	Functions	and	Operations

C	NI-488.2
Device
Function

C	VISA	INSTR
Operation

LabVIEW	NI-488.2
Device	Function

LabVIEW	VISA
INSTR	Operation

ibdev viOpen <no	equivalent> VISA	Open

ibonl viClose <no	equivalent>
VISA	Close

ibwrt viWrite
GPIB	Write VISA	Write

ibrd viRead
GPIB	Read VISA	Read

ibclr viClear
GPIB	Clear VISA	Clear

ibtrg viAssertTrigger
GPIB	Trigger VISA	Assert

Trigger
ibrsp viReadSTB

GPIB	Serial	Poll VISA	Read	STB
ibwait viWaitOnEvent

Wait	for	GPIB	RQS
Wait	for	RQS

ibconfig viSetAttribute
GPIB	Initialization VISA	Property

Node

One	difference	in	the	event	mechanism	between	NI-488.2	and	VISA	is
worth	noting.	In	VISA,	you	must	always	call	viEnableEvent()	prior	to	being
allowed	to	receive	events.	While	this	was	not	the	case	with	NI-488.2,	this
is	required	in	VISA	to	avoid	the	race	condition	of	trying	to	wait	on	events
for	which	the	hardware	may	not	be	enabled.	Thus,	you	should	enable	the
session	for	events	not	just	immediately	before	calling	viWaitOnEvent(),	but
before	the	device	has	even	been	triggered	or	configured	to	generate	a
service	request	event.

Board-Level	Programming
Advanced	users	occasionally	need	to	control	multiple	devices
simultaneously	or	need	to	have	multiple	controllers	connected	together	in
a	single	system.	Power	GPIB	programmers	use	interface-level	(bus-level)
commands	to	do	this.	The	corresponding	VISA	resource	for	this	is	the
GPIB	INTFC	resource,	and	the	form	of	the	resource	string	is
"GPIB<controller>::INTFC".	This	allows	raw	message	transfers	in	which
the	driver	does	not	perform	automatic	device	addressing,	as	it	does	with
INSTR.	Also,	with	the	INTFC	resource,	the	controller	can	directly	query
and	manipulate	specific	lines	on	the	bus	such	as	SRQ	or	NDAC,	and	also
pass	control	to	other	devices	that	have	controller	capability.
For	users	who	are	familiar	with	NI-488.2,	the	following	table	shows
several	common,	but	not	all,	NI-488.2	board-level	function	calls	and	the
corresponding	VISA	operations.	As	in	the	previous	table,	you	can	see
that	the	APIs	are	almost	identical.
Board-Level	Programming	Functions	and	Operations
NI-488.2	Board	Function VISA	INTFC	Operation
ibfind viOpen
ibonl viClose
ibwrt viWrite
ibrd viRead
ibwait viWaitOnEvent
ibconfig viSetAttribute
ibask,	ibwait viGetAttribute
ibcmd viGpibCommand
ibsre viGpibControlREN
ibgts,	ibcac viGpibControlATN
ibsic viGpibSendIFC

For	users	who	need	to	write	an	application	that	will	run	inside	a	device,
such	as	firmware,	the	INTFC	resource	provides	the	necessary
functionality.	The	device	status	byte	attribute	is	useful	for	reflecting
application	status.

GPIB	Summary
Since	both	of	these	APIs	are	very	similar	and	both	provide	the	same
GPIB	functionality,	which	should	you	choose?	If	you	are	already	familiar
with	NI-488.2	and	are	programming	only	GPIB	devices,	then	there	is	not
a	strong	reason	for	you	to	change	to	VISA.	NI-488.2	is	supported	in	all
major	application	development	environments,	including	LabVIEW	and
Measurement	Studio.	However,	if	you	have	instruments	with	more	than
one	type	of	port	or	connection	available	to	them,	then	using	VISA	might
be	advantageous	because	you	can	use	the	same	API	regardless	of	the
connection	medium.
Finally,	many	modern	instrument	drivers	rely	on	VISA	for	their	I/O	needs,
so	if	you	are	using	instrument	drivers,	then	you	need	to	at	least	install	NI-
VISA	for	them	to	be	able	to	execute.

GPIB-VXI
VISA	supports	programming	VXI	devices	connected	through	a	GPIB-VXI
controller.	The	functionality	is	a	subset	of	the	VISA	API	for	VXI	devices
connected	through	a	native	VXI	controller.
Introduction	to	Programming	GPIB-VXI	Devices	in	VISA
Register-Based	Programming	with	the	GPIB-VXI
Additional	Programming	Issues
GPIB-VXI	Summary

Introduction	to	Programming	GPIB-VXI	Devices
in	VISA
For	new	GPIB-VXI	users,	this	controller	makes	VXI	message-based
devices	appear	as	though	they	are	GPIB	devices	with	secondary
addresses.	This	initially	provided	an	easy	transition	into	VXI	for
customers	with	existing	GPIB	systems,	because	they	could	use	the	same
NI-488.2	API	to	control	both	types	of	instruments.	However,	this	proved
problematic	for	VXI	register-based	devices,	because	their	addresses	are
not	mapped	directly	into	the	GPIB	system.
For	controlling	message-based	VXI	devices	through	a	GPIB-VXI,	the
biggest	difference	between	a	program	using	NI-488.2	and	one	using
VISA	is	in	the	calls	made	at	the	beginning	and	the	end.	For	register-
based	devices,	the	differences	are	more	significant.	This	section	first
discusses	the	basic	changes	common	to	both	types	of	devices,	then
discusses	some	of	the	changes	required	for	register-based	programming.
For	message-based	programming,	an	NI-488.2	program	would	typically
call	ibdev()	with	the	VXI	device's	primary	and	secondary	GPIB	addresses
to	get	a	handle	to	the	specific	device.	In	VISA,	a	program	calls	viOpen()
with	the	VXI	device's	logical	address	(which	is	a	more	natural	address
because	the	device	is	VXI)	to	get	a	handle	to	it.	The	simplest	and	most
common	GPIB-VXI	resource	string	is	"GPIB-VXI::<logical
address>::INSTR".	Once	you	have	a	session	to	the	VXI	device,	the	NI-
488.2	and	VISA	calls	to	communicate	with	the	device	are	very	similar,	as
covered	above	in	the	Comparison	between	NI-VISA	and	NI-488.2	APIs
section.

Register-Based	Programming	with	the	GPIB-VXI
Register-based	programming	does	not	have	a	straightforward	mapping.
Because	register	accesses	using	the	GPIB-VXI	involve	sending	requests
to	the	controller	itself	(using	the	local	command	set),	NI-488.2	programs
would	use	ibdev()	with	the	GPIB-VXI	controller's	primary	and	secondary
GPIB	addresses.	In	VISA,	you	call	viOpen()	with	the	VXI	device's	logical
address,	the	same	method	for	both	message-based	and	register-based
devices,	and	VISA	handles	sending	the	necessary	messages	to	the
controller.	For	programming	the	device,	the	following	NI-488.2	messages
and	VISA	operations	are	roughly	equivalent:
Register-Based	Programming	Messages	and	Operations
NI-488.2	Message VISA	Operation
"Laddrs?"	or
"DLAD?"

viFindRsrc()

"RMentry?"	or
"DINF?"

viGetAttribute()

"Cmdr?" viGetAttribute()	with	VI_ATTR_CMDR_LA
"LaSaddr?" viGetAttribute()	with

VI_ATTR_GPIB_SECONDARY_ADDR
"Primary?" viGetAttribute()	with

VI_ATTR_GPIB_PRIMARY_ADDR
"WREG"	or	"A16" viOut16()	with	VI_A16_SPACE
"RREG?"	or	"A16?" viIn16()	with	VI_A16_SPACE
"A24" viOut16()	with	VI_A24_SPACE
"A24?" viIn16()	with	VI_A24_SPACE
"SrcTrig" viAssertTrigger()

Notice	that	with	the	INSTR	register	access	operations	viOut16()	and
viIn16(),	you	pass	a	device-relative	offset	in	the	specified	address	space.
This	is	different	from	the	GPIB-VXI/C	local	command	set,	which	accepts
absolute	addresses.	If	your	application	currently	uses	absolute
addressing	and	you	do	not	want	to	convert	to	device-relative	offsets,	you
may	consider	the	MEMACC	resource,	which	accepts	absolute
addressing.	The	form	of	the	resource	string	for	that	class	is	"GPIB-

VXI<system>::MEMACC".	You	can	also	use	the	operations	viOut8()	and
viIn8()	to	perform	8-bit	accesses,	which	is	not	a	feature	supported	by	the
local	command	set.	VISA	also	defines	32-bit	operations	and	accesses	to
A32	space,	but	because	these	are	not	implemented	by	the	GPIB-VXI/C
itself,	they	return	errors.
If	you	have	used	the	DMAmove	code	instrument	in	the	past,	you	can
instead	use	the	viMoveInxx()	and	viMoveOutxx()	operations	instead.	They
make	use	of	the	GPIB-VXI's	DMA	functionality,	but	require	only	a	single
operation	call,	instead	of	the	multiple	calls	required	to	send	the	command
and	data	blocks	and	then	poll	waiting	for	the	operation	to	complete.	Using
VISA	to	move	blocks	of	data	also	means	that	you	no	longer	need	to	load
the	DMAmove	code	instrument,	as	NI-VISA	automatically	downloads	a
separate	code	instrument	to	handle	these	and	other	operations.

Additional	Programming	Issues
For	advanced	users,	the	GPIB-VXI	Mainframe	Backplane	resource
encapsulates	the	operations	and	properties	of	each	mainframe	(or
chassis)	in	a	VXIbus	system.	This	resource	type	lets	a	controller	query
and	manipulate	specific	lines	on	a	specific	mainframe	in	a	given	VXI
system.	The	form	of	the	resource	string	for	this	class	is	"GPIB-
VXI<system>::BACKPLANE".	Services	in	this	resource	class	allow	the
user	to	map,	unmap,	and	assert	hardware	triggers,	and	also	to	assert
various	utility	signals.
Although	the	VISA	API	is	almost	identical	for	VXI	and	GPIB-VXI,	the
GPIB-VXI	implements	only	a	subset	of	this	functionality.	As	mentioned
above,	the	GPIB-VXI	does	not	support	32-bit	register	accesses,	nor	does
it	support	A32	space.	The	attributes	VI_ATTR_SRC_ACCESS_PRIV,
VI_ATTR_DEST_ACCESS_PRIV,	and	VI_ATTR_WIN_ACCESS_PRIV	can
only	be	set	to	the	value	VI_DATA_PRIV;	other	address	modifiers	are	not
supported.	The	attributes	VI_ATTR_SRC_BYTE_ORDER,
VI_ATTR_DEST_BYTE_ORDER,	and	VI_ATTR_WIN_BYTE_ORDER	can
only	be	set	to	the	value	VI_BIG_ENDIAN;	little	endian	transfers	are	not
supported.	Also,	while	the	GPIB-VXI	does	support	service	request
events,	it	does	not	support	receiving	the	following	events:	miscellaneous
VXI	signals	or	interrupts,	triggers,	SYSFAIL,	or	SYSRESET.
If	you	have	more	than	one	GPIB-VXI	controller	in	your	system,	or	if	you
change	the	primary	address	of	a	GPIB-VXI	controller	from	its	default	(1
for	the	National	Instruments	GPIB-VXI/C),	or	if	you	have	a	GPIB-VXI
controller	from	another	vendor,	then	you	need	to	configure	NI-VISA	to
find	such	a	controller.	Use	the	NI-VISA	configuration	utility	(MAX	on
Windows,	visaconf	on	UNIX)	and	explicitly	add	a	GPIB-VXI	controller.	You
will	be	prompted	for	the	GPIB	controller	number	to	which	the	GPIB-VXI	is
connected	(usually	0),	a	unique	GPIB-VXI	controller	number	(which	you
are	free	to	assign),	and	the	primary	and	secondary	addresses	to	which
you	have	configured	this	GPIB-VXI	controller.

GPIB-VXI	Summary
In	summary,	using	VISA	to	program	VXI	devices	controlled	by	a	GPIB-
VXI	is	no	different	than	if	they	are	controlled	with	a	native	VXI	controller
such	as	the	PCI-MXI-2	or	a	VXIpc.	Although	porting	the	code	from	NI-
488.2	to	VISA	is	not	simple	in	the	case	of	register-based	programming,	it
will	be	code	that	is	compatible	with	native	VXI	controllers.

VXI
The	following	topics	introduce	you	to	the	concepts	of	VXI	(VME
eXtensions	for	Instrumentation),	VME,	MXI	(Multisystem	eXtension
Interface),	and	how	you	can	control	these	buses	using	VISA.
Introduction	to	Programming	VXI	Devices	in	VISA
VXI/VME	Interrupts	and	Asynchronous	Events	in	VISA
Performing	Arbitrary	Access	to	VXI	Memory	with	VISA
Other	VXI	Resource	Classes	and	VISA
Comparison	Between	NI-VISA	and	NI-VXI	APIs
Summary	of	VXI	in	VISA

Introduction	to	Programming	VXI	Devices	in
VISA
A	VXI	device	has	a	unique	logical	address,	which	serves	as	a	means	of
referencing	the	device	in	the	VXI	system.	This	logical	address	is
analogous	to	a	GPIB	primary	address.	VXI	uses	an	8-bit	logical	address,
allowing	for	up	to	256	VXI	devices	in	a	VXI	system.	VISA	addresses	a
specific	VXI	device	with	a	resource	string	identifying	the	VXI	system	that
the	device	is	in	and	the	logical	address	of	this	particular	device:
"VXI<system>::<logical	address>::INSTR".
Each	VXI	device	has	a	specific	set	of	registers,	called	configuration
registers.	See	the	NI-VXI	online	help	for	a	diagram.	These	registers	are
located	in	the	upper	16KB	of	the	64KB	A16	address	space.	The	logical
address	of	a	VXI	device	determines	the	location	of	the	device's
configuration	registers	in	the	16KB	area	reserved	by	VXI.	The	rest	of	A16
space	is	available	for	VME	devices.	The	16MB	A24	address	space	and
the	4GB	A32	address	space	are	available	for	VXI	and	VME	devices.
Each	VXI	system	has	a	Resource	Manager	which	is	responsible	for
allocating	each	device's	requests	in	the	appropriate	address	space.
When	you	open	a	VXI/VME	INSTR	resource	in	VISA,	you	have	access	to
registers	in	the	spaces	that	have	been	allocated	by	the	Resource
Manager	for	the	device	corresponding	to	that	INSTR	resource.	Devices
which	provide	only	this	minimal	level	of	capability	are	called	register-
based	devices,	and	support	VISA	operations	such	as	viInX/viOutX
(read/write	a	single	register),	viMoveInX/viMoveOutX	(perform	a	block
move	to	read	or	write	a	block	of	registers),	viMapAddress	(map	a	region	of
VXI	memory	into	your	application	for	low-level	access),	and	others.
These	operations	are	discussed	in	more	detail	in	Register-Based
Communication.
In	addition	to	register-based	devices,	the	VXIbus	specification	also
defines	message-based	devices,	which	are	required	to	have
communication	registers	in	addition	to	configuration	registers.	All
message-based	VXIbus	devices,	regardless	of	the	manufacturer,	can
communicate	using	the	VXI-specified	Word	Serial	Protocol.	In	addition,
you	can	establish	higher-performance	communication	channels,	such	as
the	shared-memory	channels	in	Fast	Data	Channel	(FDC),	to	take
advantage	of	the	VXIbus	bandwidth	capabilities	(a	diagram	of	these
protocols	is	shown	in	the	NI-VXI	online	help).

The	VXIbus	Word	Serial	Protocol	is	a	standardized	message-passing
protocol.	This	protocol	is	functionally	very	similar	to	the	IEEE	488
protocol,	which	transfers	data	messages	to	and	from	devices	one	byte	at
a	time.	Thus,	VXI	message-based	devices	communicate	in	a	fashion	very
similar	to	GPIB	instruments.	In	general,	message-based	devices	typically
contain	a	higher	level	of	local	intelligence	that	uses	or	requires	a	higher
level	of	communication.	In	addition,	the	Word	Serial	Protocol	has	special
messages	for	configuring	message-based	devices.	All	VXI	message-
based	devices	are	required	to	support	the	Word	Serial	Protocol	and
support	a	basic	level	of	standard	communication.	There	are	even	higher
level	message-based	protocols,	such	as	Standard	Commands	for
Programmable	Instrumentation	(SCPI);	these	are	not	required	protocols,
and	not	all	VXI	message-based	devices	support	them.	Message-based
VXI	devices	support	VISA	operations	such	as	viRead/viWrite	(Word	Serial
read/write	buffer),	viClear	(Word	Serial	clear),	viPrintf/viScanf	(formatted
I/O),	viAssertTrigger	(Word	Serial	trigger),	viVxiCommandQuery	(Word
Serial	command	and/or	response),	and	others.	These	operations	are
discussed	in	more	detail	in	Message-Based	Communication.

VXI/VME	Interrupts	and	Asynchronous	Events	in
VISA
VXI/VME	devices	can	communicate	asynchronous	status	and	events
through	VXI/VME	interrupt	events	(VI_EVENT_VXI_VME_INTR)	or	by
using	specific	messages	called	signals	(VI_EVENT_VXI_SIGP).	Since
VXI	interrupts	can	be	treated	just	like	signals,	a	VISA	application	for	VXI
devices	will	typically	just	use	VI_EVENT_VXI_SIGP	to	handle	both
interrupts	and	signals,	regardless	of	which	is	actually	sent	in	hardware.
The	main	difference	is	that	the	status/ID	returned	as	an	attribute	of	the
event	is	16-bit	for	VI_EVENT_VXI_SIGP	and	32-bit	for
VI_EVENT_VXI_VME_INTR.
The	VXI	specification	also	makes	use	of	triggering	(VI_EVENT_TRIG)	to
synchronize	events	between	VXI	devices.	VXI	devices	support	these
events	in	the	INSTR	resource	through	the	standard	VISA	operations	such
as	viEnableEvent,	as	discussed	in	VISA	Events.	Since	devices	can	both
send	and	receive	triggers,	the	attribute	VI_ATTR_TRIG_ID	specifies	the
line	used	for	either.	You	cannot	use	the	same	session	to	both	assert	and
receive	triggers;	for	this,	you	need	multiple	sessions.

Performing	Arbitrary	Access	to	VXI	Memory	with
VISA
VISA	provides	the	VXI	MEMACC	resource	class	to	allow	access	to
arbitrary	locations	in	VXI	address	spaces.	When	you	open	a	VXI	INSTR
resource,	VISA	automatically	performs	all	register	I/O	in	the	address
spaces	used	by	that	device	relative	to	that	device's	memory	region,	and
will	prevent	accidental	access	outside	of	the	region	allocated	for	your
device.	If	you	need	to	access	a	memory	region	not	associated	with	a
particular	device,	or	use	a	low-level	scheme	for	performing	your	register
I/O	that	uses	absolute	addresses,	you	should	use	the	MEMACC	resource
which	provides	this	capability.	When	using	a	MEMACC	resource,	all
address	parameters	are	absolute	within	the	given	address	space;
knowing	a	device's	base	address	is	both	required	by	and	relevant	to	the
user.	The	VISA	resource	string	format	for	this	is
"VXI<system>::MEMACC".	You	can	still	use	the	same	VISA	operations
for	performing	register	I/O	enumerated	above,	such	as	viInX/viOutX,
viMoveInX/viMoveOutX,	and	viMapAddress.

Other	VXI	Resource	Classes	and	VISA
For	certain	applications,	such	as	asserting	interrupts	or	triggers,	it	may	be
necessary	to	access	the	VXI	mainframe	or	chassis	("backplane")	directly.
VISA	provides	the	BACKPLANE	resource	for	this	purpose,	where	each
VXI	mainframe	can	is	accessed	using	the	VISA	resource	string
"VXI<system>::<mainframe	number>::BACKPLANE".	The	BACKPLANE
resource	encapsulates	the	operations	and	properties	of	each	mainframe
(or	chassis)	in	the	VXI	system,	and	lets	a	controller	query	and	manipulate
specific	lines	on	a	specific	mainframe	in	a	given	VXI	system.	The
operations	viMapTrigger,	viUnmapTrigger,	viAssertTrigger,	and	the	event
VI_EVENT_TRIG	supported	on	this	resource	allow	the	user	to	map,
unmap,	assert,	and	receive	hardware	triggers.	You	can	also	use
viAssertUtilSignal,	viAssertIntrSignal,	VI_EVENT_VXI_VME_SYSFAIL,	and
VI_EVENT_VXI_VME_SYSRESET	to	assert	and	receive	various	utility
and	interrupt	signals.	This	includes	advanced	functionality	that	might	not
be	available	in	all	implementations	or	on	all	controllers.
It	is	possible	to	configure	your	VXI	controller	to	be	a	Word	Serial	servant
in	your	VXI	system,	with	another	controller	as	its	commander.	For	such
situations,	VISA	provides	another	class	of	asynchronous	events
associated	with	the	Word	Serial	protocol:	the	Word	Serial	Servant
protocol.	Using	the	VISA	SERVANT	resource,	your	device	can	act	as	a
servant,	which	means	that	it	can	use	VI_EVENT_IO_COMPLETION	to
respond	to	requests	from	a	Word	Serial	commander.	This	resource	is
accessed	using	"VXI<system>::SERVANT"	and	encapsulates	the
operations	and	properties	of	the	capabilities	of	a	device	and	a	device's
view	of	the	system	in	which	it	exists.	The	SERVANT	resource	exposes
the	device-side	functionality	of	the	device	associated	with	the	given
resource.	This	functionality	is	somewhat	unusual	for	a	VXI	controller,	and
in	most	cases	you	will	never	need	to	use	the	SERVANT	resource.	The
SERVANT	resource	provides	the	complementary	functions	for	the
message-based	operations	discussed	above,	and	therefore	implements
the	servant	side	viRead,	viWrite,	etc.	for	buffer	reads	and	writes,	viPrintf,
viScanf,	etc.	for	formatted	I/O,	and	asynchronous	message-based
notification	events.	The	resource	also	provides	the	ability	to	assert	and
receive	interrupt	and	utility	signals.

Comparison	Between	NI-VISA	and	NI-VXI	APIs
As	a	VXI	programmer	you	may	be	familiar	with	the	NI-VXI	API,	but
National	Instruments	recommends	that	all	new	VXI	applications	be
developed	in	NI-VISA,	which	provides	additional	flexibility,	features,	and
performance.	Fortunately,	translating	NI-VXI	API	code	to	VISA	is	made
fairly	simple	by	the	close	correlation	between	the	two	APIs.	For	users
who	are	familiar	with	the	NI-VXI	API,	the	following	table	shows	several
common,	but	not	all,	NI-VXI	API	function	calls	and	the	corresponding
VISA	operations.	You	can	see	that	the	APIs	are	almost	identical.	The
difference	is	that	VISA	is	extensible	to	additional	hardware	interfaces.
Therefore,	if	you	are	programming	multiple	devices	that	communicate
over	more	than	one	bus	type,	it	might	be	easier	to	use	VISA	for	your
entire	system.
NI-VISA	and	NI-VXI	Functions	and	Operations

C	NI-VXI	Function C	VISA	INSTR
Operation

LabVIEW	NI-VXI
Function

LabVIEW
VISA
INSTR

Operation
InitVXIlibrary viOpenDefaultRM,

viOpen
InitVXIlibrary

VISA
Open

CloseVXIlibrary viClose
CloseVXIlibrary VISA

Close
WSwrt viWrite

WSwrt VISA
Write

WSrd viRead
WSrd VISA

Read
WSclr viClear

WSclr VISA
Clear

WStrg,	SrcTrig viAssertTrigger 	

WStrg,	SrcTrig VISA
Assert
Trigger

VXIin,	VXIout viInX,	OutX 	

VXIin,	VXIout

	

VISA	InX,
VISAOutX

VXImove viMoveInX,
viMoveOutX VXImove

	

VISA
Move	InX,
VISA
Move
OutX

MapVXIAddress viMapAddress
MapVXIAddress VISA	Map

Address
AssertVXIint viAssertIntrSignal

AssertVXIint VISA
Assert
Interrupt

EnableVXItoSignalInt viEnableEvent
EnableVXItoSignalInt VISA

Enable
Event

WaitForSignal viWaitOnEvent
WaitForSignal VISA	Wait

on	Event
GetDevInfo viGetAttribute

GetDevInfoLong VISA
Property
Node

An	important	difference	between	the	NI-VXI	API	and	VISA	is	the	scope	of
the	effect	of	certain	function	calls.	In	the	NI-VXI	API,	many	functions

(notably,	enabling	for	events)	acted	on	the	VXI	controller	directly	and
therefore	applied	to	the	entire	VXI	system.	Since	VISA	is	generally
device-oriented	rather	than	controller-oriented,	the	corresponding	VISA
INSTR	operations	act	on	a	specific	VXI	device,	not	the	entire	system.

Summary	of	VXI	in	VISA
Since	the	VISA	API	is	very	similar	to	the	NI-VXI	API,	and	both	provide
almost	the	same	VXI	functionality,	which	should	you	choose?	National
Instruments	recommends	using	the	VISA	API	because	it	allows	you	to
control	multiple	VXI	systems	(controllers)	from	a	single	computer,
provides	a	more	flexible	API	that	allows	you	to	move	to	other	interfaces	if
the	application	demands	it,	and	usually	provides	equal	or	better
performance.	However,	if	your	application	already	uses	NI-VXI	and	you
are	programming	only	VXI	devices,	then	there	is	not	a	strong	reason	for
you	to	change	the	application	to	VISA.	For	new	applications,	though,
VISA	is	almost	always	preferred.	Finally,	most	modern	instrument	drivers
rely	on	VISA	for	their	I/O	needs,	so	if	you	are	using	instrument	drivers,
then	you	need	to	at	least	install	NI-VISA	for	them	to	be	able	to	execute.

PXI/PCI
NI-VISA	supports	programming	PCI	and	PXI	(PCI	eXtensions	for
Instrumentation)	devices	plugged	into	the	local	PC	or	PXI	chassis,	or	PXI
devices	in	a	remote	chassis	connected	via	a	remote	controller	such	as
MXI-3.
Introduction	to	Programming	PXI	Devices	in	NI-VISA
User-Level	Functionality
Configuring	NI-VISA	to	Recognize	a	PXI	Device
Using	CVI	to	Install	Your	Device	.inf	Files
Other	PXI	Resource	Classes	and	VISA
PXI	Summary

Introduction	to	Programming	PXI	Devices	in	NI-
VISA
Users	who	are	writing	an	application	for	a	PCI	or	PXI	card	can	use	NI-
VISA	to	gain	full	access	to	all	the	device's	configuration,	I/O,	and
memory-mapped	registers.	NI-VISA	currently	supports	the	PXI	interface
on	Windows,	LabVIEW	RT	(Phar	Lap	ETS),	and	Linux.	The	supported
functionality	is	identical	for	PCI	and	PXI	cards.	The	terms	PCI	and	PXI
are	used	somewhat	interchangeably	in	this	section;	technically,	PXI	is	a
rigorously	defined	extension	of	PCI.
To	use	PXI	or	PCI	devices	in	your	program,	make	sure	you	define	the
macro	"NIVISA_PXI"	before	including	"visa.h".
A	PXI	resource	is	uniquely	identified	in	the	system	by	three
characteristics:	the	PCI	bus	number	on	which	it	is	located,	the	PCI	device
number	it	is	assigned,	and	the	function	number	of	the	device.	For	single-
function	devices,	the	function	number	is	always	0	and	is	optional;	for
multifunction	devices,	the	function	number	is	device	specific	but	will	be	in
the	range	0–7.	The	device	number	is	associated	with	the	slot	number,	but
these	numbers	are	usually	different.	The	bus	number	of	a	device	is
consistent	from	one	system	boot	to	the	next,	unless	bridge	devices	are
inserted	somewhere	between	the	device	and	the	system's	CPU.	The
canonical	resource	string	that	you	pass	to	viOpen()	for	a	PCI	or	PXI
device	is	"PXI<bus>::<device>::<function>::INSTR",	but	based	on	the
previous	explanation,	this	can	be	difficult	to	determine.
A	better	way	to	determine	the	resource	string	is	to	query	the	system	with
viFindRsrc()	and	use	or	display	the	resource(s)	returned	from	that
operation.	Each	PCI	device	has	a	vendor	code	and	a	model	code;	this	is
much	the	same	as	VXI	does,	although	the	vendor	IDs	are	different.	You
can	create	a	query	to	search	for	devices	of	a	particular	attribute	value;	in
this	case,	you	can	search	for	a	specific	vendor	ID	and	model	code.	For
example,	the	PCI	vendor	ID	for	National	Instruments	is	0x1093.	If	NI
made	a	device	with	the	model	code	0xBEEF,	you	could	call	viFindRsrc()
with	the	expression	"PXI?*INSTR{VI_ATTR_MANF_ID==0x1093	&&
VI_ATTR_MODEL_CODE==0xBEEF}".	In	many	cases,	the	returned	list
has	one	or	only	a	few	devices.

User-Level	Functionality
An	INSTR	session	to	a	PCI	or	PXI	device	provides	the	same	register-
level	programming	functionality	as	in	VXI.	NI-VISA	supports	both	high-
level	and	low-level	accesses,	as	discussed	in	Register-Based
Communication.	The	valid	address	spaces	for	a	PXI	device	are	the
configuration	registers	(VI_PXI_CFG_SPACE)	and	the	six	Base	Address
Registers	(VI_PXI_BAR0_SPACE–VI_PXI_BAR5_SPACE).	A	device	may
support	any	or	all	of	the	BARs.	This	information	is	device	dependent	but
can	be	queried	through	the	attributes
VI_ATTR_PXI_MEM_TYPE_BAR0–VI_ATTR_PXI_MEM_TYPE_BAR5.
The	values	for	this	attribute	are	none	(0),	memory	mapped	(1),	or	I/O	(2).
If	the	value	is	memory	mapped	or	I/O,	you	can	also	query	the	appropriate
attributes	for	the	base	and	size	of	each	supported	region.
In	addition	to	register	accesses,	NI-VISA	supports	the	event
VI_EVENT_PXI_INTR	to	provide	notification	to	an	application	that	the
specified	device	has	generated	a	PCI	interrupt.	This	event	allows	a	user
to	write	an	entire	device	driver	or	instrument	driver	at	the	user	level,
without	having	to	write	any	kernel	code.

Configuring	NI-VISA	to	Recognize	a	PXI	Device
Each	PCI	device	must	have	a	kernel	level	driver	associated	with	it;	this	is
done	in	Windows	via	a	.inf	file.	For	NI-VISA	to	recognize	your	device,	you
must	run	the	NI-VISA	Driver	Wizard,	available	via	the	Start	menu	under
National	Instruments»VISA.
The	wizard	first	prompts	you	for	basic	information	NI-VISA	needs	to
properly	locate	your	PXI	instrument.	This	includes	the	following:

Instrument	Prefix—The	VXIplug&play	or	IVI	instrument	driver
prefix	for	the	device.
PXI	Manufacturer	ID—This	16-bit	value	is	vendor	specific	and	is
unique	among	PCI-based	device	providers.	The	vendor	ID
number	for	National	Instruments,	for	example,	is	0x1093.	If	the
product	vendor	uses	a	commercial	PCI	core,	this	value	would	be
the	vendor	ID	of	the	PCI	core	component.
PXI	Model	Code—The	16-bit	device	ID	value	is	device	specific,
defined	by	the	instrument	provider,	and	required	for	PCI-based
devices.	If	the	product	vendor	uses	a	commercial	PCI	core,	this
value	would	be	the	device	ID	of	the	PCI	core	component.
Subsystem	Manufacturer	ID—This	16-bit	value	is	vendor
specific	and	is	unique	among	PCI-based	device	providers.	If	this
value	exists,	it	specifies	the	vendor	ID	of	the	actual	product.	This
value	may	be	the	same	as	the	primary	PXI	Manufacturer	ID.
Subsystem	Model	Code—The	16-bit	device	ID	value	is	device
specific,	defined	by	the	instrument	provider,	and	required	for	PCI-
based	devices.
Generates	interrupts—Checking	this	box	indicates	that	you
want	to	use	the	VISA	event-handling	model	in	response	to
hardware	interrupts	your	PXI	instrument	generates.

If	the	device	vendor	has	provided	you	with	a	Module	Description	File
(also	called	a	module.ini	file),	you	can	import	the	information	from	that	file
into	the	wizard	instead	of	entering	these	settings	yourself.	Module
Description	Files	provide	a	mechanism	for	informing	the	operating
system	and	the	PXI	Resource	Manager	about	key	attributes	of	a	PXI
module.	The	specification	for	these	files	is	at
http://www.pxisa.org/Specifications.html.

javascript:WWW(WWW_PXI)

In	text	boxes	where	numerical	information	is	required,	preceding	the
number	with	0x	designates	a	hexadecimal	value.	The	wizard	assumes	all
other	numeric	entries	are	decimal	values.
If	you	need	to	handle	hardware	interrupts,	check	Generates	interrupts
and	the	wizard	guides	you	through	a	two-step	process.	In	Step	1,	you
specify	how	your	device	detects	a	pending	interrupt.	This	is	done	via	one
or	more	register	accesses,	where	each	access	is	a	single	register	read	or
write	of	a	specified	width	to	a	given	offset	relative	to	a	given	address
space.	In	the	wizard,	you	specify	each	access	as	a	Read,	Write,	or
Compare.
The	Compare	operation	is	essential	for	determining	whether	a	PCI/PXI
device	is	interrupting.	A	Compare	operation	performs	a	Read,	then
applies	a	user-specified	mask	to	the	result	and	compares	the	masked
result	with	another	user-specified	value	(you	specify	both	of	these	values
in	the	wizard).	In	order	to	determine	whether	your	device	is	interrupting,
the	Compare	operation	has	an	associated	result	of	True	or	False.	NI-
VISA	decides	that	the	device	is	interrupting	if	and	only	if	the	result	of	all
Compare	operations	is	True.	Because	NI-VISA	relies	on	the	result	of	the
Compare	operation	in	making	this	determination,	at	least	one	Compare
operation	must	be	present	in	an	interrupt	detection	sequence	for	the
sequence	to	be	valid.
If	your	device	has	multiple	potential	interrupt	sources,	you	can	specify
multiple	interrupt	detection	sequences.	At	least	one	sequence	must	be
considered	valid	for	NI-VISA	to	deem	that	your	device	is	interrupting.
In	addition	to	the	interrupt	detection	sequence,	NI-VISA	also	needs	the
sequence	of	register	operations	required	to	acknowledge	an	interrupt
condition	for	your	device;	this	is	Step	2.	At	interrupt	time,	if	NI-VISA
determines	that	your	device	is	interrupting	(as	discussed	above),	this
second	sequence	should	do	whatever	is	necessary	to	squelch	the
interrupt	condition.	This	sequence	is	constructed	using	the	same	Read,
Write,	and	Compare	operations	discussed	in	Step	1,	and	individual
operations	are	entered	in	an	identical	manner.	Because	this	sequence
should	consist	of	the	minimum	operations	necessary	to	turn	off	an
interrupt	condition	for	your	device,	the	result	of	any	Compare	operations,
while	still	valid,	are	irrelevant	to	interrupt	acknowledgment.	If	your	device
uses	ROAK	(Release	on	Interrupt	Acknowledge)	interrupts,	and	the
ROAK	register	was	accessed	in	the	sequence	specified	by	Step	1,	this

sequence	can	be	left	blank.
The	wizard	will	also	allow	you	to	enter	certain	Windows	Device	Manager
settings;	these	are	cosmetic	and	do	not	affect	the	ability	of	NI-VISA	to
recognize	and	control	your	PXI	instrument.	They	are	provided	as	a
convenience,	allowing	you	to	more	fully	customize	your	instrument	driver
package.
When	you	are	done,	the	NI-VISA	Driver	Wizard	generates	a	Windows
Setup	Information	(.inf)	file	for	each	supported	operating	system.	Before
a	PXI	device	will	be	visible	to	NI-VISA,	you	must	use	the	.inf	files	to
update	the	Windows	system	registry.	The	procedure	for	using	a	.inf	file	to
update	the	registry	is	Windows-version	dependent.	To	manually	install	a
.inf	file	on	any	machine,	including	the	one	on	which	it	was	generated,
open	the	appropriate	.inf	file	in	a	text	editor	and	follow	the	instructions	on
the	first	few	lines	at	the	top.	Alternately,	you	can	let	the	wizard	install	the
.inf	file	appropriate	for	your	machine	before	the	wizard	exits.

Using	LabWindows/CVI	to	Install	Your	Device
.inf	Files
LabWindows/CVI	supports	distribution	of	.inf	files	for	PXI/PCI,	USB,	and
FireWire	devices.	For	VISA-based	instrument	drivers	for	devices	of	these
types,	you	must	include	the	generated	.inf	file	in	your	application's
installer.	In	LabWindows/CVI	8.1.1	and	later,	perform	the	following	steps
to	create	the	distribution:

1.	 Generate	the	.inf	file	for	your	instrument	using	the	NI-VISA	Driver
Wizard.

2.	 In	the	LabWindows/CVI	Edit	Installer	dialog	box	Files	tab,	create
an	installation	directory	for	the	.inf	file.

National	Instruments	recommends	you	choose	a	specific	and
meaningful	directory	path,	such	as	[Windows	Volume]\<Company
Name>\Drivers\<Driver	Name>\<Revision>	or	[VXI	PnP	OS]\
<Driver	Name>\<Revision>.	Your	.inf	file	must	not	be	installed	to	a
directory	containing	any	other	.inf	files,	or	installation	may	fail.
You	should	not	explicitly	install	your	file	to	the	Windows	.inf	store;
it	will	be	implicitly	registered	and	copied	to	the	Windows	.inf	store
during	installation.

If	you	have	multiple	.inf	files,	create	a	separate	directory	for	each
.inf	file.

3.	 Add	your	.inf	file	to	the	directory	you	just	created.
4.	 Build	the	distribution.
Note		If	you	are	creating	.inf	files	for	a	USB	device	and	want	to
support	both	Windows	2000/XP	and	Windows	Vista	32/Vista	64
editions,	you	must	create	two	separate	LabWindows/CVI	installers,
one	for	each	.inf	file	generated.

Other	PXI	Resource	Classes	and	VISA
For	certain	applications,	such	as	mapping	triggers,	it	may	be	necessary
to	access	the	PXI	chassis	("backplane")	directly.	VISA	provides	the
BACKPLANE	resource	for	this	purpose,	where	each	PXI	chassis	is
accessed	using	the	VISA	resource	string	"PXI<system>::<chassis
number>::BACKPLANE".	The	BACKPLANE	resource	encapsulates	the
operations	and	properties	of	each	chassis	in	the	PXI	system,	and	lets	a
controller	query	and	manipulate	specific	attributes	of	and	lines	on	a
specific	chassis	in	a	given	PXI	system.	The	operations	viMapTrigger,
viUnmapTrigger,	and	viAssertTrigger	supported	on	this	resource	allow	the
user	to	map,	unmap,	reserve,	or	unreserve	hardware	trigger	resources.
The	controller	can	also	query	attributes	such	as	the	manufacturer	and
model	of	a	chassis.	This	includes	advanced	functionality	that	might	not
be	available	in	all	implementations	or	on	all	controllers.

PXI	Summary
NI-VISA	provides	a	convenient	means	of	accessing	advanced
functionality	of	PCI	and	PXI	devices.	The	alternative	to	using	NI-VISA	for
PCI	or	PXI	device	communication	is	writing	a	kernel	driver.	By	using	NI-
VISA,	you	avoid	having	to	learn	how	to	write	kernel	drivers,	you	avoid
having	to	learn	a	different	kernel	model	for	each	Windows	operating
system,	and	you	gain	platform	independence	and	portability	by	scaling	to
other	operating	systems	such	as	LabVIEW	RT	now	and	others	in	the
future.

PXI	and	VISA	Background
Based	on	PCI,	both	the	CompactPCI	and	PXI	standards	define	a	modular
backplane	solution	packaged	in	a	rugged	mainframe	topology.	PXI
adopts	CompactPCI	and	extends	it	by	adding	features	for	integrated
backplane	timing	and	triggering,	a	slot-to-slot	communication	bus,	a
common	software	structure,	and	more	rigid	environmental	standards—all
essential	for	instrumentation	systems.	Because	PXI	is	based	on	the
CompactPCI	standard,	you	can	use	PXI	and	CompactPCI	modules	in	the
same	system	without	conflict.	Today,	PXI	and	CompactPCI	are	widely
used	for	computer-based	measurement	and	automation	applications.	PXI
and	CompactPCI	take	full	advantage	of	Microsoft	OSs,	giving	you	an
easy-to-develop,	easy-to-use	platform	for	measurement	and	automation.
Because	PXI	and	CompactPCI	use	PCI	as	the	data	communication	path,
PXI	and	CompactPCI	provide	the	highest	performance	measurement	and
automation	platform	available	today.
The	measurement	and	automation	industry	is	adopting	PXI	as	a	standard
platform.	Until	recently,	the	most	common	way	to	low-level	program	a	PXI
device	was	to	use	a	Windows	kernel-level	driver.	This	process	required
not	only	extensive	knowledge	of	the	device	register	set,	but	also	low-level
knowledge	of	Windows	programming.	This	development	could	be	very
time	consuming,	because	users	had	to	write	a	separate	driver	for	each
Windows	OS.	NI-VISA	makes	this	process	much	easier	by	acting	as	the
kernel-level	driver	for	a	device,	thus	eliminating	the	need	for	the	user	to
develop	a	new	Windows	kernel-level	driver.	Using	NI-VISA	also
eliminates	the	need	for	writing	separate	device	drivers	for	each	Windows
OS,	because	NI-VISA	is	already	cross-platform	compatible	under
Windows.	The	NI-VISA	Driver	Wizard,	one	of	the	tools	available	with	the
full	development	version	of	NI-VISA,	even	assists	you	in	the	Windows
setup	of	your	device.	Through	the	NI-VISA	Driver	Wizard,	you	can	create
a	Windows	setup	(.inf)	file,	as	well	as	easily	set	up	how	NI-VISA	handles
interrupts	from	your	device.	A	detailed	knowledge	of	the	register	set	and
register	programming	of	your	PXI/PCI	device	is	still	required,	but
development	time	is	drastically	reduced,	because	NI-VISA	handles	the
low-level	Windows	programming	for	you.

Note		Previous	versions	of	NI-VISA	included	the	PXI	Driver
Development	Wizard.	USB	support	was	added	to	NI-VISA	3.0,	and
the	NI-VISA	Driver	Wizard	replaced	the	PXI	Driver	Development

Wizard.

Configuring	NI-VISA	to	Recognize	a	PXI/PCI
Device
Every	PXI/PCI	device	must	have	an	associated	kernel-level	driver.
Windows	uses	a	setup	(.inf)	file	to	associate	a	device	and	its	driver.	For
NI-VISA	to	recognize	your	device,	you	must	use	the	NI-VISA	Driver
Wizard	to	create	a	.inf	file.	To	access	the	NI-VISA	Driver	Wizard,	select
Start»National	Instruments»VISA.
The	following	topics	explain	how	to	configure	NI-VISA	to	recognize	a
PXI/PCI	device:
Hardware	Bus
Basic	Device	Information
Interrupt	Detection	Information
Interrupt	Removal	Information
Output	Files	Generation
Installation	Options

Hardware	Bus
The	NI-VISA	Driver	Wizard	supports	creating	.inf	files	for	PXI/PCI,	USB,
and	FireWire	devices.	When	the	wizard	opens,	it	displays	the	Hardware
Bus	window	as	shown	in	the	following	figure.

Hardware	Bus	Window
Because	you	want	to	control	a	PXI	or	a	PCI	device,	select	PXI/PCI	and
click	Next.	For	more	information	about	controlling	a	USB	device,	refer	to
the	USB	Instrument	Control	Tutorial.
Basic	Device	Information

Basic	Device	Information
The	NI-VISA	Driver	Wizard	first	prompts	for	basic	information	NI-VISA
needs	to	properly	locate	and	identify	a	PXI/PCI	device.	This	basic
information,	such	as	manufacturer	identification	and	model	code,	should
be	documented	in	the	register-level	programming	information	for	your
PXI/PCI	device.	The	following	figure	shows	the	Basic	Device	Information
window	of	the	NI-VISA	Driver	Wizard.

Basic	Device	Information
Using	this	window,	you	can	specify	the	following	basic	information:

Manufacturer	ID—This	16-bit	value	identifies	your	device	when	it
is	installed.	It	is	vendor	specific	and	unique	among	PCI-based
device	providers.	For	example,	the	Manufacturer	ID	number	for
National	Instruments	is	0x1093.
Model	Code—This	16-bit	value	identifies	your	device	when	it	is
installed.	It	is	device	specific	and	defined	by	the	instrument
manufacturer.	The	model	code	for	the	PXI-6070E,	which	is	used

in	this	tutorial,	is	0x11B0.
This	device	generates	interrupts—Some	PXI/PCI	devices
generate	interrupts	to	request	attention.	Checking	this	box
indicates	that	you	must	use	the	VISA	event-handling	model	in
response	to	hardware	interrupts	your	PXI/PCI	device	generates.
For	the	purposes	of	demonstrating	the	NI-VISA	Driver	Wizard,
the	This	device	generates	interrupts	box	is	checked,	although
there	are	no	examples	of	using	interrupts	on	the	PXI-6070E,
because	this	is	beyond	the	scope	of	this	tutorial.
This	device	uses	PXI	Express—PXI	Express	devices	provide	to
software	a	way	to	read	the	slot	number.	By	checking	this	box,	you
can	specify	the	sequence	of	register	accesses	necessary	to	read
the	slot	number	from	a	PXI	Express	device,	or	a	PXI	device	that
supports	this	feature.
This	device	uses	a	subsystem—Some	PXI/PCI	devices	use
subsystems	for	identification	purposes.	Checking	this	box
indicates	that	your	device	uses	subsystems	and	that	you	specify
the	subsystem	manufacturer	ID	and	the	subsystem	model	code.
This	item	is	checked	by	default,	because	the	PCI	specification
now	requires	devices	to	support	the	subsystem	registers.
Subsystem	Manufacturer	ID—If	your	PXI/PCI	device	uses
subsystems,	you	need	to	specify	the	subsystem	manufacturer	ID.
This	is	a	16-bit	value	that	identifies	your	PXI/PCI	device	when	it	is
installed.	The	device	manufacturer	assigns	the	subsystem
manufacturer	ID.
Subsystem	Model	Code—If	your	PXI/PCI	device	uses
subsystems,	you	must	specify	the	subsystem	model	code.	This	is
a	16-bit	value	that	identifies	your	device	when	it	is	installed.	The
device	manufacturer	assigns	the	subsystem	model	code.

In	addition	to	manually	entering	all	basic	device	and	the	interrupt
information,	the	NI-VISA	Driver	Wizard	includes	the	following	two	options
to	automate	the	process:

Load	settings	from	Module	Description	File—According	to	the
PXI	Specification,	PXI	instruments	that	use	VISA	as	the	low-level
driver	should	include	a	module	description	file,	also	known	as	the
module.ini	file.	This	text	file	contains	the	information	requested	in
the	Basic	Device	Information	window,	as	well	as	information	on

interrupt	detection	and	interrupt	acknowledgment.	If	you	already
have	a	module.ini	file	for	your	PXI	device,	you	can	load	the
information	directly	from	the	.INI	file	using	the	Load	settings
from	Module	Description	File	button.

To	obtain	the	values	for	these	settings,	contact	your	PXI/PCI	device
manufacturer.	Along	with	the	.inf	files,	the	NI-VISA	Driver	Wizard	also
creates	a	module.ini	file	you	can	distribute	with	your	PXI	instrument.
When	all	information	is	loaded,	click	Next.
The	next	window	depends	on	whether	you	checked	Generates
interrupts	or	PXI	Express.	If	your	device	does	not	generate	interrupts,
you	can	skip	to	Output	Files	Generation.
Interrupt	Detection	Information

Interrupt	Detection	Information
If	the	Generates	interrupts	box	is	checked,	the	next	window	is	the
Interrupt	Detection	Information	window.	Because	PXI/PCI	devices	share
one	of	four	physical	interrupt	lines,	more	than	one	PXI/PCI	device	can	be
interrupting	at	any	given	time.	In	the	Interrupt	Detection	Information
window,	you	specify	the	sequence	of	register	operations	so	that	NI-VISA
can	determine	whether	your	device	is	interrupting.	PXI/PCI	hardware
typically	indicates	a	pending	interrupt	condition	using	an	Interrupt
Status/Control	register.	The	following	figure	shows	the	Interrupt	Detection
Information	window.

Interrupt	Detection	Information
You	can	use	a	Read/Compare	operation	to	determine	whether	your
device	is	asserting	a	hardware	interrupt.	This	operation	performs	a
register	read,	applying	a	user-defined	mask	(logical-AND)	to	the	register
contents.	The	resulting	value	is	then	compared	with	a	user-specified
constant	(using	another	logical-AND).	If	the	masked-result	and	the	user-

defined	constant	are	the	same,	the	comparison	operation	is	True.	If	the
values	are	different,	the	result	is	False.	If	the	result	of	all	Read/Compare
operations	in	a	sequence	of	register	transactions	is	True,	NI-VISA
concludes	that	your	device	is	interrupting	and	proceeds	to	execute	the
Interrupt	Acknowledge	sequence.	Because	NI-VISA	relies	on	the
comparison	operations	result	in	making	this	conclusion,	at	least	one
Read/Compare	operation	must	be	present	in	this	transaction	sequence.
You	can	add	steps	to	the	sequence	using	the	Add	a	step	before	and
Add	a	step	after	buttons.	The	following	figure	shows	the	window	that
appears	if	you	click	one	of	the	Add	a	step	buttons.
When	determining	whether	your	device	is	asserting	a	hardware	interrupt,
you	can	use	more	than	one	transaction	sequence.	All	comparisons	within
any	given	detection	transaction	sequence	must	have	a	result	of	True	for
that	detection	transaction	sequence	to	have	a	result	of	True.	If	multiple
detection	transaction	sequences	are	present,	the	results	from	every
sequence	are	compared	using	a	logical-OR.	If	any	sequence	has	a	result
of	True,	NI-VISA	concludes	that	this	interrupt	belongs	to	this	device.	The
steps	and	sequences	required	to	detect	if	your	PXI/PCI	device	is
generating	an	interrupt	should	be	in	the	device	register	documentation.
You	can	add	and	remove	sequences	using	the	Add	Sequence	and
Remove	Sequence	buttons,	respectively.

Interrupt	Information	Window
The	above	example	specifies	that	to	make	this	determination,	you	must
read	a	32-bit	value	from	BAR0	at	offset	0x14.	NI-VISA	must	then	check
this	value	to	determine	the	status	of	bit	31	(highest	order	bit	in	the
register).	If	bit	31	is	high,	NI-VISA	knows	the	device	is	generating	an

interrupt.	Using	the	Compare	mask,	you	can	mask	in	the	particular	bits
you	need	to	compare,	in	this	case	bit	31.	The	hexadecimal	value	that
corresponds	to	bit	31	being	high	is	0x80000000.	The	Value	to	write	or
compare	is	the	value	that	you	expect	the	32-bit	register	to	be	equal	to
after	applying	the	mask.	If	you	were	doing	a	Write	instead	of	a
Read/Compare,	you	would	use	this	value	to	specify	what	should	be
written	back	to	the	register.	Again,	this	information	is	provided	for
example	purposes	only;	it	is	not	useful	if	attempting	to	handle	interrupts
for	the	PXI-6070E.	Click	OK	when	you	finish	entering	a	particular
interrupt	detection	step.	When	you	have	added	all	steps	for	your	device,
click	Next	to	continue	with	the	wizard.
Interrupt	Removal	Information

Interrupt	Removal	Information
If	the	Generates	interrupts	box	was	checked,	the	next	window	is	the
Interrupt	Removal	Information	window.	Once	an	interrupt	is	detected,	it
must	be	acknowledged	and	removed	from	the	bus.	Using	this	window,
you	can	specify	the	steps	required	to	acknowledge	the	interrupt.

Interrupt	Removal	Information
Just	as	recognizing	an	interrupt	may	take	multiple	steps,	acknowledging
an	interrupt	may	also	take	multiple	steps.	To	add	a	step,	click	the	Add	a
step	before	or	Add	a	step	after	button.	The	steps	to	remove	the
interrupt	from	your	PXI/PCI	device	should	be	in	the	device	register
documentation.
After	selecting	one	of	the	Add	a	step	buttons,	the	PXI	Interrupt
Information	window	appears.	The	following	figure	specifies	that	to
remove	the	interrupt,	you	must	write	a	16-bit	value	to	BAR0	at	offset
0x10.	The	Value	to	write	or	compare	is	the	value	you	will	write	to	the	16-
bit	register.	Again,	this	information	is	provided	for	example	purposes	only

and	is	not	useful	when	attempting	to	handle	interrupts	for	the	PXI-6070E.
Click	OK	when	you	finish	entering	a	particular	interrupt	detection	step.

Interrupt	Information
There	may	be	more	than	one	step	documented	for	your	device.	In	this
case,	continue	to	add	steps	until	the	sequence	for	your	device	is
complete.	When	you	have	added	all	steps	for	your	device,	click	Next	to
continue	with	the	wizard.
Interrupt	Disarm	Information

Interrupt	Disarm	Information
If	the	Generates	interrupts	box	was	checked,	the	next	window	is	the
Interrupt	Disarm	window.	NI-VISA	allows	you	to	specify	a	sequence	of
register	operations	to	disarm	interrupts	on	your	device	if	a	process
terminates	abnormally.	(When	a	process	terminates	abnormally,	it	does
not	disarm	interrupts.	This	leaves	the	system	vulnerable	to	receiving	an
errant	interrupt	from	a	device	that	no	longer	has	an	interrupt	handler,
which	could	cause	a	blue	screen	or	system	hang.)	NI-VISA	executes	the
specified	sequence	of	register	operations	only	if	the	crashing	process	is
the	last	process	using	the	device.

Interrupt	Disarm	Information
Just	as	recognizing	and	acknowledging	an	interrupt	may	take	multiple
steps,	disarming	a	device	may	also	take	multiple	steps.	To	add	a	step,
click	the	Add	a	Step	Before	or	Add	a	Step	After	button.	The	steps	to
disarm	your	PXI/PCI	device	from	interrupting	should	be	in	the	device
register	documentation.

After	selecting	one	of	the	Add	a	Step	buttons,	the	Interrupt	Information
window	appears.

Interrupt	Information
There	may	be	more	than	one	step	documented	for	your	device.	In	this
case,	continue	to	add	steps	until	the	sequence	for	your	device	is
complete.	When	you	have	added	all	steps	for	your	device,	click	Next	to
continue	with	the	wizard.
PXI	Express	Configuration	Information

PXI	Express	Configuration	Information
If	the	Supports	PXI	Express	features	box	is	checked,	the	next	window
is	the	PXI	Express	Configuration	window.	PXI	Express	requires	devices
to	be	able	to	report	their	slot	number.	Using	this	window,	you	can	specify
the	steps	required	to	query	this	value	from	the	device.

PXI	Express	Configuration	Information
Typically,	requesting	the	slot	number	from	a	device	involves	reading	a
register.	This	may	involve	multiple	steps,	as	a	single	register	may	have
multiple	purposes	depending	on	the	last	value	written	to	it,	or	the	state	of
other	registers.	To	add	a	step,	click	the	Add	a	step	before	or	Add	a	step
after	button.	The	steps	to	query	the	slot	number	from	your	device	that
supports	PXI	Express	features	should	be	in	the	device	register
documentation.
After	selecting	one	of	the	Add	a	step	buttons,	the	PXI	Express
Information	window	appears.	The	following	figure	specifies	that	to	get	the
slot	number,	you	you	must	read	a	32-bit	value	from	BAR0	at	offset	0x14.

The	Read	Mask	and	Bits	to	Shift	values	are	used,	frequently	in
combination,	to	select	specific	bits	that	represent	the	slot	number	when
the	value	returned	by	a	register	contains	more	information	than	just	a	slot
number.	Again,	this	information	is	provided	for	example	purposes	only
and	is	not	useful	when	attempting	to	handle	interrupts	for	the	PXI-6070E.
Click	OK	when	you	finish	entering	a	particular	register	access	step.

PXI	Express	Information
There	may	be	more	than	one	step	documented	for	your	device.	In	this
case,	continue	to	add	steps	until	the	sequence	for	your	device	is
complete.	When	you	have	added	all	steps	for	your	device,	click	Next	to
continue	with	the	wizard.
Output	Files	Generation

Output	Files	Generation
After	you	have	entered	all	interrupt	information,	the	Output	Files
Properties	window	appears	as	shown	in	the	following	figure.

Output	Files	Generation
The	PXI	Instrument	Prefix	is	a	descriptor	you	use	to	identify	the	files
used	for	this	device.	Enter	a	PXI	instrument	prefix,	select	the	desired
directory	in	which	to	place	these	files,	and	click	Next.	The	.inf	file	is
created	in	the	directory	specified	by	the	output	file	directory,	and	the
Installation	Options	windows	appears	as	shown	in	next	topic.
Installation	Options

Installation	Options
You	now	should	have	all	required	Windows	Setup	Information	(.inf)	files
for	each	applicable	Windows	OS.	Before	a	device	is	visible	to	NI-VISA,
you	must	use	the	.inf	files	to	update	the	Windows	system	registry.
The	NI-VISA	Driver	Wizard	can	automatically	install	the	.inf	file	for	your
device.	To	automatically	install	the	required	files,	select	Install	the
generated	file(s)	on	this	computer	and	click	Finish.

Installation	Options
The	procedure	for	using	a	.inf	file	to	update	the	registry	is	Windows
version	dependant.	To	manually	install	a	.inf	file	on	any	machine,
including	the	one	on	which	it	was	generated,	open	the	appropriate	.inf
files	in	a	text	editor	such	as	Windows	Notepad	and	follow	the	instructions
on	the	first	few	lines	at	the	top.

Note		Choosing	the	Install	the	generated	file(s)	on	this
computer	option	requires	administrator/root	privilege.	On	Vista,

you	will	be	prompted	for	credentials	after	choosing	this	option.	On
Linux,	you	must	run	the	NI-VISA	Driver	Wizard	as	the	root	user	for
this	to	work	properly.	Otherwise,	it	will	fail	because	you	are	not
prompted	for	credentials	at	this	point.

Note		Only	one	driver	should	be	associated	with	any	particular
PXI/PCI,	USB,	or	FireWire	device	in	your	system.	If	you	are
following	the	PXI-6070E	example,	for	Windows	to	recognize	NI-
VISA	as	the	driver	for	your	device,	you	must	make	sure	that	NI-
DAQ	is	not	installed	on	the	system.	You	also	must	be	sure	that	any
registry	information	about	the	old	driver	is	removed.

You	can	now	install	your	hardware	in	the	system.	Depending	on	your	OS,
this	process	may	be	slightly	different.	Once	the	hardware	and	setup
information	is	properly	installed,	you	should	see	the	device	through
Measurement	&	Automation	Explorer	(MAX).	Open	MAX	and	press	<F5>
to	refresh.	The	following	figure	shows	what	is	visible	in	MAX	after	you
properly	install	the	.inf	file	you	created	using	the	wizard	under	Windows
XP	for	your	PXI-6070E.

PXI-6070E	as	an	NI-VISA	Device	in	MAX
Note		If	you	have	disabled	the	Passport	for	PXI	devices	in	VISA,
you	must	reenable	the	Passport	for	VISA	to	recognize	PXI	devices.

In	the	figure	above,	notice	that	several	attributes	are	specified	to	the	right
of	the	PXI	device	listing	in	MAX.	The	NI-VISA	Driver	Wizard	set	the
attributes	listed	under	Device	Information	in	the	.inf	file.
Now	that	the	PXI	device	is	visible	to	VISA,	it	is	considered	a	VISA	PXI
resource.	A	PXI	resource	is	uniquely	identified	in	the	system	by	three
characteristics:

The	PCI	bus	number	where	it	is	located
The	PCI	device	number	it	is	assigned
The	device	function	number

For	single-function	devices,	the	function	number	is	always	0	and	is

optional;	for	multifunction	devices,	the	function	number	is	device	specific,
but	is	in	the	range	of	0–7.	The	device	number	is	associated	with	the	PXI
or	PCI	slot	number,	but	these	numbers	usually	differ	from	one	PC	to
another.	The	bus	number	of	a	device	is	consistent	from	one	system	boot
to	the	next,	unless	bridge	devices	are	inserted	somewhere	between	the
device	and	system	CPU.	The	VISA	resource	descriptor	you	pass	to	the
VISA	function	viOpen()	or	VISA	Open	in	LabVIEW	to	access	a	PCI	or	PXI
device	is	"PXI<bus>::<device>::<function>::INSTR".	Based	on	the	previous
explanation,	this	can	be	difficult	to	determine	until	the	device	is	installed
and	detected	by	NI-VISA	in	the	system.	As	seen	in	the	figure	above,	the
PXI	device	in	this	example	has	the	resource	name	PXI2::13::INSTR.	This
name	indicates	that	the	PXI	device	is	on	PXI	bus	2,	assigned	PXI	device
number	13,	and	a	single	function	device,	because	the	function	parameter
is	not	explicitly	listed.
You	can	determine	the	resource	string	programmatically	by	using	the	NI-
VISA	function	viFindRsrc()	or	VISA	Find	Resource	in	LabVIEW.	This
function	can	determine	the	available	NI-VISA	resources	in	your	system
and	return	them	to	your	program.	Because	these	functions	return	all	VISA
resources	in	your	system	including	GPIB	and	VXI	devices,	you	may
narrow	down	the	VISA	resources	returned	by	these	functions	by
supplying	the	viFindRsrc()	or	VISA	Find	Resource	functions	with	a	regular
expression	that	directs	it	to	recover	only	PXI	resources.	For	example,	you
can	use	the	regular	expression	"?*(PXI)?*"	to	tell	the	VISA	driver	to
return	only	PXI	device	resources.	You	may	even	recover	specific	devices
by	supplying	a	regular	expression	that	includes	VISA	attributes.	For
example,	the	regular	expression	"?*(PXI)?*{VI_ATTR_MANF_ID	==
4243}"	tells	the	VISA	driver	to	return	only	PXI	devices	with	a
manufacturer	ID	of	decimal	value	4243.	The	National	Instruments
manufacturer	ID	is	hexadecimal	1093,	which	equals	decimal	4243.
Because	developing	the	appropriate	regular	expression	to	return	the
specific	devices	you	require	can	be	very	complicated,	you	can	use	VISA
Interactive	Control	to	develop	the	regular	expression	you	need.	The	VISA
Interactive	Control	is	installed	with	VISA,	and	you	can	access	it	at
Start»Programs»National	Instruments»VISA.	After	opening	the
interactive	control	panel,	left-click	on	the	pull-down	menu	under	the
Resources	to	Find	textbox	and	select	Create	Query.	Here	you	check
the	resources	or	attributes	you	want	to	specify	in	your	regular	expression,
and	VISA	Interactive	Control	creates	the	regular	expression	for	you.

Using	NI-VISA	to	Communicate	with	a	PXI/PCI
Device
Now	that	you	can	communicate	with	your	device	using	NI-VISA,	you	will
see	a	simple	programming	example	to	help	you	get	started	programming
your	device	using	the	NI-VISA	API.	In	the	example,	the	PXI-6070E	is
programmed	to	toggle	a	few	of	its	digital	lines.	The	example
demonstrates	how	to	open	a	VISA	session,	map	a	portion	of	memory,
peek	and	poke	registers	on	the	device,	and	close	the	VISA	session	both
in	LabVIEW	and	LabWindows/CVI.
NI-VISA	provides	high-level	and	low-level	register	accesses.	The	valid
address	spaces	for	a	PXI	device	are	the	configuration	registers
(VI_PXI_CFG_SPACE)	and	the	six	Base	Address	Registers
(VI_PXI_BAR0_SPACE–VI_PXI_BAR5_SPACE).	A	device	may	use	any	or
all	of	the	BARs.	This	information	is	device	dependent,	but	can	be	queried
through	the	VISA	attributes
VI_ATTR_PXI_MEM_TYPE_BAR0–VI_ATTR_PXI_MEM_TYPE_BAR5.
The	values	for	these	attributes	are	none	(0),	memory	mapped	(1),	or	I/O
(2).	If	the	value	is	memory	mapped	or	I/O,	you	can	also	query	the
appropriate	attributes	for	the	base	and	size	of	each	region.	The	functions
in	LabVIEW	and	LabWindows/CVI	for	obtaining	VISA	attributes	are
introduced	in	the	following	topics:
Step	1—Initialize	the	Device
Step	2—Communicating	with	the	PXI	Device
Step	3—Closing	the	Device

Step	1—Initialize	the	Device
The	first	step	in	a	VISA	program	is	to	open	a	VISA	session	to	the	device.
This	task	is	accomplished	using	either	the	viOpen()	function	in	a	text-
based	programming	language	or	the	VISA	Open	function	in	LabVIEW.
The	following	figure	shows	the	diagram	of	the	LabVIEW	VI	created	to
initialize	the	PXI-6070E.

PXI-6070E	Example	eseriesInit.vi
This	VI	opens	a	VISA	session	to	a	PXI-6070E	by	calling	VISA	Open	in
LabVIEW.	In	the	system	displayed	previously	in	MAX,	the	VISA	resource
name	PXI2::13::INSTR	would	be	supplied	to	the	Instrument	Handle
input	of	VISA	Open.	The	corresponding	text-based	function	is	viOpen().
The	following	figure	shows	the	LabWindows/CVI	code	to	toggle	the	digital
lines	of	the	PXI-6070E	via	the	text-based	version	of	the	NI-VISA	API.
Refer	to	the	following	code	for	the	details	of	calling	the	viOpen()	function
in	LabWindows/CVI.
LabWindows/CVI	Example

#include	<ansi_c.h>

//	To	program	PXI	devices,	you	must	define	the	following	MACRO	before
//	you	include	the	library	"visa.h"
	 	
#if	!defined	NIVISA_PXI

					#define	NIVISA_PXI
#endif

//	Include	the	VISA	library
#include	"visa.h"

int	main	(int	argc,	char	*argv[])
{
	 //	Variable	declarations
	 ViUInt32	writeValue;
	 ViUInt32	bar1Base;
	 ViUInt16	modelCode;
	 ViUInt16	manufacturerID;
	 ViSession	pxi6070E;
	 ViStatus	status;
	 ViSession	defaultRM;
	 ViAddr	address;
	 ViAddr	AddressOffset;
	 int	offset;

	 //	Open	and	Initialize	the	PXI-6070E
	 //	Open	the	NI-VISA	driver
	 status	=	viOpenDefaultRM	(&defaultRM);

	 //	Open	a	session	to	the	PXI-6070E	using	its	VISA	resource
	 //	name	string	"PXI1::10::INSTR"
	 status	=	viOpen	(defaultRM,	"PXI1::10::INSTR",	VI_NULL,	VI_NULL,	&pxi6070E);

	 //	Obtain	the	manufacturer's	ID	and	models	code
	 status	=	viGetAttribute	(pxi6070E,	VI_ATTR_MANF_ID,	&manufacturerID);
	 status	=	viGetAttribute	(pxi6070E,	VI_ATTR_MODEL_CODE,	&modelCode);

	 //	Verify	we	have	a	PXI-6070E
	 if(manufacturerID	!=	0x1093)
	 	 return	-1;
	 if(modelCode	!=	0x11B0)
	 	 return	-1;

	 //	Steps	to	initialize	the	MITE	asic.	These	are	specific

	 //	to	initializing	the	PXI-6070E;	we	will	not	go	into
	 //	detail	about	these	steps.
	 status	=	viGetAttribute	(pxi6070E,	VI_ATTR_PXI_MEM_BASE_BAR1,	&bar1Base);

	 writeValue	=	(bar1Base	|	0x80);
	 status	=	viOut32	(pxi6070E,	11,	0xC0,	writeValue);

	 //	Map	the	block	of	memory	we	will	write	to	using	viPoke()
	 //	and	obtain	a	pointer	to	this	memory
	 status	=	viMapAddress	(pxi6070E,	12,	0,	0x1000,	0,	VI_NULL,	&address);

	 //	Write	the	values	to	the	registers
	 viPoke16	(pxi6070E,	address,	0xB);
	 offset	=	(int)address;
	 offset	=	offset	+	0x2;

	 status	=	viClose	(pxi6070E);
	 status	=	viClose	(defaultRM);
	 return	0;
}

There	is	one	key	difference	between	the	LabVIEW	example	and	the
LabWindows/CVI	example.	The	LabWindows/CVI	example	calls
viOpenDefaultRM.	You	must	call	this	function	once	at	the	beginning	of
every	NI-VISA-based	application	to	open	and	initialize	the	VISA	driver.
The	handle	to	the	driver	session	opened	here	is	passed	to	subsequent
calls	to	viOpen()	to	open	sessions	to	specific	devices.	It	is	not	necessary
to	explicitly	call	viOpenDefaultRM	in	LabVIEW	because	LabVIEW
automatically	calls	it	whenever	a	VI	uses	VISA.	The	error	in	input	in	the
diagram	of	the	figure	above	is	an	optional	input	in	the	example.	This	input
would	be	supplied	if	you	used	eseriesInit.vi	in	sequence	as	a	subVI	with
other	subVIs	that	may	need	to	pass	in	an	error.
VISA	attributes	are	a	common	way	to	access	information	about	a	device
or	its	configuration.	In	the	above	examples,	VISA	attributes	query	the
manufacturer	ID	and	the	model	code	of	a	PXI	device	to	make	sure	the
VISA	session	has	been	opened	to	the	correct	PXI	device.	In	LabVIEW,	a
Property	Node	reads	or	writes	VISA	attributes	for	a	device;	in	a	text-
based	language,	viGetAttribute()	performs	the	same	function.

Step	2—Communicating	with	the	PXI	Device

Step	2—Communicating	with	the	PXI	Device
The	final	two	steps	in	eseriesInit.vi	are	specific	to	the	PXI-6070E
initialization.	A	property	node	obtains	the	base	address	of	the	BAR1
register.	This	value	is	then	compared	with	the	value	0x80	using	a	logical
OR.	The	result	is	written	to	BAR0	space	at	offset	0xC0.	To	do	this,	you
call	the	High-Level	Register-Access	function	VISA	Out	32,	which	writes	a
32-bit	value	to	the	specified	memory	space	at	the	specified	offset.	You
use	the	decimal	value	11	as	an	input	to	this	VI	to	specify	BAR0	as	the
address	space	to	write	to.	As	shown	in	the	LabWindows/CVI	example,
the	same	operations	are	performed	using	the	viGetAttribute	and	viOut32
functions	in	a	text-based	language.	There	are	several	High-Level
Register-Access	functions	for	writing	data	to	registers/memory	space	in
NI-VISA.	Some	of	these	functions	are	introduced	below.	For	details	about
using	high-level	and	low-level	functions	to	access	registers	on	a	device,
refer	to	Register-Based	Communication.
After	you	initialize	and	open	a	session	to	the	PXI	device,	register	peeks
and	pokes	turn	on	a	few	of	the	digital	lines	on	the	device.	The	following
figure	shows	a	LabVIEW	block	diagram	demonstrating	how	to	use	VISA
to	write	data	to	the	registers	of	a	PXI	device.	This	LabVIEW	example
turns	on	some	of	the	digital	lines	on	the	PXI-6070E.	Because	the	register
values	in	the	example	are	specific	to	the	PXI-6070E,	this	example	does
not	go	into	detail	as	to	why	the	specific	register	accesses	are	used.
In	this	VI,	the	Low-Level	Register-Access	operation	VISA	Poke	writes	a
16-bit	value	to	a	register.	When	using	low-level	access	operations,	you
must	set	up	a	hardware	window	using	VISA	Map	Address	or
viMapAddress()	to	obtain	a	pointer	to	access	the	specified	address	space.
You	must	specify	the	address	space,	the	offset,	and	the	window	size
within	this	space	you	would	like	to	access.	In	the	example,	the	address
space	is	BAR1,	the	offset	is	0,	and	the	size	is	0x1000.	Refer	to	the
LabWindows/CVI	example	for	a	text-based	example	of	this	function.

eseriesDigOut.vi
After	the	window	is	properly	mapped,	the	Poke	function	can	write	the
appropriate	values	to	the	desired	registers.	Notice	in	the	figure	above	that
the	address	space	is	set	once	using	VISA	Map	Address,	but	is	not	set	in
any	of	the	VISA	Poke	functions.	This	information	is	passed	from	VISA
Map	Address	to	VISA	Poke	16.	The	text-based	example	is	slightly
different,	because	the	pointer	returned	from	viMapAddress()	must	be
passed	to	each	viPoke16	function.	Notice	the	fourth	call	to	VISA	Poke	16
in	the	LabWindows/CVI	example.	Here	the	example	specifies	the	value	to
be	written	to	the	eight	digital	lines	of	the	PXI-6070E.	The	binary	value
provided	to	the	variable	Digital	Out	Value	is	written	to	these	lines.	The
preceding	example	shows	only	a	few	of	the	Low-Level-Register-Access
VISA	functions.	Refer	to	Register-Based	Communication	for	more
information	about	Low-Level	Register-Access	functions.
Step	3—Closing	the	Device

Step	3—Closing	the	Device
The	last	step	in	communication	is	to	close	the	VISA	sessions	with	the
PXI/PCI	device	and	the	VISA	driver.	The	following	figure	shows	a	VI	for
closing	the	VISA	session	to	the	PXI-6070E.

Example	eseriesClose.vi
In	LabVIEW,	to	close	a	session	to	a	VISA	resource	you	have	opened,	the
only	function	you	need	to	call	is	VISA	Close.	In	the	above	diagram,	the
VISA	Resource	Name	variable	would	be	passed	in	from	the	previous	VIs
used	to	communicate	with	the	device.	In	the	LabWindows/CVI	example,
the	viClose()	function	closes	the	VISA	session	to	the	PXI	device.	This
function	must	actually	be	called	twice,	once	to	close	the	session	to	the
PXI	device	and	once	to	close	the	session	to	the	VISA	driver.

Using	NI-VISA	to	Handle	Events	from	a	PXI/PCI
Device
Often,	PXI/PCI	devices	use	interrupts	to	request	service	from	the	system.
VISA	handles	an	interrupt	from	a	device	using	its	event-handling	model.
There	are	two	mechanisms	for	handling	events	in	the	NI-VISA	event-
handling	model—the	queuing	mechanism	and	the	callback	mechanism.

Queuing	Mechanism
You	can	use	the	queuing	mechanism	in	LabVIEW	and	LabWindows/CVI.
With	this	technique,	all	occurrences	of	a	specified	event	are	placed	in	a
queue.	Your	program	can	periodically	poll	the	queue	for	event	information
or	pause	the	program	until	the	event	has	occurred	and	has	been	placed
in	the	queue.	The	queuing	mechanism	is	generally	useful	for	noncritical
events	that	do	not	need	immediate	attention,	because	you	must	explicitly
poll	for	the	occurrence	of	an	event.
When	using	the	queuing	event-handling	mechanism,	you	must	manually
poll	the	event	queue	to	determine	which	events	have	occurred.	The
LabVIEW	function	to	do	this	is	VISA	Wait	on	Event,	and	the
corresponding	LabWindows/CVI	function	is	viWaitOnEvent().	When	using
these	functions,	a	program	waits	for	a	specified	amount	of	time	for	the
event	to	be	placed	in	the	VISA	event	queue.	The	program	pauses	in	this
function	until	the	event	occurs	or	the	function	times	out.	When	the
specified	event	occurs,	specific	information	about	the	event	is	passed
back	via	this	function.

Callback	Mechanism
The	callback	mechanism	is	available	in	LabWindows/CVI	but	not	in
LabVIEW.	This	technique	involves	having	a	section	of	code	called
automatically	by	the	VISA	driver	whenever	a	particular	event	occurs.	The
function	invoked	if	a	particular	event	occurs	is	called	a	callback	function.
The	callback	mechanism	is	useful	when	your	application	requires	an
immediate	response.	It	is	possible	to	use	both	queuing	and	callbacks	in
the	same	application.
When	using	callbacks,	you	must	associate	an	interrupt-handling	function
with	a	particular	event	before	you	enable	events	using	the	viEnableEvent()
function.	The	function	you	use	to	associate	a	handler	with	an	event	is
viInstallHandler().	After	calling	this	function	and	then	enabling	events,	the
function	you	have	specified	using	viInstallHandler()	is	called
asynchronously	when	the	interrupt	occurs.

Event	Functions
There	are	a	few	important	functions	to	be	familiar	with	when	using	events
in	VISA.	The	first	two	functions	enable	or	disable	the	event	handling
mechanism	in	NI-VISA.	The	LabVIEW	function	VISA	Enable	Event	and
the	LabWindows/CVI	viEnableEvent()	function	tell	the	VISA	driver	to	begin
waiting	for	a	particular	event.	The	call	to	enable	a	VISA	event	must
specify	the	VISA	resource	to	monitor	for	events,	the	type	of	event	you
want	to	acknowledge,	and	which	event-handling	mechanism	to	use.	In
the	case	of	PXI/PCI	devices,	the	type	of	event	you	enable	is	the
VI_EVENT_PXI_INTR.	This	event	tells	VISA	to	place	events	from	that
particular	PXI/PCI	device	in	the	queue	or	to	use	a	specified	callback
function	when	the	event	occurs.	The	LabVIEW	function	VISA	Disable
Event	and	the	LabWindows/CVI	viDisableEvent()	function	tell	the	VISA
driver	to	stop	handling	the	specified	type	of	events	from	the	specified
device.	For	more	detailed	information	about	setting	up	and	handling
PXI/PCI	interrupts,	refer	to	Events.

Serial
VISA	supports	programming	Serial	devices	connected	to	either	an	RS-
232	or	RS-485	controller.
Introduction	to	Programming	Serial	Devices	in	VISA
Default	vs.	Configured	Communication	Settings
Controlling	the	Serial	I/O	Buffers
National	Instruments	ENET	Serial	Controllers
Serial	Summary

Introduction	to	Programming	Serial	Devices	in
VISA
Serial	users	have	traditionally	faced	difficulties	when	porting	code	from
one	platform	to	another.	Each	operating	system	has	its	own	Serial	API;
each	application	development	environment	has	its	own	Serial	API;	and	all
of	these	usually	differ.	The	VISA	Serial	API	is	consistent	across	all
supported	platforms	and	all	supported	ADEs.
The	first	thing	to	point	out	is	how	to	open	a	given	Serial	port.	The	format
of	the	resource	string	that	you	pass	to	viOpen()	is	"ASRL<port>::INSTR".
The	actual	binding	of	a	given	resource	string	to	a	physical	port	is	platform
dependent.	Refer	to	the	documentation	and	example	in	NI-VISA
Platform-Specific	and	Portability	Issues.	However,	ASRL1::INSTR	and
ASRL2::INSTR	are	typically	reserved	for	the	native	Serial	ports	(COM1
and	COM2)	on	the	local	PC,	if	they	exist.

Default	vs.	Configured	Communication	Settings
When	you	open	a	Serial	port,	the	VISA	specification	defines	the	default
communication	settings	to	be	9600	baud,	8	data	bits,	1	stop	bit,	no	parity,
and	no	flow	control.	If	you	have	configured	the	settings	to	a	different
value	in	the	NI-VISA	configuration	utility	(MAX	on	Windows,	visaconf	on
UNIX),	then	you	must	pass	the	value	VI_LOAD_CONFIG	(4)	as	the
AccessMode	parameter	to	viOpen().	This	parameter	will	cause	the
configured	settings	to	be	used;	otherwise,	if	the	AccessMode	is	0	or
VI_NULL,	the	default	settings	will	be	used.
Most	Serial	devices	allow	you	to	set	the	communication	settings
parameters	via	either	DIP	switches	or	via	front	panel	selectors.	If	you	are
not	using	the	NI-VISA	configuration	as	discussed	above,	be	sure	to	use
viSetAttribute()	to	make	these	attribute	values	consistent	with	your	device
settings:

VI_ATTR_ASRL_BAUD	sets	the	baud	rate.	Defaults	to	9600.	The
range	depends	on	the	serial	port's	capabilities	and	is	platform
dependent.	For	example,	most	but	not	all	systems	support
115200	baud.
VI_ATTR_ASRL_DATA_BITS	sets	the	number	of	data	bits.
Defaults	to	8.	The	range	is	from	5–8.
VI_ATTR_ASRL_PARITY	sets	the	parity.	Defaults	to
VI_ASRL_PAR_NONE	(0).	You	can	also	choose	odd,	even,	mark,
or	space.
VI_ATTR_ASRL_STOP_BITS	sets	the	number	of	stop	bits.
Defaults	to	VI_ASRL_STOP_ONE	(10).	Other	valid	values	are
VI_ASRL_STOP_ONE5	(15)	and	VI_ASRL_STOP_TWO	(20).	Note
that	1.5	stop	bits	is	not	supported	on	all	systems	and	is	also	not
supported	in	all	combinations	with	other	settings.
VI_ATTR_ASRL_FLOW_CNTRL	sets	the	method	for	limiting
overflow	on	transfers	between	the	devices.	Defaults	to
VI_ASRL_FLOW_NONE	(no	flow	control).	You	can	also	choose
between	XON/XOFF	software	flow	control,	RTS/CTS	hardware
flow	control,	and	on	supported	systems,	DTR/DSR	hardware	flow
control.

Other	common	(but	not	all)	ASRL	INSTR	attributes	are	as	follows:
VI_ATTR_ASRL_END_IN	defines	the	method	of	terminating

reads.	Defaults	to	VI_ASRL_END_TERMCHAR.	This	means	that
the	read	operation	will	stop	whenever	the	character	specified	by
VI_ATTR_TERMCHAR	is	encountered,	regardless	of	the	state	of
VI_ATTR_TERMCHAR_EN.	To	perform	binary	transfers	(and	to
prevent	VISA	from	stopping	reads	on	the	termination	character)
set	this	attribute	to	VI_ASRL_END_NONE.
VI_ATTR_ASRL_END_OUT	defines	the	method	of	terminating
writes.	Defaults	to	VI_ASRL_END_NONE.	(This	value	means	that
the	setting	of	VI_ATTR_SEND_EN	is	irrelevant.)	To	have	VISA
automatically	append	a	termination	character	to	each	write
operation,	set	this	attribute	to	VI_ASRL_END_TERMCHAR.	To
have	VISA	automatically	send	a	break	condition	after	each	write
operation,	set	this	attribute	to	VI_ASRL_END_BREAK.
If	the	serial	port	is	RS-485,	then	you	can	query	and	manipulate
the	attribute	VI_ATTR_ASRL_WIRE_MODE,	which	designates
the	RS-485	wiring	mode.	This	attribute	can	have	the	values
VI_ASRL_WIRE4	(0,	uses	4-wire	mode),
VI_ASRL_WIRE2_DTR_ECHO	(1,	uses	2-wire	DTR	mode
controlled	with	echo),	VI_ASRL_WIRE2_DTR_CTRL	(2,	uses	2-
wire	DTR	mode	controlled	without	echo),	and
VI_ASRL_WIRE2_AUTO	(3,	uses	2-wire	auto	mode	controlled
with	TXRDY).	This	attribute	is	not	supported	for	RS-232	ports.	It
is	valid	only	on	the	platforms	on	which	National	Instruments
supports	RS-485	products.

For	lower-level	functionality,	you	can	also	query	the	state	of	each	modem
line	via	viGetAttribute().	VISA	will	return	whether	the	given	line	state	is
asserted	(1),	unasserted	(0),	or	unknown	(–1).

Controlling	the	Serial	I/O	Buffers
The	viFlush()	and	viSetBuf()	operations	also	provide	a	control	mechanism
for	the	low-level	serial	driver	buffers.	The	default	size	of	these	buffers	is
0,	which	guarantees	that	all	I/O	is	flushed	on	every	access.	To	improve
performance,	you	can	alter	the	size	of	the	low-level	I/O	transmit	buffer	or
low-level	I/O	receive	buffer	by	invoking	the	viSetBuf()	operation	with	the
VI_IO_OUT_BUF	or	VI_IO_IN_BUF	flag,	respectively.	When	the	buffer
size	is	non-zero,	I/O	to	serial	devices	is	not	automatically	flushed.	You
can	force	the	low-level	I/O	transmit	buffer	to	be	flushed	by	invoking	the
viFlush()	operation	with	VI_IO_OUT_BUF.	Alternatively,	you	can	call
viFlush()	with	VI_IO_OUT_BUF_DISCARD	to	empty	the	low-level	I/O
transmit	buffer	without	sending	any	remaining	data	to	the	device.	You	can
also	call	viFlush()	with	either	VI_IO_IN_BUF	or	VI_IO_IN_BUF_DISCARD
to	empty	the	low-level	I/O	receive	buffer	(both	flags	have	the	same	effect
and	are	provided	only	for	API	consistency).

Note		Not	all	VISA	implementations	may	support	setting	the	size	of
either	the	low-level	I/O	receive	or	transmit	buffers.	In	such	an
implementation,	the	viSetBuf()	operation	will	return	a	warning.
While	this	should	not	affect	most	programs,	you	can	at	least	detect
this	lack	of	support	if	a	specific	buffer	size	is	required	for
performance	reasons.	If	serial	buffer	control	is	not	supported	in	a
given	implementation,	we	recommend	that	you	use	some	form	of
handshaking	(controlled	via	the	VI_ATTR_ASRL_FLOW_CNTRL
attribute),	if	possible,	to	avoid	loss	of	data.

When	using	formatted	I/O	in	conjunction	with	serial	devices,	calling
viFlush()	on	a	formatted	I/O	buffer	has	the	same	effect	on	the
corresponding	serial	buffer.	For	example,	invoking	viFlush()	with
VI_WRITE_BUF	flushes	the	formatted	I/O	output	buffer	first,	and	then	the
low-level	I/O	transmit	buffer.	Similarly,	VI_WRITE_BUF_DISCARD
empties	the	contents	of	both	the	formatted	I/O	and	low-level	I/O	transmit
buffers.

Note		In	previous	versions	of	VISA,	VI_IO_IN_BUF	was	known	as
VI_ASRL_IN_BUF	and	VI_IO_OUT_BUF	was	known	as
VI_ASRL_OUT_BUF.

Related	Topics

Automatically	Flushing	the	Formatted	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers

National	Instruments	ENET	Serial	Controllers
The	ENET	to	RS-232	and	ENET	to	RS-485	products	allow	you	to	have
the	Serial	controller	box	situated	at	a	different	location	from	your
workstation.	The	workstation	communicates	over	TCP/IP	to	the	Serial
controller	box,	which	in	turn	communicates	to	the	devices	connected	over
the	Serial	bus.	On	most	Windows	operating	systems,	you	can	map	each
port	on	the	controller	box	to	a	local	port	on	the	workstation,	such	as
COM5.
NI-VISA	currently	natively	supports	communicating	with	these	Serial
controller	boxes	on	Linux	x86,	Windows,	LabVIEW	RT,	LabVIEW	PDA,
and	Mac	OS	X.	Because	you	cannot	map	the	remote	Serial	ports	to	local
Serial	ports	on	the	UNIX	workstations,	you	must	specify	the	controller's
hostname	and	the	remote	Serial	port	number	directly	in	the	resource
string.	This	is	also	valid	on	Windows	but	is	unnecessary	if	you	have
created	a	local	Serial	port	mapping.	The	resource	string	for	these
products	is	"ASRL::<hostname>::<remote	Serial	port	number>::INSTR".	The
hostname	can	be	represented	as	either	an	IP	address	(dot-notation)	or
network	machine	name.
The	communication	settings	discussion	above	applies	to	the	ENET	Serial
controllers	as	well.

Serial	Summary
VISA	provides	a	consistent	API	across	a	broad	range	of	Serial	port
controllers	on	all	supported	platforms.	As	operating	systems	continue	to
evolve	and	other	new	Serial	APIs	inevitably	emerge,	VISA	will	insulate
you	against	unnecessary	changes	to	your	code.

Ethernet
VISA	supports	the	discovery,	identification,	and	programming	of	Ethernet
devices	over	TCP/IP	using	the	following	methods:

Raw	socket	connections
LAN	instrumentation	protocol	(also	known	as	VXI-11)
LAN	eXtensions	for	Instrumentation	(LXI)	discovery/identification
protocol

Introduction	to	Programming	Ethernet	Devices	in	VISA
VISA	Sockets	vs.	Other	Sockets	APIs
Ethernet	Summary

Introduction	to	Programming	Ethernet	Devices
in	VISA
For	users	writing	new	code	to	communicate	with	an	Ethernet	instrument,
the	most	important	consideration	in	choosing	the	right	API	is	which
protocol(s)	the	device	supports.	The	LAN	instrument	protocol,	also	known
as	VXI-11,	was	designed	to	mimic	the	message-based	IEEE	488	style	of
programming	with	which	instrumentation	users	have	become
accustomed;	VISA	is	the	best	API	to	program	devices	using	this	protocol.
Some	devices	may	be	classified	as	LAN	eXtensions	for	Instrumentation
(LXI)-compatible	devices.	Many	of	these	devices	also	use	the	LAN
instrument	communication	protocol.	However,	some	LXI	devices	may	use
a	different	communication	protocol.	For	devices	that	have	a	published
communication	protocol,	VISA	is	typically	the	best	API	to	program	these
devices.	If	the	protocol	is	not	known	or	proprietary,	a	vendor-supplied
instrument	driver	may	be	more	appropriate.
For	other	devices,	if	the	vendor	merely	documents	the	TCP/IP	port
number	and	proprietary	raw	packet	format,	VISA	or	any	sockets	API	may
be	the	best	solution.	Finally,	some	devices	use	other	common	well-
defined	protocols	over	either	TCP/IP	or	UDP	or	some	other	layer;	in
these	cases,	an	existing	standard	implementation	of	that	protocol	may	be
more	appropriate	than	VISA.
For	devices	compatible	with	the	LAN	instrument	protocol	including	most
LXI	devices,	the	simplest	resource	string	is	"TCPIP::<hostname>::INSTR".
The	hostname	can	be	represented	as	either	an	IP	address	(dot-notation)
or	network	machine	name.	If	an	Ethernet	device	supports	multiple
internal	device	names	or	functions,	you	can	access	such	a	device	with
"TCPIP::<hostname>::<device	name>::INSTR".	Recall	that	the	"INSTR"
resource	class	informs	VISA	that	you	are	doing	instrument	(device)
communication.	Programming	these	LAN	instruments	in	most	cases	is
similar	to	programming	GPIB	instruments,	in	that	most	applications
perform	simple	message-based	transfers	(write	command,	read
response)	and	receive	service	request	event	notifications.	For	more
information	about	VISA	message-based	functionality,	refer	to	Message-
Based	Communication.

VISA	Sockets	vs.	Other	Sockets	APIs
For	TCP/IP	devices	that	you	want	to	program	directly	(in	the	absence	of	a
higher	level	protocol	implementation),	VISA	provides	a	platform
independent	sockets	API.	VISA	sockets	are	based	on	the	UNIX	sockets
implementation	in	the	Berkeley	Software	Distribution.	A	socket	is	a	bi-
directional	communication	endpoint,	an	object	through	which	a	VISA
sockets	application	sends	or	receives	packets	of	data	across	a	network.
The	VISA	socket	resource	string	format	is	"TCPIP::<hostname>::
<port>::SOCKET".	The	SOCKET	resource	class	informs	VISA	that	you	are
communicating	with	an	Ethernet	device	that	does	not	support	the	LAN
instrument	or	LXI	protocol.	By	default,	only	the	read	and	write	operations
are	valid.	If	the	device	recognizes	488.2	commands	such	as	"*TRG\n"
and	"*STB?\n",	you	can	set	the	attribute	VI_ATTR_IO_PROT	to
VI_PROT_4882_STRS	(4)	and	then	use	the	operations	such	as
viAssertTrigger()	and	viReadSTB().	However,	unlike	LAN	instruments,
there	is	no	way	to	support	the	service	request	event	with	the	SOCKET
resource	class.
For	users	familiar	with	other	platform	independent	sockets	APIs,	VISA
does	have	some	advantages.	The	VISA	sockets	API	is	simpler	than	the
UNIX	sockets	API	because	viOpen()	includes	the	functionality	of	socket(),
bind(),	and	connect().	It	is	simpler	and	more	portable	than	the	Windows
sockets	API	because	it	removes	the	need	for	calls	to	WSAStartup()	and
WSACleanup().	VISA	uses	platform	independent	VISA	callbacks	for
asynchronous	reads	and	writes	so	you	do	not	need	the	platform	specific
knowledge	of	threading	models	and	asynchronous	completion	services
that	other	sockets	APIs	require.	Finally,	VISA	is	more	powerful	than	that
of	many	application	development	environments	because	it	provides
additional	attributes	for	modifying	the	TCP/IP	communication	parameters.
The	attribute	VI_ATTR_TCPIP_KEEPALIVE	defaults	to	false,	but	if
enabled	will	use	"keep-alive"	packets	to	ensure	that	the	connection	has
not	been	lost.	The	attribute	VI_ATTR_TCPIP_NODELAY	defaults	to	true,
which	enforces	that	VISA	write	operations	get	flushed	immediately;	this
ensures	consistency	with	other	supported	VISA	interfaces.	The	default
setting	disables	the	Nagle	algorithm,	which	typically	improves	network
performance	by	buffering	send	data	until	a	full-size	packet	can	be	sent.
Disabling	this	attribute	(setting	it	to	false)	may	improve	the	performance
of	multiple	back-to-back	VISA	write	operations	to	a	TCP/IP	device.

Ethernet	Summary
VISA	provides	a	cross-platform	API	for	programming	Ethernet
instruments.	Other	APIs	provide	the	same	Ethernet	functionality	and
implement	additional	protocols,	so	if	you	are	familiar	with	them,	then
there	is	not	a	strong	reason	for	you	to	change	to	VISA.	However,	if	you
have	instruments	with	more	than	one	type	of	port	or	connection	available
to	them	(such	as	TCP/IP	and	GPIB	on	the	same	instrument),	or	are	using
multiple	types	of	instruments	with	different	hardware	interface	types,	then
using	VISA	may	be	advantageous	because	you	can	use	the	same
interface	independent	API	regardless	of	the	connection	medium.	The
only	code	that	changes	is	the	resource	string.

Remote	NI-VISA
NI-VISA	allows	you	to	programmatically	access	resources	on	a	remote
workstation.	NI-DAQ	users	should	find	this	similar	to	Remote	DAQ.
Introduction	to	Programming	Remote	Devices	in	NI-VISA
How	to	Configure	and	Use	Remote	NI-VISA
Remote	NI-VISA	Summary

Introduction	to	Programming	Remote	Devices	in
NI-VISA
Many	users	have	devices	that	they	need	to	use	in	multiple	situations,
such	as	a	group	of	scientists	sharing	an	instrument	in	the	laboratory.	The
most	common	way	this	is	done	is	for	each	user	to	physically	carry	the
device	next	to	his	PC,	connect	the	device,	and	then	use	it.	NI-VISA	for
Windows	and	Linux	x86	now	supports	a	more	efficient	way	to	do	this.
With	remote	NI-VISA	on	these	supported	platforms,	you	can	leave	the
device	connected	to	a	single	workstation	and	access	it	from	multiple
client	workstations.
Remote	NI-VISA	is	not	a	separate	hardware	interface	type,	but	it	is
included	in	this	help	file	for	completeness.

How	to	Configure	and	Use	Remote	NI-VISA
On	the	server	machine	(the	one	to	which	the	hardware	is	connected),	you
must	install	Remote	NI-VISA	Server.	This	installation	option	may	not	exist
in	all	NI-VISA	distributions.	By	default,	the	server	is	disabled	and	access
from	any	other	computer	is	disallowed.	Use	the	NI-VISA	configuration
utility	(MAX	on	Windows,	visaconf	on	UNIX)	and	make	sure	the	server	is
enabled.	You	must	also	specify	each	address	or	address	range	of	the
computer(s)	you	wish	to	allow	access.	An	address	can	be	either	in	dot
notation	(x.x.x.x)	or	the	network	machine	name;	an	address	range	can
only	be	in	dot	notation	(x.x.x.*).
On	the	client	machine,	no	configuration	is	necessary.	The	VISA	resource
string	contains	the	server	machine	name	and	the	original	VISA	resource
string	on	the	server:	"visa://hostname/VISA	resource	string".	The	hostname
can	be	represented	as	either	an	IP	address	(dot-notation)	or	network
machine	name.
If	you	want	to	search	for	all	resources	on	a	specific	server,	you	can	pass
"visa://hostname/?*"	to	viFindRsrc().	On	Windows,	you	can	use	the	Remote
Servers	section	of	MAX	to	configure	NI-VISA	to	access	certain	servers	by
default.	In	this	case,	using	"?*"	will	cause	viFindRsrc()	to	query	all
configured	servers	as	well	as	the	local	machine.	If	you	want	to	limit	the
query	to	the	local	machine	only,	regardless	of	whether	it	has	been
configured	to	access	any	remote	servers,	pass	"/?*"	as	the	expression	to
viFindRsrc().
Remote	NI-VISA	supports	the	complete	functionality	of	all	attributes,
events,	and	operations	for	all	supported	hardware	interface	types.

Remote	NI-VISA	Summary
Using	remote	NI-VISA	is	just	one	way	to	access	hardware	on	another
machine.	If	you	have	an	existing	application	written	using	VISA	and	you
need	to	use	it	from	a	different	client,	this	may	be	the	easiest	solution.
However,	since	each	VISA	operation	invocation	is	a	remote	procedure
call,	your	application	performance	may	decrease,	especially	if	it	is
register-intensive	or	has	a	significant	amount	of	programming	logic	based
on	device	responses	or	register	values.	The	latency	over	Ethernet	is
better	suited	to	applications	that	transfer	large	blocks	of	data.	A	better
way	to	remotely	access	hardware	is	to	make	remote	calls	at	a	higher
level,	such	as	using	Remote	VI	Server	in	LabVIEW.

USB
NI-VISA	supports	programming	USB	devices	using	either	low-level	RAW
access	or	the	USB	Test	&	Measurement	Class	protocol	(also	known	as
USBTMC).
Introduction	to	Programming	USB	Devices	in	VISA
Configuring	NI-VISA	to	Recognize	a	RAW	USB	Device
USB	Summary
USB	Instrument	Control	Tutorial

Introduction	to	Programming	USB	Devices	in
VISA
For	users	writing	new	code	to	communicate	with	a	USB	instrument,	the
most	important	consideration	in	choosing	the	right	API	is	which
protocol(s)	the	device	supports.	The	USB	Test	&	Measurement	Class
(USBTMC)	protocol	was	designed	to	mimic	the	message-based	IEEE
488	style	of	programming	with	which	instrumentation	users	have	become
accustomed;	VISA	is	the	best	API	to	program	devices	using	this	protocol.
For	other	devices,	if	the	vendor	merely	documents	the	proprietary	data
format	for	each	endpoint	present	on	the	device,	VISA	may	be	the	best
solution.	Finally,	some	devices	use	other	common	well-defined	protocols
over	USB;	in	these	cases,	an	existing	standard	implementation	of	that
protocol	may	be	more	appropriate	than	VISA.	For	example,	operating
systems	ship	standard	drivers	for	certain	USB	device	classes	such	as
Human	Interface	Device	(HID).
For	RAW	USB	devices,	NI-VISA	supports	communication	on	the	default
control	pipe	(endpoint	0)	on	all	platforms.	On	some	platforms,	NI-VISA
also	supports	nonzero	endpoints.	(Nonzero	endpoints	are	not	currently
supported	on	Windows	Vista.)	It	also	supports	bulk-in,	bulk-out,	interrupt-
in,	and	interrupt-out	communication.	NI-VISA	does	not	support
communication	on	isochronous	endpoints.
The	best	way	to	determine	the	resource	string	is	to	query	the	system	with
viFindRsrc()	and	use	or	display	the	resource(s)	returned	from	that
operation.	Each	USB	device	has	a	vendor	code	and	a	model	code;	this	is
much	the	same	as	PXI	does,	although	the	vendor	IDs	are	different.	You
can	create	a	query	to	search	for	devices	of	a	particular	attribute	value;	in
this	case,	you	can	search	for	a	specific	vendor	ID	and	model	code.	For
example,	the	USB	vendor	ID	for	National	Instruments	is	0x3923.	If	NI
made	a	device	with	the	model	code	0xBEEF,	you	could	call	viFindRsrc()
with	the	expression	"USB?*{VI_ATTR_MANF_ID==0x3923	&&
VI_ATTR_MODEL_CODE==0xBEEF}".	In	many	cases,	the	returned	list
has	one	or	only	a	few	devices.

Configuring	NI-VISA	to	recognize	a	RAW	USB
Device

Note		NI-VISA	will	detect	USB	Test	&	Measurement	Class
(USBTMC)	devices	automatically.	The	information	below	applies
only	to	setting	up	your	USB	device	for	low-level	RAW	access.

Windows
Each	USB	device	must	have	a	kernel-level	driver	associated	with	it;	this
is	done	in	Windows	via	a	.inf	file.	For	NI-VISA	to	recognize	your	device,
you	must	run	the	NI-VISA	Driver	Wizard,	available	via	the	Start	menu
under	National	Instruments»VISA.
The	wizard	first	prompts	you	for	basic	information	NI-VISA	needs	to
properly	locate	your	USB	instrument.	This	includes	the	following:

USB	Manufacturer	ID—This	16-bit	value	is	vendor	specific	and
is	unique	among	USB-based	device	providers.	It	is	referred	to
within	the	USB	Specification	as	Vendor	ID	(VID).	The	vendor	ID
number	for	National	Instruments,	for	example,	is	0x3923.
USB	Model	Code—The	16-bit	device	ID	value	is	device	specific,
defined	by	the	instrument	provider,	and	required	for	USB-based
devices.	It	is	referred	to	within	the	USB	Specification	as	Product
ID	(PID).
Compound	Device—Checking	this	box	indicates	that	the	USB
device	you	are	referring	to	is	a	compound	device.	A	compound
device	is	a	device	that	has	more	than	one	USB	interface.	Each
interface	is	much	like	a	virtual	device	and	may	be	controlled
independently.	You	must	specify	the	number	of	interfaces.

In	text	boxes	where	numerical	information	is	required,	preceding	the
number	with	0x	designates	a	hexadecimal	value.	The	wizard	assumes	all
other	numeric	entries	are	decimal	values.
The	wizard	also	allows	you	to	enter	certain	Windows	Device	Manager
settings;	these	are	cosmetic	and	do	not	affect	the	ability	of	NI-VISA	to
recognize	and	control	your	USB	instrument.	They	are	provided	as	a
convenience,	allowing	you	to	more	fully	customize	your	instrument	driver
package.
When	you	are	done,	the	NI-VISA	Driver	Wizard	generates	a	Windows
Setup	Information	(.inf)	file	for	each	supported	operating	system.	Before
a	USB	device	will	be	visible	to	NI-VISA,	you	must	use	the	.inf	files	to
update	the	Windows	system	registry.	The	procedure	for	using	a	.inf	file	to
update	the	registry	is	Windows-version	dependent.	To	manually	install	a
.inf	file	on	any	machine,	including	the	one	on	which	it	was	generated,
open	the	appropriate	.inf	file	in	a	text	editor	and	follow	the	instructions	on
the	first	few	lines	at	the	top.	Alternately,	you	can	let	the	wizard	install	the

.inf	file	appropriate	for	your	machine	before	the	wizard	exits.

Linux
NI-VISA	relies	on	a	Linux	kernel	feature	for	its	USB	support.	This	feature
is	called	usbfs,	and	on	older	Linux	kernels	was	referred	to	as	usbdevfs.
For	NI-VISA	to	support	USB	devices,	this	feature	must	be	present	and
mounted	(like	a	virtual	filesystem).	This	is	supported	in	most	major	Linux
distributions	such	as	Red	Hat,	SuSE,	and	Mandrake.	You	may	use	the
mount	command	to	display	what	filesystems	are	currently	mounted	to
see	if	your	system	currently	supports	this	feature.
Also,	the	VISA	user	must	have	write	access	to	the	file	that	represents	the
USB	device,	which	is	typically	somewhere	in	a	subdirectory	within
/proc/bus/usb.	If	this	is	not	the	case,	the	USB	device	is	not	accessible	by
VISA	(it	will	not	be	found	using	viFindRsrc,	and	viOpen	will	fail).	The
default	configuration	on	most	systems	is	that	the	root	user	has	write
access;	however,	no	other	user	has	this	access.
There	are	several	options	for	providing	a	nonroot	user	access	to	a	USB
device.

Use	the	hotplug	package.	This	package	is	installed	by	default	on
most	distributions	including	Red	Hat,	SuSE,	and	Mandrake.	The
hotplug	package	allows	the	user	to	run	scripts	for	a	specific	USB
device	based	on	characteristics	such	as	Vendor	ID	(VID)	and
Product	ID	(PID).	If	the	hotplug	package	exists,	the	NI-VISA
Installer	by	default	will	install	scripts	to	give	all	users	write	access
to	all	USB	TMC	devices	and	a	framework	for	USB	RAW	devices.
To	add	write	permissions	for	a	specific	USB	RAW	device,	run	the
included	script:

<VXIPNPPATH>/linux/NIvisa/USB/AddUsbRawPermissions.sh

For	more	information	about	the	hotplug	package,	refer	to	the
following	Web	site:	http://linux-hotplug.sourceforge.net/.
usbfs	(formerly	known	as	usbdevfs)	may	be	mounted	with	the
option	devmode=0666.	This	gives	all	users	read	and	write	access
to	all	USB	devices.
The	root	user	may	add	write	permissions	to	the	file	that
represents	the	USB	device,	which	is	typically	somewhere	in	a
subdirectory	within	/proc/bus/usb.	Unfortunately,	these	permissions

javascript:WWW(WWW_HOTPLUG)

are	lost	if	the	device	is	unplugged.	Therefore,	this	approach	is	not
recommended.

Mac	OS	X
As	long	as	no	other	driver	on	the	system	claims	the	USB	device,	you	can
use	NI-VISA	to	access	it.	No	special	setup	is	required.

USB	Summary
NI-VISA	provides	a	convenient	means	of	accessing	low-level	RAW
functionality	of	USB	devices	as	well	as	support	for	the	USB	Test	&
Measurement	Class	(USBTMC)	protocol.	The	alternative	to	using	NI-
VISA	for	USB	device	communication	is	writing	a	kernel	driver	or	using	an
existing	kernel	driver	supplied	by	the	vendor.	By	using	NI-VISA,	you
avoid	having	to	learn	how	to	write	kernel	drivers,	avoid	having	to	learn	a
different	kernel	model	for	each	operating	system,	and	gain	platform
independence	and	portability	by	scaling	to	other	operating	systems	in	the
future.

USB	and	VISA	Background
VISA	is	a	high-level	application	programming	interface	(API)	for
communicating	with	instrumentation	buses.	It	is	platform	independent,
bus	independent,	and	environment	independent.	In	other	words,	you	use
the	same	API	regardless	of	whether	you	create	a	program	to
communicate	with	a	USB	device	with	LabVIEW	on	a	machine	running
Windows	XP,	or	a	GPIB	device	with	C	on	a	machine	running	Mac	OS	X.
Universal	Serial	Bus	(USB)	is	a	message-based	communication	bus.
This	means	a	PC	and	USB	device	communicate	by	sending	commands
and	data	over	the	bus	as	text	or	binary	data.	Each	USB	device	has	its
own	command	set.	You	can	use	NI-VISA	Read	and	Write	functions	to
send	these	commands	to	an	instrument	and	read	the	response	from	an
instrument.	Check	with	your	instrument	manufacturer	for	a	list	of	valid
commands	for	your	instrument.
NI-VISA	supports	USB	communication.	Two	classes	of	VISA	resources
are	supported:	USB	INSTR	and	USB	RAW.
USB	devices	that	conform	to	the	USB	Test	and	Measurement	Class
(USBTMC)	protocol	use	the	USB	INSTR	resource	class.	USBTMC
devices	conform	to	a	protocol	that	the	VISA	USB	INSTR	resource	class
can	understand.	No	configuration	is	necessary	to	communicate	with	a
USBTMC	device.	To	communicate	with	a	USBTMC	instrument,	refer	to
Using	NI-VISA	to	Communicate	with	Your	USB	Device.	For	more
information	about	the	USBTMC	specification,	refer	to	the	USB
Implementers	Forum	Web	page.
USB	RAW	instruments	are	any	USB	instrument	other	than	those
instruments	that	specifically	conform	to	the	USBTMC	specification.	If	you
are	using	a	USB	RAW	device,	follow	the	instructions	in	Configuring	NI-
VISA	to	Control	Your	USB	Device	to	configure	NI-VISA	to	control	your
device.	Contact	your	instrument	manufacturer	for	details	about	the
communication	protocol	and	the	command	set	your	instrument	uses.

javascript:WWW(WWW_USB)

Configuring	NI-VISA	to	Control	Your	USB	Device
This	topic	explains	how	to	configure	a	USB	RAW	device	to	be	controlled
by	NI-VISA	3.0	on	a	Windows-based	computer.	If	you	are	using	a
USBTMC-compatible	device,	connect	your	device	and	skip	to	Test
Communication	with	NI-VISA	Interactive	Control.
At	this	point,	NI-VISA	should	be	installed	on	your	computer,	and	your
USB	device	should	not	be	connected.	Also,	you	should	not	have	installed
a	driver	for	your	USB	device.	There	are	three	steps	to	configuring	your
USB	device	to	use	NI-VISA:

1.	 Create	the	.inf	file	using	the	NI-VISA	Driver	Wizard.
2.	 Install	the	.inf	files	and	USB	device.
3.	 Test	communication	with	VISA	Interactive	Control.

This	tutorial	uses	a	National	Instruments	DAQPad-6020E	as	an	example
USB	device	installed	on	a	Windows	XP	system.	Because	this	tutorial
explains	how	to	configure	of	a	generic	USB	device,	it	does	not	discuss
details	specific	to	the	DAQPad-6020E.	Remember	that	NI-DAQ	is	the
only	supported	DAQPad-6020E	driver.

Create	the	.inf	File	Using	the	NI-VISA	Driver
Wizard
To	use	NI-VISA,	you	must	first	tell	Windows	to	use	NI-VISA	as	default
driver	for	the	device.	In	the	Windows	environment,	you	can	do	this	with	a
.inf	file.	NI-VISA	includes	the	NI-VISA	Driver	Wizard	to	create	a	.inf	file	for
your	USB	device.

1.	 To	open	the	DDW,	run	the	NI-VISA	Driver	Wizard,	available	via
the	Start	menu	under	National	Instruments»VISA.	The
following	figure	shows	the	open	screen.

VISA	DDW	Hardware	Bus	Window
You	can	use	this	wizard	to	create	a	.inf	file	for	a	PXI/PCI,	USB,	or
FireWire	device.	Because	you	are	creating	the	driver	for	a	USB
device,	click	USB	and	Next.	The	VISA	DDW	Basic	Device
Information	window	opens	as	shown	in	the	following	figure.

VISA	DDW	Basic	Device	Information	Window
2.	 For	this	step,	you	must	know	the	USB	vendor	ID	and	product	ID

for	your	USB	instrument.	These	numbers	identify	your	USB
device	when	you	install	it	and	address	your	device	when	you
want	to	communicate	with	it.	According	to	the	USB	specification,
both	numbers	are	16-bit	hexadecimal	numbers,	and	the	device
manufacturer	should	provide	them.
If	you	do	not	know	the	USB	vendor	ID	and	product	ID,	follow
these	steps	to	get	them:

a.	 Plug	the	device	into	the	computer	and	allow	the	computer
to	recognize	the	new	device.	Cancel	out	of	the	Found
New	Hardware	Wizard	if	it	starts.

b.	 Open	the	Device	Manager	from	the	Control	Panel	and
find	your	device	on	the	list,	usually	under	Other	Devices.
It	may	show	a	yellow	exclamation	mark,	indicating	it	is	an
unknown	device.

c.	 Double-click	the	device	to	open	the	properties.

d.	 Select	the	Details	tab	and	ensure	that	Device	Instance
Id	shows	in	the	attribute	dropdown	box.	A	string	of
characters	is	displayed	similar	to	the	following	figure.	The
four	characters	to	the	right	of	VID_	and	PID_	are	your
vendor	ID	and	product	ID,	respectively.

e.	 Write	down	the	characters	for	your	device,	close	the
Device	Manager,	and	unplug	the	device	from	the
computer.

Alternately,	you	can	contact	your	device	vendor	to	obtain	this
information.

Finding	the	Vendor	ID	and	Product	ID	from	the	Device
Manager
For	the	DAQPad-6020E,	the	vendor	ID	and	product	ID	are
0x3923	and	0x12C0,	respectively.	The	vendor	ID	and	product	ID
are	different	for	your	device	if	it	is	not	a	National	Instruments
DAQPad-6020E.
Enter	the	vendor	ID,	product	ID,	manufacturer	name,	and	model

name	for	your	device	in	their	respective	fields.
Click	Next.	The	Output	Files	Generation	window	is	displayed	as
shown	in	the	following	figure.

VISA	DDW	Output	Files	Generation	Window
3.	 The	USB	Instrument	Prefix	is	a	descriptor	for	identifying	the	files

used	for	this	device.	Enter	a	USB	instrument	prefix,	select	the
desired	directory	in	which	to	place	these	files,	and	click	Next.	The
next	window	displays	installation	options.	The	default	selection	is
to	install	the	setup	information	for	the	operating	system	and	is
usually	the	best	option.	Once	you	select	an	option,	click	Finish	to
exit	the	wizard.	The	.inf	file	is	created	in	the	directory	you
specified	in	the	output	file	directory	field	in	the	previous	window.

Note		There	are	two	.inf	files.	Choosing	the	Install	the	generated
file(s)	on	this	computer	option	in	the	next	topic	installs	the
correct	file	based	on	the	OS.	However,	if	you	are	installing	the	file
manually,	be	sure	to	choose	the	correct	file.	For	more	information,
refer	to	Using	LabWindows/CVI	to	Install	Your	Device	.inf	Files.

Proceed	to	the	next	step,	Installation	Options.

Install	the	.inf	Files	and	USB	Device
The	.inf	file	installation	is	different	for	each	version	of	Windows.	When	the
NI-VISA	Driver	Wizard	creates	a	.inf	file,	installation	instructions	are
included	in	a	header	at	the	top	of	the	.inf	file.	Because	.inf	files	are	ASCII
text	files,	any	text	editor	such	as	Notepad	can	read	them.	For	detailed
information	about	installing	your	.inf	file,	open	your	.inf	file	in	a	text	editor
and	follow	the	instructions	at	the	top	of	the	file.
To	install	the	.inf	files	and	USB	device	on	Windows	XP/2000,	follow	these
steps:

1.	 Copy	the	.inf	file	to	the	inf	folder.	On	Windows	XP,	this	folder	is
usually	at	C:\Windows\inf.	On	Windows	2000,	this	folder	is	usually
at	C:\WINNT\inf.	This	folder	may	be	hidden,	so	you	may	need	to
change	your	folder	options	to	view	hidden	files.

2.	 Right-click	on	the	.inf	file	in	C:\Windows\inf	and	click	Install.	This
process	creates	a	PNF	file	for	your	device.	You	are	now	ready	to
install	your	USB	device.

3.	 Connect	your	USB	device.	Because	USB	is	hot	pluggable,
Windows	should	detect	your	USB	device,	and	the	Add	New
Hardware	Wizard	should	open	automatically	as	soon	as	you
connect	your	device	to	the	USB	port.	Follow	the	onscreen
instructions	for	the	wizard.	When	you	are	prompted	to	select	a
driver	for	this	device,	browse	to	the	inf	folder	and	select	the	.inf
file	you	created	using	the	driver	wizard.

To	install	the	.inf	files	and	USB	device	on	Windows	Vista,	follow	these
steps:

1.	 Right-click	on	the	.inf	file	with	the	vista	suffix	(for	example,
myusbdevice_vista.inf)	and	click	Install.	This	process	creates	a
PNF	file	for	your	device.	You	are	now	ready	to	install	your	USB
device.

2.	 Connect	your	USB	device.	Because	USB	is	hot	pluggable,
Windows	should	detect	your	USB	device,	and	the	Found	New
Hardware	Wizard	should	open	automatically	as	soon	as	you
connect	your	device	to	the	USB	port.	Choose	Locate	and	Install
Driver	Software.	Follow	the	onscreen	instructions	for	the	wizard.

Proceed	to	the	next	step,	Test	Communication	with	VISA	Interactive

Control.

Test	Communication	with	VISA	Interactive
Control
To	test	communication	with	VISA	Interactive	Control	(VISAIC),	follow
these	steps:

1.	 Open	Measurement	&	Automation	Explorer.	Select
Tools»Refresh	to	refresh	the	view.	Your	USB	device	should	be
listed	under	Devices	and	Interfaces,	as	shown	in	the	following
figure.	Your	USB	device	is	now	installed	and	configured	to	use
NI-VISA.
If	you	select	your	USB	device,	the	USB	Settings	window
displays	the	device	information.	You	can	use	this	information	to
access	device	information	such	as	the	manufacturer	ID,	model
code,	and	serial	number.

USB	Device	Shown	in	Measurement	&	Automation	Explorer
2.	 To	communicate	with	your	device	using	VISA,	use	the	VISA

instrument	descriptor	for	your	device.	The	instrument	descriptor
format	for	a	USB	INSTR	device	is	USB[board]::	manufacturer	ID::
model	code::	serial	number[::	USB	interface	number]::INSTR.
The	instrument	descriptor	format	for	a	USB	RAW	device	is
USB[board]::	manufacturer	ID::	model	code::	serial	number[::
USB	interface	number]::RAW.
According	to	the	USBTMC	specification,	all	USBTMC	devices
must	have	a	serial	number.	Some	USB	RAW	devices	may	not

have	serial	numbers.	If	your	device	does	not	have	a	serial
number,	NI-VISA	automatically	assigns	a	VISA-specific	serial
number	for	the	device.	The	serial	number	format	is	NI-VISA-#,
where	#	is	an	automatically	generated	number.
Some	USB	devices	have	multiple	interfaces.	This	is	similar	to	the
way	a	PCI	device	can	have	multiple	functions.	If	your	device
supports	only	one	interface,	you	do	not	need	to	include	the	USB
interface	number.
The	DAQPad-6020E	uses	the	RAW	class,	and	the	manufacturer
code	and	model	code	are	0x3923	and	0x12C0,	respectively.	For
the	DAQPad-6020E,	the	instrument	descriptor	is
USB0::0x3923::0x12C0::00B50DAE::RAW.
To	test	communication	with	this	device,	open	Measurement	&
Automation	Explorer.	Select	Tools»NI-VISA»VISA	Interactive
Control.	A	window	similar	to	the	following	figure	should	open.

VISA	Interactive	Control
3.	 VISA	Interactive	Control	(VISAIC)	is	a	utility	program	for

communicating	easily	with	any	VISA	resource.	After	you
configure	your	USB	device	to	use	VISA,	it	should	be	listed	in	the
USB	branch.	Double-click	on	your	device	to	open	a	VISA	session

to	it.	The	window	shown	in	the	following	figure	should	open.

VISA	Interactive	Control	Open	VISA	Session
When	you	open	a	VISA	Session	with	VISAIC,	the	Template	and
Property	Node	(Set)	tabs	are	automatically	selected.	To	read	a
property,	select	the	Property	Node	(Get)	tab,	choose	the	desired
property,	and	click	Execute.	The	Current	Value	indicator
displays	the	current	value	of	the	property	specified	in	Attribute
Name.	In	the	figure	above,	the	Resource	Name	property	was
read.
For	more	information	about	using	VISAIC,	refer	to	the	NI
Developer	Zone	VISA	Interactive	Control	(VISAIC)	document.	For
a	list	of	valid	commands	for	your	USB	instrument,	contact	your
instrument	manufacturer.

javascript:WWW(WWW_VISAIC)

Using	NI-VISA	to	Communicate	with	Your	USB
Device
This	topic	explains	how	to	communicate	with	your	USB	device	using	NI-
VISA.	Recall	that	there	are	two	classes	of	USB	devices.	The
communication	method	depends	on	the	device	class.

USB	INSTR	Class	(USBTMC)
Devices	that	conform	to	the	USB	Test	and	Measurement	Class
(USBTMC)	use	the	NI-VISA	USB	INSTR	class.	These	devices	use	488.2-
style	communication.	For	these	devices,	use	the	VISA	Open,	VISA	Close,
VISA	Read,	and	VISA	Write	functions	the	same	way	as	if	communicating
with	GPIB	instruments.
The	following	figure	shows	a	LabVIEW	VI	that	communicates	with	a
USBTMC	device.	In	this	example,	the	VI	opens	a	VISA	session	to	a	USB
device,	writes	a	command	to	the	device,	and	reads	back	the	response.	In
this	example,	the	specific	command	being	sent	is	the	device	ID	query.
Check	with	your	device	manufacturer	for	your	device	command	set.	After
all	communication	is	complete,	the	VI	closes	the	VISA	session.

USBTMC	LabVIEW	Example	Block	Diagram

USB	RAW	Class
Communicating	with	the	USB	RAW	class	is	more	complicated,	because
each	device	may	use	its	own	communication	protocol.	Contact	your
device	vendor	for	details	about	the	device	communication	protocol.
USB	communicates	using	four	types	of	pipes	or	endpoints:	control,	bulk,
interrupt,	and	isochronous.	Each	type	of	pipe	transfers	a	different	type	of
information.	Also,	any	number	of	endpoints	can	be	of	any	endpoint	type.
Think	of	an	endpoint	as	a	communication	socket.	For	specific	details
about	USB	architecture,	review	the	USB	Specification.
NI-VISA	supports	three	types	of	USB	pipes:	control,	bulk,	and	interrupt.
When	NI-VISA	detects	your	USB	instrument,	it	automatically	scans	your
instrument	for	the	lowest	available	endpoint	for	each	type.
When	VISA	detects	the	lowest	available	endpoint,	it	assigns	that	value	to
the	appropriate	VISA	attribute.	The	bulk	in	endpoint	and	bulk	out	endpoint
are	stored	in	the	VI_ATTR_USB_BULK_IN_PIPE	and
VI_ATTR_USB_BULK_OUT_PIPE	attribute,	respectively.	The	interrupt	in
endpoint	is	stored	in	the	VI_ATTR_USB_INTR_IN_PIPE	attribute.	A	value
of	–1	indicates	a	USB	device	does	not	support	that	type	of	pipe.	For	the
control	pipe,	only	endpoint	zero	is	supported.	If	you	are	using	the	C	API,
use	the	viSetAttribute	function	to	change	endpoints.	In	LabVIEW,	use	a
Write	VISA	Property	node.
NI-VISA	includes	four	functions	to	transfer	data	through	USB	pipes.
Before	you	can	communicate	with	your	device	using	these	functions,	you
must	set	up	the	communication	protocol	using	the	VISA	USB	attributes.
The	following	functions	are	available:

Use	VISA	USB	Control	In	and	VISA	USB	Control	Out	to	transfer
data	using	the	control	pipe.
To	transfer	data	using	a	bulk	pipe,	use	VISA	Read	and	VISA
Write.
If	you	are	using	LabVIEW,	VISA	includes	an	additional	function	to
use	the	interrupt	pipe:	VISA	Get	USB	Interrupt	Data.	In	the	C	API,
you	can	do	this	by	accessing	the
VI_ATTR_USB_RECV_INTR_SIZE	and
VI_ATTR_USB_RECV_INTR_DATA	attributes	of	the
VI_EVENT_USB_INTR	event	object.

javascript:WWW(WWW_USB)

USB	on	Linux	and	Mac
Linux
NI-VISA	relies	on	a	Linux	kernel	feature	for	its	USB	support.	This	feature
is	called	usbfs,	and	was	referred	to	as	usbdevfs	on	older	Linux	kernels.
For	NI-VISA	to	support	USB	devices,	this	feature	must	be	present	and
mounted	(like	a	virtual	file	system).	Most	major	Linux	distributions	such
as	Red	Hat,	SuSE,	and	Mandrake	support	this	feature.	You	can	use	the
mount	command	to	display	the	currently	mounted	file	systems	to	see	if
your	system	currently	supports	this	feature.
Also,	the	VISA	user	must	have	write	access	to	the	file	that	represents	the
USB	device,	which	is	typically	somewhere	in	a	subdirectory	in
/proc/bus/usb.	If	this	is	not	the	case,	VISA	cannot	access	the	USB	device
(it	cannot	be	found	using	viFindRsrc,	and	viOpen	fails).	On	most	systems,
the	root	user	has	write	access	by	default;	however,	no	other	user	has	this
access.
There	are	several	options	for	providing	a	nonroot	user	access	to	a	USB
device:

Use	the	hotplug	package.	This	package	is	installed	by	default	on
most	distributions,	including	Red	Hat,	SuSE,	and	Mandrake.	Use
the	hotplug	package	to	run	scripts	for	a	specific	USB	device
based	on	characteristics	such	as	Vendor	ID	(VID)	and	Product	ID
(PID).	If	the	hotplug	package	exists,	the	NI-VISA	Installer	by
default	installs	scripts	to	give	all	users	write	access	to	all	USB
TMC	devices	and	a	framework	for	USB	RAW	devices.	To	add
write	permissions	for	a	specific	USB	RAW	device,	run	the
included	script:
<VXIPNPPATH>/linux/NIvisa/USB/AddUsbRawPermissions.sh

For	more	information	about	the	hotplug	package,	refer	to
http://linux-hotplug.sourceforge.net/.
Mount	usbfs	(formerly	known	as	usbdevfs)	with	the	option
devmode=0666.	This	gives	all	users	read	and	write	access	to	all
USB	devices.
Add	write	permissions	to	the	file	that	represents	the	USB	device,
which	is	typically	somewhere	in	a	subdirectory	in	/proc/bus/usb.
Unfortunately,	these	permissions	are	lost	if	the	device	is

javascript:WWW(WWW_HOTPLUG)

unplugged.	Therefore,	this	approach	is	not	recommended.

Mac	OS	X
As	long	as	no	other	driver	on	the	system	claims	the	USB	device,	you	can
use	NI-VISA	to	access	it.	No	special	setup	is	required.

FireWire®
NI-VISA	supports	programming	FireWire	devices	only	using	INSTR
access.
Introduction	to	Programming	FireWire	Devices	in	VISA
Configuring	NI-VISA	to	Recognize	an	INSTR	FireWire	Device
FireWire	Summary

Introduction	to	Programming	FireWire	Devices
in	VISA
Users	who	are	writing	an	application	for	a	FireWire	device	can	use	NI-
VISA	to	gain	full	access	to	all	the	device's	registers.	NI-VISA	currently
supports	the	FireWire	interface	on	Windows	and	LabVIEW	RT	(Phar	Lap
ETS).
A	FireWire	resource	is	uniquely	identified	in	NI-VISA	by	two
characteristics:	the	FireWire	vendor	ID	and	the	FireWire	chip	ID.	Both	IDs
are	extracted	from	the	64-bit	GUID,	which	comes	in	two	32-bit	halves.
The	vendor	ID	is	the	upper	24	bits	of	the	upper	half	of	the	GUID.	The	chip
ID	is	a	combination	of	the	lower	8	bits	of	the	upper	half	of	the	GUID	and
the	32	bits	of	the	lower	half	of	the	GUID.	The	canonical	resource	string
you	pass	to	viOpen()	for	a	FireWire	device	is	"FIREWIRE[board]::<vendor
ID>::<chip	ID>::INSTR".	Currently,	the	only	valid	options	for	the	board	are
0	or	None	(that	is,	FIREWIRE0::<vendor	ID>::<chip	ID>::INSTR	or
FIREWIRE::<vendor	ID>::<chip	ID>::INSTR).
If	you	do	not	know	the	resource	string,	you	can	query	the	system	with
viFindRsrc()	and	use	or	display	the	resource(s)	returned	from	that
operation.	You	can	create	a	query	to	search	for	devices	of	a	particular
attribute	value.	For	example,	if	the	FireWire	vendor	ID	for	National
Instruments	is	0xBE1394,	you	could	find	all	National	Instruments	1394
devices	by	calling	viFindRsrc()	with	the	expression	"FIREWIRE?
*INSTR{VI_ATTR_FIREWIRE_VENDOR_ID==0xBE1394}".

Configuring	NI-VISA	to	Recognize	an	INSTR
FireWire	Device
Each	FireWire	device	must	have	a	kernel-level	driver	associated	with	it;
this	is	done	in	Windows	via	a	.inf	file.	For	NI-VISA	to	recognize	your
device,	you	must	run	the	NI-VISA	Driver	Wizard,	available	via	the	Start
menu	under	National	Instruments»VISA.
The	wizard	first	prompts	you	for	basic	information	NI-VISA	needs	to
properly	locate	your	FireWire	instrument.	This	includes	the	following:

Instrument	Prefix—The	VXIplug&play	or	IVI	instrument	driver
prefix	for	the	device.
Unit	Specification	ID—The	24-bit	value	that	identifies	the
specification	to	which	the	FireWire-based	device	adheres.
Unit	Software	Version—The	24-bit	value	that	identifies	the	Unit
Specification	version	to	which	the	FireWire-based	device
adheres.

In	text	boxes	where	numerical	information	is	required,	preceding	the
number	with	0x	designates	a	hexadecimal	value.	The	wizard	assumes	all
other	numeric	entries	are	decimal	values.
When	you	are	done,	the	NI-VISA	Driver	Wizard	generates	a	Windows
Setup	Information	(.inf)	file.	Before	a	FireWire	device	is	visible	to	NI-
VISA,	you	must	use	the	.inf	file	to	update	the	Windows	system	registry.
To	manually	install	the	.inf	file,	open	the	appropriate	.inf	file	in	a	text
editor	and	follow	the	instructions	on	the	first	few	lines	at	the	top.
Alternately,	you	can	let	the	wizard	install	the	.inf	file	before	the	wizard
exits.

FireWire	Summary
NI-VISA	provides	a	convenient	means	of	accessing	low-level	functionality
of	FireWire	devices.	The	alternative	to	using	NI-VISA	for	FireWire	device
communication	is	writing	a	kernel	driver	or	using	an	existing	kernel	driver
supplied	by	the	vendor.	By	using	NI-VISA,	you	avoid	having	to	learn	how
to	write	kernel	drivers,	avoid	having	to	learn	a	different	kernel	model	for
each	operating	system,	and	gain	platform	independence	and	portability
by	scaling	to	other	operating	systems	in	the	future.

Description	of	the	API
The	following	links	take	you	to	topics	that	describe	the	individual
attributes,	events,	and	operations.	These	are	listed	in	alphabetical	order
within	each	access	mechanism.	Since	a	particular	item	can	refer	to	more
than	one	resource	or	interface	type,	each	item	is	clearly	marked	with	the
resource	and	interface	that	support	it.
Refer	to	Resources	for	a	quick	reference	of	how	the	attributes,	events,
and	operations	map	to	the	available	resources.
Attributes
Events
Operations
VISA	Access	Mechanisms
VISA	Resource	Types

VISA	Access	Mechanisms
The	following	sections	summarize	the	most	important	characteristics	of
attributes,	events,	and	operations.	Refer	to	VISA	Overview	for	a	more
detailed	description	of	this	subject.

Attributes
An	attribute	describes	a	value	within	a	session	or	resource	that	reflects	a
characteristic	of	the	operational	state	of	the	given	object.	These	attributes
are	accessed	through	the	following	operations:

viGetAttribute	()
viSetAttribute	()

Events
An	event	is	an	asynchronous	occurrence	that	is	independent	of	the
normal	sequential	execution	of	the	process	running	in	a	system.
Depending	on	how	you	want	to	handle	event	occurrences,	you	can	use
the	viEnableEvent	()	operation	with	either	the	viInstallHandler	()	operation
or	the	viWaitOnEvent	()	operation.
Events	respond	to	attributes	in	the	same	manner	that	resources	do.	Once
your	application	is	done	using	a	particular	event	received	via
viWaitOnEvent	(),	it	should	call	viClose	()	to	destroy	that	event.

Operations
An	operation	is	an	action	defined	by	a	resource	that	can	be	performed	on
the	given	resource.	Each	resource	has	the	ability	to	define	a	series	of
operations.	In	addition	to	those	defined	by	each	resource,	you	can	use
the	following	template	operations	in	any	resource:

viClose	()
viGetAttribute	()
viSetAttribute	()
viStatusDesc	()
viTerminate	()
viLock	()
viUnlock	()
viEnableEvent	()
viDisableEvent	()
viDiscardEvents	()
viWaitOnEvent	()
viInstallHandler	()
viUninstallHandler	()

VISA	Resource	Types
Currently,	there	are	several	VISA	resource	types—INSTR	Resource,
MEMACC	Resource,	INTFC	Resource,	BACKPLANE	Resource,
SERVANT	Resource,	SOCKET	Resource,	and	RAW	Resource.	Most
VISA	applications	and	instrument	drivers	use	only	the	INSTR	resource.

INSTR
A	VISA	Instrument	Control	(INSTR)	resource	lets	a	controller	interact	with
the	device	associated	with	the	given	resource.	This	resource	type	grants
the	controller	the	following	services	to	perform	message-based	and/or
register-based	I/O,	depending	on	the	type	of	device	and	the	interface	to
which	the	device	is	connected.
Basic	I/O	services	include	the	ability	to	send	and	receive	blocks	of	data	to
and	from	the	device.	The	meaning	of	the	data	is	device	dependent,	and
could	be	a	message,	command,	or	other	binary	encoded	data.	For
devices	compliant	with	IEEE	488,	the	basic	I/O	services	also	include
triggering	(both	software	and	hardware),	servicing	requests,	reading
status	bytes,	and	clearing	the	device.
Formatted	I/O	services	provide	both	formatted	and	buffered	I/O
capabilities	for	data	transfers	to	and	from	devices.	The	formatting
capabilities	include	those	specified	by	ANSI	C,	with	extensions	for
common	protocols	used	by	instrumentation	systems.	Buffering	improves
system	performance	by	making	it	possible	to	not	only	transfer	large
blocks	of	data,	but	also	send	several	commands	at	one	time.
Memory	I/O	(or	Register	I/O)	services	allow	register-level	access	to
devices	connected	to	interfaces	that	support	direct	memory	access,	such
as	the	VXIbus	or	VMEbus.	Both	high-level	and	low-level	access	services
have	operations	for	individual	register	accesses,	with	a	trade-off	between
speed	and	complexity.	The	high-level	access	services	also	have
operations	for	moving	large	blocks	of	data	to	and	from	devices.	When
using	an	INSTR	resource,	all	address	parameters	are	relative	to	the
device's	assigned	memory	base	in	the	given	address	space;	knowing	a
device's	base	address	is	neither	required	by	nor	relevant	to	the	user.
Shared	Memory	services	make	it	possible	to	allocate	memory	on	a
particular	device	that	is	to	be	used	exclusively	by	a	given	session.	This	is
usually	available	only	on	devices	that	export	shared	memory	specifically
for	such	a	purpose,	such	as	a	VXIbus	or	VMEbus	controller.

MEMACC
A	VISA	Memory	Access	(MEMACC)	resource	lets	a	controller	interact
with	the	interface	associated	with	the	given	resource.	Advanced	users
who	need	to	perform	memory	accesses	directly	between	multiple	devices
typically	use	the	MEMACC	resource.	This	resource	type	gives	the
controller	the	following	services	to	access	arbitrary	registers	or	memory
addresses	on	memory-mapped	buses.
Memory	I/O	(or	Register	I/O)	services	allow	register	level	access	to
interfaces	that	support	direct	memory	access,	such	as	the	VXIbus	or
VMEbus.	Both	high-level	and	low-level	access	services	have	operations
for	individual	register	accesses,	with	a	trade-off	between	speed	and
complexity.	The	high-level	access	services	also	have	operations	for
moving	large	blocks	of	data	to	and	from	arbitrary	addresses.	When	using
a	MEMACC	resource,	all	address	parameters	are	absolute	within	the
given	address	space;	knowing	a	device's	base	address	is	both	required
by	and	relevant	to	the	user.

INTFC
A	VISA	GPIB	Bus	Interface	(INTFC)	resource	lets	a	controller	interact
with	any	devices	connected	to	the	board	associated	with	the	given
resource.	Advanced	GPIB	users	who	need	to	control	multiple	devices
simultaneously	or	need	to	have	multiple	controllers	in	a	single	system
typically	use	the	INTFC	resource.	This	resource	type	provides	basic	and
formatted	I/O	services.	In	addition,	the	controller	can	directly	query	and
manipulate	specific	lines	on	the	bus,	and	also	pass	control	to	other
devices	with	controller	capability.
Basic	I/O	services	include	the	ability	to	send	and	receive	blocks	of	data
onto	and	from	the	bus.	The	meaning	of	the	data	is	device	dependent,	and
could	be	a	message,	command,	or	other	binary	encoded	data.	The	basic
I/O	services	also	include	triggering	devices	on	the	bus	and	sending
miscellaneous	commands	to	any	or	all	devices.
Formatted	I/O	services	provide	both	formatted	and	buffered	I/O
capabilities	for	data	transfers	to	and	from	devices.	The	formatting
capabilities	include	those	specified	by	ANSI	C,	with	extensions	for
common	protocols	used	by	instrumentation	systems.	Buffering	improves
system	performance	by	making	it	possible	to	not	only	transfer	large
blocks	of	data,	but	also	send	several	commands	at	one	time.

BACKPLANE
A	VISA	VXI	Mainframe	Backplane	(BACKPLANE)	resource	encapsulates
the	operations	and	properties	of	each	mainframe	(or	chassis)	in	a	VXIbus
system.	This	resource	type	lets	a	controller	query	and	manipulate	specific
lines	on	a	specific	mainframe	in	a	given	VXI	system.	BACKPLANE
services	allow	the	user	to	map,	unmap,	assert,	and	receive	hardware
triggers,	and	also	to	assert	and	receive	various	utility	and	interrupt
signals.	This	includes	advanced	functionality	that	might	not	be	available
in	all	implementations	or	on	all	controllers.

SERVANT
A	VISA	Servant	(SERVANT)	resource	encapsulates	the	operations	and
properties	of	the	capabilities	of	a	device	and	a	device's	view	of	the
system	in	which	it	exists.	The	SERVANT	resource	exposes	the	device-
side	functionality	of	the	device	associated	with	the	given	resource.	The
SERVANT	resource	is	a	class	for	advanced	users	who	want	to	write
firmware	code	that	exports	message-based	device	functionality	across
potentially	multiple	interfaces.	This	resource	type	provides	basic	and
formatted	I/O	services.
Basic	I/O	services	include	the	ability	to	receive	blocks	of	data	from	a
commander	and	respond	with	blocks	of	data	in	return.	The	meaning	of
the	data	is	device	dependent,	and	could	be	a	message,	command,	or
other	binary	encoded	data.	The	basic	I/O	services	also	include	setting	a
488-style	status	byte	and	receiving	device	clear	and	trigger	events.
Formatted	I/O	services	provide	both	formatted	and	buffered	I/O
capabilities	for	data	transfers	from	and	to	the	given	device's	commander.
The	formatting	capabilities	include	those	specified	by	ANSI	C,	with
extensions	for	common	protocols	used	by	instrumentation	systems.
Buffering	improves	system	performance	by	making	it	possible	to	not	only
transfer	large	blocks	of	data,	but	also	send	several	commands	at	one
time.
A	VXI	Servant	resource	also	provides	services	to	assert	and	receive
various	utility	and	interrupt	signals.

SOCKET
A	VISA	Ethernet	Socket	(SOCKET)	resource	encapsulates	the	operations
and	properties	of	the	capabilities	of	a	raw	Ethernet	connection	using
TCP/IP.	The	SOCKET	resource	exposes	the	capability	of	a	raw	socket
connection	over	TCP/IP.	This	resource	type	provides	basic	and	formatted
I/O	services.
Basic	I/O	services	include	the	ability	to	send	and	receive	blocks	of	data	to
and	from	the	device.	The	meaning	of	the	data	is	device	dependent,	and
could	be	a	message,	command,	or	other	binary	encoded	data.	If	the
device	is	capable	of	communicating	with	488.2-style	strings,	the	basic	I/O
services	also	include	software	triggering,	querying	a	488-style	status
byte,	and	sending	a	device	clear	message.
Formatted	I/O	services	provide	both	formatted	and	buffered	I/O
capabilities	for	data	transfers	to	and	from	devices.	The	formatting
capabilities	include	those	specified	by	ANSI	C,	with	extensions	for
common	protocols	used	by	instrumentation	systems.	Buffering	improves
system	performance	by	making	it	possible	to	not	only	transfer	large
blocks	of	data,	but	also	send	several	commands	at	one	time.

RAW
A	VISA	USB	Raw	(RAW)	Resource	encapsulates	the	operations	and
properties	of	the	capabilities	of	a	raw	USB	device.	The	RAW	Resource
exposes	generic	functionality	of	USB	devices.	This	resource	type
provides	basic	and	formatted	I/O	services.
Basic	I/O	services	include	the	ability	to	send	and	receive	blocks	of	data	to
and	from	the	device.	The	meaning	of	the	data	is	device	dependent,	and
could	be	a	message,	command,	or	other	binary	encoded	data.	If	the
device	is	capable	of	communicating	with	488.2-style	strings,	the	basic	I/O
services	also	include	software	triggering,	querying	a	488-style	status
byte,	and	sending	a	device	clear	message.
Formatted	I/O	services	provide	both	formatted	and	buffered	I/O
capabilities	for	data	transfers	to	and	from	devices.	The	formatting
capabilities	include	those	specified	by	ANSI	C,	with	extensions	for
common	protocols	used	by	instrumentation	systems.	Buffering	improves
system	performance	by	making	it	possible	to	not	only	transfer	large
blocks	of	data,	but	also	send	several	commands	at	one	time.

VISA	Resource	Syntax	and	Examples
The	following	table	shows	the	grammar	for	the	address	string.	Optional
string	segments	are	shown	in	square	brackets	([]).

Interface Syntax

ENET-Serial
INSTR

ASRL[0]::host	address::serial	port::INSTR

FireWire	INSTR FIREWIRE[board]::[vendorId]::
[chipId]::INSTR

GPIB	INSTR GPIB[board]::primary	address[::secondary
address][::INSTR]

GPIB	INTFC GPIB[board]::INTFC

GPIB-VXI
BACKPLANE

GPIB-VXI[board][::VXI	logical
address]::BACKPLANE

GPIB-VXI	INSTR GPIB-VXI[board]::VXI	logical
address[::INSTR]

GPIB-VXI
MEMACC

GPIB-VXI[board]::MEMACC

PXI	BACKPLANE PXI[interface]::chassis
number::BACKPLANE

PXI	INSTR PXI[bus]::device[::function][::INSTR]

PXI	INSTR PXI[interface]::[bus-]device[.function]
[::INSTR]

PXI	INSTR PXI[interface]::CHASSISchassis
number::SLOTslot	number[::FUNCfunction]
[::INSTR]

PXI	MEMACC PXI[interface]::MEMACC

Remote	NI-VISA visa://host	address[:server	port]/remote
resource

Serial	INSTR ASRLboard[::INSTR]

TCPIP	INSTR TCPIP[board]::host	address[::LAN	device
name][::INSTR]

TCPIP	SOCKET TCPIP[board]::host	address::port::SOCKET

USB	INSTR USB[board]::manufacturer	ID::model
code::serial	number[::USB	interface	number]
[::INSTR]

USB	RAW USB[board]::manufacturer	ID::model
code::serial	number[::USB	interface
number]::RAW

VXI	BACKPLANE VXI[board][::VXI	logical
address]::BACKPLANE

VXI	INSTR VXI[board]::VXI	logical	address[::INSTR]

VXI	MEMACC VXI[board]::MEMACC

VXI	SERVANT VXI[board]::SERVANT

Use	the	GPIB	keyword	to	establish	communication	with	GPIB	resources.
Use	the	VXI	keyword	for	VXI	resources	via	embedded,	MXIbus,	or	1394
controllers.	Use	the	GPIB-VXI	keyword	for	VXI	resources	via	a	GPIB-VXI
controller.	Use	the	ASRL	keyword	to	establish	communication	with	an
asynchronous	serial	(such	as	RS-232	or	RS-485)	device.	Use	the	PXI
keyword	for	PXI	and	PCI	resources.	Use	the	TCPIP	keyword	for	Ethernet
communication.
The	following	table	shows	the	default	value	for	optional	string	segments.

Optional	String	Segments Default	Value

board 0

GPIB	secondary	address none

LAN	device	name inst0

PXI	bus 0

PXI	function 0

USB	interface	number lowest	numbered
relevant	interface

The	following	table	shows	examples	of	address	strings.

Address	String Description

ASRL::1.2.3.4::2::INSTR A	serial	device	attached	to
port	2	of	the	ENET	Serial

controller	at	address	1.2.3.4.

ASRL1::INSTR A	serial	device	attached	to
interface	ASRL1.

FIREWIRE::0x123456::
0x123456789A::INSTR

A	FireWire	device	a	with
vendor	ID	of	0x123456	and	a
chip	ID	of	0x123456789A.

GPIB::1::0::INSTR A	GPIB	device	at	primary
address	1	and	secondary
address	0	in	GPIB	interface

0.

GPIB-VXI::9::INSTR A	VXI	device	at	logical
address	9	in	a	GPIB-VXI

controlled	system.

GPIB-VXI1::MEMACC Board-level	register	access
to	GPIB-VXI	interface

number	1.

GPIB-
VXI2::BACKPLANE

Mainframe	resource	for
default	chassis	on	GPIB-VXI

interface	2.

GPIB2::INTFC Interface	or	raw	board
resource	for	GPIB	interface

2.

PXI::15::INSTR PXI	device	number	15	on
bus	0	with	implied	function	0.

PXI::2::BACKPLANE Backplane	resource	for
chassis	2	on	the	default	PXI
system,	which	is	interface	0.

PXI::CHASSIS1::SLOT3 PXI	device	in	slot	number	3
of	the	PXI	chassis	configured

as	chassis	1.

PXI0::2-12.1::INSTR PXI	bus	number	2,	device	12
with	function	1.

PXI0::MEMACC PXI	MEMACC	session.

TCPIP::dev.company.com
::INSTR

A	TCP/IP	device	using	VXI-
11	or	LXI	located	at	the

specified	address.	This	uses
the	default	LAN	Device

Name	of	inst0.

TCPIP0::1.2.3.4::999
::SOCKET

Raw	TCP/IP	access	to	port
999	at	the	specified	IP

address.

USB::0x1234::125::A22-
5	::INSTR

A	USB	Test	&	Measurement
class	device	with

manufacturer	ID	0x1234,
model	code	125,	and	serial
number	A22-5.	This	uses	the

device's	first	available
USBTMC	interface.	This	is

usually	number	0.

USB::0x5678::0x33::
SN999::1::RAW

A	raw	USB	nonclass	device
with	manufacturer	ID	0x5678,
model	code	0x33,	and	serial
number	SN999.	This	uses

the	device's	interface	number
1.

visa://hostname/
ASRL1::INSTR

The	resource	ASRL1::INSTR
on	the	specified	remote

system.

VXI::1::BACKPLANE Mainframe	resource	for
chassis	1	on	the	default	VXI
system,	which	is	interface	0.

VXI::MEMACC Board-level	register	access
to	the	VXI	interface.

VXI0::1::INSTR A	VXI	device	at	logical
address	1	in	VXI	interface

VXI0.

VXI0::SERVANT Servant/device-side	resource
for	VXI	interface	0.

Attributes
These	topics	describe	the	VISA	attributes.	The	attribute	descriptions	are
listed	in	alphabetical	order	for	easy	reference.
Each	attribute	description	contains	a	list	below	the	title	indicating	the
supported	resource	classes,	such	as	GPIB,	Serial,	etc.	The	Attribute
Information	table	lists	the	access	privilege,	the	data	type,	range	of	values,
and	the	default	value.

VI_ATTR_4882_COMPLIANT
Resource	Classes
GPIB-VXI	INSTR,	USB	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

N/A

Description
VI_ATTR_4882_COMPLIANT	specifies	whether	the	device	is	488.2
compliant.

Related	Topics
INSTR	Resource

VI_ATTR_ASRL_ALLOW_TRANSMIT
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_TRUE

Description
If	set	to	VI_FALSE,	it	suspends	transmission	as	if	an	XOFF	character	has
been	received.	If	set	to	VI_TRUE,	it	resumes	transmission	as	if	an	XON
character	has	been	received.
If	XON/XOFF	flow	control	(software	handshaking)	is	not	being	used,	it	is
invalid	to	set	this	attribute	to	VI_FALSE.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_FLOW_CNTRL

VI_ATTR_ASRL_AVAIL_NUM
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt32 0	to	FFFFFFFFh N/A

Description
VI_ATTR_ASRL_AVAIL_NUM	shows	the	number	of	bytes	available	in	the
low-level	I/O	receive	buffer.

Related	Topics
Controlling	the	Serial	I/O	Buffers
INSTR	Resource

VI_ATTR_ASRL_BAUD
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt32 0	to
FFFFFFFFh

9600

Description
VI_ATTR_ASRL_BAUD	is	the	baud	rate	of	the	interface.	It	is	represented
as	an	unsigned	32-bit	integer	so	that	any	baud	rate	can	be	used,	but	it
usually	requires	a	commonly	used	rate	such	as	300,	1200,	2400,	or	9600
baud.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_DATA_BITS
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_PARITY
VI_ATTR_ASRL_STOP_BITS

VI_ATTR_ASRL_BREAK_LEN
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 1-500 250

Description
This	controls	the	duration	(in	milliseconds)	of	the	break	signal	asserted
when	VI_ATTR_ASRL_END_OUT	is	set	to	VI_ASRL_END_BREAK.	If	you
want	to	control	the	assertion	state	and	length	of	a	break	signal	manually,
use	the	VI_ATTR_ASRL_BREAK_STATE	attribute	instead.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BREAK_STATE
VI_ATTR_ASRL_END_OUT

VI_ATTR_ASRL_BREAK_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN

(–1)

VI_STATE_UNASSERTED

Description
If	set	to	VI_STATE_ASSERTED,	it	suspends	character	transmission	and
places	the	transmission	line	in	a	break	state	until	this	attribute	is	reset	to
VI_STATE_UNASSERTED.	This	attribute	lets	you	manually	control	the
assertion	state	and	length	of	a	break	signal.	If	you	want	VISA	to	send	a
break	signal	after	each	write	operation	automatically,	use	the
VI_ATTR_ASRL_BREAK_LEN	and	VI_ATTR_ASRL_END_OUT	attributes
instead.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BREAK_LEN
VI_ATTR_ASRL_END_OUT
VI_ATTR_ASRL_ALLOW_TRANSMIT

VI_ATTR_ASRL_CONNECTED
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

N/A

Description
VI_ATTR_ASRL_CONNECTED	indicates	whether	the	port	is	properly
connected	to	another	port	or	device.	This	attribute	is	valid	only	with	serial
drivers	developed	by	National	Instruments	and	documented	to	support
this	feature	with	the	corresponding	National	Instruments	hardware.

Related	Topics
INSTR	Resource

VI_ATTR_ASRL_CTS_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_CTS_STATE	shows	the	current	state	of	the	Clear	To
Send	(CTS)	input	signal.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_DATA_BITS
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt16 5	to	8 8

Description
VI_ATTR_ASRL_DATA_BITS	is	the	number	of	data	bits	contained	in	each
frame	(from	5	to	8).	The	data	bits	for	each	frame	are	located	in	the	low-
order	bits	of	every	byte	stored	in	memory.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_PARITY
VI_ATTR_ASRL_STOP_BITS

VI_ATTR_ASRL_DCD_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_DCD_STATE	represents	the	current	state	of	the	Data
Carrier	Detect	(DCD)	input	signal.	The	DCD	signal	is	often	used	by
modems	to	indicate	the	detection	of	a	carrier	(remote	modem)	on	the
telephone	line.	The	DCD	signal	is	also	known	as	Receive	Line	Signal
Detect	(RLSD).	This	attribute	is	Read	Only	except	when	the
VI_ATTR_ASRL_WIRE_MODE	attribute	is	set	to
VI_ASRL_WIRE_232_DCE,	or	VI_ASRL_WIRE_232_AUTO	with	the
hardware	currently	in	the	DCE	state.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_DISCARD_NULL
Note		This	attribute	is	supported	for	all	serial	ports	on	Windows
and	LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for
ENET-Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
If	set	to	VI_TRUE,	NUL	characters	are	discarded.	Otherwise,	they	are
treated	as	normal	data	characters.	For	binary	transfers,	set	this	attribute
to	VI_FALSE.

Related	Topics
INSTR	Resource

VI_ATTR_ASRL_DSR_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_DSR_STATE	shows	the	current	state	of	the	Data	Set
Ready	(DSR)	input	signal.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_DTR_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_DTR_STATE	shows	the	current	state	of	the	Data
Terminal	Ready	(DTR)	input	signal.
When	the	VI_ATTR_ASRL_FLOW_CNTRL	attribute	is	set	to
VI_ASRL_FLOW_DTR_DSR,	this	attribute	is	Read	Only.	Querying	the
value	will	return	VI_STATE_UNKNOWN.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_END_IN
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_ASRL_END_NONE	(0)
VI_ASRL_END_LAST_BIT

(1)
VI_ASRL_END_TERMCHAR

(2)

VI_ASRL_END_TERMCHAR

Description
VI_ATTR_ASRL_END_IN	indicates	the	method	used	to	terminate	read
operations.

If	it	is	set	to	VI_ASRL_END_NONE,	the	read	will	not	terminate
until	all	of	the	requested	data	is	received	(or	an	error	occurs).
If	it	is	set	to	VI_ASRL_END_LAST_BIT,	the	read	will	terminate	as
soon	as	a	character	arrives	with	its	last	bit	set.	For	example,	if
VI_ATTR_ASRL_DATA_BITS	is	set	to	8,	the	read	will	terminate
when	a	character	arrives	with	the	8th	bit	set.
If	it	is	set	to	VI_ASRL_END_TERMCHAR,	the	read	will	terminate
as	soon	as	the	character	in	VI_ATTR_TERMCHAR	is	received.	In
this	case,	VI_ATTR_TERMCHAR_EN	is	ignored.

Because	the	default	value	of	VI_ATTR_TERMCHAR	is	0Ah	(linefeed),
read	operations	on	serial	ports	will	stop	reading	whenever	a	linefeed	is
encountered.	To	change	this	behavior,	you	must	change	the	value	of	one
of	these	attributes—VI_ATTR_ASRL_END_IN	or	VI_ATTR_TERMCHAR.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_END_OUT
VI_ATTR_TERMCHAR

VI_ATTR_ASRL_END_OUT
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_ASRL_END_NONE	(0)
VI_ASRL_END_LAST_BIT

(1)
VI_ASRL_END_TERMCHAR

(2)
VI_ASRL_END_BREAK	(3)

VI_ASRL_END_NONE

Description
VI_ATTR_ASRL_END_OUT	indicates	the	method	used	to	terminate	write
operations.

If	it	is	set	to	VI_ASRL_END_NONE,	the	write	will	transmit	the
exact	contents	of	the	user	buffer,	without	modifying	it	and	without
appending	anything	to	the	data	being	written.
If	it	is	set	to	VI_ASRL_END_LAST_BIT,	and
VI_ATTR_SEND_END_EN	is	set	to	VI_TRUE,	the	write	will	send
all	but	the	last	character	with	the	highest	bit	clear,	then	transmit
the	last	character	with	the	highest	bit	set.	For	example,	if
VI_ATTR_ASRL_DATA_BITS	is	set	to	8,	the	write	will	clear	the
eighth	bit	for	all	but	the	last	character,	then	transmit	the	last
character	with	the	eighth	bit	set.	If	VI_ATTR_SEND_END_EN	is
set	to	VI_FALSE,	the	write	will	send	all	the	characters	with	the
highest	bit	clear.
If	it	is	set	to	VI_ASRL_END_TERMCHAR,	and
VI_ATTR_SEND_END_EN	is	set	to	VI_TRUE,	the	write	will	send
the	character	in	VI_ATTR_TERMCHAR	after	the	data	being
transmitted.	If	VI_ATTR_SEND_END_EN	is	set	to	VI_FALSE,	the
write	will	transmit	the	exact	contents	of	the	user	buffer,	without
modifying	it	and	without	appending	anything	to	the	data	being
written.
If	it	is	set	to	VI_ASRL_END_BREAK,	and
VI_ATTR_SEND_END_EN	is	set	to	VI_TRUE,	the	write	will
transmit	a	break	after	all	the	characters	for	the	write	have	been
sent.	If	VI_ATTR_SEND_END_EN	is	set	to	VI_FALSE,	the	write
will	transmit	the	exact	contents	of	the	user	buffer,	without
modifying	it	and	without	appending	anything	to	the	data	being
written.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_END_IN
VI_ATTR_TERMCHAR

VI_ATTR_ASRL_FLOW_CNTRL
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_FLOW_NONE	(0)
VI_ASRL_FLOW_XON_XOFF

(1)
VI_ASRL_FLOW_RTS_CTS

(2)
VI_ASRL_FLOW_DTR_DSR

(4)

VI_ASRL_FLOW_NONE

Description
VI_ATTR_ASRL_FLOW_CNTRL	indicates	the	type	of	flow	control	used	by
the	transfer	mechanism.

If	this	attribute	is	set	to	VI_ASRL_FLOW_NONE,	the	transfer
mechanism	does	not	use	flow	control,	and	buffers	on	both	sides
of	the	connection	are	assumed	to	be	large	enough	to	hold	all
data	transferred.
If	this	attribute	is	set	to	VI_ASRL_FLOW_XON_XOFF,	the
transfer	mechanism	uses	the	XON	and	XOFF	characters	to
perform	flow	control.	The	transfer	mechanism	controls	input	flow
by	sending	XOFF	when	the	low-level	I/O	receive	buffer	is	nearly
full,	and	it	controls	the	output	flow	by	suspending	transmission
when	XOFF	is	received.
If	this	attribute	is	set	to	VI_ASRL_FLOW_RTS_CTS,	the	transfer
mechanism	uses	the	RTS	output	signal	and	the	CTS	input	signal
to	perform	flow	control.	The	transfer	mechanism	controls	input
flow	by	unasserting	the	RTS	signal	when	the	low-level	I/O	receive
buffer	is	nearly	full,	and	it	controls	output	flow	by	suspending	the
transmission	when	the	CTS	signal	is	unasserted.
If	this	attribute	is	set	to	VI_ASRL_FLOW_DTR_DSR,	the	transfer
mechanism	uses	the	DTR	output	signal	and	the	DSR	input	signal
to	perform	flow	control.	The	transfer	mechanism	controls	input
flow	by	unasserting	the	DTR	signal	when	the	low-level	I/O
receive	buffer	is	nearly	full,	and	it	controls	output	flow	by
suspending	the	transmission	when	the	DSR	signal	is	unasserted.

This	attribute	can	specify	multiple	flow	control	mechanisms	by	bit-ORing
multiple	values	together.	However,	certain	combinations	may	not	be
supported	by	all	serial	ports	and/or	operating	systems.

Related	Topics
Controlling	the	Serial	I/O	Buffers
INSTR	Resource
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_DATA_BITS

VI_ATTR_ASRL_PARITY
VI_ATTR_ASRL_STOP_BITS
VI_ATTR_ASRL_XOFF_CHAR
VI_ATTR_ASRL_XON_CHAR

VI_ATTR_ASRL_PARITY
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_PAR_NONE
(0)

VI_ASRL_PAR_ODD
(1)

VI_ASRL_PAR_EVEN
(2)

VI_ASRL_PAR_MARK
(3)

VI_ASRL_PAR_SPACE
(4)

VI_ASRL_PAR_NONE

Description
VI_ATTR_ASRL_PARITY	is	the	parity	used	with	every	frame	transmitted
and	received.

VI_ASRL_PAR_MARK	means	that	the	parity	bit	exists	and	is
always	1.
VI_ASRL_PAR_SPACE	means	that	the	parity	bit	exists	and	is
always	0.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_DATA_BITS
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_STOP_BITS

VI_ATTR_ASRL_REPLACE_CHAR
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt8 0	to	FFh 0

Description
VI_ATTR_ASRL_REPLACE_CHAR	specifies	the	character	to	be	used	to
replace	incoming	characters	that	arrive	with	errors	(such	as	parity	error).

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_PARITY

VI_ATTR_ASRL_RI_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_RI_STATE	represents	the	current	state	of	the	Ring
Indicator	(RI)	input	signal.	The	RI	signal	is	often	used	by	modems	to
indicate	that	the	telephone	line	is	ringing.	This	attribute	is	Read	Only
except	when	the	VI_ATTR_ASRL_WIRE_MODE	attribute	is	set	to
VI_ASRL_WIRE_232_DCE,	or	VI_ASRL_WIRE_232_AUTO	with	the
hardware	currently	in	the	DCE	state.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_RTS_STATE

VI_ATTR_ASRL_RTS_STATE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_STATE_ASSERTED	(1)
VI_STATE_UNASSERTED

(0)
VI_STATE_UNKNOWN	(–

1)

N/A

Description
VI_ATTR_ASRL_RTS_STATE	is	used	to	manually	assert	or	unassert	the
Request	To	Send	(RTS)	output	signal.
When	the	VI_ATTR_ASRL_FLOW_CNTRL	attribute	is	set	to
VI_ASRL_FLOW_RTS_CTS,	this	attribute	is	Read	Only.	Querying	the
value	will	return	VI_STATE_UNKNOWN.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_RI_STATE

VI_ATTR_ASRL_STOP_BITS
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt16 VI_ASRL_STOP_ONE
(10)

VI_ASRL_STOP_ONE5
(15)

VI_ASRL_STOP_TWO
(20)

VI_ASRL_STOP_ONE

Description
VI_ATTR_ASRL_STOP_BITS	is	the	number	of	stop	bits	used	to	indicate
the	end	of	a	frame.	The	value	VI_ASRL_STOP_ONE5	indicates	one-and-
one-half	(1.5)	stop	bits.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_DATA_BITS
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_PARITY

VI_ATTR_ASRL_WIRE_MODE
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_ASRL_WIRE_485_4	(0)
VI_ASRL_WIRE_485_2_DTR_ECHO

(1)
VI_ASRL_WIRE_485_2_DTR_CTRL

(2)
VI_ASRL_WIRE_485_2_AUTO	(3)
VI_ASRL_WIRE_232_DTE	(128)
VI_ASRL_WIRE_232_DCE	(129)
VI_ASRL_WIRE_232_AUTO

(130)VI_STATE_UNKNOWN	(–1)

N/A

Description
VI_ATTR_ASRL_WIRE_MODE	represents	the	current	wire/transceiver
mode.
For	RS-485	hardware,	this	attribute	is	valid	only	with	the	RS-485	serial
driver	developed	by	National	Instruments.
For	RS-232	hardware,	the	values	RS232/DCE	and	RS232/AUTO	are
valid	only	with	RS-232	serial	drivers	developed	by	National	Instruments
and	documented	to	support	this	feature	with	the	corresponding	National
Instruments	hardware.	When	this	feature	is	not	supported,	RS232/DTE	is
the	only	valid	value.
RS-232	settings:

VI_ASRL_WIRE_232_DTE	uses	DTE	mode.
VI_ASRL_WIRE_232_DCE	uses	DCE	mode.
VI_ASRL_WIRE_232_AUTO	automatically	detects	which	mode	to
use.

RS-485	settings:
VI_ASRL_WIRE_485_4	uses	4-wire	mode.
VI_ASRL_WIRE_485_2_DTR_ECHO	uses	2-wire	DTR	mode
controlled	with	echo.
VI_ASRL_WIRE_485_2_DTR_CTRL	uses	2-wire	DTR	mode
controlled	without	echo.
VI_ASRL_WIRE_485_2_AUTO	uses	2-wire	auto	mode	controlled
with	TXRDY.

Note		This	attribute	is	valid	only	on	the	platforms	on	which	National
Instruments	supports	its	RS-232	or	RS-485	products.

Related	Topics
INSTR	Resource

VI_ATTR_ASRL_XOFF_CHAR
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt8 0	to	FFh <Control-S>
(13h)

Description
VI_ATTR_ASRL_XOFF_CHAR	specifies	the	value	of	the	XOFF	character
used	for	XON/XOFF	flow	control	(both	directions).	If	XON/XOFF	flow
control	(software	handshaking)	is	not	being	used,	the	value	of	this
attribute	is	ignored.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_XON_CHAR

VI_ATTR_ASRL_XON_CHAR
Resource	Classes
Serial	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt8 0	to	FFh <Control-Q>
(11h)

Description
VI_ATTR_ASRL_XON_CHAR	specifies	the	value	of	the	XON	character
used	for	XON/XOFF	flow	control	(both	directions).	If	XON/XOFF	flow
control	(software	handshaking)	is	not	being	used,	the	value	of	this
attribute	is	ignored.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_XOFF_CHAR

VI_ATTR_BUFFER
Resource	Classes
VI_EVENT_IO_COMPLETION

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViBuf N/A N/A

Description
VI_ATTR_BUFFER	contains	the	address	of	a	buffer	that	was	used	in	an
asynchronous	operation.
Related	Topics
VI_ATTR_JOB_ID
VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
VI_ATTR_STATUS
VI_EVENT_IO_COMPLETION

VI_ATTR_CMDR_LA
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR,	VXI	SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	255
VI_UNKNOWN_LA

(–1)

N/A

Description
VI_ATTR_CMDR_LA	is	the	unique	logical	address	of	the	commander	of
the	VXI	device	used	by	the	given	session.

Related	Topics
INSTR	Resource
SERVANT	Resource

VI_ATTR_DEST_ACCESS_PRIV
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV
(0)

VI_DATA_NPRIV
(1)

VI_PROG_PRIV
(2)

VI_PROG_NPRIV
(3)

VI_BLCK_PRIV
(4)

VI_BLCK_NPRIV
(5)

VI_D64_PRIV	(6)
VI_D64_NPRIV

(7)

VI_DATA_PRIV

Description
VI_ATTR_DEST_ACCESS_PRIV	specifies	the	address	modifier	to	be
used	in	high-level	access	operations,	such	as	viOutXX()	and
viMoveOutXX(),	when	writing	to	the	destination.

Note		The	values	VI_D64_PRIV	(6)	and	VI_D64_NPRIV	(7)	apply	to
only	the	block	move	operations.	If	you	set	this	attribute	to	one	of
these	values	and	then	call	one	of	the	viOutXX()	operations,	the
operation	returns	VI_ERROR_INV_SETUP.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_DEST_INCREMENT
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_DEST_BYTE_ORDER
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN	(0)
VI_LITTLE_ENDIAN

(1)

VI_BIG_ENDIAN

Description
VI_ATTR_DEST_BYTE_ORDER	specifies	the	byte	order	to	be	used	in
high-level	access	operations,	such	as	viOutXX()	and	viMoveOutXX(),
when	writing	to	the	destination.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_DEST_INCREMENT
VI_ATTR_SRC_BYTE_ORDER
VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_DEST_INCREMENT
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt32 0	to	1 1

Description
VI_ATTR_DEST_INCREMENT	is	used	in	the	viMoveOutXX()	operations	to
specify	by	how	many	elements	the	destination	offset	is	to	be	incremented
after	every	transfer.	The	default	value	of	this	attribute	is	1	(that	is,	the
destination	address	will	be	incremented	by	1	after	each	transfer),	and	the
viMoveOutXX()	operations	move	into	consecutive	elements.	If	this
attribute	is	set	to	0,	the	viMoveOutXX()	operations	will	always	write	to	the
same	element,	essentially	treating	the	destination	as	a	FIFO	register.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_SRC_INCREMENT

VI_ATTR_DEV_STATUS_BYTE
Resource	Classes
GPIB	INTFC,	VXI	SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViUInt8 0	to	FFh N/A

Description
This	attribute	specifies	the	488-style	status	byte	of	the	local	controller	or
device	associated	with	this	session.
If	this	attribute	is	written	and	bit	6	(40h)	is	set,	this	device	or	controller	will
assert	a	service	request	(SRQ)	if	it	is	defined	for	this	interface.

Related	Topics
INTFC	Resource
SERVANT	Resource

VI_ATTR_DMA_ALLOW_EN
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI
INSTR,	Serial	INSTR,	TCPIP	INSTR,	VXI	INSTR,	VXI	MEMACC,	VXI
SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViBoolean VI_TRUE(1)
VI_FALSE(0)

N/A

Description
This	attribute	specifies	whether	I/O	accesses	should	use	DMA	(VI_TRUE)
or	Programmed	I/O	(VI_FALSE).	In	some	implementations,	this	attribute
may	have	global	effects	even	though	it	is	documented	to	be	a	local
attribute.	Since	this	affects	performance	and	not	functionality,	that
behavior	is	acceptable.

Related	Topics
INSTR	Resource
INTFC	Resource
MEMACC	Resource
SERVANT	Resource

VI_ATTR_EVENT_TYPE
Resource	Classes
All	event	object	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViEventType 0h	to
FFFFFFFFh

N/A

Description
VI_ATTR_EVENT_TYPE	is	the	unique	logical	identifier	for	the	event	type
of	the	specified	event.
Related	Topics
Events

VI_ATTR_FDC_CHNL
Resource	Classes
VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViUInt16 0	to	7 N/A

Description
VI_ATTR_FDC_CHNL	determines	which	Fast	Data	Channel	(FDC)	will	be
used	to	transfer	the	buffer.

Related	Topics
INSTR	Resource
VI_ATTR_FDC_MODE
VI_ATTR_FDC_USE_PAIR

VI_ATTR_FDC_MODE
Resource	Classes
VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_FDC_NORMAL
(1)

VI_FDC_STREAM
(2)

VI_FDC_NORMAL

Description
VI_ATTR_FDC_MODE	specifies	which	Fast	Data	Channel	(FDC)	mode	to
use	(either	normal	or	stream	mode).

Related	Topics
INSTR	Resource
VI_ATTR_FDC_CHNL
VI_ATTR_FDC_USE_PAIR

VI_ATTR_FDC_USE_PAIR
Resource	Classes
VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
Setting	VI_ATTR_FDC_USE_PAIR	to	VI_TRUE	specifies	to	use	a	channel
pair	for	transferring	data.	Otherwise,	only	one	channel	will	be	used.

Related	Topics
INSTR	Resource
VI_ATTR_FDC_CHNL
VI_ATTR_FDC_MODE

VI_ATTR_FILE_APPEND_EN
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
This	attribute	specifies	whether	viReadToFile()	will	overwrite	(truncate)	or
append	when	opening	a	file.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viReadToFile

VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 0	to	FFFFh 0xFFFF

Description
This	property	specifies	the	upper	16	bits	of	the	48-bit	destination	address
for	a	FireWire	device.	This	attribute	is	used	in	correlation	with	the
viOut8/16/32,	viMove,	and	viMoveAsync	methods.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET

VI_ATTR_FIREWIRE_LOWER_32_CHIP_ID
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read-
Only
Global

ViUInt32 0	to	FFFFFFFFh N/A

Description
This	property	specifies	the	lower	chip	ID	for	a	FireWire	device.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_UPPER_8_CHIP_ID
VI_ATTR_FIREWIRE_VENDOR_ID

VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 0	to	FFFFh 0xFFFF

Description
This	property	specifies	the	upper	16	bits	of	the	48-bit	source	address	for
a	FireWire	device.	This	attribute	is	used	in	correlation	with	the	viIn8/16/32,
viMove,	and	viMoveAsync	methods.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET

VI_ATTR_FIREWIRE_UPPER_8_CHIP_ID
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read-
Only
Global

ViUInt8 0	to	FFh N/A

Description
This	property	specifies	the	upper	chip	ID	for	a	FireWire	device.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_LOWER_32_CHIP_ID
VI_ATTR_FIREWIRE_VENDOR_ID

VI_ATTR_FIREWIRE_VENDOR_ID
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read-
Only
Global

ViUInt32 0	to	FFFFFFh N/A

Description
This	property	specifies	the	vendor	ID	for	a	FireWire	device.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_LOWER_32_CHIP_ID
VI_ATTR_FIREWIRE_UPPER_8_CHIP_ID

VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET
Resource	Classes
FireWire	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 0	to	FFFFh 0xFFFF

Description
This	property	specifies	the	upper	16	bits	of	the	48-bit	address	for	a
FireWire	device	when	a	window	is	mapped.	This	attribute	is	used	in
correlation	with	the	viPeek8/16/32,	viPoke8/16/32,	and	viMapAddress
methods.
Related	Topics
INSTR	Resource
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET

VI_ATTR_GPIB_ADDR_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_GPIB_UNADDRESSED(0)
VI_GPIB_TALKER(1)
VI_GPIB_LISTENER(2)

N/A

Description
This	attribute	shows	whether	the	specified	GPIB	interface	is	currently
addressed	to	talk	or	listen,	or	is	not	addressed.

Related	Topics
INTFC	Resource
SERVANT	Resource

VI_ATTR_GPIB_ATN_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_UNASSERTED(0)
VI_STATE_UNKNOWN(–1)

N/A

Description
This	attribute	shows	the	current	state	of	the	GPIB	ATN	(ATtentioN)
interface	line.

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_NDAC_STATE
VI_ATTR_GPIB_REN_STATE
VI_ATTR_GPIB_SRQ_STATE
viGpibControlATN

VI_ATTR_GPIB_CIC_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViBoolean VI_TRUE(1)
VI_FALSE(0)

N/A

Description
This	attribute	shows	whether	the	specified	GPIB	interface	is	currently	CIC
(Controller	In	Charge).

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_SYS_CNTRL_STATE

VI_ATTR_GPIB_HS488_CBL_LEN
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 VI_GPIB_HS488_NIMPL(–1)
VI_GPIB_HS488_DISABLED(0)

1–15

N/A

Description
This	attribute	specifies	the	total	number	of	meters	of	GPIB	cable	used	in
the	specified	GPIB	interface.

Related	Topics
INTFC	Resource
VI_ATTR_IO_PROT

VI_ATTR_GPIB_NDAC_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_UNASSERTED(0)
VI_STATE_UNKNOWN(–1)

N/A

Description
This	attribute	shows	the	current	state	of	the	GPIB	NDAC	(Not	Data
ACcepted)	interface	line.

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_ATN_STATE
VI_ATTR_GPIB_REN_STATE
VI_ATTR_GPIB_SRQ_STATE

VI_ATTR_GPIB_PRIMARY_ADDR
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,
GPIB-VXI	BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

INSTR,
MEMACC,

BACKPLANE:
Read	Only
Global
INTFC:

Read/Write
Global

ViUInt16 0	to	30 N/A

Description
VI_ATTR_GPIB_PRIMARY_ADDR	specifies	the	primary	address	of	the
GPIB	device	used	by	the	given	session.	For	the	GPIB	INTFC	Resource,
this	attribute	is	Read-Write.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_READDR_EN
Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_TRUE

Description
VI_ATTR_GPIB_READDR_EN	specifies	whether	to	use	repeat
addressing	before	each	read	or	write	operation.

Related	Topics
INSTR	Resource
VI_ATTR_GPIB_UNADDR_EN

VI_ATTR_GPIB_RECV_CIC_STATE
Resource	Classes
VI_EVENT_GPIB_CIC

Attribute	Information
Access
Privilege Data	Type Range Default

Read-
Only

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

N/A

Description
This	attribute	specifies	whether	the	local	controller	has	gained	or	lost	CIC
status.

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_ATN_STATE
VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_REN_STATE
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_UNASSERTED(0)
VI_STATE_UNKNOWN(-1)

N/A

Description
VI_ATTR_GPIB_REN_STATE	returns	the	current	state	of	the	GPIB	REN
(Remote	ENable)	interface	line.

Related	Topics
INSTR	Resource
INTFC	Resource
VI_ATTR_FILE_APPEND_EN
VI_ATTR_GPIB_ATN_STATE
VI_ATTR_GPIB_NDAC_STATE
VI_ATTR_GPIB_SRQ_STATE
viGpibControlREN

VI_ATTR_GPIB_SECONDARY_ADDR
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,
GPIB-VXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

INSTR,
MEMACC,

BACKPLANE:
Read	Only
Global
INTFC:

Read/Write
Global

ViUInt16 0	to	30,
VI_NO_SEC_ADDR

(FFFFh)

N/A

Description
VI_ATTR_GPIB_SECONDARY_ADDR	specifies	the	secondary	address	of
the	GPIB	device	used	by	the	given	session.	For	the	GPIB	INTFC
Resource,	this	attribute	is	Read-Write.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SRQ_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_UNASSERTED(0)
VI_STATE_UNKNOWN(-1)

N/A

Description
This	attribute	shows	the	current	state	of	the	GPIB	SRQ	(Service
ReQuest)	interface	line.

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_ATN_STATE
VI_ATTR_GPIB_NDAC_STATE
VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_SYS_CNTRL_STATE
Resource	Classes
GPIB	INTFC

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Global

ViBoolean VI_TRUE(1)
VI_FALSE(0)

N/A

Description
This	attribute	shows	whether	the	specified	GPIB	interface	is	currently	the
system	controller.	In	some	implementations,	this	attribute	may	be
modified	only	through	a	configuration	utility.	On	these	systems	this
attribute	is	read-only	(RO).

Related	Topics
INTFC	Resource
VI_ATTR_GPIB_CIC_STATE

VI_ATTR_GPIB_UNADDR_EN
Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
VI_ATTR_GPIB_UNADDR_EN	specifies	whether	to	unaddress	the	device
(UNT	and	UNL)	after	each	read	or	write	operation.

Related	Topics
INSTR	Resource
VI_ATTR_GPIB_READDR_EN

VI_ATTR_IMMEDIATE_SERV
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

N/A

Description
VI_ATTR_IMMEDIATE_SERV	specifies	whether	the	device	associated
with	this	session	is	an	immediate	servant	of	the	controller	running	VISA.

Related	Topics
INSTR	Resource

VI_ATTR_INTF_INST_NAME
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
VI_ATTR_INTF_INST_NAME	specifies	human-readable	text	that
describes	the	given	interface.

Note		The	value	of	this	attribute	is	for	display	purposes	only	and
not	for	programmatic	decisions,	as	the	value	can	differ	between
VISA	implementations	and/or	revisions.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
SOCKET	Resource
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE

VI_ATTR_INTF_NUM
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0h	to	FFFFh 0

Description
VI_ATTR_INTF_NUM	specifies	the	board	number	for	the	given	interface.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
SOCKET	Resource
VI_ATTR_INTF_TYPE

VI_ATTR_INTF_PARENT_NUM
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	GPIB-VXI	BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0h	to	FFFFh 0

Description
VI_ATTR_INTF_PARENT_NUM	specifies	the	board	number	of	the	GPIB
board	to	which	the	GPIB-VXI	is	attached.

Related	Topics
BACKPLANE	Resource
INTFC	Resource
MEMACC	Resource
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE

VI_ATTR_INTF_TYPE
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 VI_INTF_GPIB	(1)
VI_INTF_VXI	(2)

VI_INTF_GPIB_VXI
(3)

VI_INTF_ASRL	(4)
VI_INTF_PXI	(5)
VI_INTF_TCPIP	(6)
VI_INTF_USB	(7)

N/A

Description
VI_ATTR_INTF_TYPE	specifies	the	interface	type	of	the	given	session.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
SOCKET	Resource
VI_ATTR_INTF_NUM

VI_ATTR_INTR_STATUS_ID
Resource	Classes
VI_EVENT_VXI_VME_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt32 0	to	FFFFFFFFh N/A

Description
VI_ATTR_INTR_STATUS_ID	specifies	the	32-bit	status/ID	retrieved
during	the	IACK	cycle.

Related	Topics
INSTR	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_INTR_LEVEL
VI_EVENT_VXI_VME_INTR

VI_ATTR_IO_PROT
Resource	Classes
GPIB	INTFC,	GPIB	INSTR,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI	SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 GPIB:
VI_PROT_NORMAL	(1)
VI_PROT_HS488	(3)

VI_PROT_NORMAL

	 	 VXI
VI_PROT_NORMAL	(1)

VI_PROT_FDC	(2)

VI_PROT_NORMAL

	 	 GPIB-VXI:
VI_PROT_NORMAL	(1)

VI_PROT_NORMAL

	 	 Serial,	TCPIP,	USB	RAW:
VI_PROT_NORMAL	(1)
VI_PROT_4882_STRS	(4)

VI_PROT_NORMAL

	 	 USB	INSTR:
VI_PROT_NORMAL	(1)

VI_PROT_USBTMC_VENDOR
(5)

VI_PROT_NORMAL

Description
VI_ATTR_IO_PROT	specifies	which	protocol	to	use.	In	VXI,	you	can
choose	normal	word	serial	or	fast	data	channel	(FDC).	In	GPIB,	you	can
choose	normal	or	high-speed	(HS-488)	transfers.	In	serial,	TCPIP,	or
USB	RAW,	you	can	choose	normal	transfers	or	488.2-defined	strings.	In
USB	INSTR,	you	can	choose	normal	or	vendor-specific	transfers.
In	previous	versions	of	VISA,	VI_PROT_NORMAL	was	known	as
VI_NORMAL,	VI_PROT_FDC	was	known	as	VI_FDC,	VI_PROT_HS488
was	known	as	VI_HS488,	and	VI_PROT_4882_STRS	was	known	as
VI_ASRL488.

Related	Topics
INSTR	Resource
INTFC	Resource
RAW	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_FDC_CHNL
VI_ATTR_FDC_MODE
VI_ATTR_FDC_USE_PAIR
VI_ATTR_GPIB_HS488_CBL_LEN

VI_ATTR_JOB_ID
Resource	Classes
VI_EVENT_IO_COMPLETION

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViJobId N/A N/A

Description
VI_ATTR_JOB_ID	contains	the	job	ID	of	the	asynchronous	operation	that
has	completed.
Related	Topics
Resources
SERVANT	Resource
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
VI_ATTR_STATUS
VI_EVENT_IO_COMPLETION

VI_ATTR_MAINfRAME_LA
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	BACKPLANE,	VXI	INSTR,	VXI
BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViInt16 0	to	255
VI_UNKNOWN_LA

(–1)

N/A

Description
VI_ATTR_MA.infRAME_LA	specifies	the	lowest	logical	address	in	the
mainframe.	If	the	logical	address	is	not	known,	VI_UNKNOWN_LA	is
returned.

Related	Topics
BACKPLANE	Resource
INSTR	Resource

VI_ATTR_MANF_ID
Resource	Classes
GPIB-VXI	INSTR,	PXI	INSTR,	USB	INSTR,	USB	RAW,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0h	to	FFFFh N/A

Description
VI_ATTR_MANF_ID	is	the	manufacturer	identification	number	of	the
device.
For	VXI	resources,	this	refers	to	the	VXI	Manufacturer	ID.
For	PXI	INSTR	resources,	if	the	subsystem	PCI	Vendor	ID	is	nonzero,
this	refers	to	the	subsystem	Vendor	ID.	Otherwise,	this	refers	to	the
Vendor	ID.
For	USB	resources,	this	refers	to	the	Vendor	ID	(VID).

Related	Topics
INSTR	Resource
VI_ATTR_MANF_NAME
VI_ATTR_MODEL_CODE

VI_ATTR_MANF_NAME
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	PXI	INSTR,	PXI	BACKPLANE,	USB
INSTR,	USB	RAW,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
This	string	attribute	is	the	manufacturer	name.

Note		The	value	of	this	attribute	should	be	used	for	display
purposes	only	and	not	for	programmatic	decisions,	as	the	value
can	differ	between	VISA	implementations	and/or	revisions.

Related	Topics
INSTR	Resource
VI_ATTR_MANF_ID
VI_ATTR_MODEL_NAME

VI_ATTR_MAX_QUEUE_LENGTH
Resource	Classes
All	I/O	session	types

Access
Privilege Data	Type Range Default

Read/Write
Local

ViUInt32 1h	to
FFFFFFFFh

50

Description
VI_ATTR_MAX_QUEUE_LENGTH	specifies	the	maximum	number	of
events	that	can	be	queued	at	any	time	on	the	given	session.	Events	that
occur	after	the	queue	has	become	full	will	be	discarded.
VI_ATTR_MAX_QUEUE_LENGTH	is	a	Read/Write	attribute	until	the	first
time	viEnableEvent()	is	called	on	a	session.	Thereafter,	this	attribute	is
Read	Only.

Related	Topics
Operations
viEnableEvent
VISA	Resource	Template
viWaitOnEvent

VI_ATTR_MEM_BASE/VI_ATTR_MEM_BASE_32/VI_ATTR_MEM_BASE_64
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

VI_ATTR_MEM_BASE:
ViBusAddress

VI_ATTR_MEM_BASE_32:
ViUInt32

VI_ATTR_MEM_BASE_64:
ViUInt64

VI_ATTR_MEM_BASE:
0h	to	FFFFFFFFh	for	32‑bit

applications

0h	to
FFFFFFFFFFFFFFFFh	for

64‑bit	applications

VI_ATTR_MEM_BASE_32:
0h	to	FFFFFFFFh

VI_ATTR_MEM_BASE_64:
0h	to

FFFFFFFFFFFFFFFFh

N/A

Description
VI_ATTR_MEM_BASE,	VI_ATTR_MEM_BASE_32,	and
VI_ATTR_MEM_BASE_64	specify	the	base	address	of	the	device	in
VXIbus	memory	address	space.	This	base	address	is	applicable	to	A24
or	A32	address	space.	If	the	value	of	VI_ATTR_MEM_SPACE	is
VI_A16_SPACE,	the	value	of	this	attribute	is	meaningless	for	the	given
VXI	device.

Related	Topics
INSTR	Resource
VI_ATTR_MEM_SIZE/VI_ATTR_MEM_SIZE_32/VI_ATTR_MEM_SIZE_64
VI_ATTR_MEM_SPACE

VI_ATTR_MEM_SIZE/VI_ATTR_MEM_SIZE_32/VI_ATTR_MEM_SIZE_64
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

VI_ATTR_MEM_SIZE:
ViBusSize

VI_ATTR_MEM_SIZE_32:
ViUInt32

VI_ATTR_MEM_SIZE_64:
ViUInt64

VI_ATTR_MEM_SIZE:
0h	to	FFFFFFFFh	for
32‑bit	applications

0h	to
FFFFFFFFFFFFFFFFh	for

64‑bit	applications

VI_ATTR_MEM_SIZE_32:
0h	to	FFFFFFFFh

VI_ATTR_MEM_SIZE_64:
0h	to

FFFFFFFFFFFFFFFFh

N/A

Description
VI_ATTR_MEM_SIZE,	VI_ATTR_MEM_SIZE_32,	and
VI_ATTR_MEM_SIZE_64	specify	the	size	of	memory	requested	by	the
device	in	VXIbus	address	space.	If	the	value	of	VI_ATTR_MEM_SPACE
is	VI_A16_SPACE,	the	value	of	this	attribute	is	meaningless	for	the	given
VXI	device.

Related	Topics
INSTR	Resource
VI_ATTR_MEM_BASE/VI_ATTR_MEM_BASE_32/VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_SPACE

VI_ATTR_MEM_SPACE
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt16 VI_A16_SPACE
(1)

VI_A24_SPACE
(2)

VI_A32_SPACE
(3)

VI_A16_SPACE

Description
VI_ATTR_MEM_SPACE	specifies	the	VXIbus	address	space	used	by	the
device.	The	three	types	are	A16,	A24,	or	A32	memory	address	space.
A	VXI	device	with	memory	in	A24	or	A32	space	also	has	registers
accessible	in	the	configuration	section	of	A16	space.	A	VME	device	with
memory	in	multiple	address	spaces	requires	one	VISA	resource	for	each
address	space	used.

Related	Topics
INSTR	Resource
VI_ATTR_MEM_BASE/VI_ATTR_MEM_BASE_32/VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_SIZE/VI_ATTR_MEM_SIZE_32/VI_ATTR_MEM_SIZE_64

VI_ATTR_MODEL_CODE
Resource	Classes
GPIB-VXI	INSTR,	PXI	INSTR,	USB	INSTR,	USB	RAW,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0h	to	FFFFh N/A

Description
VI_ATTR_MODEL_CODE	specifies	the	model	code	for	the	device.
For	VXI	resources,	this	refers	to	the	VXI	Model	Code.
For	PXI	INSTR	resources,	if	the	subsystem	PCI	Vendor	ID	is	nonzero,
this	refers	to	the	subsystem	Device	ID.	Otherwise,	this	refers	to	the
Device	ID.
For	USB	resources,	this	refers	to	the	Product	ID	(PID).

Related	Topics
INSTR	Resource
VI_ATTR_MANF_ID
VI_ATTR_MODEL_NAME

VI_ATTR_MODEL_NAME
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	PXI	INSTR,	PXI	BACKPLANE,	USB
INSTR,	USB	RAW,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
This	string	attribute	is	the	model	name	of	the	device.

Note		The	value	of	this	attribute	should	be	used	for	display
purposes	only	and	not	for	programmatic	decisions,	as	the	value
can	be	different	between	VISA	implementations	and/or	revisions.

Related	Topics
INSTR	Resource
VI_ATTR_MANF_NAME
VI_ATTR_MODEL_CODE

VI_ATTR_OPER_NAME
Resource	Classes
VI_EVENT_IO_COMPLETION,	VI_EVENT_EXCEPTION

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViString N/A N/A

Description
VI_ATTR_OPER_NAME	contains	the	name	of	the	operation	generating
this	event.
Related	Topics
VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_EVENT_EXCEPTION
VI_EVENT_IO_COMPLETION

VI_ATTR_PXI_ACTUAL_LWIDTH
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 –1,	1,	2,	4,	8,	16 N/A

Description
VI_ATTR_PXI_ACTUAL_LWIDTH	specifies	the	PCI	Express	link	width
negotiated	between	the	PCI	Express	host	controller	and	the	device.	A
value	of	–1	indicates	that	the	device	is	not	a	PXI/PCI	Express	device.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_BUS_NUM
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt16 0	to	255 N/A

Description
VI_ATTR_PXI_BUS_NUM	specifies	the	PCI	bus	number	of	this	device.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_CHASSIS
Resource	Classes
PXI	INSTR,	PXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 -1,	0	to	255 N/A

Description
VI_ATTR_PXI_CHASSIS	specifies	the	PXI	chassis	number	of	this	device.
A	value	of	–1	means	the	chassis	number	is	unknown.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_DEST_TRIG_BUS
Resource	Classes
PXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 Single-Segment
Chassis

(8	Slots	or	Less):
N/A

Multisegment
Chassis	

(More	than	8	Slots):
1...number	of

chassis	segments*

–1

Description
VI_ATTR_PXI_DEST_TRIG_BUS	specifies	the	segment	to	use	to	qualify
trigDest	in	viMapTrigger.

Note		Some	PXI	chassis,	typically	those	with	more	than	8	slots,
have	multiple	trigger	buses	(also	called	segments).	viMapTrigger	is
used	on	the	PXI	BACKPLANE	resource	to	map	a	trigger	between
two	trigger	buses.	One	trigger	bus,	specified	by
VI_ATTR_PXI_SRC_TRIG_BUS,	is	the	source	or	"writer"	for	this
trigger	line.	The	other	trigger	bus,	specified	by
VI_ATTR_PXI_DEST_TRIG_BUS,	is	a	"reader."	You	can	have
multiple	readers,	but	only	one	writer	for	a	given	trigger	line.	For
example,	if	you	want	to	have	triggers	mapped	from	trigger	bus	1	to
trigger	bus	2	and	then	from	trigger	bus	2	to	trigger	bus	3,	observe
that	in	this	case	trigger	bus	1	is	the	writer	for	this	line,	writing	to
both	trigger	bus	2	and	trigger	bus	3.	Therefore,	you	should	perform
your	viMapTrigger	from	1	to	2	and	from	1	to	3—mapping	from	1	to
2	and	then	2	to	3	would	not	be	allowed	because	it	would	require	2
also	to	be	a	writer	(as	well	as	1).	Note	also	that	mapping	from	one
line	in	the	source	trigger	bus	to	a	different	line	in	the	destination
trigger	bus	(trigSrc	!=	trigDest)	is	dependent	on	hardware
capabilities	and	a	specific	software	implementation,	and	may	not
be	supported.

Code	to	map	trigger	5	from	trigger	segment	1	to	trigger	segment	2
of	an	18-slot	chassis	would	look	like	the	following,	where
backplaneSession	is	a	session	to	a	PXI	BACKPLANE	resource:
viSetAttribute(backplaneSession,	VI_ATTR_PXI_SRC_TRIG_BUS,	1);
viSetAttribute(backplaneSession,	VI_ATTR_PXI_DEST_TRIG_BUS,
2);
viMapTrigger(backplaneSession,	VI_TRIG_TTL5,	VI_TRIG_TTL5,
VI_NULL);

*You	can	determine	the	number	of	segments	from	MAX	(in	the	trigger
reservation	panel),	from	the	chassis	documentation,	and	by	looking	at	the
dividing	lines	on	the	physical	front	panel	of	the	chassis	itself.

Related	Topics
BACKPLANE	Resource
VI_ATTR_PXI_SRC_TRIG_BUS
VI_ATTR_PXI_TRIG_BUS
viMapTrigger

VI_ATTR_PXI_DEV_NUM
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0	to	31 N/A

Description
This	is	the	PXI	device	number.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_FUNC_NUM

VI_ATTR_PXI_DSTAR_BUS
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 N/A N/A

Description
VI_ATTR_PXI_DSTAR_BUS	specifies	the	differential	star	bus	number	of
this	device.	A	value	of	–1	means	the	chassis	is	unidentified	or	does	not
have	a	timing	slot.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_DSTAR_SET
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 –1,	0	to	16 N/A

Description
VI_ATTR_PXI_DSTAR_SET	specifies	the	set	of	PXI_DSTAR	lines
connected	to	this	device.	A	value	of	–1	means	the	chassis	is	unidentified
or	does	not	have	a	timing	slot.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_FUNC_NUM
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0	to	7 0

Description
This	is	the	PCI	function	number	of	the	PXI/PCI	resource.	For	most
devices,	the	function	number	is	0,	but	a	multifunction	device	may	have	a
function	number	up	to	7.	The	meaning	of	a	function	number	other	than	0
is	device	specific.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_DEV_NUM

VI_ATTR_PXI_IS_EXPRESS
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViBoolean VI_TRUE,
VI_FALSE

N/A

Description
VI_ATTR_PXI_IS_EXPRESS	specifies	whether	the	device	is	PXI/PCI	or
PXI/PCI	Express.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_MAX_LWIDTH
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 –1,	1,	2,	4,	8,	16 N/A

Description
VI_ATTR_PXI_MAX_LWIDTH	specifies	the	maximum	PCI	Express	link
width	of	the	device.	A	value	of	–1	indicates	that	the	device	is	not	a
PXI/PCI	Express	device.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_MEM_BASE_BAR0/
VI_ATTR_PXI_MEM_BASE_BAR1/
VI_ATTR_PXI_MEM_BASE_BAR2/
VI_ATTR_PXI_MEM_BASE_BAR3/
VI_ATTR_PXI_MEM_BASE_BAR4/
VI_ATTR_PXI_MEM_BASE_BAR5
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt32 0	to
FFFFFFFFh

N/A

Description
PXI	memory	base	address	assigned	to	the	specified	BAR.	If	the	value	of
the	corresponding	VI_ATTR_PXI_MEM_TYPE_BARx	is
VI_PXI_ADDR_NONE,	the	value	of	this	attribute	is	meaningless	for	the
given	PXI	device.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_MEM_SIZE_BAR0/1/2/3/4/5
VI_ATTR_PXI_MEM_TYPE_BAR0/1/2/3/4/5

VI_ATTR_PXI_MEM_SIZE_BAR0/
VI_ATTR_PXI_MEM_SIZE_BAR1/
VI_ATTR_PXI_MEM_SIZE_BAR2/
VI_ATTR_PXI_MEM_SIZE_BAR3/
VI_ATTR_PXI_MEM_SIZE_BAR4/
VI_ATTR_PXI_MEM_SIZE_BAR5
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt32 0	to
FFFFFFFFh

N/A

Description
Memory	size	used	by	the	device	in	the	specified	BAR.	If	the	value	of	the
corresponding	VI_ATTR_PXI_MEM_TYPE_BARx	is
VI_PXI_ADDR_NONE,	the	value	of	this	attribute	is	meaningless	for	the
given	PXI	device.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_MEM_BASE_BAR0/1/2/3/4/5
VI_ATTR_PXI_MEM_TYPE_BAR0/1/2/3/4/5

VI_ATTR_PXI_MEM_TYPE_BAR0/
VI_ATTR_PXI_MEM_TYPE_BAR1/
VI_ATTR_PXI_MEM_TYPE_BAR2/
VI_ATTR_PXI_MEM_TYPE_BAR3/
VI_ATTR_PXI_MEM_TYPE_BAR4/
VI_ATTR_PXI_MEM_TYPE_BAR5
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt16 VI_PXI_ADDR_NONE(0)
VI_PXI_ADDR_MEM(1)
VI_PXI_ADDR_IO(2)

N/A

Description
Memory	type	used	by	the	device	in	the	specified	BAR	(if	applicable).

Related	Topics
INSTR	Resource
VI_ATTR_PXI_MEM_BASE_BAR0/1/2/3/4/5
VI_ATTR_PXI_MEM_SIZE_BAR0/1/2/3/4/5

VI_ATTR_PXI_RECV_INTR_DATA
Resource	Classes
VI_EVENT_PXI_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViUInt32 N/A N/A

Description
VI_ATTR_PXI_RECV_INTR_DATA	shows	the	first	PXI/PCI	register	that
was	read	in	the	successful	interrupt	detection	sequence.
Related	Topics
VI_ATTR_PXI_RECV_INTR_SEQ
VI_EVENT_PXI_INTR

VI_ATTR_PXI_RECV_INTR_SEQ
Resource	Classes
VI_EVENT_PXI_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViInt16 N/A N/A

Description
VI_ATTR_PXI_RECV_INTR_SEQ	shows	the	index	of	the	interrupt
sequence	that	detected	the	interrupt	condition.
Related	Topics
VI_ATTR_PXI_RECV_INTR_DATA
VI_EVENT_PXI_INTR

VI_ATTR_PXI_SLOT_LBUS_LEFT
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_PXI_LBUS_UNKNOWN	(-1);
VI_PXI_LBUS_NONE	(0);
Normal	slots	(1	to	18);

VI_PXI_LBUS_STAR_TRIG_BUS_0
(1000)	to

VI_PXI_LBUS_STAR_TRIG_BUS_9
(1009);

VI_PXI_STAR_TRIG_CONTROLLER
(1413);

VI_PXI_LBUS_SCXI	(2000)

N/A

Description
VI_ATTR_PXI_SLOT_LBUS_LEFT	specifies	the	slot	number	or	special
feature	connected	to	the	local	bus	left	lines	of	this	device.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_SLOT_LBUS_RIGHT
VI_ATTR_SLOT

VI_ATTR_PXI_SLOT_LBUS_RIGHT
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_PXI_LBUS_UNKNOWN	(-1);
VI_PXI_LBUS_NONE	(0);
Normal	slots	(1	to	18);

VI_PXI_LBUS_STAR_TRIG_BUS_0
(1000)	to

VI_PXI_LBUS_STAR_TRIG_BUS_9
(1009);

VI_PXI_STAR_TRIG_CONTROLLER
(1413);

VI_PXI_LBUS_SCXI	(2000)

N/A

Description
VI_ATTR_PXI_SLOT_LBUS_RIGHT	specifies	the	slot	number	or	special
feature	connected	to	the	local	bus	right	lines	of	this	device.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_SLOT_LBUS_LEFT
VI_ATTR_SLOT

VI_ATTR_PXI_SLOT_LWIDTH
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 –1,	1,	4,	8 N/A

Description
VI_ATTR_PXI_SLOT_LWIDTH	specifies	the	PCI	Express	link	width	of	the
PXI	Express	peripheral	slot	in	which	the	device	resides.	A	value	of	–1
indicates	that	the	device	is	not	a	PXI	Express	device.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_SLOTPATH
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViString N/A N/A

Description
VI_ATTR_PXI_SLOTPATH	specifies	the	slot	path	of	this	device.
The	purpose	of	a	PXI	slot	path	is	to	describe	the	PCI	bus	hierarchy	in	a
manner	independent	of	the	PCI	bus	number.	PXI	slot	paths	are	a
sequence	of	values	representing	the	PCI	device	number	and	function
number	of	a	PCI	module	and	each	parent	PCI	bridge	that	routes	the
module	to	the	host	PCI	bridge	(bus	0).	Each	value	is	represented	as
"dev[.func]",	where	the	function	number	is	listed	only	if	it	is	non-zero.
When	a	PXI	slot	path	includes	multiple	values,	the	values	are	comma-
separated.
The	string	format	of	the	attribute	value	looks	like	this:
device1[.function1][,device2[.function2]][,...]
An	example	string	is	"5.1,12,8".	In	this	case,	there	is	a	PCI-to-PCI	bridge
on	device	8	on	the	root	bus.	On	its	secondary	bus,	there	is	another	PCI-
to-PCI	bridge	on	device	12.	On	its	secondary	bus,	there	is	an	instrument
on	device	5,	function	1.	The	example	string	value	describes	this
instrument's	slot	path.
Related	Topics
INSTR	Resource

VI_ATTR_PXI_SRC_TRIG_BUS
Resource	Classes
PXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 Single-Segment
Chassis

(8	Slots	or	Less):
N/A

Multisegment
Chassis	

(More	than	8	Slots):
1...number	of

chassis	segments*

–1

Description
VI_ATTR_PXI_SRC_TRIG_BUS	specifies	the	segment	to	use	to	qualify
trigSrc	in	viMapTrigger.

Note		Some	PXI	chassis,	typically	those	with	more	than	8	slots,
have	multiple	trigger	buses	(also	called	segments).	viMapTrigger	is
used	on	the	PXI	BACKPLANE	resource	to	map	a	trigger	between
two	trigger	buses.	One	trigger	bus,	specified	by
VI_ATTR_PXI_SRC_TRIG_BUS,	is	the	source	or	"writer"	for	this
trigger	line.	The	other	trigger	bus,	specified	by
VI_ATTR_PXI_DEST_TRIG_BUS,	is	a	"reader."	You	can	have
multiple	readers,	but	only	one	writer	for	a	given	trigger	line.	For
example,	if	you	want	to	have	triggers	mapped	from	trigger	bus	1	to
trigger	bus	2	and	then	from	trigger	bus	2	to	trigger	bus	3,	observe
that	in	this	case	trigger	bus	1	is	the	writer	for	this	line,	writing	to
both	trigger	bus	2	and	trigger	bus	3.	Therefore,	you	should	perform
your	viMapTrigger	from	1	to	2	and	from	1	to	3—mapping	from	1	to
2	and	then	2	to	3	would	not	be	allowed	because	it	would	require	2
also	to	be	a	writer	(as	well	as	1).	Note	also	that	mapping	from	one
line	in	the	source	trigger	bus	to	a	different	line	in	the	destination
trigger	bus	(trigSrc	!=	trigDest)	is	dependent	on	hardware
capabilities	and	a	specific	software	implementation,	and	may	not
be	supported.

Code	to	map	trigger	5	from	trigger	segment	1	to	trigger	segment	2
of	an	18-slot	chassis	would	look	like	the	following,	where
backplaneSession	is	a	session	to	a	PXI	BACKPLANE	resource:
viSetAttribute(backplaneSession,	VI_ATTR_PXI_SRC_TRIG_BUS,	1);
viSetAttribute(backplaneSession,	VI_ATTR_PXI_DEST_TRIG_BUS,
2);
viMapTrigger(backplaneSession,	VI_TRIG_TTL5,	VI_TRIG_TTL5,
VI_NULL);

*You	can	determine	the	number	of	segments	from	MAX	(in	the	trigger
reservation	panel),	from	the	chassis	documentation,	and	by	looking	at	the
dividing	lines	on	the	physical	front	panel	of	the	chassis	itself.

Related	Topics
BACKPLANE	Resource
VI_ATTR_PXI_DEST_TRIG_BUS
VI_ATTR_PXI_TRIG_BUS
viMapTrigger

VI_ATTR_PXI_STAR_TRIG_BUS
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 N/A N/A

Description
VI_ATTR_PXI_STAR_TRIG_BUS	specifies	the	star	trigger	bus	number	of
this	device.
Related	Topics
INSTR	Resource
VI_ATTR_PXI_STAR_TRIG_LINE
VI_ATTR_PXI_TRIG_BUS

VI_ATTR_PXI_STAR_TRIG_LINE
Resource	Classes
PXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 N/A N/A

Description
VI_ATTR_PXI_STAR_TRIG_LINE	specifies	the	PXI_STAR	line	connected
to	this	device.
Related	Topics
INSTR	Resource
VI_ATTR_PXI_STAR_TRIG_BUS
VI_ATTR_PXI_TRIG_BUS

VI_ATTR_PXI_TRIG_BUS
Resource	Classes
PXI	INSTR,	PXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

INSTR:
Read	Only
Global

BACKPLANE:
Read/Write

Local

ViInt16 N/A N/A

Description
VI_ATTR_PXI_TRIG_BUS	specifies	the	trigger	bus	number	of	this	device.

Related	Topics
INSTR	Resource
VI_ATTR_PXI_STAR_TRIG_BUS
VI_ATTR_PXI_STAR_TRIG_LINE

VI_ATTR_RD_BUF_OPER_MODE
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_FLUSH_ON_ACCESS
(1)

VI_FLUSH_DISABLE	(3)

VI_FLUSH_DISABLE

Description
VI_ATTR_RD_BUF_OPER_MODE	specifies	the	operational	mode	of	the
formatted	I/O	read	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_DISABLE	(default),	the	buffer	is	flushed	only	on	explicit	calls
to	viFlush().	If	the	operational	mode	is	set	to	VI_FLUSH_ON_ACCESS,	the
read	buffer	is	flushed	every	time	a	viScanf()	(or	related)	operation
completes.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_WR_BUF_OPER_MODE
viFlush
viScanf

VI_ATTR_RD_BUF_SIZE
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Local

ViUInt32 N/A N/A

Description
This	is	the	current	size	of	the	formatted	I/O	input	buffer	for	this	session.
The	user	can	modify	this	value	by	calling	viSetBuf().

Related	Topics
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_WR_BUF_SIZE
viSetBuf

VI_ATTR_RECV_INTR_LEVEL
Resource	Classes
VI_EVENT_VXI_VME_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViInt16 1	to
7;VI_UNKNOWN_LEVEL

(–1)

N/A

Description
VI_ATTR_RECV_INTR_LEVEL	is	the	VXI	interrupt	level	on	which	the
interrupt	was	received.

Related	Topics
INSTR	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_INTR_STATUS_ID
VI_EVENT_VXI_VME_INTR

VI_ATTR_RECV_TRIG_ID
Resource	Classes
VI_EVENT_TRIG

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViInt16 VI_TRIG_SW(-1)
VI_TRIG_TTL0

(0)	to
VI_TRIG_TTL7

(7);
VI_TRIG_ECL0

(8)	to
VI_TRIG_ECL1

(9)

N/A

Description
VI_ATTR_RECV_TRIG_ID	identifies	the	triggering	mechanism	on	which
the	specified	trigger	event	was	received.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
SERVANT	Resource
VI_EVENT_TRIG

VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
Resource	Classes
VI_EVENT_IO_COMPLETION

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

VI_ATTR_RET_COUNT:
ViUInt32	for	32‑bit

applications

ViUInt64	for	64‑bit
applications

VI_ATTR_RET_COUNT_32:
ViUInt32

VI_ATTR_RET_COUNT_64:
ViUInt64

VI_ATTR_RET_COUNT:
0h	to	FFFFFFFFh	for	32‑bit

applications

0h	to
FFFFFFFFFFFFFFFFh	for

64‑bit	applications

VI_ATTR_RET_COUNT_32:
0h	to	FFFFFFFFh

VI_ATTR_RET_COUNT_64:
0h	to

FFFFFFFFFFFFFFFFh

N/A

Description
VI_ATTR_RET_COUNT,	VI_ATTR_RET_COUNT_32,	and
VI_ATTR_RET_COUNT_64	contain	the	actual	number	of	elements	that
were	asynchronously	transferred.
VI_ATTR_RET_COUNT_32	is	always	a	32-bit	value.
VI_ATTR_RET_COUNT_64	is	always	a	64-bit	value.
VI_ATTR_RET_COUNT_64	is	not	supported	with	32-bit	applications.
VI_ATTR_RET_COUNT	is	a	32-bit	value	for	32-bit	applications	and	a	64-
bit	value	for	64-bit	applications.

Related	Topics
VI_ATTR_BUFFER
VI_ATTR_JOB_ID
VI_ATTR_STATUS
VI_EVENT_IO_COMPLETION

VI_ATTR_RM_SESSION
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Local

ViSession N/A N/A

Description
VI_ATTR_RM_SESSION	specifies	the	session	of	the	Resource	Manager
that	was	used	to	open	this	session.

Related	Topics
VISA	Resource	Template

VI_ATTR_RSRC_CLASS
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
VI_ATTR_RSRC_CLASS	specifies	the	resource	class	(for	example,
"INSTR")	as	defined	by	the	canonical	resource	name.

Related	Topics
VI_ATTR_RSRC_NAME
VISA	Resource	Template

VI_ATTR_RSRC_IMPL_VERSION
Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViVersion 0h	to
FFFFFFFFh

N/A

Description
VI_ATTR_RSRC_IMPL_VERSION	is	the	resource	version	that	uniquely
identifies	each	of	the	different	revisions	or	implementations	of	a	resource.
This	attribute	value	is	defined	by	the	individual	manufacturer	and
increments	with	each	new	revision.	The	format	of	the	value	has	the	upper
12	bits	as	the	major	number	of	the	version,	the	next	lower	12	bits	as	the
minor	number	of	the	version,	and	the	lowest	8	bits	as	the	sub-minor
number	of	the	version.

Related	Topics
VI_ATTR_RSRC_SPEC_VERSION
VISA	Resource	Template

VI_ATTR_RSRC_LOCK_STATE
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViAccessMode VI_NO_LOCK	(0)
VI_EXCLUSIVE_LOCK

(1)
VI_SHARED_LOCK	(2)

VI_NO_LOCK

Description
VI_ATTR_RSRC_LOCK_STATE	indicates	the	current	locking	state	of	the
resource.	The	resource	can	be	unlocked,	locked	with	an	exclusive	lock,
or	locked	with	a	shared	lock.

Related	Topics
VISA	Resource	Template

VI_ATTR_RSRC_MANF_ID
Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0h	to	3FFFh N/A

Description
VI_ATTR_RSRC_MANF_ID	is	a	value	that	corresponds	to	the	VXI
manufacturer	ID	of	the	vendor	that	implemented	the	VISA	library.	This
attribute	is	not	related	to	the	device	manufacturer	attributes.

Related	Topics
VI_ATTR_RSRC_MANF_NAME
VISA	Resource	Template

VI_ATTR_RSRC_MANF_NAME
Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
VI_ATTR_RSRC_MANF_NAME	is	a	string	that	corresponds	to	the
manufacturer	name	of	the	vendor	that	implemented	the	VISA	library.	This
attribute	is	not	related	to	the	device	manufacturer	attributes.

Note		The	value	of	this	attribute	is	for	display	purposes	only	and
not	for	programmatic	decisions,	as	the	value	can	differ	between
VISA	implementations	and/or	revisions.

Related	Topics
VI_ATTR_RSRC_MANF_ID
VISA	Resource	Template

VI_ATTR_RSRC_NAME
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only	
Global

ViRsrc N/A N/A

Description
VI_ATTR_RSRC_NAME	is	the	unique	identifier	for	a	resource.	Refer	to
VISA	Resource	Syntax	and	Examples	for	the	syntax	of	resource	strings
and	examples.

Related	Topics
viFindRsrc
viOpen
viParseRsrc
VISA	Resource	Template

VI_ATTR_RSRC_SPEC_VERSION
Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViVersion 0h	to
FFFFFFFFh

00300000h

Description
VI_ATTR_RSRC_SPEC_VERSION	is	the	resource	version	that	uniquely
identifies	the	version	of	the	VISA	specification	to	which	the
implementation	is	compliant.	The	format	of	the	value	has	the	upper	12
bits	as	the	major	number	of	the	version,	the	next	lower	12	bits	as	the
minor	number	of	the	version,	and	the	lowest	8	bits	as	the	sub-minor
number	of	the	version.	The	current	VISA	specification	defines	the	value
to	be	00300000h.

Related	Topics
VI_ATTR_RSRC_IMPL_VERSION
VISA	Resource	Template

VI_ATTR_SEND_END_EN
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	USB	INSTR,	VXI	INSTR,	VXI	SERVANT

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_TRUE

Description
VI_ATTR_SEND_END_EN	specifies	whether	to	assert	END	during	the
transfer	of	the	last	byte	of	the	buffer.
VI_ATTR_SEND_END_EN	is	relevant	only	in	viWrite	and	related
operations.
On	Serial	INSTR	sessions,	if	this	attribute	is	set	to	VI_FALSE,	the	write
will	transmit	the	exact	contents	of	the	user	buffer,	without	modifying	it	and
without	appending	anything	to	the	data	being	written.	If	this	attribute	is
set	to	VI_TRUE,	VISA	will	perform	the	behavior	described	in
VI_ATTR_ASRL_END_OUT.
On	GPIB,	VXI,	GPIB-VXI,	TCP/IP	INSTR,	and	USB	INSTR	sessions,	if
this	attribute	is	set	to	VI_TRUE,	VISA	will	include	the	488.2	defined	"end
of	message"	terminator.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_ASRL_END_OUT
viWrite

VI_ATTR_SIGP_STATUS_ID
Resource	Classes
VI_EVENT_VXI_SIGP

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViUInt16 0h	to	FFFFh N/A

Description
VI_ATTR_SIGP_STATUS_ID	is	the	16-bit	Status/ID	value	retrieved	during
the	IACK	cycle	or	from	the	Signal	register.
Related	Topics
INSTR	Resource
VI_EVENT_VXI_SIGP

VI_ATTR_SLOT
Resource	Classes
GPIB-VXI	INSTR,	PXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VXI
0	to	12

VI_UNKNOWN_SLOT
(–1)
PXI

1	to	18
VI_UNKNOWN_SLOT

(–1)

N/A

Description
VI_ATTR_SLOT	specifies	the	physical	slot	location	of	the	device.	If	the
slot	number	is	not	known,	VI_UNKNOWN_SLOT	is	returned.

Related	Topics
INSTR	Resource

VI_ATTR_SRC_ACCESS_PRIV
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV
(0)

VI_DATA_NPRIV
(1)

VI_PROG_PRIV
(2)

VI_PROG_NPRIV
(3)

VI_BLCK_PRIV
(4)

VI_BLCK_NPRIV
(5)

VI_D64_PRIV	(6)
VI_D64_NPRIV

(7)

VI_DATA_PRIV

Description
VI_ATTR_SRC_ACCESS_PRIV	specifies	the	address	modifier	to	be	used
in	high-level	access	operations,	such	as	viInXX()	and	viMoveInXX(),	when
reading	from	the	source.

Note		The	values	VI_D64_PRIV	(6)	and	VI_D64_NPRIV	(7)	apply	to
only	the	block	move	operations.	If	you	set	this	attribute	to	one	of
these	values	and	then	call	one	of	the	viInXX()	operations,	the
operation	returns	VI_ERROR_INV_SETUP.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER
VI_ATTR_SRC_INCREMENT
VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_SRC_BYTE_ORDER
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN	(0)
VI_LITTLE_ENDIAN

(1)

VI_BIG_ENDIAN

Description
VI_ATTR_SRC_BYTE_ORDER	specifies	the	byte	order	to	be	used	in
high-level	access	operations,	such	as	viInXX()	and	viMoveInXX(),	when
reading	from	the	source.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_INCREMENT
VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_SRC_INCREMENT
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViInt32 0	to	1 1

Description
VI_ATTR_SRC_INCREMENT	is	used	in	the	viMoveInXX()	operations	to
specify	by	how	many	elements	the	source	offset	is	to	be	incremented
after	every	transfer.	The	default	value	of	this	attribute	is	1	(that	is,	the
source	address	will	be	incremented	by	1	after	each	transfer),	and	the
viMoveInXX()	operations	move	from	consecutive	elements.	If	this	attribute
is	set	to	0,	the	viMoveInXX()	operations	will	always	read	from	the	same
element,	essentially	treating	the	source	as	a	FIFO	register.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_INCREMENT
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER

VI_ATTR_STATUS
Resource	Classes
VI_EVENT_EXCEPTION,	VI_EVENT_IO_COMPLETION,
VI_EVENT_USB_INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only

ViStatus N/A N/A

Description
VI_ATTR_STATUS	contains	the	return	code	of	the	operation	generating
this	event.
Related	Topics
VI_ATTR_BUFFER
VI_ATTR_JOB_ID
VI_ATTR_MODEL_NAME
VI_ATTR_OPER_NAME
VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
VI_EVENT_EXCEPTION
VI_EVENT_IO_COMPLETION
VI_EVENT_USB_INTR

VI_ATTR_SUPPRESS_END_EN
Resource	Classes
Serial	INSTR,	TCPIP	SOCKET,	USB	RAW,	VXI	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
VI_ATTR_SUPPRESS_END_EN	is	relevant	only	in	viRead	and	related
operations.
For	all	session	types	on	which	this	attribute	is	supported,	if	this	attribute
is	set	to	VI_TRUE,	read	will	not	terminate	due	to	an	END	condition.
However,	a	read	may	still	terminate	successfully	if
VI_ATTR_TERMCHAR_EN	is	set	to	VI_TRUE.	Otherwise,	read	will	not
terminate	until	all	requested	data	is	received	(or	an	error	occurs).
On	Serial	INSTR	sessions,	if	this	attribute	is	set	to	VI_FALSE,	VISA	will
perform	the	behavior	described	in	VI_ATTR_ASRL_END_IN.
On	USB	RAW	sessions,	if	this	attribute	is	set	to	VI_FALSE,	VISA	will
perform	the	behavior	described	in	VI_ATTR_USB_END_IN.
On	TCP/IP	SOCKET	sessions,	if	this	attribute	is	set	to	VI_FALSE,	if	NI-
VISA	reads	some	data	and	then	detects	a	pause	in	the	arrival	of	data
packets,	it	will	terminate	the	read	operation.	On	TCP/IP	SOCKET
sessions,	this	attribute	defaults	to	VI_TRUE	in	NI-VISA.
On	VXI	INSTR	sessions,	if	this	attribute	is	set	to	VI_FALSE,	the	END	bit
terminates	read	operations.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_END_IN
VI_ATTR_USB_END_IN
viRead

VI_ATTR_TCPIP_ADDR
Resource	Classes
TCPIP	INSTR,	TCPIP	SOCKET

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
This	is	the	TCPIP	address	of	the	device	to	which	the	session	is
connected.	This	string	is	formatted	in	dot	notation.

Related	Topics
INSTR	Resource
SOCKET	Resource
VI_ATTR_TCPIP_HOSTNAME

VI_ATTR_TCPIP_DEVICE_NAME
Resource	Classes
TCPIP	INSTR

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
This	specifies	the	LAN	device	name	used	by	the	VXI-11	or	LXI	protocol
during	connection.

Related	Topics
INSTR	Resource

VI_ATTR_TCPIP_HOSTNAME
Resource	Classes
TCPIP	INSTR,	TCPIP	SOCKET

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViString N/A N/A

Description
This	specifies	the	host	name	of	the	device.	If	no	host	name	is	available,
this	attribute	returns	an	empty	string.

Related	Topics
INSTR	Resource
SOCKET	Resource
VI_ATTR_TCPIP_ADDR

VI_ATTR_TCPIP_KEEPALIVE
Resource	Classes
TCPIP	SOCKET

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE(1)
VI_FALSE(0)

VI_FALSE

Description
Setting	this	attribute	to	TRUE	requests	that	a	TCP/IP	provider	enable	the
use	of	keep-alive	packets	on	TCP	connections.	After	the	system	detects
that	a	connection	was	dropped,	VISA	returns	a	lost	connection	error	code
on	subsequent	I/O	calls	on	the	session.	The	time	required	for	the	system
to	detect	that	the	connection	was	dropped	is	dependent	on	the	system
and	is	not	settable.

Related	Topics
SOCKET	Resource
VI_ATTR_TCPIP_NODELAY

VI_ATTR_TCPIP_NODELAY
Resource	Classes
TCPIP	SOCKET

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE(1)
VI_FALSE(0)

VI_TRUE

Description
The	Nagle	algorithm	is	disabled	when	this	attribute	is	enabled	(and	vice
versa).	The	Nagle	algorithm	improves	network	performance	by	buffering
"send"	data	until	a	full-size	packet	can	be	sent.	This	attribute	is	enabled
by	default	in	VISA	to	verify	that	synchronous	writes	get	flushed
immediately.

Related	Topics
SOCKET	Resource
VI_ATTR_TCPIP_KEEPALIVE

VI_ATTR_TCPIP_PORT
Resource	Classes
TCPIP	SOCKET

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 0	to	FFFFh N/A

Description
This	specifies	the	port	number	for	a	given	TCPIP	address.	For	a	TCPIP
SOCKET	Resource,	this	is	a	required	part	of	the	address	string.

Related	Topics
SOCKET	Resource

VI_ATTR_TERMCHAR
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViUInt8 0	to	FFh 0Ah
(linefeed)

Description
VI_ATTR_TERMCHAR	is	the	termination	character.	When	the	termination
character	is	read	and	VI_ATTR_TERMCHAR_EN	is	enabled	during	a
read	operation,	the	read	operation	terminates.
For	a	Serial	INSTR	session,	VI_ATTR_TERMCHAR	is	Read/Write	when
the	corresponding	session	is	not	enabled	to	receive
VI_EVENT_ASRL_TERMCHAR	events.	When	the	session	is	enabled	to
receive	VI_EVENT_ASRL_TERMCHAR	events,	the	attribute
VI_ATTR_TERMCHAR	is	Read	Only.	For	all	other	session	types,	the
attribute	VI_ATTR_TERMCHAR	is	always	Read/Write.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_TERMCHAR_EN

VI_ATTR_TERMCHAR_EN
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

ViBoolean VI_TRUE	(1)
VI_FALSE	(0)

VI_FALSE

Description
VI_ATTR_TERMCHAR_EN	is	a	flag	that	determines	whether	the	read
operation	should	terminate	when	a	termination	character	is	received.	This
attribute	is	valid	for	both	raw	I/O	(viRead)	and	formatted	I/O	(viScanf).

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_TERMCHAR

VI_ATTR_TMO_VALUE
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt32 VI_TMO_IMMEDIATE
(0);

1	to	FFFFFFFEh;
VI_TMO_INFINITE

(FFFFFFFFh)

2000

Description
VI_ATTR_TMO_VALUE	specifies	the	minimum	timeout	value	to	use	(in
milliseconds)	when	accessing	the	device	associated	with	the	given
session.	A	timeout	value	of	VI_TMO_IMMEDIATE	means	that	operations
should	never	wait	for	the	device	to	respond.	A	timeout	value	of
VI_TMO_INFINITE	disables	the	timeout	mechanism.
Notice	that	the	actual	timeout	value	used	by	the	driver	may	be	higher
than	the	requested	one.	The	actual	timeout	value	is	returned	when	this
attribute	is	retrieved	via	viGetAttribute().

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
MEMACC	Resource
Resources
SERVANT	Resource
SOCKET	Resource

VI_ATTR_TRIG_ID
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	BACKPLANE,	GPIB-VXI	INSTR,
PXI	INSTR,	PXI	BACKPLANE,	Serial	INSTR,	TCPIP	INSTR,	VXI
BACKPLANE,	VXI	INSTR,	VXI	SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 GPIB,	Serial,
TCPIP:

VI_TRIG_SW	(–
1)

VI_TRIG_SW

	 	 VXI,	GPIB-VXI:
VI_TRIG_SW	(–

1);
VI_TRIG_TTL0

(0)	to
VI_TRIG_TTL7

(7);
VI_TRIG_ECL0

(8)	to
VI_TRIG_ECL1

(9)

VI_TRIG_SW

	 	 PXI	INSTR,
PXI

BACKPLANE:
VI_TRIG_SW

(-1)
VI_TRIG_TTLO

(0)	to
VI_TRIG_TTL7

(7)

VI_TRIG_SW

Description
VI_ATTR_TRIG_ID	is	the	identifier	for	the	current	triggering	mechanism.
VI_ATTR_TRIG_ID	is	Read/Write	when	the	corresponding	session	is	not
enabled	to	receive	trigger	events.	When	the	session	is	enabled	to	receive
trigger	events,	the	attribute	VI_ATTR_TRIG_ID	is	Read	Only.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
SERVANT	Resource
VI_ATTR_RECV_TRIG_ID
viAssertTrigger

VI_ATTR_USB_ALT_SETTING
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Global

ViInt16 0	to	FFh 0

Description
VI_ATTR_USB_ALT_SETTING	specifies	the	USB	alternate	setting	used
by	this	USB	interface.
VI_ATTR_USB_ALT_SETTING	is	Read/Write	when	the	corresponding
session	is	not	enabled	to	receive	USB	interrupt	events.	If	the	session	is
enabled	to	receive	USB	interrupt	events	or	if	there	are	any	other	sessions
to	this	resource,	the	attribute	VI_ATTR_USB_ALT_SETTING	is	Read
Only.
Related	Topics
RAW	Resource

VI_ATTR_USB_BULK_IN_PIPE
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 -1,	81h	to	8Fh N/A

Description
VI_ATTR_USB_BULK_IN_PIPE	specifies	the	endpoint	address	of	the
USB	bulk-in	pipe	used	by	the	given	session.	An	initial	value	of	-1	signifies
that	this	resource	does	not	have	any	bulk-in	pipes.	This	endpoint	is	used
in	viRead	and	related	operations.
Related	Topics
RAW	Resource
VI_ATTR_USB_BULK_OUT_PIPE
VI_ATTR_USB_CTRL_PIPE
VI_ATTR_USB_INTR_IN_PIPE
VI_ATTR_USB_NUM_PIPES

VI_ATTR_USB_BULK_IN_STATUS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 VI_USB_PIPE_STATE_UNKNOWN
(-1)

VI_USB_PIPE_READY	(0)
VI_USB_PIPE_STALLED	(1)

N/A

Description
VI_ATTR_USB_BULK_IN_STATUS	specifies	whether	the	USB	bulk-in
pipe	used	by	the	given	session	is	stalled	or	ready.	This	attribute	can	be
set	to	only	VI_USB_PIPE_READY.

Related	Topics
RAW	Resource

VI_ATTR_USB_BULK_OUT_PIPE
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 -1,	01h	to	0Fh N/A

Description
VI_ATTR_USB_BULK_OUT_PIPE	specifies	the	endpoint	address	of	the
USB	bulk-out	or	interrupt-out	pipe	used	by	the	given	session.	An	initial
value	of	–1	signifies	that	this	resource	does	not	have	any	bulk-out	or
interrupt-out	pipes.	This	endpoint	is	used	in	viWrite	and	related
operations.
Related	Topics
RAW	Resource
VI_ATTR_USB_BULK_IN_PIPE
VI_ATTR_USB_CTRL_PIPE
VI_ATTR_USB_INTR_IN_PIPE
VI_ATTR_USB_NUM_PIPES

VI_ATTR_USB_BULK_OUT_STATUS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 VI_USB_PIPE_STATE_UNKNOWN
(-1)

VI_USB_PIPE_READY	(0)
VI_USB_PIPE_STALLED	(1)

N/A

Description
VI_ATTR_USB_BULK_OUT_STATUS	specifies	whether	the	USB	bulk-out
or	interrupt-out	pipe	used	by	the	given	session	is	stalled	or	ready.	This
attribute	can	be	set	to	only	VI_USB_PIPE_READY.

Related	Topics
RAW	Resource

VI_ATTR_USB_CLASS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	FFh N/A

Description
VI_ATTR_USB_CLASS	specifies	the	USB	class	used	by	this	USB
interface.
Related	Topics
RAW	Resource

VI_ATTR_USB_CTRL_PIPE
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 00h	to	0Fh 00h

Description
VI_ATTR_USB_CTRL_PIPE	specifies	the	endpoint	address	of	the	USB
control	pipe	used	by	the	given	session.	A	value	of	0	signifies	that	the
default	control	pipe	will	be	used.	This	endpoint	is	used	in	viUsbControlIn
and	viUsbControlOut	operations.	Nonzero	values	may	not	be	supported
on	all	platforms.
Related	Topics
RAW	Resource
VI_ATTR_USB_BULK_IN_PIPE
VI_ATTR_USB_BULK_OUT_PIPE
VI_ATTR_USB_INTR_IN_PIPE
VI_ATTR_USB_NUM_PIPES
viUsbControlIn
viUsbControlOut

VI_ATTR_USB_END_IN
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_USB_END_NONE	(0)
VI_USB_END_SHORT	(4)

VI_USB_END_SHORT_OR_COUNT	(5)

VI_USB_END_SHORT_OR_COUNT

Description
VI_ATTR_USB_END_IN	indicates	the	method	used	to	terminate	read
operations.
If	it	is	set	to	VI_USB_END_NONE,	short	packets	are	ignored	for	read
operations,	so	reads	will	not	terminate	until	all	of	the	requested	data	is
received	(or	an	error	occurs).
If	it	is	set	to	VI_USB_END_SHORT,	the	read	operation	will	terminate	on	a
short	packet;	use	this	if	the	device	will	terminate	all	read	transfers	with	a
short	packet,	including	sending	a	zero	(short)	packet	when	the	last	data
packet	is	full.
If	it	is	set	to	VI_USB_END_SHORT_OR_COUNT,	the	read	operation	will
terminate	on	a	short	packet	or	when	it	receives	the	requested	count	of
data	bytes;	use	this	if	the	device	does	not	send	zero	packets.

Related	Topics
RAW	Resource

VI_ATTR_USB_INTFC_NUM
Resource	Classes
USB	INSTR,	USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	FEh 0

Description
VI_ATTR_USB_INTFC_NUM	specifies	the	USB	interface	number	used	by
the	given	session.
Related	Topics
INSTR	Resource
RAW	Resource

VI_ATTR_USB_INTR_IN_PIPE
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 -1,	81h	to	8Fh N/A

Description
VI_ATTR_USB_INTR_IN_PIPE	specifies	the	endpoint	address	of	the	USB
interrupt-in	pipe	used	by	the	given	session.	An	initial	value	of	-1	signifies
that	this	resource	does	not	have	any	interrupt-in	pipes.	This	endpoint	is
used	in	viEnableEvent	for	VI_EVENT_USB_INTR.
Related	Topics
RAW	Resource
VI_ATTR_USB_BULK_IN_PIPE
VI_ATTR_USB_BULK_OUT_PIPE
VI_ATTR_USB_CTRL_PIPE
VI_ATTR_USB_NUM_PIPES

VI_ATTR_USB_INTR_IN_STATUS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViInt16 VI_USB_PIPE_STATE_UNKNOWN
(-1)

VI_USB_PIPE_READY	(0)
VI_USB_PIPE_STALLED	(1)

N/A

Description
VI_ATTR_USB_INTR_IN_STATUS	specifies	whether	the	USB	interrupt-in
pipe	used	by	the	given	session	is	stalled	or	ready.	This	attribute	can	be
set	to	only	VI_USB_PIPE_READY.

Related	Topics
RAW	Resource

VI_ATTR_USB_MAX_INTR_SIZE
Resource	Classes
USB	INSTR,	USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 0	to	FFFFh N/A

Description
VI_ATTR_USB_MAX_INTR_SIZE	specifies	the	maximum	size	of	data
that	will	be	stored	by	any	given	USB	interrupt.	If	a	USB	interrupt	contains
more	data	than	this	size,	the	data	in	excess	of	this	size	will	be	lost.
VI_ATTR_USB_MAX_INTR_SIZE	is	Read/Write	when	the	corresponding
session	is	not	enabled	to	receive	USB	interrupt	events.	When	the	session
is	enabled	to	receive	USB	interrupt	events,	the	attribute
VI_ATTR_USB_MAX_INTR_SIZE	is	Read	Only.
Related	Topics
INSTR	Resource
RAW	Resource
VI_EVENT_USB_INTR

VI_ATTR_USB_NUM_INTFCS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 1	to	FFh N/A

Description
VI_ATTR_USB_NUM_INTFCS	specifies	the	number	of	interfaces
supported	by	this	USB	device.
Related	Topics
RAW	Resource

VI_ATTR_USB_NUM_PIPES
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	30 N/A

Description
VI_ATTR_USB_NUM_PIPES	specifies	the	number	of	pipes	supported	by
this	USB	interface.	This	does	not	include	the	default	control	pipe.
Related	Topics
RAW	Resource
VI_ATTR_USB_BULK_IN_PIPE
VI_ATTR_USB_BULK_OUT_PIPE
VI_ATTR_USB_INTR_IN_PIPE

VI_ATTR_USB_PROTOCOL
Resource	Classes
USB	INSTR,	USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	FFh N/A

Description
VI_ATTR_USB_PROTOCOL	specifies	the	USB	protocol	used	by	this	USB
interface.
Related	Topics
INSTR	Resource
RAW	Resource

VI_ATTR_USB_RECV_INTR_DATA
Resource	Classes
VI_EVENT_USB_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViAUInt8 N/A N/A

Description
VI_ATTR_USB_RECV_INTR_DATA	contains	the	actual	received	data
from	the	USB	Interrupt.	The	passed	in	data	buffer	must	be	of	size	at	least
equal	to	the	value	of	VI_ATTR_USB_RECV_INTR_SIZE.
Related	Topics
VI_ATTR_USB_RECV_INTR_SIZE
VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_SIZE
Resource	Classes
VI_EVENT_USB_INTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only

ViUInt16 N/A N/A

Description
VI_ATTR_USB_RECV_INTR_SIZE	contains	the	number	of	bytes	of	USB
interrupt	data	that	is	stored.
Related	Topics
VI_ATTR_USB_RECV_INTR_DATA
VI_EVENT_USB_INTR

VI_ATTR_USB_SERIAL_NUM
Resource	Classes
USB	INSTR,	USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViString N/A N/A

Description
VI_ATTR_USB_SERIAL_NUM	specifies	the	USB	serial	number	of	this
device.
Related	Topics
INSTR	Resource
RAW	Resource

VI_ATTR_USB_SUBCLASS
Resource	Classes
USB	RAW

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 0	to	FFh N/A

Description
VI_ATTR_USB_SUBCLASS	specifies	the	USB	subclass	used	by	this	USB
interface.
Related	Topics
RAW	Resource

VI_ATTR_USER_DATA/VI_ATTR_USER_DATA_32/VI_ATTR_USER_DATA_64
Resource	Classes
All	I/O	session	types

Attribute	Information
Access
Privilege Data	Type Range Default

Read/Write
Local

VI_ATTR_USER_DATA:
ViAddr

VI_ATTR_USER_DATA_32:
ViUInt32

VI_ATTR_USER_DATA_64:
ViUInt64

VI_ATTR_USER_DATA:
Not	specified

VI_ATTR_USER_DATA_32:
0h	to	FFFFFFFFh

VI_ATTR_USER_DATA_64:
0h	to

FFFFFFFFFFFFFFFFh

Description
VI_ATTR_USER_DATA,	VI_ATTR_USER_DATA_32,	and
VI_ATTR_USER_DATA_64	store	data	to	be	used	privately	by	the
application	for	a	particular	session.	VISA	does	not	use	this	data	for	any
purpose.	It	is	provided	to	the	application	for	its	own	use.
VI_ATTR_USER_DATA_64	is	not	supported	with	32-bit	applications.

Related	Topics
VISA	Resource	Template

VI_ATTR_VXI_DEV_CLASS
Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViUInt16 VI_VXI_CLASS_MEMORY(0)
VI_VXI_CLASS_EXTENDED(1)
VI_VXI_CLASS_MESSAGE(2)
VI_VXI_CLASS_REGISTER(3)
VI_VXI_CLASS_OTHER(4)

N/A

Description
This	attribute	represents	the	VXI-defined	device	class	to	which	the
resource	belongs,	either	message	based	(VI_VXI_CLASS_MESSAGE),
register	based	(VI_VXI_CLASS_REGISTER),	extended
(VI_VXI_CLASS_EXTENDED),	or	memory	(VI_VXI_CLASS_MEMORY).
VME	devices	are	usually	either	register	based	or	belong	to	a
miscellaneous	class	(VI_VXI_CLASS_OTHER).

Related	Topics
INSTR	Resource

VI_ATTR_VXI_LA
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC,	VXI
SERVANT

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViInt16 0	to	511 N/A

Description
For	an	INSTR	session,	VI_ATTR_VXI_LA	specifies	the	logical	address	of
the	VXI	or	VME	device	used	by	the	given	session.	For	a	MEMACC	or
SERVANT	session,	this	attribute	specifies	the	logical	address	of	the	local
controller.

Related	Topics
INSTR	Resource
MEMACC	Resource
SERVANT	Resource

VI_ATTR_VXI_TRIG_STATUS
Resource	Classes
GPIB-VXI	BACKPLANE,	VXI	BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt32 N/A N/A

Description
This	attribute	shows	the	current	state	of	the	VXI	trigger	lines.	This	is	a	bit
vector	with	bits	0-9	corresponding	to	VI_TRIG_TTL0	through
VI_TRIG_ECL1.

Related	Topics
BACKPLANE	Resource
VI_ATTR_VXI_TRIG_SUPPORT
VI_ATTR_VXI_VME_INTR_STATUS
VI_ATTR_VXI_VME_SYSFAIL_STATE

VI_ATTR_VXI_TRIG_SUPPORT
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	BACKPLANE,	VXI	INSTR,	VXI
BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt32 N/A N/A

Description
This	attribute	shows	which	VXI	trigger	lines	this	implementation	supports.
This	is	a	bit	vector	with	bits	0-9	corresponding	to	VI_TRIG_TTL0	through
VI_TRIG_ECL1.

Related	Topics
BACKPLANE	Resource
INSTR	Resource

VI_ATTR_VXI_VME_INTR_STATUS
Resource	Classes
GPIB-VXI	BACKPLANE,	VXI	BACKPLANE

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Global

ViUInt16 N/A N/A

Description
This	attribute	shows	the	current	state	of	the	VXI/VME	interrupt	lines.	This
is	a	bit	vector	with	bits	0-6	corresponding	to	interrupt	lines	1-7.

Related	Topics
BACKPLANE	Resource
VI_ATTR_VXI_TRIG_STATUS
VI_ATTR_VXI_VME_SYSFAIL_STATE

VI_ATTR_VXI_VME_SYSFAIL_STATE
Resource	Classes
GPIB-VXI	BACKPLANE,	VXI	BACKPLANE

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Global

ViInt16 VI_STATE_ASSERTED(1)
VI_STATE_DEASSERTED(0)
VI_STATE_UNKNOWN(–1)

N/A

Description
This	attribute	shows	the	current	state	of	the	VXI/VME	SYSFAIL	(SYStem
FAILure)	backplane	line.

Related	Topics
BACKPLANE	Resource
VI_ATTR_VXI_TRIG_STATUS
VI_ATTR_VXI_VME_INTR_STATUS

VI_ATTR_WIN_ACCESS
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Local

ViUInt16 VI_NMAPPED	(1)
VI_USE_OPERS

(2)
VI_DEREF_ADDR

(3)

VI_NMAPPED

Description
VI_ATTR_WIN_ACCESS	specifies	the	modes	in	which	the	current	window
may	be	accessed.

If	VI_NMAPPED,	the	window	is	not	currently	mapped.
If	VI_USE_OPERS,	the	window	is	accessible	through	the
viPeekXX()	and	viPokeXX()	operations	only.
If	VI_DEREF_ADDR,	you	can	either	use	operations	or	directly
dereference	the	mapped	address	as	a	pointer.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64
viMapAddress/viMapAddressEx
viPeek8/viPeek16/viPeek32/viPeek64
viPoke8/viPoke16/viPoke32/viPoke64

VI_ATTR_WIN_ACCESS_PRIV
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_DATA_PRIV
(0)

VI_DATA_NPRIV
(1)

VI_PROG_PRIV
(2)

VI_PROG_NPRIV
(3)

VI_BLCK_PRIV
(4)

VI_BLCK_NPRIV
(5)

VI_DATA_PRIV

Description
VI_ATTR_WIN_ACCESS_PRIV	specifies	the	address	modifier	to	be	used
in	low-level	access	operations,	such	as	viMapAddress(),	viPeekXX(),	and
viPokeXX(),	when	accessing	the	mapped	window.
This	attribute	is	Read/Write	when	the	corresponding	session	is	not
mapped	(that	is,	when	VI_ATTR_WIN_ACCESS	is	VI_NMAPPED.	When
the	session	is	mapped,	this	attribute	is	Read	Only.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64

VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege Data	Type Range

Read
Only
Local

VI_ATTR_WIN_BASE_ADDR:
ViBusAddress

VI_ATTR_WIN_BASE_ADDR_32:
ViUInt32

VI_ATTR_WIN_BASE_ADDR_64:
ViUInt64

VI_ATTR_WIN_BASE_ADDR:
0h	to	FFFFFFFFh	for	32‑bit

applications

0h	to	FFFFFFFFFFFFFFFFh	for
64‑bit	applications

VI_ATTR_WIN_BASE_ADDR_32:
0h	to	FFFFFFFFh

VI_ATTR_WIN_BASE_ADDR_64:
0h	to	FFFFFFFFFFFFFFFFh

Description
VI_ATTR_WIN_BASE_ADDR,	VI_ATTR_WIN_BASE_ADDR_32,	and
VI_ATTR_WIN_BASE_ADDR_64	specify	the	base	address	of	the
interface	bus	to	which	this	window	is	mapped.	If	the	value	of
VI_ATTR_WIN_ACCESS	is	VI_NMAPPED,	the	value	of	this	attribute	is
meaningless.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64

VI_ATTR_WIN_BYTE_ORDER
Resource	Classes
GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_BIG_ENDIAN	(0)
VI_LITTLE_ENDIAN

(1)

VI_BIG_ENDIAN

Description
VI_ATTR_WIN_BYTE_ORDER	specifies	the	byte	order	to	be	used	in	low-
level	access	operations,	such	as	viMapAddress(),	viPeekXX(),	and
viPokeXX(),	when	accessing	the	mapped	window.
This	attribute	is	Read/Write	when	the	corresponding	session	is	not
mapped	(that	is,	when	VI_ATTR_WIN_ACCESS	is	VI_NMAPPED.	When
the	session	is	mapped,	this	attribute	is	Read	Only.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_SRC_BYTE_ORDER
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64

VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64
Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Attribute	Information
Access
Privilege Data	Type Range Default

Read
Only
Local

VI_ATTR_WIN_SIZE:
ViBusSize

VI_ATTR_WIN_SIZE_32:
ViUInt32

VI_ATTR_WIN_SIZE_64:
ViUInt64

VI_ATTR_WIN_SIZE:
0h	to	FFFFFFFFh	for
32‑bit	applications

0h	to
FFFFFFFFFFFFFFFFh
for	64‑bit	applications

VI_ATTR_WIN_SIZE_32:
0h	to	FFFFFFFFh

VI_ATTR_WIN_SIZE_64:
0h	to

FFFFFFFFFFFFFFFFh

N/A

Description
VI_ATTR_WIN_SIZE,	VI_ATTR_WIN_SIZE_32,	and
VI_ATTR_WIN_SIZE_64	specify	the	size	of	the	region	mapped	to	this
window.	If	the	value	of	VI_ATTR_WIN_ACCESS	is	VI_NMAPPED,	the
value	of	this	attribute	is	meaningless.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_WR_BUF_OPER_MODE
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read/Write
Local

ViUInt16 VI_FLUSH_ON_ACCESS
(1)

VI_FLUSH_WHEN_FULL
(2)

VI_FLUSH_WHEN_FULL

Description
VI_ATTR_WR_BUF_OPER_MODE	specifies	the	operational	mode	of	the
formatted	I/O	write	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_WHEN_FULL	(default),	the	buffer	is	flushed	when	an	END
indicator	is	written	to	the	buffer,	or	when	the	buffer	fills	up.	If	the
operational	mode	is	set	to	VI_FLUSH_ON_ACCESS,	the	write	buffer	is
flushed	under	the	same	conditions,	and	also	every	time	a	viPrintf()	(or
related)	operation	completes.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_RD_BUF_OPER_MODE
viFlush
viPrintf

VI_ATTR_WR_BUF_SIZE
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Attribute	Information
Access
Privilege

Data
Type Range Default

Read
Only
Local

ViUInt32 N/A N/A

Description
This	is	the	current	size	of	the	formatted	I/O	output	buffer	for	this	session.
The	user	can	modify	this	value	by	calling	viSetBuf().

Related	Topics
VI_ATTR_RD_BUF_SIZE
VI_ATTR_WR_BUF_OPER_MODE
viSetBuf

Events
These	topics	describe	the	VISA	events.	The	event	descriptions	are	listed
in	alphabetical	order	for	easy	reference.
Each	event	description	contains	a	list	below	the	title	indicating	the
supported	resource	classes,	such	as	GPIB,	Serial,	etc.	The	event
description	contains	a	brief	description	of	the	event	attributes.	Attributes
contains	more	detailed	descriptions	of	the	event	attributes.

VI_EVENT_ASRL_BREAK
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	a	break	signal	was	received.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_BREAK_STATE
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_CHAR
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	at	least	one	data	byte	has	been	received.	Each	data
character	will	not	necessarily	result	in	an	event	notification.	In	other
words,	if	multiple	data	bytes	arrive	at	once,	you	may	get	only	one	event.
After	receiving	this	event,	you	should	query	the	serial	port	for	the	number
of	bytes	available	via	the	VI_ATTR_ASRL_AVAIL_NUM	attribute.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_AVAIL_NUM
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_CTS
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	the	Clear	To	Send	(CTS)	line	changed	state.	If	the	CTS
line	changes	state	quickly	several	times	in	succession,	not	all	line	state
changes	will	necessarily	result	in	event	notifications.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_DCD
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	the	Data	Carrier	Detect	(DCD)	line	changed	state.	If	the
DCD	line	changes	state	quickly	several	times	in	succession,	not	all	line
state	changes	will	necessarily	result	in	event	notifications.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_DSR
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	the	Data	Set	Ready	(DSR)	line	changed	state.	If	the	DSR
line	changes	state	quickly	several	times	in	succession,	not	all	line	state
changes	will	necessarily	result	in	event	notifications.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_RI
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	the	Ring	Indicator	(RI)	input	signal	was	asserted.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_RI_STATE
VI_ATTR_EVENT_TYPE

VI_EVENT_ASRL_TERMCHAR
Note		This	event	is	supported	for	all	serial	ports	on	Windows	and
LabVIEW	RT,	and	ENET-Serial	on	all	platforms.	Except	for	ENET-
Serial,	it	is	not	supported	for	serial	ports	on	Linux	or	Mac.

Resource	Classes
Serial	INSTR

Description
Notification	that	the	termination	character	has	been	received.	The	actual
termination	character	is	specified	by	setting	VI_ATTR_TERMCHAR	prior
to	enabling	this	event.	For	this	event,	the	setting	of
VI_ATTR_TERMCHAR_EN	is	ignored

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INSTR	Resource
VI_ATTR_ASRL_AVAIL_NUM
VI_ATTR_EVENT_TYPE
VI_ATTR_TERMCHAR

VI_EVENT_CLEAR
Resource	Classes
GPIB	INTFC,	VXI	SERVANT

Description
Notification	that	the	local	controller	has	been	sent	a	device	clear
message.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INTFC	Resource
SERVANT	Resource
VI_ATTR_EVENT_TYPE

VI_EVENT_EXCEPTION
Resource	Classes
All	I/O	session	types

Description
This	event	notifies	the	application	that	an	error	condition	has	occurred
during	an	operation	invocation.	In	VISA,	exceptions	are	defined	as
events.	The	exception-handling	model	follows	the	event-handling	model
for	callbacks,	and	is	like	any	other	event	in	VISA,	except	that	the
queueing	and	suspended	handler	mechanisms	are	not	allowed.
A	VISA	operation	generating	an	exception	blocks	until	the	exception
handler	execution	is	completed.	However,	an	exception	handler
sometimes	may	prefer	to	terminate	the	program	prematurely	without
returning	the	control	to	the	operation	generating	the	exception.	VISA
does	not	preclude	an	application	from	using	a	platform-specific	or
language-specific	exception	handling	mechanism	from	within	the	VISA
exception	handler.	For	example,	the	C++	try/catch	block	can	be	used	in
an	application	in	conjunction	with	the	C++	throw	mechanism	from	within
the	VISA	exception	handler.
When	using	the	C++	try/catch/throw	or	other	exception-handling
mechanisms,	the	control	will	not	return	to	the	VISA	system.	This	has
some	important	repercussions:

If	multiple	handlers	were	installed	on	the	exception	event,	the
handlers	that	were	not	invoked	prior	to	the	current	handler	will	not
be	invoked	for	the	current	exception.
The	exception	context	will	not	be	deleted	by	the	VISA	system
when	a	C++	exception	is	used.	In	this	case,	the	application
should	delete	the	exception	context	as	soon	as	the	application
has	no	more	use	for	the	context,	before	terminating	the	session.
An	application	should	use	the	viClose()	operation	to	delete	the
exception	context.

One	situation	in	which	an	exception	event	will	not	be	generated	is	in	the
case	of	asynchronous	operations.	If	the	error	is	detected	after	the
operation	is	posted—once	the	asynchronous	portion	has	begun—the
status	is	returned	normally	via	the	I/O	completion	event.	However,	if	an
error	occurs	before	the	asynchronous	portion	begins—the	error	is
returned	from	the	asynchronous	operation	itself—then	the	exception
event	will	still	be	raised.	This	deviation	is	due	to	the	fact	that
asynchronous	operations	already	raise	an	event	when	they	complete,
and	this	I/O	completion	event	may	occur	in	the	context	of	a	separate

thread	previously	unknown	to	the	application.	In	summary,	a	single
application	event	handler	can	easily	handle	error	conditions	arising	from
both	exception	events	and	failed	asynchronous	operations.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.	This	attribute	always
has	the	value	of
VI_EVENT_EXCEPTION	for
this	event	type.

VI_ATTR_STATUS Contains	the	status	code
returned	by	the	operation
generating	the	error.

VI_ATTR_OPER_NAME Contains	the	name	of	the
operation	generating	the
event.

Related	Topics
VI_ATTR_EVENT_TYPE
VI_ATTR_OPER_NAME
VI_ATTR_STATUS
viEnableEvent

VI_EVENT_GPIB_CIC
Resource	Classes
GPIB	INTFC

Description
Notification	that	the	GPIB	controller	has	gained	or	lost	CIC	(controller	in
charge)	status.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

VI_ATTR_GPIB_RECV_CIC_STATE Specifies	whether
the	CIC	status	was
gained	or	lost.

Related	Topics
INTFC	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_GPIB_RECV_CIC_STATE

VI_EVENT_GPIB_LISTEN
Resource	Classes
GPIB	INTFC

Description
Notification	that	the	GPIB	controller	has	been	addressed	to	listen.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INTFC	Resource
VI_ATTR_EVENT_TYPE

VI_EVENT_GPIB_TALK
Resource	Classes
GPIB	INTFC

Description
Notification	that	the	GPIB	controller	has	been	addressed	to	talk.

Event	Attribute
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
INTFC	Resource
VI_ATTR_EVENT_TYPE

VI_EVENT_IO_COMPLETION
Resources	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI
INSTR,	PXI	MEMACC,	Serial	INSTR,	TCPIP	INSTR,	TCPIP	SOCKET,
USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI	MEMACC,	VXI	SERVANT

Description
This	event	notifies	the	application	that	an	asynchronous	operation	has
completed.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.	This	attribute	always
has	the	value	of
VI_EVENT_IO_COMPLETION
for	this	event	type.

VI_ATTR_STATUS Contains	the	return	code	of
the	asynchronous	I/O
operation	that	has	completed.

VI_ATTR_JOB_ID Contains	the	job	ID	of	the
asynchronous	operation	that
has	completed.

VI_ATTR_BUFFER Contains	the	address	of	the
buffer	that	was	used	in	the
asynchronous	operation.

VI_ATTR_RET_COUNT/
VI_ATTR_RET_COUNT_32/
VI_ATTR_RET_COUNT_64

Contains	the	actual	number	of
elements	that	were
asynchronously	transferred.

VI_ATTR_OPER_NAME Contains	the	name	of	the
operation	generating	the
event.

Related	Topics
INSTR	Resource
INTFC	Resource
MEMACC	Resource
SERVANT	Resource
SOCKET	Resource

VI_ATTR_BUFFER
VI_ATTR_EVENT_TYPE
VI_ATTR_JOB_ID
VI_ATTR_OPER_NAME
VI_ATTR_RET_COUNT/VI_ATTR_RET_COUNT_32/VI_ATTR_RET_COUNT_64
VI_ATTR_STATUS

VI_EVENT_PXI_INTR
Resource	Classes
PXI	INSTR

Description
This	event	notifies	that	a	PXI	interrupt	has	occurred.

Event	Attributes
Symbolic	Name Description
VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event.
VI_ATTR_PXI_RECV_INTR_SEQ The	index	of	the	interrupt	sequence

that	detected	the	interrupt	condition.
VI_ATTR_PXI_RECV_INTR_DATA The	first	PXI/PCI	register	that	was

read	in	the	successful	interrupt
detection	sequence.

Related	Topics
INSTR	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_PXI_RECV_INTR_DATA
VI_ATTR_PXI_RECV_INTR_SEQ

VI_EVENT_SERVICE_REQ
Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	TCPIP	INSTR,	USB
INSTR,	VXI	INSTR

Description
This	event	notifies	the	application	that	a	service	request	was	received
from	the	device	or	interface	associated	with	the	given	session.

Note		When	you	receive	a	VI_EVENT_SERVICE_REQ	on	an
instrument	session,	you	must	call	viReadSTB()	to	guarantee
delivery	of	future	service	request	events	on	the	given	session.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.	This	attribute	always
has	the	value	of
VI_EVENT_SERVICE_REQ
for	this	event	type.

Related	Topics
INSTR	Resource
INTFC	Resource
VI_ATTR_EVENT_TYPE
viReadSTB

VI_EVENT_TRIG
Resource	Classes
GPIB	INTFC,	VXI	INSTR,	VXI	BACKPLANE,	VXI	SERVANT

Description
This	event	notifies	the	application	that	a	trigger	interrupt	was	received
from	the	device.	This	may	be	either	a	hardware	or	software	trigger,
depending	on	the	interface	and	the	current	session	settings.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of
the	event.	This	attribute
always	has	the	value	of
VI_EVENT_TRIG	for	this
event	type.

VI_ATTR_RECV_TRIG_ID The	identifier	of	the
triggering	mechanism	on
which	the	specified	trigger
event	was	received.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource
SERVANT	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID
VI_ATTR_TRIG_ID

VI_EVENT_USB_INTR
Resource	Classes
USB	INSTR,	USB	RAW

Description
This	event	notifies	that	a	USB	interrupt	has	occurred.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

VI_ATTR	STATUS Contains	the
status	code
returned	by	this
event.

VI_ATTR_USB_RECV_INTR_SIZE The	number	of
bytes	of	USB
interrupt	data	that
is	stored.

VI_ATTR_USB_RECV_INTR_DATA The	actual
received	data	from
the	USB	Interrupt.

Related	Topics
INSTR	Resource
RAW	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_USB_RECV_INTR_DATA
VI_ATTR_USB_RECV_INTR_SIZE

VI_EVENT_VXI_SIGP
Resource	Classes
VXI	INSTR

Description
This	event	notifies	the	application	that	a	VXIbus	signal	or	VXIbus
interrupt	was	received	from	the	device	associated	with	the	given	session.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of
the	event.	This	attribute
always	has	the	value	of
VI_EVENT_VXI_SIGP	for
this	event	type.

VI_ATTR_SIGP_STATUS_ID The	16-bit	Status/ID	value
retrieved	during	the	IACK
cycle	or	from	the	Signal
register.

Related	Topics
INSTR	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

VI_EVENT_VXI_VME_INTR
Resource	Classes
VXI	INSTR

Description
This	event	notifies	the	application	that	a	VXIbus	interrupt	was	received
from	the	device	associated	with	the	given	session.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of
the	event.	This	attribute
always	has	the	value	of
VI_EVENT_VXI_VME_INTR
for	this	event	type.

VI_ATTR_INTR_STATUS_ID The	32-bit	Status/ID	value
retrieved	during	the	IACK
cycle.

VI_ATTR_RECV_INTR_LEVEL The	VXI	interrupt	level	on
which	the	interrupt	was
received.

Related	Topics
INSTR	Resource
VI_ATTR_EVENT_TYPE
VI_ATTR_INTR_STATUS_ID
VI_ATTR_RECV_INTR_LEVEL

VI_EVENT_VXI_VME_SYSFAIL
Resource	Classes
VXI	BACKPLANE

Description
Notification	that	the	VXI/VME	SYSFAIL*	line	has	been	asserted.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

Related	Topics
BACKPLANE	Resource
VI_ATTR_EVENT_TYPE

VI_EVENT_VXI_VME_SYSRESET
Resource	Classes
VXI	BACKPLANE,	VXI	SERVANT

Description
Notification	that	the	VXI/VME	SYSRESET*	line	has	been	asserted.

Event	Attributes
Symbolic	Name Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event

Related	Topics
BACKPLANE	Resource
SERVANT	Resource
VI_ATTR_EVENT_TYPE

Operations
These	topics	describe	the	VISA	operations.	The	operation	descriptions
are	listed	in	alphabetical	order	for	easy	reference.
Each	event	description	contains	a	brief	Purpose	statement	below	the	title.
You	will	then	see	the	operation	defined	in	both	ANSI	C	and	Visual	Basic
version	4	syntax,	with	the	parameters	set	in	boldface	type.	A	list
indicating	the	supported	resource	classes,	such	as	GPIB,	Serial,	etc.	is
followed	by	a	table	that	describes	each	parameter	and	indicates	whether
it	is	an	input	or	output	parameter	(or	both,	in	some	cases).	The	Return
Values	section	describes	the	completion	and	error	codes,	followed	by	a
detailed	Description	section.	The	Related	Items	section	directs	you
toward	related	operations,	attributes,	events,	or	resource	descriptions.	If
you	want	to	know	specifically	about	attributes,	events,	and	operations	of
the	INSTR	Resource,	for	example,	you	should	navigate	to	the	INSTR
Resource	topic.

viAssertIntrSignal
Purpose
Asserts	the	specified	interrupt	or	signal.

C	Syntax
ViStatus	viAssertIntrSignal(ViSession	vi,	ViInt16	mode,	ViUInt32	statusID)

Visual	Basic	Syntax
viAssertIntrSignal&(ByVal	vi&,	ByVal	mode%,	ByVal	statusID&)

Resource	Classes
GPIB-VXI	BACKPLANE,	VXI	BACKPLANE,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mode IN This	specifies	how	to	assert	the
interrupt.	Refer	to	the

Description	section	for	actual
values.

statusID IN This	is	the	status	value	to	be
presented	during	an	interrupt

acknowledge	cycle.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_BERR Bus	error	occurred
during	transfer.

VI_ERROR_INTR_PENDING An	interrupt	is	still
pending	from	a	previous

call.

VI_ERROR_INV_MODE The	value	specified	by
the	mode	parameter	is

invalid.

VI_ERROR_NSUP_INTR The	interface	cannot
generate	an	interrupt	on
the	requested	level	or
with	the	requested
statusID	value.

VI_ERROR_NSUP_MODE The	specified	mode	is
not	supported	by	this
VISA	implementation.

Description
This	operation	can	be	used	to	assert	a	device	interrupt	condition.	In	VXI,
for	example,	this	can	be	done	with	either	a	VXI	signal	or	a	VXI	interrupt.
On	certain	bus	types,	the	statusID	parameter	may	be	ignored.	The
following	table	lists	the	valid	values	for	the	mode	parameter.

Mode Action	Description

VI_ASSERT_USE_ASSIGNED Use	whatever
notification	method	that
has	been	assigned	to
the	local	device.

VI_ASSERT_SIGNAL Send	the	notification
via	a	VXI	signal.

VI_ASSERT_IRQ1	-
VI_ASSERT_IRQ7

Send	the	interrupt	via
the	specified	VXI/VME
IRQ	line.	This	uses	the
standard	VXI/VME
ROAK	(Release	On

AcKnowledge)	interrupt
mechanism,	rather	than
the	older	VME	RORA
(Release	On	Register
Access)	mechanism.

Related	Topics
BACKPLANE	Resource
SERVANT	Resource
viAssertUtilSignal

viAssertTrigger
Purpose
Asserts	software	or	hardware	trigger.

C	Syntax
ViStatus	viAssertTrigger(ViSession	vi,	ViUInt16	protocol)

Visual	Basic	Syntax
viAssertTrigger&(ByVal	vi&,	ByVal	protocol%)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	BACKPLANE,
PXI	INSTR,	PXI	BACKPLANE,	Serial	INSTR,	TCPIP	INSTR,	TCPIP
SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI	BACKPLANE

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

protocol IN Trigger	protocol	to	use	during
assertion.	Valid	values	are:

	Range
	GPIB,	Serial,	TCPIP,	USB

	VI_TRIG_PROT_DEFAULT	(0)
	VXI,	GPIB-VXI

	VI_TRIG_PROT_DEFAULT	(0),
	VI_TRIG_PROT_ON	(1),

	VI_TRIG_PROT_OFF	(2),	and
	VI_TRIG_PROT_SYNC	(5)

	PXI
	VI_TRIG_PROT_RESERVE	(6)
	VI_TRIG_PROT_UNRESERVE

(7)

Return	Values
Completion	Codes Description

VI_SUCCESS The	specified	trigger	was
successfully	asserted	to	the

device.
	

Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_INV_PROT The	protocol
specified	is
invalid.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_INP_PROT_VIOL Device	reported
an	input	protocol
error	during
transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_LINE_IN_USE The	specified
trigger	line	is

currently	in	use.

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
The	viAssertTrigger()	operation	sources	a	software	or	hardware	trigger
dependent	on	the	interface	type.
Software	Triggers	for	488.2	Instruments	(GPIB,	VXI,	TCPIP,	and	USB)
This	operation	sends	an	IEEE-488.2	software	trigger	to	the	addressed
device.	For	software	triggers,	VI_TRIG_PROT_DEFAULT	is	the	only	valid
protocol.	The	bus-specific	details	are:

For	a	GPIB	device,	VISA	addresses	the	device	to	listen	and	then
sends	the	GPIB	GET	command.
For	a	VXI	device,	VISA	sends	the	Word	Serial	Trigger	command.
For	a	USB	device,	VISA	sends	the	TRIGGER	message	ID	on	the
Bulk-OUT	pipe.

Software	Triggers	for	Non-488.2	Instruments	(Serial	INSTR,	TCPIP
SOCKET,	and	USB	RAW)
If	VI_ATTR_IO_PROT	is	VI_PROT_4882_STRS,	this	operations	sends
"*TRG\n"	to	the	device;	otherwise,	this	operation	is	not	valid.	For
software	triggers,	VI_TRIG_PROT_DEFAULT	is	the	only	valid	protocol.
Hardware	Triggering	for	VXI
For	hardware	triggers	to	VXI	instruments,	VI_ATTR_TRIG_ID	must	first
be	set	to	the	desired	trigger	line	to	use;	this	operation	performs	the
specified	trigger	operation	on	the	previously	selected	trigger	line.	For	VXI
hardware	triggers,	VI_TRIG_PROT_DEFAULT	is	equivalent	to
VI_TRIG_PROT_SYNC.
Trigger	Reservation	for	PXI
For	PXI	instruments,	this	operation	reserves	or	releases	(unreserves)	a
trigger	line	for	use	in	external	triggering.	For	PXI	triggers,
VI_TRIG_PROT_RESERVE	and	VI_TRIG_PROT_UNRESERVE	are	the
only	valid	protocols.

Related	Topics
BACKPLANE	Resource
INSTR	Resource
INTFC	Resource

SOCKET	Resource
VI_ATTR_TRIG_ID

viAssertUtilSignal
Purpose
Asserts	or	deasserts	the	specified	utility	bus	signal.

C	Syntax
viStatus	viAssertUtilSignal(ViSession	vi,	ViUInt16	line)

Visual	Basic	Syntax
viAssertUtilSignal&	(ByVal	vi&,	ByVal	line%)

Resource	Classes
GPIB-VXI	BACKPLANE,	VXI	BACKPLANE,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

line IN Specifies	the	utility	bus	signal	to
assert.	This	can	be	the	value

VI_UTIL_ASSERT_SYSRESET,
VI_UTIL_ASSERT_SYSFAIL,	or
VI_UTIL_DEASSERT_SYSFAIL.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired	before
operation	completedS.

VI_ERROR_INV_LINE The	value	specified	by
the	line	parameter	is

invalid.

Description
This	operation	can	be	used	to	assert	either	the	SYSFAIL	or	SYSRESET
utility	bus	interrupts	on	the	VXIbus	backplane.	This	operation	is	valid	only
on	BACKPLANE	(mainframe)	and	VXI	SERVANT	(servant)	sessions.
Asserting	SYSRESET	(also	known	as	HARD	RESET	in	the	VXI
specification)	should	be	used	only	when	it	is	necessary	to	promptly
terminate	operation	of	all	devices	in	a	VXIbus	system.	This	is	a	serious
action	that	always	affects	the	entire	VXIbus	system.
Related	Topics
BACKPLANE	Resource
SERVANT	Resource
viAssertIntrSignal

viBufRead
Purpose
Reads	data	from	device	or	interface	through	the	use	of	a	formatted	I/O
read	buffer.

C	Syntax
ViStatus	viBufRead(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,	ViPUInt32
retCount)

Visual	Basic	Syntax
viBufRead&(ByVal	vi&,	ByVal	buf$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf OUT Location	of	a	buffer	to	receive
data	from	device.

count IN Number	of	bytes	to	be	read.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully	and	the
END	indicator	was

received	(for	interfaces
that	have	END
indicators).	This

completion	code	is
returned	regardless	of
whether	the	termination
character	is	received	or
the	number	of	bytes	read

is	equal	to	count.

VI_SUCCESS_TERM_CHAR The	specified
termination	character
was	read	but	no	END
indicator	was	received.
This	completion	code	is
returned	regardless	of
whether	the	number	of
bytes	read	is	equal	to

count.

VI_SUCCESS_MAX_CNT The	number	of	bytes
read	is	equal	to	count.
No	END	indicator	was

received	and	no
termination	character

was	read.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_IO An	unknown	I/O	error
occurred	during	transfer.

Description
The	viBufRead()	operation	is	similar	to	viRead()	and	does	not	perform	any
kind	of	data	formatting.	It	differs	from	viRead()	in	that	the	data	is	read	from
the	formatted	I/O	read	buffer—the	same	buffer	used	by	viScanf()	and
related	operations—rather	than	directly	from	the	device.	You	can	intermix
this	operation	with	viScanf(),	but	you	should	not	mix	it	with	viRead().
VI_NULL	is	a	special	value	for	the	retCount	parameter.	If	you	pass
VI_NULL	for	retCount,	the	number	of	bytes	transferred	is	not	returned.
You	may	find	this	useful	if	you	need	to	know	only	whether	the	operation
succeeded	or	failed.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viBufWrite
viRead

viBufWrite
Purpose
Writes	data	to	a	formatted	I/O	write	buffer	synchronously.

C	Syntax
ViStatus	viBufWrite(ViSession	vi,	ViBuf	buf,	ViUInt32	count,	ViPUInt32
retCount)

Visual	Basic	Syntax
viBufWrite&(ByVal	vi&,	ByVal	buf$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Location	of	a	block	of	data.

count IN Number	of	bytes	to	be	written.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_INV_SETUP Unable	to	start	write
operation	because	setup

is	invalid	(due	to
attributes	being	set	to	an

inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error
occurred	during	transfer.

Description
The	viBufWrite()	operation	is	similar	to	viWrite()	and	does	not	perform
any	kind	of	data	formatting.	It	differs	from	viWrite()	in	that	the	data	is
written	to	the	formatted	I/O	write	buffer—the	same	buffer	used	by
viPrintf()	and	related	operations—rather	than	directly	to	the	device.	You
can	intermix	this	operation	with	viPrintf(),	but	you	should	not	mix	it	with
viWrite().
If	this	operation	returns	VI_ERROR_TMO,	the	write	buffer	for	the
specified	session	is	cleared.
VI_NULL	is	a	special	value	for	the	retCount	parameter.	If	you	pass
VI_NULL	for	retCount,	the	number	of	bytes	transferred	is	not	returned.
You	may	find	this	useful	if	you	need	to	know	only	whether	the	operation
succeeded	or	failed.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viBufRead
viWrite

viClear
Purpose
Clears	a	device.

C	Syntax
ViStatus	viClear(ViSession	vi)

Visual	Basic	Syntax
viClear&(ByVal	vi&)

Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP	INSTR,	TCPIP
SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
The	viClear()	operation	clears	the	device	input	and	output	buffers.	The
bus-specific	details	are:
Clear	for	488.2	Instruments	(GPIB,	VXI,	TCPIP,	and	USB)

For	a	GPIB	device,	VISA	sends	the	Selected	Device	Clear
command.
For	a	VXI	device,	VISA	sends	the	Word	Serial	Clear	command.
For	a	USB	device,	VISA	sends	the	INITIATE_CLEAR	and
CHECK_CLEAR_STATUS	commands	on	the	control	pipe.

Clear	for	Non-488.2	Instruments	(Serial	INSTR,	TCPIP	SOCKET,	and
USB	RAW)

For	Serial	INSTR	sessions,	VISA	flushes	(discards)	the	I/O	output
buffer,	sends	a	break,	and	then	flushes	(discards)	the	I/O	input
buffer.
For	TCPIP	SOCKET	sessions,	VISA	flushes	(discards)	the	I/O
buffers.
For	USB	RAW	sessions,	VISA	resets	the	endpoints	referred	to	by
the	attributes	VI_ATTR_USB_BULK_IN_PIPE	and
VI_ATTR_USB_BULK_OUT_PIPE.

Invoking	viClear()	also	discards	the	read	and	write	buffers	used	by	the
formatted	I/O	services	for	that	session.
Related	Topics
INSTR	Resource
SOCKET	Resource

viClose
Purpose
Closes	the	specified	session,	event,	or	find	list.

C	Syntax
ViStatus	viClose(ViObject	vi)

Visual	Basic	Syntax
viClose&(ByVal	vi&)

Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session,	event,	or	find	list.

Return	Values
Completion	Codes Description

VI_SUCCESS Session	closed
successfully.

VI_WARN_NULL_OBJECT The	specified	object
reference	is	uninitialized.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	object
reference	is	invalid.

VI_ERROR_CLOSING_FAILED Unable	to	deallocate
the	previously
allocated	data
structures

corresponding	to	this
session	or	object

reference.

Description
The	viClose()	operation	closes	a	session,	event,	or	a	find	list.	In	this
process	all	the	data	structures	that	had	been	allocated	for	the	specified	vi
are	freed.	Calling	viClose()	on	a	VISA	Resource	Manager	session	will
also	close	all	I/O	sessions	associated	with	that	resource	manager
session.
Related	Topics
viFindRsrc
viOpen
viOpenDefaultRM
VISA	Resource	Template
viWaitOnEvent

viDisableEvent
Purpose
Disables	notification	of	the	specified	event	type(s)	via	the	specified
mechanism(s).

C	Syntax
ViStatus	viDisableEvent(ViSession	vi,	ViEventType	eventType,	ViUInt16
mechanism)

Visual	Basic	Syntax
viDisableEvent&(ByVal	vi&,	ByVal	eventType&,	ByVal	mechanism%)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

mechanism IN Specifies	event	handling
mechanisms	to	be	disabled.
The	queuing	mechanism	is
disabled	by	specifying
VI_QUEUE	(1),	and	the
callback	mechanism	is
disabled	by	specifying
VI_HNDLR	(2)	or

VI_SUSPEND_HNDLR	(4).	It
is	possible	to	disable	both
mechanisms	simultaneously
by	specifying	VI_ALL_MECH

(FFFFh).

Return	Values
Completion	Codes Description

VI_SUCCESS Event	disabled
successfully.

VI_SUCCESS_EVENT_DIS Specified	event	is	already
disabled	for	at	least	one	of
the	specified	mechanisms.

	

Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_INV_EVENT Specified	eventType	is	not
supported	by	the	resource.

VI_ERROR_INV_MECH Invalid	mechanism
specified.

Description
The	viDisableEvent()	operation	disables	servicing	of	an	event	identified	by
the	eventType	parameter	for	the	mechanisms	specified	in	the
mechanism	parameter.	This	operation	prevents	new	event	occurrences
from	being	added	to	the	queue(s).	However,	event	occurrences	already
existing	in	the	queue(s)	are	not	flushed.	Use	viDiscardEvents()	if	you	want
to	discard	events	remaining	in	the	queue(s).
Specifying	VI_ALL_ENABLED_EVENTS	for	the	eventType	parameter
allows	a	session	to	stop	receiving	all	events.	The	session	can	stop
receiving	queued	events	by	specifying	VI_QUEUE.	Applications	can	stop
receiving	callback	events	by	specifying	either	VI_HNDLR	or
VI_SUSPEND_HNDLR.	Specifying	VI_ALL_MECH	disables	both	the
queuing	and	callback	mechanisms.

Note		Calling	viDisableEvent()	prevents	future	events	from	being
raised	on	the	given	session.	When	the	method	returns	to	the
application,	it	is	possible	that	a	callback	may	still	be	active,	such	as
on	another	thread.	It	is	valid	for	a	user	to	call	viDisableEvent()	from
within	a	callback,	but	this	is	not	recommended.

Related	Topics
viEnableEvent
VISA	Resource	Template
viUninstallHandler

viDiscardEvents
Purpose
Discards	event	occurrences	for	specified	event	types	and	mechanisms	in
a	session.

C	Syntax
ViStatus	viDiscardEvents(ViSession	vi,	ViEventType	eventType,	ViUInt16
mechanism)

Visual	Basic	Syntax
viDiscardEvents&(ByVal	vi&,	ByVal	eventType&,	ByVal	mechanism%)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

mechanism IN Specifies	the	mechanisms	for
which	the	events	are	to	be
discarded.	The	VI_QUEUE
(1)	value	is	specified	for	the
queuing	mechanism	and	the
VI_SUSPEND_HNDLR	(4)
value	is	specified	for	the
pending	events	in	the

callback	mechanism.	It	is
possible	to	specify	both

mechanisms	simultaneously
by	specifying	VI_ALL_MECH

(FFFFh).

Return	Values
Completion	Codes Description

VI_SUCCESS Event	queue	flushed
successfully.

VI_SUCCESS_QUEUE_EMPTY Operation	completed
successfully,	but
queue	was	already

empty.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_INV_EVENT Specified	eventType	is	not
supported	by	the	resource.

VI_ERROR_INV_MECH Invalid	mechanism
specified.

Description
The	viDiscardEvents()	operation	discards	all	pending	occurrences	of	the
specified	event	types	and	mechanisms	from	the	specified	session.
Specifying	VI_ALL_ENABLED_EVENTS	for	the	eventType	parameter
discards	events	of	every	type	that	is	enabled	for	the	given	session.	The
information	about	all	the	event	occurrences	which	have	not	yet	been
handled	is	discarded.	This	operation	is	useful	to	remove	event
occurrences	that	an	application	no	longer	needs.	The	discarded	event
occurrences	are	not	available	to	a	session	at	a	later	time.	This	operation
does	not	apply	to	event	contexts	that	have	already	been	delivered	to	the
application.
Related	Topics
viDisableEvent
viEnableEvent
VISA	Resource	Template
viWaitOnEvent

viEnableEvent
Purpose
Enables	notification	of	a	specified	event.

C	Syntax
ViStatus	viEnableEvent(ViSession	vi,	ViEventType	eventType,	ViUInt16
mechanism,	ViEventFilter	context)

Visual	Basic	Syntax
viEnableEvent&(ByVal	vi&,	ByVal	eventType&,	ByVal	mechanism%,	ByVal
context&)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

mechanism IN Specifies	event	handling
mechanisms	to	be	enabled.
The	queuing	mechanism	is
enabled	by	specifying
VI_QUEUE	(1),	and	the
callback	mechanism	is
enabled	by	specifying
VI_HNDLR	(2)	or

VI_SUSPEND_HNDLR	(4).

context IN VI_NULL	(0).

Return	Values
Completion	Codes Description

VI_SUCCESS Event	enabled
successfully.

VI_SUCCESS_EVENT_EN Specified	event	is	already
enabled	for	at	least	one	of
the	specified	mechanisms.

	

Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_INV_EVENT Specified
eventType	is	not
supported	by	the

resource.

VI_ERROR_INV_MECH Invalid
mechanism

specified	for	the
event.

VI_ERROR_INV_CONTEXT Specified	event
context	is	invalid.

VI_ERROR_INV_SETUP Unable	to	start
write	operation
because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_HNDLR_NINSTALLED A	handler	is	not
currently	installed
for	the	specified
event.	The

session	cannot	be
enabled	for	the
VI_HNDLR	mode
of	the	callback
mechanism.

VI_ERROR_NSUP_MECH The	specified
mechanism	is
not	supported	for

the	given
eventType.

Description
The	viEnableEvent()	operation	enables	notification	of	an	event	identified
by	the	eventType	parameter	for	mechanisms	specified	in	the
mechanism	parameter.	The	specified	session	can	be	enabled	to	queue
events	by	specifying	VI_QUEUE.	Applications	can	enable	the	session	to
invoke	a	callback	function	to	execute	the	handler	by	specifying
VI_HNDLR.	The	applications	are	required	to	install	at	least	one	handler
to	be	enabled	for	this	mode.	Specifying	VI_SUSPEND_HNDLR	enables
the	session	to	receive	callbacks,	but	the	invocation	of	the	handler	is
deferred	to	a	later	time.	Successive	calls	to	this	operation	replace	the	old
callback	mechanism	with	the	new	callback	mechanism.
Specifying	VI_ALL_ENABLED_EVENTS	for	the	eventType	parameter
refers	to	all	events	which	have	previously	been	enabled	on	this	session,
making	it	easier	to	switch	between	the	two	callback	mechanisms	for
multiple	events.
NI-VISA	does	not	support	enabling	both	the	queue	and	the	handler	for
the	same	event	type	on	the	same	session.	If	you	need	to	use	both
mechanisms	for	the	same	event	type,	you	should	open	multiple	sessions
to	the	resource.
Related	Topics
Events
viDisableEvent
viEventHandler
viInstallHandler
VISA	Resource	Template
viUninstallHandler
viWaitOnEvent

viEventHandler
Purpose
Event	service	handler	procedure	prototype.

C	Syntax
ViStatus	_VI_FUNCH	viEventHandler(ViSession	vi,	ViEventType	eventType,
ViEvent	context,	ViAddr	userHandle)

Visual	Basic	Syntax
N/A

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

context IN A	handle	specifying	the
unique	occurrence	of	an

event.

userHandle IN A	value	specified	by	an
application	that	can	be	used

for	identifying	handlers
uniquely	in	a	session	for	an

event.

Return	Values
Completion	Codes Description

VI_SUCCESS Event	handled	successfully.

VI_SUCCESS_NCHAIN Event	handled	successfully.
Do	not	invoke	any	other

handlers	on	this	session	for
this	event.

Description
viEventHandler()	is	not	an	actual	VISA	operation.	Rather,	it	is	the
prototype	for	a	user	event	handler	that	is	installed	with	the
viInstallHandler()	operation.	The	user	handler	is	called	whenever	a
session	receives	an	event	and	is	enabled	for	handling	events	in	the
VI_HNDLR	mode.	The	handler	services	the	event	and	returns
VI_SUCCESS	on	completion.	The	VISA	system	automatically	invokes	the
viClose()	operation	on	the	event	context	when	a	user	handler	returns.
Because	the	event	context	must	still	be	valid	after	the	user	handler
returns	(so	that	VISA	can	free	it	up),	an	application	should	not	invoke	the
viClose()	operation	on	an	event	context	passed	to	a	user	handler.

Note		For	advanced	users—If	the	user	handler	will	not	return	to
VISA,	the	application	should	call	viClose()	on	the	event	context	to
manually	delete	the	event	object.	This	situation	may	occur	when	a
handler	throws	a	C++	exception	in	response	to	a	VISA	exception
event.

Normally,	an	application	should	always	return	VI_SUCCESS	from	all
callback	handlers.	If	a	specific	handler	does	not	want	other	handlers	to
be	invoked	for	the	given	event	for	the	given	session,	it	should	return
VI_SUCCESS_NCHAIN.	No	return	value	from	a	handler	on	one	session
will	affect	callbacks	on	other	sessions.	Future	versions	of	VISA	(or
specific	implementations	of	VISA)	may	take	actions	based	on	other	return
values,	so	a	user	should	return	VI_SUCCESS	from	handlers	unless	there
is	a	specific	reason	to	do	otherwise.
Related	Topics
viInstallHandler
VISA	Resource	Template
viUninstallHandler

viFindNext
Purpose
Returns	the	next	resource	from	the	list	of	resources	found	during	a
previous	call	to	viFindRsrc().

C	Syntax
ViStatus	viFindNext(ViFindList	findList,	ViChar	instrDesc[])

Visual	Basic	Syntax
viFindNext&(ByVal	findList&,	ByVal	instrDesc$)

Resource	Classes
VISA	Resource	Manager

Parameters
Name Direction Description

findList IN Describes	a	find	list.	This
parameter	must	be	created	by

viFindRsrc().

instrDesc OUT Returns	a	string	identifying	the
location	of	a	device.	Strings

can	then	be	passed	to	viOpen()
to	establish	a	session	to	the

given	device.

Return	Values
Completion	Codes Description

VI_SUCCESS Resource(s)	found.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	object
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	findList	does
not	support	this

operation.

VI_ERROR_RSRC_NFOUND There	are	no	more
matches.

Description
The	viFindNext()	operation	returns	the	next	device	found	in	the	list
created	by	viFindRsrc().	The	list	is	referenced	by	the	handle	that	was
returned	by	viFindRsrc().

Note		The	size	of	the	instrDesc	parameter	should	be	at	least	256
bytes.

Related	Topics
viFindRsrc
VISA	Resource	Template

viFindRsrc
Purpose
Queries	a	VISA	system	to	locate	the	resources	associated	with	a
specified	interface.

C	Syntax
ViStatus	viFindRsrc(ViSession	sesn,	ViString	expr,	ViPFindList	findList,
ViPUInt32	retcnt,	ViChar	instrDesc[])

Visual	Basic	Syntax
viFindRsrc&(ByVal	sesn&,	ByVal	expr$,	findList&,	retcnt&,	ByVal
instrDesc$)

Resource	Classes
VISA	Resource	Manager

Parameters
Name Direction Description

sesn IN Resource	Manager	session
(should	always	be	the	session

returned	from
viOpenDefaultRM()).

expr IN This	is	a	regular	expression
followed	by	an	optional	logical

expression.	Refer	to	the
discussion	of	the	Description

String	in	the	Description	section
of	this	operation.

findList OUT Returns	a	handle	identifying
this	search	session.	This

handle	will	be	used	as	an	input
in	viFindNext().

retcnt OUT Number	of	matches.

instrDesc OUT Returns	a	string	identifying	the
location	of	a	device.	Strings

can	then	be	passed	to	viOpen()
to	establish	a	session	to	the

given	device.

Return	Values
Completion	Codes Description

VI_SUCCESS Resource(s)	found.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	sesn	does
not	support	this
operation.	This

operation	is	supported
only	by	a	Resource
Manager	session.

VI_ERROR_INV_EXPR Invalid	expression
specified	for	search.

VI_ERROR_RSRC_NFOUND Specified	expression
does	not	match	any

devices.

Description
The	viFindRsrc()	operation	matches	the	value	specified	in	the	expr
parameter	with	the	resources	available	for	a	particular	interface.	A	regular
expression	is	a	string	consisting	of	ordinary	characters	as	well	as	special
characters.	You	use	a	regular	expression	to	specify	patterns	to	match	in
a	given	string;	in	other	words,	it	is	a	search	criterion.	The	viFindRsrc()
operation	uses	a	case-insensitive	compare	feature	when	matching
resource	names	against	the	regular	expression	specified	in	expr.	For
example,	calling	viFindRsrc()	with	"VXI?*INSTR"	would	return	the	same
resources	as	invoking	it	with	"vxi?*instr".
On	successful	completion,	this	function	returns	the	first	resource	found
(instrDesc)	and	returns	a	count	(retcnt)	to	indicate	if	there	were	more
resources	found	for	the	designated	interface.	This	function	also	returns,
in	the	findList	parameter,	a	handle	to	a	find	list.	This	handle	points	to	the
list	of	resources	and	it	must	be	used	as	an	input	to	viFindNext().	When
this	handle	is	no	longer	needed,	it	should	be	passed	to	viClose().	Notice
that	retcnt	and	findList	are	optional	parameters.	This	is	useful	if	only	the
first	match	is	important,	and	the	number	of	matches	is	not	needed.	If	you
specify	VI_NULL	in	the	findList	parameter	and	the	operation	completes
successfully,	VISA	automatically	invokes	viClose()	on	the	find	list	handle
rather	than	returning	it	to	the	application.

Note		The	size	of	the	instrDesc	parameter	should	be	at	least	256
bytes.

Note		All	resource	strings	returned	by	viFindRsrc()	will	always	be
recognized	by	viOpen().	However,	viFindRsrc()	will	not	necessarily
return	all	strings	that	you	can	pass	to	viParseRsrc()	or	viOpen().	This
is	especially	true	for	network	and	TCPIP	resources.	If	a	resource
does	not	appear	in	the	list,	you	can	explicitly	add	it	in	the	NI-VISA
configuration	utility	(MAX	on	Windows,	visaconf	on	UNIX),	and	then
viFindRsrc()	will	return	it.	The	configuration	utility	also	has	other
options	that	expand	or	limit	the	set	of	resources	that	viFindRsrc()
returns.

The	search	criteria	specified	in	the	expr	parameter	has	two	parts:	a
regular	expression	over	a	resource	string,	and	an	optional	logical
expression	over	attribute	values.	The	regular	expression	is	matched
against	the	resource	strings	of	resources	known	to	the	VISA	Resource

Manager.	If	the	resource	string	matches	the	regular	expression,	the
attribute	values	of	the	resource	are	then	matched	against	the	expression
over	attribute	values.	If	the	match	is	successful,	the	resource	has	met	the
search	criteria	and	gets	added	to	the	list	of	resources	found.

Special
Characters
and	Operators

Meaning

? Matches	any	one	character.

\ Makes	the	character	that	follows	it	an
ordinary	character	instead	of	special
character.	For	example,	when	a

question	mark	follows	a	backslash
(\?),	it	matches	the	?	character
instead	of	any	one	character.

[list] Matches	any	one	character	from	the
enclosed	list.	You	can	use	a	hyphen
to	match	a	range	of	characters.

[^list] Matches	any	character	not	in	the
enclosed	list.	You	can	use	a	hyphen
to	match	a	range	of	characters.

* Matches	0	or	more	occurrences	of
the	preceding	character	or

expression.

+ Matches	1	or	more	occurrences	of
the	preceding	character	or

expression.

Exp|exp Matches	either	the	preceding	or
following	expression.	The	or	operator
|	matches	the	entire	expression	that
precedes	or	follows	it	and	not	just	the
character	that	precedes	or	follows	it.

For	example,	VXI|GPIB	means	(VXI)|
(GPIB),	not	VX(I|G)PIB.

(exp) Grouping	characters	or	expressions.

	
Regular	Expression Sample	Matches

GPIB?*INSTR Matches	GPIB0::2::INSTR,
GPIB1::1::1::INSTR,	and
GPIB-VXI1::8::INSTR.

GPIB[0-9]*::?*INSTR Matches	GPIB0::2::INSTR
and	GPIB1::1::1::INSTR	but
not	GPIB-VXI1::8::INSTR.

GPIB[^0]::?*INSTR Matches	GPIB1::1::1::INSTR
but	not	GPIB0::2::INSTR	or

GPIB12::8::INSTR.

VXI?*INSTR Matches	VXI0::1::INSTR	but
not	GPIB-VXI0::1::INSTR.

GPIB-VXI?*INSTR Matches	GPIB-
VXI0::1::INSTR	but	not

VXI0::1::INSTR.

?*VXI[0-9]*::?*INSTR Matches	VXI0::1::INSTR	and
GPIB-VXI0::1::INSTR.

ASRL[0-9]*::?*INSTR Matches	ASRL1::INSTR	but
not	VXI0::5::INSTR.

ASRL1+::INSTR Matches	ASRL1::INSTR	and
ASRL11::INSTR	but	not

ASRL2::INSTR.

(GPIB|VXI)?*INSTR Matches	GPIB1::5::INSTR
and	VXI0::3::INSTR	but	not

ASRL2::INSTR.

(GPIB0|VXI0)::1::INSTR Matches	GPIB0::1::INSTR
and	VXI0::1::INSTR.

?*INSTR Matches	all	INSTR	(device)
resources.

?*VXI[0-9]*::?
*MEMACC

Matches	VXI0::MEMACC
and	GPIB-VXI1::MEMACC.

VXI0::?* Matches	VXI0::1::INSTR,
VXI0::2::INSTR,	and
VXI0::MEMACC.

?* Matches	all	resources.

visa://hostname/?* Matches	all	resources	on	the
specified	remote	system.	The

hostname	can	be
represented	as	either	an	IP
address	(dot-notation)	or

network	machine	name.	This
remote	system	need	not	be	a
configured	remote	system.

/?* Matches	all	resources	on	the
local	machine.	Configured
remote	systems	are	not

queried.

visa:/ASRL?*INSTR Matches	all	ASRL	resources
on	the	local	machine	and
returns	them	in	URL	format

(for	example,
visa:/ASRL1::INSTR).

You	can	use	the	NI-VISA	configuration	utility	(MAX	on	Windows,	visaconf

on	UNIX)	to	access	certain	NI-VISA	servers	by	default.	All	expressions
without	the	preceding	"/"	will	be	matched	with	resources	on	the
configured	remote	systems.
By	using	the	optional	attribute	expression,	you	can	construct	flexible	and
powerful	expressions	with	the	use	of	logical	ANDs	(&&),	ORs(||),	and
NOTs	(!).	You	can	use	equal	(==)	and	unequal	(!=)	comparators	to
compare	attributes	of	any	type,	and	other	inequality	comparators	(>,	<,
>=,	<=)	to	compare	attributes	of	numeric	type.	Use	only	global	attributes
in	the	attribute	expression.	Local	attributes	are	not	allowed	in	the	logical
expression	part	of	the	expr	parameter.

Expr	Parameter Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR

>	0	&&
VI_ATTR_GPIB_SECONDARY_ADDR

<	10}

Find	all	GPIB
devices	that

have
secondary
addresses
from	1	to	9.

ASRL?
*INSTR{VI_ATTR_ASRL_BAUD	==

9600}

Find	all	serial
ports

configured	at
9600	baud.

?*VXI?INSTR{VI_ATTR_MANF_ID	==	
0xFF6	&&	!(VI_ATTR_VXI_LA	==0	||

VI_ATTR_SLOT	<=	0)}

Find	all	VXI
instrument
resources
having

manufacturer
ID	FF6	and
which	are	not

logical
address	0,
slot	0,	or
external

controllers.

Related	Topics
viClose
viFindNext
VISA	Resource	Template

viFlush
Purpose
Manually	flushes	the	specified	buffers	associated	with	formatted	I/O
operations	and/or	serial	communication.

C	Syntax
ViStatus	viFlush(ViSession	vi,	ViUInt16	mask)

Visual	Basic	Syntax
viFlush&(ByVal	vi&,	ByVal	mask%)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	VXI	INSTR,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mask IN Specifies	the	action	to	be	taken
with	flushing	the	buffer.	Refer	to
the	Description	section	for	more

information.

Return	Values
Completion	Codes Description

VI_SUCCESS Buffers	flushed	successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform
Read/Write	operation
because	of	I/O	error.

VI_ERROR_TMO The	Read/Write
operation	was	aborted
because	timeout	expired
while	operation	was	in

progress.

VI_ERROR_INV_MASK The	specified	mask
does	not	specify	a	valid

flush	operation	on
Read/Write	resource.

Description
The	value	of	mask	can	be	one	of	the	following	flags.

Flag Interpretation

VI_READ_BUF	(1) Discard	the	read	buffer
contents.	If	data	was

present	in	the	read	buffer
and	no	END-indicator	was
present,	read	from	the

device	until	encountering
an	END	indicator	(which
causes	the	loss	of	data).
This	action	resynchronizes
the	next	viScanf()	call	to
read	a	<TERMINATED

RESPONSE	MESSAGE>.
(Refer	to	the	IEEE	488.2

standard.)

VI_READ_BUF_DISCARD
(4)

Discard	the	read	buffer
contents	(does	not	perform
any	I/O	to	the	device).

VI_WRITE_BUF	(2) Flush	the	write	buffer	by
writing	all	buffered	data	to

the	device.

VI_WRITE_BUF_DISCARD
(8)

Discard	the	write	buffer
contents	(does	not	perform
any	I/O	to	the	device).

VI_IO_IN_BUF	(16) Discard	the	low-level	I/O
receive	buffer	contents

(same	as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard	the	low-level	I/O

(64) receive	buffer	contents
(does	not	perform	any	I/O

to	the	device).

VI_IO_OUT_BUF	(32) Flush	the	low-level	I/O
transmit	buffer	by	writing	all
buffered	data	to	the	device.

VI_IO_OUT_BUF_DISCARD
(128)

Discard	the	low-level	I/O
transmit	buffer	contents
(does	not	perform	any	I/O

to	the	device).

It	is	possible	to	combine	any	of	these	read	flags	and	write	flags	for
different	buffers	by	ORing	the	flags.	However,	combining	two	flags	for	the
same	buffer	in	the	same	call	to	viFlush()	is	illegal.
Notice	that	when	using	formatted	I/O	operations	with	a	session	to	a	Serial
device	or	Ethernet	socket,	a	flush	of	the	formatted	I/O	buffers	also
causes	the	corresponding	I/O	communication	buffers	to	be	flushed.	For
example,	calling	viFlush()	with	VI_WRITE_BUF	also	flushes	the
VI_IO_OUT_BUF.
In	previous	versions	of	VISA,	VI_IO_IN_BUF	was	known	as
VI_ASRL_IN_BUF	and	VI_IO_OUT_BUF	was	known	as
VI_ASRL_OUT_BUF.
Implicit	versus	Explicit	Flushing
Although	you	can	explicitly	flush	the	buffers	by	making	a	call	to	viFlush(),
the	buffers	are	flushed	implicitly	under	some	conditions.	These	conditions
vary	for	the	viPrintf()	and	viScanf()	operations.
Flushing	a	write	buffer	immediately	sends	any	queued	data	to	the	device.
The	write	buffer	is	maintained	by	the	viPrintf()	operation.	To	explicitly
flush	the	write	buffer,	you	can	make	a	call	to	the	viFlush()	operation	with	a
write	flag	set.	In	addition,	the	write	buffer	is	flushed	automatically	under
the	following	conditions:

1.	 When	an	END-indicator	character	is	sent	(that	is,	the	\n	character
is	specified	in	the	formatting	string).

2.	 When	the	buffer	is	full.

3.	 In	response	to	a	call	to	viSetBuf()	with	the	VI_WRITE_BUF	flag
set.

Flushing	a	read	buffer	discards	the	data	in	the	read	buffer.	This
guarantees	that	the	next	call	to	a	viScanf()	(or	related)	operation	reads
data	directly	from	the	device	rather	than	from	queued	data	residing	in	the
read	buffer.	The	read	buffer	is	maintained	by	the	viScanf()	operation.	To
explicitly	flush	the	read	buffer,	you	can	make	a	call	to	the	viFlush()
operation	with	a	read	flag	set.
Also,	the	formatted	I/O	buffers	of	a	session	to	a	given	device	are	reset
whenever	that	device	is	cleared.	Invoking	the	viClear()	operation	will	flush
the	read	buffer	and	discard	the	contents	of	the	write	buffers.
Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers
Controlling	the	Serial	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers
INSTR	Resource
INTFC	Resource
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers
SERVANT	Resource
SOCKET	Resource
viSetBuf

viGetAttribute
Purpose
Retrieves	the	state	of	an	attribute.

C	Syntax
ViStatus	viGetAttribute(ViObject	vi,	ViAttr	attribute,	void	*	attrState)

Visual	Basic	Syntax
viGetAttribute&(ByVal	vi&,	ByVal	attribute&,	attrState	as	Any)

Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session,	event,	or	find	list.

attribute IN Resource	attribute	for	which	the
state	query	is	made.

attrState OUT The	state	of	the	queried
attribute	for	a	specified

resource.	The	interpretation	of
the	returned	value	is	defined	by

the	individual	object.

Return	Values
Completion	Codes Description

VI_SUCCESS Attribute	retrieved	successfully.

	

Error	Codes Description

VI_ERROR_INV_OBJECT The	given	object	reference
is	invalid.

VI_ERROR_NSUP_ATTR The	specified	attribute	is
not	defined	by	the
referenced	object.

Description
The	viGetAttribute()	operation	is	used	to	retrieve	the	state	of	an	attribute
for	the	specified	session,	event,	or	find	list.
The	output	parameter	attrState	is	of	the	type	of	the	attribute	actually
being	retrieved.	For	example,	when	retrieving	an	attribute	that	is	defined
as	a	ViBoolean,	your	application	should	pass	a	reference	to	a	variable	of
type	ViBoolean.	Similarly,	if	the	attribute	is	defined	as	being	ViUInt32,	your
application	should	pass	a	reference	to	a	variable	of	type	ViUInt32.
Related	Topics
Attributes
VISA	Resource	Template
viSetAttribute

viGpibCommand
Purpose
Write	GPIB	command	bytes	on	the	bus.

C	Syntax
ViStatus	viGpibCommand	(ViSession	vi,	ViBuf	buf,	ViUInt32	count,
ViPUInt32	retCount)

Visual	Basic	Syntax
viGpibCommand&(ByVal	vi&,	ByVal	buf$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INTFC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Buffer	containing	valid	GPIB
commands.

count IN Number	of	bytes	to	be	written.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_INV_SETUP Unable	to	start	write
operation	because	setup

is	invalid	(due	to
attributes	being	set	to	an

inconsistent	state).

VI_ERROR_NCIC The	interface	associated
with	the	given	vi	is	not
currently	the	controller	in

charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is
detected	(both	NRFD

and	NDAC	are
deasserted).

VI_ERROR_IO An	unknown	I/O	error
occurred	during	transfer.

Description
This	operation	attempts	to	write	count	number	of	bytes	of	GPIB
commands	to	the	interface	bus	specified	by	vi.	This	operation	is	valid
only	on	GPIB	INTFC	(interface)	sessions.	This	operation	returns	only
when	the	transfer	terminates.
If	you	pass	VI_NULL	as	the	retCount	parameter	to	the	viGpibCommand()
operation,	the	number	of	bytes	transferred	will	not	be	returned.	This	may
be	useful	if	it	is	important	to	know	only	whether	the	operation	succeeded
or	failed.	The	command	bytes	contained	in	buf	should	be	valid	IEEE	488-
defined	Multiline	Interface	Messages.
Related	Topics
INTFC	Resource

viGpibControlATN
Purpose
Specifies	the	state	of	the	ATN	line	and	the	local	active	controller	state.

C	Syntax
ViStatus	viGpibControlATN(ViSession	vi,	ViUInt16	mode)

Visual	Basic	Syntax
viGpibControlATN&	(ByVal	vi&,	ByVal	mode%)

Resource	Classes
GPIB	INTFC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mode IN Specifies	the	state	of	the	ATN
line	and	optionally	the	local

active	controller	state.	See	the
Description	section	for	actual

values.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_NCIC The	interface	associated
with	the	given	vi	is	not
currently	the	controller	in

charge.

VI_ERROR_INV_MODE The	value	specified	by
the	mode	parameter	is

invalid.

VI_ERROR_NSUP_MODE The	specified	mode	is
not	supported	by	this
VISA	implementation.

Description
This	operation	asserts	or	deasserts	the	GPIB	ATN	interface	line
according	to	the	specified	mode.	The	mode	can	also	specify	whether	the
local	interface	should	acquire	or	release	Controller	Active	status.	This
operation	is	valid	only	on	GPIB	INTFC	(interface)	sessions.	The	following
table	lists	valid	values	for	the	mode	parameter.

Mode Action
Description

VI_GPIB_ATN_DEASSERT Deassert	ATN
line.	The	GPIB

interface
corresponding
to	the	VISA

session	goes	to
standby.

VI_GPIB_ATN_ASSERT Assert	ATN	line
and	take
control

synchronously
without

corrupting
transferred

data.	If	a	data
handshake	is	in
progress,	ATN
is	not	asserted

until	the
handshake	is
complete.

VI_GPIB_ATN_DEASSERT_HANDSHAKE Deassert	ATN
line,	and	enter

shadow
handshake
mode.	The

local	board
participates	in

data
handshakes	as
an	Acceptor

without	actually
reading	the

data.	The	GPIB
interface

corresponding
to	the	VISA

session	goes	to
standby.

VI_GPIB_ATN_ASSERT_IMMEDIATE Assert	ATN	line
and	take
control

asynchronously
and

immediately
without	regard
for	any	data
transfer

currently	in
progress.

Generally,	this
should	be	used
only	under

error
conditions.

It	is	generally	not	necessary	to	use	the	viGpibControlATN()	operation	in
most	applications.	Other	operations	such	as	viGpibCommand()	and
viGpibPassControl()	modify	the	ATN	and/or	CIC	state	automatically.
Related	Topics
INTFC	Resource
viGpibControlREN

viGpibControlREN
Purpose
Controls	the	state	of	the	GPIB	Remote	Enable	(REN)	interface	line,	and
optionally	the	remote/local	state	of	the	device.

C	Syntax
ViStatus	viGpibControlREN(ViSession	vi,	ViUInt16	mode)

Visual	Basic	Syntax
viGpibControlREN&(ByVal	vi&,	ByVal	mode%)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	USB	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mode IN Specifies	the	state	of	the	REN
line	and	optionally	the	device
remote/local	state.	See	the
Description	section	for	actual

values.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_NCIC The	interface	associated
with	this	session	is	not
currently	the	controller	in

charge.

VI_ERROR_NLISTENERS No-listeners	condition	is
detected	(both	NRFD

and	NDAC	are
unasserted).

VI_ERROR_NSYS_CNTLR The	interface	associated
with	this	session	is	not
the	system	controller.

VI_ERROR_INV_MODE The	value	specified	by
the	mode	parameter	is

invalid.

Description
The	viGpibControlREN()	operation	asserts	or	unasserts	the	GPIB	REN
interface	line	according	to	the	specified	mode.	The	mode	can	also	specify
whether	the	device	associated	with	this	session	should	be	placed	in	local
state	(before	deasserting	REN)	or	remote	state	(after	asserting	REN).
This	operation	is	valid	only	if	the	GPIB	interface	associated	with	the
session	specified	by	vi	is	currently	the	system	controller.
The	following	table	lists	special	values	for	the	mode	parameter.

Value Description

VI_GPIB_REN_DEASSERT Deassert
REN	line.

VI_GPIB_REN_ASSERT Assert	REN
line.

VI_GPIB_REN_DEASSERT_GTL Send	the
Go	To	Local

(GTL)
command

and
deassert
REN	line.

VI_GPIB_REN_ASSERT_ADDRESS Assert	REN
line	and
address
device.

VI_GPIB_REN_ASSERT_LLO Send	LLO
to	any

devices	that
are

addressed
to	listen.

VI_GPIB_REN_ASSERT_ADDRESS_LLO Address	this
device	and
send	it	LLO,
putting	it	in
RWLS.

VI_GPIB_REN_ASSERT_GTL Send	the
Go	To	Local
command
(GTL)	to	this

device.

Related	Topics
INSTR	Resource
INTFC	Resource
viGpibControlATN

viGpibPassControl
Purpose
Tell	the	GPIB	device	at	the	specified	address	to	become	controller	in
charge	(CIC).

C	Syntax
ViStatus	viGpibPassControl(ViSession	vi,	ViUInt16	primAddr,	ViUInt16

secAddr)

Visual	Basic	Syntax
viGPIBPassControl&	(ByVal	vi&,	ByVal	primAddr%,	ByValsec	Addr%)

Resource	Classes
GPIB	INTFC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

primAddr IN Primary	address	of	the	GPIB
device	to	which	you	want	to

pass	control.

secAddr IN Secondary	address	of	the
targeted	GPIB	device.	If	the
targeted	device	does	not	have
a	secondary	address,	this

parameter	should	contain	the
value	VI_NO_SEC_ADDR.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be

performed	because
the	resource	identified
by	vi	has	been	locked
for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_NCIC The	interface
associated	with	the
given	vi	is	not

currently	the	controller
in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition
is	detected	(both

NRFD	and	NDAC	are
deasserted).

VI_ERROR_IO An	unknown	I/O	error

occurred	during
transfer.

VI_ERROR_INV_PARAMETER The	primary	or
secondary	address	is

invalid.

Description
This	operation	passes	controller	in	charge	status	to	the	device	indicated
by	primAddr	and	secAddr,	and	then	deasserts	the	ATN	line.	This
operation	assumes	that	the	targeted	device	has	controller	capability.	This
operation	is	valid	only	on	GPIB	INTFC	(interface)	sessions.
Related	Topics
INTFC	Resource

viGpibSendIFC
Purpose
Pulse	the	interface	clear	line	(IFC)	for	at	least	100	microseconds.

C	Syntax
ViStatus	viGpibSendIFC	(ViSession	vi)

Visual	Basic	Syntax
viGpibSendIFC&	(ByVal	vi&)

Resource	Classes
GPIB	INTFC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_NSYS_CNTLR The	interface	associated
with	this	session	is	not
the	system	controller.

Description
This	operation	asserts	the	IFC	line	and	becomes	controller	in	charge
(CIC).	The	local	board	must	be	the	system	controller.	This	operation	is
valid	only	on	GPIB	INTFC	(interface)	sessions.
Related	Topics
INTFC	Resource

viIn8/viIn16/viIn32/viIn64,
viIn8Ex/viIn16Ex/viIn32Ex/viIn64Ex
Purpose
Reads	in	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	from	the	specified
memory	space	and	offset.

C	Syntax
ViStatus	viIn8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViPUInt8
val8)
ViStatus	viIn16(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViPUInt16
val16)
ViStatus	viIn32(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViPUInt32
val32)
ViStatus	viIn64(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViPUInt64
val64)
ViStatus	viIn8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViPUInt8	val8)
ViStatus	viIn16Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViPUInt16	val16)
ViStatus	viIn32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViPUInt32	val32)
ViStatus	viIn64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViPUInt64	val64)

Visual	Basic	Syntax
viIn8&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	val8	as	Byte)
viIn16&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	val16%)
viIn32&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	val32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

space IN Specifies	the	address	space.
Refer	to	the	table	included	in	the
Description	section	for	more

information.

offset IN Offset	(in	bytes)	of	the	address
or	register	from	which	to	read.
For	viInXX()	operations,	this	is	a

32-bit	value	for	32-bit
applications	and	a	64-bit	value
for	64-bit	applications.	For
viInXXEx()	operations,	this	is

always	a	64-bit	value.

val8,
val16,
val32	or
val64

OUT Data	read	from	bus	(8	bits	for
viIn8[Ex](),	16	bits	for	viIn16[Ex]
(),	32	bits	for	viIn32[Ex](),	and

64	bits	for	viIn64[Ex]()).

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SPACE Invalid	address
space	specified.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_NSUP_OFFSET Specified	offset
is	not	accessible

from	this
hardware.

VI_ERROR_NSUP_WIDTH Specified	width	is
not	supported	by
this	hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified
offset	is	not

properly	aligned
for	the	access
width	of	the
operation.

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

Description
The	viInXX[Ex]()	operations	use	the	specified	address	space	to	read	in	8,
16,	32,	or	64	bits	of	data,	respectively,	from	the	specified	offset.	These
operations	do	not	require	viMapAddress()	to	be	called	prior	to	their
invocation.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Value Description

VXI,	VME,	and
GPIB-VXI

VI_A16_SPACE	(1)
VI_A24_SPACE	(2)
VI_A32_SPACE	(3)
VI_A64_SPACE	(4)

PXI	INSTR VI_PXI_CFG_SPACE	(10)
VI_PXI_BAR0_SPACE	(11)	to
VI_PXI_BAR5_SPACE	(16)

PXI	MEMACC VI_PXI_ALLOC_SPACE	(9)

FireWire	INSTR VI_FIREWIRE_DFLT_SPACE	(5)

INSTR	Specific
Notice	that	the	offset	parameter	to	these	operations	for	an	INSTR
Resource	is	the	offset	address	relative	to	the	device's	allocated	address
base	for	the	corresponding	address	space	that	was	specified.	For
example,	if	space	specifies	VI_A16_SPACE,	then	offset	specifies	the
offset	from	the	logical	address	base	address	of	the	specified	VXI	device.
If	space	specifies	VI_A24_SPACE	or	VI_A32_SPACE,	then	offset
specifies	the	offset	from	the	base	address	of	the	VXI	device's	memory
space	allocated	by	the	VXI	Resource	Manager	within	VXI	A24	or	A32
space.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
For	a	MEMACC	Resource,	the	offset	parameter	specifies	an	absolute
address.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
viOut8/viOut16/viOut32/viOut64,
viOut8Ex/viOut16Ex/viOut32Ex/viOut64Ex

viInstallHandler
Purpose
Installs	handlers	for	event	callbacks.

C	Syntax
ViStatus	viInstallHandler(ViSession	vi,	ViEventType	eventType,	ViHndlr
handler,	ViAddr	userHandle)

Visual	Basic	Syntax
N/A

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

handler IN Interpreted	as	a	valid
reference	to	a	handler	to	be

installed	by	a	client
application.

userHandle IN A	value	specified	by	an
application	that	can	be	used

for	identifying	handlers
uniquely	for	an	event	type.

Return	Values
Completion	Codes Description

VI_SUCCESS Event	handler	installed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_INV_EVENT Specified
eventType	is	not
supported	by	the

resource.

VI_ERROR_INV_HNDLR_REF The	given
handler

reference	is
invalid.

VI_ERROR_HNDLR_NINSTALLED The	handler	was
not	installed.	This
may	be	returned	if
an	application

attempts	to	install
multiple	handlers
for	the	same
event	on	the
same	session.

Description
The	viInstallHandler()	operation	allows	applications	to	install	handlers	on
sessions.	The	handler	specified	in	the	handler	parameter	is	installed
along	with	any	previously	installed	handlers	for	the	specified	event.
Applications	can	specify	a	value	in	the	userHandle	parameter	that	is
passed	to	the	handler	on	its	invocation.	VISA	identifies	handlers	uniquely
using	the	handler	reference	and	this	value.
VISA	allows	applications	to	install	multiple	handlers	for	an	eventType	on
the	same	session.	You	can	install	multiple	handlers	through	multiple
invocations	of	the	viInstallHandler()	operation,	where	each	invocation
adds	to	the	previous	list	of	handlers.	If	more	than	one	handler	is	installed
for	an	eventType,	each	of	the	handlers	is	invoked	on	every	occurrence	of
the	specified	event(s).	VISA	specifies	that	the	handlers	are	invoked	in
Last	In	First	Out	(LIFO)	order.
Related	Topics
viEnableEvent
viEventHandler
VISA	Resource	Template
viUninstallHandler

viLock
Purpose
Establishes	an	access	mode	to	the	specified	resources.

C	Syntax
ViStatus	viLock(ViSession	vi,	ViAccessMode	lockType,	ViUInt32	timeout,
ViKeyId	requestedKey,	ViChar	accesskey[])

Visual	Basic	Syntax
viLock&(ByVal	vi&,	ByVal	lockType&,	ByVal	timeout&,	ByVal
requestedKey$,	ByVal	accesskey$)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to
a	session.

lockType IN Specifies	the	type	of	lock
requested,	either

VI_EXCLUSIVE_LOCK	(1)
or	VI_SHARED_LOCK	(2).

timeout IN Absolute	time	period	(in
milliseconds)	that	a
resource	waits	to	get

unlocked	by	the	locking
session	before	returning	an

error.

requestedKey IN This	parameter	is	not	used
and	should	be	set	to

VI_NULL	when	lockType
is	VI_EXCLUSIVE_LOCK.
Refer	to	the	Description
section	for	more	details

about	using
VI_SHARED_LOCK.

accessKey OUT This	parameter	should	be
set	to	VI_NULL	when

lockType	is
VI_EXCLUSIVE_LOCK.

When	lockType	is
VI_SHARED_LOCK,	the
resource	returns	a	unique
access	key	for	the	lock	if
the	operation	succeeds.
This	accessKey	can	then

be	passed	to	other

sessions	to	share	the	lock.

Return	Values
Completion	Codes Description

VI_SUCCESS Specified
access	mode
was	acquired.

VI_SUCCESS_NESTED_EXCLUSIVE Specified
access	mode	is
successfully
acquired,	and
this	session	has

nested
exclusive	locks.

VI_SUCCESS_NESTED_SHARED Specified
access	mode	is
successfully
acquired,	and
this	session	has
nested	shared

locks.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	lockType
cannot	be	obtained

because	the
resource	is	already
locked	with	a	lock
type	incompatible
with	the	lock
requested.

VI_ERROR_INV_LOCK_TYPE Specified	lockType
is	not	supported	by

this	resource.

VI_ERROR_INV_ACCESS_KEY The	requestedKey
value	passed	in	is

not	a	valid
accessKey	to	the
specified	resource.

VI_ERROR_TMO Specified	lockType
could	not	be	obtained
within	the	specified
timeout	period.

Description
This	operation	is	used	to	obtain	a	lock	on	the	specified	resource.	The
caller	can	specify	the	type	of	lock	requested—exclusive	or	shared	lock—
and	the	length	of	time	the	operation	will	suspend	while	waiting	to	acquire
the	lock	before	timing	out.	This	operation	can	also	be	used	for	sharing
and	nesting	locks.
The	requestedKey	and	the	accessKey	parameters	apply	only	to	shared
locks.	These	parameters	are	not	applicable	when	using	the	lock	type
VI_EXCLUSIVE_LOCK;	in	this	case,	requestedKey	and	accessKey
should	be	set	to	VI_NULL.	VISA	allows	user	applications	to	specify	a	key
to	be	used	for	lock	sharing,	through	the	use	of	the	requestedKey
parameter.	Alternatively,	a	user	application	can	pass	VI_NULL	for	the
requestedKey	parameter	when	obtaining	a	shared	lock,	in	which	case
VISA	will	generate	a	unique	access	key	and	return	it	through	the
accessKey	parameter.	If	a	user	application	does	specify	a
requestedKey	value,	VISA	will	try	to	use	this	value	for	the	accessKey.
As	long	as	the	resource	is	not	locked,	VISA	will	use	the	requestedKey
as	the	access	key	and	grant	the	lock.	When	the	operation	succeeds,	the
requestedKey	will	be	copied	into	the	user	buffer	referred	to	by	the
accessKey	parameter.

Note		If	requesting	a	VI_SHARED_LOCK,	the	size	of	the
accessKey	parameter	should	be	at	least	256	bytes.

The	session	that	gained	a	shared	lock	can	pass	the	accessKey	to	other
sessions	for	the	purpose	of	sharing	the	lock.	The	session	wanting	to	join
the	group	of	sessions	sharing	the	lock	can	use	the	key	as	an	input	value
to	the	requestedKey	parameter.	VISA	will	add	the	session	to	the	list	of
sessions	sharing	the	lock,	as	long	as	the	requestedKey	value	matches
the	accessKey	value	for	the	particular	resource.	The	session	obtaining	a
shared	lock	in	this	manner	will	then	have	the	same	access	privileges	as
the	original	session	that	obtained	the	lock.
It	is	also	possible	to	obtain	nested	locks	through	this	operation.	To
acquire	nested	locks,	invoke	the	viLock()	operation	with	the	same	lock
type	as	the	previous	invocation	of	this	operation.	For	each	session,
viLock()	and	viUnlock()	share	a	lock	count,	which	is	initialized	to	0.	Each
invocation	of	viLock()	for	the	same	session	(and	for	the	same	lockType)
increases	the	lock	count.	In	the	case	of	a	shared	lock,	it	returns	with	the

same	accessKey	every	time.	When	a	session	locks	the	resource	a
multiple	number	of	times,	it	is	necessary	to	invoke	the	viUnlock()
operation	an	equal	number	of	times	in	order	to	unlock	the	resource.	That
is,	the	lock	count	increments	for	each	invocation	of	viLock(),	and
decrements	for	each	invocation	of	viUnlock().	A	resource	is	actually
unlocked	only	when	the	lock	count	is	0.
The	VISA	locking	mechanism	enforces	arbitration	of	accesses	to
resources	on	an	individual	basis.	If	a	session	locks	a	resource,
operations	invoked	by	other	sessions	to	the	same	resource	are	serviced
or	returned	with	a	locking	error,	depending	on	the	operation	and	the	type
of	lock	used.	If	a	session	has	an	exclusive	lock,	other	sessions	cannot
modify	global	attributes	or	invoke	operations,	but	can	still	get	attributes
and	set	local	attributes.	If	the	session	has	a	shared	lock,	other	sessions
that	have	shared	locks	can	also	modify	global	attributes	and	invoke
operations.	Regardless	of	which	type	of	lock	a	session	has,	if	the	session
is	closed	without	first	being	unlocked,	VISA	automatically	performs	a
viUnlock()	on	that	session.
The	locking	mechanism	works	for	all	processes	and	resources	existing
on	the	same	computer.	When	using	remote	resources,	however,	the
networking	protocol	may	not	provide	the	ability	to	pass	lock	requests	to
the	remote	device	or	resource.	In	this	case,	locks	will	behave	as
expected	from	multiple	sessions	on	the	same	computer,	but	not
necessarily	on	the	remote	device.	For	example,	when	using	the	VXI-11
protocol,	exclusive	lock	requests	can	be	sent	to	a	device,	but	shared
locks	can	only	be	handled	locally.
Related	Topics
VISA	Resource	Template
viUnlock

viMapAddress/viMapAddressEx
Purpose
Maps	the	specified	memory	space	into	the	process's	address	space.

C	Syntax
ViStatus	viMapAddress(ViSession	vi,	ViUInt16	mapSpace,	ViBusAddress
mapBase,	ViBusSize	mapSize,	ViBoolean	access,	ViAddr	suggested,	ViPAddr
address)
ViStatus	viMapAddressEx(ViSession	vi,	ViUInt16	mapSpace,	ViBusAddress64
mapBase,	ViBusSize	mapSize,	ViBoolean	access,	ViAddr	suggested,	ViPAddr
address)

Visual	Basic	Syntax
viMapAddress&(ByVal	vi&,	ByVal	mapSpace%,	ByVal	mapBase&,	ByVal
mapSize&,	ByVal	access%,	ByVal	suggested&,	address&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mapSpace IN Specifies	the	address	space	to
map.	Refer	to	the	Description
section	for	more	information.

mapBase IN Offset	(in	bytes)	of	the	memory
to	be	mapped.	Refer	to	the
Description	section	for	more

information.	For
viMapAddress(),	this	is	a	32-bit
value	for	32-bit	applications
and	a	64-bit	value	for	64-bit

applications.	For
viMapAddressEx(),	this	is
always	a	64-bit	value.

mapSize IN Amount	of	memory	to	map	(in
bytes).

access IN VI_FALSE	(0).

suggested IN If	suggested	parameter	is	not
VI_NULL	(0),	the	operating
system	attempts	to	map	the
memory	to	the	address

specified	in	suggested.	There
is	no	guarantee,	however,	that
the	memory	will	be	mapped	to
that	address.	This	operation
may	map	the	memory	into	an
address	region	different	from

suggested.

address OUT Address	in	your	process	space
where	the	memory	was

mapped.

Return	Values
Completion	Codes Description

VI_SUCCESS Mapping	successful.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does
not	support	this

operation.

VI_ERROR_INV_SPACE Invalid	address
space	specified.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_NSUP_OFFSET Specified	region	is
not	accessible	from
this	hardware.

VI_ERROR_TMO viMapAddress()	could
not	acquire	resource
or	perform	mapping
before	the	timer

expired.

VI_ERROR_INV_SIZE Invalid	size	of
window	specified.

VI_ERROR_ALLOC Unable	to	allocate
window	of	at	least
the	requested	size.

VI_ERROR_INV_ACC_MODE Invalid	access
mode.

VI_ERROR_WINDOW_MAPPED The	specified
session	already

contains	a	mapped
window.

VI_ERROR_INV_SETUP Unable	to	start
operation	because
setup	is	invalid	(due
to	attributes	being

set	to	an
inconsistent	state).

Description
The	viMapAddress()	operation	maps	in	a	specified	memory	space.	The
memory	space	that	is	mapped	is	dependent	on	the	type	of	interface
specified	by	the	vi	parameter	and	the	mapSpace	parameter.	The
address	parameter	returns	the	address	in	your	process	space	where
memory	is	mapped.	The	following	table	lists	the	valid	entries	for	the
mapSpace	parameter.

Value Description

VXI,	VME,	and
GPIB-VXI

VI_A16_SPACE	(1)
VI_A24_SPACE	(2)
VI_A32_SPACE	(3)
VI_A64_SPACE	(4)

PXI	INSTR VI_PXI_CFG_SPACE	(10)
VI_PXI_BAR0_SPACE	(11)	to
VI_PXI_BAR5_SPACE	(16)

PXI	MEMACC VI_PXI_ALLOC_SPACE	(9)

FireWire	INSTR VI_FIREWIRE_DFLT_SPACE	(5)

Note		On	some	hardware	platforms,	the	low-level	driver	may	have
limitations	on	the	parameters	to	this	function.	For	example,	on	VXI
resources	mapBase	should	be	a	multiple	of	mapSize	for	best
results.	If	these	limitations	prevent	NI-VISA	from	mapping	the	full
region	you	request	(mapSize	bytes	starting	at	mapBase),	the
function	will	return	an	error	such	as	VI_ERROR_NSUP_OFFSET	or
VI_ERROR_ALLOC.

INSTR	Specific
Notice	that	mapBase	specified	in	the	viMapAddress()	operation	for	an
INSTR	Resource	is	the	offset	address	relative	to	the	device's	allocated
address	base	for	the	corresponding	address	space	that	was	specified.
For	example,	if	mapSpace	specifies	VI_A16_SPACE,	then	mapBase
specifies	the	offset	from	the	logical	address	base	address	of	the	specified
VXI	device.	If	mapSpace	specifies	VI_A24_SPACE	or	VI_A32_SPACE,
then	mapBase	specifies	the	offset	from	the	base	address	of	the	VXI
device's	memory	space	allocated	by	the	VXI	Resource	Manager	within
VXI	A24	or	A32	space.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
For	a	MEMACC	Resource,	the	mapBase	parameter	specifies	an
absolute	address.

Note		The	output	address	is	not	necessarily	always	a	pointer.	It
may	be	possible	for	viMapAddress	to	succeed	and	output	a	token
address	value	of	0.	This	is	not	the	same	as	a	NULL	pointer,	even
though	the	value	of	NULL	is	0.	Obviously,	this	situation	cannot
happen	if	the	address	is	a	pointer	that	the	user	can	dereference.
Regardless,	you	should	determine	whether	viMapAddress
succeeded	or	failed	by	checking	the	returned	status,	not	the	output
value	of	the	address.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET
viUnmapAddress

viMapTrigger
Purpose
Map	the	specified	trigger	source	line	to	the	specified	destination	line.

C	Syntax
viStatus	viMapTrigger(ViSession	vi,	ViInt16	trigSrc,	ViInt16	trigDest,ViUInt16
mode)

Visual	Basic	Syntax
viMapTrigger&	(ByVal	vi&,	ByVal	trigSrc%,	ByVal	trigDest%,	ByVal
mode%)

Resource	Classes
GPIB-VXI	BACKPLANE,	PXI	BACKPLANE,	VXI	BACKPLANE

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

trigSrc IN Source	line	from	which	to	map.
Refer	to	the	Description	section

for	actual	values.

trigDest IN Destination	line	to	which	to
map.	Refer	to	the	Description
section	for	actual	values.

mode IN VI_NULL

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

VI_SUCCESS_TRIG_MAPPED The	path	from	trigSrc
to	trigDest	is	already

mapped.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_INV_MODE The	value	specified	by
the	mode	parameter	is

invalid.

VI_ERROR_LINE_IN_USE One	of	the	specified
lines	(trigSrc	or

trigDest)	is	currently	in
use.

VI_ERROR_INV_LINE One	of	the	specified
lines	(trigSrc	or

trigDest)	is	invalid.

VI_ERROR_NSUP_LINE One	of	the	specified
lines	(trigSrc	or
trigDest)	is	not

supported	by	this	VISA
implementation.

Description
This	operation	can	be	used	to	map	one	trigger	line	to	another.	This
operation	is	valid	only	on	BACKPLANE	(mainframe)	sessions.

Value Action	Description

VI_TRIG_TTL0	-
VI_TRIG_TTL7

Map	the	specified	VXI	or	PXI
TTL	trigger	line.

VI_TRIG_ECL0	-
VI_TRIG_ECL1

Map	the	specified	VXI	ECL
trigger	line.

VI_TRIG_PANEL_IN Map	the	controller's	front
panel	trigger	input	line.

VI_TRIG_PANEL_OUT Map	the	controller's	front
panel	trigger	output	line.

If	this	operation	is	called	multiple	times	on	the	same	BACKPLANE
Resource	with	the	same	source	trigger	line	and	different	destination
trigger	lines,	the	result	will	be	that	when	the	source	trigger	line	is
asserted,	all	of	the	specified	destination	trigger	lines	will	also	be	asserted.
If	this	operation	is	called	multiple	times	on	the	same	BACKPLANE
Resource	with	different	source	trigger	lines	and	the	same	destination
trigger	line,	the	result	will	be	that	when	any	of	the	specified	source	trigger
lines	is	asserted,	the	destination	trigger	line	will	also	be	asserted.

Note		Mapping	a	trigger	line	(as	either	source	or	destination)
multiple	times	requires	special	hardware	capabilities	and	is	not
guaranteed	to	be	implemented.

Refer	to	VI_ATTR_PXI_SRC_TRIG_BUS	or
VI_ATTR_PXI_DEST_TRIG_BUS	for	information	about	how	to	map	a
trigger	between	bus	segments	in	a	multisegment	PXI	chassis.
Related	Topics
BACKPLANE	Resource
VI_ATTR_PXI_DEST_TRIG_BUS
VI_ATTR_PXI_SRC_TRIG_BUS

viMemAlloc/viMemAllocEx
Purpose
Allocates	memory	from	a	resource's	memory	region.

C	Syntax
ViStatus	viMemAlloc(ViSession	vi,	ViBusSize	size,	ViPBusAddress	offset)
ViStatus	viMemAllocEx(ViSession	vi,	ViBusSize	size,	ViPBusAddress64	offset)

Visual	Basic	Syntax
viMemAlloc&(ByVal	vi&,	ByVal	size&,	offset&)

Resource	Classes
GPIB-VXI	INSTR,	PXI	MEMACC,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

size IN Specifies	the	size	of	the
allocation.

offset OUT Returns	the	offset	of	the
allocated	memory.	For

viMemAlloc(),	this	is	a	32-bit
value	for	32-bit	applications	and

a	64-bit	value	for	64-bit
applications.	For

viMemAllocEx(),	this	is	always	a
64-bit	value.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource
identified	by	vi	has
been	locked	for	this
kind	of	access.

VI_ERROR_INV_SIZE Invalid	size	specified.

VI_ERROR_ALLOC Unable	to	allocatte
shared	memory	block
of	the	requested	size.

VI_ERROR_MEM_NSHARED The	device	does	not
export	any	memory.

Description
The	memory	region	referenced	by	the	offset	returned	from	viMemAlloc()
can	be	accessed	with	the	high-level	operations	viMoveInXX()	and
viMoveOutXX(),	or	mapped	using	viMapAddress().	When	using
viMemAllocEx(),	the	offset	returned	may	be	accessed	by	the
viMoveInXXEx()	and	viMoveOutXXEx()	operations,	and	mapped	using
viMapAddressEx().	Note	that	for	viMemAllocEx(),	the	offset	could	be
above	the	4	GB	boundary.	If	your	device	cannot	access	this	memory,	you
should	use	viMemAlloc()	instead.
VXI/GPIB-VXI	INSTR	Specific
Notice	that	the	offset	parameter	to	these	operations	for	an	INSTR
Resource	is	the	offset	address	relative	to	the	device's	allocated	address
base.	The	viMemAlloc()	and	viMemAllocEx()	operations	return	an	offset
into	a	device's	memory	region	allocated	for	use	by	this	session.	If	the
device	to	which	the	given	vi	refers	is	on	the	local	interface	card,	the
memory	can	be	allocated	either	on	the	device	itself	or	on	the	computer's
system	memory.
PXI/PCI	MEMACC	Specific
For	a	MEMACC	Resource,	the	offset	parameter	specifies	an	absolute
address.	This	is	a	physical	address	in	system	memory	and	can	be	used
for	device	DMA.
Related	Topics
INSTR	Resource
viMapAddress/viMapAddressEx
viMemFree/viMemFreeEx
viMoveIn8/viMoveIn16/viMoveIn32/viMoveIn64,
viMoveIn8Ex/viMoveIn16Ex/viMoveIn32Ex/viMoveIn64Ex
viMoveOut8/viMoveOut16/viMoveOut32/viMoveOut64,
viMoveOut8Ex/viMoveOut16Ex/viMoveOut32Ex/viMoveOut64Ex

viMemFree/viMemFreeEx
Purpose
Frees	memory	previously	allocated	using	the	viMemAlloc()	operation.

C	Syntax
ViStatus	viMemFree(ViSession	vi,	ViBusAddress	offset)
ViStatus	viMemFreeEx(ViSession	vi,	ViBusAddress64	offset)

Visual	Basic	Syntax
viMemFree&(ByVal	vi&,	ByVal	offset&)

Resource	Classes
GPIB-VXI	INSTR,	PXI	MEMACC,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

offset IN Specifies	the	memory	previously
allocated	with	viMemAlloc()	or
viMemAllocEx.	For	viMemFree(),
this	is	a	32-bit	value	for	32-bit
applications	and	a	64-bit	value
for	64-bit	applications.	For

viMemFreeEx(),	this	is	always	a
64-bit	value.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does
not	support	this

operation.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_WINDOW_MAPPED The	specified	offset
is	currently	in	use	by

viMapAddress().

Description
The	viMemFree()	operation	frees	the	memory	previously	allocated	using
viMemAlloc().	The	viMemFreeEx()	operation	frees	the	memory	previously
allocated	using	viMemAllocEx().	If	the	specified	offset	has	been	mapped
using	viMapAddress()	or	viMapAddressEx(),	it	must	be	unmapped	before	it
can	be	freed.
Related	Topics
INSTR	Resource
viMapAddress/viMapAddressEx
viMemAlloc/viMemAllocEx
viUnmapAddress

viMove/viMoveEx
Purpose
Moves	a	block	of	data.

C	Syntax
ViStatus	viMove(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress	srcOffset,
ViUInt16	srcWidth,	ViUInt16	destSpace,	ViBusAddress	destOffset,	ViUInt16
destWidth,	ViBusSize	length)
ViStatus	viMoveEx(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress64
srcOffset,	ViUInt16	srcWidth,	ViUInt16	destSpace,	ViBusAddress64
destOffset,	ViUInt16	destWidth,	ViBusSize	length)

Visual	Basic	Syntax
viMove&(ByVal	vi&,	ByVal	srcSpace%,	ByVal	srcOffset&,	ByVal
srcWidth%,	ByVal	destSpace%,	ByVal	destOffset&,	ByVal	destWidth%,
ByVal	length&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	VXI
INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

srcSpace IN Specifies	the	address	space	of
the	source.

srcOffset IN Offset	of	the	starting	address
or	register	from	which	to	read.
For	viMove(),	this	is	a	32-bit
value	for	32-bit	applications
and	a	64-bit	value	for	64-bit
applications.	For	viMoveEx(),
this	is	always	a	64-bit	value.

srcWidth IN Specifies	the	data	width	of	the
source.

destSpace IN Specifies	the	address	space	of
the	destination.

destOffset IN Offset	of	the	starting	address
or	register	to	which	to	write.
For	viMove(),	this	is	a	32-bit
value	for	32-bit	applications
and	a	64-bit	value	for	64-bit
applications.	For	viMoveEx(),
this	is	always	a	64-bit	value.

destWidth IN Specifies	the	data	width	of	the
destination.

length IN Number	of	elements	to
transfer,	where	the	data	width
of	the	elements	to	transfer	is
identical	to	the	source	data

width.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SPACE Invalid	source	or
destination	space

specified.

VI_ERROR_INV_OFFSET Invalid	source	or
destination	offset

specified.

VI_ERROR_INV_WIDTH Invalid	source	or
destination	width

specified.

VI_ERROR_NSUP_OFFSET Specified	source
or	destination
offset	is	not

accessible	from
this	hardware.

VI_ERROR_NSUP_VAR_WIDTH Cannot	support
source	and
destination

widths	that	are
different.

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_NSUP_WIDTH Specified	width	is
not	supported	by
this	hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified
offset	is	not

properly	aligned
for	the	access
width	of	the
operation.

VI_ERROR_INV_LENGTH Invalid	length
specified.

Description
The	viMove()	and	viMoveEx()	operations	move	data	from	the	specified
source	to	the	specified	destination.	The	source	and	the	destination	can
either	be	local	memory	or	the	offset	of	the	interface	with	which	this
MEMACC	Resource	is	associated.	These	operations	use	the	specified
data	width	and	address	space.	In	some	systems,	such	as	VXI,	users	can
specify	additional	settings	for	the	transfer,	such	as	byte	order	and	access
privilege,	by	manipulating	the	appropriate	attributes.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Value Description

VI_A16_SPACE	(1) Address	the	A16	address	space
of	the	VXI/MXI	bus.

VI_A24_SPACE	(2) Address	the	A24	address	space
of	the	VXI/MXI	bus.

VI_A32_SPACE	(3) Address	the	A32	address	space
of	the	VXI/MXI	bus.

VI_LOCAL_SPACE
(0)

Address	process-local	memory
(using	a	virtual	address).

VI_OPAQUE_SPACE
(FFFFh)

Addresses	potentially	volatile
data	(using	a	virtual	address).

The	following	table	lists	the	valid	entries	for	specifying	widths.

Value Description

VI_WIDTH_8	(1) Performs	8-bit	(D08)	transfers.

VI_WIDTH_16
(2)

Performs	16-bit	(D16)	transfers.

VI_WIDTH_32
(4)

Performs	32-bit	(D32)	transfers.

VI_WIDTH_64
(8)

Performs	64-bit	(D64)	transfers.

All	VXI	and	PXI	accesses	performed	by	the	viMove()	and	viMoveEx()
operations	use	either	the	same	or	successive	offsets,	depending	on	the
increment	value	specified	by	VI_ATTR_SRC_INCREMENT	and
VI_ATTR_DEST_INCREMENT.
If	srcSpace	is	VI_LOCAL_SPACE,	viMove()	will	ignore
VI_ATTR_SRC_INCREMENT.	If	destSpace	is	VI_LOCAL_SPACE,
viMove()	will	ignore	VI_ATTR_DEST_INCREMENT.	Local	accesses
always	increment	the	offset	for	each	index	in	a	multi-element	transfer,
rather	than	using	the	increment	specified	by	the	attributes.	If	srcSpace	is
any	value	other	than	VI_LOCAL_SPACE,	including	VI_OPAQUE_SPACE,
viMove()	will	honor	VI_ATTR_SRC_INCREMENT.	If	destSpace	is	any
value	other	than	VI_LOCAL_SPACE,	including	VI_OPAQUE_SPACE,
viMove()	will	honor	VI_ATTR_DEST_INCREMENT.	While
VI_OPAQUE_SPACE	uses	a	process-local	virtual	address,	it	is	not
necessarily	pointing	to	system	memory,	so	it	may	be	a	FIFO.	Therefore,
VI_ATTR_SRC/DEST_INCREMENT	do	indeed	apply.

INSTR	Specific
If	srcSpace	is	neither	VI_LOCAL_SPACE	nor	VI_OPAQUE_SPACE,
srcOffset	is	a	relative	address	of	the	device	associated	with	the	given
INSTR	resource.	Similarly,	if	destspace	is	neither	VI_LOCAL_SPACE	nor
VI_OPAQUE_SPACE,	destOffset	is	a	relative	address	of	the	device
associated	with	the	given	INSTR	resource.
The	primary	intended	use	of	this	operation	with	an	INSTR	session	is	to
synchronously	move	data	to	or	from	the	device.	Therefore,	either	the
srcSpace	or	destSpace	parameter	will	usually	be	VI_LOCAL_SPACE.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET	or
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
The	destOffset	and	srcOffset	parameters	specify	absolute	addresses.
Notice	also	that	the	length	specified	in	the	viMove()	and	viMoveEx()
operations	is	the	number	of	elements	(of	the	size	corresponding	to	the
srcWidth	parameter)	to	transfer,	beginning	at	the	specified	offsets.
Therefore,	srcOffset	+	length*srcWidth	cannot	exceed	the	total	amount
of	memory	exported	by	the	given	srcSpace.	Similarly,	destOffset	+
length*srcWidth	cannot	exceed	the	total	amount	of	memory	exported	by
the	given	destSpace.
Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_INCREMENT
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
VI_ATTR_SRC_INCREMENT
viMoveAsync/viMoveAsyncEx

viMoveAsync/viMoveAsyncEx
Purpose
Moves	a	block	of	data	asynchronously.

C	Syntax
ViStatus	viMoveAsync(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress
srcOffset,	ViUInt16	srcWidth,	ViUInt16	destSpace,	ViBusAddress	destOffset,
ViUInt16	destWidth,	ViBusSize	length,	ViPJobId	jobId)
ViStatus	viMoveAsyncEx(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress64
srcOffset,	ViUInt16	srcWidth,	ViUInt16	destSpace,	ViBusAddress64
destOffset,	ViUInt16	destWidth,	ViBusSize	length,	ViPJobId	jobId)

Visual	Basic	Syntax
N/A

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	VXI
INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

srcSpace IN Specifies	the	address	space	of
the	source.

srcOffset IN Offset	of	the	starting	address
or	register	from	which	to	read.
For	viMove(),	this	is	a	32-bit
value	for	32-bit	applications
and	a	64-bit	value	for	64-bit
applications.	For	viMoveEx(),
this	is	always	a	64-bit	value.

srcWidth IN Specifies	the	data	width	of	the
source.

destSpace IN Specifies	the	address	space	of
the	destination.

destOffset IN Offset	of	the	starting	address
or	register	to	which	to	write.
For	viMove(),	this	is	a	32-bit
value	for	32-bit	applications
and	a	64-bit	value	for	64-bit
applications.	For	viMoveEx(),
this	is	always	a	64-bit	value.

destWidth IN Specifies	the	data	width	of	the
destination.

length IN Number	of	elements	to
transfer,	where	the	data	width
of	the	elements	to	transfer	is
identical	to	the	source	data

width.

jobId OUT Job	identifier	of	this
asynchronous	move	operation.

Return	Values
Completion	Codes Description

VI_SUCCESS Asynchronous	operation
successfully	queued.

VI_SUCCESS_SYNC Operation	performed
synchronously.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_QUEUE_ERROR Unable	to	queue	move
operation	(usually	due	to
the	I/O	completion	event
not	being	enabled	or

insufficient	space	in	the
session's	queue).

VI_ERROR_IN_PROGRESS Unable	to	queue	the
asynchronous	operation
because	there	is	already

an	operation	in
progress.

Description
The	viMoveAsync()	and	viMoveAsyncEx()	operations	asynchronously
move	data	from	the	specified	source	to	the	specified	destination.	This
operation	queues	up	the	transfer	in	the	system,	then	it	returns
immediately	without	waiting	for	the	transfer	to	carry	out	or	complete.
When	the	transfer	terminates,	a	VI_EVENT_IO_COMPLETION	event	is
generated,	which	indicates	the	status	of	the	transfer.
This	operation	returns	jobId,	which	you	can	use	either	with	viTerminate()
to	abort	the	operation	or	with	VI_EVENT_IO_COMPLETION	events	to
identify	which	asynchronous	move	operations	completed.	VISA	will	never
return	VI_NULL	for	a	valid	jobId.
The	source	and	the	destination	can	either	be	local	memory	or	the	offset
of	the	interface	with	which	this	INSTR	or	MEMACC	Resource	is
associated.	This	operation	uses	the	specified	data	width	and	address
space.	In	some	systems,	such	as	VXI,	users	can	specify	additional
settings	for	the	transfer,	such	as	byte	order	and	access	privilege,	by
manipulating	the	appropriate	attributes.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Value Description

VI_A16_SPACE	(1) Address	the	A16	address	space
of	the	VXI/MXI	bus.

VI_A24_SPACE	(2) Address	the	A24	address	space
of	the	VXI/MXI	bus.

VI_A32_SPACE	(3) Address	the	A32	address	space
of	the	VXI/MXI	bus.

VI_LOCAL_SPACE
(0)

Address	process-local	memory
(using	a	virtual	address).

VI_OPAQUE_SPACE
(FFFFh)

Addresses	potentially	volatile
data	(using	a	virtual	address).

The	following	table	lists	the	valid	entries	for	specifying	widths.

Value Description

VI_WIDTH_8	(1) Performs	8-bit	(D08)	transfers.

VI_WIDTH_16
(2)

Performs	16-bit	(D16)	transfers.

VI_WIDTH_32
(4)

Performs	32-bit	(D32)	transfers.

VI_WIDTH_64
(8)

Performs	64-bit	(D64)	transfers.

All	VXI	and	PXI	accesses	performed	by	the	viMoveAsync()	and
viMoveAsyncEx()	operations	use	either	the	same	or	successive	offsets,
depending	on	the	increment	value	specified	by
VI_ATTR_SRC_INCREMENT	and	VI_ATTR_DEST_INCREMENT.
If	srcSpace	is	VI_LOCAL_SPACE,	viMove()	will	ignore
VI_ATTR_SRC_INCREMENT.	If	destSpace	is	VI_LOCAL_SPACE,
viMove()	will	ignore	VI_ATTR_DEST_INCREMENT.	Local	accesses
always	increment	the	offset	for	each	index	in	a	multi-element	transfer,
rather	than	using	the	increment	specified	by	the	attributes.	If	srcSpace	is
any	value	other	than	VI_LOCAL_SPACE,	including	VI_OPAQUE_SPACE,
viMove()	will	honor	VI_ATTR_SRC_INCREMENT.	If	destSpace	is	any
value	other	than	VI_LOCAL_SPACE,	including	VI_OPAQUE_SPACE,
viMove()	will	honor	VI_ATTR_DEST_INCREMENT.	While
VI_OPAQUE_SPACE	uses	a	process-local	virtual	address,	it	is	not
necessarily	pointing	to	system	memory,	so	it	may	be	a	FIFO.	Therefore,
VI_ATTR_SRC/DEST_INCREMENT	do	indeed	apply.

INSTR	Specific
If	srcSpace	is	neither	VI_LOCAL_SPACE	nor	VI_OPAQUE_SPACE,
srcOffset	is	a	relative	address	of	the	device	associated	with	the	given
INSTR	resource.	Similarly,	if	destspace	is	neither	VI_LOCAL_SPACE	nor
VI_OPAQUE_SPACE,	destOffset	is	a	relative	address	of	the	device
associated	with	the	given	INSTR	resource.
The	primary	intended	use	of	this	operation	with	an	INSTR	session	is	to
asynchronously	move	data	to	or	from	the	device.	Therefore,	either	the
srcSpace	or	destSpace	parameter	will	usually	be	VI_LOCAL_SPACE.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET	or
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
The	destOffset	and	srcOffset	parameters	specify	absolute	addresses.
Notice	also	that	the	length	specified	in	the	viMoveAsync()	and
viMoveAsyncEx()	operations	is	the	number	of	elements	(of	the	size
corresponding	to	the	srcWidth	parameter)	to	transfer,	beginning	at	the
specified	offsets.	Therefore,	srcOffset	+	length*srcWidth	cannot
exceed	the	total	amount	of	memory	exported	by	the	given	srcSpace.
Similarly,	destOffset	+	length*srcWidth	cannot	exceed	the	total	amount
of	memory	exported	by	the	given	destSpace.
Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_INCREMENT
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
VI_ATTR_SRC_INCREMENT
VI_EVENT_IO_COMPLETION
viMove/viMoveEx

viMoveIn8/viMoveIn16/viMoveIn32/viMoveIn64,
viMoveIn8Ex/viMoveIn16Ex/viMoveIn32Ex/viMoveIn64Ex
Purpose
Moves	a	block	of	data	from	the	specified	address	space	and	offset	to
local	memory.

C	Syntax
ViStatus	viMoveIn8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt8	buf8)
ViStatus	viMoveIn16(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt16	buf16)
ViStatus	viMoveIn32(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt32	buf32)
ViStatus	viMoveIn64(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt64	buf64)
ViStatus	viMoveIn8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViBusSize	length,	ViAUInt8	buf8)
ViStatus	viMoveIn16Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViBusSize	length,	ViAUInt16	buf16)
ViStatus	viMoveIn32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViBusSize	length,	ViAUInt32	buf32)
ViStatus	viMoveIn64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViBusSize	length,	ViAUInt64	buf64)

Visual	Basic	Syntax
viMoveIn8&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,	buf8
as	Byte)
viMoveIn16&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,
buf16%)
viMoveIn32&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,
buf32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

space IN Specifies	the	address	space.
Refer	to	the	table	included	in	the

Description	section.

offset IN Offset	(in	bytes)	of	the	starting
address	to	read.	For

viMoveInXX()	operations,	this	is
a	32-bit	value	for	32-bit

applications	and	a	64-bit	value
for	64-bit	applications.	For

viMoveInXXEx()	operations,	this
is	always	a	64-bit	value.

length IN Number	of	elements	to	transfer,
where	the	data	width	of	the

elements	to	transfer	is	identical
to	data	width	(8,	16,	32,	or	64

bits).

buf8,
buf16,
buf32,	or
buf64

OUT Data	read	from	bus	(8	bits	for
viMoveIn8[Ex](),	16	bits	for
viMoveIn16[Ex](),	32	bits	for

viMoveIn32[Ex](),	and	64	bits	for
viMoveIn64[Ex]()).

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SPACE Invalid	address
space	specified.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_NSUP_OFFSET Specified	offset	is

not	accessible
from	this
hardware.

VI_ERROR_NSUP_WIDTH Specified	width	is
not	supported	by
this	hardware.

VI_ERROR_INV_LENGTH Invalid	length
specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified
offset	is	not

properly	aligned
for	the	access
width	of	the
operation.

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

Description
The	viMoveInXX[Ex]()	operations	use	the	specified	address	space	to	read
in	8,	16,	32,	or	64	bits	of	data,	respectively,	from	the	specified	offset.
These	operations	do	not	require	viMapAddress()	to	be	called	prior	to	their
invocation.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Value Description

VXI,	VME,	and
GPIB-VXI

VI_A16_SPACE	(1)
VI_A24_SPACE	(2)
VI_A32_SPACE	(3)
VI_A64_SPACE	(4)

PXI	INSTR VI_PXI_CFG_SPACE	(10)
VI_PXI_BAR0_SPACE	(11)	to
VI_PXI_BAR5_SPACE	(16)

PXI	MEMACC VI_PXI_ALLOC_SPACE	(9)

FireWire	INSTR VI_FIREWIRE_DFLT_SPACE	(5)

For	these	operations,	VISA	ignores	the	attribute
VI_ATTR_DEST_INCREMENT	and	increments	the	local	buffer	address
for	each	element.	It	is	valid	for	the	VISA	driver	to	copy	the	data	into	the
user	buffer	at	any	width	it	wants.	In	other	words,	even	if	the	width	is	a
byte	(8-bit),	the	VISA	driver	can	perform	32-bit	PCI	burst	accesses
because	it	is	just	memory,	to	improve	throughput.

INSTR	Specific
Notice	that	the	offset	parameter	to	these	operations	for	an	INSTR
Resource	is	the	offset	address	relative	to	the	device's	allocated	address
base	for	the	corresponding	address	space	that	was	specified.	For
example,	if	space	specifies	VI_A16_SPACE,	then	offset	specifies	the
offset	from	the	logical	address	base	address	of	the	specified	VXI	device.
If	space	specifies	VI_A24_SPACE	or	VI_A32_SPACE,	then	offset
specifies	the	offset	from	the	base	address	of	the	VXI	device's	memory
space	allocated	by	the	VXI	Resource	Manager	within	VXI	A24	or	A32
space.
Notice	also	that	the	length	specified	in	the	viMoveInXX()	operations	for
an	INSTR	Resource	is	the	number	of	elements	(of	the	size
corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of
memory	exported	by	the	device	in	the	given	space.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
For	a	MEMACC	Resource,	the	offset	parameter	specifies	an	absolute
address.
Notice	also	that	the	length	parameter	to	these	operations	for	a	MEMACC
Resource	is	the	number	of	elements	(of	the	size	corresponding	to	the
operation)	to	transfer,	beginning	at	the	specified	offset.	Therefore,	offset
+	length*size	cannot	exceed	the	total	amount	of	memory	available	in	the
given	space.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_INCREMENT
VI_ATTR_FIREWIRE_SRC_UPPER_OFFSET
viMoveOut8/viMoveOut16/viMoveOut32/viMoveOut64,
viMoveOut8Ex/viMoveOut16Ex/viMoveOut32Ex/viMoveOut64Ex

viMoveOut8/viMoveOut16/viMoveOut32/viMoveOut64,
viMoveOut8Ex/viMoveOut16Ex/viMoveOut32Ex/viMoveOut64Ex
Purpose
Moves	a	block	of	data	from	local	memory	to	the	specified	address	space
and	offset.

C	Syntax
ViStatus	viMoveOut8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt8	buf8)
ViStatus	viMoveOut16(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt16	buf16)
ViStatus	viMoveOut32(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt32	buf32)
ViStatus	viMoveOut64(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,
ViBusSize	length,	ViAUInt64	buf64)
ViStatus	viMoveOut8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViBusSize	length,	ViAUInt8	buf8)
ViStatus	viMoveOut16Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64
offset,	ViBusSize	length,	ViAUInt16	buf16)
ViStatus	viMoveOut32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64
offset,	ViBusSize	length,	ViAUInt32	buf32)
ViStatus	viMoveOut64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64
offset,	ViBusSize	length,	ViAUInt64	buf64)

Visual	Basic	Syntax
viMoveOut8&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,buf8
as	Byte)
viMoveOut16&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,
buf16%)
viMoveOut32&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	length&,
buf32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

space IN Specifies	the	address	space.
Refer	to	the	table	included	in	the

Description	section.

offset IN Offset	(in	bytes)	of	the	device	to
write	to.	For	viMoveOutXX()

operations,	this	is	a	32-bit	value
for	32-bit	applications	and	a	64-
bit	value	for	64-bit	applications.

For	viMoveOutXXEx()
operations,	this	is	always	a	64-

bit	value.

length IN Number	of	elements	to	transfer,
where	the	data	width	of	the

elements	to	transfer	is	identical
to	data	width	(8,	16,	32,	or	64

bits).

buf8,
buf16,
buf32,	or
buf64

IN Data	to	write	to	bus	(8	bits	for
viMoveOut8[Ex](),	16	bits	for
viMoveOut16[Ex](),	32	bits	for
viMoveOut32[Ex](),	and	64	bits

for	viMoveOut64[Ex]()).

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SPACE Invalid	address
space	specified.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_NSUP_OFFSET Specified	offset	is

not	accessible
from	this
hardware.

VI_ERROR_NSUP_WIDTH Specified	width	is
not	supported	by
this	hardware.

VI_ERROR_INV_LENGTH Invalid	length
specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified
offset	is	not

properly	aligned
for	the	access
width	of	the
operation.

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

Description
The	viMoveOutXX[Ex]()	operations	use	the	specified	address	space	to
write	8,	16,	32,	or	64	bits	of	data,	respectively,	to	the	specified	offset.
These	operations	do	not	require	viMapAddress()	to	be	called	prior	to	their
invocation.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Interface Values

VXI,	VME,	and
GPIB-VXI

VI_A16_SPACE	(1)
VI_A24_SPACE	(2)
VI_A32_SPACE	(3)
VI_A64_SPACE	(4)

PXI	INSTR VI_PXI_CFG_SPACE	(10)
VI_PXI_BAR0_SPACE	(11)	to
VI_PXI_BAR5_SPACE	(16)

PXI	MEMACC VI_PXI_ALLOC_SPACE	(9)

FireWire	INSTR VI_FIREWIRE_DFLT_SPACE	(5)

Note		viMoveOut8	and	viMoveOut16	do	not	support	FireWire
INSTR.

For	these	operations,	VISA	ignores	the	attribute
VI_ATTR_SRC_INCREMENT	and	increments	the	local	buffer	address	for
each	element.	It	is	valid	for	the	VISA	driver	to	copy	the	data	out	of	the
user	buffer	at	any	width	it	wants.	In	other	words,	even	if	the	width	is	a
byte	(8-bit),	the	VISA	driver	can	perform	32-bit	PCI	burst	accesses
because	it	is	just	memory,	to	improve	throughput.

INSTR	Specific
Notice	that	the	offset	parameter	to	these	operations	for	an	INSTR
Resource	is	the	offset	address	relative	to	the	device's	allocated	address
base	for	the	corresponding	address	space	that	was	specified.	For
example,	if	space	specifies	VI_A16_SPACE,	then	offset	specifies	the
offset	from	the	logical	address	base	address	of	the	specified	VXI	device.
If	space	specifies	VI_A24_SPACE	or	VI_A32_SPACE,	then	offset
specifies	the	offset	from	the	base	address	of	the	VXI	device's	memory
space	allocated	by	the	VXI	Resource	Manager	within	VXI	A24	or	A32
space.
Notice	also	that	the	length	specified	in	the	viMoveInXX()	operations	for
an	INSTR	Resource	is	the	number	of	elements	(of	the	size
corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of
memory	exported	by	the	device	in	the	given	space.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
For	a	MEMACC	Resource,	the	offset	parameter	specifies	an	absolute
address.
Notice	also	that	the	length	parameter	to	these	operations	for	a	MEMACC
Resource	is	the	number	of	elements	(of	the	size	corresponding	to	the
operation)	to	transfer,	beginning	at	the	specified	offset.	Therefore,	offset
+	length*size	cannot	exceed	the	total	amount	of	memory	available	in	the
given	space.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_DEST_INCREMENT
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
viMoveIn8/viMoveIn16/viMoveIn32/viMoveIn64,
viMoveIn8Ex/viMoveIn16Ex/viMoveIn32Ex/viMoveIn64Ex

viOpen
Purpose
Opens	a	session	to	the	specified	resource.

C	Syntax
ViStatus	viOpen(ViSession	sesn,	ViRsrc	rsrcName,	ViAccessMode
accessMode,	ViUInt32	openTimeout,	ViPSession	vi)

Visual	Basic	Syntax
viOpen&(ByVal	sesn&,	ByVal	rsrcName$,	ByVal	accessMode&,	ByVal
openTimeout&,	vi&)

Resource	Classes
VISA	Resource	Manager

Parameters
Name Direction Description

sesn IN Resource	Manager	session
(should	always	be	a	session

returned	from
viOpenDefaultRM()).

rsrcName IN Unique	symbolic	name	of	a
resource.	Refer	to	the

Description	section	for	more
information.

accessMode IN Specifies	the	mode	by
which	the	resource	is	to	be
accessed.	Refer	to	the

Description	section	for	valid
values.	If	the	parameter
value	is	VI_NULL,	the

session	uses	VISA-supplied
default	values.

openTimeout IN Specifies	the	maximum	time
period	(in	milliseconds)	that
this	operation	waits	before
returning	an	error.	This

does	not	set	the	I/O	timeout
–	to	do	that	you	must	call
viSetAttribute()	with	the

attribute
VI_ATTR_TMO_VALUE.

vi OUT Unique	logical	identifier
reference	to	a	session.

Return	Values
Completion	Codes Description

VI_SUCCESS Session	opened
successfully.

VI_SUCCESS_DEV_NPRESENT Session	opened
successfully,	but	the

device	at	the
specified	address	is
not	responding.

VI_WARN_CONFIG_NLOADED The	specified
configuration	either
does	not	exist	or

could	not	be	loaded;
using	VISA-specified

defaults.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_NSUP_OPER The	given	sesn
does	not	support
this	operation.
This	operation	is
supported	only	by

a	Resource
Manager	session.

VI_ERROR_INV_RSRC_NAME Invalid	resource
reference

specified.	Parsing
error.

VI_ERROR_INV_ACC_MODE Invalid	access
mode.

VI_ERROR_RSRC_NFOUND Insufficient
location

information	or
resource	not
present	in	the

system.

VI_ERROR_ALLOC Insufficient	system
resources	to	open

a	session.

VI_ERROR_RSRC_BUSY The	resource	is
valid,	but	VISA
cannot	currently

access	it.

VI_ERROR_RSRC_LOCKED Specified	type	of
lock	cannot	be

obtained	because
the	resource	is
already	locked
with	a	lock	type
incompatible	with

the	lock
requested.

VI_ERROR_TMO A	session	to	the
resource	could
not	be	obtained

within	the
specified

openTimeout
period.

VI_ERROR_LIBRARY_NFOUND A	code	library

required	by	VISA
could	not	be

located	or	loaded.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type
is	valid,	but	the

specified	interface
number	is	not
configured.

VI_ERROR_MACHINE_NAVAIL The	remote
machine	does	not
exist	or	is	not
accepting	any

connections.	If	the
NI-VISA	server	is
installed	and
running	on	the
remote	machine,
it	may	have	an
incompatible

version	or	may	be
listening	on	a
different	port.

VI_ERROR_NPERMISSION Access	to	the
remote	machine	is

denied.

Description
The	viOpen()	operation	opens	a	session	to	the	specified	resource.	It
returns	a	session	identifier	that	can	be	used	to	call	any	other	operations
of	that	resource.	The	address	string	passed	to	viOpen()	must	uniquely
identify	a	resource.	Refer	to	VISA	Resource	Syntax	and	Examples	for	the
syntax	of	resource	strings	and	examples.
For	the	parameter	accessMode,	the	value	VI_EXCLUSIVE_LOCK	(1)	is
used	to	acquire	an	exclusive	lock	immediately	upon	opening	a	session;	if
a	lock	cannot	be	acquired,	the	session	is	closed	and	an	error	is	returned.
The	value	VI_LOAD_CONFIG	(4)	is	used	to	configure	attributes	to	values
specified	by	some	external	configuration	utility.	Multiple	access	modes
can	be	used	simultaneously	by	specifying	a	bit-wise	OR	of	the	values
other	than	VI_NULL.	NI-VISA	currently	supports	VI_LOAD_CONFIG	only
on	Serial	INSTR	sessions.
All	resource	strings	returned	by	viFindRsrc()	will	always	be	recognized	by
viOpen().	However,	viFindRsrc()	will	not	necessarily	return	all	strings	that
you	can	pass	to	viParseRsrc()	or	viOpen().	This	is	especially	true	for
network	and	TCPIP	resources.
Related	Topics
viClose
viFindRsrc
viOpenDefaultRM
viParseRsrc
VISA	Resource	Manager
VISA	Resource	Template

viOpenDefaultRM
Purpose
This	function	returns	a	session	to	the	Default	Resource	Manager
resource.

C	Syntax
ViStatus	viOpenDefaultRM(ViPSession	sesn)

Visual	Basic	Syntax
viOpenDefaultRM&(sesn&)

Resource	Classes
VISA	Resource	Manager

Parameters
Name Direction Description

sesn OUT Unique	logical	identifier	to	a
Default	Resource	Manager

session.

Return	Values
Completion	Codes Description

VI_SUCCESS Session	to	the
Default	Resource
Manager	resource
created	successfully.

VI_WARN_CONFIG_NLOADED At	least	one
configured	Passport
module	could	not	be

loaded.

	
Error	Codes Description

VI_ERROR_SYSTEM_ERROR The	VISA	system
failed	to	initialize.

VI_ERROR_ALLOC Insufficient	system
resources	to	create
a	session	to	the
Default	Resource
Manager	resource.

VI_ERROR_INV_SETUP Some
implementation-

specific
configuration	file	is
corrupt	or	does	not

exist.

VI_ERROR_LIBRARY_NFOUND A	code	library
required	by	VISA

could	not	be	located
or	loaded.

Description
The	viOpenDefaultRM()	function	must	be	called	before	any	VISA
operations	can	be	invoked.	The	first	call	to	this	function	initializes	the
VISA	system,	including	the	Default	Resource	Manager	resource,	and
also	returns	a	session	to	that	resource.	Subsequent	calls	to	this	function
return	unique	sessions	to	the	same	Default	Resource	Manager	resource.
When	a	Resource	Manager	session	is	passed	to	viClose(),	not	only	is	that
session	closed,	but	also	all	find	lists	and	device	sessions	(which	that
Resource	Manager	session	was	used	to	create)	are	closed.
Related	Topics
viClose
viFindRsrc
viOpen
VISA	Resource	Manager
VISA	Resource	Template

viOut8/viOut16/viOut32/viOut64,
viOut8Ex/viOut16Ex/viOut32Ex/viOut64Ex
Purpose
Writes	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	to	the	specified	memory
space	and	offset.

C	Syntax
ViStatus	viOut8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViUInt8
val8)
ViStatus	viOut16(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViUInt16
val16)
ViStatus	viOut32(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViUInt32
val32)
ViStatus	viOut64(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset,	ViUInt64
val64)
ViStatus	viOut8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViUInt8	val8)
ViStatus	viOut16Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViUInt16	val16)
ViStatus	viOut32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViUInt32	val32)
ViStatus	viOut64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64	offset,
ViUInt64	val64)

Visual	Basic	Syntax
viOut8&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	val8	as	Byte)
viOut16&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	val16%)
viOut32&(ByVal	vi&,	ByVal	space%,	ByVal	offset&,	ByVal	val32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

space IN Specifies	the	address	space.
Refer	to	the	table	included	in	the
Description	section	for	more

information.

offset IN Offset	(in	bytes)	of	the	address
or	register	to	which	to	write.	For
viOutXX()	operations,	this	is	a

32-bit	value	for	32-bit
applications	and	a	64-bit	value
for	64-bit	applications.	For

viOutXXEx()	operations,	this	is
always	a	64-bit	value.

val8,
val16,
val32,	or
val64

IN Data	to	write	to	bus	(8	bits	for
viOut8[Ex](),	16	bits	for
viOut16[Ex](),	32	bits	for

viOut32[Ex](),	and	64	bits	for
viOut64[Ex]()).

Return	Values

Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SPACE Invalid	address
space	specified.

VI_ERROR_INV_OFFSET Invalid	offset
specified.

VI_ERROR_NSUP_OFFSET Specified	offset	is
not	accessible

from	this
hardware.

VI_ERROR_NSUP_WIDTH Specified	width	is
not	supported	by
this	hardware.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified
offset	is	not

properly	aligned
for	the	access
width	of	the
operation.

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

Description
The	viOutXX[Ex]()	operations	use	the	specified	address	space	to	write	8,
16,	32,	or	64	bits	of	data,	respectively,	from	the	specified	offset.	These
operations	do	not	require	viMapAddress()	to	be	called	prior	to	their
invocation.
The	following	table	lists	the	valid	entries	for	specifying	address	space.

Value Description

VXI,	VME,	and
GPIB-VXI

VI_A16_SPACE	(1)
VI_A24_SPACE	(2)
VI_A32_SPACE	(3)
VI_A64_SPACE	(4)

PXI	INSTR VI_PXI_CFG_SPACE	(10)
VI_PXI_BAR0_SPACE	(11)	to
VI_PXI_BAR5_SPACE	(16)

PXI	MEMACC VI_PXI_ALLOC_SPACE	(9)

FireWire	INSTR VI_FIREWIRE_DFLT_SPACE	(5)

Note		viOut8	and	viOut16	do	not	support	FireWire	INSTR.

INSTR	Specific
Notice	that	the	offset	parameter	to	these	operations	for	an	INSTR
Resource	is	the	offset	address	relative	to	the	device's	allocated	address
base	for	the	corresponding	address	space	that	was	specified.	For
example,	if	space	specifies	VI_A16_SPACE,	then	offset	specifies	the
offset	from	the	logical	address	base	address	of	the	specified	VXI	device.
If	space	specifies	VI_A24_SPACE	or	VI_A32_SPACE,	then	offset
specifies	the	offset	from	the	base	address	of	the	VXI	device's	memory
space	allocated	by	the	VXI	Resource	Manager	within	VXI	A24	or	A32
space.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

MEMACC	Specific
For	a	MEMACC	Resource,	the	offset	parameter	specifies	an	absolute
address.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_FIREWIRE_DEST_UPPER_OFFSET
viIn8/viIn16/viIn32/viIn64,	viIn8Ex/viIn16Ex/viIn32Ex/viIn64Ex

viParseRsrc
Purpose
Parse	a	resource	string	to	get	the	interface	information.

C	Syntax
ViStatus	viParseRsrc(ViSession	sesn,	ViRsrc	rsrcName,	ViPUInt16	intfType,
ViPUInt16	intfNum)

Visual	Basic	Syntax
viParseRsrc&(ByVal	sesn&,	ByVal	rsrcName$,	intfType%,	intfNum%)

Resource	Classes
VISA	Resource	Manager

Parameters
Name Direction Description

sesn IN Resource	Manager	session
(should	always	be	the	Default
Resource	Manager	for	VISA

returned	from
viOpenDefaultRM()).

rsrcName IN Unique	symbolic	name	of	a
resource.

intfType OUT Interface	type	of	the	given
resource	string.

intfNum OUT Board	number	of	the	interface
of	the	given	resource	string.

Return	Values
Completion	Codes Description

VI_SUCCESS Resource	string	is	valid.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_NSUP_OPER The	given	sesn
does	not	support
this	operation.	For

VISA,	this
operation	is

supported	only	by
the	Default
Resource

Manager	session.

VI_ERROR_INV_RSRC_NAME Invalid	resource
reference

specified.	Parsing
error.

VI_ERROR_RSRC_NFOUND Insufficient
location

information	or
resource	not
present	in	the

system.

VI_ERROR_ALLOC Insufficient	system
resources	to

parse	the	string.

VI_ERROR_LIBRARY_NFOUND A	code	library
required	by	VISA
could	not	be

located	or	loaded.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type
is	valid,	but	the

specified	interface
number	is	not
configured.

Description
This	operation	parses	a	resource	string	to	verify	its	validity.	It	should
succeed	for	all	strings	returned	by	viFindRsrc()	and	recognized	by
viOpen().	This	operation	is	useful	if	you	want	to	know	what	interface	a
given	resource	descriptor	would	use	without	actually	opening	a	session
to	it.	Refer	to	VISA	Resource	Syntax	and	Examples	for	the	syntax	of
resource	strings	and	examples.
The	values	returned	in	intfType	and	intfNum	correspond	to	the	attributes
VI_ATTR_INTF_TYPE	and	VI_ATTR_INTF_NUM.	These	values	would	be
the	same	if	a	user	opened	that	resource	with	viOpen()	and	queried	the
attributes	with	viGetAttribute().
Calling	viParseRsrc()	with	"VXI::1::INSTR"	will	produce	the	same	results
as	invoking	it	with	"vxi::1::instr".
Related	Topics
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
viFindRsrc
viOpen
viParseRsrcEx
VISA	Resource	Template

viParseRsrcEx
Purpose
Parse	a	resource	string	to	get	extended	interface	information.

C	Syntax
ViStatus	viParseRsrcEx	(ViSession	rmSesn,	ViRsrc	rsrcName,	ViPUInt16
intfType,	ViPUInt16	intfNum,	ViChar	rsrcClass[],	ViChar
expandedUnaliasedName[],	ViChar	aliasIfExists[]);

Visual	Basic	Syntax
viParseRsrcEx&	(ByVal	sesn&,	ByVal	desc$,	intfType%,	intfNum%,	ByVal
rsrcClass$,	ByVal	expandedUnaliasedName$,	ByVal	aliasIfExists$)

Resource	Classes
VISA	Resource	Manager

Parameters

Name Direction Description

sesn IN Resource	Manager	session
(should	always	be	the	Default
Resource	Manager	for	VISA
returned	from
viOpenDefaultRM()).

RsrcName IN Unique	symbolic	name	of	a
resource.

intfType OUT Interface	type	of	the	given
resource	string.

intfNum OUT Board	number	of	the	interface
of	the	given	resource	string.

RsrcClass OUT Specifies	the	resource	class
(for	example,	"INSTR")	of	the
given	resource	string.

Expanded
UnaliasedName

OUT This	is	the	expanded	version
of	the	given	resource	string.
The	format	should	be	similar
to	the	VISA-defined	canonical
resource	name.

AliasIfExists OUT Specifies	the	user-defined
alias	for	the	given	resource
string.

Return	Values
Completion	Codes Description

VI_SUCCESS Resource	string	is
valid.

VI_WARN_EXT_FUNC_NIMPL The	operation
succeeded,	but	a

lower	level	driver	did
not	implement	the

extended
functionality.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_NSUP_OPER The	given	sesn
does	not	support
this	operation.	For

VISA,	this
operation	is

supported	only	by
the	Default
Resource

Manager	session.

VI_ERROR_INV_RSRC_NAME Invalid	resource
reference

specified.	Parsing
error.

VI_ERROR_RSRC_NFOUND Insufficient
location

information	or

resource	not
present	in	the

system.

VI_ERROR_ALLOC Insufficient	system
resources	to

parse	the	string.

VI_ERROR_LIBRARY_NFOUND A	code	library
required	by	VISA
could	not	be

located	or	loaded.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type
is	valid,	but	the

specified	interface
number	is	not
configured.

Description
This	operation	parses	a	resource	string	to	verify	its	validity.	It	should
succeed	for	all	strings	returned	by	viFindRsrc()	and	recognized	by
viOpen().	This	operation	is	useful	if	you	want	to	know	what	interface	a
given	resource	descriptor	would	use	without	actually	opening	a	session
to	it.	Refer	to	VISA	Resource	Syntax	and	Examples	for	the	syntax	of
resource	strings	and	examples.
The	values	returned	in	intfType	and	intfNum	correspond	to	the	attributes
VI_ATTR_INTF_TYPE	and	VI_ATTR_INTF_NUM.	These	values	would	be
the	same	if	a	user	opened	that	resource	with	viOpen()	and	queried	the
attributes	with	viGetAttribute().
The	value	returned	in	unaliasedExpandedRsrcName	should	in	most
cases	be	identical	to	the	VISA-defined	canonical	resource	name.
However,	there	may	be	cases	where	the	canonical	name	includes
information	that	the	driver	may	not	know	until	the	resource	has	actually
been	opened.	In	these	cases,	the	value	returned	in	this	parameter	must
be	semantically	similar.
The	value	returned	in	aliasIfExists	allows	programmatic	access	to	user-
defined	aliases.
Calling	viParseRsrc()	with	"VXI::1::INSTR"	will	produce	the	same	results
as	invoking	it	with	"vxi::1::instr".

Related	Topics
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
viFindRsrc
viOpen
viParseRsrc
VISA	Resource	Template

viPeek8/viPeek16/viPeek32/viPeek64
Purpose
Reads	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	from	the	specified	address.

C	Syntax
void	viPeek8(ViSession	vi,	ViAddr	addr,	ViPUInt8	val8)
void	viPeek16(ViSession	vi,	ViAddr	addr,	ViPUInt16	val16)
void	viPeek32(ViSession	vi,	ViAddr	addr,	ViPUInt32	val32)
void	viPeek64(ViSession	vi,	ViAddr	addr,	ViPUInt64	val64)

Visual	Basic	Syntax
viPeek8(ByVal	vi&,	ByVal	addr&,	val8	as	Byte)
viPeek16(ByVal	vi&,	ByVal	addr&,	val16%)
viPeek32(ByVal	vi&,	ByVal	addr&,	val32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

addr IN Source	address	to	read	the
value.

val8,
val16,
val32,	or
val64

OUT Data	read	from	bus	(8	bits	for
viPeek8(),	16	bits	for	viPeek16(),
32	bits	for	viPeek32(),	and	64

bits	for	viPeek64()).

Return	Values
None

Description
The	viPeekXX()	operations	read	an	8-bit,	16-bit,	32-bit	value,	or	64-bit
value,	respectively,	from	the	address	location	specified	in	addr.	The
address	must	be	a	valid	memory	address	in	the	current	process	mapped
by	a	previous	viMapAddress()	call.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

Note		If	you	use	NI	Spy	to	debug	these	operations,	enable	the
Force	peek/poke	calls	to	appear	in	NI	Spy	option	in
Measurement	&	Automation	Explorer	(Windows),	visaconf	(Linux),
or	NI-VISA	Configuration	(Mac	OS	X).	If	you	do	not	enable	this
option,	NI	Spy	might	not	log	these	operations.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET
VI_ATTR_WIN_ACCESS
viMapAddress/viMapAddressEx
viPoke8/viPoke16/viPoke32/viPoke64

viPoke8/viPoke16/viPoke32/viPoke64
Purpose
Writes	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	to	the	specified	address.

C	Syntax
void	viPoke8(ViSession	vi,	ViAddr	addr,	ViUInt8	val8)
void	viPoke16(ViSession	vi,	ViAddr	addr,	ViUInt16	val16)
void	viPoke32(ViSession	vi,	ViAddr	addr,	ViUInt32	val32)
void	viPoke64(ViSession	vi,	ViAddr	addr,	ViUInt64	val64)

Visual	Basic	Syntax
viPoke8(ByVal	vi&,	ByVal	addr&,	ByVal	val8	as	Byte)
viPoke16(ByVal	vi&,	ByVal	addr&,	ByVal	val16%)
viPoke32(ByVal	vi&,	ByVal	addr&,	ByVal	val32&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

addr IN Destination	address	to	store	the
value.

val8,
val16,
val32,	or
val64

IN Value	to	be	stored	(8	bits	for
viPoke8(),	16	bits	for	viPoke16(),
32	bits	for	viPoke32(),	64	bits	for

viPoke64()).

Return	Values
None

Description
The	viPokeXX()	operations	store	the	content	of	an	8-bit,	16-bit,	32-bit
value,	or	64-bit	value,	respectively,	to	the	address	pointed	to	by	addr.	The
address	must	be	a	valid	memory	address	in	the	current	process	mapped
by	a	previous	viMapAddress()	call.
To	specify	the	full	48-bit	offset	for	these	methods	on	a	FireWire	INSTR
session,	a	call	to	viSetAttribute	using
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET	is	needed	prior	to	calling
these	methods.	Subsequent	calls	to	viSetAttribute	are	needed	only	if	the
upper	16	bits	of	the	FireWire	offset	change.

Note		If	you	use	NI	Spy	to	debug	these	operations,	enable	the
Force	peek/poke	calls	to	appear	in	NI	Spy	option	in
Measurement	&	Automation	Explorer	(Windows),	visaconf	(Linux),
or	NI-VISA	Configuration	(Mac	OS	X).	If	you	do	not	enable	this
option,	NI	Spy	might	not	log	these	operations.

Related	Topics
INSTR	Resource
MEMACC	Resource
VI_ATTR_FIREWIRE_WIN_UPPER_OFFSET
VI_ATTR_WIN_ACCESS
viMapAddress/viMapAddressEx
viPeek8/viPeek16/viPeek32/viPeek64

viPrintf
Purpose
Converts,	formats,	and	sends	the	parameters	(designated	by...)	to	the
device	as	specified	by	the	format	string.

C	Syntax
ViStatus	viPrintf(ViSession	vi,	ViString	writeFmt,	...)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

writeFmt IN String	describing	the	format	for
arguments.

... IN Parameters	to	which	the	format
string	is	applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Parameters	were	successfully
formatted.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform	write
operation	because	of	I/O

error.

VI_ERROR_TMO Timeout	expired	before
write	operation
completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	string	is

invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
writeFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
The	viPrintf()	operation	sends	data	to	a	device	as	specified	by	the	format
string.	Before	sending	the	data,	the	operation	formats	the	arguments	in
the	parameter	list	as	specified	in	the	writeFmt	string.	The	viWrite()
operation	performs	the	actual	low-level	I/O	to	the	device.	As	a	result,	you
should	not	use	the	viWrite()	and	viPrintf()	operations	in	the	same	session.
The	writeFmt	string	can	include	regular	character	sequences,	special
formatting	characters,	and	special	format	specifiers.	The	regular
characters	(including	white	spaces)	are	written	to	the	device	unchanged.
The	special	characters	consist	of	'\'	(backslash)	followed	by	a	character.
The	format	specifier	sequence	consists	of	'%'	(percent)	followed	by	an
optional	modifier	(flag),	followed	by	a	format	code.

Special	Formatting	Characters
Special	formatting	character	sequences	send	special	characters.	The
following	table	lists	the	special	characters	and	describes	what	they	send
to	the	device.

Formatting
Character Character	Sent	to	Device

\n Sends	the	ASCII	LF	character.	The	END
identifier	will	also	be	automatically	sent.

\r Sends	an	ASCII	CR	character.

\t Sends	an	ASCII	TAB	character.

\### Sends	the	ASCII	character	specified	by
the	octal	value.

\x## Sends	the	ASCII	character	specified	by
the	hexadecimal	value.

\" Sends	the	ASCII	double-quote	(")
character.

\\ Sends	a	backslash	(\)	character.

Format	Specifiers
The	format	specifiers	convert	the	next	parameter	in	the	sequence
according	to	the	modifier	and	format	code,	after	which	the	formatted	data
is	written	to	the	specified	device.	The	format	specifier	takes	the	following
syntax:
%[modifiers]format	code
where	format	code	specifies	which	data	type	the	argument	is	represented
in.	Modifiers	are	optional	codes	that	describe	the	target	data.
In	the	following	tables,	a	'd'	format	code	refers	to	all	conversion	codes	of
type	integer	('d',	'i',	'o',	'u',	'x',	'X'),	unless	specified	as	%d	only.	Similarly,
an	'f'	format	code	refers	to	all	conversion	codes	of	type	float	('f',	'e',	'E',	'g',
'G'),	unless	specified	as	%f	only.
Every	conversion	command	starts	with	the	%	character	and	ends	with	a
conversion	character	(format	code).	Between	the	%	character	and	the
format	code,	the	following	modifiers	can	appear	in	the	sequence.

ANSI	C	Standard	Modifiers

Modifier Supported
with
Format
Code

Description

An	integer
specifying
field	width.

d,	f,	s
format
codes

This	specifies	the	minimum
field	width	of	the	converted
argument.	If	an	argument	is
shorter	than	the	field	width,
it	will	be	padded	on	the	left
(or	the	right	if	the	-	flag	is

present).
Special	case:

For	the	@H,	@Q,	and	@B
flags,	the	field	width

includes	the	#H,	#Q,	and	#B
strings,	respectively.
An	asterisk	(*)	may	be
present	in	lieu	of	a	field
width	modifier,	in	which

case	an	extra	arg	is	used.
This	arg	must	be	an	integer
representing	the	field	width.

An	integer
specifying
precision.

d,	f,	s
format
codes

The	precision	string
consists	of	a	string	of

decimal	digits.	A	decimal
point	(.)	must	prefix	the
precision	string.	The

precision	string	specifies	the
following:

a.	 The	minimum
number	of	digits	to
appear	for	the	@1,
@H,	@Q,	and	@B
flags	and	the	i,	o,	u,

x,	and	X	format
codes.

b.	 The	maximum
number	of	digits
after	the	decimal
point	in	case	of	f
format	codes.

c.	 The	maximum
numbers	of

characters	for	the
string	(s)	specifier.

d.	 Maximum	significant
digits	for	g	format

code.
An	asterisk	(*)	may	be

present	in	lieu	of	a	precision
modifier,	in	which	case	an
extra	arg	is	used.	This	arg

must	be	an	integer
representing	the	precision

of	a	numeric	field.

An
argument
length
modifier.
h,	l,	L,	z,
and	Z	are
legal

values.	(z
and	Z	are
not	ANSI

C
standard
modifiers.)

h	(d,	b,	B
format
codes)

l	(d,	f,	b,	B
format
codes)

L	(f	format
code)
z	(b,	B
format
codes)
Z	(b,	B
format
codes)

The	argument	length
modifiers	specify	one	of	the

following:
a.	 The	h	modifier

promotes	the
argument	to	a	short
or	unsigned	short,
depending	on	the
format	code	type.

b.	 The	l	modifier
promotes	the

argument	to	a	long
or	unsigned	long.

c.	 The	L	modifier
promotes	the

argument	to	a	long
double	parameter.

d.	 The	z	modifier
promotes	the
argument	to	an
array	of	floats.

e.	 The	Z	modifier
promotes	the
argument	to	an
array	of	doubles.

Enhanced	Modifiers	to	ANSI	C	Standards

Modifier
Supported
with
Format
Code

Description

A	comma
(,)

followed
by	an

integer	n,
where	n
represents
the	array
size.

%d	(plus
variants)
and	%f
only

The	corresponding
argument	is	interpreted	as	a
reference	to	the	first	element
of	an	array	of	size	n.	The
first	n	elements	of	this	list
are	printed	in	the	format

specified	by	the	format	code.
An	asterisk	(*)	may	be

present	after	the	comma	(,)
modifier,	in	which	case	an
extra	arg	is	used.	This	arg

must	be	an	integer
representing	the	array	size

of	the	given	type.

@1 %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	NR1	compatible

number,	which	is	an	integer
without	any	decimal	point

(for	example,	123).

@2 %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	NR2	compatible
number.	The	NR2	number
has	at	least	one	digit	after
the	decimal	point	(for
example,	123.45).

@3 %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	NR3	compatible

number.	An	NR3	number	is

a	floating	point	number
represented	in	an

exponential	form	(for
example,	1.2345E-67).

@H %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	<HEXADECIMAL
NUMERIC	RESPONSE
DATA>.	The	number	is
represented	in	a	base	of
sixteen	form.	Only	capital
letters	should	represent

numbers.	The	number	is	of
form	#HXXX..,	where	XXX..
is	a	hexadecimal	number
(for	example,	#HAF35B).

@Q %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	<OCTAL	NUMERIC
RESPONSE	DATA>.	The
number	is	represented	in	a
base	of	eight	form.	The
number	is	of	the	form

#QYYY..,	where	YYY..	is	an
octal	number	(for	example,

#Q71234).

@B %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	<BINARY	NUMERIC
RESPONSE	DATA>.	The
number	is	represented	in	a
base	two	form.	The	number
is	of	the	form	#BZZZ..,	where
ZZZ..	is	a	binary	number	(for
example,	#B011101001).

The	following	are	the	allowed	format	code	characters.	A	format	specifier
sequence	should	include	one	and	only	one	format	code.

ANSI	C	Standard	Format	Codes
%	Send	the	ASCII	percent	(%)	character.
c	Argument	type:	A	character	to	be	sent.
d	Argument	type:	An	integer.

Modifier Interpretation

Default
functionality

Print	an	integer	in	NR1	format	(an
integer	without	a	decimal	point).

@2	or	@3 The	integer	is	converted	into	a
floating	point	number	and	output	in

the	correct	format.

field	width Minimum	field	width	of	the	output
number.	Any	of	the	six	IEEE	488.2
modifiers	can	also	be	specified	with

field	width.

Length	modifier
l

arg	is	a	long	integer.

Length	modifier
h

arg	is	a	short	integer.

,array	size arg	points	to	an	array	of	integers	(or
long	or	short	integers,	depending	on
the	length	modifier)	of	size	array

size.	The	elements	of	this	array	are
separated	by	array	size	-	1	commas
and	output	in	the	specified	format.

f	Argument	type:	A	floating	point	number.

Modifier Interpretation

Default
functionality

Print	a	floating	point	number	in	NR2
format	(a	number	with	at	least	one

digit	after	the	decimal	point).

@1 Print	an	integer	in	NR1	format.	The
number	is	truncated.

@3 Print	a	floating	point	number	in	NR3
format	(scientific	notation).	Precision

can	also	be	specified.

field	width Minimum	field	width	of	the	output
number.	Any	of	the	six	IEEE	488.2
modifiers	can	also	be	specified	with

field	width.

Length	modifier
l

arg	is	a	double	float.

Length	modifier
L

arg	is	a	long	double.

,array	size arg	points	to	an	array	of	floats	(or
doubles	or	long	doubles,	depending
on	the	length	modifier)	of	size	array
size.	The	elements	of	this	array	are
separated	by	array	size	-	1	commas
and	output	in	the	specified	format.

s	Argument	type:	A	reference	to	a	NULL-terminated	string	that	is	sent	to
the	device	without	change.

Enhanced	Format	Codes
b	Argument	type:	A	location	of	a	block	of	data.

Flag	or
Modifier Interpretation

Default
functionality

The	data	block	is	sent	as	an	IEEE
488.2	<DEFINITE	LENGTH

ARBITRARY	BLOCK	RESPONSE
DATA>.	A	count	(long	integer)	must
appear	as	a	flag	that	specifies	the

number	of	elements	(by	default,	bytes)
in	the	block.	A	field	width	or	precision
modifier	is	not	allowed	with	this	format

code.

*	(asterisk) An	asterisk	may	be	present	instead	of
the	count.	In	such	a	case,	two	args	are
used,	the	first	of	which	is	a	long	integer
specifying	the	count	of	the	number	of

elements	in	the	data	block.	The
second	arg	is	a	reference	to	the	data

block.	The	size	of	an	element	is
determined	by	the	optional	length

modifier	(see	below),	and	the	default	is
byte	width.

Length
modifier	h

arg	points	to	an	array	of	unsigned
short	integers	(16	bits).	The	count
corresponds	to	the	number	of	words

rather	than	bytes.	The	data	is	swapped
and	padded	into	standard	IEEE	488.2

format,	if	native	computer
representation	is	different.

Length
modifier	l

arg	points	to	an	array	of	unsigned	long
integers.	The	count	specifies	the

number	of	longwords	(32	bits).	Each

longword	data	is	swapped	and	padded
into	standard	IEEE	488.2	format,	if
native	computer	representation	is

different.

Length
modifier	z

arg	points	to	an	array	of	floats.	The
count	specifies	the	number	of	floating
point	numbers	(32	bits).	The	numbers
are	represented	in	IEEE	754	format,	if
native	computer	representation	is

different.

Length
modifier	Z

arg	points	to	an	array	of	doubles.	The
count	specifies	the	number	of	double
floats	(64	bits).	The	numbers	will	be
represented	in	IEEE	754	format,	if
native	computer	representation	is

different.

B		Argument	type:	A	location	of	a	block	of	data.	The	functionality	is	similar
to	b,	except	the	data	block	is	sent	as	an	IEEE	488.2	<INDEFINITE
LENGTH	ARBITRARY	BLOCK	RESPONSE	DATA>.	This	format	involves
sending	an	ASCII	LF	character	with	the	END	indicator	set	after	the	last
byte	of	the	block.
The	END	indicator	is	not	appended	when	LF(\n)	is	part	of	a	binary	data
block,	as	with	%b	or	%B.
y		Argument	type:	A	location	of	a	block	of	binary	data.

Modifier Interpretation

Default
functionality

The	data	block	is	sent	as	raw	binary
data.	A	count	(long	integer)	must
appear	as	a	flag	that	specifies	the
number	of	elements	(by	default,
bytes)	in	the	block.	A	field	width	or
precision	modifier	is	not	allowed	with

this	format	code.

*	(asterisk) An	asterisk	may	be	present	instead

of	the	count.	In	such	a	case,	two
args	are	used,	the	first	of	which	is	a
long	integer	specifying	the	count	of
the	number	of	elements	in	the	data
block.	The	second	arg	is	a	reference
to	the	data	block.	The	size	of	an
element	is	determined	by	the

optional	length	modifier	(see	below),
and	the	default	is	byte	width.

Length	modifier
h

arg	points	to	an	array	of	unsigned
short	integers	(16	bits).	The	count
corresponds	to	the	number	of	words
rather	than	bytes.	If	the	optional	!ol
byte	order	modifier	is	present,	the
data	is	sent	in	little	endian	format;
otherwise,	the	data	is	sent	in

standard	IEEE	488.2	format.	The
data	will	be	byte	swapped	and
padded	as	appropriate	if	native

computer	representation	is	different.

Length	modifier
l

arg	points	to	an	array	of	unsigned
long	integers	(32	bits).	The	count
specifies	the	number	of	longwords
rather	than	bytes.	If	the	optional	!ol
byte	order	modifier	is	present,	the
data	is	sent	in	little	endian	format;
otherwise,	the	data	is	sent	in

standard	IEEE	488.2	format.	The
data	will	be	byte	swapped	and
padded	as	appropriate	if	native

computer	representation	is	different.

Length	modifier
z

arg	points	to	an	array	of	floats.	The
count	specifies	the	number	of

floating-point	numbers	(32	bits).	If	the
optional	!ol	modifier	is	present,	the
data	is	sent	in	little	endian	format;

otherwise,	the	data	sent	in	standard
IEEE	488.2	format.	The	data	will	be

byte	swapped	and	padded	as
appropriate	to	native	computer

format.

Length	modifier
Z

arg	points	to	an	array	of	doubles.
The	count	specifies	the	number	of
double	floats	(64	bits).	If	the	optional
!ol	modifier	is	present,	the	data	is

sent	in	little	endian	format;	otherwise,
the	data	sent	in	standard	IEEE	488.2

format.	The	data	will	be	byte
swapped	and	padded	as	appropriate

to	native	computer	format.

Byte	order
modifier	!ob

Data	is	sent	in	standard	IEEE	488.2
(big	endian)	format.	This	is	the

default	behavior	if	neither	!ob	nor	!ol
is	present.

Byte	order
modifier	!ol

Data	is	sent	in	little	endian	format.

Other	ANSI	C	Conversion	Codes
For	ANSI	C	compatibility,	VISA	also	supports	the	following	conversion
codes	for	output	codes:	'i',	'o',	'u',	'n',	'x',	'X',	'e',	'E',	'g',	'G',	and	'p'.	For
further	explanation	of	these	conversion	codes,	see	the	ANSI	C	Standard.
Also	refer	to	your	ANSI	C	documentation	for	information	on	the	printf
function.

Note		VISA	will	not	send	out	the	data	across	the	bus,	by	default,
until	a	'\n'	character	is	encountered	in	the	format	string	(not	the
data	stream).	You	can	modify	this	behavior	with	the
VI_ATTR_WR_BUF_OPER_MODE	attribute	or	with	the	viFlush()
operation.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_WR_BUF_OPER_MODE
viFlush
viScanf
viSPrintf
viVPrintf
viVSPrintf

viQueryf
Purpose
Performs	a	formatted	write	and	read	through	a	single	call	to	an	operation.

C	Syntax
ViStatus	viQueryf(ViSession	vi,	ViString	writeFmt,	ViString	readFmt,...)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP	INSTR,	TCPIP
SOCKET,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

writeFmt IN String	describing	the	format	of
write	arguments.

readFmt IN String	describing	the	format	of
read	arguments.

... IN/OUT Parameters	to	which	write	and
read	format	strings	are	applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Successfully	completed	the
query	operation.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_IO Could	not	perform
Read/Write	operation
because	of	I/O	error.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_TMO Timeout	occurred	before
Read/Write	operation

completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	or	readFmt

string	is	invalid.

VI_ERROR_NSUP_FMT The	format	specifier	is
not	supported	for	current

argument	type.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
This	operation	provides	a	mechanism	of	Send,	then	receive	typical	to	a
command	sequence	from	a	commander	device.	In	this	manner,	the
response	generated	from	the	command	can	be	read	immediately.
This	operation	is	a	combination	of	the	viPrintf()	and	viScanf()	operations.
The	first	n	arguments	corresponding	to	the	first	format	string	are
formatted	by	using	the	writeFmt	string,	then	sent	to	the	device.	The	write
buffer	is	flushed	immediately	after	the	write	portion	of	the	operation
completes.	After	these	actions,	the	response	data	is	read	from	the	device
into	the	remaining	parameters	(starting	from	parameter	n	+	1)	using	the
readFmt	string.

Note		Because	the	prototype	for	this	function	cannot	provide
complete	type-checking,	remember	that	all	output	parameters
must	be	passed	by	reference.

Related	Topics
INSTR	Resource
SOCKET	Resource
viPrintf
viScanf
viVQueryf

viRead
Purpose
Reads	data	from	device	or	interface	synchronously.

C	Syntax
ViStatus	viRead(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,	ViPUInt32
retCount)

Visual	Basic	Syntax
viRead&(ByVal	vi&,	ByVal	buf$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf OUT Location	of	a	buffer	to	receive
data	from	device.

count IN Number	of	bytes	to	be	read.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully	and	the
END	indicator	was

received	(for	interfaces
that	have	END
indicators).	This

completion	code	is
returned	regardless	of
whether	the	termination
character	is	received	or
the	number	of	bytes	read

is	equal	to	count.

VI_SUCCESS_TERM_CHAR The	specified
termination	character
was	read	but	no	END
indicator	was	received.
This	completion	code	is
returned	regardless	of
whether	the	number	of
bytes	read	is	equal	to

count.

VI_SUCCESS_MAX_CNT The	number	of	bytes
read	is	equal	to	count.
No	END	indicator	was

received	and	no
termination	character

was	read.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_OUTP_PROT_VIOL Device	reported
an	output

protocol	error
during	transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SETUP Unable	to	start
read	operation
because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_ASRL_PARITY A	parity	error
occurred	during

transfer.

VI_ERROR_ASRL_FRAMING A	framing	error
occurred	during

transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error
occurred	during

transfer.	A
character	was	not
read	from	the

hardware	before
the	next

character	arrived.

VI_ERROR_IO An	unknown	I/O
error	occurred
during	transfer.

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
The	viRead()	operation	synchronously	transfers	data.	The	data	read	is	to
be	stored	in	the	buffer	represented	by	buf.	This	operation	returns	only
when	the	transfer	terminates.	Only	one	synchronous	read	operation	can
occur	at	any	one	time.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viBufRead
viReadAsync
viReadToFile
viWrite

viReadAsync
Purpose
Reads	data	from	device	or	interface	asynchronously.

C	Syntax
ViStatus	viReadAsync(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,	ViPJobId
jobId)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf OUT Location	of	a	buffer	to	receive
data	from	device.

count IN Number	of	bytes	to	be	read.

jobId OUT Job	ID	of	this	asynchronous
read	operation.

Return	Values
Completion	Codes Description

VI_SUCCESS Asynchronous	read	operation
successfully	queued.

VI_SUCCESS_SYNC Read	operation	performed
synchronously.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_QUEUE_ERROR Unable	to	queue	read
operation	(usually	due	to
the	I/O	completion	event
not	being	enabled	or

insufficient	space	in	the
session's	queue).

VI_ERROR_IN_PROGRESS Unable	to	queue	the
asynchronous	operation
because	there	is	already

an	operation	in
progress.

Description
The	viReadAsync()	operation	asynchronously	transfers	data.	The	data
read	is	to	be	stored	in	the	buffer	represented	by	buf.	This	operation
normally	returns	before	the	transfer	terminates.
Before	calling	this	operation,	you	should	enable	the	session	for	receiving
I/O	completion	events.	After	the	transfer	has	completed,	an	I/O
completion	event	is	posted.
The	operation	returns	jobId,	which	you	can	use	with	either	viTerminate()
to	abort	the	operation,	or	with	an	I/O	completion	event	to	identify	which
asynchronous	read	operation	completed.	VISA	will	never	return	VI_NULL
for	a	valid	jobID.

Note		If	you	have	enabled	VI_EVENT_IO_COMPLETION	for
queueing	(VI_QUEUE),	for	each	successful	call	to	viReadAsync(),
you	must	call	viWaitOnEvent()	to	retrieve	the	I/O	completion	event.
This	is	true	even	if	the	I/O	is	done	synchronously	(that	is,	if	the
operation	returns	VI_SUCCESS_SYNC).	If	you	are	using	LabVIEW,
this	is	done	for	you	automatically.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_EVENT_IO_COMPLETION
viEnableEvent
viRead
viTerminate
viWaitOnEvent
viWriteAsync

viReadSTB
Purpose
Reads	a	status	byte	of	the	service	request.

C	Syntax
ViStatus	viReadSTB(ViSession	vi,	ViPUInt16	status)

Visual	Basic	Syntax
viReadSTB&(ByVal	vi&,	status%)

Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP	INSTR,	TCPIP
SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

status OUT Service	request	status	byte.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_SRQ_NOCCURRED Service	request
has	not	been
received	for	the

session.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol

occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_INV_SETUP Unable	to	start
operation

because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
Status	Bytes	for	488.2	Instruments	(GPIB,	VXI,	TCPIP,	and	USB)
This	operation	reads	a	service	request	status	from	a	message-based
device.	The	bus-specific	details	are:

For	a	GPIB	device,	the	status	is	read	by	serial	polling	the	device.
For	a	VXI	device,	VISA	sends	the	Word	Serial	Read	STB	query.
For	a	USB	device,	this	function	sends	the	READ_STATUS_BYTE
command	on	the	control	pipe.

Status	Bytes	for	Non-488.2	Instruments	(Serial	INSTR,	TCPIP
SOCKET,	and	USB	RAW)
A	message	is	sent	in	response	to	a	service	request	to	retrieve	status
information.	If	VI_ATTR_IO_PROT	is	VI_PROT_4882_STRS,	the	device	is
sent	the	string	"*STB?\n",	and	then	the	device's	status	byte	is	read;
otherwise,	this	operation	is	not	valid.
Although	the	status	output	is	a	16-bit	value,	the	upper	8	bits	are	always
0.	The	lower	8	bits	contain	the	actual	status	byte.	For	488.2	instruments,
this	is	the	488.2-defined	status	byte.
The	IEEE	488.2	standard	defines	several	bit	assignments	in	the	status
byte.	For	example,	if	bit	6	of	the	status	is	set,	the	device	is	requesting
service.	In	addition	to	setting	bit	6	when	requesting	service,	488.2
devices	also	use	two	other	bits	to	specify	their	status.	Bit	4,	the	Message
Available	bit	(MAV),	is	set	when	the	device	is	ready	to	send	previously
queried	data.	Bit	5,	the	Event	Status	bit	(ESB),	is	set	if	one	or	more	of	the
enabled	488.2	events	occurs.	These	events	include	power-on,	user
request,	command	error,	execution	error,	device	dependent	error,	query
error,	request	control,	and	operation	complete.	The	device	can	assert
SRQ	when	ESB	or	MAV	are	set,	or	when	a	manufacturer-defined
condition	occurs.	Manufacturers	of	488.2	devices	use	the	remaining
lower-order	bits	to	communicate	the	reason	for	the	service	request	or	to
summarize	the	device	state.
Related	Topics
INSTR	Resource
SOCKET	Resource
VI_ATTR_IO_PROT

VI_EVENT_SERVICE_REQ

viReadToFile
Purpose
Read	data	synchronously,	and	store	the	transferred	data	in	a	file.

C	Syntax
ViStatus	viReadToFile(ViSession	vi,	ViString	fileName,	ViUInt32	count,
ViPUInt32	retCount)

Visual	Basic	Syntax
viReadToFile&	(ByVal	vi&,	ByVal	filename$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

fileName IN Name	of	file	to	which	data	will
be	written.

count IN Number	of	bytes	to	be	read.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully	and	the
END	indicator	was

received	(for	interfaces
that	have	END
indicators).

VI_SUCCESS_TERM_CHAR The	specified
termination	character

was	read.

VI_SUCCESS_MAX_CNT The	number	of	bytes
read	is	equal	to	count.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	or	object
reference	is

invalid	(both	are
the	same	value).

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_OUTP_PROT_VIOL Device	reported
an	output

protocol	error
during	transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SETUP Unable	to	start
read	operation
because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the

controller	in
charge.

VI_ERROR_NLISTENERS No	listeners
condition	is

detected	(both
NRFD	and	NDAC
are	deasserted).

VI_ERROR_ASRL_PARITY A	parity	error
occurred	during

transfer.

VI_ERROR_ASRL_FRAMING A	framing	error
occurred	during

transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error
occurred	during

transfer.	A
character	was	not
read	from	the

hardware	before
the	next

character	arrived.

VI_ERROR_IO An	unknown	I/O
error	occurred
during	transfer.

VI_ERROR_FILE_ACCESS An	error	occurred
while	trying	to
open	the

specified	file.
Possible	reasons
include	an	invalid
path	or	lack	of
access	rights.

VI_ERROR_FILE_IO An	error	occurred
while	accessing
the	specified	file.

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
This	read	operation	synchronously	transfers	data.	The	file	specified	in
fileName	is	opened	in	binary	write-only	mode.	If	the	value	of
VI_ATTR_FILE_APPEND_EN	is	VI_FALSE,	any	existing	contents	are
destroyed;	otherwise,	the	file	contents	are	preserved.	The	data	read	is
written	to	the	file.	This	operation	returns	only	when	the	transfer
terminates.
This	operation	is	useful	for	storing	raw	data	to	be	processed	later.
Special	Values	for	retCount	Parameter

Value Action	Description

VI_NULL Do	not	return	the	number	of
bytes	transferred.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_FILE_APPEND_EN
viRead
viWriteFromFile

viScanf
Purpose
Reads,	converts,	and	formats	data	using	the	format	specifier.	Stores	the
formatted	data	in	the	parameters	(designated	by	...).

C	Syntax
ViStatus	viScanf(ViSession	vi,	ViString	readFmt,	...)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

readFmt IN String	describing	the	format	for
arguments.

... OUT Parameters	into	which	the	data
is	read	and	the	format	string	is

applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Data	was	successfully	read
and	formatted	into	...

parameter(s).

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform	read
operation	because	of	I/O

error.

VI_ERROR_TMO Timeout	expired	before
read	operation
completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
readFmt	string	is	invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
readFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
The	viScanf()	operation	receives	data	from	a	device,	formats	it	by	using
the	format	string,	and	stores	the	resulting	data	in	the	arg	parameter	list.
The	viRead()	operation	is	used	for	the	actual	low-level	read	from	the
device.	As	a	result,	you	should	not	use	the	viRead()	and	viScanf()
operations	in	the	same	session.

Note		Because	the	prototype	for	this	function	cannot	provide
complete	type-checking,	remember	that	all	output	parameters
must	be	passed	by	reference.

The	format	string	can	have	format	specifier	sequences,	white	characters,
and	ordinary	characters.	The	white	characters—blank,	vertical	tabs,
horizontal	tabs,	form	feeds,	new	line/linefeed,	and	carriage	return—are
ignored	except	in	the	case	of	%c	and	%[].	All	other	ordinary	characters
except	%	should	match	the	next	character	read	from	the	device.
The	format	string	consists	of	a	%,	followed	by	optional	modifier	flags,
followed	by	one	of	the	format	codes	in	that	sequence.	It	is	of	the	form:
%[modifier]format	code
where	the	optional	modifier	describes	the	data	format,	while	format	code
indicates	the	nature	of	data	(data	type).	One	and	only	one	format	code
should	be	performed	at	the	specifier	sequence.	A	format	specification
directs	the	conversion	to	the	next	input	arg.
The	results	of	the	conversion	are	placed	in	the	variable	that	the
corresponding	argument	points	to,	unless	the	*	assignment-suppressing
character	is	given.	In	such	a	case,	no	arg	is	used	and	the	results	are
ignored.
The	viScanf()	operation	accepts	input	until	an	END	indicator	is	read	or	all
the	format	specifiers	in	the	readFmt	string	are	satisfied.	Thus,	detecting
an	END	indicator	before	the	readFmt	string	is	fully	consumed	will	result
in	ignoring	the	rest	of	the	format	string.	Also,	if	some	data	remains	in	the
buffer	after	all	format	specifiers	in	the	readFmt	string	are	satisfied,	the
data	will	be	kept	in	the	buffer	and	will	be	used	by	the	next	viScanf()
operation.
When	viScanf()	times	out,	the	next	call	to	viScanf()	will	read	from	an
empty	buffer	and	force	a	read	from	the	device.

Notice	that	when	an	END	indicator	is	received,	not	all	arguments	in	the
format	string	may	be	consumed.	However,	the	operation	still	returns	a
successful	completion	code.
The	following	two	tables	describe	optional	modifiers	that	can	be	used	in	a
format	specifier	sequence.

ANSI	C	Standard	Modifiers

Modifier
Supported
with
Format
Code

Description

An	integer
representing
the	field
width

%s,	%c,	%
[]	format
codes

It	specifies	the	maximum
field	width	that	the	argument

will	take.	A	'#'	may	also
appear	instead	of	the

integer	field	width,	in	which
case	the	next	arg	is	a

reference	to	the	field	width.
This	arg	is	a	reference	to	an
integer	for	%c	and	%s.	The
field	width	is	not	allowed	for

%d	or	%f.

A	length
modifier
('h',	

'l',	'L',	'z',	or
'Z').	z	and	Z
are	not
ANSI	C
standard
modifiers.

h	(d,	b
format
codes)
l	(d,	f,	b
format
codes)

L	(f	format
code)

z	(b	format
code)

Z	(b	format
code)

The	argument	length
modifiers	specify	one	of	the

following:
a.	 The	h	modifier

promotes	the
argument	to	be	a
reference	to	a	short
integer	or	unsigned

short	integer,
depending	on	the
format	code.

b.	 The	l	modifier
promotes	the

argument	to	point	to
a	long	integer	or
unsigned	long

integer.
c.	 The	L	modifier

promotes	the

argument	to	point	to
a	long	double	floats

parameter.
d.	 The	z	modifier

promotes	the
argument	to	point	to
an	array	of	floats.

e.	 The	Z	modifier
promotes	the

argument	to	point	to
an	array	of	double

floats.

* All	format
codes

An	asterisk	(*)	acts	as	the
assignment	suppression
character.	The	input	is	not
assigned	to	any	parameters

and	is	discarded.

Enhanced	Modifiers	to	ANSI	C	Standards

Modifier
Supported
with
Format
Code

Description

A	comma
(,)

followed
by	an

integer	n,
where	n
represents
the	array
size.

%d	(plus
variants)
and	%f
only

The	corresponding	argument
is	interpreted	as	a	reference
to	the	first	element	of	an	array
of	size	n.	The	first	n	elements
of	this	list	are	printed	in	the

format	specified	by	the	format
code.

A	number	sign	(#)	may	be
present	after	the	comma	(,)
modifier,	in	which	case	an
extra	arg	is	used.	This	arg

must	be	an	integer
representing	the	array	size	of

the	given	type.

@1 %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	NR1	compatible

number,	which	is	an	integer
without	any	decimal	point	(for

example,	123).

@2 %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	NR2	compatible
number.	The	NR2	number

has	at	least	one	digit	after	the
decimal	point	(for	example,

123.45).

@H %d	(plus
variants)
and	%f

Converts	to	an	IEEE	488.2
defined	<HEXADECIMAL
NUMERIC	RESPONSE

only DATA>.	The	number	is
represented	in	a	base	of
sixteen	form.	Only	capital
letters	should	represent

numbers.	The	number	is	of
form	#HXXX..,	where	XXX..	is
a	hexadecimal	number	(for

example,	#HAF35B).

@Q %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	<OCTAL	NUMERIC
RESPONSE	DATA>.	The
number	is	represented	in	a
base	of	eight	form.	The
number	is	of	the	form

#QYYY..,	where	YYY..	is	an
octal	number	(for	example,

#Q71234).

@B %d	(plus
variants)
and	%f
only

Converts	to	an	IEEE	488.2
defined	<BINARY	NUMERIC
RESPONSE	DATA>.	The
number	is	represented	in	a

base	two	form.	The	number	is
of	the	form	#BZZZ..,	where
ZZZ..	is	a	binary	number	(for
example,	#B011101001).

ANSI	C	Standard	Format	Codes
c	Argument	type:	A	reference	to	a	character.

Flags	or
Modifiers Interpretation

Default
functionality

A	character	is	read	from	the	device
and	stored	in	the	parameter.

field	width field	width	number	of	characters	are
read	and	stored	at	the	reference

location	(the	default	field	width	is	1).
No	NULL	character	is	added	at	the	end

of	the	data	block.

Note		This	format	code	does	not	ignore	white	space	in	the	device
input	stream.

d	Argument	type:	A	reference	to	an	integer.

Flags	or
Modifiers Interpretation

Default
functionality

Characters	are	read	from	the	device
until	an	entire	number	is	read.	The
number	read	may	be	in	either	IEEE
488.2	formats	<DECIMAL	NUMERIC
PROGRAM	DATA>,	also	known	as
NRf;	flexible	numeric	representation

(NR1,	NR2,	NR3...);	or	<NON-
DECIMAL	NUMERIC	PROGRAM

DATA>	(#H,	#Q,	and	#B).

field	width The	input	number	will	be	stored	in	a
field	at	least	this	wide.

Length
modifier	l

arg	is	a	reference	to	a	long	integer.

Length arg	is	a	reference	to	a	short	integer.

modifier	h Rounding	is	performed	according	to
IEEE	488.2	rules	(0.5	and	up).

,array	size arg	points	to	an	array	of	integers	(or
long	or	short	integers,	depending	on
the	length	modifier)	of	size	array	size.
The	elements	of	this	array	should	be
separated	by	commas.	Elements	will
be	read	until	either	array	size	number
of	elements	are	consumed	or	they	are
no	longer	separated	by	commas.	If	the
array	size	contains	a	number	sign	(#),
two	arguments	are	used.	The	first	arg

read	is	a	pointer	to	an	integer
specifying	the	maximum	number	of
elements	that	the	array	can	hold.	The
second	arg	should	be	a	reference	to
an	array.	Also,	the	actual	number	of
elements	read	is	stored	back	in	the

first	argument.

f	Argument	type:	A	reference	to	a	floating	point	number.

Flags	or
Modifiers Interpretation

Default
functionality

Characters	are	read	from	the	device
until	an	entire	number	is	read.	The
number	read	may	be	in	either	IEEE
488.2	formats	<DECIMAL	NUMERIC
PROGRAM	DATA>	(NRf)	or	<NON-
DECIMAL	NUMERIC	PROGRAM

DATA>	(#H,	#Q,	and	#B)

field	width The	input	will	be	stored	in	a	field	at
least	this	wide.

Length
modifier	l

arg	is	a	reference	to	a	double	floating
point	number.

Length
modifier	L

arg	is	a	reference	to	a	long	double
number.

,array	size arg	points	to	an	array	of	floats	(or
double	or	long	double,	depending	on
the	length	modifier)	of	size	array	size.
The	elements	of	this	array	should	be
separated	by	commas.	Elements	will
be	read	until	either	array	size	number
of	elements	are	consumed	or	they	are
no	longer	separated	by	commas.	If	the
array	size	contains	a	number	sign	(#),
two	arguments	are	used.	The	first	arg

read	is	a	pointer	to	an	integer
specifying	the	maximum	number	of
elements	that	the	array	can	hold.	The
second	arg	should	be	a	reference	to
an	array.	Also,	the	actual	number	of
elements	read	is	stored	back	in	the

first	argument.

s	Argument	type:	A	reference	to	a	string.

Flags	or
Modifiers Interpretation

Default
functionality

All	leading	white	space	characters	are
ignored.	Characters	are	read	from	the
device	into	the	string	until	a	white

space	character	is	read.

field	width This	flag	gives	the	maximum	string
size.	If	the	field	width	contains	a

number	sign	(#),	two	arguments	are
used.	The	first	argument	read	is	a
pointer	to	an	integer	specifying	the
maximum	array	size.	The	second

should	be	a	reference	to	an	array.	In
case	of	field	width	characters	already

read	before	encountering	a	white
space,	additional	characters	are	read
and	discarded	until	a	white	space
character	is	found.	In	case	of	#	field
width,	the	actual	number	of	characters
that	were	copied	into	the	user	array,

not	counting	the	trailing	NULL
character,	are	stored	back	in	the
integer	pointed	to	by	the	first

argument.

Enhanced	Format	Codes
b	Argument	type:	A	reference	to	a	data	array.

Flags	or
Modifiers Interpretation

Default
functionality

The	data	must	be	in	IEEE	488.2
<ARBITRARY	BLOCK	PROGRAM
DATA>	format.	The	format	specifier

sequence	should	have	a	flag
describing	the	field	width,	which	will
give	a	maximum	count	of	the	number
of	bytes	(or	words	or	longwords,

depending	on	length	modifiers)	to	be
read	from	the	device.	If	the	field	width
contains	a	#	sign,	two	arguments	are
used.	The	first	arg	read	is	a	pointer	to
a	long	integer	specifying	the	maximum
number	of	elements	that	the	array	can
hold.	The	second	arg	should	be	a

reference	to	an	array.	Also,	the	actual
number	of	elements	read	is	stored

back	in	the	first	argument.	In	absence
of	length	modifiers,	the	data	is

assumed	to	be	of	byte-size	elements.
In	some	cases,	data	might	be	read
until	an	END	indicator	is	read.

Length
modifier	h

arg	points	to	an	array	of	16-bit	words,
and	count	specifies	the	number	of

words.	Data	that	is	read	is	assumed	to
be	in	IEEE	488.2	byte	ordering.	It	will
be	byte	swapped	and	padded	as

appropriate	to	native	computer	format.

Length
modifier	l

arg	points	to	an	array	of	32-bit
longwords,	and	count	specifies	the

number	of	longwords.	Data	that	is	read

is	assumed	to	be	in	IEEE	488.2	byte
ordering.	It	will	be	byte	swapped	and
padded	as	appropriate	to	native

computer	format.

Length
modifier	z

arg	points	to	an	array	of	floats,	and
count	specifies	the	number	of	floating
point	numbers.	Data	that	is	read	is	an
array	of	32-bit	IEEE	754	format	floating

point	numbers.

Length
modifier	Z

arg	points	to	an	array	of	doubles,	and
the	count	specifies	the	number	of
floating	point	numbers.	Data	that	is
read	is	an	array	of	64-bit	IEEE	754
format	floating	point	numbers.

t	Argument	type:	A	reference	to	a	string.

Flags	or
Modifiers

Interpretation

Default
functionality

Characters	are	read	from	the	device
until	the	first	END	indicator	is	received.

The	character	on	which	the	END
indicator	was	received	is	included	in

the	buffer.

field	width This	flag	gives	the	maximum	string
size.	If	an	END	indicator	is	not

received	before	field	width	number	of
characters,	additional	characters	are
read	and	discarded	until	an	END

indicator	arrives.	#field	width	has	the
same	meaning	as	in	%s.

T	Argument	type:	A	reference	to	a	string.

Flags	or
Modifiers

Interpretation

Default
functionality

Characters	are	read	from	the	device
until	the	first	linefeed	character	(\n)	is
received.	The	linefeed	character	is

included	in	the	buffer.

field	width This	flag	gives	the	maximum	string
size.	If	a	linefeed	character	is	not

received	before	field	width	number	of
characters,	additional	characters	are
read	and	discarded	until	a	linefeed

character	arrives.	#field	width	has	the
same	meaning	as	in	%s.

y		Argument	type:	A	location	of	a	block	of	binary	data.

Modifier Interpretation

Default
functionality

The	data	block	is	read	as	raw	binary
data.	The	format	specifier	sequence
should	have	a	flag	describing	the

array	size,	which	will	give	a
maximum	count	of	the	number	of
bytes	(or	words	or	longwords,

depending	on	length	modifiers)	to	be
read	from	the	device.	If	the	array	size
contains	a	#	sign,	two	arguments	are
used.	The	first	argument	read	is	a

pointer	to	a	long	integer	that
specifies	the	maximum	number	of

elements	that	the	array	can	hold.	The
second	argument	should	be	a

reference	to	an	array.	Also,	the	actual
number	of	elements	read	is	stored

back	in	the	first	argument.	In
absence	of	length	modifiers,	the	data
is	assumed	to	be	byte-size	elements.
In	some	cases,	data	might	be	read
until	an	END	indicator	is	read.

Length	modifier
h

The	data	block	is	assumed	to	be	a
reference	to	an	array	of	unsigned
short	integers	(16	bits).	The	count
corresponds	to	the	number	of	words
rather	than	bytes.	If	the	optional	!ol
modifier	is	present,	the	data	read	is
assumed	to	be	in	little	endian	format;
otherwise,	the	data	read	is	assumed
to	be	in	standard	IEEE	488.2	format.
The	data	will	be	byte	swapped	and
padded	as	appropriate	to	native

computer	format.

Length	modifier
l

The	data	block	is	assumed	to	be	a
reference	to	an	array	of	unsigned
long	integers	(32	bits).	The	count
corresponds	to	the	number	of

longwords	rather	than	bytes.	If	the
optional	!ol	modifier	is	present,	the
data	read	is	assumed	to	be	in	little
endian	format;	otherwise,	the	data
read	is	assumed	to	be	in	standard
IEEE	488.2	format.	The	data	will	be

byte	swapped	and	padded	as
appropriate	to	native	computer

format.

Length	modifier
z

The	data	block	is	assumed	to	be	a
reference	to	an	array	of	single-

precision	floating-point	numbers	(32
bits).	The	count	corresponds	to	the
number	of	floats	rather	than	bytes.	If
the	optional	!ol	modifier	is	present,
the	data	read	is	assumed	to	be	in
little	endian	format;	otherwise,	the
data	read	is	assumed	to	be	in

standard	IEEE	488.2	format.	The
data	will	be	byte	swapped	and
padded	as	appropriate	to	native

computer	format.

Length	modifier
Z

The	data	block	is	assumed	to	be	a
reference	to	an	array	of	double-

precision	floating-point	numbers	(64
bits).	The	count	corresponds	to	the
number	of	double	floats	rather	than
bytes.	If	the	optional	!ol	modifier	is
present,	the	data	read	is	assumed	to
be	in	little	endian	format;	otherwise,
the	data	read	is	assumed	to	be	in
standard	IEEE	488.2	format.	The
data	will	be	byte	swapped	and
padded	as	appropriate	to	native

computer	format.

Byte	order
modifier	!ob

The	data	being	read	is	assumed	to
be	in	standard	IEEE	488.2	(big

endian)	format.	This	is	the	default
behavior	if	neither	!ob	nor	!ol	is

present.

Byte	order
modifier	!ol

The	data	being	read	is	assumed	to
be	in	little	endian	format.

Other	ANSI	C	Format	Specifiers
For	ANSI	C	compatibility,	VISA	also	supports	the	following	format
specifiers	for	input	codes:	'i',	'o',	'u',	'n',	'x',	'X',	'e',	'E',	'g',	'G',	'p',	'[...]',	and
'[^...]'.	For	further	explanation	of	these	conversion	codes,	see	the	ANSI	C
Standard.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_ATTR_RD_BUF_OPER_MODE
viFlush
viPrintf
viSScanf
viVScanf
viVSScanf

viSetAttribute
Purpose
Sets	the	state	of	an	attribute.

C	Syntax
ViStatus	viSetAttribute(ViObject	vi,	ViAttr	attribute,	ViAttrState	attrState)

Visual	Basic	Syntax
viSetAttribute&(ByVal	vi&,	ByVal	attribute&,	ByVal	attrState&)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

attribute IN Attribute	for	which	the	state	is
to	be	modified.

attrState IN The	state	of	the	attribute	to	be
set	for	the	specified	object.	The
interpretation	of	the	individual
attribute	value	is	defined	by	the

object.

Return	Values
Completion	Codes Description

VI_SUCCESS Attribute	value	set
successfully.

VI_WARN_NSUP_ATTR_STATE Although	the
specified	attribute

state	is	valid,	it	is	not
supported	by	this
implementation.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	object
reference	is	invalid.

VI_ERROR_NSUP_ATTR The	specified
attribute	is	not
defined	by	the

referenced	object.

VI_ERROR_NSUP_ATTR_STATE The	specified	state
of	the	attribute	is	not

valid,	or	is	not
supported	as
defined	by	the

object.

VI_ERROR_ATTR_READONLY The	specified
attribute	is	Read

Only.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be

performed	because
the	resource

identified	by	vi	has
been	locked	for	this
kind	of	access.

Description
The	viSetAttribute()	operation	is	used	to	modify	the	state	of	an	attribute	for
the	specified	object.
Both	VI_WARN_NSUP_ATTR_STATE	and
VI_ERROR_NSUP_ATTR_STATE	indicate	that	the	specified	attribute	state
is	not	supported.	A	resource	normally	returns	the	error	code
VI_ERROR_NSUP_ATTR_STATE	when	it	cannot	set	a	specified	attribute
state.	The	completion	code	VI_WARN_NSUP_ATTR_STATE	is	intended	to
alert	the	application	that	although	the	specified	optional	attribute	state	is
not	supported,	the	application	should	not	fail.	One	example	is	attempting
to	set	an	attribute	value	that	would	increase	performance	speeds.	This	is
different	than	attempting	to	set	an	attribute	value	that	specifies	required
but	nonexistent	hardware	(such	as	specifying	a	VXI	ECL	trigger	line
when	no	hardware	support	exists)	or	a	value	that	would	change
assumptions	a	resource	might	make	about	the	way	data	is	stored	or
formatted	(such	as	byte	order).
Some	attributes	documented	as	being	generally	Read/Write	may	at	times
be	Read	Only.	This	is	usually	the	case	when	an	attribute	configures	how
the	VISA	driver	receives	events	of	a	given	type,	and	the	event	type
associated	with	that	attribute	is	currently	enabled.	Under	these
circumstances,	calling	viSetAttribute	on	that	attribute	returns
VI_ERROR_ATTR_READONLY.
The	error	code	VI_ERROR_RSRC_LOCKED	is	returned	only	if	the
specified	attribute	is	Read/Write	and	Global,	and	the	resource	is	locked
by	another	session.
Related	Topics
Attributes
viGetAttribute
VISA	Resource	Template

viSetBuf
Purpose
Sets	the	size	for	the	formatted	I/O	and/or	low-level	I/O	communication
buffer(s).

C	Syntax
ViStatus	viSetBuf(ViSession	vi,	ViUInt16	mask,	ViUInt32	size)

Visual	Basic	Syntax
viSetBuf&(ByVal	vi&,	ByVal	mask%,	ByVal	size&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	VXI	INSTR,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mask IN Specifies	the	type	of	buffer.

size IN The	size	to	be	set	for	the
specified	buffer(s).

Return	Values
Completion	Codes Description

VI_SUCCESS Buffer	size	set	successfully.

VI_WARN_NSUP_BUF The	specified	buffer	is	not
supported.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_ALLOC The	system	could	not
allocate	the	buffer(s)	of

the	specified	size
because	of	insufficient

resources.

VI_ERROR_INV_MASK The	system	cannot	set
the	buffer	for	the	given

mask.

Description
The	viSetBuf()	operation	changes	the	buffer	size	of	the	read	and/or	write
buffer	for	formatted	I/O	and/or	serial	communication.	The	mask
parameter	specifies	the	buffer	for	which	to	set	the	size.	The	mask
parameter	can	specify	multiple	buffers	by	bit-ORing	any	of	the	following
values	together.

Flags Interpretation

VI_READ_BUF	(1) Formatted	I/O	read	buffer.

VI_WRITE_BUF	(2) Formatted	I/O	write	buffer.

VI_IO_IN_BUF	(16) Low-level	I/O	receive	buffer.

VI_IO_OUT_BUF
(32)

Low-level	I/O	transmit	buffer.

A	call	to	viSetBuf()	flushes	the	session's	related	Read/Write	buffer(s).
Although	you	can	explicitly	flush	the	buffers	by	making	a	call	to	viFlush(),
the	buffers	are	flushed	implicitly	under	some	conditions.	These	conditions
vary	for	the	viPrintf()	and	viScanf()	operations.
Since	not	all	serial	drivers	support	user-defined	buffer	sizes,	it	is	possible
that	a	specific	implementation	of	VISA	may	not	be	able	to	control	this
feature.	If	an	application	requires	a	specific	buffer	size	for	performance
reasons,	but	a	specific	implementation	of	VISA	cannot	guarantee	that
size,	then	it	is	recommended	to	use	some	form	of	handshaking	to	prevent
overflow	conditions.
In	previous	versions	of	VISA,	VI_IO_IN_BUF	was	known	as
VI_ASRL_IN_BUF	and	VI_IO_OUT_BUF	was	known	as
VI_ASRL_OUT_BUF.
Related	Topics
Automatically	Flushing	the	Formatted	I/O	Buffers
Controlling	the	Serial	I/O	Buffers
Formatted	I/O	Read	and	Low-Level	I/O	Receive	Buffers
Formatted	I/O	Write	and	Low-Level	I/O	Transmit	Buffers

INSTR	Resource
INTFC	Resource
Manually	Flushing	the	Formatted	I/O	Buffers
Recommendations	for	Using	the	VISA	Buffers
SERVANT	Resource
SOCKET	Resource
VI_ATTR_RD_BUF_SIZE
VI_ATTR_WR_BUF_SIZE
viFlush
viPrintf
viScanf

viSPrintf
Purpose
Converts,	formats,	and	sends	the	parameters	(designated	by...)	to	a
user-specified	buffer	as	specified	by	the	format	string.

C	Syntax
ViStatus	viSPrintf(ViSession	vi,	ViPBuf	buf,	ViString	writeFmt,	...)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	VXI	INSTR,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf OUT Buffer	where	data	is	to	be
written.

writeFmt IN The	format	string	to	apply	to
parameters	in	ViVAList.

... IN Parameters	to	which	the	format
string	is	applied.	The	formatted
data	is	written	to	the	specified

buf.

Return	Values
Completion	Codes Description

VI_SUCCESS Parameters	were	successfully
formatted.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	string	is

invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
writeFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of
insufficient	resources.

Description
The	viSPrintf()	operation	is	similar	to	viPrintf(),	except	that	the	output	is
not	written	to	the	device;	it	is	written	to	the	user-specified	buffer.	This
output	buffer	will	be	NULL	terminated.
If	this	operation	outputs	an	END	indicator	before	all	the	arguments	are
satisfied,	then	the	rest	of	the	writeFmt	string	is	ignored	and	the	buffer
string	is	still	terminated	by	a	NULL.

Note		The	size	of	the	buf	parameter	should	be	large	enough	to
hold	the	formatted	I/O	contents	plus	the	NULL	termination
character.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viPrintf
viSScanf
viVPrintf
viVSPrintf

viSScanf
Purpose
Reads,	converts,	and	formats	data	from	a	user-specified	buffer	using	the
format	specifier.	Stores	the	formatted	data	in	the	parameters	(designated
by	...).

C	Syntax
ViStatus	viSScanf(ViSession	vi,	ViBuf	buf,	ViString	readFmt,	...)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	VXI	INSTR,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Buffer	from	which	data	is	read
and	formatted.

readFmt IN String	describing	the	format	for
arguments.

... OUT Parameters	into	which	the	data
is	read	and	the	format	string	is

applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Data	was	successfully	read
and	formatted	into	...

parameter(s).

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_INV_FMT A	format	specifier	in	the
readFmt	string	is	invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
readFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of
insufficient	resources.

Description
The	viSScanf()	operation	is	similar	to	viScanf(),	except	that	the	data	is
read	from	a	user-specified	buffer	rather	than	from	a	device.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viScanf
viSPrintf
viVScanf
viVSScanf

viStatusDesc
Purpose
Returns	a	user-readable	description	of	the	status	code	passed	to	the
operation.

C	Syntax
ViStatus	viStatusDesc(ViObject	vi,	ViStatus	status,	ViChar	desc[])

Visual	Basic	Syntax
viStatusDesc&(ByVal	vi&,	ByVal	status&,	ByVal	desc$)

Resource	Classes
All	I/O	session	types,	all	event	object	types,	VISA	Resource	Manager

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

status IN Status	code	to	interpret.

desc OUT The	user-readable	string
interpretation	of	the	status	code

passed	to	the	operation.

Return	Values
Completion	Codes Description

VI_SUCCESS Description
successfully
returned.

VI_WARN_UNKNOWN_STATUS The	status	code
passed	to	the

operation	could	not
be	interpreted.

Description
The	viStatusDesc()	operation	is	used	to	retrieve	a	user-readable	string	that
describes	the	status	code	presented.	If	the	string	cannot	be	interpreted,
the	operation	returns	the	warning	code	VI_WARN_UNKNOWN_STATUS.
However,	the	output	string	desc	is	valid	regardless	of	the	status	return
value.

Note		The	size	of	the	desc	parameter	should	be	at	least	256
bytes.

Related	Topics
Completion	Codes
Error	Codes
VISA	Resource	Template

viTerminate
Purpose
Requests	a	VISA	session	to	terminate	normal	execution	of	an	operation.

C	Syntax
ViStatus	viTerminate(ViObject	vi,	ViUInt16	degree,	ViJobId	jobId)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,
GPIB-VXI	BACKPLANE,	PXI	INSTR,	PXI	MEMACC,	PXI	BACKPLANE,
Serial	INSTR,	TCPIP	INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,
VXI	INSTR,	VXI	MEMACC,	VXI	BACKPLANE,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

degree IN VI_NULL	(0).

jobId IN Specifies	an	operation	identifier.

Return	Values
Completion	Codes Description

VI_SUCCESS Request	serviced	successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	object	reference
is	invalid.

VI_ERROR_INV_JOB_ID Specified	job	identifier	is
invalid.

VI_ERROR_INV_DEGREE Specified	degree	is
invalid.

Description
This	operation	is	used	to	request	a	session	to	terminate	normal	execution
of	an	operation,	as	specified	by	the	jobId	parameter.	The	jobId
parameter	is	a	unique	value	generated	from	each	call	to	an
asynchronous	operation.
If	a	user	passes	VI_NULL	as	the	jobId	value	to	viTerminate(),	VISA	will
abort	any	calls	in	the	current	process	executing	on	the	specified	vi.	Any
call	that	is	terminated	this	way	should	return	VI_ERROR_ABORT.	Due	to
the	nature	of	multi-threaded	systems,	for	example	where	operations	in
other	threads	may	complete	normally	before	the	operation	viTerminate()
has	any	effect,	the	specified	return	value	is	not	guaranteed.
Related	Topics
VI_EVENT_IO_COMPLETION
viMoveAsync/viMoveAsyncEx
viReadAsync
VISA	Resource	Template
viWriteAsync

viUninstallHandler
Purpose
Uninstalls	handlers	for	events.

C	Syntax
ViStatus	viUninstallHandler(ViSession	vi,	ViEventType	eventType,	ViHndlr
handler,	ViAddr	userHandle)

Visual	Basic	Syntax
N/A

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

eventType IN Logical	event	identifier.

handler IN Interpreted	as	a	valid
reference	to	a	handler	to	be

uninstalled	by	a	client
application.

userHandle IN A	value	specified	by	an
application	that	can	be	used

for	identifying	handlers
uniquely	in	a	session	for	an

event.

Return	Values
Completion	Codes Description

VI_SUCCESS Event	handler	successfully
uninstalled.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_INV_EVENT Specified	event
type	is	not

supported	by	the
resource.

VI_ERROR_INV_HNDLR_REF Either	the
specified	handler
reference	or	the
user	context
value	(or	both)
does	not	match
any	installed
handler.

VI_ERROR_HNDLR_NINSTALLED A	handler	is	not
currently	installed
for	the	specified

event.

Description
The	viUninstallHandler()	operation	allows	applications	to	uninstall
handlers	for	events	on	sessions.	Applications	should	also	specify	the
value	in	the	userHandle	parameter	that	was	passed	while	installing	the
handler.	VISA	identifies	handlers	uniquely	using	the	handler	reference
and	this	value.	All	the	handlers,	for	which	the	handler	reference	and	the
value	matches,	are	uninstalled.	Specifying	VI_ANY_HNDLR	as	the	value
for	the	handler	parameter	causes	the	operation	to	uninstall	all	the
handlers	with	the	matching	value	in	the	userHandle	parameter.

Note		Calling	viUninstallHandler()	removes	the	specified	handler
from	the	list	of	active	handlers	on	the	given	session.	If	no	handlers
remain	for	the	specified	event	type,	the	VISA	driver	disables	that
event	type	on	the	given	session.	It	is	not	valid	for	a	user	to	call	this
operation	from	within	a	callback,	because	this	may	cause	a
deadlock	condition	within	the	VISA	driver.

Related	Topics
viDisableEvent
viEventHandler
viInstallHandler
VISA	Resource	Template

viUnlock
Purpose
Relinquishes	a	lock	for	the	specified	resource.

C	Syntax
ViStatus	viUnlock(ViSession	vi)

Visual	Basic	Syntax
viUnlock&(ByVal	vi&)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

Return	Values
Completion	Codes Description

VI_SUCCESS Lock
successfully
relinquished.

VI_SUCCESS_NESTED_EXCLUSIVE Call	succeeded,
but	this	session
still	has	nested
exclusive	locks.

VI_SUCCESS_NESTED_SHARED Call	succeeded,
but	this	session
still	has	nested
shared	locks.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_SESN_NLOCKED The	current	session	did
not	have	any	lock	on

the	resource.

Description
This	operation	is	used	to	relinquish	the	lock	previously	obtained	using	the
viLock()	operation.
Related	Topics
viLock
VISA	Resource	Template

viUnmapAddress
Purpose
Unmaps	memory	space	previously	mapped	by	viMapAddress().

C	Syntax
ViStatus	viUnmapAddress(ViSession	vi)

Visual	Basic	Syntax
viUnmapAddress&(ByVal	vi&)

Resource	Classes
FireWire	INSTR,	GPIB-VXI	INSTR,	GPIB-VXI	MEMACC,	PXI	INSTR,	PXI
MEMACC,	VXI	INSTR,	VXI	MEMACC

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

Return	Values
Completion	Codes Description

VI_SUCCESS Operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is
invalid.

VI_ERROR_NSUP_OPER The	given	vi	does
not	support	this

operation.

VI_ERROR_WINDOW_NMAPPED The	specified
session	is	not

currently	mapped.

Description
The	viUnmapAddress()	operation	unmaps	the	region	previously	mapped
by	the	viMapAddress()	or	viMapAddressEx()	operation	for	this	session.
Related	Topics
INSTR	Resource
MEMACC	Resource
viMapAddress/viMapAddressEx

viUnmapTrigger
Purpose
Undo	a	previous	map	from	the	specified	trigger	source	line	to	the
specified	destination	line.

C	Syntax
ViStatus	viUnmapTrigger(ViSession	vi,	ViInt16	trigSrc,	ViInt16	trigDest)

Visual	Basic	Syntax
viUnmapTrigger&	(ByVal	vi&,	ByVal	trigSrc%,	ByVal	trigDest%)

Resource	Classes
GPIB-VXI	BACKPLANE,	PXI	BACKPLANE,	VXI	BACKPLANE

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

trigSrc IN Source	line	used	in	previous
map.	Refer	to	the	Description
section	for	actual	values.

trigDest IN Destination	line	used	in
previous	map.	Refer	to	the
Description	section	for	actual

values.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully	and	the	END
indicator	was	received	(for
interfaces	that	have	END

indicators).

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_NSUP_OPER The	given	vi	does	not
support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource
identified	by	vi	has
been	locked	for	this
kind	of	access.

VI_ERROR_INV_LINE One	of	the	specified
lines	(trigSrc	or

trigDest)	is	invalid.

VI_ERROR_TRIG_NMAPPED The	path	from	trigSrc
to	trigDest	is	not
currently	mapped.

VI_ERROR_NSUP_LINE One	of	the	specified
lines	(trigSrc	or
trigDest)	is	not

supported	by	this	VISA
implementation.

Description
This	operation	can	be	used	to	undo	a	previous	mapping	of	one	trigger
line	to	another.	This	operation	is	valid	only	on	BACKPLANE	(mainframe)
sessions.
Special	Values	for	trigSrc	Parameter

Value Action	Description

VI_TRIG_TTL0	-
VI_TRIG_TTL7

Unmap	the	specified	VXI	TTL
trigger	line.

VI_TRIG_ECL0	-
VI_TRIG_ECL1

Unmap	the	specified	VXI	ECL
trigger	line.

VI_TRIG_PANEL_IN Unmap	the	controller's	front
panel	trigger	input	line.

VI_TRIG_PANEL_OUT Unmap	the	controller's	front
panel	trigger	output	line.

Special	Values	for	trigDest	Parameter
Value Action	Description

VI_TRIG_TTL0	-
VI_TRIG_TTL7

Unmap	the	specified	VXI	TTL
trigger	line.

VI_TRIG_ECL0	-
VI_TRIG_ECL1

Unmap	the	specified	VXI	ECL
trigger	line.

VI_TRIG_PANEL_IN Unmap	the	controller's	front
panel	trigger	input	line.

VI_TRIG_PANEL_OUT Unmap	the	controller's	front
panel	trigger	output	line.

VI_TRIG_ALL Unmap	all	trigger	lines	to
which	trigSrc	is	currently

connected.

This	operation	unmaps	only	one	trigger	mapping	per	call.	In	other	words,
if	viMapTrigger()	was	called	multiple	times	on	the	same	BACKPLANE
Resource	and	created	multiple	mappings	for	either	trigSrc	or	trigDest,
trigger	mappings	other	than	the	one	specified	by	trigSrc	and	trigDest
should	remain	in	effect	after	this	call	completes.
Related	Topics
BACKPLANE	Resource
viMapTrigger

viUsbControlIn
Purpose
Performs	a	USB	control	pipe	transfer	from	the	device.

Note		This	operation	is	intended	only	for	users	familiar	with	the
USB	protocol.

C	Syntax
ViStatus	viUsbControlIn	(ViSession	vi,	ViInt16	bmRequestType,	ViInt16
bRequest,	ViUInt16	wValue,	ViUInt16	wIndex,	ViUInt16	wLength,	ViPBuf
buf,	ViPUInt16	retCnt);

Visual	Basic	Syntax
viUsbControlIn&	(ByVal	vi&,	ByVal	bmRequestType%,	ByVal	bRequest%,
ByVal	wValue%,	ByVal	wIndex%,	ByVal	wLength%,	buf	As	Byte,	retCnt%)

Resource	Classes
USB	INSTR,	USB	RAW

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

bmRequestType IN The	bmRequestType
parameter	of	the	setup	stage
of	a	USB	control	transfer.
Refer	to	the	USB
specification	for	further
details.

bRequest IN The	bRequest	parameter	of
the	setup	stage	of	a	USB
control	transfer.

wValue IN The	wValue	parameter	of	the
setup	stage	of	a	USB	control
transfer.

wIndex IN The	wIndex	parameter	of	the
setup	stage	of	a	USB	control
transfer.	This	is	usually	the
index	of	the	interface	or
endpoint.

wLength IN The	wLength	parameter	of
the	setup	stage	of	a	USB
control	transfer.	This	value
also	specifies	the	size	of	the
data	buffer	to	receive	the	data
from	the	optional	data	stage
of	the	control	transfer.

buf OUT The	data	buffer	that	receives
the	data	from	the	optional
data	stage	of	the	control

transfer.	This	is	ignored	if
wLength	is	0.

retCnt OUT Number	of	bytes	actually
transferred	in	the	optional
data	stage	of	the	control
transfer.	This	parameter	may
be	VI_NULL	if	you	do	not
need	this	information.

Return	Values
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation	could
not	be	performed	because
the	resource	identified	by
vi	has	been	locked	for	this
kind	of	access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_INV_SETUP Unable	to	start	write
operation	because	setup	is
invalid	(due	to	attributes
being	set	to	an	inconsistent
state).

VI_ERROR_IO An	unknown	I/O	error
occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the
given	session	has	been
lost.

VI_ERROR_INV_PARAMETER The	value	of	some
parameter—which
parameter	is	not	known—is
invalid.

VI_ERROR_INV_MASK The	bmRequestType
parameter	contains	an
invalid	mask.

Description
The	viUsbControlIn()	operation	synchronously	performs	a	USB	control
pipe	transfer	from	the	device.	The	values	of	the	data	payload	in	the	setup
stage	of	the	control	transfer	are	taken	as	parameters	and	include
bmRequestType,	bRequest,	wValue,	wIndex,	and	wLength.	An
optional	data	buffer	buf	receives	data	if	a	data	stage	is	required	for	this
transfer.	Only	one	USB	control	pipe	transfer	operation	can	occur	at	any
one	time.
Related	Topics
INSTR	Resource
RAW	Resource
VI_ATTR_USB_CTRL_PIPE
viUsbControlOut

viUsbControlOut
Purpose
Performs	a	USB	control	pipe	transfer	to	the	device.

Note		This	operation	is	intended	only	for	users	familiar	with	the
USB	protocol.

C	Syntax
ViStatus	viUsbControlOut	(ViSession	vi,	ViInt16	bmRequestType,	ViInt16
bRequest,	ViUInt16	wValue,	ViUInt16	wIndex,	ViUInt16	wLength,	ViPBuf
buf);

Visual	Basic	Syntax
viUsbControlOut&	(ByVal	vi&,	ByVal	bmRequestType%,	ByVal	bRequest%,
ByVal	wValue%,	ByVal	wIndex%,	ByVal	wLength%,	buf	As	Byte)

Resource	Classes
USB	INSTR,	USB	RAW

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

bmRequestType IN The	bmRequestType
parameter	of	the	setup	stage
of	a	USB	control	transfer.
Refer	to	the	USB
specification	for	further
details.

bRequest IN The	bRequest	parameter	of
the	setup	stage	of	a	USB
control	transfer.

wValue IN The	wValue	parameter	of	the
setup	stage	of	a	USB	control
transfer.

wIndex IN The	wIndex	parameter	of	the
setup	stage	of	a	USB	control
transfer.	This	is	usually	the
index	of	the	interface	or
endpoint.

wLength IN The	wLength	parameter	of
the	setup	stage	of	a	USB
control	transfer.	This	value
also	specifies	the	size	of	the
data	buffer	that	contains	the
data	to	send	in	the	optional
data	stage	of	the	control
transfer.

buf IN The	data	buffer	that	sends
the	data	in	the	optional	data

stage	of	the	control	transfer.
This	is	ignored	if	wLength	is
0.

Return	Values
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation	could
not	be	performed	because
the	resource	identified	by
vi	has	been	locked	for	this
kind	of	access.

VI_ERROR_TMO Timeout	expired	before
operation	completed.

VI_ERROR_INV_SETUP Unable	to	start	write
operation	because	setup	is
invalid	(due	to	attributes
being	set	to	an	inconsistent
state).

VI_ERROR_IO An	unknown	I/O	error
occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the
given	session	has	been
lost.

VI_ERROR_INV_PARAMETER The	value	of	some
parameter—which
parameter	is	not	known—is
invalid.

VI_ERROR_INV_MASK The	bmRequestType
parameter	contains	an
invalid	mask.

Description
The	viUsbControlOut()	operation	synchronously	performs	a	USB	control
pipe	transfer	to	the	device.	The	values	of	the	data	payload	in	the	setup
stage	of	the	control	transfer	are	taken	as	parameters	and	include
bmRequestType,	bRequest,	wValue,	wIndex,	and	wLength.	An
optional	data	buffer	buf	contains	the	data	to	send	if	a	data	stage	is
required	for	this	transfer.	Only	one	USB	control	pipe	transfer	operation
can	occur	at	any	one	time.
Related	Topics
INSTR	Resource
RAW	Resource
VI_ATTR_USB_CTRL_PIPE
viUsbControlIn

viVPrintf
Purpose
Converts,	formats,	and	sends	the	parameters	designated	by	params	to
the	device	or	interface	as	specified	by	the	format	string.

C	Syntax
ViStatus	viVPrintf(ViSession	vi,	ViString	writeFmt,	ViVAList	params)

Visual	Basic	Syntax
viVPrintf&(ByVal	vi&,	ByVal	writeFmt$,	params	as	Any)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

writeFmt IN String	describing	the	format	to
apply	to	params.

params IN A	list	containing	the	variable
number	of	parameters	on	which
the	format	string	is	applied.	The
formatted	data	is	written	to	the

specified	device.

Return	Values
Completion	Codes Description

VI_SUCCESS Parameters	were	successfully
formatted.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform	write
operation	because	of	I/O

error.

VI_ERROR_TMO Timeout	expired	before
write	operation
completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	string	is

invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
writeFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
This	operation	is	similar	to	viPrintf(),	except	that	the	params	parameters
list	provides	the	parameters	rather	than	separate	arg	parameters.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viPrintf
viSPrintf
viVScanf
viVSPrintf

viVQueryf
Purpose
Performs	a	formatted	write	and	read	through	a	single	call	to	an	operation.

C	Syntax
ViStatus	viVQueryf(ViSession	vi,	ViString	writeFmt,	ViString	readFmt,
ViVAList	params)

Visual	Basic	Syntax
viVQueryf&(ByVal	vi&,	ByVal	writeFmt$,	ByVal	readFmt$,	params	as	Any)

Resource	Classes
GPIB	INSTR,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP	INSTR,	TCPIP
SOCKET,	VXI	INSTR,	VXI	SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

writeFmt IN String	describing	the	format	of
write	arguments.

readFmt IN String	describing	the	format	of
read	arguments.

params IN/OUT A	list	containing	the	variable
number	of	write	and	read
parameters.	The	write

parameters	are	formatted	and
written	to	the	specified	device.
The	read	parameters	store	the
data	read	from	the	device	after
the	format	string	is	applied	to

the	data.

Return	Values
Completion	Codes Description

VI_SUCCESS Successfully	completed	the
query	operation.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform
Read/Write	operation
because	of	I/O	error.

VI_ERROR_TMO Timeout	occurred	before
Read/Write	operation

completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	or	readFmt

string	is	invalid.

VI_ERROR_NSUP_FMT The	format	specifier	is
not	supported	for	current

argument	type.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
This	operation	is	similar	to	viQueryf(),	except	that	the	params	parameters
list	provides	the	parameters	rather	than	the	separate	arg	parameter	list

Note		Because	the	prototype	for	this	function	cannot	provide
complete	type-checking,	remember	that	all	output	parameters
must	be	passed	by	reference.

Related	Topics
INSTR	Resource
SOCKET	Resource
viQueryf

viVScanf
Purpose
Reads,	converts,	and	formats	data	using	the	format	specifier.	Stores	the
formatted	data	in	the	parameters	designated	by	params.

C	Syntax
ViStatus	viVScanf(ViSession	vi,	ViString	readFmt,	ViVAList	params)

Visual	Basic	Syntax
viVScanf&(ByVal	vi&,	ByVal	readFmt$,	params	as	Any)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

readFmt IN String	describing	the	format	to
apply	to	params.

params OUT A	list	with	the	variable	number
of	parameters	into	which	the
data	is	read	and	the	format

string	is	applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Data	was	successfully	read
and	formatted	into	params

parameter(s).

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_IO Could	not	perform	read
operation	because	of	I/O

error.

VI_ERROR_TMO Timeout	expired	before
read	operation
completed.

VI_ERROR_INV_FMT A	format	specifier	in	the
readFmt	string	is	invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
readFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of

insufficient	resources.

Description
This	operation	is	similar	to	viScanf(),	except	that	the	params	parameters
list	provides	the	parameters	rather	than	separate	arg	parameters.

Note		Because	the	prototype	for	this	function	cannot	provide
complete	type-checking,	remember	that	all	output	parameters
must	be	passed	by	reference.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viScanf
viSScanf
viVPrintf
viVSScanf

viVSPrintf
Purpose
Converts,	formats,	and	sends	the	parameters	designated	by	params	to	a
user-specified	buffer	as	specified	by	the	format	string.

C	Syntax
ViStatus	viVSPrintf(ViSession	vi,	ViPBuf	buf,	ViString	writeFmt,	ViVAList
params)

Visual	Basic	Syntax
viVSPrintf&(ByVal	vi&,	ByVal	buf$,	ByVal	writeFmt$,	params	as	Any)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf OUT Buffer	where	data	is	to	be
written.

writeFmt IN The	format	string	to	apply	to
parameters	in	ViVAList.

params IN A	list	containing	the	variable
number	of	parameters	on	which
the	format	string	is	applied.	The
formatted	data	is	written	to	the

specified	buf.

Return	Values
Completion	Codes Description

VI_SUCCESS Parameters	were	successfully
formatted.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_INV_FMT A	format	specifier	in	the
writeFmt	string	is

invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
writeFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of
insufficient	resources.

Description
This	operation	is	similar	to	viVPrintf(),	except	that	the	output	is	not	written
to	the	device;	it	is	written	to	the	user-specified	buffer.	This	output	buffer	is
NULL	terminated.
If	this	operation	outputs	an	END	indicator	before	all	the	arguments	are
satisfied,	then	the	rest	of	the	writeFmt	string	is	ignored	and	the	buffer
string	is	still	terminated	by	a	NULL.

Note		The	size	of	the	buf	parameter	should	be	large	enough	to
hold	the	formatted	I/O	contents	plus	the	NULL	termination
character.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viPrintf
viSPrintf
viVPrintf
viVSScanf

viVSScanf
Purpose
Reads,	converts,	and	formats	data	from	a	user-specified	buffer	using	the
format	specifier.	Stores	the	formatted	data	in	the	parameters	designated
by	params.

C	Syntax
ViStatus	viVSScanf(ViSession	vi,	ViBuf	buf,	ViString	readFmt,	ViVAList
params)

Visual	Basic	Syntax
viVSScanf&(ByVal	vi&,	ByVal	buf$,	ByVal	readFmt$,	params	as	Any)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Buffer	from	which	data	is	read
and	formatted.

readFmt IN String	describing	the	format	to
apply	to	params.

params OUT A	list	with	the	variable	number
of	parameters	into	which	the
data	is	read	and	the	format

string	is	applied.

Return	Values
Completion	Codes Description

VI_SUCCESS Data	was	successfully	read
and	formatted	into	params

parameter(s).

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_INV_FMT A	format	specifier	in	the
readFmt	string	is	invalid.

VI_ERROR_NSUP_FMT A	format	specifier	in	the
readFmt	string	is	not

supported.

VI_ERROR_ALLOC The	system	could	not
allocate	a	formatted	I/O

buffer	because	of
insufficient	resources.

Description
The	viVSScanf()	operation	is	similar	to	viVScanf(),	except	that	the	data	is
read	from	a	user-specified	buffer	rather	than	a	device.

Note		Because	the	prototype	for	this	function	cannot	provide
complete	type	checking,	remember	that	all	output	parameters	must
be	passed	by	reference.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viScanf
viSScanf
viVScanf
viVSPrintf

viVxiCommandQuery
Purpose
Sends	the	device	a	miscellaneous	command	or	query	and/or	retrieves
the	response	to	a	previous	query.

C	Syntax
ViStatus	viVxiCommandQuery(ViSession	vi,	ViUInt16	mode,	ViUInt32	cmd,
ViPUInt32	response)

Visual	Basic	Syntax
viVxiCommandQuery&(ByVal	vi&,	ByVal	mode%,	ByVal	cmd&,	response&)

Resource	Classes
GPIB-VXI	INSTR,	VXI	INSTR

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

mode IN Specifies	whether	to	issue	a
command	and/or	retrieve	a
response.	Refer	to	the

Description	section	for	actual
values.

cmd IN The	miscellaneous	command	to
send.

response OUT The	response	retrieved	from
the	device.	If	the	mode

specifies	to	send	a	command
rather	than	retrieve	a	response,
you	can	use	VI_NULL	for	this

parameter.

Return	Values
Completion	Codes Description

VI_SUCCESS The	operation	completed
successfully.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol

occurred	during
transfer.

VI_ERROR_OUTP_PROT_VIOL Device	reported
an	output

protocol	error
during	transfer.

VI_ERROR_INP_PROT_VIOL Device	reported
an	input	protocol
error	during
transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_RESP_PENDING A	previous
response	is	still
pending,	causing
a	multiple	query

error.

VI_ERROR_INV_MODE The	value
specified	by	the
mode	parameter

is	invalid.

Description
The	viVxiCommandQuery()	operation	can	send	a	command	or	query,	or
receive	a	response	to	a	query	previously	sent	to	the	device.	The	mode
parameter	specifies	whether	to	issue	a	command	and/or	retrieve	a
response,	and	indicates	the	type	or	size	of	command	and/or	response	to
use.	The	following	table	defines	the	values	for	the	mode	parameter.

Mode Action	Description

VI_VXI_CMD16 Send	16-bit	Word	Serial
command.

VI_VXI_CMD16_RESP16 Send	16-bit	Word	Serial
query;	get	16-bit	response.

VI_VXI_RESP16 Get	16-bit	response	from
previous	query.

VI_VXI_CMD32 Send	32-bit	Word	Serial
command.

VI_VXI_CMD32_RESP16 Send	32-bit	Word	Serial
query;	get	16-bit	response.

VI_VXI_CMD32_RESP32 Send	32-bit	Word	Serial
query;	get	32-bit	response.

VI_VXI_RESP32 Get	32-bit	response	from
previous	query.

Notice	that	the	mode	you	specify	can	cause	all	or	part	of	the	cmd	or
response	parameters	to	be	ignored.

If	mode	specifies	sending	a	16-bit	command,	the	upper	half	of
cmd	is	ignored.
If	mode	specifies	retrieving	a	response	only,	cmd	is	ignored.
If	mode	specifies	sending	a	command	only,	response	is	ignored.
You	can	use	VI_NULL	for	the	value	of	response.

If	mode	specifies	to	retrieve	a	16-bit	value,	the	upper	half	of
response	is	set	to	0.

Refer	to	the	VXI	Specification	for	defined	Word	Serial	commands.
Related	Topics
INSTR	Resource

viWaitOnEvent
Purpose
Waits	for	an	occurrence	of	the	specified	event	for	a	given	session.

C	Syntax
ViStatus	viWaitOnEvent(ViSession	vi,	ViEventType	inEventType,	ViUInt32
timeout,	ViPEventType	outEventType,	ViPEvent	outContext)

Visual	Basic	Syntax
viWaitOnEvent&(ByVal	vi&,	ByVal	inEventType&,	ByVal	timeout&,
outEventType&,	outContext&)

Resource	Classes
All	I/O	session	types

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

inEventType IN Logical	identifier	of	the
event(s)	to	wait	for.

timeout IN Absolute	time	period	in	time
units	that	the	resource	shall
wait	for	a	specified	event	to
occur	before	returning	the
time	elapsed	error.	The

time	unit	is	in	milliseconds.

outEventType OUT Logical	identifier	of	the
event	actually	received.

outContext OUT A	handle	specifying	the
unique	occurrence	of	an

event.

Return	Values
Completion	Codes Description

VI_SUCCESS Wait	terminated	successfully	on
receipt	of	an	event	occurrence.

The	queue	is	empty.

VI_SUCCESS_QUEUE_NEMPTY Wait	terminated	successfully	on
receipt	of	an	event	notification.
There	is	still	at	least	one	more
event	occurrence	of	the	type
specified	by	inEventType
available	for	this	session.

VI_WARN_QUEUE_OVERFLOW The	event	returned	is	valid.	One
or	more	events	that	occurred	have
not	been	raised	because	there
was	no	room	available	on	the
queue	at	the	time	of	their

occurrence.	This	could	happen
because

VI_ATTR_MAX_QUEUE_LENGTH
is	not	set	to	a	large	enough	value
for	your	application	and/or	events
are	coming	in	faster	than	you	are

servicing	them.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_INV_EVENT Specified	event
type	is	not

supported	by	the
resource.

VI_ERROR_TMO Specified	event	did
not	occur	within	the

specified	time
period.

VI_ERROR_NENABLED The	session	must
be	enabled	for
events	of	the

specified	type	in
order	to	receive

them.

VI_ERROR_QUEUE_OVERFLOW No	new	event	is
raised	because
there	is	no	room
available	on	the

queue.	This	means
you	have	already

received	all
previous	events	but
not	closed	them.
You	must	call

viClose	on	each
event	you	receive

from
viWaitOnEvent.

Description
The	viWaitOnEvent()	operation	suspends	the	execution	of	a	thread	of	an
application	and	waits	for	an	event	of	the	type	specified	by	inEventType
for	a	time	period	specified	by	timeout.	You	can	wait	only	for	events	that
have	been	enabled	with	the	viEnableEvent()	operation.	Refer	to	individual
event	descriptions	for	context	definitions.	If	the	specified	inEventType	is
VI_ALL_ENABLED_EVENTS,	the	operation	waits	for	any	event	that	is
enabled	for	the	given	session.	If	the	specified	timeout	value	is
VI_TMO_INFINITE,	the	operation	is	suspended	indefinitely.	If	the
specified	timeout	value	is	VI_TMO_IMMEDIATE,	the	operation	is	not
suspended;	therefore,	this	value	can	be	used	to	dequeue	events	from	an
event	queue.
When	the	outContext	handle	returned	from	a	successful	invocation	of
viWaitOnEvent()	is	no	longer	needed,	it	should	be	passed	to	viClose().
If	a	session's	event	queue	becomes	full	and	a	new	event	arrives,	the	new
event	is	discarded.	The	default	event	queue	size	(per	session)	is	50,
which	is	sufficiently	large	for	most	applications.	If	an	application	expects
more	than	50	events	to	arrive	without	having	been	handled,	it	can	modify
the	value	of	the	attribute	VI_ATTR_MAX_QUEUE_LENGTH	to	the
required	size.
The	outEventType	and	outContext	parameters	are	optional	and	can	be
VI_NULL.	This	can	be	used	if	the	event	type	is	known	from	the
inEventType	parameter,	or	if	the	outContext	handle	is	not	needed	to
retrieve	additional	information.	If	VI_NULL	is	used	for	the	outContext
parameter,	VISA	will	automatically	close	the	event	context.
Related	Topics
Events
VI_ATTR_MAX_QUEUE_LENGTH
viClose
viEnableEvent
VISA	Resource	Template

viWrite
Purpose
Writes	data	to	device	or	interface	synchronously.

C	Syntax
ViStatus	viWrite(ViSession	vi,	ViBuf	buf,	ViUInt32	count,	ViPUInt32
retCount)

Visual	Basic	Syntax
viWrite&(ByVal	vi&,	ByVal	buf$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Location	of	a	data	block	to	be
sent	to	a	device.

count IN Number	of	bytes	to	be	written.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS Transfer	completed.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_INP_PROT_VIOL Device	reported
an	input	protocol
error	during
transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_INV_SETUP Unable	to	start
write	operation
because	setup	is
invalid	(due	to
attributes	being

set	to	an
inconsistent

state).

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_IO An	unknown	I/O
error	occurred
during	transfer.

VI_ERROR_CONN_LOST The	I/O

connection	for
the	given	session
has	been	lost.

Description
The	viWrite()	operation	synchronously	transfers	data.	The	data	to	be
written	is	in	the	buffer	represented	by	buf.	This	operation	returns	only
when	the	transfer	terminates.	Only	one	synchronous	write	operation	can
occur	at	any	one	time.
Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viBufWrite
viRead
viWriteAsync
viWriteFromFile

viWriteAsync
Purpose
Writes	data	to	device	or	interface	asynchronously.

C	Syntax
ViStatus	viWriteAsync(ViSession	vi,	ViBuf	buf,	ViUInt32	count,	ViPJobId
jobId)

Visual	Basic	Syntax
N/A

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

buf IN Location	of	a	data	block	to	be
sent	to	a	device.

count IN Number	of	bytes	to	be	written.

jobId OUT Job	ID	of	this	asynchronous
write	operation.

Return	Values
Completion	Codes Description

VI_SUCCESS Asynchronous	write	operation
successfully	queued.

VI_SUCCESS_SYNC Write	operation	performed
synchronously.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given	session
reference	is	invalid.

VI_ERROR_RSRC_LOCKED Specified	operation
could	not	be	performed
because	the	resource

identified	by	vi	has	been
locked	for	this	kind	of

access.

VI_ERROR_QUEUE_ERROR Unable	to	queue	write
operation	(usually	due	to
the	I/O	completion	event
not	being	enabled	or

insufficient	space	in	the
session's	queue).

VI_ERROR_IN_PROGRESS Unable	to	queue	the
asynchronous	operation
because	there	is	already

an	operation	in
progress.

Description
The	viWriteAsync()	operation	asynchronously	transfers	data.	The	data	to
be	written	is	in	the	buffer	represented	by	buf.	This	operation	normally
returns	before	the	transfer	terminates.
Before	calling	this	operation,	you	should	enable	the	session	for	receiving
I/O	completion	events.	After	the	transfer	has	completed,	an	I/O
completion	event	is	posted.
The	operation	returns	a	job	identifier	that	you	can	use	with	either
viTerminate()	to	abort	the	operation	or	with	an	I/O	completion	event	to
identify	which	asynchronous	write	operation	completed.	VISA	will	never
return	VI_NULL	for	a	valid	jobId.

Note		If	you	have	enabled	VI_EVENT_IO_COMPLETION	for
queueing	(VI_QUEUE),	for	each	successful	call	to	viWriteAsync(),
you	must	call	viWaitOnEvent()	to	retrieve	the	I/O	completion	event.
This	is	true	even	if	the	I/O	is	done	synchronously	(that	is,	if	the
operation	returns	VI_SUCCESS_SYNC).	If	you	are	using	LabVIEW,
this	is	done	for	you	automatically.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
VI_EVENT_IO_COMPLETION
viEnableEvent
viReadAsync
viTerminate
viWaitOnEvent
viWrite

viWriteFromFile
Purpose
Take	data	from	a	file	and	write	it	out	synchronously.

C	Syntax
ViStatus	viWriteFromFile(ViSession	vi,	ViString	fileName,	ViUInt32	count,
ViPUInt32	retCount)

Visual	Basic	Syntax
viWriteFromFile&	(ByVal	vi&,	ByVal	filename$,	ByVal	count&,	retCount&)

Resource	Classes
GPIB	INSTR,	GPIB	INTFC,	GPIB-VXI	INSTR,	Serial	INSTR,	TCPIP
INSTR,	TCPIP	SOCKET,	USB	INSTR,	USB	RAW,	VXI	INSTR,	VXI
SERVANT

Parameters
Name Direction Description

vi IN Unique	logical	identifier	to	a
session.

fileName IN Name	of	file	from	which	data
will	be	read.

count IN Number	of	bytes	to	be	written.

retCount OUT Number	of	bytes	actually
transferred.

Return	Values
Completion	Codes Description

VI_SUCCESS Transfer	completed.

	
Error	Codes Description

VI_ERROR_INV_OBJECT The	given
session	reference

is	invalid.

VI_ERROR_NSUP_OPER The	given	vi
does	not	support
this	operation.

VI_ERROR_RSRC_LOCKED Specified
operation	could
not	be	performed
because	the
resource

identified	by	vi
has	been	locked
for	this	kind	of

access.

VI_ERROR_TMO Timeout	expired
before	operation

completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw
write	protocol
occurred	during

transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw
read	protocol
occurred	during

transfer.

VI_ERROR_INP_PROT_VIOL Device	reported
an	input	protocol
error	during
transfer.

VI_ERROR_BERR Bus	error
occurred	during

transfer.

VI_ERROR_NCIC The	interface
associated	with
the	given	vi	is	not
currently	the
controller	in
charge.

VI_ERROR_NLISTENERS No-listeners
condition	is

detected	(both
NRFD	and	NDAC
are	unasserted).

VI_ERROR_IO An	unknown	I/O
error	occurred
during	transfer.

VI_ERROR_FILE_ACCESS An	error	occurred
while	trying	to
open	the

specified	file.
Possible	reasons
include	an	invalid
path	or	lack	of
access	rights.

VI_ERROR_FILE_IO An	error	occurred

while	accessing
the	specified	file.

VI_ERROR_CONN_LOST The	I/O
connection	for

the	given	session
has	been	lost.

Description
This	write	operation	synchronously	transfers	data.	The	file	specified	in
fileName	is	opened	in	binary	read-only	mode,	and	the	data	(up	to	end-of-
file	or	the	number	of	bytes	specified	in	count)	is	read.	The	data	is	then
written	to	the	device.	This	operation	returns	only	when	the	transfer
terminates.
This	operation	is	useful	for	sending	data	that	was	already	processed
and/or	formatted.
Special	Values	for	retCount	Parameter

Value Action	Description

VI_NULL Do	not	return	the	number	of
bytes	transferred.

If	you	pass	VI_NULL	as	the	retCount	parameter	to	the	viWriteFromFile()
operation,	the	number	of	bytes	transferred	will	not	be	returned.	This	may
be	useful	if	it	is	important	to	know	only	whether	the	operation	succeeded
or	failed.

Related	Topics
INSTR	Resource
INTFC	Resource
SERVANT	Resource
SOCKET	Resource
viReadToFile
viWrite

Resources
This	section	lists	the	attributes,	events,	and	operations	in	each	resource
in	VISA.
Refer	to	Attributes,	Events,	or	Operations	for	more	detailed	information.

VISA	Resource	Template
This	section	lists	the	attributes,	events,	and	operations	for	the	VISA
Resource	Template.	The	attributes,	events,	and	operations	in	the	VISA
Resource	Template	are	available	to	all	other	resources.

Attributes
VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_RM_SESSION
VI_ATTR_RSRC_CLASS
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE
VI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAME
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION
VI_ATTR_USER_DATA/VI_ATTR_USER_DATA_32/VI_ATTR_USER_DATA_64

Events
VI_EVENT_EXCEPTION

Operations
viClose	(vi)
viDisableEvent	(vi,	eventType,	mechanism)
viDiscardEvents	(vi,	eventType,	mechanism)
viEnableEvent	(vi,	eventType,	mechanism,	context)
viGetAttribute	(vi,	attribute,	attrState)
viInstallHandler	(vi,	eventType,	handler,	userHandle)
viLock	(vi,	lockType,	timeout,	requestedKey,	accessKey)
viSetAttribute	(vi,	attribute,	attrState)
viStatusDesc	(vi,	status,	desc)
viTerminate	(vi,	degree,	jobId)
viUninstallHandler	(vi,	eventType,	handler,	userHandle)
viUnlock	(vi)
viWaitOnEvent	(vi,	inEventType,	timeout,	outEventType,	outContext)

VISA	Resource	Manager
This	section	lists	the	attributes,	events,	and	operations	for	the	VISA
Resource	Manager.	The	attributes,	events,	and	operations	in	the	VISA
Resource	Template	are	available	to	this	resource	in	addition	to	the
operations	listed	below.

Attributes
The	attributes	for	the	VISA	Resource	Template	are	available	to	this
resource.	This	resource	has	no	defined	attributes	of	its	own.

Events
None

Operations
viFindNext	(findList,	instrDesc)
viFindRsrc	(sesn,	expr,	findList,	retcnt,	instrDesc)
viOpen	(sesn,	rsrcName,	accessMode,	timeout,	vi)
viOpenDefaultRM	(sesn)
viParseRsrc(sesn,	rsrcName,	intfType,	intfNum)
viParseRsrcEx	(sesn,	rsrcName,	intfType,	intfNum,	rsrcClass,
unaliasdExpandedRsrcName,	aliasIfExists)

INSTR	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	INSTR
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_ASRL_ALLOW_TRANSMIT
VI_ATTR_ASRL_AVAIL_NUM
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_BREAK_LEN
VI_ATTR_ASRL_BREAK_STATE
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRL_DATA_BITS
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DISCARD_NULL
VI_ATTR_ASRL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRL_END_IN
VI_ATTR_ASRL_END_OUT
VI_ATTR_ASRL_FLOW_CONTROL
VI_ATTR_ASRL_PARITY
VI_ATTR_ASRL_REPLACE_CHAR
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRL_RTS_STATE
VI_ATTR_ASRL_STOP_BITS
VI_ATTR_ASRL_WIRE_MODE
VI_ATTR_ASRL_XOFF_CHAR
VI_ATTR_ASRL_XON_CHAR
VI_ATTR_CMDR_LA
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_DEST_INCREMENT
VI_ATTR_DMA_ALLOW_EN

VI_ATTR_FDC_CHNL
VI_ATTR_FDC_MODE
VI_ATTR_FDC_USE_PAIR
VI_ATTR_FILE_APPEND_EN
VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_GPIB_READDR_EN
VI_ATTR_GPIB_REN_STATE
VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_GPIB_UNADDR_EN
VI_ATTR_IMMEDIATE_SERV
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_PARENT_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_IO_PROT
VI_ATTR_MAINFRAME_LA
VI_ATTR_MANF_ID
VI_ATTR_MANF_NAME
VI_ATTR_MEM_BASE/VI_ATTR_MEM_BASE_32/VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_SIZE/VI_ATTR_MEM_SIZE_32/VI_ATTR_MEM_SIZE_64
VI_ATTR_MEM_SPACE
VI_ATTR_MODEL_CODE
VI_ATTR_MODEL_NAME
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_SEND_END_EN
VI_ATTR_SLOT
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER
VI_ATTR_SRC_INCREMENT

VI_ATTR_SUPPRESS_END_EN
VI_ATTR_TCPIP_ADDR
VI_ATTR_TCPIP_DEVICE_NAME
VI_ATTR_TCPIP_HOSTNAME
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN
VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID
VI_ATTR_VXI_DEV_CLASS
VI_ATTR_VXI_LA
VI_ATTR_VXI_TRIG_SUPPORT
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64
VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_IO_COMPLETION
VI_EVENT_SERVICE_REQ
VI_EVENT_TRIG
VI_EVENT_VXI_SIGP
VI_EVENT_VXI_VME_INTR

Operations
viAssertTrigger	(vi,	protocol)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viClear	(vi)
viFlush	(vi,	mask)
viGpibControlREN	(vi,	mode)
viIn8	(vi,	space,	offset,	val8)
viIn8Ex	(vi,	space,	offset,	val8)
viIn16	(vi,	space,	offset,	val16)
viIn16Ex	(vi,	space,	offset,	val16)
viIn32	(vi,	space,	offset,	val32)
viIn32Ex	(vi,	space,	offset,	val32)
viIn64	(vi,	space,	offset,	val64)
viIn64Ex	(vi,	space,	offset,	val64)
viMapAddress	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMapAddressEx	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMemAlloc	(vi,	size,	offset)
viMemAllocEx	(vi,	size,	offset)
viMemFree	(vi,	offset)
viMemFreeEx	(vi,	offset)
viMove	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length)
viMoveEx	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length)
viMoveAsync	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,
destWidth,	length,	jobId)
viMoveAsyncEx	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,
destWidth,	length,	jobId)

viMoveIn8	(vi,	space,	offset,	length,	buf8)
viMoveIn8Ex	(vi,	space,	offset,	length,	buf8)
viMoveIn16	(vi,	space,	offset,	length,	buf16)
viMoveIn16Ex	(vi,	space,	offset,	length,	buf16)
viMoveIn32	(vi,	space,	offset,	length,	buf32)
viMoveIn32Ex	(vi,	space,	offset,	length,	buf32)
viMoveIn64	(vi,	space,	offset,	length,	buf64)
viMoveIn64Ex	(vi,	space,	offset,	length,	buf64)
viMoveOut8	(vi,	space,	offset,	length,	buf8)
viMoveOut8Ex	(vi,	space,	offset,	length,	buf8)
viMoveOut16	(vi,	space,	offset,	length,	buf16)
viMoveOut16Ex	(vi,	space,	offset,	length,	buf16)
viMoveOut32	(vi,	space,	offset,	length,	buf32)
viMoveOut32Ex	(vi,	space,	offset,	length,	buf32)
viMoveOut64	(vi,	space,	offset,	length,	buf64)
viMoveOut64Ex	(vi,	space,	offset,	length,	buf64)
viOut8	(vi,	space,	offset,	val8)
viOut8Ex	(vi,	space,	offset,	val8)
viOut16	(vi,	space,	offset,	val16)
viOut16Ex	(vi,	space,	offset,	val16)
viOut32	(vi,	space,	offset,	val32)
viOut32Ex	(vi,	space,	offset,	val32)
viOut64	(vi,	space,	offset,	val64)
viOut64Ex	(vi,	space,	offset,	val64)
viPeek8	(vi,	addr,	val8)
viPeek16	(vi,	addr,	val16)
viPeek32	(vi,	addr,	val32)
viPeek64	(vi,	addr,	val64)
viPoke8	(vi,	addr,	val8)

viPoke16	(vi,	addr,	val16)
viPoke32	(vi,	addr,	val32)
viPoke64	(vi,	addr,	val64)
viPrintf	(vi,	writeFmt,	...)
viQueryf	(vi,	writeFmt,	readFmt,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadSTB	(vi,	status)
viReadToFile	(vi,	fileName,	count,	retCount)
viScanf	(vi,	readFmt,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	...)
viSScanf	(vi,	buf,	readFmt,	...)
viUnmapAddress	(vi)
viUsbControlIn
viUsbControlOut
viVPrintf	(vi,	writeFmt,	params)
viVQueryf	(vi,	writeFmt,	readFmt,	params)
viVScanf	(vi,	readFmt,	params)
viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viVxiCommandQuery	(vi,	mode,	cmd,	response)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync(vi,	buf,	count,	jobId)

MEMACC	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	MEMACC
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_DEST_ACCESS_PRIV
VI_ATTR_DEST_BYTE_ORDER
VI_ATTR_DEST_INCREMENT
VI_ATTR_DMA_ALLOW_EN
VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_PARENT_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_SRC_ACCESS_PRIV
VI_ATTR_SRC_BYTE_ORDER
VI_ATTR_SRC_INCREMENT
VI_ATTR_TMO_VALUE
VI_ATTR_VXI_LA
VI_ATTR_WIN_ACCESS
VI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_WIN_BASE_ADDR/VI_ATTR_WIN_BASE_ADDR_32/VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BYTE_ORDER
VI_ATTR_WIN_SIZE/VI_ATTR_WIN_SIZE_32/VI_ATTR_WIN_SIZE_64

Events
VI_EVENT_IO_COMPLETION

Operations
viIn8	(vi,	space,	offset,	val8)
viIn8Ex	(vi,	space,	offset,	val8)
viIn16	(vi,	space,	offset,	val16)
viIn16Ex	(vi,	space,	offset,	val16)
viIn32	(vi,	space,	offset,	val32)
viIn32Ex	(vi,	space,	offset,	val32)
viIn64	(vi,	space,	offset,	val64)
viIn64Ex	(vi,	space,	offset,	val64)
viMapAddress	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMapAddressEx	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMemAlloc	(vi,	size,	offset)
viMemAllocEx	(vi,	size,	offset)
viMove	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length)
viMoveEx	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length)
viMoveAsync	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,
destWidth,	length,	jobId)
viMoveAsyncEx	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,
destWidth,	length,	jobId)
viMoveIn8	(vi,	space,	offset,	length,	buf8)
viMoveIn8Ex	(vi,	space,	offset,	length,	buf8)
viMoveIn16	(vi,	space,	offset,	length,	buf16)
viMoveIn16Ex	(vi,	space,	offset,	length,	buf16)
viMoveIn32	(vi,	space,	offset,	length,	buf32)
viMoveIn32Ex	(vi,	space,	offset,	length,	buf32)
viMoveIn64	(vi,	space,	offset,	length,	buf64)
viMoveIn64Ex	(vi,	space,	offset,	length,	buf64)

viMoveOut8	(vi,	space,	offset,	length,	buf8)
viMoveOut8Ex	(vi,	space,	offset,	length,	buf8)
viMoveOut16	(vi,	space,	offset,	length,	buf16)
viMoveOut16Ex	(vi,	space,	offset,	length,	buf16)
viMoveOut32	(vi,	space,	offset,	length,	buf32)
viMoveOut32Ex	(vi,	space,	offset,	length,	buf32)
viMoveOut64	(vi,	space,	offset,	length,	buf64)
viMoveOut64Ex	(vi,	space,	offset,	length,	buf64)
viOut8	(vi,	space,	offset,	val8)
viOut8Ex	(vi,	space,	offset,	val8)
viOut16	(vi,	space,	offset,	val16)
viOut16Ex	(vi,	space,	offset,	val16)
viOut32	(vi,	space,	offset,	val32)
viOut32Ex	(vi,	space,	offset,	val32)
viOut64	(vi,	space,	offset,	val64)
viOut64Ex	(vi,	space,	offset,	val64)
viPeek8	(vi,	addr,	val8)
viPeek16	(vi,	addr,	val16)
viPeek32	(vi,	addr,	val32)
viPeek64	(vi,	addr,	val64)
viPoke8	(vi,	addr,	val8)
viPoke16	(vi,	addr,	val16)
viPoke32	(vi,	addr,	val32)
viPoke64	(vi,	addr,	val64)
viUnmapAddress	(vi)

INTFC	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	INTFC
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_DEV_STATUS_BYTE
VI_ATTR_EVENT_TYPE
VI_ATTR_FILE_APPEND_EN
VI_ATTR_GPIB_ATN_STATE
VI_ATTR_GPIB_CIC_STATE
VI_ATTR_GPIB_HS488_CBL_LEN
VI_ATTR_GPIB_NDAC_STATE
VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_GPIB_REN_STATE
VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_GPIB_SRQ_STATE
VI_ATTR_GPIB_SYS_CNTRL_STATE
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_RM_SESSION
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE
VI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAME
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION
VI_ATTR_SEND_END_EN
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID
VI_ATTR_USER_DATA/VI_ATTR_USER_DATA_32/VI_ATTR_USER_DATA_64
VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_CLEAR
VI_EVENT_GPIB_CIC
VI_EVENT_GPIB_LISTEN
VI_EVENT_GPIB_TALK
VI_EVENT_IO_COMPLETION
VI_EVENT_SERVICE_REQ
VI_EVENT_TRIG

Operations
ViAssertTrigger	(vi,	protocol)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viFlush	(vi,	mask)
viGpibCommand	(vi,	buf,	count,	retCount)
viGpibControlATN	(vi,	mode)
viGpibControlREN	(vi,	mode)
viGpibPassControl	(vi,	primAddr,	secAddr)
viGpibSendIFC	(vi)
viPrintf	(vi,	writeFmt,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadToFile	(vi,	fileName,	count,	retCount)
viScanf	(vi,	readFmt,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	...)
viSScanf	(vi,	buf,	readFmt,	...)
viVPrintf	(vi,	writeFmt,	params)
viVScanf	(vi,	readFmt,	params)
viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync	(vi,	buf,	count,	jobId)
viWriteFromFile	(vi,	fileName,	count,	retCount)

BACKPLANE	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the
BACKPLANE	Resource.	The	attributes,	events,	and	operations	in	the
VISA	Resource	Template	are	available	to	this	resource	in	addition	to	the
attributes	and	operations	listed	below.

Attributes
VI_ATTR_GPIB_PRIMARY_ADDR
VI_ATTR_GPIB_SECONDARY_ADDR
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_PARENT_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_MAINFRAME_LA
VI_ATTR_PXI_CHASSIS
VI_ATTR_PXI_DEST_TRIG_BUS
VI_ATTR_PXI_SRC_TRIG_BUS
VI_ATTR_PXI_TRIG_BUS
VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID
VI_ATTR_VXI_TRIG_STATUS
VI_ATTR_VXI_TRIG_SUPPORT
VI_ATTR_VXI_VME_INTR_STATUS
VI_ATTR_VXI_VME_SYSFAIL_STATE

Events
VI_EVENT_TRIG
VI_EVENT_VXI_VME_SYSFAIL
VI_EVENT_VXI_VME_SYSRESET

Operations
viAssertIntrSignal	(vi,	mode,	statusID)
viAssertTrigger	(vi,	protocol)
viAssertUtilSignal	(vi,	line)
viMapTrigger	(vi,	trigSrc,	trigDest,	mode)
viUnmapTrigger	(vi,	trigSrc,	trigDest)

SERVANT	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	SERVANT
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_CMDR_LA
VI_ATTR_DEV_STATUS_BYTE
VI_ATTR_DMA_ALLOW_EN
VI_ATTR_FILE_APPEND_EN
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_IO_PROT
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_SEND_END_EN
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN
VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID
VI_ATTR_VXI_LA
VI_ATTR_VXI_VME_SYSFAIL_STATE
VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_CLEAR
VI_EVENT_IO_COMPLETION
VI_EVENT_TRIG
VI_EVENT_VXI_VME_SYSRESET

Operations
viAssertIntrSignal	(vi,	mode,	statusID)
viAssertUtilSignal	(vi,	line)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viFlush	(vi,	mask)
viPrintf	(vi,	writeFmt,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadToFile	(vi,	fileName,	count,	retCount)
viScanf	(vi,	readFmt,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	...)
viSScanf	(vi,	buf,	readFmt,	...)
viVPrintf	(vi,	writeFmt,	params)
viVScanf	(vi,	readFmt,	params)
viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync	(vi,	buf,	count,	jobId)
viWriteFromFile	(vi,	fileName,	count,	retCount)

SOCKET	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	SOCKET
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_FILE_APPEND_EN
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_IO_PROT
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_SEND_END_EN
VI_ATTR_TCPIP_ADDR
VI_ATTR_TCPIP_HOSTNAME
VI_ATTR_TCPIP_KEEPALIVE
VI_ATTR_TCPIP_NODELAY
VI_ATTR_TCPIP_PORT
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN
VI_ATTR_TMO_VALUE
VI_ATTR_TRIG_ID
VI_ATTR_WR_BUF_OPER_MODE

Events
VI_EVENT_IO_COMPLETION

Operations
viAssertTrigger	(vi,	protocol)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viClear	(vi)
viFlush	(vi,	mask)
viPrintf	(vi,	writeFmt,	...)
viQueryf	(vi,	writeFmt,	readFmt,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadSTB	(vi,	status)
viReadToFile	(vi,	fileName,	count,	retCount)
viScanf	(vi,	readFmt,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	...)
viSScanf	(vi,	buf,	readFmt,	...)
viVPrintf	(vi,	writeFmt,	params)
viVQueryf	(vi,	writeFmt,	readFmt,	params)
viVScanf	(vi,	readFmt,	params)
viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync	(vi,	buf,	count,	jobId)
viWriteFromFile	(vi,	fileName,	count,	retCount)

RAW	Resource
This	section	lists	the	attributes,	events,	and	operations	for	the	RAW
Resource.	The	attributes,	events,	and	operations	in	the	VISA	Resource
Template	are	available	to	this	resource	in	addition	to	the	attributes	and
operations	listed	below.

Attributes
VI_ATTR_FILE_APPEND_EN
VI_ATTR_INTF_INST_NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_IO_PROT
VI_ATTR_MANF_ID
VI_ATTR_MANF_NAME
VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_MODEL_CODE
VI_ATTR_MODEL_NAME
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_RD_BUF_SIZE
VI_ATTR_RSRC_CLASS
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE
VI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAME
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION
VI_ATTR_SUPPRESS_END_EN
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN
VI_ATTR_TMO_VALUE
VI_ATTR_USB_ALT_SETTING
VI_ATTR_USB_BULK_IN_PIPE
VI_ATTR_USB_BULK_IN_STATUS
VI_ATTR_USB_BULK_OUT_PIPE

VI_ATTR_USB_BULK_OUT_STATUS
VI_ATTR_USB_CLASS
VI_ATTR_USB_END_IN
VI_ATTR_USB_INTFC_NUM
VI_ATTR_USB_INTR_IN_PIPE
VI_ATTR_USB_INTR_IN_STATUS
VI_ATTR_USB_MAX_INTR_SIZE
VI_ATTR_USB_NUM_INTFCS
VI_ATTR_USB_NUM_PIPES
VI_ATTR_USB_PROTOCOL
VI_ATTR_USB_SERIAL_NUM
VI_ATTR_USB_SUBCLASS
VI_ATTR_USER_DATA/VI_ATTR_USER_DATA_32/VI_ATTR_USER_DATA_64
VI_ATTR_WR_BUF_OPER_MODE
VI_ATTR_WR_BUF_SIZE

Events
VI_EVENT_EXCEPTION
VI_EVENT_IO_COMPLETION
VI_EVENT_USB_INTR

Operations
viAssertTrigger
viBufRead
viBufWrite
viClear
viClose
viDisableEvent
viDiscardEvents
viEnableEvent
viEventHandler
viFindNext
viFindRsrc
viGetAttribute
viInstallHandler
viLock
viOpenDefaultRM
viOpen
viParseRsrc
viParseRsrcEx
viPrintf
viReadAsync
viReadSTB
viReadToFile
viRead
viScanf
viSetAttribute
viTerminate
viUninstallHandler

viUnlock
viUsbControlIn
viUsbControlOut
viVPrintf
viVScanf
viVSPrintf
viVSScanf
viUsbControlIn
viUsbControlOut
viWaitOnEvent
viWriteAsync
viWriteFromFile
viWrite

Completion	Codes
This	topic	lists	and	describes	the	completion	codes.

Completion	Codes Values Meaning
VI_SUCCESS 0 Operation	completed	successfully.
VI_SUCCESS_EVENT_EN 3FFF0002h Specified	event	is	already	enabled

for	at	least	one	of	the	specified
mechanisms.

VI_SUCCESS_EVENT_DIS 3FFF0003h Specified	event	is	already
disabled	for	at	least	one	of	the
specified	mechanisms.

VI_SUCCESS_QUEUE_EMPTY 3FFF0004h Operation	completed	successfully,
but	queue	was	already	empty.

VI_SUCCESS_TERM_CHAR 3FFF0005h The	specified	termination
character	was	read.

VI_SUCCESS_MAX_CNT 3FFF0006h The	number	of	bytes	read	is	equal
to	the	input	count.

VI_WARN_QUEUE_OVERFLOW 3FFF000Ch The	event	returned	is	valid.	One
or	more	events	that	occurred	have
not	been	raised	because	there
was	no	room	available	on	the
queue	at	the	time	of	their
occurrence.	This	could	happen
because
VI_ATTR_MAX_QUEUE_LENGTH
is	not	set	to	a	large	enough	value
for	your	application	and/or	events
are	coming	in	faster	than	you	are
servicing	them.

VI_WARN_CONFIG_NLOADED 3FFF0077h The	specified	configuration	either
does	not	exist	or	could	not	be
loaded;	using	VISA-specified
defaults.

VI_SUCCESS_DEV_NPRESENT 3FFF007Dh Session	opened	successfully,	but
the	device	at	the	specified

address	is	not	responding.
VI_SUCCESS_TRIG_MAPPED 3FFF007Eh The	path	from	trigSrc	to	trigDest	is

already	mapped.
VI_SUCCESS_QUEUE_NEMPTY 3FFF0080h Wait	terminated	successfully	on

receipt	of	an	event	notification.
There	is	still	at	least	one	more
event	occurrence	of	the	requested
type(s)	available	for	this	session.

VI_WARN_NULL_OBJECT 3FFF0082h The	specified	object	reference	is
uninitialized.

VI_WARN_NSUP_ATTR_STATE 3FFF0084h Although	the	specified	state	of	the
attribute	is	valid,	it	is	not
supported	by	this	resource
implementation.

VI_WARN_UNKNOWN_STATUS 3FFF0085h The	status	code	passed	to	the
operation	could	not	be	interpreted.

VI_WARN_NSUP_BUF 3FFF0088h The	specified	buffer	is	not
supported.

VI_SUCCESS_NCHAIN 3FFF0098h Event	handled	successfully.	Do
not	invoke	any	other	handlers	on
this	session	for	this	event.

VI_SUCCESS_NESTED_SHARED 3FFF0099h Operation	completed	successfully,
and	this	session	has	nested
shared	locks.

VI_SUCCESS_NESTED_EXCLUSIVE 3FFF009Ah Operation	completed	successfully,
and	this	session	has	nested
exclusive	locks.

VI_SUCCESS_SYNC 3FFF009Bh Asynchronous	operation	request
was	actually	performed
synchronously.

VI_WARN_EXT_FUNC_NIMPL 3FFF00A9h The	operation	succeeded,	but	a
lower	level	driver	did	not
implement	the	extended
functionality.

Error	Codes
This	topic	lists	and	describes	the	error	codes.

Completion	Codes Values Meaning
VI_ERROR_SYSTEM_ERROR BFFF0000h Unknown

system	error
(miscellaneous
error).

VI_ERROR_INV_OBJECT BFFF000Eh The	given
session	or
object
reference	is
invalid.

VI_ERROR_RSRC_LOCKED BFFF000Fh Specified	type
of	lock	cannot
be	obtained	or
specified
operation
cannot	be
performed,
because	the
resource	is
locked.

VI_ERROR_INV_EXPR BFFF0010h Invalid
expression
specified	for
search.

VI_ERROR_RSRC_NFOUND BFFF0011h Insufficient
location
information	or
the	device	or
resource	is	not
present	in	the
system.

VI_ERROR_INV_RSRC_NAME BFFF0012h Invalid	resource
reference

specified.
Parsing	error.

VI_ERROR_INV_ACC_MODE BFFF0013h Invalid	access
mode.

VI_ERROR_TMO BFFF0015h Timeout
expired	before
operation
completed.

VI_ERROR_CLOSING_FAILED BFFF0016h Unable	to
deallocate	the
previously
allocated	data
structures
corresponding
to	this	session
or	object
reference.

VI_ERROR_INV_DEGREE BFFF001Bh Specified
degree	is
invalid.

VI_ERROR_INV_JOB_ID BFFF001Ch Specified	job
identifier	is
invalid.

VI_ERROR_NSUP_ATTR BFFF001Dh The	specified
attribute	is	not
defined	or
supported	by
the	referenced
session,	event,
or	find	list.

VI_ERROR_NSUP_ATTR_STATE BFFF001Eh The	specified
state	of	the
attribute	is	not
valid,	or	is	not
supported	as
defined	by	the

session,	event,
or	find	list.

VI_ERROR_ATTR_READONLY BFFF001Fh The	specified
attribute	is
Read	Only.

VI_ERROR_INV_LOCK_TYPE BFFF0020h The	specified
type	of	lock	is
not	supported
by	this
resource.

VI_ERROR_INV_ACCESS_KEY BFFF0021h The	access	key
to	the	resource
associated	with
this	session	is
invalid.

VI_ERROR_INV_EVENT BFFF0026h Specified	event
type	is	not
supported	by
the	resource.

VI_ERROR_INV_MECH BFFF0027h Invalid
mechanism
specified.

VI_ERROR_HNDLR_NINSTALLED BFFF0028h A	handler	is	not
currently
installed	for	the
specified	event.

VI_ERROR_INV_HNDLR_REF BFFF0029h The	given
handler
reference	is
invalid.

VI_ERROR_INV_CONTEXT BFFF002Ah Specified	event
context	is
invalid.

VI_ERROR_QUEUE_OVERFLOW BFFF002Dh The	event
queue	for	the
specified	type

has	overflowed
(usually	due	to
previous	events
not	having
been	closed).

VI_ERROR_NENABLED BFFF002Fh The	session
must	be
enabled	for
events	of	the
specified	type
in	order	to
receive	them.

VI_ERROR_ABORT BFFF0030h The	operation
was	aborted.

VI_ERROR_RAW_WR_PROT_VIOL BFFF0034h Violation	of	raw
write	protocol
occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL BFFF0035h Violation	of	raw
read	protocol
occurred	during
transfer.

VI_ERROR_OUTP_PROT_VIOL BFFF0036h Device	reported
an	output
protocol	error
during	transfer.

VI_ERROR_INP_PROT_VIOL BFFF0037h Device	reported
an	input
protocol	error
during	transfer.

VI_ERROR_BERR BFFF0038h Bus	error
occurred	during
transfer.

VI_ERROR_IN_PROGRESS BFFF0039h Unable	to
queue	the
asynchronous

operation
because	there
is	already	an
operation	in
progress.

VI_ERROR_INV_SETUP BFFF003Ah Unable	to	start
operation
because	setup
is	invalid	(due
to	attributes
being	set	to	an
inconsistent
state).

VI_ERROR_QUEUE_ERROR BFFF003Bh Unable	to
queue
asynchronous
operation
(usually	due	to
the	I/O
completion
event	not	being
enabled	or
insufficient
space	in	the
session's
queue).

VI_ERROR_ALLOC BFFF003Ch Insufficient
system
resources	to
perform
necessary
memory
allocation.

VI_ERROR_INV_MASK BFFF003Dh Invalid	buffer
mask	specified.

VI_ERROR_IO BFFF003Eh Could	not
perform

operation
because	of	I/O
error.

VI_ERROR_INV_FMT BFFF003Fh A	format
specifier	in	the
format	string	is
invalid.

VI_ERROR_NSUP_FMT BFFF0041h A	format
specifier	in	the
format	string	is
not	supported.

VI_ERROR_LINE_IN_USE BFFF0042h The	specified
trigger	line	is
currently	in	use.

VI_ERROR_NSUP_MODE BFFF0046h The	specified
mode	is	not
supported	by
this	VISA
implementation.

VI_ERROR_SRQ_NOCCURRED BFFF004Ah Service	request
has	not	been
received	for	the
session.

VI_ERROR_INV_SPACE BFFF004Eh Invalid	address
space
specified.

VI_ERROR_INV_OFFSET BFFF0051h Invalid	offset
specified.

VI_ERROR_INV_WIDTH BFFF0052h Invalid	source
or	destination
width	specified.

VI_ERROR_NSUP_OFFSET BFFF0054h Specified	offset
is	not
accessible	from
this	hardware.

VI_ERROR_NSUP_VAR_WIDTH BFFF0055h Cannot	support
source	and
destination
widths	that	are
different.

VI_ERROR_WINDOW_NMAPPED BFFF0057h The	specified
session	is	not
currently
mapped.

VI_ERROR_RESP_PENDING BFFF0059h A	previous
response	is	still
pending,
causing	a
multiple	query
error.

VI_ERROR_NLISTENERS BFFF005Fh No	Listeners
condition	is
detected	(both
NRFD	and
NDAC	are
deasserted).

VI_ERROR_NCIC BFFF0060h The	interface
associated	with
this	session	is
not	currently
the	controller	in
charge.

VI_ERROR_NSYS_CNTLR BFFF0061h The	interface
associated	with
this	session	is
not	the	system
controller.

VI_ERROR_NSUP_OPER BFFF0067h The	given
session	or
object
reference	does
not	support	this

operation.
VI_ERROR_INTR_PENDING BFFF0068h An	interrupt	is

still	pending
from	a	previous
call.

VI_ERROR_ASRL_PARITY BFFF006Ah A	parity	error
occurred	during
transfer.

VI_ERROR_ASRL_FRAMING BFFF006Bh A	framing	error
occurred	during
transfer.

VI_ERROR_ASRL_OVERRUN BFFF006Ch An	overrun
error	occurred
during	transfer.
A	character
was	not	read
from	the
hardware
before	the	next
character
arrived.

VI_ERROR_TRIG_NMAPPED BFFF006Eh The	path	from
trigSrc	to
trigDest	is	not
currently
mapped.

VI_ERROR_NSUP_ALIGN_OFFSET BFFF0070h The	specified
offset	is	not
properly
aligned	for	the
access	width	of
the	operation.

VI_ERROR_USER_BUF BFFF0071h A	specified	user
buffer	is	not
valid	or	cannot
be	accessed	for

the	required
size.

VI_ERROR_RSRC_BUSY BFFF0072h The	resource	is
valid,	but	VISA
cannot
currently
access	it.

VI_ERROR_NSUP_WIDTH BFFF0076h Specified	width
is	not
supported	by
this	hardware.

VI_ERROR_INV_PARAMETER BFFF0078h The	value	of
some
parameter—
which
parameter	is
not	known—is
invalid.

VI_ERROR_INV_PROT BFFF0079h The	protocol
specified	is
invalid.

VI_ERROR_INV_SIZE BFFF007Bh Invalid	size	of
window
specified.

VI_ERROR_WINDOW_MAPPED BFFF0080h The	specified
session
currently
contains	a
mapped
window.

VI_ERROR_NIMPL_OPER BFFF0081h The	given
operation	is	not
implemented.

VI_ERROR_INV_LENGTH BFFF0083h Invalid	length
specified.

VI_ERROR_INV_MODE BFFF0091h The	specified

mode	is	invalid.
VI_ERROR_SESN_NLOCKED BFFF009Ch The	current

session	did	not
have	any	lock
on	the
resource.

VI_ERROR_MEM_NSHARED BFFF009Dh The	device
does	not	export
any	memory.

VI_ERROR_LIBRARY_NFOUND BFFF009Eh A	code	library
required	by
VISA	could	not
be	located	or
loaded.

VI_ERROR_NSUP_INTR BFFF009Fh The	interface
cannot
generate	an
interrupt	on	the
requested	level
or	with	the
requested
statusID	value.

VI_ERROR_INV_LINE BFFF00A0h The	value
specified	by	the
line	parameter
is	invalid.

VI_ERROR_FILE_ACCESS BFFF00A1h An	error
occurred	while
trying	to	open
the	specified
file.	Possible
reasons	include
an	invalid	path
or	lack	of
access	rights.

VI_ERROR_FILE_IO BFFF00A2h An	error

occurred	while
performing	I/O
on	the	specified
file.

VI_ERROR_NSUP_LINE BFFF00A3h One	of	the
specified	lines
(trigSrc	or
trigDest)	is	not
supported	by
this	VISA
implementation,
or	the
combination	of
lines	is	not	a
valid	mapping.

VI_ERROR_NSUP_MECH BFFF00A4h The	specified
mechanism	is
not	supported
for	the	given
event	type.

VI_ERROR_INTF_NUM_NCONFIG BFFF00A5h The	interface
type	is	valid	but
the	specified
interface
number	is	not
configured.

VI_ERROR_CONN_LOST BFFF00A6h The	connection
for	the	given
session	has
been	lost.

VI_ERROR_MACHINE_NAVAIL BFFF00A7h The	remote
machine	does
not	exist	or	is
not	accepting
any
connections.

VI_ERROR_NPERMISSION BFFF00A8h Access	to	the

resource	or
remote
machine	is
denied.	This	is
due	to	lack	of
sufficient
privileges	for
the	current	user
or	machine.

NI-VISA	Platform-Specific	and	Portability	Issues
The	topics	listed	below	discuss	programming	information	for	you	to
consider	when	developing	applications	that	use	the	NI-VISA	driver.
After	installing	the	driver	software,	you	can	begin	to	develop	your	VISA
application	software.	Remember	that	the	NI-VISA	driver	relies	on	NI-
488.2	and	NI-VXI	for	driver-level	I/O	accesses.

Windows	users—On	VXI	and	MXI	systems,	use	Measurement	&
Automation	Explorer	(MAX)	to	run	the	VXI	Resource	Manager
(resman),	configure	your	hardware,	and	assign	VME	and	GPIB-
VXI	addresses.	For	GPIB	systems,	use	MAX	to	configure	your
GPIB	controllers.	To	control	instruments	through	Serial	ports,	you
can	use	MAX	to	change	the	default	settings,	or	you	can	perform
all	the	necessary	configuration	at	run	time	by	setting	VISA
attributes.
All	other	platforms—On	VXI	and	MXI	systems,	you	must	still
run	the	VXI	Resource	Manager	(resman)	and	use	the	VXI
Resource	Editor	(vxiedit	or	vxitedit)	for	configuration	purposes.
For	GPIB	and	GPIB-VXI	systems,	you	still	use	the	GPIB	Control
Panel	applet	(Macintosh)	or	ibconf	(UNIX)	to	configure	your
system.	To	control	instruments	through	Serial	ports,	you	can	do
all	necessary	configuration	at	run-time	by	setting	VISA	attributes.
On	UNIX,	you	can	also	use	the	VISA	Configuration	Utility
(visaconf)	to	configure	VISA	aliases	and	change	the	default	Serial
settings.

Programming	Considerations
NI	Spy:	Debugging	Tool
Multiple	Applications	Using	the	NI-VISA	Driver
Low-Level	Access	Functions
Interrupt	Callback	Handlers

Multiple	Interface	Support	Issues
VXI	and	GPIB	Platforms
Serial	Port	Support
VME	Support

Programming	Considerations
The	following	topics	contain	information	for	you	to	consider	when
developing	applications	that	use	the	NI-VISA	I/O	interface	software.
NI	Spy:	Debugging	Tool
Multiple	Applications	Using	the	NI-VISA	Driver
Low-Level	Access	Functions
Interrupt	Callback	Handlers

Multiple	Applications	Using	the	NI-VISA	Driver
Multiple-application	support	is	an	important	feature	in	all	implementations
of	the	NI-VISA	driver.	You	can	have	several	applications	that	use	NI-VISA
running	simultaneously.	You	can	even	have	multiple	instances	of	the
same	application	that	uses	the	NI-VISA	driver	running	simultaneously,	if
your	application	is	designed	for	this.	The	NI-VISA	operations	perform	in
the	same	manner	whether	you	have	only	one	application	or	several
applications	(or	several	instances	of	an	application)	all	trying	to	use	the
NI-VISA	driver.
However,	you	need	to	be	careful	when	you	have	multiple	applications	or
sessions	using	the	low-level	bus	access	functions.	The	memory	windows
used	to	access	the	bus	are	a	limited	resource.	Call	the	viMapAddress()
operation	before	attempting	to	perform	low-level	bus	access	with
viPeekXX()	or	viPokeXX().	Immediately	after	the	accesses	are	completed,
always	call	the	viUnmapAddress()	operation	so	that	you	free	up	the
memory	window	for	other	applications.

Low-Level	Access	Functions
The	viMapAddress()	operation	returns	a	pointer	for	use	with	low-level
access	functions.	On	some	systems,	such	as	the	VXIpc	embedded
computers,	it	is	possible	to	directly	dereference	this	pointer.	However,	on
other	systems	such	as	the	GPIB-VXI,	you	must	use	the	viPeekXX()	and
viPokeXX()	operations.	To	make	your	source	code	portable	between
these	and	other	platforms,	and	even	other	implementations	of	VISA,
check	the	attribute	VI_ATTR_WIN_ACCESS	after	calling	viMapAddress().
If	the	value	of	that	attribute	is	VI_DEREF_ADDR,	you	can	safely
dereference	the	address	pointer	directly.	Otherwise,	use	the	viPeekXX()
and	viPokeXX()	operations	to	perform	register	I/O	accesses.
National	Instruments	also	provides	macros	for	viPeekXX()	and	viPokeXX()
on	certain	platforms.	The	C	language	macros	automatically	dereference
the	pointer	whenever	possible	without	calling	the	driver,	which	can
substantially	improve	performance.	Although	the	macros	can	increase
performance	only	on	NI-VISA,	your	application	will	be	binary	compatible
with	other	implementations	of	VISA	(the	macros	will	just	call	the
viPeekXX()	and	viPokeXX()	operations).	However,	the	macros	are	not
enabled	by	default.	To	use	the	macros,	you	must	define	the	symbol
NIVISA_PEEKPOKE	before	including	visa.h.

Interrupt	Callback	Handlers
Application	callbacks	are	available	in	C/C++	but	not	in	LabVIEW	or	Visual
Basic.	Callbacks	in	C	are	registered	with	the	viInstallHandler()	operation
and	must	be	declared	with	the	following	signature:
ViStatus	_VI_FUNCH	appHandler	(ViSession	vi,	ViEventType	eventType,
ViEvent	event,	ViAddr	userHandle)
Notice	that	the	_VI_FUNCH	modifier	expands	to	_stdcall	for	Windows	(32-
bit).	This	is	the	standard	Windows	callback	definition.	On	other	systems,
such	as	UNIX	and	Macintosh,	VISA	defines	_VI_FUNCH	to	be	nothing
(null).	Using	_VI_FUNCH	for	handlers	makes	your	source	code	portable
to	systems	that	need	other	modifiers	(or	none	at	all).
When	using	National	Instruments	Measurement	Studio	for	Visual	C++,
callbacks	are	registered	with	the	InstallEventHandler()	method.	See	the
Measurement	Studio	for	Visual	C++	documentation	for	more	information
on	VISA	callbacks.	Handlers	for	this	product	must	be	declared	with	the
following	signature:
ViStatus	__cdecl	EventHandler	(CNiVisaEvent&	event)
After	you	install	an	interrupt	handler	and	enable	the	appropriate	event(s),
an	event	occurrence	causes	VISA	to	invoke	the	callback.	When	VISA
invokes	an	application	callback,	it	does	so	in	the	correct	application
context.	From	within	any	handler,	you	can	call	back	into	the	NI-VISA
driver.	On	all	platforms,	you	can	also	make	system	calls.	The	way	VISA
invokes	callbacks	is	platform	dependent,	as	shown	in	the	following	table.
How	VISA	Invokes	Callbacks

Platform Callback	Invocation	Method
Windows
Vista/XP/2000,
Linux	x86,	Mac	OS
X,	LabVIEW	RT

The	callback	is	performed	in	a	separate	thread
created	by	NI-VISA.	The	thread	is	signaled	as	soon
as	the	event	occurs.

VxWorks	x86 For	VXI,	the	callback	is	performed	from	within	the
driver	interrupt	service	routine.	For	all	other
interfaces,	the	callback	is	performed	only	when	the
driver	is	accessed.

What	this	means	is	that	on	VxWorks	(all	interfaces	other	than	VXI)	you

cannot	wait	in	a	tight	loop	for	a	callback	to	occur.	For	example,	the
following	code	does	not	work:
while	(!intr_recv)
;	/*	do	nothing	*/
For	callbacks	to	be	invoked	on	the	VxWorks	platform,	you	must	call	any
VISA	operation	or	give	up	processor	time.	Notice	that	NI-VISA	on
Windows	and	all	UNIX	platforms	does	not	require	you	to	call	VISA
operations	or	give	up	processor	time	to	receive	callbacks.	However,
because	occasionally	calling	VISA	operations	ensures	that	callbacks	will
be	invoked	correctly	on	any	platform,	you	should	keep	these	issues	in
mind	when	writing	code	that	you	want	to	be	portable.

Multiple	Interface	Support	Issues
This	section	contains	information	about	how	to	use	or	configure	your	NI-
VISA	software	for	certain	types	of	interfaces.
VXI	and	GPIB	Platforms
Serial	Port	Support
VME	Support

VXI	and	GPIB	Platforms
NI-VISA	supports	all	existing	National	Instruments	GPIB,	VXI,	and	Serial
controllers	for	the	operating	systems	on	which	NI-VISA	exists.	For	VXI,
this	includes,	but	is	not	limited	to,	MXI-1,	MXI-2,	VXI-834x,	VXI-1394,
GPIB-VXI,	and	the	line	of	embedded	VXIpc	computers.	For	GPIB,	this
includes,	but	is	not	limited	to,	PCI-GPIB,	GPIB-USB-A,	AT-GPIB/TNT,
PCMCIA-GPIB,	and	the	GPIB-ENET	and	GPIB-ENET/100	boxes,	which
you	can	use	to	remotely	control	GPIB	devices.	With	the	GPIB-ENET	and
GPIB-ENET/100	boxes,	you	can	even	remotely	control	VXI	devices	when
using	a	GPIB-VXI	controller.

Serial	Port	Support
The	maximum	number	of	serial	ports	that	NI-VISA	currently	supports	on
any	platform	is	256.	The	default	numbering	of	serial	ports	is	system
dependent,	as	shown	in	the	following	table.
How	Serial	Ports	Are	Numbered

Platform Method
Windows
Vista/XP/2000

All	COM	and	LPT	ports	are	automatically	detected	when
you	call	viFindRsrc().	The	VISA	interface	number	may	not
equal	the	COM	port	number.

LabVIEW	RT All	COM	ports	are	automatically	detected	when	you	call
viFindRsrc().

LabVIEW
PDA

All	COM	ports	are	automatically	detected	when	you	call
viFindRsrc().

Mac	OS	X All	COM	ports	are	automatically	detected	when	you	call
viFindRsrc().

Linux	x86 ASRL1-ASRL4	access	/dev/ttyS0	–	/dev/ttyS3.
VxWorks	x86 ASRL1-ASRL2	access	/tyCo/0	–	/tyCo/1.

If	you	need	to	know	programmatically	which	ASRL	INSTR	resource	maps
to	which	underlying	Serial	port,	the	following	code	will	retrieve	and
display	that	information.

Example
Note		This	example	shows	C	source	code.	There	is	also	an
example	in	Visual	Basic	syntax.

#include	"visa.h"
int	main(void)
{

ViStatus
ViSession
ViSession
ViChar
ViChar
ViUInt32
ViFindList

status;
defaultRM;
instr;
rsrcName[VI_FIND_BUFLEN];
intfDesc[VI_FIND_BUFLEN];
retCount;
flist;

/*	For	checking	errors	*/
/*	Communication	channels	*/
/*	Communication	channel	*/
/*	Serial	resource	name	*/
/*	Port	binding	description	*/
/*	To	hold	number	of	resources	*/
/*	To	hold	list	of	resources	*/

/*	Begin	by	initializing	the	system	*/
status	=	viOpenDefaultRM(&defaultRM);
if	(status	<	VI_SUCCESS)	{
/*	Error	Initializing	VISA...exiting	*/
return	-1;

}

status	=	viFindRsrc	(defaultRM,	"ASRL?*INSTR",	&flist,	&retCount,	rsrcName);
while	(retCount--)	{
status	=	viOpen	(defaultRM,	rsrcName,	VI_NULL,	VI_NULL,	&instr);
if	(status	<	VI_SUCCESS)
printf	("Could	not	open	%s,	status	=	0x%08lX\n",rsrcName,	status);

else
{
status	=	viGetAttribute	(instr,	VI_ATTR_INTF_INST_NAME,	intfDesc);
printf	("Resource	%s,	Description	%s\n",	rsrcName,	intfDesc);
status	=	viClose	(instr);
}

status	=	viFindNext	(flist,	rsrcName);
}

viClose	(flist);
viClose	(defaultRM);
return	0;

}

Serial	Port	Support	Example	(Visual	Basic)
Note		The	Visual	Basic	examples	in	the	NI-VISA	Help	use	the
VISA	data	types	where	applicable.	This	feature	is	available	only	on
Windows.	To	use	this	feature,	select	the	VISA	library	(visa32.dll)	as
a	reference	from	Visual	Basic.	This	makes	use	of	the	type	library
embedded	into	the	DLL.

Private	Declare	Function	viGetAttrString	Lib	"VISA32.DLL"	Alias	"#133"	(ByVal	vi
As	ViSession,	ByVal	attrName	As	ViAttr,	ByVal	strValue	As	Any)	As	ViStatus

Private	Sub	vbMain()

Dim	stat
Dim	dfltRM
Dim	sesn
Dim	fList
Dim	rsrcName
Dim	instrDesc
Dim	nList

As	ViStatus
As	ViSession
As	ViSession
As	ViFindList
As	String	*	VI_FIND_BUFLEN
As	String	*	VI_FIND_BUFLEN
As	Long

stat	=	viOpenDefaultRM(dfltRM)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	initializing	VISA	...	exiting
Exit	Sub

End	If

Rem	Find	all	Serial	instruments	in	the	system
stat	=	viFindRsrc(dfltRM,	"ASRL?*INSTR",	fList,	nList,	rsrcName)
If	(stat	<	VI_SUCCESS)	Then
Rem	Error	finding	resources	...	exiting
viClose	(dfltRM)
Exit	Sub

End	If

While	(nList)
stat	=	viOpen(dfltRM,	rsrcName,	VI_NULL,	VI_NULL,	sesn)
If	(stat	<	VI_SUCCESS)	Then
Debug.Print	"Could	not	open	resource",	rsrcName,	"Status",	stat

Else
stat	=	viGetAttrString(sesn,	VI_ATTR_INTF_INST_NAME,	instrDesc)
Debug.Print	"Resource",	rsrcName,	"Description",	instrDesc
stat	=	viClose(sesn)

End	If

stat	=	viFindNext(fList,	rsrcName)
nList	=	nList	-	1

Wend
stat	=	viClose(fList)
stat	=	viClose(dfltRM)

End	Sub

VME	Support
To	access	VME	devices	in	your	system,	you	must	configure	NI-VXI	to	see
these	devices.	Windows	users	can	configure	NI-VXI	by	using	the	Create
New	Wizard	in	MAX.	Users	on	other	platforms	must	use	the	Non-VXI
Device	Editor	in	VXI	Resource	Editor	(vxiedit	or	vxitedit).	For	each
address	space	in	which	your	device	has	memory,	you	must	create	a
separate	pseudo-device	entry	with	a	logical	address	between	256	and
511.	For	example,	a	VME	device	with	memory	in	both	A24	and	A32
spaces	requires	two	entries.	You	can	also	specify	which	interrupt	levels
the	device	uses.	VXI	and	VME	devices	cannot	share	interrupt	levels.	You
can	then	access	the	device	from	NI-VISA	just	as	you	would	a	VXI	device,
by	specifying	the	address	space	and	the	offset	from	the	base	at	which
you	have	configured	it.	NI-VISA	support	for	VME	devices	includes	the
register	access	operations	(both	high-level	and	low-level)	and	the	block-
move	operations,	as	well	as	the	ability	to	receive	interrupts.

Glossary
Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 L 	

M 	 N 	 O 	 P 	 R 	 S 	 T 	 U 	 V

Prefixes
Symbol Prefix Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

G giga 10	9

T tera 10	12

Numbers/Symbols
nV nanovolts 10-9	volts

µV microvolts 10-6	volts

µΩ microohms 10-6	ohms

mΩ milliohms 10-3	ohms

MΩ megaohms 106	ohms

pA picoamps 10-12	amperes

nA nanoamps 10-9	amperes

µA microamps 10-6	amperes

mA milliamps 10-3	amperes

A
address A	string	(or	other	language	construct)	that	uniquely

locates	and	identifies	a	resource.	VISA	defines	an	ASCII-
based	grammar	that	associates	strings	with	particular
physical	devices	and	VISA	resources.

address
location

Refers	to	the	location	of	a	specific	register.

address
modifier

One	of	six	signals	in	the	VMEbus	specifications	used	by
VMEbus	masters	to	indicate	the	address	space	and
mode	(supervisory/nonprivileged,	data/program/block)	in
which	a	data	transfer	is	to	take	place.

address
space

In	VXI/VME	systems,	a	set	of	2n	memory	locations
differentiated	from	other	such	sets	in	VXI/VMEbus
systems	by	six	signal	lines	known	as	address	modifiers,
where	n	(either	16,	24,	or	32)	is	the	number	of	address
lines	required	to	uniquely	specify	a	byte	location	in	a
given	space.	In	PXI	systems,	the	address	space
corresponds	to	1	of	6	possible	BAR	locations	(BAR0
through	BAR5).	In	VME,	VXI,	and	PXI,	a	given	device
may	have	addresses	in	one	or	more	address	spaces.

address
string

A	string	(or	other	language	construct)	that	uniquely
locates	and	identifies	a	resource.	VISA	defines	an	ASCII-
based	grammar	that	associates	strings	with	particular
physical	devices	and	VISA	resources.

alias User-defined	name	for	a	VISA	resource.
ANSI American	National	Standards	Institute
API Application	Programming	Interface.	The	direct	interface

that	an	end	user	sees	when	creating	an	application.	In
VISA,	the	API	consists	of	the	sum	of	all	of	the	operations,
attributes,	and	events	of	each	of	the	VISA	Resource
Classes.

ASCII American	Standard	Code	for	Information	Interchange.
asynchronous An	action	or	event	that	occurs	at	an	unpredictable	time

with	respect	to	the	execution	of	a	program.

attribute A	value	within	an	object	or	resource	that	reflects	a
characteristic	of	its	operational	state.

B
b Bit
B Byte
backplane In	VXI/VME	systems,	an	assembly,	typically	a	PCB,	with	96-

pin	connectors	and	signal	paths	that	bus	the	connector	pins.
A	C-size	VXIbus	system	will	have	two	sets	of	bused
connectors	called	the	J1	and	J2	backplanes.	A	D-size
VXIbus	system	will	have	three	sets	of	bused	connectors
called	the	J1,	J2,	and	J3	backplane.

Base
Address
Register

Each	PCI	or	PXI	device	has	six	of	these,	BAR0	through
BAR5.	At	power-on,	each	BAR	requests	a	given	size	of
memory	or	I/O	space.	Each	device	can	request	from	0	to	6
regions	of	PCI	memory	or	I/O	space.	After	the	operating
system	starts,	each	BAR	contains	an	assigned	base	address
in	PCI	address	space.	A	value	of	0	in	a	given	BAR	indicates
that	the	device	is	not	using	that	BAR.

bus	error An	error	that	signals	failed	access	to	an	address.	Bus	errors
occur	with	low-level	accesses	to	memory	and	usually	involve
hardware	with	bus	mapping	capabilities.	For	example,
nonexistent	memory,	a	nonexistent	register,	or	an	incorrect
device	access	can	cause	a	bus	error.

byte	order How	bytes	are	arranged	within	a	word	or	how	words	are
arranged	within	a	longword.	Motorola	(Big-Endian)	ordering
stores	the	most	significant	byte	(MSB)	or	word	first,	followed
by	the	least	significant	byte	(LSB)	or	word.	Intel	(Little-
Endian)	ordering	stores	the	LSB	or	word	first,	followed	by	the
MSB	or	word.

C
callback See	also	handler.	A	software	routine	that	is	invoked

when	an	asynchronous	event	occurs.	In	VISA,	callbacks
can	be	installed	on	any	session	that	processes	events.

CIC Controller-In-Charge.	The	device	that	manages	the
GPIB	by	sending	interface	messages	to	other	devices.

commander A	device	that	has	the	ability	to	control	another	device.
This	term	also	can	denote	the	unique	device	that	has
sole	control	over	another	device	(as	with	the	VXI
Commander/Servant	hierarchy).

communication
channel

The	same	as	session.	A	communication	path	between	a
software	element	and	a	resource.	Every	communication
channel	in	VISA	is	unique.

configuration
registers

A	set	of	registers	through	which	the	system	can	identify
a	module	device	type,	model,	manufacturer,	address
space,	and	memory	requirements.	In	order	to	support
automatic	system	and	memory	configuration,	the	PXI
and	VXIbus	specifications	require	that	all	PXI	and
VXIbus	devices	have	a	set	of	such	registers.

controller An	entity	that	can	control	another	device(s)	or	is	in	the
process	of	performing	an	operation	on	another	device.

CPU Central	processing	unit

D
device An	entity	that	receives	commands	from	a	controller.	A	device	can

be	an	instrument,	a	computer	(acting	in	a	non-controller	role),	or
a	peripheral	(such	as	a	plotter	or	printer).

DLL Dynamic	Link	Library.	See	also	a	shared	library	or	shared	object.
A	file	containing	a	collection	of	functions	that	can	be	used	by
multiple	applications.	This	term	is	usually	used	for	libraries	on
Windows	platforms.

DMA Direct	memory	access.	High-speed	data	transfer	between	a
board	and	memory	that	is	not	handled	directly	by	the	CPU.	Not
available	on	some	systems.	See	programmed	I/O.

E
embedded
controller

A	computer	plugged	directly	into	the	VXI	backplane.	An
example	is	the	National	Instruments	VXIpc-870.

event An	asynchronous	occurrence	that	is	independent	of	the
normal	sequential	execution	of	the	process	running	in	a
system.

external
controller

A	desktop	computer	or	workstation	connected	to	the	VXI
system	via	a	MXI	interface	board.	An	example	is	a	standard
personal	computer	with	a	PCI-MXI-2	installed.

F
Fast
Data
Channel

See	FDC.

FDC Fast	Data	Channel;	a	protocol	that	provides	a	mechanism	for
transferring	data	blocks	between	a	VXIbus	Commander	and	its
Servants.

FIFO First	In-First	Out;	a	method	of	data	storage	in	which	the	first
element	stored	is	the	first	one	retrieved.

G
global
attribute

A	global	attribute	is	one	whose	value	is	the	same	for	all
sessions	to	the	specified	resource.	An	example	of	this	is	the
hardware	interface	type.

GPIB General	Purpose	Interface	Bus	is	the	common	name	for	the
communications	interface	system	defined	in	ANSI/IEEE
Standard	488.1-1987	and	ANSI/IEEE	Standard	488.2-1992.

H
handler See	also	callback.	A	software	routine	that	is	invoked	when

an	asynchronous	event	occurs.	In	VISA,	callbacks	can	be
installed	on	any	session	that	processes	events.

handshaking A	type	of	protocol	that	makes	it	possible	for	two	devices	to
synchronize	operations.

I
I/O input/output
IEEE Institute	of	Electrical	and	Electronics	Engineers
instrument A	device	that	accepts	some	form	of	stimulus	to	perform	a

designated	task,	test,	or	measurement	function.	Two
common	forms	of	stimuli	are	message	passing	and	register
reads	and	writes.	Other	forms	include	triggering	or	varying
forms	of	asynchronous	control.

instrument
driver

A	set	of	routines	designed	to	control	a	specific	instrument
or	family	of	instruments,	and	any	necessary	related	files	for
LabWindows/CVI	or	LabVIEW.

interface A	generic	term	that	applies	to	the	connection	between
devices	and	controllers.	It	includes	the	communication
media	and	the	device/controller	hardware	necessary	for
cross-communication.

interrupt A	condition	that	requires	attention	out	of	the	normal	flow	of
control	of	a	program.

IVI Interchangeable	Virtual	Instruments
IVI	Driver A	software	module	that	controls	a	hardware	device	and	that

complies	with	the	IVI	Foundation	specifications.
IVI
Foundation,
Inc.

Interchangeable	Virtual	Instruments,	Inc.,	a	non-profit
Delaware	Corporation,	composed	of	end-user	test
engineers,	instrument	and	software	suppliers,	and	system
integrators,	chartered	to	define	software	standards	that
promote	instrument	interchangeability.	See
www.ivifoundation.org	for	more	details.

L
local
attribute

A	local	attribute	is	one	whose	value	is	unique	to	the	session.
An	example	of	this	is	the	timeout.

lock A	state	that	prohibits	sessions	other	than	the	session(s)	owning
the	lock	from	accessing	a	resource.

logical
address

An	8-bit	number	that	uniquely	identifies	the	location	of	each
VXIbus	device's	configuration	registers	in	a	system.	The	A16
register	address	of	a	device	is	C000h	+	Logical	Address	*	40h.

M
mapping An	operation	that	returns	a	reference	to	a	specified	section

of	an	address	space	and	makes	the	specified	range	of
addresses	accessible	to	the	requester.	This	function	is
independent	of	memory	allocation.

MAX Measurement	&	Automation	Explorer.	Provides	access	to
all	National	Instruments	DAQ,	GPIB,	IMAQ,	IVI,	Motion,
VISA,	and	VXI	devices.	With	MAX,	you	can	configure
National	Instruments	hardware	and	software,	add	new
channels,	interfaces,	and	virtual	instruments,	execute
system	diagnostics,	and	view	the	devices	and	instruments
connected	to	your	system.	Installs	automatically	with	NI-
VISA	version	2.5	or	later	or	NI-VXI	version	3.0	or	later.
Available	only	for	Win32-based	operating	systems.

message-
based
device

In	VXI/VME	systems,	an	intelligent	device	that	implements
the	defined	VXIbus	registers	and	communication	protocols.
These	devices	are	able	to	use	Word	Serial	Protocol	to
communicate	with	one	another	through	communication
registers.	All	GPIB	and	Serial	devices	are	by	definition
message-based,	as	are	devices	for	some	other	interfaces.
Many	modern	message-based	devices	support	the	IEEE
488.2	protocol.

multitasking The	ability	of	a	computer	to	perform	two	or	more	functions
simultaneously	without	interference	from	one	another.	In
operating	system	terms,	it	is	the	ability	of	the	operating
system	to	execute	multiple	applications/processes	by	time-
sharing	the	available	CPU	resources.

N
NI
Spy

A	utility	that	monitors,	records,	and	displays	multiple	National
Instruments	APIs,	such	as	NI-488.2	and	NI-VISA.	Useful	for
troubleshooting	errors	in	your	application	and	for	verifying
communication.

O
operation An	action	defined	by	a	resource	that	can	be	performed	on	a

resource.	In	general,	this	term	is	synonymous	with	the
connotation	of	the	word	method	in	object-oriented
architectures.

P
process An	operating	system	element	that	shares	a	system's

resources.	A	multi-process	system	is	a	computer	system
that	allows	multiple	programs	to	execute	simultaneously,
each	in	a	separate	process	environment.	A	single-process
system	is	a	computer	system	that	allows	only	a	single
program	to	execute	at	a	given	point	in	time.

programmed
I/O

Low-speed	data	transfer	between	a	board	and	memory	in
which	the	CPU	moves	each	data	value	according	to
program	instructions.	See	DMA.

protocol Set	of	rules	or	conventions	governing	the	exchange	of
information	between	computer	systems.

PXI PCI	eXtensions	for	Instrumentation.	PXI	leverages	the
electrical	features	defined	by	the	Peripheral	Component
Interconnect	(PCI)	specification	as	well	as	the
CompactPCI	form	factor,	which	combines	the	PCI
electrical	specification	with	Eurocard	(VME)	mechanical
packaging	and	high-performance	connectors.	This
combination	allows	CompactPCI	and	PXI	systems	to	have
up	to	seven	peripheral	slots	versus	four	in	a	desktop	PCI
system.

R
register An	address	location	that	can	be	read	from	or	written	into	or

both.	It	may	contain	a	value	that	is	a	function	of	the	state	of
hardware	or	can	be	written	into	to	cause	hardware	to	perform
a	particular	action.	In	other	words,	an	address	location	that
controls	and/or	monitors	hardware.

register-
based
device

In	VXI/VME	systems,	a	servant-only	device	that	supports	only
the	four	basic	VXIbus	configuration	registers.	Register-based
devices	are	typically	controlled	by	message-based	devices
via	device-dependent	register	reads	and	writes.	All	PXI
devices	are	by	definition	register-based,	as	are	devices	for
some	other	interfaces.

Resource
Class

The	definition	for	how	to	create	a	particular	resource.	In
general,	this	is	synonymous	with	the	connotation	of	the	word
class	in	object-oriented	architectures.	For	VISA	Instrument
Control	resource	classes,	this	refers	to	the	definition	for	how
to	create	a	resource	which	controls	a	particular	capability	or
set	of	capabilities	of	a	device.

resource
or
resource
instance

In	general,	this	term	is	synonymous	with	the	connotation	of
the	word	object	in	object-oriented	architectures.	For	VISA,
resource	more	specifically	refers	to	a	particular
implementation	(or	instance	in	object-oriented	terms)	of	a
Resource	Class.

S
s second
SCPI Standard	Commands	for	Programmable	Instrumentation;	a

protocol	which	defines	a	standard	set	of	commands	to	control
programmable	test	and	measurement	devices	in
instrumentation	systems.

servant A	device	controlled	by	a	Commander.
session The	same	as	communication	channel.	A	communication	path

between	a	software	element	and	a	resource.	Every
communication	channel	in	VISA	is	unique.

shared
library	or
shared
object

See	also	DLL.	A	file	containing	a	collection	of	functions	that
can	be	used	by	multiple	applications.	This	term	is	usually	used
for	libraries	on	UNIX	platforms.

shared
memory

A	block	of	memory	that	is	accessible	to	both	a	client	and	a
server.	The	memory	block	operates	as	a	buffer	for
communication.	This	is	unique	to	register-based	interfaces
such	as	VXI.

socket A	bi-directional	communication	endpoint;	an	object	through
which	a	VISA	sockets	application	sends	or	receives	packets	of
data	across	a	network.

SRQ IEEE	488	Service	Request.	This	is	an	asynchronous	request
from	a	remote	device	that	requires	service.	A	service	request
is	essentially	an	interrupt	from	a	remote	device.	For	GPIB,	this
amounts	to	asserting	the	SRQ	line	on	the	GPIB.	For	VXI,	this
amounts	to	sending	the	Request	for	Service	True	event
(REQT).

status
byte

A	byte	of	information	returned	from	a	remote	device	that
shows	the	current	state	and	status	of	the	device.	If	the	device
follows	IEEE	488	conventions,	bit	6	of	the	status	byte
indicates	whether	the	device	is	currently	requesting	service.

status/ID A	value	returned	during	an	IACK	cycle.	In	VME,	usually	an	8-
bit	value	which	is	either	a	status/data	value	or	a	vector/ID
value	used	by	the	processor	to	determine	the	source.	In	VXI,

a	16-bit	value	used	as	a	data;	the	lower	8	bits	form	the	VXI
logical	address	of	the	interrupting	device	and	the	upper	8	bits
specify	the	reason	for	interrupting.

T
TCP/IP Transmission	Control	Protocol/Internet	Protocol.	The	de	facto

standard	for	transmitting	data	over	networks,	TCP/IP	is	a	multi-
layered	suite	of	communication	protocols	used	to	connect	hosts
on	LANs,	WANs	and	the	Internet.	It	is	very	widely	supported,
even	by	network	operating	systems	that	have	their	own
communication	protocols.

thread An	operating	system	element	that	consists	of	a	flow	of	control
within	a	process.	In	some	operating	systems,	a	single	process
can	have	multiple	threads,	each	of	which	can	access	the	same
data	space	within	the	process.	However,	each	thread	has	its
own	stack	and	all	threads	can	execute	concurrently	with	one
another	(either	on	multiple	processors,	or	by	time-sharing	a
single	processor).

U
USB Universal	Serial	Bus.	This	common	computer	peripheral	bus

allows	up	to	127	individual	USB	peripherals	per	USB	root	node.

V
virtual
instrument

A	name	given	to	the	grouping	of	software	modules	(in	this
case,	VISA	resources	with	any	associated	or	required
hardware)	to	give	the	functionality	of	a	traditional	stand-
alone	instrument.	Within	VISA,	a	virtual	instrument	is	the
logical	grouping	of	any	of	the	VISA	resources.

VISA Virtual	Instrument	Software	Architecture.	This	is	the	general
name	given	to	this	product	and	its	associated	architecture.
The	architecture	consists	of	two	main	VISA	components:	the
VISA	resource	manager	and	the	VISA	resources.

VISA
Instrument
Control
Resources

This	is	the	name	given	to	the	part	of	VISA	that	defines	all	of
the	device-specific	resource	classes.	VISA	Instrument
Control	resources	encompass	all	defined	device	capabilities
for	direct,	low-level	instrument	control.

VISA
memory
access
resources

This	is	the	name	given	to	the	part	of	VISA	that	defines	all	of
the	register	or	memory-specific	resource	classes.	The	VISA
MEMACC	resources	encompass	all	high	and	low-level
services	for	interface-level	accesses	to	all	memory	defined
in	the	system.

VISA
Resource
Manager

This	is	the	name	given	to	the	part	of	VISA	that	manages
resources.	This	management	includes	support	for	finding
resources	and	opening	sessions	to	them.

VISA
Resource
Template

This	is	the	name	given	to	the	part	of	VISA	that	defines	the
basic	constraints	and	interface	definition	for	the	creation	and
use	of	a	VISA	resource.	All	VISA	resources	must	derive	their
interface	from	the	definition	of	the	VISA	Resource	Template.
This	includes	services	for	setting	and	retrieving	attributes,
receiving	events,	locking	resources,	and	closing	objects.

visaconf VISA	configuration	utility	for	Linux	and	Mac	OS	X.
VISAIC VISA	Interacvtive	Control	utility.	Interactively	controls

VXI/VME	devices	without	using	a	conventional	programming
language,	LabVIEW,	or	Measurement	Studio.

VME Versa	Module	Eurocard	or	IEEE	1014
VXIbus VMEbus	Extensions	for	Instrumentation	or	IEEE	1155

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action

accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
The	Bluetooth®	word	mark	is	a	registered	trademark	owned	by	the
Bluetooth	SIG,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	media,	or	ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR

APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	award-winning	National	Instruments
Web	site	at	ni.com	for	technical	support	and	professional	services:

Support—Technical	support	resources	at	ni.com/support	include
the	following:

Self-Help	Resources—For	answers	and	solutions,	visit
ni.com/support	for	software	drivers	and	updates,	a
searchable	KnowledgeBase,	product	manuals,	step-by-
step	troubleshooting	wizards,	thousands	of	example
programs,	tutorials,	application	notes,	instrument	drivers,
and	so	on.	Registered	users	also	receive	access	to	the	NI
Discussion	Forums	at	ni.com/forums.	NI	Applications
Engineers	make	sure	every	question	submitted	online
receives	an	answer.
Standard	Service	Program	Membership—This
program	entitles	members	to	direct	access	to	NI
Applications	Engineers	via	phone	and	email	for	one-to-
one	technical	support,	as	well	as	exclusive	access	to	on
demand	training	modules	via	the	Services	Resource
Center.	NI	offers	complementary	membership	for	a	full
year	after	purchase,	after	which	you	may	renew	to
continue	your	benefits.
For	information	about	other	technical	support	options	in
your	area,	visit	ni.com/services	or	contact	your	local	office
at	ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-
house	technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_SRC)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)

Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

Unit	Specification	ID
This	identifies	the	specification	to	which	the	FireWire	device	adheres.

Unit	Software	Version
This	identifies	the	specification	version	to	which	the	FireWire	device
adheres.

Manufacturer	Name
The	device	manufacturer	name.

Model	Name
The	FireWire	module	name.

Manufacturer	Code
The	16-bit	PCI	Vendor	ID	for	this	device.	A	list	of	PCI	Vendor	ID	values	is
maintained	by	the	PCI	Special	Interest	Group	(SIG).

Manufacturer	Name
The	device	manufacturer	name.

Model	Code
The	16-bit	PCI	Device	ID	for	this	device.	The	Device	ID	is	uniquely
assigned	to	a	PXI/PCI	module	by	the	instrument	vendor.

Model	Name
The	PXI/PCI	module	name.

Generates	Interrupts
Check	this	box	if	your	PXI/PCI	device	is	capable	of	asserting	interrupts
and	you	would	like	to	be	able	to	receive	interrupt	notification	using	NI-
VISA.

Subsystem	Manufacturer	Code
The	16-bit	PCI	Vendor	ID	used	in	the	subsystem	for	this	device.	The	PCI
Special	Interest	Group	(SIG)	maintains	a	list	of	PCI	Vendor	ID	values.

Subsystem	Model	Code
The	16-bit	PCI	Device	ID	used	in	the	subsystem	for	this	device.	The
instrument	vendor	uniquely	assigns	the	Device	ID	to	a	PXI/PCI	module.

Device	Uses	Subsystem
This	device	has	defined	values	for	the	PCI	subsystem	Vendor	ID	and
Device	ID.

This	device	uses	PXI	Express
PXI	Express	devices	provide	to	software	a	way	to	read	the	slot	number.
By	checking	this	box,	you	can	specify	the	sequence	of	register	accesses
necessary	to	read	the	slot	number	from	a	PXI	Express	device,	or	a	PXI
device	that	supports	this	feature.

Load	settings	from	Module	Description	file...
If	a	Module	Description	file	(also	called	a	module.ini	file)	is	available	for
this	device,	you	can	import	the	information	from	that	file	into	the	wizard
instead	of	entering	the	settings	yourself.	For	more	information	about
Module	Description	files,	click	the	Help	button.

More	about	Module	Description	Files
Module	Description	Files	(also	called	module.ini	files)	provide	a
mechanism	for	informing	the	operating	system	and	the	PXI	Resource
Manager	about	key	attributes	of	a	PXI	module.	The	module	description
file	accomplishes	this	with	two	primary	features:

It	specifies	how	the	operating	system	should	identify	this	device
and	associate	it	with	the	VISA	implementation.
It	specifies	how	the	PXI	Resource	Manager	should	handle
combination	modules	with	multiple	PCI	devices	and/or	multiple
PCI	functions.

A	module	vendor	provides	a	module	description	file	to	enable	a	user	to
easily	configure	the	product	into	a	PXI	system.	The	specification	for	these
files	is	at	http://www.pxisa.org/Specifications.html.
The	NI-VISA	Driver	Wizard	uses	module.ini	files	to	allow	you	to	easily
load	settings	for	a	given	VISA	PXI/PCI	instrument.	The	wizard	generates
a	module.ini	file	when	it	creates	its	output	files,	and	you	can	reload	this
file	later	to	update	settings	used	by	the	wizard.	You	can	also	distribute
the	module.ini	file	to	users	of	your	instrument.

Note		The	wizard	currently	reads,	but	does	not	write,	module.ini
files	describing	combination	(multifunction	or	multidevice)	modules
in	a	single	module.ini	file.

javascript:WWW(WWW_PXI)

Manufacturer	Code
The	16-bit	USB	Vendor	ID	(VID)	for	this	device.	A	list	of	USB	Vendor	ID
values	is	maintained	by	the	USB	Implementers	Forum	(USB-IF).

Model	Code
The	16-bit	USB	Product	ID	(PID)	for	this	device.	The	Product	ID	is
uniquely	assigned	to	a	USB	module	by	the	instrument	vendor.

Model	Name
The	USB	module	name.

Compound	Device
A	USB	compound	device	is	a	device	that	supports	two	or	more	USB
interfaces.

Interrupt	Detection	Background
Because	PCI	devices	share	one	of	four	physical	interrupt	lines,	it	is
possible	that	more	than	one	PXI/PCI	device	can	be	interrupting	at	any
given	time.	In	the	Interrupt	Detection	dialog,	you	specify	the	sequence	of
register	operations	that	allow	NI-VISA	to	determine	whether	or	not	your
device	is	interrupting.	PCI	hardware	typically	indicates	a	pending	interrupt
condition	using	an	Interrupt	Status/Control	register.
For	the	purposes	of	determining	whether	or	not	your	device	is	asserting	a
hardware	interrupt,	a	Read/Compare	operation	exists.	This	operation	will
perform	a	register	read,	applying	a	user-defined	mask	(logical-AND)	to
the	contents	of	the	register.	The	resulting	value	is	then	compared	with	a
user-specified	constant	(using	another	logical-AND).	If	the	masked-result
and	the	user-defined	constant	are	the	same,	the	comparison	operation	is
said	to	be	True.	If	the	values	are	different,	the	result	is	False.	If	the	result
of	all	Read/Compare	operations	in	a	sequence	of	register	transactions	is
True,	NI-VISA	will	conclude	that	your	device	is	interrupting	and	proceed
to	execute	the	Interrupt	Acknowledge	sequence.	Because	NI-VISA	relies
on	the	result	of	the	comparison	operations	in	making	this	conclusion,	at
least	one	Read/Compare	operation	must	be	present	in	this	transaction
sequence.
When	determining	whether	your	device	is	asserting	a	hardware	interrupt,
you	can	use	more	than	one	transaction	sequence.	All	comparisons	within
any	given	detection	transaction	sequence	must	have	a	result	of	True	for
that	detection	transaction	sequence	to	have	a	result	of	True.	If	multiple
detection	transaction	sequences	are	present,	if	any	of	them	have	a	result
of	True,	NI-VISA	concludes	that	this	interrupt	belongs	to	this	device.

Add	a	step	before
Adds	a	register	operation	prior	to	the	currently	selected	step.

Add	a	step	after
Adds	a	register	operation	immediately	following	the	currently	selected
step.

Edit	a	step
Allows	you	to	modify	the	properties	of	the	currently	selected	register
operation.

Remove	a	step
Removes	the	currently	selected	step	from	the	sequence	of	register
operations.

Select	sequence
Selects	a	transaction	sequence	to	view	or	modify.

Add	sequence
Adds	a	new	transaction	sequence.

Remove	sequence
Removes	the	currently	selected	transaction	sequence.

Interrupt	Removal	Background
On	modern	operating	systems,	hardware	interrupts	are	typically	serviced
in	a	high-priority	execution	context	that	runs	as	part	of	the	OS	kernel.
When	a	hardware	interrupt	occurs,	the	OS	kernel	will	execute	its	chain	of
interrupt	service	routines	until	a	single	ISR	"claims"	the	interrupt	by	telling
the	OS	kernel	that	its	device	is	currently	interrupting.	Once	the	interrupt	is
claimed,	the	individual	ISR	must	acknowledge	the	pending	interrupt
before	returning	control	to	the	operating	system.	When	the	interrupt	is	no
longer	pending,	the	OS	will	return	control	to	the	user	application	(for
example,	your	instrument	driver).	By	specifying	the	steps	necessary	to
acknowledge	a	pending	interrupt	for	your	device,	you	are	telling	NI-VISA
how	to	service	interrupts	for	your	device	inside	the	OS	kernel.

Type	of	access
Register	accesses	assume	the	form	of	Reads,	Writes,	or	Compares:
Read:	Performs	a	register	read	(of	specified	width)	from	a	given	offset
relative	to	a	given	address	space.
Write:	Performs	a	register	write	of	a	given	value	(of	specified	width)	to	a
given	offset	relative	to	a	given	address	space.
Compare:	Performs	a	Read	operation,	but	additionally	applies	a	user-
defined	mask	to	the	result	of	the	read	operation	(using	a	logical	AND).
The	result	of	the	bit	mask	is	then	compared	to	another	user	supplied
value.	The	Compare	operation	is	useful	for	examining	individual	bits	or
combinations	of	bits	within	a	single	register.

Address	space
The	PCI	Address	space	that	this	operation	applies	to.	Valid	address
spaces	include	the	PCI	Configuration	address	space	(CFG),	and	any	of
the	Memory	or	IO	address	spaces	defined	in	your	device's	base	address
registers	(BAR0-BAR5).

Compare	mask
The	mask	that	will	be	applied	to	the	result	of	the	register	read	in	a
Compare	operation.	The	mask	will	be	logically	AND'd	with	the	value	read
from	the	register.	This	field	is	only	valid	when	a	Compare	access	type	is
specified.

Width	of	access
The	width	(in	bits)	of	the	register	operation.

Offset	within	space
The	offset	within	the	specified	address	space	to	perform	this	register
operation.

Value	to	write	or	compare
For	a	Write	operation,	this	is	the	value	to	be	written	to	the	register.	For	a
Compare	operation,	this	is	the	value	to	compare	the	masked	result	with.

Output	Files	Background
To	make	your	PXI/PCI,	USB,	or	FireWire	device	visible	to	NI-VISA
applications,	the	OS	must	know	to	associate	your	hardware	with	the	NI-
VISA	driver.	This	association	is	accomplished	on	Microsoft	Windows
operating	systems	via	the	Setup	Information	File	(.inf	file).
The	NI-VISA	Driver	Wizard	will	generate	these	Setup	Information	files	for
you.	The	format	and	handling	of	each	file	varies	depending	on	the
operating	system	version.	The	NI-VISA	Driver	Wizard	generates	.inf	files
for	the	following	operating	systems	depending	on	the	selected	bus:

PXI/PCI
Windows	Vista/XP/2000
LabVIEW	RT
Mac	OS	X
Linux

USB
Windows	Vista/XP/2000

FireWire
Windows	Vista/XP/2000
LabVIEW	RT

When	the	operating	system	scans	the	hardware	bus,	if	a	new	piece	of
hardware	is	detected,	the	OS	will	compare	that	device's	characteristics
with	the	contents	of	the	<Windows>\inf	directory.	For	PXI/PCI	devices,	the
hardware	bus	is	scanned	by	the	operating	system	at	boot	time.	For	USB
devices,	the	hardware	bus	is	scanning	whenever	a	device	is	plugged	in.
If	a	.inf	file	is	found	that	describes	the	newly	detected	hardware,	the	OS
will	execute	the	driver-specific	portion	of	the	.inf	file	(for	example,	adding
registry	entries	and	copying	files).

Instrument	Prefix
The	VXIplug&play-compliant	instrument	driver	prefix	for	this	device.	The
instrument	prefix	is	used	in	forming	the	names	of	the	output	files	that	the
wizard	will	generate.	The	resulting	filenames	are	consistent	with
instrument	driver	files	created	with	LabWindows/CVI.	If	you	are	not
creating	a	VXIplug&play	driver,	and	you	simply	need	to	use	VISA	to
access	your	device,	this	field	can	be	left	in	its	default	state.

Output	File	Directory
The	directory	where	the	output	files	should	be	saved.	By	default,	the
wizard	will	attempt	to	save	the	files	in	the	instrument	driver	directory	for
this	device	(based	on	the	Instrument	Prefix).
On	Windows,	the	default	is:
My	Documents\National	Instruments\NI-VISA\<Instrument	Prefix>
On	Linux,	the	default	is:
<User	Home>/natinst/NI-VISA/<Instrument	Prefix>
On	Mac	OS	X,	the	default	is:
<User	Home>/Documents/National	Instruments/NI-VISA/<Instrument	Prefix>
LabWindows/CVI	will	look	for	the	files	in	this	location	when	the	Create
Distribution	Kit	option	is	used	to	build	an	instrument	driver	installation
package.	Currently,	LabWindows/CVI	supports	distribution	of	.inf	files	for
PXI/PCI,	USB,	and	FireWire	devices.

What	Do	I	Do	with	the	Output	Files?
The	procedure	for	handling	the	Setup	Information	files	is	OS	dependent.
If	you	are	using	LabWindows/CVI	to	build	your	instrument	driver,	the
distribution	kit	handles	the	multiple-OS	issues	for	you.
Using	LabWindows/CVI	to	Install	Your	Device	.inf	Files
If	you	are	creating	your	own	installation	package...

Install	the	Setup	Information	file
This	option	installs	the	corresponding	Setup	Information	(.inf)	file	to	the
local	system.

FTP	to	LabVIEW	RT	system
This	option	allows	you	to	download	your	device's	.inf	file	to	the	target
system.	This	option	is	available	only	if	LabVIEW	RT	is	installed	and	you
are	generating	Setup	Information	(.inf)	files	for	PXI/PCI	or	FireWire.

Go	to	folder
This	option	opens	the	folder	that	contains	the	generated	Setup
Information	(.inf)	files.

Do	nothing	more
This	option	exits	the	wizard	without	performing	any	additional	tasks.

Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196	/	81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100

If	You	Are	Creating	Your	Own	Installation
Package...
Windows	XP/2000:	Copy	the	.inf	file	to	the	<Windows>\inf	directory	and
reboot	the	computer.	The	OS	Plug&Play	manager	will	associate	the	new
hardware	device	with	the	NI-VISA	driver	once	the	.inf	file	is	in	place.	If	the
hardware	was	installed	before	the	driver	software	and	.inf	file,	the	device
may	need	to	be	removed	from	the	Device	Manager	before	rebooting.
Windows	Vista:	In	Windows	Explorer,	right-click	the	.inf	file	and	choose
Install.	If	you	plugged	in	the	device	before	installing	this	file,	you	may
need	to	remove	the	device	from	the	Unknown	Devices	class	in	the
Windows	Device	Manager.
Linux:	(PXI/PCI	Only)	Copy	the	.inf	file	to	/etc/natinst/nipal/inf	and	reboot
the	computer.
Mac	OS	X:	(PXI/PCI	Only)	Copy	the	.inf	file	to	/Library/Application
Support/National	Instruments/nipal/inf	and	reboot	the	computer.

	NI-VISA Help
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	Interface-Specific Information
	GPIB
	Introduction to Programming GPIB Devices in VISA
	Comparison Between NI-VISA and NI-488.2 APIs
	Board-Level Programming
	GPIB Summary

	GPIB-VXI
	Introduction to Programming GPIB-VXI Devices in VISA
	Register-Based Programming with the GPIB-VXI
	Additional Programming Issues
	GPIB-VXI Summary

	VXI
	Introduction to Programming VXI Devices in VISA
	VXI/VME Interrupts and Asynchronous Events in VISA
	Performing Arbitrary Access to VXI Memory with VISA
	Other VXI Resource Classes and VISA
	Comparison Between NI-VISA and NI-VXI APIs
	Summary of VXI in VISA

	PXI/PCI
	Introduction to Programming PXI Devices in NI-VISA
	User-Level Functionality
	Configuring NI-VISA to Recognize a PXI Device
	Using LabWindows/CVI to Install Your Device .inf Files
	Other PXI Resource Classes and VISA
	PXI Summary
	Using the NI-VISA Driver Wizard and NI-VISA to Register-Level Program a PXI/PCI Device Under Windows
	PXI and VISA Background
	Configuring NI-VISA to Recognize a PXI/PCI Device
	Hardware Bus
	Basic Device Information
	Interrupt Detection Information
	Interrupt Removal Information
	Interrupt Disarm Information
	PXI Express Configuration Information
	Output Files Generation
	Installation Options

	Using NI-VISA to Communicate with a PXI/PCI Device
	Step 1 -- Initialize the Device
	Step 2 -- Communicating with the PXI Device
	Step 3 -- Closing the Device

	Using NI-VISA to Handle Events from a PXI/PCI Device

	Serial
	Introduction to Programming Serial Devices in VISA
	Default vs. Configured Communication Settings
	Controlling the Serial I/O Buffers
	National Instruments ENET Serial Controllers
	Serial Summary

	Ethernet
	Introduction to Programming Ethernet Devices in VISA
	VISA Sockets vs. Other Sockets APIs
	Ethernet Summary

	Remote NI-VISA
	Introduction to Programming Remote Devices in NI-VISA
	How to Configure and Use Remote NI-VISA
	Remote NI-VISA Summary

	USB
	Introduction to Programming USB Devices in VISA
	Configuring NI-VISA to Recognize a RAW USB Device
	USB Summary
	USB Instrument Control Tutorial
	USB and VISA Background
	Configuring NI-VISA to Control Your USB Device
	Create the .inf File Using the NI-VISA Driver Wizard
	Install the .inf Files and USB Device
	Test the Device with VISA Interactive Control

	Using NI-VISA to Communicate with Your USB Device
	USB on Linux and Mac

	FireWire
	Introduction to Programming FireWire Devices in VISA
	Configuring NI-VISA to Recognize an INSTR FireWire Device
	FireWire Summary

	Platform-Specific and Portability Issues
	Programming Considerations
	Multiple Applications Using the NI-VISA Driver
	Low-Level Access Functions
	Interrupt Callback Handlers

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Serial Port Support
	Visual Basic Example

	VME Support

	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding Use of NI Products

	Technical Support and Professional Services

