


NI-IMAQdx	Function	Reference	Help
June	2008,	371968C-01
NI-IMAQdx	driver	software	gives	you	the	ability	to	acquire	images	from
Gig	E	Vision	IEEE	1394	industrial	digital	video	cameras.	This	help	file
describes	the	functions	included	in	the	NI-IMAQdx	driver	software.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2006—2008	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


Related	Documentation
Some	NI-IMAQdx	manuals	also	are	available	as	PDFs.	You	must	have
Adobe	Reader	with	Search	and	Accessibility	5.0.5	or	later	installed	to
view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated	Web	site	at
www.adobe.com	to	download	Adobe	Reader.	Refer	to	the	National
Instruments	Product	Manuals	Library	at	ni.com/manuals	for	updated
documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

Deployment	Policy	for	NI-IMAQdx	Note	to	Users—Contains
information	about	the	deployment	policy	for	NI-IMAQdx	driver
software.
Measurement	&	Automation	Explorer	Help	for	NI-IMAQdx—
Describes	how	to	configure	NI-IMAQdx	driver	software,	NI	image
acquisition	devices,	and	cameras	using	Measurement	&
Automation	Explorer.
NI-IMAQdx	Help—Contains	fundamental	programming	concepts
for	NI-IMAQdx	driver	software.
NI	Vision	Acquisition	Software	Release	Notes—Contains
information	about	new	functionality,	minimum	system
requirements,	and	installation	instructions	for	NI-IMAQdx	driver
software.

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)


Activating	Your	Software
How	do	I	activate	my	software?
Use	the	NI	Activation	Wizard	to	obtain	an	activation	code	for	your
software.	You	can	launch	the	NI	Activation	Wizard	two	ways:

Launch	the	product	and	choose	to	activate	your	software	from
the	list	of	options	presented.
Launch	NI	License	Manager	by	selecting	Start»All
Programs»National	Instruments»NI	License	Manager.	Click
the	Activate	button	in	the	toolbar.

Note		You	do	not	need	to	activate	your	software	if	it	is	managed	by
NI	Volume	License	Manager	as	a	part	of	a	Volume	License
Agreement.

What	is	activation?
Activation	is	the	process	of	obtaining	an	activation	code	to	enable	your
software	to	run	on	your	computer.	An	activation	code	is	an	alphanumeric
string	that	verifies	the	software,	version,	and	computer	ID	to	enable
features	on	your	computer.	Activation	codes	are	unique	and	are	valid	on
only	one	computer.
What	is	the	NI	Activation	Wizard?
The	NI	Activation	Wizard	is	a	part	of	NI	License	Manager	that	steps	you
through	the	process	of	enabling	software	to	run	on	your	machine.
What	information	do	I	need	to	activate?
You	need	your	product	serial	number,	user	name,	and	organization.	The
NI	Activation	Wizard	determines	the	rest	of	the	information.	Certain
activation	methods	may	require	additional	information	for	delivery.	This
information	is	used	only	to	activate	your	product.	Complete	disclosure	of
National	Instruments	licensing	privacy	policy	is	available	at
ni.com/activate/privacy.	If	you	optionally	choose	to	register	your	software,
your	information	is	protected	under	the	National	Instruments	privacy
policy,	available	at	ni.com/privacy.
How	do	I	find	my	product	serial	number?
You	can	find	your	serial	number	on	the	proof-of-ownership	and
registration	card	that	you	received	with	your	product,	as	shown	in	the

javascript:WWW(WWW_LM)
javascript:WWW(WWW_PRIV)


following	example.

What	is	a	Computer	ID?
The	computer	ID	contains	unique	information	about	your	computer.
National	Instruments	requires	this	information	to	enable	your	software.
You	can	find	your	computer	ID	through	the	NI	Activation	Wizard	or	by
using	NI	License	Manager,	as	follows:

1.	 Launch	NI	License	Manager	by	selecting
Start»Programs»National	Instruments»NI	License	Manager.

2.	 Click	the	Display	Computer	Information	button	in	the	toolbar.
For	more	information	about	product	activation	and	licensing	refer	to
ni.com/activate.

javascript:WWW(WWW_License)


Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a	bit	or
signal	name—for	example,	DBIO<3..0>.

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names,	emphasis,	or	an
introduction	to	a	key	concept.

green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,
help	file,	or	Web	address.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,
programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This
font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents
tab,	allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the
Back	button.
Options—Displays	a	list	of	commands	and	viewing	options	for
the	help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.
You	do	not	need	to	specify	this	operator	unless	you	are	using
nested	expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the
second	term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search
that	returned	too	many	topics.	You	must	remove	the	checkmark
from	this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



LabWindows/CVI	Function	Tree
The	following	table	shows	the	LabWindows/CVI	function	panel	that
corresponds	to	each	NI-IMAQdx	function.

Class/Panel
Name Function	Name Description

High-Level
Acquisition

	 	

Snap IMAQdxSnap Configures,	starts,	acquires,
and	unconfigures	a	snap
acquisition.

Configure
Grab

IMAQdxConfigureGrab Configures	and	starts	a	grab
acquisition.	A	grab	performs
an	acquisition	that	loops
continually	on	a	ring	of
buffers.

Grab IMAQdxGrab Acquires	the	most	current
frame	into	image.

Sequence IMAQdxSequence Configures,	starts,	acquires,
stops,	and	unconfigures	a
sequence	acquisition.	Use
this	function	to	capture
multiple	images.

Low-Level
Session

	 	

Reset
Ethernet
Camera
Address

IMAQdxResetEthernetCameraAddress Use	this	function	to	reset
Ethernet	cameras	on	the
network	with	a	local	subnet.
This	function	will	be	blocked
and	will	return	when	the	reset
is	complete	or	after	the
specified	timeout.

Discover
Ethernet
Cameras

IMAQdxDiscoverEthernetCameras Initiates	a	round	of	Ethernet
camera	discovery.	Use	this
function	to	find	Ethernet



cameras	on	the	network	with
a	remote	subnet.

Enumerate
Cameras

IMAQdxEnumerateCameras Returns	a	list	of	all	cameras
on	the	host	computer.

Reset
Camera

IMAQdxResetCamera Performs	a	manual	reset	on
a	camera.	Stops	any	ongoing
acquisitions.

Open
Camera

IMAQdxOpenCamera Opens	a	camera,	queries	the
camera	for	its	capabilities,
loads	a	camera	configuration
file,	and	creates	a	unique
reference	to	the	camera.

Close
Camera

IMAQdxCloseCamera Stops	an	acquisition	in
progress,	releases	resources
associated	with	an
acquisition,	and	closes	the
specified	Camera	Session.

Low-Level
Acquisition

	 	

Configure
Acquisition

IMAQdxConfigureAcquisition Configures	a	low-level
acquisition	previously
opened	with
IMAQdxOpenCamera

Start
Acquisition

IMAQdxStartAcquisition Starts	an	acquisition	that	was
previously	configured	with
IMAQdxConfigureAcquisition

Get	Image IMAQdxGetImage Acquires	the	specified	frame
into	image.	Call	this	function
only	after	calling
IMAQdxConfigureAcquisition

Get	Image
Data

IMAQdxGetImageData Copies	the	raw	data	of	the
specified	frame	into	
Call	this	function	only	after
calling
IMAQdxConfigureAcquisition



Stop
Acquisition

IMAQdxStopAcquisition Stops	an	acquisition
previously	started	with
IMAQdxStartAcquisition

Unconfigure
Acquisition

IMAQdxUnconfigureAcquisition Unconfigures	an	acquisition
previously	configured	with
IMAQdxConfigureAcquisition

Low-Level
Attribute

	 	

Enumerate
Video
Modes

IMAQdxEnumerateVideoModes Returns	a	list	of	video	modes
supported	by	the	camera.

Enumerate
Attributes

IMAQdxEnumerateAttributes2 Gets	the	attributes	supported
by	the	camera.

Get	Attribute IMAQdxGetAttribute Gets	the	current	value	for	a
camera	attribute.

Set	Attribute IMAQdxSetAttribute Sets	the	value	for	a	camera
attribute.

Get	Attribute
Minimum

IMAQdxGetAttributeMinimum Gets	the	minimum	for	a
camera	attribute.

Get	Attribute
Maximum

IMAQdxGetAttributeMaximum Gets	the	maximum	for	a
camera	attribute.

Get	Attribute
Increment

IMAQdxGetAttributeIncrement Gets	the	increment	for	a
camera	attribute.

Get	Attribute
Type

IMAQdxGetAttributeType Gets	the	attribute	type	for	a
camera.

Is	Attribute
Readable

IMAQdxIsAttributeReadable Gets	the	read	permissions
for	a	camera	attribute.

Is	Attribute
Writable

IMAQdxIsAttributeWritable Gets	the	write	permissions
for	a	camera	attribute.

Enumerate IMAQdxEnumerateAttributeValues Gets	the	values	supported	by



Attribute
Values

the	camera	attribute.

Get	Attribute
Tooltip

IMAQdxGetAttributeTooltip Gets	the	tooltip	for	the
camera	attribute.

Get	Attribute
Units

IMAQdxGetAttributeUnits Gets	the	attribute	units	for	a
camera.

Get	Attribute
Visibility

IMAQdxGetAttributeVisibility Gets	the	visibility	for	a
camera	attribute.

Get	Attribute
Description

IMAQdxGetAttributeDescription Gets	the	description	for	the
camera	attribute.

Get	Attribute
Display
Name

IMAQdxGetAttributeDisplayName Gets	the	display	name	for	the
camera	attribute.

Write
Attributes

IMAQdxWriteAttributes Saves	a	configuration	file	for
a	camera.

Read
Attributes

IMAQdxReadAttributes Loads	a	configuration	file	for
a	camera.

Low-Level
Event

	 	

Register
Frame	Done
Event

IMAQdxRegisterFrameDoneEvent Configures	the	NI-IMAQdx
driver	to	execute	a	callback
function	when	a	frame	done
event	occurs.

Register
Plug	and
Play	Event

IMAQdxRegisterPnpEvent Configures	the	NI-IMAQdx
driver	to	execute	a	callback
function	when	a	plug	and
play	event	occurs.

Low-Level
Register

	 	

Write IMAQdxWriteRegister Accesses	registers	on	the



Register camera	and	writes	a	32-bit
value	to	the	camera.	Data	is
byte-swapped	for	big	endian
alignment	before	transfer.

Read
Register

IMAQdxReadRegister Accesses	registers	on	the
camera	and	reads	a	32-bit
value	from	the	camera.	Data
is	byte-swapped	for	little
endian	alignment	after
transfer.

Write
Memory

IMAQdxWriteMemory Accesses	registers	on	the
camera	and	writes	a	string	to
the	camera.

Read
Memory

IMAQdxReadMemory Accesses	registers	on	the
camera	and	reads	a	string
from	the	camera.

Low-Level
Utility

	 	

Get	Error
String

IMAQdxGetErrorString Returns	a	string	describing
the	error	code.



IMAQdxCloseCamera
Format
rval	=	IMAQdxCloseCamera	(IMAQdxSession	id);



Purpose
Stops	an	acquisition	in	progress,	releases	resources	associated	with	an
acquisition,	and	closes	the	specified	session.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxConfigureAcquisition
Format
rval	=	IMAQdxConfigureAcquisition	(IMAQdxSession	id,	unsigned	int
continuous,	unsigned	int	bufferCount)



Purpose
Configures	a	low-level	acquisition	previously	opened	with
IMAQdxOpenCamera.	Specify	the	acquisition	type	using	the	continuous
and	bufferCount	parameters.

Snap Continuous	=	0 Buffer	Count	=	1
Sequence Continuous	=	0 Buffer	Count	>	1
Grab Continuous	=	1 Buffer	Count	³	1

Use	IMAQdxUnconfigureAcquisition	to	unconfigure	the	acquisition.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
continuous unsigned	int Specifies	whether	the	acquisition	is

continuous	or	one-shot.
bufferCount unsigned	int For	a	one-shot	acquisition,	this

parameter	specifies	the	number	of
images	to	acquire.	For	a	continuous
acquisition,	this	parameter	specifies	the
number	of	buffers	the	driver	uses
internally.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxConfigureGrab
Format
rval	=	IMAQdxConfigureGrab	(IMAQdxSession	id);



Purpose
Configures	and	starts	an	acquisition.	A	grab	performs	an	acquisition	that
loops	continually	on	a	ring	of	buffers.	Use	a	grab	for	high-speed	image
acquisition.	Use	IMAQdxGrab	to	copy	an	image	out	of	the	buffer.	If	you
call	this	function	before	calling	IMAQdxOpenCamera,
IMAQdxConfigureGrab	uses	cam0	by	default.	Use
IMAQdxUnconfigureAcquisition	to	unconfigure	the	acquisition.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxDiscoverEthernetCameras
Format
rval	=	IMAQdxDiscoverEthernetCameras	(const	char	*address,	unsigned	int
timeout);



Purpose
Detects	Ethernet	cameras	on	a	network.	Use	this	function	to	detect
Ethernet	cameras	on	a	network	with	a	remote	subnet.	During	discovery,
this	function	is	blocked	and	returns	after	the	specified	timeout.	The
address	specifies	the	destination	address	for	the	discovery	command.
The	default	address	is	255.255.255.255.	Call	this	function	before	calling
IMAQdxEnumerateCameras	or	IMAQdxOpenCamera.



Parameters
Parameter Type Description
address const

char	*
Address	specifies	the	destination	address	for	the
discovery	command.	The	default	address	is
255.255.255.255.

timeout unsigned
int

Timeout	specifies	the	time,	in	milliseconds,
allowed	for	the	Ethernet	camera	discovery	to
complete.	The	default	timeout	is	1000	ms.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxEnumerateAttributes2
Format
rval	=	IMAQdxEnumerateAttributes2	(IMAQdxSession	id,
IMAQdxAttributeInformation	attributeInformationArray[],	unsigned	int	*count,
const	char	*root,	IMAQdxAttributeVisibility	visibility)



Purpose
Gets	the	attributes	supported	by	the	camera.	If	you	do	not	know	in
advance	the	number	of	features,	complete	the	following	steps:

1.	 Call	this	function	with	the	attributeInformationArray	parameter
set	to	NULL.	The	necessary	size	is	then	stored	in	count.

2.	 Allocate	attributeInformationArray	with	the	given	size.
3.	 Call	this	function	again	using	the	previously	allocated	array.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can

obtain	using
IMAQdxOpenCamera

attributeInformationArray IMAQdxAttributeInformationArray	[] Contains	a	pointer	to	an	array	of
attribute	information	structures	in
which	the	attributes	supported	by
the	camera	are	stored.	Set	this
parameter	to	NULL	to	get	the	size
needed	by	the	array	in	the	
parameter.

count unsigned	int	(passed	by	reference) Contains	the	size	of	the	array
used	to	store	the	attributes.	If	the
user	passes	NULL	as	the
attributeInformationArray
parameter,	this	parameter
contains	the	needed	size.

root const	char	* Specifies	the	branch	of	the
attribute	tree	to	enumerate.
Specify	an	empty	string	to
enumerate	the	entire	attribute
tree.

visibility IMAQdxAttributeVisibility Specifies	the	visibility	of	the
attribute	to	enumerate.	Only
attributes	with	the	specified
visibility	will	be	returned.
Available	options	are	the	same	as
IMAQdxGetAttributeVisibility
Specify
IMAQdxAttributeVisibilityAdvanced
to	return	all	the	visible	attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxEnumerateAttributeValues
Format
rval	=	IMAQdxEnumerateAttributeValues(IMAQdxSession	id,	const	char
*name,	IMAQdxEnumItem	list	[],	unsigned	int	*size);



Purpose
Gets	the	values	supported	by	the	camera	attribute.

Note		This	function	applies	only	to	attributes	of	type
IMAQdxAttributeTypeEnum.	Use	IMAQdxGetAttributeType	to	get
your	attribute	type.

If	you	do	not	know	in	advance	the	number	of	attribute	values,	complete
the	following	steps:

1.	 Call	this	function	with	the	list	parameter	set	to	NULL.	The
necessary	size	is	then	stored	in	size.

2.	 Allocate	list	with	the	given	size.
3.	 Call	this	function	again	using	the	previously	allocated	array.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can

obtain	using	IMAQdxOpenCamera.
name cont	char	* The	name	of	the	attribute	whose

values	you	want	to	enumerate.	Refer
to	Attribute	Name	for	a	list	of
attributes.

list IMAQdxEnumItem	[] The	list	of	attribute	values	for	the
attribute	specified	by	name.	Set	this
parameter	to	NULL	to	get	the	size
needed	by	the	array	in	the	size
parameter.

size unsigned	int
(passed	by
reference)

The	size	of	attribute	values	for	the
attribute	specified	by	name.	If	the	user
passes	NULL	as	the	list	parameter,
this	parameter	contains	the	needed
size.



Parameter	Discussion
name	specifies	the	attribute	name	whose	value	you	want	to	obtain.	In	the
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxEnumerateCameras
Format
rval	=	IMAQdxEnumerateCameras	(IMAQdxCameraInformation
cameraInformationArray[],	unsigned	int	*count,	unsigned	int	connectedOnly);



Purpose
Returns	a	list	of	all	cameras	on	the	host	computer.	If	you	do	not	know	in
advance	the	number	of	cameras,	complete	the	following	steps:

1.	 Call	this	function	with	the	cameraInformationArray	parameter
set	to	NULL.	The	necessary	size	is	then	stored	in	count.

2.	 Allocate	cameraInformationArray	with	the	given	size.
3.	 Call	this	function	again	using	the	previously	allocated	array.



Parameters
Parameter Type Description
cameraInformationArray IMAQdxCameraInformation	[] An	array	of

IMAQdxCameraInformation
structure	elements	in	which
the	interfaces	supported	by
the	system	are	stored.	Set
this	parameter	to	NULL	to
get	the	size	needed	by	the
array	in	the	count
parameter.

count unsigned	int	(passed	by
reference)

The	size	of	the	array	used	to
store	the	camera
information.	If	the	user
passes	NULL	as	the
cameraInformationArray
parameter,	this	parameter
contains	the	needed	size.

connectedOnly unsigned	int If	the	connectedOnly
is	true,	then	the
cameraInformationArray	only
contains	cameras	that	are
currently	connected	to	the
host	computer.	If	the
connectedOnly
false,	then	the
cameraInformationArray
contains	cameras	that	are
currently	connected,	and
were	previously	connected,
to	the	host	computer.



Parameter	Discussion
The	IMAQdxCameraInformation	structure	contains	information	about
currently	and	previously	connected	interfaces.	Once	enumerated,	check
the	Flags	member	of	the	IMAQdxCameraInformation	structure.	If	the
value	of	Flags	is	0,	the	camera	is	not	currently	connected.	If	the	value	of
Flags	is	1,	the	camera	is	currently	connected.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxEnumerateVideoModes
Format
rval	=	IMAQdxEnumerateVideoModes	(IMAQdxSession	id,
IMAQdxVideoMode	videoModeArray[],	unsigned	int	*count,	unsigned	int
*currentMode);



Purpose
Returns	a	list	of	video	modes	supported	by	the	camera.

Note		This	function	applies	only	to	cameras	of	bus	type
IMAQdxBusTypeFireWire.	Use	IMAQdxGetAttribute	with	attribute
IMAQdxAttributeBusType	to	get	your	bus	type.

If	the	number	of	video	modes	is	not	known	in	advance,	complete	the
following	steps:

1.	 Call	this	function	with	the	videoModeArray	parameter	set	to
NULL.	The	necessary	size	is	then	stored	in
videoModeArraySize.

2.	 Allocate	the	videoModeArray	with	the	given	size.
3.	 Call	this	function	again	using	with	the	previously	allocated	array.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you

can	obtain	using
IMAQdxOpenCamera.

videoModeArray IMAQdxVideoMode	[] Contains	an	array	of	video
modes	supported	by	the
current	camera.	Set	this
parameter	to	NULL	to	get	the
size	needed	by	the	array	in	the
count	parameter.

count unsigned	int	(passed
by	reference)

The	size	of	the	array	used	to
store	the	video	modes.	If	the
user	passes	NULL	as	the
videoModeArray	parameter,
this	parameter	then	contains
the	needed	size.

currentMode unsigned	int	(passed
by	reference)

The	index	into	the
videoModeArray	of	the
current	mode	used	by	the
camera.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttribute
Format
rval	=	IMAQdxGetAttribute(IMAQdxSession	id,	char	*name,
IMAQdxValueType	type,	void	*value);



Purpose
Gets	the	current	value	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name char	* The	name	of	the	attribute	whose	value

you	want	to	get.	Refer	to	Attribute	Name
for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value void	*	(passed	by

reference)
The	value	of	the	specified	attribute	when
the	function	returns.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,
IMAQdxValueTypeF64,	IMAQdxValueTypeString,
IMAQdxValueTypeEnumItem,	and	IMAQdxValueTypeBool.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeDescription
Format
rval	=	IMAQdxGetAttributeDescription(IMAQdxSession	id,	const	char	*name,
char	*description,	unsigned	int	length)



Purpose
Gets	the	description	for	the	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	for	which	you

want	to	get	the	description.	Refer	to
Attribute	Name	for	a	list	of	attributes.

description char	* A	pointer	to	an	area	of	memory	reserved
for	a	tooltip.	The	reserved	memory	must
be	at	least	the	size	specified	by	the
length	parameter.

length unsigned	int The	maximum	length	of	the	C	string
passed	as	the	description	parameter.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In	the
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeDisplayName
Format
rval	=	IMAQdxGetAttributeDisplayName(IMAQdxSession	id,	const	char
*name,	char	*displayName,	unsigned	int	length)



Purpose
Gets	the	display	name	for	the	camera	attribute.	The	display	name	is	a
human	readable	version	of	the	attribute	name.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose	tooltip

you	want	to	get.	Refer	to	Attribute	Name
for	a	list	of	attributes.

display
name

char	* A	pointer	to	an	area	of	memory	reserved
for	a	display	name.	The	reserved	memory
must	be	at	least	the	size	specified	by	the
length	parameter.

length unsigned	int The	maximum	length	of	the	C	string
passed	as	the	display	name	parameter.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeIncrement
Format
rval	=	IMAQdxGetAttributeIncrement(IMAQdxSession	id,	char	*name,
IMAQdxValueType	type,	void	*value);



Purpose
Gets	the	increment	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name char	* The	name	of	the	attribute	whose

increment	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value void	*	(passed	by

reference)
The	increment	of	the	specified	attribute
when	the	function	returns.



Parameter	Discussion
name	specifies	the	attribute	whose	increment	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeMaximum
Format
rval	=	IMAQdxGetAttributeMaximum(IMAQdxSession	id,	char	*name,
IMAQdxValueType	type,	void	*value);



Purpose
Gets	the	maximum	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name char	* The	name	of	the	attribute	whose

maximum	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value void	*	(passed	by

reference)
The	maximum	of	the	specified	attribute
when	the	function	returns.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeMinimum
Format
rval	=	IMAQdxGetAttributeMinimum(IMAQdxSession	id,	const	char	*name,
IMAQdxValueType	type,	void	*value);



Purpose
Gets	the	minimum	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose

minimum	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value void	*	(passed	by

reference)
The	minimum	of	the	specified	attribute
when	the	function	returns.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeTooltip
Format
rval	=	IMAQdxGetAttributeTooltip(IMAQdxSession	id,	const	char	*name,	char
*tooltip,	unsigned	int	length);



Purpose
Gets	the	tooltip	for	the	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose	tooltip

you	want	to	get.	Refer	to	Attribute	Name
for	a	list	of	attributes.

tooltip char	* A	pointer	to	an	area	of	memory	reserved
for	a	tooltip.	The	reserved	memory	must	be
at	least	the	size	specified	by	the	length
parameter.

length unsigned	int The	maximum	length	of	the	C	string
passed	as	the	tooltip	parameter.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeType
Format
rval	=	IMAQdxGetAttributeType	(IMAQdxSession	id,	const	char	*name,
IMAQdxAttributeType	*type);



Purpose
Gets	the	attribute	type	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can

obtain	using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose

value	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxAttributeType
(passed	by
reference)

The	type	of	the	attribute	whose	value
you	want	to	get.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,
IMAQdxValueTypeF64,	IMAQdxValueTypeString,
IMAQdxValueTypeEnumItem,	and	IMAQdxValueTypeBool.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeUnits
Format
rval	=	IMAQdxGetAttributeUnits	(IMAQdxSession	id,	const	char	*name,	char
*units,	unsigned	int	length);



Purpose
Gets	the	attribute	units	for	a	camera.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose	units	you

want	to	get.	Refer	to	Attribute	Name	for	a
list	of	attributes.

units char	* A	pointer	to	an	area	of	memory	reserved
for	an	error	string.	The	reserved	memory
must	be	at	least	the	size	specified	by	the
length	parameter.

length unsigned	int The	maximum	length	of	the	C	string
passed	as	the	units	parameter.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetAttributeVisibility
Format
rval	=	IMAQdxGetAttributeVisibility(IMAQdxSession	id,	const	char	*name,
IMAQdxAttributeVisibility*	visibility)



Purpose
Gets	the	visibility	for	the	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose	visibility

you	want	to	get.	Refer	to	Attribute	Name
a	list	of	attributes.

visibility IMAQdxAttributeVisibility
(passed	by	reference)

On	return	contains	the	visibility	for	the
current	attribute.	Choose	from	one	of	the
following	options:

IMAQdxAttributeVisibilitySimple
IMAQdxAttributeVisibilityIntermediate
IMAQdxAttributeVisibilityAdvanced



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxGetErrorString
Format
rval	=	IMAQdxGetErrorString	(IMAQdxError	error,	char	*message,	unsigned
int	messageLength);



Purpose
Returns	a	string	describing	the	error	code.



Parameters
Parameter Type Description
error IMAQdxError A	valid	NI-IMAQdx	error	code.	Refer	to

the	Error	Codes	topic	in	this	help	file	for
a	complete	error	code	list.

message char	* A	pointer	to	an	area	of	memory
reserved	for	an	error	string.	The
reserved	memory	must	be	at	least	the
size	specified	by	the	messageLength
parameter.

messageLength unsigned	int The	maximum	length	of	the	C	string
passed	as	the	message	parameter.



Return	Value
Refer	to	Error	Codes	for	a	complete	error	code	list.



IMAQdxGetImage
Format
rval	=	IMAQdxGetImage	(IMAQdxSession	id,	Image	*image,
IMAQdxBufferNumberMode	mode,	unsigned	int	desiredBufferNumber,
unsigned	int	*actualBufferNumber);



Purpose
Acquires	the	specified	frame	into	image.	Call	this	function	only	after
calling	IMAQdxConfigureAcquisition.	If	the	image	type	does	not	match
the	video	format	of	the	camera,	the	function	changes	the	image	type	to	a
suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera
image Image	* The	image	that	receives	the	captured

pixel	data.
mode IMAQdxBufferNumberMode The	buffer	number	mode	of	the	image	to

retrieve.	Set	this	parameter	to
IMAQdxBufferNumberModeNext	to	get
the	next	buffer,	or	set	this	parameter	to
IMAQdxBufferNumberLast	to	get	the	last
acquired	buffer,	or	set	this	parameter
IMAQdxBufferNumberModeBufferNumber
to	acquire	a	specific	cumulative	buffer
number.

desiredBufferNumber unsigned	int The	cumulative	buffer	number	of	the
image	to	retrieve.	This	parameter	is	only
needed	if	mode	is	set	to
IMAQdxBufferNumberModeBufferNumber.

actualBufferNumber unsigned	int	(passed	by
reference)

On	return,	the	actual	cumulative	buffer
number	of	the	image	retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetImageData
Format
rval	=	IMAQdxGetImageData	(IMAQdxSession	id,	void	*buffer,	unsigned	int
bufferSize,	IMAQdxBufferNumberMode	mode,	unsigned	int
desiredBufferNumber,	unsigned	int	*actualBufferNumber);



Purpose
Copies	the	raw	data	of	the	specified	frame	into	buffer.	Call	this	function
only	after	calling	IMAQdxConfigureAcquisition.

Note		This	function	allows	you	to	access	raw	image	data.	For
many	uncompressed	formats	like	YUV	or	RGB,	buffer	is	not
compatible	with	NI	Vision.	To	use	the	NI	Vision	functions,	use
IMAQdxGetImage	instead	of	this	function.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera
buffer void	* The	buffer	that	contains	the	raw	data	for

the	image	when	the	function	returns.
bufferSize unsigned	int The	maximum	size	of	the	buffer.
mode IMAQdxBufferNumberMode The	buffer	number	mode	of	the	image	to

retrieve.	Set	this	parameter	to
IMAQdxBufferNumberModeNext	to	get
the	next	buffer,	or	set	this	parameter	to
IMAQdxBufferNumberLast	to	get	the	last
acquired	buffer,	or	set	this	parameter
IMAQdxBufferNumberModeBufferNumber
to	acquire	a	specific	cumulative	buffer
number.

desiredBufferNumber unsigned	int The	cumulative	buffer	number	of	the
image	to	retrieve.	This	parameter	is	only
needed	if	mode	is	set	to
IMAQdxBufferNumberModeBufferNumber.

actualBufferNumber unsigned	int	(passed	by
reference)

On	return,	the	actual	cumulative	buffer
number	of	the	image	retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGrab
Format
rval	=	IMAQdxGrab	(IMAQdxSession	id,	Image	*image,	unsigned	int
waitForNextBuffer,	unsigned	int	*actualBufferNumber);



Purpose
Acquires	the	most	current	frame	into	image.	Call	this	function	only	after
calling	IMAQdxConfigureGrab.	If	the	image	type	does	not	match	the
video	format	of	the	camera,	this	function	changes	the	image	type	to	a
suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you

can	obtain	using
IMAQdxOpenCamera.

image Image	* The	image	that	receives	the
captured	pixel	data.

waitForNextBuffer unsigned	int If	the	waitForNextBuffer	value
is	true,	the	driver	will	wait	for
the	next	available	buffer.	If	the
waitForNextBuffer	value	is
false,	the	driver	will	not	wait	for
the	next	available	buffer,	and
will	instead	return	the	last
acquired	buffer.

actualBufferNumber unsigned	int
(passed	by
reference)

On	return,	the	actual	cumulative
buffer	number	of	the	image
retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxIsAttributeReadable
Format
rval	=	IMAQdxIsAttributeReadable	(IMAQdxSession	id,	const	char	*name,
unsigned	int	*readable);



Purpose
Gets	the	read	permissions	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	camera	attribute	whose

read	permission	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

readable unsigned	int
(passed	by
reference)

Returns	true	if	the	attribute	is	readable,
otherwise	false.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxIsAttributeWritable
Format
rval	=	IMAQdxIsAttributeWritable	(IMAQdxSession	id,	const	char	*name,
unsigned	int	*writable);



Purpose
Gets	the	write	permissions	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	camera	attribute	whose

write	permission	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

writable unsigned	int
(passed	by
reference)

Returns	true	if	the	attribute	is	writable,
otherwise	false.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxOpenCamera
Format
rval	=	IMAQdxOpenCamera	(const	char	*name,	IMAQdxCameraControlMode
mode,	IMAQdxSession	*id);



Purpose
Opens	a	camera,	queries	the	camera	for	its	capabilities,	loads	a	camera
configuration	file,	and	creates	a	unique	reference	to	the	camera.	Use
IMAQdxCloseCamera	when	you	are	finished	with	the	reference.



Parameters
Parameter Type Description
name const	char	* The	name	of	the	camera	you

want	to	open.	name	(cam0,
cam1,	...,	camN)	must	match	the
configuration	file	name	you	used
to	configure	the	camera	in	MAX.
You	can	also	open	a	camera
using	its	64-bit	serial	number
(uuid:XXXXXXXXXXXXXXXX
where	the	number	following	uuid
must	be	a	64-bit	hexadecimal
number	representing	the	internal
serial	number	of	the	camera.

Note			Specify	"	uuid:serial
number	in	hexadecimal
representation"	for	the
camera	name	when
opening	in	listening	mode.
The	serial	number	must
match	the	serial	number
used	in	MAX.

mode IMAQdxCameraControlMode Camera	Control	Mode	is	the
control	mode	of	the	camera
used	during	image	broadcasting.
Open	a	camera	in	controller
mode	to	actively	configure	and
acquire	image	data.	Open	a
camera	in	listener	mode	to
passively	acquire	image	data
from	a	session	that	was	opened
in	controller	mode	on	a	different
host	or	target	computer.	The
default	value	is	Controller.

id IMAQdxSession	(passed	by
reference)

On	return,	a	valid	Session	ID.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxReadAttributes
Format
rval	=	IMAQdxReadAttributes	(IMAQdxSession	id,	const	char*	filename)



Purpose
Reads	attributes	from	file	and	applies	to	current	session.	This	function	is
only	required	if	you	wish	to	load	parameters.	By	default	the	attributes	are
loaded	from	file	when	the	camera	is	opened.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
Filename const	char* The	filename	to	load	the	attributes	from.

Specify	NULL	to	load	from	the	default
camera	file.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxReadMemory
Format
rval	=	IMAQdxReadMemory	(IMAQdxSession	id,	unsigned	int	offset,	const
char	*values,	unsigned	int	count);



Purpose
Accesses	registers	on	the	camera	and	reads	a	string	from	the	camera.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
offset unsigned	int The	register	location	to	access.	Refer	to

the	camera	documentation	for	more
information	about	camera-specific	register
ranges.	Use	attribute
IMAQdxAttributeBaseAddress	to	obtain	the
base	address	for	the	camera.

values const	char	* Specifies	the	string	read	from	the	memory
offset.

count unsigned	int Specifies	the	maximum	length	of	the	string
read	from	the	memory	offset.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxReadRegister
Format
rval	=	IMAQdxReadRegister	(IMAQdxSession	id,	unsigned	int	offset,	unsigned
int	*value);



Purpose
Accesses	registers	on	the	camera	and	reads	a	32-bit	value	from	the
camera.	Data	is	byte-swapped	for	little	endian	alignment	after	transfer.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
offset unsigned	int The	register	location	to	access.	Refer	to

the	camera	documentation	for	more
information	about	camera-specific	register
ranges.	Use	attribute
IMAQdxAttributeBaseAddress	to	obtain	the
base	address	for	the	camera.

value unsigned	int
(passed	by
reference)

Specifies	the	value	to	read	from	the
memory	offset.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxRegisterFrameDoneEvent
Format
rval	=	IMAQdxRegisterFrameDoneEvent	(IMAQdxSession	id,	unsigned	int
bufferInterval,	FrameDoneEventCallbackPtr	callbackFunction,	void
*callbackData);



Purpose
Configures	the	NI-IMAQdx	driver	to	execute	a	callback	function	when	a
frame	done	event	occurs.

Note		Make	sure	that	the	code	inside	the	callback	is	thread	safe
since	the	callback	executes	in	a	different	thread.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,

which	you	can	obtain
using
IMAQdxOpenCamera.

bufferInterval unsigned	int The	number	of	images
to	acquire	before
executing	the	callback
function.	Specify	a
buffer	interval	of	1	to
receive	a	callback	for
every	buffer.

callbackFunction FrameDoneEventCallbackPtr The	address	of	the
callback	function.

callbackData void	* A	pointer	to	user-
defined	data	passed
to	the	event	function.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxRegisterPnpEvent
Format
rval	=	IMAQdxRegisterPnpEvent	(IMAQdxSession	id,	IMAQdxPnpEvent
event,	PnpEventCallbackPtr	callbackFunction,	void	*callbackData);



Purpose
Configures	the	NI-IMAQdx	driver	to	execute	a	callback	function	when	a
plug	and	play	event	occurs.

Note		Make	sure	that	the	code	inside	the	callback	is	thread	safe
since	the	callback	executes	in	a	different	thread.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
event IMAQdxPnpEvent The	plug	and	play	event	to	monitor.	The

following	events	are	valid:
IMAQdxPnpEventCameraAttached:
Callback	fired	when	a	new	camera
is	attached.
IMAQdxPnpEventCameraDetached:
Callback	fired	when	the	camera	is
detached.
IMAQdxPnpEventBusReset:
Callback	fired	when	a	FireWire	bus
reset	occurs.

callbackFunction PnpEventCallbackPtr The	address	of	the	callback	function.
callback	Data void	* A	pointer	to	user-defined	data	passed	to	the

event	function.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxResetEthernetCameraAddress
Format
rval	=	IMAQdxError	ResetEthernetCameraAddress(const	char*	name,	const
char*	address,	const	char*	subnet,	const	char*	gateway,	u32	timeout)



Purpose
Force	a	new	static	IP	address	for	the	specified	camera.	Use
IMAQdxResetEthernetCameraAddress	when	the	camera	is	configured
for	a	different	subnet	than	your	network.	The	code	execution	will	suspend
for	the	current	thread	and	will	resume	after	the	specified	timeout	or	as
soon	as	it	completes.	Call	this	function	before	calling
IMAQdxDiscoverEthernetCameras.	Resetting	the	Ethernet	Address	is
optional	for	cameras	not	on	the	local	subnet.



Parameters
Parameter Type Description
name const

char	*
The	name	of	the	camera	you	want	to	open.	name
(cam0,	cam1,	...,	camN)	must	match	the
configuration	file	name	you	used	to	configure	the
camera	in	MAX.	You	can	also	open	a	camera
using	its	64-bit	serial	number
(uuid:XXXXXXXXXXXXXXXX),	where	the
number	following	uuid	must	be	a	64-bit
hexadecimal	number	representing	the	internal
serial	number	of	the	camera.

Note			Specify	"uuid:serial	number	in
hexadecimal	representation"	for	the	camera
name	when	opening	in	listening	mode.	The
serial	number	must	match	the	serial
number	used	in	MAX.

address const
char*

Network	address	for	the	camera.

subnet const
char*

Subnet	mask	for	the	camera.

gateway const
char*

Gateway	for	the	camera.

timeout unsigned
int

Time,	in	milliseconds,	allowed	for	the	Ethernet
camera	to	reset	its	network	address.	The	default
timeout	is	1000	ms.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxResetCamera
Format
rval	=	IMAQdxResetCamera	(const	char	*name,	unsigned	int	resetALL);



Purpose
Performs	a	manual	reset	on	a	camera.	Stops	any	ongoing	acquisitions.



Parameters
Parameter Type Description
name const	char	* The	name	of	the	camera	you	want	to	open.

name	(cam0,	cam1,	...,	camN)	must	match	the
configuration	file	name	you	used	to	configure
the	camera	in	MAX.	You	can	also	open	a
camera	using	its	64-bit	serial	number
(uuid:XXXXXXXXXXXXXXXX),	where	the
number	following	uuid	must	be	a	64-bit
hexadecimal	number	representing	the	internal
serial	number	of	the	camera.

Note			Specify	"uuid:serial	number	in
hexadecimal	representation"	for	the
camera	name	when	opening	in	listening
mode.	The	serial	number	must	match
the	serial	number	used	in	MAX.

resetALL unsigned	int If	the	resetALL	value	is	false,	then	only	the
specified	camera	will	be	reset.	If	the	resetALL
value	is	true,	then	all	of	the	connected
cameras	will	be	reset.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxSequence
Format
rval	=	IMAQdxSequence	(IMAQdxSession	id,	Image	*images[],	unsigned	int
count);



Purpose
Configures,	starts,	acquires,	stops,	and	unconfigures	a	sequence
acquisition.	Use	this	function	to	capture	multiple	images.	If	you	call	this
function	before	calling	IMAQdxOpenCamera,	IMAQdxSequence	uses
cam0	by	default.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
images Image	*[] The	image	array	that	receives	the	captured

pixel	data.
count unsigned	int The	number	of	images	in	the	image	array.

This	value	must	be	less	than	or	equal	to
the	number	of	allocated	images	in	the
image	array.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxSetAttribute
Format
rval	=	IMAQdxSetAttribute	(IMAQdxSession	id,	const	char	*name,
IMAQdxValueType	type,	...);



Purpose
Sets	the	value	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	you	want	to

set.	Refer	to	Attribute	Name	for	a	list	of
attributes.

type IMAQdxValueType The	type	of	the	attribute	value	you	want
to	set.

... variable	argument Data	is	passed	by	value.	The	data	type
should	match	type.



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<Spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,
IMAQdxValueTypeF64,	IMAQdxValueTypeString,
IMAQdxValueTypeEnumItem,	and	IMAQdxValueTypeBool.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxSnap
Format
rval	=	IMAQdxSnapImage	(IMAQdxSession	id,	Image	*image);



Purpose
Configures,	starts,	acquires,	and	unconfigures	a	snap	acquisition.	Use	a
snap	for	low-speed	or	single-capture	applications	where	ease	of
programming	is	essential.	If	you	call	this	function	before	calling
IMAQdxOpenCamera,	IMAQdxSnap	uses	cam0	by	default.	If	the	image
type	does	not	match	the	video	format	of	the	camera,	this	function
changes	the	image	type	to	a	suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
image Image	* The	image	that	receives	the	captured	pixel

data.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxStartAcquisition
Format
rval	=	IMAQdxStartAcquisition	(IMAQdxSession	id);



Purpose
Starts	an	acquisition	that	was	previously	configured	with
IMAQdxConfigureAcquisition.	Use	IMAQdxStopAcquisition	to	stop	the
acquisition.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxStopAcquisition
Format
rval	=	IMAQdxStopAcquisition	(IMAQdxSession	id);



Purpose
Stops	an	acquisition	previously	started	with	IMAQdxStartAcquisition.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxUnconfigureAcquisition
Format
rval	=	IMAQdxUnconfigureAcquisition	(IMAQdxSession	id);



Purpose
Unconfigures	an	acquisition	previously	configured	with
IMAQdxConfigureAcquisition.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxWriteAttributes
Format
rval	=	IMAQdxWriteAttributes	(IMAQdxSession	id,	const	char*	filename)



Purpose
Writes	current	attributes	to	the	camera	file.	This	function	is	only	required
if	you	wish	to	save	parameters.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID.
Filename Const	char* The	filename	to	load	the	attributes	from.

Specify	NULL	to	load	from	the	default
camera	file.	Specify	a	valid	filename	to
override	the	default	camera	file.	The	driver
locates	camera	files	in	the	<NI-
IMAQdx\Data>	folder	if	no	path	information
is	specified.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString	or,	if	you	are	using	Microsoft	Visual
Basic,	IMAQdxGetErrorStringCW.



IMAQdxWriteMemory
Format
rval	=	IMAQdxWriteMemory	(IMAQdxSession	id,	unsigned	int	offset,	char
*value,	unsigned	int	count);



Purpose
Accesses	registers	on	the	camera	and	writes	a	string	to	the	camera.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
offset unsigned	int The	register	location	to	access.	Refer	to

the	camera	documentation	for	more
information	about	camera-specific	register
ranges.	Use	attribute
IMAQdxAttributeBaseAddress	to	obtain	the
base	address	for	the	camera.

value char	* Specifies	the	string	to	write	to	the	memory
offset.

count unsigned	int Specifies	the	length	of	the	string	to	write	to
the	memory	offset.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxWriteRegister
Format
rval	=	IMAQdxWriteRegister(IMAQdxSession	id,	unsigned	int	offset,	unsigned
int	value);



Purpose
Accesses	registers	on	the	camera	and	writes	a	32-bit	value	to	the
camera.	Data	is	byte-swapped	for	big	endian	alignment	before	transfer.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
offset unsigned	int The	register	location	to	access.	Refer	to

the	camera	documentation	for	more
information	about	camera-specific	register
ranges.	Use	attribute
IMAQdxAttributeBaseAddress	to	obtain	the
base	address	for	the	camera.

value unsigned	int Specifies	the	value	to	write	to	the	memory
offset.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxEnumerateAttributes2CW
Format
IMAQdxEnumerateAttributes2CW(id	As	IMAQdxSession,
attributeInformationArray()	As	IMAQdxAttributeInformation,	root	As	String,
visibility	As	IMAQdxAttributeVisibility)	As	IMAQdxError



Purpose
Gets	the	attributes	supported	by	the	camera.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can

obtain	using
IMAQdxOpenCamera

attributeInformationArray IMAQdxAttributeInformationArray	[] Contains	a	pointer	to	an	array	of
attribute	information	structures	in
which	the	attributes	supported	by
the	camera	are	stored.

root String Specifies	the	branch	of	the
attribute	tree	to	enumerate.
Specify	an	empty	string	to
enumerate	the	entire	attribute
tree.

visibility IMAQdxAttributeVisibility Specifies	the	visibility	of	the
attribute	to	enumerate.	Only
attributes	with	the	specified
visibility	will	be	returned.
Available	options	are	the	same	as
IMAQdxGetAttributeVisibility
Specify
IMAQdxAttributeVisibilityAdvanced
to	return	all	the	visible	attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxEnumerateAttributeValuesCW
Format
IMAQdxEnumerateAttributeValuesCW	(id	As	IMAQdxSession,	name	As
String,	enumItemArray()	As	IMAQdxEnumItem)	As	IMAQdxError



Purpose
Gets	the	values	supported	by	the	camera	attribute.

Note		This	function	applies	only	to	attributes	of	type
IMAQdxAttributeTypeEnum.	Use	IMAQdxGetAttributeType	to	get
your	attribute	type.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you

can	obtain	using
IMAQdxOpenCamera.

name String The	name	of	the	attribute	whose
values	you	want	to	enumerate.
Refer	to	Attribute	Name	for	a	list
of	attributes.

enumItemArray IMAQdxEnumItem	[] The	list	of	attribute	values	for	the
attribute	specified	by	name.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxEnumerateCamerasCW
Format
IMAQdxEnumerateCamerasCW	(cameraInformationArray()	As
IMAQdxCameraInformation,	connectedOnly	As	VARIANT_BOOL)	As
IMAQdxError



Purpose
Returns	a	list	of	all	cameras	on	the	host	computer.



Parameters
Parameter Type Description
cameraInformationArray IMAQdxCameraInformation	[] An	array	of

IMAQdxCameraInformation
structure	elements	in	which
the	interfaces	supported	by
the	system	are	stored.

connectedOnly VARIANT_BOOL If	the	connectedOnly
is	true,	then	the
cameraInformationArray	only
contains	cameras	that	are
currently	connected	to	the
host	computer.	If	the
connectedOnly
false,	then	the
cameraInformationArray
contains	cameras	that	are
currently	connected,	and
were	previously	connected,
to	the	host	computer.



Parameter	Discussion
The	IMAQdxCameraInformation	structure	contains	information	about
currently	and	previously	connected	interfaces.	Once	enumerated,	check
the	Flags	member	of	the	IMAQdxCameraInformation	structure.	If	the
value	of	Flags	is	0,	the	camera	is	not	currently	connected.	If	the	value	of
Flags	is	1,	the	camera	is	currently	connected.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxEnumerateVideoModesCW
Format
IMAQdxEnumerateVideoModesCW(id	As	IMAQdxSession,	videoModeArray()
As	IMAQdxVideoMode,	currentMode	As	Long)	As	IMAQdxError



Purpose
Returns	a	list	of	video	modes	supported	by	the	camera.

Note		This	function	applies	only	to	cameras	of	bus	type
IMAQdxBusTypeFireWire.	Use	IMAQdxGetAttributeCW	with
attribute	IMAQdxAttributeBusType	to	get	your	bus	type.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which

you	can	obtain	using
IMAQdxOpenCamera.

videoModeArray IMAQdxVideoModeArray[] Contains	an	array	of	video
modes	supported	by	the
current	camera.

currentMode Long	(passed	by
reference)

The	index	of	the	current
mode	used	by	the	camera
in	videoModeArray.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeCW
Format
IMAQdxGetAttributeCW	(id	As	IMAQdxSession,	name	As	String,	type	As
IMAQdxValueType,	value	As	VARIANT)	As	IMAQdxError



Purpose
Gets	the	current	value	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose	value

you	want	to	get.	Refer	to	Attribute	Name
for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value VARIANT	(passed

by	reference)
The	value	of	the	specified	attributes
when	the	function	returns.



Parameter	Discussion
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,
IMAQdxValueTypeF64,	IMAQdxValueTypeString,
IMAQdxValueTypeEnumItem,	and	IMAQdxValueTypeBool.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeDescriptionCW
Format
IMAQdxGetAttributeDescriptionCW	(id	As	IMAQdxSession,	name	As	String,
description	As	String)	As	IMAQdxError



Purpose
Gets	the	description	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose

description	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

description String	(passed
by	reference)

The	description	of	the	specified	attributes
when	the	function	returns.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeDisplayNameCW
Format
IMAQdxGetAttributeDisplayNameCW	(id	As	IMAQdxSession,	name	As	String,
displayName	As	String)	As	IMAQdxError



Purpose
Gets	the	display	name	for	the	camera	attribute.	The	display	name	is	a
human	readable	version	of	the	attribute	name.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can

obtain	using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose	display

name	you	want	to	get.	Refer	to	Attribute
Name	for	a	list	of	attributes.

displayName String	(passed
by	reference)

The	display	name	of	the	specified
attributes	when	the	function	returns.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeIncrementCW
Format
IMAQdxGetAttributeIncrementCW	(id	As	IMAQdxSession,	name	As	String,
type	As	IMAQdxValueType,	value	As	VARIANT)	As	IMAQdxError



Purpose
Gets	the	increment	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose

increment	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value VARIANT	(passed

by	reference)
The	increment	of	the	specified	attributes
when	the	function	returns.



Parameter	Discussion
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeMaximumCW
Format
IMAQdxGetAttributeMaximumCW	(id	As	IMAQdxSession,	name	As	String,
type	As	IMAQdxValueType,	value	As	VARIANT)	As	IMAQdxError



Purpose
Gets	the	maximum	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose

maximum	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value VARIANT	(passed

by	reference)
The	maximum	of	the	specified	attributes
when	the	function	returns.



Parameter	Discussion
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeMinimumCW
Format
IMAQdxGetAttributeMinimumCW	(id	As	IMAQdxSession,	name	As	String,
type	As	IMAQdxValueType,	value	As	VARIANT)	As	IMAQdxError



Purpose
Gets	the	minimum	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose

minimum	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

type IMAQdxValueType The	type	of	the	value	you	want	to	get.
value VARIANT	(passed

by	reference)
The	minimum	of	the	specified	attributes
when	the	function	returns.



Parameter	Discussion
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,	and
IMAQdxValueTypeF64.

Note		The	value	type	must	be	compatible	with	the	attribute	type.
Refer	to	the	NI-IMAQdx	Help	for	more	information	about	camera
attributes.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeTooltipCW
Format
IMAQdxGetAttributeTooltipCW	(id	As	IMAQdxSession,	name	As	String,
tooltip	As	String)	As	IMAQdxError



Purpose
Gets	the	tooltip	for	the	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose	tooltip

you	want	to	get.	Refer	to	Attribute	Name
for	a	list	of	attributes.

tooltip String	(passed
by	reference)

The	tooltip	of	the	specified	attributes	when
the	function	returns.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeUnitsCW
Format
IMAQdxGetAttributeUnitsCW	(id	As	IMAQdxSession,	name	As	String,	unit	As
String)	As	IMAQdxError



Purpose
Gets	the	attribute	units	for	a	camera.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	whose	units	you

want	to	get.	Refer	to	Attribute	Name	for	a
list	of	attributes.

units String	(passed
by	reference)

The	units	of	the	specified	attributes	when
the	function	returns.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetAttributeVisibility
Format
rval	=	IMAQdxGetAttributeVisibility(IMAQdxSession	id,	const	char	*name,
IMAQdxAttributeVisibility*	visibility)



Purpose
Gets	the	visibility	for	the	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name const	char	* The	name	of	the	attribute	whose	visibility

you	want	to	get.	Refer	to	Attribute	Name
a	list	of	attributes.

visibility IMAQdxAttributeVisibility
(passed	by	reference)

On	return	contains	the	visibility	for	the
current	attribute.	Choose	from	one	of	the
following	options::

IMAQdxAttributeVisibilitySimple
IMAQdxAttributeVisibilityIntermediate
IMAQdxAttributeVisibilityAdvanced



Parameter	Discussion
name	specifies	the	attribute	whose	value	you	want	to	obtain.	In
LabWindows/CVI	function	panel,	when	you	click	the	control	or	press
<Enter>,	<spacebar>,	or	<Ctrl-down	arrow>,	a	dialog	box	opens
containing	a	hierarchical	list	of	the	available	attributes.	Attributes	whose
values	cannot	be	obtained	are	dimmed.	You	can	access	function	help
text	for	each	attribute	by	double-clicking	an	attribute	or	by	selecting	the
attribute	and	pressing	<Enter>.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGetErrorStringCW
Format
IMAQdxGetErrorStringCW	(errorCode	As	IMAQdxError,	errorMessage	As
String)	As	IMAQdxError



Purpose
Returns	a	string	describing	the	error	code.



Parameters
Parameter Type Description
errorCode IMAQdxError A	valid	NI-IMAQdx	error	code.	Refer	to

Error	Codes	for	a	complete	error	code	list.
errorMessage String The	string	describing	the	error	that

occurred.



Return	Value
Refer	to	Error	Codes	for	a	complete	error	code	list.



IMAQdxGetImageCW
Format
IMAQdxGetImageCW	(id	As	IMAQdxSession,	image	As	CWIMAQImage,
mode	as	IMAQdxBufferNumberMode,	desiredBufferNumber	As	Long,
actualBufferNumber	As	Long)	As	IMAQdxError



Purpose
Acquires	the	specified	frame	into	image.	If	the	image	type	does	not
match	the	video	format	of	the	camera,	the	function	changes	the	image
type	to	a	suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

with	the	function	IMAQdxOpenCamera
image CWIMAQImage The	image	that	receives	the	captured

pixel	data.
mode IMAQdxBufferNumberMode The	buffer	number	mode	of	the	image	to

retrieve.	Set	this	parameter	to
IMAQdxBufferNumberModeNext	to	get
the	next	buffer,	or	set	this	parameter	to
IMAQdxBufferNumberLast	to	get	the	last
acquired	buffer,	or	set	this	parameter
IMAQdxBufferNumberModeBufferNumber
to	acquire	a	specific	cumulative	buffer
number.

desiredBufferNumber Long The	cumulative	buffer	number	of	the
image	to	retrieve.	This	parameter	is	only
needed	if	mode	is	set	to
IMAQdxBufferNumberModeBufferNumber.

actualBufferNumber Long	(passed	by	reference) The	actual	cumulative	buffer	number	of
the	image	retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxGetImageDataCW
Format
rval	=	IMAQdxGetImageDataCW	(id	As	IMAQdxSession,	buffer	As	VARIANT,
mode	As	IMAQdxBufferNumberMode,	desiredBufferNumber	As	Long,
actualBufferNumber	As	Long);



Purpose
Copies	the	raw	data	of	the	specified	frame	into	buffer.

Note		This	function	allows	you	to	access	raw	image	data.	For
many	uncompressed	formats	like	YUV	or	RGB,	buffer	is	not
compatible	with	NI	Vision.	To	use	the	NI	Vision	functions,	use
IMAQdxGetImage	instead	of	this	function.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera
buffer VARIANT	* The	data	of	the	specified	attributes	when

the	function	returns.
mode IMAQdxBufferNumberMode The	buffer	number	mode	of	the	image	to

retrieve.	Set	this	parameter	to
IMAQdxBufferNumberModeNext	to	get
the	next	buffer,	or	set	this	parameter	to
IMAQdxBufferNumberLast	to	get	the	last
acquired	buffer,	or	set	this	parameter
IMAQdxBufferNumberModeBufferNumber
to	acquire	a	specific	cumulative	buffer
number.

desiredBufferNumber Long The	cumulative	buffer	number	of	the
image	to	retrieve.	This	parameter	is	only
needed	if	mode	is	set	to
IMAQdxBufferNumberModeBufferNumber.

actualBufferNumber Long	(passed	by	reference) On	return,	the	actual	cumulative	buffer
number	of	the	image	retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorString.



IMAQdxGrabCW
Format
IMAQdxGrabCW(id	As	IMAQdxSession,	image	As	CWIMAQImage,
waitForNextBuffer	As	Long,	actualBufferNumber	As	Long)	As	IMAQdxError



Purpose
Acquires	the	most	current	frame	into	image.	Call	this	function	only	after
calling	IMAQdxConfigureGrab.	If	the	image	type	does	not	match	the
video	format	of	the	camera,	this	function	changes	the	image	type	to	a
suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you

can	obtain	using
IMAQdxOpenCamera.

image CWIMAQImage The	image	that	receives	the
captured	pixel	data.

waitForNextBuffer Long If	the	waitForNextBuffer	value
is	true,	the	driver	will	wait	for
the	next	available	buffer.	If	the
waitForNextBuffer	value	is
false,	the	driver	will	not	wait	for
the	next	available	buffer,	and
will	instead	return	the	last
acquired	buffer.

actualBufferNumber Long	(passed
by	reference)

On	return,	the	actual	cumulative
buffer	number	of	the	image
retrieved.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxIsAttributeReadableCW
Format
IMAQdxIsAttributeReadableCW	(id	As	IMAQdxSession,	name	As	String,
readable	as	VARIANT_BOOL)	As	IMAQdxError



Purpose
Gets	the	read	permissions	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	camera	attribute	whose

read	permission	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

readable VARIANT_BOOL
(passed	by
reference)

Returns	true	if	the	attribute	is	readable,
otherwise	false.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxIsAttributeWritableCW
Format
IMAQdxIsAttributeWritableCW	(id	As	IMAQdxSession,	name	As	String,
writable	as	VARIANT_BOOL)	As	IMAQdxError



Purpose
Gets	the	write	permissions	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	camera	attribute	whose

write	permission	you	want	to	get.	Refer	to
Attribute	Name	for	a	list	of	attributes.

writable VARIANT_BOOL
(passed	by
reference)

Returns	true	if	the	attribute	is	writable,
otherwise	false.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxSequenceCW
Format
IMAQdxSequenceCW	(id	As	IMAQdxSession,	images()	As	CWIMAQImage,
count	As	Long)	As	IMAQdxError



Purpose
Configures,	starts,	acquires,	stops,	and	unconfigures	a	sequence
acquisition.	Use	this	function	to	capture	multiple	images.	If	you	call	this
function	before	calling	IMAQdxOpenCamera,	IMAQdxSequence	uses
cam0	by	default.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
images CWIMAQImage	[] The	image	array	that	receives	the

captured	pixel	data.
count Long The	number	of	images	in	the	image

array.	This	value	must	be	less	than	or
equal	to	the	number	of	allocated	images
in	the	image	array.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxSetAttributeCW
Format
IMAQdxSetAttributeCW	(id	As	IMAQdxSession,	name	As	String,	type	As
IMAQdxValueType,	value	As	VARIANT)	As	IMAQdxError



Purpose
Sets	the	value	for	a	camera	attribute.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
name String The	name	of	the	attribute	you	want	to

set.	Refer	to	Attribute	Name	for	a	list	of
attributes.

type IMAQdxValueType The	type	of	the	attribute	you	want	to	set.
value VARIANT	(passed

by	reference)
The	value	of	the	specified	attribute.



Parameter	Discussion
type	specifies	the	type	of	the	value	parameter.	The	following	types	are
supported:	IMAQdxValueTypeU32,	IMAQdxValueTypeI64,
IMAQdxValueTypeF64,	IMAQdxValueTypeString,
IMAQdxValueTypeEnumItem,	and	IMAQdxValueTypeBool.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



IMAQdxSnapCW
Format
IMAQdxSnapCW	(id	As	IMAQdxSession,	image	As	CWIMAQImage)	As
IMAQdxError



Purpose
Configures,	starts,	acquires,	and	unconfigures	a	snap	acquisition.	Use	a
snap	for	low-speed	or	single-capture	applications	where	ease	of
programming	is	essential.	If	you	call	this	function	before	calling
IMAQdxOpenCamera,	IMAQdxSnap	uses	cam0	by	default.	If	the	image
type	does	not	match	the	video	format	of	the	camera,	this	function
changes	the	image	type	to	a	suitable	format.



Parameters
Parameter Type Description
id IMAQdxSession A	valid	Session	ID,	which	you	can	obtain

using	IMAQdxOpenCamera.
image CWIMAQImage The	image	that	receives	the	captured	pixel

data.



Return	Value
On	success,	this	function	returns	IMAQdxErrorSuccess.	On	failure,	this
function	returns	an	error	code.	You	can	obtain	a	more	detailed	error
message	with	IMAQdxGetErrorStringCW.



Attributes	by	Name
The	following	table,	sorted	by	attribute	name,	describes	the	attributes	you
can	use	with	the	attribute	functions.

Attribute	Name
IMAQdxAttributeBaseAddress CameraInformation::BaseAddress

IMAQdxAttributeBusType CameraInformation::BusType

IMAQdxAttributeModelName CameraInformation::ModelName

IMAQdxAttributeSerialNumberHigh CameraInformation::SerialNumberHigh

IMAQdxAttributeSerialNumberLow CameraInformation::SerialNumberLow

IMAQdxAttributeVendorName CameraInformation::VendorName



IMAQdxAttributeHostIPAddress CameraInformation::HostIPAddress

IMAQdxAttributeIPAddress CameraInformation::IPAddress

IMAQdxAttributePrimaryURLString CameraInformation::PrimaryURLString

IMAQdxAttributeSecondaryURLString CameraInformation::SecondaryURLString

IMAQdxAttributeAcqInProgress StatusInformation::AcqInProgress

IMAQdxAttributeLastBufferCount StatusInformation::LastBufferCount

IMAQdxAttributeLastBufferNumber StatusInformation::LastBufferNumber



IMAQdxAttributeLostBufferCount StatusInformation::LostBufferCount

IMAQdxAttributeLostPacketCount StatusInformation::LostPacketCount

IMAQdxAttributeRequestedResendPackets StatusInformation::RequestedResendPacketCount

IMAQdxAttributeReceivedResendPackets StatusInformation::ReceivedResendPackets

IMAQdxAttributeBayerGainB AcquisitionAttributes::Bayer::GainB



IMAQdxAttributeBayerGainG AcquisitionAttributes::Bayer::GainG

IMAQdxAttributeBayerGainR AcquisitionAttributes::Bayer::GainR

IMAQdxAttributeBayerPattern AcquisitionAttributes::Bayer::Pattern

IMAQdxAttributeStreamChannelMode AcquisitionAttributes::Controller::StreamChannelMode

IMAQdxAttributeDesiredStreamChannel AcquisitionAttributes::Controller::DesiredStreamChannel

IMAQdxAttributeFrameInterval AcquisitionAttributes::FrameInterval



IMAQdxAttributeIgnoreFirstFrame AcquisitionAttributes::IgnoreFirstFrame

IMAQdxAttributeOffsetX OffsetX

IMAQdxAttributeOffsetY OffsetY

IMAQdxAttributeWidth Width

IMAQdxAttributeHeight Height

IMAQdxAttributePixelFormat PixelFormat

IMAQdxAttributePacketSize PacketSize

IMAQdxAttributePayloadSize PayloadSize

IMAQdxAttributeSpeed AcquisitionAttributes::Speed



IMAQdxAttributeShiftPixelBits AcquisitionAttributes::ShiftPixelBits

IMAQdxAttributeSwapPixelBytes AcquisitionAttributes::SwapPixelBytes

IMAQdxAttributeOverwriteMode AcquisitionAttributes::OverwriteMode



IMAQdxAttributeTimeout AcquisitionAttributes::Timeout

IMAQdxAttributeVideoMode AcquisitionAttributes::VideoMode

IMAQdxAttributeBitsPerPixel AcquisitionAttributes::BitsPerPixel

IMAQdxAttributeReserveDualPackets AcquisitionAttributes::ReserveDualPackets

IMAQdxAttributeReceiveTimestampMode AcquisitionAttributes::ReceiveTimestampMode



IMAQdxAttributeActualPeakBandwidth AcquisitionAttributes::AdvancedEthernet::BandwidthControl::ActualPeakBandwidth

IMAQdxAttributeDesiredPeakBandwidth AcquisitionAttributes::AdvancedEthernet::BandwidthControl::DesiredPeakBandwidth

IMAQdxAttributeDestinationMode AcquisitionAttributes::AdvancedEthernet::Controller::DestinationMode

IMAQdxAttributeDestinationMulticastAddress AcquisitionAttributes::AdvancedEthernet::Controller::DestinationMulticastAddress

IMAQdxAttributeLostPacketMode AcquisitionAttributes::AdvancedEthernet::LostPacketMode



IMAQdxAttributeMemoryWindowSize AcquisitionAttributes::AdvancedEthernet::ResendParameters::MemoryWindowSize

IMAQdxAttributeResendsEnabled AcquisitionAttributes::AdvancedEthernet::ResendParameters::ResendsEnabled

IMAQdxAttributeResendThresholdPercentage AcquisitionAttributes::AdvancedEthernet::ResendParameters::ResendThresholdPercentage

IMAQdxAttributeResendBatchingPercentage AcquisitionAttributes::AdvancedEthernet::ResendParameters::ResendBatchingPercentage



IMAQdxAttributeMaxResendsPerPacket AcquisitionAttributes::AdvancedEthernet::ResendParameters::MaxResendsPerPacket

IMAQdxAttributeResendResponseTimeout AcquisitionAttributes::AdvancedEthernet::ResendParameters::ResendResponseTimeout

IMAQdxAttributeNewPacketTimeout AcquisitionAttributes::AdvancedEthernet::ResendParameters::NewPacketTimeout

IMAQdxAttributeMissingPacketTimeout AcquisitionAttributes::AdvancedEthernet::ResendParameters::MissingPacketTimeout



IMAQdxAttributeResendTimerResolution AcquisitionAttributes::AdvancedEthernet::ResendParameters::ResendTimerResolution



Error	Codes
The	following	table	describes	the	error	codes	used	in	NI-IMAQdx.

Error	Code Status	Name Description
-1074360320 IMAQdxErrorSystemMemoryFull Not	enough

memory
-1074360319 IMAQdxErrorInternal Internal	error
-1074360318 IMAQdxErrorInvalidParameter Invalid

parameter
-1074360317 IMAQdxErrorInvalidPointer Invalid	pointer
-1074360316 IMAQdxErrorInvalidInterface Invalid

camera
session

-1074360315 IMAQdxErrorInvalidRegistryKey Invalid
registry	key

-1074360314 IMAQdxErrorInvalidAddress Invalid
address

-1074360313 IMAQdxErrorInvalidDeviceType Invalid	device
type

-1074360312 IMAQdxErrorNotImplemented Not
implemented
yet

-1074360311 IMAQdxErrorCameraNotFound Camera	not
found

-1074360310 IMAQdxErrorCameraInUse Camera	is
already	in
use.

-1074360309 IMAQdxErrorCameraNotInitialized Camera	is	not
initialized.

-1074360308 IMAQdxErrorCameraRemoved Camera	has
been
removed.

-1074360307 IMAQdxErrorCameraRunning Acquisition	in
progress.



-1074360306 IMAQdxErrorCameraNotRunning No
acquisition	in
progress.

-1074360305 IMAQdxErrorAttributeNotSupported Attribute	not
supported	by
the	camera.

-1074360304 IMAQdxErrorAttributeNotSettable Unable	to	set
attribute.

-1074360303 IMAQdxErrorAttributeNotReadable Unable	to	get
attribute.

-1074360302 IMAQdxErrorAttributeOutOfRange Attribute
value	is	out	of
range.

-1074360301 IMAQdxErrorBufferNotAvailable Requested
buffer	is
unavailable.

-1074360300 IMAQdxErrorBufferListEmpty Buffer	list	is
empty.	Add
one	or	more
buffers.

-1074360299 IMAQdxErrorBufferListLocked Buffer	list	is
already
locked.
Reconfigure
acquisition
and	try	again.

-1074360298 IMAQdxErrorBufferListNotLocked No	buffer	list.
Reconfigure
acquisition
and	try	again.

-1074360297 IMAQdxErrorResourcesAllocated Transfer
engine
resources
already
allocated.
Reconfigure



acquisition
and	try	again.

-1074360296 IMAQdxErrorResourcesUnavailable Insufficient
transfer
engine
resources.

-1074360295 IMAQdxErrorAsyncWrite Unable	to
perform
asynchronous
register	write.

-1074360294 IMAQdxErrorAsyncRead Unable	to
perform
asynchronous
register	read.

-1074360293 IMAQdxErrorTimeout Timeout
-1074360292 IMAQdxErrorBusReset Bus	reset

occurred
during	a
transaction.

-1074360291 IMAQdxErrorInvalidXML Unable	to
load	camera's
XML	file.

-1074360290 IMAQdxErrorFileAccess Unable	to
read/write	to
file.

-1074360289 IMAQdxErrorInvalidCameraURLString Camera	has
malformed
URL	string.

-1074360288 IMAQdxErrorInvalidCameraFile Invalid
camera	file.

-1074360287 IMAQdxErrorGenICamError Unknown
Genicam
error.

-1074360286 IMAQdxErrorFormat7Parameters For	format	7:
The



combination
of	speed,
image
position,
image	size,
and	color
coding	is
incorrect.

-1074360285 IMAQdxErrorInvalidAttributeType The	attribute
type	is	not
compatible
with	the
passed
variable	type.

-1074360284 IMAQdxErrorDLLNotFound The	DLL
could	not	be
found.

-1074360283 IMAQdxErrorFunctionNotFound The	function
could	not	be
found.

-1074360282 IMAQdxErrorLicenseNotActivated License	not
activated.

-1074360281 IMAQdxErrorCameraNotConfiguredForListener The	camera
is	not
configured
properly	to
support	a
listener.

-1074360280 IMAQdxErrorCameraMulticastNotAvailable Unable	to
configure	the
system	for
multicast
support.

-1074360279 IMAQdxErrorBufferHasLostPackets The
requested
buffer	has
lost	packets



and	the	user
requested	an
error	to	be
generated.

-1074360278 IMAQdxErrorGiGEVisionError Unknown
GiGE	Vision
error.

-1074360277 IMAQdxErrorNetworkError Unknown
network	error.

-1074360276 IMAQdxErrorCameraUnreachable Unable	to
connect	to
the	camera

-1074360275 IMAQdxErrorHighPerformanceNotSupported High
performance
acquisition	is
not	supported
on	the
specified
network
interface.
Connect	the
camera	to	a
network
interface
running	the
high
performance
driver.



Glossary
A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 L 	 M 	 N 	 O 	 P 	 Q 	 R 	 S 	 T 	

U 	 V 	 W 	 Y



A
A/D Analog-to-digital.
AC Alternating	current.
acquisition
window

The	image	size	specific	to	a	video	standard	or
camera	resolution.

active	line
region

The	region	of	lines	actively	being	stored;	defined	by	a
line	start	(relative	to	vertical	sync	signal)	and	a	line
count.

active	pixel
region

The	region	of	pixels	actively	being	stored;	defined	by
a	pixel	start	(relative	to	the	horizontal	sync	signal)
and	a	pixel	count.

ADC Analog-to-digital	converter.	An	electronic	device,
often	an	integrated	circuit,	that	converts	an	analog
voltage	to	a	digital	number.

address Character	code	that	identifies	a	specific	location	(or
series	of	locations)	in	memory.

ANSI American	National	Standards	Institute.
antichrominance
filter

Removes	the	color	information	from	the	video	signal.

API Application	programming	interface.
area A	rectangular	portion	of	an	acquisition	window	or

frame	that	is	controlled	and	defined	by	software.
array Ordered,	indexed	set	of	data	elements	of	the	same

type.
ASIC Application-specific	integrated	circuit.	A	proprietary

semiconductor	component	designed	and
manufactured	to	perform	a	set	of	specific	functions
for	a	specific	customer.

aspect	ratio The	ratio	of	a	picture	or	image's	width	to	its	height.
asynchronous (1)	Independent	in	time	from	any	other	event.	(2)

Communication	mechanism	on	the	IEEE	1394	bus,
which	guarantees	delivery	of	the	message	but	does
not	guarantee	timing.



B
back
porch

The	area	of	the	video	signal	between	the	rising	edge	of	the
horizontal	sync	signal	and	the	active	video	information.

Bayer
encoding

Method	to	produce	color	images	with	a	single	imaging
sensor,	as	opposed	to	three	individual	sensors	for	the	red,
green,	and	blue	components	of	light.

Bayer
pattern

Color	filter	array	pattern	that	can	appear	in	four	variations,
depending	on	the	current	left	and	top	offsets	of	the
acquisition	window:
GBGB
RGRG

GRGR
BGBG

BGBG
GRGR

RGRG
GBGB

big
endian

Describes	computers	that	store	bytes	of	memory	by	placing
the	most	significant	byte	at	the	memory	location	with	the
lowest	address,	the	next	significant	byte	at	the	next	memory
location,	and	so	on.

black
reference
level

The	level	that	represents	the	darkest	an	image	can	get.	See
also	white	reference	level.

BMP Bitmap.	Image	file	format	commonly	used	for	8-bit	and	color
images	(extension	.bmp).

buffer Temporary	storage	for	acquired	data.
bus The	group	of	conductors	that	interconnect	individual	circuitry

in	a	computer,	such	as	the	PCI	bus;	typically	the	expansion
vehicle	to	which	I/O	or	other	devices	are	connected.



C
cache High-speed	processor	memory	that	buffers	commonly

used	instructions	or	data	to	increase	processing
throughput.

camera
session

A	process-safe	handle	to	a	camera.

CCIR Comite	Consultatif	International	des
Radiocommunications.	A	committee	that	developed
standards	for	color	video	signals.

chrominance The	color	information	in	a	video	signal.
CMOS Complementary	metal-oxide	semiconductor.
CompactPCI Refers	to	the	core	specification	defined	by	the	PCI

Industrial	Computer	Manufacturer's	Group	(PICMG).
compiler A	software	utility	that	converts	a	source	program	in	a

high-level	programming	language,	such	as	Basic,	C,	or
Pascal,	into	an	object	or	compiled	program	in	machine
language.	Compiled	programs	run	10	to	1,000	times
faster	than	interpreted	programs.	See	also	interpreter.

conversion
device

Device	that	transforms	a	signal	from	one	form	to	another;
for	example,	analog-to-digital	converters	(ADCs)	for
analog	input	and	digital-to-analog	converters	(DACs)	for
analog	output.

CPU Central	processing	unit.
CSYNC Composite	sync	signal.	A	combination	of	the	horizontal

and	vertical	sync	pulses.



D
D/A Digital-to-analog.
DAC Digital-to-analog	converter;	an	electronic	device,	often	an

integrated	circuit,	that	converts	a	digital	number	into	a
corresponding	analog	voltage	or	current.

DAQ Data	acquisition.	(1)	Collecting	and	measuring	electrical
signals	from	sensors,	transducers,	and	test	probes	or	fixtures
and	inputting	them	to	a	computer	for	processing.	(2)
Collecting	and	measuring	the	same	kinds	of	electrical	signals
with	A/D	or	DIO	devices	plugged	into	a	computer,	and
possibly	generating	control	signals	with	D/A	and/or	DIO
devices	in	the	same	computer.

DC Direct	current.
default
setting

A	default	parameter	value	recorded	in	the	driver;	in	many
cases,	the	default	input	of	a	control	is	a	certain	value	(often	0)
that	means	use	the	current	default	setting.

DLL Dynamic	link	library.	A	software	module	in	Microsoft	Windows
containing	executable	code	and	data	that	can	be	called	or
used	by	Windows	applications	or	other	DLLs;	functions	and
data	in	a	DLL	are	loaded	and	linked	at	run	time	when	they	are
referenced	by	a	Windows	application	or	other	DLLs.

DMA Direct	memory	access.	A	method	by	which	data	can	be
transferred	to	and	from	computer	memory	from	and	to	a
device	or	memory	on	the	bus	while	the	processor	does
something	else;	DMA	is	the	fastest	method	of	transferring
data	to/from	computer	memory.

DRAM Dynamic	RAM.
driver Software	that	controls	a	specific	hardware	device	such	as	an

image	acquisition	device.
dynamic
range

The	ratio	of	the	largest	signal	level	a	circuit	can	handle	to	the
smallest	signal	level	it	can	handle	(usually	taken	to	be	the
noise	level),	normally	expressed	in	decibels.



E
EEPROM Electrically	erasable	programmable	read-only	memory.

ROM	that	can	be	erased	with	an	electrical	signal	and
reprogrammed.

endianness The	convention	describing	the	ordering	of	bytes	in
memory	or	the	sequence	in	which	bytes	are	transmitted.

external
trigger

A	voltage	pulse	from	an	external	source	that	triggers	an
event	such	as	A/D	conversion.



F
field For	an	interlaced	video	signal,	a	field	is	half	the	number	of

horizontal	lines	needed	to	represent	a	frame	of	video;	the	first
field	of	a	frame	contains	all	of	the	odd-numbered	lines,	and
the	second	field	contains	all	of	the	even-numbered	lines.

FIFO First-in	first-out	memory	buffer.	The	first	data	stored	is	the	first
data	sent	to	the	acceptor;	FIFO	buffers	are	used	on	image
acquisition	devices	to	temporarily	store	incoming	data	until
that	data	can	be	retrieved.

flash
ADC

An	ADC	whose	output	code	is	determined	in	a	single	step	by
a	bank	of	comparators	and	encoding	logic.

frame A	complete	image;	in	interlaced	formats,	a	frame	is	composed
of	two	fields.

front
porch

The	area	of	a	video	signal	between	the	start	of	the	horizontal
blank	and	the	start	of	the	horizontal	sync.

function A	set	of	software	instructions	executed	by	a	single	line	of	code
that	may	have	input	and/or	output	parameters	and	returns	a
value	when	executed.



G
gain Applied	value	to	compensate	for	discrepancies	in	the	filter	for

a	particular	color.
gamma The	nonlinear	change	in	the	difference	between	the	video

signal's	brightness	level	and	the	voltage	level	needed	to
produce	that	brightness.

genlock Circuitry	that	aligns	the	video	timing	signals	by	locking
together	the	horizontal,	vertical,	and	color	subcarrier
frequencies	and	phases	and	generates	a	pixel	clock	to	clock
pixel	data	into	memory	for	display	or	into	another	circuit	for
processing.

Gigabit
Ethernet

Describes	technologies	which	transmit	Ethernet	packets	at	a
rate	of	a	gigabit	per	second.

GigE
Vision

A	camera	interface	standard	developed	using	the	Gigabit
Ethernet	communication	protocol.

grab Performs	an	acquisition	that	loops	continually	on	one	buffer.
You	obtain	a	copy	of	the	acquisition	buffer	by	grabbing	a	copy
to	a	separate	buffer	that	can	be	used	for	analysis.

GUI Graphical	user	interface.	An	intuitive,	easy-to-use	means	of
communicating	information	to	and	from	a	computer	program
by	means	of	graphical	screen	displays;	GUIs	can	resemble
the	front	panels	of	instruments	or	other	objects	associated
with	a	computer	program.



H
hardware The	physical	components	of	a	computer	system,	such	as

the	circuit	boards,	plug-in	boards,	chassis,	enclosures,
peripherals,	cables,	and	so	on.

hardware
abstraction
layer

Separates	software	API	capabilities,	such	as	general
acquisition	and	control	functions,	from	hardware-specific
information.

HSYNC Horizontal	sync	signal.	The	synchronization	pulse	signal
produced	at	the	beginning	of	each	video	scan	line	that
keeps	a	video	monitor's	horizontal	scan	rate	in	step	with
the	transmission	of	each	new	line.

hue Represents	the	dominant	color	of	a	pixel.	The	hue	function
is	a	continuous	function	that	covers	all	the	possible	colors
generated	using	the	R,	G,	and	B	primaries.	See	also	RGB.



I
I/O Input/output.	The	transfer	of	data	to/from	a	computer

system	involving	communications	channels,	operator
interface	devices,	or	data	acquisition	and	control	interfaces.

IEEE Institute	of	Electrical	and	Electronics	Engineers.
INL Integral	nonlinearity.	A	measure,	in	LSB,	of	the	worst-case

deviation	from	the	ideal	A/D	or	D/A	transfer	characteristic	of
the	analog	I/O	circuitry.

instrument
driver

A	set	of	high-level	software	functions,	such	as	NI-IMAQ,
that	controls	specific	plug-in	computer	boards;	instrument
drivers	are	available	in	several	forms,	ranging	from	a
function	callable	from	a	programming	language	to	a	virtual
instrument	(VI)	in	LabVIEW.

interlaced A	video	frame	composed	of	two	interleaved	fields;	the
number	of	lines	in	a	field	are	half	the	number	of	lines	in	an
interlaced	frame.

internal
buffer

A	page-locked	buffer.	See	also	page-locked	buffer.

interpreter A	software	utility	that	executes	source	code	from	a	high-
level	language,	such	as	Java	or	Basic,	by	reading	one	line
at	a	time	and	executing	the	specified	operation.	In	contrast,
a	compiler	converts	all	source	code	to	executable	machine
code	before	execution.	Compiled	languages	give
significantly	higher	performance	than	interpreted
languages.	Examples	of	compiled	languages	are	C,	C++,
and	LabVIEW,	while	Java	and	Basic	are	generally
interpreted	languages.	See	also	compiler.

interrupt A	computer	signal	indicating	that	the	CPU	should	suspend
its	current	task	to	service	a	designated	activity.

interrupt
level

The	relative	priority	at	which	a	device	can	interrupt.

IRE A	relative	unit	of	measure	(named	for	the	Institute	of	Radio
Engineers).	0	IRE	corresponds	to	the	blanking	level	of	a
video	signal,	100	IRE	to	the	white	level.	Note	that	for
CIR/PAL	video	the	black	level	is	equal	to	the	blanking	level
or	0	IRE,	while	for	RS-170/NTSC	video,	the	black	level	is	at
7.5	IRE.

IRQ Interrupt	request.	See	also	interrupt.



L
library A	file	containing	compiled	object	modules,	each	comprised

of	one	or	more	functions,	that	can	be	linked	to	other	object
modules	that	make	use	of	these	functions.

line	count The	total	number	of	horizontal	lines	in	the	picture.
little
endian

Describes	computers	that	store	bytes	of	memory	by	placing
the	least	significant	byte	at	the	memory	location	with	the
lowest	address,	the	second	least	significant	byte	at	the	next
memory	location,	and	so	on.

LSB Least	significant	bit.
luminance The	brightness	information	in	the	video	picture.	The

luminance	signal	amplitude	varies	in	proportion	to	the
brightness	of	the	video	signal	and	corresponds	exactly	to
the	monochrome	picture.

LUT Lookup	table.	A	selection	in	Measurement	&	Automation
Explorer	(MAX)	for	Vision	that	contains	formulas	that	let	you
implement	simple	imaging	operations	such	as	contrast
enhancement,	data	inversion,	gamma	manipulation,	or
other	nonlinear	transfer	functions.



M
MAX Measurement	&	Automation	Explorer.	The	National

Instruments	Windows-based	graphical	configuration	utility	you
can	use	to	configure	NI	software	and	hardware,	execute
system	diagnostics,	add	new	channels	and	interfaces,	and
view	the	devices	and	instruments	you	have	connected	to	your
computer.	MAX	is	installed	on	the	desktop	during	the	National
Instruments	driver	software	installation.

memory
buffer

See	buffer.

memory
window

Continuous	blocks	of	memory	that	can	be	accessed	quickly
by	changing	addresses	on	the	local	processor.

MSB Most	significant	bit.
MTBF Mean	time	between	failure.
mux Multiplexer.	A	switching	device	with	multiple	inputs	that

selectively	connects	one	of	its	inputs	to	its	output.



N
NI-IMAQ Driver	software	for	National	Instruments	image

acquisition	hardware.
NI-IMAQdx National	Instruments	driver	software	for	IEEE	1394	and

GigE	Vision	cameras.
noninterlaced A	video	frame	where	all	the	lines	are	scanned

sequentially,	rather	than	being	divided	into	two	frames
as	in	an	interlaced	video	frame.

NTSC National	Television	Standards	Committee.	The
committee	that	developed	the	color	video	standard	used
primarily	in	North	America,	which	uses	525	lines	per
frame.	See	also	PAL.

NVRAM Nonvolatile	RAM.	RAM	that	is	not	erased	when	a	device
loses	power	or	is	turned	off.



O
one-
shot

Applies	to	pulse	generation	and	acquisitions.	A	one-shot	pulse
or	acquisition	happens	only	once.



P
page-
locked
buffer

Memory	page	that	is	marked	as	non-pagable	by	the	virtual
file	system.	Page-locked	buffers	remain	in	physical	memory
and	do	not	cause	page	faults.

PAL Phase	Alternation	Line.	One	of	the	European	video	color
standards;	uses	625	lines	per	frame.	See	also	NTSC.

PCI Peripheral	Component	Interconnect.	A	high-performance
expansion	bus	architecture	originally	developed	by	Intel	to
replace	ISA	and	EISA;	it	is	achieving	widespread	acceptance
as	a	standard	for	PCs	and	workstations	and	offers	a
theoretical	maximum	transfer	rate	of	133	Mbytes/s.

PCIe PCI	Express.	A	high-performance	expansion	bus	architecture
originally	developed	by	Intel	to	replace	PCI.	PCIe	offers	a
theoretical	maximum	transfer	rate	that	is	dependent	upon
lane	width.	A	x1	link	theoretically	provides	250	MB/s	in	each
direction—to	and	from	the	device.	Once	overhead	is
accounted	for,	a	x1	link	can	provide	approximately	200	MB/s
of	input	capability	and	200	MB/s	of	output	capability.
Increasing	the	number	of	lanes	in	a	link	increases	maximum
throughput	by	approximately	the	same	factor.

PCLK Pixel	clock	signal.	Times	the	sampling	of	pixels	on	a	video
line.

PGIA Programmable	gain	instrumentation	amplifier.
picture
aspect
ratio

The	ratio	of	the	active	pixel	region	to	the	active	line	region;
for	standard	video	signals	such	as	RS-170	or	CCIR,	the	full-
size	picture	aspect	ratio	typically	is	4/3	(1.33).

pixel Picture	element.	The	smallest	division	that	makes	up	the
video	scan	line;	for	display	on	a	computer	monitor,	a	pixel's
optimum	dimension	is	square	(aspect	ratio	of	1:1,	or	the
width	equal	to	the	height).

pixel
aspect
ratio

The	ratio	between	the	physical	horizontal	size	and	the
vertical	size	of	the	region	covered	by	the	pixel.	An	acquired
pixel	should	optimally	be	square,	thus	the	optimal	value	is
1.0;	however,	typically	it	falls	between	0.95	and	1.05,
depending	on	camera	quality.

pixel
clock

Divides	the	incoming	horizontal	video	line	into	pixels.

pixel
count

The	total	number	of	pixels	between	two	horizontal	sync
signals;	the	pixel	count	determines	the	frequency	of	the	pixel



Q
quadlet A	32-bit	(four-byte)	word.
quadrature
encoder

An	encoding	technique	for	a	rotating	device	where	two
tracks	of	information	are	placed	on	the	device,	with	the
signals	on	the	tracks	offset	by	90	degrees	from	each	other.
The	phase	difference	indicates	the	position	and	direction	of
rotation.



R
RAM Random-access	memory.
real	time A	property	of	an	event	or	system	in	which	data	is	processed

as	it	is	acquired	instead	of	being	accumulated	and
processed	at	a	later	time.

relative
accuracy

A	measure	in	LSB	of	the	accuracy	of	an	ADC;	it	includes	all
nonlinearity	and	quantization	errors	but	does	not	include
offset	and	gain	errors	of	the	circuitry	feeding	the	ADC.

resolution The	smallest	signal	increment	that	can	be	detected	by	a
measurement	system;	resolution	can	be	expressed	in	bits,
in	proportions,	or	in	percent	of	full	scale.	For	example,	a
system	has	12-bit	resolution,	one	part	in	4,096	resolution,
and	0.0244	percent	of	full	scale.

RGB Red,	green,	and	blue.	The	three	primary	colors	used	to
represent	a	color	picture.	An	RGB	camera	is	a	camera	that
delivers	three	signals,	one	for	each	primary.

ribbon
cable

A	flat	cable	in	which	the	conductors	are	side	by	side.

ring Performs	an	acquisition	that	loops	continually	on	a	specified
number	of	buffers.

ROI Region	of	interest.	(1)	An	area	of	the	image	that	is
graphically	selected	from	a	window	displaying	the	image.
This	area	can	be	used	focus	further	processing;	(2)	A
hardware-programmable	rectangular	portion	of	the
acquisition	window.

ROM Read-only	memory.
RS-170 The	U.S.	standard	used	for	black-and-white	television.
RTSI	bus Real-Time	System	Integration	Bus.	The	National

Instruments	timing	bus	that	connects	image	acquisition	and
DAQ	devices	directly,	by	means	of	connectors	on	top	of	the
devices,	for	precise	synchronization	of	functions.



S
saturation The	richness	of	a	color.	A	saturation	of	zero	corresponds	to

no	color,	that	is,	a	gray	pixel.	Pink	is	a	red	with	low
saturation.

scaling
down
circuitry

Circuitry	that	scales	down	the	resolution	of	a	video	signal.

scatter-
gather
DMA

A	type	of	DMA	that	allows	the	DMA	controller	to	reconfigure
on-the-fly.

sequence Performs	an	acquisition	that	acquires	a	specified	number	of
buffers,	then	stops.

snap Acquires	a	single	frame	or	field	to	a	buffer.
SRAM Static	RAM.
StillColor A	post-processing	algorithm	that	allows	the	acquisition	of

high-quality	color	images	generated	either	by	an	RGB	or
composite	(NTSC	or	PAL)	camera	using	a	monochrome
video	acquisition	device.

sync Tells	the	display	where	to	put	a	video	picture;	the	horizontal
sync	indicates	the	picture's	left-to-right	placement	and	the
vertical	sync	indicates	top-to-bottom	placement.

syntax Set	of	rules	to	which	statements	must	conform	in	a
particular	programming	language.

system
RAM

RAM	installed	on	a	personal	computer	and	used	by	the
operating	system,	as	contrasted	with	onboard	RAM.



T
timeout Length	of	time,	in	milliseconds,	that	the	driver	waits	for	an

image	from	the	camera	before	returning	an	error
transfer
rate

The	rate,	measured	in	bytes/s,	at	which	data	is	moved
from	source	to	destination	after	software	initialization	and
setup	operations;	the	maximum	rate	at	which	the	hardware
can	operate.

trigger Any	event	that	causes	or	starts	some	form	of	data	capture.
trigger
control
and
mapping
circuitry

Circuitry	that	routes,	monitors,	and	drives	the	external	and
RTSI	bus	trigger	lines;	you	can	configure	each	of	these
lines	to	start	or	stop	acquisition	on	a	rising	or	falling	edge.

TTL Transistor-transistor	logic.	A	digital	circuit	composed	of
bipolar	transistors	wired	in	a	certain	manner.	A	typical
medium-speed	digital	technology.	Nominal	TTL	logic	levels
are	0	and	5	V.



U
user
buffer

Memory	buffer	created	by	the	user	as	a	destination	for	the
image.	In	LabVIEW,	this	is	created	with	the	IMAQ	Create	VI.

UV
plane

See	YUV.



V
VCO Voltage-controlled	oscillator.	An	oscillator	that	changes

frequency	depending	on	a	control	signal;	used	in	a	PLL	to
generate	a	stable	pixel	clock.

VI Virtual	Instrument.
1.	 A	combination	of	hardware	and/or	software	elements,

typically	used	with	a	PC,	that	has	the	functionality	of	a
classic	stand-alone	instrument

2.	 A	LabVIEW	software	module	(VI),	which	consists	of	a
front	panel	user	interface	and	a	block	diagram
program.

video
line

A	video	line	consists	of	a	horizontal	sync	signal,	back	porch,
active	pixel	region,	and	a	front	porch.

VSYNC Vertical	sync	signal.	The	synchronization	pulse	generated	at
the	beginning	of	each	video	field	that	tells	the	video	monitor
when	to	start	a	new	field.



W
white
reference
level

The	level	that	defines	what	is	white	for	a	particular	video
system.	See	also	black	reference	level.



Y
YUV A	representation	of	a	color	image	used	for	the	coding	of	NTSC	or

PAL	video	signals.	The	luminance	information	is	called	Y,	while
the	chrominance	information	is	represented	by	two	components,
U	and	V,	that	represent	the	coordinates	in	a	color	plane.



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
The	Bluetooth®	word	mark	is	a	registered	trademark	owned	by	the
Bluetooth	SIG,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	media,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR



APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	award-winning	National	Instruments
Web	site	at	ni.com	for	technical	support	and	professional	services:

Support—Technical	support	resources	at	ni.com/support	include
the	following:

Self-Help	Resources—For	answers	and	solutions,	visit
ni.com/support	for	software	drivers	and	updates,	a
searchable	KnowledgeBase,	product	manuals,	step-by-
step	troubleshooting	wizards,	thousands	of	example
programs,	tutorials,	application	notes,	instrument	drivers,
and	so	on.	Registered	users	also	receive	access	to	the	NI
Discussion	Forums	at	ni.com/forums.	NI	Applications
Engineers	make	sure	every	question	submitted	online
receives	an	answer.
Standard	Service	Program	Membership—This
program	entitles	members	to	direct	access	to	NI
Applications	Engineers	via	phone	and	email	for	one-to-
one	technical	support,	as	well	as	exclusive	access	to	on
demand	training	modules	via	the	Services	Resource
Center.	NI	offers	complementary	membership	for	a	full
year	after	purchase,	after	which	you	may	renew	to
continue	your	benefits.
For	information	about	other	technical	support	options	in
your	area,	visit	ni.com/services	or	contact	your	local	office
at	ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-
house	technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_SRC)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.



Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	5050	9800
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 358	(0)	9	725	72511
France 33	(0)	1	57	66	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	41309277
Japan 0120-527196	/	81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100


	NI-IMAQdx Function Reference Help
	Related Documentation
	Activating Your Software
	Using Help
	Conventions
	Navigating Help (Windows Only)
	Searching Help (Windows Only)
	Printing Help File Topics (Windows Only)

	Attributes by Name
	Error Codes
	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services


