
Prototyping	and	Design	Techniques
When	you	first	begin	a	programming	project,	deciding	how	to	start	can	be
intimidating.	Many	LabVIEW	developers	start	immediately	with	a	code
and	fix	development	process,	building	some	of	the	VIs	they	think	are
needed,	only	to	realize	they	actually	need	something	different	from	what
they	have	built	already.	Consequently,	people	unnecessarily	develop,
rework,	or	discard	code.	Developers	can	save	time	and	effort	when	they
use	detailed	designs,	such	as	the	top-down	design,	with	clearly	defined
goals.

lvdevconcepts.chm::/Top_Down_Design.html


Lifecycle	Models
Software	development	projects	are	complex.	To	deal	with	these
complexities,	many	developers	adhere	to	a	core	set	of	development
principles.	These	principles	define	the	field	of	software	engineering.	A
major	component	of	this	field	is	the	lifecycle	model.	The	lifecycle	model
describes	steps	to	follow	when	developing	software—from	the	initial
concept	stage	to	the	release,	maintenance,	and	subsequent	upgrading	of
the	software.
Many	different	lifecycle	models	currently	exist.	Each	has	advantages	and
disadvantages	in	terms	of	time-to-release,	quality,	and	risk	management.
This	topic	describes	some	of	the	most	common	models	used	in	software
engineering.	Many	hybrids	of	these	models	exist,	so	you	can	customize
these	models	to	fit	the	requirements	of	a	project.
Although	this	discussion	is	theoretical,	in	practice	consider	all	the	steps
these	models	encompass.	Consider	how	you	decide	what	requirements
and	specifications	the	project	must	meet	and	how	you	deal	with	changes
to	them.	Also	consider	when	you	need	to	meet	these	requirements	and
what	happens	if	you	do	not	meet	a	deadline.
The	lifecycle	model	is	a	foundation	for	the	entire	development	process.
Good	decisions	can	improve	the	quality	of	the	software	you	develop	and
decrease	the	time	it	takes	to	develop	it.



Code	and	Fix	Model
The	code	and	fix	model	probably	is	the	most	frequently	used
development	methodology	in	software	engineering.	It	starts	with	little	or
no	initial	planning.	You	immediately	start	developing,	fixing	problems	as
they	occur,	until	the	project	is	complete.
Code	and	fix	is	a	tempting	choice	when	you	are	faced	with	a	tight
development	schedule	because	you	begin	developing	code	right	away
and	see	immediate	results.
Unfortunately,	if	you	find	major	architectural	problems	late	in	the	process,
you	usually	have	to	rewrite	large	parts	of	the	application.	Alternative
development	models	can	help	you	catch	these	problems	in	the	early
concept	stages,	when	making	changes	is	easier	and	less	expensive.
The	code	and	fix	model	is	appropriate	only	for	small	projects	that	are	not
intended	to	serve	as	the	basis	for	future	development.



Waterfall	Model
The	waterfall	model	is	the	classic	model	of	software	engineering.	This
model	is	one	of	the	oldest	models	and	is	widely	used	in	government
projects	and	in	many	major	companies.	Because	the	model	emphasizes
planning	in	the	early	stages,	it	catches	design	flaws	before	they	develop.
Also,	because	the	model	is	document	and	planning	intensive,	it	works
well	for	projects	in	which	quality	control	is	a	major	concern.
The	pure	waterfall	model	consists	of	several	non-overlapping	stages,	as
shown	in	the	following	illustration.	The	model	begins	with	establishing
system	requirements	and	software	requirements	and	continues	with
architectural	design,	detailed	design,	coding,	testing,	and	maintenance.
The	waterfall	model	serves	as	a	baseline	for	many	other	lifecycle	models.

The	following	list	details	the	steps	for	using	the	waterfall	model:
System	requirements—Establishes	the	components	for	building
the	system,	including	the	hardware	requirements,	software	tools,
and	other	necessary	components.	Examples	include	decisions	on
hardware,	such	as	plug-in	boards	(number	of	channels,
acquisition	speed,	and	so	on),	and	decisions	on	external	pieces
of	software,	such	as	databases	or	libraries.
Software	requirements—Establishes	the	expectations	for
software	functionality	and	identifies	which	system	requirements
the	software	affects.	Requirements	analysis	includes	determining
interaction	needed	with	other	applications	and	databases,
performance	requirements,	user	interface	requirements,	and	so
on.
Architectural	design—Determines	the	software	framework	of	a



system	to	meet	the	specified	requirements.	The	design	defines
the	major	components	and	the	interaction	of	those	components,
but	the	design	does	not	define	the	structure	of	each	component.
You	also	determine	the	external	interfaces	and	tools	to	use	in	the
project.
Detailed	design—Examines	the	software	components	defined	in
the	architectural	design	stage	and	produces	a	specification	for
how	each	component	is	implemented.
Coding—Implements	the	detailed	design	specification.
Testing—Determines	whether	the	software	meets	the	specified
requirements	and	finds	any	errors	present	in	the	code.
Maintenance—Addresses	problems	and	enhancement	requests
after	the	software	releases.

In	some	organizations,	a	change	control	board	maintains	the
quality	of	the	product	by	reviewing	each	change	made	in	the
maintenance	stage.	Consider	applying	the	full	waterfall
development	cycle	model	when	correcting	problems	or
implementing	these	enhancement	requests.

In	each	stage,	you	create	documents	that	explain	the	objectives	and
describe	the	requirements	for	that	phase.	At	the	end	of	each	stage,	you
hold	a	review	to	determine	whether	the	project	can	proceed	to	the	next
stage.	You	also	can	incorporate	prototyping	into	any	stage	from	the
architectural	design	and	after.
Many	people	believe	you	cannot	apply	this	model	to	all	situations.	For
example,	with	the	pure	waterfall	model,	you	must	state	the	requirements
before	you	begin	the	design,	and	you	must	state	the	complete	design
before	you	begin	coding.	There	is	no	overlap	between	stages.	In	real-
world	development,	however,	you	can	discover	issues	during	the	design
or	coding	stages	that	point	out	errors	or	gaps	in	the	requirements.
The	waterfall	model	does	not	prohibit	returning	to	an	earlier	phase,	for
example,	from	the	design	phase	to	the	requirements	phase.	However,
this	involves	costly	rework.	Each	completed	phase	requires	formal	review
and	extensive	documentation	development.	Thus,	oversights	made	in	the
requirements	phase	are	expensive	to	correct	later.
Because	the	actual	development	comes	late	in	the	process,	you	do	not
see	results	for	a	long	time.	This	delay	can	be	disconcerting	to

lvdevconcepts.chm::/Lifecycle_Models.html#Prototyping


management	and	to	customers.	Many	people	also	think	the	amount	of
documentation	is	excessive	and	inflexible.
Although	the	waterfall	model	has	its	weaknesses,	it	is	instructive	because
it	emphasizes	important	stages	of	project	development.	Even	if	you	do
not	apply	this	model,	consider	each	of	these	stages	and	its	relationship	to
your	own	project.



Modified	Waterfall	Model
Many	engineers	recommend	modified	versions	of	the	waterfall	model.
These	modifications	tend	to	focus	on	allowing	some	of	the	stages	to
overlap,	thus	reducing	the	documentation	requirements	and	the	cost	of
returning	to	earlier	stages	to	revise	them.	Another	common	modification
is	to	incorporate	prototyping	into	the	requirements	phases.
Overlapping	stages,	such	as	the	requirements	stage	and	the	design
stage,	make	it	possible	to	integrate	feedback	from	the	design	phase	into
the	requirements.	However,	overlapping	stages	can	make	it	difficult	to
know	when	you	are	finished	with	a	given	stage.	Consequently,	progress
is	more	difficult	to	track.	Without	distinct	stages,	problems	can	cause	you
to	defer	important	decisions	until	later	in	the	process	when	they	are	more
expensive	to	correct.

lvdevconcepts.chm::/Lifecycle_Models.html#Prototyping


Prototyping
One	of	the	main	problems	with	the	waterfall	model	is	that	the
requirements	often	are	not	completely	understood	in	the	early
development	stages.	When	you	reach	the	design	or	coding	stages,	you
begin	to	see	how	everything	works	together,	and	you	can	discover	that
you	need	to	adjust	the	requirements.
Prototyping	is	an	effective	tool	for	demonstrating	how	a	design	meets	a
set	of	requirements.	You	can	build	a	prototype,	adjust	the	requirements,
and	revise	the	prototype	several	times	until	you	have	a	clear	picture	of
the	overall	objectives.	In	addition	to	clarifying	the	requirements,	a
prototype	also	defines	many	areas	of	the	design	simultaneously.
The	pure	waterfall	model	allows	for	prototyping	in	the	later	architectural
design	stage	and	subsequent	stages	but	not	in	the	early	requirements
stages.
However,	prototyping	has	its	drawbacks.	Because	it	appears	that	you
have	a	working	system,	customers	might	expect	a	complete	system
sooner	than	is	possible.	In	most	cases,	a	prototype	is	built	on
compromises	that	allow	it	to	come	together	quickly	but	prevent	the
prototype	from	being	an	effective	basis	for	future	development.	You	need
to	decide	early	if	you	want	to	use	the	prototype	as	a	basis	for	future
development.	All	parties	need	to	agree	with	this	decision	before
development	begins.
Be	careful	that	prototyping	does	not	become	a	disguise	for	a	code	and	fix
development	cycle.	Before	you	begin	prototyping,	gather	clear
requirements	and	create	a	design	plan.	Limit	the	amount	of	time	you
spend	prototyping	before	you	begin.	Time	limits	help	to	avoid	overdoing
the	prototyping	phase.	As	you	incorporate	changes,	update	the
requirements	and	the	current	design.	After	you	finish	prototyping,
consider	returning	to	one	of	the	other	development	models.	For	example,
consider	prototyping	as	part	of	the	requirements	or	design	phases	of	the
waterfall	model.
LabVIEW	Prototyping	Methods
You	can	prototype	a	system	in	LabVIEW	in	a	number	of	ways.	In	systems
with	I/O	requirements	that	are	difficult	to	satisfy,	you	can	develop	a
prototype	to	test	the	control	and	acquisition	loops	and	rates.	In	I/O
prototypes,	random	data	can	simulate	data	acquired	in	the	real	system.



Systems	with	many	user	interface	requirements	are	perfect	for
prototyping.	Determining	the	method	you	use	to	display	data	or	prompt
the	user	for	settings	is	difficult	on	paper.	Instead,	consider	designing	VI
front	panels	with	the	controls	and	indicators	you	need.	Leave	the	block
diagram	empty	and	figure	out	how	the	controls	work	and	how	various
actions	require	other	front	panels.	For	more	extensive	prototypes,	tie	the
front	panels	together.	However,	do	not	get	carried	away	with	this	process.
If	you	are	bidding	on	a	project	for	a	client,	using	front	panel	prototypes	is
an	extremely	effective	way	to	discuss	with	the	client	how	you	can	satisfy
his	or	her	requirements.	Because	you	can	add	and	remove	controls
quickly,	especially	if	the	block	diagrams	are	empty,	you	help	customers
clarify	requirements.



Spiral	Model
The	spiral	model	is	a	popular	alternative	to	the	waterfall	model.	It
emphasizes	risk	management	so	you	find	major	problems	earlier	in	the
development	cycle.	In	the	waterfall	model,	you	have	to	complete	the
design	before	you	begin	coding.	With	the	spiral	model,	you	break	up	the
project	into	a	set	of	risks	that	you	need	to	deal	with.	You	then	begin	a
series	of	iterations	in	which	you	analyze	the	most	important	risk,	evaluate
options	for	resolving	the	risk,	deal	with	the	risk,	assess	the	results,	and
plan	for	the	next	iteration.	The	following	illustration	shows	the	spiral
lifecycle	model.

Risks	are	any	issues	that	are	not	clearly	defined	or	have	the	potential	to
affect	the	project	adversely.	For	each	risk,	consider	the	following	two
things:

The	likelihood	of	the	risk	occurring	(probability)
The	severity	of	the	effect	of	the	risk	on	the	project	(loss)

You	can	use	a	scale	of	1	to	10	for	each	of	these	items,	where	1
represents	the	lowest	probability	or	loss	and	10	represents	the	highest.
Risk	exposure	is	the	product	of	these	two	rankings.
Use	something	such	as	the	following	table	to	keep	track	of	the	top	risk
items	of	the	project.

ID Risk Probability Loss Risk
Exposure

Risk	Management
Approach

1 Acquisition	rates 5 9 45 Develop	prototype	to



too	high demonstrate
feasibility

2 File	format	might
not	be	efficient

5 3 15 Develop	benchmarks
to	show	speed	of
data	manipulation

3 Uncertain	user
interface

2 5 10 Involve	customer;
develop	prototype

In	general,	deal	with	the	risks	that	have	the	highest	risk	exposure	first.	In
this	example,	the	first	spiral	deals	with	the	potential	of	the	data
acquisition	rates	being	too	high.	If	after	the	first	spiral,	you	demonstrate
that	the	rates	are	high,	you	can	change	to	a	different	hardware
configuration	to	meet	the	acquisition	requirements.	Each	iteration	can
identify	new	risks.	In	this	example,	using	more	powerful	hardware	can
introduce	higher	costs	as	a	new	risk.
For	example,	assume	you	are	designing	a	data	acquisition	system	with	a
plug-in	data	acquisition	card.	In	this	case,	the	risk	is	whether	the	system
can	acquire,	analyze,	and	display	data	quickly	enough.	Some	of	the
constraints	in	this	case	are	system	cost	and	requirements	for	a	specific
sampling	rate	and	precision.
After	determining	the	options	and	constraints,	you	evaluate	the	risks.	In
this	example,	create	a	prototype	or	benchmark	to	test	acquisition	rates.
After	you	see	the	results,	you	can	evaluate	whether	to	continue	with	the
approach	or	choose	a	different	option.	You	do	this	by	reassessing	the
risks	based	on	the	new	knowledge	you	gained	from	building	the
prototype.
In	the	final	phase,	you	evaluate	the	results	with	the	customer.	Based	on
customer	input,	you	can	reassess	the	situation,	decide	on	the	next
highest	risk,	and	start	the	cycle	over.	This	process	continues	until	the
software	is	finished	or	you	decide	the	risks	are	too	great	and	terminate
development.	It	is	possible	that	none	of	the	options	are	viable	because
the	options	are	too	expensive,	time-consuming,	or	do	not	meet	the
requirements.
The	advantage	of	the	spiral	model	over	the	waterfall	model	is	that	you
can	evaluate	which	risks	to	handle	with	each	cycle.	Because	you	can
evaluate	risks	with	prototypes	much	earlier	than	in	the	waterfall	model,
you	can	deal	with	major	obstacles	and	select	alternatives	in	the	earlier



stages,	which	is	less	expensive.	With	a	standard	waterfall	model,
assumptions	about	the	risky	components	can	spread	throughout	the
design,	and	when	you	discover	the	problems,	the	rework	involved	can	be
very	expensive.



Summary	of	Development	Models
Lifecycle	models	are	described	as	distinct	choices	from	which	you	must
select.	In	practice,	however,	you	can	apply	more	than	one	model	to	a
single	project.	You	can	start	a	project	with	a	spiral	model	to	help	refine
the	requirements	and	specifications	over	several	iterations	using
prototyping.	Once	you	have	reduced	the	risk	of	a	poorly	stated	set	of
requirements,	you	can	apply	a	waterfall	model	to	the	design,	coding,
testing,	and	maintenance	stages.
Other	lifecycle	models	exist.	Several	third-party	resources	contain
information	about	other	development	methodologies.

lvdevconcepts.chm::/Related_Doc.html

	code and fix

