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The	LabVIEW	System	Identification	Toolkit	assists	you	in	identifying
large,	multivariable	models	of	high-order	systems	from	large	amounts	of
data.	The	System	Identification	Toolkit	provides	two	tools,	an	assistant
and	a	library	of	VIs,	for	identifying	these	linear	systems.	Both	tools	enable
you	to	complete	the	entire	system	identification	process,	from	analyzing
raw	data	to	validating	the	identified	model.
This	help	file	contains:

Concepts—An	overview	of	how	to	use	the	System	Identification
Toolkit.
Reference—Detailed	information	about	the	System	Identification
VIs.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

©	2008	National	Instruments	Corporation.	All	rights	reserved.
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Related	Documentation	(System	Identification
Toolkit)
The	following	documents	contain	information	that	you	might	find	helpful
as	you	use	the	LabVIEW	System	Identification	Toolkit.
You	must	install	the	PDFs	to	access	them	from	this	help	file.	You	must
have	Adobe	Reader	6.0.1	or	later	installed	to	view	or	search	the	PDF
versions	of	these	manuals.	Refer	to	the	Adobe	Systems	Incorporated
Web	site	to	download	Adobe	Reader.	Refer	to	the	National	Instruments
Product	Manuals	Library	for	updated	documentation	resources.

LabVIEW	System	Identification	Toolkit	Algorithm	References—
Use	this	manual	to	learn	about	the	algorithms	and	function
references	that	the	System	Identification	VIs	use.
LabVIEW	System	Identification	Toolkit	Readme—Use	this	file	to
learn	important	last-minute	information,	including	system
requirements,	installation	instructions,	known	issues,	and	so	on.
Open	this	readme	by	selecting	Start»All	Programs»National
Instruments»LabVIEW»Readme	and	opening	readme_SI.html	or
by	navigating	to	the	labview\readme	directory	and	opening
readme_SI.html.
LabVIEW	System	Identification	Toolkit	Example	VIs—Refer	to	the
labview\examples\System	Identification	directory	for	example	VIs
that	demonstrate	common	tasks	using	the	System	Identification
Toolkit.	You	also	can	access	these	VIs	by	selecting	Help»Find
Examples	from	the	pull-down	menu	and	selecting	Toolkits	and
Modules»System	Identification	Toolkit	in	the	NI	Example
Finder	window.
The	LabVIEW	Control	Design	and	Simulation	Module
documentation
Additional	LabVIEW	documentation
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System	Identification	Concepts	(System
Identification	Toolkit)
Use	this	book	to	learn	about	concepts	in	the	LabVIEW	System
Identification	Toolkit.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.



Introduction	to	System	Identification	(System
Identification	Toolkit)
System	identification,	the	first	step	in	the	model-based	control	design
process,	involves	building	mathematical	models	of	a	dynamic	system
based	on	a	set	of	measured	stimulus	and	response	data	samples.	You
can	use	system	identification	in	a	wide	range	of	applications,	including
mechanical	engineering,	biology,	physiology,	meteorology,	economics,
and	model-based	control	design.	For	example,	engineers	use	a	system
model	of	the	relationship	between	the	fuel	flow	and	the	shaft	speed	of	a
turbojet	engine	to	optimize	the	efficiency	and	operational	stability	of	the
engine.	Biologists	and	physiologists	use	system	identification	techniques
in	areas	such	as	eye	pupil	response	and	heart	rate	control.
Meteorologists	and	economists	build	mathematical	models	based	on
historical	data	for	use	in	forecasting.
The	LabVIEW	System	Identification	Toolkit	provides	the	following	tools.



System	Identification	VIs
The	System	Identification	Toolkit	provides	VIs	that	you	can	use	to
preprocess	raw	data	from	a	dynamic	system	and	develop	a	model	that
reflects	the	behavior	of	that	system.	The	Data	Preprocessing	VIs	enable
you	to	analyze	the	response	of	a	plant	or	dynamic	system	to	a	certain
stimulus.	After	analyzing	the	data,	you	can	use	the	Parametric	Model
Estimation,	Nonparametric	Model	Estimation,	Partially	Known	Model
Estimation,	Recursive	Model	Estimation,	and/or	Frequency-Domain
Model	Estimation	VIs	to	estimate	a	model	for	the	plant	or	dynamic
system.	Finally,	you	can	use	the	Model	Validation	or	Model	Analysis	VIs
to	determine	whether	the	model	accurately	describes	the	dynamics	of	the
identified	system.
The	System	Identification	VIs	enable	you	to	customize	a	LabVIEW	block
diagram	to	achieve	specific	goals.	You	also	can	use	other	LabVIEW	VIs
and	functions	to	enhance	the	functionality	of	the	application.	Creating	a
LabVIEW	application	using	the	System	Identification	VIs	requires	basic
knowledge	about	programming	in	LabVIEW.	Refer	to	the	LabVIEW
Fundamentals	and	Getting	Started	with	LabVIEW	manuals	for	more
information	about	the	LabVIEW	programming	environment.
The	following	case	studies	demonstrate	how	to	use	the	System
Identification	VIs	to	estimate	different	model	representations	by	using
time-domain	or	frequency	domain	data.

System	Identification	Case	Study—Guides	you	through	the	entire
system	identification	process.	This	case	study	demonstrates	how
to	preprocess	time-domain	data	from	a	dynamic	system,	estimate
an	ARX	and	state-space	model	by	using	the	time-domain	data,
and	validate	the	models	to	ensure	they	accurately	reflect	the
dynamic	system.
Partially	Known	Model	Estimation	Case	Study—Demonstrates
how	to	estimate	a	state-space	model	by	using	prior	knowledge
about	the	system	you	want	to	define.
Frequency-Domain	Model	Estimation	Case	Study—
Demonstrates	how	to	estimate	and	validate	a	state-space	and
transfer	function	model	by	using	frequency-domain	data	from	a
dynamic	system.
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System	Identification	Assistant
If	you	do	not	have	prior	knowledge	about	programming	in	LabVIEW,	you
can	use	the	NI	System	Identification	Assistant	to	develop	a	model	that
reflects	the	behavior	of	a	certain	dynamic	system.	You	access	the
System	Identification	Assistant	by	launching	LabVIEW	and	selecting
Tools»Control	Design	and	Simulation»Launch	System	Identification
Assistant.
Using	the	System	Identification	Assistant,	you	can	create	a	project	that
encompasses	the	whole	system	identification	process.	In	a	single	project,
you	can	load	or	acquire	raw	data	into	the	System	Identification	Assistant,
preprocess	the	data,	estimate	a	model	that	describes	the	system,	and
then	validate	the	accuracy	of	the	model.	SignalExpress	provides	windows
in	which	you	can	see	the	raw	data,	the	response	data,	the	estimated
model,	the	validation	results,	and	the	mathematical	equations	that
describe	the	model.
After	creating	a	project	in	SignalExpress,	you	can	convert	the	project	to	a
LabVIEW	block	diagram	and	customize	the	block	diagram	in	LabVIEW.
This	conversion	enables	you	to	enhance	the	capabilities	of	the
application.	Refer	to	the	LabVIEW	SignalExpress	Help,	available	in	the
LabVIEW	SignalExpress	environment	by	selecting	Help»LabVIEW
SignalExpress	Help,	for	more	information	about	using	the	assistant	to
develop	models.



Model-Based	Control	Design	Process	(System
Identification	Toolkit)
The	model-based	control	design	process	involves	building	a	model	of	a
plant,	analyzing	and	synthesizing	a	controller	for	the	plant,	simulating	the
plant	and	controller,	and	deploying	the	controller.	National	Instruments
provides	a	complete	solution	for	identifying	and	validating	a	dynamic
system	model,	designing	a	controller	for	the	model,	analyzing	the
controller,	and	prototyping	and	deploying	the	control	system.	The
following	figure	shows	this	process,	which	is	based	on	LabVIEW	and
National	Instruments	Real-Time	(RT)	Series	hardware.



Analyzing	Data	and	Creating	a	Dynamic	System	Model
In	the	initial	phase	of	the	design	process,	you	must	obtain	a	mathematical
model	of	the	plant	you	want	to	control.	One	way	to	obtain	a	model	is	by
using	a	numerical	process	known	as	system	identification.	This	process
involves	acquiring	data	from	a	plant	and	then	numerically	analyzing
stimulus	and	response	data	to	estimate	the	parameters	of	the	plant.
National	Instruments	provides	DAQ	and	modular	instrumentation
software	and	hardware	that	you	can	use	to	stimulate	and	measure	the
response	of	the	plant.	You	then	can	use	the	System	Identification	Toolkit
to	estimate	and	create	accurate	mathematical	models	of	the	plant.
System	identification	is	a	process	that	includes	acquiring	and
preprocessing	raw	data	from	a	real-world	system	and	identifying
mathematical	models	based	on	the	raw	data.	You	then	validate	that	the
resulting	model	accurately	describes	the	observed	system	behavior.	If	the
results	are	unsatisfactory,	you	revise	the	parameters	and	iterate	through
the	process.	The	following	flowchart	shows	a	typical	system	identification
process.

A	real-world	system	seldom	has	one	model	that	perfectly	describes	all
the	observed	behaviors	of	the	system.	Because	system	identification
involves	many	variables—such	as	sampling	frequency,	type	of
mathematical	model,	model	order,	and	so	on—you	usually	have	a
number	of	models	you	can	use.	Each	model	describes	the	behavior	of
the	system	to	some	extent	or	in	a	particular	mode	of	operation.
Furthermore,	multiple	applicable	algorithms	might	be	available	for	the
same	model.	The	algorithms	you	select	depend	on	the	model	structure,
stochastic	assumptions,	and	numerical	properties	of	the	algorithm.	The
System	Identification	Toolkit	includes	different	adaptive	techniques	for
recursive	system	identification	and	different	algorithms	for	model



estimation.



Designing	a	Controller
In	the	second	phase	of	the	design	process,	you	synthesize	and	analyze	a
controller.	The	LabVIEW	Control	Design	and	Simulation	Module	provides
a	set	of	VIs	for	classical	and	modern	linear	control	analysis	and	design
techniques.	With	these	VIs	you	can	design,	implement,	and	deploy	linear
time-invariant	(LTI)	system	models.
You	can	use	the	Control	Design	and	Simulation	Module	to	analyze	the
plant	model	you	identified	with	the	System	Identification	Toolkit.	The
Control	Design	and	Simulation	VIs	help	you	determine	an	appropriate
controller	structure.	You	then	can	synthesize	a	controller	to	achieve	the
desired	performance	criteria	of	the	system	based	on	the	dynamic
behavior	of	the	plant	and/or	control	system.	Finally,	you	can	analyze	the
overall	system	by	combining	the	controller	with	the	identified	plant	model.



Simulating	the	Dynamic	System
In	the	third	phase	of	the	design	process,	you	simulate	the	dynamic
system.	You	can	simulate	dynamic	systems	in	LabVIEW	by	using	the
Control	Design	and	Simulation	Module.	You	can	use	this	software	to
perform	offline	simulations	of	a	linear	or	nonlinear	dynamic	system
model.	You	can	use	this	simulation	to	investigate	the	time	and	frequency
responses	of	the	dynamic	system	due	to	complex,	time-varying	inputs.	If
you	install	the	LabVIEW	Real-Time	Module,	you	also	can	perform	rapid
control	prototyping	(RCP),	and	hardware-in-the-loop	(HIL)	simulations	by
using	NI	RT	Series	hardware.



Deploying	the	Controller
The	last	stage	of	the	design	process	is	to	deploy	the	controller	to	an	RT
target,	such	as	a	PXI	or	CompactRIO	controller.	LabVIEW,	the	Control
Design	and	Simulation	Module,	the	RT	Module,	and	NI	RT	Series
hardware	provide	a	common	platform	that	you	can	use	to	design,
prototype,	and	deploy	the	embedded	control	system.	You	also	can	use
the	Control	Design	and	Simulation	Module	and	the	Real-Time	Module	as
the	platform	for	implementing	the	control	system.
National	Instruments	also	provides	products	for	I/O	and	signal
conditioning,	such	as	NI	DAQ	and	SCXI	devices,	that	you	can	use	to
gather	and	process	data.	Using	these	tools,	which	are	built	on	the
LabVIEW	platform,	you	can	experiment	with	different	approaches	at	each
stage	in	the	design	process	and	quickly	identify	the	optimal	design
solution	for	an	embedded	control	system.
Refer	to	the	National	Instruments	Web	site	at	ni.com	for	more	information
about	these	National	Instruments	products.
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Model	Types	and	Representations	(System
Identification	Toolkit)
You	can	represent	a	dynamic	system	using	several	types	of	dynamic
system	models.



Model	Types
You	base	the	type	of	a	dynamic	system	model	on	the	properties	of	the
dynamic	system	that	the	model	represents.
Linear	versus	Nonlinear	Models
Dynamic	system	models	are	either	linear	or	nonlinear.	A	linear	model
obeys	the	principles	of	superposition	and	homogeneity.	The	following
equations	are	true	for	linear	models.
y	1	=		f	(u	1)

y	2	=		f	(u	2)

f	(u	1	+	u	2)	=	f	(u	1)	+	f	(u	2)	=	y	1	+	y	2
f	(a	1	u	1)	=	a	1	f	(u	1)	=	a	1	y	1
where	u	1	and	u	2	are	the	system	inputs	and	y	1	and	y	2	are	the	system
outputs.
Conversely,	nonlinear	models	do	not	obey	the	principles	of	superposition
or	homogeneity.	Nonlinear	effects	in	real-world	systems	include
saturation,	dead-zone,	friction,	backlash,	and	quantization	effects;	relays;
switches;	and	rate	limiters.	Many	real-world	systems	are	nonlinear,	but
you	can	simulate	most	real-world	systems	with	linear	models	to	simplify	a
design	or	analysis	procedure.
Time-Variant	versus	Time-Invariant	Models
Dynamic	system	models	are	either	time-variant	or	time-invariant.	The
parameters	of	a	time-variant	model	change	with	time.	For	example,	you
can	use	a	time-variant	model	to	describe	an	automobile.	As	fuel	burns,
the	mass	of	the	vehicle	changes	with	time.
Conversely,	the	parameters	of	a	time-invariant	model	do	not	change	with
time.	For	an	example	of	a	time-invariant	model,	consider	a	simple	robot.
Generally,	the	dynamic	characteristics	of	robots	do	not	change	over	short
periods	of	time.
Continuous	versus	Discrete	Models
Dynamic	system	models	are	either	continuous	or	discrete.	Both
continuous	and	discrete	system	models	can	be	linear	or	nonlinear	and
time-invariant	or	time-variant.	Continuous	models	describe	how	the



behavior	of	a	system	varies	continuously	with	time,	which	means	you	can
obtain	the	properties	of	a	system	at	any	certain	moment	from	the
continuous	model.	Discrete	models	describe	the	behavior	of	a	system	at
separate	time	instants,	which	means	you	cannot	obtain	the	behavior	of
the	system	between	every	two	sampling	points.
Continuous	system	models	are	analog.	You	derive	continuous	models	of
a	physical	system	from	differential	equations	of	the	system.	The
coefficients	of	continuous	models	have	clear	physical	meanings.	For
example,	you	can	derive	the	continuous	transfer	function	of	an	RC	circuit
if	you	know	the	details	of	the	circuit.	The	coefficients	of	the	continuous
transfer	function	are	the	functions	of	R	and	C	in	the	circuit.	You	use
continuous	models	if	you	need	to	match	the	coefficients	of	a	model	to
some	physical	components	in	the	system.
Discrete	system	models	are	digital.	You	derive	discrete	models	of	a
physical	system	from	difference	equations	or	by	converting	continuous
models	to	discrete	models.	In	computer-based	applications,	signals	and
operations	are	digital.	Thus,	you	can	use	discrete	models	to	implement	a
digital	controller	or	to	simulate	the	behavior	of	a	physical	system	at
discrete	instants.	You	also	can	use	discrete	models	in	the	accurate
model-based	design	of	a	discrete	controller	for	a	plant.



Model	Representations
You	can	use	the	System	Identification	Toolkit	to	represent	each	model
type	in	any	of	the	following	representations:

Transfer	function	models
Zero-pole-gain	models
State-space	models

If	the	model	is	discrete,	you	also	can	use	a	general-linear	polynomial
model.



Acquiring	and	Preprocessing	Data	(System
Identification	Toolkit)
The	first	step	in	identifying	an	unknown	system	is	acquiring	data.	You	can
acquire	plant	data	by	using	NI	DAQ	hardware	and	software	or	you	can
use	data	from	a	file	on	disk.	You	can	acquire	data	in	the	time	domain
and/or	the	frequency	domain.
For	verification	and	validation	reasons,	you	must	acquire	two	sets	of
input-output	data	samples	or	split	the	data	into	two	sets.	You	use	one	set
of	samples	to	estimate	the	mathematical	model	of	the	system.	You	use
the	second	set	of	samples	to	validate	the	resulting	model.	If	the	resulting
model	does	not	meet	the	predefined	specifications,	such	as	the	mean
square	error	(MSE),	modify	the	settings	and	re-verify	the	resulting	model
with	the	data	sets.
After	acquiring	the	data,	you	must	preprocess	the	raw	data	samples.
Preprocessing	involves	steps	such	as	removing	trends,	filtering	noise,
and	so	on.	You	can	use	the	Data	Preprocessing	VIs	to	analyze	the	raw
data	and	determine	whether	that	data	accurately	reflects	the	response	of
the	system	you	want	to	identify.	To	identify	a	system	model	in	the
frequency	domain	by	using	time-domain	data,	you	must	preprocess	the
time-domain	data	by	estimating	the	frequency	response	function	(FRF).
You	can	use	the	SI	Estimate	FRF	VI	to	estimate	the	FRF	from	time-
domain	data.
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Acquiring	Data	from	a	System	(System
Identification	Toolkit)
Identifying	a	system	involves	a	number	of	choices	with	regard	to	the
system	output	signals	you	want	to	measure	and	the	input	signals	you
want	to	manipulate.	The	choices	you	make	about	how	to	manipulate
system	inputs,	types	of	signal	conditioning,	signal	ranges,	and	sampling
behavior	affect	the	validity	of	the	model	you	obtain.	You	can	use	different
modeling	techniques	on	the	same	experimental	data	set.	However,	if	the
data	set	does	not	reflect	the	behavior	of	interest,	you	must	acquire	a
more	descriptive	data	set.
Because	the	system	identification	process	is	often	an	experimental
process,	the	entire	process	often	is	time	consuming	and	possibly	costly.
Therefore,	you	must	think	about	the	design	of	process	prior	to
experimenting	with	various	identification	techniques.



Accounting	for	Factors	that	Influence	a	System
(System	Identification	Toolkit)
The	key	to	the	system	identification	process	is	having	some	knowledge	of
the	system	for	which	you	want	to	identify	a	model.	This	knowledge
provides	the	basis	for	determining	which	signals	are	outputs,	which	in
turn	determines	sensor	placement,	and	which	signals	are	inputs	that	you
can	use	to	excite	the	system.	Simple	tests	might	be	necessary	to
determine	influences,	coupling,	time	delays,	and	time	constants	to	aid	in
the	modeling	effort.
You	also	must	consider	signals	that	are	not	directly	capable	of	being
manipulated	but	still	affect	the	system.	You	must	include	those	signals	as
inputs	to	the	system	model.	For	example,	consider	the	effect	of	wind
gusts	on	the	pitch	dynamics	of	an	airplane.	The	airplane	responds	in
pitch	to	the	elevator	angle	as	a	direct	input.	A	wind	gust	affects	the	pitch
of	an	airplane,	which	in	turn	influences	the	dynamics	of	the	airplane,	but
the	wind	gust	is	not	directly	adjustable.	To	create	an	accurate	model	of
the	airplane,	you	might	want	to	include	wind	gusts	as	an	input	variable.



Choosing	a	Stimulus	Signal	(System
Identification	Toolkit)
The	choice	of	stimulus	signals	has	an	important	role	in	the	system
behavior	and	the	accuracy	of	the	estimated	model.	These	signals
determine	the	operating	points	of	the	system.	While	the	system	under
test	often	limits	the	choice	of	signals,	the	input	signal	must	exhibit	certain
characteristics.	These	characteristics	must	produce	a	response	that
provides	the	information	you	need	for	developing	an	accurate	model.	The
following	list	summarizes	these	characteristics.

To	obtain	meaningful	dynamic	behavior,	you	must	test	the	system
under	conditions	similar	to	the	actual	operating	conditions.	When
you	complete	experiments	in	these	conditions,	you	identify	the
system	in	the	same	conditions	under	which	you	will	implement
the	resulting	model.	This	criterion	is	extremely	important	for
nonlinear	systems.
You	want	the	inputs	to	the	system	under	test	to	excite	the	system.
Exciting	the	system	is	dependent	on	the	spectrum	of	the	input
signal.	Specifically,	you	must	excite	the	system	with	an	input
frequency	similar	to	the	frequency	at	which	such	inputs	change
during	normal	operations.
You	want	the	amplitude	of	the	step	input	to	cover	a	wide	range	of
variations.	Therefore,	in	the	data	you	use	for	model	estimation,
you	must	cover	the	normal	operation	range	of	system	inputs,
especially	when	you	use	the	calculated	model	for	model-based
control.	To	cover	the	normal	operation	range,	you	can	combine
the	positive	and	negative	step	changes	of	different	magnitudes	in
the	system	inputs.
You	want	the	input	signal	to	deliver	as	much	input	power	to	the
system	as	possible.	However,	in	the	real-world,	you	must	ensure
that	this	input	power	stays	within	the	limits	of	the	physical	system.
The	crest	factor	Cf,	defined	by	the	following	equation,	describes
this	property.



The	smaller	the	crest	factor,	the	better	the	signal	excitation.	A
better	signal	excitation	results	in	larger	total	energy	delivery	and
enhanced	signal-to-noise	ratio.	The	theoretical	lower	bound	for
the	crest	factor	is	1.



Common	Stimulus	Signal	Types
The	system	response	data	is	dependent	on	the	physics	of	the	system
you	want	to	study.	Some	systems	tend	to	respond	faster	than	others.
Other	systems	have	large	time	constants	and	delays.	For	these	reasons,
defining	a	stimulus	signal	that	provides	enough	excitation	to	the	system	is
important.	The	system	response	must	capture	the	important	features	of
the	system	dynamics.
You	can	use	the	following	types	of	stimulus	signals	for	exciting	the
system	under	test.

Filter	Gaussian	White	Noise
Random	Binary	Signal
Pseudo-Random	Binary	Sequence
Chirp	Waveform



Filtered	Gaussian	White	Noise	(System
Identification	Toolkit)
Filtered	Gaussian	white	noise	is	a	simple	signal	that	can	generate
virtually	any	signal	spectra	in	conjunction	with	the	proper	linear	filtering.
The	theoretical	crest	factor	Cf	for	a	Gaussian	is	infinite,	but	clipping	the
Gaussian	amplitude	to	the	input	signal	limit	reduces	the	crest	factor.
Doing	so	minimally	affects	the	generated	spectrum.
The	following	figure	shows	an	example	of	Filtered	Gaussian	white	noise.



Random	Binary	Signal	(System	Identification
Toolkit)
A	random	binary	signal	is	a	random	process	that	can	assume	one	of	two
possible	values	at	any	time.	A	simple	method	of	generating	a	random
binary	signal	is	to	take	Gaussian	white	noise,	filter	it	for	the	desired
spectra	and	then	convert	it	to	a	binary	signal	by	taking	the	sign	of	the
filtered	signal.	The	desired	spectra	is	a	function	of	the	system	time
constraints.	The	appropriate	scaling	must	provide	a	meaningful	response
to	the	system,	well	above	the	noise	level.
You	can	scale	the	signal	to	any	desired	amplitude.	The	resulting	signal
has	a	minimum	crest	factor	C	f	of	1.	You	can	expect	some	differences	in
the	resulting	spectra.	Therefore,	you	must	perform	offline	analysis	of	the
signal.
Binary	signals	are	useful	for	identifying	linear	systems.	However,	the
dual-level	signal	does	not	allow	for	validation	against	nonlinearities.	If	a
system	is	nonlinear,	you	can	use	an	input	interval	corresponding	to	the
desired	operating	point.	You	might	need	to	work	with	more	than	two	input
levels	in	these	cases.	You	can	combine	multiple	binary	signals	of	different
levels	to	form	the	stimulus	signal.
The	following	figure	shows	an	example	of	a	random	binary	signal.



Pseudo-Random	Binary	Sequence	(System
Identification	Toolkit)
A	Pseudo-Random	Binary	Sequence,	also	known	as	Maximal	Length
Sequence	(MLS),	is	a	periodic,	deterministic	signal	with	properties	similar
to	white	noise.	You	often	generate	a	pseudo-random	binary	sequence
using	an	n-bit	shift	register	with	feedback	through	an	exclusive	or	(XOR)
function.	While	appearing	random,	the	sequence	actually	repeats	every
2n–1	values.
When	using	a	whole	period,	the	pseudo-random	binary	sequence	has
special	mathematical	advantages	that	make	it	attractive	as	a	stimulus
signal.	In	particular,	you	can	attribute	variations	in	response	signals
between	two	periods	of	the	stimulus	to	noise	due	to	the	periodic	nature	of
the	signal.	Also,	like	the	white	random	binary	noise,	the	pseudo-random
binary	sequence	has	a	low	crest	factor	Cf.	You	can	use	the	SI	Generate
Pseudo-Random	Binary	Sequence	VI	to	generate	a	Pseudo-Random
Binary	Sequence.
The	following	figure	shows	an	example	of	a	pseudo-random	binary
sequence.

glang.chm::/Exclusive_Or.html
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Chirp	Waveform	(System	Identification	Toolkit)
The	chirp	waveform,	also	known	as	a	swept	sine	wave,	is	a	sinusoid
waveform	with	a	frequency	that	varies	continuously	over	a	certain	range
of	values	ω	1	≤	ω	≤	ω	2	for	a	specific	period	of	time	0	≤	t	≤	T.	The
resulting	signal	has	a	crest	factor	C	f	of	 .	You	can	modify	the	signal	to
excite	specific	signal	spectra.
In	comparison	to	other	stimulus	signals,	such	as	white	noise,	a	chirp
waveform	is	easier	to	generate	and	control.	The	following	figure	shows
an	example	of	a	chirp	waveform.



Selecting	a	Sampling	Rate	(System	Identification
Toolkit)
The	time	constants	of	a	system	influence	the	selection	of	a	sampling	rate.
Sampling	at	rates	substantially	greater	than	the	system	bandwidth	leads
to	data	redundancy,	numerical	issues,	and	modeling	of	high	frequency
artifacts	likely	due	to	noise.	Sampling	at	rates	slower	than	system
dynamics	leads	to	difficulties	determining	an	accurate	system	model	and
problems	introduced	by	aliasing.	You	can	use	an	anti-aliasing	filter	to
counter	the	effects	of	aliasing.
A	common	rule	of	thumb	is	to	sample	signals	at	10	times	the	bandwidth
of	the	system	or	the	bandwidth	of	interest	for	the	model.	If	uncertainty
exists	in	the	system	bandwidth	and	a	fast	data	acquisition	environment	is
available,	you	can	sample	as	fast	as	possible,	then	use	a	digital	filter	and
decimation	to	reduce	the	sampling	rate	to	the	desired	value.	Decimation
is	a	form	of	downsampling	the	data	set.



Applying	an	Anti-Aliasing	Filter	(System
Identification	Toolkit)
According	to	the	Nyquist	sampling	theorem,	the	sampling	rate	must	be
greater	than	twice	the	maximum	frequency	component	of	the	signal	of
interest.	In	other	words,	the	maximum	frequency	of	the	input	signal	must
be	greater	than	half	the	sampling	rate.
This	criterion,	in	practice,	is	often	difficult	to	ensure.	Even	if	you	are	sure
that	the	measured	signal	has	an	upper	limit	on	its	frequency,	external
factors,	such	as	signals	from	the	powerline	interference	or	radio	stations,
can	contain	frequencies	higher	than	the	Nyquist	frequency.	These
frequencies	might	then	alias	into	the	frequency	range	of	interest	and	give
you	inaccurate	results.
To	ensure	that	you	limit	the	frequency	content	of	the	input	signal,	you	can
add	a	lowpass	filter	before	the	sampler	and	the	analog	to	digital	converter
(ADC).	A	lowpass	filter	passes	low	frequencies	and	attenuates	high
frequencies.	This	filter	is	an	anti-aliasing	filter	because	by	attenuating	the
frequencies	greater	than	the	Nyquist	frequency,	the	filter	prevents	the
sampling	of	aliased	components.	When	you	use	a	filter	before	the
sampler	and	ADC,	the	anti-aliasing	filter	is	an	analog	filter.	Using	an
analog	filter	satisfies	the	Nyquist	sampling	theorem.
Similarly,	you	can	use	a	digital	filter	to	remove	frequency	content	above
the	system	bandwidth	and	then	downsample	the	data	to	the	desired
sampling	rate.



Preprocessing	Data	from	a	System	(System
Identification	Toolkit)
You	can	use	a	number	of	preprocessing	techniques	to	ensure	that	the
incoming	data	samples	are	free	from	external	noise,	scaling	problems,
outliers,	and	other	corruptions.	These	preprocessing	techniques	include
the	following	methods:

Visually	inspecting	data
Removing	offsets	and	trends
Filtering	and	downsampling
Data	Scaling

Note		To	identify	a	system	model	in	the	frequency	domain	by	using
time-domain	data,	you	must	preprocess	the	time-domain	data	by
estimating	the	frequency	response	function	(FRF).

Validating	the	quality	of	the	data	at	each	step	in	the	preprocessing
procedure	is	important	in	ensuring	that	you	accurately	identify	a	model	in
the	later	steps	of	the	system	identification	process.



Visually	Inspecting	the	Data	(System
Identification	Toolkit)
Various	unexpected	events,	such	as	an	abnormal	pulse,	a	temporary
sensor	failure,	or	transmitter	failure,	can	corrupt	the	raw	data	samples.
These	disturbances	can	result	in	outliers,	clipped	saturation,	and/or
quantization	effects	that	severely	distort	the	resulting	model	estimation.
Visually	inspecting	the	data	is	the	best	way	to	detect	these	disturbances.
In	the	following	figure,	you	can	recognize	outliers	by	visually	inspecting
the	data.

In	the	previous	figure,	notice	that	the	data	acquired	between	85–100
seconds	is	abnormal.	When	preprocessing	data,	you	want	to	remove	all
outliers	in	the	data	set.	You	must	remove	the	outliers	manually.

Note		You	also	can	plot	the	data	waveform	and	the	spectral
density	function	of	the	data	to	discover	periodic	disturbances.

Traditionally,	you	examine	data	samples	either	in	the	time	domain	or	the
frequency	domain.	An	effective	approach	is	to	display	the	data	in	the	joint
time-frequency	domain,	which	provides	a	better	understanding	about	the
measured	signals.	Refer	to	the	Time	Frequency	Analysis	Tools	User
Manual,	available	at	ni.com/manuals,	for	more	information	about	joint
time-frequency	domain	techniques	for	data	processing.

lvanlsconcepts.chm::/Freq_Time_Domain_Diffs.html
javascript:WWW(WWW_Manuals)


Removing	Offsets	and	Trends	(System
Identification	Toolkit)
You	can	remove	offsets	and	trends	from	the	raw	data	set	by	using	the	SI
Remove	Trend	VI.	You	can	specify	whether	to	remove	offsets	or	trends
by	using	the	trend	type	input	of	this	VI.
Refer	to	the	Remove	Trend	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	remove	the	offset	or	trend	from	a	signal.
	Open	example		 	Browse	related	examples
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Removing	Offsets
An	estimated	system	model	is	a	linearized	version	of	the	plant	around	the
operating	point.	You	must	subtract	the	operating	points	from	the	raw	data
samples	because	linearization	is	done	with	respect	to	the	signal	values
relative	to	the	operating	point,	which	is	the	offset	level	of	the	signal.
The	following	figure	shows	an	example	of	removing	the	offset	level	of	a
signal.	The	goal	of	the	water	tank	is	to	keep	the	water	level	at	six	meters.
The	Water	level	record	graph	shows	that	the	water	level	changes	in	the
vicinity	of	the	operating	point	of	six	meters.	If	you	use	the	water	level
record	for	system	identification,	you	must	remove	the	six	meter	operating
point	value.

The	SI	Remove	Trend	VI	enables	you	to	remove	the	offset	from	the	raw
data	set.	You	must	set	the	trend	type	to	mean	to	use	this	preprocessing
technique.



Removing	Trends
External	influences	might	add	some	low	frequency	or	periodic
components	to	the	data.	These	additional	components	are	not	relevant	to
the	specific	modeling	problem.	Examples	of	external	influences	include
variations	due	to	the	24-hour	day	cycle	in	power	plants,	seasonal
influences	in	biological	and	economical	systems,	thermal	expansion	in
rolling	mills,	50	or	60	Hz	interference	in	power	lines,	and	so	on.	The
amplitude	of	these	trends	can	be	large	and	can	corrupt	the	results	of
signal	analysis	and	parametric	identification	algorithms.
The	SI	Remove	Trend	VI	provides	a	way	for	you	to	remove	these
external	influences,	or	trends,	from	the	raw	data	set.	You	must	set	the
trend	type	to	linear	to	use	this	preprocessing	technique.



Filtering	and	Downsampling	(System
Identification	Toolkit)
You	might	be	interested	in	only	a	specific	frequency	range	of	the
frequency	response	for	a	model.	You	can	filter	and	enhance	the	data	in
the	frequency	range	to	improve	the	fit	in	the	regions	of	interest.	If	the
sampling	frequency	is	much	higher	than	the	bandwidth	of	the	system,	the
sampling	frequency	might	substantially	increase	the	computation	burden
for	complicated	identification	algorithms.	You	can	decrease	the	sampling
frequency	by	taking	every	n	th	sample	to	construct	a	new	downsampled
data	set.	Applying	an	anti-alias	filter	on	the	data	before	downsampling
prevents	corruption	of	the	downsampled	data	set.
You	can	use	the	SI	Lowpass	Filter	VI	or	the	SI	Bandpass	Filter	VI	to
apply	a	lowpass	or	bandpass	filter,	respectively,	to	the	data	from	the
system.	You	then	can	use	the	SI	Down	Sampling	VI	to	reduce	the
number	of	samples	in	the	data	set.
Refer	to	the	Down	Sampling	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	use	the	SI	Down	Sampling	VI	to	reduce	the	sampling	rate	of	a
signal.
	Open	example		 	Browse	related	examples
After	preprocessing	the	data	you	acquired	from	a	dynamic	system,	the
result	is	a	data	set	that	you	can	use	to	estimate	a	model	that	reflects	the
system	dynamics.
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Data	Scaling	(System	Identification	Toolkit)
Multiple-input	multiple-output	(MIMO)	systems	commonly	have	inputs
and	outputs	of	different	amplitude	ranges.	This	diversity	can	result	in	an
ill-conditioned	model	estimation,	which	reduces	the	accuracy	of	the
model.	For	example,	consider	the	valves	A	and	B	in	the	following	figure.

Valves	A	and	B	operate	between	0–100%	and	50–60%,	respectively.	The
pressure	in	the	respective	stream	lines	are	PA	and	PB.	If	you	assume	that
PB	can	be	much	larger	than	PA,	you	might	need	to	normalize	the	range	of
operation	of	valve	B	for	numerical	robustness.	You	can	use	the	following
relationship	to	normalize	the	range	of	operation.

The	SI	Normalize	VI	ensures	that	all	stimulus	and	response	signals	have
a	zero	mean	and	unit	variance	over	the	sample	data	range	used	for
model	estimation.	This	process	standardizes	the	range	of	the	equation
for	all	signals	considered	for	model	estimation.	This	data	preprocessing
step	considers	all	inputs	and	outputs	equally	important	from	the
numerical	calculation	viewpoint.
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Estimating	Models	(System	Identification
Toolkit)
After	acquiring	and	preprocessing	the	data	from	a	linear	time-invariant
system,	the	next	step	in	the	system	identification	process	is	estimating
the	model.	You	can	use	the	LabVIEW	System	Identification	Toolkit	to
estimate	models	by	using	any	of	the	following	methods:

Nonparametric
Parametric
Partially	Known
Closed-Loop	Systems
Recursive
Frequency-Domain



Nonparametric	Model	Estimation	Methods
(System	Identification	Toolkit)
You	can	describe	linear	time-invariant	models	with	transfer	functions	or
by	using	the	impulse	response	or	frequency	response	of	the	system.	The
impulse	response	and	frequency	response	are	two	ways	of	estimating	a
nonparametric	model.	The	impulse	response	reveals	the	time-domain
properties	of	the	system,	such	as	time	delay	and	damping.	The	frequency
response	reveals	the	frequency-domain	properties,	such	as	the	natural
frequency	of	the	system.
Nonparametric	model	estimation	is	more	efficient,	but	often	less
accurate,	than	parametric	estimation.	However,	you	can	use	a
nonparametric	model	estimation	method	to	obtain	useful	information
about	a	system	before	applying	parametric	model	estimation.	For
example,	you	can	use	nonparametric	model	estimation	to	determine
whether	the	system	requires	preconditioning,	what	the	time	delay	of	the
system	is,	what	model	order	to	select,	and	so	on.	You	also	can	use
nonparametric	model	estimation	to	verify	parametric	models.	For
example,	you	can	compare	the	Bode	plot	of	a	parametric	model	with	the
frequency	response	of	the	nonparametric	model.
You	can	use	the	least	squares	and	correlation	analysis	methods	to
estimate	the	impulse	response	of	a	dynamic	system.	You	can	use	the
spectral	analysis	method	to	estimate	the	frequency	response	of	a
dynamic	system.
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Impulse	Response	(System	Identification
Toolkit)
An	impulse	input,	as	shown	in	the	following	figure,	to	a	dynamic	system	is
defined	differently	depending	on	whether	the	system	is	discrete	or
continuous.	For	a	continuous	dynamic	system,	an	impulse	input,	also
known	as	the	Dirac	delta	function,	is	a	unit-area	signal	with	an	infinite
amplitude	and	infinitely	small	duration	occurring	at	a	specified	time.	At	all
other	times,	the	input	signal	value	is	zero.	For	a	discrete	system,	an
impulse	is	a	physical	pulse	that	has	unit	amplitude	at	the	first	sample
period	and	zero	amplitude	for	all	other	times.

Because	the	impulse	signal	excites	all	frequencies	and	the	duration	of
this	signal	is	infinitely	small,	you	can	see	the	natural	response	of	the
system.
The	following	figure	shows	that	the	impulse	response	of	a	linear	time-
invariant	system	is	equal	to	the	output	y(k)	of	the	system	when	you	apply
an	impulse	signal	to	the	input	u(k)	of	the	system.	The	impulse	response
provides	the	complete	characteristic	information	of	a	system.

If	you	know	the	impulse	response	h(n)	and	the	input	signal	u(k)	of	a
system,	then	you	can	compute	the	output	y(k)	of	the	system	by	using	the
following	equation.



where	e(k)	is	the	disturbance	of	the	system.
According	to	impulse	response	theory,	when	you	apply	a	Dirac	delta
function	to	a	system,	the	output	of	the	system	is	the	impulse	response.
You	can	think	of	the	Dirac	delta	function	δ(x)	as	a	function	that	has	the
value	of	infinity	for	x	=	0,	the	value	zero	elsewhere,	and	a	total	integral	of
one.	However,	generating	an	ideal	Dirac	delta	function	is	unrealistic.
If	you	apply	an	approximate	impulse	with	a	small	duration	to	the	input	of
a	system,	the	output	of	the	system	is	the	approximation	of	the	impulse
response	of	the	system.	The	smaller	the	duration	of	the	impulse,	the
closer	the	output	of	the	system	is	to	the	true	impulse	response.	However,
an	impulse	carries	little	energy	and	might	not	excite	the	system,	and
noise	might	corrupt	the	output	of	the	system.	An	impulse	with	a	large
amplitude	and	duration	can	improve	the	signal-to-noise	ratio	of	the	output
signal.	However,	a	large	amplitude	impulse	can	damage	the	hardware	of
the	system,	and	a	long-duration	impulse	leads	to	inaccuracy.	For	these
reasons,	you	can	use	the	least	squares	and	correlation	analysis	methods
to	estimate	the	impulse	response.



Applications	of	the	Impulse	Response
The	impulse	response	not	only	indicates	the	stability	and	causality	of	the
system	if	feedback	exists	in	the	system,	but	also	provides	information	on
properties	such	as	the	damping,	dominating	time	constant,	and	time
delay.	Some	of	this	information,	such	as	the	time	delay,	is	useful	for
parametric	model	estimation.	Therefore,	you	can	use	nonparametric
impulse	response	estimation	before	parametric	model	estimation	to	help
estimate	the	parameters.	You	can	use	the	SI	Estimate	Impulse	Response
VI	to	estimate	the	impulse	response	and	determine	the	time	delay	of	a
system	by	using	the	correlation	analysis	method.
The	following	figure	shows	the	front	panel	of	a	VI	that	simulates	a	system
defined	by	the	following	equation.
y(k)	=	0.2u(k	–	2)	+	0.8u(k	–	3)	+	0.3u(k	–	4)

The	following	figure	shows	the	block	diagram	of	this	VI.
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In	the	previous	figure,	the	two	initial	values	of	the	estimated	impulse
response	are	smaller	than	the	confidence	level.	You	can	have	99.0%
confidence	that	values	less	than	the	confidence	level	are	insignificant,
and	you	can	consider	those	values	to	be	equal	to	0.	Therefore,	you	can
conclude	that	the	time	delay	of	the	system	is	2	because	the	beginning	of
the	first	two	values	of	the	impulse	response	are	zero.
Another	common	application	of	the	impulse	response	is	to	detect
feedback	in	systems	by	using	the	least	squares	method.	If	feedback
exists	in	a	system,	the	impulse	response	of	the	system	becomes
significantly	large	at	negative	lags	and	the	correlation	between	the	input
signal	and	disturbance	e(k)	is	nonzero.	The	correlation	analysis	method
assumes	the	input	signal	and	the	disturbance	e(k)	are	independent	from
each	other.	Thus,	this	method	cannot	estimate	accurately	the	impulse
response	of	the	system	that	contains	feedback.	Only	the	least	squares
method	can	provide	reliable	results.	You	can	use	the	SI	Detect	Feedback
VI	to	estimate	the	impulse	response	of	a	system	and	determine	whether
feedback	exists	in	the	system.
Refer	to	the	Feedback	Detection	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	use	the	SI	Detect	Feedback	VI	to	detect	feedback	in	a	system.
	Open	example		 	Browse	related	examples
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Least	Squares	Method	(System	Identification
Toolkit)
If	both	the	input	signal	u(k)	and	output	signal	y(k)	of	a	system	are
available,	you	can	obtain	the	value	of	the	impulse	response	h(k).	This
method	does	not	require	a	Dirac	delta	function	as	the	input	signal	of	the
system.	Instead,	you	can	use	a	common	stimulus	signal	and	the
corresponding	response	signal	from	the	system	to	compute	the	impulse
response	mathematically.	You	can	obtain	the	impulse	response	for	both
positive	and	negative	lags.
The	Least	Squares	instance	of	the	SI	Estimate	Impulse	Response	VI
implements	the	least	squares	method	to	obtain	the	value	of	h(k).	Refer	to
the	LabVIEW	System	Identification	Toolkit	Algorithm	References	manual
for	more	information	about	the	least	squares	method.
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Correlation	Analysis	Method	(System
Identification	Toolkit)
The	correlation	analysis	method	uses	the	cross	correlation	between	the
input	and	output	signals	as	an	estimation	of	the	impulse	response,	as
shown	by	the	following	equation:

The	input	signal	must	be	zero-mean	white	noise	with	a	spectral	density
that	is	equally	distributed	across	the	whole	frequency	range.	The	SI
Estimate	Impulse	Response	VI	can	prewhiten	input	signals	that	are	not
white	noise.
Assuming	the	input	u(k)	of	the	system	is	a	stationary,	stochastic	process
and	statistically	independent	of	the	disturbance	e(k),	the	following
equation	is	true.

Ruy	represents	the	cross-correlation	function	between	the	stimulus	signal
u(k)	and	the	response	signal	y(k),	as	defined	by	the	following	equation.

Ruu	represents	the	autocorrelation	of	the	stimulus	signal	u(k),	as	defined
by	the	following	equation.

N	is	the	number	of	data	points.	If	the	stimulus	signal	is	a	zero-mean	white
noise	signal,	the	autocorrelation	function	reduces	to	the	following
equation.

where	σu	is	the	standard	deviation	of	the	stimulus	white	noise	and	δ(τ)	is
the	Dirac	function.	Substituting	Ruu(τ)	into	the	cross-correlation	function
between	the	stimulus	signal	u(k)	and	the	response	signal	y(k)	yields	the
following	equation.
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You	can	rearrange	the	terms	of	this	equation	to	obtain	the	following
equation	defining	the	impulse	response	h(k).



Prewhitening
The	correlation	analysis	method	that	estimates	the	impulse	response	is
useful	only	when	the	input	signal	u(k)	is	a	zero-mean	white	noise	signal.
However,	the	input	signal	is	not	white	noise	in	most	real-world
applications.	Therefore,	you	must	precondition	the	input	u(k)	and	output
y(k)	signals	before	you	apply	the	correlation	analysis	method.
Prewhitening	is	a	preconditioning	technique	for	the	correlation	analysis
method.	Prewhitening	involves	applying	a	filter	to	the	input	signal	u(k)
and	the	output	signal	y(k)	to	obtain	a	prewhitened	input	signal	u'(k)	and	a
prewhitened	output	signal	y'(k).	If	the	filter	is	well	designed	such	that	u'(k)
is	white	noise,	you	can	perform	a	correlation	analysis	on	u'(k)	and	y'(k)	to
estimate	the	impulse	response.	The	impulse	response	that	you	estimate
with	u'(k)	and	y'(k)	is	equivalent	to	the	impulse	response	that	you
estimate	with	u(k)	and	y(k)	because	the	following	equation	remains	true.

You	now	must	design	the	prewhitening	filter	so	that	u'(k)	is	white	noise.
The	SI	Estimate	Impulse	Response	VI	uses	an	AR	model	for	this
purpose.



Accuracy	of	the	Impulse	Response
The	accuracy	of	the	impulse	response	estimation	using	the	correlation
analysis	method	depends	on	the	performance	of	the	prewhitening	filter,
specifically	whether	the	filter	produces	a	white	noise	result	u'(k)	for	u(k).
The	performance	of	the	filter	depends	on	the	signal	and	the	AR	order	of
the	filter.	The	rule	of	thumb	for	selecting	the	AR	order	is	trial-and-error.	If
u'(k)	is	not	white	enough,	the	result	from	the	correlation	method	is	not
reliable.	You	can	increase	the	AR	order	to	improve	the	accuracy	of	the
impulse	response.
The	SI	Estimate	Impulse	Response	VI	provides	the	outputs	whiteness
test	and	rejected?	to	indicate	whether	you	have	properly	set	the	AR
order	and	consequently	whether	the	impulse	response	estimation	is
reliable.	The	following	example	shows	how	the	whiteness	property	of	the
input	signal	affects	the	correlation	analysis	method	and	how	to	use	the
outputs	whiteness	test	and	rejected?	to	justify	the	impulse	response
estimation.
The	following	figure	shows	the	front	panel	of	a	VI	that	simulates	a	system
defined	by	the	following	equation.
y(k)	=	0.2u(k)	+	0.8u(k	–	1)	+	0.3u(k	–	2)



The	following	figure	shows	the	block	diagram	of	this	VI.	This	example	VI
demonstrates	the	accuracy	of	the	impulse	response	estimation	in	the
following	circumstances:

Zero-mean,	pseudo-white	noise	input	signal	without	prewhitening
Zero-mean,	pseudo-white	noise	input	signal	with	prewhitening
Non-zero-mean,	white	noise	input	signal	without	prewhitening
Non-zero-mean	white	noise	input	signal	with	prewhitening



In	this	example	VI,	the	is	white	noise?	checkbox	determines	whether
the	SI	Estimate	Impulse	Response	VI	generates	zero-mean	white	noise
as	an	input	to	the	system.	When	you	place	a	checkmark	in	the	is	white
noise?	checkbox	and	run	the	VI,	the	generated	input	signal	is	zero-mean
white	noise,	and	the	estimated	impulse	response	closely	approximates
the	true	impulse	response.	When	you	do	not	place	a	checkmark	in	the	is
white	noise?	checkbox,	the	generated	input	signal	is	not	zero-mean
white	noise.	As	a	result,	the	estimated	impulse	response	is	different	from
the	true	impulse	response.	These	results	indicate	that	the	correlation
analysis	method	is	accurate	and	reliable	when	the	input	signal	is	zero-
mean	white	noise.
The	AR	order	box	determines	the	level	of	prewhitening.	When	AR	order
equals	0,	the	SI	Estimate	Impulse	Response	VI	does	not	apply
prewhitening	to	the	system.	When	AR	order	is	small	and	you	do	not
place	a	checkmark	in	the	is	white	noise?	checkbox,	the	variance	of	the
impulse	response	is	large	because	the	input	signal	is	not	always	white
noise.	The	greater	the	value	of	AR	order,	the	better	the	VI	whitens	the
signal,	but	the	more	computation	time	and	memory	the	VI	requires.
The	whiteness	test	indicator	of	this	VI	shows	whether	the	input	is	zero-
mean	white	noise.	This	indicator	displays	the	autocorrelation	of	the
stimulus	signal	after	whitening.	If	most	of	the	autocorrelation	is	within	the
confidence	region,	the	input	signal	is	well	prewhitened,	and	the
estimation	of	the	impulse	response	is	reliable.	If	the	autocorrelation	is
outside	of	the	confidence	region,	the	estimation	is	unreliable.	When	the
estimation	is	unreliable,	rejected?	is	TRUE	and	indicates	a	5%	risk	of
rejecting	an	impulse	response	estimation	that	might	be	reliable.
If	you	apply	proper	prewhitening,	the	correlation	analysis	method	is



accurate	and	reliable	for	any	input	signal.	To	obtain	the	best	prewhitening
settings,	start	with	a	small	AR	order	value	such	as	2	and	observe	the
whiteness	test	and	rejected?	outputs	of	the	SI	Estimate	Impulse
Response	VI.	If	necessary,	increase	the	value	of	AR	order.	Generally,
the	smaller	the	bandwidth	of	the	input	signal,	the	larger	the	AR	order	you
need.	However,	avoid	setting	the	value	of	AR	order	greater	than	500.



Selecting	an	Impulse	Response	Length	(System
Identification	Toolkit)
Theoretically,	the	length	of	the	impulse	response	might	be	infinite.	For
some	systems,	the	impulse	response	quickly	reaches	zero,	and	the
number	of	nonzero	points	is	finite.	For	other	systems,	the	impulse
response	never	reaches	zero.	Realistically,	you	can	obtain	only	the	first	N
points	of	the	impulse	response	due	to	limited	signal	length	and	limited
memory	size.	Therefore,	the	SI	Estimate	Impulse	Response	VI	has	inputs
to	specify	how	many	points	of	the	impulse	response	to	observe.	With	the
least	squares	method,	you	must	ensure	the	sum	of	num	of	points	(t<0)
and	num	of	points	(t>=0)	is	no	larger	than	the	signal	length.	With	the
correlation	analysis	method,	you	can	set	num	of	points	to	be	as	large	as
the	signal	length.
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Frequency	Response	(System	Identification
Toolkit)
Theoretically,	the	results	from	impulse	response	estimation	and	the
results	from	frequency	response	estimation	are	equivalent.	For	example,
the	Fourier	transform	of	the	impulse	response	h(n),	which	you	can
compute	using	impulse	response	estimation,	equals	the	frequency
response	G(ejω).	However,	this	equivalence	does	not	hold	in	most	real-
world	applications	because	of	different	preprocessing	schemes	in
impulse	response	estimation	and	frequency	response	estimation.
The	frequency	response	provides	the	complete	frequency-domain
characteristics	of	the	system,	including	the	passband	and	the	natural
frequency	of	the	system.	A	sinusoidal	input	signal	has	the	following
general	form:

u(t)	=	sin(ω0t)
The	response	of	a	linear	time-invariant	system	to	a	sinusoidal	input	also
is	a	sinusoidal	signal.	However,	the	response	to	the	sinusoidal	input
might	have	a	different	magnitude	and	phase	than	the	sinusoidal	signal,
as	shown	in	the	following	equation.
y(t)	=	bsin(ω0t	+	θ)

where	b	and	θ	are	the	magnitude	and	phase,	respectively,	of	the
frequency	response	of	the	system	to	an	input	sinusoidal	frequency	ωo.	If
you	apply	input	signals	with	a	number	of	sinusoids	at	different
frequencies,	you	can	obtain	an	estimate	of	the	frequency	response	G(ω)
of	the	system	at	those	frequencies.	The	frequency	response	is	a
complex-valued	sequence.	The	magnitude	of	G(ω)	is	the	magnitude
response	of	the	system	and	the	phase	of	G(ω)	is	the	phase	response	of
the	system.	This	method	of	obtaining	the	frequency	response	is
straightforward	but	takes	a	long	time	to	complete	and	is	sensitive	to
noise.	For	these	reasons,	the	SI	Estimate	Frequency	Response	VI	uses
the	spectral	analysis	method	to	estimate	the	frequency	response	function
(FRF).

Note		You	can	use	the	SI	Estimate	FRF	VI	to	estimate	the	FRF	if
you	have	only	time-domain	data	available.
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Applications	of	the	Frequency	Response
The	frequency	response	gives	the	characteristics	of	the	system	in	the
frequency	domain.	You	can	use	the	frequency	response	to	obtain	useful
information	before	applying	parametric	estimation.	For	example,	you	can
use	the	frequency	response	to	determine	whether	you	must	pre-filter	the
signals	or	what	the	model	order	of	the	system	is.	You	also	can	use
nonparametric	frequency	response	to	verify	parametric	model	estimation
results	by	comparing	the	frequency	response	of	the	parametric	model
with	the	nonparametric	frequency	response.
One	example	of	a	real-world	application	of	the	frequency	response	is	with
the	flexible	arm,	as	shown	in	the	following	figure.	The	input	of	this	system
is	the	reaction	torque	of	the	structure	on	the	ground.	This	input	is	a	multi-
sine	wave	with	200	frequency	points	equally	spaced	over	the	frequency
band	from	0.122	Hz	to	24.4	Hz.	The	output	of	this	system	is	the
acceleration	of	the	flexible	arm.	The	frequency	response	of	this	system	is
not	significant	outside	of	the	range	of	interest,	which	is	the	frequency
band	of	the	input	signal,	or	0.122	Hz	to	24.4	Hz.	However,	notice	that	the
magnitude	response	has	a	peak	around	42	Hz.	The	peak	around	42	Hz
may	be	the	result	of	noise,	or	nonlinearity,	or	another	input	source.	You
can	use	lowpass	filtering	to	remove	the	42	Hz	peak	before	applying
parametric	estimation.
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Spectral	Analysis	Method	(System	Identification
Toolkit)
You	can	use	the	spectral	analysis	method	with	any	input	signal.	However,
the	frequency	bandwidth	of	the	input	signal	must	cover	the	range	of
interest.
Because	the	frequency	response	is	the	Fourier	transform	of	the	impulse
response,	applying	the	Fourier	transform	to	both	sides	of	the	cross-
correlation	function	yields	the	following	equation.

Φuy(ejω)	=	Φuu(ejω)G(ejω)

G(ejω)	is	the	frequency	response	of	the	system.	Φuu(ejω)	is	the	auto-
spectral	density	of	the	stimulus	signal.	Φuy(ejω)	is	the	cross-spectral
density	between	the	stimulus	signal	u(k)	and	the	response	signal	y(k).
You	then	can	use	the	following	equation	to	compute	the	frequency
response	G(ejω).

You	can	compute	Φuu(ejω)	and	Φuy(ejω)	by	applying	a	fast	Fourier
transform	(FFT)	to	the	autocorrelation	function	Ruu	and	the	cross-
correlation	function	Ruy,	respectively.	The	number	of	data	points	you
need	to	compute	the	autocorrelation	function	Ruu	and	the	cross-
correlation	function	Ruy	decreases	as	the	lag	τ	increases.	Therefore,	Ruu
and	Ruy	become	inaccurate	for	a	large	lag	τ.	In	this	situation,	you	can
apply	a	lag	window	to	counter	the	effects	of	a	large	lag	τ	and	improve	the
accuracy	of	the	frequency	response	estimation.
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Applying	a	Lag	Window	(System	Identification
Toolkit)
When	computing	Φuu(ejω)	and	Φuy(ejω)	to	obtain	the	frequency	response
G(ejω),	you	can	apply	a	lag	window	ω(τ)	to	the	autocorrelation	function
Ruu	and	the	cross-correlation	function	Ruy	before	performing	the	FFT
operation.	Applying	a	lag	window	improves	the	accuracy	of	the	frequency
response	estimation,	according	to	the	following	equations.

The	lag	window	approaches	zero	when	the	lag	τ	is	large.	The	window
weighs	out	the	points	of	Ruu	and	Ruy	with	large	lag	τ,	thereby	improving
the	accuracy	of	the	frequency	response	estimation.	The	SI	Estimate
Frequency	Response	VI	uses	a	Hanning	window	as	the	lag	window.

The	frequency	response	with	the	lag	window,	G'(ejω),	is	equivalent	to	the
moving	average	version	of	the	frequency	response	without	the	lag
window,	G(ejω).	The	average	smooths	the	frequency	response,	but	the
smooth	frequency	response	also	can	deviate	from	the	true	frequency
response.	Adjusting	the	length	of	the	lag	window	can	balance	the	trade-
off	between	variance	and	bias	of	the	frequency	response	estimation.	The
larger	the	length	of	the	lag	window,	the	fewer	points	of	G(ejω)	the	SI
Estimate	Frequency	Response	VI	averages	to	compute	G'(ejω),	and
hence	the	larger	the	variance	and	the	smaller	the	bias	of	the	frequency
estimation.
The	following	example	demonstrates	how	the	length	of	the	lag	window
affects	the	frequency	response	estimation.	The	following	figure	shows	the
front	panel	of	a	VI	that	simulates	a	system	defined	by	the	following
equation.
y(k)	–	1.46y(k	–	1)	+	2.5y(k	–	2)	–	1.46y(k	–	3)	+	yk	–	4	=	u(k)	+	0.45u(k	–
1)	+	u(k	–	2)

lvsysid.chm::/Estimate_Freq_Response.html


The	following	figure	shows	the	block	diagram	of	this	VI.

In	this	example	VI,	the	input	signal	u(k)	is	a	swept	sine	wave	whose
normalized	frequency	is	from	0	to	0.5	Hz.	The	number	of	data	points	in
the	input	signal	is	4096.	The	length	of	the	lag	window	therefore	must	be
less	than	or	equal	to	4096.	The	following	figures	show	the	resulting
frequency	responses	when	the	window	length	is	4096	and	64,
respectively.



The	frequency	response	curve	is	smoother	and	the	variance	is	smaller
when	the	length	of	the	lag	window	is	small.	However,	when	the	length	of
the	lag	window	is	too	small,	you	cannot	distinguish	between	the	two	close
peaks	in	the	frequency	response,	as	shown	in	the	previous	figure	with
window	length	equal	to	64.	When	the	length	of	the	lag	window	is	large,
the	SI	Estimate	Frequency	Response	VI	accurately	estimates	the	peaks,
as	shown	in	the	previous	figure	with	window	length	equal	to	4096.	The
bias	is	small	with	a	large	lag	window,	but	the	variance	of	the	estimated
frequency	response	is	large.
Setting	the	length	of	the	lag	window	to	5–10%	of	the	number	of	data
points	when	estimating	the	frequency	response	often	results	in	a	good
trade-off	between	the	bias	and	variance.	The	length	also	depends	on	the
signals,	the	properties	of	the	system,	and	the	purpose	of	application.	For



example,	to	identify	the	passband	of	a	system,	use	a	smaller	lag	window.
To	identify	the	dynamic	properties	of	a	system,	such	as	its	natural
frequency,	use	a	larger	lag	window.



Parametric	Model	Estimation	Methods	(System
Identification	Toolkit)
Parametric	models	describe	systems	in	terms	of	difference	or	differential
equations,	depending	on	whether	a	system	is	represented	by	a	discrete
or	continuous	model.	Compared	to	nonparametric	models,	parametric
models	might	provide	a	more	accurate	estimation	if	you	have	prior
knowledge	about	the	system	dynamics	to	determine	model	orders,	time
delays,	and	so	on.
The	following	table	lists	the	representations	of	parametric	models	you
can	develop	by	using	the	LabVIEW	System	Identification	Toolkit.	Each
representation	supports	one	or	more	input-output	configurations:	single-
input	single-output	(SISO),	multiple-input	single-output	(MISO),	and/or
multiple-input	multiple-output	(MIMO).

SISO MISO MIMO
General-Linear X X
Autoregressive	(AR) X
Autoregressive	with	exogenous	terms	(ARX) X X X
Autoregressive	moving	average	with	exogenous
terms	(ARMAX)

X X

Box-Jenkins X X
Output-Error X X
Transfer	Function X X
Zero-Pole-Gain X X
State-Space X X X



General-Linear	Model	Definitions	(System
Identification	Toolkit)
Generally,	you	can	describe	a	discrete	system	by	using	the	general-linear
polynomial	model.	This	model	provides	flexibility	for	both	system
dynamics	and	stochastic	dynamics.
Use	the	SI	Estimate	General	Linear	Model	VI	to	estimate	general-linear
polynomial	models.	The	following	equation	describes	this	model.

y(k)	=	z	–n	G(z	–1,	θ)u(k)	+	H(z	–1,	θ)e(k)

where u(k)	and	y(k)	are	the	input	and	output	of	the	system,	respectively
e(k)	is	the	disturbance	of	the	system	which	usually	is	zero-mean
white	noise

G(z–1,	θ)	is	the	transfer	function	of	the	deterministic	part	of	the
system

H(z–1,	θ)	is	the	transfer	function	of	the	stochastic	part	of	the
system

The	deterministic	transfer	function	specifies	the	relationship	between	the
output	and	the	input	signal.	The	stochastic	transfer	function	specifies	how
the	random	disturbance	affects	the	output	signal.	Often	the	deterministic
and	stochastic	parts	of	a	system	are	referred	to	as	system	dynamics	and
stochastic	dynamics,	respectively.

The	term	z	–1	is	the	backward	shift	operator,	which	is	defined	by	the
following	equations:

z	–1	x(k)	=	x(k	-	1)

z	–2	x(k)	=	x(k	-	2)
...

z	–n	x(k)	=	x(k	-	n)

z	–n	defines	the	number	of	delay	samples	between	the	input	and	the
output.

G(z	–1,	θ)u(k)	and	H(z	–1,	θ)e(k)	are	rational	polynomials	as	defined	by
the	following	equations:
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The	vector	θ	is	the	set	of	model	parameters.	The	following	equations	do
not	display	θ	to	make	the	equations	easier	to	read.
The	following	equation	shows	the	form	of	the	general-linear	model.

where y(k)	is	the	system	outputs
u(k)	is	the	system	inputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

A(z),	B(z),	C(z),	D(z),	and	F(z)	are	polynomial	with	respect	to	the
backward	shift	operator	z	-1	and	defined	by	the	following	equations.

The	following	figure	depicts	the	signal	flow	of	a	general-linear	model.

where u	is	the	system	inputs
e	is	the	system	disturbance
y	is	the	system	outputs

Setting	one	or	more	of	A(z),	C(z),	D(z),	and	F(z)	equal	to	1	can	create
simpler	models	such	as	autoregressive	with	exogenous	terms	(ARX),



autoregressive-moving	average	with	exogenous	terms	(ARMAX),	output-
error,	and	Box-Jenkins	models,	which	you	commonly	use	in	real-world
applications.



SISO
The	following	are	the	time	domain	equations	for	the	general-linear	SISO
model.

where kf	is	the	F	order

kb	is	the	B	order

kc	is	the	C	order

kd	is	the	D	order

ka	is	the	A	order

u(k)	is	the	system	inputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

Refer	to	the	Estimate	Polynomial	Models	VI	in	the
labview\examples\System	Identification\Getting	Started\Parametric
Estimation.llb	for	an	example	that	demonstrates	how	to	estimate	general-
linear	polynomial	models	for	an	unknown	system.
	Open	example		 	Browse	related	examples

javascript:openVI('examples%5C%5CSystem%20Identification%5C%5CGetting%20Started%5C%5CParametric%20Estimation.llb%5C%5CEstimate%20Polynomial%20Models.vi');
javascript:findExamples(8185);


AR	Model	Definitions	(System	Identification
Toolkit)
The	autoregressive	(AR)	model	does	not	include	the	dynamics	between
the	system	input	and	output.	Therefore,	the	AR	model	is	more	suitable	for
representing	signals	rather	than	a	system	because	a	system	generally
has	an	input	and	an	output.	Time	series	analysis	methods,	such	as
power	spectrum	envelope	estimation,	prewhitening,	and	linear	prediction
coding,	commonly	use	the	AR	model.	Refer	to	the	Time	Series	Analysis
Tools	User	Manual	at	ni.com/manuals	for	more	information	about	time
series	analysis	methods.
Use	the	SI	Estimate	AR	Model	VI	to	estimate	AR	system	models.	The
following	equation	shows	the	form	of	the	AR	model.
A(z)y(k)	=	e(k)

where y(k)	is	the	system	outputs
e(k)	is	the	system	disturbance

A(z)	is	polynomial	with	respect	to	the	backward	shift	operator	z	–1	and
defined	by	the	following	equation.

The	following	figure	depicts	the	signal	flow	of	an	AR	system	model.

where e	is	the	system	disturbance
y	is	the	system	outputs

If	you	consider	A(z)	to	be	a	filter,	A(z)y(k)	is	the	filtering	of	A(z)	on	the
signal	y(k).	The	result	of	the	filtering	is	white	noise	e(k),	as	shown	in	the
AR	model	equation.	Hence,	the	filter	A(z)	also	is	known	as	the
prewhitening	filter.	From	the	frequency-domain	standpoint,	the
prewhitening	filter	A(z)	suppresses	the	spectrum	at	frequencies	where
the	magnitude	of	the	spectrum	is	large.	Suppressing	the	high-magnitude
frequencies	results	in	a	flat	spectrum.
As	shown	in	the	AR	model	equation,	if	you	know	the	AR	coefficients	A(z)
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and	the	noise	e(k),	you	can	reconstruct	the	signal	y(k).	A(z)	and	e(k)
completely	characterize	a	signal.	A(z)	normally	has	a	small	number	of
coefficients.	e(k)	has	a	small	dynamic	range	and	requires	a	smaller
number	of	bits	for	encoding.	Therefore,	you	can	use	the	AR	model	for
compression	purposes	in	a	process	known	as	linear	prediction	coding
(LPC).	Speech	and	vibration	signal	processing	methods,	such	as
compression	and	pattern	recognition,	commonly	use	LPC.	You	also	can
use	A(z)	and	e(k)	to	estimate	the	power	spectrum	of	the	signal	y(k).



ARX	Model	Definitions	(System	Identification
Toolkit)
When	C(z),	D(z),	and	F(z)	equal	1,	the	general-linear	polynomial	model
reduces	to	an	autoregressive	with	exogenous	terms	(ARX)	model.	This
model	is	the	simplest	model	that	incorporates	the	stimulus	signal.
However,	the	ARX	model	captures	some	of	the	stochastic	dynamics	as
part	of	the	system	dynamics.	In	this	model,	the	transfer	function	of	the
deterministic	part	G(z	–1,	θ)	of	the	system	and	the	transfer	function	of	the
stochastic	part	H(z	–1,	θ)	of	the	system	have	the	same	set	of	poles.	This
coupling	can	be	unrealistic.	The	system	dynamics	and	stochastic
dynamics	of	a	system	do	not	share	the	same	set	of	poles	all	the	time.
You	can	reduce	this	disadvantage	if	the	signal-to-noise	ratio	is	high.
When	the	disturbance	e(k)	of	a	system	is	not	white	noise,	the	coupling
between	the	deterministic	and	stochastic	dynamics	can	bias	the
estimation	of	the	ARX	model.	You	can	set	the	model	order	higher	than
the	actual	model	order	to	minimize	the	estimation	error,	especially	when
the	signal-to-noise	ratio	is	low.	However,	increasing	the	model	order	can
change	some	dynamic	characteristics	of	the	model,	such	as	the	stability
of	the	model.
Use	the	SI	Estimate	ARX	Model	VI	to	estimate	ARX	models.	The
identification	method	for	the	ARX	model	is	the	least	squares	method,
which	is	a	special	case	of	the	prediction	error	method.	The	least	squares
method	is	the	most	efficient	polynomial	estimation	method	because	this
method	solves	linear	regression	equations	in	analytic	form.	Moreover,	the
solution	is	unique.	Refer	to	the	LabVIEW	System	Identification	Toolkit
Algorithm	References	manual	for	more	information	about	the	least
squares	and	prediction	error	methods.
The	following	equation	shows	the	form	of	the	ARX	model.
A(z)y(k)	=	B(z)u(k	-	n)	+	e(k)
where u(k)	is	the	system	inputs

y(k)	is	the	system	outputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

A(z)	and	B(z)	are	polynomial	with	respect	to	the	backward	shift	operator	z
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–1	and	defined	by	the	following	equations.

Note		The	backward	shift	operator	makes	z	–n	u(k)	=	u(k	-	n).

The	following	figure	depicts	the	signal	flow	of	an	ARX	model.

where u	is	the	system	inputs
e	is	the	system	disturbance
y	is	the	system	outputs



SISO
The	following	is	the	time	domain	equation	for	the	ARX	SISO	model.

where kA	order

kb	is	the	B	order

n	is	the	system	delay
e(k)	is	the	system	disturbance

Refer	to	the	Estimate	Polynomial	Models	VI	in	the
labview\examples\System	Identification\Getting	Started\Parametric
Estimation.llb	for	an	example	that	demonstrates	how	to	estimate	ARX
models	for	an	unknown	system.
	Open	example		 	Browse	related	examples
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ARMAX	Model	Definitions	(System	Identification
Toolkit)
When	D(z)	and	F(z)	equal	1,	the	general-linear	polynomial	model
reduces	to	an	autoregressive-moving	average	with	exogenous	terms
(ARMAX)	model.	Unlike	the	autoregressive	with	exogenous	terms	(ARX)
model,	the	system	structure	of	an	ARMAX	model	includes	the	stochastic
dynamics.	ARMAX	models	are	useful	when	you	have	dominating
disturbances	that	enter	early	in	the	process,	such	as	at	the	input.	For
example,	a	wind	gust	affecting	an	aircraft	is	a	dominating	disturbance
early	in	the	process.	The	ARMAX	model	has	more	flexibility	than	the	ARX
model	in	handling	models	that	contain	disturbances.
Use	the	SI	Estimate	ARMAX	Model	VI	to	estimate	ARMAX	models.	This
VI	uses	the	Gauss-Newton	method	to	optimize	the	mean	square	value	of
the	prediction	error	when	searching	for	the	optimal	ARMAX	model.	This
searching	process	is	iterative	and	might	converge	to	a	local	minimum.
Therefore,	you	must	validate	the	estimated	model.	If	the	estimated	model
passes	the	validation	test,	you	can	use	this	model	even	if	the	SI	Estimate
ARMAX	Model	VI	might	locate	only	a	local	minimum.
The	following	equation	shows	the	form	of	the	ARMAX	model.
A(z)y(k)	=	B(z)u(k	-	n)	+	C(z)e(k)
where y(k)	is	the	system	outputs

u(k)	is	the	system	inputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

A(z),	B(z),	and	C(z)	are	polynomial	with	respect	to	the	backward	shift
operator	z	–1	and	defined	by	the	following	equations.

The	following	figure	depicts	the	signal	flow	of	an	ARMAX	model.
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where u	is	the	system	inputs
e	is	the	system	disturbance
y	is	the	system	outputs



SISO
The	following	is	the	time	domain	equation	for	the	ARMAX	SISO	model.

where ka	is	the	A	order

kb	is	the	B	order

kc	is	the	C	order

n	is	the	system	delay
e(k)	is	the	system	disturbance

Refer	to	the	Estimate	Polynomial	Models	VI	in	the
labview\examples\System	Identification\Getting	Started\Parametric
Estimation.llb	for	an	example	that	demonstrates	how	to	estimate	ARMAX
models	for	an	unknown	system.
	Open	example		 	Browse	related	examples
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Box-Jenkins	Model	Definitions	(System
Identification	Toolkit)
When	A(z)	equals	1,	the	general-linear	polynomial	model	reduces	to	the
Box-Jenkins	model.	This	model	provides	a	complete	model	of	a	system
because	this	model	represents	disturbance	properties	separately	from
system	dynamics.	This	model	is	useful	when	you	have	disturbances	that
enter	late	in	the	process,	such	as	measurement	noise	on	the	output.
Use	the	SI	Estimate	BJ	Model	VI	to	estimate	Box-Jenkins	models.	The
identification	method	of	the	Box-Jenkins	model	is	the	prediction	error
method,	which	is	the	same	as	that	of	the	ARMAX	model.
The	following	equation	shows	the	form	of	the	Box-Jenkins	model.

where y(k)	is	the	system	outputs
u(k)	is	the	system	inputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

B(z),	C(z),	D(z),	and	F(z)	are	polynomial	with	respect	to	the	backward
shift	operator	z	-1	and	defined	by	the	following	equations.

The	following	figure	depicts	the	signal	flow	of	a	Box-Jenkins	model.

where u	is	the	system	inputs
e	is	the	system	disturbance
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y	is	the	system	outputs



SISO
The	following	are	the	time	domain	equations	for	the	Box-Jenkins	SISO
model.

where kf	is	the	F	order

kb	is	the	B	order

kc	is	the	C	order

kd	is	the	D	order

u(k)	is	the	system	input
n	is	the	system	delay
e(k)	is	the	system	disturbance

Refer	to	the	Estimate	Polynomial	Models	VI	in	the
labview\examples\System	Identification\Getting	Started\Parametric
Estimation.llb	for	an	example	that	demonstrates	how	to	estimate	Box-
Jenkins	models	for	an	unknown	system.
	Open	example		 	Browse	related	examples
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Output-Error	Model	Definitions	(System
Identification	Toolkit)
When	A(z),	C(z),	and	D(z)	equal	1,	the	general-linear	polynomial	model
reduces	to	the	output-error	model.	This	model	describes	the	system
dynamics	separately	from	the	stochastic	dynamics.	The	output-error
model	does	not	use	any	parameters	for	simulating	the	disturbance
characteristics.
Use	the	SI	Estimate	OE	Model	VI	to	estimate	output-error	models.	The
identification	method	of	the	output-error	model	is	the	prediction	error
method,	which	is	the	same	as	that	of	the	ARMAX	model.	If	the
disturbance	e(k)	is	white	noise,	all	minima	are	global.	However,	a	local
minimum	can	exist	if	the	disturbance	is	not	white	noise.
The	following	equation	shows	the	form	of	the	output-error	model.

where y(k)	is	the	system	outputs
u(k)	is	the	system	inputs
n	is	the	system	delay
e(k)	is	the	system	disturbance

B(z)	and	F(z)	are	polynomials	with	respect	to	the	backward	shift	operator
z	–1	and	defined	by	the	following	equations.

The	following	figure	depicts	the	signal	flow	of	an	output-error	model.

where u	is	the	system	inputs
e	is	the	system	disturbance
y	is	the	system	outputs
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SISO
The	following	are	the	time	domain	equations	for	the	output-error	SISO
model.

where kf	is	the	F	order

kb	is	the	B	order

n	is	the	system	delay
e(k)	is	the	system	disturbance

Refer	to	the	Estimate	Polynomial	Models	VI	in	the
labview\examples\System	Identification\Getting	Started\Parametric
Estimation.llb	for	an	example	that	demonstrates	how	to	estimate	Output-
Error	models	for	an	unknown	system.
	Open	example		 	Browse	related	examples
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Transfer	Function	Model	Definitions	(System
Identification	Toolkit)
You	can	use	a	transfer	function	to	define	either	a	continuous	system	or	a
discrete	system.	The	following	equations	describe	a	continuous	system
and	a	discrete	system,	respectively,	from	which	the	transfer	function	is
derived.
y(t)	=	G(s)u(t)	+	e(t)
y(k)	=	G(z)u(k)	+	e(k)

where y(t)	and	y(k)	are	the	system	outputs
G(s)	and	G(z)	is	the	transfer	function	between	the	stimulus	and
the	response
u(t)	and	u(k)	are	the	system	inputs
e(t)	and	e(k)	are	the	system	disturbance

Note		Continuous	models	use	the	s	variable	to	define	time
whereas	discrete	models	use	the	z	variable.



SISO
The	following	is	the	equation	for	the	continuous	transfer	function	SISO
model.

Note		For	transfer	function	SISO	models	based	on	frequency-
domain	data,	Td	equals	zero.

The	following	is	the	equation	for	the	discrete-time	transfer	function	SISO
model.



MISO
The	following	is	the	equation	for	the	continuous	transfer	function	MISO
model.

The	following	is	the	equation	for	the	discrete-time	transfer	function	MISO
model.

You	can	use	the	SI	Estimate	Transfer	Function	Model	VI	to	estimate	both
continuous	and	discrete	models.	For	discrete	models,	this	VI	implements
the	prediction	error	method.	For	continuous	models,	this	VI	internally
performs	the	following	three	consecutive	steps	to	estimate	the	model:

1.	 Calculates	a	discrete	model	with	the	prediction	error	method.
2.	 Applies	the	Zero-Order-Hold	method	to	convert	the	discrete

model	to	a	continuous	model.
3.	 Uses	the	Gauss-Newton	method	to	optimize	the	continuous

model	this	VI	converted	in	step	2.
You	can	use	the	SI	Estimate	Transfer	Function	Model	from	FRF	VI	to
estimate	both	continuous	and	discrete	SISO	models	in	the	frequency
domain.
Transfer	function	models	describe	only	the	deterministic	part	of	the
system.	For	stochastic	control,	general-linear	polynomial	models
commonly	are	used	because	these	models	separately	describe	the
deterministic	and	stochastic	parts	of	a	system.	However,	in	classical
control	engineering,	the	deterministic	part	of	the	system	is	more
important	than	the	stochastic	part.	Therefore,	you	can	take	advantage	of
the	relationship	between	input	and	output	signals	of	the	transfer	function
model	to	describe	the	deterministic	part	of	the	system.
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Zero-Pole-Gain	Model	Definitions	(System
Identification	Toolkit)
If	you	rewrite	the	equations	for	the	transfer	function	model	to	show	the
locations	of	the	zeroes	and	poles	of	the	dynamic	system,	you	obtain	the
zero-pole-gain	model.



SISO
The	following	is	the	equation	for	the	continuous	zero-pole-gain	SISO
model.

The	following	is	the	equation	for	the	discrete-time	zero-pole-gain	SISO
model.

where	k	is	the	transfer	function	gain,	Zi	are	the	zeroes,	and	Pj	are	the
poles.	When	s	or	z	equals	0,	you	can	calculate	the	static	gain	from	the
two	equations.



MISO
The	following	is	the	equation	for	the	continuous	zero-pole-gain	MISO
model.

The	following	is	the	equation	for	the	discrete-time	zero-pole-gain	MISO
model.

The	LabVIEW	System	Identification	Toolkit	does	not	provide	a	VI	to
estimate	zero-pole-gain	models	directly	because	you	can	use	the	SI
Model	Conversion	VI	to	convert	another	model	representation	to	a	zero-
pole-gain	model.
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State-Space	Model	Definitions	(System
Identification	Toolkit)
The	state-space	model	is	the	most	convenient	model	for	describing
multiple-input	multiple-output	(MIMO)	systems.	State-space	models	often
are	preferable	to	polynomial	models,	especially	in	modern	control
applications	that	focus	on	multivariable	systems.	You	can	estimate	both
continuous	and	discrete	state-space	models.



Continuous
Use	partially	known	model	estimation	methods	to	estimate	continuous
state-space	models.	You	must	provide	an	initial	guess	for	each
parameter	before	conducting	estimation.	The	following	equations	show
the	form	of	the	continuous	state-space	model.



Discrete
Use	the	SI	Estimate	State-Space	Model	and	SI	Estimate	State-Space
Model	from	FRF	VIs	to	estimate	discrete	state-space	models.	The	SI
Estimate	State-Space	Model	VI	supports	the	following	two	estimation
methods:

Deterministic-stochastic	subspace	method—This	method
uses	principal	component	analysis	to	estimate	parameters.	This
method	uses	both	stimulus	and	response	signals	to	estimate
state-space	models.	This	method	includes	the	stochastic	parts	of
the	system	in	the	model	structure.
Realization	method—This	method	uses	the	impulse	response	to
estimate	only	the	deterministic	state-space	model.	This	method
does	not	include	stochastic	parts	of	the	system	in	the	model
structure.

Refer	to	the	LabVIEW	System	Identification	Toolkit	Algorithm	References
manual	for	more	information	about	the	deterministic-stochastic	subspace
method	and	the	realization	method.
The	following	equations	show	the	form	of	the	discrete	state-space	model.
x(k	+	1)	=	Ax(k)	+	Bu(k)	+	Ke(k)
y(k)	=	Cx(k)	+	Du(k)	+	e(k)

Note		The	equations	for	the	discrete	state-space	model	based	on
frequency-domain	data	do	not	contain	Ke(k)	and	e(k).

where A	is	an	n	×	n	state	matrix	of	the	given	system
B	is	an	n	×	m	input	matrix	of	the	given	system
C	is	an	r	×	n	output	matrix	of	the	given	system
D	is	an	r	×	m	direct	transmission	matrix	of	the	given	system
K	is	the	Kalman	gain	matrix
k	is	the	model	sampling	time	multiplied	by	the	discrete	time	step,
where	the	discrete	time	step	equals	0,	1,	2,	…
n	is	the	number	of	model	states
m	is	the	number	of	model	inputs
r	is	the	number	of	model	outputs
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x	is	the	model	state	vector
u	is	the	model	input	vector
y	is	the	model	output	vector
e(k)	is	the	system	disturbance

The	state-space	transfer	matrices	A,	B,	C,	and	D	often	reflect	physical
characteristics	of	a	system.	The	dimension	of	the	state	vector	x	is	the
only	setting	you	must	provide	for	the	state-space	model.



User	Defined	Model	Definitions	(System
Identification	Toolkit)
If	a	general-linear	polynomial,	transfer	function,	zero-pole-gain,	or	state-
space	models	model	cannot	represent	the	model	you	want	to	estimate,
you	can	define	a	model	by	revising	a	template	VI.	You	can	find	template
VIs	in	the	\vi.lib\addons\System	Identification\User-Defined	Model
Templates.llb.	Then	you	can	estimate	the	model	you	define	using	the	SI
Estimate	User-Defined	Model	VI.	This	VI	enables	you	to	estimate	some
other	model	representations	in	addition	to	the	general-linear,	transfer
function,	zero-pole-gain,	and	state-space	models	that	the	LabVIEW
System	Identification	Toolkit	directly	supports.	For	example,	you	can	use
this	VI	to	estimate	nonlinear	models.	With	this	VI,	you	also	can	estimate
linear	models	that	you	define	early.
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Comparing	Polynomial	and	State-Space	Models
(System	Identification	Toolkit)
Selecting	the	correct	model	type	and	model	order	is	crucial	for
successfully	estimating	a	parametric	model.	In	general,	state-space
models	provide	a	more	complete	representation	of	the	system,	especially
for	multiple-input	multiple-output	(MIMO)	systems,	than	polynomial
models	because	state-space	models	are	similar	to	first	principle	models
that	can	provide	more	degree	of	freedom	in	describing	MIMO	systems.
The	identification	procedure	for	state-space	models	does	not	involve
nonlinear	optimization	so	the	estimation	reaches	a	solution	regardless	of
the	initial	guess.	Moreover,	the	parameter	settings	for	the	state-space
model	are	simpler.	You	need	to	select	only	the	order,	or	the	number	of
states,	of	the	model.	The	order	can	come	from	prior	knowledge	of	the
system.	You	also	can	determine	the	order	by	analyzing	the	singular
values	of	the	information	matrix.	However,	the	states	that	the	state-space
identification	procedure	identifies	might	not	reflect	the	physical
characteristics	of	a	system	accurately.	Using	a	similarity	transformation,
you	can	identify	equivalent	models	with	states	that	better	represent	the
system.	Similarity	transformations	enable	you	to	transform	the	states
without	misrepresenting	the	input-output	behavior	of	the	system.
When	model	order	is	high,	state-space	models	are	preferable	to
polynomial	models.	Polynomial	models	with	high	order	might	encounter
numerical	problems	in	computation.



Determining	Parameters	for	the	Prediction	Error
Method	(System	Identification	Toolkit)
The	identification	method	for	most	of	the	polynomial	models	is	the
prediction	error	method.	Determining	the	delay	and	model	order	for	the
prediction	error	method	is	typically	a	trial-and-error	process.	The
following	steps	can	help	you	obtain	a	suitable	model.	These	steps	are	not
the	only	methods	you	can	use,	nor	are	these	steps	a	comprehensive
procedure.

1.	 Obtain	useful	information	about	the	model	order	by	observing	the
number	of	resonance	peaks	in	the	nonparametric	frequency
response	function.	Normally,	the	number	of	peaks	in	the
magnitude	response	equals	half	the	order	of	A(z)F(z).

2.	 Obtain	a	reasonable	estimate	of	the	delay	by	observing	the
impulse	response	or	by	testing	reasonable	values	in	a	medium-
sized	ARX	model.	Choose	the	delay	that	provides	the	best	model
fit	based	on	prediction	errors	or	another	criterion.

3.	 Test	various	ARX	model	orders	with	this	delay,	choosing	those
orders	that	provide	the	best	fit.

4.	 Reduce	the	model	order	by	plotting	the	poles	and	zeros	with
confidence	intervals	and	looking	for	potential	cancellations	of
pole-zero	pairs.	The	resulting	model	might	be	unnecessarily	high
in	order	because	the	ARX	model	describes	both	the	system
dynamics	and	noise	properties	using	the	same	set	of	poles.	The
ARMAX,	output-error,	and	Box-Jenkins	models	use	the	resulting
orders	of	the	poles	and	zeros	as	the	B	and	F	model	parameters
and	the	first-	or	second-order	models	for	the	noise
characteristics.

5.	 Determine	if	additional	signals	influence	the	output	if	you	cannot
obtain	a	suitable	model	at	this	point.	You	can	incorporate
measurements	of	these	signals	as	extra	input	signals.

If	you	still	cannot	obtain	a	suitable	model,	additional	physical	insight	into
the	problem	might	be	necessary.	Compensating	for	nonlinear	sensors	or
actuators	and	handling	important	physical	nonlinearities	often	are
necessary	in	addition	to	using	a	ready-made	model.
From	the	prediction	error	standpoint,	the	higher	the	order	of	the	model	is,
the	better	the	model	fits	the	data	because	the	model	has	more	degrees	of



freedom.	However,	you	need	more	computation	time	and	memory	for
higher	orders.	The	parsimony	principle	says	to	choose	the	model	with	the
smallest	degree	of	freedom,	or	number	of	parameters,	if	all	the	models	fit
the	data	well	and	pass	the	verification	test.	The	criteria	to	assess	the
model	order	therefore	not	only	must	rely	on	the	prediction	error	but	also
must	incorporate	a	penalty	when	the	order	increases.	Akaike's
Information	Criterion	(AIC),	Final	Prediction	Error	Criterion	(FPE),	and	the
Minimum	Description	Length	Criterion	(MDL)	are	criteria	you	can	use	to
estimate	the	model	order.	The	SI	Estimate	Orders	of	System	Model	VI
implements	the	AIC,	FPE,	and	MDL	methods	to	search	for	the	optimal
model	order	in	the	range	of	interest.	You	also	can	plot	the	prediction	error
as	a	function	of	the	model	dimension	and	then	visually	find	the	minimum
in	the	curve	or	apply	an	F-test	to	obtain	an	appropriate	estimation	of	the
model	order.
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Akaike's	Information	Criterion
The	Akaike's	Information	Criterion	(AIC)	is	a	weighted	estimation	error
based	on	the	unexplained	variation	of	a	given	time	series	with	a	penalty
term	when	exceeding	the	optimal	number	of	parameters	to	represent	the
system.	For	the	AIC,	an	optimal	model	is	the	one	that	minimizes	the
following	equation:

N	is	the	number	of	data	points,	Vn	is	an	index	related	to	the	prediction
error,	or	the	residual	sum	of	squares,	and	p	defines	the	number	of
parameters	in	the	model.



Final	Prediction	Error	Criterion
The	Final	Prediction	Error	Criterion	(FPE)	estimates	the	model-fitting
error	when	you	use	the	model	to	predict	new	outputs.	For	the	FPE,	an
optimal	model	is	the	one	that	minimizes	the	following	equation:

You	want	to	choose	a	model	that	minimizes	the	FPE,	which	represents	a
balance	between	the	number	of	parameters	and	the	explained	variation.



Minimum	Description	Length	Criterion
The	Minimal	Description	Length	Criterion	(MDL)	is	based	on	Vn	plus	a
penalty	for	the	number	of	terms	used.	For	the	MDL,	an	optimal	model	is
the	one	that	minimizes	the	following	equation:

You	want	to	choose	a	model	that	minimizes	the	MDL,	which	allows	the
shortest	description	of	data	you	measure.



Partially	Known	Model	Estimation	Methods
(System	Identification	Toolkit)
The	nonparametric	and	parametric	model	estimation	methods,	also
known	as	black-box	estimation	methods,	assume	that	systems	are
unknown.	Because	these	estimation	methods	do	not	take	prior	system
knowledge	into	account,	you	must	use	either	an	algorithm	or	trial-and-
error	to	vary	model	parameters	until	the	behavior	of	the	model	matches
the	measured	input-output	data.	Although	you	can	use	the	estimated
parameters	to	reproduce	the	response	of	the	system	accurately,	these
parameters	might	not	have	any	physical	meanings.
However,	in	practice,	many	systems	are	partially	known	because	you
have	information	about	the	underlying	dynamics	or	some	of	the	physical
parameters.	You	can	use	partially	known	model	estimation	methods,	also
known	as	grey-box	estimation	methods,	to	estimate	models	when	you
have	this	information.
Black-box	methods	also	assume	that	all	model	parameters	are
adjustable.	However,	in	many	real-world	applications,	you	cannot	adjust
all	the	parameters	arbitrarily,	because	the	parameters	might	have
constraints.	For	example,	in	some	chemical	processes,	water	must	flow
only	in	one	direction.	When	estimating	the	flow	rate	of	water,	you	know
that	the	flow	rate	cannot	be	negative.	Thus,	the	constraint	is	that	the	flow
rate	must	be	a	positive	value.	You	must	consider	this	constraint	and	any
other	constraints	when	you	estimate	the	flow	rate	of	water	in	this	process.
Such	constraints	usually	follow	one	of	the	following	guidelines:

A	parameter	must	be	as	close	to	a	value	as	possible.
A	parameter	must	be	between	two	values.
Two	or	more	parameters	must	correlate	to	each	other.

These	constraints	reflect	the	knowledge	you	have	of	the	physical	system.
This	knowledge	can	result	in	a	more	realistic	parameter	estimation.
Parameter	constraints	increase	the	possibility	of	the	System	Identification
VIs	locating	the	optimal	parameters	that	describe	the	real-world	model.
Parameter	constraints	also	improve	the	accuracy	of	locating	these
optimal	parameters.
You	can	set	parameter	constraints	when	using	grey-box	estimation
methods,	whereas	you	cannot	set	parameter	constraints	when	using
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black-box	estimation	methods.	When	using	these	methods,	you	can	set
only	the	model	order	that	specifies	the	number	of	parameters	to
calculate.



Defining	and	Estimating	Partially	Known	Models
(System	Identification	Toolkit)
Before	estimating	partially	known	models,	you	first	must	define	those
models.	Using	prior	knowledge,	you	choose	a	model	for	the	plant	in	a
system	and	set	parameter	constraints	for	the	model.	You	then	can
estimate	the	model	to	represent	the	real-world	plant.	The	LabVIEW
System	Identification	Toolkit	provides	two	VIs	you	can	use	to	define
partially	known	models—the	SI	Create	Partially	Known	State-Space
Model	VI	and	the	SI	Create	Partially	Known	Continuous	Transfer
Function	Model	VI.
Use	the	SI	Create	Partially	Known	State-Space	Model	VI	to	define
partially	known	continuous	or	discrete	state-space	models.
You	can	use	the	SI	Create	Partially	Known	State-Space	Model	VI,	for
example,	to	define	a	state-space	model	that	represents	an	RLC	circuit
consisting	of	a	resistor	R,	an	inductor	L,	and	a	capacitor	C.	Using	prior
knowledge,	you	describe	the	relationship	of	R,	L,	and	C	with	the	following
equations:

D	=	0
You	also	can	use	prior	knowledge	to	define	the	initial	guesses	and	upper
and	lower	limits	of	R,	L,	and	C.	The	SI	Create	Partially	Known	State-
Space	Model	VI	uses	variables	rather	than	numerical	values	to	construct
a	symbolic	model.	As	the	following	figure	shows,	you	use	variable
names,	such	as	R,	L,	and	C,	in	the	symbolic	A,	symbolic	B,	symbolic
C,	and	symbolic	D	inputs	to	define	the	RLC	circuit.	Then	you	specify
values	for	R,	L,	and	C	in	the	variables	input.
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Use	the	SI	Create	Partially	Known	Continuous	Transfer	Function	Model
VI	to	define	partially	known	continuous	transfer	function	models.	The
following	equation	represents	a	continuous	transfer	function	model.

where Kp	is	the	transfer	function	gain

Tdis	the	delay

Tp	is	the	first-order	time	constant

w	is	the	natural	frequency
r	is	the	damping	ratio
s	represents	the	time

You	can	apply	the	prior	knowledge	you	have	about	the	parameters	K,	Td,
Tp,	w,	and	r	to	the	static	gain,	delay(s),	Tp(s),	natural	freq	(rad/s),	and
damping	ratio	inputs,	respectively,	of	the	SI	Create	Partially	Known
Continuous	Transfer	Function	Model	VI	by	defining	the	initial	guesses
and	upper	and	lower	limits.
With	the	System	Identification	Toolkit	and	a	partially	known	model,	you
can	set	constraints	on	each	parameter	of	a	state-space	or	continuous



transfer	function	model	in	two	ways—with	an	upper	and	lower	limit	or	with
an	initial	guess.



Setting	Parameter	Constraints	with	a	Range
(System	Identification	Toolkit)
If	you	have	prior	knowledge	of	a	parameter,	you	can	set	constraints	by
providing	upper	and	lower	limits	for	the	parameter.	With	the	limit	range,
the	SI	Estimate	Partially	Known	State-Space	Model	VI	randomly	selects
a	value	within	the	range	as	an	initial	guess	of	the	parameter.	From	this
initial	value,	the	VI	then	performs	optimization	to	minimize	the	difference
between	the	estimated	output	and	the	measured	real	output.	The	goal	of
constraint	optimization	is	to	find	a	global	optimum,	or	the	smallest
difference	between	the	estimated	output	and	the	real	output,	with
parameters	of	physical	meaning.	Successfully	finding	the	global	optimum
depends	on	the	limit	range	you	set	and	the	random	initial	value	the	SI
Estimate	Partially	Known	State-Space	Model	VI	selects.
To	increase	the	possibility	of	finding	the	global	optimum,	complete	the
following	steps:

1.	 Use	prior	knowledge	to	set	the	range	as	narrow	as	possible.
2.	 Perform	multiple	estimates	with	the	range	you	set.	You	might	get

different	optimization	results	because	the	SI	Estimate	Partially
Known	State-Space	Model	VI	randomly	selects	an	initial	value
within	the	range	each	time	you	run	the	VI.	If	you	repeatedly
obtain	the	same	result,	this	result	might	be	the	optimum	you	want
to	find.	If	you	obtain	inconsistent	results,	either	choose	the	result
that	best	meets	the	system	requirements,	or	continue	with	step	3
to	adjust	the	limit	range.

3.	 Select	one	of	the	previous	results	you	got	in	step	2	according	to
the	prior	knowledge	you	have	of	the	system.	Narrow	the	range	in
which	the	result	falls.	Run	the	SI	Estimate	Partially	Known	State-
Space	Model	VI	multiple	times.	A	consistent	result	you	get	might
be	the	optimum	you	want	to	find.	Otherwise,	repeat	this	step	until
you	find	a	consistent	result.

You	set	limits	in	the	SI	Estimate	Partially	Known	Continuous	Transfer
Function	Model	VI	the	same	way	you	do	in	the	SI	Estimate	Partially
Known	State-Space	Model	VI.
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Setting	Parameter	Constraints	with	an	Initial
Guess	(System	Identification	Toolkit)
If	you	have	information	about	a	certain	parameter	and	can	estimate	a
value	for	that	parameter,	you	can	refine	estimation	by	using	that	value	as
an	initial	guess.
The	SI	Estimate	Partially	Known	State-Space	Model	VI	and	the	SI
Estimate	Partially	Known	Continuous	Transfer	Function	Model	VI	perform
optimization	using	the	initial	guess	you	provide.	These	two	VIs	then	use
the	upper	and	lower	limit	settings	you	specify	as	boundary	constraints
during	the	optimization	process.
The	initial	guess	you	provide	greatly	affects	the	performance	of	any
optimization	technique.	Whether	an	optimization	process	reaches	a
global	optimum	depends	on	the	initial	guess.	With	some	initial	guesses,
optimization	processes	might	locate	only	a	local	optimum,	which	is	the
smallest	difference	between	the	estimated	output	and	the	real	output
within	a	certain	smaller	range	rather	than	in	the	whole	range	of	interest.
Therefore,	to	decrease	the	risk	of	locating	a	local	optimum	instead	of	the
global	optimum,	try	different	initial	guesses.	The	following	figure	shows
an	example	of	different	estimations	resulting	from	different	initial	guesses
and	illustrates	the	importance	of	setting	different	initial	guesses	to	find	the
global	optimum.

As	the	previous	figure	shows,	if	you	set	C	to	an	initial	guess	of	0.1,	you
obtain	an	optimized	value	of	0.02.	You	can	see	the	Estimated	response
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(global)	plot	and	the	Measured	response	plot	match	in	the	Response
graph.	This	response	from	the	estimated	model	is	close	to	the	real-world
model	response.	However,	if	you	set	the	initial	guess	of	C	to	1.5,	you	get
an	optimized	value	of	1.41.	The	Estimated	response	(local)	plot	does
not	match	the	Measured	response	plot	in	the	Response	graph.	Thus,
with	this	initial	guess,	the	estimated	model	response	does	not	represent
the	real-world	model	response	accurately.



Partially	Known	Model	Estimation	Case	Study
(System	Identification	Toolkit)
This	case	study	gives	an	example	that	uses	the	prior	knowledge	you
have	about	a	system	to	define	and	estimate	state-space	models.	You	use
the	same	procedure	when	estimating	continuous	transfer	function
models.	However,	you	apply	different	methods	to	define	continuous
transfer	function	models.
The	following	figure	shows	an	RLC	circuit,	where	u	is	the	input	voltage,	y
is	the	output	voltage,	iL	is	the	current,	and	uC	is	the	capacitor	voltage.	In
this	example,	y	equals	the	capacitor	voltage	uC.

Suppose	R	is	1.5	Ω	and	L	and	C	are	unknown.	You	can	complete	the
following	steps	to	identify	the	values	of	L	and	C.

1.	 Apply	a	wide-band	voltage	to	u	and	measure	the	output	y
simultaneously.	The	Continuous	State-Space	Model	of	an	RLC
Circuit	example	VI	uses	a	chirp	signal	from	0.5	Hz	to	6	Hz	as	the
stimulus	signal.	The	response	to	the	chirp	signal	is	the	response
signal.	This	example	VI	then	preprocesses	the	stimulus	and
response	signals	to	remove	the	offset	level	in	these	signals.

2.	 Define	a	model	for	this	circuit.	Because	you	have	information
about	the	approximate	values	of	L	and	C,	you	can	build	a	partially
known	state-space	model	or	a	partially	known	transfer	function
model.

3.	 Estimate	the	model	you	defined	in	step	2	and	then	estimate	L
and	C.

The	Continuous	State-Space	Model	of	an	RLC	Circuit	example	VI	guides
you	through	defining	and	estimating	a	state-space	model	for	the	RLC
circuit.
Refer	to	the	Continuous	State-Space	Model	of	an	RLC	Circuit	VI	in	the



labview\examples\System	Identification\Getting	Started\Grey-Box	Model.llb	to
access	the	VI	in	this	case	study.
	Open	example		 	Browse	related	examples
Refer	to	the	Continuous	Transfer	Function	Model	of	a	DC	Motor	with
Known	Gain	VI	in	the	labview\examples\System	Identification\Getting
Started\Grey-Box	Model.llb	for	an	example	that	demonstrates	how	to	use	a
partially	known	transfer	function	model	to	estimate	the	RLC	circuit.
	Open	example		 	Browse	related	examples
You	can	use	the	following	first-order	differential	equation	to	represent	the
relationship	between	the	capacitor	voltage	and	the	current	of	this	RLC
circuit.

You	can	use	the	following	first-order	differential	equation	to	represent	the
voltage	relationship	in	this	RLC	circuit.

By	manipulating	the	previous	two	equations,	you	can	deduce	the
continuous	state-space	model	for	this	RLC	circuit	using	the	following	two
equations:

The	LabVIEW	System	Identification	Toolkit	provides	the	SI	Create
Partially	Known	State-Space	Model	VI	with	which	you	can	build	the
symbolic	state-space	model	for	this	circuit,	as	shown	in	the	following
figure.
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javascript:openVI('examples%5C%5CSystem%20Identification%5C%5CGetting%20Started%5C%5CGrey-Box%20Model.llb%5C%5CContinuous%20Transfer%20Function%20Model%20of%20a%20DC%20Motor%20with%20Known%20Gain.vi');
javascript:findExamples(8190);
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You	specify	the	symbolic	state-space	model	using	formula	strings,	such
as	1/C,	-1/L,	and	-1.5/L,	with	L	and	C	as	variables.	Then	you	define	L	and
C	with	the	variables	input,	as	shown	in	the	following	figure.	Using	prior
knowledge,	you	know	that	L	is	a	positive	value	around	the	initial	value	of
0.1	H,	and	C	is	a	value	between	0	F	and	0.3	F.

Next,	you	can	estimate	the	state-space	model	with	the	SI	Estimate
Partially	Known	State-Space	Model	VI,	as	shown	in	the	following	figure.

The	SI	Estimate	Partially	Known	State-Space	Model	VI	estimates	each
parameter	of	the	model.	You	obtain	the	estimated	model	and	optimized
variables	of	the	model	after	this	VI	performs	an	optimization.	In	this
example,	you	obtain	the	values	0.20	H	for	L	and	0.02	F	for	C,	as	shown
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in	the	following	figure.

The	Continuous	State-Space	Model	of	an	RLC	Circuit	example	VI	uses
the	SI	Draw	Model	VI	and	the	values	of	L	and	C	you	obtain	to	display	the
estimated	model	in	a	picture	indicator,	as	shown	in	the	following	figure.

You	then	can	determine	how	accurately	this	model	simulates	the	real-
world	plant	by	validating	the	model.	Refer	to	the	System	Identification
Case	Study	book	for	an	example	of	validating	a	model.
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Closed-Loop	Systems	Model	Estimation
Methods	(System	Identification	Toolkit)
Systems	in	many	real-world	applications	contain	feedback.	Feedback	is	a
process	in	which	the	output	signal	of	a	plant	is	passed,	or	fed	back,	to	the
input	to	regulate	the	next	output.	Systems	without	feedback	are	open-
loop	systems.	Systems	with	feedback	are	closed-loop	systems.
In	an	open-loop	system,	the	stimulus	signal	and	the	output	noise	do	not
correlate	with	each	other.	In	a	closed-loop	system,	the	stimulus	signal
correlates	to	the	output	noise.	Though	you	can	apply	many	open-loop
model	estimation	methods	to	closed-loop	data,	not	all	open-loop	model
estimation	methods	handle	the	correlation	between	the	stimulus	signal
and	output	noise	well.



Feedback	in	Systems
Feedback	is	common	in	control	systems.	With	feedback,	the	system
output	corresponds	to	a	reference	input.	Feedback	also	reduces	the
effect	of	input	disturbances.	One	example	of	a	closed-loop	system	is	a
system	that	regulates	room	temperature,	as	shown	in	the	following	figure.
In	this	example,	the	reference	input	is	the	temperature	T	set	at	which	you
want	the	room	to	stay.	The	thermostat	senses	the	actual	temperature,	T
actual,	of	the	room.	Based	on	the	difference	between	T	actual	and	T	set,	the
thermostat	activates	the	heater	or	the	air	conditioner.	The	thermostat
returns	T	actual	as	the	feedback	to	compare	again	with	T	set.	Then	the
thermostat	uses	the	difference	between	T	actual	and	T	set	to	regulate	the
temperature	at	the	next	moment.

You	must	verify	if	feedback	exists	before	choosing	a	model	estimation
method	because	not	all	open-loop	model	estimation	methods	work
correctly	with	closed-loop	data.

Note		You	must	know	whether	the	data	you	collect	is	from	an
open-loop	system	or	a	closed-loop	system	according	to	the	real-
world	system	configuration.	If	you	do	not	have	such	information,
you	can	determine	if	feedback	exists	by	using	the	SI	Detect
Feedback	VI	or	by	obtaining	the	impulse	responses	of	a	plant.	You
can	use	the	Least	Squares	instances	of	the	SI	Estimate	Impulse
Response	VI	to	estimate	the	impulse	response	of	a	plant.

The	following	figure	shows	a	comparison	of	the	impulse	responses	of	the
plant	in	a	closed-loop	system	and	an	open-loop	system.

lvsysid.chm::/detect_feedback.html
lvsysid.chm::/Estimate_Impulse_Response.html


The	values	outside	the	upper	limit	and	lower	limit	range	at	the	negative
lag,	which	appears	between	–10	and	0	on	the	x-axis,	are	considered
significant	values.	Significant	values	in	the	impulse	response	at	negative
lags	imply	feedback	in	data.	As	shown	in	the	following	figure,	significant
values	exist	in	the	Closed-loop	data	plot.	Therefore,	feedback	exists	in
the	closed-loop	system.	No	significant	impulse	response	values	exist	in
the	Open-loop	data	plot.	Thus,	feedback	does	not	exist	in	the	open-loop
system.



Understanding	Closed-Loop	Model	Estimation	Methods
Closed-loop	model	estimation	methods	use	data	from	a	closed-loop
system	to	build	a	model	for	a	plant	that	a	controller	regulates.	The
following	figure	shows	a	system	that	consists	of	a	plant	and	a	controller.
In	this	system,	G	0	is	the	plant,	F	y	is	the	controller,	H	is	the	stochastic
part	of	the	plant,	u	is	the	stimulus	signal,	y	is	the	response	signal,	r	is	the
reference	signal	that	is	an	external	signal,	and	e	is	the	output	noise.	In
control	engineering,	this	system	is	known	as	a	feedback-path	closed-loop
system,	which	is	a	typical	closed-loop	system.

In	some	cases,	the	controller	comes	before	the	plant	in	a	closed-loop
system.	This	system	is	known	as	a	feedforward-path	closed-loop	system,
as	shown	in	the	following	figure.

Depending	on	the	amount	of	prior	knowledge	you	have	about	the
feedback,	the	controller,	and	the	reference	signal	of	a	system,	you	can
categorize	closed-loop	model	estimation	approaches	into	the	following
three	groups:

Direct	identification—Uses	the	stimulus	and	response	signals	to
identify	the	plant	model	as	if	the	plant	is	in	an	open-loop	system.



You	can	apply	the	direct	identification	approach	to	compute	all
types	of	models	except	state-space	models	by	using	the
LabVIEW	System	Identification	Toolkit.
Indirect	identification—Identifies	a	closed-loop	system	by	using
the	reference	signal	and	the	response	signal	and	then
determines	the	plant	model	based	on	the	known	controller	of	the
closed-loop	system.	You	can	apply	the	indirect	identification
approach	to	compute	transfer	function	models.
Joint	input-output	identification—Considers	the	stimulus	signal
and	the	response	signal	as	outputs	of	a	cascaded	system.	The
reference	signal	and	the	noise	jointly	perturb	the	system,	and	the
plant	model	is	identified	from	this	joint	input-output	system.	You
can	apply	the	joint	input-output	identification	approach	to
compute	transfer	function	models.

You	can	choose	a	suitable	model	identification	approach	according	to	the
information	you	have	about	the	closed-loop	system.	The	following	table
summarizes	the	information	you	must	have	to	use	each	identification
approach.

Stimulus
Signal

Response
Signal

Reference
Signal

Controller
Information

Direct X X — —
Indirect — X X X
Joint	Input-
Output

X X X —

With	the	LabVIEW	System	Identification	Toolkit,	you	can	choose	to	use
the	direct,	indirect,	or	joint	input-output	identification	approaches	for
different	types	of	closed-loop	systems.	The	direct	identification	approach
supports	single-input	single-output	(SISO),	multiple-input	single-output
(MISO),	and	multiple-input	multiple-output	(MIMO)	systems.	The	indirect
and	joint	input-output	identification	approaches	support	SISO	systems
only.



Direct	Identification	(System	Identification
Toolkit)
If	the	stimulus	and	response	signals	of	a	closed-loop	system	are
available	but	you	do	not	have	any	other	information	about	the	system,
you	can	use	only	the	techniques	developed	for	open-loop	models	to
estimate	the	closed-loop	system.	However,	you	cannot	apply	all	open-
loop	identification	methods	to	estimate	the	model	of	a	plant	in	a	closed-
loop	system.	Some	open-loop	model	identification	methods	assume	zero
correlation	between	the	stimulus	signal	and	output	noise.	In	closed-loop
systems,	this	correlation	is	nonzero.	Thus,	if	you	use	certain	open-loop
model	estimation	methods,	such	as	the	instrument	variable	(IV)	method
and	the	correlation	analysis	methods,	with	closed-loop	data,	you	might
estimate	a	model	incorrectly.	You	can	use	the	prediction	error	method	to
identify	the	plant	in	a	closed-loop	system.
The	direct	identification	approach	is	used	commonly	in	real-world
applications.	This	approach	is	convenient	because	you	do	not	need	to
have	additional	information	about	a	closed-loop	system,	such	as	the
reference	signal	or	the	controller.	However,	the	estimation	might	not	be
accurate	if	the	model	type	you	select	for	a	plant	does	not	describe	the
output	noise	of	the	system	accurately.	For	example,	if	the	output	noise	of
a	plant	is	color	noise	and	you	select	an	output-error	(OE)	model,	which
assumes	the	output	noise	is	white	noise,	the	estimation	for	the	OE	model
might	be	biased	when	you	use	direct	identification.	The	bias	might	be
small,	though,	if	the	signal-to-noise	ratio	(SNR)	of	the	system	is	high.



Indirect	Identification	(System	Identification
Toolkit)
The	indirect	identification	approach,	which	estimates	the	transfer	function
model	of	a	plant	in	a	closed-loop	system,	first	identifies	the	transfer
function	model	of	the	closed-loop	system	based	on	the	reference	signal
and	the	response	signal.	This	approach	then	retrieves	the	transfer
function	model	of	the	plant	from	the	identified	closed-loop	system.	The
indirect	identification	approach	can	identify	the	transfer	function	of	the
plant	accurately	even	when	the	signal-to-noise	ratio	(SNR)	of	the	system
is	low	and	no	matter	whether	the	output	noise	is	white	noise	or	color
noise.	However,	this	approach	requires	prior	knowledge	about	the
controller	of	the	system	and	the	reference	signal	also	must	be	available.
In	addition,	any	inaccuracy	or	nonlinearity	of	the	controller	in	the	system
might	affect	estimating	the	model	of	the	plant.
With	indirect	identification,	you	can	use	the	following	two	equations	to
describe	the	feedback-path	closed-loop	system.
y(k)	=	G	0(z)u(k)	+	e(k)

u(k)	=	r(k)	–	F	y(z)y(k)

where G0(z)	is	the	open-loop	transfer	function	of	the	plant

Fy(z)is	the	transfer	function	of	a	linear,	time-invariant	(LTI)
controller
u(k)	is	the	stimulus	signal	of	the	system
y(k)	is	the	response	signal	of	the	system
r(k)	is	the	reference	signal	of	the	system
e(k)	is	the	output	noise	of	the	system

By	combining	the	previous	two	equations,	you	can	represent	the	closed-
loop	relationship	with	the	following	equation:

If	you	define	G	cl	as	the	closed-loop	transfer	function	between	the
reference	signal	and	the	response	signal,	and	let	G	cl	satisfy	the	following
equation:



you	can	estimate	G	cl	with	r(k)	as	the	input	and	y(k)	as	the	output	using
an	open	loop	method,	because	r(k)	and	e(k)	are	uncorrelated.	You	then
can	calculate	G	0	after	you	calculate	G	cl,	as	the	following	equation
shows:

For	feedforward-path	closed-loop	systems,	you	use	the	following	two
equations	to	describe	the	systems.
y(k)	=	G	0(z)u(k)	+	e(k)

u(k)	=	[r(k)	–	y(k)]F	y(z)

By	combining	the	previous	two	equations,	you	can	represent	the
feedforward-path	closed-loop	relationship	with	the	following	equation:

If	you	define	G	cl	as	the	feedforward-path	closed-loop	transfer	function
and	let	G	cl	satisfy	the	following	equation:

you	can	estimate	G	cl	with	r(k)	as	the	input	and	y(k)	as	the	output	using
an	open	loop	method,	because	r(k)	and	e(k)	are	uncorrelated.	You	then
can	calculate	G	0	after	you	calculate	G	cl,	as	the	following	equation
shows:

With	indirect	identification,	you	calculate	G	cl	by	performing	polynomial
operations	on	G	o	and	F	y.	Because	of	the	limitations	of	polynomial
operations,	the	orders	of	the	numerator	and	denominator	might	change
after	manipulation.	Thus,	the	SI	Estimate	Transfer	Function	Model	VI	or
the	SI	Transfer	Function	Estimation	ExpressVI,	which	you	can	use	with
the	indirect	identification	approach,	might	return	an	error	regarding	the
mismatch	between	the	order	you	set	and	the	order	of	the	estimated
model.	In	this	case,	you	must	adjust	the	tolerance	setting	of	these	two
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VIs	so	that	the	numerator	and	denominator	orders	match	the	orders	you
set.	A	larger	tolerance	facilitates	zero-pole	cancellations,	which	reduce
the	numerator	and	denominator	polynomial	orders.



Joint	Input-Output	Identification	(System
Identification	Toolkit)
If	you	do	not	have	any	knowledge	about	the	controller	structure	but	the
stimulus,	response,	and	reference	signals	are	all	available,	you	can	use
the	joint	input-output	identification	approach	to	estimate	the	transfer
function	model	of	a	plant	in	a	closed-loop	system.	This	approach	uses
the	transfer	functions	from	different	input-output	signal	pairs	to	estimate	a
closed-loop	system.	The	LabVIEW	System	Identification	Toolkit
implements	the	following	two-stage	method	for	the	joint	input-output
approach.

1.	 Let	T	0(z)	satisfy	the	following	equation:

By	manipulating	two	equations	describing	the	feedback-path	closed-loop
system,	you	can	rewrite	u(k)	as	follows:
u(k)	=	T	0(z)r(k)	–	F	y(z)T	0(z)e(k)

Any	open-loop	model	estimation	method	then	can	estimate	T	0(z)
because	r(k)	and	e(k)	are	uncorrelated	signals.	After	you	obtain	the	value
of	T	0(z),	you	can	compute	û(k)	=	T	0(z)r(k).	You	then	can	represent	u(k)
as	follows:

Using	the	previous	equation,	you	obtain	an	input	signal	û(k),	which	is
constructed	from	r(k)	and	is	uncorrelated	with	the	measurement	noise.

2.	 By	manipulating	the	equation	y(k)	=	G	0(z)u(k)	+	e(k),	you	can
rewrite	y(k)	as	follows:

Because	û(k)	is	uncorrelated	with	e(k),	the	original	closed-loop	model
estimation	problem	between	u(k)	and	y(k)	becomes	an	open-loop
problem	between	û(k)	and	y(k).
You	use	the	same	methodology	to	compute	y(k)	for	a	feedforward-path
closed-loop	system,	where



You	rewrite	y(k)	as	follows:

The	two-stage	method	does	not	require	you	to	know	anything	about	the
feedback	or	the	controller	structure	and	controller	parameters.	Also,	you
treat	the	closed-loop	model	estimation	as	an	open-loop	model	estimation
within	each	of	the	two	steps.	Therefore,	you	can	use	any	method	that
works	with	open-loop	models.	Whether	the	real-world	output	noise	is
white	noise	or	color	noise,	the	two-stage	method	provides	reliable
estimations.



Using	System	Identification	VIs	for	Model
Estimation	(System	Identification	Toolkit)
To	apply	the	direct	identification	approach,	you	can	use	the	LabVIEW
System	Identification	Toolkit	to	estimate	a	plant	in	a	closed-loop	system
with	general-linear	polynomial,	transfer	function,	and	zero-pole-gain
models.	To	apply	the	indirect	or	joint	input-output	approach	to	identify	a
plant,	you	can	use	this	toolkit	with	transfer	function	models.	Select	the
System	Identification	VIs	using	the	following	guidelines:

Use	the	Polynomial	Model	Estimation	VIs	or	the	SI	Model
Estimation	Express	VI	to	estimate	ARX,	ARMAX,	output-error,
Box-Jenkins,	and	general-linear	models.	For	ARX	models,	the
System	Identification	Toolkit	uses	the	least	squares	method,
which	is	a	special	case	of	the	prediction	error	method.	For	all
other	models,	this	toolkit	uses	the	prediction	error	method.	This
method	can	accurately	identify	a	plant	model	in	a	closed-loop
system.	Hence,	you	can	use	the	Polynomial	Model	Estimation
VIs	to	estimate	the	model	of	a	plant	in	a	closed-loop	system.
Use	the	SI	Estimate	Transfer	Function	VI	or	the	SI	Transfer
Function	Estimation	Express	VI	to	estimate	a	transfer	function
model	of	the	plant	in	a	closed-loop	system.	You	can	apply	direct,
indirect,	and	joint	input-output	identification	to	compute	transfer
function	models.
To	identify	zero-pole-gain	models	for	a	plant,	you	first	must
identify	the	plant	using	other	model	representations.	You	then	can
convert	other	model	representations	to	zero-pole-gain	models
using	the	Model	Conversion	VIs.

Refer	to	the	LabVIEW	System	Identification	Toolkit	Algorithm	References
manual	for	more	information	about	the	prediction	error	method,	the
deterministic-stochastic	subspace	method,	and	the	realization	method.
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Recursive	Model	Estimation	Methods	(System
Identification	Toolkit)
Recursive	model	estimation	is	a	system	identification	technique	that
enables	you	to	develop	a	model	that	adjusts	based	on	real-time	data
coming	from	the	system.	Recursive	model	estimation	processes	the
measured	input-output	data	recursively	as	the	data	becomes	available.
This	technique	is	helpful	because	you	obtain	the	mathematical	model	of
the	system	in	real	time.	In	many	real-world	applications	such	as	adaptive
control	and	adaptive	prediction,	having	a	model	of	the	system	update
while	the	system	is	running	is	necessary	or	helpful.
By	comparison,	the	nonparametric,	parametric,	partially	known,	and
closed-loop	systems	model	estimation	methods	use	nonrecursive
methods	to	estimate	a	model	of	the	plant	in	a	system.	These
nonrecursive	methods	identify	a	model	for	a	plant	based	on	input-output
data	gathered	at	a	time	prior	to	the	current	time.
The	following	figure	represents	a	general	recursive	system	identification
application.	A	system	identification	application	consists	of	an	unknown
system	that	has	an	input	signal,	or	stimulus	signal	u(k)	and	an	output
signal,	or	response	signal	y(k).

The	stimulus	signal	u(k)	is	the	input	to	both	the	unknown	system	and	the
recursive	model.	The	response	of	the	system	y(k)	and	the	predicted
response	of	the	adaptive	model	 	are	combined	to	determine	the	error
of	the	system.	The	error	of	the	system	is	defined	by	the	following
equation.

The	adaptive	model	generates	the	predicted	response	 	based	on
u(k	+	1)	after	adjusting	the	parametric	vector	 	based	on	the	error	e(k).
The	previous	figure	shows	how	the	error	information	e(k)	is	sent	back	to



the	adaptive	model,	which	adjusts	the	parametric	vector	 	to	account
for	the	error.	You	iterate	on	this	process	until	you	minimize	the	magnitude
of	the	least	mean	square	error	e(k).
Before	you	apply	the	recursive	model	estimation,	you	must	first	select	the
parametric	model	structure	that	determines	the	parametric	vector	 .
Then,	you	must	select	the	method	that	automatically	adjusts	the
parametric	vector	such	that	the	error	e(k)	goes	to	the	minimum.
The	LabVIEW	System	Identification	Toolkit	provides	Recursive	Model
Estimation	VIs,	which	you	can	use	to	estimate	the	following	parametric
model	representations:

ARX
ARMAX
Output-Error
Box-Jenkins
General-Linear

Refer	to	the	Online	Model	Estimation	VI	in	the	labview\examples\System
Identification\Getting	Started\Recursive	Estimation.llb	for	an	example	that
demonstrates	how	to	use	the	SI	Recursively	Model	Estimation	VIs	to
estimate	the	linear	models	for	an	unknown	system	recursively.
	Open	example		 	Browse	related	examples
The	Recursive	Model	Estimation	VIs	have	a	recursive	method
parameter	that	enables	you	to	specify	which	recursive	estimation	method
to	use.	The	adaptive	method	you	use	affects	the	performance	of
recursive	system	identification	application.	You	can	choose	from	the
following	four	methods:

Least	mean	squares	(LMS)
Normalized	least	mean	squares	(NLMS)
Recursive	least	squares	(RLS)
Kalman	filter	(KF)

The	goal	of	each	method	is	to	adjust	the	parametric	vector	 	until	you
minimize	the	cost	function	J(k).	The	following	equation	defines	the	cost
function	J(k).

J(k)	=	E[e	2(k)]
where	E	is	the	expectation	of	the	enclosed	term(s).
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When	the	cost	function	J(k)	is	sufficiently	small,	the	parametric	vector	
is	considered	optimal	for	the	estimation	of	the	actual	system.



Least	Mean	Squares	(System	Identification
Toolkit)
The	least	mean	squares	(LMS)	method	uses	the	following	equations	to
define	the	cost	function	J(k)	=	E[e	2(k)].
The	parametric	vector	 	updates	according	to	the	following	equation.

k	is	the	number	of	iterations,	μ	is	step-size,	which	is	a	positive	constant,
and	 	is	the	data	vector	from	the	past	input	data	u(k)	and	output	data
y(k).	 	is	defined	by	the	following	equation.

The	following	procedure	describes	how	to	implement	the	LMS	algorithm.
1.	 Initialize	the	step-size	μ.
2.	 Initialize	the	parametric	vector	 	using	a	small	positive	number

ε.

3.	 Initialize	the	data	vector	 .

4.	 For	k	=	1,	update	the	data	vector	 	based	on	 	and	the
current	input	data	u(k)	and	output	data	y(k).

5.	 Compute	the	predicted	response	 	using	the	following	equation.

6.	 Compute	the	error	e(	k)	by	solving	the	following	equation.

7.	 Update	the	parameter	vector	 .

8.	 Stop	if	the	error	is	small	enough,	else	set	k	=	k	+	1	and	repeat
steps	4–8.



The	LMS	algorithm	is	one	of	the	most	widely	used	and	understood
adaptive	algorithms.	Selecting	the	step-size	μ	is	important	with	the	LMS
algorithm,	because	the	selection	of	the	step-size	μ	directly	affects	the
rate	of	convergence	and	the	stability	of	the	algorithm.	The	convergence
rate	of	the	LMS	algorithm	is	usually	proportional	to	the	step-size	μ.	The
larger	the	step-size	μ,	the	faster	the	convergence	rate.	However,	a	large
step-size	μ	can	cause	the	LMS	algorithm	to	become	unstable.	The
following	equation	describes	the	range	of	the	step-size	μ.
0	<	μ	<	μ	max
μ	max	is	the	maximum	step-size	that	maintains	stability	in	the	LMS
algorithm.	μ	max	is	related	to	the	statistical	property	of	the	stimulus	signal.
A	uniformly	optimized	step-size	μ	that	achieves	a	fast	convergence
speed	while	maintaining	the	stability	in	the	system	does	not	exist,
regardless	of	the	statistical	property	of	the	stimulus	signal.	For	better
performance,	use	a	self-adjustable	step-size	μ	and	the	normalized	least
mean	squares	(NLMS)	algorithm.



Normalized	Least	Mean	Squares	(System
Identification	Toolkit)
The	following	equation	defines	a	popular	self-adjustable	step-size	μ(k)
that	you	use	in	the	normalized	least	mean	squares	(NLMS)	algorithm.

	represents	the	data	vector.	ε	is	a	very	small	positive	number	that
prevents	the	denominator	from	equaling	zero	when	 	approaches
zero.
The	step-size	μ(k)	is	time-varying	because	the	step-size	changes	with
the	time	index	k.
Substituting	μ(k)	into	the	parametric	vector	 	equation	yields	the
following	equation.

Compared	to	the	least	mean	squares	(LMS)	algorithm,	the	NLMS
algorithm	is	always	stable	if	the	step-size	μ(k)	is	between	zero	and	two,
regardless	of	the	statistical	property	of	the	stimulus	signal	u(k).
The	procedure	of	the	NLMS	algorithm	is	the	same	as	the	LMS	algorithm
except	for	the	estimation	of	the	time-varying	step-size	μ(k).



Recursive	Least	Squares	(System	Identification
Toolkit)
The	recursive	least	squares	(RLS)	algorithm	and	Kalman	filter	algorithm
use	the	following	equations	to	modify	the	cost	function	J(k)	=	E[e	2(k)].

Compare	this	modified	cost	function,	which	uses	the	previous	N	error
terms,	to	the	cost	function,	J(k)	=		E[e	2(k)],	which	uses	only	the	current
error	information	e(k).	The	modified	cost	function	J(k)	is	more	robust.	The
corresponding	convergence	rate	in	the	RLS	algorithm	is	faster,	but	the
implementation	is	more	complex	than	that	of	LMS-based	algorithms.
The	following	procedure	describes	how	to	implement	the	RLS	algorithm.

1.	 Initialize	the	parametric	vector	 	using	a	small	positive	number
ε.

2.	 Initialize	the	data	vector	 .

3.	 Initialize	the	k	×	k	matrix	P(0).

4.	 For	k	=	1,	update	the	data	vector	 	based	on	 	and	the
current	input	data	u(k)	and	output	data	y(k).

5.	 Compute	the	predicted	response	 	by	using	the	following
equation.

6.	 Compute	the	error	e(k)	by	solving	the	following	equation.



7.	 Update	the	gain	vector	 	defined	by	the	following	equation.

The	properties	of	a	system	might	vary	with	time,	so	you	must
ensure	that	the	algorithm	tracks	the	variations.	You	can	use	the
forgetting	factor	λ,	which	is	an	adjustable	parameter,	to	track
these	variations.	The	smaller	the	forgetting	factor	λ,	the	less
previous	information	this	algorithm	uses.	When	you	use	small
forgetting	factors,	the	adaptive	filter	is	able	to	track	time-varying
systems	that	vary	rapidly.	The	range	of	the	forgetting	factor	λ	is
between	zero	and	one,	typically	0.98	<	λ	<	1.	

P(k)	is	a	k	×	k	matrix	whose	initial	value	is	defined	by	P(0)	in
step	3.

8.	 Update	the	parametric	vector	 .

9.	 Update	the	P(k)	matrix.

10.	 Stop	if	the	error	is	small	enough,	else	set	k	=	k	+	1	and	repeat
steps	4–10.



Kalman	Filter	(System	Identification	Toolkit)
The	Kalman	filter	is	a	linear	optimum	filter	that	minimizes	the	mean	of	the
squared	error	recursively.	The	convergence	rate	of	the	Kalman	filter	is
relatively	fast,	but	the	implementation	is	more	complex	than	that	of	LMS-
based	algorithms.

Recall	that	the	equation	J(k)	=	E[e	2(k)]	defines	the	cost	function.	The
following	procedure	lists	the	steps	of	the	Kalman	filter	algorithm.

1.	 Initialize	the	parametric	vector	 	using	a	small
positive	number	ε.

2.	 Initialize	the	data	vector	 .

3.	 Initialize	the	k	×	k	matrix	P(0).

4.	 For	k	=	1,	update	the	data	vector	 	based	on	 	and	the
current	input	data	u(k)	and	output	data	y(k).

5.	 Compute	the	predicted	response	 	by	solving	the	following
equation.

6.	 Compute	the	error	e(k)	by	solving	the	following	equation.

7.	 Update	the	Kalman	gain	vector	 	defined	by	the	following
equation.



Q	M	is	the	measurement	noise	and	P(k)	is	a	k	×	k	matrix	whose
initial	value	is	defined	by	P(0)	in	step	3.

8.	 Update	the	parametric	vector	 .

9.	 Update	the	P(k)	matrix.

QP	is	the	correlation	matrix	of	the	process	noise.
10.	 Stop	if	the	error	is	small	enough,	else	set	k	=	k	+	1	and	repeat

steps	4–10.



Frequency-Domain	Model	Estimation	Methods
(System	Identification	Toolkit)
Frequency-domain	model	estimation	involves	identifying	a	model	of	a
plant	by	using	the	frequency-domain	representation	of	the	plant	data.	You
acquire	frequency-domain	data	by	using	a	frequency	analyzer.	If	you
acquire	time-domain	data,	you	also	can	convert	this	time-domain	data	to
frequency-domain	data	by	estimating	the	frequency	response	function
(FRF)	of	a	plant.	The	FRF	represents	the	frequency-domain	relationship
between	the	inputs	and	outputs	of	a	plant.
The	LabVIEW	System	Identification	Toolkit	provides	tools	you	can	use	to
obtain	the	FRF	and	estimate	two	categories	of	parametric	models
—transfer	function	and	state-space.	Use	the	SI	Estimate	Transfer
Function	Model	from	FRF	VI	to	estimate	continuous	and	discrete	single-
input	single-output	(SISO)	transfer	function	models.	Use	the	SI	Estimate
State-Space	Model	from	FRF	VI	to	estimate	discrete	SISO	and	multiple-
input	multiple-output	(MIMO)	state-space	models.
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Advantages	of	Frequency-Domain	System	Identification
Compared	to	time-domain	model	estimation	methods,	frequency-domain
model	estimation	methods	have	the	following	advantages:

You	can	reduce	a	large	number	of	time-domain	data	samples	to	a
finite	number	of	frequency-domain	data	samples.
You	can	reduce	the	effects	of	noise	by	averaging	the	FRF	from
multiple	time-domain	data	measurements.
You	can	focus	on	frequency	bands	of	interest	by	directly
weighting	the	frequency-domain	data.



Estimating	the	Frequency	Response	Function
(System	Identification	Toolkit)
The	frequency	response	function	(FRF)	represents	the	frequency-domain
relationship	between	the	inputs	and	outputs	of	a	plant.	The	FRF	contains
the	magnitude,	phase,	and	frequency	information	of	the	plant	data.	You
estimate	the	FRF	when	you	have	time-domain	data,	but	you	want	to
identify	a	system	model	in	the	frequency	domain.	If	you	acquire
frequency-domain	data,	this	data	already	contains	the	FRF.
When	you	estimate	the	FRF,	the	following	factors	can	affect	the	FRF
negatively.

Noise
Spectral	leakage
Nonlinear	distortion

Use	the	SI	Estimate	FRF	VI	to	estimate	the	FRF	and	to	minimize	the
effects	of	these	factors.	This	VI	supports	windowing,	which	helps	to
minimize	spectral	leakage.	This	VI	also	supports	averaging,	which	helps
to	minimize	noise	and	nonlinear	distortion.
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Minimizing	Spectral	Leakage
To	minimize	the	effects	of	spectral	leakage,	you	can	apply	a	window	to
the	time-domain	data.	The	SI	Estimate	FRF	VI	supports	several	types	of
windows	for	different	types	of	signals.	The	type	of	window	you	choose
depends	on	the	characteristics	of	the	signal.	For	example,	use	a	Hanning
window	for	random	excitation	signals.	For	impact	excitation	signals,	use
an	Exponential	window.
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Minimizing	Noise	and	Nonlinear	Distortion
You	can	average	multiple	FRF	measurements	to	minimize	the	effects	of
nonlinear	distortion	and	reduce	the	effects	of	noise	in	the	data
measurements.	Averaging	the	data	smooths	the	frequency	response	by
reducing	fluctuations	that	exist	in	the	data.
The	SI	Estimate	FRF	VI	supports	both	RMS	averaging	and	vector
averaging	to	average	plant	data.

Note		The	multiple-input	multiple-output	(MIMO)	instances	of	the
SI	Estimate	FRF	VI	support	the	RMS	averaging	mode	only.
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Frequency-Domain	Model	Estimation	Case
Study	(System	Identification	Toolkit)
This	case	study	demonstrates	how	to	use	frequency-domain	data	from	a
flexible	robotic	arm	to	estimate	and	validate	a	transfer	function	model	and
state-space	model	of	the	robotic	arm.	This	case	study	estimates	the
models	directly	from	frequency-domain	data.

Note		If	the	system	you	want	to	estimate	contains	time-domain
data,	you	first	must	estimate	the	FRF	by	using	the	SI	Estimate
FRF	VI.

Refer	to	the	Flexible	Arm	(Frequency	Domain)	VI	in	the
labview\examples\System	Identification\Industry	Applications\Mechanical
Systems.llb	to	access	the	VI	in	this	case	study.
	Open	example		 	Browse	related	examples
In	this	case	study,	the	input	is	voltage	and	the	outputs	are	strain	and
position.	Strain	is	proportional	to	the	acceleration	of	the	flexible	arm.
Position	is	the	radial	position	of	the	arm.
Because	this	system	contains	one	input	and	two	outputs,	two	single-input
single-output	(SISO)	FRFs	or	one	multiple-input	multiple-output	(MIMO)
FRF	define	this	system.	One	FRF	defines	the	relationship	between	the
voltage	input	and	the	strain	output.	The	other	FRF	defines	the
relationship	between	the	voltage	input	and	the	position	output.	Each	FRF
contains	information	about	the	magnitude	and	phase	of	the	frequency
response	and	the	scale	of	the	frequency	data.	This	information	is	specific
to	each	input-output	pair.	To	measure	the	FRFs	in	this	case	study,	sine
waves	at	different	frequencies	excite	the	flexible	arm.	This	data	set	has	a
sampling	time	of	0.02	seconds,	which	is	equivalent	to	a	sampling	rate	of
50	Hz.
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Estimating	and	Validating	a	Transfer	Function	Model
Use	the	SI	Estimate	Transfer	Function	Model	from	FRF	VI	to	estimate	a
transfer	function	model	from	a	SISO	FRF.	Because	this	case	study
involves	one	input	and	two	outputs,	this	VI	must	estimate	and	validate
each	SISO	transfer	function	model	separately.	The	following	figure	shows
the	block	diagram	for	estimating	a	transfer	function	model	and	validating
the	resulting	transfer	function	model	against	the	original	FRF	data.	This
block	diagram	uses	the	FRF	describing	the	relationship	between	the
voltage	input	and	the	position	output	to	estimate	the	transfer	function
model.

The	FRF	magnitude	and	the	FRF	phase	inputs	of	the	SI	Estimate
Transfer	Function	Model	from	FRF	VI	require	that	the	data	input	is	in
polar	form.

Note		If	the	data	input	is	in	complex	form,	you	can	use	the	Re/Im
To	Polar	Function	to	convert	the	complex	data	into	polar	form	to
separate	the	magnitude,	phase,	and	frequency	components	of	the
complex	representation.	After	converting	the	complex	data	into
polar	form,	bundle	the	magnitude	and	frequency	components	into
one	cluster	and	bundle	the	phase	and	frequency	components	into
another	cluster.	Each	cluster	then	contains	the	data	you	wire	to	the
FRF	magnitude	and	the	FRF	phase	inputs	of	the	SI	Estimate
Transfer	Function	Model	from	FRF	VI.

In	this	case	study,	the	FRF	magnitude	and	the	FRF	phase	inputs
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contain	data	in	polar	form.	Therefore,	the	FRF	magnitude	and	the	FRF
phase	inputs	wire	directly	into	the	SI	Estimate	Transfer	Function	Model
from	FRF	VI.

Note		The	FRF	format	input	of	this	VI	specifies	whether	the
original	FRF	magnitude	is	in	decibels	or	in	a	linear	scale	and
whether	the	original	FRF	phase	is	wrapped	and	in	radians	or	in
degrees.	In	this	case	study,	the	original	FRF	data	uses	the	default
values	of	FRF	format.	The	original	FRF	magnitude	is	not	in
decibels.	The	original	FRF	phase	is	wrapped	and	in	radians.

Because	a	transfer	function	model	is	a	type	of	parametric	model
representation,	you	must	specify	the	model	parameters	before	estimating
the	model.	For	a	transfer	function	model,	you	must	specify	the	orders	of
the	numerator	and	denominator	polynomial	functions.	If	you	do	not	have
prior	knowledge	about	the	system,	you	must	use	trial	and	error	to
determine	the	optimal	orders	of	the	model.
One	way	to	identify	the	optimal	orders	is	to	observe	the	peaks	in	the
magnitude	response	of	the	original	FRF.	The	optimal	order	is	at	least
twice	the	number	of	peaks.	You	can	plot	and	observe	the	magnitude	by
using	the	SI	Bode	Plot	VI.	You	can	increase	the	accuracy	of	the	model	by
modifying	the	initial	guess	after	analyzing	the	model.	In	the	previous
block	diagram,	2	is	the	initial	guess	for	both	the	numerator	order	and	the
denominator	order.
You	can	validate	the	resulting	model	by	comparing	the	original	FRF	and
the	FRF	that	the	model	generates.	Compare	the	two	FRFs	on	an	XY
graph	by	using	the	SI	Bode	Plot	VI.	By	default,	the	SI	Bode	Plot	VI
unwraps	the	phase	information	and	converts	the	units	of	the	resulting
phase	to	degrees.	To	compare	the	original	FRF	and	the	FRF	that	the	SI
Bode	Plot	VI	displays	more	accurately,	use	the	Unwrap	Phase	VI	to
unwrap	the	phase	in	the	original	FRF.	This	case	study	also	uses	the
Mathematics	VIs	to	convert	the	original	FRF	from	radians	to	degrees.
The	following	figure	shows	the	Bode	plot	of	a	2nd-order	transfer	function
model.
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Visually	inspect	the	alignment	of	the	model-generated	FRF	and	the
original	FRF	to	determine	whether	the	estimated	transfer	function	model
accurately	describes	the	plant.	Notice	that	the	original	FRF	and	the
model-generated	FRF	do	not	align	at	frequencies	lower	than	4	Hz.
Therefore,	2	is	not	the	most	appropriate	order	value	for	the	transfer
function	model.
You	can	increase	the	accuracy	of	the	model	by	specifying	different	values
for	the	orders	of	transfer	function	model	control.	The	following	figure
shows	the	Bode	plots	of	a	6th-order	transfer	function	model.



In	this	case	study,	setting	the	value	of	the	orders	of	transfer	function
model	to	6	provides	a	closer	alignment	of	the	model-generated	FRF
and	the	original	FRF.	Therefore,	a	6th-order	transfer	function	model
describes	the	voltage-position	FRF	of	the	plant	more	accurately	than	a
2nd-order	model.
Identify	a	second	transfer	function	model	by	using	the	FRF	of	the	voltage
input	and	strain	output.	You	must	apply	the	same	method	when
optimizing	the	model	order.



Estimating	and	Validating	a	State-Space	Model
In	this	case	study,	a	single	MIMO	FRF	also	can	represent	the	frequency-
domain	relationship	of	the	input	and	outputs	of	the	flexible	arm	system.
You	can	use	this	MIMO	FRF	to	estimate	state-space	models	of	a	plant.
The	SI	Estimate	State-Space	Model	from	FRF	VI	estimates	a	state-space
model	for	SISO	and	MIMO	systems.	This	VI	requires	you	to	specify	the
number	of	states	of	the	system	you	want	to	estimate.	This	value	comes
from	prior	knowledge	about	the	system.
You	also	can	provide	an	initial	guess	if	you	do	not	have	prior	knowledge.
A	guideline	for	identifying	the	number	of	states	of	a	system	is	the	same
as	the	guideline	for	identifying	the	orders	of	a	transfer	function	model.
The	number	of	states	is	at	least	twice	the	number	of	peaks	in	the
magnitude	of	the	FRF.	Because	a	MIMO	FRF	is	composed	of	more	than
one	SISO	FRF,	you	must	observe	the	magnitude	of	the	SISO	FRF	with
the	maximum	number	of	peaks.
In	this	case	study,	the	SISO	FRFs	that	comprise	the	MIMO	FRF	both
have	one	peak.	Therefore,	the	initial	guess	at	the	number	of	states	is	2.
By	increasing	the	number	of	states	and	plotting	the	model-generated
MIMO	FRF	along	with	the	original	MIMO	FRF	on	a	Bode	plot,	you	can
observe	that	entering	eight	states	produces	an	acceptable	estimation	for
the	system.
The	following	figure	shows	the	Bode	Plots	of	the	original	MIMO	FRF	and
the	MIMO	FRF	that	the	state-space	model	generates.
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Compare	the	FRF	Position	graphs	in	the	previous	figure	with	the	6th-
order	transfer	function	FRF	Position	graphs.	Both	model-generated
FRFs	are	close	to	the	original	FRF	in	the	FRF	Position	graphs.	The
proximity	of	these	FRFs	indicates	that	the	6th-order	transfer	function
model	and	the	state-space	model	with	eight	states	are	close
approximations	for	estimating	system	models	in	this	case	study.



Analyzing,	Validating,	and	Converting	Models
(System	Identification	Toolkit)
After	estimating	a	model	of	a	plant,	you	can	observe	model
characteristics	by	analyzing	the	model.	You	also	can	verify	that	the	model
represents	the	real-world	plant	by	validating	the	model.	The	LabVIEW
System	Identification	Toolkit	provides	tools	that	enable	you	to	analyze
and	validate	models.
According	to	linear	system	theory,	you	can	represent	a	linear	system	with
different	models.	Each	model	representation	has	benefits	and	drawbacks
for	characterizing	a	dynamic	system.	Certain	model	representations	are
more	suitable	for	certain	analysis	techniques.	You	can	use	the	System
Identification	Toolkit	to	convert	models	from	one	representation	to
another	to	identify	the	best-fit	model	for	the	system.



Analyzing	Models	(System	Identification	Toolkit)
You	can	use	model	analysis	to	observe	some	characteristics,	such	as
frequency	response,	stability,	and	order,	of	the	model.	Use	the	LabVIEW
System	Identification	Toolkit	to	investigate	model	estimation	results	and
present	these	results	in	Bode	plot,	the	Nyquist	plot,	and	the	pole-zero	plot
graphs.
Refer	to	the	Model	Presentation	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	use	the	SI	Bode	Plot,	SI	Nyquist	Plot,	and	SI	Pole-Zero	Plot	VIs	to
compute	the	Bode,	Nyquist,	and	pole-zero	plots,	respectively,	of	an
system	model.
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Bode	Plot
A	Bode	plot	contains	a	Bode	magnitude	plot	and	a	Bode	phase	plot.
These	two	plots	together	describe	the	frequency	response	of	the	plant
model	you	estimate.	A	Bode	magnitude	plot	describes	magnitude	versus
frequency.	A	Bode	phase	plot	describes	phase	versus	frequency.	The
following	figure	shows	an	example	of	a	Bode	plot.

The	SI	Bode	Plot	VI	calculates	the	upper	and	lower	limits	according	to
the	confidence	level	you	set.	You	can	obtain	information,	such	as	the
gain	of	the	system	and	the	cutoff	frequency,	by	evaluating	the	Bode	plot.
You	can	use	the	SI	Bode	Plot	VI	to	produce	the	Bode	magnitude	and
Bode	phase	plots.	You	then	can	display	the	Bode	magnitude	and	phase
using	the	SI	Bode	Plot	Indicator.
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Nyquist	Plot
A	Nyquist	plot	describes	the	gain	and	phase	of	a	frequency	response	in
polar	coordinates	by	plotting	the	imaginary	part	of	the	complex	frequency
response	versus	the	real	part.	You	can	use	the	Nyquist	plot	to	predict	the
stability	of	a	system.	In	polar	coordinates,	a	Nyquist	plot	shows	the	phase
as	the	angle	and	the	magnitude	as	the	distance	from	the	origin,	as	shown
in	the	following	figure.

The	SI	Nyquist	Plot	VI	calculates	the	upper	and	lower	limits	according	to
the	confidence	level	you	set.	You	can	use	the	SI	Nyquist	Plot	VI	to
generate	the	Nyquist	plot	and	display	this	plot	by	using	the	SI	Nyquist
Plot	Indicator.
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Pole-Zero	Plot
The	pole-zero	plot	displays	the	poles	and	zeros	of	a	system.	By
observing	the	locations	of	the	poles	and	zeros,	you	can	conclude	whether
the	system	is	stable.	In	a	stable	system,	all	poles	are	within	the	unit
circle.	The	following	figure	shows	a	pole-zero	plot	of	a	stable	model.

You	can	use	the	SI	Pole-Zero	Plot	VI	to	generate	a	pole-zero	plot	and
display	the	plot	by	using	the	SI	Pole-Zero	Plot	Indicator.
You	also	can	use	the	pole-zero	plot	to	determine	if	you	can	reduce	model
orders.	By	observing	the	pole-zero	placements,	you	can	determine	if	any
pole-zero	pairs	have	overlapping	confidence	intervals.	A	confidence
interval	is	a	region	the	SI	Pole-Zero	Plot	VI	calculates	from	the
confidence	level	you	set.	The	existence	of	overlapping	confidence
intervals	implies	that	pole-zero	cancellations	exist	and	that	the	model
order	might	be	unnecessarily	high.	The	pole-zero	plot	shown	in	the
previous	figure	is	an	optimal	model	with	the	appropriate	order	because
the	pole-zero	pairs	do	not	have	overlapping	confidence	intervals.
If	the	model	order	is	too	high,	you	can	try	reducing	the	model	order.	You
then	can	use	the	F-test	criterion	to	assess	if	the	reduction	in	model	order
leads	to	a	significant	increase	in	the	prediction	error.	If	the	reduction	in
model	order	leads	to	a	significant	increase	in	the	prediction	error,	do	not
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reduce	the	model	order.



Validating	Models	(System	Identification	Toolkit)
Model	estimation	determines	the	best	model	of	the	system	within	the
chosen	model	structure.	Model	estimation	does	not	determine	if	the
model	provides	the	most	accurate	description	of	the	system.	After	you
obtain	a	model,	you	must	validate	the	model	to	determine	how	well	the
behavior	of	the	model	corresponds	to	the	data	you	measured,	to	any
prior	knowledge	of	the	system,	and	to	the	purpose	for	which	you	use	the
model.	Model	validation	also	determines	if	the	model	is	flexible	enough	to
describe	the	system.	If	the	model	is	inadequate,	you	must	revise	the
system	identification	process	or	consider	using	another	method.

Note		When	validating	the	model	you	obtain,	you	must	use	a	set	of
data	that	is	different	from	the	data	you	used	to	estimate	the	model.

The	best	way	to	validate	a	model	is	to	experiment	with	the	model	under
real-world	conditions.	If	the	model	works	as	you	expect,	the	model
estimation	is	successful.	However,	experimenting	with	the	model	under
real-world	conditions	might	be	dangerous.	For	example,	introducing
arbitrary	perturbations	to	the	input	of	a	chemical	plant	might	lead	to	a
harmful	explosion.	Therefore,	before	you	incorporate	the	model	into	real-
world	applications,	validate	the	model	by	using	plots	and	common	sense
or	by	using	statistical	tests	on	the	prediction	error.
The	LabVIEW	System	Identification	Toolkit	provides	three	of	the	most
common	validation	methods—model	simulation,	model	prediction,	and
model	residual	analysis.	You	can	use	any	or	all	of	these	methods	to
validate	the	model.	The	method(s)	you	use	depend	on	the	purpose	for
which	you	created	the	model.



Model	Simulation
Use	model	simulation	to	understand	the	underlying	dynamic	relationship
between	the	model	inputs	and	outputs.	The	SI	Model	Simulation	VI
determines	the	outputs	of	a	system	for	given	inputs.	After	you	build	a
model	for	the	system	using	the	input	and	output	data	you	measured,	you
can	use	the	model	to	simulate	the	response	of	the	system	by	using	the
model	equations.	You	then	can	evaluate	the	behavior	of	the	system.	You
also	can	use	simulation	to	validate	the	model	by	comparing	the	simulated
response	with	the	measured	response.
Refer	to	the	Model	Simulation	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	simulate	the	response	of	an	unknown	system	with	the	estimated
model.
	Open	example		 	Browse	related	examples
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Model	Prediction
Use	model	prediction	to	test	the	ability	of	the	model	to	predict	the
response	of	the	system	using	past	input	and	output	data.	The	SI	Model
Prediction	VI	determines	the	response	of	a	system	at	time	t	based	on	the
output	information	available	at	time	t	–		k	and	all	the	inputs	applied	from
time	t	–	k	to	time	t.	k	represents	the	size	of	the	prediction	window.
Therefore,	model	prediction	can	determine	how	useful	a	model	is	in
estimating	future	responses	of	the	system,	given	all	information	at	time	t
and	an	expected	input	profile	in	the	future.	Some	control	techniques	take
advantage	of	model	prediction	to	improve	control	performance.	For
example,	model	predictive	control	uses	some	of	the	prediction	properties
of	a	model	to	determine	if	a	particular	limitation	or	constraint	is	active	in
the	future.	This	method	allows	the	controller	to	take	preventive	actions
before	such	constraints	become	active.
If	you	have	the	measured	input	and	output	of	a	system,	you	also	can
validate	the	model	of	the	system	by	comparing	the	predicted	output	and
the	measured	output.	If	the	prediction	error	is	small,	the	model	is
acceptable.
Refer	to	the	Model	Prediction	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	use	the	k-step	ahead	prediction	to	verify	the	model	for	an
unknown	system.
	Open	example		 	Browse	related	examples
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Model	Residual	Analysis
Use	model	residual	analysis	to	analyze	the	prediction	error,	which	is	the
difference	between	the	response	that	an	estimated	model	predicts	and
the	actual	response	from	the	system.	The	following	equation	defines	the
prediction	error,	also	known	as	the	residual	e(k).
e(k)	=	y(k)	–	y'(k)
y(k)	is	the	measured	output	and	y'(	k)	is	the	output	from	the	one-step-
ahead	prediction.	If	the	model	is	capable	of	describing	the	plant,	the
residual	is	zero-mean	white	noise	and	independent	of	the	input	signal.
You	can	use	autocorrelation	analysis	to	test	if	the	residual	is	zero-mean
white	noise.	You	can	use	cross-correlation	analysis	to	test	if	the	residual
is	independent	of	the	input	signal.	The	SI	Model	Residual	Analysis	VI
calculates	both	the	autocorrelation	and	the	cross-correlation	values.
Autocorrelation
The	following	equation	defines	the	autocorrelation	of	the	residuals.

Ideally,	the	residual	is	white	noise,	and	therefore	the	autocorrelation
function	Re

N(τ)	is	zero	when	τ	is	nonzero.	A	large	autocorrelation	when	τ
is	nonzero	indicates	that	the	residual	is	not	zero-mean	white	noise	and
also	implies	that	the	model	structure	is	not	relevant	to	the	system	or	that
you	might	need	to	increase	the	model	order.

In	real-world	applications,	the	autocorrelation	function	Re
N(τ)	cannot	be

zero	when	τ	is	nonzero	because	of	the	limited	length	of	data	points.
However,	the	SI	Model	Residual	Analysis	VI	assesses	if	the
autocorrelation	value	is	sufficiently	small	to	be	ignored.	If	the	value	of
autocorrelation	falls	within	the	confidence	range,	the	autocorrelation
value	is	insignificant	and	you	can	consider	this	value	to	be	equal	to	zero.
Cross	Correlation
The	following	equation	defines	the	cross	correlation	between	residuals
and	past	inputs.
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If	the	residual	is	independent	of	the	input,	the	cross	correlation	is	zero	for
all	τ.	If	the	residual	correlates	with	the	input,	the	cross	correlation	is
nonzero,	suggesting	that	the	model	did	not	capture	all	deterministic
variations	from	the	data.	Therefore,	you	must	revise	the	model	variation.
The	SI	Model	Residual	Analysis	VI	assesses	if	the	value	of	cross
correlation	is	sufficiently	small.	If	the	value	of	cross	correlation	falls	within
the	confidence	range,	the	value	is	insignificant	and	you	can	consider	this
value	to	be	equal	to	zero.
Refer	to	the	Residual	Analysis	VI	in	the	labview\examples\System
Identification\Getting	Started\General.llb	for	an	example	that	demonstrates
how	to	analyze	the	residuals	of	the	model	estimation	for	an	unknown
system.
	Open	example		 	Browse	related	examples
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Converting	Models	(System	Identification
Toolkit)
With	the	LabVIEW	System	Identification	Toolkit,	you	can	use	the	Model
Conversion	VIs	to	convert	system	models	from	one	representation	to
another,	from	continuous	to	discrete	models,	and	from	discrete	to
continuous	models.	You	can	convert	models	you	created	in	this	toolkit	to
models	you	can	use	in	another	toolkit.	You	also	can	convert	a	model	after
you	estimate	the	model	or	after	you	analyze	or	validate	the	model.
You	can	use	the	Model	Conversion	VIs	to	switch	between	different	model
types	and	representations.	For	example,	when	estimating	a	digital
system,	you	can	convert	an	existing	continuous	model	to	a	discrete
model	to	approximate	the	real-time	behavior	of	the	system.	You	do	not
need	to	create	a	new	discrete	model	for	the	digital	system.	Using	the
Model	Conversion	VIs,	you	also	can	convert	models	you	create	in	the
System	Identification	Toolkit	into	transfer	function,	zero-pole-gain,	or
state-space	models	that	you	then	can	use	with	the	LabVIEW	Control
Design	and	Simulation	Module.	This	model	conversion	process	enables
you	to	identify	a	model	for	an	unknown	system	with	the	System
Identification	Toolkit	and	then	design	a	controller	for	this	system	using	the
Control	Design	and	Simulation	Module.
Refer	to	the	National	Instruments	Web	site	at	ni.com	for	more	information
about	the	Control	Design	and	Simulation	Module.
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System	Identification	Case	Study	(System
Identification	Toolkit)
This	case	study	guides	you	through	the	system	identification	process.
The	case	study	uses	sample	data	that	the	LabVIEW	System	Identification
Toolkit	provides	in	the	SI	Data	Samples	VI.	The	SI	Data	Samples	VI
includes	data	sets	for	a	DC	motor,	a	flexible	robot	arm,	a	ball	and	beam
apparatus,	an	RC	circuit,	and	so	on.	This	case	study	uses	the	flexible
arm	data	to	demonstrate	the	system	identification	process	and	to
compare	different	estimation	methods.
The	flexible	arm	is	a	nonlinear	dynamic	system.	The	System
Identification	Toolkit	enables	you	to	build	models	for	systems	linearly.
This	case	study	guides	you	through	obtaining	a	linear	representation	of	a
nonlinear	system.
Refer	to	the	labview\examples\system	identification\SICaseStudy1.llb	to
access	the	VIs	in	this	case	study.
	Open	example		 	Browse	related	examples
In	addition	to	this	case	study,	you	can	find	the	following	system
identification	case	studies	in	this	help	file.

Partially	Known	Model	Estimation	Case	Study
Frequency-Domain	Model	Estimation	Case	Study

The	partially	known	model	estimation	case	study	guides	you	through
estimating	a	state-space	model	by	using	prior	knowledge	about	the
system	you	want	to	define.	The	frequency-domain	model	estimation	case
study	guides	you	through	estimating	a	state-space	and	transfer	function
model	by	using	frequency-domain	data.
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Preprocessing	the	Data	(System	Identification
Toolkit)
After	you	gather	data,	the	next	step	in	the	system	identification	process	is
to	preprocess	the	data.	The	input	to	the	system	in	this	case	study	is	the
reaction	torque	of	the	structure	on	the	ground.	This	input	is	a	swept	sine
wave	with	200	frequency	points	equally	spaced	over	the	frequency	band
from	0.122	Hz	to	24.4	Hz.
The	output	of	this	system	is	the	acceleration	of	the	flexible	arm.	The
acceleration	contains	information	about	the	flexible	resonances	and	anti-
resonances.
The	data	set	contains	4096	samples	at	a	sampling	rate	of	500	Hz	or
sampling	time	of	0.002	seconds.	Thus	the	total	time	of	the	response	is
8.192	seconds.
You	can	preprocess	the	raw	data	by	examining	the	time	and	frequency
responses	of	the	system.	Based	on	those	analyses,	you	can	filter	and
downsample	the	data	set	to	reduce	the	amount	of	data	in	the	raw	data
set	for	simpler	identification.



Examining	the	Time	Response	Data
Using	the	data	in	the	SI	Data	Samples	VI	for	the	flexible	robotic	arm,	you
can	view	the	input	and	output	data,	as	shown	in	the	following	figure.

The	stimulus	signal	–	torque	output	corresponds	to	the	input	data,	or
the	torque,	and	the	response	signal	–	acceleration	output	corresponds
to	the	output	data,	or	the	acceleration.
The	following	figure	shows	the	input	and	output	data	on	graphs	during
the	length	of	the	response.	By	looking	at	the	graphs,	you	can	inspect	the
data	for	outliers,	clipped	saturation,	or	quantization	effects	that	you	can
remove	because	they	are	not	representative	of	the	system	behavior.

The	previous	figure	shows	no	obvious	nominal,	trend,	or	outlier	values	in
the	input	or	output	time	waveforms.
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Examining	the	Frequency	Response	Data
In	addition	to	examining	the	time	response	data,	you	also	want	to
examine	the	frequency	response	data.	You	can	use	the	SI	Estimate
Frequency	Response	VI	to	view	the	frequency	response	of	the	measured
output	signal,	as	shown	in	the	following	figure.

The	input	data	is	periodic	over	4096	samples,	which	is	the	signal	length.
Notice	that	in	the	previous	figure	the	window	length,	4096,	is	the	same
as	the	signal	length	so	as	to	obtain	a	smaller	bias	in	the	frequency
response	estimation.
The	following	figure	shows	the	magnitude	and	phase	responses	of	the
measured	output	signal.	The	magnitude	response	graph	shows	three
resonances	and	two	anti-resonances	in	the	frequency	domain.
Resonances	are	vibrations	of	large	amplitude	in	a	system	caused	by
exciting	the	system	at	its	natural	frequency.

Notice	the	resonance	at	approximately	42	Hz.	You	can	deduce	that	this
resonance	is	caused	by	noise	or	nonlinear	system	behavior	because	the
42	Hz	falls	outside	the	frequency	range	of	the	input	data,	0.122–24.4	Hz.
At	42	Hz,	there	is	no	input	energy,	thus	implying	that	the	response	at
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42	Hz	is	not	a	result	of	the	input.
By	examining	the	frequency	response	data,	you	see	that	filtering	is
necessary	to	remove	this	resonance	peak	at	42	Hz.	You	can	use	the
LabVIEW	System	Identification	Toolkit	to	apply	a	filter	to	the	flexible	arm
data.



Applying	a	Filter	to	the	Raw	Data
To	eliminate	the	resonance	peak	at	42	Hz,	you	can	apply	a	filter	to	the
raw	data.	By	first	applying	a	lowpass	filter	with	a	cutoff	frequency	of
25	Hz,	you	eliminate	the	high-frequency	noise	from	the	raw	data	set.	The
following	figure	shows	how	to	use	SI	Lowpass	Filter	to	apply	a	lowpass
filter	to	the	raw	data	set.

You	can	see	the	effects	of	the	lowpass	filter	by	comparing	the	frequency
response	of	the	filtered	data	set	in	the	following	figure	to	the	frequency
response	of	the	non-filtered	data	set.	By	using	a	lowpass	filter,	you	can
see	that	the	resonance	at	approximately	42	Hz	is	no	longer	part	of	the
data	set	you	will	use	to	estimate	the	model.
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Downsampling	the	Raw	Data
Sampling	theory,	in	conjunction	with	the	Nyquist	criterion,	enables	you	to
reduce	the	sampling	rate	from	500	Hz	to	50	Hz.	Applying	a	filter	and
downsampling	the	data	set	reduces	the	number	of	samples	in	and	the
computational	complexity	of	the	data	set.	The	goal	is	to	use	as	few
samples	as	possible	to	evaluate	the	behavior	of	the	system.
Sampling	theory	enables	you	to	downsample,	or	decimate,	the	data	set.
Downsampling	reduces	the	sampling	rate,	500	Hz,	by	a	factor	of	10.
Thus	downsampling	enables	you	to	acquire	the	data	at	a	sampling	rate	of
50	Hz.	The	Nyquist	criterion	states	that	you	must	sample	the	signal	at	a
minimum	of	twice	the	highest	frequency	in	the	system.
Recall	that	the	input	data	is	equally	spaced	over	the	frequency	band
0.122–24.4	Hz.	Therefore,	according	to	the	Nyquist	criterion,	you	must
sample	at	a	minimum	of	50	Hz	to	avoid	any	antialiasing.	The	benefit	of
sampling	at	50	Hz	is	that	you	still	acquire	all	the	data	in	the	frequency
band,	yet	you	eliminate	the	resonance	peak	at	42	Hz.
Therefore,	in	the	following	figure,	the	SI	Lowpass	Filter	VI	sets	the	cutoff
frequency	to	25.	In	addition	to	applying	a	lowpass	filter	to	the	data,	you
must	downsample	the	reduced	data	set.	The	SI	Down	Sampling	VI	in	the
following	figure	uses	a	decimation	factor	of	10.

The	SI	Lowpass	Filter	VI	applies	a	lowpass	filter	before	downsampling
the	data	set	to	avoid	aliasing	at	the	42	Hz	resonance.	Together,	the
lowpass	filter	and	downsampling	remove	the	high	frequency	disturbance
and	make	the	process	faster	and	more	efficient.
Notice	that	the	window	length	parameter	of	the	SI	Estimate	Frequency
Response	VI	in	the	previous	figure	is	around	400	instead	of	4096,	as
shown	in	the	previous	figure.	You	can	reduce	the	window	length	by	a
factor	of	10	because	the	number	of	samples	in	the	reduced	data	set	is
one	tenth	of	the	number	of	samples	in	the	raw	data	set.
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The	following	figure	shows	the	frequency	response	after	applying	a	filter
to	and	downsampling	the	raw	data	set.

Filtering	and	downsampling	are	beneficial	because	they	eliminate	the
nonrealistic	parts	of	the	frequency	response	and	reduce	the	amount	of
work	required	in	the	model	estimation	process.



Estimating	an	ARX	Model	(System	Identification
Toolkit)
One	of	the	biggest	challenges	in	model	estimation	is	selecting	the	correct
model	and	the	order	of	the	model.	The	LabVIEW	System	Identification
Toolkit	supports	three	different	criteria	to	aid	in	the	estimation	of	the	order
of	a	model.

Final	Prediction	Error	(FPE)	Criterion
Akaike's	Information	Criterion	(AIC)
Minimum	Description	Length	(MDL)	Criterion

Sometimes	the	results	you	obtain	with	these	three	criteria	might	be
inconsistent.	You	can	use	a	pole-zero	plot	for	further	investigation	and	to
verify	the	results	of	the	order	estimation.
The	following	figure	shows	a	prediction	error	plot	generated	by	the	SI
Estimate	Orders	of	System	Model	VI	for	an	ARX	model.	The	y-axis	is	the
prediction	error	and	the	x-axis	is	the	model	dimension.	The	three	different
color	bars	on	the	chart	represent	the	FPE,	AIC,	and	MDL	criteria.

You	can	use	the	AIC,	MDL,	and	a	user-defined	criterion	to	determine	the
A	and	B	orders	of	the	ARX	model.

lvsysid.chm::/est__orders_system_model.html


Akaike's	Information	Criterion
The	following	block	diagram	uses	the	SI	Estimate	Orders	of	System
Model	VI	for	order	estimation.	To	estimate	the	orders	of	a	model,	the
SI	Estimate	Orders	of	System	Model	VI	requires	two	data	sets—one	for
estimation	and	one	for	validation.	You	do	not	need	to	acquire	two	data
sets	from	a	system,	rather,	you	can	partition	one	data	set	into	two	using
the	SI	Split	Signals	VI.	The	SI	Split	Signals	VI	divides	the	preprocessed
data	samples	into	a	portion	for	model	estimation	and	a	portion	for	model
validation.
In	the	following	figure,	the	1st	portion	(%)	is	66,	which	means	the	SI
Estimate	Orders	of	System	Model	VI	will	use	66%	of	the	data	samples	for
estimation	and	the	remainder	of	the	data	samples	for	validation.

The	SI	Estimate	Orders	of	System	Model	VI	generates	the	prediction
error	plot	for	the	ARX	model	and	the	optimal	A	order	and	B	order	based
on	the	AIC	criterion.	By	using	the	AIC	criterion,	the	lowest	prediction	error
corresponds	to	a	model	dimension	of	19,	as	shown	in	the	prediction
error	plot.	For	an	ARX	model,	the	model	dimension	is	equal	to	the	sum
of	the	A	order,	B	order,	and	delay	values.	The	SI	Estimate	Orders	of
System	Model	VI	returns	the	following	optimal	orders:

A	order	=	9
B	order	=	10
delay	=	0
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Verifying	the	Results
After	determining	the	orders	of	the	model,	you	want	to	verify	the	results	to
ensure	the	model	accurately	describes	the	system.	One	method	is	to	plot
a	pole-zero	map	and	visually	inspect	the	plot	to	determine	whether	there
is	any	redundancy	in	the	data.	If	a	pole	and	a	zero	overlap,	the	pole	and
zero	cancel	out	each	other,	which	indicates	the	estimated	optimal	order	is
too	high.
The	pole-zero	plot	graph	in	the	following	figure	shows	a	pole-zero	plot
with	three	overlapping	pole-zero	pairs.	Due	to	numerical	error,	it	is
unlikely	that	a	zero	and	a	pole	perfectly	overlap.	You	can	use	the
confidence	region	to	justify	whether	the	pole	and	the	zero	cancel	out
each	other.

Because	there	are	three	pole-zero	pairs,	you	can	conclude	that	the	AIC
criterion	does	not	produce	the	most	optimal	orders.



Minimum	Description	Length	Criterion
Because	the	AIC	criterion	produced	a	model	with	non-optimal	orders,	you
can	try	estimating	the	model	orders	with	the	MDL	criterion.	By	using	the
MDL	criterion,	the	lowest	prediction	error	corresponds	to	a	model
dimension	of	12,	as	shown	in	the	prediction	error	plot.	The	SI	Estimate
Orders	of	System	Model	VI	returns	the	following	optimal	orders:

A	order	=	6
B	order	=	6
delay	=	0

The	following	figure	shows	a	pole-zero	plot	of	a	model	with	a	model
dimension	of	12.

Compare	the	previous	figure,	which	uses	the	MDL	criterion	and	the	figure
which	uses	the	AIC	criterion.	Because	there	are	no	overlapping	pole-zero
pairs	in	the	previous	figure,	you	can	conclude	that	the	MDL	criterion	fits
better	than	the	AIC	criterion	in	this	particular	example.
In	addition	to	examining	redundancy,	you	also	can	use	the	pole-zero	plot
for	other	purposes.	For	example,	both	the	previous	two	figures	show
poles	outside	the	unit	circle.	Having	poles	outside	the	unit	circle	implies
that	this	model	is	not	optimal	because	the	ARX	system	based	on	the	AIC
or	MDL	criteria	is	unstable.	One	way	to	stabilize	the	system	is	to	change
the	order.



In	addition	to	the	FPE,	AIC,	and	MDL	criteria,	you	can	set	user-defined
orders	in	the	SI	Estimate	Orders	of	System	Model	VI.



User-Defined	Criterion
If	you	know	nothing	about	the	system,	you	might	have	to	rely	on	trial	and
error	to	determine	the	optimal	orders	of	the	model.	However,	if	you	have
some	knowledge	about	a	system,	you	can	customize	the	estimation	to
find	a	model	that	fits	a	certain	model	dimension.	For	this	model,	assume
you	know	that	the	system	is	stable;	therefore,	no	poles	exist	outside	the
unit	circle.	Because	both	the	AIC	and	MDL	criterion	did	not	produce
stable	models,	the	model	orders	do	not	describe	the	system	accurately.
On	the	following	block	diagram,	you	can	customize	the	method
parameter.	Instead	of	AIC	or	MDL,	you	can	select	<Other>	and	enter	the
desired	model	dimension	in	the	textbox.	Assume	you	know	that	the
model	dimension	is	nine.

The	following	figure	shows	the	corresponding	pole-zero	plot	graph	with
a	model	dimension	of	nine,	which	corresponds	to	the	following	optimal
orders:

A	order	=	4
B	order	=	5
delay	=	0



Compare	the	pole-zero	plot	in	the	previous	figure	with	the	previous	two
figures	which	uses	the	MDL	criterion	and	the	AIC	criterion.	The	figure
which	uses	the	user-defined	criterion	has	no	overlapping	pole-zero	pairs
and	all	the	poles	are	within	the	unit	circle.	By	visually	inspecting	the	pole-
zero	plot,	you	can	see	that	this	model	is	stable	and	not	redundant.	Using
these	model	orders,	you	now	can	estimate	and	verify	the	system	model.



Validating	the	ARX	Model	(System	Identification
Toolkit)
The	goal	of	model	validation	is	to	determine	whether	or	not	the	estimated
model	accurately	reflects	the	actual	system.	Using	the	model	orders
found	in	the	User-Defined	Criterion	section,	you	can	simulate	and	predict
the	response	of	the	system.	You	can	compare	these	responses	to	the
actual	response	and	determine	the	accuracy	of	the	estimated	model.	You
also	can	analyze	the	residuals	to	determine	the	accuracy	of	the
estimated	model.



Simulation	and	Prediction
You	can	use	the	SI	Model	Simulation	VI	and	SI	Model	Prediction	VI	to
determine	the	accuracy	of	the	estimated	model.	The	SI	Model	Simulation
VI	simulates	the	system	model	and	the	SI	Model	Prediction	VI	performs	a
prediction	of	the	system	model.	The	results	of	the	SI	Model	Prediction	VI
might	differ	from	the	SI	Model	Simulation	VI	because	the	SI	Model
Prediction	VI	periodically	makes	corrections	to	the	estimated	response
based	on	the	actual	response	of	the	system.
The	following	figure	shows	how	you	use	these	VIs	to	verify	the	ARX
model	created	in	the	User-Defined	Criterion	section.

The	simulation	and	1-step	ahead	prediction	graphs	enable	you	to
visually	determine	how	accurate	the	model	is.	The	following	figure	shows
the	results	of	the	simulation	and	prediction	as	well	as	the	actual	response
of	the	system.
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Notice	how	the	actual	response,	or	the	measured	response,	is	different
from	the	simulated	response	in	the	simulation	graph.	The	SI	Model
Simulation	VI	simulates	the	response	of	the	system	without	considering
the	actual	response	of	and	the	noise	dynamics	in	the	system.



Residual	Analysis
In	addition	to	simulation	and	prediction,	you	can	perform	a	residual
analysis	to	validate	the	system	model.	Residual	analysis	tests	whether
the	prediction	error	correlates	to	the	stimulus	signal.	Prediction	errors	are
usually	uncorrelated	with	all	stimulus	signals	in	an	open-loop	system.
The	following	block	diagram	shows	how	you	can	use	the	SI	Model
Residual	Analysis	VI	with	the	ARX	model	identified	in	the	User-Defined
Criterion	section	to	analyze	the	residuals.

The	following	figure	shows	an	example	of	ideal	results	where	both
autocorrelation	and	cross	correlation	are	inside	the	confidence	region
except	those	in	the	vicinity	of	τ	=	0.	This	result	indicates	that	the
estimated	model	accurately	describes	the	system.

When	you	verify	and	validate	the	identified	model,	you	must	use	multiple
analysis	techniques	to	determine	if	the	estimated	model	accurately
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represents	the	system.	Some	analysis	techniques	can	be	misleading.	For
example,	if	you	performed	a	residual	analysis	on	the	model	identified	in
the	Minimum	Description	Length	Criterion	section,	you	might	conclude
that	this	model	is	an	accurate	representation	of	the	system.	The	following
figure	shows	the	autocorrelation	and	cross-correlation	residual	analysis
for	the	model	in	the	Minimum	Description	Length	Criterion	section.	Recall
that	this	model	has	the	following	orders:

A	order	=	6
B	order	=	6
delay	=	0

The	previous	figure	shows	that	both	the	autocorrelation	and	cross
correlation	are	inside	the	confidence	region.	Therefore,	without
performing	any	other	analyses,	you	might	conclude	that	this	model	is	an
accurate	representation	of	the	system.	However,	the	pole-zero	analysis	in
the	Minimum	Description	Length	Criterion	section	showed	poles	outside
of	the	unit	circle.	So	you	already	determined	that	this	model	is	unstable.
Thus,	despite	acceptable	autocorrelation	and	cross-correlation	values,
concluding	that	this	model	is	accurate	is	incorrect.
Thus,	if	you	only	performed	a	residual	analysis,	you	might	not	discover
that	this	model	is	actually	unstable.	When	validating	a	model,	perform
multiple	analyses	to	ensure	the	accuracy	of	the	model.



Estimating	and	Validating	a	State-Space	Model
(System	Identification	Toolkit)
For	a	state-space	model,	order	estimation	is	equivalent	to	estimating	the
number	of	significant	singular	values,	which	correspond	to	the	number	of
states	in	the	model.	After	identifying	a	state-space	model	that	represents
the	system,	you	can	use	the	same	validation	and	verification	technique
used	in	the	Simulation	and	Prediction	section	and	the	Residual	Analysis
section.
The	examples	in	this	topic	use	the	same	flexible	robotic	arm	data	and	the
same	preprocessing	techniques.



Finding	the	Singular	Values
The	following	block	diagram	shows	how	to	use	the	SI	Estimate	Orders	of
System	Model	VI	to	find	the	optimal	order	and	the	number	of	significant
singular	values.

The	Singular	Values	graph	in	the	following	figure	shows	a	singular	value
plot	with	four	leading	singular	values.

By	looking	both	at	the	Singular	Values	graph	and	the	optimal	order,
you	can	see	that	there	are	four	states	in	this	state-space	model.
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Validating	the	Estimated	State-Space	Model
You	can	validate	the	state-space	model	in	the	same	way	that	you
validated	the	ARX	model.	You	use	the	SI	Model	Simulation	VI	and	the	SI
Model	Prediction	VI	to	determine	the	accuracy	of	the	state-space	model.
The	following	figure	shows	the	complete	process,	from	estimating	the
state-space	model	to	simulating	and	predicting	the	response	of	the
model.

The	simulation	and	1-step	ahead	prediction	graphs	in	the	previous
figure	show	simulation	and	prediction	plots	for	a	state-space	model.
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