
Accessing	I/O	with	the	NI	Scan	Engine
June	2008,	372521A–01
Use	I/O	variables	to	access	coherent	sets	of	I/O	channels	through	the	NI
Scan	Engine.

To	view	related	topics,	click	the	Locate	button,	shown	at	left,	in	the
toolbar	at	the	top	of	this	window.	The	LabVIEW	Help	highlights	this
topic	in	the	Contents	tab	so	you	can	navigate	the	related	topics.

©	2008	National	Instruments	Corporation.	All	rights	reserved.



Using	I/O	Variables	(NI	Scan	Engine)
An	I/O	variable	is	a	type	of	shared	variable	that	is	tied	to	a	physical	I/O
channel.	Use	I/O	variables	to	read	and	write	I/O	channels	from	a	VI.	I/O
variables	use	the	NI	Scan	Engine	to	enable	efficient,	non-blocking	access
to	coherent	sets	of	I/O	channels.	The	NI	Scan	Engine	implements	a	scan
that	stores	data	in	a	global	memory	map	and	updates	values	at	a	fixed
interval,	known	as	the	scan	period.
Because	I/O	variables	communicate	with	physical	I/O	channels,	you
cannot	create	new	I/O	variables.	To	add	a	new	I/O	variable	to	a	project,
you	must	first	connect	the	associated	I/O	module(s)	to	the	target.	When
you	add	a	new	target	with	the	NI	Scan	Engine	installed	to	a	LabVIEW
project,	LabVIEW	automatically	detects	the	I/O	modules	attached	to	the
target	and	creates	an	I/O	variable	in	the	project	for	each	I/O	channel.
When	you	add	a	new	I/O	module	to	a	project	under	a	target	with	the	NI
Scan	Engine	installed,	LabVIEW	automatically	adds	an	I/O	variable	for
each	channel	of	the	I/O	module.	If	you	add	or	remove	I/O	modules	under
a	target	that	is	already	part	of	the	current	LabVIEW	project,	you	can	use
the	Project	&	System	Comparison	dialog	box	to	ensure	that	the	project
reflects	the	I/O	modules	attached	to	the	target.

Note		When	you	run	a	VI	that	contains	I/O	Variables,	LabVIEW
automatically	deploys	the	corresponding	I/O	modules.	When
deploying	an	I/O	module,	LabVIEW	deploys	all	the	I/O	variables
within	the	module	as	a	group.

You	can	use	the	Project	Explorer	window	to	edit	the	name,	description,
scaling,	and	network-publishing	of	an	I/O	variable.	You	also	can	use	the
multiple	variable	editor	to	edit	multiple	I/O	variables.
I/O	variables	support	timestamps.	However,	timestamps	require
additional	memory	and	CPU	overhead	and	can	affect	the	determinism	of
the	application.	You	should	enable	timestamps	only	if	you	plan	to	use	the
timestamps.

Note		If	the	interface	software	for	an	I/O	bus	fails	to	initialize,
LabVIEW	aborts	loading	all	I/O	variables	in	the	project.	In	this
case,	the	I/O	variables	might	still	appear	in	the	project,	but	if	an
application	attempts	to	access	the	variables,	a	run-time	error
occurs.

lvdialog.chm::/system_diff.html
lvmve.chm::/DSC_SpConfigDB.html


Creating	I/O	Aliases
You	can	create	aliases	of	an	I/O	variable	to	provide	an	extra	layer	of
abstraction	from	the	physical	I/O	channel.	You	also	can	create	aliases	of
other	aliases,	resulting	in	a	chain	of	aliases.	The	value	of	an	I/O	alias	is
linked	bidirectionally	to	the	value	of	the	parent,	so	updating	the	value	of
the	parent	updates	the	value	of	the	I/O	alias,	and	updating	the	value	of
the	I/O	alias	updates	the	value	of	the	parent.	By	extension,	updating	any
link	in	a	chain	of	I/O	aliases	updates	all	other	links	in	the	chain.
To	create	an	I/O	alias	variable,	right-click	an	RT	target	that	contains	I/O
variables	in	the	Project	Explorer	window	and	select	New»Variable	from
the	shortcut	menu	to	display	the	Shared	Variable	Properties.	Enter	a
name	for	the	I/O	alias	and	select	I/O	Alias	from	the	Variable	Type	pull-
down	menu.	Then	click	the	Browse...	button	and	select	the	existing	I/O
variable	or	I/O	alias	to	which	you	want	to	bind	the	new	I/O	alias.

Note		When	you	bind	an	alias	to	an	I/O	channel,	ensure	that	the
data	type	of	the	alias	matches	the	data	type	of	the	I/O	channel.

To	batch	create	I/O	aliases,	first	create	a	single	I/O	alias	to	use	as	a
template	for	the	batch	creation	process.	Right-click	a	variable	library	that
contains	an	existing	I/O	alias	and	select	Create	Variables...	from	the
shortcut	menu	to	display	the	Batch	Variable	Creation	dialog	box.	Select
Copy	properties	from,	click	the	Browse	button,	and	select	the	existing
I/O	alias	that	you	want	to	use	as	a	template.	Enter	the	number	of	I/O
aliases	you	want	to	create	in	the	Number	to	create	field	and	click	the	OK
button	to	create	the	new	I/O	alias	variables.	LabVIEW	creates	the	I/O
alias	variables	and	binds	them	all	to	the	same	I/O	variable	as	the
template	variable.	LabVIEW	automatically	opens	the	Multiple	Variable
Editor	window,	which	you	can	use	to	edit	the	new	variables.	For	example,
you	might	want	to	edit	the	Alias	Path	of	each	I/O	alias	to	bind	to	a	unique
I/O	variable.
You	can	use	the	Project	Explorer	window	to	edit	the	name,	description,
scaling,	and	network-publishing	of	an	I/O	alias.	You	also	can	use	the
Multiple	Variable	Editor	window	to	edit	multiple	I/O	aliases.

Note		You	can	enable	network	publishing	on	an	I/O	alias	variable,
but	you	cannot	deploy	a	library	that	contains	both	network-
published	I/O	alias	variables	and	other	types	of	network-published

lvdialog.chm::/edit_variable_db.html
lvmve.chm::/DSC_Batch_Var_Creation.html
lvmve.chm::/DSC_SpConfigDB.html


shared	variables.	Instead,	you	must	deploy	network-published	I/O
alias	variables	in	a	separate	library.



Scaling	Values
You	can	enable	linear	scaling	on	an	I/O	variable	or	alias	on	the	Scaling
page	of	the	Shared	Variable	Properties	dialog	box.	For	example,	if	you
have	an	I/O	variable	connected	to	a	thermocouple	input,	you	could	create
a	Celsius	alias	and	a	Fahrenheit	alias.	Then	you	could	scale	each	alias
and	use	the	aliases	to	display	the	temperature	in	both	units	of	measure.

Note		Some	I/O	busses	implement	hardware	scaling.	In	this	case,
LabVIEW	I/O	variable	scaling	provides	an	additional	scaling	layer.
Rather	than	overwrite	the	hardware	scaling,	LabVIEW	uses	the
hardware-scaled	value	from	the	I/O	bus	as	the	raw	value	when
calculating	the	software-scaled	value.

lvdialog.chm::/sm_scale_page.html


Forcing	Values
Forcing	an	I/O	variable	causes	the	associated	I/O	channel	to	assume	the
value	you	specify	until	you	unforce	the	variable,	reboot	the	target,	or
force	the	variable	to	assume	a	different	value.	As	long	as	an	I/O	variable
is	forced,	the	scan	engine	does	not	update	the	value	of	the	variable.
Unforcing	an	I/O	variable	returns	control	of	the	I/O	value	to	the	scan
engine.

Note		When	an	I/O	variable	is	forced,	each	I/O	variable	access
takes	slightly	longer	than	when	the	variable	is	not	forced,	which
could	cause	a	loop	to	run	late	if	the	loop	period	is	not	long	enough
to	accommodate	the	forcing	overhead.

Use	the	NI	Distributed	System	Manager	to	force	or	unforce	the	value	of
an	I/O	variable	during	debugging	or	to	manually	control	an	I/O	channel.
From	LabVIEW,	select	Tools»Distributed	System	Manager	to	launch
the	NI	Distributed	System	Manager.

Note		You	can	use	the	NI	Distributed	Manager	security	settings	to
prevent	users	from	forcing	I/O	variables	from	within	the	NI
Distributed	System	Manager.

Use	the	Forcing	VIs	to	force	and	unforce	I/O	variable	values
programmatically.
Forcing	applies	to	aliases	as	well	as	standard	I/O	variables.	When	you
force	an	I/O	variable,	you	also	force	all	associated	aliases.	When	you
force	an	alias,	you	also	force	the	parent	I/O	variable	and	all	other
associated	aliases.	LabVIEW	applies	scaling	to	forced	values	as	if	the
forced	value	were	the	actual	value	of	the	I/O	channel.	So,	when	you	force
one	link	in	a	chain	of	aliases,	all	links	in	the	chain	scale	appropriately.
You	can	enable	and	disable	global	forcing	on	a	target	in	System	Manager
by	using	the	Enable	Forcing	and	Disable	Forcing	buttons.	You	also	can
enable	and	disable	global	forcing	on	a	target	programmatically	using	the
Enable	Variable	Forcing	and	Disable	Variable	Forcing	VIs.	You	can	use
the	global	forcing	state	of	the	target	for	batch	forcing	of	I/O	variables.	To
perform	batch	I/O	variable	forcing,	disable	forcing	on	the	target,	set	the
desired	forcing	values	for	all	I/O	variables,	then	re-enable	forcing	on	the
target.

sysman.chm::/sysman.html
sysman.chm::/Forcing_IO.html
sysman.chm::/ni_acl_db.html
lvioscan.chm::/Forcing_Palette.html
lvioscan.chm::/Enable_Forcing.html
lvioscan.chm::/disable_forcing.html


Note		Forcing	does	not	persist	if	the	target	reboots.



Network-Publishing	I/O	Variables
Use	the	Shared	Variable	Properties	dialog	box	to	enable	and	disable
network	publishing	on	an	I/O	variable.	Use	network-publishing	if	you
need	to	monitor	I/O	values	on	a	host	computer	or	access	an	I/O	variable
from	a	remote	target.	Use	the	Scan	Engine	page	to	set	the	global
network-publishing	rate	for	all	I/O	variables	on	a	target.

Note		Accessing	I/O	variables	remotely	is	not	deterministic.	If	you
do	not	plan	to	access	I/O	variables	remotely,	disable	network
publishing	to	minimize	overhead.	When	you	disable	network
publishing	on	an	I/O	variable	or	I/O	alias,	you	cannot	access	the
variable	from	a	VI	running	on	another	machine.	However,	you	can
still	force	the	variable	from	the	NI	Distributed	System	Manager.	To
prevent	users	from	forcing	an	I/O	variable,	use	the	System
Manager	security	settings.

lvdialog.chm::/edit_variable_db.html
lvrtdialog.chm::/io_scan_page.html
sysman.chm::/ni_acl_db.html


Configuring	I/O	Variable	Properties	at	Run	Time
You	can	update	description,	network,	and	scaling	options	of	an	I/O
variable	at	run	time.	However,	you	cannot	update	the	name	or	data	type
of	an	I/O	variable	at	run	time.



I/O	Variable	Access	Methods
LabVIEW	adds	I/O	variables	to	a	global	scan	engine	memory	map	and
updates	the	values	of	all	I/O	variables	concurrently.	However,	you	can
configure	each	I/O	variable	node	to	use	either	scanned	access	or	direct
access.	To	switch	from	scanned	to	direct	access,	right-click	an	I/O
variable	node	on	the	block	diagram	and	select	Change	to	Direct.	To
switch	from	direct	to	scanned	access,	right-click	an	I/O	variable	node	on
the	block	diagram	and	select	Change	to	Scanned.

Note		LabVIEW	adds	all	I/O	variables	to	the	global	scan	engine
memory	map,	regardless	of	the	access	mode	you	use	for	each
variable.

Scanned	I/O	Access
By	default,	LabVIEW	configures	I/O	variable	nodes	to	use	scanned	I/O
access.	Use	scanned	access	for	coherent	sets	of	I/O	channels	that
update	at	a	single	rate	and	for	expansion	I/O	channels.	Scanned	I/O
access	uses	the	scan	engine	memory	map	to	perform	non-blocking	I/O
reads	and	writes,	as	shown	in	the	following	illustration.

Each	time	you	write	to	an	I/O	variable	using	scanned	access,	you
overwrite	the	previous	value	stored	in	the	scan	engine	memory	map.
During	each	scan,	LabVIEW	pushes	the	value	stored	in	the	memory	map
to	the	physical	I/O	channel.	To	prevent	data	loss,	you	must	synchronize
all	I/O	variable	write	operations	to	the	scan	period.
Each	time	you	read	from	an	I/O	variable	using	scanned	access,	the	scan
engine	returns	the	most	recent	value	stored	in	the	memory	map.	During
each	scan,	LabVIEW	reads	the	most	recent	value	from	the	physical	I/O
channel	and	writes	that	value	to	the	memory	map.
Direct	I/O	Access
Use	direct	I/O	access	for	single-point	local	I/O	channels	with	rates
asynchronous	to	the	scan	period.	Direct	I/O	access	bypasses	the	scan



engine	memory	map	and	communicates	directly	with	the	I/O	device	driver
to	perform	blocking	I/O	reads	and	writes,	as	shown	in	the	following
illustration.

Note		The	speed	of	direct	I/O	access	varies	by	controller,	I/O
module,	and	communication	protocol.	Refer	to	the	specific
hardware	documentation	for	more	information	about	I/O	access
speed.

Choosing	an	I/O	Access	Method
In	general,	scanned	I/O	access	is	appropriate	for	groups	of	I/O	channels
with	similar	update	rates,	and	direct	I/O	access	is	appropriate	for
individual	I/O	channels	that	update	faster	than	the	scan	period.	The
following	table	summarizes	when	to	use	each	I/O	access	method:

Access
Method

Suggested	Use

Scanned Expansion	I/O;	coherent	sets	of	single-point,	single-rate
I/O	channels

Direct Individual	single-point	local	I/O	channels	asynchronous	to
the	scan	period



Using	the	NI	Scan	Engine
The	NI	Scan	Engine	is	a	software	component	that	you	can	install	on
supported	targets,	such	as	RT	Series	PXI	and	CompactRIO	targets.
Refer	to	the	target	I/O	driver	documentation	for	information	about	NI
Scan	Engine	support.

Note		You	must	install	the	LabVIEW	Real-Time	Module	to	create
applications	that	use	the	NI	Scan	Engine.	However,	if	you	do	not
have	the	Real-Time	Module	installed	on	your	computer,	you	can
still	use	the	NI	Distributed	System	Manager	to	monitor	and
manage	scan	engine	settings	on	targets	with	the	NI	Scan	Engine
installed.

The	NI	Scan	Engine	enables	efficient	access	to	coherent	sets	of	data
channels,	such	as	I/O	channels,	using	a	scan	that	stores	data	in	a	global
memory	map	and	updates	all	values	at	a	single	rate,	known	as	the	scan
period.

Note		By	default,	the	NI	Scan	Engine	runs	in	a	thread	above	time-
critical	priority,	although	LabVIEW	includes	the	scan	thread	in	the
time-critical	category	when	reporting	CPU	usage	statistics.	If	you
plan	to	use	the	scan	engine,	you	must	synchronize	the
deterministic	sections	of	the	application	with	the	scan	period	to
ensure	that	the	scan	thread	does	not	affect	the	determinism	of	the
application.	If	you	do	not	plan	to	use	I/O	variables	on	a	target,	do
not	install	the	NI	Scan	Engine	on	the	target.	If	the	NI	Scan	Engine
is	already	installed	on	the	target,	you	can	use	the	NI	Measurement
&	Automation	Explorer	(MAX)	to	uninstall	the	NI	Scan	Engine.



Configuring	Scan	Engine	Settings
Use	the	Scan	Engine	page	to	configure	scan	engine	settings	including
the	scan	period,	network-publishing	rate,	and	priority	level	of	the	NI	Scan
Engine.
Use	the	NI	Distributed	System	Manager	to	monitor	and	manage	scan
engine	faults	and	modes.	You	also	can	use	the	NI	Scan	Engine	VIs	to
view	and	configure	scan	engine	settings	programmatically.

lvrtdialog.chm::/io_scan_page.html
lvioscan.chm::/NIScanEnginePalette.html


Scan	Engine	Timing
The	NI	Scan	Engine	executes	at	regular	intervals	determined	by	the
Scan	Period	you	specify	on	the	Scan	Engine	page.	Choose	a	period
long	enough	to	accommodate	both	the	scan	itself	and	the	application
logic,	as	shown	in	the	following	illustration.

Note		The	length	of	the	scan	depends	on	the	number	and	type	of
I/O	items	deployed	to	the	target.	To	maximize	scan	engine
performance,	undeploy	any	I/O	items	that	you	do	not	plan	to	use	in
the	application.

Use	the	Get	Scan	Engine	Period	VI	to	read	the	scan	period
programmatically.	Use	the	Set	Scan	Engine	Period	VI	to	set	the	scan
period	programmatically.

Note		Real-time	loops	generally	need	one	or	two	warm-up
iterations	to	begin	executing	deterministically.	Before	checking	to
ensure	that	an	application	meets	timing	requirements,	you	should
allow	each	time-critical	loop	to	execute	warm-up	iterations.

Synchronizing	to	the	Scan	Engine
By	default,	the	scan	engine	runs	in	a	thread	above	time-critical	priority.
You	should	synchronize	time-critical	code	to	the	scan	engine	to	avoid
collisions	that	could	affect	the	determinism	of	the	application.
Use	the	Synchronize	to	Scan	Engine	timing	source	to	synchronize
timed	structure	execution	to	the	scan	engine.	If	you	do	not	want	to	use	a
timed	structure,	you	can	use	the	Synchronize	to	Scan	Engine	VI	to
synchronize	to	the	scan	engine.	Both	synchronization	methods	trigger
execution	at	the	time	labeled	End	of	Scan	in	the	previous	illustration.	To
use	I/O	variables	as	a	coherent	data	set,	you	should	ensure	that	the
synchronized	code	finishes	executing	before	the	next	scan	iteration.
However,	you	can	safely	skip	scan	iterations	if	the	code	does	not	depend
on	a	coherent	data	set.

lvioscan.chm::/Get_Scan_Period.html
lvioscan.chm::/Set_Scan_Period.html
lvioscan.chm::/SyncToScanEngine.html


Note		If	synchronized	code	does	not	finish	executing	before	the
next	scan	iteration,	the	information	reported	by	the	error	cluster	of
an	I/O	variable	might	lose	synchronization	with	the	I/O	value.

Note		When	you	press	the	Abort	button	on	a	VI	that	involves
synchronization	to	the	NI	Scan	Engine,	the	VI	does	not	abort	until
the	current	scan	iteration	completes,	so	the	VI	could	appear	to
hang	temporarily	if	the	scan	period	is	sufficiently	long.

Setting	the	Priority	of	the	NI	Scan	Engine
By	default,	the	NI	Scan	Engine	runs	in	a	thread	above	time-critical
priority.	For	most	applications	that	use	the	scan	engine,	above	time-
critical	is	the	appropriate	priority	because	reading	and	writing	I/O	values
is	generally	the	highest-priority	task	of	an	application.	To	prevent	jitter,
you	must	synchronize	time-critical	code,	such	as	control	loops,	to	the
scan	engine	and	configure	the	scan	period	to	accommodate	the	time-
critical	code.
For	applications	in	which	I/O	is	not	the	highest-priority	task,	you	also	can
configure	the	priority	of	the	scan	engine	to	fall	between	time-critical	and
Timed	Structure	priority.



NI	Scan	Engine	Modes
Note		Only	certain	targets	and	devices	use	NI	Scan	Engine
modes.	CompactRIO	targets	with	local	I/O	modules	do	not	use	NI
Scan	Engine	modes.	Refer	to	the	I/O	hardware	documentation	for
information	about	hardware-specific	mode	behavior.

LabVIEW	distinguishes	four	NI	Scan	Engine	modes:

Initialization
Mode

Occurs	only	briefly	during	startup.

Configuration
Mode

The	required	mode	when	configuring	scan	engine
settings	on	hardware	that	uses	NI	Scan	Engine	modes.

Active	Mode The	mode	in	which	the	scan	engine	runs	and	updates
values.

Fault	Mode The	mode	triggered	when	a	major	or	unrecoverable	fault
occurs.

Note		Fault	mode	behavior	varies	by	target.	Refer	to	the	specific
target	hardware	documentation	for	information	about	fault	mode
behavior.

Use	the	NI	Distributed	System	Manager	to	view	and	configure	the	scan
engine	mode.	Use	the	Get	Scan	Engine	Mode	VI	to	read	the	scan	engine
mode	programmatically.	Use	the	Set	Scan	Engine	Mode	VI	to	set	the
scan	engine	mode	programmatically.

sysman.chm::/sysman.html
sysman.chm::/Setting_Mode.html
lvioscan.chm::/Get_Scan_Mode.html
lvioscan.chm::/Set_Scan_Mode.html


NI	Scan	Engine	Faults
Targets	with	the	NI	Scan	Engine	installed	use	faults	to	address
asynchronous	error	conditions.	LabVIEW	distinguishes	three	fault	levels:
minor,	major,	and	unrecoverable.	LabVIEW	logs	all	faults	in	the	NI
Distributed	System	Manager.

Note		Some	I/O	hardware	drivers	implement	fault	handling
behavior	in	response	to	major	faults.	Refer	to	the	specific
hardware	documentation	for	information	about	fault	handling
behavior.

Examples	of	minor	faults	include	startup	errors,	which	can	occur	when
the	controller	is	unable	to	apply	its	saved	configuration	on	startup.	If
LabVIEW	detects	that	the	scan	engine	has	run	late,	LabVIEW	triggers
major	fault	−66460.	If	LabVIEW	detects	ten	consecutive	late	scan
iterations,	LabVIEW	triggers	major	fault	−66461	and	the	NI	Scan	Engine
stops	running.	Unrecoverable	faults	can	occur	due	to	a	hardware	failure
or	software	crash.	In	the	event	of	an	unrecoverable	fault,	reboot	the
controller	and	contact	National	Instruments.

sysman.chm::/sysman.html


Viewing	and	Clearing	Faults
Use	the	NI	Distributed	System	Manager	to	view	and	clear	faults.	You	also
can	use	the	Get	Fault	List	VI	and	the	Clear	Fault	VI	to	view	and	clear
faults	programmatically.

sysman.chm::/sysman.html
sysman.chm::/Clearing_Faults.html
lvioscan.chm::/get_fault_list.html
lvioscan.chm::/clear_fault.html


System	Faults
LabVIEW	defines	a	set	of	common	faults	and	you	can	log	additional
faults	based	on	LabVIEW	error	clusters.	Fault	codes	are	grouped
together	by	type,	as	shown	in	the	following	table.

Fault	Type Range	of	Fault	Codes
I/O	Scan	Driver	Errors −66000	through	−66099
I/O	Variables −66200	through	−66299
NI	Scan	Engine	VIs −66300	through	−66399
NI	Scan	Engine −66400	through	−66499
User	Fault Any	LabVIEW	error	code



User	Faults
You	can	use	the	Set	Fault	VI	to	trigger	minor	or	major	user-defined	faults
based	on	LabVIEW	error	codes.	LabVIEW	reserves	a	memory	pool	large
enough	to	log	up	to	100	unique	fault	codes.	If	you	exceed	100	unique
fault	codes,	LabVIEW	triggers	minor	fault	−66420	and	discontinues
logging	additional	faults.	However,	even	if	the	maximum	number	of	user
faults	has	been	reached,	a	major	or	unrecoverable	fault	can	still	trigger
hardware	drivers	to	initiate	fault	handling	behavior.

Note		Refer	to	the	specific	hardware	documentation	for	information
about	fault	handling	behavior.

lvioscan.chm::/set_fault.html

