
NI-SWITCH	Function	Reference	Help
June	2007,	372294A-01
Use	the	NI-SWITCH	functions	to	create	an	application	using
LabWindows™/CVI™,	Microsoft	Visual	C++,	or	Microsoft	Visual	Basic.
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


C/C++/VB	Function	Reference
Expand	this	book	to	view	the	C	and	VB	functions	and	attributes	for	NI-
SWITCH.

Class/Panel	Name Function	Name
Initialize niSwitch_init
Initialize	With	Options niSwitch_InitWithOptions
Initialize	With	Topology niSwitch_InitWithTopology
Configuration	Functions
Set/Get/Check	Attribute
Set	Attribute
Set	Attribute	ViInt32 niSwitch_SetAttributeViInt32
Set	Attribute	ViReal64 niSwitch_SetAttributeViReal64
Set	Attribute	ViString niSwitch_SetAttributeViString
Set	Attribute	ViBoolean niSwitch_SetAttributeViBoolean
Set	Attribute	ViSession niSwitch_SetAttributeViSession
Get	Attribute
Get	Attribute	ViInt32 niSwitch_GetAttributeViInt32
Get	Attribute	ViReal64 niSwitch_GetAttributeViReal64
Get	Attribute	ViString niSwitch_GetAttributeViString
Get	Attribute	ViBoolean niSwitch_GetAttributeViBoolean
Get	Attribute	ViSession niSwitch_GetAttributeViSession
Check	Attribute
Check	Attribute	ViInt32 niSwitch_CheckAttributeViInt32
Check	Attribute	ViReal64 niSwitch_CheckAttributeViReal64
Check	Attribute	ViString niSwitch_CheckAttributeViString
Check	Attribute	ViBoolean niSwitch_CheckAttributeViBoolean
Check	Attribute	ViSession niSwitch_CheckAttributeViSession
Route	Functions



Connect	Channels niSwitch_Connect
Disconnect	Channels niSwitch_Disconnect
Disconnect	All	Channels niSwitch_DisconnectAll
Switch	Is	Debounced? niSwitch_IsDebounced
Wait	For	Debounce niSwitch_WaitForDebounce
Can	Connect	Channels? niSwitch_CanConnect
Paths
Set	Path niSwitch_SetPath
Get	Path niSwitch_GetPath
Scan	Functions
Scan niSwitch_Scan
Initiate	Scan niSwitch_InitiateScan
Abort	Scan niSwitch_AbortScan
Send	Software	Trigger niSwitch_SendSoftwareTrigger
Switch	Is	Scanning? niSwitch_IsScanning
Wait	For	Scan	To	Complete niSwitch_WaitForScanComplete
Set	Continuous	Scan niSwitch_SetContinuousScan
Configure	Scanlist niSwitch_ConfigureScanList
Configure	Scan	Trigger niSwitch_ConfigureScanTrigger
Route	Trigger	Input niSwitch_RouteTriggerInput
Route	Scan	Advanced	Output niSwitch_RouteScanAdvancedOutput
Relay	Operations
Get	Relay	Name niSwitch_GetRelayName
Get	Relay	Count niSwitch_GetRelayCount
Get	Relay	Position niSwitch_GetRelayPosition
Relay	Control niSwitch_RelayControl
Calibration	Functions
Write	Calibration	Data niSwitch_CalibrationDataWrite
Read	Calibration	Data niSwitch_CalibrationDataRead



Utility	Functions
Commit niSwitch_Commit
Get	Channel	Name niSwitch_GetChannelName
Reset niSwitch_reset
Reset	With	Defaults niSwitch_ResetWithDefaults
Disable niSwitch_Disable
Self-Test niSwitch_self_test
Revision	Query niSwitch_revision_query
Error-Query niSwitch_error_query
Error	Message niSwitch_error_message
Coercion	Info
Get	Next	Coercion	Record niSwitch_GetNextCoercionRecord
Interchangeability	Info
Get	Next	Interchange	Warning niSwitch_GetNextInterchangeWarning
Clear	Interchange	Warnings niSwitch_ClearInterchangeWarnings
Reset	Interchange	Check niSwitch_ResetInterchangeCheck
Error	Info
Get	Error niSwitch_GetError
Clear	Error niSwitch_ClearError
Locking
Lock	Session niSwitch_LockSession
Unlock	Session niSwitch_UnlockSession
Close niSwitch_close



niSwitch_init
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_init	(ViRsrc	resourceName,	ViBoolean	idQuery,
ViBoolean	resetDevice,	ViSession*	vi);



Purpose
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	instrument	driver	calls.	

niSwitch_init	creates	a	new	IVI	instrument	driver	session	for	the	switch
module	specified	in	the	resourceName	parameter.	If	multiple	topologies
are	valid	for	that	device,	NI-SWITCH	uses	the	default	topology	specified
in	MAX.

By	default,	the	switch	module	is	reset	to	a	known	state.

An	error	is	returned	if	a	session	to	the	specified	resource	exists	in
another	process.	The	same	session	is	returned	if	niSwitch_init	is	called
twice	in	the	same	process	for	the	same	resource	with	the	same	topology.

javascript:LaunchHelp('switch.chm::/topology.html')


Parameters
Name Type Description
resourceName ViRsrc Resource	name	of	the	switch	module	to

initialize.
Syntax:

MAX Configured	under
Valid	Syntax

NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ
(Legacy)	Devices

SCXI[chassis
ID]::slot	number

PXI	System PXI[bus
number]::device
number

Optional	fields	are	shown	in	square	brackets
([]).	The	default	values	for	optional	fields	are
as	follows:
chassis	ID	=	1
bus	number	=	0

Tip		IVI	logical	names	are	also	valid
for	the	resource	name.

Example	resource	names:

Name Description
SC1Mod3 NI-DAQmx	module	in	chassis

"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed	to

"MySwitch"
SCXI1::3 Traditional	NI-DAQ	(Legacy)

module	in	chassis	1,	Slot	3
SCXI::3 Traditional	NI-DAQ	(Legacy)

module	in	chassis	1,	Slot	3
PXI0::16 PXI	bus	0,	device	number	16



PXI::16 PXI	bus	0,	device	number	16

idQuery ViBoolean This	parameter	is	ignored.
Because	NI-SWITCH	supports	multiple
switch	modules,	it	always	queries	the	switch
to	determine	which	device	is	installed.	For
this	reason,	this	VI	may	return
NISWITCH_ERROR_FAIL_ID_QUERY
even	if	this	parameter	is	set	to	VI_FALSE.

Value Description
VI_TRUE
(default)

Queries	the	switch	to	determine
which	device	is	installed.

VI_FALSE Currently	unsupported.

resetDevice ViBoolean Specifies	whether	to	reset	the	switch
module	during	the	initialization	process.
Value Description
VI_TRUE
(default)

Resets	the	device.

VI_FALSE Currently	unsupported.	The
device	will	not	reset.

vi ViSession A	particular	NI-SWITCH	session	established
with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.



niSwitch_InitWithOptions
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_InitWithOptions	(ViRsrc	resourceName,	ViBoolean	idQuery,
ViBoolean	resetDevice,	ViConstString	optionString,	ViSession*	vi);



Purpose
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	instrument	driver	calls	and	optionally	sets	the	initial	state	of
the	session.
niSwitch_InitWithOptions	creates	a	new	IVI	instrument	driver	session	for
the	switch	module	specified	in	the	resourceName	parameter.	If	multiple
topologies	are	valid	for	that	device,	NI-SWITCH	uses	the	default	topology
specified	in	MAX.	The	topology	is	also	configurable	in	the	optionString
parameter.
By	default,	the	switch	module	is	reset	to	a	known	state.
Enable	simulation	in	the	optionString	parameter.
An	error	is	returned	if	a	session	to	the	specified	resource	exists	in
another	process.	The	same	session	is	returned	if	niSwitch_InitWithOptions
is	called	twice	in	the	same	process	for	the	same	resource	with	the	same
topology.

javascript:LaunchHelp('switch.chm::/topology.html')


Parameters
Name Type Description
resourceName ViRsrc Resource	name	of	the	switch	module	to	initialize.

Syntax:

MAX Configured	under	Valid	Syntax
NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ	(Legacy)	Devices SCXI[chassis	ID]::slot	number
PXI	System PXI[bus	number]::device	number

Optional	fields	are	shown	in	square	brackets	([]).	The	default	values	for	optional
fields	are	as	follows:
chassis	ID	=	1
bus	number	=	0

Tip		IVI	logical	names	are	also	valid	for	the	resource	name.

Example	resource	names:

Name Description
SC1Mod3 NI-DAQmx	module	in	chassis	"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed	to	"MySwitch"
SCXI1::3 Traditional	NI-DAQ	(Legacy)	module	in	chassis	1,	Slot	3
SCXI::3 Traditional	NI-DAQ	(Legacy)	module	in	chassis	1,	Slot	3
PXI0::16 PXI	bus	0,	device	number	16
PXI::16 PXI	bus	0,	device	number	16

idQuery ViBoolean This	parameter	is	ignored.
Because	NI-SWITCH	supports	multiple	switch	modules,	it	always	queries	the
switch	to	determine	which	device	is	installed.	For	this	reason,	this	VI	may	return
NISWITCH_ERROR_FAIL_ID_QUERY	even	if	this	parameter	is	set	to
VI_FALSE.

Value Description
VI_TRUE	(default) Queries	the	switch	to	determine	which	device	is	installed.
VI_FALSE Currently	unsupported.



resetDevice ViBoolean Specifies	whether	to	reset	the	switch	module	during	the	initialization	process.
Value Description
VI_TRUE	(default) Reset	device
VI_FALSE Currently	unsupported.	The	device	will	not	reset.

optionString ViConstString Sets	initial	values	of	certain	attributes	for	the	NI-SWITCH	session.	The	following
table	lists	the	attribute	string	names	you	can	use:
Value
NISWITCH_ATTR_RANGE_CHECK
NISWITCH_ATTR_QUERY_INSTRUMENT_STATUS
NISWITCH_ATTR_CACHE
NISWITCH_ATTR_SIMULATE
NISWITCH_ATTR_RECORD_COERCIONS
NISWITCH_ATTR_DRIVER_SETUP

The	format	of	the	optionString	is,	"AttributeStringName=Value"	where
AttributeStringName	is	the	name	of	the	attribute	shown	above	and	Value	is	the
value	to	which	the	attribute	will	be	set.	To	set	multiple	attributes,	separate
assignments	with	a	comma.
If	you	pass	an	empty	string	for	this	parameter,	the	NI-SWITCH	session	uses	the
default	values	for	the	attributes.	You	can	override	the	default	values	by	explicitly
assigning	a	value.	You	do	not	have	to	specify	all	of	the	available	attributes.	If	you
do	not	specify	an	attribute,	its	default	value	is	used.
Use	the	DriverSetup	attribute	to	set	the	topology	or	the	resource	type	(DAQmx
or	Traditional	DAQ)	of	the	switch	module.	This	attribute	can	contain	config
token/value	pairs	within	it.
DriverSetup=[config	token]:[value];[config	token	2]:[value	2]
Valid	Config	Tokens	and	Values:

Value Description



topology The	topology	of	the	device.	Refer	to	
for	valid	values.

resourcetype Use	"daqmx"	for	devices	configured	under	NI-
DAQmx	Devices	in	MAX	or	"legacy"	for	devices
configured	under	Traditional	NI-DAQ	(Legacy)
Devices	in	MAX.

For	example,	use	the	following	string	to	set	an	NI	SCXI-1127	as	a	2-wire	32x1
multiplexer	configured	in	MAX	under	DAQmx	Devices:
"DriverSetup=topology:1127/2-Wire	32x1	Mux;resourcetype:daqmx
The	DriverSetup	string	is	particularly	important	when	using	NI-SWITCH	through
the	IviSwtch	class	driver.
To	enable	simulation,	set	simulate	equal	to	1	and	specify	the	switch	module	and
topology	of	the	switch	module	to	simulate.	The	following	string	enables
simulation	for	an	NI	SCXI-1127	configured	as	a	2-wire	32x1	multiplexer.
"Simulate=1,	DriverSetup=topology:1127/2-Wire	32x1	Mux
If	simulate	is	set	to	1	and	the	DriverSetup	string	specifies	a	topology,	the
topology	is	used	to	determine	which	device	to	simulate.	If	the	DriverSetup	string
does	not	specify	a	topology,	the	device	specified	in	resource	name	is	simulated.

vi ViSession A	particular	NI-SWITCH	session	established	with	
niSwitch_InitWithOptions,	or	niSwitch_init	and	used	for	all	subsequent	NI-
SWITCH	calls.

javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_InitWithTopology
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_InitWithTopology	(ViRsrc	resourceName,
ViConstString	topology,	ViBoolean	simulate,	ViBoolean	resetDevice,
ViSession*	vi);



Purpose
Returns	a	session	handle	used	to	identify	the	switch	module	in	all
subsequent	instrument	driver	calls	and	sets	the	topology	of	the	switch
module.	

niSwitch_InitWithTopology	creates	a	new	IVI	instrument	driver	session	for
the	switch	module	specified	in	the	resourceName	parameter.	The	driver
uses	the	topology	specified	in	the	topology	parameter	and	overrides	the
topology	specified	in	MAX.
By	default,	the	switch	module	is	reset	to	a	known	state.
Enable	simulation	by	specifying	the	topology	and	setting	the	simulate
parameter	to	VI_TRUE.

javascript:LaunchHelp('switch.chm::/topology.html')


Parameters
Name Type Description
resourceName ViRsrc Resource	name	of	the	switch	module	to

initialize.
Syntax:

MAX Configured	under
Valid	Syntax

NI-DAQmx	Devices DAQmxDeviceName
Traditional	NI-DAQ
(Legacy)	Devices

SCXI[chassis
ID]::slot	number

PXI	System PXI[bus
number]::device
number

Optional	fields	are	shown	in	square
brackets	([]).	The	default	values	for
optional	fields	are	as	follows:
chassis	ID	=	1
bus	number	=	0

Tip		IVI	logical	names	are	also
valid	for	the	resource	name.

Example	resource	names:

Name Description
SC1Mod3 NI-DAQmx	module	in

chassis	"SC1"	Slot	3
MySwitch NI-DAQmx	module	renamed

to	"MySwitch"
SCXI1::3 Traditional	NI-DAQ	(Legacy)

module	in	chassis	1,	Slot	3
SCXI::3 Traditional	NI-DAQ	(Legacy)

module	in	chassis	1,	Slot	3
PXI0::16 PXI	bus	0,	device	number	16



PXI::16 PXI	bus	0,	device	number	16

topology ViConstString Pass	the	topology	name	you	want	to	use
for	the	switch	you	specify	with	the
resourceName	parameter.

Note		To	determine	the	names	of
the	supported	topologies	for	your
switch	device,	expand	the
Devices	book,	and	select	the
switch	module	you	are	using	from
the	Contents	tab	of	this	help	file.
In	the	device	overview,	the
Operation	Modes	table(s)	lists	all
supported	topology	and	software
names	for	the	switch	module.

simulate ViBoolean Enables	simulation	of	the	switch	module
specified	in	the	resourceName
parameter.
Value Description
VI_TRUE Simulate
VI_FALSE	(default) Do	not	simulate

resetDevice ViBoolean Specifies	whether	to	reset	the	switch
module	during	the	initialization	process.
Value Description
VI_TRUE
(default)

Reset	device

VI_FALSE The	device	will	not
reset.

Note		The	first	call	to
niSwitch_InitWithTopology,	after
you	reboot	your	computer,	will
reset	the	hardware.	This	is	the
only	case	when	the	Reset	flag	is
not	honored.

vi ViSession A	particular	NI-SWITCH	session



established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_close
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_close	(ViSession	vi);



Purpose
Terminates	the	NI-SWITCH	session	and	all	of	its	attributes	and
deallocates	any	memory	resources	the	driver	uses.

Note		You	must	unlock	the	session	before	calling	niSwitch_close.
After	calling	niSwitch_close,	you	cannot	use	the	NI-SWITCH	again
until	you	call	niSwitch_init	or	niSwitch_InitWithOptions.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_SetAttributeViInt32
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_SetAttributeViInt32	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViInt32	attributeValue);



Purpose
This	function	sets	the	value	of	a	ViInt32	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	instrument-specific
attributes	and	inherent	IVI	attributes.	If	the	attribute	represents	an
instrument	state,	this	function	performs	instrument	I/O	in	the	following
cases:	
-	State	caching	is	disabled	for	the	entire	session	or	for	the
particular	attribute.	
-	State	caching	is	enabled	and	the	currently	cached	value	is
invalid	or	is	different	than	the	value	you	specify.	

This	instrument	driver	contains	high-level	functions	that	set	most	of	the
instrument	attributes.	It	is	best	to	use	the	high-level	driver	functions	as
much	as	possible.	They	handle	order	dependencies	and	multithread
locking	for	you.	In	addition,	they	perform	status	checking	only	after
setting	all	of	the	attributes.	In	contrast,	when	you	set	multiple	attributes
using	the	SetAttribute	functions,	the	functions	check	the	instrument	status
after	each	call.	Also,	when	state	caching	is	enabled,	the	high-level
functions	that	configure	multiple	attributes	perform	instrument	I/O	only	for
the	attributes	whose	value	you	change.	Thus,	you	can	safely	call	the
high-level	functions	without	the	penalty	of	redundant	instrument	I/O.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set
the	attribute.	From	the	function	panel
window	in	LabWindows/CVI,	you	can	use
this	control	as	follows.	If	the	attribute
currently	showing	in	the	Attribute	ID	ring
control	has	constants	as	valid	values,	you
can	view	a	list	of	the	constants	by
pressing	<ENTER>	on	this	control.	Select
a	value	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_SetAttributeViReal64
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_SetAttributeViReal64	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViReal64	attributeValue);



Purpose
This	function	sets	the	value	of	a	ViReal64	attribute.	This	is	a	low-level
function	that	you	can	use	to	set	the	values	of	instrument-specific
attributes	and	inherent	IVI	attributes.	If	the	attribute	represents	an
instrument	state,	this	function	performs	instrument	I/O	in	the	following
cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

This	instrument	driver	contains	high-level	functions	that	set	most	of	the
instrument	attributes.	It	is	best	to	use	the	high-level	driver	functions	as
much	as	possible.	They	handle	order	dependencies	and	multithread
locking	for	you.	In	addition,	they	perform	status	checking	only	after
setting	all	of	the	attributes.	In	contrast,	when	you	set	multiple	attributes
using	the	SetAttribute	functions,	the	functions	check	the	instrument	status
after	each	call.	Also,	when	state	caching	is	enabled,	the	high-level
functions	that	configure	multiple	attributes	perform	instrument	I/O	only	for
the	attributes	whose	value	you	change.	Thus,	you	can	safely	call	the
high-level	functions	without	the	penalty	of	redundant	instrument	I/O.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViReal64 Pass	the	value	to	which	you	want	to	set
the	attribute.	From	the	function	panel
window	in	LabWindows/CVI,	you	can	use
this	control	as	follows.	If	the	attribute
currently	showing	in	the	Attribute	ID	ring
control	has	constants	as	valid	values,	you
can	view	a	list	of	the	constants	by
pressing	<ENTER>	on	this	control.	Select
a	value	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_SetAttributeViString
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_SetAttributeViString	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViConstString	attributeValue);



Purpose
Sets	the	value	of	a	ViString	attribute.	You	can	use	this	low-level	function
to	set	the	values	of	instrument-specific	attributes	and	inherent	IVI
attributes.	If	the	attribute	represents	an	instrument	state,	this	function
performs	instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-SWITCH	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.	Also,	when	state	caching	is	enabled,	the	high-level	functions
that	configure	multiple	attributes	perform	instrument	I/O	only	for	the
attributes	whose	value	you	change.	Thus,	you	can	safely	call	the	high-
level	functions	without	the	penalty	of	redundant	instrument	I/O.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViConstString Pass	the	value	to	which	you	want	to	set
the	attribute.	From	the	function	panel
window	in	LabWindows/CVI,	you	can	use
this	control	as	follows.	If	the	attribute
currently	showing	in	the	Attribute	ID	ring
control	has	constants	as	valid	values,	you
can	view	a	list	of	the	constants	by
pressing	<ENTER>	on	this	control.	Select
a	value	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_SetAttributeViBoolean
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_SetAttributeViBoolean	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViBoolean	attributeValue);



Purpose
Sets	the	value	of	a	ViBoolean	attribute.	You	can	use	this	low-level
function	to	set	the	values	of	instrument-specific	attributes	and	inherent	IVI
attributes.	If	the	attribute	represents	an	instrument	state,	this	function
performs	instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is
invalid	or	is	different	than	the	value	you	specify.

NI-SWITCH	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.	Also,	when	state	caching	is	enabled,	the	high-level	functions
that	configure	multiple	attributes	perform	instrument	I/O	only	for	the
attributes	whose	value	you	change.	Thus,	you	can	safely	call	the	high-
level	functions	without	the	penalty	of	redundant	instrument	I/O.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViBoolean Pass	the	value	to	which	you	want	to	set
the	attribute.	From	the	function	panel
window	in	LabWindows/CVI,	you	can	use
this	control	as	follows.	If	the	attribute
currently	showing	in	the	Attribute	ID	ring
control	has	constants	as	valid	values,	you
can	view	a	list	of	the	constants	by
pressing	<ENTER>	on	this	control.	Select
a	value	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_SetAttributeViSession
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_SetAttributeViSession	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViSession	attributeValue);



Purpose
Sets	the	value	of	a	ViSession	attribute.	You	can	use	this	is	a	low-level
function	to	set	the	values	of	instrument-specific	attributes	and	inherent	IVI
attributes.	If	the	attribute	represents	an	instrument	state,	this	function
performs	instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-SWITCH	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.	Also,	when	state	caching	is	enabled,	the	high-level	functions
that	configure	multiple	attributes	perform	instrument	I/O	only	for	the
attributes	whose	value	you	change.	Thus,	you	can	safely	call	the	high-
level	functions	without	the	penalty	of	redundant	instrument	I/O.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViSession Pass	the	value	to	which	you	want	to	set
the	attribute.	From	the	function	panel
window	in	LabWindows/CVI,	you	can	use
this	control	as	follows.	If	the	attribute
currently	showing	in	the	Attribute	ID	ring
control	has	constants	as	valid	values,	you
can	view	a	list	of	the	constants	by
pressing	<ENTER>	on	this	control.	Select
a	value	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_GetAttributeViInt32
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetAttributeViInt32	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViInt32*	attributeValue);



Purpose
Queries	the	value	of	a	ViInt32	attribute.	You	can	use	this	function	to	get
the	values	of	instrument	specific	attributes	and	inherent	IVI	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
A	ring	control	at	the	top	of	the	dialog	box
allows	you	to	see	all	IVI	attributes	or	only
the	attributes	of	the	ViInt32	type.	If	you
choose	to	see	all	IVI	attributes,	the	data
types	appear	to	the	right	of	the	attribute
names	in	the	list	box.	The	data	types	that
are	not	consistent	with	this	function	are
dim.	If	you	select	an	attribute	data	type
that	is	dim,	LabWindows/CVI	transfers
you	to	the	function	panel	for	the



corresponding	function	that	is	consistent
with	the	data	type.	If	you	want	to	enter	a
variable	name,	press	<CTRL-T>	to
change	this	ring	control	to	a	manual	input
box.	If	the	attribute	in	this	ring	control	has
constants	as	valid	values,	you	can	view
the	constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViInt32 Returns	the	current	value	of	the	attribute.
Pass	the	address	of	a	ViInt32	variable.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.



niSwitch_GetAttributeViReal64
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetAttributeViReal64	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViReal64*	attributeValue);



Purpose
Queries	the	value	of	a	ViReal64	attribute.	You	can	use	this	function	to	get
the	values	of	instrument	specific	attributes	and	inherent	IVI	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
A	ring	control	at	the	top	of	the	dialog	box
allows	you	to	see	all	IVI	attributes	or	only
the	attributes	of	the	ViInt32	type.	If	you
choose	to	see	all	IVI	attributes,	the	data
types	appear	to	the	right	of	the	attribute
names	in	the	list	box.	The	data	types	that
are	not	consistent	with	this	function	are
dim.	If	you	select	an	attribute	data	type
that	is	dim,	LabWindows/CVI	transfers
you	to	the	function	panel	for	the



corresponding	function	that	is	consistent
with	the	data	type.	If	you	want	to	enter	a
variable	name,	press	<CTRL-T>	to
change	this	ring	control	to	a	manual	input
box.	If	the	attribute	in	this	ring	control	has
constants	as	valid	values,	you	can	view
the	constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViReal64 Returns	the	current	value	of	the	attribute.
Pass	the	address	of	a	ViReal64	variable.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.



niSwitch_GetAttributeViString
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetAttributeViString	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViInt32	arraySize,
ViChar[]	attributeValue);



Purpose
Queries	the	value	of	a	ViString	attribute.	You	can	use	this	function	to	get
the	values	of	instrument	specific	attributes	and	inherent	IVI	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid.

You	must	provide	a	ViChar	array	to	serve	as	a	buffer	for	the	value.	Pass
the	number	of	bytes	in	the	buffer	as	arraySize.	If	the	current	value	of	the
attribute,	including	the	terminating	NULL	byte,	is	larger	than	the	size	you
indicate	in	arraySize,	the	function	copies	arraySize-1	bytes	into	the
buffer,	places	an	ASCII	NULL	byte	at	the	end	of	the	buffer,	and	returns
the	array	size	you	must	pass	to	get	the	entire	value.	For	example,	if	the
value	is	"123456"	and	arraySize	is	4,	the	function	places	"123"	into	the
buffer	and	returns	7.	If	you	want	to	call	this	function	just	to	get	the
required	array	size,	you	can	pass	0	for	arraySize	and	VI_NULL	for	the
attributeValue	buffer.	If	you	want	the	function	to	fill	in	the	buffer
regardless	of	the	number	of	bytes	in	the	value,	pass	a	negative	number
for	arraySize.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
A	ring	control	at	the	top	of	the	dialog	box
allows	you	to	see	all	IVI	attributes	or	only
the	attributes	of	the	ViInt32	type.	If	you
choose	to	see	all	IVI	attributes,	the	data
types	appear	to	the	right	of	the	attribute
names	in	the	list	box.	The	data	types	that
are	not	consistent	with	this	function	are
dim.	If	you	select	an	attribute	data	type
that	is	dim,	LabWindows/CVI	transfers
you	to	the	function	panel	for	the



corresponding	function	that	is	consistent
with	the	data	type.	If	you	want	to	enter	a
variable	name,	press	<CTRL-T>	to
change	this	ring	control	to	a	manual	input
box.	If	the	attribute	in	this	ring	control	has
constants	as	valid	values,	you	can	view
the	constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

arraySize ViInt32 Pass	the	number	of	bytes	in	the	ViChar
array	you	specify	for	the	Attribute	Value
parameter.	If	the	current	value	of	the
attribute,	including	the	terminating	NUL
byte,	contains	more	bytes	that	you
indicate	in	this	parameter,	the	function
copies	Array	Size-1	bytes	into	the	buffer,
places	an	ASCII	NULL	byte	at	the	end	of
the	buffer,	and	returns	the	array	size	you
must	pass	to	get	the	entire	value.	
For	example,	if	the	value	is	"123456"	and
the	Array	Size	is	4,	the	function	places
123	into	the	buffer	and	returns	7.	If	you
pass	a	negative	number,	the	function
copies	the	value	to	the	buffer	regardless
of	the	number	of	bytes	in	the	value.	If	you
pass	0,	you	can	pass	VI_NULL	for	the
Attribute	Value	buffer	parameter.	The
default	value	is	512.

attributeValue ViChar[] Buffer	in	which	the	function	returns	the
current	value	of	the	attribute.	The	buffer
must	be	of	type	ViChar	and	have	at	least
as	many	bytes	as	indicated	in	the
arraySize	parameter.	If	the	current	value
of	the	attribute,	including	the	terminating
NULL	byte,	contains	more	bytes	that	you
indicate	in	this	parameter,	the	function
copies	arraySize-1	bytes	into	the	buffer,
places	an	ASCII	NULL	byte	at	the	end	of



the	buffer,	and	returns	the	array	size	you
must	pass	to	get	the	entire	value.



niSwitch_GetAttributeViBoolean
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetAttributeViBoolean	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViBoolean*	attributeValue);



Purpose
Queries	the	value	of	a	ViBoolean	attribute.	You	can	use	this	function	to
get	the	values	of	instrument	specific	attributes	and	inherent	IVI	attributes.
If	the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
A	ring	control	at	the	top	of	the	dialog	box
allows	you	to	see	all	IVI	attributes	or	only
the	attributes	of	the	ViInt32	type.	If	you
choose	to	see	all	IVI	attributes,	the	data
types	appear	to	the	right	of	the	attribute
names	in	the	list	box.	The	data	types	that
are	not	consistent	with	this	function	are
dim.	If	you	select	an	attribute	data	type
that	is	dim,	LabWindows/CVI	transfers
you	to	the	function	panel	for	the



corresponding	function	that	is	consistent
with	the	data	type.	If	you	want	to	enter	a
variable	name,	press	<CTRL-T>	to
change	this	ring	control	to	a	manual	input
box.	If	the	attribute	in	this	ring	control	has
constants	as	valid	values,	you	can	view
the	constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViBoolean Returns	the	current	value	of	the	attribute.
Pass	the	address	of	a	ViBoolean
variable.	From	the	function	panel	window
in	LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.



niSwitch_GetAttributeViSession
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetAttributeViSession	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViSession*	attributeValue);



Purpose
Queries	the	value	of	a	ViSession	attribute.	You	can	use	this	function	to
get	the	values	of	instrument	specific	attributes	and	inherent	IVI	attributes.
If	the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled	and	the	currently	cached	value	is	invalid.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
A	ring	control	at	the	top	of	the	dialog	box
allows	you	to	see	all	IVI	attributes	or	only
the	attributes	of	the	ViInt32	type.	If	you
choose	to	see	all	IVI	attributes,	the	data
types	appear	to	the	right	of	the	attribute
names	in	the	list	box.	The	data	types	that
are	not	consistent	with	this	function	are
dim.	If	you	select	an	attribute	data	type
that	is	dim,	LabWindows/CVI	transfers
you	to	the	function	panel	for	the



corresponding	function	that	is	consistent
with	the	data	type.	If	you	want	to	enter	a
variable	name,	press	<CTRL-T>	to
change	this	ring	control	to	a	manual	input
box.	If	the	attribute	in	this	ring	control	has
constants	as	valid	values,	you	can	view
the	constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViSession Returns	the	current	value	of	the	attribute.
Pass	the	address	of	a	ViSession	variable.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.



niSwitch_CheckAttributeViInt32
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CheckAttributeViInt32	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViInt32	attributeValue);



Purpose
Checks	the	validity	of	a	value	you	specify	for	a	ViInt32	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.
From	the	function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViInt32	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not



consistent	with	this	function	are	dim.	If
you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViInt32 Pass	the	value	which	you	want	to	verify
as	a	valid	value	for	the	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_CheckAttributeViReal64
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CheckAttributeViReal64	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViReal64	attributeValue);



Purpose
Checks	the	validity	of	a	value	you	specify	for	a	ViReal64	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViReal64	type.	If	you	choose	to
see	all	IVI	attributes,	the	data	types
appear	to	the	right	of	the	attribute	names
in	the	list	box.	The	data	types	that	are	not
consistent	with	this	function	are	dim.	If



you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViReal64 Pass	the	value	which	you	want	to	verify
as	a	valid	value	for	the	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_CheckAttributeViString
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CheckAttributeViString	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViConstString	attributeValue);



Purpose
Checks	the	validity	of	a	value	you	specify	for	a	ViString	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViString	type.	If	you	choose	to	see
all	IVI	attributes,	the	data	types	appear	to
the	right	of	the	attribute	names	in	the	list
box.	The	data	types	that	are	not
consistent	with	this	function	are	dim.	If



you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViConstString Pass	the	value	which	you	want	to	verify
as	a	valid	value	for	the	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_CheckAttributeViBoolean
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CheckAttributeViBoolean	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViBoolean	attributeValue);



Purpose
Checks	the	validity	of	a	value	you	specify	for	a	ViBoolean	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViBoolean	type.	If	you	choose	to
see	all	IVI	attributes,	the	data	types
appear	to	the	right	of	the	attribute	names
in	the	list	box.	The	data	types	that	are	not
consistent	with	this	function	are	dim.	If



you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViBoolean Pass	the	value	which	you	want	to	verify
as	a	valid	value	for	the	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_CheckAttributeViSession
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CheckAttributeViSession	(ViSession	vi,
ViConstString	channelName,	ViAttr	attributeID,	ViSession	attributeValue);



Purpose
Checks	the	validity	of	a	value	you	specify	for	a	ViSession	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

channelName ViConstString Some	attributes	are	unique	for	each
channel.	For	these,	pass	the	name	of	the
channel.	Other	attributes	are	unique	for
each	switch.	Pass	VI_NULL	or	an	empty
string	for	this	parameter.	The	default
value	is	an	empty	string.

attributeID ViAttr Pass	the	ID	of	an	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	Click	on	the	control	or
press	<ENTER>,	<spacebar>,	or	<ctrl-
down	arrow>,	to	display	a	dialog	box
containing	a	hierarchical	list	of	the
available	attributes.	Attributes	whose
value	cannot	be	set	are	dim.	Help	text	is
shown	for	each	attribute.	Select	an
attribute	by	double-clicking	on	it	or	by
selecting	it	and	then	pressing	<ENTER>.
Read-only	attributes	appear	dim	in	the	list
box.	If	you	select	a	read-only	attribute,	an
error	message	appears.	A	ring	control	at
the	top	of	the	dialog	box	allows	you	to
see	all	IVI	attributes	or	only	the	attributes
of	the	ViSession	type.	If	you	choose	to
see	all	IVI	attributes,	the	data	types
appear	to	the	right	of	the	attribute	names
in	the	list	box.	The	data	types	that	are	not
consistent	with	this	function	are	dim.	If



you	select	an	attribute	data	type	that	is
dim,	LabWindows/CVI	transfers	you	to
the	function	panel	for	the	corresponding
function	that	is	consistent	with	the	data
type.	If	you	want	to	enter	a	variable
name,	press	<CTRL-T>	to	change	this
ring	control	to	a	manual	input	box.	If	the
attribute	in	this	ring	control	has	constants
as	valid	values,	you	can	view	the
constants	by	moving	to	the	Attribute
Value	control	and	pressing	<ENTER>.

attributeValue ViSession Pass	the	value	which	you	want	to	verify
as	a	valid	value	for	the	attribute.	From	the
function	panel	window	in
LabWindows/CVI,	you	can	use	this
control	as	follows.	If	the	attribute	currently
showing	in	the	Attribute	ID	ring	control
has	constants	as	valid	values,	you	can
view	a	list	of	the	constants	by	pressing
<ENTER>	on	this	control.	Select	a	value
by	double-clicking	on	it	or	by	selecting	it
and	then	pressing	<ENTER>.

Note		Some	of	the	values	might
not	be	valid	depending	on	the
current	settings	of	the	instrument
session.



niSwitch_Connect
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_Connect	(ViSession	vi,	ViConstString	channel1,
ViConstString	channel2);



Purpose
Creates	a	path	between	channel1	and	channel2.	NI-SWITCH	calculates
and	uses	the	shortest	path	between	the	two	channels.	Refer	to
Immediate	Operations	for	information	about	channel	usage	types.
If	a	path	is	not	available,	the	function	returns	one	of	the	following	errors:

NISWITCH_ERROR_EXPLICIT_CONNECTION_EXISTS,	if	the
two	channels	are	already	explicitly	connected	by	calling	either	the	
niSwitch_Connect	or	niSwitch_SetPath	function.
NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL,	if	a
channel	is	a	configuration	channel.	Error	elaboration	contains
information	about	which	of	the	two	channels	is	a	configuration
channel.
NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES,	if
both	channels	are	connected	to	a	different	source.	Error
elaboration	contains	information	about	sources	channel1	and
channel2	connect	to.
NISWITCH_ERROR_CANNOT_CONNECT_TO_ITSELF,	if
channel1	and	channel2	are	one	and	the	same	channel.
NISWITCH_ERROR_PATH_NOT_FOUND,	if	the	driver	cannot	find
a	path	between	the	two	channels.
Note		Paths	are	bidirectional.	For	example,	if	a	path	exists
between	channels	CH1	and	CH2,	then	the	path	also	exists
between	channels	CH2	and	CH1.

javascript:LaunchHelp('switch.chm::/immediate.html')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

channel1 ViConstString Input	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as
channel2.	Refer	to	Devices	for	valid	channel
names	for	the	switch	module.

Examples	of	valid	channel	names:	

ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel2 ViConstString Input	one	of	the	channel	names	of	the	desired
path.	Pass	the	other	channel	name	as
channel1.	Refer	to	Devices	for	valid	channel
names	for	the	switch	module.	

Examples	of	valid	channel	names:	

ch0,	com0,	ab0,	r1,	c2,	cjtemp

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_Disconnect
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_Disconnect	(ViSession	vi,	ViConstString	channel1,
ViConstString	channel2);



Purpose
Destroys	the	path	between	two	channels	that	you	create	with	the
niSwitch_Connect	or	niSwitch_SetPath	function.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

channel1 ViConstString Input	one	of	the	channel	names	of	the	path	to
break.	Pass	the	other	channel	name	as
channel2.	Refer	to	Devices	for	valid	channel
names	for	the	switch	module.

Examples	of	valid	channel	names:	

ch0,	com0,	ab0,	r1,	c2,	cjtemp

channel2 ViConstString Input	one	of	the	channel	names	of	the	path	to
break.	Pass	the	other	channel	name	as
channel1.	Refer	to	Devices	for	valid	channel
names	for	the	switch	module.

Examples	of	valid	channel	names:	

ch0,	com0,	ab0,	r1,	c2,	cjtemp

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_DisconnectAll
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_DisconnectAll	(ViSession	vi);



Purpose
Breaks	all	existing	paths.
If	the	switch	module	cannot	break	all	paths,	the
NISWITCH_WARN_PATH_REMAINS	warning	is	returned.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_IsDebounced
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_IsDebounced	(ViSession	vi,	ViBoolean*	isDebounced);



Purpose
Indicates	if	all	created	paths	have	settled	by	returning	the	value	of	the
NISWITCH_ATTR_IS_DEBOUNCED	attribute.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

isDebounced ViBoolean VI_TRUE	indicates	that	all	created	paths
have	settled.	VI_FALSE	indicates	that	all
created	paths	have	not	settled.



niSwitch_WaitForDebounce
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_WaitForDebounce	(ViSession	vi,
ViInt32	maximumTime_ms);



Purpose
Pauses	until	all	created	paths	have	settled.
If	the	time	you	specify	with	the	maximumTime_ms	parameter	elapses
before	the	switch	paths	settle,	this	function	returns	the
NISWITCH_ERROR_MAX_TIME_EXCEEDED	error.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-
SWITCH	calls.

maximumTime_ms ViInt32 Specifies	the	maximum	length	of	time	to
wait	for	all	relays	in	the	switch	module
to	activate	or	deactivate.	If	the	specified
time	elapses	before	all	relays	activate
or	deactivate,	a	timeout	error	is
returned.	The	default	value	is5000	ms.



niSwitch_CanConnect
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_CanConnect	(ViSession	vi,	ViConstString	channel1,
ViConstString	channel2,	ViInt32*	pathCapability);



Purpose
Verifies	that	a	path	between	channel1	and	channel2	can	be	created.
If	a	path	is	possible	in	the	switch	module,	the	availability	of	that	path	is
returned	given	the	existing	connections.	If	the	path	is	possible	but	in	use,
a	NISWITCH_WARN_IMPLICIT_CONNECTION_EXISTS	warning	is
returned.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH	calls.

channel1 ViConstString Input	one	of	the	channel	names	of	the	desired	path.	Pass	the
other	channel	name	as	the	channel2.	Refer	to	
valid	channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp
The	default	value	is	an	empty	string.

channel2 ViConstString Input	one	of	the	channel	names	of	the	desired	path.	Pass	the
other	channel	name	as	channel1.	Refer	to	
channel	names	for	the	switch	module.
Examples	of	valid	channel	names:	

ch0,	com0,	ab0,	r1,	c2,	cjtemp
The	default	value	is	an	empty	string.

pathCapability ViInt32 Indicates	whether	a	path	is	valid.
Possible	values	include:

Value
NISWITCH_VAL_PATH_AVAILABLE

NISWITCH_VAL_PATH_EXISTS



NISWITCH_VAL_PATH_UNSUPPORTED

NISWITCH_VAL_RSRC_IN_USE

NISWITCH_VAL_SOURCE_CONFLICT

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')


NISWITCH_VAL_CHANNEL_NOT_AVAILABLE



niSwitch_SetPath
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_SetPath	(ViSession	vi,	ViConstString	pathList);



Purpose
Connects	two	channels	by	specifying	an	explicit	path	in	pathList.
niSwitch_SetPath	is	particularly	useful	where	path	repeatability	is
important,	such	as	in	calibrated	signal	paths.	If	this	is	not	necessary,	use
niSwitch_Connect.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

pathList ViConstString A	string	composed	of	comma-separated	paths
between	channel	1	and	channel	2.	The	first	and
last	names	in	the	path	are	the	endpoints	of	the
path.	Every	other	channel	in	the	path	are
configuration	channels.

Example	of	a	valid	path	list	string:

ch0->com0,	com0->ab0.

In	this	example,	com0	is	a	configuration
channel.

Obtain	the	path	list	for	a	previously	created
path	with	niSwitch_GetPath.



niSwitch_GetPath
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_GetPath	(ViSession	vi,	ViConstString	channel1,
ViConstString	channel2,	ViInt32	bufferSize,	ViChar[]	path);



Purpose
Returns	a	string	that	identifies	the	explicit	path	created	with
niSwitch_Connect.	Pass	this	string	to	niSwitch_SetPath	to	establish	the
exact	same	path	in	future	connections.
In	some	cases,	multiple	paths	are	available	between	two	channels.	When
you	call	niSwitch_Connect,	NI-SWITCH	selects	an	available	path;
however,	the	driver	may	not	always	select	the	same	path	through	the
switch	module.
niSwitch_GetPath	only	returns	those	paths	explicitly	created	by
niSwitch_Connect	or	niSwitch_SetPath.	For	example,	if	you	connect
channels	CH1	and	CH3,	and	then	channels	CH2	and	CH3,	an	explicit
path	between	channels	CH1	and	CH2	does	not	exist	and	an	error	is
returned.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

channel1 ViConstString Input	one	of	the	channel	names	of	the
desired	path.	Pass	the	other	channel	name
as	channel2.	Refer	to	Devices	for	valid
channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp
The	default	value	is	an	empty	string.

channel2 ViConstString Input	one	of	the	channel	names	of	the
desired	path.	Pass	the	other	channel	name
as	channel1.	Refer	to	Devices	for	valid
channel	names	for	the	switch	module.
Examples	of	valid	channel	names:
ch0,	com0,	ab0,	r1,	c2,	cjtemp
The	default	value	is	an	empty	string.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar	array
you	specify	for	the	Path	parameter.	If	the
current	value	of	the	attribute,	including	the
terminating	NULL	byte,	contains	more	bytes
that	you	indicate	in	this	parameter,	the
function	copies	bufferSize–1	bytes	into	the
buffer,	places	an	ASCII	NULL	byte	at	the	end
of	the	buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	value.	For
example,	if	the	value	is	"R1->C1"	and
bufferSize	is	4,	the	function	places	"R1-"	into
the	buffer	and	returns	7.	If	you	pass	0,	you

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/devices.html')


can	pass	VI_NULL	for	path.	This	enables
you	to	find	out	the	path	size	and	to	allocate
the	buffer	of	the	appropriate	size	before
calling	this	function	again.

path ViChar[] A	string	composed	of	comma-separated
paths	between	channel1	and	channel2.	The
first	and	last	names	in	the	path	are	the
endpoints	of	the	path.	All	other	channels	in
the	path	are	configuration	channels.

Examples	of	returned	paths:

ch0->com0,	com0->ab0



niSwitch_Scan
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_Scan	(ViSession	vi,	ViConstString	scanlist,
ViInt16	initiation);



Purpose
Takes	the	scan	list	provided,	programs	the	switching	hardware	and
initiates	the	scan.	Once	initiation	is	complete,	the	operation	will	return.
The	scan	list	itself	is	comprised	of	a	list	of	channel	connections	separated
by	semicolons.	For	example,	the	following	scan	list	would	scan	the	first
three	channels	of	a	multiplexer.	Example:	com0->ch0;	com0->ch1;	com0-
>ch2;.	Refer	to	scan	lists	for	additional	information.	To	see	the	status	of
the	scan,	you	can	call	either	niSwitch_IsScanning	or
niSwitch_WaitForScanComplete.	Use	the	niSwitch_ConfigureScanTrigger
function	to	configure	the	scan	trigger.	Use	the	niSwitch_AbortScan	function
to	stop	the	scan	if	you	are	in	continuous	scan	mode	(Refer	to
niSwitch_SetContinuousScan);	otherwise	the	scan	halts	automatically	when
the	end	of	the	scan	list	is	reached.	For	reference,	this	operation	is
equivalent	to	calling	niSwitch_ConfigureScanList	and	niSwitch_InitiateScan.

javascript:LaunchHelp('switch.chm::/scan_list.html')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions
used	for	all	subsequent	NI-SWITCH	calls.

scanlist ViConstString Pass	the	scan	list	you	want	the	instrument	to	use.
initiation ViInt16 Use	the	initiation	parameter	to	specify	whether	the	switch	or	the

measurement	device	initiates	the	scan	trigger	handshake.	This
parameter	determines	whether	to	wait	for	the	scan	to	reach	a	trigger
point	before	completing.	
If	the	measurement	device	initiates	the	scan,	set	this	parameter	to
NISWITCH_VAL_MEASUREMENT_DEVICE_INITIATED
then	waits	until	the	switch	is	waiting	for	a	trigger	from	the	measurement
device	before	completing.	
If	the	switch	initiates	the	scan,	set	this	parameter	to
NISWITCH_VAL_SWITCH_INITIATED.	This	function	then	completes
immediately	after	initiating	the	scan.	

You	should	have	already	set	up	your	DMM	to	wait	for	a	trigger	before
calling	this	function	with	Initiation	set	to
NISWITCH_VAL_SWITCH_INITIATED.

Value
NISWITCH_VAL_SWITCH_INITIATED

NISWITCH_VAL_MEASUREMENT_DEVICE_INITIATED
(default)

javascript:LaunchHelp('switch.chm::/scan_list.html')


niSwitch_InitiateScan
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_InitiateScan	(ViSession	vi);



Purpose
Commits	the	configured	scan	list	and	trigger	settings	to	hardware	and
initiates	the	scan.	If	niSwitch_Commit	was	called	earlier,
niSwitch_InitiateScan	only	initiates	the	scan	and	returns	immediately.	

Once	the	scanning	operation	begins,	you	cannot	perform	any	other
operation	other	than	GetAttribute,	niSwitch_AbortScan,	or
niSwitch_SendSoftwareTrigger.	All	other	functions	return	the
NISWITCH_ERROR_SCAN_IN_PROGRESS	error.	To	stop	the	scanning
operation,	

To	stop	the	scanning	operation,	call	niSwitch_AbortScan.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_AbortScan
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_AbortScan	(ViSession	vi);



Purpose
Aborts	the	scan	in	progress.	

Initiate	a	scan	with	niSwitch_InitiateScan.

If	the	switch	module	is	not	scanning,	the
NISWITCH_ERROR_NO_SCAN_IN_PROGRESS	error	is	returned.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_SendSoftwareTrigger
IviSwtchSoftwareTrigger	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_SendSoftwareTrigger	(ViSession	vi);



Purpose
Sends	a	software	trigger	to	the	switch	specified	in	the	NI-SWITCH
session.	When	the	trigger	input	is	set	to
NISWITCH_VAL_SOFTWARE_TRIG	through	either	the
niSwitch_ConfigureScanTrigger	function	or	the
NISWITCH_ATTR_TRIGGER_INPUT	attribute,	the	scan	does	not	proceed
from	a	semicolon	(wait	for	trigger)	until	niSwitch_SendSoftwareTrigger	is
called.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_IsScanning
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_IsScanning	(ViSession	vi,	ViBoolean*	isScanning);



Purpose
Indicates	the	status	of	the	scan.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

isScanning ViBoolean NI-SWITCH	returns	the	value	of
NISWITCH_ATTR_IS_SCANNING	attribute.
VI_TRUE	indicates	that	the	switch	is	scanning.
VI_FALSE	indicates	that	the	switch	is	idle.



niSwitch_WaitForScanComplete
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_WaitForScanComplete	(ViSession	vi,
ViInt32	maximumTime_ms);



Purpose
Pauses	until	the	switch	stops	scanning	or	until	the	maximum	time	has
elapsed,	when	NI-SWITCH	returns	a	timeout	error.	

If	the	time	you	specify	with	the	maximumTime_ms	parameter	elapsed
before	the	scanning	operation	has	finished,	this	function	returns	the
NISWITCH_ERROR_MAX_TIME_EXCEEDED	error.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

maximumTime_ms ViInt32 Specifies	the	maximum	length	of	time	to	wait
for	the	switch	module	to	stop	scanning.	If	the
specified	time	elapses	before	the	scan	ends,
the
NISWITCH_ERROR_MAX_TIME_EXCEEDED
error	is	returned.	The	default	value	is	5000	ms.



niSwitch_SetContinuousScan
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_SetContinuousScan	(ViSession	vi,
ViBoolean	continuousScan);



Purpose
Sets	the	to	loop	continuously	through	the	scan	list	or	to	stop	scanning
after	one	pass	through	the	scan	list.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

continuousScan ViBoolean If	VI_TRUE,	loops	continuously	through
the	scan	list	during	scanning.	If	VI_FALSE,
the	scan	stops	after	one	pass	through	the
scan	list.	The	default	value	is	VI_FALSE.



niSwitch_ConfigureScanList
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_ConfigureScanList	(ViSession	vi,	ViConstString	scanlist,
ViInt32	scanMode);



Purpose
Configures	the	scan	list	and	scan	mode	used	for	scanning.	

Refer	to	Devices	to	determine	if	the	switch	module	supports	scanning.

The	scan	list	is	comprised	of	a	list	of	channel	connections	separated	by
semicolons.	For	example,	the	following	scan	list	will	scan	the	first	three
channels	of	a	multiplexer:

com0->ch0;	com0->ch1;	com0->ch2;

Refer	to	Scan	Lists	for	more	information	on	scan	list	syntax.

To	see	the	status	of	the	scan,	call	either	niSwitch_IsScanning	or
niSwitch_WaitForScanComplete.	Use	the	niSwitch_ConfigureScanTrigger
function	to	configure	the	scan	trigger.	Use	the	niSwitch_InitiateScan
function	to	start	the	scan.

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/scan_list.html')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

scanlist ViConstString The	scan	list	to	use.	NI-SWITCH	uses	this
value	to	set	the
NISWITCH_ATTR_SCAN_LIST	attribute.

scanMode ViInt32 Specifies	how	the	switch	module	breaks
existing	connections	when	scanning.	The
driver	uses	this	value	to	set	the
NISWITCH_ATTR_SCAN_MODE	attribute.
Refer	to	scan	modes	for	more	information.
The	default	value	is
NISWITCH_VAL_BREAK_BEFORE_MAKE.

javascript:LaunchHelp('switch.chm::/scan_list.html')


niSwitch_ConfigureScanTrigger
IviSwtchScanner	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_ConfigureScanTrigger	(ViSession	vi,	ViReal64	scanDelay,
ViInt32	triggerInput,	ViInt32	scanAdvancedOutput);



Purpose
Configures	the	scan	triggers	for	the	scan	list	established	with
niSwitch_ConfigureScanList.	

Refer	to	Devices	to	determine	if	the	switch	module	supports	scanning.

niSwitch_ConfigureScanTrigger	sets	the	location	that	the	switch	expects	to
receive	an	input	trigger	to	advance	through	the	scan	list.	This	function
also	sets	the	location	where	it	outputs	a	scan	advanced	signal	after	it
completes	an	entry	in	the	scan	list.

javascript:LaunchHelp('switch.chm::/devices.html')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
used	for	all	subsequent	NI-SWITCH	calls.

scanDelay ViReal64 The	minimum	length	of	time	you	want	the	switch
to	wait	after	it	creates	a	path	until	it	asserts	a
trigger	on	the	scan	advanced	output	line.	The
driver	uses	this	value	to	set	the
NISWITCH_ATTR_SCAN_DELAY	attribute.	The
scan	delay	is	in	addition	to	the	settling	time.	The
driver	uses	this	value	to	set	the
NISWITCH_ATTR_SCAN_DELAY	attribute.

Express	this	value	in	seconds.	The	default	value
is	0.0	s.

triggerInput ViInt32 Trigger	source	you	want	the	switch	module	to
use	during	scanning.	The	driver	uses	this	value
to	set	the	NISWITCH_ATTR_TRIGGER_INPUT
attribute.	The	switch	waits	for	the	trigger	you
specify	when	it	encounters	a	semicolon	in	the
scan	list.	When	the	trigger	occurs,	the	switch
advances	to	the	next	entry	in	the	scan	list.	
to	NISWITCH_ATTR_TRIGGER_INPUT
of	valid	values.

scanAdvancedOutput ViInt32 Output	destination	of	the	scan	advanced	trigger
signal.	NI-SWITCH	uses	this	value	to	set	the
NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT
attribute.	After	the	switch	processes	each	entry
in	the	scan	list,	it	waits	the	length	of	time	you
specify	in	the	scanDelay	parameter	and	then
asserts	a	trigger	on	the	line	you	specify	with	this
parameter.	Refer	to



NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT
for	a	list	of	valid	values.



niSwitch_RouteTriggerInput
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_RouteTriggerInput	(ViSession	vi,
ViInt32	triggerInputConnector,	ViInt32	triggerInputBusLine,	ViBoolean	invert);



Purpose
Routes	the	input	trigger	from	the	front	or	rear	connector	to	a	trigger	bus
line	(TTLx).	To	disconnect	the	route,	call	this	function	again	and	specify
None	for	trigger	bus	line	parameter.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

triggerInputConnector ViInt32 The	location	of	the	input	trigger	source
on	the	switch	module.	Valid	locations
are	the
NISWITCH_VAL_FRONTCONNECTOR
and
NISWITCH_VAL_REARCONNECTOR
The	default	value	is
NISWITCH_VAL_FRONTCONNECTOR

triggerInputBusLine ViInt32 The	trigger	line	to	route	the	input
trigger.	Select	NISWITCH_VAL_NONE
to	break	an	existing	route.

Valid	Values:

NISWITCH_VAL_NONE	(default)
NISWITCH_VAL_TTL0
NISWITCH_VAL_TTL1
NISWITCH_VAL_TTL2
NISWITCH_VAL_TTL3
NISWITCH_VAL_TTL4
NISWITCH_VAL_TTL5
NISWITCH_VAL_TTL6
NISWITCH_VAL_TTL7

invert ViBoolean If	VI_TRUE,	inverts	the	input	trigger
signal	from	falling	to	rising	or	vice
versa.	The	default	value	is	VI_FALSE



niSwitch_RouteScanAdvancedOutput
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_RouteScanAdvancedOutput	(ViSession	vi,
ViInt32	scanAdvancedOutputConnector,	ViInt32	scanAdvancedOutputBusLine,
ViBoolean	invert);



Purpose
Routes	the	scan	advanced	output	trigger	from	a	trigger	bus	line	(TTLx)	to
the	front	or	rear	connector.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

scanAdvancedOutputConnector ViInt32 The	scan	advanced	output	trigger
destination.	

Valid	Values:

NISWITCH_VAL_FRONTCONNECTOR
(default)
NISWITCH_VAL_REARCONNECTOR

scanAdvancedOutputBusLine ViInt32 The	trigger	line	to	route	the	scan
advanced	output	trigger	from	the	front
or	rear	connector.	Select
NISWITCH_VAL_NONE	to	break	an
existing	route.

Valid	Values:

NISWITCH_VAL_NONE	(default)
NISWITCH_VAL_TTL0
NISWITCH_VAL_TTL1
NISWITCH_VAL_TTL2
NISWITCH_VAL_TTL3
NISWITCH_VAL_TTL4
NISWITCH_VAL_TTL5
NISWITCH_VAL_TTL6
NISWITCH_VAL_TTL7



invert ViBoolean If	VI_TRUE,	inverts	the	input	trigger
signal	from	falling	to	rising	or	vice
versa.	The	default	value	is	



niSwitch_GetRelayName
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetRelayName	(ViSession	vi,	ViInt32	index,
ViInt32	relayNameBufferSize,	ViChar[]	relayNameBuffer);



Purpose
Returns	the	relay	name	string	that	is	in	the	relay	list	at	the	specified
index.	

Use	niSwitch_GetRelayName	in	a	For	Loop	to	get	a	complete	list	of	valid
relay	names	for	the	switch.	Use	the
NISWITCH_ATTR_NUMBER_OF_RELAYS	attribute	to	determine	the
number	of	relays.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

index ViInt32 A	1-based	index	into	the	channel	table.
The	default	value	is	1.	The	maximum
value	is	the	value	of	the
NISWITCH_ATTR_CHANNEL_COUNT
attribute.

relayNameBufferSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar
array	you	specify	for	the
relayNameBuffer	parameter.	If	the
relay	name	string,	including	the
terminating	NUL	byte,	contains	more
bytes	than	you	indicate	in	this
parameter,	the	function	copies	Buffer
Size	-	1	bytes	into	the	buffer,	places	an
ASCII	NULL	byte	at	the	end	of	the
buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	value.	For
example,	if	the	value	is	"123456"	and
relayBufferSize	is	4,	the	function
places	"123"	into	the	buffer	and	returns
7.	If	you	pass	a	negative	number,	the
function	copies	the	value	to	the	buffer
regardless	of	the	number	of	bytes	in
the	value.	If	you	pass	0,	you	can	pass
VI_NULL	for	the	Coercion	Record
buffer	parameter.	



relayNameBuffer ViChar[] Returns	the	relay	name	for	the	index
you	specify.



niSwitch_GetRelayCount
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetRelayCount	(ViSession	vi,	ViConstString	relayName,
ViInt32*	relayCount);



Purpose
Returns	the	number	of	times	the	relay	has	changed	from	closed	to	open.
Relay	count	is	useful	for	tracking	relay	lifetime	and	usage.	Call
niSwitch_WaitForDebounce	before	niSwitch_GetRelayCount	to	ensure	an
accurate	count.
Refer	to	Devices	to	determine	if	the	switch	module	supports	individual
relay	control.

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/immediate.html#relay')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

relayName ViConstString Name	of	the	relay.	Refer	to	Devices	for	a	list
of	valid	relay	names	for	the	switch	module.

Examples	of	valid	relay	names:

ch0,	ab0,	1wire,	hlselect

relayCount ViInt32 The	number	of	relay	cycles.

javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_GetRelayPosition
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetRelayPosition	(ViSession	vi,	ViConstString	relayName,
ViInt32*	relayPosition);



Purpose
Returns	the	relay	position	for	the	relay	specified	in	the	relayName
parameter.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

relayName ViConstString Name	of	the	relay.	Refer	to	Devices	for	a
list	of	valid	relay	names	for	the	switch
module.

Examples	of	valid	relay	names:

ch0,	ab0,	1wire,	hlselect	

relayPosition ViInt32 Indicates	whether	the	relay	is	open	or
closed.	

Valid	Values:

NISWITCH_VAL_OPEN	(10)
NISWITCH_VAL_CLOSED	(11)

javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_RelayControl
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_RelayControl	(ViSession	vi,	ViConstString	relayName,
ViInt32	relayAction);



Purpose
Controls	individual	relays	of	the	switch.	When	controlling	individual
relays,	the	protection	offered	by	setting	the	usage	of	source	channels	and
configurations	channels	is	void.	

Refer	to	Devices	to	determine	if	the	switch	module	supports	individual
relay	control.

javascript:LaunchHelp('switch.chm::/devices.html')
javascript:LaunchHelp('switch.chm::/immediate.html#relay')


Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

relayName ViConstString Name	of	the	relay.	Refer	to	Devices	for	a	list
of	valid	relay	names	for	the	switch	module.

Examples	of	valid	relay	names:

ch0,	ab0,	1wire,	hlselect
relayAction ViInt32 Specifies	whether	to	open	or	close	a	given

relay.

Defined	values:
NISWITCH_VAL_OPEN_RELAY
NISWITCH_VAL_CLOSE_RELAY	(default).

javascript:LaunchHelp('switch.chm::/devices.html')


niSwitch_Commit
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_Commit	(ViSession	vi);



Purpose
Downloads	the	configured	scan	list	and	trigger	settings	to	hardware.	

Calling	niSwitch_Commit	is	optional	as	it	is	implicitly	called	during
niSwitch_InitiateScan.	Use	niSwitch_Commit	to	arm	triggers	in	a	given
order	or	to	control	when	expensive	hardware	operations	are	performed.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_GetChannelName
IviSwtchBase	Capability	Group
C	Function	Prototype
ViStatus	niSwitch_GetChannelName	(ViSession	vi,	ViInt32	index,
ViInt32	bufferSize,	ViChar[]	channelNameBuffer);



Purpose
Returns	the	channel	string	that	is	in	the	channel	table	at	the	specified
index.	

Use	niSwitch_GetChannelName	in	a	For	Loop	to	get	a	complete	list	of	valid
channel	names	for	the	switch.	Use	the
NISWITCH_ATTR_CHANNEL_COUNT	attribute	to	determine	the	number
of	channels.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

index ViInt32 A	1-based	index	into	the	channel	table.
The	default	value	is	1.	The	maximum
value	is	Value	of	Channel	Count
attribute.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the
ViChar	array	you	specify	for	the
Channel	Name	Buffer	parameter.	If	the
channel	name	string,	including	the
terminating	NUL	byte,	contains	more
bytes	than	you	indicate	in	this
parameter,	the	function	copies	Buffer
Size	-	1	bytes	into	the	buffer,	places	an
ASCII	NULL	byte	at	the	end	of	the
buffer,	and	returns	the	buffer	size	you
must	pass	to	get	the	entire	value.	For
example,	if	the	value	is	"123456"	and
bufferSize	is	4,	the	function	places
"123"	into	the	buffer	and	returns	7.	If
you	pass	a	negative	number,	the
function	copies	the	value	to	the	buffer
regardless	of	the	number	of	bytes	in
the	value.	If	you	pass	0,	you	can	pass
VI_NULL	for	the	Coercion	Record
buffer	parameter.	

channelNameBuffer ViChar[] Returns	the	channel	name	that	is	in



the	channel	table	at	the	index	you
specify.



niSwitch_reset
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_reset	(ViSession	vi);



Purpose
Disconnects	all	created	paths	and	returns	the	switch	module	to	the	state
at	initialization.	Configuration	channel	and	source	channel	settings
remain	unchanged.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_ResetWithDefaults
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_ResetWithDefaults	(ViSession	vi);



Purpose
Resets	the	switch	module	and	applies	initial	user	specified	settings	from
the	logical	name	used	to	initialize	the	session.	If	the	session	was	created
without	a	logical	name,	this	function	is	equivalent	to	niSwitch_reset.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_Disable
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_Disable	(ViSession	vi);



Purpose
Places	the	switch	module	in	a	quiescent	state,	where	it	has	minimal	or	no
impact	on	the	system	to	which	it	is	connected.	All	channels	are
disconnected	and	any	scan	in	progress	is	aborted.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_self_test
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_self_test	(ViSession	vi,	ViInt16*	selfTestResult,
ViChar[]	selfTestMessage);



Purpose
Verifies	that	NI-SWITCH	can	communicate	with	the	switch.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

selfTestResult ViInt16 Value	returned	from	the	switch	self-test.	

0	Passed
1	Failed

selfTestMessage ViChar[] Self-test	response	string	from	the	switch.
You	must	pass	a	ViChar	array	with	at	least
256	bytes.



niSwitch_revision_query
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_revision_query	(ViSession	vi,
ViChar[]	instrumentDriverRevision,	ViChar[]	firmwareRevision);



Purpose
Returns	the	revision	of	the	NI-SWITCH	driver.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

instrumentDriverRevision ViChar[] NI-SWITCH	software	revision
numbers	in	the	form	of	a	string.
You	must	pass	a	ViChar	array
with	at	least	256	bytes.

firmwareRevision ViChar[] Currently	unsupported.



niSwitch_error_query
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_error_query	(ViSession	vi,	ViInt32*	errorCode,
ViChar[]	errorMessage);



Purpose
This	function	reads	an	error	code	and	a	message	from	the	instrument
error	queue.
NI-SWITCH	does	not	have	an	error	queue,	so	this	function	never	returns
any	errors.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

errorCode ViInt32 Returns	the	error	code	read	from	the
instrument	error	queue.
NI-SWITCH	does	not	have	an	error	queue,
so	this	function	never	returns	any	errors.

errorMessage ViChar[] Returns	the	error	message	string	read	from
the	instrument's	error	message	queue.	You
must	pass	a	ViChar	array	with	at	least	256
bytes.
NI-SWITCH	does	not	have	an	error	queue,
so	this	function	only	returns	No	error.



niSwitch_error_message
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_error_message	(ViSession	vi,	ViStatus	errorCode,
ViChar[]	errorMessage);



Purpose
Converts	an	error	code	returned	by	NI-SWITCH	into	a	user-readable
string.	Generally	this	information	is	supplied	in	error	out	of	any	NI-
SWITCH	VI.	Use	niSwitch_error_message	for	a	static	lookup	of	an	error
code	description.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

errorCode ViStatus Status	code	returned	by	any	NI-SWITCH
function.	The	default	value	is	0
(VI_SUCCESS).

errorMessage ViChar[] The	error	information	formatted	into	a	string.
You	must	pass	a	ViChar	array	with	at	least
256	bytes.



niSwitch_GetNextCoercionRecord
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetNextCoercionRecord	(ViSession	vi,	ViInt32	bufferSize,
ViChar[]	coercionRecord);



Purpose
This	function	returns	the	coercion	information	associated	with	the	IVI
session.	This	function	retrieves	and	clears	the	oldest	instance	in	which
NI-SWITCH	coerced	a	value	you	specified	to	another	value.	

If	you	set	the	NISWITCH_ATTR_RECORD_COERCIONS	attribute	to
VI_TRUE,	NI-SWITCH	keeps	a	list	of	all	coercions	it	makes	on	ViInt32	or
ViReal64	values	you	pass	to	NI-SWITCH	functions.	You	use	this	function
to	retrieve	information	from	that	list.	If	the	next	coercion	record	string,
including	the	terminating	NUL	byte,	contains	more	bytes	than	you
indicate	in	this	parameter,	the	function	copies	bufferSize–1	bytes	into	the
buffer,	places	an	ASCII	NULL	byte	at	the	end	of	the	buffer,	and	returns
the	buffer	size	you	must	pass	to	get	the	entire	value.	For	example,	if	the
value	is	"123456"	and	the	bufferSize	is	4,	the	function	places	"123"	into
the	buffer	and	returns	7.	If	you	pass	a	negative	number,	the	function
copies	the	value	to	the	buffer	regardless	of	the	number	of	bytes	in	the
value.	If	you	pass	0,	you	can	pass	VI_NULL	for	the	Coercion	Record
buffer	parameter.	The	function	returns	an	empty	string	in	the	Coercion
Record	parameter	if	no	coercion	records	remain	for	the	session.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
and	used	for	all	subsequent	NI-SWITCH
calls.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar
array	you	specify	for	the	Coercion	Record
parameter.	
If	the	next	coercion	record	string,	including
the	terminating	NUL	byte,	contains	more
bytes	than	you	indicate	in	this	parameter,
the	function	copies	bufferSize–1	bytes
into	the	buffer,	places	an	ASCII	NULL	byte
at	the	end	of	the	buffer,	and	returns	the
buffer	size	you	must	pass	to	get	the	entire
value.	For	example,	if	the	value	is
"123456"	and	the	bufferSize	is	4,	the
function	places	"123"	into	the	buffer	and
returns	7.	If	you	pass	a	negative	number,
the	function	copies	the	value	to	the	buffer
regardless	of	the	number	of	bytes	in	the
value.	If	you	pass	0,	you	can	pass
VI_NULL	for	the	Coercion	Record	buffer
parameter.	

coercionRecord ViChar[] Returns	the	next	coercion	record	for	the	IVI
session.	If	there	are	no	coercion	records,
the	function	returns	an	empty	string.	The
buffer	must	contain	at	least	as	many
elements	as	the	value	you	specify	with	the
bufferSize	parameter.	
If	the	next	coercion	record	string,	including
the	terminating	NUL	byte,	contains	more
bytes	than	you	indicate	with	the	bufferSize



parameter,	the	function	copies	bufferSize–
1	bytes	into	the	buffer,	places	an	ASCII
NULL	byte	at	the	end	of	the	buffer,	and
returns	the	buffer	size	you	must	pass	to
get	the	entire	value.	For	example,	if	the
value	is	"123456"	and	bufferSize	is	4,	the
function	places	"123"	into	the	buffer	and
returns	7.	This	parameter	returns	an	empty
string	if	no	coercion	records	remain	for	the
session.



niSwitch_GetNextInterchangeWarning
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetNextInterchangeWarning	(ViSession	vi,
ViInt32	bufferSize,	ViChar[]	interchangeWarning);



Purpose
This	function	returns	the	interchangeability	warnings	associated	with	the
IVI	session.	It	retrieves	and	clears	the	oldest	instance	in	which	the	class
driver	recorded	an	interchangeability	warning.	Interchangeability
warnings	indicate	that	using	your	application	with	a	different	instrument
might	cause	different	behavior.	You	use	this	function	to	retrieve
interchangeability	warnings.	The	driver	performs	interchangeability
checking	when	the	NISWITCH_ATTR_INTERCHANGE_CHECK	attribute
is	set	to	VI_TRUE.	The	function	returns	an	empty	string	in	the
interchangeWarning	parameter	if	no	interchangeability	warnings	remain
for	the	session.	In	general,	the	instrument	driver	generates
interchangeability	warnings	when	an	attribute	that	affects	the	behavior	of
the	instrument	is	in	a	state	that	you	did	not	specify.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session

established	with
niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all
subsequent	NI-SWITCH	calls.

bufferSize ViInt32 Pass	the	number	of	bytes	in	the
ViChar	array	you	specify	for	the
interchangeWarning	parameter.	
If	the	next	interchangeability	warning
string,	including	the	terminating	NUL
byte,	contains	more	bytes	than	you
indicate	in	this	parameter,	the	function
copies	bufferSize–1	bytes	into	the
buffer,	places	an	ASCII	NULL	byte	at
the	end	of	the	buffer,	and	returns	the
buffer	size	you	must	pass	to	get	the
entire	value.	For	example,	if	the	value
is	"123456"	and	the	bufferSize	is	4,
the	function	places	"123"	into	the
buffer	and	returns	7.	If	you	pass	a
negative	number,	the	function	copies
the	value	to	the	buffer	regardless	of
the	number	of	bytes	in	the	value.	If
you	pass	0,	you	can	pass	VI_NULL
for	the	Interchange	Warning	buffer
parameter.	

interchangeWarning ViChar[] Returns	the	next	interchange	warning
for	the	IVI	session.	If	there	are	no
interchange	warnings,	the	function
returns	an	empty	string.	The	buffer
must	contain	at	least	as	many
elements	as	the	value	you	specify	with



the	bufferSize	parameter.	
If	the	next	interchangeability	warning
string,	including	the	terminating	NUL
byte,	contains	more	bytes	than	you
indicate	with	the	bufferSize
parameter,	the	function	copies
bufferSize–1	bytes	into	the	buffer,
places	an	ASCII	NULL	byte	at	the	end
of	the	buffer,	and	returns	the	buffer
size	you	must	pass	to	get	the	entire
value.	For	example,	if	the	value	is
"123456"	and	bufferSize	is	4,	the
function	places	"123"	into	the	buffer
and	returns	7.	This	parameter	returns
an	empty	string	if	no	interchangeability
warnings	remain	for	the	session.



niSwitch_ClearInterchangeWarnings
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_ClearInterchangeWarnings	(ViSession	vi);



Purpose
This	function	clears	the	list	of	current	interchange	warnings.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_ResetInterchangeCheck
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_ResetInterchangeCheck	(ViSession	vi);



Purpose
When	developing	a	complex	test	system	that	consists	of	multiple	test
modules,	it	is	generally	a	good	idea	to	design	the	test	modules	so	that
they	can	run	in	any	order.	To	do	so,	ensure	that	each	test	module
completely	configures	the	state	of	each	instrument	it	uses.	If	a	particular
test	module	does	not	completely	configure	the	state	of	an	instrument,	the
instrument	state	depends	on	the	configuration	from	a	previously	executed
test	module.	Therefore,	if	you	execute	the	test	modules	in	a	different
order,	the	behavior	of	the	instrument	and	therefore	the	entire	test	module
is	likely	to	change.	This	behavior	change	is	generally	instrument	specific
and	represents	an	interchangeability	problem.	

You	can	use	this	function	to	test	for	such	cases.	After	you	call	this
function,	the	interchangeability	checking	algorithms	in	the	specific	driver
ignore	all	previous	configuration	operations.	By	calling	this	function	at	the
beginning	of	a	test	module,	you	can	determine	whether	the	test	module
has	dependencies	on	the	operation	of	previously	executed	test	modules.
This	function	does	not	clear	the	interchangeability	warnings	from	the	list
of	previously	recorded	interchangeability	warnings.	If	you	want	to
guarantee	that	the	niSwitch_GetNextInterchangeWarning	function	only
returns	those	interchangeability	warnings	that	are	generated	after	calling
this	function,	you	must	clear	the	list	of	interchangeability	warnings	by
repeatedly	calling	the	niSwitch_GetNextInterchangeWarning	function	until
no	interchangeability	warnings	are	returned.	If	you	are	not	interested	in
the	content	of	those	warnings,	you	can	call	the
niSwitch_ClearInterchangeWarnings	function.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_GetError
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_GetError	(ViSession	vi,	ViStatus*	code,	ViInt32	buffersize,
ViChar[]	description);



Purpose
This	function	retrieves	and	then	clears	the	IVI	error	information	for	the
session	or	the	current	execution	thread.	

One	exception	exists:	If	the	bufferSize	parameter	is	0,	the	function	does
not	clear	the	error	information.	By	passing	0	for	the	buffer	size,	the	caller
can	ascertain	the	buffer	size	required	to	get	the	entire	error	description
string	and	then	call	the	function	again	with	a	sufficiently	large	buffer.	If
you	specify	a	valid	IVI	session	for	the	vi	parameter,	this	function	retrieves
and	then	clears	the	error	information	for	the	session.	If	the	user	passes
VI_NULL	for	the	vi	parameter,	this	function	retrieves	and	then	clears	the
error	information	for	the	current	execution	thread.	If	the	vi	parameter	is
an	invalid	session,	the	function	does	nothing	and	returns	an	error.
Normally,	the	error	information	describes	the	first	error	that	occurred
since	the	user	last	called	niSwitch_GetError	or	niSwitch_ClearError.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

code ViStatus Returns	the	error	code	for	the	session	or
execution	thread.	
If	you	pass	0	for	bufferSize,	you	can	pass
VI_NULL	for	this	parameter.

buffersize ViInt32 Pass	the	number	of	bytes	in	the	ViChar	array
you	specify	for	the	Description	parameter.	

If	the	error	description,	including	the	terminating
NULL	byte,	contains	more	bytes	than	you
indicate	in	this	parameter,	the	function	copies
bufferSize–1	bytes	into	the	buffer,	places	an
ASCII	NULL	byte	at	the	end	of	the	buffer,	and
returns	the	buffer	size	you	must	pass	to	get	the
entire	value.	For	example,	if	the	value	is
"123456"	and	bufferSize	is	4,	the	function
places	"123"	into	the	buffer	and	returns	7.	If	you
pass	a	negative	number,	the	function	copies	the
value	to	the	buffer	regardless	of	the	number	of
bytes	in	the	value.	If	you	pass	0,	you	can	pass
VI_NULL	for	the	description	buffer	parameter.	

description ViChar[] Returns	the	error	description	for	the	IVI	session
or	execution	thread.	

If	there	is	no	description,	the	function	returns	an
empty	string.	The	buffer	must	contain	at	least	as
many	elements	as	the	value	you	specify	with
the	bufferSize	parameter.	If	the	error



description,	including	the	terminating	NULL
byte,	contains	more	bytes	than	you	indicate	with
the	bufferSize,	the	function	copies	bufferSize–
1	bytes	into	the	buffer,	places	an	ASCII	NULL
byte	at	the	end	of	the	buffer,	and	returns	the
buffer	size	you	must	pass	to	get	the	entire
value.	For	example,	if	the	value	is	"123456"	and
bufferSize	is	4,	the	function	places	"123"	into
the	buffer	and	returns	7.	If	you	pass	0	for	the
Buffer	Size,	you	can	pass	VI_NULL	for	this
parameter.



niSwitch_ClearError
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_ClearError	(ViSession	vi);



Purpose
This	function	clears	the	error	code	and	error	description	for	the	IVI
session.	
If	you	specify	a	valid	IVI	session	for	the	vi	parameter,	this	function	clears
the	error	information	for	the	session.	

If	the	user	passes	VI_NULL	for	the	vi	parameter,	this	function	clears	the
error	information	for	the	current	execution	thread.	
If	vi	is	an	invalid	session,	the	function	does	nothing	and	returns	an	error.
The	function	clears	the	error	code	by	setting	it	to	VI_SUCCESS,

If	the	error	description	string	is	non-NULL,	the	function	deallocates	the
error	description	string	and	sets	the	address	to	VI_NULL.	

Maintaining	the	error	information	separately	for	each	thread	is	useful	if
the	user	does	not	have	a	session	handle	to	pass	to	the	niSwitch_GetError
function,	which	occurs	when	a	call	to	niSwitch_init	or
niSwitch_InitWithOptions	fails.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,	niSwitch_InitWithOptions,	or
niSwitch_init	and	used	for	all	subsequent	NI-SWITCH
calls.



niSwitch_LockSession
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_LockSession	(ViSession	vi,	ViBoolean*	callerHasLock);



Purpose
This	function	obtains	a	multithread	lock	on	the	instrument	session.	Before
it	does	so,	it	waits	until	all	other	execution	threads	have	released	their
locks	on	the	instrument	session.	Other	threads	might	have	obtained	a
lock	on	this	session	in	the	following	ways:

Your	application	called	niSwitch_LockSession.
A	call	to	the	instrument	driver	locked	the	session.
A	call	to	the	IVI	engine	locked	the	session.

After	your	call	to	niSwitch_LockSession	returns	successfully,	no	other
threads	can	access	the	instrument	session	until	you	call
niSwitch_UnlockSession.	Use	niSwitch_LockSession	and
niSwitch_UnlockSession	around	a	sequence	of	calls	to	NI-SWITCH
functions	if	you	require	that	the	instrument	retain	its	settings	through	the
end	of	the	sequence.	You	can	safely	make	nested	calls	to
niSwitch_LockSession	within	the	same	thread.	To	completely	unlock	the
session,	balance	each	call	to	niSwitch_LockSession	with	a	call	to
niSwitch_UnlockSession.	If,	however,	you	use	the	callerHasLock
parameter	in	all	calls	to	niSwitch_LockSession	and	niSwitch_UnlockSession
within	a	function,	the	IVI	Library	locks	the	session	only	once	within	the
function	regardless	of	the	number	of	calls	you	make	to
niSwitch_LockSession.	This	allows	you	to	call	niSwitch_UnlockSession	just
once	at	the	end	of	the	function.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

callerHasLock ViBoolean This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.	
Use	this	parameter	in	complex	functions	to
keep	track	of	whether	you	obtain	a	lock	and
therefore	need	to	unlock	the	session.	Pass
the	address	of	a	local	ViBoolean	variable.	In
the	declaration	of	the	local	variable,	initialize
it	to	VI_FALSE.	Pass	the	address	of	the
same	local	variable	to	any	other	calls	you
make	to	niSwitch_LockSession	or
niSwitch_UnlockSession	in	the	same	function.
The	parameter	is	an	input/output	parameter.
niSwitch_LockSession	and
niSwitch_UnlockSession	each	inspect	the
current	value	and	take	the	following	actions:

If	the	value	is	VI_TRUE,
niSwitch_LockSession	does	not	lock	the
session	again.	If	the	value	is
VI_FALSE,	niSwitch_LockSession
obtains	the	lock	and	sets	the	value	of
the	parameter	to	VI_TRUE.
If	the	value	is	VI_FALSE,
niSwitch_UnlockSession	does	not
attempt	to	unlock	the	session.	If	the
value	is	VI_TRUE,
niSwitch_UnlockSession	releases	the
lock	and	sets	the	value	of	the
parameter	to	VI_FALSE.	
Thus,	you	can,	call



niSwitch_UnlockSession	at	the	end	of
your	function	without	worrying	about
whether	you	actually	have	the	lock.

Example:	

ViStatus	TestFunc	(ViSession	vi,	ViInt32	flags)	
{	
ViStatus	error	=	VI_SUCCESS;	
ViBoolean	haveLock	=	VI_FALSE;	
if	(flags	&	BIT_1)	
{	
viCheckErr(	niSwitch_LockSession(vi,
&haveLock));	
viCheckErr(	TakeAction1(vi));	
if	(flags	&	BIT_2)	
{	
viCheckErr(	niSwitch_UnlockSession(vi,
&haveLock));
viCheckErr(	TakeAction2(vi));	
viCheckErr(	niSwitch_LockSession(vi,
&haveLock);	
}	
if	(flags	&	BIT_3)	
viCheckErr(	TakeAction3(vi));	
}	

Error:	

/*	At	this	point,	you	cannot	really	be	sure	that
you	have	the
lock.	Fortunately,	the	haveLock	variable	takes
care	of	
that	for	you.	*/	

niSwitch_UnlockSession(vi,	&haveLock);	
return	error;	
}



niSwitch_UnlockSession
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_UnlockSession	(ViSession	vi,	ViBoolean*	callerHasLock);



Purpose
This	function	releases	a	lock	that	you	acquired	on	an	instrument	session
using	niSwitch_LockSession.	
Refer	to	niSwitch_LockSession	for	additional	information	on	session	locks.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established

with	niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and
used	for	all	subsequent	NI-SWITCH	calls.

callerHasLock ViBoolean This	parameter	serves	as	a	convenience.	If
you	do	not	want	to	use	this	parameter,	pass
VI_NULL.	Use	this	parameter	in	complex
functions	to	keep	track	of	whether	you	obtain
a	lock	and	therefore	need	to	unlock	the
session.	Pass	the	address	of	a	local
ViBoolean	variable.	In	the	declaration	of	the
local	variable,	initialize	it	to	VI_FALSE.	Pass
the	address	of	the	same	local	variable	to	any
other	calls	you	make	to	niSwitch_LockSession
or	niSwitch_UnlockSession	in	the	same
function.	The	parameter	is	an	input/output
parameter.	niSwitch_LockSession	and
niSwitch_UnlockSession	each	inspect	the
current	value	and	take	the	following	actions:	
-	If	the	value	is	VI_TRUE,
niSwitch_LockSession	does	not	lock	the
session	again.	If	the	value	is	VI_FALSE,
niSwitch_LockSession	obtains	the	lock	and
sets	the	value	of	the	parameter	to	VI_TRUE.
-	If	the	value	is	VI_FALSE,
niSwitch_UnlockSession	does	not	attempt	to
unlock	the	session.	If	the	value	is	VI_TRUE,
niSwitch_UnlockSession	releases	the	lock	and
sets	the	value	of	the	parameter	to
VI_FALSE.	

Thus,	you	can,	call	niSwitch_UnlockSession	at
the	end	of	your	function	without	worrying
about	whether	you	actually	have	the	lock.	



Example:	
ViStatus	TestFunc	(ViSession	vi,	ViInt32
flags)	
{	
ViStatus	error	=	VI_SUCCESS;	
ViBoolean	haveLock	=	VI_FALSE;	
if	(flags	&	BIT_1)	
{	
viCheckErr(	niSwitch_LockSession(vi,
&haveLock));
viCheckErr(	TakeAction1(vi));	if	(flags	&
BIT_2)	
{	
viCheckErr(	niSwitch_UnlockSession(vi,
&haveLock));
viCheckErr(	TakeAction2(vi));	
viCheckErr(	niSwitch_LockSession(vi,
&haveLock);	
}	
if	(flags	&	BIT_3)	
viCheckErr(	TakeAction3(vi));	
}	
Error:	
/*	At	this	point,	you	cannot	really	be	sure	that
you	have	
the	lock.	Fortunately,	the	haveLock	variable
takes	care	
of	that	for	you.	*/	
niSwitch_UnlockSession(vi,	&haveLock);	
return	error;	
}



niSwitch_CalibrationDataRead
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CalibrationDataRead	(ViSession	vi,
ViConstString	channelName,	ViInt32	calibrationField,
ViReal64*	calibrationData,	ViInt32*	calibrationDate_Year,
ViInt32*	calibrationDate_Month,	ViInt32*	calibrationDate_Day);



Purpose
Retrieves	the	calibration	data,	typically	in	terms	of	the	amplifier	offset,
stored	in	the	EEPROM.	

Some	NI	switches	have	an	amplifier	that	may	require	periodic
calibrations.	You	can	perform	the	necessary	calibration	and	store	the
data	locally	on	the	switch	module	EEPROM.	The	calibration	date	is	also
stored	in	the	EEPROM.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init
for	all	subsequent	NI-SWITCH	calls.

channelName ViConstString Name	of	the	channel	calibrated.

Examples	of	valid	channel	names:

ch0,	com0,	ab0,	r1,	c2,	cjtemp

Refer	to	Devices	for	a	complete	list	of	valid
channel	names.	

While	niSwitch_ReadCalibrationData
niSwitch_WriteCalibrationData	take	a	channel
name,	some	switches	only	support	a	single
calibration	for	all	input	channels.	For	example,	the
NI	PXI-2501	uses	an	optional	single	amplifier	for
channels	ch0	through	ch47	to	decrease	settling
time.	In	these	cases,	writing	a	different	value	to	a
different	channel	causes	the	previous	value	to	be
overwritten.	Therefore,	reading	different	channels
returns	the	same	calibration	data.

calibrationField ViInt32 Tells	NI-SWITCH	which	particular	calibration
parameter	associated	with	this	channel	to	read.
Valid	values	depend	on	the	switch	hardware.

Examples	of	possible	values:	
NISWITCH_VAL_CALIBRATION_CJS_AMP
NISWITCH_VAL_CALIBRATION_CHANNEL_AMP
(1)

javascript:LaunchHelp('switch.chm::/devices.html')


calibrationData ViReal64 Calibration	data	from	the	EEPROM.

calibrationDate_Year ViInt32 Year	the	switch	was	last	calibrated	with	this
calibration	data.	For	example,	the	date	August	1,
2003	would	be	returned	as	2003	by	this	parameter.

calibrationDate_Month ViInt32 Month	the	switch	was	last	calibrated	with	this
calibration	data.	For	example,	the	date	August	1,
2003	would	be	returned	as	8	by	this	parameter.

calibrationDate_Day ViInt32 Day	the	switch	was	last	calibrated	with	this
calibration	data.	For	example,	the	date	August	1,
2003	would	be	returned	as	1	by	this	parameter.



niSwitch_CalibrationDataWrite
Specific	Function
C	Function	Prototype
ViStatus	niSwitch_CalibrationDataWrite	(ViSession	vi,
ViConstString	channelName,	ViInt32	calibrationField,
ViReal64	calibrationData);



Purpose
Writes	the	calibration	data,	typically	in	terms	of	the	amplifier	offset,	in	the
EEPROM.	

Some	NI	switches	have	an	amplifier	that	may	require	periodic
calibrations.	You	can	perform	the	necessary	calibration	and	store	the
data	locally	on	the	switch	EEPROM.	The	calibration	date	is	also	stored	in
the	EEPROM.



Parameters
Name Type Description
vi ViSession A	particular	NI-SWITCH	session	established	with

niSwitch_InitWithTopology,
niSwitch_InitWithOptions,	or	niSwitch_init	and	used
for	all	subsequent	NI-SWITCH	calls.

channelName ViConstString Name	of	the	channel	calibrated.

Examples	of	valid	channel	names:

ch0,	com0,	ab0,	r1,	c2,	cjtemp

Refer	to	Devices	for	a	complete	list	of	valid
channel	names.	

While	niSwitch_ReadCalibrationData	and
niSwitch_WriteCalibrationData	take	a	channel
name,	some	switches	only	support	a	single
calibration	for	all	input	channels.	For	example,	the
NI	PXI-2501	uses	an	optional	single	amplifier	for
channels	ch0	through	ch47	to	decrease	settling
time.	In	these	cases,	writing	a	different	value	to	a
different	channel	causes	the	previous	value	to	be
overwritten.	Therefore,	reading	different	channels
returns	the	same	calibration	data.

calibrationField ViInt32 Tells	NI-SWITCH	which	particular	calibration
parameter	associated	with	this	channel	to	write.
Valid	values	depend	on	the	switch	hardware.

Examples	of	possible	values:	
NISWITCH_VAL_CALIBRATION_CJS_AMP
NISWITCH_VAL_CALIBRATION_CHANNEL_AMP
(1)

javascript:LaunchHelp('switch.chm::/devices.html')


calibrationData ViReal64 Calibration	data	to	store	in	the	EEPROM.



NISWITCH_VAL_BREAK_AFTER_MAKE
Description
When	scanning,	the	switch	breaks	existing	connections	after	making	new
connections.



Defined	Value
2



NISWITCH_VAL_BREAK_BEFORE_MAKE
Description
When	scanning,	the	switch	breaks	existing	connections	before	making
new	connections.



Defined	Value
1



NISWITCH_VAL_EXTERNAL
Description
External	Trigger.	The	switch	waits	until	it	receives	a	trigger	from	an
external	source	through	the	external	trigger	input	before	processing	the
next	entry	in	the	scan	list.



Defined	Value
2



NISWITCH_VAL_FALLING_EDGE
Description
The	trigger	occurs	on	the	falling	edge	of	the	signal.



Defined	Value
1



NISWITCH_VAL_FRONTCONNECTOR
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector.



Defined	Value
1001



NISWITCH_VAL_FRONTCONNECTOR_MODULE1
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
1.



Defined	Value
1041



NISWITCH_VAL_FRONTCONNECTOR_MODULE10
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
10.



Defined	Value
1050



NISWITCH_VAL_FRONTCONNECTOR_MODULE11
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
11.



Defined	Value
1051



NISWITCH_VAL_FRONTCONNECTOR_MODULE12
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
12.



Defined	Value
1052



NISWITCH_VAL_FRONTCONNECTOR_MODULE2
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
2.



Defined	Value
1042



NISWITCH_VAL_FRONTCONNECTOR_MODULE3
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
3.



Defined	Value
1043



NISWITCH_VAL_FRONTCONNECTOR_MODULE4
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
4.



Defined	Value
1044



NISWITCH_VAL_FRONTCONNECTOR_MODULE5
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
5.



Defined	Value
1045



NISWITCH_VAL_FRONTCONNECTOR_MODULE6
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
6.



Defined	Value
1046



NISWITCH_VAL_FRONTCONNECTOR_MODULE7
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
7.



Defined	Value
1047



NISWITCH_VAL_FRONTCONNECTOR_MODULE8
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
8.



Defined	Value
1048



NISWITCH_VAL_FRONTCONNECTOR_MODULE9
Description
The	switch	waits	until	it	receives	a	trigger	on	the	front	connector	module
9.



Defined	Value
1049



NISWITCH_VAL_IMMEDIATE
Description
Immediate	Trigger.	The	switch	does	not	wait	for	a	trigger	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
1



NISWITCH_VAL_MASTER
Description
Multiple	switches	are	sharing	bused	trigger	lines	for	the	scan	and	this
device	is	the	trigger	master.	You	must	set
NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS,
NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS,
NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT	and
NISWITCH_ATTR_TRIGGER_INPUT	for	this	device.



Defined	Value
1



NISWITCH_VAL_NONE
Description
No	implicit	action	on	connections	when	scanning.



Defined	Value
0



NISWITCH_VAL_PXI_STAR
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI	star	trigger	bus
before	processing	the	next	entry	in	the	scan	list.



Defined	Value
125



NISWITCH_VAL_REARCONNECTOR
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector.



Defined	Value
1000



NISWITCH_VAL_REARCONNECTOR_MODULE1
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
1.



Defined	Value
1021



NISWITCH_VAL_REARCONNECTOR_MODULE10
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
10.



Defined	Value
1030



NISWITCH_VAL_REARCONNECTOR_MODULE11
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
11.



Defined	Value
1031



NISWITCH_VAL_REARCONNECTOR_MODULE12
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
12.



Defined	Value
1032



NISWITCH_VAL_REARCONNECTOR_MODULE2
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
2.



Defined	Value
1022



NISWITCH_VAL_REARCONNECTOR_MODULE3
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
3.



Defined	Value
1023



NISWITCH_VAL_REARCONNECTOR_MODULE4
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
4.



Defined	Value
1024



NISWITCH_VAL_REARCONNECTOR_MODULE5
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
5.



Defined	Value
1025



NISWITCH_VAL_REARCONNECTOR_MODULE6
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
6.



Defined	Value
1026



NISWITCH_VAL_REARCONNECTOR_MODULE7
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
7.



Defined	Value
1027



NISWITCH_VAL_REARCONNECTOR_MODULE8
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
8.



Defined	Value
1028



NISWITCH_VAL_REARCONNECTOR_MODULE9
Description
The	switch	waits	until	it	receives	a	trigger	on	the	rear	connector	module
9.



Defined	Value
1029



NISWITCH_VAL_RISING_EDGE
Description
The	trigger	occurs	on	the	rising	edge	of	the	signal.



Defined	Value
0



NISWITCH_VAL_SINGLE
Description
When	scanning,	the	switch	does	not	share	trigger	lines	with	other
switches.	You	must	set	NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT
and	NISWITCH_ATTR_TRIGGER_INPUT	for	this	device.



Defined	Value
0



NISWITCH_VAL_SLAVE
Description
Multiple	switches	are	sharing	trigger	lines	for	the	scan	and	this	device	is
one	of	the	trigger	slaves.	You	must	set
NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS	and
NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS	for	this
device.



Defined	Value
2



NISWITCH_VAL_SW_TRIG_FUNC
Description
The	switch	waits	until	you	call	the	niSwitch_SendSoftwareTrigger	function
before	processing	the	next	entry	in	the	scan	list.



Defined	Value
3



NISWITCH_VAL_TTL0
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG0	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
111



NISWITCH_VAL_TTL1
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG1	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
112



NISWITCH_VAL_TTL2
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG2	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
113



NISWITCH_VAL_TTL3
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG3	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
114



NISWITCH_VAL_TTL4
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG4	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
115



NISWITCH_VAL_TTL5
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG5	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
116



NISWITCH_VAL_TTL6
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG6	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
117



NISWITCH_VAL_TTL7
Description
The	switch	waits	until	it	receives	a	trigger	on	the	PXI_TRIG7	line	before
processing	the	next	entry	in	the	scan	list.



Defined	Value
118



VI_FALSE
Description
False.



Defined	Value
0



VI_TRUE
Description
True.



Defined	Value
1



Group/Attribute	Name Attribute	Label
Channel	Configuration
Is	Source	Channel NISWITCH_ATTR_IS_SOURCE_CHANNEL
Is	Configuration	Channel NISWITCH_ATTR_IS_CONFIGURATION_CHANNEL
Module	Characteristics
Serial	Number NISWITCH_ATTR_SERIAL_NUMBER
Is	Debounced NISWITCH_ATTR_IS_DEBOUNCED
Settling	Time NISWITCH_ATTR_SETTLING_TIME
Bandwidth NISWITCH_ATTR_BANDWIDTH
Maximum	DC	Voltage NISWITCH_ATTR_MAX_DC_VOLTAGE
Maximum	AC	Voltage NISWITCH_ATTR_MAX_AC_VOLTAGE
Maximum	Switching	DC	Current NISWITCH_ATTR_MAX_SWITCHING_DC_CURRENT
Maximum	Switching	AC	Current NISWITCH_ATTR_MAX_SWITCHING_AC_CURRENT
Maximum	Carry	DC	Current NISWITCH_ATTR_MAX_CARRY_DC_CURRENT
Maximum	Carry	AC	Current NISWITCH_ATTR_MAX_CARRY_AC_CURRENT
Maximum	Switching	DC	Power NISWITCH_ATTR_MAX_SWITCHING_DC_POWER
Maximum	Switching	AC	Power NISWITCH_ATTR_MAX_SWITCHING_AC_POWER
Maximum	Carry	DC	Power NISWITCH_ATTR_MAX_CARRY_DC_POWER
Maximum	Carry	AC	Power NISWITCH_ATTR_MAX_CARRY_AC_POWER
Characteristic	Impedance NISWITCH_ATTR_CHARACTERISTIC_IMPEDANCE
Wire	mode NISWITCH_ATTR_WIRE_MODE
Number	of	Relays NISWITCH_ATTR_NUMBER_OF_RELAYS
Scanning	Configuration
Scan	List NISWITCH_ATTR_SCAN_LIST
Scan	Mode NISWITCH_ATTR_SCAN_MODE
Continuous	Scan NISWITCH_ATTR_CONTINUOUS_SCAN
Trigger	Input NISWITCH_ATTR_TRIGGER_INPUT
Scan	Advanced	Output NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT
Is	Scanning NISWITCH_ATTR_IS_SCANNING



Is	Waiting	for	Trigger? NISWITCH_ATTR_IS_WAITING_FOR_TRIG
Scan	Delay NISWITCH_ATTR_SCAN_DELAY
Trigger	Input	Polarity NISWITCH_ATTR_TRIGGER_INPUT_POLARITY
Scan	Advanced	Polarity NISWITCH_ATTR_SCAN_ADVANCED_POLARITY
Handshaking	Initiation NISWITCH_ATTR_HANDSHAKING_INITIATION
Matrix	Configuration
Number	of	Rows NISWITCH_ATTR_NUM_OF_ROWS
Number	of	Columns NISWITCH_ATTR_NUM_OF_COLUMNS
Obsolete	Attributes
Cabled	Module	Scan	Advanced	Bus NISWITCH_ATTR_CABLED_MODULE_SCAN_ADVANCED_BUS
Cabled	Module	Trigger	Bus NISWITCH_ATTR_CABLED_MODULE_TRIGGER_BUS
Master	Slave	Scan	Advanced	Bus NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS
Master	Slave	Trigger	Bus NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS
Parsed	Scan	List NISWITCH_ATTR_PARSED_SCAN_LIST
Trigger	Mode NISWITCH_ATTR_TRIGGER_MODE



NISWITCH_ATTR_IS_CONFIGURATION_CHANNEL
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
This	channel-based	attribute	specifies	whether	to	reserve	the	channel	for
internal	path	creation.	A	channel	that	is	available	for	internal	path	creation
is	called	a	configuration	channel.	The	driver	may	use	configuration
channels	to	create	paths	between	two	channels	you	specify	in	the
niSwitch_Connect	function.	Configuration	channels	are	not	available	for
external	connections.
Set	this	attribute	to	VI_TRUE	to	mark	the	channel	as	a	configuration
channel.	Set	this	attribute	to	VI_FALSE	to	mark	the	channel	as	available
for	external	connections.
After	you	identify	a	channel	as	a	configuration	channel,	you	cannot	use
that	channel	for	external	connections.	The	niSwitch_Connect	function
returns	the	NISWITCH_ERROR_IS_CONFIGURATION_CHANNEL	error
when	you	attempt	to	establish	a	connection	between	a	configuration
channel	and	any	other	channel.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_IS_SOURCE_CHANNEL
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
This	channel-based	attribute	specifies	whether	you	want	to	identify	the
channel	as	a	source	channel.	Typically,	you	set	this	attribute	to	VI_TRUE
when	you	attach	the	channel	to	a	power	supply,	a	function	generator,	or
an	active	measurement	point	on	the	unit	under	test,	and	you	do	not	want
to	connect	the	channel	to	another	source.	The	driver	prevents	source
channels	from	connecting	to	each	other.	The	niSwitch_Connect	function
returns	the	NISWITCH_ERROR_ATTEMPT_TO_CONNECT_SOURCES
when	you	attempt	to	connect	two	channels	that	you	identify	as	source
channels.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_DRIVER_SETUP
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
This	attribute	indicates	the	Driver	Setup	string	that	the	user	specified
when	initializing	the	driver.

Some	cases	exist	where	the	end-user	must	specify	instrument	driver
options	at	initialization	time.	An	example	of	this	is	specifying	a	particular
instrument	model	from	among	a	family	of	instruments	that	the	driver
supports.	This	is	useful	when	using	simulation.	The	end-user	can	specify
driver-specific	options	through	the	DriverSetup	keyword	in	the
optionString	parameter	to	the	niSwitch_InitWithOptions	function,	or
through	the	IVI	Configuration	Utility.

If	the	user	does	not	specify	a	Driver	Setup	string,	this	attribute	returns	an
empty	string.



NISWITCH_ATTR_IO_RESOURCE_DESCRIPTOR
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
Indicates	the	resource	descriptor	the	driver	uses	to	identify	the	physical
device.
If	you	initialize	the	driver	with	a	logical	name,	this	attribute	contains	the
resource	descriptor	that	corresponds	to	the	entry	in	the	IVI	Configuration
utility.	
If	you	initialize	the	instrument	driver	with	the	resource	descriptor,	this
attribute	contains	that	value.



NISWITCH_ATTR_LOGICAL_NAME
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	containing	the	logical	name	you	specified	when	opening	the
current	IVI	session.
You	may	pass	a	logical	name	to	the	niSwitch_init	or
niSwitch_InitWithOptions	functions.	The	IVI	Configuration	utility	must
contain	an	entry	for	the	logical	name.	The	logical	name	entry	refers	to	a
virtual	instrument	section	in	the	IVI	Configuration	file.	The	virtual
instrument	section	specifies	a	physical	device	and	initial	user	options.



NISWITCH_ATTR_CHANNEL_COUNT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
Indicates	the	number	of	channels	that	the	specific	instrument	driver
supports.



NISWITCH_ATTR_GROUP_CAPABILITIES
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	a	comma-separated	list	of	class-extension	groups
that	this	driver	implements.



NISWITCH_ATTR_SUPPORTED_INSTRUMENT_MODELS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
Contains	a	comma-separated	list	of	supported	instrument	models.



NISWITCH_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
The	major	version	number	of	the	IviSwtch	class	specification.



NISWITCH_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
The	minor	version	number	of	the	class	specification	with	which	this	driver
is	compliant.



NISWITCH_ATTR_SPECIFIC_DRIVER_DESCRIPTION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	a	brief	description	of	the	specific	driver.



NISWITCH_ATTR_SPECIFIC_DRIVER_PREFIX
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	the	prefix	for	the	instrument	driver.	The	name	of
each	user-callable	function	in	this	driver	starts	with	this	prefix.



NISWITCH_ATTR_SPECIFIC_DRIVER_VENDOR
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	the	name	of	the	vendor	that	supplies	this	driver.



NISWITCH_ATTR_SPECIFIC_DRIVER_REVISION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	additional	version	information	about	this	instrument
driver.



NISWITCH_ATTR_INSTRUMENT_FIRMWARE_REVISION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	the	firmware	revision	information	for	the	instrument
you	are	currently	using.



NISWITCH_ATTR_INSTRUMENT_MANUFACTURER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	the	name	of	the	instrument	manufacturer	you	are
currently	using.



NISWITCH_ATTR_INSTRUMENT_MODEL
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
A	string	that	contains	the	model	number	or	name	of	the	instrument	that
you	are	currently	using.



NISWITCH_ATTR_CACHE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	to	cache	the	value	of	attributes.	When	caching	is
enabled,	the	instrument	driver	keeps	track	of	the	current	instrument
settings	and	avoids	sending	redundant	commands	to	the	instrument.
The	instrument	driver	can	choose	always	to	cache	or	never	to	cache
particular	attributes	regardless	of	the	setting	of	this	attribute.
The	default	value	is	VI_TRUE.	Use	the	niSwitch_InitWithOptions	function
to	override	this	value.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_INTERCHANGE_CHECK
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	to	perform	interchangeability	checking	and	retrieve
interchangeability	warnings	when	you	call	niSwitch_Connect,
niSwitch_SetPath	and	niSwitch_InitiateScan	functions.	

The	default	value	is	VI_FALSE.

Interchangeability	warnings	indicate	that	using	your	application	with	a
different	instrument	might	cause	different	behavior.	call
niSwitch_GetNextInterchangeWarning	to	extract	interchange	warnings.
Call	the	niSwitch_ClearInterchangeWarnings	function	to	clear	the	list	of
interchangeability	warnings	without	reading	them.

Interchangeability	checking	examines	the	attributes	in	a	capability	group
only	if	you	specify	a	value	for	at	least	one	attribute	within	that	group.
Interchangeability	warnings	can	occur	when	an	attribute	affects	the
behavior	of	the	instrument	and	you	have	not	set	that	attribute,	or	the
attribute	has	been	invalidated	since	you	set	it.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_QUERY_INSTRUMENT_STATUS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	the	instrument	driver	queries	the	instrument	status
after	each	operation.	Querying	the	instrument	status	is	very	useful	for
debugging.	After	you	validate	your	program,	you	can	set	this	attribute	to
VI_FALSE	to	disable	status	checking	and	maximize	performance
The	instrument	driver	can	choose	to	ignore	status	checking	for	particular
attributes	regardless	of	the	setting	of	this	attribute.
The	default	value	is	VI_TRUE.	Use	the	niSwitch_InitWithOptions	function
to	override	this	value.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_RANGE_CHECK
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	to	validate	attribute	values	and	function	parameters.	If
enabled,	the	instrument	driver	validates	the	parameter	values	that	you
pass	to	driver	functions.	Range	checking	parameters	is	very	useful	for
debugging.	After	you	validate	your	program,	you	can	set	this	attribute	to
VI_FALSE	to	disable	range	checking	and	maximize	performance.
The	default	value	is	VI_TRUE.	Use	the	niSwitch_InitWithOptions	function
to	override	this	value.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_RECORD_COERCIONS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	the	IVI	engine	keeps	a	list	of	the	value	coercions	it
makes	for	ViInt32	and	ViReal64	attributes.	call
niSwitch_GetNextCoercionRecord	to	extract	and	delete	the	oldest
coercion	record	from	the	list.
The	default	value	is	VI_FALSE.	Use	the	niSwitch_InitWithOptions
function	to	override	this	value.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_SIMULATE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
Specifies	whether	or	not	to	simulate	instrument	driver	I/O	operations.	If
simulation	is	enabled,	instrument	driver	functions	perform	range	checking
and	call	Ivi_GetAttribute	and	Ivi_SetAttribute	functions,	but	they	do	not
perform	instrument	I/O.	For	output	parameters	that	represent	instrument
data,	the	instrument	driver	functions	return	calculated	values.
The	default	value	is	VI_FALSE.	Use	the	niSwitch_InitWithOptions
function	to	override	this	value.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_NUM_OF_COLUMNS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
This	attribute	returns	the	number	of	channels	on	the	column	of	a	matrix
or	scanner.	If	the	switch	is	a	scanner,	this	value	is	the	number	of	input
channels.
The	NISWITCH_ATTR_WIRE_MODE	attribute	affects	the	number	of
available	columns.	For	example,	if	your	device	has	8	input	lines	and	you
use	the	four-wire	mode,	then	the	number	of	columns	you	have	available
is	2.



NISWITCH_ATTR_NUM_OF_ROWS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
This	attribute	returns	the	number	of	channels	on	the	row	of	a	matrix	or
scanner.	If	the	switch	is	a	scanner,	this	value	is	the	number	of	output
channels.
The	NISWITCH_ATTR_WIRE_MODE	attribute	affects	the	number	of
available	rows.	For	example,	if	your	device	has	8	input	lines	and	you	use
the	two-wire	mode,	then	the	number	of	columns	you	have	available	is	4.



NISWITCH_ATTR_BANDWIDTH
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	bandwidth	for	the	channel.
The	units	are	hertz.



NISWITCH_ATTR_CHARACTERISTIC_IMPEDANCE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	characteristic	impedance	for	the
channel.
The	units	are	ohms.



NISWITCH_ATTR_IS_DEBOUNCED
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean RO N/A None None



Description
This	attribute	indicates	whether	the	entire	switch	has	settled	since	the
last	switching	command.	A	value	of	VI_TRUE	indicates	that	all	signals
going	through	the	switch	are	valid.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_MAX_AC_VOLTAGE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	AC	voltage	the
channel	can	switch.
The	units	are	volts	RMS.



NISWITCH_ATTR_MAX_CARRY_AC_CURRENT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	AC	current	the
channel	can	carry.
The	units	are	amperes	RMS.



NISWITCH_ATTR_MAX_CARRY_AC_POWER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	AC	power	the	channel
can	carry.
The	units	are	volt-amperes.



NISWITCH_ATTR_MAX_CARRY_DC_CURRENT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	DC	current	the
channel	can	carry.
The	units	are	amperes.



NISWITCH_ATTR_MAX_CARRY_DC_POWER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	DC	power	the	channel
can	carry.
The	units	are	watts.



NISWITCH_ATTR_MAX_DC_VOLTAGE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	DC	voltage	the
channel	can	switch.
The	units	are	volts.



NISWITCH_ATTR_MAX_SWITCHING_AC_CURRENT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	AC	current	the
channel	can	switch.
The	units	are	amperes	RMS.



NISWITCH_ATTR_MAX_SWITCHING_AC_POWER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	AC	power	the	channel
can	switch.
The	units	are	volt-amperes.



NISWITCH_ATTR_MAX_SWITCHING_DC_CURRENT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	DC	current	the
channel	can	switch.
The	units	are	amperes.



NISWITCH_ATTR_MAX_SWITCHING_DC_POWER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 RO N/A None None



Description
This	channel-based	attribute	returns	the	maximum	DC	power	the	channel
can	switch.
The	units	are	watts.



NISWITCH_ATTR_NUMBER_OF_RELAYS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
This	attribute	returns	the	number	of	relays.



NISWITCH_ATTR_POWER_DOWN_LATCHING_RELAYS_AFTER_DEBOUNCE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
This	attribute	indicates	whether	to	power	down	latching	relays	after
calling	Wait	For	Debounce.	When	Power	Down	Latching	Relays	After
Debounce	is	enabled	(VI_TRUE),	a	call	to	Wait	For	Debounce	ensures
that	the	relays	are	settled	and	the	latching	relays	are	powered	down.



Defined	Values:

VI_TRUE

VI_FALSE



NISWITCH_ATTR_SERIAL_NUMBER
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
This	read-only	attribute	returns	the	serial	number	for	the	switch	controlled
by	NI-SWITCH.	If	the	device	does	not	return	a	serial	number,	NI-SWITCH
returns	the	Invalid	Attribute	error.



NISWITCH_ATTR_SETTLING_TIME
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 R/W N/A None None



Description
This	channel-based	attribute	returns	the	maximum	length	of	time	from
after	you	make	a	connection	until	the	signal	flowing	through	the	channel
settles.	The	units	are	seconds.

Note		PXI-2501/2503/2565/2590/2591	Users—the	actual	delay	will
always	be	the	greater	value	of	the	settling	time	and	the	value	you
specify	as	the	scan	delay.

javascript:LaunchHelp('switch.chm::/settling_time.html')


NISWITCH_ATTR_WIRE_MODE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 RO N/A None None



Description
This	attribute	returns	the	wire	mode	of	the	switch.
This	attribute	affects	the	values	of	the
NISWITCH_ATTR_NUM_OF_ROWS	and
NISWITCH_ATTR_NUM_OF_COLUMNS	attributes.	The	actual	number
of	input	and	output	lines	on	the	switch	is	fixed,	but	the	number	of
channels	depends	on	how	many	lines	constitute	each	channel.



NISWITCH_ATTR_CABLED_MODULE_SCAN_ADVANCED_BUS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.	Use	the	niSwitch_RouteScanAdvancedOutput
function	instead.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7



NISWITCH_ATTR_CABLED_MODULE_TRIGGER_BUS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.	Use	the	niSwitch_RouteTriggerInput	function
instead.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7



NISWITCH_ATTR_CONTINUOUS_SCAN
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean R/W N/A None None



Description
When	a	switch	is	scanning,	the	switch	can	either	stop	scanning	when	the
end	of	the	scan	(VI_FALSE)	or	continue	scanning	from	the	top	of	the
scan	list	again	(VI_TRUE).

Notice	that	if	you	set	the	scan	to	continuous	(VI_TRUE),	the	Wait	For
Scan	Complete	operation	will	always	time	out	and	you	must	call	Abort	to
stop	the	scan.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_HANDSHAKING_INITIATION
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description



NISWITCH_ATTR_IS_SCANNING
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean RO N/A None None



Description
This	attribute	indicates	whether	the	switch	has	completed	the	scan
operation.	The	value	VI_TRUE	indicates	that	the	scan	is	complete.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_IS_WAITING_FOR_TRIG
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViBoolean RO N/A None None



Description
In	a	scan	list,	a	semicolon	(;)	is	used	to	indicate	that	at	that	point	in	the
scan	list,	the	scan	engine	should	pause	until	a	trigger	is	received	from	the
trigger	input.	If	that	trigger	is	user	generated	through	either	a	hardware
pulse	or	the	Send	SW	Trigger	operation,	it	is	necessary	for	the	user	to
know	when	the	scan	engine	has	reached	such	a	state.



Defined	Values:
VI_TRUE

VI_FALSE



NISWITCH_ATTR_PARSED_SCAN_LIST
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString RO N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.



NISWITCH_ATTR_MASTER_SLAVE_SCAN_ADVANCED_BUS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.	Use	the	niSwitch_RouteScanAdvancedOutput
function	instead.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7



NISWITCH_ATTR_SCAN_ADVANCED_OUTPUT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	specifies	the	method	you	want	to	use	to	notify	another
instrument	that	all	signals	going	through	the	switch	have	settled	following
the	processing	of	one	entry	in	the	scan	list.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_EXTERNAL

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7

NISWITCH_VAL_REARCONNECTOR

NISWITCH_VAL_REARCONNECTOR_MODULE1

NISWITCH_VAL_REARCONNECTOR_MODULE2

NISWITCH_VAL_REARCONNECTOR_MODULE3



NISWITCH_VAL_REARCONNECTOR_MODULE4

NISWITCH_VAL_REARCONNECTOR_MODULE5

NISWITCH_VAL_REARCONNECTOR_MODULE6

NISWITCH_VAL_REARCONNECTOR_MODULE7

NISWITCH_VAL_REARCONNECTOR_MODULE8

NISWITCH_VAL_REARCONNECTOR_MODULE9

NISWITCH_VAL_REARCONNECTOR_MODULE10

NISWITCH_VAL_REARCONNECTOR_MODULE11

NISWITCH_VAL_REARCONNECTOR_MODULE12

NISWITCH_VAL_FRONTCONNECTOR

NISWITCH_VAL_FRONTCONNECTOR_MODULE1

NISWITCH_VAL_FRONTCONNECTOR_MODULE2

NISWITCH_VAL_FRONTCONNECTOR_MODULE3

NISWITCH_VAL_FRONTCONNECTOR_MODULE4



NISWITCH_VAL_FRONTCONNECTOR_MODULE5

NISWITCH_VAL_FRONTCONNECTOR_MODULE6

NISWITCH_VAL_FRONTCONNECTOR_MODULE7

NISWITCH_VAL_FRONTCONNECTOR_MODULE8

NISWITCH_VAL_FRONTCONNECTOR_MODULE9

NISWITCH_VAL_FRONTCONNECTOR_MODULE10

NISWITCH_VAL_FRONTCONNECTOR_MODULE11

NISWITCH_VAL_FRONTCONNECTOR_MODULE12

Notes		
(0)	NISWITCH_VAL_NONE	The	switch	does	not	produce	a
Scan	Advanced	Output	trigger.
(2)	NISWITCH_VAL_EXTERNAL	External	Trigger.	The
switch	produces	the	Scan	Advanced	Output	trigger	on	the
"trigger	out"	connector.
(111)	NISWITCH_VAL_TTL0	The	switch	produces	the	Scan
Advanced	Output	on	the	SCXI	or	PXI_TRIG0	line.
(112)	NISWITCH_VAL_TTL1	The	switch	produces	the	Scan
Advanced	Output	on	the	PXI_TRIG1	line.
(113)	NISWITCH_VAL_TTL2	The	switch	produces	the	Scan
Advanced	Output	on	the	SCXI	or	PXI_TRIG2	line.
(114)	NISWITCH_VAL_TTL3	The	switch	produces	the	Scan
Advanced	Output	on	the	PXI_TRIG3	line.
(115)	NISWITCH_VAL_TTL4	The	switch	produces	the	Scan
Advanced	Output	on	the	PXI_TRIG4	line.
(116)	NISWITCH_VAL_TTL5	The	switch	produces	the	Scan



Advanced	Output	on	the	PXI_TRIG5	line.
(117)	NISWITCH_VAL_TTL6	The	switch	produces	the	Scan
Advanced	Output	on	the	PXI_TRIG6	line.
(118)	NISWITCH_VAL_TTL7	The	switch	produces	the	Scan
Advanced	Output	on	the	PXI_TRIG7	line.
(125)	NISWITCH_VAL_PXI_STAR	The	switch	produces	the
Scan	Advanced	Output	on	the	PXI	STAR	trigger	bus.
(1001)	NISWITCH_VAL_FRONTCONNECTOR	This
indicates	that	the	switch	will	send	its	SCANNER
ADVANCED	output	to	the	front	connector.	When	using	SCXI
switches	as	scanners,	all	the	devices	that	are	part	of	the
scanner	will	send	their	SCANNER	ADVANCED	output	to
their	respective	front	connectors.



NISWITCH_ATTR_SCAN_ADVANCED_POLARITY
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description



Defined	Values:
NISWITCH_VAL_RISING_EDGE

NISWITCH_VAL_FALLING_EDGE



NISWITCH_ATTR_SCAN_DELAY
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViReal64 R/W N/A None None



Description
This	attribute	specifies	the	minimum	amount	of	time	the	switch	waits
before	it	asserts	the	scan	advanced	output	trigger	after	opening	or
closing	the	switch.	The	switch	always	waits	for	debounce	before
asserting	the	trigger.	The	units	are	seconds.

Note		PXI-2501/2503/2565/2590/2591	Users—the	actual	delay	will
always	be	the	greater	value	of	the	settling	time	and	the	value	you
specify	as	the	scan	delay.



NISWITCH_ATTR_SCAN_LIST
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViString R/W N/A None None



Description
This	attribute	contains	a	scan	list—a	string	that	specifies	channel
connections	and	trigger	conditions.	The	niSwitch_InitiateScan	function
makes	or	breaks	connections	and	waits	for	triggers	according	to	the
instructions	in	the	scan	list.	A	scan	list	is	comprised	of	channel	names
that	you	separate	with	special	characters.	These	special	characters
determine	the	operations	the	scanner	performs	on	the	channels	when	it
executes	this	scan	list.

To	create	a	path	between	two	channels,	use	the	following
character	between	the	two	channel	names:	->	(a	dash	followed	by
a	'>'	sign)	Example:	\CH1->CH2\	tells	the	switch	to	make	a	path
from	channel	CH1	to	channel	CH2.
To	break	or	clear	a	path,	use	the	following	character	as	a	prefix
before	the	path:	~	(tilde)	Example:	\~CH1->CH2\	tells	the	switch	to
break	the	path	from	channel	CH1	to	channel	CH2.
To	tell	the	switch	to	wait	for	a	trigger	event,	use	the	following
character	as	a	separator	between	paths:	;	(semicolon)	Example:
\CH1->CH2;CH3->CH4\	tells	the	switch	to	make	the	path	from
channel	CH1	to	channel	CH2,	wait	for	a	trigger,	and	then	make	the
path	from	CH3	to	CH4.
To	tell	the	switch	to	create	multiple	paths	simultaneously,	use	the
following	character	as	a	separator	between	the	paths:	,	(comma)
Example:	\A->B;CH1->CH2,CH3->CH4\	instructs	the	scanner	to
make	the	path	between	channels	A	and	B,	wait	for	a	trigger,	and
then	simultaneously	make	the	paths	between	channels	CH1	and
CH2	and	between	channels	CH3	and	CH4.

Refer	to	Scan	Lists	for	additional	information.

javascript:LaunchHelp('switch.chm::/scan_list.html')
javascript:LaunchHelp('switch.chm::/scan_list.html')


NISWITCH_ATTR_SCAN_MODE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	specifies	what	happens	to	existing	connections	that	conflict
with	the	connections	you	make	in	a	scan	list.	For	example,	if	CH1	is
already	connected	to	CH2	and	the	scan	list	instructs	the	switch	to
connect	CH1	to	CH3,	this	attribute	specifies	what	happens	to	the
connection	between	CH1	and	CH2.
If	the	value	of	this	attribute	is	NISWITCH_VAL_NONE,	the	switch	takes
no	action	on	existing	paths.	If	the	value	is
NISWITCH_VAL_BREAK_BEFORE_MAKE,	the	switch	breaks	conflicting
paths	before	making	new	ones.	If	the	value	is
NISWITCH_VAL_BREAK_AFTER_MAKE,	the	switch	breaks	conflicting
paths	after	making	new	ones.
Most	switches	support	only	one	of	the	possible	values.	In	such	cases,
this	attribute	serves	as	an	indicator	of	the	device's	behavior.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_BREAK_BEFORE_MAKE

NISWITCH_VAL_BREAK_AFTER_MAKE



NISWITCH_ATTR_MASTER_SLAVE_TRIGGER_BUS
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.	Use	the	niSwitch_RouteTriggerInput	function
instead.



Defined	Values:
NISWITCH_VAL_NONE

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7

NISWITCH_VAL_FRONTCONNECTOR



NISWITCH_ATTR_TRIGGER_INPUT
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	specifies	the	source	of	the	trigger	for	which	the	switch	can
wait	when	processing	a	scan	list.	The	switch	waits	for	a	trigger	when	it
encounters	a	semicolon	in	a	scan	list.	When	the	trigger	occurs,	the	switch
advances	to	the	next	entry	in	the	scan	list.



Defined	Values:
NISWITCH_VAL_IMMEDIATE

NISWITCH_VAL_EXTERNAL

NISWITCH_VAL_SOFTWARE_TRIG

NISWITCH_VAL_TTL0

NISWITCH_VAL_TTL1

NISWITCH_VAL_TTL2

NISWITCH_VAL_TTL3

NISWITCH_VAL_TTL4

NISWITCH_VAL_TTL5

NISWITCH_VAL_TTL6

NISWITCH_VAL_TTL7

NISWITCH_VAL_PXI_STAR

NISWITCH_VAL_REARCONNECTOR

NISWITCH_VAL_REARCONNECTOR_MODULE1



NISWITCH_VAL_REARCONNECTOR_MODULE2

NISWITCH_VAL_REARCONNECTOR_MODULE3

NISWITCH_VAL_REARCONNECTOR_MODULE4

NISWITCH_VAL_REARCONNECTOR_MODULE5

NISWITCH_VAL_REARCONNECTOR_MODULE6

NISWITCH_VAL_REARCONNECTOR_MODULE7

NISWITCH_VAL_REARCONNECTOR_MODULE8

NISWITCH_VAL_REARCONNECTOR_MODULE9

NISWITCH_VAL_REARCONNECTOR_MODULE10

NISWITCH_VAL_REARCONNECTOR_MODULE11

NISWITCH_VAL_REARCONNECTOR_MODULE12

NISWITCH_VAL_FRONTCONNECTOR

NISWITCH_VAL_FRONTCONNECTOR_MODULE1

NISWITCH_VAL_FRONTCONNECTOR_MODULE2



NISWITCH_VAL_FRONTCONNECTOR_MODULE3

NISWITCH_VAL_FRONTCONNECTOR_MODULE4

NISWITCH_VAL_FRONTCONNECTOR_MODULE5

NISWITCH_VAL_FRONTCONNECTOR_MODULE6

NISWITCH_VAL_FRONTCONNECTOR_MODULE7

NISWITCH_VAL_FRONTCONNECTOR_MODULE8

NISWITCH_VAL_FRONTCONNECTOR_MODULE9

NISWITCH_VAL_FRONTCONNECTOR_MODULE10

NISWITCH_VAL_FRONTCONNECTOR_MODULE11

NISWITCH_VAL_FRONTCONNECTOR_MODULE12

Notes		
(1)	NISWITCH_VAL_IMMEDIATE	Immediate	Trigger.	The
switch	does	not	wait	for	a	trigger	before	processing	the	next
entry	in	the	scan	list.
(2)	NISWITCH_VAL_EXTERNAL	External	Trigger.	The
switch	waits	until	it	receives	a	trigger	from	an	external
source	through	the	"trigger	in"	connector.
(3)	NISWITCH_VAL_SOFTWARE_TRIG	The	switch	waits
until	you	call	the	niSwitch_SendSWTrigger	function.
(111)	NISWITCH_VAL_TTL0	The	switch	waits	until	it
receives	a	trigger	on	the	SCXI	or	PXI_TRIG0	line	before
processing	the	next	entry	in	the	scan	list.



(112)	NISWITCH_VAL_TTL1	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG1	line	before	processing
the	next	entry	in	the	scan	list.
(113)	NISWITCH_VAL_TTL2	The	switch	waits	until	it
receives	a	trigger	on	the	SCXI	or	PXI_TRIG2	line	before
processing	the	next	entry	in	the	scan	list.
(114)	NISWITCH_VAL_TTL3	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG3	line	before	processing
the	next	entry	in	the	scan	list.
(115)	NISWITCH_VAL_TTL4	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG4	line	before	processing
the	next	entry	in	the	scan	list.
(116)	NISWITCH_VAL_TTL5	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG5	line	before	processing
the	next	entry	in	the	scan	list.
(117)	NISWITCH_VAL_TTL6	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG6	line	before	processing
the	next	entry	in	the	scan	list.
(118)	NISWITCH_VAL_TTL7	The	switch	waits	until	it
receives	a	trigger	on	the	PXI_TRIG7	line	before	processing
the	next	entry	in	the	scan	list.
(125)	NISWITCH_VAL_PXI_STAR	The	switch	waits	until	it
receives	a	trigger	on	the	PXI	STAR	trigger	bus	before
processing	the	next	entry	in	the	scan	list.
(1000)	NISWITCH_VAL_REARCONNECTOR	The	switch
waits	until	it	receives	a	trigger	on	the	Rear	connector	before
processing	the	next	entry	in	the	scan	list.	This	value	is	valid
for	SCXI	scanners	that	consist	of	a	single	device.	If	more
than	one	device	is	used,	you	must	use
niSwitch_RouteTriggerInput	or
niSwitch_RouteScanAdvancedOutput	functions	to	route	a
trigger	from	the	connector	on	another	module	to	one	of	the
TTL	lines	instead.
(1001)	NISWITCH_VAL_FRONTCONNECTOR	The	switch
waits	until	it	receives	a	trigger	on	the	front	connector	before
processing	the	next	entry	in	the	scan	list.	When	using	SCXI
scanners,	this	variable	is	valid	for	scanners	that	consist	of	a



single	device.	If	more	than	one	device	is	used,	you	must	use
the	niSwitch_RouteTriggerInput	or
niSwitch_RouteScanAdvancedOutput	functions	to	route	a
trigger	from	the	connector	on	another	module	to	one	of	the
TTL	lines	instead.



NISWITCH_ATTR_TRIGGER_INPUT_POLARITY
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description



Defined	Values:
NISWITCH_VAL_RISING_EDGE

NISWITCH_VAL_FALLING_EDGE



NISWITCH_ATTR_TRIGGER_MODE
Specific	Attribute
Data
type Access Applies	to Coercion High	Level	Functions

ViInt32 R/W N/A None None



Description
This	attribute	has	been	deprecated	and	may	be	removed	from	a	future
release	of	NI-SWITCH.	Use	the	niSwitch_RouteTriggerInput	and/or
niSwitch_RouteScanAdvancedOutput	functions	instead.



Defined	Values:
NISWITCH_VAL_SINGLE

NISWITCH_VAL_MASTER

NISWITCH_VAL_SLAVE


	Function Reference
	Functions
	niSwitch_init
	niSwitch_InitWithOptions
	niSwitch_InitWithTopology
	niSwitch_close

	Attributes


