
Measurement	&	Automation	Explorer	Help	for	NI-VISA™
June	2008,	371395E-01
This	help	file	explains	how	to	use	Measurement	&	Automation	Explorer
(MAX)	for	NI-VISA	and	NI-VXI	configuration	and	programming.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2005–2008	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Related	Documentation
The	following	documents	contain	information	that	you	might	find	helpful
as	you	use	this	help	file:

NI-VXI	Help
NI-VXI	API	Help
NI-VISA	Help
1155-1992	Standard	VMEbus	Extensions	for	Instrumentation:
VXIbus
GPIB-VXI/C	User	Manual

Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	This	Help	File

Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:
» The	»	symbol	leads	you	through	nested	menu	items	and	dialog	box	options	to	a	final

action.	The	sequence	File»Page	Setup»Options	directs	you	to	pull	down	the	File	menu,
select	the	Page	Setup	item,	and	select	Options	from	the	last	dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory	information.

This	icon	denotes	a	note,	which	alerts	you	to	important	information.

This	icon	denotes	a	caution,	which	advises	you	of	precautions	to	take	to	avoid	injury,	data
loss,	or	a	system	crash.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the	software,	such	as	menu	items
and	dialog	box	options.	Bold	text	also	denotes	parameter	names.

dark	red Text	in	this	color	denotes	a	caution.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables,	emphasis,	cross–references,	or	an	introduction	to	a	key
concept.	Italic	text	also	denotes	text	that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should	enter	from	the	keyboard,
sections	of	code,	programming	examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,	programs,	subprograms,	subroutines,
device	names,	functions,	operations,	variables,	filenames,	and	extensions.

Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.

Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.

Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,	Traditional	Chinese,	Japanese,
and	Korean	systems.

Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.

Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both
search	terms.	You	do	not	need	to	specify	this
operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first
or	second	term.
NOT—Returns	topics	that	contain	the	first	term
without	the	second	term.
NEAR—Returns	topics	that	contain	both	terms
within	eight	words	of	each	other.

Search	Options
Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:

Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.

Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.

Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.

Glossary

Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 L 	

M 	 N 	 P 	 R 	 S 	 T 	 U 	 V 	 W

Prefixes
Symbol Prefix Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

G giga 10	9

T tera 10	12

Numbers/Symbols
nV nanovolts 10-9	volts

µV microvolts 10-6	volts

µΩ microohms 10-6	ohms

mΩ milliohms 10-3	ohms

MΩ megaohms 106	ohms

pA picoamps 10-12	amperes

nA nanoamps 10-9	amperes

µA microamps 10-6	amperes

mA milliamps 10-3	amperes

A

A16/A24/A32
space

VXIbus	address	spaces.	Address	space	is	a	set	of	2n	memory	locations	differentiated
from	other	such	sets	in	VXI/VMEbus	systems	by	six	signal	lines	known	as	address
modifiers,	where	n	is	the	number	of	address	lines	required	to	uniquely	specify	a	byte
location	in	a	given	space.	Valid	numbers	for	n	are	16,	24,	and	32.

A16	space	is	equivalent	to	the	VME	64	KB	short	address	space.	In	VXI,	the	upper	16	KB
region	is	referred	to	as	VXI	configuration	space.

A24	space	is	equivalent	to	the	VME	16	MB	standard	address	space.

A32	space	is	equivalent	to	the	VME	4	GB	extended	address	space.

B

base
address

A	specified	address	that	is	combined	with	a	relative	address	(or	offset)	to	determine	the
absolute	address	of	a	data	location.	All	VXI	address	windows	have	an	associated	base
address	for	their	assigned	VXI	address	spaces.

bus
master

A	type	of	a	plug-in	board	or	controller	with	the	ability	to	read	and	write	devices	on	the
computer	bus.

byte A	grouping	of	adjacent	binary	digits	operated	on	by	the	computer	as	a	single	unit.	A	byte
consists	of	8	bits.

byte
order

How	bytes	are	arranged	within	a	word	or	how	words	are	arranged	within	a	longword.	Motorola
ordering	stores	the	most	significant	byte	(MSB)	or	word	first,	followed	by	the	least	significant
byte	(LSB)	or	word.	Intel	ordering	stores	the	LSB	or	word	first,	followed	by	the	MSB	or	word.

C

Commander A	message-based	device	that	is	also	a	bus	master	and	can	control	one	or	more
Servants.	A	Commander	can	itself	be	a	Servant	to	another	Commander	that	is
higher	in	the	Commander/Servant	hierarchy.

Commander/Servant
hierarchy

The	VXIbus	specification	defines	a	Commander/Servant	communication	protocol
that	you	can	use	to	construct	hierarchical	systems	using	conceptual	layers	of	VXI
devices.	The	resulting	structure	is	like	a	tree.	A	Commander	is	any	message-
based	device	in	the	hierarchy	with	one	or	more	associated	lower-level	devices,
or	Servants.	A	Servant	is	any	device	in	the	subtree	of	a	Commander.	A	device
can	be	both	a	Commander	and	a	Servant	in	a	multiple-level	hierarchy.

A	Commander	has	exclusive	control	of	its	immediate	Servants'	(one	or	more)
communication	and	configuration	registers.	Any	VXI	module	has	one	and	only
one	Commander.	Commanders	use	the	Word	Serial	Protocol	to	communicate
with	Servants	through	the	Servants'	communication	registers.	Servants
communicate	with	their	Commander,	responding	to	the	Word	Serial	commands
and	queries	from	their	Commander.	Servants	can	also	communicate
asynchronous	status	events	to	their	Commander	through	hardware	interrupts,	or
by	writing	specific	messages	directly	to	their	Commander's	Signal	register.

communication
registers

In	message-based	devices,	a	set	of	registers	that	are	accessible	to	the	device's
Commander	and	are	used	for	performing	Word	Serial	Protocol	communications.
VME	devices	and	VXI	register-based	devices	do	not	have	communication
registers.

configuration
registers

A	set	of	registers	through	which	the	system	can	identify	a	module	device	type,
model,	manufacturer,	address	space,	and	memory	requirements.	To	support
automatic	system	and	memory	configuration,	the	VXIbus	specification	requires
that	all	VXIbus	devices	have	a	set	of	such	registers.	VME	devices	do	not	have
configuration	devices.

configuration	space The	VXIbus	specification	reserves	a	section	of	VXI/VMEbus	address	space	for
automatic	system	configuration	and	base-level	communication.	This	section	is
the	upper	16	KB	of	what	is	known	as	the	A16	address	space,	which	is	divided
into	256	blocks	of	64	bytes	each	for	a	maximum	of	256	VXI	devices	in	a	single
VXIbus	chassis.	Therefore,	this	section	(known	as	VXIbus	configuration	space)
begins	at	a	base	address	of	0xC000	and	ends	at	0xFFFF.	A	unique	8-bit	logical
address	identifies	each	device.	The	logical	address	determine	which	of	these
256	blocks	a	VXI	device	resides	at	or	uses.	Each	VXI	device,	therefore,	has	a
unique	location	in	the	system.

You	can	calculate	the	offset,	or	starting	address,	of	a	device's	64-byte	block	of
addresses	using	the	following	formula:

offset	=	C000	hex	+	(Logical	Address	*	40	hex)

or,	in	decimal:

offset	=	49152	+	(Logical	Address	*	64)

controller	(System
Controller)

A	controller	is	a	device	that	can	control	other	devices.	A	desktop	computer	with	a
MXI	interface	board,	an	embedded	computer	in	a	VXI	chassis,	a	VXI-MXI,	and	a
VME-MXI	may	all	be	controllers	depending	on	the	configuration	of	the	VXI
system.

A	VMEbus	System	Controller	is	a	device	configured	for	installation	in	Slot	0	of	a
VXIbus	chassis	or	Slot	1	of	a	VMEbus	chassis.	This	device	is	unique	in	the
VMEbus	system	in	that	it	performs	the	VMEbus	System	Controller	functions,

including	clock	sourcing	and	arbitration	for	data	transfers	across	the	backplane.

A	MXIbus	System	Controller	is	a	functional	module	that	has	arbiter,	daisy-chain
driver,	and	MXIbus	cycle	timeout	responsibility.	This	device	is	always	the	first
device	in	the	MXIbus	daisy-chain.

D

device
class

VXIbus	devices	are	categorized	by	their	supported	protocols	into	the	following	four	classes.

Message-based	devices	support	both	the	VXIbus	configuration	and	communication	protocols.
These	devices	have	Commander	and/or	command-based	Servant	capabilities.

Register-based	devices	have	VXIbus	configuration	registers,	but	do	not	have	communications
registers.	Typically,	they	have	little	or	no	local	intelligence	and	can	be	controlled	by	message-
based	devices.

Memory	devices	have	VXIbus	configuration	registers	that	are	used	for	either	permanent	or
temporary	data	storage	in	blocks	of	RAM	or	ROM	in	VMEbus	A24	or	A32	address	space.

Extended	devices	have	VXIbus	configuration	registers	and	a	subclass	register,	which	defines
both	standard	and	manufacturer-specific	subclasses.	The	subclass	further	defines	the
functionality	of	an	extended	device,	such	as	a	chassis	extender.	The	National	Instruments	VXI-
MXI	chassis	extender	is	an	example	of	an	extended	device.

VME	devices	that	do	not	implement	the	VXIbus	configuration	registers	do	not	have	a	VXI
device	class.

DMA Direct	Memory	Access;	a	method	by	which	data	is	transferred	between	devices	and	internal
memory	without	intervention	of	the	central	processing	unit.	Generally,	DMA	is	the	fastest	and
most	efficient	method	for	transferring	data.

DRAM Dynamic	RAM	(Random	Access	Memory);	storage	that	the	computer	must	refresh	at	frequent
intervals.

E

embedded
controller

A	computer	plugged	directly	into	the	backplane	of	a	PXI	or	VXI	chassis.	Some	examples	of
embedded	controllers	are	National	Instruments	PXI-8170	Series	and	VXIpc	controllers.

extender A	device	such	as	the	VXI-MXI-2	or	VME-MXI-2	that	can	map	interrupt	lines,	trigger	lines,	or
other	signals	into	or	out	of	a	chassis.

external
controller

A	desktop	computer	or	workstation	connected	to	the	VXI	system	via	a	MXI	interface	board.
An	example	is	a	standard	personal	computer	with	a	PCI-MXI-2	installed.

F

fair
requester

An	MXIbus	master	that	does	not	arbitrate	for	the	MXIbus	after	releasing	it	until	it	detects	the
bus	request	signal	inactive.	This	ensures	that	all	requesting	devices	are	granted	use	of	the
bus.

G

GPIB General	Purpose	Interface	Bus;	the	industry-standard	IEEE	488	bus.	The	GPIB	is	a	cable	bus
that	connects	computers	to	test	equipment.	Hewlett-Packard	developed	the	original	GPIB	in	the
late	1960s	to	connect	and	control	their	line	of	programmable	instruments	(at	Hewlett-Packard,
the	GPIB	is	called	the	HP-IB).

In	1975,	the	Institute	of	Electrical	and	Electronic	Engineers	(IEEE)	published	ANSI/IEEE
Standard	488,	IEEE	Standard	Digital	Interface	for	Programmable	Instrumentation,	which
contained	the	electrical,	mechanical,	and	functional	specifications	of	an	interfacing	system.	This
bus	is	now	used	worldwide	and	is	known	by	the	following	names:

General	Purpose	Interface	Bus	(GPIB)
Hewlett-Packard	Interface	Bus	(HP-IB)
IEEE	488	Bus

The	IEEE	committee	later	added	a	supplemental	standard,	IEEE	488.2,	Codes,	Formats,
Protocols,	and	Common	Commands,	which	extended	the	IEEE	488	specification.	IEEE	488.2
defines	a	bus	communication	protocol,	a	common	set	of	data	codes	and	formats,	and	a	generic
set	of	common	device	commands.	It	also	defines	a	standard	set	of	instrument	commands	in	the
Standard	Command	for	Programmable	Instrumentation	(SCPI)	document.

GPIB	became	an	industry	standard	for	test	and	measurement	systems.	Because	VXI	was
developed	for	this	industry,	many	VXI	devices	use	the	IEEE	488.2	and	SCPI	commands.

GPIB-
VXI/C
debug
mode

Loads	the	GPIB-VXI	code	instruments	in	a	debug	mode.	Debugging	a	GPIB-VXI/C	is	described
in	detail	in	the	GPIB-VXI/C	User	Manual.	Normally,	you	should	not	place	a	GPIB-VXI/C	into
debug	mode	unless	directed	to	do	so	by	National	Instruments	technical	support.

H

HP/Agilent	VISA Refers	to	the	Hewlett-Packard/Agilent	implementation	of	the	VISA	specification.

I

instrument
driver

Instrument	drivers	are	the	tools	for	developing	a	system	without	programming	the
instruments	themselves.	By	using	instrument	drivers,	you	do	not	need	to	learn	any
instrument	command	sets	of	data	formatting	routines.	Instrument	drivers	contain	high-level
functions	for	specific	instruments	such	as	multimeters,	scopes,	and	counters.	Because	the
drivers	have	all	the	programming	commands	and	data	formatting	routines	for	instruments,
you	can	concentrate	on	developing	systems	rather	than	programming	instruments.

interrupt A	means	for	a	device	to	notify	another	device	that	an	event	occurred.	This	asynchronous
event	suspends	normal	activity	and	temporarily	diverts	activity	to	an	interrupt	handling
function.

interrupt
handler

A	functional	module	that	detects	interrupt	requests	generated	by	interrupters	and	performs
appropriate	actions.

L

LabVIEW LabVIEW	is	a	graphical	programming	system	designed	for	easy	construction	of
sophisticated,	user-defined	instrumentation	systems.	It	has	the	flexibility	necessary
to	harness	the	high	performance	of	VXI,	along	with	a	programming	methodology	that
dramatically	reduces	application	development	time.	LabVIEW	is	fully	VXIplug&play
compliant	to	give	you	the	full	benefits	of	VXIplug&play	technology.

LabWindows/CVI LabWindows/CVI	is	an	integrated	software	system	for	rapid	development,
prototyping,	and	operation	of	test	and	measurement	and	data	acquisition
applications.	It	provides	a	full-function	C	programming	environment	for	the	Windows
and	Sun	Solaris	platforms.	LabWindows/CVI	applications	are	written	in	industry-
standard	program	code,	and	are	flexible,	modular,	extensible,	and	portable	between
either	platform.	National	Instruments	offers	VXI/VME	development	systems	for	these
two	platforms	that	link	the	NI-VXI	driver	software	into	LabWindows/CVI	to	control
VXI	instruments	from	either	embedded	VXI/VME	controllers	or	external	computers
equipped	with	a	MXI	interface.	LabWindows/CVI	is	fully	VXIplug&play	compliant	to
give	you	the	full	benefits	of	VXIplug&play	technology.

logical	address An	8-bit	number	that	uniquely	identifies	the	location	of	each	VXIbus	device's
configuration	registers	in	a	system	and	indicates	Commander	and	Servant
relationships.	The	A16	register	address	of	a	device	is	C000h	+	Logical	Address	*
40h.

Logical	Address
0

If	a	local	device,	such	as	the	external	controller,	is	configured	at	Logical	Address	0,	it
is	responsible	for	the	following	VXI	Resource	Manager	operations	at	startup,	as
defined	by	the	VXIbus	specification:

Identifies	all	VXIbus	devices	in	the	system
Manages	the	system	self-tests	and	diagnostic	sequence
Configures	the	system's	A24	and	A32	address	map
Configures	the	system's	Commander/Servant	hierarchies
Allocates	the	VMEbus	IRQ	lines
Initiates	normal	system	operation

The	Startup	Resource	Manager	also	has	the	following	capabilities,	which	extend
beyond	the	requirements	of	the	VXIbus	specification:

Multiple	chassis	support	using	standard	VXIbus	chassis	extenders	(such	as
the	VXI-MXI-2)
Support	for	dynamically	configured	devices	on	a	per-chassis	basis
Integration	of	non-VXI	(VME	and	pseudo-VXI)	devices	on	a	per-chassis
basis	using	MAX.

longword Data	type	of	32-bit	integers.	In	Longword	Serial	Protocol,	Commanders	and
Servants	communicate	with	32-bit	data	transfers	instead	of	16-bit	transfers	as	in	the
standard	Word	Serial	Protocol.

M

message-
based
communication

Message-based	devices	implement	the	defined	VXIbus	registers	and	communication
protocols.	These	devices	are	able	to	use	Word	Serial	Protocol	to	communicate	with
one	another	through	communication	registers,	which	are	optional	registers	that
register-based	devices	do	not	use.	Message-based	devices	communicate	at	a	very
high	level	using	ASCII	characters,	just	like	GPIB.	The	ASCII	characters	that	you	send
to	a	message-based	device	must	be	in	the	device's	specific	language,	but	you	do	not
need	to	be	concerned	with	module-specific	registers	(that	is,	binary	reading	and
writing).	Many	VXI	message-based	instruments	are	also	SCPI-compatible.

MXI/MXI-2 The	Multisystem	eXtension	Interface	bus	(MXIbus)	is	a	multidrop	parallel	bus
architecture	designed	for	high-speed	communication	between	devices.	The	MXIbus	is
a	general-purpose	gateway	that	you	can	use	to	communicate	between	two	or	more
devices,	such	as	personal	computers,	workstation	computers,	VXIbus	chassis,
VMEbus-based	computers,	stand-alone	instruments,	or	modular	instruments.

MXI-2	is	the	second	generation	of	the	National	Instruments	MXIbus	product	line.	MXI-
2	expands	the	number	of	signals	on	a	standard	MXIbus	cable	by	including	VXI
triggers,	all	VXI	interrupts,	CLK10,	SYSFAIL*,	SYSRESET*,	and	ACFAIL*.

N

NI	Spy The	National	Instruments	utility	that	tracks	an	application's	calls	to	NI-VISA,	the	NI-VXI
API,	and	NI-488.2.	You	can	use	this	logging	utility	to	obtain	a	list	of	the	functions	the
applications	calls	and	quickly	find	which	ones	did	not	execute	properly.

NI-VISA NI-VISA	is	the	native	API	for	communicating	with	VXI/VME	devices.	NI-VISA	is	the
National	Instruments	implementation	of	the	VISA	I/O	standard,	which	is	a	common
interface	to	many	types	of	instruments	(such	as	VXI,	GPIB,	PXI,	serial,	TCP/IP,	etc.).	NI-
VXI	is	optimized	for	use	through	NI-VISA,	and	National	Instruments	recommends	using
NI-VISA	to	develop	all	new	VXI/VME	applications.

NI-VXI NI-VXI	is	the	software	package	that	ships	with	National	Instruments	VXI	controllers.	NI-
VXI	includes	Measurement	&	Automation	Explorer	(MAX),	NI-VISA,	NI	Spy,	Resource
Manager	(Resman),	VXI	device	drivers,	and	other	utilities	for	configuring	and	controlling
your	VXI	system.

NI-VXI	API The	NI-VXI	API	is	an	optional	development	environment	that	is	not	part	of	the	default	NI-
VXI	installation.	The	NI-VXI	API	was	developed	before	NI-VISA;	while	NI-VXI	still
supports	the	NI-VXI	API,	National	Instruments	recommends	using	NI-VISA	for	all	new
VXI/VME	applications.	If	you	must	develop	an	application	using	the	older	NI-VXI	API,
run	the	NI-VXI	installer	and	select	the	appropriate	option	in	the	custom	installation
screen.

non-Slot	0 Any	slot	in	a	VXI	chassis	except	for	the	first	slot.

Caution		Installing	a	device	configured	as	a	non-Slot	0
device	into	Slot	0	can	damage	the	device,	the	VXIbus
backplane,	or	both.

nonprivileged
access

One	of	the	defined	types	of	VMEbus	data	transfers;	indicated	by	certain	address
modifier	codes.	Each	defined	VMEbus	address	space	has	a	defined	nonprivileged
access	mode.

P

peek To	read	a	single	byte,	word,	or	longword	from	a	particular	address.	This	can	be	accessed
either	through	a	direct	dereference	of	a	pointer	or	through	the	NI-VISA	function	viPeekX	or
NI-VXI	API	function	VXIpeek.

pointer A	data	structure	that	contains	an	address	or	other	indication	of	storage	location.

poke To	write	a	single	byte,	word,	or	longword	to	a	particular	address.	This	can	be	accessed	either
through	a	direct	dereference	of	a	pointer	or	through	the	NI-VISA	function	viPokeX	or	NI-VXI
API	function	VXIpoke.

pseudo
logical
address

A	number	signifying	an	address	that	you	can	use	to	integrate	VME	devices	with	VXI	devices.
Because	the	Resource	Manager	does	not	configure	VME	devices,	you	must	manually	add	the
devices.	You	can	choose	a	number	in	the	range	of	256	to	511	(255	and	below	are	reserved	for
VXI	devices).	Enter	other	appropriate	information	into	the	various	fields	of	the	editor,	and
when	you	run	Resource	Manager,	it	can	then	properly	configure	the	various	device-specific
VME	address	spaces	and	VME	interrupt	lines.

R

register-based
communication

A	register-based	device	is	a	Servant-only	device	that	supports	VXIbus	configuration
registers.	These	devices	do	not	implement	the	optional	communication	registers	that
are	required	for	message-based	communication.	Register-based	devices	are	typically
controlled	by	message-based	devices	via	device-dependent	register	reads	and	writes.
The	obvious	advantage	of	this	is	speed;	register-based	devices	communicate	literally
at	the	level	of	direct	hardware	manipulation.	There	is	no	command	string	parsing
overhead.	The	disadvantage	is	that	each	device	is	different	and	requires	customized
manipulation	of	registers.	Thus,	the	instrument	interface	is	not	portable	across
instruments.

Resource
Manager
(Resman)

A	message-based	Commander,	located	at	Logical	Address	0,	that	provides
configuration	management	services	such	as	address	map	configuration,	Commander
and	Servant	hierarchy	mappings,	and	self-test	and	diagnostic	management.	On
system	startup,	the	VXI	System	Controller	executes	the	Resource	Manager	to
automatically	configure	the	entire	system.	This	automatic	startup	configuration	eases
system	integration.	After	the	Resource	Manager	has	executed,	the	system	is	ready	to
go.	You	can	also	execute	the	Resource	Manager	interactively	at	any	time	if	you	are
reconfiguring	system	resources.

S

Servant A	device	controlled	by	a	Commander	in	the	Commander/Servant	Hierarchy.	A	Servant	can
itself	be	a	Commander	to	Servant	devices	that	are	lower	in	the	hierarchy.

shared
memory

A	block	of	memory	that	is	accessible	to	both	a	client	and	a	server.	The	memory	block
operates	as	a	message	buffer	for	communications.

Slot	0 The	first	slot	in	a	VXI	chassis.	A	device	configured	for	installation	in	this	slot	is	unique	in
the	VXI	system	in	that	it	performs	the	VMEbus	System	Controller	functions,	including	clock
sourcing	and	arbitration	for	data	transfers	across	the	backplane.

Caution		Installing	a	device	configured	for	Slot	0	into
any	other	slot	can	damage	the	device,	the	VXI
backplane,	or	both.

soft	front
panel
(SFP)

See	VXIplug&play	soft	front	panel.

status/ID A	value	returned	during	an	IACK	cycle.	In	VME,	usually	an	8-bit	value	which	is	either	a
status/data	value	or	a	vector/ID	value	used	by	the	processor	to	determine	the	source.	In
VXI,	a	16-bit	value	used	as	a	data;	the	lower	8	bits	form	the	VXI	logical	address	of	the
interrupting	device	and	the	upper	8	bits	specify	the	reason	for	interrupting.

supervisory
access

One	of	the	defined	types	of	VMEbus	data	transfers;	indicated	by	certain	address	modifier
codes.

SYNC
protocol

The	most	basic	trigger	protocol,	simply	a	pulse	of	a	minimum	duration	on	any	one	of	the
trigger	lines.

You	can	assert	a	pulse	for	a	minimum	of	30	ns,	followed	by	a	minimum	nonassertion
period	of	50	ns.	There	is	no	acknowledgment	from	the	receiver(s).	Any	module	can	issue
the	triggering	pulse,	but	the	module	cannot	be	sure	that	the	pulse	has	been	received.

system
registry

The	system	registry	is	used	to	store	persistent	information	by	both	the	operating	system
and	many	programs.	See	your	operating	system	documentation	for	more	information.

T

trigger Either	TTL	or	ECL	lines	used	for	intermodule	communication.

U

user
window

A	region	of	PCI	address	space	reserved	by	the	external	controller	or	VXIpc	series	embedded
controller	for	use	via	low-level	function	calls.	The	MapVXIAddress()	and	viMapAddress()
functions	use	this	address	space	to	allocate	regions	for	use	by	the	VXIpeek()/VXIpoke()	and
viPeekXX()/viPokeXX()	functions.

V

VIC/VICtext VXI	Interactive	Control	program,	a	part	of	the	NI-VXI	API	bus	interface	software.	Used	to
program	VXI	devices,	and	develop	and	debug	VXI	application	programs.	It	is	also	very
useful	for	developing	an	understanding	of	how	you	can	use	the	NI-VXI	API	to	interact
with	your	VXI	devices.	Called	VICtext	when	used	on	text-based	platforms.

Note		The	VIC	utility	is	not	part	of	the	basic	NI-VXI
installation.	However,	if	you	want	to	use	VIC,	run	the
NI-VXI	installer	and	select	a	"custom"	installation
instead	of	"typical".	In	the	Select	Features	dialog	box,
enable	the	NI-VXI	API	Development	option	and
continue	as	prompted.	After	you	reboot,	VIC	is	ready
for	use.

VISA VISA	is	a	multivendor	I/O	software	standard	approved	by	the	VXIplug&play	Systems
Alliance.	It	provides	a	common	foundation	for	the	development,	delivery,	and
interoperability	of	high-level	multivendor	system	software	components,	such	as
instrument	drivers,	soft	front	panels,	and	application	software.

NI-VISA	is	the	National	Instruments	VISA	solution.

VISAIC VISA	Interactive	Control	(VISAIC)	utility,	a	part	of	the	NI-VISA	interface	software.	You
can	use	this	utility	to	interact	with	devices	using	NI-VISA.	This	is	very	useful	for
developing	and	debugging	VISA	application	programs.	It	is	also	very	useful	for
developing	an	understanding	of	how	you	can	use	VISA	to	interact	with	your	devices.

VME Versa	Module	Eurocard	or	IEEE	1014.

VME64
protocol

Devices	that	support	VME64	protocol	can	transfer	data	in	64-bit	increments	to	double
traditional	VXI	throughput	to	80	Mbytes/s.

VXI VMEbus	Extensions	for	Instrumentation.	Introduced	by	the	VXIbus	Consortium	in	1987,
the	VXIbus	(IEEE	1155)	standard	combines	the	best	technology	from	GPIB	instruments
with	modern	computer	bus	architecture—VERSAbus	Module	Eurocard	(VME).	VXI	uses
a	chassis	with	modular	instruments	on	plug-in	boards.	Due	to	its	VMEbus	background,
VXI	features	higher	performance	and	more	precise	timing	and	synchronization	between
instruments.	It	is	also	smaller	than	GPIB	rack-and-stack	instruments.	Yet	unlike	VME,
VXI	defines	a	standard	communication	protocol	to	certain	devices.	Through	this
interface,	you	can	use	common	ASCII	commands	to	control	the	instruments,	just	as	with
GPIB.	The	VXIbus	specification	is	an	extension	of	the	VMEbus	(IEEE	1014)
specification.	As	an	electromechanical	superset	of	the	VMEbus,	the	VXIbus	uses	the
same	backplane	connectors	as	VME,	the	same	board	sizes,	and	the	same	signals
defined	in	the	VMEbus	specification.	The	VXIbus	adds	two	board	sizes,	changes
module	width,	and	defines	additional	signals	on	the	backplane.

VXI
embedded
controller

A	computer	plugged	directly	into	the	backplane	of	a	VXI	chassis.	An	example	is	the
National	Instruments	VXIpc	series.

VXI	signal Any	communication	between	message-based	devices	consisting	of	a	write	to	a	Signal
register.	Sending	a	signal	requires	that	the	sending	device	have	VMEbus	master
capability.

VXI	trigger VXI	triggers	are	a	backplane	feature	that	VXI	added	to	the	VME	standard	to	achieve	the
required	timing	and	signaling	propagation	between	controllers	and/or	instruments.	Every

VXI	board	with	a	P2	connector	has	access	to	eight	10	MHz	TTL	trigger	lines;	if	it	has	a
P3	connector,	it	also	has	access	to	six	100	MHz	ECL	trigger	lines.	The	VXIbus
specification	defines	several	trigger	protocols	that	your	application	can	use	for	device
synchronization,	for	stepping	through	tests,	or	for	a	command	path.	The	most	basic
protocols	are	SYNC,	ASYNC,	SEMI-SYNC,	START/STOP,	and	ON/OFF.

VXIplug&play
soft	front
panel

VXIplug&play-compliant	instruments	have	software	that	can	run	without	a	programming
environment	and	can	produce	a	soft	front	panel	(SFP).	The	SFP	is	a	test	application	that
represents	and	controls	the	instrument	functions	in	an	interactive	way.	They	use	a
graphical	interface	and	a	mouse	pointing	device	to	manipulate	simulated	knobs,	buttons,
controls,	and	displays.	You	can	use	the	SFP	to	check	the	operation	of	the	instrument,
verify	and	correct	configuration	and	installation,	and	interact	with	the	instrument.

W

window All	accesses	to	the	VXI/VMEbus	address	spaces	are	performed	by	reads	and	writes	to
particular	offsets	within	the	local	CPU	address	space,	which	are	made	to	correspond	to
addresses	on	the	VXI/VMEbus	(using	a	hardware	interface).	Windows	are	the	areas	where
the	address	space	of	the	local	CPU	is	mapped	onto	the	VXI/VMEbus.	The	sizes	and	numbers
of	windows	present	vary	depending	on	the	hardware	being	used.

word The	standard	number	of	bits	that	a	processor	or	memory	manipulates	at	one	time.
Microprocessors	typically	use	8-,	16-,	or	32-bit	words.	Standard	Word	Serial	Protocol	defines
a	word	as	16	bits.

word
serial
protocol

The	simplest	required	communication	protocol	supported	by	message-based	devices	in	the
VXIbus	system.	It	uses	the	A16	communication	registers	to	perform	16-bit	data	transfers
using	a	simple	polling	handshake	method.	All	message-based	devices	are	required	to	support
this	protocol.	Word	Serial	Protocol	transfers	data	messages	to	and	from	devices	serially,	one
byte	(or	word)	at	a	time	through	the	device's	communication	registers.

Getting	Started	with	Your	Help
How	is	this	help	file	organized?
What	should	I	do	if	I	can't	find	the	answer	to	my	question	here?
How	do	I	use	the	Troubleshooter?

How	is	this	help	file	organized?
The	topics	are	arranged	in	three	major	categories:
How	Do	I...?
Why	Can't	I...?
Why	Would	I/When	do	I...?
Find	the	category	and	topic	using	the	Contents	or	Index	tabs.	You	can
also	do	a	full	key	word	search	using	the	Search	tab.

What	should	I	do	if	I	can't	find	the	answer	to	my	question
here?
You	can	find	more	detailed	information	in	the	manuals	that	ship	with	your
kit.	Many	of	these	manuals	are	available	as	Acrobat	(.pdf)	files	or
compiled	HTML	help	(.chm)	files,	and	are	contained	in	the	software's
manuals	directory.	NI-VISA	includes	online	help	to	help	you	get	started
with	basic	concepts	about	programming	with	NI-VISA,	including
programmer's	reference	with	descriptions	of	each	function.
If	the	documentation	does	not	answer	your	question,	consult	the
technical	support	resources	on	the	National	Instruments	Web	site.

How	do	I	use	the	Troubleshooter?
When	the	device	is	displayed	with	an	error	or	a	warning,	the
Troubleshoot	button	in	the	Device	Properties	dialog	is	enabled.	Click
the	button	to	get	help	with	your	problem.

How	Do	I...?
General	Topics
Configuration
General	Programming	Issues

General	Topics
Obtain	specifications	on	my	National	Instruments	hardware
Obtain	the	latest	National	Instruments	VISA	and	VXI	software	and	bug
fixes
Obtain	the	latest	National	Instruments	product	information
Access	the	National	Instruments	Product	Knowledgebase
Debug	a	VXI	problem
Find	out	if	my	device	has	an	instrument	driver
Find	out	more	about	programming	in	NI-DAQ
Find	out	more	about	LabVIEW
Find	out	more	about	LabWindows/CVI
Find	out	more	about	GPIB

Obtain	specifications	on	my	National	Instruments
hardware
You	can	find	most	of	the	specifications	for	National	Instruments	VXI
hardware	products	in	the	Specifications	appendix	of	our	getting	started
manuals	or	user	manuals.	If	you	need	information	that	is	not	documented
in	your	manual	set,	see	our	technical	support	Web	pages.	You	can	also
find	many	specifications	for	National	Instruments	data	acquisition
products	in	our	catalogue.

Obtain	the	latest	National	Instruments	VISA	and	VXI
software	and	bug	fixes
You	can	find	the	latest	versions	of	most	NI-VISA	and	NI-VXI	software	on
the	National	Instruments	technical	support	Web	pages,	including
ni.com/downloads.	On	these	pages,	you	can	find	updates,	bug	fixes,	and
patches	to	your	National	Instruments	software.	If	you	need	any	of	this
software	on	CD-ROM,	contact	your	sales	representative	or	call	National
Instruments.

javascript:WWW(WWW_Software)

Obtain	the	latest	National	Instruments	product	information
The	National	Instruments	Web	site	contains	the	latest	information	about
National	Instruments	products	as	well	as	our	online	catalogue.	We	also
publish	a	printed	catalogue	every	year.	If	you	do	not	have	a	catalogue
and	would	like	to	receive	one,	contact	your	sales	representative	or	call
National	Instruments.

javascript:WWW(WWW_NI)

Access	the	National	Instruments	KnowledgeBase
You	can	access	the	KnowledgeBase	from	the	National	Instruments
technical	support	Web	pages.	This	database	contains	information	on
problems,	bugs,	questions,	and	their	resolutions	that	many	of	our
customers	have	experienced.

Debug	a	VXI	problem
Large	VXI	systems	can	be	very	complex,	so	your	first	task	in	debugging	a
VXI	problem	is	to	narrow	the	problem	to	as	few	variables	as	possible.	For
example,	if	you	have	a	multichassis	system,	you	may	want	to	try	to
reproduce	the	problem	with	a	single	chassis.	You	may	even	need	to	pull
instruments	out	of	the	system	until	you	can	narrow	the	problem	to	one	or
two	instruments.
VISAIC	and	VIC	are	two	very	useful	tools	for	isolating	a	problem.
Reproducing	a	VXI	problem	using	these	utilities	usually	eliminates	your
application	as	the	source	of	the	problem.	Using	these	interactive	utilities,
you	can	check	basic	communication	with	any	instrument	with	the	most
basic	interface	to	the	driver.

Note		The	VIC	utility	is	not	part	of	the	basic	NI-VXI	installation.	However,	if	you	want	to	use	VIC,
run	the	NI-VXI	installer	and	select	a	"custom"	installation	instead	of	"typical."	In	the	Select
Features	dialog	box,	enable	the	NI-VXI	API	Development	option	and	continue	as	prompted.
After	you	reboot,	VIC	is	ready	for	use.

If	you	cannot	reproduce	the	problem	with	VISAIC	or	VIC,	use	NI	Spy.	NI
Spy	is	a	powerful	utility	that	can	track	every	NI-VISA,	NI-VXI,	or	NI-488.2
call	you	make.	It	highlights	calls	that	return	errors	or	warnings	and
displays	all	parameters	sent	to	the	driver	so	you	can	check	their	validity.
NI	Spy	can	help	you	locate	bugs	quickly	in	large	applications.
See	also	Debug	a	VXI	program.

Find	out	if	my	device	has	an	instrument	driver
If	your	instrument	driver	is	already	installed,	the	utilities	VISAIC	and	MAX
may	be	able	to	find	them.	VISAIC	and	MAX	try	to	find	the	instrument
drivers	on	your	system	and	launch	their	soft	front	panels.
Many	instrument	drivers	are	available	on	the	National	Instruments	Web
site.	See	the	technical	support	Web	pages	for	LabVIEW	and
LabWindows™/CVI™	instrument	drivers.
If	National	Instruments	does	not	have	an	instrument	driver	for	your
device,	contact	the	manufacturer.	Vendors	who	are	members	of	the
VXIplug&play	Systems	Alliance	create	many	instrument	drivers	for	their
products.

Find	out	more	about	programming	in	NI-DAQ
Many	example	programs	are	available	when	you	install	NI-DAQ.	These
programs	are	excellent	references	for	learning	how	to	program	National
Instruments	data	acquisition	devices.	In	addition,	you	can	use	the	DAQ
Solution	Wizard,	which	helps	you	find	examples	in	LabVIEW	that	are
relevant	to	your	application.	If	you	want	more	formal	training,	National
Instruments	offers	several	different	training	classes	on	most	of	our
products,	including	NI-DAQ.	Contact	your	sales	representative	or	see	our
technical	support	Web	pages	for	more	information.

Find	out	more	about	LabVIEW
LabVIEW	includes	many	example	programs	that	are	excellent	references
for	learning	LabVIEW	programming.	Many	LabVIEW	programming	books
are	also	available.	If	you	want	more	formal	training,	National	Instruments
offers	training	courses	on	many	of	our	products	including	LabVIEW.
Contact	your	sales	representative	or	see	our	technical	support	Web
pages	for	more	information.

Find	out	more	about	LabWindows/CVI
LabWindows/CVI	includes	many	example	programs	that	are	excellent
references	for	learning	LabWindows/CVI	programming.	Contact	your
sales	representative	or	see	our	technical	support	Web	pages	for	more
information.

Find	out	more	about	GPIB
NI-488.2	includes	many	example	programs	that	are	excellent	references
for	learning	NI-488.2	programming.	Contact	your	sales	representative	or
see	our	technical	support	Web	pages	for	more	information.

Configuration
Assign	an	alias	to	my	VISA	device
Disable	a	VISA	device
Verify	my	system	is	working	properly
Install	VXIplug&play	software
Configure	NI-VISA	to	operate	with	a	Hewlett-Packard	GPIB-VXI	board
Configure	NI-VISA	to	operate	with	a	National	Instruments	GPIB-VXI/C
Configure	NI-VISA	to	see	multiple	GPIB-VXI/C	boards
Use	VISAIC/VIC
Determine	what	version	of	software	I	have	installed

Assign	an	alias	to	my	VISA	device
You	can	assign	devices	that	support	aliases	by	right-clicking	on	the
device	and	selecting	Rename	from	the	pop-up	menu.

Disable	a	VISA	device
You	can	disable	a	VISA	device	by	going	to	the	General	tab	in	the	view
and	unchecking	the	Device	enabled	box.

Verify	my	system	is	working	properly
If	your	device	is	not	present	in	the	system	view	in	MAX,	NI-VISA	did	not
detect	it.	Remember	that	you	must	add	the	following	types	of	devices	to
the	system	manually,	using	the	Add	Device	wizard:

All	TCP/IP	resources
All	Ethernet-based	converters	(for	example,	GPIB-ENET	and	Serial
ENET)
All	VME	resources
GPIB-VXI	controllers	at	locations	other	than	primary	address	1,
secondary	address	0

For	VXI	systems,	you	may	also	need	to	run	the	Resource	Manager	if	you
do	not	have	it	configured	to	run	automatically.
If	NI-VISA	or	the	VXI	Resource	Manager	detected	any	errors,	the	device
icons	are	marked	accordingly.	To	find	out	what	is	wrong,	go	to	these
marked	devices	and	view	the	Troubleshooting	information	in	the
General	tab.
After	you	are	satisfied	that	MAX	detected	all	your	devices,	you	can	test
access	to	them.	The	Open	VISA	Test	Panel	command	creates	a	session
in	the	VISA	Interactive	Control	and	allows	you	to	establish	basic
communication	with	your	devices.	How	you	test	communication	with	a
device	varies.	You	can	read	the	registers	of	VXI	or	PXI	devices	to
establish	contact.	Many	GPIB,	VXI,	and	Serial	devices	respond	to	the
*IDN?	string,	which	you	can	send	to	a	device	using	viWrite().	This	488.2
command	queries	for	the	identification	string	of	a	device	that	is	returned
through	viRead().
See	also	See	my	GPIB	devices	and	See	my	VXI	devices.

Install	VXIplug&play	software
VXIplug&play	instrument	drivers	use	a	standard	installer	under	Windows.

Use	the	File	Manager	or	Windows	Explorer	to	locate	the	setup.exe
installation	program	for	the	instrument	driver	and	double-click	it.	This	runs
the	VXIplug&play	installation	program	to	install	your	driver	files	in	their
proper	locations.
Typically,	VXIplug&play	instrument	drivers	install	C	source	code,
Windows	Help	files,	a	Win32	DLL,	LabWindows/CVI	Function	Panels,
KnowledgeBase	files,	and	a	stand-alone	executable	called	a	Soft	Front
Panel.
The	source	code,	help	files,	and	Soft	Front	Panel	are	installed	in	the
<Drive>\VXIPNP\<Operating	System>\<Instrument	Name>\	path	(for
example,	C:\VXIPNP\WinNT\HPE-1431\).
The	DLLs	are	installed	in	<Drive>\VXIPNP\<Operating	System>\bin\.
You	can	use	the	Soft	Front	Panel	to	quickly	get	started	using	your
instrument.
LabWindows/CVI	Function	Panel	files	create	a	function	panel	tree	in
LabWindows/CVI.	This	useful	structure	contains	a	logical	tree	of	the
functions	available	in	the	DLL	along	with	built-in	help.
Of	course,	there	are	many	functions	built	into	the	DLL	that	need	to	be
formed	into	the	final	application.
A	KnowledgeBase	file	is	a	hardware	database	containing	useful
specifications	for	an	instrument.	These	might	include	operating
specifications	and	capabilities.
In	addition,	the	instrument	driver	may	come	with	other	files	to	help	users
program	their	instruments	such	as	resource	files	or	BASIC	source	code.
Finally,	you	may	easily	port	a	text-based	instrument	driver	to	LabVIEW.
Simply	use	the	Update	VXIplug&play	Drivers	option	under	the	File
menu	in	LabVIEW.	This	checks	your	VXIPNP	directory	for	installed
VXIplug&play	instrument	drivers	and	converts	them	into	a	LabVIEW
library	containing	all	the	functions	listed	in	the	LabWindows/CVI	Function
Panels.	The	Function	Panels	are	converted	to	LabVIEW	front	panels,
while	each	VI	contains	a	Call	Library	Function	to	the	DLL.	The	converted

VIs	are	placed	in	your	<Driver>\LabVIEW\Instr.lib	directory.	Under	the
Functions	menu,	these	same	VIs	appear	in	the	Instrument	Library
subpalette,	ready	for	you	to	create	an	instrument	driver.	Notice	that
Convert	CVI	FP	File	under	the	File	menu	performs	the	same	operations,
except	that	the	user	must	explicitly	search	for	the	DLL	and	FP	files.

Configure	NI-VISA	to	operate	with	an	HP/Agilent	GPIB-VXI
board
To	configure	NI-VISA	to	operate	with	a	non-National	Instruments	GPIB-
VXI	board,	such	as	the	HP1406,	you	need	to	add	this	device	to	your
system	manually	in	MAX.	You	can	do	this	by	right-clicking	on	Devices
and	Interfaces	in	the	configuration	tree	and	selecting	Create	New....	In
the	wizard,	follow	the	instructions	for	entering	the	GPIB	address	(primary
and	secondary),	VXI	logical	address,	GPIB	controller	number	(which
GPIB	plug-in	board	the	GPIB-VXI/C	is	connected	to),	and	the	GPIB-VXI
number.	The	GPIB-VXI	board	number	should	be	unique	in	your	system.
You	should	also	make	sure	that	the	appropriate	GPIB-VXI	module	for
VISA	is	installed	in	your	system.	Contact	the	vendor	of	your	GPIB-VXI
controller	for	more	information.

Configure	NI-VISA	to	operate	with	a	National	Instruments
GPIB-VXI/C
By	default,	the	National	Instruments	GPIB-VXI/C	is	configured	for	primary
address	1,	secondary	address	0.	NI-VISA	automatically	detects	it	at	this
location.	To	use	the	GPIB-VXI/C	with	a	different	GPIB	address,	you	need
to	add	this	device	to	your	system	manually	in	MAX.	You	can	do	this	by
right-clicking	on	Devices	and	Interfaces	in	the	configuration	tree	and
selecting	Create	New....	In	the	wizard,	follow	the	instructions	for	entering
the	GPIB	address	(primary	and	secondary),	VXI	logical	address,	GPIB
controller	number	(which	GPIB	plug	in	board	the	GPIB-VXI/C	is
connected	to),	and	the	GPIB-VXI	number.	The	GPIB-VXI	board	number
should	be	unique	in	your	system.
If	you	have	multiple	GPIB-VXI	controllers	in	your	system,	you	need	to
configure	only	the	ones	that	are	not	at	the	default	GPIB	address	of
primary	address	1,	secondary	address	0.

Configure	NI-VISA	to	see	multiple	GPIB-VXI/C	boards
By	default,	the	National	Instruments	GPIB-VXI/C	is	configured	for	primary
address	1,	secondary	address	0.	NI-VISA	automatically	detects	it	at	this
location.	To	use	the	GPIB-VXI/C	with	a	different	GPIB	address,	you	need
to	add	this	device	to	your	system	manually	in	MAX.	You	can	do	this	by
right-clicking	on	Devices	and	Interfaces	in	the	configuration	tree	and
selecting	Create	New....	In	the	wizard,	follow	the	instructions	for	entering
the	GPIB	address	(primary	and	secondary),	VXI	logical	address,	GPIB
controller	number	(which	GPIB	plug-in	board	the	GPIB-VXI/C	is
connected	to),	and	the	GPIB-VXI	number.	The	GPIB-VXI	board	number
should	be	unique	in	your	system.
If	you	have	multiple	GPIB-VXI	controllers	in	your	system,	you	need	to
configure	only	the	ones	that	are	not	at	the	default	GPIB	address	of
primary	address	1,	secondary	address	0.

Use	VISAIC/VIC
You	can	launch	VISAIC	from	the	Start»Programs»National
Instruments»VISA	menu.	You	can	launch	VIC	from	the
Start»Programs»National	Instruments»VXI»NI-VXI	API	menu.

Note		The	VIC	utility	is	not	part	of	the	basic	NI-VXI	installation.	If	you	want	to	use	VIC,	run	the
NI-VXI	installer	and	select	a	"custom"	installation	instead	of	"typical."	In	the	Select	Features
dialog	box,	enable	the	NI-VXI	API	Development	option	and	continue	as	prompted.	After	you
reboot,	VIC	is	ready	for	use.

You	can	use	these	two	programs	to	communicate	with	your	devices
interactively.	You	can	use	VISAIC	to	open	a	session	to	a	VXI,	GPIB,	PXI,
TCP/IP,	or	serial	device.	Once	you	open	a	session	to	the	device,	you	can
send	and	receive	messages,	view	device	attributes,	and—if	it	is	a	VXI
device—directly	access	the	device's	memory	and	registers.
VIC	uses	NI-VXI	API	functions	to	access	the	VXI	bus.	You	can	send	and
receive	word	serial	messages	using	the	WSwrt	and	WSrd	functions,
access	device	registers	using	VXIinReg	and	VXIoutReg,	and	directly
access	VXI	memory	space	using	VXIin	and	VXIout.
Both	of	these	programs	serve	not	only	to	establish	initial	communication
with	your	devices,	but	also	to	verify	that	the	NI-VISA	and	NI-VXI	API
libraries	are	correctly	installed	and	functioning.	If	you	cannot	access	a
device	with	these	utilities,	chances	are	you	cannot	access	it	from	your
application.	Once	you	determine	how	to	access	a	device	with	VISAIC	or
VIC,	you	can	use	those	same	functions	in	your	program.

Determine	what	version	of	software	I	have	installed
In	MAX,	select	System	Information	from	the	Help	menu.	Click	on	the
System	tab	to	display	version	information	on	currently	installed	National
Instruments	components	including	NI-VISA,	NI-VXI,	and	T&M	utilities.
You	can	also	expand	the	Software	category	underneath	My	System	in
MAX	and	select	a	component	to	view	its	version	in	the	right	pane	of	MAX.
From	VISAIC,	select	the	About...	option	from	the	Help	menu.	This	shows
the	version	of	NI-VISA	that	you	are	using,	and	also	what	version	of	the
VISA	specification	it	conforms	to.
In	addition,	all	of	the	32-bit	driver	components	have	version	resources.
Under	Windows	Explorer,	you	can	right-click	any	component	and	select
the	Properties	option.	This	displays	a	property	sheet	with	a	Version	tab.
This	tab	has	version	information	about	the	software	and	particular
components.

You	can	also	run	the	NI-VXI	API	utility	program	VIC	and	type	ver	at	the
prompt.	The	utility	displays	the	versions	of	VIC	and	NI-VXI,	and	the	latest
board	revision	that	this	NI-VXI	driver	supports.

General	Programming	Issues
Handle	VXI	Interrupts	(signals,	triggers,	and	so	on)	using	NI-VISA	or	the
NI-VXI	API
Communicate	with	register-based	devices	in	NI-VISA	or	the	NI-VXI	API
Communicate	with	message-based	devices	in	NI-VISA	or	the	NI-VXI	API
Convert	a	GPIB-VXI/C	program	from	NI-488.2	to	NI-VISA
Program	a	GPIB-VXI/C	with	VISA
Move	a	large	block	of	data	in	NI-VISA	or	the	NI-VXI	API
Transfer	data	using	VME64
Debug	a	VXI	program
Write	a	VXI	program	in	C
Write	a	VXI	program	in	LabVIEW
Write	a	VXI	program	in	Visual	Basic

Handle	VXI	Interrupts	(signals,	triggers,	and	so	on)	using
NI-VISA	or	the	NI-VXI	API
NI-VISA
NI-VISA	provides	two	mechanisms	to	allow	for	flexible	event	handling:
queuing	and	callbacks.	The	most	common	way	to	handle	events	is	with
the	event	queue.	After	opening	a	VISA	session	with	viOpen(),	you	can
enable	the	queue	by	calling	viEnableEvent()	and	specifying	VI_QUEUE
as	the	mechanism.	Later,	you	call	viWaitOnEvent()	to	wait	for	and
receive	an	event	from	the	device	associated	with	that	session.	If	you
prefer	callbacks,	first	specify	a	callback	handler	with	viInstallHandler()
and	then	call	viEnableEvent()	with	VI_HNDLR	as	the	mechanism.	The
callback	handler	is	invoked	whenever	the	specified	event	type	is
received.
The	available	event	types	for	the	VXI	interface	include:

VI_EVENT_VXI_SIGP—for	signals	or	16-bit	interrupts	from	VXI
devices
VI_EVENT_VXI_VME_INTR—for	8-bit,	16-bit,	or	32-bit
interrupts	from	VXI	or	VME	devices
VI_EVENT_TRIG—for	sensing	triggers	from	VXI	devices

Most	VXI	devices	generate	16-bit	interrupts,	so	you	can	use	either
VI_EVENT_VXI_SIGP	or	VI_EVENT_VXI_VME_INTR—these	are
functionally	equivalent.	If	a	VXI	device	generates	triggers,	you	must	first
specify	in	VI_ATTR_TRIG_ID	the	TTL	or	ECL	trigger	line	to	sense
before	calling	viEnableEvent().

NI-VXI	API
Note		National	Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop
your	applications.

The	most	common	way	to	handle	asynchronous	signals	in	the	NI-VXI	API
is	to	use	callback	functions.	These	functions	are	invoked	whenever	a
specified	asynchronous	signal	is	received.	After	initializing	the	library	with
InitVXIlibrary(),	you	can	set	up	a	callback	function	using	one	of	the
following	functions:

SetVXIintHandler()—to	handle	VXI	interrupts
SetSignalHandler()—to	handle	VXI	signals
SetTrigHandler()—to	handle	VXI	triggers

Then	you	must	also	enable	the	specific	signal	you	are	trying	to	detect
using	the	following	functions:

EnableVXIint()—to	enable	VXI	interrupt	lines
EnableSignalInt()—to	enable	VXI	signals
EnableTrigSense()—to	enable	triggers

VXI	interrupts	and	signals	also	require	that	you	perform	some	routing.
See	the	functions	RouteSignal()	and	RouteVXIint()	for	more	information.
You	should	also	look	at	the	interrupt	example	in	the	NIVXI	directory.
To	use	VXI	triggers,	read	National	Instruments	Technical	Note	40,
Triggering	with	NI-VXI.	You	can	find	this	document	on	the	National
Instruments	technical	support	resources	Web	pages.

Communicate	with	register-based	devices	in	NI-VISA	or	the
NI-VXI	API
Register-based	devices	are	required	to	implement	only	the	four	basic
VXIbus	configuration	registers,	but	most	of	these	devices	implement
additional	instrument-specific	registers.	There	is	no	standard
communication	protocol	for	controlling	register-based	devices.
Each	manufacturer	must	specify	the	pattern	of	register	accesses	that
controls	the	specific	functions	of	each	device.	Controllers	communicate
with	register-based	devices	through	register	reads	and	writes	in	exactly
the	same	way	controllers	communicate	with	VMEbus	devices.
We	have	written	examples	of	how	to	access	VXI/VME	address	space
directly	using	NI-VISA	or	the	NI-VXI	API.	(National	Instruments
recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop	your
application.)	The	VISA	register-level	communication	examples,
HighReg.c	and	LowReg.c,	are	in	your	vxipnp\win32\NIvisa\examples
directory.	The	NI-VXI	API	examples	are	called	VXIlow.c	and	VXIhigh.c.
These	files	are	in	the	NIVXI	directory	in	the	examples	folder.	VXIlow.c
shows	how	to	use	MapVXIAddress()	and	VXIpeek()/VXIpoke().
VXIhigh.c	uses	the	high-level	calls,	such	as	VXIin	and	VXIout.

Communicate	with	message-based	devices	in	NI-VISA	or
the	NI-VXI	API
Message-based	devices	implement	a	second	set	of	registers	in	addition
to	the	VXIbus	configuration	registers.	These	registers,	called	VXIbus
communication	registers,	are	located	within	the	64-byte	device
configuration	space.	Word	Serial	Protocol,	the	defined	communication
protocol	for	message-based	devices	that	is	similar	to	the	IEEE	488
protocol,	is	based	on	these	VXIbus	communication	registers.	All
message-based	devices,	regardless	of	manufacturer,	must	follow	the
same	procedure	when	using	Word	Serial	Protocol	for	communication.
You	can	communicate	with	your	VXI	message-based	devices	using	NI-
VISA	with	the	viRead()	and	viWrite()	functions.	Once	you	have	opened	a
session	to	the	message-based	device	that	you	want	to	communicate
with,	you	can	write	message	strings	to	it	using	viWrite()	and	read
messages	back	from	the	device	with	viRead().	There	is	an	example	of
how	to	do	message-based	communication	in	the	VISA	examples
directory	called	RdWrt.c.
You	can	also	use	the	NI-VXI	API	Word	Serial	functions.	(National
Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to
develop	your	application.)	Wswrt()	is	the	function	you	use	to	send	a
message	string	to	a	device	with	a	particular	logical	address.	Wsrd()	is	the
function	you	use	to	receive	a	message	from	a	device.	An	example	of	how
to	do	message-based	communication	with	the	NI-VXI	API	is	in	the
examples	folder	in	the	NI-VXI	directory.	Open	the	file	called	VXIws.c	in
Notepad.

Convert	a	GPIB-VXI/C	program	from	NI-488.2	to	NI-VISA
For	controlling	message-based	VXI	devices	through	a	GPIB-VXI,	the
biggest	difference	between	a	program	using	NI-488	and	one	using	NI-
VISA	is	in	the	calls	made	at	the	beginning	and	the	end.	For	register-
based	devices,	the	differences	are	more	significant.	This	topic	first
discusses	the	basic	changes	common	to	both	types	of	devices,	then
discusses	some	of	the	changes	required	for	register-based	programming.
For	message-based	programming,	an	NI-488	program	would	typically	call
ibdev()	with	the	VXI	device's	primary	and	secondary	GPIB	addresses	to
get	a	handle	to	the	specific	device.	In	NI-VISA,	a	program	calls	viOpen()
with	the	VXI	device's	logical	address	(which	is	a	more	natural	address
because	the	device	is	VXI)	to	get	a	handle	to	it.	The	calls	to	read	and
write	blocks	of	data,	as	well	as	other	IEEE	488	communications	(such	as
reading	status	bytes	and	clearing	buffers),	have	a	one-to-one	mapping
between	NI-488	and	NI-VISA.	One	difference	to	be	aware	of	is	that	when
waiting	for	service	requests,	a	VISA	application	must	first	be	enabled	for
that	event	by	using	viEnableEvent().	At	the	end	of	the	application,	use
viClose()	instead	of	ibonl	to	close	the	device	handle.
Register-based	programming	does	not	have	a	straightforward	mapping.
Because	register	accesses	using	the	GPIB-VXI	involve	sending	requests
to	the	controller	itself	(using	the	local	command	set),	NI-488	programs
would	use	ibdev()	with	the	GPIB-VXI	controller's	primary	and	secondary
GPIB	addresses.	In	NI-VISA,	you	call	viOpen()	with	the	VXI	device's
logical	address—this	is	the	same	for	both	message-based	and	register-
based	devices	and	is	a	more	natural	and	intuitive	API—and	VISA	handles
sending	the	necessary	messages	to	the	controller.	For	programming	the
device,	the	following	NI-488	messages	and	NI-VISA	operations	are
roughly	equivalent:
NI-488 NI-VISA
"Laddrs?"	or	"DLAD?" viFindRsrc()
"RMentry?"	or	"DINF?" viGetAttribute()
"Cmdr?" viGetAttribute()	with	VI_ATTR_CMDR_LA
"LaSaddr?" viGetAttribute()	with	VI_ATTR_GPIB_SECONDARY_ADDR
"Primary?" viGetAttribute()	with	VI_ATTR_GPIB_PRIMARY_ADDR

"WREG"	or	"A16" viOut16()	with	VI_A16_SPACE
"RREG?"	or	"A16?" viIn16()	with	VI_A16_SPACE
"A24" viOut16()	with	VI_A24_SPACE
"A24?" viIn16()	with	VI_A24_SPACE
"SrcTrig" viAssertTrigger()

Notice	that	with	the	INSTR	register	access	operations	viOut16()	and
viIn16(),	you	pass	a	device-relative	offset	in	the	specified	address	space.
This	is	different	from	the	GPIB-VXI's	local	command	set,	which	accepts
absolute	addresses.	If	your	application	currently	uses	absolute
addressing	and	you	do	not	want	to	convert	to	device-relative	offsets,	you
may	consider	the	MEMACC	resource,	which	accepts	absolute
addressing.	You	can	use	the	operations	viOut8()	and	viIn8()	to	perform
8-bit	accesses,	which	is	not	a	feature	supported	by	the	local	command
set.	VISA	also	defines	32-bit	operations	and	accesses	to	A32	space,	but
because	these	are	not	implemented	by	the	GPIB-VXI	itself,	they	return
errors.
If	you	have	used	the	DMAmove	code	instrument,	you	can	now	use	the
viMoveInxx()	and	viMoveOutxx()	operations	instead.	They	make	use	of
the	GPIB-VXI's	DMA	functionality,	but	require	only	a	single	operation	call,
instead	of	the	multiple	calls	required	to	send	the	command	and	data
blocks	and	then	poll	waiting	for	the	operation	to	complete.	Using	VISA	to
move	blocks	of	data	also	means	that	you	no	longer	need	to	load	the
DMAmove	code	instrument,	as	NI-VISA	automatically	downloads	a
separate	code	instrument	to	handle	these	and	other	operations.
In	summary,	using	NI-VISA	to	program	VXI	devices	controlled	by	a	GPIB-
VXI	is	no	different	than	if	they	are	controlled	with	a	native	VXI	controller
such	as	an	external	controller	or	the	VXIpc	series.	Although	porting	the
code	from	NI-488	to	NI-VISA	is	not	simple	in	the	case	of	register-based
programming,	the	easier	API	and	the	compatibility	with	native	VXI
controllers	should	be	worth	the	change.

Convert	an	NI-VXI	API	program	to	NI-VISA
For	many	applications	controlling	VXI	devices,	the	biggest	difference
between	a	program	using	the	NI-VXI	API	and	one	using	NI-VISA	is	in	the
calls	made	at	the	beginning	and	the	end.	The	most	significant	differences
between	the	two	APIs	affect	programs	that	route	and	handle	events	such
as	VXI	triggers,	interrupts,	and	signals.	This	topic	first	discusses	the
basic	changes	common	to	any	NI-VXI	API	program,	then	discusses	some
of	the	specifics	for	register-based	and	event-handling	programs.
One	good	resource	for	converting	NI-VXI	API	programs	to	NI-VISA	is	the
NI-VXI	help,	which	includes	a	section	about	each	group	of	VXI
operations,	sorted	by	functionality.	(For	example,	one	section	discusses
high-level	register-based	programming.)	At	the	beginning	of	each	group
overview	is	a	table	listing	the	NI-VXI	API	and	NI-VISA	functions
associated	with	that	group's	operations.	You	can	use	the	table	to	match
any	NI-VXI	API	function	with	its	NI-VISA	equivalent.

Starting	Your	Application
Typically,	an	NI-VXI	API	program	calls	InitVXIlibrary()	to	begin	the
program,	and	then	perhaps	FindDevLA()	to	get	the	logical	address	of	a
specific	device	to	begin	communication.	In	NI-VISA,	a	program	calls
viOpenDefaultRM()	to	initialize	NI-VISA,	then	viFindRsrc()	to	find	the
device	and	viOpen()	to	get	a	handle	to	it.

Performing	VXI	I/O
For	a	message-based	VXI	device,	the	calls	to	read	and	write	blocks	of
data,	as	well	as	other	message-based	communications,	have	a	simple
mapping	between	NI-VXI	and	NI-VISA:	WSwrt()	becomes	viWrite(),
WSrd()	becomes	viRead(),	etc.	For	Word	Serial	Servant	functionality,
use	the	SERVANT	resource	in	NI-VISA.
Likewise,	register-based	I/O	is	performed	using	NI-VISA	functions	that
are	very	similar	to	their	NI-VXI	API	counterparts:	viInX()	instead	of
VXIin(),	viMoveX()	instead	of	VXImove(),	etc.	In	general,	NI-VISA
attributes	control	access	parameters	from	the	NI-VXI	API.	Note	also	that
a	VISA	session	to	a	given	device	provides	automatic	offsets	and	bounds
checking:	If	you	require	absolute	addressing,	use	a	session	to	the	VISA
MEMACC	resource.	Low-level	register-based	I/O	operations	such	as
MapVXIAddress()	and	VXIpeek()	are	also	provided	in	VISA,	with
corresponding	functions	like	viMapAddress()	and	viPeekX().	In	NI-VISA,
only	one	mapped	region	is	allowed	per	session;	open	multiple	sessions
to	a	given	device	to	map	multiple	regions	for	low-level	access.

Asserting	and	Handling	Events
NI-VISA	provides	operations	such	as	viAssertIntrSignal(),
viAssertTrigger(),	etc.	to	support	the	same	functionality	offered	by
AssertVXIint(),	SrcTrig(),	etc.	in	the	NI-VXI	API.	These	functions	may
use	a	VISA	attribute	to	replace	a	feature	provided	by	a	parameter	of	the
corresponding	NI-VXI	API	operation.
The	difference	between	the	NI-VISA	API	and	the	NI-VXI	API	is	most
noticeable	when	programming	to	handle	events	such	as	VXI	interrupts,
signals,	and	triggers.	The	functions	to	enable	and	disable	events	are
quite	similar:	NI-VISA	provides	viEnableEvent()	and	viDisableEvent()	to
correspond	to	the	NI-VXI	APIs	proliferation	of	Enable...()/	Disable()
functions	such	as	EnableSignalInt(),	etc.
You	can	use	both	APIs	to	receive	events	asynchronously	with	a	handler
(also	known	as	a	callback)	or	to	put	the	event	into	a	queue.	In	NI-VISA,
viInstallHandler()	and	the	VI_HNDLR	mechanism	for	viEnableEvent()
indicate	that	a	callback	should	be	used,	versus	VI_QUEUE	for	queued
events.	This	corresponds	to	the	NI-VXI	API	list	of	Set...Handler()
functions	such	as	SetVXIintHandler(),	etc.,	and	the	RouteSignal()
function,	which	allows	signals	to	be	routed	to	a	queue.	Retrieving	events
from	a	queue	is	very	similar:	viWaitOnEvent()	replaces	WaitForSignal()
and	related	functions.
You	can	also	use	both	APIs	to	handle	VXI	interrupts	and	signals	together,
with	NI-VISA	providing	the	VI_EVENT_VXI_SIGP	event	type	(which
combines	interrupts	and	signals)	and	NI-VXI	providing	the	RouteVXIint()
operation.

Closing	Your	Application
At	the	end	of	the	application,	use	viClose()	to	close	the	handle	to	device,
and	viClose()	again	on	the	default	resource	manager	session	to	shut
down	NI-VISA,	instead	of	CloseVXIlibrary().
In	summary,	using	NI-VISA	instead	of	the	NI-VXI	API	to	control	VXI
devices	will	seem	very	natural	for	most	applications.	Although	porting	the
code	from	NI-VXI	to	NI-VISA	is	not	always	completely	straightforward,	the
easier	and	more	powerful	API	and	VISA's	ability	to	provide	compatibility
across	interfaces	should	be	worth	the	change.

Note		Some	functionality,	such	as	48-bit	Extended	Word	Serial	protocol	commands	and	SEMI-
SYNC	triggers,	is	available	only	in	the	NI-VXI	API.	If	you	require	this	functionality	in	your	VISA
program,	contact	National	Instruments.	We	would	like	to	hear	more	about	your	application	and
help	you	find	a	VISA-oriented	solution.

Program	a	GPIB-VXI/C	with	NI-VISA
You	program	a	GPIB-VXI/C	using	the	same	function	calls	you	would	use
to	program	any	instrument	in	NI-VISA.	You	can	perform	message-based
communication	using	viWrite()	and	viRead().	You	can	perform	register-
based	communication	using	viInX(),	viOutX(),	viMoveInX(),	and
viMoveOutX()	functions.	See	also	Communicate	with	message-based
devices	in	NI-VISA	or	the	NI-VXI	API	and	Using	NI-VISA.

Move	a	large	block	of	data	in	NI-VISA	or	the	NI-VXI	API
The	most	efficient	way	to	move	a	block	of	data	is	to	use	viMoveX()	in	NI-
VISA	or	VXImove()	in	the	NI-VXI	API.	(National	Instruments
recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop	your
application.)	You	can	find	an	example	of	how	to	use	these	functions	in
the	NI-VISA	and	NI-VXI	API	examples	directories.	The	NI-VISA	example
is	in	the	vxipnp\win32\Nivisa\examples	directory	and	is	called
HighReg.c.	The	NI-VXI	API	example	in	the	nivxi\win32\examples
directory	is	called	VXIblock.c.

Optimizing	Large	VXIbus	Transfers
For	best	performance,	keep	the	following	in	mind	when	using	viMove()
or	VXImove():

Make	sure	your	buffers	are	32-bit	aligned.
Transfer	32-bit	data	whenever	possible.
Use	VXI	block	access	privileges	to	significantly	improve
performance	to	devices	that	can	accept	block	transfers,	and
likewise	use	D64	access	privileges	for	devices	that	can	accept	the
VME64	64-bit	data	transfer	protocol.
To	optimize	move	performance	on	virtual	memory	systems	such	as
the	Windows	operating	system,	lock	the	user	buffer	in	memory
yourself	so	the	move	operation	does	not	need	to	lock	the	buffer.
To	optimize	move	performance	on	paged	memory	systems	such	as
the	Windows	operating	system,	use	a	contiguous	buffer	so	the
move	operation	does	not	need	to	build	a	scatter-gather	list	for	the
user	buffer.
Note		viMemAlloc()	or	VXImemAlloc()	returns	32-bit	aligned,	page-locked,	continuous
buffers	that	work	efficiently	with	the	move	operations.

Transfer	data	using	VME64
NI-VISA	supports	VME64	by	setting	the	appropriate	attribute
(VI_ATTR_SRC_ACCESS_PRIV	or	VI_ATTR_DEST_ACCESS_PRIV)
using	viSetAttribute().	Then	you	can	call	viMoveX()	to	transfer	the	data.

Note		National	Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop
your	applications.

You	can	do	a	VME64	block	transfer	using	the	NI-VXI	API	function
VXImove().	By	setting	bits	2	to	4	to	110	(for	a	nonprivileged	access;	for	a
privileged	access,	use	111),	VXImove()	issues	VME64	block	cycles	to
the	specified	address.	Only	certain	devices	can	accept	VME64	transfers.
You	should	check	the	specifications	of	a	particular	instrument	to	see	if	it
supports	VME64.
See	also	Move	a	large	block	of	data	in	NI-VISA	or	the	NI-VXI	API.

Debug	a	VXI	program
Perhaps	the	best	way	to	debug	a	VXI	program	is	using	the	NI	Spy	utility.
Launch	NI	Spy	and	configure	it	to	log	your	function	calls.	Now	when	you
run	your	program,	NI	Spy	logs	all	your	calls	to	NI-VISA,	the	NI-VXI	API,
or	NI-488.2.	It	highlights	any	functions	that	return	errors,	and	you	can
check	the	parameters	that	get	passed	into	any	of	these	functions.
If	a	device	is	not	behaving	the	way	you	would	expect	it	to,	you	can	debug
many	problems	using	VISAIC	or	VIC.	You	can	use	these	utilities	to
interact	with	your	devices	without	writing	a	program.	This	way	you	can
make	sure	your	techniques	for	communicating	with	a	device	are	sound
without	worrying	about	your	application	being	written	correctly.	Once	you
can	establish	communication,	you	can	use	the	same	calls	you	made	in
VISAIC	or	VIC	in	your	program.

Write	a	VXI	program	in	C
Using	instrument	drivers
Using	NI-VISA

Using	instrument	drivers	(in	C)
You	can	use	VXIplug&play	instrument	drivers	under	Windows	in	the
following	supported	C	compilers:	LabWindows/CVI,	Microsoft	Visual	C++,
and	Borland	C++.
The	distribution	disk	of	a	WIN	framework	instrument	driver	contains	the	C
source	code	files	(.C	and	.H),	a	function	panel	file	(.FP)	that	describes
the	graphical	panels	associated	with	the	instrument	driver,	a	DLL	file
(.DLL)	which	is	a	compiled	version	of	the	driver,	and	a	Windows	help	file
(.HLP).
To	use	the	functions	of	the	instrument	driver,	you	must	include	the	.H	file
in	your	C	code.	Unless	you	are	using	LabWindows/CVI,	you	need	to	link
in	the	compiler-specific	import	library	(.LIB)	file	to	your	project	and	copy
the	.DLL	file	to	the	Windows/System	or	WinNT/System	directory.
Your	program's	first	task	is	to	initialize	the	connection	to	the	instrument	by
calling	the	INITIALIZE	function.	One	of	the	outputs	of	the	INITIALIZE
function	is	an	Instrument	ID,	which	is	essentially	a	handle	to	the
instrument.	Once	you	have	initialized	your	instrument	connection,	you
can	then	either	use	the	high-level	APPLICATION	functions,	which
perform	complete	measurement	operations,	or	the	lower-level
COMPONENT	functions,	which	give	you	more	granularity	in	controlling
the	instrument's	operation.	At	the	end	of	your	program,	you	should	use
the	CLOSE	function	to	close	the	connection	to	the	instrument.
An	important	feature	to	take	advantage	of	when	using	your	VXIplug&play
instrument	driver	is	the	online	help	included	with	the	driver.	The	help
describes	each	component	of	the	driver	and	shows	a	hierarchical	outline
of	its	components.

Using	NI-VISA	(in	C)
NI-VISA	supports	the	following	C	compilers	under	Windows:
LabWindows/CVI,	Microsoft	Visual	C++,	and	Borland	C++.	Reference	the
appropriate	examples	for	each	compiler.	The	examples	are	in	the
vxipnp\win95\NIvisa\examples	or	vxipnp\winNT\NIvisa\examples\
directory.	The	basic	flow	of	a	NI-VISA	program	is	the	same	under	any
compiler.

The	first	function	you	should	call	is	viOpenDefaultRM().	This	initializes
NI-VISA	and	gives	you	a	handle	to	the	VISA	Resource	Manager	that	you
need	in	later	functions	calls.	To	access	an	instrument,	you	obtain	a
handle	to	it	using	viOpen().	You	then	can	set	up	any	asynchronous	event
handlers	that	your	program	may	need,	then	perform	your	accesses	to	all
your	instruments.	When	you	are	done,	you	should	call	viClose()	on	each
instrument	handle	and	the	Resource	Manager	handle.	Be	sure	to
#include	visa.h	so	that	all	your	NI-VISA	functions	are	declared.
Unless	you	are	using	LabWindows/CVI,	you	need	to	link	in	the	compiler-
specific	import	library	visa32.lib.	LabWindows/CVI	takes	care	of	this	step.

See	also	Communicate	with	message-based	devices	in	NI-VISA	or	the
NI-VXI	API.

Write	a	VXI	program	in	LabVIEW
Using	instrument	drivers
Using	NI-VISA

Using	instrument	drivers	(in	LabVIEW)
LabVIEW	can	use	both	GWIN	Framework	instrument	drivers	and	WIN
Framework	instrument	drivers.	If	you	have	a	GWIN	driver	for	your
instrument,	you	have	access	to	block	diagram	source	code	from	within
LabVIEW.	When	you	use	a	WIN	driver	in	LabVIEW,	the	connection	to	the
driver	is	accomplished	via	a	DLL	interface,	so	you	do	not	have	block
diagram	source	code.	But	you	do	have	native	LabVIEW	VIs,	complete
with	front	panels,	icons,	help	information,	and	block	diagrams	(that	call
the	DLL)	for	each	function	of	the	driver.
The	first	task	your	program	should	do	is	to	initialize	the	connection	to	the
instrument	by	calling	the	INITIALIZE	function.	One	of	the	outputs	of	the
INITIALIZE	function	is	an	Instrument	ID,	which	is	essentially	a	handle	to
the	instrument.	Once	you	have	initialized	your	instrument	connection,	you
can	then	use	either	the	high-level	APPLICATION	Functions,	which
perform	complete	measurement	operations,	or	the	lower-level
COMPONENT	functions,	which	give	you	more	granularity	in	controlling
the	instrument's	operation.	At	the	end	of	your	program,	you	should	use
the	CLOSE	function	to	close	the	connection	to	the	instrument.
To	use	a	GWIN	instrument	driver	in	LabVIEW,	you	need	the	following
files	and	software:

LabVIEW	version	5.0	or	later	for	Windows
VISA32.DLL	version	2.01	or	later
instr_name.LLB
instr_name.HLP

The	instrument	driver	VIs	can	be	loaded	just	as	any	other	LabVIEW	VIs.
To	use	a	WIN	instrument	driver	in	LabVIEW,	you	need	the	following	files
and	software:

LabVIEW	version	5.0	or	later	for	Windows
VISA32.DLL	version	2.01	or	later
instr_name.DLL
instr_name.H
instr_name.HLP

instr_name.LLB
WIN	drivers	are	written	in	C	using	LabWindows/CVI.	So,	before	you	can
use	a	WIN	instrument	driver	in	LabVIEW,	you	must	use	LabVIEW	to
convert	the	driver	into	LabVIEW	VIs	automatically.	Launch	LabVIEW	and
select	File»Convert	CVI	FP	File...	(LabVIEW	5.x)	or
Tools»Instrumentation»Import	CVI	Instrument	Driver	(LabVIEW	6.x).
You	are	prompted	for	both	the	.FP	and	.DLL	files.	Once	you	have
converted	a	WIN	instrument	driver	into	a	LabVIEW	library	(.LLB	file),	you
can	use	the	VIs	like	any	other	LabVIEW	VIs.
Take	advantage	of	the	online	help	when	using	your	VXIplug&play
instrument	driver.	The	help	describes	each	component	of	the	driver	and
shows	a	hierarchical	outline	of	its	components.	When	using	LabVIEW,
you	can	use	the	standard	Windows	Help	system	to	access	the
instrument's	Windows	Help	file.

Using	NI-VISA	(in	LabVIEW)
Examples	of	VXI	programs	written	in	LabVIEW	using	NI-VISA	are	in	the
examples\instr\visa	directory.
The	first	VI	you	should	call	in	your	program	is	VISA	Open.	This	VI	opens
a	communication	channel	with	an	instrument.	This	communication
channel	is	known	as	a	session	and	is	used	throughout	the	rest	of	your
VISA	program	to	keep	the	unique	communication	and	attribute	settings	of
that	instrument.	You	need	to	call	the	VISA	Open	VI	for	each	instrument
you	want	to	communicate	with.	Once	the	sessions	are	open,	you	can	set
up	any	asynchronous	event	handlers	that	your	program	may	need,	and
then	perform	your	accesses	to	your	instruments.	When	you	are	done,	call
the	VISA	Close	VI	on	each	session	and	event	object.
You	can	use	the	Simple	Error	Handler	VI	to	perform	error	checking	and
display	errors	when	they	occur.

Write	a	VXI	program	in	Visual	Basic
Using	NI-VISA

Using	NI-VISA	(in	Visual	Basic)
You	must	include	the	VISA32.BAS	module	in	your	Microsoft	Visual	Basic
(version	4.0	or	higher)	application	project	file.	This	module	is	in	the
vxipnp\win95\include	or	vxipnp\winNT\include	directory	and	contains
the	NI-VISA	function	prototypes	for	interfacing	with	the	dynamic	link
library	VISA32.DLL	and	VISA-specific	constant	definitions.
The	VXI	Visual	Basic	examples	using	VISA	are	in	the	ni-
vxi\win32\vb\examples	directory.	You	can	use	them	as	a	reference	to	get
started	with	your	program.

The	first	function	you	should	call	is	viOpenDefaultRM().	This	initializes
NI-VISA	and	gives	you	a	handle	to	the	VISA	Resource	Manager	that	you
need	in	later	function	calls.	After	opening	a	session	to	the	VISA	Resource
Manager,	you	can	call	viFindRsrc()	to	find	out	what	instruments	are
available	to	open	a	session	to.	To	access	an	instrument,	open	a	session
to	it	using	viOpen().	Once	the	sessions	to	the	instruments	are	open,	you
can	set	up	any	asynchronous	event	handlers	that	your	program	may
need,	and	then	perform	your	accesses	to	all	your	instruments.	When	you
are	done,	call	viClose()	on	each	instrument	handle	and	on	the	Resource
Manager	handle.
If	you	are	writing	an	instrument	driver,	you	should	also	include	the
module	VPPTYPE.BAS	in	your	application	project	file.	This	file	is	the
VXIplug&play	instrument	driver	header	file	and	is	in	the
vxipnp\win95\include	or	vxipnp\winNT\include	directory.

Why	Can't	I
Configuration	Questions
Programming	Questions
Troubleshooting

Configuration	Questions
See	my	GPIB	devices
See	my	Serial	devices
See	my	VXI	devices
Communicate	with	my	GPIB-VXI/VXI	devices?
Have	the	Resource	Manager	configure	my	VME	devices
Share	more	than	8	MB	of	memory	in	A24	space
Use	HP-VISA	and	NI-VISA	on	the	same	system

See	my	GPIB	devices
There	are	several	reasons	why	you	may	not	be	able	to	see	your	GPIB
devices.	First	of	all,	you	must	have	NI-488.2	correctly	installed	on	your
system.	NI-VISA	attempts	to	find	all	devices	attached	to	the	system.
Some	devices	cannot	be	detected	dynamically	(particularly	devices	that
do	not	respond	to	the	find	all	listeners	GPIB	command).

See	my	Serial	devices
There	are	several	reasons	why	you	may	not	be	able	to	see	your	serial
devices.	First	of	all,	you	must	have	NI-VISA	correctly	installed	on	your
system.	NI-VISA	attempts	to	find	all	serial	ports	attached	to	the	system.
Ports	are	listed	even	if	a	device	is	not	attached.	Some	ports	cannot	be
detected	dynamically	(particularly	parallel	ports).	To	allow	NI-VISA	to	see
these	devices,	you	must	statically	add	them	to	the	configuration.	For
serial	ports	on	LabVIEW	RT	systems,	you	also	need	NI-Serial	for
LabVIEW	RT	installed.

See	my	VXI	devices
If	you	are	using	a	GPIB-VXI	to	access	your	VXI	chassis,	see	How	do	I
communicate	with	my	GPIB-VXI/VXI	devices.
If	you	are	using	an	external	or	embedded	VXI	controller	to	access	the
VXI	bus,	you	must	have	NI-VXI	correctly	installed	on	your	system.	The
configuration	utility	uses	the	NI-VXI	Resman	utility	to	detect	and
configure	your	VXI	devices.	If	Resman	reports	an	error,	your	system	may
not	be	configured	correctly.
If	you	have	a	device	that	should	be	detected,	make	sure	that	the	chassis
is	turned	on	and	that	the	instrument	appears	to	be	functioning.	Check	the
MAX	configuration	view	for	warning	or	error	messages.	Resource
conflicts	between	devices	can	cause	Resman	to	fail.	If	you	are	using
MXI-2	or	the	VXI-8340	series,	make	sure	that	the	cable	is	securely
attached	on	all	ends,	and	(for	MXI-2)	that	the	correct	end	of	the	cable	is
plugged	into	your	chassis.	Verify	this	by	checking	that	the	label	on	the
MXI-2	cable	is	closest	to	the	MXI	bus	system	controller.
Also,	Resman	cannot	detect	VME	devices.	If	your	system	contains	VME
devices,	you	need	to	add	these	to	the	system	manually.

Have	the	Resource	Manager	configure	my	VME	devices
The	Resource	Manager	configures	the	system	as	defined	by	the	VXI
specification	by	reading	and	writing	the	VXI-defined	configuration
registers.	VME	devices	do	not	have	these	configuration	registers,	so
Resource	Manager	does	not	know	how	to	configure	them.
To	configure	your	system	correctly	to	work	with	VME	devices,	you	need
to	add	them	to	the	system	manually.	Your	devices	are	then	visible	to	NI-
VISA,	the	NI-VXI	API,	and	our	utilities.	This	also	prevents	resource
conflicts	between	VXI	devices	and	your	VME	devices,	allows	the	utility	to
notify	you	of	potential	conflicts,	and	correctly	configures	any	VME-MXI-2
extenders.

Communicate	with	my	GPIB-VXI/VXI	devices?
If	you	are	using	a	GPIB-VXI	to	access	your	VXI	chassis,	you	must	have
NI-VISA	correctly	installed	on	your	system.	NI-VISA	cannot	automatically
find	GPIB-VXI	boards	that	are	not	set	to	GPIB	primary	address	1	and
GPIB	secondary	address	0.	If	you	have	a	GPIB-VXI	board	with	GPIB
settings	other	than	these,	you	must	manually	add	it	to	the	system.

Share	more	than	8	MB	of	memory	in	A24	space
The	VXI	specification	allows	any	particular	device	to	request	no	more
than	half	of	the	address	space	in	which	its	memory	resides.	Because	A24
space	is	only	16	MB,	the	most	memory	any	device	can	request	from
Resource	Manager	is	8	MB.

Use	HP-VISA	and	NI-VISA	on	the	same	system
HP-VISA	and	NI-VISA	define	the	same	API,	but	the	implementation	of
each	VISA	function	is	different.	Having	both	implementations	of	VISA	on
the	same	system	would	confuse	your	application.	For	example,	when	you
call	viOpen	from	LabVIEW,	LabVIEW	accesses	whichever	VISA	driver
that	it	finds.

Programming	Questions
Call	MapVXIAddress()	or	viMapAddress()
Call	VXImemAlloc()	or	viMemAlloc()

Call	MapVXIAddress()	or	viMapAddress()
Note		National	Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop
your	applications.

MapVXIAddress	or	viMapAddress	can	fail	if	the	size	of	your	user
window	is	set	to	zero	or	is	less	than	the	size	of	the	window	you	are	trying
to	map.	You	can	check	the	size	of	your	user	window	by	right-clicking	on
your	external	controller	or	VXIpc	embedded	controller	and	selecting
Hardware	Configuration.	The	size	of	this	window	should	exceed	the
sum	of	the	sizes	of	the	windows	you	are	trying	to	map.

Check	the	sample	code	that	illustrates	how	to	use	MapVXIAddress()
and	viMapAddress().	The	NI-VISA	sample	code	is	in	the
vxipnp\win32\Nivisa\examples	directory	and	is	called	LowReg.c.	The	NI-
VXI	API	code,	VXIlow.c,	is	in	the	nivxi\win32\msc(borlandc)\examples\
directory.

Call	VXImemAlloc()	or	viMemAlloc()
Note		National	Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to	develop
your	applications.

VXImemAlloc	or	viMemAlloc	fail	if	it	cannot	allocate	and	lock	down	the
amount	of	physical	memory	you	request	in	the	size	parameter.	If	you	are
using	shared	memory,	you	can	check	these	settings	by	right-clicking	on
your	external	controller	or	VXIpc	embedded	controller	and	selecting
Hardware	Configuration.	The	system	on	which	you	are	sharing	memory
must	not	be	set	to	A16	only.	You	can	share	system	memory	only	in	A24
or	A32	space.	The	amount	of	memory	you	are	sharing	should	be	set
large	enough	to	handle	all	the	memory	you	may	want	to	allocate.
The	amount	of	memory	that	you	are	sharing	must	be	greater	than	the
amount	you	are	trying	to	allocate	with	VXImemAlloc()	or	viMemAlloc().
You	must	also	reserve	an	amount	of	memory	equal	to	or	greater	than	the
amount	you	are	trying	to	allocate	by	setting	the	Reserve	physical
memory	field	in	the	Shared	Memory	page.
There	is	sample	code	that	shows	how	to	use	VXImemAlloc	and
viMemAlloc().	The	NI-VISA	sample	code	is	in	the
vxipnp\win32\Nivisa\examples	directory	and	is	called	ShareSys.c.	The
NI-VXI	API	code,	VXImem.c,	is	in	the
nivxi\win32\msc(borlandc)\examples\	directory.

Note		Not	all	controllers	support	shared	memory.	For	more	information	about	shared	memory
support,	refer	to	the	documentation	for	your	controller.

Troubleshooting
Device	Busy
Device	Disabled
Device	Missing	Functionality
Device	Offline
Device	OK
Device	State	Unknown
Device	Static

Device	Busy
This	device	is	busy,	and	VISA	cannot	communicate	with	it.	If	this	device
is	a	COMM	port,	it	may	be	in	use	with	a	modem,	a	mouse,	or	some	other
device.	You	may	want	to	disable	this	device	so	that	VISA	does	not	try	to
open	it	in	the	future.
If	you	think	this	device	should	not	be	busy,	try	closing	all	applications	or
restarting	Windows	to	kill	any	applications	that	may	be	using	the	device.

Device	Disabled
MAX	could	not	determine	the	state	of	this	device	because	it	has	been
disabled.	Disabled	devices	are	not	visible	from	VISA	or	your	application.
If	the	device	is	present	in	your	system,	and	you	want	to	use	it,	you	can
re-enable	it	by	checking	the	Device	enabled	box	in	the	properties	dialog.

Device	Missing	Functionality
This	device	may	be	missing	some	functionality.	You	may	not	experience
any	problems	using	this	device	if	your	application	does	not	require	the
unavailable	functionality.

Device	Offline
This	device	has	failed	its	self-test	and	has	been	forced	offline.	You	can	try
resetting	the	device	and	re-executing	Resource	Manager.	If	that	does	not
help,	contact	the	device	vendor	to	find	out	more	information.

Device	OK
This	device	is	working	properly.	You	should	be	able	to	communicate	with
it.

Device	State	Unknown
Sometimes	VISA	cannot	determine	the	state	of	a	device.	Devices	that
cannot	be	found	dynamically	or	devices	that	do	not	implement	a	protocol
for	determining	status	would	fall	into	this	category.

Device	Static
MAX	could	not	determine	the	state	of	this	device	because	you	statically
added	it	to	your	system.	VISA	cannot	dynamically	detect	static	devices,
and	thus	MAX	cannot	query	for	the	device	state.

Why	Would	I/When	Do	I
Use	NI-VISA	vs.	the	NI-VXI	API
Use	NI-VISA	vs.	HP/Agilent	VISA
Use	low-level	VXI	access	calls	(use	viMapAddress())
Use	high-level	VXI	access	calls
Use	viMove()	or	VXImove()
Turn	off	ibln	in	VISA
Not	auto	detect	GPIB-VXI/C	boards	in	VISA
Call	viClose()

Use	NI-VISA	vs.	the	NI-VXI	API
National	Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI
API,	to	develop	your	VXI/VME	applications.	Both	APIs	can	perform
message-based	communication	with	VXI	instruments,	do	high-	and	low-
level	communication	over	the	VXI	backplane,	perform	block	transfers,
and	handle	asynchronous	events.	However,	NI-VXI	(that	is,	the	software
package	that	ships	with	National	Instruments	controllers	and	includes
utilities	such	as	Measurement	&	Automation	Explorer	and	Resman)	is
optimized	for	use	through	NI-VISA.
If	you	are	using	GPIB	or	serial	instruments,	or	if	your	VXI	instruments	are
connected	via	a	GPIB-VXI/C,	you	probably	want	to	use	NI-VISA	because
the	API	is	interface	independent.	The	calls	you	use	to	send	messages	to
GPIB	instruments	are	the	same	as	those	used	to	send	messages	to	VXI
instruments.	NI-VISA	also	supports	asynchronous	I/O	operations,
whereas	the	NI-VXI	API	does	not.
The	NI-VXI	API	supports	certain	legacy	instruments	and	behaviors	that
NI-VISA	does	not	support,	such	as	RORA	interrupters	and	asynchronous
notification	of	bus	errors	(note	that	VISA	does	report	bus	errors	from
high-level	bus	access	functions).
You	can	use	both	interfaces	in	the	same	program,	though	it	is	not
recommended	unless	you	need	functionality	from	both	APIs.	You	should
not	try	to	handle	asynchronous	events	with	both	languages.	If	you	need
to	handle	asynchronous	events,	such	as	VXI	interrupts	or	triggers,	you
should	choose	one	API	and	use	that	for	all	asynchronous	operations.

Use	NI-VISA	vs.	HP/Agilent	VISA
Whether	you	use	NI-VISA	or	HP/Agilent	VISA	depends	on	the
manufacturer	of	your	GPIB	and	VXI	controllers.	The	difference	between
NI-VISA	and	HP/Agilent	VISA	is	in	the	interface	to	the	hardware.	If	you
are	using	National	Instruments	VXI	and	GPIB	controllers,	you	should	use
NI-VISA.	HP/Agilent	VISA	would	not	know	how	to	communicate	with	a
National	Instruments	board	such	as	an	external	controller,	for	example.
Conversely,	if	you	are	using	an	HP	GPIB	or	VXI	controller,	you	should
use	HP/Agilent	VISA.	You	cannot	use	a	GPIB	controller	board	and	a	VXI
controller	from	a	different	manufacturer	together	with	VISA.	The	API	for
HP/Agilent	VISA	and	NI-VISA	is	the	same,	however;	thus,	to	the
programmer	there	is	no	difference	when	writing	code	for	one	or	the	other.
You	may	use	National	Instruments	and	Hewlett-Packard	GPIB-VXI
controllers	with	either	implementation	of	VISA.	When	using	a	GPIB-VXI	in
your	system,	the	manufacturer	of	the	GPIB	controller	board	determines
which	VISA	you	should	use.

Use	low-level	VXI	access	calls	(use	viMapAddress())
Low-level	VXI	access	functions	provide	the	lowest	level	interface	to	the
hardware	and	result	in	the	best	peek/poke	performance,	but	are	not	as
easy	to	use	as	high-level	functions.	viMapAddress()	maps	a	window	in
your	virtual	address	space	to	a	portion	of	the	VXI	address	space.	You
then	have	direct	access	to	the	memory	on	your	backplane,	but	you	are
also	responsible	for	managing	the	context	of	that	window,	checking	for
bus	errors,	and	making	sure	you	don't	read/write	beyond	the	boundaries
of	your	window.
Many	people	use	low-level	calls	when	they	shouldn't.	If	an	area	of	your
VXI	address	space	is	not	time	critical,	do	not	map	a	window	to	it.	Instead,
communicate	with	those	devices	using	the	high-level	calls.	Also,	many
people	place	viPeekX()/viPokeX()	calls	in	a	loop	to	transfer	blocks	of
data.	This	is	usually	not	the	most	efficient	method	of	doing	block
transfers.	Instead,	use	the	block	transfer	function	viMoveX()	to	perform
this	task.
Should	you	choose	to	use	low-level	access	calls	in	your	program,	you
should	look	at	the	examples	National	Instruments	provides.

Use	high-level	VXI	access	calls
High-level	VXI	calls	are	the	easiest	way	to	establish	register-level
communication	with	VXI	devices.	You	should	use	high-level	calls
whenever	possible.	If	this	is	your	first	time	programming	in	VXI,	National
Instruments	recommends	starting	with	high-level	commands.	If	your
application	does	speed-critical	peeks	and	pokes,	you	may	want	to
consider	using	the	low-level	access	calls.

Use	viMove()	or	VXImove()
You	should	use	viMoveX()	(NI-VISA)	or	VXImove()	(NI-VXI	API)	if	you
are	transferring	large	blocks	of	data	across	the	VXI	backplane.	(National
Instruments	recommends	using	NI-VISA,	rather	than	the	NI-VXI	API,	to
develop	your	applications.)	viMoveX()	and	VXImove()	are	the	fastest
ways	to	transfer	a	block	of	data	because	they	take	advantage	of	many
features	in	the	driver	and	in	the	hardware	that	are	otherwise	unavailable.
Both	of	these	functions	can	transfer	data	from	contiguous	blocks	of
memory	and	from	FIFO	queues.
See	also	Move	a	large	block	of	data	in	NI-VISA	or	the	NI-VXI	API.

Turn	off	ibln	in	VISA
Certain	NI-VISA	calls	(such	as	viClear()	and	viAssertTrigger())	perform
an	extra	check	using	ibln()	to	confirm	device	presence.	To	further
optimize	the	performance	of	your	application,	you	can	disable	this	feature
in	MAX.
From	the	Tools	menu,	select	NI-VISA»VISA	Options	to	bring	up	options
you	can	configure	in	NI-VISA.

Not	auto	detect	GPIB-VXI/C	boards	in	VISA
If	you	have	a	device	at	PA1	SA0	that	is	not	a	GPIB-VXI	and	does	not
respond	to	*IDN?,	disable	auto	detection.
From	the	Tools	menu,	select	the	NI-VISA»VISA	Options	to	bring	up
options	you	can	configure	in	NI-VISA.

Call	viClose()
This	is	the	NI-VISA	termination	routine,	which	must	be	included	at	the
end	(or	abort)	of	any	application.	You	should	call	viClose()	on	any
instrument	handles	that	you	have	opened	once	you	are	done	accessing
that	instrument.	Calling	viClose()	on	the	Resource	Manager	handle
disables	interrupts	and	frees	dynamic	memory	allocated	for	the	internal
Resource	Manager	table	and	other	structures.	Although	you	attempt	to
perform	clean-up	operations,	failure	to	call	viClose()	on	the	Resource
Manager	handle	when	terminating	your	application	can	cause
unpredictable	and	undesirable	results.	If	your	application	can	be	aborted
from	some	operating	system	abort	routine,	be	certain	to	install	an
abort/close	routine	that	calls	viClose()	on	outstanding	handles.

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in

contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action
accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
The	Bluetooth®	word	mark	is	a	registered	trademark	owned	by	the
Bluetooth	SIG,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file
on	your	media,	or	ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL	INSTRUMENTS
PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR

CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR
APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	award-winning	National	Instruments
Web	site	at	ni.com	for	technical	support	and	professional	services:

Support—Technical	support	resources	at	ni.com/support	include
the	following:

Self-Help	Resources—For	answers	and	solutions,	visit
ni.com/support	for	software	drivers	and	updates,	a
searchable	KnowledgeBase,	product	manuals,	step-by-step
troubleshooting	wizards,	thousands	of	example	programs,
tutorials,	application	notes,	instrument	drivers,	and	so	on.
Registered	users	also	receive	access	to	the	NI	Discussion
Forums	at	ni.com/forums.	NI	Applications	Engineers	make
sure	every	question	submitted	online	receives	an	answer.
Standard	Service	Program	Membership—This	program
entitles	members	to	direct	access	to	NI	Applications
Engineers	via	phone	and	email	for	one-to-one	technical
support,	as	well	as	exclusive	access	to	on	demand	training
modules	via	the	Services	Resource	Center.	NI	offers
complementary	membership	for	a	full	year	after	purchase,
after	which	you	may	renew	to	continue	your	benefits.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_SRC)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)

Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

Branch	Offices
Office Telephone	Number
Australia 1800	300	800

Austria 43	662	457990-0

Belgium 32	(0)	2	757	0020

Brazil 55	11	3262	3599

Canada 800	433	3488

China 86	21	5050	9800

Czech	Republic 420	224	235	774

Denmark 45	45	76	26	00

Finland 358	(0)	9	725	72511

France 33	(0)	1	57	66	24	24

Germany 49	89	7413130

India 91	80	41190000

Israel 972	0	3	6393737

Italy 39	02	41309277

Japan 0120-527196	/	81	3	5472	2970

Korea 82	02	3451	3400

Lebanon 961	(0)	1	33	28	28

Malaysia 1800	887710

Mexico 01	800	010	0793

Netherlands 31	(0)	348	433	466

New	Zealand 0800	553	322

Norway 47	(0)	66	90	76	60

Poland 48	22	3390150

Portugal 351	210	311	210

Russia 7	495	783	6851

Singapore 1800	226	5886

Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197

Spain 34	91	640	0085

Sweden 46	(0)	8	587	895	00

Switzerland 41	56	2005151

Taiwan 886	02	2377	2222

Thailand 662	278	6777

Turkey 90	212	279	3031

United	Kingdom 44	(0)	1635	523545

United	States	(Corporate) 512	683	0100

	MAX Help for NI-VISA
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help Topics

	Glossary
	Getting Started with Your Help
	How is this help file organized?
	What should I do if I can't find the answer to my question here?
	How do I use the Troubleshooter?

	How do I...?
	General Topics
	Obtain specifications on my National Instruments hardware
	Obtain the latest National Instruments VISA and VXI software and bug fixes
	Obtain the latest National Instruments product information
	Access the National Instruments Product KnowledgeBase
	Debug a VXI problem
	Find out if my device has an instrument driver
	Find out more about programming in NI-DAQ
	Find out more about LabVIEW
	Find out more about LabWindows/CVI
	Find out more about GPIB

	Configuration
	Assign an alias to my VISA device
	Disable a VISA device
	Verify my system is working properly
	Install VXIplug&play software
	Configure NI-VISA to operate with an HP/Agilent GPIB-VXI board
	Configure NI-VISA to operate with a National Instruments GPIB-VXI/C
	Configure NI-VISA to see multiple GPIB-VIX/C boards
	Use VISAIC/VIC
	Determine what version of software I have installed

	General Programming Issues
	Handle VXI interrupts (signals, triggers, and so on) using NI-VISA or the NI-VXI API
	Communicate with register-based devices in NI-VISA or the NI-VXI API
	Communicate with message-based devices in NI-VISA or the NI-VXI API
	Convert a GPIB-VXI/C program from NI-488.2 to NI-VISA
	Convert an NI-VXI API program to NI-VISA
	Program a GPIB-VXI/C with NI-VISA
	Move a large block of data in NI-VISA or the NI-VXI API
	Transfer data using VME64
	Debug a VXI program
	Write a VXI program in C
	Using instrument drivers
	Using NI-VISA

	Write a VXI program in LabVIEW
	Using instrument drivers
	Using NI-VISA

	Write a VXI program in Visual Basic
	Using NI-VISA

	Why Can't I...?
	Configuration Questions
	See my GPIB devices
	See my Serial devices
	See my VXI devices
	Have the Resource Manager configure my VME devices
	Communicate with my GPIB-VXI/VXI devices
	Share more than 8 MB of memory in A24 space
	Use HP-VISA and NI-VISA on the same system

	Programming Questions
	Call MapVXIAddress() or viMapAddress()
	Call VXImemAlloc() or viMemAlloc()

	Troubleshooting
	Device Busy
	Device Disabled
	Device Missing Functionality
	Device Offline
	Device OK
	Device State Unknown
	Device Static

	Why Would I/When Do I...?
	Use NI-VISA vs. the NI-VXI API
	Use NI-VISA vs. HP/Agilent VISA
	Use low-level VXI access calls (use viMapAddress())
	Use high-level VXI access calls
	Use viMove() or VXImove()
	Turn off ibln in VISA
	Not auto detect GPIB-VXI/C boards in VISA
	Call viClose()

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

