
NI-SWITCH	LabVIEW	Reference	Help
June	2007,	372293A-01
Use	the	VIs	on	the	NI-SWITCH	palette	to	build	the	block	diagram.
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


niSwitch	Initialize	With	Topology
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	NI-SWITCH	calls	and	sets	the	topology	of	the	switch
module.
niSwitch	Initialize	with	Topology	creates	a	new	IVI	instrument	driver
session	for	the	switch	module	specified	in	the	resource	name
parameter.	NI-SWITCH	uses	the	topology	specified	in	the	topology
name	parameter	and	overrides	the	topology	specified	in	MAX.
By	default,	the	switch	module	is	reset	to	a	known	state.
Enable	simulation	by	specifying	the	topology	and	setting	the	simulate
parameter	to	True.

resource	name	specifies	the	resource	name	of	the	switch
module	to	initialize.
Syntax:
Optional	fields	are	shown	in	square	brackets	([]).

MAX	Configuration	Pane
Category Valid	Syntax

NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ	(Legacy)
Devices

SCXI[chassis	ID]::slot	number

PXI	System PXI[bus	number]::device
number

Tip		IVI	logical	names	are	also	valid	for	resource	name.

Default	values	for	optional	fields:
chassis	ID	=	1
bus	number	=	0

The	following	table	lists	example	resource	names:

Resource
Name Description

SC1Mod3 NI-DAQmx	module	in	chassis	"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed	to	"MySwitch"
SCXI1::3 Traditional	NI-DAQ	(Legacy)	module	in	chassis

javascript:LaunchHelp('switch.chm::/simulate.html')
javascript:LaunchHelp('switch.chm::/flow_init.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
javascript:LaunchHelp('switch.chm::/simulate.html')


niSwitch	Close
Terminates	the	NI-SWITCH	session	and	all	of	its	attributes	and
deallocates	any	memory	resources	NI-SWITCH	uses.
If	error	in	describes	an	error	that	occurred	before	the	call	to	this	VI,
niSwitch	Close	still	attempts	to	close	the	session.	However,	if	the
attempt	fails,	this	VI	returns	the	error	information	that	was	passed	in
from	error	in.

Note		After	calling	niSwitch	Close,	you	cannot	use	the	NI-
SWITCH	again	until	you	call	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.	Right-click	the	error	out

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Connect	Channels
Creates	a	path	between	channel	1	and	channel	2.	NI-SWITCH
calculates	and	uses	the	shortest	path	between	the	two	channels.	Refer
to	Setting	Source	and	Configuration	Channels	for	information	about
channel	usage	types.	Details

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	1	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	the	channel	2.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel	2	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	the	channel	1.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

javascript:LaunchHelp('switch.chm::/configchannels.html')
javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Connect	Channels	Details
Note		Paths	are	bidirectional.	For	example,	if	a	path	exists
between	channels	CH1	and	CH2,	then	the	path	also	exists
between	channels	CH2	and	CH1.

If	a	path	is	unavailable	between	the	two	channels,	NI-SWITCH	returns
the	following	errors:

Error Description
Explicit
Connection
Exists

The	channels	have	already	been	explicitly	connected	by
calling	either	niSwitch	Connect	Channels	or	niSwitch	Set
Path.

Is
Configuration
Channel

One	of	the	channels	is	a	configuration	channel.	Error
elaboration	contains	information	about	which	of	the	two
channels	is	a	configuration	channel.

Attempt	To
Connect
Sources

Both	channels	are	connected	to	a	source.	Error
elaboration	contains	information	about	the	sources
connected	to	channel	1	and	2.

Cannot
Connect	To
Itself

Channel	1	and	channel	2	are	identical.

Path	Not
Found

No	paths	between	channel	1	and	channel	2	are
available.

Resource	In
Use

Channel	1	and/or	channel	2	is	in	use.	This	error	often
occurs	when	one	of	the	channels	is	set	as	a
configuration	channel	and	is	in	use	or	if	one	of	the
channels	is	a	common	multiplexer	channel	in	use.



niSwitch	Disconnect	Channels
Breaks	the	path	between	two	channels	created	with	niSwitch	Connect
Channels	or	niSwitch	Set	Path.
If	no	connection	exists	between	the	channels,	NI-SWITCH	returns	an
error.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	1	specifies	one	of	the	channel	names	of	the	path	to
break.	Pass	the	other	channel	name	as	the	channel	2.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel	2	specifies	one	of	the	channel	names	of	the	path	to
break.	Pass	the	other	channel	name	as	the	channel	1.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Wait	For	Debounce
Pauses	until	all	created	paths	have	settled.	Call	this	VI	before	niSwitch
Get	Relay	Count	to	ensure	an	accurate	relay	count.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

maximum	time	specifies	the	maximum	length	of	time	to	wait	for
all	relays	in	the	switch	module	to	activate	or	deactivate.	If	the
specified	time	elapses	before	all	relays	activate	or	deactivate,	a
timeout	error	is	returned.
Default	value:	5000	(milliseconds)

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Set	Path
Connects	two	channels	by	specifying	an	explicit	path	in	path	list.	This
VI	is	particularly	useful	where	path	repeatability	is	important,	such	as	in
calibrated	signal	paths.	If	this	is	not	necessary,	use	niSwitch	Connect
Channels.
To	obtain	the	exact	path	for	a	given	connection,	use	niSwitch	Get	Path.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

path	list—A	string	composed	of	comma-separated	paths
between	channel	1	and	channel	2.	The	first	and	last	names	in
the	path	are	the	path	endpoints.	All	other	channels	in	the	path	are
configuration	channels.
Example	of	a	valid	path	list	string:
ch0->com0,	com0->ab0.
In	this	example,	com0	is	a	configuration	channel.
Obtain	the	path	list	for	a	previously	created	path	with	niSwitch
Get	Path.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.

javascript:LaunchHelp('switch.chm::/configchannels.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Can	Connect	Channels?
Verifies	that	a	path	between	channel	1	and	channel	2	can	be	created.
If	a	path	is	possible	in	the	switch	module,	the	availability	of	that	path	is
returned	given	the	existing	connections.	If	the	path	is	possible	but	in
use,	an	Implicit	Connection	Exists	warning	is	returned.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	1	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	channel	2.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel	2	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	channel	1.	Refer	to
Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Disconnect	All	Channels
Breaks	all	existing	paths.
If	the	switch	module	cannot	break	all	paths,	a	warning	is	returned.
If	an	error	in	parameter	describes	an	error	that	occurred	before	the	call
to	this	VI,	NI-SWITCH	still	attempts	to	break	all	connections	and	returns
the	error	information	that	was	passed	in	from	error	in.
Relays	closed	with	niSwitch	Relay	Control	are	also	disconnected.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Switch	Is	Debounced?
Indicates	if	all	created	paths	have	settled	by	returning	the	value	of	the	is
debounced	Property.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
is	debounced	indicates	whether	all	created	paths	have	settled.
Status Description
FALSE All	created	paths	have	not	settled
TRUE All	created	paths	have	settled

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Path
Returns	a	string	that	identifies	the	explicit	path	created	with	niSwitch
Connect	Channels.	Pass	this	string	to	niSwitch	Set	Path	to	establish	the
exact	same	path	in	future	connections.
In	some	cases,	multiple	paths	are	available	between	two	channels.
When	you	call	niSwitch	Connect	Channels,	NI-SWITCH	selects	an
available	path;	however,	the	driver	may	not	always	select	the	same	path
through	the	switch	module.
This	VI	only	returns	those	paths	explicitly	created	by	niSwitch	Connect
Channels	or	niSwitch	Set	Path.	For	example,	if	you	connect	channels
CH1	and	CH3,and	then	channels	CH2	and	CH3,	an	explicit	path
between	channels	CH1	and	CH2	does	not	exist,	and	an	error	is
returned.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	1	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	the	channel	2	parameter.
Refer	to	Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel	2	specifies	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as	the	channel	1	parameter.
Refer	to	Devices	for	valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
javascript:LaunchHelp('switch.chm::/configchannels.html')


niSwitch	Property	Node

Gets	(reads)	and/or	sets	(writes)	properties	of	the	NI-SWITCH	driver.	For
a	complete	list	of	NI-SWITCH	properties,	refer	to	NI-SWITCH	Properties.



Channel	Based	Properties
Some	NI-SWITCH	properties	are	channel	based	or	apply	to	a	specific
channel.	When	a	property	is	channel	based,	you	must	specify	an	active
channel	before	setting	or	getting	properties.	In	the	following	example,	ab0
is	set	as	a	source	channel	and	ch0	is	set	as	a	configuration	channel.
Both	properties	are	channel	based.



Non-Channel	Based	Properties
To	set	or	get	NI-SWITCH	properties	that	are	not	channel	based,	you	do
not	need	to	specify	an	active	channel.	The	following	example	shows	a
property	node	used	to	get	the	value	of	the	Driver	Vendor	property.



Scan
Use	the	VIs	located	on	the	NI-SWITCH»Scan	palette	to	configure	a	scan.
Click	the	icons	for	VI	and	function	descriptions.

niSwitch	Abort	Scan niSwitch	Route	Trigger	Input
niSwitch	Commit niSwitch	Send	Software	Trigger
niSwitch	Configure	Scan	List niSwitch	Set	Continuous	Scan
niSwitch	Configure	Scan	Trigger niSwitch	Switch	Is	Scanning?
niSwitch	Initiate	Scan niSwitch	Wait	For	Scan	To

Complete
niSwitch	Route	Scan	Advanced
Output



niSwitch	Initiate	Scan
Commits	the	configured	scan	list	and	trigger	settings	to	hardware	and
initiates	the	scan.	If	niSwitch	Commit	was	called	earlier,	this	VI	only
initiates	the	scan	and	returns	immediately.
Once	the	scanning	operation	begins,	you	cannot	perform	any	other
operations	other	than	niSwitch	Abort	Scan	or	niSwitch	Send	Software
Trigger,	as	well	as	retrieval	of	attributes.	All	other	VIs	return	a	Scan	In
Progress	error.
To	stop	the	scanning	operation,	call	niSwitch	Abort	Scan.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an

javascript:LaunchHelp('switch.chm::/scan_list.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Abort	Scan
Aborts	the	scan	in	progress.
Initiate	a	scan	with	niSwitch	Initiate	Scan.
If	the	switch	module	is	not	scanning,	a	No	Scan	In	Progress	error	is
returned.
If	error	in	describes	an	error	that	had	occurred	before	calling	this	VI,	the
VI	still	attempts	to	abort	the	scan.	However,	if	the	attempt	fails,	the	VI
returns	the	error	information	that	was	passed	in	from	the	error	in.

Note		If	you	are	using	a	legacy	resource	descriptor	(SCXI::	or
PXI::)	and	you	abort	a	scan,	the	switch	module	returns	to	a
disconnect	all	state	(equivalent	to	calling	niSwitch	Disconnect	All
Channels).	If	you	are	using	an	NI-DAQmx	resource	descriptor
(DAQmx	device	name),	the	switch	module	returns	to	the	state	it
was	in	before	the	scan	was	initiated.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Send	Software	Trigger
Sends	a	software	trigger	to	the	switch	module	specified	in	the	NI-
SWITCH	session.	When	the	trigger	input	parameter	is	set	to	Software
Trigger	Function	using	niSwitch	Configure	Scan	Trigger	or	the	Trigger
Input	property,	the	scan	does	not	proceed	from	a	semicolon	(wait	for
trigger)	until	this	VI	is	called.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.	Right-click	the	error	out

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Wait	For	Scan	To	Complete
Pauses	until	the	switch	module	stops	scanning	or	the	maximum	time
has	elapsed	and	returns	a	timeout	error.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
maximum	time	specifies	the	maximum	length	of	time	to	wait	for
the	switch	module	to	stop	scanning.	If	the	specified	time	elapses
before	the	scan	ends,	NI-SWITCH	returns	a	timeout	error.
Default	value:	5000	(milliseconds)

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Switch	Is	Scanning?
Indicates	the	status	of	the	scan.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
is	scanning	indicates	whether	the	switch	module	is	scanning.
The	driver	returns	the	value	of	the	is	scanning	property.

TRUE The	switch	module	is	scanning.
FALSE	(default) The	switch	module	is	idle.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Configure	Scan	List
Configures	the	scan	list	and	scan	mode	used	for	scanning.
Refer	to	Devices	to	determine	if	the	switch	module	supports	scanning.
The	scan	list	is	comprised	of	a	list	of	channel	connections	separated	by
semicolons.	For	example,	the	following	scan	list	will	scan	the	first	three
channels	of	a	multiplexer:
com0->ch0;	com0->ch1;	com0->ch2;
Refer	to	Scan	Lists	for	more	information	on	scan	list	syntax.
To	see	the	status	of	the	scan,	call	either	niSwitch	Switch	Is	Scanning?	or
niSwitch	Wait	For	Scan	Complete.	Use	niSwitch	Configure	Scan	Trigger
and	niSwitch	Initiate	Scan	to	configure	the	scan	trigger	and	start	scan
respectively.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
scan	list	specifies	the	scan	list	to	use.	NI-SWITCH	uses	this
value	to	set	the	Scan	List	property.
scan	mode	specifies	how	the	switch	module	breaks	existing
connections	when	scanning.	NI-SWITCH	uses	this	value	to	set
the	Scan	Mode	property.	Refer	to	scan	modes	for	more
information.	The	default	value	is	Break	Before	Make.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If

javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/scan_list.html#modes')
javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/scan_list.html#modes')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Configure	Scan	Trigger
Configures	the	scan	triggers	for	the	scan	list	established	with	niSwitch
Configure	Scan	List.
Refer	to	Devices	to	determine	if	the	switch	module	supports	scanning.
This	VI	sets	the	location	where	the	switch	expects	to	receive	an	input
trigger	to	advance	through	the	scan	list.	This	VI	also	sets	the	location
where	it	generates	a	scan	advanced	signal	after	it	completes	an	entry	in
the	scan	list.	Details

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

scan	delay	specifies	the	minimum	length	of	time	you	want	the
switch	device	to	wait	after	it	creates	a	path	until	it	asserts	a	trigger
on	the	Scan	Advanced	Output	channel.	NI-SWITCH	uses	this
value	to	set	the	Scan	Delay	property.	The	scan	delay	is	in
addition	to	the	settling	time.
Default	value:	0.00	(seconds)

trigger	input	specifies	the	trigger	source	you	want	the	switch
module	to	use	during	scanning.	NI-SWITCH	uses	this	value	to	set
the	Trigger	Input	property.	The	default	value	is	External.
The	switch	module	waits	for	a	trigger	at	the	specified	location
when	it	encounters	a	semicolon	in	the	scan	list.	When	the	trigger
occurs,	the	switch	device	advances	to	the	next	entry	in	the	scan
list	and	waits	for	a	trigger	from	the	location	specified	in	trigger
input.

Value Switch	Behavior
Immediate Immediately	processes	the	next	entry	in	the	scan	list.
External Waits	for	a	trigger	on	the	front	connector	before

processing	the	next	entry	in	the	scan	list.	Same	as
Front	Connector.

Software
Trigger
Function

Waits	until	niSwitch	Send	Software	Trigger	is	called.

TTLx Waits	for	a	trigger	on	the	PXI	or	SCXI	trigger	line	x

javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Configure	Scan	Trigger	Details
For	synchronous	scanning,	set	scan	advanced	output	to	None	and
define	trigger	input.	For	handshaking,	trigger	input	and	scan
advanced	output	must	be	set.
Triggers	generally	originate	from	the	SCXI	or	PXI	trigger	bus,	the
terminals	on	the	front	connector	of	the	switch	module,	or	the	AUX
connector	on	the	rear	of	the	switch	module	(referred	to	as	the	rear
connector	and	supported	by	SCXI	only).
When	scanning	a	module	that	is	not	directly	cabled	to	the	trigger	from	its
own	front	or	rear	connector,	use	niSwitch	Route	Trigger	Input	and/or
niSwitch	Route	Scan	Advanced	Output	to	route	the	triggers	on	the
cabled	module	to	one	of	the	backplane	lines.	When	using	these	Vis	to
route	triggers	to	the	backplane,	specify	the	backplane	trigger	location
when	calling	niSwitch	Configure	Scan	Trigger	(even	if	it	is	the	module
cabled	to	the	trigger	source).



niSwitch	Set	Continuous	Scan
Sets	the	switch	to	loop	continuously	through	the	scan	list	or	to	stop
scanning	after	one	pass	through	the	scan	list.
Call	niSwitch	Abort	Scan	to	halt	a	continuous	scan.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
continuous	scan	specifies	whether	the	scan	list	is	run	once	or
continuously	during	scanning.

TRUE Loops	continuously	through	the	scan	list.
FALSE	(default) Stops	after	one	pass	through	the	scan	list

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.

javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/scan_list.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Commit
Downloads	the	configured	scan	list	and	trigger	settings	to	hardware.
Calling	this	VI	is	optional	as	it	is	implicitly	called	during	niSwitch	Initiate
Scan.	Use	this	VI	to	arm	triggers	in	a	given	order	or	to	control	when
hardware	operations	are	performed.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.	Right-click	the	error	out
indicator	on	the	front	panel	and	select	Explain	Error	from	the

javascript:LaunchHelp('switch.chm::/scan_list.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Route	Trigger	Input
Routes	the	input	trigger	from	the	front	or	rear	connector	to	a	trigger	bus
line	(TTLx).	To	disconnect	the	route,	call	this	VI	again	and	select	None
for	trigger	bus	line	parameter.
This	VI	should	be	used	when	scanning	a	module	in	a	different	NI-
SWITCH	session	that	is	not	directly	cabled	to	the	trigger	source
(multimodule	scanning	operations).
If	this	VI	is	used	to	route	a	trigger	to	a	TTL	line,	specify	the	TTL	line	as
the	trigger	input	in	niSwitch	Configure	Scan	Trigger.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
trigger	input	connector	specifies	the	location	of	the	input	trigger
source	on	the	switch	module.	Valid	locations	are	the	front	and
rear	connectors.	The	default	Value	is	Front	Connector.
trigger	input	bus	line	specifies	the	trigger	line	to	route	the	input
trigger.	Select	None	to	break	an	existing	route.
invert	inverts	the	input	trigger	signal	from	falling	to	rising	or	vice
versa.

TRUE Inverts	the	input	trigger	signal	from	falling	to
rising.

FALSE
(default)

Inverts	the	input	trigger	signal	from	rising	to
falling.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

javascript:LaunchHelp('switch.chm::/scanning_multiple_mod.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Route	Scan	Advanced	Output
Routes	the	Scan	Advanced	Output	trigger	from	a	trigger	bus	line	(TTLx)
to	the	front	or	rear	connector.
Use	this	VI	when	handshaking	with	a	switch	module	that	is	not	directly
cabled	to	the	controller.	In	this	module's	session,	set	the	scan
advanced	output	bus	line	to	a	trigger	bus	line.	In	the	cabled	module's
session,	use	this	VI	to	route	from	the	trigger	bus	line	to	the	front	or	rear
connector	of	the	cabled	module.
If	this	VI	is	used	to	route	scan	advanced	from	a	TTL	line,	specify	the
TTL	line	as	the	scan	advanced	output	destination	in	niSwitch
Configure	Scan	Trigger.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
scan	advanced	output	connector&	is	the	Scan	Advanced
Output	destination.	Valid	locations	are	the	front	and	rear
connectors.
scan	advanced	output	bus	line	is	the	trigger	line	to	route	the
scan	advanced	output	trigger	from	the	front	or	rear	connector.
Select	None	(default)	to	break	an	existing	route.

invert	(False)	inverts	the	input	trigger	signal	from	rising	to	falling.
If	TRUE,	inverts	the	input	trigger	signal	from	falling	to	rising.
Default	value:	FALSE

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

javascript:LaunchHelp('switch.chm::/handshakingg.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


Relay
Use	the	VIs	located	on	the	NI-SWITCH»Relay	palette	to	control	and
query	individual	relays.
Click	the	icons	for	VI	and	function	descriptions.

niSwitch	Get	Relay	Count
niSwitch	Get	Relay	Position
niSwitch	Relay	Control

javascript:LaunchHelp('switch.chm::/relay_types.html')


niSwitch	Relay	Control
Controls	individual	relays	of	the	switch	module.	When	controlling
individual	relays,	the	protection	offered	by	setting	the	usage	of	source
channels	and	configurations	channels	is	void.
Refer	to	Devices	to	determine	if	the	switch	module	supports	individual
relay	control.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

relay	name	specifies	the	name	of	the	relay.
Examples	of	valid	relay	names:
ch0,	ab0,	1wire,	hlselect
Refer	to	Devices	for	a	list	of	valid	relay	names	for	the	switch
module.

Note		Use	the	niSwitch	Wait	For	Debounce,	niSwitch
Switch	Is	Debounced?,	and	the	Is	Debounced	property	to
determine	if	the	relay	has	settled.

relay	action	specifies	whether	to	open	or	close	a	given	relay.	

Relay	Open Opens	a	given	relay.
Relay	Closed	(default) Closes	a	given	relay.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.

javascript:LaunchHelp('switch.chm::/configchannels.html')
javascript:LaunchHelp('switch.chm::/configchannels.html')
javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/immediate.html#relay')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Relay	Position
Returns	the	relay	position	for	the	relay	specified	in	relay	name.
Refer	to	Devices	to	determine	if	the	switch	module	supports	individual
relay	control.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

relay	name	specifies	the	name	of	the	relay.
Examples	of	valid	relay	names:
ch0,	ab0,	1wire,	hlselect
Refer	to	Devices	for	a	list	of	valid	relay	names	for	the	switch
module.

Note		Use	the	niSwitch	Wait	For	Debounce,	niSwitch	Switch	Is
Debounced?,	and	the	Is	Debounced	property	to	determine	if	the
relay	has	settled.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/immediate.html#relay')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Relay	Count
Returns	the	number	of	times	the	relay	has	changed	from	Closed	to
Open.	Relay	count	is	useful	for	tracking	relay	lifetime	and	usage.	Call
niSwitch	Wait	for	Debounce	before	this	VI	to	ensure	an	accurate	count.
Refer	to	Devices	to	determine	if	the	switch	module	supports	individual
relay	control.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

relay	name	specifies	the	name	of	the	relay.
Examples	of	valid	relay	names:
ch0,	ab0,	1wire,	hlselect
Refer	to	Devices	for	a	list	of	valid	relay	names	for	the	switch
module.

Note		Use	the	niSwitch	Wait	For	Debounce,	niSwitch
Switch	Is	Debounced?,	and	the	is	debounced	property	to
determine	if	the	relay	has	settled.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/immediate.html#relay')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


Utility
Use	the	VIs	located	on	the	NI-SWITCH»Utility	palette	to	use	additional
features	of	NI-SWITCH.
Click	the	icons	for	VI	and	function	descriptions.

niSwitch	Get	Channel	Name niSwitch	Read	Calibration	Data
[OBSOLETE]

niSwitch	Get	Relay	Name niSwitch	Reset
niSwitch	Initialize niSwitch	Write	Calibration	Data

[OBSOLETE]
niSwitch	Initialize	With
Options



Subpalettes
Other	IVI	Palette



niSwitch	Initialize	With	Options
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	NI-SWITCH	calls	and	optionally	sets	the	initial	state	of	the
session.
This	VI	creates	a	new	IVI	instrument	driver	session	for	the	switch
module	specified	in	the	resource	name.	If	multiple	topologies	are	valid
for	that	device,	NI-SWITCH	uses	the	default	topology	specified	in	MAX.
The	topology	is	also	configurable	in	option	string.
By	default,	the	switch	module	is	reset	to	a	known	state.
Enable	simulation	in	option	string.
An	error	is	returned	if	a	session	to	the	specified	resource	exists	in
another	process.	The	same	session	is	returned	if	this	VI	is	called	twice
in	the	same	process	for	the	same	resource	with	the	same	topology.

resource	name	specifies	the	resource	name	of	the	switch
module	to	initialize.
Syntax:
Optional	fields	are	shown	in	square	brackets	([]).	The	default
values	for	optional	fields	are	as	follows:
chassis	ID	=	1
bus	number	=	0

Configured	in	MAX	Under Valid	Syntax
NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ	(Legacy)
Devices

SCXI[chassis	ID]::slot	number

PXI	System PXI[bus	number]::device
number

Tip		IVI	logical	names	are	also	valid	for	the	resource	name.

The	following	table	provides	example	resource	names.

Resource
Name Description

SC1Mod3 NI-DAQmx	module	in	chassis	"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed	to	"MySwitch"

javascript:LaunchHelp('switch.chm::/topology.html')
javascript:LaunchHelp('switch.chm::/simulate.html')
javascript:LaunchHelp('switch.chm::/flow_init.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/simulate.html')


niSwitch	Initialize
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	NI-SWITCH	calls.
This	VI	creates	a	new	IVI	instrument	driver	session	for	the	switch
module	specified	in	the	resource	name	parameter.	If	multiple
topologies	are	valid	for	that	switch	module,	NI-SWITCH	uses	the	default
topology	specified	in	MAX.
By	default,	the	switch	module	is	reset	to	a	known	state.
An	error	is	returned	if	a	session	to	the	specified	resource	exists	in
another	process.	The	same	session	is	returned	if	niSwitch	Initialize	is
called	twice	in	the	same	process	for	the	same	resource	with	the	same
topology.

resource	name	specifies	the	resource	name	of	the	switch
module	to	initialize.
Syntax:
Optional	fields	are	shown	in	square	brackets	([]).

Configured	in	MAX	Under Valid	Syntax
NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ	(Legacy)
Devices

SCXI[chassis	ID]::slot	number

PXI	System PXI[bus	number]::device
number

Tip		IVI	logical	names	are	also	valid	for	the	resource	name.

Default	values	for	optional	fields:
chassis	ID	=	1
bus	number	=	0
Example	resource	names:

Resource
Name Description

SC1Mod3 NI-DAQmx	module	in	chassis	"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed	to	"MySwitch"
SCXI1::3 Traditional	NI-DAQ	(Legacy)	module	in	chassis

javascript:LaunchHelp('switch.chm::/flow_init.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Reset
Disconnects	all	created	paths	and	returns	the	switch	module	to	the	state
at	initialization.	Configuration	channel	and	source	channel	settings
remain	unchanged.
If	error	in	describes	an	error	that	had	occurred	before	calling	this	VI,
this	VI	still	attempts	to	reset	the	switch.	However,	if	the	attempt	fails,	this
VI	returns	the	error	information	that	was	passed	in	from	the	error	in
parameter.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

javascript:LaunchHelp('switch.chm::/configchannels.html')
javascript:LaunchHelp('switch.chm::/configchannels.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Channel	Name
Returns	the	channel	string	that	is	in	the	channel	table	at	the	specified
index.
Use	this	VI	in	a	For	Loop	to	get	a	complete	list	of	valid	channel	names
for	the	switch	module.	Use	the	Channel	Count	property	to	determine	the
number	of	channels.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
index	is	a	1-based	index	into	the	channel	table.	The	default	value
is	1.	The	maximum	value	is	equal	to	the	value	of	the	Channel
Count	property.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
channel	string	returns	the	channel	string	that	is	in	the	channel

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Relay	Name
Returns	the	relay	name	that	is	in	the	relay	list	at	the	specified	index.
Use	this	VI	in	a	For	Loop	to	get	a	complete	list	of	valid	relay	names	for
the	switch	module.	Use	the	Number	of	Relays	property	to	determine	the
number	of	relays.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
index	is	a	1-based	index	into	the	channel	table.	The	default	value
is	1.	The	maximum	value	is	equal	to	the	value	of	the	Channel
Count	property.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.

relay	name	specifies	the	name	of	the	relay.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
javascript:LaunchHelp('switch.chm::/devices.html')


Other	IVI
Use	the	VIs	located	on	the	NI-SWITCH»Utility»Other	IVI	palette	to
perform	additional	IVI	functions.
Click	the	icons	for	VI	and	function	descriptions.

niSwitch	Disable
niSwitch	Reset	With	Defaults
niSwitch	Self-Test
niSwitch	Error	Message
niSwitch	Revision	Query
niSwitch	Clear	Interchange	Warnings
niSwitch	Reset	Interchange	Check
niSwitch	Get	Next	Interchange	Warning
niSwitch	Get	Next	Coercion	Record



niSwitch	Disable
Places	the	switch	module	in	a	quiescent	state	where	it	has	minimal	or
no	impact	on	the	system	to	which	it	is	connected.	This	VI	disconnects	all
channels,	and	any	scan	in	progress	is	aborted.
If	error	in	describes	an	error	that	had	occurred	before	calling	niSwitch
Disable,	this	VI	still	attempts	to	disable	the	switch.	However,	if	the
attempt	fails,	this	VI	returns	the	error	information	that	was	passed	in
from	error	in.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Reset	With	Defaults
Resets	the	switch	module	and	applies	initial	user-specified	settings	from
the	logical	name	used	to	initialize	the	session.	If	the	session	was
created	without	a	logical	name,	this	VI	is	equivalent	to	niSwitch	Reset.
If	error	in	describes	an	error	that	had	occurred	before	calling	niSwitch
Reset	With	Defaults,	this	VI	still	attempts	to	reset	the	switch.	However,	if
the	attempt	fails,	this	VI	returns	the	error	information	that	was	passed	in
from	error	in.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Self-Test
Verifies	that	NI-SWITCH	can	communicate	with	the	switch	module.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
self-test	result	returns	a	value	from	the	switch	self-test.	0	equals
success	and	1	equals	failure.
self-test	message	returns	a	response	string	from	the	switch	self-
test.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Error	Message
Converts	an	error	code	returned	by	NI-SWITCH	into	a	user-readable
string.	Generally	this	information	is	supplied	in	error	out	of	any	NI-
SWITCH	VI.	Use	this	VI	for	a	static	lookup	of	an	error	code	description.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

error	code	is	the	status	code	returned	by	any	NI-SWITCH	VI.
Default	value:	0

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	message&	is	the	error	information	formatted	into	a	string.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Revision	Query
Returns	the	revision	of	NI-SWITCH.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
instrument	driver	revision	specifies	the	NI-SWITCH	software
revision	numbers	in	the	form	of	a	string.
firmware	revision	is	currently	unsupported.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Clear	Interchange	Warnings
Clears	the	list	of	current	interchange	warnings.	Details

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.	Right-click	the	error	out
indicator	on	the	front	panel	and	select	Explain	Error	from	the
shortcut	menu	for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Clear	Interchange	Warnings	Details
When	developing	a	complex	test	system	that	consists	of	multiple	test
modules,	it	is	generally	a	good	idea	to	design	the	test	modules	so	that
they	can	run	in	any	order.	To	do	so,	ensure	that	each	test	module
completely	configures	the	state	of	each	instrument	it	uses.	If	a	particular
test	module	does	not	completely	configure	the	state	of	an	instrument,
the	instrument	state	depends	on	the	configuration	from	a	previously
executed	test	module.	Therefore,	if	you	execute	the	test	modules	in	a
different	order,	the	behavior	of	the	instrument	and	therefore	the	entire
test	module	is	likely	to	change.	This	behavior	change	is	generally
instrument	specific	and	represents	an	interchangeability	problem.
You	can	use	niSwitch	Reset	Interchange	Check	to	test	for	such	cases.
After	you	call	niSwitch	Reset	Interchange	Check,	the	interchangeability
checking	algorithms	in	the	specific	driver	ignore	all	previous
configuration	operations.	By	calling	niSwitch	Reset	Interchange	Check
at	the	beginning	of	a	test	module,	you	can	determine	whether	the	test
module	has	dependencies	on	the	operation	of	previously	executed	test
modules.
To	guarantee	that	niSwitch	Get	Next	Interchange	Warning	only	returns
those	interchangeability	warnings	generated	after	calling	niSwitch	Reset
Interchange	Check,	clear	the	list	of	interchangeability	warnings	by
repeatedly	calling	niSwitch	Get	Next	Interchange	Warning	until	no
interchangeability	warnings	are	returned.	If	you	are	not	interested	in	the
content	of	those	warnings,	call	niSwitch	Clear	Interchange	Warnings.



niSwitch	Reset	Interchange	Check
After	calling	this	VI,	the	interchangeability	checking	algorithms	in	the
specific	driver	ignore	all	previous	configuration	operations.	Details

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.	Right-click	the	error	out
indicator	on	the	front	panel	and	select	Explain	Error	from	the
shortcut	menu	for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Reset	Interchange	Check	Details
When	developing	a	complex	test	system	that	consists	of	multiple	test
modules,	it	is	generally	a	good	idea	to	design	the	test	modules	so	that
they	can	run	in	any	order.	To	do,	ensure	that	each	test	module
completely	configures	the	state	of	each	instrument	it	uses.	If	a	particular
test	module	does	not	completely	configure	the	state	of	an	instrument,
the	instrument	state	depends	on	the	configuration	from	a	previously
executed	test	module.	Therefore,	if	you	execute	the	test	modules	in	a
different	order,	the	behavior	of	the	instrument	and	therefore	the	entire
test	module	is	likely	to	change.	This	behavior	change	is	generally
instrument	specific	and	represents	an	interchangeability	problem.
You	can	use	this	VI	to	test	for	such	cases.	After	you	call	this	VI,	the
interchangeability	checking	algorithms	in	the	specific	driver	ignore	all
previous	configuration	operations.	By	calling	this	VI	at	the	beginning	of	a
test	module,	you	can	determine	whether	the	test	module	has
dependencies	on	the	operation	of	previously	executed	test	modules.
This	VI	does	not	clear	the	interchangeability	warnings	from	the	list	of
previously	recorded	interchangeability	warnings.	To	guarantee	that
niSwitch	Get	Next	Interchange	Warning	only	returns	those
interchangeability	warnings	generated	after	calling	this	VI,	clear	the	list
of	interchangeability	warnings	by	repeatedly	calling	niSwitch	Get	Next
Interchange	Warning	until	no	interchangeability	warnings	are	returned.	If
you	are	not	interested	in	the	content	of	those	warnings,	call	niSwitch
Clear	Interchange	Warnings.



niSwitch	Get	Next	Interchange	Warning
Returns	the	interchangeability	warnings	associated	with	the	IVI	session.
This	VI	retrieves	and	clears	the	oldest	instance	in	which	the	class	driver
recorded	an	interchangeability	warning.	Interchangeability	warnings
indicate	that	using	your	application	with	a	different	instrument	might
cause	different	behavior.
The	driver	performs	interchangeability	checking	when	the	Interchange
Check	property	is	set	to	TRUE.
The	VI	returns	an	empty	string	for	interchange	warning	if	no
interchangeability	warnings	remain	for	the	session.
In	general,	the	instrument	driver	generates	interchangeability	warnings
when	an	property	that	affects	the	instrument	behavior	is	in	a	state	that
you	did	not	specify.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Get	Next	Coercion	Record
Returns	the	coercion	information	associated	with	the	IVI	session.	This
VI	retrieves	and	clears	the	oldest	instance	in	which	the	instrument	driver
coerced	a	value	you	specified	to	another	value.
If	you	set	the	Record	Coercions	property	to	TRUE,	NI-SWITCH	keeps	a
list	of	all	coercions	it	makes	on	ViInt32	or	ViReal64	values	you	pass	to
instrument	driver	VIs.	You	use	this	VI	to	retrieve	information	from	that
list.
The	VI	returns	an	empty	string	if	no	coercion	records	remain	for	the
session.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs
while	this	VI	or	function	runs,	it	runs	normally	and	sets	its	own
error	status	in	error	out.	Use	the	Simple	Error	Handler	or
General	Error	Handler	VIs	to	display	the	description	of	the	error
code.	Use	error	in	and	error	out	to	check	errors	and	to	specify
execution	order	by	wiring	error	out	from	one	node	to	error	in	of
the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran
or	FALSE	(checkmark)	to	indicate	a	warning	or	that	no
error	occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If
status	is	TRUE,	code	is	a	non-zero	error	code.	If	status	is
FALSE,	code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,
in	most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

instrument	handle	out	identifies	a	particular	NI-SWITCH
session	established	with	niSwitch	Initialize	With	Topology,
niSwitch	Initialize	With	Options,	or	niSwitch	Initialize	and	used	for
all	subsequent	NI-SWITCH	calls.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Read	Calibration	Data	[OBSOLETE]
Retrieves	the	calibration	data,	typically	in	terms	of	the	amplifier	offset,
stored	in	the	EEPROM.
The	NI	PXI-2501	has	an	amplifier	that	may	require	periodic	calibrations.
You	can	perform	the	necessary	calibration	and	store	the	data	locally	on
the	switch	module	EEPROM.	The	calibration	date	is	also	stored	in	the
EEPROM.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	name	specifies	the	name	of	the	channel	calibrated.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp
Refer	to	Devices	for	a	complete	list	of	valid	channel	names.
While	this	VI	and	niSwitch	Write	Calibration	Data	take	a	channel
name,	some	switch	devices	only	support	a	single	calibration	for
all	input	channels.	For	example,	the	NI	PXI-2501	uses	an	optional
single	amplifier	for	channels	ch0	through	ch47	to	decrease
settling	time.	In	these	cases,	writing	a	different	value	to	a	different
channel	causes	the	previous	value	to	be	overwritten.	Therefore,
reading	different	channels	returns	the	same	calibration	data.
For	more	information	on	calibration,	refer	to	Devices.

calibration	field	tells	NI-SWITCH	which	particular	calibration
parameter	associated	with	this	channel	to	read.	Valid	values
depend	on	the	switch	hardware.
Examples	of	valid	fields:
CJTEMP	Amp	Calibration	(0),	Channel	Amp	Calibration	(1)
Default	value:	0

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


niSwitch	Write	Calibration	Data	[OBSOLETE]
Writes	the	calibration	data,	typically	in	terms	of	the	amplifier	offset,	in	the
EEPROM.
The	NI	PXI-2501	has	an	amplifier	that	may	require	periodic	calibrations.
You	can	perform	the	necessary	calibration	and	store	the	data	locally	on
the	switch	module	EEPROM.	The	calibration	date	is	also	stored	in	the
EEPROM.

instrument	handle	identifies	a	particular	NI-SWITCH	session
established	with	niSwitch	Initialize	With	Topology,	niSwitch
Initialize	With	Options,	or	niSwitch	Initialize.

channel	name	specifies	the	name	of	the	channel	calibrated.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp
Refer	to	Devices	for	a	complete	list	of	valid	channel	names.
While	niSwitch	Read	Calibration	Data	and	this	VI	take	a	channel
name,	some	switch	modules	only	support	a	single	calibration	for
all	input	channels.	For	example,	the	NI	PXI-2501	uses	an	optional
single	amplifier	for	channels	ch0	through	ch47	to	decrease
settling	time.	In	these	cases,	writing	a	different	value	to	a	different
channel	causes	the	previous	value	to	be	overwritten.	Therefore,
reading	different	channels	returns	the	same	calibration	data.
For	more	information	on	calibration,	refer	to	Devices.

calibration	field	tells	NI-SWITCH	which	particular	calibration
parameter	associated	with	this	channel	to	write.	Valid	values
depend	on	the	switch	hardware.
Examples	of	valid	fields:
CJTEMP	Amp	Calibration	(0),	Channel	Amp	Calibration	(1)
Default	value:	0

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in
value	to	error	out.	This	VI	or	function	runs	normally	only	if	no
error	occurs	before	this	VI	or	function	runs.	If	an	error	occurs

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html


NI-SWITCH	Properties
Use	the	NI-SWITCH	properties	to	access	advanced	configuration	options
and	information.

Channel	Configuration
Inherent	IVI	Attributes
Matrix	Configuration
Module	Characteristics
Scanning	Configuration



Is	Configuration	Channel
Short	name:	Is	Configuration	Channel
This	property	specifies	whether	to	reserve	the	channel	for	internal	path
creation.	A	channel	that	is	available	for	internal	path	creation	is	called	a
configuration	channel.	NI-SWITCH	may	use	configuration	channels	to
create	paths	between	two	channels	you	specify	in	the
niSwitch	Connect	Channels	VI.	Configuration	channels	are	not	available
for	external	connections.	Set	this	property	to	TRUE	to	mark	the	channel
as	a	configuration	channel.	Set	this	property	to	FALSE	to	mark	the
channel	as	available	for	external	connections.	After	you	identify	a
channel	as	a	configuration	channel,	you	cannot	use	that	channel	for
external	connections.	The	niSwitch	Connect	Channels	VI	returns	the	Is
Configuration	Channel	error	when	you	attempt	to	establish	a	connection
between	a	configuration	channel	and	any	other	channel.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based Yes



Is	Source	Channel
Short	name:	Is	Source	Channel
This	property	specifies	whether	you	want	to	identify	the	channel	as	a
source	channel.	Typically,	you	set	this	property	to	TRUE	when	you	attach
the	channel	to	a	power	supply,	a	VI	generator,	or	an	active	measurement
point	on	the	unit	under	test,	and	you	do	not	want	to	connect	the	channel
to	another	source.	NI-SWITCH	prevents	source	channels	from
connecting	to	each	other.	The	niSwitch	Connect	Channels	VI	returns	the
Attempt	To	Connect	Sources	error	when	you	attempt	to	connect	two
channels	that	you	identify	as	source	channels.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based Yes



Driver	Setup
Short	name:	Driver	Setup
This	property	indicates	the	DriverSetup	string	that	the	user	specified
when	initializing	the	driver.	Some	cases	exist	where	the	end-user	must
specify	instrument	driver	options	at	initialization	time.	An	example	of	this
is	specifying	a	particular	instrument	model	from	among	a	family	of
instruments	that	the	driver	supports.	This	is	useful	when	using	simulation.
The	end-user	can	specify	driver-specific	options	through	the	DriverSetup
keyword	in	the	option	string	parameter	to	the	niSwitch	Initialize	With
Options	VI,	or	through	the	IVI	Configuration	Utility.	If	the	user	does	not
specify	a	DriverSetup	string,	this	property	returns	an	empty	string.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



IO	Resource	Descriptor
Short	name:	IO	Resource	Descriptor
This	property	indicates	the	resource	descriptor	NI-SWITCH	uses	to
identify	the	physical	device.	If	you	initialize	NI-SWITCH	with	a	logical
name,	this	property	contains	the	resource	descriptor	that	corresponds	to
the	entry	in	the	IVI	Configuration	utility.	If	you	initialize	NI-SWITCH	with
the	resource	descriptor,	this	property	contains	that	value.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Logical	Name
Short	name:	Logical	Name
This	property	contains	a	string	with	the	logical	name	specified	when
opening	the	current	IVI	session.	You	may	pass	a	logical	name	to	the
niSwitch	initialize	or	niSwitch	Initialize	With	Options	VIs.	The	IVI
Configuration	utility	must	contain	an	entry	for	the	logical	name.	The
logical	name	entry	refers	to	a	virtual	instrument	section	in	the	IVI
Configuration	file.	The	virtual	instrument	section	specifies	a	physical
device	and	initial	user	options.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Channel	Count
Short	name:	Channel	Count
This	property	indicates	the	number	of	channels	that	the	specific
instrument	driver	supports.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Class	Group	Capabilities
Short	name:	Class	Group	Capabilities
This	property	contains	a	comma-delimited	list	of	class-extension	groups
that	this	driver	implements.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Supported	Instrument	Models
Short	name:	Supported	Instrument	Models
This	property	contains	a	comma-delimited	list	of	supported	instrument
models.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Class	Specification	Major	Version
Short	name:	Class	Specification	Major	Version
This	property	contains	the	major	version	number	of	the	IviSwtch	class
specification.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Class	Specification	Minor	Version
Short	name:	Class	Specification	Minor	Version
This	property	contains	the	minor	version	number	of	the	driver	compliant
class	specification.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Specific	Driver	Description
Short	name:	Specific	Driver	Description
This	property	contains	a	brief	description	of	the	instrument	driver.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Driver	Prefix
Short	name:	Driver	Prefix
This	property	contains	the	prefix	for	the	instrument	driver.	The	name	of
each	available	VI	in	this	driver	starts	with	the	prefix	specified	in	this
property.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Driver	Vendor
Short	name:	Driver	Vendor
This	property	contains	the	name	of	the	vendor	that	supplies	the
instrument	driver.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Revision
Short	name:	Revision
This	property	contains	additional	version	information	about	the	instrument
driver.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Firmware	Revision
Short	name:	Firmware	Revision
This	property	contains	the	firmware	revision	information	for	the
instrument	you	are	currently	using.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Manufacturer
Short	name:	Manufacturer
This	property	contains	the	name	of	the	instrument	manufacturer	you	are
currently	using.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Model
Short	name:	Model
This	property	contains	the	model	number	or	name	of	the	instrument	that
you	are	currently	using.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Cache
Short	name:	Cache
This	property	specifies	whether	to	cache	property	values.	When	caching
is	enabled,	the	instrument	driver	keeps	track	of	the	current	instrument
settings	and	avoids	sending	redundant	commands	to	the	instrument.	The
instrument	driver	can	choose	always	to	cache	or	never	to	cache
particular	properties	regardless	of	this	property	setting.	The	default	value
is	TRUE.	Use	the	niSwitch	Initialize	With	Options	VI	to	override	this
value.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Interchange	Check
Short	name:	Interchange	Check
This	property	specifies	whether	to	perform	interchangeability	checking
and	retrieve	interchangeability	warnings	when	you	call	niSwitch	Connect
Channels,	niSwitch	Set	Path	and	niSwitch	InitiateScan	VIs.	The	default
value	is	FALSE.	Interchangeability	warnings	indicate	that	using	your
application	with	a	different	instrument	might	cause	different	behavior.	Use
niSwitch	Get	Next	Interchange	Warning	to	extract	interchange	warnings.
Call	the	niSwitch	Clear	Interchange	Warnings	VI	to	clear	the	list	of
interchangeability	warnings	without	reading	them.	Interchangeability
checking	examines	the	properties	in	a	capability	group	only	if	you	specify
a	value	for	at	least	one	property	within	that	group.	Interchangeability
warnings	can	occur	when	a	property	affects	the	behavior	of	the
instrument	and	you	have	not	set	that	property,	or	the	property	has	been
invalidated	since	you	set	it.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Query	Instrument	Status
Short	name:	Query	Instrument	Status
This	property	specifies	whether	the	instrument	driver	queries	the
instrument	status	after	each	operation.	Querying	the	instrument	status	is
very	useful	for	debugging.	After	you	validate	your	program,	you	can	set
this	property	to	FALSE	to	disable	status	checking	and	maximize
performance.	The	instrument	driver	can	choose	to	ignore	status	checking
for	particular	properties	regardless	of	the	setting	of	this	property.	The
default	value	is	TRUE.	Use	the	niSwitch	Initialize	With	Options	VI	to
override	this	value.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Range	Check
Short	name:	Range	Check
Specifies	whether	to	validate	property	values	and	VI	parameters.	If
enabled,	the	instrument	driver	validates	the	parameter	values	that	you
pass	to	driver	VIs.	Range	checking	parameters	is	useful	for	debugging.
After	you	validate	your	program,	set	this	property	to	FALSE	to	disable
range	checking	and	maximize	performance.	The	default	value	is	TRUE.
Use	the	niSwitch	Initialize	With	Options	VI	to	override	this	value.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Record	Value	Coercions
Short	name:	Record	Value	Coercions
This	property	Specifies	whether	the	IVI	engine	keeps	a	list	of	the	value
coercions	it	makes	for	ViInt32	and	ViReal64	properties.	Call
niSwitch	Get	Next	Coercion	Record	to	extract	and	delete	the	oldest
coercion	record	from	the	list.	The	default	value	is	FALSE.	Use	the
niSwitch	Initialize	With	Options	VI	to	override	this	value.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Simulate
Short	name:	Simulate
This	property	specifies	whether	or	not	to	simulate	instrument	driver	I/O
operations.	If	simulation	is	enabled,	instrument	driver	VIs	perform	range
checking	and	call	Ivi_GetAttribute	and	Ivi_SetAttribute	VIs,	but	they	do
not	perform	instrument	I/O.	For	output	parameters	that	represent
instrument	data,	the	instrument	driver	VIs	return	calculated	values.	The
default	value	is	FALSE.	Use	the	niSwitch	Initialize	With	Options	VI	to
override	this	value.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Number	of	Columns
Short	name:	Number	of	Columns
This	property	returns	the	number	of	channels	on	the	column	of	a	matrix
or	scanner.	If	the	switch	is	a	scanner,	this	value	is	the	number	of	input
channels.
The	Wire	Mode	property	affects	the	number	of	available	columns.	For
example,	if	your	device	has	8	input	lines	and	you	use	the	4-wire	mode,
then	the	number	of	columns	you	have	available	is	2.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Number	of	Rows
Short	name:	Number	of	Rows
This	property	returns	the	number	of	channels	on	the	row	of	a	matrix	or
scanner.	If	the	switch	is	a	scanner,	this	value	is	the	number	of	output
channels.
The	Wire	Mode	property	affects	the	number	of	available	rows.	For
example,	if	your	device	has	8	input	lines	and	you	use	the	2-wire	mode,
then	the	number	of	columns	you	have	available	is	4.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Bandwidth
Short	name:	Bandwidth
This	property	returns	the	channel	bandwidth.	The	units	are	Hz.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Characteristic	Impedance
Short	name:	Characteristic	Impedance
This	property	returns	the	characteristic	impedance	for	the	channel.	The
units	are	 s.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Is	Debounced
Short	name:	Is	Debounced
This	property	indicates	whether	the	entire	switch	has	settled	since	the
last	switching	command.	A	value	of	TRUE	indicates	that	all	signals	going
through	the	switch	are	valid.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Maximum	AC	Voltage
Short	name:	Maximum	AC	Voltage
This	property	returns	the	maximum	AC	voltage	the	channel	can	switch.
The	units	are	volts	RMS.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Switching	AC	Current
Short	name:	Maximum	Switching	AC	Current
This	property	returns	the	maximum	AC	current	the	channel	can	switch.
The	units	are	amperes	RMS.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Switching	AC	Power
Short	name:	Maximum	Switching	AC	Power
This	property	returns	the	maximum	AC	power	the	channel	can	switch.
The	units	are	volt-amperes.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	DC	Voltage
Short	name:	Maximum	DC	Voltage
This	property	returns	the	maximum	DC	voltage	the	channel	can	switch.
The	units	are	volts.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Switching	DC	Current
Short	name:	Maximum	Switching	DC	Current
This	property	returns	the	maximum	DC	current	the	channel	can	switch.
The	units	are	amperes.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Switching	DC	Power
Short	name:	Maximum	Switching	DC	Power
This	property	returns	the	maximum	DC	power	the	channel	can	switch.
The	units	are	watts.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Carry	AC	Current
Short	name:	Maximum	Carry	AC	Current
This	property	returns	the	maximum	AC	current	the	channel	can	carry.
The	units	are	amperes	RMS.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Carry	AC	Power
Short	name:	Maximum	Carry	AC	Power
This	property	returns	the	maximum	AC	power	the	channel	can	carry.	The
units	are	volt-amperes.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Carry	DC	Current
Short	name:	Maximum	Carry	DC	Current
This	property	returns	the	maximum	DC	current	the	channel	can	carry.
The	units	are	amperes.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Maximum	Carry	DC	Power
Short	name:	Maximum	Carry	DC	Power
This	property	returns	the	maximum	DC	power	the	channel	can	carry.	The
units	are	watts.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Number	of	Relays
Short	name:	Number	of	Relays
This	property	returns	the	number	of	relays.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Power	Down	Latching	Relays	After	Debounce
Short	name:	Pwr	Down	Latch	Relays	After	Settling
This	property	indicates	whether	to	power	down	latching	relays	after
calling	Wait	For	Debounce.	When	Power	Down	Latching	Relays	After
Debounce	is	enabled	(VI_TRUE),	a	call	to	Wait	For	Debounce	ensures
that	the	relays	are	settled	and	the	latching	relays	are	powered	down.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No

Tip		You	can	also	use	the	DAQmx	Switch	Connect	VI	to	power
down	latching	relays.



Serial	Number
Short	name:	Serial	Number
This	read-only	property	returns	the	serial	number	for	the	switch	controlled
by	NI-SWITCH.	If	the	switch	does	not	return	a	serial	number,	NI-SWITCH
returns	the	Invalid	Attribute	error.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Settling	Time
Short	name:	Settling	Time
This	property	returns	the	maximum	length	of	time	from	after	you	make	a
connection	until	the	signal	flowing	through	the	channel	settles.	The	units
are	seconds.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based Yes



Wire	Mode
Short	name:	Wire	Mode
This	property	returns	the	wire	mode	of	the	switch.	This	property	affects
the	values	of	the	Number	of	Rows	and	Number	of	Columns	properties.
The	actual	number	of	input	and	output	channels	on	the	switch	is	fixed,
but	the	number	of	channels	depends	on	how	many	lines	constitute	each
channel.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based Yes



Cabled	Module	Scan	Advanced	Bus
Short	name:	Cabled	Module	Scan	Advanced	Bus



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Cabled	Module	Trigger	Bus
Short	name:	Cabled	Module	Trigger	Bus



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Continuous	Scan
Short	name:	Continuous	Scan
When	a	switch	is	scanning,	the	switch	can	either	stop	scanning	when	the
end	of	the	scan	(FALSE)	or	continue	scanning	from	the	top	of	the	scan
list	again	(TRUE).
Notice	that	if	you	set	the	scan	to	continuous	(TRUE),	niSwitch	Wait	For
Scan	To	Complete	will	always	time	out,	and	you	must	call
niSwitch	Abort	Scan	to	stop	the	scan.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Handshaking	Initiation
Short	name:	Handshaking	Initiation
This	property	allows	you	to	start	handshaking	with	a	measurement
device.

Measurement_Device_Initiated niSwitch	Initiate	Scan	does	not	return
until	the	switch	hardware	is	waiting	for	a
trigger	input.	This	ensures	that	if	you
initiate	the	measurement	device	after
calling	niSwitch	Initiate	Scan,	the	switch
is	sure	to	receive	the	first	measurement
complete	(MC)	signal	sent	by	the
measurement	device.	The	measurement
device	should	be	configured	to	first	take
a	measurement,	send	MC,	then	wait	for
scanner	advanced	output	signal.	Thus,
the	first	MC	of	the	measurement	device
initiates	handshaking.

Switch_Initiated niSwitch	Initiate	Scan	returns
immediately	after	beginning	scan	list
execution.	It	is	assumed	that	the
measurement	device	has	already	been
configured	and	is	waiting	for	the	scanner
advanced	signal.	The	measurement
should	be	configured	to	first	wait	for	a
trigger,	then	take	a	measurement.	Thus,
the	first	scanner	advanced	output	signal
of	the	switch	module	initiates
handshaking.

javascript:LaunchHelp('switch.chm::/handshakingg.html')


Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Is	Scanning
Short	name:	Is	Scanning
This	property	indicates	whether	the	switch	has	completed	the	scan
operation.	The	value	TRUE	indicates	that	the	scan	is	complete.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Is	Waiting	for	Trigger?
Short	name:	Is	Waiting	for	Trigger?
In	a	scan	list,	a	semicolon	is	used	to	indicate	that	at	that	point	in	the	scan
list,	the	scan	engine	should	pause	until	a	trigger	is	received	from	the
trigger	input.	If	that	trigger	is	generated	through	either	a	hardware	pulse
or	niSwitch	Send	Software	Trigger,	you	need	to	know	when	the	scan
engine	has	reached	such	a	state.

VI_TRUE True
VI_FALSE False



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Channel	Based No



Parsed	Scan	List
Short	name:	Parsed	Scan	List



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Scan	Advanced	Bus
Short	name:	Scan	Advanced	Bus
When	multiple	switches	need	to	scan	using	a	common	trigger	output
(Scan	Advanced	Output),	you	must	route	the	output	trigger	from	the	slave
switches	to	the	master.
This	property	should	be	set	to	the	same	for	all	switches	involved	in	the
scan.

NISWITCH_VAL_NONE The	switch	does
not	produce	a
Scan	Advanced
Output	trigger.

NISWITCH_VAL_EXTERNAL External	Trigger.
The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	external
trigger	output.

NISWITCH_VAL_TTL0 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG0	line.

NISWITCH_VAL_TTL1 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG1	line.

NISWITCH_VAL_TTL2 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG2	line.

NISWITCH_VAL_TTL3 The	switch
produces	the



Scan	Advanced
Output	on	the	PXI
TRIG3	line.

NISWITCH_VAL_TTL4 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG4	line.

NISWITCH_VAL_TTL5 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG5	line.

NISWITCH_VAL_TTL6 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG6	line.

NISWITCH_VAL_TTL7 The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
TRIG7	line.

NISWITCH_VAL_PXI_STAR The	switch
produces	the
Scan	Advanced
Output	on	the	PXI
STAR	trigger	bus.

NISWITCH_VAL_FRONTCONNECTOR The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector.

NISWITCH_VAL_FRONTCONNECTOR_MODULE1 The	switch
produces	the
Scan	Advanced



Output	trigger	on
the	front
connector	of
module	1.

NISWITCH_VAL_FRONTCONNECTOR_MODULE2 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	2.

NISWITCH_VAL_FRONTCONNECTOR_MODULE3 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	3.

NISWITCH_VAL_FRONTCONNECTOR_MODULE4 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	4.

NISWITCH_VAL_FRONTCONNECTOR_MODULE5 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	5.

NISWITCH_VAL_FRONTCONNECTOR_MODULE6 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front



connector	of
module	6.

NISWITCH_VAL_FRONTCONNECTOR_MODULE7 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	7.

NISWITCH_VAL_FRONTCONNECTOR_MODULE8 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	8.

NISWITCH_VAL_FRONTCONNECTOR_MODULE9 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	9.

NISWITCH_VAL_FRONTCONNECTOR_MODULE10 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	10.

NISWITCH_VAL_FRONTCONNECTOR_MODULE11 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	11.



NISWITCH_VAL_FRONTCONNECTOR_MODULE12 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	of
module	12.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Scan	Advanced	Output
Short	name:	Scan	Advanced	Output
This	property	specifies	the	method	you	want	to	use	to	notify	another
instrument	that	all	signals	going	through	the	switch	have	settled	following
the	processing	of	one	entry	in	the	scan	list.

NISWITCH_VAL_NONE The	switch	does
not	produce	a
Scan	Advanced
Output	trigger.

NISWITCH_VAL_EXTERNAL External	Trigger.
The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	external
trigger	output.

NISWITCH_VAL_TTL0 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG0
line.

NISWITCH_VAL_TTL1 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG1
line.

NISWITCH_VAL_TTL2 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG2
line.

NISWITCH_VAL_TTL3 The	switch



produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG3
line.

NISWITCH_VAL_TTL4 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG4
line.

NISWITCH_VAL_TTL5 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG5
line.

NISWITCH_VAL_TTL6 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG6
line.

NISWITCH_VAL_TTL7 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	TRIG7
line.

NISWITCH_VAL_PXI_STAR The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	PXI	STAR
trigger	bus.

NISWITCH_VAL_FRONTCONNECTOR The	switch
produces	the



Scan	Advanced
Output	trigger	on
the	front
connector.

NISWITCH_VAL_FRONTCONNECTOR_MODULE1 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
1.

NISWITCH_VAL_FRONTCONNECTOR_MODULE2 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
2.

NISWITCH_VAL_FRONTCONNECTOR_MODULE3 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
3.

NISWITCH_VAL_FRONTCONNECTOR_MODULE4 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
4.

NISWITCH_VAL_FRONTCONNECTOR_MODULE5 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front



connector	module
5.

NISWITCH_VAL_FRONTCONNECTOR_MODULE6 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
6.

NISWITCH_VAL_FRONTCONNECTOR_MODULE7 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
7.

NISWITCH_VAL_FRONTCONNECTOR_MODULE8 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
8.

NISWITCH_VAL_FRONTCONNECTOR_MODULE9 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
9.

NISWITCH_VAL_FRONTCONNECTOR_MODULE10 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
10.



NISWITCH_VAL_FRONTCONNECTOR_MODULE11 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
11.

NISWITCH_VAL_FRONTCONNECTOR_MODULE12 The	switch
produces	the
Scan	Advanced
Output	trigger	on
the	front
connector	module
12.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Scan	Advanced	Polarity
Short	name:	Scan	Advanced	Polarity
This	attribute	sets	the	driving	level	for	the	Scan	Advanced	Output	signal
sent	from	the	switch	module	through	either	the	external	(PXI)	or	front
connector	(SCXI)	lines.
When	the	Scan	Advanced	Output	signal	is	sent	to	one	of	the	TTL	lines,
the	driven	level	is	always	low	and	this	property	is	ignored.	Between	each
Scan	Advanced	Output	signal,	the	line	is	not	driven	and	is	in	a	high-
impedance	state.

NISWITCH_VAL_RISING_EDGE The	line	is	driven	up	when	the	Scan
Advanced	Output	signal	is	sent.

NISWITCH_VAL_FALLING_EDGE The	line	is	driven	down	when	the
Scan	Advanced	Output	signal	is
sent.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Scan	Delay
Short	name:	Scan	Delay
This	property	specifies	the	minimum	amount	of	time	the	switch	waits
before	it	asserts	the	Scan	Advanced	Output	trigger	after	opening	or
closing	the	switch.	The	switch	always	waits	for	debounce	before
asserting	the	trigger.	Thus,	the	actual	delay	is	always	the	greater	value	of
the	settling	time	and	the	value	you	specify	as	the	switch	delay.	The	units
are	seconds.	Different	switch	designs	may	cause	the	actual	time	to	be
longer.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Channel	Based No



Scan	List
Short	name:	Scan	List
This	property	contains	a	scan	list.	The	niSwitch	Initiate	Scan	VI	makes	or
breaks	connections	and	waits	for	triggers	according	to	the	instructions	in
the	scan	list.	The	scan	list	is	comprised	of	channel	names	that	you
separate	with	special	characters.	These	special	characters	determine	the
operations	the	scanner	performs	on	the	channels	when	it	executes	this
scan	list.

To	create	a	path	between	two	channels,	use	the	following
character	between	the	two	channel	names:	->	(a	dash	followed	by
a	'>'	sign)	Example:	\CH1->CH2\	tells	the	switch	to	make	a	path
from	channel	CH1	to	channel	CH2.
To	break	or	clear	a	path,	use	the	following	character	as	a	prefix
before	the	path:	~	(tilde)	Example:	\~CH1->CH2\	tells	the	switch	to
break	the	path	from	channel	CH1	to	channel	CH2.
To	tell	the	switch	to	wait	for	a	trigger	event,	use	the	following
character	as	a	separator	between	paths:	;	(semicolon)	Example:
\CH1->CH2;CH3->CH4\	tells	the	switch	to	make	the	path	from
channel	CH1	to	channel	CH2,	wait	for	a	trigger,	and	then	make	the
path	from	CH3	to	CH4.
To	tell	the	switch	to	create	multiple	paths	simultaneously,	use	the
following	character	as	a	separator	between	the	paths:	,	(comma)
Example:	\A->B;CH1->CH2,CH3->CH4\	instructs	the	scanner	to
make	the	path	between	channels	A	and	B,	wait	for	a	trigger,	and
then	simultaneously	make	the	paths	between	channels	CH1	and
CH2	and	between	channels	CH3	and	CH4.

javascript:LaunchHelp('switch.chm::/scan_list.html')


Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Channel	Based No



Scan	Mode
Short	name:	Scan	Mode
This	property	specifies	what	happens	to	existing	connections	that	conflict
with	the	connections	you	make	in	a	scan	list.	For	example,	if	CH1	is
already	connected	to	CH2	and	the	scan	list	instructs	the	switch	to
connect	CH1	to	CH3,	this	property	specifies	what	happens	to	the
connection	between	CH1	and	CH2.	If	the	value	of	this	property	is
NISWITCH_VAL_NONE,	the	switch	takes	no	action	on	existing	paths.
Most	switches	support	only	one	of	the	possible	values.	In	such	cases,
this	property	serves	as	an	indicator	of	the	device	behavior.

NISWITCH_VAL_NONE No	implicit	action	on
connections	when
scanning.

NISWITCH_VAL_BREAK_BEFORE_MAKE When	scanning,	the	switch
breaks	existing	connections
before	making	new
connections.

NISWITCH_VAL_BREAK_AFTER_MAKE When	scanning,	the	switch
breaks	existing	connections
after	making	new
connections.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Trigger	Bus
Short	name:	Trigger	Bus
When	multiple	switches	need	to	scan	using	a	common	trigger	input,	it	is
necessary	to	route	the	input	trigger	from	the	master	switch	to	the	slaves.
This	property	should	be	set	to	the	same	setting	for	all	switches	involved
in	the	scan.

NISWITCH_VAL_IMMEDIATE Immediate
Trigger.	The
switch	does	not
wait	for	a	trigger
before	processing
the	next	entry	in
the	scan	list.

NISWITCH_VAL_SW_TRIG_FUNC The	switch	waits
until	you	call	the
niSwitch	Send
Software	Trigger
VI	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_EXTERNAL External	Trigger.
The	switch	waits
until	it	receives	a
trigger	from	an
external	source
through	the
external	trigger
input	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL0 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG0	line	before



processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL1 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG1	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL2 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG2	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL3 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG3	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL4 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG4	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL5 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG5	line	before
processing	the
next	entry	in	the



scan	list.
NISWITCH_VAL_TTL6 The	switch	waits

until	it	receives	a
trigger	on	the	PXI
TRIG6	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL7 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG7	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_PXI_STAR The	switch	waits
until	it	receives	a
trigger	on	the	PXI
STAR	trigger	bus
before	processing
the	next	entry	in
the	scan	list.

NISWITCH_VAL_REARCONNECTOR The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector.

NISWITCH_VAL_FRONTCONNECTOR The	switch	waits
until	it	receives	a
trigger	on	the
front	connector.

NISWITCH_VAL_REARCONNECTOR_MODULE1 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
1.

NISWITCH_VAL_REARCONNECTOR_MODULE2 The	switch	waits



until	it	receives	a
trigger	on	the	rear
connector	module
2.

NISWITCH_VAL_REARCONNECTOR_MODULE3 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
3.

NISWITCH_VAL_REARCONNECTOR_MODULE4 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
4.

NISWITCH_VAL_REARCONNECTOR_MODULE5 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
5.

NISWITCH_VAL_REARCONNECTOR_MODULE6 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
6.

NISWITCH_VAL_REARCONNECTOR_MODULE7 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
7.

NISWITCH_VAL_REARCONNECTOR_MODULE8 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
8.

NISWITCH_VAL_REARCONNECTOR_MODULE9 The	switch	waits
until	it	receives	a



trigger	on	the	rear
connector	module
9.

NISWITCH_VAL_REARCONNECTOR_MODULE10 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
10.

NISWITCH_VAL_REARCONNECTOR_MODULE11 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
11.

NISWITCH_VAL_REARCONNECTOR_MODULE12 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
12.

NISWITCH_VAL_FRONTCONNECTOR_MODULE1 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	1.

NISWITCH_VAL_FRONTCONNECTOR_MODULE2 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	2.

NISWITCH_VAL_FRONTCONNECTOR_MODULE3 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	3.

NISWITCH_VAL_FRONTCONNECTOR_MODULE4 The	switch	waits
until	it	receives	a
trigger	on	the



front	connector
module	4.

NISWITCH_VAL_FRONTCONNECTOR_MODULE5 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	5.

NISWITCH_VAL_FRONTCONNECTOR_MODULE6 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	6.

NISWITCH_VAL_FRONTCONNECTOR_MODULE7 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	7.

NISWITCH_VAL_FRONTCONNECTOR_MODULE8 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	8.

NISWITCH_VAL_FRONTCONNECTOR_MODULE9 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	9.

NISWITCH_VAL_FRONTCONNECTOR_MODULE10 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	10.

NISWITCH_VAL_FRONTCONNECTOR_MODULE11 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector



module	11.
NISWITCH_VAL_FRONTCONNECTOR_MODULE12 The	switch	waits

until	it	receives	a
trigger	on	the
front	connector
module	12.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Trigger	Input
Short	name:	Trigger	Input
This	property	specifies	the	trigger	source	for	which	the	switch	can	wait
when	processing	a	scan	list.	The	switch	waits	for	a	trigger	when	it
encounters	a	semicolon	in	a	scan	list.	When	the	trigger	occurs,	the	switch
advances	to	the	next	entry	in	the	scan	list.

NISWITCH_VAL_IMMEDIATE Immediate
Trigger.	The
switch	does	not
wait	for	a	trigger
before	processing
the	next	entry	in
the	scan	list.

NISWITCH_VAL_SW_TRIG_FUNC The	switch	waits
until	you	call	the
niSwitch	Send
Software	Trigger
VI	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_EXTERNAL External	Trigger.
The	switch	waits
until	it	receives	a
trigger	from	an
external	source
through	the
external	trigger
input	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL0 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG0	line	before



processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL1 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG1	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL2 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG2	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL3 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG3	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL4 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG4	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL5 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG5	line	before
processing	the
next	entry	in	the



scan	list.
NISWITCH_VAL_TTL6 The	switch	waits

until	it	receives	a
trigger	on	the	PXI
TRIG6	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_TTL7 The	switch	waits
until	it	receives	a
trigger	on	the	PXI
TRIG7	line	before
processing	the
next	entry	in	the
scan	list.

NISWITCH_VAL_PXI_STAR The	switch	waits
until	it	receives	a
trigger	on	the	PXI
STAR	trigger	bus
before	processing
the	next	entry	in
the	scan	list.

NISWITCH_VAL_REARCONNECTOR The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector.

NISWITCH_VAL_FRONTCONNECTOR The	switch	waits
until	it	receives	a
trigger	on	the
front	connector.

NISWITCH_VAL_REARCONNECTOR_MODULE1 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
1.

NISWITCH_VAL_REARCONNECTOR_MODULE2 The	switch	waits



until	it	receives	a
trigger	on	the	rear
connector	module
2.

NISWITCH_VAL_REARCONNECTOR_MODULE3 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
3.

NISWITCH_VAL_REARCONNECTOR_MODULE4 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
4.

NISWITCH_VAL_REARCONNECTOR_MODULE5 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
5.

NISWITCH_VAL_REARCONNECTOR_MODULE6 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
6.

NISWITCH_VAL_REARCONNECTOR_MODULE7 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
7.

NISWITCH_VAL_REARCONNECTOR_MODULE8 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
8.

NISWITCH_VAL_REARCONNECTOR_MODULE9 The	switch	waits
until	it	receives	a



trigger	on	the	rear
connector	module
9.

NISWITCH_VAL_REARCONNECTOR_MODULE10 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
10.

NISWITCH_VAL_REARCONNECTOR_MODULE11 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
11.

NISWITCH_VAL_REARCONNECTOR_MODULE12 The	switch	waits
until	it	receives	a
trigger	on	the	rear
connector	module
12.

NISWITCH_VAL_FRONTCONNECTOR_MODULE1 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	1.

NISWITCH_VAL_FRONTCONNECTOR_MODULE2 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	2.

NISWITCH_VAL_FRONTCONNECTOR_MODULE3 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	3.

NISWITCH_VAL_FRONTCONNECTOR_MODULE4 The	switch	waits
until	it	receives	a
trigger	on	the



front	connector
module	4.

NISWITCH_VAL_FRONTCONNECTOR_MODULE5 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	5.

NISWITCH_VAL_FRONTCONNECTOR_MODULE6 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	6.

NISWITCH_VAL_FRONTCONNECTOR_MODULE7 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	7.

NISWITCH_VAL_FRONTCONNECTOR_MODULE8 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	8.

NISWITCH_VAL_FRONTCONNECTOR_MODULE9 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	9.

NISWITCH_VAL_FRONTCONNECTOR_MODULE10 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector
module	10.

NISWITCH_VAL_FRONTCONNECTOR_MODULE11 The	switch	waits
until	it	receives	a
trigger	on	the
front	connector



module	11.
NISWITCH_VAL_FRONTCONNECTOR_MODULE12 The	switch	waits

until	it	receives	a
trigger	on	the
front	connector
module	12.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Trigger	Input	Polarity
Short	name:	Trigger	Input	Polarity

NISWITCH_VAL_RISING_EDGE The	trigger	occurs	on	the	rising	edge
of	the	signal.

NISWITCH_VAL_FALLING_EDGE The	trigger	occurs	on	the	falling
edge	of	the	signal.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No



Trigger	Mode
Short	name:	Trigger	Mode
If	there	is	only	a	single	switch	involved	in	a	scan,	then	set	this	property	to
SINGLE.
If	there	is	more	than	one	switch	involved	in	the	scan,	then	the	triggers
should	be	routed	between	the	devices.	One	switch	acts	as	the	master,
and	all	others	will	act	as	slaves.

NISWITCH_VAL_SINGLE When	scanning,	the	switch	does	not	share	trigger	lines	with
other	switches.	You	must	set
NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT	and
NISWITCH_ATTR_TRIGGER_INPUT	for	this	device.

NISWITCH_VAL_MASTER Multiple	switches	are	sharing	bused	trigger	lines	for	the	scan	and
this	device	is	the	trigger	master.	Set
NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS,
NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS,
NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT	and
NISWITCH_ATTR_TRIGGER_INPUT	for	this	device.

NISWITCH_VAL_SLAVE Multiple	switches	are	sharing	trigger	lines	for	the	scan	and	this
device	is	one	of	the	trigger	slaves.	Set
NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS	and
NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS
for	this	device.



Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Channel	Based No


	LabVIEW Reference
	Properties


