
NI–TUNER	Reference	Help
August	2004	Edition,	Part	Number	370415C-01
This	help	file	provides	programming	support	for	NI–TUNER,	the	driver	that
communicates	with	the	National	Instruments	PXI-5600	RF	downconverter
module.	Intended	for	LabVIEW	and	CVI	programmers,	this	help	file	contains
functions	for	configuring,	opening	a	session	with,	and	closing	the	device.
To	navigate	this	help	file,	use	the	Contents	and	Index	tabs	to	the	left	of	this
window.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Conventions—formatting	and	typographical	conventions	in	this	help	file
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	the	documentation,	email	techpubs@ni.com
©	2001-2004	National	Instruments	Corporation.	All	rights	reserved.



Conventions
This	help	file	uses	the	following	conventions:
<	> Angle	brackets	that	contain	numbers	separated	by	an	ellipsis	represent	a	range	of	values	associated

with	a	bit	or	signal	name—for	example,	DBIO<3..0>.

» The	»	symbol	leads	you	through	nested	menu	items	and	dialog	box	options	to	a	final	action.	The
sequence	File»Page	Setup»Options	directs	you	to	pull	down	the	File	menu,	select	the	Page	Setup
item,	and	select	Options	from	the	last	dialog	box.

[	] If	attached	to	a	parameter,	brackets	indicate	an	array.

* An	asterisk	signifies	a	pointer.

This	icon	denotes	a	note,	which	alerts	you	to	important	information.

bold Bold	text	denotes	items	that	you	must	select	or	click	on	in	the	software,	such	as	menu	items	and
dialog	box	options.	Bold	text	also	denotes	parameter	names,	emphasis,	or	an	introduction	to	a	key
concept.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables	or	cross	references.	This	font	also	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should	enter	from	the	keyboard,	sections	of	code,
programming	examples,	and	syntax	examples.	This	font	is	also	used	for	the	proper	names	of	disk
drives,	paths,	directories,	programs,	subprograms,	subroutines,	device	names,	functions,	operations,
variables,	filenames	and	extensions,	and	code	excerpts.



Attenuation
This	section	describes	how	attenuation	is	handled	by	the	NI–TUNER	driver.	The
user	modifies	attenuation	through	the	niTuner	Set	Attenuation	VI	or	the
niTuner_setAttenuation	function.



The	Hardware
The	downconverter	signal	chain	has	five	programmable	attenuators:	three	RF
attenuators	at	the	beginning	of	the	chain	and	two	IF	attenuators	near	the	end	of
the	chain.	They	are	set	up	in	the	following	sequence:

Attenuator	Sequence

Attenuator Asserted	Value

RF	Attenuator	1 20	dB

RF	Attenuator	2 20	dB

RF	Attenuator	3 10	dB

IF	Attenuator	1 20	dB

IF	Attenuator	2 10	dB

Attenuators	are	either	set/asserted	or	not	set/asserted.	This	allows	a	dynamic
range	of	RF	attenuation	from	0-50	dB	and	a	dynamic	range	of	IF	attenuation
from	0-30	dB.	Overall	attenuation	within	the	signal	chain	is	the	sum	of	all	the
attenuators	set,	for	a	range	of	0-80	dB.



Coercion,	Step	1
The	five	attenuators	are	configured	based	upon	the	mixer	and	reference	levels	set
in	the

niTuner	Set	Attenuation	VI	or	the	niTuner_setAttenuation
function.
First	NI–TUNER	checks	whether	the	user	intends	to	use	the	AutoMode	feature.
In	AutoMode,	the	user	defines	the	reference	level,	while	NI–TUNER	determines
the	appropriate	mixer	level.	AutoMode	is	activated	in	NI–TUNER	by	setting	a
mixer	level	value	above	1000.	This	feature	will	then	attempt	to	set	the	mixer
level	to	-20	dBm	and	adjust	within	the	algorithmic	coercions	described	below.	In
AutoMode	the	only	warning	the	user	may	see	concerns	coercion	to	correct	an
invalid	reference	level.
NI–TUNER	coerces	the	settings	according	to	the	following	rules:

The	mixer	level	may	not	be	above	0	dBm.	If	the	mixer	level	breaks	this
rule,	NI–TUNER	sets	the	mixer	level	to	0	dBm	and	returns	this	warning:
"Mixer	level	cannot	exceed	0	dBm.	The	mixer	level	setting	is	coerced	to
0	dBm"
The	reference	level	may	not	be	above	50	dBm.	If	the	reference	level	is
greater	than	50	dBm,	NI–TUNER	sets	the	reference	level	to	50	dBm	and
returns	this	warning:	"The	reference	level	cannot	exceed	50	dBm.	The
reference	level	setting	is	coerced	to	50	dBm"
The	mixer	level	may	not	be	greater	than	the	reference	level.	If	the	mixer
level	is	greater	than	the	reference	level,	NI–TUNER	sets	the	mixer	level
equal	to	the	current	value	of	the	reference	level	and	returns	this	warning:
"The	specified	mixer	level	does	not	fall	between	the	reference	level	and
the	reference	level	minus	50	dBm.	The	mixer	level	setting	is	coerced	to
the	nearest	of	these	two	bounds"
The	mixer	level	may	not	be	less	than	the	reference	level	minus	50	dBm.	If
the	mixer	level	breaks	this	rule,	NI–TUNER	sets	the	mixer	level	to	the
value	of	reference	level	minus	50	dBm	and	returns	this	warning:	"The
specified	mixer	level	does	not	fall	between	the	reference	level	and	the
reference	level	minus	50	dBm.	The	mixer	level	setting	is	coerced	to	the
nearest	of	these	two	bounds"



After	this,	coercion	occurs	only	if	the	requested	reference	level	and	mixer	level
create	an	impossible	state	in	programming	the	downconverter's	attenuators.



Setting	the	Attenuators,	Step	2
Understanding	the	parts	played	by	the	reference	level	and	the	mixer	level	is	key
to	setting	the	individual	attenuators.	NI–TUNER	sets	the	RF	attenuators	first.
Let	D	be	the	difference	between	the	reference	level	and	the	mixer	level,	such	that
D	=	reference	level	-	mixer	level
This	formula	correlates	directly	with	the	range	of	possible	RF	attenuator	settings.
Recall	that	the	RF	attenuators	have	a	range	of	0-50	dB.	The	coercions	described
in	the	previous	section	ensure	that	the	mixer	level	will	be	less	than	the	reference
level	and	that	the	mixer	level	will	not	be	more	than	50	dBm	less	than	the
reference	level.	D	is	then	directly	proportional	to	the	total	RF	attenuation,	a
value	between	0-50	dB.	All	that	remains	is	to	set	the	RF	attenuators	as	follows
(refer	to	the	Attenuator	Sequence	table	above):

RF	Attenuator	Settings

D Attenuators

0 None	are	set

10 RF	Attenuator	3

20 RF	Attenuator	1

30 RF	Attenuators	1	and	3

40 RF	Attenuators	1	and	2

50 RF	Attenuators	1,	2,	and	3

Attenuation	of	the	signal	on	the	other	end	of	the	chain	is	modified	by
configuring	the	IF	attenuators.
Think	of	the	IF	attenuators	as	adjustable	compensation	for	the	inherent	30	dB
gain	of	the	downconverter.	Let	I	be	the	30	dB	adjustment	of	our	ratio,	such	that
I	=	30	dB	+	Reference	Level	-	D
or	simply,
I	=	30	dB	+	Mixer	Level
Here	the	NI–TUNER	driver	may	be	forced	to	perform	another	coercion.	The
value	of	the	mixer	level	is	less	than	or	equal	to	0	dBm	due	to	previous	coercion,
but	what	happens	if	the	mixer	level	is	less	than	30	dBm?	This	would	produce	a
negative	attenuation	(i.e.,	a	gain),	and	there	are	no	programmable	IF	gains
available.	If	I	is	less	than	0	dB,	then	NI–TUNER	coerces	I	to	0	dB	and	returns
this	warning:	"A	mixer	level	less	than	-30	dBm	produces	an	IF	output	below	the



nominal	level	of	0	dBm.	See	your	NI–TUNER	Reference	Help".
I	is	directly	proportional	to	the	total	IF	attenuation,	a	value	between	0	-	30	dB.
The	IF	attenuators	are	set	as	follows	(refer	to	the	Attenuator	Sequence	table
above):
IF	Attenuator	Settings

I Attenuators

0 None	are	set

10 IF	Attenuator	2

20 IF	Attenuator	1

30 IF	Attenuators	1	and	2



One	More	Adjustment
After	the	attenuation	is	set,	if	the	user	makes	driver	calls	to	the	niTuner	Set	Freq
VI	or	the	niTuner_setFreq	function,	an	additional	adjustment	may	be	made.	If	at
least	one	frequency	requested	of	the	NI–TUNER	is	less	than	15	MHz,	the
downconverter	functions	instead	as	an	upconverter.	This	process	produces	a
saturation	in	the	signal.	In	order	to	account	for	this	saturation,	NI–TUNER
immediately	sets	the	10	dB	IF	attenuator	if	it	is	not	already	set.



Error	and	Status	Codes
Error
Code Meaning CVI	Defines

0 Successful	execution NITUNER_ERROR_SUCCESS

Positive
Values

Warnings

27009 Unable	to	load	calibration	settings NITUNER_WARN_CALIBRATIONLOADFAIL

27022 Requested	attenuation	levels	have	been
coerced	to	fit	within	the	0	to	80	dB	range

NITUNER_WARN_ATTENUATIONCOERCED

27027 The	specified	mixer	level	does	not	fall
between	the	reference	level	and	the	reference
level	minus	50	dBm.	The	mixer	level	setting
is	coerced	to	the	nearest	of	these	two	bounds.

NITUNER_WARN_BAD_MIXER_RANGE

27028 The	reference	level	cannot	exceed	50	dBm.
The	reference	level	setting	is	coerced	to	50
dBm.

NITUNER_WARN_BAD_REFERENCE_RANGE

27029 Input	frequencies	above	2.7	GHz	are	outside
specification	and	may	return	invalid	data.

NITUNER_WARN_MAX_SPEC

27030 Mixer	level	cannot	exceed	0	dBm.	The	mixer
level	setting	is	coerced	to	0	dBm.

NITUNER_WARN_MIXER_ABOVE_ZERO

27031 A	mixer	level	less	than	-30	dBm	produces	an
IF	output	below	the	nominal	level	of	0	dBm.	
See	your	NI–TUNER	Reference	Help.

NITUNER_WARN_BAD_IF_RANGE

Negative
Values

Errors

-27026 The	specified	ready	pulse	length	is	out	of
range

NITUNER_ERROR_INVALID_PULSE_LENGTH

-27025 Signal	polarities	may	be	only	ACTIVE	HIGH
or	ACTIVE	LOW

NITUNER_ERROR_INVALID_SIGNAL_POLARITY

-27024 An	unknown	signal	type	was	specified NITUNER_ERROR_INVALID_SIGNAL_TYPE

-27023 An	unknown	signal	path	was	specified NITUNER_ERROR_INVALID_SIGNAL_PATH

-27021 The	requested	attribute	is	not	used	in	this
function

NITUNER_ERROR_INVALIDATTRIBUTE

-27020 The	FPGA	download	failed NITUNER_ERROR_FPGADOWNLOADFAILED

-27019 The	FPGA	programming	chip	failed	to
initialize

NITUNER_ERROR_CPLDREJECT

-27018 One	of	the	parameters	was	NULL,	making	it
unusable.	Allocate	memory	for	the	parameter.

NITUNER_ERROR_NULLPOINTER

-27017 This	setting	attempts	to	send	signals	in	two
different	directions	at	the	same	time

NITUNER_ERROR_CLOCKCONFLICT

-27016 Unknown	PLL NITUNER_ERROR_UNKNOWNPLL

-27015 Invalid	RTSI	setting NITUNER_ERROR_INVALIDRTSIVALUE

-27014 Initialize	the	PXI-5600	downconverter	before
calling	this	function

NITUNER_ERROR_INITNOTCALLED



-27013 Reset	the	PXI-5600	downconverter	before
calling	this	function

NITUNER_ERROR_RESETNOTCALLED

-27012 Value	is	out	of	range NITUNER_ERROR_RANGEERROR

-27011 The	span	must	be	between	0	and	20	MHz
inclusive

NITUNER_ERROR_BADSPAN

-27010 Array	size	must	be	greater	than	0 NITUNER_ERROR_INVALIDARRAYSIZE

-27008 Unable	to	write	data	to	the	EEPROM:
verification	of	written	data	failed

NITUNER_ERROR_EEPROMWRITERFAIL

-27007 Unable	to	obtain	a	direct	link	to	the	PXI-5600
downconverter	registers

NITUNER_ERROR_DEVICEPOINTER

-27006 Unable	to	complete	DMA	transfer NITUNER_ERROR_INFINTELOOP

-27005 The	attenuation	relay	is	busy.	This	is	a
hardware	problem.

NITUNER_ERROR_RELAYBUSY

-27004 The	downconverter	is	busy.	Its	internal	state
machine	may	be	locked	up.

NITUNER_ERROR_DOWNCONVERTERBUSY

-27003 Frequency	counter	timed	out NITUNER_ERROR_FREQCOUNTTIMEOUT

-27002 Unable	to	allocate	memory NITUNER_ERROR_ALLOCATEMEMORY

-27001 A	bit	size	too	large	was	specified	for	this
serial	chain.	This	is	an	internal	driver	issue.

NITUNER_ERROR_INVALIDSERIALCHAINSIZE



NI–TUNER	CVI	Function	Tree
Name	or	Class Function	Name

Initialize niTuner_init

Set	Frequency niTuner_setFreq

Close niTuner_close

General	Configuration

				Set	Attenuation niTuner_setAttenuation

				Get	Attenuation niTuner_getAttenuation

Synchronization

				Configure	Advance	Trigger niTuner_configAdvanceTrigger

				Configure	Ready	Signal niTuner_configReadySignal

				Configure	Reference	Clock niTuner_configReferenceClock

				Initiate	Scan niTuner_initiateScan

				Send	Software	Trigger niTuner_sendSoftwareTrigger

Scan	List	Configuration

				Set	Frequency	Scan	List niTuner_setFreqScanList

				Get	Calibration niTuner_getCal

Utility

				Get	Temperature niTuner_getTemperature

				Ready niTuner_ready

				Error	Handler niTuner_errorHandler



niTuner_close
Function	Prototype
int	niTuner_close	(int	taskID);



Purpose
This	function	closes	the	instrument	I/O	session.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular	device.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_configAdvanceTrigger
Function	Prototype
int	niTuner_configAdvanceTrigger	(int	taskID,	unsigned	int	signalSource,
unsigned	int	signalType,	unsigned	int	signalPolarity);



Purpose
This	function	configures	the	scan	advance	trigger	input.	The	advance	trigger	tells
the	NI	PXI-5600	downconverter	to	advance	to	the	next	frequency	in	the	scan	list.
The	ready	signal	is	generated	after	the	downconverter	has	settled	to	a	frequency.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

signalSource unsigned
int Identifies	the	source	of	the	scan	advance	trigger	signal.	Hardware	triggers	are	RTSI

lines	<0..6	>.

Defined	Values:

NITUNER_SIGNAL_SOFTWARE

NITUNER_SIGNAL_RTSI0

NITUNER_SIGNAL_RTSI1

NITUNER_SIGNAL_RTSI2

NITUNER_SIGNAL_RTSI3

NITUNER_SIGNAL_RTSI4

NITUNER_SIGNAL_RTSI5

NITUNER_SIGNAL_RTSI6

Default	Value:

NITUNER_SIGNAL_SOFTWARE

signalType unsigned
int Configures	the	RF	downconverter	to	advance	to	the	next	frequency	in	the	scan	list

when	a	pulse	or	a	level	signal	is	detected.

Defined	Values:

NITUNER_SIGNAL_PULSE

NITUNER_SIGNAL_LEVEL

Default	Value:

NITUNER_SIGNAL_PULSE

If	selected,	the	expected	pulse	must	be	in	the	direction	of	the	signalPolarity.	If
selected,	the	level	(while	the	PXI-5600	downconverter	is	not	expected	to	trigger)	will
be	in	the	direction	of	the	signalPolarity.

signalPolarity unsigned
int Configures	the	PXI-5600	downconverter	to	advance	to	the	next	frequency	in	the	scan

list	on	the	specified	polarity	change.

Defined	Values:

NITUNER_SIGNAL_ACTIVE_LOW

NITUNER_SIGNAL_ACTIVE_HIGH

Default	Value:

NITUNER_SIGNAL_ACTIVE_LOW



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_configReadySignal
Function	Prototype
int	niTuner_configReadySignal	(int	taskID,	unsigned	int	signalDestination,
unsigned	int	signalType,	unsigned	int	signalPolarity,	double	pulseLength);



Purpose
This	function	configures	the	PXI-5600	downconverter	ready	signal	output,
which	is	sent	on	one	of	the	RTSI	lines	when	the	downconverter	has	finished
settling	to	a	specified	frequency.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

signalDestination unsigned
int

Identifies	the	destination	of	the	ready	signal	output:

Defined	Values:

NITUNER_SIGNAL_NO_DESTINATION

NITUNER_SIGNAL_RTSI0

NITUNER_SIGNAL_RTSI1

NITUNER_SIGNAL_RTSI2

NITUNER_SIGNAL_RTSI3

NITUNER_SIGNAL_RTSI4

NITUNER_SIGNAL_RTSI5

NITUNER_SIGNAL_RTSI6

Default	Value:

NITUNER_SIGNAL_NO_DESTINATION

signalType unsigned
int

Configures	the	type	of	signal	the	PXI-5600	downconverter	generates	when	it	has
settled	to	a	frequency.	The	signal	may	be	represented	as	a	pulse	of	pulseLength
seconds	in	the	direction	of	the	polarity,	or	as	a	level	signal	that	returns	to	the	state
specified	by	signalPolarity.

For	more	information	about	these	signal	types,	see	the	trigger	timing	diagram.

Defined	Values:

NITUNER_SIGNAL_PULSE

NITUNER_SIGNAL_LEVEL

Default	Value:

NITUNER_SIGNAL_PULSE

signalPolarity unsigned
int

Configures	the	PXI-5600	downconverter	to	send	a	ready	signal	of	selected	type
with	polarity	of	active	low	or	active	high.

Defined	Values:

NITUNER_SIGNAL_ACTIVE_LOW

NITUNER_SIGNAL_ACTIVE_HIGH

Default	Value:

NITUNER_SIGNAL_ACTIVE_LOW

pulseLength double Time	in	seconds	to	generate	a	signal	of	type	pulse	in	the	direction	specified	by
signalPolarity.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_configReferenceClock
Function	Prototype
int	niTuner_configReferenceClock	(int	taskID,	unsigned	int
referenceConfiguration);



Purpose
This	function	configures	the	reference	clock	source.	The	PXI-5600
downconverter	must	lock	to	a	timebase	before	entering	the	ready	state.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a
particular	device.

reference
Configuration

unsigned
int Configures	the	reference	clock	source:

Defined	Values:

NITUNER_INTERNAL

NITUNER_DRIVE_10_MHZ_PXI_BACKPLANE_CLOCK

NITUNER_LOCK_TO_10_MHZ_PXI_BACKPLANE_CLOCK

NITUNER_EXTERNAL

NITUNER_DRIVE_10_MHZ_PXI_BACKPLANE_CLOCK_EXTERNAL

Default	Value:

NITUNER_INTERNAL



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_errorHandler
Function	Prototype
int	niTuner_errorHandler	(int	taskID,	int	errorCode,	char	errorSource[],	char
errorDescription[]);



Purpose
This	function	converts	a	returned	error	code	into	a	text	description	of	the	error.

Note		0	may	be	passed	as	the	taskID.	This	is	useful	to	interpret	errors	after	niTuner_init	has	failed	or	if
errorSource	is	NULL.	The	taskID	is	required	for	cases	in	which	errorSource	is	desired.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

errorCode int Passes	the	error	code	returned	from	any	of	the	instrument	driver	functions.

errorSource char[] Returns	the	name	of	the	function	call	where	the	error	occurred.

Pass	a	char	array	at	least	MAX_FUNCTION_NAME_SIZE	bytes	in	length,	or	pass
NULL.

errorDescription char[] Returns	a	text	description	of	the	error.

Pass	a	char	array	at	least	MAX_ERROR_DESCRIPTION	bytes	in	length,	or	pass
NULL.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.



niTuner_getAttenuation
Function	Prototype
int	niTuner_getAttenuation	(int	taskID,	unsigned	long	listSize,	double
*attenuation,	double	*scaleFactor);



Purpose
This	function	returns	the	IF	signal	attenuation	for	each	frequency	in	the	scan	list.
Currently,	this	function	sets	the	same	attenuation	for	each	frequency	in	the	scan
list.	Future	versions	of	NI–TUNER	may	allow	different	attenuation	values	for
each	frequency.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular	device.

listSize unsigned
long The	size	of	the	attenuation	and	scaleFactor	arrays.	This	number	cannot	exceed	the	number

of	frequencies	in	the	scan	list.

listSize	must	be	less	than	or	equal	to	the	number	of	frequencies	in	the	scan	list.

attenuation double	* A	listSize	element	array	of	the	actual	attenuations	in	dB.	Attenuation	is	equal	to
20log10(scale	factor).

Only	the	first	element	in	the	array	is	used,	because	this	version	of	NI–TUNER	sets	the
same	attenuation	for	all	frequencies	in	the	scan	list.

scaleFactor double	* A	listSize	element	array	of	scale	factors.	Multiply	the	IF	time	domain	data	by	this	number
to	calculate	the	actual	amplitude	of	the	input	RF	signal.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_getCal
Function	Prototype
int	niTuner_getCal	(int	taskID,	unsigned	long	listSize,	double	RFArrays[],
double	IFArrays[],	double	attenuationArray[]);



Purpose
This	function	returns	calibration	information	for	a	selected	portion	of	the	scan
list,	starting	at	index	0.	For	each	scan	list	entry,	the	function	returns	RF,	IF,	and
total	attenuation	calibration	information.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

listSize unsigned
long Number	of	scan	list	frequencies	for	which	to	return	calibration	information.

RFArrays double[] Returns	the	RF	calibration	array.	The	array	contains	listSize	x	281	doubles.	It	is
constructed	as	a	concatenation	of	RF	arrays:

First	frequency	in	the	scan	list:	281	RF	doubles

Second	frequency	in	the	scan	list:	281	RF	doubles	...	Last	frequency	in	the	scan	list:
281	RF	doubles

The	281	double	RF	calibration	array	is	the	relative	gain	with	respect	to	100	MHz
taken	at	40°	C.	Points	range	from	0	MHz	at	index	0	to	2.8	GHz	at	index	280.

Each	group	of	281	doubles	is	a	lookup	table	of	frequency	response	deviation	from
the	nominal	attenuation	setting	in	dB	for	each	scan	list	entry.

IFArrays double[] Returns	the	IF	calibration	array.	The	array	contains	listSize	x	16	doubles.	It	is
constructed	as	a	concatenation	of	IF	arrays:

First	frequency	in	the	scan	list:	16	IF	doubles

Second	frequency	in	the	scan	list:	16	IF	doubles	...	Last	frequency	in	the	scan	list:
16	IF	doubles

The	16	double	IF	calibration	array	is	a	polynomial	of	16	coefficients	with	the
constant	at	index	0	that	represents	the	absolute	gain	at	100	MHz	+/-	10	MHz	(20
MHz	bandwidth)	at	40	°C.

Each	group	of	16	doubles	is	a	polynomial	in	x,	where	x	=	{(f-15	MHz)/1	MHz}
represents	the	IF	frequency	response.

attenuationArray double[] Returns	the	array	of	attenuations.	The	array	contains	listSize	doubles,	a	single
attenuation	for	each	frequency	entry	in	the	scan	list.

In	the	current	version	of	NI–TUNER,	every	scan	list	entry	has	the	same	attenuation
setting,	so	every	group	will	be	identical	to	the	first	group.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_getTemperature
Function	Prototype
int	niTuner_getTemperature	(int	taskID,	double	*temperature,	double
*correctionFactor);



Purpose
This	function	returns	the	temperature	of	the	PXI-5600	downconverter	in	°C	and
the	temperature	correction	coefficient	based	on	the	current	temperature.

Note		Retrieving	the	downconverter	temperature	causes	a	momentary	disruption	in	the	IF	output	signal
which	may	give	rise	to	invalid	IF	data.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

temperature double	* Returns	the	current	temperature	of	the	PXI-5600	downconverter	in	°C.

correctionFactor double	* The	correction	factor	based	on	the	current	temperature	(normalized	to	40	°C	and
multiplied	by	the	calibrated	temperature	coefficient).	Apply	this	correction	factor	to
the	computed	power	spectrum.	See	the	Spectral	Measurements	Toolset	Help	file	for
more	information.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_init
Function	Prototype
int	niTuner_init	(int	device,	int	*taskID);



Purpose
This	function	initializes	the	PXI-5600	downconverter	by	loading	the	calibration
memory,	clearing	the	internal	registers,	and	setting	them	to	the	following
defaults:

The	PXI-5600	downconverter	internal	clock	reference	is	used.
Phase-locked	loops	(PLLs)	are	successfully	locked.
The	tuner	is	set	to	a	frequency	of	100	MHz	with	a	phase-detector
frequency	of	500	kHz.
Attenuation	is	set	with	a	mixer	level	of	–20	dBm	and	a	reference	level	of
0	dBm.
The	advance	trigger	is	a	software	trigger.
The	ready	signal	is	an	active	low	pulse	of	1	µs	width.

If	all	the	PLLs	lock	correctly,	the	STATUS	light	on	the	PXI-5600	front	panel	is
activated.



Parameters
Name Type Description

device int Passes	the	device	number	of	the	NI–TUNER	device	to	initialize.

This	number	is	obtained	from	Measurement	&	Automation	Explorer	(MAX).

taskID int	* Returns	a	Task	ID	that	is	used	to	identify	the	PXI-5600	downconverter	in	all	subsequent	function
calls.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_initiateScan
Function	Prototype
int	niTuner_initiateScan	(int	taskID);



Purpose
This	function	settles	the	PXI-5600	downconverter	to	the	first	frequency	entry	in
the	scan	list	and	readies	it	to	receive	hardware	triggers.
If	a	ready	trigger	is	configured,	the	ready	trigger	is	generated	after	the	PXI-5600
downconverter	has	settled.
Advance	triggers	settle	the	PXI-5600	on	the	next	frequency	entry	in	the	scan	list;
for	example,	the	first	advance	trigger	received	advances	to	the	next	scan	list
entry.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular	device.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_ready
Function	Prototype
int	niTuner_ready	(int	taskID,	double	timeout,	unsigned	long	*ready);



Purpose
This	function	returns	the	ready	status	of	the	PXI-5600	downconverter.	The	PXI-
5600	is	ready	if	the	device	is	sufficiently	settled	on	the	requested	frequency	and
all	Phase	Locked	Loops	(PLLs)	are	locked.	Ready	state	is	indicated	by	the	ready
function	output	and	the	STATUS	light	on	the	PXI-5600	downconverter	front
panel.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular
device.

timeout double Timeout	in	seconds	to	wait	for	the	ready	status:

A	timeout	of	0	returns	the	current	ready	status.
A	negative	timeout	value	waits	until	the	PXI-5600	is	ready.
A	positive	timeout	value	waits	the	specified	number	of	seconds	(at	most)	for
a	ready	status.

ready unsigned	long	* Indicates	the	ready	status	of	the	PXI-5600:

A	positive	value	indicates	the	PLLs	are	locked.
A	value	of	0	indicates	the	PXI-5600	is	not	locked	and	ready.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_setAttenuation
Function	Prototype
int	niTuner_setAttenuation	(int	taskID,	int	refLevel,	int	mixerLevel,	double
*attenuation,	double	*scaleFactor);



Purpose
This	function	sets	the	RF	signal	attenuation	to	the	specified	mixer	and	reference
levels.	See	the	attenuation	page	for	more	information.
refLevel	must	be	 	50	dBm.	mixerLevel	must	be	 	0	and	 	(refLevel	-	50	dBm).
Set	the	levels	in	accordance	with	the	following	formula:
(reference	level	-	50)	 	mixer	level	 	Min	(reference	level,	0	dBm)	 	reference
level

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	after	a	call	to	this	function,	attenuation
is	automatically	adjusted.	This	may	add	an	additional	10	dB	attenuation.	See	the	attenuation	page	for
more	information.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular	device.

refLevel int Specifies	the	desired	reference	level	for	the	RF	input	signal.	See	the	attenuation	page	for
more	information.

The	default	value	is	0	dBm.

mixerLevel int Specifies	the	desired	mixer	level	for	the	RF	input	signal.	A	value	greater	than	1000
specifies	that	NI-TUNER	automatically	chooses	a	mixerLevel	based	on	the	specifed
refLevel.

Mixer	levels	influence	noise	and	distortion	factors:

–20	dBm	(default)—moderate	distortion,	low	noise.
–30	dBm—best	compromise	between	noise	and	distortion.
–40	dBm—low	distortion,	high	noise.

attenuation double	* Returns	the	actual	attenuation	applied	to	the	original	input	signal	in	dB.

scaleFactor double	* Returns	the	scale	factor.	The	scale	factor	is	defined	as	the	PXI-5600	input	signal	amplitude
divided	by	the	PXI-5600	output	signal	amplitude.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_setFreq
Function	Prototype
niTuner_setFreq	(int	taskID,	double	desiredRFFrequency,	double	span,	double
*actualIFFrequency,	double	*actualRFTunedFrequency,	double	*freqShift);



Purpose
This	function	sets	a	single	frequency	in	the	scan	list	with	a	specified	span	and
triggers	the	PXI-5600	downconverter	to	settle	on	that	frequency.

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	after	a	call	to	this	function,	attenuation
is	automatically	adjusted.	This	may	add	an	additional	20	dB	attenuation.	See	the	attenuation	page	for
more	information.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a
particular	device.

desiredRFFrequency double The	desired	frequency	between	9	kHz	and	2.7	GHz	to	which	the	PXI-5600
downconverter	will	tune.

span double The	expected	bandwidth	of	the	RF	input	signal.	You	can	specify	a	span
value	between	0	and	20	MHz.	Span	values	affect	phase	noise	and
downconverter	tuning	step	size,	as	shown	below:

span	setting phase	noise tuning	step	size
<=	10	MHz best 5	MHz
>	10	MHz good 1	MHz
Default	Value:	20	MHz

Note		The	NI	5600	RF	downconverter
module	hardware	always	downconverts	a
20	MHz	bandwidth.	Software	span	settings
are	used	to	determine	optimal	phase
noise/tuning	step	size	combinations.

actualIFFrequency double	* The	actual	IF	center	frequency.	This	frequency	will	be	near	or	equal	to	15
MHz,	depending	on	the	frequency	step	size	determined	from	the	span.

actualRFTunedFrequency double	* The	actual	adjusted	RF	center	frequency,	based	on	the	frequency	step	size
determined	by	the	span.

freqShift double	* The	difference	between	the	actual	RF	center	frequency	and	the	actual	IF
center	frequency.



Status
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_setFreqScanList
Function	Prototype
int	niTuner_setFreqScanList	(int	taskID,	unsigned	long	numFreq,	double
desiredRFFrequencies[],	double	spans[],	double	actualIFFrequencies[],	double
actualRFTunedFrequencies[],	double	freqShifts[]);



Purpose
This	function	loads	and	prepares	a	scan	list	of	up	to	720	center	frequencies
between	9	kHz	and	2.7	GHz.	When	triggered,	the	PXI-5600	downconverter
tunes	to	these	frequencies	in	succession.	Each	frequency	is	associated	with	a
span.

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	after	a	call	to	this	function,	attenuation
is	automatically	adjusted.	This	may	add	an	additional	20	of	dB	attenuation.	See	the	attenuation	page	for
more	information.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a
particular	device.

numFreq unsigned
long

Number	of	frequencies	(up	to	720)	to	load	into	the	scan	list.

desiredRFFrequencies double[] An	array	of	the	desired	frequencies	between	0	MHz	and	2.7	GHz	to
which	the	PXI-5600	downconverter	will	tune.	The	array	size	is	specified
by	numFreq.

Pass	a	double	array	at	least	numFreq	units	in	length.

spans double[] An	array	of	frequency	spans	between	0	and	20	MHz	of	the	size	specified
by	numFreq.	A	span	of	20	MHz	is	the	default.

Pass	a	double	array	at	least	numFreq	elements	in	length.

actualIFFrequencies double[] An	array	of	the	actual	IF	center	frequencies.	Each	frequency	will	be	near
or	equal	to	15	MHz,	depending	on	the	frequency	step	size	determined
from	the	associated	span.	The	size	of	the	array	is	numFreq.

Pass	a	double	array	at	least	numFreq	elements	in	length.

actualRFTunedFrequencies double[] An	array	of	the	actual	RF	tuned	frequencies.	Each	frequency	is	the
adjusted	actual	frequency	to	be	tuned	based	on	the	frequency	step	size
determined	by	the	associated	span.	The	size	of	the	array	is	numFreq.

Pass	a	double	array	at	least	numFreq	elements	in	length.

freqShifts double[] An	array	of	the	differences	between	the	actual	RF	center	frequencies	and
the	actual	associated	IF	center	frequencies.	The	size	of	the	array	is
numFreq.

Pass	a	double	array	at	least	numFreq	elements	in	length.



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



niTuner_sendSoftwareTrigger
Function	Prototype
niTuner_sendSoftwareTrigger	(int	taskID);



Purpose
This	function	sends	a	software	trigger	to	the	PXI-5600	downconverter.	The
software	trigger	asserts	the	scan	advance	signal	to	the	PXI-5600	downconverter,
causing	it	to	begin	settling	to	the	next	frequency	in	the	scan	list.



Parameters
Name Type Description

taskID int The	Task	ID	obtained	from	niTuner_init	that	identifies	the	session	of	a	particular	instrument



Return	Value
Returns	the	status	of	the	function.	To	see	an	explanation	of	common	error	and
warning	codes,	see	Error	and	Status	Codes.	To	see	a	text	explanation	of	the
status	code,	call	niTuner_errorHandler.



NI–TUNER	VI	Tree
Name	or	Class VI	Name

Initialize niTuner	Initialize.vi

Close niTuner	Close.vi

General	Configuration	VIs

				Configure	Reference	Clock niTuner	Config	Reference	Clock.vi

				Set	Attenuation niTuner	Set	Attenuation.vi

				Get	Attenuation niTuner	Get	Attenuation.vi

Scan	Configuration

				Configure	Scan	Advance	Signal niTuner	Config	Scan	Advance.vi

				Initiate	Scan niTuner	Initiate	Scan.vi

				Software	Trigger niTuner	Send	Software	Trigger.vi

Scan	List	Configuration

				Set	Frequency niTuner	Set	Freq.vi

				Set	Frequency	for	SMT niTuner	Set	Freq	for	SMT.vi

				Get	Calibration	Information niTuner	Get	Cal.vi

Utility

				Get	Temperature niTuner	Get	Temperature.vi

				Ready niTuner	Ready.vi



niTuner	Close.vi
This	VI	closes	the	instrument	I/O	session.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	device.
error	in	accepts	error	information	wired	from	VIs	previously	called.

Output Description
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Config	Reference
Clock.vi
This	VI	configures	the	reference	clock	source.	The	PXI-5600	downconverter
must	lock	to	a	timebase	before	entering	the	ready	state.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
reference	configuration	sets	the	reference	clock	source	to	one	of	the
following	options:
Defined	Values:

Drive	10	MHz	PXI_Backplane	Clock

Internal

Lock	to	10	MHz	PXI	Backplane	Clock

External

Drive	10	MHz	PXI	Backplane	Clock	External

Default	Value:

Internal

error	in	accepts	error	information	wired	from	VIs	previously	called.
Output Description

The	taskID	out	is	passed	to	the	next	VI.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Config	Scan
Advance.vi
This	VI	configures	the	scan	advance	trigger	input	and	the	ready	signal	output.
The	advance	trigger	tells	the	PXI-5600	downconverter	to	advance	to	the	next
frequency	in	the	scan	list.	The	ready	signal	is	generated	after	the	downconverter
has	settled	to	a	frequency.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
advance	trigger	prepares	the	PXI-5600	RF	downconverter	to	accept
triggers	from	a	specified	source.
The	hardware	trigger	sources	are	RTSI	lines	<0..6>.

The	software	trigger	source	is	a	call	to	niTuner	Send	Software	Trigger.vi.

Defined	Values:

software

no	change

RTSI	0

RTSI	1

RTSI	2

RTSI	3

RTSI	4

RTSI	5



RTSI	6

Default	Value:

no	change

ready	signal	prepares	the	PXI-5600	downconverter	to	send	a	ready
(acknowledge)	signal	to	a	specified	destination.	The	ready	signal	is	sent
after	the	tuning	frequency	is	settled.
Defined	Values:

no	change

none

RTSI	0

RTSI	1

RTSI	2

RTSI	3

RTSI	4

RTSI	5

RTSI	6

Default	Value:

no	change

error	in	accepts	error	information	wired	from	VIs	previously	called.
advance	signal	parameters	specify	the	conditions	for	triggering	an
advance	to	the	next	frequency	in	the	scan	list.

the	type	control	configures	the	downconverter	to	advance	on	the
edge	or	level	of	the	signal.	The	default	is	edge.
the	polarity	value	sets	the	downconverter	to	advance	on	the
selected	type	of	signal	with	polarity	of	active	low	or	active
high.

ready	signal	parameters	controls	prepare	the	downconverter	to	send	a
ready	(acknowledge)	signal	to	a	specified	destination.	The	ready	signal
is	sent	after	the	tuning	frequency	is	settled.	For	more	information	about
these	signal	types,	see	the	trigger	timing	diagram.

type	configures	the	downconverter	to	send	a	ready	signal	of
typepulse	orlevel.	The	default	is	pulse.
polarity	sets	the	downconverter	to	send	a	ready	signal	of
selected	type	with	polarity	of	active	high	oractive	low.
pulse	length	sets	the	duration	of	the	ready	pulse	in	seconds.

Output Description



The	taskID	out	is	passed	to	the	next	VI.

error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Get
Attenuation.vi
This	VI	returns	the	IF	signal	attenuation	for	each	frequency	in	the	scan	list.
Currently,	this	function	sets	the	same	attenuation	for	each	frequency	in	the	scan
list.	Future	versions	of	NI–TUNER	may	allow	different	attenuation	values	for
each	frequency.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
error	in	accepts	error	information	wired	from	previously	called	VIs.

Output Description
taskID	out	is	passed	to	the	next	VI.
attenuation	returns	the	total	attenuation	of	the	original	input	signal	in
dB.	Attenuation	is	equal	to	20log10(scale	factor).
scale	factor	returns	the	actual	scale	factor	in	volts,	which	can	be
applied	to	correct	the	time	data	returned	by	NI-SCOPE.	The	scale
factor	is	equal	to	the	PXI-5600	input	signal	amplitude	divided	by	the
PXI-5600	output	signal	amplitude.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Get	Cal.vi
This	polymorphic	VI	returns	calibration	information	for	each	frequency	entry	in
the	scan	list.	Each	frequency	entry	returns	RF	calibration	information,	IF
calibration	information,	and	(if	correct	for	attenuation	is	set	to	TRUE)	total
attenuation	calibration	information.	If	there	is	only	a	single	scan	list	entry,	you
can	use	the	Get	Cal	(single)	instance	of	this	VI,	but	if	there	is	more	than	one	scan
list	entry	you	must	use	the	Get	Cal	(multi)	instance.	To	select	the	Get	Cal	(multi)
instance,	right-click	on	the	icon	in	your	diagram	and	click	select	type»Get	Cal
(multi).vi.

niTuner	Get	Cal	(single)
This	instance	returns	calibration	information	for	a	single	frequency	entry	in	the
scan	list.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	device.
correct	for	attenuation	is	set	to	TRUE	to	include	a	constant	correction
for	the	nominal	attenuation	value.	A	value	of	FALSE	sets	the	constant
equal	to	0	dB.
error	in	accepts	error	information	wired	from	VIs	previously	called.

Output Description
taskID	out	is	passed	to	the	next	VI.



calibration	returns	a	1-d	array	containing	the	RF	calibration
information,	the	IF	calibration	information,	and	the	attenuation
calibration	information.
The	281	double	RF	calibration	array	is	the	relative	gain	with	respect	to	100	MHz	taken	at	40	°C.
Points	range	from	0	MHz	at	index	0	to	2.8	GHz	at	index	280.	The	set	of	281	doubles	is	a	lookup	table
of	frequency	response	deviation	from	the	nominal	attenuation	of	the	associated	attenuation	setting	in
dB	for	each	scan	list	entry.

The	16	double	IF	calibration	array	is	a	polynomial	of	16	coefficients	with	the	constant	at	index	0	that
represents	the	absolute	gain	at	100	MHz	+/-	10	MHz	(20	MHz	bandwidth)	at	40	°C.	The	set	of	16
doubles	is	a	polynomial	in	x,	where	x	=	{(f-15	MHz)/1MHz}	represents	the	IF	frequency	response.

error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.

niTuner	Get	Cal(multi)
This	instance	returns	calibration	information	for	multiple	frequency	entries	in	the
scan	list.

To	select	the	Get	Cal	(multi)	instance,	right-click	on	the	icon	in	your	block
diagram	and	choose	select	type»Get	Cal	(multi).vi.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
correct	for	attenuation	is	set	to	TRUE	to	include	constant	correction
for	the	nominal	attenuation	value.	A	value	of	FALSE	sets	the	constant
equal	to	0	dB.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.

Output Description



taskID	out	is	passed	to	the	next	VI.
calibrations	returns	a	2-d	array	with	each	row	containing	the	RF
calibration	information,	the	IF	calibration	information,	and	the	total
attenuation	calibration	information	for	a	single	entry	in	the	scan	list.
The	281	double	RF	calibration	array	is	the	relative	gain	with	respect	to	100	MHz	taken	at	40	°C.
Points	range	from	0	MHz	at	index	0	to	2.8	GHz	at	index	280.	The	RF	calibration	arrays	are	grouped
by	attenuation	settings,	and	each	group	of	281	doubles	is	a	lookup	table	of	frequency	response
deviation	from	the	nominal	attenuation	of	the	associated	setting	in	dB	for	each	scan	list	entry.	In	the
current	version	of	NI–TUNER,	every	scan	list	entry	has	the	same	attenuation	setting,	so	every	group
will	be	identical	to	the	first	group.

The	16	double	IF	calibration	array	is	a	polynomial	of	16	coefficients	with	the	constant	at	index	0	that
represents	the	absolute	gain	at	100	MHz	+/-	10	MHz	(20	MHz	bandwidth)	at	40	°C.	The	IF	calibration
arrays	are	grouped	by	attenuation	settings,	and	each	group	of	16	doubles	is	a	polynomial	in	x,	where	x
=	{(f-15	MHz)/1MHz}	represents	the	IF	frequency	response.	In	the	current	version	of	NI–TUNER,
every	scan	list	entry	has	the	same	attenuation	setting,	so	every	group	will	be	identical	to	the	first
group.

error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Get
Temperature.vi
This	VI	returns	the	PXI-5600	downconverter	temperature	in	selected	units	and	a
factor	for	correcting	the	temperature	response	of	the	PXI-5600	downconverter.

Note		Retrieving	the	temperature	of	the	PXI-5600	downconverter	causes	a
momentary	disruption	in	the	IF	output	signal	which	may	result	in	invalid
data.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
temperature	scale	toggles	the	units	in	which	downconverter
temperature	is	returned	between	Fahrenheit	and	Celsius.
correction	units	selects	the	units	used	for	the	temperaturecorrection
factor.
error	in	accepts	error	information	wired	from	VIs	previously	called.

Output Description
taskID	out	is	passed	to	the	next	VI.
correction	factor	returns	a	coefficient	for	temperature	correction	of	the
downconverter	gain.	Apply	this	correction	factor	to	the	computed
power	spectrum.	See	the	Spectral	Measurements	Toolset	Help	file	for
more	information.
temperature	returns	the	current	temperature	of	the	PXI-5600



downconverter	in	the	selected	units.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Initialize.vi
Purpose
This	VI	initializes	the	PXI-5600	downconverter	by	loading	the	calibration
memory,	clearing	the	internal	registers,	and	setting	the	registers	to	the	following
defaults:

The	PXI-5600	downconverter	internal	clock	reference
is	used.
Phase-locked	loops	(PLLs)	are	successfully	locked.
The	tuner	is	set	to	a	frequency	of	100	MHz	with	a
phase	detector	frequency	of	500	kHz.
Attenuation	is	set	with	a	mixer	level	of	–20	dBm	and
a	reference	level	of	0	dBm.
The	advance	trigger	is	a	software	trigger.
The	READY	signal	is	an	active	low	pulse	of	1	µs
width.

If	all	the	PLLs	lock	correctly,	the	STATUS	light	on	the	PXI-5600	downconverter
front	panel	is	activated.

Parameters



Input Description
device	number	passes	the	number	of	the	NI–TUNER	device	to
initialize.
This	number	is	obtained	from	Measurement	&	Automation	Explorer	(MAX).

error	in	accepts	error	information	wired	from	VIs	previously	called.
Output Description

taskID	out	identifies	the	instrument	in	all	subsequent	instrument	driver
VI	calls.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Initiate	Scan.vi
This	VI	readies	the	PXI-5600	downconverter	to	begin	settling	to	the	first
frequency	entry	in	the	scan	list.	If	a	ready	trigger	is	configured,	the	ready	trigger
is	generated	after	the	PXI-5600	downconverter	has	settled.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
error	in	accepts	error	information	wired	from	VIs	previously	called.

Output Description
taskID	out	is	passed	to	the	next	VI.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Ready.vi
This	VI	returns	the	ready	status	of	the	PXI-5600	downconverter.	The	PXI-5600
is	ready	if	the	device	is	sufficiently	settled	on	the	requested	frequency	and	all
Phase	Locked	Loops	(PLLs)	are	locked.	Ready	state	is	indicated	by	the	ready
output	boolean	and	the	STATUS	light	on	the	PXI-5600	downconverter	front
panel.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
timeout	sets	the	number	of	seconds	to	wait	for	the	NI–TUNER	device	ready	status.

A	timeout	of	0	returns	the	current	ready	status.
A	negative	timeout	value	waits	forever.
A	positive	timeout	value	waits	the	specified	number	of	seconds	(at
most)	for	a	ready	status.

error	in	accepts	error	information	wired	from	VIs	previously	called.
Output Description

taskID	out	is	passed	to	the	next	VI.
ready	indicates	the	status	of	the	PXI-5600.

A	value	of	TRUE	indicates	the	PLLs	are	locked.
A	value	of	FALSE	indicates	the	PXI-5600	is	not	locked	and	ready.

error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Send	Software
Trigger.vi
This	VI	generates	a	software	trigger	sent	to	the	PXI-5600	downconverter.	The
software	trigger	asserts	the	scan	advance	signal,	which	prompts	the	PXI-5600	to
begin	settling	to	the	next	frequency	in	the	scan	list	(if	applicable).	Configure	the
PXI-5600	downconverter	to	accept	a	software	trigger	by	using	the	niTuner
Config	Scan	Advance	VI	with	the	advance	trigger	input	set	to	software.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
error	in	accepts	error	information	wired	from	VIs	previously	called.

Output Description
taskID	out	is	passed	to	the	next	VI.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Set	Attenuation.vi
This	VI	sets	the	PXI-5600	internal	attenuators	based	on	your	reference	level	and
mixer	level	settings.	See	the	attenuation	page	for	more	information.
Reference	level	must	be	 	50	dBm.	Mixer	level	must	be	 	0	and	 	(reference
level	–	50	dBm).	Set	the	levels	in	accordance	with	the	following	formula:
(reference	level	–	50)	 	mixer	level	 	Min	(reference	level,	0	dBm)	 	reference
level

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	after	a
call	to	this	VI,	attenuation	is	automatically	adjusted.	This	may	add	an
additional	20	dB	of	attenuation.	See	the	attenuation	page	for	more
information.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
ref	level	(dBm)	specifies	the	level	of	the	RF	input	signal.	See	the
attenuation	page	for	more	information.
By	default,	this	value	is	0	dBm.

mixer	level	(dBm)	sets	the	desired	level	at	the	first	input	mixer.	A
value	greater	than	1000	specifies	that	NI-TUNER	automatically
chooses	a	mixer	level	based	on	the	specifed	ref	level.
Mixer	levels	influence	noise	and	distortion	factors:

–20	dBm	(default)—moderate	distortion,	low	noise.
–30	dBm—best	compromise	between	noise	and	distortion.



–40	dBm—low	distortion,	high	noise.

error	in	accepts	error	information	wired	from	previously	called	VIs.
Output Description

taskID	out	is	passed	to	the	next	VI.
attenuation	returns	the	total	attenuation	of	the	original	input	signal	in
dB.	Attenuation	is	equal	to	20log10(scale	factor).
scale	factor	returns	the	actual	scale	factor	in	volts,	which	can	be
applied	to	correct	the	time	data	returned	by	NI-SCOPE.	The	scale
factor	is	equal	to	the	PXI-5600	input	signal	amplitude	divided	by	the
PXI-5600	output	signal	amplitude.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.



niTuner	Set	Freq.vi
This	polymorphic	VI	is	capable	of	tuning	the	PXI-5600	to	up	to	720	center
frequencies	in	sequence	using	a	scan	list.	If	you	are	using	only	a	single	scan	list
entry,	you	can	use	the	Set	Freq(f)	instance	of	this	VI,	but	if	there	is	more	than
one	entry	in	the	scan	list	you	must	use	the	Set	Freq	(f	array)	instance.	To	select
the	Set	Freq	(f	array)	instance,	right-click	on	the	Set	Freq	icon	in	your	block
diagram	and	click	select	type»Set	Freq	(f	array).vi.

niTuner	Set	Freq	(f).vi
This	instance	of	the	polymorphic	VI	sets	a	single	center	frequency	in	the	scan
list	and	immediately	begins	to	settle	on	that	frequency.

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	by	a
call	to	this	VI,	attenuation	may	be	automatically	adjusted.	This	may	add
up	to	an	additional	20	dB	attenuation.	See	the	attenuation	page	for	more
information.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
desired	RF	frequency	sets	a	frequency	between	9	kHz	and	2.7	GHz	to
which	the	PXI-5600	RF	downconverter	will	tune.
span	specifies	the	expected	bandwidth	of	the	RF	input	signal.	You	can



specify	a	span	value	between	0	and	20	MHz.	Span	values	affect	phase
noise	and	downconverter	tuning	step	size,	as	shown	below:

span	setting
phase	noise
tuning	step	size
<=	10	MHz best 5	MHz
>	10	MHz good1	MHz
Default	Value:	20	MHz

Note		The	NI	5600	RF	downconverter	module	hardware	always
downconverts	a	20	MHz	bandwidth.	Software	span	settings	are
used	to	determine	optimal	phase	noise/tuning	step	size
combinations.

error	in	accepts	error	information	wired	from	previously	called	VIs.
Output Description

taskID	out	is	passed	to	the	next	VI.
actual	IF	frequency	returns	the	center	frequency	of	the	translated
signal.	This	frequency	will	be	between	5	and	25	MHz.
actual	RF	tuned	frequency	returns	the	adjusted	actual	frequency	to	be
tuned,	based	on	the	frequency	step	size	determined	by	the	span.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.
frequency	shift	is	the	difference	between	the	desired	RF	center
frequency	and	the	actual	IF	frequency.

niTuner	Set	Freq(f	array).vi
This	instance	of	the	polymorphic	VI	sets	multiple	center	frequencies	(up	to	720)
in	the	scan	list.	The	PXI-5600	downconverter	does	not	advance	to	the	first
frequency	until	niTuner	Initiate	Scan.vi	is	called.	When	triggered,	the	PXI-5600
downconverter	tunes	to	the	scan	list	frequencies	in	succession.	Each	frequency	is
associated	with	a	span.



Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	by	a
call	to	this	VI,	attenuation	is	automatically	adjusted.	This	may	add	an
additional	20	dB	attenuation.	See	the	attenuation	page	for	more
information.

Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
desired	RF	frequencies	is	an	array	of	up	to	720	frequencies	between	9
kHz	and	2.7	GHz	to	which	the	PXI-5600	will	tune.
span	specifies	the	expected	bandwidth	of	the	RF	input	signal.	You	can
specify	a	span	value	between	0	and	20	MHz.	Span	values	affect	phase
noise	and	downconverter	tuning	step	size,	as	shown	below:

span	setting
phase	noise
tuning	step	size
<=	10	MHz best 5	MHz
>	10	MHz good1	MHz
Default	Value:	20	MHz

Note		The	NI	5600	RF	downconverter	module	hardware	always
downconverts	a	20	MHz	bandwidth.	Software	span	settings	are
used	to	determine	optimal	phase	noise/tuning	step	size
combinations.

error	in	accepts	error	information	wired	from	previously	called	VIs.
Output Description

taskID	out	is	passed	to	the	next	VI.



actual	IF	frequencies	returns	an	array	of	frequency-translated	center
frequencies.	Each	frequency	will	be	near	or	equal	to	15	MHz,
depending	on	the	frequency	step	size	determined	by	the	associated
span.
actual	RF	tuned	frequencies	returns	an	array	of	adjusted	actual
frequencies	tuned,	based	on	the	frequency	step	size	determined	by	the
associated	span.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.
frequency	shifts	returns	an	array	of	the	differences	between	the	actual
RF	center	frequencies	and	associated	actual	IF	center	frequencies.



niTuner	Set	Freq	for
SMT.vi
This	polymorphic	VI	loads	and	prepares	a	scan	list	of	1	to	720	center	frequencies
between	0	MHz	and	2.7	GHz.	When	triggered,	the	PXI-5600	downconverter	will
tune	to	these	frequencies	in	succession.	Each	frequency	is	associated	with	a
span.	The	format	of	the	"spectrum	settings"	inputs	and	outputs	is	designed	to
provide	a	convenient	interface	with	the	Spectral	Measurements	Toolset	(SMT).
If	you	are	working	with	a	single	spectrum,	you	can	use	the	default	Set	Freq	for
SMT	(spec)	instance	of	this	VI.	If	you	are	working	with	multiple	spectra,	you
must	use	the	Set	Freq	for	SMT	(Spec	Array)	instance.	To	select	the	Set	Freq	for
SMT	(Spec	Array)	instance,	right-click	on	the	Set	Freq	for	SMT	icon	in	your
block	diagram	and	click	on	select	type»Set	Freq	for	SMT(Spec	Array).vi.

niTuner	Set	Freq	for	SMT	(spec).vi
This	instance	of	the	polymorphic	VI	sets	a	single	spectrum	and	immediately
begins	to	settle	at	the	center	frequency.

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	by	a
call	to	this	VI,	attenuation	is	automatically	adjusted.	This	may	add	an
additional	20	dB	attenuation.	See	the	attenuation	page	for	more
information.

Parameters



Input Description
taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
desired	RF	spectrum	settings	defines	the	spectrum	to	which	you	want
the	PXI-5600	RF	downconverter	to	tune.
error	in	accepts	error	information	wired	from	previously	called	VIs.

Output Description
taskID	out	is	passed	to	the	next	VI.
actual	IF	spectrum	settings	returns	the	IF	settings	of	the	frequency-
translated	IF	spectrum.	This	output	can	be	wired	directly	to	the
spectrum	settings	input	of	an	SMT	configuration	VI.
RF	tuned	spectrum	settings	returns	the	RF	spectrum	tuned	by	the
PXI-5600.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation
of	common	error	and	warning	codes,	see	Error	and	Status	Codes.
frequency	shift	is	the	difference	between	the	actual	RF	center
frequency	and	the	actual	IF	center	frequency.

niTuner	Set	Freq	for	SMT(Spec
Array).vi
This	instance	of	the	polymorphic	VI	sets	up	to	720	spectra	with	center
frequencies	in	the	scan	list.	The	PXI-5600	downconverter	will	not	go	to	the	first
frequency	until	niTuner	Initiate	Scan.vi	is	called.	When	triggered,	the	PXI-5600
downconverter	tunes	to	the	scan	list	entries	in	succession.

Note		If	new	center	frequencies	of	less	than	15	MHz	are	specified	by	a
call	to	this	VI,	attenuation	is	automatically	adjusted.	This	may	add	an
additional	20	dB	attenuation.	See	the	attenuation	page	for	more
information.



Parameters
Input Description

taskID	in	is	obtained	from	niTuner	Initialize.vi	and	identifies	the
session	of	a	particular	instrument.
desired	RF	spectra	is	an	array	of	high	frequency	spectra	to	which	you
want	which	the	PXI-5600	to	tune.
error	in	accepts	error	information	wired	from	previously	called	VIs.

Output Description
taskID	out	is	passed	to	the	next	VI.
actual	IF	spectra	returns	an	array	of	frequency-translated	spectra.	The
center	frequency	of	each	spectrum	will	be	near	or	equal	to	15	MHz.	An
element	of	this	array	can	be	wired	directly	to	thespectrum	settings
input	of	an	SMT	configuration	VI.

Note		Avoid	wiring	the	actual	IF	spectra	parameter	to	an	SMT
configuration	VI	inside	a	For	loop.	Instead,	you	should	either	ensure	that
all	elements	are	the	same	and	extract	one,	or	reconfigure	the	digitizer	with
the	next	element	after	each	scan	advance.

actual	RF	tuned	spectra	returns	an	array	of	actual	spectra	tuned,	based
on	the	frequency	step	size	determined	by	the	associated	span.
error	out	passes	error	information	to	other	VIs.	To	see	an	explanation	of
common	error	and	warning	codes,	see	Error	and	Status	Codes.
frequency	shifts	returns	an	array	of	the	differences	between	the	actual	RF
center	frequencies	and	associated	actual	IF	center	frequencies.



Single	Frequency	Scan	List
The	preferred	programming	flow	for	tuning	the	PXI-5600	downconverter	to	a
single	frequency:



Multiple	Frequencies	Scan	List	(Software	Trigger)
The	preferred	programming	flow	for	tuning	the	PXI-5600	downconverter	to
multiple	frequencies	using	a	scan	list	and	a	software	trigger:



Multiple	Frequencies	Scan	List	(Hardware	Trigger)
The	preferred	programming	flow	for	tuning	the	PXI-5600	downconverter	to
multiple	frequencies	using	a	scan	list	and	a	hardware	trigger:



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	NI–TUNER	instrument	driver	is	warranted	against	defects	in	materials	and
workmanship	for	a	period	of	90	days	from	the	date	of	shipment,	as	evidenced	by
receipts	or	other	documentation.	National	Instruments	will,	at	its	option,	repair
or	replace	equipment	that	proves	to	be	defective	during	the	warranty	period.	This
warranty	includes	parts	and	labor.
The	media	on	which	you	receive	National	Instruments	software	are	warranted
not	to	fail	to	execute	programming	instructions,	due	to	defects	in	materials	and
workmanship,	for	a	period	of	90	days	from	date	of	shipment,	as	evidenced	by
receipts	or	other	documentation.	National	Instruments	will,	at	its	option,	repair
or	replace	software	media	that	do	not	execute	programming	instructions	if
National	Instruments	receives	notice	of	such	defects	during	the	warranty	period.
National	Instruments	does	not	warrant	that	the	operation	of	the	software	shall	be
uninterrupted	or	error	free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from	the
factory	and	clearly	marked	on	the	outside	of	the	package	before	any	equipment
will	be	accepted	for	warranty	work.	National	Instruments	will	pay	the	shipping
costs	of	returning	to	the	owner	parts	which	are	covered	by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is	accurate.
The	document	has	been	carefully	reviewed	for	technical	accuracy.	In	the	event
that	technical	or	typographical	errors	exist,	National	Instruments	reserves	the
right	to	make	changes	to	subsequent	editions	of	this	document	without	prior
notice	to	holders	of	this	edition.	The	reader	should	consult	National	Instruments
if	errors	are	suspected.	In	no	event	shall	National	Instruments	be	liable	for	any
damages	arising	out	of	or	related	to	this	document	or	the	information	contained
in	it.
Except	as	specified	herein,	National	Instruments	makes	no	warranties,
express	or	implied,	and	specifically	disclaims	any	warranty	of
merchantability	or	fitness	for	a	particular	purpose.	Customer's	right	to
recover	damages	caused	by	fault	or	negligence	on	the	part	of	National
Instruments	shall	be	limited	to	the	amount	theretofore	paid	by	the
customer.	National	Instruments	will	not	be	liable	for	damages	resulting
from	loss	of	data,	profits,	use	of	products,	or	incidental	or	consequential
damages,	even	if	advised	of	the	possibility	thereof.	This	limitation	of	the
liability	of	National	Instruments	will	apply	regardless	of	the	form	of	action,



whether	in	contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action	accrues.
National	Instruments	shall	not	be	liable	for	any	delay	in	performance	due	to
causes	beyond	its	reasonable	control.	The	warranty	provided	herein	does	not
cover	damages,	defects,	malfunctions,	or	service	failures	caused	by	owner's
failure	to	follow	the	National	Instruments	installation,	operation,	or	maintenance
instructions;	owner's	modification	of	the	product;	owner's	abuse,	misuse,	or
negligent	acts;	and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third
parties,	or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or	transmitted
in	any	form,	electronic	or	mechanical,	including	photocopying,	recording,
storing	in	an	information	retrieval	system,	or	translating,	in	whole	or	in	part,
without	the	prior	written	consent	of	National	Instruments	Corporation.



Trademarks
LabVIEW™,	National	Instruments™,	NI™,	ni.com™,	and	RTSI™	are
trademarks	of	National	Instruments	Corporation.
Product	and	company	names	mentioned	herein	are	trademarks	or	trade	names	of
their	respective	companies.



Patents
For	patents	covering	National	Instruments	products,	refer	to	the	appropriate
location:	Help»Patents	in	your	software,	the	patents.txt	file	on	your	CD,	or
ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	National	Instruments	products	are	not	designed	with	components	and
testing	for	a	level	of	reliability	suitable	for	use	in	or	in	connection	with
surgical	implants	or	as	critical	components	in	any	life	support	systems
whose	failure	to	perform	can	reasonably	be	expected	to	cause	significant
injury	to	a	human.
(2)	In	any	application,	including	the	above,	reliability	of	operation	of	the
software	products	can	be	impaired	by	adverse	factors,	including	but	not
limited	to	fluctuations	in	electrical	power	supply,	computer	hardware
malfunctions,	computer	operating	system	software	fitness,	fitness	of
compilers	and	development	software	used	to	develop	an	application,
installation	errors,	software	and	hardware	compatibility	problems,
malfunctions	or	failures	of	electronic	monitoring	or	control	devices,
transient	failures	of	electronic	systems	(hardware	and/or	software),
unanticipated	uses	or	misuses,	or	errors	on	the	part	of	the	user	or
applications	designer	(adverse	factors	such	as	these	are	hereafter
collectively	termed	"system	failures").	Any	application	where	a	system
failure	would	create	a	risk	of	harm	to	property	or	persons	(including	the
risk	of	bodily	injury	and	death)	should	not	be	reliant	solely	upon	one	form
of	electronic	system	due	to	the	risk	of	system	failure.	To	avoid	damage,
injury,	or	death,	the	user	or	application	designer	must	take	reasonably
prudent	steps	to	protect	against	system	failures,	including	but	not	limited	to
back-up	or	shut	down	mechanisms.	Because	each	end-user	system	is
customized	and	differs	from	National	Instruments'	testing	platforms	and
because	a	user	or	application	designer	may	use	National	Instruments
products	in	combination	with	other	products	in	a	manner	not	evaluated	or
contemplated	by	National	Instruments,	the	user	or	application	designer	is
ultimately	responsible	for	verifying	and	validating	the	suitability	of	National
Instruments	products	whenever	National	Instruments	products	are
incorporated	in	a	system	or	application,	including,	without	limitation,	the
appropriate	design,	process	and	safety	level	of	such	system	or	application.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com	for
technical	support	and	professional	services:

Support—Online	technical	support	resources	include	the	following:
Self-Help	Resources—For	immediate	answers	and	solutions,	visit
our	extensive	library	of	technical	support	resources	available	in
English,	Japanese,	and	Spanish	at	ni.com/support.	These	resources
are	available	for	most	products	at	no	cost	to	registered	users	and
include	software	drivers	and	updates,	a	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	hardware
schematics	and	conformity	documentation,	example	code,	tutorials
and	application	notes,	instrument	drivers,	discussion	forums,	a
measurement	glossary,	and	so	on.
Assisted	Support	Options—Contact	NI	engineers	and	other
measurement	and	automation	professionals	by	visiting	ni.com/ask.
Our	online	system	helps	you	define	your	question	and	connects
you	to	the	experts	by	phone,	discussion	forum,	or	email.

Training—Visit	ni.com/custed	for	self-paced	tutorials,	videos,	and
interactive	CDs.	You	also	can	register	for	instructor-led,	hands-on	courses
at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	NI	Alliance	Program
members	can	help.	To	learn	more,	call	your	local	NI	office	or	visit
ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact	your
local	office	or	NI	corporate	headquarters.	You	can	also	visit	the	Worldwide
Offices	section	of	ni.com/niglobal	to	access	the	branch	office	Web	sites,	which
provide	up-to-date	contact	information,	support	phone	numbers,	email	addresses,
and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_Ask)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


NITUNER_SIGNAL_SOFTWARE
This	value	sends	a	software	trigger	to	the	PXI-5600	downconverter.



NITUNER_SIGNAL_RTSI0
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	0.



NITUNER_SIGNAL_RTSI1
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	1.



NITUNER_SIGNAL_RTSI2
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	2.



NITUNER_SIGNAL_RTSI3
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	3.



NITUNER_SIGNAL_RTSI4
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	4.



NITUNER_SIGNAL_RTSI5
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	5.



NITUNER_SIGNAL_RTSI6
This	value	configures	the	PXI-5600	downconverter	to	receive	a	trigger	on	RTSI
line	6.



Trigger	Timing
Ready	signals	are	of	type	pulse	or	level	and	are	active	high	or	active	low.	The
following	diagram	illustrates	the	difference	between	a	ready	signal	of	type	pulse
and	one	of	type	level	in	an	active	low	state.



NITUNER_SIGNAL_ACTIVE_HIGH
This	value	instructs	the	PXI-5600	to	either	work	with	a	pulse	active	high	or	a
level	with	an	idle	state	of	high.



Drive	10	MHz	PXI	Backplane	Clock
This	setting	drives	the	internal	reference	of	the	PXI-5600	downconverter	to	the
10	MHz	PXI	backplane.	The	PXI-5600	downconverter	internal	reference	offers
better	frequency	stability	and	less	phase	noise	than	the	onboard	PXI	clock.	To
use	this	timing	configuration,	connect	the	PXI	10	MHz	I/O	and	10	MHz	OUT
connectors	on	the	PXI-5600	downconverter	front	panel.	This	option	only	works
when	the	PXI-5600	downconverter	is	installed	in	slot	2	of	the	PXI	chassis.



Internal
This	option	sets	the	PXI-5600	downconverter	internal	reference	clock	as	the
PXI-5600	downconverter	timebase.



Lock	to	10	MHz	PXI	Backplane	Clock
This	setting	locks	the	PXI-5600	downconverter	internal	reference	to	the	PXI
backplane.	To	use	this	option,	connect	the	PXI	10	MHz	I/O	connector	to	the
FREQ	REF	IN	connector.	This	option	is	useful	only	when	the	onboard	PXI	clock
is	locked	to	a	more	accurate	reference	(such	as	a	PXI-6608	or	another	PXI-5600)
installed	in	slot	2.



External
This	setting	locks	the	PXI-5600	downconverter	reference	to	an	external
reference	signal	connected	to	the	FREQ	REF	IN	connector	on	the	PXI-5600
downconverter	front	panel.	To	use	this	option,	connect	the	PXI	10	MHz	I/O
connector	to	the	FREQ	REF	IN	connector.



Drive	10	MHz	PXI	Backplane	Clock	External
This	setting	locks	the	PXI-5600	downconverter	to	an	external	reference	signal
and	drives	that	external	signal	to	the	PXI	backplane.	This	option	only	works
when	the	PXI-5600	downconverter	is	in	slot	2	of	the	PXI	chassis.	On	the	PXI-
5600	downconverter	front	panel,	connect	the	external	reference	signal	to	the
FREQ	REF	IN	connector	and	the	10	MHz	OUT	connector	to	the	PXI	10	MHz
I/O	connector.



software
This	value	configures	the	PXI-5600	downconverter	to	advance	to	the	next
frequency	in	the	scan	list	upon	receiving	a	software	trigger.



no	change
This	option	leaves	any	previously	set	values	unchanged.



RTSI	0
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	0.



RTSI	1
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	1.



RTSI	2
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	2.



RTSI	3
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	3.



RTSI	4
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	4.



RTSI	5
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	5.



RTSI	6
This	value	configures	the	PXI-5600	downconverter	to	receive	the	advance
trigger	on	RTSI	line	6.



none
This	value	configures	the	PXI-5600	never	to	send	a	ready	signal.



RTSI	0
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	0.



RTSI	1
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	1.



RTSI	2
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	2.



RTSI	3
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	3.



RTSI	4
This	value	configures	the	PXI-5600	downconverter	send	the	ready	signal	on
RTSI	line	4.



RTSI	5
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	5.



RTSI	6
This	value	configures	the	PXI-5600	downconverter	to	send	the	ready	signal	on
RTSI	line	6.



Branch	Offices
Office Telephone	Number

Australia 03	9879	5166

Austria 0662	45	79	90	0

Belgium 02	757	00	20

Brazil 55	11	3262	3599

Canada	(Calgary) 403	274	9391

Canada	(Montreal) 514	288	5722

Canada	(Ottawa) 613	233	5949

Canada	(Québec) 514	694	8521

Canada	(Toronto) 905	785	0085

China 86	21	6555	7838

Czech	Republic 02	2423	5724

Denmark 45	76	26	00

Finland 09	725	725	11

France 01	48	14	24	24

Germany 089	741	31	30

Greece 01	42	96	427

Hong	Kong 2645	3186

India 91	80	4190000

Israel 03	6393737

Italy 02	413091

Japan 03	5472	2970

Korea 02	3451	3400

Malaysia 603	9596711

Mexico 001	800	010	0793

Netherlands 0348	433466

New	Zealand 09	914	0488

Norway 32	27	73	00

Poland 22	3390	150

Portugal 210	311	210

Russia 095	238	7139

Singapore 65	6	226	5886

Slovenia 3	425	4200

South	Africa 11	805	8197

Spain 91	640	0085

Sweden 08	587	895	00

Switzerland 056	200	51	51



Taiwan 02	2528	7227

United	Kingdom 01635	523545

United	States	(Corporate) 512	683	0100


	NI-TUNER Reference Help
	Conventions
	Error and Status Codes
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Technical Support and Professional Services

